
Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Personalized Deep Reinforcement
Learning based Recommendations

Yu LEI

PhD

The Hong Kong Polytechnic University

2020

The Hong Kong Polytechnic University

Department of Computing

Personalized Deep Reinforcement
Learning based Recommendations

Yu LEI

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

March 2020

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Lei Yu (Name of student)

iii

iv

Abstract

Recommender system is a powerful tool for information filtering, which aims to proac-

tively recommend potentially interesting items to users. The majority of existing rec-

ommendation algorithms are essentially supervised learning (SL) based approaches,

which aim to learn static, passive, and shortsighted predictive models for the single-

step recommendation problem. As a result, they are not able to provide satisfactory

solutions to the multi-step interactive recommendation problem in more practical

scenarios. To address this issue, a promising way is to leverage the reinforcement

learning (RL) paradigm to build an RL-based recommendation agent. Different from

SL-based systems, the RL-based agent aims to learn a dynamic, proactive, and far-

sighted recommendation policy that optimizes the cumulative rewards received in

the multi-step interactive recommendation process.

In the literature, a number of RL-based recommendation agents, including the

early proposed tabular RL agents and the recently proposed deep RL agents, have

demonstrated great potential in different recommendation scenarios and datasets.

However, there is a fundamental domain-specific problem that has been rarely no-

ticed and investigated in the past. That is how to effectively model personalization

and collaboration in an RL-based recommendation agent. Personalization means that

the agent should model the personalized characteristics of each user as much as pos-

sible, while collaboration implies that the agent should model the collaborative rela-

tionships (e.g., behavioral similarities) between different users as much as possible.

v

Both of them are crucial factors to providing high-quality personalized recommen-

dations for the entire user community, and thus to optimizing the overall profit of

the recommender system.

The objective of my thesis work is to develop truly personalized RL-based rec-

ommendation agents by systematically addressing the issues of personalization and

collaboration modeling. Without loss of generality, we adopt value-based deep RL as

the basis to conduct our research. We observe that the performance of a value-based

deep RL agent is affected by three key components: the state/action representation

module that transforms raw states/actions to high-level representations, the action-

value prediction module that outputs action-values based on high-level state/action

representations, and the Q-learning module that determines how to update the Q-

network (i.e., the combination of the first two modules) towards the optimal action-

value function corresponding to an optimal policy. Based on these observations, and

inspired by the advancements in SL-based recommendation, we develop four novel

and effective value-based deep RL recommendation agents. Each of the proposed

agents is designed based on substantial improvements in one or more of the three

modules by incorporating personalization and collaboration in different ways.

The first work presents User-specific Deep Q-network (UDQN), a two-stage pipeline

agent that first constructs latent vector representations of states and actions using

matrix factorization (MF) and then estimates action-values based on those repre-

sentations using Q-learning. In the UDQN agent, the MF-based state/action rep-

resentation module effectively models personalization and collaboration by mapping

all users into a shared latent feature space. The second work describes Graph Con-

volutional Q-network (GCQN), an end-to-end agent that directly estimates action-

values based on the input of graph-structured states and actions. The GCQN agent

integrates a graph convolutional network (GCN) based state/action representation

module, which successfully models personalization and collaboration by aggregat-

vi

ing valuable features from target user’s local neighborhood in the user-item bipartite

graph, in terms of feature propagation on the “user-item-user” paths. The third work

introduces Social Attentive Deep Q-network (SADQN), which explicitly integrates

personalization and collaboration, on the basis of UDQN, by predicting action-values

via the combination of a personal action-value function and a social action-value

function. The two functions aim to estimate action-values based on the preferences

of individual users and of their social friends in the social network, respectively. In

particular, the social action-value function successfully models the collaborations be-

tween target user and his/her social friends by leveraging social attention to capture

the social influence between them. Finally, the fourth work presents Personalized

Deep Q-network (PDQN), which is able to estimate fully personalized action-values

based on the user-specific information of target user and the general information

of state shared by all users. Unlike the UDQN and GCQN agents that implicitly

model personalization and collaboration into the state/action representations, PDQN

explicitly models them into a brand-new personalized Q-network architecture that

consists of a user-specific action-value function and a general action-value function.

On the other hand, unlike the SADQN agent, PDQN does not rely on additional

social information, which is more domain-free and can be applied to more recom-

mendation scenarios and datasets. Moreover, collaboration is further modeled by

PDQN in terms of a novel collaborative Q-learning module.

The extensive and solid experiments on real-world datasets demonstrate that

the proposed agents achieve the state-of-the-art performance. More importantly,

the ideas, methods, and techniques proposed in this thesis are both insightful and

generic, which will promote the advancement of RL-based recommendation, and also

bring inspirations to the researchers in other related fields.

vii

viii

Publications Arising from the

Thesis

1. Yu Lei and Wenjie Li. Interactive Recommendation with User-Specific Deep

Reinforcement Learning. ACM Transactions on Knowledge Discovery from

Data (TKDD), 2019.

2. Yu Lei, Zhitao Wang, Wenjie Li, and Hongbin Pei. Social Attentive Deep Q-

network for Recommendation. In Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information Retrieval (SI-

GIR), 2019.

3. Yu Lei, Wenjie Li, Ziyu Lu, and Miao Zhao. Alternating Pointwise-Pairwise

Learning for Personalized Item Ranking. In Proceedings of the 26th ACM In-

ternational Conference on Information and Knowledge Management (CIKM),

2017.

4. Yu Lei, Hongbin Pei, Hanqi Yan, and Wenjie Li. Reinforcement Learning

based Recommendation with Graph Convolutional Q-network. In Proceedings

of the 43rd International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval (SIGIR), 2020. (Under review)

5. Yu Lei and Wenjie Li. Personalized Deep Q-network for Interactive Rec-

ommendation. ACM Transactions on Information Systems (TOIS). (Under

review)

ix

6. Yu Lei, Zhitao Wang, Wenjie Li, Hongbin Pei, and Quanyu Dai. Social At-

tentive Deep Q-networks for Recommender Systems. IEEE Transactions on

Knowledge and Data Engineering (TKDE). (Received a major revision)

7. Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. Social Collaborative Filtering

by Trust. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2017.

8. Zhitao Wang, Yu Lei, and Wenjie Li. Neighborhood Interaction Attention

Network for Link Prediction. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management (CIKM), 2019.

9. Qiang Chen, Wenjie Li, Yu Lei, Xule Liu, and Yanxiang He. Learning to

Adapt Credible Knowledge in Cross-Lingual Sentiment Analysis. In Proceed-

ings of the 53rd Annual Meeting of the Association for Computational Linguis-

tics (ACL), 2015.

10. Qiang Chen, Wenjie Li, Yu Lei, Xule Liu, Chuwei Luo, and Yanxiang He.

Cross-Lingual Sentiment Relation Capturing for Cross-Lingual Sentiment Anal-

ysis. In European Conference on Information Retrieval (ECIR), 2017.

11. Chengyao Chen, Zhitao Wang, Yu Lei, and Wenjie Li. Content-based Influ-

ence Modeling for Opinion Behavior Prediction. In Proceedings of the 26th

International Conference on Computational Linguistics (COLING), 2016.

x

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Wenjie Li for her

careful guidance, continuous support, and great advice during my Ph.D. study. On

the academic level, Prof. Li taught me a lot in how to become a qualified researcher in

the computer science area. Under her supervision, I learned how to define a research

problem, find a solution to it, and finally present the results to other researchers.

On a personal level, Prof. Li inspired me deeply by her hardworking and passionate

attitude. It is my honor to be her student, and I could not imagine how I can survive

the Ph.D. study without her care and help.

I would like to thank my kind and talented lab mates that include Zhitao Wang,

Chengyao Chen, Yanran Li, Ziqiang Cao, and so forth for their continued support. I

am lucky to join Prof. Li’s group, and this dissertation would not have been possible

without their constructive suggestions and help. I would also like to thank Hongbin

Pei, Qiang Chen, Hanqi Yan, Ziyu Lu, Miao Zhao, and Quanyu Dai for their helpful

suggestions and discussions.

Last but not the least, I dedicate this dissertation to my family for all their

constant and unconditional love. I would like to express my deepest gratitude to my

parents and sisters, who raised me with all their love and care, and gave me a lot of

freedom to pursue my own interests. I would also like to thank my loving girlfriend

Ms. Minghui Zhang, who gave me faithful support during this hard journey.

xi

xii

Table of Contents

Certificate of Originality iii

Abstract v

Acknowledgements xi

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Research Background . 1

1.2 Research Motivation . 4

1.3 Research Overview and Contributions 9

1.4 Structure of Thesis . 16

2 Literature Review 17

2.1 Collaborative Filtering . 17

2.1.1 Matrix Factorization . 18

2.1.2 Ranking-oriented Collaborative Filtering 19

2.1.3 Neural Collaborative Filtering 20

2.1.4 Social Collaborative Filtering 21

2.1.5 Summary . 23

2.2 Reinforcement Learning . 24

2.2.1 Tabular Reinforcement Learning 24

xiii

2.2.2 Deep Reinforcement Learning 25

2.2.3 Summary . 27

3 User-specific Deep Q-network: Modeling Personalization and Col-
laboration via MF-based Representation Module 29

3.1 Introduction . 30

3.2 Preliminaries . 32

3.2.1 Problem Definition . 32

3.2.2 Q-learning . 32

3.3 User-specific Deep Q-network . 34

3.3.1 The Markov Decision Process (MDP) 34

3.3.2 The Multi-MDP Reinforcement Learning Task 35

3.3.3 User-specific Latent States based on Matrix Factorization . . . 36

3.3.4 The UDQN Model . 38

3.4 Experiments on Explicit Feedback Recommendation Tasks 42

3.4.1 Experimental Settings . 42

3.4.2 Performance Comparison . 45

3.4.3 Parameter Analysis . 49

3.4.4 The Results of Cross-validation 51

3.5 Experiments on Implicit Feedback Recommendation Tasks 52

3.5.1 Experimental Setup . 53

3.5.2 Performance Comparison . 56

3.5.3 Parameter Analysis . 58

3.6 Conclusions and Discussions . 60

4 Graph Convolutional Q-network: Modeling Personalization and Col-
laboration via GCN-based Representation Module 63

4.1 Introduction . 63

xiv

4.2 Preliminaries . 67

4.3 Graph Convolutional Q-network . 68

4.3.1 Representing States and Actions as Graphs 68

4.3.2 The GCQN Model . 69

4.3.3 Training Algorithm . 73

4.4 Experiments . 74

4.4.1 Experimental Setup . 75

4.4.2 Comparison Results . 78

4.4.3 Model Analysis . 79

4.5 Conclusions and Discussions . 82

5 Social Attentive Deep Q-network: Improving Personalization and
Collaboration via Social Attention 85

5.1 Introduction . 86

5.2 Preliminaries . 88

5.2.1 Problem Formulation . 88

5.2.2 Reinforcement Learning . 89

5.2.3 Deep Q-network . 90

5.3 Social Attentive Deep Q-networks . 91

5.3.1 SADQN: A Linear Fusion Model 92

5.3.2 SADQN++: A Deep Fusion Model 95

5.3.3 Training Algorithm . 97

5.4 Experiments . 99

5.4.1 Experimental Setup . 99

5.4.2 Performance Comparison against Baselines 104

5.4.3 The Impact of Social Influence 106

5.4.4 Model Analysis . 108

xv

5.5 Conclusions and Discussions . 112

6 Personalized Deep Q-network: Integrating Personalized Network
Architecture with Collaborative Learning Objective 113

6.1 Introduction . 114

6.2 Preliminaries . 116

6.2.1 Interactive Recommendation 116

6.2.2 Markov Decision Process . 117

6.2.3 Deep Q-network . 119

6.3 Personalized Deep Q-network . 120

6.3.1 Motivation and Idea . 120

6.3.2 The PDQN Model . 123

6.3.3 Personalized Q-learning . 128

6.3.4 Personalized Q-learning with Collaborative Regularizer 129

6.4 Experiments . 132

6.4.1 Experimental Setup . 133

6.4.2 Comparison Results . 136

6.4.3 Parameter Analysis . 138

6.5 Conclusions and Discussions . 139

7 Conclusions and Suggestions for Future Research 141

7.1 Summary of Contributions . 143

7.1.1 UDQN: Modeling Personalization and Collaboration via MF-
based Representation Module 143

7.1.2 GCQN: Modeling Personalization and Collaboration via GCN-
based Representation Module 144

7.1.3 SADQN: Improving Personalization and Collaboration via So-
cial Attention . 145

xvi

7.1.4 PDQN: Integrating Personalized Network Architecture with
Collaborative Learning Objective 146

7.2 Future Work . 146

Bibliography 149

xvii

xviii

List of Figures

1.1 Modeling the agent-user interaction in recommendation as the agent-
environment interaction in RL. 4

1.2 The Multi-MDP RL task in real-world recommendation scenarios.
Each MDPu is corresponding to the interactive recommendation pro-
cess of user u. 5

1.3 Illustration of a typical value-based deep RL agent. The agent con-
sists of three key components: the state/action representation mod-
ule that transforms raw states/actions to high-level representations,
the action-value prediction module that outputs action-values based
on high-level state/action representations, and the Q-learning mod-
ule that determines how to update the Q-network (i.e., the first two
modules) towards the optimal action-value function. 7

1.4 Illustration of the main contributions of this thesis, which shows how
we model personalization and collaboration into the agent in each of
our four works. 10

3.1 The basic framework of UDQN. 40

3.2 Effect of the discount factor γ on the performance of UDQN. 46

3.3 Effect of the experience replay on the performance of UDQN. 50

3.4 Effect of the parameter Ttrain on the performance of UDQN. 50

3.5 Effect of the discount factor γ on the performance of UDQN in terms
of cross-validation. 52

3.6 Performance of UDQN-Concat for different k. 59

3.7 Performance of UDQN-Concat for different T 60

xix

4.1 A toy example to illustrate how to build a graph-structured state for
target user u. (a) The whole user-item bipartite graph G. (b) The
sub-graph Gpi1q that consists of item i1 and its neighborhood in G.
(c) Building a graph-structured state s “ tGpi1q, ..., Gpi4qu based on
the raw state s “ ti1, ..., i4u. 66

4.2 Overview of the GCQN model. 70

4.3 Comparison for different T P t5, 10, 15, 20u. Our GCQN consistently
shows remarkable improvements over AttGRU-Q. 80

4.4 Comparison of running time of reinforcement learning based methods.
The training cost of GCQN is close to DEERS, nearly 1.5 times higher
than AttLSTM and AttGRU, and 2 times higher than LSTM and
GRU. This indicates that the significant performance gain of GCQN
is achieved with acceptable cost. 81

5.1 (a) The user-agent interaction in RL based recommender systems. (b)
The basic architecture of DQN. 89

5.2 SADQN: a linear fusion model. 93

5.3 SADQN++: a deep fusion model. 96

5.4 Performance comparison against baselines on both cold-start and
warm-start recommendations. The mean (bar) and standard devi-
ation (line) of HR and NDCG@10 metrics on all three datasets are
shown. The proposed SADQN++ model shows the best performance
in all cases. 105

5.5 Comparison of the run-time of RL-based methods. 110

5.6 Effect of the discount factor γ on the performance of SADQNP 111

5.7 Effect of the experience replay on the performance of SADQNP 112

6.1 The basic DQN agent. 119

6.2 The three learning paradigms for the multi-MDP task: the existing
RL and MARL, and our proposed PRL. 123

6.3 The proposed PDQN agent. 124

6.4 The impact of the CR regularization parameter λ and the size of
collaborative neighborhood N on the performance of PDQN-cr on
each dataset. 138

xx

List of Tables

3.1 The statistics of datasets . 43

3.2 Performance comparison on Task I. 47

3.3 Performance comparison on Task II. 48

3.4 The results of cross-validation on ML100K dataset. 52

3.5 The statistics of datasets . 53

3.6 Performance comparison on implicit-feedback top-k recommendation
task. 57

4.1 The statistics of datasets. 75

4.2 The average reward received in T -step episodes (T “ 20). 78

4.3 The results of GCQN with different aggregators. 81

4.4 The results of GCQN with different sample size L. 82

5.1 The Statistics of Datasets . 99

5.2 The Experimental Results of Different Variants of SADQN 107

5.3 The Results of SADQN with Different Attention Mechanisms 109

6.1 The statistics of the Amazon datasets. 133

6.2 The parameter settings of PDQN-cr. 136

6.3 Performance comparison of all methods, in terms of the AvgReward.
The best performing method is highlighted in bold font (always PDQN-
cr). The best performing baseline is marked with “*” (always DQN). 137

xxi

xxii

Chapter 1

Introduction

1.1 Research Background

Recommender systems refer to a class of intelligent systems that aim to proactively

provide users with potentially interesting items (information, services, or products).

Nowadays, recommender systems have been successfully applied to almost all of

modern websites, such as the product recommender system on Amazon, the video

recommender system on YouTube, and the friend recommender system on Face-

book. These recommender systems are able to not only increase the business value

significantly from the viewpoint of websites, but also improve the user experience

fundamentally from the viewpoint of users. Thus, the research on recommender

systems is of significant social value and economic value.

The core of a recommender system is the recommendation algorithm/method it

adopted, which determines what items should be recommended to users. Over the

past two decades, a large number of studies on recommendation algorithms have been

conducted by researchers in both academy and industry, across different research

areas including artificial intelligence, machine learning, data mining, information

retrieval, and so forth. A variety of recommendation algorithms have been proposed

in the literature and successfully applied to real-world recommender systems.

Among the existing recommendation algorithms, collaborative filtering (CF) is

1

one of the most prominent and popular approaches to recommendation. CF meth-

ods leverage the observed user-item feedback data to infer users’ preferences, in

terms of similarities of users or items, and thus make personalized recommendations

for diverse users [36, 28, 104, 140]. In particular, matrix factorization (MF) mod-

els, one class of model-based CF methods that map users and items into a shared

latent feature space and predict user-item relevance scores using inner product of

feature vectors of users and items, have dominated the rating prediction and top-

k recommendation tasks in various domains (e.g., movies, music) for a few years

[102, 57, 59, 43]. Unfortunately, CF methods heavily suffer from the issues of

cold-start and data sparsity that are pervasive in real-world recommender systems.

To address such issues, many researchers propose to leverage the available user-

user social networks to help infer users’ preferences and develop social CF methods

[82, 80, 53, 83, 107, 152, 74, 32, 17], while some other researchers suggest to exploit

the item-item knowledge graphs to improve user preference modeling and design

knowledge-graph-based CF methods [139, 137, 50, 118, 136, 138, 154, 155]. On the

other hand, the majority of CF methods are intrinsically linear models or heuristic

methods that cannot effectively reveal the complicated user behavior patterns behind

the observed user-item feedback data. To alleviate this issue, a large number of neural

CF methods have been proposed in recent years, which leverage neural networks to

capture the complex user-item interaction patterns and learn meaningful representa-

tions of users and items to help make recommendations [156, 21, 133, 37, 42, 114, 142].

Despite their successes, the aforementioned recommendation methods are intrin-

sically non-interactive and shortsighted. Most of them follow the same supervised

learning (SL) paradigm that aims to learn static, passive, and shortsighted predictive

models from user historical data and make predictions for the single-step recommen-

dation problem only [1, 59, 58, 100]. In more practical recommendation scenarios,

however, the recommender usually interacts with the target user for multiple steps,

2

and accordingly makes a sequence of interactive recommendations. Importantly, a

key feature of such interactive recommendation process is that the recommendations

provided currently may have huge impacts on the quality of future recommenda-

tions. More specifically, the item recommended at current step may not be liked

by the user, but the received feedback might provide valuable information about

his/her preferences, which can help the recommender make better recommendations

at future steps [101]. Besides, the item recommended at current step may change the

user’s preferences dynamically, which also affects the decisions and results of future

recommendations. For such multi-step interactive recommendation scenarios, the

existing methods fail to consider the important influences from earlier steps to later

steps, which can merely generate greedy and shortsighted recommendations that fit

the estimated short-term preferences of the user at each single step. Instead, a more

desirable method should effectively model the user’s long-term preferences towards

future and provide farsighted recommendations that optimize the cumulative rewards

received in the multi-step interactive recommendation process.

A potential approach to interactive recommendation is to leverage the reinforce-

ment learning (RL) paradigm [119] to build an RL-based recommendation agent.

Compared to SL-based recommendation methods, a notable advantage of RL-based

agents is that they are able to not only discover the user’s dynamic preferences via

continuous user-agent interactions, but also learn proactive and farsighted recommen-

dation policies in a trial-and-error fashion. The objective of this thesis is to develop

effective RL-based recommendation agents that can provide high-quality interactive

recommendations to users. The following research questions will be answered in

this thesis. What are the fundamental domain-specific challenges of applying RL

to recommendation? How to address the challenges and develop effective RL-based

recommendation agents? Do the developed RL-based recommendation agents achieve

better performance than the state-of-the-art recommendation methods?

3

User

feedback

Environment

Agent

a
t

s
t+1

r
t+1

r
ts

t

state reward action

Agent

item

Recommendation Reinforcement Learning
Figure 1.1: Modeling the agent-user interaction in recommendation as the agent-
environment interaction in RL.

1.2 Research Motivation

With the RL paradigm [119], the agent-user interaction in recommendation can be

naturally modeled as the agent-environment interaction in RL, as shown in Figure

1.1. This gives rise to an episodic RL task, where in each episode, the agent interacts

with the environment (corresponding to the interactive recommendation process of

target user u) at discrete time steps t “ 0, ..., T ´ 1. At each time step t, the agent

observes a state st (describing the dynamic preferences of user u at time step t) of

the environment, then takes an action at (i.e., recommends an item) according to

its policy π (indicating how to choose actions given states). One time step later,

as a result of its action, the agent receives a numerical reward rt`1 (a signal that

reflects the feedback on item at given by user u) and a new state st`1 from the

environment. More formally, the environment can be mathematically described by

a Markov decision process (MDP), that is, a tuple pS,A,P ,Rq, where S is the state

space, A is the action space, P : S ˆ S ˆAÑ r0, 1s is the state-transition function,

and R : S ˆ S ˆ A Ñ R is the reward function. The MDP formulation provides

well guarantees for applying standard RL algorithms to solve the RL task, that is, to

estimate an optimal policy π˚ that maximizes the cumulative reward received during

the entire interactive recommendation process.

4

MDP
1

Agent

...MDP
2

MDP
m

interaction

Figure 1.2: The Multi-MDP RL task in real-world recommendation scenarios. Each
MDPu is corresponding to the interactive recommendation process of user u.

Unfortunately, this is far from the desirable solution that can really work to make

meaningful interactive recommendations in practice. A real-world recommender sys-

tem usually involves multiple users, where each user u’s interactive recommendation

process is actually a unique MDP, denoted by MDPu. This gives rise to a non-

typical multi-MDP RL task, as illustrated in Figure 1.2, where the agent needs to

interact with the multiple MDPs of all users. Since the involved users usually have

diverse preferences and behaviors over time steps, their MDPs may vary remarkably

in terms of both state-transition functions and reward functions. In other words,

similar users’ MDPs may have relatively close dynamics, but dissimilar users’ MDPs

may have distinctly different dynamics. As a result, compared to typical single-MDP

task, it is much more difficult for the agent to solve the multi-MDP task, that is, to

learn an effective policy that makes personalized recommendations for all involved

users. To be more specific, there are two fundamental domain-specific challenges in

designing a personalized RL agent for the multi-MDP task in recommendation:

• Personalization Modeling. Personalization1 is probably the most impor-

tant factor of any real-world recommender system, which is crucial to attracting

1In this thesis, when we discuss personalization, we always refer to the concept that a recommender
should make personalized recommendations to different users according to their different prefer-
ences. Currently, we only leverage users’ specific feedback data to model users’ preferences. In
future work, we will explore to model users’ preferences by leveraging the additional user profile.
The performance of the proposed methods is expected to be further improved.

5

user attention and improving user experience. It means that the agent should

model the specific personalized characteristics of each user as much as possible,

in order to produce personalized user-specific recommendations to each user.

In other words, the agent is required to reveal the possible differences among

the multiple MDPs of all users.

• Collaboration Modeling. Collaboration is another crucial factor to building

a personalized recommender system in practice, since it offers important clues

to the agent to make novel recommendations for each target user, by discov-

ering his/her unknown interests from similar neighbors (i.e., collaborators). It

implies that the agent should model the underlying collaborative relationships

(e.g., behavioral similarities) between different but similar users, in order to

make more effective personalized recommendations for the entire user commu-

nity. In other words, the agent is required to discover the possible similarities

among the multiple MDPs of all users.

The above challenges are aggravated by the pervasive issues of user cold-start2

and data sparsity3 in real-world recommender systems. How to effectively address

these challenges, that is, how to properly model personalization and collaboration,

is vital to building a successful personalized RL-based recommendation agent.

However, we find that the prior works in RL-based recommendation have paid

little attention to the problems of personalization and collaboration modeling. Most

of the existing RL-based recommendation agents [106, 120, 160, 158, 19, 20, 163]

follow the same approach that treats all involved users as a single virtual user and

directly learns a unified policy πpsq based on the transition data collected uniformly

from all MDPs , which outputs actions dependent only on the state s (usually, a

2That is to say, the new user who has no feedback data.

3That is to say, most users only have feedback on a very small fraction of items, leading to the
extreme sparsity of observed user-item feedback data.

6

Q-learning
Module

State/Action Representation Module

high-level
state s

high-level
action a

raw state s raw action a

concat

Action-value Prediction Module

train

predict

action-value
Q(s , a)

Figure 1.3: Illustration of a typical value-based deep RL agent. The agent consists
of three key components: the state/action representation module that transforms
raw states/actions to high-level representations, the action-value prediction module
that outputs action-values based on high-level state/action representations, and the
Q-learning module that determines how to update the Q-network (i.e., the first two
modules) towards the optimal action-value function.

sequence of user-consumed items), without any explicit consideration of user-specific

information. Although this common adopted approach is straightforward and can

be easily implemented in practice, it has an intrinsic weakness that fails to model

the key factors of personalization and collaboration. More specifically, this approach

is not able to capture the diverse long-term preferences of different users if they are

in the same current state s (usually appears at earlier time steps in the interactive

recommendation process), since the unified policy πpsq will make the same action in

state s. On the other hand, it simply treats all the other users equally as the collabo-

rators of each target user, which is not able to effectively discover similar preferences

from his/her truly collaborators. A few recently proposed works [76, 75] make an

extension to the basic approach by incorporating the additional user id into the state

s. However, such simple way of exploiting the user-specific information only leads to

very limited and coarse-grained modeling of personalization and collaboration.

In this thesis, we attempt to model personalization and collaboration into RL-

7

based recommendation agents in a more systematical and fine-grained way. We start

our research with some observations on what key components affect the performance

of an RL agent. Without loss of generality, we use value-based deep RL as the ba-

sic framework to conduct our research, as it is more general and applicable than

the policy-based deep RL4. A typical value-based deep RL agent utilizes a deep

neural network, referred to as Q-network, to approximate the optimal action-value

function Q˚ (corresponding to an optimal policy π˚) [119, 90] via Q-learning based

algorithms [145]. As show in Figure 1.3, it consists of three key components: the

state/action representation module that transforms raw states/actions to high-level

representations, the action-value prediction module that outputs action-values based

on high-level state/action representations, and the Q-learning module that deter-

mines how to update the Q-network (i.e., the combination of the first two modules)

towards the optimal action-value function.

More specifically, as pointed out in [119], the performance of any RL system is

highly dependent on the state/action representations adopted in the system. Gener-

ally speaking, good representations should capture sufficient and useful task-related

information, in order to facilitate the agent to complete the specific decision making

task of interest. In fact, the impressive performance of deep RL agents in many

game-based tasks, such as Atari [90, 144, 124] and Go [110, 113], are largely because

that they successfully learn useful high-level state representations from raw image

inputs by using deep Convolutional Neural Networks (CNNs). On the other hand,

the network architecture of the action-value prediction module is also important to

the estimation of action-values. For instance, the Dueling Deep Q-network (DDQN)

[144], which integrates both value function and advantage function to estimate action-

values, has shown better performance than the original Deep Q-network (DQN) [90].

4In spite of this, the ideas, concepts and techniques proposed for value-based agents can be readily
transferred to policy-based agents with reasonable modifications.

8

Furthermore, the Q-learning module also plays an critical role in the policy learning

process. A number of improvements have been made from the perspective of learning

algorithm, such as Double DQN [124] and Robust DQN [19].

These observations motivate us to raise an enlightening question: Can we ef-

fectively model personalization and collaboration into the state/action representation

module, the action-value prediction module, or the Q-learning module, to improve the

performance of a value-based deep RL recommendation agent?

1.3 Research Overview and Contributions

To answer the above question, in this thesis we develop four novel and effective

value-based deep RL recommendation agents. Each of them is designed based on

substantial improvements in one or more of the aforementioned three modules by

incorporating personalization and collaboration in different ways. For each proposed

agent, we use one work to describe its technical details and verify its efficacy.

In work 1, we present a User-specific Deep Q-network (UDQN) agent [64, 63],

which first constructs latent vector representations of states and actions using matrix

factorization (MF) and then estimates action-values based on those representations

using Q-learning. In work 2, we describe Graph Convolutional Q-network (GCQN)

[66], an end-to-end agent that directly estimates action-values based on the input of

graph-structured representations of states and actions by effectively processing them

using a variant of graph convolutional network (GCN). In the first two works, we

successfully model personalization and collaboration into the state/action represen-

tation module by leveraging the techniques of MF and GCN, respectively. In work 3,

we introduce a Social Attentive Deep Q-network (SADQN) agent [67, 68], which is

able to estimate action-values based on both personal preferences and social neigh-

bors’ preferences by using personal and social action-value functions, respectively. In

9

Q-learning
Module

State/Action Representation Module

high-level
state s

high-level
action a

raw state s raw action a

concat

Action-value Prediction Module

train

predict

action-value
Q(s , a)

Work 1: MF-based
Representation Module

Work 2: GCN-based
Representation Module

Work 4: Integrating
Personalized Network

Architecture with
Collaborative Learning

Objective

Work 3: Combining
Social Attention-based
Prediction Module and

MF-based
Representation Module

Figure 1.4: Illustration of the main contributions of this thesis, which shows how we
model personalization and collaboration into the agent in each of our four works.

this work, on the basis of UDQN, we further model personalization and collaboration

into the action-value prediction module by successfully leveraging social attention to

capture the social influence between target user and his/her social neighbors in the

social network. In work 4, we present Personalized Deep Q-network (PDQN) [62], an

end-to-end agent that estimates action-values based on both the user-specific infor-

mation of user and the general information of state by using user-specific and general

action-value functions, respectively. Unlike the above three agents, PDQN utilizes a

brand-new personalized Q-network architecture to explicitly model personalization

and collaboration, which is able to learn a fully personalized recommendation policy.

Moreover, collaboration is further modeled by PDQN in a collaborative Q-learning

objective.

10

Figure 1.4 illustrates briefly how we model personalization and collaboration into

the agent in each of the four works. Each work is elaborated in one chapter of this

thesis (from Chapter 3 to Chapter 6). Next, we provide a brief introduction to each

work and summarizes our main contributions.

Work 1: UDQN: Modeling Personalization and Collaboration
via MF-based Representation Module [64, 63]

Existing RL-based recommendation agents are significantly limited by a common

weakness that the key factors of personalization and collaboration are not effectively

modeled. In this work, we propose a novel way to model the factors of personalization

and collaboration into deep RL agents. We first construct user-specific latent vector

representations of states and actions by employing matrix factorization (MF), a well

adopted collaborative filtering (CF) technique in traditional recommendation prob-

lems. After that, we propose User-specific Deep Q-network (UDQN) to approximate

the optimal action-value function (corresponding to an optimal recommendation pol-

icy) based on the constructed latent representations using Q-learning. Finally, we

validate the effectiveness of our approach with comprehensive experimental results

and analysis on both explicit-feedback and implicit-feedback recommendation tasks.

Contributions:

• This work is the first attempt to explore the combination of CF and RL for

recommendation problems. We seamlessly integrates the ideas of CF and RL

by designing an MF-based state/action representation module for the RL-based

recommendation agent.

• The proposed MF-based representation module successfully models the factors

of personalization and collaboration by mapping all users into a shared latent

feature space, and produces informative MF-based vector representations of

11

states and actions for policy learning.

• We develop a two-stage pipeline agent, named UDQN, which is able to learn an

effective recommendation policy based on the constructed MF-based state/action

representations through Q-learning.

