

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

EFFECTIVE REPRESENTATION LEARNING
FOR GRAPH-STRUCTURED DATA WITH

ADVERSARIAL LEARNING

QUANYU DAI
PhD

The Hong Kong Polytechnic University
2020

WONNIU
Line

The Hong Kong Polytechnic University

Department of Computing

Effective Representation Learning for

Graph-Structured Data with Adversarial Learning

Quanyu DAI

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

March 2020

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Quanyu DAI
(Name of student)

ii

Abstract

Graph-structured data is widely existed in real-world applications such as social net-

works, paper citation networks and protein-protein interaction networks. It encodes

very rich information about data entities in graph structures through the complicated

connections among them. How to extract such abundant information is an important

and challenging problem which has attracted a great amount of attention from both

academia and industry. Traditional methods rely on hand-engineered features which

are both ineffective and inefficient. In recent years, representation learning emerges

as the most promising way for modeling graph-structured data, which aims to learn

low-dimensional vectors for nodes in the graph. The learned node representations can

further be utilized to facilitate downstream learning tasks such as network analysis

(e.g., node classification and link prediction), recommendation, and fraud detection.

This technique is called graph representation learning or network embedding in the

literature.

In this thesis, we aim to learn effective node representations for both plain net-

works and attributed networks with the assistance of adversarial learning including

adversarial learning principle based on generative adversarial networks (GANs) and

adversarial training methods from adversarial machine learning.

For plain network embedding, we design regularization methods and sampling

method to enhance embedding learning. Specifically, we first propose a global regu-

larization method for deep embedding models via GANs, of which a prior distribution

is imposed on embedding vectors to help alleviate overfitting. Then, we introduce a

succinct and effective local regularization method, namely adversarial training, for

negative sampling based embedding models such as DeepWalk, LINE and node2vec,

iii

which can improve both model robustness and generalization performance. Fur-

thermore, we propose an adversarial ranking network embedding model to preserve

node similarity rankings in representations, which unifies a triplet sampling phase

and an embedding learning phase with the framework of GANs. It can encour-

age the generation of more difficult and relevant negative nodes for given positive

target-context node pairs to improve representation learning. For attributed network

embedding, we focus on a challenging cross-network learning problem that aims to

transfer the label information from an attributed source network to an attributed

target network. Specifically, we propose a novel network transfer learning framework

AdaGCN via adversarial domain adaptation and graph convolution, which enables

the learning of both class discriminative and domain invariant node representations

and thus facilitates cross-network node classification. Extensive empirical evaluations

on benchmark datasets demonstrate the effectiveness of the proposed methods.

iv

Publications Arising from the Thesis

1. Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang, “Adversarial Network

Embedding”, Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence (AAAI), New Orleans, Louisiana, USA, February 2-7, 2018.

2. Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li and Dan Wang, “Adversarial

Training Methods for Network Embedding”, The World Wide Web Conference

(WWW), San Francisco, CA, USA, May 13-17, 2019.

3. Quanyu Dai, Qiang Li, Liang Zhang and Dan Wang, “Ranking Network

Embedding via Adversarial Learning”, Advances in Knowledge Discovery and

Data Mining - 23rd Pacific-Asia Conference (PAKDD), Macau, China, April

14-17, 2019.

4. Quanyu Dai, Xiao Shen, Xiao-Ming Wu and Dan Wang, “Network Transfer

Learning via Adversarial Domain Adaptation with Graph Convolution”, IEEE

Transactions on Knowledge and Data Engineering (TKDE), Under Review.

5. Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi, “Net-

work Together: Node Classification via Cross-network Deep Network Embed-

ding”, IEEE Transactions on Neural Networks and Learning Systems (TNNL-

S), 2019. To appear.

6. Zimu Zheng, Yuqi Wang, Quanyu Dai, Huadi Zheng and Dan Wang, “Metadata-

driven Task Relation Discovery for Multi-task Learning”, The 28th Internation-

al Joint Conference on Artificial Intelligence (IJCAI), Macao, China, August

10-16, 2019.

7. Yikai Wang, Liang Zhang, Quanyu Dai, Fuchun Sun, Bo Zhang, Yang He,

Weipeng Yan and Yongjun Bao, “A Regularized Adversarial Sampling Strat-

egy for CTR Prediction with Time-aware Attention Embedding”, The 28th

ACM International Conference on Information and Knowledge Management

(CIKM), Beijing, China, November 03-07, 2019.

v

8. Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi, “Ad-

versarial Deep Network Embedding for Cross-network Node Classification”,

Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence

(AAAI), New York, USA, February 7-12, 2020.

9. Junyang Chen, Zhiguo Gong, Quanyu Dai, Chunyuan Yuan, and Weiwen

Liu, “Adversarial Learning for Overlapping Community Detection and Network

Embedding”, The 24th European Conference on Artificial Intelligence (ECAI),

2020.

10. Yumin Su, Liang Zhang, Quanyu Dai, Bo Zhang, Jinyao Yan, Sulong Xu, Dan

Wang, Yang He, Yongjun Bao and Weipeng Yan., “An attention-based model

for conversion rate prediction with delayed feedback via post-click calibration”,

The 29th International Joint Conference on Artificial Intelligence (IJCAI),

Yokohama, Japan, July 11-17, 2020.

vi

Acknowledgements

This might be the most difficult part to write in the whole thesis, since I have so much

to say such as my expectations, my disappointments, my sadnesses, bewilderments

and joys all through these years but I cannot think of any perfect words to express

them. I decide to retrospect and taste all those feelings again myself in some rainy

nights. Here, there is only one word for myself: be patient, positive, and dedicated.

It is not easy to purse a Ph.D. degree. I cannot achieve what I have without the

selfless encouragements and supports from my colleagues, my friends and my family.

First, I would like to express my sincere gratitude to my colleagues who helped

me so much in my research. Dr. Dan Wang, my supervisor, has taught me a lot

during the past few years. I can purse my own research interests because of his kind

tolerance, patience and wise guidance. Dr. Liang Zhang shared with me a lot about

his experiences in research and gave me many valuable advice during my postgrad-

uate years. Dr. Qiang Li not only inspired me a lot with his solid and profound

professional knowledge, but also helped improve my research writings by his own

examples during our collaborations. Dr. Xiao-Ming Wu gave me many encourage-

ments at critical times, impressed me with her rigorous attitude of scholarship, and

taught me a lot with her precious experiences selflessly. The collaborations with Dr.

Xiao Shen, Dr. Jian Tang, Dr. Zimu Zheng and Mr. Yikai Wang also benefited me

a lot.

Second, I would like to express my heartfelt thanks to my friends. Dr. Wenshu

Zeng shared with me a lot about his feelings, understandings, ideas and imaginations

of research and life. The times spent with Mr. Tianxian Yang and Mr. Runjie Tan

are filled with laughters. The times spent in the fitness room or baseketball court

vii

with my friends such as Dr. Yu Lei, Dr. Lei Han, Dr. Chuang Hu, Dr. Shuhang

Gu, Dr. Bo Tang, Dr. Wenjian Xu, Dr. Shang Gao and Mr. Yu An Huang are so

relaxed. In addition, Dr. Kunfeng Lai, Dr. Yi Yuan, Dr. Abraham Hang-Yat Lam,

Dr. Wengen Li, Dr. Lei Xue, Dr. Tsz Nam Chan, Dr. Linchuan Xu, Dr. Ziqiang

Cao, Dr. Zhitao Wang, Dr. Jiaxing Shen, Dr. Hui Li, Mr. Kang Xu, Mr. Jianliang

Gao, Dr. Bo Sun and many others also gave me many kind helps.

Finally and most importantly, I would like to express my deepest gratitude to

my dear families including my mother, my sisiters, my brother, my little nephew and

my brother-in-law for their unconditional love and support.

I respectfully dedicate this thesis to memory of my father.

viii

Table of Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 5

1.2 Thesis Overview and Contributions 7

2 Literature Review 11

2.1 Plain Network Embedding . 11

2.1.1 Structure Preserving Network Embedding 12

2.1.2 Property Preserving Network Embedding 14

2.1.3 Efficient Network Embedding 14

2.2 Attributed Network Embedding . 16

2.2.1 Unsupervised Attributed Network Embedding 16

2.2.2 Semi-Supervised Attributed Network Embedding 17

2.3 Multi-Network Embedding . 17

3 Network Embedding with Prior Regularization via Adversarial Learn-
ing 19

3.1 Introduction . 20

3.2 Adversarial Network Embedding . 22

3.2.1 Problem Definition and Notations 23

3.2.2 An Overview of the Framework 23

ix

3.2.3 Graph Preprocessing . 24

3.2.4 Structure Preserving Model 25

3.2.5 Adversarial Learning . 27

3.2.6 Algorithm . 28

3.3 Experiments . 29

3.3.1 Experiment Setup . 29

3.3.2 Network Visualization . 31

3.3.3 Node Classification . 33

3.3.4 Model Sensitivity . 35

3.4 Related Work . 36

3.4.1 Network Embedding . 36

3.4.2 Generative Adversarial Networks 37

3.5 Conclusion . 38

4 Adversarial Training Methods for Network Embedding 39

4.1 Introduction . 40

4.2 Background . 43

4.2.1 Framework of Network Embedding 43

4.2.2 Adversarial Training . 45

4.2.3 Motivation . 47

4.3 Proposed Methods . 48

4.3.1 Adversarial Training DeepWalk 49

4.3.2 Interpretable Adversarial Training DeepWalk 52

4.4 Experiments . 55

4.4.1 Experiment Setup . 55

4.4.2 Impact of Adversarial Training Regularization 57

x

4.4.3 Link Prediction . 62

4.4.4 Node Classification . 65

4.4.5 Parameter Sensitivity . 67

4.5 Related Work . 68

4.6 Conclusion . 71

5 Ranking Network Embedding via Adversarial Learning 73

5.1 Introduction . 74

5.2 RNE: Ranking Network Embedding 76

5.2.1 Framework . 76

5.2.2 Vanilla Ranking Network Embedding 77

5.2.3 Adversarial Ranking Network Embedding 78

5.3 Experiments . 83

5.3.1 Experiment Setup . 83

5.3.2 Network Visualization . 84

5.3.3 Link Prediction . 85

5.3.4 Node Classification . 86

5.4 Related Work . 87

5.5 Conclusion . 88

6 Network Transfer Learning via Adversarial Domain Adaptation with
Graph Convolution 89

6.1 Introduction . 90

6.2 Problem Definition . 94

6.3 Proposed Method . 96

6.3.1 An Overview of Model Architecture 96

6.3.2 Network Representation Learning 98

6.3.3 Semi-Supervised Learning . 100

xi

6.3.4 Adversarial Domain Adaptation 101

6.3.5 Overall Loss and Model Training 103

6.4 Experiments . 104

6.4.1 Experiment Setup . 105

6.4.2 Performance Comparison (RQ1) 108

6.4.3 Effect of Training Rate (RQ2) 113

6.4.4 Effect of Distribution Discrepancy (RQ3) 116

6.4.5 Effect of Graph Convolution (RQ4) 118

6.4.6 Parameter Sensitivity (RQ5) 118

6.4.7 Visualization of Node Representations 119

6.5 Related Work . 121

6.5.1 Single Network Learning . 121

6.5.2 Multi-Network Learning . 122

6.5.3 Domain Adaptation . 123

6.6 Conclusion . 124

7 Conclusion and Future Work 127

7.1 Conclusion . 127

7.2 Future Work . 128

Bibliography 131

xii

List of Figures

1.1 Visualization of Zachary’s Karate network [159] (left) and the two
dimensional node representations of Zachary’s Karate network from
DeepWalk (right). Different colors represent different communities
detected by modularity-based clustering. As shown by the figure, node
representations learned by DeepWalk can well preserve community
structure information. Figures 1.1(a) and 1.1(b) are directly extracted
from DeepWalk [95]. 3

3.1 Visualization of two dimensional representations of Zachary’s Karate
network [159] from Inductive DeepWalk (IDW) and Adversarial In-
ductive DeepWalk (AIDW). Different colors represent different com-
munities detected by modularity-based clustering. As shown by the
figure, AIDW can better capture community structure information,
demonstrating that adversarial learning contributes to learning more
meaningful and robust representations. 21

3.2 Adversarial Network Embedding Framework 24

3.3 Visualization of Cit-DBLP dataset. Each point represents one paper.
Different colors correspond to different publication divisions. Red:
“Information Science”, blue: “ACM Transactions on Graphics”, green:
“Human-Computer Interaction”. 29

3.4 Parameter sensitivity analysis of AIDW using multi-class classification
on Cora with train ratio as 50%. 35

3.5 Multi-class classification on Cora with two different priors, i.e., Uni-
form and Gaussian, on AIDW model. 35

4.1 Impact of applying adversarial and random perturbations to the em-
bedding vectors learned by DeepWalk on Cora, Citeseer and Wik-
i on multi-class classification with training ratio as 50% and 80%.
Note that ”random” represents random perturbations (noises gener-
ated from a normal distribution), while ”adversarial” represents ad-
versarial perturbations. 46

xiii

4.2 DeepWalk with Adversarial Training Regularization 48

4.3 Training curves of node classification (left, training ratio 10%) and
link prediction (right). 58

4.4 Performance comparison between Dwns and Dwns AdvT on multi-
class classification with training ratio as 10% (left) and 50% (right)
respectively under varying embedding size. 59

4.5 Impact of hyper-parameters on node classification (left, training ratio
50%) and link prediction (right). 67

5.1 Model Architecture. 77

5.2 The triplet ranking loss minimizes the distance between a target node
and a positive node while maximizing that of the target and a negative
node until they are separated by at least a margin distance. The
pairwise relationships can be well preserved in embedding vectors after
the learning process. 78

5.3 For the negative sampling approach, each node is sampled according to
its unigram distribution (regard each node as a word) raised to the 3/4
power, which can violate pairwise relationships reflected by network
structure. For example, node 6 is very likely to be sampled as negative
node for target-positive pair (5, 1), even though node 5 and 6 have
strong relationship. For our triplet sampling method, such problem
can be well avoided. However, simple uniform sampling method can
easily generate totally unrelated nodes (node 8 in the example graph),
which can be improved with adversarial sampling method. 80

5.4 Visualization of Cit-DBLP network. 83

6.1 Cross-network node classification. We aim to transfer knowledge from
a partially labeled source attributed network to assist the classification
task in a completely unlabeled or partially labeled target attributed
network. Here we use an unlabeled target network for illustration. . . 91

6.2 Model architecture of AdaGCN. 97

6.3 Multi-label classification with varying source training rates. 114

6.4 Multi-label classification with varying target training rates. 115

6.5 Multi-label classification on Citationv1 with varying common attribute
rates of the source and target networks. 116

6.6 Impact of hyper-parameters. 117

xiv

6.7 Visualization of the learned node representations from ACMv9ÑCitationv1.
Each point represents one paper. Gray and orange points are from the
source network, and red and green points are from the target network.
Gray and red: “Databases”. Orange and green: “Computer Vision”.
These plots are best viewed in color. 120

xv

xvi

List of Tables

2.1 Plain network embedding methods. 12

3.1 Statistics of datasets . 29

3.2 Accuracy (%) of multi-class classification on Cora 32

3.3 Accuracy (%) of multi-class classification on Citeseer 33

3.4 Accuracy (%) of multi-class classification on Wiki 33

4.1 Statistics of benchmark datasets . 55

4.2 AUC score for link prediction . 62

4.3 Accuracy (%) of multi-class classification on Cora with training ratios
ranging from 1% to 9% . 63

4.4 Accuracy (%) of multi-class classification on Cora with training ratios
ranging from 10% to 90% . 64

4.5 Accuracy (%) of multi-class classification on Citeseer with training
ratios ranging from 1% to 9% . 64

4.6 Accuracy (%) of multi-class classification on Citeseer with training
ratios ranging from 10% to 90% . 64

4.7 Accuracy (%) of multi-class classification on Wiki with training ratios
ranging from 1% to 9% . 65

4.8 Accuracy (%) of multi-class classification on Wiki with training ratios
ranging from 10% to 90% . 65

5.1 Statistics of benchmark datasets from real-world applications 82

5.2 AUC score for link prediction . 85

5.3 Accuracy (%) of multi-class classification on USA-AIR and PubMed . 86

xvii

6.1 Notations . 95

6.2 Statistics of the real-world network datasets 105

6.3 Multi-label classification with source training rate as 10% 108

6.4 Multi-label classification with source training rate as 10% and target
training rate as 5% . 109

xviii

Chapter 1

Introduction

Graph-structured data is ubiquitous in real-world applications, which can help orga-

nize complicated relationships among data entities. Examples include paper citation

networks, social networks and protein-protein interaction networks, where all these

real networks can be abstracted as graph consisting of nodes and edges between

nodes. Substantial efforts have been devoted to analyzing graph-structured data

with various research goals, such as classifying nodes in the graph (node classifica-

tion) [110, 62], predicting edges between nodes (link prediction) [2, 72], and visu-

alizing graph in low-dimensional space (network visualization) [126, 125]. Besides,

modeling graph structures also plays vital role in a broad range of applications,

such as recommendations [119, 151], fraud detection [28, 142], natural language pro-

cessing [44, 133] and computer vision [70, 58]. Thus, how to extract the abundant

information from graph to facilitate these learning tasks and applications is a con-

tinuous research problem, which has attracted great interests from both academia

and industry.

However, modeling graph-structured data is a challenging problem because of its

special characteristics. We summarize these characteristics as follows:

• Discreteness and non-linearity. Graph-structured data is discrete in na-

ture. Many existing techniques, such as machine learning algorithms with

1

vector-based inputs and gradient descent technique for optimization, are inap-

plicable for modeling graph directly. Nodes in the network are correlated with

each other in a complicated way. There can be first-order proximity, second-

order proximity, and high-order proximities among nodes. It is highly difficult

to model such non-linear structures.

• Sparsity and high-dimensionality. Network data is usually very high-

dimensional and sparse in real-world applications. For example, there are

billions of users in Facebook social network, but each user only connects to

a few hundred others on average. How to process such huge amounts of data

with reasonable time and space consumption and how to capture user depen-

dencies by leveraging such sparse connectivity patterns pose great challenges

to network analysis methods.

• Noisiness and incompleteness. In real-world applications, there could be

many noisy connections among nodes. For example, influencer marketing with

fake followers is widely existed in Twitter [21], which tries to improve the

importance of certain user in the social network by adding artificial connections.

Such manipulation causes great challenge for learning tasks. Besides, it is

common to have many missing links in a network, which further exacerbates the

sparsity issue and makes it difficult to capture the inherent node dependencies.

Traditional methods extract structural information from graphs with user-defined

heuristics such as summary of graph statistics (e.g., node degrees or clustering coef-

ficients) [8], kernel functions [141] and carefully engineered features to measure node

neighborhood structure [72], which are both ineffective and inefficient in modeling

graph structures [47].

In recent years, learning node representations for graph-structured data auto-

matically has become the most effective way to extract useful structural informa-

2

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

(a) Input: Karate Network.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.8

1.6

1.4

1.2

1.0

0.8

0.6

34

1

33

3

24

32

9

24

14

8

31

30

28

67

11

5

29

26

20

25

16

2315

22

27

19

21

13

1810

17
12

(b) Output: Node Representations.

Figure 1.1: Visualization of Zachary’s Karate network [159] (left) and the two di-
mensional node representations of Zachary’s Karate network from DeepWalk (right).
Different colors represent different communities detected by modularity-based clus-
tering. As shown by the figure, node representations learned by DeepWalk can well
preserve community structure information. Figures 1.1(a) and 1.1(b) are directly
extracted from DeepWalk [95].

tion [95, 126, 62]. In the literature, it is termed network embedding or graph repre-

sentation learning, i.e., learning low-dimensional vector for each node in the network

with the complicated relations between nodes encoded in the embedding vectors.

The fundamental purpose is to learn generalizable node representations which can

be used for the widely existed machine learning algorithms to facilitate learning

tasks. The whole process could be conducted in a phased or end-to-end manner.

The former is to learn node representations first and then utilize the learned fea-

tures as input for the downstream learning tasks in a seperate phase, while the latter

conducts these two phases in a mutually enhanced manner. We use a toy example

from [95] to illustrate this technique intuitively as shown in Figure 1.1. It is based on

an unsupervised network embedding method DeepWalk [95] which aims to preserve

the structural information in low-dimensional vectors.

Graph representation learning methods have been widely applied in industry.

There are two major application scenarios:

• Enriching user and item profiles. In social networks, such as WeChat

3

and Weibo, users are explicitly organized in a graph through the friendship

or follower/followee relations. In recommender systems, such as Amazon and

Taobao, user-user, user-item, and item-item relations can be easily constructed

based on the purchasing behaviors of users and other knowledge. There are

many other examples. To model these graph-structured data, one of the most

important approaches is to leverage graph representation learning technique

to extract feature vectors for nodes automatically [95, 126, 41]. Such learned

feature vectors are then utilized as additional user/item features to facilite

various applications.

• End-to-end learning for a specific application. In many real-world sce-

narios, the main purpose is to improve a specific learning task, such as predict-

ing user-item interactions in recommender systems [136, 156] and identifying

supicious users in financial applications [28]. To improve these application-

s, graph representation leanrning techniques are directly integrated into the

model framework as the feature extractor.

In these applications, we need to handle different types of network data, such

as pure network and network with side information (e.g., node attributes and node

labels). To handle these complex data, a series of network embedding methods have

been proposed, including plain network embedding [95, 126, 41], attributed network

embedding [162, 91, 150], semi-supervised network embedding [154, 62, 46], and

multi-network embedding [149, 86, 114].

This thesis is dedicated to designing effective representation learning algorithms

for both plain networks and attributed networks.

4

1.1 Motivation

For plain network embedding, existing works mainly focus on preserving network

structures and properties in node representations based on network topology. The

connection information is actually considered as pseudo labels for capturing node

similarities. For example, LINE [126] and SDNE [143] aim to learn first-order and

second-order proximities, of which the former refers to observed links and the latter

depends on the similarity of node neighborhoods. In the learning process, the em-

bedding vectors are optimized to fit to such information based on different models,

such as negative sampling technique in LINE and autoencoder in SDNE. However,

the sparsity, noiseness, and incompleteness of many real-world networks are largely

neglected by the existing methods, which can easily result in overfitting issue. Thus,

designing regularization method for network embedding models is highly important.

In the thesis, we aim to tackle this problem by leveraging adversarial learning princi-

ple and adversarial training technique with the former based on generative adversarial

networks (GANs) [40] and the latter based on adversarial machine learning [39]. The

first idea is to add some prior knowledge on embedding vectors via adversarial learn-

ing to avoid overfitting by leveraging the distribution fitting capability of GANs,

which is presented in Chapter 3. The second idea is to design adversarial training

regularization method for network embedding to help improve model robustness and

generalization ability, which is demonstrated in Chapter 4.

Sampling negative nodes for given positive target-context node pairs is an in-

dispensable process for many network embedding methods such as those based on

negative sampling technique [82] (e.g. DeepWalk, LINE and node2vec). The nega-

tive sampling technique is a simplified variant of negative contrastive estimation [45],

which can help speed up the training process of the model. However, this strategy

may generate false negative samples that violate pairwise relationships presented in

5

the network structure and thus may generate less desirable node representations,

since the negative samples are constructed according to a simple modified unigram

noise generation process. While such drawback exists, these models are widely used

in both academic and industrial applications. In the thesis, we manage to design bet-

ter sampling method for generating negative nodes for given positive target-context

pairs via adversarial learning technique [39]. The basic idea is to unify the sam-

pling process and embedding learning process with generative adversarial networks,

of which the generator is leveraged for sampling more difficult and relevant negative

nodes. This is presented in Chapter 5.

The majority of existing network embedding methods are designed for single net-

work learning, which inevitably suffer from the sparsity, incompleteness, or label

insufficiency issues of a single network in many application scenarios. Meanwhile,

massive amount of information networks are available, and many of them are sim-

ilar or related to each other because of common nodes, cross-network connections

or common node attributes across networks. Leveraging such valuable and abun-

dant information across multiple networks is a promising direction for tackling the

problems in a single network as mentioned above. However, existing embedding

methods [95, 126, 41] cannot easily generalize to multi-network learning. For exam-

ple, plain network embedding methods are inapplicable for multi-network learning

due to lack of a similarity preserving component to push similar nodes from different

networks close in the embedding space [50]. In the thesis, we aim to boost represen-

tation learning in a single network by leveraging information of multiple similar or

related networks. Specifically, graph convolution [62, 69] is leveraged to capture the

information of both network structures and node attributes for learning useful node

representations, while adversarial domain adaptation [35, 111] is exploited to miti-

gate the discrepancy between different network domains as presented in Chapter 6.

6

1.2 Thesis Overview and Contributions

This thesis builds upon my works on plain network embedding [23, 26, 24] and multi-

network embedding [25]. First, Chapter 2 summarizes representative and related

network embedding methods. Second, in Chapter 3, we present a global regulariza-

tion method for deep embedding models based on generative adversarial networks.

It imposes a prior distribution such as Gaussian on embedding vectors through ad-

versarial learning to help alleviate overfitting. Third, in Chapter 4, we introduce a

succinct and effective local regularization method, namely adversarial training, to

network embedding so as to improve model robustness and generalization perfor-

mance. This method can be applied to a series of negative sampling based models

such as DeepWalk, LINE and node2vec. Next, an adversarial sampling method is

described in Chapter 5, which can be utilized to sample high-quality negative nodes

for given positive target-context node pairs to facilitate graph representation learn-

ing. Then, in Chapter 6, we study a multi-network learning problem that aims to

learn both label-discriminative and domain-invariant node representations for two

different but related networks to assist in node classification in the target network.

A novel learning framework namely AdaGCN is presented, which builds upon graph

convolution and adversarial domain adaptation techniques. Finally, we draw a con-

clusion of the thesis and describe possible directions for future work in Chapter 7.

We further summarize the main contributions of the thesis as follows:

Chapter 3: Network Embedding with Prior Regularization via Ad-

versarial Learning [23]. Chapter 3 presents an Adversarial Network Embedding

(ANE) framework for robust representation learning. It consists of two components,

including a structure-preserving component for capturing structural information and

an adversarial learning component to impose a prior distribution on embedding

vectors. Specifically, we design an inductive DeepWalk for representation learn-

7

ing, which exploits random walk for exploring node neighborhoods and optimizes

negative sampling loss, but employs multi-layer perceptron to generate embedding

vectors. Besides, the adversarial learning component is acting as a regularizer to

alleviate overfitting, which consists of a generator and a discriminator. The gener-

ator is the representation learner shared with the structure-preserving component,

while the discriminator is a multi-layer perceptron for distinguishing representation

sources. Different from GANs [28], in our framework, a prior distribution is select-

ed as the data distribution for generating real data, while the embedding vectors

are regarded as fake samples. Through adversarial learning, the embedding vectors

outputted by the generator will be matched to the prior distribution.

Experiments on benchmark datasets including Cora, Citeseer and Wiki demon-

strate the effectiveness of the ANE framework. To the best of my knowledge, this

is the first work to design network embedding model with the adversarial learning

principle for regularization.

Chapter 4: Adversarial Training Methods for Network Embedding [26].

Chapter 4 presents a local regularization method, namely adversarial training (Ad-

vT), for network embedding. AdvT forces the model to be robust to adversarial ex-

amples generated from the clean ones with small crafted perturbation, which can help

achieve local smoothness of model parameters and thus improve model robustness

and generalization ability. The original AdvT method is designed for vector-based

data such as image. To adapt it for graph-structured data, we define adversarial ex-

amples in the embedding space instead of the discrete graph domain to circumvent

the difficulties of generating adversarial examples for discrete nodes and connections.

We also design adaptive L2 norm constraints on adversarial perturbations by lever-

aging the connectivity patterns of nodes to enable more reasonable regularization.

To improve its interpretability, we further design an adversarial training method by

restricting the perturbation directions towards the embedding vectors of other nodes,

8

which might help reconstruct adversarial examples in the discrete graph domain.

We conduct node classification and link prediction on benchmark datasets includ-

ing Cora, Citeseer and Wiki to evaluate the proposed AdvT regularization method.

It demonstrates that AdvT can help greatly improve the performance of the base

network embedding model.

Chapter 5: Ranking Network Embedding via Adversarial Learning [24].

