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Abstract 

Due to the increasing city population, the demand for` water supplies, water discharge, energy 

and telecommunication, a city’s underground is getting more complex (more utility types) and 

congested (higher density). However, without proper care, they are unavoidably ageing and 

create different sorts of problems, for example, ground subsidence caused by void formation 

initiated after a water leak from a pipe. Their conditions require an approach of proper imaging 

and health diagnosis for decision-making of rehabilitation or replacement scheme, as if the 

diagnostic process in a hospital would be conducted for human beings before any decision of 

surgery and medication. Without excavation, ground penetrating radar (GPR) is the most 

suitable means for imaging the ground truth in terms of (1) its 2D and 3D image representations 

close to ground truth, (2) efficiency of data capture, (3) fine resolution up to centimetre scale, 

and (4) its good match of depth ranging with the utilities’ depths which are in the scale of 

meters. For such purpose, GPR depth/time slice (C-scan) at user-selected depths is the best 

representation. But to date, the process of constructing 3D C-scans is still subjective and mainly 

relies upon the operator’s knowledge and experience. Biases from human judgements or survey 

setting are inevitable, and therefore doubts arise on the imaging and diagnostic purpose. The 

main achievement of this research is to establish a first of its kind, systematic and bias-free 

workflow for urban’s underground diagnosis with GPR C-scans and pattern recognitions of B-

scan radargrams based on forward and inverse methods. Also, the thesis contributed to the 

development of methods integrated with image processing algorithms for extracting spatial and 

temporal features (i.e. hazards) from GPR C-scans. The process imitates the decision-making 

process normally made by skilled professionals but in a semi-automatic and more robust 

fashion, especially when even the most skilled professionals would fall short of the ability to 

handle huge volume of GPR data. 

This thesis contributed to the research and engineering/surveying community in the following 

four aspects imminently. Firstly, an object-oriented workflow for generalizing reliable C-scans 

was developed, with empirical thresholds/ranges of three identified and crucial parameters 

(profile spacing, slice thickness and interpolation algorithms). The workflow was validated 

after comparing C-scan images and reality through ground-truth of twenty-five carefully 

designed experiments conducted on concrete members, underground utilities/infrastructures 

and an archaeological site. Secondly, the GPR responses of air voids, the most important kind 

of hazard, were quantitatively analysed with five attachments (materials, size, thickness, etc.) 
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with numerical simulations and two experiments, one in the laboratory and one in the field. It 

was concluded that the ratios of void spread to the GPR footprints result in various GPR 

response patterns, and voids were only visible when the said ratio is larger than the factor of 

two to three. Thirdly, a workflow integrating the pyramid pattern recognition  was developed 

to identify air voids from GPR data semi-automatically. The void recognition workflow was 

validated with a series of laboratory tests and site experiments. The true positive rate (i.e. 

identified voids do exist) of two validation-cases was sixty-five percent, and there was no 

omission (true negative and false negative) with the developed workflow. Lastly, with reliable 

C-scans and patterns of underground voids in the GPR data, the fourth aim achieved in this 

study was the development of a workflow to identify temporal changes from time-lapse GPR 

data with image change detection techniques. The workflow used K-means clustering to 

classify pixels into changed or unchanged. These four imminent contributions provide a 

gateway towards reliable and consistent imaging and diagnosis, and a basis of time-lapsed 

comparison with a well-established pattern recognition database. In short, this research 

establishes a health diagnostic approach for the urban underground. Human subjective 

interventions are reduced as much as possible in this developed approach. It is believed to 

trigger a start for establishing a full coverage health-record for underground utilities and 

associated hazards with GPR.  
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Chapter 1 Introduction 

1.1 Background 

Modern cities are made up of a large number of infrastructural components, such as bridges, 

high-rise buildings, dense road networks, and complex underground utilities. The interweaving 

of old and new infrastructure dramatically facilitates the development of cities and brings 

significant benefits to society. However, the management of urban infrastructure is complicated, 

and the work of managing invisible underground utilities has proven to be especially 

demanding and costly. Without proper diagnosis and maintenance, ageing utilities can suffer 

from various modes of failures, bringing urban hazards such as land subsidence, the collapse 

of infrastructure, and flooding. They can cause not only financial loss but also causalities. 

Conducting regular health checks for condition diagnosis on urban underground utilities is a 

relatively novel approach. Knowledge of medical imaging, geophysical and nondestructive 

survey techniques can provide sufficiently large-scale and detailed information without 

affecting the integrity of structures. Underground utilities and defects within them are invisible 

from the ground surface. Nondestructive testing (NDTs) or near surface geophysics (NSG) 

enables operators to see the unseen subsurface world without excavation. Among the multiple 

NDTs available, such as eddy-current, ultrasound, thermography, and visual inspection 

(CCTV), ground penetrating radar (GPR) has gained popularity for the following reasons: (1) 

high resolution; (2) offers effective data acquisition; and (3) sensitive to material properties 

(Lai et al., 2018a). GPR survey relies on the transmission and reflection of EM waves within a 

medium to detect and image the subsurface world. GPR has been used in numerous civil 

engineering applications: including locating small rebars in concrete (Bungey, 2004; Nojavan 

& Yuan, 2006); detecting underground utilities (Hao et al., 2012); reconstructing buried 

stratigraphy (Gerber et al., 2007); and discovering archaeological remains (Lai et al., 2018a; 

Nuzzo et al., 2002).  

There is a large volume of published research demonstrating the efficiency and effectiveness 

of GPR surveys. In parallel with the continuous growth of urban areas, increasing demand for 

large-scale periodic subsurface surveys has also been witnessed. Unfortunately, although it is 

more effective than other NDTs, GPR is still not able to provide full coverage subsurface 

surveys, while GPR data interpretation is time-consuming and labour-intensive. GPR is an 
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expert-dependent technique because interpreting GPR signals requires the operator to have 

sufficient knowledge and experience in order to do so. Currently, 3D GPR representation is 

increasingly being adopted, because it can provide an intuitive visualization of the subsurface, 

which is much clearer than the ‘messy’ 2D wave signal data. But the technique of 3D GPR 

survey is still immature, and discrepancies are inevitable between 3D GPR images captured at 

different times in the same place but modelled by different operators using different equipment. 

Moreover, it is hard to test whether the 3D GPR images are reliable since excavation ‘ground-

truthing’ is not always desirable.  

Having briefly introduced the role of GPR in underground utility surveying, the thesis structure 

will be outlined next. This thesis is divided into four stages as detailed below. 

Following a general introduction to the principles and application of GPR in underground 

utility detection (Chapter 2), in stage 1 (Chapter 3) the relationships between GPR responses 

and subsurface objects are quantitatively analysed. This initial research establishes a 

standardised and unbiased workflow for 3D GPR data processing, based upon the relationship 

between GPR responses and the characteristics of objects. The workflow is object-oriented and 

can provide guidances for obtaining unbiased and reliable 3D GPR representations. The 

invisible subsurface world can be reconstructed as semantic models. The research community 

and practitioners will benefit from the improvements in GPR imaging accuracy. In particular, 

if the sizes of target objects are known, the workflow specifies the suitable range for each 

imaging parameter, thus removing the need for multiple attempts at optimal imaging using 

different parameters. 

In stage 2 (Chapter 4), the typical GPR responses of urban subsurface hazards are studied and 

summarized. Specifically, the mechanisms behind, the morphology of GPR radargram and C-

scans of air voids are investigated. As land subsidence often occurs on roads, the effects of 

road structures on the GPR response of voids are quantitatively studied. By combining 

numerical simulations and real GPR data, a picture of air voids under roads is created. With 

prior knowledge of the appearance of air voids in GPR data, specific GPR responses in both 

2D and 3D GPR representations can be targeted and detected. Stage 3 (Chapter 5) explores the 

possibilities of applying pattern recognition techniques to identify the GPR responses of urban 

subsurface defects automatically. Thanks to the development of computer visualisation 

techniques, a number of methods are available for automatically detecting particular patterns 
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within data. Operators are thus liberated from the large volume of work typically needed in 

GPR data interpretation. 

In stage 4 (Chapter 6), armed with a standard workflow for 3D GPR imaging, a longitudinal 

and time-lapse “medical record” of the subsurface world can be reconstructed. By comparing 

3D GPR images obtained at different times, changes happening in the subsurface world can be 

observed, and these changes may be related to potential defects in buried urban infrastructure. 

This research explores the possibility of applying change detection techniques to time-based 

GPR images produced for periodic “health checks”. Any detected anomalies can then be further 

verified by pattern recognition techniques. Since only those areas showing change need to be 

assessed, and unchanged areas are omitted, the workload of the GPR survey can be 

significantly reduced.  

In summary, this research establishes a diagnostic approach for subsurface defects in the urban 

areas using the spatial and temporal characteristics of GPR. It moves from quantifying GPR 

responses to subsurface targets to standardizing GPR data processing and image construction, 

and then towards applications of change detection using time-based GPR data. Human 

subjective interventions are eliminated as much as possible from the system. The diagnostic 

approach facilitates more effective GPR surveys, and makes full coverage GPR surveys 

feasible.  

This thesis consists of six chapters, based upon the four objectives listed below. Chapter 1 gives 

justifications concerning the scope and aims of the research, and outlines the objectives and 

methodology of this research. Chapter 2 provides an overview of the fundamental principles of 

GPR as well as the various techniques applied. Chapter 3 discusses the outcome of objective 

1, which is a standardized GPR imaging workflow, supported with empirical experiments. 

Chapter 4 explains the results of objective 2 in terms of a database of GPR responses or 

‘fingerprints’ for some typical subsurface structures, with a focus on air voids under road 

structures. Chapter 5 describes the details of objective 3; namely, a workflow of semi-

automatically identified GPR responses to subsurface voids is introduced and explained with 

validation experiments. Chapter 6 demonstrates the attempt of objective 4 through a workflow 

for change detection from time-lapse GPR data. Finally, chapter 7 summarizes the observations 

made during the research, and outlines the research significances as well the challenges of 

conducting GPR surveys for urban defect diagnosis.   
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1.2 Research objectives 

As discussed in chapter 1.1, the research aims to establish a system for subsurface defects 

diagnosis with GPR. The diagnosis system should be time and cost efficient enough for city-

scale survey. The research consists of four parts reflecting the following objectives:  

(1) Modify GPR 2D process flow and build a 3D C-scan imaging workflow based on an 

understanding of object characteristics and signal/image processing principles; 

(2) Establish and validate a GPR ‘fingerprint’ database and processing flow for common 

subsurface objects based on objective (1), through forward modelling and empirical 

experiments; 

(3) Develop a workflow for semi-automatic pattern recognition of shallow subsurface 

voids based on the results of objectives 1 and 2;  

(4) Develop a GPR-based change-detection diagnostic workflow for temporal diagnosis of 

subsurface changes. 

1.3 Research methodology 

1.3.1 Research resources 

The successful operation of the research depends on the availableness of research resources. In 

this study, most of the laboratory tests are conducted in the underground utility survey 

laboratory in The Hong Kong Polytechnic University. In the laboratory, there is a 5 m long, 3 

wide and 1m deep platform. Multiple utilities are buried in the platform, including freshwater 

pipes, salt water pipes, gas pipe and power cables are buried by soil. The indoor and 

controllable environment serves to imitate the subsurface environment of urban cities in the 

real world.  

Site experiments are conducted in Hong Kong, in order to validate that the research approach 

is suitable for developed cities.  Specific research areas are selected based on each research 

objective, as well as the project permission, since subsurface surveys always involve in 

excavations or traffic obstacles.  

In terms of instrumentation, it involves GPR equipment in the laboratory, they are 250MHz 

sensor & software; GSSI with 400MHz, 900MHz, 1GHz, 1.6GHz and 2GHz frequencies 

antenna; IDS 200&600 MHz dual frequencies. Moreover, available software is comprehensive 
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that includes GPR processing software – Reflexw, GPRSlice and gprMax; mathematic 

software – MATLAB; as well as computer-aided design software – Autodesk and ArcGIS.  

The sufficient research resources enable me to carry out both forward studies and validation 

studies, under various environments and multiple survey settings. 

1.3.2 Combine forward and backward methods 

With adequate research resources, this research is capable of both forward modelling and 

inverse modelling , and GPR simulation is used specifically as an integral part of the forward 

modelling. Because the complex subsurface world is not always accessible, it can be 

challenging to acquire GPR data on expected real-world situations. However, sufficiently 

comprehensive data are required in order to quantify the GPR responses under a range of 

conditions. Numerical simulation is adopted to construct models that can approximate real-

world situations. Controlled experiments provide another type of forward modelling and are 

conducted in the laboratory or research sites to imitate the actual conditions as much as possible. 

The forward modelling is mainly involved in quantifying the relationship between GPR 

reflections and subsurface objects – the major component in the 1st and the 2nd objectives.  

Inverse modelling is opposite to forward modelling, in that an inverse problem in science 

involves the process of calculating dependent factors from a set of observations that produced 

them. In this thesis, it aimed at quantifying the GPR response for each feature and then 

validating the research outputs. Having acquired GPR data, representative models that correlate 

the GPR observations with actual subsurface conditions are established. The subsurface 

environment can thus be depicted by analysing the GPR responses. The inverse modelling is 

used in validating the approaches, which refers to the 3rd and 4th objectives.  

The research integrates both virtual numerical simulations and practical surveying observations. 

Forward and inverse modelling complement each other, as shown in Figure 1-1. In this way, 

the interaction between GPR and the subsurface world can be quantified.  
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Figure 1-1 An illustration of the research methodology of this thesis 

1.3.3 Workflows 

Following the general research methodology (Figure 1-1), several workflows are established 

to achieve the research aim, which makes each workflow a protocol for an objective.  

Workflows are tailored for survey data in city-scale. The image processing techniques, like 

the pattern recognition techniques and the change detection techniques, are explored and 

adapted to improve the efficiency of diagnosis. The selections of suitable algorithms for each 

technique are based on the review of the literature (to be discussed in Chapter 2). The 

workflows integrate the specific imaging processing techniques, automate the diagnosis with 

GPR from the data collection, to data processing and analysis.  
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Chapter 2 GPR reviews   

Before striving to the research aim, its feasibility from the technical and theoretical 

perspectives need to be discussed in advance. This chapter reviews the fundamental theories 

and principles of GPR. Various applications of GPR survey, including the techniques applied 

in this thesis, are introduced in this chapter. 

2.1 Electromagnetic waves 

During a GPR survey, the radar signal – a pulse of the electromagnetic (EM) wave, is emitted 

from a transmitting antenna and travels downward through the host material until it reaches an 

object that has different electrical properties from the surrounding material. Part of the signal 

is then scattered by the object and is detected by a receiving antenna, while part of its energy 

continues to travel downwards. Figure 2-1 is a typical illustration of the common offset GPR 

survey.  

 

 

Figure 2-1 Hyperbolic reflection from common offset GPR, t1 and t2 are the GPR wave travel time at 

antenna position 1 and 2, respectively; while x is the moving distance of the antenna. (Lai et al., 

2016a) 

a. Wave properties 

Maxwell’s equations, as shown in Equations [2.1-2.4], mathematically describe EM physics 

and the constitutive relationships that quantify material properties (Annan, 2002; Annan, 2004; 

Jol, 2009).  

∇̅ × E̅ =  −
𝜕�̅�

𝜕𝑡
 [2.1] 
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∇̅ × H̅ =  𝐽 ̅ +
𝜕�̅�

𝜕𝑡
 

[2.2] 

∇̅ ∙ D̅ =  𝑞 [2.3] 

∇̅ ∙ B̅ =  0 [2.4] 

In the above equations, �̅� is the electric field strength vector; �̅� is the magnetic flux density 

vector; �̅� is the electric displacement vector; �̅� is the magnetic field intensity; 𝑞 is the electric 

charge density and �̅� is the electric current density vector.  

The wave propagation velocity, attenuation rate, and electromagnetic impedance are three 

crucial EM wave field properties. The electromagnetic impedance refers to the ratio between a 

medium’s electric field and magnetic field, and it is determined by the medium’s properties 

(Davis & Annan, 1989; Jol, 2009; Benedetto & Pajewski, 2015). At high frequencies, the 

electromagnetic fields propagate as waves with a relatively uniform travel velocity and 

attenuation rate through the medium. It is observed that there is always a tendency for 

permittivity to decrease with frequency and conductivity to increase with frequency (Lai et al., 

2014). At low frequencies, the electromagnetic fields diffuse into the material. In this case, the 

wave is dispersed because its frequency components travel with different velocities and are 

attenuated at different rates based on their contrasting polarization mechanisms (Annan, 2004; 

Davis & Annan, 1989; Jol, 2009). Therefore, the actual frequency of the reflected GPR signal 

may be different from the antenna frequency: and hence should be measured. Few 

measurement methods are available for transforming the signal from the time domain to the 

frequency domain, among which Fourier series, Fourier transform, Laplace transform, Z 

transforms, and wavelet transform are widely used (Boashash, 2015; Broughton & Bryan). 

Wavelet transform is applied in this research for its convenience for data compression, the 

multi-resolution advantage for both high- and low-frequency signals,  and especially suitable 

in the image analysis (Broughton & Bryan).  

In terms of the permittivity, its response tends to manifest as a “plateau”, and within the 

plateau’s range, the wave velocity and attenuation rate do not disperse significantly across a 

range of GPR frequencies. It is because at low frequencies, wave properties depend on 2πf (f 

is the frequency), which is indicative of diffusive field behaviour, while at high frequencies, 

the properties become frequency-independent (Jol, 2009). The transition from diffusion to 

propagation behaviour occurs when the electric currents change from conduction-dominant to 

displacement-current dominant behaviour, thus the “plateau” occur (Jol, 2009). The wave 

properties for simple media are most easily expressed if a sinusoidal time variation is assumed. 
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Besides, when using high-frequency GPR, electrical properties are more likely to be affected 

by the presence of free water in the pores and fractures of a medium, because water tends to 

absorb more energy as the frequency increases from 500MHz to 10 GHz (Davis & Annan, 

1989). Beyond the plateau, GPR attenuation increases significantly and may result in a failure 

to detect deeply buried objects. As shown in Figure.2-2.c, the dielectric properties of a material 

are frequency dependent. At GPR frequencies of 106 through 109, wave behaviour is not 

dispersive (to be discussed in Chapter 2.1.b). Therefore, for urban underground survey and 

mapping, which needs to consider the plateau and the need for high resolution imaging, the 

frequencies applied usually range from 100-3000MHz. Figure 2-2 illustrates the GPR plateau.  

 
a 
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b 

 
c 

Figure 2-2 Illustration on GPR plateau of (a) wave velocity and (b) attenuation (c) dielectric 

permittivity spectrum over a wide range of frequencies, for real (top curve) and "imaginary" (bottom 

curve) components (Annan, 2004) 

b. Interactions between GPR and materials 

The EM wave fields consist of the coupled electric field (E) and magnetic (H) field. The 

electrical properties of a material are dominant factors controlling GPR responses, while 

magnetic properties have a relatively weaker influence. In studies of GPR applications, the 

focuses are upon the important EM wave field properties of phase velocity 𝑣, attenuation 𝛼, 

and electromagnetic impedance Z. The behaviour of these wave properties for a single material 

is determined by the relative dielectric permittivity, conductivity and magnetic permeability of 

the medium.  

Snell’s law (Equation [2.5]) describes the refraction and reflection of EM waves across 

different materials, and the reflection of EM waves is caused by materials that have different 

electrical properties. Furthermore, the travel velocity of EM waves is determined primarily by 

the permittivity of the material, as described in Equation [2.6]. The relationship between wave 

velocity and material properties is of crucial importance in GPR surveys. The real part of the 

permittivity (휀) of a material, which is mainly determined by its water content, is considered in 

EM wave velocity estimation in this research. The ratio of 휀 of a material to that of a vacuum, 

which is known as the relative permittivity or dielectric constant (𝐾), is determined by the 

following equations:  

sin 𝜃1

𝑣1

=  
sin 𝜃2

𝑣2

 [2.5] 
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𝑣 =  
𝑐

√𝐾
 [2.6] 

where 𝜃1  and 𝜃2  are respectively the angle of incidence and refraction, and  𝑐 is the wave 

velocity in free space, which is approximately 0.2998m/ns.  

The permittivity is in fact a complex value. It is a measure of the extent to which charge 

distribution can be distorted or polarized by an applied E field in a material, and it is frequency-

dependent. The imaginary part is related to the resistivity, while the real part is the capacitive 

response. At different frequencies, polarization occurs at different scales: at very high 

frequencies, only subatomic particles can be polarized. At GPR frequencies, re-orientation of 

dipolar molecules is the largest contribution, hence the effect of water is important in changing 

the velocity of EM waves propagating in a material. The behaviour of the real part and the 

imaginary part is shown in Figure 2-2.c. Values are relatively constant, and the imaginary part 

is very small for GPR frequencies of 106 through 109, ensuring that the wave behaviour is as 

dispersive as other polarization mechanisms. 

In the research of GPR application, the conductivity of a medium can be considered as a 

constant with units of Farads/m (Annan, 2004). Within a depth range less than 2m in cities, the 

soil texture is mostly sandy, giving low conductivity in general. Besides, attenuation of GPR 

waves at the frequency in urban applications is small, rather constant because it is within the 

plateau, as shown in Figure. 2-2. According to Ohm’s law, conductivity and resistivity are 

related to one another, and the conductivity determines the attenuation rate of EM waves. 

Attenuation dictates how deep the EM waves can reach and be reflected. When EM waves 

penetrate through lossy material, the wave amplitude decreases gradually. The attenuation rate 

increases as both frequency and conductivity increase. The electrical properties of some widely 

used materials in urban infrastructure are shown in Table 2-1. 
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Table 2-1 Approximate Electromagnetic Properties of Various Materials (ASTM D6432-11, 

2011) 

 Material 
Relative 

Permittivity ε’ 

Wave velocities 

(m/ns) 

Conductivity 

(mS/m) 

Air 1 0.3 0 

Fresh water  81 0.033 0.10 – 30 

Sea water  70 0.033 400 

Sand (dry)  4-6 0.15-0.12 0.0001 – 1 

Sand (saturated) 25 0.055 0.1 – 1 

Silt (saturated)  10 0.095 1 – 10 

Clay (saturated)  8-12 0.106-0.087 100 – 1000 

Dry sandy coastal land  10 0.095 2 

Fresh water ice  4 0.15 0.1 – 10 

Permafrost  4-8 0.15-0.106 0.01 – 10 

Granite (dry) 5 0.134 0.00001 

Concrete  5-10 0.134-0.095  

Asphalt 3-5 0.173-0.134  

Sea ice  4-12 0.15-0.087  

PVC, epoxy, polyesters vinyl, 

rubber 

3 0.173  

c. Two-way travel time 

By measuring the wave propagation time and the wave travel speed, the wave travel distance 

can be estimated. As shown in Figure 2-1, as an EM wave travels downwards and is reflected 

by an object, the travel distance of the EM wave is approximately two times the depth of the 

object. The travel distance is therefore called the two-way-travel time, and is described by 

Equation [2.7]:  

𝑑 =  
𝑣𝑡

2
 [2.7] 

where 𝑑 is the depth of the buried reflector. 𝑣 is wave velocity and 𝑡 denotes the travel time. 

The velocity estimation is one of the most important processing in GPR data interpretation, not 

only because it directly determines the depth of the detected objects, but also the wave velocity 

is a crucial factor in other processes like migration and inversion. Many factors, like 

homogeneousness of the host material; the selection of velocity expression model; the GPR 

profile orientation and the geometry of reflectors, in a GPR survey affect the accuracy of wave 

velocity estimation. Recently, many researches made progress in correcting and amending the 

influence of these factors. Namely but not the least, Sham & Lai (2016) and Lai et al. (2016b) 

took the object diameter into consideration when estimating wave velocity. Xie et al. (2018) 

introduced the effect of distance and angle between the GPR device and a linear object in the 
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wave velocity estimation. With these developments, the accuracy of the estimation of wave 

velocity can be improved significantly.  

2.2 Finite difference time domain modelling of GPR 

To establish a diagnostic system for subsurface defects, the relationship between GPR 

measurements and subsurface defects must be determined. The numerical simulation is an 

alternative way to model GPR reflections under a controlled environment. Over decades of 

development, there are numerous methods for computational electromagnetics, among which, 

methods of moment (MoM) (Harrington, 1993), finite element method (FEM), and finite-

difference time-domain (FDTD) are the most popular (Davidson, 2010). Their characteristics 

and advantages are compared in Table 2-2.  