• We verify the efficacy and capability of UDQN with comprehensive experi-

mental results and analysis on real-world datasets, in terms of both explicit-

feedback and implicit-feedback recommendation tasks.

Work 2: GCQN: Modeling Personalization and Collaboration
via GCN-based Representation Module [66]

In this work, we propose an alternative way to model personalization and collabora-

tion by building graph-structured representations of states and actions according the

user-item bipartite graph. We develop an effective end-to-end agent, termed Graph

Convolutional Q-network (GCQN), which is able to directly approximate the opti-

mal action-value function based on the input of graph-structured representations.

In particular, GCQN successfully leverages a variant of graph convolutional network

(GCN) to transform the low-level graph-structured representations to higher-level

vector representations of states and actions. We show that GCQN achieves signif-

icant improvements over the existing methods, across different datasets and task

settings, with acceptable computation cost.

Contributions:

• This is the first work that incorporates GCN to design an RL-based recommen-

dation agent. We propose a GCN-based state/action representation module

that is able to transform the graph-structured representations to meaningful

vector representations.

12

• The proposed GCN-based representation module successfully models the fac-

tors of personalization and collaboration by aggregating valuable features from

target user’s local neighborhood in the user-item bipartite graph, in terms of

the feature propagation on the “user-item-user” paths.

• We develop an end-to-end agent, termed GCQN, which is able to directly

approximate the optimal action-value function (corresponding an optimal rec-

ommendation policy) based on the input of graph-structured representations.

• We conduct extensive experiments on three real-world datasets. The results

demonstrate that: (1) the proposed GCN-based representation module helps a

lot in learning farsighted recommendation policies, and (2) GCQN is effective,

robust and efficient, which achieves significant performance gains over state-

of-the-art baselines with reasonable computation cost.

Work 3: SADQN: Improving Personalization and Collabora-
tion via Social Attention [67, 68]

In this work, we propose an effective way to address the issues of data sparsity and

cold-start of existing RL-based recommendation agents, by leveraging the available

social network among users to promote policy learning. Specifically, we develop a

Social Attentive Deep Q-network (SADQN) agent to learn recommendation poli-

cies based on the preferences of both individual users and their social neighbors, by

successfully utilizing social attention to model the social influence between them.

SADQN further models the factors of personalization and collaboration, on the basis

of UDQN, by utilizing a combined action-value prediction module that consists of

a personal action-value function and a social action-value function. Moreover, we

propose an enhanced variant of SADQN, termed SADQN++, to model the com-

plicated and diverse trade-offs between personal preferences and social influence for

13

all involved users, making the agent more powerful and flexible in learning optimal

policies. The solid experimental results on real-world datasets demonstrate that the

proposed SADQNs remarkably outperform the state-of-the-art agents, with reason-

able computation cost.

Contributions:

• We make the first attempt to improve the performance of RL-based recom-

mendation agents by effectively utilizing available social networks of users.

• We develop a two-stage pipeline agent, termed SADQN, which further mod-

els the factors of personalization and collaboration, on the basis of UDQN,

by estimating action-values based on the combination of a personal action-

value function and a social action-value function. The personal and social

action-value functions aim to estimate action-values based on the preferences

of individual users and social friends, respectively.

• In particular, the social action-value function successfully models the collabo-

rations between target user and his/her social neighbors by leveraging social

attention to capture the social influence between them.

• Further, we develop an enhanced variant of SADQN, termed SADQN++, to

model the complicated and diverse trade-offs between personal preferences and

social influence for all involved users, making the agent more powerful and

flexible in learning optimal policies.

• The solid experimental results on real-world datasets demonstrate that the pro-

posed SADQNs remarkably outperform the state-of-the-art agents, especially

in the cold-start recommendation scenario.

14

Work 4: PDQN: Integrating Personalized Network Architec-
ture with Collaborative Learning Objective [62]

In this work, we provide a more explicit and effective way to model personalization

and collaboration in RL-based recommendation agents. We develop an end-to-end

agent, term Personalized Deep Q-network (PDQN), which is able to learn a fully

personalized policy that makes recommendations based on both the user-specific in-

formation of a particular user and the general information of state shared by all

users. More specifically, PDQN estimates personalized action-values based on the

linear combination of two action-value functions: the user-specific action-value func-

tion and the general action-value function that emphasize on modeling personaliza-

tion and collaboration, respectively. Furthermore, we propose a novel collaborative

Q-learning objective to further model the collaborations between similar neighbors,

which is able to make the PDQN agent more effective in approximating the optimal

personalized policy. We show that PDQN achieves significant performance gains over

the existing methods on several real-world datasets.

Contributions:

• We propose a novel end-to-end agent, named PDQN, which is able to learn

a fully personalized recommendation policy that depends on both the user-

specific information of individual user and the general information of state

shared by all users.

• Unlike the UDQN and GCQN agents that model personalization and collab-

oration implicitly into state/action representations, PDQN explicitly models

them into the whole Q-network architecture, by estimating personalized action-

values based on the combination of a user-specific action-value function and

a general action-value function. Besides, unlike the SADQN agent, PDQN

does not rely on additional social information, which can be applied to more

15

recommendation scenarios and datasets.

• We design a novel collaborative Q-learning objective to further model collabo-

ration between similar neighbors, which is able to make PDQN to approximate

the optimal personalized policy more effectively.

• We conduct solid experiments on several real-world datasets to validate our

methods. The results sufficiently verify the efficacy of both the personalized

Q-network architecture and the collaborative Q-learning objective.

1.4 Structure of Thesis

The rest of this thesis is structured as follows. In Chapter 2, we provide a comprehen-

sive literature review, which surveys the existing studies that are closely relevant to

the research in this thesis. We also point out the connections and differences between

the existing works and ours. From Chapter 3 to Chapter 6, we orderly introduce

the aforementioned four RL agents, and validate them on real-world datasets with

solid experimental results and analysis. Finally, Chapter 7 summarizes the proposed

methods, findings, conclusions, and contributions of this thesis. The potential future

extensions of current studies are suggested at last.

16

Chapter 2

Literature Review

In this chapter, we survey the existing studies that are closely relevant to the research

in this thesis. We categorize the prior works according to the basic types of their

proposed recommendation methods, including (generalized) collaborative filtering

and reinforcement learning.

2.1 Collaborative Filtering

Collaborative filtering (CF) is probably the most prevalent and successful approach

to building personalized recommender systems. The core idea behind CF is to infer

users’ personal preferences from their nearest neighbors (i.e., collaborators), and thus

make personalized recommendations for all users. As CF relies only on the observed

user-item feedback data (rating, watching, clicking, etc.), it does not limited to

specific recommendation domains, unlike content-based methods [1].

Over the past two decades, a large number of CF-based methods have been

proposed in the recommendation literature. Early CF methods are essentially some

memory-based (or heuristic-based) algorithms, which aim to predict the rating of a

given user-item pair based on the aggregation of the ratings of other similar users

(user-based CF), similar items (item-based CF), or both of them (Hybrid CF) [36,

99, 10, 104, 28, 140, 54]. These memory-based CF methods have to compute the

17

similarities of users or items over the entire user-item matrix, which usually cannot

be applied to very large datasets. Moreover, their prediction accuracy is significantly

reduced by cold-start and data sparsity, since the computed similarities on very sparse

feedback data cannot reflect the real relationships between users or items. To improve

the prediction accuracy and scalability, researchers incorporate the techniques in

machine learning such as matrix factorization, learning to rank and neural networks,

and design a large number of model-based CF methods that aim to learn an accurate

prediction model from data. On the other hand, to alleviate the issues of cold-start

and data sparsity, many researchers exploit additional data sources of the available

social networks to help infer users’ preferences and develop a number of social CF

methods. We will discuss these methods in the following.

2.1.1 Matrix Factorization

Matrix factorization (MF) is a model-based CF technique, which maps all users and

items into a shared latent feature space and makes rating predictions based on the

inner product between the feature vectors of users and items. These feature vectors

are trained over the observed user-item feedback data by minimizing certain squared

loss functions. Over the past decade, MF-based models have dominated the rating

prediction and top-k recommendation tasks in academy, and have been successfully

applied to real-world recommender systems in industry.

MF for Rating Prediction. A lot of MF models have been proposed for the

rating prediction task in explicit feedback datasets [116, 98, 102, 103, 162, 57, 59]. A

representative MF model is the probabilistic matrix factorization (PMF) proposed by

Salakhutdinov and Mnih [102], which alleviates the over-fitting problem by defining

Gaussian priors on the latent feature vectors. The same authors propose Bayesian

PMF [103] to further avoid over-fitting, which can be efficiently trained with Markov

chain Monte Carlo methods and achieve higher prediction accuracy. Koren [57]

18

propose another famous MF model, SVD++, which achieves dominant performance

in the rating prediction task and win the 2008 Netflix Prize 1. The core prediction

model of SVD++ consists of: the inner product of the user and item feature vectors,

the average rating in the observed data, the user bias parameter, the item bias

parameter, and the implicit feedback term.

MF for Top-k Recommendation. On the other hand, a number of MF models

have been proposed for the top-k item recommendation task in implicit feedback

datasets [49, 94, 43]. Hu et al. [49] investigate the special properties of implicit

feedback datasets in a TV show recommender system, and propose a MF model by

incorporating a confidence factor of users’ positive interests into the squared loss

function. Pan et al. [94] improve the performance of MF for implicit feedback rec-

ommendation by proposing several negative example weighting/sampling strategies,

including uniform weighting/sampling, user-oriented weighting/sampling, and item-

oriented weighting/sampling. He et al. [43] propose a fast learning algorithm based

on element-wise alternating least squares (eALS) technique for online MF in implicit

feedback recommendation.

2.1.2 Ranking-oriented Collaborative Filtering

The recommendation tasks can be essentially formulated as a personalized item rank-

ing problem. Many researchers integrate the techniques of both CF and learning-

to-rank [77], and design a number of ranking-oriented CF (or called collaborative

ranking) methods for the item ranking problem. From the perspective of ranking,

the aforementioned MF models can be regarded as pointwise ranking-oriented CF

methods, since they employ the pointwise squared error loss functions as learning

objectives. Similarly, other ranking-oriented CF methods can be classified into pair-

wise methods, listwise methods, and joint methods, according to the different types

1https://www.netflixprize.com/

19

of loss functions they adopted.

Rendle et al. [97] propose a popular pairwise ranking method, Bayesian person-

alized ranking (BPR), for implicit feedback datasets. Similar to MF models, BPR

utilizes inner product as the scoring function, but optimizes a pairwise ranking loss

function to train the model, for a given positive-negative feedback pair. Other pair-

wise methods such as [5, 96, 60, 24] also aim to learn the relative order between two

items by minimizing various pairwise ranking loss functions. On the other hand, list-

wise methods such as [109, 131, 51] learn the scoring function by directly optimizing

some ranking metrics (e.g., normalized discounted cumulative gain (NDCG)) defined

on the predicted and actual item lists. Besides, joint methods [105, 65, 47] aim to

model both absolute interests and relative preferences of users, by minimizing a joint

objective function that consists of both pointwise and pairwise loss functions.

2.1.3 Neural Collaborative Filtering

Classical model-based CF methods (e.g., MF) are essentially linear models that are

not able to learn the complicated interactions between users and items in large and

complex recommender systems. To overcome this issue, some researchers generalize

the idea of CF into deep learning and design a number of neural CF methods, which

leverage some neural networks to model/predict the relevance scores between users

and items, instead of the simple inner product of feature vectors in MF.

For instance, Wang et al. [133] propose a hierarchical Bayesian model, named

collaborative deep learning (CDL), which jointly performs deep representation learn-

ing for the content information and CF for the feedback matrix. Wang et al. [132]

develop a collaborative recurrent autoencoder (CRAE) which models the genera-

tion of content sequences in the CF setting. Zhang et al. [155] propose an inte-

grated autoencoder-based framework, termed collaborative knowledge base embed-

ding (CKE), which jointly learns the latent representations in CF and the items’

20

semantic representations from the knowledge base.

He et al. [42] propose a neural matrix factorization model, named NeuMF, which

integrates multi-layer perceptron (MLP) with generalized matrix factorization to

make predictions, and is trained by minimizing a binary cross-entropy loss over both

observed positive user-item pairs and sampled negative ones. Song et al. [114] pro-

pose a similar neural network architecture to make predictions, but the network is

trained with a different pairwise ranking loss function. Ebesu et al. [31] propose a

collaborative memory network (CMN) method, which integrates memory networks

with MF models to perform top-k recommendations. Liang et al. [70] propose a

neural CF method based on variational autoencoders for implicit feedback recom-

mendations, which utilizes a generative model with multinomial likelihood and uses

Bayesian inference for parameter estimation. Recently, a number of neural CF meth-

ods that leverage graph convolutional networks (GCNs) have been proposed for a

variety of recommendation domains and have demonstrated appealing performance

[7, 91, 153, 142]. Besides, more works on neural CF methods can be found in a recent

survey on deep learning based recommender systems [156].

2.1.4 Social Collaborative Filtering

Since traditional CF methods only exploit the user-item feedback data to discover

users’ preferences, their recommendation performance may be greatly reduced when

data sparsity and cold-start (new user or new item problem) occur. Fortunately, with

the emergence of online social networks such as the follower network in Twitter, the

friend network in Facebook, and the trust network in Epinions, the additional social

information of users is usually available to recommender systems. According to the

social influence theory, people are influenced by their linked neighbors in the social

network, leading to the homophily effect that social neighbors may share similar

preferences with each other [9, 4, 122]. Thus, it is a potential way to improve the

21

performance of CF methods by effectively leveraging available social networks.

Social CF is a potential approach to alleviating the cold-start and data sparsity

issues, which incorporates social networks into traditional CF methods, in order to

help discover users’ preferences and produce meaningful recommendations more ef-

fectively. A number of memory-based social CF methods [85, 52, 130] explore the

trust propagation in social network, which generate rating predictions for a target

user by directly aggregating the feedback data of his/her trusted friends. These

memory-based social CF methods are able to improve the coverage of recommenda-

tions compared to traditional memory-based CF methods, but are not suitable to

large-scale recommender systems as they need to compute similarities over the entire

rating matrix and the whole social trust network.

Model-based social CF methods [82, 152, 107, 80, 53, 83, 81, 84, 13] employ the

technique of MF to exploit the available social network data, which can be applied to

large datasets. SoRec [82], TrustMF [152] and PSLF [107] factorize simultaneously

the user-item rating matrix and the user-user social network simultaneously in a

shared latent feature space. RSTE [80] fuses target user’s interests and his/her

trusted friends’ tastes to model/predict a specific rating of a user-item pair. SocialMF

[53] is similar to RSTE, but uses a different implementation to take into account the

interests of trusted friends by incorporating a regularization term to control the

distance between target user’s feature vector and the averaged feature vector of

his/her trusted friends. In [83], the authors introduce several social regularization

terms that are similar to the one in SocialMF. The main difference is that the trust

value in social regularization term is replaced by the Pearson correlation coefficient

(PCC) calculated on users’ rating data.

Recently, several complex social CF models beyond MF have been proposed for

social recommender systems [74, 14, 149, 32, 17]. SREPS [74] simultaneously models

the structural information in the social network, and the rating and consumption

22

information in the user-item feedback data under an essential preference space, by

using both network embedding and MF. GraphRec [32] utilizes graph neural networks

to learn user and item latent feature vectors from both user-item feedback graph

and user-user social graph. SamWalker [17] simultaneously learns personalized data

confidence and draws informative training instances by leveraging the social network

information. SAMN [14] utilizes an attention-based memory module to learn user-

friend relation vectors, and builds a friend-level attention component to adaptively

select informative friends for user preference modeling. DANSER [149] introduces

dual graph attention networks to collaboratively learn representations for two-fold

social effects, which are captured by a user-specific attention weight and a dynamic

context-aware attention weight, respectively.

2.1.5 Summary

In this section, we review the existing CF-based recommendation methods in the

literature from a generalized perspective, including memory-based CF methods, MF

models, ranking-oriented CF methods, neural CF models, and social CF methods.

Despite their successes, these CF methods are originally designed for static single-step

recommendation problems. Although some of them might be extended to the multi-

step interactive recommendation problem by performing online updates to model

parameters, they are still not able to provide satisfactory solutions since they are

essentially supervised learning based methods that only aim to learn short-sighted

recommendation models based on users’ immediate feedback data. In spite of this,

the practices of personalization and collaboration modeling in these prior works offer

us valuable inspirations in designing our RL-based recommendation agents.

23

2.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm that focus on the prob-

lem of learning from interaction [119]. Different from supervised learning and un-

supervised learning, RL aims to lean an agent that can auto-control its behavior in

an environment, in order to achieve a goal. It has been proved that RL is able to

effectively model long-term effects and make optimal multi-step decisions in many

complex decision making tasks such as playing Atari games [90, 124, 144, 88, 125]

and the game of Go [110, 113]. By applying RL to interactive recommendation,

the recommendation agent is expected to model the long-term effects in the interac-

tive recommendation process, and thus learn a farsighted policy to make desirable

recommendations that achieve the maximal cumulative rewards.

2.2.1 Tabular Reinforcement Learning

In the literature, a typical RL-based recommendation approach contains two main

stages. The first stage is to formulate the specific recommendation problem as an RL

task, which is mathematically described by a Markov decision process (MDP) that

consists of state space, action space, reward function, and state-transition function.

The second stage is to develop a proper RL algorithm to solve the MDP, that is, to

estimate the agent’s optimal policy that maximizes the cumulative rewards.

Shani et al. [106] propose an MDP-based approach to book recommendation,

which models the user clicked item sequence as the MDP’s states and solves the

MDP via dynamic programming. Unfortunately, for most of real-world recommender

systems, the MDP is always unknown since both the state-transition function and

reward function cannot be explicitly specified. Thus, model-based RL methods such

as dynamic programming are not able to provide solutions in those cases. Instead,

model-free RL methods do not require the specific dynamics of the environment’s

24

model, and are able to update the agent’s policy towards an optimal one by interact-

ing with the environment in a trial-and-error fashion. Temporal-difference learning

(e.g., Q-learning [145]) is one of the most popular model-free RL algorithms, which

aims to estimate the optimal state-value or action-value function (corresponding to an

optimal policy) by using bootstrapping [119]. Researchers have applied the temporal-

difference based algorithms to some small-scale recommender systems. Taghipour et

al. [120] propose a Q-learning based recommendation approach to a webpage rec-

ommender system. Silver et al. [112] propose a concurrent RL framework, which

utilizes a variant of temporal-difference learning to learn policies efficiently from par-

tial interaction sequences of users. Choi et al. [23] formulate the recommendation

problem as a gridworld game by using a biclustering technique to convert the user-

item matrix to a series of grid states, and estimate the optimal policy with some

Q-learning based algorithms.

2.2.2 Deep Reinforcement Learning

In spite of their good convergence guarantees, the aforementioned tabular RL meth-

ods require maintaining a lookup table of all states or/and actions during the policy

learning process. As a result, they are not able to handle the high-dimensional or

continuous state and action spaces of most real-world recommender systems, and are

of poor generalization abilities with respect to unseen states or actions. To overcome

the weaknesses of tabular RL methods, an effective way is to leverage the technique

of value function approximation to approximate the optimal action-value function

(corresponding to an optimal policy) by using a parameterized function approxima-

tor [119, 72]. On the other hand, instead of using value function approximation, an

alternative way is to directly parameterize the policy itself and update the parame-

terized policy towards an optimal one according to the policy gradient theorem [119].

Next, we first review the existing deep RL agents that utilize deep neural networks as

25

the function approximator to approximate the optimal action-value function (value-

based deep RL) or the optimal policy (policy-based deep RL), followed by discussing

some supervised learning techniques in deep RL-based recommender systems.

Value-based Deep RL. Deep Q-network (DQN) [90] is probably the most popular

deep RL agent, which has demonstrated human-level or even better performance in

playing the Atari games. Over the past few years, a lot of extensions or modifications

to DQN such as Dueling DQN [144], Double DQN [124], and Noisy DQN [33] have

been proposed for game-based RL tasks and have shown better performance. Due

to the successes of DQN-based agents in game-based tasks, a number of researchers

propose to incorporate the techniques of DQN into recommender systems and de-

sign a few DQN-based recommendation agents in different recommendation domains

[160, 158, 19]. DEERS [158] is a DQN-based agent designed for product recommen-

dation in e-commerce sites. It first utilizes gated recurrent units as the state repre-

sentation module to learn high-level state representations from both the clicked and

skipped item sequences of users, and then employ a parallel action-value prediction

module to estimate action-values based on the two types of high-level state represen-

tations. DRN [160] applies the Dueling DQN agent to news recommendation, which

estimates action-values based on the linear combination of state-value function and

advantage function. Particularly, it relies on a manual state/action representation

module that incorporates various hand-crafted features of users, news and contexts

into the representations of states and actions. Robust DQN [19] extends the DDQN

agent to online tip recommendation by proposing stratified sampling replay strategy

and approximate regretted reward.

Policy-based Deep RL. Another major type of deep RL agents are based on the

policy gradient theorem, such as Monte Carlo policy gradient (a.k.a. REINFORCE

[146]) and actor-critic policy gradient [119]. Chen et al. [18] propose a REINFORCE-

based deep RL agent to recommendation, by incorporating off-policy correction to

26

tackle the biases in the logged user feedback data collected from multiple behavior

policies. Wang et al. [141] propose an action-critic policy gradient based deep RL

agent, which utilizes recurrent neural networks to address the issue of partially ob-

served states in real-world treatment recommender systems. Chen et al. [15] propose

a tree-structured policy gradient recommendation (TPGR) framework, which builds

a balanced hierarchical clustering tree over the items and formulates the item picking

problem as path seeking from the root to a leaf of the tree. Moreover, deep determin-

istic policy gradient (DDPG) [71] is a popular actor-critic deep RL agent based on the

deterministic policy gradient theorem [111], which is able to hand continuous action

space and learn deterministic policies. A number of DDPG-based recommendation

agents have been proposed to a variety of recommendation domains [157, 48, 76, 78].

Supervised Learning Techniques in Deep RL. A number of studies incorpo-

rate the techniques of supervised learning into deep RL-based recommender systems.

Chen et al. [20] train a user behavior model based on offline logged data by lever-

aging generative adversarial networks. The trained user behavior model is treated

as an environment simulator, which is used to interact the agent and promote the

learning of RL-based recommendation policies. Shi et al. [108] build a similar envi-

ronment simulator with generative adversarial networks based on the logged data in

a large-scale e-commerce website. Zou et al. [163] propose a Pseudo Dyna-Q frame-

work, which iteratively learns an environment simulator and a DQN agent from the

logged data. Besides, Liu et al. [75] propose a supervised learning-based user/item

embedding component for deep RL-based recommendation agents, in order to learn

more effective high-level state/action representations.

2.2.3 Summary

In this section, we review the existing RL-based recommendation methods in the

literature, including tabular RL methods and deep RL methods. The tabular RL

27

methods were proposed very early, but did not attract much attention in the research

community, since they are not able to deal with the large state and action spaces

in modern recommender systems and have poor generalization ability. In contrast,

the recently proposed deep RL methods have drawn more and more attention, due

to their generalization ability, applicability, and impressive recommendation perfor-

mance of course. However, the existing deep RL methods fail to effectively model the

key factors of personalization and collaboration in real-world recommender systems,

which cannot produce a truly personalized recommendation policy. Different from

the prior works, in this thesis we systematically investigate the problem of modeling

personalization and collaboration under the framework of deep RL, and develop sev-

eral truly personalized deep RL agents for interactive recommendation from different

perspectives. Another main difference between the existing methods and ours is that

most of them are designed for some special recommendation domains (e.g., news,

video, or e-commerce), while our proposed methods rely only on user-item feedback

data, which are applicable to almost all types of recommender systems. Moreover,

most of the existing techniques and ours are complementary, which can be combined

to further improve the performance of deep RL-based recommendations.

28

Chapter 3

User-specific Deep Q-network:

Modeling Personalization and

Collaboration via MF-based
Representation Module

Existing RL-based recommendation agents are significantly limited by a common

weakness that the key factors of personalization and collaboration are not effectively

modeled. In this work, we propose a novel way to model the factors of personalization

and collaboration into deep RL agents. We first construct user-specific latent vector

representations of states and actions by employing matrix factorization (MF), a well

adopted collaborative filtering (CF) technique in traditional recommendation prob-

lems. After that, we propose User-specific Deep Q-network (UDQN) to approximate

the optimal action-value function (corresponding to an optimal recommendation pol-

icy) based on the constructed latent representations using Q-learning. Finally, we

validate the effectiveness of our approach with comprehensive experimental results

and analysis on both explicit-feedback and implicit-feedback recommendation tasks.

29

3.1 Introduction

Personalized recommender systems have been successfully applied in many web ap-

plications, such as E-commerce sites, social networking platforms, and music/movie

sites. While such recommender systems are intrinsically interactive, only a few of

interactive recommendation approaches are available in the literature [2, 159, 143].

Most of existing works aim at how to build accurate models based on user history

data for next-step recommendations [1, 59, 58, 100]. The “interactive” recommen-

dations are insufficiently implemented by performing online updates to traditional

recommendation models [29, 93, 43]. However, in real-world scenarios, the recom-

mender usually interacts with the user for multiple steps, and the recommendations

provided at current step may affect the quality of future recommendations. For ex-

ample, the items recommended in earlier steps may not be liked by the user, but

the received feedbacks provide useful information which can help the recommender

make better recommendations in later steps.

In the literature, a number of studies have focused on interactive recommen-

dations or other related problems. Some researchers incorporate the multi-armed

context-free or contextual bandit algorithms into recommendation approaches for rec-

ommending movies [159, 55], music [143], restaurants [25], news articles [69, 126, 123],

and other domains [134, 147, 135, 148]. They model the recommendation problem

as a repeated game of arm selection [8, 129], with emphasis on the exploitation-

exploration dilemma [3, 35]. Unfortunately, these bandit-based methods ignore the

important influences from earlier steps to later steps, and cannot provide satisfactory

solutions to the multi-step interactive recommendation problem in practice.

To address this issue, a potential solution is to utilize the techniques of reinforce-

ment learning (RL) [119] to model the multi-step recommendations as a sequential

decision making problem. It has been proved that RL has the ability to make op-

30

timal multi-step decisions for many complex problems such as playing Atari [90]

and the game of Go [110]. By using RL, an intelligent agent can be learned to rec-

ommend an appropriate item at each step, so as to maximize the globally optimal

recommendation performance for all steps. In the literature, RL based approaches

have been proposed to solve a number of recommendation problems such as session-

based recommendation [106, 157, 158], news article recommendation [160], and mu-

sic playlist recommendation [46]. However, these approaches are only designed for

implicit-feedback recommender systems, which cannot handle explicit-feedback rec-

ommendation problems. Moreover, they fail to model the information of personalized

preferences and collaborative relationships, leading to inefficiency in providing high-

quality personalized recommendations for diverse users.

Distinct from the existing works, we study an interactive recommendation prob-

lem for general recommender systems, and propose a user-specific RL based approach

which well models users’ preferences and relationships. Specifically, we first formulate

the problem of T -step interactive recommendation for each target user as a Markov

decision process (MDP). However, from the practical perspective, it is infeasible to

estimate the optimal policy for each user’s MDP due to limited data and high compu-

tation cost. Thus, we suggest to estimate a global policy for all users’ MDPs, leading

to a non-typical multi-MDP RL task. Compared to traditional tasks, it is a more

difficult challenge to learn the optimal policy for such multi-MDP task, as the MDPs

of different users may vary remarkably in state transitions. To handle this challenge,

we construct user-specific latent states to connect different MDPs by using the tech-

nique of matrix factorization. After that, we propose a DQN [90] based learning

method, to estimate optimal policies based on the constructed user-specific latent

states, which is referred to as User-specific DQN (UDQN). Furthermore, we propose

a Biased UDQN (BUDQN) method to explicitly model user-specific information of

preferences by employing an additional bias parameter to capture the differences in

31

different users’ Q-values. We empirically validate our approach to interactive rec-

ommendation on real-world datasets. The experimental results demonstrate that it

achieves significant improvements over the state-of-the-art approaches.

3.2 Preliminaries

3.2.1 Problem Definition

Suppose we have a 5-star recommender system with integer ratings in t1, 2, 3, 4, 5u,

which currently involves m users and n items. Let U “ t1, ...,mu and I “ t1, ..., nu

denote the sets of users and items, respectively. Let R P Rmˆn denotes the observed

user-item rating matrix, where each nonzero Rui denotes the observed rating of item

i given by user u, and each zero implies that the user has not rated the item yet.

We consider a cold-start recommendation scenario as follows. Suppose a target user

u “ m ` 1 enters into the system at time step t “ 0. The recommender provides

an item to user u, then receives a rating on the item given by him/her. After

considering the observed rating, the recommender updates its knowledge about user

u and provides a new item at time step t “ 1. Suppose such a recommender-user

interactive process will last for T time steps. The goal of the recommender is to

provide user u with the most interesting items that maximize the sum (or average)

of ratings received over T steps.

3.2.2 Q-learning

In RL, an agent interacts with an environment and learns a policy to maximize the

cumulative reward it receives. Normally, the policy is a mapping from states to

actions, a “ πpsq, or probability distributions over actions given states, πpa|sq. To

learn the optimal policy, the basic idea of many reinforcement learning methods is

32

to estimate the action-value (Q) function. The Q function is formally defined as:

Qπ
ps, aq “ Eπ

”

ÿ8

k“0
γkrt`k`1|st “ s, at “ a

ı

, (3.1)

where γ is the discount factor that balances the importance between future rewards

and immediate rewards. It indicates, in the long run, how good it is to take ac-

tion a in state s while following policy π in future steps. The optimal Q function,

Q˚ps, aq “ maxπQ
πps, aq, obeys an important identity known as the Bellman opti-

mality equation [6]:

Q˚ps, aq “ Es1
”

r ` γmax
a1

Q˚ps1, a1q
ˇ

ˇs, a
ı

. (3.2)

Based on the Bellman optimality equation, Q-learning [145] estimates a Q func-

tion (i.e., a lookup table) via the following online update rule:

Qps, aq Ð Qps, aq ` α
”

r ` γmax
a1

Qps1, a1q ´Qps, aq
ı

, (3.3)

where α is the learning rate, and ps, a, r, s1q denotes a transition the agent experiences

during its interactions with the environment. The estimated Q function will converge

to Q˚ when the number of iterations goes to infinity [119]. The greedy policy w.r.t.

Q˚ will be an optimal policy π˚. The classical Q-learning algorithm must maintain

a lookup table of all state-action pairs, which cannot handle complex reinforcement

learning tasks with enormous state and action spaces. Moreover, it estimates the

action-value function separately for each sequence, which has no generalization ability

to deal with unseen states and actions [119].

To address these issues, a common practice is to estimate the action-value function

by using a function approximator, i.e., Q̂ « Q˚. For instance, Deep Q-learning

(DQN) [89, 90] employs a deep neural network with weights w, referred to as Q-

network Q̂ps, a,wq, as the function approximator. To update Q̂, one can minimize a

squared loss function defined as:

L “
ÿ

s,a,r,s1

´

r ` γmax
a1

Q̄ps1, a1q ´ Q̂ps, a,wq
¯2

, (3.4)

33

where Q̄ denotes a target network which copies the weights of Q̂ regularly after L

steps during the interactive process. In practice, rather than directly optimizing the

above loss function, a more convenient way is to perform stochastic gradient descent

(SGD) on a sampled transition ps, a, r, s1q [89, 90]:

w Ð w` α
”

r ` γmax
a1

Q̄ps1, a1q ´ Q̂ps, a,wq
ı

∇wQ̂ps, a,wq. (3.5)

3.3 User-specific Deep Q-network

3.3.1 The Markov Decision Process (MDP)

We consider the aforementioned recommendation problem under the standard RL

framework. The recommender-user interaction in recommendation can be naturally

modeled as the agent-environment interaction in RL (see Figure 1.1). At each time

step t, the agent (recommender) observes a state st about the environment (user u),

then takes an action (item) at according to its policy π, which is usually a mapping

from states to action probabilities. One time step later, as a result of its action,

the agent receives a numerical reward (rating) rt`1 and a new state st`1 from the

environment. The goal of the agent is to maximize the cumulative reward it receives

over T steps. According to [119], the environment can be mathematically described

by a Markov decision process (MDP), a tuple pS,A,P ,Rq defined as follows.

