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Abstract 

Scientists are exploring the mid-infrared (MIR) optoelectronic properties of 

two-dimensional (2D) materials. Noble metal (Group 10) dichalcogenides MX2 (M = 

Pt, Pd, X = S, Se, etc.) are the potential candidates for MIR applications due to their 

matching bandgaps and high stability. PtSe2 is an emerging 2D material for MIR 

optoelectronics and photonics due to its air stability, high electron mobility and layer-

dependent band gap. 

Inspired by the conventional-FTIR spectra of PtSe2 flakes, which reveals the 

waveguide supporting properties of PtSe2, scanning near-field optical microscopy (s-

SNOM) and nano-Fourier Transform Infrared Spectroscopy (nano-FTIR) were 

employed to study the mechanically exfoliated PtSe2 flakes. Like pervious study on 

waveguide supporting TMDCs such as WSe2, MoSe2 and MoS2, interference fringe 

patterns were observed in real space by the use of s-SNOM. The fringes were induced 

by the MIR waveguide photon modes of PtSe2, in contrast to previous studies, in where 

visible light was used. The full-range edge orientation dependence of the fringe 

patterns was studied for the first time. By tuning the MIR frequency from 1380 to 2519 

cm-1, the dispersion relation of the waveguide modes with different thicknesses can be 

extracted. Theoretical calculations, based on the dielectric constant of PtSe2 obtained 

by conventional-FTIR, are in good agreement with the experimental results. 

Interestingly, in addition to the commonly observed (transverse magnetic) TM modes, 

the (transverse electric) TE modes were also visualised. This work reveals the 

applicability of s-SNOM in high-loss MIR waveguide mode imaging, in contrast to 

the previous studies, in which low-loss visible waveguide modes were observed. In 

addition, the dielectric constant of the PtSe2 flakes in MIR range is validated.  
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1 Introduction 

The optoelectronic properties of two-dimensional (2D) materials including 

graphene, black phosphorous (BP) and transition metal dichalcogenides (TMDCs) in 

mid-infrared (MIR) are being explored. However, graphene suffers from narrow 

bandgap and BP possesses poor stability under ambient conditions. Thus, the 

exploration of alternative materials for MIR optoelectronics is of scientific importance. 

Noble metal (Group 10) dichalcogenides MX2 (M = Pt, Pd, X = S, Se or Te) [1-3] are 

the potential candidates, but comparatively little explored, for MIR applications due 

to their bandgap and high stability. Among the group, PtSe2 is an emerging 2D material 

for optoelectronics and photonics due to its air stability and high electron mobility [4, 

5]. The most intriguing property of PtSe2 is its layer-induced  semiconductor-to-metal 

(SM) transition, predicted by theory [6, 7] and confirmed by experiments [8-10]. 

Although PtSe2 is type-II Dirac semi-metal [11, 12] in its bulk form, monolayer PtSe2 

is a semiconductor with bandgap near 1.2 eV [2, 8] while the bandgap of bilayer PtSe2 

is about 0.2eV [7, 8]. The PtSe2 becomes semi-metallic when it is of trilayer form [8, 

10]. SM transition can also be induced by strain [6, 13-15]. These properties suggest 

the possibility of wide range of application including field effect transistors (FETs) [5, 

16], gas sensing [17], photocatalysis [8], photodetection [18], spintronics [19], 

valleytronics [8] and also MIR applications [10].  

Scattering type scanning near-field optical microscopy (s-SNOM) [20-22] is a 

state-of-art technique for performing nano-optical imaging, which allows study in 

nano-science such as mapping of free carrier [23-25], the material characterization [26-

28], crystal quality characterization [29], the strain-field mapping in semiconductor 

crystals [30, 31], imaging of nano-phase-transition in VO2 [32, 33].  
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Nano-Fourier Transform Infrared Spectroscopy (Nano-FTIR), a technique 

combining the nano-scale resolving power of s-SNOM and the analytical power of 

conventional-FTIR, is capable of performing infrared spectroscopy in nanoscale. This 

so called near-field infrared spectroscopy has been applied for nanoscale chemical 

sensing at the so-called “fingerprint” frequency region [34], extraction of local 

(nanoscale-resolved) optical constant [35-37], studying micro-strain in semiconductor 

crystals [31]. 

In recently years, polaritons, which are hybrid light-matter quasiparticles, have 

been widely studied in 2D materials and van der Waals materials [38-40]. The 

properties of these electromagnetic modes have been studied by employing s-SNOM 

and nano-FTIR. By nano-optical imaging study performed by s-SNOM, different 

kinds of polaritons was imaged directly in real-space and the properties of these 

polaritons were found by analysing the observed fringe patterns. Surface plasmon 

polaritons (SPP) in graphene was found to have gate-tunability, strong field 

confinement and low loss property [41, 42]. Surface phonon polaritons (SPhP) in h-

BN [43, 44] and 𝛼𝛼-MoO3 [45, 46] were found to has hyperbolicity property. Black 

phosphorus was found to support coupled plasmon-phonon polaritons upon ultrafast 

pump-probe technique [47]. In addition, waveguide exciton polaritons (EP) in WSe2 

[48, 49] and MoSe2 [50] and waveguide modes in MoS2 [51, 52] were found to have 

long-distance propagation length in specific frequency range. Detail study in these 

modes could be useful for future nanophotonic circuits applied for manipulating light 

in nanoscale. On the other hand, near-field enhancement by plasmon-phonon coupling 

in graphene/SiO2 [53] interface and MoS2/SiO2 [54] interface was observed from the 

near-field spectra generated by near-field IR spectroscopy. Also, near-field IR 
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spectroscopy has also been employed for fundamental study of the spectral response 

in monolayer MnPS3 [55]. 

Although the electronic and photonic properties of PtSe2 have been studied, the 

near-field optical properties of it remain unexplored. In this work, s-SNOM and nano-

FTIR were employed to perform nano-optical study on PtSe2 flakes. Interference 

fringe patterns induced by the MIR waveguide photon modes of PtSe2 were observed 

in real space by the use of s-SNOM. The edge orientation dependence of the fringe 

patterns was studied. By tuning the MIR frequency from 1380 to 2519 cm-1, the 

dispersion relation of the waveguide modes with different thicknesses can be extracted. 

In order to theoretically calculate the dispersion relations of these modes, the dielectric 

constant of PtSe2 was obtained by fitting the conventional-FTIR reflectivity spectrum. 

The reflectivity spectrum showed that PtSe2 exhibited low absorption and Fabry–Pérot 

cavity effect in the MIR frequency from 1000 to 3000 cm-1, thereby revealing its 

waveguide supporting properties. The theoretical calculations of the dispersion 

relations are in good agreement with the experimental results. The calculations were 

performed by solving the eigenequations numerically or calculating the imaginary part 

of the Fresnel reflection coefficients analytically. Interestingly, in addition to the 

commonly observed TM modes, the TE modes were also visualised. This work reveals 

the applicability of s-SNOM in high-loss MIR waveguide mode imaging, in contrast 

to previous studies, in which low-loss visible waveguide modes were observed [48, 

52]. In addition, the dielectric constant of the PtSe2 flakes in MIR range was validated 

by the far-field FTIR spectroscopy. From the far-field analysis, it is also found that the 

free charge carrier concentration of PtSe2 is 𝑁𝑁 = 1.75 × 1020 cm−3, which is within 

the a typical range for a semimetal: 1 × 1017 − 1 × 1022 cm−3. 
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In this thesis, the working principle of s-SNOM will be introduced. Basic 

theories necessary for nano-optics and s-SNOM will also be presented. Following is 

the introduction of nano-FTIR. Finally, the experimental results and corresponding 

analysis of the near-field optical microscopy study of PtSe2 flakes will be demonstrated. 
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2 Scattering - Scanning Near-Field Optical Microscopy 

 

 Nano-Optics 

Nanotechnology and nanoscience are mainstream research field nowadays. 

Beginning from 20th century, with the development of quantum physics, it is known 

that in ultra-small scales, the physical phenomena are different from that in 

macroscopic world. Scientists hope to explore these exotic effects which might be 

applicable in the future technology [56]. 

Nano-optics, one of the branches of nanotechnology, studies the behaviour of 

light and light-matter interaction on the nanoscale. Optical microscopy is important 

for characterizing the nanostructure. However, the diffraction effect limits the 

resolution of conventional optical microscope to about half of the wavelength of the 

light [57, 58]. To avoid this diffraction limit, near-field optical microscope [20, 59], 

for example, the s-SNOM, instead of classical far-field microscope, is used to study 

materials’ optical properties. 

 

 Theoretical Background 

2.2.1 Maxwell’s Equations 

In order to interpret the optical image taken by the near-field optical 

microscope, the light-matter interactions during the imaging process should be studied 
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comprehensively. In classical electrodynamics, light can be described by 

electromagnetic wave and therefore the coupling between light and matter can be 

analysed with the use of Maxwell’s Equations [60, 61], by which J. C. Maxwell unified 

the electric field and magnetic field into a single physical field, electromagnetic (EM) 

field, and deduced that light is an electromagnetic wave [62, 63]. The expressions of 

these equations in SI units are 

∇ × 𝐄𝐄(𝐫𝐫, 𝑡𝑡) = −
𝜕𝜕𝐁𝐁(𝐫𝐫, 𝑡𝑡)
𝜕𝜕𝑡𝑡

, (1) 

∇ × 𝐇𝐇(𝐫𝐫, 𝑡𝑡) =
𝜕𝜕𝐃𝐃(𝐫𝐫, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝐉𝐉(𝐫𝐫, 𝑡𝑡), (2) 

∇ ∙ 𝐃𝐃(𝐫𝐫, 𝑡𝑡) = 𝜌𝜌(𝐫𝐫, 𝑡𝑡), (3) 

∇ ∙ 𝐁𝐁(𝐫𝐫, 𝑡𝑡) = 0, (4) 

where 𝐄𝐄, 𝐃𝐃, 𝐁𝐁 and 𝐇𝐇 are electric field, electric displacement, magnetic flux density 

and magnetic field respectively. 𝜌𝜌 and 𝐉𝐉 are charge density and current density. 𝐃𝐃 and 

𝐇𝐇 are important for studying the electromagnetic field in matter because they account 

for the bound charge and bound current inside the matter. Maxwell’s equations 

(Equations (1) - (4)) only describe how the EM field is generated by existing charges 

and currents but not reveal how these charges and currents inside the material are 

generated. It is the constitutive relations to account for the response of materials under 

the influence of EM field. In general, for linear and isotropic materials, the constitutive 

relations in 𝐤𝐤 and 𝜔𝜔 domain, relating 𝐄𝐄, 𝐃𝐃, 𝐁𝐁 and 𝐇𝐇 are 

𝐃𝐃(𝐤𝐤,𝜔𝜔) = 𝜀𝜀0𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐤𝐤,𝜔𝜔), (5) 

𝐁𝐁(𝐤𝐤,𝜔𝜔) = 𝜇𝜇0𝜇𝜇𝑟𝑟(𝐤𝐤,𝜔𝜔)𝐇𝐇(𝐤𝐤,𝜔𝜔), (6) 
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where 𝜀𝜀0 and 𝜇𝜇0 are the permittivity and permeability in free space respectively, and 

𝜀𝜀𝑟𝑟 and 𝜇𝜇𝑟𝑟 are the relative permittivity (also called dielectric constant) and the relative 

permeability of the material. The response functions 𝜀𝜀𝑟𝑟 and 𝜇𝜇𝑟𝑟 are complex values if 

there is phase lag between the response (𝐃𝐃 and 𝐁𝐁) and the influencing field (𝐄𝐄 and 𝐇𝐇). 

The complex-valued dielectric constant 𝜀𝜀𝑟𝑟 will be derived with the use of a classical 

model in Section 2.2.2. Within this model, the phase lag is explained by the damping 

in the oscillating system. The ohm’s law 

𝐉𝐉(𝐤𝐤,𝜔𝜔) = 𝜎𝜎(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐤𝐤,𝜔𝜔) (7) 

is another constitutive relation that is responsible to conducting materials. 𝜎𝜎(𝐤𝐤,𝜔𝜔) 

denotes the complex conductivity of the conducting materials. Same as 𝜀𝜀𝑟𝑟 and 𝜇𝜇𝑟𝑟 it is 

a complex value because there may be a phase difference between 𝐉𝐉 and 𝐄𝐄. 

 If monochromatic field is used, the electric field 𝐄𝐄(𝐫𝐫, 𝑡𝑡), for example, can be 

expressed as the real part of the corresponding complex time-harmonic field: 

𝐄𝐄(𝐫𝐫, 𝑡𝑡) = Re�𝐄𝐄(𝐫𝐫)e−𝑖𝑖𝑖𝑖𝑖𝑖�, (8) 

where the spatial distribution of amplitude 𝐄𝐄(𝐫𝐫) is complex while 𝐄𝐄(𝐫𝐫, 𝑡𝑡) is real as in 

Equation (1). 𝐃𝐃, 𝐁𝐁, 𝐇𝐇, 𝜌𝜌 and 𝐉𝐉 can be expressed as similar form as Equation (8). By 

using these new forms, the Maxwell’s Equations (1)-(4) can be now expressed by the 

complex spatial amplitudes 𝐄𝐄(𝐫𝐫), 𝐃𝐃(𝐫𝐫), 𝐁𝐁(𝐫𝐫), 𝐇𝐇(𝐫𝐫), 𝜌𝜌(𝐫𝐫) and 𝐉𝐉(𝐫𝐫): 

∇ × 𝐄𝐄(𝐫𝐫) = 𝑖𝑖𝜔𝜔𝐁𝐁(𝐫𝐫), (9) 

∇ × 𝐇𝐇(𝐫𝐫) = −𝑖𝑖𝜔𝜔𝐃𝐃(𝐫𝐫) + 𝐉𝐉(𝐫𝐫), (10) 

∇ ∙ 𝐃𝐃(𝐫𝐫) = 𝜌𝜌(𝐫𝐫), (11) 
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∇ ∙ 𝐁𝐁(𝐫𝐫) = 0. (12) 

If the field is not only monochromatic, but also a plane wave, the E-field can 

be expressed as 

𝐄𝐄(𝐫𝐫, 𝑡𝑡) = Re�𝐄𝐄(𝐤𝐤,𝜔𝜔)e𝑖𝑖(𝐤𝐤∙𝐫𝐫−𝑖𝑖𝑖𝑖)�. (13) 

Comparing Equation (13) with (8), the complex amplitude 𝐄𝐄(𝐫𝐫) of time harmonic 

expression can be expressed as 

𝐄𝐄(𝐫𝐫) = 𝐄𝐄(𝐤𝐤,𝜔𝜔)e𝑖𝑖𝐤𝐤∙𝐫𝐫. (14) 

Expression (14) implies that, for monochromatic plane wave, the constitutive relations 

(Equations (5) – (7)) can be expressed by terms of the complex amplitudes in position 

space: 

𝐃𝐃(𝐫𝐫) = 𝜀𝜀0𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐫𝐫), (15) 

𝐁𝐁(𝐫𝐫) = 𝜇𝜇0𝜇𝜇𝑟𝑟(𝐤𝐤,𝜔𝜔)𝐇𝐇(𝐫𝐫), (16) 

𝐉𝐉(𝐫𝐫) = 𝜎𝜎(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐫𝐫). (17) 

The Maxwell’s Equations ( 9 ) – ( 12 ), together with the constitutive relations 

(Equations (15) – (17)), can be applied for studying the light-matter interaction for the 

specific case of monochromatic incident light.  
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2.2.2 Complex Dielectric constant 

The constitutive relations (5) and (6) (or Equations (15) and (16) for the case 

of monochromatic light) show that the dielectric constant (or relative permittivity) 

𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) and the relative permeability 𝜇𝜇𝑟𝑟(𝐤𝐤,𝜔𝜔) play an important role in determining 

the displacement field 𝐃𝐃 and magnetic field 𝐇𝐇, which in turn are important parameters 

for studying the electrodynamics in matter. If non-magnetic material is considered, 

that is 𝜇𝜇𝑟𝑟(𝐤𝐤,𝜔𝜔) = 1, the dielectric constant 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) is the key to study the light-

matter interaction in material. For example, it is a necessary parameter for calculating 

the Fresnel coefficient and the dispersion relation of electromagnetic surface modes 

and waveguide modes in material, as will be discussed in Sections 2.2.3 and 2.2.5 

respectively. For vacuum and transparent (weakly absorbing) materials, 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) is 

real and positive, but for absorbing medium, 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) can be complex-valued. Here 

the classical modelling of the complex-valued dielectric constant 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) will be 

introduced. 

 

2.2.2.1 Lorentz Dipole Oscillator Model for Bound 

Electrons 

In 1865, Maxwell deduced from his electromagnetic theory that light is a EM 

wave [63]. From this deduction, theorists predicted that a dipole oscillator can be a 

source of light. Based on this prediction and the fact that atoms can emit and absorb 

light at discrete wavelengths, which is now known as the result of the interband 

transition, H. A. Lorentz became the first to model the atoms as oscillating electric 



17 
 

dipoles to account for the absorption of light by the contribution of bound charges 

inside the atoms. It should be noted that Lorentz proposed that theory before the 

discovery of electrons and nuclei, and before the experimental confirmation that an 

electric dipole can generate and absorb EM waves.  

In the Lorentz’s model [64, 65], the bound electrons inside an atom are 

connected with the heavy nuclei by springs with different force constants, forming 

different oscillating electric dipoles with different resonant frequencies 𝜔𝜔0. Quantum 

mechanically, the 𝜔𝜔0 is related to the energy of a photon (𝐸𝐸 = ℏ𝜔𝜔0) absorbed by the 

electron when interband transition occurs. When light, an EM wave, is incident on the 

atoms inside the material, the electric field (E-field) of the light will drive the bound 

electrons to oscillate. Because the nuclei are much heavier than the bound electrons, 

the induced motion of the nuclei by the E-field is ignored. The equation of motion of 

the bound electron with mass 𝑚𝑚0 and charge −𝑒𝑒 is 

𝑚𝑚0
d2𝒙𝒙
d𝑡𝑡2

+ 𝑚𝑚0𝛾𝛾
d𝒙𝒙
d𝑡𝑡

+ 𝑚𝑚0𝜔𝜔0
2𝒙𝒙 = −𝑒𝑒𝑬𝑬, (18) 

where 𝑥𝑥 is the induced displacement of the bound electron, 𝐸𝐸 is the driving E-field of 

the incident light (magnetic force can be neglected compared with the electric force) 

and 𝛾𝛾  is the phenomenological damping rate of the damped harmonic oscillator, 

introduced to account for the absorption strength of the electric dipole to light. 

Considering monochromatic light with complex time-harmonic E-field 𝑬𝑬(𝒓𝒓, 𝑡𝑡) =

𝑬𝑬𝟎𝟎(𝒓𝒓)e−𝑖𝑖𝑖𝑖𝑖𝑖 (Equation (8)), and looking for solution of (complex) displacement 𝑥𝑥 with 

the form 𝒙𝒙(𝒓𝒓, 𝑡𝑡) = 𝑿𝑿𝟎𝟎(𝒓𝒓)e−𝑖𝑖𝑖𝑖𝑖𝑖 , by solving Equation (18) we found that 𝑿𝑿𝟎𝟎(𝒓𝒓) =

−𝑒𝑒
𝑚𝑚0

1
𝑖𝑖0
2−𝑖𝑖2−𝑖𝑖𝑖𝑖𝑖𝑖

𝑬𝑬𝟎𝟎(𝒓𝒓), and therefore the induced dipole moment 𝒑𝒑 = −𝑒𝑒𝒙𝒙 can be found. 
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The induced macroscopic polarization, that is, dipole moment per unit volume, of the 

material is 𝑷𝑷 = 𝑁𝑁𝒑𝒑 = −𝑁𝑁𝑒𝑒𝒙𝒙, where 𝑁𝑁 is the number of atoms per unit volume and 

therefore the complex amplitude is given by 

𝑷𝑷𝟎𝟎(𝒓𝒓) =
𝑁𝑁𝑒𝑒2

𝑚𝑚0

1
𝜔𝜔02 − 𝜔𝜔2 − 𝑖𝑖𝛾𝛾𝜔𝜔

𝑬𝑬𝟎𝟎(𝒓𝒓). (19) 

One can find that 𝑷𝑷 is small unless the frequency of the light is close to the natural 

frequency 𝜔𝜔0 of the electric dipole. The electric displacement can be calculated from 

𝑷𝑷 through its definition (for monochromatic light) 𝑫𝑫𝟎𝟎(𝒓𝒓) = 𝜀𝜀0𝑬𝑬𝟎𝟎(𝒓𝒓) + 𝑷𝑷𝟎𝟎(𝒓𝒓). On the 

other hand, the definition of the complex dielectric constant 𝜀𝜀𝑟𝑟  is given by the 

constitutive relation (for monochromatic light) 𝑫𝑫𝟎𝟎(𝒓𝒓) = 𝜀𝜀0𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔)𝑬𝑬𝟎𝟎(𝐫𝐫) (Equation 

(15 )). Combining these results and splitting the macroscopic polarization into a 

background term (𝑷𝑷𝒃𝒃𝒃𝒃(𝒓𝒓) = 𝜀𝜀0χ𝑏𝑏𝑏𝑏𝑬𝑬𝟎𝟎(𝐫𝐫)) and the resonant term, that is, 𝑫𝑫𝟎𝟎(𝒓𝒓) =

𝜀𝜀0𝑬𝑬𝟎𝟎(𝒓𝒓) + 𝜀𝜀0χ𝑏𝑏𝑏𝑏𝑬𝑬𝟎𝟎(𝐫𝐫) + 𝑷𝑷𝟎𝟎(𝒓𝒓), where χ𝑏𝑏𝑏𝑏 is the electric susceptibility of all other 

contributions to the polarizability, the 𝜀𝜀𝑟𝑟 is given by: 𝜀𝜀𝑟𝑟(𝜔𝜔) = 𝜀𝜀∞ + 𝑁𝑁𝑒𝑒2

𝜀𝜀0𝑚𝑚0

1
𝑖𝑖0
2−𝑖𝑖2−𝑖𝑖𝑖𝑖𝑖𝑖

, 

in which the 1 + 𝜒𝜒𝑏𝑏𝑏𝑏 term is replaced by the high-frequency dielectric constant 𝜀𝜀∞. 

Because there can be electric dipoles with different natural frequencies 𝜔𝜔0 to account 

for different electronic transitions between discrete energy-levels, the 𝜀𝜀𝑟𝑟(𝜔𝜔) should be 

account for the total effect for all the transitions within the frequency range in interest. 

Also, from quantum mechanics we know different transitions have different transition 

probability and therefore a phenomenological oscillator strength 𝑓𝑓𝑗𝑗  should be 

introduced to each transition (𝑗𝑗). As a result, the complex dielectric constant 𝜀𝜀𝑟𝑟 for 

bound electrons in this classical Lorentz’s model is given by: 
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𝜀𝜀𝑟𝑟,bound(𝜔𝜔) = 𝜀𝜀∞ +
𝑁𝑁𝑒𝑒2

𝜀𝜀0𝑚𝑚0
�

𝑓𝑓𝑗𝑗
𝜔𝜔0,𝑗𝑗
2 − 𝜔𝜔2 − 𝑖𝑖𝛾𝛾𝜔𝜔

𝑗𝑗

, (20) 

where ∑ 𝑓𝑓𝑗𝑗𝑗𝑗 = 1  for each bound electron. If all oscillators are included in the 

summation, the high-frequency dielectric constant 𝜀𝜀∞ is equal to 1. It should be noted 

that the Lorentz’s model does not account for the 𝐤𝐤 -dependency of 𝜀𝜀𝑟𝑟 . This 𝐤𝐤 -

dependency comes from the non-local effect which becomes important when the 

wavelength of light is comparable to electrons’ mean free paths or the unit cell. 

Nonetheless, this effect is neglectable in most cases so the Lorentz’s model is often 

applied to predict optical phenomena of materials, provided that the wavelength is long 

enough. 

 

2.2.2.2 Drude Model for Free Charge Electrons 

In last Section, only the contribution from bound electrons is considered for 

deriving the complex-valued dielectric constant 𝜀𝜀𝑟𝑟. However, for conducting materials 

such as metals and doped semiconductors, there is also high density of free charge 

carriers, which give additional contribution to the optical response of materials. The 

𝜀𝜀𝑟𝑟 of a free-electron-system can be derived from the classical Drude Model [66, 67]. 

