

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

INSTANCE-BASED SOURCE CAMERA

IDENTIFICATION FOR SMALL SIZE IMAGES

USING DEEP LEARNING-BASED TECHNIQUES

ANIMASAHUN IDOWU OLUWASEUN

MPhil

The Hong Kong Polytechnic University

2020

ii

Department of Electronic and Information

Engineering

The Hong Kong Polytechnic University

INSTANCE-BASED SOURCE CAMERA

IDENTIFICATION FOR SMALL SIZE IMAGES

USING DEEP LEARNING-BASED TECHNIQUES

ANIMASAHUN Idowu Oluwaseun

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Philosophy

June, 2018

iii

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgment has been made in the text.

(Signed)

ANIMASAHUN Idowu Oluwaseun (Name of Student)

iv

Dedication

This research work is dedicated to Jesus, the author and finisher of my faith for His divine

inspiration, wisdom and strength. Also, this work is dedicated to my Mother; Mrs. Grace Kehinde

Animasahun for her constant prayers, weekly calls and relentless encouragement, which keep my

hope alive despite all the challenges I faced in the course of the programme. You are a great mother

and my love for you is unquantifiable. May God keep you strong, healthy and you will live long

and reap the rewards of your labour.

v

Abstract

Source camera identification (SCI) is an area of forensic science that has to do with attributing a

photo to the camera that has captured it. SCI has been widely researched using several approaches

especially the use of image photo-response non-uniformity (PRNU) fingerprints with normalized

correlation and peak to energy correlation as decision parameters. Several classifiers, such as

support vector machines (SVM) and neural network (NN), have been used for source camera

identification. In some research works, deep learning methods, such as convolutional neural

networks (CNN), have been used for camera identification. However, most of the proposed

methods have considerably good identification accuracy for identifying the camera models, but

poor identification accuracy for individual instance-based SCI. Furthermore, existing source

camera identification algorithms mostly have good performance for images of size higher than 256

× 256. Motivated by the knowledge gap in the literature, in the thesis, we propose methods for

robust deep learning method, so as to achieve high discriminative power for instance-based SCI

for small-sized images. The small-sized images can be due to low resolution or a cropped image

patch from an image. Moreover, most of the deep learning-based camera identification methods

use images directly as input into the deep networks. However, the contents of the images suppress

the camera features, and this has a negative impact on the identification accuracies of cameras.

Therefore, we propose the use of noise residues or individual PRNU images so as to suppress the

contamination of camera features by image contents. The proposed noise residues are also pre-

processed by zero-meaning so as to remove linear patterns, and as a normalization technique for

our input data. The work is useful in applications, such as splicing translocations and small-sized

forgery detection.

vi

 Firstly, we proposed a stacked sparse autoencoder (SSAE) for SCI. Autoencoder is an auto-

associative architecture, which is considered suitable for learning input data that is not completely

random. Since PRNU is Gaussian distributed and is not completely random, so the autoencoder

implemented can learn some interesting structure from the pre-processed noised residues of

cameras. The robust features of camera characteristics are learned through stacking several

encoding layers of autoencoders recursively. These robust features are then taken as inputs to a

regularised softmax classifier for probabilistic predictions of the source camera. We investigated

the structure of the SSAE and the hyper-parameters that give optimal performance on our data.

For all our proposed deep learning methods, the cross-entropy loss function was used.

Furthermore, mini-batch stochastic optimisation was used for updating the network weights.

Experimental results on 20 cameras from the Dresden database show that the proposed method

achieves comparable identification accuracy when compared with some state-of-the-art methods.

The proposed SSAE also generalizes well using the same hyper-parameters on different cameras

sets.

 Secondly, we propose a robust deep CNN architecture for instance-based SCI. The

proposed neural network consists of three convolutional layers and two fully connected layers.

The convolutional layer of the proposed CNN includes processing operations, such as convolution,

strides, batch normalization, and leaky rectilinear activation (Leaky ReLU). Strided convolution

was used as the downsampling operation, instead of the max-pooling in our proposed method. This

is because maxpooling aggressively downsamples feature maps, and the quality of the PRNU

signal is dependent on the total number of pixel values. Therefore, it will affect the quality of the

feature maps. Dropout layers are also used in the fully connected layers to prevent network

overfitting. Our dataset consists of a cameras with an unequal number of images (an unbalanced

vii

dataset), so we introduced the use of a class weight to the training function. Class weights penalize

under or over-represented classes during training. To further prevent overfitting of deep networks

and reduce unnecessary computation during training, we adopted the use of early stopping. The

output of the FC2 is given as input into a regularized softmax classifier (CNN-SC) for probabilistic

prediction of camera classes. Furthermore, after training the proposed CNN, the flattened output

of the third convolutional layer with a linear activation was extracted and used as the embedded

layer for one-vs- rest linear support vector machines (CNN-SVM). Using one-vs-rest linear SVM

classifier gives room for more training samples in a training set for each phase of training.

Furthermore, the proposed deep CNN model was also pre-trained on 10 non-target camera classes

and fine-tuned on 10 target camera classes. A comparative study with some state-of-the-art

methods was carried out. Experimental results show that the identification accuracies of our

proposed CNN-based methods (CNN-SC and CNN-SVM) are 18%-25.6% and 20.37%-25.02%

higher than four other PRNU-based SCI methods, without and with fine-tuning on a deep CNN

pretrained model. We also compared our method with a deep learning-based method, namely

content-adaptive fusion networks (CA-FRN). Our proposed CNN-based methods (CNN-SVM

without and with fine-tuning) have the identification accuracy 6.12-10.02% lower than CA-FRN

for camera brand identification, but have identification accuracy 1.34% and 11.02-12.83% higher

than CA-FRN for camera model identification and camera device identification, respectively.

Furthermore, we have evaluated the effectiveness of our proposed deep CNN, fine-tuned

on non-target cameras, under geometric distortions, such as JPEG compression with quality factors

of 95, 90 and 80, before the extraction of the noise residues of images. The average identification

accuracies with post JPEG compression on targeted camera classes are 0.68%, 1.74%, and 3.37%

lower than the average identification accuracy, without post JPEG compression, for the quality

viii

factors of 95, 90 and, 80 respectively. This shows that our proposed CNN-system, with fine-tuning

is robust to post JPEG compression with only little reduction in accuracy, as compared to those

images not being compressed.

 Finally, we propose a learning method to extract the PRNU fingerprint and to perform

camera identification. The extraction of the PRNU fingerprint of a camera from a smooth, plain

image is much easier than from a natural or cluttered image. Based on this observation, we propose

both a manual and automatic curriculum learning method for instance-based SCI deep residual

CNN (ResNet). Residual connections are added to our proposed deep CNN architecture so as to

generate more robust representational bottlenecks, and also to tackle the vanishing gradient

problem. The idea of curriculum learning (CL) is to train a system, which may be a student or a

deep network, from simple concepts to hard concepts. For the manual CL method, the proposed

ResNet is first trained with flat images. Having trained with flat images, those cluttered or natural

images are mixed with flat images to continue training up the network. In real applications, all the

available images are usually of natural images. Therefore, the last stage of our proposed CL uses

natural images only. For the second CL algorithm, the features of training images are extracted

from the softmax layer of the trained ResNet, and the cross-entropies of each instance of the

extracted features are calculated. The indices of the sorted cross-entropies are used to classify the

training images as simple or hard images. Our experimental results show that ResNet-SVM has

2.18% and 0.27% higher identification accuracies than CNN-SVM, without and with fine-tuning

respectively. For the manual CL, our experimental results show that ResNet-SVM has 3.74%

identification accuracy higher than training with no curriculum learning. Furthermore, our

proposed automatic CL approach only has 0.47% identification accuracy higher than training with

no CL. In conclusion, our proposed deep learning methods for instance-based SCI can still achieve

ix

good performance using a small data size, unlike a large amount of data required for good

performance in some camera identification problems. Moreso, unlike the inability of the proposed

CNN-based method in a work published in 2019 to acheive better identification than a PRNU-

based technique, our work can acheive better identication accuracy than the conventional state-of-

the-art methods that use PRNU-based methods using identical settings.

x

List of Publications

I.O. Animasahun, and Kin-Man Lam, “Deep Residual Convolutional Neural Network with

Curriculum Learning for Source Camera Identification,” in International Workshop on Advanced

Image Technology, accepted for publication.

xi

Acknowledgments

I would like to sincerely express my appreciation to all the supervisors involved in my research

programme supervision. Firstly, I will like to appreciate Prof. Kenneth K.M. Lam for his

agreement to take up the supervision of my programme as the Chief Supervisor during the revision

of my thesis for resubmission for examination process. I also want to express my profound

gratitude for all you taught me and for the experience have gained under your supervision. Thanks

so much for your all your support. I appreciate all your contributions.

Also, I would like to express my appreciation to Dr. LAW Ngai-Fong, Bonnie who

supervised my research programme prior to its continuation by a three-member supervisory team.

Thanks for your supervision and all I learned under your guidance. Moreso, I would like to express

my appreciation to other co-supervisors: Prof. SIU Wan-Chi, and Dr. LEUNG Hung-Fat, Frank

for their contributions.

My sincere and profound gratitude goes to the supervisory team: Dr. MAK Man-Wai, Dr.

CHAN Yuk-Hee, Chris and Dr. CHAN Yui-Lam for all your support during the transient period

of your involvement in my supervision. I sincerely appreciate all your efforts including giving

instructions, corrections, suggestions, checking of program codes and the use of your time despite

your busy schedules. Thanks so much Sirs and am highly grateful for all your support.

I will like to also express my profound gratitude to the Dean of Faculty of Engineering;

Prof. Hau Chung Man, and Prof. WAI Ping-Kong, Alexander, the Vice President (Research

Development) for their quick intervention on the administrative issues as regards my programme.

Thanks to Dr. Cheng Virginia (RO) and Ms Irene Ho (RO) for their moral and administrative

xii

support. I also want to appreciate all the other members of Research Committee on the resolution

regarding issues on my programme. Thanks for your administrative involvement.

I thank my fellow laboratory mates for the stimulating discussions and the insightful

research group presentations we had together. A sincere thanks to Dr. Masebinu Samson, highly

beloved friend, for his moral support and diligent proofreading of my thesis. I would also like to

thank Dr. Tayo Abolude, Dr. Wole Soyinka, Dr. James Amuda, Dr. Loto Oluwasayo, Dr.

Boluwatife Abidoye, and all other friends for your moral support, guidance and continuous

encouragement to strive towards my goal.

Last but not the least, I would like to thank my family: my parents, my brothers and sister

for supporting me morally and prayerfully throughout my programme.

xiii

Table of Contents

Dedication ………………………………………………………………………………………iv

Abstract……………………………………………………………………………………….....v

List of Publications……………………………………………………………………………...x

Acknowledgement………………………………………………………………………………xi

Table of Contents……………………………………………………………………………....xiii

List of Figures…………………………………………………………………………………xviii

List of Tables………………………………………………………………………………….xx

List of Abbreviations………………………………………………………………………... xiii

Chapter 1 : Introduction ..1

1.1 Background ...1

1.2 Motivation ...4

1.3. Organization of the Thesis and Contributions ... 10

Chapter 2 : Review of Source Camera Identification ... 14

2.1 Formation of an image in a Digital Camera.. 14

2.2 Digital Camera Features used for Source Camera Identification....................................... 15

2.2.1 Lens Distortion Features ... 16

2.2.2 Demosaicing Regularities ... 16

2.2.3 Sensor Noise Defects .. 17

xiv

2.3 Extraction of the Camera SPN ... 22

2.3.1 The Pixel Output Model .. 22

2.3. 2 Wavelet-Based Denoising Filter ... 23

2.3.3 Basic SPN... 25

2.3.4 Maximum Likelihood SPN ... 26

2.3.5 SPN using Li’ Enhancing Models ... 28

2.3.6 Phase SPN .. 31

2.3.7 Weighted Averaging Based SPN ... 31

2.3.8 Summary of Other State of the Arts Methods for Source Camera Identification 33

2.3.9 Comparative Analysis of Some Existing SPN Extraction Method on the Effect of

Images Size on Identification Accuracy ... 34

2.3.10 Experimental Settings ... 36

2.3. 11 Results and Discussion... 38

Chapter 3 : Review of Deep Learning Algorithms and Techniques .. 39

3.1. Historical Background of Artificial Neural Network ... 39

3.2.1. Artificial Neural Network .. 40

3.2.2. Activation Functions .. 42

3.2. Introduction to Deep Learning and its Challenges ... 44

3.3 Objective Functions for Deep Learning ... 48

3. 4 Supervised Optimisation Algorithms for Deep Learning ... 50

xv

3.4.1 Batch Gradient Descent .. 52

3.4.2 Stochastic Gradient Descent.. 53

3.4.3 Mini- Batch Stochastic Gradient Descent .. 53

3.4.4 Momentum ... 54

3.4.5 Nesterov Accelerated Gradient ... 54

3.4.6 Adagrad .. 55

3.4.7 Adadelta ... 56

3.4.8 RMSprop .. 57

3.4.9 Adam .. 57

Chapter 4 : Stacked Sparse Autoencoder for Source Camera Identification................................ 59

4.1 Working Principles of Autoencoders ... 60

4.2 Proposed Stacked Sparse Autoencoder .. 64

4.2.1 Network Architecture of the Proposed Stacked Autoencoder 65

4.2.2 PRNU Extraction and Preparation ... 67

4. 3 Experiments and Results ... 69

4.3.1 Experimental Settings ... 69

4.3.2 Parameters Selection for SSAE ... 71

4.3.3 Experimental Results .. 77

4.3.4 Comparison with Some State-of-the-Art Methods ... 84

4.4 Summary ... 89

xvi

Chapter 5 : Convolutional Neural Network as Feature Extractor and Classification for Source

Camera Identification of Small Size Images .. 90

5.1 Working Principle of Convolutional Neural Networks ... 91

5.2. Training Process of CNNs .. 95

5.3 Proposed CNN Architecture for Source Camera Identification 96

5.3.1 Noise Residues Extraction and Formulation for CNN ... 97

5.3.2 Network Architecture of Our Proposed CNN for Source Camera Identification 98

5.3.3 Fine-Tuning and Training of the Proposed Network .. 102

5.3.4 Selection of Fine-Tuning Parameters .. 104

5. 4 Experiments and Results ... 105

5.4.1 Experimental Settings ... 105

5.4.2 Results and Discussion ... 105

5.4.3 Comparison with some state-of-the-art methods .. 115

5.5 Fine-tuned Pre-trained Convolutional Neural Networks for Source Camera Identification

 .. 118

5.5.1 The Idea of Transfer Learning and Our Motivation ... 118

5.5.2 Methodology .. 119

5.5.3 Experiments and Results ... 120

5.5.4 Comparison with Some State-of-the-Art Methods ... 123

5.6. Comparison with a Deep Learning Based Method .. 124

xvii

5.7 Robustness of Proposed CNN methods to Post JPEG Compression 128

5.8 Summary ... 131

Chapter 6 : Deep Residual Convolutional Neural Network with Curriculum Learning For Source

Camera Identification .. 133

6.1 Overview of Deep Residual Learning .. 135

6.2 Curriculum Learning for Neural Networks .. 136

6.3 Proposed Deep Residual Convolutional Neural Network and Curriculum Learning

Algorithms for Source Camera Identification .. 138

6.3.1 Architecture of the Proposed Deep Residual Convolutional Neural Network 139

6.3.2 Proposed Curriculum Learning Algorithms with Residual CNN.............................. 141

6.4 Experimental Evaluation and Discussion ... 143

6. 5 Summary .. 148

Chapter 7 : Conclusion and Future Works ... 149

7.1 Conclusion of the Thesis.. 149

7.2 Future Works ... 151

 References……………………………………………………………………………………..153

xviii

List of Figures

Figure 1.1. Classification of the Techniques Used For Multimedia Forensics [3].4

Figure 2.1. Processing stages of a high-end digital camera [34]. .. 15

Figure 2.2. Photon Transfer Curve [34]. .. 18

Figure 2.3. Close-up of the PRNU factor 𝐾 enhanced for visualization [47]. 22

Figure 3.1. Modified Diagram of a Single Neuron. .. 40

Figure 3.2. Three Layered Neural Network Architecture [34]. ... 41

Figure 4.1. An autoencoder. ... 60

Figure 4.2. Block diagram for the proposed DNN for source camera classification. 64

Figure 4.3. (a) Training stage (b) fine-tuning stage in SSAE. ... 67

Figure 4.4. A softmax model. .. 67

Figure 4.5. Overall accuracies after further fine-tuning at different learning rates. 76

Figure 4.6. Input features (a) and optimal features (b) of SAE for 64 × 6 83

Figure 4.7. Input features (a) and optimal features (b) of SAE for 128 × 128 83

Figure 4.8. Input features (a) and optimal features (b) of SAE for 256 × 256 84

Figure 5.1. Stages involved in conventional convolutional neural networks. 92

Figure 5.2. The layout of the CNN for instance-based camera source identification. 98

Figure 5.3. Error rates against the number of epochs for the 20 cameras. 113

Figure 5.4. Overview of the Fine-tuned Pre-trained CNN. ... 120

Figure 6.1. The general framework of our proposed deep residual convolutional neural network

with curriculum learning for source camera identification.. 139

Figure 6.2. The layout of the proposed deep residual convolutional neural network for instance-

based camera source identification... 140

xix

Figure 6.3. The Logarithm of model losses against epochs for without CL, manual CL, automatic

CL and anti-CL methods. .. 147

xx

List of Tables

Table 2.1. Model types and threshold contribution to un-enhanced SPN 30

Table 2.2. Cameras Used in Experiment, Sensor’s Type, Resolution and Image Format 36

Table 2.3. Experimental Parameters and Descriptions .. 36

Table 2.4. Identification accuracies of the four SPN methods (%) .. 37

Table 4.1. Details about the cameras used in the experiment including the resolution and number

of images. .. 73

Table 4.2. Overall Identification accuracies at each hidden layer (%). 75

Table 4.3. Optimal results for each epoch for the best-hidden layer (%). 76

Table 4.4. Overall identification accuracies at different image sizes (%). 78

Table 4.5. Identification accuracy (in percentage points %) of the proposed method for 64 × 64

images size (case 1). .. 80

Table 4.6. Identification accuracy (in percentage points %) of the proposed method for 128 × 128

images size (case 1). .. 80

Table 4.7. Identification accuracy (in percentage points %) of the proposed method for 256 × 256

images size (case 1). .. 81

Table 4.8. Identification accuracy (in percentage %) of proposed method (case 2). 81

Table 4.9. Identification accuracy (in percentage %) of the proposed method (case 3). 82

Table 4.10. Identification accuracies (in percentage %) compared to other methods for 256 × 256

(case 4). ... 86

Table 4.11. Identification accuracies (in percentage %) compared to other methods for 128 × 128

(case 4). ... 87

xxi

Table 4.12. Details about the cameras used in the experiment including the resolution and number

of images taken by each camera. .. 88

Table 4.13. Comparative study of the identification accuracies (in percentage %) of our proposed

method and three other state-of-the-art methods (case 5). .. 89

Table 5.1. Details about the cameras used in the experiment including the resolution and number

of flat and natural images... 107

Table 5.2. Components of CNN architecture and its parameters. ... 108

Table 5.3. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image

size (case 1). .. 112

Table 5.4. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image

size (case 2). .. 112

Table 5.5. The overall accuracy of each testing fold for both CNN-SC and CNN-SVM For Case

1, Case 2 and Case 3. ... 113

Table 5.6. An overall number of testing images, correctly identified images, and the overall

identification accuracy for CNN-SVM for the 20 cameras. .. 114

Table 5.7. Overall accuracies of proposed methods with and without the use of flat images in the

training process (%) ... 115

Table 5.8. Comparative study of the identification accuracies (in percentage %) of our proposed

method (CNNN-SVM) and four other state-of-the-art methods for 64 × 64 image sizes. . 116

Table 5.9. Overall accuracies of proposed methods on target camera classes (%). 121

Table 5.10. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SC. 122

Table 5.11. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SVM.

 .. 122

xxii

Table 5.12. Comparative study of the identification accuracies (in percentage %) of CNN-SVM

with fine-tuning and four other state-of-the-art methods for 64 × 64 image sizes. 123

Table 5.13. List of cameras used to evaluate the proposed CA_FRN for SCI. 125

Table 5.14. Comparative Study of the identification accuracies (%) of our proposed CNN-SVM

with CA_FRN for Camera Brand Identification. .. 126

Table 5.15. Comparative Study of the identification accuracies (%) of our proposed CNN-SVM

with CA_FRN for Camera Model Identification. ... 127

Table 5.16. Comparative Study of the identification accuracies (%) of our proposed CNN-SVM

with CA_FRN for Camera Device Identification. .. 128

Table 5.17. Identification accuracies of cameras in case 2 without and with JPEG Compression

(%). ... 130

Table 6.1. List of Cameras Used. ... 144

Table 6.2. Identification accuracies for the Proposed Deep CNN and RCNN (%). 145

Table 6.3. Overall accuracy for manual curriculum learning with combinations and orders of the

flat images and natural images (%). ... 146

Table 6.4. Identification accuracy (%) of the best result of the proposed method. 147

xxiii

List of Abbreviations

AE Autoencoder

ANN Artificial Neural Network

BGD Batch Gradient Descent

CBI Camera Brand Identification

CDI Camera Device Identification

CE Cross-Entropy

CL Curriculum learning

CMI Camera Model Identification

CNN Convolutional Neural Network

CNN-SC CNN with Softmax Classifier

CNN-SVM CNN with One-Vs-Rest Linear SVM Classifier

CNN-SVM1 CNN-SVM without fine-tuning

CNN-SVM2 CNN-SVM with fine-tuning

DBN Deep Belief Networks

DNN Deep Neural Network

EXP Exponential Cost Functions

GPU Graphic Processing Units

MAP Maximum A Posterior

xxiv

MBSGD Mini-Batch Stochastic Gradient Descent

MLE Maximum Likelihood Estimation

NN Neural Network

PCA Principal Component Analysis

PReLU Parameterized Rectilinear Unit

PRNU Photo Response Non–Uniformity

ReLU Rectlinear Unit

ResNet Dep residual Neural Network

RBM Restricted Boltzmann Machines

SAE Stacked Autoencoder

SCI Source Camera Identification

SGD Stochastic Gradient Descent

SM Softmax Classifier

SPN Sensor Pattern Noise

SSAE Stacked Sparse Autoencoder

SSE Sum of Squared Errors

SVM Support Vector Machine

1

Chapter 1 :

Introduction

1.1 Background

Manipulation of images is not only peculiar to digital photography but also to silver-based

photography or analog photography. Images from both digital and analog photography can be

tampered or alterd. Digital imaging technology is still considered in forensic science has been

better than analog photography in tracing the source of an image. Unlike analog images, digital

images are usually attributed with additional information which can be useful for or suggest the

possible transformation process carried out on the digital images. These peculiar properties have

made digital imaging technology an important area of application in forensic analysis of images.

Digital images consist of pixels or picture elements. The pixel is an estimation of a colour. A digital

image can be a true colour image with three channels (red, green and blue) or a grey level image

(black and white image) with a single channel. Most of the forensic analysis are done using grey-

level transformation and this is due to easy storage and fast computation time. The overall

identification accuracy when grey images are used compared to true colour transformation, is

insignificant [1]. Images and videos have been widely used as evidence in a court of law to depict

the truthfulness of crime-related offenses or illegal actions. The authenticity of the multimedia

content provided as a proof is now a question of interest [2]. In film photography, alteration in the

output image is limited; since it takes time and also costly. In contrast, images from digital

photography can be easily altered due to the rapid development of digital electronic tools. The

2

availability and cost-effectiveness of these tools have further contributed to their widespread of

tampered images. These tools can be used to alter the originally captured multimedia content.

 A question of interest is that, can the authenticity of the digitally captured images or videos

still be guaranteed since they can now be easily adjusted by these processing tools or readily

available computer graphics [2, 3]? Another question of interest is whether the images captured

are purely synthetic images generated from computer software. One common software with a very

high number of users all over the world is the Adobe Photoshop software. The design of this

software greatly enables easy manipulation of any desired parts of the original images. The

changes in the altered images are most of the times not perceptible to the human eyes. This makes

it difficult to know a multimedia content has been altered by mere observation. Therefore, the

integrity of digital images is in doubt, since it cannot be guaranteed that they have not been forged

[3]. In order to circumvent these problems, digital image forensics researchers investigate some

fundamental features of a real image. Apart from the manipulation of the visual content of images,

another area of concern is the authenticity of the device that captured the images in question. This

is the question of whether the images are from a camera, scanner, and cam decoder or whether

they are computer graphic images. Though exchangeable file format of images usually have

metadata headers that contain information about the devices that captured the images. However,

the information on the metadata headers can be edited or deleted. Therefore, the use of such images

in forensic analysis as an evidence in a court of law could be misleading [2]. There are other aspects

of digital forensic science such as tampering discovery, steganalysis, recapturing identification,

recovering of processing history, computer graphics identification, device temporal forensics and

anti-forensic [3]. As a result of the rapid production of digital cameras and scanners, forensic

research has mainly focused on camera and scanner source identification [2]. The two categories

3

of techniques used for multimedia forensics are classified into active and passive forensics. Figure

1.1 shows the diagrammatic representation of the classification of the techniques used for

multimedia forensics [3].

 In Figure 1.1, the active forensics is further divided into two parts; which are the

precomputation of the harsh part of the image and also information hiding. Active forensics

involves computing beforehand some delicate properties of some severe or bad parts of an image.

The second involves encoding the original image with a secret data before it will be sent through

a public channel. In the case of alteration in the sent image, the forensic decision is then made by

comparing the encoded information of the original image with the extracted encoded data from the

manipulated or tampered image [3]. According to [4], during the image production, watermark

inclusive of iris biometric data was used as the encoded data. Verification of the authenticity of

the image can now be achieved by comparing the extracted watermark of the suspected image with

the original image. The techniques usually used in passive forensics, are based on the fundamental

idea that the source of an image (camera or scanner) contains sufficient features that can be used

to verify its authenticity when compared with its forged image. Active forensics, have the

advantage of being highly effective in justifying the authenticity of an image but the added artifacts

due to the encoded data, further degrade the quality of the output image. Its strict requirements in

ensuring accuracy is also a limitation. Most of the forensic researchers adopt the passive forensic

techniques since they do not impose specific requirements or additional artifacts apart from the

one due to camera-in processing techniques [4]. The focus of our work is on the source camera

identification. There are two types of camera identification problems, namely camera model

identification, and instance-based source camera identification (SCI). The former attempts to

4

identify only the model/brand of the camera that was used to capture a photo while the latter

attempt to identify the individual or source camera [5, 6].

Multimedia Forensic Techniques

Precomputation

of Harsh

Active Forensics Passive Forensics

Information

Hiding

Intrinsic

Regularities

Tamper

Anomalies

Figure 1.1. Classification of the Techniques Used For Multimedia Forensics [3].

1.2 Motivation

The need to know the source of an image is that it helps to provide some useful pre-information

necessary for further analysis on the image. For example, in a situation where the source of a

captured image is known, it could help in locating the photographer and also the device. The

knowledge of the model of a device helps to further acquire more information about the device by

getting the model specifications and features from several resources available online. Recently,

the sensor noise defects of a camera have been widely explored and commonly used as camera

fingerprints. The sensor noise defects include readout noise, shot noise, fixed pattern noise, and

the photo response non–uniformity (PRNU). The PRNU has been the most commonly used camera

fingerprint in the literature [7-16] due to the universality, dimensionality, and robustness. The

PRNU is also called the sensor pattern noise (SPN) of a camera. Furthermore, several classifiers

such as support vector machine (SVM) and neural network (NN) have been used to solve source

5

camera identification problem [17, 18]. Some of the literature that has achieved very high camera

identification accuracy used a combination of several features like 34 features used in [18]. Despite

all the several approaches used in literature [7-16], there are still problems that need to be solved.

Is it still possible to achieve higher accuracy just with a single feature? Can higher accuracy still

be achieved at lower image resolutions irrespective of the texture complexity of images? Can

fusion of classifiers help in achieving better accuracy or is there a better classifier that could help

further increase the classification accuracy using only PRNU as the input feature? Furthermore,

the work in [19], carried out a comparative study on the proposed CNN-based SCI and on a PRNU-

based method using identical settings, concluded that the PRNU-based method has higher

identification accuracy, at a lower computational cost, than the proposed CNN-based method. An

interesting question is whether a more accurate deep network architecture can be designed for

instance-based SCI, by using effective training algorithms. Another class of machine learning that

has high discriminating power and is capable of achieving robust feature representation is deep

learning. This method has been widely used in many applications such as face recognition [20],

image classification [21], fingerprint liveness detection [22], automatic malware signature

generation and classification [23], modulation format identification in coherent receivers [24] and

classification of hyperspectral images [25]. The ability of a deep neural network (DNN) to

automatically learn features is what makes it a suitable technique for many applications. Deep

learning is a hierarchical learning. It is a subset of machine learning which uses algorithms to self-

learn robust representations of a data when given recursively through several NN layers. Several

supervised and unsupervised deep learning modules have been explored over the years. These

include restricted Boltzmann machines (RBM), deep belief networks (DBN), convolutional neural

network (CNN), autoencoder (AE), denoising autoencoder [21, 22, 26] and residual convolutional

6

neural network [27]. Due to the current success of deep learning in achieving invariant feature

representation and high discriminative power, the aim of the research is to apply deep learning

techniques for source camera identification

 Also, existing source camera identification algorithms mostly have good performance for

images size ranging from 256 × 256 and above [7-16]. Motivated by the knowledge gap in the

literature, in the thesis, we carefully designed robust deep learning methods with high

discriminative power for instance-based source camera identification for small-sized images. The

small-sized images could be due to low resolution or a cropped image patch from an image. In our

work, small sized images are defined as images with sizes from or below 256 × 256. For the

proposed SSAE, we carried out experiments using 256 × 256, 128 × 128 and 64 × 64 image

sizes while for CNN-based methods, we used 64 × 64 image size. Also, some deep learning-based

camera identification methods used the images directly as input into their proposed deep networks

[28-30]. However, the contents of the images suppress the camera features, and this has a negative

impact on the identification accuracies of cameras especially for instance-based source camera

identification. Therefore, we proposed the use of noise residues or individual PRNU images so as

to suppress contamination of camera features by image contents. The proposed noise residues are

also pre-processed by zero-meaning so as to remove linear patterns and as normalization technique

for our input data. The ultimate goal is to increase the camera identification accuracy for small size

images compared to some existing methods in the literature. The work is useful in applications

such as splicing translocations and small-sized forgery detection. Therefore, in this work, we

propose basically three deep learning-based methods for instance-based source camera

identification and the motivation for each method are discussed as follows.

Firstly, we propose stacked sparse autoencoder for source camera identification. An AE is

7

an artificial neural network with one hidden layer. It helps to learn a compressed representation of

an input data. It does this by first transforming the input data to hidden features (encoding) and

these features are then mapped back to obtain an approximation to the input data (decoding) [31].

When sparsity constraint is imposed on the hidden layer of an AE, it is called sparse autoencoder

[21]. The constraint is added to ensure that a good representation is obtained even when the number

of hidden units is large. Stacking the encoding features of hidden layers of autoencoders

recursively is called stacked AE (SAE). It has been used successfully for classification problem

[20, 32, 33]. The work in [21] used a deep learning approach called stacked sparse autoencoder

(SSAE) with softmax classifier (SM) for image classification. Their experimental results show

that, only 60 samples per class were used for pre-training and 12 samples per class for validation.

Despite the small training size, an overall accuracy of 91.67% was achieved. This demonstrated

that a small set of input data but with high quality can still produce a good result. In [34], for an

input data to be considered suitable for an autoencoder, it should not be completely random. The

input should not be identically and independently Gaussian. For an input to be identically and

independently Gaussian means each of its random variables must not have the same probability

distribution as the others and all must be mutually independent. It can also be suitable for a dataset

that has at least some structure. Some of the inputs features in the data should be correlated.

Although PRNU has a noise-like characteristic there is a correlation between the PRNU of training

and testing images belonging to the same camera instance. AE is data specific and is not suitable

for learning features directly from images which do not have specific properties [35]. Therefore,

for SCI, SAE is considered suitable since there is a correlation between PRNU of images of the

same camera instance. The combination of the SSAE and SM can be used to extract a robust and

invariant representation of features of the PRNU for source camera identification. The basic

8

concept of SAE is called the layer-wise pre-training through several hidden layers without the

knowledge of class levels. The idea is to learn robust features at each layer of the network

progressively [32]. These features are called deep features. After the training stage, a supervised

learning can then be carried out on the learned features from the pre-training using any multi-class

classifiers such as SVM or SM.

