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Abstract 

Bio-microsystems or biochips are an ensemble of microfluidic systems 

with bioassay and manipulation micro-components and have many 

advantages ranging from low expense and high throughput to 

miniaturization and multifunction, which thus promise great potentials in 

e.g. biomedical diagnostics and tissue engineering. Recently, optical 

micro-devices have been demonstrated as a promising component to be 

integrated within bio-microsystems for a new generation of biochips, 

called opto-bio-microsystem. Compared with conventional bio-

microsystems, it has potentials in ultrasensitive measurement of variations 

of cellular phenotypes and biomolecules and provides a new technology 

for study cell behavior. In this thesis, two kinds of polymer optical micro-

devices, i.e. top-lensed microlens array and 3D µ-printed microlaser 

biosensors, and a cellular-scale 3D microscaffold array are developed for 

bio-microsystem applications. 

  Firstly, polymer microlens arrays with lens-on-lens structures were 

designed and fabricated by using custom-built digital mirror devices 

(DMD)-based optical μ-printing technology. Top-lensed microlens (TLML) 

were designed to achieve special focal structures with either elongated 

focal length or two distinct foci. For precise fabrication of the complex 

profiles, the relation between the exposure dose of UV light and cured 
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depth of photopolymer was studied, which can be utilized to correct the 

bitmaps of dynamic exposure schemes of the microlenses. We 

experimentally demonstrated that the TLML with elongated focal structure 

has a depth of focus at half maximum of 767.11 m, and another TLML 

has two separate foci with a gap of 280 m. The microlenses with the 

capability of advanced beam shaping have potentials in integration of 

biochips for fluctuating target detection.  

  Secondly, polymer optical whispering-gallery mode (WGM) resonator 

laser sensors were 3D printed and integrated into an optofluidic biochip for 

detection of vascular endothelial growth factor (VEGF). By using the 

bitmaps with corrected exposure dose, three groups of optical 

microresonators with suspended microdisks of different radius, whose 

quality (Q) factor can reach around 9800, were successfully fabricated. By 

coating a thin layer of gain material, the WGM resonators can support 

lasing operation with very low threshold (around 0.2 nJ). The microlasers 

were then integrated into a microfluidic chip to achieve an optofluidic 

platform for enzyme-linked immunosorbent assay (ELISA) processing. 

Such an ELISA biochip can detect VEGF at the detection limit as low as 

17.8 fg/mL.  

  Lastly, 3D cellular-scale microscaffold arrays with various dimensions 

and combinations were designed and fabricated by using custom-built 

optical 3D μ-printing technology for 3D cell culture. Single-cell-size cubic 
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microscaffolds were fabricated and utilized to facilitate cells to spread 

along the suspended beams of microscaffolds. It is found that with the 

increasingly top-opening area of the cubic microscaffolds, the area of cell 

spreading will be larger, which will enhance the mechanosensing signaling, 

and hence promote osteogenesis in cell differentiation. Furthermore, on the 

top of the suspended beams of 3D microscaffolds, bioactive material 

(gelatin methacrylate) were selectively patterned, which enabled controlled 

cell adhesion and spreading in 3D microenvironment.  
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Chapter 1  

Introduction 

1.1  Background 

Opto-bio-microsystems have shown their great promise for biomedical 

assays, diagnostics and clinical applications [1]. It consists of a large 

ensemble of micro-scale devices (Figure 1.1) that are integrated and work 

together for biological or biochemical purposes ranging from diagnostics 

to therapy [2]. Optical micro-devices are attractive in bio-microsystems 

because of its ultrasensitive detection abilities as well as the advantages 

including miniaturization, immune to electromagnetic interference, and 

noninvasive [3]. With the development of micro-fabrication technologies, 

various optical micro-devices, such as microlens array [4], optical 

waveguide [5], and optical microresonators [6, 7], can be fabricated and 

investigated in areas of optical detection [8, 9], nonlinear optics [10], and 

low-threshold lasers [11, 12]. Micro-components using biocompatible 

materials and supporting components [13] also play an important role in 

bio-microsystems and can be used in e.g. regeneration and transplantation 

of tissues, such as skin and bone [14]. By integrating the micro-optics and 

microstructures on a chip, the monolithic system can not only study cell 
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behavior but also enable real-time monitoring of living cells [15], which 

plays an important role in cell studies [16]. 

 

Figure 1.1 Two elements of opto-bio-microsystems: micro-optics and bio-

microsystems. (a) & (b) are microlens array and optical microcavities in micro-

optics, respectively. (c) & (d) are biochip and bio-microscaffolds in bio-

microsystems, respectively. (a) to (d) are adapted from Ref.[17-20], respectively 

Micro-optics is an ensemble of micro-scale optical devices, which is 

fabricated by using microfabrication technologies [21]. As shown in 

Figure 1.1 (a), microlenses, enable to shape the light beam in micro scale 

to achieve engineered focal structure for optical bioassay and cell counting 

[22, 23]. The profile of microlens can be tailored in fabricating process to 

meet the requirements of different applications. In addition to conventional 

spherical profile, aspherical designs or even high-degree freeform designs 

can be used in application of imaging, illuminating and sensing systems to 
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achieve better focal performance [24-27]. To achieve more compact and 

dedicated optical systems, advanced microlenses with e.g. lens-on-lens 

microstructure attract increasing research interest [28].  

Optical whispering-gallery-mode (WGM) microcavities, as shown in 

Figure 1.1(b), are powerful components of bio-microsystems because of 

their advantages of small volume and low optical loss [29]. These 

advantages enable WGM microcavities to be a good candidate for on-chip 

low-threshold laser [30]. Due to the nature of narrow linewidth of laser, 

optical WGM microcavity lasers are capable to reflect slight changes in 

resonances and thereby be used for on-chip sensing [31, 32]. Compared 

with passive optical microresonators which typically use evanescent wave-

based methods, optical WGM microlasers can be pumped and collected in 

relatively easy way and thus be more suitable for on-chip integration [33]. 

Integrated with functional biochip (Figure 1.1 (c)), the WGM microlasers 

can be a key part as ultrasensitive biosensors in opto-bio-microsystem 

which is a compact and portable device for diagnostics. 

Micro-components that could create customized in vitro 

microenvironments for cell studies, as shown in Figure 1.1 (d), are another 

kind of important elements of bio-microsystems [34-37]. To mimic 

complex in vivo microenvironment, 3D microstructures with various 

physical cues have attracted lots of research interests [38]. Physical cues 

created by microstructures including topography, roughness, and size can 
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influence the differentiation and proliferation of stem cells [39-41]. The 

controlled fate of unspecialized cells can develop into specialized cells for 

certain organ or tissues, which can be utilized in tissue regeneration [42, 

43].  

To fabricate micro-optics and 3D micro-components, different kinds 

of fabrication technologies, such as droplet-based technologies, two-

photon polymerization, and ion/electron-beam lithography have been 

demonstrated to overcome the limitations of conventional photomask-

based lithography to process biocompatible materials [13, 44-47]. 

Although the above-mentioned fabrication technologies can fabricate 3D 

microstructures, they encounter an obstacle to compromise the fabrication 

speed and resolution [48]. To solve this problem, optical maskless 

lithography base on spatial light modulator were proposed [49]. The 

millions of pixels of the modulator and seamless-stitching technology 

enable to fabricate large-scale microstructures rapidly, and at meanwhile 

maintain the high-resolution for delicate micro optics [50]. 

1.2 Research objectives 

Although micro-optics and 3D microstructures have been intensively 

investigated over the past decades, most of preivous works focus on 

inorganic (e.g. silica and silicon) devices and rely on time-consuming and 

expensive conventional fabrication technologies. On the other hand, 
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recently developed optical maskless fabrication technology enables rapid 

fabrication of polymer micro-optics and biocompatible 3D microstrucutres, 

which thus pave a new pathway for many promising bio-microsystem 

applications, such as passive optical devices for beam shaping, active 

optical devices for lasing operation, and 3D microstructures for cell culture 

study.  

In this thesis, two kinds of polymer optical micro-devices and a kind 

of 3D micro-components are designed and fabricated by using custom-

built optical 3D μ-printing technology. Firstly, top-lensed microlenses 

(TLML) array with engineered profile will be fabricated for advanced 

beam shaping. Such TLMLs should achieve special focal structures, for 

instance, elongated focal length or two distinct foci. Secondly, polymer 

whispering-gallery-mode (WGM) microresonator arrays will be fabricated 

and then coated with a thin-film of gain material for lasing operation, which 

can be further used for light-intensity modulation-based biosensors for 

biomarkers. Lastly, polymer 3D microstructures with in-situ printed 

bioactive material arrays will be fabricated and can be used in controllable 

cell culture study. 

1.3 Outline of thesis 

The chapters of the thesis are organized as below: 

  Chapter 1: Introduction. In this chapter, the background of micro-optics 
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devices and 3D micro-components are reviewed. The objectives of 

research are introduced, and then the outline of thesis is presented.  

  Chapter 2: Overview of optical bio-microsystems. In this chapter, micro-

optics devices, such as microlens and polymer WGM resonator laser, are 

reviewed, and micro-components are summarized. The applications of 

micro-optics devices and 3D micro-components are also discussed. Optical 

printing technologies, especially the optical 3D -printing technology, are 

also introduced and discussed. 

    Chapter 3: Rapid optical μ-printing of polymer top-lensed microlens 

array. In this chapter, the top-lensed microlens arrays were designed and 

fabricated by optical μ-printing technology. The fabrication process is 

described in detail, and the characteristics of profiles and optical properties 

are compared with the design. 

  Chapter 4: Optical 3D μ-printed whispering-gallery-mode micro-laser 

sensors on optofluidic biochips for ultrasensitive detection of vascular 

endothelial growth factor. In this chapter, whispering-gallery-mode 

microcavities fabricated by using optical μ-printing technology and coated 

with a gain layer for low-threshold lasing oscillation are presented. The 

microlasers are then integrated into an optofluidic chip for ultrahigh 

sensitive detection of biomarker.  

  Chapter 5: Direct μ-printing of cellular-scale microscaffold arrays for 

3D cell culture. In this chapter, 3D microstructures were designed and 
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fabricated by optical in-situ μ-printing technology are presented. The 

processes of in-situ printing of 3D selected-bioactivated microstructures 

are described in full length. The controlled cell behavior on 3D printed 

microscaffolds are also provided. 

  Chapter 6: Conclusions and future outlook. In this chapter, the research 

results are summarized. Future work and development of the project are 

discussed. 
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Chapter 2  

Overview of Components and 

Microstructures of Opto-/Bio-Microsystems  

2.1 Introduction 

In this chapter, fundamentals and recent progress of micro-optics devices 

and micro-components for bio-microsystems are reviewed. Different types 

of microlens for light beam shaping are summarized. Whispering-gallery-

mode microresonator for lasing operation are reviewed. 3D printed 

microstructures and their applications in biology are also summarized. 

2.2 Microlenses for optical bio-microsystems 

2.2.1 Fundamentals and applications of microlenses 

Micro-optics is one of important components in modern optoelectronics. It 

enables the miniaturization and high integration of the optoelectronic 

devices while maintains characteristics of multifunctionality and energy 

saving [21, 51]. Microlens plays an important role in micro-optics as it can 

enhance functions of the microsystem [52-55]. To fabricate microlenses, 

various materials, such as glass, polymer, liquid crystal, liquid, cells, and 

protein, as used [22, 56-60]. Polymers are widely used in the fabrication of 
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microlenses because of their characteristics of low cost, biocompatibility 

and relative good mechanical performance [61]. 

 

Figure 2.1 Characteristics and aberration of lens. (a) Geometrical parameters of 

microlens. (b) Positive lens that suffers under-corrected or negative spherical 

aberration. The inset is close-up view of the image region. (b) is adapted from Ref. 

[62]. (c) Imaging of an on-axis point P0 by a spherical surface. 

The geometric characteristics of microlens, as shown in Figure 2.1 (a), 

are usually given by curvature (c), contact angle (θ), diameter (d), height 

(h), and profile [63]. The quality of microlens can be evaluated by using 

these characteristics which can be measured by white-light confocal 

microscopy, confocal laser scanning microscopy, contact profilometry, 

fluorescence confocal microscopy, scanning electron microscope (SEM), 

and optical microscopy [64]. Specifically, the profile of microlens with 

shallow configuration can be measured by contact profilometry and 
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confocal laser scanning microscopy optimally, while microlens with small 

curvature can be measured by using fluorescence confocal microscopy. For 

the microlens with thick configuration, white-light confocal microscopy 

can be used in measurement of the height (h) of microlens.  

Spherical profile is one of the most commonly used profile. For 

microlens of a sphere profile, it is on the center of optical axis, while the 

base locates at the plane which is perpendicular to optical axis [65]. The 

profile of microlens is widely given by Eq. 2.1, 

 

2

2 2
( )

1 1 (1 )

cr
z r

k c r
= −

+ − +
 (2.1) 

where c is the curvature (the reciprocal of the radius), r is the radial 

coordinate and k is the conic constant. For hyperbolic microlens profile, 

the conic constant k is less than -1. For elliptical profile, the conic constant 

k is between -1 and 0. For a spherical profile, the conic constant k is 0. The 

conic constant k is greater than 0 for oblate ellipsoidal profile.  

For an infinite conjugate system, spherical aberration can be described 

as a variation on focal length, while for the finite imaging system, it can be 

defined as the variation of aperture [62]. Assume that the paraxial rays go 

to a focus at the optical axis, the meridional rays which are farther away 

from the optical axis will go to a focus where is closer to the lens, compared 

with paraxial rays [66]. As shown in the Figure 2.1 (b), The longitudinal 

spherical aberration resulting in the marginal rays have a shorter focal 
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length. Similarly, for the transverse spherical aberration, the rays which 

intercept the paraxial image plane cannot locate at the same point. Figure 

2.1 (b) shows a typical circumstance of a positive lens with negative 

aberration. Figure 2.1 (c) shows a zoom-in view of the image region of 

Figure 2.1 (b). 

To illustrate the spherical aberration, the schematic of imaging of an on-

axis point is shown in Figure 2.1 (d). The object point P0 locates at the left 

side of a spherical surface with distance S, where the refractive index is n. 

The imaging point P'0 locates at the right side of the surface with distance 

S’, where the refractive index is n’. The vertex of the spherical surface is 

V0, while C is the center of curvature, and R is the radius of curvature (c) 

of the surface. The aperture, which is also an exit pupil here, locates at the 

left side of imaging point P'0  with distance L which is defined to be 

positive at this situation. O is the center of the aperture. Point Q locates the 

plane of exist pupil with the distance of r from the center of the aperture. 

The chief ray for the object point P0 is ray P0V0P'0 which pass through 

the center of the aperture O. The aberration between the chief ray P0V0P'0 

and the incident ray passing the point A on the spherical surface and point 

Q is given by [67] 

 
' '

0 0 0 0 0( ) [ ] [ ]W A P AP PV P= −  (2.2) 

where the square brackets are the optical path length. If the refractive 

surface is a totally aberration free surface, rays which pass through any 
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point on the surface will be converged on the same point of the chief ray, 

otherwise the scattered spot diagram will be observed at the imaging plane 

[68]. According to the aberration theory, the on-axis spherical aberration 

s ( ) ( )sW A W Q  is given by [67] 
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Compared with above-mentioned spherical surface, a conic surface with 

conic constant k have additional aberration cW  for the on-axis point P0, 

which is given by [67] 
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 As shown in equation 2.3, one can see that, for a situation of real imaging, 

the spherical aberration is a negative value. To eliminate the negative 

spherical aberration, one of the common methods is to use a conic surface 

with negative conic constant k, in which the conic aberration can 

compensate the spherical aberration. Moreover, by tailoring the conic 

surface, the controlled aberration can be used in advanced light beam 

shaping. 