Table 2-2 Comparison of a few numerical simulation methods 

Method 
Equation 

type 
Domain 

Radiation 

condition 

Wide

band 

PEC 

only 

Homogeno

us 

penetrable 

Inhomog

eneous 

penetrab

le 

Method of 

Moment 

(MoM) 

Integral Frequency Yes Ok Good Good 
Not 

optimal 

Finite 

Element 

Method 

(FEM) 

Differential Frequency No Ok 
Not 

optimal 
Good Good 

FDTD Differential Time No Good 
Not 

optimal 
Good Good 

 

The MoM requires a calculation of only boundary values, rather than values throughout the 

space, it is significantly more efficient in terms of computational resources for problems with 

a small surface/volume ratio. Conceptually, it works by constructing a "mesh" over the 

modelled surface (Harrington, 1993). But MoM does not handle electromagnetic penetrable 

material well because it does not scale with frequency. The FEM is very expensive and hardly 

employed with home-built code. It is a preferred method for simulation of microwave devices 

(Davidson, 2010).  

The FDTD is a versatile modelling technique that can be used to solve Maxwell's equations. 

Thus, it is a simple full-wave technique used to solve problems in electromagnetics. The FDTD 
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method employs finite differences as approximations for both the spatial and temporal 

derivatives that appear in Maxwell’s equations; namely, Ampere’s and Faraday’s laws 

(Schneider, 2010), thus E (electric) and H (magnetic) fields are modelled directly, no 

conversions must be made – it is especially suitable for simulating GPR wave propagation. The 

FDTD links the nature of the movement of the electromagnetic field to the host media. The 

FDTD allows the user to specify the material at all points within the computational domain, so 

that it is appropriate in the subsurface modelling. However, FDTD also falls short of demand 

of very high computational power, i.e.: the computational domain can become excessively 

large because of fine grids. It is not possible to determine unique values for permittivity and 

permeability at a material interface, but this is not a severe issue in pattern recognition because 

the size of the grid for the database is not as large as a city-scale field survey. Also for FDTD, 

artificial boundaries are required to be inserted for defining the model domain in FDTD 

simulations. There are a few researches on absorbing boundaries providing mature solutions 

(Davidson, 2010; Giannopoulos, 2005).  

Therefore, FDTD method is suitable for observing the GPR responses produced by various 

urban subsurface hazards. As discussed in Chapter 2.1 (Equation 2.1-2.4), Maxwell’s equations 

are fundamental to the description of EM waves. By rewriting Equations [2.1-2.4], we have 

Equations [2.8-2.9]: 

𝜇
𝜕𝐻𝑦

𝜕𝑡
=  

𝜕𝐸𝑧

𝜕𝑥
 [2.8] 

𝜖
𝜕𝐸𝑧

𝜕𝑡
=

𝜕𝐻𝑦

𝜕𝑥
 

[2.9] 

where 𝐻 denotes the magnetic field in the y direction, and E is the electric field in x direction, 

𝑡 is a time step, 𝜇 is the relative permeability and 𝜖 is the relative permittivity. 

The Taylor series of expansions of the function f(x) expanded about the point 𝑥0 with an offset 

of ±𝛿/2  can be expressed as Equations [2.10-2.11]. 

𝑓 (𝑥0 +
𝛿

2
) = 𝑓(𝑥0) +

𝛿

2
𝑓′(𝑥0) +

1

2!
(
𝛿

2
)2𝑓′′(𝑥0) +

1

3!
(
𝛿

2
)3𝑓′′′(𝑥0) + ⋯ [2.10] 

𝑓 (𝑥0 −
𝛿

2
) = 𝑓(𝑥0) −

𝛿

2
𝑓′(𝑥0) +

1

2!
(

𝛿

2
)

2

𝑓′′(𝑥0) −
1

3!
(
𝛿

2
)3𝑓′′′(𝑥0) + ⋯ 

[2.11] 

If 𝛿 is sufficiently small, a reasonable approximation to the derivative may be obtained by 

neglecting the remainder of the equations. Thus, the central-difference approximation is given 

by Equation [2.12]. 
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𝑑𝑓(𝑥)

𝑑𝑥
| ≈

𝑓 (𝑥0 +
𝛿
2

) − 𝑓 (𝑥0 −
𝛿
2

)

𝛿
 

[2.12] 

When the function is sampled at the neighbouring points 𝑥0 +
𝛿

2
 and 𝑥0 −

𝛿

2
, and if the limit 𝛿 

is near zero, then the approximation becomes exact. The FDTD algorithm was first proposed 

by Yee (1966) and he employed second-order central differences as per [2.12]. The algorithm 

replaces all the derivatives in Ampere’s and Faraday’s laws with finite differences. It 

discretizes space and time so that the electrical and magnetic fields are staggered in both space 

and time. Then, by solving the resulting differential equation, the “update equations”, which 

denote the unknown future fields, are obtained from the known past fields (Warren et al., 2016).  

Therefore, the future electrical field can be modelled based upon past magnetic fields, and vice 

versa. By imagining a one-dimensional space where both E and H exist, the time domain space 

is discretized by a space step ∆𝑥 and a time step ∆𝑡, as illustrated in Figure 2-3.  

 

Figure 2-3 Illustration of one-dimensional EM field in FDTD modelling (Schneider, 2010). Remarks: 

The index m corresponds to the spatial step, effectively the spatial location, while the index q 

corresponds to the temporal step. 

At the specific position ((m +
1

2
) ∆𝑥, 𝑞∆𝑡), indicated by the black arrow in Figure 2.3, the 

solution of Equations [2.8-2.9], [2.13-2.14] is obtained as follows. 

𝜇
𝜕𝐻𝑦

𝜕𝑡
|

(m+
1
2

)∆𝑥,𝑞∆𝑡
=

𝜕𝐸𝑧

𝜕𝑥
|

(m+
1
2

)∆𝑥,𝑞∆𝑡
 [2.13] 

𝜖
𝜕𝐸𝑧

𝜕𝑡
|

(m+
1
2

)∆𝑥,𝑞∆𝑡
=

𝜕𝐻𝑦

𝜕𝑥
|

(m+
1
2

)∆𝑥,𝑞∆𝑡
 [2.14] 

When implementing the FDTD method, the temporal derivative on the left is replaced with a 

finite difference involving 𝐸𝑧
𝑞+1[𝑚] and 𝐸𝑧

𝑞[𝑚]. Similarly, the right part of Equation [2.13] is 
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replaced by 𝐻𝑦

𝑞+
1

2[𝑚 +
1

2
]  and 𝐻𝑦

𝑞+
1

2[𝑚 −
1

2
] . Thus, the updated E and H are as shown in 

Equations [2.15] and [2.16].  

𝐻𝑦

𝑞+
1
2 [𝑚 +

1

2
] = 𝐻𝑦

𝑞−
1
2 [𝑚 −

1

2
] +

∆𝑡

𝜇∆𝑥
(𝐸𝑧

𝑞[𝑚 + 1] − 𝐸𝑧
𝑞

[𝑚]) [2.15] 

𝐸𝑧
𝑞[𝑚 + 1] = 𝐸𝑧

𝑞[𝑚] +
∆𝑡

𝜖∆𝑥
(𝐻𝑦

𝑞+
1
2 [𝑚 +

1

2
] − 𝐻𝑦

𝑞+
1
2 [𝑚 −

1

2
]) [2.16] 

The basic principles of FDTD modelling of EM waves are as detailed above. However, the 

FDTD method can be expanded to multi-dimension modelling, in terms of a single spatial 

dimension where the electrical and magnetic fields are offset a half spatial step from each other.  

When performing the FDTD simulation, equations are discretized in both space and time in 

order to construct each FDTD cell. Hence the number of iterations determines the FDTD 

resolution of a given time window. It can be observed from the above equations that the step 

sizes in 3D – Δx, Δy, Δz and Δt – are correlative with each other. To ensure that the simulation 

runs stably, the CFL condition (as per Equation 2.17), named after the initials of Courant, 

Freidrichs and Lewy (Courant et al. 1928), has to be met:  

∆𝑡 ≤
1

𝑐√
1

(∆𝑥)2 +
1

(∆𝑦)2 +
1

(∆𝑧)2

 
[2.17] 

where c is the speed of light. Hence ∆𝑡 is constrained by the values of Δx, Δy and Δz.  

A rule-of-thumb is that the discretization step should be at least ten times smaller than the 

smallest wavelength of the propagating electromagnetic fields, otherwise unexpected 

dispersion may occur. Other factors, such as energy sources, field boundaries, and lossy 

materials  have been well discussed in the literature (Hastings et al., 1995; Hastings et al., 1996; 

Schneider, 2010; Warren et al., 2016; Yee, 1966).  

2.3 Remote sensing vs near-surface geophysics (NSG)/ non-

destructive testing (NDT) 

With either GPR measurements or numerical simulations, images can be constructed for further 

data processing and interpretation. Since imaging is the major means of representation (will be 

discussed in Chapter 2.4) in the diagnosis of the underground invisible void, image processing 

techniques are therefore the core of this study. In view of the similarity of the imaging 

processing approach, the experience of traditional remote sensing and near-surface geophysics 

can be referenced.  
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The principle of remote sensing is to acquire large volumes of information about an object or 

a phenomenon without making physical contact with it, supplemented and validated by on-site 

observations. From the perspective of civil engineers, geophysicist, remote sensing refers 

explicitly to sensing from aerial or terrestrial sensors, that the target of sensing is an observation 

on the Earth surface. Non-destructive testing (NDTs) is used for imaging the subsurface 

elements of urban infrastructure without the use of excavations. Even though their targets and 

scales of sensing are different, remote sensing, NSG (longer wavelength in the scale of m) and 

NDTs (shorter wavelength in the scale of few cm) share a common logic, in which they both 

acquire information about a target from a certain distance away rather than through direct 

contact. In both remote sensing and NSG/NDTs, variations in the target’s characteristics, such 

as physical and chemical properties, geometry, position, and so on, would cause differences in 

the sensors’ responses to it.  

Before applying proper filters, the raw signals are disordered and hard to be interpreted. The 

effects of the phase shift, the signal attenuation along propagation, noises due to scattering in 

Mie type (wavelength comparable to the size of the general buried object), and coupling effect 

may hinder the signal generated by the target objects. The signal process applied in GPR – a 

kind of NDTs, are mainly inherited from the field of seismology. In seismology, as a ground-

based NSG, low-frequency acoustic energy in long wavelength is applied and travels through 

the Earth's layers to re-construct reflected and refracted waveforms. Seismic waves exhibit high 

contrasts in acoustic impedance of materials. The propagation velocity of seismic waves 

depends on the density and elasticity of the medium (Cerveny, 2005). Similarly, GPR also 

images the wave reflected and refracted from the subsurface, but compared to various 

wavemodes in the seismic wave, it is a short wavelength electromagnetic wave with monotonic 

wavemode. Having said that, the signal processing and image reconstruction techniques 

applied in seismology are easily adopted in GPR survey.  

When the received signals are processed and reconstructed into images, further image 

processing are required before meaningful information can be extracted. The image processing 

techniques used in remote sensing can be adapted and applied in GPR images. Based on their 

signal sources, remote sensing techniques can be classified into two groups: active remote 

sensing and passive remote sensing. Active remote sensing involves the emission of signals 

from a sensor and the reception of signals that are reflected back from the ground. In contrast, 

in passive remote sensing, the sensor, whether it is aerial or terrestrial, receives radiation 
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emitted from the planet. The radiation may come from both the reflection of sunlight and 

emissions from the Earth itself (Liu & Mason, 2013). On the other hand, based on the forms of 

the signal generator, techniques of remote sensing can be categorized into imagery-based or 

point-clouds based. GPR can be considered as an active form of remote sensing that is based 

on imagery. In GPR surveys, EM waves are emitted from a transmitting antenna and received 

by a receiving antenna. The main difference between GPR and other remote sensing techniques 

that are imagery-based is the media between the EM signal emitter and the target(s). Therefore, 

interpretation techniques that have been regularly applied in remote sensing that are based on 

imagery can be used to interpret GPR data. Table 2-2 illustrates the relationship between GPR 

and NSG/NDTs; remote sensing.  

Table 2-3 Comparison among NSG, NDT and remote sensing 

Methods NSG NDT Remote sensing 

Technique seismic GPR Others Imagery point cloud 

Wavelength long λ short λ short λ multiple λ short λ 

Target subsurface subsurface subsurface surface surface 

Excitation 
active 

/passive 
active 

active 

/passive 

active 

/passive 
active 

Signal 

process 
ray-based ray-based ray-based \ point-based 

Pixel-based 

image 

process 

√ √ √ √ √ 

Remarks: Long λ refers to wavelength in meters level, while short λ means wavelength is centimetres 

or less.  

In imagery-based remote sensing, recorded signals are transferred in order to construct images, 

which are then analysed to extract thematic information and to detect changes (Gong & 

Howarth, 1992; Jensen & Lulla, 1987). More specifically, the thematic information extracted 

includes land use, land cover classification, and features, while change detection refers to 

changes visible in periodically acquired images. Many well-developed methods and algorithms 

are available to classify pixels into semantic components. With constructed images from GPR 

data, which take the form of convolved EM wave signals due to scattering, , the image 

processing techniques from imagery-based remote sensing can be adapted to reconstruct the 

subsurface world from GPR images. 
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2.4 GPR imaging 

Before applying imaging processing techniques of remote sensing GPR data, the interaction 

between GPR imaging and material properties is of primary importance. The interpretation on 

GPR representation/images is effective only when the images can fairly reveal the ground truth 

in a reasonable degree of accuracy.  

The received GPR signals are sampled and constructed into meaningful representations. 

Typically, A, B, and C-scans are used for GPR data presentation in 1 to 3 dimensions, 

respectively. A C-scan, which is a representation of a 3D volume, images a horizontal section 

for a plane at a certain depth. A widely applied presentation method for C-scans is horizontal 

slicing, in which each image is called a depth slice. In contrast, A-scan and B-scan images are 

vertical sections and provide details of the reflected waveform’s characteristics, including 

signal phase, amplitude, and estimated propagation velocity. These characteristics are affected 

by the properties of the host media, but through forward and inverse modelling, the subsurface 

world can be reconstructed. A series of adjacent GPR profiles have to be inspected in order to 

determine the position and size of a subsurface target. Today, 3D C-scans are increasingly 

popular as they assist in interpreting the subsurface in a straightforward and easily 

understandable manner. Furthermore, many more advanced forms of 3D GPR representations 

were developed recently; for instance, isosurfaces, semantic images based on energy or 

similarity, and feature enhancements (Böniger & Tronicke, 2010a; Böniger & Tronicke, 2010b; 

Leckebusch, 2003). The aforementioned representations are all derivate from full cover 

measurements in 3D and are aimed at supplying better interpretations of 3D GPR volumes. A 

sequence of high-quality C-scans with reasonably accurate 3-dimensional measurements is an 

essential foundation for correctly depicting the subsurface world. 

2.4.1 Imaging criteria 

a. GPR scattering 

The scattering of light from electromagnetic waves contributes to the visible appearance of 

most objects. The ratio of wavelength to a reflector’s radius determines its visibility. 

Electromagnetic waves can be modelled in three forms: Rayleigh scattering, Mie scattering, 

and optical scattering. Rayleigh scattering happens when the feature size is far smaller than the 

light wavelength, Mie scattering occurs if the object size is similar to the light wavelength, 

while optical scattering happens when the object size is much larger than the light wavelength 
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(Annan, 2004). Optical scattering yields optimal reflections while, on the contrary, targets are 

invisible in Rayleigh scattering. Figure 2-4. illustrates the scattering concepts.  

 

Figure 2-4 The illustration of scattering with object sizes a (Annan, 2004), σ is the ratio of GPR 

wavelength to the size of the scatterer, and λ denotes the wavelength. 

This study focuses on civil engineering applications involving far-field measurements at higher 

frequencies, broadly in the 400MHz to 3GHz range. The smallest target within this field of 

application is a rebar in the concrete, whose radius can be as small as 5mm. According to 

Equation [2.18]:  

λ =
𝑣

𝑓
=

𝑐

𝑓√휀′
 [2.18] 

where λ is the GPR wavelength; 𝑐 denotes the velocity of a GPR wave in free space, 

which is a constant of 0.2998 m/ns; 𝑓 is the centre frequency; and 휀′ denotes the host 

material’s real part of complex permittivity.  

Optical reflection forms the basis of most GPR applications in civil engineering. Even the 

deepest targets are buried within the upper few metres of the subsurface and, if the soil is non-

conductive, are detectable even at higher frequencies. Additionally, as the radar signal 

penetrates deeper, higher frequencies tend to be absorbed and hence the centre frequency is 

shifted to a lower region. In summary, a target object is “visible” to GPR only when optical 

reflection occurs. 
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b. GPR spatial resolution 

Once an object is visible, the next question concerns how precisely it can be imaged. Where 

GPR imaging quality is concerned, spatial resolution and object resolution need to be 

considered.  

GPR spatial resolution is determined by characteristics such as the radar signal, frequency, 

wavelength in materials, survey settings, and EM properties (Pérez-Gracia et al., 2010). Spatial 

resolution can be categorized into horizontal resolution and vertical resolution.  

The horizontal resolution is defined as the capability of GPR to distinguish two adjacent targets 

on the same plane, while vertical resolution describes the GPR system’s ability to separate two 

adjacent objects at different depths. When two targets are closely placed, long wavelengths will 

result in reflection superimposition. According to Nyquist’s sampling equation, the resolution 

is considered to be ¼ of the wavelength, although in-field measurement a figure of  ½ 

wavelength is more consistent with the actual measured field resolution in many cases (Al-

Qadi & Lahouar, 2005; Pérez-Gracia et al., 2010).  

Whether two adjacent objects at the same depth can be separated is mainly dependent on the 

footprint of the radar beam at a particular depth (Pérez-Gracia et al., 2009). Knowledge of the 

radiation pattern is therefore crucial for accurately estimating the GPR system’s spatial 

resolution. Researchers have modelled GPR radiation patterns by measuring the main lobe and 

then providing various radiation patterns (Jiao et al., 2000; Lambot et al., 2004; Pérez-Gracia 

et al., 2009).  

The shape of the radiation pattern significantly affects the footprint of a GPR beam. A narrower 

beamwidth with a smaller footprint provides better spatial resolution.  established a simplified 

model of horizontal radar resolution, which was based upon the relationship between object 

size and radar resolution. The footprint is usually estimated as the First Fresnel Zone (FFZ). 

There are various equations used to calculate the Fresnel zone in the far-field (Leckebusch & 

Peikert, 2001; Leucci & Negri, 2006; Leucci et al., 2003). The estimation of spatial resolution 

is always rough as it involves many factors, such as the design of the antenna, frequency, beam 

angle and host medium properties. Among the available equations, Equation [2.19] is preferred 

for its computational efficiency and stable performance (Pérez-Gracia et al., 2008): 
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r = √(
𝑣2

16𝑓2
+

𝑣𝑧

2𝑓
) [2.19] 

where r is the radius of the FFZ, 𝑧 denotes depth, 𝑓 is the standard for dominant frequency, 

and 𝑣 is the GPR wave velocity. Specifically, 𝑓 refers to the centre frequency of the wavelet 

reflected from a specific object, which is normally smaller than the centre frequency suggested 

by the manufacturer (antenna point to air). The centre frequency is determined after performing 

the wavelet transform in the time-frequency domain (Lai et al. 2014).  

c. Dielectric contrast and attenuation 

Another critical aspect of slice quality is the object visibility; whether the target object can be 

distinguished from the background medium, which is governed by dielectric contrast 

(manifested as reflection coefficient) in Equation [2.20]: 

R =
√휀1 − √휀2

√휀1 + √휀2

 [2.20] 

where R is the reflection coefficient across two vertical interfaces and 휀 denotes the dielectric 

constant/relative permittivity of the host medium. 

Attenuation is another significant effect on a radar’s wave amplitude. When a GPR signal 

penetrates a lossy medium, the amplitude decreases with depth. The attenuation rate depends 

on the electrical conductivity of the host medium. In order to make deeply buried objects visible, 

a range gain function is applied to the data to compensate for the effects of attenuation. The 

use of different types of gain functions, however, can result in various “artificial” reflection 

intensities being unintentionally added to the subsurface image and an increase of noise 

alongside the signal. Knowledge of the attenuation rate in the real environment can help reduce 

errors and more accurately delineate the subsurface. The received signal intensities are 

transformed into colours, and the scale used in the transformation process is very important 

because it describes the reflection contrast. A linear transform that presents a true intensity 

contrast involves limited operator interpretation, and it is suitable for a majority of GPR 

purposes, except in certain circumstances where signal exaggeration is required. The use of a 

non-linear colour transform would actually increase the degree of human intervention and 

complexity in the image creation process. In this study, a linear colour transform was applied 

in all cases.   
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2.4.2 Current developments in GPR imaging 

Daniels et al. (1997) pointed out that the purpose of processing GPR data is to change its 

appearance, rather than change its interpretation. Before attempting to interpret the GPR data, 

it should be properly processed, so as to extract the useful information while filtering out 

irrelevant noise. 

Having been through decades of development and application, the techniques of GPR signal 

processing are becoming increasingly mature. Jol (2009) and Annan (2004) summarized the 

typical flow for GPR signal processing, as shown in Figure 2-5. The workflow is widely 

accepted and implemented in the industry.  

 

Figure 2-5 Typical processing sequence of 2D GPR data (Jol, 2009) 

a. De-wow and adjust direct current shift 

'De-wow' and ‘adjust DC shift’ refer to temporal filtering used to remove very low frequency 

and direct current components from the data. Very low frequency components of the data are 

associated with either inductive phenomena or possible limitations relating to the 
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instrumentation’s dynamic range. Figure 2-6 present the effect of “de-wow”: the later part of a 

GPR trace is shifted up in (a), and it is corrected to the middle with “de-wow” in (b).  

 

Figure 2-6 An example of the de-wow on a GPR trace (Rowell et al., 2010): (a) before and (b) after 

the de-wow. 

b. Time-varying gain  

GPR signals are rapidly attenuated as the wave propagates into the subsurface. Reflection 

events from greater depths may be invisible or indiscernible. Equalizing amplitudes through 

the application of a radar time-dependent gain function compensates the rapid fall-off in radar 

signals over longer travel distances. This is referred to as "time varying gain" (Goodman & 

Piro, 2013), such as automatic gain control (AGC), which is a continuously adaptive gain,  that 

is helpful when it is important to show all information irrespective of amplitude fidelity. The 

use of manual gain with user-defined gain function is another alternative. Exponential or linear 

gain imitates and amplifies the mathematic model of the attenuation curve of the data. Another 

widely used gain is manual y-gain, which allows operators to define multiple points with a 

desired amplitude along the time axis in each A-scan. Each type of gain relies on different 

adjustments against the attenuation in different situations.  

c. Filtering 
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Filtering can be applied before or after time gain as long as the effect of the gain is understood. 

Temporal filtering means filtering along the time axis of the dataset. 

A bandpass filter is a 1D filter that works in the frequency domain. Waveforms are transformed 

into the frequency domain using Fast Fourier transforms (Daniels, 1996; Malagodi et al., 1996). 

Certain ranges of frequencies are retained while the rest is removed. As the signals are 

decomposed into their spectral components, the amplitudes of different frequencies can be 

adjusted by reducing or enhancing the desired frequencies (Goodman & Piro, 2013). High-pass 

and low-pass spatial filtering are two well-known types: the high-pass spatial filter retains 

dipping responses and removes flattened events, and vice versa for the low-pass filter. Median 

and mean filters are 2D filters used to smoothen noise spikes and can be applied in both the 

time or space domain. 

Background removal is another form of 2D spatial filtering that removes repetitive responses 

in every trace. It eliminates constant and systematic clutter noise across the radargram. A 

popular background removal process involves calculating the average pulse across the entire 

radargram and then subtracting it from each individually recorded pulse (Bernabini et al., 1995; 

Malagodi et al., 1996) 

d. Time zero correction 

The zero ns position (‘time zero’) changes depending upon the ground material. The definition 

of the first measured arrival as time zero has been much debated. When an antenna is placed 

on the ground surface, the direct wave is altered in shape and shifts later in time by up to several 

tenths of a nanosecond, due to the dielectric loading of the ground material in the near field of 

the antenna (Yelf, 2004). Time zero correction refers to moving the zero ns position of each 

trace in order to eliminate the lag from electronic zero to ground zero. GPR users are advised 

to estimate the time zero in each application through their own experiments gained from sites. 

e. Velocity analysis 

As discussed in Chapter 2.1, the mathematical form of the hyperbolic reflection relates spatial 

position (x) to travel time (T). A handy aid to interpretation when estimating GPR wave 

velocity is to visually fit a model hyperbolic shape to the GPR data, using the two-way travel 

time as described by Equation [2-7].  developed an algorithm that takes the object radius into 

consideration when estimating the wave velocity. 
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f. Elevation correction with topographic data 

For surveys on undulating ground, GPR scans must be shifted based on elevation changes. 

