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ABSTRACT

The rapid development of technology has driven the society into a new era of AI in which

speaker recognition is one of the essential techniques. Due to the unique characteristics of

voiceprints, speaker recognition has been used for enhancing the security level of banking

and personal security systems. Despite the great convenience provided by speaker recogni-

tion technology, some fundamental problems are remaining unsolved, which include (1) in-

sufficient labeled samples from new acoustic environments for training supervised machine

learning models and (2) domain mismatch among different acoustic environments. These

fundamental problems may result in severe performance degradation in speaker recognition

systems.

We proposed two methods to address the above problems. First, to reduce domain mis-

match in speaker verification systems, we propose an unsupervised domain adaptation

method. Second, to enhance speaker identification performance, we introduce a contrastive

adversarial domain adaptation network to create a domain-invariant feature space. The

first method addresses the data sparsity issue by applying spectral clustering on in-domain

unlabeled data to obtain hypothesized speaker labels for adapting an out-of-domain PLDA

mixture model to the target domain. To further refine the target PLDA mixture model, spec-

tral clustering is iteratively applied to the new PLDA score matrix to produce a new set of

hypothesized speaker labels. A gender-aware deep neural network (DNN) is trained to pro-

duce gender posteriors given an i-vector. The gender posteriors then replace the posterior

probabilities of the indicator variables in the PLDA mixture model. A gender-dependent

inter dataset variability compensation (GD-IDVC) is implemented to reduce the mismatch



between the i-vectors obtained from the in-domain and out-of-domain datasets. Evalua-

tions based on NIST 2016 SRE show that at the end of the iterative re-training, the PLDA

mixture model becomes fully adapted to the new domain. Results also show that the PLDA

scores can be readily incorporated into spectral clustering, resulting in high-quality speaker

clusters that could not be possibly achieved by agglomerative hierarchical clustering.

The second method aims to reduce the mismatch between male and female speakers through

adversarial domain adaptation. The method mitigates an intrinsic drawback of the domain

adversarial network by splitting the feature extractor into two contrastive branches, with

one branch delegating for the class-dependence in the latent space and another branch fo-

cusing on domain-invariance. The feature extractor achieves these contrastive goals by

sharing the first and the last hidden layers but having the decoupled branches in the mid-

dle hidden layers. We adversarially trained the label predictor to produce equal posterior

probabilities across all of its outputs instead of producing one-hot outputs to ensure that the

feature extractor can produce class-discriminative embedded features. We refer to the re-

sulting domain adaptation network as a contrastive adversarial domain adaptation network

(CADAN). We evaluated the domain-invariance of the embedded features via a series of

speaker identification experiments under both clean and noisy conditions. Results demon-

strate that the embedded features produced by CADAN lead to 8.9% and 77.6% improve-

ment in speaker identification accuracy when compared with the conventional DAN under

clean and noisy conditions, respectively.
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Chapter 1

Introduction

1.1 Speaker Recognition

The recent advances in machine learning have improved our quality of life. For instance,

the spoken dialog system Siri, installed in every iPhone, is a typical machine learning ap-

plication. By analyzing the speech signals remotely, Siri can detect the language spoken by

a user and reply the user in the recognized language.

Besides speech recognition, speaker recognition has also found applications in various

domains as it is one of the most user-friendly authentication methods. Speaker recognition

can be divided into two types: speaker verification and speaker identification. Speaker

verification is a binary classification problem, in which the voice of a target (client) speaker

is compared against the voice of a claimant. On the other hand, speaker identification is a

multi-class classification problem in which the identity of a given voice is retrieved from a

database. This dissertation will focus on speaker verification.

Since 2010, i-vectors have been regarded as the best feature representation for speaker

verification.1 In the i-vector approach [5], an utterance with arbitrary length is represented

as a low-dimensional vector called the i-vector, which is the posterior mean of the latent

1After 2018, a number of studies [2, 3] found that x-vectors [4] performs better on recent NIST SRE.
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factor in a factor analysis model. To compute the posterior mean (i-vector), it is necessary

to align the acoustic vectors of an utterance with a Gaussian mixture model (GMM) to

obtain the zero-th and first-order sufficient statistics. However, recent studies [6, 7] have

found that that the zero-th order statistics can also be obtained from a deep neural network.

Specifically, instead of computing the posterior probabilities of Gaussian mixtures for each

frame, the authors in [6, 7] computed the posterior probabilities of senones. The i-vectors

based on these DNN-derived senones posteriors are referred to as DNN i-vectors or senone

i-vectors. Likewise, the i-vectors based on the GMM-derived posteriors probabilities are

called GMM i-vectors.

While i-vectors are elegant representations of utterances, they contain not only speaker

information but also other unwanted information such as channels, genders and languages.

As a result, a robust back-end that can minimize the effect of this unwanted information is

essential. So far, probabilistic linear discriminant analysis (PLDA) [8] is still the best back-

end for this purpose. Given the i-vectors of a target speaker and a claimant, the likelihood

ratio between the same-speaker hypothesis and different-speaker hypothesis is computed

from a PLDA model. During the computation of the marginal likelihood of these two hy-

potheses, the unwanted variabilities in the i-vectors are marginalized out.

Despite its remarkable performance, PLDA models require a large amount of speech

data with speaker labels for training. In particular, to model the speaker subspace reli-

ably, each speaker in the training set should have multiple sessions, preferably collected

by different microphones. Most of the current speech corpora (e.g., Switchboard, Fisher,

and Mixer) focus on English telephone speech. Therefore, training a reliable PLDA model

for English telephone speech is not an issue. However, other languages or acoustic en-

vironments may not have such rich resources. Even if we have the speech data of other
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languages, we may not have the speaker labels. The NIST 2016 SRE has exactly such

situation. In this evaluation, participants were given unlabelled speech data for training

whatever models for suppressing the channel, language and gender variabilities. Also, the

acoustic environments from which the speech data were collected are also very different

from those in Switchboard, Fisher and Mixer. Therefore, directly applying a PLDA model

trained from these telephone speech corpora to NIST 2016 SRE will lead to poor perfor-

mance. This calls for domain adaptation that adapts the PLDA model trained from the

out-of-domain (but resourceful) data to suit the in-domain data. This is the focus of this

dissertation.

As training of PLDA models requires speaker labels, one sensible approach is to apply

unsupervised clustering on the i-vectors derived from the in-domain data to produce some

hypothesized speaker labels. Agglomerative hierarchical clustering [9], using Bayesian

information criterion, can be used for unsupervised clustering. Alternatively, spectral clus-

tering [10–12] which are based on the similarity between pairs of data points, and affinity

propagation [13], can be used. The similarity matrix can be derived from the pairwise

PLDA scores of training i-vectors. Practically, spectral clustering is able to produce hy-

pothesized speaker labels.

1.2 Robustness Issues in Speaker Recognition

Robustness is always a serious issue in speaker verification. There are plenty of nuisances

in speech signals due to disparate recording environments. Different recording environ-

ments may lead to distinguished channel noise or background noise which are detrimental

to verification systems. Therefore, it is crucial to suppress these noise variabilities. A

recent study [14] found that the i-vectors of utterances with similar signal-to-noise ratio
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(SNR) tend to form a cluster in the i-vector space and that different regions of the i-vector

space correspond to different SNR of the utterances. Based on these observations, an SNR-

dependent mixture of PLDA [15] was proposed for robust speaker verification. Instead of

computing the posteriors of the latent indicator variables from i-vectors based on the Bayes

theorem, the posteriors are estimated from a one-dimensional SNR-GMM using SNR as

input. The idea is further extended to using a DNN to compute the posterior probabilities,

using i-vectors as input [16]. By computing SNR posteriors, the proposed SNR-dependent

mixture of PLDA is able to achieve better performance than conventional PLDA and mix-

ture of PLDA under noisy environments. However, noise is not the only obstacle to con-

struct a robust speaker verification system.

1.3 Domain Mismatch in Speaker Recognition

Besides speaker information, genders and languages are another two crucial characteristics

of human voice. Male and female possess different vocal-tract structures, which induce

different voice characteristics for the two genders [17, 18]. For example, the pitch fre-

quency of female is typically higher than that of male. Moreover, even for for the same

vowel, the formant frequencies of female are higher than those of male. However, a major-

ity of speaker verification systems in the literature are gender-dependent, mainly because

the speech corpora for speaker recognition research have gender labels. This means that

two gender-dependent systems are trained separately. If gender information is not available

during scoring, a gender classifier can be used as a front-end for the gender-dependent sys-

tems. Again, i-vectors can be used as features because they contain gender information. For

example, in [19], a PLDA model was used as the backend for i-vector based gender clas-

sification, which achieves an accuracy of 97.63% on the Fisher English corpus . However,
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for the severely distorted RATS corpus, the accuracy drops to 76.48%. Such a low accuracy

will certainly affect the performance of the gender-dependent systems. A better approach

is to jointly train the gender-dependent PLDA models using the data from both genders.

This leads to a gender-independent PLDA mixture model, which is the key contribution of

this dissertation.

Besides gender variability, speaker verification systems also need to deal with language

and channel mismatch. In particular, a system trained in one language (e.g, English) will

have difficulty in distinguishing speakers speaking another language (e.g, Mandarin).