  Light beam shaping by microlens can be widely used in packaging for 

isotropic emission light source, such as light-emitting diodes and quantum 

dots [69, 70]. As shown in Figure 2.2 (a), PDMS microlens arrays were 

attached on the surface of the organic light-emitting diodes (OLED), which 

lead to an efficiency boost up to 34% [71]. Figure 2.2 (b) shows that 
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microlens with the optimized profile were used to enhance the output 

power of ultraviolet LED [72]. To achieve single-photon sources with high 

photon-extraction efficiency, Sarah et al. fabricated a GaAs microlens on 

quantum dots light source, and further in-situ printed a complex microlens 

upon the light source (Figure 2.2 (c)) [73]. The novel design enables high 

photon-extraction efficiency of 40%, which is important for the field of 

quantum communications. Besides the enhanced light extraction, as shown 

in Figure 2.2 (d), microlens can also modify properties of quantum dots, 

such as spectral shift, and change of binding energy [74].   

 

Figure 2.2 Microlens for light beam shaping to enhance the efficiency for (a) OLED, 

(b) ultraviolet LEDs, (c) quantum dot light source, and (d) quantum dot spectroscopy. 

(a) to (d) are adapted from Ref. [71], [72], [73], and [74], respectively. 

Optofluidic system with integration of microlens provides novel on-chip 
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optical detection and adaptive imaging approaches. As shown in Figure 

2.3 (a), Lv et al. fabricated a dual channel microfluidic chip in which a 

hydrogel microlens was in-situ fabricated in one channel [9]. As the 

hydrogel response to concentration of salt solution, the tunable microlens 

can be achieved, which were used in adaptive imaging. Beside the stimulus 

responsive materials, stable materials, such as glass, can also be utilized 

for fabrication of tunable microlens with the help of optofluidic chips. Due 

to the different etching speed between the exposed/non-exposed glass, the 

glass microlens, as shown in Figure 2.3 (b), can be fabricated and 

integrated into an optofluidic chip [75]. By injection of fluidic of different 

refractive index, the focal length can be tuned, which can be used for 

adaptive imaging. In Figure 2.3 (c), microwell template with spherical 

microlenses was integrated into an optofluidic channel [76]. The small 

focal points of the microlens enable to detect nano particles by detecting 

the back scattering light, in which the optical signal can be enhanced up to 

a factor of 40 by the focal point of the microlens. In Figure 2.3 (d), Yang 

et al. proposed to use spherical microlens to enhance the fluorescent signal 

of specific protein, e.g. mouse IgG, in which the detection limit was down 

to 2 ng/mL [77]. Microlens can also be used for single biomolecule 

imaging (Figure 2.3 (e)). With traditional methods, single biomolecule can 

only be imaged by objectives with high numerical aperture and index-

matching liquid, which cannot operate at high temperature, such as 70 ℃. 



Overview of Optical Bio-Microsystems 

36 
 

The TiO2 spherical microlenses were demonstrated to couple light to the 

surface with biomolecules and enable to monitor the real-time single-

biomolecules kinetic under high temperature (70 ℃) [78]. 

 

Figure 2.3 Microlens in optofluidic systems. Hydrogel microlens (a) and glass 

microlens (b) for tunable focal length. (c) Microlens array for nanoparticle detection. 

(d) Microlens for enhancing signal of immunoassays. (e) Microlens for imaging of 

biomolecules. (a) to (e) are adapted from Ref. [9], [75], [76], [77], and [78], 

respectively. 

2.2.2 Integration of polymer microlenses into bio-microsystems 

  Due to the characteristics of miniaturization and facile beam-shaping 

ability, microlens is attracting in optical detection in bio-microfluidic 

system, which can significantly enhance the signal-to-noise ratio compared 

to traditional methods [79]. As shown in Figure 2.4 (a), Wu et al. first 

printed microlens arrays in an embedded microfluidic channel in 2015, 

which enables to carry out cell detection and counting simultaneously in a 
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wide microfluidic channel without additional coupling steps [56]. For 

further improve the success rate of cell counting, microlens array were 

fabricated in a set of center-pass unit in a microfluidic channel, as shown 

in Figure 2.4 (b), and 100% success rate was achieved by this method [80]. 

Imaging of cells in flowing environment is one of the most important rapid 

analysis methods. For fast analysis of cell, microlens arrays with 

appropriate focal length, as shown in Figure 2.4 (c), were embedded in 

microfluidic channel so as to determine up to 50,000 cells per second [81].  

 

Figure 2.4 Microlens for application of optical detection of cells. (a) Microlens array 

were integrated in microfluidic chip for cell detection. (b) Microlens array with 

center-pass scaffold for high success rate cell counting. (c) Microlens array for 

parallel imaging flow cytometry. (a) to (c) are adapted from Ref. [56, 80, 81], 

respectively. 
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2.3 WGMR laser sensors for optical bio-microsystems  

2.3.1 Fundamentals of WGM resonators 

Whispering-gallery modes were first observed in the dome of St. Paul’s 

Cathedral in London and attract research interest in acoustic domain at first 

[82]. In the domain of optics, whispering-gallery modes is a kind of 

electromagnetic modes with high angular momentum. In these modes, light 

propagate along the rounded surface due to the total internal reflection at a 

certain phase condition.  

 

Figure 2.5 Schematic of (a) light propagation in a circle by total internal reflection, 

(b) angular momentum L in WGMs. (c) Electric field distribution of whispering-

gallery-mode with different angular mode number p. (a) and (b) are adapted from Ref. 

[83]. (c) is adapted from Ref. [84]. 

  In Figure 2.5 (a), a ray of light propagates within a microsphere with 

refractive index n, radius a, and the incident angle of the ray is i. According 
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to Snell’s law [85], total internal reflection occurs when the incident angle 

is under condition of arcsin(1/ )ci i n = . Due to symmetric characteristic 

of a microsphere, the incident angle will not change during propagation of 

ray, which means light is trapped in the microsphere. For a trapped ray that 

propagates near the surface of the microsphere, a standing wave will occur 

if the round distance meets the following condition, 

 2 ( )a
n


   (2.5) 

where λ is the wavelength in vacuum, and ℓ is the number of wavelengths 

(integer). This condition is resonance condition. Number of wavelengths ℓ 

can be identified by angular momentum as shown in Figure 2.5 (b). The 

momentum of a photon in Figure 2.5 (a) is given as [83] 
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p k



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where k is the wave number, and ℏ is reduced Planck constant. If the 

incident angle meets the condition / 2i   , the angular momentum is 

given as [86] 
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  According to Maxwell’s equations, spherical harmonic functions and 

spherical Bessel functions can be used to depict electromagnetic field 

distribution of whispering-gallery-mode in spherical resonators[87]. Lame 

coefficients can be neglected in the equations, because the modes near the 
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equatorial plane and the surface of sphere [88, 89]. The electric field 

amplitudes are approximated by [90] 
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where r is the distance to the surface of sphere, φ is azimuth angle, and α 

is polar angle from the equatorial plane. 
( )pH x

 is the Herimitian 

polynomial of degree p. ( )Ai x is Airy-function, while 
0q 

 is the q-th 

root of when Airy-function is equal zero. From the above-mentioned result 

in sphere, the whispering-gallery-modes can be mainly described by three 

factors: angular number p, azimuthal mode number ℓ, and radial mode 

number q. The radial mode number q (
1q 

) determines the number of 

electrical maximums along the radial direction of the equatorial plane in a 

sphere. The azimuthal mode number ℓ ( 1  ) is the number of 

wavelengths, which is discussed in Eq. 2.5. Typically, angular mode 

number 
p m= −

 is utilized to represent the number of field oscillation in 

α direction, as shown in Figure 2.5 (c). The polar mode number m 

( , 1, ,m = − − + ) represents the direction of wave circulation around the 

equatorial plane and corresponding wave numbers. 

   Mode volume of whispering-gallery-mode can be utilized to describe 
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the spatial confinement of optical microcavities [91]. The optical mode 

volume Vm in microcavity is determined by [92] 
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where 
E

  is electric field strength and VQ is a quantization volume of 

electrical field. In calculation, the cross section of VQ should be chosen to 

cover the field distribution until the choice of the cross section only cause 

marginal difference to the final result [93]. 

The temporal confinement of optical microcavities can be described by 

quality factor of the mode (Q factor) [91]. Q factor characterizes the time 

τ that an optical resonator can keep energy in. Q factor is defined as:  

 
Q





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where   is the full width at half maximum (FWHM) at corresponding 

resonance wavelength. For an uncoupled whispering-gallery-mode 

microresonator, the intrinsic Q factor is given by [94] 

 
1 1 1 1 1

0 .rad mat s s contQ Q Q Q Q− − − − −= + + +
 (2.13) 

where 
1

radQ−

 represents Q factor limited by intrinsic radiative losses (related 

to the curvature of microcavity), 
1

matQ−

 denotes the absorption in material 

itself, 
1

.s sQ−

 is scattering losses (related to surface roughness), and 
1

contQ−

 is 

the losses by surface contaminants, such as atmospheric water on surface 

[94]. The intrinsic radiative losses are typically very small, and radQ
  is 
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larger than 1011, when / 15D    [83]. By using appropriate materials, 

processing method, such as thermal reflow, and clean testing environment, 

the Q factor of whispering-gallery-mode microresonators can be up to 108 

[95-97].  

 A particular advantage of WGM microresonators is that it has not only 

high Q factor but also relatively small mode volume [98, 99]. A high Q/VM 

ratio means that a tightly-confined mode exists in the microcavity, which 

enable strong interaction between light field and objects on the microcavity 

[100]. If the active material was doped inside the microcavity, the strong 

interaction will enable low-threshold laser operation [30].  

2.3.2 Polymer WGM resonator lasers 

Polymers have advantages including low cost, easy processing, and 

versatility in structure and thus are becoming very appealing in fabrication 

of microresonators in the past decades. Various fabrication technologies 

have been reported for fabrication of polymer optical WGM 

microresonators, such as molding method, mechanical polishing method, 

surface-tension based technique, two-photon / multi-photon 

polymerization technique, and optical 3D μ-printing technology [101-105]. 

  Active materials, such as organic dyes and quantum dots, can be doped 

into polymer host matrix or coated on the polymer microresonators as a 

gain layer directly [106]. As shown in Figure 2.6, laser emission has been 
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demonstrated in various polymer microresonators, such as microspheres, 

microrings, microdisks, and microgoblet microresonators [107-110].  

 

Figure 2.6 Polymer microresonator lasers. (a) Microsphere resonators made by 

semiconductor nanocrystal sol. (b) Microring resonator array fabricated by DPHP. (c) 

Microdisk resonator made by rhodamine doped protein and PVP. (d) Dye-doped 

PMMA Microgoblet resonator. (a) to (d) are adapt from Ref. [107], [108], [109], and 

[110], respectively. 

  Typical protocol for fabrication of organic spherical whispering-gallery-

mode microresonator, as shown in Figure 2.6 (a), is deposition of polymer 

on silica microsphere[107]. The silica microsphere can be synthesized via 

the base-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) [111]. In 

Figure 2.6 (b),the microring resonator is made up of PH sensitive organic 

gain material in near infrared spectrum directly by using stamping 

technology [108]. Due to the high photoluminescence quantum yield of 

11.26% and high-quality factor of 8.8×102, the lasing threshold can be 
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achieved at 65 μJ cm−2. As shown in Figure 2.6 (c), the biomaterials, such 

as silk fibroin and PVP, can also be used in fabrication of microdisk laser 

[109]. The self-assembled methods enable them to fabricate microdisk 

laser in one step without high processing temperatures or toxic precursors 

which will damage the biomaterials. For further improve the Q factor, the 

microgoblet whispering-gallery-mode resonator with suspended 

component were fabricated [110]. In Figure 2.6 (d), Organic dye-doped 

Poly(methyl 2-methylpropenoate) (PMMA) was used to fabricate the 

suspended goblet component. The Q factor was reported as high as 3×105, 

while the lasing threshold can be boosted to be 0.54 nJ per pulse.  

2.3.3 Applications of WGM laser sensors  

Whispering-gallery-mode resonators are suitable for sensing applications 

because that resonant condition depends on both the refractive index of 

surrounding media and the geometry of the microresonator [112].  

 

Figure 2.7 Sensing mechanisms of microresonator lasers. (a) Resonant wavelength 

shift. (b) Mode splitting. (c) Change in mode intensity. Adapted from Ref. [113]. 

WGM resonator lasers have attracted lots of research interests in ultra-
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sensitive sensing application, because the narrow linewidths of the 

microlasers can indicate slight changes of resonant wavelength, while it is 

hard for passive microresonators to resolve that slight changes [31, 114]. It 

is been reported that the whispering-gallery-mode resonator lasers can be 

utilized for sensing of humidity, pressure, electric fields, temperature and 

biological objects [115-119].  

  In Figure 2.7, several sensing mechanisms of whispering-gallery-mode 

resonators were demonstrated. Tracking the shift of resonant wavelength 

(∆λ), as shown in Figure 2.7 (a), is one of the most common sensing 

methods, because ∆λ is proportional to the change of effective radius of the 

microresonators which can be influenced by change of the refractive index 

inside or near the surface of microresonator, or by expansion or 

compression caused by change of temperature or other isotropic 

mechanical force. If an anisotropic force is applied to microresonators, as 

shown in Figure 2.7 (b), the deformation of microresonators will lead to 

mode degeneracy and finally induce splitting of resonant wavelength 

which is prominent within microresonator lasers [120]. The previous two 

sensing mechanisms rely on the fine resolution of the spectrometer or 

momochromator, which prevent people from developing low-cost and 

portable opto-biochip. However, the method based on measurement of 

intensity, as shown in Figure 2.7 (c), has great potential in effective 

platform for biosensing platform, which relies on the absorption of 
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microlaser light or interaction between gain material and sensing molecule 

[121].  

 

Figure 2.8 Schematics of nanoparticles detection by lasing mode splitting and beat 

note signal. (a)-(c) Spectrums of 0-2 nanoparticles. (d) Spectrum temperature 

fluctuations. Adapted from Ref. [31] 

Another mechanism for realization of mode-splitting detection, as 

shown in Figure 2.8, bases on standing wave modes [31, 100, 122, 123]. 

A particle attached on the outer profile of whispering-gallery-mode 

microresonator will cause the scattering of light which will be coupled into 

whispering-gallery-mode. The original mode and counter-propagation 

mode will create two standing wave modes, by which particle size down to 

tens of nanometers can be detected by this self-reference method [31, 124]. 

In Figure 2.8 (a)-(c), the laser beat note signals are extracted by fast 

Fourier transform of the laser spectrums. Besides the advantage of high 

sensitivity, another advantage of the method, as shown in Figure 2.8 (d), 
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is resistant to environment noise, such as temperature fluctuations, because 

such a noise will shift the splitting modes simultaneously. 