Standard topographic adjustments require the velocity to be estimated from the radargrams, 

and then the scans can be shifted vertically to account for the change in topography (Tanaka et 

al., 2009). The tilt of the scan is estimated using a ground slope calculation based on 

measurement of the local topography of the GPR scan. This slope is used to project the ray 

signal emitted from the tilted antenna.  

g. Migration 

Most GPR antennas emit a broad beam of radio energy into the ground, which results in 

hyperbolic reflections being recorded from round objects buried in the ground. Objects lying 

oblique to the antenna are still recorded because of the breadth of the beam angle. Migration 

regresses hyperbolic reflections back to point source reflections by adding up all the energy 

along the hyperbolas across the radargram, and places this energy at the apex of the hyperbola. 

The Kirchoff migration in the time domain and Stolt migration in the frequency domain are 

two popular migration algorithms that yield similar results in most cases. It should be noted 

that migration is only useful for circular objects. 

h. Envelop to erase phase information  

The enveloping of the recorded radar signal is known as a Hilbert Transform. It is a 

mathematical transformative process that uses a Fourier transform. The negative reflections are 

swopped 90 degrees and processed with an inverse Fourier transform. The recorded pulse is 

then ‘enveloped’ to produce a reflection that resembles the geometry of a circular object. In 

this process, the phase information is lost. 

i. Depth conversion 

After estimating time zero and the GPR wave velocity, the depth of an object can be calculated 

by measuring the two-way travel time. Note also that the estimated depth after migration and 

envelop appears deeper than that of the hyperbolic reflections. Depth must therefore be 

estimated before migration and envelop are performed. 
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Having been through above processes, the radargram is ready for interpretation and it can be 

used to construct 3D or 4D GPR representations. It should be noted that not all 2D processes 

are necessary, and data processing steps are selected using a ‘fit-for-purpose’ approach. 

2.4.3 Demand for 3D to temporal GPR imaging 

From a review of a large number of research studies conducted in recent decades (Lai et al., 

2018a), it is evident that 3D C-scans were first utilized in the 1990s (Goodman et al., 1995).  

The quality of C-scans is controlled by various factors. The first is the characteristics of the 

GPR signal, including its frequency and beamwidth, which determines it resolution. The 

second factor is the scattering of unwanted buried objects, as well as high conductivity in the 

host material leading to the a attenuation and absorption of the GPR signal. These are the major 

limitations posed by the interaction between both GPR antenna design and the material 

properties of the subsurface, thus not much improvement can be made.  

On the other hand, the techniques used in data collection and processing also influence 

significantly the C-scan quality. While a 3D C-scan is constructed by a number of 2D B-scan 

measurements, denser measurements lead to a better image quality for revealing the subsurface 

reality. Discrete measurements require interpolation and resampling, resulting in very different 

imaging results arising from the different data collection methods and/or processing algorithms. 

The process of generating C-scans is still immature and yet to be standardized. The parameters 

used for the generation of slices are mainly based on the experience of operators, which leads 

to inevitable human bias in the imaging results (Millington & Cassidy, 2010). Because the 

choice of different parameter settings may result in completely different images, it is hard to 

determine whether the subsurface image is a proper representation of the underground reality. 

Therefore, in order to optimize the subsurface image and produce more accurate results, it is 

necessary to provide a standardized workflow for adjusting the parameters of C-scan 

processing. Also, time-lapse measurements, which look at subsurface changes by comparing 

C-scans at different times, are used to capture consistent and reliable images. Due to the 

variation of signals emitted by different antennas, it may be difficult to achieve consistent GPR 

measurements at different times.  

The use of object-oriented C-scans is a supplementary approach since only semantic 

information about an object is provided. Instead of interpreting complex waveforms and digits, 
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a “health record” for buried infrastructure can be established from C-scan images using 

straightforward image processing, on the basis that the object condition is correctly described. 

Nowadays, GPR 3D imaging has been widely applied in diverse fields of civil engineering: for 

example, in mapping underground utilities (Birken et al., 2002; Lai et al., 2017b; Metwaly, 

2015; Ristic et al., 2009); measuring change of physical properties in materials (Kowalsky et 

al., 2005; Léger et al., 2014; Leucci et al., 2003); and inspecting structural conditions (Alani et 

al., 2013; Baker et al., 1997; Lai et al., 2013; Lai & Poon, 2012). More specifically, Nuzzo et 

al. (2002) imaged an archaeological site and pointed out that slice thickness was crucial as 

coarser slice thickness could lead to less accurate depth estimation, although they did not 

suggest a suitable range for slice thickness. Grasmueck et al. (2013) and Marchesini & 

Grasmueck (2015) imaged fractures and suggested that survey profile spacing should be no 

larger than ¼ wavelength – unrealistic for the civil engineering applications with higher 

frequencies, while  suggested the use of 3 profiles for delineating an anomalous body – the size 

of the body is often unknown. A rule of thumb is that the denser the measurements, the better 

the image quality become, but the higher the survey workload is involved. Allroggen et al. 

(2015) stated that a dense profile spacing should be applied but only vaguely described other 

parameters used, while it was suggested that excessive data processing would introduce greater 

imaging variation. Topczewski et al. (2007) used linear interpolation to fill in gaps between 

profiles in order to better represent the object shape, while Barraca et al. (2016) applied 

rectangular interpolation with a radius equal to profile spacing. The interpolation methods they 

used were suitable for imaging specific objects, but there was no suggestion on a universal rule 

like (Jol, 2009). Cassidy et al. (2011) confirmed that practical experience plays a remarkable 

role in determining suitable values for imaging parameters. Some research has tended to skate 

over the process of 3D image production (Alani et al., 2013; Hugenschmidt & Kalogeropoulos, 

2009; Porsani et al., 2012; Sagnard et al., 2016). Lualdi et al. (2003) pointed out that system 

resolution and antenna positioning accuracy are vital for high-quality 3D GPR imaging, while 

denser measurements ensure that image degradation is minimized. In order to balance the 

survey workload, an indication and image quality on the largest acceptable profile spacing is 

needed. For acquired data, Goodman et al. (1995) summarized the processing flow of 3D time-

slice reconstruction from a series of radargrams (B-scans) and focused on 3 major steps: setting 

up the survey grid, cutting slices and interpolation. These steps are reflected in the above 
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mentioned researches in this paragraph, but a rigorous workflow, as used in 2D processing (Jol, 

2009), is still missing.   

In summary, the accuracy of 3D C-scans depends upon denser and more reliable 3D 

measurement points. GPR data acquisition is time consuming and labour intensive, and 

achieving full-resolution imaging might be unrealistic in practice. This study aims to establish 

a bridge connecting GPR resolution theory and survey practice, and strives to achieve a balance 

between acceptable imaging quality and survey workload for various imaging purposes. As the 

positioning accuracy is mainly determined by the system design, the post-processing stage 

cannot provide much image enhancement. The above literatures applied the slicing and the 

interpolation to construct 3D images – C-scans. However, the values used were case-specific, 

and no general rules were summarized in this field, which makes the C-scans generation 

expertise-based and also implies that biases are inevitable. With different values, the C-scans 

generated by the same set of GPR data can vary. These discrepancies also introduce bias into 

the interpretation afterwards. The industry of GPR surveys is in high demand for the 

comprehensive guideline on 3D imaging. Therefore, the first objective of this study is focused 

upon 3D reconstruction from acquired GPR data.    

2.5 Pattern recognition techniques 

When the GPR representations (A, B, and C-scans) have been prepared, further interpretation 

can be conducted. But even thanks to the development of antennas and control units, leading 

to largely reduced time of field surveys, city-wide GPR surveys are still tedious exercises. The 

complex subsurface environment distorts GPR responses, and the analysis of GPR patterns is 

therefore still mainly reliant upon human visual interpretation. If large-scale GPR surveys are 

conducted, it involves manual interpretation of thousands and more GPR profiles.  

Pattern recognition is a prerequisite of intelligent approaches to classifying measurements. It 

is a concept that includes a broad range of methods that can integrate loosely related knowledge 

or techniques (Bishop, 2012; Tou & Gonzalez, 1974). Pattern recognition mainly consists of 

three processes: information reduction, information mapping, and information labelling. It is 

very often the case that a single technique cannot provide the optimal solution for a given 

pattern recognition problem (Schalkoff, 2007).  

Recently, research has focused upon automatically interpreting GPR responses using pattern 

recognition techniques (Al-Nuaimy et al., 2000; Ayala-Cabrera et al., 2011; Gamba & Lossani, 
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2000; Ghasemi & Abrishamian, 2007; Pasolli et al., 2009; Xie et al., 2013). Applications of 

automatic recognition techniques mainly focus on the more typical kinds of GPR responses; 

namely, hyperbolas. The methods used in past research, such as the Hough transform (Simi et 

al., 2008), support-vector-machine (SVM) (Xie et al., 2013), and neural network (Gamba & 

Lossani, 2000), worked well in detecting hyperbola reflection. In contrast to hyperbolic 

reflections generated by point reflectors, reflections from voids have no fixed morphology, as 

the subsurface voids themselves come in various sizes and shapes. The subsurface defects may 

yield GPR reflections with various morphologies: geometry-based pattern recognition methods 

are not capable for depicting them. In terms of more intelligent machine learning methods, the 

recognition and distinction of these defects demand sufficient descriptions on how they present 

in GPR data, which means large amount of training data is required. Besides, it is difficult to 

have ground truths in GPR survey currently, and therefore supervised approaches listed in 

Table 2-4 are difficult to be implemented. A comparison table on various pattern recognition 

techniques is given as Table 2-3.  

Table 2-4 Comparison of a few pattern recognition techniques 

Approach Method Pros Cons 

Supervised 

Support vector machine 

(SVM) 1) Can detect 

complex features; 

2)Works on multiple 

tasks; 

1)Require enough 

ground truths as a 

training set; 

2)High demanding in 

hardware. 

Neural network 

Random tree 

Unsupervised 

(Specific 

shape 

detection) 

Hough transform 1)Less demanding in 

hardware; 

2)Performs well in 

specific targets; 

3)Require less or no 

training 

1)Need clear 

definitions on the 

target; 

2)Work on a single 

target. 

Laplacian 

Canny 

Pyramid 
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2.6 Change detection in GPR images 

The last objective of this study is to develop a workflow for temporal diagnosis with GPR 

images. The change detection techniques in image processing help to identify temporal 

anomalies from time-lapse data.  

The change detection framework uses multi-temporal datasets to analyze the temporal effects 

of phenomena and quantify the changes observed (Hussain et al., 2013). Most change detection 

from images can be categorized from two perspectives: one is the classification body, which 

involves pixel-based change detection or object-based change detection; while another is the 

classification strategy, which uses supervised change detection or unsupervised change 

detection. An enormous number of methods were developed in the past decades, and the 

selection of an appropriate change detection method might be difficult in practice (Lu et al., 

2004).  

Pixel-based change detection methods work on every single pixel. Discrepancies among 

temporal datasets are identified by comparing the pixel values. Image mathematical methods, 

such as image differencing or rationing, are straightforward pixel-based methods. They require 

no object information but are very sensitive to speckle noise (Hussain et al., 2013). With the 

exception of reflection intensity, semantic meaning can be assigned to the pixel value. Some 

typical examples include image classification, normalized digital vegetation index (NDVI), and 

advanced machine learning methods – such as principal component analysis (PCA), artificial 

neural networks (ANN) or support vector machine (SVM). These latter methods label pixels 

with pre-defined class numbers (Canty, 2014; Gopal & Woodcock, 1996; Huang et al., 2008; 

Lillesand et al., 2014; Lunetta et al., 2006). Temporal changes are identified from pixels with 

the same label. These approaches can eliminate errors from tiny scatterings but introduce errors 

from the classification process itself. The quality of classification therefore depends on an 

accurate training dataset (Coppin et al., 2004). On the contrary, object-based change detection 

methods work on the extracted object. In some cases, pixels, which are cells recording radiation 

intensity, are not the most suitable unit for describing an object (Johansen et al., 2010). The 

very first step is grouping pixels into segments according to the target objects’ characteristics, 

such as texture, shape, geometry, and spectral information (Blaschke, 2010). Thereafter, 

changes within the targeted segments are identified by comparing classified segments in the 

temporal dataset. Some well-known object-based detection methods include a comparison of 
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classified objects and multi-dataset detection of objects’ change; these methods classify 

segments rather than pixels into either changed or unchanged groups (Singh, 1989). Compared 

with pixel-based methods, object-based methods place emphasis on specific objects, thus 

affects of other sources (equipment, untargeted objects, background environment) may be 

eliminated. 

Whether pixel-based or object-based change detection methods are used, both can be either 

supervised or unsupervised. Supervised methods demand sufficient knowledge of the 

information given in images. Given the existence of a training dataset extracted by ground 

truthing, a model can then be established and applied to the whole image. The supervised 

methods are highly sensitive to the accuracy of the training dataset (Volpi et al., 2013). 

Normally, unsupervised methods iteratively optimize the results when discriminating between 

changed and unchanged. Since no preliminary definition is required for unsupervised methods, 

their reliability and accuracy are hard to ascertain (Bovolo & Bruzzone, 2007). A comparison 

table on various change detection methods is given as Table 2-5. 

Table 2-5 Strength and weakness of each kind of change detection approach   

Approach Pixel-based Object-based 

Supervised 

▪ Details in images are 

maintained 

▪ Sensitive to the training 

dataset 

▪ Sensitive to scattering and 

random errors 

▪ Robust on scattering 

effects 

▪ Avoid errors from the 

sensor 

▪ May lose details 

Unsupervised 

▪ Require less preliminary 

knowledge on targets 

▪ Details in images are 

maintained  

▪ Less reliable 

▪ Rely on accurate 

segmentation 

▪ Avoid errors from the 

sensor 

▪ May lose details 
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Appropriate customization is essential when adapting image change detection techniques to 

GPR 3D slices. A successful implementation was provided by Hong et al. (2017), which 

detected corrosion in reinforced concrete using the intensity change in GPR depth slices. The 

subsurface environment of the concrete specimens is relatively homogenous, that the variation 

in the reflection intensity can only come from the changes of material states in the specimen. 

In terms of the complex underground subsurface, it is hard to extract the information of target 

objects from the surrounding environment. Allroggen et al. (2015) and Lai et al. (2016c) 

observed the water seepage from temporal C-scans. But the scale of these two studies was small 

and the experimental environments were also homogenous – the methods used were not 

suitable for large scale diagnosis on the urban subsurface.   

Temporal changes in GPR data are affected by various factors including moisture conditions, 

temperature, and equipment spectral range. Given that the resolution of GPR images can go up 

to centimetres, the mathematical pixel-based method may be ineffective in that range. However, 

object edges in GPR images are not sharply depicted because of the polarity of the material, 

which makes it difficult to extract the specific object with the correct shape. As discussed in 

Chapter 2.4, the information available in GPR images is too limited to do object-based change 

detection, mostly because of limitations due to scattering of the host media and an insufficiently 

high resolution. In summary, the unsupervised pixel-based change detection method is the most 

suitable approach for temporal GPR depth slicing.   
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Chapter 3 Standardization of GPR imaging processing  

Chapter 2.4.3 introduced the current development of GPR imaging. There is mature knowledge 

on radargram processing, but there is not a protocol on the C-scan generation. The 3D images 

produced by different operators can vary from one another, and may lead to different 

interpretation An example is shown in Figure 3-1.  

 
a 

 
b 

Figure 3-1 Illustrations on the variation of C-scans generated from the same set of GPR data 

showing a continuous drainage pipe. (a) the C-scan with a slice thickness (ST) as 0.02m; (b) 

the C-scan with a ST as 0.1m.  

A drainage pipe is shown at the middle of Figure 3-1: it is doubtful whether the continuous 

pipe is disconnected or not  although both images are from the same set of GPR data. This 

chapter introduces a standardized 3D GPR imaging flow, and supports it with well-established 

GPR theories reviewed in Chapter 2 and supported with 25 sets of empirical experiments 

conducted in various fields, e.g. concretes, underground utilities, subsurface voids.  

3.1 Quantification of imaging parameters  

It is impossible to have consistent and comparable imaging results without a unified workflow. 

There are various factors affecting the 3D imaging result, including (1) GPR capabilities 

(Chapter 2.3.1), (2) electromagnetic properties of target objects and surrounding materials 

(Chapter 2.3.5), and (3) the imaging processing methods (Chapter 2.4 and 2.5). For (1) and (2), 
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they are not controllable because the subsurface environment is not meant to be disturbed, and 

the GPR capability is determined by the electronics and antenna design which is out of control 

of surveyors/civil engineers. But for (3), the imaging processing is the post-processing 

procedure of data where improvements can be made after establishing steps and parameters in 

a workflow. It is also important that C-scans are merely intensity maps composed of grayscale 

values, which means that the physical properties of the buried objects like phase, reflection 

coefficients and spectral properties of GPR wave reflections contained in B-scans are lost an 

do not contribute to the building of the workflow. Therefore, some other known or controllable 

piece of information like types of target objects (Ch.3.1.1) profile spacing, slice thickness and 

interpolation (Ch. 3.1.2) are taken into account. Then, based on the most crucial object 

characteristics and GPR imaging parameters, the upper and lower limits for each parameter 

were defined in each case of application. A relationship between GPR imaging and object 

characteristics was investigated in order to construct an optimized combination for GPR 

imaging workflow.  

3.1.1 Target objects categorization 

With reference to GPR principles and application case studies, subsurface geometries and 

material properties are two major parameters affecting imaging. Basically, a subsurface object 

can be categorized into two main groups: continuous objects with linear shapes, or local objects 

with round or irregular shapes. The success of slice imaging depends on the dielectric contrast 

between the two materials being sufficient enough to record a reflection whose intensity can 

be imaged against the background noise level. 

a. Continuous linear objects 

Continuous reflections of linear objects occur at transects across a series of parallel radargrams. 

Underground utilities and rebars in concrete are two major kinds of buried linear objects. These 

linear objects are presented as continuous reflections in C-scan displays.  

b. Local objects 

Local objects are non-continuous structures, such as small voids or cracks, which appear in 

GPR radargrams as discrete reflections. The most crucial factor in identifying local objects 

from GPR C-scans is the object size. 
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3.1.2 3D C-scan parameters categorization  

In line with the important characteristics of the objects discussed above, several crucial 

parameters in C-scan imaging are identified: the survey profile spacing, slice thickness, and 

interpolation.    

a. Survey profile spacing (PS) 

In GPR surveys, a denser GPR profile spacing can guarantee that all target objects will fall 

within the radar’s footprint. But how dense is dense enough? It is not realistic or practicable to 

acquire infinitely dense GPR profiles. Normally, the spacing of GPR profiles is no larger than 

the anticipated object size or distance between adjacent objects ("ASTM D6432-11," 2011). 

However, in practice, there is always a need to balance between survey resolution and survey 

cost (Maas & Schmalzl, 2013). This study suggests a maximum threshold for profile spacing 

that can be applied while still providing a good enough resolution to identify subsurface objects. 

The relationship between profile spacing and object types is demonstrated in Figure 3-2(a). 

b. Slice thickness (ST) 

Depth slices show the radar reflection intensity over a certain thickness at a given depth. A 

single slice of a certain thickness presents a summed reflection within this depth range. Thicker 

slices produce more reflection energy, but this also introduces imprecision regarding object 

depth. For non-overlapping slices, the choice of the depth error is at least half the slice thickness. 

For slice thicknesses that are much smaller than object diameter, the object cannot be fully 

delineated in a single slice. The use of an appropriate slice thickness is therefore important in 

C-scan imaging quality. An illustration of slice thickness is shown in Figure 3-2(b).  

c. Interpolation (IR) 

Very often, survey profiles are not dense enough to map a full-resolution GPR image, even 

though full-resolution imaging has been shown to be superior (Grasmueck et al., 2005). 

Interpolations, such as inverse distance and kriging, are widely used to help with filling in gaps 

between survey grids. The selection of interpolation radius significantly affects C-scan 

resolution: a smaller radius preserves more true measurements while local extrema are 

maintained; in contrast, a larger radius creates data smoothing while details of smaller objects 

can be lost. How the interpolation radius affects the GPR imaging resolution is not yet codified, 

hence this study attempts to quantitatively analyse it. Two types of interpolation are discussed 
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here: one is bi-linear interpolation, which means taking both orthogonal directions of GPR 

profiles into computation; while the other is linear interpolation, which is applied to single 

direction GPR profiles and interpolation is made primarily perpendicular to the profile 

direction. A schematic illustration of interpolation is shown in Figure 3-2(c). 

   

a b c 

Figure 3-2 Illustrations of GPR imaging parameters. (a) GPR profile spacing with a linear 

object: profile may perpendicular or parallel to the object orientation; (b) illustration of slice 

thickness; (c) illustrations of profile spacing and radius of associated bilinear/linear 

interpolation, with SRmax and SR min representing maximum and minimum acceptable search 

radius, respectively, while SRy and SRx denotes long axis and short axis of elliptical search 

radius in linear interpolation, respectively.  

3.1.3 Empirical experiments 

Having identified these important factors in terms of both object characteristics and C-scan 

imaging parameters, four types of subsurface structures were designed:   

A: concrete with rebar; B: underground utility; C: local objects; D: complex combination 

For each experiment, imaging parameters were adjusted and the resulting image resolution and 

object reflection strength of C-scans were observed in order to determine appropriate ranges 

for each of the imaging parameters.  

Before exploring the 3D C-scan process, basic 2D radargram processing was conducted. The 

velocity of the reflected radar waves was estimated by common offset velocity analysis (Sham 

& Lai, 2016), while the actual frequency reflected by the object was measured using a wavelet 

transform (Lai et al., 2014). Inspired by Annan (2004), the 2D processing was simplified to 

avoid introducing unnecessary artificial signal noise. A processing flow is proposed for typical 

2D processing of common offset GPR data (Annan, 2004; Jol, 2009). Several necessary steps 

were chosen for this study, as follows: dewow to remove the DC shift in the waveform; static 

correction to adjust time-zero; range gain for consistent amplitude contrast; bandpass and 

background removal; and frequency domain phase shift migration with independent velocity. 
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After the 2D processing, the visibility of underground through GPR reflections of variety of 

target objects enhanced, because of amplifying the weak signals in larger depth and suppression 

of scattering noises. This workflow has been widely accepted and applied in the industry 

nowadays. When stacking B-scans into C-scans, the reflection intensity is transformed and 

presented as grey scale pixel images with linear colour transforms. The colour scale applied in 

each experiment was identical. 

3.2 A 3D imaging workflow 

Based on the experience of these empirical experiments, a workflow diagram is summarized 

in Figure 3-3. Three levels of C-scan imaging are identified and presented in sequence in the 

workflow diagram. The first, in the green box, is the profile spacing (PS) which affects the 

horizontal resolution of C-scans. The second, in the blue box, is slice thickness (ST), which 

determines the vertical resolution. Antenna frequency, object size and location depth all have 

effects on suitable thickness selection. The last level is the interpolation radius (purple box), 

which also has a crucial impact on the GPR C-scans’ horizontal resolution.  



 
 
 
 

 

 

Figure 3-3 3D GPR imaging workflow based on empirical experiments. Remarks: (1) based on equation [2.18], where 𝑣 can be determined by common 

offset velocity analysis (Sham & Lai, 2016), 𝑓 can be determined by wavelet transform (Lai et al., 2014); (2) an object spread (Δ) denotes object’s maximum 

spread along a traverse. 
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3.2.1 Representative Experiments 

To illustrate the proposed workflow diagram, 7 representative experiments were selected: they 

represent the major targets that GPR can work on in the urban area. Detailed descriptions on 

these 7 representative experiments are provided in Table 3-1 and Table 3-2. 

Table 3-1 Experimental Specification 

  Workflow Path Case Site Photo Survey Grid (↑) Site Specification 

A (Concrete) 

Concrete 

Wall 

(CW) 

GSSI 2GHz 

 

 

The concrete wall 

is placed in PolyU, 

with 2 layers of 

rebars embedded. 

The wall is 

1.5*1.5m large. 

Concrete 

Slab 

(CS) 

GSSI 2GHz 

 

 The concrete slab 

with 2 dense layers 

of rebars embed in 

is located in the 

Ferry terminal of 

Hong Kong, the 

slab was 3.7*3m 

large. 

Stepped 

Steel 

(SS) 

GSSI 2GHz 

 

 

The specimen is 

placed in PolyU. 

Ten rebars stairs 

are embedded in 

the concrete block. 

Vertical/horizontal 

distance between 

each rebar is 

0.2/0.1m. 

