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Abstract 

Source camera identification (SCI) is an area of forensic science that has to do with attributing a 

photo to the camera that has captured it. SCI has been widely researched using several approaches 

especially the use of image photo-response non-uniformity (PRNU) fingerprints with normalized 

correlation and peak to energy correlation as decision parameters. Several classifiers, such as 

support vector machines (SVM) and neural network (NN), have been used for source camera 

identification. In some research works, deep learning methods, such as convolutional neural 

networks (CNN), have been used for camera identification. However, most of the proposed 

methods have considerably good identification accuracy for identifying the camera models, but 

poor identification accuracy for individual instance-based SCI. Furthermore, existing source 

camera identification algorithms mostly have good performance for images of size higher than 256 

× 256. Motivated by the knowledge gap in the literature, in the thesis, we propose methods for 

robust deep learning method, so as to achieve high discriminative power for instance-based SCI 

for small-sized images. The small-sized images can be due to low resolution or a cropped image 

patch from an image. Moreover, most of the deep learning-based camera identification methods 

use images directly as input into the deep networks. However, the contents of the images suppress 

the camera features, and this has a negative impact on the identification accuracies of cameras. 

Therefore, we propose the use of noise residues or individual PRNU images so as to suppress the 

contamination of camera features by image contents. The proposed noise residues are also pre-

processed by zero-meaning so as to remove linear patterns, and as a normalization technique for 

our input data. The work is useful in applications, such as splicing translocations and small-sized 

forgery detection. 
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 Firstly, we proposed a stacked sparse autoencoder (SSAE) for SCI. Autoencoder is an auto-

associative architecture, which is considered suitable for learning input data that is not completely 

random. Since PRNU is Gaussian distributed and is not completely random, so the autoencoder 

implemented can learn some interesting structure from the pre-processed noised residues of 

cameras. The robust features of camera characteristics are learned through stacking several 

encoding layers of autoencoders recursively. These robust features are then taken as inputs to a 

regularised softmax classifier for probabilistic predictions of the source camera. We investigated 

the structure of the SSAE and the hyper-parameters that give optimal performance on our data. 

For all our proposed deep learning methods, the cross-entropy loss function was used.  

Furthermore, mini-batch stochastic optimisation was used for updating the network weights. 

Experimental results on 20 cameras from the Dresden database show that the proposed method 

achieves comparable identification accuracy when compared with some state-of-the-art methods. 

The proposed SSAE also generalizes well using the same hyper-parameters on different cameras 

sets.  

 Secondly, we propose a robust deep CNN architecture for instance-based SCI. The 

proposed neural network consists of three convolutional layers and two fully connected layers. 

The convolutional layer of the proposed CNN includes processing operations, such as convolution, 

strides, batch normalization, and leaky rectilinear activation (Leaky ReLU). Strided convolution 

was used as the downsampling operation, instead of the max-pooling in our proposed method. This 

is because maxpooling aggressively downsamples feature maps, and the quality of the PRNU 

signal is dependent on the total number of pixel values. Therefore, it will affect the quality of the 

feature maps. Dropout layers are also used in the fully connected layers to prevent network 

overfitting. Our dataset consists of a cameras with an unequal number of images (an unbalanced 
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dataset), so we introduced the use of a class weight to the training function. Class weights penalize 

under or over-represented classes during training. To further prevent overfitting of deep networks 

and reduce unnecessary computation during training, we adopted the use of early stopping. The 

output of the FC2 is given as input into a regularized softmax classifier (CNN-SC) for probabilistic 

prediction of camera classes. Furthermore, after training the proposed CNN, the flattened output 

of the third convolutional layer with a linear activation was extracted and used as the embedded 

layer for one-vs- rest linear support vector machines (CNN-SVM). Using one-vs-rest linear SVM 

classifier gives room for more training samples in a training set for each phase of training. 

Furthermore, the proposed deep CNN model was also pre-trained on 10 non-target camera classes 

and fine-tuned on 10 target camera classes. A comparative study with some state-of-the-art 

methods was carried out. Experimental results show that the identification accuracies of our 

proposed CNN-based methods (CNN-SC and CNN-SVM) are 18%-25.6% and 20.37%-25.02% 

higher than four other PRNU-based SCI methods, without and with fine-tuning on a deep CNN 

pretrained model. We also compared our method with a deep learning-based method, namely 

content-adaptive fusion networks (CA-FRN). Our proposed CNN-based methods (CNN-SVM 

without and with fine-tuning) have the identification accuracy 6.12-10.02% lower than CA-FRN 

for camera brand identification, but have identification accuracy 1.34% and 11.02-12.83% higher 

than CA-FRN for camera model identification and camera device identification, respectively.  

Furthermore, we have evaluated the effectiveness of our proposed deep CNN, fine-tuned 

on non-target cameras, under geometric distortions, such as JPEG compression with quality factors 

of 95, 90 and 80, before the extraction of the noise residues of images. The average identification 

accuracies with post JPEG compression on targeted camera classes are 0.68%, 1.74%, and 3.37% 

lower than the average identification accuracy, without post JPEG compression, for the quality 
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factors of 95, 90 and, 80 respectively. This shows that our proposed CNN-system, with fine-tuning 

is robust to post JPEG compression with only little reduction in accuracy, as compared to those 

images not being compressed.  

 Finally, we propose a learning method to extract the PRNU fingerprint and to perform 

camera identification. The extraction of the PRNU fingerprint of a camera from a smooth, plain 

image is much easier than from a natural or cluttered image. Based on this observation, we propose 

both a manual and automatic curriculum learning method for instance-based SCI deep residual 

CNN (ResNet). Residual connections are added to our proposed deep CNN architecture so as to 

generate more robust representational bottlenecks, and also to tackle the vanishing gradient 

problem. The idea of curriculum learning (CL) is to train a system, which may be a student or a 

deep network, from simple concepts to hard concepts. For the manual CL method, the proposed 

ResNet is first trained with flat images. Having trained with flat images, those cluttered or natural 

images are mixed with flat images to continue training up the network. In real applications, all the 

available images are usually of natural images. Therefore, the last stage of our proposed CL uses 

natural images only. For the second CL algorithm, the features of training images are extracted 

from the softmax layer of the trained ResNet, and the cross-entropies of each instance of the 

extracted features are calculated. The indices of the sorted cross-entropies are used to classify the 

training images as simple or hard images. Our experimental results show that ResNet-SVM has 

2.18% and 0.27% higher identification accuracies than CNN-SVM, without and with fine-tuning 

respectively. For the manual CL, our experimental results show that ResNet-SVM has 3.74% 

identification accuracy higher than training with no curriculum learning. Furthermore, our 

proposed automatic CL approach only has 0.47% identification accuracy higher than training with 

no CL. In conclusion, our proposed deep learning methods for instance-based SCI can still achieve 
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good performance using a small data size, unlike a large amount of data required for good 

performance in some camera identification problems. Moreso, unlike the inability of the proposed 

CNN-based method in a work published in 2019 to acheive better identification than a PRNU-

based technique, our work can acheive better identication accuracy than the conventional state-of-

the-art methods that use PRNU-based methods using identical settings. 
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Chapter 1 : 

Introduction 

1.1 Background 

Manipulation of images is not only peculiar to digital photography but also to silver-based 

photography or analog photography. Images from both digital and analog photography can be 

tampered or alterd. Digital imaging technology is still considered in forensic science has been 

better than analog photography in tracing the source of an image. Unlike analog images, digital 

images are usually attributed with additional information which can be useful for or suggest the 

possible transformation process carried out on the digital images. These peculiar properties have 

made digital imaging technology an important area of application in forensic analysis of images. 

Digital images consist of pixels or picture elements. The pixel is an estimation of a colour. A digital 

image can be a true colour image with three channels (red, green and blue) or a grey level image 

(black and white image) with a single channel. Most of the forensic analysis are done using grey-

level transformation and this is due to easy storage and fast computation time. The overall 

identification accuracy when grey images are used compared to true colour transformation, is 

insignificant [1]. Images and videos have been widely used as evidence in a court of law to depict 

the truthfulness of crime-related offenses or illegal actions. The authenticity of the multimedia 

content provided as a proof is now a question of interest [2]. In film photography, alteration in the 

output image is limited; since it takes time and also costly. In contrast, images from digital 

photography can be easily altered due to the rapid development of digital electronic tools. The 
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availability and cost-effectiveness of these tools have further contributed to their widespread of 

tampered images. These tools can be used to alter the originally captured multimedia content.  

 A question of interest is that,  can the authenticity of the digitally captured images or videos 

still be guaranteed since they can now be easily adjusted by these processing tools or readily 

available computer graphics [2, 3]? Another question of interest is whether the images captured 

are purely synthetic images generated from computer software. One common software with a very 

high number of users all over the world is the Adobe Photoshop software. The design of this 

software greatly enables easy manipulation of any desired parts of the original images. The 

changes in the altered images are most of the times not perceptible to the human eyes. This makes 

it difficult to know a multimedia content has been altered by mere observation. Therefore, the 

integrity of digital images is in doubt, since it cannot be guaranteed that they have not been forged 

[3]. In order to circumvent these problems, digital image forensics researchers investigate some 

fundamental features of a real image. Apart from the manipulation of the visual content of images, 

another area of concern is the authenticity of the device that captured the images in question. This 

is the question of whether the images are from a camera, scanner, and cam decoder or whether 

they are computer graphic images. Though exchangeable file format of images usually have 

metadata headers that contain information about the devices that captured the images. However, 

the information on the metadata headers can be edited or deleted. Therefore, the use of such images 

in forensic analysis as an evidence in a court of law could be misleading [2]. There are other aspects 

of digital forensic science such as tampering discovery, steganalysis, recapturing identification, 

recovering of processing history, computer graphics identification, device temporal forensics and 

anti-forensic [3]. As a result of the rapid production of digital cameras and scanners, forensic 

research has mainly focused on camera and scanner source identification [2]. The two categories 
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of techniques used for multimedia forensics are classified into active and passive forensics. Figure 

1.1 shows the diagrammatic representation of the classification of the techniques used for 

multimedia forensics [3].   

 In Figure 1.1, the active forensics is further divided into two parts; which are the 

precomputation of the harsh part of the image and also information hiding. Active forensics 

involves computing beforehand some delicate properties of some severe or bad parts of an image. 

The second involves encoding the original image with a secret data before it will be sent through 

a public channel. In the case of alteration in the sent image, the forensic decision is then made by 

comparing the encoded information of the original image with the extracted encoded data from the 

manipulated or tampered image [3]. According to [4], during the image production, watermark 

inclusive of iris biometric data was used as the encoded data. Verification of the authenticity of 

the image can now be achieved by comparing the extracted watermark of the suspected image with 

the original image. The techniques usually used in passive forensics, are based on the fundamental 

idea that the source of an image (camera or scanner) contains sufficient features that can be used 

to verify its authenticity when compared with its forged image. Active forensics, have the 

advantage of being highly effective in justifying the authenticity of an image but the added artifacts 

due to the encoded data, further degrade the quality of the output image. Its strict requirements in 

ensuring accuracy is also a limitation. Most of the forensic researchers adopt the passive forensic 

techniques since they do not impose specific requirements or additional artifacts apart from the 

one due to camera-in processing techniques [4]. The focus of our work is on the source camera 

identification. There are two types of camera identification problems, namely camera model 

identification, and instance-based source camera identification (SCI). The former attempts to 
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identify only the model/brand of the camera that was used to capture a photo while the latter 

attempt to identify the individual or source camera [5, 6]. 
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Figure 1.1. Classification of the Techniques Used For Multimedia Forensics [3]. 

1.2 Motivation  

The need to know the source of an image is that it helps to provide some useful pre-information 

necessary for further analysis on the image. For example, in a situation where the source of a 

captured image is known, it could help in locating the photographer and also the device. The 

knowledge of the model of a device helps to further acquire more information about the device by 

getting the model specifications and features from several resources available online. Recently, 

the sensor noise defects of a camera have been widely explored and commonly used as camera 

fingerprints. The sensor noise defects include readout noise, shot noise, fixed pattern noise, and 

the photo response non–uniformity (PRNU). The PRNU has been the most commonly used camera 

fingerprint in the literature [7-16] due to the universality, dimensionality, and robustness. The 

PRNU is also called the sensor pattern noise (SPN) of a camera.  Furthermore, several classifiers 

such as support vector machine (SVM) and neural network (NN) have been used to solve source 
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camera identification problem [17, 18].  Some of the literature that has achieved very high camera 

identification accuracy used a combination of several features like 34 features used in [18]. Despite 

all the several approaches used in literature [7-16], there are still problems that need to be solved. 

Is it still possible to achieve higher accuracy just with a single feature? Can higher accuracy still 

be achieved at lower image resolutions irrespective of the texture complexity of images? Can 

fusion of classifiers help in achieving better accuracy or is there a better classifier that could help 

further increase the classification accuracy using only PRNU as the input feature? Furthermore, 

the work in [19], carried out a comparative study on the proposed CNN-based SCI and on a PRNU-

based method using identical settings, concluded that the PRNU-based method has higher 

identification accuracy, at a lower computational cost, than the proposed CNN-based method. An 

interesting question is whether a more accurate deep network architecture can be designed for 

instance-based SCI, by using effective training algorithms. Another class of machine learning that 

has high discriminating power and is capable of achieving robust feature representation is deep 

learning. This method has been widely used in many applications such as face recognition [20], 

image classification [21], fingerprint liveness detection [22], automatic malware signature 

generation and classification [23], modulation format identification in coherent receivers [24] and 

classification of hyperspectral images [25]. The ability of a deep neural network (DNN) to 

automatically learn features is what makes it a suitable technique for many applications. Deep 

learning is a hierarchical learning. It is a subset of machine learning which uses algorithms to self-

learn robust representations of a data when given recursively through several NN layers. Several 

supervised and unsupervised deep learning modules have been explored over the years. These 

include restricted Boltzmann machines (RBM), deep belief networks (DBN), convolutional neural 

network (CNN), autoencoder (AE), denoising autoencoder [21, 22, 26] and residual convolutional 
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neural network [27]. Due to the current success of deep learning in achieving invariant feature 

representation and high discriminative power, the aim of the research is to apply deep learning 

techniques for source camera identification 

 Also, existing source camera identification algorithms mostly have good performance for 

images size ranging from 256 × 256 and above [7-16]. Motivated by the knowledge gap in the 

literature, in the thesis, we carefully designed robust deep learning methods with high 

discriminative power for instance-based source camera identification for small-sized images. The 

small-sized images could be due to low resolution or a cropped image patch from an image. In our 

work, small sized images are defined as images with sizes from or below 256 ×  256. For the 

proposed SSAE, we carried out experiments using 256  × 256, 128  ×  128 and 64  ×  64 image 

sizes while for CNN-based methods, we used 64 × 64 image size.  Also, some deep learning-based 

camera identification methods used the images directly as input into their proposed deep networks 

[28-30]. However, the contents of the images suppress the camera features, and this has a negative 

impact on the identification accuracies of cameras especially for instance-based source camera 

identification. Therefore, we proposed the use of noise residues or individual PRNU images so as 

to suppress contamination of camera features by image contents. The proposed noise residues are 

also pre-processed by zero-meaning so as to remove linear patterns and as normalization technique 

for our input data. The ultimate goal is to increase the camera identification accuracy for small size 

images compared to some existing methods in the literature. The work is useful in applications 

such as splicing translocations and small-sized forgery detection. Therefore, in this work, we 

propose basically three deep learning-based methods for instance-based source camera 

identification and the motivation for each method are discussed as follows.  

Firstly, we propose stacked sparse autoencoder for source camera identification. An AE is 
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an artificial neural network with one hidden layer. It helps to learn a compressed representation of 

an input data. It does this by first transforming the input data to hidden features (encoding) and 

these features are then mapped back to obtain an approximation to the input data (decoding) [31]. 

When sparsity constraint is imposed on the hidden layer of an  AE, it is called sparse autoencoder 

[21]. The constraint is added to ensure that a good representation is obtained even when the number 

of hidden units is large. Stacking the encoding features of hidden layers of autoencoders 

recursively is called stacked AE (SAE). It has been used successfully for classification problem 

[20, 32, 33]. The work in [21] used a deep learning approach called stacked sparse autoencoder 

(SSAE) with softmax classifier (SM) for image classification. Their experimental results show 

that, only 60 samples per class were used for pre-training and 12 samples per class for validation. 

Despite the small training size, an overall accuracy of 91.67% was achieved. This demonstrated 

that a small set of input data but with high quality can still produce a good result. In [34], for an 

input data to be considered suitable for an autoencoder, it should not be completely random. The 

input should not be identically and independently Gaussian. For an input to be identically and 

independently Gaussian means each of its random variables must not have the same probability 

distribution as the others and all must be mutually independent. It can also be suitable for a dataset 

that has at least some structure. Some of the inputs features in the data should be correlated. 

Although PRNU has a noise-like characteristic there is a correlation between the PRNU of training 

and testing images belonging to the same camera instance. AE is data specific and is not suitable 

for learning features directly from images which do not have specific properties [35]. Therefore, 

for SCI, SAE is considered suitable since there is a correlation between PRNU of images of the 

same camera instance. The combination of the SSAE and SM can be used to extract a robust and 

invariant representation of features of the PRNU for source camera identification. The basic 
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concept of SAE is called the layer-wise pre-training through several hidden layers without the 

knowledge of class levels. The idea is to learn robust features at each layer of the network 

progressively [32]. These features are called deep features. After the training stage, a supervised 

learning can then be carried out on the learned features from the pre-training using any multi-class 

classifiers such as SVM or SM. 

 Secondly, we investigated the CNN architecture that is best suited for obtaining robust noise 

features of cameras. CNN are specifically designed for recognition of images and has been widely 

used in several applications involving image and speech processing, text classification and 

reinforcement learning for a board game and video game. CNN has also been used in digital 

forensics applications. For example, Bayer et al. [36] proposed a CNN architecture for the 

detection of manipulated images. CNN was adopted for detection of median filtering of images 

[37]. Besides, CNN has also been applied for camera model identification [28, 29, 38]. In-camera 

model identification, the work in [29] achieved an accuracy of 94% using 27 camera models for  

32 × 32 images sizes. This accuracy was achieved when only one instance of the camera models 

was used. When multiple cameras of the same model were included, the accuracy dropped to 

29.8%. This shows that the CNN architecture in [29] was unable to achieve good performance in 

instance-based camera identification. A different CNN architecture was proposed for 64 × 64 

images sizes in [28] and over 93% identification accuracy was achieved. However, the proposed 

technique is for camera model identification, rather than instance-based identification. The 

background assumption in both [29] and [28] is that CNN is able to learn features about the 

processing pipelines of cameras directly from the images without the use of hand-crafted features. 

Since CNN usually requires the use of large dataset for implementation, images were divided into 

patches for training. Instead of using images as input, PRNU was used as input in [23] for camera 
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model identification. Their experimental results show 98.0%, 97.09% and 91.9% for 12, 14 and 

33 camera models respectively on  256 × 256 image sizes. Despite the good performance in 

camera model identification, the work in [38] did not consider instance-based source identification.  

We believe that the structures of the CNN have to be modified so that the CNN can have good 

performance in instance-based source camera identification. Images contain scene details and 

camera model features such as color filter array interpolation and lens distortion which are not 

unique to each camera device. However, PRNU is unique for each individual device. We thus 

propose to use PRNU images instead of the original images as inputs to CNN. We believe that 

PRNU images can provide quality input information to the CNN so that the training does not need 

a large amount of input data. Consider the work in [21] that used a deep learning approach called 

stacked sparse autoencoder with softmax classifier for image classification. In one of their 

experimental works, only 60 samples per class were used for pre-training and 12 samples per class 

for validation. Despite the small training size, an overall accuracy of 91.67% was achieved. This 

demonstrated that a small set of input data but with high quality can still produce a good result. As 

earlier stated, existing PRNU-based source camera identification algorithms have good 

performance for images size larger than 256 × 256. Identification of small size patch using sensor 

pattern noise is still challenging for camera identification. This is because the estimated PRNU 

fingerprint weakens as the number of pixels reduces. However, identification from small image 

patch is important, especially if forgery regions are to be located. In this work, we will investigate 

if the CNN approach can achieve reliable identification from small image size such as 64 × 64. 

CNN architecture using the sensor noise may not require so very huge data size before it can 

achieve superior performance as compared to huge data size required for good performance in 
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other applications. This will further reduce computational demand required for the proposed CNN 

implementation.  

 Lastly, to train a deep neural network, a large amount of training data is required, in order to 

avoid overfitting. Therefore, effective training algorithms are important for deep neural networks 

to achieve good generalization power. For source camera identification, we usually have limited 

examples from each of the cameras under consideration. Furthermore, the PRNU fingerprints of a 

camera is difficult to detect from an image, if the image has complicated patterns. In other words, 

the extraction of the PRNU fingerprint from a smooth, plain image is much easier than from a 

cluttered image. Based on this observation, we employ curriculum learning to train a deep ResNet 

for source camera identification. The idea of curriculum learning (CL) is to train a system, which 

may be a student or a deep network, from simple concepts to hard concepts. This learning approach 

allows the system to train up from handling simple tasks too hard tasks. The use of curriculum 

learning can help to improve the speed of global convergence during training and a better local 

minimum can be achieved [39]. 

 

1.3. Organization of the Thesis and Contributions 

In this thesis, we focus on the use of deep learning techniques for instance-based SCI for small 

image sizes. This will be achieved using three deep-learning based proposed methods. The learning 

will be done on the noise residues of cameras. Apart from the Chapter 1 which focused on the 

background and motivation for the work and proposed methods, there are other six chapters in the 

thesis. 

 In Chapter 2, we reviewed SCI, image features usually used for SCI and a review of some 

of the state of the art techniques that are well used for the extraction of the PRNU of cameras. 
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Finally, we carried out a comparative analysis on some of the states of the art methods so as to 

validate the effect of the size of the image on identification accuracy. The experimental results 

show that the lower the image size, the lower the identification accuracies of cameras. This shows 

that the noise residue becomes weaker as the image size gets smaller.  

 In Chapter 3, we reviewed the historical background of the artificial neural network, 

introduction to deep learning, objective functions and supervised optimization algorithms. The aim 

of the chapter is to understand the working principles of some of the methods that will be applied 

in Chapters 4 and 5.  

 In Chapter 4, we introduce the use of SSAE for instance-based SCI. We did a review on 

sparse and denoising autoencoders. We introduce the network architecture for the proposed SSAE 

and also the PRNU preparation as input into the SSAE. The trained features using SSAE are then 

given as input to a regularized softmax loss layer for probabilistic prediction of source cameras. 

We investigated the structure of the SSAE and hyper-parameters that give optimal performance 

on our data. Experimental results show that significant overall identification performance 

comparable with some existing methods on the Dresden database and better performance on our 

own dataset when compared with some state-of-the-art methods for all tested image sizes. Also, 

the proposed network also generalizes well using the same hyper-parameters on different cameras 

set.  

In Chapter 5, we introduce our proposed deep CNN for instanced based source camera 

identification of small-sized images. We discussed the working principle and the training process 

of CNN. Also, we discussed the proposed CNN architecture, its training, fine-tuning process and 

selection of hyperparameters. Apart from building CNN from the scratch for SCI, we also 

proposed the use of transfer learning using the proposed deep CNN as the pre-trained model on 
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non-target camera classes and the classification was carried out on target camera classes and this 

approach has improved performance than without fine-tuning on pretrained models on non-target 

camera classes. We proposed,  a carefully designed CNN architecture  for instance source camera 

identification by investigating suitable CNN-based architecture to extract robust features of camera 

noise residues rather than extracting features directly from the camera images as done in Bondi et 

al. [28]. Since we are using the noise residues of cameras, we investigated suitable normalization 

technique, CNN signal processing operations, depth of CNN architecture and effective training 

algorithms.  Strided convolution was used as the down-sampling operation instead of the max-

pooling in our proposed method. This is because, max-pooling aggressively down sample feature 

maps and the quality of the PRNU signal is dependent on the total number of pixel values and 

hence, it will affect the quality of the feature maps.   

For the training methods, apart from the use of mini-batch stochastic gradient descent and 

categorical cross-entropy loss, sparsity constraint and weight regularization methods are used to 

further prevent model overfitting. Finally, we introduce the use of class weights to the training 

function. Class weights penalize under or over-represented classes in the training set. Our proposed 

class weight function is passed as a dictionary into the class weight parameter of the network 

training function. Experimental results on cameras from the Dresden database show that our  

proposed deep methods using a single image patch (64 × 64) from each image achieve superior 

performance than the compared methods using a small data size, unlike the requirement of using 

a huge dataset used for CNN training for some camera  identification problems. This further 

reduces computational demand required for the CNN training and  can be attributed to the fact that 

our proposed network was learned on preprocessed noise residues less contaminated by the image 

scenes and hence, can extract high discriminative features for instance-based camera identification.  
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Moreso, we carried out experimental evaluation on the robustness of our proposed deep 

CNN methods to geometric distortion such as JPEG compression. There is positive influence on 

the quality of the features maps of the target cameras based on the weights of all the layers of the 

pre-trained CNN being updated during training. Therefore, experimental results show that the 

effect of post JPEG compression on the quality of the PRNU fingerprints of cameras can be 

suppressed by fine-tuning on a pre-trained model for data with related probabilistic distribution.  

In Chapter 6, we introduce the concept of residual convolutional neural network and also 

the background philosophy behind the use of curriculum learning in deep neural networks. The 

architecture of the proposed ResNet is discussed and it basically consists of additional residual 

connections to our proposed deep CNN architecture in Chapter 5. Also, we set out the procedures 

for both our proposed manual and automatic algorithms. Finally, we evaluated the proposed 

curriculum learning on 10 cameras from the Dresden database and the experimental results show 

the benefits of adding residual connections to our initially proposed deep CNN without residual 

connections. Also, our experimental results show that training on easy training examples before 

hard examples (manual CL algorithm) can contribute to increasing identification accuracy of the 

proposed ResNet model.  

Chapter 7 concludes the thesis and also gives the future research directions. 
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Chapter 2 : 

Review of Source Camera Identification 

In this section, the processes involved in the formation of images using a digital camera were 

discussed. Also, several camera features that have been explored for SCI are discussed. Finally, 

we compared some state-of-the-art methods for different image sizes as to observe the effect of 

identification accuracy on different sizes of images. The motive of the comparison is to check the 

effect of different image sizes on the camera identification accuracy.  

2.1 Formation of an image in a Digital Camera 

The block diagram in Figure 2.1 gives the signal processing stages involved in the formation of an 

image in a high-end digital camera. It can be observed from Figure 2.1 that the light from the 

multimedia content passes through some set of lenses. The light from the lenses goes through the 

optical filter. The basic function of an optical filter is to improve the image. It helps to control the 

brightness levels of the image by reflecting its actual wavelengths. The optical filters commonly 

used are anti-aliasing filters and infrared filters[5]. Each pixel of an image has a colour, therefore, 

photons of the light from the optical filters are passed through an array of filters called colour filter 

array. These photons are converted to electrons by the imaging sensor. There are different imaging 

sensors. These are charge coupled device, complementary metal-oxide semiconductors,  junction 

field effect transistors and CMOS-Foveon X3 [5]. The differences in the aforementioned types of 

camera sensors are based on the kind of semiconductors used. Induced voltages or electrons are 

produced at the sensors. They are in analog form and hence an analog to digital converter unit of 
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the digital camera helps to convert the electrons into digital values. The outputs of the sensor are 

digital negatives or raw images.  

For these raw images to be in a viewable format, software for raw image converters is used 

in case the camera is set to output raw images. If the camera is not set to raw format, then the 

output of the sensor is further debayered using demosaicing algorithms to restore its full colour 

and help depict the real world scene. Due to artifacts incurred during the processing of the image, 

some post-processing techniques such as white balancing, gamma correction and compression are 

further applied to the demosaiced image[40]. Finally, the enhanced image output is then stored in 

a camera memory device depending on the desired format [40].  
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Figure 2.1. Processing stages of a high-end digital camera [34]. 

 

2.2 Digital Camera Features used for Source Camera Identification 

As described in Section 1.1, multimedia source identification can be broadly divided into either 

image source identification or source class identification. For the source class identification, the 

class can either be a scanner, camera or cam decoder. SCI can be defined as the science of 

identifying some features of a camera on an image and using these features to identify the specific 
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camera used to capture the image. Some of the image features that have been used in the literature 

are briefly discussed in this section.  

2.2.1 Lens Distortion Features 

These are some features in images due to defects from the manufacturing process of the lens. There 

are different types of lens distortion that have been used in literature and some of them are lens 

radial distortion, chromatic aberration, spherical aberration, field curvature, astigmatism and so 

on. Out of all these features, the lens radial distortion appears to be the one with most severe effect 

on the quality of the image. It is highly perceptible especially in less expensive cameras and it 

depicts itself as straight lines into curved lines in the captured image.  There is first and second 

order radial distortion. Choi et al. [41] used the second-order radial distortion in their work. The 

features used are based on two computed parameters with Kharrazi’s features reported in [18]. 

