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Abstract

In mechanical systems, electronic circuits, and other �elds of engineering, there exist

many key structured subsystems, which mainly consist of core components with state-

dependent uncertainties or state-dependent nonlinearities. To generate a suitable control

law to overcome the imperfection of model and guarantee a certain performance against

the presence of uncertainties or external disturbances, it is of great signi�cance to research

the problem of robust stability analysis and synthesis for this class of dynamic systems

with state-dependent uncertainties. Based on a full understanding of the state of the art

in state-dependent uncertain systems, this thesis focuses on robust control and �ltering

of state-dependent uncertain systems and applications.

The novelty and contribution of the thesis lie in the following aspects: (1) Robust sta-

bility analysis and synthesis of state-dependent uncertain systems are systematically

addressed by constructing a novel parameter-dependent Lyapunov function and less

conservative results are obtained by utilizing properties of the time-derivatives of state-

dependent parameters. The proposed robust controller design methodology is applied

to stabilization and synchronization of Chua's oscillator; (2) A novel robust �lter design

method for state-dependent uncertain systems is presented by introducing a generalized

�ltering performance index - extended dissipativity. H∞, L2−L∞, passive and dissipative

�ltering problems can be solved successfully within a uni�ed framework. The small cur-

rent estimation problem of a tunnel diode circuit system under uncertain disturbances is

solved by using the proposed robust �lter design method; (3) A novel vibration sensor for

real-time measurement of absolute vibration motion is developed based on a bio-inspired

animal-limb-like structure with state-dependent nonlinearity. With this bio-inspired vi-

bration sensor, the problems of error accumulation and real-time performance induced

i



by traditional measurement method using accelerometer can be e�ectively eliminated.

A model-based fault detection algorithm using the vibration sensor is presented to deal

with the real-time detection problem of fast time-varying weak fault signal which can-

not be exactly identi�ed by existing frequency-based and wavelet-based fault detection

methods; (4) Robust autonomous navigation of a tracked mobile robot with passive bio-

inspired suspension based on double-layer nonlinear model predictive control (NMPC) is

proposed to improve the trajectory tracking accuracy against the slippage disturbances

caused by unexpected �slippery track� phenomenon. The double layer NMPC scheme can

accurately track the global reference trajectory and perform local trajectory optimiza-

tion in occurrence of slippage disturbances with less computational burden; (5) Through

estimating human's motion, a vision-based robust controller with disturbance compen-

sation is designed to achieve better smoothness, rapidity, and accuracy of human-robot

following. The developed vision based robust following controller can e�ectively prevent

the target out of the robot camera's �eld of view (FOV) leading to following failure

in narrow environment. The corresponding simulations and experiments have demon-

strated the e�ectiveness and advantages of the developed robust control and �ltering

methods for state-dependent uncertain systems.



Acknowledgments

This work was done during my Ph.D. study at the Hong Kong Polytechnic University

(PolyU) and at the Harbin Institute of Technology (HIT) under the joint Ph.D. pro-

grammes leading to dual awards. I would like to express my most sincere gratitude to

Dr. JING Xingjian, my respectful chief supervisor at PolyU, for his persistent guidance

and support. I also appreciate his profound knowledge and deep insight into the research

topics and his assistance on completion of this thesis. I am also deeply indebted to Prof.

Okyay Kaynak and Prof. YU Jinyong, my co-supervisors at HIT, for their continuous

support and guidance of my Ph.D. study and related research. I am very grateful to

Prof. GAO Huijun, the Director of Research Institute of Intelligent Control and Systems

at HIT, for providing me with the unique opportunity to conduct research at HIT.

I would like to thank Prof. ZHAO Xudong, Prof. LIU Ming, and Prof. QIU Jianbin for

their valuable discussions and enthusiastic supports. I would like to extend my thanks

to all my wonderful friends and colleagues from research groups at PolyU and HIT. The

list is too long to present. Their generous friendship and encouragement have always

accompanied me and made my life more colorful, I wish them all the best.

Finally, I would like to thank my beloved wife and parents for their understanding,

endless support and love.

Hung Hom, June 2019 LI, Zhengchao

iii





Table of contents

Cover page 1

Title page

CERTIFICATE OF ORIGINALITY

Publications arising from the thesis

Abstract i

Acknowledgments iii

Table of contents vii

List of notations and abbreviations xv

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Robust stability analysis and synthesis for state-dependent uncertain systems 12

2.1 Problem formulation and preliminaries . . . . . . . . . . . . . . . . . . . 13

2.2 Robust stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 State-feedback controller stabilization . . . . . . . . . . . . . . . . . . . . 18

v



2.4 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Example 1: stability analysis . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Example 2: Chua's oscillator . . . . . . . . . . . . . . . . . . . . . 26

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Robust �lter design for state-dependent uncertain systems 37

3.1 Problem formulation and preliminaries . . . . . . . . . . . . . . . . . . . 38

3.2 Performance criterion and �lter design . . . . . . . . . . . . . . . . . . . 43

3.3 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 A novel vibration sensor system with state-dependent nonlinearity 59

4.1 Model description and analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Application on fault detection . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Absolute vibration displacement measurement . . . . . . . . . . . 76

4.4.2 Fault detection using absolute vibration displacement . . . . . . . 79

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Robust navigation control of a tracked mobile robot with uncertain dis-

turbance 86

5.1 Model description and analysis of the bio-inspired suspension . . . . . . . 87

5.1.1 Design concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Simulation and experimental veri�cation . . . . . . . . . . . . . . 89

5.2 Robust navigation using model predictive control method . . . . . . . . . 91

5.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Kinematic model omitting slippage . . . . . . . . . . . . . . . . . 92

5.2.3 Single-layer control . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.4 Kinematic model considering slippage . . . . . . . . . . . . . . . . 96

5.2.5 Double-layer control . . . . . . . . . . . . . . . . . . . . . . . . . 99



5.2.6 Feasibility, stability, and robustness analysis . . . . . . . . . . . . 102

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Assessment of obstacle negotiation performance . . . . . . . . . . 105

5.3.2 Trajectory tracking results using di�erent algorithms . . . . . . . 109

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Vision-based robust human following control for a tracked mobile robot 114

6.1 Problem formulation and preliminaries . . . . . . . . . . . . . . . . . . . 115

6.2 Robust controller design with disturbance compensation . . . . . . . . . 116

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and future work 128





List of Figures

2.1 Stability analysis with the most traditional quadratic Lyapunov function

with constant matrix P ( I) and Theorem 2.2 (I and ×) and with The-

orem 2.3 (I, × and •) under assumption x1(t) ∈ [− π
40

π
40

], x2(t) ∈ [− π
40

π
40

]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Stability analysis with the most traditional quadratic Lyapunov function

with constant matrix P ( I) and Theorem 2.2 (×) and with Theorem 2.3

(I, × and •) under assumption x1(t) ∈ [−π
2
π
2
], x2(t) ∈ [−π

2
π
2
]. . . . . . 25

2.3 State response of the underlying system for given parameters [α β] = [−14

100]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 State response of the underlying system for given parameters [α β] = [−20

200]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 A Chua's oscillator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 State responses of the open-loop Chua's oscillator with initial condition

x(0) = [ −0.1 −0.1 0.1 ]T . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 3-D stable limit-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Control input of closed-loop Chua's oscillator. Controller is activated at

t ≥ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 State response of closed-loop Chua's oscillator with initial condition x(0) =

[ −0.1 −0.1 0.1 ]T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Synchronization performance of two identical Chua's oscillator with initial

conditions x(0) = [ −0.1 −0.1 0.1 ]T , x̃(0) = [ 0.1 0.1 −0.1 ]T and

synchronization controller is activated at t ≥ 20. Driving oscillator in full

lines; response oscillator in dashed lines. . . . . . . . . . . . . . . . . . . 35

ix



2.11 Control input of synchronization controller. Synchronization controller is

activated at t ≥ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Synchronization error signals. Synchronization controller is activated at

t ≥ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Tunnel diode circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Circular region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Poles of the �ltering error system with α ∈ [−3, 3] . . . . . . . . . . . . . 54

3.4 Frequency response of the �ltering error system. . . . . . . . . . . . . . . 55

3.5 Random resistor value uniformly distributed in the range [7 13]. . . . . . 55

3.6 Disturbance input w(t) = 0.5 sin(60πt) . . . . . . . . . . . . . . . . . . . 56

3.7 Comparison between z(t) to be estimated and �lter output zf (t). . . . . . 56

3.8 Response of �ltering error signal z̃(t). . . . . . . . . . . . . . . . . . . . . 56

3.9 Disturbance input w(t) = 0.5 sin(2πt) . . . . . . . . . . . . . . . . . . . . 57

3.10 Comparison between z(t) to be estimated and �lter output zf (t). . . . . . 57

3.11 Response of �ltering error signal z̃(t). . . . . . . . . . . . . . . . . . . . . 57

4.1 Structural mechanism inspired from the bird's leg . . . . . . . . . . . . . 61

4.2 Comparison between exact value and Taylor expansion (sti�ness) . . . . 63

4.3 Comparison between exact value and Taylor expansion (damping) . . . . 63

4.4 Observer based fault detection block diagram . . . . . . . . . . . . . . . 70

4.5 Bio-inspired sensor prototype and experimental platform . . . . . . . . . 76

4.6 Absolute displacement measurement at 3 Hz single frequency excitation . 77

4.7 Absolute displacement measurement at 5 Hz single frequency excitation . 77

4.8 Absolute displacement measurement at 8 Hz single frequency excitation . 77

4.9 Parameter estimation result with di�erent initial guess . . . . . . . . . . 78

4.10 System state and error dynamics . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Maximum admissible Lipschitz constant with di�erentm and kh, a: Corol-

lary 4.1 in this thesis, b: Method in Ref. [1]. . . . . . . . . . . . . . . . . 80

4.12 Absolute vibration motion yk . . . . . . . . . . . . . . . . . . . . . . . . 81

4.13 Residual response and fault detection result . . . . . . . . . . . . . . . . 81

4.14 n levels multi-resolution wavelet decomposition . . . . . . . . . . . . . . 82



4.15 Parts of wavelet decomposition results (blue solid line is fault-free case,

red dotted line is faulty case). . . . . . . . . . . . . . . . . . . . . . . . . 82

4.16 Computational time for di�erent decomposition level . . . . . . . . . . . 84

5.1 Comparisons of quasi-zero-sti�ness and linear sti�ness . . . . . . . . . . . 88

5.2 (1) Passive MSD suspension. (b) Bio-inspired suspension. (c) Experiment

prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Simulation results: acceleration response and transmissibility . . . . . . . 90

5.4 Vibration experiment results of the suspension prototype . . . . . . . . . 90

5.5 Overall con�guration of the tracked mobile robot . . . . . . . . . . . . . 92

5.6 Robot pose de�nition: the motion is decomposed into translation vk and

rotation wk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Visualization map constructed by using the laser radar data . . . . . . . 93

5.8 Single layer NMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Structure of di�erential controller . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Slippage ratios under di�erent sampling frequency . . . . . . . . . . . . . 99

5.11 Lifting method for increasing control frequency . . . . . . . . . . . . . . 99

5.12 Double layer NMPC with slippage compensation . . . . . . . . . . . . . . 100

5.13 Processing latency of lifting method and double layer NMPC . . . . . . . 102

5.14 Schematic diagram of navigation task . . . . . . . . . . . . . . . . . . . . 105

5.15 Snapshot sequence of negotiating obstacle . . . . . . . . . . . . . . . . . 106

5.16 Acceleration response under di�erent cases . . . . . . . . . . . . . . . . . 106

5.17 State response: reference (solid line) and measurement (dash line) using

single layer NMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.18 State response: reference (solid line) and measurement (dash line) using

double layer NMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.19 Trajectory tracking error: single layer NMPC (solid line) and double layer

NMPC (dash line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.20 Controller output: single layer NMPC (solid line) and double layer NMPC

(dash line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



5.21 Trajectory tracking results using double layer NMPC: reference (solid line)

and measurement (dash line). . . . . . . . . . . . . . . . . . . . . . . . . 109

5.22 State response of double layer NMPC: reference (solid line) and measure-

ment (dash line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.23 Trajectory tracking error using double layer NMPC . . . . . . . . . . . . 111

5.24 Controller output of double layer NMPC: upper layer uo,k (dash line) and

lower layer ui (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Tracked mobile robot mounting a RGB-D camera . . . . . . . . . . . . . 115

6.2 Human's position and orientation with respect to the robot . . . . . . . . 116

6.3 Posture de�nitions for estimation of human motion . . . . . . . . . . . . 119

6.4 Human-robot following control diagram . . . . . . . . . . . . . . . . . . . 122

6.5 Human skeleton tracking and gesture recognition using RGB-D camera

and Nuitrack SDK [2]. (a) RGB image. (b) Skeleton tracking. (c) Swipe

left. (d) Swipe right. (e) Swipe up. (f) Swipe down. . . . . . . . . . . . . 123

6.6 Laser radar data for obstacle avoidance . . . . . . . . . . . . . . . . . . . 123

6.7 Human-robot following state and control input: straight line . . . . . . . 124

6.8 Disturbance compensation for human motion . . . . . . . . . . . . . . . . 125

6.9 Robot following trajectory (green line). (a)straight line (b) circle . . . . . 125

6.10 Human-robot following state and control input: circle . . . . . . . . . . . 126

6.11 Snapshot sequence: human-robot following control in a curved path. (a-

b) Controller is activated by the swipe-up hand gesture. (c-o) Following

process in a curved path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Tables

4.1 Parameter descriptions of the bio-inspired sensor . . . . . . . . . . . . . . 61

4.2 The e�ects of the structural parameters . . . . . . . . . . . . . . . . . . . 65

4.3 The bio-inspired sensor parameters . . . . . . . . . . . . . . . . . . . . . 76

4.4 Comparison of the maximum admissible Lipschitz constant . . . . . . . . 80

4.5 Fault detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 PtoP and RMS values of trajectory tracking error . . . . . . . . . . . . . 111

xiii





List of notations and abbreviations

Notations

Notation Description

Rn n−dimensional Euclidean space

∀ for all

∈ belong to

≈ approximately equal

s.t. subject to

→ approach

P T transport of P

P−1 inverse of P

[A]s A+ AT

diag{...} a block-diagonal matrix

‖·‖ Euclidean norm or spectral norm

P > 0 matrix P is real symmetric and positive-de�nite

? a term in a block matrix induced by symmetry

L2[0,∞) square-integrable vector functions over [0,∞)

xv



Abbreviations

Abbreviation Expansion

CCL Cone Complementarity Linearization

FOV Field of View

GPS Global Positioning System

IMU Inertial Measurement Unit

LMIs Linear Matrix Inequalities

MSD Mass-Spring-Damper

NMPC Nonlinear Model Predictive Control

PID Proportional-Integral-Derivative

PtoP Peak-to-Peak

QZS Quasi-Zero-Sti�ness

RMS Root-Mean-Square

RGB-D Red Green Blue and Depth

STFT Short-Time Fourier Transform

SDK Software Development Kit



1 Introduction

1.1 Background and motivation

Robust control has been studied in extensive works [3�7] due to its applications in many

practical control problems, e.g., power electronic systems [8], �ight control systems [9],

motion control systems [10] and networked control systems [11]. Indeed, a control law is

typically designed from an idealized and simpli�ed model of the practical control system.

The potential problem of controller without considering the uncertainties is that closed-

loop system performance and stability are easier to be a�ected, which indicates that

the controller is not robust enough to suppress the uncertain disturbances. The goal of

robust control is to generate a suitable control law to overcome the imperfection of model

and guarantee a certain performance against the presence of uncertainties or external

disturbances.

In robust control, the main sources of uncertainties consist of parameter variations,

unmodelled dynamics and disturbance inputs [12�14]. Generally speaking, system un-

certainties can be classi�ed into unstructured and structured uncertainties. The former

often consist of sensor noise and input disturbance. And the latter include discrepancies

between the mathematical model and the actual physical plant. There exists a num-

ber of structured uncertain systems in practical industrial �elds, where the variations of

system parameters are closely dependent on system states. Objects with such uncertain

parameters can be Chua's diode [15,16], negative resistance oscillator [17] or Josephson

junction [18] in electronic circuit systems; sti�ness, inertia, damping, and viscosity coe�-

cients in mechanical systems; aerodynamical coe�cients in �ight control systems [9] and

1



1 Introduction

so on. Due to the e�ect of state-dependent behaviour, the systems have more colorful

and complex characteristics, such as local stability, multiple equilibria, and domain of

attraction. Traditional approaches of modeling, control and �ltering to deal with gen-

eral uncertain systems cannot be directly extended to this case. Consequently, it is of

great practical signi�cance to study such systems with state-dependent uncertainties or

nonlinearities.

Robust stability analysis and synthesis

Most approaches of robust stability analysis for uncertain systems are developed based

on the most traditional Lyapunov function with constant matrix P [19�22]. If the ro-

bust stability conditions can be formulated in terms of linear matrix inequalities(LMIs),

the problem can be numerically solved by convex optimization techniques. Although,

the traditional Lyapunov function with constant matrix P has been veri�ed to be an

e�cient and powerful tool in the LMI framework for robust stability analysis and sta-

bilization of systems with polytopic uncertainties. A serious limitation of traditional

Lyapunov function with constant matrix P is that the conservativeness can lead to the

result that constant matrix P does not exist for some uncertain systems. To relax the

conservativeness of stability and stabilization problems, the parameter-dependent Lya-

punov function [23] that is quadratic on the system state and depends a�nely on the

uncertain parameters will be introduced.

For systems with state-dependent uncertainties, there have been a few results reported

in existing literatures. Stability analysis and stabilization are presented in [24], robust

�ltering is addressed in [25]. Note that the Lyapunov function proposed in [24], [25]

is more complicated than normal parameter-dependent Lyapunov function due to the

couplings of di�erent Lyapunov matrices and the stabilization conditions in [24] are

presented in terms of nonlinear matrix inequalities. Although the nonlinear matrix

inequalities can be translated into the LMIs by using an iterative algorithm (e.g., cone

complementarity linearization(CCL) technique [26]), but it is di�cult to determine an

initial feasible solution for the iterative algorithm.
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1.1 Background and motivation

Motivated by the above observations, a new parameter-dependent Lyapunov function

that depends a�nely on the state-dependent uncertain parameters is proposed to reduce

the conservativeness and complexity.

Robust �lter design

In practice, it is hard to directly and accurately measure the system state or the cost

of measurement is probably expensive. As a branch of state estimation theory, robust

�ltering of uncertain dynamic systems has received growing attention due to its strong

applications in both theoretical and practical areas. There have been a number of signi�-

cant results on �ltering problems for various dynamic systems, e.g., robust Kalman-Bucy

�lter for uncertain stochastic systems under persistent excitation [27], adaptive �lter for

robust proprioceptive robot impact detection under model uncertainties [28], periodi-

cally time-varying H∞ memory �lter [29], H∞ �lter for linear continuous-time systems

with polytopic parameter uncertainties and time-varying state delay [30], robust L2−L∞
�lter for systems with uncertain parameters [31], robust reliable dissipative �ltering for

networked control systems [32] and so on. Practical applications of robust �lter can be

found among various engineering areas involved in sensorless control of induction-motor

drives based on robust �lter and adaptive speed estimation [33], channel equalization

of digital communication with nosy measurement based on reconstruction using H∞

robust �lter [34], robust fault detection and isolation �lters for aircraft engine failure

scenarios [35], target tracking from noise-corrupted measurements based on robust �l-

tering [36], spacecraft attitude estimation based on robust adaptive unscented Kalman

�lter [37], etc.

Transient response are basically equally important as stability and robustness of the

closed-loop system. Besides the constraint of decay rate, one e�cient approach to guar-

antee satisfactory transient response is placing the poles in a suitable region (e.g., circular

region and disk region). Such problems are referred as D-stability problems. There are

some published literatures taking the pole placement issue into consideration in robust

�ltering problem [38�41]. For example, in [38], a full order H∞ �lter with �lter dynamics
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constrained to some speci�c regions inside the unit open disk was designed for discrete-

time systems subjected to polytope type uncertainty. A H∞ �lter is designed for linear

continuous system with parameter uncertainties and parabolic pole assignment in [41].

Thus, to achieve expected dynamic performances for �ltering error system, D stabil-

ity constraint is considered when designing robust �lter for state-dependent uncertain

systems.

Motivated by the above observations, this thesis considers the problem of robust �lter de-

sign for continuous-time uncertain system with state-dependent uncertainties, taking the

D stability constraints into consideration, based on a new performance index�extended

dissipativity. With this generalized performance index, some classical �ltering problems

such as H∞, L2−L∞, passive, mixed H∞/ passive, and dissipative �ltering problems can

be solved successfully under a uni�ed framework. This can allow us to choose a suitable

�ltering strategy according to di�erent practical applications or noise levels, which is

conveniently implemented by adjusting the weighting matrices in the generalized perfor-

mance index.

Vibration sensor with state-dependent nonlinearity

Vibration analysis is one of the fundamental condition monitoring techniques for machin-

ery maintenance and fault diagnosis, which can be used in the cases of manufacturing

and operating to realize the quality control and health monitoring. During past decades,

a series of signi�cant results on vibration-based fault diagnosis have been reported in

various �elds of industrial applications, such as railway wheel �at fault detection [42],

winding deformation detection of power grid transformer [43,44], and structural damage

detection of gear, bearing, stator and rotor in mechanical system [45�49].A key factor of

conducting fault detection is to acquire accurate vibration signals, including amplitude,

velocity, and acceleration. For example, in power grid transformer, it is desired to use

vibration motion to describe the degree of winding deformation. A general way is to use

accelerometer as the measurement of vibration motion. Nevertheless, this solution will

lead to serious problem of error accumulation due to double time-domain integration of
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1.1 Background and motivation

the acceleration signal with non-zero mean. Especially, the accumulation error increases

over the time. An alternative method is adopting frequency-domain integral instead of

the time-domain. Through setting the corresponding low-frequency component gener-

ated from integral as zero, the accumulation error can be cancelled. It is worth pointing

out the frequency-domain integral requires a complete acceleration signal, which indi-

cates that the frequency-domain integral cannot be extended to real-time fault detection.

Besides, some studies also use laser [50] to measure absolute motion, but which holds

very strict requirements on installation space and environments. Hence, an interesting

and challenging topic arises naturally: whether is it possible to simply and e�ectively re-

alize the real-time measurement of absolute vibration motion by resorting to some novel

measurement methods? One of the purposes of this thesis is to give a positive answer to

the above question by resorting to the state-dependent nonlinearity.

On the other hand, nonlinear structure with very bene�cial state-dependent sti�ness and

damping characteristics has received growing attention due to its excellent performance

of achieving vibration isolation or suppression [51�55]. Some applications of nonlinear

structure can be found in vibration isolator with state-dependent quasi-zero-sti�ness

(QZS) [52�54]. Recently, a novel nonlinear structure inspired by the limb structures

of animals and insects in motion vibration control has been systematically investigated

in [56�58]. This novel structure is also called Z-like or X-like structure. The X-like

structure can be regarded as the combination of Z-like structure. Compared with existing

QZS structures, this bio-inspired structure has better loading capacity and equilibrium

stability. Meanwhile, this bio-inspired structure can be easily implemented with only

linear spring and damper components.

Based on the previous discussion about bio-inspired structure, a bio-inspired vibration

sensor using state-dependent quasi-zero-sti�ness mechanism for accurate real-time mea-

surement of absolute motion will be constructed in this thesis. In addition, an application

example of fault detection using the bio-inspired vibration sensor is also presented.
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Robust navigation control of mobile robots

Robots have shown their great application potential in various engineering areas, such as

search and rescue, logistics and transportation, patrol and surveillance, service and nurs-

ing [59�67]. The tracked mobile robot with obvious advantages of moving in the rough

terrain environment and negotiating irregular obstacles has received continuous atten-

tions [68�70]. It is worth pointing out that most of the signi�cant results on the tracked

mobile robot are focused on the obstacle negotiation capability, like the actively artic-

ulated tracked robot [70]. Although the active technologies can e�ectively improve the

tra�cability, the system complexity and energy consumption will also increase [71], [72].

