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Abstract  

Chronic metabolic disorders are prevalent worldwide and become the leading health hazard 

and economic burden in the model world, especially three prevalent disorders commonly in 

modern society: hyperlipidemia, non-alcoholic fatty liver disease and diabetes. Herein, the 

objective is to apply untargeted metabolomics approaches for discovery of biomarkers, 

evaluation of potential drug therapy, and metabolic changes of these three prevalent chronic 

metabolic diseases in biological samples using high-resolution mass-spectrometry. Two animal 

studies, using piceatannol alone and an aqueous extract of a Chinese herbal medicine, Polygoni 

Cuspidati Rhizoma et Radix (PCRR), and a clinical observation study were conducted to 

demonstrate the importance of untargeted metabolomics to unveil the underlying mechanisms 

of diseases and treatments. The study design, analytical methods and data treatment were 

optimized with untargeted metabolomics workflows to fit different sample conditions. 

The first research is the study is on the investigation of therapeutic effects of piceatannol on 

high fat diet (HFD)-induced hypercholesterolemic rats using UPLC-QTOF-MS and GC-MS. 

Untargeted serum metabolomics analysis of normal, hypercholesterolemic and piceatannol-

treated SD rats revealed a series of bile acids and fatty acids that showed significant changes 

among different groups. The significant changes in the ratios of fatty acids suggested down-

regulation of stearoyl‐CoA desaturase and up-regulation of ∆5-desaturase activities. 

Quantitative analysis further validated the piceatannol’s action in reducing the serum levels of 

primary and secondary bile acids and upregulating those of most conjugated bile acids. 

Secondary bile acids are gut-biotransformed metabolites from primary bile acids. The 

reductions of primary and secondary bile acid levels implied that the gut microbiota may play 

a role in the treatment of hypercholesterolemia using piceatannol.  More reduction of CYP7A1 

protein expression and increased levels of most conjugated bile acids in piceatannol-treated 
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rats compared with HFD-fed group suggested that the cholesterol-lowering effect of 

piceatannol supplementation did not rely on conversion of cholesterol into bile acids by 

CYP7A1 in the bile acid biosynthesis. The cholesterol-lowering effect might be a result of 

inhibition of  cholesterol absorption from the intestine by the binding effect of piceatannol on 

the dietary cholesterols with bile acid micelles.  

The second study is to evaluate the therapeutic effect of polyphenol-rich water extract from 

PCRR using serum metabolomics plus liver lipidomics of SD rat that were affected by HFD-

induced non-alcoholic fatty liver diseases (NAFLD).  Chemical analysis showed that PCRR 

water extract is rich in organic acids, stilbenes, flavonoids and other phenolic glucosides. 

Serum untargeted metabolomics revealed that bile acid synthesis is the major disturbed 

pathway after intake of PCRR water extract. Elevation of CYP7A1 protein expression indicated 

the role of PCRR in removal of cholesterols via facilitation of bile acid biosynthesis.  Liver 

lipidomics also showed dramatic difference of lipid profile change between the HFD-fed 

animal group and the PCRR-treated group. Putatively identified resveratrol and/or polydatin-

derived metabolites via microbial transformation were solely detected in the serum of the 

PCRR-treated group, indicating the action of gut microbiota had participated in the 

biotransformation. PCRR is likely to have action upon multiple targets to bring out hepato-

protective effect.  

The third study aims to identify metabolites associated with the development and risk of 

chronic kidney diseases (CKD), in Chinese diabetic patients. Two independent cohorts of 

normal and diabetic patients covering five stages of CKD were recruited at different period to 

cross-check the results. Over 30 identified metabolites showed a positive relationship with 

glomerular filtration rate (GFR) and an inverse correlation to urinary albumin to creatinine 

ratio (UACR). Robust correlations of serum succinyladenosine, pseudouridine and 2-(α-D-

mannopyranosyl)-L-tryptophan and L,L-TMAP with MDRD GFR in type 2 diabetic patients 



iii 

 

were observed, less dependent to sex than serum creatinine. Their associations were early 

observed when GFR > 60. Furthermore, prediction of MDRD GFR and CKD stages using these 

biomarkers alone were comparable with serum creatinine. Stepwise linear regression selected 

pseudourdine and L,L-TMAP as significant and independent predictors adding in the 

regression equation of MS-detected creatinine and gender in prediction of MDRD GFR. 

Combination of these biomarkers with serum creatinine improved the diagnostic ability of the 

serum creatinine alone in differentiation of early CKD stages. Increased production of many 

uremic retention solutes detected by UPLC-MS and their reduction of kidney clearance by 

renal degeneration accounted for the progression of CKD in diabetes. Such impairment also 

might be partly attributed to the increased inflammatory stimuli of diabetic redox imbalance 

and dysregulation of amino acid and related pathways. Our finding shows the biomarkers are 

potential supplement to existing clinical markers of early CKD development in diabetic 

patients and/or better than serum creatinine.  

In combination with existing biochemical technique and other platforms, these three studies of 

chronic diseases demonstrated that an untargeted metabolomics approach is a useful and 

advanced technique for an overview of the metabolic status and discovery of the biological 

pathways associated to the disease pathogenesis and exploration of biological actions of drug 

treatments. The action of gut microbiota that interacted with diet, phytochemicals and 

endogenous metabolites in the three studies should be further examined. Future prospects on 

more organs, tissues and biofluids with integration of metabolomics and other omics tools 

would broaden the spectra of metabolites and give a comprehensive view of the molecular 

processes associated to the chronic diseases.  
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Chapter 1  General introduction and objectives 

 Background 

Chronic diseases are complex disorders that progress slowly with long-lasting time 

(Mastrangelo and Barbas 2017). They are also called non-communicable diseases as 

they are non-transmissible, non-infectious and always less noticeable than 

communicable diseases. Nowadays, chronic diseases account for the major cause of 

death worldwide (over 70% of all deaths globally) with an alarming rise of prevalence 

in developed and developing regions (World Health Organization 2018a). The rapid 

growth of morbidity of chronic diseases (World Health Organization 2018b) (Fig. 1.1) 

accounts for high proportion of mortality, economic, psychological and social impact 

(Mastrangelo and Barbas 2017). This will be a future threat and a huge burden to the 

whole population.  



2 

 

 

 

Fig. 1.1 The mortality of chronic disease in the US, China and the overall in the 

world (World Health Organization 2018b) 
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Hyperlipidemia, non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes are 

three relatively milder and more asymptomatic chronic diseases than other major types 

of chronic diseases (cardiovascular diseases, cancer and respiratory chronic diseases), 

but they affect various parts of the body such as cardiovascular system and kidneys. 

They are commonly attributed to modifiable behavioural risk factors, especially over-

nutrient diet and lack of exercises in the modern society and prevalent in the adult 

population (Younossi et al. 2016; Akbartabar Toori et al. 2018; Lecoffre et al. 2018; 

International Diabetes Federation 2017). Unless the patients’ condition is controlled 

well, hyperlipidemia, NAFLD and type 2 diabetes generally progress to more severe 

and advanced stages such as ischaemic heart diseases (Nelson 2013; Navar-Boggan et 

al. 2015), hepatocellular carcinomas (Anstee, McPherson, and Day 2011; Sayiner et al. 

2016) and kidney failure (Alicic, Rooney, and Tuttle 2017), respectively, especially 

among the aging population. Despite their prevalence in the modern society, the 

pathophysiology of these three chronic diseases is still not fully understood. 

Metabolomics is a promising solution for the study of disease mechanism, diagnosis 

and assessment of treatment to chronic diseases, particularly for diabetes (Merino et al. 

2018), obesity (Rauschert et al. 2014) and cardiovascular diseases (McGarrah et al. 

2018). Scientific information derived from these techniques can be employed to provide 

accurate and clinically useful predictive or diagnostic information for the management 

of major chronic diseases (Kim, Ho Lee, and Sweeney 2013).  In addition, the 

untargeted approaches have their advantage of global metabolic profiling without 

restriction on specific classes of metabolites or pathways. Therefore, the application of 

the untargeted approaches to look for new disease pathophysiology and protective 

mechanisms of novel drugs from natural sources can be effectively achieved with 

unexpected but fruitful outcomes. 
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 Objectives of this thesis 

The overall goal of this dissertation is to establish a reliable and simple metabolomics 

platform using untargeted metabolomics with mass spectrometry and chemometrics to 

provide an insight on chronic diseases. To achieve this goal, my work covered the 

application of appropriate methodology from study design, analytical method 

development, and data mining towards detection of biological and diagnostic relevant 

information. 

The project was divided into the following parts: 

1. identifying potential biomarkers and novel underlying pathways related to the 

intervention of piceatannol upon hypercholesterolemic rats by untargeted 

UPLC-MS and GC-MS serum metabolomics, validated by targeted LC-MS 

approaches (Chapter 3) 

2. applying the method of untargeted UPLC-MS serum metabolomics in chapter 

3 plus liver lipidomics to identify the hepato-protective effect of a natural 

product, Polygoni Cuspidati Rhizoma et Radix (PCRR) supplementation to 

NAFLD rats (Chapter 4) 

3. improving current diagnostic methods by biomarker discovery of chronic 

kidney diseases (CKD) in diabetic patients using two independent cohorts with 

untargeted UPLC-MS serum metabolomics (Chapter 5) 

 Rationale and thesis outline  

Chapter 2 introduced the basic workflow of mass spectrometry based untargeted 

metabolomics. Details about experimental conditions for reliable data acquisition, data 

pre-treatment and multivariate statistic technique to identify significantly changed 

candidates were illustrated and explained. 
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The first part of my research project is the study of the cholesterol-lowering effect of 

the administration of a single compound, piceatannol, in an animal model which is high 

fat-diet (HFD) induced hypercholesterolemia. Hypercholesterolemia is very prevalent 

in modern society and aging population. Its treatment with a phytochemical, resveratrol, 

has already been explored before but its solubility and oral bioavailability are low 

(Salehi et al. 2018). Piceatannol is also a common phytochemical found in fruit and 

wine and is the metabolite of resveratrol. The effect of piceatannol to high fat diet-

induced hypercholesterolemia is seldom studied. With the application of GC-MS and 

LC-MS on serum samples, its action to the serum metabolic profiling in male rats were 

examined. It is well-known that gender is a biological variable and affects the metabolic  

status from disease pathophysiology to drug response so only male rats were used.  

Results of untargeted serum metabolomics that showed the change in bile acid synthesis 

was further validated by Western blot of the key protein expression of the enzyme in 

the pathway as well as quantification of bile acid concentration in serum. Most changes 

in the untargeted approach were successfully observed in the quantified ones. The 

investigation is shown in Chapter 3. 

Because of the promising results of piceatannol, a similar approach was employed to 

examine the effect of an herbal extract in the second part of the research project. The 

polyphenol-rich water extract from the TCM, PCRR, is selected to treat HFD-induced 

male rates with NAFLD. NAFLD can be developed from hypercholesterolemia using 

the same type of animal models as piceatannol in the study. PCRR is rich in resveratrol 

and resveratrol glucoside (polydatin). It is proposed that PCRR may have similar or 

better protective effect than piceatannol against HFD-induced NAFLD due to its 

multiple bioactive compounds. Furthermore, the underlying mechanism of PCRR to 

NAFLD is not well discussed in the current literatures. Thus, there is a need to 
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systematically investigate therapeutic effects of PCRR with metabolomics. Thus, serum 

metabolic profiling, coupled with hepatic lipidomics was conducted to give a more 

comprehensive picture for elucidation of the alteration of cholesterol and lipid 

metabolism of NAFLD. Here, the cholesterol-lowering effect of PCRR was brought by 

elevation of bile acid synthesis, as evidence by increased CYP7A1 protein expression 

levels using Western blot. Its lipid-regulating action was also unravelled. This study 

was the first work of serum metabolomics and liver lipidomics of PCRR to NAFLD. 

Details are discussed in Chapter 4. 

Finally, the untargeted metabolomics approaches have been applied to a more 

complicated case, human serum samples, as there are many uncontrollable confounding 

factors of human samples than those of monitored animal counterpart. Despite the 

popularity of metabolomics studies of diabetes and CKD, there is lack of 

comprehensive study of CKD in Chinese diabetic patients covering from a normal state 

to the end stage of CKD. The existing clinical markers have many drawbacks for 

classification of stages of CKD such as gender dependence. This part is about the 

improvement of classification methods and prediction using novel biomarkers across 

all stages with assistance of current clinical diagnostic methods. Validation through 

comparison of two independent cohorts is seldom found in metabolomics studies. 

Hence, in collaboration of a Chinese hospital, two separate cohorts of diabetic patients 

with CKD comprising the earliest stage to end stage of kidney diseases were recruited. 

Afterwards, two untargeted metabolomics of a total of 196 human samples integrated 

from the two cohorts were analyzed with the same platform, UPLC-Orbitrap-MS 

analysis at different period of time. Independence of two cohorts did enhance the 

robustness and diagnostic performance of CKD biomarkers. One novel biomarker, 

succinyladenosine, was detected in this study and showed gender independence in the 
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correlation with GFR and a combination of metabolites (MS-detected serum creatinine, 

pseudouridine and L,L-TMAP) outperformed MS-detected serum creatinine alone in 

the diagnosis of CKD. Chapter 5 has more details on such finding. 

The last part of this project, Chapter 6 summarized and discussed some of the 

limitations encountered in the three chapters. Future works have to deal with such 

limitations to make the study design and the experiment process more reliable and 

robust. 

Overall, untargeted metabolomics methods using mass spectrometry have been 

introduced in three chronic diseases including hyperlipidemia, NAFLD and CKD in 

type 2 diabetic patients and successfully demonstrated how this platform worked on the 

analysis of biological samples from rats to human samples. Using untargeted 

approaches could make contribution in advancing our knowledge of disease 

pathogenesis and actions of treatment as well as improving the clinical diagnosis and 

drug development. 
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Chapter 2  Metabolomics analysis 

 Introduction of metabolomics 

Previously, genomics, transcriptomics and proteomics (studies of the complete set of 

cellular DNA, mRNAs and proteins, respectively) have been demonstrated to be 

powerful systematic biological tools for studying biological responses to xenobiotic 

exposure at various levels. However, they largely ignore the dynamic metabolic status 

of the whole organism for the understanding of the integrated cellular function in living 

systems (Nicholson, Lindon, and Holmes 1999).  

Metabolomics is a method that studies the dynamic changes of metabolites or 

intermediates that represent the most downstream level of the flow of gene expression 

(Ryan and Robards 2006). Moreover, metabolomics is the nearest to biological 

phenotypes compared with other “omics” techniques (Fig. 2.1), with the advantage of 

reflecting the changes in phenotype and function. Metabolomics investigates  

metabolites or low-molecular-weight intermediates (50-1500 Da) in cells, tissues, 

and/or body fluids (Metabolomics Society 2016). Metabolites are context-dependent, 

and their levels vary according to the physiology, developmental or pathological state 

of the cell, tissue, organ or organism (Oliver 2002).  Profiling the endogenous 

metabolites could give us an overview of the metabolic status and global biochemical 

events associated with the body (Metabolomics Society 2016). 

Metabolomics is a newly emerging field in the advanced analytical biochemistry 

(Oliver et al. 1998; Courant et al. 2014). In the past two decades, the annual publication 

number using "metabolomics" as keyword in SciFinder (http://scifinder.cas.org) 

elevated exponentially up to around 5700 publications in 2019 as shown in Fig. 2.2A. 

Academics, regulatory authorities and commercial sectors have paid a growing 

http://scifinder.cas.org/
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attention on metabolomics and the development of the filed (Metabolomics Society 

2016).  It is notable that there has been a continuous growth in literatures related to the 

study of diseases from 18% in 2001 to 33% in 2019 among all metabolomics 

publications (Fig. 2.2A). Others are related to different fields such as environmental 

changes, nutritional science and agricultural practiceS. This growth is promising 

because metabolomics is able to discover novel and potential biomarkers that are 

associated with pathological states among thousands of endogenous and exogenous 

compounds. Hence, the medical applications of metabolomics are broad (Fig. 2.2B). 

Potential biomarkers carry information about the sites and mechanisms of disease 

pathogenesis so comparison of metabolic profiles between control and study group 

provide important information for our understanding on diseases. These biomarkers 

could be used for earlier disease diagnosis, better monitoring of disease progression and 

establishing predictive models for disease risks (Spratlin, Serkova, and Eckhardt 2009; 

Hocher and Adamski 2017; Merino et al. 2018; Srivastava and Creek 2019). 

Metabolomics are also applied in the pharmaceutical development field for evaluation 

of therapeutic responses, drug discovery and drug safety (Tolstikov 2016; Tuyiringire 

et al. 2018).  
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Fig. 2.1 Overview of the flow from DNA to phenotypes associated with corresponding omics from genomics to metabolomics.  

This number in the figure was sourced from Aboud et al’s report (Aboud and Weiss 2013). 



11 

 

 

Fig. 2.2 (A) Annual publication number with "metabolomics" and “metabolomics 

and diseases” as keywords using SciFinder (http://scifinder.cas.org) from 2000 to 

2019. (B) A wide range of metabolomics applications in disease research. 
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 Choices of metabolomics platforms 

There are huge differences in chemical properties between different types of 

metabolites, like simple amino acids, hormones, neurotransmitters, vitamins, peptides, 

lipids and complex carbohydrates. Thus, no single analytical platform is capable of 

detecting the entire metabolome in biological samples (such as body fluids, cells and 

tissues). Many advanced analytical techniques are used for the analysis of these 

complex mixtures. The two most used platforms for metabolic profiling and 

quantification are mass spectrometry (MS) and nuclear magnetic resonance (NMR).  

NMR spectroscopy is one of the major analytical techniques used for the analysis of 

multi-component mixtures in metabolomics research; it has well-known advantages 

including little requirement on sample preparation such as derivatization and 

separation, rapid, non-invasive and non-destructive sample treatment, relatively high 

reproducibility [coefficient of variation (CV) ~ 1-2 %] , easy identification of 

metabolites (Markley et al. 2017; Gowda et al. 2008; Emwas 2015). Yet, NMR 

spectroscopy has a key weakness – its relatively low sensitivity which means only 

around 100 metabolites could be detected in urine (Connor et al. 2004) and even fewer 

in serum and tissue samples (Rooney et al. 2003).  

Compared with NMR spectroscopy, MS methods coupled with prior specific sample 

preparation and separation methods, such as liquid chromatography (LC) and gas 

chromatography (GC), can deal with complex mixtures and allow detection of more 

than 1000 metabolites at a time (Emwas 2015). Hence, MS methods have higher 

sensitivity and specificity (Dettmer, Aronov, and Hammock 2007). Tandem MS 

(MS/MS) methods are often used to validate the identity of unknown molecules. The 

introduction of Orbitrap MS allows detection of  high-resolution signals with very high 
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mass accuracy (Barbier Saint Hilaire et al. 2018) for easy identification of metabolites.  

Thus, MS was chosen as the analytical platform for metabolomics study in this project. 

 Targeted and untargeted metabolomics 

Acquisition of metabolomics data by MS generally falls into two categories: targeted 

metabolomics and untargeted (global) metabolomics.  

Targeted metabolomics focus on quantitative analysis in one or a few classes of 

metabolites. The targeted compounds are usually quantified in an absolute manner 

using calibration curves and/or stable-isotope-labeled internal standards (Wijeyesekera 

et al. 2012; Fernández-Peralbo et al. 2014). Since previous understanding of 

intermediates and metabolites involved in the biological function or metabolic pathway 

is required and this becomes the major limitation of targeted methods (Roberts et al. 

2012). Metabolites detected are largely restricted to only known metabolites and limited 

classes of compounds can be observed in single analysis. Metabolites should have its 

own stable and co-eluted internal standards. This largely depends on the availability of 

stable-isotope-labeled internal standards which are usually much more expensive than 

the analytes. If these standards are not available, only similar analogues can be 

employed, which may not have exactly the same ionization performance as the analytes. 

Targeted approaches could serve as a validation of results revealed from untargeted 

analysis, which was applied in the study of Chapter 3. 

Untargeted metabolomics is most commonly used for global metabolic profiling of 

samples, including molecules not reported previously using full-scan mass 

spectrometry (Roberts et al. 2012). Thus, thousands of signals would be acquired in an 

analysis.  Advanced chemometric techniques are needed to process and mine the large 

data sets to screen out unstable and insignificant signals. Given no prior assumption on 
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the identity of possible biomarkers, comparison between groups receiving different 

treatments in the study may reveal novel biomarkers or pathways that are ignored or 

not known in routine biochemical tests. The mechanisms of disease development and 

drug actions may also be unveiled. Untargeted metabolomics are always obstructed by 

issues such as instrumental instability, complicated data treatment and unknown peak 

identification. This requires experienced researchers and extra time to handle the data 

analysis.  

 Workflow of mass spectrometry-based untargeted metabolomics 

Untargeted metabolomics comprises numerous steps that require careful design. There 

are many protocols targeted to certain classes of metabolites available for public but no 

single protocol would be applicable for all applications. To get fruitful and reliable 

results, the experimental protocol for each study needs to be cautiously designed and 

optimized, according to the hypothesis, sample type, metabolites of interest and 

analytical platform applied. An untargeted metabolomics workflow typically involves 

six steps (Alonso, Marsal, and Julià 2015). First is sample extraction of biological 

samples from the control and the experimental group. Second is the untargeted data 

acquisition with mass spectrometry. Third is spectral data processing. Fourth is 

multivariate statistical analysis to look for a list of candidates with statistically 

significant variations, followed by the identification of the statistically significant 

candidates. The final step is biological interpretation of the identified metabolites to 

resolve the hypothesis and provide insights for the future study. Fig. 2.3 illustrates a 

typical workflow of an untargeted metabolomics.   

More and more comprehensive software and packages are developed by the mass 

spectrometry communities that integrate data picking, alignment, data filtering, 
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multivariate statistical analysis and even pathway analysis of metabolomics data 

together on the same platform to make the tedious analysis more user friendly (Table 

2.1). There are command-line, web-based and integrated software packages. Matlab, 

Python and R (Ozgur et al. 2017) are some common command-based programming 

languages with many open-source packages for data processing and multivariate 

statistical analysis but they require fundamental knowledges of programming and 

statistic.  

Some free user-friendly web- and graphical interface programs (Katajamaa and Oresic 

2007) can also achieve multiple data treatment and statistical analysis procedures, such 

as XCMS online  (Tautenhahn et al. 2012; Huan et al. 2017),MetaboAnalyst 4.0 (Chong 

et al. 2018), Automated Mass Spectral Deconvolution and Identification System 

(AMDIS) (Behrends, Tredwell, and Bundy 2011), MZmine2 (Pluskal et al. 2010), 

MetAlign (Lommen and Kools 2012). Some commercially available tools are designed 

by instrument vendors, such as Markerlynx Application Manager (Waters), Mass 

Profiler Professional Software (Agilent) and Compound Discoverer software (Thermo 

orbitrap). These tools already come with some standard multivariate techniques. 

Progenesis QI for metabolomics (Non-linear Dynamics, Waters) is another commercial 

software that is compatible for many high-resolution MS such as Bruker, Agilent, 

Waters and Thermo mass spectral data. Progenesis QI integrates general key data 

processing steps in one platform, including peak alignment (Fig. 2.4), peak peaking, 

normalization, comparison of classes and identifications of significantly changed 

features from multiple built-in databases. These user-friendly platforms speed up the 

whole metabolomics data analysis and tedious peak identification process. Table 2.1 is 

a summary of the mentioned graphical user-interface software tools for data-processing 

and/or analysis of metabolomics data.  
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Fig. 2.3 A typical workflow of an untargeted metabolomics. 
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Table 2.1 Graphical user-interface software tools for data-preprocessing and/or analysis of metabolomics data 

Software Instrument data 

type 

Interface Webpage Related references 

AMDIS GC–MS 

(preprocessing 

only) 

Windows graphical user-

interface 

http://chemdata.nist.gov/ 

dokuwiki/doku.php?id=chemdata:amdis 

(Behrends, Tredwell, and 

Bundy 2011; Meyer, Peters, 

and Maurer 2010)  
MZmine2 LC–MS, GC-MS 

(universal) 

Windows graphical user-

interface 

http://mzmine.github.io/ 

 

 

(Pluskal et al. 2010) 

MetAlign LC–MS, GC–MS 

(universal) 

Windows graphical user-

interface 

https://www.wur.nl/en/show/MetAlign.htm (Lommen and Kools 2012) 

     

XCMS Online LC–MS, GC–MS 

(universal) 

Web-based interface https://xcmsonline.scripps.edu  (Tautenhahn et al. 2012; 

Huan et al. 2017)  
MetaboAnalyst 4.0 LC–MS, GC–MS, 

NMR (universal) 

Web-based interface http://www.metaboanalyst.ca 

 

 

(Chong et al. 2018) 

Markerlynx 

Application Manager  

LC-MS, GC-MS 

(Waters) 

Windows graphical user-

interface 

Discontinued and replaced by Progenesis QI 

 

 

(Stumpf and Goshawk 2004) 

Mass Profiler 

Professional Software 

LC-MS, GC-MS 

(Agilent) 

Windows graphical user-

interface 

https://www.agilent.com/en/products/software-

informatics/mass-spectrometry-software/data-analysis/mass-

profiler-professional-software 

 

(Technologies 2016) 

Compound 

Discoverer software 

LC–MS  

(Thermo orbitrap) 

Windows graphical user-

interface 

https://www.thermofisher.com/hk/en/home/industrial/mass-

spectrometry/liquid-chromatography-mass-spectrometry-lc-

ms/lc-ms-software/multi-omics-data-analysis/compound-

discoverer-software.html 

 

(Scientific 2019) 

Progenesis QI for 

metabolomics 

LC–MS 

(universal) 

Windows graphical user-

interface 

http://www.nonlinear.com/progenesis/qi/ (Corporation 2015) 

http://chemdata.nist.gov/
https://www.wur.nl/en/show/MetAlign.htm
https://xcmsonline.scripps.edu/
http://www.metaboanalyst.ca/
http://www.nonlinear.com/progenesis/qi/
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Fig. 2.4 An example of alignment results of UPLC-QTOF-MS data using Progenesis QI for metabolomics UPLC-QTOF-MS data 

extraction software.
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 Sample preparation 

No matter what kinds of samples or classes of metabolites are being studied, the choice 

of sample-preparation method are always highly important. An ideal sample 

preparation for global metabolic profiling would be non-selective extraction with 

maximum coverage of metabolites, simple and fast handling, reproducible with 

minimum variability, simultaneous and fast quenching of all possible ongoing 

metabolic processes inside the samples (Dunn et al. 2011).  

Many sample preparation protocols are available as guidelines for different sample 

types. For instance, the UCSD Metabolomics Workbench 

(https://www.metabolomicsworkbench.org/protocols/) and nature protocols provide 

general procedures, containers and chemicals for handling various biological samples 

such as urine (Want et al. 2010),  blood (Dunn et al. 2011) and tissue (Want et al. 2013) 

as well as extraction of specific classes of metabolites. 

A typical workflow of sample preparation for metabolomics analysis would be as 

follows: sample collection, homogenization (solid samples), deproteination, extract 

isolation, derivatization (GC-MS), lyophilization/concentration and finally 

reconstitution prior to injection for instrumental analysis.  Before the start of sample 

preparation, containers, chemicals and instruments should be free of contamination and 

interference (Keller et al. 2008), which could be tested using blank sample such as water 

to go through the entire sample extraction procedures. Section 2.1.2 explained more 

details. This step is crucial for minimizing external contaminations. 

Metabolism quenching is required after sample collection. It means a quick way to stop 

all cell metabolic process using cooling (cold solvent addition or freezing in liquid 

nitrogen) or addition of buffer (Vuckovic 2012; Pinu, Villas-Boas, and Aggio 2017). 
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Since the contents of metabolites in the samples may change over time very rapidly by 

the action of enzymes or degradation process at room temperature, the concentration 

detected may be far from the actual metabolic state in the body. To minimize the 

degradation of metabolites over time, quenching at the same time and storage of all 

samples at -80°C before sample preparation or injection for analysis are required. 

Freeze-thaw cycles should also be minimized to reduce the effect on the stability of the 

metabolites at different temperatures (Hirayama et al. 2015; Torell et al. 2017). This 

can be avoided by making smaller aliquots from the samples during sample collection. 

In addition, during the extract isolation and removal of solid debris by centrifugation, 

the Endometriosis Phenome and Biobanking Harmonisation Project SOPs 

recommended cooled (4℃) centrifugation as standard to avoid any effect of 

temperature on stability of metabolites (Rahmioglu et al. 2014). 

Deproteination and removal of protein are necessary when working on all biological 

samples to avoid damage to the analytical column and MS capillaries. Protein 

precipitation by organic solvent (commonly methanol or acetonitrile), followed by 

centrifugation and/or ultra-filtration (10,000-14000 rpm) are common practice (Gu et 

al. 2010; Chen et al. 2009).  Chloroform (Bird et al. 2013) and the less toxic methyl 

tert-butyl ether (Pizarro et al. 2013) are common solvents for lipid extraction.  

Preparation of solid biological samples, such as muscle, liver and plant tissue, has a 

disadvantage of requiring solid homogenization for tissue and cell disruption to obtain 

intracellular metabolites. Freeze-drying of fresh biological samples (Kim et al. 2013) is 

recommended prior to homogenization for better homogeneity, repeatability and 

extraction capabilities (Courant et al. 2014).  A bead-based homogenizer in 

combination with aqueous organic solvents and a simple extraction protocol (Römisch-
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Margl et al. 2011) can reduce labour-intensive steps compared with manual 

homogenization. 

GC-MS metabolomics requires a derivatization step to convert polar metabolites into 

volatile and thermally stable derivatives for GC-MS analysis because many primary 

metabolites, such as amino acids, fatty acids and steroids, are water or alcohol soluble. 

They usually have polar functional groups, like hydroxyl-, carboxyl- and thiol-groups 

which result in high boiling points. The procedures reported by Sánchez-Avila et al and 

Yi et al (Yi et al. 2006; Sánchez-Avila et al. 2009) suggested a two-step derivatization 

method for profiling analysis of fatty acids without removal of protein.  It is composed 

of two steps: (1) base-catalyzed trans-esterification for catalyze esterified fatty acids 

(EFAs) such as cholesterol esters, acylcarnitines and other O-acyl esters into fatty-acid 

methyl esters; (2) acid-catalyzed esterification for removal of the carboxyl-groups of 

non-esterified fatty acids (NEFAs). Another popular derivatization protocol uses 

silylation to replace the reactive hydrogen atom, such as those in hydroxyl groups, 

carboxyl groups and enolizable ketone, with a silyl group. The most frequently used 

silylation agents are N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) and N,O-

bis (trimethylsilyl)trifluoroacetamide (BSTFA) (Moldoveanu and David 2018) which 

replace reactive hydrogen atom with trimethylsilyl group (Fiehn et al. 2010; Kumari et 

al. 2011). Hence, the sample preparation process of GC-MS requires special care and 

more time (Garcia and Barbas 2011; Papadimitropoulos et al. 2018) than that of LC-

MS. However, compared with LC-MS, the benefits of GC-MS in a small scale study 

may outweigh its drawbacks with a better separation efficiency of derivatized small 

molecules, higher reproducibility of generated mass spectra, broad electron impact 

spectral libraries, making identification of peaks easier.   
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 Chromatography 

Chromatography separates the metabolites in the samples. A mixture is dissolved in a 

fluid, called the mobile phase [liquid state in liquid chromatography (LC)  and gas state 

in Gas chromatography (GC)]. The mobile phase carries the metabolites to travel 

through a material, called the stationary phase, which exhibits different affinity to 

differentiate molecules and results in different retention. GC and LC are two common 

chromatographic techniques used in separating the complex metabolites before MS 

analysis. Most biological metabolites are polar and non-volatile, therefore 

derivatization of metabolites into volatile and thermally stable derivates are needed 

before GC-MS analysis. The metabolite derivatives with lower boiling points and lower 

molecular sizes are eluted earlier with the carrier gases. The metabolite derivatives with 

characteristic and reproducible mass fragmentation patterns generally allow easier 

identification against libraries in GC-MS, when compared with  LC-MS. 

Compared to conventional high performance liquid chromatography (HPLC), ultra-

high performance liquid chromatography (UPLC) uses sub-2 micron stationary phase 

particles and a lower mobile-phase flow rate is able to generate a chromatogram with 

higher resolution and sensitivity in a much shorter time and less solvent consumption 

(Theodoridis, Gika, and Wilson 2008; Wang 2009). 