Considering a fixed optical zooming, the work achieved 89% accuracy using five different 

cameras' models. Variation in refractive indexes of lens materials for different wavelengths also 

leads to another type of lens distortion called lateral chromatic aberrations. The misalignment in 

colour channels of the image is caused by the effect of the refractive indexes and this prevents the 

colours from being properly focused. Van et al.[42], used image registration approach to finding 

the optimal optical center parameters. Three different cameras' models were used and they 

achieved 92% identification accuracy based on SVM classifier. 

2.2.2 Demosaicing Regularities 

Demosaicing is an approach for the reconstruction of full colour images from an image sensing 

device. Through this process, pixel colours are extracted by interpolation to retrieve the image in 

a viewable format. In order for the raw images to be in a viewable format, demosaicing or 

debayering algorithms are used in reconstructing the full-colour images from the imaging sensor. 
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All the pixels colours individually extracted using colour filter arrays are then interpolated or 

reconstructed to get back the image in it's viewable and full colour format using the demosaicing 

algorithms. The demosaicing algorithms vary from one camera model to the other. The algorithms 

are camera specific and differs greatly[3]. Multimedia forensics, adopt these differences as the 

means of uniquely identifying one camera model from the other. As reported in Popescu and Farid 

[43], an accuracy of 97% has been obtained by adopting the expectation maximization algorithm. 

This algorithm uses the MAP by estimating the interpolation noise variance. The work done by 

[44], has been further extended by constructing a SVM for smooth and non-smooth regions of the 

output image. These parameters were obtained by finding the second derivatives of the elements 

in the rows of the matrix of the output image.  Long et al. [6] explored the error features due to the 

estimation of the interpolation filter coefficients as demosaicing algorithms. The extracted error 

features were used to train a NN. In the work, not all the error features were used, principal 

component analysis (PCA) was used to extract the most significant features sufficient for the 

camera model identification. Using, four camera models, the work achieved an overall accuracy 

of about 100%.  Furthermore, Swamminathan et al. [45] , Cao and Kot [46] have done further 

works by using enhanced demosaicing features. 

2.2.3 Sensor Noise Defects 

To begin with, it will be necessary to have the basic understanding of the different sensor noise 

defects at different levels of the signal transfer. Photon-transfer curve, shown in Figure 2.2, can be 

used to explain the sensor noise defect. This is demonstrated using the photon transfer curve. This 

curve is shown in Figure 2.2. This curve is used as the standard steps to be followed or considered 

during the manufacturing process of a camera. It helps to give the information about the read noise, 



18 

 

shut noise, fixed pattern noise (readout noise), full well capacity, fixed pattern noise camera’s 

sensitivity and PRNU [34].  
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Figure 2.2. Photon Transfer Curve [34]. 

2.2.3.1 Readout Noise 

The first stage of the photon transfer curve is the readout noise. This is the bias frame and it has a 

slope of zero. The read noise or readout noise is caused by the electronic devices of a digital 

camera. The voltage induced by the photons at the sensors are further amplified and the amplifiers 

can only give an estimate of the signal value and this is one of the causes of the readout noise. The 

readout noise of a digital camera can be measured by calculating the mean, standard deviation of 

overlapping frames. The set of the calculated means will be plotted against the standard deviations 

and a scatter plot will be obtained. By using regression, the scatter plot is then converted to a line 
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plot. The intercept of the standard deviation when the mean is zero is then taken as the readout 

noise of the camera. The readout noise is uniformly distributed across the image. In [40], two 

experiments were carried out using the readout noise. The first experiment combined two pictures 

from the same camera having different exposure rates and the second experiment used the readout 

noise of the images without considering differences in exposure rates. Six cameras were used for 

the analysis and average cameras’ identification accuracies obtained were 88.3% and 79% 

respectively. For the readout noise to be an effective feature in source camera identification, there 

is a need for the actual readout of the noise of the camera to be known beforehand [40].   

2.2.3.2 Shot Noise 

The shot noise as shown in Figure 2.2, is the phase with the slope of 1/2. When the light intensity 

increases, there will be an increase in the transfer of photons from the camera lens to the sensor. 

This causes a random movement of the photons and it leads to what is called the shot noise.  It has 

a slope of  half because the rate at which photons arrive at the imaging sensor and a number of 

incoming charges are inversely related [40].   

2.2.3.2 Fixed Pattern Noise  

Photons can be thermally generated in a camera due to exposure, temperature or the camera 

settings [40], [47]. They are noises caused by thermal effects. Given that only the fixed pattern 

noise is assumed to be the only sensor defect, then, the  pixel’s output  is expressed in [47] as,  

 

 𝑌 = 𝐼 + 𝜏𝐷 + 𝑐      (2.1) 
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where 𝐼 is the input image, 𝐷 is the dark current, 𝜏 is the multiplicative factor and c is the camera 

offset setting. The photons generated in the camera due to thermal effects are then converted to 

electrons at the imaging sensor. These free electrons are called dark currents. They are called fixed 

pattern noise because they maintain their pixel’s value across all frames. These currents are weak 

but its effects can be well pronounced if the images are taken by the night. When D  and c are 

extremely high, it leads to point defects called hot and stuck pixels respectively. These two point 

defects are used in forensic science for class source classification and digital photograph age 

estimation [47].  

As earlier shown in Figure 2.2 , PRNU is a noise defect with a slope of 1 and it is a pattern noise 

most common in natural images. Unlike fixed pattern noise, PRNU is resistant to exposure, to 

humidity and temperature. Imaging sensors are usually made up of silicon waivers. The 

inconsistencies in the nature of silicon waivers affect the responsiveness of photons of being easily 

converted to pixels. The rate at which the photons are converted to electrons is called quantum 

efficiency [40], [47]. The inconsistencies in the pixels' responsiveness lead to a sensor defect called 

PRNU.  This could also be caused due to malfunction in the design of the imaging sensor during 

the manufacturing process and dust specks. The PRNU, also consists of low-frequency 

components, such as the effects of light refraction on dust particles. The PRNU component is 

usually adopted for SCI because it is an intrinsic feature of a digital sensor. For dark images, fixed 

pattern noise is more pronounced compared to PRNU but PRNU is strongly present in saturated 

images. The techniques usually used in the manufacturing of image sensors are identical. This 

makes the PRNU in all the sensors to have related features It has also been found to be dominant 

in the high-frequency components of an image [5].   
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2.2.3.3 Photon Response Non-Uniformity 

Most of the literature has used PRNU either independently or with other features. It is 

becoming most commonly used camera fingerprint. There will be a need to further explain why 

PRNU is widely used for forensic analysis. The first forensic interest of the PRNU is its uniqueness 

to all sensors in digital cameras since it has more information regarding each sensor. For this 

reason, no two cameras have the same PRNU fingerprint. It is possible for an image to be 

recognized by cameras of the same model, but these cameras still have different statistical 

parameters. Secondly, there is no camera irrespective of the post-processing stages that does not 

exhibit PRNU. This universality and generality make it a desired fingerprint for forensic analysis. 

Another very useful characteristics of PRNU is its high stability irrespective of the number of years 

it has been extracted. Finally, PRNU can withstand the artifacts caused by JPEG compression, 

white balancing, gamma correction and filtering in camera operation processing. Based on these 

properties, the camera source of an image can be known once the PRNU of that camera is available. 

PRNU as camera fingerprint can also be used to know the age of a digital photograph and also for 

verification of image authenticity [47]. Therefore, PRNU is used as the camera fingerprint for the 

source camera identification in this research work. An example of an extracted PRNU from a 

digital camera is shown in Figure 2.3. 
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Figure 2.3. Close-up of the PRNU factor 𝐾 enhanced for visualization [47]. 

2.3 Extraction of the Camera SPN 

The first step before the extraction of the SPN of a digital camera is to know the general pixel -

output model. This section focusses on the pixel-output model and also discusses some of the 

approaches that have been adopted in the extraction of the SPN such as Basic SPN, maximum 

likelihood estimation (MLE) SPN, SPN using enhancing models, phase SPN and other extraction 

methods.   

2.3.1 The Pixel Output Model 

The general pixel output model based on the sensor’s imperfections discussed so far, is given in  

[47] as,  

 𝑌 =  𝐼 +  𝐼𝐾 +  𝜏𝐷 +  𝑐 +  ∅      (2.2) 
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where 𝑌 is the noisy image,  𝐾 is the multiplicative factor,  𝐼𝐾 is the PRNU noise, ∅ is the model 

of all other sensor’s imperfections such as readout noise, shut noise, quantization noise and 

photonic noise. All the noises, classified under  ∅ are not usually used for forensic analysis because 

of their random nature. The presence of this PRNU noise makes the output of an imaging sensor 

noisy.  In order to remove the effects of the noise due to the imperfections, the output model 𝑌 has 

to be denoised. In order to achieve this, a denoising filter (𝐹) will be used. The resulting residual 

noise (W ) after denoising is given in [47] as,  

    𝑊 = 𝑌 − 𝐹(𝑌)      (2.3) 

      =   IK +  τD + I − F(Y) c +  ∅  

where £ is the modeling noise combined with the residual noise and it is given as,  

Textured regions and near edges are usually characterized with large 𝑊.  Several denoising filters 

including both non-adaptive and adaptive filters have been used in denoising a noisy image. The 

wavelet-based denoising filter proposed by Lukas et al. [5] has been used and reported to be a very 

good denoising filter for SPN extraction in [9, 10, 48, 49].  

 2.3. 2 Wavelet-Based Denoising Filter    

Both non-adaptive and adaptive filters have been used for denoising images. Denoising filters such 

as Argenti’s filter and Mihcak's filter are discussed in Amerini et al. [6].  The Argenti's filter 

models the signal-dependent noise, unlike the Mihcak's filter which models the noise by assuming 

it to have a zero mean and a stationary white Gaussian noise with an unknown variance. The 

parameters used in the proposed filter in this work are the variation of zero mean noise when it is 

yet to be correlated and variation of the noise associated with the electronic device. The Mihcak’s 

 = 𝐼𝐾 + 𝜏𝐷 + £      (2.4) 

 £ =  𝐼 − 𝐹(𝑌) 𝑐 +  ∅      (2.5) 
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filter, on the other hand, is a spatially adaptive statistical modeling of wavelet coefficients. The 

noise variance was calculated using MAP of the noisy image. Out of several denoising filters that 

have been used in literature, the denoising filter proposed by Lukas et al. [5] have been widely 

used and rated efficient in  [9] and [49]. The aim of this section is to now summarize the basic 

steps involved in its implementation. This can be given by the four steps as stated below; 

i. Wavelet decomposition of noisy Images:  Noisy image was initially processed by adding 

Gaussian noise 𝑁(0, 𝜎2) to the image. The vertical 𝑣(𝑖, 𝑗), horizontal ℎ(𝑖, 𝑗)  and diagonal 

components 𝑑(𝑖, 𝑗)  were obtained using fourth-level wavelet decomposition with 

Daubechies of order 8.  

ii. MAP of local variance: The local variance of the original image before the Gaussian noise 

was added was estimated for each component in each level using MAP for a neighborhood 

of 4 sizes. The least variance was used in the experiment. The estimated local variance 

using MAP is given in [5] as,  

where R is the decomposition level, σ0 is the initial variance.  

iii. Using Weiner Filter: The denoised image was obtained using Weiner filter for all the 

wavelets components and was repeated for all levels and channels (for true color images). 

The Weiner filter can be expressed for the horizontal component as, 

 

 𝜎2(𝑖, 𝑗) = 𝑚𝑎𝑥 (0,
1

𝑅2
 ∑ ℎ2(𝑖, 𝑗) − 𝜎0

2

(𝑖,𝑗)∈𝑁

) , (𝑖, 𝑗) ∈ 𝑅      (2.6) 

 ℎ𝑑𝑒𝑛(𝑖, 𝑗) = ℎ(𝑖, 𝑗)
𝜎2(𝑖, 𝑗)

𝜎2(𝑖, 𝑗) + 𝜎0
2
      (2.7) 
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iv. Applying inverse transform: This was used to reconstruct the denoised image.           

For Section 2.3.3 to Section 2.3.8, we shall discuss the strengths and weaknesses of some of the 

state of the art methods which have been used for source camera identification.          

 2.3.3 Basic SPN 

Basic SPN simply means the fundamental method upon which other methods of SPN extraction 

are based. This was based on the work done by Lukas et al. [5]. The first step is to extract the 

PRNU from photos captured from cameras. In order to extract a robust reference fingerprint for a 

particular camera, It must be estimated from the SPN of several images (30 and above). The SPN 

extraction for a single image has been explained in Section 2.3.1. Given 𝑐 = 1, 2, ……𝐶, n =

1,2… .N and Wn is the PRNU of an image, the fingerprint of a camera can then be expressed as; 

where 𝐶 is the total number of cameras to be identified and 𝑁 is the total number of images or 

photos from the single camera. The 𝐾̂𝑐 was based on finding the average PRNU over the number 

of images captured from camera c. During testing, images will be captured from each camera and 

their PRNU will be extracted. In order to verify whether a particular image is from a camera c, 

correlation is used as the decision parameter. The correlation parameter can be defined as;  

where 𝑛𝑖 is the PRNU of the camera fingerprint, nj is the PRNU of the testing image and  𝑛𝑖̅ and 

𝑛̅𝑗 are the average values of 𝑛𝑖 and 𝑛̅𝑗 respectively. The camera with the maximum correlation is 

taken to be the camera of the testing image. The proposed method by Lukas et al. [5] requires that 

cropping of images be carried out so as to achieve reduced computational complexity. This usually 

 K̂c =
∑ Wn

N
n=1

N
,      (2.8) 

 𝑝(𝑖, 𝑗) =
(𝑛𝑖−𝑛𝑖̅̅ ̅)(𝑛𝑗−𝑛̅𝑗)

‖𝑛𝑖−𝑛𝑖̅̅ ̅‖.  ‖𝑛𝑗−𝑛̅𝑗‖
,      (2.9) 
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causes desynchronization and also affects the quality of the camera fingerprint which reduces the 

identification accuracies of the cameras. In order to increase the identification accuracies of 

cameras, several approaches have been adopted to enhance the camera’s fingerprint. Chen and 

Fridrich [8] proposed another approach to estimate the camera fingerprint and this has been 

explained in Section 2.3.3. 

2.3.4 Maximum Likelihood SPN 

MLE was proposed by Chen and Fridrich [8]. In this work, instead of estimating the average of 

the PRNU over several images as the camera fingerprint, MLE was used as the camera fingerprint. 

Assuming the dark current to be insignificant, the noise residue in eqn. (2.4) can be further 

expressed as,  

The log-likelihood of the noise term in eqn. (2.10) can be expressed as, 

 

The maximum likelihood estimate of K after the taking the partial derivatives of  L(K), can be 

expressed as;  

 

 𝑊 = 𝐼𝐾 + £ 

     

(2.10) 

 𝐿(𝐾) = −
𝑁

2
∑ 𝑙𝑜𝑔 (2𝜋𝜎2 𝐼𝑛

2) − ∑
𝑊𝑛 𝐼𝑛 − 𝐾⁄

2𝜋𝜎2/𝐼𝑛
2

𝑁

𝑛=1

⁄

𝑁

𝑛=1

 

        

(2.11) 

 𝐾̂ =
∑ 𝐼𝑛𝑊𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
2𝑁

𝑛=1
                                                                          

        

(2.12) 
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The significance of eqn. (2.12) is that it gives a weighted sum of 𝐼𝐾 and this helps create a strong 

presence of the PRNU in the camera fingerprint. The quality of the estimated fingerprint (𝑞) can 

be measured by estimating the correlation (𝑐𝑜𝑟𝑟 ) between 𝐾  and 𝐾̂ . 𝑞 can be defined by using 

the expression, 

The PRNU are usually contaminated with artifacts due to in-camera processing techniques 

such as compression, quantization, and color interpolation. There are artifacts embedded in the 

PRNU due to the design of the imaging sensor, on sensor signal transfer. These artifacts are camera 

dependent, unlike PRNU which could still have a similar estimate for cameras of the same model. 

Most of these artifacts are caused by the demosaicing algorithms used in the cameras during color 

filter interpolation. Since these artifacts are periodic in nature, they are eliminated by the zero-

mean operation. To zero-mean refers to finding the mean of each row or column and then subtract 

from each element in the rows and columns respectively [47].   

Despite the improvement over the Basic SPN using MLE SPN, the limitation mostly 

associated with this method of SPN extraction is high contamination from scene details. The scene 

content of an image has its high-frequency components whose values are far greater than the 

frequency component of a clean SPN and therefore its presence highly contaminates the expected 

SPN. In order to combat the issue of scene content, Li [9] developed six models for enhancing the 

camera SPN. The next discussion focusses on the theoretical background upon which the proposed 

enhancing models are based, the summary of the author’s achievements and current limitations of 

the models. 

 𝑞 = 𝑐𝑜𝑟𝑟 (𝐾, 𝐾̂)     (2.13) 
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2.3.5 SPN using Li’ Enhancing Models 

For the SCI, 30-50 flat images are captured for each camera and the SPN noise for each camera is 

estimated as the average of SPNs.  Natural images which may include high texture complexity 

from these cameras will be randomly captured and their SPN are extracted. The decision on a 

camera test image will be grossly affected if the extracted SPN of the test image consists of strong 

details of its scene content. Contamination by scene content reduces the camera identification 

accuracy. Secondly, the extraction of SPN will be computationally intensive if a huge number of 

images are used. Therefore, in order to reduce the computational complexity, small parts of the 

images are cropped to the same size and used in the extraction process. Cropping causes high 

variation in SPNs and also reduces the number of SPNs components compared to when the original 

size of the images are directly used in the extraction process. This also reduces the camera 

identification accuracy. Therefore, the quality of the extracted SPN determines whether high 

camera identification accuracy will be obtained.  The work done by Chen et al. [50], attempted to 

enhance the SPN by attenuating artifacts caused by color interpolation, compression, row-wise 

and column wise operation. The work failed to deal with the limitation caused by the strong 

presence of scene content. SPN enhancing models are proposed by  Li [9] to address the 

interference from the scene details.  

The proposed models are based on the background knowledge that the magnitude of the 

scene details is higher than the SPN. The hypothesis for the models in [9] is that ‘‘the stronger a 

signal component in 𝑛 (the PRNU fingerprint), the more likely that it is associated with strong 

scene details, and thus the less trustworthy the component should be’’. Weighting factors are 

therefore used to assign less importance to the scene components in the wavelet domain. The 

proposed six models are given in eqn. (2.14) to eqn. (2.19) respectively. The performance of each 



29 

 

model is determined by the value of the threshold parameter (𝛼) and 𝑛(𝑖, 𝑗) is the value of each 

signal component in row (𝑖) and column (𝑗) of 𝑛. 

 The model 6 given by eqn. (2.19) is usually avoided since it gives less significance to the 

weaker components and associates more importance to the scene details. Models 1 to 5 can be 

divided into three types. The types, corresponding models, threshold contribution to unenhanced 

camera’s fingerprint in [9] are summarized in Table 2.1. It was reported by Li [9] experiment that 

models 1-5 all have good results but Model 5 has the highest peak rate of 1040 out of 1200 at a 

threshold value of 7. Phase sensor pattern noise has also been adopted in combating the 

contamination by scene details and also introduced peak to energy correlation as the decision 

parameter. This is explained in detail in Section 2.3.5. 

 

 𝐌𝐨𝐝𝐞𝐥 𝟏:  𝑛(𝑖, 𝑗) =

[
 
 
 
 
 
 

𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

𝑒
−0.5

(𝑛(𝑖,𝑗)−∝)2

∝2 , 𝑖𝑓 𝑛(𝑖, 𝑗) >∝
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

−𝑒
−0.5

(𝑛(𝑖,𝑗)−∝)2

∝2 , if 𝑛(𝑖, 𝑗) < −∝ ]
 
 
 
 
 
 

     (2.14) 

 

 𝐌𝐨𝐝𝐞𝐥 𝟐: 𝑛(𝑖, 𝑗) =

[
 
 
 
 
 

𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

𝑒−∝−𝑛(𝑖,𝑗) if 𝑛(𝑖, 𝑗) >∝
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

𝑒−∝−𝑛(𝑖,𝑗), if 𝑛(𝑖, 𝑗) < −∝ ]
 
 
 
 
 

     
(2.15) 

 

 𝐌𝐨𝐝𝐞𝐥 𝟑: 𝑛(𝑖, 𝑗) =

[
 
 
 
 

1 − 𝑒−𝑛(𝑖,𝑗), if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

(1 − 𝑒−𝑎)(𝑒−∝−𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) >∝

−1 − 𝑒−𝑛(𝑖,𝑗), if −∝≤ 𝑛(𝑖, 𝑗) < 0

(−1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) < −∝ ]
 
 
 
 

     
(2.16) 
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 𝐌𝐨𝐝𝐞𝐥 𝟒: 𝑛(𝑖, 𝑗) = [

1 −
𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

−1 −
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

]     
(2.17) 

 

 𝐌𝐨𝐝𝐞𝐥 𝟓: 𝑛(𝑖, 𝑗) = [
𝑒

−0.5
𝑛2(𝑖,𝐽)

∝2 , if 0 ≤ 𝑛(𝑖, 𝑗)

−𝑒
−0.5

𝑛2(𝑖,𝐽)

∝2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

]     (2.18) 

 

 𝐌𝐨𝐝𝐞𝐥 𝟔 ∶ 𝑛(𝑖, 𝑗) =

[
 
 
 
 

1 − 𝑒−𝑛(𝑖,𝑗), if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

(1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) >∝

−1 + 𝑒−𝑛(𝑖,𝑗), if −∝≤ 𝑛(𝑖, 𝑗) < 0

(−1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) < −∝ ]
 
 
 
 

     
(2.19) 

 

Table 2.1. Model types and threshold contribution to un-enhanced SPN 

Types of Transformation Model(s) Threshold’s Contribution 

Linear  1 and 2 
It gives the exact weights to n in the within -α to α. 

It is the most conservative. 

Non-Linear 3 It gives greater significance to SPN components on 

the lower ends and less significance when closer to 

±α. It is a moderate operation.  

Inversely Proportional 4 and 5 It interchanges the order of the SPN magnitudes.  

Weaker components are given greater significance 

and it is considered to have a significant effect on 

the existing magnitudes. 
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2.3.6 Phase SPN  

The Phase SPN pattern noise proposed in [10], also addresses the problem or effect of scene details 

on the PRNU. The approach explores the receiver operating curve characteristics to suppress the 

effect of the contamination by the scene content.  

The phase component of the noise residue Wj is obtained by taking the phase component 

of the DFT of the SPN. Given, 𝑊𝑗′
= 𝐷𝐹𝑇(𝑊𝑗), the phase component of the PRNU can be 

expressed as, 

 W∅j=
Wj

|Wj|
,     (2.20) 

where, 𝑊𝑗  is the SPN of camera 𝑗. The overall SPN of a camera is then estimated by calculating 

the average of all the phase components of SPN of each image from a camera and then find the 

inverse DFT. This can be expressed as;  

where y is the camera reference SPN and N is the total number of images per camera. 

2.3.7 Weighted Averaging Based SPN 

The work in [51] proposed another approach to account for the variation in the SPN estimate using 

weighting averaging. The motivation behind their method is that the random noise in SPN of the 

camera does not has the same variance across all images captured by the same camera device. Out 

of the several other reasons, camera settings, focal length and shutter speed contribute to the 

variation in random noise of PRNU. The goal of their proposed weighting averaging is to minimize 

the estimation error due to this variation. The sum of the signal in a random noise, (𝑆(𝑗)) is 

expressed in [51] as,   

 𝑦 = 𝑟𝑒𝑎𝑙(𝐼𝐷𝐹𝑇(
∑ 𝑊∅𝑗

𝑁
𝑗=1

𝑁
),          (2.21) 
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where 𝑤𝑖 is the optimal weight for 𝑖𝑡ℎ observation, 𝑠𝑖(𝑗)  is the sum of 𝑆(𝑗) and the variance of 

each observation (𝜎𝑖 )  and zero mean of the observation,𝑠𝑖(𝑗) = 𝑆(j) + 𝑟𝑖(j) ,𝑖 = 1, …𝑁 , 𝑗 =

 1,… 𝐿, 𝑟𝑖(j) is the random noise.  Note that the 𝑠𝑖 (j) is column vector of the given image, 𝑖. The 

optimal weight for 𝑖𝑡ℎ observation is expressed in [51] as, 

The noise variance (𝑛𝜎) was proposed as, 

In order to obtain the weight, we have to estimate (𝜎𝑖 )  and this is expressed as, 

The method in [51] proposed the weighting averaging approach with two the basic SPN and also 

MLE SPN and both are called weighted Basic SPN and weighted MLE SPN respectively. Given 

that the PRNU of a given observation is 𝑟𝑖 , the weighted Basic SPN can be expressed as, 

Also, the weighted MLE SPN can be expressed as,  

where, 𝐼𝑖 is the intensity of each given image of a camera.  

 𝑆(𝑗) = ∑ 𝑤𝑖 𝑠𝑖
𝑁
𝑖=1 (𝑗) ,     

     

(2.22) 

 𝑛𝜎(𝑗) = 𝑠𝑖  (𝑗) − 𝑠𝑖̅ (𝑗)       (2.23) 

 
𝑤𝑖 =

1

𝜎𝑖
2 (

1

(∑
1

𝜎𝑖
2

𝑁
𝑖=1 )

)     
        

(2.24) 

 𝜎𝑖 = √∑ (𝑛𝜎(𝑗)−𝑛𝜎̅̅ ̅̅ (𝑗))
2𝐿

𝑗=1

𝐿
        (2.25) 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑎𝑠𝑖𝑐 𝑆𝑃𝑁 =
∑ 𝑤𝑖 𝑟𝑖

𝑁
𝑖=1

𝑁
           (2.26) 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝐿𝐸 𝑆𝑃𝑁 =
𝑁(∑ 𝑤𝑖 𝑟𝑖𝐼𝑖)

𝑁
𝑖=1

∑ 𝐼𝑖
2𝑁

𝑖=1

           (2.27) 
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2.3.8 Summary of Other State of the Arts Methods for Source Camera Identification 

Apart from the four described commonly compared state of the art methods, there are other 

approaches that have been proposed in literature. The work in [8] and [52] proposed the removal 

of sharing components in the PRNU estimate. The motivation of their works was based on the fact 

that there are artifacts of pipeline processing of cameras occurring in the estimated PRNU. In order 

to suppress this artefact, they proposed the use of zero mean operation coupled with the use of 

Wiener filtering of the PRNU estimate in Fourier domain. The aim of transforming features to 

Fourier domain is to suppress the magnitude of the artifacts and hence strengthening the presence 

of the PRNU. On the premise that the PRNU fingerprint is a Gaussian noise, the work of Li and 

Lin [11] proposed the use of spectrum equalization algorithm. In their work, they proposed that 

SPN is not likely to be periodic but more likely to have flat spectrum. Therefore, unlike the work 

in [8] and [52]  that attempted to suppress the magnitude of the artifacts in the Fourier domain, 

they used an iterative means to detect unwanted peaks in Fourier domain. After the detection of 

these peaks, they adopted smoothing of the spectrum of camera images by obtaining the mean of 

local spectrum components. This was done to remove periodic artifacts and thereby, increasing the 

quality of the SPN which will further increase the identification accuracies of cameras. 

Furthermore, the work in [12] proposed the use of improved locally adaptive filtering instead of 

the widely used wavelet denoising filtering. Also, they estimated the PRNU using true color 

images with the use of weighted averaging proposed in [51] for the PRNU estimation. The work 

in [12] reported superior performance than the use of wavelet denoising filter with weighted 

averaging and also with other compared state of the art methods. Instead of wavelet-based 

transform, the work in [53] adopts dual tree complex wavelet transform while the work in [54] 

adopts coupling and adaptive filter. Furthermore, the work in [55] proposed the enhancement of 
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the PRNU pattern alignment while the work in [56] proposed a low dimensional PRNU features 

for effective SCI. 

Moreso, some deep learning methods based on convolutional neural networks have been proposed 

in literatures [19, 28, 29, 38, 57-59] for source camera identification and some have been reviewed 

under motivation for this work in Section 1.2.    

2.3.9 Comparative Analysis of Some Existing SPN Extraction Method on the Effect of Images 

Size on Identification Accuracy 

The motivation behind this section is to carry out an experiment using some of the states of the art 

method to establish the effect of PRNU of small image sizes on camera identification accuracy. 

The motivation behind this is to establish our objective of proposing deep learning approaches for 

small image since PRNU fingerprint becomes weak for small image sizes. The reference SPN for 

each camera is prepared using 50 images per camera. 50 flat and natural images were used per 

camera for both training and testing phases respectively. The images were cropped at different 

resolutions including 128 × 128, 256 × 256 and 512 × 512. The reference SPN is the compared 

with 50 test images per camera. There are different decision parameters usually used for the 

matching between the reference PRNU of cameras and the PRNU of their testing images. These 

include normalised correlatiion, peak to energy correlation (PCE) and circular cross-correlation 

norm (CCN). CCN is the improved version of  PCE. In PCE, only positive values of correlation 

between the PRNU fingerprints of cameras and the PRNU of cameras of testing images were 

considered. However, CCN also takes into account, the negative values of correlation [10]. 