S is the state space. The state st represents the observed preferences of user u

at time step t. A straightforward state representation method is to define the state

st as a n-dimensional rating vector R
ptq
u˚, which denotes the u-th row of R at time

step t. The nonzero values of R
ptq
u˚ indicate the observed ratings given by user u.

Obviously, the initial state s0 is a zero vector.

A is the action space. We define A as the set of all items, i.e., A “ I. In

each state st, an action at can be taken from the set of available actions Apstq, which

is defined recursively: Apstq “ Apst´1qztat´1u for t ‰ 0, and Aps0q “ A. In other

34

words, the agent is not allowed to choose the items that have been recommended at

previous time steps.

P is the transition probability. Pass1 “ Prrst`1 “ s1|st “ s, at “ as denotes the

probability that the environment transits to state s1 after receiving action a in state

s. In the recommendation setting, the exact transition probabilities are unknown

in advance. The agent can observe specific state transitions by interacting with the

environment step by step.

R is the reward function. Ra
ss1 “ Errt`1|st “ s, at “ a, st`1 “ s1s denotes

the expected immediate reward the environment generates after the transition from

state s to s1 due to action a. In the recommendation setting, the immediate reward

of executing an action a only depends on the rating given by user u. Therefore, we

define Ra
ss1 “ Rua.

Note that the above MDP has the Markov property:

Prrst`1 “ s1, rt`1 “ r|s0, a0, r1, ..., st´1, at´1, rt, st, ats

“ Prrst`1 “ s1, rt`1 “ r|st, ats, (3.6)

for all s1, r, and histories s0, a0, r1, ..., st´1, at´1, rt, st, at.

3.3.2 The Multi-MDP Reinforcement Learning Task

Once the MDP for a target user u is given, it seems straightforward to apply standard

RL algorithms to learn the agent’s optimal policy, then use the learned policy to make

recommendations. Unfortunately, this is far from the desirable solution that can

really work in practice. In traditional RL tasks such as Atari games [90], the agent can

interact with a single MDP (i.e., environment) continuously and obtain any amount of

experience to update its policy towards an optimal one. In recommendation settings,

however, it is practically infeasible to interact with a single user’s MDP repeatedly

to obtain so much experience. Even if there is such a user, the learned policy cannot

35

provide valuable and novel recommendations due to over-fitting. Moreover, learning

an independent policy for each user is time-consuming, and does not consider the

possible relationships between different users, which are very important to discovering

users’ unknown interests in real-world recommender systems.

As such, the agent must interact with the MDPs of all involved users, and learn

a global recommendation policy based on them. This actually gives rise to a multi-

MDP RL task, as shown in Figure 1.2. Undoubtedly, compared to traditional tasks,

it is a more difficult challenge to estimate the agent’s optimal policy for the multi-

MDP task. Due to the different tastes of users, their MDPs vary remarkably with

distinctly different state transitions. Similar users may have relatively close MDPs,

but dissimilar users may have totally distinct ones. The experience collected from

different MDPs may be diverse and inconsistent, which makes it very hard to es-

timate the optimal policy. Thus, the key challenge of the multi-MDP task is how

to effectively model the possible relationships (including similarities and differences)

between different MDPs.

3.3.3 User-specific Latent States based on Matrix Factoriza-
tion

To address the aforementioned challenge, we employ matrix factorization (MF) to

convert the MDPs’ raw states sot (as defined in Section 3.3.1) to user-specific latent

states. It has been proved that MF has powerful capability in modeling both the

users’ preferences and the possible relationships between different users [59]. By map-

ping all users and items into the shared low-dimensional vector space, some effective

latent features can be constructed to represent users’ preferences and relationships.

Thus, it is natural and reasonable to utilize the latent feature vector of target user

u to represent the MDP(u)’s states.

More specifically, we first pre-train a MF model based on the observed rating

36

matrix R P Rmˆn, by using stochastic gradient descent (SGD) to minimize a squared

loss function defined as:

L “
ÿ

pu,iqPΩ
pUT

u Vi ´Ruiq
2
` λp}U}2F ` }V }

2
Fq, (3.7)

where Ω “ tpu, iq : Rui ‰ 0u denotes the set of observed user-item pairs, } ¨ }F

denotes the Frobenius norm, λ is the regularization parameter, and U P Rdˆm and

V P Rdˆn denote the latent feature matrices of users and items, respectively. In each

iteration, we traverse the observed user-item pairs in Ω. The update rule of SGD for

a user-item pair pu, iq is given by:

Uu Ð Uu ´ 2α
“

pUT
u Vi ´RuiqVi ` λUu

‰

Vi Ð Vi ´ 2α
“

pUT
u Vi ´RuiqUu ` λVi

‰

, (3.8)

where α is the learning rate. The time complexity of pre-training is Opcd|Ω|q, where

c is the number of iterations, d is the dimensionality of latent space, and |Ω| is the

number of observed user-item pairs. As both c and d are usually small constants

(we set c “ 20 and d “ 64 in our experiments) in practice, the cost of pre-training

is quite low, which is linear to the size of observed rating data. Note that we tested

c P t10, 20, 30u, but the results did not show significant differences.

The pre-trained item feature vectors Vi P Rd for all items i “ 1, ..., n, will be fixed

and used to update the user feature vector Uu P Rd for target user u. During the

agent-environment interactive process, we continuously maintain the user feature

vector Uu over time steps, and use it as the latent state st. Moreover, to ensure

efficient online learning, Uu is updated based on the latest observed rating Rui (which

is located in the raw state sot), according to Equation (6.17). The detailed algorithm

of constructing latent states is presented in Algorithm 3.1. Similar to the online

updates in [43], for the While loop, one iteration is usually sufficient to achieve good

results.

37

Algorithm 3.1: Constructing User-specific Latent States by Matrix Fac-
torization

Input: raw state sot , vector Uu, pre-trained V , learning rate α,
regularization λ, time step t

Output: latent state st, vector Uu
1 if t “ 0 then
2 Initialize Uu with zeros
3 else
4 while L is not converged do
5 Update Uu according to Equation (3.8)

6 st Ð Uu

With the MF-based latent states, we actually derive a set of MDPs with a low-

dimensional continuous state space. Note that the MF-based MDPs still have Markov

property, as state st is updated based on only state st´1, which is independent of

st´2, st´3, ..., s0. This indicates that we can still employ standard reinforcement learn-

ing methods to estimate the optimal policy. Besides, other more complex MF models

such as those proposed in [59] can be easily incorporated into the framework to con-

struct latent states. The performance is supposed to be consistently improved as long

as the adopted models can better capture the users’ preferences and relationships.

However, in this paper, we only use the standard MF model as an instantiation due

to its simplicity, and focus on validating the effectiveness of the general framework

of our proposed approach.

3.3.4 The UDQN Model

To learn the optimal policy based on user-specific latent states, we propose a DQN

[90] based method, named User-specific Deep Q-network (UDQN). Specifically, we

employ a feedforward neural network as our Q-network Q̂ps, a,wq. The Q-network

Q̂ uses the latent state st as input, and outputs the Q values of all possible actions

in that state. To update our Q-network, we use the same update rule in Equation

(3.5). The basic framework and the detailed algorithm of UDQN are presented in

38

Figure 3.1 and Algorithm 3.2, respectively.

To balance the MDPs of different users, we utilize a uniform sampling scheme

to select transitions for estimating Q-values. In each episode of the interactive pro-

cess, a user u is uniformly sampled from training set Utrain to construct the current

environment. It will be used to interact with the agent for T time steps, and to

generate corresponding T transitions pst, at, rt`1, st`1q for t “ 0, ..., T ´ 1 based on

user u’s data. At each time step t, the agent observes reward rt`1 and raw state

sot`1 from the environment after executing action at. Then, the latent state st`1 is

computed by Algorithm 3.1, and the transition pst, at, rt`1, st`1q is added into an

experience replay memory M. When performing Q-learning updates, in stead of

single transition, a minibatch of transitions is uniformly sampled fromM to update

the Q-network. Moreover, to ensure exploration at each time step t, the action at

is chosen by using a ε-greedy strategy with regard to the predicted Q-values. The

training process can continue for any number of episodes as long as the Q-network is

not converged. After training, the learned Q-network Q̂ can be used to make T -step

interactive recommendations for any new user. The agent only needs to interact with

the user step by step, observe states, and always take greedy actions with respect to

the Q-values outputted by Q̂.

Biased UDQN

In the proposed UDQN method, the user-specific information of each user u is only

implicitly embedded in the latent state su of MDP(u), and the Q-values for all

users’ states are estimated by a unified Q-network Q̂. This method can be further

improved in order to perform more effective recommendations in real-world systems,

since many users may have significantly different Q-functions due to diverse tastes

and behaviors. For example, during the interactive recommendation process, user u

may give much higher ratings (i.e., immediate rewards) on the recommended items

39

random

raw state

reward

Q-network

Replay Memory

minibatch update

Q̂ (s , a1)

Q̂ (s , an)
⋮

greedy
action

User SetUser u

define

vectorU u

vectorV j

vectorV n

vectorV 1

⋮

⋮

vectorU u

Rui≈Uu
T V j

initialize

pre-trained V

UDQN

every step

every episode

latent state

Environment

Figure 3.1: The basic framework of UDQN.

compared to user w. In such cases, the Q-values (i.e., long-term rewards) of user

u’s states tsu1 , s
u
2 , s

u
3 , ...u will be much larger than the Q-values of user w’s states

tsw1 , s
w
2 , s

w
3 , ...u, for all actions (i.e., items). However, the latent states with a unified

Q-network are not enough for modeling such differences.

Inspired by the Biased MF models [59], we propose a novel method, named Biased

UDQN (BUDQN), to explicitly model the differences between users by adding a

simple bias parameter bu into the Q-function of target user u. More specifically, we

redefine the value Qpsut , atq as:

Qpsut , atq “ bu ` Q̂ps
u
t , at,wq, (3.9)

where Q̂ denotes the same Q-network of UDQN. Accordingly, the loss function is

redefined as:

L “
ÿ

sut ,at,rt`1,sut`1

´

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

¯2

, (3.10)

where psut , at, rt`1, s
u
t`1q denotes a transition sampled from MDP(u), and Q̄psut`1, aq “

b̄u`Q̄ps
u
t`1, a, w̄q regularly copies Q’s parameters bu and w every L steps during the

40

Algorithm 3.2: The Learning Algorithm of UDQN

Input: training set Utrain, rating data R, the number of episodes K, the
number of time steps T , discount factor γ, ε-greedy parameter ε,
replay memory M

Output: the learned Q-network Q̂
1 Initialize Q̂ with random weights
2 for episode “ 1, ..., K do
3 Uniformly pick a user u P Utrain to construct the current environment
4 Observe raw state so0
5 Compute latent state s0 by Algorithm 3.1
6 for t “ 0, ..., T ´ 1 do

7 Select action at using ε-greedy policy w.r.t. Q̂
8 Execute action at, observe reward rt`1 and raw state sot`1

9 Compute latent state st`1 by Algorithm 3.1
10 Store transition pst, at, rt`1, st`1q in M
11 Sample a minibatch of ps, a, r, s1q from M
12 Update Q̂ according to Equation (3.5)

interactive process, which is held fixed when optimizing the loss function. Specifically,

the gradient of L with respect to w and bu is given by:

∇wL “´ 2
ÿ

sut ,at,rt`1,sut`1

”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

∇wQps
u
t , atq

“ ´ 2
ÿ

sut ,at,rt`1,sut`1

”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

∇wQ̂ps
u
t , at,wq,

∇buL “´ 2
ÿ

sut ,at,rt`1,sut`1

”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

∇buQps
u
t , atq

“ ´ 2
ÿ

sut ,at,rt`1,sut`1

”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

. (3.11)

Therefore, the update rule of SGD on a given transition psut , at, rt`1, s
u
t`1q is:

w Ðw` α
”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

∇wQ̂ps
u
t , at,wq,

bu Ðbu ` α
”

rt`1 ` γmax
a
Q̄psut`1, aq ´Qps

u
t , atq

ı

. (3.12)

The learning algorithm of BUDQN can be derived by using the above update rule to

replace the one in Algorithm 3.2. Compared to UDQN, the BUDQN method is more

41

powerful and flexible in estimating the optimal recommendation policy for multiple

users.

Computational Complexity Analysis

We now analyze the time complexity of UDQN (Algorithm 3.2). In the inner For

loop, the time is mainly taken by computing Q-values, computing latent state st`1,

and updating Q̂. The costs of computing Q-values and updating Q̂ are both Op|w|q,

where |w| denotes the number of Q̂’s weights. The cost of computing latent state is

Opdq (since only one iteration is needed for the While loop in Algorithm 3.1), where

d is the dimensionality of latent feature space. Therefore, the time complexity of

UDQN is OpKT pd` |w|qq, where K is the number of episodes and T is the number

of time steps. Similarly, one can derive that the time complexity of BUDQN is also

OpKT pd` |w|qq.

3.4 Experiments on Explicit Feedback Recommen-

dation Tasks

3.4.1 Experimental Settings

Datasets

We use three benchmark rating datasets for conducting experiments, including two

MovieLens datasets: ML100K and ML1M1, one Yahoo! music dataset: YMusic2.

The three datasets contain explicit ratings of items given by users. For YMusic,

we remove the users who have fewer than 20 ratings, so as to be consistent with

the MovieLens datasets, as well as to ensure there is enough data for training and

testing. The statistics of datasets are presented in Table 3.1.

1http://grouplens.org/datasets/movielens/

2http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

42

Table 3.1: The statistics of datasets

Statistics ML100K ML1M YMusic

#users 943 6,040 5,050

#items 1,682 3,952 1,000

#ratings 100,000 1,000,209 174,497

rating scale 1-5 1-5 1-5

avg. rating 3.529 3.581 2.799

Evaluation Protocol

To evaluate interactive recommendation algorithms, we follow an unbiased offline

evaluation scheme suggested in previous work [159, 69] that the pre-collected ratings

are treated as unbiased interactive feedback of users. We regard those users who

have more than 100 ratings as candidates for testing purpose. For each dataset, we

split the data by randomly choosing 10% candidates as testing set Utest, and the

remaining as training set Utrain “ UzUtest. We repeat the above process 5 times

independently and obtain 5 data splits. We conduct each experiment based on the 5

data splits and report the average results for evaluation. The evaluation metric we

used is the average reward (rating) received over T time steps.

Moreover, how to regard the unknown (missing) ratings is non-trivial for eval-

uating recommendation algorithms. In the literature, there are two widely-used

strategies. The unknown ratings are usually ignored in rating prediction task [59],

and regarded as negative feedback in top-N recommendation task [26]. To compre-

hensively evaluate the algorithms, we adopt both of the strategies and derive two

different tasks for T -step interactive recommendation:

• Task I. We ignore the unknown ratings. The possible actions (items) available

for the agent are restricted in the set of rated items of the target user.

• Task II. We regard the unknown ratings as negative feedback. The entire

43

item set is available for the agent. The reward of recommending an item with

unknown rating is defined as 0.

Using movie recommendation as an example, Task I focuses on predicting how

much the user will like a movie, while Task II aims at predicting both whether the

user will watch a movie, and how much she will like it. In general, Task II is more

difficult than Task I.

Baselines

We compare our methods UDQN and BUDQN against a wide variety of baselines:

• Random. A simple method that picks items randomly.

• Popular. A simple method that picks the most popular items.

• SVD++ [57]. A state-of-the-art matrix factorization (MF) method.

• ICF [159]. A state-of-the-art context-free ε-greedy bandit algorithm based on

both observed and latent features.

• LinUCB [69]. A state-of-the-art contextual bandit method for news recom-

mendation, which is extended for our problem by using the same learning

framework of UDQN, and by concatenating Uu with Vi as its context vector.

• DQN [90]. A state-of-the-art Deep Q-learning algorithm, which estimates

Q-values based on the Raw-based states (as described in Section 3.3.1).

In addition, we compare a variant of UDQN, called UDQN2, which utilizes user

feature vector Uu and item feature vector Va to represent state s and action a,

respectively. The Q-network of UDQN2 takes the concatenation of Uu and Va as

input, and outputs the value of Qps, aq. The purpose of comparing UDQN2 is to

validate how our approach behaves with different types of Q-networks.

44

Parameter Settings

We set the hyperparameters of compared methods based on the cross validation on

ML100K dataset. For reinforcement learning based methods, we use a two hidden-

layer Q-network, where each consists of 256 units, followed by a rectifier nonlinearity.

We set the discount factor γ “ 0.2, the ε-greedy parameter ε “ 0.1, the minibatch

size |batch| “ 1, the replay memory size |M| “ 1, the target network parameter

L “ 1000, the learning rate α “ 0.0001 (for updating Q-networks), and the number

of time steps in training phase Ttrain “ Npuq{2 for user u, where Npuq denotes the

number of observed ratings of user u in the dataset. For the MF models, we set the

dimensionality of latent space d “ 64, the regularization parameter λ “ 0.01, and

the learning rate α “ 0.01 (for updating feature vectors). For LinUCB, we set the

parameter α “ 0.5.

3.4.2 Performance Comparison

Results on Task I

We first compare the performance of all methods on Task I. The mean and standard

deviation of the results over 5 runs on all datasets for both T “ 30 and T “ 50

are reported in Table 3.2. In each case, the bold font indicates the best performed

method among all, while the mark ˚ denotes the best performed baseline. The

relative improvement of those two methods is shown in the last row. From the

results in Table 3.2, we have the following findings.

First of all, the proposed UDQN, UDQN2 and BUDQN significantly outperform

the baselines in all cases, especially in comparison to DQN which use Raw-based

states as input. This highlights the benefits of using the user-specific latent states to

estimate Q-values. Secondly, BUDQN shows consistent and remarkable improvement

over UDQN in all cases, which proves that the explicit user-specific information can

45

0 20 40 60 80 100
Epochs

3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

Re
wa

rd

UDQN, γ= 0.1
UDQN, γ= 0.2
UDQN, γ= 0.3
UDQN, γ= 0.4
UDQN, γ= 0.5

(a) Task I

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Re
wa

rd

UDQN, γ= 0.1
UDQN, γ= 0.2

UDQN, γ= 0.3
UDQN, γ= 0.4

UDQN, γ= 0.5

(b) Task II

Figure 3.2: Effect of the discount factor γ on the performance of UDQN.

further improve the Q-learning performance. Thirdly, the performance of UDQN2

has no significant difference with UDQN, which demonstrates that our approach is

robust and insensitive to the two different types of Q-networks. Moreover, we also

find that the MF model SVD++ performs relative better than other baselines in

most cases. This is reasonable since Task I is related to the Rating Prediction tasks,

in which the MF models have shown dominant advantages over others [57, 59].

Results on Task II

We now compare the performance of all methods on Task II. The mean and standard

deviation of the results over 5 runs on all datasets for both T “ 30 and T “ 50

are reported in Table 3.3. The results on Task II show similar trends to Task I.

First of all, the proposed UDQN, UDQN2 and BUDQN remarkably outperform

the competitors in all cases again. Secondly, BUDQN is still the best performed

method, whose improvements over the best performed baselines are at least 8.04%

(on YMusic dataset for T “ 50) and at most 23.99% (on ML1M dataset for T “

50). Thirdly, UDQN and UDQN2 still show very close performance. Moreover, the

Popular method performs relatively better than other baselines.

46

T
ab

le
3.

2:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

on
T

as
k

I.

M
e
th

o
d

T
=

3
0

T
=

5
0

M
L

1
0
0
K

M
L

1
M

Y
M

u
si

c
M

L
1
0
0
K

M
L

1
M

Y
M

u
si

c

R
an

d
om

3.
47

1˘
0.

06
2

3.
60

7˘
0.

01
8

2.
86

9˘
0.

02
3

3.
48

8˘
0.

03
9

3.
60

1˘
0.

01
7

2.
89

7˘
0.

05
0

P
op

u
la

r
3.

83
6˘

0.
07

0
4.

07
0˘

0.
01

6
3.

08
5˘

0.
03

0
3.

82
6˘

0.
06

8
3.

98
3˘

0.
01

8
3.

00
1˘

0.
04

1

S
V

D
+

+
4.

10
4˘

0.
07

0
4.

29
4˘

0.
01

9*
3.

26
4˘

0.
09

9
4.

02
9˘

0.
06

0*
4.

21
5˘

0.
01

4*
3.

23
2˘

0.
11

2

IC
F

4.
09

4˘
0.

04
6

4.
21

9˘
0.

01
6

3.
33

5˘
0.

03
5*

4.
02

4˘
0.

05
7

4.
17

3˘
0.

01
3

3.
26

2˘
0.

05
3*

L
in

U
C

B
4.

10
9˘

0.
06

3*
4.

25
6˘

0.
01

8
3.

18
2˘

0.
05

3
4.

01
5˘

0.
06

1
4.

16
3˘

0.
01

4
3.

12
3˘

0.
07

0

D
Q

N
4.

05
8˘

0.
05

0
4.

26
7˘

0.
02

0
3.

14
9˘

0.
10

9
3.

98
9˘

0.
04

7
4.

19
5˘

0.
01

4
3.

06
6˘

0.
09

4

U
D

Q
N

4.
16

6˘
0.

06
2

4.
33

1˘
0.

01
5

3.
42

8˘
0.

08
9

4.
07

6˘
0.

03
9

4.
24

6˘
0.

01
6

3.
29

7˘
0.

10
8

U
D

Q
N

2
4.

16
1˘

0.
05

5
4.

32
5˘

0.
01

6
3.

43
7˘

0.
09

6
4.

06
6˘

0.
04

7
4.

23
3˘

0.
01

5
3.

30
9˘

0.
10

3

B
U

D
Q

N
4
.2

0
2
˘

0
.0

4
8

4
.3

6
2
˘

0
.0

1
7

3
.5

0
4
˘

0
.1

1
0

4
.1

1
4
˘

0
.0

3
4

4
.2

7
5
˘

0
.0

1
6

3
.3

4
3
˘

0
.1

0
4

Im
p
ro

ve
2.

27
%

1.
59

%
5.

08
%

2.
10

%
1.

42
%

2.
50

%

47

T
ab

le
3.3:

P
erform

an
ce

com
p
arison

on
T

ask
II.

M
e
th

o
d

T
=

3
0

T
=

5
0

M
L

1
0
0
K

M
L

1
M

Y
M

u
sic

M
L

1
0
0
K

M
L

1
M

Y
M

u
sic

R
an

d
om

0.467
˘

0.037
0.270

˘
0.012

0.510
˘

0.218
0.466

˘
0.017

0.271
˘

0.008
0.510

˘
0.230

P
op

u
lar

2.617
˘

0.014
2.537

˘
0.040*

1.903
˘

0.323*
2.429

˘
0.031

2.292
˘

0.034*
1.680

˘
0.277*

S
V

D
+

+
1.633

˘
0.040

1.292
˘

0.003
0.701

˘
0.193

1.585
˘

0.049
1.459

˘
0.032

0.828
˘

0.187

IC
F

2.249
˘

0.133
1.137

˘
0.049

1.107
˘

0.201
2.174

˘
0.085

1.279
˘

0.039
1.062

˘
0.277

L
in

U
C

B
2.731

˘
0.022*

2.477
˘

0.032
1.761

˘
0.330

2.460
˘

0.024
2.239

˘
0.033

1.355
˘

0.276

D
Q

N
2.706

˘
0.072

2.287
˘

0.040
1.460

˘
0.298

2.544
˘

0.010*
2.159

˘
0.050

1.251
˘

0.202

U
D

Q
N

3.250
˘

0.035
2.974

˘
0.064

2.156
˘

0.259
3.015

˘
0.040

2.801
˘

0.057
1.789

˘
0.211

U
D

Q
N

2
3.224

˘
0.025

2.956
˘

0.052
2.173

˘
0.220

3.010
˘

0.055
2.785

˘
0.049

1.793
˘

0.240

B
U

D
Q

N
3
.3

0
9
˘

0
.0

2
2

3
.0

1
4
˘

0
.0

6
9

2
.2

1
7
˘

0
.2

4
2

3
.0

8
6
˘

0
.0

0
7

2
.8

4
2
˘

0
.0

6
2

1
.8

1
5
˘

0
.2

4
6

Im
p
rove

21.14%
18.80%

16.50%
21.31%

23.99%
8.04%

48

3.4.3 Parameter Analysis

In this subsection, we show how our method UDQN behaves with different settings of

some important parameters. When analyzing a specific parameter, others are fixed

to the default settings. This set of experiments is conducted on ML100K dataset for

T “ 50.

Effect of the Discount Factor γ

The discount factor γ P r0, 1s balances the trade-off between future rewards and

immediate rewards when estimating Q-values. The selection of its value usually

depends on the natures of particular reinforcement learning tasks [119]. Here, we

vary γ in t0.1, 0.2, 0.3, 0.4, 0.5u to compare the performance of UDQN. The learning

curves in terms of both mean (line) and standard deviation (shadow) of the results

are shown in Figure 3.2, where each epoch corresponds to 20k Q-learning updates

in Algorithm 3.2. The results on both tasks demonstrate two main points. First,

UDQN with γ “ 0.2 achieves the best performance. Second, UDQN with a lower γ

learns faster than a higher one. This implies that, for our task, an agent that favors

immediate rewards will achieve better performance. The possible reason is that

our multi-MDP task is distinctly different from traditional tasks, as we discussed in

Section 3.3.2. Moreover, unlike most of traditional tasks, the rewards in our task are

not sparse (at each time step, the agent will receive a rating as reward).

Effect of the Experience Replay

The training trick of experience replay was first proposed by [72], and has shown

appealing performance improvements in some reinforcement learning tasks such as

playing Atari games [90]. Here, we validate whether and how much it will benefit

UDQN for totally different recommendation tasks. To do this, we vary the mem-

ory size |M| P t1, 10, 100, 1000u to check how the performance changes. Note that

49

0 20 40 60 80 100
Epochs

3.5
3.6
3.7
3.8
3.9
4.0
4.1

Re
wa

rd

UDQN, |M|=1
UDQN, |M|=10
UDQN, |M|=100
UDQN, |M|=1000

(a) Task I

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Re
wa

rd

UDQN, |M|=1
UDQN, |M|=10
UDQN, |M|=100
UDQN, |M|=1000

(b) Task II

Figure 3.3: Effect of the experience replay on the performance of UDQN.

0 20 40 60 80 100
Epochs

3.5
3.6
3.7
3.8
3.9
4.0
4.1

Re
wa

rd

UDQN, Ttrain =N(u)/2
UDQN, Ttrain = T

(a) Task I

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0
Re

wa
rd

UDQN, Ttrain =N(u)/2
UDQN, Ttrain = T

(b) Task II

Figure 3.4: Effect of the parameter Ttrain on the performance of UDQN.

|M| “ 1 means that UDQN actually does not uses the trick of experience replay.

The comparison results on both tasks are shown in Figure 3.3, which clearly tell

us the same trend: |M| “ 1 achieves the best performance, and the performance

will be consistently reduced when the memory becomes larger. The implies that,

different from traditional tasks, the use of experience replay will significantly reduce

the agent’s performance for our recommendation tasks.

Effect of the Parameter Ttrain

Recall that T is the number of time steps in testing phase. Naturally, the parameter

Ttrain is supposed to be the same number as T and the trained agent with this

50

setting is assumed to have better performance than others. Nevertheless, we find

that a different setting that sets Ttrain distinctly w.r.t. different training users, may

be a better choice. Here, we compare the performance of UDQN with two settings:

Ttrain “ T , and the default setting Ttrain “ Npuq{2, where Npuq denotes the number

of observed ratings of user u in the dataset. As shown in Figure 3.4, UDQN with

Ttrain “ Npuq{2 performs better than Ttrain “ T . This is mainly because that the

agent with setting Ttrain “ Npuq{2 can learn from more state transitions with rich

diversity, and thus has stronger generalization ability.

3.4.4 The Results of Cross-validation

In our original experimental settings, the dataset is divided into a training set and

a testing set randomly for five times, which could result in overlapping in the test-

ing set between different splits. To address this issue, we conduct an additional

experiment using the 10-fold cross-validation to further compare the performance

of different methods or of different hyper-parameter settings. We use the ML100K

dataset as an example to conduct this experiment. More specifically, we randomly

divide the candidate user set into 10 parts with equal size, where each part contains

10% candidate users. In each fold, we select one part as the testing set, and the

remaining as the training set. The results are averaged over the 10 folds of data.

The results of different methods are shown in Table 3.4, which demonstrate very

similar trends with the results under random split setting (Tables 3.2 and 3.3), al-

though the absolute values are different. Importantly, the proposed method BUDQN

still outperforms the baselines remarkably in the cross-validation setting. The results

of different discount factor γ are shown in Figure 3.5, which demonstrate the same

trend with the results under random split setting (Figure 3.2). With these results,

we may expect that the results on other datasets or of other hyper-parameters under

cross-validation setting will also show similar trends with the results under random

51

Table 3.4: The results of cross-validation on ML100K dataset.

Method
Task I Task II

T=30 T=50 T=30 T=50

Random 3.522˘0.094 3.533˘0.084 0.447˘0.039 0.436˘0.038

Popular 3.844˘0.052 3.832˘0.053 2.543˘0.099 2.361˘0.097

SVD++ 4.118˘0.066* 4.048˘0.069* 1.552˘0.114 1.509˘0.111

ICF 4.112˘0.050 4.045˘0.056 2.139˘0.146 2.102˘0.105

LinUCB 4.108˘0.063 4.024˘0.064 2.643˘0.094* 2.382˘0.084

DQN 4.072˘0.070 4.006˘0.068 2.630˘0.098 2.459˘0.090*

BUDQN 4.214˘0.062 4.125˘0.045 3.219˘0.097 3.016˘0.091

Improve 2.33% 1.90% 21.79% 22.65%

0 20 40 60 80 100
Epochs

3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

Re
wa

rd

UDQN, γ= 0.1
UDQN, γ= 0.2
UDQN, γ= 0.3
UDQN, γ= 0.4
UDQN, γ= 0.5

(a) Task I

0 20 40 60 80 100
Epochs

0.5

1.0

1.5

2.0

2.5

3.0
Re

wa
rd

UDQN, γ= 0.1
UDQN, γ= 0.2

UDQN, γ= 0.3
UDQN, γ= 0.4

UDQN, γ= 0.5

(b) Task II

Figure 3.5: Effect of the discount factor γ on the performance of UDQN in terms of
cross-validation.

split setting.

3.5 Experiments on Implicit Feedback Recommen-

dation Tasks

In this section, we empirically validate the efficacy of UDQN for the implicit feedback

interactive top-k recommendation tasks, by conducting extensive experiments on

real-world datasets.

52

Table 3.5: The statistics of datasets

Statistics ML100K ML1M YMusic WikiVote

#users 943 6,040 5,050 1,131

#items 1,682 3,952 1,000 2,330

#positive feedbacks 100,000 1,000,209 174,497 85,473

3.5.1 Experimental Setup

Datasets

We use four real-world benchmark datasets for conducting experiments, including

two MovieLens datasets: ML100K and ML1M3, one Yahoo! music dataset: YMusic4,

and one Wikipedia social network dataset: WikiVote5. The three datasets ML100K,

ML1M and YMusic contain explicit ratings of items given by users. To perform

implicit-feedback top-k recommendations, we convert the ratings to 1 to represent

the positive feedbacks. The WikiVote dataset contains a directed voting network,

where each edge denotes a vote relation. We consider the user-user vote pair (A,

B) as a user-item feedback pair (user A, item B). For YMusic and WikiVote, we

remove the users who have fewer than 20 positive feedbacks, so as to be consistent

with the MovieLens datasets, as well as to ensure there is enough data for training

and testing. To summarize, we present the statistics of all datasets in Table 3.5.

Evaluation Methodology

Without special mention, we set T “ 20 and k “ 5 for our evaluation, as such

settings are usually appropriate for real-world recommendation scenarios on both

3http://grouplens.org/datasets/movielens/

4http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

5http://snap.stanford.edu/data/wiki-Vote.html

53

desktop and mobile devices. The evaluation metric we used is Precision:

Precision “
1

T

T
ÿ

t“1

Pt
k
, (3.13)

where Pt denotes the number of positive feedbacks of the k recommended items at

time step t. The Precision metric measures the accuracy of the top-k recommended

items. Since k is small, we do not further measure the relative orders among the k

items by using some other ranking metrics such as NDCG. In addition, we evaluate

the interactive recommendation algorithms based on two different settings: cold-start

and warm-start, which are described below.