B 

(Underground 

Utility) 

Back Lane 

(BL) 

IDS 600 and 

200MHz 

 

 

A school lane in 

PolyU, a concrete 

made drain pipe 

with 0.22 diameter 

was buried 

underneath. The 

site area is 50*5m. 
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Island South 

(IS) 

GSSI 

400MHz 

 
 

A pavement road 

section at Island 

South in Hong 

Kong. The road 

section was 200m 

long and 10m 

width. A rising 

main is buried 

below ground. 

C (Local 

Feature) 

Surface 

Void in 

laboratory 

(LV) 

IDS 

600MHz 

 

 

The void was 

placed in the utility 

laboratory in 

PolyU. The void is 

0.8*0.6*0.15 in 

size, and 

surrounded by 

garden soil. The 

whole survey area 

is 4.5*3m. 

D (Complex) 

Cathedral 

(CA) 

IDS 

600MHz 

 

 

The cathedral is 

located in the 

Central District of 

Hong Kong. The 

site area is 8*5m 

size concrete floor. 

Archaeology 

Site 

(AR) 

GSSI 

900MHz 

 

 

The site is located 

in Tung Chung of 

Hong Kong, filled 

with dry soil. The 

survey area is 

20*10m large. 

 

Table 3-2 Measured and calculated variables in survey A to D 

Survey Case GPR Specification Imaging Parameters Object Detail 

  f(GHz) v(m/ns) λ(m) FFZ(m) PS(m) ST(m) IR(m) FS(m) Depth(m) FD(m) 

A 

CW 1.9 0.128 0.067 0.06 0.1 0.02 0.08 0.2 0.065 0.02 

CS 2.2 0.128 0.05 0.056 0.1 0.02 0.08 0.2 0.15 0.02 

SS 
2.2(2nd) 0.128 0.058 0.055 0.1 0.008 0.07 0.1 0.085 0.01 

2.6(5th) 0.106 0.04 0.095 0.1 0.015 0.07 0.1 0.135 0.01 

B 
BL 

0.210 0.105 0.48 0.43 0.5 0.301 0.4 \ 0.62 0.2 

0.496 0.0815 0.163 0.24 0.5 0.245 0.4 \ 0.62 0.2 

IR 0.710 0.101 0.208 0.108 1 0.2 0.7 \ 0.55 0.2 

C LV 0.481 0.104 0.207 0.104 0.3 0.1 0.21 \ 0.1 0.6 

D 
CA 0.680 0.098 0.14 0.09 0.5 0.116 0.3 \ 0.3 0.5 

AR 0.780 0.139 0.178 0.216 0.5 0.1 1 \ 0.5 \ 
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Remarks: f is the frequency measured with Lai et al. (2014); v is the measured velocity estimated 

by Sham & Lai (2016), λ and FFZ are the calculated wavelength (v/f) and the calculated radar 

footprint, respectively; PS, ST IR, FS, D, FD are profile spacing, slice thickness, interpolation 

radius, object spacing, object depth and object diameter, respectively. 

3.2.2 Continuous Objects (Survey A/B) 

The shapes and orientations of profiles to object alignment are of vital importance when 

mapping continuous objects. 

a. Profile spacing for the continuous object (Box 1 in Figure 3-3) 

Different profile spacing settings were tested for imaging the concrete wall (CW) and concrete 

slab (SW), in order to investigate the minimum requirements for GPR profile spacing, as shown 

in Figure 3-4. It is widely accepted that the denser the GPR profiles acquired, the higher the 

GPR imaging resolution achieved, but there is no lower boundary on profile spacing. In 

principle, the profile spacing should be smaller than half the rebar spacing so that both the gaps 

and rebars can be mapped. In all civil engineering applications, three profiles for one object 

can guarantee high-quality C-scans. When working in larger survey areas, data collection of 

such dense profiles is time consuming and labour intensive. Then a trade-off would be to reduce 

the number of profiles and sacrifice a higher resolution, while ensuring that the target can be 

still mapped.  

Figure 3-3(a) and (c) show the imaging result when profile spacing is equal to rebar spacing, 

which allows each rebar to be distinguished clearly. When the profile spacing is twice that of 

the rebar spacing, obvious artificial errors occurred: each rebar was interpolated to be straight, 

as shown in the red circled areas in Figure 3-3(b) and (e). Although the general areas with a 

stronger intensity were still mapped, they were shifted in position. In principle, at least two 

reflectors are needed for the definition of one linear shaped rebar. Although there were 

insufficient GPR profiles acquired, the general subsurface scene could nevertheless be imaged 

by interpolation without loss of imaging clarity. 
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Concrete 
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b 

 PS = 0.5 FS PS = 1FS PS = 2 FS 

Concrete 
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c 

 

d 

 

e 

Figure 3-4 C-scans of concrete with different PS. (a) and (b) are C-scans of the concrete slab 

with the profile spacing equals 1 or 2 times the object spacing; (c-)(e) are C-scans of the 

concrete wall with profile spacing equals 0.5, 1 or 2 times the object spacing. 

However, normally known and consistent object spacing only exists in concrete and rebar 

mapping. In this case, the rebar diameter is normally far smaller than the rebar spacing, and 

rebar spacing – 0.1 to 0.2 m – is often significantly larger than multiple times the radar 

wavelength. When object size and object spacing are both unknown (i.e. Path B in Figure 3-3), 

which is rare in most cases, the radar’s wavelength is then the only factor taken into 

consideration when computing the GPR horizontal resolution, based on the principle of radar 

footprint. As discussed in Chapter 2.4.1, the profile spacing should be ¼ of the wavelength. In 

Path A experiments (CS and CW), the wavelengths of the 1.9-2.2GHz radars were 0.05-0.06m. 

Even though it is smaller than the rebar spacing, it was still acceptable for imaging such linear 

objects. In addition, diameters of linear objects are very often small (i.e. diameters of rebar and 

utility), compared to their lengths. Applying diameter as a reference to define the survey profile 

spacing may not feasible. Thus, the GPR wavelength is applied to determine the suitable range 

of profile spacing.  
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The road section in Island South (IS) was an ideal example for validating the imaging 

performance of different profile spacings for mapping single linear shaped objects, as shown 

in Figure 3-5. When mapping continuous underground utilities within larger areas, even fewer 

dense profiles can be used.  

1m 2m 3m 

   
a                                       b                                         c 

Figure 3-5 C-scans of Island Road with different profiles spacing. (a) 1m, (b) 2m, and (c) 3m 

profile spacing. 

When comparing the 3 generated results shown in Figure 3-5, there is clearly an upper limit to 

profile spacing. According to Table 3-2, the 1-3m profile spacing of the IS case study is 

significantly larger than the object (the pipe) diameter, and much larger still than the radar 

footprint, and even though the position of the pipe was located, its size was exaggerated. 

However, the discontinuities in the pipe (circled in red in the 1m C-scans), which were 

confirmed to be caused by leakage or defects, were connected in the 2m C-scans. The post-

image computation resulted in an inaccurate visualization of the subsurface situation.  

Besides, as the angle between the profiles and a linear object has a significant impact upon 

GPR response, the choice of suitable thresholds should be discussed from two aspects: the best 

and worst situation (Xie et al., 2018). In the best case, profiles are perpendicular to a linear 

object and a larger profile spacing is acceptable. In terms of the worst case, profiles are parallel 

with a linear object, which means that the response of the GPR will not be obvious enough and 

a smaller profile spacing is required. If the survey grid is orthogonal, or the angle between the 
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GPR profiles and the linear object is an acute one, then the suitable range of profile spacing 

will fall within those of the best and worst cases. 

In summary, a suggestion for the selection of a suitable profile spacing is as shown in Rule 

(a).  

{
𝑃𝑆┴ ≤ 6𝜆,   𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑜𝑟 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑡
𝑃𝑆// ≤ 4𝜆,   𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑜𝑟 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑡

       (a) 

b. Slice thickness for continuous objects (Box 2 in Figure 3-3) 

The stepped steel (SS) specimen was used to illustrate and describe the factors affecting slice 

thickness selection (Figure 3-6), and a consistent greyscale was maintained for these C-scans. 

For the stepped steel, the background material is concrete, which is relatively more 

homogenous compared to a typical underground environment, and the steel bars were evenly 

distributed.  

As shown in Table 3-1, rebars were buried with increasing depth, and the 2nd and the 5th rebars 

were selected to show the different imaging performance resulting from the variation of the 

imaging parameters at different depths. It is obvious that the apparent size of the imaged steel 

rebars was larger with larger slice thicknesses, but slices with a thickness smaller than 1 rebar 

diameter produced better imaging results, and the size of the imaged rebar is closer to that of 

reality. In particular, in deeper locations (column (a)) where the GPR signal is significantly 

attenuated, an excessively small slice thickness results in the mapping of insufficient energy to 

present a solid object. Conversely, an excessively large slice cannot provide an accurate 

representation of the object’s depth, due to the lack of vertical resolution. In shallower areas 

(column (b)), the exaggeration of mapped rebar size was less significant than that in the deeper 

area. The footprint of the GPR antenna increases with depth, but also causes the horizontal 

resolution to decrease with depth. These two observations illustrate the principle that GPR 

horizontal resolution depends upon the ratio of object size and radar footprint. 
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 2nd Steel 5th Steel 

0.5∅ 
  

0.75∅ 
  

1∅ 
  

1.5∅ 
  

2∅ 
  

 a b 
Figure 3-6 C-scans of the steel bar with different slice thicknesses. (a) column: 2nd deep steel 

bar and (b) column: 5th deep steel bar 

Another crucial factor affecting GPR resolution is the radar wavelength. The case of mapping 

underground utilities in the back lane at PolyU provides a good example for illustrating the 

choice of an appropriate slice thickness for a known object size and radar wavelength. With 

the exception of the 2 known utilities buried at the site, there was limited knowledge of the 

subsurface environment of the entire road (as Table 3-1). The GPR data were collected with 

positioning provided by an auto-tracked robotic total station. Figure 3-7 illustrates the different 

C-scan imaging performance with changing slice thickness.  
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 a b 

Figure 3-7 C-scans of PolyU back lane of 490MHz from 600MHz antenna (a) and 210MHz 

from 200MHz antenna (b), with thickness from 0.5λ to 2λ. 

As the antenna footprint depends on its frequency (wavelength), the effect of changing the slice 

thickness produced different results in C-scans obtained from the two frequencies. As 

illustrated in Figure 3-7, various thickness settings produce similar results when using a higher 

frequency (600MHz) antenna. With the 200MHz antenna, the image of the utility gradually 

faded out when the slice thickness was smaller than 1 wavelength. According to Table 3-2, the 

number of 1λ of 210MHz GPR data was 2 times the estimated pipe diameter, but even 2λ of 

600MHz data was much smaller than the pipe’s diameter. The imaging results correlate well 

with Figure 3-7, thus confirming that the slice thickness should not be in the same order of 

dimension of the object size.   

Drawing conclusions from these experiments, a guideline for suitable slice thickness is 

presented below as Rule (b). 

{
0.5∅ ≤ 𝑆𝑇 ≤ 1.5∅,   𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑖𝑧𝑒 𝑘𝑛𝑜𝑤𝑛    
0.2𝜆 ≤ 𝑆𝑇 ≤ 1𝜆,   𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑖𝑧𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

     (b) 

c. Interpolation for the continuous object (Box 3 in Figure 3-3) 

Another observation is that the effects of the interpolation radius on the horizontal resolution 

is also affected by the interpolation radius applied. In GPR 3D surveys, local interpolation 
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methods are widely applied to fill up the gap not covered by the survey traverse. When 

maintaining other parameters and only changing the interpolation radius, significantly different 

imaging results can be obtained (Figure 3-8). When the interpolation search radius was larger 

than 2 times the profile spacing, 2 steel bars almost merged into one in the C-scan image. In 

cases such as the mapping of steel rebars in concrete, attention should be paid to the horizontal 

distance between 2 targets when defining the interpolation radius, and it should be no larger 

than the distance between 2 adjacent objects.  

  
a b 

  
c d 

Figure 3-8 C-scans of upper steel bar with different interpolation radiuses (a-d show 

profile spacings of  0.6, 1, 1.5, and 2 times PS respectively). 

The orientation of the GPR profiles has a remarkable impact on the accuracy of the GPR 

velocity estimation. A profile that is perpendicular to a linear object’s orientation provides the 

most accurate measurements (Xie et al., 2018). If the alignment of a linear object is known, 

then collecting data perpendicular to it is recommended. For surveys collected in both 

directions, decoupling cross grid profiles can enhance imaging of linear objects. 

The concrete wall (CW) was used as an example to demonstrate the decoupling of cross profiles 

with linear interpolation. The performance of different search ranges in linear interpolation is 

shown in Figure 3-9. GPR C-scans are formed by discrete measurements. When the 

interpolation radius was relatively small – smaller than the profile spacing, artificial gaps were 

introduced into the linear-shape objects, which made the objects present as disconnect dots. 

Specifically, the shorter axis refers to the radius perpendicular to profile orientation, while the 

longer axis represents the radius in line with the profile orientation.  
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a 

 

b 

 

c 
 

d 

Figure 3-9 C-scans of concrete wall with different interpolation radiuses. ((a)-(d) are 

0.2PSx2PSy; 0.6PSx1PSy; 1PSx2PSy and 1PSxy times profile spacing respectively). 

Therefore, a guideline for selecting a suitable interpolation radius when mapping linear objects 

is as shown in Rule (c): 

{

0.2𝑃𝑆 ≤ 𝑆𝑅𝑥 ≤ 1𝑃𝑆,   𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
1.5𝑃𝑆 ≤ 𝑆𝑅𝑦 ≤ 3𝑃𝑆,   𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
0.8𝑃𝑆 ≤ 𝑆𝑅𝑥𝑦 ≤ 1.5𝑃𝑆,   𝑚𝑖𝑠 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠                                     

 (c)  

3.2.3 Local Object (Path C/D)  

Since there is no concern over “connectivity” between GPR survey profiles when imaging local 

objects, more attention should be paid to estimating the correct size of the object. In view of 

this desired imaging objective, the emphasis is put on defining rules for interpolation. 

a. Bilinear interpolation for local objects (Box 6 in Figure 3-3) 

The surface voids created in PolyU’s utility laboratory were used to illustrate how local objects 

can be imaged with GPR. In this case, bi-linear interpolation was applied to allocate an even 

weighting to measurements in all directions. Figure 3-10 compares the C-scans of 

surfacesubshallow voids with different interpolation settings. The effect of interpolation radius 
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on object size was studied using the case of surfacesubshallow voids. For a local object which 

is not necessary in regular shape, the diameter is not a proper parameter in describing their size 

instead. Maximum object spread along a GPR traverse is applied to represent the object size.  

Whenthe void spread along the traverse is not estimated, it is desirable to apply interpolation 

with a radius of 0.7-1 times the profile spacing. As demonstrated in Figure 3-10, the imaged 

voids were closer to their actual spread when a radius equal to half the profile spacing was used, 

with the achievable horizontal resolution maintained as much as possible. In contrast, the void 

became increasingly smoothed when the radius reached 1 profile spacing or larger. A proposed 

rule for imaging local objects is shown as Rule (d).   

   
a b c 

  
d e 

Figure 3-10 C-scans of voids with different interpolation. (a)-(e) are set at 0.5, 0.7, 

1,1.5, and 2 times profile spacing, respectively. The red arrow points to the location of 

a void. 

{
𝑃𝑆 < 0.5𝛥 

𝑃𝑆 ≤ 3𝜆
→ {

0.5𝛥 ≤ 𝑆𝑇 ≤ 1.5𝛥 
0.2𝜆 ≤ 𝑆𝑇 ≤ 1𝜆

→ 0.8𝑃𝑆 ≤ 𝑆𝑅𝑥𝑦 ≤ 1.5𝑃𝑆 (𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

  (d)   

In addition, owing to the development of auto-track positioning technology — GPR armed 

with GPS or tracked total-station providing real-time positioning—when mapping large areas, 

GPR survey can be conducted without the need to follow pre-planned grids. If it is difficult to 

carry out GPR survey in two orthogonal directions, or no prior knowledge of the object is 

available, then bilinear or even multi-directional interpolation is recommended to avoid the 

introduction of artificial reflections. Positioning errors, whether occurring in a grid-guided 

survey or auto-positioning survey, are systemic errors that are hard to rectify in post-processing.    

b. Decouple interpolation for local objects (Box 456 in Figure 3-3) 
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For more complex situations, for instance, involving the coexistence of linear and local objects 

about which little is known (survey D), the bottom workflow in the flowchart is proposed. The 

experimental work at St. John’s Cathedral (CA) was used to validate this path. In this case, the 

GPR survey was conducted in both directions, and linear interpolation aimed at decoupling the 

two orientation profiles was utilized. Figure 3-11 presents the C-scans resulting from the 

cathedral survey, with different combinations of the short or long axis of interpolation radius. 

As there was a linear shaped object on the right of the survey area, it is obvious that a circular 

shaped interpolation radius performs better in this case.  

   
a b c 

Figure 3-11 C-scans of the Cathedral. (a)-(c) are C-scans at same depth of Cathedral 

underground with interpolation being 0.8PSx1.5PSy, 1PSx1.5PSy, and 1.5PSxy times 

profile spacing, respectively. 

A higher frequency and smaller profile spacing were used at the archaeological site and smaller 

objects were delineated with higher resolution C-scan images. In this case, although decoupling 

of two directional profiles and image mathematics were applied, adjacent objects were still 

distinguishable. When comparing the C-scans of 1xy and 1x2y, the imaging result are very 

similar, as shown in Figure 3-12. If the depiction of object linearity is not a priority, then the 

decoupling of GPR profiles of different orientations might not yield a significant improvement 

in the imaging of local objects.  Instead, the size of the interpolation radius has a far more 

obvious effect on C-scan generation. When the interpolation radius falls within the 0.8-1.5 

profile spacing, the generated C-scans do not show a significant difference, which correlates 

well with rule (d).    
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a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 3-12 C-scans of the archaeological site with different interpolation radiuses ((a)-(f) 

is 0.6xy, 0.8x2y, 1xy, 1x2y, 1.5xy and 2xy times profile spacing, respectively). 

3.3 Discussion on GPR 3D imaging  

According to the findings and generalized rules, the process of GPR 3D imaging is object-

oriented and the parameters of the process are interrelated. Generally speaking, there is no 

absolute rule of thumb; instead a thoughtful process, which integrates the physics of GPR 

imaging with survey operation experience, is required.  

3.3.1 Objective-oriented process 

The creation of GPR C-scans can be subjective, as the process is a “black box” that interprets 

and visualizes recorded GPR signals and converts them into semantic images. As a 

consequence, it is also an objective-oriented process and there are lower and upper range limits 

for each imaging parameter. Also, the tolerance on the value of each parameter depends on the 

object being investigated and the intended end user of the survey results. There are also trade-

offs between “detecting the object: locating the object’s position” and “mapping the object: 

depicting the object, including its shape and size”. The lower limit of a suitable range provides 

the best imaging results, with the object’s geometry being depicted closest to the physical 

reality. The upper limit of a suitable range does not necessarily result in significantly degraded 

images, and in some surveys, a degree of image degradation is acceptable. For instance, in the 
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concrete slab case shown in Figure 3-3, with the help of perpendicular GPR profiles and linear 

interpolation (box 3 in Figure 3-3), even when a larger profile spacing is utilized, the buried 

rebar can still be imaged, along with some errors. This was possible due to the idea that only 

two points are needed to define a line. But if the survey is targeted at the detection of corrosion 

in a concrete slab, it is not necessary to have each rebar clearly imaged, and a larger profile 

spacing and lower image quality, reflecting the upper limit of a suitable range, can be applied. 

In conclusion, some tolerance shall be allowed when defining the suitable range for each 

parameter, in order to maintain a fit-for-purpose survey while at the same time, the images are 

still reliable and unbiased.   

3.3.2 Interrelated parameters 

Though many researchers suggest denser survey profiles, it was observed that when mapping 

linear objects such as rebar, a coarser profile spacing can still be acceptable. Based on equation 

(1), when mapping shallower areas, the profile spacing should not be larger than 3 times the 

radar footprint or wavelength. In this way, the time and cost required to conduct the GPR survey 

can be significantly reduced (box 1 in Figure 3-3).  

In terms of slice thickness, the empirical experiment on rebar in concrete confirmed that the 

depth accuracy for C-scans is half the slice thickness, and it must be kept in mind that a thinner 

slice thickness reduces depth resolution errors. In addition, in many civil engineering 

applications, such as imaging concrete with higher frequency antennas when the targeted 

reflection intensities are strong, a larger or smaller slice thickness does not necessarily perform 

well. On the contrary, when working with lower frequency GPR in situations where the object 

size is comparable to the wavelength, a large slice thickness would result in a blurred image of 

the object, while an excessively small slice thickness would have insufficient reflection 

intensity to depict the object. Therefore, it is believed that slice thickness should be determined 

according to the ratio of known object size to radar footprint. With reference to Table 3-2, the 

slice thickness of all representative cases was smaller than the radar wavelength, and the most 

satisfactory results were recorded when the slice thickness was similar to the object’s diameter 

(box 2 in Figure 3-3). Based on these empirical experiments, a slice thickness of at least half a 

wavelength is suggested when the object diameter is unknown.    

Another important imaging parameter is interpolation. If the alignment of a linear object is 

consistent, then a spindly elongated shaped radius with linear interpolation is suggested, so as 
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to add weighting to measurements on profiles perpendicular to the object alignment. It is 

indicated in Goodman (2017) that applying linear interpolation and decoupling cross profiles 

can provide better images when depicting linear shaped objects. However, if the object 

alignments are misoriented, or one is mapping a local object, a larger search radius is helpful 

for eliminating anomalies. However, an excessively large search radius may result in undue 

image smoothing, while many unnecessary scatterers could be imaged if the radius is too small. 

Hence, it may be difficult to maintain a balance between retaining true measurements while 

smoothing tiny local speckles. 

3.4 Summary and contribution  

In conclusion, the standardized workflow provides a yardstick to systematically standardize 

the 3D GPR imaging workflow by identifying (1) feature types, (2) profile spacing, (3) slice 

thickness and interpolation as three key perspectives of GPR 3D imaging after validation of 25 

field experiments.  The standard workflow also provides a basis for fingerprint database, void’s 

pattern recognition/identifications and change detection presented in the next three chapters.   
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Chapter 4 Fingerprint database and void pattern 

simulation 

As reported in Chapter.3, a systematic production of C-scans can provide a general overview 

of the subsurface environment. But during the process of C-scan production, wave 

characteristics associated with buried features like phase, reflection coefficients and spectral 

properties of GPR wave reflections are lost. This makes C-scan a screening tool of buried 

features of interest rather than a tool for interpretations of alignment of utilities and urban 

subsurface hazards, especially dangerous air voids causing road subsidence. Therefore, for the 

purpose of interpretation, a fingerprint database with validated GPR responses on a particular 

type of features presented in this chapter is required, paving the way for pattern recognition in 

Chapter. 5 

4.1 Fingerprints of GPR responses of typical subsurface structures 

Each urban subsurface defects may yield specific GPR responses. GPR responses are affected 

by multiple factors, including dielectric contrast of two materials, background scattering, the 

geometry of reflectors. In practice, the GPR reflections from one kind of object are never the 

same, as the real underground world is very complicated. Therefore, the feature of GPR 

responses should be characterized.  

In order to distinguish defects from a healthy subsurface structure, the GPR responses of 

“visible” underground structure should be depicted in advance. Typical subsurface structures 

that can be imaged by GPR, include underground utilities (metallic or non-metallic); subsurface 

layers (concrete backwall, road pavement/subgrade interface); metallic manhole cover; air void; 

reinforced concrete; and buried concrete raft/slab/plinth. Table 4-1 summarizes the 

descriptions and present the B-scans of these typical healthy structures.  

Table 4-1 GPR responses of typical subsurface structures 

Structure type Descriptions  Examples 

Underground 

utilities (non-

metallic) 

 

When GPR antenna is traversed 

across an object hyperbolic 

/parabolic reflection appear in the 

radargram. If the GPR traverses 

are perpendicular to the utility 

alignment, the hyperbolic 

/parabolic response is the 

steepest. When the reflection is 
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not interfered by other reflectors 

or scatterers, the first arrival 

reflection of a metallic utility is 

in phase with the direct wave, 

while that of a non-metallic 

utility is out of phase with the 

direct wave. Certain decaying 

reverberations are expected. 

Layer (e.g. 

concrete 

backwall, 

subgrade 

interface) 

 

A continuous layer response is 

present along the radargram. 

 
Metallic 

Manhole cover 

 

Strong reflections without 

attenuation start from the 

time/ground zero to the bottom of 

the time window. 

 

 
Manhole wall or 

buried vertical 

structure 

 

Strong and flat reflections beyond 

time zero with reflections 

extended linearly at the two edges 

of the flat reflection to the 

sideway. 