To address the domain mismatch problem, Garcia-Romero and McCree [20] proposed

to estimate the within-speaker and between-speaker variability by treating them as random

variables and used maximum a posteriori (MAP) adaptation to compute these parameters

on the basis of labelled in-domain data. These covariances can also be treated as latent

variables [21] whose joint posterior distribution can be factorized by using the variational

Bayes method. Thus, the point estimates for scoring the in-domain data are computed from

the factorized distribution. These earlier methods perform supervised domain adapation

because they require speaker labels in the in-domain training data. Domain mismatch can

be further reduced under some critical conditions like [22] which proposed to a framework

to suppress mismatch without sufficient channel information.

One approach to dealing with unlabelled data is to hypothesize speaker labels by per-

forming unsupervised clustering of in-domain data [23,24]. With the hypothesized speaker

labels, an in-domain PLDA model can be trained. An adapted PLDA model can be ob-

tained by interpolating the covariance matrices of the out-of-domain PLDA model and the

in-domain PLDA model [23]. The drawback of the clustering approach is that the number

of speakers in the in-domain data is usually unknown.
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Another way to perform unsupervised adaptation is to find a domain-invariant space

from a number of datasets, with each dataset collected from one domain. For example,

Aronowitz [25, 26] proposed an inter-dataset variability compensation (IDVC) algorithm

to reduce the mismatch among datasets. The algorithm is further extended in [27]. IDVC

assumes that within the i-vector space there is a low-dimensional subspace that is more

sensitive to dataset mismatch. Therefore, the goal of IDVC is to find this subspace and

remove it from all of the i-vectors. To find this subspace, IDVC either divides a big het-

erogeneous dataset into a number of source-dependent subsets or makes use of multiple

datasets with each dataset represents one source. Another approach is to normalize the

covariances of out-of-domain i-vectors [28], which has similar notation as within-class co-

variance normalization [29] but without using speaker labels. The authors in [28] named

the method dataset invariant covariance normalization (DICN). Recently, Lin et al. [30,31]

showed that the maximum mean discrepancy (MMD) among multiple datasets can be used

as a loss function for training an autoencoder so that domain-invariant i-vectors can be ex-

tracted from its middle layer. Unlike IDVC and DICN, the MMD loss can reduce domain

mismatches beyond the second order.

Domain adversarial training (DAT) [1,32] is a state-of-the-art domain adaptation method

for domain adaptation. The method adversarially trains a set of networks comprising a fea-

ture extractor, a label predictor and a domain discriminator. The three components work

cooperately but also challenge each other to form a domain-invariant space with maximum

class information. In [33], Wang et al. demonstrated the effectiveness of domain adver-

sarial training for speaker recognition through creating a domain-invariant and speaker-

discriminative space. PLDA was used as the back-end to score the vectors extracted from

the adversarial network. The results suggest that DAT outperforms other unsupervised do-
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main adaptation methods including IDVC, DICN and matrix interpolation.

In this dissertation, we propose a contrastive adversarial domain adaptation network

(CADAN) that utilizes adversarial learning to create a domain-invariant space with maxi-

mum speaker information. Features extracted from this space can replace the conventional

i-vectors for speaker recognition. Unlike the conventional domain adversarial network

(DAN), we separate the feature extractor in the DAN into two parts, one part for maxi-

mizing class information in the domain-invariant space and the other part minimizes the

domain information. The weights of the two parts are separately updated to achieve these

two contrastive goals. Also, unlike the conventional DAN in which the label predictor is

trained to minimize class cross-entropy, we purposely weaken the capability of the label

predictor in classifying speakers. This has the effect of forcing the feature extractor to

work harder to produce more class discriminative features. Because our class-label predic-

tor aims to make the life of the feature extractor harder as opposed to making it easier, we

name it fuzzifier.

In addition to the comparison with the DAN, this dissertation also uses t-SNE plots to

illustrate the domain-invariance and class discrimination of the embedded features created

by the CADAN during the course of adversarial training. Experimental results on NIST

2012 SRE demonstrate that the CADAN can achieve nearly ideal domain adaptation for

gender mismatch on speaker identification and outperforms state-of-the-art domain adver-

sarial networks in both clean and noisy environments.

1.4 Thesis Organization

The remaining parts of this dissertation are organized as follows. Chapter 2 provides the

background information on the machine learning methods used in this study. Chapter 3
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explains how the gender- and language-independent PLDA mixture model leverages these

machine learning methods to deal with the domain mismatches commonly encountered

in practical situations. Chapter 4 explains the contrastive adversarial domain adaptation

network and reports the performance of the network on NIST evaluation data. Chapter 5

concludes the study and Chapter 6 highlights some possible future directions.
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Chapter 2

Background

2.1 I-vector and PLDA

I-vectors [5] are compact representations of utterances. To extract i-vectors from an ut-

terance, we need to obtain a sequence of acoustic vectors (typically MFCCs [34] plus log-

energy together with their first- and second-order derivatives) from the speech regions of the

utterance. Then, we align the acoustic vectors with a universal background model (UBM),

which is essentially a Gaussian mixture model (GMM) trained from the speech of many

speakers. Here, the term “align” means computing the posterior probabilities of the Gaus-

sian mixtures for each frame, from which the zero-th and first-order sufficient statistics of

the whole utterance can be obtained. Using these sufficient statistics, the i-vector of the

utterance can be computed from a factor analysis (FA) model.

The FA model is a generative model of the form:

µ = µ(b) + Tw (2.1)

where µ(b) is the universal mean obtained by stacking the mean vectors of the UBM, T is a

low-rank total variability matrix representing a subspace that comprise all sort of variabil-

ities and w is the latent factor whose posterior mean is the i-vector. According to Eq. 2.1,

the supervector µ of every utterance can be generated by sampling an appropriate w from
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the prior distribution of the latent factor w. This is why Eq. 2.1 is a generative model.

While µ is conceptually important in the FA model, it does not need to be computed during

the i-vector extraction process, which is elaborated below.

Suppose for each utterance, there is a set of observed acoustic vectors denoted as O =

{o1, . . . ,oT} where T is the number of frames. The zeroth and the centered first-order

sufficient statistics can be computed as follows:

nk =
T∑
n=1

Pr (Cn = k|on) (2.2)

f̃k =
T∑
n=1

Pr (Cn = k|on) (on − µ(b)
k ), (2.3)

where Cn ∈ {1, . . . ,M} is the mixture index indicating which of the M Gaussians in the

UBM is responsible for generating on and µ(b)
k is the k-th mean vector of the UBM. Given

{nk, f̃k}Mk=1, the corresponding posterior covariance and posterior mean (known as i-vector)

of w can be obtained by:

Cov(w,w|O) = L−1 (2.4)

〈w|O〉 = L−1TT
(
Σ(b)

)−1
f̃ (2.5)

where

L = I + TT
(
Σ(b)

)−1
NT (2.6)

is a precesion matrix, I is an identity matrix and N = diag{n1I, . . . , nMI}. Note that f̃s is a

supervector obtained by stacking the centered first sufficient statistics. Note also that Σ(b)

obtained the residual covariance which cannot be captured by the total variability matrix T.

However, the residual covariance is obtained by stacking the diagonal covariance matrices

of the UBM in diagonal form. The i-vector of an utterance can be computed from Eq. 2.5
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which is the posterior mean of the latent factor.

Before applying the i-vectors to the PLDA model, they should be pre-processed by

whitening and length normalization [35]. This pre-processing step makes the distribution

of the i-vectors closer to a Gaussian distribution so that Gaussian PLDA (instead of heavy-

tailed PLDA) can be used. Suppose we have a dataset comprising length-normalized D-

dimensional i-vectors X = {xij ∈ <D; i = 1, . . . , N ; j = 1, . . . , Hi} where N is the

number of speakers and Hi is the number of sessions of speaker i. Denote the parameters

of a PLDA model as ω = {m,V,Σ}, where m is the global i-vector mean, V ∈ <D×R is a

low-rank loading matrix, and Σ is the covariance of the residue not captured by VVT. Note

that the PLDA model further reduces the dimension of the i-vectors fromD toR. Then, the

i-vectors in X obey the following generative model (which is also a factor analysis model):

xij = m + Vzi + εij, (2.7)

where Z = {zi ∈ <R, i = 1, . . . , N} are the latent variables and εij is a residue that

follows a Gaussian distribution, i.e., εij ∼ N (0,Σ).

To compute the PLDA parameters, the expectation-maximization (EM) algorithm can

be used to iteratively maximize the likelihood of X . The EM algorithm has 2 steps.
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E-Step :

Li = I +HiV
TΣ−1V

〈zi|X 〉 = L−1i VTΣ−1
Hi∑
j=1

(xij −m)

〈zizTi |X 〉 = L−1i + 〈zi|X 〉〈zi|X 〉T

M-Step :

m′ =

N∑
i=1

Hi∑
j=1

xij

N∑
i=1

Hi

V′ =

{
N∑
i=1

Hi∑
j=1

(xij −m′)〈zi|X 〉]

}[
N∑
i=1

Hi∑
j=1

〈zizTi |X 〉

]−1

Σ′ =
1∑N
i=1Hi

N∑
i=1

Hi∑
j

[
(xij −m′)(xij −m′)T −V′〈zi|X 〉(xij −m′)T]

Note that the above EM algorithm is for estimating the parameters of a single PLDA model.

Practically, PLDA is a data-driven algorithm which means that a large amount of labeled

training is required for training.

2.2 Domain Mismatch in Speaker Recognition

Domain mismatch can severly degrade speaker recognition performance [20, 26]. There

are various causes of domain mismatch, the most prominent being the discrepancy between

the training and test environments arising from different channels, languages and genders.