Chapter 5 presents a Ranking Network Embedding (RNE) framework with two rank-

ing strategies, i.e., a vanilla strategy based on uniform sampling method and an ad-

versarial strategy based on generative adversarial networks. The latter improves over

the former by generating high-quality negative nodes for given positive target-context

node pairs via adversarial learning. Specifically, in addition to a discriminator for

capturing node similarity rankings via a triplet ranking loss, a generator is exploited

for sampling negative nodes given target node. In the learning process, the dis-

criminator tries to pull similar nodes closer in the embedding space, while pushing

dissimilar nodes apart. The generator aims to generate difficult negative nodes for

the given target from a set of candidates. The model is trained with the reinforced

algorithm due to the discrete sampling process.

We empirically evaluate the proposed vanilla and adversarial RNE models through

network visualization, link prediction and node classification, on several benchmark

datasets. Experimental results show that both models achieve competitive perfor-

mance with state-of-the-art baselines and negative sampling via adversarial learning

outperforms the uniform sampling strategy.

Chapter 6: Network Transfer Learning via Adversarial Domain Adap-

tation with Graph Convolution [25]. Chapter 6 presents a network transfer

learning framework AdaGCN based on adversarial domain adaptation with graph

convolution. It tackles a challenging cross-network node classification problem where

a partially labeled attributed source network is leveraged to assist in node classifi-

9

cation in a different completely unlabeled or partially labeled attributed target net-

work. On one hand, graph convolution naturally combines network structures and

node attributes for learning useful node representations, which helps to ease knowl-

edge transfer across networks and node classification in the target networks. On the

other hand, adversarial domain adaptation component helps mitigate the domain

divergence between the source and target networks to enable label information of

the source network transferring to the target network.

Extensive empirical evaluations on real-world datasets show that AdaGCN can

successfully transfer class information with a low label rate on the source network

and a substantial divergence between the source and target domains for both un-

supervised and semi-supervised settings. The label efficiency and model robustness

against domain discrepancy enable its application for solving a wide range of real-

world problems.

10

Chapter 2

Literature Review

In this section, we will review existing network embedding methods according to the

types of input including network topolgy only, network with side information, and

multiple networks.

2.1 Plain Network Embedding

Plain network embedding models take only network topology as input. They are cat-

egorized in Table 2.1 according to their utilized techniques and goals. The categories

of models are not mutually exclusive. From the perspective of techniques, network

embedding methods belong to skip-gram based methods [95, 126, 41, 96, 100, 78],

matrix factorization based methods [12, 163, 98, 90, 147, 97, 160], deep learn-

ing models [13, 143, 144, 101, 63, 132, 23, 158] , and others such as adversarial

learning enhanced models [36, 24] and adversarial training regularized method [26].

From the perspective of model goals, network embedding models include structure-

preserving methods [95, 126, 41, 96, 100, 12, 163], property-perserving method-

s [90, 147, 79, 42], regularization-enhanced methods [23, 158, 26] and efficiency-

pursuing methods [97, 160, 15]. In the rest of this section, we will present a review of

existing plain network embedding models according to model goals. The main pur-

pose is to summarize and analyze some of the representative models in each category

11

Table 2.1: Plain network embedding methods.

Structure-preserving Property-preserving Regularization Efficiency
Skip-gram DeepWalk [95],

LINE [126],
node2vec [41],
Walklets [96],
struc2vec [100], SNS [78]

- - -

Matrix factorization GraRep [12],
AROPE [163],
NetMF [98],
M-NMF [147]

HOPE [90] - NetSMF [97],
ProNE [160]

Graphical model NetHiex [79],
vGraph [121]

RaRE [42], CNE [56] - -

Deep learning DNGR [13], SDNE [143],
GraphGAN [144],
DeepGL [101],
PRUNE [63]

DRNE [132],
DVNE [165]

ANE˚ [23],
NetRA [158]

DeepGL [101]

Others HARP [14], Poincaré [87],
R-NS [5], NEU [153],
ASeedNE [36],
A-RNE˚ [24]

- Dwns AdvT˚ [26] FastRP [15]

* My works are highlighted in bold.

and the most relevant models to our works instead of reviewing all existing methods

exhaustively.

2.1.1 Structure Preserving Network Embedding

Structure-preserving methods mainly aim to preserve network structural information

such as first-order and second-order proximities, latent community structures and

hierarchical structures in the embedding vectors. We review these methods according

to their utilized techniques.

The Skip-gram model or the negative sampling technique is widely leveraged for

capturing node neighborhood structures in embedding models such as DeepWalk [95],

LINE [126], node2vec [41] and Walklets [96]. DeepWalk first explores neighbor-

hood structures through node sequence sampling with truncated random walk, and

then learns the latent representations using Skip-gram model [82] by regarding node

sequences as sentences. Both node2vec and Walklets are extensions of Deep-

Walk. node2vec improves random-walk based sampling by introducing two hyper-

parameters for more flexible sampling so as to balance local and global structures.

12

Walklets is designed for learning multiscale node representations from multiscale

relationships generated by subsampling short random walks from different powers of

the adjacency matrix. Besides, LINE tries to preserve first-order and second-order

proximities in two separate objective functions, and then directly concatenates the

representations.

Matrix factorization technique is also widely exploited for learning structure-

preserving node representations. Representative models include GraRep [12], AROPE [163],

NetMF [98] and M-NMF [90]. Both GraRep and AROPE aim to preserve high-

order proximities, NetMF unifies several negative sampling based models including

DeepWalk, LINE, PTE and node2vec with a matrix factorixation framework, while

M-NMF [147] learns community structure preserving embedding vectors by building

upon the modularity based community detection model [?].

Both NetHiex [79] and vGraph [121] model network structures through graphi-

cal models. NetHiex tries to capture the latent hierarchical taxonomy of nodes by

employing the nested Chinese restaurant process to guide the search of the most

plausible hierarchical taxonomy. vGraph models the generation of node neighbors

through node to community assignment and community to node generation process.

Meanwhile, deep learning embedding models [13, 143, 144] have also been pro-

posed to capture highly non-linear network structures. DNGR [13] takes advantages

of deep denoising autoencoder for learning compact node embeddings, which can cap-

ture the non-linear structural information with the high model capacity and improve

model robustness with the denoising criterion. SDNE [143] modifies the framework

of stacked autoencoder to learn both first-order and second-order proximities simul-

taneously. GraphGAN [144] leverages generative adversarial networks to facilitate

node representation learning, which unifies the generative models and discriminative

models of network embedding to boost the performance.

13

2.1.2 Property Preserving Network Embedding

Aside from the above mentioned structure-preserving methods, many research works

investigate the learning of property-aware network embeddings.

Network transitivity, as the driving force of link formation, is considered in [90]

by approximating high-order proximities which are based on asymmetric transitivity

such as Katz Index, Rooted PageRank and Adamic-Adar. Node popularity, as an-

other important factor affecting link generation, is incorporated into RaRE [42] to

learn social-rank aware and proximity-preserving embedding vectors via a probabilis-

tic link formation model. CNE [56] models the posterior distribution of embedding

vectors conditioned on given network and applies Bayes rule to allow the consider-

ation of prior knowledge for property-preserving. Some important prior knowedge

includes knowledge about overall network density, knowledge about the individual

node degrees, and knowledge about the edge density within or between particular

subsets of nodes. DRNE [132] preserves regular equivalence in the embedding vectors

by designing a deep recursive embedding model via a layer normalized LSTM which

takes a sequence of node neighbors as input.

To model the uncertainty of nodes, many existing works use Gaussian distribution

as node representation, such as HCGE [48] for heterogeneous graph, KG2E [106] for

knowledge graph, Graph2Gauss for attributed network [9] and DVNE [165] for plain

network. DVNE learns a Gaussian distribution in the Wasserstein space as the

latent representation of each node with a deep variational model, which can preserve

network structures and transitivity and model node uncertainty.

2.1.3 Efficient Network Embedding

Some structure-preserving and property-preserving models are also scalable to large

networks, such as DeepWalk, LINE and node2vec. However, they may still suffer

14

from inefficiency issue due to the necessity of learning node representations for ex-

tremely large-scale networks in real applications. For example, it takes months for

DeepWalk to learn embeddings for a network with tens of millions of nodes and

edges as shown in [97]. To overcome this challenge and fulfill real applications, some

works are dedicated to designing efficient algorithms for learning node representa-

tions [97, 160, 15].

Both NetSMF [97] and ProNE [160] tackles this problem with sparse matrix fac-

torization. NetSMF first sparsifies the dense NetMF matrix [98] by leveraging the

theories from spectral sparsification which guarantees the sparsified matrix is spec-

trally close to the original one with a theoretically bounded approximation error,

and then learns node representations with truncated singular value decomposition

(tSVD). Differently, ProNE directly factorizes NetMF matrix with the randomized

tSVD to achieve a speedup over tSVD for embedding learning first, and then im-

proves node representations via spectral propagation. FastRP [15] first constructs

a normalized node similarity matrix that captures high-order proximitie, and then

obtains node representations with very sparse random projection to achieve high effi-

ciency. They all can achieve much better model efficiency than some existing scalable

methods such as DeepWalk, LINE and node2vec.

Three of my works including ANE [23], Dwns AdvT and A-RNE are proposed

for effective representation learning in plain networks. Specifically, ANE and D-

wns AdvT is designed to handle the noisy and incomplete network data in real

applications so as to alleviate overfitting and improve generalization performance.

A-RNE leverages the framework of generative adversarial networks to help sample

high-quality negative nodes to facilitate structure-preserving embedding learning.

More detailed analysis of the relations and differences between these works and ex-

isting works will be presented in the corresponding chapters in the rest of the thesis.

15

2.2 Attributed Network Embedding

Aside from topology-only methods, many models are proposed to incorporate other

information associated with networks such as node attributes [162, 91, 150], edge

attributes [16, 53] and node labels [154, 54].

2.2.1 Unsupervised Attributed Network Embedding

Unsupervised attributed network embedding methods leverage node attributes or

(and) edge attributes to improve node representation learning. TADW [152] en-

hances DeepWalk with text information associcated with nodes. It formulates Deep-

Walk with a matrix factorization framework and incorporates text information into

the framework for better representation learning. IIRL [150] explores the seman-

tic meanings of links by jointly modeling network structures and node contents. It

captures structure-close links and content-close links through two types of node rep-

resentations, i.e. identity representations and interest representations, respectively.

PGE [53] uses attributes of nodes and edges to improve the sampling strategy of

random walk.

Deep learning methods are also designed for modeling attributed networks [162,

91, 91]. Autoencoder based methods include ANRL [162] and DANE [91]. ANRL

optimizes both network structure preserving loss and attributes reconstruction loss

with stacked autoencoders. DANE differs from ANRL by utilizing Skip-gram model

to learn network structures. VGAE [61] is a variational graph autoencoder framework

which consists of a graph convolutional network encoder and a simple inner product

decoder for attributed network embedding. ARVGA [91] extends our work ANE [23]

to attributed networks by leveraging VGAE for node representation learning.

16

2.2.2 Semi-Supervised Attributed Network Embedding

Semi-supervised network embedding methods can learn more discriminative node

representations by leveraging available node labels compared with unsupervised em-

bedding methods. In [131], the authors adapted DeepWalk to semi-supervised setting

by introducing an additional loss of max-margin SVM to regularize representaion

learning. TriDNE [92] is specially designed for networks with text information asso-

ciated with nodes, which jointly captures the inter-node, node-word, and label-word

relationships with the Skip-gram based model framework. LANE [54] jointly mod-

els network topology and partially available node labels via matrix decomposition.

These models all benefit node classification implicitly since they are not directly

optimized for it.

Another branch of related works are proposed for semi-supervised node classifi-

cation [154, 62]. Planetoid [154] jointly optimizes the supervised loss and context-

preserving loss to achieve better performance in semi-supervised learning. GCN [62]

is a deep convolutional learning paradigm for graph-structured data which nicely

integrates local node attributes and network structures in the convolutional layer-

s. GraphSAGE [46] is a variant of GCN which designs different methods such as

mean aggregator and LSTM aggregator for aggregating features from node neigh-

bors. GAT [138], as another variant of GCN, leverages attention mechanism to

aggregate features from the neighbors of a node with discrimination. These graph

convolution based methods achieve state-of-the-art performance in semi-supervised

learning.

2.3 Multi-Network Embedding

Some methods aim to leverage the relationship between multiple networks to facili-

tate graph representation learning, including those relying on inter-network edges [149,

17

86] and those managing to transfer knowledge from the source network(s) to the tar-

get network(s) [33, 114].

Both EOE [149] and DMNE [86] learn embeddings for multiple networks simul-

taneously. Specifically, EOE introduces a harmonious embedding matrix to model

inter-network node similarities, while DMNE adapts autoencoder for multi-network

embedding with a co-regularized loss to manipulate cross-network relationships.

These methods heavily rely on the existence of cross-network connections.

There is also some literature focusing on transferring knowledge from source net-

work(s) to target network(s) [33, 64]. In [33], non-negative matrix factorization

technique is jointly conducted on label propagation matrices of both the source and

target networks so as to learn transferable structural node representations. However,

it suffers from expensive computation in the matrix decomposition process, and it

cannot jointly model the relationships among structural information, node attributes

and node labels, which might cause negative transfer. CDNE [114] learns node em-

beddings for multiple networks with different stacked autoencoders and mitigates the

distribution shift of node representations between networks by minimizing the MMD

loss. However, it heavily relies on the preprocessing of the adjacency matrix with

positive pointwise mutual information (PPMI) matrix, which will densify the adja-

cency matrix and thus aggravate the computation complexity due to the autoencoder

based model architecture.

My work AdaGCN [25] can learn both class discriminative and domain invariant

node representations for two networks via graph convolution and adversarial domain

adaptation. It achieves state-of-the-art performance in cross-network node classifi-

cation. In Chapter 6, more detailed explanations of the relations and differences

between AdaGCN and existing works will be provided.

18

Chapter 3

Network Embedding with Prior

Regularization via Adversarial

Learning

Learning low-dimensional representations of networks has proved effective in a

variety of tasks such as node classification, link prediction and network visualiza-

tion. Existing methods can effectively encode different structural properties into

the representations, such as neighborhood connectivity patterns, global structural

role similarities and other high-order proximities. However, except for objectives to

capture network structural properties, most of them suffer from lack of additional

constraints for enhancing the robustness of representations. In this chapter, we aim to

exploit the strengths of generative adversarial networks in capturing latent features,

and investigate its contribution in learning stable and robust graph representation-

s. Specifically, we propose an Adversarial Network Embedding (ANE) framework,

which leverages the adversarial learning principle to regularize the representation

learning. It consists of two components, i.e., a structure preserving component and

an adversarial learning component. The former component aims to capture network

structural properties, while the latter contributes to learning robust representations

19

by matching the posterior distribution of the latent representations to given priors.

As shown by the empirical results, our method is competitive with or superior to

state-of-the-art approaches on benchmark network embedding tasks.

3.1 Introduction

Graph is a natural way of organizing data objects with complicated relationships, and

encodes rich information of nodes in the graph. For example, paper citation networks

capture the information of innovation flow, and can reflect topic relatedness between

papers. To analyze graphs, an efficient and effective way is to learn low-dimensional

representations for nodes in the graph, i.e., node embedding [95, 126, 12]. The

learned representations should encode meaningful semantic, relational and structural

information, so that they can be used as features for downstream tasks such as

network visualization, link prediction and node classification. Network embedding

is a challenging research problem because of the high-dimensionality, sparsity and

non-linearity of the graph data.

In recent years, many methods for network embedding have been proposed, such

as DeepWalk [95], LINE [126] and node2vec [41]. They aim to capture various con-

nectivity patterns in network during representation learning. These patterns include

relations of local neighborhood connectivity, first and second order proximities, global

structural role similarities (i.e. structural equivalence), and other high-order prox-

imities. As demonstrated in the literature, network embedding methods were shown

to be more effective in many network analysis tasks than some classical approaches,

such as Common Neighbors [72] and Spectral Clustering [129].

Though existing methods are effective in structure preserving with different care-

fully designed objectives, they suffer from lack of additional constraints for enhancing

the robustness of the learned representations. When processing noisy network data,

20

-2 0 2 4 6 8 10 12

-1

0

1

2

(a) IDW.
-2 0 2 4 6 8 10 12

-1

0

1

2

(b) AIDW.

Figure 3.1: Visualization of two dimensional representations of Zachary’s Karate net-
work [159] from Inductive DeepWalk (IDW) and Adversarial Inductive DeepWalk
(AIDW). Different colors represent different communities detected by modularity-
based clustering. As shown by the figure, AIDW can better capture community
structure information, demonstrating that adversarial learning contributes to learn-
ing more meaningful and robust representations.

which is very common in real-world applications, these unsupervised network embed-

ding techniques probably result in poor representations [77, 89]. Thus, it is critical

to consider some amount of uncertainty in the process of representation learning.

One famous technique for robust representation learning in unsupervised manner is

denoising autoencoder [140]. It obtains stable and robust representations by recov-

ering clean input from the corrupted one, that is denoising criterion. In [13], the

authors have applied this criterion for network embedding. Recently, many genera-

tive adversarial models [99, 80, 29, 30] have also been proposed for learning robust

and reusable representations. They have been shown to be effective in learning rep-

resentations for image [99] and text data [38]. However, none of such models have

been specially designed for dealing with graph data.

In this chapter, we propose a novel approach called Adversarial Network Embed-

ding (ANE) for learning robust network representations by leveraging the principle of

adversarial learning [39]. In addition to optimize the objective for preserving network

structures, a process of adversarial learning is incorporated for modeling the data un-

21

certainty. Figure 3.1 presents an illustrative example with the well-known Zachary’s

Karate network on the effect of adversarial learning. By comparing representation-

s of two schemes without/with adversarial learning regularization, it can be easily

found that the latter scheme obtains more meaningful and robust representations.

More specifically, ANE naturally combines a structure preserving component and

an adversarial learning component in a unified framework. The former component

can help capture network structural properties, while the latter contributes to the

learning of more robust representations through adversarial training with samples

from some prior distribution. For structure preserving, we propose an inductive

variant of DeepWalk that is suitable for our ANE framework. It maintains random

walk for exploring neighborhoods of nodes and optimizes similar objective function,

but employs parameterized function to generate embedding vectors. Besides, the

adversarial learning component consists of two parts, i.e., a generator and a discrim-

inator. It is acting as a regularizer for learning stable and robust feature extractor,

which is achieved by imposing a prior distribution on the embedding vectors through

adversarial training. To the best of our knowledge, this is the first work to design

network embedding model with the adversarial learning principle. We empirically

evaluate the proposed ANE approach through network visualization and node clas-

sification on benchmark datasets. The qualitative and quantitative results prove the

effectiveness of our method.

3.2 Adversarial Network Embedding

In this section, we will first introduce the problem definition and notations to be used.

Then, we will present an overview of the proposed adversarial network embedding

framework, followed by detailed descriptions of each component.

22

3.2.1 Problem Definition and Notations

Network embedding is aimed at learning meaningful representations for nodes in

information network. An information network can be denoted as G “ pV,E,Aq,

where V is the node set, E is a set of edges with each representing the relationship

between a pair of nodes, and A is a weighted adjacency matrix with its entries

quantifying the strength of the corresponding relations. Particularly, the value of

each entry in A is either 0 or 1 in an unweighted graph specifying whether an edge

exists between two nodes. Given an information network G, network embedding

is doing a mapping from nodes vi P V to low-dimensional vectors ui P Rd with

the formal format as follows: f : V ÞÑ U , where uTi is the ith row of U (U P RNˆd,

N “ |V |) and d is the dimension of representations. We call U representation matrix.

These representations should encode structural information of networks.

3.2.2 An Overview of the Framework

In this work, we leverage adversarial learning principle to help learn stable and robust

representations. Figure 3.2 shows the proposed framework of Adversarial Network

Embedding (ANE), which mainly consists of two components, i.e., a structure pre-

serving component and an adversarial learning component. Specifically, the structure

preserving component is dedicated to encoding network structural information into

the representations. These information include the local neighborhood connectivity

patterns, global structural role similarities, and other high-order proximities. There

are many possible alternatives for the implementation of this component. Actual-

ly, existing methods [95, 126, 12] can be considered as structure preserving models,

but without any constraints to help enhance the robustness of the representation-

s. In this chapter, we propose an inductive DeepWalk for structure preserving. It

maintains random walk for exploring neighborhoods of nodes and optimizes similar

23

Generator

Discriminator

Embeddings

Noise

Prior

Structure

Preserving

Adversarial Learning

Network Embedding

Prediction

Figure 3.2: Adversarial Network Embedding Framework

objective function, but employs parameterized function Gp¨q to generate embedding

vectors. In the training process, parameters of Gp¨q are directly updated instead of

the embedding vectors. Besides, the adversarial learning component consists of two

parts, i.e., a generator Gp¨q and a discriminator Dp¨q. It is acting as a regularizer

for learning stable and robust feature extractor, which is achieved by imposing a

prior distribution on the embedding vectors through adversarial training. It needs to

emphasize that the parameterized function Gp¨q is shared by both the structure pre-

serving component and the adversarial learning component. These two components

will update the parameters of Gp¨q alternatively in the training process.

3.2.3 Graph Preprocessing

In real-world applications, information network is usually extremely sparse, which

may result in serious over-fitting problem when training deep models. To help allevi-

ate the sparsity problem, one commonly used method is to preprocess the adjacency

matrix with high-order proximities [126, 12]. In this chapter, we employ the shifted

positive pointwise mutual information (PPMI) matrix X [66] as input features for

24

the generator˚, which is defined as

Xij “ maxtlogp
Mij

ř

kMkj

q ´ logpβq, 0u, (3.1)

where M “ Â` Â2 ` ¨ ¨ ¨ ` Ât can capture different high-order proximities, Â is the

1-step probability transition matrix obtained from the weighted adjacency matrix A

after a row-wise normalization, and β is set to 1
N

for experiments. Row vector xTi

in X is the feature vector characterizing the context information of node vi in the

graph G, but with high-dimension.

3.2.4 Structure Preserving Model

Ideally, existing unsupervised network embedding methods can be utilized as struc-

ture preserving component in our framework for encoding node dependencies into

representations. However, many of them are transductive methods with an embed-

ding lookup as embedding generator such as DeepWalk and LINE, which are not

directly suitable for the generator of the adversarial learning component since we

utilize parameterized generator as standard GANs. With parameterized generator,

our framework can well deal with networks with node attributes and explore non-

linear properties of network with deep learning models. In this work, we design an

inductive variant of DeepWalk that is applicable for both weighted and unweighted

graphs. Theoretically, it can also generalize to unseen nodes for networks with n-

ode attributes as some inductive methods [154, 46], but we do not explore it in this

work. Besides, we also investigate to use denoising autoencoder [140] as the structure

preserving component.

˚Note that we can use other ways to preprocess raw graph data to obtain the input feature X
with lower dimension for large graphs. One simple way is to directly use existing scalable methods,
e.g. DeepWalk and LINE, to obtain initial embeddings X as input.

25

Inductive DeepWalk (IDW)

The IDW model uses random walk to sample node sequences as that in DeepWalk.

Starting from each node vi, η sequences are randomly sampled with the length as

l. In every step, a new node is randomly selected from the neighbors of the current

node with the probability proportional to the corresponding weight in matrix A.

To improve efficiency, the alias table method [67] is employed to sample node from

the candidate node set in every sampling step. It only takes Op1q time in a single

sampling step. Then, positive node pairs can be constructed from node sequences.

For every node sequence W , we determine the positive target-context pairs as the

set tpwi, wjq : |i´ j| ď su, where wi is the ith node in sequence W and s denotes the

context size.

Similar to Skip-gram [82], a node vi has two different representations, i.e., a target

representation ui and a context representation u1i, which are generated by the target

generator Gp¨;θ1q and context generator F p¨;θ11q, respectively. The generators are

parameterized functions which are implemented with multi-layer perceptron in this

work. Given row vector xTi in X corresponding to node vi, we have ui “ Gpxi;θ1q

and u1i “ F pxi;θ
1
1q. To capture network structural properties, we define the following

objective function for each positive target-context pair pvi, vjq with negative sampling

approach:

OIDW pθ1;θ11q “ log σpF pxj ;θ
1
1q
TGpxi;θ1qq

`
řK
n“1 Evn„Pnpvqrlog σp´F pxn;θ11q

TGpxi;θ1qqs,
(3.2)

where σpxq “ 1
1`expp´xq

is the sigmoid function, K is the number of negative samples

for each positive pair, Pnpvq is the noise distribution for sampling negative context

nodes, θ1 and θ11 are parameters to be learned. As suggested in [82], Pnpvq “

d
3{4
v {

ř

viPV
d

3{4
vi can achieve quite good performance in practice, where dv is the degree

of node v.

26

3.2.5 Adversarial Learning

The adversarial learning component is employed to regularize the representations.

It consists of a generator Gp¨;θ1q and a discriminator Dp¨;θ2q. Specifically, Gp¨;θ1q

represents a non-linear transformation of input high-dimensional features to embed-

ding vectors. Dp¨;θ2q represents the probability of a sample coming from real data.

The generator function is shared with the structure preserving component. Differ-

ent from GANs [39], in our framework, a prior distribution ppzq is selected as the

data distribution for generating real data, while the embedding vectors are regarded

as fake samples. In the training process, the discriminator is trained to tell apart

the prior samples from the embedding vectors, while the generator is aimed to fit

embedding vectors to the prior distribution. This process can be considered as a

two-player minimax game with the generator and discriminator playing against each

other. The utility function of the discriminator is:

ODpθ2q “ Ez„ppzqrlogDpz;θ2qs ` Exrlogp1´DpGpx;θ1q;θ2qqs. (3.3)

In order to camouflage its output as prior samples, the generator is trained to improve

the following payoff:

OGpθ1q “ ExrlogpDpGpx;θ1q;θ2qqs. (3.4)

We argue that the adversarial learning component can help improve the learned

representations in terms of robustness and structural meanings. We instantiate our

framework with two structure preserving models, i.e., inductive DeepWalk (IDW)

and denoising autoencoder (DAE). We call the ANE framework with IDW as Ad-

versarial Inductive DeepWalk (AIDW) for easy illustration. Actually, with DAE as

the structure preserving component, the ANE framework will become an adversarial

autoencoder [80], and we represent it as ADAE to highlight the importance of the

denoising criterion in learning representations.

27

During adversarial learning, it is also important to choose a proper prior distri-

bution. Like many practices in GANs research [99, 80, 29], the prior distribution is

usually defined as Uniform or Gaussian noise which enables GANs to learn mean-

ingful and robust representations against uncertainty. In our experiments, we also

considered the ANE framework with both kinds of prior distributions but find no

significant difference. One possible reason is both kinds of uncertainty can help the

ANE framework to achieve a certain level of robustness against noise. It is likely

that a careful choice of prior distribution, possibly guided by prior domain knowledge,

may further improve application-specific performance.

3.2.6 Algorithm

To implement the ANE approach, we consider a joint training procedure with two

phases, including a structure preserving phase and an adversarial learning phase. In

the structure preserving phase, we optimize objective function (3.2) for AIDW. In the

adversarial learning phase, a prior distribution is imposed on representations through

a minimax optimization problem. Firstly, the discriminator is trained to distinguish

between prior samples and embedding vectors by optmizing the objective in Eq. (3.3).

Then, the parameters of the generator are updated to fit the embedding vectors to

prior space to fool the discriminator by optimizing the objective in Eq. (3.4). Besides,

the Wassterstein-1 distance can be employed as the loss for the discriminator to help

improve the stability of learning and avoid the mode collapse problem in traditional

GANs training [4].

28

(a) DeepWalk. (b) LINE. (c) node2vec. (d) IDW. (e) AIDW.

Figure 3.3: Visualization of Cit-DBLP dataset. Each point represents one paper.
Different colors correspond to different publication divisions. Red: “Information
Science”, blue: “ACM Transactions on Graphics”, green: “Human-Computer Inter-
action”.

Table 3.1: Statistics of datasets

Dataset | V | | E | | Y |
Cora 2,708 5,278 7
Citeseer 3,264 4,551 6
Wiki 2,363 11,596 17
Cit-DBLP 5,318 28,085 3

3.3 Experiments

3.3.1 Experiment Setup

Datasets

We conduct experiments on four real-world datasets with the statistics presented

in Table 3.1, where Y denotes the label set. Cora and Citeseer are paper citation

networks constructed by [81] with labels representing the research topics of papers.