 
Air void 

 

Voids present differently due to 

the ratio of the void size to the 

radar footprint. Details on it will 

be discussed in next subchapter. 

In C-scans, an air void is present 

as local anomalies with high 

reflection intensity  

 

Reinforced 

concrete 

Strong hyperbolic reflections at 

shallow subsurface with regular 

spacing and similar cover depth. 

 

 
Buried concrete 

raft/slab/plinth 

 

It looks similar to large size air-

filled void, except the 

reverberation patterns are more 

regular to repeat itself in depth. 

 
Remarks: the red arrows point to the corresponding object.  
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When the radar wave encounters a defect, the wave travel speed and reflection amplitude or 

even phase changes, and the GPR responses differently. Taking water leakage as an example, 

Lai et al. (2016c) found that along with water content increase in hosting material, the 

amplitude of GPR reflections are firstly reduced than return back to the original level when the 

material is saturated.  showed that if water leakage happens, the wave travel speed is reduced 

locally at the location where the hosting material is wet.  

The hyperbolic reflections from a rebar may be broken or vanish when the rebar is corroded 

(Bungey, 2004; De Souza et al., 2004; Nojavan & Yuan, 2006). Cracks within concrete 

structures can be observed with a GPR survey by identifying anomalies (Orlando & Slob, 2009; 

Panisova et al., 2016; Solla et al., 2014; Vidal et al., 2004).  

Some subsurface objects appear quite similar in GPR radargrams. For example, it may be 

difficult to distinguish air voids from a buried concrete slab, because reverberation appear in 

both cases. Also, feature with round-shape would generate hyperbola reflection, no matter it is 

a cross section of underground utilities or a ball-like air void. The manhole that is visible from 

both surface and GPR data can be used as a reference. Widely GPR application in the various 

subsurface structure is reviewed and summarized in  and Lai et al. (2018a). Pattern recognition 

techniques can help identifying specific GPR responses from GPR data. 

4.2 Standard road structure 

In metropolises like Hong Kong, there are multiple facilities buried underneath; they are power, 

water, drainage, sewerage, lighting or communication and so on (Farley et al., 2001; Lai et al., 

2017a; Lai et al., 2016c). Subsurface pipe leakage causes underground wash-out, leaving an 

air void when water is drained and finally resulting in road collapse when the damaged area 

can no longer support the heavy load of the pavement structure and its traffic. Over time, 

countless numbers of air voids develop beneath a city’s road network, which threatens the 

safety of the citizens’ lives and property. 

Bituminous road and reinforced concrete paved roads are the two most commonly seen 

pavement structures in Hong Kong. The Highway Department of Hong Kong establishes 

guidelines on typical road pavement constructions, as shown in Figure 4-1.  
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a 

 
b 

Figure 4-1 Guidelines on typical road structures: (a) is a section of bituminous road and (b) is 

for concrete roads from Highways Department of HKSAR Government (HyD, 2017a, 2017b) 

The structure of the bituminous pavements is comparatively homogeneous. Typical bituminous 

pavements consist of five layers: 0.04m thick wearing course, 0.065m thick base course, 

approximately 0.4m thick granular road base, and sub-base and soil subgrade. The above three 

layers are constructed by bitumen but with aggregates in different sizes: the aggregate size 

increases along with the vertical depth, ranging from 0.02m to 0.04m. Large aggregate sizes 

may lead to higher porosity and more blank space among aggregates, but the dielectric 

properties of each layer shall be very similar.  
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Normally a concrete pavement consists of three layers: 0.3m thick concrete slab where mesh 

reinforcements are integrated, 0.05m thick sub-base filled by granular material or lean concrete, 

and subgrade with soils. The maximum spacing of joint reinforcement is 0.3*0.45m in 

longitude and latitude, respectively, with a top cover around 0.06m thick. Air voids are usually 

found in the subgrade layer where most underground utilities are buried. Because the joint-

mesh reinforcement would generate strong reflection in a GPR survey, distortions on the GPR 

response of voids in subgrade are expected.  In order to model the situation of the voids under 

roads, the structure of roads must be coherent with the reality. There are standards that 

suggesting the ranges of several typical materials ("ASTM D6432," 2011; UUS-SPEC, 2019). 

The complex refractive index model (CRIM) was applied to determine the permittivity of each 

road layers. 

The CRIM as in Equation [4.1], which model the air and water content are considered, is proved 

reliable in higher frequency(around 1GHz) (Chan & Knight, 2001; Lai et al., 2006). are 

considered 

√휀′
𝑐

= 𝑆𝑤𝜙√휀′𝑤 + (1 − 𝑆𝑤)𝜙√휀′
𝑎 + (1 − 𝜙)√휀′𝑠 4.1 

where 휀′𝑐, 휀′𝑤, 휀′
𝑎 and 휀′𝑠 are real permittivity of the composite, water, air and soil particle, 

respectively. 𝑆𝑤 is the degree of water saturation and 𝜙 is porosity. 

There are two assumptions made in the FDTD simulation in this thesis. Firstly, important 

material properties: conductivity, relative permeability, and magnetic loss are assumed from 

values provided in literature ("ASTM D6432," 2011; Cullity & Graham, 2008; NDT.net, 2011), 

while relative the permittivity was estimated as 11 with the wave velocity (0.09m/ns) of the 

laboratory data with Equation [2.6]. Permittivity and conductivity of some common materials 

are defined in Table 4-2. Although aggregate sizes and porosities of each layer are slightly 

different because percentages of air or water within the layer vary, these effects shall not be 

significant on the permittivity and conductivity values for material with low water content, 

such as bitumen and concrete road models. The estimations with CRIM agree with the 

assumption (Table 4-2). 

The second assumption is the rectangular shape of the void. Even though actual air voids are 

more likely to be irregular. The GPR model in this thesis makes use of voids in rectangular 
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shape because the elliptical or spherical shapes are not allowed in the simulation software 

gprMax. Rectangular voids with various length and height were then modelled, with which the 

sharp border of the voids caused by the collapse of inner material are imitated, as shown in 

Figure 4-2. Table 4-2 presents the parameters used in the FDTD simulation.  

 
 

a b 

Figure 4-2 Simulation model of two typical road structures: (a) is a bituminous road model, 

and (b) is a concrete road model 

Table 4-2 Parameters of the road models with the FDTD simulation 

 Layer 
Relative 

Permittivity 
Conductivity 

Relative 

Magnetic 

Permeability 

Magnetic 

loss 

Step 

size 

B
it

u
m

in
o
u

s 
 

Wearing course 8 0.05 1 0 

0.008 

Base course 9 0.08 1 0 

Road base 9 0.1 1 0 

Sub-base 10 0.1 1 0 

Soil subgrade 9 0.2 1 0 

C
o

n
cr

et
e 

 Concrete slab 6 0.001 1 0 

0.008 Sub-base 9 0.1 1 0 

Soil subgrade 9 0.2 1 0 

 

4.3 GPR responses of air voids 

Air voids are one of the most threatening subsurface defects in urban areas. The strong 

permittivity contrast between soil-surrounding a void and the air in the void leads to strong 

GPR reflections. Many researches investigated GPR responses of voids. Xu et al. (2010) used 

GPR to detect several common subsurface voids, and found cracks - realised as small voids - 
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yield hyperbola responses. Lai et al. (2017a) validated the reverberation pattern of voids with 

three case studies. Casas et al. (1996) illustrated that if the void was very small compared to 

GPR wavelength, diffracting hyperbolas occur in GPR radargram, while on the contrary, bigger 

voids generated an irregular signal with chaotic reflections and decrease of the received 

frequency. Kofman et al. (2006) simulated GPR responses with gprMax and indicated that 

reverberations happened only when the void size was very large compared to GPR wavelength. 

It is believed that the strong reflections with reduced frequency are caused by the reverberation 

of EM wave with air voids (Kofman, 1994).  

All these researchers demonstrated that an air void generates special representations in GPR 

data. The ratio of the void size to the GPR wavelength yields a significant impact on GPR 

responses how voids with different geometry (size, depth, etc.) present in this way in GPR data 

is still questionable. There are few types of numerical simulations of the propagation of GPR 

wave, i.e., ray-tracing techniques and FDTD approach. The former is adopted in GPRSIM, 

while the latter is used in gprMax and reflexw. As discussed in Chapter 2.2, the FDTD is more 

suitable for simulating the propagation of the GPR wave, and therefore gprMax is selected in 

this study. In addition in gprMax, heterogeneous EM properties in each Yee cell can be 

distributed randomly for simulation of GPR wave propagation in mixing materials, while the 

inhomogeneous materials can only be represented by the effective dielectric properties in 

reflexw.  

Subsurface voids with varying horizontal spread were created in the Underground Utility 

laboratory of the Hong Kong Polytechnic University (PolyU) (Wu, 2015). The tank was filled 

with soil. GPR profiles were collected with an IDS 600MHz system using a 0.1m profile 

spacing within an orthogonal grid, and C-scans of each void were generated. Meanwhile, 

gprMax simulations were conducted, imitating the laboratory environment; such that voids of 

varying horizontal and vertical size were located at a shallow depth (0.1m) within a soil 

environment. The EM parameters of the model of the laboratory were estimated by the inverse 

method with the laboratory data: the relative permittivity of the model was estimated as 11 by 

the wave velocity (0.09m/ns) using Equation [2.6]. The conductivity and the permeability of 

the model were adopted from the built-in example of the software gprMax. The step size of the 

simulations was 0.008 – matching the CFL (Equation 2.17) condition but sacrifice certain 

resolution for the sake of computational efficiency.  
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Simulated signals were transmitted and received by a 600MHz common offset antenna unit 

with a 0.15m antenna offset, according to the specification of the IDS 600MHz antenna. The 

laboratory experiments and simulations produced similar GPR responses. Four typical void 

patterns were identified in the B-scan data – hyperbola, cross, bowl shape, and reverberation - 

and these patterns appeared in succession as the void’s spread grew, as can be seen in the 5th-

6th rows in Table 4-3. In this way, the pattern templates were created in a relatively homogenous 

environment, free from any interference from other scattering events. In terms of C-scan in the 

7th row, voids present as local reflections with high intensity.   

Table 4-3 Forward modellings of surface voids with different horizontal spreads in lab 

Void 

spread 

(VS) 

0.4m 0.6m 0.75m  0.1m  1.25m 

Simulation 

model 
     

FFZ 

(900MHz) 
0.09m 

Ratio of  

VS-FFZ  
4 6 8 10 12 

FDTD 

simulation 

(B-scan) 

     

Laboratory 

experiment 

(B-scan)  

     

Laboratory 

experiment 

(C-scan) 

     

Pattern cross cross bowl bowl 
plain 

reverbration 

It is noticeable in Table 4-3, that in parallel with the increase of void horizontal spread, the 

hyperbolic reflections from the void’s edges also become more widely separated. When two 

hyperbolas overlap, cross patterns occur. Whether two signals can be distinguished depends on 
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GPR spatial resolution, while GPR horizontal resolution is determined by the footprint of a 

GPR beam. A narrower beamwidth with a smaller footprint provides a better spatial resolution. 

There is preliminary research that established a simplified model on horizontal radar resolution, 

with the relationship between object size and radar resolution (Annan & Cosway, 1992). 

Equation [2.19] which calculate the FFZ is applied in this study to estimate the radar footprint. 

Because the footprint is dominated by wavelength and depth, and the void pattern is wavelength 

dependent, the footprint is calculated as 0.09m to eliminate the influence of void depth. It is 

observed that, when the void spread is smaller than r, the GPR response is a point reflection – 

hyperbola. When the void spread increase to 2-5 times r, a cross pattern occurs in the radargram. 

The bowl shape pattern presents when the void spread is larger than six times r. When the void 

spread is significantly larger than the GPR footprint, reflections of two edges of the voids are 

completely separated, and a plain bottom is presented between the edges. This kind of pattern 

is named plain reverberation in this study.  

However, discrepancies between the simulated B-scans and collected data are observed. The 

void tops – the upper boundary between the air and the soil – are clearly shown in the simulated 

B-scan (5th row), but are invisible in the laboratory B-scans (6th row). In the numerical 

modelling, the effects of the surrounding material were eliminated by subtracting the signal of 

the surrounding material, as shown in Equation [4.2]. The patterns shown in the 5th row of 

Table 4-3 present the GPR reflection generated by air-voids only, including the reflection from 

the upper air-soil boundary. On the contrary, in the laboratory experiments, air voids were dug 

from the surface of the soils. The phase of the upper boundaries of voids was overlapped with 

the phase of the ground wave. Since basic B-scan processing – including the background 

removal – were applied to the laboratory data, the reflections of the void tops were removed. 

Besides, Mie type scattering in the laboratory B-scans contributes to discrepancies between the 

numerical simulations and the collected B-scans. Whether these GPR reflection patterns can 

represent the reality need more justification.  

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠
= 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑣𝑜𝑖𝑑 − 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑜𝑖𝑑  

4.2 
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4.4 Forward modelling on GPR responses of air voids under the 

road surface 

Ground collapses usually happen on the road surface: busy roads are always suffering heavy 

loading, and if there are large air voids beneath, the road structure hardly survives. However, 

in the real world, the subsurface is not as homogeneous as that of the laboratory and previous 

models. It may be too simplistic to have simple and regular void patterns as the ones presented 

in Table 4-3. Hence, forward simulations on the voids under road structure were further studied. 

Two frequencies were modelled in this study: 200MHz and 600MHz, considering the required 

survey depth is generally less than 3m.  

4.4.1 A site experiment on void under road structure 

A site experiment was conducted on Shek Mun, Hong Kong to investigate how air voids 

present themselves in GPR representations (B-scans and C-scans). As shown in Figure 4-3(a), 

the survey site consists of two parts: a section of concrete paved road and another section of 

block paved road. The concrete road was strengthened by 0.1m*0.2m mesh rebars (Lai et al., 

2018b). In total, six fit balls with various spread were buried at different depths beneath the 

road sections (Figure 4-3(b)). There are two utilities located across the survey site: a PVC pipe 

(ø: 0.1m) and a ductile iron (D.I) pipe, (ø: 0.2m) for observing its interference on the signals 

of the voids.  

 

 

a b 

Figure 4-3 Illustration of the site and buried balloons in Shek Mum: (a) is the concept 

drawing of the site, while (b) is a photo of the buried fit ball.  

GPR B-scans were collected by a dual-frequency (600/200 MHz) IDS model, following an 

orthogonal grid with a 0.25m PS. GPR B-scans were processed according to Jol (2009) and 

Figure 3-3 to generate C-scans. Three representative fit-balls were selected for further analysis: 

concrete block 
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void 1, void 6 and void 7. Specifically, void 1 was buried under the mesh rebar, void 7 was 

close to the D.I pipe, and Void 6 was buried in a deeper area (1.479m). The spacing of the mesh 

rebar in the concrete paved road section was 0.1m. Considering the subsurface voids is often 

caused by pipe leakage, the effect from the utility nearby on the detection of voids could also 

be observed.  

The underground environment was inhomogeneous and complex at the site, because the survey 

area was backfilled with the excavated soil, which resulted in disordered GPR reflections 

compared with the laboratory case (Lai et al., 2018b). FDTD simulations were also carried out 

to model the GPR radargram of the voids that are free from any other scattering, apart from the 

road structure and utilities. Simulated models were designed according to the fit balls buried in 

the site. Fit balls were not buried very deep, therefore only GPR data of 600MHz were applied 

in this study for the sake of resolution the fit balls. Basic signal processing, like filters and gains 

were applied to the radargrams. The radargram and C-scans are displayed in Table 4-4.  
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Table 4-4 Forward modellings on air voids with different horizontal spreads in the site 

Balloon Void 1 Void 6 Void 7 

Simulation 

Model 

     

FFZ 

(600MHz) 
0.24 m 0.37m 0.19m 

Ratio of  

VS-FFZ  
4.2 3 3 

FDTD 

simulation 

(B-scan) 

     

Site 

experiment 

(B-scan)       

Site 

experiment 

(C-scan) 

   

Pattern Strong reverberation hyperbola hyperbola 

Remarks: The dimensions of the FDTD simulations in the 5th row are the same as the 

red rectangles in the corresponding 6th row: 1.5m long * 1.5m deep. The C-scans in the 

7th row present the survey area that was 9m*9m large. Red arrows point to the location 

of voids. 

Table 4-4 is divided into three parts according to the void spreads. Part 1 simulation (the 2nd to 

4th row) illustrates the simulation model and simulated GPR B-scans via the calculated FFZ. 

Part 2 experiments (the 5th to 6th row) presents the B-scans and C-scans after the experiments. 

Part 3 pattern interpretation (the last row) suggests the type of void patterns are all plain 

reverberations. The fit balls appear as regular spheres, while the flattened hyperbolic patterns 

were expected in the B-scans. B-scans of Void 1, both experimental and simulated B-scans, 

show that the GPR responses were broken into sections by tails of rebar reflections. Besides, it 

can be observed from both simulated and experimental B-scans that the strong reverberations 

of GPR responses from void 1 were more obvious than that of the other two voids. The resonant 
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GPR response generated by voids under the reinforcement last through longer time/depth – 

coincide with the observation in Table 4-3 and Lai et al. (2017a): that the strong reverberations 

of GPR reflection of voids decay in the time window. The GPR responses of void 7 presented 

as flatten hyperbola in both the experimental and simulated B-scans. The interference from the 

nearby utility was clearly visible in the experimental and simulated B-scans. However, the 

simulated GPR responses of void 6 located shallower than that in the experimental B-scans. It 

was possible that the buried depth of the fit ball 6 (void 6) may move in reality after backfill of 

the upper soils.  In contrast to the void 1 in the concrete paved road, the strong reverberation 

of GPR reflections was not visible in the B-scans of void 6 and void 7 in the bitumen paved 

road. In terms of C-scans in the 7th row, all three voids appear as local and high reflections, 

which is coherent to the result of the laboratory experiment. 

Besides, the simulation and experiment agreed that the interferences of the road layers were 

not significant in both experimental and simulated B-scans. Specifically, void 6 and void 7 

appear as a continuous and plain pattern. However, in many cases, flat subsurface layers and  

utilities parallel to the GPR traverse also generate plain GPR reflections. The means to 

distinguish voids with large spread and utilities is to observe the horizontal length of the plain 

pattern generated by voids is restricted by the spread of voids which are much shorter in general.  

Similar to the reasoning of discrepancies between simulated and experimental B-scans in Table 

4-3, the experiment data (B-scans in 6th row and C-scans in 7th) suffer heavy scattering. Mie 

type scattering, which caused by the reflector’s size similar to the GPR wavelength, happened 

in the complicated and inhomogeneous subsurface world which contribute to the said 

discrepancies. 

4.4.2 GPR response simulations on voids under roads 

The observations of laboratory experiment and lab simulation are in agreement about the 

effects of void size on the GPR reflections, while those of the Shek Mun site experiment and 

the simulation are in line on the effect of the road structure on the GPR reflections. 

Unfortunately, it is not feasible to dig or bury a number of voids under the road structure in 

practice, then FDTD simulation can be used to study the combined effect of the void size and 

the road structure. Based on the typical road structures, GPR B-scans of air voids with different 

spreads and depths were modelled with the FDTD simulation. The void embedded in models 
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varies in the horizontal spread – range from 0.2m to 1.8m – while maintaining the 0.5m vertical 

size. 

a. GPR response simulations on voids under bituminous roads 

The FDTD simulated GPR reflections of the void under a bituminous road are similar to those 

of the laboratory environment: similar patterns with particular shapes are presented. The 

aggregate clusters generate scatterings, but they are not as strong as that of the air void, as 

shown in Table 4-5.  

Table 4-5 Forward modellings on air voids with different horizontal spreads in the bituminous road 

Void 

spread 
0.3m 0.5m 0.8m 1.2m 1.8m 

FFZ 

(600MHz) 
0.24m 

Ratio of  

VS-FFZ  
1 2 3 5 8 

600MHz 

     
Pattern 

(600MHz) 
hyperbola cross cross bowl bowl 

FFZ 

(200MHz) 
0.51m 

Ratio of  

VS-FFZ  
1 1 1 2 4 

200MHz 

     
Pattern 

(200MHz) 
hyperbola hyperbola cross cross cross 

The calculated radar footprint, in this case, were 0.24m and 0.51m for the 600MHz and 

200MHz antenna, respectively. These footprints are significantly larger than that of the shallow 

void experiments conducted in the laboratory. According to the laboratory results based on the 

shallow voids, a shallow void with spread larger than 0.8m would generate a plain 

reverberation pattern if the 600MHz signal was applied. But in the bituminous road simulation, 

the same 0.8m large void generated a cross pattern responses. The vertical location - depth - of 

voids were different in these two simulations. Thus the GPR footprints, which increase along 

with the penetrating depth, in two simulations were different. Therefore, it was proven that the 

GPR responses were related to the ratio of the GPR footprint to the void spread. When the 
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600MHz signal was applied, a cross shape pattern is expected if the void spread was between 

0.4m to 1m, and the simulation results were coherent with this hypothesis. Voids with 1.2m 

and 1.8m horizontal spread generated bowl shape responses in the 600MHz B-scans. It is 

consistent with a laboratory experiment that: when the void spread is around 6 times larger than 

the GPR footprint, a bowl shape pattern was generated.  

b. GPR response simulations on voids under concrete roads 

The simulations of the GPR response of air voids under the concrete pavements are displayed 

in Table 4-6. Apparently, the GPR reflection of voids was significantly distorted by concrete 

rebar on top of it, which is coherent with that of the Shek Mun experiment and simulation in 

Table 4-4. The reflections from the rebar interfere with the reflection from the edge of air void 

beneath. In B-scans of 600MHz, the GPR reflections of the top of the void, which is presented 

as the middle of the GPR pattern, were delayed to a lower time/depth. Then the pattern of the 

void was more like the bowl shape pattern: closer to time zero at the edges and farther away 

from time zero in the middle. 

Table 4-6 Forward modellings on air voids with different horizontal spreads in the concrete road 

Void 

spread 
0.3m 0.5m 0.8m 1.2m 1.8m 

FFZ 

(600MHz) 
0.20m 

Ratio of  

VS-FFZ  
1 2 4 6 9 

600MHz 

     
Pattern 

(600MHz) 
hyperbola cross cross undefined undefined 

FFZ 

(200MHz) 
0.44m 

Ratio of  

VS-FFZ  
1 1 2 3 4 

200MHz 

     
Pattern 

(200MHz) 
invisible invisible invisible invisible invisible 

As the void spread increases, GPR reflections of void edges keep separating. But the 

interference with the rebar responses was too strong that interfere the edge reflections of the 
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voids, such that the shape of the void responses was seriously distorted compared to the pattern 

in the modelling of bituminous roads. Although the cross shape and bottom shape patterns were 

still distinguishable, they were not as clear as that presented in Table 4-3 and Table 4-5. This 

observation accords with the relationship between GPR footprints and void spread. Also as 

shown in the B-scans of 600MHz, when the void spread was larger than the spacing of the 

reinforced rebars, the void reflections become discontinuous, and the original flat shapes as 

expected in the modelling of bituminous roads are no longer distinguishable. On the other hand, 

the reverberations of the GPR reflections in the larger depth were much more significant than 

that in the bituminous road. It also coincided with the observation of the Shek Mun site 

experiment reported in Table 4-4.  

c. GPR response simulations on voids with various thickness 

‘How thick is the void?’ is an usual question for void detection. To further investigate whether 

voids with various thicknesses would generate a different response in the GPR survey, forward 

simulations were conducted on the bituminous road model, because the host materials in the 

bitumen road were relatively homogenous. The horizontal void spread was maintained as 0.5m, 

and the vertical size of voids was changed from 0.3m to 0.5m. The simulated B-scans are 

displayed in Table 4-7. 

Table 4-7 Forward modellings on air voids with different vertical size in the bituminous road 

Void thickness 0.3m 0.4m 0.5m 

600MHz 

   
Pattern 

(600MHz) 
cross cross cross 

The discrepancy among the GPR responses of voids with different vertical sizes was not 

apparent. The three simulations in Table 4-7 all showed a cross-shape pattern. But it was visible 

that, along with the increase of the thickness, the distance between the reflection of the void 

top and that of the void bottom increased as well. At a depth of the void top, the radar footprint 

was smaller and yielded a cross pattern. Then, at the void bottom, radar footprint was larger 

than the responses of two void edges which cannot be separated and thus, result in a hyperbola 

pattern. These observations are very similar to the reverberation patterns reported in the above 



 
 
 
 

71 
 

sections. The distinction between the effects of vertical void size and reverberation seems not 

feasible. Therefore, we do not suggest to estimate vertical void size according to GPR B-scans.  