Normalized correlation uses varying thresholds while PCE and CCN use constant threshold [60]. 

PCE and CCN further suppresses the problem of periodicity in SPN than when normalised 

correlation is used. Moreso, in [61], channel-wise correlation is used for source camera 
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identification with PRNU-based techniques. This means that the correlation coefficient is 

calculated for each image channel (Red, green and blue). This is found to achieve better result, and 

this is associated with the fact that the green component consists of a significant amount of the 

SPN signal. In this experiment,  PCE is adopted as the matching parameter  and can be defined as 

the ratio of the squared correlation divided by sample variance of the circular cross-correlations. 

The PCE can be expressed as,   

where, T is the sum of the pixels’ intensity in the testing image, p is the cross-correlation between 

the reference and the test image, ε is a small number of correlation entries around the maximum 

number of p.  

 

 

 

 

 

 

 

 

 

 PCE(I, K̂) =
max (p)2

1

T−ε
∑ p[t]2t=1….T∉ε

         (2.28) 
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2.3.10 Experimental Settings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Cameras Used in Experiment, Sensor’s Type, Resolution and 

Image Format 

Cameras Sensor Size 

(mm) 

Native Resolutions Image Format 

Canon_Ixus70_0 1/2.5” 2304 ×  3072 JPEG 

Canon_Ixus70_1 1/2.5” 2304 ×  3072 JPEG 

Sony_DSC-H50_0 1/2.3” 2592 ×  3456 JPEG 

Sony_DSC-H50_1 1/2.3” 2592 ×  3456 JPEG 

Nikon_CoolPixS7        1/1.73” 3264 × 4352 JPEG 

Samsung_L74wide    1/2.5” 2304 ×  3072 JPEG 

Table 2.3.  Experimental Parameters and Descriptions 

Parameters Descriptions 

Format JPEG 

Number of reference images per camera 50 

Number of test images per camera 50 

Number of cameras 6 

Cropped images sizes 128 by 128, 256 by 256 and 512 by 512. 

Nature of reference images Flat Images From Dresden Database 

Nature of test images  Natural images (including dark images) 

Peak Threshold value for Model 4 and 5 18 
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Table 2.4.  Identification accuracies of the four SPN methods (%) 

 

Image 

Resolutions 

Methods Canon_Ix

us70_0 

Canon_Ix

us70_1 

Sony_

DSC-

H50_0 

Sony_D

SC-

H50_1 

Nikon_Cool

PixS710_0 

Samsung

_L74wid

e_0    

Average 

accuracies 

512×512 Basic SPN 100 100 100 100 100 100 100 

MLE SPN 100 100 100 100 100 100 100 

Phase SPN 98 98 100 100 100 100 99.3 

Model 4 100 98 100 96 94 98 97.7 

Model 5 100 100 100 98 100 100 99.6 

256×256 Basic SPN 

MLE SPN 

94 

94 

94 

96 

100 

100 

100 

100 

92 

98 

100 

100 

96.7 

98.0 

Phase SPN 94 96 100 100 90 96 96.0 

Model 4 88 90 98 94 84 90 90.7 

Model 5 96 94 100 96 96 100 97.0 

128×128 Basic SPN 

MLE SPN 

82 

84 

86 

86 

96 

100 

92 

92 

74 

76 

76 

76 

69 

85.7 

Phase SPN 88 82 98 92 68 80 84.7 

Model 4 78 70 94 80 62 62 74.3 

Model 5 84 84 98 86 76 70 83.0 
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2.3.11 Results and Discussion  

The results for the four described methods are shown in Table 1. The models 4 and 5 are achieved 

when 𝛼 = 18. From the experiment, it can be deduced that MLE and Model 5 of Li’s models 

performed better. Also, the identification accuracy decreases up to 62% at 128 resolutions. The 

work done so far shows the camera identification accuracy using PRNU decreases with increase 

in the size of the image. Also, the identification accuracy can be very low for images with high 

texture complexity.   
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Chapter 3 : 

Review of Deep Learning Algorithms and Techniques  

3.1. Historical Background of Artificial Neural Network 

Artificial intelligence is the science that involves making machines to think like humans. In 1943, 

McCulloch and his co-author Walter Pitts proposed the brain neurons to have similar behavior to 

a tuning machine. Based on the experiment carried out by them, they came to the discovery that 

the brain neurons are more than a two-state network. An artificial neural network (ANN) was 

developed. This was further developed by Donald Hebb in 1948 by bringing an alteration to the 

already proposed ANN so as to explain how the ANN learns. This he was able to achieve by 

associating an independent weight to each input of the network. In 1962, another learning 

algorithm called perception was introduced by Rosenblatt in 1962. Perceptron is used for the 

classification of a given set or situation into two groups. This is done by viewing them on a 

hyperplane using some functions once they could be made to be linearly separable. This means 

perceptron has a limitation in classifying sets of groups when they are not linearly separable. Also, 

it could not be used to represent inputs that are dependent on XOR and XNOR for their generation 

[62].  

 In the meeting of researchers in Dartmouth in MIT, John McCarthy later came up with the 

term artificial intelligence. It was in this meeting, the principle of the convergence theorem was 

further substantiated as a learning algorithm which could be used to complement the weakness in 

the use of perception [63]. By the year 2000, more researchers found out that human machines 

could be extended beyond human intelligence to more real-time world problems. Minsky and 

Papert [64], it was reported that the use of neural networks gradually becoming limited due to the 
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fact that they becoming inefficient to learn deep features and hence results to low discriminating 

power against testing inputs. ANN is, therefore, referred to as a shallow architecture. The basic 

principle of ANN will be more explained in Section 3.2.1. 

 

3.2.1  Artificial Neural Network 

In order to build an ANN, the number of neurons, the associated weights, biases, activation 

function and also the learning algorithm for training the network are essential things to be 

considered. The neuron is a core element in the processing of information. In order to explain the 

working principle of ANN, we will consider the simplest ANN shown in Figure 3.1[34]. It consists 

of only one neuron and with three inputs; 𝑥1, 𝑥2, 𝑥3  and the intercept term,  𝑏. The associated 

weights of the input values are denoted as 𝑤1, 𝑤2, 𝑤3 and ℎ𝑤,𝑏(𝑥) is the output of the neuron. The 

output ℎ𝑤,𝑏(𝑥) depends on the kind of activation function used. 

 

Figure 3.1. Modified Diagram of a Single Neuron. 
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The output of the network in Figure 3.1, can be expressed as, 

where f(. ) is the activation function.  

The neural network architecture is formed by the combination of several simple neurons. 

The output of a neuron is usually fed as the input to the corresponding neuron. We use the Figure 

3.2  to explain the formation of the neural network. Figure 3.2, consists of a neural network with 

three layers. The layers include the input layer (Layer 1), the hidden layer (Layer 2) and the output 

layer (Layer 3). The layers are denoted by L1, L2 , L3 ,  respectively.  

 

Figure 3.2. Three Layered Neural Network Architecture [34]. 

In the first layer, three are inputs and a bias term. This layer is referred to as the input layer.  

It should be noted, in most network architecture, we use the bias term to be +1 so as to leave nth 

actual inputs to the neurons. Each of the inputs is now connected to the neurons of the next layer 

excluding the bias of the layers. This second layer is called hidden layer. It is called hidden layer 

because its outputs are hidden both to the input and the output layers. The layer 3 with a single 

 hw,b(x) = f(∑ wixi
n
i=1 + b)       (3.1) 
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output for the case of this example is called the output layer. It should be noted that the output of 

a neural network could be more than one. The numbers of neurons in a layer excluding the intercept 

term are called the units of the layers. All the units in a layer are connected to the next layer through 

weights. Each layer has its own collection of weight and is represented in form of a matrix. Given 

that l denotes a particular layer, the weights associated to the later can be denoted as Wl. The two 

parameters of the network are the weights and the biases and are usually represented as (W, b). 

For the ANN under consideration, (W, b) denotes( W1, b1, W2, b2) for a three-layered ANN. The 

output of a layer is hypothesized using an activation function and they are represented as al. These 

new outputs from each layer are referred to as the learned features. These learned features serve 

as inputs to the next layer [34]. Minsky and Papert [64], as stated initially,  reported that the use 

of neural networks gradually becoming limited due to the fact that they becoming inefficient to 

learn deep features and hence results to low discriminating power against testing inputs. This 

necessitated the learning of deeper architectures.  

3.2.2 Activation Functions  

There are different forms of activation functions that help to map the input to an output. Mostly 

used activation functions in most learning algorithms are n on-linear functions [34]. The most 

commonly used in deep learning algorithms are a sigmoid or logistic function, Tanh function and 

the rectilinear unit function (ReLU).  The sigmoid function can be expressed as,  

 f(z) = Sigmoid function =
1

1 + exp (−z)
 

 

     (3.2) 
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The hyperbolic or Tanh function can be expressed as;  

Lastly, the ReLU is given by the expression;  

where 𝑧 is the weighted input or net input. It should be noted that sigmoid function is usually used 

when input values ranges between 0 and 1 while Tanh function is usually used for input values 

with the ranges of -1 to 1. Another activation function very close to the Tanh function is the Sofsign 

function (𝑓(𝑧) = (1 1 + |𝑥|⁄ ) [65]. Unlike Tanh, it uses polynomial. It also produces smoother 

asymptotes compared to Tanh function.  It works with input values that ranges around 0 and also 

-1 and 1.  Therefore, it has both linearity and non-linearity properties. In Krizhevsky et al. [66] , 

the ReLU, was reported  not to be the global optimal result required but several combination of it 

may yield good result and satisfactory efficiency. In [67], it was also reported to yield better 

performance and faster convergence speed when trained by backpropagation and also as it has the 

tendency of yielding higher classification accuracy.  ReLU activation is mostly used  when the 

neural network is of a very large inputs. Its ability to generate a sparse representation makes it 

achieves higher efficiency [68]. It should be noted that the logarithm of the sigmoid function in 

eqn. (3.2) is called log sigmoid and it is usually used instead of the normal sigmoid function so as 

to make its computation faster. Other forms of non-linear activations used for deep learning 

modules include the Maxout, Softplus and, Soft sign functions. Maxout function outputs the 

maximum unit at each update in the hidden layer. According to  [69], Maxout and Tanh functions 

are most applicable to the nature of data that satisfy the negative saturation property. The Softplus 

function has smoothness property and this enables it to be suitable for sparsity regularizations in 

 f(z) = Tanh function =
ez − e−z

ez + e−z
      (3.3) 

 f(z) = ReLu = max (0, z)      (3.4) 
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deep learning modules such as stacked autoencoders [70]. Its smoothness property is due to its 

having a positive bias gradients. Generally, ReLU, Softplus, and Sigmoid functions produce a 

robust and invariant representation of features when as activation functions for networks with 

sparsity regularizations.  

3.2. Introduction to Deep Learning and its Challenges 

The need to extract robust features has prompted the need to explore more deep architectures rather 

than shallow architectures that have been earlier adopted in many applications. Any neural network 

with just a single hidden layer can be referred to as shallow architecture. Other examples of shallow 

architectures include SVMs, kernel regression, and multilayer perceptron. The shallow 

architectures are limited in that they have limited hidden layers and hence, has less efficiency [71]. 

It has been reported in that deep architectures are always more efficient than shallow architectures 

due to their ability to represent the input data with more robust features [72]. Digital signal 

processing including speech, image, and video signals requires deep architectures for them to be 

able to extract robust or rich features capable of having very high discriminative power for 

classification purpose. Several non-linear processes are involved in deep architectures and the 

output of a layer is fed as input to the next layer for deeper features extraction. This makes it 

possible to learn deep features based on the several abstraction levels and the extracted features 

are robust for classification problems. Deep neural network (DNN) can be defined as a network 

consisting of many layers through which feature hierarchies are learned. It will also be necessary, 

to know the background or the origin of deep classifiers [26].  

 The first developed deep network was used for the classification of handwritten digits. This 

was achieved using ordered or ranked multi-layered network. Despite the use of deep architectures, 

the obtained accuracy was low compared to using ANN with just one or two hidden layers. The 
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limitation in the use of the developed deep network was due to difficulty in the training of features 

across different abstraction levels of the network. Though backpropagation with gradient descent 

had been developed since for training NN [73] but there was still higher classification error and 

this was attributed to unavailability of sufficient data for pre-training of network and also deficient 

algorithms [74].  Due to this limitation, the SVM was particularly used for training of NNs. The 

major challenge with the use of SVM is that it is only efficient for data that are linearly separable 

on a hyperplane. It cannot adequately learn NN with complex architectures and majorly applicable 

for linear data.  

 Despite these limitations, several types of research were still in progress regarding improving 

the performance of deep networks [75]. In 1992, Schmiddhuber [76] developed deep belief 

network that could learn a compressed representation of input data and it uses backpropagation 

with gradient descent as the optimization algorithms. However, the approach has the limitation of 

vanishing gradient. The introduction of the unsupervised learning algorithm in 2006 by Hinton 

kick-started the first breakthrough in overcoming some of the previously mentioned limitations 

[71, 77]. By unsupervised learning, we mean using learning algorithms that the pre-training did 

not involve the pre-knowledge of the targets of the classes involved in the training. Specifically, 

in their work, they made use of deep generative models [77]. The basic concept behind this 

approach is called the layer-wise pre-training. This has to do with training an input signal through 

several hidden layers without the knowledge of class levels. The idea is to learn robust features at 

each layer of the network. These features are called deep features. The output features at each 

hidden layer are extracted and fed in as the input to the next hidden layer. The complexity of a 

deep neural network is linearly proportional to the number of the hidden layers that are used in the 

developed deep architecture. The optimisation of weights at each hidden layer of the network is 
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dependent on the learning algorithm adopted. Finally, their unsupervised pre-training algorithm 

will then be fine-tuned by connecting multilayer perceptron classifier with backpropagation at the 

last layer to predict the output [77].  

 However, there are some limitations with their approach due to weights optimization of the 

network. Firstly, the complexity of the weight optimisation by teasing especially, the top two layers 

results in overfitting during the training process. Secondly, the features in the lower abstraction 

levels may not be useful and connecting them with a supervised network can be tedious and 

difficult in tuning to achieve higher discriminating power [77]. The classification accuracy of a 

deep architecture can be improved by careful scaling of the input features and also the kind of 

activation function used [77]. In order to resolve the problem associated with weights optimisation 

in the DNN, In [78], Hessian-free second order methods have been proposed to resolve the 

vanishing of the gradient when pre-training is done layer to layer. For recurrent networks and the 

restricted Boltzmann machine, unsupervised pre-training has also been widely used in resolving 

the problem of weight optimisation [79, 80]. It should also be noted that good result can also be 

achieved when features are correctly ranked [81]. This has a way of improving the gradient 

obtained since there are millions of parameters used for training. Most of the methods described 

above used a constant learning rate during the learning process but in Cho et al [82], controlled 

learning rates were used for training an RBM. It has also be shown in the work done in [83], that 

the performance of DNN can be significantly improved by the correctly choosing the initial 

parameters in the first hidden layer. It has also be shown in several kinds of literature [65, 84] that 

the number of units used in each hidden layer greatly determines the robustness of the features and 

eventually the classification error. As have mentioned earlier before, DNN is computationally 

expensive.  In order to reduce the number of features used in processing, it should be noted that 
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not all features of an image are used for classification. There are some certain features that are in 

some spatial regions of images are good for generalisation. The features at these regions can be 

aggregated statistically. This process of aggregating features is called pooling. The common 

pooling techniques are the mean and max-pooling. This has also be shown in [79] to have a 

significant contribution to achieving high discriminating power during testing.  Also, it has been 

reported in [85] that stochastic gradient on mini batches of several training examples is the best 

optimisation technique. Due to computational complexity, stochastic gradient using mini batches 

on large dataset are implemented online. Furthermore, when large dataset with labels is available, 

it has been reported that supervised training can replace by supervised learning with the same or 

little less performance compared to the unsupervised pre-training. An example of the work done 

using this approach is the ImageNet task. Due to a large dataset, it was accomplished by a 

combination of several traditional computers. In their [85], more than a 100 million training 

examples are used and this was made evident through the use of an efficient graphics processing 

unit (GPU) [66]. Another variant of autoencoder is denoising autoencoder. AEs adds noise to the 

inputs to the layers and this has a way of learning robust features by expanding the inputs. This 

has been reported to yield a very significant result when compared with just an encoder. The ability 

of a DNN to automatically learn features has made it to be widely adopted for several applications 

including hand digit recognition, face recognition [20], image classification [21], fingerprint 

liveless detection [22], automatic malware signature generation and classification [23], modulation 

format identification in coherent receivers [24] and classification of hyperspectral images [25].  As 

far as we know, it has not yet been widely adopted for camera identification. Though deep learning 

methods such as convolutional neural network have been used for camera model identification 

deep learning for source camera identification is still at a preliminary stage. Some of the objective 
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functions and optimisation techniques used in deep learning algorithms are discussed in Section 

(3.3) and Section (3.4) respectively.  

3.3 Objective Functions for Deep Learning  

The objective functions are also called the loss functions, optimization score functions or cost 

functions. The objective functions are usually used as a measure of mismatch between an input 

data and the reconstructed data when given into a neural network. It could also be used to estimate 

the error between training data and the testing data. The goal is so that the minimum error is 

incurred during training. The mostly used conventional cost functions include the sum of the 

squared errors (SSE), cross-entropy (CE) and the exponential cost functions (EXP) [86, 87]. 

Classification error is also a measure of mismatch between a training data and the target. The 

classification error is defined as the ratio of the number of misclassified target samples that belong 

to a class to the total number of samples of that class. The SSE is defined as the sum of the squares 

of the difference between a training data and the reconstructed data or the target data. Cross-

entropy, on the other hand, uses adaptive sampling to estimate the error through stochastic 

optimisation [88]. It measures the average number of wrong predictions between the probability 

distributions of the training and the target or reconstructed input in the case of autoencoders. The 

EXP cost function is a derivative of error entropy. It incorporates the ideas of both cross-entropy 

and the square mean square error. The SSE, CE and EXP cost functions can be expressed as given 

in eqn. (3.5) to (3.7).  



49 

 

 LSSE(x, x̂) = ∑(xn − x̂n)
2

n

      (3.5) 

 LCE(x, x̂) = ∑(xn

n

ln( x̂n) − (1 − xn) ln( 1 − x̂n))      (3.6) 

 LEXP(x, x̂) = μ∑
1

μ
(xn − x̂n)

2

n

      (3.7) 

where, xn and x̂n are the nth input and output vectors respectively. μ is the extra parameter added 

to eqn. (3.5) to form eqn. (3.7). In [86], comparisons were made for SSE, CE and EXP using 

stacked autoencoders. Based on the experimental results in [86], it was reported that SSE is a good 

cost option for pre-training process. The work in [86] reported SSE to give the lowest error and 

also variances between the hidden layers of the stacked autoencoders. Also, the mean square error 

decreases progressively down the layer and this simply means the reconstruction error of the 

learned features decreases with increased hidden layers. For the case of stacked autoencoders, the 

CE and the EXP were reported to have less performance compared to SSE. In [86], further 

comparison was made between the SSE and CE. One of the advantages of average cross-entropy 

as stated in [89], the presence of the ln ( . ) function. This function takes into an account, the 

closeness of predictions unlike, the classification error that only considers wrong predictions. For 

this reason, CE is considered to be more detailed compared to SSE. As earlier stated, SSE is 

considered to be a good choice of loss function when used with stacked autoencoder. However, 

wrong predictions were given more emphasis.  In summary, the classification error only considers 

the wrongly classified targets and therefore is a very crude approach for measuring generalisation 

error. However, SSE and CE are usually used as the loss functions during the training process 

while the classification error is preferable as the loss measure between the trained data and the 
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testing data. This is because during, generalisation, the interest is to correctly predict the test 

targets. For neural networks where backpropagation is used for fine-tuning, there will be a need to 

calculate the gradients of the cost functions and SSE and the CE affect the calculation of the 

gradient. Therefore, for most applications that adopt NNs, the SSE and the cross-entropy are 

considered suitable to measure the loss measure during training while the classification error is 

suitable for estimating the network generalisation error. Also, the cross-entropy loss is usually 

used when softmax classifier is used for supervised fine-tuning because it enables the changes in 

weights of the network not to have the tendency of decreasing to zero. When softmax classifier is 

used with cross-entropy loss, it is usually called the categorical cross-entropy loss.  

3. 4 Supervised Optimisation Algorithms for Deep Learning 

Optimisation techniques are used for updating hyperparameters needed for training DNN. There 

are many optimisation algorithms that have been explored for training DNN. The optimisation 

methods that have been used include Newton Rapson's method, Broyden Fletcher Goldfarb 

Shannon algorithm, Conjugate Gradient and stochastic gradient descent (SGD) based learning [79, 

80]. The updates of parameters by these methods are usually based on a continuous search for the 

global minimum that will yield the lowest cost of the objective function [90]. There are other 

parameters used for DNN modules but the parameters that are used for learning process prior to 

the DDN models are called the hyperparameters. Examples of hyperparameters include the 

learning rate, mini-batch size, the number of epochs used for training DNN and L2 weight 

regularization parameter [91]. Each of the optimisation algorithms has both strengths and 

limitations. Also, some are suitable under some conditions while others are not [91]. The stochastic 

gradient-based learning algorithms have been widely used [92, 93]. This is due to their simplicity 

and low computational cost especially for problems with large training samples. One of the 
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limitations with the use of SGD is the difficulty in setting its hyperparameters so as to achieve 

global minimum when minimising the cost function. SGDs involve trial and error method and as 

a result, it makes SGDS to be computationally ineffective. In order to address this weakness, 

validation set of sample is usually used for modeling and parameter selection. Also, SGDs are 

difficult to be trained using GPU [90]. This is because GPU involves parallel computing and SGDs 

have internal computations without a specific order. Despite these limitations, SGDs are still 

effective and easy to implement for large training samples. In [71, 77], SGDs are considered 

inappropriate for training DBNs over several hidden layers. The limited Broyden Fletcher 

Goldfarb Shannon and conjugate gradient are considered to be better optimisation algorithms than 

the SGDs for layer-wise pre-training because convergence is easy to be attained and can also be 

trained on GPUs. Provided that there is the availability of large computer clusters, multicore GPU 

and central processing unit, these methods are considered to be computationally slow. This is 

because a single update requires computation over the entire training samples [94]. This weakness 

can be addressed using the mini-batch training procedure. This has to do with updating parameters 

using a fraction of the training examples. This approach is now considered too computationally 

fast for large training datasets. It should also be noted, that the appropriate optimisation technique 

to be used may be dependent on the type of DBN module or the size of the dataset. Limited 

Broyden Fletcher Goldfarb Shannon algorithm has been considered to be highly suitable for low 

dimensional images and usually adopted with problems using CNN. Conjugate gradient, on the 

other hand, is good for high dimensional images [90]. Despite the limitations of SGDs, they still 

have low classification error when combined with line search and large mini-batch training. Also, 

the experiment carried out on the MNIST dataset in [90] shows that SGDs require that the learning 

rate has to be low in order to capture useful features at the hidden activation for noisy inputs. As 
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stated in [95], the learning rate is usually considered as the most significant learning parameter to 

achieve the lowest classification error rate. The backpropagation with gradient descent method 

was used in [75] for automatic voxel-wise brain parcellation based functional connectivity using 

SSAE. 

However, the gradient descent is considered to be one of the most widely used algorithms 

in most of the deep learning modules. In this section, we will review some strengths and 

weaknesses of gradient descent optimisation algorithms. There are several gradient descent 

variants used in deep learning techniques. The goal of the optimisation algorithm is to minimise 

the objective or cost function (J(θ)). θ  represents the parameters of the cost function. The idea is 

to obtain the gradient of the cost function to be zero. This goal is practically not achievable but we 

can decrease the cost function close to zero, till we can obtain a local or global minimum. There 

are several variants of gradient descent optimisation algorithms such as the batch gradient descent, 

stochastic gradient descent, mini-batch gradient descent, momentum, Nesterov accelerated 

gradient, Adagrad, Adadelta, RMSprop and Adam. In the following sub-sections, the overview of 

the ideas and limitations of these optimisation methods [96] will be discussed.  

3.4.1 Batch Gradient Descent 

In batch gradient descent (BGD), a single update is carried out over the dataset. This can be 

expressed as given in eqn. (3.8). η is the learning rate and ∇θ is the gradient of the cost function. 

The number of steps to be taken to reach a local or global minimum is determined by the η. One 

of the disadvantages of the BGD is very slow computation since only update over the entire dataset. 

This also makes it difficult for online training. Despite the computation demand, there is higher 

probability for the gradient to converge at a global minimum, unlike some other methods that could 

stick at a local minimum.  
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3.4.2 Stochastic Gradient Descent 

Unlike the BGD, In SGD, an update is carried out for each sample in the dataset. This helps to 

eliminate the problem of redundant computation demands of BGD. It makes it possible to perform 

online training since, for every single update, the gradient is computed.  Given that n is the index 

of the training sample,  x(n) and y(n) as the training data and targets respectively, SGD can be 

expressed as, 

The advantage of the SGD is that, randomness compared to using just a single update as in BGD. 

It is faster to implement. Despite these advantages, the SGD has the tendency of missing the global 

minimum because of overshooting. In order to aid convergence of SGD, the learning rate has to 

be very small so as to increase the number of steps to be taken over the entire dataset. Shuffling of 

the training dataset for each update is an essential step to further enhance the optimization process.  

3.4.3 Mini- Batch Stochastic Gradient Descent 

In order to reduce the training time for huge training dataset, another approach is to divide the 

entire training dataset into groups called mini-batches. This approach makes the optimization faster 

compared to both the BGD and SGD. How faster an update is done is determined by the mini-

batch size (𝑁𝐵).  The mini-batch stochastic gradient descent (MBSGD) can be expressed as, 

 

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃)          (3.8) 

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃, 𝑥(𝑛), 𝑦(𝑛))          (3.9) 

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃, 𝑥(𝑛: 𝑛 + 𝑁𝐵), 𝑦(𝑛: 𝑛 + 𝑁𝐵))     

     

(3.10) 
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The mini-batch size to use vary for different applications but for most deep learning applications, 

the mini-batch size usually set with the range of 50 to 256. Another advantage of using mini-batch 

gradient descent is that it makes the implementation of parallel computing easier to be carried out 

using the GPU. Though SGD can also be implemented on GPU but it is more demanding due to 

the need for synchronization after every sample update.  

3.4.4 Momentum 

Despite the benefits of using mini-batch gradient descent, obtaining convergence to global 

minimum is not guaranteed. There are still some challenges to combat so as to enhance the 

optimisation process. One of such challenges is how to optimally select the learning rate. The 

learning rate is a principal factor that determines the rate of convergence to either local or global 

minimum. Too small learning rate means that it will require a longer time to reach convergence 

and too large learning rate could lead to jumping or skipping the global minimum. Therefore, one 

of the gradient descent-based optimisation technique is the use of momentum. The word 

momentum literally means impetus for a given object. Therefore, the function of momentum is 

that it helps to speed up the SGD optimisation. It adds a fraction of a past update (𝛾) to the next 

update. The new estimation of parameters can be expressed as, 

Momentum helps to increase the rate at which global minimum is reached and also helps to 

dampens oscillation.  

3.4.5 Nesterov Accelerated Gradient 

There is a need to control the rate at which the momentum aids the rate of convergence to the 

global minimum. This is to regulate the rate at which the updates speed up to convergence. 

 𝜃 = 𝛾𝜃 − (1 − 𝛾). 𝛻𝜃𝐽(𝜃, 𝑥(𝑛), 𝑦(𝑛))     

     

(3.11) 
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Nesterov accelerated gradient helps to give a fore-knowledge to the momentum term. Given a 

momentum term ( 𝛾), in order to calculate the rate of changes in the position of the parameters for 

the new update, a rough estimation of the new set of parameters are made using the previous 

parameters. The next parameters to be estimated can be expressed as, 

where v𝑛 can be expressed as, 

The aim of the Nesterov accelerated gradient is to make necessary corrections where there is a big 

jump in the gradient of the cost function while using momentum. This helps to improve 

generalisation performance. It is reported in [96], that Nesterov accelerated gradient improved the 

performance of recurrent neural networks.  