Wiki [110] is a network with nodes as web pages and edges as the hyperlinks between

web pages, where the label represents the topic of the webpage. We regard these

three networks as undirected networks, and do some preprocessing on the original

datasets by deleting self-loops and nodes with zero degree. Cit-DBLP is a paper

citation network extracted from DBLP dataset [128].

29

Baselines

We compare our model with several baseline methods, including DeepWalk, LINE,

GraRep and node2vec. There are many other network embedding methods, but we

do not consider them here, because their performances are inferior to these baseline

models as shown in corresponding papers. The descriptions of the baselines are as

follows.

• DeepWalk [95]: DeepWalk first transforms the network into node sequences

by truncated random walk, and then uses it as input to the Skip-gram model

to learn representations.

• LINE [126]: LINE can preserve both first-order and second-order proximities

for undirected graph through modeling node co-occurrence probability and

node conditional probability.

• GraRep [12]: GraRep preserves node proximities by constructing different

k-step probability transition matrix.

• node2vec [41]: node2vec develops a biased random walk procedure to explore

neighborhood of a node, which can strike a balance between local properties

and global properties of a network.

Besides, we consider inductive DeepWalk and denoising autoencoder as another

two baseline methods. Note that both of them employ shifted PPMI matrix as

preprocessing for fair comparison.

Parameter Settings

For LINE, we follow the settings of parameters in [126]. The embedding vectors are

normalized by L2-norm. Besides, we specially preprocess the original sparse networks

30

by adding two-hop neighbors to low degree nodes. For both DeepWalk and node2vec,

the window size s, the walk length l and the number of walks η per node are set to

10, 80 and 10, respectively, for fair comparison. For GraRep, the maximum matrix

transition step is set to 4, and the settings of other parameters follow those in [12].

Note that the dimension of representations for all methods are set to 128 for fair

comparison.

For our methods, we only use the most simple structure for the generator. Specif-

ically, the generator is a single-layer network with leaky ReLU activations (with a

leak of 0.2) and batch normalization [55] on the output. The shifted PPMI matrix

X is obtained by setting t as 4 for Cora and Citeseer, and 3 for Wiki. For inductive

DeepWalk, the number of negative samples K is set to 5, and other parameters are

set the same as DeepWalk. For denoising autoencoder, it has only one hidden layer

with dimension as 128. For the discriminator of the framework, it is a three-layer

neural networks, with the layer structure as 512-512-1. For the first two layers, we use

leaky ReLU activations (with leak of 0.2) and batch normalization. For the output

layer, we use sigmoid activation. For AIDW and ADAE, the settings of the structure

preserving component are the same as those of IDW and DAE, respectively. The

prior distribution of the adversarial learning component is set to zi „ U r´1, 1s. We

use RMSProp optimizer with learning rate as 0.001.

3.3.2 Network Visualization

Network visualization is an indispensable way to analyze high-dimensional graph

data, which can help reveal intrinsic structure of the data intuitively [125]. In this

section, we visualize the representations of nodes generated by several different mod-

els using t-SNE [137]. We construct a paper citation network, namely Cit-DBLP,

from DBLP with papers from three different publication divisions, including Infor-

mation Sciences, ACM Transactions on Graphics and Human-Computer Interaction.

31

Table 3.2: Accuracy (%) of multi-class classification on Cora

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 71.43 73.83 75.61 76.92 77.79 77.78 78.47 79.17 79.04

LINE 71.26 74.50 76.04 76.81 77.68 77.99 78.46 79.00 79.11
GraRep 74.78 76.78 78.56 78.99 79.39 79.85 79.96 80.94 81.29

node2vec 75.06 78.49 80.06 80.94 81.52 82.07 82.39 83.28 83.17

DAE 75.21 78.07 79.39 80.51 80.91 81.41 82.36 83.23 83.32
ADAE 75.01 77.45 79.65 80.96 81.64 82.11 82.62 83.52 84.10

IDW 66.32 72.21 75.23 76.65 77.66 78.32 79.20 79.93 80.63
AIDW 76.93 79.50 81.31 82.01 82.28 83.03 83.23 84.46 84.21

Some statistics of this dataset have been presented in Table 6.2. These papers are

naturally classified into three categories based on the research fields they belong to.

Figure 5.4 shows the visualization of embedding vectors obtained from different

models using t-SNE tookit under the same parameter configuration. For both Deep-

Walk and LINE, papers from different categories are mixed with each other in the

center of the figure. For LINE, there are 6 clusters with each category corresponding

to two separate clusters, which is in conflict with the true structure of the network.

Besides, the boundaries between different clusters are not clear. The visualizations

of node2vec and IDW form three main clusters, which are better than those of Deep-

Walk and LINE. However, the boundary between blue cluster and green cluster for

node2vec is not clear, while that of red cluster and green cluster is a little messy

for IDW. AIDW performs better compared with baseline methods. We can observe

that the visualization of AIDW has three clusters with quite large margin between

each other. Furthermore, each cluster is linearly separable with another cluster in

the figure, which can not be achieved by other baselines as showed by the figures.

Intuitively, this experiment demonstrates that adversarial learning regularization can

help learn more meaningful and robust representations.

32

Table 3.3: Accuracy (%) of multi-class classification on Citeseer

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 49.45 52.68 54.60 55.71 56.44 57.04 57.42 58.04 59.11

LINE 47.70 51.04 52.95 54.19 55.00 55.82 56.02 57.08 57.52
GraRep 51.62 53.29 53.59 53.83 54.55 54.62 54.97 54.90 56.27

node2vec 52.50 55.47 56.66 57.70 58.81 59.26 60.10 60.34 60.58

DAE 51.08 54.54 55.84 56.50 57.47 58.30 58.50 59.19 60.15
ADAE 52.40 55.58 56.64 57.32 58.34 59.60 60.27 60.63 61.31

IDW 45.45 50.47 52.32 53.38 54.75 55.18 55.98 56.23 57.19
AIDW 53.25 56.76 57.95 59.06 59.45 59.95 60.28 60.87 62.26

Table 3.4: Accuracy (%) of multi-class classification on Wiki

%Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DeepWalk 57.23 61.22 63.53 64.68 65.96 66.24 67.17 68.63 68.69

LINE 56.29 61.63 63.98 65.43 66.25 67.04 67.94 68.86 68.61
GraRep 57.68 61.14 62.73 63.89 64.86 65.55 66.01 67.55 68.02

node2vec 57.61 61.52 63.47 64.83 65.54 66.16 67.17 68.44 68.69

DAE 57.08 61.63 63.71 65.20 66.84 67.41 67.91 69.03 69.45
ADAE 57.24 61.67 63.85 65.34 66.67 67.11 67.79 69.68 70.59

IDW 56.01 60.77 63.08 64.37 65.66 66.47 67.15 67.86 68.52
AIDW 57.43 62.14 64.18 65.53 67.07 68.00 69.44 71.63 72.03

3.3.3 Node Classification

The label information can indicate interests, beliefs or other characteristics of nodes,

which can help facilitate many applications, such as friend recommendation in online

social networks and targeted advertising. However, in many real-world contexts, only

a subset of nodes are labeled. Thus, node classification can be conducted to dig out

information of unlabeled nodes. In this section, we conduct multi-class classification

on three benchmark datasets, i.e., Cora, Citeseer and Wiki. We range the training

ratio from 10% to 90% for comprehensive evaluation. All experiments are carried

out with support vector classifier in Liblinear package:[31]. Specifically, the learned

node embeddings from network embedding methods are utilized as node features,

and the classifier is trained with a portion labeled nodes and then used to predict

:https://www.csie.ntu.edu.tw/„cjlin/liblinear/

33

the labels of the testing nodes.

Results and discussion. To ensure the reliability, we obtain the experimental

results by taking an average of that of 10 runs, which are shown in Tables 3.2, 3.3

and 3.4. We have the following observations:

• IDW produces similar results on Cora and Wiki with DeepWalk, and slightly

inferior performance on Citeseer. The proposed model AIDW is built upon

IDW with additional adversarial learning component. It consistently outper-

forms both IDW and DeepWalk on three datasets across all training ratios.

For example, on Cora, AIDW gives more than 4% gain in accuracy over Deep-

Walk under all training ratio settings. It demonstrates that adversarial learning

regularization can significantly improve the robustness and discrimination of

the learned representations. The quantitative results also verify our previous

qualitative findings in network visualization analysis.

• ADAE achieves about 1% gain in accuracy over DAE on Citeseer when varying

the training ratio from 10% to 90%, slightly better results on Cora, and compa-

rable performance on Wiki. It shows that ANE framework can also guide the

learning of more robust embeddings when building upon DAE. However, we

notice that ADAE does not achieve obvious improvements over the correspond-

ing structure preserving model as AIDW does. One reason is that denoising

criterion already contributes to learning stable and robust representations [140].

• Overall, the proposed method AIDW consistently outperforms all the baselines.

As shown in Tables 3.2, 3.3 and 3.4, node2vec produces better results than

DeepWalk, LINE and GraRep on average. Our method can further achieve

improvements over node2vec. More specifically, AIDW achieves the best clas-

sification accuracy on all three benchmark datasets across different training

ratios, with only one exception on Wiki with training ratio as 10%.

34

log2(d)

3 4 5 6 7 8 9

A
c
c
u
ra

c
y
 (

%
)

60

65

70

75

80

85

(a) Dimension d.
walk-length l

40 50 60 70 80 90 100

A
c
c
u
ra

c
y
 (

%
)

75

77.5

80

82.5

85

(b) Walk-length l.
context-size s

2 4 6 8 10 12 14

A
c
c
u
ra

c
y
 (

%
)

75

77.5

80

82.5

85

(c) Context-size s.

Figure 3.4: Parameter sensitivity analysis of AIDW using multi-class classification
on Cora with train ratio as 50%.

3.3.4 Model Sensitivity

In this section, we investigate the performance of AIDW w.r.t parameters and the

type of prior on Cora dataset. Specifically, for parameter sensitivity analysis, we

examine how the representation dimension d, walk-length l and context-size s affect

the performance of node classification with the training ratio as 50%. Note that

except for the parameter being tested, all other parameters are set to default values.

We also compare the performance of AIDW with two different priors, i.e., a Gaussian

distribution (N p0, 1q) and a Uniform distribution (U r´1, 1s).

Training ratio (%)

10 20 30 40 50 60 70 80 90

A
c
c
u
ra

c
y
 (

%
)

65

70

75

80

85

90

Uniform

Gaussian

Figure 3.5: Multi-class classification on Cora with two different priors, i.e., Uniform
and Gaussian, on AIDW model.

Figure 3.4(a) displays the results on the test of dimension d. When the dimension

increases from 8 to 512, the accuracy shows apparent increase at first, and then tends

to saturate once the dimension reaches around 128. Besides, the performance of AID-

35

W is not sensitive on walk-length and context-size. As shown in Figure 3.4(b), the

accuracy slightly increases first, and then becomes stable when the walk-length varies

from 40 to 100. With the increase of context-size, the performance keeps stable first,

and then slightly degrades after the context-size is over 6, as shown in Figure 3.4(c).

The degradation might be caused by the noisy neighborhood information brought in

by the large context-size, since the average node degree of Cora is just about 1.95.

Figure 3.5 shows the results of multi-class classification on Cora with training

ratio ranging from 10% to 90%. The accuracy curve of AIDW with uniform prior is

almost coincided with that of AIDW with gaussian prior. It demonstrates that both

types of prior can contribute to learning robust representations with no significant

difference.

3.4 Related Work

3.4.1 Network Embedding

In recent years, many unsupervised network embedding methods have been pro-

posed, which can be divided into three groups according to the techniques they

use, i.e., probabilistic methods, matrix factorization based methods and autoencoder

based methods. The probabilistic methods include DeepWalk [95], LINE [126], n-

ode2vec [41] and so on. DeepWalk firstly obtains node sequences from the original

graph through random walk, and then learns the latent representations using Skip-

gram model [82] by regarding node sequences as word sentences. LINE tries to

preserve first-order and second-order proximities in two separate objective functions,

and then directly concatenates the representations. In [41], the authors proposed

to use biased random walk to determine neighboring structure, which can strike a

balance between homophily and structural equivalence. It is actually a variant of

DeepWalk.

36

Matrix factorization based methods first preprocess the adjacency matrix to cap-

ture different kinds of high-order proximities and then decompose the processed

matrix to obtain graph embeddings. For example, GraRep [12] employs positive

pointwise mutual information (PPMI) matrix as the preprocessing based on a proof

of the equivalence between a k-step random walk in DeepWalk and a k-step probabil-

ity transition matrix. HOPE [90] preprocesses the adjacency matrix of the directed

graph with high-order proximity measurements, such as Katz Index [57], which can

help capture asymmetric transitivity property. M-NMF [147] learns embeddings

that can well capture community structure by building upon the modularity based

community detection model [85].

Autoencoder is a widely used model for learning compact representations of high-

dimensional data, which aims to preserve as much information in the latent space as

possible for the reconstruction of the original data [52]. DNGR [13] firstly calculates

the PPMI matrix, and then learns the representations through stacked denosing au-

toencoder. SDNE [143] is a variant of stacked autoencoder which adds a constraint

in the loss function to force the connected nodes to have similar embedding vectors.

In [61], the authors proposed a variational graph autoencoder (VGAE) by using a

graph convolutional network [62] encoder for capturing network structural proper-

ties. Compared to variational autoencoder (VAE) [60], our ANE approach explicitly

regularizes the posterior distribution of the latent space while VAE only assumes a

prior distribution.

3.4.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [39] are deep generative models, of which

the framework consists of two components, i.e., a generator and a discriminator.

GANs can be formulated as a minimax adversarial game, where the generator aims to

map data samples from some prior distribution to data space, while the discriminator

37

tries to tell fake samples from real data. This framework is not directly suitable

for unsupervised representation learning, due to the lack of explicit structure for

inference.

There are three possible solutions for this problem as demonstrated by existing

works. Firstly, some works managed to integrate some structures into the framework

to do inference, i.e., projecting sample in data space back into the space of latent

features, such as BiGAN [29], ALI [30] and EBGAN [164]. These methods can learn

robust representations in many applications, such as image classification [29] and

document retrieval [38]. The second approach is to generate representations from

the hidden layer of the discriminator, like DCGANs [99]. By employing fractionally-

strided convolutional layers, DCGANs can learn expressive image representations

from both the generator and discriminator networks for supervised tasks. The third

idea is to use adversarial learning process to regularize the representations. One

successful practice is the Adversarial Autoencoders [80], which can learn powerful

representations from unlabeled data without any supervision.

3.5 Conclusion

An adversarial network embedding framework has been proposed for learning robust

graph representations. This framework consists of a structure preserving component

and an adversarial learning component. For structure preserving, we proposed induc-

tive DeepWalk to capture network structural properties. For adversarial learning,

we formulated a minimax optimization problem to impose a prior distribution on

representations to enhance the robustness. Empirical evaluations in network visual-

ization and node classification confirmed the effectiveness of the proposed method.

38

Chapter 4

Adversarial Training Methods for

Network Embedding

Network Embedding is the task of learning continuous node representations for

networks, which has been shown effective in a variety of tasks such as link predic-

tion and node classification. Most of existing works aim to preserve different network

structures and properties in low-dimensional embedding vectors, while neglecting the

existence of noisy information in many real-world networks and the overfitting issue

in the embedding learning process. Most recently, generative adversarial networks

(GANs) based regularization methods are exploited to regularize embedding learn-

ing process, which can encourage a global smoothness of embedding vectors. These

methods have very complicated architecture and suffer from the well-recognized non-

convergence problem of GANs. In this chapter, we aim to introduce a more succinct

and effective local regularization method, namely adversarial training, to network

embedding so as to achieve model robustness and better generalization performance.

Firstly, the adversarial training method is applied by defining adversarial perturba-

tions in the embedding space with an adaptive L2 norm constraint that depends on

the connectivity pattern of node pairs. Though effective as a regularizer, it suffers

from the interpretability issue which may hinder its application in certain real-world

39

scenarios. To improve this strategy, we further propose an interpretable adversarial

training method by enforcing the reconstruction of the adversarial examples in the

discrete graph domain. These two regularization methods can be applied to many

existing embedding models, and we take DeepWalk as the base model for illustration

in this work. Empirical evaluations in both link prediction and node classification

demonstrate the effectiveness of the proposed methods.

4.1 Introduction

Network embedding strategies, as an effective way for extracting features from graph

structured data automatically, have gained increasing attention in both academia and

industry in recent years. The learned node representations from embedding methods

can be utilized to facilitate a wide range of downstream learning tasks, including

some traditional network analysis tasks such as link prediction and node classifica-

tion, and many important applications in industry such as product recommendation

in e-commerce website and advertisement distribution in social networks. There-

fore, under such great application interest, substantial efforts have been devoted to

designing effective and scalable network embedding models.

Most of the existing works focus on preserving network structures and properties

in low-dimensional embedding vectors [95, 12, 143]. Firstly, DeepWalk [95] defines

random walk based neighborhood for capturing node dependencies, and node2vec [41]

extends it with more flexibility in balancing local and global structural properties.

LINE [126] preserves both first-order and second-order proximities through consider-

ing existing connection information. Further, GraRep [12] manages to learn different

high-order proximities based on different k-step transition probability matrix. Aside

from the above mentioned structure-preserving methods, several research works in-

vestigate the learning of property-aware network embeddings. For example, network

40

transitivity, as the driving force of link formation, is considered in [90], and node

popularity, as another important factor affecting link generation, is incorporated in-

to RaRE [42] to learn social-rank aware and proximity-preserving embedding vectors.

However, the existence of nosiy information in real-world networks and the overfit-

ting issue in the embedding learning process are neglected in most of these methods,

which leaves the necessity and potential improvement space for further exploration.

Most recently, adversarial learning regularization method is exploited for improv-

ing model robustness and generalization performance in network embedding [23, 158].

ANE [23] is the first try in this direction, which imposes a prior distribution on em-

bedding vectors through adversarial learning. Then, the adversarially regularized

autoencoder is adopted in NetRA [158] to overcome the mode-collapse problem in

ANE method. These two methods both encourage the global smoothness of the em-

bedding distribution based on generative adversarial networks (GANs) [39]. Thus,

they have very complicated frameworks and suffer from the well-recognized hard

training problems of GANs [104, 4].

In this work, we aim to leverage the adversarial training (AdvT) method [123, 40]

for network embedding to achieve model robustness and better generalization ability.

AdvT is a local smoothness regularization method with more succinct architecture.

Specifically, it forces the learned classifier to be robust to adversarial examples gener-

ated from clean ones with small crafted perturbation [123]. Such designed noise with

respect to each input example is dynamically obtained through finding the direction

to maximize model loss based on current model parameters, and can be approxi-

mately computed with fast gradient method [40]. It has been demonstrated to be

extremely useful for some classification problems [40, 83].

However, how to adapt AdvT for graph representation learning remains an open

problem. It is not clear how to generate adversarial examples in the discrete graph

domain since the original method is designed for continuous inputs. In this chapter,

41

we propose an adversarial training DeepWalk model, which defines the adversarial

examples in the embedding space instead of the original discrete relations and obtains

adversarial perturbation with fast gradient method. We also leverage the dependen-

cies among nodes based on connectivity patterns in the graph to design perturbations

with different L2 norm constraints, which enables more reasonable adversarial regu-

larization. The training process can be formulated as a two-player game, where the

adversarial perturbations are generated to maximize the model loss while the em-

bedding vectors are optimized against such designed noises with stochastic gradient

descent method. Although effective as a regularization technique, directly generating

adversarial perturbation in embedding space with fast gradient method suffers from

interpretability issue, which may restrict its application areas. Further, we manage to

restore the interpretability of adversarial examples by constraining the perturbation

directions to embedding vectors of other nodes, such that the adversarial examples

can be considered as the substitution of nodes in the original discrete graph domain.

Empirical evaluations show the effectiveness of both adversarial and interpretable

adversarial training regularization methods by building network embedding method

upon DeepWalk. It is worth mentioning that the proposed regularization methods, as

a principle, can also be applied to other embedding models with embedding vectors

as model parameters such as node2vec and LINE. The main contributions of this

chapter can be summarized as follows:

• We introduce a novel, succinct and effective regularization technique, namely ad-

versarial training method, for network embedding models which can improve both

model robustness and generalization ability.

• We leverage the dependencies among node pairs based on network topology to de-

sign perturbations with different L2 norm constraints for different positive target-

context pairs, which enables more flexible and effective adversarial training regu-

42

larization.

• We also equip the adversarial training method with interpretability for discrete

graph data by restricting the perturbation directions to embedding vectors of other

nodes, while maintaining its usefulness in link prediction and only slightly sacrific-

ing its regularization ability in node classification.

• We conduct extensive experiments to evaluate the effectiveness of the proposed

methods.

The organization of this chapter is as follows. In Section 4.2, the background and

motivation are introduced. In Section 4.3, a detailed explanation of the proposed

methods are described. In Section 4.4, the experimental results and analysis are

presented. Then, the related work is reviewed in Section 4.5 and finally a short

summary with the contributions and possible future work are provided in Section 4.6.

4.2 Background

4.2.1 Framework of Network Embedding

The purpose of network embedding is to transform discrete network structure in-

formation into compact embedding vectors, which can be further used to facilitate

downstream learning tasks, such as node classification and link prediction. The re-

search problem can be formally formulated as follows: Given a weighted (unweighted)

directed (undirected) graph GpV,E,Aq (N “ |V |), with V “ tviu
N
i“1 as the node set,

E “ teiju
N
i,j“1 as the edge set, and A as the weighted adjacency matrix with Aij quan-

tifying the strength of the relationship between node vi and vj, network embedding

is aimed at learning a mapping function f : V ÞÑ U , where U P RNˆd (d ! N) is the

embedding matrix with the ith row ui
T as the embedding vector of node vi. Note

that for many network embedding models, a context embedding matrix U 1 will also

43

be learned. For these methods, embedding matrix U is also called target embedding

matrix.

The learning framework of many famous network embedding methods, such as

DeepWalk [95], LINE [126] and node2vec [41], can be summarized into two phas-

es: a sampling phase that determines node pairs with strong relationships, and an

optimization phase that tries to preserve pairwise relationships in the embedding vec-

tors through the negative sampling approach [82]. In particular, in the first phase,

these three methods capture structural information by defining different neighbor-

hood structures, such as random walk explored neighborhood in [95, 41], first-order

and second-order proximities in [126]. We denote the generalized neighbors (not re-

stricted to directly connected nodes) of node vi as N pviq, i.e., nodes in this set are

closely related with vi and should be close with vi in the embedding space. The loss

function of this framework can be abstracted as follows:

LpG|Θq “ ´
ř

viPV

ř

vjPN pviq
tlog σpspvi, vj |Θqq

`
K
ř

k“1

Evk„Pkpvqrlog σp´spvi, vk|Θqqsu,
(4.1)

where Θ represents model parameters such as target and context embedding matrices,

spvi, vj|Θq represents the similarity score of node vi and vj based on model parameters

Θ, and σp¨q is the sigmoid function. Pkpvq denotes the distribution for sampling

negative nodes, and a simple variant of unigram distribution is usually utilized, i.e.,

Pkpvq9d
3{4
v , where dv is the out-degree of node v. Eq. (4.1) is actually a cross entropy

loss with closely related node pair pvi, vjq as positive samples and pvi, vkq as negative

samples, and thus network embedding can be considered as a classification problem.

44

4.2.2 Adversarial Training

Adversarial training [123, 40] is a newly proposed effective regularization method for

classifiers which can not only improve the robustness of the model against adversarial

attacks, but also achieve better generalization performance on learning tasks. It aug-

ments the original clean data with the dynamically generated adversarial examples,

and then trains the model with the newly mixed examples. Denote the input as x

and model parameters as θ. The loss on adversarial examples can be considered as

a regularization term in the trained classifier ppy|¨q, which is as follows:

´ log ppy|x` nadv;θq, (4.2)

where nadv “ arg min
n, }n}ďε

log ppy|x` n; θ̂q, (4.3)

where n is the perturbation on the input, ε represents the norm constraint of n,

and θ̂ are current model parameters but fixed as constants. We employ L2 norm,

while L1 norm has also been used in the literature [40]. Eq. (4.2) means that the

model should be robust on the adversarial perturbed examples. Before each batch

training, the adversarial noise n with respect to the input x is firstly generated by

solving optimization problem (4.3) to make it resistant to current model. Since it is

difficult to calculate Eq.(4.3) exactly in general, fast gradient descent method [40] is

widely used to obtain the adversarial noise approximately by linearizing log ppy|x;θq

around x. Specifically, the adversarial perturbation with L2 norm constraint can be

obtained as follows:

nadv “ ´ε ¨
g

}g}2
where g “ ∇x log ppy|x; θ̂q. (4.4)

It can be easily calculated with backpropagation method.

45

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

random
adversarial

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

random
adversarial

(a) Cora, training ratio=50%, 80%.

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

random
adversarial

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

random
adversarial

(b) Citeseer, training ratio=50%, 80%.

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

random
adversarial

0.0 1.0 2.0 3.0 4.0 5.0
Eps

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

random
adversarial

(c) Wiki, training ratio=50%, 80%.

Figure 4.1: Impact of applying adversarial and random perturbations to the em-
bedding vectors learned by DeepWalk on Cora, Citeseer and Wiki on multi-class
classification with training ratio as 50% and 80%. Note that ”random” represents
random perturbations (noises generated from a normal distribution), while ”adver-
sarial” represents adversarial perturbations.

46

4.2.3 Motivation

To improve the generalization ability of network embedding models, two ways have

been used: firstly, some denoising autoencoder based methods [13, 23] improve model

robustness by adding random perturbation to input data or hidden layers of deep

models; secondly, some existing methods [23, 158] regularize embedding vectors from

a global perspective through GAN-based method, i.e., encouraging the global s-

moothness of the distribution of embeddings. In this chapter, we aim to introduce

a novel, more succinct and effective regularization method for network embedding

models, i.e., adversarial training (AdvT) [40]. AdvT generates crafted adversarial

perturbations to model inputs and encourages local smoothness for improving mod-

el robustness and generalization performance, which can be expected to be more

effective than the random perturbation methods [13] and global regularization meth-

ods [23, 158]. In the following, we would like to compare the impact of adversarial

and random perturbation on embedding vectors to better motivate this new regular-

ization method.

However, it is not clear how to integrate adversarial training into existing net-

work embedding methods. Graph data is discrete, and the continuous adversarial

noise can not be directly imposed on the discrete connected information. To bypass

this difficulty, we seek to define the adversarial perturbation on embedding vectors

instead of the discrete graph domain as inspired by [83]. We define the adversarial

perturbation on node embeddings as follows:

nadv “ arg max
n, }n}ďε

LpG|Θ̂` nq, (4.5)

which can be further approximated with fast gradient method as presented in E-

q. (4.4).

Take DeepWalk [95] with negative sampling loss as an illustrative example. We

47

Random

Walk

Context

Construction

Phase 1: Sampling Phase Phase 2: Negative Sampling Loss with Adversarial Training Regularizer

Adversarial Training

Regularizer
Negative

Sampling Loss

Embeddings with Adversarial Perturbation

Embeddings

Figure 4.2: DeepWalk with Adversarial Training Regularization

explore the effect of adversarial perturbations on embedding vectors by adding them

to the learned embedding vectors from DeepWalk, and then perform multi-class

classification with the perturbed embeddings on several datasets. Besides, we choose

random perturbations as the compared baseline, i.e., noises generated from a normal

distribution. Figure 4.1 displays node classification results with varying L2 norm

constraints on the perturbations. We can find that embedding vectors are much

more vulnerable to adversarial perturbations than random ones. For example, when

ε is set to 2.0, the performance of node classification with training ratio as 80% on

Cora drops 3.35% under random perturbation, while that decreases 16.25% under

adversarial perturbation which is around 4 times more serious. If the embedding

vectors can be trained to be more robust on adversarial noises, we can expect more

significant improvements in generalization performance.

4.3 Proposed Methods

In this section, we first describe the adapted adversarial training method for network

embedding models, and present the algorithm based on DeepWalk. Then, we will

tackle its interpretability issue by designing a new adversarial perturbation genera-

tion method.

48

4.3.1 Adversarial Training DeepWalk

Figure 4.2 shows the framework of DeepWalk with adversarial training regularization.

It consists of two phases: a sampling phase that determines node pairs with strong

relationships, and an optimization phase that tries to preserve pairwise relationships

in the embedding vectors based on negative sampling approach. Note that in this

work we take DeepWalk as the illustrative example, and the proposed framework can

be applied to the network embedding methods, such as LINE and node2vec, with

the main difference in the sampling phase only.