In his model of free electron, P. Drude in 1900 assumed that the valence 

electrons are delocalized and the much heavier metal ions remain immobile in a 

metallic system. Therefore, the delocalized electrons, that is, the conduction electrons, 

forms a free electron gas and Drude applied the kinetic theory to study its electronic 

properties. When the conduction electrons move freely inside the metal, they will 



20 
 

suffer collisions with the metal ions. The average duration of an electron between two 

successive collision is the mean free time (or relaxation time) 𝜏𝜏 and therefore the 

characteristic collision frequency is 𝛾𝛾 = 1/𝜏𝜏 . Between collisions, Drude boldly 

assumed that the electron-electron interactions and the electron-ion interactions can be 

neglected (independent electron approximation and free electron approximation 

respectively). Therefore, the conduction electrons wander freely with constant velocity 

in a straight line between collisions. Under these assumptions, the equation of motions 

of the free electrons under the influence of the E-field of the incident light (like 

Equation (18) for bound electrons) can be derived as followed. Given than at time 𝑡𝑡, 

the momentum of a free electron is 𝒑𝒑(𝑡𝑡). Between the time 𝑡𝑡 and time 𝑡𝑡 + ∆𝑡𝑡, the 

electron will collide with an ion with a probability ∆𝑡𝑡/𝜏𝜏, and have a probability 1 −

∆𝑡𝑡/𝜏𝜏 to wander without suffering a collision. For the process without a collision, the 

electron will gain momentum −𝑒𝑒𝑬𝑬∆𝑡𝑡 by the E-field 𝐸𝐸 of the light. Because, in Drude 

model, after collisions the electrons are assumed to move with random directions with 

speed corresponding to the temperature of the collision place (so as to achieve thermal 

equilibrium), the average momentum of the electron after a collision is therefore zero. 

After suffering a collision, the electron will gain momentum (from zero) by the E-field 

for time duration less than ∆𝑡𝑡. The final momentum is thus equal to −𝑒𝑒𝑬𝑬𝛼𝛼∆𝑡𝑡, where 

𝛼𝛼 is a factor between 0 and 1. Combining the results of the two cases, the momentum 

at time 𝑡𝑡 + ∆𝑡𝑡  is: 𝒑𝒑(𝑡𝑡 + ∆𝑡𝑡) = �1 − ∆𝑖𝑖
𝜏𝜏
� [𝒑𝒑(𝑡𝑡) + −𝑒𝑒𝑬𝑬∆𝑡𝑡] + ∆𝑖𝑖

𝜏𝜏
(−𝑒𝑒𝑬𝑬𝛼𝛼∆𝑡𝑡) . After 

dividing the equation by ∆𝑡𝑡 and take the limit ∆𝑡𝑡 → 0, we obtain the equation of 

motion of a free electron with mass 𝑚𝑚0 under the influence of the E-field of the light: 

d𝒑𝒑
d𝑡𝑡

+
𝒑𝒑
𝜏𝜏

= −𝑒𝑒𝑬𝑬. (21) 
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By using 𝒑𝒑 = 𝑚𝑚0𝒗𝒗 = 𝑚𝑚0
d𝒙𝒙
d𝑖𝑖

 and 𝛾𝛾 = 1/𝜏𝜏, it can be expressed as 

𝑚𝑚0
d2𝒙𝒙
d𝑡𝑡2

+ 𝑚𝑚0𝛾𝛾
d𝒙𝒙
d𝑡𝑡

= −𝑒𝑒𝑬𝑬. (22) 

The analysis above reveals that the collision process between the free electrons and 

the ions is represented by a frictional damping term in the equation of motion. One can 

see that the form of the equation of motion (Equation (22)) for the free electron is the 

same as the one for the bound electron (Equation (18)), except that there is no restoring 

force term. As a result, for solving solution of Equation (22), we can following the 

same steps as solving Equation (18), and the complex dielectric constant 𝜀𝜀𝑟𝑟 for free 

electrons is 

𝜀𝜀𝑟𝑟,free(𝜔𝜔) = 𝜀𝜀∞ −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
, (23) 

where 

𝜔𝜔𝑝𝑝 = �
𝑁𝑁𝑒𝑒2

𝜀𝜀0𝑚𝑚0
(24) 

is known as the plasma frequency of the free electron gas. For doped semiconductor, 

the dielectric constant still has the form of Equation (23) but the mass 𝑚𝑚0 in the plasma 

frequency (Equation ( 24 )) should be replaced by the effective mass 𝑚𝑚∗ , which 

accounts for the effect of the periodic potential the electrons experiences and the band 

structure of the electrons, according to the effective mass theory [68].  

By solving Equation (21) with specific solution form 𝒑𝒑(𝒓𝒓, 𝑡𝑡) = 𝒑𝒑𝟎𝟎(𝒓𝒓)e−𝑖𝑖𝑖𝑖𝑖𝑖, 

we obtain: 𝒑𝒑𝟎𝟎(𝒓𝒓) = −𝑒𝑒𝜏𝜏
1−𝑖𝑖𝑖𝑖𝜏𝜏

𝑬𝑬𝟎𝟎(𝒓𝒓). Because (the complex amplitude of) the current 
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density can be expressed as 𝑱𝑱𝟎𝟎(𝒓𝒓) = −𝑁𝑁𝑒𝑒𝒗𝒗𝟎𝟎(𝒓𝒓) = −𝑁𝑁𝑒𝑒𝒑𝒑𝟎𝟎(𝒓𝒓)/𝑚𝑚0, or from the ohm’s 

law (Equation (17)) 𝑱𝑱𝟎𝟎(𝒓𝒓) = 𝜎𝜎(𝒌𝒌,𝜔𝜔)𝑬𝑬𝟎𝟎(𝒓𝒓). Combining these results, we obtain the 

AC conductivity of the free electron gas:  

𝜎𝜎(𝜔𝜔) =
𝑁𝑁𝑒𝑒2𝜏𝜏
𝑚𝑚0

1
1 − 𝑖𝑖𝜔𝜔𝜏𝜏

. (25) 

Comparing this with Equation (23), one can find the dielectric constant of the free 

electron can be expressed in term of the AC conductivity by 

𝜀𝜀𝑟𝑟,free(𝜔𝜔) = 𝜀𝜀∞ +
𝑖𝑖𝜎𝜎(𝜔𝜔)
𝜀𝜀0𝜔𝜔

. (26) 

This result reveals that the optical response of the free electrons, which contribute the 

conductivity to the system, is to add the term 𝑖𝑖𝑖𝑖(𝑖𝑖)
𝜀𝜀0𝑖𝑖

 to the background dielectric 

constant 𝜀𝜀∞. This argument is consistent with the general approach by the use of the 

(monochromatic plane wave related) Maxwell’s equations (9) - (12) and constitutive 

relations (15 ) - (17 ). Assume that the material studied is non-magnetic so that 

𝜇𝜇𝑟𝑟(𝐤𝐤,𝜔𝜔) = 1  and that the dielectric constant 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔)  in the constitutive relation 

𝐃𝐃(𝐫𝐫) = 𝜀𝜀0𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐫𝐫) (Equation (15)) is limited to the insulating part of the material 

(bound electrons) only so that 𝜀𝜀𝑟𝑟(𝐤𝐤,𝜔𝜔) = 𝜀𝜀𝑟𝑟,insul(𝐤𝐤,𝜔𝜔). If the material contains free 

electrons, it will have a conductivity 𝜎𝜎(𝐤𝐤,𝜔𝜔) which is related to the current density 

through the ohm’s law 𝐉𝐉(𝐫𝐫) = 𝜎𝜎(𝐤𝐤,𝜔𝜔)𝐄𝐄(𝐫𝐫) (Equation (17)). Substituting Equations 

(15) and (16) into the Faraday’s law (9) and Maxwell corrected Ampere’s law (10) 

respectively, and applying ∇ operator to the both sides of the first equation, and then 

substituting ∇ × 𝐁𝐁(𝐫𝐫), obtained by rearranging the second equation, into  the first 

equation, and finally using the Ohm’s law (17), we have 
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∇ × ∇ × 𝐄𝐄(𝐫𝐫) =
𝜔𝜔2

𝑐𝑐2
�𝜀𝜀𝑟𝑟,insul +

𝑖𝑖𝜎𝜎(𝐤𝐤,𝜔𝜔)
𝜀𝜀0𝜔𝜔

�𝐄𝐄(𝐫𝐫). (27) 

Using the vector identity ∇ × ∇ × 𝐄𝐄(𝐫𝐫) = ∇�∇ ∙ 𝐄𝐄(𝐫𝐫)� − ∇2𝐄𝐄(𝐫𝐫) and the Gauss’s law 

(11), assuming the transient behaviour of the free charge can be ignored so the 

accumulated free charge disappear (i.e. 𝜌𝜌 = 0) [60], Equation (27) become 

∇2𝐄𝐄(𝐫𝐫) = −
𝜔𝜔2

𝑐𝑐2
�𝜀𝜀𝑟𝑟,insul(𝐤𝐤,𝜔𝜔) +

𝑖𝑖𝜎𝜎(𝐤𝐤,𝜔𝜔)
𝜀𝜀0𝜔𝜔

�𝐄𝐄(𝐫𝐫). (28) 

Equation (28) has the same form of the electromagnetic wave equation in insulating 

material, if we express the terms in the bracket by a single term [67, 69] 

𝜀𝜀𝑖𝑖𝑡𝑡𝑖𝑖(𝐤𝐤,𝜔𝜔) = 𝜀𝜀𝑟𝑟,insul(𝐤𝐤,𝜔𝜔) +
𝑖𝑖𝜎𝜎(𝐤𝐤,𝜔𝜔)
𝜀𝜀0𝜔𝜔

. (29) 

This complex total dielectric constant 𝜀𝜀𝑖𝑖𝑡𝑡𝑖𝑖(𝐤𝐤,𝜔𝜔)  shows that the free electron 

contribution to the dielectric constant is the term 𝑖𝑖𝑖𝑖(𝐤𝐤,𝑖𝑖)
𝜀𝜀0𝑖𝑖

, which is consistent with the 

result of the Drude model, Equation (26). 

 

2.2.2.3 Lorentz-Drude (LD) Model 

 By summarizing above results about the complex dielectric constant of bound 

electrons (Equation (20)) and free electrons (Equations (23) or (26)), the dielectric 

constant of a material exhibiting not only free-electron but also bound-electron type of 

behaviour is 
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𝜀𝜀𝑟𝑟(𝜔𝜔) = 𝜀𝜀∞ + �
𝑓𝑓𝑗𝑗2

𝜔𝜔0,𝑗𝑗
2 − 𝜔𝜔2 − 𝑖𝑖𝛾𝛾𝜔𝜔

𝑗𝑗

−
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
, (30) 

which is known as the Lorentz-Drude (LD) model [65, 70-72], where the second term 

refers to the effect associated with interband transition of bound electrons and the third 

term is due to intraband transition of conduction electrons. 

 

2.2.2.4 Lorentz Model for Transverse Optical Phonons 

Beside electrons, the phonons, the quantized lattice vibrational modes, can also 

interact with light strongly and the optical effect should be introduced into the complex 

dielectric constant 𝜀𝜀𝑟𝑟. Experiments show that polar crystals absorb light strongly when 

the frequency of light is close to the frequency of the transverse optical (TO) phonons, 

just like the case for bound electrons which can absorb light at certain frequencies, as 

mentioned in the Section 2.2.2.1. By analogy to the bound electrons, the Lorentz’s 

oscillator model can be used for the modelling of the interaction between light and the 

TO phonons. It can be shown that [64] the dielectric constant due to the TO phonons 

is 

𝜀𝜀𝑟𝑟,TO = 𝜀𝜀∞ +
𝑁𝑁𝑞𝑞2

𝜀𝜀0𝜇𝜇
1

𝜔𝜔TO
2 − 𝜔𝜔2 − 𝑖𝑖𝛾𝛾𝜔𝜔

, (31) 

which is the same form as the for bound electrons (Equation (20)), with 𝜔𝜔0 replaced 

by the TO phonon frequency 𝜔𝜔TO, −𝑒𝑒 replaced by the effective charge per ion 𝑞𝑞, and 

𝑚𝑚0 replaced by 𝜇𝜇, which is the reduced mass of the ion-pair. 
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2.2.2.5 Kramers-Kronig (KK) Relations 

The real part and imaginary part of the complex-valued dielectric constant 

𝜀𝜀𝑟𝑟(= 𝜀𝜀𝑟𝑟′ + 𝑖𝑖𝜀𝜀𝑟𝑟′′)  are associated with different optical effects. For example, for low 

absorbing materials, the real part 𝜀𝜀𝑟𝑟′  corresponds to the refractive index of the materials 

and the imaginary part 𝜀𝜀𝑟𝑟′  determines the absorption of light by the materials. It is 

found that these two parameters are not independent on each other. For example, a 

semiconductor having a higher refractive index tends to have a smaller bandgap [64]. 

The dependence between these two seemingly unrelated parameters can be explained 

by the Kramers-Kronig (KK) relations [65, 73-75]. The KK relations are derived not 

by physical grounds but based on complex number analysis with the assumptions of  

causality and linear response system (𝑷𝑷 = 𝜀𝜀0[𝜀𝜀𝑟𝑟(𝜔𝜔) − 1]𝑬𝑬). The dependence between 

the real and imaginary parts of 𝜀𝜀𝑟𝑟(𝜔𝜔) are therefore related with each other by: 

𝜀𝜀𝑟𝑟′(𝜔𝜔) = 1 +
2
𝜋𝜋
𝛲𝛲�

𝜔𝜔′𝜀𝜀𝑟𝑟′′(𝜔𝜔′)
𝜔𝜔′2 − 𝜔𝜔2

∞

0
𝑑𝑑𝜔𝜔′, (32) 

and 

𝜀𝜀𝑟𝑟′′(𝜔𝜔) = −
2𝜔𝜔
𝜋𝜋
𝛲𝛲�

𝜀𝜀𝑟𝑟′(𝜔𝜔′) − 1
𝜔𝜔′2 − 𝜔𝜔2

∞

0
𝑑𝑑𝜔𝜔′, (33) 

where 𝛲𝛲 represents the Cauchy principal value of the integral. The KK relations (32) 

and (33) allow us to find the real part 𝜀𝜀𝑟𝑟′(𝜔𝜔) if the value of 𝜀𝜀𝑟𝑟′′(𝜔𝜔) for all frequency 

range is known, and vice versa. 
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2.2.3 Fresnel Coefficients 

The Fresnel reflection and transmission coefficients, i.e., 𝑟𝑟 and 𝑡𝑡 respectively, 

relate the amplitude of reflected and transmitted E-field to the incident E-field in a 

plane separating two different media. These coefficients can be calculated from the 

complex dielectric constant described in the Section 2.2.2. The Fresnel reflection 

coefficient is important in theoretical modelling [76, 77] (Section 2.6) of imaging 

process in s-SNOM and also important in predicting the dispersion relation of 

electromagnetic modes in materials such as surface plasmon polaritons in semimetal 

[78], surface phonon polaritons in polar crystal [43, 78] and waveguide modes in 

transition metal dichalcogenides [48, 50, 79, 80] (TMDCs). One of the important 

applications of s-SNOM is real-space imaging of these modes [41-43, 45, 46, 48, 50, 

51, 81] and thus a brief introduction to the Fresnel coefficients will be presented here. 

The method of calculating dispersion relations of electromagnetic modes from Fresnel 

coefficient will be presented in Section 2.2.5. 

 

2.2.3.1 Single interface 

We consider the simplest case for reflection and transmission problem, which 

is monochromatic plane wave with wavevector 𝐤𝐤i incident on single interface between 

two isotropic media (denoted as i) with different (complex) refractive index 𝑛𝑛i =

√𝜀𝜀i𝜇𝜇i. The magnitude of 𝐤𝐤i is 𝑘𝑘i = 𝑛𝑛i𝑘𝑘0 = √𝜀𝜀i𝜇𝜇i𝑘𝑘0, where 𝑘𝑘0 is the wavenumber in 

free space. For more complex wave, the problem can be analysed by expressed the 

incident wave by a superposition of monochromatic plane wave.  
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The cases of s-polarised and p-polarised light should be analysed separately. s-

polarisation means the polarization of the plane wave is perpendicular to the plane of 

incidence, while p-polarisation means that it is parallel to that plane. Figure 1 shows 

the geometry of these independent situation, where E1
(s,p) is the s/p-polarized incident 

E-field from media 1, E1r
(s,p) is the reflected field and E2

(s,p) is the transmitted field. 𝐤𝐤1, 

𝐤𝐤1r and 𝐤𝐤2 are the wavevector of the corresponding field. After fulfilling the boundary 

conditions of the B-field and E-field, implied from Maxwell’s equations, the Fresnel 

reflection and transmission coefficients can be obtained [82, 83]: 

𝑟𝑟s =
E1r

(s)

E1
(s) =

𝜇𝜇2𝑘𝑘z1 − 𝜇𝜇1𝑘𝑘z2
𝜇𝜇2𝑘𝑘z1 + 𝜇𝜇1𝑘𝑘z2

, 𝑟𝑟p =
E1r

(p)

E1
(p) =

𝜀𝜀2𝑘𝑘z1 − 𝜀𝜀1𝑘𝑘z2
𝜀𝜀2𝑘𝑘z1 + 𝜀𝜀1𝑘𝑘z2

, (34) 

𝑡𝑡s =
E2

(s)

E1
(s) =

2𝜇𝜇2𝑘𝑘z1
𝜇𝜇2𝑘𝑘z1 + 𝜇𝜇1𝑘𝑘z2

, 𝑡𝑡p =
E2

(p)

E1
(p) =

2𝜀𝜀2𝑘𝑘z1
𝜀𝜀2𝑘𝑘z1 + 𝜀𝜀1𝑘𝑘z2

�
𝜇𝜇2𝜀𝜀1
𝜇𝜇1𝜀𝜀2

, (35) 

where 𝑘𝑘zi  is the magnitude of the out-of-plane wavenumber of the plane wave in 

medium i, having a relation with the magnitude of in-plane wavenumber 𝑘𝑘∥ 

𝑘𝑘zi = �𝑘𝑘i2 − 𝑘𝑘∥2 = �𝜀𝜀i𝜇𝜇i𝑘𝑘02 − 𝑘𝑘∥2, (36) 

where 𝑘𝑘∥  is conserved along the surface, which is a consequence of fulfilling the 

boundary conditions. Equations (34) and (35) can be extended to the case there is a 

2D material such as graphene along the interface. The forms and deviation can be 

found in reference [78]. In addition, for anisotropic materials, the forms of Fresnel’s 

coefficients can be found in references [82] and [84]. 
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 In Section 2.2.2, the concept of complex dielectric constant is introduced. It 

reveals that the Fresnel’s coefficients (34) and (35) can also be complex, indicating 

that there can be a phase shift of the incident light relative to the reflected and 

transmitted light. 

 

(a) 

 

(b) 

 

Figure 1. A plane wave with (a) s-polarisation and (b) p-polarisation is incident on an 

interface between two media. (Images taken from reference [69].) 

 

2.2.3.2 Multi-layer System (Transfer-Matrix Method) 

As mentioned above, Fresnel equations are important for the theoretical 

modelling of the light-matter interaction during the imaging process of s-SNOM 

(Section 2.6). While pervious Section focuses only on single-layer system, s-SNOM 

is usually applied to characterise multi-layer system. This Section will discuss using 

the transfer-matrix (T-matrix) method to find the Fresnel coefficients in multi-layer 

structure [47, 82, 85]. 



29 
 

The Fresnel coefficients for N-layer structure can be found from the total T-

matrix 𝐓𝐓tot which is expressed as  

𝐓𝐓tot = �𝑇𝑇11
𝑖𝑖𝑡𝑡𝑖𝑖 𝑇𝑇12𝑖𝑖𝑡𝑡𝑖𝑖

𝑇𝑇21𝑖𝑖𝑡𝑡𝑖𝑖 𝑇𝑇22𝑖𝑖𝑡𝑡𝑖𝑖
� = �(𝐓𝐓i→i+1 ∙ 𝐏𝐏i+1)

𝑁𝑁−2

i=1

∙ 𝐓𝐓N−1→N. (37) 

𝐓𝐓i→i+1 is the transfer-matrix for i/i+1 interface, which relates the amplitudes of the 

EM-field in layer i and layer i+1 at the interface. 𝐏𝐏i is called propagation matrix, which 

accounts for the amplitude change due to the phase shift during the light propagating 

within the layer i. The expression of transfer-matrix and propagation matrix are 

𝐓𝐓i→i+1 =
1

𝑡𝑡i→i+1
(𝑝𝑝,𝑠𝑠)  

�
1 𝑟𝑟i→i+1

(𝑝𝑝,𝑠𝑠)

𝑟𝑟i→i+1
(𝑝𝑝,𝑠𝑠) 1

� , 𝐏𝐏i = �𝑒𝑒
−𝑗𝑗𝑘𝑘zi𝑑𝑑i 0

0 𝑒𝑒𝑗𝑗𝑘𝑘zi𝑑𝑑i
� , (38) 

where 𝑟𝑟i→i+1
(𝑝𝑝,𝑠𝑠)  and 𝑡𝑡i→i+1

(𝑝𝑝,𝑠𝑠)  are the Fresnel coefficients in single i/i+1 interface, given by 

Equations (34) and (35). 𝑘𝑘zi is the out-of-plane wavenumber, given by Equation (36), 

and 𝑑𝑑i is the thickness of layer i. The symbol j is used to denote the imaginary unit to 

avoid confusion with the layer index i. Finally, the Fresnel coefficients for N-layer 

structure are 

𝑟𝑟(𝑝𝑝,𝑠𝑠) =
𝑇𝑇21𝑖𝑖𝑡𝑡𝑖𝑖

𝑇𝑇11𝑖𝑖𝑡𝑡𝑖𝑖
, 𝑡𝑡(𝑝𝑝,𝑠𝑠) =

1
𝑇𝑇11𝑖𝑖𝑡𝑡𝑖𝑖

. (39) 

For example, for 3-layer system, according to equation (37), 𝐓𝐓tot = 𝐓𝐓1→2 ∙ 𝐏𝐏2 ∙

𝐓𝐓2→3 = 1

𝑖𝑖1→2
(𝑝𝑝,𝑠𝑠) 

1

𝑖𝑖2→3
(𝑝𝑝,𝑠𝑠) 

�
𝑒𝑒−𝑗𝑗𝑘𝑘z2𝑑𝑑2 + 𝑟𝑟1→2

(𝑝𝑝,𝑠𝑠)𝑟𝑟2→3
(𝑝𝑝,𝑠𝑠)𝑒𝑒𝑗𝑗𝑘𝑘z2𝑑𝑑2 𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒−𝑗𝑗𝑘𝑘z2𝑑𝑑2 + 𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠)𝑒𝑒𝑗𝑗𝑘𝑘z2𝑑𝑑2

𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠)𝑒𝑒−𝑗𝑗𝑘𝑘z2𝑑𝑑2 + 𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒𝑗𝑗𝑘𝑘z2𝑑𝑑2 𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠)𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒−𝑗𝑗𝑘𝑘z2𝑑𝑑2 + 𝑒𝑒𝑗𝑗𝑘𝑘z2𝑑𝑑2
� . 

The Fresnel coefficients can be calculated by Equation (39): 
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𝑟𝑟(𝑝𝑝,𝑠𝑠)
3−layer =

𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠) + 𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒2𝑗𝑗𝑘𝑘z2𝑑𝑑2

1 + 𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠)𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒2𝑗𝑗𝑘𝑘z2𝑑𝑑2
, 𝑡𝑡(𝑝𝑝,𝑠𝑠)

3−layer =
𝑡𝑡1→2

(𝑝𝑝,𝑠𝑠)𝑡𝑡2→3
(𝑝𝑝,𝑠𝑠)𝑒𝑒𝑗𝑗𝑘𝑘z2𝑑𝑑2

1 + 𝑟𝑟1→2
(𝑝𝑝,𝑠𝑠)𝑟𝑟2→3

(𝑝𝑝,𝑠𝑠)𝑒𝑒2𝑗𝑗𝑘𝑘z2𝑑𝑑2
. (40) 

Equation (40) can be used to generalise to N-layer result, or one can directly calculate 

it by Equations (37)-(39). 