Regarding UPLC column, a variety of LC columns are available to facilitate the 

analysis of a range of metabolites with different polarities. The most common 

separation mode for LC-MS based metabolomics studies is the reversed-phase (RP) 

chromatographic separation within analytes coated carbon chain (especially C18) 

columns (Zhao et al. 2010; Ma et al. 2014). This is especially suitable for medium to 

weakly polar metabolites. Polar metabolites can be analyzed by hydrophilic liquid 
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chromatography (HILIC) such as the use of hydrophilic amide-based stationary phases 

(Wen et al. 2019), which is capable of improving the poor separation of polar amino 

acids. High strength silica (HSS) column with 100% silica-based particle, which is 

compatible with 100% aqueous mobile phase but not in RP column, have recently been 

applied in both polar and non-polar compounds in metabolomics (Liu, Peng, Jia, Zhang, 

et al. 2014; Guo et al. 2014; Inoue et al. 2013; Wu et al. 2014). When separating polar 

and non-polar compounds, HSS column can increase polar compound retention and 

significantly improve their separation efficiency (McDonald et al. 2006). Thus, it 

allows simultaneous separation of both types of metabolites in one column to get the 

comprehensive metabolic profiling. 

 Mass spectrometry 

A typical mass spectrometer is composed of three basic parts: (1) an ionization source, 

(2) a mass analyzer, and (3) an ion detector. The ionization source and mass analyzers 

are the most critical in accurate mass spectral measurements. 

 Ionization source  

Atmospheric pressure ionization techniques such as electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) (Mitchum and Korfmacher 1983) are 

the techniques most employed in LC-MS analysis (Huang et al. 2011).  ESI is a soft 

ionization technique in which collision occurs between collision gas and molecules of 

analytes, resulting in gas phase ions without fragmentation. Negative ionization is 

particularly efficient for deprotonation (the removal of a proton) of certain classes of 

compounds with hydrogen bonds (e.g. fatty acids and polyphenols).  ESI in positive 

mode can effectively protonate (add a proton) a wide range of metabolites from medium 

to highly polar molecules (Theodoridis et al. 2012) such as acylcarnitines, 

phosphatidylcholine and lysophosphatidylcholine. Neutral lipids that are not easily 
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ionized by ESI and they are usually present as sodium, ammonium or lithium adducts 

with ESI in positive mode (Dettmer, Aronov, and Hammock 2007). APCI is preferred 

for more non-polar metabolites such as sterols, triacylglycerols and pesticides (Christie 

and Han 2012; Matić et al. 2014; Glauner and Zavitsanos 2012) but it has not yet been 

widely employed in metabolomics investigations due to its low sensitivity and 

substantial in-source fragmentation (Christie and Han 2012). For GC-MS, electron 

impact ionization is the most typical. Energetic electrons are used to bombard the 

analytes in gaseous state, resulting in large characteristic and reproducible molecular 

fragments. This allows easier determination of their identity (Portolés et al. 2014; Li et 

al. 2015). 

 

 Mass analyser 

A mass analyzer separates ions from the ion source based on their charge to mass ratios 

(m/z) and directs them to the detector. Different mass analysers have been utilized for 

ion separation, such as tandem quadrupole mass analysers (like triple quadrupole mass 

analysers, QQQ-MS) (Lame, Chambers, and Blatnik 2011), quadrupole-time of flight 

mass analysers (Q-TOF-MS) (Ponthus and Riches 2013), ion trap and Orbitrap mass 

analysers (Orbitrap-MS) (Makarov 2000; Eliuk and Makarov 2015). Among them, Q-

TOF-MS and Orbitrap-MS mass analysers provide accurate mass measurement with 

much higher mass resolution than QQQ-MS and ion trap-MS.  For mass fragmentation, 

Q-TOF-MS/MS uses the quadrupole as a scanning device to select precursor ions for 

fragmentation in the collision cell, producing product ions. The ions enter TOF-MS for 

determination of m/z by measuring their time of flight (velocity) in a known distance. 

The Q-TOF-MS has high-mass resolution (> 10,000) for the precursor ions to aid in 

metabolite characterization and identification (Stroh et al. 2007) and the dominant mass 
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analyser in non-targeted metabolic profiling (Wu et al. 2014; Zhang, Choi, et al. 2012; 

Wang, Feng, et al. 2011). Fig. 2.5 shows the schematic of Waters SYNAPT G2 HDMS 

mass spectrometer for Q-TOF-MS/MS (Waters Corporation, Manchester, UK) 

(Ponthus and Riches 2013).  Recently, Orbitrap-MS analyser, an advanced ion-trap 

variant, is widely used in proteomics as well as metabolomics due to its high mass 

accuracy (2-5 ppm), much higher resolution (> 100,000 for classic analyser) (Lim et al. 

2016) and large dynamic range (from 1 to 10,000 ng/mL). Orbitrap mass analyser is 

typically coupled with a linear ion trap to enable MS3 determination of the 

fragmentation pattern of product ions of precursor ion, thereby providing more 

information for identification of unknown metabolites. Fig. 2.6 shows a schematic 

diagram of an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Eliuk and Makarov 

2015).



26 

 

 

 

Fig. 2.5 A schematic diagram of the SYNAPT G2 HDMS mass spectrometer for Q-TOF-MS/MS modified from Ponthus et al’s paper 

(Ponthus and Riches 2013) 
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Fig. 2.6 A schematic diagram of an Orbitrap Fusion Lumos Tribrid Mass Spectrometer modified from Eliuk et al’s paper (Eliuk and 

Makarov 2015). 
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 Multivariate statistical analyses 

Univariate statistical analysis, a simple small scale data analysis, is the most widely 

used discrimination methods, such as Student's t-test and one-way analysis of variance 

(one-way ANOVA) test.  Due to the comprehensive nature of the untargeted mass 

spectral data, a large data set (MS signals of the metabolites in this case) is usually 

resulted where the data matrix consists of thousands of variables in multiple classes of 

observations (samples). Their interpretation requires advanced multivariate statistical 

techniques, which have been applied in analytical chemistry application because of the 

development of chemometrics (Pinto 2017), instead of univariate test. 

Chemometrics techniques are robust and efficient for converting complicated and 

correlated data matrices into more manageable, interpretable and reliable models. The 

chemometric models are capable of handling incomplete, noisy and collinear data 

structures (Trygg and Lundstedt 2007). There are two common types of chemometric 

techniques: linear projection-based algorithms (Worley and Powers 2013), such as 

Principal Components Analysis (PCA), supervised partial least squares-discriminant 

analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-

DA), and non-linear machine learning methods (Mendez, Reinke, and Broadhurst 

2019), like random forest (RF) modelling, support vector machines, genetic algorithms 

and artificial neural networks.  

PCA is the most common chemometric method for unsupervised pattern recognition. It 

reduces the dimension of datasets into a few uncorrelated principal components 

(Ringnér 2008; Jolliffe and Cadima 2016). A data matrix for PCA contains multiple 

variables of interests and observations of all classes. Every variable is considered to be 

a coordinate axis (a dimension) and each observation is a point in the high dimensional 
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variable space (Fig. 2.7A). The first principal component is the axis (linear combination 

of all variables) that maximizes the variance of the data projected on that axis. Then, 

the second principal component is the axis orthogonal to the first principal component 

which maximizes the variance of the data projected on this axis. PCA rotates the 

coordinates of the high dimensional space (each axis is the content of a different 

metabolite) to a coordinate system according to the projected variance. Thus, the first 

few components are usually sufficient to capture most of the relevant variance in the 

data set so that we can focus on a reduced dimension and interpret the output of these 

components. This enhances the ease of interpretability and minimizes information loss. 

The primary goal of PCA in metabolomics is to explore overall interrelations and trends 

among all classes of observations and identify outliers (2002). Large-score potential 

outliers are visualized in 2D and 3D score plots of PCA. If outliers are confirmed after 

data inspection, they should be corrected or removed to avoid distortion of the 

robustness of the subsequent analysis (Bro and Smilde 2014). Hotelling’s T2 test is a 

common method that is a generalization of the Student's t-test to multivariate data (Bro 

and Smilde 2014) and always used for automatic outlier detection in the multivariate 

Extended Statistical tool (EZinfo Version 2.0 software, Umetrics AB). Fig. 2.7B 

demonstrates the distribution of metabolic profile of rat samples in the PCA score plot 

of UPLC-MS datasets. In the figure, one sample (bottom) is placed outside the 

Hotelling’s T2 range with 95% confidence level, indicating over 95% probability that 

the sample behaves differently from the other. Large-scale studies may include data 

from quality control (QC) samples in the PCA to give an overview of the variability of 

data in the score plot.  Highly clustered QC samples shown in the PCA score plot (Fig. 

2.7B) would indicate good stability and high repeatability of the analytical platforms 

throughout the entire experiment.  
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PLS-DA and OPLS-DA are two most widely used methods for discriminant analyses 

(Triba et al. 2015). PLS-DA (Sjöström, Wold, and Söderström 1986) is a supervised 

pattern recognition technique and a linear regression model, placing every observation 

into its own pre-assigned class, rotating PCA components into the maximum separation 

between classes (Barker and Rayens 2003; Eriksson et al. 2013). PLS-DA can be 

applied for evaluating class discrimination and selecting significant variables 

responsible to the separation of classes. A loading plot of PLS-DA summarizes the 

distribution of potential biomarkers contributing the most in the pre-assigned 

classification systems (Theodoridis et al. 2012). The biomarkers (X-variables) should 

co-locate away from the origin in the loading plot, indicating they are more correlated 

to each other and to the group with similar positions in the score plot (Worley and 

Powers 2013).  In addition, candidates with the highest contribution in the separation 

can be assessed based on their Variable Importance in the Projection (VIP) values (the 

common threshold of VIP ≥ 1). Metabolites with larger loading and VIP values have 

greater importance for the differentiation among groups. The data analysed in PCA 

excluding QC samples and outliers are used for PLS-DA for further understanding 

between their differences. 

OPLS-DA (Bylesjo et al. 2006) is an extension to the supervised PLS-DA. Similar to 

PLS-DA, OPLS-DA can be used to identify variables with the most discrimination 

power between groups. OPLS decomposes the PLS solution into components that are 

predictive (correlated) to Y response matrix  (diagnostic outcome), and components 

that are systematic in the X descriptor matrix (signal intensity) and orthogonal 

(uncorrelated) to Y matrix (Trygg and Wold 2002). OPLS-DA maximizes the 

separation between discrete classes. Two classes are easier in statistical interpretation, 

such as gender, treatment group vs placebo group. The predictive value of binary 
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classes, Y, of an OPLS-DA model is between 0 and 1 depending on their class 

belonging. The variables that make the main contributions to group separation are 

placed in the very first component, the predictive component (Kang et al. 2008). The 

horizontal dimension of the score plot of OPLS-DA captures variation between classes 

while the vertical dimension captures variation within each class. Putative biomarkers 

can be identified by loading plots and VIP values. S-loading plot (S stands for sigmoid 

shape of the loading distribution) of OPLS-DA is dedicated in the Umetrics design 

softwares, such as SIMCA-P and the Extended statistic tool, and only applied in two 

classes. It shows the correlation arrangement and covariance between the metabolites 

and the predictive classes (Wiklund et al. 2008). In the S-loading plot, variables with 

larger absolute values of p(1) (magnitude of each variable) and p(corr) (reliability of 

each variable in X matrix) are the most predictive candidates because of their high 

contribution to the variation of the samples and correlation in the dataset while those 

closer to the origin have high risk for false correlation .   

Due to the supervised modelling nature of PLS-DA and OPLS-DA, cross validation is 

more crucial than unsupervised PCA for prevention of model over-fitting (Worley and 

Powers 2013). Standard cross validation picks up part of samples from the data matrix 

for training and uses the remaining samples from the same data matrix for testing to 

assess the predictive accuracy of the model established using the training data only (Wu 

et al. 2010). There are different cross validation strategies such as Monte Carlo cross-

validation (Xu and Liang 2001; Xu, Liang, and Du 2004), Leave-One-Out cross 

validation and permutation test. Leave-One-Out cross validation has long been 

incorporated in the widely used user-friendly multivariate statistical tools, SIMCA-P 

(Umetrics AB, Umeå Sweden) and Extended Statistical tool (Umetrics AB, Umeå 

Sweden) for automatic estimation of predictiveness of the models (Triba et al. 2015). 
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They use 7-fold Leave-One-Out cross-validation that split the dataset into seven 

subsets. Each subset is removed in turn. A new submodel built with the six other subsets 

(calibration subset) predicts the response Y values of all observations in the left-out 

subset (Eriksson et al. 2006). The prediction is repeated with each subset until all data 

are predicted. The predicted data are then compared with the actual values to get the 

sum of squared errors calculated for the whole dataset. The Predicted Residual Sum of 

Squares is converted to Q2. The cumulative value of Q2 from all principal components 

estimates the predictive accuracy between the predicted and original data. R2X  and 

R2Y are the fractions of sum of squares of entire X-variables and entire Y-variables 

explained by the current component, respectively (Umetrics 2012). R2X is separated 

into predictive and orthogonal (systematic) variation in X in the OPLS-DA. Cumulative 

values of vectors, R2X cum and R2Y cum are the cumulative sum of variances explained 

by the extracted components for estimation of the goodness of fit of the model.  

A qualitative measure should have the cumulative Q2 > 0.5 and the difference between 

Q2 and R2Y should not be larger than 0.3 (Eriksson et al. 2013) to avoid over-fitting. 

Fig. 2.8 demonstrates the 2D PLS-DA and OPLS-DA score plots with the results of 

cross validation generated by Extended Statistical tool. 

.   
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Fig. 2.7 (A) Graphical  representation  of  the  two principal  components  through  

a  swarm  of  data  points  (B) 2D PCA score plot of UPLC-MS datasets from three 

rat groups and a pooled quality control group 
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Fig. 2.8 Examples of 2D PLS-DA score plots, 2D OPLS-DA score plots, Variable 

Importance, S-loading plots of OPLS-DA of UPLC-MS datasets from rat groups.   
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Random forest (RF) (Breiman 2001) is a supervised non-parametric 

classification algorithm designed to identify variables that can classify different 

samples in a large dataset into various classes. Based on a bootstrap random sampling 

with replacement from original samples for the training of each single tree and about 

one-third of the samples being left out of the sample for testing, RF builds 

multiple independent decision trees (each tree is grown based on integrated rules) and 

merges them together to get an accurate and stable prediction (Boulesteix et al. 2012) 

(Fig. 2.9). For non-parametric datasets that have non-linear relationship to outcomes, 

RF provides a high prediction accuracy by attempting to find non-linear patterns and 

important features in metabolites that can explain variation in a given outcome (Chen 

et al. 2013). It has a relatively good tolerance for outliers (removed from the trees) and 

prevents over-fitting problem due to the uncorrelation of trees and combination of many 

single trees. Another advantage of RF also is that it does not require additional cross-

validation because that is intrinsically tested. It gives an internal running out-of-bag 

(OOB) error estimate (Touw et al. 2012). The OOB error estimate is a method of 

measuring the proportion of times that the prediction result is inaccurate, averaged over 

all samples and is used to get estimates of variable importance. The Receiver Operating 

Characteristic (ROC) curve (Metz 1978) is also another measure of predictive accuracy 

of RF for binary classification (Calle et al. 2011). The curve is plotted with the False 

Positive Rate (1-specificity) on the x-axis and the True Positive Rate (sensitivity) on 

the y-axis. The Area Under the ROC Curve (AUC) is an overall index of diagnostic 

accuracy between two classes. AUC values > 0.5 means the classifier has a good 

measure of class separability, better than chance (Janitza, Strobl, and Boulesteix 2013) 

. 
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Fig.  2.9 A simplified scheme of a Random Forest Classification. 

This scheme was sourced and modified from literatures (Li, Yu, et al. 2017; Harris and 

Grunsky 2015). 
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 Peak identification 

Peak identification is a key process in untargeted metabolomics for annotating a list of 

m/z ratios before processing to interpretation of biological findings. Generally, the 

interested peaks that are significantly altered are compound of interests for 

identification by matching molecular ions against the metabolite database. If acquired 

in high-resolution mass spectrometry (Q-TOF and Orbitrap mass analyzers), 5 ppm is 

the mass error tolerance between theoretical and experimental m/z of parent ions. Only 

those with < 5 ppm mass error would be matched with the MS/MS spectral similarity 

of possible candidates. Retention index is always used for GC-MS. Differences in the 

design of ionization source and mass fragmentation environment will bring about 

slightly variation in mass spectra. Common online spectral databases (Blaženović et al. 

2018) are Chemspider (https://www.chemspider.com), Human Metabolome Database 

(HMDB, http://www.hmdb.ca/), Metlin (http://metlin.scripps.edu/index.php), 

Massbank (http://www.massbank.jp), mzCloud Mass Spectral Database 

(https://www.mzcloud.org/), Lipidmaps (http://www.lipidmaps.org) and NIST 

(https://www.nist.gov/). Among them, HMDB is a freely available online database that 

contains broad information about small molecule metabolites found in various 

biological sources and that is hyperlinked to other databases such as KEGG and 

PubMed (Wishart et al. 2013). NIST is a commercially available GC-MS library. 

Currently, four levels of metabolite identifications with different levels of evidence and 

certainty have been proposed by Metabolomics Standards Initiative (Sumner et al. 

2007) (Table 2.1). Most metabolomics studies in peer-reviewed journals did not define 

the level of identification (Salek et al. 2013) but defining metabolites as identified or 

putatively identified is highly important to provide clarity for sharing purpose. 

https://www.mzcloud.org/
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Table 2.2 Four levels of metabolite identifications initiated by Metabolomics 

Standards Initiative 

Levels 
Annotation of 

identification 

Criteria  (Sumner et al. 2007; Viant et al. 2017; 

Blaženović et al. 2018) 

Level 1 Identified compounds 

Two or more independent and orthogonal data 

relative to an authentic chemical standard 

analysed under the same experimental conditions 

to validate non-novel metabolite identifications 

(such as retention time and MS/MS, retention 

index and MS/MS, retention time and NMR 

spectrum) 

Level 2 
Putatively annotated 

compounds 

No chemical reference standards are available.  

A probable structure is based on physicochemical 

properties and/or MS/MS spectral similarity with 

database and/or literatures 

Level 3 

Tentatively 

characterized 

compound classes 

(isomers, substance 

class or substructure 

match) 

Possible structure or class is based on 

characteristic physicochemical properties of a 

chemical class of compounds, or by similarity in 

parent ion to known compounds of a chemical 

class 

Level 4 
Unknown compounds 

of interest 

Despite unidentified or unclassified status, these 

metabolites still can be differentiated and 

quantified based on reproducible spectral data. 
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 Biological interpretation 

Biological interpretation is essential to delineate the role of interested metabolites 

identified in the study. If only a few were identified, the interpretation of single 

metabolite can be achieved by HMDB, which provides related biochemical background 

and literatures. When a cluster of metabolites could be identified, metabolic pathway 

analysis could match relevant metabolites that participate in the same cellular signaling 

or related pathways in the metabolic network. This provides systematic insight into the 

underlying biological process that these altered metabolites may induce. Examples of 

biochemical pathway analysis for identified metabolites are KEGG database 

(https://www.genome.jp/kegg/), Integrated Molecular Pathway Level Analysis 

(IMPaLA) (http://impala.molgen.mpg.de/), Metaboanalysts 

(https://www.metaboanalyst.ca), Metascape plug-in of Cytoscape 

(https://apps.cytoscape.org/apps/metscape) and Ingenuity Pathway Analysis (IPA) 

(www.qiagen.com/ingenuity). Only IPA is a commercial pathway-based database and 

mainly for genomics while the others are free web-based databases for metabolomics. 

Apart from that, Metascape also has the advantage of checking the chemical structural 

similarity of the metabolites and allows networking metabolites with both chemical 

similarity or/and biological-relationship (Barupal et al. 2012). 

 Challenges and precautions in untargeted metabolomics studies 

Metabolomics studies involve many procedures and corresponding challenges that 

require careful design and precautions (Fig. 2.10). Sample size and instrument stability 

are both important factors affecting the results of mass spectrometry based 

metabolomics studies  
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A large-scale study may improve the representation of samples in the population and 

statistical confidence (Dunn et al. 2011; Rizza et al. 2014) but it also makes sampling 

and storage of samples more challenging.  Consistency in the duration and steps of 

sample handling minimizes day-to-day variation or degradation in samples. Sample 

preparation and injection in a randomized block design during sample preparation and 

instrumental analysis may also lower the technical bias (imbalance of sample sizes in 

each group in one batch). This may also reduce instrumental bias because contaminated 

MS source may lead to gradual changes in instrument sensitivity over time (Want et al. 

2010; Dunn et al. 2012). Rigorous sample clean-up is generally not preferred for 

untargeted metabolite profiling due to the possible loss of some low-molecular weight 

compounds and reduction in precision. Thus, the development of sample preparation 

should aim at a simple and fast procedure that most metabolites are extractable and 

detectable. 

Handling biological sample may have a risk of introducing external contaminations  

(Keller et al. 2008) into the samples. One frequent-detected external contaminant in 

sample tubes and reagents is polyethylene glycol (PEG). PEG is a water-soluble 

polyether compound and is a common surfactant used in containers (Weaver and Riley 

2006) and detergents (Ahmadi and Winter 2018). It is hard to be isolated from the 

serum/plasma samples. This contaminant may ruin the dataset as their ions dominate in 

the mass spectrum and suppress positive ion signals of the target molecules. Fig. 2.11 

shows the chromatograms and mass spectra of two solution (water) after filling two 

blank blood sample tubes. The figure shows how a series of PEG peaks (repeat signals 

of 44 Da) dominated in the chromatograms. Selection of containers and reagents before 

sample collection and preparation is important to minimize the extrinsic interference. 
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Instrumental instability is the major concern during the data acquisition of a mass 

spectrometer. During ionization, there is a direct contact of analytes to ionization 

sources that may lead to the gradual accumulation of contaminants and analytes on the 

surface of the ionization sources. These contaminants, especially lipids (Petković et al. 

2001) may cause matrix effects (ion suppression and enhancement) that affect signal 

intensity (Mei et al. 2003; Antignac et al. 2005; Panuwet et al. 2016). The contamination 

may influence data collected in all subsequent analysis. There may be other sources of 

uncertainty, such as retention time drift due to column temperature variations and mass 

precision variations due to changes in room temperature and internal calibration issues.  

A robust protocol should include QC samples that behave consistently throughout the 

analytical whole run. A typical batch injection sequence of samples consists of the 

consecutive analysis of one QC sample to equilibrate the analytical platform, followed 

by a QC sample set injected in every five to ten unknown samples (Lin et al. 2014). 

Intermittent monitoring of the precision and accuracy of signal from QC samples that 

are inserted between sample injections and exposing to the same operating conditions 

would be important for the evaluation of the data quality, reproducibility and 

instrumental stability (Sangster et al. 2006; Dunn et al. 2011; Lin et al. 2014; Guo et al. 

2014). QC samples may be obtained from a representative mixture, such as aliquots 

pooled from each sample (Roux et al. 2011; González-Domínguez et al. 2014) or 20-

50% of the studied samples prepared at the very beginning (Cui et al. 2013). There are 

also commercially available surrogate biological biofluids from Sigma Aldrich (Dunn 

et al. 2011) or NIST that could serve as QC samples for large-scale studies.  

In addition, spiking multiple internal standards, each of which represents a class of 

metabolites into the samples before sample treatment is recommended, especially in 
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large scale studies that involve multiple batches of analysis. This is because each 

internal standard that share similar chemical and ionization properties as that class of 

metabolites should undergo the same extraction loss during sample preparation and face 

similar matrix effect in the ion source. This may evaluate the precision of the sample 

preparation and the analytical performance of the instrument (Raterink et al. 2014). If 

the internal standard and that class of metabolites ought to have similar deviation, the 

data of internal standard could be used to normalize them to eliminate the variation  

Though there are various online databases of endogenous and exogenous compounds, 

traditional databases such as PubChem and Metlin have limited MS/MS spectra and 

may not cover novel compounds. This prolongs the exploration of the identity of 

unknown metabolites. In particular, the peak identification cannot be confirmed using 

MS/MS spectra only without commercial reference standards as the standards can 

provide retention time to match with the analytes in the sample (Table 2.2). Novel 

compounds always require additional experiments for structure elucidation. In silico 

fragmentation tools, such as MetFrag (Ruttkies et al. 2016) and CSI:FingerID (Dührkop 

et al. 2015), can be utilized to propose possible molecular structures for chemical 

identification (Blaženović et al. 2018). This can be achieved by matching the 

experimental MS/MS spectra of novel compounds against in silico fragments 

generalized from existing spectral database of known compounds. 

In addition, no single method or platform may achieve a complete analysis of the 

metabolome. Multiple platforms increase large coverage of polar metabolites and 

lipids, such as gas chromatography coupled with liquid chromatography (Psychogios et 

al. 2011).  
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Untargeted metabolomics study requires precise consideration of many factors during 

the experimental designs, apart from the studying subject’s inherent variations. The 

ultimate goal is to minimize extrinsic interference starting from the sample collections 

to the data acquisitions so that the comparison between groups can be achieved easier 

with higher reliability.   
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Fig. 2.10 An overview of the challenges of untargeted metabolomics 
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Fig. 2.11 Chromatograms and mass spectra of two solution (water) after filling 

two blank blood sample tubes that contained PEG.  
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Chapter 3  A study of cholesterol-lowering effects of 

piceatannol, a stilbene from wine, using untargeted 

metabolomics on hypercholesterolemic rats 

 Introduction  

Hyperlipidemia is characterized by high levels of one or more lipids and/or lipoproteins 

including free fatty acids, small dense low density lipoprotein cholesterol (LDL-C), 

triacylglycerols (TG), apolipoprotein B, and/or low levels of high density lipoprotein 

cholesterol (HDL-C) in blood (Athyros et al. 2011; Shah et al. 2001; Durrington 2003; 

Sham et al. 2014b). This lipid disorder consists of primary (genetic) familial (Kusters 

et al. 2013; Talmud et al. 2013; Goldstein et al. 1973) and secondary causes 

(Fredrickson, Levy, and Lees 1967). Secondary hyperlipidemia is usually due to diet, 

estrogen therapy, alcohol intake and diseases such as diabetes mellitus and chronic 

kidney impairment (Hlaing and Park 2013; Mahamuni et al. 2012). Primary 

hyperlipidemia can get worse if it co-exists with secondary causes (Stone 1994). 

Among these causes, diets that are high in saturated fats and cholesterol are a common 

cause of mild hypercholesterolemia seen in modern society. 

In the past several decades, the prevalence of hyperlipidemia has accelerated to cover 

around 10-20% of the adult population worldwide (Margaret D Carroll, Cheryl D. 

Fryar, and Nguyen 2017; de la Sierra et al. 2015; Lecoffre et al. 2018; Gan et al. 2018). 

In fact, hyperlipidemia is a major modifiable risk factor for cardiovascular diseases 

(CVDs) (Nelson 2013; Navar-Boggan et al. 2015). CVDs, including ischemic heart 

disease and stroke, are one of the major killers around the world and were the leading 

causes of global death from 2002 to 2016 (World Health Organization 2018a; Nelson 

2013). Such prevalence has produced immense economic and health burdens 
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worldwide (Xi et al. 2014; Fox et al. 2015; Kim and Boye 2009; Mozaffarian et al. 

2015). Thus, more attention has been paid to seek measures to relieve such burdens. It 

is reported that dietary intervention is effective in improving hyperlipidemia and thus 

CVDs, too (Mann and Piotrowski 1992; Kelly 2010; Hill, Fleming, and Kris-Etherton 

2009; Toth 2010; Kim, Lim, and Shin 2019). 

Stilbene is a class of compounds found in some foodstuffs of plant origin (Neveu et al. 

2010). The intake of these phytochemicals has been linked to a variety of health benefits 

(Shahidi and Ambigaipalan 2015).  For example, stilbenes in red wine like resveratrol 

have received a lot of interests and are regarded to contribute, in part, to the ‘French 

paradox’, an observation of relatively low rates of CVDs in France in spite of the 

relatively high consumption of saturated fat in diets (Catalgol et al. 2012). These 

phytochemicals have been reported to be safe, as evidenced upon extensive human 

consumption (Sham et al. 2014b) and are ideal candidates for developing protective 

functional foods for CVDs. Thus, understanding the health benefits of them would help 

improve the quality of human life, especially when we are moving towards an aging 

society.   

Piceatannol (3,3′,4,5′-tetrahydroxy-trans-stilbene) is a natural hydroxylated analog of 

resveratrol (3,4′,5-trihydroxy-trans-stilbene) (Kim et al. 2009; Zhu et al. 2003; Piver et 

al. 2004; Potter et al. 2002); it is also a stilbene naturally available from many edible 

fruits and plants, such as passion fruit (Matsui et al. 2010), grapes (Flamini, De Rosso, 

and Bavaresco 2015), the root of peanut, traditional Chinese medicines such as rhizome 

of Rheum emodi (Chai et al. 2012) and rhizome and root of Polygonum cuspidatum (Lin 

et al. 2007) present as a free form or piceatannol glucoside. It is also commonly found 

in functional drinks such as tea (Viñas et al. 2011) and red wine (Viñas et al. 2009; 
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Tassoni, Tango, and Ferri 2014). The contents of piceatannol, cis-resveratrol and trans-

resveratrol in red wine were 7.7-14 ng/mL, 4.4 -37 ng/mL and 32 - 41 ng/mL, 

respectively (Viñas et al. 2009). Piceatannol, like many stilbenes, exhibits health 

benefits such as improvement of endothelial function (Frombaum et al. 2011; Kinoshita 

et al. 2013) and anti-inflammatory effect (Choo et al. 2014). Its solubility and 

bioavailability are higher than those  of resveratrol (Chen et al. 2016; Roupe et al. 2006). 

In terms of antioxidant activity, piceatannol is more potent than resveratrol (Rüweler et 

al. 2009; Ovesná et al. 2006). There is much evidence showing that piceatannol could 

be a promising agent for treating CVDs (Tang and Chan 2014). As long-term 

supplementation of trans-resveratrol would improve energy metabolism and metabolic 

profile of obese human subjects (Timmers et al. 2011), piceatannol and piceatannol-

rich food may also be developed as dietary supplement. Various sources in functional 

foods and a wide range of biological activities have been reported but the exact 

mechanisms underlying the protective effects of piceatannol are still largely unknown.  

In the present study, a combination of ultra-performance liquid chromatography-

quadrupole time-of-flight - mass spectrometry (UPLC-QTOF-MS) and gas 

chromatography - mass spectrometry (GC-MS) was employed to investigate the 

metabolite changes in the serum samples from rats to examine the therapeutic effect of 

piceatannol on high fat diet (HFD)-induced hypercholesterolemic rats.  

 Materials and methods 

 Materials 

HPLC-graded methanol, acetonitrile, analytical reagent-graded sulphuric acid (>95% 

purity) and potassium hydroxide were purchased from Fisher Scientific (Hampton, NH, 

USA) while HPLC-graded n-hexane was obtained from Duksan (ANSAN-SI, South 

Korea). Formic acid, cis-10-nonadecenoic acid (C19:1n9c), oleic acid and their methyl 
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esters, Supelco 37 Component FAME Mix, glycerol 1-oleate, L-serine, L-glutamic 

acid, hyodeoxycholic acid, ursodeoxycholic acid, sodium chenodeoxycholate, sodium 

tauroursodeoxycholate and sodium taurochenodeoxycholate were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Cholesterol 7α-hydroxylase (CYP7A1), α-

muricholic acid, deoxycholic acid and taurodeoxycholic acid were purchased from 

Santa Cruz Biotechnology (Dallas, Texas, USA). Glycoursodeoxycholic acid, 

ursodeoxycholic acid, cholic acid-2,2,4,4-D4, glycoursodeoxycholic acid-2,2,4,4-D4, 

deoxycholic acid-2,2,4,4-D4 and ursodeoxycholic acid-2,2,4,4-D4 were purchased from 

Cambridge Isotope Laboratories (Tewksbury, MA, USA). Sodium glycocholate 

hydrate was purchased from Acros Organics (Morris Plains, NJ, USA). Cholic acid, β-

muricholic acid, glycodeoxycholic acid, glycohyodeoxycholic acid, taurocholic acid, 

sodium glycochenodeoxycholate, taurohyodeoxycholic acid, lithocholic acid, 

glycocholic acid-2,2,4,4-D4 and glycochenodeoxycholic acid-2,2,4,4-D4 were obtained 

from Steraloids (Newport, RI, USA). Piceatannol (98% confirmed by HPLC) and 

simvastatin (20-mg tablets, 10% w/w, confirmed by HPLC) were obtained from Merck 

Sharp & Dohme (Hangzhou, China) and Nanjing Zelang Medical Technology Co. Ltd. 