In the first phase, DeepWalk transforms the network into node sequences by

truncated random walk. For each node vi P V , η sequences each with l nodes will

be randomly sampled based on network structure with vi as the starting point. In

every walking step, the next node vj will be sampled from the neighbors of current

node vk with the probability proportional to the edge strength Akj between vk and

vj. In practice, the alias table method [67] is usually leveraged for node sampling

given the weight distribution of neighbors of current node, which only takes Op1q

time in a single sampling step. Then in the context construction process, closely

related node pairs will be determined based on the sampled node sequences. Denote

a node sequence as S with the ith node as si. The positive target-context pairs from

S is defined as P “ tpsi, sjq : |i´ j| ď cu, where c represents the window size. With

the constructed node pairs, the negative sampling loss will be optimized, which is

defined as follows:

LpG|Θq “ ´
ř

viPV

ř

vjPN pviq
tlog σpu1j

T
¨ uiq

`
K
ř

k“1

Evk„Pkpvqrlog σp´u1k
T
¨ uiqsu,

(4.6)

where pvi, vjq is from the constructed positive target-context pairs, and ui and u1j

are the target embedding of node vi and context embedding of node vj respectively.

49

For the adversarial version of DeepWalk, an adversarial training regularization

term is added to the original loss to help learn robust node representations against

adversarial perturbations. The regularization term shares the same set of model

parameters with the original model, but with the perturbed target and context em-

beddings as input. Existing methods consider the input examples independently,

and impose the unique L2 norm constraint on all adversarial perturbations [40, 83].

For graph structured data, entities often correlate with each other in a very compli-

cated way, so it is inappropriate to treat all positive target-context relations equally

without discrimination. Adversarial regularization helps alleviate overfitting issue,

but it may also bring in some noises that can hinder the preservation of structural

proximities, i.e., adding noises to those inherently closely-related node pairs will

prevent them from having similar embeddings. Thus, we take advantages of the

denpendencies among nodes to assign different L2 norm constraints to different pos-

itive target-context relations adaptively. Specifically, the more closely two nodes are

connected, the smaller the constraint should be. The intuition is that less noises

should be added to those node pairs which are inherently strongly-connected in the

original network, thus they can be pushed closer in the embedding space with high

flexibility, while for those weakly-connected pairs larger constraint can help alleviate

the overfitting issue.

We obtain the similarity score of two nodes through computing the shifted positive

pointwise mutual information matrix [66]:

Mij “ maxtlogp
M̂ij

ř

k M̂kj

q ´ logpβq, 0u, (4.7)

where M̂ “ Â ` Â2 ` ¨ ¨ ¨ ` Ât captures different high-order proximities, Â is the 1-

step probability transition matrix obtained from A after the row-wise normalization,

and β is a shift factor. We set t to 2 and β to 1
N

in the experiments. Then, the

50

adaptive scale factor for the L2 norm constraint of the target-context pair vi and vj

is calculated as below:

Φij “ 1´Mij{maxtMu, (4.8)

where maxtMu represents the maximum entry of matrix M . Since Mij ą 0 p@i, jq,

Φij P r0, 1s. For those strongly-connected target-context pairs, the adaptive scale

factor can help scale down the L2 norm constraint of the adversarial perturbation,

and thus alleviate the negative effect from the noises.

Then, the adversarial training regularizer with scale factor for L2 norm constraint

is defined as follows:

LadvpG|Θ` nadvq
“ ´

ř

viPV

ř

vjPN pviq
tlog σppu1j ` Φij ¨ pn

1
jqadvq

T ¨ pui ` Φij ¨ pniqadvqq

`
K
ř

k“1

Evk„Pkpvqrlog σp´pu1k ` pn
1
kqadvq

T ¨ pui ` pniqadvqqsu,

(4.9)

where pniqadv and pn1jqadv represent the original adversarial perturbation for target

embedding of node vi and context embedding of node vj respectively.

Finally, one key problem is how to compute the adversarial perturbation for the

given embedding vector of a node v. Here, we follow the famous adversarial training

method directly [123, 40], and generate the perturbation noises to maximize model

loss under current model parameters. The adversarial perturbation for node v is

defined as follows:

nadv “ arg max
n, }n}ďε

LpG|Θ̂` nq. (4.10)

It can be further approximated with fast gradient method as follows:

nadv “ ε
g

}g}2
where g “ ∇uLpG|Θ̂q. (4.11)

Therefore, the overall loss for the proposed adversarial training DeepWalk is

defined as follows:

LpG|Θq ` λ ¨ LadvpG|Θ` nadvq, (4.12)

51

where λ is a hyper-parameter to control the importance of the regularization term.

In this work, we utilize DeepWalk with negative sampling loss as the base model

for building the adversarial version of network embedding methods. Since the origi-

nal implementation is based on the well encapsulated library, which lacks flexibility

for further adaption, we re-implement the model with Tensorflow [1] and utilize a

slightly different training strategy. Specifically, in each training epoch, we indepen-

dently construct positive target-context pairs with random walk based method, and

then optimize model parameters with mini-batch stochastic gradient descent tech-

nique. Algorithm 4.1 summarizes the training procedure for the adversarial training

DeepWalk. The model parameters are firstly initialized by training DeepWalk with

the method introduced above. For each batch training, adversarial perturbations

are generated with fast gradient method for each node in the batch as presented in

Line 7. Then, the target and context embeddings will be updated by optimizing

the negative sampling loss with adversarial training regularization as shown in Line

9. Asynchronous version of stochastic gradient descent [88] can be utilized to ac-

celerate the training as DeepWalk. Note that we ignore the derivative of nadv with

respect to model parameters. The adversarial perturbations can be computed with

simple back-propagation method, which enjoys low computational cost. Thus, the

adversarial training DeepWalk is scalable as the base model.

4.3.2 Interpretable Adversarial Training DeepWalk

Adversarial examples refer to examples that are generated by adding viciously de-

signed perturbations with norm constraint to the clean input, which can significantly

increase model loss and probably induce prediction error [123]. Take an example

from [40] for illustration, a “panda” image with imperceptibly small adversarial per-

turbation is assigned to be “gibbon” by the well-trained classification model with

high confidence, while the original image can be correctly classified. Such adversari-

52

Algorithm 4.1: The adversarial training DeepWalk

Input : graph GpV,E,Aq, window size c, embedding size d, walks per node η,
negative size K, walk length l, adversarial noise level ε, adversarial
regularization strength λ, batch size b

Output: Embedding matrix U
1 Initialize target and context embeddings with DeepWalk;

2 while not converge do
3 Generate a set of positive target-context pairs P with random walk based

method;

4 repeat
5 Sample a batch B of target-context pairs from P;

6 {{ Generate adversarial perturbations

7 nadv “ ε g
}g}2

where g “ ∇uLpG|Θ̂q for each node v in the batch;

8 {{ Optimize model parameters

9 Update target and context embeddings by applying gradient descent

technique to Eq. (4.12) ;

10 until r|P|{bs` times;

al examples can be well interpreted since the perturbations are imposed on the input

space. For the adversarial training DeepWalk, adversarial perturbations are added

to node embeddings instead of the discrete nodes and connected relations, and thus

can not be easily reconstructed in the discrete graph domain. Though effective as

a regularizer for improving model generalization performance, it suffers from lack

of interpretability, which may create a barrier for its adoption in some real-world

applications.

In this section, we propose an interpretable adversarial DeepWalk model by

restoring the interpretability of adversarial perturbations. Instead of pursuing the

worst perturbation direction only, we restrict the direction of perturbations toward

a subset of nodes in the graph in the embedding space, such as the neighbors of the

considered node. In this way, the adversarial perturbations in the node embedding

space might be interpreted as the substitution of nodes in the original input space,

i.e., the discrete target-context relations. However, there might be a certain level of

sacrifice on the regularization performance because of the restriction on perturbation

53

directions.

The direction vector from node vt to vk in the embedding space is defined as

follows:

v
ptq
k “

ṽ
ptq
k

}ṽ
ptq
k }2

, where ṽ
ptq
k “ uk ´ ut. (4.13)

Denote V ptq Ď V (|V ptq| “ T , |V ptq| ! |V |) as a set of nodes for generating adversarial

perturbation for node vt. We define V ptq as the top T nearest neighbors of node vt

in the embedding space based on current model parameters. To improve model

efficiency, we can also obtain V ptq based on the pretrained model parameters, and

fix it for all training epochs. We use the latter strategy for experiments in this

chapter. Denote wptq P RT as the weight vector for node vt with w
ptq
k representing

the weight associated with direction vector v
ptq
k , where vk is the kth node in V ptq.

The interpretable perturbation for vt is defined as the weighted sum of the direction

vectors starting from vt and ending with nodes in V ptq:

npwptqq “
T

ÿ

k“1

w
ptq
k v

ptq
k , vk P V

ptq, @k “ 1, ¨ ¨ ¨ , T. (4.14)

The adversarial perturbation is obtained by finding the weights that can maximize

the model loss:

w
ptq
iAdv “ arg max

wptq, }wptq}ďε

LiAdvpG|Θ` npwptqqq, (4.15)

where LiAdv is obtained by replacing nadv in Eq. (4.9) with npwptqq. In consideration

of model efficiency, the above regularization term is approximated with first-order

Taylor series for easy computation as in [40]. Thus, the weights for constructing

interpretable adversarial perturbation for node vt can be computed as follows:

w
ptq
iAdv “ ε

g

}g}2
where g “ ∇wptqLiAdvpG|Θ` npw

ptqqq. (4.16)

54

Table 4.1: Statistics of benchmark datasets

Name Cora Citeseer Wiki CA-GrQc CA-HepTh
|V | 2,708 3,264 2,363 5,242 9,877
|E| 5,278 4,551 11,596 14,484 25,973

Avg. degree 1.95 1.39 4.91 2.76 2.63
#Labels 7 6 17 - -

Substitutingw
ptq
iAdv into Eq. (4.14), we can get the adversarial perturbations npw

ptq
iAdvq.

Further, by replacing nadv with npw
ptq
iAdvq in Eq. (4.9), we can have the interpretable

adversarial training regularizer for DeepWalk. The algorithm for interpretable ad-

versarial training DeepWalk is different from Algorithm 4.1 in the way of generating

adversarial perturbations, and thus we do not present it to avoid repetition. Since

|V ptq| ! |V |, the computation of adversarial perturbation for one node takes constant

time. Therefore, the time complexity of this model is also linear to the number of

nodes in the graph as DeepWalk.

4.4 Experiments

In this section, we empirically evaluate the proposed methods through performing

link prediction and node classification on several benchmark datasets.

4.4.1 Experiment Setup

Datasets

We conduct experiments on several benchmark datasets from various real-world ap-

plications. Table 4.1 shows some statistics of them. Note that we do some prepro-

cessing on the original datasets by deleting self-loops and nodes with zero degree.

Some descriptions of these datasets are summarized as follows:

• Cora, Citeseer [81]: Paper citation networks. Cora consists of 2708 papers with

7 categories, and Citeseer consists 3264 papers including 6 categories.

55

• Wiki [110]: Wiki is a network with nodes as web pages and edges as the hyperlinks

between web pages.

• CA-GrQc, CA-HepTh [65]: Author collaboration networks. They describe sci-

entific collaborations between authors with papers submitted to General Relativity

and Quantum Cosmology category, and High Energy Physics, respectively.

Baseline Models

The descriptions of the baseline models are as follows:

• Graph Factorization (GF) [3]: GF directly factorizes the adjacency matrix with

stochastic gradient descent technique to obtain the embeddings, which enables it

scale to large networks.

• DeepWalk [95]: DeepWalk regards node sequence obtained from truncated ran-

dom walk as word sequence, and then uses skip-gram model to learn node rep-

resentations. We directly use the publicly available source code with hierarchical

softmax approximation for experiments.

• LINE [126]: LINE preserves network structural proximities through modeling n-

ode co-occurrence probability and node conditional probability, and leverages the

negative sampling approach to alleviate the expensive computation.

• node2vec [41]: node2vec differs from DeepWalk by proposing more flexible method

for sampling node sequences to strike a balance between local and global structural

properties.

• GraRep [12]: GraRep applies SVD technique to different k-step probability tran-

sition matrix to learn node embeddings, and finally obtains global representations

through concatenating all k-step representations.

56

• AIDW [23]: AIDW is an inductive version of DeepWalk with GAN-based regular-

ization method. A prior distribution is imposed on node representations through

adversarial learning to achieve a global smoothness in the distribution.

Our implemented version of DeepWalk is based on negative sampling approach,

thus we denote it as Dwns to avoid confusion. We also include a baseline, namely

Dwns rand, with noises from a normal distribution as perturbations in the regu-

larization term. Following existing work [107], we denote the adversarial training

DeepWalk as Dwns AdvT, and the interpretable adversarial training DeepWalk as

Dwns iAdvT in the rest of this chapter.

Parameter Settings

For Dwns and its variants including Dwns rand, Dwns AdvT and Dwns iAdvT,

the walk length, walks per node, window size, negative size, regularization strength,

batch size and learning rate are set to 40, 1, 5, 5, 1, 1024 and 0.001, respectively.

The adversarial noise level ε has different settings in Dwns AdvT and Dwns iAdvT,

while Dwns rand follows the settings of Dwns AdvT. For Dwns AdvT, ε is set to

different value for different datasets. Specifically, ε is set to 0.9 for Cora, 1.1 for

Citeseer in both link prediction and node classification, and 0.6 and 0.5 for Wiki

in node classification and link prediction respectively, while it is set to 0.5 for all

other datasets in these two learning tasks. For Dwns iAdvT, ε is set to 5 for all

datasets in both node classification and link prediction tasks, and the size of the

nearest neighbor set T is set to 5. Besides, the dimension of embedding vectors are

set to 128 for all methods.

4.4.2 Impact of Adversarial Training Regularization

In this section, we conduct link prediction and multi-class classification on adversar-

ial training DeepWalk, i.e., Dwns AdvT, to study the impact of adversarial training

57

0 20 40 60 80 100
Epoch

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Ac
cu

ra
cy

DWNS
DWNS_AdvT

0 20 40 60 80 100
Epoch

0.54

0.56

0.58

0.60

0.62

0.64

0.66

AU
C

DWNS
DWNS_AdvT

(a) Cora.

0 20 40 60 80 100
Epoch

0.20

0.30

0.40

0.50

0.60

Ac
cu

ra
cy

DWNS
DWNS_AdvT

0 20 40 60 80 100
Epoch

0.50

0.55

0.60

0.65

0.70

AU
C

DWNS
DWNS_AdvT

(b) Citeseer.

0 20 40 60 80 100
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

DWNS
DWNS_AdvT

0 20 40 60 80 100
Epoch

0.55

0.60

0.65

0.70

AU
C

DWNS
DWNS_AdvT

(c) Wiki.

Figure 4.3: Training curves of node classification (left, training ratio 10%) and link
prediction (right).

58

21 23 25 27 29
embed_size

0.20

0.40

0.60

0.80

Ac
cu

ra
cy

DWNS
DWNS_AdvT

in
21 23 25 27 29

embed_size
0.10

0.30

0.50

0.70

0.90

Ac
cu

ra
cy

DWNS
DWNS_AdvT

(a) Cora, training ratio=10%, 50%.

21 23 25 27 29
embed_size

0.20

0.30

0.40

0.50

0.60

Ac
cu

ra
cy

DWNS
DWNS_AdvT

21 23 25 27 29
embed_size

0.30

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

DWNS
DWNS_AdvT

(b) Citeseer, training ratio=10%, 50%.

21 23 25 27 29
embed_size

0.20

0.30

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

DWNS
DWNS_AdvT

21 23 25 27 29
embed_size

0.20

0.30

0.40

0.50

0.60

0.70

Ac
cu

ra
cy

DWNS
DWNS_AdvT

(c) Wiki, training ratio=10%, 50%.

Figure 4.4: Performance comparison between Dwns and Dwns AdvT on multi-class
classification with training ratio as 10% (left) and 50% (right) respectively under
varying embedding size.

59

regularization on network representation learning from two aspects: model perfor-

mance on different training epochs and model performance under different model

size.

Node classification is conducted with support vector classifier in Liblinear pack-

age˚[31] in default settings with the learned embedding vectors as node features. In

link prediction, network embedding is firstly performed on a sub-network, which con-

tains 80% of edges in the original network, to learn node representations. Note that

the degree of each node is ensured to be greater than or equal to 1 during subsampling

process to avoid meaningless embedding vectors. We use AUC score as the perfor-

mance measure, and treat link prediction as a classification problem. Specifically, a

L2-SVM classifier is trained with edge feature inputs obtained from the Hadamard

product of embedding vectors of two endpoints as many other works [41, 148], pos-

itive training samples as the observed 80% edges, and the same number of negative

training samples randomly sampled from the network, i.e., node pairs without direct

edge connection. The testing set consists of the hidden 20% edges and two times of

randomly sampled negative edges. All experimental results are obtained by making

an average of 10 different runs.

Training Process

We train Dwns model for 100 epochs, and evaluate the generalization performance

of the learned embedding vectors in each epoch with node classification and link

prediction on Cora, Citeseer and Wiki. We also conduct similar experiments on

Dwns AdvT for 90 epochs with the model parameters initialized from those of Dwns

after 10th training epochs. Figures 4.3 shows the experimental results.

In general, adversarial training regularization can bring a significant improvement

in generalization ability to Dwns through the observation of training curves in both

˚https://www.csie.ntu.edu.tw/„cjlin/liblinear/

60

node classification and link prediction. Specifically, after 10 training epochs, the

evaluation performance has little improvements for all datasets in two learning tasks

with further training for Dwns, while adversarial training regularization leads to an

obvious performance increase. In Figure 4.3, the blue line is drew by setting its ver-

tical coordinates as the maximum value of the metrics of Dwns in the corresponding

experiments. We can find that the training curve of Dwns AdvT is continuously

above the blue line in different training epochs. Particularly, there is an impressive

7.2% and 9.2% relative performance improvement in link prediction for Cora and

Citeseer respectively. We notice that the performance of Dwns AdvT drops slightly

after about 40 training epochs for Cora in link prediction, and about 20 training

epochs for Wiki in node classification. The reason might be that some networks are

more vulnerable to overfitting, and deeper understanding of this phenomenon needs

further exploration.

Performance vs. Embedding Size

We explore the effect of adversarial regularization under different model size with

multi-class classification. Figure 4.4 demonstrates the classification results on Cora,

Citeseer and Wiki with training ratio as 10% and 50%. In general, adversarial train-

ing regularization is essential for improving model generalization ability. Across all

tested embedding size, our proposed adversarial training DeepWalk can consistently

outperform the base model. For two models, when varying embedding size from 2 to

512, the classification accuracy firstly increases in a relatively fast speed, then grows

slowly, and finally becomes stable or even drops slightly. The reason is that model

generalization ability is improved with the increase of model capacity firstly until

some threshold, since more network structural information can be captured with

larger model capacity. However, when the model capacity becomes too large, it can

easily result in overfitting, and thus cause performance degradation. We notice that

61

Table 4.2: AUC score for link prediction

Dataset Cora Citeseer Wiki CA-GrQc CA-HepTh
GF 0.550 ˘ 0.005 0.550 ˘ 0.002 0.584 ˘ 0.007 0.593 ˘ 0.003 0.554 ˘ 0.001

DeepWalk 0.620 ˘ 0.003 0.621 ˘ 0.002 0.658 ˘ 0.002 0.694 ˘ 0.001 0.683 ˘ 0.000
LINE 0.626 ˘ 0.011 0.625 ˘ 0.004 0.647 ˘ 0.010 0.641 ˘ 0.002 0.629 ˘ 0.005

node2vec 0.626 ˘ 0.023 0.627 ˘ 0.022 0.639 ˘ 0.010 0.695 ˘ 0.006 0.667 ˘ 0.009
GraRep 0.609 ˘ 0.035 0.589 ˘ 0.025 0.642 ˘ 0.045 0.500 ˘ 0.000 0.500 ˘ 0.000
AIDW 0.552 ˘ 0.034 0.606 ˘ 0.035 0.511 ˘ 0.019 0.615 ˘ 0.023 0.592 ˘ 0.019
Dwns 0.609 ˘ 0.018 0.609 ˘ 0.011 0.648 ˘ 0.007 0.690 ˘ 0.004 0.662 ˘ 0.006

Dwns rand 0.606 ˘ 0.012 0.608 ˘ 0.005 0.645 ˘ 0.010 0.696 ˘ 0.006 0.662 ˘ 0.003
Dwns AdvT 0.644 ˘ 0.009 0.656 ˘ 0.007 0.665 ˘ 0.005 0.707 ˘ 0.004 0.692 ˘ 0.003
Dwns iAdvT 0.655 ˘ 0.015 0.653 ˘ 0.006 0.660 ˘ 0.002 0.707 ˘ 0.004 0.688 ˘ 0.004

the performance improvement of Dwns AdvT over Dwns is quite small when the

embedding size is 2. It is probably because model capacity is the main reason limit-

ing model performance and model robustness is not a serious issue when embedding

size is too small.

4.4.3 Link Prediction

Link prediction is essential for many applications such as extracting missing infor-

mation and identifying spurious interaction [76]. In this section, we conduct link

prediction on five real-world networks, and compare our proposed methods with the

state-of-the-art methods. The experimental settings have been illustrated in Sec-

tion 4.4.2. Table 4.2 summarizes the experimental results.

It can be easily observed that both our proposed methods, including Dwns AdvT

and Dwns iAdvT, perform better than Dwns in all five datasets, which demon-

strates that two types of adversarial regularization methods can help improve model

generalization ability. Specifically, there is a 4.62% performance improvement for

Dwns AdvT over Dwns on average across all datasets, and that for Dwns iAdvT

is 4.60%, which are very impressive.

We noticed that AIDW has a poor performance in link prediction. The reasons

can be two-folds: firstly, AIDW encourages the smoothness of embedding distri-

62

Table 4.3: Accuracy (%) of multi-class classification on Cora with training ratios
ranging from 1% to 9%

%Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9%
GF 24.55 28.87 32.07 33.11 34.45 35.83 38.25 39.05 39.84

DeepWalk 44.63 49.30 52.25 53.05 55.21 59.10 59.26 62.20 63.07
LINE 38.78 49.62 54.51 56.49 58.99 61.30 63.05 64.19 66.59

node2vec 58.02 63.98 66.33 68.07 69.91 69.87 71.41 72.60 73.63
GraRep 54.24 63.58 65.36 68.78 70.67 72.69 72.37 72.70 73.53
AIDW 54.55 63.30 65.86 66.20 67.62 68.61 69.52 71.07 71.44
Dwns 57.72 64.82 67.93 68.50 68.27 70.81 70.72 72.30 72.00

Dwns rand 56.46 64.87 67.44 68.24 70.38 71.16 71.34 72.67 73.51
Dwns AdvT 62.66 68.46 69.91 73.62 74.71 75.55 76.18 76.77 77.72
Dwns iAdvT 58.67 66.65 70.17 70.52 71.42 72.47 74.26 75.32 74.52

bution from a global perspective by imposing a prior distribution on them, which

can result in over-regularization and thus cause performance degradation; secondly,

AIDW suffers from mode-collapse problem because of its generative adversarial net-

work component, which can also result in model corruption. Besides, Dwns rand

has similar performance with Dwns, which means that the regularization term with

random perturbation contributes little to model generalization ability. By compar-

ison, our proposed novel adversarial training regularization method is more stable

and effective.

It can be observed that the performance of Dwns AdvT and Dwns iAdvT are

comparable. Either Dwns AdvT or Dwns iAdvT achieves the best results across the

five datasets, which shows the remarkable usefulness of the proposed regularization

methods. For Cora and CA-GrQc, Dwns iAdvT has better performance, although

we restrict the perturbation directions toward the nearest neighbors of the considered

node. It suggests that such restriction of perturbation directions might provide useful

information for representation learning.

63

Table 4.4: Accuracy (%) of multi-class classification on Cora with training ratios
ranging from 10% to 90%

%Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
GF 39.42 46.14 48.57 50.09 50.85 51.88 52.89 52.34 51.51

DeepWalk 64.60 69.85 74.21 76.68 77.59 77.68 78.63 79.35 79.23
LINE 66.06 70.86 72.25 73.94 74.03 74.65 75.12 75.30 75.76

node2vec 73.96 78.04 80.07 81.62 82.16 82.25 82.85 84.02 84.91
GraRep 74.98 77.48 78.57 79.38 79.53 79.68 79.75 80.89 80.74
AIDW 73.83 77.93 79.43 81.16 81.79 82.27 82.93 84.11 83.69
Dwns 73.20 76.98 79.83 80.56 82.27 82.52 82.92 82.97 84.54

Dwns rand 73.45 78.04 79.76 81.66 81.72 82.53 83.57 83.51 83.69
Dwns AdvT 77.73 80.50 82.33 83.54 83.63 84.41 84.99 85.66 85.65
Dwns iAdvT 76.12 78.88 80.31 81.61 82.80 83.03 83.63 83.75 85.02

Table 4.5: Accuracy (%) of multi-class classification on Citeseer with training ratios
ranging from 1% to 9%

%Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9%
GF 22.63 24.49 25.76 28.21 28.07 29.02 30.20 30.70 31.20

DeepWalk 27.82 32.44 35.47 36.85 39.10 41.01 41.56 42.81 45.35
LINE 29.98 34.91 37.02 40.51 41.63 42.48 43.65 44.25 45.65

node2vec 36.56 40.21 44.14 45.71 46.32 47.47 49.56 49.78 50.73
GraRep 37.98 40.72 43.33 45.56 47.48 47.93 49.54 49.87 50.65
AIDW 38.77 42.84 44.04 44.27 46.29 47.89 47.73 49.61 49.55
Dwns 38.13 42.88 46.60 46.14 46.38 48.18 48.58 48.35 50.16

Dwns rand 39.29 43.42 42.73 46.00 46.13 48.69 48.15 49.92 50.08
Dwns AdvT 41.33 45.00 46.73 48.57 50.37 51.06 52.07 53.09 53.73
Dwns iAdvT 40.88 45.53 46.01 47.10 50.02 50.79 49.59 52.78 51.95

Table 4.6: Accuracy (%) of multi-class classification on Citeseer with training ratios
ranging from 10% to 90%

%Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
GF 31.48 34.05 35.69 36.26 37.18 37.87 38.85 39.16 39.54

DeepWalk 45.53 50.98 53.79 55.25 56.05 56.84 57.36 58.15 59.11
LINE 47.03 50.09 52.71 53.52 54.20 55.42 55.87 55.93 57.22

node2vec 50.78 55.89 57.93 58.60 59.44 59.97 60.32 60.75 61.04
GraRep 50.60 53.56 54.63 55.44 55.20 55.07 56.04 55.48 56.39
AIDW 50.77 54.82 56.96 58.04 59.65 60.03 60.99 61.18 62.84
Dwns 50.00 53.74 57.37 58.59 59.00 59.53 59.62 59.51 60.18

Dwns rand 50.84 55.26 58.51 59.59 59.12 60.22 60.62 61.59 60.55
Dwns AdvT 54.79 59.21 61.06 61.26 62.56 62.63 62.40 63.05 63.73
Dwns iAdvT 52.26 56.65 59.07 60.27 61.96 62.04 62.20 62.21 63.15

64

Table 4.7: Accuracy (%) of multi-class classification on Wiki with training ratios
ranging from 1% to 9%

%Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9%
GF 19.76 22.70 27.00 28.41 30.28 31.49 31.87 32.18 34.16

DeepWalk 28.65 32.84 36.66 37.98 40.73 42.94 45.57 45.47 46.06
LINE 32.46 40.84 44.56 49.59 51.11 52.37 54.32 55.72 56.51

node2vec 32.41 41.96 47.32 48.15 50.65 51.08 52.71 54.66 54.81
GraRep 33.38 45.61 49.10 50.92 53.01 54.43 54.84 57.50 57.01
AIDW 35.17 43.05 46.63 51.29 52.40 52.72 55.92 56.78 55.92
Dwns 35.76 42.71 48.08 50.01 50.21 52.26 53.26 53.80 55.27

Dwns rand 36.12 44.57 46.71 49.15 51.74 53.37 53.22 53.27 54.21
Dwns AdvT 38.42 45.80 50.21 51.12 54.29 56.43 57.12 57.82 58.60
Dwns iAdvT 37.46 45.11 49.14 51.57 51.88 54.43 55.42 56.05 55.93

Table 4.8: Accuracy (%) of multi-class classification on Wiki with training ratios
ranging from 10% to 90%

%Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
GF 34.25 36.13 37.66 37.43 39.48 40.17 39.83 40.25 41.01

DeepWalk 46.60 54.48 59.05 62.70 64.66 65.95 66.98 68.37 68.78
LINE 57.88 61.08 63.50 64.68 66.29 66.91 67.43 67.46 68.61

node2vec 55.94 59.67 61.11 64.21 65.08 65.58 66.76 67.19 68.73
GraRep 58.57 61.91 63.58 63.77 64.68 65.39 65.92 65.18 67.05
AIDW 57.32 61.84 63.54 64.90 65.58 66.54 65.59 66.58 68.02
Dwns 55.77 59.63 61.98 64.01 64.59 66.99 66.45 67.55 67.51

Dwns rand 56.33 59.41 61.94 64.07 65.17 66.18 65.64 68.20 67.34
Dwns AdvT 59.97 63.33 65.32 66.53 67.06 67.69 68.94 68.35 69.32
Dwns iAdvT 57.81 61.40 63.37 65.71 65.56 67.09 66.81 67.70 68.02

4.4.4 Node Classification

Node classification can be conducted to dig out missing information in a network.