A few research is focused on the passive suspension design. Most of the passive sus-

pension of the tracked mobile robot are based on the conventional mass-spring-damping

system, which has inherent trade-o� between the loading capacity and vibration isolation

performance. Thus, how to design the passive suspension system with guarantee of both

loading capacity and vibration isolation performance is still a challenge worth further

studying.

The previously mentioned bio-inspired structure has shown high static sti�ness, low dy-

namic sti�ness and broad frequency range of vibration isolation [53, 56, 73]. Compared

with the conventional mass-spring-damping system, this bio-inspired structure has po-

tential for providing better loading capacity and vibration isolation performance. The

bio-inspired structure provides a novel solution to overcome the inherent trade-o� be-

tween the loading capacity and vibration isolation performance. On the other side, with

a stable upper platform, vibration attenuation abilities of some high precision systems

mounted on the mobile robot can be enhanced, like the poor image quality problems

induced by camera vibration. Inspired from the bio-inspired structure, a tracked mo-

bile robot platform with novel passive bio-inspired suspension will be introduced in this

thesis.

Autonomous navigation ability plays an important role in unmanned operation. However

the uncertainties of kinematics equation induced by unknown slippage disturbance have

severe restrictions on navigation accuracy of mobile robots [74�76]. The slippage is
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1.1 Background and motivation

closely dependent on the robot's state. Slippage during turning or obstacle negotiating

is even more obvious. Traditional control methods using GPS to measure the slippage

for compensation are not available in the GPS denied environment [74]. To address this

problem, robust navigation control using nonlinear model predictive control (NMPC)

method is considered. The NMPC algorithm has appeared its powerful capability on

the trajectory tracking control of mobile robot under the constrained input conditions

[77�79]. The advantages of NMPC are the on-line optimization over a �nite horizon based

on the current measurement and prior model. To compensate the slippage disturbance,

the prior mode of NMPC is updated in real time by using the odometry and IMU

to measure the slippage instead of GPS. In order to implement the perception and

navigation, laser radar and camera are generally used to generate the outline map of

surrounding environment. Due to the mapping processing latency, the NMPC scheme is

performed at a relatively low frequency, which cannot capture the slippage disturbance

timely. Though lifting method in [80] can e�ectively increase the control frequency, the

computational complexity caused by frequency lifting will increase to a very high level

for the case with a long horizon [81]. Usually, a long horizon can prevent from local

oscillation behaviour and guarantee motion smoothness. Importantly, due to the �soft

suspension�, the tracked robot under this study is subject to unexpected �slippery track�

phenomenon when passing a ground obstacle although the track is not really slipped.

Hence, one of the main concerns of this thesis is to design robust navigation controller to

improve trajectory tracking accuracy of the tracked mobile robot against the uncertain

slippage disturbance with less computational burden.

Robust following control of mobile robots

Human-following capability is one of the most important things for human-robot in-

teraction. Vision based tracking technology is a natural and �exible way to achieve

human-following control in unstructured environment. By resorting to vision based

tracking technology, the robot can follow a speci�ed human to provide some services or

accomplish some human-robot collaborative tasks [82�87]. Potential applications of the

human-following control are summarized as follows: (1). personal assistant robots carry-
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ing heavy packages and following the passengers in airport [88]. (2). retail service robots

carrying merchandise, providing in-store customer service and following the customer

to the checkout counter [89]. Through the vision based human-following, the tracked

mobile robot is capable of assisting human to carry heavy stu� or perform tasks in some

unstructured environments conveniently. Human-following smoothness and keeping the

target within the robot camera's �eld of view (FOV) are the key performance indica-

tors to evaluate the human-following controller. Due to the fact that human's motion is

often completely unpredictable, traditional human-following method using proportional-

integral-derivative (PID) controllers cannot simultaneously guarantee the smoothness

and rapidity of human-following [86].

Thus, this thesis will looks into the challenges of designing a robust controller with

disturbance compensation for vision based human following control of this tracked mobile

robot. In addition, the hand gesture recognition based human-robot interaction and

collision avoidance capabilities are also considered for the human-following control.

1.2 Objectives of this work

Motivated by the aforementioned background and the state of the art of state-dependent

uncertain systems, the main objective of this thesis is to investigate the robust control

and �ltering of state-dependent uncertain systems and applications on vibration sensor

and tracked mobile robot. The objectives are listed as follows.

� Construct a parameter-dependent Lyapunov function to reduce the conservativeness

of robust stability analysis conditions using the most traditional Lyapunov function

with constant matrix P . Model-dependent state-feedback stabilization scheme design

based on the parameter-dependent Lyapunov function.

� Robust �lter design for state-dependent uncertain systems by introducing a more

generalized performance index. Solve some classical �ltering problems under a uni�ed

framework.
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� Use a bio-inspired limb-like structure with state-dependent quasi-zero-sti�ness charac-

teristic to construct a vibration sensor system. Apply this sensor to absolute motion

measurement and fault detection.

� Develop a tracked mobile robot with passive bio-inspired suspension to enhance the

capability of traversing very rugged terrain and maintaining stability. Adopt the model

predictive control method to realize the robust navigation control in occurrence of

uncertain disturbance, like the obvious slippage during turning or obstacle negotiating.

� Estimate the unknown disturbance caused by human motion through using the depth

skeleton image. Design a vision-based robust human-following controller with dis-

turbance compensation. Implement the hand gesture recognition based human-robot

interaction and laser radar based collision avoidance.

1.3 Contributions of the thesis

The main contributions of this thesis are summarized as follows:

(1) The robust stability analysis and stabilization for continuous-time systems with state-

dependent uncertainties are addressed via constructing a new parameter-dependent

Lyapunov function. It is noted that the stability analysis conditions utilizing the

property of the time-derivatives of state-dependent parameters have the potential of

signi�cantly reducing conservativeness compared to the most traditional quadratic

Lyapunov function with constant matrix P . A model-dependent state-feedback sta-

bilization scheme, which can provide more �exibility in controller synthesis, is also

proposed. This study provides a �exible and low conservative method for the robust

stability analysis and synthesis of state-dependent uncertain systems.

(2) A systematic and novel �lter design method for state-dependent uncertain systems

is proposed by introducing a generalized performance index - extended dissipativity.

Some classical �ltering problems such as H∞, L2−L∞, passive and dissipative �ltering

problems for state-dependent uncertain systems can be solved successfully within a

uni�ed framework.
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(3) A novel vibration sensor based on a bio-inspired animal-limb-like structure with state-

dependent nonlinearity is developed for the real-time measurement of absolute vibra-

tion motion. With this bio-inspired vibration sensor, the problems of error accumu-

lation and real-time performance induced by traditional measurement method using

accelerometer can be e�ectively eliminated. This vibration sensor provides an e�ective

and convenient way to measure the absolute vibration motion especially for moving

platforms. A model-based fault detection algorithm using the vibration sensor is pro-

posed to cope with the real-time detection problem of weak fault with fast time-varying

characteristic which cannot be exactly identi�ed by existing methods.

(4) The developed tracked mobile robot with passive bio-inspired suspension provides a

new alternative to existing mobile robots with passive mass-spring-damper suspension

for simultaneously enhancing the capability of traversing very rugged terrain and main-

taining stability. Additionally, the proposed robust navigation control using double

layer nonlinear model predictive control strategy can e�ectively improve the trajectory

tracking accuracy against the unknown slippage disturbances with less computational

burden.

(5) A vision based robust controller with disturbance compensation is proposed for the

human following of tracked mobile robot. The human's motion is accurately estimated

through using the depth skeleton image measured by RGB-D camera. With this robust

control strategy, the tracking controller has the advantage of simultaneously guaran-

teeing the smoothness and quick response of human-following. The newly developed

vision based robust human following controller can prevent the target out of the robot

camera's FOV leading to following failure for human following in narrow environment.

1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 introduces a novel parameter-dependent

Lyapunov function for the robust stability analysis and synthesis of the state-dependent

uncertain systems. Chapter 3 investigates the robust �lter design problem of state-

10



1.4 Outline of the thesis

dependent uncertain systems based on a generalized performance - extended dissipativ-

ity. A novel vibration sensor system based on state-dependent nonlinearity for absolute

motion measurement and the application on fault detection are developed in Chapter

4. In Chapter 5, a tracked mobile robot with a novel passive bio-inspired suspension is

developed. The robust navigation using model predictive control method is also real-

ized for improving the trajectory tracking accuracy against the slippage disturbance. In

Chapter 6, a vision based robust human following controller is developed for the tracked

mobile robot to assist human with carrying heavy stu� or performing tasks in some

unstructured environments. Chapter 7 concludes the thesis and discusses some future

research directions.
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2 Robust stability analysis and

synthesis for state-dependent

uncertain systems

This chapter will investigate the problems of robust stability analysis and synthesis for

state-dependent uncertain systems, which are assumed to be of the polytopic type. A

new parameter-dependent Lyapunov function that depends a�nely on uncertain param-

eters is proposed to replace the non-quadratic Lyapunov function in [24]. As demon-

strated in a numerical example, there exists a parameter-dependent Lyapunov function

whereas the most traditional quadratic Lyapunov function with constant matrix P does

not exist. Therefore, our approach can lead to increased applicability and reduced con-

servativeness. Furthermore, in order to fully take advantage of the parameter-dependent

Lyapunov function, we propose a model-dependent state-feedback stabilization scheme

that can provide more �exibilities in controller synthesis, where the time derivatives are

assumed to be computable from the states and the stabilization conditions are presented

in terms of LMIs. The new model-dependent feedback controller contains the static

state-feedback controller as a special case. A numerical example is provided to illustrate

the e�ectiveness of the proposed approaches. Finally, we apply the developed methodol-

ogy to stabilization and synchronization of Chua's oscillator, which has wide applications

in power electronic systems and secure communication systems [90], [91]. Consequently,

it is of great practical signi�cance to apply the developed methodology to stabilization

and synchronization of Chua's oscillator.

The remainder of this chapter is structured as follows. Section 2.1 starts with the model
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description of continuous-time systems with state-dependent polytopic uncertainties and

introduces a new parameter-dependent Lyapunov function. Robust stability conditions

for the considered uncertain systems are established on the basis of parameter-dependent

Lyapunov function proposed in Section 2.2, and then a relaxed stability condition that

utilizes a property of the time-derivatives of uncertain parameters is given. Section

2.3 presents a new model-dependent state-feedback stabilization scheme. A numerical

example and a Chua's oscillator system are presented in Section 2.4 to demonstrate

the e�ectiveness and applicability of the proposed methodologies. Finally, Section 2.5

concludes the chapter.

2.1 Problem formulation and preliminaries

Consider the following continuous-time system with state-dependent uncertainties: ẋ(t) = A(σ(x(t)))x(t) +B(σ(x(t)))u(t)

y(t) = Cx(t)
(2.1.1)

where x(t) ∈ Rnx is the system state; u(t) ∈ Rnu is the control input; y(t) ∈ Rny is the

system output; σ(x(t)) ∈ Rm is the uncertain parameter vector, representing the state-

dependent unknown parametric perturbations; System (2.1.1)'s state matrix A(σ(x(t)))

and control matrix B(σ(x(t))) are described by the following convex polytopic sets:

A = {A(σ(x(t)))|A(σ(x(t))) =
m∑
i=1

σi(x
i
σ(t))Ai} (2.1.2)

B = {B(σ(x(t)))|B(σ(x(t))) =
m∑
i=1

σi(x
i
σ(t))Bi} (2.1.3)

where Ai ∈ Rnx×nxand Bi ∈ Rnx×nu are vertices of the corresponding uncertainty poly-

tope, which are known real constant matrices; In addition, xiσ(t) is a vector whose entries

are elements of state x(t); σi(xiσ(t)) is the complement of uncertain parameter vector,
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

which satis�es the following properties:

σi(x
i
σ(t)) > 0,

m∑
i=1

σi(x
i
σ(t)) = 1 (2.1.4)

Any continuous-time systems with state-dependent uncertainties in the form of (2.1.1)

can be expressed in the following more convenient form
ẋ(t) =

m∑
i=1

σi(x
i
σ(t))Aix(t) +

m∑
i=1

σi(x
i
σ(t))Biu(t)

y(t) = Cx(t)

(2.1.5)

To establish the robust stability and stabilization conditions of system (2.1.5), the fol-

lowing candidate Lyapunov function is proposed

V (x(t)) = xT (t)
m∑
i=1

σi(x
i
σ(t))Pix(t) (2.1.6)

where Pi is a positive-de�nite matrix. It follows that, Lyapunov function V (x(t)), de�ned

from a set of positive de�nite matrices Pi, i ∈ S = {1, 2, . . . ,m} and uncertain parameters

σi(x
i
σ(t)), i ∈ S, satis�es i) V (0) = 0; ii) V (x(t)) is a continuously di�erentiable function;

iii) V (x(t)) > 0, ∀ x(t) ∈ Rnx\0nx ; iv) ‖x(t)‖ → ∞⇒ V (x(t))→∞.

2.2 Robust stability conditions

The robust stability conditions for system (2.1.5) with u(t) = 0 by resorting to the most

traditional quadratic Lyapunov function with constant matrix P can be summed up in

Theorem 2.1 [24].

Theorem 2.1 [24] System (2.1.5) with u(t) = 0 is stable if there exists a symmetric

positive-de�nite matrix P , such that, ∀i ∈ S,

PAi + ATi P < 0 (2.2.1)
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However, Theorem 2.1 developed by a single Lyapunov function su�ers from the prob-

lem of serious conservativeness, which can lead to the result that a common Lyapunov

function does not exist for some uncertain systems. An alternative approach is to con-

sider the parameter dependent Lyapunov function given in (2.1.6). Theorem 2.2 gives

su�cient conditions to guarantee the stability of (2.1.5) with u(t) = 0 when parameter

dependent Lyapunov function is considered.

Theorem 2.2 Assume that σ̇r(x
r
σ(t)) ≤ φr, r ∈ S, system (2.1.5) with u(t) = 0 is stable

if there exists a set of symmetric positive-de�nite matrices Pr, r ∈ S, such that

1

2
(ATi Pj + PjAi + ATj Pi + PiAj) +

m∑
r=1

φrPr < 0, i ≤ j (2.2.2)

Proof. According to the candidate of Lyapunov function (2.1.6), one has that

V̇ (x(t)) =xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))(ATj Pi + PiAj)x(t)

+ xT (t)
m∑
r=1

σ̇r(x
r
σ(t))Prx(t)

=xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))

1

2
(ATj Pi + PiAj

+ ATi Pj + PjAi)x(t) + xT (t)
m∑
r=1

σ̇r(x
r
σ(t))Prx(t) (2.2.3)

By considering σ̇r(xrσ(t)) ≤ φr, r ∈ S, it follows that

V̇ (x(t)) ≤xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t)){1

2
(ATj Pi

+ PiAj + ATi Pj + PjAi) +
m∑
r=1

φrPr}x(t) (2.2.4)

Therefore, if (2.2.2) holds, V̇ (x(t)) < 0, ∀x(t) 6= 0, which indicates the asymptotic

stability of system (2.1.5) with u(t) = 0. �

Remark 2.1 : The stability conditions in (2.2.2) contain information about the time-

derivatives of the uncertain parameters, which may have advantage of leading to a less
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

conservative result in stability analysis. Note that (2.2.2) represents a set of LMIs if

φr, r ∈ S can be given in advance. Scalars φr denote the upper bounds to the time-

derivative of σr(x
r
σ(t)). However, φr cannot be always obtained in practical control prob-

lems, which is also commented by [92], [93]. Thus, stability analysis conditions in The-

orem 2.2 are only suitable to the systems with available boundary conditions φr.

By introducing more variables Pi, LMIs (2.2.2) are seem less restrictive than (2.2.1).

But there is a very obvious di�erence between LMIs (2.2.1) and (2.2.2) . Parameter-

dependent Lyapunov function (2.1.6) generates information about the time derivatives

of uncertain parameters into LMIs (2.2.2), whereas there is no such a term in LMIs

(2.2.1). If Pi = Pj = P and φi = φj = 0, ∀i, j ∈ S, conditions in Theorem 2.2 reduce

to the conditions in Theorem 2.1. Theorem 2.2 must always provide better results than

Theorem 2.1, when the matrices sum
∑m

r=1φrPr in (2.2.2) is negative-de�nite. It seems

that Theorem 2.2 can provide better results, or at least the same, than Theorem 2.1

for some cases. Actually this is not true for every case. That will be illustrated by a

numerical example later.

Through considering an important property of the time derivatives of uncertain param-

eters, a relaxed stability analysis approach to guarantee the stability of (2.1.5) with

u(t) = 0 is given in Theorem 2.3. The property is

m∑
r=1

σ̇r(x
r
σ(t)) = 0 (2.2.5)

According to property (2.2.5), it follows that

σ̇z(x
z
σ(t)) =

m∑
r 6=z
σ̇r(x

r
σ(t)), z ∈ S (2.2.6)

By applying (2.2.6), stability conditions given in Theorem 2.2 can be relaxed as follows

in Theorem 2.3.

Theorem 2.3 Assume that σ̇v(x
v
σ(t)) ≤ φv, φz = max{φ1, φ2, . . .,φm}, system (2.1.5)

with u(t) = 0 is stable, if there exists a set of symmetric positive-de�nite matrices Pv,
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v ∈ S, such that

Pr − Pz ≥ 0 (2.2.7)

1

2
(ATj Pi + PiAj + ATi Pj + PjAi) +

m∑
r 6=z
φr(Pr − Pz) < 0 (2.2.8)

r 6= z, r, z,∈ S, i ≤ j, i, j ∈ S

Proof. Consider (2.1.6) as a Lyapunov function candidate, then

V̇ (x(t)) =xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))

1

2
(ATj Pi + PiAj

+ ATi Pj + PjAi)x(t) + xT (t)
m∑
r=1

σ̇r(x
r
σ(t))Prx(t)

=xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))

1

2
(ATj Pi + PiAj

+ ATi Pj + PjAi)x(t) + xT (t)
m∑
r 6=z
σ̇r(x

r
σ(t))Prx(t)

+ xT (t)σ̇z(x
z
σ(t))Pzx(t) (2.2.9)

From (2.2.6)

V̇ (x(t)) =xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))

1

2
(ATj Pi + PiAj+

ATi Pj + PjAi)x(t) + xT (t)
m∑
r 6=z
σ̇r(x

r
σ(t))(Pr − Pz)x(t) (2.2.10)

Assuming that σ̇r(xrσ(t)) ≤ φr, r ∈ S and (2.2.7) hold, it follows that

V̇ (x(t)) ≤xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t)){1

2
(ATj Pi + PiAj

+ ATi Pj + PjAi) +
m∑
r 6=z
φr(Pr − Pz)}x(t) (2.2.11)

If condition (2.2.8) holds, then V̇ (x(t)) < 0, ∀x(t) 6= 0 and system (2.1.5) with u(t) = 0

is globally asymptotically stable. This completes the proof �

According to the comparison between Theorem 2.1 and Theorem 2.2, the matrices
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

sum
∑m

r=1φrPr may be pointed out as the main source of conservatism. And φz =

max{φ1, φ2, . . . , φm} plays an important role in the matrices sum
∑m

r=1φrPr. By con-

sidering the property (2.2.5), the contribution of φz is neglected. The matrices sum∑m
r=1φrPr in (2.2.2) is translated to

∑m
r 6=zφr(Pr − Pz) in (2.2.8). Thus, (2.2.8) are more

relaxed conditions than (2.2.2), and Theorem 2.3 can provide a less conservative version

of Theorem 2.2.

2.3 State-feedback controller stabilization

In this section , the stabilization problem for the closed-loop system will be investigated.

To take full advantage of the parameter-dependent Lyapunov function, a new model-

dependent state-feedback controller design approach will be proposed in this case, where

the time derivatives of parameters σi(xiσ(t)) can be calculated from system states. Con-

sider the following model-dependent state-feedback control law

ui(t) = Kix(t), i ∈ S (2.3.1)

where ui(t) is virtual control input of the corresponding uncertainty polytope, Ki is the

model-dependent state-feedback gain matrix. Then, the resulting closed-coop system

can be represented as

ẋ(t) =
m∑
i=1

σi(x
i
σ(t))(Ai +BiKi)x(t) (2.3.2)

Assume thatK(x(t)) is a real model-dependent state-feedback controller, which is closely

related to the uncertainty polytope. Model-dependent state-feedback control law can be

rewritten as the following form

u(t) = K(x(t))x(t) (2.3.3)

18



2.3 State-feedback controller stabilization

According to the design approach of model-dependent state-feedback control law (2.3.1),

it follows that K(x(t)) satis�es the following property

B(σ(x(t)))K(x(t)) =
m∑
i=1

σi(x
i
σ(t))BiKi (2.3.4)

Theorem 2.4 gives stabilization conditions via the new model-dependent state-feedback

controller (2.3.1).

Theorem 2.4 Assume that σ̇i(x
i
σ(t)) ≤ φi, |φz| = max{|φ1| , |φ2| , . . . , |φm|}. If there

exist scalars ε, λ, positive-de�nite matrices P̄i, and matrices Q̄ij, such that

1

(λ+ 1)ε
I < P̄r <

1

ε
I,

1

ε
I <P̄z (2.3.5) [AjP̄i +BjQ̄ij]s P̄i

P̄ T
i −[

m∑
r 6=z
|φr| ε(λ+ 1)I]−1

 <0 (2.3.6)

0 < ε, 0 < λ, r 6= z, r, z,∈ S, i, j ∈S

where

Kj = Q̄ijP̄
−1
i

then the system (2.1.5) can be stabilized by the state-feedback controller (2.3.1).

Proof. Consider (2.1.6) as a Lyapunov function candidate, then

V̇ (x(t)) =xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))(GT

j Pi + PiGj)x(t)

+ xT (t)
m∑
r=1

σ̇r(x
r
σ(t))Prx(t)

=xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))(GT

j Pi + PiGj)x(t)

+ xT (t)
m∑
r 6=z
σ̇r(x

r
σ(t))Prx(t) + xT (t)σ̇z(x

z
σ(t))Pzx(t) (2.3.7)
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

where Gj = Aj +BjKj. From (2.2.6), one obtains

V̇ (x(t)) =xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))(GT

j Pi + PiGj)x(t)

+ xT (t)
m∑
r 6=z
σ̇r(x

r
σ(t))(Pr − Pz)x(t) (2.3.8)

Denoting P̄i = P−1
i , i ∈ S, (2.3.5) is equal to

I

(λ+ 1)ε
< P−1

r <
I

ε
,
I

ε
< P−1

z , 0 < ε, 0 < λ (2.3.9)

Due to (2.3.9), the following relations hold
0 < Pz

0 < εP−1
z − I

Pz(εP
−1
z − I) = (εP−1

z − I)Pz

⇒ Pz < εI (2.3.10)


0 < Pr

0 < I − εP−1
r

Pr(I − εP−1
r ) = (I − εP−1

r )Pr

⇒ εI < Pr (2.3.11)


0 < Pr

0 < ε(λ+ 1)P−1
r − I

Pr[ε(λ+ 1)P−1
r − I] = [ε(λ+ 1)P−1

r − I]Pr

⇒ Pr < ε(λ+ 1)I (2.3.12)

Then, (2.3.13) can be obtained from (2.3.10), (2.3.11) and (2.3.12)

0 < Pr − Pz < ε(λ+ 1)I (2.3.13)

Assuming that σ̇i(xrσ(t)) ≤ φi, i ∈ S. According to (2.3.8) and (2.3.13), it follows that

V̇ (x(t)) ≤xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))[(GT

j Pi + PiGj)

+
m∑
r 6=z
|φr| (Pr − Pz)]x(t)
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2.3 State-feedback controller stabilization

<xT (t)
m∑
i=1

m∑
j=1

σi(x
i
σ(t))σj(x

j
σ(t))[(GT

j Pi + PiGj)

+
m∑
r 6=z
|φr| ε(λ+ 1)I]x(t) (2.3.14)

Thus, V̇ (x(t)) is negative if there exist scalars ε > 0 and λ > 0 such that

(GT
j Pi + PiGj) +

m∑
r 6=z
|φr| ε(λ+ 1)I < 0 (2.3.15)

Then, perform congruence transformation to (2.3.15) by P−1
i with the change of matrix

variables de�ned by

P̄i = P−1
i , Q̄ij = KjP̄i

It can be easily seen that (2.3.16) holds.