(Nanjing, China), respectively. Water was purified in-house using a Milli-Q Advantage 

A10 water purification system (Millipore, Bedford, MA, USA).   

 

 Animal studies 

Sprague-Dawley male rats of three months old with ~300g body weight were obtained 

from the centralized animal facilities of The Hong Kong Polytechnic University (Hong 

Kong, China). Rats were housed in a temperature-controlled room (25 ± 2 ℃) with free 

access to water and rat chow and regular 12 h/12 h light/dark cycles. After acclimation 

for seven days in the laboratory environment, the rats were randomly assigned into four 
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experimental groups (n = 8 per group): (1) the normal control group, (2) HFD-fed model 

group, (3) the simvastatin (3mg/kg bw/day) treated HFD-fed group and (4) piceatannol 

(100 mg/kg bw/day)-treated HFD-fed group. The control group was fed with normal 

rat chow [fat (~10%), protein (~14%) and carbohydrate (~76%)]. All of the other groups 

were fed with HFD which was composed of addition of 2% pure cholesterol, 1% cholic 

acid and 5.5% peanut oil to the normal rat chow. The diets were purchased from 

Guangdong Medical Laboratory Animal Center (Guangzhou, China). The treatment 

groups were administrated with their corresponding drugs by oral gavages once every 

morning for four weeks while the rats in normal control group and HFD-fed model 

group were administrated with distilled water. The body weight of each rat was 

monitored daily during the whole experimental period. After four weeks, the rats were 

fasted overnight and then sacrificed with carbon dioxide asphyxiation, followed by 

collection of tissues and blood for further analysis. The experimental protocol was 

approved by the Animal Subjects Ethics Sub-committee of The Hong Kong Polytechnic 

University (ASESE no. 05/21) and the animal licence was issued by the Department of 

Health, the Government of the Hong Kong Special Administrative Region. All 

procedures complied with the Guide for the Care and Use of Laboratory Animals 

distributed by the US National Institutes of Health and the principles were outlined in 

the Declaration of Helsinki.  

 Collection of serum samples 

Blood was collected with centrifuge tubes by cardiac puncture immediately after the 

rats were sacrificed. The blood was stood at room temperature for 30 min, and then 

centrifuged at 3900 ×g and 4 ℃ for 15 min. The supernatant (serum) was aliquoted and 

frozen at -80 ℃ before analysis.  Total cholesterols, TG, LDL-C and HDL-C of serum 

samples were measured using the Nanjing KeyGEN Biotechʼs kits (Nanjing, China). 
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 Untargeted metabolomics analysis 

  Quality control sample preparation method  

Aliquots of 20 µL from all serum samples were pooled, vortexed and aliquoted to be a 

QC sample and stored at -80 ℃ until use. For each analytical batch, QC samples went 

through the same procedure as study groups for UPLC-MS and GC-MS extraction 

protocols as described. Prior to the initial chemical analysis, five repeated injections of 

a QC sample were used to equilibrate the column and check the working condition of 

the instruments. Afterwards, one QC sample was injected to monitor the stability of the 

instruments between every five study samples. 

 GC-MS sample preparation method 

The procedures reported by Sánchez-Avila et al and Yi et al (Yi et al. 2006; Sánchez-

Avila et al. 2009) were applied as a starting point for the method development here. A 

two-step methylation of non-esterified fatty acids (NEFAs) and esterified fatty acids 

(EFAs) fractions in each serum without protein removal was used. 200 µL serum 

aliquot was mixed with 100 µL internal standards (a mixture of 125 µM of C19:1n9c 

methyl ester and 125 µM C19:1n9c dissolved in methanol). In the first step of base-

catalysed trans-esterification of EFAs, 2 mL of 0.4 M potassium hydroxide in methanol 

was added to the serum aliquot, vortexed for 30 s and stood at room temperature for 10 

min. Then, 2 mL n-hexane was added, vortexed for 30 s twice and the upper layer of 

hexane phase extracting EFA methyl esters was isolated. The hexane partition was done 

twice, and the two hexane phases extracted were combined. In the second step of acid-

catalysed esterification of NEFAs, 2 mL of 10% sulphuric acid in methanol was added 

to the remaining phase containing NEFAs and vortexed for 1 min. The mixture was 

incubated at 70 ℃ for 30 min. Isolation of NEFA methyl esters by hexane extraction 

was the same as that of EFA methyl esters. The two different hexane phases containing 

EFA and NEFA methyl esters respectively were dried in a rotational vacuum 
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concentrator (RVC 2-25, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am 

Harz, Germany). The dried sample was reconstituted with 200 µL n-hexane prior to 

GC-MS analysis. 

 GC-MS condition 

The GC-MS system was an Agilent 6890N GC/5975C VL MSD system equipped with 

an Agilent 7683 Automatic Liquid Sampler (Agilent technologies, Inc., CA, USA). The 

column for separation was a DB-WAX column (30 m x 0.25 mm i.d., 0.25 μm; Agilent 

J&W Scientific, CA, USA). The inlet temperature was 240 ℃. Helium gas (≥ 99. 999%) 

was used as carrier gas with a flow rate of 1.0 mL/min. 1 μL of samples was injected in 

splitless mode. The temperature program was optimized as follows: the initial oven 

temperature at 70 ℃, held for 1 min; 20 ℃/min to 170 ℃; 9 ℃/min to 190 ℃; 2 ℃/min 

to 220 ℃; 4 ℃/min to 230 ℃; 230 ℃ kept for 7.5 min. The mass spectrometry 

conditions were as follows: electron impact mode at ionization energy of 70 eV; ion 

source temperature at 230 ℃; full scan mode in m/z range of 35 - 550 with 0.3 s/scan 

velocity. The solvent delay was set at 3 min. 

 UPLC-QTOF-MS sample preparation method 

Serum samples were thawed at 4 °C and vortexed before preparation. 100 µL serum 

from all samples was deproteinated with cold 300 μL methanol and vortexed for 30 s. 

The mixture was kept at -20 ℃ for 1 h before centrifugation at 18790 ×g for 20 min at 

4 ℃. 340 μL supernatant was dried with nitrogen gas and stored at -80 ℃. Before 

UPLC-MS analysis, it was reconstituted in 100 μL 70% methanol, followed by 

centrifugation at 18790 ×g for 10 min at 4 ℃.  

 UPLC-QTOF-MS condition  

3 μL of supernatant was injected into a Waters ACQUITY UPLC system. The 

separation was performed on a Waters ACQUITY UPLC HSS T3 column (2.1 mm × 
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50 mm, 1.8 μm) combined with an HSS T3 pre-column (2.1 mm × 5 mm, 1.8 μm, 

Waters Corporation, Milford, MA). The mobile phase consisted of mobile phase A 

(0.1% formic acid in water, v/v) and B (0.1% formic acid in acetonitrile, v/v) in the 

elution gradient: 0-1.5 min, 5% B; 2 min, 35% B; 4 min, 50% B; 9 min, 55% B; 12-17 

min, 95% B. A 3-min post-run time was used to fully equilibrate the column. The flow 

rate was set at 0.3 mL/min. The temperatures of sample chamber and UPLC column 

were 5℃and 35℃, respectively. 

Mass spectrometry was performed on a Waters SYNAPT G2 Q-IM-TOF HDMS 

system (Waters, Milford, USA) with an electrospray ion source (ESI) in both negative 

and positive modes. Nebulization and cone gases were nitrogen. The cone gas was set 

at 40 L/h. The nebulization gas was set at 600 L/h and 300 ℃. The source temperature 

was kept at 120 ℃. The sampling and extraction cone voltages were 40 V and 4 V, 

respectively. The capillary voltages in negative and positive ESI modes were 2300 V 

and 3000 V, respectively. The data acquisition rate was 1 s plus a 0.024 s interscan 

delay. Signals in m/z 50 - 1000 were scanned in the centroid mode. A lock mass of 

leucine enkephalin was used for accurate mass acquisition, through a lock spray 

interface using 30 eV trap collision energy, 2500 V capillary energy, 40 V cone voltage 

at a flow rate of 4 µL/min, monitoring for negative ESI mode ([M-H]−: 554.2615) and 

positive ESI mode ([M+H]+: 556.2771) during the MS analysis. Mass fragmentation 

analysis of interested peaks was carried out. Argon was applied as collision gas and the 

collision energy was adjusted to 5 - 50 eV. 

 Data extraction and processing 

For UPLC-MS data, the peak picking, alignment and filtering of raw data were done 

using Waters MarkerLynx Application Manager Version 4.1 SCN 901 (Waters, 

Milford, USA). The following parameters were used: m/z range of 50 -1000, mass 
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tolerance at 0.02 Da, intensity threshold at 500 counts, retention time tolerance at 0.2 

min, apex track peak parameter calculated automatically, no smoothing and isotopic 

peaks excluded for processing. Quality control screening was applied by filtering out 

metabolites not existing in 80% of each group and with coefficient of variation > 30%  

(Dunn et al. 2011) to reduce the contribution of unstable peaks and minimize noise from 

the dataset. MarkerLynx software output a matrix of m/z, retention time and intensity 

pairs. Peak area was normalized to the total peak area of each individual sample and 

exported to the built-in Extended Statistical tool (EZinfo Version 2.0 software, 

Umetrics AB) for analysis.  

The exported data were scaled to unit variance for PCA to give an overview of QC 

samples in the score plot. The study samples excluding QC samples were pareto-scaled 

prior to PLS-DA and OPLS-DA. Based on their contribution to the variation and 

correlation in the data set, potential candidates were selected from the S-plots of OPLS-

DA. Markers were further identified with mass fragmentation and matched with the 

Human Metabolome Databases (www.hmdb.ca), the KEGG (www.kegg.com/), the 

METLIN (http://metlin.scripps.edu), and/or confirmed by commercially available 

reference standards based on their mass fragmentation pattern, retention times and mass 

accuracy. 

For GC-MS data, peak area was obtained by integration with Agilent Chemstation 

(GC6890 MSD Chemstation E.02.02.1431, Agilent) and then normalized with the 

spiked internal standard in each individual sample. Peak identification was conducted 

by comparing the retention time of reference standards and matching the mass spectrum 

with NIST11 library. Multivariate statistical analysis with the same scaling procedures 

as UPLC-QTOF-MS was carried out using the EZinfo software.  
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 Quantification analysis of bile acids and their conjugated bile acids in 

serum samples 

 Preparation of bile acids standard solution and calibration curve  

Bile acids, conjugated bile acids (bile salts) and internal standards were dissolved 

individually in   methanol at a concentration of 2000 ppm as stock solutions and stored 

at -20℃. 14 calibration standard working solutions containing the bile acids and 

conjugated bile acids at 7.32 ppb – 6 ppm were prepared by serial dilution (2-fold) with 

methanol. An internal standard mixture was prepared by mixing ursodeoxycholic acid-

D4, deoxycholic acid- D4, cholic acid-D4, glycoursodeoxycholic acid-D4, 

glycochenodeoxycholic acid-D4, glycocholic acid-D4 with methanol into the final 

concentration of 2 ppm for each internal standard. 150 μL of each calibration standard 

working solution was mixed with 50 μL of the internal standard mixture. The final 14 

calibration standard solutions were 0.55 ppb to 4.5 ppm and they were injected into the 

UPLC-QQQ-MS at the same conditions as study samples. 

 Sample preparation method 

50 µL serum from each sample was mixed with cold 100 μL methanol and 50 μL 

internal standard mixture (2 ppm each of ursodeoxycholic acid-D4, deoxycholic acid- 

D4, cholic acid-D4, glycoursodeoxycholic acid-D4, glycochenodeoxycholic acid-D4, 

glycocholic acid-D4) and then vortexed for 30s. The mixture was cooled at an ice water 

bath for one hour prior to centrifugation at 18790 ×g at 4℃ for 20 min. 50 μL aliquot 

of supernatant was dried with nitrogen gas for storage at -80℃. It was reconstituted in 

50 μL of 50% methanol in water followed by centrifugation at 18790 ×g and 4℃ for 

10 min. The supernatant was obtained for subsequent ultra-performance liquid 

chromatography triple quadrupole-mass spectrometry (UPLC-QQQ-MS/MS) analysis. 
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 UPLC-QQQ-MS/MS condition  

This UPLC-QQQ-MS/MS condition was modified from a previous report (García-

Cañaveras et al. 2012). A 4 μL aliquot was injected into Agilent 1290 Infinity Ultra 

High-pressure/performance liquid chromatography (Agilent Technologies, Palo Alto, 

CA, USA). The separation was performed on a Waters ACQUITY UPLC BEH C18 

column (2.1mm × 100mm, 1.7μm) with BEH C18 guard column (2.1mm × 5mm, 1.7μm, 

Waters Corporation, Milford, MA). The mobile phase consisted of combinations of A 

(0.1% formic acid in water, v/v) and B (0.1% formic acid in acetonitrile, v/v) at a flow 

rate of 0.5 mL/min with elution gradient as follows: 0-0.5 min, 5% B; 5 min, 25% B; 

10 min, 27.5% B; 18 min, 40% B; 20 min, 60% B; 22-24.5 min, 95% B. A 3-min post-

run time was set to fully equilibrate the column. Column and sample chamber 

temperature were 65℃ and 4℃ respectively. 

MS was performed on an Agilent 6460 ESI Triple Quadrupole Mass Spectrometer 

(Agilent Technologies, Palo Alto, CA, USA) in negative ESI mode. The ESI source 

operation parameters were as follows: capillary, 3500 V; nozzle voltage, 500 V; gas 

flow, 8 L/min; gas temperature, 350°C; nebulizer, 45 psi; sheath gas temperature, 

300℃; sheath gas flow, 11 L/min. The scan mode was multiple reactions monitoring 

(MRM) mode. 

 Validation method 

The quantitative analytic method of bile acids and conjugated bile acid was validated 

according to the guidelines given by the protocol of  the bioanalytical method validation 

provided by the US Food and Drug Administration (FDA) with a few modifications 

(Administration 2018). The linearity was assessed for each bile acid and conjugated 

bile acid over a range of calibration concentration from 0.55 ppb to 4.5 ppm. The limit 

of detection (LOD) was considered with signal-to-noise ratios > 3. The lower limit of 
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quantification (LLOQ) was determined with signal-to-noise ratios > 10 and the upper 

limit of quantification (ULOQ) was the highest calibration standard concentration on 

the calibration curve. 

Recovery was studied by comparing between study samples spiked with three 

concentrations (31.25 ppb, 125 ppb and 500 ppb) of  bile acid mixtures before sample 

extraction and the theoretical concentration of the spiked standards, respectively. Blank 

QC serum samples spiked with internal standards only were used to determine the 

original endogenous bile acids and conjugated bile acids in the serum.  

 Recovery =
mean detected conc serum after spiked  –  mean original conc blank serum 

mean spiked conc 
 × 100 % 

The precision was obtained as the CV %. Due to the limit of QC samples, each value 

represented the mean of four replicates. 

 Data processing and analysis 

The peak area was extracted by Agilent MassHunter Quantitative Analysis Software 

(Agilent Technologies, Palo Alto, CA, USA). The peak area ratio of each standard to 

its internal standard was calculated from each MRM chromatogram and was used for 

method validation and quantitation of the samples. Calibration curves were plotted at 

different concentrations in the linear range and were used to calculate the diluted 

concentration (dilution factor = 4) in the rat serum samples. 

 Western blot immune-reactivity assay 

Immunoblotting procedures were applied to quantify CYP7A1 protein. Homogenized 

liver tissue samples were lysed with lysis buffer and cooled in ice for 20 min. The 

mixture was centrifuged for 15 min at 8265 × g. The supernatant was isolated and 

assayed for protein contents with Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, 
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USA). 80 µg of protein extracts were applied to 7.5% SDS-polyacrylamide gels and 

transferred to polyvinylidene difluoride membranes. The membranes were blotted for 

1 h with 5% w/v non-fat dry milk and then incubated with the CYP7A1 antibody at 4 

℃ overnight. The membranes were washed three times in Tris-buffered saline 

containing 0.1% Tween 20 and were incubated with horseradish peroxidase-linked 

secondary antibodies for 1 h. Protein contents were detected with the 

chemiluminescence detection system (Amersham Biosciences, Little Chalfont, UK) 

and visualized with Fujifilm autoradiographic films. Densitometric analysis of optical 

densities was completed using AlphaEaseFC™ software (Alpha Innotech Corporation, 

San Leandro, CA). 

 Statistical analysis 

Statistical analyses were performed using IBM SPSS Statistics version 25 (Chicago, IL, 

USA). After removal of outliers (1.5 times of the interquartile range), statistical 

differences were evaluated by one-way analysis of variance (ANOVA) at a univariate 

level; least significance difference (LSD) post-hoc test was applied with assumption of 

equal variances. Correlation analysis was done using linear regression and the Pearson 

correlation coefficient (R) was determined. A p value of 0.05 was considered as 

statistically significant.  

 Results and Discussion 

 Effect on serum lipid profiles 

The lipid profiles of total cholesterols, TG, HDL-C and LDL-C from different animal 

groups are presented in Fig. 3.1. The HFD significantly raised the total serum 

cholesterols (4.32 ± 0.43 mmol/L) and LDL-C (0.60 ± 0.08 mmol/L) compared with 

normal control (1.88 ± 0.09 mmol/L and 0.19 ± 0.01 mmol/L respectively) while TG 

and HDL-C showed no significant changes among all groups. The atherogenic index is 
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the ratio of (total serum cholesterol - HDL-C) to HDL-C and is a parameter to evaluate 

the risk of coronary heart disease. Administration of either piceatannol (0.89 ± 0.12 

mmol/L) or simvastatin (0.83 ± 0.14 mmol/L) could significantly lower the atherogenic 

indexes compared with the HFD model (1.54 ± 0.25 mmol/L), suggesting that 

piceatannol had protective potential in atherosclerosis.  
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Fig. 3.1 Serum lipid levels and atherogenic indexes of rats from the normal control, HFD model, simvastatin-treated and piceatannol-

treated HFD-fed groups.  

Data are expressed as mean ± Standard error of the mean (SEM), n = 6 - 8. One way-ANOVA followed by LSD post-hoc test: #p < 0.05, ##p < 

0.01 and ###p < 0.001 compared with the normal control. *p < 0.05, **p < 0.01 and ***p < 0.001 compared with the HFD model group. 
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 Reliability of the untargeted MS metabolomics platforms 

The stabilities of GC-MS and UPLC-MS detections were assessed by inter-day 

measurement of a 37 FAME-standard mixture and the pooled QC sample injections, 

respectively. 10 metabolites including both positive and negative ESI modes from QC 

samples and 16 detected FAMEs from the FAME mixture were selected for comparison 

(Tables S3.1 and S3.2 in Appendix I). The score plot of PCA was used to evaluate the 

stability of the analytical instruments. Fig. 3.6A showed the QC samples were clustered 

together in PCA score plots, indicating the low variation between QC samples. The 

coefficient of variation (CV %) of 16 analytes in GC-MS was less than 7% while the 

CV % of ten analytes in UPLC-MS was smaller than 22%. Results showed high 

reproducibility was achieved across the runs. This ensured the changes among the 

different groups observed from the statistical analysis were mainly biologically related 

but not related to systematic errors in the measurements. 

Additionally, the reproducibility of peak retention time was also evaluated throughout 

the study to calculate the CV %. The results showed that the CV % of all the retention 

time was less than 0.50%. Recovery of transesterification and esterification was also 

examined by spiking a known concentration of standards before extraction of serum 

samples. 50%, 100% and 200% oleic acid (a NEFA, 200, 400 and 800 μM) and glycerol 

1-oleate (an EFA, 100, 200 and 400 μM) relative to the known concentration were 

spiked into three QC serum samples, respectively. Their recoveries were in the range at 

105.45 – 113.21% for esterification of oleic acid and at 100.05-103.16 % for 

transesterification of glycerol 1-oleate. 

High retention time and analytical reproducibility and good recovery of the metabolite 

detection demonstrated that the presented untargeted methodologies had the robustness 

and reliability required by a metabolic profiling study.  The UPLC-MS and GC-MS 
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chromatograms of serum in normal control, HFD model and piceatannol-treated group 

are shown in Figs. 3.2 and 3.3. 



63 

 

 

Fig. 3.2 Typical base peak intensity chromatograms of rat serums from the normal control group, HFD model and piceatannol-treated 

group in UPLC-QTOF-MS analysis 
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 Fig. 3.3 Typical total ion chromatograms of (A) EFA and (B) NEFA of rat serums from HFD group in GC-MS Analysis. 
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Table 3.1 Identity of EFA and NEFA detected in the rat serum using GC-MS 

Retention 

time (min) 
Systematic name Common name 

Shorthand 

designation 

Molecular 

formulae 

Molecular 

weight (g/mol) 

8.87 n-Ttetradecanoate, methyl ester Myristic acid methyl ester EC14:0 C15H30O2 242.40 

9.83 n-Ppentadecanoate, methyl ester N/A EC15:0 C16H32O2 256.42 

11.01 Hexadecanoic acid, methyl ester Palmitic acid methyl ester EC16:0 C17H34O2 270.45 

11.26 cis-7-Hexadecenoic acid, methyl ester Hypogeic acid methyl ester EC16:1n9c C17H32O2 268.24 

11.36 cis-9-Hexadecenoic acid, methyl ester cis-Palmitoleic acid methyl ester EC16:1n7c C17H32O2 268.43 

12.43 Heptadecanoic acid, methyl ester Margaric acid methyl ester EC17:0 C18H36O2 284.48 

14.14 n-Octadecanoic acid, methyl ester Stearic acid methyl ester EC18:0 C19H38O2 298.50 

14.52 cis-9-Octadecenoic acid , methyl ester Oleic acid methyl ester EC18:1n9c C19H36O2 296.49 

14.65 cis-11-Octadecenoic acid methyl ester cis-Vaccenic acid methyl ester EC18:1n7c C19H36O2 296.49 

15.42 cis-9,12-Octadecadienoic acid Linoleic acid methyl ester EC18:2n6c C19H34O2 294.47 

16.06 cis-6,9,12-Octadecatrienoic acid, methyl ester cis-γ-Linolenic acid methyl ester EC18:3n6c C19H32O2 292.46 

16.77 cis-9,12,15-Octadecatrienoic acid, methyl ester cis-α-Linolenic acid methyl ester EC18:3n3c C19H32O2 292.46 

18.41 Eicosanoic acid, methyl ester Arachidic acid methyl ester EC20:0 C21H42O2 326.56 

20.05 cis-11,14-eicosadienoic acid, metyl ester N/A EC20:2n6c C21H38O2 322.53 

20.73 cis-8,11,14-Eicosatrienoic acid methyl ester Dihomo-γ-linolenic acid methyl ester EC20:3n6c C21H36O2 320.51 

21.30 cis-5,8,11,14-Eicosatetraenoic acid, methyl ester Arachidonic acid methyl ester EC20:4n6c C21H34O2 318.49 

23.40 cis-5,8,11,14,17-Eicosapentaenoic acid, methyl ester N/A EC20:5n3c C21H32O2 316.48 

25.40 cis-13,16-Docosadienoic acid, methyl ester N/A EC22:2n6c C23H42O2 350.58 

16.56 cis-10-Nonadecenoic acid, methyl ester N/A EC19:1n9c C20H38O2 310.51 
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 Method validation of UPLC-QQQ-MS/MS analysis 

MRM extracted ion chromatograms of bile acids and conjugated bile acids are shown 

in Fig. 3.4. Method validation of targeted quantitative analysis of bile acids and 

conjugated bile acids was optimized (Table 3.2 and Fig. 3.5) and suited to the analysis 

of the study samples. The calibration curves showed a good linearity for all standards 

(R2 ≥ 0.9984) (Table 3.3 and Fig. 3.5). Their concentrations in study and QC samples 

were above the LLOQ and fitted the linear range, except the concentrations of 

lithocholate < LOD (4.39 ppb) and that of tauroursodeoxycholate < LLOQ (LLOQ = 

1.10 ppb, LOD = 0.55 ppb) in rat serum samples. Their CV % in QC serum samples (n 

= 7) injected in every four randomized rat serum samples was 2.43-15.67%. The 

recoveries were reproducible (77.54 – 116.56 %, CV% < 6 %) in all standards at 31.25 

ppb, 125 ppb and 500 ppb concentrations that were spiked into QC serum samples 

(Table 3.4 and Table S3.3). These result matched the acceptance criteria of FDA 

(recovery = 80-120 % and variance < 15%) in term of quantification of biological 

samples (Administration 2018). 
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Fig. 3.4 MRM extracted ion chromatograms of bile acids and conjugated bile acids 

in UPLC–QQQ-MS/MS quantitative analysis.  

(A) Reference standards; (B) Internal standards; (C-M) Rat QC serum sample. 

Abbreviations: α-MCA, α-Muricholate; β-MCA, β-muricholate; CA,  cholate;  CDCA,  

chenodeoxycholate;  DCA,  deoxycholate;  GCA, glycocholate; GCDCA, 

glycochenodeoxycholate;  GDCA,  glycodeoxycholate;  GHDCA, 

glycochenodeoxycholate;  GUDCA, glycoursodeoxycholate; HDCA, hyodeoxycholate;   

LCA,   lithocholate; TCA, taurocholate; TCDCA, taurochenodeoxycholate; TDCA, 

ursodeoxycholate; THDCA, taurohyodeoxycholate;  TUDCA,  tauroursodeoxycholate; 

UDCA, ursodeoxycholate; CA-D4, cholate-D4; GUDCA- D4, glycoursodeoxycholate-

D4; DCA-D4, deoxycholate-D4; UDCA-D4, ursodeoxycholate-D4; GCA-D4, 

glycocholate-D4 ;GCDCA-D4, glycochenodeoxycholate-D4. 
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Table 3.2 Optimized multiple reaction monitoring parameters for each bile acid and each conjugated bile acids in UPLC–QQQ-MS/MS 

quantitative analysis 

Standards 
Retention time 

(min) 

MRM transitions 

(m/z)  

Fragmentor 

(V) 

Collision energy 

(V) 
Internal standards 

Hyodeoxycholate 17.41 391 → 391 160 3 

Ursodeoxycholate-D4  Ursodeoxycholate 16.99 391 → 391 160 3 

Ursodeoxycholate-D4 16.94 395 → 395 160 3 

Chenodeoxycholate 20.15 391 → 391 160 3 

Deoxycholate-D4 
Deoxycholate 20.35 391 → 391 160 3 

Lithocholate 21.53 375 → 375 120 3 

Deoxycholate-D4 20.33 395 → 395 160 3 

α-Muricholate 13.42 407 → 407 175 3 

Cholate-D4 
β-Muricholate 13.89 407 → 407 175 3 

Cholate 16.88 407 → 407 175 3 

Cholate-D4 16.86 411 → 411 175 3 

Glycoursodeoxycholate 13.14 448 → 74 120 40 

Glycoursodeoxycholate-D4 

 

Glycohyodeoxycholate 13.54 448 → 74 120 40 

Tauroursodeoxycholate 9.60 498 → 80 140 80 

Taurohyodeoxycholate 10.10 498 → 80 140 80 

Glycoursodeoxycholate-D4 13.11 452 → 74 120 40 

Glycochenodeoxycholate 17.64 448 → 74 120 40 

Glycochenodeoxycholate-D4 
Glycodeoxycholate 18.37 448 → 74 120 40 

Taurochenodeoxycholate  14.42 498 → 80 140 80 

Taurodeoxycholate 15.02 498 → 80 140 80 

Glycochenodeoxycholate-D4 17.62 452 → 74 120 40  

Glycocholate 13.67 464 → 74 120 40 

Glycocholate-D4 Taurocholate 10.49 514 → 80 140 80 

Glycocholate -D4 13.66 468 → 74 120 40 
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Fig. 3.5 Calibration curve of bile acids and conjugated bile acids using UPLC–

QQQ-MS quantitative analysis 
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Table 3.3 Linear regression, linear range, LOD of each bile acid and each conjugated bile acid, and their precision in seven QC serum 

samples in UPLC–QQQ-MS/MS quantitative analysis  

 

x, ratio of peak area of each standard to that of its respective internal standard listed in Table 3.2; y, standard concentration in ppb. ND, not detected in the serum samples. 

  

Standard Linear regression equation R2 
Linear range 

(LLOQ - ULOQ, ppb) 
LOD 

RSD (%) in QC 

samples 

Ursodeoxycholate y = 0.004166 x – 0.000044 0.9993 8.79-281 4.39 6.71 

Hyodeoxycholate y = 0.003725 x + 0.082221 0.9984 17.57-281 8.79 4.50 

Chenodeoxycholate y = 0.001445 x + 0.015252 0.9988 8.79-281 4.39 5.14 

Lithocholate y = 0.000574 x - 0.053125 0.9984 35.15-4500 4.39 ND 

Deoxycholate y = 0.004838 x - 0.088035 0.9990 35.15-1125 4.39 2.42 

α-Muricholate y = 0.003997 x - 0.038067 0.9994 8.79-1125 4.39 5.27 

β-Muricholate y = 0.004623 x - 0.029173 0.9992 8.79-1125 4.39 4.35 

Cholate y = 0.006616 x - 0.078078 0.9996 8.79-1125 4.39 2.55 

Glycoursodeoxycholate y = 0.003457 x - 0.000165 0.9991 0.55-140.63 0.20 19.56 

Glycohyodeoxycholate y = 0.003933 x - 0.005822 0.9994 1.10-281 0.55 2.73 

Glycochenodeoxycholate y = 0.004089 x + 0.009940 0.9998 2.20-281 0.55 3.38 

Glycodeoxycholate y = 0.006943 x - 0.007762 0.9995 2.20-281 1.10 3.65 

Glycocholate y = 0.003983 x - 0.002072 0.9996 4.39-281 1.10 4.33 

Tauroursodeoxycholate y = 0.001868 x - 0.004930 0.9985 1.10-281 0.55 ND 

Taurohyodeoxycholate y = 0.010511 x - 0.007958 0.9998 0.55-281 0.20 5.71 

Taurochenodeoxycholate y = 0.005051 x - 0.003250 0.9994 2.20-281 0.55 11.20 

Taurodeoxycholate y = 0.059888 x + 0.024687 0.9999 0.55-281 0.20 6.20 

Taurocholate y = 0.003130 x - 0.002262 0.9993 2.20-140.63 0.55 5.13 
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Table 3.4 Extraction recovery and precision of each bile acid and each conjugated bile acid detected in QC samples with three spiked 

concentrations using UPLC–QQQ-MS quantitative analysis 

Spiked 

concentration 

  31.25 ppb      125 ppb         500 ppb   

Standards   Recovery extraction 

(%) 

Precision 

(%) 

  Recovery extraction 

(%) 

Precision 

(%) 
  Recovery extraction 

(%) 

Precision 

(%) 

  

Ursodeoxycholate  102.01 2.35 
 

81.04 2.30 
 

- - 
 

Hyodeoxycholate 111.25 4.32 
 

79.55 2.38 
 

- -   

Chenodeoxycholate 117.30 3.12 
 

94.59 5.52 
 

- - 
 

Deoxycholate  
 

109.56 3.61 
 

95.82 5.91 
 

87.21 2.79   

α-Muricholate 
 

99.52 3.19 
 

84.59 4.31 
 

78.86 1.95 
 

β-Muricholate 
 

103.70 3.83 
 

82.91 4.11 
 

77.54 0.74   

Cholate 
 

81.46 2.54 
 

84.84 1.95 
 

89.72 0.60 
 

Glycoursodeoxycholate  82.86 1.22 
 

81.54 2.33 
 

- -   

Glycohyodeoxycholate 89.00 4.63 
 

84.03 4.51 
 

- - 
 

Glycochenodeoxycholate 91.07 3.22 
 

82.88 2.07 
 

- -   

Glycodeoxycholate 116.56 2.92 
 

110.76 2.50 
 

- - 
 

Glycocholate 
 

89.43 1.11 
 

83.07 2.01 
 

- -   

Taurohyodeoxycholate 89.91 2.97 
 

85.30 2.58 
 

- - 
 

Taurochenodeoxycholate  108.63 3.08 
 

99.84 0.89 
 

- -   

Taurodeoxycholate  104.20 2.32 
 

93.12 1.35 
 

- - 
 

Taurocholate 
 

104.31 1.74   99.07 2.75   - -   

Each value represents the mean of four replicates. “–“ represents the concentration is out of the linear range.   