3.4.6 Adagrad 

Adagrad means adaptive gradient descent. This simply means that the learning rate is not constant 

for all updates. When learning a dataset, not all the features of the dataset have greater contribution 

to guarantee better generalization are achieved during training instances. These features show up 

occasionally and therefore, they are referred to as infrequent features. There are also features that 

carry less information necessary for better performance and may show up more frequently during 

training instances. These features are called frequent features. In order to ensure more significance 

are given to the infrequent yet important features, the higher learning rate is attributed to them so 

as to increase the number of updates for those features.  Adagrad is usually suited for datasets with 

sparse features because, in most applications, sparse features are more useful for improved 

performance. Therefore, the usefulness or the suitability of the Adagrad optimization algorithm is 

 𝜃 = 𝜃 − 𝑣𝑛          (3.12) 

 𝑣𝑛 = 𝛾𝑣𝑛−1
+ 𝜂. 𝛻𝜃𝐽(𝜃 − 𝛾𝑣𝑛−1

, 𝑥(𝑛), 𝑦(𝑛))          (3.13) 
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also dependent on the nature of the training data.  In Adagrad, instead of using the same learning 

rate to learn parameters, the learning rate is changed at every given step size, 𝑙. Given that 𝑖 =

1,2,… 𝑙, the newly learnt set of parameters can be expressed as,  

The value of the learning rate usually used in literature is 0.01[96]. The learning rates for all the 

step sizes are automatically set. One of the disadvantages of using Adagrad is that the learning rate 

decreases to a point where important features could no longer contribute to better generalization.  

3.4.7 Adadelta 

In order to address the limitation of Adagrad optimization algorithm, Adadelta helps to put a 

limitation on the monotonic decrease of the learning rate. In Adagrad, the all the past gradients 

were used in determining the next update but  Adadelta restricted the square of the gradient to a 

fixed length and uses the decaying exponential of all the accumulated squared gradients, 𝐸𝑣[𝑔
2]𝑛. 

𝐸𝑣[𝑔
2]𝑡  depends on previous and the current update and can be expressed as,  

 𝐸𝑣[𝑔
2]𝑛 = 𝛾𝐸𝑣[𝑔

2]𝑛−1 + (1 −  𝛾)𝑔𝑛
2    

     

(3.15) 

The Adadelta update rule can be expressed as, 

The new parameter to be estimated can be expressed as, 

 𝜃𝑙+1,𝑚 = 𝜃𝑙,𝑚 −
𝜂

√𝛻𝜃𝐽(𝜃𝑚)
   

     

(3.14) 

 ∆𝜃𝑡 = −
𝑅𝑀𝑆[∆𝜃]𝑛−1

𝑅𝑀𝑆[∆𝜃]𝑛
𝑛 

     

(3.16) 

 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡   (3.17) 
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𝑅𝑀𝑆 is the root mean squared error criterion of the gradient. The expression in  (3.17)  for 

estimating the next set of parameters is not dependent on the learning rate.  

3.4.8 RMSprop 

Adadelta and RMSprop are adaptive techniques to improve the Adagrad optimization algorithm. 

It also aimed at reducing the drastic diminishing learning rate that occurs with Adagrad 

optimization algorithm capable of stopping the learning process. It has the same derivation steps 

compared to that of Adadelta. The RMSprop average squared gradient can be expressed as, 

The new parameter to be estimated can be expressed as, 

3.4.9 Adam 

The full meaning of Adam is Adaptive Moment Estimation. This also uses adaptive learning rates 

for each parameter like the AdaDelta and RMSprop optimization algorithms. As earlier discussed 

while discussing AdaDelta and RMSprop, the decaying exponential of the sum of the squared 

gradients of both the previous and current updates was considered. One of the ideas used in Adam 

optimisation algorithm that makes it differs from both AdaDelta and RMSprop optimisation 

algorithms is the addition of the decaying exponential of the gradients similar to the principle of 

adding momentum to SGD. It uses the mean (𝜇𝑛) and the variance of the gradients ( 𝑣𝑛) in its 

implementation. The mean and the variance are also called the first and second moments of the 

gradients respectively 𝜇𝑛 and 𝑣𝑛  can be expressed as given in eqn. (3.20) and eqn. (3.21) 

respectively.  

 𝐸𝑣[𝑔
2]𝑛 = 0.9𝐸𝑣[𝑔

2]𝑛−1 + 0.1𝑔𝑛
2    (3.18) 

 𝜃𝑛+1 = 𝜃𝑛 −
𝜂

√𝐸𝑣[𝑔2]𝑛)+∈
  

          

(3.19) 
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𝑘1 and 𝑘2 are constants chosen very close to 1. Unlike AdaDelta and RMSprop, Adam adopts bias 

correction steps when estimating 𝜇𝑛 and 𝑣𝑛.  This is because 𝜇𝑛 and 𝑣𝑛 are usually biased towards 

zero.  The Adadelta update rule can be expressed as, 

 

 

 

 

 

 

 

 

 

 𝜇𝑛 = 𝑘1𝜇𝑛−1 + (1 − 𝑘2)𝑔𝑛 

     

(3.20) 

 𝑣𝑛 = 𝑘1𝑣𝑛−1 + (1 − 𝑘2)𝑔𝑛
2 

     

(3.21) 

 𝜃𝑛+1 = 𝜃𝑛 −
𝜂

√𝑣̂𝑛+∈
𝑚̂𝑛  

     

(3.22) 
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Chapter 4  

Stacked Sparse Autoencoder for Source Camera Identification 

In this chapter, we proposed the use of deep learning technique called stacked autoencoder to solve 

the instance-based source camera identification by using PRNU fingerprints. The PRNU 

fingerprint is proposed as the input data for the stacked autoencoder because it is unique to the 

individual camera device. We have explained comprehensively in Section 1.2, the motivation for 

the proposed stacked sparse autoencoder. SSAE has been used successfully for the digit 

classification since each of the images consists of the same digit value. Therefore, for source 

camera identification, stacked autoencoder is considered suitable since there is a correlation 

between PRNU of images of the same camera instance. To the best of our knowledge, we are the 

first to present the possibility of using deep learning module based on SSAE to solve source camera 

identification problem. Therefore, we compared our results with some of the states of the art 

methods for source classification. Using the proposed method, we can achieve good generalization 

performance without the use of a huge dataset usually used in many deep learning 

implementations. Therefore, the proposed method is computationally effective.  

The rest of Chapter 4 is organized as follows. Section 4.1 introduces the working principle 

of autoencoders. Section 4.2 describes the architecture of the proposed SSAE for source camera 

identification. Section 4.3 presents our experimental evaluation on Dresden database, which 

includes, the datasets description, parameters selection for SSAE, results analysis and comparative 

study with four states of the art methods. Section 4.4 summarises the work and its contributions. 
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4.1 Working Principles of Autoencoders 

AE is a neural network that has an auto-associative architecture [20, 34]. Its training is done in an 

unsupervised manner where input data can be trained without the knowledge of the data labels. In 

this case, the training samples are not labeled and the expected values at the output are same as the 

input values. Backpropagation technique is adopted to adjust the weights of the network. Given 𝑥 

as an input, an autoencoder output 𝑥 ̂ is approximate of the input. Figure 4.1 shows an example of 

an autoencoder that learns a function,𝑥 ̂ as the as an approximate of the input. It consists of three 

layers: input, hidden and output layers.  The circles with label “+1” are bias units while the circles 

with label 𝑥𝑖 are the inputs to the autoencoder. There are three inputs and one intercept term.  The 

circles with label 𝑥̂𝑖 represent the output in which the output 𝑥̂𝑖is similar to 𝑥𝑖. The autoencoder 

attempts to learn a function ℎ𝑤,𝑏(𝑥)  such that  ℎ𝑤,𝑏(𝑥) ≈ 𝑥 . 𝑊  represents the weight of the 

network and 𝑏 is the bias.  In this case, the function  ℎ𝑤,𝑏(𝑥)  is trained to give a compressed form 

of the input as the number of hidden units is lesser than the number of input units.   

 

Figure 4.1.  An autoencoder. 

Given AE training examples to be {x1 , x2 , x3 , x4 , … . }, then xi  = yi  where, xi   ∈ ℝn , yi  

is the output values and yi ∈ {1,2,3… . c} , c is the number of target outputs.  If the number of the 

hidden units is smaller than a total number of units in the input layer, a compressed form of the 
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input is learned. In this case, the autoencoder acts like a PCA in which interesting structure in the 

input is learned by the AE. If the number of hidden units is greater than that of the input units, 

good representation of data can still be obtained by imposing constraints such as sparsity constraint 

on the activation units. Through the sparsity constraint, useful activation units are extracted to 

yield a useful representation of input data. The sparsity constraint acts as if a non–linear mapping 

is learned from the input data so as to generate invariant features representation having high 

discriminating power during classification. When a sparsity constraint is imposed on an 

autoencoder, it is called sparsity autoencoder [34]. The work done in [90] shows that the AE trained 

using sparsity constraints is more efficient that AE trained without sparsity constraints. With 

reference to Figure 4.1, let 𝐴(2)
𝑗 be the activation units at the second layer of the network, j be the 

index of the hidden units in the second layer. The average activation per unit in the layer can be 

expressed as,  

where,  M is the total number of units in the input layer and  i = 1,2,… .M. The sparsity constraint 

is imposed by making ρ̂j =  ρ .  ρ is a small value very close to zero.  ρ is called the sparsity 

parameter. Let 𝑃 be the penalty term which is used to penalize the huge divergence of  𝜌̂𝑗  from ρ 

so that the activations per unit will be very small. The idea of imposing penalty is a way of taking 

absolute value penalty and this helps to regulate the average numbers of zero in the output 

representation [97]. In [34],the sparsity constraint is imposed on the loss function by calculating 

the Kullback –Leibler (KL) divergence between desired sparsity parameter and the actual value.  

However, in Keras implementation of sparsity constraint, the penalty term is either imposed by 

adding the absolute values of the true value of a layer into the loss function or by adding the square 

 𝜌̂𝑗 =
1

𝑀
∑[𝐴(2)

𝑗 𝑥𝑖 ]

𝑀

𝑖=1

      (4.1) 
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of the true value of a layer into the loss function. For our proposed method, we imposed penalty 

term (𝑃) by adding the absolute values of the true value of a layer into the loss function. Practical 

implementation of how sparsity constraint is imposed in Keras framework can be learnt in [35]. 

The sparse activation is enforced by a regularization parameter, β. This is used to enforce the 

sparsity constraints on the activation units that are active. The overall cost function can be defined 

as, 

where, LCE(x, x̂)  is the cross-entropy loss and its equation is given in eqn. (3.6). LCE(x, x̂) 

measures the error between the output and the learned network. The second term in eqn. (4.2) is 

the 𝐿2 regularization or 𝐿2 norm. The 𝐿2 regularization helps to reduce overfitting and is imposed 

on the weight of each encoding layer of the sparse autoencoder. Overfitting occurs when the same 

model used to train a data performs poorly when evaluated on an unseen data. 𝜆  is the weight 

regularization parameter and  𝑊𝑖
𝑙 is the weights of layer 𝑙 associating with the node 𝑖 in 𝑙 from the 

previous layer.  Another novel technique for preventing overfitting of neural networks is the drop-

out regularization [98]. Dropout regularization is achieved by randomly selecting a fraction of the 

units of a layer and set them to zero while the remaining units in the layer will be used as the input 

to the next layer. Only a fraction of the input neurons is activated [34]. The basic idea of the 

dropout regularization is to prevent the network from learning redundant features at each hidden 

layers so as to only retain useful features necessary for better generalization [93]. It also helps to 

reduce computational demand by only performing activation on useful features. Since we are 

already learning the compressed representation of our PRNU fingerprint, further reduction of 

PRNU features using drop-out regularization will lead to a poor generalization for our SSAE. Also, 

J(W, b) = LCE(x, x̂) + 𝜆 ∑(𝑊𝑖
𝑙)2

𝑁

𝑖=1

+ βP      (4.2) 
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in [98], it was reported that dropout regularization should not be used with deep modules that 

involve pre-training without any weight constraints or regularization. This is because distinctive 

features learned either using pre-training or sparsity can be dropped and won’t participate in the 

next layer. 

The most suited activation function for a problem is best determined by performing grid 

search over a range of activation functions. Optimization of the weights and the biases of networks 

is a very crucial step in the implementation of a sparse autoencoder. Optimization techniques are 

used for updating hyper-parameters needed for training the DNN. The most recently used 

optimization algorithms are gradient-based optimization techniques. The work in [96] reviewed 

some of these techniques which include stochastic gradient descent (SGD), mini-batch gradient 

descent (MGD), Nesterov accelerated Gradient, Adagrad, Adadelta, and Adam. The most suited 

optimization algorithm is dependent on the nature of the data and can also be determined by grid 

search. Furthermore, backpropagation is further used with algorithm optimization techniques to 

further obtain a well-trained network. The backpropagation helps to propagate the error from the 

output back to the inputs and weights are updated accordingly [99]. The goal of backward 

propagation is to further minimize the cost function in eqn. (4.2).  

Also, when the input data is corrupted with noise before being given as an input to the auto-

encoder, it is called denoising autoencoder (DAE) [100]. The noise corruption aims to ensure that 

a robust representation of input data that capture its probabilistic distribution can be obtained. In 

[100], stacked denoising autoencoder (SDAE) was introduced which has a similar working 

principle with the stacked supervised sparse autoencoder in [71]. SDAE was adopted in [100] for 

learning useful representations in a deep network with local denoising criterion. In [31] and [101], 

SDAE was used for the extraction of features for pose-based action recognition and acoustic 
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feature extraction respectively. In this work, SSAE is used to learn robust features since PRNU 

already has noise characteristics. The network structure of the proposed SSAE is explained in 

Section 4.2. 

 

4.2 Proposed Stacked Sparse Autoencoder 

Figure 4.2 shows the block diagram of our proposed DNN for source camera identification. The 

PRNU fingerprint is used as the input data (𝑥) for our proposed DNN. For training, robust features 

of our PRNU features are learned by stacking several hidden layers of an autoencoder. A deep 

network is formed when the encoding features of the last hidden layer are passed into a softmax 

classifier. To further minimize the reconstruction error and to obtain a well-trained DNN, all the 

weights of all the hidden layers in the network as well as the weights of the softmax classifier are 

fine-tuned using the back propagation discussed in Section 4.1. It is called supervised fine-tuning 

because the knowledge of the training and the testing targets are needed for classification purpose. 

 

Figure 4.2.  Block diagram for the proposed DNN for source camera classification. 
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 After fine-tuning of the deep network, PRNU fingerprints of testing data were fed into the 

well-trained network to determine their source camera. In the remaining part of this section, we 

will discuss details of our proposed DNN. This includes the network architecture of the proposed 

methods, supervised fine-tuning and PRNU extraction and preparation.  

4.2.1 Network Architecture of the Proposed Stacked Autoencoder 

An autoencoder as earlier explained has input, hidden and output layers. A stacked autoencoder 

works by extracting the features of the hidden layer (encoding features) of an autoencoder and 

given these features as input to another autoencoder. The output features (decoding features) of 

the autoencoder are discarded. The features of the hidden layer are a representation of the input 

data in another domain. This process is done recursively until the robust representation of the input 

data is obtained and passed into a supervised classifier for generalization. Figure 4.3 (a) shows the 

architecture of training stage while Figure 4.3 (b), shows the fine-tuning stage of our proposed 

SSAE. In Figure 4.3 (a), the first encoding features; 𝐸1(𝑊, 𝑏) were extracted and passed as input 

to another autoencoder. The encoding features of the second autoencoder,  𝐸2(𝑊, 𝑏)  were 

extracted and fed in as input to the next autoencoder. Finally, the encoding 

features , 𝐸𝑁(𝑊, 𝑏) were then extracted as the trained features. 𝐸𝑁(𝑊, 𝑏) is the encoding features 

of  𝑁𝑡ℎ hidden layer of the last autoencoder, 𝑁 is the hidden layer of the last autoencoder where 

optimal features are obtained during the training process. As shown in Figure 4.3 (b), the optimal 

encoded features are fed as input into the softmax classifier to form a deep network. To have a 

well-trained deep network, a supervised fine-tuning is performed.  In other words, all the weights 

at the hidden layers and the softmax classifier are fine-tuned to further reduce training error by 

using the back-error propagation [102]. The optimal features are obtained by passing each 
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encoding features directly for supervised fine-tuning to determine the  𝑁𝑡ℎ hidden layer whose 

encoding features give the optimal classification accuracy. 

 A logistic regression classifier is a linear classifier that determines the class of a target 

output based on the probabilistic prediction. It is used for binary classification. To generalize for 

multiple classes, Softmax classifier can be used [21]. Figure 4.4 shows a softmax model.  The 

dimension of an input 𝑥 is 𝑁  and the number of classes is c. Let  𝑛 = 1:𝑁 , 𝑗 = 1: 𝑐 , and 

i represents each column vector in an input data  𝑥 . In logistic regression, each input vector 

corresponding to a class is projected into a set hyperplanes. The probability that an input belongs 

to a class j is determined by calculating the distance between the inputs and the hyperplane. Given 

that the target output is denoted as 𝑌, then the probability that an output, 𝑦, belongs to target class 

𝑖 when parameterized by weights 𝑊 and biases b can be expressed as,  

The expression in (4.3) gives the probabilities of all classes given an output Y. The predicted output 

(yp) is the class that produces the maximum probability. This can be expressed as, 

 

 

 

 P(Y = j|xi, W, b) = softmaxj(Wxi + b) =
eWxi+b

∑ eWxi+b
j

       (4.3) 

 yp = armax
j

P(Y = j|xi,W, b)  

 

   (4.4) 
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                                   (a)                                                           (b)  

Figure 4.3. (a) Training stage (b) fine-tuning stage in SSAE. 

 

Figure 4.4. A softmax model. 

The source identification was achieved by feeding the testing data into the fully and well 

trained DNN.  Besides, the progressive decrease in the numbers of the hidden units in each layer 

shows that the compressed representation of the PRNU input was learned.  

4.2.2 PRNU Extraction and Preparation 

In this work, we adopt instance-based source camera identification, instead of using the original 

images in our database, we propose to use PRNU as the input data since autoencoders are dataset-
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specific. Original image contains not only sensor noise information but also image scene details.  

It is difficult to characterize structures in the sensor noise in the presence of image details. The 

sensor noise PRNU is unique to each individual camera. The PRNU can be extracted by subtracting 

its denoised version from the original image. The denoising filter proposed by Lukas et al. [7] was 

used for denoising. To further enhance the PRNU fingerprint against in-camera pre-processing 

artifacts, both training and testing PRNU fingerprints are preprocessed by the zero-mean operation. 

Zero-mean operation implies to find the mean of each row or column and then subtract the mean 

from each element in the rows and columns respectively [47]. All the PRNU fingerprints after the 

zero-mean operation are transformed into the column-wise vector. No further transformation 

techniques were performed on the PRNU except the zero-mean operation. Given that the resolution 

of the images is 𝑝 × 𝑝, then the dimension of PRNU signal is 𝑝2 × 1. If 𝑛 images are used per 

camera, the first 𝑛 columns are the fingerprints of the first camera. The following 𝑛 columns are 

for the next camera and so on. If 𝑁 cameras are to be used, the total number of columns in the data 

is 𝑛𝑁.  Our PRNU data can be arranged as a matrix of size 𝑝2 × 𝑛𝑁. Given that 𝑛  images are used 

per camera, then, the first 𝑛  columns are the fingerprints of the first camera. The next 𝑛 columns 

are for the next camera and so on. If 𝑁 cameras are to be used, the total number of columns in the 

data can be given as 𝑛 × 𝑁. Our PRNU data will be a matrix of size 𝑝2 × 𝑛𝑁.  It should be noted 

that it is not necessary that the same numbers of images must be used for each camera. When the 

same samples are used per class during training, it is called balance classification problem. 

Otherwise it is called imbalance classification problem [33].  In forming the labels of the PRNU 

data, a column vector of size 𝑁 × 1 is generated.  The column vector consists of only one non-

zero element whose position indicates the source camera of the PRNU fingerprint.   
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 The PRNU fingerprint has noise-like characteristics and its domain is different from features 

directly extracted from the images (data-driven approach) like most of the object recognition 

problems. Therefore, direct application of the existing parameters successfully applied to those 

problems won’t yield best network generalization. Therefore, obtaining optimal parameters 

suitable to learn a robust or useful representation of our PRNU fingerprints will also be dependent 

on the background knowledge of PRNU signal and searching over a range of parameters (grid-

search technique). This is essential in choosing the weight initialization technique.  

4. 3 Experiments and Results 

4.3.1 Experimental Settings 

The experiments were carried out using photos from the Dresden database [103]. Our choice of 

selecting images of cameras for our experiments from the Dresden database is because it is an 

image database specifically built for development and benchmarking of camera-based digital 

forensic techniques. Another database usually used for camera attribution is the Flickr database. 

Flickr database is only suitable for camera model identification and not camera instance or source 

camera identification. This is because people share images of different devices of the same model 

and there is no distinction on the exact device that captured the images in the Flickr database. 

Therefore, Dresden database is suitable for experimental analysis of source camera identification 

since images are classified per camera instances. Table 4.1 shows the lists of natural images of 20 

cameras used in the evaluation of the proposed method. The camera band “Kodak_M1063_0” 

means that the photos are taken by a device whose manufacturer is Kodak and camera model is 

“M1063” and “0” is the device identification number. Kodak_M1063_1 simply means another 

device of Kodak_M1063.   
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PRNU of images from the same camera devices is only the same if they are extracted from 

the same spatial location of the images. Therefore, single patch from each image of cameras at the 

same spatial location is used for estimation of noise residues.  In most conventional methods, the 

use of matching of the reference PRNU images of cameras with the PRNU of testing images of 

cameras, involve the use of vector operations. Therefore, the use of original image size becomes 

complex and highly computationally expensive during the matching process [104]. In our proposed 

methods, our focus is source camera identification of small size images and applications involving 

splicing translocation. Besides, the use of deep learning methods involves the use of optimisation 

algorithms and the use of high feature dimensions will result in infinite iterations and retries. This 

usually slow down the rate of convergence to global minimum and hence, results in poor 

generalization accuracy. All images are centered cropped at resolutions; 64× 64, 128 × 128 and 

256 ×  256. Centre patches of images are used because not all parts of the images are rich in PRNU 

fingerprints and images with dark regions have weak PRNU. Saturated pixels cause undesirable 

noise in residual signals and center patch contains PRNU with homogenous features. Furthermore, 

as shown in the work in [105], there are some of the images with vignetting effect. Vignetting 

effect occurs when edges of an image are darker than the center of the image. Therefore, using the 

center patch also helps to reduce the vignetting effect and hence improves the quality of the 

extracted PRNU images [105]. To properly evaluate the SSAE and ensure a large amount of 

training data are used, images are divided into training and testing sets. The division steps are as 

follows:  

• The natural images are divided by random splitting into sets A and B respectively. Set A 

consist of 80% of the natural images while Set B consists of the remaining 20%.   

• Set A is used as training images while Set B is used as the testing images. 
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All the experiments were carried out on a computer with 4.00GHz Intel (R) Core (TM) i7-

6700k CPU and 1 terabyte memory. The PRNU feature extraction of all image was carried out 

using MATLAB 8.6.0 on window 10. The SAE was carried out on window 10 with Keras using 

Theano backend on a 11 G GPU NVidia GTX 1080Ti. Keras with Theano backend is a deep 

learning framework. It is known for its simplicity and ease of use. Keras library was used with the 

scikit-learn library to leverage the power gain of SAE evaluation and optimization of 

hyperparameters. Both Keras and scikit-learn are frameworks based on Python programming.  

4.3.2 Parameters Selection for SSAE 

We will discuss initialization of the weights of neural networks for PRNU fingerprint before 

explaining parameters selection for SSAE. The weights initialization are selected in a way as to 

achieve global convergence. The closer they are to a global minimum, the better. Though global 

convergence is also dependent on the training algorithm. There are several methods for setting 

initial weights of NN. Setting initial weights for neural networks has no standard formula. 

Different generalization results are usually obtained depending on the domain of adaptation. 

Though random or normal initializations are usually used for image classification problems [65, 

106, 107], however, initialization depends on the feature scaling or normalization technique carried 

out on the data. The structure of the PRNU is best exposed to the neural network for learning after 

zero-mean operation has been applied. Most of the other normalization techniques tested on the 

PRNU gave us poor results. In [65], data must be normalized before using their proposed weight 

initialization. In our work, using zeros or ones as weights initialization are most suited for PRNU 

fingerprints with SSAE. Using ones or zeros as NN weight initialization initializes the NN to start 

with uniform distribution. This enables the NN to learn its weights till it obtains optimum values. 

The third method described in [108] used zero weight initialization for the multi-layer neural 
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network. As earlier explained, compressed representation of activated neurons is learned at each 

hidden layer of our proposed network. Therefore, the problem of breaking the symmetry of 

networks using random or normal weight initializations is not a challenge since the signals (hidden 

units) at hidden layers of the structure of our proposed SSAE are not the same. 𝐿2 weight and 

sparsity regularizations are also applied to the weights of our networks to avoid overfitting. 
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Table 4.1. Details about the cameras used in the experiment including the resolution and 

number of images. 

S/N Camera Brand Resolution Number of Natural 

Images 

1 Agfa_DC-830i 3264 × 2448 342 

2 Olympus_mju_1050SW_0 3264 × 2736 204 

3 Olympus_mju_1050SW_1 3264 × 2736 209 

4 Kodak_M1063_0 3664 × 2748 464 

5 Kodak_M1063_1 3664 × 2748 458 

6 Agfa_Sensor530s_0 4032 × 3024 372 

7 Nikon_D70_0 3008 × 2000 180 

8 Nikon_D70_1 3008 × 2000 189 

9 Olympus_mju_1050SW_2     3264 × 2736 218 

10 Canon Ixuss 55 2592 × 1944 224 

11 Canon_Ixus70_0 2304 × 3072 171 

12 Canon_Ixus70_1 2304 × 3072 179 

13 Canon_Ixus70_2 2304 × 3072 171 

14 Samsung_L74wide_0 2304 × 3072 229 

15 Samsung_L74wide_1 2304 × 3072 224 

16 Samsung_L74wide_2 2304 × 3072 231 

17 Samsung_NV15_0 2304 × 3072 217 

18 Samsung_NV15_1 2304 × 3072 214 

19 Sony_DSC-H50_0 2736 × 3648 266 

20 Sony_DSC-H50_1 2736 × 3648 234 

Total number of Images  4996 
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Network configuration parameters and training parameters can be sub-divided into two categories. 

We have the model and fine-tuning parameters. The key training parameters include the numbers 

of hidden layers of SAE, the number of the units in the hidden layers, weight and sparsity 

regularization parameters. The key fine-tuning parameters include learning rate and the number of 

epochs. The commonly used searching techniques for selecting optimal network parameters both 

for the training and fine-tuning stages are usually the grid search or random search. The optimal 

parameters cannot be determined at once and therefore; the best approach is to fix some parameters 

while we use a grid search to determine the other optimal parameters. In our experiments, we 

geometrically determined the number of the hidden units per layer. For example, using 64 × 64, 

the total number of pixels per column becomes 4096 = 64 × 64 = 64 × 82 pixels. The number 

of hidden units is geometrically decreased per hidden layer. The number of neurons per 𝑙𝑡ℎ hidden 

layer is defined as 64 × (8 − 𝑙)2. Similarly, for 128 ×128, the total number of pixels per column 

becomes 16384 = 128 × 128 = 4 × 642. The number of neurons per 𝑙𝑡ℎ hidden layer is defined 

as 4 × (64 − 𝑙)2. Hidden units were also selected similarly for 256 × 256. Though, there is no 

standard way of determining hidden units per layer (ℎ𝑙)  but given that  𝑙 =  1, 2…𝑁 , the 

parameters can also be tuned within ℎ𝑙 𝑎𝑛𝑑 ℎ𝑁.  

We searched the best results for our stacked autoencoder given 𝑡ℎ𝑎𝑡  𝑙 =  1, 2, 3. . 𝑁.  𝑁 is 

the hidden layer with the optimal performance. The sparsity and weight regularization parameters 

are fixed at 0.00001. We will show how to determine the optimal number of epoch, the hidden 

layers, learning rate (𝜂), activation function and the optimization algorithm most suitable for 

generalization by grid search. Firstly, we determined the optimal hidden layers by fixing number 

a of epoch, the the activation the function and optimizer as 20, ReLU and SGD (𝜂 = 0.001) 

respectively. Table 4.2  shows the overall identification accuracies of cameras at different image 
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resolutions for four hidden layers using the first 10 cameras in Table 4.1. By overall accuracy, we 

mean the ratio of the all correctly identified samples of all the cameras to the total number of 

testing samples of all the cameras. It was observed from Table 4.2 that the optimal performances 

for 64 × 64  and 128 ×128 were obtained at hidden layer 2 while it is at layer 3 for 256× 256. 

The bold numbers in Table 4.2 show the optimal performance for each image size. 

 

 

 

 

  

Having established the optimal layer for our SAE for the different image sizes, we then obtained 

the best epoch with global convergence using grid search within; [10, 20, 50, 70,100]. Table 4.3 

shows the overall average accuracies of cameras after fine-tuning for the range of epochs used. In 

Table 4.3, it was observed that the best overall accuracies for 64 × 64, 128 × 128 image sizes 

after fine-tuning are obtained when the number of the epochs is set to 10 while it is at 50 for 256 

× 256. The bold numbers in Table 4.3 show the optimal performance for ranges of epochs used. 