In the cold-start setting, the agent has no information about target user’s pref-

erences at time step t “ 0. To conduct this set of experiments, we split each dataset

by randomly choosing 10% users as testing set Utest, and the remaining as training

set Utrain. The data of Utrain is first used to pre-train the feature matrices U and V ,

then used to train the RL agent. However, in each episode, the initial state s0 is set

to zeros rather than the pre-trained Uu, so as to fit the cold-start setting.

In the warm-start setting, the agent already observes some feedbacks of target

user at time step t “ 0. To conduct this set of experiments, we split each dataset

according to the following procedure. We first select the users who have at least

50 positive feedbacks as candidate set Ucan. We randomly choose 10% users from

Ucan as testing set Utest, and the remaining as training set Utrain “ UcanzUtest. Also,

we use Upre “ UzUcan to denote the pre-training set. Then, all data of Upre and 30

randomly chosen positive feedbacks of each user in Ucan are used together to pre-train

the feature matrices, so as to fit the warm-start setting. The remaining data of Utrain

and Utest is used for training and testing the RL agent, respectively.

For both recommendation settings, we repeat the data split procedure 5 times

with different random seeds. We conduct each experiment based on the obtained 5

54

data splits, and calculate the mean and standard deviation of the results for evalua-

tion.

Compared Methods

We derive four UDQN methods for validations and comparisons:

• UDQN-MF. The original UDQN that utilizes MF [59] to construct latent

states.

• UDQN-BPR. A UDQN variant that utilizes BPR [97] to construct latent

states.

• UDQN-APPL. A UDQN variant that utilizes APPL [65] to construct latent

states.

• UDQN-Concat.A UDQN variant that utilizes the concatenation of both MF-

based and APPL-based latent states.

We compare the UDQN methods with a variety of baselines:

• Random. A simple method that picks items randomly.

• MF [59]. A standard matrix factorization model that learns the scoring func-

tion R̂ui “ UT
u Vi by minimizing a pointwise squared error loss and picks items

with largest scores.

• BPR [97]. A pairwise collaborative learning-to-rank method that learns R̂ui

by minimizing a pairwise ranking loss.

• APPL [65]. A joint collaborative learning-to-rank method that learns R̂ui by

minimizing pointwise and pairwise losses alternately.

55

• LinUCB [69]. A contextual bandit algorithm for news recommendation, which

is extended to our problem by using the same learning framework of UDQN.

Moreover, we concatenate Uu with Vi as its context vector.

• DQN [90]. A state-of-the-art deep reinforcement learning algorithm, which

estimates Q-values based on the raw states.

Parameter Settings

We set the hyperparameters of compared methods based on the cross-validation on

ML100K dataset in cold-start recommendation setting. For MF, BPR and APPL, we

set the dimensionality of latent space d “ 64, the regularization parameter λ “ 0.01,

and the learning rate α “ 0.01 (for updating feature vectors). For LinUCB, we set

the parameter α “ 0.5. For DQN and UDQN, we set the discount factor γ “ 0.2, the

ε-greedy parameter ε “ 0.1, the learning rate α “ 0.0001 (for updating Q-networks),

the number of time steps in training phase Ttrain “ 3T , and use the same Q-network

architecture (excluding the input layer), which consists of two hidden layers of 256

units with ReLU activation and an output layer of n units.

3.5.2 Performance Comparison

We first compare the performance of the proposed UDQN methods against baselines.

The mean and standard deviation of the results on all datasets in both cold-start

and warm-start recommendation settings are reported in Table 3.6. In each case, the

bold font indicates the best performed method (UDQN-Concat in all cases), and the

mark “*” denotes the best performed baseline (DQN in all cases). The reported p-

value is computed by conducting the paired t-test with respect to these two methods.

In addition, the relative improvement between them is shown in the last row. From

the results in Table 3.6, we can summarize two main findings.

56

T
ab

le
3.

6:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

on
im

p
li
ci

t-
fe

ed
b
ac

k
to

p
-k

re
co

m
m

en
d
at

io
n

ta
sk

.

M
e
th

o
d

s
C

o
ld

-s
ta

rt
R

e
co

m
m

e
n
d
a
ti

o
n

W
a
rm

-s
ta

rt
R

e
co

m
m

e
n
d
a
ti

o
n

M
L

1
0
0
K

M
L

1
M

Y
M

u
si

c
W

ik
iV

o
te

M
L

1
0
0
K

M
L

1
M

Y
M

u
si

c
W

ik
iV

o
te

R
an

d
om

0.
06

7˘
0.

00
6

0.
04

3˘
0.

00
1

0.
03

5˘
0.

00
2

0.
03

1˘
0.

00
6

0.
07

8˘
0.

01
0

0.
04

8˘
0.

00
1

0.
06

2˘
0.

00
4

0.
04

3˘
0.

00
2

M
F

0.
27

0˘
0.

01
0

0.
20

2˘
0.

00
5

0.
09

2˘
0.

00
4

0.
12

4˘
0.

00
9

0.
37

3˘
0.

01
7

0.
32

7˘
0.

00
2

0.
17

0˘
0.

01
0

0.
16

4˘
0.

00
5

B
P

R
0.

19
2˘

0.
00

9
0.

20
0˘

0.
00

7
0.

09
1˘

0.
00

2
0.

11
8˘

0.
01

5
0.

36
1˘

0.
01

2
0.

33
1˘

0.
00

5
0.

16
8˘

0.
00

8
0.

14
2˘

0.
00

8

A
P

P
L

0.
30

1˘
0.

01
6

0.
19

8˘
0.

00
3

0.
08

5˘
0.

00
1

0.
14

5˘
0.

00
8

0.
38

1˘
0.

01
8

0.
34

2˘
0.

00
6

0.
16

5˘
0.

00
9

0.
17

1˘
0.

00
6

L
in

U
C

B
0.

31
8˘

0.
00

8
0.

29
7˘

0.
00

1
0.

14
9˘

0.
00

1
0.

12
2˘

0.
00

7
0.

31
0˘

0.
01

5
0.

32
8˘

0.
00

5
0.

17
4˘

0.
00

9
0.

08
2˘

0.
00

5

D
Q

N
0.

40
1˘

0.
01

0*
0.

35
4˘

0.
00

9*
0.

15
3˘

0.
00

1*
0.

16
3˘

0.
00

7*
0.

44
6˘

0.
02

2*
0.

35
6˘

0.
01

5*
0.

18
2˘

0.
01

0*
0.

17
3˘

0.
01

5*

U
D

Q
N

-M
F

0.
43

3˘
0.

00
9

0.
41

8˘
0.

00
1

0.
18

1˘
0.

00
1

0.
22

1˘
0.

01
0

0.
46

5˘
0.

02
2

0.
43

1˘
0.

00
1

0.
19

9˘
0.

01
0

0.
25

4˘
0.

00
8

U
D

Q
N

-B
P

R
0.

42
0˘

0.
00

8
0.

40
2˘

0.
00

1
0.

17
5˘

0.
00

2
0.

21
0˘

0.
00

8
0.

45
8˘

0.
01

8
0.

43
5˘

0.
00

2
0.

20
2˘

0.
00

9
0.

22
3˘

0.
00

8

U
D

Q
N

-A
P

P
L

0.
44

3˘
0.

01
0

0.
42

3˘
0.

00
1

0.
18

1˘
0.

00
1

0.
23

8˘
0.

01
0

0.
48

0˘
0.

02
0

0.
44

1˘
0.

00
2

0.
20

2˘
0.

00
8

0.
26

2˘
0.

00
6

U
D

Q
N

-C
on

ca
t

0
.4

5
0
˘

0
.0

0
8

0
.4

3
5
˘

0
.0

0
2

0
.1

8
5
˘

0
.0

0
3

0
.2

4
8
˘

0
.0

1
1

0
.4

8
9
˘

0
.0

2
0

0
.4

5
5
˘

0
.0

0
4

0
.2

0
9
˘

0
.0

0
8

0
.2

6
9
˘

0
.0

0
6

p-
va

lu
e

3e
-6

1e
-7

9e
-7

4e
-6

5e
-6

1e
-5

7e
-5

1e
-6

Im
p
ro

ve
11

.9
7%

22
.4

4%
21

.4
0%

51
.8

4%
9.

69
%

28
.0

2%
14

.9
4%

54
.9

3%

57

Firstly, we find that all the proposed UDQN variants outperform the baselines

remarkably and consistently in all cases. In particular, UDQN-Concat shows at least

9.69% (in the case of warm-start recommendation on ML100K dataset) and up to

54.93% (in the case of warm-start recommendation on WikiVote dataset) improve-

ment over the best performed baseline. This finding strongly highlights the efficacy

of our approach to interactive top-k recommendations.

Secondly, we find that the performance of UDQN-MF, UDQN-BPR and UDQN-

APPL is basically consistent with the three collaborative filtering models: MF, BPR

and APPL. For instance, in the case of ML100K dataset and cold-start setting, the

performance of the three UDQN variants is ranked as: UDQN-APPLą UDQN-MFą

UDQN-BPR, same as the ranking of the three collaborative filtering models: APPL

ą MF ą BPR. This finding implies that the performance of UDQN is partially de-

pendent on the quality of the user-specific latent states learned with the collaborative

filtering models. It also supports our claim made previously that the performance

of UDQN will be improved consistently as long as the adopted collaborative filtering

model can better capture users’ preferences.

3.5.3 Parameter Analysis

Recall that in previous experiments, we set T “ 20 and k “ 5 in default for the eval-

uation on T -step interactive top-k recommendations. In this subsection, we validate

how UDQN performs with different settings of T and k. We use UDQN-Concat as a

representative to conduct this part of analysis. Also, we choose APPL from non-RL

baselines and DQN as representatives for the comparison. This set of experiments are

conducted on ML100K and WikiVote datasets in cold-start recommendation setting.

58

1 3 5 10
k

0.2

0.3

0.4

0.5

0.6

Pr
ec
isi
on

APPL DQN UDQN-Concat

(a) ML100K

1 3 5 10
k

0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ec
isi
on

APPL DQN UDQN-Concat

(b) WikiVote

Figure 3.6: Performance of UDQN-Concat for different k.

Performance for Different k

We first vary k P t1, 3, 5, 10u to evaluate the performance of the compared methods,

while fixing all the other experimental settings as default. The results are shown

in Figure 3.6, where the shade indicates the standard deviation over 5 runs. We

can see that UDQN-Concat outperforms other two methods consistently. Also, the

Precision of top-k items will decrease when k becomes larger, which is reasonable

in top-k recommendations. Besides, the non-RL method APPL performs relatively

worse with a small k due to cold-start issue, since there is no sufficient feedback data

for training the prediction model during the interactive process (only kT feedbacks

will be collected).

Performance for Different T

We now vary T P t5, 10, 15, 20u to evaluate the performance of the compared meth-

ods, while fixing all the other experimental settings as default. The results are shown

in Figure 3.7. Again, UDQN-Concat outperforms other two methods consistently,

and the relative improvement over DQN is continuously increasing when T becomes

larger. This indicates that our approach is able to model future wards more effec-

tively, even with the increasing difficulty of the T -step leaning task. Besides, APPL

59

5 10 15 20
T

0.2

0.3

0.4

0.5

0.6
Pr
ec
isi
on

APPL DQN UDQN-Concat

(a) ML100K

5 10 15 20
T

0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ec
isi
on

APPL DQN UDQN-Concat

(b) WikiVote

Figure 3.7: Performance of UDQN-Concat for different T .

shows different trend due to cold-start issue, similar to the trend with respect to k.

3.6 Conclusions and Discussions

In this work, we study a T -step interactive recommendation problem for general

recommender systems. Different from the existing works, we propose a novel user-

specific deep RL approach to the problem, which effectively models the user-specific

information of both personalized preferences and collaborative relationships. More

specifically, we develop two user-specific deep Q-learning methods, UDQN and BUDQN,

to learn recommendation policies based on the user-specific latent states constructed

by matrix factorization (MF). We conduct extensive experiments to evaluate our ap-

proach on three real-world datasets in terms of both explicit-feedback and implicit-

feedback recommendation tasks. The comprehensive results demonstrate that it

achieves remarkable improvements over a wide variety of state-of-the-art recommen-

dation methods.

Although MF is well studied in traditional recommendation domains, it is based

on the paradigm of supervised learning and has not been investigated in the context of

RL. Working well in supervised learning tasks (e.g., rating prediction task) does not

means it can also work in RL tasks (e.g., our interactive recommendation task). Our

60

work provides a positive answer to this research question by successfully integrating

MF with RL. Moreover, our approach is generic, which can be deemed as a general

framework for RL-based recommendations. In stead of DQN, it is easy to employ

other state-of-the-art RL algorithms to estimate the optimal policy based on the

proposed MF-based latent states and actions. On the other hand, in stead of the

standard MF model, it is easy to employ other more complex latent factor models

to construct the latent states and actions.

61

62

Chapter 4

Graph Convolutional Q-network:

Modeling Personalization and

Collaboration via GCN-based
Representation Module

In this work, we propose an alternative way to model personalization and collabora-

tion by building graph-structured representations of states and actions according the

user-item bipartite graph. We develop an effective end-to-end agent, termed Graph

Convolutional Q-network (GCQN), which is able to directly approximate the opti-

mal action-value function based on the input of graph-structured representations.

In particular, GCQN successfully leverages a variant of graph convolutional network

(GCN) to transform the low-level graph-structured representations to higher-level

vector representations of states and actions. We show that GCQN achieves signif-

icant improvements over the existing methods, across different datasets and task

settings, with acceptable computation cost.

4.1 Introduction

Reinforcement learning (RL) [119] is a promising approach to recommender systems,

which aims to build a recommendation agent that is able to adaptively recommend

63

potentially interesting items to users in a sequential manner. Compared to non-RL

recommendation engines, a key nature of RL agents is that they are able to not

only capture users’ dynamic preferences via continuous user-agent interactions, but

also learn farsighted policies that achieve maximal long-term rewards from users.

Recently, researchers introduced the techniques of deep RL (e.g., deep Q-networks

[90]) to design novel recommendation agents with good generalization ability and

scalability. These modern RL agents, which use neural networks to approximate the

optimal action-value functions or policies, have shown great potential in a variety

of recommendation domains ranging from news feeds to E-commerce sites [160, 158,

19, 20].

Despite their successes, however, there is an important problem that has been

rarely noticed and investigated in these prior works. That is, how to effectively

represent the states and actions for an RL recommendation agent, according to spe-

cific characteristics in recommender systems, e.g., user-item bipartite graph? This

problem is very crucial to the learning of effective recommendation policies. As

pointed out in [119], the performance of an RL system is highly dependent on the

state/action representations adopted in the system. Generally speaking, good repre-

sentations should capture sufficient and useful task-related information, in order to

facilitate the agent to complete the specific decision making task of interest. In fact,

the impressive performance of deep RL agents in many game-based tasks, such as

Atari [90, 144] and Go [110], are largely because that they successfully learn useful

high-level state representations from raw image inputs by using deep convolutional

neural networks (CNNs).

The above observations motivate us to revisit the existing works in RL-based rec-

ommender systems, and analyze the different types of state/action representations

used by them. In some works [160, 19], the states (actions) are represented by some

handcrafted features of users (items). Although these handcrafted representations

64

have good interpretability, two obvious weaknesses limit their applicability: (1) they

require a large amount of human effort for feature engineering; and (2) they are

only appropriate to feature-rich scenarios such as news recommendations. On the

other hand, more researchers [158, 141] leverage neural networks to learn high-level

vector representations from the raw states (e.g., item sequences) and actions. Such

neural-network-based representations are learned in an end-to-end fashion, which

only require item ids for inputs and hence can be applied to most recommendation

domains. Unfortunately, a common weakness of the existing RL-based methods is

that they represent the states/actions of each individual user in isolation, such that

the collaborative relationships (e.g., similarities) between different users are not ex-

plored and exploited. This weakness significantly limits the performance of existing

methods in learning personalized recommendation policies for the entire user com-

munity, as shown in our experiments.

In this work, we propose a novel idea to overcome the weakness of the existing

RL-based recommendation methods. We suggest to design effective graph-structured

representations for states and actions based on user-item bipartite graph, from which

personalized recommendation policies can be learned. We start by following the ex-

isting work [120] to define the raw state as an item sequence observed currently,

which indicates that our approach is applicable to most recommendation domains.

We then build a graph-structured state based on the raw item sequence by replacing

each item i in the sequence with a specific sub-graph Gpiq that consists of item i

and its neighborhood in the whole user-item bipartite graph G. Figure 4.1 illus-

trates how to build a graph-structured state for target user u through a toy example.

Such graph-structured state has two notable qualities: (1) it captures the rich struc-

tural information in user-item bipartite graph, which enables the agent to discover

collaborative preferences from target user u’s neighbors (e.g., u1, u2, u3); and (2) it

preserves the sequential information in original item sequence, which enables the

65

i1

i4

i3

i2

u4

u3

u2

u1

u1 u3

u2
i1

i2

i3i4

i1 i4
G(i1) G(i4)

……

Graph-structured state sraw state s

a b

c

Figure 4.1: A toy example to illustrate how to build a graph-structured state for
target user u. (a) The whole user-item bipartite graph G. (b) The sub-graph Gpi1q
that consists of item i1 and its neighborhood in G. (c) Building a graph-structured
state s “ tGpi1q, ..., Gpi4qu based on the raw state s “ ti1, ..., i4u.

agent to model the dynamic preferences of target user u. In the same way, each

action can be represented by a specific sub-graph instead of a single item.

To effectively learn policies based on the graph-structured representations, we

develop an end-to-end RL agent, termed Graph Convolutional Q-network (GCQN).

GCQN is able to transform the graph-structured states and actions to high-level vec-

tor representations and finally predict the action-values based on them (see Figure

4.2). More specifically, we propose a variant of graph convolutional network (GCN)

by incorporating the ideas of both GraphSage [38] and GAT [128]. We use this GCN

module to exploit the structural information in the graphs of states and actions, and

output some graph-aware vector representations. We then take advantage of the

gated recurrent unit (GRU) [22] with a self-attention mechanism [73], to process the

sequence of graph-aware representations and produce a higher-level vector represen-

tation of the state. Finally, the concatenation of the high-level state representation

66

and action representation is fed into a multilayer perceptron (MLP) to predict the

action-value of the state-action pair.

To summarize, we offer the following main contributions:

• We provide a new way to improve the existing RL based recommender sys-

tems by building graphs to represent states and actions. The proposed graph-

structured representations capture both structural information and sequential

information, such that the factors of collaboration and personalization are effec-

tively embedded. As a result, the graph-structured representations offer much

bigger opportunity for the agents to estimate optimal policies, in contrast to

the existing unstructured representations.

• We develop an effective end-to-end agent, GCQN, which is able to approximate

the optimal action-value function based on the inputs of graph-structured rep-

resentations. GCQN successfully exploits the structural and sequential infor-

mation by leveraging GCN and GRU, respectively.

• We conduct extensive experiments on three real-world datasets to validate our

approach. The experimental results demonstrate that: (1) graph-structured

representations help a lot in learning farsighted recommendation policies; and

(2) GCQN is effective and robust, which achieves significant performance gain

over state-of-the-art baselines across different datasets and task settings.

4.2 Preliminaries

We formulate the RL based recommendation problem as follows. Suppose we have

a recommender system with a set of m users U “ t1, ...,mu, a set of n items I “

t1, ..., nu, and an observed user-item implicit feedback matrix Y P Rmˆn, where

yui “ 1 if user u gives a positive feedback on item i (clicking, watching, etc.), and

67

yui “ 0 otherwise. We consider an episodic RL task [119], where in each episode,

a recommendation agent interacts with a target user u at discrete time steps t “

0, ..., T ´ 1. At each time step t, the agent observes a state st (the current situation

the agent faces), and accordingly takes an action at (i.e., recommends an item at P I)

based on its policy π (indicating how to choose actions given states). One step later,

as a consequence of its action at, the agent receives a reward rt`1 “ yuat from user u

and observes next state st`1.

Given the data of training users Utrain Ă U , our goal is to learn an optimal

policy that is able to maximize the cumulative rewards received in a T -step episode,
řT´1
t“0 rt`1, for testing users Utest “ UzUtrain. To estimate the policy, in this work

we follow a well-adopted approach that uses a neural network Qps, a; θq (i.e., Q-

network) to approximate the optimal action-value function Q˚ps, aq (corresponding

to an optimal policy π˚) [72, 119, 89, 90] via Q-learning [145].

4.3 Graph Convolutional Q-network

In this section, we start by formally defining the graph-structured states and actions.

We then present the GCQN model. Lastly, we show the training algorithm of GCQN.

4.3.1 Representing States and Actions as Graphs

We first define the raw state st of target user u as an item sequence, ta0, ..., at´1u,

denoting the items that user u has consumed before time step t1, and define the raw

action a as a unique item. We then build graph-structured representations by trans-

forming the raw state ta0, ..., at´1u to a sequence of sub-graphs tGpa0q, ..., Gpat´1qu,

and by transforming the raw action a to a sub-graph Gpaq. Here, each sub-graph

1Intuitively, a more realistic state might consider the corresponding feedback sequence
tyua0

, ..., yuat´1
u simultaneously. However, how to effectively exploit such feedback information

to estimate action-values is a big challenge. Simple use (e.g., DEERS [158]) will heavily degener-
ate the agent’s performance in our tasks. We leave the exploration to this problem in the future
work.

68

Gpiq consists of item i and its neighborhood in the whole user-item bipartite graph

G (as shown in Figure 4.1)2.

It is worth noting that the proposed graph-structured representations have sev-

eral good qualities. First of all, after taking action at in the graph-structured

state st “ tGpa0q, ..., Gpat´1qu, the agent will observe next graph-structured state

st`1 “ tGpa0q, ..., Gpat´1q, Gpatqu at time step t ` 1. This implies that the state

transition actually meets the Markov property of a Markov decision process (MDP),

which provides well guarantees for applying Q-learning based methods to solve the

RL based recommendation problem [119]. Secondly, the graph-structured state also

inherits the sequential property of the original item sequence, which implies that

sequential models such as RNNs can be employed to capture the dynamic and evolv-

ing preferences of target user. Last but not least, the graph-structured states and

actions capture the rich structural information in the user-item graph, which enables

the agent to collaboratively explore personalized recommendation policies for diverse

users.

4.3.2 The GCQN Model

We now describe the GCQN model, an end-to-end RL agent that takes the graph-

structured representations of state-action pair pst, aq as input, and outputs the pre-

dicted action-value Qpst, aq. The network architecture of GCQN is illustrated in

Figure 4.2. We will elaborate on GCQN in the following.

Embedding Layer. We first map all users and items to a low-dimensional vector

space. Each user u and each item i is described by a unique embedding vector eu P Rd

and ei P Rd, respectively. The embeddings of users and items are implemented as

two simple lookup tables: Eu “ re1, ..., ems and Ei “ re1, ..., ens. These embeddings

2In practice, we only use training users’ data to construct graph G, in order to ensure no test
information is used during training.

69

i1

high-level
state st

GCN

G(a
0
)

Attention

GRU

MLP

action-value
Q(st , a)

…

GCN

G(a)G(at-1)

GCN

…

high-level
action a

graph-structured
state st

graph-structured
action a

Representation
Learning
Module

Action-value
Predicting

Module

Figure 4.2: Overview of the GCQN model.

are treated as the raw features of nodes in the graphs, which are randomly initialized

and trained in an end-to-end fashion.

GCN Layer. We develop an variant of GCN by taking advantage of the ideas of

both GraphSage [38] and GAT [128]. The goal of this GCN module is to process

each sub-graph Gpiq, and produce a graph-aware representation of item i, xi P Rd:

xi Ð relupWfcrei ‘ eN piqs ` bfcq, (4.1)

where Wfc P Rdˆ2d and bfc P Rd are the trainable weights and biases of a fully

connected (FC) layer, ei is the embedding of item i, ‘ denotes the concatenation op-

eration, and eN piq P Rd is the neighborhood vector that is computed by an attention-

based aggregator AGGatt:

eN piq Ð
ÿ

wPN piq
αiwew, (4.2)

70

where N piq denotes the set of the 1-hop neighbors of item i in Gpiq, ew is the

embedding of user w, and αiw is the attention score that determines how much

feature information of user w will be passed to item i. We adopt the Concat attention

mechanism [79] to compute the attention score αiw:

αiw Ð
exp

`

wJ
a tanhpWarei ‘ ewsq

˘

ř

vPN piq exp
`

wJ
a tanhpWarei ‘ evsq

˘ , (4.3)

where Wa P Rdˆ2d and wa P Rd are trainable weights for attention, and ¨J is the

transpose operation.

In a real-word recommender system, the size of N piq may vary dramatically over

different items i (e.g., follow the long-tail distribution). To make the computation

more efficient, as many existing works did [38], we uniformly sample a fixed-size set

of user neighbors for each item i, instead of using its full neighborhood. That is, we

redefine N piq as a fixed L-size, uniform sample from the full set N`piq “ tu : yui “

1u. Note that N piq is formed with different uniform samples at each iteration during

training, and will contain duplicates when L ą |N`piq|.

In our experiments, we also examined the mean-based aggregator AGGmean and

the pooling-based aggregator AGGpool proposed in [38]. However, these two aggre-

gators did not show comparable performance against our attention-based one (see

Table 4.3 for comparison), as they failed to model the different influence strength

from each user v P N piq to item i. For example, although both user A and user B give

the same positive feedback on item i, they might have distinctly different embedding

vectors that should be treated distinguishingly when aggregating features.

By applying the GCN module to the action graph Gpaq and the state graphs

tGpa0q, ..., Gpat´1qu, we obtain a graph-aware vector representation xa of action a,

and a sequence of graph-aware vector representations xpstq “ txa0 , ...,xat´1u of state

st, respectively. Both will be fed to the next layers.

71

GRU Layer. To model the sequential information in the state, as the exiting work

did [158], we leverage a gated recurrent unit (GRU)3 to further process the graph-

aware state representation xpstq “ txa0 , ...,xat´1u, which can be simply denoted

by tx0, ...,xt´1u for notational convenience. The goal of this GRU module is to

transform tx0, ...,xt´1u to a sequence of hidden vectors th0, ...,ht´1u, where hj P Rd

is abstractly computed as:

hj Ð GRUphj´1,xjq. (4.4)

Furthermore, we employ a self-attention mechanism [73] to capture the importance

of different items in the state, and summarize a final state representation hst :

hst Ð
ÿt´1

j“0
βjhj, (4.5)

where βj is the attention score that indicates how much feature information of item

aj will be extracted, which is computed by:

βj Ð
exp

`

wJ
satanhpWsahjq

˘

řt´1
l“0 exp

`

wJ
satanhpWsahlq

˘ , (4.6)

where Wsa P Rdˆd and wsa P Rd are trainable weights in the self-attention. With this

attention mechanism, the GRU layer is able to autonomously select more important

features from the input sequence, and thus help the agent capture the user’s dynamic

preference at each time step.

MLP Layers. Once the state vector representation hst P Rd and the action vector

representation xa P Rd are ready, we employ a multilayer perceptron (MLP) (with

architecture 2dÑ ¨ ¨ ¨ Ñ 1) to fuse useful feature information from both of them and

3We chose GRU instead of long-short term memory (LSTM) and simple RNN because GRU has
shown advantages over them in many recommendation tasks [44, 158].

72

predict the final action-value Qpst, aq:

c1 Ð relupW1rhst ‘ xas ` b1q,

¨ ¨ ¨

Qpst, aq Ð wJ
l cl´1 ` bl, (4.7)

where ci, Wi (or wi) and bi (or bi) denote the outputs, trainable weights and biases

of the i-th layer of MLP, respectively.

4.3.3 Training Algorithm

To train GCQN, i.e., the Q-network denoted by Qps, a; θq, we adopt a Q-learning

[145] based algorithm, which minimizes the following loss function:

Lpθq “ Es,a,r,s1
“

py ´Qps, a; θqq2
‰

, (4.8)

where θ denote all the trainable parameters of the Q-network, y “ r`γmaxa1 Qps
1, a1; θ´q

is the Q-learning target for current iteration, γ is the discount factor that balances

the importance between future rewards and immediate rewards, and θ´ are the Q-

network parameters from previous iteration, which are held fixed when performing

optimization. In practice, instead of optimizing the full expectations in the loss func-

tion, a more convenient way is to perform stochastic gradient descent (SGD) on a

sampled transition ps, a, r, s1q [89, 90]:

θ Ð θ ` α ry ´Qps, a; θqs∇θQps, a; θq. (4.9)

We present the training algorithm of GCQN in Algorithm 4.1. To make the

Q-network converge well, sufficient transitions that involve all possible states and

actions are needed for Q-learning updates [119]. To this end, in each episode, we

uniformly sample a user u from training set Utrain as the current target user, which

will interact with the agent and generate corresponding states and rewards. To

73

Algorithm 4.1: The Training Algorithm of GCQN

Input: training user set Utrain, feedback data Y
Output: trained Q-network Q

1 for episode “ 1, ..., N do
2 Uniformly sample a target user u from Utrain
3 Initialize state s0 “ ticu, where ic is a random item
4 for t “ 0, ..., T ´ 1 do
5 Recommend the ε-greedy item at w.r.t. Qpst, a; θq
6 Set reward rt`1 “ yuat and state st`1 “ st Y tatu
7 Update Q’s weights θ according to Equation 4.9

ensure exploration, in each state st, the agent uses a ε-greedy policy that selects a

greedy action at “ arg maxaQpst, aq with probability 1´ ε and a random action with

probability ε. At the testing stage, the trained Q-network agent can be used to make

real-time recommendations for any user v P Utest. It only needs to interact with user

v, observe state st, predict the action-values Qpst, aq for all actions, and recommend

the greedy item at “ arg maxaQpst, aq, at each time step t.

Time Complexity. In the inner for-loop in Algorithm 4.1, the computation time is

mainly taken in computing Q-values for all available items (line 5), and in updating

Q-network (line 7). The cost of computing Q-values is Opn|θ|q, where |θ| is the

number of Q-network parameters and n is the number of items, and the cost of

updating Q-network is Op|θ|q. Therefore, the time complexity of training GCQN in

worst case is OpNTn|θ|q, where N is the number of episodes and T is the number of

time steps in each episode.

4.4 Experiments

We conducted extensive experiments to validate the proposed GCQN method. In

this section, we describe our experiments and show the results and analysis.

74

Table 4.1: The statistics of datasets.

Statistics LastFM ML1M Pinterest

#users 1,874 6,040 13,397

#items 2,828 3,416 9,359

#observed feedbacks 71,411 999,611 494,523

4.4.1 Experimental Setup

Datasets. We employ three public recommendation datasets: LastFM4 [12] (a

music recommendation dataset collected from the Last.fm website), ML1M5 [39] (a

movie recommendation dataset collected from the MovieLens website), and Pinter-

est6 [34, 42] (an image recommendation dataset collected from the Pinterest website).

All datasets contain user-item feedback data. Since we focus on implicit-feedback

recommendations, we follow the common practice to treat users’ diverse behaviors

(listening, rating, or pinning) on items (artists, movies, or images) as a unified im-

plicit positive feedback7. To ensure there is enough data for training and testing

reinforcement learning agents, we first remove the items with fewer than 5 feedbacks

for all datasets, and then remove the users with fewer than 5, 20 and 30 feedbacks for

LastFM, ML1M and Pinterest, respectively (in proportion to the number of items in

each dataset). A summary of characteristics of the datasets is given in Table 4.1.

Evaluation Protocols. To evaluate reinforcement learning based recommendation

algorithms, we assume the observed feedbacks in the datasets are unbiased, similar

to [69, 159]. Since not all unobserved items are truly negative, we randomly select

1000 unobserved pu, iq pairs of user u as the negative feedbacks (yui “ 0), similar to

[26]. In each T -step episode of the user-agent interactions, the agent is forced to pick

4https://grouplens.org/datasets/hetrec-2011/

5https://grouplens.org/datasets/movielens/1m/

6https://github.com/hexiangnan/neural collaborative filtering/tree/master/Data

7The explicit feedbacks in LastFM (listening counts) and ML1M (ratings) are converted to 1.

75

items from the available item set that consists of the 1000 sampled negative items and

the observed positive items. We conduct experiments for cold-start recommendation

scenario, which implies that the agent has no feedback data of target user at time

step t “ 0, i.e., at the beginning of each T -step episode. We split each dataset by

randomly choosing 80% users as the training set Utrain, and the remaining 20% users

as the testing set Utest. We conduct each experiment on 5 data splits obtained with

different random seeds. The evaluation metric we used is the mean of the rewards

received in a T -step episode, which is equivalent to the ratio of positive items in the

recommended items during the episode. The final metric is obtained by taking its

average over all testing users and 5 data splits.