 Secondly, we investigated the CNN architecture that is best suited for obtaining robust noise

features of cameras. CNN are specifically designed for recognition of images and has been widely

used in several applications involving image and speech processing, text classification and

reinforcement learning for a board game and video game. CNN has also been used in digital

forensics applications. For example, Bayer et al. [36] proposed a CNN architecture for the

detection of manipulated images. CNN was adopted for detection of median filtering of images

[37]. Besides, CNN has also been applied for camera model identification [28, 29, 38]. In-camera

model identification, the work in [29] achieved an accuracy of 94% using 27 camera models for

32 × 32 images sizes. This accuracy was achieved when only one instance of the camera models

was used. When multiple cameras of the same model were included, the accuracy dropped to

29.8%. This shows that the CNN architecture in [29] was unable to achieve good performance in

instance-based camera identification. A different CNN architecture was proposed for 64 × 64

images sizes in [28] and over 93% identification accuracy was achieved. However, the proposed

technique is for camera model identification, rather than instance-based identification. The

background assumption in both [29] and [28] is that CNN is able to learn features about the

processing pipelines of cameras directly from the images without the use of hand-crafted features.

Since CNN usually requires the use of large dataset for implementation, images were divided into

patches for training. Instead of using images as input, PRNU was used as input in [23] for camera

9

model identification. Their experimental results show 98.0%, 97.09% and 91.9% for 12, 14 and

33 camera models respectively on 256 × 256 image sizes. Despite the good performance in

camera model identification, the work in [38] did not consider instance-based source identification.

We believe that the structures of the CNN have to be modified so that the CNN can have good

performance in instance-based source camera identification. Images contain scene details and

camera model features such as color filter array interpolation and lens distortion which are not

unique to each camera device. However, PRNU is unique for each individual device. We thus

propose to use PRNU images instead of the original images as inputs to CNN. We believe that

PRNU images can provide quality input information to the CNN so that the training does not need

a large amount of input data. Consider the work in [21] that used a deep learning approach called

stacked sparse autoencoder with softmax classifier for image classification. In one of their

experimental works, only 60 samples per class were used for pre-training and 12 samples per class

for validation. Despite the small training size, an overall accuracy of 91.67% was achieved. This

demonstrated that a small set of input data but with high quality can still produce a good result. As

earlier stated, existing PRNU-based source camera identification algorithms have good

performance for images size larger than 256 × 256. Identification of small size patch using sensor

pattern noise is still challenging for camera identification. This is because the estimated PRNU

fingerprint weakens as the number of pixels reduces. However, identification from small image

patch is important, especially if forgery regions are to be located. In this work, we will investigate

if the CNN approach can achieve reliable identification from small image size such as 64 × 64.

CNN architecture using the sensor noise may not require so very huge data size before it can

achieve superior performance as compared to huge data size required for good performance in

10

other applications. This will further reduce computational demand required for the proposed CNN

implementation.

 Lastly, to train a deep neural network, a large amount of training data is required, in order to

avoid overfitting. Therefore, effective training algorithms are important for deep neural networks

to achieve good generalization power. For source camera identification, we usually have limited

examples from each of the cameras under consideration. Furthermore, the PRNU fingerprints of a

camera is difficult to detect from an image, if the image has complicated patterns. In other words,

the extraction of the PRNU fingerprint from a smooth, plain image is much easier than from a

cluttered image. Based on this observation, we employ curriculum learning to train a deep ResNet

for source camera identification. The idea of curriculum learning (CL) is to train a system, which

may be a student or a deep network, from simple concepts to hard concepts. This learning approach

allows the system to train up from handling simple tasks too hard tasks. The use of curriculum

learning can help to improve the speed of global convergence during training and a better local

minimum can be achieved [39].

1.3. Organization of the Thesis and Contributions

In this thesis, we focus on the use of deep learning techniques for instance-based SCI for small

image sizes. This will be achieved using three deep-learning based proposed methods. The learning

will be done on the noise residues of cameras. Apart from the Chapter 1 which focused on the

background and motivation for the work and proposed methods, there are other six chapters in the

thesis.

 In Chapter 2, we reviewed SCI, image features usually used for SCI and a review of some

of the state of the art techniques that are well used for the extraction of the PRNU of cameras.

11

Finally, we carried out a comparative analysis on some of the states of the art methods so as to

validate the effect of the size of the image on identification accuracy. The experimental results

show that the lower the image size, the lower the identification accuracies of cameras. This shows

that the noise residue becomes weaker as the image size gets smaller.

 In Chapter 3, we reviewed the historical background of the artificial neural network,

introduction to deep learning, objective functions and supervised optimization algorithms. The aim

of the chapter is to understand the working principles of some of the methods that will be applied

in Chapters 4 and 5.

 In Chapter 4, we introduce the use of SSAE for instance-based SCI. We did a review on

sparse and denoising autoencoders. We introduce the network architecture for the proposed SSAE

and also the PRNU preparation as input into the SSAE. The trained features using SSAE are then

given as input to a regularized softmax loss layer for probabilistic prediction of source cameras.

We investigated the structure of the SSAE and hyper-parameters that give optimal performance

on our data. Experimental results show that significant overall identification performance

comparable with some existing methods on the Dresden database and better performance on our

own dataset when compared with some state-of-the-art methods for all tested image sizes. Also,

the proposed network also generalizes well using the same hyper-parameters on different cameras

set.

In Chapter 5, we introduce our proposed deep CNN for instanced based source camera

identification of small-sized images. We discussed the working principle and the training process

of CNN. Also, we discussed the proposed CNN architecture, its training, fine-tuning process and

selection of hyperparameters. Apart from building CNN from the scratch for SCI, we also

proposed the use of transfer learning using the proposed deep CNN as the pre-trained model on

12

non-target camera classes and the classification was carried out on target camera classes and this

approach has improved performance than without fine-tuning on pretrained models on non-target

camera classes. We proposed, a carefully designed CNN architecture for instance source camera

identification by investigating suitable CNN-based architecture to extract robust features of camera

noise residues rather than extracting features directly from the camera images as done in Bondi et

al. [28]. Since we are using the noise residues of cameras, we investigated suitable normalization

technique, CNN signal processing operations, depth of CNN architecture and effective training

algorithms. Strided convolution was used as the down-sampling operation instead of the max-

pooling in our proposed method. This is because, max-pooling aggressively down sample feature

maps and the quality of the PRNU signal is dependent on the total number of pixel values and

hence, it will affect the quality of the feature maps.

For the training methods, apart from the use of mini-batch stochastic gradient descent and

categorical cross-entropy loss, sparsity constraint and weight regularization methods are used to

further prevent model overfitting. Finally, we introduce the use of class weights to the training

function. Class weights penalize under or over-represented classes in the training set. Our proposed

class weight function is passed as a dictionary into the class weight parameter of the network

training function. Experimental results on cameras from the Dresden database show that our

proposed deep methods using a single image patch (64 × 64) from each image achieve superior

performance than the compared methods using a small data size, unlike the requirement of using

a huge dataset used for CNN training for some camera identification problems. This further

reduces computational demand required for the CNN training and can be attributed to the fact that

our proposed network was learned on preprocessed noise residues less contaminated by the image

scenes and hence, can extract high discriminative features for instance-based camera identification.

13

Moreso, we carried out experimental evaluation on the robustness of our proposed deep

CNN methods to geometric distortion such as JPEG compression. There is positive influence on

the quality of the features maps of the target cameras based on the weights of all the layers of the

pre-trained CNN being updated during training. Therefore, experimental results show that the

effect of post JPEG compression on the quality of the PRNU fingerprints of cameras can be

suppressed by fine-tuning on a pre-trained model for data with related probabilistic distribution.

In Chapter 6, we introduce the concept of residual convolutional neural network and also

the background philosophy behind the use of curriculum learning in deep neural networks. The

architecture of the proposed ResNet is discussed and it basically consists of additional residual

connections to our proposed deep CNN architecture in Chapter 5. Also, we set out the procedures

for both our proposed manual and automatic algorithms. Finally, we evaluated the proposed

curriculum learning on 10 cameras from the Dresden database and the experimental results show

the benefits of adding residual connections to our initially proposed deep CNN without residual

connections. Also, our experimental results show that training on easy training examples before

hard examples (manual CL algorithm) can contribute to increasing identification accuracy of the

proposed ResNet model.

Chapter 7 concludes the thesis and also gives the future research directions.

14

Chapter 2 :

Review of Source Camera Identification

In this section, the processes involved in the formation of images using a digital camera were

discussed. Also, several camera features that have been explored for SCI are discussed. Finally,

we compared some state-of-the-art methods for different image sizes as to observe the effect of

identification accuracy on different sizes of images. The motive of the comparison is to check the

effect of different image sizes on the camera identification accuracy.

2.1 Formation of an image in a Digital Camera

The block diagram in Figure 2.1 gives the signal processing stages involved in the formation of an

image in a high-end digital camera. It can be observed from Figure 2.1 that the light from the

multimedia content passes through some set of lenses. The light from the lenses goes through the

optical filter. The basic function of an optical filter is to improve the image. It helps to control the

brightness levels of the image by reflecting its actual wavelengths. The optical filters commonly

used are anti-aliasing filters and infrared filters[5]. Each pixel of an image has a colour, therefore,

photons of the light from the optical filters are passed through an array of filters called colour filter

array. These photons are converted to electrons by the imaging sensor. There are different imaging

sensors. These are charge coupled device, complementary metal-oxide semiconductors, junction

field effect transistors and CMOS-Foveon X3 [5]. The differences in the aforementioned types of

camera sensors are based on the kind of semiconductors used. Induced voltages or electrons are

produced at the sensors. They are in analog form and hence an analog to digital converter unit of

15

the digital camera helps to convert the electrons into digital values. The outputs of the sensor are

digital negatives or raw images.

For these raw images to be in a viewable format, software for raw image converters is used

in case the camera is set to output raw images. If the camera is not set to raw format, then the

output of the sensor is further debayered using demosaicing algorithms to restore its full colour

and help depict the real world scene. Due to artifacts incurred during the processing of the image,

some post-processing techniques such as white balancing, gamma correction and compression are

further applied to the demosaiced image[40]. Finally, the enhanced image output is then stored in

a camera memory device depending on the desired format [40].

Scene Optical Filter
R G

G B
Sensor

Post Processing

Raw Conversion Software

CFA Interpolation

Digitally Developed

Image

In-camera

Processed Image

Raw Image

Colour Filter

Array

Lenses

Figure 2.1. Processing stages of a high-end digital camera [34].

2.2 Digital Camera Features used for Source Camera Identification

As described in Section 1.1, multimedia source identification can be broadly divided into either

image source identification or source class identification. For the source class identification, the

class can either be a scanner, camera or cam decoder. SCI can be defined as the science of

identifying some features of a camera on an image and using these features to identify the specific

16

camera used to capture the image. Some of the image features that have been used in the literature

are briefly discussed in this section.

2.2.1 Lens Distortion Features

These are some features in images due to defects from the manufacturing process of the lens. There

are different types of lens distortion that have been used in literature and some of them are lens

radial distortion, chromatic aberration, spherical aberration, field curvature, astigmatism and so

on. Out of all these features, the lens radial distortion appears to be the one with most severe effect

on the quality of the image. It is highly perceptible especially in less expensive cameras and it

depicts itself as straight lines into curved lines in the captured image. There is first and second

order radial distortion. Choi et al. [41] used the second-order radial distortion in their work. The

features used are based on two computed parameters with Kharrazi’s features reported in [18].

Considering a fixed optical zooming, the work achieved 89% accuracy using five different

cameras' models. Variation in refractive indexes of lens materials for different wavelengths also

leads to another type of lens distortion called lateral chromatic aberrations. The misalignment in

colour channels of the image is caused by the effect of the refractive indexes and this prevents the

colours from being properly focused. Van et al.[42], used image registration approach to finding

the optimal optical center parameters. Three different cameras' models were used and they

achieved 92% identification accuracy based on SVM classifier.

2.2.2 Demosaicing Regularities

Demosaicing is an approach for the reconstruction of full colour images from an image sensing

device. Through this process, pixel colours are extracted by interpolation to retrieve the image in

a viewable format. In order for the raw images to be in a viewable format, demosaicing or

debayering algorithms are used in reconstructing the full-colour images from the imaging sensor.

17

All the pixels colours individually extracted using colour filter arrays are then interpolated or

reconstructed to get back the image in it's viewable and full colour format using the demosaicing

algorithms. The demosaicing algorithms vary from one camera model to the other. The algorithms

are camera specific and differs greatly[3]. Multimedia forensics, adopt these differences as the

means of uniquely identifying one camera model from the other. As reported in Popescu and Farid

[43], an accuracy of 97% has been obtained by adopting the expectation maximization algorithm.

This algorithm uses the MAP by estimating the interpolation noise variance. The work done by

[44], has been further extended by constructing a SVM for smooth and non-smooth regions of the

output image. These parameters were obtained by finding the second derivatives of the elements

in the rows of the matrix of the output image. Long et al. [6] explored the error features due to the

estimation of the interpolation filter coefficients as demosaicing algorithms. The extracted error

features were used to train a NN. In the work, not all the error features were used, principal

component analysis (PCA) was used to extract the most significant features sufficient for the

camera model identification. Using, four camera models, the work achieved an overall accuracy

of about 100%. Furthermore, Swamminathan et al. [45] , Cao and Kot [46] have done further

works by using enhanced demosaicing features.

2.2.3 Sensor Noise Defects

To begin with, it will be necessary to have the basic understanding of the different sensor noise

defects at different levels of the signal transfer. Photon-transfer curve, shown in Figure 2.2, can be

used to explain the sensor noise defect. This is demonstrated using the photon transfer curve. This

curve is shown in Figure 2.2. This curve is used as the standard steps to be followed or considered

during the manufacturing process of a camera. It helps to give the information about the read noise,

18

shut noise, fixed pattern noise (readout noise), full well capacity, fixed pattern noise camera’s

sensitivity and PRNU [34].

SLOPE=1

SLOPE=1/2

SLOPE=0

Read Noise Shot Noise

Full Well

Fixed Pattern

Noise &

PRNU

LOG (Signal)

L
O

G
 (

N
oi

se
)

Figure 2.2. Photon Transfer Curve [34].

2.2.3.1 Readout Noise

The first stage of the photon transfer curve is the readout noise. This is the bias frame and it has a

slope of zero. The read noise or readout noise is caused by the electronic devices of a digital

camera. The voltage induced by the photons at the sensors are further amplified and the amplifiers

can only give an estimate of the signal value and this is one of the causes of the readout noise. The

readout noise of a digital camera can be measured by calculating the mean, standard deviation of

overlapping frames. The set of the calculated means will be plotted against the standard deviations

and a scatter plot will be obtained. By using regression, the scatter plot is then converted to a line

19

plot. The intercept of the standard deviation when the mean is zero is then taken as the readout

noise of the camera. The readout noise is uniformly distributed across the image. In [40], two

experiments were carried out using the readout noise. The first experiment combined two pictures

from the same camera having different exposure rates and the second experiment used the readout

noise of the images without considering differences in exposure rates. Six cameras were used for

the analysis and average cameras’ identification accuracies obtained were 88.3% and 79%

respectively. For the readout noise to be an effective feature in source camera identification, there

is a need for the actual readout of the noise of the camera to be known beforehand [40].

2.2.3.2 Shot Noise

The shot noise as shown in Figure 2.2, is the phase with the slope of 1/2. When the light intensity

increases, there will be an increase in the transfer of photons from the camera lens to the sensor.

This causes a random movement of the photons and it leads to what is called the shot noise. It has

a slope of half because the rate at which photons arrive at the imaging sensor and a number of

incoming charges are inversely related [40].

2.2.3.2 Fixed Pattern Noise

Photons can be thermally generated in a camera due to exposure, temperature or the camera

settings [40], [47]. They are noises caused by thermal effects. Given that only the fixed pattern

noise is assumed to be the only sensor defect, then, the pixel’s output is expressed in [47] as,

 𝑌 = 𝐼 + 𝜏𝐷 + 𝑐 (2.1)

20

where 𝐼 is the input image, 𝐷 is the dark current, 𝜏 is the multiplicative factor and c is the camera

offset setting. The photons generated in the camera due to thermal effects are then converted to

electrons at the imaging sensor. These free electrons are called dark currents. They are called fixed

pattern noise because they maintain their pixel’s value across all frames. These currents are weak

but its effects can be well pronounced if the images are taken by the night. When D and c are

extremely high, it leads to point defects called hot and stuck pixels respectively. These two point

defects are used in forensic science for class source classification and digital photograph age

estimation [47].

As earlier shown in Figure 2.2 , PRNU is a noise defect with a slope of 1 and it is a pattern noise

most common in natural images. Unlike fixed pattern noise, PRNU is resistant to exposure, to

humidity and temperature. Imaging sensors are usually made up of silicon waivers. The

inconsistencies in the nature of silicon waivers affect the responsiveness of photons of being easily

converted to pixels. The rate at which the photons are converted to electrons is called quantum

efficiency [40], [47]. The inconsistencies in the pixels' responsiveness lead to a sensor defect called

PRNU. This could also be caused due to malfunction in the design of the imaging sensor during

the manufacturing process and dust specks. The PRNU, also consists of low-frequency

components, such as the effects of light refraction on dust particles. The PRNU component is

usually adopted for SCI because it is an intrinsic feature of a digital sensor. For dark images, fixed

pattern noise is more pronounced compared to PRNU but PRNU is strongly present in saturated

images. The techniques usually used in the manufacturing of image sensors are identical. This

makes the PRNU in all the sensors to have related features It has also been found to be dominant

in the high-frequency components of an image [5].

21

2.2.3.3 Photon Response Non-Uniformity

Most of the literature has used PRNU either independently or with other features. It is

becoming most commonly used camera fingerprint. There will be a need to further explain why

PRNU is widely used for forensic analysis. The first forensic interest of the PRNU is its uniqueness

to all sensors in digital cameras since it has more information regarding each sensor. For this

reason, no two cameras have the same PRNU fingerprint. It is possible for an image to be

recognized by cameras of the same model, but these cameras still have different statistical

parameters. Secondly, there is no camera irrespective of the post-processing stages that does not

exhibit PRNU. This universality and generality make it a desired fingerprint for forensic analysis.

Another very useful characteristics of PRNU is its high stability irrespective of the number of years

it has been extracted. Finally, PRNU can withstand the artifacts caused by JPEG compression,

white balancing, gamma correction and filtering in camera operation processing. Based on these

properties, the camera source of an image can be known once the PRNU of that camera is available.

PRNU as camera fingerprint can also be used to know the age of a digital photograph and also for

verification of image authenticity [47]. Therefore, PRNU is used as the camera fingerprint for the

source camera identification in this research work. An example of an extracted PRNU from a

digital camera is shown in Figure 2.3.

22

Figure 2.3. Close-up of the PRNU factor 𝐾 enhanced for visualization [47].

2.3 Extraction of the Camera SPN

The first step before the extraction of the SPN of a digital camera is to know the general pixel -

output model. This section focusses on the pixel-output model and also discusses some of the

approaches that have been adopted in the extraction of the SPN such as Basic SPN, maximum

likelihood estimation (MLE) SPN, SPN using enhancing models, phase SPN and other extraction

methods.

2.3.1 The Pixel Output Model

The general pixel output model based on the sensor’s imperfections discussed so far, is given in

[47] as,

 𝑌 = 𝐼 + 𝐼𝐾 + 𝜏𝐷 + 𝑐 + ∅ (2.2)

23

where 𝑌 is the noisy image, 𝐾 is the multiplicative factor, 𝐼𝐾 is the PRNU noise, ∅ is the model

of all other sensor’s imperfections such as readout noise, shut noise, quantization noise and

photonic noise. All the noises, classified under ∅ are not usually used for forensic analysis because

of their random nature. The presence of this PRNU noise makes the output of an imaging sensor

noisy. In order to remove the effects of the noise due to the imperfections, the output model 𝑌 has

to be denoised. In order to achieve this, a denoising filter (𝐹) will be used. The resulting residual

noise (W) after denoising is given in [47] as,

 𝑊 = 𝑌 − 𝐹(𝑌) (2.3)

 = IK + τD + I − F(Y) c + ∅

where £ is the modeling noise combined with the residual noise and it is given as,

Textured regions and near edges are usually characterized with large 𝑊. Several denoising filters

including both non-adaptive and adaptive filters have been used in denoising a noisy image. The

wavelet-based denoising filter proposed by Lukas et al. [5] has been used and reported to be a very

good denoising filter for SPN extraction in [9, 10, 48, 49].

 2.3. 2 Wavelet-Based Denoising Filter

Both non-adaptive and adaptive filters have been used for denoising images. Denoising filters such

as Argenti’s filter and Mihcak's filter are discussed in Amerini et al. [6]. The Argenti's filter

models the signal-dependent noise, unlike the Mihcak's filter which models the noise by assuming

it to have a zero mean and a stationary white Gaussian noise with an unknown variance. The

parameters used in the proposed filter in this work are the variation of zero mean noise when it is

yet to be correlated and variation of the noise associated with the electronic device. The Mihcak’s

 = 𝐼𝐾 + 𝜏𝐷 + £ (2.4)

 £ = 𝐼 − 𝐹(𝑌) 𝑐 + ∅ (2.5)

24

filter, on the other hand, is a spatially adaptive statistical modeling of wavelet coefficients. The

noise variance was calculated using MAP of the noisy image. Out of several denoising filters that

have been used in literature, the denoising filter proposed by Lukas et al. [5] have been widely

used and rated efficient in [9] and [49]. The aim of this section is to now summarize the basic

steps involved in its implementation. This can be given by the four steps as stated below;

i. Wavelet decomposition of noisy Images: Noisy image was initially processed by adding

Gaussian noise 𝑁(0, 𝜎2) to the image. The vertical 𝑣(𝑖, 𝑗), horizontal ℎ(𝑖, 𝑗) and diagonal

components 𝑑(𝑖, 𝑗) were obtained using fourth-level wavelet decomposition with

Daubechies of order 8.

ii. MAP of local variance: The local variance of the original image before the Gaussian noise

was added was estimated for each component in each level using MAP for a neighborhood

of 4 sizes. The least variance was used in the experiment. The estimated local variance

using MAP is given in [5] as,

where R is the decomposition level, σ0 is the initial variance.

iii. Using Weiner Filter: The denoised image was obtained using Weiner filter for all the

wavelets components and was repeated for all levels and channels (for true color images).

The Weiner filter can be expressed for the horizontal component as,

 𝜎2(𝑖, 𝑗) = 𝑚𝑎𝑥 (0,
1

𝑅2
 ∑ ℎ2(𝑖, 𝑗) − 𝜎0

2

(𝑖,𝑗)∈𝑁

) , (𝑖, 𝑗) ∈ 𝑅 (2.6)

 ℎ𝑑𝑒𝑛(𝑖, 𝑗) = ℎ(𝑖, 𝑗)
𝜎2(𝑖, 𝑗)

𝜎2(𝑖, 𝑗) + 𝜎0
2
 (2.7)

25

iv. Applying inverse transform: This was used to reconstruct the denoised image.

For Section 2.3.3 to Section 2.3.8, we shall discuss the strengths and weaknesses of some of the

state of the art methods which have been used for source camera identification.

 2.3.3 Basic SPN

Basic SPN simply means the fundamental method upon which other methods of SPN extraction

are based. This was based on the work done by Lukas et al. [5]. The first step is to extract the

PRNU from photos captured from cameras. In order to extract a robust reference fingerprint for a

particular camera, It must be estimated from the SPN of several images (30 and above). The SPN

extraction for a single image has been explained in Section 2.3.1. Given 𝑐 = 1, 2, ……𝐶, n =

1,2… .N and Wn is the PRNU of an image, the fingerprint of a camera can then be expressed as;

where 𝐶 is the total number of cameras to be identified and 𝑁 is the total number of images or

photos from the single camera. The 𝐾̂𝑐 was based on finding the average PRNU over the number

of images captured from camera c. During testing, images will be captured from each camera and

their PRNU will be extracted. In order to verify whether a particular image is from a camera c,

correlation is used as the decision parameter. The correlation parameter can be defined as;

where 𝑛𝑖 is the PRNU of the camera fingerprint, nj is the PRNU of the testing image and 𝑛𝑖̅ and

𝑛̅𝑗 are the average values of 𝑛𝑖 and 𝑛̅𝑗 respectively. The camera with the maximum correlation is

taken to be the camera of the testing image. The proposed method by Lukas et al. [5] requires that

cropping of images be carried out so as to achieve reduced computational complexity. This usually

 K̂c =
∑ Wn

N
n=1

N
, (2.8)

 𝑝(𝑖, 𝑗) =
(𝑛𝑖−𝑛𝑖̅̅ ̅)(𝑛𝑗−𝑛̅𝑗)

‖𝑛𝑖−𝑛𝑖̅̅ ̅‖. ‖𝑛𝑗−𝑛̅𝑗‖
, (2.9)

26

causes desynchronization and also affects the quality of the camera fingerprint which reduces the

identification accuracies of the cameras. In order to increase the identification accuracies of

cameras, several approaches have been adopted to enhance the camera’s fingerprint. Chen and

Fridrich [8] proposed another approach to estimate the camera fingerprint and this has been

explained in Section 2.3.3.

2.3.4 Maximum Likelihood SPN

MLE was proposed by Chen and Fridrich [8]. In this work, instead of estimating the average of

the PRNU over several images as the camera fingerprint, MLE was used as the camera fingerprint.

Assuming the dark current to be insignificant, the noise residue in eqn. (2.4) can be further

expressed as,

The log-likelihood of the noise term in eqn. (2.10) can be expressed as,

The maximum likelihood estimate of K after the taking the partial derivatives of L(K), can be

expressed as;

 𝑊 = 𝐼𝐾 + £

(2.10)

 𝐿(𝐾) = −
𝑁

2
∑ 𝑙𝑜𝑔 (2𝜋𝜎2 𝐼𝑛

2) − ∑
𝑊𝑛 𝐼𝑛 − 𝐾⁄

2𝜋𝜎2/𝐼𝑛
2

𝑁

𝑛=1

⁄

𝑁

𝑛=1

(2.11)

 𝐾̂ =
∑ 𝐼𝑛𝑊𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
2𝑁

𝑛=1

(2.12)

27

The significance of eqn. (2.12) is that it gives a weighted sum of 𝐼𝐾 and this helps create a strong

presence of the PRNU in the camera fingerprint. The quality of the estimated fingerprint (𝑞) can

be measured by estimating the correlation (𝑐𝑜𝑟𝑟) between 𝐾 and 𝐾̂ . 𝑞 can be defined by using

the expression,

The PRNU are usually contaminated with artifacts due to in-camera processing techniques

such as compression, quantization, and color interpolation. There are artifacts embedded in the

PRNU due to the design of the imaging sensor, on sensor signal transfer. These artifacts are camera

dependent, unlike PRNU which could still have a similar estimate for cameras of the same model.

Most of these artifacts are caused by the demosaicing algorithms used in the cameras during color

filter interpolation. Since these artifacts are periodic in nature, they are eliminated by the zero-

mean operation. To zero-mean refers to finding the mean of each row or column and then subtract

from each element in the rows and columns respectively [47].

Despite the improvement over the Basic SPN using MLE SPN, the limitation mostly

associated with this method of SPN extraction is high contamination from scene details. The scene

content of an image has its high-frequency components whose values are far greater than the

frequency component of a clean SPN and therefore its presence highly contaminates the expected

SPN. In order to combat the issue of scene content, Li [9] developed six models for enhancing the

camera SPN. The next discussion focusses on the theoretical background upon which the proposed

enhancing models are based, the summary of the author’s achievements and current limitations of

the models.

 𝑞 = 𝑐𝑜𝑟𝑟 (𝐾, 𝐾̂) (2.13)

28

2.3.5 SPN using Li’ Enhancing Models

For the SCI, 30-50 flat images are captured for each camera and the SPN noise for each camera is

estimated as the average of SPNs. Natural images which may include high texture complexity

from these cameras will be randomly captured and their SPN are extracted. The decision on a

camera test image will be grossly affected if the extracted SPN of the test image consists of strong

details of its scene content. Contamination by scene content reduces the camera identification

accuracy. Secondly, the extraction of SPN will be computationally intensive if a huge number of

images are used. Therefore, in order to reduce the computational complexity, small parts of the

images are cropped to the same size and used in the extraction process. Cropping causes high

variation in SPNs and also reduces the number of SPNs components compared to when the original

size of the images are directly used in the extraction process. This also reduces the camera

identification accuracy. Therefore, the quality of the extracted SPN determines whether high

camera identification accuracy will be obtained. The work done by Chen et al. [50], attempted to

enhance the SPN by attenuating artifacts caused by color interpolation, compression, row-wise

and column wise operation. The work failed to deal with the limitation caused by the strong

presence of scene content. SPN enhancing models are proposed by Li [9] to address the

interference from the scene details.

The proposed models are based on the background knowledge that the magnitude of the

scene details is higher than the SPN. The hypothesis for the models in [9] is that ‘‘the stronger a

signal component in 𝑛 (the PRNU fingerprint), the more likely that it is associated with strong

scene details, and thus the less trustworthy the component should be’’. Weighting factors are

therefore used to assign less importance to the scene components in the wavelet domain. The

proposed six models are given in eqn. (2.14) to eqn. (2.19) respectively. The performance of each

29

model is determined by the value of the threshold parameter (𝛼) and 𝑛(𝑖, 𝑗) is the value of each

signal component in row (𝑖) and column (𝑗) of 𝑛.

 The model 6 given by eqn. (2.19) is usually avoided since it gives less significance to the

weaker components and associates more importance to the scene details. Models 1 to 5 can be

divided into three types. The types, corresponding models, threshold contribution to unenhanced

camera’s fingerprint in [9] are summarized in Table 2.1. It was reported by Li [9] experiment that

models 1-5 all have good results but Model 5 has the highest peak rate of 1040 out of 1200 at a

threshold value of 7. Phase sensor pattern noise has also been adopted in combating the

contamination by scene details and also introduced peak to energy correlation as the decision

parameter. This is explained in detail in Section 2.3.5.

 𝐌𝐨𝐝𝐞𝐥 𝟏: 𝑛(𝑖, 𝑗) =

[

𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

𝑒
−0.5

(𝑛(𝑖,𝑗)−∝)2

∝2 , 𝑖𝑓 𝑛(𝑖, 𝑗) >∝
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

−𝑒
−0.5

(𝑛(𝑖,𝑗)−∝)2

∝2 , if 𝑛(𝑖, 𝑗) < −∝]

 (2.14)

 𝐌𝐨𝐝𝐞𝐥 𝟐: 𝑛(𝑖, 𝑗) =

[

𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

𝑒−∝−𝑛(𝑖,𝑗) if 𝑛(𝑖, 𝑗) >∝
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

𝑒−∝−𝑛(𝑖,𝑗), if 𝑛(𝑖, 𝑗) < −∝]

(2.15)

 𝐌𝐨𝐝𝐞𝐥 𝟑: 𝑛(𝑖, 𝑗) =

[

1 − 𝑒−𝑛(𝑖,𝑗), if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

(1 − 𝑒−𝑎)(𝑒−∝−𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) >∝

−1 − 𝑒−𝑛(𝑖,𝑗), if −∝≤ 𝑛(𝑖, 𝑗) < 0

(−1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) < −∝]

(2.16)

30

 𝐌𝐨𝐝𝐞𝐥 𝟒: 𝑛(𝑖, 𝑗) = [

1 −
𝑛(𝑖,𝑗)

∝
, if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

−1 −
𝑛(𝑖,𝑗)

∝
, if −∝≤ 𝑛(𝑖, 𝑗) < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

]
(2.17)

 𝐌𝐨𝐝𝐞𝐥 𝟓: 𝑛(𝑖, 𝑗) = [
𝑒

−0.5
𝑛2(𝑖,𝐽)

∝2 , if 0 ≤ 𝑛(𝑖, 𝑗)

−𝑒
−0.5

𝑛2(𝑖,𝐽)

∝2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

] (2.18)

 𝐌𝐨𝐝𝐞𝐥 𝟔 ∶ 𝑛(𝑖, 𝑗) =

[

1 − 𝑒−𝑛(𝑖,𝑗), if 0 ≤ 𝑛(𝑖, 𝑗) ≤∝

(1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) >∝

−1 + 𝑒−𝑛(𝑖,𝑗), if −∝≤ 𝑛(𝑖, 𝑗) < 0

(−1 − 𝑒−𝑎)(𝑒−∝+𝑛(𝑖,𝑗)), if 𝑛(𝑖, 𝑗) < −∝]

(2.19)

Table 2.1. Model types and threshold contribution to un-enhanced SPN

Types of Transformation Model(s) Threshold’s Contribution

Linear 1 and 2
It gives the exact weights to n in the within -α to α.

It is the most conservative.

Non-Linear 3 It gives greater significance to SPN components on

the lower ends and less significance when closer to

±α. It is a moderate operation.

Inversely Proportional 4 and 5 It interchanges the order of the SPN magnitudes.

Weaker components are given greater significance

and it is considered to have a significant effect on

the existing magnitudes.

31

2.3.6 Phase SPN

The Phase SPN pattern noise proposed in [10], also addresses the problem or effect of scene details

on the PRNU. The approach explores the receiver operating curve characteristics to suppress the

effect of the contamination by the scene content.