72 

 

 Effect of piceatannol to HFD 

After quality screening of the UPLC-QTOF-MS data acquired in negative and positive 

ESI modes, 878 out of 1976 peaks and 2491 out of 4904 peaks were obtained, 

respectively, using MarkerLynx software. 

Metabolite changes in the serum collected from the animal study were investigated 

using OPLS-DA of the above quality-screened signals. Fig. 3.6B showed a clear 

separation between the normal control and the HFD model. The results obtained by VIP 

value ≥ 1.5 and S-loading plot (Fig. 3.6C) followed by validation with one-way 

ANOVA (p < 0.05) showed that over 20 endogenous metabolites were altered in the 

two groups. These metabolites belong to three major classes: lysophospholipids, fatty 

acids, bile acids and their conjugated products. The bile acids, conjugated bile acids, 

free fatty acids and fatty acid methyl esters were identified by matching with reference 

standards whereas the lysophosphatidylethanolamine (lysoPE) and 

lysophosphatidylcholines (lysoPCs) were putatively identified by accurate mass 

measurement, MS fragmentation, retention time matching with database search and 

literatures. The fold changes of these metabolites compared with those of the HFD-fed 

model were listed in Table 3.5 and more details could be seen in the heatmap of Fig. 

3.7. The above model offered a basis for studying the role of piceatannol in reducing 

the blood cholesterol level in HFD-fed rats. 

To study the effect on piceatannol, PLS-DA was further studied to examine differences 

in metabolite profiles among the normal control, HFD and piceatannol groups. As 

shown in Fig. 3.6D, the score plot of PLS-DA showed a clear distinction among the 

normal control, HFD and piceatannol groups. Significant differences based on the 

results of a loading plot (Fig. 3.6E) were observed in the following classes of 

metabolites including lysophospholipids, fatty acids and bile acids (p < 0.05).  
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Fig. 3.6 Multivariate analyses of serum acquired using UPLC-Orbitrap-MS and 

GC-MS. 

 (A) PCA score plot, (B) OPLS-DA score plot, (C) S-loading plot of OPLS-DA, (D) 

PLS-DA score plot and (E) loading plot of PLS-DA of metabolites. (1) Negative and 

(2) positive ESI modes for UPLC-QTOF-MS; (3), GC-MS. Red squares highlighted in 

(C) and (E) are metabolites with VIP >1.5. 
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Table 3.5 Identification and fold change of metabolites compared with HFD model using UPLC-QTOF-MS and GC-MS. 

Metabolites Adducts 
Retention time 

(min) 

Theoretical 

m/z 

Detected 

m/z 

Mass 

error 

(ppm) 

Fold change with respect 

to HFD model CV (%) of QC 

samples Normal 

control 

HFD + 

Piceatannol 

Taurocholate [M-H]- 4.33 514.2844 514.2834 -1.9 1.19 1.32 12.9 

Taurohyodeoxycholate [M-H]- 4.31 498.2895 498.2882 -2.6 0.94 2.60* 13.2 

Taurohyodeoxycholate isomer [M-H]- 4.17 498.2895 498.2881 -2.8 1.10 3.79** 21.2 

Glycocholate [M+H]+ 4.61 466.3164 466.3166 0.4 1.08 2.48*** 13.8 

[M-H]- 4.62 464.3012 464.3006 -1.3 0.86 3.01*** 7.9 

Glycohyodeoxycholate+ 

glycoursodeoxycholate 

[M+H-2H2O]+ 4.66 414.3014 414.3004 -2.4 0.48 3.11*  17.2 

[M-H]- 4.64 448.3068 448.3056 -2.7 0.28 3.43** 7.9 

Taurochenodeoxycholate [M-H]- 4.70 498.2895 498.2884 -2.2 1.33 2.74** 11.4 

Taurodeoxycholate [M-H]- 4.79 498.2895 498.2882 -2.6 0.26** 1.90** 6.6 

Cholate [M+H-3H2O]+ 5.19 355.2630 355.2636 1.7 1.07 0.47**  17.5 

[M-H]- 5.19 407.2803 407.2790 -3.2 1.29* 0.63* 5.6 

Glycochenodeoxycholate [M-H]- 5.24 448.3068 448.3056 -2.7 0.56* 1.75** 8.1 

Hyodeoxycholate + ursodeoxycholate [M+H-2H2O]+ 5.35 357.2799 357.2791 -2.2 0.50**  0.57**  20.8 

[M-H]- 5.34 391.2854 391.2842 -3.0 0.45*** 0.55***  8.6 

Glycodeoxycholate [M+H-2H2O]+ 5.42 414.3014 414.3002 -2.9 0.16*  1.86**   17.7 

[M-H]- 5.44 448.3068 448.3057 -2.5 0.15*** 1.60** 7.5 

Chenodeoxycholate isomer [M-H]- 5.87 391.2854 391.2841 -3.3 0.24*** 0.84 13.4 

Chenodeoxycholate [M-H]- 6.77 391.2854 391.2842 -3.0 0.83 0.33** 6.0 

LysoPC(18:2) [M+H]+ 7.40 520.3398 520.3401 0.57 0.39*** 0.76* 12.5 

[M+FA-H]- 7.40 564.3307 564.3300 -1.2 0.56*** 0.73* 10.1 

Deoxycholate [M-H]- 7.08 391.2854 391.2842 -3.0 0.19*** 0.56** 16.2 

LysoPC(20:3) [M+H]+ 8.24 546.3554 546.3553 -0.2 0.21*** 0.69* 13.4 

[M+FA-H]- 8.26 590.3463 590.3455 -1.4 0.35*** 0.62** 5.6 

Unidentified  ESI- 8.46 /  455.3150 / 11.25*** 0.58 8.4 

Unidentified ESI- 8.52 / 466.3292 / 1.91*** 0.89 6.3 
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LysoPC(18:1)  [M+H]+ 8.61 522.3554 522.3555 0.2 0.65** 0.79 13.1 

[M+FA-H]- 8.62 566.3463 566.3455 -1.5 0.64** 0.69** 14.9 

LysoPE(20:1) [M-H]- 8.62 506.3252 506.3242 -2.0 0.55** 0.59** 18.6 

LysoPC(20:2) [M+H]+ 9.09 548.3711 548.3711 0.1 0.35*** 0.56** 13.2 

[M+FA-H]- 9.09 592.3620 592.3611 -1.5 0.22*** 0.59** 
9.6 

LysoPC(20:1) [M+H]+ 10.03 550.3867 550.3866 -0.2 0.51** 0.75 15.3 

LysoPC(20:0) [M+H]+ 11.20 552.4024 552.4021 -0.5 0.31*** 0.56** 18.1 

[M+FA-H]- 11.20 596.3933 596.3924 -1.5 0.24*** 0.70* 17.3 

4,7,10,13,16,19-Docosahexaenoic acid [M-H]- 11.33 327.2330 327.2318 -3.7 1.21** 1.15 5.1 

Arachidonic acid [M-H]- 11.49 303.2324 303.2320 -1.3 1.22* 1.18 13.5 

Palmitic acid [M-H]- 12.17 255.2330 255.2318 -4.7 1.35* 1.33 5.7 

EFA Molecular 

formula 

Retention time 

(min) 

Mass Fold change with respect to 

HFD model 

CV (%) of QC 

samples 

Control Piceatannol

+HFD 

Esterified stearic acid (EC18:0) C19H38O2 14.14 298 1.22*  0.98 1.51 

Esterified oleic acid (EC18:1n9c) C19H36O2 14.52 296 0.64** 0.66* 1.12 

Esterified linoleic acid (EC18:2n6c) C19H34O2 15.42 294 0.75** 0.76* 4.05 

Esterified arachidonic acid 

(EC20:4n6c) 

C21H34O2 21.30 318 1.29** 1.00 5.06 

Esterified cis-4,7,10,13,16,19-

docosahexaenoic acid (EC22:6n3c) 

C23H34O2 29.46 342 1.56*** 0.89 4.42 

One-way ANOVA, followed by LSD post-hoc test with equal variance #p < 0.05, ##p < 0.01, ###p < 0.001; Tamhane post-hoc test with unequal 

variance *p < 0.05, **p < 0.01, ***p < 0.001.  

n = 5–8. 
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Fig. 3.7 Heatmap of (A) altered identified metabolites by piceatannol treatment 

acquired by untargeted serum metabolomics analysis using UPLC-QTOF-MS and 

(B) all GC-MS identified EFA and NEFA in normal control, HFD model and 

piceatannol-treated group.  
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 Change of lysophospholipids in serum after piceatannol treatment 

Our result showed that lysoPE (C20:1) and five lysoPCs (C18:1, C18:2, C20:0, 20:2 

and 20:3) were increased in HFD models but restored in piceatannol-treated HFD 

models. Lysophospholipids play a structural role in the composition of cell membrane, 

but they are also involved in many cellular functions such as acting as messengers in 

signal transmission within a cell, activating cells, and synthesis of precursors of 

prostaglandins. In recent years, observations of the up-regulation of lysophospholipids, 

especially lysoPCs derived from hydrolysis of phosphatidylcholines, have been 

reported in hyperlipidemia-related researches, such as a study of atherosclerosis in a 

rabbit model (Liu, Peng, Jia, Cai, et al. 2014), HFD-fed Ossabaw pig (Hanhineva et al. 

2013) and HFD-induced hyperlipidemic rats (Wu et al. 2014). Also, Frostegård’s team 

(Frostegård 2010) pointed out that the toxicity of a high concentration of lysoPCs from 

the increased phosphorylcholine might cause autoimmune response and inflammation 

in various diseases related to hyperlipidemia. 

 Change of fatty acids in serum after piceatannol treatment 

The OPLS-DA score plots from the data of LC-MS and GC-MS showed that both 

unsaturated and saturated NEFAs and EFAs were disturbed by HFD (Fig. 3.6B). There 

were lower circulating levels of free stearic acid, palmitic acid, free and esterified DHA 

as well as free and esterified arachidonic acid in HFD group compared with the normal 

control group (Table 3.5, p < 0.05, VIP > 1.5). Although piceatannol could not restore 

the above fatty acid levels, it significantly down-regulated the esterified oleic acid and 

linoleic acid levels and restored them to the normal level as suggested by the GC-MS 

results (p < 0.05, VIP > 1.5).   

To further study the fatty acid metabolism of GC-MS results, the fatty acid product to 

its precursor ratio was evaluated. Such ratio commonly serves as an indicator of 
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endogenous fatty acid metabolism and an estimation of hepatic enzyme activities 

(Matthan et al. 2014). As shown in Fig. 3.8, the ratio of esterified arachidonic acid 

(EC20:4n6c) to esterified dihomo-γ linoleic acid (EC20:3n6c) was significantly up-

regulated after the piceatannol treatment as compared with that of the HFD model (p < 

0.01). A human study suggested that this ratio was positively associated with the 

activity of ∆5-desaturase (C20:4n6c / C20:3n6c) and higher activity of ∆5-desaturase 

was associated with lower coronary heart disease risk (Matthan et al. 2014). The present 

study also observed the similar trend that there was an inverse and non-linear 

correlation of the activity of ∆5-desaturase (EC20:4n6c / EC20:3n6c) with the 

atherogenic indexes of the rats (R2 = 0.7786) (Fig. 3.9). This indicated that elevated 

activity of ∆5-desaturase promoted the conversion of dihomo-γ linoleic acid to 

arachidonic acid. A significant reduction of dihomo-γ linoleic acid by 20.8% was 

observed in the piceatannol-treated group (p < 0.05) compared with the HFD model 

while there was no significant difference in the free arachidonic acid level between 

these two groups (p < 0.01). Th observation of no significant difference may be because 

extra arachidonic acid generated could probably be further converted to pro-

inflammatory mediators by the action of cyclooxygenase-1 and -2 isoenzymes (COX-

1, COX-2), 5- and 15-lipoxygenases (5-LOX, 15-LOX) (Calder 2006) or converted to 

other long-chain ω6-fatty acids (Simopoulos 2008). As piceatannol is an inhibitor of 

COX-2 (Murias et al. 2004) and 5-LOX (Kutil et al. 2014), the arachidonic acid was 

probably converted to long chain fatty acids in the piceatannol-treated group. 

Furthermore, a non-alcoholic human fatty liver study (Kotronen et al. 2009) revealed 

that liver fat content was positively correlated to stearoyl‐CoA desaturase 1 activity 

index (C18:1n9c / C18:0) and inversely correlated to hepatic elongase activity index 

(C18:0 / C16:0). Piceatannol treatment did not make any changes to the elongase 
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activity. Yet, it reduced the stearoyl‐CoA desaturase activity from HFD, as evidenced 

by the smaller ratio of EC18:1n9c to EC18:0 than HFD group (p < 0.01), thereby 

limiting the major substrates (monounsaturated and polyunsaturated fatty acids) for 

synthesis of TG and other lipids (Ntambi and Miyazaki 2004). Fig. 3.10 gives a 

summary of the change of saturated fatty acid metabolism and ω-6 fatty acid 

metabolism with proposed action of piceatannol in the pathway. 
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Fig. 3.8 Peak area ratios of EC20:4n6c to EC20:3n6c, EC18:In9c to EC18:0, EC18:0 to EC16:0 detected by GC-MS among the normal 

control, HFD model, and piceatannol-treated groups.  

Data are expressed as mean ± SEM, n = 6–8.  

One-way ANOVA, followed by LSD post-hoc test: ##p < 0.01 and ###p < 0.001 compared with the normal control group.  

**p < 0.01 compared with the HFD model group. 
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Fig. 3.9 Non-linear relationship of peak area ratios of EC20:4n6c to EC20:3n6c against atherogenic indexes of all rats from the three 

groups. 



 

82 

 

 

Fig. 3.10 A Simplified schematic diagram of proposed action of piceatannol in the simplified saturated fatty acid metabolism and ω-6 fatty 

acid metabolism
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 Change of bile acids in serum after piceatannol treatment 

 Piceatannol supplementation reduced primary and secondary 

bile acids but increased most conjugated bile acids 

The results of untargeted UPLC-QTOF-MS analysis showed that bile acids and their 

conjugated bile acids were significantly disturbed by HFD as well as the piceatannol 

treatment. Their fold changes of UPLC-QTOF-MS are presented in Table 3.5.  

In order to validate the results of untargeted UPLC-QTOF-MS analysis, a quantification 

of 16 bile acids was conducted using serum samples from the same animal study. Fig. 

3.11 is a summary of a simplified pathway of bile acid biosynthesis and bar charts 

showing the contents of bile acids and conjugated bile acids in each group.  Most results 

of targeted quantification method were consistent with that of untargeted metabolomics 

analysis. Some of the inconsistency between UPLC-QTOF-MS and UPLC-QQQ-

MS/MS might be due to the signal enhancement or signal suppression effect of serum 

matrix during the ionization process of UPLC-QTOF-MS. This was improved by using 

similar internal standards as they shared similar chemical structures and co-eluted with 

its corresponding analytes. They could correct for the variations in ionization efficiency 

arising from the matrix. 

The two peaks of hyodeoxycholate and ursodeoxycholate and the two peaks of 

glycohyodeoxycholate and glycoursodeoxycholate that were originally co-eluted in the 

untargeted UPLC-QTOF-MS were well separated and quantified in UPLC-QQQ-MS. 

Lithocholate and tauroursodeoxycholate were below the detection limit of both UPLC-

QTOF-MS and UPLC-QQQ-MS. α-Muricholate and β-muricholate, which were 

overlapped with adjacent isomers in UPLC-QTOF-MS, were quantified in UPLC-

QQQ-MS.  
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The UPLC-QQQ-MS study showed that primary bile acids (cholate, 

chenodeoxycholate, β-muricholate) did not change in the HFD model compared with 

normal controls but α-muricholate content was reduced. All were significantly 

decreased in piceatannol-treated group compared with HFD model. Untargeted and 

targeted study had the same trend in the secondary bile acid changes as well. The 

contents of secondary bile acids, deoxycholate, hyodeoxycholate and 

ursodeoxycholate, were significantly elevated in HFD model and reduced in 

concentration in the piceatannol supplementation to HFD rats.  

The conjugated bile acid contents were increased more in the piceatannol treatment 

group than in the HFD model. The glycoursodeoxycholate, glycodeoxycholate and 

glycohyodeoxycholate contents were higher in both HFD models and piceatannol-

treated groups compared with normal control. Yet, only glycocholate, 

glycochenodeoxycholate, taurodeoxycholate, taurochenodeoxycholate and 

taurohyodeoxycholate contents were increased in the piceatannol-treated groups but 

HFD models remained unchanged compared with normal control. In the contrary, the 

increase in glycoursodeoxycholate content was less in the piceatannol treatment group 

than HFD models.  
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Fig. 3.11 A simplified diagram of bile acid biosynthesis altered by HFD model and 

piceatannol treatment, in which the quantified contents of different bile acids in 

serum were determined by UPLC-QQQ-MS/MS.   

N, normal control; HFD, high-fat diet induced model; PCT, piceatannol-treated HFD 

model. One-way ANOVA, LSD post-hoc test: ***p<0.001, ** p< 0.01, * p <0.05 

compared with the HFD model; ### p<0.001, ## p< 0.01, # p <0.05 compared with the 

normal control group. n=5-8. ↑: increase; ↓: decrease in piceatannol-treated group 

compared with HFD group. <LOD, below limit of detection. NS, no significant change. 

Dotted line: skipped pathway. 
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 Piceatannol might not rely on CYP7A1 action in elimination of 

cholesterol but lower the solubility of cholesterols bound on gut 

bile acid micelle 

CYP7A1 is the rate-limiting enzyme in the bile acid biosynthetic pathway (Chiang 

2009; Dawson 2016). Resveratrol has been shown to increase the expression of 

CYP7A1, which affected the bile acid biosynthetic pathway (Miura, Miura, and 

Yagasaki 2003; Zhu, Luo, and Jin 2008; Chen et al. 2012) and elevated the excretion 

of fecal bile acids (Zhu, Luo, and Jin 2008) to lower cholesterols in the blood 

circulation. It was originally hypothesized that piceatannol that has a similar chemical 

structure as resveratrol might also up-regulate CYP7A1, leading to higher 

concentration of circulating bile acids and lower cholesterols as observed here. 

However, our result showed that the CYP7A1 protein expression levels in the liver of 

the HFD-fed model and simvastatin-treated HFD-fed group were lower than that in the 

liver of the normal control (p < 0.001) (Fig. 3.12). This was probably because the high 

cholesterol diet (2% cholesterols in the rat chow) of these two groups in this study might 

impair the bile acid biosynthetic pathway which was responsible for cholesterol 

elimination (Zinkhan et al. 2014), and so impaired the CYP7A1 protein expression.  

The CYP7A1 protein expression of the piceatannol-treated HFD-fed group was lower 

than that of the HFD group (p < 0.01), suggesting that piceatannol might not rely on 

CYP7A1 action in elimination of cholesterol. The cholesterol-lowering effect of 

piceatannol might be contributed by the inhibition of dietary cholesterol absorption 

from the small intestine with the assistance of binding effects of piceatannol to 

conjugated bile acids (Montilla et al. 2004). Conjugated bile acids are 

amphipathic molecules with non-polar (steroid) and polar regions (glycine or taurine) 

and behave as biosurfactants (Hofmann 1963). Within the gut lumen, they form 
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micelles with cholesterols and other lipids to solubilize them and facilitate their 

absorption in the intestine. However, there was a region-specific interaction of 

conjugated bile acids with polyphenols found in grapes (Ngamukote et al. 2011) and 

tea (Ogawa et al. 2016) to lower the solubility of cholesterols bound in the bile acid 

micelle. The interaction might be hydrogen bonds formed between keto groups of bile 

acids and resveratrol’s hydroxyl groups (Atanacković et al. 2009). These binding 

effects in the micelle probably resulted in the delay of cholesterol absorption. As 

piceatannol is a polyphenol and has one more hydroxyl group than resveratrol, it might 

also interact with the conjugated bile acids to lower the solubility of bile acid micelles 

that was bound to cholesterols. It was found that polyphenols found in red wine 

probably inhibited the absorption of lipids and exogenous cholesterols in the small 

intestine, resulting in a rise in the cholesterol sulphate content in faeces (Jimeez-Giro 

et al. 2014). Lower dietary cholesterol absorption was likely to reduce the hepatic 

cholesterol levels and so the stimulation to CYP7A1 receptor, resulting in a lower 

protein expression of CYP7A1 in the piceatannol-treated group compared with the 

HFD model, resulting smaller contents of most primary and secondary bile acids in the 

piceatannol-treated group.  
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Fig. 3.12 Representative Western blots (upper figure) and the graph (bottom 

figure) demonstrating the quantitative comparisons of protein expressions of 

CYP7A1 in the hepatocytes of the normal control, HFD model, piceatannol-

treated and simvastatin-treated groups. 

The expression level of each protein was normalized to that of the β-actin protein in 

each sample. Data are expressed as mean ± SEM, n = 8. One way-ANOVA, followed 

by LSD post-hoc test: ### p < 0.001 compared with the normal control group. ** p < 

0.01 compared with the HFD group. 
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 Piceatannol might interfere the biotransformation of secondary 

bile acids by modification of the microbial bile acid metabolism  

Primary bile acids are produced from cholesterols in the hepatic cells and metabolized 

in the intestine by the gut microbiota to generate secondary bile acids (Qi et al. 2015). 

For instance, cholic acid (a primary bile acid) is metabolized into deoxycholic acids (a 

secondary bile acid) by the 7α‐dehydroxylation reaction with the intestinal microbiota 

(Wang et al. 2019).  

In this study, the contents of secondary bile acids (deoxycholate, hyodeoxycholate and 

ursodeoxycholate) were in excess after consumption of HFD and largely reduced after 

the piceatannol supplementation to HFD rats. A research showed that dietary 

supplementation of polyphenols, such as curcumin and caffeic acid,  lowered faecal 

deoxycholic acid which was increased in the HFD-fed rats (Han et al. 2009). 

These changes were consistent in the HFD model and the piceatannol-treated group 

shown in the current study. It was likely that piceatannol, which is also a polyphenol, 

might interfere the gut microflora for biotransformation of secondary bile acids and 

deconjugation of bile salts in the gut. Hijona et al. reported that in a genetically obese 

Zucker rat model that took normal diet and piceatannol together, piceatannol 

supplementation did not change the gut microbial composition but it changed the 

amounts of several species of Firmicutes and Bacteroidetes phyla (Hijona et al. 2016). 

Another study demonstrated that resveratrol improved the HFD-induced intestinal 

microbial imbalance (Qiao et al. 2014). This study proposed that piceatannol 

supplementation to HFD-fed rats altered the gut microbial contents and reduced the 

biotransformation of primary bile acids into secondary bile acids and deconjugation of 

bile acids. Modification of the microbial bile acid metabolism induced by piceatannol 

or other stilbenes supplementation may play a vital role in the intestinal health. The 



 

90 

 

present study offered some evidence of this and further research is certainly warranted 

to provide a better picture on the role of intestinal microbiota in improving the health 

of the host via the consumptions of phytochemicals.  

 

 Conclusion 

The results acquired in this study supported the cardioprotective and lipid-lowering 

effects of piceatannol. Untargeted metabolomic approach has be employed to 

characterize the serum metabolic profile of HFD-fed rats that received piceatannol 

supplementation to provide more insights into the underlying mechanisms of 

piceatannol in regulating the atherogenic index. GC-MS indicated that piceatannol 

restored the circulating esterified fatty acid profiles whereas over 20 biomarkers 

identified from UPLC-MS exhibited that piceatannol interrupted bile acid metabolism 

and glycerophospholipid metabolism. The observed changes of fatty acids and their 

ratios suggested the regulation of fatty acid pathways was to down-regulate stearoyl‐

CoA desaturase and up-regulate ∆5-desaturase activities. Quantitative analysis further 

validated the piceatannol’s action in reducing primary and secondary bile acids and 

upregulating most conjugated bile acids. Reduction of CYP7A1 protein expression and 

reduction in primary and secondary bile acids in the piceatannol-treated group 

compared with that of HFD-fed model suggested that piceatannol did not rely on the 

CYP7A1 activation for removal of extra dietary cholesterols. But it might be because 

of the reduction in dietary cholesterol absorption in the intestine, which was likely due 

to the binding effect of piceatannol to the bile acids and cholesterols with bile acid 

micelles. The observation of lower serum levels of secondary bile acids and higher 

conjugated bile acids in the piceatannol-treated HFD-fed group gave us hints that the 

action of piceatannol may be related to the modification of gut microbial contents, 
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thereby reducing biotransformation of primary bile acids into secondary bile acids and 

deconjugation of bile salts. To the best of my knowledge, this is the first study showing 

piceatannol supplementation would reduce the serum cholesterol levels from HFD by 

regulating the bile acid biosynthesis and has been published (Sham et al. 2017). This 

knowledge would contribute to the development of new functional foods for CVDs and 

offer support of consumption of piceatannol-rich food. These conclusions may also be 

applied to other plant polyphenols and propose a new direction in understanding the 

health benefits of this kind of phytochemicals. More studies on the fecal bile acid 

compositions and the gut microbial population and content are warranted to support the 

proposed action of piceatannol on microbial bile acid metabolisms. 
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Chapter 4  The protective effect of water extract of Polygoni 

Cuspidati Rhizoma et Radix on NAFLD of rats 

induced by HFD using serum metabolomics and liver 

lipidomics   

 Background 

NAFLD is defined by the accumulation of fatty acid content greater than 5% of liver weight in 

the absence for secondary causes of hepatic fat accumulation (Nassir et al. 2015). The common 

primary causes of NAFLD are related to metabolic disorders such as type 2 diabetes, 

hyperlipidemia, obesity and insulin resistance. The secondary causes of hepatic fat 

accumulation include excess alcohol consumption (a threshold of >20 g/day for women and 

>30 g/day for men is typically adopted) (Anstee, McPherson, and Day 2011), viral infection,  

use of steatogenic drugs and hereditary diseases (Chalasani et al. 2012; Nassir et al. 2015).  

NAFLD is the mildest form of a histological spectrum of hepatic diseases, starting from simple 

steatosis (fatty liver) to more progressive non-alcoholic steatohepatitis, cirrhosis and in some 

cases hepatocellular carcinoma (Anstee, McPherson, and Day 2011; Sayiner et al. 2016). 

NAFLD is a growing health problem in the world. In 2016, a meta-analysis of 86 studies 

involving over 8.5 million persons from 22 countries indicated that the global prevalence of 

NAFLD was 25.24% (Younossi et al. 2016). It showed that the highest metabolic comorbidity 

associated with NAFLD is hyperlipidemia (around 70%), followed by obesity (over 50%). 

NAFLD is becoming a public health concern due to the rising obesity epidemics and increasing 

popularity of metabolic syndrome (Wree et al. 2013).  

In spite of the incomplete understanding of the pathogenesis of NAFLD, it is believed that one 

of the major causes is an imbalance between lipid acquisition (uptake of fatty acids and de novo 
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lipogenesis) and removal (mitochondrial fatty acid oxidation and export of triglycerides as a 

component of very-low-density lipoprotein particles) in the liver which leads to lipid 

accumulation (Kawano and Cohen 2013). 

The classical theory of NAFLD pathogenesis is the multiple “hits”  theory (Day and James 

1998). The first “hit” is lipid accumulation leading to inflammation in liver.  The second “hit” 

is a growth in oxidative stress and lipid peroxidation. The first “hit” is linked with insulin 

resistance and raises the susceptibility to the second “hit”, resulting in progression of NAFLD 

to non-alcoholic steatohepatitis (NASH) (de Castro and Calder 2018).  The early stages of the 

diseases (the first and second “hits”) are reversible in some patients after appropriate treatments  

(de Castro and Calder 2018).    

There are limited approaches for treating NAFLD (Day 2011). The common potential ways 

targeting NAFLD are medication treatments without strong evidence but for hepatic protection 

(Dajani and AbuHammour 2016), such as statin, vitamin E and pioglitazone (Ipsen, 

Lykkesfeldt, and Tveden-Nyborg 2018). Yet, these drugs are associated with possible adverse 

effects, which limit their treatment potential. For instance, vitamin E is a potent antioxidant to 

reduce oxidative stress in NAFLD, but its long-term use may increase the incidence of stroke 

(Schürks et al. 2010) and prostate cancer (Klein et al. 2011). Prolong use of pioglitazone is 

correlated to reduced bone density (Pop et al. 2017) and bladder cancer (Tang et al. 2018).  

Lifestyle modifications, such as dietary intervention, more physical activity and weight loss, 

are strongly recommended for relieving the symptoms with NAFLD (Ueno et al. 1997; Cave 

et al. 2007).  However, lifestyle interventions are very difficult to comply (Middleton, Anton, 

and Perri 2013), suggesting that pharmacological therapy may be more effective for some 

patients. 
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Hundreds of Chinese herbal medicines were reported to be effective for treatment of 

hyperlipidemia, especially the cases related to HFD in the past few decades (Xie, Zhao, and 

Du 2012).  Chinese herbs and classic traditional Chinese medicine (TCM) formulae could 

improve hyperlipidemic conditions with multiple mechanisms of actions similar to 

conventional Western drugs (Sham et al. 2014a). TCM is a possible answer for the alternative 

treatment for NAFLD. As NAFLD is caused by multiple factors, the multi-targeted nature of 

TCM may be more effective in regulating the conditions. The use of TCM to prevent and treat 

NAFLD has also received increasing attention due to its low risk of side effects and high 

efficacy (Yao et al. 2016).  

Four TCM formulae were reported to be effective for the treatment of NAFLD (Fan 2004; Ji 

et al. 2008; Wang Lu-wen et al. 2005; Feng et al. 2013; Zhang et al. 2008). They all contained 

the same Chinese herb, Polygoni Cuspidati Rhizoma et Radix (PCRR) as one of the 

components. Also, previous studies found that resveratrol and piceatannol had strong 

hypolipidemic effect (Miura, Miura, and Yagasaki 2003; Zhu, Luo, and Jin 2008; Sham et al. 

2017; Simental-Mendía and Guerrero-Romero 2019). PCRR is rich in resveratrol and 

resveratrol glucoside (polydatin). Piceatannol and resveratrol shared similar chemical 

structure. Piceatannol is in fact a natural analogue and metabolite of resveratrol and is found in 

the PCRR water extract used in this study. PCRR might play a role in these formulae in treating 

NAFLD.   

Polygoni Cuspidati Rhizoma et Radix (PCRR) is the dried rhizome and root of Polygonum 

cuspidatum Sieb. et Zucc.  and is called “Hu Zhang” (“虎杖”) in Chinese. It is listed in the 

Pharmacopoeia of the People’s Republic of China 2015 (Chinese Pharmacopoeia Commission 

2015) and Hong Kong Chinese Materia Medica Vol. 4 (Hong Kong Chinese Materia Medica 

Standards Office 2012). PCRR is also used as folk medicine in Japan and Korea (Zhang et al. 
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2013). The action of PCRR according to traditional Chinese medicine (TCM) theory is to drain 

dampness jaundice and clear heat and remove toxin. Its medical uses by TCM practitioners are 

very diverse, from treatment of cough, phlegm, burns, jaundice to hyperlipidemia (Chinese 

Pharmacopoeia Commission 2015) . Recent clinical and pharmacological studies had indicated 

that PCRR has antimicrobial, antiviral, anti-inflammatory, cardioprotective and 

neuroprotective functions (Zhang et al. 2013). 

Metabolomics, which aims at studying the whole metabolome, aligns with the holistic concept 

of TCM (Li and Yang 2008; Li, Yang, and Gong 2009). It provides another perspective in 

understanding the effects of the TCM inside the body (Liu et al. 2012; Dai et al. 2011; Lv et 

al. 2010; Liu, Peng, Jia, Cai, et al. 2014; Guo et al. 2014). Untargeted serum metabolomics and 

hepatic lipidomic profiling were employed to understand the protective effects of PCRR 

supplementation on lipid metabolism on HFD-induced NAFLD rats in the present study. 

 

 Materials and method  

 Materials 

Isopropanol, chloroform, acetonitrile and methanol (HPLC grade) were purchased from 

Duksan (ANSAN-SI, South Korea). Distilled water was purified using a Milli-Q water 

purification system (Millipore, Bedford, MA, USA). Internal standards, succinic acid-2,2,3,3-

D4 and C19:1n9c were from Sigma Aldrich (St. Louis, MO, USA). D-glucose (U-13C6), cholic 

acid-2,2,4,4-D4 and L-tryptophan-(indole-D5) were from Cambridge Isotope Laboratories 

(Tewksbury, MA, USA). 