Baselines. To comparatively evaluate our GCQN, we carefully choose a number of

representative RL-based methods from the literature, which can be applied to our

task with reasonable adaptions or extensions:

• DEERS [158]. This is a DQN-based method designed for product recommen-

dation in E-commerce. It utilizes GRU to learn state representations from

positive- and negative-feedback item sequences.

• LSTM-Q. This method learns the state representations from item sequences

by using LSTM [45], and learns the action representations from item ids by

using embedding layer.

• GRU-Q. This method is similar to LSTM-Q. The only difference is that it

utilizes GRU [22] to learn state representations.

• AttLSTM-Q. This method extends LSTM-Q with a self-based attention mech-

anism [73].

• AttGRU-Q. This method extends GRU-Q with the same self-based attention

mechanism.

76

All of the above baselines are Q-network agents. The major difference between

them and our GCQN is that they only use RNNs to learn state representations and

use a simple embedding layer to learn action representations. To apply them to our

task, as well as for fair comparisons, we train these agents using the same Q-learning

algorithm of GCQN (i.e., Algorithm 4.1). This enables us to focus on validating the

efficacy of the proposed graph-structured representations.

We also compare several non-RL methods for reference:

• SVD [59] is a matrix factorization model that uses the inner product of latent

feature vectors to predict user-item relevance scores. To fit our task, we first

train the item feature vectors based on training data by using SVD and uniform

negative sampling, which will be held fixed during testing. When performing

T -step recommendations for a testing user v, the feature vector of user v is

randomly initialized, and is always updated based on the fixed item feature

vectors according to the new feedback data at each time step.

• Popular picks items with most positive feedbacks. It is a simple but strong

baseline in many recommendation tasks.

• Random picks items randomly. It can be seen as an indicator that reveals the

difficulty of the task itself.

It is worth noting that our RL-based recommendation problem is a fully cold-

start online learning task. Thus, the majority of the existing supervised learning

based methods are not able to provide meaningful recommendations for our task8.

Parameter Settings. We implement the compared reinforcement learning based

methods in PyTorch. Since all of them are trained with the same Q-learning algo-

8In fact, we have tried NCF [42] and NGCF [142] that utilize MLP and GCN to replace the inner
product in SVD, respectively. However, these two complex models failed to produce better results
than SVD in a reasonable amount of training time. Since all of them are supervised learning based
methods, we only report the results of SVD here.

77

Table 4.2: The average reward received in T -step episodes (T “ 20).

Type Method LastFM ML1M Pinterest

Non-RL

Random 0.036 0.123 0.034

Popular 0.330 0.608 0.175

SVD 0.151 0.285 0.084

RL

DEERS 0.243 0.511 0.095

LSTM-Q 0.336 0.621 0.171

GRU-Q 0.346 0.626 0.178

AttLSTM-Q 0.354 0.632 0.181

AttGRU-Q 0.375 0.633 0.191

Graph RL GCQN 0.404 0.658 0.215

rithm, we use the LSTM-Q as a base model to tune some common hyperparameters

using grid search, which will be fixed to all methods. This setting is reasonable as it

enables us to make a fair comparison on the particular representation learning mod-

ules in different methods. More specifically, we adopt the Adam optimizer to update

Q-networks. All parameters in Adam are set to the default values in PyTorch, with

one exception of learning rate α “ 0.0001. Other shared hyperparameters are set as

follows: the embedding size d “ 64, the discount factor γ “ 0.5, the ε-greedy param-

eter ε “ 0.1, the number of training episodes N “ 2 ˆ 105, and the architecture of

the MLP 128 Ñ 64 Ñ 32 Ñ 1. For DEERS, we adopt the same architecture as in

the original paper [158]. For GCQN, we set the neighborhood sample size L “ 10.

For SVD, we set the latent factor dimension as 64, the regularization parameter as

0.001, and the learning rate as 0.01.

4.4.2 Comparison Results

The comparison results of all methods, in terms of the average reward received in

T -step episodes (T “ 20), are reported in Table 4.2. The best performing method

is highlighted in bold font. The proposed GCQN method shows significant margins

78

over the baselines on all datasets.

• Our GCQN shows remarkable advantages over the baselines on all datasets, in-

cluding AttLSTM-Q and AttGRU-Q whose major differences between GCQN

is that they do not use the graph-structured state/action representations. More

specifically, the improvements of GCQN over the best performing baseline

AttGRU-Q are about 7.7%, 3.9% and 12.5% on LastFM, ML1M and Pinter-

est datasets, respectively9. This clearly demonstrates that the proposed graph

representations of states and actions are very helpful to learning reinforce-

ment learning based recommendation policies, by effectively exploiting them

with GCN networks.

• AttLSTM-Q and AttGRU-Q show the second-class performance, with notable

improvements over LSTM-Q and GRU-Q. This demonstrates the efficacy of

using attention mechanisms to help the agent estimate action-values. AttGRU-

Q (GRU-Q) performs better than AttLSTM-Q (LSTM-Q), which is consistent

with many other recommendation tasks [44, 158].

• DEERS shows much worse performance than other reinforcement learning

methods, which implies that it is not beneficial to divide the item sequence

into two sub-sequences of positive and negative feedbacks. SVD shows poor

performance as it suffers from cold-start, while Popular is a stronger baseline.

4.4.3 Model Analysis

Performance for Different T . We also show the performance of GCQN when

varying T P t5, 10, 15, 20u, in comparison to the best performing baseline AttGRU-

Q. The results are shown in Figure 4.3, from which we observe that:

9Note that in the famous Netflix Prize, the winner only improves the baseline 10%!

79

5 10 15 20
T

0.38
0.40
0.42
0.44
0.46
0.48

Re
wa

rd
AttGRU-Q
GCQN

(a) LastFM

5 10 15 20
T

0.64

0.66

0.68

0.70

0.72

Re
wa

rd

AttGRU-Q
GCQN

(b) ML1M

5 10 15 20
T

0.19

0.20

0.21

0.22

0.23

Re
wa

rd

AttGRU-Q
GCQN

(c) Pinterest

Figure 4.3: Comparison for different T P t5, 10, 15, 20u. Our GCQN consistently
shows remarkable improvements over AttGRU-Q.

• The rewards of both methods decrease significantly when T increases from 5 to

20. This is mainly because of two reasons: (1) the recommendation task of T -

step episode becomes harder when T increases, since a more farsighted policy

needs to be learned, and (2) the observed positive feedbacks in the dataset are

limited, which reduces the chance of picking positive items especially at later

time steps, because the agent cannot select repetitive items to recommend in

our settings.

• Our GCQN method consistently shows significant improvements over AttGRU-

Q for different T . This verifies again the effectiveness and robustness of GCQN,

across different datasets and task settings.

Running Time Comparison. We now compare the running time of all rein-

forcement learning based methods on a single-GPU machine. Since all of them are

Q-networks using same Q-learning algorithm, their time complexity is OpNTn|θ|q

(as analyzed previously). The only difference between these methods is the num-

ber of Q-network parameters |θ|. Figure 4.4 shows the average training time of the

methods on each dataset (for T “ 20). Overall, the training cost of GCQN is close

to DEERS, nearly 1.5 times higher than AttLSTM and AttGRU, and 2 times higher

than LSTM and GRU. This implies that the significant performance gain of GCQN

80

DEERS LSTM-Q GRU-Q AttLSTM-Q AttGRU-Q GCQN4
5
6
7
8
9

10

Ho
ur
s

LastFM
ML1M
Pinterest

Figure 4.4: Comparison of running time of reinforcement learning based methods.
The training cost of GCQN is close to DEERS, nearly 1.5 times higher than AttLSTM
and AttGRU, and 2 times higher than LSTM and GRU. This indicates that the
significant performance gain of GCQN is achieved with acceptable cost.

Table 4.3: The results of GCQN with different aggregators.

AGG LastFM ML1M Pinterest

T “ 10 T “ 20 T “ 10 T “ 20 T “ 10 T “ 20

mean 0.459 0.398 0.687 0.644 0.227 0.211

pool 0.458 0.400 0.691 0.648 0.221 0.211

att 0.464 0.404 0.697 0.658 0.232 0.215

is achieved with reasonable cost10.

Impact of Aggregator. To study the impact of aggregator on the performance of

GCQN, we design two variants of GCQN by replacing its attention-based aggregator

AGGatt with the mean-based one AGGmean and the pooling-based one AGGpool pro-

posed in [38]. The comparison results in Table 4.3 show that the proposed AGGatt

outperforms the others by a significant margin. This verifies the efficacy of using

attention mechanisms to capture different neighbors’ features, instead of treating

them equally.

Impact of Neighborhood Sample Size L. We investigate the influence of

10In the propose models, we use -greedy algorithm to select actions and perform off-policy learning.
Millions of transitions are needed for updating the models in order to achieve good performance.
We will explore more to further improve the sample efficiency in future work.

81

Table 4.4: The results of GCQN with different sample size L.

L LastFM ML1M Pinterest

T “ 10 T “ 20 T “ 10 T “ 20 T “ 10 T “ 20

2 0.458 0.401 0.694 0.652 0.226 0.209

5 0.461 0.403 0.695 0.652 0.228 0.217

10 0.464 0.404 0.697 0.658 0.232 0.215

20 0.458 0.401 0.693 0.651 0.230 0.212

neighborhood sample size L on the performance of GCQN. The results of differ-

ent L P t2, 5, 10, 20u are shown in Table 4.4. We observe that GCQN with L “ 10

achieves the best performance (except for the case of T “ 20 on Pinterest). This is

because a too small L is not able to incorporate enough neighborhood information,

while a too large L might bring noisy information.

4.5 Conclusions and Discussions

Our method is partly inspired by the recent advancements of graph convolutional

networks (GCNs). GCNs are a class of neural network architectures for processing

graph-structured data, which aim to learn meaningful representations of nodes given

a graph [161, 151]. To achieve this goal, spectral GCNs [11, 27, 56] perform “graph

convolutions” based on the spectral graph theory, while non-spectral GCNs [30, 92,

38] directly take operations (e.g., weighted average) on the local neighborhood of a

node. As shown in these prior works, the learned GCN-based representations are

able to significantly improve the model’s performance in a variety of tasks such as

node classification and link prediction. Recently, researchers have applied GCNs

to a variety of recommendation domains and demonstrated appealing performance.

PinSage [153] extends the GraphSAGE algorithm [38] to the pin-board bipartite

graph for Pinterest recommender system. Some works apply GCNs to the user-

item bipartite graph in collaborative filtering recommender systems [7, 91, 142].

82

Moreover, a number of GCN-based methods have been proposed for session-based

recommendations [150, 115], social recommender systems [32, 149], and knowledge-

graph-aware recommender systems [139, 137].

However, these existing GCN-based methods are essentially supervised learning

based approaches, which can only learn static, passive, and shortsighted predictive

models for the single-step recommendation problems. In this work, we make the

first attempt to effectively leverage GCNs to design RL approaches to learn dynamic,

proactive, and farsighted recommendation policies.

We propose a novel idea that designs graph-structured states and actions for RL

recommendation agents. In particular, the proposed graph-structured state seam-

lessly integrates the structural information in user-item graph and the sequential

information in user-consumed item sequence, such that the factors of personaliza-

tion and collaboration are effectively embedded. Both types of information is crucial

to the learning of personalized recommendation policies. To implement the idea, we

develop an effective end-to-end RL agent, termed Graph Convolutional Q-network

(GCQN). GCQN is able to approximate the optimal action-value function based on

the inputs of graph-structured representations, by successfully leveraging GCN and

GRU to exploit the structural and sequential information, respectively. We have em-

pirically validated the proposed idea, as well as the developed GCQN, by conducting

solid experiments on real-world datasets.

Our approach is a generic framework for graph-structure reinforcement learn-

ing, which can be readily extended with many existing techniques. For instance,

other GCN designs such as fastGCN [16] can be incorporated into GCQN to fur-

ther improve its performance. Also, the action-value predicting module in GCQN

can be replaced by the dueling network architectures [144], in order to improve pol-

icy learning in those cases where many similar-valued actions exist. Moreover, the

state-representation learning module in GCQN can be transferred into a policy net-

83

work under the policy gradient framework [71], in order to handle continuous action

spaces.

Currently, we have not made a systematical comparison between UDQN (the

MF-based model) and GCQN (the GCN-based model). However, we did make a

rough comparison between them when we recently conducted Research Work 4. We

found that: GCQN performs better on sparse datasets such as Amazon, but worse

on dense datasets such as MovieLens, compared to UDQN.

84

Chapter 5

Social Attentive Deep Q-network:

Improving Personalization and

Collaboration via Social Attention

In this work, we propose an effective way to address the issues of data sparsity and

cold-start of existing RL-based recommendation agents, by leveraging the available

social network among users to promote policy learning. Specifically, we develop a

Social Attentive Deep Q-network (SADQN) agent to learn recommendation poli-

cies based on the preferences of both individual users and their social neighbors, by

successfully utilizing social attention to model the social influence between them.

SADQN further models the factors of personalization and collaboration, on the basis

of UDQN, by utilizing a combined action-value prediction module that consists of

a personal action-value function and a social action-value function. Moreover, we

propose an enhanced variant of SADQN, termed SADQN++, to model the com-

plicated and diverse trade-offs between personal preferences and social influence for

all involved users, making the agent more powerful and flexible in learning optimal

policies. The solid experimental results on real-world datasets demonstrate that the

proposed SADQNs remarkably outperform the state-of-the-art agents, with reason-

able computation cost.

85

5.1 Introduction

The majority of research on recommendation algorithms is based on supervised learn-

ing, which focuses on learning accurate predictive models from historical feedback

data for only single-step recommendations [1, 100, 58, 156]. Most of these recommen-

dation approaches cannot provide a satisfactory solution to the multi-step interactive

recommendation problem in real-world scenarios. To address this issue, a potential

way is to use RL, which aims at learning an agent that can auto-control its behavior

in an environment, in order to achieve a goal [119]. By integrating both RL and

deep neural networks, deep RL agents have shown human-level or even better per-

formance in solving many complex decision making problems such as playing Atari

[90, 124] and Go [110]. Recently, a number of researchers incorporated the ideas

and techniques of deep RL into recommender systems, and proposed several novel

recommendation algorithms which have shown great potential in a variety of rec-

ommendation domains [160, 158, 157, 19]. Compared to traditional recommenders,

a notable merit of RL agents is that they are able to actively discover users’ inter-

ests through user-agent interactions and recommend items that may bring maximal

future rewards.

Successful as they are, the existing RL based approaches only exploit user-item

feedback data, whose recommendation performance may be greatly reduced when

data sparsity and cold-start occur. Fortunately, with the emergence of online social

networks such as Twitter, additional social information of users is usually available

to the recommender. According to the social influence theory, users are influenced

by others in the social network, leading to the homophily effect that social neighbors

may have similar preferences [9, 4]. Thus, it is a potential way to improve the quality

of recommendations by leveraging available social networks, which has been widely

studied and demonstrated in traditional social recommendation domains [82, 80, 53,

86

107, 122, 152]. However, most of the existing social recommendation models cannot

be directly extended to RL based systems, as they are based on the paradigm of

supervised learning.

To the best of our knowledge, this paper makes the first attempt to improve the

performance of deep RL based recommenders, by effectively utilizing available social

networks. In the context of deep RL, the performance of many agents is determined

by the estimation of the long-term rewards, e.g., action-values, which indicate, in

the long run, how many benefits the agent will obtain if it recommends the items

at current time [119]. Similar to the prediction of short-term rewards (e.g., ratings)

in traditional recommendation domains, it is biased and inefficient to estimate the

action-values based on only users’ own preferences, due to the issues of cold-start and

data sparsity. Thus, we propose to leverage social neighbors’ preferences to promote

the estimation of action-values.

To implement this idea, we develop a novel deep RL agent, termed Social Atten-

tive Deep Q-network (SADQN). The key idea is that we estimate the action-values

by a linear combination of two action-value functions, the personal action-value func-

tion QP and the social action-value function QS (see Figure 5.2). Intuitively, QP

estimates action-values based on target user’s personal preferences, as most of the

existing methods do. In contrast, QS is able to estimate action-values based on

his/her social neighbors’ preferences, by utilizing an attention mechanism to model

the influence from different social neighbors to target user. By integrating both func-

tions, SADQN is able to learn recommendation policies that take advantage of both

personal preferences and social influence.

While SADQN is straightforward and easily understandable, the simple linear

combination of function approximators QP and QS is not able to model the com-

plicated and diverse trade-offs between personal interests and social influence for all

involved users, which limits the performance in approximating the optimal action-

87

value function Q˚. To handle this challenge, we propose an enhanced variant of

SADQN, termed SADQN++ (see Figure 5.3), to fuse QP and QS more deeply by

learning appropriate trade-offs from data autonomously. More specifically, we lever-

age QP and QS to learn some relevant hidden representations from personal and

neighbors’ preferences. Then, we employ additional neural layers to summarize valu-

able features from these hidden representations, and predict the final action-value

based on the summarized features. This way provides more flexibility to SADQN++

in modeling the trade-offs, leading to stronger capability in approximating the op-

timal action-value function. As a result, SADQN++ is able to learn the optimal

policies more effectively.

We empirically validate the performance of the proposed SADQNs by conducting

solid experiments on three real-world datasets. The results show that they remark-

ably outperform four state-of-the-art deep RL agents that fail to consider social

influence, as well as several traditional recommendation methods. In particular, the

relative improvements of SADQN++ against the best performing baseline are at

least larger than 8.5% for cold-start recommendation, and 3.5% for warm-start rec-

ommendation. More importantly, the significant improvements of SADQNs over the

state-of-the-art agents are accomplished with reasonable computation cost.

5.2 Preliminaries

5.2.1 Problem Formulation

We consider a recommender system with user set U “ t1, ...,mu and item set I “

t1, ..., nu. Let R P Rmˆn denote the user-item feedback matrix, where Ria “ 1 if user

i gives a positive feedback on item a (clicks, watches, etc.), and Ria “ 0 otherwise.

We focus on the task of recommending items in sequential user-recommender

interactions, which can be formulated as a standard RL problem [119]. Specifically,

88

Agent

State Reward Action

User

ar tst
r t+1

st+1
(a)

Q(s , a)

MLP

State s Action a

(b)

Figure 5.1: (a) The user-agent interaction in RL based recommender systems. (b)
The basic architecture of DQN.

an agent (recommender) and an environment (target user i) interact at discrete time

steps (see Figure 5.1a). At each time step t, the agent observes the environment’s

state st (representing the current preferences of user i), and accordingly takes an

action (item) at based on its policy (probability distributions over actions given

states). One time step later, as a consequence of its action, the agent receives a

reward rt`1 (Riat) and next state st`1 from the environment. The goal of the agent

is to maximize the cumulative reward it receives in T interactions.

5.2.2 Reinforcement Learning

Normally, the agent’s policy is a mapping from states to actions, a “ πpsq, or proba-

bility distributions over actions given states, πpa|sq. To learn the optimal policy, the

basic idea of many RL methods is to estimate the action-value (Q) function, which

is formally defined as:

Qπ
ps, aq “ Eπ

”

ÿ8

k“0
γkrt`k`1|st “ s, at “ a

ı

, (5.1)

where γ is the discount factor that balances the importance between future rewards

and immediate rewards. It indicates, in the long run, how good it is to take ac-

tion a in state s while following policy π in future steps. The optimal Q function,

Q˚ps, aq “ maxπQ
πps, aq, obeys an important identity known as the Bellman opti-

89

mality equation [6]:

Q˚ps, aq “ Es1
”

r ` γmax
a1

Q˚ps1, a1q
ˇ

ˇs, a
ı

. (5.2)

Based on the above equation, a popular RL algorithm, Q-learning [145], estimates

a Q function (i.e., a lookup table) via the following online update rule:

Qps, aq Ð Qps, aq ` α ry ´Qps, aqs , (5.3)

where y “ r ` γmaxa1 Qps
1, a1q is usually called Q-learning target, α is the learning

rate, and ps, a, r, s1q denotes a transition the agent experiences during its interactions

with the environment. The estimated Q function will converge to Q˚ when the

number of iterations goes to infinity [119]. The greedy policy w.r.t. Q˚ will be an

optimal policy π˚.

5.2.3 Deep Q-network

The classical Q-learning algorithm must maintain a lookup table of all state-action

pairs, which cannot handle complex RL tasks with enormous state and action spaces.

Moreover, it estimates the action-value function separately for each sequence, which

has no generalization ability to deal with unseen states and actions [119].

To address these issues, a common practice is to approximate the optimal action-

value function by using a function approximator, i.e., Qps, a; θq « Q˚ps, aq, where θ

denote the weights to be learned [119]. For instance, Deep Q-network (DQN) [90]

employs a deep neural network as the function approximator. The basic form of

DQN is illustrated in Figure 5.1b. It is actually a multilayer perceptron (MLP),

which takes state s and action a as input, and outputs the predicted action-value

Qps, aq.

The Q-network Qps, a; θq can be trained by performing Q-learning updates based

on the agent’s experiences ps, a, r, s1q. Specifically, the loss function that needs to be

90

minimized is defined as:

Lpθq “ Es,a,r,s1
“

py ´Qps, a; θqq2
‰

, (5.4)

where y “ r ` γmaxa1 Qps
1, a1; θ´q is the target for current iteration, and θ´ are the

network weights from previous iteration, which are held fixed when optimizing the

loss function. In practice, rather than optimizing the full expectations, a more con-

venient way is to perform stochastic gradient descent (SGD) on sampled transitions

ps, a, r, s1q [89, 90]:

θ Ð θ ` α ry ´Qps, a; θqs∇θQps, a; θq. (5.5)

5.3 Social Attentive Deep Q-networks

As mentioned before, it is biased and inefficient to estimate the optimal Q˚ function

(corresponding to an optimal recommendation policy) only based on individual users’

own feedbacks, due to the issues of cold-start and data sparsity. In this section,

we propose a novel class of deep RL agents, which are able to estimate Q˚ more

effectively, by leveraging the available social network among users. Let S P Rmˆm

be the adjacency matrix of the social network, where Sij “ 1 if user i has a positive

relation to user j (follows, trusts, etc.), and Sij “ 0 otherwise. Let N piq “ tj : Sij “

1u denote the set of social neighbors whom user i trusts/follows.

We assume that the state st is a f -dimensional feature vector U t
i P Rf , denoting

the real-time preferences of target user i at time step t. For each user j P U , there

is a f -dimensional feature vector Uj P Rf , denoting the overall preferences of user

j observed in advance. For each item (action) a P I, there is also a f -dimensional

feature vector Va P Rf , denoting the overall features of item a. The feature matrices

U P Rfˆm and V P Rfˆn are trained by standard matrix factorization [59] together

with negative sampling [97] based on the historical feedback data R, which are held

fixed during the user-agent interactive recommendation process. The target user’s

91

vector U t
i (i.e., state st) is initialized as the trained Ui at time step t “ 0, and is

updated by performing online matrix factorization on the real-time feedback data

Riat for each time step t:

U t`1
i Ð U t

i ` α
“`

Riat ´ pU
t
i q

TVat
˘

Vat ´ λU
t
i

‰

, (5.6)

where α is the learning rate, and λ is the L2 regularization parameter.

In what follows, we first present a basic Social Attentive Deep Q-network (SADQN),

describing how to estimate action-values based on the preferences of both individual

users and their social neighbors. Then, we propose an enhanced variant of SADQN,

SADQN++, which integrates personal preferences with social influence more deeply.

Lastly, we describe the training algorithm of SADQNs.

5.3.1 SADQN: A Linear Fusion Model

The basic idea behind SADQN is that the action-value Qpst, aq is estimated by a lin-

ear combination of two action-value functions QP pst, aq and QSpst, aq, which denote

the personal action-value function and the social action-value function, respectively.

Intuitively, QP estimates the action-values based on target user i’s personal real-time

preferences, i.e., U t
i . In contrast, QS estimates the action-values based on his/her

social neighbors’ pre-observed preferences, i.e., Uj for j P N piq, which are correlated

with U t
i according to the social influence theory.

The architecture of SADQN is illustrated in Figure 5.2. The right part of SADQN

is the personal action-value function approximator QP , which is a standard 4-layer

MLP. It takes the concatenation of user vector U t
i (i.e., the features of state st) and

item vector Va (i.e., the features of action a) as input, followed by two fully connected

(FC) layers, and outputs the personal action-value QP pst, aq. In our experiments,

each FC layer consists of 256 neurons with ReLU activation. Therefore, the specific

architecture of MLPP is 2f Ñ 256 Ñ 256 Ñ 1.

92

st a

Item Vector V a

Q(st , a)

Neighbors’ Vectors State Action

User Vector ... U i
tU 1 U j

QS
(st , a) QP

(st , a)
+

Context Vector C i
t

ConcatenationConcatenation

MLPS MLPP

Social Attention Layer

Figure 5.2: SADQN: a linear fusion model.

The left part of SADQN is the social action-value function approximator QS,

in which the core is a social attention (SA) layer. The goal of the SA layer is to

select influential social neighbors for target user i at time step t, and summarize the

neighbors’ features to a context vector Ct
i . Then, the concatenation of context vector

Ct
i and item vector Va is used to feed MLPS with the same architecture, which will

output the social action-value QSpst, aq.

Specifically, we compute the context vector Ct
i by the following procedure. We

employ the CONCAT attention mechanism to calculate the attention coefficient of

target user i and his/her social neighbor j P N piq:

etij “ ReLUpwT
¨ CONCATpU t

i , Ujqq, (5.7)

where w P R2f is the weight vector of a single-layer feedforward network. The

attention coefficient etij indicates the social influence strength of user j to user i at

time step t. Similar to [128], we also compute the attention coefficient of user i

and himself/herself by: etii “ ReLUpwT ¨ CONCATpU t
i , U

t
i qq. Then, we compute the

93

normalized attention coefficients αtij by softmax function:

αtij “
exppetijq

ř

kPN piq` exppetikq
, (5.8)

where N piq` “ N piq Y tiu. Finally, we obtain the context vector Ct
i by:

Ct
i “ αtiiU

t
i `

ÿ

jPN piq
αtijUj. (5.9)

In our experiments, we also tried several different attention mechanisms to com-

pute the context vector Ct
i . For example, the attention coefficient etij can be computed

by the simple DOT product:

etij “ DOTpU t
i , Ujq. (5.10)

However, the performance of this approach showed no significant difference with the

one in Equation 5.7. Moreover, we also implemented a single-layer graph attention

network (GAT) [128] to compute Ct
i . Unfortunately, it did not show comparable

performance against the above two approaches (see Table 5.3 for comparison).

To summarize, the action-value Qpst, aq estimated by SADQN is formally defined

as:

hP1 “ CONCATpU t
i , Vaq,

hP2 “ ReLUpWP
2 ¨ h

P
1 ` bP2 q,

hP3 “ ReLUpWP
3 ¨ h

P
2 ` bP3 q,

QP
pst, aq “ pw

P
4 q

T
¨ hP3 ` bP4 ; (5.11)

hS1 “ CONCATpCt
i , Vaq,

hS2 “ ReLUpWS
2 ¨ h

S
1 ` bS2 q,

hS3 “ ReLUpWS
3 ¨ h

S
2 ` bS3 q,

QS
pst, aq “ pw

S
4 q

T
¨ hS3 ` bS4 ; (5.12)

Qpst, aq “ p1´ βqQ
P
pst, aq ` βQ

S
pst, aq. (5.13)

94

Here, hPl , WP
l and bPl denote the outputs, trainable weights and biases of l-th layer

of MLPP , respectively. Similar notations are used for MLPS. β P r0, 1s controls the

trade-off between personal preferences and social influence.

The network parameters of SADQN can be trained by performing the Q-learning

updates in Equation 5.5. Note that if we only use QP or QS to estimate the action-

values, SADQN will reduce to a pure personal model SADQNP (which is equivalent

to the basic DQN model shown in Figure 5.1b) or a pure social model SADQNS.

5.3.2 SADQN++: A Deep Fusion Model

In the previous SADQN model, the personal approximator QP and the social approx-

imator QS are simply fused by a linear combination at the output level. While this

approach is straightforward and easily understandable, such a shallow fusion might

limit the performance of Q-network in approximating the optimal action-value func-

tion Q˚. For example, the trade-offs between personal interests and social influence

may vary considerably, for different users i at different time steps t, or even on

different items a.

As such, using the same trade-off parameter β (in Equation 5.13) for all situations

is obviously inappropriate. In fact, we tested different β P t0.2, 0.5, 0.8u in our

experiments. But the overall performance shows no significant difference, which

implies that a good trade-off for one situation may be improper for another. On the

other hand, it is infeasible to search or learn an optimal value of β for every situation,

e.g., for each state-action pair pst, aq.

To address this issue, we propose an enhanced variant of SADQN, termed SADQN++,

to more deeply fuse the two approximators QP and QS by autonomously learning

good trade-offs from data via additional neural layers.

The architecture of SADQN++ is illustrated in Figure 5.3, which is quite similar

to SADQN, with only differences in the last few layers. Rather than using QP and

95

st a

Item Vector V a

Q(st , a)

Neighbors’ Vectors State Action

User Vector ... U i
tU 1 U j

Context Vector C i
t

ConcatenationConcatenation

MLPS MLPP

MLPF

Concatenation

Social Attention Layer

Figure 5.3: SADQN++: a deep fusion model.

QS to directly estimate action-values from personal and neighbors’ preferences, in

SADQN++, we leverage them to learn some hidden vector representations that are

relevant to the estimation of action-values. More specifically, MLPS (MLPP) in

SADQN++ is a 3-layer MLP with the architecture of 2f Ñ 256 Ñ 256, which will

output the social hidden representation (personal hidden representation). Then, we

employ MLPF with the architecture of 512 Ñ 256 Ñ 1, to autonomously summarize

valuable features from both hidden representations, and to predict the final action-

value Qpst, aq based on the summarized features.

This way of deep fusion provides more flexibility to the agent in approximating

optimal action-values, making it possible to capture the complicated and diverse

trade-offs between personal preferences and social influence for all involved users in

real-world scenarios. Thus, SADQN++ is able to learn optimal policies in a more

effective way. More formally, the action-value Qpst, aq estimated by SADQN++ is

96

given by:

hP1 “ CONCATpU t
i , Vaq,

hP2 “ ReLUpWP
2 ¨ h

P
1 ` bP2 q,

hP3 “ ReLUpWP
3 ¨ h

P
2 ` bP3 q; (5.14)

hS1 “ CONCATpCt
i , Vaq,

hS2 “ ReLUpWS
2 ¨ h

S
1 ` bS2 q,

hS3 “ ReLUpWS
3 ¨ h

S
2 ` bS3 q; (5.15)

hF1 “ CONCATphP3 ,h
S
3 q,

hF2 “ ReLUpWF
2 ¨ h

F
1 ` bF2 q,

Qpst, aq “ pw
F
3 q

T
¨ hF2 ` bF3 . (5.16)

Here, hPl , WP
l and bPl denote the outputs, trainable weights and biases of l-th layer

of MLPP , respectively. Similar notations are used for MLPS and MLPF .

5.3.3 Training Algorithm

To train SADQNs (i.e., the proposed Q-networks), we employ the popular Q-leaning

algorithm [145]. We do not adopt the training techniques of experience replay and

target network used by the original DQN [90], as they are not able to improve the Q-

learning performance for our task. To make the Q-network Q converge well, sufficient

transitions ps, a, r, s1q of all possible states and actions are needed for Q-learning

updates [119]. To this end, we propose a particular training scheme that enables the

agent to collect transitions based on the feedback data of all training users.

Specifically, in each episode, we uniformly sample a user i from training set Utrain

as the current target user, which will interact with the agent and generate corre-

sponding states and rewards. To ensure exploration, in each state st, the agent uses

a ε-greedy policy that selects a greedy action at “ arg maxaQpst, aq with probabil-

97

Algorithm 5.1: Training SADQNs

Input: Utrain, R, the trained feature matrices U, V
Output: the trained Q-network Q

1 Initialize Q with random weights
2 for episode “ 1, N do
3 Uniformly sample a target user i from Utrain
4 Set initial state s0 “ U0

i “ Ui
5 for t “ 0, T ´ 1 do
6 Choose the ε-greedy item at w.r.t. Qpst, aq
7 Present at to user i and receive feedback Riat

8 Get U t`1
i according to Equation 5.6

9 Set reward rt`1 “ Riat and state st`1 “ U t`1
i

10 Update Q’s weights on pst, at, rt`1, st`1q according to Equation 5.5

ity 1 ´ ε and a random action with probability ε. The full algorithm for training

SADQNs is presented in Algorithm 5.1. The training process could last for any num-

ber of episodes as long as the Q-network has not converged. At the testing stage,

the trained agent can be used to make real-time interactive recommendations for

any new user j. It only needs to interact with user j, observe state st (U t
j), and

recommend the greedy item at “ arg maxaQpst, aq at each time step t.