4.5 Discussion on forward simulation and experiments of GPR 

responses from voids 

Through carefully designed empirical experiments and FDTD numerical simulations, the study 

quantitatively investigates the GPR responses of underground air void with various sizes. Air 

voids in a relatively homogenous laboratory were used to observe the GPR response and 

compared with GPR response that is free from scattering. It was found that along with the 

different ratios of void spread to radar footprint; different patterns would present, and these 

patterns can be applied as fingerprints for air void identification. A site experiment was 

conducted to investigate the effect of the road structure on the GPR response of voids. It was 

found that GPR responses of voids under road structures were highly distorted by the rebars. 

And air voids under reinforcements present with stronger reverberation. Then two types of road 

structures: bituminous road and a concrete road were modelled to observe the impacts of void 

geometry to the GPR signals. In general, the GPR responses can be categorized into four 

patterns: hyperbola, cross, bowl, and plain reverberation. With knowledge of the GPR response 

of air voids, the efficiency of void identification can be improved, and the void with its size 

can be depicted from the GPR data.  

The forward modelling from both experiments and FDTD simulations illustrated that 

subsurface air voids would generate specific GPR responses. The factors that determine how 

GPR responses look like were quantified. 

4.5.1 Two characteristics 

1) Horizontal spreads of voids determine the patterns of GPR responses 

Comparing the three simulations – in-laboratory, in-site, and modelled roads, it can be 

concluded that when the void spread along GPR traverse is very small, for instance, less than 

the radar footprint; the hyperbola shape reflection is generated because of the air void acting 

similar to a point reflector. When the void spread increases to 4-6 times the GPR footprint, the 

GPR response of the air void appears as a cross shape pattern, because the reflection of two 

edges of the air void is neither coincided nor totally separated. As the void spread increases to 

more than 6-8 times of the radar footprint, the reflection of two void edges are completely 
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separated, and the middle of the void gradually shows up, so a bowl shape pattern appears. If 

the void spread along the GPR traverse is very large, plain and persistent reverberation pattern 

occur. An illustration of the relationship between void spreads and radar footprint is shown in 

Figure 4-4.  It suggests the appearance of void in B-scan depends on not its physical spread but 

also the radar footprint which is controlled by three factors: (1) void depth; (2) antenna 

frequency and (3) wave velocity.  

 

Figure 4-4 A summary of simulations on the relationship between void spreads and radar 

footprint 

2) The road structure influences the GPR reflections of voids  

DBoth site experiment and FDTD simulations illustrated that the mesh rebar in the concrete 

pave road distorted the GPR reflections severely. The shape of GPR reflections of voids was 

broken by the reflection of the mesh rebar. The typical patterns, like hyperbola, cross, bowl 

and plain reverberation in the rebar-free environment as in bituminous road, were hardly 

distinguishable. It is because the GPR wave could not penetrate the metallic rebars, yielding a 

non-void reverberation ringing between the antenna and rebars. Thus the voids were presented 

as the discontinuous yet heavy reverberation in the B-scans of the concrete road. In contrast, 

the reverberation did not exist in the bituminous road because of the absence of rebars. Besides, 

the different road layers did not manifest a significant impact on the GPR reflections as the 

dielectric properties of each road layers were similar as predicted by the CRIM calculation.   
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4.5.2 Two limitations 

3) Heavy scattering in the subsurface  

Discrepancies are inevitable between experiments and simulations, as shown in Table 3 of the 

Shek Mun experiment. In practice, the underground environment could be much more 

complicated. Mie scattering caused by unexpected targets with a size comparable to GPR 

wavelength is often observed in real practices. On the other hand, the simulation models are 

assumed to be relatively homogeneous. In the roads surveys, there are many underground 

utilities buried underneath, which also generate GPR responses and distort the response of air 

voids. Without convincing real data with ground truth results, it is difficult to prove the validity 

or practical applications of these simulations with confidence. Yet, they form an indispensable 

basis for building forward models in more complicated scenarios, and then pattern recognition 

for decision-making of void or no-void during any void survey.      

4) The geometry of voids and the source of excitation 

Firstly for the geometry of voids, the shape and geometry are hardly known. In this study, only 

regular shape, or more explicitly the spheres and rectangles of voids (with the surface 

roughness of the void-soil interface) were considered for the sake of computation efficiency 

and simplicity. Secondly for the source of wave excitation, the energy in FDTD was excited 

from a point source, while in reality, the GPR signal was emitted from the antenna (with certain 

width).        

4.6 Summary and contribution  

This chapter defines the effects of void size on the GPR B-scans. These typical patterns can 

serve as a guideline for operators to detect the invisible and shallow subsurface voids. Through 

recognizing anomalies through C-scans generated by the established workflow in Chapter. 3, 

and categorizing GPR response in this chapter, preliminary judgments on the void existence 

and void size can be defined from the GPR radargram. Then a database of void patterns was 

constructed for the pattern recognition to be reported in the next chapter.  
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Chapter 5 The void identification with pattern recognition 

When  the preliminary knowledge on how the targets look like in the GPR data are available, 

targets can be located and described with intelligent pattern recognition techniques, and hence 

the efficiency and effectiveness of void identification. Currently, GPR data are mainly analysed 

with visual interpretation. For the large-scale survey, it may take days before a result can be 

obtained. A semi-automatic workflow is introduced for diagnosis of subsurface void in this 

Chapter. Having reviewed the application of pattern recognition in GPR surveys (Chapter 

2.4.1), the pyramid method was adopted. The workflow integrates the pyramid pattern 

recognition method and Otsu’s image segmentation commonly adopted in remote sensing. A 

laboratory and a site experiment are applied to validate the workflow. 

5.1 A semi-automatic workflow for the diagnosis of air voids  

A workflow that integrates pattern recognition technique, is developed in this sub-chapter for 

semi-automatically diagnosis of subsurface air voids.    

The workflow imitates the human judgment process and integrates a pyramid pattern 

recognition technique in order to search for GPR responses generated by air-filled voids. Two 

validation experiments were conducted and produced promising results. Known voids were 

successfully identified, although some errors existed. The developed workflow includes 3 

stages: 1) roughly locate the void and estimate void size from a C-scan; 2) inspect the 

corresponding B-scans across the suspected void location and estimate the void size based on 

the typical patterns developed in Chapter 4; and 3) cross-validate the results of the two previous 

stages, and select the most convincing void size and void material, while giving priority to the 

C-scan image. The detailed workflow is shown below in Figure 5-1:  

 

Figure 5-1 A 3-stage pattern recognition for void identification 

Stage 1: Void locating from C-scans.  
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C-scans provide a general but intuitive view of the subsurface. Given that the dielectric 

properties of air and the garden soil host medium are different, the GPR reflection intensity of 

voids, which the C-scan is mapped, is often strong enough to be visible. It is therefore relatively 

straightforward to establish the approximate position of air voids within a survey area. 

Furthermore, any suspected voids in C-scans can be extracted using the image segmentation 

method. The size of the void is estimated by multiplying the scale of the pixel size to the ground 

distance and by counting the number of pixels.  

Stage 2: Void verification by B-scans.  

C-scans only provide information based on the normalized reflection intensity. Many kinds of 

local reflectors may generate similar patterns in C-scans if they have similar dielectric 

properties. A further verification using B-scans is therefore essential. Given that B-scans 

display the full GPR waveform, and subsurface voids generate reverberation-like responses, 

confidence can be enhanced by examining whether a localized response occurs in the suspected 

void’s position. Since different void characteristics, such as sizes and materials, may yield 

various reflection patterns, a void’s description can be estimated.  

Stage 3: Decision making.  

In this stage, two sets of results (from C-scan and B-scan) are presented and compared. A void 

is most likely to exist when it is identifiable in both C-scans and B-scans. In addition, further 

evidence is provided if the void size estimations in the 2 previous steps are similar. In this case, 

C-scans and B-scans both support the same decision and hence the highest identification 

confidence is given to the void. On the contrary, if no void pattern is found in B-scans that 

corresponds to the location of a suspected void in C-scans, then the anomaly may result from 

another kind of reflector. If a void is found in both C-scans and B-scans, but the sizes estimated 

by the two steps are significantly different, then the size estimated from the C-scan is adopted. 

This is because C-scans offer an overall perspective view of the survey area, while B-scan 

estimation relies entirely upon the void’s spread along the profile section.  

According to the designed workflow, it is critically important to define whether a specific void 

pattern is identifiable in the data. The pyramid method is applied in this stage in order to 

conduct automatic pattern recognition. In alignment with the workflow, as a decision-support 

program, integrating automatic void recognition from both C-scan and B-scan data, was 

developed with LabVIEW. LabVIEW is “a system design platform and development 
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environment for a visual programming language from National Instruments” ("LabVIEW – 

See it. Solve it.s," 2018). 

5.1.1 Automatic pattern recognition using the pyramid method 

As discussed in Table 2-3, due to its developmental maturity and computational efficiency, a 

much simpler pyramid-based pattern matching approach is explored in this study. The flexible 

template of pyramid-based matching is also more suitable for the detection of subsurface voids 

of various shapes. This study was therefore aimed at developing a semi-automatic subsurface 

air void identification workflow using pyramid pattern recognition. 

In stage 1 and stage 2 of the workflow, pattern recognition is conducted in both C-scans and 

B-scans using the pyramid-based pattern recognition method. The pyramid-based method is 

integrated within the LabVIEW system.  It was observed that the greyscale pyramid method 

performs best for void identification in C-scans, while the gradient pyramid is more suitable 

for B-scan pattern recognition, through experiments validation. Pattern recognition includes 2 

phases: the learning phase and the matching phase. 

(1) Phase 1: learning phase 

Firstly, the pixels of both data images and template images are re-sampled to construct the 

pyramid. The resolutions of both data images and templates are reduced to 4 lower-resolution 

levels using Gaussian pyramids. In any single Gaussian pyramid, the original image is 

continually convolved and sub-sampled in one-octave steps with a Gaussian kernel, then the 

resulting image of this process is a low-pass filtered copy of the original image (Adelson et al., 

1984; MacLean & Tsotsos, 2008). The image size in one level higher is a quarter to the image 

in one level lower. This process is repeated 4 times to obtain a sequence of smoothened images, 

which constitute the representation model built in the learning phase (Figure 5-2). The pixel 

values of the data pyramid and the template pyramid are the essential image information. Two 

kinds of image information can be used to compute pixel values: grayscale values representing 

GPR reflection intensities, and gradients that describe the pattern geometry and edge 

information. In C-scans (stage 1), the grayscale values, which means the intensity in C-scans, 

is applied, while in B-scans, the gradient, or the derivative of intensity is used (stage 2). A 

description of the pattern with the essential image information, including the region of interest, 

is then constructed. Next, in the matching phase, the algorithm searches for specific patterns 

within a data image.  
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Figure 5-2 the illustration of image pyramid. x is the image width while y is the image length. 

(2) Phase 2: matching phase in Figure 5-3  

The algorithm conducts pattern similarity computation with a coarse-to-fine approach, 

whereby the search starts from the highest pyramid level – level 4 which has the lowest 

resolution. Since the pyramid representations are built for both template images and data 

images during the matching stage, the template image in this level is moved around the whole 

data image of the same level, then the degree of similarity between the data level and the 

template level is then estimated. The similarity is repeatedly computed along with the 

movement, until the desired score – the matching score (to be discussed in Chapter 5.3) is 

achieved. If in this level, the similarity of the whole data image is lower than the matching 

score, the whole process is repeated in the lower level which has a higher resolution, until the 

searching process is finished at all five levels. This process is illustrated in Figure 5-3The 

process is demonstrated in Figure 5-3.  

When searching for rotated matches, a coarser angle is preliminarily adopted, and then the 

rotation is refined with smaller angle step sizes ("NI Vision - Pattern Matching Techniques," 

2018; Pavlidis, 2013). Since templates are analysed across all pyramid levels, the approach is 

scale and angle invariant. 
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a 

 

b 
Figure 5-3 Coarse to fine approach for matching template pyramid with data pyramid. (a) is 

an example of the matching process that starts from level 4, with a matching score as 700. (b) 

is an example illustrating that more areas are considered as voids when a lower matching 

score is applied. Remarks: t is the template image with size as (a, b), f is the data image with 

size (x, y), at certain level, the image size is decreased to (i, j),  

(3) The calculation of the similarity 

In the matching phase, the similarity between the data and the template is calculated. But then 

image information used in stage 1: C-scans and stage 2: B-scans are different.  

What if with a lower 

matching score: 400 



 
 
 
 

79 
 

• In stage 1 of the workflow: C-scans, where the greyscale is considered as the image 

information, the normalized cross-correlation (NCC) is calculated to establish the similarity 

between the template and data images, as shown in Equation [5.1]: 

𝐶 =
1

𝑛
∑

1

𝜎𝑓𝜎𝑡
(𝑓(𝑥, 𝑦) − 𝑓)(𝑡(𝑥, 𝑦) − 𝑡)

𝑥,𝑦

 [5.1] 

where 𝐶 is the similarity, 𝑛 is the number of pixels in the template image 𝑡(𝑥, 𝑦);  𝑓 and 𝑡 the 

average pixel values of the data image 𝑓(𝑥, 𝑦) and template image 𝑡(𝑥, 𝑦);  𝜎𝑓 and 𝜎𝑡 are the 

standard deviation of 𝑓 and 𝑡. 

It should be noted that the correlation is computed based on a template image that should be 

smaller than the data image.. Therefore, the greyscale pyramid method places emphasis upon 

the distribution of normalized pixel grey values. It is helpful when the pattern presents as a 

specific greyscale shade but has no particular shape or sharp edges. As a consequence, the 

greyscale pyramid is sensitive to change of brightness. As discussed in the previous section, 

air voids present as regions with locally high reflection intensity, which occurs due to the 

comparatively significant reflection contrast between an air void and the host material, and, 

thus the greyscale pyramid method is more suitable for C-scan detection.  

• In stage 2 of the workflow: B-scans, the gradient is used as the image information, 

vector correction is then applied to calculate the similarity between the template image and 

data image. The vector component of images describes the gradient direction of each pixel. 

The vector correlation calculation is shown in Equation [5.2]: 

𝐶 =
𝐶𝑜𝑣(𝑡, 𝑓)

𝜎𝑡𝜎𝑓
 [5.2] 

where 𝐶 is the similarity index, 𝐶𝑜𝑣(𝑡, 𝑓) is the covariance between template image 𝑡(𝑥, 𝑦) 

and data image 𝑓(𝑥, 𝑦), and 𝜎is the standard deviation of 𝑓.  

As the gradient pyramid focuses on filter edge vectors, it is more suitable for templates that 

have a clear structure and obvious edge. Even though it is insensitive to an intensity change, 

the gradient pyramid demands higher image resolution, because the strength and reliability of 

edges are reduced at very low resolutions. As discussed above (Chapter 4), for pattern 

recognition in B-scans, changes in void sizes lead to different GPR response patterns. These 



 
 
 
 

80 
 

patterns mainly differ in terms of their shapes and structures, and in this case, the gradient 

pyramid possesses better recognition performance.  

5.1.2 Image segmentation with Otsu’s method  

As shown in Figure 4-4, void size is estimated from C-scans using the image segmentation 

technique in stage 1 of the workflow. Unlike traditional remote sensing images that are 

composed of multiple bands, GPR C-scans present only single band reflection intensities. In 

addition, due to the diffraction of GPR signals at the edges of an object, its boundary is not 

necessarily sharp in GPR C-scans. Histogram thresholding, therefore, is the most 

straightforward approach for object extraction from C-scan images. There has been much 

research conducted on image segmentation, including the following: Laplacian and gradient 

counts of greyscale values focused upon the identification of maximum degrees of difference 

(Gou et al., 2013); Gaussian determination of edges based on image frequency (Permuter et al., 

2006); and K-means and Otsu’s clustering-based threshold definition  (Lee et al., 1990). 

Among these, the Otsu’s method is adopted in this study for its computational efficiency. 

Besides, Otsu’s method evaluates global image pixel value distributions, which requires no 

preliminary knowledge of the object reflectance, while, in contrast, some other methods take 

adjacent pixel values into consideration.  

Otsu's method is clustering-based and is widely used to conduct image segmentation in an 

automatic and unsupervised manner (Sezgin & Sankur, 2004). The objective of image 

segmentation is to define the threshold at which pixels can be classified into two groups: 

foreground pixels and background pixels (Lee et al., 1990). The algorithm firstly computes an 

image’s histogram and probabilities for each intensity level. When two initial classes are 

established, the algorithm iteratively computes the class mean and class probability. Then an 

optimum threshold can be obtained through minimizing the weighted sum of within-class 

variances in order to calculate the maximal inter-class variance (Otsu, 1979; Sezgin & Sankur, 

2004). More details concerning the algorithm can be found in Otsu (1979).  

In addition to the tail of the GPR response generated by a buried object, a coarser profile 

spacing and interpolation in the C-scan processing would also both lead to an imaged object 

appearing to be larger than its real size. Therefore, image erosion using a 6*6 structure element 

is also introduced during image segmentation. The size of a structure element is defined based 

upon the resolution of GPR C-scans: given that the spatial resolution of GPR C-scans is 
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normally within centimetres, the structure element should not be larger than the size of the 

smallest detectable objects, otherwise they might be removed from C-scans.  

5.1.3 Inverse modelling: Cross validation and decision-support system  

The interface of the designed workflow prototype is shown in Figure 5-4. In the designed 

LabVIEW interface, three stages of void identification workflow are separated into three sub-

interfaces. Based upon the simulations and experimental results in Chapter 4, two databases of 

void patterns for C-scans and B-scans were constructed, as shown in Table 4-2. 

 

Figure 5-4 Illustration of the interface of designed workflow prototype 

For stage 1, the C-scan surveyed corresponding to the suspected void’s depth is the input, and 

the greyscale pyramid method is selected as the desired algorithm. The program retrieves void 

patterns from the C-scan database and searches for the optimal match. As discussed in Chapter 

3.2, the similarity is computed between the template and the inputted data image. The matching 

score then filters out results with lower similarity. Through numerous experiments, it was 

possible to demonstrate that abnormal reflections in C-scans were easily detected with the 

higher similarity, so that a higher threshold – above 700 out of 1000 – on the matching score 

is preferred if an optimal matching result is desired. This is because in C-scans, reflection 

scatters may frequently occur, and they are very unlikely to present an identifiable structure.  

Having input the survey grid information, as shown in Figure 5-5 (a), the C-scan image is 

georeferenced and the coordinates of pixels are transformed into a real world coordinate system. 
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The position of a void in terms of a real-world coordinate system is thus defined and can be 

displayed in a plan, and the estimated and void sizes in the real world should match. With the 

help of Otsu’s method (inter-class variance), the void’s edges are computed based on the 

histogram distribution. A bounding box depicts the whole area of the detected void and the 

centre of the bounding box refers to the centre of the void. The radargram profiles that are 

closest to the centre point are indexed. For each void, two radargram profiles are selected for a 

gridded survey using x and y direction GPR survey profiles. These selected radargrams are 

then read and transferred to pixel-image format for further B-scan pattern recognition. 

 

 

a b 

Figure 5-5 The input interface of the survey settings. (a) presents the survey grid information 

setting interface while (b) shows the interface of the radar footprint calculation 

In the B-scan verification step (stage 2 in Figure 4-6), the approach is mainly the same as that 

adopted for identifying the void locations in C-scans, except the gradient pyramid method is 

adopted when matching patterns. For each selected B-scan, the B-scan patterns are matched in 

the database one by one in order to find a match. The GPR reflection is affected by various 

factors, such as adjacent reflectors, profile orientation, and material properties. It is therefore 

difficult to have templates that match with GPR responses. Therefore, a lower matching score 

– 200 out of 1000 for instance – is suggested to avoid missing patterns. For all detected patterns, 

only those falling within the bounding box defined by the C-scan pattern are considered valid. 

The detailed flow of this loop is shown in Figure 5-6. According to the regularity of the GPR 

response on air void, as discussed in Chapter 4, void spread along the direction of the radargram 

profile is estimated.  

Survey grid input 
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Figure 5-6 Illustration of the matching scheme of both C-scan and B-scan pattern recognition 

By inputting GPR parameters as in Figure 5-5 (b), the FFZ is calculated according to Equation 

[2.19], and then the void size can be estimated based on the relationship between void response 

and void spread. With the estimations of void position and void spread from both C-scans and 

B-scans, the operator can then make preliminary decisions regarding the void. The whole 

program imitates the human judgement process, but leaves the heavy cross-checking work to 

the program once the GPR survey setting information has been input.  

5.2 Case experiments 

The matching score determines the sensitivity of the detection. Two experiments were 

conducted to test the workflow and find the optimum matching score: a laboratory experiment 

within a controlled environment and an outdoor site experiment. Then another two validation 

experiments were conducted to test the matching scores. There were 2 criteria used for 

evaluating the precision and accuracy of the void pattern recognition:  

1) the pattern detected was generated by the air void; 

2) the type of pattern matched with the void size. 

For each criterion, the results can be categorized into 4 classes (Powers, 2011):  
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True Positive (TP): 

a void exists, and workflow claims it exists 

False Positive (FP):  

void does not exist, but workflow claims it 

exists 

False Negative (FN): 

a void exists, but workflow claims it does not 

exist 

True Negative (TN): 

void does not exist, and workflow claims it 

does not exist 

The recognition sensitivity was evaluated using a true positive rate (TPR) and a false positive 

rate (FPR), as described by Equations [5.3] and [5.4] respectively, and a higher TPR means a 

higher sensitivity (Fawcett, 2006). 

TPR =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 [5.3] 

FPR =  
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 [5.4] 

The selection of a matching score is critical in recognition performance, especially for B-scan 

patterns. Multiple adjustments may be necessary before an optimal matching score  is 

established. The use of a receiver operating characteristic curve (ROC) was used to find the 

best matching score. The ROC plots the TPR against FPR, and the data point – matching score 

– that is closest to the top left-hand corner (TPR =1, FPR = 0) denotes the perfect result; 

however, all results are correct, and none is left out. Then the distance of each value point from 

the perfect result point (0,1) was calculated using Equation [5.5] in order to find the smallest 

variance and thus the optimum matching score (Fawcett, 2006).  

 Optimum =  min
𝑖

√(𝐹𝑃𝑅𝑖
2 + (1 − 𝑇𝑃𝑅𝑖)2 [5.5] 

where 𝑖 denotes each data point in the ROC plot.  

5.2.1 A laboratory experiment (Void immediately underneath a paving 

glass fibre panel) 

Similar to the experiments in the forward modelling (Chapter 4.2.1), another void was created 

in the soil tank of the Underground Utility Survey Laboratory in PolyU. The void spread was 

measured as 15*25*15cm in length, width and height respectively, and was surrounded by dry 
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garden soil whose relative permittivity was assumed as 7. A GPR survey was conducted using 

a 900MHz GSSI unit within an orthogonal grid. The void spread is therefore significantly larger 

than the GPR footprint, so that reverberations and cross-like response .could be observed The 

survey site measured 100*140cm and the profile spacing was 10cm. Having undergone basic 

signal processing, such as de-wow, gain, bandpass, time zero correction and velocity analysis, 

the GPR profiles were stacked together to construct C-scans based on the standard workflow 

(Figure 3-3) for C-scan generation. A surface void was imaged inthe C-scan images, as shown 

in Figure 5-7. The reflection intensity of the void is significantly higher than that of the 

background, and the edge of the void is blurred.   

 

Figure 5-7 Illustration of the surface void dug in the laboratory and its C-scan 

In the C-scan pattern recognition, 2 air voids were identified: one is the target void in the centre 

of the survey site (47, 48), and another is a manhole in the top left-hand corner (10, 130) of the 

survey site. They both present as strong local reflections in C-scans. The position of the void 

centre and void size estimation are displayed in Figure 5-8.  

  

a b 

Figure 5-8 Stage 1: Results of void identification from C-scans in the laboratory experiment. 

(a) shows 2 identified voids in the laboratory experiment as in red rectangle and (b) presents 

the extracted voids with their size and position information. Remarks: column x and y present 
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the coordinates of the void centre, while ‘area’ shows the void size estimation (cm2) of each 

detected void. 

Even though the void shape was not a regular circle like that of the template, it was successfully 

identified. The matching score was 780 in C-scan pattern recognition, only the 2 largest 

anomalies were extracted, and smaller scatters were excluded. When compared with the void’s 

true size, the void size estimations were slightly bigger (33.3%). The inhomogeneous 

reflections surrounding the void contributed to imperfect boundary definition during void 

extraction, and some adjacent responses were also in error included, as indicated by the red 

rectangles in Figure 5-8(a).  

For the 2 detected “voids” in the C-scan (stage 1 in Figure 5-1), 4 GPR radargrams were 

indexed (stage 2 in Figure 5-1). A total of 15 matching scores values were tested, ranging 

between 150-350. The performance results with the ROC are displayed in Figure 5-10. 