Ammonium formate, formic acid, hyodeoxycholic acid, ursodeoxycholic acid, sodium 

chenodeoxycholate, sodium tauroursodeoxycholate and sodium taurochenodeoxycholate were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). α-Muricholic acid, deoxycholic acid 
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and taurodeoxycholic acid were purchased from Santa Cruz Biotechnology (Dallas, Texas, 

USA). Glycoursodeoxycholic acid and ursodeoxycholic acid were purchased from Cambridge 

Isotope Laboratories (Tewksbury, MA, USA). Sodium glycocholate hydrate was purchased 

from Acros Organics (Morris Plains, NJ, USA). Cholic acid, β-muricholic acid, 

glycodeoxycholic acid, glycohyodeoxycholic acid, taurocholic acid, sodium 

glycochenodeoxycholate, taurohyodeoxycholic acid and lithocholic acid were obtained from 

Steraloids (Newport, RI, USA).  

Piceatannol (98% confirmed by HPLC) and simvastatin (20-mg tablets, 10% w/w, confirmed 

by HPLC) were obtained from Merck Sharp & Dohme (Hangzhou, China) and Nanjing Zelang 

Medical Technology Co. Ltd. (Nanjing, China), respectively. Polydatin was purchased from 

The Testing Laboratory for Chinese Medicine (Hong Kong University of Science and 

Technology, Hong Kong, China). Emodin, resveratrol, citric acid, gallic acid, catechin, 

epicatechin and physcion were purchased from Sigma-Aldrich (St. Louis, MO, USA). Emodin 

8-O-β-D-glucoside, torachrysone 8-O-β-D-glucoside, physcion 8-O-β-D-glucoside were 

supplied by Chengdu Must Biotechnology (Chengdu, China). All the above had purity ≥ 97%. 

Water was purified using a Milli-Q Advantage A10 water purification system (Millipore, MA, 

USA) before use in this study. 

 

 Source and preparation of PCRR water extract 

PCRR was obtained from Eu Yan Sang Company Limited (Hong Kong, China). 1 kg of dried 

PCRR decoction pieces was extracted with 15L boiling water for 2 h, mimicking domestic 

consumption of TCM. The water extract was centrifuged at 4000 rpm for 10 min. The 

supernatant was freeze-dried (Labconco, Freezone 6) to collect dried water extract.  
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Fig. 4.1  Decoction pieces of Polygoni Cuspidati Rhizoma et Radix. 
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 Animal studies 

Sprague-Dawley male rats of three months old with 160 g ± 10 g body weight were obtained 

from the Guangdong Medical Laboratory Animal Center (Guangzhou, China). Rats were 

housed in a temperature-controlled room (20 ± 1 ℃) with 60% ± 10% humidity, free access to 

water and rat chow and a regular 12 h/12 h light/dark cycle. After acclimation for seven days 

in the laboratory environment, 48 rats were randomly assigned into six experimental groups (n 

= 10 per group): (1) the normal control group, (2) HFD-fed model group, (3 and 4) low- and 

high-dose simvastatin (3 and 10 mg/kg bw/day) treated HFD-fed groups, (5 and 6) PCRR water 

extract in low and high doses (150 and 450 mg/kg bw/day) treated HFD-fed group. The control 

group was fed with normal rat chow [fat (~10%), protein (~14%) and carbohydrate (~76%)]. 

All of the other groups were fed with HFD which was composed of additional 2% pure 

cholesterol, 1% cholic acid and 5.5% peanut oil to the normal rat chow. The diets were 

purchased from Guangdong Medical Laboratory Animal Center (Guangzhou, China). The 

treatment groups were administrated with their corresponding drugs by oral gavages once per 

day for four weeks while the rats in the normal control group and HFD-fed model were 

administrated with distilled water. The body weight of each rat was monitored daily during the 

whole experimental period. After four weeks, the rats were fasted overnight and then sacrificed 

with carbon dioxide asphyxiation, followed by collection of tissues and blood for further 

analysis. 

In animal experiments, the two doses of PCRR water extract (150 and 450 mg/kg bw/day) were 

determined upon the recommended human dose of PCRR decoction pieces (10 - 30 g) (Chinese 

Pharmacopoeia Commission 2015), the effective doses of polydatin used in rat and mice 

studies of diabetes, NAFLD and hyperlipidemia (Arichi et al. 1982; Zhang, Tan, et al. 2012; 

Hao et al. 2014; Wang et al. 2016) and the doses used in two rat studies that used crude PCRR 

decoction pieces (Jiang et al. 2009; Yiyong 2016) In this animal study, the doses of (150 and 
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450 mg/kg bw) were converted to the weight of crude PCRR decoction pieces were 2 g (150mg 

PCRR water extract /7.5% yield of water extract), and 6 g (450mg PCRR water extract /7.5% 

yield). 

The experimental protocol was conducted under approval of the Animal Subjects Ethics Sub-

committee of The Hong Kong Polytechnic University (ASESE no. 05/21) and the animal 

license issued by the Department of Health, the Government of the Hong Kong Special 

Administrative Region. All procedures were applied in compliance with the Guide for the Care 

and Use of Laboratory Animals distributed by the US National Institutes of Health and the 

principles were outlined in the Declaration of Helsinki.  

 Quantitative analysis of PCRR water extract using High Performance Liquid 

Chromatography-Diode Array Detector analysis (HPLC-DAD) 

100 mg of dried PCRR water extract was accurately weighed and ultrasonicated with 10 mL 

methanol for 30 min. The extract methanol solution was filtrated with a syringe filter (0.45 

m). A 10 µL aliquot was injected into the HPLC-DAD. The HPLC separation was conducted 

on an Alltima HP C18 column (250 mm × 4.6 mm, 5 m; Grace, USA) using an Agilent 1100 

liquid chromatography system equipped with a quaternary solvent delivery system, an 

autosampler and a DAD detector. A detection wavelength of 290 nm was selected. The mobile 

phase consisted of mobile phase A (water) and B (0.05% methanol in acetonitrile, v/v) in the 

elution gradient: 0-15 min, 20% B; 25 min, 50 % B; 30 min, 70% B; 40-45 min, 100 % B. A 

10-min post-run time was used to fully equilibrate the column. The flow rate was set at 0.8 

mL/min. The temperatures of sample chamber and HPLC column were at room temperature. 

 

 Qualitative chemical analysis of PCRR water extract with UPLC-Orbitrap-MS 

PCRR water extract was further analyzed using a more advanced platform, high-resolution 

UPLC-Orbitrap-MS for discovery of novel compounds. 0.5 g dried PCRR water extract was 



 

100 

 

ultrasonicated with 50 mL 70% ethanol for 30 min. Then, 2 mL extracted solution was 

centrifuged at 18700 × g for 15 min. An aliquot of 3 µL supernatant was injected into a Waters 

ACQUITY UPLC system. The separation was performed on a Waters ACQUITY UPLC HSS 

T3 column (2.1 mm × 100 mm, 1.8 μm) with HSS T3 pre-column (2.1 mm × 5 mm, 1.8 μm, 

Waters Corporation, Milford, MA). The mobile phase consisted of combinations of A (0.1% 

formic acid in water, v/v) and B (0.1% formic acid in acetonitrile, v/v) at a flow rate of 0.3 

mL/min with elution gradient as follows: 0 min, 5% B; 10 min, 20% B; 15 min, 30% B; 20 

min, 50% B; 22 min, 95% B; 22.1-25 min, 5% B. Column and sample chamber temperature 

were 40 ℃ and 6 ℃ respectively.  

Mass spectrometry analysis was conducted using a Thermo Scientific Orbitrap Fusion Lumos 

Tribrid mass spectrometer equipped with a heated electrospray ionization (H-ESI) interface 

(Thermo Fisher, Waltham, MA, USA). The mass-spectrometric conditions were optimized as 

follows: spray voltage, 3500 V in positive H-ESI mode and 2300 V in negative H-ESI mode; 

ion transfer tube and vaporizer temperature, 300 ℃. Nitrogen gas was used as the sheath gas 

and the aux gas at a flow rate of 30 and 10 L/min, respectively. The instrument was operated 

in a data-dependent acquisition mode, with full MS scans over a mass range of m/z 90–1000 

with detection in the Orbitrap (120,000 resolution) and with auto gain control (AGC) set to 

80000 and a maximum injection time at 100 ms. In each cycle (0.6 s) of data-dependent 

acquisition analysis, the most intense ions with intensity threshold above 20000 were selected 

for fragmentation at normalized collision energy of 25±5% higher energy collisional 

dissociation (HCD). The number of selected precursor ions for fragmentation was determined 

by the “Top Speed” acquisition algorithm. Fragment ion spectra were acquired in the Orbitrap 

(15,000 resolution) with an AGC of 20000 and a maximum injection time of 35 ms for Orbitrap 

MS2 detection. All the data analysis was carried out using the Thermo Xcalibur Qual Browser 

software (Thermo Fisher Scientific). 
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 Serum metabolomics using UPLC-QTOF-MS 

 Serum sample preparation method  

Serum samples were thawed at 4 °C and vortexed before preparation. 100 µL serum from all 

samples were deproteinated with cold 300 μL methanol containing internal standards [100 ppm 

C19:1n9c and 40 ppm L-tryptophan-(indole-D5), succinic acid-2,2,3,3-D4 and D-glucose (U-

13C6 )] and vortexed for 30 s. The mixture was kept at -20 ℃ overnight before centrifugation 

at 18790 ×g for 20 min at 4 ℃. 340 μL supernatant was dried with nitrogen gas and stored at -

80 ℃. Before UPLC-MS analysis, it was reconstituted in 100 μL 5% acetonitrile in water as 

initial gradient of UPLC, vortexed for 30s followed by centrifugation at 18790 ×g for 20 min 

at 4 ℃.  

 Quality control sample preparation method 

An aliquot of 20 L of each serum sample was pooled, vortexed and aliquoted to provide QC 

samples and kept at -80°C until use. For each analytical batch, QC samples went through 

extraction protocols as described below similar to all other samples. Before the start of 

chemical analysis, five repeated injections of the same QC sample were used to verify the 

working condition of the instruments. Afterwards, a QC sample was injected to monitor the 

stability of the instrument after every five-sample run. 

 UPLC-QTOF-MS condition 

A 3 μL aliquot was injected into a Waters ACQUITY UPLC system. The separation was 

performed on a Waters ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm) with 

HSS T3 pre-column (2.1 mm × 5 mm, 1.8 μm, Waters Corporation, Milford, MA). The mobile 

phase consisted of combinations of A (0.1% formic acid in water, v/v) and B (0.1% formic acid 

in acetonitrile, v/v) at a flow rate of 0.3 mL/min with elution gradient as follows: 0-1 min, 5% 

B; 5 min, 35% B; 10 min, 50% B; 18 min, 65% B; 19-23 min, 95% B. A 3-min post-run time 
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was set to fully equilibrate the column between injections. Column and sample chamber 

temperature were set at 40°C and 6°C, respectively. 

Mass spectrometry (MS) was performed on a Waters SYNAPT G2 Q-IM-TOF HDMS system 

(Waters, Milford, USA) operating in an electrospray ion source (ESI) in both positive and 

negative modes. Nitrogen and argon were used as cone and collision gases. The desolvation 

gas flow was set to 600 L/h at a desolvation temperature of 400°C, and the cone gas was set to 

40 L/h. The source temperature was set at 120°C. The capillary voltages in positive and 

negative ion modes were 3 kV and 2.2 kV, respectively. The sampling and extraction cone 

voltages were 40 V and 4 V, respectively. The scan time was 0.5 s with a 0.024 s interscan 

delay. Data scan ranging from m/z 50 to 1000 was recorded in the centroid data format. For 

accurate mass acquisition, a lock-mass of leucine enkephalin was used to monitor for positive 

ion mode ([M+H]+: m/z 556.2771) and negative ion mode ([M-H]−: m/z 554.2615) to ensure 

accuracy during MS analysis. MS/MS analysis was carried out to study the structure of 

potential biomarkers. In this section, the collision energy was set between 5 and 50 eV 

according to the extent of a metabolite’s fragmentation. 

 Liver lipidomics 

 Liver sample preparation method 

For liver lipid extraction, this procedure had been optimized according to previous methods 

(Bird et al. 2013). 10 mg lyophilized rat liver samples were homogenized with 800 μL 

chloroform / methanol mixture (1: 1, v / v) containing internal standard mixture (1 ppm succinic 

acid-2,2,3,3-D4, 2ppm L-tryptophan-(indole-D5), 2ppm cholic acid-D4 and 100ppm C19:1n9c) 

at 4℃ with Precellys Evolution homogenizer (Bertin Technologies). After addition of 800 μL 

of water, vortexing and centrifugation at 18700 g for 15 min, 180 μL of lower organic phase 

was isolated. The mixture was dried under nitrogen prior to storage at -80 ℃. The dried sample 
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was reconstituted in 160 μL acetonitrile / isopropanol / water (65: 30: 5, v / v / v) and 

centrifuged at 18700 g for 15 min, then subjected to LC-MS analysis. 

 Quality control sample preparation method 

An aliquot of 20 L of each supernatant in the lower organic phase of liver sample was pooled, 

vortexed and aliquoted to provide QC samples. They were dried by gentle nitrogen gas and 

kept at -80°C until use. For each analytical batch, QC samples went through extraction 

protocols as described in the serum QC sample preparation steps. 

 UPLC-Orbitrap-MS analysis 

For UPLC-MS analysis, a Thermo Orbitrap Fusion Lumos Tribrid Mass Spectrometry (Thermo 

Fisher Scientific, Waltham, MA, USA) was connected to Waters Acquity UPLC System 

(Waters Corp., Milford, USA) equipped with a heated electrospray ionization (H-ESI) source. 

UPLC separation was performed on a Waters ACQUITY UPLC HSS T3 column (2.1 mm × 

100 mm, 1.8μm) with HSS T3 pre-column (2.1 mm × 5 mm, 1.8μm) at 40 ℃. A gradient 

elution of solvent A [water/acetonitrile (6:4, v/v) containing 10mM ammonium formate and 

0.1% formic acid] and solvent B [isopropanol/acetonitrile (9:1, v/v) containing 10mM 

ammonium formate and 0.1% formic acid] was applied with the modified gradient program: 0-

1.5 min, 30% B; 4 min, 45% B; 8 min, 58% B; 11 min, 66% B; 14 min, 70% B; 18 min, 75% 

B; 21-25 min, 97% B; 25.1 - 28 min, 30% B. The flow rate was 0.3 mL/min, and the injection 

volume was 3 μL. The column and sample chamber temperature were 40 ℃ and 4 ℃ 

respectively. The H-ESI-MS spectra were acquired in both positive and negative modes. The 

H-ESI parameters were as follows: spray voltage, 3600V for positive ESI mode and 3000V for 

negative ESI mode; sheath gas, 35 units; nebulizer auxiliary gas, 20 units. General instrumental 

parameters were set as follows: ion transfer tube temperature, 350 ℃; vaporizer temperature, 

200 ℃. The full scan centroid mode was used for acquiring the ESI-MS. Mass range was set 

at 100 - 1200 m/z with 120,000 resolutions. Automatic gain control (AGC) target was set as 2 
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× 105 with a maximum injection time of 100 ms. For MS/MS scan, HCD fragmentation method 

was used for fragmenting the precursor ions selected by Quadrupole isolation.  

 Data extraction and processing 

Chromatographic peak picking and alignment were performed using Progenesis QI 2.3 

(Nonlinear Dynamics, Newcastle upon Tyne, United Kingdom). The data type was centroid. 

Sensitivity and chromatographic peak width were optimized accordingly. Ion abundance of 

each signal was normalized with internal standards for serum metabolomics. On the other hand, 

the normalization of ion abundance in the dataset of liver lipidomics was done by using total 

ion abundance of each individual sample. Quality screening was conducted by filtering out 

those unstable metabolites and applying a cut-off on coefficient of variation > 30% in all QC 

samples. A data matrix of normalized ion abundance of all samples was exported to the 

Extended Statistical tool (EZinfo Version 2.0 software, Umetrics AB) for data pre-processing.  

The exported data were scaled to unit variance for PCA, giving an overview of QC samples in 

the score plot. The study samples excluding QC samples were pareto-scaled before PLS-DA 

and OPLS-DA. Based on their contribution to the variation and correlation in the data set, 

potential candidates were selected from the S-plots of OPLS-DA. The markers were further 

identified with mass fragmentation and matched with the Human Metabolome Databases 

(www.hmdb.ca), the KEGG (www.kegg.com/), the METLIN (http://metlin.scripps.edu), 

and/or confirmed by commercially available reference standards based on their mass 

fragmentation pattern, retention times and mass accuracy. 

 Measurement of serum and liver biochemical markers  

Blood samples were collected and stood at room temperature for 1 h, and then centrifuged at 

1500 rpm for 10 minutes to obtain serum samples. Aliquots of the serum samples were stored 
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at -80°C prior to analysis. Serum TC, TG, LDL-C and HDL-C were measured with the 

ALYCON® systems using Roche Reagents.  

About 2 g liver tissue was homogenized with chloroform-methanol solution (2:1, v/v) to a final 

dilution of 1:20 (w/v) using Ultra-turrax T-25 homogenizer. After filtration, 10 mL of filtrate 

was mixed with 2 mL water and centrifuged at 900 g for 20 min. The lower phase of the two 

layers was collected and dried. The dried extract was weighed as liver lipid content and 

expressed as the weight of lipid per gram of liver. The content of TG and TC were measured 

with a colorimetric enzymatic kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 

China). 

 Western blot immune-reactivity assay 

Immunoblotting procedures were conducted to quantify the protein expression of cholesterol 

7α-hydroxylase (CYP7A1) by my teammate. The methodology was described for reference. 

Homogenized liver tissue samples were lysed with lysis buffer and cooled in ice for 20 min. 

The mixture was centrifuged for 15 min at 8265 × g. The supernatant was isolated and assayed 

for protein contents with Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA). Protein 

extracts were applied to 7.5%, 10% or 15% SDS-polyacrylamide gels and transferred to 

polyvinylidene fluoride membranes. The membranes were incubated with primary antibodies: 

rabbit anti-CYP7A1 (Santa Cruz Biotechnology) and rabbit anti-β-actin (Cell Signaling 

Technology). Then signals were obtained by binding a secondary antibody. Protein contents 

were visualized with a Clarity™ Enhanced Chemiluminescence Western blotting substrate on 

Azure™ Biosystems C600 (Bio-Rad, Hercules, USA). The band intensities of proteins were 

quantified with ImageJ software. The expression level of each protein was normalized to that 

of the β-actin protein in each sample. 
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 Statistical analysis 

Statistical analyses were performed using IBM SPSS Statistics version 25 (Chicago, IL, USA). 

After log10 transformation and removal of outliers (1.5 times of the interquartile range), 

statistical differences were evaluated by one-way ANOVA at a univariate level, followed by 

Tukey HSD post-hoc test (if there were no significant differences, LSD would be replaced) 

with assumption of equal variances. A p value of 0.05 was considered statistically significant.  

 Results and discussion 

 Chemical analysis of PCRR-water extract  

 Quantitative analysis of major chemicals in PCRR-water extract using  

HPLC-DAD 

The major peaks detected in PCRR water extract were identified with reference standards and 

quantified with HPLC-DAD (Fig. 4.2). A representative HPLC chromatogram of PCRR water 

extract with annotation of the five identified peaks is shown in Fig. 4.2B. According to the 

Pharmacopoeia of the People’s Republic of China 2015 (Chinese Pharmacopoeia Commission 

2015), the dried PCRR crude drug should contain not less than 0.60 % of emodin (emodin and 

aglycon isolated after acid hydrolysis of emodin glycosides) and 0.15% of polydatin.  As the 

yield of the dried water extract of PCRR from its raw decoction pieces after freeze-drying was 

7.5%, their contents with respect to the dried crude herb weight (%) listed in a descending order 

were: polydatin (1.058 ± 0.022 %), emodin 8-O-β-D-glucoside (0.477 ± 0.003 %), resveratrol 

(0.066 ± 0.001 %), emodin (0.058 ± 0.001 %) and physcion 8-O-β-D-glucoside (0.053 ± 0.005 

%) (Fig. 4.2C). The chemical quality of the PCRR sample used in this experiment matched the 

requirement and was good for medicinal purpose.  
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Fig. 4.2 (A) Calibration curves and linearity of five major chemicals of PCRR water 

extract; (B) HPLC-DAD chromatogram; (C) their average contents with respect to the 

dried weight of water extract and crude herb.  

*Data were expressed as average ± SD calculated by three replicates. ^ Data were calculated 

with 7.5 % yield of water extraction from dried crude herb.  
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 Qualitative analysis of PCRR-water extract using UPLC-Orbitrap-MS 

In order to discover more unknown chemicals, the PCRR water extract was further analysed 

using a more advanced platform, high-resolution UPLC-Orbitrap-MS. 15 compounds, namely 

organic acids (citric acid and gallic acid), stilbene and its glycosides (trans-resveratrol, 

piceatannol, polydatin, piceatannol glucoside and resveratrol galloylglucoside), flavonoids and 

its glycosides (catechin, epicatechin, emodin, physcion, physcion 8-O-β-D-glucoside, emodin 

8-O-β-D-glucoside and emodin 8-O-β-D-glucoside isomer) as well as another phenolic 

(naphthol) glucoside (torachrysone 8-O-β-D-glucoside), were identified with reference 

standards or putatively identified by UPLC-Orbitrap-MS after comparison of the retention 

time, accurate m/z and mass fragmentation pattern with literatures and online database. The 

identified peaks shown in the base peak chromatograms of the PCRR water extract and their 

identification information are depicted in Fig. 4.3. Among them, piceatannol was first reported 

to be identified in the herb. 
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Fig. 4.3 Base peak chromatogram of identified peaks from PCRR water extract (10mg/mL 

in 70% methanol) using UPLC-Orbitrap-MS. (A) ESI+ mode; (B) ESI- mode.  

*Peaks labelled with asterisk were identified with reference standards. Peaks labelled without 

asterisk were putatively identified with literatures and online database. 
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 Effect on serum and liver lipid profiles 

The HFD-induced fatty liver rat model is a good model for the study of NAFLD (Lieber et al. 

2004; Lau, Zhang, and Yu 2016). After four-week HFD feeding, measurement of liver and 

serum lipid levels showed that the weight of liver, the content of TC in both of serum and liver, 

liver lipid content, serum LDL-C of rats (p < 0.001) and liver TG (p < 0.05) were markedly 

increased in the HFD model. Table 4.1 is a summary of the serum and liver lipid levels in all 

groups.  Serum glucose, ALT and AST elevations usually reflect the presence of hepatocellular 

injury, but this did not happen in HFD model in this study. These observations showed that in 

this study, oral intake of HFD for 4 weeks just induced simple fatty livers (hepatic steatosis) 

which represent the early stage of NAFLD, and potential metabolic dysfunction accompanying 

development of NAFLD.  

PCRR treatments in both low and high doses led to significant reduction of liver TC (p < 0.05), 

TG (p < 0.05), and lipid content in liver (p < 0.001), similar to that of the positive control group 

with simvastatin at high dose (p < 0.05). Only high-dose PCRR treatment reduced the increased 

ratio of liver weight to body weight by HFD (p < 0.01). Increased serum TC, and serum LDL-

C levels by HFD were reduced by treatment of PCRR in both low and high doses. The levels 

of serum glucose, alanine aminotransferase, aspartate aminotransferase and HDL-C in the 

HFD model, PCRR treatment group and positive control group were not changed. These 

changes indicated that PCRR supplementation ameliorated the enlargement of liver and fatty 

liver, upregulation of cholesterol contents in the blood induced by HFD in this study.
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Table 4.1 Serum and liver lipid levels of rats from the normal control, HFD model, simvastatin-treated and PCRR-treated HFD-

fed groups.  

 Normal 

control 

HFD model HFD+Low 

dose of 

simvastatin 

HFD+High 

dose of 

simvastatin 

HFD+Low 

dose of PCRR 

water extract 

HFD+High 

dose of PCRR 

water extract 

Body weight gain (g) 187.8 ± 9.12 207.1 ± 13.65 179.6 ± 6.94 181.5 ± 5.58 199.6 ± 14.99 202.6 ± 10.13 

Serum 

TC (mmol/L) 1.36 ± 0.09*** 2.93 ± 0.29 2.11 ± 0.27 1.76 ± 0.15** 1.98 ± 0.10* 1.93 ± 0.19* 

TG (mmol/L) 0.57 ± 0.03 0.54 ± 0.11 0.36 ± 0.02 0.48 ± 0.05 0.47 ± 0.04 0.51 ± 0.06 

LDL-C (mmol/L) 0.21 ± 0.02*** 0.56 ± 0.07 0.35 ± 0.08 0.22 ± 0.02** 0.28 ± 0.03** 0.30 ± 0.04* 

HDL-C (mmol/L) 1.10 ± 0.04 1.42 ± 0.05 1.24 ± 0.08 1.45 ± 0.06 1.40 ± 0.09 1.35 ± 0.13 

ALT (U/L) 42.1 ± 2.78 42.4 ± 1.28 44.1 ± 1.51 42.6 ± 2.81 39.4 ± 2.08 40.3 ± 2.58 

AST (U/L) 148 ± 6.02 156 ± 3.36 148 ± 8.49 150 ± 7.63 124 ±4.21 126 ± 10.92 

Glucose (mmol/L) 5.96 ± 0.33 6.42 ± 0.30 5.91 ± 0.40 6.05 ± 0.35 6.07 ± 0.35 5.85 ± 0.27 

Liver 

Ratio of liver to body 

weight (g/kg) 

26.6 ± 0.45*** 39.4 ± 1.83 35.4 ± 0.64 32.8 ± 1.97** 35.1 ± 0.63 33.4 ± 0.99** 

Lipid content (g/g of 

liver) 

0.14 ± 0.01*** 0.34 ± 0.03 0.24 ± 0.01* 0.14 ± 0.04*** 0.18 ± 0.02*** 0.21 ± 0.02*** 

TC (% of control) 100 ± 5.78*** 321 ± 24.7 258 ± 10.1 243 ± 10.7* 238 ± 15.9* 232 ± 17.4** 

TG (% of control) 100 ± 7.77* 154 ± 16.0 115 ± 11.1 88.3 ± 8.91** 110 ± 9.62* 106 ± 4.6* 

Data are expressed as means ± SEM. n = 6-9. Bold numbers represent the significant difference.  *p < 0.05, **p < 0.01 and ***p < 

0.001 compared with the HFD model. ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C, high-density 

lipoprotein cholesterols; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterols; TG, triaglycerides. 
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 Stability of the serum metabolomics and liver lipidomics measurements 

The stability of serum metabolomics and liver lipidomics of UPLC-MS detections was assessed 

by the internal standards and pooled QC sample injections. The CV% of internal standards was 

< 20%. The bile acids listed in Table 4.2 had < 5% CV, expect glycocholate that had < 30% 

CV. Lipids that are listed in Table 4.3 had < 20%, except phosphatidylglycerols that had < 30% 

CV. The score plot of PCA was used to evaluate the stability of the overall signals. Fig. 4.6A 

showed the QC samples were clustered together in the PCA score plots, indicating high stability 

throughout the run. The UPLC-MS base peak chromatograms of serum and liver in normal 

control, HFD model and PCRR-treated group by serum metabolomics analysis and liver 

lipidomics are shown in Fig. 4.4 and Fig. 4.5, respectively.  
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Fig. 4.4 Representative base peak chromatograms of UPLC-QTOF-MS acquired in two 

ESI modes of rat serum metabolomics from different groups. 
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Fig. 4.5 Representative base peak chromatograms of UPLC-Orbitrap-MS acquired in 

two ESI modes of rat liver lipidomics from different groups. 
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 Multivariate statistics of serum metabolomics and liver lipidomics 

The multivariate statistical analysis of serum metabolomics data showed that the goodness of 

fit for PLS-DA and OPLS-DA were acceptable in the view of the internal cross validation 

results (PLS-DA: R2Xcum = 0.366, R2Ycum = 0.789, Q2
cum = 0.531 in positive ESI mode; R2Xcum 

= 0.468, R2Ycum = 0.752, Q2
cum = 0.536 in negative ESI mode. OPLS-DA: R2Xcum = 0.451, 

R2Ycum = 0.987, Q2
cum = 0.788 in positive ESI mode; R2Xcum = 0.498, R2Ycum = 0.940, Q2

cum = 

0.641 in negative ESI mode) (Fig. 4.6a). The result of OPLS-DA showed that there were 118 

peaks with VIP >1 in negative ESI mode and 295 peaks with VIP > 1 in positive ESI mode 

(Fig. 4.6Da).  

The separation of the liver lipidomics data in PLS-DA and OPLS-DA was better than that of 

serum metabolomics (PLS-DA: R2Xcum = 0.499, R2Ycum = 0.801, Q2
cum = 0.611 in positive ESI 

mode; R2Xcum = 0.502 R2Ycum = 0.746, Q2
cum = 0.660 in negative ESI mode. OPLS-DA: R2Xcum 

= 0.659, R2Ycum = 0.974, Q2
cum = 0.934 in positive ESI mode; R2Xcum = 0.750, R2Ycum = 0.900, 

Q2
cum = 0.840 in negative ESI mode) (Fig. 4.6b). The result of OPLS-DA showed that there 

were 121 peaks with VIP >1 in negative ESI mode and 463 peaks with VIP >1 in positive ESI 

mode (Fig. 4.6Db). 

The cluster of samples of the PCRR-treated group was well separated from those of the normal 

control group and HFD-fed group in the score plot of PLS-DA (Fig. 4.6B).  This indicated that 

the serum metabolite and liver lipid profiles of the PCRR-treated group were very different 

from the other two groups 

After statistical analysis and identification of peaks listed in OPLS-DA, amino acids, bile acids 

and their conjugated products as well as lipids were highlighted. The fold changes and their 

identities of bile acids, their conjugated products and lipids compared with the HFD-fed model 

were listed in Table 4.2 and Table 4.3, respectively.  
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The above OPLS-DA model offered the foundation for studying the role of PCRR water extract 

in reducing blood cholesterol level and TG in the livers of HFD-fed rats, which would be 

further discussed in the following sections. Fig. 4.7 shows a heatmap of bile acids and liver 

lipids that were significantly changed in PCRR water extract treated group compared with the 

HFD model from the results of serum metabolomics and liver lipidomics. 
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Fig. 4.6 Multivariate analyses of serum metabolomics and liver lipidomics samples 

acquired using UPLC- MS.  

(A) Score plots of PCA; (B) Score plots of PLS-DA; (C) Score plots of OPLS-DA; (D) Loading 

plots of OPLS-DA: red squares highlighted are variables with VIP >1; serum ESI-, 118 peaks; 

serum ESI+, 295 peaks; liver ESI-, 121 peaks; liver ESI+, 463 peaks.  

(1) ESI+ mode, (2) ESI- mode.  

(a) serum metabolomics data; (b) liver lipidomics data.  

Normal control (■); HFD-fed model (●); high-dosed PCRR water extract-treated HFD-fed 

model (◆) and pooled quality control group (▲).  
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Fig. 4.7 Heatmap of bile acids and liver lipids that were significantly changed in PCRR 

water extract treated group compared with the HFD model from the results of serum 

metabolomics and liver lipidomics. 
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 Putative identification of lipids using mass fragmentations 

Various lipids derived from lipidomics and serum metabolomics were putatively identified 

according to their classes’ characteristic mass fragments and matching with databases, such as 

lipidmaps and HMDB, and literatures, except acylcarnitine, fatty acids and amino acids which 

were further confirmed with reference standards when applicable. Fig. 4.8 demonstrates the 

mass fragmentation pattern of parent ions of representatives from different classes, including 

PC(18:0/20:4), lysoPC(20:4), PG(18:2/18:2), PE(18:0/20:4), lysoPE (20:4), lysoPS (18:1), 

TG(58:4), DG (34:2), CE (22:6), Cer (d18:2/23:0), SM (42:3), arachidonic acid, L-serine and 

cholic acid. 