Among them, gender difference is one of the most severe and obvious mismatch due to



13

the physiological differences between male and female. A recent study demonstrated that

speaker verification performance can be improved by predicting the gender of an unknown

speaker followed by gender-dependent scoring. In another study [24], a DNN was used for

computing the posterior probabilities of genders, which were then used as mixture poste-

riors in a PLDA mixture model. It was shown that although the gender information could

not be perfectly predicted, it is helpful for the PLDA mixture model to score the i-vectors,

resulting in performance superior to a gender-independent PLDA model.

2.2.1 Inter Dataset Variability Compensation

To address the domain mismatch, Aronowitz [25, 36] proposed the inter dataset variability

compensation (IDVC) algorithm to reduce the mismatch between datasets. The algorithm

is further extended in [27]. IDVC assumes that within the i-vector space there is a low-

dimensional subspace that is more sensitive to dataset mismatch. Therefore, the goal of

IDVC is to find this subspace and remove it from all of the i-vectors. To find this subspace,

IDVC either divides a big heterogeneous dataset into a number of source-dependent subsets

or makes use of multiple datasets with each dataset represents one source.

In the most basic form of IDVC, only the subset means of i-vectors are considered.

Specifically, denote µi, i = 1, . . . , S as the mean vectors of the S datasets. Then, PCA is

applied to these mean vectors, which results in a low-rank projection matrix U comprising

r eigenvectors. In [36], these eigenvectors form the subspace called inter dataset variability

subspace. Then, each i-vector x is subject to

x← (I−UUT)x,
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where I is an identity matrix. This subspace removal process is applied to all i-vectors

before length normalization [37] and the training of the final PLDA model.

2.2.2 Adaptation of PLDA Models

With the increasing demand on cross-domain speaker verification systems, Garcia-Romero

et al. [38] are motivated to construct a domain adaptation framework for speaker verifi-

cation systems. They developed a novel approach to adapting the out-of-domain PLDA

parameters to the in-domain parameters:

Γadapt = α1 Γin + (1− α1)Γout

Σadapt = α2Σin + (1− α2)Σout,

where Γ is the across-speaker covariance matrix, Σ is the within-speaker covariance matrix,

and α1 and α2 are control parameters. Given the adapted Γadapt and Σadapt, an adapted

PLDA model can be used for scoring in-domain data.

2.3 Spectral Clustering

Recently, clustering received growing attention due to its wide range of application. As

one of the most traditional clustering algorithms, the K-means algorithm possesses the

advantage of computation simplicity because each data point only requires to compare

with a small number of cluster centers. However, a drawback of K-means is that it assumes

that all of the clusters should follow a Gaussian distribution to justify the use of Euclidean

distance. This means that for non-Gaussian distributed data, K-means will not be effective.

An alternative to K-means is the pairwise method [10, 12]. Instead of comparing each



15

data point with the hypothesized cluster means, pairwise methods compare each data point

with all (or a subset) of the other data points in the training set to form a similarity matrix.

A low-dimensional embedded subspace is then obtained by applying eigen-decomposition

on the similarity matrix. K-means can then be easily applied to the low-dimensional vectors

in the subspace. Spectral clustering [39, 40] is one of the most popular pairwise methods.

The computational complexity of spectral clustering is quite high because each data point

in the training set needs to compare with all other data points. Chen et al. [11] proposed a

parallel spectral clustering algorithm. To overcome the high computation complexity, Chen

et al utilized a sparse matrix to replace the original one by selecting the most informative

data. Specifically, instead of computing the pairwise distances of all data points, for each

data point, its k-nearest neighbors are considered. Usually, k should be a small number

related to the total number of the data points.

Spectral clustering is applicable to speaker verification when we have lots of unlabeled

speech data. Given a data set without speaker labels, we may turn a pairwise PLDA score

matrix into a similarity matrix for spectral clustering. More indepth discussions and exper-

imental results of spectral clustering can be found in Chapter 3.

2.4 Deep Neural Netowrks

Deep learning [41, 42] and deep neural networks (DNNs) are currently regarded as the

most promising research areas in machine learning primarily due to their recent success

in application domains. DNNs are inspired by the structure of human brain. Inside the

human brain, billions of neurons are working together to process the signals received by

our sensory organs. The signals are transported from layer to layer in the cerebral cortex.

Deep neural networks attempt to simulate the same neural structure. The strength of the
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connection between two neurons is represented by a connection weight, which stimulates

the degree of neurotransmission. A neural network with one hidden layer is shown in Figure

2.1:

Figure 2.1: A neural network with one hidden layer

The weights of a DNN can be optimized (trained) by backpropagation (BP) [43]. BP is

a gradient descent algorithm that aims to minimize the loss between the actual and desired

outputs. There are several types of loss functions and the most common two are mean

squared error (MSE) and cross entropy (CE). For the former, the total error Etot is given

by:

Etot =
∑
n

∑
k

(yn,k − tn,k)2, (2.8)

where n indexes the training sample and k indexes the output nodes, yn,k and tn,k are the

actual and target outputs, respectively. For the network in Figure 2.1, we further compute

the error gradient with respect to W(2):

∂Etot

∂w
(2)
kj

=
∑
n

∂En

∂w
(2)
kj

, (2.9)
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where En =
∑
k

(yn,k − tn,k)2 is the instantaneous error. Using the chain rule and droping

n for notation simplicity. Eq 2.9 can be written as:

∂E

∂w
(2)
kj

=
∂E

∂a
(2)
k

∂a
(2)
k

∂w
(2)
kj

= δ
(2)
k o

(1)
j , (2.10)

where a(2)k =
∑
j

w
(2)
kj o

(1)
j is the activation of the k-th neuron at the output layer and

δ
(2)
k =

∂E

∂a
(2)
k

=
∂E

∂o
(2)
k

∂o
(2)
k

∂a
(2)
k

=
(
o
(2)
k − tk

) ∂h(a(2)k )

∂a
(2)
k

, (2.11)

where h(a) is a non-linear activation function. Similarly, we can use the same technique to

compute the error gradient with respect to the hidden layer:

∂E

∂w
(1)
ji

=
∂E

∂a
(1)
j

∂a
(1)
j

∂w
(1)
ji

= δ
(1)
j xi, (2.12)

where

δ
(1)
j = h′(a

(1)
j )
∑
k

δ
(2)
k w

(2)
kj . (2.13)

In summary, the weights of the output layer and hidden layer can be updated as follow:

• Output layer: w(2)
kj ← w

(2)
kj − η(yk − tk)h′(a

(2)
k )o

(1)
j

• Hidden layer: w(1)
ji ← w

(1)
ji − η

[
h′(a

(1)
j )
∑
k

δ
(2)
k w

(2)
kj

]
where η is a small learning rate to ensure that the error steadily more towards a local mini-

mum.
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In the equation above, h(a) is a non-linear activation function. Traditionally, the sig-

moid function h(a) = 1
1+e−a is used to as the activation function but recent research has

found that other non-linearity such as rectified linear unit (ReLU), hyperbolic tangent and

softplus lead to better performance. In particular, the ReLU is very efficient to compute

and DNNs that use ReLU do not suffer from the gradient vanishing and exploding prob-

lems [44].

For very deep neural networks, the original method may encounter the gradient van-

ishing problem, especially the sigmoid non-linearity is used. To avoid gradient vanishing,

Hinton et al [45,46] proposed a learning algorithm called contrastive divergence to train re-

stricted Boltzmann machines, which are very suitable for initializing the weights of DNNs.

The development of this pre-training technique is a major milestone that leads to the recent

advance in deep learning and artificial intelligence.

2.5 Adversarial Learning

Adversarial learning can be applied to train a domain adversarial network (DAN) to create

a domain-invariant space [1] or to align the class distributions of the source task and the tar-

get task. Unlike GANs, the DAN does not have random inputs; instead, they either receive

domain-dependent feature vectors as inputs or receive simultaneously the features from

both the source and target domains. Their goal is to create a representation with minimum

domain dependence. The domain adversarial network in [1] incorporates adversarial learn-

ing into deep neural networks by creating a latent space in which the domain discrepancy

is suppressed while the class-dependent information is maintained.
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Figure 2.2: The structure of a domain adversarial netowrks (DAN)

Fig. 2.2 shows the structure of a DAN. It comprises three components: a feature ex-

tractor, a domain discriminator, and a label predictor. During training, the feature extrac-

tor and the label predictor are jointly trained to minimize the cross-entropy errors in the

label predictor’s output. Also, the feature extractor is jointly trained with the domain dis-

criminator. But unlike the feature-extractor–label-predictor combination, for the feature-

extractor–domain-discriminator combination, the feature extractor is adversarially trained

so that the resulting features maximize the loss of the domain discriminator. The adver-

sarial learning algorithm is like a two-player game in which the feature extractor is trained

to confuse the domain discriminator that is tuned to distinguish the target domain from the

source domain. The designate output at the intermediate layer of the domain-adversarial

network is not only domain-invariant but also class discriminative.
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Chapter 3

Semi-supervised Domain Adaptation for Gender-independent Speaker

Verification

Because the totally variability matrix of an i-vector extractor is trained from speech with

all sort of variabilities (e.g., speakers, noise, channels, genders and languages), an i-vector

contains not only speaker information but also other information that may be detrimental to

speaker verification. Therefore, it is crucial to develop a robust speaker verification system

that is robust to these undesirable variabilities.