[AjP̄i +BjQ̄ij]s +
m∑
r 6=z
|φr| ε(λ+ 1)P̄iP̄i < 0 (2.3.16)

According to Schur complement, (2.3.16) is equal to (2.3.6). Therefore, if (2.3.16) holds,

V̇ (x(t)) < 0, ∀x(t) 6= 0. By noting that model-dependent state-feedback gain matrix Kj

can be recovered from matrices P̄i and Q̄ij,

Kj = Q̄ijP̄
−1
i (2.3.17)

This completes the proof. �

Remark 2.2 : The conditions in Theorem 2.4 are LMIs if ε and λ are given. Besides,

the upper-bounds of time-derivatives of σi(x
i
σ(t)) cannot always be estimated from the

state and control-input. The model-dependent state-feedback stabilization scheme is ap-

plicable only for the case where φi can be estimated from the states and control-input.

The case will be illustrated by a design example of Chua's oscillator later.

If all the model-dependent state-feedback gain matrices Ki are the same in Theorem

2.4(i.e., Ki = Kj = K, ∀i, j ∈ S), then model-dependent state-feedback controller

will reduce to static state-feedback controller (i.e., ui(t) , u(t) = Kx(t), ∀i ∈ S).
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

There exist m− 1 additional free variables in model-dependent state-feedback controller

design approach with respect to static state-feedback controller. It means that Theorem

2.4 has the advantage of robust performance to suppress the perturbation of uncertain

parameters and ensure the stability of the corresponding closed-loop system, which will

be illustrated by a numerical example later.

2.4 Simulation examples

In this section, a numerical example of linear system with state-dependent uncertainties

is �rst presented to demonstrate the advantages of the robust stability conditions in

Theorem 2.2 and Theorem 2.3 with respect to Theorem 2.1. Then, an example of

Chua's oscillator is provided to demonstrate necessity of our proposed system model and

the applicability of our developed controller design approach in Theorem 2.4. All of the

results of this section are attained by using MATLAB-based toolbox YALMIP [94] and

the solver SDPT3 [95] for solving LMIs.

2.4.1 Example 1: stability analysis

Consider the continuous-time uncertain system with state dependent uncertainties, de-

scribed by:

 ẋ1(t)

ẋ2(t)

 =

 −3.5 + 0.25(sin(x1(t)) + sin(x2(t)))

0.5(β−1)+0.15(β+1)(sin(x1(t))+sin(x2(t)))

−1

0.5(α−2)−0.1(α+2)(sin(x1(t))+sin(x2(t)))

 x1(t)

x2(t)

 (2.4.1)

where β and α are the system parameters. The above system can be described in the
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2.4 Simulation examples

form of (2.1.5)

ẋ(t) =
4∑
i=1

σi(x
i
σ(t))Aix(t)

where

σ1(x1
σ(t)) = 0.25− 0.25 sin(x2(t)),

σ2(x2
σ(t)) = 0.25 + 0.25 sin(x2(t)),

σ3(x3
σ(t)) = 0.25− 0.25 sin(x1(t)),

σ4(x4
σ(t)) = 0.25 + 0.25 sin(x1(t)),

A1 =

 −5 −4

−1 α

 , A2 =

 −4 −4

0.6β − 0.4 0.6α− 0.8


A3 =

 −3 −4

0.4β − 0.6 0.4α− 1.2

 , A4 =

 −2 −4

β −2



The stability of system (2.4.1) is veri�ed for several values of system parameters, compris-

ing α× β ∈ [−20, 0]× [100, 200]. Consider the time derivative of uncertain parameter

σ̇1(x1
σ(t)) =

∂σ1(x1
σ(t))

∂x2(t)
ẋ2(t)

By substituting

ẋ2(t) =
[

0 1
]
×

4∑
i=1

σi(x
i
σ(t))Aix(t)

into σ̇1(x1
σ(t)), we can obtain

φ1 = max
− π

40
<x1<

π
40
,− π

40
<x2<

π
40

σ̇1(x1
σ(t))

under the assumption x1(t) ∈ [− π
40

π
40

], x2(t) ∈ [− π
40

π
40

] for the given parameters α, β.

Parameters φ2, φ3, and φ4 can be obtained in the same way.

Comparison results are depicted in Fig.2.1 respectively. Cross indicates that the stability

can be testi�ed out by Theorem 2.2, whereas traditional quadratic Lyapunov function

with constant matrix P in Theorem 2.1 is infeasible, meanwhile dot denotes that the

stability can be testi�ed out by Theorem 2.3, whereas Theorem 2.2 is infeasible. Fur-
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

100 120 140 160 180 200

−20

−15

−10

−5

β

α

Fig. 2.1: Stability analysis with the most traditional quadratic Lyapunov function with
constant matrix P ( I) and Theorem 2.2 (I and ×) and with Theorem 2.3
(I, × and •) under assumption x1(t) ∈ [− π

40
π
40

], x2(t) ∈ [− π
40

π
40

].

thermore, take [α β] = [−14 100] and [α β] = [−20 200] in Fig. 2.1 for examples. State

responses of the underlying system with corresponding parameters [α β] = [−14 100]

and [α β] = [−20 200] for initial condition x(0) = [− π
200

π
200

]T are depicted in Fig. 2.3

and Fig. 2.4 respectively. It can be seen from Fig. 2.3 and Fig. 2.4 that the systems

with corresponding parameters are stable. Based on the above discussions, we can con-

clude that Theorem 2.2 promotes a larger stability margin than Theorem 2.1, and the

conservativeness is further reduced in Theorem 2.3. However, opposite occurs for some

speci�c sets of parameters, e.g., φi, i ∈ S. This is exactly what will be presented in the

following.

For x1(t) ∈ [−π
2
π
2
], x2(t) ∈ [−π

2
π
2
], repeating system (2.4.1) with Theorem 2.1, Theorem

2.2 and Theorem 2.3. Stability analysis results are depicted in Fig.2.2. Note that the

stable margins of Theorem 2.2 are empty, do not include that from the Theorem 2.1. It

means that the stability condition of Theorem 2.2 failed to search the stability region

in this case. However, results of Theorem 2.3 not only contain the results of the most

traditional quadratic Lyapunov function approach with constant matrix P completely,

but also expand the stability margins with a larger stability region.

Di�erence between previous example and this one is that the concerned system state
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2.4 Simulation examples

100 120 140 160 180 200

−20

−18

−16

−14

−12

−10

−8

β

α

Fig. 2.2: Stability analysis with the most traditional quadratic Lyapunov function with
constant matrix P ( I) and Theorem 2.2 (×) and with Theorem 2.3 (I, ×
and •) under assumption x1(t) ∈ [−π

2
π
2
], x2(t) ∈ [−π

2
π
2
].

0 0.5 1 1.5 2
−0.06

−0.04

−0.02

0

0.02

0.04

t(s)

 

 

x1(t)
x2(t)

Fig. 2.3: State response of the underlying system for given parameters [α β] = [−14
100].
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

0 0.5 1 1.5 2
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−0.06

−0.04

−0.02

0
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t(s)

 

 

x1(t)
x2(t)

Fig. 2.4: State response of the underlying system for given parameters [α β] = [−20
200].

ranges from x1(t) ∈ [− π
40

π
40

], x2(t) ∈ [− π
40

π
40

] to x1(t) ∈ [−π
2

π
2
], x2(t) ∈ [−π

2
π
2
], which

leads to the variation of parameters φi, i ∈ S. Upper bounds of the time-derivatives of

the uncertain parameters σi(xiσ(t)), i ∈ S increase as the concerned system state regions

become larger. Finally, we can conclude that Theorem 2.3 can provide a less conservative

version of Theorem 2.2 by utilizing a property of the time-derivatives of uncertain pa-

rameters. This result shows the advantage of parameter-dependent Lyapunov functions

proposed in (2.1.6).

2.4.2 Example 2: Chua's oscillator

In this example, we consider the problems of stabilization and synchronization of Chua's

oscillator, which has wide applications in secure communication systems and power elec-

tronic systems. Consider a Chua's oscillator in Fig.2.5 borrowed from Reference [96]. It

consists of three linear energy storage elements (inductor L, capacitor C1 and capacitor

C2), two linear resistors (resistor RL and resistor RE) and a special nonlinear Chua's

diode D. According to the Kirchho�'s voltage law and current law, the above Chua's
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2.4 Simulation examples

u(t)

Inductor

Resistor Capacitor Chua’s Diode

ResistorVC1(t)

RL D

RE

iC1 iD

iL

iC2

C1

L

Control Input Capacitor

C2

VC2(t)

VD(t)

Fig. 2.5: A Chua's oscillator circuit

oscillator is characterized by

C1
dV C1(t)

dt
= −VC1(t)− VC2(t)

RE

+ iL(t)− u(t)

C2
dV C2(t)

dt
=

VC1(t)− VC2(t)

RE

− iD(t)

L
diL(t)

dt
= −VC1(t)−RLiL(t)

where independent current source u(t) is the control input, iL(t) is the current through

the inductor L; VC1(t), VC2(t) are the voltages across the capacitors C1, C2 respectively,

iD(t) is the current through the Chua's diode D, which is uncertain and depends non-

linearly on the VD(t) [96]. Here, suppose that

iD = l1VD(t) + l2V
2
D(t) + l3V

3
D(t)

Let x1(t) = VC1(t), x2(t) = VC2(t) and x3(t) = iL(t) be the state variables, then the

Chua's oscillator can be expressed by the following state-space equation:


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


−1

REC1

1
REC1

1
C1

1
REC2

[ −1
REC2

− 1
C2

(l1 + l2x2(t) + l3x
2
2(t))] 0

− 1
L 0 −RL

L



x1(t)

x2(t)

x3(t)

+


− 1
C1

0

0

u(t)
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

Then, we consider the Chua's oscillator with the following parameters: C1 = 1.0 F ,

C2 = 0.1 F , RE = 0.7 Ω, RL = 0.01 Ω, L = 70 mH, l1 = −8/7, l2 = −1/100, l3 = 2/7.

Without control input, responses of open-loop Chua's oscillator are depicted in Fig. 2.6

with initial condition x(0) = [−0.1 −0.1 0.1]T , from which oscillatory behavior of Chua's

oscillator can be observed. As we can see in Fig. 2.7, system states approach a stable

limit-cycle approximating a circle at the origin.

0 5 10 15 20 25 30
−2

0

2

x
1
(t
)

0 5 10 15 20 25 30
−2

0

2

x
2
(t
)

0 5 10 15 20 25 30
−10

0

10

t(s)

x
3
(t
)

Fig. 2.6: State responses of the open-loop Chua's oscillator with initial condition x(0) =

[ −0.1 −0.1 0.1 ]T

−2
−1

0
1

2

−10
−5

0
5

10
−2

−1

0

1

2

V
C
1
(t
)

VC2
(t)iL(t)

Fig. 2.7: 3-D stable limit-cycle

Without sacri�cing the generality, assume that VC1(t) ∈ [−6, 6] V , VC2 ∈ [−6, 6] V .
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2.4 Simulation examples

Therefore, above Chua's oscillator can be rewritten in a polytopic form of system (2.1.5)

ẋ(t) =
4∑
i=1

σi(x
i
σ(t))[Aix(t) +Biu(t)]

where x(t) = [x1(t) x2(t) x3(t)]T , σ1(x1
σ(t)) = 1

24
x2(t) + 1

4
, σ2(x2

σ(t)) = − 1
24
x2(t) + 1

4
,

σ3(x3
σ(t)) = − 1

72
x2

2(t)+1
2
and σ4(x4

σ(t)) = 1
72
x2

2(t), (0 ≤ σ1(x1
σ(t)),σ2(x2

σ(t)), σ3(x3
σ(t)),σ4(x4

σ(t)) ≤

1,σ1(x1
σ(t)) + σ2(x2

σ(t)) + σ3(x3
σ(t)) + σ4(x4

σ(t)) = 1) represent the uncertain parameter

vector; Ai and Bi (i ∈ S) are the vertices of the corresponding uncertainty polytope.

Therefore, it arrives at

A1 =


−10

7
10
7

1

100
7

−58
35

0

−100
7

0 −1
7

 , A2 =


−10

7
10
7

1

100
7

− 142
35

0

−100
7

0 −1
7

 ,

A3 =


−10

7
10
7

1

100
7

−20
7

0

−100
7

0 −1
7

 , A4 =


−10

7
10
7

1

100
7

−1460
7

0

−100
7

0 −1
7

 ,
B1 = B2 = B3 = B4 =

[
−1 0 0

]T

1.Chua's Oscillator Stabilization

Oscillatory phenomenon is conventionally considered unacceptable for engineering ap-

plications, largely because their performance seems unpredictable and unquanti�able,

which deteriorates the system performance and leads to system instability, especially

in power electronic systems [97]. Therefore, we aim at designing a model-dependent

state-feedback controller based on the approach proposed in Theorem 2.4 to suppress

the oscillatory behavior of Chua's circuit in Fig. 2.5.

Consider the time derivative of uncertain parameter

σ̇i(x
i
σ(t)) =

∂σi(x
i
σ(t))

∂x2(t)
ẋ2(t)
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

By substituting

ẋ2(t) =
[

0 1 0
]
×

4∑
i=1

σi(x
i
σ(t))[Aix(t) +Biu(t)]

=
[

0 1 0
]
×

4∑
i=1

σi(x
i
σ(t))Aix(t)

into σ̇i(xiσ(t)), we can obtain

φi = max
−6<x1,x2<6

σ̇i(x
i
σ(t))

φ1 = 30.1500, φ2 = 29.8500, φ3 = 120.6000, φ4 = 3.1862. Model-dependent state-

feedback controller is designed by applying the stabilization approach in Theorem 2.4,

and computational time for this example in computer (PC with Intel Core2 processors

@2.20GHz @2.20GHz and 3.0 GB DDR2 of memory) is less than 5.95 seconds.

K1 = [ −1.5095 63.0684 −10.2284 ]

K2 = [ −1.5078 62.9542 −10.2285 ]

K3 = [ −1.5087 63.0113 −10.2284 ]

K4 = [ −1.1253 53.2145 −10.2387 ]

By noting that Bi = Bj = B(σ(x(t))),∀i, j ∈ S in this example. According to the

property in (2.3.4), model-dependent state-feedback controller K(x(t)) can be reduced

to the following form

K(x(t)) =
4∑
i=1

σi(x
i
σ(t))Ki

=


0.0053x2

2(t)− 0.0001x2(t)− 1.5086

−0.1361x2
2(t) + 0.0048x2(t) + 63.011

−0.0001x2
2(t)− 10.2284


T

Assume that the maximize current supplied by current source u(t) is less than 10 A, i.e.,

|u(t)| ≤ 10. Fig. 2.8 and Fig. 2.9 depict the control input signal and state response

of closed-loop Chua's oscillator respectively, where controller is activated at t ≥ 20. By

30



2.4 Simulation examples

comparing result in Fig. 2.6 with that in Fig. 2.9, it is clear that the model-dependent

state-feedback controller can asymptotically stabilize the underlying system with a good

performance.
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Fig. 2.8: Control input of closed-loop Chua's oscillator. Controller is activated at t ≥ 20.
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Fig. 2.9: State response of closed-loop Chua's oscillator with initial condition x(0) =

[ −0.1 −0.1 0.1 ]T

2.Chua's Oscillator Synchronization

Then, consider the synchronization problem for two identical Chua's Oscillators with

di�erent initial conditions.

ẋ(t) = f(x(t))

˙̃x(t) = f(x̃(t)) +Bu(t)

where u(t) is the input of synchronization controller implemented by a controlled current

source, ẋ(t) = f(x(t)) is the driving or master system and ˙̃x(t) = f(x̃(t)) is the response
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

or slave system. By introducing the error variables e1 = x̃1−x1, e2 = x̃2−x2, e3 = x̃3−x3,

the error dynamical system can be expressed as


ė1(t)

ė2(t)

ė3(t)

 =


− 1
REC1

1
REC1

1
C1

1
REC2

[− 1
REC2

− 1
C2
g(x2(t), x̃2(t))] 0

− 1
L 0 −RL

L



e1(t)

e2(t)

e3(t)

+


− 1
C1

0

0

u(t)

where

g(x2(t), x̃2(t)) = l1 + l2[x2(t) + x̃2(t)] + l3[x
2
2(t) + x2(t)x̃2(t) + x̃2

2(t)]

is the nonlinear or uncertain part of the error dynamical system. The problem of

synchronization between the two identical Chua's oscillators can be translated into a

problem of how to realize the asymptotical stabilization of the error dynamical system

at origin. Therefore, the goal is to design a controller u(t) such that limt→∞ ‖e(t)‖ = 0,

e(t) = [e1(t) e2(t) e3(t)]T . Consider two identical Chua's oscillators with the same

parameters as that in the previous example. Error dynamical system mentioned above

can be rewritten in a polytopic form of system (2.1.5)

ė(t) =
4∑
i=1

σi(x2(t), x̃2(t))[Aie(t) +Biu(t)]

where σi(x2(t), x̃2(t)) is the uncertain parameter depending on system state variables

x2(t) and x̃2(t),

σ1(x2(t), x̃2(t))=
1

48
[x2(t) + x̃2(t)] +

1

4

σ2(x2(t), x̃2(t))=
−1

48
[x2(t) + x̃2(t)] +

1

4

σ3(x2(t), x̃2(t))=
−1

216
[x2

2(t)+x2(t)x̃2(t)+x̃2
2(t)]+

1

2

σ4(x2(t), x̃2(t))=
1

216
[x2

2(t)+x2(t)x̃2(t)+x̃2
2(t)]
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2.4 Simulation examples

(0 ≤ σ1(x2(t), x̃2(t)),σ2(x2(t), x̃2(t)), σ3(x2(t), x̃2(t)), σ4(x2(t), x̃2(t)) ≤ 1,σ1(x2(t), x̃2(t))+

σ2(x2(t), x̃2(t))+σ3(x2(t), x̃2(t))+σ4(x2(t), x̃2(t)) = 1); Ai and Bi (i ∈ S) are the vertices

of the corresponding uncertainty polytope.

A1 =


−10

7
10
7

1

100
7

−16
35

0

−100
7

0 −1
7

 , A2 =


−10

7
10
7

1

100
7

− 184
35

0

−100
7

0 −1
7

 ,

A3 =


−10

7
10
7

1

100
7

−20
7

0

−100
7

0 −1
7

 , A4 =


−10

7
10
7

1

100
7

−620 0

−100
7

0 −1
7

 ,
B1 = B2 = B3 = B4 =

[
−1 0 0

]T
Consider the time derivative of uncertain parameter

σ̇i(x2(t), x̃2(t)) =
∂σi(x2(t), x̃2(t))

∂x2(t)
ẋ2(t) +

∂σi(x2(t), x̃2(t))

∂x̃2(t)
˙̃x2(t)

By substituting

ẋ2(t) =
[

0 1 0
]
×

4∑
i=1

σi(x
i
σ(t))Aix(t)

˙̃x2(t) =
[

0 1 0
]
×

4∑
i=1

σi(x̃
i
σ(t))[Aix̃(t) +Biu(t)]

=
[

0 1 0
]
×

4∑
i=1

σi(x̃
i
σ(t))Aix̃(t)

into σ̇i(x2(t), x̃2(t)), we can obtain

φi = max
−6<x1,x2<6; −6<x̃1,x̃2<6

σ̇i(x2(t), x̃2(t))

φ1 = 30.1500, φ2 = 29.8500, φ3 = 120.6000, φ4 = 3.1862. Synchronization controller

is obtained by applying the stabilization approach in Theorem 2.4, and computational

time for this example in computer (PC with Intel Core2 processors @2.20GHz @2.20GHz
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

and 3.0 GB DDR2 of memory) is less than 3.89 seconds.

K1 = [ 3.7240 248.2100 −7.7791 ]

K2 = [ 3.7549 249.8049 −7.7783 ]

K3 = [ 3.7394 249.0075 −7.7787 ]

K4 = [ 7.9557 454.1497 −7.6821 ]

According to the property in (2.3.4), synchronization controller K(x(t)) can be reduced

to the following form

K(x(t)) =
4∑
i=1
σi(x2(t), x̃2(t))Ki =

0.0195x2
2(t) + 0.0195x2(t)x̃2(t) + 0.0195x̃2

2(t) + 3.7394

0.9497x2
2(t) + 0.9497x2(t)x̃2(t) + 0.9497x̃2

2(t) + 249.01

0.0004x2
2(t) + 0.0004x2(t)x̃2(t) + 0.0004x̃2

2(t)− 7.7787


T

Assume that the maximize current supplied by current source u(t) is less than 10 A,

i.e., |u(t)| ≤ 10. The performance of synchronization control is illustrated with the

initial conditions being x(0) = [−0.1 −0.1 0.1]T for driving system and x̃(0) = [0.1 0.1

−0.1]T for response system. Synchronization process between the driving oscillator and

response oscillator is depicted in Fig. 2.10, where synchronization controller is activated

at t ≥ 20. Fig. 2.11 depicts the control input behavior where at �rst there are some slight

peaks ar t ≥ 20, but when the synchronization error is closer to zero, the control signal

reduces. The �nal convergence of synchronization error can be observed in Fig. 2.12.

The model-dependent synchronization controller indeed stabilizes the error dynamical

system.
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Fig. 2.10: Synchronization performance of two identical Chua's oscillator with initial
conditions x(0) = [ −0.1 −0.1 0.1 ]T , x̃(0) = [ 0.1 0.1 −0.1 ]T and syn-
chronization controller is activated at t ≥ 20. Driving oscillator in full lines;
response oscillator in dashed lines.
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Fig. 2.11: Control input of synchronization controller. Synchronization controller is ac-
tivated at t ≥ 20.
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Fig. 2.12: Synchronization error signals. Synchronization controller is activated at t ≥
20.
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2 Robust stability analysis and synthesis for state-dependent uncertain systems

2.5 Concluding remarks

This chapter has considered the problems of robust control for a class continuous time sys-

tems involving state-dependent uncertain parameters via constructing a new parameter

dependent Lyapunov function. Based on the parameter dependent Lyapunov approach,

stability conditions for uncertain open-loop systems are given. Furthermore, some im-

proved stability conditions are established by utilizing the property of time-derivatives

of uncertain parameters. Then, a model-dependent state-feedback stabilization scheme,

which has more �exibilities in controller synthesis and can achieve better system perfor-

mances in practice, is presented. The model-dependent state-feedback controller contains

the static state-feedback controller as a special case. A numerical example is provided to

illustrate the e�ectiveness of the proposed approaches. Finally, the developed controller

design methodology is applied to stabilization and synchronization of Chua's oscilla-

tor, which has wide applications in secure communication systems and power electronic

systems.

36



3 Robust �lter design for

state-dependent uncertain systems

This chapter considers the problem of robust �lter design for continuous-time uncer-

tain system with state-dependent uncertainties, taking the D stability constraints into

consideration, based on a new performance index. Initially, a novel model is presented

to describe such dynamic systems, which contain not only the general time-varying pa-

rameters uncertainties, but also the state-dependent uncertainties, even the couplings of

both. And corresponding robust �lter is also given. Then, the new performance index,

which contains the H∞, L2−L∞, passive and dissipative performance indices as special

cases, is introduced. Furthermore, a novel type of robust model-independent �lter for

the considered systems is developed such that the corresponding �ltering error system

can guarantee the prescribed H∞, L2 − L∞, passive and dissipative performance levels

with D stability constraints. Consequently, the robust �lter can be designed in terms

of solutions to a set of convex optimization problems. In addition, it is worth pointing

out that the model-independent �lter proposed in this thesis does not require that the

model information is accessible for the �lter design. Finally, a numerical example of tun-

nel diode circuit system is presented to demonstrate the applicability and e�ectiveness

of the proposed robust �lter design method.

The remainder of this chapter is structured as follows. Section 3.1 starts with problem

formulation and preliminaries about robust �lter design and introduces a generalized

�ltering performance index. In Section 3.2, robust �lter design method based on convex

optimization techniques is developed. Section 3.3 addresses the small current estimation
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3 Robust �lter design for state-dependent uncertain systems

problem of a tunnel diode circuit system by resorting to the proposed robust �lter design

method. Finally, Section 3.4 concludes the chapter.