The phase component of the noise residue Wj is obtained by taking the phase component

of the DFT of the SPN. Given, 𝑊𝑗′
= 𝐷𝐹𝑇(𝑊𝑗), the phase component of the PRNU can be

expressed as,

 W∅j=
Wj

|Wj|
, (2.20)

where, 𝑊𝑗 is the SPN of camera 𝑗. The overall SPN of a camera is then estimated by calculating

the average of all the phase components of SPN of each image from a camera and then find the

inverse DFT. This can be expressed as;

where y is the camera reference SPN and N is the total number of images per camera.

2.3.7 Weighted Averaging Based SPN

The work in [51] proposed another approach to account for the variation in the SPN estimate using

weighting averaging. The motivation behind their method is that the random noise in SPN of the

camera does not has the same variance across all images captured by the same camera device. Out

of the several other reasons, camera settings, focal length and shutter speed contribute to the

variation in random noise of PRNU. The goal of their proposed weighting averaging is to minimize

the estimation error due to this variation. The sum of the signal in a random noise, (𝑆(𝑗)) is

expressed in [51] as,

 𝑦 = 𝑟𝑒𝑎𝑙(𝐼𝐷𝐹𝑇(
∑ 𝑊∅𝑗

𝑁
𝑗=1

𝑁
), (2.21)

32

where 𝑤𝑖 is the optimal weight for 𝑖𝑡ℎ observation, 𝑠𝑖(𝑗) is the sum of 𝑆(𝑗) and the variance of

each observation (𝜎𝑖) and zero mean of the observation,𝑠𝑖(𝑗) = 𝑆(j) + 𝑟𝑖(j) ,𝑖 = 1, …𝑁 , 𝑗 =

 1,… 𝐿, 𝑟𝑖(j) is the random noise. Note that the 𝑠𝑖 (j) is column vector of the given image, 𝑖. The

optimal weight for 𝑖𝑡ℎ observation is expressed in [51] as,

The noise variance (𝑛𝜎) was proposed as,

In order to obtain the weight, we have to estimate (𝜎𝑖) and this is expressed as,

The method in [51] proposed the weighting averaging approach with two the basic SPN and also

MLE SPN and both are called weighted Basic SPN and weighted MLE SPN respectively. Given

that the PRNU of a given observation is 𝑟𝑖 , the weighted Basic SPN can be expressed as,

Also, the weighted MLE SPN can be expressed as,

where, 𝐼𝑖 is the intensity of each given image of a camera.

 𝑆(𝑗) = ∑ 𝑤𝑖 𝑠𝑖
𝑁
𝑖=1 (𝑗) ,

(2.22)

 𝑛𝜎(𝑗) = 𝑠𝑖 (𝑗) − 𝑠𝑖̅ (𝑗) (2.23)

𝑤𝑖 =

1

𝜎𝑖
2 (

1

(∑
1

𝜎𝑖
2

𝑁
𝑖=1)

)

(2.24)

 𝜎𝑖 = √∑ (𝑛𝜎(𝑗)−𝑛𝜎̅̅ ̅̅ (𝑗))
2𝐿

𝑗=1

𝐿
 (2.25)

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑎𝑠𝑖𝑐 𝑆𝑃𝑁 =
∑ 𝑤𝑖 𝑟𝑖

𝑁
𝑖=1

𝑁
 (2.26)

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝐿𝐸 𝑆𝑃𝑁 =
𝑁(∑ 𝑤𝑖 𝑟𝑖𝐼𝑖)

𝑁
𝑖=1

∑ 𝐼𝑖
2𝑁

𝑖=1

 (2.27)

33

2.3.8 Summary of Other State of the Arts Methods for Source Camera Identification

Apart from the four described commonly compared state of the art methods, there are other

approaches that have been proposed in literature. The work in [8] and [52] proposed the removal

of sharing components in the PRNU estimate. The motivation of their works was based on the fact

that there are artifacts of pipeline processing of cameras occurring in the estimated PRNU. In order

to suppress this artefact, they proposed the use of zero mean operation coupled with the use of

Wiener filtering of the PRNU estimate in Fourier domain. The aim of transforming features to

Fourier domain is to suppress the magnitude of the artifacts and hence strengthening the presence

of the PRNU. On the premise that the PRNU fingerprint is a Gaussian noise, the work of Li and

Lin [11] proposed the use of spectrum equalization algorithm. In their work, they proposed that

SPN is not likely to be periodic but more likely to have flat spectrum. Therefore, unlike the work

in [8] and [52] that attempted to suppress the magnitude of the artifacts in the Fourier domain,

they used an iterative means to detect unwanted peaks in Fourier domain. After the detection of

these peaks, they adopted smoothing of the spectrum of camera images by obtaining the mean of

local spectrum components. This was done to remove periodic artifacts and thereby, increasing the

quality of the SPN which will further increase the identification accuracies of cameras.

Furthermore, the work in [12] proposed the use of improved locally adaptive filtering instead of

the widely used wavelet denoising filtering. Also, they estimated the PRNU using true color

images with the use of weighted averaging proposed in [51] for the PRNU estimation. The work

in [12] reported superior performance than the use of wavelet denoising filter with weighted

averaging and also with other compared state of the art methods. Instead of wavelet-based

transform, the work in [53] adopts dual tree complex wavelet transform while the work in [54]

adopts coupling and adaptive filter. Furthermore, the work in [55] proposed the enhancement of

34

the PRNU pattern alignment while the work in [56] proposed a low dimensional PRNU features

for effective SCI.

Moreso, some deep learning methods based on convolutional neural networks have been proposed

in literatures [19, 28, 29, 38, 57-59] for source camera identification and some have been reviewed

under motivation for this work in Section 1.2.

2.3.9 Comparative Analysis of Some Existing SPN Extraction Method on the Effect of Images

Size on Identification Accuracy

The motivation behind this section is to carry out an experiment using some of the states of the art

method to establish the effect of PRNU of small image sizes on camera identification accuracy.

The motivation behind this is to establish our objective of proposing deep learning approaches for

small image since PRNU fingerprint becomes weak for small image sizes. The reference SPN for

each camera is prepared using 50 images per camera. 50 flat and natural images were used per

camera for both training and testing phases respectively. The images were cropped at different

resolutions including 128 × 128, 256 × 256 and 512 × 512. The reference SPN is the compared

with 50 test images per camera. There are different decision parameters usually used for the

matching between the reference PRNU of cameras and the PRNU of their testing images. These

include normalised correlatiion, peak to energy correlation (PCE) and circular cross-correlation

norm (CCN). CCN is the improved version of PCE. In PCE, only positive values of correlation

between the PRNU fingerprints of cameras and the PRNU of cameras of testing images were

considered. However, CCN also takes into account, the negative values of correlation [10].

Normalized correlation uses varying thresholds while PCE and CCN use constant threshold [60].

PCE and CCN further suppresses the problem of periodicity in SPN than when normalised

correlation is used. Moreso, in [61], channel-wise correlation is used for source camera

35

identification with PRNU-based techniques. This means that the correlation coefficient is

calculated for each image channel (Red, green and blue). This is found to achieve better result, and

this is associated with the fact that the green component consists of a significant amount of the

SPN signal. In this experiment, PCE is adopted as the matching parameter and can be defined as

the ratio of the squared correlation divided by sample variance of the circular cross-correlations.

The PCE can be expressed as,

where, T is the sum of the pixels’ intensity in the testing image, p is the cross-correlation between

the reference and the test image, ε is a small number of correlation entries around the maximum

number of p.

 PCE(I, K̂) =
max (p)2

1

T−ε
∑ p[t]2t=1….T∉ε

 (2.28)

36

2.3.10 Experimental Settings

Table 2.2. Cameras Used in Experiment, Sensor’s Type, Resolution and

Image Format

Cameras Sensor Size

(mm)

Native Resolutions Image Format

Canon_Ixus70_0 1/2.5” 2304 × 3072 JPEG

Canon_Ixus70_1 1/2.5” 2304 × 3072 JPEG

Sony_DSC-H50_0 1/2.3” 2592 × 3456 JPEG

Sony_DSC-H50_1 1/2.3” 2592 × 3456 JPEG

Nikon_CoolPixS7 1/1.73” 3264 × 4352 JPEG

Samsung_L74wide 1/2.5” 2304 × 3072 JPEG

Table 2.3. Experimental Parameters and Descriptions

Parameters Descriptions

Format JPEG

Number of reference images per camera 50

Number of test images per camera 50

Number of cameras 6

Cropped images sizes 128 by 128, 256 by 256 and 512 by 512.

Nature of reference images Flat Images From Dresden Database

Nature of test images Natural images (including dark images)

Peak Threshold value for Model 4 and 5 18

37

Table 2.4. Identification accuracies of the four SPN methods (%)

Image

Resolutions

Methods Canon_Ix

us70_0

Canon_Ix

us70_1

Sony_

DSC-

H50_0

Sony_D

SC-

H50_1

Nikon_Cool

PixS710_0

Samsung

_L74wid

e_0

Average

accuracies

512×512 Basic SPN 100 100 100 100 100 100 100

MLE SPN 100 100 100 100 100 100 100

Phase SPN 98 98 100 100 100 100 99.3

Model 4 100 98 100 96 94 98 97.7

Model 5 100 100 100 98 100 100 99.6

256×256 Basic SPN

MLE SPN

94

94

94

96

100

100

100

100

92

98

100

100

96.7

98.0

Phase SPN 94 96 100 100 90 96 96.0

Model 4 88 90 98 94 84 90 90.7

Model 5 96 94 100 96 96 100 97.0

128×128 Basic SPN

MLE SPN

82

84

86

86

96

100

92

92

74

76

76

76

69

85.7

Phase SPN 88 82 98 92 68 80 84.7

Model 4 78 70 94 80 62 62 74.3

Model 5 84 84 98 86 76 70 83.0

38

2.3.11 Results and Discussion

The results for the four described methods are shown in Table 1. The models 4 and 5 are achieved

when 𝛼 = 18. From the experiment, it can be deduced that MLE and Model 5 of Li’s models

performed better. Also, the identification accuracy decreases up to 62% at 128 resolutions. The

work done so far shows the camera identification accuracy using PRNU decreases with increase

in the size of the image. Also, the identification accuracy can be very low for images with high

texture complexity.

39

Chapter 3 :

Review of Deep Learning Algorithms and Techniques

3.1. Historical Background of Artificial Neural Network

Artificial intelligence is the science that involves making machines to think like humans. In 1943,

McCulloch and his co-author Walter Pitts proposed the brain neurons to have similar behavior to

a tuning machine. Based on the experiment carried out by them, they came to the discovery that

the brain neurons are more than a two-state network. An artificial neural network (ANN) was

developed. This was further developed by Donald Hebb in 1948 by bringing an alteration to the

already proposed ANN so as to explain how the ANN learns. This he was able to achieve by

associating an independent weight to each input of the network. In 1962, another learning

algorithm called perception was introduced by Rosenblatt in 1962. Perceptron is used for the

classification of a given set or situation into two groups. This is done by viewing them on a

hyperplane using some functions once they could be made to be linearly separable. This means

perceptron has a limitation in classifying sets of groups when they are not linearly separable. Also,

it could not be used to represent inputs that are dependent on XOR and XNOR for their generation

[62].

 In the meeting of researchers in Dartmouth in MIT, John McCarthy later came up with the

term artificial intelligence. It was in this meeting, the principle of the convergence theorem was

further substantiated as a learning algorithm which could be used to complement the weakness in

the use of perception [63]. By the year 2000, more researchers found out that human machines

could be extended beyond human intelligence to more real-time world problems. Minsky and

Papert [64], it was reported that the use of neural networks gradually becoming limited due to the

40

fact that they becoming inefficient to learn deep features and hence results to low discriminating

power against testing inputs. ANN is, therefore, referred to as a shallow architecture. The basic

principle of ANN will be more explained in Section 3.2.1.

3.2.1 Artificial Neural Network

In order to build an ANN, the number of neurons, the associated weights, biases, activation

function and also the learning algorithm for training the network are essential things to be

considered. The neuron is a core element in the processing of information. In order to explain the

working principle of ANN, we will consider the simplest ANN shown in Figure 3.1[34]. It consists

of only one neuron and with three inputs; 𝑥1, 𝑥2, 𝑥3 and the intercept term, 𝑏. The associated

weights of the input values are denoted as 𝑤1, 𝑤2, 𝑤3 and ℎ𝑤,𝑏(𝑥) is the output of the neuron. The

output ℎ𝑤,𝑏(𝑥) depends on the kind of activation function used.

Figure 3.1. Modified Diagram of a Single Neuron.

41

The output of the network in Figure 3.1, can be expressed as,

where f(.) is the activation function.

The neural network architecture is formed by the combination of several simple neurons.

The output of a neuron is usually fed as the input to the corresponding neuron. We use the Figure

3.2 to explain the formation of the neural network. Figure 3.2, consists of a neural network with

three layers. The layers include the input layer (Layer 1), the hidden layer (Layer 2) and the output

layer (Layer 3). The layers are denoted by L1, L2 , L3 , respectively.

Figure 3.2. Three Layered Neural Network Architecture [34].

In the first layer, three are inputs and a bias term. This layer is referred to as the input layer.

It should be noted, in most network architecture, we use the bias term to be +1 so as to leave nth

actual inputs to the neurons. Each of the inputs is now connected to the neurons of the next layer

excluding the bias of the layers. This second layer is called hidden layer. It is called hidden layer

because its outputs are hidden both to the input and the output layers. The layer 3 with a single

 hw,b(x) = f(∑ wixi
n
i=1 + b) (3.1)

42

output for the case of this example is called the output layer. It should be noted that the output of

a neural network could be more than one. The numbers of neurons in a layer excluding the intercept

term are called the units of the layers. All the units in a layer are connected to the next layer through

weights. Each layer has its own collection of weight and is represented in form of a matrix. Given

that l denotes a particular layer, the weights associated to the later can be denoted as Wl. The two

parameters of the network are the weights and the biases and are usually represented as (W, b).

For the ANN under consideration, (W, b) denotes(W1, b1, W2, b2) for a three-layered ANN. The

output of a layer is hypothesized using an activation function and they are represented as al. These

new outputs from each layer are referred to as the learned features. These learned features serve

as inputs to the next layer [34]. Minsky and Papert [64], as stated initially, reported that the use

of neural networks gradually becoming limited due to the fact that they becoming inefficient to

learn deep features and hence results to low discriminating power against testing inputs. This

necessitated the learning of deeper architectures.

3.2.2 Activation Functions

There are different forms of activation functions that help to map the input to an output. Mostly

used activation functions in most learning algorithms are n on-linear functions [34]. The most

commonly used in deep learning algorithms are a sigmoid or logistic function, Tanh function and

the rectilinear unit function (ReLU). The sigmoid function can be expressed as,

 f(z) = Sigmoid function =
1

1 + exp (−z)

 (3.2)

43

The hyperbolic or Tanh function can be expressed as;

Lastly, the ReLU is given by the expression;

where 𝑧 is the weighted input or net input. It should be noted that sigmoid function is usually used

when input values ranges between 0 and 1 while Tanh function is usually used for input values

with the ranges of -1 to 1. Another activation function very close to the Tanh function is the Sofsign

function (𝑓(𝑧) = (1 1 + |𝑥|⁄) [65]. Unlike Tanh, it uses polynomial. It also produces smoother

asymptotes compared to Tanh function. It works with input values that ranges around 0 and also

-1 and 1. Therefore, it has both linearity and non-linearity properties. In Krizhevsky et al. [66] ,

the ReLU, was reported not to be the global optimal result required but several combination of it

may yield good result and satisfactory efficiency. In [67], it was also reported to yield better

performance and faster convergence speed when trained by backpropagation and also as it has the

tendency of yielding higher classification accuracy. ReLU activation is mostly used when the

neural network is of a very large inputs. Its ability to generate a sparse representation makes it

achieves higher efficiency [68]. It should be noted that the logarithm of the sigmoid function in

eqn. (3.2) is called log sigmoid and it is usually used instead of the normal sigmoid function so as

to make its computation faster. Other forms of non-linear activations used for deep learning

modules include the Maxout, Softplus and, Soft sign functions. Maxout function outputs the

maximum unit at each update in the hidden layer. According to [69], Maxout and Tanh functions

are most applicable to the nature of data that satisfy the negative saturation property. The Softplus

function has smoothness property and this enables it to be suitable for sparsity regularizations in

 f(z) = Tanh function =
ez − e−z

ez + e−z
 (3.3)

 f(z) = ReLu = max (0, z) (3.4)

44

deep learning modules such as stacked autoencoders [70]. Its smoothness property is due to its

having a positive bias gradients. Generally, ReLU, Softplus, and Sigmoid functions produce a

robust and invariant representation of features when as activation functions for networks with

sparsity regularizations.

3.2. Introduction to Deep Learning and its Challenges

The need to extract robust features has prompted the need to explore more deep architectures rather

than shallow architectures that have been earlier adopted in many applications. Any neural network

with just a single hidden layer can be referred to as shallow architecture. Other examples of shallow

architectures include SVMs, kernel regression, and multilayer perceptron. The shallow

architectures are limited in that they have limited hidden layers and hence, has less efficiency [71].

It has been reported in that deep architectures are always more efficient than shallow architectures

due to their ability to represent the input data with more robust features [72]. Digital signal

processing including speech, image, and video signals requires deep architectures for them to be

able to extract robust or rich features capable of having very high discriminative power for

classification purpose. Several non-linear processes are involved in deep architectures and the

output of a layer is fed as input to the next layer for deeper features extraction. This makes it

possible to learn deep features based on the several abstraction levels and the extracted features

are robust for classification problems. Deep neural network (DNN) can be defined as a network

consisting of many layers through which feature hierarchies are learned. It will also be necessary,

to know the background or the origin of deep classifiers [26].

 The first developed deep network was used for the classification of handwritten digits. This

was achieved using ordered or ranked multi-layered network. Despite the use of deep architectures,

the obtained accuracy was low compared to using ANN with just one or two hidden layers. The

45

limitation in the use of the developed deep network was due to difficulty in the training of features

across different abstraction levels of the network. Though backpropagation with gradient descent

had been developed since for training NN [73] but there was still higher classification error and

this was attributed to unavailability of sufficient data for pre-training of network and also deficient

algorithms [74]. Due to this limitation, the SVM was particularly used for training of NNs. The

major challenge with the use of SVM is that it is only efficient for data that are linearly separable

on a hyperplane. It cannot adequately learn NN with complex architectures and majorly applicable

for linear data.

 Despite these limitations, several types of research were still in progress regarding improving

the performance of deep networks [75]. In 1992, Schmiddhuber [76] developed deep belief

network that could learn a compressed representation of input data and it uses backpropagation

with gradient descent as the optimization algorithms. However, the approach has the limitation of

vanishing gradient. The introduction of the unsupervised learning algorithm in 2006 by Hinton

kick-started the first breakthrough in overcoming some of the previously mentioned limitations

[71, 77]. By unsupervised learning, we mean using learning algorithms that the pre-training did

not involve the pre-knowledge of the targets of the classes involved in the training. Specifically,

in their work, they made use of deep generative models [77]. The basic concept behind this

approach is called the layer-wise pre-training. This has to do with training an input signal through

several hidden layers without the knowledge of class levels. The idea is to learn robust features at

each layer of the network. These features are called deep features. The output features at each

hidden layer are extracted and fed in as the input to the next hidden layer. The complexity of a

deep neural network is linearly proportional to the number of the hidden layers that are used in the

developed deep architecture. The optimisation of weights at each hidden layer of the network is

46

dependent on the learning algorithm adopted. Finally, their unsupervised pre-training algorithm

will then be fine-tuned by connecting multilayer perceptron classifier with backpropagation at the

last layer to predict the output [77].

 However, there are some limitations with their approach due to weights optimization of the

network. Firstly, the complexity of the weight optimisation by teasing especially, the top two layers

results in overfitting during the training process. Secondly, the features in the lower abstraction

levels may not be useful and connecting them with a supervised network can be tedious and

difficult in tuning to achieve higher discriminating power [77]. The classification accuracy of a

deep architecture can be improved by careful scaling of the input features and also the kind of

activation function used [77]. In order to resolve the problem associated with weights optimisation

in the DNN, In [78], Hessian-free second order methods have been proposed to resolve the

vanishing of the gradient when pre-training is done layer to layer. For recurrent networks and the

restricted Boltzmann machine, unsupervised pre-training has also been widely used in resolving

the problem of weight optimisation [79, 80]. It should also be noted that good result can also be

achieved when features are correctly ranked [81]. This has a way of improving the gradient

obtained since there are millions of parameters used for training. Most of the methods described

above used a constant learning rate during the learning process but in Cho et al [82], controlled

learning rates were used for training an RBM. It has also be shown in the work done in [83], that

the performance of DNN can be significantly improved by the correctly choosing the initial

parameters in the first hidden layer. It has also be shown in several kinds of literature [65, 84] that

the number of units used in each hidden layer greatly determines the robustness of the features and

eventually the classification error. As have mentioned earlier before, DNN is computationally

expensive. In order to reduce the number of features used in processing, it should be noted that

47

not all features of an image are used for classification. There are some certain features that are in

some spatial regions of images are good for generalisation. The features at these regions can be

aggregated statistically. This process of aggregating features is called pooling. The common

pooling techniques are the mean and max-pooling. This has also be shown in [79] to have a

significant contribution to achieving high discriminating power during testing. Also, it has been

reported in [85] that stochastic gradient on mini batches of several training examples is the best

optimisation technique. Due to computational complexity, stochastic gradient using mini batches

on large dataset are implemented online. Furthermore, when large dataset with labels is available,

it has been reported that supervised training can replace by supervised learning with the same or

little less performance compared to the unsupervised pre-training. An example of the work done

using this approach is the ImageNet task. Due to a large dataset, it was accomplished by a

combination of several traditional computers. In their [85], more than a 100 million training

examples are used and this was made evident through the use of an efficient graphics processing

unit (GPU) [66]. Another variant of autoencoder is denoising autoencoder. AEs adds noise to the

inputs to the layers and this has a way of learning robust features by expanding the inputs. This

has been reported to yield a very significant result when compared with just an encoder. The ability

of a DNN to automatically learn features has made it to be widely adopted for several applications

including hand digit recognition, face recognition [20], image classification [21], fingerprint

liveless detection [22], automatic malware signature generation and classification [23], modulation

format identification in coherent receivers [24] and classification of hyperspectral images [25]. As

far as we know, it has not yet been widely adopted for camera identification. Though deep learning

methods such as convolutional neural network have been used for camera model identification

deep learning for source camera identification is still at a preliminary stage. Some of the objective

48

functions and optimisation techniques used in deep learning algorithms are discussed in Section

(3.3) and Section (3.4) respectively.

3.3 Objective Functions for Deep Learning

The objective functions are also called the loss functions, optimization score functions or cost

functions. The objective functions are usually used as a measure of mismatch between an input

data and the reconstructed data when given into a neural network. It could also be used to estimate

the error between training data and the testing data. The goal is so that the minimum error is

incurred during training. The mostly used conventional cost functions include the sum of the

squared errors (SSE), cross-entropy (CE) and the exponential cost functions (EXP) [86, 87].

Classification error is also a measure of mismatch between a training data and the target. The

classification error is defined as the ratio of the number of misclassified target samples that belong

to a class to the total number of samples of that class. The SSE is defined as the sum of the squares

of the difference between a training data and the reconstructed data or the target data. Cross-

entropy, on the other hand, uses adaptive sampling to estimate the error through stochastic

optimisation [88]. It measures the average number of wrong predictions between the probability

distributions of the training and the target or reconstructed input in the case of autoencoders. The

EXP cost function is a derivative of error entropy. It incorporates the ideas of both cross-entropy

and the square mean square error. The SSE, CE and EXP cost functions can be expressed as given

in eqn. (3.5) to (3.7).

49

 LSSE(x, x̂) = ∑(xn − x̂n)
2

n

 (3.5)

 LCE(x, x̂) = ∑(xn

n

ln(x̂n) − (1 − xn) ln(1 − x̂n)) (3.6)

 LEXP(x, x̂) = μ∑
1

μ
(xn − x̂n)

2

n

 (3.7)

where, xn and x̂n are the nth input and output vectors respectively. μ is the extra parameter added

to eqn. (3.5) to form eqn. (3.7). In [86], comparisons were made for SSE, CE and EXP using

stacked autoencoders. Based on the experimental results in [86], it was reported that SSE is a good

cost option for pre-training process. The work in [86] reported SSE to give the lowest error and

also variances between the hidden layers of the stacked autoencoders. Also, the mean square error

decreases progressively down the layer and this simply means the reconstruction error of the

learned features decreases with increased hidden layers. For the case of stacked autoencoders, the

CE and the EXP were reported to have less performance compared to SSE. In [86], further

comparison was made between the SSE and CE. One of the advantages of average cross-entropy

as stated in [89], the presence of the ln (.) function. This function takes into an account, the

closeness of predictions unlike, the classification error that only considers wrong predictions. For

this reason, CE is considered to be more detailed compared to SSE. As earlier stated, SSE is

considered to be a good choice of loss function when used with stacked autoencoder. However,

wrong predictions were given more emphasis. In summary, the classification error only considers

the wrongly classified targets and therefore is a very crude approach for measuring generalisation

error. However, SSE and CE are usually used as the loss functions during the training process

while the classification error is preferable as the loss measure between the trained data and the

50

testing data. This is because during, generalisation, the interest is to correctly predict the test

targets. For neural networks where backpropagation is used for fine-tuning, there will be a need to

calculate the gradients of the cost functions and SSE and the CE affect the calculation of the

gradient. Therefore, for most applications that adopt NNs, the SSE and the cross-entropy are

considered suitable to measure the loss measure during training while the classification error is

suitable for estimating the network generalisation error. Also, the cross-entropy loss is usually

used when softmax classifier is used for supervised fine-tuning because it enables the changes in

weights of the network not to have the tendency of decreasing to zero. When softmax classifier is

used with cross-entropy loss, it is usually called the categorical cross-entropy loss.

3. 4 Supervised Optimisation Algorithms for Deep Learning

Optimisation techniques are used for updating hyperparameters needed for training DNN. There

are many optimisation algorithms that have been explored for training DNN. The optimisation

methods that have been used include Newton Rapson's method, Broyden Fletcher Goldfarb

Shannon algorithm, Conjugate Gradient and stochastic gradient descent (SGD) based learning [79,

80]. The updates of parameters by these methods are usually based on a continuous search for the

global minimum that will yield the lowest cost of the objective function [90]. There are other

parameters used for DNN modules but the parameters that are used for learning process prior to

the DDN models are called the hyperparameters. Examples of hyperparameters include the

learning rate, mini-batch size, the number of epochs used for training DNN and L2 weight

regularization parameter [91]. Each of the optimisation algorithms has both strengths and

limitations. Also, some are suitable under some conditions while others are not [91]. The stochastic

gradient-based learning algorithms have been widely used [92, 93]. This is due to their simplicity

and low computational cost especially for problems with large training samples. One of the

51

limitations with the use of SGD is the difficulty in setting its hyperparameters so as to achieve

global minimum when minimising the cost function. SGDs involve trial and error method and as

a result, it makes SGDS to be computationally ineffective. In order to address this weakness,

validation set of sample is usually used for modeling and parameter selection. Also, SGDs are

difficult to be trained using GPU [90]. This is because GPU involves parallel computing and SGDs

have internal computations without a specific order. Despite these limitations, SGDs are still

effective and easy to implement for large training samples. In [71, 77], SGDs are considered

inappropriate for training DBNs over several hidden layers. The limited Broyden Fletcher

Goldfarb Shannon and conjugate gradient are considered to be better optimisation algorithms than

the SGDs for layer-wise pre-training because convergence is easy to be attained and can also be

trained on GPUs. Provided that there is the availability of large computer clusters, multicore GPU

and central processing unit, these methods are considered to be computationally slow. This is

because a single update requires computation over the entire training samples [94]. This weakness

can be addressed using the mini-batch training procedure. This has to do with updating parameters

using a fraction of the training examples. This approach is now considered too computationally

fast for large training datasets. It should also be noted, that the appropriate optimisation technique

to be used may be dependent on the type of DBN module or the size of the dataset. Limited

Broyden Fletcher Goldfarb Shannon algorithm has been considered to be highly suitable for low

dimensional images and usually adopted with problems using CNN. Conjugate gradient, on the

other hand, is good for high dimensional images [90]. Despite the limitations of SGDs, they still

have low classification error when combined with line search and large mini-batch training. Also,

the experiment carried out on the MNIST dataset in [90] shows that SGDs require that the learning

rate has to be low in order to capture useful features at the hidden activation for noisy inputs. As

52

stated in [95], the learning rate is usually considered as the most significant learning parameter to

achieve the lowest classification error rate. The backpropagation with gradient descent method

was used in [75] for automatic voxel-wise brain parcellation based functional connectivity using

SSAE.

However, the gradient descent is considered to be one of the most widely used algorithms

in most of the deep learning modules. In this section, we will review some strengths and

weaknesses of gradient descent optimisation algorithms. There are several gradient descent

variants used in deep learning techniques. The goal of the optimisation algorithm is to minimise

the objective or cost function (J(θ)). θ represents the parameters of the cost function. The idea is

to obtain the gradient of the cost function to be zero. This goal is practically not achievable but we

can decrease the cost function close to zero, till we can obtain a local or global minimum. There

are several variants of gradient descent optimisation algorithms such as the batch gradient descent,

stochastic gradient descent, mini-batch gradient descent, momentum, Nesterov accelerated

gradient, Adagrad, Adadelta, RMSprop and Adam. In the following sub-sections, the overview of

the ideas and limitations of these optimisation methods [96] will be discussed.

3.4.1 Batch Gradient Descent

In batch gradient descent (BGD), a single update is carried out over the dataset. This can be

expressed as given in eqn. (3.8). η is the learning rate and ∇θ is the gradient of the cost function.

The number of steps to be taken to reach a local or global minimum is determined by the η. One

of the disadvantages of the BGD is very slow computation since only update over the entire dataset.

This also makes it difficult for online training. Despite the computation demand, there is higher

probability for the gradient to converge at a global minimum, unlike some other methods that could

stick at a local minimum.

53

3.4.2 Stochastic Gradient Descent

Unlike the BGD, In SGD, an update is carried out for each sample in the dataset. This helps to

eliminate the problem of redundant computation demands of BGD. It makes it possible to perform

online training since, for every single update, the gradient is computed. Given that n is the index

of the training sample, x(n) and y(n) as the training data and targets respectively, SGD can be

expressed as,

The advantage of the SGD is that, randomness compared to using just a single update as in BGD.

It is faster to implement. Despite these advantages, the SGD has the tendency of missing the global

minimum because of overshooting. In order to aid convergence of SGD, the learning rate has to

be very small so as to increase the number of steps to be taken over the entire dataset. Shuffling of

the training dataset for each update is an essential step to further enhance the optimization process.

3.4.3 Mini- Batch Stochastic Gradient Descent

In order to reduce the training time for huge training dataset, another approach is to divide the

entire training dataset into groups called mini-batches. This approach makes the optimization faster

compared to both the BGD and SGD. How faster an update is done is determined by the mini-

batch size (𝑁𝐵). The mini-batch stochastic gradient descent (MBSGD) can be expressed as,

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃) (3.8)

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃, 𝑥(𝑛), 𝑦(𝑛)) (3.9)

 𝜃 = 𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃, 𝑥(𝑛: 𝑛 + 𝑁𝐵), 𝑦(𝑛: 𝑛 + 𝑁𝐵))

(3.10)

54

The mini-batch size to use vary for different applications but for most deep learning applications,

the mini-batch size usually set with the range of 50 to 256. Another advantage of using mini-batch

gradient descent is that it makes the implementation of parallel computing easier to be carried out

using the GPU. Though SGD can also be implemented on GPU but it is more demanding due to

the need for synchronization after every sample update.

3.4.4 Momentum

Despite the benefits of using mini-batch gradient descent, obtaining convergence to global

minimum is not guaranteed. There are still some challenges to combat so as to enhance the

optimisation process. One of such challenges is how to optimally select the learning rate. The

learning rate is a principal factor that determines the rate of convergence to either local or global

minimum. Too small learning rate means that it will require a longer time to reach convergence

and too large learning rate could lead to jumping or skipping the global minimum. Therefore, one

of the gradient descent-based optimisation technique is the use of momentum. The word

momentum literally means impetus for a given object. Therefore, the function of momentum is

that it helps to speed up the SGD optimisation. It adds a fraction of a past update (𝛾) to the next

update. The new estimation of parameters can be expressed as,

Momentum helps to increase the rate at which global minimum is reached and also helps to

dampens oscillation.

3.4.5 Nesterov Accelerated Gradient

There is a need to control the rate at which the momentum aids the rate of convergence to the

global minimum. This is to regulate the rate at which the updates speed up to convergence.