 

2.2.4 Evanescent wave 

A electromagnetic plane wave has the form 𝐄𝐄(𝐫𝐫) = 𝐄𝐄(𝐤𝐤,𝜔𝜔)e𝑖𝑖𝐤𝐤∙𝐫𝐫  (Equation 

(14)), where the wavevector 𝐤𝐤 = 𝑘𝑘𝑥𝑥𝑥𝑥� + 𝑘𝑘𝑦𝑦𝑦𝑦� + 𝑘𝑘𝑧𝑧�̂�𝑧. For propagating wave, all of the 

three components are real. In contrast, if at least one of the components of 𝐤𝐤, for 

example, the z-component, is imaginary so that 𝐤𝐤 = 𝑘𝑘𝑥𝑥𝑥𝑥� + 𝑘𝑘𝑦𝑦𝑦𝑦� + 𝑖𝑖𝑘𝑘𝑧𝑧�̂�𝑧 , the plane 

wave now has the form 

𝐄𝐄(𝐫𝐫) = 𝐄𝐄(𝐤𝐤,𝜔𝜔)e𝑖𝑖𝐤𝐤∥∙𝐫𝐫∥e−𝑘𝑘𝑧𝑧𝑧𝑧, (41) 

where 𝑘𝑘𝑧𝑧 is real. Equation (41) reveals that the plane wave now does not propagate in 

z-direction, but decays exponentially instead. As a result, the electromagnetic energy 

is restricted to a space with subwavelength scale in this direction. This type of wave is 

called evanescent wave.  

The term near-field is used to describe this exponentially decaying field, in 

contrast to the term far-field which refers to the field far enough away from any 

material inhomogeneities. Actually material inhomogeneity is necessary for the 

existence of evanescent wave [61, 69]. Examples of evanescent wave includes the field 

in the interface in which total internal reflection occurs and the electromagnetic surface 
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modes in graphene, h-BN and TMDCs. Evanescent wave is important in nano-optics 

and has been employed in near-field imaging technique, which will be discussed in the 

Section 2.4. 

 

2.2.5 Dispersion relation of electromagnetic modes 

The dispersion relation 𝜔𝜔(𝑘𝑘∥)  of electromagnetic surface and waveguide 

modes are the spectrum showing the angular frequency 𝜔𝜔 dependency with the in-

plane wavenumber 𝑘𝑘∥ of the modes. This curve can show the possibility of exciting 

these modes within a range of angular frequency, and thus is an important concept for 

employing s-SNOM to perform real-space imaging of these modes. 

 

2.2.5.1 The Eigenequation 

The condition for the existence of the electromagnetic surface mode can be 

found by finding the particular solutions (modes), of the form Equation (41), satisfying 

the Maxwell’s Equations (9)-(12) or simply the wave Equations (28) and (29). By 

imposing suitable boundary conditions, an eigenequation can be obtained, from which 

the dispersion relation 𝜔𝜔(𝑘𝑘∥)  of the modes can be determined [78, 80, 86, 87]. 

Alternatively, the same eigenequation can be obtained by finding the condition of the 

pole of Fresnel reflection coefficient r(p,s) (Equation ( 39 )), that is, by setting 

denominator of 𝑟𝑟(p,s) to be zero [69, 78]. The pole of 𝑟𝑟p (𝑟𝑟s) refers to TM (TE) modes.  
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However, the extraction of dispersion relation from the eigenequation cannot 

be done analytically and numerical methods must be used, which is more difficult and 

time-consuming. Also, for material having complex dielectric constant (Equation 

(29)), the eigenequation has no solution for real 𝜔𝜔 [88, 89], which is impractical. As a 

result, a wiser method for determining the dispersion spectrum is required, as will be 

discussed in the following section. 

 

2.2.5.2 Loss function 

Inspired by the fact that the pole of r(p,s) indicates the condition of existence of 

EM modes, a function is defined for the purpose of calculating the dispersion curve: 

𝐿𝐿(𝑘𝑘∥,𝜔𝜔) = Im�𝑟𝑟(p,s)�, (42) 

which is called the loss function, because it is related to the energy loss during the 

optical excitation of the EM modes. The excitation of long-live modes corresponds to 

high loss in energy. Therefore, the peaks of 𝐿𝐿(𝑘𝑘∥,𝜔𝜔) refer to the excitation of surface 

modes and the plot of 𝐿𝐿(𝑘𝑘∥,𝜔𝜔) = Im�𝑟𝑟(p,s)�  recovers the dispersion relation 

𝜔𝜔(𝑘𝑘∥) [78]. The method produces the same dispersion curve as by solving the 

eigenequations by time-consuming numerical method. Ones only need to find the 

dielectric constant 𝜀𝜀 (Equation (29)), and it in turn can determine the Fresnel reflection 

coefficients 𝑟𝑟(s,p) . By plotting the imaginary part of 𝑟𝑟(s,p) , the dispersion relation 

𝜔𝜔(𝑘𝑘∥) can be obtained. 

 



33 
 

 Resolution Limit of Far-Field Optical Microscope 

In far-field (classical) optical microscopy, propagating electromagnetic wave 

is used for imaging tiny objects. The dispersion relation of a propagating photon in 

medium 𝑖𝑖 is 𝜔𝜔 = 𝑐𝑐𝑘𝑘𝑖𝑖, where  

𝑘𝑘𝑖𝑖 = �𝑘𝑘𝑥𝑥
2 + 𝑘𝑘𝑦𝑦

2 + 𝑘𝑘𝑧𝑧
2 = 𝑛𝑛i𝑘𝑘0 =

2𝜋𝜋
𝜆𝜆𝑖𝑖

(43) 

is the wavenumber of the light in medium 𝑖𝑖 . 𝑛𝑛i  is the refractive index, 𝜆𝜆𝑖𝑖  are 

wavelength in medium 𝑖𝑖, 𝜔𝜔 is the angular frequency and 𝑘𝑘0 is the wavenumber in free 

space. Applying Heisenberg’s uncertainty principle to a photon, its momentum and 

position in x-space have the relation 

Δ𝑝𝑝𝑥𝑥 ∙ Δ𝑥𝑥 ≥
ℏ
2

. (44) 

After rearranging terms and using the relation 𝑝𝑝𝑥𝑥 = ℏ𝑘𝑘𝑥𝑥, Equation (44) becomes 

Δ𝑥𝑥 ≥
1

2Δ𝑘𝑘𝑥𝑥
, (45) 

where Δ𝑥𝑥 and Δ𝑘𝑘𝑥𝑥 measure the uncertainty of position and momentum of the photon 

in x-direction. Equation (45) shows that a photon has a certain uncertainty in position, 

which is inversely proportional to the uncertainty of momentum in respective direction. 

For a propagating photon, 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 and 𝑘𝑘𝑧𝑧 are real number. Equation (43) shows the 

possible range of 𝑘𝑘𝑥𝑥  (also 𝑘𝑘𝑦𝑦  and 𝑘𝑘𝑧𝑧 ) is 0 < 𝑘𝑘𝑥𝑥 < 𝑘𝑘𝑖𝑖 . For limiting case that the 

uncertainty of 𝑘𝑘𝑥𝑥  covers the full possible range, that is Δ𝑘𝑘𝑥𝑥 = 𝑘𝑘𝑖𝑖 , Equation (45) 

becomes 
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Δ𝑥𝑥 ≥
𝜆𝜆𝑖𝑖
4𝜋𝜋

. (46) 

Equation (46) reveals the minimum spatial uncertainty Δ𝑥𝑥min = 𝜆𝜆𝑖𝑖
4𝜋𝜋

, which is of the 

order of wavelength of the photon. In order words, the image of a propagating photon 

will be blurred. If considering real imaging system containing real lens, the minimum 

resolvable separation Δ𝑥𝑥min should be [21, 22, 69] 

Δ𝑥𝑥min =
0.61𝜆𝜆𝑖𝑖

NA
(47) 

 for uniform illumination and within the Rayleigh criterion [61], where NA =

𝑛𝑛𝑖𝑖 sin 2𝜃𝜃max is numerical aperture. 2𝜃𝜃max is the maximum angle for collecting light. 

By substituting suitable NA value of common classical imaging system into Equation 

(47), we can see that the minimum separation of two point sources Δ𝑥𝑥min~ 𝜆𝜆𝑖𝑖
2

, as 

mentioned above.  

 

 Near-Field Imaging  

While conventional optical microscope measures light-matter interaction by 

using propagating electromagnetic wave, E. H. Synge [90], after discussing with A. 

Einstein [91], in 1928 suggested using near field (Section 2.2.4) to break the diffraction 

limit so that nano-imaging can be performed. The limitation of technology level 

prevented scientists to achieve Synge’s idea at that time. Nowadays near-field optical 

microscope (SNOM) is widely employed to take image at subwavelength scale. 
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2.4.1 Imaging Beyond the Diffraction Limit 

Subwavelength imaging can be achieved by employing near field (evanescent 

wave). Section 2.2.4 has mentioned the wavevector 𝐤𝐤i of evanescent wave in medium 

i has at least one imaginary component so that 𝐤𝐤i = 𝑘𝑘𝑥𝑥𝑥𝑥� + 𝑘𝑘𝑦𝑦𝑦𝑦� + 𝑖𝑖𝑘𝑘𝑧𝑧�̂�𝑧. As a result, 

Equation (43) becomes 𝑘𝑘𝑖𝑖 = �𝑘𝑘𝑥𝑥
2 + 𝑘𝑘𝑦𝑦

2 − 𝑘𝑘𝑧𝑧
2, which implies the maximum value 

of 𝑘𝑘𝑥𝑥 can be larger than ki. According to Equations (45) and (46), the minimum spatial 

uncertainty Δ𝑥𝑥min  for a point source can be much smaller than 𝜆𝜆𝑖𝑖
4𝜋𝜋

 now, thereby 

improving the spatial resolution to subwavelength dimension [57, 58]. 

 

2.4.2 Scanning Near-Field Optical Microscope (SNOM) 

Scanning Near-Field Optical Microscope (SNOM) is a state-of-art technique 

to perform near-field imaging. Image process relies on scanning probe microscopy 

(SPM). During imaging, a probe, placed in close proximity with the sample, scans the 

sample and related optical information in each pixel can be obtained.  SNOM is a 

technique combining SPM with optical measurement system so that nano-imaging can 

be performed. 

 

2.4.2.1 Aperture - SNOM 

The earliest successful application of SNOM [92, 93] relied on aperture-type 

probe, using optical fibre tip in which there is a small aperture in the apex. When 
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passing light through the aperture, a strong near field with size in subwavelength scale 

will be confined near the probe tip. Near-field interaction occurs when the tip is put in 

close proximity with the sample during scanning and then optical image is obtained 

after analysing the near-field signal. Figure 2(a) demonstrates the schematic diagram 

of aperture-SNOM (a-SNOM). 

Smaller aperture favours higher image resolution but suffering from high 

power loss. Moreover, this power loss effect is severer for larger wavelength [22]. 

Therefore, application of a-SNOM is restricted to visible and near-field range, but not 

MIR. Practically, the resolution of a-SNOM for visible light is about 100 nm. 

 

2.4.2.2 Scattering (Apertureless) – SNOM 

An improved version of SNOM is the scattering-SNOM (s-SNOM) [59, 94-97] 

in which an atomic force microscope (AFM) tip is used as the scanning probe. Focused 

laser is incident on the tip apex and generate a strong near field near the tip apex with 

subwavelength dimension. When the tip is scanning and placed in close proximity with 

the sample, near-field scattering occurs and generate far-field scattering signal which 

in turn creates a near-field image. Figure 2(b) demonstrates the schematic diagram of 

s-SNOM. The resolution of s-SNOM is of the same order with the size of tip apex and 

therefore is wavelength-independent. Therefore, unlike aperture-SNOM, scattering-

SNOM is available for MIR application and also offers higher imaging resolution. 
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(a) 

 

(b) 

 

Figure 2. Schematic diagram of SNOM with (a) aperture-type probe and (b) scattering 

probe. (images taken from reference [22].) 

 

 Working Principle of Elastic s-SNOM 

Scattering (Apertureless) – SNOM can be classified into elastic and inelastic 

s-SNOM, depending on the scattering type in the AFM tip when it is placed in close 

proximity with a material surface and then a laser beam is focused on its apex. In this 

project, elastic s-SNOM was employed, in which the scattering, induced by near-field 

interaction, is elastic. 

When the AFM tip is illuminated by focused light during scanning, the sharp 

tip can concentrate the incident light and create a strong near-field adjacent to the apex. 

This can be shown by simulation from different groups [25, 98, 99]. This field-

localization,  with size typically on the order of the tip radius, is caused by the 

geometric effect (i.e. the probe) [99-102]. Figure 3 shows a simulated field intensity 

distribution near the tip apex, which is performed by Novotny’s group [98]. It has been 

shown that only p-polarized light, rather than s-polarized light, can induce this near-

field spot [95, 98]. During scanning, the tip is placed in close proximity with the 
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sample surface, and there is a near-field interaction between the tip and sample. This 

tip-sample interaction is strongly dependent on the local optical property (complex 

dielectric constant) of the sample and this interaction can generate scattering light to 

far field, resulting in optical contrast in the image. This type of scattering is called 

near-field scattering. If metal-coated or dielectric tip is used and is in off-resonant case, 

the near-field enhancement is weaker than when metal tip is used [103]. The scattering 

is elastic in this case and this is the case in elastic s-SNOM [22]. In contrast, if metal 

or resonant tip is used, the scattering in inelastic and this is inelastic s-SNOM. Elastic 

s-SNOM is widely applied for real-space imaging with nanoscopic spatial resolution, 

while inelastic s-SNOM is employed for tip-enhanced spectroscopy such as tip-

enhanced Raman spectroscopy (TERS) [104-108].  

Monochromatic p-polarized light should be focused on the tip apex to induce 

near-field. This is achieved by using a focusing mirror such as parabolic mirror. Apart 

from usage of focusing light to the tip apex, the same parabolic mirror in s-SNOM is 

also used to collect the near-field backscattering light. This set-up can reduce the 

difficulty in optical alignment. Figure 2 shows that in s-SNOM the focused incident 

light and the collected near-field scattering light signal are parallel to each other so 

that only one parabolic mirror is capable of focusing and the collection of light. 

Even one can find a best position and orientation of the parabolic mirror, the 

finite spot size due to diffraction effect (~4 μm for MIR light and ~3 μm for NIR light) 

inevitably illuminates not only the tip apex, but also the sample and the tip shaft. These 

illuminated positions generate Rayleigh scattering to far-field, which contributes an 

unwanted background scattering signal. This is the main source of noise in the detected 

signal. For elastic s-SNOM, the near-field scattering is weak, compared to this 
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background scattering, and thus an effective background suppression scheme is 

required. Section 2.7 will discuss about it. 

 

(a) 

 

(b) 

 

Figure 3. Simulated field intensity distribution [98] in the gold tip apex with (a) p-polarized and (b) 

s-polarized visible light illumination. Only the p-polarized light can induce near field enhancement 

near the apex. Light is incident from left side so generating far-field standing wave pattern in the left 

side after superposing with reflected light from the tip. (Images taken from reference [98].) 

 

 

 Theoretical Model of Light-Matter Near-Field 

Scattering in s-SNOM 

For s-SNOM, the meaningful signal is the backscattering light from the tip 

apex, generated by the near-field interaction between the illuminated tip and sample 

when their separation is in the same order of the apex diameter, as shown in Figure 

4(a). The near-field interaction strongly depends on the local optical property of the 
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sample, and so does the backscattered light. This process can be expressed 

mathematically: 

𝐸𝐸s,nf = 𝜎𝜎nf𝐸𝐸i, (48) 

where 

𝜎𝜎nf = 𝑠𝑠nf𝑒𝑒𝑖𝑖𝜙𝜙nf . (49) 

𝐸𝐸s,nf  is the E-field of backscattered light generated by the near-field interaction 

between the tip and the sample while 𝐸𝐸i is the E-field of the light incident on the tip 

apex. Both of them are complex value. The ratio between them is the complex-valued 

near-field scattering coefficient 𝜎𝜎nf, having modulus 𝑠𝑠nf, which is called near field 

amplitude. The fact that 𝜎𝜎  is a complex number implies there may be a phase 

difference between the scattering field 𝐸𝐸s,nf  and the incident field 𝐸𝐸i . This phase 

difference is equal to the phase of 𝜎𝜎nf, that is, 𝜙𝜙nf, which is called the near-field phase. 

The use of s-SNOM is to measure both 𝑠𝑠nf and 𝜙𝜙nf simultaneously. 

An understanding of near-field interaction in the tip-sample system is required 

for correctly interpreting the output signal. Equation ( 49 ) shows that if the 

mathematical form of coefficient 𝜎𝜎nf can be found, the optical signal can be predicted. 

Analytical calculation of 𝜎𝜎nf from real geometry by full electrodynamic approach [109] 

is very complicated and numerical calculation [76, 88, 99, 102, 110] may also be time-

consuming and unpractical. Therefore, two common analytical models with suitable 

approximation, point dipole and finite dipole models, will be introduced here. 
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2.6.1 Point Dipole (DP) Model 

Point-dipole (DP) model [26, 96, 111-113] is the simplest analytical model to 

calculate the  complex-valued near-field scattering coefficient 𝜎𝜎nf. It was applied in 

earlier [24, 25, 114, 115] s-SNOM experiments and even in recently years [53, 54] for 

2D materials, due to its simplicity and qualitative agreement with the results. In this 

section, DP model for isotropic materials will be introduced. 

Figure 4(b) shows the schematic diagram of DP model in which the AFM tip 

is modelled as a polarizable sphere with the same dielectric constant 𝜀𝜀𝑖𝑖  as the tip 

material and with radius 𝑎𝑎 matched with the radius of curvature of the tip apex. The 

incident EM-field induces charge redistribution in the sphere, thereby polarizing the 

sphere. For typical AFM tip, radius 𝑎𝑎 is between 20 to 100 nm, much smaller than the 

wavelength 𝜆𝜆 of MIR or even visible illuminating light. For such a small sphere, i.e., 

𝑎𝑎 ≪ 𝜆𝜆, one can apply the quasi-electrostatic approximation, and thus under uniform 

field irradiation the sphere responses as a point dipole (ideal dipole) in its centre [65]. 

The dipole moment of this point dipole is 𝒑𝒑 = 𝛼𝛼��1 + 𝑟𝑟𝑝𝑝�𝑬𝑬𝒊𝒊�, where the term in the 

square bracket is the exciting field. The factor �1 + 𝑟𝑟𝑝𝑝� corresponds to the direct 

illumination on the sphere (tip) and additional illumination on the sphere due to the 

reflection at the sample surface [77, 116, 117]. Figure 3 reveals that only p-polarized 

light is able to induce near-field enhancement near the apex, and thus only the z-

direction of dipole moment 𝒑𝒑 will be considered: 

𝑝𝑝𝑧𝑧 = 𝛼𝛼�1 + 𝑟𝑟𝑝𝑝�𝐸𝐸𝑖𝑖,𝑧𝑧 (50) 

where 𝛼𝛼 is the quasi-static bare polarizability of the sphere [65]: 
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𝛼𝛼 = 4π𝑎𝑎3
𝜀𝜀𝑖𝑖 − 1
𝜀𝜀𝑖𝑖 + 2

, (51) 

provided that 𝑬𝑬𝒊𝒊 is not very strong, otherwise higher-order components may occur [60]. 

Within the quasi-electrostatic approximation, the tip-dipole (the polarized sphere) can 

generate field (in spherical coordinate) with the form [60] 

𝑬𝑬𝒕𝒕𝒊𝒊𝒑𝒑−𝒅𝒅𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊 =
𝑝𝑝𝑧𝑧

4𝜋𝜋𝜀𝜀0𝑟𝑟3
�2 cos𝜃𝜃 �̂�𝑟 + sin𝜃𝜃 𝜃𝜃��. (52) 

As shown in Figure 4(b), this dipole field will polarize the sample with dielectric 

constant 𝜀𝜀s  and induce a image point dipole in the sample, which has the same 

direction as the tip dipole but has a different value of polarizability, 𝛼𝛼𝛼𝛼, where  

𝛼𝛼 =
𝜀𝜀s − 1
𝜀𝜀s + 1

(53) 

is the electrostatic reflection coefficient. Equation (53 ) can be derived from the 

electrodynamic Fresnel reflection coefficient 𝑟𝑟p in Equation (34) by substituting 𝑘𝑘zi ≈

𝑖𝑖𝑘𝑘∥ in the case  𝑘𝑘∥ ≫ 𝑘𝑘i (non-radiative mode). Therefore, the image dipole has dipole 

moment 𝑝𝑝z,image = 𝛼𝛼𝑝𝑝𝑧𝑧. This image dipole produces additional field to the tip dipole. 

By analogy with Equation (52 ), the additional field to the tip dipole has value 

𝑝𝑝z,image

2𝜋𝜋𝜀𝜀0[2(𝐻𝐻+𝑎𝑎)]3. As a result, Equation (50) should be modified to the form 

𝑝𝑝𝑧𝑧 = 𝛼𝛼 ��1 + 𝑟𝑟𝑝𝑝�𝐸𝐸𝑖𝑖,𝑧𝑧 +
𝛼𝛼𝑝𝑝𝑧𝑧

2𝜋𝜋𝜀𝜀0[2(𝐻𝐻 + 𝑎𝑎)]3� , (54) 

where H is the distance between the tip apex and the sample plane. After rearranging 

the terms, the tip dipole moment is: 
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𝑝𝑝𝑧𝑧 = 𝛼𝛼eff�1 + 𝑟𝑟𝑝𝑝�𝐸𝐸𝑖𝑖,𝑧𝑧 , (55) 

with 

𝛼𝛼eff,PD =
𝛼𝛼

1 − 𝑓𝑓(𝐻𝐻)𝛼𝛼(𝜀𝜀)
(56) 

where 

𝑓𝑓(𝐻𝐻) = �
𝜀𝜀𝑖𝑖 − 1
𝜀𝜀𝑖𝑖 + 2

�
𝑎𝑎3

4(𝐻𝐻 + 𝑎𝑎)3 . (57) 

𝛼𝛼eff is the effective polarizability of the tip and 𝑓𝑓(𝐻𝐻) is a function depending only the 

distance between the tip apex and the sample plane. Comparing  Equation (50) with 

(55), one can find that, to calculate the tip dipole moment induced by incident light, 

the bare polarizability of the sphere 𝛼𝛼 should be replaced by the effective polarizability 

𝛼𝛼eff in order to account for the tip-sample near-field interaction. By using Equations 

(52) and (55), the expression of backscattered field is 𝑬𝑬s,nf = �1 + 𝑟𝑟𝑝𝑝�𝑬𝑬𝒕𝒕𝒊𝒊𝒑𝒑−𝒅𝒅𝒊𝒊𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊 =

�1+𝑟𝑟𝑝𝑝�
2
𝛼𝛼eff,PD𝐸𝐸𝑖𝑖,𝑧𝑧

4𝜋𝜋𝜀𝜀0(𝐻𝐻+𝑎𝑎)3 �2 cos𝜃𝜃 �̂�𝑟 + sin𝜃𝜃 𝜃𝜃�� , where the additional factor �1 + 𝑟𝑟𝑝𝑝� 

corresponds to the additional signal due to the reflection of backscattered light at the 

sample surface [77, 116, 117]. Comparing this with Equation (48), one can finally 

obtain an expression of the near-field scattering coefficient  

𝜎𝜎nf ∝ �1 + 𝑟𝑟𝑝𝑝�
2
𝛼𝛼eff. (58) 

 The coupled dipole model can correctly predict experiment results qualitatively 

in some case [24, 37, 53, 114, 115, 118, 119]. This model can be extended to the case 

for anisotropic materials [115, 118, 120] and for thin films [53, 121]. However, this 

model fails to give accurate prediction in near-field resonant materials [76, 88, 110, 
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114, 117, 119]. Moreover, this model favours MIR over visible illumination because 

the quasi-electrostatic approximation requires 𝑎𝑎 ≪ 𝜆𝜆. Also, it has been shown that the 

position of the tip dipole should be below the sphere centre, but not exactly in the 

centre [76]. This model also ignores the multipole contribution [76, 110, 122], the 

effect due to the real shape of the tip [99, 101, 102] and nonlocal (electrodynamic) 

effect such as retardation [121]. 