 

Figure 2.9 Laser intensity-based biosensors. (a) WGM microlaser for detection of 

DNA. (b) Optofluidic laser for sensing of HRP. (c) ICG laser for detection of 

serological component. (a) to (c) are adapted from Ref. [18, 125, 126], respectively. 

Figure 2.9 shows a series of laser-intensity based biosensors. Chen et al. 

immobilized a layer of crosslinker (BS3), as shown in Figure 2.9 (a), on 

the surface of single mode fiber (SMF) which can be further be 

functionalized streptavidin for DNA detection [18]. Due to the quenching 

effect between Cy3- and Cy5- labeled DNA, the DNA sensing can be 

realized by measuring the intensity of laser. The one of the advantages of 

intensity-based sensor is no need of expensive monochrometer, as shown 
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in Figure 2.9 (b). Horseradish peroxidase (HRP) is a kind of protein which 

will generate certain color when it was mixed with 3,3′,5,5′-

tetramethylbenzidine (TMB) [127]. A commercially available camera was 

used to measure the intensity of laser which is attenuated by the mixture of 

HRP and TMB [125]. The limit of detection can be as low as 14 pM HRP. 

In Figure 2.9 (c), Chen et al. used Indocyanine green (ICG) as the gain 

material, which is responsive to serological components (albumins, 

globulins, and lipoproteins), in a silica capillary [126]. They found that the 

laser intensity will change according to the change of concentration of the 

components, which can be further used in biosensing applications. 

2.4 Micro-components for bio-microsystems in cell 

study  

To achieve a multifunctional opto-bio-microsystems, micro-components 

are of great potential in integration with micro-optics so as to process 

biological sample or provide a novel cell culture environment. For better 

understanding of diseases and drugs, investigation on cellular and 

molecular has been developing rapidly over the past two decades [128]. 

However, there are two problems for traditional methods to investigate 

such biological systems. The first one is that culturing many kinds of cells 

with heterogeneous physiological states will affect the accuracy of 

diagnosis or analyzing, because of intrinsically different gene expression 
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[129]. The second one is that for statistical data of multiple parameters, 

large number of samples should be tested, which requires the complex 

technologies to have high throughput [130]. Bio-microsystems are good 

candidates for biological investigation with limited reagent consumption 

[131].  

2.4.1 2.5D microstructures for cell separation 

Compared with 3D structures, 2.5D structures have no suspended 

elements in the vertical dimension. Cell separation is of great 

importance as a prerequisite in many applications.[132-134] Cell 

manipulation without chemical, or electrical, or magnetic methods is 

important in many fields in biology, because the methods may affect the 

states of the cells [129]. 2.5D microstructures in bio-microsystems can be 

used to manipulate cells, which play an irreplaceable role in cell isolation 

and cell trapping. 
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Figure 2.10 2.5D microstructures in bio-microsystems for cell manipulation. (a) 2.5D 

micropillars with design of deterministic lateral displacement (DLD) for isolation of 

circulating tumor cells (CTCs). (b) Microstructures for cell separation by using 

structural ratchet mechanism. (c) Geometrically enhanced mixing (GEM) 

microstructures for high-efficiency CTC trapping and separation. (d) The micropillars 

for separation of CTCs. (e) Spiral microfluidic channels for separation of CTCs. (a) to 

(e) are adapted from Ref. [134], [135], [136], [137], and [138], respectively 

As shown in Figure 2.10 (a), Karabacak and co-workers develop a 

biochip with micropillars array for separation of nucleated cells from 

whole blood [134]. The micropillars array were arranged according to 

deterministic lateral displacement (DLD) in which the key parameter is 

critical deflection diameter [139]. The critical deflection diameter 

determines the minimum hydrodynamic diameter of the particles which 

will be deflected by the micropillars array. For DLD arrays, three 

parameters can influence the critical deflection diameter, which are gap 

between adjacent micropillars in horizontal axis, row shift fraction and 

geometrical factor. As the dimension of circulating tumor cells (CTCs) and 

other blood cells are different, the CTCs can be isolated from whole blood.  

In Figure 2.10 (b), microstructures with microfluidic ratchet mechanism 

were fabricated for cell separation by using oscillatory flow [135]. The 

shape of micro funnel was designed to be parabolic, which can balance the 

length of microstructures and cell compression levels. When the 

microstructures are longer, there are more risks that cell clogging happens. 

The cell compression levels are highly related to cell damage. Compared 
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with traditional cell filtration, the microstructures with furry design have 

advantages in lower selectivity and avoiding cell accumulation. 

For high-efficiency of capture CTCs, the Geometrically enhanced 

mixing (GEM) microstructures, as shown in Figure 2.10 (c), were utilized 

in a biochip [136]. The herringbone microstructures were optimized to 

disrupt streamlines effectively so as to generate microvortex, which 

enhance the interaction between CTCs with surface of microstructures. The 

surface of microstructures were functionalized by biotinylated anti-

EpCAM, which can capture CTCs specifically so as to isolate CTCs from 

blood cells.  

As shown in Figure 2.10 (d), the bio-rheological differences in the cell 

size and deformability was used for separation of CTCs from blood 

cells.[137] The trap made up of 2.5D micropillars can distinguish the bio-

rheological differences and keep the CTCs in microfluidic channel. The 

2.5D spiral microfluidic channels, as shown in Figure 2.10 (e), can be also 

used to separate CTCs, which based on inertial and Dean drag forces in 

microfluidics[138]. The advantages of this technique include high 

throughput and simpler fabrication process. 

2.4.2 3D microscaffolds for investigation of cell culture and 

behavior 

Polymer 3D microstructures with engineered geometry by optical printing 
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technologies enable a lot of meaningful applications in the field of 

mechanobiology [140, 141]. These applications involved measurement of 

cell force on 3D microstructures, cell migration and motility, and cell 

proliferation and differentiation on 3D environment [142-144].  

  To estimate cell force in in vivo environment, one of the methods is to 

measure the cell force on 3D microstructures, which can be realized by 

measuring the change of the geometry of the 3D microstructures caused by 

cell force [145]. In Figure 2.11 (a), Klein et al. uses TPP technology to 

fabricate the 3D suspended spider-web like microstructures and 

investigated the contractile forces of cardiomyocytes which is around 50 

nN on the microstructures [142]. This method can be also extended to other 

cells, such as mouse embryonic kidney fibroblast cell. In Figure 2.11 (b), 

3D micro flowers with selectively functionalized patterns were fabricated 

by photomask lithography and material shrink [44]. Different from the 

microstructures with homogeneous material, cells tended to attach on the 

functionalized area which enables the force measurement to be more 

precise and easier. 
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Figure 2.11 Optical-printed 3D microstructures used in investigation of cell behavior.  

(a) cobweb-like microstructures and (b) micro “flowers” for cell force investigation. 

(c) 3D matrix for cell mobility investigation. (a) to (c) are adapted from Ref. [44, 142, 

146], respectively. 

The 3D networks in Figure 2.11 (c) can be integrated into microfluidic 

channel, which was utilized to investigate cell motility of mature human 

dendritic cells [146]. It is found that smaller pore dimensions in the 3D 

network can enhance the cell motility and have higher probability to move 

across the network at least one turn.  

By resembling the environment of native cartilage, the 3D networks in 

Figure 2.12 (a) can enhance the cell proliferation, which shows 

significantly improved performance of implantation[147]. Besides the 3D 

networks, complex 3D microstructures can also be applied to influence the 

rearrangement of actin and adhesion of cell, which can influence the cell 

proliferation by controlling the physical cues [148]. In Figure 2.12 (b), 

pillars in square and hexagonal arrangement connected with rods were 

fabricated to investigate how 3D structures influence cell proliferation and 
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differentiation. Judith et al. found that cell proliferation was enhanced by 

25 μm spaced pillars regardless the type of arrangement, i.e. hexagonal and 

square [148].  

 

Figure 2.12 Optical-printed 3D microstructures used in investigation of cell culture 

for (a) implantation and (b) proliferation, which are adapted from Ref [147] and 

[148], respectively.  

To create complex interaction between cells and microstructures and 

resemble the physiological interactions cells and extracellular matrix better, 

materials engineering and functionalization are utilized in the process of 

fabrication of 3D microstructures [149, 150].  

In 2011, Franziska et al. utilized two kinds of materials (i.e. bioinert 

material, mixture of  polyethylene glycol diacrylate (PEGDA) and 

pentaerythritol triacrylate (PETA); bioactive material, OrmoComp) in 

fabrication of the functionalized 3D microstructures [151]. As main part of 

the scaffold made by PEGDA-PETA mixture was protein-repellent 

material, as shown in Figure 2.13 (a), cells tended to bind on the 

OrmoComp micro cubes which were functionalized with fibronectin. 

Besides the materials engineering, advanced functionalization technique 
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can also be integrated into 3D microstructures. In 2017, Richter et al. 

demonstrated that, as shown in Figure 2.13 (b), the photoenol polymer 

network can be activated by UV irradiation, which eventually made the 

two of the beams on microstructures bioinert. These selectively 

functionalized 3D microstructures enable to investigate influence of spatial 

distribution of ligand and mechanical cues on cell behavior [152]. 

 

Figure 2.13 Optical-printed 3D microstructures used in investigation of cell culture 

for selective 3D cell spreading on (a) fibronectin-modified structure and (b) ligand-

modified structure, which are adapted from Ref [151] and [152], respectively. 

2.5 Optical printing technologies for 3D 

microstructures 

3D micro printing technologies have advantage in fabricating relatively 

complex 3D microstrucutres easily and directly with aid of computer, while 

the conventional fabricating methods rely on molds and masks. To unleash 

the great potential of additive manufacturing in biological application, 

polymer, as a biocompatible material, attractive vast research interests in 

fabrication of 3D microstructures. 
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2.5.1 Fabrication technologies for 3D microstructures 

For fabrication of 3D polymer microstructures, the most commonly 

technologies based two strategies, i.e. light and ink [13, 153]. In 3D micro 

printing, the basic mechanism is that a stage controlled by computer move 

a pattern generator which can be ink-based print head or optical engine, as 

shown in Figure 2.14, and enable to generate the pattern of designed 

structure layer-by-layer. 

 

Figure 2.14 Schematics of ink-based 3D fabricating technologies and optical engine-

based fabricating technologies. Ink-based technologies: (a) fused deposition 

modelling and (b) direct ink writing. Optical engine-based technologies: (c) selective 

laser sintering and (d) stereolithography. Adapted from Ref. [154]. 
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  Compared with optical-engine based fabricating methods, as shown in 

Figures 2.14 (a) & (b), the advantage of ink-based fabricating 

technologies not only can use photopolymerizable material, but also can 

utilize thermoplastic polymers and thermoset polymers. The basic concept 

of ink-based printing technology is that the printheads scan and deposit ink 

according to each layer of 3D models. Several ink-based technologies refer 

to this concept, such as binder jetting printing, direct inkjet printing, and 

hot-melt printing [155-157]. In Figure 2.15, the feature size of the ink-

based technologies (below the horizontal line) is from several of 

micrometers to a few hundred micrometers. Unlike fused deposition and 

photocurable method, the ink-based direct-write technologies for 3D 

microstructures mainly based on the solvent evaporation so that the dried 

ink can support itself, whose resolution highly depends on properties of 

inks [158]. 

 

Figure 2.15 Minimum size range of pattern features fabricated by optical engine-

based and ink-based 3D fabricating technologies. Adapted from Ref. [154].  

For selective laser sintering technology, as shown in Figure 2.14 (c), the 

polymer powders in a powder bed are sintered by laser point-by-point and 

form the patterned layer [159]. After a layer is fabricated, additional 

powder will be added on the powder bed in which the non-sintered powders 
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are used as supporting material of the structure. The resolution of the 

technology is typically around 100 micrometers which is a few times larger 

than the size of the powder. 

The first fabricating mechanism based on optical engine to sculpt 3D 

microstructures is stereolithography of photo sensitive polymer [160]. In 

stereolithography, as shown in Figure 2.14 (d), the prepared polymer is 

selectively photopolymerized layer-by-layer. Each layer is polymerized in 

locally illuminated regions. Some newly developed technologies also refer 

to this basic concept, such as digital light processing (DLP)-based printing 

technology, two-photon polymerization (TPP) technology, and continuous 

liquid interface production (CLIP) technology [161-165]. In the DLP-

based printing technology, optical patterns are projected on the prepared 

polymers which is polymerized lay-by-layer and finally realize 3D printing.  

 

Figure 2.16 Optical 3D fabrication technology. (a) Continuous liquid interface 

production (CLIP) technology. (b) two-photon polymerization (TPP) technology. (a) 

and (b) are adapted from [165] and [166], respectively. 

CLIP technologies, as shown in Figure 2.16(a), can polymerized an 

entire layer at one time through projection of optical pattern by using 
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digital micromirror device (DMD) or dynamic liquid-crystal masks [114, 

167], which provide much higher fabricating speed than TPP technology. 

Although TPP technology has lower speed in fabrication, the resolution of 

the technology is higher because the light is tightly confined to a focused 

voxel with the dimension, as shown in Figure 2.16(b), on the order of λ3 

[168], and the two-photon absorption area is even smaller than the focused 

voxel[169, 170]. It can be seen in Figure 2.15 that the resolution of two-

photon polymerization has the highest resolution among the above mention 

and achieve a few hundred nanometer feature size.   

 

2.5.2 Optical 3D -printing based on DLP technology 

Digital light processing (DLP)-based printing technology based on optical 

micro-electro-mechanical technology that utilizes a digital micromirror 

device (DMD) to modulate light beam [171]. Based on deformable 

micromechanical units, the first DMD chip was reported in 1987 by Larry 

Hornbeck in Texas Instruments Incorporated [172]. A DMD chip typically 

consists around a million of micro mirrors which can adjust the tilting angle 

of the micro mirrors (+12〫and -12〫), as shown in Figure 2.17 (a), so as 

to realize on/off switch.  
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Figure 2.17 (a) Schematic of DMD in state of on/off, adapted from Ref. [173]. (b) 

Diagram of optical -printing platform based on DLP technology. 

For optical printing, the DMD chip mainly has three advantages 

including high resolution, high contrast ratio and high light modulating 

speed. Due to the development of commercially available DMD chip, the 

smallest pixel pitch of the DMD chip can achieve 5.4 μm, while it contains 

micro mirrors with array of 1920 × 1080. With the small pixel pitch and 

large number of micro mirrors, the DMD chip provides good capability in 

high-resolution optical μ-printing process.  

Compared with other spatial light modulating devices, such as liquid 

crystal on silicon, the contrast ratio of DMD chip can be as high as 2000:1 

which is much faster than liquid crystal spatial light modulators, i.e. 700:1. 

The high light modulating speed is another important advantage of DMD, 

which enables the DLP based optical printing technology has the capability 

of tailoring the profile in z-axis more precisely. The latest DMD chip have 

light modulating speed of 5 kHz. While the liquid crystal spatial light 
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modulator only have light modulating speed of 200 Hz [174]. 