 𝜃 = 𝛾𝜃 − (1 − 𝛾). 𝛻𝜃𝐽(𝜃, 𝑥(𝑛), 𝑦(𝑛))

(3.11)

55

Nesterov accelerated gradient helps to give a fore-knowledge to the momentum term. Given a

momentum term (𝛾), in order to calculate the rate of changes in the position of the parameters for

the new update, a rough estimation of the new set of parameters are made using the previous

parameters. The next parameters to be estimated can be expressed as,

where v𝑛 can be expressed as,

The aim of the Nesterov accelerated gradient is to make necessary corrections where there is a big

jump in the gradient of the cost function while using momentum. This helps to improve

generalisation performance. It is reported in [96], that Nesterov accelerated gradient improved the

performance of recurrent neural networks.

3.4.6 Adagrad

Adagrad means adaptive gradient descent. This simply means that the learning rate is not constant

for all updates. When learning a dataset, not all the features of the dataset have greater contribution

to guarantee better generalization are achieved during training instances. These features show up

occasionally and therefore, they are referred to as infrequent features. There are also features that

carry less information necessary for better performance and may show up more frequently during

training instances. These features are called frequent features. In order to ensure more significance

are given to the infrequent yet important features, the higher learning rate is attributed to them so

as to increase the number of updates for those features. Adagrad is usually suited for datasets with

sparse features because, in most applications, sparse features are more useful for improved

performance. Therefore, the usefulness or the suitability of the Adagrad optimization algorithm is

 𝜃 = 𝜃 − 𝑣𝑛 (3.12)

 𝑣𝑛 = 𝛾𝑣𝑛−1
+ 𝜂. 𝛻𝜃𝐽(𝜃 − 𝛾𝑣𝑛−1

, 𝑥(𝑛), 𝑦(𝑛)) (3.13)

56

also dependent on the nature of the training data. In Adagrad, instead of using the same learning

rate to learn parameters, the learning rate is changed at every given step size, 𝑙. Given that 𝑖 =

1,2,… 𝑙, the newly learnt set of parameters can be expressed as,

The value of the learning rate usually used in literature is 0.01[96]. The learning rates for all the

step sizes are automatically set. One of the disadvantages of using Adagrad is that the learning rate

decreases to a point where important features could no longer contribute to better generalization.

3.4.7 Adadelta

In order to address the limitation of Adagrad optimization algorithm, Adadelta helps to put a

limitation on the monotonic decrease of the learning rate. In Adagrad, the all the past gradients

were used in determining the next update but Adadelta restricted the square of the gradient to a

fixed length and uses the decaying exponential of all the accumulated squared gradients, 𝐸𝑣[𝑔
2]𝑛.

𝐸𝑣[𝑔
2]𝑡 depends on previous and the current update and can be expressed as,

 𝐸𝑣[𝑔
2]𝑛 = 𝛾𝐸𝑣[𝑔

2]𝑛−1 + (1 − 𝛾)𝑔𝑛
2

(3.15)

The Adadelta update rule can be expressed as,

The new parameter to be estimated can be expressed as,

 𝜃𝑙+1,𝑚 = 𝜃𝑙,𝑚 −
𝜂

√𝛻𝜃𝐽(𝜃𝑚)

(3.14)

 ∆𝜃𝑡 = −
𝑅𝑀𝑆[∆𝜃]𝑛−1

𝑅𝑀𝑆[∆𝜃]𝑛
𝑛

(3.16)

 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (3.17)

57

𝑅𝑀𝑆 is the root mean squared error criterion of the gradient. The expression in (3.17) for

estimating the next set of parameters is not dependent on the learning rate.

3.4.8 RMSprop

Adadelta and RMSprop are adaptive techniques to improve the Adagrad optimization algorithm.

It also aimed at reducing the drastic diminishing learning rate that occurs with Adagrad

optimization algorithm capable of stopping the learning process. It has the same derivation steps

compared to that of Adadelta. The RMSprop average squared gradient can be expressed as,

The new parameter to be estimated can be expressed as,

3.4.9 Adam

The full meaning of Adam is Adaptive Moment Estimation. This also uses adaptive learning rates

for each parameter like the AdaDelta and RMSprop optimization algorithms. As earlier discussed

while discussing AdaDelta and RMSprop, the decaying exponential of the sum of the squared

gradients of both the previous and current updates was considered. One of the ideas used in Adam

optimisation algorithm that makes it differs from both AdaDelta and RMSprop optimisation

algorithms is the addition of the decaying exponential of the gradients similar to the principle of

adding momentum to SGD. It uses the mean (𝜇𝑛) and the variance of the gradients (𝑣𝑛) in its

implementation. The mean and the variance are also called the first and second moments of the

gradients respectively 𝜇𝑛 and 𝑣𝑛 can be expressed as given in eqn. (3.20) and eqn. (3.21)

respectively.

 𝐸𝑣[𝑔
2]𝑛 = 0.9𝐸𝑣[𝑔

2]𝑛−1 + 0.1𝑔𝑛
2 (3.18)

 𝜃𝑛+1 = 𝜃𝑛 −
𝜂

√𝐸𝑣[𝑔2]𝑛)+∈

(3.19)

58

𝑘1 and 𝑘2 are constants chosen very close to 1. Unlike AdaDelta and RMSprop, Adam adopts bias

correction steps when estimating 𝜇𝑛 and 𝑣𝑛. This is because 𝜇𝑛 and 𝑣𝑛 are usually biased towards

zero. The Adadelta update rule can be expressed as,

 𝜇𝑛 = 𝑘1𝜇𝑛−1 + (1 − 𝑘2)𝑔𝑛

(3.20)

 𝑣𝑛 = 𝑘1𝑣𝑛−1 + (1 − 𝑘2)𝑔𝑛
2

(3.21)

 𝜃𝑛+1 = 𝜃𝑛 −
𝜂

√𝑣̂𝑛+∈
𝑚̂𝑛

(3.22)

59

Chapter 4

Stacked Sparse Autoencoder for Source Camera Identification

In this chapter, we proposed the use of deep learning technique called stacked autoencoder to solve

the instance-based source camera identification by using PRNU fingerprints. The PRNU

fingerprint is proposed as the input data for the stacked autoencoder because it is unique to the

individual camera device. We have explained comprehensively in Section 1.2, the motivation for

the proposed stacked sparse autoencoder. SSAE has been used successfully for the digit

classification since each of the images consists of the same digit value. Therefore, for source

camera identification, stacked autoencoder is considered suitable since there is a correlation

between PRNU of images of the same camera instance. To the best of our knowledge, we are the

first to present the possibility of using deep learning module based on SSAE to solve source camera

identification problem. Therefore, we compared our results with some of the states of the art

methods for source classification. Using the proposed method, we can achieve good generalization

performance without the use of a huge dataset usually used in many deep learning

implementations. Therefore, the proposed method is computationally effective.

The rest of Chapter 4 is organized as follows. Section 4.1 introduces the working principle

of autoencoders. Section 4.2 describes the architecture of the proposed SSAE for source camera

identification. Section 4.3 presents our experimental evaluation on Dresden database, which

includes, the datasets description, parameters selection for SSAE, results analysis and comparative

study with four states of the art methods. Section 4.4 summarises the work and its contributions.

60

4.1 Working Principles of Autoencoders

AE is a neural network that has an auto-associative architecture [20, 34]. Its training is done in an

unsupervised manner where input data can be trained without the knowledge of the data labels. In

this case, the training samples are not labeled and the expected values at the output are same as the

input values. Backpropagation technique is adopted to adjust the weights of the network. Given 𝑥

as an input, an autoencoder output 𝑥 ̂ is approximate of the input. Figure 4.1 shows an example of

an autoencoder that learns a function,𝑥 ̂ as the as an approximate of the input. It consists of three

layers: input, hidden and output layers. The circles with label “+1” are bias units while the circles

with label 𝑥𝑖 are the inputs to the autoencoder. There are three inputs and one intercept term. The

circles with label 𝑥̂𝑖 represent the output in which the output 𝑥̂𝑖is similar to 𝑥𝑖. The autoencoder

attempts to learn a function ℎ𝑤,𝑏(𝑥) such that ℎ𝑤,𝑏(𝑥) ≈ 𝑥 . 𝑊 represents the weight of the

network and 𝑏 is the bias. In this case, the function ℎ𝑤,𝑏(𝑥) is trained to give a compressed form

of the input as the number of hidden units is lesser than the number of input units.

Figure 4.1. An autoencoder.

Given AE training examples to be {x1 , x2 , x3 , x4 , … . }, then xi = yi where, xi ∈ ℝn , yi

is the output values and yi ∈ {1,2,3… . c} , c is the number of target outputs. If the number of the

hidden units is smaller than a total number of units in the input layer, a compressed form of the

61

input is learned. In this case, the autoencoder acts like a PCA in which interesting structure in the

input is learned by the AE. If the number of hidden units is greater than that of the input units,

good representation of data can still be obtained by imposing constraints such as sparsity constraint

on the activation units. Through the sparsity constraint, useful activation units are extracted to

yield a useful representation of input data. The sparsity constraint acts as if a non–linear mapping

is learned from the input data so as to generate invariant features representation having high

discriminating power during classification. When a sparsity constraint is imposed on an

autoencoder, it is called sparsity autoencoder [34]. The work done in [90] shows that the AE trained

using sparsity constraints is more efficient that AE trained without sparsity constraints. With

reference to Figure 4.1, let 𝐴(2)
𝑗 be the activation units at the second layer of the network, j be the

index of the hidden units in the second layer. The average activation per unit in the layer can be

expressed as,

where, M is the total number of units in the input layer and i = 1,2,… .M. The sparsity constraint

is imposed by making ρ̂j = ρ . ρ is a small value very close to zero. ρ is called the sparsity

parameter. Let 𝑃 be the penalty term which is used to penalize the huge divergence of 𝜌̂𝑗 from ρ

so that the activations per unit will be very small. The idea of imposing penalty is a way of taking

absolute value penalty and this helps to regulate the average numbers of zero in the output

representation [97]. In [34],the sparsity constraint is imposed on the loss function by calculating

the Kullback –Leibler (KL) divergence between desired sparsity parameter and the actual value.

However, in Keras implementation of sparsity constraint, the penalty term is either imposed by

adding the absolute values of the true value of a layer into the loss function or by adding the square

 𝜌̂𝑗 =
1

𝑀
∑[𝐴(2)

𝑗 𝑥𝑖]

𝑀

𝑖=1

 (4.1)

62

of the true value of a layer into the loss function. For our proposed method, we imposed penalty

term (𝑃) by adding the absolute values of the true value of a layer into the loss function. Practical

implementation of how sparsity constraint is imposed in Keras framework can be learnt in [35].

The sparse activation is enforced by a regularization parameter, β. This is used to enforce the

sparsity constraints on the activation units that are active. The overall cost function can be defined

as,

where, LCE(x, x̂) is the cross-entropy loss and its equation is given in eqn. (3.6). LCE(x, x̂)

measures the error between the output and the learned network. The second term in eqn. (4.2) is

the 𝐿2 regularization or 𝐿2 norm. The 𝐿2 regularization helps to reduce overfitting and is imposed

on the weight of each encoding layer of the sparse autoencoder. Overfitting occurs when the same

model used to train a data performs poorly when evaluated on an unseen data. 𝜆 is the weight

regularization parameter and 𝑊𝑖
𝑙 is the weights of layer 𝑙 associating with the node 𝑖 in 𝑙 from the

previous layer. Another novel technique for preventing overfitting of neural networks is the drop-

out regularization [98]. Dropout regularization is achieved by randomly selecting a fraction of the

units of a layer and set them to zero while the remaining units in the layer will be used as the input

to the next layer. Only a fraction of the input neurons is activated [34]. The basic idea of the

dropout regularization is to prevent the network from learning redundant features at each hidden

layers so as to only retain useful features necessary for better generalization [93]. It also helps to

reduce computational demand by only performing activation on useful features. Since we are

already learning the compressed representation of our PRNU fingerprint, further reduction of

PRNU features using drop-out regularization will lead to a poor generalization for our SSAE. Also,

J(W, b) = LCE(x, x̂) + 𝜆 ∑(𝑊𝑖
𝑙)2

𝑁

𝑖=1

+ βP (4.2)

63

in [98], it was reported that dropout regularization should not be used with deep modules that

involve pre-training without any weight constraints or regularization. This is because distinctive

features learned either using pre-training or sparsity can be dropped and won’t participate in the

next layer.

The most suited activation function for a problem is best determined by performing grid

search over a range of activation functions. Optimization of the weights and the biases of networks

is a very crucial step in the implementation of a sparse autoencoder. Optimization techniques are

used for updating hyper-parameters needed for training the DNN. The most recently used

optimization algorithms are gradient-based optimization techniques. The work in [96] reviewed

some of these techniques which include stochastic gradient descent (SGD), mini-batch gradient

descent (MGD), Nesterov accelerated Gradient, Adagrad, Adadelta, and Adam. The most suited

optimization algorithm is dependent on the nature of the data and can also be determined by grid

search. Furthermore, backpropagation is further used with algorithm optimization techniques to

further obtain a well-trained network. The backpropagation helps to propagate the error from the

output back to the inputs and weights are updated accordingly [99]. The goal of backward

propagation is to further minimize the cost function in eqn. (4.2).

Also, when the input data is corrupted with noise before being given as an input to the auto-

encoder, it is called denoising autoencoder (DAE) [100]. The noise corruption aims to ensure that

a robust representation of input data that capture its probabilistic distribution can be obtained. In

[100], stacked denoising autoencoder (SDAE) was introduced which has a similar working

principle with the stacked supervised sparse autoencoder in [71]. SDAE was adopted in [100] for

learning useful representations in a deep network with local denoising criterion. In [31] and [101],

SDAE was used for the extraction of features for pose-based action recognition and acoustic

64

feature extraction respectively. In this work, SSAE is used to learn robust features since PRNU

already has noise characteristics. The network structure of the proposed SSAE is explained in

Section 4.2.

4.2 Proposed Stacked Sparse Autoencoder

Figure 4.2 shows the block diagram of our proposed DNN for source camera identification. The

PRNU fingerprint is used as the input data (𝑥) for our proposed DNN. For training, robust features

of our PRNU features are learned by stacking several hidden layers of an autoencoder. A deep

network is formed when the encoding features of the last hidden layer are passed into a softmax

classifier. To further minimize the reconstruction error and to obtain a well-trained DNN, all the

weights of all the hidden layers in the network as well as the weights of the softmax classifier are

fine-tuned using the back propagation discussed in Section 4.1. It is called supervised fine-tuning

because the knowledge of the training and the testing targets are needed for classification purpose.

Figure 4.2. Block diagram for the proposed DNN for source camera classification.

65

 After fine-tuning of the deep network, PRNU fingerprints of testing data were fed into the

well-trained network to determine their source camera. In the remaining part of this section, we

will discuss details of our proposed DNN. This includes the network architecture of the proposed

methods, supervised fine-tuning and PRNU extraction and preparation.

4.2.1 Network Architecture of the Proposed Stacked Autoencoder

An autoencoder as earlier explained has input, hidden and output layers. A stacked autoencoder

works by extracting the features of the hidden layer (encoding features) of an autoencoder and

given these features as input to another autoencoder. The output features (decoding features) of

the autoencoder are discarded. The features of the hidden layer are a representation of the input

data in another domain. This process is done recursively until the robust representation of the input

data is obtained and passed into a supervised classifier for generalization. Figure 4.3 (a) shows the

architecture of training stage while Figure 4.3 (b), shows the fine-tuning stage of our proposed

SSAE. In Figure 4.3 (a), the first encoding features; 𝐸1(𝑊, 𝑏) were extracted and passed as input

to another autoencoder. The encoding features of the second autoencoder, 𝐸2(𝑊, 𝑏) were

extracted and fed in as input to the next autoencoder. Finally, the encoding

features , 𝐸𝑁(𝑊, 𝑏) were then extracted as the trained features. 𝐸𝑁(𝑊, 𝑏) is the encoding features

of 𝑁𝑡ℎ hidden layer of the last autoencoder, 𝑁 is the hidden layer of the last autoencoder where

optimal features are obtained during the training process. As shown in Figure 4.3 (b), the optimal

encoded features are fed as input into the softmax classifier to form a deep network. To have a

well-trained deep network, a supervised fine-tuning is performed. In other words, all the weights

at the hidden layers and the softmax classifier are fine-tuned to further reduce training error by

using the back-error propagation [102]. The optimal features are obtained by passing each

66

encoding features directly for supervised fine-tuning to determine the 𝑁𝑡ℎ hidden layer whose

encoding features give the optimal classification accuracy.

 A logistic regression classifier is a linear classifier that determines the class of a target

output based on the probabilistic prediction. It is used for binary classification. To generalize for

multiple classes, Softmax classifier can be used [21]. Figure 4.4 shows a softmax model. The

dimension of an input 𝑥 is 𝑁 and the number of classes is c. Let 𝑛 = 1:𝑁 , 𝑗 = 1: 𝑐 , and

i represents each column vector in an input data 𝑥 . In logistic regression, each input vector

corresponding to a class is projected into a set hyperplanes. The probability that an input belongs

to a class j is determined by calculating the distance between the inputs and the hyperplane. Given

that the target output is denoted as 𝑌, then the probability that an output, 𝑦, belongs to target class

𝑖 when parameterized by weights 𝑊 and biases b can be expressed as,

The expression in (4.3) gives the probabilities of all classes given an output Y. The predicted output

(yp) is the class that produces the maximum probability. This can be expressed as,

 P(Y = j|xi, W, b) = softmaxj(Wxi + b) =
eWxi+b

∑ eWxi+b
j

 (4.3)

 yp = armax
j

P(Y = j|xi,W, b)

 (4.4)

67

 (a) (b)

Figure 4.3. (a) Training stage (b) fine-tuning stage in SSAE.

Figure 4.4. A softmax model.

The source identification was achieved by feeding the testing data into the fully and well

trained DNN. Besides, the progressive decrease in the numbers of the hidden units in each layer

shows that the compressed representation of the PRNU input was learned.

4.2.2 PRNU Extraction and Preparation

In this work, we adopt instance-based source camera identification, instead of using the original

images in our database, we propose to use PRNU as the input data since autoencoders are dataset-

68

specific. Original image contains not only sensor noise information but also image scene details.

It is difficult to characterize structures in the sensor noise in the presence of image details. The

sensor noise PRNU is unique to each individual camera. The PRNU can be extracted by subtracting

its denoised version from the original image. The denoising filter proposed by Lukas et al. [7] was

used for denoising. To further enhance the PRNU fingerprint against in-camera pre-processing

artifacts, both training and testing PRNU fingerprints are preprocessed by the zero-mean operation.

Zero-mean operation implies to find the mean of each row or column and then subtract the mean

from each element in the rows and columns respectively [47]. All the PRNU fingerprints after the

zero-mean operation are transformed into the column-wise vector. No further transformation

techniques were performed on the PRNU except the zero-mean operation. Given that the resolution

of the images is 𝑝 × 𝑝, then the dimension of PRNU signal is 𝑝2 × 1. If 𝑛 images are used per

camera, the first 𝑛 columns are the fingerprints of the first camera. The following 𝑛 columns are

for the next camera and so on. If 𝑁 cameras are to be used, the total number of columns in the data

is 𝑛𝑁. Our PRNU data can be arranged as a matrix of size 𝑝2 × 𝑛𝑁. Given that 𝑛 images are used

per camera, then, the first 𝑛 columns are the fingerprints of the first camera. The next 𝑛 columns

are for the next camera and so on. If 𝑁 cameras are to be used, the total number of columns in the

data can be given as 𝑛 × 𝑁. Our PRNU data will be a matrix of size 𝑝2 × 𝑛𝑁. It should be noted

that it is not necessary that the same numbers of images must be used for each camera. When the

same samples are used per class during training, it is called balance classification problem.

Otherwise it is called imbalance classification problem [33]. In forming the labels of the PRNU

data, a column vector of size 𝑁 × 1 is generated. The column vector consists of only one non-

zero element whose position indicates the source camera of the PRNU fingerprint.

69

 The PRNU fingerprint has noise-like characteristics and its domain is different from features

directly extracted from the images (data-driven approach) like most of the object recognition

problems. Therefore, direct application of the existing parameters successfully applied to those

problems won’t yield best network generalization. Therefore, obtaining optimal parameters

suitable to learn a robust or useful representation of our PRNU fingerprints will also be dependent

on the background knowledge of PRNU signal and searching over a range of parameters (grid-

search technique). This is essential in choosing the weight initialization technique.

4. 3 Experiments and Results

4.3.1 Experimental Settings

The experiments were carried out using photos from the Dresden database [103]. Our choice of

selecting images of cameras for our experiments from the Dresden database is because it is an

image database specifically built for development and benchmarking of camera-based digital

forensic techniques. Another database usually used for camera attribution is the Flickr database.

Flickr database is only suitable for camera model identification and not camera instance or source

camera identification. This is because people share images of different devices of the same model

and there is no distinction on the exact device that captured the images in the Flickr database.

Therefore, Dresden database is suitable for experimental analysis of source camera identification

since images are classified per camera instances. Table 4.1 shows the lists of natural images of 20

cameras used in the evaluation of the proposed method. The camera band “Kodak_M1063_0”

means that the photos are taken by a device whose manufacturer is Kodak and camera model is

“M1063” and “0” is the device identification number. Kodak_M1063_1 simply means another

device of Kodak_M1063.

70

PRNU of images from the same camera devices is only the same if they are extracted from

the same spatial location of the images. Therefore, single patch from each image of cameras at the

same spatial location is used for estimation of noise residues. In most conventional methods, the

use of matching of the reference PRNU images of cameras with the PRNU of testing images of

cameras, involve the use of vector operations. Therefore, the use of original image size becomes

complex and highly computationally expensive during the matching process [104]. In our proposed

methods, our focus is source camera identification of small size images and applications involving

splicing translocation. Besides, the use of deep learning methods involves the use of optimisation

algorithms and the use of high feature dimensions will result in infinite iterations and retries. This

usually slow down the rate of convergence to global minimum and hence, results in poor

generalization accuracy. All images are centered cropped at resolutions; 64× 64, 128 × 128 and

256 × 256. Centre patches of images are used because not all parts of the images are rich in PRNU

fingerprints and images with dark regions have weak PRNU. Saturated pixels cause undesirable

noise in residual signals and center patch contains PRNU with homogenous features. Furthermore,

as shown in the work in [105], there are some of the images with vignetting effect. Vignetting

effect occurs when edges of an image are darker than the center of the image. Therefore, using the

center patch also helps to reduce the vignetting effect and hence improves the quality of the

extracted PRNU images [105]. To properly evaluate the SSAE and ensure a large amount of

training data are used, images are divided into training and testing sets. The division steps are as

follows:

• The natural images are divided by random splitting into sets A and B respectively. Set A

consist of 80% of the natural images while Set B consists of the remaining 20%.

• Set A is used as training images while Set B is used as the testing images.

71

All the experiments were carried out on a computer with 4.00GHz Intel (R) Core (TM) i7-

6700k CPU and 1 terabyte memory. The PRNU feature extraction of all image was carried out

using MATLAB 8.6.0 on window 10. The SAE was carried out on window 10 with Keras using

Theano backend on a 11 G GPU NVidia GTX 1080Ti. Keras with Theano backend is a deep

learning framework. It is known for its simplicity and ease of use. Keras library was used with the

scikit-learn library to leverage the power gain of SAE evaluation and optimization of

hyperparameters. Both Keras and scikit-learn are frameworks based on Python programming.

4.3.2 Parameters Selection for SSAE

We will discuss initialization of the weights of neural networks for PRNU fingerprint before

explaining parameters selection for SSAE. The weights initialization are selected in a way as to

achieve global convergence. The closer they are to a global minimum, the better. Though global

convergence is also dependent on the training algorithm. There are several methods for setting

initial weights of NN. Setting initial weights for neural networks has no standard formula.

Different generalization results are usually obtained depending on the domain of adaptation.

Though random or normal initializations are usually used for image classification problems [65,

106, 107], however, initialization depends on the feature scaling or normalization technique carried

out on the data. The structure of the PRNU is best exposed to the neural network for learning after

zero-mean operation has been applied. Most of the other normalization techniques tested on the

PRNU gave us poor results. In [65], data must be normalized before using their proposed weight

initialization. In our work, using zeros or ones as weights initialization are most suited for PRNU

fingerprints with SSAE. Using ones or zeros as NN weight initialization initializes the NN to start

with uniform distribution. This enables the NN to learn its weights till it obtains optimum values.

The third method described in [108] used zero weight initialization for the multi-layer neural

72

network. As earlier explained, compressed representation of activated neurons is learned at each

hidden layer of our proposed network. Therefore, the problem of breaking the symmetry of

networks using random or normal weight initializations is not a challenge since the signals (hidden

units) at hidden layers of the structure of our proposed SSAE are not the same. 𝐿2 weight and

sparsity regularizations are also applied to the weights of our networks to avoid overfitting.

73

Table 4.1. Details about the cameras used in the experiment including the resolution and

number of images.

S/N Camera Brand Resolution Number of Natural

Images

1 Agfa_DC-830i 3264 × 2448 342

2 Olympus_mju_1050SW_0 3264 × 2736 204

3 Olympus_mju_1050SW_1 3264 × 2736 209

4 Kodak_M1063_0 3664 × 2748 464

5 Kodak_M1063_1 3664 × 2748 458

6 Agfa_Sensor530s_0 4032 × 3024 372

7 Nikon_D70_0 3008 × 2000 180

8 Nikon_D70_1 3008 × 2000 189

9 Olympus_mju_1050SW_2 3264 × 2736 218

10 Canon Ixuss 55 2592 × 1944 224

11 Canon_Ixus70_0 2304 × 3072 171

12 Canon_Ixus70_1 2304 × 3072 179

13 Canon_Ixus70_2 2304 × 3072 171

14 Samsung_L74wide_0 2304 × 3072 229

15 Samsung_L74wide_1 2304 × 3072 224

16 Samsung_L74wide_2 2304 × 3072 231

17 Samsung_NV15_0 2304 × 3072 217

18 Samsung_NV15_1 2304 × 3072 214

19 Sony_DSC-H50_0 2736 × 3648 266

20 Sony_DSC-H50_1 2736 × 3648 234

Total number of Images 4996

74

Network configuration parameters and training parameters can be sub-divided into two categories.

We have the model and fine-tuning parameters. The key training parameters include the numbers

of hidden layers of SAE, the number of the units in the hidden layers, weight and sparsity

regularization parameters. The key fine-tuning parameters include learning rate and the number of

epochs. The commonly used searching techniques for selecting optimal network parameters both

for the training and fine-tuning stages are usually the grid search or random search. The optimal

parameters cannot be determined at once and therefore; the best approach is to fix some parameters

while we use a grid search to determine the other optimal parameters. In our experiments, we

geometrically determined the number of the hidden units per layer. For example, using 64 × 64,

the total number of pixels per column becomes 4096 = 64 × 64 = 64 × 82 pixels. The number

of hidden units is geometrically decreased per hidden layer. The number of neurons per 𝑙𝑡ℎ hidden

layer is defined as 64 × (8 − 𝑙)2. Similarly, for 128 ×128, the total number of pixels per column

becomes 16384 = 128 × 128 = 4 × 642. The number of neurons per 𝑙𝑡ℎ hidden layer is defined

as 4 × (64 − 𝑙)2. Hidden units were also selected similarly for 256 × 256. Though, there is no

standard way of determining hidden units per layer (ℎ𝑙) but given that 𝑙 = 1, 2…𝑁 , the

parameters can also be tuned within ℎ𝑙 𝑎𝑛𝑑 ℎ𝑁.

We searched the best results for our stacked autoencoder given 𝑡ℎ𝑎𝑡 𝑙 = 1, 2, 3. . 𝑁. 𝑁 is

the hidden layer with the optimal performance. The sparsity and weight regularization parameters

are fixed at 0.00001. We will show how to determine the optimal number of epoch, the hidden

layers, learning rate (𝜂), activation function and the optimization algorithm most suitable for

generalization by grid search. Firstly, we determined the optimal hidden layers by fixing number

a of epoch, the the activation the function and optimizer as 20, ReLU and SGD (𝜂 = 0.001)

respectively. Table 4.2 shows the overall identification accuracies of cameras at different image

75

resolutions for four hidden layers using the first 10 cameras in Table 4.1. By overall accuracy, we

mean the ratio of the all correctly identified samples of all the cameras to the total number of

testing samples of all the cameras. It was observed from Table 4.2 that the optimal performances

for 64 × 64 and 128 ×128 were obtained at hidden layer 2 while it is at layer 3 for 256× 256.

The bold numbers in Table 4.2 show the optimal performance for each image size.

Having established the optimal layer for our SAE for the different image sizes, we then obtained

the best epoch with global convergence using grid search within; [10, 20, 50, 70,100]. Table 4.3

shows the overall average accuracies of cameras after fine-tuning for the range of epochs used. In

Table 4.3, it was observed that the best overall accuracies for 64 × 64, 128 × 128 image sizes

after fine-tuning are obtained when the number of the epochs is set to 10 while it is at 50 for 256

× 256. The bold numbers in Table 4.3 show the optimal performance for ranges of epochs used.

As observed in Table 4.3, there is difficulty in achieving global convergence using SSAE with

improved identification accuracies especially for an image size of 64 × 64 while there is improved

convergence for image sizes 128 × 128 and 256 ×256 and this reflected in their identification

accuracies of 70.63% and 87.76% respectively compared to 47.90% identification accuracy for

64 × 64 image size. The higher the image size, the better the quality of PRNU images and hence,

the better the rate of global convergence. The rate of convergence also depends on the

Table 4.2. Overall Identification accuracies at each hidden layer (%).

Image Size Average Accuracy after fine-tuning

Layer 1 Layer 2 Layer 3 Layer 4

64 × 64 46.85 47.90 44.93 43.18

128 × 128 68.53 69.58 69.23 66.43

256 × 256 86.19 86.63 87.76 87.13

76

generalization capability of the applied model. One of the key parameters for fine-tuning as earlier

stated is the learning rate. We further carried out experiments to check how the performance varies

for different learning rates. The learning rates used are 0.2, 0.25, 0.02, 0.001:0.005. The overall

accuracies after fine-tuning at different learning rates are shown in Figure 4.5.

Figure 4.5 shows 0.001 as the learning rate at which best overall accuracies are obtained for all

the images sizes used.

Figure 4.5. Overall accuracies after further fine-tuning at different learning rates.

Table 4.3. Optimal results for each epoch for the best-hidden layer (%).

Image Size Number of Epochs

10 20 50 70 100

64 × 64 47.90 47.90 46.68 46.50 45.98

128 × 128 70.63 69.23 68.01 68.36 67.83

256 × 256 87.41 87.76 87.76 87.59 87.24

77

4.3.3 Experimental Results

Experiment 1

We carried out an experiment on SSAE for source camera identification on the first ten cameras

as shown in Table 4.1. We refer to this experiment as case 1. The parameters selection and

intermediate results have been discussed in Section 4.3.2. In this section, we summarize and

discuss the identification accuracies of the 10 cameras. The summary of the overall accuracies for

all the image sizes after fine-tuning is shown in Table 4.4. Table 4.4 shows that the overall

accuracies after fine-tuning the proposed SSAE are 47.90%, 70.63% and 87.76% for 64 × 64, 128

× 128 and 256 × 256 respectively. It was observed that the higher the image size, the better the

camera identification accuracies. This can be attributed to the fact that, the higher the image

resolution, the stronger the PRNU fingerprint. Better or stronger PRNU fingerprint means quality

data is being used as the input for SSAE. Apart from using large dataset for generalization of deep

learning modules, one of the factors that have a significant contribution to generalization is the

quality of information in the data.

 The maximum image size used in our experiment is 256 × 256 and this means 65536

elements per column for one image of a camera. The confusion matrixes obtained using our

proposed method are shown in Table 4.5, Table 4.6 and Table 4.7 for 64 × 64, 128 × 128 and 256

× 256 respectively. The bold numbers in Table 4.5, Table 4.6 and Table 4.7 indicate the

identification accuracy for each camera device. Nikon_D70_0 and Nikon_D70_1 have poor

identification accuracies of 15.79% and 8.11% respectively for 64 × 64. The accuracies have a

significant improvement to 35.58% and 53.35% for 128 × 128 respectively. Finally,

Nikon_D70_0 and Nikon_D70_1 for 256 × 256 are 76.32% and 83.78% respectively. The

78

performance of the two devices might improve if the training labels for the cameras are increased.

The poor performance can also be attributed to the Nikon cameras having weak PRNU.

Experiment 2

We further investigated on how the proposed SAE generalizes to a new set of camera devices using

the same optimal hyperparameters, activation function, and optimizer in Section 4.3.2. This was

carried out using the remaining 10 cameras in Table 4.1. We refer to this experiment as case 2.