Computational Complexity Analysis

In the inner for-loop in Algorithm 5.1, the computation time is mainly taken in

computing Q-values for available items (line 6), updating user vector U t`1
i (line 8),

and updating Q-network (line 10). The cost of computing Q-values is Opn|θ|q, where

|θ| is the number of Q-network weights and n is the number of all items. The cost

of updating Q-network is Op|θ|q. The cost of updating U t`1
i is Opfq, where f is the

dimensionality of latent feature space. Therefore, the time complexity of the training

algorithm of SADQNs is OpNT pn|θ| ` fqq, where N is the number of episodes and

T is the number of time steps. Similarly, we can derive that the cost of performing

T -step interactive recommendations for a new user is OpT pn|θ| ` fqq.

98

Table 5.1: The Statistics of Datasets

Statistics LastFM Ciao Epinions

#users 1,874 7,260 23,137

#items 2,828 11,166 23,585

#observed user feedbacks 71,411 147,799 461,982

density of feedbacks 1.35% 0.18% 0.08%

#observed social relations 25,174 110,715 372,205

density of relations 2.03% 0.28% 0.09%

5.4 Experiments

To validate the performance of the proposed SADQNs, we conduct extensive exper-

iments on real-world datasets. In this section, we first introduce our experimental

setup, followed by presenting the experimental results and analysis.

5.4.1 Experimental Setup

Datasets

We employ three publicly available datasets: LastFM1 [12], Ciao2 [121], and Epin-

ions3 [86] for our experiments. All the datasets contain a user-item feedback matrix

and a user-user social network. As we consider the recommendation problem with

implicit feedback, we convert the values of all observed feedbacks to 1. Besides, we

remove the users or items that have fewer than 5 feedbacks, so as to ensure that

there is enough data for training and testing. The basic statistics of the obtained

datasets are shown in Table 5.1.

1https://grouplens.org/datasets/hetrec-2011/

2https://www.cse.msu.edu/„tangjili/trust.html

3http://www.trustlet.org/downloaded epinions.html

99

Evaluation Methodology

To conduct experiments on interactive recommendations, we assume that the ob-

served feedbacks in the datasets are unbiased, as proposed in [69, 159]. Similar to

[26], we randomly choose 1000 unobserved pi, aq pairs of user i as the negative feed-

backs. During the T -step interactive recommendation process, the agent is forced

to pick items from the available set that consists of the 1000 negative items and the

observed positive items.

We adopt two popular evaluation metrics Hit Ratio (HR) and Normalized Dis-

counted Cumulative Gain (NDCG). The HR metric indicates the ratio of positive

items among the T recommended items, which is defined as:

HR “
1

T

T´1
ÿ

t“0

Riat , (5.17)

where at is the item recommended at time step t, and Riat “ 1 (Riat “ 0) if at is a

positive (negative) item w.r.t. user i.

The NDCG metric is computed by following procedure. At each time step t, a

ranking list of the available items is produced according to the agent’s predictions

(e.g., Q-values). The DCGptq value is calculated by:

DCGptq “
k
ÿ

j“1

2Rpjq ´ 1

log2p1` jq
, (5.18)

where k is the length of the ranking list, j denotes the rank position in the ranking list,

and Rpjq is the ground-truth feedback of the j-th item. The NDCGptq is calculated

by:

NDCGptq “
DCGptq

Z
, (5.19)

where Z is the DCGptq value of the optimal ranking list sorted by ground-truth

feedbacks. The final NDCG is obtained by averaging the NDCGptq values for time

100

steps t “ 0, ..., T ´ 1. We truncate the ranking list at 10 to compute the NDCG@10

values, and set T “ 20 for evaluation.

We conduct experiments for two different recommendation scenarios: cold-start

and warm-start. In the cold-start setting, we assume that the agent has no feedback

data of target user at time step t “ 0, i.e., at the beginning of the interactive

recommendation process. We randomly choose 10% users who have at least 20

positive feedbacks as the testing set Utest, and others as the training set Utrain “

UzUtest, which are used to test and train the agent, respectively. The data of Utrain

is also used to train the feature matrices U and V . To fit the cold-start scenario, in

each episode of training phase, the target user’s vector U0
i (i.e., initial state s0) is set

to a randomized vector rather than the trained Ui (see line 4 in Algorithm 5.1).

In the warm-start setting, we assume that the agent already has 10 positive

feedbacks of target user at time step t “ 0. We select the users who have at least

30 positive feedbacks as the target set Utar, and others as the pre-training set Upre “

UzUtar. We randomly choose 10% users from Utar as the testing set Utest, and the

remaining as the training set Utrain “ UtarzUtest. We use Rpre, Rtrain and Rtest to

denote the data of Upre, Utrain and Utest, respectively. Then, for each user in Utrain

(Utest), we randomly choose 10 positive feedbacks and move them from Rtrain (Rtest)

to Rpre. The final data Rpre, Rtrain and Rtest is used to train the feature matrices,

train and test the agent, respectively. In this warm-start scenario, the target user’s

vector U0
i (state s0) already captures some preference information of him/her.

For both cold-start and warm-start settings, the testing HR or NDCG@10 value

for an ideal agent will be 1. Besides, for each setting and each dataset, we conduct

each experiment on 5 data splits obtained with different random seeds, and calculate

the mean and standard deviation of the 5 groups of results for evaluation.

101

Baselines

We comparatively evaluate the proposed SADQNs against a variety of baselines,

which are listed below.

1. DQN [90], a state-of-the-art deep RL agent, which is originally designed for

playing Atari.

2. DDQN [124], a state-of-the-art deep RL agent, which extends DQN with

double Q-learning [40].

3. DRN [160], a state-of-the-art deep RL agent for news recommendation, which

is based on Dueling DQN [144] that estimates the action-values via both value

function and advantage function.

4. DEERS [158], a state-of-the-art deep RL agent for recommendation, which

utilizes Gated Recurrent Units (GRU) to learn state features from both positive

and negative item click sequences.

5. LinUCB [69], a representative contextual bandit algorithm for news recom-

mendation.

6. SoRec [82], a representative social matrix factorization method, which factor-

izes both feedback matrix and social network simultaneously.

7. TrustMF [152], a representative social matrix factorization method, which

models the mutual influence between trusters and trustees in the trust network.

8. MF [59], a conventional matrix factorization model, which only exploits the

feedback matrix.

9. Impact [87], an active learning method, which picks the item that has highest

impact on other items, where the impact is computed on the user-item bipartite

102

graph.

10. Pop, a popularity-based method, which picks the item which has most positive

feedbacks given by users.

To make the baselines applicable to our task, we adopt the same state/action

features and training scheme of SADQNs for DQN, DDQN, DRN and LinUCB,

and use a negative sampling technique of uniform distribution for MF, SoRec and

TrustMF. We also adopt the same hidden layers of the personal action-value func-

tion of SADQN, i.e., two FC layers of 256 units with ReLU activation, for DQN,

DDQN and both the value and advantage functions of DRN, which lead to better

performance. For DEERS, we adopt the same architecture suggested in the original

reference [158]. Moreover, to make a fair comparison, we set the feature dimension-

ality f “ 64 for all methods (excluding Pop, Impact and DEERS). Other parameters

are tuned based on cross-validation, which are set as follows: the regularization

parameter λ “ 0.01, the learning rate for updating feature vectors α “ 0.01, the

learning rate for updating Q-networks α “ 0.0001, the discount factor γ “ 0.5, and

the ε-greedy parameter ε “ 0.1.

It is important to notice that, our interactive recommendation task is distinctly

different from session-based recommendation [44] or temporal social recommendation

[117]. In their works, the recommender is developed to passively learn a predictive

model from time series data such as a1, a2, ..., at´1, and to predict the next item at

that may appear in the series. In contrast, our RL agent is designed to actively learn

a recommendation policy from user-agent interactions, and to provide items that

may optimize the cumulative reward in a T -step recommendation process. As such,

those Recurrent Neural Network based models [44, 117] are inapplicable to our task,

and are not compared in our experiments.

Moreover, although there are many social recommendation models proposed very

103

recently, they cannot be applied to interactive recommendation unless making critical

extensions to them. Unfortunately, most of them cannot be easily extended, such

as the ones proposed in [74, 14, 149, 32, 17]. Thus, we only compare with two

representative social recommendation models, SoRec and TrustMF, which are very

flexible and can be extended to fit our task by online learning and negative sampling.

5.4.2 Performance Comparison against Baselines

We now compare the performance of SADQN++ (the best performing variant of

SADQN) against the baseline methods. Figure 5.4 shows the comparison results in

terms of the mean (bar) and standard deviation (line) of HR and NDCG@10 metrics

for cold-start and warm-start recommendations, respectively. From these results, we

have the following main findings.

For cold-start recommendation, the proposed SADQN++ model shows the best

performance in terms of both metrics on all datasets. It remarkably outperforms the

four deep RL agents DQN, DDQN, DRN and DEERS that fail to consider social

influence, as well as other types of baselines. For example, its improvements in HR

metric against the best performing baseline are 11.19%, 9.47% and 8.88% on LastFM,

Ciao and Epinions datasets, respectively. These results not only verify the capability

of SADQN++, but also demonstrate that social influence plays a fundamental role

in improving the performance of deep RL recommenders.

The DQN, DDQN and DRN agents show the second-class performance, while

DEERS performs almost the worst which implies that it might be inappropriate to

our task. The traditional matrix factorization model MF shows poor performance,

as no feedback data is available at time step t “ 0, while the social recommendation

models SoRec and TrustMF demonstrate much better performance. Besides, the

popularity method Pop and active learning method Impact are also competitive

baselines in the cold-start setting.

104

0.2 0.3 0.4 0.5

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(a) Cold-start, LastFM

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(b) Warm-start, LastFM

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(c) Cold-start, Ciao

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(d) Warm-start, Ciao

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(e) Cold-start, Epinions

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Pop

Impact

MF

SoRec

TrustMF

LinUCB

DEERS

DQN

DDQN

DRN

SADQN++

HR
NDCG@10

(f) Warm-start, Epinions

Figure 5.4: Performance comparison against baselines on both cold-start and
warm-start recommendations. The mean (bar) and standard deviation (line) of HR
and NDCG@10 metrics on all three datasets are shown. The proposed SADQN++
model shows the best performance in all cases.

105

For warm-start recommendation, the proposed SADQN++ model also shows

significantly better performance than the competitors. Specifically, its improvements

in HR (NDCG@10) metric against the best performing baseline are 3.9%, 3.6% and

3.7% (4.4%, 3.5% and 4.3%) on LastFM, Ciao and Epinions datasets, respectively.

The results of baselines show similar trends compared to cold-start setting, with one

exception of the MF model, which shows competitive performance in the warm-start

setting.

5.4.3 The Impact of Social Influence

To quantitatively analyze the impact of social influence, here, we make a more de-

tailed comparison among the four variants of SADQN. They are the pure personal

model SADQNP (which is equivalent to the DQN baseline), the pure social model

SADQNS, the linear fusion model SADQN and the deep fusion model SADQN++,

respectively. The comparison results of the mean and standard deviation of HR

and NDCG@10 metrics are reported in Table 5.2. The relative improvements of

SADQNS, SADQN and SADQN++ against SADQNP are shown in the brackets,

which tell us clearly how social influence increasingly improves the performance when

we model it from shallowly to deeply. Also, the best result in each case is highlighted.

From this part of results, we observe the following main points.

The deep fusion model SADQN++ performs much better than others. In par-

ticular, its relative improvements against the personal model SADQNP are at least

larger than 9.0% for cold-start recommendation, and 3.5% for warm-start recommen-

dation. Also, the improvements in cold-start setting show an interesting trend that

they are totally consistent with the densities of social relations in the datasets. More

specifically, the order of the improvements in HR (NDCG@10) metric on LastFM,

Ciao and Epinions datasets is 13.2% ą 11.0% ą 9.3% (17.5% ą 13.2% ą 10.2%),

same as the order of relation densities 2.03% ą 0.28% ą 0.09% (see Table 5.1). This

106

T
ab

le
5.

2:
T

h
e

E
x
p

er
im

en
ta

l
R

es
u
lt

s
of

D
iff

er
en

t
V

ar
ia

n
ts

of
S
A

D
Q

N

M
o
d

e
l

C
o
ld

-s
ta

rt
R

e
co

m
m

e
n
d
a
ti

o
n

W
a
rm

-s
ta

rt
R

e
co

m
m

e
n
d
a
ti

o
n

H
R

N
D

C
G

@
1
0

H
R

N
D

C
G

@
1
0

LastFM

S
A

D
Q

N
P

0.
49

2˘
0.

02
1

0.
40

8˘
0.

02
1

0.
48

8˘
0.

00
8

0.
42

2˘
0.

01
0

S
A

D
Q

N
S

0.
52

3˘
0.

01
2

(+
6.

2%
)

0.
46

4˘
0.

01
3

(+
13

.7
%

)
0.

47
6˘

0.
00

9
(-

2.
4%

)
0.

41
3˘

0.
00

6
(-

2.
1%

)

S
A

D
Q

N
0.

54
3˘

0.
00

8
(+

10
.3

%
)

0.
47

2˘
0.

00
9

(+
15

.7
%

)
0.

49
7˘

0.
01

3
(+

1.
6%

)
0.

42
9˘

0.
00

6
(+

1.
8%

)

S
A

D
Q

N
+

+
0
.5

5
7
˘

0
.0

0
6

(+
1
3
.2

%
)

0
.4

8
0
˘

0
.0

0
4

(+
1
7
.5

%
)

0
.5

1
1
˘

0
.0

0
4

(+
4
.7

%
)

0
.4

4
2
˘

0
.0

0
3

(+
4
.9

%
)

Ciao

S
A

D
Q

N
P

0.
40

2˘
0.

00
1

0.
33

8˘
0.

00
3

0.
44

6˘
0.

03
1

0.
39

1˘
0.

03
1

S
A

D
Q

N
S

0.
41

7˘
0.

00
5

(+
3.

6%
)

0.
36

2˘
0.

00
4

(+
7.

1%
)

0.
44

7˘
0.

03
4

(+
0.

2%
)

0.
39

1˘
0.

03
0

(+
0.

0%
)

S
A

D
Q

N
0.

42
4˘

0.
00

7
(+

5.
4%

)
0.

36
4˘

0.
00

1
(+

7.
6%

)
0.

45
1˘

0.
03

0
(+

1.
1%

)
0.

39
7˘

0.
02

7
(+

1.
3%

)

S
A

D
Q

N
+

+
0
.4

4
7
˘

0
.0

0
1

(+
1
1
.0

%
)

0
.3

8
3
˘

0
.0

0
1

(+
1
3
.2

%
)

0
.4

6
2
˘

0
.0

3
0

(+
3
.6

%
)

0
.4

0
6
˘

0
.0

2
7

(+
3
.6

%
)

Epinions

S
A

D
Q

N
P

0.
45

2˘
0.

00
5

0.
38

9˘
0.

00
4

0.
48

1˘
0.

00
8

0.
42

8˘
0.

00
6

S
A

D
Q

N
S

0.
44

6˘
0.

00
1

(-
1.

2%
)

0.
39

7˘
0.

00
1

(+
2.

0%
)

0.
46

8˘
0.

00
4

(-
2.

8%
)

0.
41

6˘
0.

00
4

(-
2.

8%
)

S
A

D
Q

N
0.

47
8˘

0.
00

1
(+

5.
7%

)
0.

41
5˘

0.
00

1
(+

6.
7%

)
0.

48
7˘

0.
00

1
(+

1.
2%

)
0.

43
5˘

0.
00

1
(+

1.
6%

)

S
A

D
Q

N
+

+
0
.4

9
4
˘

0
.0

0
2

(+
9
.3

%
)

0
.4

2
9
˘

0
.0

0
2

(+
1
0
.2

%
)

0
.4

9
9
˘

0
.0

0
6

(+
3
.7

%
)

0
.4

4
7
˘

0
.0

0
1

(+
4
.4

%
)

107

demonstrates that, more social relations SADQN++ exploits, more benefits it will

obtain.

The linear fusion model SADQN performs second-best in all cases, and shows

similar trends with SADQN++.

The pure social model SADQNS also performs better than SADQNP in cold-

start setting (except for the case of HR metric on Epinions dataset), but shows

worse performance in warm-start setting (in most cases). This implies that, when

the social network data is extremely sparse, or when the user-item feedback data is

sufficient, the SADQNS model purely using social influence cannot achieve desirable

recommendation performance.

5.4.4 Model Analysis

Comparison of Different Attention Mechanisms

We now compare the performance of different attention mechanisms discussed in

Section 5.3.1. We conduct an experiment to compare three SADQN agents which

adopt the attention mechanisms GAT [128], DOT (Equation 5.10), and CONCAT

(Equation 5.7, i.e., the default one used by SADQN), respectively. This experiment

is only conducted in cold-start recommendation setting. The comparison results in

terms of both HR and NDCG@10 metrics on all three datasets are shown in Table

5.3, where the bold font indicates the best result in each case. The two attention

mechanisms CONCAT and DOT perform very closely, and both outperform GAT.

Run-time Analysis

As analyzed previously, the time complexity of the training algorithm of SADQNs is

OpNT pn|θ| ` fqq, where N is the number of episodes for training, T is the number

of time steps in each episode, n is number of items in the dataset, |θ| is the number

of Q-network weights, and f is the dimensionality of latent feature space. Since f

108

Table 5.3: The Results of SADQN with Different Attention Mechanisms

Dataset Attention HR NDCG@10

LastFM

GAT 0.5191˘0.0114 0.4393˘0.0127

DOT 0.5438˘0.0036 0.4717˘0.0084

CONCAT 0.5435˘0.0076 0.4724˘0.0091

Ciao

GAT 0.4179˘0.0060 0.3567˘0.0082

DOT 0.4256˘0.0031 0.3670˘0.0014

CONCAT 0.4247˘0.0072 0.3644˘0.0011

Epinions

GAT 0.4667˘0.0018 0.4033˘0.0005

DOT 0.4755˘0.0016 0.4142˘0.0030

CONCAT 0.4782˘0.0012 0.4154˘0.0013

is usually a small constant in practice (f=64 in our experiments), we can rewrite

the time complexity as OpLn|θ|q, where L “ NT denotes the number of Q-learning

updates that is needed to make the Q-network converge. In other words, the time

cost for training SADQN agent is related to three basic variables: the size of Q-

network, the size of data, and the convergence of Q-learning algorithm. Similarly,

we can derive that the time cost for testing SADQN agent is related to the size of

Q-network and the size of data.

Here, we show the run-time of SADQN for cold-start recommendation on a single-

GPU machine. The time cost for warm-start recommendation would be similar. We

also show the time costs of RL-based baselines for comparison. The non-RL methods

are not compared here, as their time costs are much lower and can be ignored in

comparison to RL-based methods. Both the training time (in minutes) and the

testing time (in seconds) of one run of the compared methods on all three datasets are

shown in Figure 5.5. Overall, the testing costs of all compared methods are quite low,

which demonstrates that they are able to perform real-time online recommendations.

For the training cost, the proposed SADQN is lower than DEERS, close to DDQN

and DRN, but higher than DQN and LinUCB. The results demonstrate that our

109

LinUC
B
DEER

S DQN DDQN DRN SADQ
N

20
40
60
80

100
120
140
160 LastFM

Ciao
Epinions

(a) Training time (in minutes)

LinUC
B
DEER

S DQN DDQN DRN SADQ
N

0
2
4
6
8

10
12
14
16 LastFM

Ciao
Epinions

(b) Testing time (in seconds)

Figure 5.5: Comparison of the run-time of RL-based methods.

approach is able to improve the performance of the state-of-the-art RL agents, with

acceptable additional cost.

Parameter Analysis

In this subsection, we conduct experiments to show how the proposed SADQN agents

behave with different settings of some important hyperparameters. When analyzing

a specific parameter, others are fixed to the default settings. More specifically, we use

the simplest variant of SADQN, SADQNP , as an example to conduct the analysis.

In addition, these experiments are only conducted in cold-start setting using LastFM

dataset.

Effect of the Discount Factor γ. The discount factor γ P r0, 1s balances the

trade-off between future rewards and immediate rewards when estimating Q-values.

The selection of its value usually depends on the natures of particular RL tasks [119].

Here, we vary γ in t0.2, 0.5, 0.8u to compare the performance of SADQNP . The

learning curves in terms of both mean (line) and standard deviation (shadow) of HR

and NDCG@10 metrics are shown in Figure 5.6, where each epoch corresponds to 50k

Q-learning updates in Algorithm 5.1. Note that the learning curves are plotted from

epoch 1. The results demonstrate two main points. First, SADQNP with γ “ 0.5

achieves the best performance. Second, SADQNP with a lower γ learns more stably

110

0 20 40 60 80 100
Epochs

0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

HR

SADQNP, γ= 0.2
SADQNP, γ= 0.5
SADQNP, γ= 0.8

(a) HR

0 20 40 60 80 100
Epochs

0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

ND
CG

@
10

SADQNP, γ= 0.2
SADQNP, γ= 0.5
SADQNP, γ= 0.8

(b) NDCG@10

Figure 5.6: Effect of the discount factor γ on the performance of SADQNP .

than a higher one.

Effect of the Experience Replay. The training trick of experience replay was

first proposed by [72]. To perform experience replay, a memory M is needed to store

the transitions that the agent collects during the user-agent interactive process. At

each time step, the Q-network is updated based on a minibatch of transitions sampled

from M , rather than based on the currently observed transition (see line 10 in Algo-

rithm 5.1). The experience replay has shown appealing performance improvements

in some RL tasks such as playing Atari [90].

Here, we validate whether and how much the experience replay will benefit

SADQNP for a totally different recommendation task. To do this, we vary the

memory size |M | P t1, 10, 100u to check how the agent’s performance changes. Note

that |M | “ 1 (i.e., the default setting used by SADQNs) implies that the agent ac-

tually does not adopt experience replay. The comparison results are shown in Figure

5.7, which clearly tell us the same trend: SADQNP with |M | “ 1 achieves the best

performance, and its performance will be consistently reduced when the memory

becomes larger. The implies, different from traditional tasks, the use of experience

replay will significantly reduce the agent’s performance for our recommendation task.

111

0 20 40 60 80 100
Epochs

0.25

0.30

0.35

0.40

0.45

0.50
HR

SADQNP, |M| = 1
SADQNP, |M| = 10
SADQNP, |M| = 100

(a) HR

0 20 40 60 80 100
Epochs

0.20

0.25

0.30

0.35

0.40

ND
CG

@
10

SADQNP, |M| = 1
SADQNP, |M| = 10
SADQNP, |M| = 100

(b) NDCG@10

Figure 5.7: Effect of the experience replay on the performance of SADQNP .

5.5 Conclusions and Discussions

Deep RL has been successfully applied to recommender systems, but still heavily

suffer from data sparsity and cold-start, leading to insufficient modeling of person-

alization and collaboration. In this work, we address these issues by strengthen-

ing the state-of-the-art deep RL recommenders with social influence among users.

We develop a class of Social Attentive Deep Q-networks (SADQNs) to estimate

action-values based on the preferences of both individual users and social neighbors,

by successfully utilizing an attention mechanism to model the social influence be-

tween them. In particular, we proposed an enhanced variant of SADQN, termed

SADQN++, which is able to model the complicated trade-offs between personal

preferences and social influence for all users, making the agent more powerful and

flexible in learning optimal policies.

We conducted extensive experiments on three real-world datasets to verify the

effectiveness and efficiency of the proposed SADQNs. The results have demon-

strated that social influence plays a fundamental role in improving the recommenda-

tion performance of deep RL, especially in the cold-start recommendation scenarios.

More importantly, the significant improvements of SADQNs over the state-of-the-art

agents are accomplished with acceptable computation cost.

112

Chapter 6

Personalized Deep Q-network:

Integrating Personalized Network

Architecture with Collaborative
Learning Objective

In this work, we provide a more explicit and effective way to model personalization

and collaboration in RL-based recommendation agents. We develop an end-to-end

agent, term Personalized Deep Q-network (PDQN), which is able to learn a fully

personalized policy that makes recommendations based on both the user-specific in-

formation of a particular user and the general information of state shared by all

users. More specifically, PDQN estimates personalized action-values based on the

linear combination of two action-value functions: the user-specific action-value func-

tion and the general action-value function that emphasize on modeling personaliza-

tion and collaboration, respectively. Furthermore, we propose a novel collaborative

Q-learning objective to further model the collaborations between similar neighbors,

which is able to make the PDQN agent more effective in approximating the optimal

personalized policy. We show that PDQN achieves significant performance gains over

the existing methods on several real-world datasets.

113

6.1 Introduction

Reinforcement learning (RL) [119] is a promising approach to recommender systems,

which aims to build a recommendation agent that is able to adaptively recommend

potentially interesting items to users in a sequential manner. Compared to non-RL

recommendation engines, a key advantage of RL agents is that they are able to not

only capture users’ dynamic preferences via continuous user-agent interactions, but

also learn farsighted policies that achieve maximal long-term rewards from users.

Recently, researchers introduced the techniques of deep RL to design novel recom-

mendation agents with good generalization ability and scalability. These modern

RL agents, which use neural networks to approximate the optimal action-value func-

tions or policies, have shown great potential in a variety of recommendation domains

ranging from news feeds to E-commerce sites [160, 158, 19, 20].

Despite their successes, however, there is a fundamental problem that has been

rarely noticed and investigated in these prior works. That is, how to effectively model

the factors of personalization and collaboration in an RL recommendation agent, in

order to provide high-quality personalized recommendations for the entire user com-

munity? Both personalization and collaboration are crucial factors to the learning

of personalized recommendation policy that can optimize the overall profit of the

recommender system. Unfortunately, we find that the prior works have paid little

attention to the modeling of personalization and collaboration. Most of the existing

RL recommendation agents [106, 120, 160, 158, 19, 20, 163] follow the same learning

paradigm that treats all involved users as a single virtual user and directly learns a

unified policy πpsq that outputs actions dependent only on the state s (usually, a se-

quence of user-consumed items). Although this learning paradigm is straightforward

and can be easily implemented, it only models very limited personalization and very

coarse-grained collaboration. To be more specific, the existing learning paradigm is

114

not able to model the diverse long-term preferences of different users if they are in

the same current state s (usually appears at earlier time steps), since the unified

policy πpsq will make the same action in state s. On the other hand, it treats all

the other users equally as the “collaborators” of each target user, which is not able

to effectively learn collaborative preferences from his/her truly similar neighbors.

Some works [76, 75] make an extension to the learning paradigm by incorporating

the additional user id into the state s. However, it is still very challenging to simul-

taneously model both of the personalization and collaboration, i.e., the differences

and similarities between users, into a single representation of state.

In this work, we provide a more effective way to model personalization and col-

laboration in RL recommendation agents. We propose a novel learning paradigm,

named personalized reinforcement learning (PRL), to learn a unified but personal-

ized policy πpu, sq that outputs actions based on both the user-specific information

of user u and the general information of state s shared by all users. More specif-

ically, to reduce the difficulty in modeling personalization and collaboration, the

personalized policy πpu, sq is divided into two sub-policies π1puq and π2psq, such

that πpu, sq “ fpπ1puq, π2psqq, where f denotes a function that integrates the two

sub-policies. Intuitively, π1puq emphasizes on modeling personalization and indi-

cates how to pick actions given the user-specific information of user u, while π2psq

focuses on modeling collaboration and indicates how to pick actions given the gen-

eral information of state s. In this way, PRL is able to simultaneously model the

personalized long-term preferences of each user and the collaborative relationships

between different users, more effectively.

To implement the idea of PRL, we develop an end-to-end value-based agent,

term Personalized Deep Q-network (PDQN), which is able to learn a personal-

ized action-value function Qpu, s, aq. The greedy policy following Qpu, s, aq with

be a desirable personalized policy πpu, sq. To be more specific, PDQN estimates

115

Qpu, s, aq via a linear combination of two action-value functions: the user-specific

action-value function QUpuq and the general action-value function QGps, aq, i.e.,

Qpu, s, aq “ QUpuq ` QGps, aq. Intuitively, QUpuq is able to model personalization

by predicting a user-specific action-value based on the user-specific information of

user u, while QGps, aq is able to model collaboration by predicting a general action-

value based on the general information of state s shared by all users. As a result,

the learned personalized action-value function Qpu, s, aq is able to more effectively

produce high-quality personalized and collaborative recommendations for the entire

user community. Furthermore, we propose a novel collaborative Q-learning objective

that contains a particular collaborative regularizer to further model collaboration,

which is able to make PDQN to approximate the optimal personalized policy more

effectively. We refer to the PDQN agent trained with the collaborative Q-learning

objective as PDQN-cr.

We apply the proposed PDQN and PDQN-cr agents to the interactive recom-

mendation task on a number of real-world datasets. The results demonstrate that

PDQN and PDQN-cr are able to achieve significant performance margins over the

state-of-the-art recommendation agents.

6.2 Preliminaries

6.2.1 Interactive Recommendation

Suppose we have a recommender system that involves a set of m users U “ t1, ...,mu

and a set of n items I “ t1, ..., nu. Let Y P Rmˆn be the observed user-item feedback

matrix , where yui “ 1 if user u gives a positive feedback on item i (clicking, watching,

etc.), and yui “ 0 otherwise. We consider an interactive recommendation problem

defined as follows. A recommendation agent and a target user u interact at discrete

time steps t “ 0, ..., T ´ 1. At each time step t, the agent recommends an item it to

116

user u according to its current observations, then receives a feedback yuit given by user

u. After considering the feedback information, the agent updates its observations and

recommends a new item it`1 at time step t`1. The goal of the agent is to recommend

T items that can receive most positive feedbacks from user u, i.e., max
řT´1
t“0 yuit .

6.2.2 Markov Decision Process

We study the interactive recommendation problem under the framework of rein-

forcement learning (RL) [119]. The agent-user interaction in recommendation can

be naturally modeled as the agent-environment interaction in RL (see Figure 1.1).

This gives rise to an episodic RL task, where in each episode, the agent interacts

with the environment (corresponding to the target user u) at discrete time steps

t “ 0, ..., T ´1. At each time step t, the agent observes a state st of the environment,

then takes an action at according to its policy π (indicating how to choose actions

given states). One time step later, as a result of its action, the agent receives a

numerical reward rt`1 and a new state st`1 from the environment.

More formally, the environment can be mathematically described by a Markov

decision process (MDP), that is, a tuple pS,A,P ,Rq defined as follows:

• S is the state space. The state st P S denotes any information that is useful

for making decisions (i.e., recommending items to user u) at time step t. In this

work, we define the state st as a sequence of k latest observed item-feedback

pairs before time step t, i.e., st “ tpat´k, yuat´k
q, ..., pat´1, yuat´1qu, where aj de-

notes the recommended item at time step j, and yuaj denotes the corresponding

feedback given by user u. In particular, s0 “ tpa´k, yua´k
q, ..., pa´1, yua´1qu is

the initial state that consists of a sequence of k pre-observed item-feedback

pairs of user u before the interactive recommendation process, and sT “ φ

is the terminal state in which the interactive recommendation process ends.

Clearly, we have st`1ztpat, yuatqu “ stztpat´k, yuat´k
qu, @t “ 0, ..., T ´ 2.

117

• A is the action space. We define A as the set of all items, i.e., A “ I,

where each action a P A is corresponding to a unique item. In each state st, an

action at can be taken from the set of available actions Apstq, which is defined

recursively: Apstq “ Apst´1qztat´1u for t ‰ 0, and Aps0q “ A. This definition

forces the agent to always choose a new item that has not been recommended

before each time step t.

• P : S ˆ S ˆAÑ r0, 1s is the state-transition function. Pass1 “ Prrst`1 “

s1|st “ s, at “ as denotes the probability that the environment transits to state

s1 after receiving action a in state s. In the context of recommendation, the

explicit specifications of the transition probabilities are unknown. The agent

can only observe specific state transitions by interacting with the environment

step by step during each episode.