As observed in Table 4.3, there is difficulty in achieving global convergence using SSAE with 

improved identification accuracies especially for an image size of 64 × 64 while there is improved 

convergence for image sizes 128 × 128 and 256 ×256 and this reflected in their identification 

accuracies of 70.63% and 87.76% respectively compared to 47.90% identification accuracy for 

64 × 64 image size. The higher the image size, the better the quality of PRNU images and hence, 

the better the rate of global convergence. The rate of convergence also depends on the 

Table 4.2. Overall Identification accuracies at each hidden layer (%). 

Image Size Average Accuracy after fine-tuning 

Layer 1 Layer 2 Layer 3 Layer 4 

64 × 64 46.85 47.90 44.93 43.18 

128 × 128 68.53 69.58 69.23 66.43 

256 × 256  86.19 86.63 87.76 87.13 
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generalization capability of the applied model. One of the key parameters for fine-tuning as earlier 

stated is the learning rate. We further carried out experiments to check how the performance varies 

for different learning rates. The learning rates used are 0.2, 0.25, 0.02, 0.001:0.005. The overall 

accuracies after fine-tuning at different learning rates are shown in Figure 4.5.  

Figure 4.5  shows 0.001 as the learning rate at which best overall accuracies are obtained for all 

the images sizes used. 

 

Figure 4.5. Overall accuracies after further fine-tuning at different learning rates. 

 

 

 

 

 

Table 4.3. Optimal results for each epoch for the best-hidden layer (%). 

Image Size Number of Epochs 

10 20 50 70 100 

64 × 64 47.90 47.90 46.68 46.50 45.98 

128 × 128 70.63 69.23 68.01 68.36 67.83 

256 × 256 87.41 87.76 87.76 87.59 87.24 
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4.3.3 Experimental Results 

Experiment 1 

We carried out an experiment on SSAE for source camera identification on the first ten cameras 

as shown in Table 4.1. We refer to this experiment as case 1. The parameters selection and 

intermediate results have been discussed in Section 4.3.2. In this section, we summarize and 

discuss the identification accuracies of the 10 cameras. The summary of the overall accuracies for 

all the image sizes after fine-tuning is shown in Table 4.4. Table 4.4 shows that the overall 

accuracies after fine-tuning the proposed SSAE are 47.90%, 70.63% and 87.76% for 64 × 64, 128 

× 128 and 256 × 256  respectively. It was observed that the higher the image size, the better the 

camera identification accuracies. This can be attributed to the fact that, the higher the image 

resolution, the stronger the PRNU fingerprint. Better or stronger PRNU fingerprint means quality 

data is being used as the input for SSAE.  Apart from using large dataset for generalization of deep 

learning modules, one of the factors that have a significant contribution to generalization is the 

quality of information in the data.  

 The maximum image size used in our experiment is 256 × 256 and this means 65536 

elements per column for one image of a camera. The confusion matrixes obtained using our 

proposed method are shown in Table 4.5, Table 4.6 and  Table 4.7 for 64 × 64, 128 × 128 and 256 

× 256  respectively. The bold numbers in Table 4.5, Table 4.6 and Table 4.7 indicate the 

identification accuracy for each camera device. Nikon_D70_0 and Nikon_D70_1 have poor 

identification accuracies of 15.79% and 8.11% respectively for 64 × 64. The accuracies have a 

significant improvement to 35.58% and 53.35% for 128 ×  128 respectively. Finally, 

Nikon_D70_0 and Nikon_D70_1 for 256 ×  256 are 76.32% and 83.78% respectively. The 
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performance of the two devices might improve if the training labels for the cameras are increased. 

The poor performance can also be attributed to the Nikon cameras having weak PRNU.  

 

 

 

 

Experiment 2 

We further investigated on how the proposed SAE generalizes to a new set of camera devices using 

the same optimal hyperparameters, activation function, and optimizer in Section 4.3.2. This was 

carried out using the remaining 10 cameras in Table 4.1. We refer to this experiment as case 2. 

Table 4.8 shows the identification accuracies for the new set of ten cameras for 64 × 64, 128 × 

128 and 256× 256. The overall accuracies for the cameras are 63.19%, 87.72% and 92.28% for 

64 × 64, 128 × 128 and 256 × 256 respectively. The results show that hyperparameters, optimizer 

and activation function used for the SSAE in case 1 is not data specific. The better performance of 

the cameras in case 2 compared to case 1 can be attributed to some of the cameras in case 2 having 

stronger PRNU than those in case 1. The experiment further shows that there is no need to carry 

out any further search to obtain best optimal parameters for the PRNU of the new set of cameras. 

The implication of this is that there is no further computational time incurred due to the grid –

search or manual search for optimal parameters. 

Experiment 3 

In this experiment, we investigated the generalization capability of our proposed method by using 

all the 20 cameras in Table 4.1. We refer to this experiment as case 3. All that is required is to 

concatenate the already extracted PRNU of the cameras in case 1 and case 2 respectively. Also, 

Table 4.4. Overall identification accuracies at different image sizes (%). 

 

64 × 64 128 × 128 256 × 256 

47.90 70.63 87.76 
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the target labels must correspond to the each PRNU of cameras. Table 4.9 shows the identification 

accuracies of cameras for 64 × 64, 128 × 128 and 256 × 256  respectively. Average accuracy per 

camera device is 37.24% 67.35% and 91.67% for 64 ×  64, 128 ×  128 and 256 × 256  

respectively. 

The average identification accuracy per camera for each resolution using our proposed 

method has a slight decrease when compared to identification accuracies using only 10 cameras as 

of case 1 and case 2.  In machine learning, the more the number of targets to be classified, the 

lower the classification accuracies of each class. Our experimental results show that our proposed 

method still has significant performance using 128 × 128 and 256 × 256  image size for the 20 

cameras 128 × 128 and 256 × 256  respectively.  

Visualization of the input and extracted optimal features for 64 × 64, 128 × 128 and  256× 

256 are shown in Figure 4.6, Figure 4.7 and Figure 4.8 respectively. 
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Table 4.5. Identification accuracy (in percentage points %) of the proposed method for 64 × 64 images size (case 1). 

Camera Device 
 

1 2 3 4 5 6 7 8 9 10 

Agfa_DC-830i 1 73.24 1.41 1.41 7.04 2.82 9.86 1.41 - 1.41 1.41 

Olympus_mju_1050SW_0 2 7.14 26.19 11.90 9.52 19.05 11.90 - - 14.29 - 

Olympus_mju_1050SW_1 3 9.30 2.33 27.91 4.65 18.60 11.63 - 2.33 18.60 4.65 

Kodak_M1063_0 4 6.49 - 3.90 45.45 16.88 9.09 5.19 2.60 7.79 2.60 

Kodak_M1063_1 5 7.14 2.38 1.19 8.33 54.76 9.52 1.19 4.76 3.57 7.14 

Agfa_Sensor530s_0 6 5.41 1.35 - 6.76 6.76 74.32 1.35 0.00 1.35 2.70 

Nikon_D70_0 7 18.42 5.26 - 15.79 15.79 15.79 15.79 2.63 10.53 - 

Nikon_D70_1 8 13.51 5.41 5.41 18.92 16.22 10.81 - 8.11 5.41 16.22 

Olympus_mju_1050SW_2    9 6.38 8.51 8.51 4.26 14.89 6.38 - 2.13 42.55 6.38 

Canon Ixuss 55 10 1.69 3.39 8.47 1.69 8.47 11.86 1.69 0.00 5.08 57.63 

Table 4.6. Identification accuracy (in percentage points %) of the proposed method for 128 × 128 images size (case 1). 

Camera Device 
 

1 2 3 4 5 6 7 8 9 10 

Agfa_DC-830i 1 97.18 - - - - 1.41 1.41 - - - 

Olympus_mju_1050SW_0 2 4.76 52.38 - 11.90 11.90 7.14 - - 11.90 - 

Olympus_mju_1050SW_1 3 13.95 9.30 48.84 2.33 6.98 6.98 - - - 11.63 

Kodak_M1063_0 4 9.09 3.90 3.90 63.64 10.39 1.30 2.60 2.60 1.30 1.30 

Kodak_M1063_1 5 2.38 3.57 1.19 10.71 73.81 - 2.38 1.19 2.38 2.38 

Agfa_Sensor530s_0 6 2.70 1.35 1.35 2.70 2.70 89.19 - - - - 

Nikon_D70_0 7 10.53 - 7.89 - 12.16 13.16 35.58 12.16 7.89 2.63 

Nikon_D70_1 8 15.22 2.70 - 10.81 7.11 2.70 2.70 53.35 2.70 2.70 

Olympus_mju_1050SW_2    9 4.26 2.13 4.26 2.13 2.13 2.13 4.26 2.13 74.47 2.13 

Canon Ixuss 55 10 - 3.39 1.69 3.39 1.69 3.39 1.69 - 1.69 83.05 
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Table 4.7. Identification accuracy (in percentage points %) of the proposed method for 256 × 256 images size (case 1). 

 

Camera Device 
 

1 2 3 4 5 6 7 8 9 10 

Agfa_DC-830i 1 98.59 - - - 1.41 - - - - - 

Olympus_mju_1050SW_0 2 - 83.33 - 4.76 4.76 2.38 2.38 - 2.38 - 

Olympus_mju_1050SW_1 3 - 6.98 72.09 4.65 4.65 - 4.65 2.33 2.33 2.33 

Kodak_M1063_0 4 1.30 2.60 - 84.42 3.90 3.90 1.30 2.60 - - 

Kodak_M1063_1 5 - - - 10.71 82.14 3.57 - 2.38 - 1.19 

Agfa_Sensor530s_0 6 - - - 0.75 - 98.50 0.00 0.75 - - 

Nikon_D70_0 7 2.63 - - 5.26 5.26 2.63 76.32 7.89 - - 

Nikon_D70_1 8 2.70 2.70 - 2.70 5.41 - 2.70 83.78 - - 

Olympus_mju_1050SW_2    9 - 4.26 2.13 2.13 - - - 2.13 89.36 - 

Canon Ixuss 55 10 - 1.69 - - - - - - - 98.31 

Table 4.8. Identification accuracy (in percentage %) of proposed method (case 2). 

S/N Camera Brand 64 × 64 128 × 128 256 × 256 

11 Canon_Ixus70_0 39.50 86.80 97.40 

12 Canon_Ixus70_1 38.90 77.80 94.40 

13 Canon_Ixus70_2 37.50 90.60 100.00 

14 Samsung_L74wide_0 40.00 61.90 93.30 

15 Samsung_L74wide_1 26.20 70.70 92.90 

16 Samsung_L74wide_2 29.30 89.70 95.10 

17 Samsung_NV15_0 46.20 88.00 100.00 

18 Samsung_NV15_1 52.00 86.00 100.00 

19 Sony_DSC-H50_0 93.80 100.00 100.00 

20 Sony_DSC-H50_1 85.40 97.60 100.00 

Average  49.92 84.70 97.30 
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Table 4.9. Identification accuracy (in percentage %) of the proposed method (case 3). 

Camera Brand 64 × 64 128× 128 256× 256 

Agfa_DC-830i 64.44 96.60 96.6 

Olympus_mju_1050SW_0 24.40 48.80 80.50 

Olympus_mju1050SW_1 10.40 41.7 79.20 

Kodak_M1063_0 52.22 61.10 87.80 

Kodak_M1063_1 46.10 70.80 83.10 

Agfa_Sensor530s_0 62.70 39.00 92.80 

Nikon_D70_0 9.80 83.10 86.50 

Nikon_D70_1 18.90 54.10 82.10 

Olympus_mju_1050SW_2     46.20 69.20 100.00 

Canon Ixuss 55 27.30 79.50 90.60 

Canon_Ixus70_0 25.00 78.10 87.80 

Canon_Ixus70_1 31.70 63.40 96.90 

Canon_Ixus70_2 34.44 65.60 94.10 

Samsung_L74wide_0 39.20 52.90 94.20 

Samsung_L74wide_1 13.50 50.00 96.20 

Samsung_L74wide_2 29.40 61.80 97.00 

Samsung_NV15_0 32.00 66.00 94.00 

Samsung_NV15_1 42.40 78.80 93.90 

Sony_DSC-H50_0 69.20 92.30 100.00 

Sony_DSC-H50_1 65.40 94.20 100.00 

Average 37.24 67.35 91.67 
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(a)                                                                                   (b) 

Figure 4.6. Input features (a)  and optimal features (b) of SAE for  64 × 6 

 

                

(a)                                                                            (b) 

Figure 4.7. Input features (a)  and optimal features (b) of SAE for 128 × 128 
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(a)              (b) 

Figure 4.8. Input features (a) and optimal features (b) of SAE for 256 × 256 

4.3.4 Comparison with Some State-of-the-Art Methods 

We compared our proposed deep network with some state-of-the-art methods. The overall 

identification accuracy for the 20 cameras using our proposed method for the 64 × 64 is very low 

but considerably high for 128 × 128 and 256 × 256 as earlier explained in experiment 3 in Section 

4.3.3. In this section, we compared our proposed method with four states of the art methods: MLE 

SPN [8], Phase SPN [10], the Li’s model [9] and weighted averaging (WA) [51] using 128 × 128 

and 256× 256 images sizes. We used Li’s model 5 because it gives good performance compared 

to other models. For all the methods, the classification was done using peak to correlation energy 

(PCE) [10]. 

Experiment 1 

In this experiment, we compared our proposed methods with these methods using the same setting 

used for the proposed SAE. This implies that 80% of the images of each camera in Table 4.1 were 

used for the extraction of the PRNU fingerprints while the remaining 20% were used for testing. 
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We refer to this experiment as case 4. Table 4.11 and Table 4.10 shows the identification 

accuracies for 20 cameras of the Dresden image dataset for 128 × 128 and 256 × 256 image sizes 

respectively. The overall average accuracies using 128  ×  128 are 70.15%, 70.16%, 75.08%, 

64.16% and 67.09% for MLE SPN, Li's model 5, Phase SPN, WA and SAE respectively. The 

overall average accuracies using 256 ×  256 are 91.71%, 91.90%, 92.73%, 92.38% and 91.67%  

for MLE SPN, LI's model 5, Phase SPN, WA, and SAE respectively. The identification of our 

proposed method has comparable detection accuracy with the existing methods though higher 

identification accuracy than WA for 256 × 256 image size. The camera identification accuracy of 

the proposed SSAE only has comparable results with the state-of-the-art methods on Dresden 

database using natural images for training. To adopt SSAE, we must convert the image to one-

dimensional features and hence SSAE could not account for spatial information between the pixels 

of images. Therefore, this negatively impacts the generalization capacity of the SSAE for source 

camera identification. SSAE is more effective for data with high correlation. Since we used 

individual PRNU images of cameras, single noise residue representing image will have scene 

contamination and hence finding ways of improving the quality of the PRNU could be a better 

way of having highly correlated data which will be more suitable for learning using SSAE. 

Though, there are camera cases where our proposed method has higher identification accuracy 

than the all other methods. Another advantage of the proposed method unlike several deep learning 

techniques is that good performance can be achieved using considerably smaller dataset unlike 

huge dataset usually required for good performance for deep learning techniques such as CNN. 

This furthers reduces computational demand for the implementation of the proposed method.  
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Experiment 2 

In all the experiments carried out so far, our proposed stacked autoencoder was trained using 

natural images of the Dresden database in Table 4.1. There are a limited number of flat images (50 

images per camera) and hence not suitable for training deep network. Another reason for not using 

flat images is that flat images are rarely available for practical purposes or cases involving digital 

investigation. However, quality PRNU can be best extracted from using flat images unlike natural 

images with more texture complexity. 

 

Table 4.10. Identification accuracies (in percentage %) compared to other methods for 256 × 256 

(case 4). 

 

S/N Camera Brand MLE Li’s 

 Model 5 

Phase 

SPN 

WA  Proposed 

method 

1 Agfa_DC-830i 92.75 91.30 92.75 94.20 96.6 

2 Olympus_mju_1050SW_0 100.00 95.12 95.12 97.56 80.50 

3 Olympus_mju_1050SW_1 95.23 95.24 95.24 100. 0 79.20 

4 Kodak_M1063_0 78.45 75.27 75.27 72.04 87.80 

5 Kodak_M1063_1 73.91 68.48 71.74 69.57 83.10 

6 Agfa_Sensor530s 100.00 100.00 100.00 100.00 92.80 

7 Nikon_D70_0 61.11 61.11 63.89 63.15 86.50 

8 Nikon_D70_1 65.79 71.05 76.32 76.32 82.10 

9 Olympus_mju_1050SW_2     97.72 97.72 97.72 97.72 100.00 

10 Canon Ixuss 55 100.00 100.00 100.00 100.00 90.60 

11 Canon_Ixus70_0 100.00 100.00 100.00 100.00 87.80 

12 Canon_Ixus70_1 100.00 100.00 100.00 100.00 96.90 

13 Canon_Ixus70_2 100.00 100.00 100.00 94.44 94.10 

14 Samsung_L74wide_0 93.48 95.65 97.82 97.83 94.20 

15 Samsung_L74wide_1 88.89 97.78 97.78 91.49 96.20 

16 Samsung_L74wide_2 93.62 91.49 95.74 95.56 97.00 

17 Samsung_NV15_0 97.72 100.00 97.72 97.72 94.00 

18 Samsung_NV15_1 95.35 100.00 97.67 100.00 93.90 

19 Sony_DSC-H50_0 100.00 100.00 100.00 100.00 100.00 

20 Sony_DSC-H50_1 100.00 100.00 100.00 100.00 100.00 

Average 91.71 91.90 92.73 92.38 91.67 
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In this experiment, the capacity of PRNU to increase the accuracy of SSAE in comparison 

to the three existing methods was evaluated. The experiment was achieved using a small dataset 

consisting of two phones with flat images for training and natural images for testing. We refer to 

this experiment as case 5. Table 4.12 shows the lists, number of images and their original 

resolutions. All the images were center-cropped into 128 × 128 and 256 × 256 image sizes. Apart 

from the batch size, the same hyper-parameters used in all the SSAE experiments are also used in 

Table 4.11. Identification accuracies (in percentage %) compared to other methods for 128 

× 128 (case 4). 

 

S/N Camera Brand MLE Li’s 

 Model 

5 

Phase 

SPN 

WA Proposed 

method 

1 Agfa_DC-830i 84.06 84.06 84.06 88.44 93.20 

2 Olympus_mju_1050SW_0 58.54 60.98 63.41 48.78 48.80 

3 Olympus_mju_1050SW_1 69.05 64.29 73.81 71.43 37.50 

4 Kodak_M1063_0 54.84 49.46 43.01 27.96 55.60 

5 Kodak_M1063_1 45.65 45.65 50.00 52.17 69.70 

6 Agfa_Sensor530s 89.33 90.67 97.33 10.66 84.30 

7 Nikon_D70_0 25.00 25.00 38.89 30.56 22.00 

8 Nikon_D70_1 36.84 42.10 42.10 39.47 40.50 

9 Olympus_mju_1050SW_2     72.72 79.54 88.63 54.54 71.80 

10 Canon Ixuss 55 82.22 77.78 86.67 88.88 86.40 

11 Canon_Ixus70_0 91.43 85.71 91.43 85.71 78.10 

12 Canon_Ixus70_1 86.11 83.33 83.33 77.77 61.00 

13 Canon_Ixus70_2 85.71 91.43 82.85 85.71 78.10 

14 Samsung_L74wide_0 65.22 63.04 71.34 60.87 51.00 

15 Samsung_L74wide_1 51.11 48.89 71.11 53.33 50.00 

16 Samsung_L74wide_2 44.68 59.57 68.09 57.45 64.70 

17 Samsung_NV15_0 84.09 86.38 79.54 75.00 72.00 

18 Samsung_NV15_1 76.60 69.39 86.04 74.42 84.80 

19 Sony_DSC-H50_0 100.00 100.00 100.00 100.00 94.20 

20 Sony_DSC-H50_1 100.00 95.74 100.00 100.00 98.10 

Average accuracy per camera 70.16 70.15 75.08 64.16 67.09 
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this experiment. Since the training size is 1200 compared to 3960 used in Table 1, we used a batch 

size of 8 for all image sizes.  

 Table 4.13 shows the comparative study of the identification accuracies of our proposed 

SSAE and the other three state of the art methods. Optimal overall identification accuracies were 

obtained for all the images sizes at 5th epoch. For 128 × 128, average identification accuracies of 

the two cameras are 95.30%, 95.30%, 95.30% and 97.70% for MLE SPN, Li's Model 5, Phase 

SPN and proposed SSAE respectively. For 256 × 256, average identification accuracies of the two 

cameras are 96.16%, 95.73%, 95.73% and 99.05% for MLE SPN, Li's Model 5, Phase SPN and 

the proposed method respectively. Our SSAE achieved higher average identification accuracy than 

the three existing methods using 128 × 128 and 256 × 256 image sizes for all the methods. 

Therefore, using PRNU of stronger quality can further increase the generalization capability of the 

proposed SAE with improved accuracy compared with these existing methods as shown for 128 

×128 and 256 × 256 image sizes.   

 

 

 

 

 

 

 

 

Table 4.12. Details about the cameras used in the experiment 

including the resolution and number of images taken by each camera. 

 

Camera Brand Number of 

Flat 

Images 

Number of 

Natural 

Images 

Resolution 

Samsung S7 600 117 2988 × 5312 

Redmi Note 3 600 108  4608 × 3456 
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4.4 Summary 

Source camera identification based on stacked autoencoder for instance-based identification has 

been implemented in this research. The contribution of this novel approach to the body of 

knowledge is summarized below: 

(i) The possibility of using deep learning module based on SSAE to solve source camera 

identification problem. (ii) Good generalization performance without the use of a huge dataset 

usually used in many deep learning implementations is achievable. Therefore, the proposed 

method is computationally effective. (iii) Based on the observation of the experimental results, 

reliable results were achieved especially when flat images were used for the training the network.  

 The intuition behind the proposed autoencoders is that, autoencoders are dataset specific 

and hence the trained features are learned using PRNU because of its uniqueness to each camera 

device. The proposed method achieves significant overall identification performance comparable 

with some existing methods on the Dresden database and better performance on our own dataset 

when compared with some state-of-the-art methods. Furthermore, the proposed network also 

generalizes well using the same hyper-parameters on different cameras' sets. 

Table 4.13.  Comparative study of the identification accuracies (in percentage 

%) of our proposed method and three other state-of-the-art methods (case 5). 

 

Methods 128 × 128 256 × 256 

Samsung  

S7 

Redmi 

Note 3 

Samsung 

S7 

Redmi 

Note 3 

MLE SPN 100.00 90.60 100.00 92.31 

Model5 100.00 90.60 100.00 91.45 

Phase SPN 100.00 90.60 100.00 91.45 

Proposed method 100.00 95.40 100.00 98.10 
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Chapter 5 : 

Convolutional Neural Network as Feature Extractor and Classification for 

Source Camera Identification of Small Size Images 

 

There are several CNN architectures that have been used in the literature [66, 69, 109-111]. They 

often consist of operations such as convolution, activation function, max-pooling and fully 

connected layers. In some applications, a very large number of convolutional layers were used to 

achieve good results. This increased the computation demand during training. Different CNN 

architectures in literature usually include different operations but the commonly used as shown in   

Figure 5.1. Several other signal processing operations can be used to improve generalization such 

as the use of stride or suitable normalization techniques. The suitability of some of these operations 

is dependent on the domain of adaptation or area of application. An operation such as max-pooling 

was replaced with the used of stride in [112]. The work in [112] used a stack of convolutional 

layers with a stride of two for image classification. Their proposed CNN architecture did not 

include the use of max-pooling nor fully connected layers. Despite that, their experimental results 

show better performance compared with other complex CNN architectures on the same dataset. In 

this work, we proposed deep convolutional neural network for instance-based source camera 

identification for classification and also as a feature extractor for one-vs-rest linear classifier. As 

PRNU fingerprint is positional dependent, it is important that the structure of CNN keeps 

information at each spatial location of cropped images of the same camera to be the same so as to 

achieve instance-based camera identification. Therefore, we extracted PRNU of single patch 

cropped from the center of the images as the input to the proposed network. After identifying 
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suitable structures of CNN for the problem of instance-based camera identification, we compared 

our results with some state-of-the-art methods for source identification for small image size such 

as 64 × 64.  

The rest of Chapter 5 is organized as follows. Section 5.1 discusses the working principle 

of CNN. Section 5.2 describes the training process for CNN. Section 5.3 describes the architecture 

of the proposed deep CNN for SCI and this includes, noise residues formulation for CNN, network 

architecture, the training procedures and the selection of fine-tuning parameters. Section 5.4 

presents our experimental evaluation on Dresden database, which includes, the experimental 

settings, results and discussion and comparison with some existing state-of-the-art methods. 

Section 5.5 introduces our proposed fine-tuned pre-trained CNN for SCI, which includes, the idea 

of transfer learning, proposed methodology, experiment and results, comparison with some state-

of-the-art methods. Section 5.6 compares our proposed CNN-based methods with a deep learning 

based method. Section 5.7 evaluates the robustness of the proposed deep CNN methods to post 

JPEG compression. Section 5.8 summarises the work and its contributions.  

 

5.1 Working Principle of Convolutional Neural Networks  

CNN shares a similar operation as traditional neural networks. They both have neurons with 

trainable weights.  Because of the underlying assumption that the input data are images, some 

functions can be incorporated into the architectures.  This, in turn, reduces the number of 

parameters in each layer [113].  In basic CNN structure, there are input layer, convolutional layers 

and the classification layers as shown in Figure 5.1. The input data fed into the CNN is a 3D image 

which consists of width, height, and depth. The width and the height correspond to the dimension 
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of the image while the depth specifies the number of the channels of the image. For color images, 

the depth is 3 while it is 1 for gray-level images. The CNN architecture generates robust features 

of images and hence increases the capability of generalization. The convolutional layer mostly 

consists of three components: convolution, activations and pooling.  The input image is sub-

divided into different regions and an impulse signal is applied to each input region to form outputs. 

The impulse signal used is a filter and hence it is called a convolutional kernel or a filter kernel. 

The output shows the response of the filter in different spatial positions as the filters are applied 

locally in different image regions. The output of convolutional layers is often called the feature  

map. The convolution operation on the input and the filter kernel  is expressed in [38] as,  

 

Figure 5.1. Stages involved in conventional convolutional neural networks. 

 𝑜𝑙
𝑗 = ∑ 𝑜𝑖

𝑙−1 ⨀ 𝑤𝑖𝑗
𝑙−1 + 𝑏𝑗

𝑙  𝑀
𝑖=1   

 

     (5.1) 
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where  𝑜𝑙
𝑖 is the j-th output in the l-th layer, 𝑤𝑖𝑗

𝑙−1 is the weights of the filter kernel that connects 

the i-th node at the layer 𝑙 − 1 and the j-th node at the next layer 𝑙, ⨀ is the convolution operation, 

𝑏𝑗
𝑙 is the network bias of the j-th output neuron in the l-th layer, 𝑖 = 1, …𝑀 are the indices of the 

feature in each convolutional layer and 𝑀 is the total number of the feature maps in the previous 

convolution layer.  In [113], one of the important settings in the convolutional layer is the “stride”.  

It is the number of times the filter kernels are shifted between pixels. A stride of one means that 

the filters are shifted by one pixel at a time which will lead to large output volumes.  When the 

stride is two, filters are shifted by two pixels which will lead to double down-sampling. The next 

operation in the convolutional layer is the activation function. The aim of the activation function 

is to introduce non-linearity or randomness into the convolved output. The commonly used 

activation function for the CNN is the rectilinear unit (ReLU) [114, 115]. ReLU has been defined 

in eqn. (3.4). ReLU has been used in different CNN architectures for image classifications [66, 

109, 116, 117]. Its advantage over other non-linear activation functions such as sigmoid and tanh 

is that it diminishes the tendency of having vanishing gradient and also increases the speed at 

which global convergence is attained [66]. Its ability to yield better performance is associated with 

the application of sparsity constraint on the output of a layer [84, 115]. Other variants of ReLU 

which have better performances than ReLU have been proposed and evaluated in [118]. These 

include the Leaky ReLU [119] and the parameterized ReLU (PReLU) [120]. Input data after 

normalization or other pre-processing techniques usually have both positive and negative samples. 

In PReLU, the gradient of the negative samples is also computed during optimization.  
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It is defined as, 

 𝑃𝑅𝑒𝐿𝑈(𝑥) = {
𝑥     𝑖𝑓 𝑥 ≥ 0
𝑢𝑥 𝑖𝑓 𝑥 < 0

  

 

     (5.2) 

where 𝑢  is the weight associated with the input 𝑥. Instead of thresholding the input value to zero 

when it is smaller than zero, a weight (𝑘) is associated with the input unit in the Leaky ReLU. 