For instance, MS/MS of parent ion, [M+H]+ (m/z 810.6000) at 15.47 min showed a strong 

characteristic head group fragment ion, a protonated phosphocholine [C5H14NO4P+H]+ with 

m/z 184. Under negative ESI mode, it was associated with a strong negative adduct ion, 

formate, denoted as [M+FA-H]- (m/z 854.5893) and yielded two prominent fatty acid 

carboxylate anions, [C18:0-H]- (m/z 208) and [C20:4-H]- (m/z 303) derived from its sn-1 and  

sn-2 acyl substituents, respectively. Combination of the detection of phosphocholine head 

group, two fatty acid fragments and the mass error of the two parent ions within 5 ppm gave 

the putative identity of the peak at 15.47 min as PC(18:0/20:4) (Frega, Pacetti, and Boselli 

2012).  Another peak at 4.41 min that also yielded the same head group fragment ion m/z 184 

in [M+H]+ (m/z 544.3396) and fatty acid carboxylate ion [C20:4-H]- (m/z 303) from [M+FA-

H]- = m/z 588.3295 was proposed as lysoPC (20:4) because lysophosphatidylcholines were 

eluted faster than phosphatidylcholines  

SM (d42:3) was proposed from its head group fragment (demethylated phosphocholine), m/z 

168 from [M+FA-H]- (m/z 855.6575) at 16.98 min and did not yield any strong fatty acid ions 

so its substitutes were not known. However, its [M+H]+ (m/z 811.6683) eluted at the similar 

time gave a protonated phosphocholine, and more importantly, the diagnostic fragment ion 
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[C18H33N+H]+  which was a sphingosine backbone (C18H37NO2) with loss of two H2O, resulting 

from the bond cleavage at the branching point of sphingomyelin backbone (Baba et al. 2016). 

Thus, the putative identity of SM (d42:3) at 16.98 min was SM(d18:1/24:2).   

TG structural isomers, that shared the same m/z and had strong ammoniated adduct ions 

[M+NH4]
+, had the tendency to be co-eluted in the single chromatographic peaks  (Jiao et al. 

2015). This resulted in the presence of many DG fragment ions that showed the loss of a fatty 

acid substitute in the same MS/MS spectrum and was hard to figure out its substitutes. For 

instance, TG (58:4) at 22.34 min had the combination of ammoniated fragment ions losing 

C18:0, C18:1, C18:2, C20:1, C20:2, C20:3, C22:0, C22:1 and C22:2, which might be come 

from TG (18:2/20:1/20:1), TG (18:1/20:2/20:1), TG (18:0/20:2/20:2) or other TG species. Thus, 

they were presented with the identities as TG (58:4). 
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Fig. 4.8 Representative mass spectra of putatively identified altered lipids and amino 

acids by UPLC-Orbitrap-MS. (A) PC(18:0/20:4); (B) lysoPC(20:4); (C) PG(18:2/18:2); 

(D) PE(18:0/20:4); (E) lysoPE (20:4); (F) lysoPS (18:1); (G) TG(58:4); (H) DG (34:2); (I) 

CE (22:6); (J) Cer (d18:2/23:0); (K) SM (d18:1/24:2); (L) arachidonic acid; (M) L-serine; 

(N) Cholic acid. 
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 Effect of PCRR water extract on NAFLD as shown in the results of serum 

metabolomics  

Two amino acids (L-serine and L-glutamic acid), one lysophosphatidylcholine [LysoPC 

(20:5)], two lysophosphatidylserines [LysoPS (18:2) and LysoPS (18:1)], as well as a large 

increase in the four serum primary bile acids (cholate and chenodeoxycholate, α-muricholate 

and β-muricholate), three secondary bile acids (deoxycholate, sum of hyodeoxycholate and 

ursodeoxycholate), five glycine-conjugated bile acids (glycocholate, glycochenodeoxycholate 

and glycodeoxycholate, sum of glycohyodeoxycholate and glycoursodeoxycholate) and two 

taurine-conjugated bile acids (sum of taurochenodeoxycholate and taurodeoxycholate) were 

elevated in the HFD group. 

PCRR treatment reduced the levels of the amino acids, the lysophosphatidylcholine and the 

lysophosphatidylserines, close to the normal levels. Furthermore, the treatment caused 

significant rise in the serum levels of most of them: α-muricholate, β-muricholate, cholate, 

chenodeoxycholate, deoxycholate, sum of hyodeoxycholate and ursodeoxycholate, 

glycocholate, glycochenodeoxycholate, glycodeoxycholate, glycohyodeoxycholate sum of 

glycohyodeoxycholate and glycoursodeoxycholate, except taurochenodeoxycholate and 

taurodeoxycholate. Among them, fold changes of α-muricholate, chenodeoxycholate, 

deoxycholate, glycochenodeoxycholate and glycodeoxycholate in PCRR treatment group with 

respect to HFD model were about double.  The proposed pathway of bile acid biosynthesis and 

level changes of the bile acids and conjugated bile acids by HFD and PCRR treatment were 

shown in Fig. 4.10. 

Since a large amount of bile acids were altered, the enzymes participating in the bile acid 

biosynthesis were also investigated. CYP7A1 is the main rate-limiting enzyme in the classical 

pathway of bile acid biosynthesis to remove cholesterols (Chiang 2009; Dawson 2016). In this 

study, the protein expression levels of CYP7A1 was determined in the mechanism of bile acid 
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disturbance. The liver of the HFD model with NAFLD showed lower CYP7A1 protein 

expression than the normal control (p < 0.001) while PCRR supplement had higher CYP7A1 

protein expression than that of the HFD model (p < 0.001) (Fig. 4.9). This indicated that HFD 

suppressed the expression of CYP7A1 protein but PCRR restored its expression back to a 

normal level. This further explained that PCRR might facilitate the removal of cholesterols via 

the activation of CYP7A1 expression. There were many reports related to the elevation of this 

enzyme expression by resveratrol which affects the bile acid biosynthesis (Miura, Miura, and 

Yagasaki 2003; Zhu, Luo, and Jin 2008; Chen et al. 2012) and increases the excretion of fecal 

bile acids (Zhu, Luo, and Jin 2008).  
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Table 4.2 Fold change of serum metabolites in normal controls and PCRR-treated groups compared with the HFD model from the results 

of serum metabolomics. 

Metabolites Adducts Molecular 

formulae 

Retention 

time (min) 

Theoretical 

m/z 

Detected 

m/z 

Mass 

error 

(ppm) 

Fold change with respect 

to HFD model (mean) 

CV (%) in QC 

samples 

Normal 

control 

HFD+ 

PCRR 

Bile acids 

α-Muricholate [M-H]- C24H40O5 8.31 407.2803 407.2796 -1.72 0.24** 2.49* 4.06 

β-Muricholate [M-H]- C24H40O5 8.59 407.2803 407.2796 -1.72 0.24** 1.85* 3.15 

Cholate [M-H]- C24H40O5 10.21 407.2803 407.2796 -1.72 0.63* 1.53* 3.41 

Sum of hyodeoxycholate and 

ursodeoxycholate   
[M-H]- C24H40O4 10.67 391.2854 391.2848 -1.53 0.49* 1.48* 3.41 

Chenodeoxycholate [M-H]- C24H40O4 13.51 391.2854 391.2848 -1.53 0.51** 2.65*** 3.97 

Deoxycholate [M-H]- C24H40O4 14.02 391.2854 391.2848 -1.53 0.36* 2.28** 3.73 

Conjugated bile acids 

Glycocholate [M-H]- C26H43NO6 8.28 464.3018 464.3013 -1.08 0.63* 1.92** 29.3 

Sum of glycohyodeoxycholate 

and glycoursodeoxycholate 
[M-H]- C26H43NO5 8.36 448.3068 448.3062 -1.34 0.63* 1.68* 3.82 

Glycochenodeoxycholate [M-H]- C26H43NO5 10.46 448.3068 448.3063 -1.34 0.22*** 2.33* 4.48 

Glycodeoxycholate [M-H]- C26H43NO5 10.91 448.3068 448.3063 -1.12 0.27*** 2.08*** 4.34 

Taurohyodeoxycholate [M-H]- C26H45NO6S 7.02 498.2895 498.2880 -3.01 1.14 0.93 3.49 

Taurocholate [M-H]- C26H45NO7S 7.18 514.2844 514.2839 -0.97 0.85 0.93 4.25 

Sum of taurochenodeoxycholate 

and taurodeoxycholate 
[M-H]- C26H45NO6S 9.14 498.2895 498.2891 -0.80 0.40** 1.19 4.48 

Amino acids 

L-serine [M-H]- C3H7NO3 0.81 104.0353 104.0350 -2.88 0.78** 0.71*** 10.87 

L-glutamate [M-H]- C5H9NO4 0.85 146.0459 146.0458 -0.68 0.60*** 0.69*** 17.84 

Lysophosphatidylcholines and Lysophosphatidylserines 

LysoPC(20:5) [M+H]+ C28H48NO7P 10.74 542.3241 542.3243 0.37 0.66* 0.38*** 13.12 

LysoPS(18:2) [M-H]- C24H44NO9P 14.77 520.2681 520.2676 -0.96 0.50*** 0.52*** 6.79 

LysoPS(18:1) [M-H]- C24H46NO9P 17.13 522.2837 522.2831 -1.15 0.40*** 0.57*** 7.45 

*One-way ANOVA, followed by LSD post-hoc test compared with HFD-fed model. *p < 0.05, **p < 0.01, ***p < 0.001. n = 6-7. CE, cholesterol 

esters; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; LysoPS, lysophosphatidylserine. 
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Protein 

Relative protein expression levels to 

normal control 

 
Trends of protein expression 

 

Related pathway 

HFD HFD+PCRR 
 HFD model vs 

Control 

HFD+PCRR 

vs HFD model 

 

CYP7A1 0.364 ± 0.054 1.107 ± 0.030 
 

↓### ↑*** 
 Bile acid synthesis (conversion of 

cholesterols to bile acids) 

 

Fig. 4.9  Quantitative comparison of protein expression in the hepatocytes of the normal control, HFD model and PCRR -treated HFD-

fed group using Western blots 

The expression level of each protein was normalized to that of the β-actin protein in each sample. Data are expressed as means ± SEM from three 

independent experiments. One way-ANOVA followed by LSD post-hoc test: ### p < 0.001 compared with normal control group  and ***p < 

0.001 compared with the HFD model. CYP7A1, cholesterol 7α-hydroxylase. 
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Fig. 4.10  A simplified diagram of bile acid biosynthesis altered by HFD feeding and PCRR treatment. 

Data expressed as mean ± SEM. One-way ANOVA, LSD post-Hoc test compared with HFD-fed model. *p < 0.05, **p < 0.01, ***p < 0.001 

compared with HFD group; # p < 0.05, ## p < 0.01, ### p < 0.001 compared with normal control group. n = 6-7. Control, normal control; HFD, 

high-fat diet induced model; PCRR, HFD model treated with high dose of PCRR water extract. Orange box with ↑, increased serum level and 

blue box with ↓, decreased serum level in PCRR-treated group compared with the HFD model. 
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 Effects of PCRR water extract to NAFLD from  liver lipidomics results 

Compared with the normal control rats, the levels of liver polyunsaturated long-chained fatty 

acids, four TGs and three diacylglycerols (DGs) in the HFD model were obviously upregulated, 

which might be mainly the results of the rat chow, which led to fatty acid accumulation. Other 

lipid contents in the HFD model were mostly lower than those in the normal control. The 

changed lipids in the PCRR-treated rats were found to be mostly restored. In order to observe 

the overall lipid class changes, the average percentages of the sum of lipids in each class 

occupied in the total sum of all classes were determined and shown in Fig. 4.10. Compared 

with the HFD model, PCRR water extract supplementation led to reduction of the total relative 

contents of polyunsaturated long-chain fatty acids, cholesterol esters, DGs and TGs as well as 

elevation of the total relative contents of phosphatidylcholines (PCs), 

phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), lysophosphatidylcholines 

(LysoPC) and lysophosphatidylethanolamines (LysoPE). More details of changes in lipid 

profile are shown in Fig. 4.7 and Table 4.3.  

The above findings were most in line with the results reported by Buechler et al. (Buechler 

2014). There was an increase in the liver fatty acid in HFD-induced rat with NAFLD compared 

with the normal controls (Liu et al. 2016). Liu et al suggested that free fatty acids or their 

metabolites played a key role in liver injury through increased oxidative stress. Liver free fatty 

acids reflected the influx of fatty acids into the liver. Their high accumulation often resulted in 

TG synthesis along with an increased concentration of LDL-C in the circulation (Karjalainen 

et al. 1998). Their results were line with the observation of this animal study that the levels of 

liver TG and serum LDL-C in HFD model were elevated (Table 4.1).  

The two kinds of lipids that were down-regulated the most in the liver with NAFLD were PCs 

and PEs. PCs and PEs occupy the most in phospholipids of all mammalian subcellular 

organelles and cell types (van der Veen et al. 2017). Total PCs tended to be lower in steatotic 
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and NASH liver (Buechler 2014).  It was reported that the liver was a recipient of PCs from 

plasma lipoproteins (HDL and LDL) and donated these PCs during the assembly and secretion 

of lipoproteins, of which half were converted into TGs (Vance 2008).  More PCs were probably 

converted into TGs than that received from plasma lipoproteins in the HFD-fed rats. PCRR 

hindered such conversion to an extent that most in the PCRR-treated group had higher PC 

contents than the HFD model (Table 4.3 and Fig. 4.11).    
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Table 4.3 Fold change of liver lipids in normal controls and PCRR-treated groups compared with the HFD model from the results of liver 

lipidomics 

Metabolites Adducts Molecular 

formulae 

Retention 

time (min) 

Theoretical 

m/z 

Detected 

m/z 

Mass 

error 

(ppm) 

Fold change with 

respect to HFD 

model (mean) 

CV (%) in QC 

samples 

Normal 

control 

HFD+ 

PCRR 

Phosphatidylcholines          

PC(16:0/9:0(CHO)) [M+H]+ C33H64NO9P 7.21 650.4391 650.4391 <0.1 4.15*** 2.39*** 8.6 

PC(O-16:0/20:4) [M+FA-H]- C44H82NO7P 14.87 812.5811 812.5788 -2.8 3.12*** 1.77*** 14.3 

PC(O-18:0/20:4) [M+H]+ C46H86NO7P 14.46 796.6215 796.6211 -0.5 3.01*** 1.51*** 8.5 

PC(20:0/20:4) [M+FA-H]- C48H88NO8P 16.95 882.6230 882.6205 -2.8 2.98*** 2.65*** 11.8 

PC(18:0/17:1) [M+Na]+ C43H84NO8P 15.71 796.5827 796.5842 1.9 2.81*** 1.69** 8.4 

PC(18:0/22:4) [M+FA-H]- C48H88NO8P 16.63 882.6230 882.6206 -2.7 2.69*** 1.41*** 9.7 

PC(17:0/20:4) [M+FA-H]- C45H82NO8P 14.65 840.5760 840.5736 -2.9 2.69*** 1.60** 9.5 

PC(19:0/20:4) [M+FA-H]- C47H86NO8P 16.33 868.6073 868.6049 -2.8 2.41*** 1.71*** 11.9 

PC(20:5/16:0) [M+FA-H]- C44H78NO8P 12.89 824.5447 824.5430 -2.1 2.35*** 1.72** 10.9 

PC(18:0/20:4) [M+FA-H]- C46H84NO8P 15.47 854.5917 854.5893 -2.8 1.96*** 1.37*** 7.4 

PC(18:3/16:0) [M+H]+ C42H78NO8P 13.13 756.5538 756.5534 -0.5 1.86*** 2.17*** 6.3 

PC(P-16:0/22:4) [M+FA-H]- C46H84NO7P 15.04 838.5967 838.5942 -3.0 1.79*** 2.16*** 12.8 

PC(17:0/22:6) [M-CH3]- C47H82NO8P 14.31 804.5549 804.5510 -4.8 1.74** 0.70* 7.5 

PC(O-18:1/20:4) [M+H]+ C46H84NO7P 14.92 794.6058 794.6052 -0.8 1.61*** 1.89*** 3.1 

PC(18:1/20:4) [M+FA-H]- C46H82NO8P 14.06 852.5760 852.5732 -3.3 1.61** 1.56** 9.0 

PC(O-16:0/16:0) [M+H]+ C40H82NO7P 15.82 720.5902 720.5900 -0.3 1.47** 1.37* 6.3 

PC(O-18:1/16:0) [M+FA-H]- C42H84NO7P 16.14 790.5967 790.5944 -2.9 0.80*** 1.26*** 9.9 

PC(18:0/22:6) [M+Na]+ C48H84NO8P 15.12 856.5827 856.5818 -1.1 0.59** 0.60** 17.3 

Phosphatidylethanolamines 

PE(16:0/20:5) [M-H]- C41H72NO8P 13.35 736.4923 736.4910 -1.7 2.56** 1.89* 7.7 

PE(18:3/16:0)a [M-H]- C39H72NO8P 13.42 712.4923 712.4908 -2.1 2.41*** 2.16** 7.8 

PE(18:0/20:4) [M+FA-H]- C43H78NO8P 13.07 812.5447 812.5434 -1.6 2.38*** 1.74** 12.5 

PE(16:0/20:4) [M-H]- C41H74NO8P 14.33 738.5079 738.5065 -1.9 2.02*** 1.53*** 4.0 

PE(16:0/18:2) [M+H]+ C39H74NO8P 14.34 716.5225 716.5223 -0.3 1.76*** 1.57** 3.3 

PE(17:0/20:4) [M-H]- C42H76NO8P 15.16 752.5236 752.5215 -2.8 1.75*** 1.48** 6.4 

PE(18:3/16:0)b [M-H]- C39H72NO8P 13.69 712.4923 712.4906 -2.4 1.74** 2.68*** 8.4 

PE(18:0/20:4) [M-H]- C43H78NO8P 16.01 766.5392 766.5378 -1.9 1.58*** 1.28** 3.6 
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PE(20:5/18:0) [M-H]- C43H76NO8P 14.97 764.5236 764.5219 -2.2 1.49* 1.53** 6.4 

PE(P-16:0) [M-H]- C21H44NO6P 6.22 436.2833 436.2819 -3.3 0.18** 0.27** 12.0 

PE(P-18:0) [M-H]- C23H48NO6P 7.76 464.3146 464.3140 -1.4 0.15** 0.24* 13.9 

Phosphatidylglycerols  

PG(22:6/22:6) [M-H]- C50H75O10P 10.66 865.5025 865.5012 -1.5 4.13*** 1.69** 23.5 

PG(18:2/18:2)a [M-H]- C42H75O10P 11.31 769.5025 769.5005 -2.6 2.44** 2.73*** 28.5 

PG(18:2/18:2)b [M-H]- C42H75O10P 12.06 769.5025 769.5006 -2.5 4.13*** 1.69** 19.0 

PG(18:1/18:2) [M-H]- C42H77O10P 12.23 771.5182 771.5163 -2.4 2.22** 2.51*** 24.0 

Sphingomyelins 

SM(41:2) [M+H]+ C46H92N2O6P 17.40 799.6693 799.6685 -1.0 4.13*** 2.39** 9.9 

SM(d18:1/24:2) [M+FA-H]- C47H91N2O6P 16.98 855.6597 855.6575 -2.5 1.92*** 1.39* 12.9 

SM(d18:1/24:1) [M+Na]+ C47H93N2O6P 18.22 835.6663 835.6658 -0.7 1.82*** 1.41** 5.3 

SM(33:1) [M+H]+ C38H77N2O6P 12.40 689.5592 689.5589 -0.4 1.65** 1.46* 10.1 

Ceramides 

Cer(d18:2/23:0) a [M+H-H2O]+ C41H79NO3 19.85 616.6027 616.6024 -0.5 2.45*** 1.47** 13.3 

Cer(d18:2/23:0) b [M+H-H2O]+ C41H79NO3 20.05 616.6024 616.6024 0.0 2.43*** 1.42* 10.4 

Cer(d18:1/18:0) [M+H-H2O]+ C36H71NO3 17.42 548.5401 548.5399 -0.4 1.87*** 1.16 8.1 

Cer(d18:1/24:1) [M+H-H2O]+ C42H81NO3 20.23 630.6183 630.6181 -0.3 1.74*** 1.04 5.9 

Triacylglycerols                 

TG(58:5) [M+NH4]+ C61H108O6 22.22 954.8484 954.8473 -1.2 0.53*** 0.64*** 8.4 

TG(57:9) [M+NH4]+ C60H98O6 21.58 932.7702 932.7698 -0.4 0.53** 0.65* 7.7 

TG(58:7) [M+H]+ C61H104O6 22.30 933.7906 933.7876 -3.2 0.48*** 0.72** 12.4 

TG(58:4) [M+NH4]+ C61H110O6 22.34 956.8641 956.8610 -3.2 0.37*** 0.64** 11.9 

Diacylglycerols                 

DG(34:2) [M+H-H2O]+ C37H68O5 14.34 575.5034 575.5030 -0.7 1.76*** 1.58** 5.0 

DG(38:4) [M+H-H2O]+ C41H72O5 21.93 627.5347 627.5348 0.2 0.43*** 0.77** 8.0 

DG(38:3) a [M+H-H2O]+ C41H74O5 22.05 629.5503 629.5504 0.1 0.29*** 0.69** 6.7 

DG(38:3) b [M+H-H2O]+ C41H74O5 22.19 629.5503 629.5499 -0.7 0.36*** 0.73*** 7.8 

Cholesterol esters                 

CE(22:6) [M+Na]+ C49H76O2 22.28 719.5737 719.5733 -0.6 0.37*** 0.80 8.7 

CE(18:3) [M+NH4]+ C45H74O2 22.37 664.6027 664.6024 -0.5 0.25*** 0.57* 10.5 

Lysophosphatidylcholines and lysophosphatidylethanolamines         

LysoPE(20: 4) [M+Na]+ C25H44NO7P 4.63 524.2748 524.2745 -0.6 5.30*** 2.37** 9.8 

LysoPC(20:4) [M+H]+ C28H50NO7P 4.41 544.3398 544.3396 -0.4 4.89*** 1.86*** 8.5 

LysoPC(20:5) [M+H]+ C28H48NO7P 3.52 542.3241 542.3240 -0.2 3.84*** 1.87* 8.6 

LysoPE(18:2) [M+H]+ C23H44NO7P 4.67 478.2928 478.2926 -0.4 2.23*** 1.72** 7.8 

LysoPC(20:1) [M+FA-H]- C28H56NO7P 6.95 594.3776 594.3763 -2.3 0.36*** 0.62* 10.3 

Polyunsaturated long chain fatty acids             
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C22:6 (DHA) [M+2Na-H]+ C22H32O2 7.29 373.2119 373.2110 -2.5 0.67*** 0.70*** 11.1 

C22:5 [M-H]- C22H34O2 7.87 329.2486 329.2478 -2.4 0.45* 0.39** 16.2 

C18:2 (Linoleate) [M-H]- C18H32O2 7.78 279.2330 279.2326 -1.3 0.41*** 0.61* 17.9 

C20:4 (Arachidonate) [M-H]- C20H32O2 7.60 303.2330 303.2328 -0.5 0.38* 0.39* 19.5 

C20:1 [M-H]- C20H38O2 10.88 309.2799 309.2788 -3.6 0.18*** 0.45** 15.0 

C20:3 [M-H]- C20H34O2 8.35 305.2486 305.2476 -3.3 0.09*** 0.37*** 15.2 

 

*One-way ANOVA, followed by LSD post-hoc test compared with HFD-fed model. *p < 0.05, **p < 0.01, ***p < 0.001. n = 6-7. CE, cholesterol 

esters; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 

PG, phosphatidylglycerol; Cer, ceramide; SM, sphingomyelin; DG, diacylglycerol; TG, triacylglycerol; ‘P-’ in bracket, presence of an alkenyl 

ether (plasmalogen) substituent; ‘O-’ in bracket, presence of an alkyl ether substituent. ‘a’ and ‘b’ labelled after the lipids’ name, isomers sharing 

similar mass fragmentation patterns. 
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Fig. 4.11  Average percentages of each lipid class over the total sum of all classes of lipids 

in each group from the results of liver lipidomics. 

Data expressed as mean ± SEM. One-way ANOVA, LSD post-Hoc test compared with HFD-

fed model. *p < 0.05, **p < 0.01, ***p < 0.001. n = 6.  



 

136 

 

 Identification of unique PCRR metabolites in the PCRR-treated group 

Since PCRR had high content of polydatin (resveratrol 3-O-β-D-glucoside) and resveratrol, it 

is believed that they are the main bioactive compounds of PCRR for the facilitation of bile acid 

biosynthesis from the cholesterols to primary bile acids which eventually became conjugated 

bile acids to be removed through the liver. 

Polyphenols and their glycosides are the main bioactive chemical class from PCRR. The 

presence of metabolites from their metabolism after 4-week usage of PCRR was further 

investigated compared with HFD model. Interestingly, three of resveratrol and/ polydatin-

transformed metabolites via microbial transformation were solely identified in the serum of the 

PCRR-treated group, matched with the observation from literatures (Bode et al. 2013; 

Etxeberria et al. 2015; Andres-Lacueva et al. 2012). These metabolites were putatively 

identified as 3,4'-dihydrobibenzyl glucuronide (lunularin glucuronide) ([M-H]-, m/z 389.1242), 

dihydroresveratrol glucuronide ([M-H]-, m/z 405.1194) and 3,4'-dihydrobibenzyl 3-

glucuronide 4’-sulfate (lunularin 3-glucuronide 4’-sulfate) ([M-H]-, m/z 469.0810). Their 

extracted ion chromatograms in PCRR-treated serum were shown in Fig. 4.12. Their proposed 

mass fragmentation pathways were depicted as well (Fig. 4.13-4.15). None of them was 

detected in the serum of HFD model or in the water extract of PCRR. One possible explanation 

of their absence could be the biotransformation of polyphenols and their glycoside via gut 

microbiota before absorption into the circulations (Fig. 4.16). Gut microbiota could cause the 

reduction of the carbon-carbon double bond of resveratrol to form dihydroresveratrol and 3,4'-

dihydrobibenzyl (lunularin) (Bode et al. 2013). Phase 2 transformation increased solubility of 

dihydroresveratrol and 3,4'-dihydrobibenzyl for circulation by glucuronide and sulfate 

conjugation.  

It is likely that treatment of PCRR water extract might be associated with the action of gut 

microbiota during intervention to facilitate the dietary cholesterol-lowering effect. Further 
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study of gut bacteria incubation with PCRR is certainly necessary to provide a better picture 

on the role of gut microbiota in improving NAFLD after PCRR treatment. Future confirmation 

of the identity of these metabolites would be required as there is a lack of commercially 

available reference standards.  

More studies of these resveratrol and polydatin metabolites are required in the terms of gut 

absorption, metabolism and their protection in humans. Also, there may be synergistic effect 

of resveratrol and polydatin with other PCRR polyphenols to enhance in the hypolipidemic 

effect in NALFD rats. Since the animal experiment in this project did not apply single polydatin 

or resveratrol as a positive control group to compare with PCRR, this should be carried out in 

future related researches.  

 Toxicity of long-term use of PCRR water extract 

Although there was no observation of liver toxicity on rats after the four-week administration 

of PCRR water extract in this study, many plants that belong to Polygonaceae family have 

reported to have hepatotoxicity in high doses after long term use (Li, Wang, et al. 2017; Xia, 

Yuan, and Liu 2017; Wang, Zhao, et al. 2011). Partial hepatotoxicity was observed on human 

hepatocytes LO2 cells after long term exposure to physcion, emodin, emodin 8-O-β-D-

glucoside and physcion-8-O-β-D-glucoside (Lv et al. 2015), which could also be found in 

PCRR water extract. Ethanol extract might contain higher contents and bring out stronger 

hepatotoxicity. Conventional water extraction of PCRR is recommended but the adverse effect 

for prolonged single use is still not clear and needs more in vitro and in vivo toxicity studies. 
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Fig. 4.12 Extracted ion chromatograms of unique and putatively identified PCRR 

metabolites in the PCRR-treated serum samples, acquired in UPLC-QTOF-MS at 

negative ESI mode.  

(A)  Serum of PCRR-treated HFD group. (B) Serum of HFD model with NAFLD.  
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Fig. 4.13 UPLC-Orbitrap-MS results of putatively identified 3,4’-dihydrobibenzyl 3-

glucuronide. 

(A) Extracted ion chromatograms with [M-H]- equal to m/z 389.1242 at 5.97 min of serum of 

PCRR-treated HFD group and PCRR water extract that were at the same UPLC-Orbitrap-MS 

gradient. (B) Mass spectrum of serum of PCRR-treated HFD group at 5.97 min. (C) Proposed 

mass fragmentation pathway of the molecular structure. 
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Fig. 4.14 UPLC-Orbitrap-MS results of putatively identified dihydroresveratrol 

glucuronide. 

 (A) Extracted ion chromatograms with [M-H]- equal to m/z 405.1191 at 5.06 min of serum of 

PCRR-treated HFD group and PCRR water extract that were at the same UPLC-Orbitrap-MS 

gradient. (B) Mass spectrum of serum of PCRR-treated HFD group at 5.06 min. (C) Proposed 

mass fragmentation pathway of the molecular structure. 



 

141 

 

 

Fig. 4.15 UPLC-Orbitrap-MS results of putatively identified 3,4’-dihydrobibenzyl 3-

glucuronide 4’-sulfate 

(A) Extracted ion chromatograms with [M-H]- equal to m/z 469.0810 at 5.23 min of serum of 

PCRR-treated HFD group and PCRR water extract that were at the same UPLC-Orbitrap-MS 

gradient. (B) Mass spectrum of serum of PCRR-treated HFD group at 5.23 min. (C) Proposed 

mass fragmentation pathway of the molecular structure. 
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Fig. 4.16 Proposed biotransformation of orally administrated resveratrol and/or 

polydatin (resveratrol 3-glucoside) in PCRR water extract.   
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 Conclusion 

Chemical analysis has showed that PCRR water extract contained abundant polyphenols. 

Animal study showed that it lowered the serum and hepatic total cholesterol compared with the 

HFD model with NAFLD. The analysis of serum metabolomics showed that bile acids and 

their conjugated bile acids were upregulated. Lipidomics profiling of UPLC-MS revealed that 

it significantly restored levels of circulating free fatty acids and seven other lipid classes of 

liver tissues compared with the HFD model. The Western blot of the animals’ liver tissue also 

validated that PCRR water extract upregulated the protein expressions of CYP7A1, which were 

related to bile acid synthesis. Resveratrol and/ polydatin-derived metabolites via microbial 

transformation were solely detected in the serum of the PCRR-treated group. Taken together, 

the treatment of PCRR water extract might be contributed by up-regulation of the bile acid 

biosynthesis and lipid metabolism with the action of gut microbiota, resulting in the protective 

effects against NAFLD. Although no adverse effect was observed in the animals after oral 

administration of PCRR water extract, further studies are warranted to investigate the 

hepatotoxicity and other adverse effects of its long-term use.  
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Chapter 5  Identification of metabolites associated with chronic 

kidney diseases in Chinese diabetic patients: an 

untargeted serum metabolomics study using UPLC-

Orbitrap-MS 

 

 Background 

Chronic kidney disease (CKD) is one of the most frequently occurred complications of 

diabetes. The prevalence of diabetes mellitus in adult grew significantly throughout the world 

from 2000 to 2017 (International Diabetes Federation 2017; International Diabetes Federation 

2000) and incidence of diabetes in China was more severe than the global average rate (10.9 

%)  (International Diabetes Federation 2017).  The American Diabetes Association indicated 

that 20–40% of diabetic patients would suffer from CKD (American Diabetes Association 

2018). In a study of hospitalized patients in China, an increasing trend of CKD was observed 

from 2010 to 2015 (19.5% vs 24.3%) (Huang et al. 2018). CKD gives rise to significant health 

care and economic burdens to the patients for medication, dialysis and kidney transplantation 

therapy, especially for moderate CKD patients at Stages 3 - 4  (McQueen et al. 2017; Vupputuri 

et al. 2014). It is also one of the most common causes for cardiovascular events and premature 

death in both the developed and developing countries (Tuttle et al. 2014). The mortality risk of 

individuals with coexistence of  type 2 diabetes and kidney disease is more than twice of those 

with either one only (Afkarian et al. 2013).  

CKD in diabetic patients ordinarily develops from glomerular hyperfiltration, progressive 

albuminuria, deteriorating glomerular filtration rate (GFR), and finally to the most severe end-

stage renal diseases (ESRD) (Alicic, Rooney, and Tuttle 2017).  The earliest stage of CKD, 
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glomerular hyperfiltration, which is an aberrant increase in GFR, is an independent risk factor 

for progressive renal dysfunction (Ruggenenti et al. 2012). Glomerular hyperfiltration is mostly 

due to abnormal high blood sugar in diabetic patients (Palatini 2012). It could occur in more 

than 40% of type 2 diabetic patients (Jerums et al. 2010) but part of them are asymptomatic. 