• R : S ˆ S ˆ A Ñ t´1, 1u is the reward function. Ra
ss1 “ Errt`1|st “

s, at “ a, st`1 “ s1s denotes the expected immediate reward the environment

generates after the transition from state s to s1 due to action a. In the context of

recommendation, the immediate reward of executing an action a only depends

on the feedback given by user u. Therefore, we define Ra
ss1 “ 1 p´1q if yua “

1 p0q. This definition will give a strong penalty to the agent if it recommends

a negative item.

It is worth noting that this MDP satisfies the Markov property:

Prrst`1 “ s1, rt`1 “ r|s0, a0, r1, ..., st´1, at´1, rt, st, ats

“ Prrst`1 “ s1, rt`1 “ r|st, ats, (6.1)

for all s1, r, and histories s0, a0, r1, ..., st´1, at´1, rt, st, at. This provides well guaran-

tees for applying standard RL methods to solve the MDP [119], that is, to estimate

118

The State/Action Representation Learning Module

high-level
state st

action-value
Q(st , a)

high-level
action a

Input Layer

Hidden Layer

Output Layer

state st action a

MLP –
The

Action-value
Predicting

Module

concat

Figure 6.1: The basic DQN agent.

an optimal policy π˚ that can maximize the cumulative reward the agent received

during the interactive recommendation process.

6.2.3 Deep Q-network

To handle the MDP that involves large state and action spaces, a well-adopted

approach is the Deep Q-network (DQN) [90], which approximates the optimal action-

value function Q˚ (corresponding to an optimal policy π˚) by using a neural network

function approximator Q (known as Q-network), i.e., Qps, a; θq « Q˚ps, aq [72, 119].

Here, θ denotes the weight vector of the Q-network that can be learned with Q-

learning based algorithms [145]. To be more specific, we derive a basic DQN model

for the interactive recommendation problem, as shown in Figure 6.1. This DQN

consists of a standard multilayer perceptron (MLP), which takes high-level vector

representations of state s and action a as input, and outputs the predicted action-

value Qps, a; θq.

The DQN can be trained by performing Q-learning updates based on the agent’s

119

experiences collected from the interactions with the environment, i.e., the transition

data in the form of tuple ps, a, r, s1q. Specifically, the loss function that needs to be

minimized is:

Lpθq “ Es,a,r,s1
“

py ´Qps, a; θqq2
‰

, (6.2)

where y “ r ` γmaxa1 Qps
1, a1; θ´q is the Q-learning target for the current iteration,

and θ´ is the network’s weight vector from the previous iteration, which is held

fixed when optimizing the loss function. In practice, rather than optimizing the

full expectations in the above loss function, a more convenient way is to perform

stochastic gradient descent (SGD) on sampled transitions ps, a, r, s1q [89, 90]:

θ Ð θ ` α ry ´Qps, a; θqs∇θQps, a; θq. (6.3)

6.3 Personalized Deep Q-network

6.3.1 Motivation and Idea

So far, we have described a standard RL task and its MDP formulation for the target

user u’s interactive recommendation process, and have presented a basic DQN agent

that is able to learn recommendation policies by interacting with the MDP. Unfortu-

nately, this is far from the desirable solution that can really work to make meaningful

interactive recommendations in practice. A real-world recommender system usually

involves multiple users, where each user u’s interactive recommendation process is

actually a unique MDP, denoted by MDPu. This gives rise to a non-typical multi-

MDP RL task, as illustrated in Figure 1.2, where the agent needs to interact with the

multiple MDPs of all users. Since the involved users usually have diverse preferences

and behaviors over time steps, their MDPs may vary remarkably in terms of both

state-transition functions and reward functions. In other words, similar users’ MDPs

may have relatively close dynamics, but dissimilar users’ MDPs may have distinctly

120

different dynamics. As a result, it is a very difficult challenge for the agent to learn

an effective policy that makes suitable recommendations for all involved users.

To tackle this challenge, we argue that a desirable RL recommendation agent

should capture simultaneously the two key factors: personalization and collabora-

tion. Personalization is probably the most important factor of any real-world rec-

ommender system that attracts user attention and improves user experience. It

implies that the agent should model the specific personalized characteristics of each

user as much as possible, in order to learn a personalized policy that produces in-

teresting user-specific recommendations to diverse users. Collaboration means that

the agent should model the underlying collaborative relationships (e.g., behavioral

similarities) between different but similar users, in order to learn a collaborative

policy that makes more effective recommendations for the entire user community.

Collaboration is also crucial to building an effective RL-based recommender system

to work in practice because of two reasons. First of all, due to the severe issue

of data sparsity in recommendation1, the agent cannot interact with a single user’s

MDP continuously to collect enough and representative transition data to update the

policy towards an optimal one. Moreover, collaboration offers important clues to the

agent to make novel recommendations for each target user, by discovering his/her

unknown interests from similar neighbors (i.e., the collaborators), especially in the

cold-start stage. In summary, personalization and collaboration offer the agent large

opportunities to reveal the differences and similarities among the multiple MDPs of

users, respectively. As a result, by properly modeling both the personalization and

collaboration of users, a desired agent is able to learn more effective recommendation

policies for the Multi-MDP task.

Unfortunately, most of the existing RL recommendation agents follow the same

learning paradigm that treats all involved users as a single virtual user and directly

1That is to say, most users only have feedback on a very small fraction of items.

121

learns a unified policy πpsq : S Ñ A based on the transition data collected uniformly

from the multiple MDPs2. Although the existing RL learning paradigm is simple

and can be easily implemented, it fails to effectively model the personalization and

collaboration factors. To be more specific, it only models very limited and implicit

personalization in terms of state representations, which is not able to capture the

diverse long-term preferences of different users if they are in the same current state

s (usually appears at earlier time steps in the interactive process), since the unified

policy πpsq will make the same action in state s. On the other hand, it models very

coarse-grained collaboration that treats all the other users equally as the collabora-

tors of each target user, which is not able to effectively discover similar preferences

from his/her truly collaborative neighbors.

Another potential approach to solving the multi-MDP task is to leverage multi-

agent reinforcement learning (MARL) to construct the same number of agents. Each

agent aims to learn an independent policy πupsq from each target user u’s MDP and

make corresponding recommendations. Theoretically, MARL is able to learn a set of

fully personalized recommendation policies. However, it is practically infeasible in

real-world recommender systems that usually involve a very large number of users,

since the training of the multiple MARL agents is extremely time-consuming. More-

over, how to effectively model collaboration is also an open problem in MARL.

In this work, we propose a novel learning paradigm, named personalized rein-

forcement learning (PRL), which is able to model both the personalization and

collaboration factors in a more effective way. Different from the existing RL and

MARL learning paradigms, as illustrated in Figure 6.2, PRL aims to learn a unified

but personalized policy πpu, sq : U ˆ S Ñ A that outputs actions based on both the

user-specific information of user u and the general information of state s shared by

2 In this work, we use the deterministic policy πpsq (i.e., a mapping from states) as an example
to present our core ideas and methods, which are also applicable to the cases of stochastic policy
πpa|sq (i.e., probabilities over actions given states).

122

Agent

...MDP
1

MDP
m

MDP
u

uniformly sample

π (s)

... MDP
u

Agent
u

πu(s)

... Agent

...MDP
1

MDP
m

MDP
u

uniformly sample

π (u , s)

...

...

RL MARL PRL

Figure 6.2: The three learning paradigms for the multi-MDP task: the existing RL
and MARL, and our proposed PRL.

all users. Apparently, the learned policy πpu, sq is able to produce fully personalized

recommendations for diverse users, even in the same state s. On the other hand,

since the user-specific term properly embeds the differences of users’ preferences in

the policy πpu, sq, PRL is able to model more fine-grained collaboration between dif-

ferent users (even those dissimilar users) by effectively exploiting the shared general

information of state s.

6.3.2 The PDQN Model

To implement the idea of PRL, we take DQN as the basis to design a novel end-

to-end agent, termed Personalized Deep Q-network (PDQN). As shown in Figure

6.3, PDQN predicts the personalized action-value Qpu, st, aq of each triplet pu, st, aq

by taking the input of user u, state st, and action a. By performing continuing Q-

learning updates based on the transition data pu, st, at, rt`1, st`1q collected from the

MDPu of all users u, PDQN is able to approximate the optimal personalized action-

value function Q˚pu, st, aq. The greedy policy following Q˚pu, st, aq, i.e., taking action

at “ arg maxaQ
˚pu, st, aq given user u and state st, will be an optimal personalized

policy π˚pu, stq.

To be more specific, PDQN is the linear combination of two action-value func-

tions: the user-specific action-value function QU and the general action-value func-

123

high-level
state st

The general
action-value

Q
G
(st , a)

high-level
action a

state st action a

concat

MLP
G
 – The General

Action-value Predicting Module

Attention Layer

GRU … GRU

Item Embedding Layer

a
0

a
t-1 a

The State/Action
Representation

Learning
Module

User Embedding Layer

user u

u

high-level
user u

…

The User
Representation

Learning
Module

MLP
U
 – The User-specific

Action-value Predicting Module

The user-specific
action-value

Q
U
(u)

The final personalized
action-value
Q(u, st , a)

+

Figure 6.3: The proposed PDQN agent.

tion QG. That is, the final personalized action-value Qpu, st, aq is given by:

Qpu, st, aq “ QUpuq `QGpst, aq. (6.4)

Intuitively, QU models the user-specific characteristics of each user u’s MDP, while

QG models the general characteristics shared by all users’ MDPs. We will elaborate

on them in the following.

The User-specific Action-value Function QU

The goal of QU is to predict the user-specific action-value QUpuq for each user u,

independent to particular states and actions. QU consists of two basic modules: the

user representation learning module that aims to learn a high-level vector represen-

tation of user u, and the user-specific action-value predicting module that attempts

to estimate the user-specific action-value QUpuq based on the learned high-level user

124

representation.

User Embedding Layer. Currently, we use a simple user embedding layer to learn

the high-level user representation based only on user id. We first map all users to

a low-dimensional vector space. Each user u is described by a unique embedding

vector eu P Rd. The embeddings of all users are implemented as a simple lookup

table: Eu “ re1, ..., ems. These user embeddings are randomly initialized and will be

updated in an end-to-end fashion during training the whole PDQN agent.

It is worth noting that a more complex user representation learning module can

be designed and easily applied to PDQN. Any types of useful information that de-

scribes specific user can be exploited to learn the high-level user representation. For

example, one can exploit demographics, user reviews, or social networks to learn

user representation via proper deep neural networks in different recommendation do-

mains. In this work, however, we only use the simplest form, an embedding layer,

to implement and validate our core idea. On the other hand, since the embedding

layer only requires user ids for inputs, the PDQN agent is applicable to any types of

real-world recommender systems.

MLPU Layers. The user-specific action-value predicting module is a standard MLP

with architecture d Ñ ¨ ¨ ¨ Ñ 1, denoted by MLPU . After the embedding of user u,

eu P Rd, is obtained, we employ MLPU to extract useful feature information from it

and predict the user-specific action-value QUpuq:

c1
U Ð relupW1

Ueu ` b1
Uq,

¨ ¨ ¨

QUpuq Ð wl
U

J
cl´1
U ` blU , (6.5)

where ¨J is the transpose operation, ciU , Wi
U (or wi

U) and biU (or biU) denote the

outputs, trainable weights and biases of the i-th layer of MLPU , respectively.

125

The General Action-value Function QG

The goal of QG is to predict the general action-value QGpst, aq for each state-action

pair pst, aq, independent to specific users. QG consists of two basic modules: the

state/action representation learning module that aims to learn high-level vector rep-

resentations of state st and action a, and the general action-value predicting module

that attempts to estimate the general action-value QGpst, aq based on the concate-

nation of the learned high-level state and action representations. Here, we redefine

the state st of user u as an item sequence, ta0, ..., at´1u, denoting the items that user

u has consumed before time step t3.

Item Embedding Layer. In QG, we use a simple item embedding layer to learn

some high-level item representations for the items in state st and action a, based only

on item ids. We first map all items to a low-dimensional vector space. Each item

i is described by a unique embedding vector ei P Rd. The embeddings of all items

are implemented as a simple lookup table: Ei “ re1, ..., ens. Similarly, these item

embeddings are randomly initialized and will be updated in an end-to-end fashion

during training the whole PDQN agent. The learned item embedding of action a, ea,

will be treated as the high-level action representation. The learned item embeddings

of state st, tea0 , ..., eat´1u, will be fed to the next layers for further processing.

GRU Layer. To model the sequential information in the state, as the exiting work

did [158], we leverage a gated recurrent unit (GRU)4 to further process the item

embeddings of state st, tea0 , ..., eat´1u, which can be simply denoted by te0, ..., et´1u

for notational convenience. The goal of this GRU layer is to transform te0, ..., et´1u

3 We do not use the original state st “ tpat´k, yuat´k
q, ..., pat´1, yuat´1

qu, since how to effectively
exploit the user feedback information tyua0

, ..., yuat´1
u to estimate action-values is also a challeng-

ing problem. Simple use (e.g., DEERS [158]) will heavily degenerate the agent’s performance in
our recommendation tasks. We leave the exploration to this problem in the future work.

4We chose GRU instead of long-short term memory (LSTM) and simple RNN because GRU has
shown advantages over them in many recommendation tasks [44, 158].

126

to a sequence of hidden vectors th0, ...,ht´1u, where hj P Rd is abstractly computed

as:

hj Ð GRUphj´1, ejq. (6.6)

Attention Layer. Furthermore, we employ a self-attention mechanism [73] to cap-

ture the importance of different items in the state, and summarize a high-level state

representation hst :

hst Ð
ÿt´1

j“0
βjhj, (6.7)

where βj is the attention score that indicates how much feature information of item

aj will be extracted, which is computed by:

βj Ð
exp

`

wJ
satanhpWsahjq

˘

řt´1
l“0 exp

`

wJ
satanhpWsahlq

˘ , (6.8)

where Wsa P Rdˆd and wsa P Rd are trainable weights in the self-attention. The

attention layer is able to autonomously select more important features from the

input sequence, and thus help the agent capture the user’s dynamic preference at

each time step.

MLPG Layers. The general action-value predicting module is a standard MLP

with architecture 2d Ñ ¨ ¨ ¨ Ñ 1, denoted by MLPG. Once the high-level state

representation hst P Rd and the high-level action representation ea P Rd are ready,

we employ MLPG to fuse useful feature information from the concatenation of them

and predict the general action-value QGpst, aq:

c1
G Ð relupW1

Grhst ‘ eas ` b1
Gq,

¨ ¨ ¨

QGpst, aq Ð wl
G

J
cl´1
G ` blG, (6.9)

where ¨J is the transpose operation, ciG, Wi
G (or wi

G) and biG (or biG) denote the

outputs, trainable weights and biases of the i-th layer of MLPG, respectively.

127

6.3.3 Personalized Q-learning

To train PDQN, i.e., the Q-network Qpu, s, a; θq, we adopt a Q-learning [145] based

algorithm that minimizes the loss function:

Lpθq “ Eu,st,at,rt`1,st`1

“

py ´Qpu, st, at; θqq
2
‰

, (6.10)

where pu, st, at, rt`1, st`1q denotes a transition collected from user u’s MDPu, and θ

denote all the trainable parameters of the Q-network. y “ rt`1`γmaxaQpu, st`1, a; θ´q

is the Q-learning target for current iteration, γ is the discount factor that balances

the importance between future rewards and immediate rewards, and θ´ are the Q-

network parameters from previous iteration, which are held fixed when performing

optimization. In practice, instead of optimizing the full expectations in the above

loss function, a more convenient way is to perform stochastic gradient descent (SGD)

on a collected transition pu, st, at, rt`1, st`1q:

θ Ð θ ` α ¨ py ´Qpu, st, at; θqq ¨∇θQpu, st, at; θq. (6.11)

The entire personalized Q-learning algorithm is presented in Algorithm 6.1. To

make the Q-network converge well, sufficient transitions that involve all possible

states and actions are needed for Q-learning updates [119]. To this end, in each

episode, we uniformly sample a user u from training set Utrain as the current target

user. User u’s MDPu will be used to interact with the agent and generate corre-

sponding states and rewards. To ensure exploration, in each state st of MDPu, the

agent uses a ε-greedy policy that selects a greedy action at “ arg maxaQpu, st, a; θq

with probability 1 ´ ε and a random action with probability ε. At the same time,

the collected transition pu, st, at, rt`1, st`1q is used to update the Q-network’s param-

eters according to Equation 6.11. The learned agent can be used to make real-time

recommendations for any testing user v. It only needs to interact with user v for an

128

Algorithm 6.1: Personalized Q-learning

Input: the user set U , the training feedback data Y train

Output: the learned Q-network Qpu, s, a; θq
1 for episode “ 1, ..., N do
2 Uniformly sample a target user u from U
3 Initialize state s0 as a pre-observed item sequence
4 for t “ 0, ..., T ´ 1 do
5 Recommend the ε-greedy item at w.r.t. Qpu, st, a; θq
6 Set reward rt`1 “ yuat and state st`1 “ st Y tatu
7 Update Q’s weights θ according to Equation 6.11

episode, observe state st, predict the action-values Qpv, st, a; θq for all actions, and

recommend the greedy item at “ arg maxaQpu, st, a; θq, at each time step t.

Time Complexity. In the inner for-loop in Algorithm 6.1, the computation time is

mainly taken in computing Q-values for all available items (line 5), and in updating

Q-network (line 7). The cost of computing Q-values is Opn|θ|q, where |θ| is the

number of Q-network parameters and n is the number of items, and the cost of

updating Q-network is Op|θ|q. Therefore, the time complexity of training GCQN in

worst case is OpNTn|θ|q, where N is the number of episodes and T is the number of

time steps in each episode.

6.3.4 Personalized Q-learning with Collaborative Regular-
izer

In order to make PDQN to approximate the optimal personalized action-value func-

tion, more effectively and efficiently, we propose a novel Q-learning algorithm that

minimizes the loss function:

Lpθq “ Eu,st,at,rt`1,st`1

“

py ´Qpu, st, at; θqq
2
` λ ¨ CR

‰

, (6.12)

129

where y “ rt`1 ` γmaxaQpu, st`1, a; θ´q is the Q-learning target of PDQN, λ is the

regularization parameter, and CR is the collaborative regularizer defined as:

CR “
ÿ

vPNpuq

simpu, vq ¨
`

Qpv, st, at; θ
´
q ´Qpu, st, at; θq

˘2
. (6.13)

Here, Npuq denotes the set of collaborators of user u, i.e., the users who are most

similar to user u according certain similarity metric. simpu, vq P r0, 1s is the similarity

between user u and his/her collaborator v. Qpv, st, at; θ
´q is the personalized action-

value of triplet pv, st, atq predicted by PDQN at previous iteration, which indicates

how good it is to take action at in state st for user v, over the long run.

The intuition behind the CR regularizer is straightforward, that is, the person-

alized action-values between two similar users are inclined to be close to each other.

By leveraging the CR regularizer, PDQN is able to model the collaborative relation-

ships between different users, more effectively and efficiently. As a result, a better

personalized action-value function Qpu, s, aq can be estimated by PDQN, which leads

to a better personalized policy πpu, sq.

The new personalized Q-learning algorithm is presented in Algorithm 6.2. To

reduce the computational complexity, when optimizing the loss function in Equation

6.12, we uniformly sample a single collaborator v from Npuq to compute the CR

regularizer, instead of the whole set. Given a collected transition pu, st, at, rt`1, st`1q,

the new SGD update is:

θ Ð θ ` α ¨ rpy ´Qpu, st, at; θqq

` λ ¨ simpu, vq ¨ pQpv, st, at; θ
´
q ´Qpu, st, at; θqq

s ¨∇θQpu, st, at; θq. (6.14)

We refer to the PDQN agent trained with the new personalized Q-learning algorithm

as PDQN-cr.

130

Algorithm 6.2: Personalized Q-learning with Collaborative Regularizer

Input: the user set U , the training feedback data Y train, the collaborator
set Npuq, @u P U , the similarity simpu, vq, @u, v P U

Output: the learned Q-network Qpu, s, a; θq
1 for episode “ 1, ..., N do
2 Uniformly sample a target user u from U
3 Initialize state s0 as a pre-observed item sequence
4 for t “ 0, ..., T ´ 1 do
5 Recommend the ε-greedy item at w.r.t. Qpu, st, a; θq
6 Set reward rt`1 “ yuat and state st`1 “ st Y tatu
7 Uniformly sample a collaborator v from Npuq
8 Update Q’s weights θ according to Equation 6.14

Detailed Designs in CR

The similarity metric is nontrivial to the performance of the CR regularizer. In this

work, we use the cosine similarity to compute simpu, vq between user u and user v

based on some feature vectors of them:

simpu, vq “
pu
Jpv

}pu}2 ¨ }pv}2
, (6.15)

where } ¨ }2 denotes the L2 norm of vectors, and pu (pv) denotes the low-dimensional

feature vector of user u (v).

The low-dimensional feature vectors of all users are trained by a matrix factoriza-

tion (MF) model based on the training feedback data Y train. The MF loss function

to be minimized is defined as:

L “
ÿ

u,i
ppu

Jqi ´ yuiq
2
` λmf p

ÿ

u
}pu}

2
2 `

ÿ

i
}qi}

2
2q, (6.16)

where yui is either an observed positive feedback (yui “ 1) in Y train or a sampled

negative feedback (yui “ 0), λmf is the regularization parameter, and pu P Rd and

qi P Rd denote the feature vectors of user u and item i, respectively. To optimize the

above loss function, in each iteration, we traverse all the observed positive feedbacks

in Y train. For each traversed positive feedback yui “ 1, we uniformly sample a

131

negative feedback yuj “ 0 from the unobserved feedbacks of user u. Then, we

perform two SGD updates to the corresponding feature vectors based on yui and yuj,

respectively. The update rule for yui is given by:

pu Ð pu ´ α
“

ppu
Jqi ´ yuiqqi ` λmfpu

‰

qi Ð qi ´ α
“

ppu
Jqi ´ yuiqpu ` λmfqi

‰

, (6.17)

The time complexity of training the feature vectors is Opcd|Ω|q, where c is the number

of iterations, d is the dimensionality of latent space, and |Ω| is the number of observed

positive feedbacks in Y train. As both c and d are usually small constants (we set

c “ 20 and d “ 64 in our experiments) in practice, the cost is quite low, which is

linear to the size of observed feedback data. Note that we tested c P t10, 20, 30u in

our experiments, but the results did not show significant differences.

Once the similarities between users are computed, we select k most similar col-

laborators to form the set Npuq for each user u. It is worth noting that the CR

regularizer is generic, which does not limited to the specific similarity metric de-

scribed above. More complex ways can be used to compute the similarities between

users, in order to further improve the performance of CR. For example, one may

exploit an additional social network of users and compute their similarities according

the social relations between them.

6.4 Experiments

We conducted extensive experiments to validate the proposed PDQN methods. In

this section, we describe our experiments and show the results and analysis.

132

Table 6.1: The statistics of the Amazon datasets.

Statistics Beauty Music Phone Video

#users 2,826 1,835 1,141 273

#items 42,042 41,488 18,797 5,076

#positive feedbacks 97,860 75,932 34,653 9,407

#density 0.08% 0.10% 0.16% 0.68%

6.4.1 Experimental Setup

Datasets. We employ four datasets with different sizes and domains from the Ama-

zon product data repository5 [41]: “Beauty” (Beauty), “Digital Music” (Music),

“Cell Phones and Accessories” (Phone), and “Amazon Instant Video” (Video). All

datasets contain explicit user ratings on items. Since we focus on implicit-feedback

recommendations, we follow the common practice to convert all ratings to 1 to rep-

resent the implicit positive feedbacks. To ensure there is enough data to conduct

experiments for interactive recommendations, we remove the users with fewer than

20 positive feedbacks for each dataset. A summary of characteristics of the obtained

datasets is given in Table 6.1.

Evaluation Methodology. We evaluate the recommendation agent on the follow-

ing T -step interactive recommendation task. Suppose target user u has nu observed

positive feedbacks in the dataset. Since not all unobserved items are truly negative,

we randomly select the same number of unobserved pu, iq pairs of user u as the nu

sampled negative feedbacks (yui “ 0). In each episode of the interactive recommen-

dation process, the agent is forced to pick items from the available item set that

consists of the nu sampled negative items and the nu observed positive items. An

episode ends at time step T if and only if the agent has recommended all the nu

positive items to user u before time step T . This implies that T varies with respect

to different users and different agents. For an ideal agent, T “ nu.

5http://jmcauley.ucsd.edu/data/amazon/

133

For each dataset, we split the observed feedback data Y into Ytrain and Ytest with

the follow procedure. We first randomly choose 10% users as testing user set Utest,

and the remaining 90% users as the training user set Utrain. All positive feedbacks

of Utrain are moved from Y to Ytrain. For each testing user v P Utest, the entire nv

positive feedbacks in Y are divided equally into Ytrain and Ytest. The final obtained

Ytrain and Ytest are used to train and test the RL agents, respectively. Note that for

each testing user, the sampled negative item set for training and that for testing are

forced to be disjoint. We conduct each experiment on 5 data splits obtained with

different random seeds.

The evaluation metric we used is the average reward (AvgReward) the agent

received in the T -step episode for each testing user v. Recall that the reward of a

positive (negative) item is 1 (-1). Thus, AvgReward is defined as:

AvgReward “
nv ´ pT ´ nvq

T
“

2nv ´ T

T
, (6.18)

where nv denotes the number of recommended positive items (equal to the number of

actual positive items in Ytest), and T ´ nv denotes the the number of recommended

negative items. Clearly, AvgReward P r0, 1s. The final value of AvgReward is

obtained by taking its average over all testing users and 5 data splits.

Baselines. To comparatively evaluate our proposed methods, PDQN and PDQN-

cr, we carefully choose a number of representative RL-based baselines from the

literature:

• DEERS [158]. This is a DQN-based recommendation method, which utilizes

GRU to learn state representations from positive- and negative-feedback item

sequences.

• UDQN [63]. This is a DQN-based recommendation method, which utilizes

matrix factorization to learn latent states.

134

• DQN [90]. This the original DQN method designed for playing Atari. We

adapt it to our task by using the same architecture of the general action-value

function QG in PDQN.

• DQN-u. This method extends the above DQN by taking the high-level user

representation in PDQN as an additional part of state to feed the general

action-value predicting module.

All of the above baselines are Q-network agents. The major difference between

them and our PDQN is that they fail to model the factors of personalization and

collaboration of users, or only model the factors implicitly and indirectly via the

state representations. For fair comparisons, we train these agents using the same Q-

learning algorithm of PDQN in Algorithm 6.1. This enables us to focus on validating

the efficacy of our personalized action-value predicting network architecture, i.e., the

PDQN model.

Besides, we compare several non-RL baselines for reference:

• Random picks items randomly. It can be seen as an indicator that reveals the

difficulty of the task itself.

• Popular picks items with most positive feedbacks. It is a simple but strong

baseline in many recommendation tasks.

• SVD [59] is a matrix factorization model that uses the inner product of user-

and item-specific latent feature vectors to predict user-item relevance scores6.

• LinUCB [69] is a contextual bandit method for news recommendation. We

adapt it to our task by concatenating the SVD-based user and item feature

6 We have tried NCF [42] that utilizes MLP to replace the inner product in SVD. However, this
more complex model failed to produce better results than SVD in a reasonable amount of training
time. Since both SVD and NCF are essentially the same supervised learning based models, we
only report the results of SVD here.

135

Table 6.2: The parameter settings of PDQN-cr.

Parameter Beauty Music Phone Video

CR regularization λ 0.1 0.3 0.5 0.1

neighborhood size N 5 10 10 5

vectors as its context vector.

Parameter Settings. We implement the compared RL-based methods in PyTorch.

Since all of them are trained with the same Q-learning algorithm, we use the DQN

as a base model to tune some common hyperparameters using grid search, which

will be fixed to all methods. This setting is reasonable as it enables us to make a

fair comparison on the particular action-value predictors in different methods. More

specifically, we adopt the Adam optimizer to update Q-networks. All parameters in

Adam are set to the default values in PyTorch, with one exception of learning rate

α “ 0.0001. Other shared hyperparameters are set as follows: the embedding size

d “ 64, the discount factor γ “ 0.5, the ε-greedy parameter ε “ 0.1, the number of

training episodes N “ 4ˆ104, and the architecture of the MLPG 128 Ñ 64 Ñ 32 Ñ 1.

For PDQN and PDQN-cr, the architecture of the MLPU is 64 Ñ 32 Ñ 16 Ñ 1. For

DEERS and UDQN, we adopt the same architecture described in the original papers.

For SVD, we set the latent dimension as 64, the regularization parameter as 0.001,

and the learning rate as 0.01. For PDQN-cr, we use the same parameters of SVD to

train the user and item embeddings. Besides, the settings of the neighborhood size

N and the CR regularization parameter λ are given in Table 6.2.

6.4.2 Comparison Results

The comparison results of all methods, in terms of the AvgReward received in the

interactive recommendation process, are reported in Table 6.3. The best performing

method is highlighted in bold font (always PDQN-cr). The best performing baseline

136

Table 6.3: Performance comparison of all methods, in terms of the AvgReward. The
best performing method is highlighted in bold font (always PDQN-cr). The best
performing baseline is marked with “*” (always DQN).

Type Method Beauty Music Phone Video

Non-RL

Random 0.019 0.023 0.017 0.006

Popular 0.077 0.115 0.008 0.009

SVD 0.094 0.208 0.067 0.083

LinUCB 0.094 0.198 0.048 0.064

RL

DEERS 0.124 0.229 0.059 0.072

UDQN 0.151 0.243 0.093 0.110

DQN 0.179* 0.298* 0.105* 0.152*

DQN-u 0.151 0.273 0.104 0.141

PRL
PDQN 0.183 0.324 0.127 0.172

PDQN-cr 0.200 0.326 0.136 0.198

is marked with “*” (always DQN).

• Our PDQN shows remarkable advantages over the baselines on all datasets. Its

relative improvements over the best performing baseline DQN are about 2.5%,

8.6%, 20.5% and 13.8% on the Beauty, Music, Phone and Video datasets, re-

spectively7. This clearly demonstrates that the proposed personalized Q-network

architecture is able to learn personalized recommendation policies more effec-

tively than the existing deep RL agents.

• PDQN-cr further improves the performance of PDQN by approximately 9.3%,

0.6%, 7.1% and 15.1% on the Beauty, Music, Phone and Video datasets, respec-

tively. This highly indicates that the proposed collaborative Q-learning objective,

i.e., the loss function with the collaborative regularizer CR, is very helpful to

the learning of effective personalized recommendation policies.

7Note that in the famous Netflix Prize, the winner only improves the baseline 10%!

137

N=2 N=5 N=10

λ=0.1

λ=0.3

λ=0.5
0.185

0.190

0.195

(a) Beauty

N=2 N=5 N=10

λ=0.1

λ=0.3

λ=0.5

0.305

0.310

0.315

0.320

0.325

(b) Music

N=2 N=5 N=10

λ=0.1

λ=0.3

λ=0.5

0.122

0.125

0.128

0.130

0.133

0.135

(c) Phone

N=2 N=5 N=10

λ=0.1

λ=0.3

λ=0.5
0.170

0.180

0.190

(d) Video

Figure 6.4: The impact of the CR regularization parameter λ and the size of collab-
orative neighborhood N on the performance of PDQN-cr on each dataset.

6.4.3 Parameter Analysis

We analyze the impact of two important hyperparameters on the performance of

PDQN-cr: the CR regularization parameter λ and the size of collaborative neigh-

borhood N . To this end, we vary λ P t0.1, 0.3, 0.5u and N P t2, 5, 10u to check how

PDQN-cr behaves on each dataset. The comparison results is shown in Figure 6.4.

We find that the combination of λ “ 0.1, N “ 5 achieves best performance on the

Beauty and Video datasets, λ “ 0.3, N “ 10 achieves best performance on the Music

dataset, and λ “ 0.5, N “ 10 achieves best performance on the Phone dataset.

138

6.5 Conclusions and Discussions

Existing RL-based recommendation agents are significantly limited by a common

weakness that the key factors of personalization and collaboration are not modeled

or only modeled in states and actions in an implicit way, which are not able to learn a

fully personalized recommendation policy. In this work, we propose a novel personal-

ized reinforcement learning (PRL) paradigm, a more explicit and effective approach

to modeling personalization and collaboration in RL-based recommendation agents.