In this section, we conduct multi-class classification on three benchmark datasets,

including Cora, Citeseer and Wiki, with the training ratio ranging from 1% to 90%.

Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 summarize the experimental results.

Firstly, Dwns rand and Dwns have similar performance in all three datasets.

For example, the average improvement of Dwns rand over Dwns is 0.16% across

all training ratios in Wiki, which can be negligible. It validates that random per-

65

turbation for the regularization term contributes little to the model generalization

performance again. It is understandable, since the expected dot product between

any reference vector and the random perturbation from a zero mean Gaussian dis-

tribution is zero, and thus the regularization term will barely affect the embedding

learning.

Secondly, Dwns AdvT and Dwns iAdvT consistently outperform Dwns across

all different training ratios in the three datasets, with the only exception of Dwn-

s iAdvT in Citeseer when the training ratio is 3%. Specifically, Dwns AdvT achieves

5.06%, 6.45% and 5.21% performance gain over Dwns on average across all training

ratios in Cora, Citeseer and Wiki respectively, while the improvement over Dwns for

Dwns iAdvT are 2.35%, 4.50% and 2.62% respectively. It validates that adversarial

perturbation can provide useful direction for generating adversarial examples, and

thus brings significant improvements to model generalization ability after the adver-

sarial training process. For Dwns iAdvT, it brings less performance gain compared

with Dwns AdvT, which might because the restriction on perturbation direction

limit its regularization ability for classification tasks. In this case, there is a tradeoff

between interpretability and regularization effect.

Thirdly, AIDW achieves better results than DeepWalk, LINE and GraRep, which

shows that global regularization on embedding vectors through adversarial learning

can help improve model generalization performance. Our proposed methods, espe-

cially Dwns AdvT, demonstrate superiority over all the state-of-the-art baselines,

including AIDW and node2vec, based on experimental results comparison. We can

summarize that the adversarial training regularization method has advantages over

the GAN-based global regularization methods in three aspects, including more suc-

cinct architecture, better computational efficiency and more effective performance

contribution.

66

0.1 0.3 0.5 0.7 0.9 1.1 5
0.10

0.30

0.50

0.70

0.90

Ac
cu

ra
cy

Citeseer
Cora
Wiki

0.1 0.3 0.5 0.7 0.9 1.1 50.45

0.50

0.55

0.60

0.65

0.70

AU
C

Citeseer
Cora
Wiki

(a) Noise level ε.

0.001 0.1 10 10000.10

0.30

0.50

0.70

0.90

Ac
cu

ra
cy

Citeseer
Cora
Wiki

0.001 0.1 10 1000
0.60

0.62

0.64

0.66

0.68

AU
C

Citeseer
Cora
Wiki

(b) Adversarial regularization strength λ.

Figure 4.5: Impact of hyper-parameters on node classification (left, training ratio
50%) and link prediction (right).

4.4.5 Parameter Sensitivity

We conduct parameter sensitivity analysis with link prediction and multi-class clas-

sification on Cora, Citeseer and Wiki in this section. Here we only present the

results for Dwns AdvT due to space limitation. Adversarial training regularization

method is very succinct. Dwns AdvT only has two more hyper-parameters com-

pared with Dwns, which are noise level ε and adversarial regularization strength λ.

Note that when studying one hyper-parameter, we follow default settings for other

hyper-parameters. The experimental settings of link prediction and node classifica-

tion have been explained in Section 4.4.2.

Fig. 4.5(a) presents the experimental results when varying ε from 0.1 to 5.0. For

both learning tasks, we can find that the performance in these three datasets first

67

improves with the increase of ε, and then drops dramatically after ε passing some

threshold. It suggests that appropriate setting of ε improves the model robustness

and generalization ability, while adversarial perturbation with too large norm con-

straint can destroy the learning process of embedding vectors. Besides, it can be

easily noticed that the best settings of ε are different for different datasets in gen-

eral. Specifically, Citeseer has the best results in both link prediction and node

classification when ε “ 1.1, Cora achieves the best results when ε “ 0.9, while the

best setting of ε for Wiki is around 0.5. Based on the experimental results on these

three datasets only, it seems that the denser the network is, the smaller the best

noise level parameter ε should be.

We conduct link prediction and node classification on three datasets with the

adversarial regularization strength λ from the set t0.001, 0.01, 0.1, 1, 10, 100, 1000u.

Fig. 4.5(b) displays the experimental results. For node classification, the best re-

sult is obtained when λ is set to around 1, larger values can result in performance

degradation. For example, the classification accuracy on Wiki drops dramatically

when λ reaches 10, and larger setting produces worse results. For link prediction,

the performance is quite consistent among the three datasets. Specifically, when λ

increases from 0.001 to 10, the AUC score shows apparent increase for all datasets,

and then tends to saturate or decrease slightly. Empirically, 1 is an appropriate value

for the adversarial regularization strength λ.

4.5 Related Work

Network Embedding. Some early methods, such as IsoMap [130] and LLE [102],

assume the existence of a manifold structure on input vectors to compute low-

dimensional embeddings, but suffer from the expensive computation and their in-

ability in capturing highly non-linear structural information of networks. More re-

68

cently, some negative sampling approach based models have been proposed, including

DeepWalk [95], LINE [126] and node2vec [41], which enjoys two attractive strengths:

firstly, they can effectively capture high-order proximities of networks; secondly, they

can scale to the widely existed large networks. DeepWalk obtains node sequences

with truncated random walk, and learns node embeddings with Skip-gram mod-

el [82] by regarding node sequences as sentences. node2vec differs from DeepWalk

by proposing more flexible random walk method for sampling node sequences. LINE

defines first-order and second-order proximities in network, and resorts to negative

sampling for capturing them.

Further, some works [12, 90, 147] tried to preserve various network structural

properties in embedding vectors based on matrix factorization technique. GraRep [12]

can preserve different k-step proximities between nodes independently, HOPE [90]

aims to capture asymmetric transitivity property in node embeddings, while N-

NMF [147] learns community structure preserving embedding vectors by building

upon the modularity based community detection model [85]. Meanwhile, deep learn-

ing embedding models [13, 143, 112, 113] have also been proposed to capture highly

non-linear structure. DNGR [13] takes advantages of deep denoising autoencoder

for learning compact node embeddings, which can also improve model robustness.

SDNE [143] modifies the framework of stacked autoencoder to learn both first-

order and second-order proximities simultaneously. DNE-SBP [113] utilizes a semi-

supervised SAE to preserve the structural balance property of the signed networks.

Both GraphGAN [144] and A-RNE [24] leverage generative adversarial networks to

facilitate network embedding, with the former unifies the generative models and dis-

criminative models of network embedding to boost the performance while the latter

focuses on sampling high-quality negative nodes to achieve better similariy ranking

among node pairs.

However, the above mentioned models mainly focus on learning different net-

69

work structures and properties, while neglecting the existence of noisy information

in real-world networks and the overfitting issue in embedding learning process. Most

recently, some methods, including ANE [23] and NetRA [158], try to regularize the

embedding learning process for improving model robustness and generalization abil-

ity based on generative adversarial networks (GANs). They have very complicated

frameworks and suffer from the well-recognized hard training problems of GANs.

Furthermore, these two methods both encourage the global smoothness of the em-

bedding distribution, while in this chapter we utilize a more succinct and effective

local regularization method.

Adversarial Machine Learning. It was found that several machine learning

models, including both deep neural network and shallow classifiers such as logistic

regression, are vulnerable to examples with imperceptibly small designed perturba-

tions, called adversarial examples [123, 40]. This phenomenon was firstly observed

in areas like computer vision with continuous input vectors. To improve model ro-

bustness and generalization ability, adversarial training method [40] is shown to be

effective. It generates adversarial perturbations for original clean input with the aim

of maximizing current model loss, and further approximates the difficult optimization

objective with first-order Taylor Series. Such method has also been applied to text

classification problem in [83, 107] by defining the perturbation on continuous word

embeddings, and recommendation in [49] by generating adversarial perturbations on

model parameters. However, to the best of our knowledge, there is no practice of

adversarial training regularization for graph representation learning.

For graph structured data, they are fundamentally different from images because

of their discrete and indifferentiable characteristics. Some existing works [22, 167, 19]

aimed to explore how to generate the adversarial examples in the discrete, binary

graph domain, and whether similar vulnerability exists in graph analysis applications.

In [22], adversarial attacks are generated by modifying combinatorial structure of

70

graph with a reinforcement learning based method, which is shown to be effective

in Graph Neural Network models. Both [167] and [19] designed attack methods

to Graph Convolutional Network [62]. Particularly, NETTACK [167] focuses on

attributed graph classification problem and FGA [19] tackles network representation

learning. However, all of them studied adversarial attack methods without providing

any defense algorithms for improving the robustness of existing methods against these

attacks. Differently, in this chapter, we aim to propose adversarial regularization

method for network embedding algorithms to improve both model robustness and

generalization ability.

4.6 Conclusion

In this chapter, we proposed two adversarial training regularization methods for net-

work embedding models to improve the robustness and generalization ability. Specif-

ically, the first method is adapted from the classic adversarial training method by

defining the perturbation in the embedding space with adaptive L2 norm constraint.

Though it is effective as a regularizer, the lack of interpretability may hinder its adop-

tion in some real-world applications. To tackle this problem, we further proposed an

interpretable adversarial training method by restricting the perturbation direction-

s to embedding vectors of other nodes, such that the crafted adversarial examples

can be reconstructed in the discrete graph domain. Both methods can be applied

to the existing embedding models with node embeddings as model parameters, and

DeepWalk is used as the base model in the chapter for illustration. Extensive ex-

periments prove the effectiveness of the proposed adversarial regularization methods

for improving model robustness and generalization ability. Future works would in-

clude applying adversarial training method to the parameterized network embedding

methods such as deep learning embedding models.

71

72

Chapter 5

Ranking Network Embedding via

Adversarial Learning

Network Embedding is an effective and widely used method for extracting graph

features automatically in recent years. To handle the widely existed large-scale net-

works, most of the existing scalable methods, e.g., DeepWalk, LINE and node2vec,

resort to the negative sampling objective so as to alleviate the expensive computation.

Though effective at large, this strategy can easily generate false, thus low-quality,

negative samples due to the trivial noise generation process which is usually a simple

variant of the unigram distribution. In this chapter, we propose a Ranking Network

Embedding (RNE) framework to leverage the ranking strategy to achieve scalabil-

ity and quality simultaneously. RNE can explicitly encode node similarity ranking

information into the embedding vectors, of which we provide two ranking strate-

gies, vanilla and adversarial, respectively. The vanilla strategy modifies the uniform

negative sampling method with a consideration of edge existance. The adversarial

strategy unifies the triplet sampling phase and the learning phase of the model with

the framework of generative adversarial networks. Through adversarial training, the

triplet sampling quality can be improved thanks to a softmax generator which con-

structs hard negatives for a given target. The effectiveness of our RNE framework

73

is empirically evaluated on a variety of real-world networks with multiple network

analysis tasks.

5.1 Introduction

Network embedding, i.e., learning low-dimensional representations for nodes in graph-

structured data, can help encode meaningful semantic, relational and structural in-

formation of a graph into embedding vectors. Typically, such learning process is

conducted in an unsupervised manner [95, 126, 12] due to the lack of labeled data,

and thus the learned representations can be used to facilitate different kinds of down-

stream tasks such as network visualization, link prediction and node classification.

In real-world applications, data entities with complicated relationships can be well

organized with graphs. For example, paper citation networks characterize the infor-

mation of innovation flow, social networks entail complicated relationships among

people, groups and organizations, and protein-protein interaction networks capture

information between different proteins. Therefore, it is of great application interest

to develop effective and scalable methods for unsupervised network embedding.

Network data are usually high-dimensional, very sparse and non-linear, which

makes network embedding a challenging problem. Some classical methods, such

as MDS [20], IsoMap [130] and LLE [102], can be used for network representation

learning. However, they can neither effectively capture highly nonlinear structure of

networks, nor scale to large networks. When handling large-scale networks, Deep-

Walk [95], LINE [126] and node2vec [41] are shown to be quite effective and efficient.

These three methods preserve network structural properties in the embedding vec-

tors through the negative sampling technique [82]. The negative sampling method

is a simplified variant of negative contrastive estimation [45], which can help speed

up the training process of the model. However, since the negative samples are con-

74

structed according to a unigram noise generation process, this strategy may generate

false negative samples that violate pairwise relationships presented in the network

structure. Here, we aim to answer two questions: 1) can we find some other ways

for encoding pairwise relationships into node representations instead of the negative

sampling approach? 2) how to sample better negative nodes for target-positive pairs

(i.e., closely related node pairs) for training?

In this chapter, we propose a Ranking Network Embedding (RNE) framework

based on triplet ranking loss for preserving pairwise relationships of nodes in embed-

ding vectors. Specifically, we firstly construct triplets based on network structure

where each triplet consists of a target, a positive and a negative node. In the train-

ing process, the distance between embedding vectors of the target and positive node

will be minimized while the distance between that of target and negative node will

be maximized until they are separated by a predefined margin. Different from the

negative sampling technique used in [95, 126, 41], the ranking strategy enforces a

non-trivial margin between similar node pairs and dissimilar ones, thus explicitly en-

codes similarity ranking information among node pairs into the embedding vectors.

With the RNE framework, we propose two network embedding models by using

a vanilla ranking strategy and an adversarial ranking technique respectively. In the

vanilla RNE model, we utilize a simple negative node sampling method to construct

triplets, which uniformly samples nodes from the node set without direct link to

the target. This vanilla approach can perfectly avoid false negative samples while

maintain the efficiency. Though works well to some extend, this vanilla strategy

may also generate totally unrelated negative nodes for the target node, which will

be of little help for the training. This phenomenon is even more common in very

high-dimensional and sparse networks. To improve the vanilla RNE, we propose a

generative adversarial model to unify the triplet sampling process and the learning

process with the framework of generative adversarial networks (GANs) [39], which

75

leads to an adversarial RNE model. It leverages a generator for generating hard

negative nodes with respect to a given target to help construct high-quality triplets,

and thus achieves better node similarity rankings in the embedding space. We em-

pirically evaluate the proposed vanilla and adversarial RNE models through several

network analysis tasks, including network visualization, link prediction and node

classification, on benchmark datasets. Experimental results show that both models

achieve competitive performance with state-of-the-art methods.

5.2 RNE: Ranking Network Embedding

5.2.1 Framework

The framework of Ranking Network Embedding method is shown in Figure 5.1(a).

It consists of two phases, i.e., the triplet construction phase and the learning phase.

Firstly, we leverage some sampling methods to construct triplets based on network

structure, which can help specify the similarity ranking of some pairwise relation-

ships. Then, in the learning process, triplet ranking loss is minimized by directly

updating embeddings to pull similar nodes closer in the embedding space, while

pushing dissimilar nodes apart.

To help better understand our model, we first introduce some notations and

describe the research problem. A network is denoted as G “ pV,Eq, with a set

of nodes V representing data entities and a set of edges E each representing the

relationship between two nodes. We mainly consider undirected graph in this chapter.

Given a graph G, we aim to learn low-dimensional representations ui P R
d for each

node vi P V , which can capture network structural properties. We denote U as

embedding matrix with ui as its ith row.

76

Em
b

e
d

d
in

g Lo
o

ku
p

Trip
let R

an
kin

g Lo
ss

Target Positive Negative

Triplet
sampling

(a) RNE.

D

Target Positive Negative

G… So
ftm

ax
o

u
tp

u
t

sampling

Candidate

(b) Adversarial RNE.

Figure 5.1: Model Architecture.

5.2.2 Vanilla Ranking Network Embedding

The vanilla RNE model is a simple instantiation of the proposed RNE framework

with uniform negative sampling method. Some detailed descriptions of its triplet

sampling method and loss function are provided below.

Vanilla Triplet Sampling

Triplet sampling method plays an important role in learning good embedding vectors

for downstream learning tasks. The constructed triplets directly specify pairwise re-

lationships from network structure which will be regarded as ground-truth in learning

process to be encoded into embedding vectors. We only explicitly consider first-order

proximity when constructing positive pairs. The triplet set T is defined as follows:

T “ tpvt, vp, vnq|pvt, vpq P E, pvt, vnq R Eu, (5.1)

where pvt, vp, vnq is a triplet with vt, vp and vn as the target, positive and negative

node, respectively. Since network is usually very sparse, for each positive pair, there

can be a large number of negative nodes. To improve model efficiency, we only

uniformly sample K negative nodes from the negative space for each positive pair.

77

Target

Positive

Negative

Margin

BEFORE AFTER

Learning

Figure 5.2: The triplet ranking loss minimizes the distance between a target node
and a positive node while maximizing that of the target and a negative node until
they are separated by at least a margin distance. The pairwise relationships can be
well preserved in embedding vectors after the learning process.

Triplet Ranking Loss

For vanilla RNE model, we seek to minimize the following loss function:

L “
ÿ

pvt,vp,vnqPT

rm`Dpvt, vp; θDq ´Dpvt, vn; θDqs`, (5.2)

where rxs` denotes the positive part of x, Dpv1, v2; θDq is a distance function of

two nodes, θD is the union of all node embeddings, and m ą 0 is a margin hyper-

parameter separating the positive pair and the corresponding negative one. We use

the squared L2 distances in the embedding space, i.e., Dpv1, v2; θDq “ }u1´u2}
2. The

triplet ranking loss explicitly encodes similarity ranking among node pairs into the

embedding vectors, and the visualization explanation can be found in Figure 5.2 [108].

5.2.3 Adversarial Ranking Network Embedding

For the vanilla RNE model, we only use uniform negative sampling method for

constructing triplets. It can easily generate totally unrelated negative nodes for the

target node due to the sparsity and high-dimensionality of the network, which will be

of little help for the training process. To help alleviate this problem, we propose an

Adversarial Ranking Network Embedding model, which unifies the triplet sampling

78

phase and the learning phase of the RNE method with the framework of GANs. The

model architecture is presented in Figure 5.1(b). It consists of a generator G and a

discriminator D (we abuse the notation and directly use the distance function D to

represent the discriminator). In the learning process, the discriminator tries to pull

similar nodes closer in the embedding space, while pushing dissimilar nodes apart.

The generator aims to generate difficult negative nodes for a given target from a set

of negative candidates by optimizing its own parameters.

Discriminator

The discriminator is aimed at optimizing the following triplet ranking loss function

similar to the vanilla RNE model:

LD “
ÿ

pvt,vpqPP

Evn„Gp¨|vt;θGqrm`Dpvt, vp; θDq ´Dpvt, vn; θDqs`, (5.3)

where P “ tpv1, v2q, pv2, v1q|pv1, v2q P Eu is the positive pair set in graph G, and

Gp¨|vt; θGq is the generator. Only first-order proximity is directly considered, and each

edge pvi, vjq P E corresponds to two positive pairs pvi, vjq and pvj, viq. Particularly,

a softmax generator is employed to construct high-quality triplets instead of simple

uniform sampling method. More detailed illustrations of this sampling method will

be introduced below. Note that Eq. (5.3) can be directly optimized with gradient

descent technique.

Generator

Softmax function is widely used in network embedding literature [95, 154] to model

node conditional probability. In this work, we also employ softmax function as the

generator to sample negative nodes given a target, but it is defined over the negative

node space with respect to the given positive pair according to network structure.

Specifically, the generator Gpvn|vt; θGq is defined as a softmax function over a set of

79

2

3

4

5

6

7

8

9

10

Target

Positive

Negative

1

(a) Negative sampling.

2

3

4

5

6

7

8

9

10

Target

Positive Negative1

(b) Uniform sampling.

2

3

4

5

6

7

8

9

10

Target

Positive

Negative

1

(c) Adversarial sampling.

Figure 5.3: For the negative sampling approach, each node is sampled according to
its unigram distribution (regard each node as a word) raised to the 3/4 power, which
can violate pairwise relationships reflected by network structure. For example, node
6 is very likely to be sampled as negative node for target-positive pair (5, 1), even
though node 5 and 6 have strong relationship. For our triplet sampling method,
such problem can be well avoided. However, simple uniform sampling method can
easily generate totally unrelated nodes (node 8 in the example graph), which can be
improved with adversarial sampling method.

negative candidates:

Gpvn|vt; θGq “
exppuTnutq

ř

vniPNegpvt,vpq
exppuTni

utq
, (5.4)

where Negpvt, vpq “ tvn1 , vn2 , ¨ ¨ ¨ , vnNc
u is a set of negative candidates with size as

Nc. In implementation, Negpvt, vpq is a subsample of the original negative space of

the positive pair to reduce the computation complexity, which is actually a common

practice in network embedding literature [95, 126]. For each positive pair, Nc neg-

ative nodes will be first uniformly randomly sampled from the negative space, and

used as input for the generator. Then, a hard negative node will be sampled from

Negpvt, vpq according to the probability distribution Gpvn|vt; θGq. Besides, in the

training process, K hard negatives will be sampled for each positive pair.

The loss function of the generator is defined as follows:

LG “
ÿ

pvt,vpqPP

Evn„Gp¨|vt;θGqrDpvt, vn; θDqs. (5.5)

It can encourage the softmax generator to generate useful negative nodes for a given

positive pair instead of totally unrelated ones. The sampling process of hard negatives

80

is discrete, which hinders the objective from directly being optimized by gradient

descent method as that of the discriminator. According to [109, 157], this loss can

be optimized with the following policy gradient:

∇θGLG “ ∇θG

ř

pvt,vpq

Evn„Gp¨|vt;θGqrDpvt, vn; θDqs

“
ř

pvt,vpq

Evn„Gp¨|vt;θGqrDpvt, vn; θDq∇θG logGpvn|vt; θGqs.
(5.6)

The gradient of LG is an expected summation of the gradient ∇θG logGpvn|vt; θGq

weighted by the distance of node pair pvt, vnq. When training the generator, the pa-

rameters will be shifted to involve high-quality negatives with high probability from

softmax generator, i.e., node pairs pvt, vnq with small distance from discriminator will

be encouraged to be generated. In practice, the expectation can be approximated

with sampling in the negative space. Besides, the REINFORCE algorithm suffers

from the notorious high variance, which can be alleviated by subtracting a baseline

function from the reward term of the objective, i.e., adding a baseline function to

the reward term in the loss [122]. Specifically, we replace Dpvt, vn; θDq in the loss by

its advantage function as follows:

Dpvt, vn; θDq `
ÿ

pvt,vpq

Evn„Gp¨|vt;θGqrDpvt, vn; θDqs, (5.7)

where
ř

pvt,vpq
Evn„Gp¨|vt;θGqrDpvt, vn; θDqs is the average reward of the whole training

set, and acts as the baseline function in policy gradient.

A comparison of the sampling methods is presented in Figure 5.3 with toy ex-

amples. Our proposed adversarial sampling method can help select difficult negative

nodes with respect to given target. With high-quality triplets, the tricky pairwise

relationship rankings can be encoded into node representations through the training

of the discriminator as illustrated in Figure 5.2. Note that false negative nodes can

still be generated by the generator due to the incompleteness and non-linearity of

81

Algorithm 5.1: The adversarial RNE algorithm
Input : GpV,Eq, Dimension d, Margin m, Negative size K, Candidate size Nc

Output: The parameters of Discriminator θD
1 Initialize the Generator Gpvn|vt; θGq and Discriminator Dpv1, v2; θDq with pretrained embedding vectors;

2 while not converge do
3 Sample a batch of positive pairs B from positive set P;

4 T “ tu; N “ tu;

5 {{ Adversarial negative sampling with softmax generator

6 for each pvt, vpq P B do
7 repeat
8 Sample Nc negative candidates Negpvt, vpq uniformly from the negative space of pvt, vpq;

9 Sample a hard negative vn from Negpvt, vpq according to Gpvn|vt, θGq;

10 T “ T Y tvnu; N “ N Y tNegpvt, vpqu;

11 until K times;

12 {{ Parameters updating

13 update θD according to Eq. (5.3) with T as training batch;

14 update θG according to Eq. (5.5) and (5.4) with T and N as training batch;

Table 5.1: Statistics of benchmark datasets from real-world applications

Name Citeseer [81] Cit-DBLP [128] PubMed [84] CA-GrQc[65] CA-HepTh[65] Wiki [110] USA-AIR [100]
|V | 3,264 5,318 19,717 5,242 9,877 2,363 1,190
|E| 4,551 28,065 44,335 14,484 25,973 11,596 13,599

Avg. degree 1.39 5.28 2.25 2.76 2.63 4.91 11.43
#Labels 6 3 3 - - 17 4

the real-world networks, but in a very low probability since the subsampling trick

is employed for generating negative candidates among a very large negative space.

So, the embedding vectors can be improved in general. This is also validated by our

experiments.

Algorithm 5.1 presents the pseudocode of the adversarial RNE model, which

employs a joint training procedure. The overall time complexity of the algorithm is

linear to the number of edges, i.e., OpdKNc|E|q (d, K and Nc are some constants

independent of the network size), which enables it scale to large networks.

82

(a) GF. (b) DW. (c) LINE. (d) n2c. (e) V-RNE. (f) A-RNE.

Figure 5.4: Visualization of Cit-DBLP network.

5.3 Experiments

5.3.1 Experiment Setup

Datasets

We conduct experiments on benchmark datasets from various real-world applications.

Table 5.1 shows some statistics of them. Note that we regard all paper citation

networks as undirected networks, and do some preprocessing on the original datasets

by deleting self-loops and nodes with zero degree.

Baseline Models

We only consider scalable baselines in this chapter. Some matrix factorization based

methods such as M-NMF [12, 147] are excluded from the baselines due to the Op|V |2q

time complexity. The descriptions of the baseline models are as follows: Graph Fac-

torization(GF) [3] directly factorizes the adjacency matrix to obtain the embeddings.

DeepWalk(DW) [95] regards node sequence obtained from truncated random walk

as word sequence, and then uses skip-gram model to learn node representations.

LINE [126] preserves proximities through modeling node co-occurrence probability

and node conditional probability. node2vec(n2v) [41] develops a biased random walk

procedure to explore neighborhood of a node, which can strike a balance between

local and global properties. We denote the vanilla RNE model as V-RNE, and the

adversarial RNE model as A-RNE in the rest of the chapter.

83

Parameter Settings

The window size, walk length and the number of walks per node of both DeepWalk

and node2vec are set to 10, 80 and 10, respectively. We use node2vec in an unsu-

pervised manner by setting both in-out and return hyperparameters to 1.0 for fair

comparison. For LINE, we follow the original paper [126] to set the parameters. For

our method, the parameter settings are the margin m “ 2.5, the negative size per

edge K “ 5 ,and the negative candidate size Nc “ 5. The learning rate of V-RNE

is set to 0.01, while A-RNE to 0.0001. L2-normalization is conducted on node em-

beddings for both the V-RNE and A-RNE model after each training epoch. Besides,

the dimension of embedding vectors are set to 128 for all methods.

5.3.2 Network Visualization

We leverage a commonly used toolkit t-SNE [137] to visualize node embeddings

of Cit-DBLP generated by different models. Cit-DBLP is a citation network con-

structed from the DBLP datsest [128], which consists of papers from publication

venues including Information Sciences, ACM Transactions on Graphics and Human-

Computer Interaction. These papers are naturally classified into three categories

according to their publication venues, and represented with different colored nodes

in the visualization.