Among patients with hyperfiltration, 49% had hyperfiltration without albuminuria (Haymann 

et al. 2010). Persistent glomerular hyperfiltration would cause faster renal function decline in 

type 2 diabetic patients (Ruggenenti et al. 2012) and raised progression risk to diabetic 

nephropathy (Magee et al. 2009). When kidney diseases proceed into stage 3, they are 

irreversible, and treatment can only slow down its progression into ESRD (Kidney disease: 

improving global outcomes 2013; Mora-Fernández et al. 2014; Gross et al. 2005). To prevent 

the decline in kidney function and extra medical burden caused by ESRD, early intervention 

and accurate diagnosis are extremely important. Also, accurate diagnosis can prevent 

unnecessary drug intake of those at low risk, minimize possible adverse effects and avert delay 

in proper intervention, which may lead to irreversible disease outcomes.  

The main diagnostic criteria for CKD are a persistent rise in the urinary albumin excretion rate 

and abnormal glomerular filtration rate, indicating an impaired excretion function in the 

kidney. The major four renal excretion processes include glomerular filtration, active tubular 

secretion, active reabsorption and passive reabsorption (Felmlee, Dave, and Morris 2013), and 

different parts of the kidney are involved. Traditionally, GFR and UACR are common 

diagnostic markers but they do not reflect all of the above four excretion processes.  

Estimation of GFR using serum creatinine is the most common practice but serum creatinine 

only reflects the glomerular filtration effect but does not cover efficiency of renal tubular 

reabsorption of compounds or the entire renal injury. Serum creatinine concentration also 

varies between male and female. It may also be increased with older age, high muscle mass 
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(Baxmann et al. 2008), protein-rich diet (Lew and Bosch 1991), medication (Andreev, 

Koopman, and Arisz 1999) and other factors. Cystatin C (Shlipak, Mattes, and Peralta 2013) 

and isotopic GFR measurement (Seegmiller et al. 2016; Kwong et al. 2010) are recent 

alternatives to measure GFR. Yet, they are not better than serum creatinine for routine use. The 

concentration  of cystatin C could be affected by the thyroid and liver diseases (Ismail et al. 

2012). Also, cystatin C alone does not have great improvement in accuracy compared with 

creatinine (Eriksen et al. 2012). Exogenous isotopic markers like 125I-iothalamate and iohexol 

are costly, inconvenient to use, unsuitable in iodine allergy and may cause kidney toxicity at 

high dosages (Levey and Inker 2016). These clinical markers may cause false positive CKD 

diagnosis or underestimation, leading to delay of treatment.  New, reliable, cost-effective, less 

invasive and convenient measurement methods and biomarkers are needed for better prediction 

of incidence and progression of CKD. 

UACR is another marker of glomerular disease and often the first clinical indicator of the 

presence of CKD (2013). But there are considerable limitations about UACR. First of all, not 

everyone with diabetic CKD and reduced GFR has increased UACR. In the UKPDS Study, 51% 

of those who developed GFR < 60 mL/min/1.73 m2 were not tested positive for albuminuria 

(abnormal presence of albumin in urine) (Retnakaran et al. 2006). The DEMAND Study 

showed 23% of type 2 diabetic patients with reduced GFRs had normal albuminuria (Thomas 

et al. 2009; Koye et al. 2018). Secondly, albuminuria may be affected by different factors, 

which influenced various body conditions, such as high-protein diet, exercise, fever, infection, 

hyperglycemia, high blood pressure and congestive heart failure (American Diabetes 

Association 2004; Bachmann et al. 2014). Thirdly, measurement of albuminuria lacked 

standardization and demonstrates significant imprecision (Seegmiller, Miller, and Bachmann 

2017). Lastly, discordance between albuminuria changes and renal disease events has also been 
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observed in the ACCORD Study (Ismail-Beigi et al. 2010) and the UKPDS Study (Bilous 

2008). 

These insensitive and inaccurate clinical markers may cause false positive or false negative 

CKD diagnosis or underestimation, leading to delay of treatment.  More new, reliable, cost-

effective, less invasive and convenient methods are needed for better prediction of incidence 

and progression of CKD.  

So far, many metabolomics studies have investigated for new risk markers of kidney diseases 

but they mainly focus on the prediction of incidence of kidney damages at the later stages 3-5 

of CKD (Zhang, Zhang, and Wang 2015; Davies 2018; Canadas-Garre et al. 2019; Chen et al. 

2019). Trimethyaminde N-oxide, kynurenine and critulline are common potential biomarkers 

in CKD. Acylcarnitines and phospholipids from CKD patients have been the most popular 

research targets owing to their targeted metabolomics method (Canadas-Garre et al. 2019). N, 

N, N-trimethyl-L-alanyl-L-proline betaine (L,L-TMAP) (Velenosi et al. 2019), a newly 

identified biomarkers for patients with ESRD from normal subjects, was found in a recent CKD 

study. 

This study aimed at increasing the accuracy in differentiating various CKD stages in diabetic 

patients, especially its earliest stages, via exploring novel CKD stage-related metabolites and 

comparing them with existing clinical markers. Herein, we used the non-targeted metabolomics 

profiling to look for more sensitive and specific potential biomarkers that could predict renal 

disease progression across four stages of CKD, including CKD patients with glomerular 

hyperfiltration. The biomarkers were then validated independently with another cohort, a step 

that was usually absent in previous studies (Colhoun and Marcovecchio 2018).   
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 Research design and methods 

 Chemicals 

Acetonitrile and methanol (HPLC grade) were purchased from Duksan (ANSAN-SI, South 

Korea). Distilled water was purified using a Milli-Q water purification system (Millipore, 

Bedford, MA, USA). Formic acid, cis-10-nonadecenoic acid (C19:1n9c) was obtained from 

Sigma Aldrich (St. Louis, MO, USA). Cholic acid-2,2,4,4-D4 and L-tryptophan-(indole-D5) 

was purchased from Cambridge Isotope Laboratories (Tewksbury, MA, USA). The suppliers 

of reference standards used for metabolite identification are listed in Table 5.7. 

 Study participants 

The serum samples used in this study were collected from two independent cohorts recruited 

at two different periods of time; they were referred as the discovery set and validation set,  

respectively.  

For the discovery set, 108 eligible inpatients with type 2 diabetes and 20 normal subjects aged 

40-70 were recruited from the Shenzhen Traditional Chinese Medicine Hospital between 

October, 2016 and October, 2017. At the subject enrollment stage, each participant was 

clinically examined and interviewed by our trained recruiters. The exclusion criteria were acute 

renal failure, rapidly increasing proteinuria or nephrotic syndrome, refractory hypertension, 

serious infections, signs or symptoms of other systemic disease, known renal tubular acidosis, 

pregnancy, type 1 diabetes, gestational diabetes, chronic liver disease, serious cardiovascular 

diseases, alcoholics or malignant tumour. For healthy control, they had not received any 

treatment like antibiotics, probiotics and hormone therapy in the past two months, did not have 

proteinuria or history of kidney disease, their oral glucose tolerance test and other related 

clinical test are in normal levels. The diagnosis of diabetes, kidney disease and classification 

were based on the criteria of the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 

Clinical Practice Guideline (Kidney Disease: Improving Global Outcomes (KDIGO) CKD 
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Work Group 2013). Patients were grouped by CKD severity according to their estimated GFR 

and UACR.  

Their GFRs were used to classify 108 patients in the discovery set: stage 1 (GFR ≥ 90 

ml/min/1.73 m2); Stage 2, 60-89 mL/min/1.73 m2; Stage 3, 30-59 mL/min/1.73 m2; Stage 4, < 

30 mL/min/1.73 m2 . Stage 1 consisted of Stage 1a and 1b.  The GFR range of Stage 1b was 

defined as normal (GFR = 90-120 mL/min/1.73 m2) and those over the normal upper limit (> 

120 mL/min/1.73 m2) were assigned as stage 1a of CKD in this study. ). In this study, early 

stages was indicated as Stages 1a-2 (GFR ≥ 60 ml/min/1.73 m2) while later stages was indicated 

as Stages 3-4 (GFR < 60 ml/min/1.73 m2).  In the normal group at Stage 0, 20 subjects with 

GFR = 90-120 mL/min/1.73m2 were recruited during routine body check. Their age range and 

gender ratio matched with those of the inpatients in discovery set. 

UACR (mg/g Cr.) is the ratio of urinary albumin concentration (mg) to urinary creatinine 

concentration (g). Persistent increased protein in the urine (two positive tests over three months 

or more) is considered as a sign of kidney damage.  There were three persistent albuminuria 

categories according to KDIGO guideline (Kidney Disease: Improving Global Outcomes 

(KDIGO) CKD Work Group 2013): normoalbuminuria, (normal to mildly increased group, 

UACR < 30 mg/g Cr.), microalbuminuria (moderately increased group, UACR 30-300 mg/g 

Cr.) and macroalbuminuria (severely increased group, UACR > 300 mg/g Cr.). The stages of 

CKD and albumuria categories of the present study are shown in Table 5.1. 

An external validation set, that was another separate cohort, was recruited in October, 2017-

April, 2018 and it contained 56 type 2 diabetic inpatients and 10 normal subjects, who were 

enrolled independently and was classified under the same condition as described above as those 

in the discovery set. Body surface-area related renal volume and serum cystatin C of subjects 
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in the validation set were also measured. Their baseline characteristics are also shown in Table 

5.3. 
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Table 5.1 Stages of CKD and albumuria categories that were applied in the present study 

Stages of CKD* GFR (mL/min/1.73 m2) 

Stage 1 
Stage 1a (glomerular hyperfiltration) >120 

Stage 1b (normal kidney function) 90-120 

Stage 2 (mild loss of kidney function) 60-89 

Stage 3 (mild to moderate loss of kidney function) 30-59 

Stage 4 (severe loss of kidney function) < 30 

Albumuria categories* UACR (mg/g Cr.) 

Normoalbuminuria (normal to mildly increased) <30 

Microalbuminuria (moderately increased) 30-300 

Macroalbuminuria (severely increased) > 300 

*The diagnosis of CKD and albumuria classification were modified from the criteria of the 

KDIGO 2012 Clinical Practice Guideline (Kidney Disease: Improving Global Outcomes 

(KDIGO) CKD Work Group 2013). 
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 Ethical approval 

The use of protocol for this study and informed consent forms was approved by the Research 

Ethics Board at the Shenzhen Hospital of Guangzhou University of Chinese Medicine 

[Shenzhen Traditional Chinese Medicine Ethics (Research) (2016) No.8]. Written informed 

consent was obtained from all subjects prior to this study.  

 Specimen collection 

Serum and urine samples were collected in patients in the hospital. No additional treatments or 

drug were given. Normal subjects and diabetic patients were instructed to have simple meals 

and stop taking unnecessary drugs the day before blood collection. The subjects were requested 

to fast 8 hours. Serum and urine were collected at 8:30 - 9:30 am. About 3 mL blood was drawn 

by venipuncture of antecubital area and clotted for serum collection. About 3 mL of the first 

morning midstream urine was collected into a clean container. Clotted blood and freshly 

collected urine were centrifuged at 4 ℃ at 3000 rpm for 15 min. Supernatants were aliquoted 

and stored at -80 ℃ prior to testing. 

 Selected equations for comparisons with MDRD GFR  

This study applied one widely used equation for GFR estimation, the abbreviated Modification 

of Diet in Renal Disease (MDRD) Study equation  (Levey et al. 2003) to calculate MDRD GFR 

in mL/min/1.73 m2. The relationship of three other published equations, the Chronic Kidney 

Disease Epidemiology Collaboration (CKD-EPI) creatinine equation (Levey et al. 2009), CKD-

EPI cystatin C equation (Inker et al. 2012) and CKD-EPI creatinine–cystatin C equation (Inker et al. 

2012) with MDRD GFR by correlation were assessed and their equation details are listed in 

Table 5.2.  
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Table 5.2 MDRD study equation and other existing GFR equations. 

GFR calculation methods Equations 

MDRD Study equation  

 (Levey et al. 2003) 

Estimated GFR = 186 × (serum creatinine)-1.154 × (age in 

years)-0.203 × 0.742 (if female) × 1.210 (if African American) 

CKD-EPI creatinine equation 

(Levey et al. 2009) 

Estimated GFR = 141 × min (serum creatinine /κ, 1)α × max 

(serum creatinine /κ, 1)-1.209 × 0.993Age in year × 1.018 (if 

female) × 1.159 (if black), 

where κ is 0.7 for females and 0.9 for males, α is -0.329 for 

females and -0.411 for males. min indicates the minimum of 

ratio of serum creatinine to κ or 1, and max indicates the 

maximum of ratio of serum creatinine to κ or 1.  

CKD-EPI cystatin C equation  

(Inker et al. 2012) 

Estimated GFR = 133 × min(serum cystatin C /0.8, 1)-0.499 × 

max(serum cystatin C /0.8, 1)-1.328 × 0.996Age × 0.932 (if 

female), 

where min indicates the minimum of ratio of serum cystatin 

C to 0.8 or 1, and max indicates the maximum of ratio of 

serum cystatin C to 0.8 or 1. 

CKD-EPI creatinine–cystatin C 

equation 

(Inker et al. 2012) 

Estimated GFR = 135 × min (serum creatinine /κ, 1)α  × max 

(serum creatinine /κ, 1)-0.601 × min (serum cystatin C/0.8, 1)-

0.375 × max(serum cystatin C /0.8, 1) −0.711 × 0.995Age × 0.969 

(if female) × 1.08 (if black), 

where κ is 0.7 for females and 0.9 for males, and α is -0.207 

for males and -0.248 for females.  

GFR, serum creatinine and serum cystatin C are expressed in mL/min/1.73 m2 of body surface 

area, mg/dL and mg/L respectively.  
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 Calculation of body-surface-area (BSA)-related renal volume and renal resistive 

index (RRI) 

BSA (m2) was calculated using the D. Du Bois and E. F. Du Bois’s formula: weight (kg) 0.425 

×  height (cm) 0.725 ×  0.007184 (Du Bois and Du Bois 1989; Scholbach and Weitzel 2012). 

Renal volume (mL) was calculated based on the formula using kidney dimension measured by 

ultrasound imaging: length × width × depth × 0.523 (Scholbach and Weitzel 2012). BSA-

related renal volume (mL /m2) (Hricak and Lieto 1983) was calculated as a ratio of renal 

volume to body surface area. RRI was calculated as (peak systolic velocity - end diastolic 

velocity) / peak systolic velocity derived from the kidney doppler ultrasonography. 

 Non-targeted UPLC-Orbitrap-MS metabolites profiling analysis 

 Serum preparation 

60 µL serum was deproteinated with 240 µL cold methanol containing 0.5 ppm L-tryptophan 

(indole-D5) and 0.5 ppm cholic acid-2,2,4,4-D4 and 50 ppm C19:1n9c. They were vortexed for 

1 min and stood at -20 oC overnight for complete deproteination. Then, they were centrifuged 

at 18700 × g for 20 min.  250 µL supernatant was collected and dried under nitrogen gas and 

stored at -80 oC. The dried supernatant was reconstituted with initial UPLC gradient (5% 

acetonitrile in water), vortexed for 30 s and was centrifuged at 18700 × g for 20 min. The 

supernatant was transferred to a glass insert in an amber HPLC vial prior to UPLC-Orbitrap-

MS analysis. 

 UPLC condition 

3 µL aliquot was injected into a Waters ACQUITY UPLC system. UPLC separation was 

performed on a Waters ACQUITY UPLC HSS T3 column (2.1 mm x 100 mm, 1.8 µm) with 

HSS T3 guard column (2.1mm x 5 mm, 1.8 µm, Waters Corporation, Milford, MA). The 

mobile phase consisted of combinations of A (0.1% formic acid in water, v/v) and B (0.1% 

formic acid in acetonitrile, v/v) at a flow rate of 0.3 mL/min with elution gradient as follows: 

0-1.5 min, 5% B; 2 min, 35% B; 4 min, 50% B; 8 min, 55% B; 11-14 min, 95% B. A 3-min 
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post-run time was set to fully equilibrate the column. Column and sample chamber temperature 

were 40 oC and 4 oC respectively.  

 Mass spectrometry condition 

Mass spectrometry analysis was conducted by a Thermo Scientific Orbitrap Fusion Lumos 

Tribrid mass spectrometer equipped with a heated electrospray ionization (H-ESI) interface 

(Thermo Fisher, Waltham, MA, USA). The mass-spectrometric parameters were set as follows: 

spray voltage, 2300 V and 3500 V in ESI negative and positive ionization modes respectively; 

ion transfer tube and vaporizer temperature, 300℃. Nitrogen gas was used as the sheath gas 

and the aux gas with a flow rate of 25 and 10 L/min, respectively. The analyser was operated 

in a data-dependent acquisition mode, with full MS scans of mass range at 90–1000 m/z with 

detection in the Orbitrap (120000 resolution) and with auto gain control targeted at 20000 count 

and a maximum injection time at 100 ms.   

20 µL aliquots from each sample of all groups were mixed and aliquoted as QC samples.  QC 

samples were injected between every six-sample injections to monitor the stability of the 

instruments throughout the UPLC-MS signal acquisition.  The order of injection for all samples 

was randomized.  

 Data extraction and pre-processing 

Chromatographic peak picking and alignment were performed using Progenesis QI 2.3 

(Nonlinear Dynamics, Newcastle upon Tyne, United Kingdom). Sensitivity and 

chromatographic peak width were optimized accordingly. Peaks at retention time 0.3 min – 14 

min were selected for study. Matrix of all raw ion abundance without any normalization were 

exported to Matlab (MathWorks, Natick, MA, USA) for data pre-processing (missing value 

imputation and signal correction). 
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Variables, whose values were missed in over 40% of samples in any group, were excluded 

from the subsequent analysis because the results of these variables were unreliable (Armitage 

et al. 2015; Wei et al. 2018). Then, imputation was performed on the remaining variables that 

contained missing values with equation (1) in each group separately. The missed value was the 

median in each group plus random errors based on the variations of raw ion abundance. 

                                     𝒙𝒈.𝒊
𝒎𝒊𝒔 = 𝒎𝒆𝒅𝒊𝒂𝒏(𝒙𝒈,𝒊

𝒓𝒂𝒘) + 𝒆𝒈,𝒊                                      (1) 

where i: variable in m/z ratio; 

g: group; 

𝒙𝒈,𝒊
𝒎𝒊𝒔 : missing value in the variable i in the group g for imputation; 

𝒙𝒈,𝒊
𝒓𝒂𝒘 : vector containing all the raw ion abundances of the variable i in the group g; 

 𝒆𝒈,𝒊 : a random error related to the standard deviation of 𝒙𝒈,𝒊
𝒓𝒂𝒘, which was a simulation of the 

variation of ion abundance in the same variable in the group between different 

experimental runs. 

Signal correction was then performed by smoothing through QC samples in the injection 

sequence that was served as baseline correction using cubic spline interpolation. Cubic splines 

were very flexible smoothers that could catch the variations of ion abundances caused by 

systematic bias in the instrumental responses, with a very wide range of curve shapes (e.g., 

linear and nonlinear curve) (van der Kloet et al. 2009). The optimal smoothing parameter was 

set at 0.01 and fit well to the variations. Then, the relative ion abundance 𝒓𝒏,𝒊 was corrected 

with the instrumental variation and would be used for subsequent analysis. It was a ratio of raw 

ion abundance with respect to the predicted ion abundance of the variable i of the QC sample 

at the nth injection after signal correction and was calculated by the equation (2) below.  

                                                 𝒓𝒏,𝒊 =  
𝒙𝒏,𝒊

𝒒𝒏,𝒊
                                                     (2) 
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where n: order number of the QC and study samples at the nth injection in the injection 

sequence; 

𝒓𝒏,𝒊: relative ion abundance r with respect to the predicted ion abundance of the variable i of 

the QC sample at the nth injection; 

𝒙𝒏,𝒊: raw ion abundance x of the variable i at the nth injection; 

𝒒𝒏,𝒊: predicted ion abundance q of the variable i at the nth injection that was generated by using     

QC samples that fitted into the interpolating cubic splines. 

 

In the equation (2),  𝒒𝒏,𝒊 was a new predicted ion abundance of the variable i at the nth injection 

that was generated by a smoothing curve. The smoothing curve was created by fitting the raw 

ion abundances of all the QC samples into the interpolating cubic spline. In an ideal case that 

all signals were perfectly fitted into the curve, all 𝒒𝒏,𝒊 were equal to their corresponding raw 

ion abundances, 𝒙𝒏,𝒊
𝑸𝑪

 , in each QC sample, and the curve constructed by cubic splines should 

go through every raw ion abundance of QC samples. If there was no significant deviation 

between the serum levels of study samples and QC samples, the value of  𝒙𝒏,𝒊
𝒔𝒂𝒎𝒑𝒍𝒆

 should be 

similar  to that of 𝒒𝒏,𝒊. Hence, 𝒓𝒏,𝒊 should be close to 1. Fig. 5.1 gave a demonstration of the 

comparison of raw and relative ion abundances of L-tyrosine and L-phenylalanine in the study 

samples and QC samples before and after signal correction. The figure showed that after signal 

correction, QC samples clearly followed a straighter horizontal line with less variations. 
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Fig. 5.1 Comparison of raw and relative ion abundances of L-tyrosine and L-

phenylalanine in the study samples and QC samples before and after signal correction of 

data acquired by UPLC-Orbitrap-MS. 
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 Initial variable selection  

First, quality screening was done by filtering out those unstable metabolites by applying cut-

off CV > 30% in all QC samples. Then, variable selection of Spearman rank correlation of LC-

MS data with GFR and UACR was evaluated in the discovery set separately (p ≤ 0.05).  After 

Student’s t-test and one-way ANOVA test with comparison between each stage and normal 

group after log10 transformation, metabolites with p ≤ 0.05 were selected for peak 

identification.  

 Peak identification 

Metabolites were first putatively annotated based upon their mass to charge ratio (m/z) and 

mass fragmentation patterns with the built-in database of Progenesis QI 2.3 (Chemspider, 

Lipidmaps), online metabolite databases such as Human Metabolome Database 

(http://www.hmdb.ca/), Metlin (http://metlin.scripps.edu), MassBank and literatures. Most of 

their identities were further confirmed with commercial reference standards under the same 

UPLC-MS conditions. Those markers that shared different retention time but had similar mass 

fragmentation pattern with reference standards were given the name “isomer” following the 

reference standard’s name as in “arabinose isomer”.  

In order to compensate for the insufficient information of online identification database, those 

identified metabolites were placed into two online pathway analyses [MetScape that was built 

in Cytoscape 3.7.1 (Boston, MA, USA) and Ingenuity Pathway Analysis (QIAGEN Inc, USA)] 

for pathway discovery to check any unexamined metabolites that were present in the pathway. 

The presence of these unexamined metabolites in the serum sample was checked again. 

 Validation of discovery set 

Those identified peaks in the discovery set were further confirmed in the independent 

validation dataset. They were examined through the same procedure of the variable selection 

and peak identification. Metabolites in the validation set that had the same mass fragmentation 
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pattern, retention time and that shared the same trend with significant statistical differences 

with those in the discovery sets were further investigated.  

 Metabolic network 

Networks of altered metabolites (only those with Pubmed ID listed in Table 5.8) were 

generated through MetaMapp based on their metabolic pathway and chemical similarity. Their 

relationship output and fold change were processed with CytoScape to create visual diagrams. 

Their metabolic pathway output were based on their KEGG reaction pair database while their 

chemical and structural relationship depended on their Tanimoto similarity (Barupal et al. 

2012). The pathway enrichment analysis from Metaboanalyst 4.0 

(http://www.metaboanalyst.ca) was conducted using the above metabolites with HMDB ID to 

further identify their metabolic networks. 

 

 Comparison method and statistical analysis 

 Statistical analysis for selection of potential biomarkers 

Results were expressed as means (standard deviation, SD) or medians (interquartile range), 

counts (n), as appropriate. All non-normally distributed variables were log10 transformed. 

Statistical analyses were performed using IBM SPSS Statistics version 25 (Chicago, IL, USA). 

The significant features between groups in continuous variables were analyzed using unpaired 

Student’s t - test, one-way ANOVA followed by LSD post-hoc test. All tests were two-tailed 

with p ≤ 0.05 considered as statistically significant. Screening of metabolites were further 

tested with false discovery rate (FDR, < 0.1 using Metaboanalyst) adjusted for multiple 

comparisons. Fold change was calculated using median to minimize the effect of outliers. 

Spearman rank correction could be used for non-parametric data to look for biomarker 

candidates with high accuracy of prediction.  Thus, Spearman rank correlation of identified 

metabolites with fasting blood glucose (FBG), hemoglobin, hemoglobin A1c, BSA-related 

http://www.metaboanalyst.ca/


 

161 

 

renal volume, renal resistive index, GFR, serum creatinine, cystatin C, UACR and urinary β2-

microglobulin were calculated. Selected metabolites that reached significant associations with 

correlation coefficient (Spearman R) ≥ 0.4 were listed.   

 Area under the receiver operating characteristic curve (AUC) 

To evaluate the performance of selected metabolites on differentiating CKD stages, AUC was 

calculated by RF and logistic regression using single, two- and three-metabolite models. RF is 

a powerful supervised classification technique that works by building a large number 

of decision tree models on a sub-dataset obtained by bootstrap sampling of input data matrix 

and merging all predictions from these trees to get an accurate and stable prediction (Boulesteix 

et al. 2012). Samples were randomly split into a training set (50%) and a testing set (50%) for 

model training and prediction respectively, to avoid overfitting. This procedure was repeated 

100 times to calculate the average AUC of the testing set. The statistical analyses were scripted 

in house using Python (https://www.python.org/). Logistic regression and RF classification 

were implemented by scikit-learn (https://scikit-learn.org) (Pedregosa et al. 2011). 

 Multivariate linear regression analyses 

Multivariate linear regressions by IBM SPSS Statistics were applied to determine the best 

models with biomarkers that could jointly predict MDRD GFR better than MS-detected 

creatinine. The relative intensities of potential biomarkers, values of MDRD GFR and UACR 

were log10-transformed in favour of normal distribution requirement for the analysis. The 

multivariate linear regression used ENTER method (all predictors were forced into the model 

simultaneously) to assess the performance of each variable in one model and stepwise method 

(all redundant predictors were removed step by step) to select the best model using discovery 

set as training samples (108 diabetic patients) with common confounding factors [age, gender, 

systolic blood pressure (SBP), BMI and log [UACR]]. The unstandardized regression 

coefficients (β) of the best fitted model were applied to obtain the predicted log [MDRD GFR] 
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using the independent validation sets (56 diabetic patients). Only variables with significant p < 

0.05 that contributed to the linear regression model fit were selected in the best model while 

other predictors in the models that had no effect on the response were removed in favour of a 

simpler model. The predicted log [MDRD GFR] and predicted MDRD GFR (after conversion 

from log10 transformation for easy interpretation) were compared with the actual values in the 

separate validation sets by linear regression again to assess the performance of the prediction 

equation. Using two separate datasets for construct a model and test for prediction performance 

not only could remove systematic bias of samplings from identical datasets and overfitting but 

increase the robustness of the final model.  
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 Results 

 Clinical characteristics of diabetes and CKD in different stages 

Both cohorts were comparable in terms of baseline characteristics (Table 5.3). Among 194 

participants in both cohorts, those with diabetes [164 subjects; mean age, 55.3 (7.1) years] and 

those without diabetes [30 subjects, mean ages, 49.9 (6.3) years] were different in GFR and 

UACR. The median (interquartile range) duration of diabetes was 8 (4-14) years. The levels of 

FBG of patients at Stage 1a were higher than those of the normal group (p < 0.05). GFR was 

reduced and the UACR, SBP, the contents of serum creatinine, homocysteine, fasting C-

peptide, urea, uric acid, cystatin C, urinary microalbumin, and urinary protein to creatinine 

ratio, urinary β2-microglobulin were increased with the stages of CKD, which were more 

obvious in Stage 4. All these changes showed the loss of kidney clearance function, leading to 

accumulation of uremic toxin. 

The renal ultrasound images were assessed in the validation sets and kidney size was enlarged 

at Stage 1a and gradually diminished in the present study as shown by renal ultrasound images 

and BSA-related renal volumes (Fig. 5.2).  Patients at Stage 1a had the largest left [median 

(interquartile), 92 (84-125) mL/m2], right [96 (88-108) mL/m2] and total BSA-related renal 

volumes [189 (177-220) mL/m2] while those at Stage 4 had the smallest left [median 

(interquartile), 55 (41-72) mL/m2], right [66 (47-75) mL/m2] and total BSA-related renal 

volumes [124 (95-136) mL/m2] (Table 1). Patients at Stage 4 also had the highest RRI [mean 

(SD) = 0.75 (11)] and systolic blood pressure (149-152 mmHg) (Table 5.3).  
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Table 5.3 Clinical characteristics of participants in the discovery and validation sets according to stages of diabetic CKD. 

 Clinical parameters Stages (MDRD GFR, Discovery set) Stages (MDRD GFR, Validation set) 

0 1a 1b 2 3   4 0 1a 1b 2 3   4 

n 20 20 19 30 19 20 10 10 10 10 15 11 

Age (years) 50(7) 51(5) 54(5) a 55(7) a 60(9) abcd 61(5)abcd 50(5.6) 50(2) 50(3) 54(7) 58.9(6) abc 55.7(9) 

Gender (Male, n) 10 10 10 15 9 12 5 5 5 5 9 7 
Duration of diabetes (years) - 7(6) 5(6) 10(6) c 10(8) c 12(6)bc - 5.9(4.7) 8.7(3.3) 9.3(7.4) 8.1 (4.7) 15.4(10.2)

be 

BMI (kg/m2) 21.8(1.5) 23.3(4.1) 25.7(3.5)a 25.2 (3.1) a 27.0(3.0)ab 27.0(3.3) a 20.8(1.2) 23.4(2.8) a 24.9(1.5) af 25.9(3.5) af 25.0 (3.0) af 22.5(2.8) 
SBP (mmHg) 117(13) 128(20) a 136(23) a 132(20) a 135(20) a 149(26)abd 111(5) 122(17) 126(2.3) 147 (19) abc 139 (20) ab 152(22)abc 

DBP (mmHg) 74(11) 80(11) 86(14) abf 78(12) 79(9) 77(12) 77(7) 82(11) 87(21) 91 (9) a 86 (12) 85(11) 

Total cholesterols (mmol/L) 4.7(0.5) 5.3(1.1) ac 4.5(1.2) 4.9(1.2) 5.0(1.4) 4.8(1.8) 4.5(0.5) 5.0(0.7) 5.2(1.1) 4.7 (0.9) 4.9 (1.1) 4.8(1.5) 
LDL-C(mmol/L) 3.1(0.5) 3.5(1.1) 2.9(1.1) 3.1(1.1) 3.4(1.4) 3.1(1.6) 2.7(0.4) 3.4(0.8) a 3.5(0.9) a 3.1 (0.6) 3.2 (1.0) 2.7(1.1) 

HDL-C(mmol/L) 1.45(0.2)bc

def 

1.1(0.3) 1.1(0.5) 1.0(0.3) 1.1(0.3) 1.1(0.3) 1.5(0.4)def 1.3(0.3)  1.2(0.4) 1.2 (0.3) 1.2 (0.3) 1.0(0.3) 

Triglycerides (mmol/L) 1.2(0.5) 2.7(3.4) 1.9(0.7) a 2.5(2.3) a 2.0(1.0) a 1.5(0.8) 1.1(0.7) 1.5(0.6) 1.8(0.8) a 1.7 (1.0) 2.0 (0.9) a  3.6(5.7) 

Serum creatinine (umol/L) 65(62-75) 49(45-62) a 73(55-77) b 83(72-91) 

abc 

121(107-

139) abcd 

335(232-

627)abcde 

62(51-63) 48(43-60) a 65(56-73)b 86 (72-

106) abc 

119 (101-

125) abcd 

709(289-

858) abcde 
MDRD GFR (ml/min/1.73 

m2) 

97(93-

104)def 

135(124-

151) acdef 

102(96-

105) def 

78(72-84) 

ef 

52 (41-56)f 15(6.4-25) 110(98-

120) def 

137(121-

149) acdef 

104(99-

110)def 

75 (70-78) 

ef 

55 (43-58)f 7.0(5.4-

21) 

CKD-EPI GFR (ml/min/1.73 

m2) 

101(97-
105)def 

111(109-
116) acdef 

100(96-
103) def 

82(74-89) 

ef 
53 (39-55)f 14(5.8-24) 106(102-

107)def 
111(109-
118) acdef 

103(102-
106) def 

78 (73-84) 

ef 
53 (43-58)f 6.3(5.0-

20) 

Serum urea (mmol/L) 4.3(1.1) 4.3(0.9) 4.9(0.9) b 4.9(1.3) 8.2(2.3)abcd 20.4(8.9)ab

cde 

5.1(1.4) 5.0(1.0) 4.4(1.3) 6.7 (1.8) abc 7.7 (3.1) abc 20.4(7.6)a

bcde 

Serum uric acid (μmol/L） 312(57) 305(81) 340 (89) 324 (75) 416(73) abcd 424(89)abcd 256(48) 297(107) 336(113) 368(115) a 377(121) a 429.3(157

) ab 

FBG (mmol/L) 5.1(0.3) 9.9(2.7) 

acdef  
7.6(2.2) af 8.0(2.7) af 7.18(2.6)af 4.2(1.2) a 4.2(0.5) 10.8(4.3)ab 8.3(2.3) a 6.7(3.8)  7.8(3.1) a 9.8(6.4)a 

Hemoglobin A1c (%) - 9.9(2.1)cf 7.8(1.5) b 9.06 (1.7)f 8.3(2.2) b 6.6(1.3) bcde 5.4(0.3) 9.79(3.2)ad

e 

8.1(1.4) a 7.0(1.5) a 7.71.5) a 8.2(2.6) a 

Serum hemoglobin (g/L) 142(23) 139(20) 141(17) 135(22) 128(19) ac 87(20) abcde 136(11) 144(14) 143(13) 146(19) 135(16) 109(30)abc

de 

Fasting C-peptide (nmol/L) - 0.4(0.3) 0.6(0.3) b 0.5(0.4) 0.7(0.5) 0.3(0.3) 0.4(0.1) 0.5(0.3) 0.6(0.2) a 0.6(0.3)  1.1(0.4) abcd 2.0(1.4) 

abcde 

UACR (mg/g Cr.) 2.7(2.33-

3.59) 

27(3.3-59) 

a 

12(2.8-34) 

a 

103(17-

329) abc 

357(191-

1325)abcd 

2337(1556

-3814)abcde 

2.7(1.8-

4.3) 

17(8.6-65) 

a 

4.5(2.0-39) 42(7.0-

159)  

73(10-426)   2518(178

4-4374) 

abcde 

Urinary creatinine (μmol/L) 11793(790

9-16647) cf 

9369(6552

-14750)f 

6900(4795

-14550) f 

8846(5144

-9828) a 

6560(4595

-9769) ab 

4285(3462

-5807) abcde 

8014(3877

-13799) 

12211(526

4-13947) 

9478(8607

-12632) 

10270 

(8543-
14183) 

8498(6812-

13085) 

8287(589

1-10347) 

Urinary β2-MG (mg/L) 0.14(0.06-

0.20) 

0.09(0.01-

0.17)a 

0.12(0.03-

0.18) 

0.23(0.08-

0.60) 

0.42(0.20-

3.74) 

17.58(2.06

-27.27) abcde 

0.09(0.04- 

0.16) 

0.07(0.05-

0.21) 

0.09 (0.06-

0.13) 

0.13(0.11-

0.34) 

1.32(0.42-

5.07) 

32.79(15.