Before 2016, the NIST Speaker Recognition Evaluations (SRE) focused mainly on the

channel and noise variabilities. In these evaluations, the development and test data contain

mostly English telephone conversations. Because all of the development data have speaker

labels, there are abundant data for training the PLDA models, which result in superb per-

formance. In 2016 SRE, however, the i-vector/PLDA framework faces a big challenge.

This is because not only the development (dev) and evaluation (eval) data are collected

outside north America, but also the speakers speak different languages other than English.

These differences cause serious dataset and language mismatches if a PLDA model trained

from the data in pre-2016 SRE data and tested on the 2016 SRE data. Worse still, the

evaluation data in 2016 SRE do not have gender labels, forcing the participants to develop

gender-independent PLDA model or to detect the gender of the test utterances before com-

puting the PLDA scores. This chapter describes the methods that we used to address these
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problems.

3.1 Semi-supervised Domain Adaptation

To overcome the dataset and language mismatches, this dissertation proposes an semi-

supervised domain adaptation method that leverages a gender-aware PLDA mixture model

and the unlabelled development data in 2016 SRE. To guide the training of the mixture

model, a gender-aware DNN is trained to estimate the gender posteriors given i-vectors as

input. These posteriors replace the posteriors of the indicator variables in the mixture model

during both training and scoring. The training procedure is iterative in that the PLDA mix-

ture model is “initialized” by using pre-2016 SRE data using both the gender and speaker

labels. Then, the mixture model is applied to compute the pairwise PLDA scores of the

unlabelled data in the development set of 2016 SRE, followed by applying spectral clus-

tering on the scoring matrix to produce a set of hypothesized speaker labels. These labels,

together with the gender labels produces by the DNN, are used for inter dataset variability

compensation (IDVC) to account for the dataset shift. The IDVC-compensated i-vectors

are then used for retraining the PLDA mixture model, and the process is repeated. Figure

3.1 shows the block diagram of the training process.
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GD-IDVC 

Spectral 
Clustering

PLDA Mixture 
Model

I-vectors with hypothesized
speaker labels

Mismatch-reduced 
i-vectors with hypothesis labels

Gender-aware 
DNN

Gender 
labels

Gender posteriors

Pairwise score matrix

I-vectors without
speaker labels

Figure 3.1: The flowschart of the semi-supervised domain adaptation method that addresses
the domain and language mismatches.

3.1.1 Hypothesized Speaker Labels

Because speaker labels are not always available in the development datasets, clustering is

a sensible strategy to produce hypothesized speaker labels for training the PLDA models.

Spectral clustering [47], which makes use of the pairwise similarities of data, is one of the

most effective clustering methods. In the proposed system, spectral clustering is the key-

step for iteratively training a PLDA mixture model. To perform spectral clustering, we need

a similarity matrix comprising the pairwise similarity between the training i-vectors. The

similarity matrix can be obtained from the PLDA scores of training utterances. As PLDA

scores are log-likelihood ratios, they can be negative. Therefore, we need to convert the

PLDA scores to similarity scores that are amenable to spectral clustering.

Given a dataset X = {x1, . . . ,xN} comprising N i-vectors, we compute a PLDA score

matrix S ∈ <N×N , where the element sij of S is the score of xi and xj based on a PLDA

mixture model:

sij = SmPLDA(xi,xj) i 6= j
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Then, we convert S to a distance matrix M with elements:

mij =


smax − sij i 6= j

0 otherwise,

(3.1)

where

smax = max
i,j;i 6=j

|sij|. (3.2)

Then, we convert the distance matrix M to a similarity matrix A that is suitable for spectral

clustering. Specifically, the elements of A are

aij = exp
{
−
m2
ij

2σ2

}
, 1 6 i, j 6 N, (3.3)

where σ is a scaling parameter that controls how fast the similarity drops with the distance

mij .

This method is quite reasonable because the similarity of two i-vectors reflects the “dis-

tance” or difference between the two utterances. A negative sij means that the two i-vectors

are very dissimilar, which results in a large mij in Eq. 3.1 and small aij in Eq. 3.3. On

the other hand, a large sij means that the two i-vectors are very similar, which results in

mij ≈ 0 and aij → 1.

With the simiarlity matrix A, we may divide X into k clusters as follows. First, we

compute the Laplacian matrix:

L = I−D−
1
2 AD−

1
2 , (3.4)
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where I is an N ×N identity matrix, D is a diagonal matrix with diagonal elements:

dii =
N∑
j=1

aij (3.5)

and D−
1
2 stands for the inverse of the square root of D.

Then, we compute theK eigenvectors {v(1), . . . ,v(K)} of L with the smallest eigenval-

ues and pack the K eigenvectors to form a matrix V = [v(1), . . . ,v(K)] ∈ <N×K , followed

by renormalization of the rows:

v
(k)
i ←

v
(k)
i√∑K

k=1(v
(k)
i )2

. (3.6)

Then, we consider the rows of the normalized V as K-dimensional vectors and the N

row vectors can be clustered by K-means to form k clusters. The row vectors and their

corresponding utterances in the c-th cluster (c = 1, . . . , k) are considered to be associated

with the c-th hypothesized speaker.

3.1.2 Gender-Independent Mixture of PLDA

Gender information is critical for constructing speaker verification systems. The DNN-

driven mixture of PLDA in [16, 48] perfroms very well when the test utterances have a

wide range of SNR. However, the method is gender-dependent in that it uses the gender

information in the training set to separately train two gender-dependent PLDA mixture

models. To convert the gender-dependent system to a gender-independent one, we may

pool the speech of both genders to train a gender-independent PLDA model. However, this

naive approach is undesirable because there are fundamental differences in the vocal-tract
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length, vocal-fold size, and larynx anatomy between the two genders. Studies have shown

that there are substantial differences between the acoustic features extracted from male

and female speakers [49]. These findings together with the limitation of gender-dependent

systems motivate us to develop gender-independent mixture of PLDA. In particular, we

propose to use a gender-aware deep neural network to guide the training of the mixture

of PLDA by replacing the mixture posteriors with the gender posteriors estimated by the

DNN. Because there will only be two genders, the number of mixtures is always two. In

the verification stage, given the i-vectors of the target-speaker and a claimant, the gender

posteriors given by the DNN are used as the linear combination weights (see Section 3.4)

to compute the verification score.

Denote the weights of the DNN after training as w. Given the i-vector xij of an utter-

ance from the j-th session of the i-th speaker, the network produces the gender posterior:

γxij
(yijk) = P (yijk = 1 | xij,w), k = 1, 2 (3.7)

where yijk ∈ {0, 1} is an indicator variable indicating whether the utterance of xij is spoken

by a male speaker or a female speaker.

The gender-aware DNN not only provides guidance information to the mixture model

but also generates gender labels for carry out gender-dependent IDVC. The predicted gen-

der label is then given by

Gender =


male γxij(yijk) > 0.5

female otherwise.

(3.8)
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3.1.3 Domain Adaptation

Due to the mismatches in languages and communication channels between the data in 2016

SRE and pre-2016 SREs, domain adaptation is crucial for systems that are trained on pre-

2016 SRE data but tested on 2016 SRE data. There are two kinds of mismatches in NIST

2016 SRE: within dataset and across dataset. For the former, the datasets may be hetero-

geneous and comprise speech from different sources, e.g., different languages and genders.

For the latter, the channel characteristics of the development and evaluation datasets could

be very different, e.g., collected by different instruments in different telephone networks.

To suppress the effect of within-dataset mismatches, gender-dependent inter dataset

variability compensation (GD-IDVC), incorporated with the DNN in Section 3.3, is ap-

plied to transform the i-vectors of both development and evaluation datasets. As discussed

in Section 2.2, IDVC aims to find a low-dimensional subspace that is sensitive to the mis-

matches and remove this subspace from both the development and evaluation i-vectors. To

this end, we partitioned the development dataset of 2016 SRE into 4 subsets (2 per gender)

as shown in Table 3.1. To estimate the subspace Sµ, principal component analysis (PCA)

is applied to find the eigenvectors that possess the K largest eigenvalues. The dimension-

ality of subspace Sµ was fixed to 3 in the proposed system. Due to the lack of in-domain

data in SRE16, it is not effective to compute the subspaces corresponding to other PLDA

parameters.
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Group Data Mean i-vector

1 Male from major µ1

2 Male from minor µ2

3 Female from major µ3

4 Female from minor µ4

Table 3.1: The four partitioned subsets for GD-IDVC training. “Major” and “Minor” are
the major and minor languages in 2016 SRE, respectively.