(a)  

 

(b) 

 

(c) 

 

Figure 4. Schematic diagrams of modeling the near-field scattering coefficient 𝜎𝜎nf. (a) The 

tip-sample coupled system scatters light to far-field when it is illuminated by focused laser 

beam. (b) Point-dipole (PD) model. (c) Finite-dipole model. (Images taken from reference  

[77].) 

 

2.6.2 Finite Dipole (FD) Model 

Finite dipole (FD) model [77, 117] is a more advanced model for calculating 

the near-field scattering coefficient 𝜎𝜎nf. Instead of approximating the tip as a sphere in 

PD model, FD model replaces the tip by a spheroid to account for the geometric effect 

of the extended sharp of the probe [76, 101, 102]. The radius of curvature of one side 
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matches with the probe apex, as shown in Figure 4(c). Following calculation steps are 

based on the work by Cvitkovic et al [77]. The response in z-direction will only be 

considered because only p-polarized light is able to induce near-field enhancement 

near the apex, as mentioned in Section 2.5. 

 Assuming the effective length 2𝐿𝐿 ≈ 600 nm [117] of the spheroid is much 

smaller than the wavelength 𝜆𝜆 of the illuminating beam, calculation can be based on 

quasi-electrostatic approximation. It has been shown that electrostatically an 

illuminated isolated spheroid has similar near-field pattern as a finite dipole. Therefore, 

the spheroid is further modelled as extended dipole (finite dipole) with dipole moment 

𝑝𝑝0 ≈ 2𝐿𝐿𝑄𝑄0, in which there are two opposite monopoles (point charges) 𝑄𝑄0 and −𝑄𝑄0 

situating at the distance 𝑊𝑊0 ≈
1.31𝑎𝑎𝑎𝑎
𝑎𝑎+2𝑎𝑎

 [123] away from their nearest apexes, where 𝑎𝑎 is 

the radius of curvature of the tip apex, as shown in Figure 4(c). When this dipole is 

near a flat sample surface, only the field from monopole 𝑄𝑄0 participates in the tip-

sample near-field interaction, because 𝑄𝑄0 is much closer to the sample than −𝑄𝑄0. The 

field from this point charge 𝑄𝑄0  will polarize the sample and this effect can be 

represented by a mirror point charge 𝑄𝑄0′ = −𝛼𝛼𝑄𝑄0 , which in turn induces a charge 

redistribution in the spheroid. This charge redistribution can be represented by an 

additional line charge distribution, which can be approximated by an additional finite 

dipole with dipole moment 𝑝𝑝𝑖𝑖 ≈ 𝐿𝐿𝑄𝑄i, which is represented by opposite charges 𝑄𝑄i and 

−𝑄𝑄i situated 𝑊𝑊𝑖𝑖 = 𝑎𝑎
2
 from the lower apex and at the centre of the spheroid respectively, 

as shown in Figure 4(c). As shown in Figure 4(c), like the dipole 𝑝𝑝0, this additional 

dipole 𝑝𝑝𝑖𝑖 will also polarize the sample and induce mirror point charge 𝑄𝑄i′ = −𝛼𝛼𝑄𝑄i in 

the sample, which in turn influence the value of 𝑝𝑝𝑖𝑖. Recursively, a final value of 𝑝𝑝𝑖𝑖 can 

be found. By calculating the value of point charges 𝑄𝑄0  and 𝑄𝑄i , one can find the 
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expression of the effective dipole moment 𝑝𝑝eff = 𝑝𝑝0 + 𝑝𝑝𝑖𝑖 ≈ 2𝐿𝐿𝑄𝑄0 + 𝐿𝐿𝑄𝑄i . By using 

Equation (55), the effective polarizability 𝛼𝛼eff,FD of the tip is found to be [117] 

𝛼𝛼eff,FD = 𝐶𝐶 �2 +
𝑓𝑓0(𝐻𝐻)𝛼𝛼(𝜀𝜀)

1 − 𝑓𝑓𝑖𝑖(𝐻𝐻)𝛼𝛼(𝜀𝜀)� , (59) 

with  

𝑓𝑓0,𝑖𝑖(𝐻𝐻) = �𝑔𝑔 −
𝑎𝑎 + 2𝐻𝐻 + 𝑊𝑊0,𝑖𝑖

2𝐿𝐿
�

ln � 4𝐿𝐿
𝑎𝑎 + 4𝐻𝐻 + 2𝑊𝑊0,𝑖𝑖

�

ln �4𝐿𝐿
𝑎𝑎 �

(60) 

and [117] 

𝐶𝐶 = 𝑎𝑎2𝐿𝐿
𝐿𝐿(𝜀𝜀𝑖𝑖 − 1)�2𝐿𝐿�1 − 𝑎𝑎

𝐿𝐿 + 𝑎𝑎ln
�√𝐿𝐿 − √𝐿𝐿 − 𝑎𝑎�

2

𝑎𝑎 �

2𝐿𝐿�1 − 𝑎𝑎
𝐿𝐿 �(𝐿𝐿 − 𝑎𝑎𝜀𝜀𝑖𝑖) − 𝑎𝑎𝐿𝐿(𝜀𝜀𝑖𝑖 − 1)ln

�√𝐿𝐿 − √𝐿𝐿 − 𝑎𝑎�
2

𝑎𝑎 �

. (61) 

𝐶𝐶 is height-independent constant, 𝜀𝜀𝑖𝑖 is the dielectric constant of the tip material, 𝐻𝐻 is 

the distance between the tip apex and the sample, and 𝑔𝑔 = 0.7𝑒𝑒0.08𝑖𝑖  is a complex 

factor that determines the value of 𝑄𝑄i . Using Equations (58) and (59), one can 

calculate the near-field scattering coefficient 𝜎𝜎nf. 

FD model has been widely applied in s-SNOM experiments [31, 43, 124] and 

found to be more accurate than PD model [77, 117]. However, the applicability of FD 

model is limited to the case that 2𝐿𝐿 ≪ 𝜆𝜆, where 𝜆𝜆 is the wavelength of the exciting 

laser beam. Therefore, it may be an accurate model for MIR and THz light but not for 

visible light. Also, FD model is a quasi-electrostatic model and thus it ignores non-

local (electrodynamic) effect such as retardation effect. Moreover, it cannot be applied 
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for layered system [88] and an extended version [36, 123] should be used. In order to 

fully account for the geometric effect due to the shape of the probe and the 

electrodynamic effect, Porto et al [109]. has proposed a theory to give a general 

expression for the s-SNOM signal, by using reciprocity theorem but it is much more 

complicated. Recently, McLeod et al. [37] also proposed a model, called lightning rod 

model, to include the geometric and electrodynamic effect. 

 

2.6.3 Finite dipole (FD) model for Thin Film 

Although finite dipole (FD) model is proposed based on several 

approximations, it offers certain degree of accuracy and remains not very complicated. 

Therefore, it is widely applied for signal prediction for s-SNOM. The result of FD 

model in pervious section, Equation (59), is only limited to the application for bulk 

sample. Govyadinov et al. [36] provides an extend version of FD model which can be 

applied to thin film case. The concept of  Govyadinov et al. is represented in Figure 5. 

𝜀𝜀f and 𝜀𝜀s are dielectric constant of the thin film and substrate respectively. 𝐻𝐻 is the 

distance between tip apex and the thin film while 𝑑𝑑0 is the thin film thickness. The 

thin film system is regarded as a combination of several tip-(bulk sample) systems, as 

shown in Figure 5. Therefore, the effective polarizability 𝛼𝛼eff,thin for thin film system 

can be calculated by a summation of several 𝛼𝛼eff,bulk terms. According to Equation 

(59), 𝛼𝛼eff,bulk = 𝐶𝐶�2 + 𝜉𝜉0(𝜀𝜀,𝐻𝐻)�, where 𝜉𝜉0(𝜀𝜀,𝐻𝐻) = 𝑓𝑓0(𝐻𝐻)𝛽𝛽(𝜀𝜀)
1−𝑓𝑓𝑖𝑖(𝐻𝐻)𝛽𝛽(𝜀𝜀). Figure 5 only shows 

the first order terms, if second and higher order corrections are also considered, the 

effective polarizability 𝛼𝛼eff,thin for thin film system is: 
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𝛼𝛼eff,thin(𝜀𝜀f, 𝜀𝜀s,𝐻𝐻,𝑑𝑑0) = 𝐶𝐶�2 + 𝜉𝜉0(𝜀𝜀s,𝐻𝐻) + 𝜉𝜉0(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0) − 𝜉𝜉0(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0)�
+2𝜉𝜉1(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0)𝜉𝜉0(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0)

−�𝜉𝜉1(𝜀𝜀f,𝐻𝐻)𝜉𝜉0(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0) + 𝜉𝜉1(𝜀𝜀f,𝐻𝐻)𝜉𝜉0(𝜀𝜀f,𝐻𝐻)�

+ �𝜉𝜉1(𝜀𝜀f,𝐻𝐻)𝜉𝜉0(𝜀𝜀s,𝐻𝐻 + 𝑑𝑑0) + 𝜉𝜉1(𝜀𝜀s,𝐻𝐻)𝜉𝜉0(𝜀𝜀f,𝐻𝐻)�

−�𝜉𝜉1(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0)𝜉𝜉0(𝜀𝜀s,𝐻𝐻 + 𝑑𝑑0) + 𝜉𝜉1(𝜀𝜀s,𝐻𝐻 + 𝑑𝑑0)𝜉𝜉0(𝜀𝜀f,𝐻𝐻 + 𝑑𝑑0)� (62)

 

where 𝜉𝜉1(𝜀𝜀,𝐻𝐻) = 𝑓𝑓𝑖𝑖(𝐻𝐻)𝛽𝛽(𝜀𝜀)
1−𝑓𝑓𝑖𝑖(𝐻𝐻)𝛽𝛽(𝜀𝜀). 

 

Figure 5. Schematic diagram of the representation of the effective polarizability of thin film 

system 𝛼𝛼eff,thin  by first order combination of 𝛼𝛼bulk  terms. (Image taken from reference  

[36].) 

 

 Background Signal Suppression 

2.7.1 Background Scattering Contribution 

As mentioned in Section 2.5, not only the gap between the tip and sample, but 

also the tip shaft and the sample is illuminated by the incoming laser beam. For s-

SNOM, the background signal comes from the scattering by the tip shaft and the 

sample surface. Mathematically, this background scattering field 𝐸𝐸s,bg = 𝜎𝜎bg𝐸𝐸i should 

be added to Equation (48) so that the total backscattered field 

𝛼𝛼eff,thin 𝛼𝛼bulk(𝜀𝜀s,𝑑𝑑0) + 𝛼𝛼bulk(𝜀𝜀f, 0) − 𝛼𝛼bulk(𝜀𝜀f,𝑑𝑑0) ≈ 
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𝐸𝐸s = 𝜎𝜎𝐸𝐸i = �𝜎𝜎nf + 𝜎𝜎bg�𝐸𝐸i, (63) 

where 𝜎𝜎bg = 𝑠𝑠bg𝑒𝑒𝑖𝑖𝜙𝜙bg  is the background scattering coefficient and 

𝜎𝜎 = 𝜎𝜎nf + 𝜎𝜎bg = 𝑠𝑠𝑒𝑒𝑖𝑖𝜙𝜙 (64) 

is the total scattering coefficient. 

 

2.7.2 Basic Principle 

The basic principle of background suppression scheme [125, 126] is based on 

modulating the near-field scattering by operating the AFM in tapping mode, with 

tapping frequency Ω, and then demodulating the signal at higher order harmonics Ω, 

that is, at frequency 𝑛𝑛Ω, where 𝑛𝑛 is the demodulation order number. The point dipole 

(PD) model (Section 2.6.1) can give some insight about this idea. Equation (56) shows 

that the effective polarizability of the tip, 𝛼𝛼eff, and thus the scattering coefficient 𝜎𝜎nf 

(Equation (58)), has strong non-linear effect when tip-sample distance H is small. In 

contrast, the variation of background scattering coefficient 𝜎𝜎bg = 𝑠𝑠bg𝑒𝑒𝑖𝑖𝜙𝜙bg  is 

comparatively small. As a result, for higher 𝑛𝑛, the demodulated signal is expected to 

be dominated by near-field contribution [96, 97, 127]. 

 

2.7.3 Modulation of Near-Field Scattering  

Assuming the oscillation of the tip is sinusoidal with a dither frequency Ω so 

the height of the tip apex 
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𝐻𝐻(𝑡𝑡) = 𝐻𝐻min + Δ𝐻𝐻(1 + cos(Ω𝑡𝑡)), (65) 

where 𝐻𝐻min refers to the lowest position and Δ𝐻𝐻 is the oscillation amplitude, the total 

scattering coefficient 𝜎𝜎 is modulated and can be expressed by Fourier series: 

𝜎𝜎�𝐻𝐻(𝑡𝑡)� = �σ𝑛𝑛 cos(𝑛𝑛Ω𝑡𝑡)
∞

𝑛𝑛=0

= ��σnf,𝑛𝑛 + σbg,𝑛𝑛� cos(𝑛𝑛Ω𝑡𝑡)
∞

𝑛𝑛=0

. (66) 

σ𝑛𝑛 = σnf,𝑛𝑛 + σbg,𝑛𝑛 is the nth order Fourier coefficient of 𝜎𝜎�𝐻𝐻(𝑡𝑡)�. It is expected that 

σnf,𝑛𝑛 ≫ σbg,𝑛𝑛  for higher demodulation order 𝑛𝑛, as explained in Section 2.7.2. It is 

found that higher tip dithering amplitude Δ𝐻𝐻 generates larger σnf,𝑛𝑛 [96] but in return 

higher Δ𝐻𝐻 induces higher background contribution to the signal [96, 99]. As a result, 

there should be a compromise of choosing value of Δ𝐻𝐻, and practically, Δ𝐻𝐻 is chosen 

to be lower than the tip diameter. 

 

2.7.4 Signal Demodulation 

Since total scattering field 𝐸𝐸s ∝ 𝜎𝜎 (Equation (63)), 𝐸𝐸s can also be expanded by 

Fourier series: 𝐸𝐸s�𝐻𝐻(𝑡𝑡)� = ∑ 𝐸𝐸s,𝑛𝑛 cos(𝑛𝑛Ω𝑡𝑡)∞
𝑛𝑛=0 . Demodulating 𝐸𝐸s  at higher 

harmonics 𝑛𝑛Ω  yields 𝐸𝐸s,𝑛𝑛 , which is background-free, because 𝐸𝐸s,𝑛𝑛 ∝ σ𝑛𝑛 ≈ σnf,𝑛𝑛 . 

However, detected signal 𝑈𝑈 is not 𝐸𝐸s, but rather the intensity 𝐼𝐼: 

𝑈𝑈 ∝ 𝐼𝐼 ∝ 𝐸𝐸s𝐸𝐸s∗ ∝ 𝜎𝜎𝜎𝜎∗ = �𝜎𝜎nf + 𝜎𝜎bg��𝜎𝜎nf + 𝜎𝜎bg�
∗
. (67) 

The demodulated signal 𝑈𝑈𝑛𝑛 can be expressed by the complex Fourier transform of 

𝜎𝜎�𝐻𝐻(𝑡𝑡)� with respect to time 𝑡𝑡: 
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𝑈𝑈𝑛𝑛(𝛼𝛼) ∝
1
𝑇𝑇
� 𝜎𝜎�𝛼𝛼,𝐻𝐻(𝑡𝑡)�
𝑇𝑇

0
𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖𝑑𝑑𝑡𝑡, (68) 

where 𝑇𝑇 = 2𝜋𝜋/Ω is the dithering period of the tip. Substituting Equation (66) into 

expression (67) and the expression of the nth order demodulated signal 𝑈𝑈𝑛𝑛 for high n 

is (Appendix A) 

𝑈𝑈𝑛𝑛 ∝ 𝑠𝑠nf,𝑛𝑛𝑠𝑠bg,0
∗ cos�𝜙𝜙nf,𝑛𝑛 − 𝜙𝜙bg,0� . (69) 

Although the demodulated signal 𝑈𝑈𝑛𝑛  successfully has an amplitude proportional to 

𝑠𝑠nf,𝑛𝑛 , which is the amplitude of σnf,𝑛𝑛  (Equation ( 49 )), 𝑈𝑈𝑛𝑛  is influenced by the 

background phase 𝜙𝜙bg,0  which is uncontrollable and difficult to be predicted. 

Therefore, this direct detection scheme should be replaced by interferometric detection 

which is able to produce background-free signal and simultaneously detect the target 

signals: 𝑠𝑠nf,𝑛𝑛 and 𝜙𝜙nf,𝑛𝑛. 

 

2.7.5 Pseudo-Heterodyne Interferometric Detection 

Interferometric detection has been employed in s-SNOM for a long time. 

Homodyne [128, 129] and heterodyne [97, 127, 129, 130] schemes have been 

demonstrated as effective methods to suppress the background signal. A commercial 

s-SNOM (Neaspec GmbH) employs pseudo-heterodyne [131] (PsHet) interferometric 

detection, which exhibits much better background suppression power.  

Figure 6 shows the schematic diagram of pseudo-heterodyne detection. The 

laser source emits laser beam towards a beam-splitter (BS), which splits the light into 
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two parts. One part is focused onto the tip by a parabolic mirror for near-field scattering 

process. The backscattered light is collected by the same parabolic mirror and 

propagates back to the BS and finally is focused to the detector. The other part 

propagates to the reference mirror and is reflected. This reflected light, called reference 

beam, will finally reaches the detector and interferes with the first part.  

In pseudo-heterodyne scheme, the reference mirror is set to oscillate with 

frequency M [131], which can modulate the phase of the reference beam so that the 

field 𝐸𝐸ref can be expressed by Fourier series. Equation (67) should be modified to 𝑈𝑈 ∝

�𝜎𝜎nf + 𝜎𝜎bg + 𝜎𝜎ref��𝜎𝜎nf + 𝜎𝜎bg + 𝜎𝜎ref�
∗

, where 𝜎𝜎ref = 𝐸𝐸ref/𝐸𝐸i . The nth order 

demodulated near-field coefficient for higher 𝑛𝑛 can be obtained by [131] (Appendix 

B) 

𝜎𝜎nf,𝑛𝑛 ∝ 𝑈𝑈𝑛𝑛,2 + 𝑖𝑖𝑈𝑈𝑛𝑛,1, (70) 

where 𝑈𝑈𝑛𝑛,1 and 𝑈𝑈𝑛𝑛,2 are the signal demodulated at frequency 𝑛𝑛Ω + M and 𝑛𝑛Ω + 2M 

respectively. Therefore, s-SNOM can obtain the near-field amplitude and phase 

simultaneously via  

𝑠𝑠nf,𝑛𝑛 ∝ �𝑈𝑈𝑛𝑛,1
2   + 𝑈𝑈𝑛𝑛,2

2       and      𝜙𝜙nf,𝑛𝑛 ∝ tan−1 �
𝑈𝑈𝑛𝑛,1

𝑈𝑈𝑛𝑛,2
� . (71) 

Compared with non- interferometric detection as mention in Section 2.7.4, the signal 

obtained by PsHet interferometric detection contains no uncontrollable parameter. 

Nonetheless, the detected signal is no longer the near-field scattering coefficient 𝜎𝜎nf 

(Equation (49)) but the Fourier coefficient 𝜎𝜎nf,𝑛𝑛 (Equation (66)). 

 



53 
 

(a) 

 

Figure 6. Schematic diagram of the pseudo-heterodyne interferometric detection. (Image 

taken from reference [132].) 

 

2.7.6 Near-Field Contrast 

By employing pseudo-heterodyne interferometric detection, the detected s-

SNOM signal is proportional to σnf,𝑛𝑛. The value of σnf,𝑛𝑛 can be predicted by applying 

suitable model, such as the FD model (Section 2.6.2). However, the proportionality 

between signal and σnf,𝑛𝑛 is typically unpredictable because it relates to the response 

function of the setup. To obtain a predictable signal, the detector signal is normalized 

to a reference signal from a sample having well-known optical properties, such as 

silicon and gold. This yields a signal called near-field contrast: 

𝜂𝜂n =
𝜎𝜎n
𝜎𝜎n,ref

=
𝑠𝑠n
𝑠𝑠n,ref

𝑒𝑒𝑖𝑖𝜙𝜙n−𝜙𝜙n,ref . (72) 
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3 Nanoscale Fourier Transform Infrared Spectroscopy 

(Nano-FTIR) 

 

 Scattering-type SNOM has been introduced in Section 2.5. It offers the nano-

scale resolving power to measure the near-field amplitude |𝜂𝜂n| and phase arg(𝜂𝜂𝑛𝑛) 

simultaneously. Nanoscale Fourier Transform Infrared Spectroscopy (Nano-FTIR) [34, 

117] is a technique combining the nano-scale resolving power of s-SNOM and the 

spectrum measuring function of FTIR. Therefore, Nano-FTIR provides the power to 

obtain the near-field amplitude spectrum |𝜂𝜂n(𝜔𝜔)| = 𝑠𝑠n(𝑖𝑖)
𝑠𝑠n,ref(𝑖𝑖)

 and the near-field phase 

spectrum arg(𝜂𝜂𝑛𝑛(𝜔𝜔)) = 𝜙𝜙n(𝜔𝜔) − 𝜙𝜙n,ref(𝜔𝜔)  simultaneously in a single measuring 

process and in nano-scale resolution. 

 

 Working Principle 

The schematic diagram of a nano-FTIR spectrometer is shown in Figure 7. 

Different from s-SNOM in which monochromatic source is used, nano-FTIR employs 

broadband laser source generated by different-frequency generator (DFG) [133], like 

the conventional FTIR. A beamsplitter (BS) splits the broadband light into two parts. 

One part propagates to the linearly moving reference mirror and is reflected as a 

reference beam and finally reaches the detector. Another part propagates to a parabolic 

mirror and is focused onto the gap between the AFM tip and the sample surface, in 

where backscattered light is generated. The parabolic mirror also collects that 

backscattered light and focuses it onto the beamsplitter and finally reaches the detector 
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and interferes with the reference beam. The interference signal is then demodulated at 

high order number 𝑛𝑛  (Section 3.2) to suppress the background noise, yielding a 

complex interferogram 𝑈𝑈𝑛𝑛(𝑑𝑑), which can finally be used to calculate the complex 

near-field spectrum 𝑈𝑈𝑛𝑛(𝜔𝜔), from which the near-field amplitude spectrum |𝑈𝑈n(𝜔𝜔)| 

and phase spectrum arg(𝑈𝑈𝑛𝑛(𝜔𝜔)) can be obtained. 

 

 

Figure 7. Schematic diagram of experimental setup of nano-FTIR spectrometer. (Image is 

taken from ref [34].) 

 

 Background Scattering Suppression 

Like s-SNOM, the background scattering from AFM tip shaft and neighbour 

sample region should be removed and therefore signal demodulation technique is 

employed to achieve this, like the one in s-SNOM (Section 2.7). The nth order 

demodulated signal, that is, the interferogram, is given by: 

𝑈𝑈𝑛𝑛(𝑑𝑑) ∝ 𝑠𝑠nf,𝑛𝑛�𝑠𝑠bg,0 cos�𝜑𝜑nf,𝑛𝑛 − 𝜑𝜑b,0� + 𝑠𝑠ref cos�𝜑𝜑nf,𝑛𝑛 − 𝜑𝜑ref��, (73) 
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which is similar to Equation (69) but has an additional term relating to reference beam. 

Equation (73) is derived in Appendix C. It can be seen than the detected signal still 

contains uncontrollable background related parameter 𝜑𝜑b,0 . Nonetheless, if we 

perform Fourier transform on Equation (73), the first term vanishes because it is 

independent of d. Therefore, the complex near-field spectrum 𝑈𝑈𝑛𝑛(𝜔𝜔) is given by [132]: 

𝑈𝑈𝑛𝑛(𝜔𝜔) = � 𝑠𝑠nf,𝑛𝑛𝑠𝑠ref cos�𝜑𝜑nf,𝑛𝑛 − 2𝜋𝜋𝜔𝜔𝑑𝑑� 𝑒𝑒𝑖𝑖2𝜋𝜋𝑖𝑖𝑑𝑑d𝑑𝑑
∞

0

. (74) 

This yields the near-field spectrum 𝑈𝑈𝑛𝑛(𝜔𝜔) ∝ 𝑠𝑠nf,𝑛𝑛𝑒𝑒𝑖𝑖𝜑𝜑nf,𝑛𝑛 = 𝜎𝜎nf,𝑛𝑛. 
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4 Near-Field Optical Microscopy Study of PtSe2 Flakes 

s-SNOM and Nano-FTIR spectroscopy were employed to perform near-field 

optical study of PtSe2 flakes. Waveguide modes in PtSe2 were imaged directly in real-

space in nano-scale resolution by s-SNOM and fringe patterns parallel to the edge were 

observed. By analysing the properties of these fringes, the dispersion relations of these 

modes were successfully extracted, confirmed by the theory. Nano-FTIR was used to 

measure the near-field spectra of PtSe2 and the results agreed, at least qualitatively, 

with the FD model. 