Mathematically, it is defined as, 

 Leaky 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 if 𝑥 ≥ 0
𝑘𝑥 otherwise

       (5.3) 

The main difference between PReLU in eqn. (5.2)  and Leaky ReLU in eqn.(5.3) is that  𝑢 is learnt 

by back propagation while  𝑘 is manually fixed or searched within a range of parameters. As 

reported in [118], the leaky ReLU out-performs both ReLU and PReLU activation functions when 

implemented on the CIFAR-10/CIFAR-100 dataset. The output volume after convolution 

operation increases with the number of filters used. However, the activation function does not 

affect the size of the output volume. The increase in output volume due to convolution usually 

results in a large number of network parameters. This can cause overfitting problem, i.e., the 

network may be biased when it generalizes on an unseen data. To reduce the number of network 

parameters, pooling operation is carried out on the output image. In fact, the pooling operation is 

a downsampling operation. The commonly used pooling techniques are the mean or maximum-

pooling (max-pooling). To ensure that the feature maps and the features of the testing images have 

the same feature scaling, the feature maps are usually normalized. The last stage of the CNN is the 

classification stage which consists of fully connected layers. It is called fully connected layers 

because each neuron in the layer is fully connected to all the neurons in the previous layers. The 
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last layer in the fully connected layer is an output layer. The output layer uses the softmax classifier 

and it is sometimes referred to as the softmax layer. Besides, multi-perceptron can be used in the 

fully connected layers. The number of neurons in the output layer is equal to the number of classes 

or targets. For source camera identification, the number of neurons in the softmax layer equals to 

the number of source cameras to be identified. 

 

5.2. Training Process of CNNs 

In this section, the training process of CNNs is discussed.  We will describe how the CNN layers 

learn its weights and map the activated features.  The training is supervised in which CNNs are 

trained and fine-tuned with training data and their corresponding labels.  The training is done using 

back error propagation [102]. First, initial weights of the convolutional layers are randomly 

generated. Second, there are four steps in the training, namely the forward propagation, objective 

function or cost function calculation, backward pass and the network weight update. During 

forward propagation, the input image goes through both the convolutional layers and the 

classification layers. The output of the softmax classification during the forward propagation may 

have a large deviation from the expected output. This is because the weights of the network are 

randomly assigned. The objective function finds the deviation between the input features and the 

reconstructed features. Common cost functions include the sum of squared errors, cross-entropy 

(CE) and the exponential cost functions  [86, 87]. The CE loss is usually adopted when softmax 

classifier is used for supervised fine-tuning because it avoids the changes in network weights to be 

decreasing to zero. Afterward, a backward pass is carried out from the output layer back to the 

input layer. Its aim is to determine the error of the weights in each layer of the network where the 
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estimated error is the biggest. To correct this, gradients of the weights in each layer are estimated 

and all the weights of the networks are updated to reduce the estimated error. There are different 

gradient optimization algorithms adopted for training. For example, the batch gradient descent, 

stochastic gradient descent, mini-batch gradient descent, momentum, Nesterov accelerated 

gradient, Adagrad, Adadelta, RMSprop and Adam [96]. Training is repeated over several numbers 

of epochs until the training error is minimized over the training dataset.  

  As earlier explained, CNN architecture involves a lot of network parameters. A large 

number of parameters will require a large number of training samples and may have an over-fitting 

problem. A newly developed technique for preventing overfitting is the dropout regularization 

[98]. It is achieved by randomly setting a fraction of the units of a layer to zero while the remaining 

units in the layer will be used as the input to the next layer. The basic idea of the dropout 

regularization is to prevent the network from learning redundant features at each hidden layers so 

that only useful features are retained for generalization [93]. It also helps to reduce computational 

complexity by only performing activation on useful features. 

 

5.3  Proposed CNN Architecture for Source Camera Identification 

In this work, CNN is proposed to solve the instance-based source camera identification problem.  

The proposed CNN-based system retains the positional correspondence information about the 

sensor noise pattern for reliable device identification.  Besides, we focus on identification of small 

image size as existing approaches cannot provide reliable identification in such cases.  In this 

section, details about the proposed CNN-based source identification system will be discussed.  
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This includes the extraction of the noise residues of the image, the architecture of the proposed 

system and the fine tuning steps. 

5.3.1 Noise Residues Extraction and Formulation for CNN 

PRNU is proposed as the input feature as earlier explained. The general pixel output model based 

on the sensor’s imperfections is given in eqn. (2.2). The resulting noise residue 𝑊  from eqn.  (2.2) 

is also expressed in eqn. (2.3).  The denoising filter proposed by Lukas et al. [5] was used to 

denoise the cameras’ images. To obtain a reliable estimate of the PRNU image, state-of-the-art 

algorithms rely on obtaining a set of photos taken by the camera.  From this set of photos, PRNU 

image is obtained either by averaging their noise residues or through the maximum-likelihood 

estimation. In our proposed CNN-based source identification method, the noise residues are the 

inputs to the deep learning network so that features inside the noise residues are learned by the 

network.   

Different pre-processing techniques are usually carried out on the data. The noise residues 

are pre-processed by zero mean processing. It means that each row of the noise residue is first 

subtracted from its row average, and then each column is subtracted from its column average to 

give the normalized noise residue.  Given that the size of the normalized noise residue is 𝑤̃. All 

the noise residues of images belonging to the 𝑖𝑡ℎ camera will be concatenated and expressed as, 

The size of 𝑇𝑖 is 𝑑2 × 𝑛𝑖 ,where 𝑛𝑖 is the total number of noise residues for the 𝑖𝑡ℎ camera. Given 

that 𝑀 is the total number of cameras to be identified, the total number of samples for all the 

cameras used in the experiment (𝑇𝑆) can be expressed as,  

   𝑇𝑖 = [𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛𝑖
]        (5.4) 
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   𝑇𝑆 = [𝑇1, 𝑇2, 𝑇3 …… . 𝑇𝑀]       (5.5) 

When the number of images is the same for all cameras, i.e.,𝑛1 = 𝑛2 = 𝑛𝑀, this becomes a balance 

classification problem. Otherwise, it is an imbalanced classification problem. The camera labels 

are formed by using one-hot encoding. This means that the column vector representing a noise 

residue consists of only one non-zero element whose position indicates the camera that was used 

to produce that image.  

5.3.2 Network Architecture of Our Proposed CNN for Source Camera Identification 

  

Figure 5.2. The layout of the CNN for instance-based camera source identification. 

 

Note: The flattened output of the optimal convolutional layer is extracted as given as an input to a 

one-vs-rest SVM classifier. 

 

Figure 5.2 shows the proposed CNN architecture for instance-based SCI. It consists of the 

following components: 𝐿 number of convolutional layers, fully connected layers, softmax and one 

vs-rest linear SVM classifiers. Each convolutional layer consists of convolution operation, 

activation function and batch normalization. The noise residues are first extracted from images 
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using eqn. (5.5). As explained in Section 5.3.3, the normalized noise residues are used as input 

into the first convolutional layer, Conv1. The output of the Conv1 is then given as input to the next 

convolutional layer, Conv2. This process is repeated until the 𝐿-th convolutional layer, ConvL, to 

provide a good feature representation. In all the convolutional layers, Leaky ReLU is used as the 

activation function due to its fast computation and superior performance as compared to ReLU 

and PReLU [118]. Moreso, ReLU considers only positive samples of convoluted features while 

Leaky ReLU considers the signal information of both positive and negative values. PRNU signal 

after the zero-mean operation consists of both negative and positive values and hence, using ReLU 

will remove some of the PRNU signal information. The weight is set to 0.001 as in [119] for Leaky 

ReLU. In order to increase the rate of convergence during training, batch normalization (BN) is 

used as a pre-processing technique on the convoluted output. It is called batch normalization since 

it is being carried out on small batches of the convoluted output. The variation between the trained 

features and test features are greatly reduced and it helps to increase the overall network 

generalization accuracy. This was applied prior to the activation function in each convolutional 

layer. There is always a decrease in the rate of convergence during training due to the internal co-

variance difference in the distribution of each hidden layer. In order to increase the rate of 

convergence during training, batch normalization (BN) was used as a pre-processing technique on 

the convoluted output. It is called batch normalization since it is being carried out on small batches 

(𝑁𝐵) of the convoluted output [121]. Given that, 𝑁𝐵 = (𝑥1, 𝑥2, 𝑥3 … . 𝑥𝐵), the normalization of 

each dimension (𝑥̂) can be expressed as,   
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where 𝑥 is the input of a hidden layer,𝑏 = 1, 2,…B, 𝜎𝑥  and 𝐸(𝑥𝑏)  are the estimated variance and 

expectation over a mini-batch over a training set.  The scaled and shifted normalization value can 

be expressed as, 

   𝑦 =  𝜁𝑥̂ + 𝛿      (5.7) 

where, 𝜁  and 𝛿  are learnable parameters. Batch normalization generates activations that have 

Gaussian distribution and this further help emphasizes the Gaussian distribution nature of the 

PRNU fingerprints of cameras. 

In our work, the max-pooling operation was replaced with the use of stride since max-

pooling is mostly used in applications where translation-invariance is desired. The use of PRNU 

as the input to the CNN does not require accounting for translational invariance since only the 

center parts of the camera images were used. Furthermore, max-pooling aggressively down-sample 

features and the quality of the feature maps since PRNU signal is a pixel-strength dependent signal. 

The stride of 1 was used in the first two convolutional layers of our network so as to keep the 

spatial size of images to prevent loss of information. To reduce the number of parameters, we used 

the stride of 2 in Conv3 which acts as down-sampling operation. The output volume of the 

convolutional layer depends on the number of filters kernels used. Given that the size of the input 

image is W  × H, the output of the convolutional layer will be  𝑊  ×  𝐻  × 𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟, where 

𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟 is the number of filter kernels used. The choice of  𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟 depends on the size of the 

input data. Some of the optimal parameters are obtained during experiments and their effectiveness 

for network generalization can be carried out using cross-validation [122]. Before the fully 

   𝑥̂ =
𝑥𝑏 −  𝐸(𝑥𝑏)

√𝜎𝑥

      (5.6) 
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connected layers, flattening is carried out on the output of the last convolutional layer. Flattening 

refers to the output of the convolutional layer that is converted to a one-dimensional vector.  

Firstly, the flattened output is given as input to two fully connected layers; namely FC1 

and FC2. There is no standard method for deciding the number of neurons in the fully connected 

layers. This can be empirically determined during experiments. However, the numbers are 

dependent on the size of the input data. The neurons in FC2 are fully connected to a softmax 

classifier for probabilistic predictions of camera classes. The number of neurons in the softmax 

classifier is equal to the number of cameras used.  

Secondly, as shown in Figure 5.2, after the training of the proposed network with FC1, 

FC2 and the softmax classifier, we neglected these layers and extracted the output of the Conv3 

after flattening with a linear output and used this as the embedded layer for a one-vs-rest linear 

SVM classifier [123] for the prediction of camera classes. One-vs-rest linear SVM classifier is also 

known as the one-vs-all SVM classifier. SVM score is obtained by computing the probability that 

a given data point belongs to a particular class by Platt scaling [124]. Plat scaling is used in 

transforming the outputs of a classification model into a probability distribution over classes. For 

one-vs-rest, each linear classifier will be trained by the entire camera classes. All the samples of a 

one specific camera class will be treated as class one (𝐶1) and the all other samples of the remaining 

camera classes are treated to belong to a single class (𝐶𝑟). Unlike one –vs-one classifier that uses 

𝐶(𝐶 − 1)/2 linear classifiers, one-vs-rest uses only K linear SVM classifiers. During testing, the 

class with maximum score among the 𝐶 classifiers is the class belonging to the testing sample. 

Where C is the total number of classes. Using one-vs-rest linear SVM classifier gives room for 
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more training samples in a training set for each phase of training. Though, this increases 

computation time during training especially when the number of target cameras is large [125].  

 Since the number of the nodes after flattening is larger than the number of training samples 

in our experiments, we are motivated to use one-vs-rest linear SVM classifier. Also, one-vs-rest 

linear SVM is less sensitive to datasets with unequal samples.  

Though, One-vs-rest linear SVM is more computationally expensive compared to using 

softmax classifier for prediction of classes. We implemented the one-vs-rest linear SVM using 

scikit learn library in Keras.  

5.3.3 Fine-Tuning and Training of the Proposed Network 

The fine-tuning process can be described as an iterative method of finding filter weights (𝑤) that 

can help in the minimization for the CNN’s cost or objective function.  Given 𝑥 as the training 

data, 𝑁 as the number of training data, the error rate (J(W, x) is expressed in  [122] as, 

where, L is the loss function, x𝑖 is the 𝑖𝑡ℎ image of x, 𝑓(x𝑖, 𝑤) is the function for predicting the 

class 𝑐𝑖 of x𝑖 given 𝑤.  In all our experiments, the mini-batch stochastic gradient descent was used 

to determine the optimal weights of the CNN and L was used as the categorical loss function. In 

each iteration, the optimal weight was updated. Given that the current weight is 𝑤𝑘 , the updated  

weight in each iteration is expressed in [122] as,   

 J(W, x) =
1

𝑁
∑ L𝑁

𝑖=1 (𝑓(x𝑖 , 𝑤), 𝑐𝑖)+      (5.8) 
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where 𝜂, 𝛾, 𝜆 , 𝑁𝐵 are the learning rate, momentum coefficient, weight decay and the mini-batch 

size respectively. The function of the momentum is to control the learning rate so that a fast global 

convergence can be achieved. A decay rate was also used together with the momentum. The decay 

rate is used for the modification of the learning rate (𝜂) to further reduce the error rate. The decay 

rate may be obtained by dividing the learning rate with the number of epochs used. The term epoch 

means a single training pass (weight update) using all the training set [122]. Since, the proposed 

Dresden dataset used in our experiments is an unbalanced dataset, we introduced the use of class 

weight to the training function. Class weights penalize under or over-represented classes in the 

training set. The class weight was calculated by using 𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑙𝑜𝑔 (𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠). The log function helps to smoothen the weights for every imbalanced class. 

If the class weight is less than 1, estimated weight for the class will be used as 1. The class weights 

can be fine-tuned by a smaller parameter, 𝑝. We used 𝑝 as 0.15. This is then passed as a dictionary 

into the class weight parameter of the network training function. Furthermore, in order to prevent 

overfitting of network and reduce unnecessary computation during training, we adopted the use of 

early stopping [126]. In our experiments, since we are interested in identification accuracy of 

classes, we monitored the training accuracy and initiated the training to stop once there is no 

change in the training accuracy over two consecutive epochs. In order to ensure that the parameters 

used in our experiments do not have high variance when evaluated on another set of testing data, 

we used K-fold cross-validation and computed the mean accuracy over the entire testing sets. K 

was set as 10 in all experiments. To prevent overfitting, we further used dropout regularization, 

 w𝑘+1 = w𝑘 + 𝜂 [ 𝛾∆w𝑘 −
𝜕J(W, 𝑁𝐵)

𝜕𝑘
− 𝜆w𝑘] 

 

     (5.9) 
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weight and sparsity regularizations. The weight and sparsity regularizations were added to FC1, 

FC2 and the softmax layer. Dropout regularization was used with the fully connected layers (FC1 

and FC2) only. 

5.3.4 Selection of Fine-Tuning Parameters 

Selection of fine-tuning the parameters is mostly done by empirical methods. Most commonly 

used methods are grid search, hold-out validation datasets, random search and the use of proven 

parameters in existing literature. In our work, the knowledge of existing parameters and searching 

of the optimal parameters within ranges of parameters were adopted. The optimal performance for 

 𝜆  is set at 10−5.  Parameters to be fine-tuned are,  𝛾 ,  𝜆  , 𝑁𝐵  and the number of epochs. 𝜂  is 

searched between 0.01 and 0.005. For all the experiments, irrespective of the input size, the optimal 

results are usually obtained when  𝜂  is set as 0.001.  𝛾 is searched between 0.5 and 0.9. The 

optimal performance in all experiments is at 0.9 irrespective of the image sizes. 𝑁𝐵  of a power of 

2, i.e., 16, 32, 64, 128 and 256 are usually used to ensure that the GPU memory has the greatest 

usage [122]. Due to the image sizes used in our experiments and GPU memory constraints, smaller 

𝑁𝐵 was tested unlike 256 commonly used in literature [122, 127]. One of the easiest ways of 

reducing memory consumption is using reduced batch size. We obtained the optimal results in our 

experiments using 16 for 64 × 64 image size. The time taken to complete a mini-batch is one 

iteration. Both the weight and sparsity regularization parameters are searched at range of 10− 6  to 

10−2.   
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5. 4 Experiments and Results 

5.4.1 Experimental Settings 

The same Dresden database and 20 cameras used in Table 4.1 are also used for the proposed 

methods. The only difference is that, we also added the flat images of each camera as part of our 

experimental evaluation. However, not all the used cameras in the Dresden database have flat 

images. Table 5.1 shows the cameras with their natural and flat images. The total number of flat 

and natural images are 4996 and 750 respectively. Flat images can only be used for training and 

not used as test data for source camera identification problem. Therefore, since we used cross-

validation during training, noise residues of the flat image with corresponding labels were only 

added to each training fold of the natural images. Apart from flat images having quality PRNU 

fingerprints, it also helps to increase the size of the data and this is an added advantage when 

training a deep network. Since, conventional methods have lower camera identification accuracy 

for small sizes images, the center part of the images was cropped to produce 64 × 64 image sizes. 

All experiments are carried out on the same experimental platforms discussed under Section 4 3.1.  

 

5.4.2 Results and Discussion 

The proposed CNN-based source camera identification system shown in Figure 5.2 has a few 

components. Table 5.2 shows the list of components of the proposed CNN architecture used for 

source camera identification for 64 × 64 image size along with its main parameters. In all our 

experiments, optimal performance was obtained using three convolutional layers at a batch size of 

16. The epoch was set to 20 and as earlier stated and early stopping with a patience of 2 was used 

in all experiments. To investigate how the proposed method generalizes well when new cameras 
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are used and to show that the parameters are not dataset specific, we divided the cameras set into 

three cases. In case 1, the experiment was carried out on the first ten cameras in Table 5.1, for case 

2, the experiment was carried out on the remaining ten cameras, i.e., cameras 11 to 20 in Table 5.1 

and in case 3, the experiment was carried out on all the 20 cameras. The significance of the division 

of the cameras to cases 1 and 2  is to be able to see how the hypermeters used in case 1 generalizes 

when used on new sets of cameras in case 2. Finally, the case 3 shows the effects of an increase in 

number of cameras on the identification accuracies of cameras. Experiments were carried out on 

each case. Experiments in each case include the use of CNN both for classification and also as a 

feature extractor for one-vs-rest linear SVMs. In the remaining part of this work, the CNN with 

softmax classifier and also as feature extractor with one-vs-rest linear SVM are named as CNN-

SC and CNN-SVM respectively.  The results of the three cases are grouped and explained under 

the three sub-sections of experiments below. 
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  Table 5.1. Details about the cameras used in the experiment including the resolution and 

number of flat and natural images. 

S/N Camera Brand Resolution Natural Images Flat Images 

1 Agfa_DC-830i 3264 × 2448 342 - 

2 Olympus_mju_1050SW_0 3264 × 2736 204 50 

3 Olympus_mju_1050SW_1 3264 × 2736 209 50 

4 Kodak_M1063_0 3664 × 2748 464 - 

5 Kodak_M1063_1 3664 × 2748 458 - 

6 Agfa_Sensor530s_0 4032 × 3024 372 - 

7 Nikon_D70_0 3008 × 2000 180 25 

8 Nikon_D70_1 3008 × 2000 189 25 

9 Olympus_mju_1050SW_2     3264 × 2736 218 50 

10 Canon Ixuss 55 2592 × 1944 224 50 

11 Canon_Ixus70_0 2304 × 3072 171 50 

12 Canon_Ixus70_1 2304 × 3072 179 50 

13 Canon_Ixus70_2 2304 × 3072 171 50 

14 Samsung_L74wide_0 2304 × 3072 229 50 

15 Samsung_L74wide_1 2304 × 3072 224 50 

16 Samsung_L74wide_2 2304 × 3072 231 50 

17 Samsung_NV15_0 2304 × 3072 217 50 

18 Samsung_NV15_1 2304 × 3072 214 50 

19 Sony_DSC-H50_0 2736 × 3648 266 50 

20 Sony_DSC-H50_1 2736 × 3648 234 50 

Total number of Images  4996 750 
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                    Table 5.2. Components of CNN architecture and its parameters. 

 

S/N Layer 

 Component 

Component 

parameter 

Value 

64 × 64 

1 Convolution Kernel size 

No. of  filters 

Stride size 

3 × 3 ×1 

64 

1 × 1 

2 Batch Normalization Axis 1 

3 Leaky ReLU weight (𝑘) 0.01 

4 Convolution Kernel size 

No. of  filters 

Stride size 

3 × 3 ×1 

64 

1 × 1 

5 Batch Normalization Axis 1 

6 Leaky ReLU weight (𝑘) 0.01 

7 Convolution Kernel size 

No. of  filters 

Stride size 

3 × 3 ×1 

64 

2 × 2 

8 Batch Normalization Axis 1 

9 Leaky ReLU weight (𝑘) 0.01 

10 Fully Connected Units 128 

Dropout rate 0.2 

Reg. parameter 10−5 

11 Fully Connected Units 128 

Dropout rate 0.2 

Reg. parameter 10−5 

12 Softmax Classifier Units (No. of camera 

classes) 

10 & 20 

13 One-vs-rest linear SVM Units (No. of camera 

classes) 

Random state 

10 & 20 

 

0 
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Experiments 1 (Case 1)  

The overall accuracy of each split of testing data for both CNN-SC and CNN-SVM for case 1 are 

shown in Table 5.5. By overall accuracy we mean, the ratio of the number of correctly identified 

test samples of all cameras to the total number of test samples of all cameras in each fold. The 

standard deviations of accuracies over the 10 folds cross-validation for both CNN-SC and 

CNN_SVM are ± 2.28%, ± 0.02% respectively. The average overall accuracies are 67.48% and 

69.69% for both CNN-SC and CNN-SVM respectively. These results show that the CNN-SVM 

has improved performance of 2.21% over the CNN-SC for case 1. Hence, the confusion matrix for 

the first ten cameras using CNN-SVM is shown in Table 5.3. The individual camera identification 

accuracy is shown by the diagonals of Table 5.3 in bold. The average identification accuracy for 

10 cameras for an image size of 64 ×  64 is 69.01%. The cameras devices; 

Olympus_mju_1050SW_1 and Nikon_D70 are observed to have lower identification accuracies 

as compared to other cameras. Nikon camera is always reported to be difficult, as it has diagonal 

artifacts which affect the accuracy. The generalisation performance of deep learning networks is 

also dependent on the quality of the input features.  

Experiments 2 (Case 2)  

For case 2, the parameters of the network are not reset. The same network and fine-tuning 

parameters used in case 1 are directly applied to the cameras in case 2. The overall accuracy of 

each split of testing data for both CNN-SC and CNN-SVM for case 2 are shown in Table 5.5. The 

standard deviation of accuracies over the 10 folds cross-validation for both CNN-SC and CNN-

SVM are ± 3.64 % and ± 0.03% respectively. The average overall accuracies are 71.91% and 

76.73% for both CNN_SC and CNN-SVM respectively. These results show that the CNN-SVM 
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has improved performance of 4.82% over the CNN-SC for case 2. This means, for both cases 1 

and 2, the proposed CNN-SVM has better generalisation accuracy compared to using CNN-SC. 

Hence, Table 5.4 shows the confusion matrix for cameras in case 2 using CNN-SVM. The 

identification accuracy of each camera is shown by the diagonals of Table 5 in bold. The average 

identification accuracy of the cameras in case 2 is 76.30%. The superior performance of 

Sony_DSC-H50_0 and Sony_DSC-H50_1 compared to other cameras can be attributed to the 

quality of the noise residues of the Sony camera brand.  Experiments on case 2 show that the 

parameters used in case 1 are not data specific and can be applied directly to new sets of cameras. 

However, the average identification accuracy of case 2 for CNN-SVM is 6.61% greater than that 

of case 1. The higher accuracy obtained for case 2 was because many source cameras in case 2 

have high identification accuracies. This may be due to the quality of natural images of those 

cameras as PRNU signal can best be extracted from high-intensity images with simple texture 

complexity.  

Experiments 3 (Case 3)  

Furthermore, we carried out experiments for all the 20 cameras in Table 4.1. The overall accuracy 

of each split of testing data for both CNN-SC and CNN-SVM for case 3 are shown in Table 5.5. 

The standard deviation and accuracies over the 10 folds cross-validation for both CNN-SC and 

CNN-SVM are ± 1.29 % and  ± 0.02% respectively. The average overall accuracies are 66.93 % 

and 70.28% for both CNN-SC and CNN-SVM respectively. Since the CNN-SVM has the highest 

average overall accuracy, we itemized each camera identification accuracy of proposed network 

using CNN-SVM in Table 5.6. Table 5.6 also shows the number of testing images and correctly 

identified images for the 20 cameras. The average identification accuracy for the 20 cameras is 
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69.79%. The experimental results show that the average identification accuracy for case 3 is 0.78% 

greater than case 1 and 6.51 % lesser than case 2. In machine learning, the more the number of 

classes is, the lower the overall identification accuracy is. The higher accuracy obtained in case 3 

compared to case 1 is due to the strong presence of noise residues of cameras of case 2 in case 3. 

Figure 5.3  shows the variation of the error rate with respect to the number of epochs over all the 

10 folds. It was observed in Figure 5.3 that the error rate becomes stable before getting to 20 epochs 

in all the 10 folds of training data due to the early stopping applied during training. We also 

investigated the performance of our proposed methods for the three cases with and without the use 

of flat images as part of training data. Table 5.7 shows the overall accuracies of proposed methods 

with and without the use of flat images in the training process. As observed from Table 5.7, for 

CNN-SC, there is an increased overall identification accuracy of 4.76%, 6.65% and 3.00% in case 

1, case 2 and case 3 respectively when the flat images were included as part of training data. While 

for CNN-SVM, there is an increased overall identification accuracy of 3.4%, 4.16% and 3.87% in 

case 1, case 2 and case 3 respectively when the flat images were included as part of training data. 

The increase in accuracy can be attributed to the quality of noise residues extracted when flat 

images are used and also, generalization accuracy increases with increased training data in 

machine learning problems. However, in a situation where there is no availability of flat images 

for cameras under investigation, the proposed methods still have good performance with the use 

of natural images as training data only. 
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Table 5.3. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image size (case 1). 

Camera Device 
 

1 2 3 4 5 6 7 8 9 10 

Agfa_DC-830i 1 82.75 0.29 - 1.46 1.17 6.43 2.63 5.26 - - 

Olympus_mju_1050SW_0 2 - 63.24 17.16 1.47 - 1.47 - - 16.67 - 

Olympus_mju_1050SW_1 3 1.91 18.18 57.89 1.91 0.48 0.48 - 0.48 18.66 - 

Kodak_M1063_0  4 2.59 0.22 - 60.56 32.11 2.59 0.22 1.08 - 0.65 

Kodak_M1063_1 5 3.49 - - 32.31 61.79 0.66 0.22 0.87 - 0.66 

Agfa_Sensor530s_0 6 1.88 - - 1.61 0.81 87.37 5.11 3.23 - - 

Nikon_D70_0 7 3.33 - 0.56 2.22 1.67 16.67 53.89 20.00 1.11 0.56 

Nikon_D70_1 8 1.59 - - 3.70 0.53 15.87 17.99 59.26 - 1.06 

Olympus_mju_1050SW_2    9 1.38 16.51 15.14 1.38 0.46 0.46 0.46 0.00 64.22 - 

Canon Ixuss 55 10 0.45 - - - - 0.45 - - - 99.11 

Table 5.4. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image size (case 2). 

Camera Device 
 

11 12 13 14 15 16 17 18 19 20 

Canon_Ixus70_0 11 74.27 12.28 9.94 - - - - 2.34 0.58 0.58 

Canon_Ixus70_1 12 11.73 76.54 8.38 - - - 1.68 0.56 - 1.12 

Canon_Ixus70_2 13 9.36 9.94 73.10 0.58 1.17 1.17 1.17 1.17 1.17 1.17 

Samsung_L74wide_0 14 - - - 70.74 12.66 13.54 1.75 0.87 0.44 - 

Samsung_L74wide_1 15 0.45 - - 16.52 64.29 15.18 1.34 1.79 0.45 - 

Samsung_L74wide_2 16 - 0.87 0.43 12.12 16.45 67.10 0.43 2.60 - - 

Samsung_NV15_0 17 - - 0.46 1.38 2.76 1.38 79.72 11.98 0.46 1.84 

Samsung_NV15_1 18 - - - 1.40 2.80 1.40 13.08 76.64 2.34 2.34 

Sony_DSC-H50_0 19 - 0.38 0.38 0.38 - - 0.38 0.75 91.73 6.02 

Sony_DSC-H50_1 20 - 0.43 0.85 0.43 0.85 - 0.85 1.28 6.41 88.89 
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Figure 5.3.  Error rates against the number of epochs for the 20 cameras. 

 

Table 5.5. The overall accuracy of each testing fold for both CNN-SC and CNN-SVM For Case 1, 

Case 2 and Case 3. 