Experimental results. Figure 5.4 displays the visualization results. Papers

from different publication venues are mixed together terribly for GF as shown in

Figure 5.4(a). In the center part of both DeepWalk and LINE, papers from different

categories are mixed with each other. Visualizations from node2vec, V-RNE and A-

RNE are much better as three clusters are formed with quite clear margin. Compared

with V-RNE, A-RNE model has better visualization result, since the margin between

different clusters are larger. The reason is that adversarial sampling method aims to

84

Table 5.2: AUC score for link prediction

Training ratio 80% 50%
Dataset Wiki CA-GrQc CA-HepTh Wiki CA-GrQc CA-HepTh

GF 0.583 ˘ 0.008 0.593 ˘ 0.003 0.554 ˘ 0.001 0.566 ˘ 0.002 0.572 ˘ 0.003 0.531 ˘ 0.001
DeepWalk 0.656 ˘ 0.001 0.694 ˘ 0.001 0.683 ˘ 0.001 0.639 ˘ 0.001 0.657 ˘ 0.002 0.630 ˘ 0.001

LINE 0.649 ˘ 0.007 0.638 ˘ 0.005 0.630 ˘ 0.001 0.627 ˘ 0.014 0.600 ˘ 0.003 0.561 ˘ 0.002
node2vec 0.634 ˘ 0.016 0.690 ˘ 0.007 0.668 ˘ 0.003 0.621 ˘ 0.010 0.667 ˘ 0.010 0.624 ˘ 0.007
V-RNE 0.647 ˘ 0.008 0.691 ˘ 0.005 0.657 ˘ 0.005 0.627 ˘ 0.007 0.655 ˘ 0.004 0.606 ˘ 0.004
A-RNE 0.670 ˘ 0.005 0.708 ˘ 0.004 0.688 ˘ 0.004 0.655 ˘ 0.006 0.673 ˘ 0.004 0.639 ˘ 0.004

generate hard negative nodes, i.e., negative nodes near the boundary, which directly

contributes to producing more clear margin between different clusters. On the whole,

this experiment demonstrates that ranking network embedding method can help

capture intrinsic structure of original network in embedding vectors.

5.3.3 Link Prediction

We conduct link prediction on three benchmark datasets. For each network, we

randomly and uniformly sample 20% and 50% of the edges as test labels and use

the remaining network as input to the models, i.e., training ratio as 80% and 50%.

When sampling edges, we ensure the degree of each node is greater than or equal to

1 to avoid meaningless embedding vectors. The prediction performance is measured

by AUC score. To calculate AUC score, we first obtain the edge features from the

learned node embeddings through Hadamard product of embeddings of two endpoints

as many other works [41], and then train a L2-SVM classifier with under-sampling

to get prediction results.

Experimental results. The link prediction results are the average of 10 different

runs, which are shown in Table 5.2. The AUC scores of A-RNE model consistently

outperform those of the V-RNE model. It validates that A-RNE can help achieve

better node similarity rankings in embedding space, since link prediction task can be

considered as similarity ranking among node pairs. The performance of the proposed

RNE method is competitive with the baselines, which shows that using ranking

85

Table 5.3: Accuracy (%) of multi-class classification on USA-AIR and PubMed

Dataset USA-AIR Pubmed
Ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
GF 41.10 42.21 42.27 41.12 41.60 35.63 36.69 37.56 37.74 38.08

DeepWalk 43.43 51.79 53.41 55.74 56.05 69.43 71.33 71.74 71.82 72.37
LINE 48.80 53.95 56.35 56.72 58.91 67.23 69.20 69.84 69.97 70.48

node2vec 42.76 47.07 48.62 49.86 50.76 79.66 80.89 81.09 81.07 81.27
V-RNE 55.20 58.96 60.05 61.29 61.09 77.56 79.08 79.39 79.46 79.73
A-RNE 56.94 61.96 62.79 65.71 64.12 80.48 81.20 81.58 81.56 81.64

strategy for learning node representations is a good practice. In particular, the AUC

scores of A-RNE model are superior to all the baselines in all test datasets when the

training ratios are 80% and 50%.

5.3.4 Node Classification

Node classification can be conducted to dig out missing information. In this section,

we carry out experiments on the air-traffic network USA-AIR and paper citation

network PubMed. The learned embedding vectors are used as feature input for

the classification model. We randomly sample a portion of nodes as training data

ranging from 10% to 90%, and the rest for testing. For both datasets, multi-class

classification is conducted, and accuracy score is used for performance comparison.

All experiments are conducted with support vector classifier in Liblinear package˚[31]

with default settings.

Experimental results. The experimental results are presented in Tables 5.3.

Both V-RNE and A-RNE perform competitively with baseline models for these two

datasets while varying the train-test split from 10% to 90%. It shows the effective-

ness of the proposed Ranking Network Embedding models for learning discriminative

embedding vectors for classification. Specifically, both V-RNE and A-RNE achieve

better performance in USA-AIR, and A-RNE obtains the best results in these t-

wo datasets across all training ratios. In particular, A-RNE gives us 13.32% gain

˚https://www.csie.ntu.edu.tw/„cjlin/liblinear/

86

on average over the best baseline, i.e., LINE on USA-AIR. Besides, A-RNE con-

sistently achieves more excellent performance than V-RNE as shown in the tables,

which demonstrates that adversarial sampling method contributes to learning more

discriminative node representations.

5.4 Related Work

Many scalable network embedding methods, such as DeepWalk [95], LINE [126]

and node2vec [41], have been proposed to learn node representations to facilitate

downstream tasks. They model node conditional probability with softmax function

over the whole network, which is computationally expensive. Further, the negative

sampling approach [82] is usually leveraged to replace the log likelihood objective, and

thus enabling a scalability to large networks. However, it can generate some negative

samples violating pairwise relationships reflected by network structure because of the

simple unigram noise generation process. To handle this issue, we propose to use the

triplet ranking loss to learn embedding vectors and leverage an adversarial sampling

method to sample negative nodes. We noticed that the triplet ranking loss is also

employed by [37] in learning embeddings, but for networks with node attributes.

Recently, some methods are proposed to learn node representations through ad-

versarial training [23, 144]. In ANE [23], a prior distribution is imposed on node

representations through adversarial training to achieve robustness. In [144], the au-

thors proposed to unify the generative models and discriminative models of network

embedding into the framework of GANs to help learn a stronger generator. Different

from these two methods, our method aim to learn a stronger discriminator to obtain

node representations.

Some knowledge graph embedding methods are also related [10, 146, 11]. TransE [10]

is a translation-based knowledge graph embedding model, which learns embeddings

87

for both data entities and relations with triplet ranking loss. KBGAN [11] is an ad-

versarial learning framework for knowledge graph embedding. Our method is by part

inspired by these works. However, this line of research has notable differences with

our work. Firstly, knowledge graph is fundamentally different from the networks we

study. The assumption, that two connected nodes should be similar and close in

embedding space, of network embedding methods does not hold in knowledge graph.

Secondly, knowledge graph embedding learns representations for both data entities

(nodes) and relations (edges) simultaneously, while network embedding is designed

to learn node representations only.

5.5 Conclusion

This chapter presented a novel scalable Ranking Network Embedding method, which

can explicitly encode node similarity ranking information into the embedding vectors.

Firstly, a vanilla RNE model was proposed with uniform negative sampling method.

Then, we improved the vanilla RNE model by unifying the triplet sampling phase and

the learning phase with the framework of GANs which leads to an adversarial RNE

model. The adversarial RNE model utilizes a softmax generator to generate hard

negatives for a given target, which can help strengthen the discriminator. Empirical

evaluations prove the effectiveness of the proposed method on several real-world

networks with a variety of network analysis tasks.

88

Chapter 6

Network Transfer Learning via

Adversarial Domain Adaptation

with Graph Convolution

This chapter studies the problem of cross-network node classification to over-

come the insufficiency of labeled data in a single network. It aims to leverage the

label information in a partially labeled source network to assist node classification

in a completely unlabeled or partially labeled target network. Existing methods for

single network learning cannot solve this problem due to the domain shift across

networks. Some multi-network learning methods heavily rely on the existence of

cross-network connections, thus are inapplicable for this problem. To tackle this

problem, we propose a novel network transfer learning framework AdaGCN by lever-

aging the techniques of adversarial domain adaptation and graph convolution. It

consists of two components: a semi-supervised learning component and an adver-

sarial domain adaptation component. The former aims to learn class discriminative

node representations with given label information of the source and target networks,

while the latter contributes to mitigating the distribution divergence between the

source and target domains to facilitate knowledge transfer. Extensive empirical e-

89

valuations on real-world datasets show that AdaGCN can successfully transfer class

information with a low label rate on the source network and a substantial divergence

between the source and target domains.

6.1 Introduction

Node classification [8] is a central task in network analysis. It is an important

building block of numerous real-world applications, such as product recommendation

in e-commerce websites, advertisement distribution in social networks, and protein

function identification for disease diagnosis. Many research efforts have been made

to develop reliable and efficient methods for node classification in network data.

In the era of big data, massive amount of raw data in information networks is

produced everyday. However, labeled data is significantly expensive and slow to

acquire due to the high cost and long time of human annotations, making it difficult

to train a well-generalized classifier [117]. Moreover, in some newly-formed networks

such as a protein-protein interaction network constructed by some researchers, there

may be no labels at all. Hence, it would be impossible to classify the nodes with

only the information of this network. To tackle these issues, a promising approach

is to utilize class information from other similar or related networks to assist in

classification, i.e., transfer learning on network data [33, 114].

In this chapter, we consider a cross-network node classification problem that

aims to leverage a partially labeled source attributed network to facilitate node

classification in another completely unlabeled or partially labeled target attributed

network (Figure 6.1). The challenges lie in several aspects. First, there may be a

significant domain divergence between the source and target networks and they may

not have many attributes in common. Second, there are no cross-network edges to

propagate knowledge from the source network to the target network. Third, only a

90

Transfer

Learning

Source Network

?

?

?

?

?

?

Target Network

Class 1

Class 2

Labeled

Unlabeled

Attributes

Figure 6.1: Cross-network node classification. We aim to transfer knowledge from
a partially labeled source attributed network to assist the classification task in a
completely unlabeled or partially labeled target attributed network. Here we use an
unlabeled target network for illustration.

small portion of nodes in the source network are labeled.

Existing network embedding methods [95, 126, 41] are insufficient to address

these challenges. They first learn compact node representations to preserve network

structural information, and then train a classifier with the learned representation-

s for node classification. Most of these methods learn node representations in an

unsupervised manner, and are often less effective than graph-based semi-supervised

learning methods for node classification [154, 62]. Moreover, topology-only embed-

ding methods cannot be easily generalized to cross-network problems due to lack

of a similarity preserving component to push nodes of the same category from two

networks close in the embedding space [50].

Graph-based semi-supervised learning methods [154, 62] have been demonstrated

highly effective for node classification in a single network with only a few labeled n-

odes. The recently proposed graph convolutional networks (GCN) [62] and follow-up

works such as GraphSAGE [46] and GAT [138], naturally integrate network topolo-

gy, node attributes and observed node labels into an end-to-end learning framework,

and achieve superior performance on node classification. However, these methods

are designed for learning tasks in a single network domain and will inherently have

91

difficulties in generalizing to another network domain that may have a substantially

different attribute set.

There are some methods [86, 33] proposed to leverage the relationship between

multiple networks to improve learning performance. Both EOE [149] and DMNE [86]

learn embeddings for multiple networks simultaneously, but they heavily rely on the

existence of cross-network connections, making them inapplicable for our problem.

Currently there is little exploration of knowledge transfer across different networks

to assist in learning tasks such as node classification.

Domain adaptation utilizes the knowledge of relevant source domain(s) to assist

the same learning task in the target domain [93, 145]. Although there are many

existing domain adaptation methods for vector-based data such as images and texts

(bag-of-words) [35, 111], they are not applicable for graph-structured data, as enti-

ties in a graph are highly correlated with each other which violates the assumption

of independent and identically distributed (IID) data samples in each individual do-

main. Little research has been conducted on domain adaptation for graph-structured

data. CDNE [114] is the only attempt to our best knowledge, which learns transfer-

able node embeddings for cross network learning tasks by minimizing the maximum

mean discrepancy (MMD) loss. However, it cannot jointly model network structures

and node attributes, which might limit its modeling capacity. Besides, it heavily

relies on the preprocessing of the adjacency matrix with the positive pointwise mu-

tual information (PPMI) matrix, which makes the sparse adjacency matrix denser

and thus aggravates computational complexity due to the autoencoder-based model

architecture.

To address the challenges for cross-network node classification, we propose a novel

network transfer learning framework AdaGCN that is based on adversarial domain

adaptation with graph convolutional networks. The idea is two-fold: to learn class

discriminative node representations via graph convolutional networks, and to learn

92

domain invariant node representations via adversarial learning. Hence, AdaGCN

consists of a semi-supervised learning component and an adversarial domain adap-

tation component.

On one hand, the semi-supervised component is dedicated to learning discrim-

inative node representations for classification with the available labeled data from

both the source and target networks. GCN enables training a well-behaved classi-

fier with even only a small set of labeled nodes in the source network (as shown in

Section 6.4.2). However, the original GCN layer only conducts Laplacian smoothing

on nearby nodes’ features within one hop, and it requires stacking many layers to

increase the smoothing level, which will greatly increase the number of trainable pa-

rameters and result in overfitting [68, 69]. To alleviate this issue, we propose to use

an improved GCN layer designed with a smoothing strength hyper-parameter [69],

which makes the model more efficient.

On the other hand, the adversarial domain adaptation component is aimed at

mitigating the distribution shift between the source and target domains to encour-

age knowledge transfer by learning domain invariant representations via adversarial

learning. Specifically, we model the domain adaptation process as a two-player game

similar to GANs [39], where the representation learner GCN acts as the generator for

learning domain invariant node representations while a domain critic as the discrim-

inator is optimized to distinguish node representations from the source and target

networks. By combining the two components, AdaGCN can learn both class discrim-

inative and domain invariant node representations for transferring class information

across networks.

Extensive experiments on real attributed networks show that AdaGCN can work

in both unsupervised setting (i.e., completely unlabeled target network) and semi-

supervised setting (i.e., scarcely labeled target network). Besides, it has low depen-

dence on the common attributes shared by the source and target networks. The

93

main contributions of this chapter can be summarized as follows:

• We pioneer in studying a challenging network transfer learning problem under

a realistic setting, where a partially labeled source network is utilized to assist

node classification in a completely unlabeled or partially labeled target network.

• We develop a novel and principled framework for network transfer learning by

efficiently integrating techniques of adversarial domain adaptation and graph

convolution.

• We conduct extensive experiments on real-world information networks to verify

the effectiveness of our model, which demonstrates its superior performance

compared with state-of-the-art baselines, impressive label efficiency, and good

model robustness against distribution discrepancy.

The organization of this chapter is as follows. We formulate the research problem

in Section 6.2. We present a detailed description of the proposed methods in Sec-

tion 6.3. In Section 6.4, the experimental results and analysis are provided. Then, we

review the literature in Section 6.5. Finally, a short summary with the contributions

and possible directions of future work are included in Section 6.6.

6.2 Problem Definition

In this chapter, we study domain adaptation for network data, i.e., leveraging the

information of a source network to assist node classification in a completely unlabeled

or partially labeled target network. The source network can be either partially

labeled or fully labeled. In this section, we formally define the research problem and

introduce notations used throughout the chapter as summarized in Table 6.1.

Denote by Gs “ pV s, As, Xsq the source network, where V s is the node set (ns “

|V s|), As P Rnsˆns
is the weighted adjacency matrix with Asij quantifying the strength

94

Table 6.1: Notations

Notation Description

G “ pV,A,Xq A weighted attributed network

V Node set of G

A Weighted adjacency matrix of G

X Feature matrix of G

Gs “ pV s, As, Xsq Source network

Gt “ pV t, At, X tq Target network

V sl Set of all labeled nodes in Gs

Y sl Label matrix of V sl

X s, X t Sets of node attributes of Gs and Gt

X Set of node attributes of both Gs and Gt

Y Label set of both Gs and Gt

ns, nt # of nodes in Gs and Gt

nsl # of labeled nodes in Gs

cs, ct # of node attributes in Gs and Gt

c # of node attributes in X
L # of categories in label space Y
fg, fc, fd Representation learner, label classifier, and domain critic

θg, θc, θd Sets of model parameters in fg, fc, and fd

Hs
g , H

t
g Source and target node representations

λ Domain adaptation coefficient

γ Gradient penalty coefficient

nd Domain critic training step per iteration

nI Smoothing parameter of the IGCN layer

α1, α2 Learning rates of domain critic, and representation learner and label classifier

of connection between nodes i and j, and Xs P Rnsˆcs is the feature matrix with cs

as the number of node attributes in Gs and the i-th row of Xs as the feature vector

associated with node i. Denote by V sl the set of labeled nodes in Gs and Y sl P RnslˆL

the label matrix of V sl, where Y sl
ik “ 1 if node i P V sl is associated with label k and

Y sl
ik “ 0 otherwise.

Similarly, the target network is represented as Gt “ pV t, At, X tq, where V t is the

node set pnt “ |V t|q, At P Rntˆnt
is the weighted adjacency matrix, and X t P Rntˆct is

the feature matrix with ct as the number of node attributes in Gt. The target network

Gt can be either completely unlabeled or partially labeled. Here, we assume that

it is completely unlabeled for simplicity, but our method can be straightforwardly

95

extended to the partially labeled setting and we have conducted experiments for both

scenarios in Sections 6.4.2 and 6.4.3.

The source network and the target network may contain different attributes.

Denote by X s and X t the set of node attributes in Gs and Gt respectively. We

construct a new attribute set X “ X s Y X t, where c “ |X | represents the total

number of attributes. We then reformulate the feature matrix of both Gs and Gt to

make them include all the attributes in X . With a slight abuse of notation, we still

use Xs P Rnsˆc and X t P Rntˆc to represent the newly formed feature matrices of

Gs and Gt. In particular, Xr
ik (r P ts, tu) represents the value of the k-th attribute

associated with node i in Gr and Xr
ik “ 0 indicates that it is not associated with

node i.

Define a network domain as D “ tG, fpGqu, which includes an attributed network

G and a function fpGq for the node classification task. Then, the source network

domain and the target network domain can be represented by Ds “ tGs, fpGsqu and

Dt “ tGt, fpGtqu, respectively. The problem considered in this chapter is similar

to the conventional domain adaptation problem as in [93, 145]. Specifically, there

exists a domain divergence between the source and target networks, i.e., Ds ‰ Dt,

but the label space Y “ t1, ¨ ¨ ¨ , Lu is the same, and our goal is to learn a classifier

f to accurately classify the nodes in the target network with the assistance of the

partially labeled source network.

6.3 Proposed Method

6.3.1 An Overview of Model Architecture

To solve cross-network node classification problem, two major challenges need to

be addressed. Firstly, how to fully exploit the available data information including

graph structures, node attributes and observed node labels to learn useful node

96

Source Input Layer Target Input Layer

Supervised Loss Domain Adaptation Loss

Dense Layers

Domain Prediction

Dense Layers

Label Prediction

Hidden
Layers

Hidden
Layers

Parameter
Sharing

Parameter
Sharing

Output Representations of Source and Target Networks

θg

θc θd

θg

Figure 6.2: Model architecture of AdaGCN.

representations for the two networks? Secondly, how to overcome the serious domain

divergence between two networks to facilitate knowledge transfer with the absence

of cross network edges and only a few common node attributes across networks?

To address the first challenge, we leverage graph convolution to integrate network

topology and node attributes in a semi-supervised learning model, which is capable

of learning discriminative node representations with available node labels. To tackle

the second challenge, we manage to mitigate distribution discrepancy between two

networks with the technique of adversarial domain adaptation. In particular, we

propose a network transfer learning framework AdaGCN by naturally combining the

techniques of adversarial domain adaptation and graph convolution. The model ar-

chitecture is shown in Figure 6.2. It consists of two components: a semi-supervised

97

learning component and an adversarial domain adaptation component. With the

cooperation of them, AdaGCN can learn both class discriminative and domain in-

variant node representations, thus enabling classifying nodes in the target network

with only a few labeled nodes in the source network. Note that our model is al-

so applicable for the semi-supervised scenario where the target network is partially

labeled.

6.3.2 Network Representation Learning

We propose to use graph convolution to jointly model network structures and node

attributes for learning network representations, which has recently been demonstrat-

ed highly effective in various learning tasks such as node classification [62], graph

clustering [161] and social recommendation [32].

Graph convolution is an operation that applies a linear graph convolutional filter

[118, 105] Â P Rnˆn on a graph signal h P Rn and outputs a new signal h̄ P Rn (n is

the number of nodes in the underlying graph):

h̄ “ Âh. (6.1)

The graph filter Â is a matrix designed by manipulating the spectrum of the under-

lying graph. The graph signal h is a real-valued function defined on the nodes of the

graph, i.e., each node is associated with a real number. For example, a column of

the node feature matrix X can be considered as a graph signal.

Graph convolution provides a principled way to combine graph structures and

node features for learning useful node representations. For the graph convolutional

networks (GCN) proposed in [62], the graph filter is a renormalized adjacency ma-

trix, which actually performs Laplacian smoothing that updates the features of each

node with a weighted average of its own and neighbors’ to obtain smooth embed-

dings [68]. Further, it was shown in [69] that to produce smooth embeddings for

98

nodes in the same cluster, the graph filter Â needs to be low-pass. With a prop-

er low-pass graph filter, graph convolution will generate useful representations that

help to ease knowledge transfer across networks and node classification in the target

network.

In this chapter, we propose two methods for learning network representation with

graph convolution. The first one is based on the layer-wise propagation rule of GCN.

Specifically, the hidden representations of the k-th convolutional layer in the feature

extractor are learned by:

Hpkq
g “ σpÂHpk´1q

g W pkq
g q, (6.2)

where Â is a renormalized adjacency matrix with a self-loop at each node, H
pk´1q
g is

the output of the previous layer (H0
g “ X), W

pkq
g is a projection matrix with trainable

parameters, and σp¨q is the activation function. As illustrated in Figure 6.2, we

use two GCNs for learning node representations for the source and target networks

respectively, but they share a common set of trainable parameters (W
pkq
g) so as to

help transfer knowledge across networks. For simplicity of notation, we denote a

GCN as fgpA,X;θgq, which takes the graph adjacency matrix A and the feature

matrix X as input, and θg represents the trainable parameters. Then, we can obtain

the output node representations of the source and target networks as:

Hr
g “ fgpA

r, Xr;θgq, r P ts, tu, (6.3)

where rHr
g si as the ith row of Hr

g is the representation of node i.

However, with the GCN layer defined as in Eq. (6.2), one has to stack multiple

layers to increase the strength of feature smoothing, which will also increase model

complexity because of the accompanied trainable parameters in each layer, and thus

can easily cause overfitting, especially for learning tasks with low source training

rates. To address this issue, we propose to use an improved GCN (IGCN) layer

proposed in [69] to improve the strength of the graph convolutional filter for learning

99

better representations. Then, for our second method, the hidden representations of

the k-th convolutional layer are obtained with:

Hpkq
g “ σpÂnIHpk´1q

g W pkq
g q, (6.4)

where nI is the exponent of Â, i.e., the smoothing parameter. By setting an appropri-

ate nI , we can easily control the smoothing strength of graph convolution to facilitate

knowledge transfer and classification while avoiding overfitting. As suggested in [69],

normally, larger nI should be used with lower source training rates.

6.3.3 Semi-Supervised Learning

In AdaGCN, the node representations of the source and target networks learned by

GCNs will be fed to a classifier for label prediction, and together they form the

semi-supervised learning component. The classifier could be a single layer logistic

regression classifier or a multi-layer perceptron. We denote the classifier as fcpH;θcq,

where H represents the node representations as input and θc represents the trainable

parameters. We then denote the prediction scores of nodes in the source and target

networks as:

Ŷ r
“ fcpH

r
g ;θcq, r P ts, tu, (6.5)

where Hr
g are the node representations generated by GCNs and Ŷ r

ik pr P ts, tuq

represents the prediction score for node i in class k. One can conduct multi-class

or multi-label classification by changing the activation function of the output layer

in the classifier fcp¨q. For multi-class classification, the activation function can be

the softmax function. For multi-label classification, the activation function is the

sigmoid function. We use the cross-entropy error over all the labeled nodes in the

source network as the classification loss:

Lc “ ´
1

nsl

nsl
ÿ

i“1

L
ÿ

k“1

Y sl
ik logpŶ sl

ik q, (6.6)

100

where Ŷ sl is the prediction score matrix of the labeled nodes V sl in the source

network. Note that our method can be easily extended to the semi-supervised setting

by incorporating available target labels into the above cross entropy loss.

6.3.4 Adversarial Domain Adaptation

Domain adaptation theory [7, 6] suggests that when an algorithm cannot learn to

identify the domain of given hidden representations, they are good for knowledge

transfer across domains. In AdaGCN, we leverage the adversarial domain adaptation

method [35, 111] to achieve this goal. Specifically, we model the domain adaptation

process as a two-player game similar to GANs [39], where the representation learning

networks fgpA,X;θgq is acting as the generator for learning network invariant node

representations, while a domain critic acting as the discriminator is optimized to

distinguish node representations from the source and target networks. After the

adversarial learning, network invariant representations can be obtained, and class

information can be transferred from the source network to the target network.

In the original GANs [39], the domain critic is a binary classifier, and the gen-

erator and the discriminator fight against each other over a log likelihood objective.

However, directly formulating the problem as a binary classification problem and

leveraging cross-entropy loss for model optimization may suffer from training in-

stability such as mode collapse [4, 43]. To improve learning stability, we instead

minimize the Wasserstein-1 distance between the source and target distributions of

node representation as suggested in [4, 43, 111].

We set the domain critic as a fully-connected neural network that takes a node

representation as input and returns a real number. Denote by fdph;θdq the domain

critic, where h “ rfgpA,X;θgqsv is the representation of node v generated by a GCN

with X as the input node feature matrix, and θd represents the trainable parame-

ters. The first Wasserstein distance between the source and target distributions of

101

node representation Phs and Pht can be computed using the Kantorovich-Rubinstein

duality [139]:

W1pPhs ,Phtq “ sup
‖fd‖Lcď1

EPhs rfdph;θdqs ´ EPht rfdph;θdqs, (6.7)

where ‖ fd ‖Lcď 1 is the Lipschitz continuity constraint. It can be interpreted as the

minimum cost of transporting mass for transforming one distribution into another

with the cost defined as the mass times the transport distance [4]. We can further

approximate the empirical Wasserstein distance under the 1-Lipschitz assumption by

maximizing the following domain critic loss with respect to θd:

Ld “ 1
ns

ns
ř

i“1

fdprfgpA
s, Xs;θgqsi;θdq

´ 1
nt

nt
ř

i“1

fdprfgpA
t, X t,θgqsi;θdq.

(6.8)

To enforce the Lipschitz constraint, we add a gradient penalty Lgrad for the param-

eters θd of the domain critic as suggested in [43]:

Lgradpĥq “ p‖ ∇ĥfdpĥ;θdq ‖2 ´1q2, (6.9)

where the representation ĥ can be the source representations, the target representa-

tions, and the random points along the straight line between the source and target

representation pairs. It can help avoid the capacity underuse and gradient vanish-

ing/exploding problems of weight clipping methods [4] for 1-Lipschitz enforcement.

Hence, we solve the following minimax problem for learning network invariant

node representations:

min
θg

max
θd
tLd ´ γLgradu, (6.10)

where γ is the gradient penalty coefficient, which should be set to 0 when optimiz-

ing the generator. The optimization problem suggests that the domain critic fdp¨q

102

Algorithm 6.1: Training Algorithm of AdaGCN

Input : source data tGs “ pV s, As, Xsq, Y slu, target data tGt “ pV t, At, Xtqu,
domain critic training step nd, coefficients γ, λ, learning rates α1, α2

1 Initialize parameters θg for representation learner fg, θc for label classifier fc, and

θd for domain critic fd;

2 while not converge do
3 {{ Optimize domain critic

4 for t “ 1, . . . , nd do
5 Hs

g Ð fgpA
s, Xs;θgq, H

t
g Ð fgpA

t, Xt;θgq;

6 N Ð mintN s, N tu;

7 Construct H “ thiu
N
i“1 with hi Ð εhs ` p1´ εqht, where ε is a random

number sampled from U r0, 1s, hs and ht are sampled from Hs
g and Ht

g,

respectively;

8 Ĥ Ð tHs
g , H

t
g, Hu;

9 θd Ð θd ` α1 ¨∇θdtLd ´ γLgradpĤqu;
10 {{ Optimize representation learner and label classifier

11 θ Ð tθg,θcu;

12 θ Ð θ ´ α2 ¨∇θtLc ` λLdu;

should be first trained to be optimal and then parameters in the generator fgp¨q are

updated to minimize the Wasserstein distance between the source and target node

representations.