3.1 Problem formulation and preliminaries

Consider the following continuous-time uncertain system with state-dependent uncer-

tainties: 
ẋ(t)=A(σ(x(t), λ(t)))x(t)+B(σ(x(t), λ(t)))w(t)

z(t)=C(σ(x(t), λ(t)))x(t)+D(σ(x(t), λ(t)))w(t)

y(t)=E(σ(x(t), λ(t)))x(t)+F (σ(x(t), λ(t)))w(t)

(3.1.1)

where x(t) ∈ Rnx is the system state; w(t) ∈ Rnw is the disturbance input which belongs

to L2[0, ∞); y(t) ∈ Rny is the measured output; z(t) ∈ Rnz is the signal to be esti-

mated; σ(x(t), λ(t)) ∈ Rm is the uncertain parameter vector, including the normal time-

varying parameters uncertainties λ(t) ∈ Rnλ and the unknown state-dependent paramet-

ric perturbations; System matrices A(σ(x(t), λ(t))), B(σ(x(t), λ(t))), C(σ(x(t), λ(t))),

D(σ(x(t), λ(t))), E(σ(x(t), λ(t))) and F (σ(x(t), λ(t))) belong to the following convex

polytopic sets:

X =

{
X(σ(x(t), λ(t)))

∣∣∣X(σ(x(t), λ(t))) =

m∑
i=1

σi(x
i(t), λi(t))Xi, Xi ∈ {Ai, Bi, Ci, Di, Ei, Fi}

}
(3.1.2)

where Ai, Bi, Ci, Di, Ei and Fi (i ∈ S := {1, 2, ...,m}) are vertices of the corresponding

uncertainty polytope, which are known real constant matrices with appropriate dimen-

sions; In addition, xi(t) is a vector whose entries are elements of x(t); λi(t) is a vector

whose entries are elements of λ(t); σi(xi(t), λi(t)) is the complement of uncertain param-

eter vector, which satis�es the following properties:

σi(x
i(t), λi(t)) > 0,

m∑
i=1

σi(x
i(t), λi(t)) = 1 (3.1.3)
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3.1 Problem formulation and preliminaries

Any continuous-time uncertain system with state-dependent uncertainties in the form of

(3.1.1) can be expressed in the following more convenient form:
ẋ(t) =

∑m
i=1 σi(x

i(t), λi(t))[Aix(t) +Biw(t)]

z(t) =
∑m

i=1 σi(x
i(t), λi(t))[Cix(t) +Diw(t)]

y(t) =
∑m

i=1 σi(x
i(t), λi(t))[Eix(t) + Fiw(t)]

(3.1.4)

Remark 3.1 Compared with the continuous-time uncertain system model with state-

dependent polytopic uncertainties proposed in [98], not only the state-dependent poly-

topic uncertainties but also the general time-varying parameters uncertainties with known

bounds are considered in a uni�ed model as presented in (3.1.1).

For system (3.1.1), consider a full-order model-dependent �lter taking the following

form:

ẋf (t)=Af (σ(x(t), λ(t)))xf (t)+Bf (σ(x(t), λ(t)))y(t)

zf (t)=Cf (σ(x(t), λ(t)))xf (t)
(3.1.5)

where xf (t) is the �lter state; zf (t) is the �lter output; �lter system matricesAf (σ(x(t), λ(t))),

Bf (σ(x(t), λ(t))) and Cf (σ(x(t), λ(t))) are the model-dependent matrices to be deter-

mined. It is noted that Af (σ(x(t), λ(t))), Bf (σ(x(t), λ(t))) and Cf (σ(x(t), λ(t))) will be

denoted by constant matrices Afi, Bfi and Cfi, respectively. Introduce an augmented

state vector x̃(t) as x̃(t) = [xT (t) xTf (t)]T . The output error is de�ned as z̃(t) = z(t)−zf (t).

Then, the �ltering error system is given by combining system (3.1.1) and �lter (5.2.4)

together:  ˙̃x(t)= Ã(σ(x(t), λ(t)))x̃(t)+B̃(σ(x(t), λ(t)))w(t)

z̃(t)= C̃(σ(x(t), λ(t)))x̃(t)+D̃(σ(x(t), λ(t)))w(t)
(3.1.6)

where

Ã(σ(x(t), λ(t))) =

[
A(σ(x(t), λ(t))) 0

Bf (σ(x(t), λ(t)))E(σ(x(t), λ(t))) Af (σ(x(t), λ(t)))

]
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3 Robust �lter design for state-dependent uncertain systems

B̃(σ(x(t), λ(t))) =

 B(σ(x(t), λ(t)))

Bf (σ(x(t), λ(t)))F (σ(x(t), λ(t)))


C̃(σ(x(t), λ(t))) =

[
C(σ(x(t), λ(t))) −Cf (σ(x(t), λ(t)))

]
D̃(σ(x(t), λ(t))) = D(σ(x(t), λ(t)))

Remark 3.2 It is worth pointing out that the model information of system (3.1.1) is

assumed to be obtained in the implementation of model-dependent �lters in (5.2.4). How-

ever, the model-dependent information may not always be accessible directly in some

practical situations (such as the parameters' uncertainties of resistor, capacitor, and in-

ductor in circuit systems, which maybe come from the sources: aging of the materials,

constructive di�erences, thermal drift, disturbance, etc. In practice, it is hard to get ideal

knowledge on the system uncertain parameters, or the cost is probably expensive), which

will be detailedly illustrated by a simulation example of tunnel diode circuit later. Thus,

the model-dependent �lter in the form of (5.2.4) is no longer applicable for such cases.

Note that the design approach of model-dependent �lters cannot be used to construct the

model-independent �lters due to the coupled terms between the �lter matrices and model-

dependent parameters. Therefore, new approaches need to be developed to deal with the

model-independent �lter design problem.

In view of Remark 3.2, we will consider the following full-order mode-independent �lter

for system (3.1.1) in this thesis:

 ẋf (t) = Afxf (t) +Bfy(t)

zf (t) = Cfxf (t)
(3.1.7)

where xf (t) ∈ Rnx is the �lter state; zf (t) ∈ Rnz is the �lter output; Af , Bf and Cf are

the model-independent constant matrices to be determined. De�ne z̃(t) = z(t) − zf (t)

and x̃(t) = [xT (t) xTf (t)]T . Then, the �ltering error system resulting from (3.1.4) and
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(3.1.7) is described by

 ˙̃x(t) =
∑m

i=1 σi(x
i(t), λi(t))[Ãix̃(t) + B̃iw(t)]

z̃(t) =
∑m

i=1 σi(x
i(t), λi(t))[C̃ix̃(t) + D̃iw(t)]

(3.1.8)

where

Ãi =

 Ai 0

BfEi Af

 , B̃i =

 Bi

BfFi


C̃i =

[
Ci − Cf

]
, D̃i = Di

In this chapter, D stability constraint is imposed for the purpose of achieving expected

dynamic performances for �ltering error system (3.1.8). In what follows, we will consider

the model-independent �lter with the following D stability constraints lie in a circular

region.

Lemma 3.1 Let f(q, r) denotes any circular region centering in q with radius r in

the complex plane (q, r∈R and r > 0). Then, all the eigenvalues of Ã(σ(x(t), λ(t)))

in �ltering error system (3.1.6) lie in the region f(q, r), if and only if there exists a

symmetric matrix P > 0 such that −P P [Ã(σ(x(t), λ(t)))− qI]

? −r2P

 < 0 (3.1.9)

Before ending this section, we recall the following assumption and de�nition, which will

be used to develop the main results in the sequel.

Assumption 1 : [99] Matrices Φ, Ψ1, Ψ2 and Ψ3 satisfy the following conditions:

1) Φ = ΦT ,Ψ1 = ΨT
1 and Ψ3 = ΨT

3 ;

2) Φ ≥ 0 and Ψ1 ≤ 0;
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3 Robust �lter design for state-dependent uncertain systems

3) ‖Di‖ · ‖Φ‖ = 0,∀i ∈ S;

4) (‖Ψ1‖+ ‖Ψ2‖)‖Φ‖ = 0;

5) DT
i Ψ1Di +DT

i Ψ2 + ΨT
2Di + Ψ3 > 0, ∀i ∈ S.

De�nition 3.1 [99] For given matrices Φ,Ψ1,Ψ2 and Ψ3 satisfying Assumption 1,

system (3.1.8) is said to be extended dissipative if there exits a scalar ρ such that the

following inequality holds for any tf ≥ 0 and all w(t) ∈ L2[0, ∞)

tf∫
0

J(t)dt− z̃(tv)
TΦz̃(tv) ≥ ρ, tv ∈ [0, tf ] (3.1.10)

where

J(t) = z̃(t)TΨ1z̃(t) + 2z̃(t)TΨ2w(t) + w(t)TΨ3w(t)

Remark 3.3 The new performance index introduced in De�nition 3.1 contains a few of

classical performance indices as special cases. By using above new performance index,

some well-known �ltering problems such as H∞, L2−L∞, passive and dissipative �ltering

problems can be solved successfully within a uni�ed framework [99].

1) Let Φ = 0, Ψ1 = −I, Ψ2 = 0, Ψ3 = γ2I and ρ = 0, inequality (3.1.10) reduces to

H∞ performance index [100];

2) Let Φ = I, Ψ1 = 0, Ψ2 = 0, Ψ3 = γ2I and ρ = 0, inequality (3.1.10) becomes

L2 − L∞ (energy-to-peak) performance index [101];

3) If the dimension of output z̃(t) is the same as that of disturbance w(t), then in-

equality (3.1.10) with Φ = 0, Ψ1 = 0, Ψ2 = I, Ψ3 = γI and ρ = 0 becomes the

passivity performance index [102];

4) Let Φ = 0, Ψ1 = Q0, Ψ2 = S0, Ψ3 = R0−τI and ρ = 0, inequality (3.1.10) reduces

to the strict (Q0, S0, R0)-dissipativity [103];
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5) Let Φ = 0, Ψ1 = −εI, Ψ2 = I, Ψ3 = −τI with ε > 0 and τ > 0, the inequality

(3.1.10) becomes the very-strict passivity performance index.

In the de�nition of the very-strict passivity, scalar ρ is not required to be zero. It was

shown in [102] that ρ should be a non-positive scalar. This fact can also be veri�ed from

Assumption 1 and De�nition 1. Indeed, when w(t) = 0, it follows from (3.1.10) that

ρ ≤
tf∫

0

z̃(t)TΨ1z̃(t)dt− z̃(tv)
TΦz̃(tv), tv ∈ [0, tf ]

Note from Assumption 1 that Φ ≥ 0 and Ψ1 ≤ 0. Thus, above inequality implies that

ρ ≤ 0

Then, our objective is to design a model-independent full-order �lter in the form of

(3.1.7) such that for all admissible uncertainties:

1) The �ltering error system (3.1.8) with w(t) = 0 is asymptotically stable;

2) The �ltering error system (3.1.8) satis�es the D stability constraints (3.1.9);

3) The �ltering error system (3.1.8) guarantees the new performance index proposed

in (3.1.10) for all nonzero w(t) ∈ L2[0, ∞).

3.2 Performance criterion and �lter design

In this section, the �lter design problem will be considered. We �rst present the perfor-

mance criterion for the �ltering error system (3.1.8) where the �lter matrices in (3.1.7)

are assumed to be given.

Theorem 3.1 Given matrices Φ, Ψ1, Ψ2 and Ψ3 satisfying Assumption 1, the �ltering

error system (3.1.8) is asymptotically stable and satis�es the index performance in Def-

inition 1 and the poles lie in a circular region f(q, r) de�ned in Lemma 1, if there exist
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3 Robust �lter design for state-dependent uncertain systems

matrices P > 0 and G > 0, such that the following linear matrix inequalities (LMIs)

hold, ∀i ∈ S:

G < P (3.2.1)

Πi < 0 (3.2.2)

C̃T
i ΦC̃i < G (3.2.3) −P P (Ãi − qI)

? − r2P

 < 0 (3.2.4)

where

Πi =

 [PÃi]s − C̃T
i Ψ1C̃i PB̃i − C̃T

i Ψ1D̃i − C̃T
i Ψ2

? −D̃T
i Ψ1D̃i − [D̃T

i Ψ2]s −Ψ3


and the scalar ρ involved in De�nition 1 can be chosen as

ρ = −V (0) (3.2.5)

Proof : Consider the following Lyapunov function:

V (t) = x̃(t)TPx̃(t) (3.2.6)

The time derivative of V (t) is expressed as:

V̇ (t) = 2x̃(t)TP ˙̃x(t)

= 2
m∑
i=1

σi(x
i(t), λi(t))x̃(t)TP [Ãix̃(t) + B̃iw(t)] (3.2.7)

Then, one has that

V̇ (t)−J(t)≤
m∑
i=1

σi(x
i(t), λi(t))

{
2x̃(t)TP [Ãix̃(t)+B̃iw(t)]
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3.2 Performance criterion and �lter design

− [C̃ix̃(t) + D̃iw(t)]TΨ1[C̃ix̃(t) + D̃iw(t)]

− 2[C̃ix̃(t) + D̃iw(t)]TΨ2w(t)− w(t)TΨ3w(t)

}
(3.2.8)

(3.2.8) can be reformulated as

V̇ (t)− J(t) ≤ η(t)T
m∑
i=1

σi(x
i(t), λi(t))Πiη(t) (3.2.9)

where η(t)T = [x̃(t)T w(t)T ] and

Πi=

 [PÃi]s − C̃T
i Ψ1C̃i PB̃i − C̃T

i Ψ1D̃i − C̃T
i Ψ2

? −D̃T
i Ψ1D̃i − [D̃T

i Ψ2]s −Ψ3


It can be seen from inequality (3.2.2) that

V̇ (t)− J(t) ≤ η(t)T
m∑
i=1

σi(x̃
i(t))Πi η(t) < 0 (3.2.10)

From (3.2.2), it follows that there always exists a su�ciently small positive scalar µ > 0

such that Πi < −µI, which implies that

V̇ (t)− J(t) ≤ −µ‖η(t)‖2 ≤ −µ‖x̃(t)‖2 (3.2.11)

Thus, J(t) ≥ V̇ (t) holds for any t ≥ 0. By the Newton-Leibniz formula, one has that

∫ tf

0

J(t)dt ≥ V (tf )− V (0), ∀ tf ≥ 0 (3.2.12)

Recalling (3.2.1) and (3.2.5), we have

∫ tf

0

J(t)dt ≥ x̃(tf )
TGx̃(tf ) + ρ (3.2.13)

According to De�nition 1, we need to prove that the following inequality holds for any
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3 Robust �lter design for state-dependent uncertain systems

matrices Φ, Ψ1, Ψ2, and Ψ3 satisfying Assumption 1:

tf∫
0

J(t)dt− z̃(tv)
TΦz̃(tv) ≥ ρ, tv ∈ [0, tf ] (3.2.14)

where tf is any nonnegative scalar. To this end, the two cases of ‖Φ‖ = 0 and ‖Φ‖ 6= 0

are considered, respectively. First, for the case of ‖Φ‖ = 0, it follows from (3.2.13) that

∫ tf

0

J(t)dt ≥ x̃(tf )
TGx̃(tf ) + ρ ≥ ρ (3.2.15)

which means (3.2.14) holds by noting that z̃(tv)
TΦz̃(tv) = 0 (‖Φ‖ = 0⇔ Φ = 0). For

another case of ‖Φ‖ 6= 0, it is required that ‖Ψ1‖ + ‖Ψ2‖ = 0 and ‖Di‖ = 0 under

Assumption 1, from which Ψ1 = 0, Ψ2 = 0 and Ψ3 > 0 can be obtained. Thus,

J(t) = w(t)TΨ3w(t) ≥ 0. This, together with (3.2.13), implies that, for any tf ∈ [0, ∞)

and tv ∈ [0, tf ], the following inequality holds:

∫ tf

0

J(t)dt ≥
∫ tv

0

J(t)dt ≥ x̃(tv)
TGx̃(tv) + ρ (3.2.16)

Then, according to (3.2.3) and (3.2.16), the following inequality holds for any tf > 0

∫ tf

0

J(t)dt− z̃(tv)
TΦz̃(tv) ≥

∫ tf

0

J(t)dt−
m∑
i=1

σi(x
i(tv), λ

i(tv))x̃(tv)
T C̃T

i ΦC̃ix̃(tv)

≥
∫ tf

0

J(t)dt− x̃(tv)
TGx̃(tv) ≥ ρ (3.2.17)

Thus, inequality (3.2.14) holds for any tf ∈ [0, ∞) and tv ∈ [0, tf ]. Through considering

the two cases of ‖Φ‖ = 0 and ‖Φ‖ 6= 0 as discussed above, it is easy to conclude that

�ltering error system (3.1.8) is extended dissipative in the sense of De�nition 1. With

w(t) = 0, it follows from (3.2.11) that

V̇ (t) ≤ z̃(t)TΨ1z̃(t)− µ‖x̃(t)‖2 (3.2.18)

Noticing that Ψ1 ≤ 0 under Assumption 1, it can be concluded that V̇ (t) ≤ −µ‖x̃(t)‖2,

which means that the �ltering error system (3.1.8) with w(t) = 0 is asymptotically
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3.2 Performance criterion and �lter design

stable. Additionally, by constraint condition (3.2.4), it is obtained that (3.1.9) holds.

According to Lemma 3.1, all the eigenvalues of �ltering error system lie in a circular

region, centering in q with radius r. This completes the proof. �

Remark 3.4 Theorem 4.1 provides the performance criteria for the �ltering error sys-

tem (3.1.8) with given �lter matrices. The performance criteria in Theorem 4.1 are

expressed in the form of LMIs. It follows from (3.1.10) that ρ = 0 under zero initial

conditions. Thus, by choosing appropriate matrices Φ, Ψ1, Ψ2 and Ψ3 as discussed in

Remark 3.3, Theorem 4.1 can be applied to check the L2 − L∞ performance, H∞ per-

formance, passivity, dissipativity and very-strict passivity for the �ltering error system

(3.1.8), respectively.

Based on the conditions in Theorem 4.1, the problem of model-independent �lter design

for systems with state-dependent uncertainties will be solved in the following part. Re-

calling Assumption 1 and noting that Φ ≥ 0, Ψ1 ≤ 0, there always exist matrices Φ̃ and

Ψ̃1 such that

Φ = Φ̃T Φ̃, Ψ1 = −Ψ̃T
1 Ψ̃1 (3.2.19)

The existence conditions of �lter design for system (3.1.1) are presented in the following

theorem.

Πi =



[RAi+BfEi]s Af+ATi L
T +ET

i B
T
f RBi+BfFi−CT

i Ψ2 CT
i Ψ̃T

1

? [Af ]s LBi +BfFi + CT
f Ψ2 − CT

f Ψ̃T
1

? ? − [DT
i Ψ2]s −Ψ3 DT

i Ψ̃T
1

? ? ? − I


(3.2.20)

Theorem 3.2 For given matrices Φ̃, Ψ̃1, Ψ2 and Ψ3 satisfying (3.2.19) and Assump-

tion 1, the �ltering error system in (3.1.8) is asymptotically stable, and satis�es a new

performance index in De�nition 1, and the poles lie in the circular region f(q, r) de�ned
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3 Robust �lter design for state-dependent uncertain systems

in Lemma 3.1, if there exist matrices R > 0, L > 0, G > 0, Af , Bf and Cf with

appropriate dimensions satisfying the following conditions, ∀i ∈ S:

G < P (3.2.21)

Πi < 0 (3.2.22)

Θi < 0 (3.2.23) −P Wi

? −r2P

 < 0 (3.2.24)

where

P =

 R L

L L

 , G =

 G1 G2

? G3



Θi =


−G1 −G2 CT

i Φ̃T

? −G3 − CT
f Φ̃T

? ? − I


Wi =

 RAi +BfEi − qR Af − qL

LAi +BfEi − qL Af − qL


and Πi is de�ned in (3.2.20). Moreover, if above LMIs have feasible solution, the �lter

matrices for model-independent �lter (3.1.7) are given by

Af = L−1Af , Bf = L−1Bf , Cf = Cf (3.2.25)

Proof : From the inequality of (3.2.10), it is concluded that Πi < 0, i ∈ S. Under the

condition of Ψ1 = −Ψ̃T
1 Ψ̃1 in (3.2.19), and applying the Schur complement equivalence,
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3.2 Performance criterion and �lter design

we have that inequality (3.2.2) is equivalent to Π̃i < 0, where

Π̃i =


[PÃi]s PB̃i − C̃T

i Ψ2 C̃T
i Ψ̃T

1

? − [D̃T
i Ψ2]s −Ψ3 D̃T

i Ψ̃T
1

? ? − I

 (3.2.26)

Furthermore, de�ning matrix variables

P ≡

 P11 P12

P21 P22

 , H =

 I 0

0 P12P
−1
22


where P11 > 0, P22 > 0, P12 = P T

21, and P12 is an invertible matrix. Particularly, de�ne

R ≡ P11. Then, perform a congruence transformation to (3.2.26) by pre-multiplying

diag{H, I, I} and post-multiplying its transpose with the change of matrix variables

de�ned by

Af = P12AfP
−1
22 P

T
12, Bf = P12Bf

Cf = CfP
−1
22 P

T
12, L = P12P

−1
22 P

T
12

It can be easily seen that (3.2.22) holds. De�ne G = HGHT , P = HPHT , by

pre-multiplying diag{H,H} and post-multiplying its transpose to (3.2.1), respectively,

(3.2.21) holds. Similarly, pre-multiplying diag{H, H} and post-multiplying its transpose

to (3.2.4) yields the condition in (3.2.24). In addition, by applying the Schur complement

with the condition of Φ = Φ̃T Φ̃ in (3.2.19), it can be obtained from (3.2.3) that

 −G C̃T
i Φ̃T

? − I

 < 0 (3.2.27)

Then, pre-multiplying diag{H, I} and post-multiplying its transpose to (3.2.27), re-

spectively, gives that (3.2.23) holds. Thus, if the inequalities (3.2.21)-(3.2.24) in Theo-

rem (3.2) hold, the �lter design problem is solvable, and the �lter matrices are designed
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3 Robust �lter design for state-dependent uncertain systems

by

Af = P−1
12 AfP

−T
12 P22, Bf = P−1

12 Bf , Cf = CfP
−T
12 P22

Note that P22 > 0 and P12 is an invertible matrix, thus P−T12 P22 is a non-singular matrix.

De�ne Q = P−T12 P22, and consider the equivalence transformation x̄f (t) = Qxf (t). Then,

the system

 ˙̄xf (t) = QAfQ
−1x̄f (t) +QBfy(t)

zf (t) = CfQ
−1x̄f (t)

is said to be (algebraically) equivalent to the �lter (3.1.7). Therefore, the �lter matrices

can be recovered in the following form

Af = QP−1
12 AfP

−T
12 P22Q

−1 = L−1Af

Bf = QP−1
12 Bf = L−1Bf , Cf = CfP

−T
12 P22Q

−1 = Cf

This completes the proof. �

Remark 3.5 With the result of Theorem 3.2, the robust �ltering problem can be rapidly

and easily solved by testing the feasibility of the LMIs conditions (3.2.21)-(3.2.24). Also

notice that any feasible solution to (3.2.21)-(3.2.24) yields a suitable robust �lter. The

minimum disturbance attenuation performance level γ such that the conditions in The-

orem 3.2 hold can be readily obtained from the optimal solution of the following convex

optimization problem:

min
R,L,G,Af ,Bf ,Cf

δ

subject to (3.2.21)− (3.2.24), with δ ≡ γ2

The minimum value of γ is given by γ∗ =
√
δ∗, where γ∗ is the optimal value of γ, and

the corresponding optimal �lter is as (3.2.25).

Remark 3.6 Here, conservativeness of the robust �lter design approach proposed in this
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chapter is discussed. In order to deal with the problem of inaccessible model informa-

tion, we design a common model-independent �lter for all the vertices of the uncertainty

polytope. Thus, model-independent �lter inevitably has some degrees of conservative-

ness. If the model information can be directly accessible, we can design model-dependent

�lter for each vertex of the uncertainty polytope. Compared with model-independent �l-

ter, model-dependent �lter has the advantage of reducing the conservativeness, but the

implementation is more complex.