Table 4.8 shows the identification accuracies for the new set of ten cameras for 64 × 64, 128 ×

128 and 256× 256. The overall accuracies for the cameras are 63.19%, 87.72% and 92.28% for

64 × 64, 128 × 128 and 256 × 256 respectively. The results show that hyperparameters, optimizer

and activation function used for the SSAE in case 1 is not data specific. The better performance of

the cameras in case 2 compared to case 1 can be attributed to some of the cameras in case 2 having

stronger PRNU than those in case 1. The experiment further shows that there is no need to carry

out any further search to obtain best optimal parameters for the PRNU of the new set of cameras.

The implication of this is that there is no further computational time incurred due to the grid –

search or manual search for optimal parameters.

Experiment 3

In this experiment, we investigated the generalization capability of our proposed method by using

all the 20 cameras in Table 4.1. We refer to this experiment as case 3. All that is required is to

concatenate the already extracted PRNU of the cameras in case 1 and case 2 respectively. Also,

Table 4.4. Overall identification accuracies at different image sizes (%).

64 × 64 128 × 128 256 × 256

47.90 70.63 87.76

79

the target labels must correspond to the each PRNU of cameras. Table 4.9 shows the identification

accuracies of cameras for 64 × 64, 128 × 128 and 256 × 256 respectively. Average accuracy per

camera device is 37.24% 67.35% and 91.67% for 64 × 64, 128 × 128 and 256 × 256

respectively.

The average identification accuracy per camera for each resolution using our proposed

method has a slight decrease when compared to identification accuracies using only 10 cameras as

of case 1 and case 2. In machine learning, the more the number of targets to be classified, the

lower the classification accuracies of each class. Our experimental results show that our proposed

method still has significant performance using 128 × 128 and 256 × 256 image size for the 20

cameras 128 × 128 and 256 × 256 respectively.

Visualization of the input and extracted optimal features for 64 × 64, 128 × 128 and 256×

256 are shown in Figure 4.6, Figure 4.7 and Figure 4.8 respectively.

80

Table 4.5. Identification accuracy (in percentage points %) of the proposed method for 64 × 64 images size (case 1).

Camera Device

1 2 3 4 5 6 7 8 9 10

Agfa_DC-830i 1 73.24 1.41 1.41 7.04 2.82 9.86 1.41 - 1.41 1.41

Olympus_mju_1050SW_0 2 7.14 26.19 11.90 9.52 19.05 11.90 - - 14.29 -

Olympus_mju_1050SW_1 3 9.30 2.33 27.91 4.65 18.60 11.63 - 2.33 18.60 4.65

Kodak_M1063_0 4 6.49 - 3.90 45.45 16.88 9.09 5.19 2.60 7.79 2.60

Kodak_M1063_1 5 7.14 2.38 1.19 8.33 54.76 9.52 1.19 4.76 3.57 7.14

Agfa_Sensor530s_0 6 5.41 1.35 - 6.76 6.76 74.32 1.35 0.00 1.35 2.70

Nikon_D70_0 7 18.42 5.26 - 15.79 15.79 15.79 15.79 2.63 10.53 -

Nikon_D70_1 8 13.51 5.41 5.41 18.92 16.22 10.81 - 8.11 5.41 16.22

Olympus_mju_1050SW_2 9 6.38 8.51 8.51 4.26 14.89 6.38 - 2.13 42.55 6.38

Canon Ixuss 55 10 1.69 3.39 8.47 1.69 8.47 11.86 1.69 0.00 5.08 57.63

Table 4.6. Identification accuracy (in percentage points %) of the proposed method for 128 × 128 images size (case 1).

Camera Device

1 2 3 4 5 6 7 8 9 10

Agfa_DC-830i 1 97.18 - - - - 1.41 1.41 - - -

Olympus_mju_1050SW_0 2 4.76 52.38 - 11.90 11.90 7.14 - - 11.90 -

Olympus_mju_1050SW_1 3 13.95 9.30 48.84 2.33 6.98 6.98 - - - 11.63

Kodak_M1063_0 4 9.09 3.90 3.90 63.64 10.39 1.30 2.60 2.60 1.30 1.30

Kodak_M1063_1 5 2.38 3.57 1.19 10.71 73.81 - 2.38 1.19 2.38 2.38

Agfa_Sensor530s_0 6 2.70 1.35 1.35 2.70 2.70 89.19 - - - -

Nikon_D70_0 7 10.53 - 7.89 - 12.16 13.16 35.58 12.16 7.89 2.63

Nikon_D70_1 8 15.22 2.70 - 10.81 7.11 2.70 2.70 53.35 2.70 2.70

Olympus_mju_1050SW_2 9 4.26 2.13 4.26 2.13 2.13 2.13 4.26 2.13 74.47 2.13

Canon Ixuss 55 10 - 3.39 1.69 3.39 1.69 3.39 1.69 - 1.69 83.05

81

Table 4.7. Identification accuracy (in percentage points %) of the proposed method for 256 × 256 images size (case 1).

Camera Device

1 2 3 4 5 6 7 8 9 10

Agfa_DC-830i 1 98.59 - - - 1.41 - - - - -

Olympus_mju_1050SW_0 2 - 83.33 - 4.76 4.76 2.38 2.38 - 2.38 -

Olympus_mju_1050SW_1 3 - 6.98 72.09 4.65 4.65 - 4.65 2.33 2.33 2.33

Kodak_M1063_0 4 1.30 2.60 - 84.42 3.90 3.90 1.30 2.60 - -

Kodak_M1063_1 5 - - - 10.71 82.14 3.57 - 2.38 - 1.19

Agfa_Sensor530s_0 6 - - - 0.75 - 98.50 0.00 0.75 - -

Nikon_D70_0 7 2.63 - - 5.26 5.26 2.63 76.32 7.89 - -

Nikon_D70_1 8 2.70 2.70 - 2.70 5.41 - 2.70 83.78 - -

Olympus_mju_1050SW_2 9 - 4.26 2.13 2.13 - - - 2.13 89.36 -

Canon Ixuss 55 10 - 1.69 - - - - - - - 98.31

Table 4.8. Identification accuracy (in percentage %) of proposed method (case 2).

S/N Camera Brand 64 × 64 128 × 128 256 × 256

11 Canon_Ixus70_0 39.50 86.80 97.40

12 Canon_Ixus70_1 38.90 77.80 94.40

13 Canon_Ixus70_2 37.50 90.60 100.00

14 Samsung_L74wide_0 40.00 61.90 93.30

15 Samsung_L74wide_1 26.20 70.70 92.90

16 Samsung_L74wide_2 29.30 89.70 95.10

17 Samsung_NV15_0 46.20 88.00 100.00

18 Samsung_NV15_1 52.00 86.00 100.00

19 Sony_DSC-H50_0 93.80 100.00 100.00

20 Sony_DSC-H50_1 85.40 97.60 100.00

Average 49.92 84.70 97.30

82

Table 4.9. Identification accuracy (in percentage %) of the proposed method (case 3).

Camera Brand 64 × 64 128× 128 256× 256

Agfa_DC-830i 64.44 96.60 96.6

Olympus_mju_1050SW_0 24.40 48.80 80.50

Olympus_mju1050SW_1 10.40 41.7 79.20

Kodak_M1063_0 52.22 61.10 87.80

Kodak_M1063_1 46.10 70.80 83.10

Agfa_Sensor530s_0 62.70 39.00 92.80

Nikon_D70_0 9.80 83.10 86.50

Nikon_D70_1 18.90 54.10 82.10

Olympus_mju_1050SW_2 46.20 69.20 100.00

Canon Ixuss 55 27.30 79.50 90.60

Canon_Ixus70_0 25.00 78.10 87.80

Canon_Ixus70_1 31.70 63.40 96.90

Canon_Ixus70_2 34.44 65.60 94.10

Samsung_L74wide_0 39.20 52.90 94.20

Samsung_L74wide_1 13.50 50.00 96.20

Samsung_L74wide_2 29.40 61.80 97.00

Samsung_NV15_0 32.00 66.00 94.00

Samsung_NV15_1 42.40 78.80 93.90

Sony_DSC-H50_0 69.20 92.30 100.00

Sony_DSC-H50_1 65.40 94.20 100.00

Average 37.24 67.35 91.67

83

(a) (b)

Figure 4.6. Input features (a) and optimal features (b) of SAE for 64 × 6

(a) (b)

Figure 4.7. Input features (a) and optimal features (b) of SAE for 128 × 128

84

(a) (b)

Figure 4.8. Input features (a) and optimal features (b) of SAE for 256 × 256

4.3.4 Comparison with Some State-of-the-Art Methods

We compared our proposed deep network with some state-of-the-art methods. The overall

identification accuracy for the 20 cameras using our proposed method for the 64 × 64 is very low

but considerably high for 128 × 128 and 256 × 256 as earlier explained in experiment 3 in Section

4.3.3. In this section, we compared our proposed method with four states of the art methods: MLE

SPN [8], Phase SPN [10], the Li’s model [9] and weighted averaging (WA) [51] using 128 × 128

and 256× 256 images sizes. We used Li’s model 5 because it gives good performance compared

to other models. For all the methods, the classification was done using peak to correlation energy

(PCE) [10].

Experiment 1

In this experiment, we compared our proposed methods with these methods using the same setting

used for the proposed SAE. This implies that 80% of the images of each camera in Table 4.1 were

used for the extraction of the PRNU fingerprints while the remaining 20% were used for testing.

85

We refer to this experiment as case 4. Table 4.11 and Table 4.10 shows the identification

accuracies for 20 cameras of the Dresden image dataset for 128 × 128 and 256 × 256 image sizes

respectively. The overall average accuracies using 128 × 128 are 70.15%, 70.16%, 75.08%,

64.16% and 67.09% for MLE SPN, Li's model 5, Phase SPN, WA and SAE respectively. The

overall average accuracies using 256 × 256 are 91.71%, 91.90%, 92.73%, 92.38% and 91.67%

for MLE SPN, LI's model 5, Phase SPN, WA, and SAE respectively. The identification of our

proposed method has comparable detection accuracy with the existing methods though higher

identification accuracy than WA for 256 × 256 image size. The camera identification accuracy of

the proposed SSAE only has comparable results with the state-of-the-art methods on Dresden

database using natural images for training. To adopt SSAE, we must convert the image to one-

dimensional features and hence SSAE could not account for spatial information between the pixels

of images. Therefore, this negatively impacts the generalization capacity of the SSAE for source

camera identification. SSAE is more effective for data with high correlation. Since we used

individual PRNU images of cameras, single noise residue representing image will have scene

contamination and hence finding ways of improving the quality of the PRNU could be a better

way of having highly correlated data which will be more suitable for learning using SSAE.

Though, there are camera cases where our proposed method has higher identification accuracy

than the all other methods. Another advantage of the proposed method unlike several deep learning

techniques is that good performance can be achieved using considerably smaller dataset unlike

huge dataset usually required for good performance for deep learning techniques such as CNN.

This furthers reduces computational demand for the implementation of the proposed method.

86

Experiment 2

In all the experiments carried out so far, our proposed stacked autoencoder was trained using

natural images of the Dresden database in Table 4.1. There are a limited number of flat images (50

images per camera) and hence not suitable for training deep network. Another reason for not using

flat images is that flat images are rarely available for practical purposes or cases involving digital

investigation. However, quality PRNU can be best extracted from using flat images unlike natural

images with more texture complexity.

Table 4.10. Identification accuracies (in percentage %) compared to other methods for 256 × 256

(case 4).

S/N Camera Brand MLE Li’s

 Model 5

Phase

SPN

WA Proposed

method

1 Agfa_DC-830i 92.75 91.30 92.75 94.20 96.6

2 Olympus_mju_1050SW_0 100.00 95.12 95.12 97.56 80.50

3 Olympus_mju_1050SW_1 95.23 95.24 95.24 100. 0 79.20

4 Kodak_M1063_0 78.45 75.27 75.27 72.04 87.80

5 Kodak_M1063_1 73.91 68.48 71.74 69.57 83.10

6 Agfa_Sensor530s 100.00 100.00 100.00 100.00 92.80

7 Nikon_D70_0 61.11 61.11 63.89 63.15 86.50

8 Nikon_D70_1 65.79 71.05 76.32 76.32 82.10

9 Olympus_mju_1050SW_2 97.72 97.72 97.72 97.72 100.00

10 Canon Ixuss 55 100.00 100.00 100.00 100.00 90.60

11 Canon_Ixus70_0 100.00 100.00 100.00 100.00 87.80

12 Canon_Ixus70_1 100.00 100.00 100.00 100.00 96.90

13 Canon_Ixus70_2 100.00 100.00 100.00 94.44 94.10

14 Samsung_L74wide_0 93.48 95.65 97.82 97.83 94.20

15 Samsung_L74wide_1 88.89 97.78 97.78 91.49 96.20

16 Samsung_L74wide_2 93.62 91.49 95.74 95.56 97.00

17 Samsung_NV15_0 97.72 100.00 97.72 97.72 94.00

18 Samsung_NV15_1 95.35 100.00 97.67 100.00 93.90

19 Sony_DSC-H50_0 100.00 100.00 100.00 100.00 100.00

20 Sony_DSC-H50_1 100.00 100.00 100.00 100.00 100.00

Average 91.71 91.90 92.73 92.38 91.67

87

In this experiment, the capacity of PRNU to increase the accuracy of SSAE in comparison

to the three existing methods was evaluated. The experiment was achieved using a small dataset

consisting of two phones with flat images for training and natural images for testing. We refer to

this experiment as case 5. Table 4.12 shows the lists, number of images and their original

resolutions. All the images were center-cropped into 128 × 128 and 256 × 256 image sizes. Apart

from the batch size, the same hyper-parameters used in all the SSAE experiments are also used in

Table 4.11. Identification accuracies (in percentage %) compared to other methods for 128

× 128 (case 4).

S/N Camera Brand MLE Li’s

 Model

5

Phase

SPN

WA Proposed

method

1 Agfa_DC-830i 84.06 84.06 84.06 88.44 93.20

2 Olympus_mju_1050SW_0 58.54 60.98 63.41 48.78 48.80

3 Olympus_mju_1050SW_1 69.05 64.29 73.81 71.43 37.50

4 Kodak_M1063_0 54.84 49.46 43.01 27.96 55.60

5 Kodak_M1063_1 45.65 45.65 50.00 52.17 69.70

6 Agfa_Sensor530s 89.33 90.67 97.33 10.66 84.30

7 Nikon_D70_0 25.00 25.00 38.89 30.56 22.00

8 Nikon_D70_1 36.84 42.10 42.10 39.47 40.50

9 Olympus_mju_1050SW_2 72.72 79.54 88.63 54.54 71.80

10 Canon Ixuss 55 82.22 77.78 86.67 88.88 86.40

11 Canon_Ixus70_0 91.43 85.71 91.43 85.71 78.10

12 Canon_Ixus70_1 86.11 83.33 83.33 77.77 61.00

13 Canon_Ixus70_2 85.71 91.43 82.85 85.71 78.10

14 Samsung_L74wide_0 65.22 63.04 71.34 60.87 51.00

15 Samsung_L74wide_1 51.11 48.89 71.11 53.33 50.00

16 Samsung_L74wide_2 44.68 59.57 68.09 57.45 64.70

17 Samsung_NV15_0 84.09 86.38 79.54 75.00 72.00

18 Samsung_NV15_1 76.60 69.39 86.04 74.42 84.80

19 Sony_DSC-H50_0 100.00 100.00 100.00 100.00 94.20

20 Sony_DSC-H50_1 100.00 95.74 100.00 100.00 98.10

Average accuracy per camera 70.16 70.15 75.08 64.16 67.09

88

this experiment. Since the training size is 1200 compared to 3960 used in Table 1, we used a batch

size of 8 for all image sizes.

 Table 4.13 shows the comparative study of the identification accuracies of our proposed

SSAE and the other three state of the art methods. Optimal overall identification accuracies were

obtained for all the images sizes at 5th epoch. For 128 × 128, average identification accuracies of

the two cameras are 95.30%, 95.30%, 95.30% and 97.70% for MLE SPN, Li's Model 5, Phase

SPN and proposed SSAE respectively. For 256 × 256, average identification accuracies of the two

cameras are 96.16%, 95.73%, 95.73% and 99.05% for MLE SPN, Li's Model 5, Phase SPN and

the proposed method respectively. Our SSAE achieved higher average identification accuracy than

the three existing methods using 128 × 128 and 256 × 256 image sizes for all the methods.

Therefore, using PRNU of stronger quality can further increase the generalization capability of the

proposed SAE with improved accuracy compared with these existing methods as shown for 128

×128 and 256 × 256 image sizes.

Table 4.12. Details about the cameras used in the experiment

including the resolution and number of images taken by each camera.

Camera Brand Number of

Flat

Images

Number of

Natural

Images

Resolution

Samsung S7 600 117 2988 × 5312

Redmi Note 3 600 108 4608 × 3456

89

4.4 Summary

Source camera identification based on stacked autoencoder for instance-based identification has

been implemented in this research. The contribution of this novel approach to the body of

knowledge is summarized below:

(i) The possibility of using deep learning module based on SSAE to solve source camera

identification problem. (ii) Good generalization performance without the use of a huge dataset

usually used in many deep learning implementations is achievable. Therefore, the proposed

method is computationally effective. (iii) Based on the observation of the experimental results,

reliable results were achieved especially when flat images were used for the training the network.

 The intuition behind the proposed autoencoders is that, autoencoders are dataset specific

and hence the trained features are learned using PRNU because of its uniqueness to each camera

device. The proposed method achieves significant overall identification performance comparable

with some existing methods on the Dresden database and better performance on our own dataset

when compared with some state-of-the-art methods. Furthermore, the proposed network also

generalizes well using the same hyper-parameters on different cameras' sets.

Table 4.13. Comparative study of the identification accuracies (in percentage

%) of our proposed method and three other state-of-the-art methods (case 5).

Methods 128 × 128 256 × 256

Samsung

S7

Redmi

Note 3

Samsung

S7

Redmi

Note 3

MLE SPN 100.00 90.60 100.00 92.31

Model5 100.00 90.60 100.00 91.45

Phase SPN 100.00 90.60 100.00 91.45

Proposed method 100.00 95.40 100.00 98.10

90

Chapter 5 :

Convolutional Neural Network as Feature Extractor and Classification for

Source Camera Identification of Small Size Images

There are several CNN architectures that have been used in the literature [66, 69, 109-111]. They

often consist of operations such as convolution, activation function, max-pooling and fully

connected layers. In some applications, a very large number of convolutional layers were used to

achieve good results. This increased the computation demand during training. Different CNN

architectures in literature usually include different operations but the commonly used as shown in

Figure 5.1. Several other signal processing operations can be used to improve generalization such

as the use of stride or suitable normalization techniques. The suitability of some of these operations

is dependent on the domain of adaptation or area of application. An operation such as max-pooling

was replaced with the used of stride in [112]. The work in [112] used a stack of convolutional

layers with a stride of two for image classification. Their proposed CNN architecture did not

include the use of max-pooling nor fully connected layers. Despite that, their experimental results

show better performance compared with other complex CNN architectures on the same dataset. In

this work, we proposed deep convolutional neural network for instance-based source camera

identification for classification and also as a feature extractor for one-vs-rest linear classifier. As

PRNU fingerprint is positional dependent, it is important that the structure of CNN keeps

information at each spatial location of cropped images of the same camera to be the same so as to

achieve instance-based camera identification. Therefore, we extracted PRNU of single patch

cropped from the center of the images as the input to the proposed network. After identifying

91

suitable structures of CNN for the problem of instance-based camera identification, we compared

our results with some state-of-the-art methods for source identification for small image size such

as 64 × 64.

The rest of Chapter 5 is organized as follows. Section 5.1 discusses the working principle

of CNN. Section 5.2 describes the training process for CNN. Section 5.3 describes the architecture

of the proposed deep CNN for SCI and this includes, noise residues formulation for CNN, network

architecture, the training procedures and the selection of fine-tuning parameters. Section 5.4

presents our experimental evaluation on Dresden database, which includes, the experimental

settings, results and discussion and comparison with some existing state-of-the-art methods.

Section 5.5 introduces our proposed fine-tuned pre-trained CNN for SCI, which includes, the idea

of transfer learning, proposed methodology, experiment and results, comparison with some state-

of-the-art methods. Section 5.6 compares our proposed CNN-based methods with a deep learning

based method. Section 5.7 evaluates the robustness of the proposed deep CNN methods to post

JPEG compression. Section 5.8 summarises the work and its contributions.

5.1 Working Principle of Convolutional Neural Networks

CNN shares a similar operation as traditional neural networks. They both have neurons with

trainable weights. Because of the underlying assumption that the input data are images, some

functions can be incorporated into the architectures. This, in turn, reduces the number of

parameters in each layer [113]. In basic CNN structure, there are input layer, convolutional layers

and the classification layers as shown in Figure 5.1. The input data fed into the CNN is a 3D image

which consists of width, height, and depth. The width and the height correspond to the dimension

92

of the image while the depth specifies the number of the channels of the image. For color images,

the depth is 3 while it is 1 for gray-level images. The CNN architecture generates robust features

of images and hence increases the capability of generalization. The convolutional layer mostly

consists of three components: convolution, activations and pooling. The input image is sub-

divided into different regions and an impulse signal is applied to each input region to form outputs.

The impulse signal used is a filter and hence it is called a convolutional kernel or a filter kernel.

The output shows the response of the filter in different spatial positions as the filters are applied

locally in different image regions. The output of convolutional layers is often called the feature

map. The convolution operation on the input and the filter kernel is expressed in [38] as,

Figure 5.1. Stages involved in conventional convolutional neural networks.

 𝑜𝑙
𝑗 = ∑ 𝑜𝑖

𝑙−1 ⨀ 𝑤𝑖𝑗
𝑙−1 + 𝑏𝑗

𝑙 𝑀
𝑖=1

 (5.1)

93

where 𝑜𝑙
𝑖 is the j-th output in the l-th layer, 𝑤𝑖𝑗

𝑙−1 is the weights of the filter kernel that connects

the i-th node at the layer 𝑙 − 1 and the j-th node at the next layer 𝑙, ⨀ is the convolution operation,

𝑏𝑗
𝑙 is the network bias of the j-th output neuron in the l-th layer, 𝑖 = 1, …𝑀 are the indices of the

feature in each convolutional layer and 𝑀 is the total number of the feature maps in the previous

convolution layer. In [113], one of the important settings in the convolutional layer is the “stride”.

It is the number of times the filter kernels are shifted between pixels. A stride of one means that

the filters are shifted by one pixel at a time which will lead to large output volumes. When the

stride is two, filters are shifted by two pixels which will lead to double down-sampling. The next

operation in the convolutional layer is the activation function. The aim of the activation function

is to introduce non-linearity or randomness into the convolved output. The commonly used

activation function for the CNN is the rectilinear unit (ReLU) [114, 115]. ReLU has been defined

in eqn. (3.4). ReLU has been used in different CNN architectures for image classifications [66,

109, 116, 117]. Its advantage over other non-linear activation functions such as sigmoid and tanh

is that it diminishes the tendency of having vanishing gradient and also increases the speed at

which global convergence is attained [66]. Its ability to yield better performance is associated with

the application of sparsity constraint on the output of a layer [84, 115]. Other variants of ReLU

which have better performances than ReLU have been proposed and evaluated in [118]. These

include the Leaky ReLU [119] and the parameterized ReLU (PReLU) [120]. Input data after

normalization or other pre-processing techniques usually have both positive and negative samples.

In PReLU, the gradient of the negative samples is also computed during optimization.

94

It is defined as,

 𝑃𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
𝑢𝑥 𝑖𝑓 𝑥 < 0

 (5.2)

where 𝑢 is the weight associated with the input 𝑥. Instead of thresholding the input value to zero

when it is smaller than zero, a weight (𝑘) is associated with the input unit in the Leaky ReLU.

Mathematically, it is defined as,

 Leaky 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 if 𝑥 ≥ 0
𝑘𝑥 otherwise

 (5.3)

The main difference between PReLU in eqn. (5.2) and Leaky ReLU in eqn.(5.3) is that 𝑢 is learnt

by back propagation while 𝑘 is manually fixed or searched within a range of parameters. As

reported in [118], the leaky ReLU out-performs both ReLU and PReLU activation functions when

implemented on the CIFAR-10/CIFAR-100 dataset. The output volume after convolution

operation increases with the number of filters used. However, the activation function does not

affect the size of the output volume. The increase in output volume due to convolution usually

results in a large number of network parameters. This can cause overfitting problem, i.e., the

network may be biased when it generalizes on an unseen data. To reduce the number of network

parameters, pooling operation is carried out on the output image. In fact, the pooling operation is

a downsampling operation. The commonly used pooling techniques are the mean or maximum-

pooling (max-pooling). To ensure that the feature maps and the features of the testing images have

the same feature scaling, the feature maps are usually normalized. The last stage of the CNN is the

classification stage which consists of fully connected layers. It is called fully connected layers

because each neuron in the layer is fully connected to all the neurons in the previous layers. The

95

last layer in the fully connected layer is an output layer. The output layer uses the softmax classifier

and it is sometimes referred to as the softmax layer. Besides, multi-perceptron can be used in the

fully connected layers. The number of neurons in the output layer is equal to the number of classes

or targets. For source camera identification, the number of neurons in the softmax layer equals to

the number of source cameras to be identified.

5.2. Training Process of CNNs

In this section, the training process of CNNs is discussed. We will describe how the CNN layers

learn its weights and map the activated features. The training is supervised in which CNNs are

trained and fine-tuned with training data and their corresponding labels. The training is done using

back error propagation [102]. First, initial weights of the convolutional layers are randomly

generated. Second, there are four steps in the training, namely the forward propagation, objective

function or cost function calculation, backward pass and the network weight update. During

forward propagation, the input image goes through both the convolutional layers and the

classification layers. The output of the softmax classification during the forward propagation may

have a large deviation from the expected output. This is because the weights of the network are

randomly assigned. The objective function finds the deviation between the input features and the

reconstructed features. Common cost functions include the sum of squared errors, cross-entropy

(CE) and the exponential cost functions [86, 87]. The CE loss is usually adopted when softmax

classifier is used for supervised fine-tuning because it avoids the changes in network weights to be

decreasing to zero. Afterward, a backward pass is carried out from the output layer back to the

input layer. Its aim is to determine the error of the weights in each layer of the network where the

96

estimated error is the biggest. To correct this, gradients of the weights in each layer are estimated

and all the weights of the networks are updated to reduce the estimated error. There are different

gradient optimization algorithms adopted for training. For example, the batch gradient descent,

stochastic gradient descent, mini-batch gradient descent, momentum, Nesterov accelerated

gradient, Adagrad, Adadelta, RMSprop and Adam [96]. Training is repeated over several numbers

of epochs until the training error is minimized over the training dataset.

 As earlier explained, CNN architecture involves a lot of network parameters. A large

number of parameters will require a large number of training samples and may have an over-fitting

problem. A newly developed technique for preventing overfitting is the dropout regularization

[98]. It is achieved by randomly setting a fraction of the units of a layer to zero while the remaining

units in the layer will be used as the input to the next layer. The basic idea of the dropout

regularization is to prevent the network from learning redundant features at each hidden layers so

that only useful features are retained for generalization [93]. It also helps to reduce computational

complexity by only performing activation on useful features.

5.3 Proposed CNN Architecture for Source Camera Identification

In this work, CNN is proposed to solve the instance-based source camera identification problem.

The proposed CNN-based system retains the positional correspondence information about the

sensor noise pattern for reliable device identification. Besides, we focus on identification of small

image size as existing approaches cannot provide reliable identification in such cases. In this

section, details about the proposed CNN-based source identification system will be discussed.

97

This includes the extraction of the noise residues of the image, the architecture of the proposed

system and the fine tuning steps.

5.3.1 Noise Residues Extraction and Formulation for CNN

PRNU is proposed as the input feature as earlier explained. The general pixel output model based

on the sensor’s imperfections is given in eqn. (2.2). The resulting noise residue 𝑊 from eqn. (2.2)

is also expressed in eqn. (2.3). The denoising filter proposed by Lukas et al. [5] was used to

denoise the cameras’ images. To obtain a reliable estimate of the PRNU image, state-of-the-art

algorithms rely on obtaining a set of photos taken by the camera. From this set of photos, PRNU

image is obtained either by averaging their noise residues or through the maximum-likelihood

estimation. In our proposed CNN-based source identification method, the noise residues are the

inputs to the deep learning network so that features inside the noise residues are learned by the

network.

Different pre-processing techniques are usually carried out on the data. The noise residues

are pre-processed by zero mean processing. It means that each row of the noise residue is first

subtracted from its row average, and then each column is subtracted from its column average to

give the normalized noise residue. Given that the size of the normalized noise residue is 𝑤̃. All

the noise residues of images belonging to the 𝑖𝑡ℎ camera will be concatenated and expressed as,

The size of 𝑇𝑖 is 𝑑2 × 𝑛𝑖 ,where 𝑛𝑖 is the total number of noise residues for the 𝑖𝑡ℎ camera. Given

that 𝑀 is the total number of cameras to be identified, the total number of samples for all the

cameras used in the experiment (𝑇𝑆) can be expressed as,

 𝑇𝑖 = [𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛𝑖
] (5.4)

98

 𝑇𝑆 = [𝑇1, 𝑇2, 𝑇3 …… . 𝑇𝑀] (5.5)

When the number of images is the same for all cameras, i.e.,𝑛1 = 𝑛2 = 𝑛𝑀, this becomes a balance

classification problem. Otherwise, it is an imbalanced classification problem. The camera labels

are formed by using one-hot encoding. This means that the column vector representing a noise

residue consists of only one non-zero element whose position indicates the camera that was used

to produce that image.

5.3.2 Network Architecture of Our Proposed CNN for Source Camera Identification

Figure 5.2. The layout of the CNN for instance-based camera source identification.

Note: The flattened output of the optimal convolutional layer is extracted as given as an input to a

one-vs-rest SVM classifier.

Figure 5.2 shows the proposed CNN architecture for instance-based SCI. It consists of the

following components: 𝐿 number of convolutional layers, fully connected layers, softmax and one

vs-rest linear SVM classifiers. Each convolutional layer consists of convolution operation,

activation function and batch normalization. The noise residues are first extracted from images

99

using eqn. (5.5). As explained in Section 5.3.3, the normalized noise residues are used as input

into the first convolutional layer, Conv1. The output of the Conv1 is then given as input to the next

convolutional layer, Conv2. This process is repeated until the 𝐿-th convolutional layer, ConvL, to

provide a good feature representation. In all the convolutional layers, Leaky ReLU is used as the

activation function due to its fast computation and superior performance as compared to ReLU

and PReLU [118]. Moreso, ReLU considers only positive samples of convoluted features while

Leaky ReLU considers the signal information of both positive and negative values. PRNU signal

after the zero-mean operation consists of both negative and positive values and hence, using ReLU

will remove some of the PRNU signal information. The weight is set to 0.001 as in [119] for Leaky

ReLU. In order to increase the rate of convergence during training, batch normalization (BN) is

used as a pre-processing technique on the convoluted output. It is called batch normalization since

it is being carried out on small batches of the convoluted output. The variation between the trained

features and test features are greatly reduced and it helps to increase the overall network

generalization accuracy. This was applied prior to the activation function in each convolutional

layer. There is always a decrease in the rate of convergence during training due to the internal co-

variance difference in the distribution of each hidden layer. In order to increase the rate of

convergence during training, batch normalization (BN) was used as a pre-processing technique on

the convoluted output. It is called batch normalization since it is being carried out on small batches

(𝑁𝐵) of the convoluted output [121]. Given that, 𝑁𝐵 = (𝑥1, 𝑥2, 𝑥3 … . 𝑥𝐵), the normalization of

each dimension (𝑥̂) can be expressed as,

100

where 𝑥 is the input of a hidden layer,𝑏 = 1, 2,…B, 𝜎𝑥 and 𝐸(𝑥𝑏) are the estimated variance and

expectation over a mini-batch over a training set. The scaled and shifted normalization value can

be expressed as,

 𝑦 = 𝜁𝑥̂ + 𝛿 (5.7)

where, 𝜁 and 𝛿 are learnable parameters. Batch normalization generates activations that have

Gaussian distribution and this further help emphasizes the Gaussian distribution nature of the

PRNU fingerprints of cameras.

In our work, the max-pooling operation was replaced with the use of stride since max-

pooling is mostly used in applications where translation-invariance is desired. The use of PRNU

as the input to the CNN does not require accounting for translational invariance since only the

center parts of the camera images were used. Furthermore, max-pooling aggressively down-sample

features and the quality of the feature maps since PRNU signal is a pixel-strength dependent signal.

The stride of 1 was used in the first two convolutional layers of our network so as to keep the

spatial size of images to prevent loss of information. To reduce the number of parameters, we used

the stride of 2 in Conv3 which acts as down-sampling operation. The output volume of the

convolutional layer depends on the number of filters kernels used. Given that the size of the input

image is W × H, the output of the convolutional layer will be 𝑊 × 𝐻 × 𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟, where

𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟 is the number of filter kernels used. The choice of 𝑛𝑏_𝑓𝑖𝑙𝑡𝑒𝑟 depends on the size of the

input data. Some of the optimal parameters are obtained during experiments and their effectiveness

for network generalization can be carried out using cross-validation [122]. Before the fully

 𝑥̂ =
𝑥𝑏 − 𝐸(𝑥𝑏)

√𝜎𝑥

 (5.6)

101

connected layers, flattening is carried out on the output of the last convolutional layer. Flattening

refers to the output of the convolutional layer that is converted to a one-dimensional vector.