Note that our proposed AdaGCN is very flexible, and some other adversarial-

based domain adaptation methods [94, 75] can also be integrated into our framework.

6.3.5 Overall Loss and Model Training

The overall loss of the proposed model AdaGCN is as follows:

min
θg ,θc

tLc ` λmax
θd
rLd ´ γLgradsu, (6.11)

where λ is the coefficient for balancing semi-supervised learning and domain adap-

tation. We summarize the training procedure for AdaGCN in Algorithm 6.1. Note

that here we do a full-batch training with gradient descent, but some existing meth-

ods can be applied to train the model in a mini-batch manner [17, 18]. First, as

presented in line 4-10, we optimize the parameters θd of the domain critic fdp¨q via

103

gradient descent with other model parameters fixed. Then, as shown in lines 12 and

13, we fix θd, and update the parameters θg of the generator fgp¨q and θc of the clas-

sifier fcp¨q by minimizing the classification loss Lc and the domain adaptation loss

Ld simultaneously. When the model converges, we can obtain class discriminative

and domain invariant node representations. To classify nodes in the target network,

one can simply feed the learned node representations to the trained classifier fcp¨q.

The computational complexity of the model mainly consists of three parts, in-

cluding the GCN layers (Eq. (6.2)), the label classifier (Eq. (6.4)) and the domain

critic (Eq. (6.7)). It takes Opp|Es| ` |Et|qw1w2q (suppose that W
pkq
g P Rw1ˆw2 , and

Es and Et are the edge sets of the source and target networks) to compute hid-

den representations with single GCN layer for both the source and target networks

through Eq. (6.2), which is linear to the number of edges. Note that the IGCN layer

can ensure linearity with only an additional constant scale factor nI added to the

complexity through left multiplying H
pkq
g by Â repeatedly for nI times in Eq. (6.4).

Obviously, the time complexity of label classifier and domain critic is linear to the

number of nodes. Thus, the overall complexity of the proposed methods are linear

to the size of the networks.

6.4 Experiments

In this section, we aim to answer the following research questions (RQ) via experi-

ments:

RQ1 How do the proposed methods perform compared with state-of-the-art meth-

ods?

RQ2 How do the training rates of the source and target networks, i.e., the ratio of

labeled nodes in Gs and Gt, affect the transfer learning performance?

104

Table 6.2: Statistics of the real-world network datasets

Dataset #Nodes #Edges #Attributes #Union Attributes #Labels

DBLPv7 5,484 8,130 4,412

6,775 5Citationv1 8,935 15,113 5,379

ACMv9 9,360 15,602 5,571

RQ3 How does the distribution discrepancy between source and target networks

affect the transfer learning results?

RQ4 How does the strength of graph convolution affect the domain adaptation

performance?

RQ5 How do the hyper-parameters affect the performance of the proposed methods?

We also visualize the learned node embeddings from representation learner to provide

an intuitive understanding of our proposed methods.

6.4.1 Experiment Setup

Datasets

We conduct experiments on three real-world attributed networks constructed by [114]

based on datasets provided by ArnetMiner [128]. Some statistics of the experimental

datasets are displayed in Table 6.2. DBLPv7, Citationv1 and ACMv9 are three pa-

per citation networks from different original sources, i.e., DBLP, Microsoft Academic

Graph and ACM respectively, and contain papers published in different periods, i.e.,

between years 2004 and 2008, before year 2008, and after year 2010, respectively.

Here we consider them as undirected networks with each edge representing a cita-

tion relation between two papers. Each paper belongs to some of the following five

categories according to its research topics, including “Databases”, “Artificial Intel-

ligence”, “Computer Vision”, “Information Security”, and “Networking”. Besides,

the keywords extracted from the title of each paper were utilized as its attributes in

105

the form of bag-of-words vector. We evaluate our proposed methods by conducting

multi-label classification on these three network domains through six transfer learn-

ing tasks including CÑD, AÑD, DÑC, AÑC, DÑA, and CÑA, where D, C, A

denote DBLPv7, Citationv1 and ACMv9, respectively.

Baselines

We select baselines from several related research lines including single network em-

bedding methods, graph-based semi-supervised learning methods, deep domain adap-

tation methods, and transfer learning methods for network data. The descriptions

of them are listed as follows:

• DeepWalk [95], node2vec [41], ANRL [162]: They are single network em-

bedding methods. Both DeepWalk and node2vec first transform network topol-

ogy into node sequences, and then use skip-gram model to learn node represen-

tations. ANRL is a deep attributed network embedding model adapted from

autoencoder, and we use its best variant ANRL-WAN.

• GCN [62], GraphSAGE [46]: They can be used for semi-supervised learning

and representation learning. GCN is a deep convolutional network for graph-

structured data, which integrates network topology, node attributes and ob-

served labels into an end-to-end learning framework. GraphSAGE is a variant

of GCN with different aggregation methods.

• DNNs, WDGRL [111]: These two deep models only utilize node attributes.

DNNs is a multi-layer perceptron. WDGRL is a state-of-the-art adversarial

domain adaptation method with the assumption of IID vector-based inputs in

each domain.

• NetTr [33], CDNE [114]: These are transfer learning methods for network

data. NetTr learns transferable representations based on network topology

106

only. CDNE is adapted from autoencoder by adding MMD loss across networks

for domain adaptation.

We denote our proposed methods with regular GCN layers (Eq. (6.2)) as AdaGCN

and improved GCN layers (Eq. (6.4)) as AdaIGCN.

Implementation Details

We implement our proposed methods using Tensorflow with Adam optimizer. For

all transfer learning tasks, we use the same set of parameter configurations unless

otherwise specified. We first describe the settings of AdaGCN. The GCNs of both

the source and target networks contain three hidden layers with structure as 1000-

100-16. The dropout rate for each GCN layer is set to 0.3. The classifier fcp¨q is

a logistic regression model with sigmoid output layer for multi-label classification.

The domain critic fdp¨q contains only one hidden layer with 16 units. A l2-norm

regularization term is imposed on model parameters except those of fdp¨q with the

regularization coefficient as 5ˆ 10´5. The domain adaptation coefficient λ, gradient

penalty coefficient γ, and domain critic training step nd are set to 1, 10 and 10,

respectively. The learning rates for both components of our method are set to 1.5ˆ

10´3. We train the model for 1000 epochs, and perform a learning rate decaying

by multiplying a decaying factor 0.8 per 100 epochs after the first 500 epochs to

stabilize training. For AdaIGCN, it has similar configurations as AdaGCN with the

only difference in the representation learner, which consists of only one IGCN layer

and two additional fully connected layers. nI is set to 10 for all tasks. GCN and

AdaGCN have the same settings for common hyper-parameters and model structure.

For single network embedding methods, including DeepWalk, node2vec and AN-

RL, node representations are first learned and then a one-vs-rest logistic regression

classifier is trained with labeled nodes of both networks. For fair comparison, the

dimension of node representations for these methods are all set to 128. For Graph-

107

Table 6.3: Multi-label classification with source training rate as 10%

S T DeepWalk node2vec ANRL GraphSAGE DNNs WDGRL NetTr CDNE GCN AdaGCN AdaIGCN

Mi-F1

(%)

C
D

24.67 21.73 49.37 67.42 28.71 29.05 48.32 70.80 67.00 70.89 75.14

A 25.96 27.70 48.41 65.95 33.88 32.86 48.24 62.94 65.92 69.32 74.85

D
C

31.05 21.78 40.47 59.23 16.36 21.63 44.47 71.34 63.47 77.77 79.34

A 25.34 23.48 46.55 66.49 27.33 28.82 47.60 72.10 69.02 78.83 78.97

D
A

27.85 26.24 39.99 53.08 9.64 16.90 42.42 66.79 53.32 67.92 71.43

C 28.98 19.39 44.22 61.05 24.63 28.02 44.73 71.02 64.33 68.30 74.48

Ma-F1

(%)

C
D

22.02 15.32 43.19 62.03 28.14 29.27 42.63 68.62 64.28 69.75 72.53

A 21.90 23.53 40.11 61.66 31.95 31.79 41.78 60.87 62.24 68.46 72.29

D
C

25.14 16.50 34.13 52.13 16.61 21.33 39.66 70.47 59.76 76.42 77.95

A 20.94 19.70 40.58 61.54 26.83 28.36 42.88 70.29 65.10 77.45 77.53

D
A

25.86 20.90 33.32 45.85 10.11 17.17 36.17 65.72 50.12 69.31 72.26

C 23.85 14.38 38.94 52.98 24.43 27.39 40.78 70.16 61.35 67.83 75.04

* S: Source, T: Target, Mi-F1: Micro-F1, Ma-F1: Macro-F1, D: DBLPv7, C: Citationv1,
A: ACMv9. The top 2 classification f1-scores are highlighted in bold for each task.

SAGE, we adapt it to the transductive setting for better utilization of linkage infor-

mation of the two networks, and use its best variant GraphSAGE-LSTM for compar-

ison. Since these methods are designed for single network, we simply combine two

networks into one and then conduct experiments as single network learning. DNNs

have similar parameter settings with GCN, and WDGRL have similar parameter

settings with AdaGCN. We have also tried to improve the input features of DNNs

and WDGRL by augmenting the feature matrix of graph with the learned embedding

vectors from DeepWalk, but found it deteriorates performance, which is explainable

since the learned embeddings of the source and target networks from DeepWalk are

not comparable. Experiments for NetTr and CDNE are conducted as suggested by

the corresponding papers.

6.4.2 Performance Comparison (RQ1)

The training rate of a network is defined as Rl “
|V l|

|V |
, where V l represents the set of

labeled nodes in the network. Different settings of Rl are constructed by randomly

sampling V l from V while ensuring nodes in V l covering all labels. In this section, we

108

Table 6.4: Multi-label classification with source training rate as 10% and target
training rate as 5%

S T DeepWalk node2vec ANRL GraphSAGE DNNs WDGRL NetTr CDNE GCN AdaGCN AdaIGCN

Mi-F1

(%)

C
D

53.10 59.17 55.97 70.42 32.41 33.59 50.74 73.69 71.25 71.90 75.25

A 48.02 57.67 52.55 69.13 40.18 30.73 48.31 69.61 70.29 75.18 75.95

D
C

66.57 69.13 53.91 68.99 28.03 23.33 50.28 78.93 73.09 79.66 80.33

A 61.56 66.91 54.42 71.92 34.60 32.73 49.98 77.86 75.28 81.45 82.00

D
A

58.85 64.23 49.37 64.64 27.57 21.76 45.24 77.38 71.51 75.15 78.18

C 57.58 62.60 51.39 69.20 35.17 33.43 46.26 77.10 72.84 74.51 77.14

Ma-F1

(%)

C
D

47.48 53.11 48.54 66.24 31.71 33.63 44.12 71.96 70.02 71.71 73.66

A 42.60 51.25 44.01 65.13 38.14 30.41 42.03 66.73 68.29 73.57 74.87

D
C

62.63 64.49 47.27 63.78 28.21 23.66 45.41 77.24 71.44 77.92 78.18

A 56.44 62.20 48.34 67.77 34.22 32.63 45.37 75.90 73.16 79.44 80.09

D
A

58.92 64.43 43.91 64.00 27.90 21.65 41.09 77.22 71.69 75.66 78.65

C 56.85 63.10 46.91 67.60 35.07 33.11 42.83 77.44 73.13 74.70 76.90

* S: Source, T: Target, Mi-F1: Micro-F1, Ma-F1: Macro-F1, D: DBLPv7, C: Citationv1,
A: ACMv9. The top 2 classification f1-scores are highlighted in bold for each task.

conduct multi-label classification on three datasets with six transfer learning tasks.

We consider two settings, including an unsupervised setting where only the source

network is partially labeled, and a semi-supervised setting where both the source

and target networks are partially labeled.

Unsupervised Setting: Partially Labeled Source Network and Completely
Unlabeled Target Network

In the unsupervised setting, we conduct experiments with the source training rate as

10% while the target network is completely unlabeled. The experimental results are

shown in Table 6.3. It can be easily observed that our proposed method AdaGCN

outperforms all the baselines in five out of six tasks, and has comparable results with

the best baseline CDNE on the sixth task Citationv1ÑACMv9. It demonstrates the

effectiveness of our proposed AdaGCN model for cross-network node classification.

Specifically, there is a 4.41% relative performance improvement in Micro-F1 score

and a 5.81% in Macro-F1 score over the best baseline CDNE on average across all

transfer tasks. AdaIGCN can further improve AdaGCN, and outperforms all the

baselines consistently in all learning tasks.

109

GCN and GraphSAGE have comparable performance. The proposed AdaGCN

method adapts GCN for cross-network learning by combining it with domain adapta-

tion technique. It achieves significant 13.54% and 19.03% relative gains in Micro-F1

and Macro-F1 scores respectively over GCN, which suggests that the adversarial do-

main adaptation component can effectively mitigate the distribution divergence of

two domains and enables a successful knowledge transfer. The proposed AdaIGCN

model further achieves significant 4.83% and 4.28% relative improvements in Micro-

F1 and Macro-F1 scores respectively over AdaGCN on average, which shows that

IGCN can learn better node representations to facilitate knowledge transfer.

We noticed that both DeepWalk and node2vec have poor performance in all trans-

fer learning tasks as shown in Table 6.3. The reason is that node representations

used for multi-label classification are trained independently for the source and target

networks since no connections between them exist. This makes the learned represen-

tations incomparable across networks, and thus the learned classifier based on source

labeled data can not generalize to the target domain. Similar observations have also

been made in [50]. Therefore, single network embedding methods with only network

topology as input are not directly suitable for multi-network learning. ANRL, as

an attributed network embedding method, has much better performance compared

with DeepWalk and node2vec, which benefits from the shared node attributes be-

tween the source and target networks. However, it is inferior to GCN by a large

margin, not to mention the proposed AdaGCN method. The reasons lie in two as-

pects: firstly, ANRL is an unsupervised embedding method, so node classification

can only be conducted after node representations have been learned, while GCN can

perform semi-supervised learning in an end-to-end manner; secondly, ANRL suffers

from the distribution shift between the source and target domains, while AdaGCN

addresses this issue by introducing an adversarial domain adaptation component.

Both DNNs and WDGRL cannot leverage network topology information. It can

110

be observed that the performances of DNNs and WDGRL are poor, although more

available labeled nodes can help improve their performances. Besides, we noticed

that WDGRL performs worse than DNNs in some tasks, which means that the

domain adaptation component of WDGRL results in negative transfer. The reason

might be that the distribution divergence between node attributes of two domains

are too large for the adversarial domain adaptation method to work. Overall, it

suggests that existing domain adaptation methods can not handle cross-network

node classification problem due to their inability in leveraging network structure

information. In contrast, our proposed AdaGCN method jointly models network

structures and node attributes with graph convolution. The Laplacian smoothing on

node features with graph convolution in the representation learner enables an easy

knowledge transfer across networks.

NetTr and CDNE are two transfer learning methods for cross-network node clas-

sification. Our methods outperform NetTr by a large margin. Specifically, AdaGCN

achieves remarkable 57.28% and 76.46% relative improvements over NetTr in Micro-

F1 and Macro-F1 scores, respectively. One important reason is that NetTr learns

transferable representations based on network topology only. Our proposed meth-

ods also produce a significant improvement over CDNE on average as mentioned

before. Particularly, the relative performance gain of AdaGCN over CDNE reach-

es the desirable 12.47% and 10.14% in Micro-F1 and Macro-F1 scores respectively

on ACMv9ÑDBLPv7. The advantages of our methods over CDNE can be sum-

marized into two aspects: firstly, graph convolution enables a natural combination

of node attributes and network structures for representation learning, while CDNE

only leverages network structures to extract features; secondly, the adversarial do-

main adaptation method is shown to be more effective compared with MMD in the

literature [111].

111

Semi-Supervised Setting: Partially Labeled Source and Target Networks

In the semi-supervised setting, both the source and target networks are partially

labeled with the training rates as 10% and 5%, respectively. The experimental results

are shown in Table 6.4.

Due to the additional available labeled data in the target network, all models

achieve better classification performance compared with the unsupervised setting as

shown in Tables 6.3 and 6.4. There are many similar findings in both the unsu-

pervised and semi-supervised scenarios, and we only highlight some new insights.

Firstly, both DeepWalk and node2vec perform significantly better even though only

5% additional labeled nodes in the target network are available. It shows the effec-

tiveness of the learned node embeddings in the target network. Both GraphSAGE

and GCN have better results compared with DeepWalk and node2vec because of the

proper utilization of both node attributes and network topology in learning tasks

and a certain level of knowledge transfer due to the shared weights in the representa-

tion learner. AdaGCN consistently outperforms GCN across all learning tasks by a

large margin, which can be attributed to the successful knowledge transfer from the

source to the target network thanks to the domain adaptation component. Similarly,

AdaIGCN further improves over AdaGCN with 2.40% and 2.04% relative gains in

Micro-F1 and Macro-F1 scores respectively because of the improved GCN layer for

alleviating overfitting. It also produces 3.14% and 3.55% relative improvements in

Micro-F1 and Macro-F1 scores respectively over the best baseline CDNE.

Overall, the empirical results demonstrate that our proposed methods achieve

state-of-the-art cross-network node classification performance in both the unsuper-

vised and semi-supervised settings, thus can be potentially applied to a wide range

of scenarios.

112

6.4.3 Effect of Training Rate (RQ2)

In this section, we study the effect of training rate Rl of the source and target

networks on model performance.

Effect of Source Training Rate

We conduct experiments with the training rate of source network ranging from 5%

to 90% while the target network is completely unlabeled. The experimental results

are displayed in Figure 6.3. Note that only some of the baselines are selected for

comparison to ensure clear presentations, and only the results on tasks with DBLPv7

and Citationv1 as targets are presented here to avioid repetition. We have the

following observations:

• Our proposed methods, including AdaGCN and AdaIGCN, consistently out-

perform all the baselines on these four tasks for all training rates, which demon-

strates their effectiveness for knowledge transfer across networks. AdaIGCN

performs better than AdaGCN, especially when the source training rate is low.

It validates that the utilization of IGCN layer can help alleviate the overfitting

issue and facilitate knowledge transfer.

• For almost all baselines except DeepWalk, the performance first improves, and

then becomes stable with the increase of source training rate. For our proposed

AdaIGCN, it shows remarkably good performance even with only 5% labeled

nodes in the source network, which suggests its high label efficiency.

• We noticed that the performance of DeepWalk decreases as the source training

rate increases. It actually further confirms our finding that single network em-

bedding methods based on topology only are not applicable for cross-network

learning due to the incomparable node representations for two networks. Sim-

ilar results can also be observed for node2vec which are not shown here.

113

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
icr

o-
F1

Citationv1 DBLPv7

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

ro
-F

1

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ACMv9 DBLPv7

5 10 50 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 50 90
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
icr

o-
F1

DBLPv7 Citationv1

5 10 50 90
Source Training Rate (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ac

ro
-F

1

5 10 50 90
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ACMv9 Citationv1

5 10 50 90
Source Training Rate (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

DeepWalk
ANRL

NetTr
WDGRL

CDNE
GCN

AdaGCN (ours)
AdaIGCN (ours)

Figure 6.3: Multi-label classification with varying source training rates.

114

1% 3% 5% 10%
Target Training Rate (%)

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

Citationv1 DBLPv7

1% 3% 5% 10%
Target Training Rate (%)

0.60

0.65

0.70

0.75

0.80

0.85 DBLPv7 Citationv1
GCN AdaGCN AdaIGCN

Figure 6.4: Multi-label classification with varying target training rates.

Effect of Target Training Rate

We investigate the effect of target training rate by varying it from 1% to 10% while

fixing source training rate as 10%. We only show the Micro-F1 scores in Figure 6.4

on learning tasks Citationv1ÑDBLPv7 and DBLPv7ÑCitationv1 for succinct p-

resentation. We have the following observations. Firstly, AdaGCN significantly

and consistently outperforms GCN on both learning tasks for all target training

rates, which means that the adversarial domain adaptation component can success-

fully mitigate the distribution discrepancy between two domains and help knowl-

edge transfer across networks. Specifically, AdaGCN exhibits an impressive 5.08%

relative improvement over GCN on average. Secondly, AdaIGCN further achieves

improvements upon AdaGCN consistently, and the gap is more significant with low

target training rate. In particular, it produces a 3.90% relative gain over AdaGCN

on Citationv1ÑDBLPv7 when the target training rate is 1%. It proves that the

improved GCN layer can make a good balance between the strength of Laplacian

smoothing and model complexity. Overall, it demonstrates the effectiveness of our

115

10 20 30 40 50

0.2

0.4

0.6

0.8
M

icr
o-

F1
DBLPv7 Citationv1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50
Common Attribute Rate (%)

0.2

0.4

0.6

0.8

M
ac

ro
-F

1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50

0.2

0.4

0.6

0.8

ACMv9 Citationv1

GCN
AdaGCN
AdaIGCN

10 20 30 40 50
Common Attribute Rate (%)

0.2

0.4

0.6

0.8

GCN
AdaGCN
AdaIGCN

Figure 6.5: Multi-label classification on Citationv1 with varying common attribute
rates of the source and target networks.

proposed methods for network transfer learning in the semi-supervised setting.

6.4.4 Effect of Distribution Discrepancy (RQ3)

In this section, we explore the effect of distribution discrepancy between the source

and target networks on domain adaptation. We define common attribute rate be-

tween the source and target networks as Ra “
|X sXX t|

|X sYX t|
, and we randomly delete some

of the common attributes of two networks to change Ra in the experiments. Lower

Ra means larger distribution discrepancy. We conduct multi-label classification on

tasks with Citationv1 as target with varying Ra in the unsupervised setting where

the source training rate is 10%, and compare the performance of GCN, AdaGCN

and AdaIGCN.

Figure 6.5 displays the experimental results when Ra ranges from 10% to 50%.

Both AdaGCN and AdaIGCN consistently outperform GCN across all common at-

116

0 1 5 10 15 20 25
Smoothing parameter nI

0.55

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(a) Smoothing parameter nI .

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Domain adaptation coefficient

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(b) Domain adaptation coefficient λ.

1 5 10 15 20
Gradient penalty coefficient

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(c) Gradient penalty coefficient γ.

5 10 15 20 25
Domain critic training step nd

0.60

0.65

0.70

0.75

0.80

M
icr

o-
F1

(d) Domain critic training step nd.

Figure 6.6: Impact of hyper-parameters.

tribute rates for both transfer tasks. More specifically, AdaGCN achieves 22.88%

and 24.93% relative gains on Micro-F1 and Macro-F1 scores respectively over GC-

N for DBLPv7ÑCitationv1, and 9.02% and 14.56% for ACMv9ÑCitationv1. It

demonstrates that the adversarial domain adaptation component contributes to the

classification performance even when the source and target networks only share a very

small proportion of attributes. Besides, AdaIGCN performs better than AdaGCN

consistently, which further confirms that the IGCN layer can learn better node rep-

resentations for domain adaptation. In summary, the proposed methods are very

robust and can work well under large distribution discrepancy between the source

and target networks, which enables their applications for solving a wide range of

real-world problems.

117

6.4.5 Effect of Graph Convolution (RQ4)

In this section, we vary the smoothing parameter nI of the IGCN layer in AdaIGCN

from 1 to 25 to study the effect of graph convolution on domain adaptation. Note

that AdaIGCN can be reduced to WDGRL when nI “ 0, i.e., no smoothing on node

features. The experiments are conducted in the unsupervised setting with source

training rate as 10%. We present the experimental results on DBLPv7ÑCitationv1

in Figure 6.6(a). We can observe that graph convolution on node features brings ex-

traordinary improvements to node classification performance on the target network,

since there is a remarkable 26.62% relative improvement when increasing nI from 0

to 1. When varying nI from 1 to 25, the classification accuracy first increases and

then slightly drops. It shows that appropriate setting of nI can help further facilitate

knowledge transfer, but too large nI can result in over-smoothing of node features

and thus harm the transfer performance. Specifically, features of neighborhood n-

odes become similar with Laplacian smoothing in the graph convolutional layer, and

a large smoothing parameter can make them converge to very similar value and blur

the class boundaries. On the whole, graph convolution plays a crucial role for the

successful knowledge transfer across networks in our proposed framework.

6.4.6 Parameter Sensitivity (RQ5)

In this section, we perform sensitivity analysis of AdaGCN on domain adaptation

coefficient λ, gradient penalty coefficient γ, and domain critic training step nd. The

experiments are conducted in the unsupervised setting with source training rate as

10%. It is expected to shed some lights on how to configure these hyper-parameters.

Here we only present the Micro-F1 score for Citationv1ÑDBLPv7 to avoid repetition,

and similar tendency can be observed in other tasks. Note that when studying one

hyper-parameter, we fix all others with default settings mentioned in Section 6.4.1.

118

λ is a coefficient for balancing the semi-supervised loss and domain adaptation

loss. We can find that the performance slightly improves with the increase of λ

from 0.4 to 1.2, and then drops quickly afterwards as shown in Figure 6.6(b). It

suggests that it is important to maintain the balance between the two parts so

as to learn both class discriminative and domain invariant representations. γ is a

hyper-parameter for controlling the weight of gradient penalty when training the

discriminator of the adversarial domain adaptation component. From Figure 6.6(c),

it can be observed that the best result is obtained when γ is set to 10, and smaller

or larger configurations might result in performance degradation, which is consistent

with the finding in [43], and thus 10 would be a recommended setting. Theoretically,

the domain critic network fdp¨q should be trained to optimality by optimizing its

own parameters while fixing those of other components, and thus the training step

nd should be set to a large enough number for this purpose. From Figure 6.6(d),

it can be noticed that the Micro-F1 score shows apparent increase when increasing

nd from 5 to 10, and then becomes stable, which is consistent with our theoretic

analysis.

6.4.7 Visualization of Node Representations

Figure 6.7 visualizes the node representations generated by GCN, IGCN, AdaGCN

and AdaIGCN in the unsupervised setting for ACMv9ÑCitationv1 using t-SNE [137]

where the source network is fully labeled. We only visualize nodes from “Databases”

and “Computer Vision” for clear presentation. The gray and orange points repre-

sent papers of “Databases” and “Computer Vision” respectively from ACMv9, while

red and green points represent papers of “Databases” and “Computer Vision” from

Citationv1.

On one hand, the domain adaptation component helps mitigate domain diver-

gence and benefits knowledge transfer. Specifically, from Figures 6.7(a) and 6.7(b),

119

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

(a) GCN.

75 50 25 0 25 50 75

100

75

50

25

0

25

50

75

(b) IGCN.

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80

(c) AdaGCN.

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

(d) AdaIGCN.

Figure 6.7: Visualization of the learned node representations from
ACMv9ÑCitationv1. Each point represents one paper. Gray and orange
points are from the source network, and red and green points are from the target
network. Gray and red: “Databases”. Orange and green: “Computer Vision”.
These plots are best viewed in color.

it can be observed that both the GCN and IGCN models suffer from distribution

shift between different networks, since nodes from different categories, e.g., green

and gray points, are mixed together. In contrast, from Figures 6.7(c) and 6.7(d),

we can find that gray and red points are clustered together, while orange and green

nodes are clustered together. It demonstrates that the adversarial domain adapta-

tion successfully mitigates the distribution divergence between the source and target

networks, since papers from the same categories of both domains are well clustered

120

together. Besides, the boundary between these two clusters are quite clear, which

means that the learned node representations are discriminative. On the other hand,

the IGCN layer also brings two significant advantages. Firstly, the IGCN layer allows

adjusting the smoothing strength on node features without increasing model com-

plexity, and an appropriate smoothing of node features helps to learn more compact

node representations within the same category as shown in Figures 6.7(b) and 6.7(d),

thus contributes to the classification task. Furthermore, it makes the domain adap-

tation process easier, which is confirmed by the visualization results that AdaIGCN

aligns the source and target node representations better than AdaGCN as shown in

Figures 6.7(c) and 6.7(d).