3.3 Simulation examples

In this section, a numerical example of tunnel diode circuit system will be presented to

demonstrate the applicability of the proposed model-independent �lter design approach.

All of the results of this section are attained by using MATLAB-based toolbox YALMIP

[94] and the solver SDPT3 [95] for solving convex optimization problem.

Inductor

Resistor Capacitor Tunnel Diode

LE

RE CE RD

( )w t

iD
iC

iL

Disturbance Input

VC VD

y(t)

Fig. 3.1: Tunnel diode circuit.

Consider a tunnel diode circuit system as depicted in Fig. 3.1, which is characterized
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3 Robust �lter design for state-dependent uncertain systems

by 

CEV̇C(t) =− iD(t) + iL(t)

LE i̇L(t) =− VC(t)−REiL(t) + w(t)

z(t) = iL(t)

y(t) = VC(t)− w(t)

where iL(t) is the current through the inductor LE; VC(t), VD(t) are the voltages across

the capacitor CE and tunnel diode, respectively; iD(t) is the current through the tunnel

diode and iD(t) is uncertain and depends nonlinearly on VD(t); y(t) is the measured

voltage; z(t) is the current to be estimated and w(t) is the disturbance input. Here,

suppose that [104]

iD(t) = l1VD(t) + l2V
3
D(t)

Let x1(t) = VC(t), x2(t) = iL(t) be the state variables and x(t) = [x1(t) x2(t)]T , then

the tunnel diode circuit can be governed by the following equations:

ẋ(t) =

 − l1+l2x21(t)

CE

1
CE

− 1
LE

−RE
LE

x(t) +

 0

1

w(t)

z(t) =
[

0 1
]
x(t)

y(t) =
[

1 0
]
x(t)− w(t)

Then, we consider the tunnel diode circuit with the parameters:

CE = 20 mF, LE = 2000 mH, l1 = 0.002, l2 = 0.01

RE = RE0 + α,RE0 = 10 Ω, α ∈ [−30%RE0 30%RE0]

where α denotes the parameter's uncertainty of resistor RE, which maybe come directly

from the sources: aging of the materials, constructive di�erences and thermal drift. Thus,

the parameter of RE is supposed to vary in a 30% range with respect to the nominal

value RE0. Without sacri�cing the generality, assume that x1(t) ∈ [−3 3]. The above
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diode circuit can be rewritten in a polytopic form:


ẋ(t) =

∑4

i=1
σi(x

i(t), α) [Aix(t) +Biw(t)]

z(t) =
∑4

i=1
σi(x

i(t), α) [Cix(t) +Diw(t)]

y(t) =
∑4

i=1
σi(x

i(t), α) [Eix(t) + Fiw(t)]

(3.3.1)

where σ1(x1(t), α) = x1(t)2

18
, σ2(x2(t), α) = 0.5− x1(t)2

18
, σ3(x3(t), α) = 3+α

12
, σ4(x4(t), α) =

3−α
12

and for ∀ i ∈ S = {1, 2, 3, 4},

A1 =

 −9.1 50

−1 −10

 , A2 =

 −0.1 50

−1 −10


A3 =

 −0.1 50

−1 −16

 , A4 =

 −0.1 50

−1 −4


Bi ≡ [0 1]T , Ci ≡ [0 1] , Di ≡ 0, Ei ≡ [1 0] , Fi ≡ −1

Remark 3.7 However, it is noted that the model-dependent �lter in the form of (5.2.4)

is no longer applicable for such a case, because of the uncertain parameter α from the

uncertainty of resistor RE , which cannot be accessible in the design of model-dependent

�lters. Therefore, we aim at designing a model-independent �lter in the form of (3.1.7)

to suppress the parameter's uncertainties and disturbances with a guaranteed performance

index.

Consider the �ltering error system (3.1.8) withD stability constraints de�ned in Lemma 3.1,

and the poles lie in a circular region f(−20, 19.9) with center q = (−20, 0) and radius

r = 19.9 as depicted in Fig. 3.2. Under a uni�ed frame, the model-independent �lter is

designed to satisfy H∞, L2 − L∞, passive and dissipative performances. Due to limited

space, we only consider the H∞ performance in this example. Let Φ = 0, Ψ1 = −1,

Ψ2 = 0 and Ψ3 = γ2. Then, it is obtained from (3.2.19) that Φ̃ = 0, Ψ̃1 = 1. By

applying the approach proposed in Theorem 3.2, we can obtain the minimum H∞ noise

attenuation performance index γ∗ = 0.2291 and the corresponding model-independent
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3 Robust �lter design for state-dependent uncertain systems

�lter matrices are given by:

Af =

 −7.5290 43.6298

0.0337 −7.0407

 , Bf =

 0.5557

1.2906


Cf =

[
0.0249 −0.7337

]
It can be seen from Fig. 3.3 that all the poles of �ltering error system with respect to

uncertain parameter α ∈ [−3, 3] lie in the circular region f(−20, 19.9), which veri�es

that the �lter satis�es the designed D stability constraints.

0

19.9

-19.9

19.9r =

( 20,0)q = −

Im

Re

Fig. 3.2: Circular region.
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Fig. 3.3: Poles of the �ltering error system
with α ∈ [−3, 3] .

Remark 3.8 If the parameters are Φ = 1 (Φ̃ = 1), Ψ1 = 0 (Ψ̃1 = 0), Ψ2 = 0 and

Ψ3 = γ2. By applying the approach proposed in Theorem 3.2, we can obtain the minimum

L2 − L∞ noise attenuation performance index γ∗ and the corresponding L2 − L∞ �lter.

Similarly, by setting appropriate parameters, Theorem 3.2 is applicable to the design of

passive �lter or dissipative �lter. This can allow us to choose a suitable �lter by adjusting

the weighting matrices in the new performance index according to the di�erent practical

applications or noise levels, which is the most important distinction between the robust

�lter design approach proposed in this chapter and the general H∞/L2−L∞ �lters design

approaches.

Frequency response for di�erent �ltering error system vertex is depicted in Fig.3.4, which

veri�es that the designed �lters can guarantee the optimal H∞ disturbance attenuation

performance on the whole frequency domain.
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Frequency response of the filtering error system

Fig. 3.4: Frequency response of the �ltering error system.
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Fig. 3.5: Random resistor value uniformly distributed in the range [7 13].

55



3 Robust �lter design for state-dependent uncertain systems

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t(s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

V
o
lt

a
g
e
 (

V
)

ω(t)

Fig. 3.6: Disturbance input w(t) = 0.5 sin(60πt)
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Fig. 3.7: Comparison between z(t) to be estimated and �lter output zf (t).
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Fig. 3.8: Response of �ltering error signal z̃(t).
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Fig. 3.9: Disturbance input w(t) = 0.5 sin(2πt)
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Fig. 3.10: Comparison between z(t) to be estimated and �lter output zf (t).
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Fig. 3.11: Response of �ltering error signal z̃(t).
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The disturbance input w(t) is the combination of sinusoidal and pulse signal. Meanwhile,

it is assumed that the uncertain parameter α is time-varying and stochastic in the range

of [−30%RE0, 30%RE0] as shown in Fig.3.5. To illustrate the performance of the design

�lter, assume that the initial condition of the system (3.3.1) is x(0) = [0.2 − 0.05]T and

the initial condition of the corresponding �lter system is xf (0) = [0 0]T .

Under two di�erent frequency disturbances, the comparison results between the signal

z(t) to be estimated and �lter output zf (t) are depicted from Fig. 3.6 to Fig. 3.11. Note

that although the initial conditions are di�erent, the �ltering error signal �nally reduces

to a low level. According to above simulation results, it is concluded that the proposed

robust model-independent �lter can estimate the signal to be estimated precisely and

e�ectively in spite of parameters uncertainties and external disturbances.

3.4 Concluding remarks

This chapter has addressed the �lter design problem for a class of dynamical system

with state-dependent uncertain parameters. By introducing a new performance index,

theH∞, L2−L∞ and dissipative �ltering problems with D stability constraints have been

solved in a uni�ed framework. Through employing the Lyapunov stability theory, the

feasibility criteria for analysis of robust disturbance attenuation performance have been

derived. Furthermore, the LMIs-based approaches for the design of model-independent

�lters of the considered system with state-dependent uncertain parameters have been

developed. A numerical example of the tunnel diode circuit system has been provided

to demonstrate the applicability and e�ectiveness of the proposed model-independent

�lter design method. It should also be mentioned that the method proposed in this

chapter can be applied to solve systems with other types uncertainties or more complex

dynamics.
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state-dependent nonlinearity

This chapter will design a bio-inspired vibration sensor for accurate real-time mea-

surement of absolute motion. It is known that this bio-inspired structure with state-

dependent QZS property can create an absolute stable point to acquire very excellent

performance of vibration isolation or suppression. With this idea, the problem of mea-

surement of absolute motion can be translated into the measurement of relative motion

between the stable point and other vibrating points in bio-inspired vibration sensor. The

relative motion can be easily measured by using various sensors such as optical encoder

and grating ruler. Importantly, the measurement accuracy and bandwidth can be ful�lled

conveniently through �exibly adjusting corresponding structural parameters. Hence, the

problems of error accumulation and real-time from accelerometer measurement can be

eliminated by utilizing the bio-inspired vibration sensor.

Although the fault detection techniques have been greatly developed [44�48] in the �eld

of vibration-based analysis, there still exist some attractive and challenging topics worth

further studying, one of which is how to detect the weak fault signal with fast time-

varying characteristic from strong vibration in real time. For example, in vibration and

shock testing platform, the weak fault may be masked in vibration signal. Existing

frequency-domain based fault detection methods do not have the ability to identify it

since the fast time-varying weak fault has almost no characterization on the spectrum.

Multi-resolution wavelet-based method gives a positive answer to the detection prob-

lem of fast time-varying fault, which can be located by analysing the singular value
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4 A novel vibration sensor system with state-dependent nonlinearity

of wavelet decomposition components. However, it is worth noting that the wavelet-

based fault detection method is not real time. As aforementioned observations, this

bio-inspired vibration sensor system has provided a simple and e�ective way for the real-

time accurate measurement of absolute motion, which makes the absolute motion based

real-time fault detection possible. On the other side, the model-based method, which

uses soft redundancy instead of hardware redundancy to generate residual signal for deci-

sion making, has been wildly applied in the fault detection of practical systems [105�108].

Through combining this bio-inspired vibration sensor and model-based fault detection

method, a real-time fault detection algorithm based on measurement of absolute motion

is proposed.

The remainder of this chapter is organized as follows. Section 4.1 starts with model

description and analysis of the bio-inspired vibration sensor. In Section 4.2, an adaptive

compensation method is applied to identi�cation of sensor model parameter. Based

on the bio-inspired vibration sensor, Section 4.3 presents an observer-based real-time

fault detection algorithm. Some results are presented in Section 4.4 to demonstrate

the e�ectiveness and applicability of the proposed methodologies. Finally, Section 4.5

concludes the chapter.

4.1 Model description and analysis

As depicted in Fig. 4.1, the n-layer bio-inspired vibration sensor system consists of con-

necting rods and rotating joints. This novel nonlinear structure is inspired by the limb

structures of animals and insects in motion vibration control. As shown in Fig. 4.1, the

bird's leg is Z-like skeleton. With this Z-like structure, the bird's running and landing

is very steady, even in a very high speed. That means this Z-like structure has the

potential of suppressing the vibration. In practical system, the X-like structure, which

can be regarded as the combination of double Z-like structures, is much easier to be

implemented. A linear spring with horizontal sti�ness in the bottom layer is used as

passive muscles. All the parameter descriptions of the bio-inspired vibration sensor are

listed in Tab. 4.1.
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Fig. 4.1: Structural mechanism inspired from the bird's leg

Table 4.1: Parameter descriptions of the bio-inspired sensor

Symbol Description
m loading mass (kg)
L length of rod (m)
α initial angle (rad)
ϕ rotational motion (rad)
s horizontal motion (m)
n number of layers
nx number of joints
kh linear spring sti�ness (N/m)
c rotational damping coe�cient (N∗s/rad)
ya absolute motion of the mass (m)
zu base excitation (m)
yr relative motion between mass and base (m)

Remark 4.1 This bio-inspired vibration sensor is mainly designed for measurement of

absolute vertical motion. In practical structure, a support rod will be placed in the center

line to limit the movement towards the vertical direction. Along these lines, the deforma-

tion on the bio-inspired vibration sensor is symmetrical. The dynamics can be modeled

as a single degree of freedom system.

The relationships among ϕ, s, and yr are described as

ϕ = 2 arctan(
L sinα + yr

2n

L cosα− s
2

)− 2α (4.1.1)
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4 A novel vibration sensor system with state-dependent nonlinearity

s = 2L cosα− 2

√
L2 − (L sinα +

yr
2n

)2 (4.1.2)

Here, selecting the upward as the positive direction, the relative motion between the

mass and base is yr = ya − zu.

By resorting to Lagrange's method as in [56], the dynamics of such a bio-inspired sensor

system is characterized by

mÿr +mz̈u + khs
ds

dyr
= −c nx(

dϕ

dyr
)2ẏr (4.1.3)

dϕ

dyr
=

1

n
√
L2 − (L sinα + yr

2n
)2

ds

dyr
=

L sinα + yr
2n

n
√
L2 − (L sinα + yr

2n
)2

where kh s ds
dyr

and c nx( dϕdyr )2ẏr are equivalent nonlinear sti�ness and damping correspond-

ingly. Notice that the equivalent nonlinear sti�ness and damping come not from the

nonlinear spring and/or damper but from the specially geometric relationship of this

bio-inspired sensor structure, which is one of the obvious advantages.

Taylor series expansion of the nonlinear term in system (4.1.3). Equivalent nonlinear

sti�ness term kh s
ds
dyr

kh s
ds

dyr
=

tan2 α kh
n2

yr +
3 sinα sec4 α kh

4Ln3
yr

2 (4.1.4)

− (4 sec4 α− 5 sec6 α) kh
8L2n4

yr
3 +O(yr

4)

Equivalent nonlinear damping coe�cient c nx( dϕdyr )2

c nx(
dϕ

dyr
)2 =c nx

(
sec2 α

L2n2
+

sinα sec4 α

L3n3
yr (4.1.5)

− (3 sec4 α− 4 sec6 α)

4L4n4
yr

2 +O
(
yr

3
))
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As can be seen from (4.1.3), the equivalent nonlinear sti�ness khs ds
dyr

and damping coef-

�cient c nx( dϕdyr )2 are rather complicated. For the convenience of analysis and design, the

equivalent nonlinear sti�ness and damping coe�cient are represented as polynomial ex-

pressions through Taylor series expansion at zero equilibrium, which are given in (4.1.4)

and (4.1.5). Since the vertical motion of the bio-inspired sensor considered in this chapter

does not exceed 0.1 m as shown in Section 4.4, the approximation accuracy is acceptable

in the rest analysis and design.
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Then, the resonant frequency of the bio-inspired vibration sensor system is

f0 =
tanα
2nπ

√
kh
m

(4.1.6)

The equivalent nonlinear sti�ness (4.1.4) depends not only on the linear spring sti�ness

but also on the connecting rod length, initial angle, and lay number. This is the supe-

riority of the bio-inspired structure, and also the fundamental distinction between the

traditional mass-spring system and the bio-inspired structure of this thesis. With the

bene�cial nonlinear sti�ness, the low resonant frequency can be easily achieved through

adjusting the structural parameters, upon which a wider frequency range with excellent

vibration isolation or suppression performance can be guaranteed.

In addition, the equivalent nonlinear damping can make a positive contribution to im-

prove the vibration isolation or suppression performance. Generally, increasing the lin-

ear damping can suppress the resonant peak but also degrades the performance at high
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4 A novel vibration sensor system with state-dependent nonlinearity

frequency range. This di�culty can also be settled by resorting to the equivalent non-

linear damping providing the strong damping at resonant region but weak damping at

high frequency range. Thus, with the bene�cial nonlinear sti�ness and damping, this

bio-inspired structure has excellent vibration isolation or suppression performance, as

detailed discussion and analysis in [53,56,57].

Remark 4.2 When the resonant frequency of the bio-inspired structure is su�ciently

low, the QZS characteristic can be achieved in a very wide range of frequencies. With the

QZS property, a very excellent performance of vibration isolation or suppression can be

acquired. Then the top layer mass m is approximately equivalent to a stable anti-vibration

point, i.e., the amplitude of ya is close to zero and zu ≈ −yr. Thus, the measurement

of absolute motion zu can be translated into the measurement of relative motion yr be-

tween the stable anti-vibration point and the base in this bio-inspired vibration sensor.

By resorting to some simple sensors such as optical encoder and grating ruler, the rel-

ative motion yr can be easily measured. Furthermore, this bio-inspired vibration sensor

can achieve desired measurement performance by tuning the structural parameters (e.g.,

connecting rod length, initial angle, layer number, spring sti�ness, and loading mass). A

simple description about the e�ects of the structural parameters on the performance of

vibration isolation is summarized in Table 4.2. The symbol "�", "↑", and "↓" represent

increase, decrease, and no change respectively. Actually, these structural parameters are

strongly coupled through the geometrical nonlinearity. When designing structural param-

eters, tradeo� considerations must be executed according to the practical application. For

example, a spring with smaller sti�ness is selected to obtain lower resonant frequency

and wider frequency range of vibration isolation or suppression, but the smaller sti�ness

will result in the signi�cant degradation of loading capacity and cause a larger static dis-

placement, thus the tradeo� between the vibration isolation/suppression performance and

loading capacity should be taken into account.

Obviously, the relative motion yr can be determined through measuring the rotation

angle ϕ, which is implemented by installing an optical encoder in the bottom joint. The
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4.1 Model description and analysis

Table 4.2: The e�ects of the structural parameters

Resonant frequency Vibration transmissibility
Increasing L � ↑
Increasing α ↑ ↑
Increasing n ↓ ↓
Increasing kh ↑ ↑
Increasing c � ↓

relationship between the rotation angle ϕ and the relative motion yr is determined by

yr = 2nL(sin(α +
ϕ

2
)− sin(α)) (4.1.7)

Let x1(t) = yr(t) and x2(t) = ẏr(t) be state variables, then the bio-inspired vibration

sensor system (4.1.3) can be expressed as the following nonlinear state space equation

ẋ(t) =

 ẏr

−kh
m
s ds
dyr
− c

m
nx(

dϕ
dyr

)2ẏr

+

 0

−1

u(t) (4.1.8)

where x(t) = [x1(t) x2(t)]T is state vector, u(t) = z̈u(t) is input signal.

Implementing the real-time measurement and fault detection requires the discrete time

model of above sensor system, which is obtained according to the Euler discretization

method and Taylor expansions as given in (4.1.4) and (4.1.5). For simple description, xik

is used to represent the ith state at time instance k. And de�ne x1
k = yr, x2

k = ẏr.

xk+1 = Axk +Df f(xk) +Buk (4.1.9)

where f(xk) is a nonlinear function of state variables,

f(xk) =
3 sinα sec4 α kh

4mLn3
yr

2 − (4 sec4 α− 5 sec6 α) kh
8mL2n4

yr
3 (4.1.10)

+ c nx ẏr

(
sinα sec4 α

mL3n3
yr −

(3 sec4 α− 4 sec6 α)

4mL4n4
yr

2

)
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4 A novel vibration sensor system with state-dependent nonlinearity

Ts is the sampling period and

A =

 1 Ts

− tan2 αkh Ts
mn2 1− c nx sec2 αTs

mL2n2

 , Df =

 0

Ts

 (4.1.11)

B =

 0

−Ts



4.2 Parameter estimation

In many mechanical systems, it is hard to directly get ideal knowledge on the structure

parameter or the cost of measurement is probably expensive [64, 109�112]. The same

situation is encountered in this bio-inspired vibration sensor system. In order to obtain

a comparatively exact model of the sensor system, an adaptive compensation method is

applied to estimate the rotational damping coe�cient [113].

For the convenience of estimating the damping coe�cient, the bio-inspired sensor system

(4.1.8) is reformulated as

xk+1 = xk + F (xk, uk) +G(xk, uk)θ (4.2.1)

where θ = c
m

is the parameter to be estimated, nonlinear functions F (xk, uk) and

G(xk, uk) are de�ned as

F (xk, uk) = Ts

 x2
k

−kh
m
s ds
dyr
− uk


G(xk, uk) = Ts

 0

−nx( dϕdyr )2ẏr


Construct the following state-predictor for sensor system (4.2.1)

x̂k+1 = x̂k + F (xk, uk) +G(xk, uk)θ0 +K(xk − x̂k) (4.2.2)

where θ0 is the initial guess of unknown parameter θ and K > 0 is the compensation
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4.2 Parameter estimation

coe�cient. Let the state estimation error be ek = xk − x̂k. From sensor system (4.2.1)

and state predictor (4.2.2), the state estimation error is provided by

ek+1 = ek +G(xk, uk)(θ − θ0)−Kek (4.2.3)

De�ne auxiliary variables ηk and ωk as

ηk = ek − ωk(θ − θ0) (4.2.4)

ωk+1 = ωk +G(xk, uk)−Kωk, ω0 = 0 (4.2.5)

According to (4.2.3), (4.2.4) and (4.2.5), it is obtained that

ηk+1 = ηk −Kηk, η0 = e0 (4.2.6)

Let the parameter estimation error be θ̃k = θ − θ̂k. The dynamic is presented as

θ̃k+1 = θ̃k −
1

‖Qk‖+ ε
(Ck −Qkθ̂k) (4.2.7)

Assume that at a time step kc, Qkc > 0 is satis�ed. This condition is equivalent to

the standard persistently exciting condition stated in terms of the sum of wTk wk being

positive de�nite over a �nite interval of time [113]. Then, it follows from (4.2.4) and

(4.2.13) that the following relationship holds ∀k ≥ kc

Qkθ =
k∑
i=0

ωTi ωiθ =
k∑
i=0

ωTi (ωiθ0 + ei − ηi) = Ck (4.2.8)

Substituting Ck = Qkθ into (4.2.7) yields

θ̃k+1 = (I − Qk
‖Qk‖+ ε

)θ̃k (4.2.9)

where ε is a small scalar. Thus the parameter estimation error θ̃ is decreasing ∀k ≥ kc,

and limk→∞ θ̃ = 0.

Consequently, an algorithm for the damping coe�cient estimation is summarized as
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4 A novel vibration sensor system with state-dependent nonlinearity

follows.

Algorithm 4.1: Algorithm for Parameter Estimation

1: Give initial guess θ0 and K, set k = 0.

2: Calculate the state predictor (4.2.2).

3: Calculate the auxiliary variables.

ηk+1 := ηk −Kηk, η0 = e0 (4.2.10)

ωk+1 := ωk +G(xk, uk)−Kωk, ω0 = 0 (4.2.11)

Qk+1 := Qk + ωTk ωk,Q0 = 0 (4.2.12)

Ck+1 := Ck + ωTk (ωkθ0 + ek − ηk), C0 = 0 (4.2.13)

4: Update parameter

θ̂k+1 := θ̂k +
1

‖Qk‖+ ε
(Ck −Qkθ̂k) (4.2.14)

5: Set k ← k + 1, and go back to Stage 2.

Remark 4.3 In light of the above analysis, it is clear that the parameter estimation

error will converge to zero exponentially when the persistently exciting condition is sat-

is�ed. The experiment of parameter estimation will be conducted in the ideal laboratory

environment, therefore system state and excitation input can be measured exactly.

4.3 Application on fault detection

The bio-inspired vibration sensor system has provided a simple and e�ective way for the

real-time measurement of absolute motion. In view of this point, a model-based strategy

will be proposed to improve the performance of real-time vibration fault detection.