3.1.4 Mixture of PLDA and Likelihood Ratio Scores

The proposed gender-aware mixture of PLDA is trained based on the hypothesized speaker

labels and gender posteriors derived in Eq. 3.7. The training process is depicted in Fig-

ure 3.2. The reason why we used a gender-aware network is that we need the network to

compute the gender posteriors for modeling the i-vectors by mixture of PLDA. Therefore,

instead of performing gender-classification (which gives binary classification decisions),

we obtained the soft decisions from the gender-aware DNN. This results in gender-aware

adaptation of the mixture PLDA model instead of adaptation of gender-dependent PLDA

models.
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Figure 3.2: Training process of the PLDA mixture model

As shown in Figure 3.2, the gender posterior γxij
(yijk) of the i-th speaker, j-th session

and k-th class (gender) from the gender-aware DNN guides the training process. The EM

algorithm given in [48] is used to learn the parameters of the PLDA mixture model, which

is parameterized by θ = {mk,Vk,Σk}Kk=1, where K is equal to 2 because there are two

genders only. To iteratively estimate and update the model parameters, the EM algorithm

is applied for calculating the new set of parameters θ′. The E- and M-step are specified
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below:

E-Step :

Li = I +
K∑
k=1

Hi∑
j=1

〈yijk|xij〉VT
kΣ
−1
k Vk

〈zi|X 〉 = L−1i

K∑
k=1

Hi∑
j=1

〈yijk|xij〉VT
kΣ
−1
k (xij −mk)

〈zizT
i |X 〉 = L−1i + 〈zi|X 〉〈zi|X 〉T

M-Step :

m′k =

N∑
i=1

Hi∑
j=1

〈yijk|xij〉xij

N∑
i=1

Hi∑
j=1

〈yijk|xij〉

V′k =

{
N∑
i=1

Hi∑
j=1

[〈yijk|xij〉(xij −m′k)〈zi|X 〉]

}[
N∑
i=1

Nik〈zizT
i |X 〉

]−1

Σ′k =
1∑N

i=1Nik

N∑
i=1

Hi∑
j=1

[
〈yijk|xij〉(xij −m′k)(xij −m′k)

T −V′k〈zi|X 〉〈yijk|xij〉(xij −m′k)
T]

where Nik =
∑Hi

j=1〈yijk|xij〉. Note that the posteriors of the latent indicator variables

〈yijk|xij〉 rely on the gender-aware DNN instead of the SNR-GMM as in [16] or SNR-DNN

as in [15]. After the EM training, the new mixture PLDA model is used for computing a

new pairwise score matrix, which is used for spectral clustering to renew the speaker labels

of all i-vectors, and the process repeats.

To compute verification scores, the test dataset is firstly passed through the i-vector

extractor, which is identical to that of the training process. After that, the gender-aware

DNN computes the gender posteriors of the test set. Meanwhile, the i-vectors are subject

to gender-dependent IDVC, using the same subspace as determined in the training process.
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Figure 3.3: Scoring Process of the PLDA mixture model

As shown in Figure 3.3, the mismatch-reduced i-vectors are presented to the PLDA

mixture model to compute the verification score:

SDNN−mPLDA(xs,xt) =

ln


∑K

ks=1

∑K
kt=1 γxs(yks)γxt(ykt)N

([
xT
s xT

t

]T | [mT
ks

mT
kt

]T , V̂ksktV̂
T
kskt

+ Σ̂kskt

)
[∑K

ks=1 γxs(yks)N
(
xs|mks , VksV

T
ks
+ Σks

)] [∑K
kt=1 γxt(ykt)N

(
xt|mkt , VktV

T
kt
+ Σkt

)]


where V̂kskt = [VT
ks

VT
kt
]T, Σ̂kskt = diag{Σks Σkt}.
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3.2 Experiments

3.2.1 Evaluation Protocol and Speech Data

Evaluations were performed on the evaluation set of NIST 2016 SRE (SRE16-eval). Data

from the development set of SRE16 (SRE16-dev) and from SRE05–SRE12 were used for

development. The data were divided into the following parts:

• Enrollment and Test Data: SRE16-dev has 120 enrollment segments, each with ap-

proximately 60 seconds. It also contains 1,207 test segments with duration ranging

from 10 seconds to 60 seconds. All segments contain telephone conversations spoken

by 20 subjects in either Mandarin or Cebuano. Each target speaker has one or three

enrollment segments. The evaluation protocol in SRE16-dev defines which target-

speaker models should score against which test segments, with a total of 4,829 target

trials and 19,312 non-target trials. SRE16-eval has the same structure as SRE16-

dev, excepting that the numbers of enrollment segments and test segments increase

to 1,202 and 9,294, respectively. The number of subjects also increases to 201. The

evaluation protocol defines 37,063 target trials and 1,949,666 non-target trials. Also,

unlike SRE16-dev, all enrollment and test segments in SRE16-eval were spoken in

either Cantonese or Tagalog, which causes language mismatch for systems trained

on SRE16-dev data.

• Development Data: Telephone segments from SRE05–SRE12 were used for training

the gender-aware DNN and the initial PLDA mixture model. The unlabelled data

in SRE16-dev, including the major and minor languages, were used for training the

subspace projection matrices (LDA and WCCN), a 512-mixture UBM, and a 300-

factor total variability matrix. They were also used for the iterative retraining of the
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PLDA mixture model.

For each speech segment, a 2-channel voice activity detector was applied to remove

silence regions. Then, the speech regions were segmented into 25-ms Hamming windowed

frames with 10ms frame shift. For each frame, 19 Mel frequency cepstral coefficients

and log energy together with their first and second derivatives are packed to form a 60-

dimensional acoustic vector, followed by cepstral mean normalization and feature warping

[50] with a window size of 3 seconds.

3.2.2 Training of Gender-Aware DNN

The DNN was constructed by stacking a number of restricted Boltzmann machines (RBMs)

[41], which were initialized layer-wise by the contrastive divergency algorithm [45]. After

that, a softmax layer was placed on top of the network to ensure that the network can pro-

duce gender posteriors. Then, backpropagation was applied to minimize the cross-entropy

between desired and actual outputs. In this work, we used the utterances in SRE05–SRE12

and their gender labels to train the gender-aware DNN.

3.2.3 Score Normalization

Adaptive score normalization can improve the performance of i-vector/PLDA systems on

NIST 2016 SRE significantly. To reduce scoring time, we applied adaptive z-norm instead

of the more computationally demanding adaptive s-norm as a compromise. Specifically,

we used the unlabelled utterances in SRE16-dev as the candidate cohorts for the enrollment

utterances. For each enrollment utterance, its PLDA scores with respect to the unlabelled i-

vectors in SRE16-dev were computed and ranked; then, the top-200 i-vectors were selected

as the cohort set for computing the z-norm parameters of the utterance.
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3.3 Results and Discussions

To compare the quality of the i-vector clusters produced by agglomerative hierarchical clus-

tering (AHC) and iterative spectral clustering (Iterative-SC), we computed the silhouette

values from the clusters produced by these two methods and displayed them as silhouette

plots in Fig. 3.4. As AHC can use Euclidean or cosine distance as its distance metric, we

refer to the resulting methods as Euclidean-AHC and Cosine-AHC, respectively. Fig. 3.4

shows that Iterative-SC has the highest average silhouette score and has less negative sil-

houette values. This suggests that Iterative-SC produces clusters with better quality.

−0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Silhouette Value

C
lu

st
e

r

(a) avgscore = 0.650

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Silhouette Value

(b) avgscore = 0.668

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Silhouette Value

(c) avgscore = 0.752

Figure 3.4: Silhouette plots showing the quality of i-vector clusters produced by (a)
Euclidean-AHC, (b) Cosine-AHC and (c) Iterative SC. Each silhouette pattern represents a
cluster, and the silhouette values of individual samples are shown on the horizontal axis.

We used equal error rate (EER) and minimum decision cost function (minDCF) de-

fined in NIST 2016 SRE to evaluate the performance of different systems. Unless stated

otherwise, the number of clusters (hypothesized speakers) is 180.
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SRE16-Dev SRE16-Eval

No. of Iterations EER(%) minDCF EER(%) minDCF

1 17.12 0.812 18.72 0.952

2 16.31 0.789 15.32 0.883

3 15.79 0.751 13.62 0.829

4 15.68 0.774 12.79 0.798

5 15.04 0.799 12.73 0.779

6 15.74 0.782 13.03 0.792

7 15.79 0.788 13.34 0.801

Table 3.2: Performance of the iterative retraining method for different numbers of iterations
on SRE16-dev and SRE16-dev.

Table 3.2 shows that the performance generally improves after a few iterations on both

datasets. Because of the mismatch between pre-SRE16 and SRE16 data, the performance

in the first iteration is the worst. However, when the number of iterations was increased, the

PLDA mixture model gradually adapts to the new domain and both the EER and minDCF

drop. We observed that increasing the number of iterations beyond 7 does not bring any

further peformance improvement.

In the next experiment, we compared different speaker clustering methods and used

AHC as the baseline. Also, we used covariance matrix interpolation as the baseline. Specif-

ically, we interpolated the covariance matrices of the in-domain PLDA mixture model with

the covariance matrices of the out-of-domain PLDA mixture model using an interpolation

weight of 0.5. Table 3.3 shows the speaker verification performance using the 3 speaker

clustering methods. Note that iterative retraining (Fig. 3.2) is meaningful to Iterative-SC
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only because the distance metrics of AHC is independent of the PLDA model. Results

show that iterative-SC together with the retraining strategy can leverage the limited amount

of unlabelled in-domain data to achieves superior performance. Rows 2 and 3 in Table 3.3

suggest that without iterative re-training, covariance interpolation helps to lower the EER

and minDCF. However, when iterative re-training is applied (Row 4 and Row 5), the benefit

of covariance interpolation diminishes.

Row
Clustering Cov. SRE16-Dev SRE16-Eval

Method Interp. EER (%) minDCF EER (%) minDCF

1 Euclid-AHC N 19.54 0.937 18.68 0.932

2
Cosine-AHC

N 18.23 0.862 16.37 0.846

3 Y 16.36 0.818 14.12 0.832

4
Iterative-SC

N 15.04 0.799 12.73 0.779

5 Y 15.21 0.809 12.60 0.816

Table 3.3: Performance of PLDA mixture models on SRE16 using different speaker clus-
tering methods and with and without covariance matrix interpolation (Cov. Interp.).