To implement the idea of PRL, we develop an end-to-end value-based agent, term

Personalized Deep Q-network (PDQN), which is able to learn a fully personalized

policy that makes recommendations based on both the user-specific information of a

particular user and the general information of state shared by all users. Furthermore,

we propose a novel collaborative Q-learning objective that contains a particular col-

laborative regularizer in order to further model collaboration, which is able to make

PDQN to approximate the optimal personalized policy more effectively than conven-

tional Q-learning objective. We validate PDQN and the collaborative regularizer by

conducting solid experiments on four real-world datasets.

Our approaches can be extended from the following directions. First of all, the

network architecture of PDQN can be further improved by using some more complex

user representation modules and state/action representation modules. Second, the

collaborative regularizer can also be extended with other similarity metrics and user

embedding methods or data sources. Last but not least, the idea of PRL and the

technical designs in PDQN can be readily transferred to policy-based deep RL agents.

We will explore these problems in the future work.

139

140

Chapter 7

Conclusions and Suggestions for

Future Research

Recommender system is a powerful tool for information filtering, which has been

widely and successfully applied on the web. The core of a recommender system is

the recommendation algorithm/method that determines what items should be rec-

ommended to users. Over the past two decades, researchers from different areas

have proposed a wide variety of recommendation algorithms and achieved huge suc-

cesses. However, the majority of existing recommendation algorithms are essentially

supervised learning (SL) based approaches that only aim to learn static, passive,

and shortsighted predictive models for the single-step recommendation problem, but

cannot provide satisfactory solutions the more practical multi-step interactive rec-

ommendation problem.

To address such issue, a potential way is to leverage the reinforcement learning

(RL) paradigm to build an RL-based recommendation agent. A key feature of RL-

based agents is that they are able to model the user’s dynamic long-term preferences

towards future, and aim to learn a proactive and farsighted recommendation policy

that optimizes the cumulative rewards received in the multi-step interactive recom-

mendation process. Unfortunately, the existing RL-based recommendation agents fail

to effectively model the crucial factors of personalization and collaboration, which

141

cannot provide users with truly personalized recommendations that optimize the

overall profit of the recommender system.

In this thesis, we develop four novel and effective value-based deep RL recommen-

dation agents, by effectively modeling personalization and collaboration into one or

more of the three modules: the state/action representation module, the action-value

prediction module, and the Q-learning module, in different ways. Chapter 3 presents

User-specific Deep Q-network (UDQN), a two-stage pipeline agent that first con-

structs latent vector representations of states and actions using matrix factorization

(MF) and then estimates action-values based on those latent representations us-

ing Q-learning. Chapter 4 describes Graph Convolutional Q-network (GCQN), an

end-to-end agent that directly estimates action-values based on the input of graph-

structured representations of states and actions by successfully processing them using

graph convolutional networks (GCNs). In the proposed UDQN and GCQN agents,

the factors of personalization and collaboration are effectively modeled via the MF-

based and the GCN-based state/action representation modules, respectively. Chap-

ter 5 introduces Social Attentive Deep Q-network (SADQN), a two-stage pipeline

agent that estimates action-values based on both personal preferences and social

neighbors’ preferences by using the personal action-value function and the social

action-value function, respectively. On the basis of UDQN, the proposed SADQN

agent further models personalization and collaboration explicitly into the action-

value prediction module by successfully leveraging social attention to capture the so-

cial influence between target user and his/her social neighbors in the social network.

Chapter 6 presents Personalized Deep Q-network (PDQN), an end-to-end agent that

estimates action-values based on both user-specific information of the user and gen-

eral information of the state by using the user-specific action-value function and the

general action-value function, respectively. Unlike the above three agents, the pro-

posed PDQN agent utilizes a brand-new personalized Q-network architecture (i.e.,

142

the combination of the first two modules) to model personalization and collaboration,

which is able to produce a fully personalized recommendation policy. Moreover, the

collaboration is further modeled by PDQN in a collaborative Q-learning module.

7.1 Summary of Contributions

The following sections summarize the contributions of each chapter.

7.1.1 UDQN: Modeling Personalization and Collaboration
via MF-based Representation Module

• This work is the first attempt to explore the combination of CF and RL for

recommendation problems. We seamlessly integrates the ideas of CF and RL

by designing an MF-based state/action representation module for the RL-based

recommendation agent.

• The proposed MF-based representation module successfully models the factors

of personalization and collaboration by mapping all users into a shared latent

feature space, and produces informative MF-based vector representations of

states and actions for policy learning.

• We develop a two-stage pipeline agent, named UDQN, which is able to learn an

effective recommendation policy based on the constructed MF-based state/action

representations through Q-learning.

• We verify the efficacy and capability of UDQN with comprehensive experi-

mental results and analysis on real-world datasets, in terms of both explicit-

feedback and implicit-feedback recommendation tasks. We find that the MF-

based representation module helps a lot in learning the RL-based recommenda-

tion policy. Moreover, the learned policy is highly consistent with the quality

143

of the specific MF model adopted in the representation module. A better MF

model will lead to a better policy.

• Our approach is generic and flexible, which can be readily extended with more

complex MF models and Q-network architectures, and applied to other related

recommendation scenarios and datasets.

7.1.2 GCQN: Modeling Personalization and Collaboration
via GCN-based Representation Module

• This is the first work that incorporates GCN to design an RL-based recommen-

dation agent. We propose a GCN-based state/action representation module

that is able to transform the graph-structured representations to meaningful

vector representations.

• The proposed GCN-based representation module successfully models the fac-

tors of personalization and collaboration by aggregating valuable features from

target user’s local neighborhood in the user-item bipartite graph, in terms of

the feature propagation on the “user-item-user” paths.

• We develop an end-to-end agent, termed GCQN, which is able to directly

approximate the optimal action-value function (corresponding an optimal rec-

ommendation policy) based on the input of graph-structured representations.

• We conduct extensive experiments on three real-world datasets. The results

demonstrate that: (1) the proposed GCN-based representation module helps a

lot in learning farsighted recommendation policies, and (2) GCQN is effective,

robust and efficient, which achieves significant performance gains over state-

of-the-art baselines with reasonable computation cost.

144

• Our approach is a generic framework for graph-structure reinforcement learn-

ing, which can be readily extended with more advanced techniques in GCN

designs (e.g., the fastGCN).

7.1.3 SADQN: Improving Personalization and Collaboration
via Social Attention

• We make the first attempt to improve the performance of RL-based recom-

mendation agents by effectively utilizing available social networks of users.

• We develop a two-stage pipeline agent, termed SADQN, which further mod-

els the factors of personalization and collaboration, on the basis of UDQN,

by estimating action-values based on the combination of a personal action-

value function and a social action-value function. The personal and social

action-value functions aim to estimate action-values based on the preferences

of individual users and social friends, respectively.

• In particular, the social action-value function successfully models the collabo-

rations between target user and his/her social neighbors by leveraging social

attention to capture the social influence between them.

• Further, we develop an enhanced variant of SADQN, termed SADQN++, to

model the complicated and diverse trade-offs between personal preferences and

social influence for all involved users, making the agent more powerful and

flexible in learning optimal policies.

• The solid experimental results on real-world datasets demonstrate that the pro-

posed SADQNs remarkably outperform the state-of-the-art agents, especially

in the cold-start recommendation scenario. We also find that, the better mod-

eling of social influence (i.e., the collaboration between target user and social

friends), the better recommendation performance the agent will achieve.

145

7.1.4 PDQN: Integrating Personalized Network Architec-
ture with Collaborative Learning Objective

• We propose a novel end-to-end agent, named PDQN, which is able to learn

a fully personalized recommendation policy that depends on both the user-

specific information of individual user and the general information of state

shared by all users.

• Unlike the UDQN and GCQN agents that model personalization and collab-

oration implicitly into state/action representations, PDQN explicitly models

them into the whole Q-network architecture, by estimating personalized action-

values based on the combination of a user-specific action-value function and

a general action-value function. Besides, unlike the SADQN agent, PDQN

does not rely on additional social information, which can be applied to more

recommendation scenarios and datasets.

• We design a novel collaborative Q-learning objective to further model collabo-

ration between similar neighbors, which is able to make PDQN to approximate

the optimal personalized policy more effectively.

• We conduct solid experiments on several real-world datasets to validate our

methods. The results sufficiently verify the efficacy of both the personalized

Q-network architecture and the collaborative Q-learning objective.

7.2 Future Work

For future work, we point out several potential directions in the following.

Each of the proposed agents could be further enhanced by employing more ad-

vanced techniques in its core module. A number of extensions could be made in

this direction. For UDQN, the standard MF model in the MF-based representation

146

module can be replaced by more complex models such as SVD++ [57] and LLORMA

[61]. For GCQN, the GCN design in the CGN-based representation module can be

replaced with more recent techniques such as fastGCN [16] and Geom-GCN [95]. For

SADQN, the social attention layer can be enhanced by using more complex attention

mechanisms such as multi-head attention [127]. For PDQN, the simple user embed-

ding layer can be replaced by more complex user representation methods, and the

collaborative regularizer can also be extended with other similarity computation ap-

proaches. For all agents, the general action-value prediction module can be replaced

by the dueling network architectures [144], in order to improve policy learning in

those cases where many similar-valued actions exist.

The ideas of modeling personalization and collaboration in the proposed agents

are largely complementary to each other, which can be properly integrated to further

improve the agent’s performance. In fact, the proposed SADQN agent integrates the

ideas of both MF-based representation and social attention. In the future, we will

explore the following extensions. First, the GCN-based state/action representation

module in GCQN can be incorporated into SADQN and PDQN to further improve

their performance. Second, the personalized network architecture in PDQN can be

applied to SADQN, in order to better estimate the action-values in social context.

Moreover, the collaborative learning objective in PDQN can be extended by lever-

aging the available social network of users.

Currently, we only implement our ideas of modeling personalization and collab-

oration on the basis of value-based deep RL agents. Are the proposed ideas also

beneficial to policy-based deep RL agents such as DDPG [71]? We will explore this

problem in future work. We are also interested in how to design more effective deep

RL agents by leveraging the available knowledge graph on the item side.

147

148

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. TKDE,
17(6):734–749, 2005.

[2] N. Alon, B. Awerbuch, Y. Azar, and B. Patt-Shamir. Tell me who i am: an
interactive recommendation system. Theory of Computing systems, 45(2):261–
279, 2009.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[4] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks
in information diffusion. In WWW, pages 519–528. ACM, 2012.

[5] S. Balakrishnan and S. Chopra. Collaborative ranking. In WSDM, pages 143–
152. ACM, 2012.

[6] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[7] R. v. d. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix com-
pletion. arXiv preprint arXiv:1706.02263, 2017.

[8] D. A. Berry and B. Fristedt. Bandit problems: sequential allocation of exper-
iments. Monographs on statistics and applied probability, 5:71–87, 1985.

[9] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. Kramer, C. Marlow, J. E. Settle, and
J. H. Fowler. A 61-million-person experiment in social influence and political
mobilization. Nature, 489(7415):295, 2012.

[10] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In UAI, pages 43–52. Morgan Kaufmann
Publishers Inc., 1998.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

[12] I. Cantador, P. L. Brusilovsky, and T. Kuflik. HetRec2011. ACM, 2011.

149

[13] A. J. B. Chaney, D. M. Blei, and T. Eliassi-Rad. A probabilistic model for
using social networks in personalized item recommendation. In RecSys, pages
43–50. ACM, 2015.

[14] C. Chen, M. Zhang, Y. Liu, and S. Ma. Social attentional memory network:
Modeling aspect-and friend-level differences in recommendation. In WSDM,
pages 177–185. ACM, 2019.

[15] H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang, and Y. Yu.
Large-scale interactive recommendation with tree-structured policy gradient.
In AAAI, volume 33, pages 3312–3320, 2019.

[16] J. Chen, T. Ma, and C. Xiao. Fastgcn: fast learning with graph convolutional
networks via importance sampling. In ICLR, 2018.

[17] J. Chen, C. Wang, S. Zhou, Q. Shi, Y. Feng, and C. Chen. Samwalker: Social
recommendation with informative sampling strategy. In WWW, pages 228–239.
ACM, 2019.

[18] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi. Top-k
off-policy correction for a reinforce recommender system. In WSDM, pages
456–464. ACM, 2019.

[19] S. Chen, Y. Yu, Q. Da, J. Tan, H. Huang, and H. Tang. Stabilizing reinforce-
ment learning in dynamic environment with application to online recommen-
dation. In SIGKDD, pages 1187–1196. ACM, 2018.

[20] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song. Generative adversarial
user model for reinforcement learning based recommendation system. In ICML,
pages 1052–1061, 2019.

[21] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-
derson, G. Corrado, W. Chai, M. Ispir, et al. Wide & deep learning for rec-
ommender systems. In Proceedings of the 1st workshop on deep learning for
recommender systems, pages 7–10. ACM, 2016.

[22] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[23] S. Choi, H. Ha, U. Hwang, C. Kim, J. Ha, and S. Yoon. Reinforcement learn-
ing based recommender system using biclustering technique. arXiv preprint
arXiv:1801.05532, 2018.

[24] K. Christakopoulou and A. Banerjee. Collaborative ranking with a push at the
top. In WWW, pages 205–215. ACM, 2015.

150

[25] K. Christakopoulou, F. Radlinski, and K. Hofmann. Towards conversational
recommender systems. In SIGKDD, pages 815–824. ACM, 2016.

[26] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In RecSys, pages 39–46. ACM, 2010.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In NIPS, pages 3844–
3852, 2016.

[28] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.
TOIS, 22(1):143–177, 2004.

[29] M. A. Domingues, F. Gouyon, A. M. Jorge, J. P. Leal, J. Vinagre, L. Lemos,
and M. Sordo. Combining usage and content in an online recommendation
system for music in the long tail. IJMIR, 2(1):3–13, 2013.

[30] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In NIPS, pages 2224–2232, 2015.

[31] T. Ebesu, B. Shen, and Y. Fang. Collaborative memory network for recom-
mendation systems. In SIGIR, pages 515–524. ACM, 2018.

[32] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural
networks for social recommendation. pages 417–426, 2019.

[33] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, et al. Noisy networks for exploration. In
ICLR, 2018.

[34] X. Geng, H. Zhang, J. Bian, and T. Chua. Learning image and user features
for recommendation in social networks. In ICCV, pages 4274–4282, 2015.

[35] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011.

[36] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61–70,
1992.

[37] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-machine
based neural network for ctr prediction. In IJCAI, pages 1725–1731. AAAI
Press, 2017.

[38] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In NIPS, pages 1024–1034, 2017.

151

[39] F. M. Harper and J. A. Konstan. The movielens datasets: History and context.
TIIS, 5(4):19, 2016.

[40] Hado V Hasselt. Double q-learning. In NIPS, pages 2613–2621, 2010.

[41] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative filtering. In WWW, pages 507–517,
2016.

[42] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative
filtering. In WWW, pages 173–182. IW3C2, 2017.

[43] X. He, H. Zhang, M. Kan, and T. Chua. Fast matrix factorization for online
recommendation with implicit feedback. In SIGIR, pages 549–558. ACM, 2016.

[44] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recom-
mendations with recurrent neural networks. In ICLR, 2016.

[45] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[46] B. Hu, C. Shi, and J. Liu. Playlist recommendation based on reinforcement
learning. In ICIS, pages 172–182. Springer, 2017.

[47] J. Hu and P. Li. Collaborative multi-objective ranking. In CIKM, pages 1363–
1372. ACM, 2018.

[48] Y. Hu, Q. Da, A. Zeng, Y. Yu, and Y. Xu. Reinforcement learning to rank
in e-commerce search engine: Formalization, analysis, and application. In
SIGKDD, pages 368–377. ACM, 2018.

[49] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In ICDM, pages 263–272. IEEE, 2008.

[50] J. Huang, W. X. Zhao, H. Dou, J. Wen, and E. Y. Chang. Improving sequential
recommendation with knowledge-enhanced memory networks. In SIGIR, pages
505–514, 2018.

[51] S. Huang, S. Wang, T. Liu, J. Ma, Z. Chen, and J. Veijalainen. Listwise
collaborative filtering. In SIGIR, pages 343–352. ACM, 2015.

[52] M. Jamali and M. Ester. Trustwalker: a random walk model for combining
trust-based and item-based recommendation. In SIGKDD, pages 397–406.
ACM, 2009.

[53] M. Jamali and M. Ester. A matrix factorization technique with trust propaga-
tion for recommendation in social networks. In RecSys, pages 135–142. ACM,
2010.

152

[54] H. Kautz, B. Selman, and M. Shah. Referral web: combining social networks
and collaborative filtering. Communications of the ACM, 40(3):63–65, 1997.

[55] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla. Efficient
thompson sampling for online matrix-factorization recommendation. In NIPS,
pages 1297–1305, 2015.

[56] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. ICLR, 2017.

[57] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In SIGKDD, pages 426–434. ACM, 2008.

[58] Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender
systems handbook, pages 77–118. Springer, 2015.

[59] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[60] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. Local collaborative
ranking. In WWW, pages 85–96. ACM, 2014.

[61] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approxima-
tion. In ICML, pages 82–90, 2013.

[62] Y. Lei and W. Li. Personalized deep q-network for interactive recommendation.
TOIS (Under review).

[63] Y. Lei and W. Li. Interactive recommendation with user-specific deep rein-
forcement learning. TKDD, 13(6):1–15, 2019.

[64] Y. Lei and W. Li. When collaborative filtering meets reinforcement learning.
arXiv preprint arXiv:1902.00715, 2019.

[65] Y. Lei, W. Li, Z. Lu, and M. Zhao. Alternating pointwise-pairwise learning for
personalized item ranking. In CIKM, pages 2155–2158. ACM, 2017.

[66] Y. Lei, H. Pei, H. Yan, and W. Li. Reinforcement learning based recommen-
dation with graph convolutional q-network. In SIGIR (Under review).

[67] Y. Lei, Z. Wang, W. Li, and H. Pei. Social attentive deep q-network for
recommendation. In SIGIR, pages 1189–1192. ACM, 2019.

[68] Y. Lei, Z. Wang, W. Li, H. Pei, and Q. Dai. Social attentive deep q-networks
for recommender systems. TKDE (Major Revision).

153

[69] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In WWW, pages 661–670. ACM,
2010.

[70] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational au-
toencoders for collaborative filtering. In WWW, pages 689–698. International
World Wide Web Conferences Steering Committee, 2018.

[71] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning. In
ICLR, 2016.

[72] L. Lin. Reinforcement learning for robots using neural networks. Techni-
cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF
COMPUTER SCIENCE, 1993.

[73] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio.
A structured self-attentive sentence embedding. In ICLR, 2017.

[74] C. Liu, C. Zhou, J. Wu, Y. Hu, and L. Guo. Social recommendation with an
essential preference space. In AAAI, 2018.

[75] F. Liu, H. Guo, X. Li, R. Tang, Y. Ye, and X. He. End-to-end deep reinforce-
ment learning based recommendation with supervised embedding. In WSDM,
pages 384–392, 2020.

[76] F. Liu, R. Tang, X. Li, W. Zhang, Y. Ye, H. Chen, H. Guo, and Y. Zhang.
Deep reinforcement learning based recommendation with explicit user-item in-
teractions modeling. arXiv preprint arXiv:1810.12027, 2018.

[77] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331, 2009.

[78] Y. Liu, Y. Zhang, Q. Wu, C. Miao, L. Cui, B. Zhao, Y. Zhao, and L. Guan.
Diversity-promoting deep reinforcement learning for interactive recommenda-
tion. arXiv preprint arXiv:1903.07826, 2019.

[79] M. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[80] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust
ensemble. In SIGIR, pages 203–210. ACM, 2009.

[81] H. Ma, I. King, and M. R. Lyu. Learning to recommend with explicit and
implicit social relations. TIST, 2(3):29, 2011.

154

[82] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using
probabilistic matrix factorization. In CIKM, pages 931–940. ACM, 2008.

[83] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with
social regularization. In WSDM, pages 287–296. ACM, 2011.

[84] H. Ma, T. C. Zhou, M. R. Lyu, and I. King. Improving recommender systems
by incorporating social contextual information. TOIS, 29(2):9, 2011.

[85] P. Massa and P. Avesani. Trust-aware recommender systems. In RecSys, pages
17–24. ACM, 2007.

[86] P. Massa and P. Avesani. Trust-aware recommender systems. In RecSys, pages
17–24. ACM, 2007.

[87] C. E. Mello, M. A. Aufaure, and G. Zimbrao. Active learning driven by rating
impact analysis. In RecSys, pages 341–344. ACM, 2010.

[88] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In ICML, pages 1928–1937, 2016.

[89] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv,
2013.

[90] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[91] F. Monti, M. Bronstein, and X. Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. In NIPS, pages 3697–3707, 2017.

[92] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural net-
works for graphs. In ICML, pages 2014–2023, 2016.

[93] R. Pálovics, A. A. Benczúr, L. Kocsis, T. Kiss, and E. Frigó. Exploiting
temporal influence in online recommendation. In RecSys, pages 273–280. ACM,
2014.

[94] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang.
One-class collaborative filtering. In ICDM, pages 502–511. IEEE, 2008.

[95] H. Pei, B. Wei, K. C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

[96] S. Rendle and C. Freudenthaler. Improving pairwise learning for item recom-
mendation from implicit feedback. In WSDM, pages 273–282. ACM, 2014.

155

[97] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In UAI, pages 452–461,
2009.

[98] J. D. Rennie and N. Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In ICML, pages 713–719. ACM, 2005.

[99] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an
open architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM conference on Computer supported cooperative work, pages 175–186.
ACM, 1994.

[100] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems
handbook. In Recommender systems handbook, pages 1–35. Springer, 2011.

[101] N. Rubens, M. Elahi, M. Sugiyama, and D. Kaplan. Active learning in recom-
mender systems. In Recommender systems handbook, pages 809–846. Springer,
2015.

[102] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS,
pages 1257–1264, 2007.

[103] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In ICML, pages 880–887. ACM, 2008.

[104] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In WWW, pages 285–295. ACM, 2001.

[105] D. Sculley. Combined regression and ranking. In SIGKDD, pages 979–988.
ACM, 2010.

[106] G. Shani, D. Heckerman, and R. I. Brafman. An mdp-based recommender
system. JMLR, 6(Sep):1265–1295, 2005.

[107] Y. Shen and R. Jin. Learning personal+ social latent factor model for social
recommendation. In SIGKDD, pages 1303–1311. ACM, 2012.

[108] J. Shi, Y. Yu, Q. Da, S. Chen, and A. Zeng. Virtual-taobao: Virtualizing
real-world online retail environment for reinforcement learning. In AAAI, vol-
ume 33, pages 4902–4909, 2019.

[109] Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix
factorization for collaborative filtering. In RecSys, pages 269–272. ACM, 2010.

[110] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

156

[111] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.
Deterministic policy gradient algorithms. In ICML, pages 387–395, 2014.

[112] D. Silver, L. Newnham, D. Barker, S. Weller, and J. McFall. Concurrent
reinforcement learning from customer interactions. In ICML, pages 924–932,
2013.

[113] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

[114] B. Song, X. Yang, Y. Cao, and C. Xu. Neural collaborative ranking. In CIKM,
pages 1353–1362. ACM, 2018.

[115] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang. Session-based
social recommendation via dynamic graph attention networks. In WSDM,
pages 555–563. ACM, 2019.

[116] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML,
pages 720–727, 2003.

[117] P. Sun, L. Wu, and M. Wang. Attentive recurrent social recommendation. In
SIGIR, pages 185–194. ACM, 2018.

[118] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L. Huang, and C. Xu. Recurrent
knowledge graph embedding for effective recommendation. In RecSys, pages
297–305, 2018.

[119] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[120] N. Taghipour, A. Kardan, and S. S. Ghidary. Usage-based web recommenda-
tions: a reinforcement learning approach. In RecSys, pages 113–120. ACM,
2007.

[121] J. Tang, H. Gao, H. Liu, and A. Das Sarma. etrust: Understanding trust
evolution in an online world. In SIGKDD, pages 253–261. ACM, 2012.

[122] J. Tang, X. Hu, and H. Liu. Social recommendation: a review. Social Network
Analysis and Mining, 3(4):1113–1133, 2013.

[123] L. Tang, Y. Jiang, L. Li, C. Zeng, and T. Li. Personalized recommendation
via parameter-free contextual bandits. In SIGIR, pages 323–332. ACM, 2015.

[124] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with
double q-learning. In AAAI, 2016.

157

[125] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang.
Hybrid reward architecture for reinforcement learning. In NIPS, pages 5392–
5402, 2017.

[126] H. P. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause. Explore-exploit in
top-n recommender systems via gaussian processes. In RecSys, pages 225–232.
ACM, 2014.

[127] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017.

[128] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio.
Graph attention networks. arXiv, 2017.

[129] J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical eval-
uation. In ECML, pages 437–448. Springer, 2005.

[130] P. Victor, C. Cornelis, M. De Cock, and P. P. Da Silva. Gradual trust and
distrust in recommender systems. Fuzzy Sets and Systems, 160(10):1367–1382,
2009.

[131] M. Volkovs and R. S. Zemel. Collaborative ranking with 17 parameters. In
NIPS, pages 2294–2302, 2012.

[132] H. Wang, X. Shi, and D. Yeung. Collaborative recurrent autoencoder: Recom-
mend while learning to fill in the blanks. In NIPS, pages 415–423, 2016.

[133] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recom-
mender systems. In SIGKDD, pages 1235–1244. ACM, 2015.

[134] H. Wang, Q. Wu, and H. Wang. Learning hidden features for contextual
bandits. In CIKM, pages 1633–1642. ACM, 2016.

[135] H. Wang, Q. Wu, and H. Wang. Factorization bandits for interactive recom-
mendation. In AAAI, pages 2695–2702, 2017.

[136] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo. Rip-
plenet: Propagating user preferences on the knowledge graph for recommender
systems. In CIKM, pages 417–426, 2018.

[137] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and Z. Wang.
Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In SIGKDD, pages 968–977. ACM, 2019.

[138] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo. Multi-task feature
learning for knowledge graph enhanced recommendation. In WWW, pages
2000–2010, 2019.

158

[139] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo. Knowledge graph convolutional
networks for recommender systems. In WWW, pages 3307–3313. ACM, 2019.

[140] J. Wang, A. P. De Vries, and M. J. Reinders. Unifying user-based and item-
based collaborative filtering approaches by similarity fusion. In SIGIR, pages
501–508. ACM, 2006.

[141] L. Wang, W. Zhang, X. He, and H. Zha. Supervised reinforcement learning
with recurrent neural network for dynamic treatment recommendation. In
SIGKDD, pages 2447–2456. ACM, 2018.

[142] X. Wang, X. He, M. Wang, F. Feng, and T. Chua. Neural graph collaborative
filtering. In SIGIR. ACM, 2019.

[143] X. Wang, Y. Wang, D. Hsu, and Y. Wang. Exploration in interactive per-
sonalized music recommendation: a reinforcement learning approach. TOMM,
11(1):7, 2014.

[144] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

[145] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[146] R. J. Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[147] Q. Wu, H. Wang, Q. Gu, and H. Wang. Contextual bandits in a collaborative
environment. In SIGIR, pages 529–538. ACM, 2016.

[148] Q. Wu, H. Wang, L. Hong, and Y. Shi. Returning is believing: Optimizing
long-term user engagement in recommender systems. In CIKM, pages 1927–
1936. ACM, 2017.

[149] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, and G. Chen. Dual graph
attention networks for deep latent representation of multifaceted social effects
in recommender systems. pages 2091–2102, 2019.

[150] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recom-
mendation with graph neural networks. In AAAI, pages 346–353, 2019.

[151] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive
survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[152] B. Yang, Y. Lei, J. Liu, and W. Li. Social collaborative filtering by trust.
TPAMI, 39(8):1633–1647, 2017.

159

[153] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In
SIGKDD, pages 974–983. ACM, 2018.

[154] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and
J. Han. Personalized entity recommendation: A heterogeneous information
network approach. In WSDM, pages 283–292, 2014.

[155] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. Collaborative knowledge
base embedding for recommender systems. In SIGKDD, pages 353–362, 2016.

[156] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender
system: A survey and new perspectives. CSUR, 52(1):5, 2019.

[157] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang. Deep reinforcement
learning for page-wise recommendations. In RecSys, pages 95–103. ACM, 2018.

[158] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin. Recommendations
with negative feedback via pairwise deep reinforcement learning. In SIGKDD,
pages 1040–1048. ACM, 2018.

[159] X. Zhao, W. Zhang, and J. Wang. Interactive collaborative filtering. In CIKM,
pages 1411–1420. ACM, 2013.

[160] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. Drn: A
deep reinforcement learning framework for news recommendation. In WWW,
pages 167–176. IW3C2, 2018.

[161] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph
neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

[162] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabo-
rative filtering for the netflix prize. In International conference on algorithmic
applications in management, pages 337–348. Springer, 2008.

[163] L. Zou, L. Xia, P. Du, Z. Zhang, T. Bai, W. Liu, J. Nie, and D. Yin. Pseudo
dyna-q: A reinforcement learning framework for interactive recommendation.
In WSDM. ACM, 2020.

160

	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Background
	1.2 Research Motivation
	1.3 Research Overview and Contributions
	1.4 Structure of Thesis

	2 Literature Review
	2.1 Collaborative Filtering
	2.1.1 Matrix Factorization
	2.1.2 Ranking-oriented Collaborative Filtering
	2.1.3 Neural Collaborative Filtering
	2.1.4 Social Collaborative Filtering
	2.1.5 Summary

	2.2 Reinforcement Learning
	2.2.1 Tabular Reinforcement Learning
	2.2.2 Deep Reinforcement Learning
	2.2.3 Summary

	3 User-specific Deep Q-network: Modeling Personalization and Collaboration via MF-based Representation Module
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Problem Definition
	3.2.2 Q-learning

	3.3 User-specific Deep Q-network
	3.3.1 The Markov Decision Process (MDP)
	3.3.2 The Multi-MDP Reinforcement Learning Task
	3.3.3 User-specific Latent States based on Matrix Factorization
	3.3.4 The UDQN Model

	3.4 Experiments on Explicit Feedback Recommendation Tasks
	3.4.1 Experimental Settings
	3.4.2 Performance Comparison
	3.4.3 Parameter Analysis
	3.4.4 The Results of Cross-validation

	3.5 Experiments on Implicit Feedback Recommendation Tasks
	3.5.1 Experimental Setup
	3.5.2 Performance Comparison
	3.5.3 Parameter Analysis

	3.6 Conclusions and Discussions

	4 Graph Convolutional Q-network: Modeling Personalization and Collaboration via GCN-based Representation Module
	4.1 Introduction
	4.2 Preliminaries
	4.3 Graph Convolutional Q-network
	4.3.1 Representing States and Actions as Graphs
	4.3.2 The GCQN Model
	4.3.3 Training Algorithm

	4.4 Experiments
	4.4.1 Experimental Setup
	4.4.2 Comparison Results
	4.4.3 Model Analysis

	4.5 Conclusions and Discussions

	5 Social Attentive Deep Q-network: Improving Personalization and Collaboration via Social Attention
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Problem Formulation
	5.2.2 Reinforcement Learning
	5.2.3 Deep Q-network

	5.3 Social Attentive Deep Q-networks
	5.3.1 SADQN: A Linear Fusion Model
	5.3.2 SADQN++: A Deep Fusion Model
	5.3.3 Training Algorithm

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Performance Comparison against Baselines
	5.4.3 The Impact of Social Influence
	5.4.4 Model Analysis

	5.5 Conclusions and Discussions

	6 Personalized Deep Q-network: Integrating Personalized Network Architecture with Collaborative Learning Objective
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Interactive Recommendation
	6.2.2 Markov Decision Process
	6.2.3 Deep Q-network

	6.3 Personalized Deep Q-network
	6.3.1 Motivation and Idea
	6.3.2 The PDQN Model
	6.3.3 Personalized Q-learning
	6.3.4 Personalized Q-learning with Collaborative Regularizer

	6.4 Experiments
	6.4.1 Experimental Setup
	6.4.2 Comparison Results
	6.4.3 Parameter Analysis

	6.5 Conclusions and Discussions

	7 Conclusions and Suggestions for Future Research
	7.1 Summary of Contributions
	7.1.1 UDQN: Modeling Personalization and Collaboration via MF-based Representation Module
	7.1.2 GCQN: Modeling Personalization and Collaboration via GCN-based Representation Module
	7.1.3 SADQN: Improving Personalization and Collaboration via Social Attention
	7.1.4 PDQN: Integrating Personalized Network Architecture with Collaborative Learning Objective

	7.2 Future Work

	Bibliography