68



4.3 Application on fault detection

According to the discrete model (4.1.9), the sensor system considering fault input is

modeled as  xk+1 = Axk +Df f(xk) +B uk +Ddk

yk+1 = Cxk+1

(4.3.1)

Here, uk is known excitation input and dk is unknown fault input caused by the changes

or damages to the monitored object structure. These changes or damages may be slowly

time-varying or fast time-varying. The weak fault with fast time-varying characteristic

widely exists in the practical fault diagnosis of mechanical equipment. Especially for

the incipient fault of mechanical equipment, the fault signal is very weak and always

submerged in the strong vibration. Due to the variance of operation condition and

inherent nonlinearity of equipment, this weak fault is nonstationary signal and has fast

time-varying characteristic. In general, the prior knowledge on the fast time-varying

fault cannot be obtained in advance. By taking full advantage of the real-time absolute

motion measurement and model-based detection method, a real-time fault detection can

be simultaneously realized for both weak faults of slowly time-varying and fast time-

varying. Matrices A, B, Df and function f(xk) are de�ned in (4.1.9). Sensor matrix and

fault distribution matrix are

CT =

 1

0

 , D =

 0

Ts

 (4.3.2)

To detect the fault input, inspired by [1], a full order nonlinear observer depicted in

Fig.4.4 is constructed

zk+1 = N zk +Ruk + Lyk +M Df f(x̂k)

x̂k = zk − E yk (4.3.3)

Vector zk ∈ R2, x̂k is the estimation of xk. f(x̂k) is a nonlinear term having the same

structure as f(xk) de�ned in the system (4.1.9). The input to the observer is the known

excitation uk, which can be generated from a shaker or other vibration sources. The

residual signal rk is generated from the di�erence between the measurement of absolute
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Fig. 4.4: Observer based fault detection block diagram

motion yk and its estimation ŷk. Observer matrices N , R, L and M with appropriate

dimensions are the unknown parameters to be determined.

A fault detection observer for system (4.3.1) is required to satisfy the following conditions:

1) the error dynamics x̃k = xk − x̂k asymptotically converge to zero as k →∞ in fault-

free case, i.e., rk → 0; 2) the inconsistencies between the fault-free case and faulty case

can be re�ected on the residual signal rk.

It is noted that the nonlinear function f(xk) belongs to C1, i.e., its �rst-derivative exists

and is continuous. On the other hand, the state variables are bounded (the range of

absolute motion cannot exceed the length of the road and the energy of the input is

bounded). Thus, nonlinear function f(xk) is locally Lipschitz. The following condition

holds

‖f(xl)− f(xu)‖ ≤ τ‖xl − xu‖, ∀xl, xu ∈ Ω (4.3.4)

where ‖ · ‖ is 2-norm operator, Ω is the bounded operating region of state variables

and τ ≥ 0 is the Lipschitz constant. Due to f(xk) ∈ C1, the Lipschitz constant can be
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determined through calculating its derivative

τ ≥ sup
xk∈Ω
{‖∂f(xk)

∂xk
‖} (4.3.5)

Theorem 4.1 For given Lipschitz constant τ , if there exist matrices P > 0, E and X

with appropriate dimensions satisfying the following conditions: MD 6= 0 and
τ 2I−P 0 ATP+ATCTET−CTXT

∗ −I DT
f P +DT

f C
TET

∗ ∗ −P

 < 0 (4.3.6)

then (4.3.3) is a fault detection observer for the sensor system (4.3.1). Moreover, the

observer parameters are given by

E = P−1E, X = P−1X

M = I + EC, R = MB

N = MA−XC, L = X(I+CE)−MAE (4.3.7)

Proof : De�ne the error between the sensor system and observer as

x̃k = xk − x̂k = Mxk − zk (4.3.8)

where M = I + EC. From (4.3.3), the error dynamics is

x̃k+1 = Nkx̃k + (MA− LC −NM)xk + (MB −R)uk

+MDf (f(xk)− f(x̂k)) +MDdk (4.3.9)

If MA− LC −NM = 0, MB − R = 0, MD 6= 0 and system (4.3.10) is asymptotically

stable,

x̃k+1 = Nx̃k +MDf (f(xk)− f(x̂k)) (4.3.10)
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then observer (4.3.3) is a fault detection observer. Rede�ne the matrix variables as

N = MA−XC, L = X(I + CE)−MAE (4.3.11)

where X = L+NE. Choose a Lyapunov functional as

Vk = x̃TkPx̃k (4.3.12)

where P is a symmetric positive matrix. Asymptotic stability of system (4.3.10) re-

quires

∆Vk = Vk+1 − Vk < 0 (4.3.13)

According to system (4.3.10)

∆Vk − (f̃Tk f̃k − τ 2x̃Tk x̃k) =ηTk Πηk (4.3.14)

where f̃k = f(xk)− f(x̂k), ηTk = [x̃Tk f̃
T
k ] and

Π =

 τ 2I +NTPN − P NTPMDf

DT
fM

TPN DT
fM

TPMDf − I

 (4.3.15)

By noting that Π < 0 indicates ∆Vk < (F̃ T
k F̃k − τ 2x̃Tk x̃k). And then, according to

Lipschitz condition (4.3.4), ∆Vk < 0 is obtained. Thus the error dynamics x̃k = xk − x̂k
asymptotically converge to zero as k →∞.

However, due to the couplings of unknown matrices N,P, and M , Π < 0 is a nonlinear

condition. In order to solve this problem, some linearization techniques are adopted to

convert the nonlinear condition to linear case. Applying Schur complement equivalence

to Π < 0 yields 
τ 2I − P 0 NTP

0 −I DT
fM

TP

PN PMDf −P

 < 0 (4.3.16)

72



4.3 Application on fault detection

By substituting N = MA − XC and M = I + EC in (4.3.16), then replacing ETP

and XTP with ET and XT respectively, (4.3.16) is written as the following equivalent

form. 
τ 2I−P 0 ATP+ATCTET−CTXT

∗ −I DT
f P +DT

f C
TET

∗ ∗ −P

<0 (4.3.17)

If condition (4.3.17) has a feasible solution, the observer parameters are recovered as

(4.3.7). This completes the proof. �

Remark 4.4 According to the proof, matrix M is expressed as M = I + EC. From

(4.3.2), it is obtained that MD = D + ECD = D 6= 0. Thus, the condition MD 6= 0 in

Theorem 4.1 is always satis�ed for sensor system (4.3.1).

Conforming to the Theorem 4.1, the fault detection observer design problem can be

solved by checking the feasibility of condition (4.3.6). If feasible, a suitable fault detection

observer is yielded from (4.3.7). Apart from the unknown matrices P,E, andX, Lipschitz

constant τ is another important parameter deciding the existence of feasible solution. In

general, the Lipschitz constant τ cannot be arbitrarily large. Referring to the Theorem

4.1, solution to give the maximum admissible Lipschitz constant satisfying the condition

(4.3.6), which represents the conservativeness of the fault detection observer design, is

stated as follows.

Corollary 4.1 The maximum admissible Lipschitz constant τ such that the condition

(4.3.6) holds can be obtained via the optimal solution of the following convex optimization

problem:

min
P,E,X

λ

subject to (4.3.18), with λ ≡ 1

τ 2
> 0
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4 A novel vibration sensor system with state-dependent nonlinearity


−P 0 ATP+ATCTET−CTXT I

∗ −I DT
f P +DT

f C
TET 0

∗ ∗ −P 0

∗ ∗ ∗ −λI

 < 0 (4.3.18)

The maximum admissible Lipschitz constant is given by τ ∗ =
√

1
λ∗
, where λ∗ is the opti-

mal value of λ, and the corresponding fault detection observer is recovered from (4.3.7).

Based on the designed fault detection observer from Theorem 4.1, the residual signal is

obtained rk = yk − Cx̂k. In order to identify the fault signal exactly from the residual

signal rk, a residual evaluation strategy consisting of the evaluation function, threshold

and fault classi�cation is proposed [114, 115]. Here, choose a sliding time-window norm

as the evaluation function

J(rk) =
1

∆k

√∑kn

k=k0
rTk rk,∆k = kn − k0 + 1 (4.3.19)

The corresponding threshold is designed

Jth = µ sup
∆k=0

J(rk) + β (4.3.20)

Positive scalars µ ≥ 1 and β ≥ 0 are weight coe�cients. The fault detection sensitiv-

ity can be altered by adjusting the weight coe�cients and sliding time-window length.

According to the evaluation function (4.3.19) and threshold (4.3.20), the logic of fault

detection is  J(rk) ≥ Jth =⇒ Fault Occurs =⇒ Alarm

J(rk) < Jth =⇒ Fault Free
(4.3.21)

The di�erence of absolute motion between the fault-free case and faulty case has been

given by the residual signal rk. Thus, when a fault detection alarm is triggered, it is

possible to conduct a fault level evaluation by analyzing the envelope of residual signal

rk. Furthermore, the type of fault can be identi�ed from the fault level. But in this

thesis, only simple fault detection is considered, the identi�cation of fault level and type

will not be included.
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4.4 Experimental results

The fault detection method has been summarized as an algorithm given in Algorithm

4.2.

Algorithm 4.2: Algorithm for Fault Detection

1: Choose a appropriate τ from (4.3.5).

2: Solve the following convex optimization problem to obtain a feasible solution P , E,

and X.

s.t. P > 0, (4.3.6)

for P,E,X,A,C and τ

3: Calculate the fault detection observer parameters as (4.3.7).

4: Implement the fault detection observer and output rk.

5: Design the threshold Jth from (4.3.20) at fault-free case.

6: If the evaluation function J(rk) ≥ Jth is satis�ed, then trigger alarm and even classify

fault level from residual rk.

Remark 4.5 Algorithm 4.2 presents a real-time fault detection strategy which is imple-

mented by applying the bio-inspired vibration sensor and constructing the fault detection

observer. Compared with acceleration signal, sometimes it is more reasonable to use the

absolute motion to describe the degree of structure damage caused by fault [116]. Because

the absolute motion can given more information on the structural deformation, which can

be used to analyze the operating condition and health status of the monitored object.

4.4 Experimental results

In this section, the �rst stage will estimate the damping coe�cient by applying the pa-

rameter estimation method in Algorithm 4.1. Then, based on the obtained comparatively

exact model of the sensor system, the second stage will construct the model-based fault
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4 A novel vibration sensor system with state-dependent nonlinearity

detection as depicted in Algorithm 4.2 and an experiment will be conducted to demon-

strate this fault detection method. The parameter values are given in Table 4.3.

Table 4.3: The bio-inspired sensor parameters

Symbol Description Value
m loading mass (kg) 0.21
L length of rod (m) 0.10
α initial angle (rad) 0.13π

n number of layers 3
kh spring sti�ness (N/m) 390
Ts sampling period (s) 0.001

Vibration signal 

Bio-inspired

 vibration sensor 

Encoder Accelerometer

Fig. 4.5: Bio-inspired sensor prototype and experimental platform

4.4.1 Absolute vibration displacement measurement

In this experiment, the input excitation is generated from a shaker. Here, a sinusoid ex-

citation is selected as input. The shaker requires a short period to generate the standard

sinusoid signal. Thus the input excitation during the initial period is not a standard

sinusoid excitation but a sinusoid-like signal. State variables and input signal are mea-

sured by using laser, encoder and accelerometer. As shown from Fig.4.6 to Fig.4.8, the
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Fig. 4.6: Absolute displacement measurement at 3 Hz single frequency excitation
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Fig. 4.7: Absolute displacement measurement at 5 Hz single frequency excitation
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Fig. 4.8: Absolute displacement measurement at 8 Hz single frequency excitation

77



4 A novel vibration sensor system with state-dependent nonlinearity

measurement results at single frequency excitation are illustrated, which demonstrates

that this bio-inspired vibration sensor can obtain a high accuracy measurement when

the excitation frequency is higher than 5 Hz.

Remark 4.6 Although only single frequency excitation is used in the experiment, it can

be obtained from the measurement results that the measurement accuracy is obviously

improved when the excitation frequency is far away from the resonant frequency of the

sensor system. The conclusion can be straightly extended to the multi-frequency case. If

the main frequency component of multi-frequency excitation signal is far away from the

resonant frequency of the sensor system, an accurate measurement can also be achieved.

0.0 0.5 1.0 1.5 2.0

t(s)

0.5

0.0

0.5

1.0
c0 =1.0

c0 =0.5

c0 =0.1

0.00 0.05 0.10 0.15 0.20
0.5

0.0

0.5

1.0

Fig. 4.9: Parameter estimation result with di�erent initial guess

For the Algorithm 4.1, three di�erent initial guesses for rotational damping coe�cient

are considered: c0 = 1.0, c0 = 0.5 and c0 = 0.1. As depicted in Fig. 4.9, all the

estimation results converge to a constant value at almost 0.052 after t = 0.5 s, which

indicates that Algorithm 4.1 is not sensitive to the initial value. Thus, the estimation

value of rotational damping coe�cient is c = 0.052. State variables and error dynamics

are shown in Fig. 4.10. x1
k and x

2
k are the real measurement. x̂1

k and x̂
2
k are the system

state from the predictor. e1
k and e

2
k are the error dynamics between the real measurement

and predictor. The errors may come from the unmodeled dynamics and disturbances. It

can be observed that the state variables of model are in basic agreement with the real

measurement, which demonstrates the e�ectiveness of Algorithm 4.1.
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Fig. 4.10: System state and error dynamics

4.4.2 Fault detection using absolute vibration displacement

By applying Theorem 4.1 with a Lipschitz constant τ = 80, the parameters of fault

detection observer are obtained

N =

 0 0.0001

−0.0002 0.2859

 , R =

 0

−0.001


M =

 0.0847 0

−681.5633 1

 , L =

 0.1424

−486.7297

 (4.4.1)

E =

 −0.9153

−681.5633


The conservativeness of the fault detection observer design method proposed is evaluated

by calculating the maximum admissible Lipschitz constant. As shown in Table 4.4, τmax
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4 A novel vibration sensor system with state-dependent nonlinearity

obtained by Corollary 4.1 of this thesis is larger than that obtained in Ref. [1]. To further

illustrate the conservativeness on the structure parameters, the maximum admissible

Lipschitz constant with di�erent spring sti�ness kh ∈ [380 400] and loading mass m ∈

[0.18 0.25] is depicted in Fig. 4.11, from which it can be easily seen that Corollary 4.1

can always provide larger τmax than that of Ref. [1] on the whole given parameter space.

Thus, the fault detection observer design method of this thesis is less conservative. And

the design �exibility can bene�t from the low conservative method.

Table 4.4: Comparison of the maximum admissible Lipschitz constant

Method The maximum value of τ
Method in Ref. [1] 301.2329

Corollary 4.1 in this thesis 703.5384
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Fig. 4.11: Maximum admissible Lipschitz constant with di�erent m and kh, a: Corollary
4.1 in this thesis, b: Method in Ref. [1].

This fault detection experiment is conducted on the vibration platform as shown in

Fig. 4.5. Excitation input is a sinusoid signal with 8Hz generated from shaker. The

absolute vibration motion is measured through the optical encoder. The relationship of

vibration motion and rotation angle measured by encoder has been presented in (4.1.7).

The input signal is measured by the accelerometer. Fig. 4.12 shows the measurement of

absolute vibration motion under the fault free case and faulty case. For faulty case, fault

signal occurs at t ∈ [6.65 6.75] s.

From the sensor parameters in Table 4.3, the natural frequency can be approximated as
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Fig. 4.12: Absolute vibration motion yk

f0 ≈ 0.98 Hz by (4.1.6). According to the motion transmissibility property of the bio-

inspired vibration sensor, when the frequency of base excitation is larger than
√

2 times

the natural frequency, the sensor has a high-accuracy measurement of absolute motion

by using yr instead of ya. Thus, the absolute motion can be given through measuring yk.

Next, we will make use of the measured absolute motion and fault detection observer

(4.4.1) to construct a fault detection system.
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Fig. 4.13: Residual response and fault detection result
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Fig. 4.14: n levels multi-resolution wavelet decomposition
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Fig. 4.15: Parts of wavelet decomposition results (blue solid line is fault-free case, red
dotted line is faulty case).

As depicted in Fig. 4.4, the residual signal rk is generated by the di�erence between

absolute motion yk and its estimation ŷk. Based on the fault detection observer (4.4.1),

the estimation of yk is expressed as ŷk = Cx̂k. The responses of residual signal rk and

evaluation function J(rk) are shown in Fig. 4.13. The threshold of fault detection sys-

tem here is set as Jth = 1.032× 10−4. The characteristic frequency of the fault signal is

covered by the excitation input and its harmonics. Due to the fast time-varying charac-

teristic, the spectrum power of faulty case in some high frequency is stronger than that

of fault-free case. It is di�cult to locate the fast time-varying fault by using the simple

spectrum analysis. The detection of the fast time-varying fault can be realized by adopt-

ing some advanced and complicated methods, such as the short time Fourier transform

(STFT) [47] and the wavelet-based method [48]. The prior knowledge on the fast time-

varying fault is generally unavailable. In order to obtain a high spectral resolution, the

STFT method needs a long acquisition time, which will increase the computational com-

plexity and degrade the real-time performance. Wavelet-based method requires a precise

adjustment of the bands of decomposition to locate the fault signal. Thus, real-time and
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4.4 Experimental results

accuracy performance of fault detection is di�cult to be simultaneously guaranteed by

using the frequency-based or wavelet-based fault detection methods, especially for the

weak fault with fast time-varying.

To further demonstrate the advantage of the proposed fault detection approach, multi-

resolution wavelet-based method in Ref. [48] is applied to analyse the measured signal

yk. The entire decomposition procedure of multi-resolution wavelet with n levels is

illustrated in Fig. 4.14. For the convenience of conducting wavelet decomposition, only

213 = 8192 points during t ∈ [0, 8.192) s are selected. Here the decomposition level

is n = 13. Parts of wavelet decomposition results (d8, and d9) are shown in Fig. 4.15.

Obviously, the fault can be located by detecting the singular value of the decomposition

components. It is worth pointing out that wavelet-based fault detection is not a real-

time method, which requires the acquisition of entire o�-line data. Additionally, in

order to identify the singular value induced by fault signal, it is necessary to do the

decomposition until the last level. Thus, as the data volume increases, the wavelet-

based fault detection method will be limited to the computational complexity. Fig. 4.16

shows computational time for di�erent wavelet decomposition level on a computer with

Intel Core2 processors @2.20 GHz @2.20 GHz and 3.0 GB DDR2 memory. However,

Table 4.5: Fault detection results

Method Result Computational Time Real-time
Wavelet (d8) t ∈ [6.65 6.92] s 0.0165 s O�-line
Wavelet (d9) t ∈ [6.66 7.17] s 0.0178 s O�-line
Algorithm 4.2 t ∈ [6.63 6.74] s < 0.001 s On-line

using the proposed fault detection strategy in Algorithm 4.2, on-line fault detection

becomes possible. Fault detection performance is depicted in Fig. 4.13, where alarm

is triggered and removed at t = 6.634 s and t = 6.737 s, respectively. The real fault

signal occurs at t ∈ [6.65 6.75] s. Table 4.5 shows the comparison of fault detection

results between multi-resolution wavelet-based method and Algorithm 4.2. In level 8

decomposition, the singular value appears at t ∈ [6.65 6.92] s. In level 9, the singular

value arises at t ∈ [6.66 7.17] s. These results illustrates that the occurrence time

of fault identi�ed by Algorithm 4.2 is more exact than multi-resolution wavelet-based
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4 A novel vibration sensor system with state-dependent nonlinearity

method. For multi-resolution wavelet-based method, downsampling in decomposition

is a key factor a�ecting the fault detection exactness. Moreover, compared with the
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Fig. 4.16: Computational time for di�erent decomposition level

wavelet-based method, the computational complexity of the fault detection approach in

Algorithm 4.2 always remains constant (less than 0.001 s in one step) due to the real-time

performance. Many detections and monitoring applications (e.g., building, bridge, and

railway) can bene�t from this real-time fault detection strategy by using the bio-inspired

vibration sensor.

4.5 Concluding remarks

In the chapter, a novel bio-inspired vibration sensor for the real-time absolute motion

measurement has been discussed, and its application for more reliable fault detection

has been presented. Compared with some existing methods, the superiority of this

bio-inspired sensor method lies in the following points: (1) This bio-inspired sensor has

advantages of real-time performance, low cost and �exibility in comparison to traditional

methods of absolute motion measurement using accelerometer and laser. For instance,

the problems of error accumulation and real-time performance induced by traditional

measurement method using integration of accelerometer data can be e�ectively elim-

inated. (2) By taking full advantage of the bio-inspired vibration sensor in real-time

measurement of absolute vibration motion, a model-based fault detection algorithm has

been proposed to cope with the on-line fault detection problem. Importantly, the fault
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4.5 Concluding remarks

detection method of this chapter is less conservative and more reliable. (3) The detec-

tion results obtained from the on-line fault detection method of this chapter are more

exact and more sensitive than other methods such as the multi-resolution wavelet-based

method. (4) The on-line fault detection method is very simple to implement and the com-

putational complexity of the fault detection approach in Algorithm 4.2 always remains

very small.
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5 Robust navigation control of a

tracked mobile robot with uncertain

disturbance

A tracked mobile robot adopting the bio-inspired structure as passive suspension system

will be introduced in this chapter. Equipped with the novel bio-inspired suspension, the

loading capacity, riding comfort and obstacle negotiation capability can be signi�cantly

enhanced and the tracked robot can be applied to various rough ground environments.

In addition, autonomous navigation using laser radar sensor will be developed. A NMPC

based architecture will be adopted for optimizations of trajectory tracking.

Compared to the local disturbance, the global trajectory tracking has slower process

dynamic. Performing the optimization of global trajectory tracking at each lifting period

is not necessary. A natural way is to separate the optimizations of global- and local-

trajectory tracking on di�erent time scales. An alternative method to overcome the

above trade-o� between the computational complexity and local dynamic optimization

performance is to adopt multi-layer NMPC scheme. Although the multi-layer NMPC

architecture has been successfully applied in various industry areas [117�119]. There is

a paucity of literature on the multi-layer NMPC architecture for the trajectory tracking

control of mobile robot with high dynamics. In this way, the upper layer NMPC is

performed at a low frequency to optimize the global trajectory tracking performance, and

the lower layer NMPC is conducted at a high frequency to capture the local dynamics.

The chapter is organized as follows. Section 5.1 starts with model description and analy-
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5.1 Model description and analysis of the bio-inspired suspension

sis of the bio-inspired structure and the novel passive bio-inspired suspension. In Section

5.2, the model predictive control methods are applied to optimize the trajectory track-

ing for autonomous navigation. Some experimental results are presented in Section 5.3

to demonstrate the e�ectiveness and applicability of the autonomous navigation per-

formance of the tracked mobile robot with the novel passive bio-inspired suspension.

Finally, Section 5.4 concludes the chapter.

5.1 Model description and analysis of the bio-inspired

suspension

5.1.1 Design concept

It has been proven that this bio-inspired structure can provide an excellent quasi-zero-

sti�ness characteristic with high static sti�ness, low dynamic sti�ness and broad fre-

quency range of vibration isolation [53, 56, 73], which means that both high loading ca-

pacity and excellent vibration isolation performance can be simultaneously guaranteed.

Compared with the conventional mass-spring-damper (MSD) system, this bio-inspired

structure with the above advantages provides a feasible solution to overcome the inherent

trade-o� between the loading capacity and vibration isolation performance. Importantly,

this bio-inspired structure is easy to implement and does not require high precision at

manufacturing.