As shown in Figure 2.17 (b), the custom-build optical μ-printing 

technology mainly consists of five parts including UV light source with 

homogenizer (illumination system), DMD chip, scale-down projection 

optics, imaging system and sample stage. The homogenized and collimated 

UV light illuminates the DMD chip in certain angle. The DMD chip 

generates optical patterns according to the image data of sliced 3D model, 

and the optical patterns pass through the scale-down projection optics and 

expose the prepared sample. The in-line imaging system can be used for 

sample observation and in-situ printing. 

The fabrication yield of the custom-build printing technology is 

mainly limited by the unstable exposure process, difference among 

batches of photosensitive polymer and environmental contaminant. 

For exposure process, the UV power of light source, of which the 

variation is ±5%, plays a key role. To eliminate the effect from unstable 

UV light source, an optical power detector was used to record the 

intensity so as to improve the fabrication repeatability. For 

photosensitive polymer, the relation between the exposure dose and 

cured depth was studied to achieve the optimized exposure dose for 

high fabrication yield. Environmental contaminates also affect the 

fabrication yield, since all our processes were not carried out in clean 

room. Because of the use of millions of pixels in the printing process, 
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the throughput of the optical printing technology is higher than two 

photon polymerization technology, of which the exposure time for 3D 

microstructures array such as microlens array, WGM resonators, 

microscaffold array are less than 36 s, 46 s, and 30 s, respectively. 

The illumination system is one of the most important part of a 

lithography system, which will affect the quality of projection significantly. 

 

Figure 2.18 (a) Schematic of Kohler illumination system with a diffuser. (b) Uneven 

illumination by telecentric illumination. (c) Even illumination by Kohler illumination 

system with a diffuser. 

The light from light source usually is not homogenized because of the 

emission structure of UV LED or some drawbacks of light pipe of UV lamp. 

To achieve the homogenized illumination, we integrate a diffuser into 

Kohler illumination system (Figure 2.18 (a)). Different from normal 

Kohler illumination, a diffuser and 1st collector lenses were placed before 

the Kohler illumination system (2nd collector lenses and condenser lens), 
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which have larger assembling tolerance. The light from light source were 

collected by two lenses and focused on the diffuser, which can be taken as 

a new light source for Kohler illumination. Then, the new light source was 

imaged by 2nd collector lenses, in which the diaphragm of condenser lens 

locates. Here, due to the focal length of 2nd collector lenses are short, it is 

difficult to adjust the position and enable the image of light source locate 

at diaphragm of condenser lens precisely, which may cause that the light 

source will be imaged at illumination plane. As a result, the diffuser is 

critically important, which can fuzz the image of light source further.  

As shown in Figure 2.18 (b), due to the relatively large depth of field, 

the telecentric illumination system will image the light source in the 

illumination plane, which will affect the quality of lithography. The relative 

even illumination can be achieved, as shown in Figure 2.18 (c), by Kohler 

illumination system with a diffuser.  

2.6 Summary 

In summary, different kinds of micro-optics devices and micro-components 

including microlens, WGM resonator laser, and 3D microstructures are 

reviewed in this chapter. The optical printing technologies for fabrication 

of 3D microstructures are also reviewed. Spherical aberration of 

microlenses can be adjusted by tailoring the conic profiles, which can be 

utilized in advanced beam shaping. The microlenses with engineered 
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profiles have wide applications especially in optical detection in biochip. 

WGM resonators with high Q factor and small mode volume intrinsically 

have advantages in low threshold laser operation. With narrow linewidth, 

WGM resonator lasers can be utilized as laser sensor by tracking the shift 

of resonance or measurement of mode splitting. With the advances of 

optical fabrication technologies and innovation of functional polymer, 

2.5D/3D microstructures can be fabricated and functionalized for 

biological study, such as cell manipulation and cell culture. 



Rapid Optical μ-Printing of Polymer Top-Lensed Microlens Array 

65 
 

Chapter 3   

Rapid Optical μ-Printing of Polymer Top-

Lensed Microlens Array 

3.1 Introduction 

As one of the fundamental micro-optics, microlenses attract lots of interest 

because of its irreplaceable role in various miniaturized optical system[80, 

175]. Due to the enhanced capability of light-beam shaping, microlens with 

complex configuration or profile became increasingly appealing. For 

example, it is demonstrated that asymmetrically divergent output can be 

achieved by a microlens with double-axial hyperboloidal profile [176]. For 

high-density optical storage systems, a microlens with two aspherical 

surfaces was fabricated for a diffraction-limited focal point [177]. In 

particular, due to the extraordinary capability of beam shaping, a special 

kind of microlenses with lens-on-lens microstructures becomes 

increasingly attractive because its ability of advanced beam shaping, which 

has promising applications in various optical systems including 

microfluidic counting systems for fluctuating or unconfined objects and 

optical storage [28, 178-180]. Due to its unique beam shaping capability, 

the lens-on-lens microstructure with elongated focal structure is appealing 
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in opto-bio-microsystems, such as flow cytometry for cell counting, which 

can increase the success rate. And microlens with distinct foci has great 

potential in multiplexed microfluidic channel for high-throughput 

flowcytometry. 

  However, it is difficult for conventional methods, such as microdroplet 

jetting, hot embossing, and femtosecond laser ablation process to directly 

fabricate the lens-on-lens microstructures [181-184]. On fabrication of 

arbitrary form microlens, two-photon polymerization technologies 

demonstrated capability and flexibility [23, 176, 185, 186]. However, the 

technology shows low efficiency on fabrication of extensive arrays of 

microlenses which typically cost a few hours, because of its single-spot 

scanning nature [183, 187]. To overcome such technical bottleneck, one of 

the solutions is DMD-based dynamic optical exposure technology. Lu et al. 

demonstrated that the DMD-based dynamic grey masks can enable rapid 

fabrication of arrays of microlenses [188]. However, the microlenses 

demonstrated in their work are conventional one with spherical profile. It 

is still in a loose sense whether the technology can fabricate microlenses 

with complex profiles, such as lens-on-lens structures. 

  In this chapter, a DMD based dynamic optical exposure technology was 

improved so as to print microlenses with lens-on-lens microstrucutures (i.e. 

TLML) directly. With the in-house optical μ-printing technology, we study 

the relation between the UV exposure dose and cured depth of 
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photopolymer. Then a bitmap of corrected exposure by the relation was 

used to generate a dynamic exposure scheme which can tailor the profile 

of microlens pixel-by-pixel. As a result, the TLML array with focal 

structures of elongated focus or dual foci can be fabricated facilely and 

precisely. 

3.2 Design of lens-on-lens microlens 

The designs of TLMLs with diameters of 290 and 180 μm are shown in 

Figure 3.1. In the first microlens, the upper and bottom parts’ curvatures, 

as shown in Figure 3.1 (a), are 0.0065 and 0.002 μm-1, respectively. In the 

second microlens, the curvatures of upper and bottom parts are 0.045 and 

0.006 μm-1, respectively. Because the dimension of microlenses are far 

larger than the wavelength in visible range, the propagation of incoherent 

light passing through the microlens can be simulated using ray tracing 

method [189, 190]. For a 2D plot of light field after passing through the 

microlens, 10,000 incidence rays were traced in Figure 3.1 (b) in which 

the intensity depicts the relative number of the rays deposited at each point 

on a meridional plane. The elongated focal depth of the TLML can be 

achieved as 570 μm. For the second design, two separate foci can be 

achieved, as shown in Figure 3.1 (c), by further increasing the difference 

of the curvature between the bottom and upper lenses. Figure 3.1 (d) 

numerically demonstrates two separate focal points with 215-μm distance 
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was achieved. 

 

Figure 3.1 Schematic design and simulation of TLMLs. A TLML with elongated 

depth of focus (a) and its simulated distribution of light field (b). A TLML with dual 

focuses (c) and its simulated distribution of light field (d). 

3.3 Fabrication and testing setup of polymer top-

lensed microlens array 

  Figure 3.2 (a) shows the optical 3D μ-printing platform which consists 

a high-resolution XY stage (M-687, Physik Instrumente GmbH & Co.), a 

digital micromirror device (DMD, DLi4120 0.7” XGA, Texas Instruments, 
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USA), a set of projection optics (Thorlabs, Inc., USA), and a high-power 

UV light source (OmniCure 2000 System, Lumen Dynamic Group Inc.). 

 

Figure 3.2 (a) Schematic diagram of the optical μ-printing platform: collimated UV 

light illuminates the DMD chip which loads the data of sliced modal and reflects light 

with designed patterns. The patterns are projected through sets of lenses onto SU-8 

photoresist to fabricate microlens arrays. (b) Fabrication process of microlens array; 

(i) SU-8 photoresist is dropped on the glass slice with buffer layer; (ii) the photoresist 

is spin-coated and soft baked to remove solvent; (iii) the data of sliced images of 3D 

model is inputted into DMD chip, and the photoresist is dynamically exposed and post 

baked. (iv) the exposed resin is developed and dried. 

The stage can locate the position of exposure, which enable to fabricate 

large-area microstructures by seamless pattern-stitching process. The 3D 

model of designed microlens is sliced into 100-layers bitmap by an in-

house add-on of a commercial image data analysis software (Tecplot Inc., 

USA). Before illuminating the DMD chip, the light beam of the UV lamp 

is homogenized and collimated. According to the sliced bitmap, the DMD 

chip, as a spatial light modulator, can switch into corresponding patterns 

dynamically and generate the optical patterns by reflecting UV light into 
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the projection optics. Thereafter, the optical patterns are projected on the 

SU-8 resin.  Based on layer-by-layer polymerization, the designed 3D 

microstructures were manufactured.  The key of fabricating the MLAs 

with smooth profile is the DMD chip which can regenerate optical patterns 

for each polymerized layer by flipping the micro-mirrors in 30 s. 

Figure 3.2 (b) shows the fabrication process of MLAs including making 

buffer layer, spin-coating, soft bake, dynamic exposure using OMsL, post 

bake, and development. A thin film (~ 1 m) of SU-8, as a buffer layer, 

was spin-coated on a clean glass slice for improvement of adhesion 

between glass and microstructures. This layer was exposed by a UV lamp 

(2.61 mW/cm2) for 20 min, and then was baked at 95 °C for 3 min. Then, 

the prepared SU-8 photoresist was spin-coated on the glass slice with 

buffer layer. The glass slice with photoresist was baked at 65 °C for 5 min, 

and at 95 °C for 15 min in soft bake, which can minimize the solvent 

concentration. When the sample cooled down to room temperature, the UV 

light with a light intensity of 41.15 mW/cm2 was applied for 36 seconds in 

the whole maskless exposure process. After exposure, the sample was post 

baked at 65 °C for 5 min, followed by a subsequent bake at 95 °C for 10 

min. After that, propyleneglycol monomethylether acetate (J&K Scientific, 

China) was applied for 10 min in development. 
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Figure 3.3 Optical microscopic image (a) and confocal laser scanning 3D image (b) 

of the fabricated SU-8 micro-pillar array for calibration of exposure time. (c) 

Dependence of cured depth on the natural logarithm of exposure time. The inset is the 

curve of cured depth verses exposure time.  

For the fabrication of MLAs with engineered profile, the required 

exposure dose of the design should be optimized according to the relation 

between cured depth and exposure dose. For investigation of the relation, 

a series micro pillars with growing height, as shown in Figure 3.3, were 

fabricated by applying increasingly exposure time. The optical 

microscopic image and laser scanning confocal 3D image of the micro 
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pillars was shown in Figure 3.3 (a) and Figure 3.3 (b), respectively. The 

height of micropillars was from 17.10 m to 84.53 m when the exposure 

time increased from 22 to 60 seconds. Figure 3.3 (c) left inset shows that 

the height of the micro pillars (i.e., the cured depth of resin) increased with 

the accumulative exposure dose, and the UV light intensity was fixed in 

41.15 mW/cm2. A threshold of exposure time can be observed, which is the 

minimum exposure dose requirement for the initially cured photoresist. 

The threshold is related to the ratio of concentration of photo initiator to 

photo inhibitor which can neutralize photoacid during the exposure process. 

The relation between the cured depth and exposure dose is not linear, 

because the UV absorber and SU-8 resin can hinder the penetration of UV 

light in photoresist.  The relatively flat curve in the end is caused by 

weaker light in deeper photoresist. 

Figure 3.3 (c) shows cured depth versus logarithm of exposure time 

which is a linear relationship. According to Beer Lambert law, such a 

nonlinear relation caused by the absorption of UV light in SU-8 resin and 

TINUVIN 234 can be written into a linear equation as 

 d ln( ) ln( )tht E = −  (3.1) 

where d is cured depth, t represents exposure time (larger than Eth),  is 

defined as the linear slope of the curve, and Eth is the threshold time of 

exposure. In certain UV light intensity, the slope is related to the ratio of 

photo initiator to UV light absorber in photo resist. The larger ratio causes 
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larger slope . In a fixed UV light intensity, the ratio of photo initiator to 

photo inhibitor influences the threshold time. The relatively higher 

concentration of photo inhibitor leads longer threshold time, as the initially 

generated photoacid will be neutralized by photo inhibitor. Here, the fitting 

result shows  is 56.25, while threshold time Eth is 15.75 seconds. 

The focusing performance of the microlenses was tested by using an own-

established setup, as shown in Figure 3.4. To minimize the refractive effect 

of the microlens, a LED light source, as an incoherent source, instead of 

laser source is used in the testing setup.  

 

Figure 3.4 Testing setup for focusing performance and imaging ability. For testing of 

focusing performance, the LED light was collimated by a beam expender and 

illuminated the microlens arrays from the side of substrate directly. For testing of 

imaging ability, the mask with a character “M” was put between the microlens and 

beam expender. 

The LED light was collimated by a set of lenses, and the collimated light 
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is reflected by two mirrors and then illuminates the glass substrate. The 

collimated light passes through the sample from bottom to top so as to 

avoid that the glass substrate refracts the light once again which will affect 

the optical property of microlens on the testing. To measure the light field 

intensity distribution along the optical axis, a motorized stage is mounted 

a digital camera, which can move along the optical axis of microlens and 

take images of light field distribution. A LabVIEW program was used to 

automate the capturing of images every 5 m from the microlens to the 

position that is 1750 m away the microlens. 

For testing of imaging ability, a 4mm-by-3mm mask with a character “M” 

was used and put between the glass substrate of microlens array and the 

reflect mirror. During the testing procedure, the distance between mask 

and ML-0, TLML-1 and TLML-2 are about 9, 18, and 7 mm, 

respectively. 

3.4 Results 

3.4.1 Fabricated microlens array  

Within 36-seconds exposure time, three groups of microlens arrays 

without and with top-lensed microstructures were experimentally 

fabricated, called ML-0, TLML-1 and TLML-2, respectively. Scanning-

electron microscope images of arrays of microlens, as shown in Figure 3.5 
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(a)-(c), are taken by VEGA3, TESCAN company at 20 kV with 

magnifications of 276, 134, and 260, respectively. Figure 3.5 (d)-(f) are 

the zoom-in SEM images of the microlens in Figure 3.5 (a)-(c), 

respectively. All microlenses are with circular apertures and arranged in 

orthogonal array. Figure 3.5 (g)-(i) are the designed (dash curves) and 

measured (solid curves) cross-sectional profiles of corresponding 

microlenses. The standard deviation of the profiles of single-focus 

microlens, TLML-1 and TLML-2 are 0.88, 0.46 and 0.71 μm, 

respectively. 