Firstly, the flattened output is given as input to two fully connected layers; namely FC1

and FC2. There is no standard method for deciding the number of neurons in the fully connected

layers. This can be empirically determined during experiments. However, the numbers are

dependent on the size of the input data. The neurons in FC2 are fully connected to a softmax

classifier for probabilistic predictions of camera classes. The number of neurons in the softmax

classifier is equal to the number of cameras used.

Secondly, as shown in Figure 5.2, after the training of the proposed network with FC1,

FC2 and the softmax classifier, we neglected these layers and extracted the output of the Conv3

after flattening with a linear output and used this as the embedded layer for a one-vs-rest linear

SVM classifier [123] for the prediction of camera classes. One-vs-rest linear SVM classifier is also

known as the one-vs-all SVM classifier. SVM score is obtained by computing the probability that

a given data point belongs to a particular class by Platt scaling [124]. Plat scaling is used in

transforming the outputs of a classification model into a probability distribution over classes. For

one-vs-rest, each linear classifier will be trained by the entire camera classes. All the samples of a

one specific camera class will be treated as class one (𝐶1) and the all other samples of the remaining

camera classes are treated to belong to a single class (𝐶𝑟). Unlike one –vs-one classifier that uses

𝐶(𝐶 − 1)/2 linear classifiers, one-vs-rest uses only K linear SVM classifiers. During testing, the

class with maximum score among the 𝐶 classifiers is the class belonging to the testing sample.

Where C is the total number of classes. Using one-vs-rest linear SVM classifier gives room for

102

more training samples in a training set for each phase of training. Though, this increases

computation time during training especially when the number of target cameras is large [125].

 Since the number of the nodes after flattening is larger than the number of training samples

in our experiments, we are motivated to use one-vs-rest linear SVM classifier. Also, one-vs-rest

linear SVM is less sensitive to datasets with unequal samples.

Though, One-vs-rest linear SVM is more computationally expensive compared to using

softmax classifier for prediction of classes. We implemented the one-vs-rest linear SVM using

scikit learn library in Keras.

5.3.3 Fine-Tuning and Training of the Proposed Network

The fine-tuning process can be described as an iterative method of finding filter weights (𝑤) that

can help in the minimization for the CNN’s cost or objective function. Given 𝑥 as the training

data, 𝑁 as the number of training data, the error rate (J(W, x) is expressed in [122] as,

where, L is the loss function, x𝑖 is the 𝑖𝑡ℎ image of x, 𝑓(x𝑖, 𝑤) is the function for predicting the

class 𝑐𝑖 of x𝑖 given 𝑤. In all our experiments, the mini-batch stochastic gradient descent was used

to determine the optimal weights of the CNN and L was used as the categorical loss function. In

each iteration, the optimal weight was updated. Given that the current weight is 𝑤𝑘 , the updated

weight in each iteration is expressed in [122] as,

 J(W, x) =
1

𝑁
∑ L𝑁

𝑖=1 (𝑓(x𝑖 , 𝑤), 𝑐𝑖)+ (5.8)

103

where 𝜂, 𝛾, 𝜆 , 𝑁𝐵 are the learning rate, momentum coefficient, weight decay and the mini-batch

size respectively. The function of the momentum is to control the learning rate so that a fast global

convergence can be achieved. A decay rate was also used together with the momentum. The decay

rate is used for the modification of the learning rate (𝜂) to further reduce the error rate. The decay

rate may be obtained by dividing the learning rate with the number of epochs used. The term epoch

means a single training pass (weight update) using all the training set [122]. Since, the proposed

Dresden dataset used in our experiments is an unbalanced dataset, we introduced the use of class

weight to the training function. Class weights penalize under or over-represented classes in the

training set. The class weight was calculated by using 𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑙𝑜𝑔 (𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠). The log function helps to smoothen the weights for every imbalanced class.

If the class weight is less than 1, estimated weight for the class will be used as 1. The class weights

can be fine-tuned by a smaller parameter, 𝑝. We used 𝑝 as 0.15. This is then passed as a dictionary

into the class weight parameter of the network training function. Furthermore, in order to prevent

overfitting of network and reduce unnecessary computation during training, we adopted the use of

early stopping [126]. In our experiments, since we are interested in identification accuracy of

classes, we monitored the training accuracy and initiated the training to stop once there is no

change in the training accuracy over two consecutive epochs. In order to ensure that the parameters

used in our experiments do not have high variance when evaluated on another set of testing data,

we used K-fold cross-validation and computed the mean accuracy over the entire testing sets. K

was set as 10 in all experiments. To prevent overfitting, we further used dropout regularization,

 w𝑘+1 = w𝑘 + 𝜂 [𝛾∆w𝑘 −
𝜕J(W, 𝑁𝐵)

𝜕𝑘
− 𝜆w𝑘]

 (5.9)

104

weight and sparsity regularizations. The weight and sparsity regularizations were added to FC1,

FC2 and the softmax layer. Dropout regularization was used with the fully connected layers (FC1

and FC2) only.

5.3.4 Selection of Fine-Tuning Parameters

Selection of fine-tuning the parameters is mostly done by empirical methods. Most commonly

used methods are grid search, hold-out validation datasets, random search and the use of proven

parameters in existing literature. In our work, the knowledge of existing parameters and searching

of the optimal parameters within ranges of parameters were adopted. The optimal performance for

 𝜆 is set at 10−5. Parameters to be fine-tuned are, 𝛾 , 𝜆 , 𝑁𝐵 and the number of epochs. 𝜂 is

searched between 0.01 and 0.005. For all the experiments, irrespective of the input size, the optimal

results are usually obtained when 𝜂 is set as 0.001. 𝛾 is searched between 0.5 and 0.9. The

optimal performance in all experiments is at 0.9 irrespective of the image sizes. 𝑁𝐵 of a power of

2, i.e., 16, 32, 64, 128 and 256 are usually used to ensure that the GPU memory has the greatest

usage [122]. Due to the image sizes used in our experiments and GPU memory constraints, smaller

𝑁𝐵 was tested unlike 256 commonly used in literature [122, 127]. One of the easiest ways of

reducing memory consumption is using reduced batch size. We obtained the optimal results in our

experiments using 16 for 64 × 64 image size. The time taken to complete a mini-batch is one

iteration. Both the weight and sparsity regularization parameters are searched at range of 10− 6 to

10−2.

105

5. 4 Experiments and Results

5.4.1 Experimental Settings

The same Dresden database and 20 cameras used in Table 4.1 are also used for the proposed

methods. The only difference is that, we also added the flat images of each camera as part of our

experimental evaluation. However, not all the used cameras in the Dresden database have flat

images. Table 5.1 shows the cameras with their natural and flat images. The total number of flat

and natural images are 4996 and 750 respectively. Flat images can only be used for training and

not used as test data for source camera identification problem. Therefore, since we used cross-

validation during training, noise residues of the flat image with corresponding labels were only

added to each training fold of the natural images. Apart from flat images having quality PRNU

fingerprints, it also helps to increase the size of the data and this is an added advantage when

training a deep network. Since, conventional methods have lower camera identification accuracy

for small sizes images, the center part of the images was cropped to produce 64 × 64 image sizes.

All experiments are carried out on the same experimental platforms discussed under Section 4 3.1.

5.4.2 Results and Discussion

The proposed CNN-based source camera identification system shown in Figure 5.2 has a few

components. Table 5.2 shows the list of components of the proposed CNN architecture used for

source camera identification for 64 × 64 image size along with its main parameters. In all our

experiments, optimal performance was obtained using three convolutional layers at a batch size of

16. The epoch was set to 20 and as earlier stated and early stopping with a patience of 2 was used

in all experiments. To investigate how the proposed method generalizes well when new cameras

106

are used and to show that the parameters are not dataset specific, we divided the cameras set into

three cases. In case 1, the experiment was carried out on the first ten cameras in Table 5.1, for case

2, the experiment was carried out on the remaining ten cameras, i.e., cameras 11 to 20 in Table 5.1

and in case 3, the experiment was carried out on all the 20 cameras. The significance of the division

of the cameras to cases 1 and 2 is to be able to see how the hypermeters used in case 1 generalizes

when used on new sets of cameras in case 2. Finally, the case 3 shows the effects of an increase in

number of cameras on the identification accuracies of cameras. Experiments were carried out on

each case. Experiments in each case include the use of CNN both for classification and also as a

feature extractor for one-vs-rest linear SVMs. In the remaining part of this work, the CNN with

softmax classifier and also as feature extractor with one-vs-rest linear SVM are named as CNN-

SC and CNN-SVM respectively. The results of the three cases are grouped and explained under

the three sub-sections of experiments below.

107

 Table 5.1. Details about the cameras used in the experiment including the resolution and

number of flat and natural images.

S/N Camera Brand Resolution Natural Images Flat Images

1 Agfa_DC-830i 3264 × 2448 342 -

2 Olympus_mju_1050SW_0 3264 × 2736 204 50

3 Olympus_mju_1050SW_1 3264 × 2736 209 50

4 Kodak_M1063_0 3664 × 2748 464 -

5 Kodak_M1063_1 3664 × 2748 458 -

6 Agfa_Sensor530s_0 4032 × 3024 372 -

7 Nikon_D70_0 3008 × 2000 180 25

8 Nikon_D70_1 3008 × 2000 189 25

9 Olympus_mju_1050SW_2 3264 × 2736 218 50

10 Canon Ixuss 55 2592 × 1944 224 50

11 Canon_Ixus70_0 2304 × 3072 171 50

12 Canon_Ixus70_1 2304 × 3072 179 50

13 Canon_Ixus70_2 2304 × 3072 171 50

14 Samsung_L74wide_0 2304 × 3072 229 50

15 Samsung_L74wide_1 2304 × 3072 224 50

16 Samsung_L74wide_2 2304 × 3072 231 50

17 Samsung_NV15_0 2304 × 3072 217 50

18 Samsung_NV15_1 2304 × 3072 214 50

19 Sony_DSC-H50_0 2736 × 3648 266 50

20 Sony_DSC-H50_1 2736 × 3648 234 50

Total number of Images 4996 750

108

 Table 5.2. Components of CNN architecture and its parameters.

S/N Layer

 Component

Component

parameter

Value

64 × 64

1 Convolution Kernel size

No. of filters

Stride size

3 × 3 ×1

64

1 × 1

2 Batch Normalization Axis 1

3 Leaky ReLU weight (𝑘) 0.01

4 Convolution Kernel size

No. of filters

Stride size

3 × 3 ×1

64

1 × 1

5 Batch Normalization Axis 1

6 Leaky ReLU weight (𝑘) 0.01

7 Convolution Kernel size

No. of filters

Stride size

3 × 3 ×1

64

2 × 2

8 Batch Normalization Axis 1

9 Leaky ReLU weight (𝑘) 0.01

10 Fully Connected Units 128

Dropout rate 0.2

Reg. parameter 10−5

11 Fully Connected Units 128

Dropout rate 0.2

Reg. parameter 10−5

12 Softmax Classifier Units (No. of camera

classes)

10 & 20

13 One-vs-rest linear SVM Units (No. of camera

classes)

Random state

10 & 20

0

109

Experiments 1 (Case 1)

The overall accuracy of each split of testing data for both CNN-SC and CNN-SVM for case 1 are

shown in Table 5.5. By overall accuracy we mean, the ratio of the number of correctly identified

test samples of all cameras to the total number of test samples of all cameras in each fold. The

standard deviations of accuracies over the 10 folds cross-validation for both CNN-SC and

CNN_SVM are ± 2.28%, ± 0.02% respectively. The average overall accuracies are 67.48% and

69.69% for both CNN-SC and CNN-SVM respectively. These results show that the CNN-SVM

has improved performance of 2.21% over the CNN-SC for case 1. Hence, the confusion matrix for

the first ten cameras using CNN-SVM is shown in Table 5.3. The individual camera identification

accuracy is shown by the diagonals of Table 5.3 in bold. The average identification accuracy for

10 cameras for an image size of 64 × 64 is 69.01%. The cameras devices;

Olympus_mju_1050SW_1 and Nikon_D70 are observed to have lower identification accuracies

as compared to other cameras. Nikon camera is always reported to be difficult, as it has diagonal

artifacts which affect the accuracy. The generalisation performance of deep learning networks is

also dependent on the quality of the input features.

Experiments 2 (Case 2)

For case 2, the parameters of the network are not reset. The same network and fine-tuning

parameters used in case 1 are directly applied to the cameras in case 2. The overall accuracy of

each split of testing data for both CNN-SC and CNN-SVM for case 2 are shown in Table 5.5. The

standard deviation of accuracies over the 10 folds cross-validation for both CNN-SC and CNN-

SVM are ± 3.64 % and ± 0.03% respectively. The average overall accuracies are 71.91% and

76.73% for both CNN_SC and CNN-SVM respectively. These results show that the CNN-SVM

110

has improved performance of 4.82% over the CNN-SC for case 2. This means, for both cases 1

and 2, the proposed CNN-SVM has better generalisation accuracy compared to using CNN-SC.

Hence, Table 5.4 shows the confusion matrix for cameras in case 2 using CNN-SVM. The

identification accuracy of each camera is shown by the diagonals of Table 5 in bold. The average

identification accuracy of the cameras in case 2 is 76.30%. The superior performance of

Sony_DSC-H50_0 and Sony_DSC-H50_1 compared to other cameras can be attributed to the

quality of the noise residues of the Sony camera brand. Experiments on case 2 show that the

parameters used in case 1 are not data specific and can be applied directly to new sets of cameras.

However, the average identification accuracy of case 2 for CNN-SVM is 6.61% greater than that

of case 1. The higher accuracy obtained for case 2 was because many source cameras in case 2

have high identification accuracies. This may be due to the quality of natural images of those

cameras as PRNU signal can best be extracted from high-intensity images with simple texture

complexity.

Experiments 3 (Case 3)

Furthermore, we carried out experiments for all the 20 cameras in Table 4.1. The overall accuracy

of each split of testing data for both CNN-SC and CNN-SVM for case 3 are shown in Table 5.5.

The standard deviation and accuracies over the 10 folds cross-validation for both CNN-SC and

CNN-SVM are ± 1.29 % and ± 0.02% respectively. The average overall accuracies are 66.93 %

and 70.28% for both CNN-SC and CNN-SVM respectively. Since the CNN-SVM has the highest

average overall accuracy, we itemized each camera identification accuracy of proposed network

using CNN-SVM in Table 5.6. Table 5.6 also shows the number of testing images and correctly

identified images for the 20 cameras. The average identification accuracy for the 20 cameras is

111

69.79%. The experimental results show that the average identification accuracy for case 3 is 0.78%

greater than case 1 and 6.51 % lesser than case 2. In machine learning, the more the number of

classes is, the lower the overall identification accuracy is. The higher accuracy obtained in case 3

compared to case 1 is due to the strong presence of noise residues of cameras of case 2 in case 3.

Figure 5.3 shows the variation of the error rate with respect to the number of epochs over all the

10 folds. It was observed in Figure 5.3 that the error rate becomes stable before getting to 20 epochs

in all the 10 folds of training data due to the early stopping applied during training. We also

investigated the performance of our proposed methods for the three cases with and without the use

of flat images as part of training data. Table 5.7 shows the overall accuracies of proposed methods

with and without the use of flat images in the training process. As observed from Table 5.7, for

CNN-SC, there is an increased overall identification accuracy of 4.76%, 6.65% and 3.00% in case

1, case 2 and case 3 respectively when the flat images were included as part of training data. While

for CNN-SVM, there is an increased overall identification accuracy of 3.4%, 4.16% and 3.87% in

case 1, case 2 and case 3 respectively when the flat images were included as part of training data.

The increase in accuracy can be attributed to the quality of noise residues extracted when flat

images are used and also, generalization accuracy increases with increased training data in

machine learning problems. However, in a situation where there is no availability of flat images

for cameras under investigation, the proposed methods still have good performance with the use

of natural images as training data only.

112

Table 5.3. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image size (case 1).

Camera Device

1 2 3 4 5 6 7 8 9 10

Agfa_DC-830i 1 82.75 0.29 - 1.46 1.17 6.43 2.63 5.26 - -

Olympus_mju_1050SW_0 2 - 63.24 17.16 1.47 - 1.47 - - 16.67 -

Olympus_mju_1050SW_1 3 1.91 18.18 57.89 1.91 0.48 0.48 - 0.48 18.66 -

Kodak_M1063_0 4 2.59 0.22 - 60.56 32.11 2.59 0.22 1.08 - 0.65

Kodak_M1063_1 5 3.49 - - 32.31 61.79 0.66 0.22 0.87 - 0.66

Agfa_Sensor530s_0 6 1.88 - - 1.61 0.81 87.37 5.11 3.23 - -

Nikon_D70_0 7 3.33 - 0.56 2.22 1.67 16.67 53.89 20.00 1.11 0.56

Nikon_D70_1 8 1.59 - - 3.70 0.53 15.87 17.99 59.26 - 1.06

Olympus_mju_1050SW_2 9 1.38 16.51 15.14 1.38 0.46 0.46 0.46 0.00 64.22 -

Canon Ixuss 55 10 0.45 - - - - 0.45 - - - 99.11

Table 5.4. Identification accuracy (in percentage %) of the proposed method for 64 × 64 image size (case 2).

Camera Device

11 12 13 14 15 16 17 18 19 20

Canon_Ixus70_0 11 74.27 12.28 9.94 - - - - 2.34 0.58 0.58

Canon_Ixus70_1 12 11.73 76.54 8.38 - - - 1.68 0.56 - 1.12

Canon_Ixus70_2 13 9.36 9.94 73.10 0.58 1.17 1.17 1.17 1.17 1.17 1.17

Samsung_L74wide_0 14 - - - 70.74 12.66 13.54 1.75 0.87 0.44 -

Samsung_L74wide_1 15 0.45 - - 16.52 64.29 15.18 1.34 1.79 0.45 -

Samsung_L74wide_2 16 - 0.87 0.43 12.12 16.45 67.10 0.43 2.60 - -

Samsung_NV15_0 17 - - 0.46 1.38 2.76 1.38 79.72 11.98 0.46 1.84

Samsung_NV15_1 18 - - - 1.40 2.80 1.40 13.08 76.64 2.34 2.34

Sony_DSC-H50_0 19 - 0.38 0.38 0.38 - - 0.38 0.75 91.73 6.02

Sony_DSC-H50_1 20 - 0.43 0.85 0.43 0.85 - 0.85 1.28 6.41 88.89

113

Figure 5.3. Error rates against the number of epochs for the 20 cameras.

Table 5.5. The overall accuracy of each testing fold for both CNN-SC and CNN-SVM For Case 1,

Case 2 and Case 3.

Fold No. Case1 Case2 Case3

CNN_SC CNN_SVM CNN_SC CNN_SVM CNN_SC CNN_SVM

1 67.5 67.1 69.6 75.7 68.0 71.4

2 70.6 67.5 74.8 77.1 67.0 67.6

3 65.7 70.3 75.7 78.5 65.8 72.4

4 64.3 68.9 71.0 73.8 64.4 72.2

5 68.9 71.0 72.0 80.8 68.4 71.2

6 65.0 66.4 70.1 77.6 66.6 72.2

7 68.2 68.9 64.8 71.8 67.9 69.1

8 70.6 72.0 73.2 76.1 65.5 67.3

9 69.2 70.3 78.4 80.3 68.5 68.1

10 64.7 74.5 69.5 75.6 67.1 71.1

Std. dev. (± %) 2.28 0.02 3.64 0.03 1.20 0.02

Average accuracy

(%)

67.48 69.69 71.91 76.73 66.93 70.28

114

Table 5.6. An overall number of testing images, correctly identified images, and the

overall identification accuracy for CNN-SVM for the 20 cameras.

S/N Camera Device Testing

images

No. of

correctly

identified

testing

images

Identification

Accuracy

1 Agfa_DC-830i 342 275 80.4

2 Olympus_mju_1050SW_0 204 126 61.8

3 Olympus_mju_1050SW_1 209 117 56

4 Kodak_M1063_0 464 273 58.8

5 Kodak_M1063_1 458 290 63.3

6 Agfa_Sensor530s_0 372 320 86

7 Nikon_D70_0 180 102 56.7

8 Nikon_D70_1 189 103 54.5

9 Olympus_mju_1050SW_2 218 144 66.1

10 Canon Ixuss 55 225 191 85

11 Canon_Ixus70_0 171 117 68.4

12 Canon_Ixus70_1 179 131 73.2

13 Canon_Ixus70_2 171 107 62.6

14 Samsung_L74wide_0 229 169 73.8

15 Samsung_L74wide_1 224 143 63.8

16 Samsung_L74wide_2 231 162 70.1

17 Samsung_NV15_0 217 149 68.7

18 Samsung_NV15_1 214 149 69.6

19 Sony_DSC-H50_0 266 239 89.8

20 Sony_DSC-H50_1 234 204 87.2

Total no: 4997 3511 1395.8

Overall Accuracy (%) 70.26 69.79

115

5.4.3 Comparison with some state-of-the-art methods

In this part, we compare our proposed method (CNN-SVM) with four state-of-the-art methods for

instance-based SCI for both 64 × 64 size. The methods are the maximum likelihood estimated

SPN (MLE SPN) [8], Li's model SPN [9], Phase SPN [10] and weighted averaging (WA)

method[51]. Model 5 of the six proposed Li's models gives the best overall accuracy and hence it

is used in our comparative study. The weighting average using MLE (MLE WA) proposed in [51]

was used. For the purpose of fair comparison among the four methods, the identification was

achieved using the peak to energy correlation [10]. Since we are not using cross-validation for the

state-of-the-art methods like we did for CNN-SVM and for the purpose of fair comparison, the flat

images were included with the 80% of the natural images for the training of the proposed CNN-

SVM. The remaining 20% of the natural images were used for testing. The same experimental

setting was used for the compared state-of-the-arts methods. The comparison results are shown in

Table 5.8. It was shown that the average accuracy per camera device of the proposed method is

23.03%, 25.26%, 18%, and 21.61% higher than that of MLE SPN, LI’s model 5, Phase SPN and

WA method respectively.

Table 5.7. Overall accuracies of proposed methods with and without the use

of flat images in the training process (%)

Proposed method with and without flat

images

Case

1

Case

2

Case

3

CNN-SC without flat images 64.93 65.26 63.69

CNN-SC with flat images 67.48 71.91 66.93

CNN-SVM without flat images 66.29 72.57 66.41

CNN-SVM with flat images 69.69 76.73 70.28

116

Table 5.8. Comparative study of the identification accuracies (in percentage %) of our proposed

method (CNNN-SVM) and four other state-of-the-art methods for 64 × 64 image sizes.

S/N Camera Device MLE Li’s

Model 5

Phase

SPN

WA CNN-SVM

1 Agfa_DC-830i 63.77 59.27 60.87 63.77 88.14

2 Olympus_mju_1050SW_0 31.70 39.02 36.59 34.15 73.17

3 Olympus_mju_1050SW_1 50.00 52.38 57.14 45.24 45.83

4 Kodak_M1063_0 22.58 15.05 16.13 30.12 62.22

5 Kodak_M1063_1 31.52 25.00 27.13 33.70 66.29

6 Agfa_Sensor530s_0 69.33 66.67 64.00 81.33 84.34

7 Nikon_D70_0 30.56 27.78 22.22 19.44 65.85

8 Nikon_D70_1 34.21 31.58 26.32 21.05 54.05

9 Olympus_mju_1050SW_2 50.00 63.63 56.82 47.72 66.67

10 Canon Ixuss 55 33.33 24.44 46.67 86.67 81.81

11 Canon_Ixus70_0 71.43 65.71 74.29 25.71 62.50

12 Canon_Ixus70_1 55.56 55.56 55.56 44.44 65.85

13 Canon_Ixus70_2 60.00 68.57 77.14 60.00 65.63

14 Samsung_L74wide_0 30.43 23.91 56.52 43.48 72.55

15 Samsung_L74wide_1 13.33 17.78 31.11 31.11 71.12

16 Samsung_L74wide_2 23.40 12.77 55.32 31.91 67.64

17 Samsung_NV15_0 47.73 31.82 47.73 36.36 66.00

18 Samsung_NV15_1 66.79 55.81 62.79 76.74 75.76

19 Sony_DSC-H50_0 79.63 79.63 85.19 79.63 86.54

20 Sony_DSC-H50_1 78.72 82.98 85.11 80.85 82.69

Average accuracy per camera

device

47.20 44.97 52.23 48.67 70.23

117

An improved identification accuracy is observed for 14 out of the 20 camera devices using CNN-

SVM compared to other methods. This shows that our proposed CNN architecture can extract

robust sensor characteristics from small image size. As earlier mentioned under motivation for our

work in Section 1.2 of Chapter 1, the CNN-based method [19] published in 2019 used PRNU

images of cameras as input data and has lesser identification accuracy than the compared PRNU

based method [5]. The work in [19] used max-pooling in all the three convolutional layers and also

spatial pooling for dimensionality reduction of feature maps. These operations especially max-

pooling does aggressive down-sampling, and this greatly affects the strength and pixel-positional

correspondence nature of the individual PRNU images of cameras. Hence, our architecture

excluded these pooling operations and only used strided convolution for better network

generalization. Our experimental results in Table 5.8 shows that our proposed well-designed

CNN-based methods with effective training algorithms have better identification accuracies than

the four compared PRNU-based methods using the same number of training and testing images.

Hence, our proposed CNN-based methods have better generalization capability than the CNN-

based method proposed in [19] and hence can achieve higher identification accuracy than PRNU-

based techniques for SCI.

118

5.5 Fine-tuned Pre-trained Convolutional Neural Networks for Source Camera

Identification

In this section, we aim to fine-tune already pre-trained proposed CNN architecture for source

camera identification in Figure 5.2. In the remaining part of this section, we will give brief

background understanding on transfer learning through fine-tuning of the pre-trained network,

discuss the modification to the proposed method in Figure 5.2 and finally, give experimental

results and discussion.

5.5.1 The Idea of Transfer Learning and Our Motivation

In recent times, it is rare to train CNN from the scratch because of the need to use large dataset for

training so as to prevent overfitting. The usual approach adopted to solve the problem of overfitting

is fine-tuning a model trained on a large dataset on a different dataset through the use of

backpropagation. In transfer learning, the problem over which the pre-trained network was trained

is called the source problem and the problem at hand is the target problem. If there will be a better

generalization of the target problem, the source problem and the target problem must have similar

or related distribution. This approach of using similar or related distribution is called domain

adaptation. There are still challenges in obtaining good generalization accuracy for a target

problem if it has different distribution compared to the source problem [102]. Most of the available

pre-trained networks are networks trained on image classification problems. Examples of such pre-

trained network are Alex[66] and GoogleNet [109]. Those pre-trained networks extracted their

features directly from the images. For SCI, our aim is not to identify the images but the source

cameras of the images and hence, we need to learn specific features related to each camera. Also,

most of the images in the Dresden database were captured from the similar scenes using different

119

cameras and hence learning just the image features will only mean we are learning correlated

features. This was why we earlier proposed PRNU fingerprints as the input data for our proposed

CNN architecture in Figure 5.2. This is because PRNU fingerprints are distinct to each camera.

Therefore, if CNN model pre-trained on PRNU fingerprints of non-target cameras sets are

available, we can then, use the pre-trained CNN on target cameras set so as to help improve

generalization accuracy of the network for the new camera set.

5.5.2 Methodology

Figure 5.4 shows the overview of our proposed methodology for fine-tuned pre-trained CNN for

source camera identification. In order to have a source problem that is close to the target problem,

the proposed CNN model in Figure 5.2 was trained on a non-target camera classes. The PRNU

images of the non-targeted cameras are used as input to the CNN model and trained. The trained

model was saved. The trained CNN model is referred to as the pre-trained CNN model in Figure

5.4. The PRUN images of the targeted classes are then given as input to the pre-trained CNN

model. Before fine-tuning of the pre-trained CNN model, its output layer (softmax layer) was

removed before FC layers are added on top of the pre-trained network during the fine-tuning

process. Also, all the weights of the layers of the pre-trained CNN model are updated during

training. This means none of the weights of the layers of the pre-trained CNN are frozen. The

output of the FC2 was given to a softmax classifier for probabilistic prediction of camera classes.

Also, the fine-tuned model was used as feature extractor for one-vs-all linear SVMs. The feature

for one-vs-all linear SVMs was extracted from the fine-tuned model prior to the addition of fully

connected layers. The neurons in FC1 and FC2 are used as 128 and 256 respectively. However,

we have to randomise the added fully connected layers (FC1 and FC2). This is because, the pre-

120

trained CNN model will be eventually used for classifying the target camera classes and hence,

the weights in the fully connected (FC) layers of the pre-trained CNN (CNN model trained for

classifying the non-target classes) will not be suitable. The randomisation was achieved by using

random initialisation in each fully connected layer. The training and the fine-tuning process of a

CNN model have been described in Section 5.3.3. For the fine-tuned model, the MBSGD with

momentum and decay were used for network optimisation. For a better generalisation of the

network, 10-fold cross-validation was performed during fine-tuning.

Figure 5.4. Overview of the Fine-tuned Pre-trained CNN.

5.5.3 Experiments and Results

The first 10 cameras in Table 4.1 are used as the non-target camera classes and the remaining 10

cameras are used as the target camera classes. The center part of the images was cropped to produce

64 × 64 image sizes. Optimal performance was obtained by using the same fine-tuning parameters

used for the pre-trained CNN model. As shown in Table 5.9, fine-tuning the pre-trained CNN using

CNN-SC shows 25.02% improvement over the identification accuracy of the proposed CNN

121

model without fine-tuning. Likewise, fine-tuning the pre-trained model using CNN-SVM shows

20.37% improvement over the identification accuracy of the proposed CNN model without fine-

tuning. Therefore, implementing a pre-trained CNN model already used on non-target camera

classes can help improve the identification accuracy when used on target camera classes.

 The confusion matrix for the 10 target camera classes using CNN-SC and CNN-SVM are

shown in Table 5.10 and Table 5.11. The individual camera identification accuracy is shown

by the diagonals of Table 5.3 in bold font. The average identification accuracy for both CNN-SC

and CNN_SVM are 97.04 % and 96.82% respectively.

Table 5.9. Overall accuracies of proposed methods on target

camera classes (%).

Proposed method with and without fine-

tuning

Target

camera class

CNN_SC without fine-tuning 71.9

CNN_SC with fine-tuning 96.92

CNN_SVM without fine-tuning 76.73

CNN_SVM with fine-tuning 97.10

122

 Table 5.10. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SC.

Camera Device

11 12 13 14 15 16 17 18 19 20

Canon_Ixus70_0 11 94.74 2.92 1.75 0.58 - - - - - -

Canon_Ixus70_1 12 1.12 98.88 - - - - - - - -

Canon_Ixus70_2 13 1.75 1.75 96.49 - - - - - - -

Samsung_L74wide_0 14 - - - 98.25 0.87 0.87 - - - -

Samsung_L74wide_1 15 0.45 - - 0.45 98.21 - - - 0.89 -

Samsung_L74wide_2 16 - - - 2.60 3.46 93.51 - 0.43 - -

Samsung_NV15_0 17 0.46 0.46 - 0.92 - - 96.31 1.84 - -

Samsung_NV15_1 18 - - - - - - 1.87 97.66 0.47 -

Sony_DSC-H50_0 19 0.38 - - - - - 0.75 - 98.87 -

Sony_DSC-H50_1 20 - 0.43 0.85 - - - - - 1.28 97.44

 Table 5.11. Identification accuracy (in percentage %) for 64 × 64 image size using CNN_SVM.

Camera Device

11 12 13 14 15 16 17 18 19 20

Canon_Ixus70_0 11 94.15 1.75 2.92 0.58 - - - - - 0.58

Canon_Ixus70_1 12 2.23 96.09 1.68 - - - - - - -

Canon_Ixus70_2 13 1.75 0.58 97.08 - - - - 0.58 - -

Samsung_L74wide_0 14 - - - 98.25 0.44 1.31 - - - -

Samsung_L74wide_1 15 0.45 - - 1.34 98.21 0.00 - - - -

Samsung_L74wide_2 16 - - - 3.46 3.46 93.07 - - - -

Samsung_NV15_0 17 - - - - - 0.46 97.70 1.84 - -

Samsung_NV15_1 18 - - - - - - 1.87 97.66 0.47 -

Sony_DSC-H50_0 19 - - - - - - 0.75 0.38 98.12 0.75

Sony_DSC-H50_1 20 - - - - - - 0.43 - 1.71 97.86

123

5.5.4 Comparison with Some State-of-the-Art Methods

Furthermore, we also compared our best system (CNN-SVM with fine-tuning) with four state-of-

the-art methods for instance-based SCI for both 64 × 64 size on the target cameras. We compared

with the same four state-of-the-art method in Section 5.4.3. Table 1 shows that the proposed

method (CNN-SVM with fine-tuning) has better identification accuracy for each camera than all

the compared state-of the arts methods. Also, our experimental results show that our proposed

method using fine-tuned pre-trained convolutional neural networks for source camera

identification has 24.03-38.52% identification accuracy higher than the compared four state-of-

arts methods for 64 by 64 image size.