Remark 5.1 This bio-inspired structure is mainly developed for the isolation of vertical

motion. In practical structure, a support rod will be placed along the vertical centerline

to limit the motion and guarantee that the structure works in the e�ective range. Thus

the deformation on the bio-inspired structure is assumed to be symmetrical. Compared

to the asymmetric structure, the symmetric structure is easier to implement and is more

stable. More detailed analysis on asymmetric structure can refer to [56], [120].
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5 Robust navigation control of a tracked mobile robot with uncertain disturbance

5.1.2 Structural analysis

As shown in Fig.5.1, when the structure is compressed into the quasi-zero-sti�ness range,

vertical motion almost does not transmit force to the top platform. Heavier loading is

helpful to compress the structure into the quasi-zero-sti�ness range. But the linear

sti�ness still has the same force transmission during the whole motion range. It is

worth pointing out that the quasi-zero-sti�ness are generated from the special geometric

relationship of this bio-inspired structure rather than the nonlinear spring. It means

that using the linear components can realize the nonlinear quasi-zero-sti�ness vibration

isolator, which is one of the obvious advantages of this bio-inspired structure.
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Fig. 5.1: Comparisons of quasi-zero-sti�ness and linear sti�ness

Through Taylor series expansion of nonlinear sti�ness term at zero equilibrium, the

natural frequency of the bio-inspired structure is approximated as

f0 =
tanα
2πn

√
kh
m

(5.1.1)

As can be seen from (5.1.1), the natural frequency is determined by the spring sti�ness,

loading mass, assembly angle and layer number. Apart from adjusting the spring sti�ness

and loading mass, increasing the layer number and decreasing the assemble angle can

e�ectively lower the natural frequency. This reveals the �exibility on the parameter

design. In addition, higher loading will bring smaller assembly angle and thus lower

dynamic sti�ness can be obtained, upon which the bio-inspired structure become much
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5.1 Model description and analysis of the bio-inspired suspension

softer and meanwhile maintain high loading capacity.

5.1.3 Simulation and experimental veri�cation

To further demonstrate the advantage of the bio-inspired structure, comparison of vibra-

tion isolation performance between the linear MSD system and the bio-inspired struc-

ture is conducted. As shown in Fig.5.2 (a), the Seekur mobile robot from Omron Adept

Technologies, Inc. equips with the passive MSD suspension to provide the capability of

traversing very rugged terrain [121]. For the bio-inspired structure with the parameters

m = 0.5 kg, n = 3, L = 0.05 m, kh = 5000 N/m, α = 50◦, the natural frequency

obtained from (5.1.1) is about 6.3 Hz. The natural frequency of the linear MSD system

with the same loading mass 0.5 kg and spring sti�ness 5000 N/m is about 15.6 Hz. The

simulation results including the acceleration response under the random excitation and

the displacement transmissibility are depicted in Fig.5.3. It can be seen from Fig.5.3

that the bio-inspired structure can achieve better vibration isolation performance and

much lower natural frequency than the linear MSD system with the same conditions of

loading mass and sti�ness.

Wheel

Spring

S1 (Base)

(a) (c)

Mass
S2 (Top)MSD suspension

Seekur 

Robot

(b)

Fig. 5.2: (1) Passive MSD suspension. (b) Bio-inspired suspension. (c) Experiment
prototype.

The novel passive suspension system using the 3 layer bio-inspired structure is shown in

Fig.5.2 (b). The bio-inspired structure is placed between the support wheel and robot

body to absorb the vibration disturbance from the rough ground or obstacle crossing

and provide a stable upper platform. The experiment prototype is shown in Fig.5.2
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Fig. 5.3: Simulation results: acceleration response and transmissibility
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Fig. 5.4: Vibration experiment results of the suspension prototype

(c). Two accelerometers are respectively placed on the base and the top to measure

the excitation and response. A random excitation generated by the shaker is applied to

the base. The results of vibration experiment are depicted in Fig.5.4. The experimental

value of transmissibility is obtained by the ratios of the two accelerations in the frequency

domain. The theoretical value of transmissibility is in basic agreement with experimental

value. It indicates that using the above model to analyze the dynamics of the bio-

inspired structure is reasonable. The experimental results of Fig.5.4 demonstrate that

the vibration amplitude on the top platform of the passive bio-inspired suspension can

be signi�cantly reduced.

The single passive bio-inspired suspension can be view as a soft "leg", which can be
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5.2 Robust navigation using model predictive control method

applied to both tracked mobile robots and wheeled mobile robots. The tracked mo-

bile robot has better obstacle negotiating ability and also su�ers stronger vibration and

shock when crossing the obstacle. The purpose of this chapter is to construct the bio-

inspired suspension for the tracked mobile robot to obtain a more stable robot platform.

Through combining multiple passive bio-inspired suspension systems together, the load-

ing capacity and continuous-obstacle crossing ability of the tracked mobile robot can

be signi�cantly improved. Thus, a tracked mobile robot equipped with multiple bio-

inspired suspensions similar to multi-legged animal or insect will be introduced in the

next section.

5.2 Robust navigation using model predictive control

method

5.2.1 Hardware

The overall con�guration of the tracked mobile robot equipped with two-layer bio-

inspired passive suspension is shown in Fig.5.5. Each side uses �ve individual bio-inspired

structures as the passive suspension. The loading of the robot is uniformly distributed

to each bio-inspired structure. Bene�ting from the excellent isolation performance of

the bio-inspired structure, the novel passive suspension system can e�ciently absorb the

strong shock and hence guarantee the steady and smoothness when the robot moves on

rough ground or negotiates obstacles.

This tracked mobile robot with equivalent load 10 kg is driven by two DC motors con-

necting to optical encoders, similar to the di�erential wheeled robot. The measurement

and control of the motor speed are implemented by motor driver. The transmission

between the motor driver and control board is through the RS232 serial communication.

A low speed two dimension laser radar (RPLIDAR A2) is used to generate an outline

map of surrounding environment. The parameters of the RPLIDR A2 are as follows:

detection range (360 degree omnidirectional laser range and 18 meters range radius),
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5 Robust navigation control of a tracked mobile robot with uncertain disturbance

resolution (1 degree angular resolution and 0.2 centimeter distance resolution), and fre-

quency (10 Hz). An inertial measurement unit (IMU) is also used for the measurement of

acceleration and angular velocity. The control board is the RASPBERRY PI 3 MODEL

B with quad core 1.2GHz 64bit CPU and 1GB RAM.

Laser Radar

Motor

 Passive Bio-inspired Suspension

Battery

Motor Driver Control Board

IMU

Fig. 5.5: Overall con�guration of the tracked mobile robot
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Fig. 5.6: Robot pose de�nition: the motion is decomposed into translation vk and rota-
tion wk.

5.2.2 Kinematic model omitting slippage

For the dynamic equation of the tracked mobile robot, we need to know the exact friction

force between the crawler and ground in advance. However, the friction force is closely
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Fig. 5.7: Visualization map constructed by using the laser radar data
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Fig. 5.8: Single layer NMPC

related to the ground environment and hence it is di�cult to directly obtain the accurate

measurement. Particularly for obstacle crossing, the friction force is highly uncertain and

dependent on the process of obstacle crossing. Thus, the control methods combining the

dynamic and kinematics equations cannot be applied to the autonomous navigation of

this tracked mobile robot [122]. On the other side, the navigation method only using

kinematics equation is simple, easy to implement.

According to the robot pose de�nition in Fig.5.6, the kinematics equation of the tracked

mobile robot without considering the slippage is described as

xk+1 = xk + f(xk,uk) (5.2.1)
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f(xk,uk) = Tu


cos θk 0

sin θk 0

0 1

uk

where xk = (xk, yk, θk) is the robot pose at time instance k, Tu is the control interval de-

termined by the processing latency of mapping and trajectory generating, uk = (vk, wk)

is the control input including the linear velocity vk and angular velocity wk, which are

determined by the velocities of left- and right-crawlers

vk =
vr,k + vl,k

2
, ωk =

vr,k − vl,k
2d

(5.2.2)

The NMPC will be applied to the autonomous navigation of this tracked mobile robot.

For given starting and target positions, the globally optimal reference trajectory is gen-

erated by using the Dijkstra algorithm [123]. The reference trajectory and control is ad-

justed dynamically by integrating the laser radar and timed elastic band approach [124],

thus this tracked mobile robot has the ability of avoiding the dynamic moving obstacle

that it cannot pass over. The RVIZ visualization map constructed by using the laser

radar data is shown in Fig.5.7. The black and white map with the resolution 0.05 me-

ters/pixel is generated by scanning the whole environment in advance. The red point

cloud is the scanning result of laser radar. The starting and target position can be set

through this visualization map and the moving trajectory can also be observed from the

visualization map.

94



5.2 Robust navigation using model predictive control method

5.2.3 Single-layer control

The structure of the single layer NMPC is shown in Fig.5.8. An odometry is implemented

by using the optical encoders (connecting to the actuators) for the estimation of robot

pose in GPS denied environment. By resorting to the extended Kalman �lter [125], the

sensor fusion of odometry and IMU can provide more accurate estimation of the robot

pose. rt is the target position. xd,k is the reference trajectory, ud,k is the desired input.

uk is the real input. With the di�erential controller, the control input uk is decomposed

into the velocities of left- and right-crawlers. To achieve the desired velocities, two PID

controllers are adopted for the speed control of motors.

vr,k = vk + dωk, vl,k = vk − dωk (5.2.3)

Next, a nonlinear model predictive controller will be designed to optimize the naviga-

tion performance of this tracked robot over a given time-horizon. The cost function of

predicted state and input sequence xk|t, uk|t to be minimized at time instant t is de�ned

as

Ju(xk|t,uk|t) =
N−1∑
k=0

(
||xk|t − xd,k||2Q1

+ ||uk|t − ud,k||2Q2

)
+||xN |t − xd,N ||2Q3

(5.2.4)

where xd,k and ud,k are respectively the reference trajectory vector and desired control,

N is the horizon, operator || · ||2Q is de�ned as ||xk||2Q = xTkQxk (Q is a symmetric semi-

positive de�nite matrix). Q1, Q2, and Q3 refer to the corresponding weighting matrices

of the system state, control input, and terminal state. In this paper, the prediction

process is performed at the same frequency of controller and the control horizon equals

the prediction horizon. The control input constraints U are given by

U =

u ∈ R2|

 vmin

ωmin

 ≤ u ≤

 vmax

ωmax

 (5.2.5)
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5 Robust navigation control of a tracked mobile robot with uncertain disturbance

where vmin and vmax are linear velocity limits, ωmin and ωmax are angular velocity limits.

The nonlinear model predictive control scheme will repeatedly solve the following optimal

control problem:

min
x,u

Ju(xk|t,uk|t) (5.2.6)

s.t. xk+1|t = f(xk|t,uk|t), uk|t ∈ U, x0|t = x(t)

The optimal control problem above can be solved by resorting to the Gauss-Newton

method [126], [127], which is an e�cient numerical method for NMPC. In this paper, the

NMPC is used for the trajectory tracking control with reference trajectory and desired

control input, thus the residual norm is small. The contraction rate of the Gauss-Newton

method is fast when the residual norm is small. Only the �rst optimal control u∗0|t will be

applied to the tracked mobile robot. This process will be repeated in the next time step

in a receding horizon fashion. The single layer NMPC is summarized in Algorithm 5.1.

Algorithm 5.1: Single Layer NMPC
initialize NMPC ;
input data: xd,k,ud,k and x̂k ;
output result: optimal control u∗0|t ;
kmax is the number of control ;
for t := 1 to kmax do Trajectory optimization

solve the optimal control problem:

min
x,u

Ju(xk|t,uk|t)

s.t. xk+1|t = f(xk|t,uk|t), uk|t ∈ U, x0|t = x̂t

exert the optimal control u∗0|t to the robot;
end

5.2.4 Kinematic model considering slippage

The kinematic model (5.2.1) is only valid for the case without slippage between the

crawler and ground. To re�ect the e�ects of the slippage, the following kinematic model
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5.2 Robust navigation using model predictive control method

with consideration of slipping ratio is adopted,

xk+1 = xk + Tl


vr,k(1−ar,k)+vl,k(1−al,k)

2
cos θk

vr,k(1−ar,k)+vl,k(1−al,k)

2
sin θk

vr,k(1−ar,k)−vl,k(1−al,k)

2d

 (5.2.7)

ar,k =
vr,k − v

′

r,k

vr,k
, al,k =

vl,k − v
′

l,k

vl,k

where Tl is the control interval of lower layer NMPC, vr,k and vl,k are the theoretical

velocities of left- and right-crawlers, v
′

r,k and v
′

l,k are the real velocities of left- and right-

crawlers, ar,k and al,k are the slippage ratios. The slippage ratios are assumed to satisfy

the following relationship [68]

ar,k = −sgn(vr,k · vl,k) al,k (5.2.8)

where sgn(·) is the sign function. Detailed explanation for this relationship is presented

as follows. When the left- and right-crawlers run in the same rotation direction, the

slow side will be pulled by the fast side. Traction and braking forces are correspondingly

generated on the fast and slow sides, which leads to the positive slippage of fast side

and negative slippage of slow side. When the left- and right-crawlers run in the opposite

rotation direction, both the slow and fast sides generate the traction forces to drive the

rotation of tracked robot. Hence, both sides appear the positive slippage. Through

measuring the angular velocity ω̂k of the tracked robot's body, the slippage ratios can

be calculated

ar,k =
vr,k − vl,k − 2d ω̂k

vr,k + vl,k sgn(vr,k · vl,k)
(5.2.9)

al,k =
−vr,k + vl,k + 2d ω̂k

vl,k + vr,k sgn(vr,k · vl,k)
(5.2.10)

The kinematic model (5.2.7) is reformulated as the following form with considering slip-

page disturbance

xk+1 = xk + f(xk,uk) + g(xk) (5.2.11)
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f(xk,uk) = Tl


cos θk 0

sin θk 0

0 1

uk

g(xk) = Tl


−vr,k ar,k−vl,k al,k

2
cos θk

−vr,k ar,k−vl,k al,k
2

sin θk

−vr,k ar,k+vl,k al,k
2d


where g(xk) is the disturbance from slippage. The disturbance g(xk) can be measured by

sampling the IMU sensor and optical encoder data. If no slippage occurs or the slippage

is very small, the absolute velocity approximately equals to the theoretical velocity (i.e.,

ar,k = al,k = 0). Then kinematic model (5.2.11) will reduce to model (5.2.1).

Remark 5.2 It is worth pointing out that the single layer NMPC in Algorithm 5.1 is

performed at a relatively low frequency to wait for the renewal of reference input due

to the speed limit of laser radar and processing latency of mapping. With such a low

control frequency, it is almost impossible to measure the slippage disturbance and employ

a dynamic compensation for improvement of the navigation performance. As shown

in Fig.5.10, slippage ratios measured at 5 Hz sampling frequency obviously loses much

information compared to the results at 50 Hz sampling frequency.

A conventional way of increasing the control frequency is to adopt the lifting method

shown in Fig.5.11, which is also referred to as the multirate sampling method [81]. Tu is

the input sampling period for renewal of reference trajectory and desired control, Tl is

the output sampling period for measurements of robot pose and slippage ratios. Assume

that Tu = l Tl holds, l is a integer number. The reference trajectory xd,k and desired

control ud,k still update at the input sampling period Tu and remain invariant during

the lifting period Tl. Through the lifting method, the control interval can be reduced to

Tl.

Assume that the receding horizon length of original single layer NMPC is N + 1 and the

lifting frequency is l times of the original frequency. Then the length of receding horizon

will become l(N + 1) after using the lifting method. The computational complexity of
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Fig. 5.10: Slippage ratios under di�erent sampling frequency
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Fig. 5.11: Lifting method for increasing control frequency

the lifting method is determined by the lifting times l and horizon length N + 1. For the

case with long horizon N + 1 and high lifting ratio l, the computational complexity of

single layer NMPC introduced by the frequency lifting will increase to a very high and

unacceptable level, which will a�ect the real-time performance for some platforms with

limited computational resources.

5.2.5 Double-layer control

Actually, it is not necessary to perform the optimization of global trajectory tracking

at each lifting period since the global trajectory tracking has slow process dynamic
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5 Robust navigation control of a tracked mobile robot with uncertain disturbance

compared to the local disturbance.

An alternative method to overcome the above trade-o� between the computational com-

plexity and local dynamic optimization performance is multi-layer model predictive con-

trol scheme. As shown in Fig. 5.12, a double layer NMPC architecture with slippage

compensation is presented for the optimization of navigation performance. According to

the di�erent optimization objective, the optimization process is divided into two di�erent

time scales: the upper layer is performed at a low frequency ( 1
Tu
) to optimize the global

trajectory tracking performance, and the lower layer is conducted at a high frequency

( 1
Tl
) to capture the local slippage.
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Fig. 5.12: Double layer NMPC with slippage compensation

As previous discussion about the double layer NMPC architecture, the global trajectory

optimization based on the slow-scale model (5.2.1) is solved at the upper layer, and the

slippage compensation based on the highly-dynamic model (5.2.11) is conducted at the

lower layer to improve the local trajectory tracking performance. The upper layer NMPC

cost function still utilize the cost function (5.2.4). Similar to the upper layer NMPC, the

lower layer NMPC cost function is de�ned as

Jl(xi|t,ui|t) =

Nl−1∑
i=0

(
||xi|t − xo,k||2P1

+ ||ui|t − uo,k||2P2

)
+||xNl|t − xo,Nl||2P3

(5.2.12)

where xo,k is the local trajectory to be tracked by the lower layer NMPC, uo,k is the
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5.2 Robust navigation using model predictive control method

�rst control generated from the upper layer NMPC, and Nl is the horizon of the lower

layer NMPC. Matrices P1, P2, and P3 refer respectively to the weighting matrices of the

system state, control input, and terminal state of lower layer NMPC. The lower layer

NMPC scheme based on the highly-dynamic model (5.2.11) will repeatedly solve the

following optimal control problem:

min
x,u

Jl(xi|t,ui|t) (5.2.13)

s.t. xi+1|t = f(xi|t,ui|t) + g(xi|t), ui|t ∈ U, x0|t = x(t)

The double layer NMPC control scheme is summarized in Algorithm 5.2. A numerical

case is simulated to evaluate the computational complexity. For the single layer NMPC

with control frequency 5 Hz and horizon length 20, the horizon length will become 120

after lifting the control frequency to 30 Hz. The parameters of double layer NMPC are

selected as: upper layer NMPC (control frequency 5 Hz, horizon length 20) and lower

layer NMPC (control frequency 30 Hz, horizon length 20). The comparison of processing

latency between the lifting-method-based single layer NMPC and double layer NMPC

is illustrated in Fig.5.13. The processing latency mean values of lifting-method-based

single layer NMPC and double layer NMPC are correspondingly 78.2921 ms and 6.1986

ms, which indicates that computation delay can be signi�cantly reduced by using the

double layer NMPC architecture. As for the trajectory tracking performance, some real

experiments will be conducted to demonstrate it.

Remark 5.3 The trajectory tracking based on the double layer NMPC architecture can

be extended to other types of robots. The dynamic compensation of lower layer NMPC

can be designed according to the speci�c characteristics of robots. For the robots with

very high dynamic, the lower layer NMPC can be implemented on an embedded platform

for the improvement of the real-time performance and the upper layer NMPC can be

implemented on a computer with powerful computation resource for planning of complex

tasks.
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Fig. 5.13: Processing latency of lifting method and double layer NMPC

5.2.6 Feasibility, stability, and robustness analysis

The trajectory tracking error is denoted by ek = xk−xd,k. The closed-loop error system

is represented as a time-varying system

e(k + 1) = f(ek + xd,k,uk)− xd,k+1 (5.2.14)

= f̄(ek,uk)

Achieving asymptotic stability of error dynamic system (5.2.14) can guarantee the ref-

erence tracking. Assume that there exists at least a feasible solution for the optimal

problem (5.2.4), the optimal value function is de�ned as

V (t) = min Ju(xk|t,uk|t) (5.2.15)

Obviously, V (t) is bounded if there exists a feasible solution and V (t) is continuous in

the system state. V (t) = 0 holds for ek|t = xk|t − xd,k = 0, uk|t = ud,k = 0 and V (t) > 0

for arbitrary ek|t 6= 0. Denote the optimal control sequence as

u∗·|t =
[
u∗0|t, u

∗
1|t, . . . , u

∗
N−1|t

]
(5.2.16)
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5.2 Robust navigation using model predictive control method

Algorithm 5.2: Double Layer NMPC
initialize upper layer NMPC ;
input data: xd,k,ud,k and x̂k ;
output result: xo,k and uo,k ;
kmax is the number of upper layer control ;
imax is the number of lower layer control during Tu;
for tu := 1 to kmax do Global trajectory optimization

solve the upper-layer optimal control problem:

min
x,u

Ju(xk|tu ,uk|tu)

s.t. xk+1|tu = f(xk|tu ,uk|tu),uk|tu ∈ U, x0|tu = x̂tu

update tracking trajectory xo,tu and control uo,tu ;
initialize lower layer NMPC ;
input data: xo,tu , uo,tu and x̂i;
output result: optimal control u∗0|tl ;
for tl := 1 to imax do Local trajectory optimization

estimate the slippage disturbance g(xtl);
solve the lower-layer optimal control problem:

min
x,u

Jl(xi|tl ,ui|tl)

s.t. xi+1|tl = f(xi|tl ,ui|tl) + g(xi|tl),ui|tl ∈ U,x0|tl = x̂tl

exert the optimal control u∗0|tl to the robot;
end

reset tl = 1, prepare the next optimization loop;
end

which satis�es the constraints in (5.2.5), and the corresponding optimal error state se-

quence is represented as

e∗·|t =
[
e∗0|t, e

∗
1|t, . . . , e

∗
N |t
]
, e∗k|t = x∗k|t−xd,k (5.2.17)

The optimal input sequence has minimized the cost function Ju(xk|t,uk|t) such that

V (t)=
N−1∑
k=0

(
||e∗k|t||2Q1

+||∆u∗k|t||2Q2

)
+||e∗N |t||2Q3

(5.2.18)

where ∆u∗k|t = u∗k|t−ud,k. For a su�ciently large prediction horizon N , the following

relationships ek|t+1 = e∗k+1|t, ∆uk|t+1 = ∆u∗k+1|t, k ∈ [1, N ] would hold according to that
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5 Robust navigation control of a tracked mobile robot with uncertain disturbance

the optimal solution ∗k+1|t is also a feasible solution [79]. For convenient analysis, the

weighting matrix Q3 is chosen equal to Q1. Consequently, it is obtained that

Ju(xk|t+1,uk|t+1)

=
N−1∑
k=0

(
||ek|t+1||2Q1

+||∆uk|t+1||2Q2

)
+ ||eN |t+1||2Q3

= V (t)− ||e∗0|t||2Q1
− ||∆u∗0|t||2Q2

(5.2.19)

Then, it follows from (5.2.15) and (5.2.19) that

V (t+ 1) ≤ Ju(xk|t+1,uk|t+1) ≤ V (t)− ||e∗0|t||2Q1
(5.2.20)

Recursive feasibility requires that the optimal problem has a feasible solution at time

instant t = 0. Since the reference tracking control in this paper is based on the open-

loop trajectory planning, a feasible solution at time instant t = 0 always exists in a

neighborhood of reference trajectory and desired control. Thus, the recursive feasibility

can be guaranteed. From (5.2.20), it can be derived that

V (t+ 1)− V (t) ≤ −λmin(Q1)||e∗0|t||2 (5.2.21)

λmin(Q1) is the minimum eigenvalue. Inequality (5.2.21) demonstrates that the optimal

value function V (t) will converge along the reference trajectory. Thus, the stability of

error dynamic system can be guaranteed.

The stability analysis of the lower layer control is similar to above analysis of the up-

per layer control when the slippage disturbance is ignored, and which is not repeated

here. Additionally, the lower layer control with slippage compensation can be exploited

to improve the prediction accuracy, which can e�ectively enhance the robustness and

controller performances.
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5.3 Experimental results

In this section, the vibration isolation and autonomous navigation performance of this

tracked mobile robot will be tested in indoor environment. The schematic diagram of

navigation is shown in Fig.5.14. The robot will cross the small obstacle placed on the

ground and simultaneously avoid the obstacle from the starting point to the target point.

For the convenient of experimental testing, the model predictive controllers mentioned in

the previous section are implemented on a laptop with an Intel 1.6 Ghz Core i5 processor

and 8GB RAM. The communication between the laptop and control board including the

sensor data acquisition and control command transmission is through wireless network.

x

yw

obstacle

starting point

target point

obstacle
yr

xr

wr

Fig. 5.14: Schematic diagram of navigation task

5.3.1 Assessment of obstacle negotiation performance

The snapshot sequence of negotiating obstacle with height 40 mm is shown in Fig.5.15,

where Fig.5.15 (a-i) and (j-o) correspondingly illustrate the motions of climbing up and

down the obstacle. The isolation performance is evaluated by measuring the vertical

acceleration. The vertical acceleration response of the robot body is shown in Fig.5.16.