 

 Experimental Set-up 

The elastic s-SNOM used for nano-optical imaging is the commercial 

NeaSNOM (www.neaspec.com/), which is based on an AFM operating at tapping 

mode. The AFM tip oscillates with frequency equal to its resonance frequency Ω ≈

270 kHz and with dithering amplitude Δ𝐻𝐻 ≈ 70 nm. The AFM tip is illuminated by a 

monochromatic NIR or MIR laser beam and generates modulated scattering light. The 

operating wavelength of NIR laser (www.toptica.com/) is 1550 nm while the 

wavelength of the MIR quantum cascade laser (QCL) (www.daylightsolutions.com) is 

turned from 3.97 to 7.24 μm (1380 to 2520 cm-1). Background scattering signal was 

eliminated by the use of pseudo-heterodyne interferometric detection method and then 

demodulating the detected signal by lock-in amplifier at the 3rd order harmonic of the 

dithering frequency Ω, thereby generating near-field amplitude signal 𝑠𝑠nf,𝑛𝑛 and phase 

signal 𝜙𝜙nf,𝑛𝑛 simultaneously. The signal is detected by a mercury cadmium telluride 

(MCT, HgCdTe) detector which is cooled by liquid nitrogen. The focusing of laser 

http://www.neaspec.com/
https://www.toptica.com/
https://www.daylightsolutions.com/
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beam to the AFM tip and the collection of the backscattered light is done by one 

parabolic mirror with small collection angle. The s-SNOM performs all the nano-

imaging at ambient conditions. 

Nano-FTIR spectroscopy was provided by the same commercial NeaSNOM. 

The tapping AFM tip was illuminated by a broadband MIR laser source with frequency 

range 700 – 2500 cm-1, generated by different-frequency generator (DFG). An 

asymmetric Michelson interferometer with 1.5-mm travel range reference mirror 

enables collection of demodulated near-field amplitude 𝑠𝑠nf,𝑛𝑛(𝜔𝜔) and phase 𝜙𝜙nf,𝑛𝑛(𝜔𝜔) 

spectra. 

 

 PtSe2 Sample 

 

4.2.1  Background 

Layered transition metal dichalcogenides (TMDCs) with the formula MX2 

(X=S, Se or Te) have attracted scientists’ attention for future nano-photonics and nano-

optoelectronics [134]. Scientific research has been focused much more on the TMDCs 

with group 6 transition metals (M=Mo or W) than the group 10 TMDCs (M=Pt, Pd or 

Ni) [1, 2, 135]. The group 10 TMDCs were found to have electronic properties distinct 

from group 6 TMDCs due to the greater degree of hybridization between the valance 

d-orbitals of the group 10 metals and the valance p-orbitals of the chalcogen atoms, 

which is resulting from the close binding energy values between these d- and p- 
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orbitals [2]. Due to its distinct electronic properties and air stability [5], PtSe2, one of 

the candidates of group 10 TMDCs, has been studied for optoelectronic applications 

such as field effect transistors (FETs) [5, 16], gas sensing [17], photocatalysis [8], 

photodetection [18], spintronics [19], valleytronics [8] and also MIR applications [10]. 

PtSe2 has the CdI2-type crystal structure. The Bravais lattice of this structure is 

1T-type hexagonal. The 3D structure is obtained by stacking PtSe2 layers, which are 

made up of edge-sharing PtSe6 octahedra, as shown in Figures 8 (a) and (b). In each 

PtSe2 layer, the Pt 2D-layer is sandwiched between two Se layers. The PtSe2 crystal 

structure belongs to 𝑃𝑃3𝑚𝑚𝑚𝑚 space group of the centrosymmetric trigonal system and 

belongs to 𝐷𝐷3𝑑𝑑3  point group. The primitive lattice vectors can be chosen to be 𝒂𝒂𝟏𝟏 = 𝑎𝑎𝒙𝒙�, 

𝒂𝒂𝟐𝟐 = 0.5𝑎𝑎�−𝒙𝒙� + √3𝒚𝒚�� and 𝒂𝒂𝟑𝟑 = 𝑐𝑐𝒛𝒛� and the atoms are positioned at Pt(0, 0, 0), X(1/3, 

2/3, u), and X(2/3, 1/3, -u) in the primitive cell. The in-plane lattice constants 𝑎𝑎 and 𝑏𝑏 

have be found to be about 3.8 Å  for bulk PtSe2 [136] and 3.785 Å by calculation [137]. 

For monolayer, the lattice constants 𝑎𝑎 and 𝑏𝑏 decrease to be about 3.7 Å [7, 8]. The out-

of-plane lattice constant is predicted to be 𝑐𝑐 = 5.107 Å [12], which is also consistent 

with the experimental result, 𝑐𝑐 = 5.081 Å [136, 138]. The u value, that is, the z-

coordinate of the Se atom position in the primitive cell, is 0.255 [136], which is near 

to the ideal value, 1/4. The c/a ratio is about 1.363, which is smaller than the value 

(1.67) predicted in an ideal hexagonal close packing of Se atoms. This effect may be 

due to the distinct electronic properties of group 10 TMDCs as mentioned above. 
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Figure 8. (a), (b) Crystal structure of PtSe2. (c), (d) Brillouin zone of (c) bulk and (d) thin 

PtSe2 in which high symmetry points are indicated by red dots. (Images taken from ref. [10]) 

 

Because of the great degree of hybridization between the valance d-orbitals of the Pt 

and the valance p-orbitals of the chalcogen atoms, PtSe2 has distinct electronic 

properties. The calculated band structures [8] for monolayer, bilayer, trilayer and bulk 

PtSe2 are shown in Figure 9. The bandgap of the semiconducting monolayer PtSe2 is 

predicted to be 1.2eV [2], which is confirmed by experiment [8]. The interesting spin 

properties of the monolayer PtSe2 [19] favour the application on spintronics. The 

bilayer PtSe2 remains to be semiconducting but the bandgap decreases to 0.21eV, 

calculated by first-principles calculations [8]. This bandgap value and high 

environmental stability favour the photonic and optoelectronic applications in MIR 

frequency range [10]. The semiconductor-to-semimetal transition occurs when the 
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layer number is increased to 3. This transition is predicted by calculations [8] and 

confirmed by experimental results [10]. The transition can also be induced by strain 

[6, 13-15]. Although the monolayer and bilayer PtSe2 have electron mobilities about 

1.7 [10] and 8.6 [5] cm2 V−1 s−1 respectively, the few-layer PtSe2 possesses high 

electron mobility (≈210 cm2 V−1 s−1) and theoretically the mobility of PtSe2 can be as 

high as 16250 cm2 V-1 s-1 [5]. The bulk PtSe2 is predicted to be semimetallic long ago 

[1, 2] and recently it was shown that it is a type-II Dirac semimetal [11, 12]. This kind 

of topological semimetals provide platform for studying novel physical properties [139, 

140], topological phase transitions and potential device applications [141, 142]. 

 

 

Figure 9. Band structures of (a) monolayer, (b) bilayer, (c) trilayer and (d) bulk PtSe2, 

calculated by Y. Wang et al. [8]. 
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4.2.2 Sample Fabrication 

The substrates used is Si wafers with 300-nm-thick SiO2 on the top. PtSe2 

flakes were fabricated by mechanically exfoliating a high quality bulk PtSe2 crystal 

(www.2dsemiconductors.com/) onto the SiO2/Si substrates. For the s-SNOM study, 

the PtSe2 flakes with thickness 579 nm and 696 nm were used. The AFM topographies 

of these samples are shown in Figure 10. 

 

 

Figure 10. The AFM topographies and line profiles of the PtSe2 samples with thicknesses 

(a) 696 nm, (b) 579 nm. 

 

 Optical Constant of PtSe2 

4.3.1 Far-field FTIR Study 

As mentioned in Section 2.2.2, the complex dielectric constant 𝜀𝜀(𝐤𝐤,𝜔𝜔) 

(Equation (29)) determines the optical property of a material. In order to calculate the 

dispersion relation of the waveguide modes in PtSe2 and the near-field amplitude 

spectrum of PtSe2, it is needed to determine the dielectric constant. Therefore, far-field 

http://www.2dsemiconductors.com/
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FTIR spectroscopy technique was employed to determine this optical constant of PtSe2. 

This technique is limited to explore only the frequency dependent constant 𝜀𝜀(𝜔𝜔). The 

𝐤𝐤-dependent comes from the non-local effect, which can be neglected in most cases, 

as mentioned in the Section 2.2.2.1. Therefore, the correctly determined 𝜀𝜀(𝜔𝜔)  is 

sufficient to predict optical phenomena of corresponding materials. IR ellipsometry, a 

widely used spectroscopy for determining material’s dielectric constant, has not been 

used because it does not possess high enough resolving power. 

BRUKER FTIR spectrometer with reflection mode was used to extract the 

reflectivity 𝑅𝑅(𝜔𝜔)  of PtSe2 flakes on Au substrates in frequency range 

500 –  6000 cm−1 . The incident beam is randomly polarized and has incident 

𝜃𝜃inc~15o. Gold substrates was chosen because of its high reflectivity, which is near 

to 1 within the MIR frequency range. In addition, frequency-independent reflectivity 

makes it a suitable reference material.  

The measured spectra 𝑅𝑅(𝜔𝜔) for sample with PtSe2 thicknesses 199 nm, 1013 

nm, 1708 nm and 2810 nm are shown by the black lines in Figure 11. Although bulk 

PtSe2 has been predicted to be semi-metallic [1, 2, 7], the reflectivity of 1013, 1708 

and 2810 nm thick PtSe2 samples show clear Fabry–Pérot (FP) cavity interference 

effect, which is a phenomenon due to the dielectric properties of the materials. This 

dielectric nature in the PtSe2 flakes could facilitate the fabrication of optical 

waveguides. 
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Figure 11. Far-field FTIR and fitted reflectivity spectra of PtSe2 flakes on Au substrates. 

Samples with (a) 199 nm, (b) 1013 nm, (c) 1708 nm and (d) 2810 nm thick PtSe2 layer were 

tested. Red lines refer to fitted reflectivity by single-Lorentz-Drude model while black lines 

refer to the measured ones. 

 

4.3.2 Lorentz-Drude Modelling 

In this work, the dielectric constant 𝜀𝜀(𝜔𝜔) of the PtSe2 was determined from 

measuring the reflectivity spectra 𝑅𝑅(𝜔𝜔). The principle is that one can calculate 𝑅𝑅(𝜔𝜔) 

if the dielectric constants of all three layers in the Air/PtSe2/Au system are known. 

Here. the dielectric constant of the first layer (air) is 𝜀𝜀1 = 1. Gold, the third layer, is a 

metal and there is no interband transition in MIR range. As a result, its dielectric 

constant can be represented by a simple Drude form (Equation (23)) 𝜀𝜀3(𝜔𝜔) = 1 −

𝜔𝜔𝑝𝑝2 (𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔)⁄ , where the plasma frequency 𝜔𝜔𝑝𝑝 = 72800 cm−1  and collision 

frequency 𝛾𝛾 = 215 cm−1 [143]. Therefore, only the second layer (PtSe2) has unknown 
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𝜀𝜀(𝜔𝜔). If one can find a value of 𝜀𝜀2(𝜔𝜔) (PtSe2) from which the calculated reflectivity 

𝑅𝑅(𝜔𝜔) fitting well with the measured one, this fitted 𝜀𝜀(𝜔𝜔) can be regard as reliable. 

The steps for calculating 𝑅𝑅(𝜔𝜔)  are presented as follows. The effective 

reflectivity R(𝜔𝜔) for unpolarized light and for small incident angle can be calculated 

from the expression [144]: 

𝑅𝑅 =
𝑟𝑟𝑠𝑠2 + 𝑟𝑟𝑝𝑝2

2
, (75) 

where 𝑟𝑟p and 𝑟𝑟s are the Fresnel’s reflection coefficients for p- and s- polarized light of 

the Air/PtSe2/Au-layer system. These coefficients of such a three-layer system can be 

calculated by Equation (40), accompanied with Equations (34) and (36), and also the 

relation 𝑘𝑘∥ = 𝑘𝑘0 sin𝜃𝜃inc. It is assumed that all the layers are non-magnetic materials 

so that 𝜇𝜇i = 1.  

In order to fit the reflectivity 𝑅𝑅(𝜔𝜔), Lorentz-Drude (LD) model (Equation 30) 

with signal Lorentz oscillator term is used to express the dielectric constant of PtSe2 

𝜀𝜀2(𝜔𝜔): 

𝜀𝜀2(𝜔𝜔) = 𝜀𝜀∞ −
𝜔𝜔𝑝𝑝2

𝜔𝜔2 + 𝑖𝑖𝛾𝛾𝜔𝜔
+

𝑓𝑓2

𝜔𝜔0 − 𝜔𝜔2 − 𝑖𝑖𝑖𝑖𝜔𝜔
, (76) 

where 𝑓𝑓, 𝜔𝜔0 and 𝑖𝑖 are the strength, eigenfrequency and damping rate of the oscillator. 

𝜀𝜀∞  is called high-frequency permittivity, which corresponds to the high polarized 

environment surrounding the carriers in inner bands. The second is the Drude term 

attributing to the free charge carriers in the semi-metallic bulk PtSe2 [1, 2, 7, 11, 12]. 

A Lorentz-oscillator term, that is the third term, is add to the Drude term in order to 

account for the contribution from the interband transition of the bound charge carriers. 
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The high-frequency permittivity 𝜀𝜀∞  is chosen to be 𝜀𝜀∞ = 15  [138] while other 

parameters chosen to fit 𝑅𝑅(𝜔𝜔) are listed in Table 1. The reflectivity spectra 𝑅𝑅(𝜔𝜔) 

calculated from the fitted dielectric constant 𝜀𝜀2(𝜔𝜔) of PtSe2 are plotted as red lines in 

Figure 11. The corresponding fitted dielectric constants 𝜀𝜀2(𝜔𝜔) for PtSe2 layers are 

plotted in Figure 12(a). One can see from Figure 11 that the calculated spectra match 

with the experimental FTIR spectra, especially in the frequency range 1000 – 3000 

cm-1. That means the obtained dielectric constants for the PtSe2 samples (Table 1 and 

Figure 12(a)) are valid for theoretical study on the optical properties of PtSe2 in the 

frequency range 1000 – 3000 cm-1. The fitted dielectric constants 𝜀𝜀2(𝜔𝜔) do not vary 

at high degree for different thicknesses, except for d =199 nm, which has higher 

damping terms 𝛾𝛾 and 𝑖𝑖. This may be due to the thickness-dependent properties of 

PtSe2 [7, 137].  

 

 𝜔𝜔𝑝𝑝/cm−1(eV) 𝛾𝛾/cm−1 𝑓𝑓/cm−1 𝜔𝜔0/cm−1(eV) 𝑖𝑖/cm−1 

d=199nm 2420.4 (0.300) 1076.8 42973 11244 (1.39) 4460.6 

d=1013nm 2501 (0.310) 410.35 39251 10940 (1.36) 2820.9 

d=1708nm 2564.7 (0.318) 321.44 40738 11197 (1.39) 2564.7 

d=2810.3nm 2494.9 (0.309) 376.8 40915 11355 (1.41) 3385.8 

Table 1. Parameters of single-Lorentz-Drude model for fitting the FTIR spectra for PtSe2/Au 

system with different PtSe2 thicknesses d. 
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Figure 12. (a) Complex dielectric constants 𝜀𝜀(𝜔𝜔)  of PtSe2 with different thicknesses, 

obtained by assuming Lorentz-Drude formalism and fitting the measured FTIR reflectivity 

spectra 𝑅𝑅(𝜔𝜔). (b) Complex refractive indices 𝑛𝑛� = 𝑛𝑛 + 𝑖𝑖𝑖𝑖 of PtSe2, calculated by using the 

obtained  𝜀𝜀(𝜔𝜔) in (a). The real part 𝑛𝑛 is the normal refractive index while the imaginary part 

𝑖𝑖 is the extinction coefficient. (c) Skin depths 𝛿𝛿 of PtSe2 obtained by the fitted dielectric 

constants for sample with different thicknesses. 
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4.3.3 Skin Depth 

 Referring back to Figure 11, the reflectivity spectra show that, except for the d 

= 199 nm sample, the Fabry–Pérot (FP) oscillating signal becomes weaker and weaker 

when frequency increases. This weakening effect is especially strong for the sample 

with thickness d = 2810 nm in high frequency region, in where the oscillation almost 

disappears. By explaining this, the skin depth of PtSe2 should be calculated, which is 

related to the imaginary part (𝑖𝑖) of the complex refractive index 𝑛𝑛� = 𝑛𝑛 + 𝑖𝑖𝑖𝑖, by the 

expression [64] 

𝛿𝛿 =
2
𝛼𝛼

=
𝑐𝑐

𝑖𝑖𝜔𝜔(rad s−1) , (77) 

where 𝛼𝛼 is the absorption coefficient, 𝑐𝑐 is the speed of light and the imaginary part 𝑖𝑖 

is called the extinction coefficient. The complex refractive index is related to the 

complex dielectric constant 𝜀𝜀 = 𝜀𝜀1 + 𝑖𝑖𝜀𝜀2  by relations 𝑛𝑛 = 1
√2
�𝜀𝜀1 + �𝜀𝜀12 + 𝜀𝜀22  and 

𝑖𝑖 = 1
√2
�−𝜀𝜀1 + �𝜀𝜀12 + 𝜀𝜀22 . The complex refractive indices 𝑛𝑛�(𝜔𝜔)  for samples with 

different thicknesses are calculated and plot in Figure 12(b), and in turn the calculated 

skin depths 𝛿𝛿(𝜔𝜔) are plot in Figure 12(c). The 𝛿𝛿(𝜔𝜔) of PtSe2 is found to be as high as 

about 8000 μm at 𝜔𝜔 ~ 1700 cm−1. This high penetration depth might be due to the 

low value of the extinction coefficient 𝑖𝑖 ~ 0.1 at this frequency, and therefore low 

absorption of PtSe2. Because the skin depth 𝛿𝛿 is inversely proportional to frequency 

𝜔𝜔 , the skin depth decreases greatly with higher frequency and becomes about 

1000 μm when frequency reaches 6000 cm−1 . This variation of 𝛿𝛿  agrees with the 

weakening oscillating signals in FTIR spectra 𝑅𝑅(𝜔𝜔) shown in Figure 11. First, for the 
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199-nm-thick sample (Figure 11(a)), the skin depth in the whole frequency range is 

much higher than the thickness, and therefore the weakening effect does not appear. 

For the 1013-nm-thick sample (Figure 11(a)), there is weakening effect and the effect 

becomes severer for thicker samples. For the 2810-thick-sample, the oscillating signal 

is strongest at 𝜔𝜔 ~ 1700 cm−1, in where the skin depth becomes highest with value 

about 8000 μm, which is much larger than the thickness and therefore the oscillating 

signal at around 𝜔𝜔 =  1700 cm−1  is still pronounced. However, at frequency near 

6000 cm−1, the skin depth decreases to value only about 1000 μm, which means the 

light cannot penetrate through the PtSe2 and therefore the oscillating signal disappears.  

 

4.3.4 Plasma Frequencies and Charge Carrier 

Concentration 

The plasma frequencies 𝜔𝜔𝑝𝑝  fitted for different thicknesses are all near 

2500 cm−1 (0.3 eV) (Table 1). This is agreed with previous experimental results by 

G. Kliche [138]. From his IR study, the reflectance of PtSe2 decreases from maximum 

to minimum in the frequency range about 400 − 1600 cm−1. From Equations (23), 

(34) and (36), the reflectance of a slightly damped free electron system for normal 

incident light can be expressed by 𝑅𝑅(𝜔𝜔) = ��
𝜀𝜀𝑟𝑟,free−1

�𝜀𝜀𝑟𝑟,free+1
�
2

= ��√𝜀𝜀∞�1− �𝑖𝑖𝑝𝑝/√𝜀𝜀∞
𝑖𝑖

�
2
−

1� / �√𝜀𝜀∞�1 − �𝑖𝑖𝑝𝑝/√𝜀𝜀∞
𝑖𝑖

�
2

+ 1��
2

. For 𝜔𝜔 ≤ 𝑖𝑖𝑝𝑝

√𝜀𝜀∞
, 𝑅𝑅(𝜔𝜔) = 1, while for 𝜔𝜔 > 𝑖𝑖𝑝𝑝

√𝜀𝜀∞
, the 

reflectance decreases greatly and becomes 0 for high frequency. Alternatively, for 𝜔𝜔 ≤

𝑖𝑖𝑝𝑝

√𝜀𝜀∞
, the dielectric constant 𝜀𝜀𝑟𝑟,free = 𝜀𝜀∞ �1 − �𝑖𝑖𝑝𝑝/√𝜀𝜀∞

𝑖𝑖
�
2
� for the free electron system 
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becomes a negative real number, and thus the “complex” reflective index 𝑛𝑛� =

�𝜀𝜀𝑟𝑟,free = 𝑛𝑛 + 𝑖𝑖𝑘𝑘 is purely imaginary, which represents that the light cannot penetrate 

through the system and therefore 𝑅𝑅(𝜔𝜔) = 1. On the other hand, for 𝜔𝜔 > 𝑖𝑖𝑝𝑝

√𝜀𝜀∞
, 𝜀𝜀𝑟𝑟,free 

becomes a positive real number and therefore 𝑛𝑛� is purely real and has no the absorption 

related imaginary part, which means that the system is transparent to light in this 

frequency region. In this work, the obtained 𝑖𝑖𝑝𝑝

√𝜀𝜀∞
 value is about 2500

√15
≈ 645 cm−1 , 

which is within the range 400 − 1600 cm−1  from Kliche, thereby revealing the 

reliability of the fitted plasma frequencies 𝜔𝜔𝑝𝑝. From the fitted 𝜔𝜔𝑝𝑝 (about 2500 cm-1) 

and by using 𝜔𝜔𝑝𝑝 = �𝑁𝑁𝑒𝑒2

𝜀𝜀0𝑚𝑚∗  (Equation (24)) and choosing 𝑚𝑚∗ = 0.35𝑚𝑚𝑒𝑒  (where 𝑚𝑚𝑒𝑒 

denotes the mass of an free electron) [145], the free charge carrier concentration of 

PtSe2 is found to be 𝑁𝑁 = 2.44 × 1019 cm−3, which is within the a typical range for a 

semimetal: 1 × 1017 − 1 × 1022 cm−3. 

 

4.3.5 Interband Transition by Bound Charges 

For the bound electron term, that is the Lorentz oscillator term, the resonant 

frequencies 𝜔𝜔0 for all the thicknesses are about 1.4 eV. This effect might be due the 

interband transition by the core electrons in PtSe2, by referring the band structure of 

bulk PtSe2 (Figure 9(d)). The Lorentz-Drude fitted dielectric constants 𝜀𝜀2(𝜔𝜔) for PtSe2 

layers in extend frequency range including visible region are plotted as colour lines in 

Figure 13. One can see that the real parts Re�𝜀𝜀2(𝜔𝜔)� exhibit dispersion-like shape 

while the imaginary parts Im�𝜀𝜀2(𝜔𝜔)� have absorption-like bell-shape. It is typical 
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effect by the Lorentz oscillator term which is added to account for the interband 

transition effect. One can also see that both the real parts and imaginary parts of 𝜀𝜀(𝜔𝜔) 

vary with the PtSe2 thickness at high degree when 𝜔𝜔 is near the eigenfrequencies 𝜔𝜔0, 

which are about 11000 cm-1 (1.4 eV) for all 4 thicknesses. Nevertheless, for the near-

field optical microscopy study of the PtSe2 which will be discussed below, the 

frequency of interest is 1380 to 2520 cm-1, within this range the 𝜀𝜀(𝜔𝜔) varies little with 

the thickness. 