Table 5.12. Comparative study of the identification accuracies (in percentage %) of CNN-SVM with

fine-tuning and four other state-of-the-art methods for 64 × 64 image sizes.

S/N Camera Device MLE Li’s

Model 5

Phase SPN WA CNN-SVM

1 Canon_Ixus70_0 82.86 71.43 82.86 45.71 94.15

2 Canon_Ixus70_1 63.89 61.11 63.89 55.56 96.09

3 Canon_Ixus70_2 65.71 80.00 80.00 74.23 97.08

4 Samsung_L74wide_0 45.65 34.78 63.04 60.87 98.25

5 Samsung_L74wide_1 24.44 24.44 51.11 44.44 98.21

6 Samsung_L74wide_2 36.17 29.79 63.83 46.81 93.07

7 Samsung_NV15_0 61.36 38.64 61.36 50.00 97.70

8 Samsung_NV15_1 79.07 74.42 79.07 79.07 97.66

9 Sony_DSC-H50_0 85.19 83.33 90.74 83.33 98.18

10 Sony_DSC-H50_1 82.98 85.11 93.62 91.49 97.86

Average accuracy per camera

device

62.73 58.31 72.95 63.15 96.83

124

5.6. Comparison with a Deep Learning Based Method

All four compared state-of-the-arts methods in Table 5.8 and Table 5.13 are PRNU-based methods.

Therefore, we further compared our proposed CNN based methods with the work in [57]. The

work proposes a deep learning-based method using content-adaptive fusion network (CA-FRN)

for SCI. Their deep network learns camera features directly from the images while our proposed

CNN-based methods learn from noise residues preprocessed by zero-meaning. The authors in [57]

carried out experiments on three levels of camera identification which includes, camera brand

identification (CBI), camera model identification (CMI) and camera device identification (CDI).

A total of 13 camera devices from the Dresden database using 64 × 64 image size are used for

their experimental evaluation. Therefore, in our comparison with CA-FRN, we also used the same

camera devices and image size (64 × 64). Table 5.13 shows the list of cameras used to evaluate

the proposed CA-FRN method. The differences in our evaluation settings include, the use of

several patches of the same image for CA-FRN while we used only the PRNU of the center patch

per image. The implication is that their network requires very huge training data for it to achieve

good identification accuracy and hence the basis of the comparison is to see how our proposed

CNN-SVM compares with CA-FRN in identification accuracy with and without pre-training with

only few images for training our proposed deep networks. Hence, in our experiments, 80% of the

camera images are used for training while the remaining 20% is used for testing.

125

Five of the cameras used in Table 5.1 are also part of the cameras used in Table 5.13 for evaluating

their proposed CA_FRN. Therefore, for our proposed CNN-SVM with fine-tuning, we pre-trained

on the remaining 15 cameras in Table 5.1 excluding the five cameras in Table 5.13. These 15

cameras are used as the non-target cameras as described in our methodology in Section 5.5.2 while

the cameras in Table 5.13 are the target cameras. The work in [57] used the first 9 cameras in Table

5.13 for CBI, three model devices of Sony_DSC (cameras 4,10 and 11) for CMI and 3 devices of

Sony_DSC_T77 (cameras 11-13) for CDI. The same settings are used also in our experimental

evaluation for CBI, CMI and CDI.

 Table 5.13. List of cameras used to evaluate the proposed CA_FRN for SCI.

S/N Camera Brand Resolution Number of Images

1 Kodak_M1063_0 3664 × 2748 464

2 Pentax_optionA40_0 3000 × 4000 168

3 Nikon_CoolPixS710_1 3264 ×4532 197

4 Sony_DSC-H50_0 2736 × 3648 266

5 Olympus_mju_1050SW_2 3264 × 2736 218

6 Panasonic_DMC_FZ50_1 3684 × 2736 415

7 Agfa_Sensor530s_0 4032 × 3024 372

8 Ricoh_GX100_0 2736 × 3648 192

9 Samsung_NV15_0 2304 × 3072 217

10 Sony_DSC_W170_0 2736 × 3648 205

11 Sony_DSC_T77_0 2736 × 3648 181

12 Sony_DSC_T77_1 2736 × 3648 171

13 Sony_DSC_T77_2 2736 × 3648 189

Total number of Images 3255

126

The comparison results are shown in Table 5.14, Table 5.15, and Table 5.16 for CBI, CMI

and CDI respectively. CNN-SVM without and with fine-tuning are denoted as CNN-SVM1 and

CNN-SVM2 respectively. The proposed CA-FRN [57] provides individual identification accuracy

for the CBI while only average identification accuracies are provided for both CMI and CDI.

Therefore, Table 5.15, and Table 5.16 only provide the average identification accuracies for CMI

and CDI. For CBI, the average identification accuracies are 97.3%, 87.28%, 91.18% for CA-FRN,

CNN-SVM without and with fine-tuning respectively. This shows CA-FRN is 10.02% and 6.12%

greater in identification accuracies than our proposed CNN-SVM without and with fine-tuning for

CBI. However, with just a single patch per image and less complexity of the network, our proposed

CNN-SVM with fine-tuning has close identification accuracy with CA-FRN method.

Table 5.14. Comparative Study of the identification accuracies (%) of our proposed

CNN-SVM with CA_FRN for Camera Brand Identification.

S/N Camera Device CA-FRN

CNN-SVM1 CNN-SVM2

1 Kodak_M1063_0 99.57 89.81 99.07

2 Pentax_optionA40_0 94.46 90.00 95.00

3 Nikon_CoolPixS710_1 97.49 69.44 90.00

4 Sony_DSC-H50_0 95.11 90.00 94.29

5 Olympus_mju_1050SW_2 97.65 91.42 97.75

6 Panasonic_DMC_FZ50_1 98.19 97.78 96.88

7 Agfa_Sensor530s_0 98.15 95.77 98.59

8 Ricoh_GX100_0 96.95 79.49 71.79

9 Samsung_NV15_0 96.95 81.81 77.27

Average 97.8 87.28 91.18

127

For CMI, the average identification accuracies are 87.55%, 88.89%, and 87.20% for CA-FRN,

CNN-SVM without and with fine-tuning respectively. Our proposed CNN-SVM methods have

comparable identification accuracies with CA-FRN and our proposed CNN-SVM without fine-

tuning is 1.34% greater in identification accuracy than CA-FRN. For CDI, the average

identification accuracies are 73.27%, 86.10%, and 84.29% for CA-FRN, CNN-SVM without and

with fine-tuning respectively. This shows that, our proposed CNN-SVM without and with fine-

tuning have identification accuracies of 12.83% and 11.02% greater than CA-FRN method

respectively. This shows that CA-FRN degrades highly in performance for CDI even with the use

of several patches for training. CA-FRN extracts the camera features directly from the images and

hence, it will require more features or image patches to learn distinct features compared to our

approach. Our proposed CNN-based methods extract robust features directly preprocessed noise

residues which are less contaminated by the scene contents of the images of cameras. Hence lesser

number of images are expected to extract discriminative features.

Table 5.15. Comparative Study of the identification accuracies (%) of our proposed CNN-SVM

with CA_FRN for Camera Model Identification.

S/N Camera Device CA_FRN CNN_SVM(Without

fine-tuning)

CNN_SVM(

With fine-tuning)

4 Sony_DSC-H50_0 _ 90.38 92.30

10 Sony_DSC_W170_0 _ 79.07 72.09

11 Sony_DSC_T77_0 _ 97.22 97.22

Average 87.55 88.89 87.20

128

5.7 Robustness of Proposed CNN methods to Post JPEG Compression

A more challenging scenario for instance-based SCI is the determination of source cameras of

images that have under-gone post-processing operations. There are several geometric distortions

on images that affect the quality of PRNU fingerprints of cameras and common examples include

cropping and post JPEG compression. In our PRNU extraction and formulation for proposed CNN

method described in Section 5.3.1, camera images are already centered-cropped and hence our

proposed CNN methods are robust to cropping. The sensor pattern noise has been previously

reported to be robust to the compression due to internal processing during capturing of images by

a camera [8]. However, when images are further compressed through sharing platforms such as

WhatsApp, Facebook and others, the quantization noise due to compression can further suppress

the content of the extracted PRNU fingerprints of cameras. This further reduction in the quality of

the PRNU fingerprints due to post JPEG compression is one of the major limitation of using PRNU

as a camera fingerprint. Therefore, in this section, we further examined the robustness of our

proposed CNN to JPEG compression using our best CNN-system (CNN-SVM without and with

fine-tuning). Since, most of the images shared on social platforms are usually natural images, then,

Table 5.16. Comparative Study of the identification accuracies (%) of our proposed

CNN-SVM with CA_FRN for Camera Device Identification.

S/N Camera Device CA-FRN CNN-SVM1 CNN-SVM2

11 Sony_DSC_T77_0 _ 84.21 76.31

12 Sony_DSC_T77_1 _ 85.71 92.85

13 Sony_DSC_T77_2 _ 88.37 83.72

Average 73.27 86.10 84.29

129

we carried out this experiment using the natural images of the 10 cameras in case 2 only. The

images of the cameras are compressed with the quality factors of 95, 90 and 80 before the

extraction of 64 × 64 PRNU images. All other settings remained the same and 10-fold cross-

validation was used. Table 5.17 shows the identification accuracies for each camera device without

and with compression for CNN-SVM1 and CNN-SVM2 (CNN-SVM without and with fine-

tuning) using quality factors of 95, 90, and 80 respectively. Table 5.17 shows, for CNN-SVM1,

the average identification accuracies with post JPEG compression are 6.75%, 17.72% and 36.54%

lesser than the average identification accuracy without post JPEG compression for quality factors

of 95, 90 and 80 respectively. This shows that post JPEG compression has significant effect on our

proposed CNN-system if not fine-tuned on CNN already trained on PRNU images of non-target

cameras.

The decrease in accuracy can be attributed to reduction in the quality of the PRNU images

due to post JPEG compression. However, for CNN-SVM2, the average identification accuracies

with post JPEG compression are 0.68%, 1.74% and 3.37% lesser than the average identification

accuracy without post JPEG compression for quality factors of 95, 90 and 80 respectively. This

shows that our proposed CNN-system with fine-tuning using PRNU images as input, is robust to

post JPEG compression with only little reduction in accuracy as compared to when the images are

not compressed. CNN-SVM2 is robust to JPEG compression unlike CNN-SVM1 because, the pre-

trained CNN used in CNN-SVM2 was trained on PRNU images extracted from images of non-

target cameras without post JPEG compression.

130

Therefore, there is positive influence on quality of the features maps of the target cameras since

the weights of all the layers of the pre-trained CNN are updated during training. This means the

effect of post JPEG compression on the quality of the PRNU fingerprints of cameras can be

suppressed by fine-tuning on a pre-trained model for data with related probabilistic distribution.

Our experimental finding using pre-trained CNN is consistent with the work in [128] which studied

the "the Impact of Standard Image Compression Techniques on Performance of Image

Table 5.17. Identification accuracies of cameras in case 2 without and with JPEG Compression

(%).

S/N Without JPEG

Compression

With JPEG Compression

QF=95 QF=90 QF=80

 CNN-

SVM1

CNN-

SVM2

CNN-

SVM1

CNN-

SVM2

CNN-

SVM1

CNN-

SVM2

CNN-

SVM1

CNN-

SVM2

1 69.00 96.49 59.06 93.57 44.44 92.40 28.07 90.06

2 72.07 98.88 65.92 96.65 47.49 94.44 29.61 92.74

3 69.00 94.15 68.42 94.74 40.94 92.30 25.73 89.47

4 68.12 95.20 56.33 96.07 54.59 93.89 31.88 93.01

5 57.14 97.77 46.43 95.09 42..41 95.98 23.21 95.09

6 51.94 93.07 50.65 92.21 45.45 91.77 24.24 90.90

7 76.50 96.77 66.82 97.24 52.07 94.93 32.72 92.63

8 72.90 96.26 58.88 96.26 53.27 96.63 42.57 93.93

9 92.48 98.12 91.73 98.50 79.32 97.74 65.04 98.12

10 84.62 97.01 82.05 96.58 65.39 96.15 45.30 94.02

Average 71.38 96.37 64.63 95.69 53.66 94.63 34.84 93.00

131

Classification with a Convolutional Neural Network". The work in [128] shows that, by using a

pre-trained CNN to classify compressed images (image compressed by a factor 7, 16, 40 for a

JPEG, JPEG200 and an HEVC encoder), a correct classification can still be maintained by CNN

with only minimal effect on accuracy.

5.8 Summary

Instead of directly extracting features from the camera images, we propose the use CNN to learn

robust features about the sensor noise patterns (photo-response non-uniformity). For source

camera identification for small size images, we proposed deep CNN for classification and also as

a feature extractor for one-versus-rest SVM. The contribution of the proposed methods can be

summarized as below:

 (i) CNN structure that is suitable for instance-based source camera identification using the noise

residues of cameras was proposed. (ii) The proposed methods (CNN_SVM and CNN_SC) have

superior performance, especially for small size images as compared with some state-of-the-art

methods. (iii) The proposed methods for source camera identification from a small image patch

would help in problems such as forgery localization with minimal data size but yet highly reliable

result.

The motivation for using the sensor noise is that the sensor noise is unique for each

individual camera so that CNN can be trained to capture each camera’s unique information. The

proposed neural network consists of three convolutional layers and two fully connected layers.

The output was given to the regularized softmax classifier for probabilistic prediction of camera

classes. Also, after training of the proposed CNN model, the flattened output of the third

convolutional layer with a linear activation was extracted and given as the embedded layer for one-

132

vs-rest linear SVMs. Experimental results show the efficiency and the accuracy of the proposed

deep CNN-based methods in comparison with some state-of-the-art methods. Moreso, we

evaluated the robustness of proposed deep CNN methods to post JPEG compression and our

experimental results show that post JPEG compression has a significant effect on our proposed

CNN-system if not fine-tuned on CNN already trained on PRNU images of non-target cameras.

However, in the case of fine-tuned pre-trained CNN model, there is only a slight reduction in

identification accuracy in comparison with proposed method with no post JPEG compression.

Hence, the effect of post JPEG compression on the quality of the PRNU fingerprints of cameras

can be suppressed by fine-tuning on a pre-trained model for data with related probabilistic

distribution.

133

Chapter 6 :

Deep Residual Convolutional Neural Network with Curriculum Learning For

Source Camera Identification

In Chapter 5, the proposed deep CNN model only consists of the depth of three convolutional

layers and two fully connected layers. Further increase in depth of convolutional layers on the

proposed deep CNN model suffers degradation of accuracy on the noise residues of cameras from

the Dresden dataset. The works in [109, 129] reveal that network depth is crucial in achieving a

network with high generalization capability. However, an obstacle to increasing depth of network

layers is the problem of vanishing or exploding gradients [65]. By vanishing gradient, we mean,

the gradients of the network loss function tend towards zero and this makes network optimisation

becomes difficult. To address the problem of the degradation in accuracy with increasing

convolutional layers, residual neural network (ResNet) was proposed by He et al [27]. This is

motivated by the need to increase the depth of deep learning models without the problem of

vanishing gradients. This can be achieved by adding the output of the previous layers to the next

layers using residual or short connections. Unlike CNN which fits a desired underlying mapping,

the idea of ResNet is to use a residual mapping. The two main advantages of using ResNet are that

it generates more robust representational bottlenecks and also tackles the problem of vanishing

gradients through the smooth flow of data between networks. Therefore, in order to benefit from

more robust or discriminative features capable of increasing identification accuracies of cameras,

134

suitable architecture of deep residual network (ResNet) is investigated for instance-based source

camera identification (SCI) for the noise residues or PRNU images of cameras.

 Furthermore, to train a deep neural network, a large amount of training data is required, in

order to avoid overfitting. Therefore, effective training algorithms are important for deep neural

networks to achieve good generalization power especially for problems having small data. Images

of camera have different texture complexity. High-quality PRNU fingerprint is extracted from

smooth images or images with less texture complexity compared to clustered or natural images.

This is because the PRNU fingerprints of cameras are contaminated by the scene contents. Hence,

the lesser the scene contents of images of cameras, the better the extracted PRNU fingerprints of

cameras. Based on this observation, we propose the use of curriculum learning algorithms to train

our proposed deep ResNet for instance-based source camera identification. The idea of curriculum

learning (CL) is to train a system, which may be a student or a deep network, from simple concepts

to hard concepts. This learning approach allows the system to train up from handling simple tasks

to hard tasks. The use of curriculum learning can help improves the speed of global convergence

during training and a better local minimum can be achieved [39].

 The rest of Chapter 6 is organized as follows. Section 6.1 gives an overview of a residual

learning. Section 6.2 discusses curriculum learning for neural networks. Section 6.3 describes the

framework of the proposed ResNet with curriculum learning. Section 6.4 presents experimental

evaluation on 10 cameras from the Dresden database. Section 6.5 summarises the work and its

contributions.

135

6.1 Overview of Deep Residual Learning

A deep neural network learns the underlying mapping of a given data, 𝑥. Let 𝐺(𝑥) represents the

mapping function. This mapping function is to be learned by a stack of either fully connected

layers or convolutional layers. The work in [27] assumes that if 𝐺(𝑥) can learn from the stack of

layers consisting of non-linear functions, then, it can also approximate their residual functions.

Assuming that the dimensions of the input and output layers are the same, the residual function

(𝐹(𝑥)) can be expressed as, 𝐺(𝑥) − 𝑥. Similarly, the underlying mappin 𝐺(𝑥) can be expressed as

a function of the residual mapping as, 𝐹(𝑥) + 𝑥 . The assumption is that, instead of directly

stacking additional layers, the additional layers can be added as identity mappings. Hence, a deeper

network with lower training loss can be trained. The degradation of accuracy in deep networks

without residual mapping can be attributed to the network optimisation algorithms finding it

difficult to approximates mappings due to stack of non-linear layers. However, this becomes easier

with the use of residual mapping since it helps the optimisation algorithms pushes the weights of

network layers towards zero. Residual mapping adds shortcut connections to previous layers. The

shortcut connections (skipping of one or more layers) perform identity mapping and the outputs

are added to previously stacked layers so as to precondition the problem at hand and helps increase

the rate of global convergence. The experimental results in [27] show that the suitable

preconditioning of the problem by residual mapping is due to small responses generated by the

trained residual network. Residual connections do not increase the computational complexity of

the network since it has adds no extra parameters. The only computation required, is the element-

wise addition between 𝐹(𝑥) and 𝑥. Element wise addition has negligible computational cost and

136

this further makes ResNet attractive in practice. The output vectors of a layer (𝑦) after performing

residual mapping on the input vectors of the previous layer (𝑥) is expressed in [27] as,

where 𝑊𝑖 is the weight of the layer, 𝑖 and 𝐹(𝑥, {𝑊𝑖}) is the learned residual mapping. Eqn. (6.1)

assumes that the dimensions of 𝐹 and 𝑥 are equal. In a situation where the sizes of 𝐹 and 𝑥 are

different, then, the size of the input 𝑥 can be changed by using a linear transformation, 𝑃𝑠. Hence,

eqn. (6.2) becomes,

The basic function of 𝑃𝑠 is dimension matching. Examples of 𝑃𝑠 can include the use of either a

fully connected layer or a convolutional layer of kernel size 1 × 1 without the use of activation

functions.

6.2 Curriculum Learning for Neural Networks

The idea of CL is motivated by the education system where learning is introduced from simple

concepts to hard concepts. Organizing the education system this way helps the students to leverage

hard concepts based on their understanding of the easy concepts. This same idea can be applied to

the training of neural networks where training is initiated to begin on examples of the dataset which

are easier to learn by a network before introducing examples with more complexity. In order

words, CL works on a sequence of training sets via progressive training on smoothed data before

the consideration of less smoothed data. In CL, the reweighting of examples in the training set is

uniform as training progresses from simplest concepts to the target training set [39]. To further

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥

 (6.1)

 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑃𝑠𝑥 (6.2)

137

illustrates CL mathematically, consider a random variable, 𝑞(𝑥, 𝑦), where 𝑥 and 𝑦 are the training

examples, and their corresponding labels respectively. At each step, 𝜏 in the curriculum sequence

(i.e. the division of 𝑞 into data subsets), let the corresponding weight be 0 ≤ 𝑊𝜏(𝑞) ≤ 1. 𝑊1(𝑞) =

1, 0 ≤ 𝜏 ≤ 1 and 𝑄(𝑞) be the target training distribution. The training distribution (𝑃𝜏(𝑞)) of

𝑄(𝑞) is expressed in [39] as,

 𝑃𝜏 (𝑞) ∝ 𝑊𝜏(𝑞)𝑄(𝑞) ∀𝑞 (6.3)

Given that, ∫ 𝑃𝜏(𝑞)𝑑𝑞 = 1, then eqn. (6.3) becomes,

 𝑃1(𝑞) = 𝑊1(𝑞)𝑄(𝑞) = 𝑄(𝑞) ∀𝑞 (6.4)

∀ is an existential quantifier and it means the eqns. (6.3) and (6.4) hold true for all instances of the

random variable, q. Note that 𝜏 is a monotonically increasing step size. Eqn. (6.3) and eqn. (6.4)

only satisfy CL provided that the entropy of each subset of q monotonically increases. Increase in

entropy means, at each addition of a new data subset during training, the weights of the data subset

also increases. Curriculum learning has demonstrated in [39] helps to improve the speed of global

convergence during training and a better local minimum is achieved. It has also been used with

deep CNN in many applications such as depth estimation [130], facial expression recognition

[131], hand posture recognition [132], and localization of thoracic disease on chest radiographs

[133]. What easy and hard examples mean depending on the area of the application. In facial

expression recognition[131], those face images with a high expression intensity can be considered

easy examples, while those images with a low expression intensity are hard examples.

138

6.3 Proposed Deep Residual Convolutional Neural Network and Curriculum

Learning Algorithms for Source Camera Identification

The PRNU image in a smooth or flat image is easier to learn than that in a natural image, which

contains more complex textures. In our CL algorithm, flat images are used as easy, simple samples,

while natural images are used as hard examples. The general framework for our proposed

algorithm is shown in Figure 6.1. The noise residues in the images extracted by a wavelet-based

denoising method [5] form the PRNU images, which are arranged according to the complexity of

the images, from easy images, i.e. those smooth and flat images, to difficult images, i.e. those

natural images, and are divided into d groups, denoted as (𝐷1, 𝐷2. 𝐷𝑑). In other words, 𝑑

subsets are formed for curriculum learning. Assume that the images are generated by 𝐾 cameras,

i.e. there are 𝐾 classes, and 𝑛𝑖 is the number of samples in a subset 𝐷𝑖. Then, the total number of

samples 𝑁 in the camera dataset is given by 𝑁 = ∑ 𝑛𝑖
𝑑
𝑖=1 . The denoising method applied to the

camera images is based on a wavelet-based denoising filter [5], and the noise residues in an image

captured by a specific camera are obtained by subtracting the filtered images from the original

images. The noise residues in an image are also pre-processed by the zero-mean operation. This

zero-mean operation is applied to row-by-row, followed by column-by-column, of each noise-

residue image. This operation can help reduce the effect of linear patterns introduced into the noise

residues, due to the color interpolation and pipeline processing operations of sensor and electronic

circuits in cameras [134]. It also acts as a normalization process. Each training subset, 𝐷1 to 𝐷𝑑, is

used to train the ResNet sequentially. After all the subsets have been used for training, the features

from the last convolutional layer of the trained ResNet are extracted to form the deep features of

the input samples. These extracted deep features are then used to learn one-vs-rest linear support

139

vector machines (SVMs) for predicting the camera classes (𝐶1, 𝐶2, 𝐶𝐾). The use of the one-vs-

rest linear SVM classifiers results in more training samples for the classifiers. The architecture of

the proposed deep residual convolutional neural network is described in Section 6.3.1 while the

details of the training procedures for the proposed manual and automatic curriculum learning

algorithms are described in Section 6.3.2.

Figure 6.1. The general framework of our proposed deep residual convolutional neural network

with curriculum learning for source camera identification.

6.3.1 Architecture of the Proposed Deep Residual Convolutional Neural Network

Figure 6.2 shows the layout of the proposed deep residual convolutional network for instance-

based camera source identification.The main difference between the proposed architecture for

deep CNN in Figure 5.2 and Figure 6.2 is the addition of residual connections and convolutional

layers. Only the difference in architectures is explained as follows. The optimal performance with

the proposed ResNet is achieved in our experiments with three residual neural connections and

140

two convolutional added to our initially proposed deep CNN architecture. Since a stride of 2 × 2

is used in Conv5, Conv4 which is a 1 × 1 convolution operation is used to linearly down-sample

the output of Conv3 so that it can have the same feature-map size when concatenated with Conv5

before given it as input to two fully connected layers FC1 and FC2.

Figure 6.2. The layout of the proposed deep residual convolutional neural network for instance-

based camera source identification.

Batch normalization and ReLU operations were not carried out in Conv4. The additional

convolutional layers and residual connections beyond Conv5 do not lead to an increase in cameras

identification accuracies. Apart from dropout regularization applied n FC1 and FC2 in Figure 6.2,

sparsity constraint and weight regularization methods are used with the regularization parameter

of 10−5 each in the FC1, FC2 and softmax layers to further prevent model overfitting. Imposing

141

sparsity constraint is a form of regularization, but not weight regularization. It regularizes the

outputs of the layer rather than the weight of the layer. Weight regularization can be achieved by

using 𝐿2 norm regularization, while the sparsity constraint is imposed by adding the absolute

values of the true value of a layer into the loss function. The same training and the fine-tuning

process used for the proposed deep CNN methods in Chapter 5 are also used for the proposed

ResNet model. Testing images are given to the trained ResNet model and probabilities of cameras

are predicted using softmax classifier. We also extracted the features of the flattened layers of the

Conv5. The extracted deep features are used to learn one-vs rest linear SVM for the prediction of

camera classes.

6.3.2 Proposed Curriculum Learning Algorithms

In this section, we propose a manual and an automatic CL algorithm. For the manual CL algorithm,

the easy and hard examples are selected manually prior to the training. For the automatic CL

algorithm, the training data are sorted in the order of increasing complexity. The training

procedures for the proposed manual and automatic CL algorithms are listed as follows.

Manual Curriculum Learning

i. The noise residues of flat images are first used to train the proposed ResNet model.

ii. The best-trained model is obtained.

iii. The best-trained ResNet model is trained with a decreased learning rate.

iv. The noise residues of natural images are now used to train the trained ResNet.

v. The best-trained model is then used for extracting deep features for camera identification.

142

The two data subsets are trained with 20 epochs. The learning rate is decreased as stated in (iii),

so that the negative influence from the hard examples can be reduced. The learning rate is reduced

from 0.001 to 0.0007.

Automatic Curriculum Learning

i. The input dataset contains all the training images (𝑥) and the corresponding labels (𝑦).

ii. The best version of ResNet is trained on the dataset (𝑥, 𝑦).

iii. The predicted training features (𝑋) of the softmax layer of the trained model are extracted.

iv. The softmax loss of 𝑋 is then calculated. The softmax loss (𝑝) can be expressed as,

 𝑝𝑖 =
𝑒𝑋𝑖

∑ 𝑒𝑋𝑗𝐾
𝑗=1

 (6.5)

where 𝑖 = 1:𝑁, 𝑋𝑖 is each training instance, 𝐾 is number of camera classes, 𝑗 = 1:𝐾 and

𝑋𝑗 is the value of 𝑋𝑖 in 𝑗.

v. The cross-entropies for each instance in X are obtained. The cross-entropy loss can be

defined as,

where 𝑦𝑖 is the class label of a training instance, 𝑋𝑖. The value of 𝑦𝑖 ranges from 1: 𝐾.

vi. Training instances with smaller cross-entropies can be better optimized than training

instances with larger cross-entropies, hence, the cross-entropies are sorted in ascending

𝐿𝑐(𝑦,𝑝𝑖

) = −∑𝑦𝑖

𝑁

𝑖=1

log𝑝𝑖
 (6.6)

143

order. The indices of the sorted cross-entropies are used to re-order the original dataset,

(𝑥, 𝑦).

vii. The re-ordered dataset, (𝑥, 𝑦), is used to train the ResNet model, and the trained ResNet is

used to predict the camera classes.

6.4 Experimental Evaluation and Discussion

A total of 10 cameras in Table 6.1 including both flat and natural images are used for experimental

evaluation of the proposed methods. These are the same as the case 2 cameras in Table 5.1 (the

last ten cameras). The center part of the images are cropped to produce 64 × 64 image sizes. The

total number of flat and natural images are 2136 and 500 respectively. Flat images can only be

used for training and not used as test data for the source camera identification problem. Similarly,

as carried out with our earlier proposed deep CNN, we also used 10-fold used cross-validation

during training for our experiments on the proposed ResNet. Table 6.2 shows the identification

accuracies with and without fine-tuning for the CNN-SVM and ResNet-SVM respectively. CNN-

SVM and ResNet-SVM are used to denote the identification accuracy for deep CNN with one-vs-

rest SVM classifier and deep residual CNN with one-vs-rest SVM classifier respectively. The

fine-tuning process is the same with the same proposed fine-tuned CNN approach in Section 5.5.2

of Chapter 5. Our fine-tuning approach involves using pre-trained deep CNN model on 10 non-

target camera classes and fine-tuning it on 10 target camera classes. The average identification

accuracies without fine-tuning for both CNN-SVM and ResNet-SVM are 75.67% and 77.85%

respectively while the average identification accuracy for both CNN-SVM and ResNet-SVM are

96.83% and 97.10% respectively. This shows that ResNet-SVM has 2.18% and 0.27% higher

identification accuracies than CNN-SVM without and with fine-tuning. Therefore, adding residual

144

connections to our CNN architecture for source camera identification helps to improve cameras

identification accuracies.

For curriculum learning, several progressions are tested to determine the best progression

of data subsets with the ResNet model. The tested progression of data subsets includes, no

curriculum learning, curriculum learning and anti-curriculum learning. By anti-curriculum

learning, we mean, training on hard examples before easy examples. In these experiments, the flat

images are used only for training while 80% of the natural images are used for training and the

remaining 20% for the evaluation of the best-trained ResNet model. Table 6.3 shows the

identification accuracies for both softmax (ResNet-SC) and one-vs-rest linear SVM (ResNet-

SVM). PRNU_F and PRNU_N denote the PRNU of flat and natural images respectively.

Table 6.1. List of Cameras Used.

S/N Camera Brand Resolution Natural Images Flat Images

1 Canon_Ixus70_0 2304 × 3072 171 50

2 Canon_Ixus70_1 2304 × 3072 179 50

3 Canon_Ixus70_2 2304 × 3072 171 50

4 Samsung_L74wide_0 2304 × 3072 229 50

5 Samsung_L74wide_1 2304 × 3072 224 50

6 Samsung_L74wide_2 2304 × 3072 231 50

7 Samsung_NV15_0 2304 × 3072 217 50

8 Samsung_NV15_1 2304 × 3072 214 50

9 Sony_DSC-H50_0 2736 × 3648 266 50

10 Sony_DSC-H50_1 2736 × 3648 234 50

Total number of Images 2136 500

145

As shown in Table 6.3, the best performance is obtained by training the PRNU of the flat images

first and then followed by the PRNU of both flat and natural images. Its overall identification

accuracy using ResNet-SVM is 0.7% greater when PRNU of the flat images are trained followed

by PRNU of natural images and 3.74% higher than training ResNet with no curriculum learning.

Table 6.3 also shows that the progression involving anti-curriculum learning has lower

identification accuracies compared to when there is no curriculum learning and with curriculum

learning. The natural images are further divided into smooth, saturated and others as in [57] but

experimental evaluation shows degradation on performance compared to when all natural images

Table 6.2. Identification accuracies for the Proposed Deep CNN and RCNN (%).

Cameras Without Fine-tuning With fine-tuning

CNN-SVM ResNet-SVM CNN-SVM

ResNet-SVM

Canon_Ixus70_0 71.35 76.02 94.15 95.91

Canon_Ixus70_1 77.09 81.01 96.09 97.21

Canon_Ixus70_2 71.93 73.68 97.08 95.91

Samsung_L74wide_0 74.24 71.62 98.25 97. 38

Samsung_L74wide_1 63.84 68.75 98.21 95.54

Samsung_L74wide_2 66.23 67.97 93.07 96.54

Samsung_NV15_0 78.80 82.95 97.70 97.24

Samsung_NV15_1 74.77 76.17 97.66 97.20

Sony_DSC-H50_0 91.73 93.61 98.18 99.62

Sony_DSC-H50_1 86.75 86.75 97.86 98.72

Average 75.67 77.85 96.83 97.10

146

are used without division into further subsets. Also, we carried out experiment on automatic

curriculum learning using the proposed algorithm in Section 6.3.2 with ResNet-SVM. It has 0.47%

identification accuracy greater than training with no curriculum learning. This indicates that there

is only little impact on the accuracy, with and without using the automatic CL.