 

Figure 3.5 (a) to (c) are SEM images of the arrays of single-focus microlens, TLML-

1 and TLML-2, respectively. (d) to (f) are zoom-in images of (a) to (c), respectively. 

(g) to (i) are designed and measured profiles of the microlenses (d) to (f), respectively. 

Scale bars are 100 m. 
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The profiles were measured by a laser-scanning confocal microscopy 

(Keyence VK-X200K), which shows the height are 32.9, 40.1, and 35.1 

μm, respectively, and diameters are 184.1, 296.83 and 178.02 μm, 

respectively. For TLML-1 and TLML-2, the diameters of the top lenses are 

120.1 and 50.8 μm, respectively. The profile of individual lenses can be 

approximated by conic surface using the equation [191], 

 

2

2 2
( )

1 1 (1 )
= −

+ − +

cr
z r

k c r
. (3.2) 

  The fitted results of the parameters of the measured profiles of the 

fabricated microlenses, which were measured by using laser-scanning 

confocal microscopy, were given in Table 3.1. It can be seen that the lower-

lenses (L.) of TLML-1 and TLML-2 are oblate ellipsoidal, whose conic 

constants are 11.31 and 2.33, respectively. The upper-lenses (U.) of both 

TLML-1 and TLML-2 are hyperbolic, whose conic constants are -3.5455 

and -4.8393, respectively. 

 

TABLE 3.1 Fitted results of the curvature c and the conic constant k of 

the profiles of three kinds of fabricated microlenses. 
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3.4.2 Simulation of fabricated microlens array 

With the measured profiles, numerical simulations have been carried out 

by using ray-tracing method to compare with measured results. As the light 

beam in testing had a small divergent angle, in simulation, numerous rays 

were released from a spherical surface with the curvature of 3× 10−4𝜇𝑚−1 

which was put in front of microlens. The refractive index of SU-8 is 

assumed to be 1.59.  

Light field distributions of fabricated microlens are shown in Figure 3.6. 

It is shown in Figure 3.6a (i) that the light beam is converged by the single-

focus microlens at round 394.4 μm and forms the focal spot from the ring 

shape. As shown in Figure 3.6a (ii), focal structure distributed along the 

longitudinal axis instead of as a single focal point which results from the 

spherical aberration. The spherical aberration can be deduced from the 

conic constant of single-focus microlens, as shown in Table 3.1, which is 

around 4.1.  
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Figure 3.6 Simulation of light field intensity distribution of (a) single-focus 

microlens, (b) TLML-1, and (c) TLML-2, in which (i) is cross-sectional distribution at 

corresponding positions and (ii) longitudinal distribution along the optical axis. 

  The light field distribution of top-lensed microlens 1 is shown in Figure 

3.6 (b). Different from light field distribution of single-focus microlens, 

when the first focus appears, as shown in Figure 3.6b (i), there is a ring 



Rapid Optical μ-Printing of Polymer Top-Lensed Microlens Array 

79 
 

around it. The first focus is formed by the top lens with smaller curvature 

of radius, while the ring from the bottom lens with larger curvature of 

radius. When the first focus diverges, the light refracted by the bottom lens 

converge and maintain the light field intensity along the optical axis. In 

Figure 3.6b (ii), the first small focal point locates at around 366.1 μm. 

Large spherical aberration is induced in the bottom lens, which is shown in 

Table 3.1. As a result, one can see that the second focal area is long. When 

this long focal area connects to the first focal point, it is realized the 

elongated focal structure.  

In Figure 3.6 (c), the light field distribution of top-lensed microlens 2 is 

shown. The focal structure of first focal structure of top-lensed microlens 

2, as shown in Figure 3.6c (i) also contains one focus and a ring around it. 

The difference between the first focus in Figure 3.6b (i) and Figure 3.6c 

(i) is that the first focus of top-lensed microlens 2 is sharper and clear, 

which indicated that the upper lens of top-lensed microlens 2 has smaller 

spherical aberration. In Figure 3.6c (ii), one can see the first focal point 

locates at around 88.7 μm and separates from the second focal area, which 

forms the two distinct focal structure.  

3.4.3 Light intensity distribution and imaging ability  

The distributions of optical intensity along the optical axis, as shown in 

Figure 3.7 (a)-(c), were drawn by extracting the light intensity of the 
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images at the determined focus’ location. Figure 3.7 (d)-(f) show the 

images of light patterns at corresponding position in Figure 3.7 (a)-(c), 

respectively. To compare with the measured focal parameters, the 

simulated optical intensity distribution on optical axis were shown in 

Figure 3.7 (a)-(c) as dash lines.  

 

Figure 3.7 (a)-(c) are measured and simulated light intensity distributions along the 
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optical axes of single-focus microlens, TLML-1, TLML-2, respectively. The insets are 

the measured images of the character ‘M’ projected by the microlenses, in which the 

scale bars are 25 μm. (d)-(f) are measured transverse optical images at different 

positions in (a)-(c), respectively, and the scale bars are 100 μm. 

  The focal position of the fabricated ML-0, as shown in Figure 3.7 (a), 

was measured to be at 400 m, while the simulated focus located at 394.4 

m. It is shown in the inset of Figure 3.7 (a) that the image of characteristic 

‘M’ project by fabricated ML-0. 

As shown in Figure 3.7 (b), the fabricated TLML-1 has two focal points, 

the first one locates at 410 m while the second on locates at 910 m. The 

elongated focal depth of TLML-1 is demonstrated that the depth of focus 

at half maximum is 767.11 m. The simulation results show that the two 

focal points locate at 366.1 m and 992.9 m, respectively. According to 

the simulation results, the close location of the two focal points results from 

the elongated depth, while the flat light nitensity distribution between first 

and second focus attributes to the smooth transition between the upper lens 

and bottom lens. The imaging pictures of characteristic ‘M’ by upper and 

bottom lenses are shown in the upper and lower insets in Figure 3.7 (b).  

  The spider-web like segmented structures of the images may attribute to 

the structure of LED’s emitting area and the TLMLs’ astigmatism 

aberration. The cross-sectional light intensity distributions at the 

corresponding places in Figure 3.7 (b) are shown in Figure 3.7 (e). The 

light passing through the upper and bottom lenses result in a focal point 
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and the outer ring in Figure 3.7e (1-3). Then the first focus from the upper 

lens diverge gradually, while the light from bottom lens converge from the 

ring to the focus and maintain the light intensity. The structure of LED’s 

emitting area and astigmatism of the fabricated lens should be attributed to 

the spider-spoke like light pattern structure. 

By increasing the difference between the curvatures of upper lens and 

bottom lenses, the TLML-2 with two distinct focal points can be achieved. 

For TLML-2, the light intensity distribution along the optical axis was 

shown in Figure 3.7 (c). The first and second focal points were measured 

to locate at 80 m and 360 m, respectively. The simulation result shows 

that the first and second foci were at 88.7 m and 363.1 m, respectively, 

which confirms well with the measured results. Due to spherical aberration 

caused by the oblate ellipsoidal shape of the bottom lens, the light 

distribution is not symmetric. There is a bit mismatch between the 

simulated and measured plots because of the complex input light 

condition and uneven refractive index of the polymer microlenses. 

For the imaging ability, due to the smaller spherical aberration of the 

lower part of TLML-2, the image from bottom lens of TLML-2 is clear 

than the bottom lens of TLML-1. The spherical aberration can be deduced 

from the sharpness of the focal point, in which Figure 3.7f (5) has a sharper 

focal point than in Figure 3.7e (5). Similarly, the image from upper lens of 

TLML-2 is clear than the upper lens of TLML-1 due to the smaller 
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spherical aberration, which can be deduced from Figure 3.7e (2) and 

Figure 3.7f (2). 

TLML-1 demonstrated the capability of extending the focal length by 

adopting aspherical lens-on-lens microstructure. The elongated focal 

structure is suitable for detection of fluctuated targets in microfluidics, 

because it can enhance the success rate of detection by enlarging the 

detection area. Also, the microlens with elongated focal structural is 

appealing in endoscopic bioimaging microsystem, in which the microlens 

can elongate the imaging depth. TLML-2 can generate two distinct foci, 

which can be used in rapid and high-throughput optical analysis of cell on 

compact multiplexed microfluidic channels.  

Compared with the inorganic microlenses such as glass devices in opto-

bio-microsystems,[81] limitation of the polymer microlenses include 

surface roughness and chemical resistance. The relatively rougher surface 

is mainly caused by thermal distortion during post-baked process and 

development of uncured polymer, which can be further improved by using 

programmed hot plate and the developer with surfactant. The relatively 

limited chemical resistance of polymer induce that the devices are not 

compatible with certain cleaning processes including acid for removing 

protein, which may hinder the reusability of devices in practical application  
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3.5 Summary 

To sum up, a fast and facile fabricating method was developed for 

microlens arrays with complex profile, such top-lensed microlens.  

Different focal structures of microlens with complex profile have been 

demonstrated experimentally. For the elongated focal depth, a lens-on-lens 

microstructure with hyperbolic upper-lens and bottom-lens with oblate 

ellipsoidal profile has been printed. For focal structure with two distinct 

focuses, the difference between the curvature of upper-lens and bottom-

lens in the top-lensed microlens was further increased. Such TLMLs have 

great potentials in laser beam shaping for e.g. real-time detection of 

fluctuating target in microfluidic channel. 
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Chapter 4  

Optical 3D μ-Printing of WGM Microlaser 

Sensors for On-Chip Ultrasensitive VEGF 

Detection 

4.1 Introduction 

Optical microcavities can spatially confine light into microscale 

dimensions to form resonant recirculation.[192] Various optical 

microcavities, such as Fabry-Perot, Whispering-Gallery-Mode (WGM), 

and photonic crystal microcavities, have been widely demonstrated to 

achieve high-performance photonic devices and systems.[6, 193, 194] In 

particular, WGM microcavity attracts increasing research interest due to its 

high-quality factor and tight mode confinement, which thus can achieve 

high light intensity inside microcavity even when the input power is not 

very high.[100] In the tightly confined cavity mode under lasing operation, 

the strong interaction between light field and active material can enhance 

pumping efficiency and therefore enable low-threshold laser 

oscillation.[30, 195-197] Compared with passive optical microcavities 

which rely on evanescent-wave coupling to interrogate the optical WGM 

microcavities[198], WGM microcavity lasers can be efficiently excited and 
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collected by free-space coupling.[113, 199, 200] Herein, the microcavity 

lasers can alleviate the coupling difficulties in practical application [201, 

202] and thus can be integrated into on-chip bio-microsystems as 

optical sensing components.[18, 203, 204] With the characteristics of 

narrow linewidths and high contract ratio between ON and OFF resonance, 

WGM microlasers have been widely applied as highly sensitive biosensors 

for detection of protein, lipids, DNA, and virus.[31, 110, 125, 205-207] 

Laser intensity-modulation based biosensors are of great interest, because 

they can not only improve discrimination ratio[208] but also save cost in 

e.g. use of photo-detector, e.g. commercial camera, which thus provide an 

high-performance and affordable sensing platform for biomarker 

detection.[209]   

  Quantitative detection of disease biomarkers is of great importance in 

diagnosis of diseases in early stage.[210] Vascular Endothelial Growth 

Factor (VEGF), a hypoxia-inducible protein, plays an important role in 

vascular development, and the abnormal expression of VEGF associates 

with many diseases such as early diabetes, cancer and neurological 

disorders.[211-213] Enzyme-Linked Immunosorbent Assay (ELISA) has 

become the gold standard for quantitative detection of VEGF because of 

its advantages of high sensitivity and high specificity.[214] To further 

enhance the sensitivity of ELISA-based approach, various technologies 

have been demonstrated, such as plasmonic, fluorescence, and laser-based 
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methods.[215-217] In particular, optofluidic chip technology, combining 

photonic devices and microfluidics, attracts much research interests for 

miniaturized on-chip integration.[216]  

In this chapter, we present an optically 3D μ-printed WGM low-

threshold microlaser array and its integration within a microfluidic chip for 

highly sensitive detection of VEGF. With an improved in-house DMD-

based optical μ-printing platform,[218, 219] we directly print arrays of 

suspended microdisks with smaller size and finer structures so as to 

achieve WGM resonators with Q factor higher than our previous 

work[105]. The microdisks were then deposited with a thin layer of gain 

media for low-threshold laser oscillation. A pair of multimode optical 

fibers were used to pump the WGM resonator and collect light from the 

plane of the laser to achieve on-chip integration. A microfluidic chip is 

fabricated to integrate arrays of microlasers to achieve a platform for on-

chip ELISA-based optical detection of VEGF. Compared to conventional 

ELISA, the microlaser-enhanced device can boost the LOD to 17.8 fg/mL, 

which is 500 times lower than conventional ELISA kit. 
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4.2  Fabrication of polymer WGM microcavity 

lasers 

To fabricate the high Q microcavity lasers, we use an improved optical 

3D μ-printing technology. Figure 4.1 (a) shows the schematic diagram of 

optical 3D μ-printing technology. The UV light from a light pipe of 

mercury arc lamp is homogenized and collimated and then illuminates the 

DMD chip which can generate patterns according to the sliced images of 

the 3D model of WGM microcavity. The optical patterns pass through a set 

of scale-down projection optics and project upon the prepared sample. The 

motorized sample stage can not only be utilized to locate sample position 

but also boost seamless stitching to print large-scale arrays of WGM 

microcavities. 

 

Figure 4.1 (a) Schematic of the optical μ-printing technology. (b) Processing flow of 

fabrication of WGM microcavity laser sensors. 

  EPON resin SU-8 was used as the photopolymer for the fabrication of 

WGM microcavities. Octoxyphenylphenyliodonium 
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hexafluoroantimonate (OPPI) was added as photoacid generator, and 

TINUVIN 234 was used as UV absorber, while Tributylamine (Tba) was 

used as inhibitor. With the cyclopentanone as solvent, we mix the 

compositions in the weight ratio of TINUVIN 234/ Tba/ OPPI/ SU-8 = 

0.08:0.014:2.5:100. Before the exposure process, the SU-8 photopolymer 

was spin-coated upon a thin buffer layer (~1 μm) which can enhance the 

adhesion between the substrate and photopolymer. The photopolymer was 

then soft-baked at 65 °C for 5 min and 95 °C for 20 min so as to remove 

the solvent. The sample was dynamically exposed, as shown in Figure 4.1 

(b), by using optical 3D μ-printing technology.  

To print high-quality WGM microcavities of suspended microdisks, the 

relation between the exposure dose and cured depth of photopolymer has 

been investigated to determine the exposure time of each sliced images of 

WGM microcavity. A series of micro-scale pillars were printed with 

increasing exposure time to obtain the relation. By applying the exposure 

time from 14 to 80 s with UV intensity of 1.81 mW/cm2, the heights of 

pillars were measured to be from 1.8 to 12.7 μm.  
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Figure 4.2 Dependence of the cured depth on natural logarithm of exposure time. The 

inset is the cured depth versus exposure time. 

As shown in the inset of Figure 4.2 the cured depth of photopolymer 

increases nonlinearly with increase of exposure time, which can be 

explained by Beer Lambert law. According to Eq. 3.1, such a nonlinear 

relation can be rewritten into a linear equation by taking logarithm of 

exposure time. The fitting result shows that, in the relation, the threshold 

time tth is 14.29 s, while the slope of the equation  is 6.89. Such a small 

slope enables us to print finer structure is z-axis.  
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Figure 4.3 (a)-(c) are SEM images of SU-8 WGM microcavities with diameters of 

116, 145, and 195 μm, respectively. (d)-(f) are zoom-in images of (a)-(c), respectively. 