It can be clearly observed that the tracked mobile robot with the bio-inspired suspension

has much smaller shock amplitude compared with the case without enabling the bio-

inspired suspension. This result demonstrates that the novel passive suspension can

e�ciently absorb the strong shock induced by the process of obstacle crossing and hence

guarantee the smooth motion of the robot.
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Fig. 5.15: Snapshot sequence of negotiating obstacle
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Fig. 5.17: State response: reference (solid line) and measurement (dash line) using single
layer NMPC
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Fig. 5.18: State response: reference (solid line) and measurement (dash line) using dou-
ble layer NMPC
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Fig. 5.19: Trajectory tracking error: single layer NMPC (solid line) and double layer
NMPC (dash line).
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Fig. 5.21: Trajectory tracking results using double layer NMPC: reference (solid line)
and measurement (dash line).

5.3.2 Trajectory tracking results using di�erent algorithms

For the single layer NMPC, the reference trajectory and control signal are generated at

approximate 5 Hz and the horizon length is 10. The parameters of double layer NMPC

are selected as: upper layer NMPC (control frequency 5 Hz, horizon length 10) and lower

layer NMPC (control frequency 30 Hz, horizon length 15). The navigation performance

is adjusted through the weighting matrices. The linear and angular velocities are cor-

respondingly limited to −0.4m/s ≤ v ≤ 0.5m/s and −1.3 rad/s ≤ ω ≤ 1.3 rad/s. The

state responses under the single layer and double layer NMPC are shown in Fig.5.17 and

Fig.5.18 correspondingly. The robot can follow the reference trajectory and �nally reach

the target position. The resulting trajectory tracking error is depicted in Fig.5.19. The

detailed peak-to-peak (PtoP) and root-mean-square (RMS) values of trajectory track-

ing error de�ned in (5.3.1) and (5.3.2) are listed in Table 5.1, which also demonstrates

that the double layer NMPC strategy holds a signi�cant PtoP error reduction (around

38%-51%) and also RMS error reduction (around 51%-62%). These results verify that

the double layer NMPC can e�ectively improve the trajectory tracking accuracy.

PtoP{xerr} = max{xerr} −min{xerr} (5.3.1)

RMS{xerr} =

√
1

Ne

∑Ne

i=1
‖xerr(ti)‖2 (5.3.2)
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Fig. 5.22: State response of double layer NMPC: reference (solid line) and measurement
(dash line).
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Table 5.1: PtoP and RMS values of trajectory tracking error

Single layer NMPC Double layer NMPC
PtoP{xerr} (m) 0.1845 0.1144 (↓ 37.99%)
PtoP{yerr} (m) 0.1512 0.0730 (↓ 51.72%)
PtoP{θerr} (rad) 0.5843 0.3578 (↓ 38.76%)
RMS{xerr} (m) 0.0919 0.0346 (↓ 62.35%)
RMS{yerr} (m) 0.0463 0.0190 (↓ 58.96%)
RMS{θerr} (rad) 0.0906 0.0436 (↓ 51.88%)

The controller output is shown in Fig.5.20. In this case, when the robot negotiates the ob-

stacle, the sudden change of robot pose does not appear. And the dynamic compensation

of lower layer NMPC still plays an important role in the local trajectory optimization.
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Fig. 5.23: Trajectory tracking error using double layer NMPC

To further illustrate the e�ectiveness of the double layer NMPC scheme for the tra-

jectory tracking optimization, a case with external disturbance induced by the sudden

change of robot pose is considered. This case has the same navigation task as shown

in Fig.5.14. The trajectory tracking result under the double layer NMPC scheme is

depicted in Fig.5.21. Di�erent from the previous experiment, this experiment appears

trajectory deviation. During the process of obstacle crossing, the robot pose suddenly

changes and meanwhile the motion direction is constrained to an uncontrolled state, thus
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Fig. 5.24: Controller output of double layer NMPC: upper layer uo,k (dash line) and
lower layer ui (solid line).

the robot moves away from the reference trajectory. The state response and transient

tracking process at t ∈ [1.2 2.8] s under the double layer NMPC are shown in Fig.5.22.

The obstacle crossing starts at about t = 1.6 s and ends at about t = 2.2 s. Once the

process is completed, the robot moves back to the reference trajectory quickly. During

t ∈ [2.2 2.4] s, the robot adjusts the motion direction toward the reference trajectory

using a higher frequency than the control frequency(5 Hz) of the upper layer NMPC,

which means that lower layer NMPC makes important contributions to improve the

transient tracking process. The resulting trajectory tracking error and controller output

are correspondingly shown in Fig.5.23 and 5.24.

5.4 Concluding remarks

In this chapter, the autonomous navigation control of a tracked mobile robot with a

novel passive suspension system using bio-inspired animal-limb-like structure has been

discussed. The superiority of tracked mobile robot lies in the following points: (1)

This bio-inspired structure can provide an excellent quasi-zero-sti�ness characteristic

with high static sti�ness, low dynamic sti�ness and broad frequency range of vibration

isolation. For the tracked mobile robot with the novel bio-inspired suspension, both high
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5.4 Concluding remarks

loading capacity and excellent vibration isolation performance can be simultaneously

guaranteed. (2) The tracked robot with the bio-inspired suspension is easy to implement

and maintain and does not require high precision at manufacturing. (3) The robust

navigation adopting a double layer NMPC strategy is capable of tracking the global

reference trajectory also with the ability to perform local performance optimization in

occurrence of uncertain slippage disturbances with less computational burden.
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6 Vision-based robust human following

control for a tracked mobile robot

This chapter will investigate the vision based robust human-following controller for the

tracked mobile robot. Since human's motion is often completely unpredictable, tradi-

tional human-following method using PID controllers cannot simultaneously guarantee

the smoothness and rapidity of human-following [86]. Increasing the gain of PID con-

troller can e�ectively improve the robot's transient response but also has the possibility

of causing local oscillation. The main problem of PID controller with a low gain lies in

the fact that human's lateral movement may make the target out of the robot camera's

FOV leading to following failure. A robust nonlinear controller with disturbance com-

pensation is proposed for reliable and smooth human following. The human skeleton

image is measured by using a RGB-D camera. Di�erent from existing methods, the

disturbance compensation on human's motion is implemented by combining the depth

skeleton tracking and human motion estimation. In addition, human-robot interaction is

realized through the hand gesture recognition. The laser radar sensor is used for collision

avoidance during human-robot following.

The chapter is organized as follows. Section 6.1 starts with the problem formulation

and preliminaries of vision based human-following control. In Section 6.2, a vision-based

robust controller with disturbance compensation is designed. The disturbance induced

by human motion is estimated through using the depth skeleton image measured by

RGB-D camera. Some experimental results are presented in Section 6.3 to demonstrate

the e�ectiveness and applicability of the robust human-following controller on the tracked

mobile robot. Finally, Section 6.4 concludes the chapter.

114



6.1 Problem formulation and preliminaries

6.1 Problem formulation and preliminaries

The tracked mobile robot mounting a RGB-D camera for human following is shown in

Fig.6.1. Fig.6.2 depicts the human position and orientation with respect to the robot,

where α is the human orientation angle measured between the robot principle axis and

the distance vector e, s is the human motion vector and θ is the human moving angle

measured between the distance vector e and human motion vector s. v and w are

respectively the linear and angular velocities. For the vision based human-robot following

control, the goal is to make the robot follow the human along the direction of distance

vector e. Under this control strategy, the target human can always be kept within the

FOV of robot camera. In order to keep target within the center of robot camera's

FOV and avoid following failure, the tracking controller should have a quick response

capability.

Fig. 6.1: Tracked mobile robot mounting a RGB-D camera

A simple and traditional method to achieve this human-robot following control is to use

PID controllers to separately adjust the linear and angular velocities [86].

v(t) = kp1 e(t) + ki1

t∫
0

e(τ)dτ + kd1
d e(t)

dt
(6.1.1)

w(t) = kp2 α(t) + ki2

t∫
0

α(τ)dτ + kd2
dα(t)

dt
(6.1.2)
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Fig. 6.2: Human's position and orientation with respect to the robot

where kp1, ki1 and kd1 are the parameters of linear velocity controller, kp2, ki2 and kd2 are

the parameters of angular velocity controller.

Remark 6.1 The PID controllers in (6.1.1) and (6.1.2) are easy to be implemented.

Even though the parameters kp1, ki1, kd1 and kp2, ki2, kd2 can be well turned through

multiple experiments, the PID controllers still have the problems of low robust stability

and poor following performance when the systems encounter the perturbations, like the

disturbance from human motion, skeleton tracking accuracy. Another aspect is that the

linear and angular velocities are separately controlled. It is di�cult to simultaneously

guarantee the smoothness and rapidity of human-robot following control. Furthermore,

improving the transient response may lead to local oscillation.

6.2 Robust controller design with disturbance

compensation

In view of the above observations, a robust following controller with disturbance com-

pensation will be designed. Without considering the human's motion, the kinematic

equation of human following control modi�ed from [128] is described in a polar coordi-
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6.2 Robust controller design with disturbance compensation

nate, 
ė(t) = −v(t) cos(α(t))

α̇(t) = −w(t) + v(t)
sin(α(t))

e(t)

(6.2.1)

For vision based human following control, the robot camera's FOV is very limited. To

improve the robot's following capability, it is necessary to consider the human's motion

during controller design. By considering the human motion in kinematic equation (6.2.1),

the kinematic equation can be rewritten as


ė(t) = −v(t) cos(α(t)) + ṡ(t) cos(θ(t))

α̇(t) = −w(t) + v(t)
sin(α(t))

e(t)
− ṡ(t)sin(θ(t))

e(t)

(6.2.2)

The human's position and orientation with respect to robot is depicted in Fig.6.2. From

(6.2.2), it is obvious that the human following control performance is additionally a�ected

by the absolute velocity ṡ(t) and motion direction θ(t) apart from the control input v(t)

and w(t).

The human's motion can be regarded as a uncertain disturbance of kinematic system

(6.2.2). Design a robust nonlinear human-robot following controller with disturbance

compensation as the following form

 v(t) = γ cos(α)e(t) + ∆v(t)

w(t) = kα(t) + γ cos(α(t)) sin(α(t)) + ∆w(t)
(6.2.3)

where γ and k are positive constant, ∆v(t) and ∆w(t) are correspondingly the distur-

bance compensations of linear velocity v(t) and angular velocity w(t). The disturbance

compensation is on-line calculated according the following relationship
∆v(t) =

ṡ(t) cos(θ(t))

cos(α(t))

∆w(t) = (ṡ(t) cos(θ(t)) tan(α(t))− ṡ(t) sin(θ(t)))
1

e(t)

(6.2.4)

The stability of this nonlinear following controller with disturbance compensation is

demonstrated as follows. By substituting the controller (6.2.3) into kinematic equation
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6 Vision-based robust human following control for a tracked mobile robot

(6.2.2), the closed-loop system of human-robot following control is obtained ė(t) = −γ cos2(α(t))e(t)

α̇(t) = −kα(t)
(6.2.5)

where nonlinear term cos2(α(t)) is a state-dependent uncertainty. For convenient analysis

of the system stability, the closed-loop system is rewritten as the form of state-dependent

polytopic system (2.1.5).

 ė(t)

α̇(t)

 =
2∑
i=1

σi(t)Ai

 e(t)

α(t)

 (6.2.6)

where σ1(t) = cos2(α(t)), σ2(t) = 1− cos2(α(t)) and

A1 =

 −γ 0

0 −k

 , A2 =

 0 0

0 −k


By resorting to Lyapunov stability criterion (2.2.1), it is easy to conclude that for any

parameters γ > 0 and k > 0, the closed-loop system is asymmetrically stable. A brief

analysis is presented as follows. A Lyapunov function in the following form is constructed

to analyze the stability of closed-loop system (6.2.6)

V (t) =

 e(t)

α(t)

T P
 e(t)

α(t)

 (6.2.7)

where P is a symmetric positive de�nite matrix. The time derivative of V (t) is obtained

as

V̇ (t) =

 e(t)

α(t)

T 2∑
i=1

σi(t)
(
PAi + ATi P

) e(t)

α(t)

 (6.2.8)

For convenient analysis, matrix P is chosen as the identity matrix. Then, it follows from
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6.2 Robust controller design with disturbance compensation

(6.2.6) and (6.2.8) that

V̇ (t) + λV (t) =

 e(t)

α(t)

T 2∑
i=1

σi(t) (2Ai + λI)

 e(t)

α(t)

 (6.2.9)

Furthermore, for any positive scalar λ satisfying λ ≤ min{2γ, 2k}, the following rela-

tionship holds due to the fact that 2Ai + λI, i = {1, 2}, is negative de�nite.

V̇ (t) < −λV (t) < 0 (6.2.10)

Therefore, it can be concluded that the system (6.2.2) can be globally exponentially stabi-

lized by the human-robot following controller (6.2.3) with a decay rate λ = min{2γ, 2k}.
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Fig. 6.3: Posture de�nitions for estimation of human motion

To implement the nonlinear controller with disturbance compensation, the human motion

absolute velocity and moving direction need to be estimated. As shown in Fig.6.3, the

human's position at previous sampling instant is recorded and transformed into the

current robot's local coordinate. At sampling time instant k, human's local posture

with respect to robot's position is de�ne as Ph,k = (xh,k, yh,k, θh,k). Human's global

posture is de�ne as PH,k = (xH,k, yH,k, θH,k). Robot's global posture is de�ne as PR,k =

(xR,k, yR,k, θR,k). The human's global posture can be calculated by
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6 Vision-based robust human following control for a tracked mobile robot

PH,k =


cos(θR,k) − sin(θR,k) 0

sin(θR,k) cos(θR,k) 0

0 0 1

Ph,k + PR,k (6.2.11)

The human's local posture at sampling time instant k with respect to the robot's position

at sampling time instant k + 1 is represented as

P̃h,k =


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1

 (PH,k − PR,k+1) (6.2.12)

By substituting the human's global posture (6.2.11) into (6.2.12), it is obtained

P̃h,k =


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1

×



cos(θR,k) − sin(θR,k) 0

sin(θR,k) cos(θR,k) 0

0 0 1

Ph,k + PR,k − PR,k+1

 (6.2.13)

For small angle variation, i.e., θR,k ≈ θR,k+1, the following approximation holds


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1




cos(θR,k) − sin(θR,k) 0

sin(θR,k) cos(θR,k) 0

0 0 1

 ≈ I (6.2.14)

To reduce the computational complexity, the posture P̃h,k can be approximately obtained

as

P̃h,k = Ph,k +


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1

 (PR,k − PR,k+1) (6.2.15)
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6.2 Robust controller design with disturbance compensation

Through (6.2.15), the previous human's posture has been transformed into current local

coordinate. De�ne human motion error posture Pe,k+1 = Ph,k+1−P̃h,k = (xe,k+1, ye,k+1, θe,k+1),

Pe,k+1 = (Ph,k+1 − Ph,k) +


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1

 (PR,k+1 − PR,k) (6.2.16)

A more accurate estimation of human motion error posture Pe,k+1 is presented from

(6.2.13)

Pe,k+1 = Ph,k+1 +


cos(θR,k+1) sin(θR,k+1) 0

− sin(θR,k+1) cos(θR,k+1) 0

0 0 1

 (PR,k+1 − PR,k)−


cos(θR,k+1 − θR,k) sin(θR,k+1 − θR,k) 0

− sin(θR,k+1 − θR,k) cos(θR,k+1 − θR,k) 0

0 0 1

Ph,k (6.2.17)

The absolute velocity ṡ(tk+1), cos(θ(tk+1)), and sin(θ(tk+1)) are calculated by

ṡ(tk+1) =

√
x2
e,k+1 + y2

e,k+1

∆t
(6.2.18)

cos(θ(tk+1)) =
xe,k+1xh,k+1 + ye,k+1yh,k+1√
x2
e,k+1 + y2

e,k+1

√
x2
h,k+1 + y2

h,k+1

(6.2.19)

sin(θ(tk+1)) =
xe,k+1 x̃h,k+1 + ye,k+1 ỹh,k+1√
x2
e,k+1 + y2

e,k+1

√
x̃2
h,k+1 + ỹ2

h,k+1

(6.2.20)

where x̃h,k+1 =
√
x2
h,k+1 + y2

h,k+1/ cos(α(tk+1))−xh,k+1 = y2
h,k+1/xh,k+1, ỹh,k+1 = −yh,k+1,

∆t is the sampling interval. The robust nonlinear following controller (6.2.3) with dis-

turbance compensation can be realized though measuring the human's motion including

absolute velocity ṡ(tk+1) and moving direction θ(tk+1).

Remark 6.2 According to the robust nonlinear controller in (6.2.3), the disturbance

compensation on human's motion is realized through adding disturbance suppression con-

121



6 Vision-based robust human following control for a tracked mobile robot

trol variables ∆v(t) and ∆w(t) to the control input to cancel the disturbance's e�ect.

Consequently, the control input is adaptively adjusted according to the disturbance level.

6.3 Experimental results

The human-robot following control diagram is shown in Fig.6.4. The human skeleton

tracking and gesture recognition is implemented by using Intel RealSense Depth Camera

D435 [129] with a wide �eld of view and Nuitrack SDK [2]. Human's local posture with

respect to robot's current position can be obtained through skeleton tracking. Gesture

recognition is used to start or stop the human-following control. The human-robot

following controller is responsible for generating control input to track human by using

skeleton data. The sampling frequency of human-robot following control system is 30

Hz.

a b c

d e f

g h i

Skeleton tracking

Gesture  control

Following controller

Collision  avoidance

RGB-D cammera

Laser lidar

Fig. 6.4: Human-robot following control diagram

To guarantee the safety of human-robot following control, the laser radar is used for

collision avoidance. When the obstacle distance is less than a safe threshold value, the

robot stops following the human's motion. Some human skeleton tracking and gesture

recognition results are shown in Fig.6.5.

Through hand gesture recognition, it is very convenient to realize human-robot interac-

tion. Fig.6.6 shows a frame laser data scanning the surrounding environment to detect
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6.3 Experimental results

a b c

d e f

Fig. 6.5: Human skeleton tracking and gesture recognition using RGB-D camera and
Nuitrack SDK [2]. (a) RGB image. (b) Skeleton tracking. (c) Swipe left. (d)
Swipe right. (e) Swipe up. (f) Swipe down.
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Fig. 6.6: Laser radar data for obstacle avoidance
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the obstacle distance. The robot's position is located at the origin point of Fig.6.6.
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Fig. 6.7: Human-robot following state and control input: straight line

The PID controller and robust nonlinear controller proposed in this thesis are respec-

tively applied to the human-robot following control. As shown in Fig.6.7, human-robot

following state and control input under di�erent controllers are presented. In this case,

the human-robot following trajectory is a straight line as shown in Fig.6.9(a). From

Fig.6.7, it is obviously observed that distance e(t) and angle α(t) under the robust non-

linear control with disturbance compensation are more smooth compared to the PID

controller. Importantly, the amplitude of human orientation angle α is less than 0.06

rad, which means that human is always located at the center of the visual �eld. This

performance guarantees that the target is visible during the following process. For the

control input, the linear velocities v(t) have reached the maximum value, the angular

velocity generated from robust nonlinear controller shows more dynamic characteris-

tic to compensate the disturbance induced by the human motion. Fig.6.8 depicts the

disturbance compensations of linear and angular velocities induced by human motion.

Thus, the robust nonlinear controller is adaptively adjusted according the disturbance

compensations ∆v(t) and ∆w(t).
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6.3 Experimental results
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6 Vision-based robust human following control for a tracked mobile robot

To further illustrate the e�ectiveness of the proposed robust nonlinear following con-

troller, another case of circle trajectory is considered as shown in Fig.6.9(b). The corre-

sponding human-robot following state and control input are presented in Fig.6.10, from

which it can be seen that the amplitude of human orientation angle α under robust

nonlinear control is less than 0.25 rad, which means that human is still located near the

center of the visual �eld even for the circle trajectory. While the amplitude of human

orientation angle α under PID control is less than 0.5 rad. In summary, compared to

the PID controller the robust controller can provide faster transient response through

compensating the disturbances induced by human motion.
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Fig. 6.10: Human-robot following state and control input: circle

The snapshot sequence of human-robot following in a curved path is shown in Fig.6.11.

In Fig.6.11(a-b), the human-robot following control is activated by the swipe-up hand

gesture. Fig.6.11(c-o) illustrate the process of human-robot following control in a curved

path. These results of following a curved path demonstrate that the proposed robust

human-robot following controller has the capability of following a continuous curved path

to operate in narrow indoor environment.
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6.4 Concluding remarks
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6.4 Concluding remarks

In this chapter, a robust controller with disturbance compensation is proposed for human-

robot following control. The disturbance compensation on human's motion is realized

through adding the disturbance suppression variables ∆v(t) and ∆w(t) to the control

input to cancel the disturbance's e�ect. Consequently, the proposed robust nonlinear

human following controller can adaptively adjust the control input according to the

disturbance level. With this robust control strategy, the tracking controller has a quick

response capability to guarantee that the human is always located near the center of

the robot camera's FOV. Human-robot interaction is realized through the hand gesture

recognition. Additionally, the laser radar is used for collision avoidance during human

following. Two examples of human following including straight line and circle have

illustrated the e�ectiveness of the proposed robust following controller.
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7 Conclusions and future work

The objective of this thesis is to systematically investigate the robust control and �ltering

of state-dependent uncertain systems and applications.

The background of state-dependent uncertain system has been reviewed in Chapter 1.

Some practical examples including the electronic circuit and mechanical system have

been presented in this thesis to illustrate the applicability of state-dependent uncertain

system. Further study on the evolution of system behaviour under di�erent parameter

or model switch should be conducted.

Robust stability analysis and synthesis for state-dependent uncertain systems have been

presented in Chapter 2. Through constructing a new parameter dependent Lyapunov

function, some improved stability conditions are established by utilizing the property of

time-derivatives of uncertain parameters. A model-dependent state-feedback stabiliza-

tion scheme, which has more �exibilities in controller synthesis and can achieve better

system performances in practice, is presented.

Robust �lter design for state-dependent uncertain system is addressed in Chapter 3.

Through introducing a generalized performance index, classical �ltering problems H∞,

L2 − L∞ and dissipative �ltering have been solved in a uni�ed framework. It should be

noted that the �lter method proposed in this chapter is for the whole frequency domain.

Thus, this �lter design method inevitably has the over deign problem. To further improve

the performance, �nite frequency �ltering can cope with the over design problem.

A novel vibration sensor based on a bio-inspired animal-limb-like structure with state-

dependent nonlinearity is developed for the real-time measurement of absolute vibration

motion in Chapter 4. With this bio-inspired vibration sensor, the problems of error
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accumulation and real-time performance induced by traditional measurement method

using accelerometer are e�ectively eliminated. A model-based fault detection algorithm

is proposed by using the vibration sensor to cope with the real-time detection problem

of weak fault with fast time-varying characteristic. The future work would extend the

fault detection technology based on this bio-inspired vibration sensor to a series of prac-

tical applications for fault-tolerant control and health monitoring, such as vehicle active

suspension system, railway, aeronautic engineering, and various civil structures.

Chapter 5 has introduced a tracked mobile robot with a novel passive suspension system

which is constructed by using a bio-inspired animal-limb-like structure. Equipped with

the novel bio-inspired suspension, the loading capacity, riding comfort and obstacle ne-

gotiation capability can be signi�cantly enhanced and the tracked robot can be applied

to various rough terrain environments. Robust navigation control using model predic-

tive control method is realized to improve the trajectory tracking accuracy against the

unknown slippage disturbances with less computational burden. Therefore, this tracked

mobile robot can be well applied to various rough terrain, like construction sites. The

future work would focus on more complex task design based on this stable robot plat-

form.

Finally, a robust controller with disturbance compensation is proposed for vision based

human following control of this tracked mobile robot. The disturbance compensation

on human's motion is realized through adding the disturbance suppression variables to

cancel the disturbance's e�ect. Thus the tracking controller can simultaneously guarantee

the smoothness and rapidity of human following. The future work will focus on intelligent

human following with capability of autonomous path planning for avoiding obstacle by

combining the proposed vision based robust following control and navigation control.
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