 

Figure 13. Comparison of the dielectric constants 𝜀𝜀(𝜔𝜔) of PtSe2 (in extend frequency range 

including visible region) between the one obtained by first-principles calculations done by 

Gjerding’s group [146] and by fitting the measured reflectivity 𝑅𝑅(𝜔𝜔) derived from the 

single-Lorentz-Drude model.  

 

4.3.6 Anisotropic Properties 

Layered materials such as PtSe2 should have pronounced anisotropic properties, 

and thus the dielectric constant should be different for out-of-plane and in-plane 

directions. Gjerding et al. [146] has calculated both the in-plane and out-of-plane 

dielectric constants 𝜀𝜀∥ and 𝜀𝜀⊥ for bulk PtSe2 by first-principle calculation, the results 
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of which are plotted in Figure 13, in which the solid (dashed) black lines refer in-plane 

(out-of-plane) dielectric constant 𝜀𝜀||(𝜀𝜀⊥). One can see that there is a certain degree of 

anisotropy for the dielectric constants. However, for fitting the 𝑅𝑅(𝜔𝜔), the dielectric 

constant of PtSe2 is assumed to be isotopic. This assumption may be the cause of the 

discrepancy between the measured and calculated R spectra. Also, only one Lorentzian 

term was used which may not be accurate enough. Moreover, the Lorentz-Drude model 

(Equation (30)) is only a simple model and should be replaced by better models such 

as the hydrodynamic model and the Lindhard model [147]. Figure 13 shows the 

comparison between the calculated dielectric constants from Gjerding’s group and the 

ones fitted to measured FTIR reflectivity spectra. The fitted curves do not agree well 

with Gjerding’s work. Besides, reflectivity spectra from Gjerding’s data have been 

calculated (non-shown) and they do not agree well with the measured spectra while 

our fitted data follow the general trend of the measured spectra (Figure 11), especially 

for frequency ranging from 500 to 4000 cm-1. As a result, the fitted dielectric constants 

will be used for studying optical properties of the PtSe2. 

 

4.3.7 Kramers-Kronig Analysis 

Kramers-Kronig (KK) analysis (Section 2.2.2.5) was also employed for testing 

the reliability of the fitted dielectric constant of the PtSe2 from the reflectivity 𝑅𝑅(𝜔𝜔) 

(Section 4.3.2). The methodology is presented as follows. For the Air/PtSe2/Au, a 3-

layer system, the Fresnel reflection coefficient 𝑟𝑟(𝜔𝜔) for 3-layer system is represented 

by Equation (40). This complex valued 𝑟𝑟(𝜔𝜔) can be expressed by Euler’s formula  
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𝑟𝑟(𝜔𝜔) = �𝑅𝑅(𝜔𝜔) exp�𝑖𝑖𝜃𝜃(𝜔𝜔)� (78) 

or equivalently ln 𝑟𝑟(𝜔𝜔) = ln�𝑅𝑅(𝜔𝜔) + 𝑖𝑖𝜃𝜃(𝜔𝜔) , where �𝑅𝑅(𝜔𝜔)  and 𝜃𝜃(𝜔𝜔)  are the 

modulus and the phase of 𝑟𝑟(𝜔𝜔) respectively. 𝑅𝑅(𝜔𝜔) can be obtained by conventional 

FTIR spectroscopy, just like the work presented in Section 4.3.1. In contrast, the phase 

spectrum 𝜃𝜃(𝜔𝜔)  is relatively difficult to be obtained. Nonetheless, by analogy to 

Equation (33), for such a linear response system: 𝐸𝐸refl = 𝑟𝑟(𝜔𝜔)𝐸𝐸inc, the KK relation 

allows determining the imaginary part of In 𝑟𝑟(𝜔𝜔), that is 𝜃𝜃(𝜔𝜔), directly from the real 

part In�𝑅𝑅(𝜔𝜔) by [148, 149]: 

𝜃𝜃(𝜔𝜔) = −
𝜔𝜔
𝜋𝜋

P�
ln𝑅𝑅(𝜔𝜔)
𝑠𝑠2 − 𝜔𝜔2

∞

0
𝑑𝑑𝑠𝑠, (79) 

where P represents the principal part of the integral. Therefore, with the FTIR spectrum 

𝑅𝑅(𝜔𝜔) and the phase spectrum 𝜃𝜃(𝜔𝜔) by KK analysis (Equation (79)), the complex 

reflection coefficient 𝑟𝑟(𝜔𝜔)  for the three-layer system can be extracted by using 

Equation (78). From that experimental 𝑟𝑟(𝜔𝜔), the dielectric constant 𝜀𝜀(𝜔𝜔) of PtSe2 can 

be obtained by solving Equation (40) numerically. 

 With the methodology above, KK analysis was applied on the reflectivity 

spectrum 𝑅𝑅(𝜔𝜔)  of the 1013-nm-thick PtSe2 sample (Figure 11(b)). The phase 

spectrum 𝜃𝜃𝐾𝐾𝐾𝐾(𝜔𝜔) can be obtained by Equation (79) and the 𝜃𝜃𝐾𝐾𝐾𝐾(𝜔𝜔) spectrum with 

offset value 𝜋𝜋 is plotted as dotted red line in Figure 14(a). Calculation was performed 

by the use of the MATLAB programme given by V. Lucarini [150]. In Figure 14(a), 

the theoretically calculated 𝜃𝜃𝑎𝑎𝐿𝐿(𝜔𝜔) spectrum is also plotted, by the use of the LD-fitted 

dielectric constant of PtSe2, which is shown by red lines in Figure 12(a) and replotted 

as black lines in Figure 14(b). The theoretical 𝜃𝜃𝑎𝑎𝐿𝐿(𝜔𝜔) was calculated by finding the 
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argument of the theoretical effect reflection coefficient 𝑟𝑟(𝜔𝜔), which, for small incident 

angle, can be expressed by [151]: 

𝑟𝑟 =
𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑝𝑝

2
. (80) 

Figure 14(a) shows that although the phase spectrum 𝜃𝜃𝐾𝐾𝐾𝐾(𝜔𝜔) does not exactly match 

with the theoretical 𝜃𝜃𝑎𝑎𝐿𝐿(𝜔𝜔), it follows the general trend, especially in the frequency 

range 1000 – 3000 cm-1. As a result, although the numerically solved dielectric 

constant 𝜀𝜀𝐾𝐾𝐾𝐾(𝜔𝜔) from KK analysis, as shown in Figure 14(b), does not match well 

with the Lorentz-Drude one, 𝜀𝜀𝑎𝑎𝐿𝐿(𝜔𝜔), it follows the trend of 𝜀𝜀𝑎𝑎𝐿𝐿(𝜔𝜔). This confirms the 

validity of the Lorentz-Drude model fitted dielectric constant of the PtSe2 (Table 1 and 

Figure 12(a)). The LD fitted 𝜀𝜀(𝜔𝜔) will be used for studying the optical properties of 

the PtSe2. 
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Figure 14. Comparison between Kramers-Kronig (KK) analysis and Lorentz-Drude (LD) 

fitting. KK analysis was applied on the reflectivity spectrum of the 1013-nm-thick PtSe2 

flake on the Au substrate (Figure 11(b)). (a) Dash-dot line represents the phase spectrum 

𝜃𝜃(𝜔𝜔) of Fresnel reflection coefficient 𝑟𝑟(𝜔𝜔) by KK analysis (Equation (79)) of reflectivity 

spectrum 𝑅𝑅(𝜔𝜔) while black line refers to 𝜃𝜃(𝜔𝜔) calculated by LD model fitted 𝜀𝜀(𝜔𝜔) (Table 

1). (b) Black lines refer to dielectric constant 𝜀𝜀(𝜔𝜔) of the PtSe2 obtained by KK analysis 

while red lines refer to LD model fitted value as shown in Table 1. 

 

 Nano-Imaging of PtSe2 

As shown by FTIR reflectivity spectra in Figure 11, the PtSe2 flakes show 

Fabry–Pérot (FP) cavity effect, which is a characteristic effect for dielectric materials. 

Therefore, the air/PtSe2/SiO2/Si layered structure, should support the optical 

waveguide modes in MIR range. In this work, elastic s-SNOM was employed to image 

the waveguide modes of the PtSe2 directly in real-space. Figure 15 shows the 

schematic diagram of the nano-imaging on waveguide modes in PtSe2 near a specific 

sample edge, whose direction is represented by the y-axis. The x-axis represents the 

lateral scanning direction.  As mentioned in Section 2.5, a monochromatic p-polarized 
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laser beam with wavevector 𝑘𝑘0 and incident angle 𝛼𝛼 ≈ 40𝑡𝑡 is focused on the AFM tip 

during scanning. This illuminated AFM tip with apex radius 𝑎𝑎 ≈ 30 nm can generate 

a strong near field having a size in subwavelength dimension near the tip apex. During 

scanning, this nano-spot, which provides sufficient momentum to overcome the 

momentum mismatch between these modes and photons in air [53], can excite the 

waveguide modes inside the PtSe2 sample which is underneath the tip. It is known that 

the waveguide-induced nano-images is sensitive to the orientation of the sample edge 

near where the scanning is performed. Therefore, a sample-edge orientation angle 𝛼𝛼 is 

introduced in this work. As shown in the top view (Figure 15(b)), this angle 𝛼𝛼  is 

defined as the angle between the projected light beam direction kxy and the y-direction. 
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Figure 15. (a) Side view and (b) top view of the schematic diagram of near-field optical 

study of the PtSe2 flake. Waveguide modes are excited in the PtSe2 flake by the illuminated 

AFM tip. The y-axis represents the specific sample edge near which the scanning process is 

performed and the x-axis represents the lateral scanning direction. The incident direction of 

the laser is labeled by the angle 𝛼𝛼 ≈ 40𝑡𝑡. The angle 𝛼𝛼 is the sample-edge orientation angle, 

defined as the angle between the projected light beam direction 𝑘𝑘xy and the y-direction. The 

waveguide-induced nano-image is sensitive to that angle 𝛼𝛼. 
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As mentioned above, the waveguide-induced nano-image is sensitive to the 

sample-edge orientation angle 𝛼𝛼. That means when rotating the sample about the point 

of the AFM tip, and performing the scanning (still with lateral direction parallel with 

the x-axis and near the same sample edge represented by y-axis), a different image will 

be generated, even though the scanning is performed on the same sample and near the 

same sample edge. This phenomenon can be explained if the mechanism of signal 

collection is known. By adapting the idea of Hu [50], the backscattered signal 

collection processes for two specific cases with sample-edge orientations, 𝛼𝛼 = 60𝑡𝑡 

and 𝛼𝛼 = 240𝑡𝑡, are illustrated in Figures 16 (a) and (b) respectively. In both cases, the 

sample edges (represented the y-axis) are parallel to the cantilever of the AFM tip, but 

one edge is on the right size of the cantilever while another is on the left so that these 

edge orientations refer to different 𝛼𝛼. As shown in the top views in Figure 16 (a) and 

(b), and also referring to Figure 15(b), the sample-edge orientation angles for these 

two case are 𝛼𝛼 = 60𝑡𝑡 and 𝛼𝛼 = 240𝑡𝑡 respectively. For typical test in s-SNOM, there 

is only P1 pathway contribution to the backscattered signal, which refers to the light 

directly scattered in the AFM tip. For a sample supporting waveguide modes, there is 

another pathway, P2, contributing the backscattered signal. The formation of P2 is 

originated by the excitation of waveguide modes (with momentum 𝑘𝑘𝑝𝑝) inside PtSe2. 

These waveguide modes propagate radially and reach the edge of the PtSe2 and then 

partially scatters to air and then collected by the parabolic mirror. The parabolic mirror 

mainly collect the edge-scattered light with direction parallel to the incident beam, and 

thus the collected edge-scattered light has an angle 𝛼𝛼 (same value as the incident angle 

𝛼𝛼 = 40𝑡𝑡, as shown in Figure 15(a)) with the sample plane. As illustrated in Figures 16 

(a) and (b), although the P1 pathways are the same in different 𝛼𝛼, P2 pathways are 

different. As a result, it is expected that the s-SNOM images of the waveguide modes 
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are edge orientation dependent (𝛼𝛼 dependent). The results of the s-SNOM study of the 

579 nm PtSe2 flake on SiO2/Si substrate at the sample edge orientation angles 𝛼𝛼 = 60𝑡𝑡 

and 𝛼𝛼 = 240𝑡𝑡 are shown in Figure 17. Figures 17(a) and 17(b) refer to the original 

SNOM s3 (the third harmonic amplitude) images taken at frequency 𝜔𝜔 = 2519 cm−1 

and the corresponding line profiles. Here, interference fringes parallel to the edge of 

the PtSe2 are observed in both cases. Although images are taken from the same sample, 

the fringe patterns are different from one another. The baselines (cyan lines) of the line 

profiles are also plotted in Figures 17(a) and 17(b). Subtracting the baseline signals 

from the original ones, the baseline-corrected images and line-profiles can be obtained 

and are shown in Figures 17(c) and 17(d). Not only the baseline-corrected image for 

𝛼𝛼 = 60𝑡𝑡  but also the one for 𝛼𝛼 = 240𝑡𝑡  exhibits clear decaying property. Also, the 

fringe patterns are clearer after removing the envelop. Still, these baseline-corrected 

images for different 𝛼𝛼 are still different from each other.  
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Figure 16. Illustration of the collection of the backscattered signal. In additional to the 

common P1 pathway contribution, there is P2 pathway generated by optical waveguide 

modes (with momentum 𝑘𝑘𝑝𝑝) inside PtSe2. In each case, the edge is parallel to the cantilever 

of the AFM tip, but these cases refer to different sample edge orientation angles 𝛼𝛼. (a) refers 

to 𝛼𝛼 = 60𝑡𝑡 while (b) refers to 𝛼𝛼 = 240𝑡𝑡. 

 

The edge orientation dependence is not produced by other in-plane propagative 

modes such as the surface plasmon polaritons (SPP) and surface phonon polaritons 

(SPhP). By pervious s-SNOM study on SPP in graphene [41, 42] and SPhP in h-BN 

[43, 44] and 𝛼𝛼-MoO3 [45, 46], fringe patterns have also been imaged but they are 

independent on the edge orientation. For SPP and SPhP supporting materials, the s-

SNOM tip launches the polaritons which propagate as cylindrical wave and reflects at 

the edge of the sample and finally return to the tip position. It is the interference 

between tip-launched and the reflected polaritons produces the fringes in s-SNOM 

images. Based on this mechanism, the fringe patterns by SPP and SPhP are 
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independent of the edge orientation. On the other hand, pervious s-SNOM studies on 

materials supporting waveguide modes, such as MoSe2 [50] and MoS2 [51], show the 

edge orientation dependent. Therefore, the fringe patterns in the s-SNOM images taken 

on the PtSe2 (Figures 17(a) and 17(b)) should be originated from the waveguide modes 

inside the PtSe2 flake. 

 

Figure 17. Near-field optical study of a 579nm-thick PtSe2 flake on SiO2/Si substrate. 

Images are taken at 𝜔𝜔 = 2519 cm−1 with scanning area 5μm × 15μm. (a, b) s-SNOM s3 

images for 𝛼𝛼 = 60𝑡𝑡 and 𝛼𝛼 = 240𝑡𝑡. Blue lines refer to the corresponding line-profiles while 

cyan lines are the corresponding baselines. (c, d) The baseline-corrected result of (a) and 

(b). (e, f) Discrete Fourier Transform (DFT) analysis on the baseline-corrected profiles in 

(c) and (d) respectively. The black inverted triangle refers to air mode while other colored 

triangles indicate the type of waveguide modes inside the PtSe2 flake. Scalebars in (a-d) 

refer to 2 𝜇𝜇m. 
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 From Figures 17(c) and 17(d), the fringe patterns appear to be complicated and 

should be a superposition of different wavelengths. Therefore, Discrete Fourier 

Transform (DFT) analysis is performed on the baseline-corrected line-profiles in order 

to determine the correct fringe periodicities 𝜆𝜆app. Hanning windowing function was 

used for apodization in FT analysis. The obtained FT profiles are plotted in Figures 

17(e) and 17(f). There are multiple peaks in both FT profiles and these peaks refer to 

the apparent wavevectors �𝑘𝑘app = 2𝜋𝜋
𝜆𝜆app

� of the corresponding s3-profiles. According 

to the analysis below, these peaks refer to different types of propagation modes 

(marked by coloured downward-pointing triangles). One can see that the modes of 

same type appear to have different apparent wavevectors 𝑘𝑘app  for different edge 

orientations.  

 

 Edge Orientation Dependence 

In order to explore the nature of the sample edge orientation dependence of the 

fringe pattern, near-field optical study was performed at full range of the sample edge 

orientation angles, 0𝑡𝑡 < 𝛼𝛼 < 360𝑡𝑡 . The s-SNOM s3 images and the corresponding 

line-profiles (normalized to the signal of SiO2, as discussed in Section 2.7.6) are 

presented in Figure 18. As shown by the original images and line-profiles in Figures 

18(a) and 18(b), the interference fringes parallel to the edge of the PtSe2 flake occur at 

every 𝛼𝛼 but the patterns change with 𝛼𝛼. Every image appears to be superposition of 

the oscillations with different periodicities. Generally, the periodicities decrease from 

𝛼𝛼~0𝑡𝑡  to 𝛼𝛼~90𝑡𝑡  and then increase from  𝛼𝛼~90𝑡𝑡  to 𝛼𝛼~270𝑡𝑡  and finally decreases 
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again from 𝛼𝛼~270𝑡𝑡 to 𝛼𝛼~360𝑡𝑡. Another observation is that for angles near 𝛼𝛼~270𝑡𝑡, 

the fringe patterns only vary slightly, compared to other 𝛼𝛼 values. The envelop in the 

signal seems to hide the fringe pattern, especially for 222𝑡𝑡 ≤ 𝛼𝛼 ≤ 327𝑡𝑡. Nevertheless, 

The envelop can be removed by baseline-correction and the results is shown in Figures 

18(c) and 18(d). The fringe patterns are clearer for these baseline-corrected results and 

all the line-profiles appear to decay from the sample edge (x = 0 μm) , which is 

consistent with the assumption that the waveguide modes propagating radially from 

the tip.  
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Figure 18. Sample edge orientation dependence of the s-SNOM images of a 579nm-thick 

PtSe2 sample, taken at frequency 2519 cm−1  with scanning area 5μm × 15μm . (a, b) 

original near-field amplitude s3 images at various sample edge orientation angles 𝛼𝛼 and the 

corresponding line-profiles (normalized to the signal of SiO2.). (c, d) Baseline-corrected 

images and line-profiles of (a) and (b). Scalebars in (a) and (c) represent 2 μm.  
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In order to study the dependence of the periodicities 𝜆𝜆app  on the edge 

orientation angle 𝛼𝛼 , DFT analysis is performed on every baseline-corrected line-

profiles. The corresponding FT profiles are given in Figure 19(a), where the dominant 

peaks refer to apparent wavevectors �𝑘𝑘app = 2𝜋𝜋
𝜆𝜆app

� of the corresponding s3-profiles. 

These dominant peaks are marked with coloured squares which indicates the type of 

waveguide modes (or the air mode) they belong to, according to the dispersion analysis 

as will be discussed below. From Figure 19(a), one can see that each type of the in-

plane waveguide mode with specific in plane wavevector 𝑘𝑘p has different values of 

𝑘𝑘app  as 𝛼𝛼 varies. The variation of 𝑘𝑘app  appears to have a general trend for all the 

modes: for 0𝑡𝑡 ≤ 𝛼𝛼 ≤ 90𝑡𝑡, 𝑘𝑘app increases from its minimum and reaches it maximum 

at 𝛼𝛼 = 90𝑡𝑡 ; for 90𝑡𝑡 ≤ 𝛼𝛼 ≤ 270𝑡𝑡 , 𝑘𝑘app  decreases; for 270𝑡𝑡 ≤ 𝛼𝛼 ≤ 360𝑡𝑡 , 𝑘𝑘app 

increases again. Another observation is that, different from other modes, the apparent 

wavevectors 𝑘𝑘app of the air mode (marked by black squares, 𝑘𝑘p = 𝑘𝑘0) are unable to 

be resolved when 𝛼𝛼 is near 270o. It may be caused by the baseline remove process, in 

which the envelop of the signal is removed. Therefore, the envelop with large 

periodicity near 𝛼𝛼 = 270𝑡𝑡 seems to be originated from the air mode. 

To quantitively explore the dependence of the apparent wavevector 𝑘𝑘app of an 

waveguide mode with specific wavevector 𝑘𝑘p on 𝛼𝛼, one should refer back to Figuregf 

16, which show the schematic diagrams of the backscattered light collection for the 

sample supporting waveguide modes. There are two pathways, P1 and P2, for the 

backscattered light collected by the parabolic mirror. P1 refers to the light directly 

scattered at the tip and propagating parallel to the illuminating beam (black arrow). 

For P2, the illuminated tip excites in-plane modes which propagate radially and 
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partially scatter to air when the modes reach the edge. When the tip scans along the 

path perpendicular to the edge, the path difference between P1 and P2 varies and 

produces interference fringe pattern parallel to the edge. As suggested by Hu [50], due 

to the small collection angle of the parallel mirror, for P2 it only collects the edge-

scattered light parallel to the directly backscattered light (P1). Also, as illustrated in 

Figure 16, the edge-scattered light in P2 is mainly produced by the in-plane modes 

propagate with an angle 𝜙𝜙 relative to the shortest path to the edge, by the conservation 

of the momentum along the edge direction (generalized Snell’s law). Hu’s group [50] 

has studied two specific sample edge orientation cases, 𝛼𝛼 = 270𝑡𝑡  and 𝛼𝛼 = 0𝑡𝑡 , for 

which they refer to ‘perpendicular configuration’ and ‘parallel configuration’ 

respectively. Here, Hu’s idea is generalized to cover full range of edge orientation 

angle 𝛼𝛼. In this general case, the phase difference of the light between pathways P1 

and P2 is: 

𝜑𝜑 = 𝑘𝑘p
𝑥𝑥

cos𝜙𝜙
+ 𝑘𝑘0

𝑥𝑥
cos𝜙𝜙

sin(𝛼𝛼 − 𝜙𝜙) cos𝛼𝛼 (81) 

where 𝑘𝑘p is the in-plane wavenumber of waveguide modes, 𝑥𝑥 is the tip-edge distance, 

𝛼𝛼 ≈ 40𝑡𝑡 is the angle between the incident light and sample plane and  

𝜙𝜙 = sin−1 �
𝑘𝑘0
𝑘𝑘p

cos𝛼𝛼 cos𝛼𝛼� (82) 

is the propagating angle of tip-lunched waveguide modes. By substituting 𝑥𝑥 = 𝜆𝜆app 

and 𝜙𝜙 = 2𝜋𝜋 in Equation (81), one can obtain the general expression of the fringe 

width 𝜆𝜆app: 
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𝜆𝜆app =
𝜆𝜆p

1
cos𝜙𝜙 +

𝜆𝜆p
𝜆𝜆0

sin(𝛼𝛼 − 𝜙𝜙) cos𝛼𝛼
cos𝜙𝜙

, (83) 

where 𝜆𝜆p and 𝜆𝜆0 are the wavelengths of waveguide modes and free-space photons. 

This general form can be reduced to the ones derived by Hu’s group by putting 𝛼𝛼 =

270o and 0o . From Equations (82) and (83), one can find the expression of the 

apparent wavenumber 𝑘𝑘app by the relation 𝑘𝑘app = 2𝜋𝜋/𝜆𝜆app: 

𝑘𝑘app =
𝑘𝑘p + 𝑘𝑘0 sin �𝛼𝛼 − sin−1 �𝑘𝑘0𝑘𝑘p

cos𝛼𝛼 cos𝛼𝛼�� cos𝛼𝛼

cos �sin−1 �𝑘𝑘0𝑘𝑘p
cos𝛼𝛼 cos𝛼𝛼��

. (84) 

This equation relates the apparent wavenumber 𝑘𝑘app to the actual wavenumber 𝑘𝑘p of 

a waveguide mode, and it shows the 𝛼𝛼 dependence of 𝑘𝑘app.  