 

Fold No. Case1  Case2  Case3 

  
CNN_SC CNN_SVM CNN_SC CNN_SVM CNN_SC CNN_SVM 

1 67.5 67.1 69.6 75.7 68.0 71.4 

2 70.6 67.5 74.8 77.1 67.0 67.6 

3 65.7 70.3 75.7 78.5 65.8 72.4 

4 64.3 68.9 71.0 73.8 64.4 72.2 

5 68.9 71.0 72.0 80.8 68.4 71.2 

6 65.0 66.4 70.1 77.6 66.6 72.2 

7 68.2 68.9 64.8 71.8 67.9 69.1 

8 70.6 72.0 73.2 76.1 65.5 67.3 

9 69.2 70.3 78.4 80.3 68.5 68.1 

10 64.7 74.5 69.5 75.6 67.1 71.1 

Std. dev. (± %) 2.28 0.02 3.64 0.03 1.20 0.02 

Average accuracy 

(%) 

67.48 69.69 71.91 76.73 66.93 70.28 
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Table 5.6.  An overall number of testing images, correctly identified images, and the 

overall identification accuracy for CNN-SVM for the 20 cameras. 

S/N Camera Device Testing 

images 

No. of 

correctly 

identified 

testing 

images 

Identification 

Accuracy 

1 Agfa_DC-830i 342 275 80.4 

2 Olympus_mju_1050SW_0 204 126 61.8 

3 Olympus_mju_1050SW_1 209 117 56 

4 Kodak_M1063_0 464 273 58.8 

5 Kodak_M1063_1 458 290 63.3 

6 Agfa_Sensor530s_0 372 320 86 

7 Nikon_D70_0 180 102 56.7 

8 Nikon_D70_1 189 103 54.5 

9 Olympus_mju_1050SW_2     218 144 66.1 

10 Canon Ixuss 55 225 191 85 

11 Canon_Ixus70_0 171 117 68.4 

12 Canon_Ixus70_1 179 131 73.2 

13 Canon_Ixus70_2 171 107 62.6 

14 Samsung_L74wide_0 229 169 73.8 

15 Samsung_L74wide_1 224 143 63.8 

16 Samsung_L74wide_2 231 162 70.1 

17 Samsung_NV15_0 217 149 68.7 

18 Samsung_NV15_1 214 149 69.6 

19 Sony_DSC-H50_0 266 239 89.8 

20 Sony_DSC-H50_1 234 204 87.2 

Total no:  4997 3511 1395.8 

Overall Accuracy (%) 70.26 69.79 
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5.4.3 Comparison with some state-of-the-art methods 

In this part, we compare our proposed method (CNN-SVM) with four state-of-the-art methods for 

instance-based SCI for both 64 ×  64 size. The methods are the maximum likelihood estimated 

SPN (MLE SPN) [8], Li's model SPN [9], Phase SPN [10] and weighted averaging (WA) 

method[51]. Model 5 of the six proposed Li's models gives the best overall accuracy and hence it 

is used in our comparative study. The weighting average using MLE (MLE WA) proposed in [51] 

was used.  For the purpose of fair comparison among the four methods, the identification was 

achieved using the peak to energy correlation [10]. Since we are not using cross-validation for the 

state-of-the-art methods like we did for CNN-SVM and for the purpose of fair comparison, the flat 

images were included with the 80% of the natural images for the training of the proposed CNN-

SVM. The remaining 20% of the natural images were used for testing. The same experimental 

setting was used for the compared state-of-the-arts methods. The comparison results are shown in 

Table 5.8. It was shown that the average accuracy per camera device of the proposed method is 

23.03%, 25.26%, 18%, and 21.61% higher than that of MLE SPN, LI’s model 5, Phase SPN and 

WA method respectively.  

Table 5.7. Overall accuracies of proposed methods with and without the use 

of flat images in the training process (%) 

Proposed method with and without flat 

images 

Case 

1 

Case 

2 

Case 

3 

CNN-SC  without flat images 64.93 65.26 63.69 

CNN-SC  with flat images 67.48 71.91 66.93 

CNN-SVM  without flat images    66.29 72.57 66.41 

CNN-SVM  with flat images      69.69 76.73 70.28 
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Table 5.8.  Comparative study of the identification accuracies (in percentage %) of our proposed 

method (CNNN-SVM) and four other state-of-the-art methods for 64 × 64 image sizes. 

S/N Camera Device MLE Li’s 

Model 5 

Phase 

SPN 

WA CNN-SVM 

1 Agfa_DC-830i 63.77 59.27 60.87 63.77 88.14 

2 Olympus_mju_1050SW_0 31.70 39.02 36.59 34.15 73.17 

3 Olympus_mju_1050SW_1 50.00 52.38 57.14 45.24 45.83 

4 Kodak_M1063_0 22.58 15.05 16.13 30.12 62.22 

5 Kodak_M1063_1 31.52 25.00 27.13 33.70 66.29 

6 Agfa_Sensor530s_0 69.33 66.67 64.00 81.33 84.34 

7 Nikon_D70_0 30.56 27.78 22.22 19.44 65.85 

8 Nikon_D70_1 34.21 31.58 26.32 21.05 54.05 

9 Olympus_mju_1050SW_2     50.00 63.63 56.82 47.72 66.67 

10 Canon Ixuss 55 33.33 24.44 46.67 86.67 81.81 

11 Canon_Ixus70_0 71.43 65.71 74.29 25.71 62.50 

12 Canon_Ixus70_1 55.56 55.56 55.56 44.44 65.85 

13 Canon_Ixus70_2 60.00 68.57 77.14 60.00 65.63 

14 Samsung_L74wide_0 30.43 23.91 56.52 43.48 72.55 

15 Samsung_L74wide_1 13.33 17.78 31.11 31.11 71.12 

16 Samsung_L74wide_2 23.40 12.77 55.32 31.91 67.64 

17 Samsung_NV15_0 47.73 31.82 47.73 36.36 66.00 

18 Samsung_NV15_1 66.79 55.81 62.79 76.74 75.76 

19 Sony_DSC-H50_0 79.63 79.63 85.19 79.63 86.54 

20 Sony_DSC-H50_1 78.72 82.98 85.11 80.85 82.69 

Average accuracy per camera 

device 

47.20 44.97 52.23 48.67 70.23 
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An improved identification accuracy is observed for 14 out of the 20 camera devices using CNN-

SVM compared to other methods. This shows that our proposed CNN architecture can extract 

robust sensor characteristics from small image size. As earlier mentioned under motivation for our 

work in Section 1.2 of Chapter 1, the CNN-based method [19] published in 2019 used PRNU 

images of cameras as input data and has lesser identification accuracy than the compared PRNU 

based method [5]. The work in [19] used max-pooling in all the three convolutional layers and also 

spatial pooling for dimensionality reduction of feature maps. These operations especially max-

pooling does aggressive down-sampling, and this greatly affects the strength and pixel-positional 

correspondence nature of the individual PRNU images of cameras. Hence, our architecture 

excluded these pooling operations and only used strided convolution for better network 

generalization. Our experimental results in Table 5.8  shows that our proposed well-designed 

CNN-based methods with effective training algorithms have better identification accuracies than 

the four compared PRNU-based methods using the same number of training and testing images. 

Hence, our proposed CNN-based methods have better generalization capability than the CNN-

based method proposed in [19] and hence can achieve higher identification accuracy than PRNU-

based techniques for SCI.   
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5.5 Fine-tuned Pre-trained Convolutional Neural Networks for Source Camera 

Identification 

In this section, we aim to fine-tune already pre-trained proposed CNN architecture for source 

camera identification in Figure 5.2. In the remaining part of this section, we will give brief 

background understanding on transfer learning through fine-tuning of the pre-trained network, 

discuss the modification to the proposed method in Figure 5.2 and finally, give experimental 

results and discussion.  

5.5.1 The Idea of Transfer Learning and Our Motivation 

In recent times, it is rare to train CNN from the scratch because of the need to use large dataset for 

training so as to prevent overfitting. The usual approach adopted to solve the problem of overfitting 

is fine-tuning a model trained on a large dataset on a different dataset through the use of 

backpropagation. In transfer learning, the problem over which the pre-trained network was trained 

is called the source problem and the problem at hand is the target problem. If there will be a better 

generalization of the target problem, the source problem and the target problem must have similar 

or related distribution. This approach of using similar or related distribution is called domain 

adaptation. There are still challenges in obtaining good generalization accuracy for a target 

problem if it has different distribution compared to the source problem [102]. Most of the available 

pre-trained networks are networks trained on image classification problems. Examples of such pre-

trained network are Alex[66] and GoogleNet [109]. Those pre-trained networks extracted their 

features directly from the images. For SCI, our aim is not to identify the images but the source 

cameras of the images and hence, we need to learn specific features related to each camera. Also, 

most of the images in the Dresden database were captured from the similar scenes using different 
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cameras and hence learning just the image features will only mean we are learning correlated 

features. This was why we earlier proposed PRNU fingerprints as the input data for our proposed 

CNN architecture in Figure 5.2. This is because PRNU fingerprints are distinct to each camera. 

Therefore, if CNN model pre-trained on PRNU fingerprints of non-target cameras sets are 

available, we can then, use the pre-trained CNN on target cameras set so as to help improve 

generalization accuracy of the network for the new camera set. 

5.5.2 Methodology 

Figure 5.4 shows the overview of our proposed methodology for fine-tuned pre-trained CNN for 

source camera identification. In order to have a source problem that is close to the target problem, 

the proposed CNN model in Figure 5.2 was trained on a non-target camera classes. The PRNU 

images of the non-targeted cameras are used as input to the CNN model and trained. The trained 

model was saved. The trained CNN model is referred to as the pre-trained CNN model in Figure 

5.4. The PRUN images of the targeted classes are then given as input to the pre-trained CNN 

model. Before fine-tuning of the pre-trained CNN model, its output layer (softmax layer) was 

removed before FC layers are added on top of the pre-trained network during the fine-tuning 

process. Also, all the weights of the layers of the pre-trained CNN model are updated during 

training. This means none of the weights of the layers of the pre-trained CNN are frozen. The 

output of the FC2 was given to a softmax classifier for probabilistic prediction of camera classes. 

Also, the fine-tuned model was used as feature extractor for one-vs-all linear SVMs. The feature 

for one-vs-all linear SVMs was extracted from the fine-tuned model prior to the addition of fully 

connected layers. The neurons in FC1 and FC2 are used as 128 and 256 respectively. However, 

we have to randomise the added fully connected layers (FC1 and FC2). This is because, the pre-
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trained CNN model will be eventually used for classifying the target camera classes and hence, 

the weights in the fully connected (FC) layers of the pre-trained CNN (CNN model trained for 

classifying the non-target classes) will not be suitable. The randomisation was achieved by using 

random initialisation in each fully connected layer. The training and the fine-tuning process of a 

CNN model have been described in Section 5.3.3. For the fine-tuned model, the MBSGD with 

momentum and decay were used for network optimisation. For a better generalisation of the 

network, 10-fold cross-validation was performed during fine-tuning. 

 

Figure 5.4. Overview of the Fine-tuned Pre-trained CNN. 

5.5.3 Experiments and Results 

The first 10 cameras in Table 4.1 are used as the non-target camera classes and the remaining 10 

cameras are used as the target camera classes. The center part of the images was cropped to produce 

64 × 64 image sizes. Optimal performance was obtained by using the same fine-tuning parameters 

used for the pre-trained CNN model. As shown in Table 5.9, fine-tuning the pre-trained CNN using 

CNN-SC shows 25.02% improvement over the identification accuracy of the proposed CNN 
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model without fine-tuning. Likewise, fine-tuning the pre-trained model using CNN-SVM shows 

20.37% improvement over the identification accuracy of the proposed CNN model without fine-

tuning. Therefore, implementing a pre-trained CNN model already used on non-target camera 

classes can help improve the identification accuracy when used on target camera classes.  

 The confusion matrix for the 10 target camera classes using CNN-SC and CNN-SVM are 

shown in    Table 5.10 and    Table 5.11. The individual camera identification accuracy is shown 

by the diagonals of Table 5.3 in bold font. The average identification accuracy for both CNN-SC 

and CNN_SVM are 97.04 % and 96.82% respectively.  

 

 

 

 

Table 5.9. Overall accuracies of proposed methods on target 

camera classes (%). 

Proposed method with and without fine-

tuning 

Target 

camera class 

CNN_SC  without fine-tuning 71.9 

CNN_SC  with fine-tuning 96.92 

CNN_SVM  without fine-tuning    76.73 

CNN_SVM  with fine-tuning      97.10 
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   Table 5.10. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SC. 

Camera Device 
 

11 12 13 14 15 16 17 18 19 20 

Canon_Ixus70_0 11 94.74 2.92 1.75 0.58 - - - - - - 

Canon_Ixus70_1 12 1.12 98.88 - - - - - - - - 

Canon_Ixus70_2 13 1.75 1.75 96.49 - - - - - - - 

Samsung_L74wide_0 14 - - - 98.25 0.87 0.87 - - - - 

Samsung_L74wide_1 15 0.45 - - 0.45 98.21 - - - 0.89 - 

Samsung_L74wide_2 16 - - - 2.60 3.46 93.51 - 0.43 - - 

Samsung_NV15_0 17 0.46 0.46 - 0.92 - - 96.31 1.84 - - 

Samsung_NV15_1 18 - - - - - - 1.87 97.66 0.47 - 

Sony_DSC-H50_0 19 0.38 - - - - - 0.75 - 98.87 - 

Sony_DSC-H50_1 20 - 0.43 0.85 - - - - - 1.28 97.44 

   Table 5.11. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SVM. 

Camera Device 
 

11 12 13 14 15 16 17 18 19 20 

Canon_Ixus70_0 11 94.15 1.75 2.92 0.58 - - - - - 0.58 

Canon_Ixus70_1 12 2.23 96.09 1.68 - - - - - - - 

Canon_Ixus70_2 13 1.75 0.58 97.08 - - - - 0.58 - - 

Samsung_L74wide_0 14 - - - 98.25 0.44 1.31 - - - - 

Samsung_L74wide_1 15 0.45 - - 1.34 98.21 0.00 - - - - 

Samsung_L74wide_2 16 - - - 3.46 3.46 93.07 - - - - 

Samsung_NV15_0 17 - - - - - 0.46 97.70 1.84 - - 

Samsung_NV15_1 18 - - - - - - 1.87 97.66 0.47 - 

Sony_DSC-H50_0 19 - - - - - - 0.75 0.38 98.12 0.75 

Sony_DSC-H50_1 20 - - - - - - 0.43 - 1.71 97.86 
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5.5.4 Comparison with Some State-of-the-Art Methods 

Furthermore, we also compared our best system (CNN-SVM with fine-tuning) with four state-of-

the-art methods for instance-based SCI for both 64 ×  64 size on the target cameras. We compared 

with the same four state-of-the-art method in Section 5.4.3. Table 1 shows that the proposed 

method (CNN-SVM with fine-tuning) has better identification accuracy for each camera than all 

the compared state-of the arts methods. Also, our experimental results show that our proposed 

method using fine-tuned pre-trained convolutional neural networks for source camera 

identification has 24.03-38.52% identification accuracy higher than the compared four state-of-

arts methods for 64 by 64 image size.   

Table 5.12. Comparative study of the identification accuracies (in percentage %) of CNN-SVM with 

fine-tuning and four other state-of-the-art methods for 64 × 64 image sizes. 

S/N Camera Device MLE Li’s 

Model 5 

Phase SPN WA CNN-SVM 

1 Canon_Ixus70_0 82.86 71.43 82.86 45.71 94.15 

2 Canon_Ixus70_1 63.89 61.11 63.89 55.56 96.09 

3 Canon_Ixus70_2 65.71 80.00 80.00 74.23 97.08 

4 Samsung_L74wide_0 45.65 34.78 63.04 60.87 98.25 

5 Samsung_L74wide_1 24.44 24.44 51.11 44.44 98.21 

6 Samsung_L74wide_2 36.17 29.79 63.83 46.81 93.07 

7 Samsung_NV15_0 61.36 38.64 61.36 50.00 97.70 

8 Samsung_NV15_1 79.07 74.42 79.07 79.07 97.66 

9 Sony

10 Sony_DSC-H50_1 82.98 85.11 93.62 91.49 97.86 

Average accuracy per camera 

device 

62.73 58.31 72.95 63.15 96.83 
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5.6. Comparison with a Deep Learning Based Method 

All four compared state-of-the-arts methods in Table 5.8 and Table 5.13 are PRNU-based methods. 

Therefore, we further compared our proposed CNN based methods with the work in [57]. The 

work proposes a deep learning-based method using content-adaptive fusion network (CA-FRN) 

for SCI. Their deep network learns camera features directly from the images while our proposed 

CNN-based methods learn from noise residues preprocessed by zero-meaning. The authors in [57] 

carried out experiments on three levels of camera identification which includes, camera brand 

identification (CBI), camera model identification (CMI) and camera device identification (CDI). 

A total of 13 camera devices from the Dresden database using 64 × 64 image size are used for 

their experimental evaluation. Therefore, in our comparison with CA-FRN, we also used the same 

camera devices and image size (64 × 64). Table 5.13 shows the list of cameras used to evaluate 

the proposed CA-FRN method. The differences in our evaluation settings include, the use of 

several patches of the same image for CA-FRN while we used only the PRNU of the center patch 

per image.  The implication is that their network requires very huge training data for it to achieve 

good identification accuracy and hence the basis of the comparison is to see how our proposed 

CNN-SVM compares with CA-FRN in identification accuracy with and without pre-training with 

only few images for training our proposed deep networks. Hence, in our experiments, 80% of the 

camera images are used for training while the remaining 20% is used for testing.  
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Five of the cameras used in Table 5.1 are also part of the cameras used in Table 5.13 for evaluating 

their proposed CA_FRN. Therefore, for our proposed CNN-SVM with fine-tuning, we pre-trained 

on the remaining 15 cameras in Table 5.1 excluding the five cameras in Table 5.13. These 15 

cameras are used as the non-target cameras as described in our methodology in Section 5.5.2 while 

the cameras in Table 5.13 are the target cameras. The work in [57] used the first 9 cameras in Table 

5.13 for CBI, three model devices of Sony_DSC (cameras 4,10 and 11) for CMI and 3 devices of 

Sony_DSC_T77 (cameras 11-13) for CDI. The same settings are used also in our experimental 

evaluation for CBI, CMI and CDI.  

  Table 5.13. List of cameras used to evaluate the proposed CA_FRN for SCI. 

S/N Camera Brand Resolution Number of Images 

1 Kodak_M1063_0 3664 × 2748 464 

2 Pentax_optionA40_0 3000 × 4000 168 

3 Nikon_CoolPixS710_1 3264 ×4532 197 

4 Sony_DSC-H50_0 2736 × 3648 266 

5 Olympus_mju_1050SW_2     3264 × 2736 218 

6 Panasonic_DMC_FZ50_1 3684 × 2736 415 

7 Agfa_Sensor530s_0 4032 × 3024 372 

8 Ricoh_GX100_0 2736 × 3648 192 

9 Samsung_NV15_0 2304 × 3072 217 

10 Sony_DSC_W170_0 2736 × 3648 205 

11 Sony_DSC_T77_0 2736 × 3648 181 

12 Sony_DSC_T77_1 2736 × 3648 171 

13 Sony_DSC_T77_2 2736 × 3648 189 

Total number of Images  3255 
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The comparison results are shown in Table 5.14, Table 5.15, and Table 5.16 for CBI, CMI 

and CDI respectively. CNN-SVM without and with fine-tuning are denoted as CNN-SVM1 and 

CNN-SVM2 respectively. The proposed CA-FRN [57] provides individual identification accuracy 

for the CBI while only average identification accuracies are provided for both CMI and CDI. 

Therefore, Table 5.15, and Table 5.16 only provide the average identification accuracies for CMI 

and CDI. For CBI, the average identification accuracies are 97.3%, 87.28%, 91.18% for CA-FRN, 

CNN-SVM without and with fine-tuning respectively. This shows CA-FRN is 10.02% and 6.12% 

greater in identification accuracies than our proposed CNN-SVM without and with fine-tuning for 

CBI. However, with just a single patch per image and less complexity of the network, our proposed 

CNN-SVM with fine-tuning has close identification accuracy with CA-FRN method. 

Table 5.14. Comparative Study of the identification accuracies (%) of our proposed 

CNN-SVM with CA_FRN for Camera Brand Identification. 

S/N Camera Device CA-FRN 

 

CNN-SVM1 CNN-SVM2 

1 Kodak_M1063_0 99.57 89.81 99.07 

2 Pentax_optionA40_0 94.46 90.00 95.00 

3 Nikon_CoolPixS710_1 97.49 69.44 90.00 

4 Sony_DSC-H50_0 95.11 90.00 94.29 

5 Olympus_mju_1050SW_2     97.65 91.42 97.75 

6 Panasonic_DMC_FZ50_1 98.19 97.78 96.88 

7 Agfa_Sensor530s_0 98.15 95.77 98.59 

8 Ricoh_GX100_0 96.95 79.49 71.79 

9 Samsung_NV15_0 96.95 81.81 77.27 

Average  97.8 87.28 91.18 
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For CMI, the average identification accuracies are 87.55%, 88.89%, and 87.20% for CA-FRN, 

CNN-SVM without and with fine-tuning respectively. Our proposed CNN-SVM methods have 

comparable identification accuracies with CA-FRN and our proposed CNN-SVM without fine-

tuning is 1.34% greater in identification accuracy than CA-FRN. For CDI, the average 

identification accuracies are 73.27%, 86.10%, and 84.29% for CA-FRN, CNN-SVM without and 

with fine-tuning respectively. This shows that, our proposed CNN-SVM without and with fine-

tuning have identification accuracies of 12.83% and 11.02% greater than CA-FRN method 

respectively. This shows that CA-FRN degrades highly in performance for CDI even with the use 

of several patches for training. CA-FRN extracts the camera features directly from the images and 

hence, it will require more features or image patches to learn distinct features compared to our 

approach. Our proposed CNN-based methods extract robust features directly preprocessed noise 

residues which are less contaminated by the scene contents of the images of cameras. Hence lesser 

number of images are expected to extract discriminative features.  

 

Table 5.15. Comparative Study of the identification accuracies (%) of our proposed CNN-SVM 

with CA_FRN for Camera Model Identification. 

S/N Camera Device CA_FRN CNN_SVM(Without 

fine-tuning) 

CNN_SVM( 

With fine-tuning) 

4 Sony_DSC-H50_0 _ 90.38 92.30 

10 Sony_DSC_W170_0 _ 79.07 72.09 

11 Sony_DSC_T77_0 _ 97.22 97.22 

Average  87.55 88.89 87.20 
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5.7 Robustness of Proposed CNN methods to Post JPEG Compression  

A more challenging scenario for instance-based SCI is the determination of source cameras of 

images that have under-gone post-processing operations. There are several geometric distortions 

on images that affect the quality of PRNU fingerprints of cameras and common examples include 

cropping and post JPEG compression. In our PRNU extraction and formulation for proposed CNN 

method described in Section 5.3.1, camera images are already centered-cropped and hence our 

proposed CNN methods are robust to cropping. The sensor pattern noise has been previously 

reported to be robust to the compression due to internal processing during capturing of images by 

a camera [8]. However, when images are further compressed through sharing platforms such as 

WhatsApp, Facebook and others, the quantization noise due to compression can further suppress 

the content of the extracted PRNU fingerprints of cameras. This further reduction in the quality of 

the PRNU fingerprints due to post JPEG compression is one of the major limitation of using PRNU 

as a camera fingerprint. Therefore, in this section, we further examined the robustness of our 

proposed CNN to JPEG compression using our best CNN-system (CNN-SVM without and with 

fine-tuning). Since, most of the images shared on social platforms are usually natural images, then, 

Table 5.16. Comparative Study of the identification accuracies (%) of our proposed 

CNN-SVM with CA_FRN for Camera Device Identification. 

S/N Camera Device CA-FRN  CNN-SVM1 CNN-SVM2 

11 Sony_DSC_T77_0 _ 84.21 76.31 

12 Sony_DSC_T77_1 _ 85.71 92.85 

13 Sony_DSC_T77_2 _ 88.37 83.72 

Average  73.27 86.10 84.29 
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we carried out this experiment using the natural images of the 10 cameras in case 2 only. The 

images of the cameras are compressed with the quality factors of 95, 90 and 80 before the 

extraction of  64 × 64  PRNU images. All other settings remained the same and 10-fold cross-

validation was used. Table 5.17 shows the identification accuracies for each camera device without 

and with compression for CNN-SVM1 and CNN-SVM2 (CNN-SVM without and with fine-

tuning) using quality factors of 95, 90, and 80 respectively. Table 5.17 shows, for CNN-SVM1, 

the average identification accuracies with post JPEG compression are 6.75%, 17.72% and 36.54% 

lesser than the average identification accuracy without post JPEG compression for quality factors 

of 95, 90 and 80 respectively. This shows that post JPEG compression has significant effect on our 

proposed CNN-system if not fine-tuned on CNN already trained on PRNU images of non-target 

cameras.  

The decrease in accuracy can be attributed to reduction in the quality of the PRNU images 

due to post JPEG compression. However, for CNN-SVM2, the average identification accuracies 

with post JPEG compression are 0.68%, 1.74% and 3.37% lesser than the average identification 

accuracy without post JPEG compression for quality factors of 95, 90 and 80 respectively. This 

shows that our proposed CNN-system with fine-tuning using PRNU images as input, is robust to 

post JPEG compression with only little reduction in accuracy as compared to when the images are 

not compressed. CNN-SVM2 is robust to JPEG compression unlike CNN-SVM1 because, the pre-

trained CNN used in CNN-SVM2 was trained on PRNU images extracted from images of non-

target cameras without post JPEG compression. 
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Therefore, there is positive influence on quality of the features maps of the target cameras since 

the weights of all the layers of the pre-trained CNN are updated during training. This means the 

effect of post JPEG compression on the quality of the PRNU fingerprints of cameras can be 

suppressed by fine-tuning on a pre-trained model for data with related probabilistic distribution. 

Our experimental finding using pre-trained CNN is consistent with the work in [128] which studied 

the "the Impact of Standard Image Compression Techniques on Performance of Image 

Table 5.17. Identification accuracies of cameras in case 2 without and with JPEG Compression 

(%). 

S/N Without JPEG 

Compression 

With JPEG Compression 

QF=95 QF=90 QF=80 

 CNN- 

SVM1 

 

CNN- 

SVM2 

 

CNN- 

SVM1 

 

CNN- 

SVM2 

 

CNN- 

SVM1 

 

CNN- 

SVM2 

 

CNN- 

SVM1 

 

CNN- 

SVM2 

 

1 69.00 96.49 59.06 93.57 44.44 92.40 28.07 90.06 

2 72.07 98.88 65.92 96.65 47.49 94.44 29.61 92.74 

3 69.00 94.15 68.42 94.74 40.94 92.30 25.73 89.47 

4 68.12 95.20 56.33 96.07 54.59 93.89 31.88 93.01 

5 57.14 97.77 46.43 95.09 42..41 95.98 23.21 95.09 

6 51.94 93.07 50.65 92.21 45.45 91.77 24.24 90.90 

7 76.50 96.77 66.82 97.24 52.07 94.93 32.72 92.63 

8 72.90 96.26 58.88 96.26 53.27 96.63 42.57 93.93 

9 92.48 98.12 91.73 98.50 79.32 97.74 65.04 98.12 

10 84.62 97.01 82.05 96.58 65.39 96.15 45.30 94.02 

Average 71.38 96.37 64.63 95.69 53.66 94.63 34.84 93.00 
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Classification with a Convolutional Neural Network". The work in [128] shows that, by using a 

pre-trained CNN to classify compressed images ( image compressed by a factor 7, 16, 40 for a 

JPEG, JPEG200 and an HEVC encoder), a correct classification can still be maintained by CNN 

with only minimal effect on accuracy.  

5.8 Summary 

Instead of directly extracting features from the camera images, we propose the use CNN to learn 

robust features about the sensor noise patterns (photo-response non-uniformity). For source 

camera identification for small size images, we proposed deep CNN for classification and also as 

a feature extractor for one-versus-rest SVM. The contribution of the proposed methods can be 

summarized as below: 

 (i) CNN structure that is suitable for instance-based source camera identification using the noise 

residues of cameras was proposed. (ii) The proposed methods (CNN_SVM and CNN_SC) have 

superior performance, especially for small size images as compared with some state-of-the-art 

methods.  (iii) The proposed methods for source camera identification from a small image patch 

would help in problems such as forgery localization with minimal data size but yet highly reliable 

result.   

The motivation for using the sensor noise is that the sensor noise is unique for each 

individual camera so that CNN can be trained to capture each camera’s unique information. The 

proposed neural network consists of three convolutional layers and two fully connected layers. 