6.5 Related Work

6.5.1 Single Network Learning

Network embedding is aimed at learning compact node representations based on net-

work topology only or with side information in an unsupervised manner to facilitate

a range of learning tasks, such as node classification and network visualization. For

topology-only embedding methods, most of existing works focused on preserving net-

work structures and properties in embedding vectors through various techniques such

as negative sampling approach [95, 126, 41], matrix factorization technique [12, 147]

and deep learning models [13, 143, 112, 113]. Most recently, regularization methods

based on generative adversarial networks or adversarial training are exploited to han-

dle noisy and incomplete network data to improve generalization ability [23, 91, ?].

Aside from topology-only methods, many models are proposed to incorporate side

information such as node attributes [162, 91, 150]. For example, ANRL [162] opti-

mizes both network structure preserving loss and feature reconstruction loss based

on stacked autoencoder.

121

The unsupervised learning methods don’t specially tailor the latent vectors for

node classification, which makes them inferior to some customized models. Semi-

supervised learning methods, including those using network topology and observed

labels [131] and those combining network structures with available labels and n-

ode attributes [92, 154, 62, 54, 46, 138, 71], achieve state-of-the-art performance.

Planetoid [154] optimizes a supervised loss and a context-preserving loss. GCN [62]

is a deep convolutional learning paradigm for graph-structured data which nicely

integrates local node attributes and graph topology in convolutional layers. Graph-

SAGE [46] is a variant of GCN which designs different aggregation methods for

feature extraction. GAT [138] improves GCN by leveraging attention mechanism to

aggregate features from the neighbors of a node with discrimination.

While these methods can be modified to cross-network learning, the distribu-

tion drift between different network domains severely hampers knowledge transfer,

especially for the topology-only methods [50].

6.5.2 Multi-Network Learning

A branch of work aims to leverage the relationship between multiple networks to

facilitate learning, including those relying on inter-network edges [149, 86], those

focusing on identifying common nodes across networks [73, 51], and those managing

to transfer knowledge from the source network(s) to the target network(s) [127, 33,

115, 116, 114].

Both EOE [149] and DMNE [86] learn embeddings for multiple networks simul-

taneously. Specifically, EOE introduces a harmonious embedding matrix to model

inter-network node similarities, while DMNE adapts autoencoder for multi-network

embedding with a co-regularized loss to model cross-network relationships. Howev-

er, these methods heavily rely on the existence of cross-network connections, which

makes them inapplicable for our problem. Another line of related research is network

122

alignment [73, 51], which aims to identify the node correspondence across networks

with/without cross-network edges. It differs from our problem in the assumption

of common nodes across networks and the research goal of finding common nodes

across networks.

There is also some literature focusing on transferring knowledge from the source

network(s) to the target network(s) for various tasks, such as social ties inference [127],

positive/negative link prediction [155], and node classification [33, 64]. In this work,

we aim to utilize knowledge in the source network to assist classification in the target

network as [33, 64, 114]. In [33], non-negative matrix factorization is jointly applied

on the label propagation matrices of both the source and target networks so as to

learn transferable structure features. However, it suffers from expensive computation

in the matrix decomposition process, and it cannot jointly model the relationships

among structural information, node attributes and node labels, which might cause

negative transfer. CDNE [114] is closely related to our work. It first learns node

embeddings for multiple networks with different stacked autoencoders and mitigates

the distribution shift of node representations between networks by minimizing the

MMD loss, and then trains a node classifier with the learned node representations.

6.5.3 Domain Adaptation

Domain adaptation is a subtopic of transfer learning, which aims to mitigate the

harmful effect of domain drift when transferring knowledge from source to tar-

get [93, 145]. Approaches for domain adaptation can be classified into three groups,

including the instance-based methods [124], parameter-based methods [103], and

feature-based methods [74, 120]. Among them, deep feature-based domain adapta-

tion methods have attracted a lot of attention in recent years due to its effective-

ness. They can be categoried into three branches, i.e., discrepancy-based method-

s [135, 74], reconstruction-based methods [166, 59], and adversarial-based method-

123

s [35, 134, 111, 94, 75].

In this chapter, we are interested in adversarial-based methods. They are moti-

vated by the theory in [7, 6], which suggests that when an algorithm cannot learn

to identify the domain of given representations, such representations are good for

knowledge transfer. DANN [35] was proposed to learn domain invariant features by

formulating the problem as a minimax game similar to GANs [39] with a feature

extractor acting as the generator and a domain classifier acting as the discrimina-

tor. Further, WDGRL [111] exploits the Wasserstein distance to improve the loss of

DANN, which equips the model with better gradient property and more promising

generalization bound. Meanwhile, MADA [94] and CDAN [75] manage to leverage

discriminative information from label classifier to facilitate the alignment of mul-

timodal distributions from different domains. In this chapter, we leverage these

adversarial-based techniques for domain adaptation on graph-structured data. The

main difference is that the majority of previous methods are proposed for vector-

based data such as image and text with the assumption of IID samples within each

domain, while here we aim to explore domain adaptation for graph-structured data

that has complicated correlations among data entities.

6.6 Conclusion

In this chapter, we successfully address the cross-network node classification problem

by proposing a novel network transfer learning framework AdaGCN, which leverages

the techniques of adversarial domain adaptation and graph convolution. It can learn

both class discriminative and network invariant node representations with the help of

a semi-supervised learning (SSL) component and an adversarial domain adaptation

(ADA) component. The SSL component is capable of learning a well-generalized

node classifier with graph convolutional layers for representation learning, while the

124

ADA component ensures successful knowledge transfer from the source network to

the target network through adversarial learning. Together they enable AdaGCN to

work well in real-world attributed networks under a realistic setting.

The research of transfer learning on network data is still in an early stage, and

much more efforts are needed. This work serves as a step further in this direction.

Future work will include investigating knowledge transfer from multiple source net-

works to a target network and exploring conditional adversarial domain adaptation

for better alignment of multimodal data distribution.

125

126

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we present effective representation learning methods for both plain

networks and attributed networks with the assistance of techniques of adversarial

learning principle [39] and adversarial training methods [40]. In particular, several

frameworks and algorithms are developed with the descriptions as follows:

• Firstly, an Adversarial Network Embedding (ANE) framework, as the first

network embedding method based on GANs, is introduced for robust represen-

tation learning. It learns structure-preserving node embeddings with an induc-

tive DeepWalk and imposes a prior distribution on the embeddings through

adversarial learning to enhance model robustness.

• Secondly, Adversarial Training (AdvT) methods with adaptive L2 norm con-

straints on adversarial perturbations are designed for network embedding, which

can improve both model robustness and generalization performance. It can be

directly applied to a series of network embedding methods based on negative

sampling technique, such as DeepWalk, LINE and node2vec.

• Third, a Ranking Network Embedding (RNE) framework is presented for p-

reserving node similarity rankings in the embedding vectors. Two sampling

127

strategies are explored, including a vanilla strategy based on uniform sampling

method and an adversarial strategy based on adversarial learning. The lat-

ter can generate more relevant and difficult negative nodes for given positive

target-context node pairs instead of totally unrelated ones, which can help

better capture structural information of networks.

• Finally, a network transfer learning framework AdaGCN is proposed to tack-

le a challenging cross-network node classification problem that a partially la-

beled attributed source network is leveraged to assist in node classification in

a completely unlabeled or partially labeled target network. It combines the

techniques of adversarial domain adaptation and graph convolution naturally

in a framework, which enables the learning of both class discriminative and

network invariant node representations. Empirical experiments demonstrate

that AdaGCN has obvious superiority over state-of-the-art baseline models on

node classification in the target network.

7.2 Future Work

The ANE framework leverages adversarial learning for imposing a prior distribution

on embedding vectors to improve model robustness for plain network embedding.

Many possible extensions can be explored:

• First, ANE designs a regularization method based on generative adversarial

networks (GANs). However, GANs suffer from the non-convergence problem

such as mode-collapse [104, 4], which makes ANE difficult for training too. It

would be a promising direction to tackle this difficulty. Actually, there exists

follow-up work focusing on this problem [158] by leveraging improved GANs

with Wasserstein distance for quantifying distribution distance. More efforts

might be in need.

128

• Second, ANE is designed for plain network embedding. How to apply simi-

lar regularization method for attributed network embedding is worth studying.

One follow-up work [91] combines adversarial learning regularization and vari-

ational graph autoencoder to achieve this purpose. Further research in this

direction might be needed.

• Third, in ANE framework, a preprocessing of adjacency matrix with PPMI

matrix is needed to boost the performance, which suffers from the expensive

computation in matrix multiplication. It would be a good idea to design more

efficient method with adversarial learning regularization. Directly utilizing the

original DeepWalk as the base model instead of the inductive DeepWalk might

be a feasible way.

The AdvT regularization method is also introduced for plain network embedding.

Possible directions for future work are as follows:

• The AdvT method is designed for network embedding methods with embed-

ding vectors as model parameters. How to apply it to the parameterized net-

work embedding methods such as deep learning embedding models would be a

promising direction.

• Graph neural networks (GNN) such as GCN [62] and GAT [138] is widely used

for modeling attributed networks for various important applications. Designing

adversarial training method for GNNs would be a promising and challenging

direction, which has actually attracted some research efforts [34, 27, 27]. This

problem is still under-explored.

The research of transfer learning on network data is still in an early stage, and

much more efforts are needed. The proposed AdaGCN serves as a step further in

this direction. Future work will include the following aspects:

129

• In AdaGCN, the adversarial domain adaptation component only aligns the

source and target node representations with a single domain discriminator while

neglecting the complex multimode structures. Thus, it may produce inferior

results which mixes nodes from different categories together. To solve this

problem, it is necessary to leverage the discriminative information from label

classifier for distribution alignment. Existing methods in domain adaptation for

vector-based inputs [75, 94] are inapplicable for graph-structured data directly.

More research efforts are needed.

• AdaGCN is designed to tackle cross-network learning setting with only a source

network and a target network. However, there can be far more than two similar

or related networks available for utilization in real-world applications. Investi-

gating knowledge transfer from multiple source networks to a target network

would be an interesting and promising research problem.

130

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In OSDI, pages 265–283. USENIX Association,
2016.

[2] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

[3] Amr Ahmed, Nino Shervashidze, Shravan M. Narayanamurthy, Vanja Josifovs-
ki, and Alexander J. Smola. Distributed large-scale natural graph factorization.
In WWW, pages 37–48, 2013.

[4] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In ICML, pages 214–223, 2017.

[5] Mohammadreza Armandpour, Patrick Ding, Jianhua Huang, and Xia Hu. Ro-
bust negative sampling for network embedding. In AAAI, pages 3191–3198,
2019.

[6] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan. A theory of learning from differ-
ent domains. Machine Learning, 79(1-2):151–175, 2010.

[7] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis
of representations for domain adaptation. In NIPS, pages 137–144. MIT Press,
2006.

[8] Smriti Bhagat, Graham Cormode, and S. Muthukrishnan. Node classification
in social networks. In Social Network Data Analytics, pages 115–148. 2011.

131

[9] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding
of graphs: Unsupervised inductive learning via ranking. In ICLR, 2018.

[10] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational da-
ta. In NIPS, 2013.

[11] Liwei Cai and William Yang Wang. KBGAN: adversarial learning for knowl-
edge graph embeddings. CoRR, abs/1711.04071, 2017.

[12] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-
tations with global structural information. In CIKM, pages 891–900, 2015.

[13] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning
graph representations. In AAAI, pages 1145–1152, 2016.

[14] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. HARP: hierar-
chical representation learning for networks. In AAAI, pages 2127–2134, 2018.

[15] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven
Skiena. Fast and accurate network embeddings via very sparse random projec-
tion. In CIKM, 2019.

[16] Haochen Chen, Xiaofei Sun, Yingtao Tian, Bryan Perozzi, Muhao Chen, and
Steven Skiena. Enhanced network embeddings via exploiting edge labels. In
CIKM, pages 1579–1582, 2018.

[17] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional
networks with variance reduction. In ICML, volume 80, pages 941–949, 2018.

[18] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph con-
volutional networks via importance sampling. In ICLR, 2018.

[19] Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and
Qi Xuan. Fast gradient attack on network embedding. CoRR, abs/1809.02797,
2018.

[20] T. F. Cox and M. A. Cox, editors. Multidimensional Scaling. CRC Press, 2000.

[21] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and
Maurizio Tesconi. Fame for sale: Efficient detection of fake twitter followers.
Decision Support Systems, 80:56–71, 2015.

132

[22] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
Adversarial attack on graph structured data. In ICML, volume 80 of JMLR
Workshop and Conference Proceedings, pages 1123–1132, 2018.

[23] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. Adversarial network em-
bedding. In AAAI, 2018.

[24] Quanyu Dai, Qiang Li, Liang Zhang, and Dan Wang. Ranking network em-
bedding via adversarial learning. In PAKDD, 2019.

[25] Quanyu Dai, Xiao Shen, Xiao-Ming Wu, and Dan Wang. Network trans-
fer learning via adversarial domain adaptation with graph convolution. arX-
iv:1909.01541, 2019.

[26] Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and Dan Wang. Adversarial
training methods for network embedding. In WWW, pages 329–339, 2019.

[27] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training
for graph convolutional networks. 2019.

[28] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly
detection on attributed networks. In SDM, pages 594–602, 2019.

[29] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. In ICLR, 2017.

[30] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Mart́ın Arjovsky,
Olivier Mastropietro, and Aaron C. Courville. Adversarially learned inference.
In ICLR, 2017.

[31] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871–1874,
2008.

[32] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and
Dawei Yin. Graph neural networks for social recommendation. In WWW,
pages 417–426, 2019.

[33] Meng Fang, Jie Yin, and Xingquan Zhu. Transfer learning across networks for
collective classification. In ICDM, pages 161–170, 2013.

133

[34] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial train-
ing: Dynamically regularizing based on graph structure. arXiv:1902.08226,
2019.

[35] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor S. Lempitsky.
Domain-adversarial training of neural networks. JMLR, 17:59:1–59:35, 2016.

[36] Hongchang Gao and Heng Huang. Self-paced network embedding. In KDD,
pages 1406–1415, 2018.

[37] Alberto Garcia Duran and Mathias Niepert. Learning graph representations
with embedding propagation. In NIPS, pages 5125–5136, 2017.

[38] John Glover. Modeling documents with generative adversarial networks. In
Workshop on Adversarial Training, NIPS, 2016.

[39] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative
adversarial nets. In NIPS, pages 2672–2680, 2014.

[40] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In ICLR, 2015.

[41] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855–864, 2016.

[42] Yupeng Gu, Yizhou Sun, Yanen Li, and Yang Yang. Rare: Social rank regu-
lated large-scale network embedding. In WWW, pages 359–368. ACM, 2018.

[43] Ishaan Gulrajani, Faruk Ahmed, Mart́ın Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. Improved training of wasserstein gans. In NIPS, 2017.

[44] Zhijiang Guo, Yan Zhang, and Wei Lu. Attention guided graph convolutional
networks for relation extraction. In ACL, pages 241–251, 2019.

[45] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image statistics.
JMLR, 13:307–361, 2012.

[46] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NIPS, 2017.

134

[47] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning
on graphs: Methods and applications. IEEE Data Eng. Bull., 40(3):52–74,
2017.

[48] Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowl-
edge graphs with gaussian embedding. In CIKM, pages 623–632, 2015.

[49] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. Adversarial per-
sonalized ranking for recommendation. In SIGIR, pages 355–364. ACM, 2018.

[50] Mark Heimann and Danai Koutra. On generalizing neural node embedding
methods to multi-network problems. In KDD MLG Workshop, 2017.

[51] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. REGAL:
representation learning-based graph alignment. In CIKM, pages 117–126, 2018.

[52] Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the Dimensionality
of Data with Neural Networks. Science, 313:504–507, July 2006.

[53] Yifan Hou, Hongzhi Chen, Changji Li, James Cheng, and Ming-Chang Yang. A
representation learning framework for property graphs. In KDD, pages 65–73,
2019.

[54] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network
embedding. In WSDM, pages 731–739, 2017.

[55] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML, pages 448–456,
2015.

[56] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Conditional network embeddings. In
ICLR, 2019.

[57] Leo Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18:39–43, 1953.

[58] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D. Yoo. Edge-labeling
graph neural network for few-shot learning. In CVPR, 2019.

[59] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim.
Learning to discover cross-domain relations with generative adversarial net-
works. In ICML, pages 1857–1865, 2017.

135

[60] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
ICLR, 2014.

[61] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In NIPS
Workshop on Bayesian Deep Learning, 2016.

[62] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[63] Yi-An Lai, Chin-Chi Hsu, Wen-Hao Chen, Mi-Yen Yeh, and Shou-De Lin.
PRUNE: preserving proximity and global ranking for network embedding. In
NIPS, pages 5257–5266, 2017.

[64] Jaekoo Lee, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. Transfer learning
for deep learning on graph-structured data. In AAAI, pages 2154–2160, 2017.

[65] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. TKDD, 1(1):2, 2007.

[66] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In NIPS, pages 2177–2185, 2014.

[67] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. Reducing the
sampling complexity of topic models. In KDD, pages 891–900, 2014.

[68] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph con-
volutional networks for semi-supervised learning. In AAAI, pages 3538–3545,
2018.

[69] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label
efficient semi-supervised learning via graph filtering. In CVPR, 2019.

[70] Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, and
Sanja Fidler. Situation recognition with graph neural networks. In ICCV,
pages 4183–4192, 2017.

[71] Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan Parthasarathy.
Semi-supervised embedding in attributed networks with outliers. In SDM,
2018.

[72] David Liben-Nowell and Jon M. Kleinberg. The link-prediction problem for
social networks. JASIST, 58(7):1019–1031, 2007.

136

[73] Li Liu, William K. Cheung, Xin Li, and Lejian Liao. Aligning users across
social networks using network embedding. In IJCAI, pages 1774–1780, 2016.

[74] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning
transferable features with deep adaptation networks. In ICML, pages 97–105,
2015.

[75] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Con-
ditional adversarial domain adaptation. In NeurIPS, pages 1647–1657, 2018.

[76] Linyuan Lv and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150 – 1170, 2011.

[77] Tianshu Lyu, Fei Sun, Peng Jiang, Wenwu Ou, and Yan Zhang. Compositional
network embedding. CoRR, abs/1904.08157, 2019.

[78] Tianshu Lyu, Yuan Zhang, and Yan Zhang. Enhancing the network embedding
quality with structural similarity. In CIKM, pages 147–156, 2017.

[79] Jianxin Ma, Peng Cui, Xiao Wang, and Wenwu Zhu. Hierarchical taxonomy
aware network embedding. In KDD, pages 1920–1929, 2018.

[80] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Ad-
versarial autoencoders. In ICLR Workshop, 2016.

[81] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Au-
tomating the construction of internet portals with machine learning. Inf. Retr.,
3(2):127–163, 2000.

[82] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119, 2013.

[83] Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. Adversarial training
methods for semi-supervised text classification. In ICLR, 2017.

[84] Sharad Nandanwar and M. Narasimha Murty. Structural neighborhood based
classification of nodes in a network. In KDD, pages 1085–1094, 2016.

[85] M. E. J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Phys. Rev. E, 74:036104, Sep 2006.

137

[86] Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu,
and Xiang Zhang. Co-regularized deep multi-network embedding. In WWW,
pages 469–478, 2018.

[87] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierar-
chical representations. In NIPS, pages 6338–6347, 2017.

[88] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. Advances in
Neural Information Processing Systems, pages 693–701, 2011.

[89] Akifumi Okuno and Hidetoshi Shimodaira. Robust graph embedding with
noisy link weights. In AISTATS, pages 664–673, 2019.

[90] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In KDD, pages 1105–1114, 2016.

[91] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi
Zhang. Adversarially regularized graph autoencoder for graph embedding. In
IJCAI, 2018.

[92] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party
deep network representation. In IJCAI, pages 1895–1901, 2016.

[93] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans.
Knowl. Data Eng., 22(10):1345–1359, 2010.

[94] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-
adversarial domain adaptation. In AAAI, pages 3934–3941, 2018.

[95] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning
of social representations. In KDD, pages 701–710, 2014.

[96] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. Don’t walk,
skip!: Online learning of multi-scale network embeddings. In ASONAM, pages
258–265, 2017.

[97] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and
Jie Tang. Netsmf: Large-scale network embedding as sparse matrix factoriza-
tion. In WWW, pages 1509–1520, 2019.

138

[98] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM, pages 459–467, 2018.

[99] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In ICLR,
2016.

[100] Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, and Daniel R.
Figueiredo. struc2vec: Learning node representations from structural identity.
In KDD, pages 385–394, 2017.

[101] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Deep inductive network
representation learning. In WWW, pages 953–960, 2018.

[102] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290:2323–2326, 2000.

[103] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights
for deep domain adaptation. CoRR, abs/1603.06432, 2016.

[104] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. In NIPS, pages
2226–2234, 2016.

[105] Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on
graphs. IEEE Trans. Signal Processing, 61(7):1644–1656, 2013.

[106] Ludovic Dos Santos, Benjamin Piwowarski, and Patrick Gallinari. Multilabel
classification on heterogeneous graphs with gaussian embeddings. In ECML
PKDD, pages 606–622, 2016.

[107] Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji Matsumoto. Interpretable
adversarial perturbation in input embedding space for text. In IJCAI, pages
4323–4330, 2018.

[108] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In CVPR, pages 815–823, 2015.

[109] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient
estimation using stochastic computation graphs. In NIPS, pages 3528–3536,
2015.

139

[110] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,
and Tina Eliassi-Rad. Collective classification in network data. AI Magazing,
29(3):93–106, 2008.

[111] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance
guided representation learning for domain adaptation. In AAAI, pages 4058–
4065, 2018.

[112] Xiao Shen and Fu-Lai Chung. Deep network embedding with aggregated prox-
imity preserving. In ASONAM, pages 40–43, 2017.

[113] Xiao Shen and Fu-Lai Chung. Deep network embedding for graph representa-
tion learning in signed networks. IEEE Transactions on Cybernetics, 2018.

[114] Xiao Shen and Fulai Chung. Network embedding for cross-network node clas-
sification. In arXiv:1901.07264, 2019.

[115] Xiao Shen, Fulai Chung, and Sitong Mao. Leveraging cross-network infor-
mation for graph sparsification in influence maximization. In SIGIR, pages
801–804, 2017.

[116] Xiao Shen, Fulai Chung, and Sitong Mao. Cross-network learning with fuzzy
labels for seed selection and graph sparsification in influence maximization.
IEEE Transactions on Fuzzy Systems, 2019.

[117] Jun Shu, Zongben Xu, and Deyu Meng. Small sample learning in big data era.
CoRR, abs/1808.04572, 2018.

[118] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE
Signal Processing Magazine, 30(3):83–98, 2013.

[119] Rashmi R. Sinha and Kirsten Swearingen. Comparing recommendations made
by online systems and friends. In DELOS Workshop: Personalisation and
Recommender Systems in Digital Libraries, 2001.

[120] Baochen Sun and Kate Saenko. Deep CORAL: correlation alignment for deep
domain adaptation. In ECCV, pages 443–450, 2016.

[121] Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang.
vgraph: A generative model for joint community detection and node represen-
tation learning. In NIPS, 2019.

140

[122] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation.
In In Advances in Neural Information Processing Systems 12, pages 1057–1063.
MIT Press, 2000.

[123] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In ICLR, 2014.

[124] Ben Tan, Yu Zhang, Sinno Jialin Pan, and Qiang Yang. Distant domain trans-
fer learning. In AAAI, pages 2604–2610, 2017.

[125] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-
scale and high-dimensional data. In WWW, pages 287–297, 2016.

[126] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
LINE: large-scale information network embedding. In WWW, pages 1067–1077,
2015.

[127] Jie Tang, Tiancheng Lou, and Jon M. Kleinberg. Inferring social ties across
heterogenous networks. In WSDM, pages 743–752, 2012.

[128] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Ar-
netminer: extraction and mining of academic social networks. In KDD, pages
990–998, 2008.

[129] Lei Tang and Huan Liu. Leveraging social media networks for classification.
Data Min. Knowl. Discov., 23(3):447–478, 2011.

[130] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–2323,
2000.

[131] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and Maosong Sun. Max-margin
deepwalk: Discriminative learning of network representation. In IJCAI, 2016.

[132] Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu, and Wenwu Zhu. Deep recursive
network embedding with regular equivalence. In KDD, pages 2357–2366, 2018.

[133] Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen
Zhou. Multi-hop reading comprehension across multiple documents by reason-
ing over heterogeneous graphs. In ACL, pages 2704–2713, 2019.

141

[134] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. In CVPR, pages 2962–2971, 2017.

[135] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep
domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474,
2014.

[136] Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional
matrix completion. CoRR, abs/1706.02263, 2017.

[137] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
JMLR, 9:2579–2605, 2008.

[138] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[139] Cdric Villani. Optimal transport: old and new, volume 338. Springer-Verlag
Berlin Heidelberg, 2008.

[140] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. JMLR, 11:3371–3408,
2010.

[141] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt.
Graph kernels. JMLR, 11:1201–1242, 2010.

[142] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and
Y. Qi. A semi-supervised graph attentive network for financial fraud detection.
In ICDM, pages 598–607, 2019.

[143] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.
In KDD, pages 1225–1234, 2016.

[144] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. Graphgan: Graph representation learning
with generative adversarial nets. In AAAI, 2018.

[145] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey.
Neurocomputing, 312:135–153, 2018.

[146] PeiFeng Wang, Shuangyin Li, and Rong Pan. Incorporating GAN for negative
sampling in knowledge representation learning. In AAAI, 2018.

142

[147] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang.
Community preserving network embedding. In AAAI, pages 203–209, 2017.

[148] Zhitao Wang, Chengyao Chen, and Wenjie Li. Predictive network representa-
tion learning for link prediction. In SIGIR, pages 969–972, 2017.

[149] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S. Yu. Embedding of
embedding (EOE): joint embedding for coupled heterogeneous networks. In
WSDM, pages 741–749, 2017.

[150] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S. Yu. On exploring
semantic meanings of links for embedding social networks. In WWW, pages
479–488, 2018.

[151] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. Social collaborative filtering by
trust. IEEE Trans. Pattern Anal. Mach. Intell., 39(8):1633–1647, 2017.

[152] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang.
Network representation learning with rich text information. In IJCAI, 2015.

[153] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. Fast network
embedding enhancement via high order proximity approximation. In IJCAI,
pages 3894–3900, 2017.

[154] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-
supervised learning with graph embeddings. In ICML, pages 40–48, 2016.

[155] Jihang Ye, Hong Cheng, Zhe Zhu, and Minghua Chen. Predicting positive and
negative links in signed social networks by transfer learning. In WWW, 2013.

[156] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamil-
ton, and Jure Leskovec. Graph convolutional neural networks for web-scale
recommender systems. In KDD, pages 974–983, 2018.

[157] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence gener-
ative adversarial nets with policy gradient. In AAAI, pages 2852–2858, 2017.

[158] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C. Aggarwal, Dongjin Song,
Bo Zong, Haifeng Chen, and Wei Wang. Learning deep network representations
with adversarially regularized autoencoders. In KDD, pages 2663–2671, 2018.

[159] Wayne W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452–473, 1977.

143

[160] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. Prone: Fast and
scalable network representation learning. In IJCAI, pages 4278–4284, 2019.

[161] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph
clustering via adaptive graph convolution. In IJCAI, pages 4327–4333, 2019.

[162] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei
Zhang, Martin Ester, and Can Wang. ANRL: attributed network representa-
tion learning via deep neural networks. In IJCAI, pages 3155–3161, 2018.

[163] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu
Zhu. Arbitrary-order proximity preserved network embedding. In KDD, pages
2778–2786, 2018.

[164] Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. Energy-based generative
adversarial network. In ICLR, 2016.

[165] Dingyuan Zhu, Peng Cui, Daixin Wang, and Wenwu Zhu. Deep variational
network embedding in wasserstein space. In KDD, pages 2827–2836, 2018.

[166] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He.
Supervised representation learning: Transfer learning with deep autoencoders.
In IJCAI, pages 4119–4125, 2015.

[167] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial at-
tacks on neural networks for graph data. In KDD, pages 2847–2856, 2018.

144

	封面
	phd_thesis_quanyudai - 副本