Therefore, using manual curriculum learning with ResNet for source camera identification has

more impact on the identification accuracy compared to using the proposed automatic curriculum

learning approach. Figure 6.3 shows the logarithm of the variation of the error rates or the model

losses with respect to the number of epochs for without CL, with manual CL, automatic CL and

anti-CL methods. As observed in Figure 6.3, the model becomes stable towards 20 epochs. The

confusion matrix for the ten cameras, with the best trained ResNet model, is shown in Table 6.4.

Table 6.3. Overall accuracy for manual curriculum learning with

combinations and orders of the flat images and natural images (%).

Curriculum Learning (CL)

Different Progressions ResNet-SC ResNet-SVM

PRNU_F+ PRNU_N 66.82 73.36

PRNU_F, PRNU_F+ PRNU_N 67.76 77.10

PRNU_F+ PRNU_N, PRNU_F 50.71 73.83

PRNU_F, PRNU_N 72. 43 76.40

PRNU_N , PRNU_F 57.94 72.43

Automatic Learning

PRNU_F+ PRNU_N 65.89 73.83

147

The individual camera identification accuracies are shown in the diagonal of Table 6.4 and

highlighted in bold.

Figure 6.3. The Logarithm of model losses against epochs for without CL, manual CL, automatic

CL and anti-CL methods.

The average individual accuracy for the 10 cameras for images of size 64 × 64 is 78.66%. The

same cameras and settings used for our experimental evaluation are also used in our comparison

with the state-of-the-art methods in Section 5.5.4 of Chapter 5. The compared state-of-the-art

Table 6.4. Identification accuracy (%) of the best result of the proposed method.

Camera Device

1 2 3 4 5 6 7 8 9 10

Canon_Ixus70_0 1 76.32 13.16 5.26 - - - - 5.26 - -

Canon_Ixus70_1 2 2.78 83.33 13.90 - - - - - - -

Canon_Ixus70_2 3 - 18.75 78.12 - - 3.12 - - - -

Samsung_L74wide_0 4 - 22.20 22.20 64.44 17.78 11.11 2.22 - - -

Samsung_L74wide_1 5 - 23.80 - 16.67 61.90 11.90 4.76 2.38 - -

Samsung_L74wide_2 6 - - - 4.88 14.63 75.61 - 4.88 - -

Samsung_NV15_0 7 - - - - - - 94.87 5.13 - -

Samsung_NV15_1 8 - 2.00 - 2.00 - - 26.00 68.00 2.00 -

Sony_DSC-H50_0 9 - - - - - - - - 93.75 6.25

Sony_DSC-H50_1 10 - - - - - - 2.44 - 7.32 90.24

148

methods are, MLE SPN [8], Phase SPN [10], the Li’s model [9] and weighted averaging (WA)

[51] and their overall average identification accuracies are, 62.73%, 72.95% ,58.31% and 63.15%

respectively. We can see that the overall average individual camera accuracy of the proposed

method is 15.93%, 5.71%, 20.35% and 15.51% higher than that of the MLE SPN, Phase SPN, Li’s

model and WA methods respectively. Hence, an accurately designed deep network, based on good

training algorithms, can achieve better performance than the conventional or PRNU-based SCI

methods, for small-query images using the same number of training and testing examples.

6. 5 Summary

Deep residual convolutional neural networks (ResNet) is proposed for source camera identification

using noise residues or individual PRNU images of cameras. Experiments are conducted with and

without fine-tuning on the pre-trained network. Experimental results showed the benefits of adding

residual connections to our initially proposed deep CNN without residual connections.

Experiments were conducted with different orders of the camera subsets (simple and hard subsets)

from the Dresden database, with our manual and automatic curriculum learning algorithms. For

the proposed manual curriculum learning, experimental results show that training based on easy

training examples before hard examples will result in the best identification accuracy, based on the

proposed ResNet model. Furthermore, our proposed automatic curriculum learning approach

shows better identification accuracy compared to training without applying curriculum learning.

In conclusion, our proposed deep learning methods for instance-based SCI can achieve better

performance than the compared state-of-the-art methods using the same settings.

149

Chapter 7 :

Conclusion and Future Works

7.1 Conclusion of the Thesis

In this thesis, aiming at using deep learning due to its discriminative power to achieve higher

camera identification accuracy, we proposed two deep learning techniques for instance-based

source camera identification especially tailored towards small sizes images. This work can then be

deployed in applications involving splicing localization and also source camera identification for

small-sized image forgeries.

Firstly, we proposed supervised stacked sparse autoencoder to extract distinctive features

from the noise residue of cameras. Experimental results show that the proposed method has

comparable significant identification accuracy on the Dresden database and better identification

accuracy on our dataset consisting of two phone cameras. Further experiments also show that with

better quality PRNU fingerprints, the proposed SSAE has superior performance than some of the

state-of-the-art methods. Also, our SSAE generalizes well on new cameras' set using the same

parameters used on another set of cameras.

Secondly, we proposed the use of deep CNN to solve instance-based source camera identification

using noise residues of cameras. The proposed CNN was used for classification (CNN-SC) and

also as a feature extractor (CNN-SVM). Our experimental results show that the proposed CNN-

SVM performs better than CNN-SC in all experiments. Also, we explored the advantage of fine-

150

tuning pre-trained models. In our approach, we fine-tuned already pre-trained proposed CNN

model. Our experimental results show the effectiveness of our proposed fine-tuned deep CNN over

deep CNN model without fine-tuning. Also, a comparative study with some state-of-the-art

methods is carried out. Experimental results show that the identification accuracies of our proposed

CNN-based methods (CNN-SC and CNN-SVM) are 18%-25.6% and 20.37%-25.02% higher than

four compared PRNU-based SCI methods for without and with fine-tuning on a pre-trained deep

CNN model. We also compared with a deep learning-based method, content-adaptive fusion

networks (CA-FRN) and our proposed CNN-based methods (CNN-SVM without and with fine-

tuning) are 6.12-10.02% lesser in identification accuracy than CA-FRN for camera brand

identification but have identification accuracies of 1.34% and 11.02-12.83% greater than CA-FRN

for camera model Identification and camera device identification respectively.

Moreso, the proposed deep CNN methods are also evaluated under post JPEG compression

of the images. The effect of post JPEG compression on the quality of the PRNU fingerprints of

cameras can be suppressed by fine-tuning on a pre-trained model while post JPEG compression

has a significant effect on our proposed CNN-system if not fine-tuned on CNN already trained on

PRNU images of non-target cameras. The proposed deep CNN methods are evaluated under post

JPEG compression of the images. The effect of post JPEG compression on the quality of the PRNU

fingerprints of cameras can be suppressed by fine-tuning on a pre-trained model while post JPEG

compression has a significant effect on our proposed CNN-system if not fine-tuned on CNN

already trained on PRNU images of non-target cameras.

Finally, since the entropy of natural images is higher than that of flat images of cameras,

we proposed the use of CL with ResNet for source camera identification. From our experimental

151

results, both proposed ResNet and CL algorithms improve the identification accuracies of cameras

compared to the proposed deep CNN methods for SCI.

7.2 Future Works

Despite some of our achievement in using SSAE for source camera identification, there are still

some limitations regarding the proposed method. The major limitation of using SSAE is that the

camera identification accuracy only has comparable results with the state of the art methods when

natural images were used only for training and not flat images. This limitation could be due to the

amount of training data used in our implementation since better generalization accuracy are usually

obtained using huge data for most deep learning techniques. Also, another challenge could be

attributed to the quality of the noise residue used. This is because, single noise residue representing

image will have scene contamination and hence finding ways of improving the quality of the

PRNU could be a better way of reaching global convergence quickly during training. Future

research should consider an approach that can improve PRNU detection accuracy particularly, the

transformation and preprocessing techniques to be able to increase the detection capability of the

proposed method. Furthermore, fine-tuning techniques for our proposed SSAE and as well as other

variants of SAE can also be explored.

Finally, though, using the deep convolutional neural network for source camera

identification, we were able to achieve a substantial result as compared to existing methods but

there is still some drawback to attain the desired accuracy for the CNN structure proposed.

152

Future research should consider ways to reduce the validation error and also techniques that can

improve network generalization accuracy. Furthermore, we will also explore featuring engineering

techniques that could make the input noise images invariant to the original images. Also we shall

explore suitable network engineering techniques with CNN that can help achieve better camera

identification accuracy. Finally, as regards, CL with ResNet for SCI, future research could consider

using suitable pre-processing operations to generate simple examples from the original training set

so as to further increase the number of training subsets. Moreover, a better automatic curriculum

learning approach will be explored, so that the learning efficiency can be improved, and hence

increase the camera detection accuracies.

153

References

[1] Y. Hu, B. Yu, and C. Jian, "Source camera identification using large components of sensor

pattern noise," in 2nd International Conference on Computer Science and its Applications

(CSA’09), 2009, pp. 1-5.

[2] H. T. Sencar and N. Memon, "Overview of state-of-the-art in digital image forensics," in

WSPC - Proceedings on Algorithms, Architectures and Information Systems Security,

September 2007, vol. 3, pp. 325-348.

[3] A. C. Kot and H. Cao, "Image and video source class identification," in Digital Image

Forensics. New York: Springer, 2013, pp. 157-178.

[4] P. Blythe and J. Fridrich, "Secure digital camera," in Digital Forensic Research Workshop,

2004, pp. 11-13.

[5] J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern

noise," IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205-

214, June 2006.

[6] I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni, and A. Piva, "Estimate of PRNU noise

based on different noise models for source camera identification," in Crime Prevention

Technologies and Applications for Advancing Criminal Investigation. USA: IGI Global,

2012, pp. 9-20.

[7] J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern

noise," IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205-

214, June 2006.

[8] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, "Determining image origin and integrity

using sensor noise," IEEE Transactions on Information Forensics and Security, vol. 3, no.

1, pp. 74-90, March 2008.

[9] C. T. Li, "Source camera identification using enhanced sensor pattern noise," IEEE

Transactions on Information Forensics and Security, vol. 5, no. 2, pp. p. 280-287, June

2010.

[10] X. Kang, Y. Li, Z. Qu, and H. J., "Enhancing source camera identification performance

with a camera reference phase sensor pattern noise," IEEE Transactions on Information

Forensics and Security, vol. 7, no. 2, pp. 393-402, April 2012.

154

[11] X. Lin and C.-T. Li, "Preprocessing reference sensor pattern noise via spectrum

equalization," IEEE Transactions on Information Forensics and Security, vol. 11, no. 1,

pp. 126-140, 2016.

[12] A. Lawgaly and F. Khelifi, "Sensor Pattern Noise Estimation Based on Improved Locally

Adaptive DCT Filtering and Weighted Averaging for Source Camera Identification and

Verification," IEEE Transactions on Information Forensics and Security, vol. 12, no. 2,

pp. 392-404, 2016.

[13] A. J. Cooper, "Improved photo response non-uniformity (PRNU) based source camera

identification," Forensic science international, vol. 226, no. 1, pp. 132-141, 2013.

[14] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, "Compressed fingerprint matching and

camera identification via random projections," IEEE Transactions on Information

Forensics and Security, vol. 10, no. 7, pp. 1472-1485, 2015.

[15] Y. Tomioka, Y. Ito, and H. Kitazawa, "Robust digital camera identification based on

pairwise magnitude relations of clustered sensor pattern noise," IEEE transactions on

information forensics and security, vol. 8, no. 12, pp. 1986-1995, 2013.

[16] J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, "Poisson noise reduction with

non-local PCA," Journal of mathematical imaging and vision, vol. 48, no. 2, pp. 279-294,

2014.

[17] Y. Huang, J. Zhang, and H. Huang, "Camera model identification with unknown models,"

Information Forensics and Security, IEEE Transactions on, vol. 10, no. 12, pp. 2692-2704,

2015.

[18] M. Kharrazi, H. T. Sencar, and N. Memon, "Blind source camera identification," in

International Conference on Image Processing , ICIP'04., 2004, vol. 1: IEEE, pp. 709-712.

[19] F. Ahmed, F. Khelifi, A. Lawgalv, and A. Bouridane, "Comparative Analysis of a Deep

Convolutional Neural Network for Source Camera Identification," in 2019 IEEE 12th

International Conference on Global Security, Safety and Sustainability (ICGS3), 2019:

IEEE, pp. 1-6.

[20] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, "Single sample face recognition via learning

deep supervised autoencoders," IEEE Transactions on Information Forensics and Security,

vol. 10, no. 10, pp. 2108-2118, October 2015.

[21] Y. Lu, L. Zhang, B. Wang, and J. Yang, "Feature ensemble learning based on sparse

autoencoders for image classification," in 2014 International Joint Conference on Neural

Networks (IJCNN), July 2014: IEEE, pp. 1739-1745.

155

[22] R. F. Nogueira, R. de Alencar Lotufo, and R. C. Machado, "Fingerprint liveness detection

using convolutional neural networks," IEEE Transactions on Information Forensics and

Security, vol. 11, no. 6, pp. 1206-1213, March 2016.

[23] O. E. David and N. S. Netanyahu, "Deepsign: Deep learning for automatic malware

signature generation and classification," in 2015 International Joint Conference on Neural

Networks (IJCNN), 2015: IEEE, pp. 1-8.

[24] F. N. Khan, K. Zhong, W. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, "Modulation format

identification in coherent receivers using deep machine learning," IEEE Photonics

Technology Letters, vol. 28, no. 17, pp. 1-4, June 2016.

[25] C. Xing, L. Ma, and X. Yang, "Stacked denoise autoencoder based feature extraction and

classification for hyperspectral images," Journal of Sensors, vol. 2016, no. 2016, pp. 1-10,

June 2015.

[26] D. Yu and L. Deng, "Deep learning and its applications to signal and information

processing [exploratory dsp]," Signal Processing Magazine, IEEE, vol. 28, no. 1, pp. 145-

154, 2011.

[27] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770-778.

[28] L. Bondi, L. Baroffio, D. Guera, P. Bestagini, E. J. Delp, and S. Tubaro, "First Steps

Towards Camera Model Identification with Convolutional Neural Networks," IEEE Signal

Processing Letters, pp. 1-5, 2016.

[29] L. Baroffio, L. Bondi, P. Bestagini, and S. Tubaro, "Camera identification with deep

convolutional networks," arXiv preprint arXiv:1603.01068, 2016.

[30] H. Yao, T. Qiao, M. Xu, and N. Zheng, "Robust multi-classifier for camera model

identification based on convolution neural network," IEEE Access, vol. 6, pp. 24973-

24982, 2018.

[31] A. Budiman, M. I. Fanany, and C. Basaruddin, "Stacked denoising autoencoder for feature

representation learning in pose-based action recognition," in 2014 IEEE 3rd Global

Conference on Consumer Electronics (GCCE), October 2014: IEEE, pp. 684-688.

[32] D. Luo, R. Yang, B. Li, and J. Huang, "Detection of Double Compressed AMR Audio

Using Stacked Autoencoder," IEEE Transactions on Information Forensics and Security,

vol. 12, no. 2, pp. 432-444, Febuary 2017.

[33] W. W. Ng, G. Zeng, J. Zhang, D. S. Yeung, and W. Pedrycz, "Dual autoencoders features

for imbalance classification problem," Pattern Recognition, vol. 60, pp. 875-889, June

2016.

156

[34] A. Ng. "CS294A lecture notes on sparse autoencoder."

https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf (accessed.

[35] F. Chollet. "Building autoencoders in Keras." https://blog.keras.io/building-autoencoders-

in-keras.html (accessed.

[36] B. Bayar and M. C. Stamm, "A deep learning approach to universal image manipulation

detection using a new convolutional layer," in Proceedings of the 4th ACM Workshop on

Information Hiding and Multimedia Security, 2016: ACM, pp. 5-10.

[37] J. Chen, X. Kang, Y. Liu, and Z. J. Wang, "Median filtering forensics based on

convolutional neural networks," IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1849-

1853, 2015.

[38] A. Tuama, F. Comby, and M. Chaumont, "Camera Model Identification With The Use of

Deep Convolutional Neural Networks," in IEEE International Workshop on Information

Forensics and Security, 2016, pp. 1-6.

[39] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, "Curriculum learning," in

Proceedings of the 26th annual international conference on machine learning, 2009:

ACM, pp. 41-48.

[40] H. R. Chennamma and L. Rangarajan, "Source camera identification based on sensor

readout noise," in Crime Prevention Technologies and Applications for Advancing

Criminal Investigation. USA: IGI Global, 2012, pp. 21-34.

[41] K. Choi, E. Y. Lam, and K. Wong, "Automatic source camera identification using the

intrinsic lens radial distortion," Optics Express, vol. 14, no. 24, pp. 11551-11565, 2006.

[42] L. T. Van, S. Emmanuel, and M. S. Kankanhalli, "Identifying source cell phone using

chromatic aberration," in IEEE International Conference on Multimedia and Expo, 2007:

IEEE, pp. 883-886.

[43] A. C. Popescu and H. Farid, "Exposing digital forgeries in color filter array interpolated

images," IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3948-3959, October

2005.

[44] S. Bayram, H. T. Sencar, N. Memon, and I. Avcibas, "Source camera identification based

on CFA interpolation," in IEEE International Conference on Image Processing, ICIP,

2005, vol. 3: IEEE, pp. III-69.

[45] A. Swaminathan, M. Wu, and K. J. Liu, "Nonintrusive component forensics of visual

sensors using output images," IEEE Transactions on Information Forensics and Security,

vol. 2, no. 1, pp. 91-106, March 2007.

https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html

157

[46] H. Cao and A. C. Kot, "Similar DSLR processor identification using compact model

Template," in Asia-Pacific Signal and Information Processing Association Annual Summit

and Conference (APSIPA ASC’11), 2011, pp. 1-12.

[47] J. Fridrich, "Sensor defects in digital image forensic," in Digital Image Forensics:

Springer, 2013, pp. 179-218.

[48] Y. Hu, C. Jian, and C. T. Li, "Using improved imaging sensor pattern noise for source

camera identification," in Multimedia and Expo (ICME), 2010 IEEE International

Conference on, 2010: IEEE, pp. 1481-1486.

[49] A. Lawgaly, F. Khelifi, and A. Bouridane, "Image sharpening for efficient source camera

identification based on sensor pattern noise estimation," in 2013 Fourth International

Conference on Emerging Security Technologies (EST), 2013: IEEE, pp. 113-116.

[50] M. Chen, J. Fridrich, and M. Goljan, "Digital Imaging Sensor Identification (further

study)," in Electronic Imaging, Jan. 2007: International Society for Optics and Photonics,

pp. 65050P-65050P-13.

[51] A. Lawgaly, F. Khelifi, and A. Bouridane, "Weighted averaging-based sensor pattern

noise estimation for source camera identification," in Image Processing (ICIP), 2014 IEEE

International Conference on, 2014: IEEE, pp. 5357-5361.

[52] T. Gloe, S. Pfennig, and M. Kirchner, "Unexpected artefacts in PRNU-based camera

identification: a'Dresden Image Database'case-study," in Proceedings of the on Multimedia

and security, 2012: ACM, pp. 109-114.

[53] H. Zeng, Y. Wan, K. Deng, and A. Peng, "Source Camera Identification With Dual-Tree

Complex Wavelet Transform," IEEE Access, vol. 8, pp. 18874-18883, 2020.

[54] M. Zhao, B. Wang, F. Wei, M. Zhu, and X. Sui, "Source camera identification based on

coupling coding and adaptive filter," IEEE Access, 2019.

[55] F. Bellavia, M. Iuliani, M. Fanfani, C. Colombo, and A. Piva, "Prnu Pattern Alignment for

Images and Videos Based on Scene Content," in 2019 IEEE International Conference on

Image Processing (ICIP), 2019: IEEE, pp. 91-95.

[56] Y. Zhao, N. Zheng, T. Qiao, and M. Xu, "Source camera identification via low dimensional

PRNU features," Multimedia Tools and Applications, vol. 78, no. 7, pp. 8247-8269, 2019.

[57] P. Yang, R. Ni, Y. Zhao, and W. Zhao, "Source camera identification based on content-

adaptive fusion residual networks," Pattern Recognition Letters, 2017.

[58] X. Ding, Y. Chen, Z. Tang, and Y. Huang, "Camera identification based on domain

knowledge-driven deep multi-task learning," IEEE Access, vol. 7, pp. 25878-25890, 2019.

158

[59] M. H. Al Banna, M. A. Haider, M. J. Al Nahian, M. M. Islam, K. A. Taher, and M. S.

Kaiser, "Camera Model Identification using Deep CNN and Transfer Learning Approach,"

in 2019 International Conference on Robotics, Electrical and Signal Processing

Techniques (ICREST), 2019: IEEE, pp. 626-630.

[60] X. Kang, Y. Li, Z. Qu, and H. J., "Enhancing source camera identification performance

with a camera reference phase sensor pattern noise," IEEE Transactions on Information

Forensics and Security, vol. 7, no. 2, pp. 393-402, April 2012.

[61] M. S. Behare, A. Bhalchandra, and R. Kumar, "Source Camera Identification using Photo

Response Noise Uniformity," in 2019 3rd International conference on Electronics,

Communication and Aerospace Technology (ICECA), 2019: IEEE, pp. 731-734.

[62] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, "Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion," Journal of Machine Learning Research, vol. 11, no. 12, pp. 3371-3408,

December 2010.

[63] F. Rosenblatt, "Principles of neurodynamics," 1962.

[64] M. Minsky and S. Papert, "Perceptrons," ed: Cambridge, Massachusetts, MIT press, 1969.

[65] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward

neural networks," in Aistats, 2010, vol. 9, pp. 249-256.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in Neural Information Processing Systems,

2012, pp. 1097-1105.

[67] Z. Zheng, Z. Li, and A. Nagar, "Compact deep neural networks for device-based image

classification," in Mobile Cloud Visual Media Computing: Springer, 2015, pp. 201-217.

[68] T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief

networks," in 2014 IEEE International Conference on Image Processing (ICIP), October

2014: IEEE, pp. 5132-5136.

[69] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio, "Maxout

Networks," ICML (3), vol. 28, pp. 1319-1327, 2013.

[70] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju, "Why Regularized Auto-Encoders learn

Sparse Representation?," arXiv preprint arXiv:1505.05561, 2015.

[71] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of

deep networks," Advances in neural information processing systems, vol. 19, p. 153, 2007.

159

[72] R. R. Salakhutdinov and I. Murray, "On the quantitative analysis of deep belief networks,"

in Proceedings of the 25th international conference on Machine learning, 2008: ACM, pp.

872-879.

[73] P. Werbos, "Beyond regression: New tools for prediction and analysis in the behavioral

sciences," 1974.

[74] G. Tesauro, "Practical issues in temporal difference learning," in Reinforcement Learning:

Springer, 1992, pp. 33-53.

[75] C. Gravelines, "Deep learning via stacked sparse autoencoders for automated voxel-wise

brain parcellation based on functional connectivity," The University of Western Ontario,

2014.

[76] J. Schmidhuber, "Learning complex, extended sequences using the principle of history

compression," Neural Computation, vol. 4, no. 2, pp. 234-242, March 1992.

[77] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets,"

Neural computation, vol. 18, no. 7, pp. 1527-1554, May 2006.

[78] M. A. Carreira and G. E. Hinton, "On contrastive divergence learning," in AISTATS, 2005,

vol. 10: Citeseer, pp. 33-40.

[79] J. Martens, "Deep learning via Hessian-free optimization," in Proceedings of the 27th

International Conference on Machine Learning (ICML-10), 2010, pp. 735-742.

[80] J. Martens and I. Sutskever, "Learning recurrent neural networks with hessian-free

optimization," in Proceedings of the 28th International Conference on Machine Learning

(ICML-11), 2011, pp. 1033-1040.

[81] N. L. Roux, P.-A. Manzagol, and Y. Bengio, "Topmoumoute online natural gradient

algorithm," in Advances in neural information processing systems, 2008, pp. 849-856.

[82] K. Cho, T. Raiko, and A. T. Ihler, "Enhanced gradient and adaptive learning rate for

training restricted Boltzmann machines," in Proceedings of the 28th International

Conference on Machine Learning (ICML-11), 2011, pp. 105-112.

[83] H. Jaeger, "Echo state network," Scholarpedia, vol. 2, no. 9, p. 2330, 2007.

[84] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Aistats,

2011, vol. 15, no. 106, p. 275.

[85] Y. Bengio, ., A. Courville, and P. Vincent, "Representation learning: A review and new

perspectives," IEEE transactions on pattern analysis and machine intelligence, vol. 35, no.

8, pp. 1798-1828, June 2013.

160

[86] T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M. Santos, and J. M. de Sá,

"Using different cost functions to train stacked auto-encoders," in Artificial Intelligence

(MICAI), 2013 12th Mexican International Conference on, 2013: IEEE, pp. 114-120.

[87] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to

combinatorial optimization, Monte-Carlo simulation and machine learning, 1st ed.

Springer Science & Business Media, 2013.

[88] S. Mannor, D. Peleg, and R. Rubinstein, "The cross entropy method for classification," in

Proceedings of the 22nd international conference on Machine learning, August 2005:

ACM, pp. 561-568.

[89] M. James. "Why you should use cross-entropy error instead of classification error Or mean

squared Error for neural network classifier training."

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-

error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-

training/ (accessed.

[90] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, "On optimization

methods for deep learning," in Proceedings of the 28th International Conference on

Machine Learning (ICML-11), 2011, pp. 265-272.

[91] O. Bousquet and L. Bottou, "The tradeoffs of large scale learning," in Advances in neural

information processing systems, 2008, pp. 161-168.

[92] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal estimated sub-

gradient solver for svm," Mathematical programming, vol. 127, no. 1, pp. 3-30, October

2011.

[93] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

"Improving neural networks by preventing co-adaptation of feature detectors," arXiv

preprint arXiv:1207.0580, July 2012.

[94] R. Raina, A. Madhavan, and A. Y. Ng, "Large-scale deep unsupervised learning using

graphics processors," in Proceedings of the 26th annual international conference on

machine learning, 2009: ACM, pp. 873-880.

[95] Y. Bengio, "Practical recommendations for gradient-based training of deep architectures,"

in Neural Networks: Tricks of the Trade: Springer, 2012, pp. 437-478.

[96] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint

arXiv:1609.04747, pp. 1-12, September 2016.

[97] Y. B. a. A. C. Ian Goodfellow "Autoencoders." MIT Press.

http://www.deeplearningbook.org/contents/autoencoders.html (accessed 24 July, 2018,

2018).

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
http://www.deeplearningbook.org/contents/autoencoders.html

161

[98] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout:

a simple way to prevent neural networks from overfitting," Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1929-1958, November 2014.

[99] M. A. Salama, A. E. Hassanien, and A. A. Fahmy, "Deep belief network for clustering and

classification of a continuous data," in The 10th IEEE International Symposium on Signal

Processing and Information Technology, December 2010: IEEE, pp. 473-477.

[100] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion," Journal of Machine Learning Research, vol. 11, no. Dec, pp. 3371-3408, 2010.

[101] X. Ye, L. Wang, H. Xing, and L. Huang, "Denoising hybrid noises in image with stacked

autoencoder," in Information and Automation, 2015 IEEE International Conference on,

August 2015: IEEE, pp. 2720-2724.

[102] C. Kandaswamy, L. M. Silva, L. A. Alexandre, R. Sousa, J. M. Santos, and J. M. de Sá,

"Improving transfer learning accuracy by reusing stacked denoising autoencoders," in 2014

IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014: IEEE, pp.

1380-1387.

[103] T. Gloe and R. Böhme, "The dresden image database for benchmarking digital image

forensics," Journal of Digital Forensic Practice, vol. 3, no. 2-4, pp. 150-159, 2010.

[104] R. Li, C.-T. Li, and Y. Guan, "Inference of a compact representation of sensor fingerprint

for source camera identification," Pattern Recognition, vol. 74, pp. 556-567, 2018.

[105] C.-T. Li and R. Satta, "Empirical investigation into the correlation between vignetting

effect and the quality of sensor pattern noise," IET Computer Vision, vol. 6, no. 6, pp. 560-

566, 2012.

[106] S. Timotheou, "A novel weight initialization method for the random neural network,"

Neurocomputing, vol. 73, no. 1, pp. 160-168, December 2009.

[107] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, "On random weights

and unsupervised feature learning," in Proceedings of the 28th international conference on

machine learning (ICML-11), 2011, pp. 1089-1096.

[108] M. Fernandez-Redondo and C. Hernandez-Espinosa, "Weight initialization methods for

multilayer feedforward," in ESANN, 2001, pp. 119-124.

[109] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.

162

[110] K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action

recognition in videos," in Advances in Neural Information Processing Systems, 2014, pp.

568-576.

[111] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in

Computer vision–ECCV 2014: Springer, 2014, pp. 818-833.

[112] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, "Striving for simplicity:

The all convolutional net," arXiv preprint arXiv:1412.6806, 2014.

[113] F.-F. Li, A. Karpathy, and J. Johnson, "CS231n: Convolutional neural networks for visual

recognition," University Lecture, 2015.

[114] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines,"

in Proceedings of the 27th International Conference on Machine Learning (ICML-10),

2010, pp. 807-814.

[115] Y. Sun, X. Wang, and X. Tang, "Deeply learned face representations are sparse, selective,

and robust," in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 2892-2900.

[116] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate

object detection and semantic segmentation," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2014, pp. 580-587.

[117] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung, "Transferring rich feature hierarchies for

robust visual tracking," arXiv preprint arXiv:1501.04587, 2015.

[118] B. Xu, N. Wang, T. Chen, and M. Li, "Empirical evaluation of rectified activations in

convolutional network," arXiv preprint arXiv:1505.00853, 2015.

[119] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network

acoustic models," in Proc. ICML, 2013, vol. 30, no. 1.

[120] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification (2015)," arXiv preprint arXiv:1502.01852.

[121] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by

reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.

[122] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, "An Ensemble of Fine-Tuned

Convolutional Neural Networks for Medical Image Classification," IEEE journal of

biomedical and health informatics, vol. 21, no. 1, pp. 31-40, January, 2017 2017.

[123] B. Zadrozny, "Reducing multiclass to binary by coupling probability estimates," in

Advances in neural information processing systems, 2002, pp. 1041-1048.

163

[124] J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods," Advances in large margin classifiers, vol. 10, no. 3, pp. 61-74, 1999.

[125] W. Chmielnicki and K. Stąpor, "Using the one–versus–rest strategy with samples balancing

to improve pairwise coupling classification," International Journal of Applied

Mathematics and Computer Science, vol. 26, no. 1, pp. 191-201, 2016.

[126] Y. Yao, L. Rosasco, and A. Caponnetto, "On early stopping in gradient descent learning,"

Constructive Approximation, vol. 26, no. 2, pp. 289-315, August 2007.

[127] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, "Densely connected

convolutional networks," arXiv preprint arXiv:1608.06993, 2016.

[128] M. Dejean-Servières, K. Desnos, K. Abdelouahab, W. Hamidouche, L. Morin, and M.

Pelcat, "Study of the impact of standard image compression techniques on performance of

image classification with a convolutional neural network," 2017.

[129] R. K. Srivastava, K. Greff, and J. Schmidhuber, "Training very deep networks," in

Advances in neural information processing systems, 2015, pp. 2377-2385.

[130] A. Surendranath and D. B. Jayagopi, "Curriculum Learning for Depth Estimation with

Deep Convolutional Neural Networks," in Proceedings of the 2nd Mediterranean

Conference on Pattern Recognition and Artificial Intelligence, 2018: ACM, pp. 95-100.

[131] L. Gui, T. Baltrušaitis, and L.-P. Morency, "Curriculum learning for facial expression

recognition," in 2017 12th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2017), 2017: IEEE, pp. 505-511.

[132] T. Yamashita and T. Watasue, "Hand posture recognition based on bottom-up structured

deep convolutional neural network with curriculum learning," in 2014 IEEE International

Conference on Image Processing (ICIP), 2014: IEEE, pp. 853-857.

[133] Y. Tang, X. Wang, A. P. Harrison, L. Lu, J. Xiao, and R. M. Summers, "Attention-guided

curriculum learning for weakly supervised classification and localization of thoracic

diseases on chest radiographs," in International Workshop on Machine Learning in

Medical Imaging, 2018: Springer, pp. 249-258.

[134] B.-b. Liu, X. Wei, and J. Yan, "Enhancing sensor pattern noise for source camera

identification: An empirical evaluation," in Proceedings of the 3rd ACM Workshop on

Information Hiding and Multimedia Security, 2015: ACM, pp. 85-90.