In the experiments, three groups of WGM microcavities with suspended 

microdisks were directly printed, called WGMR-1, WGMR-2 and 

WGMR-3, respectively. The exposure time of the WGM microcavities is 

less than 46 s. As shown in Figure 4.3 (a)-(c), the diameter of WGMR-1 

to WGMR-3 are 116, 145, and 195 μm, respectively. The heights of the 

three groups of WGM microcavities were measured to be around 30 μm by 
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using a laser-scanning confocal microscope. 

After exposure process, the samples were post-baked at 65 °C for 5 min 

and then followed by 95 °C for 8 min to cure the polymer. After a post-

bake process, the sample was developed by using propylene glycol 

monomethyl ether acetate (PGMEA). To prepare WGM microlasers, 20% 

SU-8 resin was doped by Rh6G in concentration of 3 μmol/g solid SU-8 

and then spin-coated upon the fabricated WGM microcavities. Soft-bake 

process was then used to remove the solvent.  

4.3 Simulation of the WGM microcavities 

Finite element method-based simulation software (COMSOL Multiphysics 

5.1) has been used to investigate the field distribution of WGM 

microcativies with suspended microdisks. 

 

Figure 4.4 The cross-sectional field distribution of (a) WGMR-1, (b) WGMR-2, and 

(c) WGMR-3, whose characteristic indexes are (q, m, ℓ) = (1, 940, 940), (1, 1186, 

1186), (1, 1585, 1585), respectively. The scale bars are 2 μm. 

  As mentioned in section 2.3.1, whispering gallery mode can be mainly 
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described by three factors, i.e. radial mode number q, polar mode number 

m, and azimuthal mode number ℓ. Radial mode number q represents the 

number of maxima in the radial direction. Polar mode number m denotes 

the number of wavelengths along the boundary of microcavity and the 

direction of wave circulation. Azimuthal mode number ℓ stands for the 

number of electrical maxima in the equatorial plane. As shown in Figure 

4.4 (a)-(c), the fundamental TM mode are found at 604.13, 604.31, and 

604.14 nm, respectively, when the azimuthal mode numbers are 940, 1186, 

and 1585, respectively.  

4.4 Characterization of WGM microcavities 

To measure the transmission spectra of WGM microcavities, a 

biconically tapered fiber with waist diameter of around 1.3 μm was 

prepared to couple light into and out from the microcavity. 
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Figure 4.5 Transmission spectra of (a) WGMR-1, (b) WGMR-2, and (c) WGMR-3. 

The tapered fiber was mounted onto a fixture connected to a 5-axis stage 

(MAX312D, KM100B, Thorlabs, Inc.), while the sample was placed on a 

3-axis stage (MAX312D, Thorlabs, Inc.) so as to adjust finely the distance 

between the microcavity and tapered fiber. To observe the condition of 

coupling, two cameras (top-view, side-view) were used. In the 

measurement of transmission spectra, a wide band light source and an 
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optical spectrum analyzer (OSA) with the resolution of 0.02 nm were used.  

The measured transmission spectra of WGMR-1, WGMR-2, and 

WGMR-3 are shown in Figure 4.5 (a)-(c), respectively. The WGM 

resonant peak can be observed clearly in the spectra. The measured average 

free-space ranges (FSR) of WGMR-1 to WGMR-3 are 3.75, 3.05, and 2.44 

nm, respectively. The theoretical FSR can be estimated by: 

 ( )2 / 2 ,   =FSR nR  (4.1) 

in which n is refractive index of SU-8 resin at wavelength of 1550 nm, λ is 

the resonant wavelength, R is the radius of the microcavity. The theoretical 

FSRs of WGMR-1 to WGMR-3 are calculated to be around 3.91, 3.17, and 

2.4 nm, respectively, which agree well with the measured results. 

  The FWHM of the WGM resonant peak of WGMR-1 to WGMR-3 are 

0.152, 0.216, and 0.259 nm. The Q factor can be estimated by: 

 




 FWHM

Q  (4.2) 

in which ∆λFWHM is the full width at half maximum of the Lorentzian-shape 

resonance peak, and λ is central wavelength of the resonant peak. The Q 

factors of WGMR-1, WGMR-2, and WGMR-3 are calculated to be around 

9800, 7000, and 5800, respectively.   

The fluorescent images of three groups of Rh6G-doped WGM 

microcavities are shown in Figure 4.6. The images were taken by 

fluorescent microscopy with excitation by a mercury arc lamp with a band 
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pass filter with center wavelength of 532 nm. 

 

Figure 4.6 (a)-(c) are fluorescent images of WGMR-1, WGMR-2, and WGMR-3, 

respectively, with a thin layer of Rh6G. 

 In the fluorescent images, one can see the orange fluorescent light 

mainly distributed around the periphery of WGM microcavities for all 

three groups of microresonators, which may result from the fluorescent 

enhancement of the whispering-gallery mode. The fluorescent images also 



Optical 3D μ-Printing of WGM Microlaser Sensors for Ultrasensitive VEGF 

Detection 

97 
 

reveal that the uniformity of WGM microcavity array is good. 

 For the optical pumping test of WGM microlasers, a frequency doubled 

Nd:YAG pulse laser with center wavelength of 532 nm, pulse duration of 

10 ns, and repetition rate of 10 Hz was utilized. A filter wheel with different 

neutral density filters was installed between the pump laser and an 

objective to control the pumping power. The objective converges pumping 

light into a multi-mode optical fiber with diameter of 105 nm that was used 

to guide the light and pump the microlasers in the equatorial plane of the 

suspended microdisk. To collect the light emitted from microcavity laser, 

another multi-mode optical fiber connected with spectrometer (SpectraPro 

2750, Princeton Instruments Ltd.) was mounted and aligned in the 

equatorial plane. 

The input-output curves and laser spectra of the three groups of WGM 

microcavities were shown in Figure 4.7. As shown in Figure 4.7 (a), the 

laser threshold of WGM-1 is 0.218 nJ. The inset is its zoom-in fluorescent 

image. Figure 4.7 (b) shows the laser spectrum of WGM-1 at pump energy 

of 0.39 nJ, and the lasing mode spacing is 0.61 nm which can match with 

the diameter of WGM-1. For WGM-2, as shown in Figure 4.7 (c), the 

threshold is 1.143 nJ. The laser spectrum at pump energy of 5.12 nJ are 

shown in Figure 4.7 (d) in which the lasing mode spacing is 0.53 nm. As 

shown in Figure 4.7 (e) & (f), for WGM-3, the laser threshold is 1.232 nJ 

and lasing mode spacing is 0.36 nm.  
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Figure 4.7 (a), (c) and (e) are measured input-output curves of microlaser made bythe 

WGMR-1, WGMR-2, and WGMR-3, respectively. (b), (d), and (e) are laser spectra of 

microlaser made bythe WGMR-1, WGMR-2, and WGMR-3, respectively. 

It is known that lasing threshold of the WGM microlaser depends on 

effective mode volume and Q factor.[113] The lasing threshold of the 

microlasers could be inversely proportional to the Purcell enhancement 

factor F which can be described by [113, 220] 
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where λc represents central wavelength of lasing mode, n is refractive 

index of the microcavity, Q is quality factor, Veff denotes the effective 

mode volume of the lasing mode. For qualitative analysis of the lasing 

thresholds, the Q factors in Figure 4.5, i.e. 9800 for WGM-1, 7000 for 

WGM-2 and 5800 for WGM-3 are considered. The effective mode 

volume can be calculated according to the formula[98]   
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where (r) represents the dielectric constant, and ( )E r  denotes the 

electric field strength. For the fundamental modes of microlasers shown in 

Figure 4.4, the Veff are around 7.56103, 1.09104, and 1.89104 (λ/n)3, 

respectively. It can be seen that the microlasers with largest F have lowest 

lasing threshold, which agree well the expected trend  
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4.5 Laser-intensity-modulation based biosensors and 

integrated optofluidic biochip 

WGM microlasers can operate at low pump power and produce high-

contrast-ratio light signal which are thus suitable to develop cost-effective 

laser-intensity-modulation-based biosensors for ultra-sensitive ELISA. 

4.5.1 Design of optofluidic chip with microlasers  

A design of optofluidic chip integrated with microlaser sensor array is 

shown in Figure 4.8 (a). The fishbone-like micro channels were designed 

for integration of WGM microlasers and multimode optical fibers 

(MMOFs), in which the WGM microlasers located in the central main 

channels and MMOFs were inserted to the side channels. The microlasers 

are excited and collected by a pair of multimode optical fibers which are in 

the plane of microdisks. The optical fibers are placed perpendicularly to 

avoid that pump laser to be coupled into collecting optical fibers directly. 

As shown in the inset of Figure 4.8 (a), the surface of microlaser is 

silanized to improve binding with antibodies because of electrostatic 

attraction[221]. As different concentration of antigen will cause color 

change of enzyme’s substrate, it can be used as a detectable signal for 

biosensing. The higher concentration of antigen will lead to more optical 

loss of WGM microlasers and results in the lower laser intensity. The 

effective absorption length of the light can be increased by the high Q 
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microcavities, which thus enhances the sensitivity of the laser-intensity 

based biosensors. 

On the microfluidic part of the chip, eight inlets were designed for 

injection of antigens, antibodies, and enzyme’s substrates for sandwich 

ELISA of VEGF, see Figure 4.8 (b). The spiral microfluidic channel was 

designed for mixing color reagent for chromogenic reaction for ELISA. To 

achieve a sandwich ELISA, a surface should be prepared by binding 

capture antibody which can bind specifically with antigen, i.e. VEGF. The 

capture antibody was incubated over night at RT. For nonspecific binding 

sites, the surface is then blocked by adding Bovine Serum Albumin (BSA) 

after incubating 2 hours. After three times of standard washing procedures, 

the antigen-containing sample is applied to the surface and incubated for 2 

hours at room temperature. After removing the unbound antigen, 

biotinylated detection antibody is added to bind with antigen specifically 

so as to form the ‘sandwich’ structure, i.e. antibody-antigen-antibody. 

Followed by washing out unbound biotinylated detection antibody, 

horseradish peroxidase (HRP)-streptavidin is added to bind with 

biotinylated detection antibody with biotin based on the strong 

streptavidin-biotin interaction. After washing out unbound HRP-

streptavidin, enzyme’s substrates, i.e. TMB reagents, are added and mixed 

in the mixer of microfluidic chip, which enables the optical loss-based 

biodetection.   
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Figure 4.8 (a) Schematic of the optofluidic chip. (b) Surface functionalization of 

microlaser for VEGF detection. 

 

4.5.2 On-chip integration of microlaser  

The microfluidic chip was fabricated by the casting method with the SU-8 

mold. [222] The mold of microfluidic chip, as shown in Figure 4.9 (a), 

was also fabricated by optical -printed platform by using SU-8 2100 

photoresist. The optical microscope images of the fabricated samples are 

shown in Figure 4.9 (b). The height of microfluidic channel is around 150 

m which is compatible with the diameter of multimode optical fibers, i.e. 

125 m. 
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Figure 4.9 SU-8 mold of microfluidic chip. (a) Optically -printed microfluidic chip 

on silicon wafer. (b) to (e) are the microscope images of area i. to iv. in (a), 

respectively. The scale bars are 500 m. 

During casting process, PDMS precursor was firstly mixed with the 

curing agent (Dow corning Corporation) in the ratio of 11:1, and the 

mixture was poured into the pre-defined SU-8 mold. After degassing in the 

vacuum vessel, the mixture with mold was baked in the oven at 70 ℃ for 

2 h. After that, the cured PDMS film with defined microfluidic channel was 

peeled off from the SU-8 mold.  

As shown in Figure 4.1 (b), after spin-coating of gain material-doped 

SU-8 upon all microcavities on the glass substrate, the surface of SU-8 

WGM microcavities is modified for following processing: 
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Figure 4.10 Surface modification of SU-8 WGM microcavities for binding antibodies 

  The surface of SU-8 WGM microcavities was silanized, as shown in 

Figure 4.10, to open the epoxy rings of SU-8 by oxygen plasma treatment 

(PDC-32G-2, Harrick Plasma Inc.) at RF power of 18 W for 3 min. 

Subsequently, the treated surface was immersed into 5% v/v aqueous (3-

aminopropyl)triethoxysilane (APTES) solution in which the PH value was 

adjusted to around 4.0 for 30 min.[223] The PDMS microfluidic chip was 

treated by oxygen plasma for 3.5 min for surface activation. After that, with 

the assistance of 4 marks,s PDMS film with microfluidic channels and the 

glass substrate with microlaser array were well aligned and attached to 

form an optofluidic chip. The optofluidic chip was thereafter baked in the 

oven at 65 ℃ for 1 h, which forms irreversible binding between the PDMS 

film and the glass substrate with silanized SU-8.   
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4.5.3 Testing of biosensors for HRP  

HRP-streptavidin (Solarbio Ltd., China), a kind of enzyme, is widely used 

in the chromogenic reaction in ELISA. An enzyme’s substrate, 3,3′,5,5′-

tetramethylbenzidine (TMB, Solarbio Ltd., China), can be catalyzed by 

HRP, which will cause color-changing effect in the solution.  

The HRP-streptavidin solution with the concentration of 500 ng/mL was 

prepared by dissolving the stock solution in 0.1 M 0.2-um-filtered 

phosphate buffered solution (PBS). Then, the enzyme’s substrates, 

including 50 L color reagent TMB-A and 50 L TMB-B, were mixed 

together. After that, 20 L 500 ng/mL HRP-streptavidin solution was 

mixed with 80 L mixture of enzyme’s substrates, which is incubated in 

room temperature (RT) for 40 min before measurement of the absorbance 

spectra. 

As shown in Figure 4.11, there are two absorption peaks in the mixture of 

enzyme’s substrates and HRP-streptavidin, which confirms that the 

substrates were catalyzed by HRP. The strongest absorption peak locates at 

around 650 nm, and the absorption at around 600 nm is still strong at which 

the laser peaks locate.  
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Figure 4.11 Absorbance spectra of TMB. 

The photograph of the fabricated optofluidic chip is shown in Figure 

4.12 (a). The area of red frame is microlasers coupled with multimode 

optical fibers whose zoom-in image is shown in the inset. During the 

testing of HRP, the mixture of enzyme’s substrate was injected from inlet 

5, while the HRP-streptavidin solution was injected from inlet 6. Then the 

solution was mixed by the on-chip mixer, and flow into the sensing area 

for incubation of 40 min. As shown in Figure 4.12 (a), the laser intensity 

of the laser peak at around 603.5 nm (measured by HR4000, Ocean Optics 

Inc.) was measured in mixture of enzyme’s substrates and HRP-

streptavidin with different concentration. The pump energy was around 

0.39 nJ. It can be seen the relation is close to linear in the log-log scale, 

which confirms the Beer-Lambert law. The error bars represent standard 

deviation of laser intensity in 10 measured spectra per data point . 
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Figure 4.12 HRP sensing in optofluidic chip. (a) Photograph of fabricated optofluidic 

chip. Inset: zoom-in microscope image of the highlight area. (b) Laser intensity as a 

function of HRP concentration. Right-top and left-bottom insets are the laser spectra 

corresponding to the HRP-streptavidin concentrations of 0.625 and 1.43 ng/mL, 

respectively. 