According to Equations [4.2], when the matching score was set to 200 (shown as a red dot in 

Figure 5-10), the workflow performed the best, which resulted in 8 events being recognized as 

void responses, among which 5 were true positive, as displayed in Figure 5-9. And the other 3 

were false alarms (false positive). With the matching score set at 200, the TPR and FPR were 

0.8 and 0.59 respectively.  

 

 

a b 

Figure 5-9 Stage 2: Results of void verification from B-scans of laboratory experiments (a) 4 

indexed B-scans and (b) all recognition results in laboratory experiment. Remarks: solid red 

rectangles are TPs, dashed red rectangles are FNs, and dotted rectangles are FPs.  
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Figure 5-10 The receiver operating characteristic curve of void recognition from B-scan in the 

laboratory experiment. The optimal point is highlighted with red. 

Figure 5-11 displays the positions of detected results from both C-scans and B-scans; they are 

closely distributed, which means the void positioning results were promising. Table 5-1 

summarizes the size estimation results from both C-scans and B-scans. It is obvious that the 

size estimation from B-scans was not accurate enough: although the void was indeed 

highlighted, the identification was based on the incorrect types of pattern templates and led to 

an incorrect size estimation.  
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Figure 5-11 Summary of void size estimation in the laboratory experiment (cm) 

Table 5-1 Summary of void size estimation in the  laboratory experiment (cm) 

Voi

d 

Area by C-

scan 
B-pattern 

Spread by B-scan 

(cm) 

Area by B-scan 

(cm2) 

V0 227.762 

Hyperbola 7.7 46.6 

Bowl 23.1 419.3 

Hyperbola 7.7 46.6 

Cross 15.4 186.4 

Reverberation 46.2 1677.3 

V1 504.908 

Hyperbola 7.7 46.6 

Hyperbola 7.7 46.6 

Cross 15.4 186.4 

5.2.2 A Site experiment (Void underneath concrete paving platform) 

The tank in the laboratory was filled with homogenous soil, such that beyond the reflection 

from the void, there was hardly any signal disturbance. But in the real world, the subsurface 

environment is very complex and multiple types of objects in various shapes and materials are 

buried there. Real world site experience is therefore necessary to validate the workflow, and 

the survey of a seawall platform in Tai O, Hong Kong provided just such an opportunity.  
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Figure 5-12 Tai O site and its C-scan at 40cm deep 

The site is near the seashore and subject to the threat of seawater infiltration.  Voids are likely 

to have occurred and there were indeed voids found there, as shown in Figure 5-12. The site 

area measures 280*320cm in size. GPR data were collected by traversing the grid in both the 

x and y directions using a profile spacing of 20cm. A 400MHz GSSI antenna and RADAN 

SIR-4000 control unit were utilized in this survey. 

Standard 2D and 3D processing were conducted on the GPR profiles. C-scans were generated 

as in Figure 5-12, and 2 voids were clearly imaged: one was already known, but the other was 

previously unknown. The shapes of the two voids were even more irregular than the void 

created in the lab. In this experiment, the matching score for C-scans was kept the same at 780. 

The recognition result illustrates that the object shape does have certain effects on the result of 

greyscale pyramid pattern recognition. Since the void template in C-scans is almost circular in 

shape, an area of high reflection in the Tai O site C-scan was incorrectly identified as two voids 

(void-0 and void-2). The scattering around the hypothetical voids was also recognized to exist 

within the void. According to previous research conducted at this site, 2 voids were confirmed: 

one was a visible and known surface void that was identified as void-3 in this study, while the 

other was an invisible but known shallow void that was detected as void-2 in this study (Lai et 

al., 2017a). According to a site record drawing, there was a group of vertical utilities located 

in the position where void 0 was identified, and they also generated a strong reflection in the 

C-scan. In contrast, void-1 was not found in any previous records. The C-scan recognition 

results and size estimations are displayed in Figure 5-13.  
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a b 

Figure 5-13 Results of void pattern recognition from B-scans of site experiments. (a) 

identified voids at Tai O site in red rectangles; (b) the extracted voids with their size and 

position information. Remarks: column x and y present the coordinate of the void centre, and 

column area shows the void size estimation of each detected void 

There were 4 voids extracted from the C-scans, which led to 8 GPR profiles being indexed, as 

shown in Figure 5-14. In terms of B-scan recognition, the matching score was explored from 

150 to 350, by an increasing step of 10. The ROCs demonstrating the performance of various 

matching score are displayed in Figure 5-15. It is obvious that the value of 180 yet again 

provided the optimal performance. As shown in Figure 5-15, 15 events were recognized as 

void patterns, and 10 of them were correctly identified. The TPR is 0.75, which is 

comparatively lower than that of the laboratory experiment.  
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a 

   
  

     

     

B 

Figure 5-14 Result of void verification from B-scans of the site experiment. (a) are 8 indexed 

B-scans and (b) shows all recognition results in the Tai O experiment. Remarks: solid red 

rectangles are true positives, red dash rectangles are false negatives, and dotted rectangle are 

false positives. 
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Figure 5-15 The receiver operating characteristic curve of void recognition from B-scans in 

the Tai O experiment. Remarks: the optimal point is highlighted in red 

Figure 5-16 displays the positions of detected results from both C-scans and B-scans: they are 

rather sparsely distributed. Multiple patterns were identified along a traverse. The three clusters 

of points voted for the three suspected void areas. The void size estimations from both C-scans 

and B-scans are displayed in Table 5-2. Since excavation was not permitted within the 

historical site, it was not possible to ground truth the voids’ existence, not to mention confirm 

their sizes. The results of the void extraction from C-scan and B-scan were found to be very 

similar comparing the extracted voids. The sizes estimated from B-scans were variable; 

however, the response of a single void was successfully matched with multiple templates, 
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which was similar to the results of the laboratory experiments. In conclusion, size estimation 

from B-scans is unreliable. 

   

Figure 5-16 Position of the identified pattern from both C-scan (red) and B-scans (blue) in the 

Tai O experiment 
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Table 5-2 Summary of void size estimation in Tai O experiment (cm) 

Voi

d 

Area by C-

scan 
B-pattern 

Spread by B-scan 

(cm) 

Area by B-scan 

(cm2)  

V0 2352 
Hyperbola 19.1 287.8 

Cross 38.3 1151.1 

V1 3062 

Hyperbola 19.1 287.8 

Reverberation 114.8 10360.3 

Hyperbola 19.1 287.8 

Cross 38.3 1151.1 

Bowl 57.4 2590.1 

V2 2535 

Hyperbola 19.1 287.8 

Cross 38.3 1151.1 

Cross 38.3 1151.1 

Bowl 57.4 2590.1 

Hyperbola 19.1 287.8 

Hyperbola 19.1 287.8 

Cross 38.3 1151.2 

Bowl 57.4 2590.1 

Hyperbola 19.1 287.8 

V3 2529 

Hyperbola 19.1 287.8 

Bowl 57.4 2590.1 

Hyperbola 19.1 287.8 

Reverberation 114.9 10360.3 

 

5.2.3 The validation of workflow at the Lamma Island site  

The matching score suggested in the laboratory and site tests is approximately 700 in the C-

scan; and 200 in B-scans. The methods and the matching score were further validated with a 

real site case in a power plant in Lamma Island, Hong Kong. The validation site is 7m x 30 

meshown in Figure 5-17(a). A GPR C-scan about 1 meter deep is shown as Figure 5-17(b).  

 

a 
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b 

Figure 5-17 The validation experiment in Lamma island. (a). is the photo of the validation 

site; (b) shows the result of the void locating from the C-scan. 

The analysis starts with the C-scan. With the use of a matching score value for the C-scanof 

600, in total 7 areas were identified as suspected voids – they are presented as the local-high 

intensity in the C-scan. Among these 7 areas, features labelled as 0, 1 and 5 were identified as 

metallic utility pits after comparison with record drawings, features labelled as 3 and 4 were 

concrete utility pits, and they could be seen from the ground. Feature 2 was an unknown 

reflector, and its intensity of the reflection is small compared to another feature no. 6, thus it is 

manually disqualified as a suspected void.  

The second step of the investigation is the pattern recognition of the B-scans with the 

established database. A section of the B-scan that cross both feature 3 and feature 6 was indexed 

(Figure 5-18). It can be seen that the GPR reflections at the two features (blue rectangles) were 

very similar to the pattern of large voids – the plain reverberation.  

 

Figure 5-18 the result of the void pattern verification from B-scan, Remarks: blue rectangles 

indicating the areas of suspected void 3 and void 6 in Figure 16, and red rectangles circle the 

identified GPR responses. 

When the matching score were relaxed to 250, the result of the void verification from B-scan 

was shown as red rectangles in Figure 5-18, and  many of them fell outside the areas ofblue 

rectangles. The additional number of features appears because they are small scatterers that fit 

the database of voids in the established database. However, they were given lower confidence 

because they were not in the location of feature 3 and feature 6. One can see that the suspected 

features as voids can be controlled by changing the matching score. Nevertheless, feature 3 and 
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feature 6 met the two criteria of the void identification workflow: present as the high reflection 

in C-scan and the reflection in B-scan match the specific pattern, and therefore are qualified .to 

be excavation A pit was therefore dug in the area of void 6. But after digging, a large piece of 

the concrete plinth was found and it wverified as a false alarm. The validation test in the Lamma 

shows the limitation of the proposed system: when the GPR reflection of the object is similar 

to that of voids, the system may not be able to distinguish them.  But still, those areas apart 

from feature 3 and 6 are therefore concluded as void-free. 

5.2.4 The site validation at the Shek Mun on the workflow  

Another validation was conducted with the GPR data collected in the Shek Mun (Figure 5-19). 

The matching score suggested in the laboratory and site tests, around 700 in stage 1: void 

locating from the C-scan and 200 in stage 2: void verification from the B-scan, were also 

applied in this site case. The specification of the site was discussed in Chapter 4.4.2.  

 

Figure 5-19 The C-scan detection result of the validation experiment in Shek Mun. Remarks: 

blue arrow refers to the indexed B-scan. 

The Figure 5-19 shows that two voids were identified from the C-scan. A piece of radargram 

was indexed for the 2nd stage: B-scan recognition. Figure 5-20  presents the result of the B-scan 

recognition in the Shek Mun data: 6 areas were recognized as matching with void patterns, 

among which 2 were generated by void 1 and void 6. The remaining 4 false alarms (FP) were 

generated by the scattering.  
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Figure 5-20 The result of the B-scan detection result of the validation experiment in Shek Mun 

5.3 Discussion on void diagnosis 

A database of four void patterns (hyperbola, cross, bowl, plain reverberation in Chapter 4) 

based on numerical models and laboratory experiments for both C-scans and B-scans was 

applied. The pyramid pattern recognition method – with pixel value or gradient used for object 

identification – was used to search for such GPR responses automatically with an in-house 

LabVIEW program. In this way,the preliminary knowledge of the void location and void size 

can be obtained without human intervention. In view of the demanding and heavy workload 

involved in subsurface health inspections, the workflow has proven to be efficient and effective. 

The study result raises the possibility of conducting city-scale and full-coverage subsurface 

health inspections. 

5.3.1 Reasonable recognition workflow and promising void positioning 

The four experiments in Chapter 5.2 demonstrate that the subsurface void positioning of the 

workflow is promising. Subsurface voids in 2 tests (the laboratory and Tai O) were successfully 

and precisely identified, and in the Lamma validation experiment, the matching scores were 

proved that only void-like patterns were identified even though the final identified feature 6 

was a false alarm. Similar to seeing a medical doctor – comprehensive medical examinations 

are of vital importance before a diagnosis can be concluded. C-scans can deliver a 

comprehensive view of the subsurface world, and the position and shape of subsurface objects 

can be roughly delineated. For civil engineering applications, it is essential to conduct a 3D 

GPR survey in order to ensure important information concerning the underground situation is 

not omitted.  

a. Tolerances of void positioning and void spread estimation  

However, full coverage C-scans are generated using interpolation to fill in blank areas within 

survey profiles, which means that some pixel values in C-scans are a reflection of processed 
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values rather than true measurements. In addition, the indexed B-scans are not necessarily 

positioned to cut across the centre of the void, since this position may be located in gaps among 

the GPR survey profiles. The maximum deviation of B-scan positions from the void centre is 

half of a profile spacing. If the shape of a subsurface void is very irregular, then the patterns 

identified in B-scans may not describe the void’s geometry. Besides, during the B-scan 

recognition stage, the void size is determined by predefined models multiplying the GPR 

footprint, and void size estimation is therefore not a continuous measurement and may only 

result in one of several predefined numbers. This further illustrates the point that estimations 

of void spread and area from B-scans are unreliable. 

b. Conservative but efficient approach  

The whole recognition process, from the initial stage of C-scan scanning, to the final void 

diagnosis stage, takes less than 10 minutes, which is significantly more convenient than the 

currently used visual interpretation approach. In view of the time-consuming nature of GPR 

data interpretation, the application of automatic pattern recognition in GPR survey deserves 

further investigation in order to improve its reliability. The pyramid method applied in this 

study possesses both strengths and weaknesses. In B-scan recognition, it efficiently identified 

most GPR responses from air-filled voids in both experiments when using a lower matching 

score, although the experimental data was significantly different from the void template. The 

weakness of using lower matching scores is that it may lead to not only higher TPRs but also 

higher FPRs. Considering the hazardous nature of subsurface voids, it is better to be 

conservative in order to avoid missing voids.  

c. Using greyscale or gradient as image information 

In this study, greyscale value and gradient were used for object recognition in C-scans and B-

scans, respectively. This approach was proven to be suitable through experiments. On the 

contrary, if the gradient approach was used in the C-scan void recognition, some round shaped 

local anomalies with weak reflection intensities were incorrectly identified as voids, because 

the template used in C-scans is round shaped and the gradient method focuses on pattern 

structure. Similarly, if the greyscale approach was used in the B-scan void recognition, more 

reflections with strong intensities were in-correctly identified as voids, while actual void 

responses with weaker reflection intensities were overlooked. Such cases resulted in lower 

TPRs and higher FPRs.  
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5.3.2 Accuracy of the void recognition workflow 

Both the designed workflow and case experiments illustrate that in a GPR survey, an air void 

can only be defined by satisfying two criteria. The first criterion is the existence of non-

continuous strong reflections in C-scans, while the second is the presence of special patterns 

with decaying amplitude and later time windows in B-scans. These two criteria reflect the 

findings of previous research (Lai et al., 2017a). The accuracies of the experiments were 

evaluated by classifying the pixels of B-scans. Table 5-3 presents the accuracies of the 4 case 

experiments – 2 tests for the matching score value and 2 validations.   

Table 5-3 Accuracies of the case experiments 

 TP FP FN TN Accuracy 

Test  11% 6.7% 1.9% 80.4% 91.4% 

Validation 2.85% 22% 0 75.15% 78% 

Notes: Accuracy = TP+TN  

In the 2 tests, the FPs (false alarms) were mainly caused by three reasons.  

1) In the real survey, the GPR reflection did not totally coincide with that in the pattern database. 

Many factors distorted the GPR reflections. Specifically, the void’s extent inthe Tai O site was 

large enough to yield reverberation patterns, but very often some cross or hyperbola responses 

with weaker reflection intensities were found near to the targeted reverberation response. These 

cross or hyperbola like GPR responses were interference generated by the void’s top and 

bottom edges. As these responses occur at the edges of voids instead of within them, they might 

be confused with void patterns and contribute to incorrect void positioning. The interfered 

response also results in a single void being identified by multiple templates, which in turn 

produced various void size estimations. With B-scans, it is difficult to describe a void’s 

appearance using a series of templates. Obvious differences can be observed by comparing 

templates and experimental data. Many factors, including inhomogeneous background material, 

equipment specifications, survey settings such as PS and the time window, and interference 

from adjacent objects, contribute to a variety of GPR responses to voids. 

2) Many objects may yield similar reflection patterns like voids. For instance, in the Tai O 

experiment, an underground structure was mistakenly identified as void-0 in the C-scan as it 

also presented as a local strong reflection. But in the B-scan recognition stage, no proper pattern 

was matched with this void, and it was therefore identified with reduced confidence. The 

workflow, which firstly locates void-like features using C-scans and secondly verified by B-
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scans, is logically designed to enhance the confidence of void identification while some false 

alarm, like void 6 in Lamma Island case, requires further improvement. 

In both the C-scan and B-scan recognition stages, the Tai O experiment has higher FPRs, which 

means more irrelevant responses were identified as voids. The laboratory experiment was 

conducted using a relatively homogenous background medium and, beyond the two identified 

voids, there were hardly any scatterers. In contrast, it can be observed from Figure 5-14(a) that 

diverse and complicated response events were present in the Tai O site radargrams. Some of 

these response events were generated by multiple unknown objects rather than voids. Having 

said that, the two validation experiments achieved a 78% accuracy, without any FN (omission). 

The underlying reasons were similar to that observed in the test experiments: objects may yield 

similar reflection patterns, which made them be mistaken as voids. The concrete plinth in the 

Lamma island was a clear example. Moreover, both the subsurface void and manhole in the 

Lamma experiment were filled with air and had an interface of significant dielectric contrast 

with the soil. They both, perhaps not surprisingly, presented quite similar patterns in both the 

C-scans and B-scans. In addition, another problem was observed in the validations as follow: 

3) The scattering in the real site contributes to false alarms. In both Lamma and Shek Mun 

experiments, heavy scatterings presented in the radargrams – they were in Mie type scattering 

of the GPR signal. The effect ofthe Mie type was caused by the object size being of the same 

order as the wavelength (Annan, 2004). When the host media was not “clean” enough, the wave 

would be scattered and yield reverberation-like reflections. It can be improved by adjusting the 

matching score values as demonstrated in Chapter 5.2, where a only large void is recognized. 

The effects from the latter two problems:  unknown subsurface structures and scatterers, can 

be eliminated if periodical time-lapse surveys are available. Since these subsurface structures 

and scattering are assumed to exist in the subsurface consistently, time-lapse surveys can help 

in excluding these reflections and stand out the real “changes” only. 

5.4 Summary and contribution 

In this study, a semi-automatic workflow that integrates the pattern recognition to detect voids 

from GPR data was developed and validated. It was proposed that, the sensitivity of the 

detection, which is controlled by the matching score, should be higher in the C-scan detection 

but lower in the B-scan recognition.  
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Through experiments and validations, three reasons for causing false alarms were found. And 

two of them may be eliminated by the time-lapse survey to be reported in the next Chapter. 

Beyond the flexible matching method used in this study, the use of intelligent searching and 

learning schemes deserves further exploration. In particular, the machine learning technique 

can be applied to continuously train the classifier using both simulation or real GPR 

measurements, so as to improve the precision and accuracy of void identification. 
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Chapter 6 Subsurface temporal diagnosis with time-lapse 

GPR data 

Although different subsurface objects generate special GPR responses, as have been discussed 

in Table 4-1 and Chapter 5, some subsurface events do not yield GPR responses with a specific 

pattern structure in the B-scan: these events are hard to be identified from the GPR data. Also, 

some subsurface objects generate very similar reflections. In addition, due to the complex and 

unknown environment of the subsurface, biases from human perception are inevitable in 

generating GPR C-scans. It is suggested that a single measurement is not reliable enough for 

determining small changes. Establishing a “medical record” with a series of time-lapse GPR 

C-scans is an effective means to identify potential subsurface defects. Besides, if we have a 

baseline depicting how a healthy situation should present in GPR data, then by comparing this 

baseline with images obtained later, potential defects can be relatively easily located from GPR 

C-scans by techniques of change detection from images. This approach further facilitates the 

possibility of conducting subsurface surveys that have a city-scale coverage: if only changed 

areas need to be inspected, the workload will be reduced significantly.  

This chapter explores the capability of applying time-lapse GPR data to investigate the health 

condition of subsurface utilities. A workflow integrating methods of change detection from an 

image is proposed in this chapter to extract changes from time-lapse GPR C-scans. The 

workflow is validated with a site test. 

6.1 The workflow of temporal changes extraction from time-lapse 

GPR C-scans 

A fast and robust method for change-detection from images is desired to extract dissimilarities 

among time-lapse GPR C-scans for further investigation. Given the complexity of GPR C-

scans, a standardized 3D imaging workflow is required to make sure the time-lapse GPR C-

scans are reliable for comparison, with as little as possible human judgments introduced. GPR 

C-scans are semantic images that variations among time-lapse C-scans based on Figure 3-2 are 

inevitable. Proper preprocessing for reducing the subjective discrepancies among time-lapse 

C-scans is the key to success in change detection. A workflow that integrates imaging pre-

processing and image change-detection technique is proposed in this study. The workflow 

consists of two stages: image preparation and changes detection, as shown in Figure 6-1. 
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Figure 6-1 General workflow of temporal changes extraction from time-lapse GPR C-scans 

6.1.1 GPR C-scans geometric and intensity rectification  

GPR C-scan images are models for the subsurface environment, when images generated by 

similar criteria can be used for change detection. The reflection intensity and positions of the 

two images must be consistent (Townshend et al., 1992). Such that corresponding geo-

referenced pixels in an image should describe the reflection of the same position. And the pixel 

values which depict the reflection intensity of the same position, should be within the same 

colour coding scale. Hence the first step is the image preparation: register the pixel position 

and normalize the reflection intensity of the temporal GPR C-scan pair.  

For the gridding of the GPR survey, positioning errors are mainly caused by the offset between 

the GPR antenna and the predesigned grid. Then the actual GPR traverse grid may not coincide 

with the recorded grid. Thanks to the integration of a global positioning system and auto-track 

total station with a GPR system, under certain circumstance, a GPR survey is no longer needed 

to follow a predefined grid. But the real-time global positioning itself has errors.  

When constructing GPR C-scans, recorded reflection intensities within the system’s dynamic 

range (32, 64 bits) are transformed into digital values of pixels. Applying adjustment on this 

transform scale could result in different imaging results. Besides, GPR signals attenuate with 

an increasing depth of penetration. Time-vary gain is always applied (Figure 2-5) to artificially 

enhance the signal strength in the deeper area to make the GPR reflection “visible”. However, 

the gain function is case-specific as the attenuation rate is determined by the dielectric 

properties and the conductivity of the host material. If the gain is not tailored properly, the 

survey target cannot be depicted clearly. Variation in the GPR C-scans process may bring 

artificial discrepancies into the time-lapse dataset. Therefore, proper amplitude or reflection 

intensity normalization is required to ensure the pixel values of time-lapse images are 
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correlated. When C-scans are prepared according to the workflow in Figure 3-2, they can serve 

as the input to extract the changes happened underneath the surface.  

6.1.2 GPR C-scans change detection with K-means clustering 

As discussed in Chapter 2.6, due to the lack of ground truth data, the approach of unsupervised 

change detection is preferred in time-lapse GPR surveys. Zheng et al. (2014) developed a 

simple and effective method for obtaining difference from images of temporal-sequential 

synthetic aperture radar (SAR): the method combined difference images and K-means 

clustering to classify pixels into the changed or unchanged group. The challenges of detecting 

temporal changes from GPR C-scan images and SAR images are similar: unknown speckle 

noises in images makes the change detection much more difficult than that of optical images. 

The method developed by Zheng et al. (2014) was adopted and adapted in this study.  

In view of the nature of GPR C-scans – a lot of isolated reflections from clusters are recorded 

in images; the speckle-noise reduction is very important for the entire process. GPR C-scans 

deliver mainly two kinds of information: one is the reflection intensity which is shown as pixel 

values; another is the object structure – including object shape, size, manifested as either a 

continuous object or local object. This study makes use of these two kinds of information to 

distinguish changed areas from the unchanged ones. Therefore, the change detection method 

adopted in this study mainly composes of three steps: 1) produce maps of difference – a 

reflectance’s change map and a structure’s change map; 2) noise reduction by filtering – 

remove random scatterings; 3) label the changed area by K-means clustering. The general 

workflow of the change detection is as Figure 6-2. 

 

Figure 6-2 Workflow of changes detection from two GPR C-scan images 
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Among many unsupervised methods, K-means is selected because it is a simple but maturely 

developed algorithm: it partitions data into K clusters by repeatedly minimizing the within-

cluster sum of squares. Originally proposed by MacQueen (1967), the general description of 

the K-means clustering method is given by Equation [6.1], 

arg min
𝑆

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑆𝑖

𝑘

𝑖=1

=  arg min
𝑆

∑|𝑆𝑖|Var

𝑘

𝑖=1

𝑆𝑖 [6.1] 

where 𝜇𝑖 i is the mean of points in data 𝑆𝑖. 