In the covariance interpolation method [20], the out-of-domain data have a direct in-

fluence on the adapted model and the degree of influence is controlled by an interpolation

weight. The problem is that this weight should be set according some prior knowledge

about the two domains, which may not be easily quantified. In our method, however, such

influence will be progressively diminished during the iterative training process. As shown

in Table 3.2, the PLDA model can be fully adapted to the new domain after 5 iterations.
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Chapter 4

Contrastive Adversarial Domain Adaptation Networks for Speaker

Recognition

The main challenge in domain adaptation is that we need to minimize the domain

information in feature vectors without affecting their class information. We propose a

new domain adversarial network called contrastive adversarial domain adaptation network

(CADAN) to meet this challenge. This chapter explains the design philosophy, architecture

and training algorithm of the CADAN.

4.1 Design Philosophy and Network Architecture

In the original DAN (see Section 2.4), the feature extractor is particularly hard to train

because it needs to produce features that meet two contrastive objectives: maximum class

discrimination and minimum domain dependency. In practice, its weights are tuned to meet

the first objective but will be re-adjusted to meet the second one in the same epoch. This

is in analogy to asking a person to learn two different but related tasks at the same time,

which of course will not be as effective as learning one task at a time. While we may

change the training strategy so that the two tasks can be learned consecutively, it is also

undesirable because the network may forget the first task after learning the second one. A

better approach is to delegate some task-specific neurons for the respective tasks. To this

end, we propose splitting the middle hidden layers of the feature extractor network into
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two branches so that they become partially decoupled from each other during adversarial

training. In spite of the decoupling, the two sub-networks need to cooperate with each other

because for each input vector, the feature extractor needs to produce one embedded feature

vector as output. Therefore, the two branches share the input layer and the output layer.

The architecture is shown in Fig. 4.1.

In addition to the contrastive feature extractor, another key difference between the pro-

posed architecture in Fig. 4.1 and the DAN of [1] is the label predictor. In DAN, the feature

extractor and label predictor are jointly trained to minimize the cross-entropy of the target

classes. However, in the proposed architecture, the class encoder is trained to minimize the

cross-entropy but the label predictor is trained to produce equal outputs (posterior proba-

bilities). Therefore, instead of making the predictor more capable of classifying the latent

feature vectors, we make it less capable of doing so. From the label predictor perspec-

tive, the latent features become fuzzier after every epoch. The deliberately weakening of

the label predictor will encourage the class encoder in Fig. 4.1 to try harder to produce

more speaker discriminative features so that they can be discriminated correctly by the ad-

versarially trained label predictor. Because the label predictor is adversarially trained, the

embedded features become more confusable to the label classifier. Therefore, we refer to

the label classifier as ”Fuzzifier”.

In all, there are two intrinsic drawbacks of the original DAN. First, in the original

DAN, the generator is designed for two different purposes: generating domain-invariant

latent features and keeping speaker information. During training, the weights in the gen-

erator are updated twice for each epoch. However, each update is in contradiction to each

other because of the different purposes. Second, in the original DAN, the classifier aims

to classify the latent features into different speakers in the training set, which means that
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it will contain some useful speaker information. Unfortunately, this information will not

be encoded in the latent features, which will ultimately be used for speaker recognition.

By replacing the speaker classifier with a speaker fuzzifier and splitting the generator into

a class encoder and a domain suppressor, we can force the class encoder to encode all of

the speaker information, which results in more speaker discriminative features in the latent

vectors.

In the proposed approach, the feature extractor G is split into a domain suppressor Gdom

and a class encoder Gcls. As shown in Fig. 4.1, the neurons in the feature extractor are

separated into the blue group Gcls, which is to be trained with the fuzzifier F to maximize

class discrimination, and the green group, which is to be trained with the domain discrim-

inator. Because of the different objectives when training the weights (blue) for encoding

class-discriminative information and the weights (green) for domain discrimination, both

Gcls an Gdom become better in performing their respective task. Without the separate struc-

ture, training will become unstable if the weights are updated twice for different purposes

in each epoch.

4.2 Training Algorithm

The training of F and Gcls in Fig. 4.1 are as follows:

Train F : min
F

{
−Ex∼pdata(x)

[
K∑
k=1

1

K
logF (G(x))k

]}
(4.1a)

Train Gcls : min
Gcls

{
−Ex∼pdata(x)

[
K∑
k=1

y
(k)
cls logF (G(x))k

]}
, (4.1b)
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Figure 4.1: Contrastive Adversarial Domain Adaptation Networks (CADAN). The blue
layers constitute the adversarial networks for enhancing class information and the green
layers are responsible for reducing domain mismatch. The subscript ”cls” and ”dom” stand
for class and domain, respectively.

where G(x) is the output of the contrastive feature extractor, F (·)k is the k-th output of

the fuzzifier whose designated output is the posterior of class k, and y(k)cls is equal to 1 if x

comes from the k-th class; otherwise it is equal to 0. Unlike ordinary DAN in which the

targets of the label predictor are in one-hot format, in CADAN, the targets of F in Eq. 3(a)

are set to [ 1
K
, . . . , 1

K
]T. It can be shown that the minimum of the cross-entropy in Eq. 3(a)

occurs when F (G(x))k = 1
K

for all k. When this happens, the encoded vectors ẑ = G(x)’s

will be most confusable to the fuzzifier. During the course of training, the classification

ability of F will keep on weakening. The weak F will make the class encoder Gcls to work
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harder to produce class-discriminative features to reduce the cross-entropy in Eq. 3(b).

The encoder Gdom in Fig. 4.1 aims to make the embedded vectors ẑ’s domain invariant.

This can be achieved by the following optimizations:

Train D : min
D

{
−Ex∼pdata(x)

[
M∑
m=1

y
(m)
dom logD(G(x))m

]}
(4.2a)

Train Gdom : min
Gdom

{
−Ex∼pdata(x)

[
M∑
m=1

1

M
logD(G(x))m

]}
, (4.2b)

where y(m)
dom = 1 when x comes from domain m; otherwise y(m)

dom = 0. The weights of Gdom

are updated to obtain a domain invariant space so that the encoded vectors ẑ’s become con-

fusable to the discriminator D. This is achieved by setting the target of D to [ 1
M
, . . . , 1

M
]T.

The domain discriminator D is trained to best differentiate these confusable vectors into

different domains. Algorithm 1 shows the pseudo-code of the training of the CADAN.

Note that training algorithm sequentially estimates the domain discriminator, domain sup-

pressor, class encoder and fuzzifier in a learning epoch. The class encoder is updated with

R steps in an epoch.

4.3 Experimental Setup

To evaluate the effectiveness of CADAN in suppressing domain mismatch, we applied it

to a speaker identification task in which genders are considered as domains and speaker

identities are considered as classes. Therefore, K and M in Fig. 4.1 correspond to number

of speakers and number of domains, respectively.
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4.3.1 Speech Data and Acoustic Features

Speech files from NIST 2004–2012 Speaker Recognition Evaluation (SRE04–12) were

used as the training and test datasets. Babble noise was added to the speech files of SRE12

at an SNR of 6dB. Each dataset was first divided into male and female subsets. The speech

files of each speaker were further split into training and test sets to ensure that the speakers

in the test utterances must exist in the training set.

Because SRE04–12 contain telephone conversations and interviews, this way of split-

ting the data can also ensure that the contexts of the training utterances are totally different

from those of the test utterances. A 2-channel voice activity detector (VAD) [51] was ap-

plied to remove silence regions. For each speech frame, 19 MFCCs together with energy

plus their 1st and 2nd derivatives were computed, followed by cepstral mean normaliza-

tion [34] and feature warping [50] with a window size of three seconds. A 60-dim acoustic

vector was extracted every 10ms, using a Hamming window of 25ms.

4.3.2 I-Vector Extraction

A subset of the telephone and microphone speech files in SRE05–10 were used for training

a gender-independent UBM with 1024 mixtures. Then, MAP adaptation [52] was applied

to adapt the gender-independent UBM to gender-dependent UBMs using the speech files of

the respective gender as adaptation data. For each gender, a 500-factor total variability (TV)

matrix (T) was estimated. The gender-dependent TV matrices and UBMs were used for

extracting gender-dependent i-vectors. Using MAP adaptation to create gender-dependent

UBMs can ensure that there is a one-to-one correspondence between their Gaussians, which

in turn ensures that the GMM-supervectors of both genders (µs and µ) live in the same

Euclidean space. As a result, the gender-dependent i-vectors also live in the same 500-
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dimensional i-vector space.

4.3.3 Configuration and Training of DAN and CADAN

To ensure fair comparisons between DAN and CADAN, we kept their structure almost

the same. Specifically, both of them have 500 input nodes, 3 hidden layers with 1,200

ReLU nodes in each layer, and 500 output nodes in the feature extractor. However, for

CADAN, the 2nd hidden layer was split into two parts: 800 nodes for the class (speaker)

encoder and 400 nodes for the domain (gender) suppressor. The ratio of 2:1 is motivated

by the intuition that speaker information is more diverse than gender information, thereby

requiring more nodes to encode. For both DAN and CADAN, the fuzzier and domain

discriminator comprise two hidden layers, each with 500 ReLU nodes. The fuzzifier has

67 output nodes corresponding to 67 speakers and the domain discriminator has two output

nodes.