The limit of detection (LOD) can be estimated according to LOD=3Sa/b， 

[224] where b represents the slope of linear relation, Sa is the standard 

deviation of microlaser. Here, we fit the relation between the concentration 

of analyte and laser intensity by using 

 0log( ) log( )
I

c x d
I

=  + , (4.5) 
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where I is laser intensity, I0 represents the laser intensity of lowest 

concentration of analyte in experiment, x is the concentration of analyte, c 

and d are coefficients. The LOD was estimated by using the slope of Eq. 

4.5 at I0. For laser-based HRP biosensor, the LOD was calculated to be 0.3 

ng/mL. 

 

4.5.4 Testing of biosensors for VEGF  

The on-chip ELISA procedures of VEGF were processed as mentioned in 

section 4.5.1. The chromogenic reaction in the ELISA will proceed in the 

sensing area of the optofluidic chip, in which the optical loss caused by the 

reaction is related to concentration of VEGF and will thus reduce the laser 

intensity. Figure 4.13 plots the sensing signal of on-chip ELISA microlaser 

sensor under different pumping laser energy. As shown in Figure 4.13 (a), 

the intensity of laser with the emission peak at 604.3 nm was tracked for 

detection of VEGF concentration from 65 fg/mL to 103 fg/mL when the 

pumping energy is 0.39 nJ. The relation between the laser intensity and 

VEGF concentration is linear in log-log scale. When the concentration of 

VEGF is lower, the laser intensity is higher as the VEGF binds with 

biotinylated detection antibody leading to less HRP on the surface of 

microlaser. The HRP produces the chromogenic reaction with TMB. When 

the concentration is high enough, the laser peak will become weaker and 

eventually extinct because of higher optical loss. 
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Figure 4.13 Measurement of VEGF under pump laser energy of (a) 0.39 nJ 

and (b) 0.98 nJ. Right-top and left-bottom insets in (a) are the laser spectra 

when the VEGF concentrations are 65 and 103 fg/mL, respectively. Right-top 

and left-bottom insets in (b) are the laser spectra when the VEGF 

concentrations are 103 and 6.25103 fg/mL, respectively. 

To extend the sensing range of VEGF, the pump laser energy can be 

enlarged so as to overcome the optical loss to support laser operation. As 

shown in Figure 4.13 (b), the laser peak appeared again when the pump 

energy was increased to 0.98 nJ. The sensing range was extended up to 
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6.75  103 fg/mL. The LOD of the microlaser biosensor for VEGF under 

pumping energy of 0.39 nJ was calculated to be 17.8 fg/mL.  

TABLE 4.1 Comparison of analytical performance of immune-based 

biosensor for detection of VEGF. 

Sensors 

 

Detection scheme LOD Ref. 

SEARS-Microdroplet Sensor Magnetic-field amplified 

SERS 

1 fg/mL 

 

[225] 

1D Photonic Crystal Sensor Bloch surface wave 

 

650 fg/mL 

 

[226] 

Paper-based Sensor 

 

Colorimetric determination 30 fg/mL 

 

[227] 

Nanostructured Microfluidic 

Array Sensor 

Au nanoparticle 

immunoarray 

10 fg/mL 

 

[228] 

Hollow Gold Nanosphere 

Sensor 

SERS 1-10 pg/mL 

 

[229] 

Polymer WGM Microlaser 

Sensor 

WGM microlaser intensity 

 

17.8 fg/mL 

 

this work 

 

Notably, the LOD of this work is comparable to the Surface Enhanced 

Raman Scattering (SEARS)-Microdroplet sensor whose LOD is 1 fg/mL. 

However, as only polymer material and portable spectrometer were used 

in this work, the cost of WGML based opto-bio-microsystem was much 

lower than SEARS biosensor, which provide a promising cost-effective 

devices for portable poin-of-care diagnostics. 

 

4.6 Summary 

In summary, low-threshold WGM microlaser array was fabricated and 

integrated into a microfluidic chip to develop an optofluidic chip for 
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ultrasensitive detection of VEGF. With the improved optical μ-printing 

platform, the suspended microdisks array were fabricated whose Q factor 

can reach 9800. A thin layer of SU-8 resin with gain media was spin-coated 

on the microdisks so as to support low-threshold laser oscillation in which 

the threshold as low as 0.218 nJ. The low-threshold microlasers were 

integrated into a microfluidic chip to achieve a platform for laser-based 

ELISA detection of VEGF. Compared with commercial ELISA kit with 

sensitivity of 5 pg/mL, highest sensitive microlaser biosensor of VEGF has 

the LOD of 17.8 fg/mL. Such a low-cost WGM microlaser-based biochip 

shows great potential in the applications of ultrasensitive chromogenic 

detection of biomarkers. 
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Chapter 5   

Direct μ-Printing of Cellular-scale 

Microscaffold Arrays for 3D Cell Culture 

5.1 Introduction 

The production of 3D microstructures for mimicking realistic in vivo 

conditions was first demonstrated by Yamada et al[34]. In his work, cell-

derived 3D matrices were utilized in cell culture, which demonstrates 

narrower integrin usage and better cell biological activities compared with 

2D cell culture. Although the matrices based on fibrous collagen can 

recapitulate the physiologically related 3D environment in vitro[230, 231], 

cell shape cannot be controlled by the matrices whose mechanical property 

tend to be altered during cell culture[232].  Therefore, for bioprinted 

constructs with composition heterogeneity[233], three-dimensional 

fabrication technologies based on droplet (e.g., inkjet bioprinting[234, 235], 

microextrusion bioprinting[236, 237], and laser-assisted bioprinting[238, 

239]) have been proposed to generate 3D  environments for tissue and 

organ engineering[13]. Although the droplet-based bioprinter offer the 

affordable and versatile fabricating methods with reasonable resolution for 

biological constructs[14] , it is challenging to print porous or suspended 
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structures with controlled topographies[240]. In addition, the other two 

limitations of droplet-based bioprinter, poor assembly to the substrate and 

inability to fabricate of structurally well-integrated architectures[241], 

make researcher seek fabricating methods for detailed biological constructs. 

Due to the submicrometer feature size and precision[168], the two-photon 

absorption based direct laser writing is capable to fabricate the 

standardized and controlled 3D scaffolds for the investigation of cell 

behaviors[242]. Via two-photon polymerization(i.e., non-linear-optical 

process happens in very focus of laser beam[45]), an extensive range of 

characteristic microstructures were fabricated for investigation of  cell 

mechanics[44, 142, 243], cell morphology[151, 152, 244], and cell 

migration[245-247]. However, the two-photon polymerization based 

fabricating technology exhibits relatively low efficiency on fabrication of 

large quantities of detailed structures, since only one submicrometer-scale 

point in the bulk of photoresist can be polymerized at one time[45]. It takes 

even more time when the biomaterials with low photosensitivity are 

utilized to fabricate detailed 3D structures. Moreover, for biomaterials, the 

two-photon absorption cross-section of photoinitiators is typically small, 

which requires both high concentration of the photoinitiators and high laser 

power during photopolymerization [152, 248]. The requirement will limit 

the biocompatibility of the fabricating process [249]. 

  In this chapter, we present a new optical 3D bioprinting technology 
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which integrates dynamic optical projection stereolithography (DOPsL) 

with machine vision metrology. An optical 3D µ-printing technology was 

developed to use a polymer material (SU-8 resin) with good chemical 

resistance and mechanical property to fabricate a series of 3D micro cubic 

microscaffolds. The sizes of the cubic microscaffolds match with the size 

of cells, which enable us to investigate the cell behavior in engineered 3D 

microenvironment. What’s more, an in-situ printing technology was 

developed so as to pattern the bioactive material, i.e. gelatin methacrylate 

(GelMA), on the bioinert suspended frames, which can influence the cell 

spreading geometrically. The two-material based optical μ-printing 

technology enable to fabricate biomimetic 3D microstrucutres with 

engineered geometry and materials for study on controllable cell spreading.  

5.2 Fabrication of cellular-scale microscaffold arrays 

Figure 5.1 shows a schematic representation of the optical µ-bioprinting 

platform based on a high-speed spatial light modulator, i.e. digital 

micromirror device. The CAD model of designed scaffolds was sliced into 

100 layers which flowed into DMD chip. Illuminated by the collimated UV 

light, the DMD chip dynamically reflected the light with certain patterns 

according to the data of layers. The key contributor of high efficiency of 

DOPsL is the DMD chip which contains a million of micro mirrors and can 

switch the whole exposing pattern within 30 μs. The patterns were 
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projected upon the photoresist which is spin-coated on glass slice through 

the projection optics. The projection optics here was carefully adjusted and 

 

Figure 5.1 (a) Schematic illustrations of the DMD based optical µ-bioprinting 

technology (b) Process of optical in-situ bioprinting: (i) exposure of SU-8 photoresist 

by UV light with designed pattern; (ii) the fabricated architecture array coated with 

biomaterials; (iii) in-situ printed biomaterials on specific area of architectures; (iv) 

controlled cell culture study on the modified architectures. 

can achieve 600-nm resolution which is sufficient for fabrication of 

scaffolds and for in-situ modification. In order to fabricate arrays of 

architectures, XY-Nanopositioning stage was utilized to locate the 

exposure area and realized seamless pattern-stitching technique. For right 

exposing position in the process of in-situ modification, CCD camera can 

assist to trace the location of fabricated structures. The duration of UV 

exposure is 55 seconds in fabrication process, which is much faster than 

two-photon polymerization based direct laser writing. 

  To prepare SU-8 photoresist, 4-((2-hydroxytetradecyl)oxy)phenyl)-
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phenyliodoniu (PC-2506) and Tributylamine (TBA) are used as the photo 

initiator and inhibitor, respectively. To control the penetration depth of UV 

light, 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl1-phenylethyl)phenol 

(TINUVIN 234) was used as light absorber agent. For preparation of 

photosensitive SU-8 resin, EPON SU-8 resin and above-mentioned 

chemical reagents was dissolved in a weight ratio of SU-8: PC-2506: TBA: 

TINUVIN 234 = 100: 2.5: 0.14: 0.2. 

 

Figure 5.2 SEM images of the fabricated 3D microstructures. (a) Hong Kong 

Bauhinias. (b) Uplifted micro spider web. (c) 3D cubic microscaffolds. (b), (d) and (f) 

are zoom-in images of (a), (b) and (c), respectively. 
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Before fabrication of bioinert 3D microstructures, a thin layer of SU-8 

(~1 m) was spin-coated and cured upon a clean glass slice as a buffer 

layer, which improves the adhesion between glass slice and polymer 

microscaffolds. The thickness of buffer layer is around 1 m. A thick layer 

of SU-8 with 40 m was spin-coated on buffer layer and was soft baked at 

65 °C for 5 minutes and 95 °C for 15 minutes to remove solvent. When the 

sample was cooled down to room temperature, as shown in Fig. 1(b), UV 

light source (159.12 mW/cm2, 55s) was utilized during the exposing 

process. After exposure, the sample was post baked at 65 °C for 5 minutes 

and 95 °C for 20 minutes and developed in propyleneglycol 

monomethylether acetate (PGMEA) for 13 minutes. 

 To demonstrate the versatility of the system, besides arrays of 

microscaffolds, we fabricated Hong Kong Orchid and cobweb-like 

structures (Figure 5.2).  

5.2.1 Design and fabrication of cellular-scale microscaffold 

arrays 

The microscaffolds comprised flatten beams which were arranged as a 

cube-like architecture (Figure 5.3). We are interested in the influence of 

dimension of cubicle on the cell behavior. 
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Figure 5.3 The designed structures and the corresponding SEM images of the 3D 

cubic microscaffolds. Scale bar = 50 m. 

 In the first and second scaffolds, as shown in Figure 5.3 (a) & (b), the 

length of side of hole are quad and double comparing the third one, so that 

the cell will stretch more on the scaffolds. In Figure 5.3 (c), The scaffolds 

with one smallest hole (2222 m) were carefully designed to match 

dimension of one cell. For another set of scaffolds, as shown in Figure 5.3 

(d) & (e), cubic microscaffolds with different combination were fabricated, 

which can be used for study of cell-cell interaction.  
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Figure 5.4 The laser scanning confocal images of microstructures. The height of 

fabricated microstructures from (a) to (f) is 41.88m, 42.75m, 41.58m, 42.49m, 

40.77m, and 41.66m respectively. 

The area of single hole of fabricated scaffolds with 44 holes, 22 holes 

and 11 hole is 2222 μm, 4444 μm, and 8888 μm, respectively. The 

size of inner opening support cells with different extend of spreading. The 

different combinations mode (44 and 22) provides 3D environments by 
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which cell-cell interaction can be studied. Due to proximity effects, the 

overhanging beams shrink, which can be fixed by adjusting the 3D models. 

The surfaces of fabricated architectures are smooth. It is shown that the 

beams of cube-like microscaffolds are not very flat, which is caused by 

insufficient soft bake of SU-8 photoresist. Because of insufficient soft bake, 

solvent is still in the photoresist and make it easy to be distorted. The design 

of pillars’ height is also 40 μm, which is the same as experimental groups 

(Figure 5.4). In printing process of both microscaffolds and micropillars, 

SU-8 photoresist was spin-coated on glass slice in 4200 rpm for 40s, so 

that thickness of photoresist can be control in around 40 μm. Laser 

scanning confocal images shows that the height of fabricated 

microstructures is closed to the design.  

5.2.2 Cell culture on micoscaffolds without selective 

bioactivation 

For improvement of cell adhesion and attachment on the SU-8 

microscaffolds, a universally adhesive polydopamine layer was coated on 

the surface the microscaffolds. The fabricated microscaffolds were 

immersed in dopamine solution in which Tris-HCl buffer with pH = 8.5 

was added in 1 mg/ml dopamine and incubated for 4 h. Then the 

microscaffolds were rinsed with phosphate buffer saline (PBS), and 

sterilized by UV irradiation before the cell experiment. 
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The 40 μm-height microscaffolds can prevent the cells that spread on the 

overhanging beams of the microscaffolds form adhering to the underlying 

substrate. However, in the “no-beam” group, especially in the pillars array 

with large spacing, the cells can hardly suspend among the top of the pillars, 

and hence indeed adhered on the surface of underlying substrates. This 

phenomenon demonstrates the essential of the overhanging beams. 

Meanwhile, we also noticed that there were indeed some cells adhered to 

the space among the microscaffolds on bottom of the substrates, but these 

cells have already been excluded from the analysis and statistics, and 

thereby would not affect the final results. 
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Figure 5.5 Fluorescent images of the hMSCs cultured in the 3D cubic microscaffolds 

with different cubicle sizes: (a) 8888 μm2 (“M88”), (b) 4444 μm2 (“M44”), and (c) 

2222 μm2 (“M22”) for 24 h. (d) Average cell shape factors and (e) average cell area 

of hMSCs cultured in the microscaffolds. *p < 0.05, **p < 0.01, ***p < 0.001. The 

error bars are based on observation over 20 cells per group. The cells were 

fluorescently stained by antibodies against YAP and goat anti-mouse IgG 

containing Alexa488 for YAP observation, by phalloidin-TRITC for 

cytoskeleton, and by (4′,6-Diamidino-2-phenylindole) DAPI for nuclei. Scale bar 

= 50 μm. 