The algorithm starts with a random seed, and then partitions the data into clusters with the 

Voronoi diagram: assign the data point to a cluster whose mean has the least squared Euclidean 

distance. Afterwards, the centroid of each cluster is calculated. The algorithm repeats the 

process at another random seed until the sum distance of all data points to their cluster centroid 

is the minimum. The algorithm does not guarantee the optimum (Forgy, 1965; Hartigan & 

Wong, 1979; MacKay & Mac Kay, 2003). The proposed method is computationally efficient 

and requires limit ground truth information, which makes it suitable for working on low 

dimension GPR C-scans. 

6.2 Workflow validation with a site experiment 

6.2.1 Site specification 

A case study was conducted in the Royal Palm to verify the proposed workflow. The Royal 

Palm is a large private residential area in Hong Kong. There are congested underground utilities 

buried underneath. If a utility bursts, residents’ daily life would be affected seriously.  

A section of the bituminous road in the Royal Palm is taken as a case (as Figure 6-3) to illustrate 

the feasibility of temporal observation with GPR. This section of the road was determined as 

old with needs of repair or replacement. Two GPR surveys were conducted at different times: 

the first survey served as the baseline survey, and then an evacuation was undertaken for the 

utility maintenance and serves as ground truth as well. The excavated area was 1.5*2 m large 

and 1.5 m deep, as shown in Figure 6-3(a). Then after backfilling the excavated area with the 

soil dugout, the second GPR survey was carried out a week later with the same survey setting 

as that of the first survey. 
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6.2.1 Survey specification 

During the two surveys, two points were selected as benchmarks for adjusting the reflection 

intensity of the GPR data. The two points located within the survey area but were far away 

from the evacuation site. Also, the two benchmark points should be as far away from the utility 

as possible. In this way, the benchmark points were free from any changes between the two 

surveys, and the GPR reflections at these two points were supposed to be the same or at least 

very similar.  

GPR data were collected by an IDS Hi-Mod 200/600MHz dual-frequency system equipped 

with an auto-track total station. Every single trace (A-scan) was related to coordinate 

measurements in the HK-80 projection coordinate system.  

 
a 

  

b c 
Figure 6-3 Illustration of the site area and survey paths. (a) is the photo of the case site: a 

piece of road in the Royal Palm. Two benchmarks are marked as P1 and P2 with stars. (b) and 

(c) show the survey paths tracked by the total station in the first and the second survey, 

respectively. The survey paths were approximately orthogonal cross grid, and green and red 

dots refer to the start point and the endpoint, respectively 

P2 P2 

P1 P1 
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Underground utilities are normally buried within a few meter deep; thus, in this case, only 

600MHz data were investigated. The centre frequency of GPR data collected by 600MHz 

antenna was measured as 514 MHz with the wavelet transform (Lai et al., 2014).  

6.3 Experimental results and analysis 

6.3.1 The image preparation result 

Standard signal processing, including de-wow, time-vary gain, frequency domain bandpass 

filtering, time-zero correction, velocity estimation and migration were applied with Reflexw 

on both GPR dataset (Jol, 2009). C-scans images were produced with GPR-SLICE from the 

processed radargram following a standard 3D imaging workflow, as shown in Figure 3-3. The 

criteria for both radargram processing and C-scan generation were maintained as much similar 

as possible. The produced C-scans at the utility depth (0.85 m) of two surveys are displayed in 

Figure 6-4. A connected higher reflection region can be clearly seen, and it is defined as a water 

pipe because of its connectivity. Both two images are speckle with blurry scatterings 

surrounding the utilities. The reflection intensity at the pipe depth of the first survey was 

digitized between 616 to 20048; while that of the second survey was in a similar yet slightly 

different dynamic range which was 313 to 20091. Even though the processing procedures were 

almost the same, there were many discrepancies exist between temporal GPR C-scans. These 

discrepancies may be raised by variations in either initial signals or electrical properties of the 

host materials.  

  
a  b 

Figure 6-4 The GPR C-scans of the two surveys at 0.85m depth. (a): the first survey; (b): the 

second survey 
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The auto-track positioning system has been proven effective and efficient in many practices 

(Chang, 2016; Lai et al., 2018a). But the latency between the actual scan position and the 

measured position is unavoidable, due to the clock error between the GPR clock time and the 

total station's clock time. Since the latency happened along the survey path, and survey paths 

of the time-lapse dataset were not coincided (Figure 6-1(b) and (c)), obvious misalignments 

were observed in the time-lapse dataset. Because the image change-detection requires fully co-

registration, which depends on correct positioning, the latency correction was introduced in 

this study.  

As shown in Figure 6-4, without latency correction, the utilities are presented as a zig-zag shape, 

although utilities are made straight certainly. Along the survey path, the offset was calculated 

from the distance of the peak of zigzag to its centre: it was 0.1m and 0.14m in the two surveys. 

Given that the two surveys both used 220 scans/m, the latency was estimated as the radargram 

went 20- and 30-scan faster than the positioning measurement in the first survey and the second 

survey, respectively. Each GPR trace was moved back along the survey path. The GPR C-scans 

with corrected positioning are displayed as Figure 6-5.   

  
a  b 

Figure 6-5 GPR C-scans after positioning correction of two surveys. (a) the first and (b) the 

second survey. 

Another essential step in preparing images is correlating the reflection intensity of the two GPR 

C-scans. As it rained before the second survey, the moisture content of the soils was expected 

higher. It was not surprising that the global reflection intensities between these two surveys 

were different even though a constant gain was applied. In this study, the emphasis is laid on 

detecting the changes of utility groups, so the global reflection intensity change was normalized 

by adjusting the histograms of the two GPR C-scans. The process of intensity normalization 
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was: 1) project the reflection intensity to 8bit grey value; 2) identify the digital values of pixels 

at benchmark points; 3) align the histogram of the second survey with the first survey based on 

these two benchmark points, as these two benchmark points were supposed to generate similar 

GPR reflection intensity. After the amplitude adjustment, the discrepancies of pixel digital 

values at benchmark points of the two surveys were reduced, as shown in Figure 6-6. The 

common area that the two surveys cover was extracted, and this pair of C-scans were ready for 

further change detection (Figure 6-7). 

 

  Point 1 Point 2 

2nd 

Survey 

Original 80 132 

Adjusted 90 144 

1st Survey Original 93 143 
 

Figure 6-6 Adjust the histogram of GPR slice of the second survey to align with that of the 

first survey 

  
a  b 

Figure 6-7 GPR C-scans with positioning and reflectance strength corrected for two surveys. 

(a) the first survey and (b) the second survey  

6.3.2 The change extraction result 

The process of change extraction was accomplished with MATLAB. The very first step was to 

produce maps of difference. The map of difference on reflectance intensity was produced by a 

subtracting operator, given in Equation [6.2], while the difference map of structure was 

produced by a log-ratio operator, given in Equation [6.3]. Log ratio can smoothen changes in 
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pixels with larger pixel value but enlarge tiny changes in pixel value smaller than 10. In this 

way, the edges of objects are enhanced. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |𝑆1 − 𝑆2| [6.2] 

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |log
𝑆1 + 1

𝑆2 + 1
| [6.3] 

where 𝑆1 and 𝑆2 are pixel values of the first and second GPR depth slice, respectively. 

Figure 6-8 shows the result of the difference maps. There are dark boundaries surrounding the 

survey site, it is mainly due to the image positioning registration error. It further illustrates the 

importance of precise positioning registration in change detection from images, especially from 

very high-resolution GPR images. And both maps of difference compose of a lot of speckle of 

unwanted scattering of Mie type that wavelength is comparable to the object size or grain size 

of the soil. Hence filters were applied to eliminate these noises and reduce the interference 

information. 

  
a  b 

Figure 6-8 Difference maps (a) shows the intensity difference; (b) shows the structure 

difference of two GPR depth slice 

A median filter with an 11*11 structure element was applied on the intensity difference map, 

while a median filter with a 3*3 structure element was used to smoothen the structure difference 

map. The structure element for the mean filter was larger so as to remove small and isolated 

differences, while comparatively a smaller structure element for the difference map of structure 

can preserve the edge information. Such arrangement emphasized the advantages of each 

difference map while reducing the bias information. The pixel values of two difference maps 

were normalized to 8bit (0-255), in order to lay equivalent weight on two kinds of information 
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– reflectance and structure. As shown in Figure 6-9, fake boundaries generated by 

misregistration were removed. And both difference maps still possess a large number of “false 

alarms”, even though a significant discrepancy was highlighted as dark at the coordinate 

(823994E, 838763N) in both maps. 

  
a b 

Figure 6-9 Filtered difference maps. (a) is the smoothen intensity difference map; (b) is the 

filtered structure difference map 

The pixel values of two filtered maps were re-organized to construct a two-dimensional dataset 

for further K-means clustering. Two kinds of information were considered having the same 

importance in this study. The pixels were classified into 4 classes: 1) low intensity difference 

and low structure difference, 2) low intensity difference but high structure difference, 3) high 

intensity difference but low structure difference; and 4) high intensity difference and high 

structure difference, thus the K was 4 in this study. Only the area with high intensity difference 

and high structure difference was considered as changed area.  Meanwhile, the pixel values of 

two filtered maps were added together to construct a combined map, and the combined map 

was normalized to 8-bit as well, as shown in Figure 6-10. Therefore, higher pixels value in the 

change map refers to areas that have more significant changes. The darkest area denotes the 

place that has the most remarkable changes: replaced pipe. The area labelled as change served 

as a mask: values of the combined map in this area were assigned to this mask, and the white 

areas are areas labelled as unchanged. Small and isolate discrepancies were excluded 

successfully.    
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Figure 6-10 Temporal changed map that shows the detected evacuation area in the survey site 

6.4 Discussion on the site experiment 

The proposed temporal change detection method was proved to function well in the site 

experiment. Both feasibilities and challenges were observed during the experiment.  

6.4.1 Performance of the proposed change detection method 

The detection result was evaluated by comparing with the ground truth, i.e. the excavation area. 

Although there were two small areas (bottom of Figure 6-11(a)) wrongly labelled as changed, 

the majority were correctly classified. Since the proposed unsupervised method required no 

preliminary knowledge of the subsurface environment, it is particularly suitable for complex 

subsurface imaging. Furthermore, there was no human interaction included in the whole 

process, and subjective human error can be avoided.  

A comparison of the proposed method with other unsupervised change-detection methods that 

are widely acknowledged is given as Figure 6-11. These methods were Otsu’s auto-

thresholding; Principal Component Analysis (PCA); and Markov Random Field (MRF) (Celik, 

2009; Melgani et al., 2002; Wang, 2012): they were proved effective in change detection from 

noises and speckle images. The change detection method thatis proposed in this study 

performed better, as much less “false alarms” were produced.  
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a b c d 

Figure 6-11 Comparison of different change detection methods. Results of the (a): proposed 

method, (b): Otsu’s auto-thresholding, (c): PCA, and (d): MRF 

The peak signal to noise ratio (PSNR) was applied to evaluate the performance of the proposed 

method. And the clustering accuracy was calculated with Equation [6.4]. The proposed method 

performs better than the others in terms of signal PSNR as well as accuracy.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 × 100% [6.4] 

Specifically, Table 6-1 also illustrates that the proposed method has less false positives (FP) 

compared with other methods. Even though more changed areas were missed (false negative – 

FN) with the proposed method, the position of the changed area was precisely located. The 

comparison in Table 6-1 shows that the proposed method provided higher PSNR – larger 

similarity with the ground truth, and the detection accuracy was much higher than other 

methods. With only reflectance strength presented, GPR C-scans were not informative enough 

to distinguish actual changes from random small discrepancies. It was believed that the 

clustering methods performed similarly, but the proposed method solved this problem by 

assigning meanings – either intensity or structure – to each pixel. The construction of difference 

maps contributed a lot to noise reduction and information extraction, illustrating that the 

importance of pre-processing in the change-detection from GPR C-scans.  

Table 6-1 Comparison of the performance of difference change detection methods 

Method FP TP FN PSNR Accuracy 

Proposed Method 958 3486 1997 20.25 
78.0% 

 

Otsu EM (Melgani et al., 2002) 23158 5132 351 10.09 
18.14% 

 

PCA (Celik, 2009) 25354 4372 636 9.30 
14.71% 

 

MRF (Wang, 2012) 17165 4669 814 10.94 
21.38% 

 

 



 
 
 
 

114 
 

6.4.2 Preliminary diagnosis and locating potential defects 

The process of change detection from time-series C-scans is the first examination of a diagnosis: 

similar to seeing a doctor, very often the patients are requested to take medical scans to check 

whether there is an unusual pattern. If anomalies are noticed, further investigations that are 

more specific will be conducted before a diagnosis can be given. Usually, the first medical scan 

does not necessarily give enough details on the course or status of the anomaly. The method 

proposed in this study can locate changes from GPR C-scans with a few seconds, and the 

preliminary knowledge about the anomaly, i.e., size and position, can be obtained. Afterwards, 

more investigation should be conducted on the detected locations: for instance, referring to 

radargrams or carrying out inversions.  

This study illustrates the necessity of conducting temporal GPR surveys for subsurface 

diagnosis, therefore a practical workflow (Figure 6-12) of time-lapse surveys is proposed. The 

first step is comparing two C-scans – either a C-scan pair of t0, and tn-1, or a C-scans pair of tn-

1, and tn, then major dissimilarities that indicate potential defects can be identified and extracted. 

If there is no significant change, that means the survey area is healthy and safe, if the previous 

image is assumed to be “safe”. The second step is to verify the detection result with relevant 

personnel: whether there is any construction work was conducted in this area before. If yes, the 

change detection result is likely to be TP. Otherwise, further investigation should be 

implemented. In this way, the condition of the subsurface is tracked continually, and a “medical 

record” can be built along time. In conclusion, change detection from C-scans can narrow down 

the areas to be investigated and further facilitate the efficiency of subsurface diagnosis.  
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Figure 6-12 Proposed workflow for temporal diagnosis on the subsurface 

6.4.3 Improve the reliability of time-lapse C-scans 

Even though with the standardized workflow (Figure 3-3), and the subsurface correctly imaged, 

the variations among temporal GPR C-scans are still inevitable (Figure 6-4). Apart from the 

variation of the properties of the host material, the variation among time-lapse C-scans is 

mainly caused by the fact that the survey paths of every survey are very different, as shown in 

Figure 6-3 – which is always the case in real practices. Therefore, the survey orientation of a 

measurement point may vary among surveys of different times, and the polarization of the GPR 

signal changes accordingly. Moreover, the density of GPR measurements of the 2nd survey 

was much lower. The denser the GPR measurements, the closer the C-scan to reality. The lower 

sample density in the 2nd survey introduced more artificial interpretation in the interpolation 

step. As discussed in Chapter 3, the blank area is filled up by interpolation, and interpolation 

aggravates the discrepancy caused by different survey paths: if there is a contrast between true 

measurements of different survey times, the calculated measurements are unlikely to coincide, 

therefore, discrepancies are introduced into blank areas.  

Currently, in large-scale surveys, the free-gridding survey guided by a positioning system is 

widely adopted, because it is not realistic to have a detail survey-grid drawn on the ground. A 

guiding system that can guarantee constant survey paths is beneficial for eliminating the 

unnecessary discrepancies among time-lapse C-scans. Ching (2019) developed a guiding 

system that can guide the GPR operators to walk along a pre-defined grid. With the geometry 

information as well as survey profile spacing of the survey site being inputted into the system, 
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the system automatically calculates the coordinates of each survey profile. During the GPR 

survey, the positioning system mounted on the antenna keeps delivering real-time positions to 

the guiding system. And the guiding system calculates the distance and shifting angle between 

the current operator’s position and the pre-defined grid. Alarms and guidance on adjustments 

are given to the operator when a shift happens. Figure 6-13 illustrates that with the guiding 

system, the survey paths are much closer to the orthogonal desired grid. Therefore, the 

measurements are distributed evenly. 

  
a 

 

 

b 

Figure 6-13 Comparison of survey paths without (a) and with (b) the guiding system (Ching, 

2019)  

A trial test was conducted for the field site area: survey the site with the guiding system. The 

utility presents a straight in C-scans produced with the guiding system (Figure 6-14), which 

means the error of the scan-lag is reduced significantly. How the accuracy and precision of 

change detection are affected by using guiding systems deserves further investigations. In short, 

in temporal change detection, it is of vital importance to control the random variations among 

time-lapse C-scans. 
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a b 

Figure 6-14 Comparison of C-scans of surveys without (a) or with (b) guiding system (Ching, 

2019)  

6.5 Summary and contribution  

The GPR data of 2nd survey of the site case was tested with the program of void identification 

that was introduced in Chapter 5. Although some local high reflections were detected, they did 

not coincide with the changed area. The local anomalies detected by the void recognition from 

C-scan consistently existed – they were not newly added voids. Thus, the site in the Royal Palm 

was reported as void-free.  

 

Figure 6-15 The result of the void identification from the C-scan of the Royal Palm 

In the test, the TN (true negative – save) was 100%. This experiment proved that the false 

alarms caused by fixed structures or scatterings could be eliminated by time-lapse surveys. The 
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study served as a prototype and demonstrated the feasibility of conducting temporal diagnosis 

on the subsurface structure.  

Change detection is a novel idea in the GPR world because 3D imaging by GPR is not popular 

and it is most often used when a problem on the surface becomes apparent and visual. So it is 

in general not perceived as a diagnostic tool requiring both a baseline survey and a change-

detection survey. The content of this chapter, based on the 3D imaging criteria in Chapter. 3 

and void identification in Chapter.5, paves the way for GPR change detection depending on 

the temporal comparison of GPR C-scans, thus turning GPR from merely an imaging tool to a 

diagnostic tool. 
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Chapter 7 Conclusions 

The research systematically explored GPR imaging techniques and applications used in the 

diagnosis of subsurface defects. Computer vision and image processing techniques were 

introduced into GPR imaging, which made this the first study of its kind. Health medical 

records of urban subsurface can be established with time-lapse GPR measurements. 

7.1 Main findings  

(1) A standardized workflow on 3D GPR imaging criteria (Chapter 3) 

The specific guidance provided in the workflow were summarized using 25 experiments, and 

it was demonstrated that the construction of GPR 3D images (C-scans) should be object-

oriented and case-specific. This study reviewed GPR imaging theories as well as important 

parameters that affect GPR imaging quality, and identified the object characteristics that have 

a crucial influence on imaging quality. A relationship between object and imaging parameters 

was established so as to define a suitable range for each parameter. When reliable C-scans are 

produced using a standardized workflow, more meaningful interpretations can then be made 

using those images, thus bringing the unseen subsurface world into view. The standardized 

GPR imaging workflow produced by this research can produce convincing images with fewer 

human judgements, which is clearly beneficial to the survey industry. 

(2) Specific GPR responses generated by subsurface voids.  

Subsequent to generating reliable C-scans in (1) through the standardized workflow, the key 

GPR signatures obtained from some typical subsurface structures, with a specific focus on 

subsurface air voids. Air voids with different widths and sizes in soils were experimentally and 

numerically simulated in order to study the GPR responses that are free from scattering. It was 

found that when different ratios of void spread (s) to radar footprint (z) were applied, four main 

patterns would be produced, as follows: hyperbola (s/z < 2), cross (2< s/z < 4), bowl-shape (4< 

s/z < 6) and plain-reverberation (s/z >6). A site experiment conducted on a section of road 

demonstrated that GPR responses would be distorted by the road structure and nearby utilities. 

Then, two types of typical road structures, a bituminous road and a concrete road, were 

modelled in order to observe the impact of void geometries. With knowledge of the effects of 

air voids on GPR signals, the efficiency of void identification can be improved in GPR data. 
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(3) Develop a workflow that integrates pattern recognition techniques in order to identify 

subsurface voids from GPR data (Chapter 5) 

The workflow imitated the human judgment process, and integrated a pyramid pattern 

recognition technique in order to search for GPR responses generated by air-filled voids. The 

GPR responses of air-filled voids were investigated in advance. A void appeared as a local 

anomaly with high reflection intensity in C-scans. Different ratios of void size and GPR signal 

wavelength resulted in different patterns in B-scans. A database of void patterns for both C-

scans and B-scans was established, and the pyramid pattern recognition method – with pixel 

value or gradient used for object identification – was used to search for such GPR responses 

automatically. In this way, preliminary knowledge of the void location and void size can be 

obtained without human intervention. Two validation experiments were conducted and 

produced promising results. Known voids were in general successfully identified: the true 

positive rate was 65%. Given the demanding and heavy workload involved in subsurface health 

inspections, the workflow has been proven to be efficient and effective. The study result raised 

the possibility of conducting city-scale and full-coverage subsurface health inspections. 

(4) Develop a workflow that uses image change detection techniques to extract 

subsurface defects from time-lapse GPR depth slice images (Chapter 6) 

The developed workflow consisted of two main steps, in which the first step was the image 

registration and intensity normalization. By analysing the causes of positioning errors, time-

lapse GPR C-scans can be correctly georeferenced and co-registered. The workflow used 

benchmark points on the ground to normalize the global intensity of time-lapse GPR C-scans. 

The second step classified pixels into changed or unchanged. Two kinds of information were 

considered in order to construct two difference-maps: they were changes in the intensity and 

the object structure. Appropriate filters were applied to the difference map to remove the 

isolated elements while preserving edges. K-means clustering was responsible for extracting 

pixels that possess both intensity changes and object structure changes – i.e. in locations where 

potential subsurface defects most likely to have occurred. The workflow was verified using a 

real case study, and the area of excavation with pipe replacement and different types of soil 

backfill was successfully identified. The performance of the proposed workflow was promising 

in excluding small and random scattering noise, which was the main challenge in time-lapse 
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GPR image observation. The study served as a prototype and demonstrated the feasibility and 

necessity of conducting temporal diagnosis on the subsurface structure.  

In summary, this study was a pilot study aimed at improving the GPR diagnosis efficiency and 

accuracy of the interpretation of large datasets, as well as eliminating the human biases as much 

as possible. It further proved the feasibility for the continuous health-check of the urban 

subsurface with GPR, paving the way for the city-scale underground diagnosis. 

The study indicated the demand for dense measurements and consistent survey paths in the 

temporal observation. The novel multi-array system can solve the problem, as it can collect 

full-resolution measurements in a non-stop manner. In addition, this study applied the 

sensitivity evaluation, leading to evaluation of TP, TN, FP, and FN to calculate TPR and FPR 

as an important indicator of survey accuracy. Such application of the sensitivity evaluation is 

rare in the near-surface geophysical surveys, due to the limited quantity of ground truthing.  

7.2 Challenges and recommendation on future work 

This research focuses on processes and applications relating to these three typical GPR data 

visualizations, but there are many other types of visualizations in existence. Semantic 

presentations of GPR data that only display target content but neglect to consider insignificant 

signals deserve further investigation.  In short, the effectiveness of diagnosis with GPR can be 

increased through three ways, they are:  

1) enriching the fingerprint database through more ground truthing validations.  

It is necessary to establish a comprehensive database that records the GPR signature of each 

type of subsurface defect/void with different types of overlaid materials. More quantitative 

forward models – both numerical simulation and empirical experiments – must be conducted 

to depict how these subsurface defects are presented in GPR data.  

2) optimization of algorithms.  

In both GPR pattern recognition and temporal GPR observation, special attention should be 

paid to the non-systematic variations among GPR data. Coincide survey paths (Chapter 6.4.3) 

and imaging criteria (Figure 3-2) should be applied in temporal surveys to avoid random 

dissimilarities among time-lapse C-scans. Algorithms should be robust enough to exclude 

speckles and mild pattern geometry variations. Apart from the K-means attempted in this thesis, 
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it would be worthwhile to improve methods or algorithms that are specifically tailored to GPR 

imaging.  

3) adopting the approaches of machine learning. 

The subsurface environment is complicated, and the GPR reflections are affected by various 

factors. When the comprehensive fingerprint database is established, the involvement of 

machine learning is expected. The approach of machine learning can sort the signal features, 

process the representation models, as well as extract the meaningful information from the large 

dataset of the subsurface survey with GPR, in a fully automatic manner. It can improve the 

efficiency of the diagnosis significantly.  

In conclusion, this PhD research establishes a health diagnosis system for the urban subsurface 

using spatial and temporal GPR C-scans and B-scans. And the system was validated with 

experiments. The standardized workflow for C-scan generation is the foundation for reliable 

GPR survey. With a series time-lapse C-scans, the changed area can be detected with change 

detection method. Then the suspected area needs further investigation, such as match with 

patterns in defect database. With the system, the GPR survey and the data interpretation can be 

conducted in a semi-automatic manner. Human subjective interventions and high labour costs 

of interpretation are also reduced via the suggested approach. The system adopts and 

customizes image processing and computer visualisation techniques, facilitates the efficiency 

and effectiveness of GPR survey in localized areas, and paves the way for upscaling the GPR 

surveys to city scale.  
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