We used the i-vectors of both genders in SRE04–10 to train a DAN and a CADAN. Af-

ter training, we used the feature extractor network of the DAN and the contrastive feature

extractor network of the CADAN to produce DAN- and CADAN-transformed vectors ẑ for

both training and test i-vectors in the dataset. The training subset of the transformed vec-

tors were then used for training gender-dependent PLDA models. The DAN and CADAN

obtained by using SRE04–10 data correspond to the columns “SRE04–10” in Table 4.1

and Table 4.2. To investigate the behavior of DAN and CACAN under noisy environments,

we have also used i-vectors extracted from noise-contaminated SRE12 utterances to train

a DAN and a CADAN, and their performance is shown in the columns “Noisy SRE12” in

Table 4.1 and Table 4.2.
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Figure 4.2: Transformation of i-vectors by the feature extractor of DAN or CADAN and
PLDA scoring.

4.3.4 PLDA Training and Scoring

A pre-processing step was applied to the transformed vectors before they were used for

training PLDA models. Specifically, the DAN- and CADAN-transformed vectors were

subjected to within-class covariance normalization [53], length normalization [37], and

linear discriminant analysis (LDA). The LDA reduces the dimension of the transformed

vectors to 200. The WCCN and LDA matrices are gender-dependent and were estimated

from the i-vectors in SRE05–10. Similarly, the WCCN and LDA matrices for “Noisy

SRE12” were obtained from the i-vectors of noise contaminated speech in SRE12. The

pre-processed vectors were then used for training condition-dependent (clean or noisy) and

gender-dependent PLDA models.

In the testing phase, test i-vectors were transformed by the feature extractors of DAN

and CACAN, respectively, followed by WCCN, length normalization and LDA. The test

i-vector pairs were then passed to the PLDA model for scoring. Fig 4.2 shows the DAN/-

CADAN transformation, vector pre-processing and PLDA scoring.

Because each test speaker has multiple sessions (i-vectors), the speaker ID of each test

i-vector was identified based on the maximum average PLDA scores with respect to all

speakers in the dataset.
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4.4 Results and Discussions

4.4.1 Comparing DAN and CADAN

While the DAN and CADAN were trained on the speech (i-vectors) of both genders, the

UBMs, T-matrices, and PLDA models are gender-dependent. With these gender-dependent

PLDA models, we could have three kinds of experiments: (1) same-gender, (2) cross-

gender, and (3) mix-gender.

1. Same-gender Experiments. The PLDA models were trained and scored on the DAN-

and CADAN-transformed i-vectors derived from the same gender.

2. Cross-gender Experiments. The male PLDA models were tested on female vectors

and vice versa for the female PLDA models.1

3. Mix-gender Experiments. The gender-dependent PLDA models were tested on the

vectors from both genders.

1It is possible to do this because the PLDA model is only a scorer; it accepts two vectors as input and
computes the score of these two vectors as output. Therefore, a male PLDA model can be used for scoring
female i-vectors.
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(a) Original i-vectors on
SRE04–10

(b) DAN i-vectors on SRE04–
10

(c) CADAN i-vectors on
SRE04–10

(d) Original i-vectors on
noised SRE12

(e) DAN i-vectors on noised
SRE12

(f) CADAN i-vectors on
noised SRE12

Figure 4.3: t-SNE plots of raw i-vectors and DAN and CADAN transformed i-vectors
derived from clean SRE04–10 and noisy SRE12. I-vectors were derived from the utterances
of 10 male speakers (•) and 10 female speakers (?). The numbers on top of each cluster
are the speaker indexes (Speakers 1–10 are male and Speakers 11–20 are female) and each
speaker is represented by one color. Note that the DAN- and CADAN- transformed i-
vectors are of 500-dimensions which is the same as the dimension of raw i-vectors.

Table 4.1 shows the performance of the baseline (the row with label ‘None’), DAN- and

CACAN-transformed i-vectors. The baseline performance is based on an i-vector PLDA

system in which the PLDA model was trained by raw i-vectors without domain adaptation.

Table 4.1 demonstrates that CADAN performs the best under the cross-gender scenario

(out-of-domain columns) and performs well under the same-gender scenario (in-domain
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Out-of-Domain In-Domain
SRE04–10 Noisy SRE12 SRE04–10 Noisy SRE12

Gender of PLDA models male female male female male female male female
Gender of test i-vectors female male female male male female male female

I-Vector None 0.6115 0.6281 0.5439 0.3248 0.8758 0.9375 0.8619 0.6890
Transformation DAN 0.6337 0.6004 0.6364 0.3912 0.8417 0.9304 0.6932 0.5681

Method CADAN 0.6987 0.6723 0.7343 0.6556 0.8887 0.9468 0.8307 0.6541

Table 4.1: Speaker identification accuracies on SRE04–10 and noisy SRE12 with and with-
out i-vector transformation under gender-match and gender-mismatch scenarios. Out-of-
domain (in-domain) means that the gender of PLDA models is the same as (different from)
that of the test i-vectors. For the noisy SRE12, babble noise was added to the speech files
of SRE12 at an SNR of 6dB.

SRE04–10 Noisy SRE12
Gender of PLDA models male female male female
Gender of test i-vectors Both Both

I-Vector None 0.6687 0.5770 0.6494 0.5391
Transformation DAN 0.6512 0.6051 0.6264 0.5512

Method CADAN 0.7134 0.6823 0.6807 0.5691

Table 4.2: Speaker identification accuracies on SRE04–10 and noisy SRE12 with and with-
out i-vector transformation when the test i-vectors come from both genders but the PLDA
model belongs to one gender only.
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columns), although it is out-performed by the baseline under gender-match noisy condi-

tions. The positive results reveal that contrastive-adversarial domain adaptation is capable

of producing more effective features with rich speaker information. Under noisy scenario,

the CADAN demonstrates superior performance in out-of-domain data by boosting the ac-

curacy by 33%. It is noteworthy that a slight drop in accuracy is observed on the noisy

in-domain data, which may be due to the severe domain mismatch under noisy conditions.

We further extended our experiments to gender-mixed scenarios, in which each PLDA

model was trained by one gender only but tested on both genders. As shown in Table 4.2,

CADAN performs the best under all conditions.

4.4.2 Visualization of CADAN

To investigate the hidden causes of the better performance achieved by CADAN, we used

the t-SNE software to display the i-vectors in Fig. 4.3. The t-SNE plots of clean SRE04–10

reveal three interesting observations. (1) There is a significant gender mismatch between

the i-vectors of male and female speakers, as evident by the clear gap in the middle of

Fig. 4.3a and Fig. 4.3d that separates the two genders (• and ?). While Fig. 4.3a shows that

the raw i-vectors do contain speaker information (as evident by the speaker clusters), some

speakers such as Speakers 13, 14, and 16 are fairly confusable. (2) DAN is able to create a

gender-invariant space, as evident by the absence of clear gap between the two genders in

Fig. 4.3b. However, as compared to the raw i-vectors in Fig. 4.3a, the feature extractor of

DAN removes some of the speaker information when it attempts to make the transformed

i-vectors gender indistinguishable, as evident by the larger speaker clusters in Fig. 4.3b.

This means that DAN is not able to maximize speaker information and minimize domain

information simultaneously. (3) Compared with the raw and DAN-transformed i-vectors,
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CADAN can produce i-vectors that possess the strongest discriminative information and

simultaneously suppress domain information significantly, which result in highly compact

speaker clusters in Fig. 4.3c.

Fig. 4.3d shows that noise has detrimental effect on i-vectors. It not only makes the

gender gap bigger, but also increases the overlapping among speaker clusters. Under noisy

environments, the domain (gender) mismatch is so severe that DAN can only reduce the

gender gap but fails to create a domain invariant space, as shown in Fig. 4.3e. On the other

hand, as shown in Fig. 4.3f, CADAN is not only able to create a domain-invariant space

but also able to reduce the cluster overlapping. This ability makes CADAN significantly

outperforms raw i-vectors and DAN-transformed i-vectors in Table 4.1 under the cross-

gender scenario.

Fig. 4.4 shows the cross-entropy loss of DAN and CADAN during the course of train-

ing. The results clearly show that CADAN enjoys faster convergence, smoother training,

and lower training error as compared to DAN.

4.4.3 Insights of Training Process

A deeper investigation was conducted to gain more insights into the training process of

CADAN by plotting the intermediate transformed i-vectors at different training epochs in

Fig. 4.5. At Epoch = 0, the weights of CADAN was initialized by the Xavier initializer,

which leads to scattered i-vectors in Fig. 4.5a. When training progresses (Fig. 4.5b), the

fuzzifier F and class encoder Gcls dominate the process by minimizing intra-speaker vari-

ability but domain mismatch remains intact. After producing a discriminative subspace, the

domain discriminator D and domain suppressor Gdom work on pulling the male and female

groups together. At this stage (Epoch = 150), Fig. 4.5c, the adapted subspace with discrim-
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Figure 4.4: The cross-entropy loss of (1) the feature extractor cum the label predictor in
DAN [1] and (2) the class encoderGcls(x) cum the fuzzier F in CADAN. Identical learning
rate (0.001) was applied to both cases.

inative information is produced. One of the advantages of CADAN is that the refinement of

clusters will be further conducted if training is continued. At the final stage (Epoch = 320,

Fig. 4.5d), the clusters are nearly ideal and the subspace is domain-invariant. The training

process reveals that CADAN is trained sequentially in response to different training ob-

jectives. Within a fixed period, CADAN will either learn to perform domain adaptation or

speaker discrimination, which exactly matches our original intention to design two separate

feature extractors that response to different training objectives independently.
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(a) Epoch = 0 (b) Epoch = 100

(c) Epoch = 150 (d) Epoch = 320

Figure 4.5: t-SNE plots at different training stages of CADAN. I-vectors were derived
from the utterances of 10 male speakers (•) and 10 female speakers (?). The numbers on
top of each cluster are the speaker indexes (Speakers 1–10 are male and Speakers 11–20
are female) and each speaker is represented by one color.
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Adversarially Transformed I-Vectors (Epoch = 140)

(a) Without Fuzzifier (b) With Fuzzifier

Figure 4.6: t-SNE plots of transformed vectors (ẑ) obtained by (a) CADAN with a fuzzifier
in Fig. 4.1 and (b) a CADAN with the fuzzifier replaced by a speaker classifier. Refer to
the caption of Fig. 4.5 for the meaning of markers and colors.