Figure 5.5 (a)-(c) shows that the fluorescent images of hMSCs were 

seeded on the multi-cubic microscaffolds. One can see that the cells only 

attached on and spread over a single opening rather than spread across it. 



Direct μ-Printing of Cellular-scale Microscaffold Arrays for 3D Cell Culture 

123 
 

In Figure 5.5 (d) and (e), it is shown that the extent of cell spread on multi-

cubic microscaffolds shows similar trend with those in single-cubic 

microscaffolds. To reveal development of the cell cytoskeletal tension, we 

performed the immunostaining against yes-associated protein (YAP) which 

is a main mechanotransduction factor. It can be seen in Figure 5.5 that the 

fluorescent against YAP is brighter when the cell is on the scaffolds with 

larger opening, which indicate the cell cytoskeletal tension is larger. The 

cell shape factor is given by f = 4πa/P2 where a is area and P is perimeter. 

The smaller f of cells in larger microscaffolds indicates that the cells tend 

to spread alone the beam of scaffolds instead of maintaining the initially 

circular shape. The activity of YAP is also reported to be closely involved 

in stem cell differentiations. In particular, osteogenic differentiation of 

stem cells has been shown to be positively correlated with YAP activity, 

which indicates that the microscaffolds with larger openings can enhance 

osteogenesis during cell differentiation. 

5.3 Optical patterning of GelMA 

Gelatin has been extensively used as scaffold material for tissue 

engineering due to its good biocompatibility and bioactivity, such as the 

support on cell adhesion via its RGD tripeptide sequence [250]. The photo-

crosslinkable gelatin methacrylate (GelMA) is a popular biomaterial for 

3D bioprinting. To synthesize gelatin methacrylate, 100 mL PBS was 
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utilized to dissolved 10 g gelatin (type A) at 50 °C, and followed by adding 

Methacrylic anhydride (12 mL). The reaction between the two materials 

proceed for for 4 h at 50 °C under continuously stirring. It took the resulting 

mixture 6 days to dialyze against DI water, and then the mixture was then 

lyophilized. The degree of substitution determined by 1H NMR was 3.17 × 

10-4 mol/g.  

 

Figure 5.6 Optical microscopic image (a) and laser-scanning confocal 3D image (b) 

of GelMA fish. 

For preparation of photo-crosslinkable 13% GelMA solution, 1 mL 

deionized (DI) water was utilized to dissolve 0.2 g GelMA at 35 °C for 6 

hours. Then 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) 0.0045g, 

acrylic acid (AA) 0.03g, Irgacure 2959 0.02g and 2-hydroxy-4-

methoxybenzophenon-5-sulfonic acid (HMBS) 0.005g were mixed within 

the GelMA solution as free-radical quencher, solvent of Irgacure 2959, 

free-radical generator, and UV absorber, respectively, and stirred at 35 °C 
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for 12 hours. 

Figure 5.6 shows fishes made by GelMA. By applying different exposure 

dose, the height of the fishes from left to right, as shown in Figure 5.6, can 

be tailored as 39.5, 44, and 47.7 μm, respectively. 

5.4 Selectively bioactivated microscaffold for cell 

culture 

5.4.1 In-situ printing of selected-bioactivated microscaffold 

As shown in Figure 5.1 (b), for study on guided cell adhesion and 

spreading, the surfaces of the 3D cubic microscaffolds were selectively 

printed with the photo-crosslinable GelMA by the optical µ-printing 

technology.  

Because of the hydrophobicity and low surface energy of the surface of 

SU-8, the bioactive material is difficult to be coated on surface of SU-8 3D 

microstructures. As a result, for enhancement of adhesion of GelMA on 

surface of SU-8, oxygen plasma treatment was utilized. The dose of oxygen 

plasma treatment was carefully optimized, because the excessive treatment 

will reduce the discrepancy of the cell-adhesion properties between the SU-

8 microstructures and GelMA patterns [251]. O2 plasma cleaner (PDC-

32G-2, Harrick Plasma.) was utilized in the treatment of SU-8 

microstructures. The fabricated SU-8 scaffolds were treated at low, middle, 
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and high-radio-frequency power for 10 s each time. In Figure 5.1b (ii), 

prepared GelMA was dropped on the oxygen-plasma-treated 

microstructures through a pipette. With the help of the integrated machine-

vision metrology and the high-precision motorized stage, the ultrafine 

alignment can be realized, which enables us to project optical patterns on 

the small targets of the microstructures precisely. For polymerization of 

bioactive GelMA only on the top surface of the suspended beams of the 

microscaffolds, an objective with short focal depth (~10 m) was utilized 

in the projection optics of the setup.  

 

Figure 5.7 SEM images of the 3D cubic microscaffolds with in-situ printed GelMA 

patterns (highlighted in blue). Scale bar = 50 m. 

Figure 5.7 shows a series of patterns of GelMA (highlighted in blue) 
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which were printed on the top surface of the SU-8 cubic microscaffolds. 

The total time of UV exposure was 30 s with the UV light intensity of 

133.96 mW/cm2. After exposure process, the samples were developed in 

DI water at 33 °C for 30 min. 

5.4.2 Microscaffold for controlled cell behavior 

 

Figure 5.8 SEM images of the cubic microscaffolds with in-situ printed GelMA 

(highlighted in blue) and the fluorescent staining of f-actin (red) and nuclei (blue) of 

the hMSCs cultured in the corresponding microscaffolds (gelation shown as the 

dashed area). Scale bar = 50 m. 

The conventional universal polydopamine coating is short of capability 

of spatial control of cell spreading, and cell spread randomly on the 

microscaffolds. However, the in-situ printing technology enables to control 
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the specific cell attachment on 3D environment precisely and consequent 

cell spreading behaviors. The microscaffolds (without polydopamine 

coating) with in-situ printed GelMA patterns were then used to seed 

hMSCs. On those microstructures, cells barely attached to the uncoating 

SU-8 surface. On contrary, the cell demonstrated the preference on 

adhesion to and spread along the printed GelMA pattern.  

As shown in Figure 5.8, the cell can distinguish the bioactive pattern 

and bioinert microscaffold, and spread along the bioactive patterns upon 

3D microstructures. In Figure 5.8 (a), the cell spread across the corner of 

the fabricated cubic microscaffold in which the two neighboring suspended 

microbeams of the microscaffolds were printed an L-shape GelMA pattern. 

Confirmed by the confocal scanning of fluorescent cell staining, cell 

adhered to the overhanging microbeams on which were coated with 

GelMA at ends of the cell. Stretched by the GelMA patterns, cell suspended 

the central part over the internal opening of the cubic microscaffold. In 

Figure 5.8 (b), all four suspended beams of the fabricated microscaffold 

were printed with GelMA stripe. Cell was controlled to adhere to all four 

suspended beams with GelMA strip and spread over the entire opening of 

the cubic microscaffold. The actin cytoskeleton was fluorescently 

stained and monitored by laser scanning confocal microscopy to show 

the morphology of cell spreading on microscaffold. In Figure 5.8 (b), 

brighter fluorescent light of f-actin indicates that the cell on microscaffold 
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with square-shape bioactive pattern has higher spreading level. Notably, 

the optical printed 3D cubic microscaffolds with presented bio-actively 

geometric cues can mimic the natural structure of bone lacunae, which thus 

provides a very promising platform to investigate hMSCs behaviors for 

bone research. 

5.4.3 Discussion 

hMSCs were seeded onto the polydopamine coated microscaffolds at the 

density of 20 000 cells/cm2, which were continuously monitored for 24 h. 

After seeding, some cells were trapped by the SU-8 microscaffolds at first. 

After approximately 0.5 h, the cells gradually adhere to the beams of the 

3D cubic microscaffolds. Although, for enhancement of cell adhesion, the 

entire environment was coated with polydopamine, it is interesting to note 

that the cells showed the preference on adhesion to the suspended 

microbeams instead of the pillars of the 3D microscaffold. The cells spread 

and elongated along the suspended beams. It took around 3 h to reach an 

equilibrium of the cell morphology after cell seeding. 

For control experiments group, a series of micropillars array, as shown 

in Figure 5.4 (b), (d) and (f), with same spacing and height of 

corresponding 3D microscaffolds. In the micropillars array, cells spread 

randomly on the surface of underlying substrates, rather than spread on 

those pillars or in the space between the pillars, which indicates that the 
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fabricated 3D microscaffolds with suspended beams are critical for cell 

adhesion and spreading on 3D microenvironment.  

 

Figure 5.9 ALP staining of the hMSCs cultured in single-cubicle 3D microscaffolds 

(a) and multi-cubic 3D microscaffolds (b) after osteogenic induction for 7 d, scale bar 

= 50 m. (c) Average ALP activity of the hMSCs; **p < 0.01, ***p < 0.001. 

  It is found that the hMSCs in 3D microscaffolds with larger opening size 

show larger tendency of differentiation to osteogenesis (Figure 5.9), which 

can be deduced from the staining against alkaline phosphatase (ALP) 

which is a key marker of osteogenesis and biomineralization. 

5.5 Summary 

By using the novel 3D bio-fabrication platform, we demonstrated that SU-

8 microscaffolds array with in-situ printed gelatin layer were fabricated for 

controlled cell culture. Due to the versatility and high efficiency of DOPsL, 

many large-area complex 3D architectures can be fabricated with 

photosensitive material in relatively short time. For investigation of 

interaction between cell morphology and 3D environment, two groups of 

microscaffolds with various dimension and combination were fabricated 
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and then immersed into solution of polydopamine for non-specific surface 

modification. Further, with imaging system and nanopositioner of DOPsL, 

we in-situ printed GelMA on top of fabricated suspended scaffolds, which 

guided cell to spread in certain shape according to patterns of the gelatin. 

Although this work is just the first step in understanding stem cell 

behaviors in 3D environment, we believe that the strategy presented here 

opens a new route towards this goal. 
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Chapter 6    

Conclusions and Future Outlook 

6.1 Conclusions 

In this thesis, two kinds of micro-optics devices, including top-lensed 

microlens array and WGM microcavity laser sensors, and a new kind of 

cellular-scale 3D microscaffolds have been developed for bio-

microsystems. Thanks to our custom-built DLP-based optical μ-printing 

technology, which has the advantages including flexibility in pattern design, 

fabrication of 3D microstructures, and relatively low cost, we developed a 

new pathway in fabrication of micro-optics devices and 3D microstructures. 

  Firstly, the top-lensed microlens arrays were fabricated by custom-built 

DLP-based optical μ-printing technology. We investigated the relation 

between the UV exposure dose and cured depth of the photopolymer, 

which can be used to correct the bitmap of exposure scheme of the designed 

microlens. It was experimentally demonstrated that various microlens 

arrays with engineered focal structures were fabricated. To achieve the 

elongated focal depth, the top-lensed microlenses with hyperbolical upper 

lenses and oblate ellipsoidal bottom lenses were fabricated. By further 

increasing the difference of the curvature between the upper lenses and 
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bottom lenses, the focal structure containing two distinct foci has been 

demonstrated. Due to the great capabilities in advanced light beam shaping 

or focusing, the TLMLs have significant potentials in micro-optical 

applications, such as optical storage, and in bio-microsystems, such as on-

chip real-time cell counting. 

  Secondly, polymer optical WGM microlaser sensors were fabricated by 

using custom-built optical μ-printing technology and integrated into an 

optofluidic chip for sensing of biomarkers. The WGM microcavities of 

suspended microdisk were fabricated according to corrected bitmaps. The 

highest Q factor can reach around 104. The fabricated optical WGM 

microcavites were then deposited with a gain layer so as to support low-

threshold lasing operation in visible wavelength. The microlasers were 

integrated into an optofluidic chip which can provide a platform for ELISA 

detection of VEGF. The microlaser can reduce the detection limit of VEGF 

to 17.8 fg/mL.  

  Lastly, the custom-built optical in-situ μ-printing technology was used 

to in-situ print bioactive patterns on the fabricated 3D microscaffolds with 

suspended beams. The single-cubical 3D microscaffolds with various 

opening areas were fabricated, which were used for investigation on cell 

spreading and differentiation. The results review that the 3D 

microscaffolds with larger opening area can enable smaller cell spreading 

factor and thus guide cell in osteogenic differentiation. Then the 3D 
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microscaffolds with different combinations were also fabricated, which 

shows that the cell have same tendency in spreading and differentiation 

with the single-cubical microscaffolds. The bioactive material (i.e. GelMA) 

can be selectively patterned on the fabricated bioinert 3D microscaffolds, 

on which the cell spreading was guided by the bioactive pattern. Such 3D 

cubical microscafolds with precisely presented bioactive cues mimic the 

natural structure of bone lacunae, which thus provides a very promising 

platform to investigate hMSC behaviors for bone research. 

6.2 Future outlook 

In this thesis, two kinds of the micro-optics devices with miniaturized 

dimension and 3D microscaffolds with in-situ printed patterns have been 

successfully fabricated. Several outlooks for future research are as below: 

1) With the advantages in miniaturization and engineered focal structure, 

the microlens arrays has great potential in integration of bio-systems. 

By further tailoring the profile of lens-on-lens structures, the lenses 

with two or more distinct foci can be achieved, which can be 

integrated into the microfluidic chip with multi-layer channels for 

ultra-compact high throughput flow cytometry. Also, the microlens 

with short focal depth can be fabricated by stimulus responsive 

materials, which can be integrated into the microfluidic chip for cost-

effective intensity-modulation based sensors by tracing the shift of 



Conclusions and Future Outlook 

135 
 

the focus. 

2) The WGM microcavities laser sensor can be improved by enhanced 

quality factors, advanced gain material, and coupled microdisks. As 

the Q factor of the fabricated optical microcavities is highly related 

to the dimension of the microdisks, which should be corresponding 

to the scattering loss on the surface. To improve the Q factor, the 

material which is easy to be reflowed thermally can be coated on the 

surface, such as PMMA. The advanced gain material, such as 

perovskite and aggregation-induced-emission materials, can be used 

in WGM microcavity laser with the higher photostability and sensing 

capability. For further improved sensitivity of biomolecules, the 

coupled microdisks with a doped and a undoped microcavities can be 

used for suppressing lasing mode, which can be used for ultrahigh 

sensitive biosensing application. Furthermore, WGMLs can be 

functionalized by using multiple antibodies through microfluidics. 

Therefore, the optofluidic chip can be used to simultaneously detect 

multiple biomolecules, such as interleukin-6, tumor necrosis factor 

and interferon, from one liquid sample. 

3) The microscaffolds can be further improved in complex 

microstructures and novel biomaterials. Various geometries have 

different effect on cell behavior, as the cell shape factor will be 

different on such geometries. Moreover, through layer-by-layer 
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exposure, the complex 3D matrix can be created, which can mimic 

the bone structures and be used in in-vivo studies for tissue 

engineering and transplant organ. The novel biomaterial on 

microstructures can assist guided cell behavior, such as poly(L-lactic 

acid), poly(-caprolactone) and polyphosphoesters. The fabricated 

3D microscaffolds arrays can also be integrated into a biochip for 

investigation of organ-on-chip.  
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