Figure 19(b) shows the variations of 𝑘𝑘app with 𝛼𝛼 by using Equation (84) for 

wavenumbers 𝑘𝑘p = 𝑘𝑘0, 1.8𝑘𝑘0, 3.6𝑘𝑘0, 4.7𝑘𝑘0. Experimental data points in Figure 19(a) 

are overlaid on these calculated results. The results by the derived Equation (84) and 

the experiment are consistent and therefore the validity of Equation (84) is confirmed. 

This consistence also validates the discussion about the variation of 𝑘𝑘app above: 𝑘𝑘app 

of  all the modes with wavenumber 𝑘𝑘p varies with similar trend and becomes smallest 

when 𝛼𝛼~270𝑡𝑡 . Also, 𝑘𝑘app of air mode (𝑘𝑘p = 𝑘𝑘0) becomes small and therefore, by 

𝜆𝜆app = 2𝜋𝜋
𝑘𝑘app

, the apparent wavelength of air mode becomes large (> 15μm) and can 

produces an envelope with large periodicity in the signal, as shown in Figures 18(a) 

and 18(b). By this full range edge orientation study, one can confirm that, for 2519 cm-
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1 excitation, a 579 nm-thick PtSe2 flake supports waveguide modes of types TM1 with 

𝑘𝑘p = 1.8𝑘𝑘0, TE1 with 𝑘𝑘p = 2.8𝑘𝑘0, TM0 with 𝑘𝑘p = 3.6𝑘𝑘0 and TE0 with 𝑘𝑘p = 4.7𝑘𝑘0. 

 

 

Figure 19. (a) FT-profiles of the baseline-corrected images and line-profiles in Figure 18(d). 

Colored squares represent different types of modes, as labelled in the top of the first FT-

profile. Profiles are displaced vertically for clarity. (b) Calculated variations of the apparent 

wavenumbers 𝑘𝑘app  of the propagative modes with wavenumbers 𝑘𝑘p =

𝑘𝑘0, 1.8𝑘𝑘0, 3.6𝑘𝑘0, 4.7𝑘𝑘0. The experiment data set in (a) is overlaid on them. 
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 Dispersion Analysis  

Following the study on edge orientation dependence of the fringe pattern, the 

excitation frequency (𝜔𝜔) dependence of the pattern is hoped to be explored. In Figure 

20, the original near-field optical amplitude s3 images and their baseline-corrected 

images at various MIR frequencies are shown. Also, the line-profiles are superimposed 

on the corresponding images. From Figure 20, as 𝜔𝜔 decreases, the periodicity of the 

fringes also decreases, and the patterns become less complex. In order to quantitatively 

study the 𝜔𝜔  dependence of the fringe periodicity, FT is imposed on the baseline-

corrected s3 line-profiles as shown in Figure 20(b) and the corresponding k-space 

profiles are plotted in Figure 21(a). The peaks in the FT profiles refer to the apparent 

wavenumbers 𝑘𝑘app of different waveguide modes (marked with inverted triangles). 

One can see that 𝑘𝑘app shifts to lower values as 𝜔𝜔 of the laser source is tuned lower. 

Also, TE1 and TM1 disappear as 𝜔𝜔 is tuned lower. 

Based on the obtained 𝑘𝑘app at different 𝜔𝜔 in Figure 21(a), one can construct 

the experimental dispersion relation 𝜔𝜔�𝑘𝑘p� (Section 2.2.5) of the waveguide modes 

by converting each 𝑘𝑘app to 𝑘𝑘p, with the use of Equation (84). The obtained dispersion 

data points (𝑘𝑘p,𝜔𝜔) are plotted as inverted triangles in Figures 21(c) and 21(d). These 

data points are overlaid on the theoretical dispersion curves (dash-dot lines) and 

dispersion colourmaps in where the bright regions refer to waveguide modes. 

According to the discussion on the loss function in Section 2.2.5.2, the dispersion 

colourmaps for TE and TM waveguide modes can be obtained by numerically 

evaluating the imaginary part of the Fresnel’s reflection coefficients for s-polarized 

light Im(rs) and p-polarized light Im(rp) respectively. The coefficients rs and rp for the 
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air/PtSe2/SiO2/Si layered structure can be calculated by applying the Transfer-Matrix 

Method (Section 2.2.3.2)). This method for obtaining the dispersion colourmap is 

widely used to study the dispersion relation of surface polaritons such SPP in graphene 

[41, 42] and SPhP in h-BN [43]. For the calculation, the in-plane dielectric constant 𝜀𝜀∥ 

of the PtSe2 is chosen to be the fitted value for 1013-nm-thick PtSe2 (Table 1 and 

Figure 12(a)). Although TE mode dispersion relation calculation only relies on in-

plane constant 𝜀𝜀∥, the TM mode calculation also requires the out-of-plane constant 𝜀𝜀⊥. 

The 𝜀𝜀⊥  is thus chosen to be 0.8 times the in-plane value to fit the experimental 

dispersion relations. Apart from the method based on loss function, the dispersion 

curves (dash-dot lines) can also be obtained by solving the eigenequations of the 

waveguide modes. The air/PtSe2/SiO2/Si structure is a 4-layer structure. Nonetheless, 

the fitted in-plane dielectric constant of PtSe2 (Figure 12) reveals that in MIR the PtSe2 

has much higher refractive index that that in the upper (𝜀𝜀air ≈ 1) and lower layers 

(𝜀𝜀Si ≈ 11.7), so that waveguide modes can be mostly confined to the PtSe2 layer. As 

a result, it is reasonable to approximate the system to be a three-layer system. As 

discussed in Section 2.2.5.1, the eigenequations for TE and TM waveguide modes for 

a 3-layer structure can be obtained by setting denominator of 𝑟𝑟(p,s) (Equation (40)) to 

be zero, that is, 1 + 𝑟𝑟1→2
(𝑠𝑠,𝑝𝑝)𝑟𝑟2→3

(𝑠𝑠,𝑝𝑝)𝑒𝑒2𝑗𝑗𝑘𝑘z2𝑑𝑑2 = 0. As a result, the eigenequations for TE and 

TM waveguide modes for the 3-layer structure (Air/PtSe2/SiO2) are [80, 152, 153] 

�𝜀𝜀2,∥𝑘𝑘0
2 − 𝑘𝑘p

2𝑑𝑑2 = tan−1

⎝

⎛
�𝑘𝑘p

2 − 𝜀𝜀1𝑘𝑘0
2

�𝜀𝜀2,∥𝑘𝑘0
2 − 𝑘𝑘p

2
⎠

⎞ + tan−1

⎝

⎛
�𝑘𝑘p

2 − 𝜀𝜀3𝑘𝑘0
2

�𝜀𝜀2,∥𝑘𝑘0
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⎠

⎞ +𝑚𝑚𝜋𝜋 (85) 

and 
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respectively, where 𝜀𝜀i is the dielectric constant of the layer i, 𝑑𝑑2 is the thickness of the 

second layer (PtSe2 in this case) and 𝑚𝑚 and 𝑛𝑛 are the order numbers (non-negative 

integers) of the waveguide modes.  

 

 

Figure 20. s-SNOM images taken at various frequencies 𝜔𝜔 for a 579 nm-thick PtSe2 sample 

at sample edge orientation angle 𝛼𝛼 = 253𝑡𝑡 with scanning area 5μm × 15μm. (a) Original 

near-field amplitude s3 images and the corresponding line-profiles (normalized to the signal 

of SiO2.). (b) Baseline-corrected images and line-profiles of (a). 
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From Figures 21(c) and 21(d), one can find that both methods predict the same 

dispersion relation 𝜔𝜔�𝑘𝑘p�of the PtSe2 structure. Also, there is a good agreement 

between the experiment data points and the calculated dispersion relations, and thus 

one can now identify the type of the waveguide modes for the peaks in the FT-profiles 

(Figure 21(a)). However, the air mode cannot be resolved due to the baseline-

correction process, which removes the air-mode-induced envelop of the signal. 

Therefore, similar test for 𝛼𝛼 = 61𝑡𝑡 was performed and the results is shown in Figure 

22(a). At this edge orientation, there is a dominant oscillation in each 𝜔𝜔, and it should 

be attributed to the air mode. By applying same methodology, the FT-profiles for 𝛼𝛼 =

61𝑡𝑡 are shown in Figure 21(b) and the corresponding dispersion data points are plotted 

(marked by coloured diamonds) in Figures 21(c) and 21(d). Although the TE1 modes 

cannot be resolved, the experimental data points for air mode match with the calculated 

results. Also, the extracted TE0 dispersion points agree with the calculated results. 

Therefore, the results at different 𝛼𝛼  are complementary. By dispersion analysis at 

several 𝛼𝛼, the dispersion relation of a sample can be extracted. Based on the same 

methodology, the same dispersion analysis is performed on the sample with a different 

PtSe2 thickness. The near-field images for a 696 nm-thick PtSe2 sample at 𝛼𝛼 = 272𝑡𝑡 

and 𝛼𝛼 = 64𝑡𝑡  are shown in Figures 23 and 22(b) respectively. The corresponding 

results of dispersion analysis are shown in Figure 24. Again, the experimental 

dispersion data points agree well with the calculated dispersion relation. 
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Figure 21. Dispersion analysis of a 579 nm-thick PtSe2 sample. (a, b) Fourier Transform 

profiles of baseline-corrected s3 line-profiles in Figure 16(b) (𝛼𝛼 = 253𝑡𝑡) and in Figure 22(a) 

(𝛼𝛼 = 61𝑡𝑡). Profiles are displaced vertically for clarity. (c, d) Experimental dispersion data 

points obtained by converting 𝑘𝑘app (found in (a) and (b)) to 𝑘𝑘p by Equation (84), overlaid 

on the calculated dispersion color-plots (Im�𝑟𝑟s,𝑝𝑝�) and calculated dispersion curves (colored 

lines) by numerically solving eigenequations (85) and (86). 

 

The FT analysis shown in Figures 21 and 24 reveals that not only the TM waveguide 

modes, but also the TE modes are excited and imaged by s-SNOM in MIR frequency. 

Although the aperture-type SNOM (a-SNOM) has been used to image both TE and 

TM modes in WSe2 [48], scattering-type SNOM (s-SNOM) with the use of p-polarized 

light source is believed to be only able to launch TM modes. Pervious study shows 
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that TM waveguide modes in MoSe2 can be excited and imaged by s-SNOM at visible 

frequency [50]. Nevertheless, Hu’s group [51] has successfully employed s-SNOM for 

imaging both TM and TE waveguide modes in MoS2 at NIR frequency. By studying 

PtSe2 in this work, s-SNOM successfully recovers the TE modes at MIR range for the 

first time. 

 

 

Figure 22. Baseline-corrected s-SNOM s3 images taken at various frequency 𝜔𝜔 for (a) a 579 

nm-thick PtSe2 sample with scanning area 5μm × 15μm at 𝛼𝛼 = 61𝑡𝑡 and (b) a 696 nm-thick 

PtSe2 sample at 𝛼𝛼 = 64𝑡𝑡. The corresponding original s3 line-profiles (normalized to the 

signal of SiO2.) are overlaid on images. Scalebars represent 2μm. Cyan lines represent the 

baselines of the original s3 profiles. 

  

(a) 
 = 2519 cm -1 

7 
8 
9 

s 3
(a

.u
.) 

d = 579nm,   = 61o 

 = 1910 cm -1 

12 

14 
16 

s 3
(a

.u
.) 

 = 1650 cm -1 

25 

30 
35 

s 3
(a

.u
.) 

 = 1380 cm -1 

40 

50 

s 3
(a

.u
.) 

(b) 
 = 2519 cm -1 

10 

12 

s 3
(a

.u
.) 

d = 696nm,   = 64o 

 = 1910 cm -1 

15 
16 
17 
18 
19 

s 3
(a

.u
.) 

 = 1650 cm -1 

24 
26 
28 

s 3
(a

.u
.) 

 = 1380 cm -1 

65 
70 
75 

s 3
(a

.u
.) 

s 3  (a.u.) 



95 
 

 

Figure 23. s-SNOM images taken at various frequencies 𝜔𝜔 for a 696nm-thick PtSe2 sample 

at sample edge orientation angles 𝛼𝛼 = 272𝑡𝑡 with scanning area 5μm × 15μm. (a) original 

near-field amplitude s3 images and the corresponding line-profiles (normalized to the signal 

of SiO2.). (b) Baseline-corrected images and line-profiles of (a). 
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Figure 24. Dispersion analysis of a 696nm-thick PtSe2 sample. (a, b) Fourier Transform 

profiles of the baseline-corrected s3 line-profiles in Figure 20(b) (𝛼𝛼 = 27𝑡𝑡) and in Figure 

22 (𝛼𝛼 = 64𝑡𝑡). Profiles are displaced vertically for clarity. (c, d) Experimental dispersion 

data points obtained by converting 𝑘𝑘app (found in (a) and (b)) to 𝑘𝑘p by Equation (84)), 

overlaid on the calculated dispersion color-plots and calculated dispersion curves (colored 

lines). 
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 Propagating Length 

In this Section, the propagating length of the waveguide modes is to be studied. 

Because the dielectric constant of PtSe2 (Section 4.3.2) is a complex value, the in-

plane propagation constant of a waveguide mode 𝑘𝑘p = √𝜀𝜀 is also a complex value, 

which has real part 𝑘𝑘p′  and imaginary part 𝑘𝑘p′′. For a tip-launched waveguide mode, its 

waveform is assumed as cylindrical wave 𝐸𝐸 = 𝐴𝐴
√𝑟𝑟
𝑒𝑒𝑖𝑖�𝑘𝑘p𝑟𝑟−𝑖𝑖𝑖𝑖� = 𝐴𝐴

√𝑟𝑟
𝑒𝑒−𝑘𝑘p′′𝑟𝑟𝑒𝑒𝑖𝑖�𝑘𝑘p′ 𝑟𝑟−𝑖𝑖𝑖𝑖� . 

Thus, the amplitude of intensity decays as 𝑒𝑒−2𝑘𝑘∥
′′𝑟𝑟∥ and the propagating length is 

𝐿𝐿𝑝𝑝 =
1

2𝑘𝑘p′′
=

1
2Im�𝑘𝑘p�

. (87) 

One can relate 𝑘𝑘p′′ to the waveguide modes’ wavenumber 𝑘𝑘p′  (Appendix D), so that 𝐿𝐿𝑝𝑝 

for TE modes and TM modes can be found by 𝑘𝑘p′  via the relations 

𝐿𝐿𝑝𝑝,TE(𝜔𝜔) =
𝑘𝑘p,TE
′ (𝜔𝜔)

Im(𝜀𝜀∥)𝑘𝑘0
2 =

𝑘𝑘p,TE
′ (𝜔𝜔)

𝜀𝜀∥′′𝑘𝑘0
2 (88) 

for TE modes, and 

𝐿𝐿𝑝𝑝,TM(𝜔𝜔) =

1
2𝑘𝑘𝑝𝑝,TM

′
𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′
𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′

1 −�1 + �
𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′
𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′

�
2

�1 −
�𝜀𝜀⊥′

2 + 𝜀𝜀⊥′′
2�𝜀𝜀∥′′𝑘𝑘02

�𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′�𝑘𝑘𝑝𝑝,TM
′ 2�

(89) 

for TM modes, where the inverse dispersions 𝑘𝑘p,TE
′ (𝜔𝜔) and 𝑘𝑘p,TM

′ (𝜔𝜔) can be obtained 

by solving the TE and TM eigenequations (85) and (86) respectively. The calculated 

𝐿𝐿𝑝𝑝 for 696 nm-thick and 579 nm-thick PtSe2 samples is shown in Figure 25. The 𝐿𝐿𝑝𝑝 

curves for TE modes have a similar shape with the skin depth of PtSe2 (Figure 12(c)), 
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which becomes maximum when 𝜔𝜔~1700 cm−1  and then keeps decreasing and 

becomes small for high frequency. Likewise, the 𝐿𝐿𝑝𝑝 for different TE waveguide modes 

of PtSe2 becomes maximum (about 4 μm  for the TE0 mode) near the frequency 

𝜔𝜔~1700 cm−1 because the imaginary part of the dielectric constant, Im(𝜀𝜀2), becomes 

minimum near that frequency (see Figure 12(a)). Afterwards, the propagation lengths 

𝐿𝐿𝑝𝑝 of different modes keep decrease when frequency increases because 𝐿𝐿𝑝𝑝 is inversely 

proportional to 𝜔𝜔2 (Equation (888888) with the relation 𝑐𝑐𝑘𝑘0 = 𝜔𝜔). On the other hand, 

the 𝐿𝐿𝑝𝑝 for the TM0 mode (Equation (89)) also has similar shape to that of TE modes, 

due to the assumption of small anisotropy (𝜀𝜀⊥ = 0.8𝜀𝜀∥). Figure 25 reveals that the 

waveguide modes in the PtSe2 have propagating length between about 1 and  4 μm, 

which is much smaller than the case in MoSe2, which can be as large as 10 μm near 

𝐸𝐸 = 1.3 eV [50]. This relatively short propagating length of the PtSe2 is consistent 

with the s-SNOM images as shown in Figures 20, 22 and 23. The smaller 𝐿𝐿𝑝𝑝(𝜔𝜔) may 

be due to the higher imaginary part of the in-plane and out-of-plane dielectric constant 

of the PtSe2, as compared to MoSe2, which has near zero values for both near excitation 

energy 𝐸𝐸 = 1.3 eV [146, 154]. 
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Figure 25. Propagation lengths 𝐿𝐿p of TE0, TE1 and TM0 waveguide modes in 696 nm-thick 

and 579 nm-thick PtSe2 samples. 

 

 Nano-FTIR Study 

Following the study of waveguide modes in the PtSe2, the dependence of near-

field amplitude 𝑠𝑠  on frequency 𝜔𝜔  is explored. In Figure 22, s-SNOM images and 

corresponding line-profiles for the PtSe2 with thicknesses 579 nm and 696 nm are 

shown. One can see that in each image the 𝑠𝑠3  signal normalized to SiO2 (or 

equivalently the near-field contrast 𝜂𝜂3, as discussed in Section 2.7.6) fluctuate about a 

mean value, as indicated by the baseline (cyan line). In Figure 26(a), the data points of 

the mean values against 𝜔𝜔 are plotted. The data points agree qualitatively with the 

calculated near-field spectrum 𝜂𝜂3,PtSe2/SiO2(𝜔𝜔), by using the finite dipole model for 

bulk sample (Equation (59)). The experimental and theoretical results also show 𝜂𝜂3 
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the SiO2 substrate [119]. This method can obtain spectrum 𝜂𝜂n(𝜔𝜔)  but it is very 

inefficient. By contrast, nano-FTIR provides a powerful way to obtain 𝜂𝜂n(𝜔𝜔) in a 

single measuring process and in nano-scale resolution. Figure 26(b) shows the 

measured 𝜂𝜂3(𝜔𝜔) spectra for 87 nm-thick and 260 nm-thick PtSe2 on Au substrate, by 

employing nano-FTIR. The measured result for d = 87nm has a good agreement with 

the calculated result, which is obtained by the Finite Dipole model for thin film 

(Equation (62)). For the 260 nm-thick sample, although the measured 𝜂𝜂3(𝜔𝜔) does not 

match with the theory (Equation (59)), it has a similar shape with the calculated 𝜂𝜂3(𝜔𝜔). 

 

 

Figure 26. (a) The near-field spectra 𝜂𝜂3(𝜔𝜔) of the PtSe2, extracted from the s-SNOM images 

in Figure 22, overlaid on the calculated result by Finite dipole model. (b) The near-field 

spectra 𝜂𝜂2(𝜔𝜔) of PtSe2, measured by nano-FTIR, overlaid on the calculated result by Finite 

dipole model. 
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 Summary 

Using state-of-art scattering-type near-field optical microscope (s-SNOM), the 

optical waveguide modes inside the PtSe2 flakes were imaged in real space with 

nanoscale resolution. The fringe patterns were observed, in spite of the short 

propagating lengths of these modes. With Fourier analysis, the sample edge orientation 

dependence of these patterns was studied. Also, by dispersion analysis, the dispersion 

relations of the waveguide modes were extracted, as well as confirmed by the theory. 

Interestingly, in addition to the commonly observed TM modes, the TE modes were 

also visualised in MIR range. This work shows the applicability of s-SNOM in MIR 

waveguide mode imaging. In addition, our work shows the MIR range complex 

dielectric constant of the PtSe2 found by conventional far-field FTIR spectroscopy, 

which reveals the dielectric nature of bulk PtSe2 in MIR region, although it is believed 

to be semimetallic. The far-field analysis shows that The PtSe2 become less absorptive 

near the frequency 𝜔𝜔~1700 cm−1 , where the skin depth becomes maximum. The 

analysis also found that the free charge carrier concentration of PtSe2 is 𝑁𝑁 =

2.44 × 1019 cm−3. Apart from far-field FTIR, the near-field nano-FTIR was 

employed to measure the near-field spectra of the PtSe2 and in good agreement with 

the calculated spectra from FD model.  
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5 Conclusion and Future Works 

s-SNOM and nano-FTIR are novel techniques to break the diffraction limit to 

perform nanoscale measurements and are possible for nanoelectronics and 

nanophotonic studies. In this thesis, the basic working principle of s-SNOM and nano-

FTIR are introduced. Also, necessary theories, particularly, the Fresnel’s coefficients, 

complex dielectric constant and Finite Dipole (FD) Model are presented. They are 

necessary for predicting s-SNOM and nano-FTIR signal. Moreover, the Fresnel’s 

coefficients and complex dielectric constant are necessary for calculating the 

dispersion relation of electromagnetic in-plane modes which is useful for the nano-

optical study of PtSe2 flakes in this work. Inspired by the conventional-FTIR spectra 

which show the dielectric nature of the PtSe2 flakes, s-SNOM and nano-FTIR were 

employed to perform nano-optical study of the waveguide modes of PtSe2 flakes. As 

confirmed by the theory, the dispersion relations of these modes can be extracted. This 

work paves the way for the use of s-SNOM to study nano-waveguides and future 

nanophotonic circuits. 

For the future, nano-imaging should be performed on sample with different 

substrates such as Au and at other frequency such as the NIR range, so as to further 

confirm the analysis methodology in this work. Also, more precise measurement of 

the dielectric constant is required. Nano-FTIR microscopy may be a promising 

technique to achieve it [35-37]. It is also of importance if both the in-plane and out-of-

plane dielectric constant can be obtained, and thus more precise dispersion relations 

can be calculated. Besides waveguide properties, s-SNOM and nano-FTIR may be 

capable of studying the layer dependent electronic properties of PtSe2 and measuring 

the free carrier concentration of nano-electronics devices made up of PtSe2 or other 
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2D materials. The dispersion analysis may allow the calculation of the group velocity 

𝑣𝑣𝑏𝑏 = d𝑖𝑖
d𝑘𝑘𝑝𝑝

 and the density of states (DOS) of in-plane propagation modes of PtSe2 or 

other materials. 
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Appendix A: Demodulated Signal with Direct Detection 

The backscattered field 𝐸𝐸s after modulating the distance between the tip and sample 
surface with frequency Ω is: 

𝐸𝐸s = 𝐸𝐸𝑖𝑖 �𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

, 

where 𝜎𝜎𝑛𝑛 = σnf,𝑛𝑛 + σbg,𝑛𝑛. 