4.4.4 Fuzzifier vs. Speaker Classifier

Recall that the motivation of using a fuzzifier instead of a speaker classifier in CACAN is

that the former is better at forcing the class encoderGcls in Fig. 4.1 to produce more speaker

discriminative latent vectors than the latter. To demonstrate that it is indeed the case, we

conducted another experiment in which the fuzzifier in Fig. 4.1 was replaced by a speaker

classifier C. The network is similar to DAN except for the splitting of the feature extractor

into two branches. The objective functions in Eq. 4.1a and Eq. 4.1b are modified as follows:
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Train C : min
C

{
−Ex∼pdata(x)

[
K∑
k=1

y
(k)
cls logC(G(x))k

]}
(4.3a)

Train Gcls : min
Gcls

{
−Ex∼pdata(x)

[
K∑
k=1

y
(k)
cls logC(G(x))k

]}
. (4.3b)

The training of Gdom and D in Eq. 4.2a and Eq. 4.2b remains unchanged.

Fig. 4.6 compares the transformed vectors obtained by the proposed CACAN and a

CACAN whose fuzzifier is replaced by a speaker classifier. The result clearly shows that

the fuzzifier can make the transformed vectors more speaker discriminative. A possible ex-

planation is that minimizing the cross-entropy in Eq. 4.3a will make the lower layers of the

speaker classifier to contain speaker information. This information will be wasted because

we will only use the feature extractor to produce the transformed vectors after training. On

the other hand, minimizing the cross-entropy in Eq. 4.1a encourages confusable input but

Eq. 4.1b encourages speaker discriminative transformed vectors. As a result, the fuzzifier

ensures that speaker information will be kept in the latent representation ẑ.

In other words, the fuzzifier will force the class encoder to take all the responsibility

for producing discriminative features so that all of the useable discriminative information is

encapsulated inside the class encoder by which a more discriminative subspace is achieved.
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Algorithm 1 Training of CADAN (Fig. 4.1). In Line 9, W1 (W2) contains the weights
connecting Gcls (Gdom) and the output nodes of the feature extractor. In Lines 11 and 12,
M is the number of domains. In Line 13, R is the number of inner iterations for training
Gcls within an epoch.

1: procedure CADAN TRAIN(X ,Ycls,Ydom)
2: Input: Training i-vectors X and their class labels Ycls and domain labels Ydom

3: Output: Gcls, Gdom, D and F
4: Initialize the weights of Gcls, Gdom, D and F using the Xavier initializer
5: foreach epoch do
6: Create N mini-batches {Xi,Ycls,i and Ydom,i}Ni=1 of size B from {X ,Ycls,Ydom}
7: for i = 1 to N do
8: for j = 1 to B do
9: Compute ẑij = [W1 W2]

T[Gcls(xij) Gdom(xij)], where xij ∈ Xi
10: end for
11: Train domain discriminator D using {ẑij}Bj=1 as input and {ydom,ij}Bj=1

as target outputs of domain discriminator D, where ydom,ij =

[y
(1)
dom,ij . . . y

(M)
dom,ij]

T ∈ Ydom,i (Eq. 4.2a)
12: Train adversarially domain suppressor Gdom using {xij}Bj=1 as input, and

[ 1
M
. . . 1

M
]T as the target output of domain discriminator D, where

M is the number of domains (Eq. 4.2b)
13: for r = 1 to R do
14: Train class encoder Gcls using {xij}Bj=1 as input, and {ycls,ij}Bj=1 as out-

put of class encoderGcls, where ycls,ij = [y
(1)
cls,ij . . . y

(K)
cls,ij]

T ∈ Ycls,i

and K is the number of classes (Eq. 4.1b)
15: end for
16: Train adversarially fuzzifier F using {ẑij}Bj=1 as input, and fcls,ij =

[ 1
K
. . . 1

K
]T as the target output of fuzzifier F (Eq. 4.1a)

17: end for
18: end foreach
19: end procedure
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Chapter 5

Conclusions

This thesis firstly demonstrates the capability of a gender-independent speaker verifi-

cation system based on iterative spectral clustering, i-vectors, inter dataset variability com-

pensation (IDVC), mixture of PLDA and gender-aware DNNs. Evaluations on NIST 2016

SRE show that despite the limited amount of development data and the unavailability of

speaker and gender labels in the development data, the proposed system can achieve su-

perior performance. Results also reveal that iterative spectral clustering outperforms tradi-

tional clustering methods such as agglomerative hierarchical clustering because the PLDA

scoring intrinsically requires i-vector pairs, which can be easily incorporated into the sim-

ilarity matrix of spectral clustering. A number of factors contribute to this superior per-

formance. Firstly, the gender-dependent IDVC helps to reduce the gender and language

mismatch in development data of NIST 2016 SRE. Secondly, iterative spectral clustering

can effectively find the hypothesized speaker labels for training the PLDA mixture model.

Thirdly, the gender-aware DNN provides not only the gender posteriors for the PLDA mix-

ture model but also accurate gender labels for the gender-dependent IDVC to reduce the

gender and language mismatches in the i-vectors.

For the other work, the capability of contrastive adversarial domain adaptation network

has also been proved through splitting the feature extractor into two contrastive branches,

with one branch delegating for the class-dependence in the latent space and another branch



55

focusing on domain-invariance. Results demonstrate that the embedded features produced

by CADAN significant improvement in speaker identification accuracy when compared

with the conventional DAN under clean and noisy conditions, respectively.

One key contribution of the works lie in the novel integration of IDVC, mixture of

PLDA and the iterative training process of these components in the speaker verification

system and another novelty comes from the splitting structure of neural networks for ad-

vesarial learning.

Further investigations are necessary to improve the performance of the proposed meth-

ods. These investigation will look at better way to adapt the PLDA mixture models.
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Chapter 6

Future Work

In this study, domain adaptation is separated into two parts. The first part uses gender-

aware DNN to train a gender-independent PLDA mixture model to handle both genders.

The classification accuracy of the DNN is 89.67% on the SRE16 development dataset.

However, the gender identification approach proposed by Ranjan et al [19] is able to

achieve 97.62% accuracy on the Fisher-English corpus. They utilized the unsupervised

label generating-max margin clustering (LG-MMC) to maximize the margin of the gender

difference. This method utilizes the i-vectors and PLDA to construct a gender classifier.

Figure 6.1: Adapting the out-of-domain PLDA model to a new domain

Out-of-domain data with gender labels are used to train an out-of-domain PLDA model.

The in-domain data without gender labels are given hypothesized gender labels by LG-

MMC to train an in-domain PLDA model. After training, the two sets of across-class
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covariance matrix and within-class covariance matrix (Γin,Σin) and (Γout,Σout), are ob-

tained. Γ represents the across-gender covariance and Σ represents the within-gender co-

variance. The adapted covariance matrices are computed as follows:

Γadapt = α1 Γin + (1− α1)Γout

Σadapt = α2Σin + (1− α2)Σout,

where α1 and α2 are control parameters and α1, α2 ∈ [0, 1]. This method provides a reliable

gender classification system when the in-domain data do not have gender labels but out-

of-domain data have sufficient gender labels, which can perfectly match the situation in

SRE16.

The GD-IDVC can be improved. The results of this thesis suggest that GD-IDVC alone

cannot achieve superior performance. The reason might be that the 4 sub-groups are based

on genders, major and minor languages. However, within the major languages, there are

two disparate languages. Similar situation also occurs in the minor languages. This may

lead to inaccurate separation of languages. Thus, it is necessary to construct a reliable

language classifier to further suppress the language mismatches.

A key element of our experiments is that we used a gender-independent model as the

backbone to design the mixture of PLDA model. In future work, we can use a gender-

dependent framework to design the experiments and determine the speaker verification ac-

curacy for male and female, separately. The motivation of performing speaker verification

in a gender-dependent manner is that with today’s technology, gender classification can be

very accurate (up to 99%).

To further enhance the CADAN framework, we firstly can modify the model to an end-
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to-end DNN model. The DNN will be responsible for two purposes: (1) feature extraction

and (2) domain transformation. Due to time constraint, the main goal of the CADAN

framework in this work is to reduce gender mismatch. In future work, we can extend the

model to tackle a more general domain mismatch scenario in which channel and language

mismatches also appear in the data. Beside, we may compare the CADAN framework with

the more recent domain adaptation methods.
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