The output was given to the regularized softmax classifier for probabilistic prediction of camera 

classes. Also, after training of the proposed CNN model, the flattened output of the third 

convolutional layer with a linear activation was extracted and given as the embedded layer for one-
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vs-rest linear SVMs. Experimental results show the efficiency and the accuracy of the proposed 

deep CNN-based methods in comparison with some state-of-the-art methods. Moreso, we 

evaluated the robustness of proposed deep CNN methods to post JPEG compression and our 

experimental results show that post JPEG compression has a significant effect on our proposed 

CNN-system if not fine-tuned on CNN already trained on PRNU images of non-target cameras. 

However, in the case of fine-tuned pre-trained CNN model, there is only a slight reduction in 

identification accuracy in comparison with proposed method with no post JPEG compression. 

Hence, the effect of post JPEG compression on the quality of the PRNU fingerprints of cameras 

can be suppressed by fine-tuning on a pre-trained model for data with related probabilistic 

distribution.  
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Chapter 6 : 

Deep Residual Convolutional Neural Network with Curriculum Learning For 

Source Camera Identification 

 

In Chapter 5, the proposed deep CNN model only consists of the depth of three convolutional 

layers and two fully connected layers. Further increase in depth of convolutional layers on the 

proposed deep CNN model suffers degradation of accuracy on the noise residues of cameras from 

the Dresden dataset. The works in [109, 129] reveal that network depth is crucial in achieving a 

network with high generalization capability. However, an obstacle to increasing depth of network 

layers is the problem of vanishing or exploding gradients [65]. By vanishing gradient, we mean, 

the gradients of the network loss function tend towards zero and this makes network optimisation 

becomes difficult. To address the problem of the degradation in accuracy with increasing 

convolutional layers, residual neural network (ResNet) was proposed by He et al [27]. This is 

motivated by the need to increase the depth of deep learning models without the problem of 

vanishing gradients. This can be achieved by adding the output of the previous layers to the next 

layers using residual or short connections. Unlike CNN which fits a desired underlying mapping, 

the idea of ResNet is to use a residual mapping. The two main advantages of using ResNet are that 

it generates more robust representational bottlenecks and also tackles the problem of vanishing 

gradients through the smooth flow of data between networks. Therefore, in order to benefit from 

more robust or discriminative features capable of increasing identification accuracies of cameras, 
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suitable architecture of deep residual network (ResNet) is investigated for instance-based source 

camera identification (SCI) for the noise residues or PRNU images of cameras.  

 Furthermore, to train a deep neural network, a large amount of training data is required, in 

order to avoid overfitting. Therefore, effective training algorithms are important for deep neural 

networks to achieve good generalization power especially for problems having small data. Images 

of camera have different texture complexity. High-quality PRNU fingerprint is extracted from 

smooth images or images with less texture complexity compared to clustered or natural images. 

This is because the PRNU fingerprints of cameras are contaminated by the scene contents. Hence, 

the lesser the scene contents of images of cameras, the better the extracted PRNU fingerprints of 

cameras. Based on this observation, we propose the use of curriculum learning algorithms to train 

our proposed deep ResNet for instance-based source camera identification. The idea of curriculum 

learning (CL) is to train a system, which may be a student or a deep network, from simple concepts 

to hard concepts. This learning approach allows the system to train up from handling simple tasks 

to hard tasks. The use of curriculum learning can help improves the speed of global convergence 

during training and a better local minimum can be achieved [39].  

 The rest of Chapter 6 is organized as follows. Section 6.1 gives an overview of a residual 

learning. Section 6.2 discusses curriculum learning for neural networks. Section 6.3 describes the 

framework of the proposed ResNet with curriculum learning. Section 6.4 presents experimental 

evaluation on 10 cameras from the Dresden database. Section 6.5 summarises the work and its 

contributions.  
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6.1 Overview of Deep Residual Learning 

A deep neural network learns the underlying mapping of a given data, 𝑥. Let 𝐺(𝑥) represents the 

mapping function. This mapping function is to be learned by a stack of either fully connected 

layers or convolutional layers. The work in [27] assumes that if 𝐺(𝑥) can learn from the stack of 

layers consisting of non-linear functions, then, it can also approximate their residual functions. 

Assuming that the dimensions of the input and output layers are the same, the residual function 

(𝐹(𝑥)) can be expressed as, 𝐺(𝑥) − 𝑥. Similarly, the underlying mappin 𝐺(𝑥) can be expressed as 

a function of the residual mapping as,  𝐹(𝑥) + 𝑥 . The assumption is that, instead of directly 

stacking additional layers, the additional layers can be added as identity mappings. Hence, a deeper 

network with lower training loss can be trained. The degradation of accuracy in deep networks 

without residual mapping can be attributed to the network optimisation algorithms finding it 

difficult to approximates mappings due to stack of non-linear layers. However, this becomes easier 

with the use of residual mapping since it helps the optimisation algorithms pushes the weights of 

network layers towards zero. Residual mapping adds shortcut connections to previous layers. The 

shortcut connections (skipping of one or more layers) perform identity mapping and the outputs 

are added to previously stacked layers so as to precondition the problem at hand and helps increase 

the rate of global convergence. The experimental results in [27] show that the suitable 

preconditioning of the problem by residual mapping is due to small responses generated by the 

trained residual network. Residual connections do not increase the computational complexity of 

the network since it has adds no extra parameters. The only computation required, is the element-

wise addition between   𝐹(𝑥) and  𝑥. Element wise addition has negligible computational cost and 
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this further makes ResNet attractive in practice.  The output vectors of a layer (𝑦)  after performing 

residual mapping on the input vectors of the previous layer (𝑥) is expressed in [27] as,  

where 𝑊𝑖  is the weight of the layer, 𝑖 and 𝐹(𝑥, {𝑊𝑖}) is the learned residual mapping. Eqn. (6.1) 

assumes that the dimensions of 𝐹 and 𝑥 are equal. In a situation where the sizes of  𝐹 and 𝑥 are 

different, then, the size of the input 𝑥 can be changed by using a linear transformation, 𝑃𝑠. Hence, 

eqn. (6.2) becomes,  

The basic function of 𝑃𝑠 is dimension matching. Examples of 𝑃𝑠 can include the use of either a 

fully connected layer or a convolutional layer of kernel size 1 ×  1 without the use of activation 

functions.  

 

6.2 Curriculum Learning for Neural Networks 

The idea of CL is motivated by the education system where learning is introduced from simple 

concepts to hard concepts. Organizing the education system this way helps the students to leverage 

hard concepts based on their understanding of the easy concepts. This same idea can be applied to 

the training of neural networks where training is initiated to begin on examples of the dataset which 

are easier to learn by a network before introducing examples with more complexity. In order 

words, CL works on a sequence of training sets via progressive training on smoothed data before 

the consideration of less smoothed data. In CL, the reweighting of examples in the training set is 

uniform as training progresses from simplest concepts to the target training set [39]. To further 

 
𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥  

     (6.1) 

 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑃𝑠𝑥      (6.2) 
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illustrates CL mathematically, consider a random variable, 𝑞(𝑥, 𝑦), where 𝑥 and 𝑦 are the training 

examples, and their corresponding labels respectively.  At each step, 𝜏 in the curriculum sequence 

(i.e. the division of 𝑞 into data subsets), let the corresponding weight be 0 ≤ 𝑊𝜏(𝑞) ≤ 1. 𝑊1(𝑞) =

1,  0 ≤ 𝜏 ≤ 1 and 𝑄(𝑞) be the target training distribution. The training distribution (𝑃𝜏(𝑞)) of  

𝑄(𝑞) is expressed in [39] as, 

 𝑃𝜏 (𝑞) ∝ 𝑊𝜏(𝑞)𝑄(𝑞)      ∀𝑞        (6.3) 

Given that, ∫ 𝑃𝜏(𝑞)𝑑𝑞 = 1, then eqn. (6.3) becomes, 

 𝑃1(𝑞) = 𝑊1(𝑞)𝑄(𝑞) = 𝑄(𝑞)    ∀𝑞      (6.4) 

∀ is an existential quantifier and it means the eqns. (6.3) and (6.4) hold true for all instances of the 

random variable, q. Note that 𝜏 is a monotonically increasing step size.  Eqn. (6.3)  and eqn. (6.4) 

only satisfy CL provided that the entropy of each subset of q monotonically increases.  Increase in 

entropy means, at each addition of a new data subset during training, the weights of the data subset 

also increases.  Curriculum learning has demonstrated in [39] helps to improve the speed of global 

convergence during training and a better local minimum is achieved. It has also been used with 

deep CNN in many applications such as depth estimation [130], facial expression recognition 

[131], hand posture recognition [132], and localization of thoracic disease on chest radiographs 

[133]. What easy and hard examples mean depending on the area of the application. In facial 

expression recognition[131], those face images with a high expression intensity can be considered 

easy examples, while those images with a low expression intensity are hard examples.  

 



138 

 

 

6.3 Proposed Deep Residual Convolutional Neural Network and Curriculum 

Learning Algorithms for Source Camera Identification  

The PRNU image in a smooth or flat image is easier to learn than that in a natural image, which 

contains more complex textures. In our CL algorithm, flat images are used as easy, simple samples, 

while natural images are used as hard examples. The general framework for our proposed 

algorithm is shown in Figure 6.1. The noise residues in the images extracted by a wavelet-based 

denoising method [5] form the PRNU images, which are arranged according to the complexity of 

the images, from easy images, i.e. those smooth and flat images, to difficult images, i.e. those 

natural images, and are divided into d groups, denoted as  (𝐷1, 𝐷2. . . . . 𝐷𝑑). In other words, 𝑑 

subsets are formed for curriculum learning. Assume that the images are generated by 𝐾 cameras, 

i.e. there are 𝐾 classes, and 𝑛𝑖 is the number of samples in a subset 𝐷𝑖. Then, the total number of 

samples 𝑁 in the camera dataset is given by 𝑁 = ∑ 𝑛𝑖
𝑑
𝑖=1 . The denoising method applied to the 

camera images is based on a wavelet-based denoising filter [5], and the noise residues in an image 

captured by a specific camera are obtained by subtracting the filtered images from the original 

images. The noise residues in an image are also pre-processed by the zero-mean operation. This 

zero-mean operation is applied to row-by-row, followed by column-by-column, of each noise-

residue image. This operation can help reduce the effect of linear patterns introduced into the noise 

residues, due to the color interpolation and pipeline processing operations of sensor and electronic 

circuits in cameras [134]. It also acts as a normalization process. Each training subset, 𝐷1 to 𝐷𝑑, is 

used to train the ResNet sequentially. After all the subsets have been used for training, the features 

from the last convolutional layer of the trained ResNet are extracted to form the deep features of 

the input samples. These extracted deep features are then used to learn one-vs-rest linear support 
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vector machines (SVMs) for predicting the camera classes (𝐶1, 𝐶2, . . . . 𝐶𝐾). The use of the one-vs-

rest linear SVM classifiers results in more training samples for the classifiers. The architecture of 

the proposed deep residual convolutional neural network is described in Section 6.3.1 while the 

details of the training procedures for the proposed manual and automatic curriculum learning 

algorithms are described in Section 6.3.2. 

 

Figure 6.1. The general framework of our proposed deep residual convolutional neural network 

with curriculum learning for source camera identification. 

6.3.1 Architecture of the Proposed Deep Residual Convolutional Neural Network 

Figure 6.2 shows the layout of the proposed deep residual convolutional network for instance-

based camera source identification.The main difference between the proposed architecture for 

deep CNN in Figure 5.2 and Figure 6.2 is the addition of residual connections and convolutional 

layers. Only the difference in architectures is explained as follows. The optimal performance with 

the proposed ResNet is achieved in our experiments with three residual neural connections and 
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two convolutional added to our initially proposed deep CNN architecture. Since a stride of 2 × 2 

is used in Conv5, Conv4 which is a 1 ×  1 convolution operation is used to linearly down-sample 

the output of Conv3 so that it can have the same feature-map size when concatenated with Conv5 

before given it as input to two fully connected layers FC1 and FC2.  

 

Figure 6.2. The layout of the proposed deep residual convolutional neural network for instance-

based camera source identification. 

 

Batch normalization and ReLU operations were not carried out in Conv4. The additional 

convolutional layers and residual connections beyond Conv5 do not lead to an increase in cameras 

identification accuracies. Apart from dropout regularization applied n FC1 and FC2 in  Figure 6.2, 

sparsity constraint and weight regularization methods are used with the regularization parameter 

of  10−5 each in the FC1, FC2 and softmax layers to further prevent model overfitting. Imposing 
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sparsity constraint is a form of regularization, but not weight regularization. It regularizes the 

outputs of the layer rather than the weight of the layer. Weight regularization can be achieved by 

using 𝐿2 norm regularization, while the sparsity constraint is imposed by adding the absolute 

values of the true value of a layer into the loss function. The same training and the fine-tuning 

process used for the proposed deep CNN methods in Chapter 5 are also used for the proposed 

ResNet model. Testing images are given to the trained ResNet model and probabilities of cameras 

are predicted using softmax classifier. We also extracted the features of the flattened layers of the 

Conv5. The extracted deep features are used to learn one-vs rest linear SVM for the prediction of 

camera classes.  

6.3.2 Proposed Curriculum Learning Algorithms  

In this section, we propose a manual and an automatic CL algorithm. For the manual CL algorithm, 

the easy and hard examples are selected manually prior to the training. For the automatic CL 

algorithm, the training data are sorted in the order of increasing complexity. The training 

procedures for the proposed manual and automatic CL algorithms are listed as follows. 

Manual Curriculum Learning 

i. The noise residues of flat images are first used to train the proposed ResNet model. 

ii.  The best-trained model is obtained. 

iii.  The best-trained ResNet model is trained with a decreased learning rate. 

iv.  The noise residues of natural images are now used to train the trained ResNet.  

v.  The best-trained model is then used for extracting deep features for camera identification. 
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The two data subsets are trained with 20 epochs. The learning rate is decreased as stated in (iii), 

so that the negative influence from the hard examples can be reduced. The learning rate is reduced 

from 0.001 to 0.0007.  

Automatic Curriculum Learning 

i. The input dataset contains all the training images (𝑥) and the corresponding labels (𝑦). 

ii. The best version of ResNet is trained on the dataset (𝑥, 𝑦). 

iii. The predicted training features (𝑋) of the softmax layer of the trained model are extracted. 

iv. The softmax loss of 𝑋 is then calculated. The softmax loss (𝑝) can be expressed as,  

 𝑝𝑖 =
𝑒𝑋𝑖

∑ 𝑒𝑋𝑗𝐾
𝑗=1

       (6.5) 

where 𝑖 = 1:𝑁, 𝑋𝑖 is each training instance, 𝐾 is number of camera classes,  𝑗 = 1:𝐾 and 

𝑋𝑗 is the value of 𝑋𝑖 in 𝑗. 

v. The cross-entropies for each instance in X are obtained. The cross-entropy loss can be 

defined as,  

 

where 𝑦𝑖  is the class label of a training instance, 𝑋𝑖. The value of 𝑦𝑖 ranges from 1: 𝐾. 

vi. Training instances with smaller cross-entropies can be better optimized than training 

instances with larger cross-entropies, hence, the cross-entropies are sorted in ascending 

 
𝐿𝑐(𝑦,𝑝𝑖

) = −∑𝑦𝑖

𝑁

𝑖=1

log𝑝𝑖   
     (6.6) 
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order. The indices of the sorted cross-entropies are used to re-order the original dataset, 

(𝑥, 𝑦). 

vii. The re-ordered dataset, (𝑥, 𝑦), is used to train the ResNet model, and the trained ResNet is 

used to predict the camera classes.  

6.4 Experimental Evaluation and Discussion  

A total of 10 cameras in Table 6.1 including both flat and natural images are used for experimental 

evaluation of the proposed methods. These are the same as the case 2 cameras in Table 5.1 (the 

last ten cameras).  The center part of the images are cropped to produce 64 × 64 image sizes. The 

total number of flat and natural images are 2136 and 500 respectively. Flat images can only be 

used for training and not used as test data for the source camera identification problem. Similarly, 

as carried out with our earlier proposed deep CNN, we also used 10-fold used cross-validation 

during training for our experiments on the proposed ResNet. Table 6.2 shows the identification 

accuracies with and without fine-tuning for the CNN-SVM and ResNet-SVM respectively. CNN-

SVM and ResNet-SVM are used to denote the identification accuracy for deep CNN with one-vs-

rest SVM classifier and deep residual CNN with one-vs-rest SVM classifier respectively.  The 

fine-tuning process is the same with the same proposed fine-tuned CNN approach in Section 5.5.2 

of Chapter 5. Our fine-tuning approach involves using pre-trained deep CNN model on 10 non-

target camera classes and fine-tuning it on 10 target camera classes.  The average identification 

accuracies without fine-tuning for both CNN-SVM and ResNet-SVM are 75.67% and 77.85% 

respectively while the average identification accuracy for both CNN-SVM and ResNet-SVM are 

96.83% and 97.10% respectively. This shows that ResNet-SVM has 2.18% and 0.27% higher 

identification accuracies than CNN-SVM without and with fine-tuning. Therefore, adding residual 
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connections to our CNN architecture for source camera identification helps to improve cameras 

identification accuracies. 

 

For curriculum learning, several progressions are tested to determine the best progression 

of data subsets with the ResNet model. The tested progression of data subsets includes, no 

curriculum learning, curriculum learning and anti-curriculum learning. By anti-curriculum 

learning, we mean, training on hard examples before easy examples. In these experiments, the flat 

images are used only for training while 80% of the natural images are used for training and the 

remaining 20% for the evaluation of the best-trained ResNet model. Table 6.3 shows the 

identification accuracies for both softmax (ResNet-SC) and one-vs-rest linear SVM (ResNet-

SVM). PRNU_F and PRNU_N denote the PRNU of flat and natural images respectively. 

Table 6.1. List of Cameras Used. 

S/N Camera Brand Resolution Natural Images Flat Images 

1 Canon_Ixus70_0 2304 × 3072 171 50 

2 Canon_Ixus70_1 2304 × 3072 179 50 

3 Canon_Ixus70_2 2304 × 3072 171 50 

4 Samsung_L74wide_0 2304 × 3072 229 50 

5 Samsung_L74wide_1 2304 × 3072 224 50 

6 Samsung_L74wide_2 2304 × 3072 231 50 

7 Samsung_NV15_0 2304 × 3072 217 50 

8 Samsung_NV15_1 2304 × 3072 214 50 

9 Sony_DSC-H50_0 2736 × 3648 266 50 

10 Sony_DSC-H50_1 2736 × 3648 234 50 

Total number of Images  2136 500 
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As shown in Table 6.3, the best performance is obtained by training the PRNU of the flat images 

first and then followed by the PRNU of both flat and natural images. Its overall identification 

accuracy using ResNet-SVM is 0.7% greater when PRNU of the flat images are trained followed 

by PRNU of natural images and 3.74% higher than training ResNet with no curriculum learning. 

Table 6.3 also shows that the progression involving anti-curriculum learning has lower 

identification accuracies compared to when there is no curriculum learning and with curriculum 

learning. The natural images are further divided into smooth, saturated and others as in [57] but 

experimental evaluation shows degradation on performance compared to when all natural images 

Table 6.2.  Identification accuracies for the Proposed Deep CNN and RCNN (%). 

Cameras Without Fine-tuning With fine-tuning 

CNN-SVM ResNet-SVM CNN-SVM 

 

ResNet-SVM 

 

Canon_Ixus70_0 71.35 76.02 94.15 95.91 

Canon_Ixus70_1 77.09 81.01 96.09 97.21 

Canon_Ixus70_2 71.93 73.68 97.08 95.91 

Samsung_L74wide_0 74.24 71.62 98.25 97. 38 

Samsung_L74wide_1 63.84 68.75 98.21 95.54 

Samsung_L74wide_2 66.23 67.97 93.07 96.54 

Samsung_NV15_0 78.80 82.95 97.70 97.24 

Samsung_NV15_1 74.77 76.17 97.66 97.20 

Sony_DSC-H50_0 91.73 93.61 98.18 99.62 

Sony_DSC-H50_1 86.75 86.75 97.86 98.72 

Average 75.67 77.85 96.83 97.10 
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are used without division into further subsets. Also, we carried out experiment on automatic 

curriculum learning using the proposed algorithm in Section 6.3.2 with ResNet-SVM. It has 0.47% 

identification accuracy greater than training with no curriculum learning. This indicates that there 

is only little impact on the accuracy, with and without using the automatic CL. 

 

 

 

 

 

 

 

 

 

Therefore, using manual curriculum learning with ResNet for source camera identification has 

more impact on the identification accuracy compared to using the proposed automatic curriculum 

learning approach. Figure 6.3 shows the logarithm of the variation of the error rates or the model 

losses with respect to the number of epochs for without CL, with manual CL, automatic CL and 

anti-CL methods. As observed in Figure 6.3, the model becomes stable towards 20 epochs. The 

confusion matrix for the ten cameras, with the best trained ResNet model, is shown in Table 6.4. 

Table 6.3. Overall accuracy for manual curriculum learning with 

combinations and orders of the flat images and natural images (%). 

Curriculum Learning (CL) 

Different Progressions ResNet-SC ResNet-SVM 

PRNU_F+ PRNU_N 66.82 73.36 

PRNU_F,  PRNU_F+ PRNU_N 67.76 77.10 

PRNU_F+ PRNU_N,  PRNU_F 50.71 73.83 

PRNU_F,  PRNU_N 72. 43 76.40 

PRNU_N ,  PRNU_F 57.94 72.43 

Automatic Learning 

PRNU_F+ PRNU_N 65.89 73.83 
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The individual camera identification accuracies are shown in the diagonal of Table 6.4 and 

highlighted in bold.  

 

Figure 6.3. The Logarithm of model losses against epochs for without CL, manual CL, automatic 

CL and anti-CL methods. 

 

The average individual accuracy for the 10 cameras for images of size 64 × 64 is 78.66%. The 

same cameras and settings used for our experimental evaluation are also used in our comparison 

with the state-of-the-art methods in Section 5.5.4 of Chapter 5. The compared state-of-the-art 

Table 6.4.  Identification accuracy (%) of the best result of the proposed method. 

Camera Device 
 

1 2 3 4 5 6 7 8 9 10 

Canon_Ixus70_0 1 76.32 13.16 5.26 - - - - 5.26 - - 

Canon_Ixus70_1 2 2.78 83.33 13.90 - - - - - - - 

Canon_Ixus70_2 3 - 18.75 78.12 - - 3.12 - - - - 

Samsung_L74wide_0 4 - 22.20 22.20 64.44 17.78 11.11 2.22 - - - 

Samsung_L74wide_1 5 - 23.80 - 16.67 61.90 11.90 4.76 2.38 - - 

Samsung_L74wide_2 6 - - - 4.88 14.63 75.61 - 4.88 - - 

Samsung_NV15_0 7 - - - - - - 94.87 5.13 - - 

Samsung_NV15_1 8 - 2.00 - 2.00 - - 26.00 68.00 2.00 - 

Sony_DSC-H50_0 9 - - - - - - - - 93.75 6.25 

Sony_DSC-H50_1 10 - - - - - - 2.44 - 7.32 90.24 
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methods are, MLE SPN [8], Phase SPN [10], the Li’s model [9] and weighted averaging (WA) 

[51] and their overall average identification accuracies are, 62.73%, 72.95% ,58.31% and 63.15% 

respectively. We can see that the overall average individual camera accuracy of the proposed 

method is 15.93%, 5.71%, 20.35% and 15.51% higher than that of the MLE SPN, Phase SPN, Li’s 

model and WA methods respectively. Hence, an accurately designed deep network, based on good 

training algorithms, can achieve better performance than the conventional or PRNU-based SCI 

methods, for small-query images using the same number of training and testing examples.  

6. 5 Summary 

Deep residual convolutional neural networks (ResNet) is proposed for source camera identification 

using noise residues or individual PRNU images of cameras. Experiments are conducted with and 

without fine-tuning on the pre-trained network. Experimental results showed the benefits of adding 

residual connections to our initially proposed deep CNN without residual connections. 

Experiments were conducted with different orders of the camera subsets (simple and hard subsets) 

from the Dresden database, with our manual and automatic curriculum learning algorithms. For 

the proposed manual curriculum learning, experimental results show that training based on easy 

training examples before hard examples will result in the best identification accuracy, based on the 

proposed ResNet model. Furthermore, our proposed automatic curriculum learning approach 

shows better identification accuracy compared to training without applying curriculum learning. 

In conclusion, our proposed deep learning methods for instance-based SCI can achieve better 

performance than the compared state-of-the-art methods using the same settings. 
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Chapter 7 : 

Conclusion and Future Works  

7.1 Conclusion of the Thesis 

In this thesis, aiming at using deep learning due to its discriminative power to achieve higher 

camera identification accuracy, we proposed two deep learning techniques for instance-based 

source camera identification especially tailored towards small sizes images. This work can then be 

deployed in applications involving splicing localization and also source camera identification for 

small-sized image forgeries.  

Firstly, we proposed supervised stacked sparse autoencoder to extract distinctive features 

from the noise residue of cameras. Experimental results show that the proposed method has 

comparable significant identification accuracy on the Dresden database and better identification 

accuracy on our dataset consisting of two phone cameras. Further experiments also show that with 

better quality PRNU fingerprints, the proposed SSAE has superior performance than some of the 

state-of-the-art methods. Also, our SSAE generalizes well on new cameras' set using the same 

parameters used on another set of cameras.   

Secondly, we proposed the use of deep CNN to solve instance-based source camera identification 

using noise residues of cameras. The proposed CNN was used for classification (CNN-SC) and 

also as a feature extractor (CNN-SVM). Our experimental results show that the proposed CNN-

SVM performs better than CNN-SC in all experiments. Also, we explored the advantage of fine-
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tuning pre-trained models. In our approach, we fine-tuned already pre-trained proposed CNN 

model. Our experimental results show the effectiveness of our proposed fine-tuned deep CNN over 

deep CNN model without fine-tuning. Also, a comparative study with some state-of-the-art 

methods is carried out. Experimental results show that the identification accuracies of our proposed 

CNN-based methods (CNN-SC and CNN-SVM) are 18%-25.6% and 20.37%-25.02% higher than 

four compared PRNU-based SCI methods for without and with fine-tuning on a pre-trained deep 

CNN model. We also compared with a deep learning-based method, content-adaptive fusion 

networks (CA-FRN) and our proposed CNN-based methods (CNN-SVM without and with fine-

tuning) are 6.12-10.02% lesser in identification accuracy than CA-FRN for camera brand 

identification but have identification accuracies of 1.34% and 11.02-12.83% greater than CA-FRN 

for camera model Identification and camera device identification respectively.  

Moreso, the proposed deep CNN methods are also evaluated under post JPEG compression 

of the images. The effect of post JPEG compression on the quality of the PRNU fingerprints of 

cameras can be suppressed by fine-tuning on a pre-trained model while post JPEG compression 

has a significant effect on our proposed CNN-system if not fine-tuned on CNN already trained on 

PRNU images of non-target cameras. The proposed deep CNN methods are evaluated under post 

JPEG compression of the images. The effect of post JPEG compression on the quality of the PRNU 

fingerprints of cameras can be suppressed by fine-tuning on a pre-trained model while post JPEG 

compression has a significant effect on our proposed CNN-system if not fine-tuned on CNN 

already trained on PRNU images of non-target cameras. 

Finally, since the entropy of natural images is higher than that of flat images of cameras, 

we proposed the use of CL with ResNet for source camera identification. From our experimental 
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results, both proposed ResNet and CL algorithms improve the identification accuracies of cameras 

compared to the proposed deep CNN methods for SCI.  

 

7.2 Future Works  

Despite some of our achievement in using SSAE for source camera identification, there are still 

some limitations regarding the proposed method. The major limitation of using SSAE is that the 

camera identification accuracy only has comparable results with the state of the art methods when 

natural images were used only for training and not flat images. This limitation could be due to the 

amount of training data used in our implementation since better generalization accuracy are usually 

obtained using huge data for most deep learning techniques. Also, another challenge could be 

attributed to the quality of the noise residue used.  This is because, single noise residue representing 

image will have scene contamination and hence finding ways of improving the quality of the 

PRNU could be a better way of reaching global convergence quickly during training. Future 

research should consider an approach that can improve PRNU detection accuracy particularly, the 

transformation and preprocessing techniques to be able to increase the detection capability of the 

proposed method. Furthermore, fine-tuning techniques for our proposed SSAE and as well as other 

variants of SAE can also be explored.  

Finally, though, using the deep convolutional neural network for source camera 

identification, we were able to achieve a substantial result as compared to existing methods but 

there is still some drawback to attain the desired accuracy for the CNN structure proposed. 



152 

 

 

Future research should consider ways to reduce the validation error and also techniques that can 

improve network generalization accuracy. Furthermore, we will also explore featuring engineering 

techniques that could make the input noise images invariant to the original images. Also we shall 

explore suitable network engineering techniques with CNN that can help achieve better camera 

identification accuracy. Finally, as regards, CL with ResNet for SCI, future research could consider 

using suitable pre-processing operations to generate simple examples from the original training set 

so as to further increase the number of training subsets. Moreover, a better automatic curriculum 

learning approach will be explored, so that the learning efficiency can be improved, and hence 

increase the camera detection accuracies. 
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