The detected signal 𝑈𝑈 is proportional to the intensity 𝐼𝐼 of the field 𝐸𝐸s: 

 

𝑈𝑈 ∝ 𝐸𝐸s𝐸𝐸s∗ = 𝐸𝐸𝑖𝑖2 ��𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

���𝜎𝜎𝑛𝑛∗𝑒𝑒−𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

� (A. 1) 

𝑈𝑈 ∝ 𝐸𝐸𝑖𝑖2

⎣
⎢
⎢
⎡

(𝜎𝜎0𝜎𝜎0∗ + 𝜎𝜎1𝜎𝜎1∗ + 𝜎𝜎2𝜎𝜎2∗ + ⋯ )
+(𝜎𝜎1𝜎𝜎0∗ + 𝜎𝜎2𝜎𝜎1∗ + 𝜎𝜎3𝜎𝜎2∗ + ⋯ )𝑒𝑒𝑖𝑖Ω𝑖𝑖 + (𝜎𝜎1∗𝜎𝜎0 + 𝜎𝜎2∗𝜎𝜎1 + 𝜎𝜎3∗𝜎𝜎2 + ⋯ )𝑒𝑒−𝑖𝑖Ω𝑖𝑖

+(𝜎𝜎2𝜎𝜎0∗ + 𝜎𝜎3𝜎𝜎1∗ + 𝜎𝜎4𝜎𝜎2∗ + ⋯ )𝑒𝑒𝑖𝑖2Ω𝑖𝑖 + (𝜎𝜎2∗𝜎𝜎0 + 𝜎𝜎3∗𝜎𝜎1 + 𝜎𝜎4∗𝜎𝜎2 + ⋯ )𝑒𝑒−𝑖𝑖2Ω𝑖𝑖
+⋯ ⎦

⎥
⎥
⎤
 

= 𝐸𝐸𝑖𝑖2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗∗

∞

𝑗𝑗=0
+[(𝜎𝜎1𝜎𝜎0∗ + 𝜎𝜎1∗𝜎𝜎0) + (𝜎𝜎2𝜎𝜎1∗ + 𝜎𝜎2∗𝜎𝜎1) + (𝜎𝜎3𝜎𝜎2∗ + 𝜎𝜎3∗𝜎𝜎2) + ⋯ ] cosΩ𝑡𝑡
+𝑖𝑖[(𝜎𝜎1𝜎𝜎0∗ − 𝜎𝜎1∗𝜎𝜎0) + (𝜎𝜎2𝜎𝜎1∗ − 𝜎𝜎2∗𝜎𝜎1) + (𝜎𝜎3𝜎𝜎2∗ − 𝜎𝜎3∗𝜎𝜎2) +⋯ ] sinΩ𝑡𝑡
+[(𝜎𝜎2𝜎𝜎0∗ + 𝜎𝜎2∗𝜎𝜎0) + (𝜎𝜎3𝜎𝜎1∗ + 𝜎𝜎3∗𝜎𝜎1) + (𝜎𝜎4𝜎𝜎2∗ + 𝜎𝜎4∗𝜎𝜎2) + ⋯ ] cos2Ω𝑡𝑡
+𝑖𝑖[(𝜎𝜎2𝜎𝜎0∗ − 𝜎𝜎2∗𝜎𝜎0) + (𝜎𝜎3𝜎𝜎1∗ − 𝜎𝜎3∗𝜎𝜎1) + (𝜎𝜎4𝜎𝜎2∗ − 𝜎𝜎4∗𝜎𝜎2) + ⋯ ] sin2Ω𝑡𝑡

+⋯ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

= 𝐸𝐸𝑖𝑖2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗∗

∞

𝑗𝑗=0

+��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−1∗ + 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−1�
∞

𝑗𝑗=1

cosΩ𝑡𝑡 + 𝑖𝑖��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−1∗ − 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−1�
∞

𝑗𝑗=1

sinΩ𝑡𝑡

+��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−2∗ + 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−2�
∞

𝑗𝑗=2

cos2Ω𝑡𝑡 + 𝑖𝑖��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−2∗ − 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−2�
∞

𝑗𝑗=2

sin2Ω𝑡𝑡

+⋯ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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= 𝐸𝐸𝑖𝑖2

⎩
⎪⎪
⎨

⎪⎪
⎧ �𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗∗

∞

𝑗𝑗=0

� ���𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−𝑛𝑛∗ + 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−𝑛𝑛�
∞

𝑗𝑗=𝑛𝑛

cos nΩ𝑡𝑡 + 𝑖𝑖��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−𝑛𝑛∗ − 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−𝑛𝑛�
∞

𝑗𝑗=𝑛𝑛

sin nΩ𝑡𝑡�
∞

𝑛𝑛=1
+⋯ ⎭

⎪⎪
⎬

⎪⎪
⎫

 

For n ≥ 1, the nth
 order demodulated signal 𝑈𝑈𝑛𝑛 is the cosine component: 

𝑈𝑈𝑛𝑛 ∝ 𝐸𝐸𝑖𝑖2��𝜎𝜎𝑗𝑗𝜎𝜎𝑗𝑗−𝑛𝑛∗ + 𝜎𝜎𝑗𝑗∗𝜎𝜎𝑗𝑗−𝑛𝑛�
∞

𝑗𝑗=𝑛𝑛

 

∵ 𝜎𝜎0 ⋙ 𝜎𝜎1 > 𝜎𝜎2 > ⋯ 

∴ 𝑈𝑈𝑛𝑛 ∝ 𝐸𝐸𝑖𝑖2(𝜎𝜎𝑛𝑛𝜎𝜎0∗ + 𝜎𝜎𝑛𝑛∗𝜎𝜎0) 

∴ 𝐼𝐼𝑛𝑛 = 𝐸𝐸𝑖𝑖2��𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛 + 𝜎𝜎𝑏𝑏,𝑛𝑛��𝜎𝜎𝑛𝑛𝑓𝑓,0
∗ + 𝜎𝜎𝑏𝑏,0

∗�+ �𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛
∗ + 𝜎𝜎𝑏𝑏,𝑛𝑛

∗��𝜎𝜎𝑛𝑛𝑓𝑓,0 + 𝜎𝜎𝑏𝑏,0�� 

∵ 𝜎𝜎𝑏𝑏,0
∗ ≫ 𝜎𝜎𝑛𝑛𝑓𝑓,0

∗ 

∴ 𝑈𝑈𝑛𝑛 ∝ 𝐸𝐸𝑖𝑖2��𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛 + 𝜎𝜎𝑏𝑏,𝑛𝑛��𝜎𝜎𝑏𝑏,0
∗� + �𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛

∗ + 𝜎𝜎𝑏𝑏,𝑛𝑛
∗��𝜎𝜎𝑏𝑏,0�� 

Assuming 𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛 ≫ 𝜎𝜎𝑏𝑏,0 for high n,  

𝑈𝑈𝑛𝑛 ∝ 𝐸𝐸𝑖𝑖2�𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛𝜎𝜎𝑏𝑏,0
∗ + 𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛

∗𝜎𝜎𝑏𝑏,0� 

𝐼𝐼𝑛𝑛 = 𝐸𝐸𝑖𝑖2 ⋅ 2Re�𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛𝜎𝜎𝑏𝑏,0
∗� 

𝐼𝐼𝑛𝑛 = 2𝐸𝐸𝑖𝑖2Re �𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛𝑠𝑠𝑏𝑏,0
∗𝑒𝑒𝑖𝑖�𝜙𝜙𝑛𝑛𝑛𝑛,𝑛𝑛−𝜙𝜙𝑏𝑏,0�� 

𝐼𝐼𝑛𝑛 = 2𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖2𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛𝑠𝑠𝑏𝑏,0
∗ cos�𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜙𝜙𝑏𝑏,0� 

∴ 𝑈𝑈𝑛𝑛 ∝ 𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛𝑠𝑠𝑏𝑏,0
∗ cos�𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜙𝜙𝑏𝑏,0� (A. 2) 
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Appendix B: Demodulated Signal with Pseudo-heterodyne 

detection 

The detected signal is proportional to the intensity of the combination of backscattered and 
reference field: 

𝑈𝑈 ∝ �𝐸𝐸s + 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓��𝐸𝐸s∗ + 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗� (B. 1) 

The reference mirror is vibrating with frequency M, and thus modulating the phase of the 
reference wave: 

𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 = 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 sin(𝑀𝑀𝑖𝑖)+𝑖𝑖𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛 . 

Expressing in Fourier series, one can have 

𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 = � 𝜌𝜌𝑚𝑚𝑒𝑒𝑖𝑖𝑚𝑚𝑀𝑀𝑖𝑖
∞

𝑚𝑚=−∞

,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝜌𝜌𝑚𝑚 = 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝐽𝐽𝑚𝑚(𝛾𝛾)𝑒𝑒𝑖𝑖𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛+𝑖𝑖
𝑚𝑚𝜋𝜋
2  𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚 𝑖𝑖𝑠𝑠 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑔𝑔𝑒𝑒𝑟𝑟𝑠𝑠 

From Equation (B. 1), we obtain: 

𝑈𝑈 ∝ 𝐸𝐸s𝐸𝐸s∗ + 𝐸𝐸s𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗ + 𝐸𝐸s∗𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 + 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗ (B. 2) 

The first term in Equation (B. 2) is just the same as Equation (A. 1). In other word, if we 
demodulate the signal in order n, there is still background contribution. The last term in 
Equation (B. 2) is useless because if involves no backscattered field. Therefore, the focus is 
the second plus the third term, 𝐸𝐸s𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗ + 𝐸𝐸s∗𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓. 

𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗ = 𝐸𝐸𝑖𝑖 ��𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

�� � 𝜌𝜌𝑚𝑚𝑒𝑒𝑖𝑖𝑚𝑚𝑀𝑀𝑖𝑖
∞

𝑚𝑚=−∞

� 

∝ � 𝜎𝜎0𝜌𝜌1∗𝑒𝑒−𝑖𝑖𝑀𝑀𝑖𝑖 + 𝜎𝜎0𝜌𝜌2∗𝑒𝑒−𝑖𝑖2𝑀𝑀𝑖𝑖 + ⋯
+𝜎𝜎0𝜌𝜌−1∗𝑒𝑒𝑖𝑖𝑀𝑀𝑖𝑖 + 𝜎𝜎0𝜌𝜌−2∗𝑒𝑒𝑖𝑖2𝑀𝑀𝑖𝑖 + ⋯

�+ � 𝜎𝜎1𝜌𝜌1∗𝑒𝑒𝑖𝑖(Ω−𝑀𝑀)𝑖𝑖 + 𝜎𝜎1𝜌𝜌2∗𝑒𝑒−𝑖𝑖(Ω−2𝑀𝑀)𝑖𝑖 + ⋯
+𝜎𝜎1𝜌𝜌−1∗𝑒𝑒𝑖𝑖(Ω−𝑀𝑀)𝑖𝑖 + 𝜎𝜎1𝜌𝜌−2∗𝑒𝑒𝑖𝑖(Ω−2𝑀𝑀)𝑖𝑖 + ⋯

� + ⋯

+ � 𝜎𝜎𝑛𝑛𝜌𝜌1∗𝑒𝑒𝑖𝑖(𝑛𝑛Ω−𝑀𝑀)𝑖𝑖 + 𝜎𝜎𝑛𝑛𝜌𝜌2∗𝑒𝑒−𝑖𝑖(𝑛𝑛Ω−2𝑀𝑀)𝑖𝑖 + ⋯
+𝜎𝜎𝑛𝑛𝜌𝜌−1∗𝑒𝑒𝑖𝑖(𝑛𝑛Ω−𝑀𝑀)𝑖𝑖 + 𝜎𝜎𝑛𝑛𝜌𝜌−2∗𝑒𝑒𝑖𝑖(𝑛𝑛Ω−2𝑀𝑀)𝑖𝑖 + ⋯

� + ⋯ 

= � 𝜎𝜎0𝜌𝜌𝑚𝑚∗𝑒𝑒−𝑖𝑖𝑚𝑚𝑀𝑀𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎1𝜌𝜌𝑚𝑚∗𝑒𝑒𝑖𝑖(Ω−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎2𝜌𝜌𝑚𝑚∗𝑒𝑒𝑖𝑖(2Ω−𝑚𝑚𝑀𝑀)𝑖𝑖 + ⋯
∞

𝑚𝑚=−∞

+ � 𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗𝑒𝑒𝑖𝑖(𝑛𝑛Ω−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞

+ ⋯ 

 



117 
 

𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗ + 𝐸𝐸s∗𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 ∝

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� 𝜎𝜎0𝜌𝜌𝑚𝑚∗𝑒𝑒−𝑖𝑖𝑚𝑚𝑀𝑀𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎0∗𝜌𝜌𝑚𝑚𝑒𝑒𝑖𝑖𝑚𝑚𝑀𝑀𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎1𝜌𝜌𝑚𝑚∗𝑒𝑒𝑖𝑖(Ω−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎1∗𝜌𝜌𝑚𝑚𝑒𝑒−𝑖𝑖(Ω−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞
+⋯

+ � 𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗𝑒𝑒𝑖𝑖(nΩ−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞

+ � 𝜎𝜎𝑛𝑛∗𝜌𝜌𝑚𝑚𝑒𝑒−𝑖𝑖(nΩ−𝑚𝑚𝑀𝑀)𝑖𝑖
∞

𝑚𝑚=−∞
+⋯ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� (𝜎𝜎0𝜌𝜌𝑚𝑚∗ + 𝜎𝜎0∗𝜌𝜌𝑚𝑚) cos(−𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞

+ 𝑖𝑖 � (𝜎𝜎0𝜌𝜌𝑚𝑚∗ − 𝜎𝜎0∗𝜌𝜌𝑚𝑚) sin(−𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞

+ � (𝜎𝜎1𝜌𝜌𝑚𝑚∗ + 𝜎𝜎1∗𝜌𝜌𝑚𝑚) cos(Ω−𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞

+ 𝑖𝑖 � (𝜎𝜎1𝜌𝜌𝑚𝑚∗ − 𝜎𝜎1∗𝜌𝜌𝑚𝑚) sin(Ω−𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞
+⋯

+ � (𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗ + 𝜎𝜎𝑛𝑛∗𝜌𝜌𝑚𝑚) cos(nΩ −𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞

+ 𝑖𝑖 � (𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗ − 𝜎𝜎𝑛𝑛∗𝜌𝜌𝑚𝑚) sin(nΩ−𝑚𝑚𝑚𝑚𝑡𝑡)
∞

𝑚𝑚=−∞
+⋯ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

Demodulating the signal in side-bands nΩ −𝑚𝑚𝑚𝑚𝑡𝑡  but not nΩ , we obtain the 
demodulated signal: 

𝑈𝑈𝑛𝑛,𝑚𝑚 ∝ 𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗ + 𝜎𝜎𝑛𝑛∗𝜌𝜌𝑚𝑚 

= 2Re(𝜎𝜎𝑛𝑛𝜌𝜌𝑚𝑚∗) 

= 2Re �𝑠𝑠𝑛𝑛𝑒𝑒𝑖𝑖𝜙𝜙𝑛𝑛 ⋅ 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓∗𝐽𝐽𝑚𝑚(𝛾𝛾)∗𝑒𝑒−𝑖𝑖�𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛+𝑖𝑖
𝑚𝑚𝜋𝜋
2 �� 

= 2𝑠𝑠𝑛𝑛𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝐽𝐽𝑚𝑚(𝛾𝛾) cos �𝜙𝜙𝑛𝑛 − 𝜓𝜓𝑟𝑟𝑒𝑒𝑓𝑓 − 𝑖𝑖
𝑚𝑚𝜋𝜋

2
� 

≈ 2𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝐽𝐽𝑚𝑚(𝛾𝛾) cos �𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜓𝜓𝑟𝑟𝑒𝑒𝑓𝑓 − 𝑖𝑖
𝑚𝑚𝜋𝜋

2
�  for high enough demoduation order 

⟹

𝑈𝑈𝑛𝑛,𝑚𝑚

𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝐽𝐽𝑚𝑚(𝛾𝛾) = 𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛 sin�𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜓𝜓𝑟𝑟𝑒𝑒𝑓𝑓� = Im�𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛𝑒𝑒−𝑖𝑖𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛�  for odd m

𝑈𝑈𝑛𝑛,𝑚𝑚

𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝐽𝐽𝑚𝑚(𝛾𝛾) = 𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛 cos�𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜓𝜓𝑟𝑟𝑒𝑒𝑓𝑓� = Re�𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛𝑒𝑒−𝑖𝑖𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛�  for even m
 

Assuming 𝐽𝐽𝑗𝑗(𝛾𝛾) = 𝐽𝐽𝑙𝑙(𝛾𝛾) , and introducing a complex constant κ = 𝑒𝑒𝑖𝑖𝜓𝜓𝑟𝑟𝑟𝑟𝑛𝑛

𝑠𝑠𝑟𝑟𝑟𝑟𝑛𝑛
, we can 

obtain: 

𝜎𝜎𝑛𝑛𝑓𝑓,𝑛𝑛 =
κ

𝐽𝐽𝑗𝑗(𝛾𝛾) �𝑈𝑈𝑛𝑛,𝑗𝑗 + 𝑖𝑖𝑈𝑈𝑛𝑛,𝑙𝑙� 
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Appendix C: Demodulated Signal for Nano-FTIR 

The backscattered field 𝐸𝐸sca after modulating the distance between the tip and sample surface 
with frequency Ω is: 

𝐸𝐸sca = 𝐸𝐸inc�𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

 

where 𝜎𝜎𝑛𝑛 = σnf,𝑛𝑛 + σb,𝑛𝑛. 

On the other hand, the reference field is: 

𝐸𝐸ref = 𝜎𝜎ref𝐸𝐸inc = 𝑠𝑠ref𝑒𝑒𝑖𝑖𝜙𝜙ref𝐸𝐸inc 

The detected signal U is proportional to the intensity of the combination of 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 and 𝐸𝐸sca, 
therefore, 

𝑈𝑈 ∝ �𝐸𝐸sca + 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓��𝐸𝐸sca∗ + 𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓∗� 

= 𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖2 ��𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

+ 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛���𝜎𝜎𝑛𝑛∗𝑒𝑒−𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

+ 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒−𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛� 

∝ ��𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

���𝜎𝜎𝑛𝑛∗𝑒𝑒−𝑖𝑖𝑛𝑛Ω𝑖𝑖
∞

𝑛𝑛=0

� + 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓2 + �𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝜎𝜎𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛Ω𝑖𝑖𝑒𝑒−𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛
∞

𝑛𝑛=0

+ 𝑖𝑖 � 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝜎𝜎𝑛𝑛∗𝑒𝑒−𝑖𝑖𝑛𝑛Ω𝑖𝑖𝑒𝑒𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛
∞

𝑛𝑛=0

 

= 𝐸𝐸sca2 + 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓2 + �𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓�𝜎𝜎𝑛𝑛𝑒𝑒−𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛 + 𝜎𝜎𝑛𝑛∗𝑒𝑒𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛� cos𝑛𝑛Ω𝑡𝑡
∞

𝑛𝑛=0

+ 𝑖𝑖 � 𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓�𝜎𝜎𝑛𝑛𝑒𝑒−𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛 − 𝜎𝜎𝑛𝑛∗𝑒𝑒𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛� sin𝑛𝑛Ω𝑡𝑡
∞

𝑛𝑛=0

 

The first term is the same as Equation (A. 1), thus the contribution for nth order 
demodulation follows the Equation (69) and is equal to 𝑠𝑠nf,𝑛𝑛𝑠𝑠bg,0

∗ cos�𝜙𝜙nf,𝑛𝑛 − 𝜙𝜙bg,0�. The 
third term shows extra contribution for the demodulated signal in nΩ: 

𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓�𝜎𝜎𝑛𝑛𝑒𝑒−𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛 + 𝜎𝜎𝑛𝑛∗𝑒𝑒𝑖𝑖𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛� = 2𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓Re �𝑠𝑠𝑛𝑛𝑒𝑒𝑖𝑖�𝜙𝜙𝑛𝑛−𝜙𝜙𝑟𝑟𝑟𝑟𝑛𝑛�� = 2𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑛𝑛 cos�𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑟𝑟𝑒𝑒𝑓𝑓�

≈ 2𝑠𝑠𝑟𝑟𝑒𝑒𝑓𝑓𝑠𝑠𝑛𝑛𝑓𝑓,𝑛𝑛 cos�𝜙𝜙𝑛𝑛𝑓𝑓,𝑛𝑛 − 𝜙𝜙𝑟𝑟𝑒𝑒𝑓𝑓�  for high demodulation order 𝑛𝑛 

As a result, the total demodulated signal in nΩ is: 

𝑈𝑈𝑛𝑛 ∝ 𝑠𝑠nf,𝑛𝑛[𝑠𝑠b,0 cos�𝜑𝜑nf,𝑛𝑛 − 𝜑𝜑b,0�+ 𝑠𝑠ref cos�𝜑𝜑nf,𝑛𝑛 − 𝜑𝜑ref�] 
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Appendix D: Relation between Real and Imaginary Part of 

k|| 

According to Equation (36) and assuming medium is uniaxial and is non-magnetic so 
that 𝜇𝜇 = 1, one can have the relation for propagation constant of a TE in-plane mode 

𝑘𝑘∥2 = 𝜀𝜀∥𝑘𝑘02 − 𝑘𝑘z2 

�𝑘𝑘∥′ + 𝑖𝑖𝑘𝑘∥′′�
2 = �𝜀𝜀∥′ + 𝑖𝑖𝜀𝜀∥′′�𝑘𝑘02 − 𝑘𝑘z2 

𝑘𝑘∥′
2 − 𝑘𝑘∥′′

2 + 𝑖𝑖�2𝑘𝑘∥′𝑘𝑘∥′′� = 𝜀𝜀∥′𝑘𝑘02 − 𝑘𝑘z2 + 𝑖𝑖�𝜀𝜀∥′′𝑘𝑘02� 

Comparing the imaginary part, one can have the relation between 𝑘𝑘∥′ and 𝑘𝑘∥′′: 

𝑘𝑘∥,TE
′′ =

𝜀𝜀∥′′𝑘𝑘02

𝑘𝑘∥′
. (D. 1) 

For TM modes, the relation for propagation constant should be modified to 

𝑘𝑘∥2 = 𝜀𝜀⊥𝑘𝑘02 −
𝜀𝜀⊥
𝜀𝜀∥
𝑘𝑘z2 

𝜀𝜀∥
𝜀𝜀⊥
𝑘𝑘∥2 = 𝜀𝜀∥𝑘𝑘02 − 𝑘𝑘z2 

𝜀𝜀∥′ + 𝑖𝑖𝜀𝜀∥′′

𝜀𝜀⊥′ + 𝑖𝑖𝜀𝜀⊥′′
�𝑘𝑘∥′ + 𝑖𝑖𝑘𝑘∥′′�

2 = �𝜀𝜀∥′ + 𝑖𝑖𝜀𝜀∥′′�𝑘𝑘02 − 𝑘𝑘z2 

�𝜀𝜀∥′ + 𝑖𝑖𝜀𝜀∥′′�(𝜀𝜀⊥′ − 𝑖𝑖𝜀𝜀⊥′′)
𝜀𝜀⊥′

2 + 𝜀𝜀⊥′′
2 �𝑘𝑘∥′

2 − 𝑘𝑘∥′′
2 + 𝑖𝑖�2𝑘𝑘∥′𝑘𝑘∥′′�� = 𝜀𝜀∥′𝑘𝑘02 − 𝑘𝑘z2 + 𝑖𝑖�𝜀𝜀∥′′𝑘𝑘02� 

Expanding the equation and comparing the imaginary parts of both sides, it gives 

2𝑘𝑘∥′𝑘𝑘∥′′�𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′�+ �𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′��𝑘𝑘∥′
2 − 𝑘𝑘∥′′

2� = �𝜀𝜀⊥′
2 + 𝜀𝜀⊥′′

2�𝜀𝜀∥′′𝑘𝑘02 

�𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′�𝑘𝑘∥′′
2 − 2𝑘𝑘∥′𝑘𝑘∥′′�𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′� = �𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′�𝑘𝑘∥′

2 − �𝜀𝜀⊥′
2 + 𝜀𝜀⊥′′

2�𝜀𝜀∥′′𝑘𝑘02 

By completing the square, it gives 

�𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′� �𝑘𝑘∥′′ − 𝑘𝑘∥′
𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′

𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′
�
2

− �𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′� �𝑘𝑘∥′
𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′

𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′
�
2

= �𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′�𝑘𝑘∥′
2 − �𝜀𝜀⊥′

2 + 𝜀𝜀⊥′′
2�𝜀𝜀∥′′𝑘𝑘02 

After rearranging the terms, one can obtain the expression of 𝑘𝑘∥,TM
′′ : 
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𝑘𝑘∥,TM
′′ = 𝑘𝑘∥,TM

′ 𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′

𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′
�1 − �1 + �

𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′

𝜀𝜀∥′𝜀𝜀⊥′ + 𝜀𝜀∥′′𝜀𝜀⊥′′
�
2

�1 −
�𝜀𝜀⊥′

2 + 𝜀𝜀⊥′′
2�𝜀𝜀∥′′𝑘𝑘02

�𝜀𝜀∥′′𝜀𝜀⊥′ − 𝜀𝜀∥′𝜀𝜀⊥′′�𝑘𝑘∥,TM
′ 2�� . (D. 2) 

The equations (D. 1) and (D. 2) can be used to calculate the propagation length through the 
equation 𝐿𝐿𝑝𝑝 = 1

2𝑘𝑘∥
′′ (Equation (87)). 
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