21-72.81) 

abcde 

Urinary NAG (ng/mL) 13.1(11.1-

15.5)  

14.8(12.8-

18.3) 

13.4(10.5-

17.2) 

16.5(13.5-

18.9) 

16.9(10.7-

20.2) 

14.0(11.2-

18.2) 

8.0(5.8-

10.3) 

18.9(11.6-

27.1) ac 

10.9(7.1-

15.4) 

15.4(12.5-

20.0) ac 

15.3(11.2-

18.3) ac 

18.2(15.5-

20.7) ac 
Urinary 

microalbumin(mg/L) 

- 30(6.3-51) 12 (0.9-23) 82 (4.7-

216) bc 

305(120-

944)bc 

827(99-

1680)bcde 

3.9(0.5-

5.0) 

20(11-37) 5.0(3.3-64) 41(9.9-

296) a 

163(15-

971) a 

2027(825-

3687) abcde 
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Antihypertensive treatment 

(%) 

- 20 16 53 45 90  - 10 40 70 73 73 

Antidyslipidemia treatment 

(%) 

- 25 26 30 45 45  -  0 10 10 27 0 

Hypertension (%) - 10 37 50 41 60 -  - - - - - 

BSA-related left renal 

volume (mL/m2)  

- - - - - - 72(64-77) 92(84-

125)acdef 

79(78-87)  76(62-97)  62(61-78) 55(41-72) 

abcd 
BSA-related right renal 

volume (mL/m2) 

- - - - - - 78(67-87)  96(88-107) 
a 

82(79-108) 80(71-92) 68(62-75) bc 66(47-75) 

abcd 

BSA-related total renal 

volume (mL/m2) 

- - - - - - 150(126-
176)  

189(177-
220)adef 

175(156-
176) 

152(132-
173)  

138(120-
156)  

124(95-
136) abcd 

Renal resistive index - - - - - - - 0.60(0.07) 0.60(0.06) 0.64(0.05) 0.64(0.05) 0.75(0.11)
bcde 

Serum cystatin C (mg/L) - - - - - - 0.8(0.7-

0.8) 

0.7(0.6-

0.8) 

0.8(0.7-

0.9) 

1.2 (1.0-

1.4)abc 

1.8 (1.3-

2.1) abcd 

6.47(4.3-

8.0) abcde 

Serum homocysteine 

(μmol/L) 

      12.3(10.1-
19.0) 

12.6(10.1-
13.9) 

12.4(11.6-
15.3) 

15.3(11.9-
23.9) b 

17.9(17.1-
24.9) abc 

21.3(17.0-
26.8) abc 

Data are expressed as median (interquartile range), mean (standard deviation) or count (n). Significance level for superscript case letters 

(a,b,c,d,e,f represent comparison with Stages 0, 1a, 1b, 2, 3 and 4, respectively): Student’s t-tests, p ≤ 0.05. SBP, systolic blood pressure; 

DBP, diastolic blood pressure; FBG, fasting blood glucose; GFR, estimated glomerular filtration rate; UACR, urinary albumin to 

creatinine ratio; β2-MG, urinary β2-microglobulin; NAG, N-acetyl-β-D-glucosaminidase. –, not available. Renal resistive index (RRI) 

is defined as (peak systolic velocity - end diastolic velocity) / peak systolic velocity derived from the kidney doppler ultrasonography. 
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Fig. 5.2 Images of ultrasonic scanning of the left kidneys in normal subject and diabetic 

patients in different stages and the comparison of BSA-related renal volumes and renal 

resistive index between stages. 

Significance level for superscript case letters (a,b,c,d,e,f represent comparison with Stages 0, 1a, 1b, 

2, 3 and 4, respectively): Student’s t-test, p ≤ 0.05.  
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 High correlations between different GFRs calculated by different 

equations 

Comparison between routine MDRD GFR and several newly reported GFRs (CKD-EPI creatinine 

GFR, CKD-EPI cystatin C GFR and CKD-EPI creatinine-cystatin C GFR) using creatinine and cystatin 

C in this study, they had a high similarity, using correlation analysis (Pearson R > 0.94). Table 

5.4 shows their Pearson correlation coefficients.  
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Table 5.4 Pearson correlation and Spearman rank correlation of MDRD GFR with three 

another GFRs that were calculated by the three newly reported equations in all samples 

of discovery set and/or validation set  

Correlation to MDRD GFR Dataset and size Pearson correlation 

CKD-EPI creatinine GFR 

Discovery (n=128) 0.9523 

Validation (n=66) 0.9729 

CKD-EPI cystatin C GFR Validation (n=58) 0.9468 

CKD-EPI creatinine-cystatin C GFR Validation (n=58) 0.9681 
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 Correlations of clinical parameters to GFR and UACR in diabetic 

patients 

The correlation of clinical parameters to GFR and UACR with absolute Spearman R > 0.40 is 

listed in Table 5.5.  In diabetic patients, BSA-related renal volumes of the left, right and the 

sum of two kidneys were positively associated to MDRD GFR (Spearman R = 0.5838, 0.6514, 

0.6783, n = 46). Serum hemoglobin, urinary microalbumin, β2-microglobulin, urinary total 

protein, urinary protein-to-creatinine ratio, renal resistive index, serum homocysteine, serum 

urea, serum creatinine and serum cystatin C were inversely correlated to MDRD GFR (absolute 

Spearman R > 0.400 in Stages 1-4). Urinary protein-to-creatinine ratio, urinary total protein, 

urinary microalbumin, urinary β2-microglobulin, renal resistive index, serum homocysteine, 

serum creatinine, serum cystatin C, and serum urea increased with the rise in UACR (Spearman 

R > 0.400) while serum hemoglobin decreased with the increase in UACR (Spearman R = -

0.4743 and -0.4040).   
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Table 5.5 Spearman rank correlation of clinical parameters to MDRD GFR and UACR in discovery set and validation set  

(Absolute Spearman R > 0.40). 

Clinical parameters Stages 0-4 Stages 1-4 

Discovery set (n=128) Validation set (n=66) Discovery set (n =108) Validation set (n =56) 

Spearman R p value Spearman R p value Correlation  p value Spearman R p value 

MDRD GFR 

Serum hemoglobin (g/L) 0.4507 1.18E-07 0.3340 0.0061 0.4902 9.61E-08 0.4430 0.0006 

Serum uric acid (μmol/L） -0.4392 2.15E-07 -0.4438 0.0002 -0.4579 6.29E-07 -0.3358 0.0114 

Age (years) -0.4757 1.39E-08 -0.3857 0.0014 -0.4985 4.00E-08 -0.3919 0.0028 

Urinary microalbumin(mg/L) -0.6141 8.56E-12 -0.5841 1.85E-06 -0.6141 8.56E-12 -0.6332 1.78E-06 

Urinary β2-microglobulin (mg/L) -0.6285 1.99E-15 -0.7140 2.43E-11 -0.6714 1.83E-15 -0.7571 2.26E-11 

Urinary total protein (mg/L) -0.6851 4.71E-19 -0.6480 5.38E-09 -0.7229 1.02E-18 -0.6752 1.56E-08 

Serum urea (mmol/L) -0.6974 5.93E-20 -0.7014 5.39E-11 -0.7632 8.00E-22 -0.7481 3.44E-11 

Urinary protein-to-creatinine ratio (mg/g) -0.7324 8.95E-23 -0.6469 5.84E-09 -0.7686 2.73E-22 -0.6718 1.97E-08 

UACR (mg/g Cr.) -0.7326 8.62E-23 -0.6634 1.28E-09 -0.7786 3.50E-23 -0.6911 3.73E-09 

Serum creatinine (mg/dl) -0.9308 6.25E-57 -0.9500 4.66E-34 -0.9546 1.44E-57 -0.9592 2.68E-31 

BSA-related total renal volume (mL/m2)   0.5835 2.37E-06   0.6783 2.22E-07 

BSA-related right renal volume (mL/m2)   0.5607 6.98E-06   0.6514 9.44E-07 

BSA-related left renal volume (mL/m2)   0.4747 0.0002   0.5838 2.05E-05 

Renal resistive index   -0.5253 0.0001   -0.5253 0.0001 

Serum homocysteine (μmol/L)   -0.6371 1.30E-07   -0.6768 2.42E-07 

Serum cystatin C (mg/L)   -0.9126 (n = 58) 2.08E-23   -0.9400 4.10E-23 (n = 44) 

UACR 

Urinary protein-to-creatinine ratio (mg/g) 0.9459 1.81E-63 0.8780 7.86E-22 0.9660 4.04E-64 0.9157 1.25E-22 

Urinary total protein (mg/L) 0.8703 1.42E-40 0.8392 2.57E-18 0.8939 9.89E-39 0.8056 1.20E-13 

Urinary microalbumin(mg/L) 0.8390 6.44E-28 0.9767 1.81E-38 0.8390 6.44E-28 0.9735 1.79E-30 

Serum creatinine (mg/dl) 0.6880 2.92E-19 0.6464 4.58E-09 0.7367 1.02E-19 0.6668 2.02E-08 

Urinary β2-microglobulin (mg/L) 0.6215 4.93E-15 0.7000 8.65E-11 0.6473 3.75E-14 0.6938 4.30E-09 

Serum urea (mmol/L) 0.5795 7.64E-13 0.4915 2.78E-05 0.6011 6.08E-12 0.5098 5.98E-05 

Serum hemoglobin (g/L) -0.4511 1.16E-07 -0.2896 0.0183 -0.4743 2.80E-07 -0.4040 0.0020 

MDRD GFR (ml/min/1.73 m2) -0.7326 8.62E-23 -0.6634 1.28E-09 -0.7786 3.50E-23 -0.6911 3.73E-09 

Serum cystatin C (mg/L)   0.6549 2.44E-08   0.6758 1.36E-07 

Renal resistive index    0.4949 0.0003   0.4949 0.0003 

Serum homocysteine (μmol/L)   0.4695 0.0003   0.5107 0.0003 



 

171 

 

 Stability and accuracy of the metabolomics platforms  

 Low relative standard deviation among the signals of metabolites and 

internal standards  

The base peak chromatograms of representative pooled QC samples acquired using UPLC-

Orbitrap-MS in negative and positive ESI modes from the discovery set and the validation set 

are shown in Fig. 5.3.  

After signal correction and signal quality screening in the discovery set, LC–MS analysis in 

the negative ESI mode displayed 4316 (82.46 %) out of 5234 variables with coefficient 

variation (CV %) ≤ 30 %, and 3596 (68.70 %) variables had RSD ≤ 20 %. LC–MS analysis in 

the positive ESI mode displayed 3164 (67.38 %) out of 4701 variables with CV  ≤ 30 %, and 

2368 (50.37 %) variables had CV ≤ 20 %. In the validation set, LC–MS analysis in the negative 

ESI displayed 7249 (87.32 %) out of 8302 variables with CV ≤ 30 %, and 6255 (75.34 %) 

variables had CV ≤ 20 %. LC–MS analysis in the positive ESI mode displayed 10279 (80.29 

%) out of 12802 variables with CV ≤ 30 %, and 8125 (63.47 %) variables had CV ≤ 20 %. The 

internal standards in QC samples of both the discovery and validation sets had CV % below 

5% in positive and negative modes except C19:1n9c which was only detected in the negative 

mode and its CV% in the discovery and validation sets was 15.27 % and 11.37 %, respectively. 

Details could be seen in Table 5.6. 

PCA score plots (CV ≤ 30% in QC samples) showed that signal correction minimized the 

variation caused by systemic fluctuations from instrumental response. Study samples and QC 

samples were clustered together after smoothing of the ion abundance with QC samples (Fig. 

5.4).  

These illustrated the stabilities of most metabolites and internal standards in the QC samples 

were generally good across the runs in both data sets. This ensured the observed changes 

between groups were really due to biological reasons rather than the instrumental bias. 
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Fig. 5.3 Base peak chromatograms of representative pooled QC samples acquired using 

UPLC-Orbitrap-MS.  
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Table 5.6 The stability of relative ion abundance of internal standards in serum of subject samples and QC samples and overall features 

in QC samples 

 

Internal standards in serum of subject samples and QC samples 

Internal 

standard 
Dataset Adduct 

Retention 

time (min) 
Detected m/z Theoretical m/z 

CV (%) of 

subject 

samples 

CV (%) of 

Quality 

control 

samples 

L-Tryptophan-

(indole-D5) 

Discovery set 
[M-H]- 

2.95 208.1137 208.1140 18.04 2.16 

Validation set 2.96 208.1142 208.1140 27.08 1.61 

Discovery set 
[M+H]+ 

2.95 210.1285 210.1285 4.24 2.43 

Validation set 2.96 210.1279 210.1285 12.14 4.28 

Cholic acid D4 

Discovery set 
[M-H]- 5.73 411.3054 411.3054 3.31 2.74 

[M+H-3H2O]+ 5.74 359.2878 359.2882 4.10 1.99 

Validation set 
[M-H]- 5.72 411.3059 411.3054 3.44 1.31 

[M+H-3H2O]+ 5.73 359.2870 359.2882 9.82 2.84 

C19:1n9c 
Discovery set [M-H]- 13.68 295.2642 295.2643 29.61 15.28 

Validation set [M-H]- 13.85 295.2647 295.2643 25.67 11.37 

Overall features in QC samples 

Dataset ESI mode QC samples (n) 
Total 

features 

Number of 

features with 

CV ≤ 30% in 

QC samples 

Number of 

features with 

CV ≤ 20% in 

QC samples 

Percentage 

in all 

features (CV  

≤ 30%) 

Percentage 

in all 

features (CV  

≤ 20%) 

Discovery set  
- 22 5234 4316 3596 82.46 68.70 

+ 25 4701 3164 2368 67.30 50.37 

Validation set  
- 12 8302 7249 6255 87.32 75.34 

+ 12 12802 10279 8125 80.29 63.47 
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Fig. 5.4 Score plots of PCA of all human study samples (black box) and QC samples (red box) (A) before and (B) after signal 

correction acquired in (1) ESI+ mode and (2) ESI- mode. 
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 High linear relationship between clinical serum parameters and their 

corresponding values detected by MS 

The UPLC MS-detected signal corrected relative intensities, D-glucose (discovery set: R2 = 

0.7727, validation set: R2 = 0.9414; both R2 = 0.8043), uric acid (discovery set: R2 = 0.8424, 

validation set : R2 = 0.8487, both: R2 = 0.8448) and serum creatinine (discovery set: R2 = 0.9409, 

validation set : R2 = 0.9851; both R2 = 0.9602) showed a very good linear relationship to their 

corresponding values measured clinically (uric acid, serum creatinine and FBG) (Fig. 5.5).  Such 

high linear relationship demonstrated that the measurements were reliable. 
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Fig. 5.5 Linear relationship of UPLC-MS detected (A) serum D-glucose, (B) serum uric acid and (C) MS-detected serum 

creatinine against clinically measured FBG, serum uric acid, serum creatinine, respectively.  

Trendlines were formed with both datasets. 
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 Selection and identification of metabolites  

After univariate comparison between stages in the discovery set, global metabolomics profiling 

resulted in detection of 80 candidates (72 metabolites and 8 pairs of metabolite ratios) in both sets 

of data. The mean CV % of each metabolite in the pooled QC samples was 5.27 % and 4.85% in 

the discovery set and validation set, respectively. Their identification information and CV % could 

be found in Table 5.7 and their ID listed in online database are shown in Table 5.8. Fig. 5.6 was 

an example of the peak identification process, which showed the extracted ion chromatograms and 

mass fragmentation pattern of succinyladenosine against its reference standard. 

Metabolites were ranked according to their fold changes (Table 5.9) with the normal group and 

their later stages (Student’s t-test, p < 0.05) (Table 5.10) as well as their correlations to MDRD 

GFR (Table 5.11), clinically measured serum creatinine, UACR, urinary β-microglobulin, cystatin 

C, FPG, total BSA-related renal volume and renal resistive index (Spearman R > 0.4 among 

diabetic patients) (Table S5.1-S5.6, Appendix II). Those lacking identification were not considered 

for subsequent analyses. The relationship of metabolites with serum creatinine was similar to that 

with serum cystatin C. The correlation of metabolites with MDRD GFR was also close to that with 

CKD-EPI creatinine–cystatin C GFR and CKD-EPI cystatin C GFR (Table S5.4) 

Annotated metabolites were further checked by multivariate analysis with one-way ANOVA with 

LSD post-hoc test (p < 0.05) and false discovery rate (FDR < 0.1 using Metaboanalyst) adjusted 

for multiple comparisons, 60 candidates (53 metabolites and 7 ratios) had significant changes 

compared with normal samples or samples in subsequent stages.  

Statistical consistency was checked in both cohorts. 55 candidates (49 metabolites and 6 ratios) in 

the validation set that shared the same trends in fold changes with respect to normal group as those 
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in the discovery set eventually remained (Table 5.9) and/or between two consecutive stages of 

CKD (Table 5.10).  

Fig. 5.7 is a summary of the selection process and contains two heatmaps of the overview of the 

metabolite changes among Stages 0 - 4. 38 metabolites were identified with reference standards 

and 11 were putatively/tentatively identified with online databases or literatures. The heatmaps 

were drawn by using MetaboAnalyst (https://www.metaboanalyst.ca/) and it also contained 

clinical markers and clinical indexes for easy comparison. 
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Table 5.7 Identification details and stability of metabolites in QC samples using UPLC-Orbitrap-MS 

Identified metabolites Retention 

time (min) 

Detected 

m/z 

Theoretical m/z Mass 

error 

(ppm) 

Adduct Molecular 

formula 

Confirmation / Supplier* CV of QC (%) 

Discovery set Validation set 

L-Arginine 0.67 173.1042 173.1044 0.6 [M-H]- C6H14N4O2 Sigma Aldrich 10.17 8.58 

L-Ornithine 0.67 131.0823 131.0826 0 [M-H]- C5H12N2O2 Sigma Aldrich 11.08 5.23 

Choline 0.78 104.1071 104.1070 -2.9 [M]+ C5H14NO Acros Organics 4.67 5.48 

L-Glutamine 0.79 145.0616 145.0619 0.0 [M-H]- C5H10N2O3 Sigma Aldrich 1.08 1.25 

L-Citrulline 0.80 174.0882 174.0884 0.6 [M-H]- C6H13N3O3 Sigma Aldrich 2.26 3.29 

D-Glucose 0.80 215.0328 215.0328 1.4 [M+Cl]- C6H12O6 International laboratory 1.14 0.68 

L-Carnitine 0.80 162.1125 162.1125 -3.1 [M+H]+ C7H15NO3 CIL 1.50 3.63 

L-Glutamic acid 0.80 148.0604 148.0604 -2.7 [M+H]+ C5H9NO4 Sigma Aldrich 3.80 4.09 

L-Threonine 0.80 120.0655 120.0655 -2.5 [M+H]+ C4H9NO3 Sigma Aldrich 6.47 5.57 

Arabinose isomer 0.80 195.0513 195.0510 1.5 [M+FA-H]- C5H10O5 Santa Cruz 1.46 1.88 

Betaine 0.81 118.0863 118.0863 -3.4 [M+H]+ C5H11NO2 Sigma Aldrich 1.70 3.06 

Creatinine 0.81 114.0662 114.0662 -2.6 [M+H]+ C4H7N3O Acros Organics 2.24 3.93 

2-Hydroxyethanesulfonate 0.82 124.9911 124.9914 0.0 [M-H]- C2H6O4S Sigma Aldrich 3.78 8.46 

γ-Butyrobetaine 0.83 146.1175 146.1176 -3.4 [M+H]+ C7H15NO2 TRC 3.76 2.37 

L-Proline 0.83 116.0707 116.0706 -2.6 [M+H]+ C5H9NO2 Sigma Aldrich 1.56 3.69 

1,5-Anhydro-D-glucitol 0.85 199.0376 199.0379 1.0 [M+Cl]- C6H12O5 TRC 2.09 1.82 

N-Acetylcarnosine 0.89 269.1243 269.1243 -2.6 [M+H]+ C11H16N4O4 Santa Cruz 5.91 7.34 

5-Methylthio-D-ribose 0.93 181.0529 181.0529 -2.8 [M+H]+ C6H12O4S Online database (HMDB) 6.12 8.15 

Pseudouridine 0.93 243.0622 243.0623 1.2 [M-H]- C9H12N2O6 Supelco 1.78 3.65 

L-Valine 0.94 118.0863 118.0863 -3.4 [M+H]+ C5H11NO2 Sigma Aldrich 1.89 4.29 

L-Acetylcarnitine 0.95 204.1230 204.1230 -2.9 [M+H]+ C9H17NO4 CIL 2.35 6.67 

L,L-TMAP isomer 0.96 229.1546 229.1547 -3.5 [M+H]+ C11H20N2O3  ChemPartner and (Zhang, Ford, 

et al. 2017) 
4.05 6.07 

Uric acid 1.00 169.0356 169.0356 -3.0 [M+H]+ C5H4N4O3 Sigma Aldrich 1.78 4.69 

L,L-TMAP 1.06 229.1546 229.1547 -3.5 [M+H]+ C11H20N2O3 ChemPartner and (Zhang, Ford, 

et al. 2017) 
2.31 5.44 

L-Methionine 1.07 148.0435 148.0438 1.8 [M-H]- C5H11NO2S Sigma Aldrich 5.03 7.31 

Citric acid 1.09 191.0195 191.0197 1.0 [M-H]- C6H8O7 Sigma Aldrich 3.55 3.64 

Hydroxybutyrylcarnitine 1.09 248.1491 248.1492 -3.6 [M+H]+ C11H21NO5 Online databases 11.84 8.58 

Succinylcarnitine 1.09 262.1284 262.1285 -3.8 [M+H]+ C11H19NO6 Supelco 5.29 11.02 

Uracil 1.09 113.0346 113.0346 -2.7 [M+H]+ C4H4N2O2 Wako 5.11 6.35 

Uridine 1.09 243.0622 243.0623 1.2 [M-H]- C9H12N2O6 Wako 1.69 1.14 

L-Tyrosine 1.33 180.0664 180.0666 0.6 [M-H]- C9H11NO3 Sigma Aldrich 2.11 1.06 

Sulfotyrosine 1.46 260.0234 260.0234 1.9 [M-H]- C9H11NO6S (Turyan, Frenkel, and Sosic 

2018) 

1.79 0.88 

Inosine 1.50 267.0735 267.0735 1.9 [M-H]- C10H12N4O5 Acros Organics 2.30 1.17 

L-Leucine 1.56 132.1019 132.1019 -3.0 [M+H]+ C6H13NO2 Sigma Aldrich 1.81 6.27 

4-Acetamidobutanoic acid 1.59 144.0664 144.0666 0.7 [M-H]- C6H11NO3 Matrix Scientific 1.62 1.44 

Propionylcarnitine 1.67 218.1387 218.1387 -3.2 [M+H]+ C10H19NO4 CIL 2.61 6.39 

2-Hydroxybutyric acid 1.90 103.0398 103.0401 -1.0 [M-H]- C4H8O3 Sigma Aldrich 1.85 1.35 

2-(α-D-Mannopyranosyl)-L-tryptophan 2.21 367.1497 367.1500 -3.8 [M+H]+ C17H22N2O7 TRC 2.16 6.02 

L-Kynurenine 2.42 209.0921 209.0921 -3.3 [M+H]+ C10H12N2O3 Sigma Aldrich 3.00 8.09 

L-Phenylalanine 2.48 164.0714 164.0717 0.6 [M-H]- C9H11NO2 Sigma Aldrich 2.02 2.36 

Succinyladenosine 2.89 382.1005 382.1004 1.6 [M-H]- C14H17N5O8 TRC 3.06 3.07 

O-Adipoylcarnitine 2.90 290.1597 290.1598 -3.8 [M+H]+ C13H23NO6 Supelco 3.39 5.11 

Butyrylcarnitine 2.92 232.1543 232.1543 -3.4 [M+H]+ C11H21NO4 CIL 2.62 5.65 

L-β-aspartyl-L-leucine 2.93 247.1287 247.1288 -3.2 [M+H]+ C10H18N2O5 Online database (HMDB) 6.71 4.89 

L-Tryptophan 2.95 203.0824 203.0826 1.0 [M-H]- C11H12N2O2 Sigma Aldrich 2.21 1.26 

Homovanillic acid sulfate 2.97 261.0073 261.0074 1.9 [M-H]- C9H10O7S Cayman Chemical 12.40 2.42 
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Kynurenic acid 2.99 190.0499 190.0499 -3.2 [M+H]+ C10H7NO3 Sigma Aldrich 14.71 4.95 

2-[3-(sulfooxy)phenyl]acetic acid 3.00 230.9967 230.9969 1.3 [M-H]- C8H8O6S Online database (HMDB) 2.64 4.81 

Valerylcarnitine 3.00 246.1699 246.1700 -3.7 [M+H]+ C12H23NO4 Cayman Chemical 5.96 7.49 

Pyrocatechol sulfate 3.07 188.9865 188.9863 1.1 [M-H]- C6H6O5S Online database (HMDB) 2.82 1.57 

α-N-Phenylacetyl-L-glutamine 3.07 263.1037 263.1037 1.9 [M-H]- C13H16N2O4 Santa Cruz 1.87 1.41 

Phenol sulfate 3.10 172.9912 172.9914 1.2 [M-H]- C6H6O4S Online database (HMDB) 2.32 0.99 

Hexanoylcarnitine 3.11 260.1855 260.1856 -3.5 [M+H]+ C13H25NO4 Santa Cruz 28.21 8.88 

Hippuric acid 3.14 178.0508 178.0510 0.6 [M-H]- C9H9NO3 Acros Organics 2.03 0.91 

Indoxyl sulfate 3.15 212.0022 212.0023 1.4 [M-H]- C8H7NO4S Sigma Aldrich 2.82 1.43 

p-Cresol glucuronide 3.17 283.0823 283.0823 1.8 [M-H]- C13H16O7 TRC 2.09 1.42 

2-Octenoylcarnitine 3.32 286.2011 286.2013 -3.8 [M+H]+ C15H27NO4 Online databases 3.15 6.83 

p-Cresol sulfate 3.36 187.0070 187.0071 1.1 [M-H]- C7H8O4S CIL 1.82 1.00 

Indole-3-lactic acid 3.44 204.0664 204.0666 1.0 [M-H]- C11H11NO3 Santa Cruz 2.25 1.28 

3-Hydroxydecanoyl carnitine 3.62 332.2429 332.2431 -3.6 [M+H]+ C17H33NO5 Online databases 5.28 5.99 

L-Octanoylcarnitine 3.65 288.2167 288.2169 -3.5 [M+H]+ C15H29NO4 CIL 2.63 5.72 

3-Indoleacetic acid 3.78 176.0706 176.0706 -2.8 [M+H]+ C10H9NO2 Sigma Aldrich 3.54 5.14 

Cortisol 4.03 363.2163 363.2166 -3.6 [M+H]+ C21H30O5 Sigma Aldrich 3.00 3.57 

9-Decenoylcarnitine 4.13 314.2324 314.2326 -3.8 [M+H]+ C17H31NO4 Online databases 2.18 6.51 

Bilirubin 4.30 585.2706 585.2708 -2.7 [M+H]+ C33H36N4O6 Acros Organics 4.95 5.13 

Decanoylcarnitine 4.51 316.2480 316.2482 -3.8 [M+H]+ C17H33NO4 Sigma Aldrich 2.80 2.82 

Dehydroepiandrosterone sulfate 4.73 367.1584 367.1585 1.1 [M-H]- C19H28O5S Cayman Chemical 3.63 1.64 

3,5-Tetradecadiencarnitine 5.49 368.2793 368.2795 -3.5 [M+H]+ C21H37NO4 Online databases 5.88 6.73 

Dodecanoylcarnitine 5.57 344.2793 344.2795 -3.5 [M+H]+ C19H37NO4 CIL 9.44 4.34 

cis-5-Tetradecenoylcarnitine 6.39 370.2949 370.2952 -3.5 [M+H]+ C21H39NO4 Online databases 12.23 9.59 

LysoPE(18:1(11Z)/0:0) 10.46 480.3083 480.3085 -2.9 [M+H]+ C23H46NO7P Online databases 14.54 9.97 

Stearoylcarnitine 10.52 428.3732 428.3734 -3.3 [M+H]+ C25H49NO4 CIL 16.91 8.10 

*Acros Organics, New Jersey, US. Cayman Chemical, Michigan, US. CIL, Cambridge Isotope Laboratories, MA, US. ChemPartner, 

Shanghai ChemPartner Co., Ltd., China. International laboratory, CA, USA. Sgima Aldrich and Supelco, MO, US. Matrix Scientific, 

SC, US. Santa Cruz, Texas, US. TRC, Toronto Research Chemicals, Canada. Wako, Wako Pure Chemical Industries, Japan. N, N, N-

trimethyl-L-alanyl-Lproline betaine (L,L-TMAP). 
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Table 5.8 List of ID in online database for networking 

Metabolites PubChem ID HMDB ID KEGG 

ID 

SMILES code 

1,5-Anhydro-D-glucitol 64960 HMDB0002712 C07326  C1[C@@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O 

2-[3-(sulfooxy)phenyl] acetic acid 131831698 HMDB0125163 N/A C1=CC(=CC(=C1)OS(=O)(=O)O)CC(=O)O 

2-(α-D-Mannopyranosyl)-L-tryptophan 10981970 HMDB0240296 N/A N[C@@H](CC1=C(NC2=C1C=CC=C2)[C@H]1O[C@H](CO)[C@@H](O

)[C@H](O)[C@@H]1O)C(O)=O 

2-Hydroxybutyric acid 11266 HMDB0000008 C05984 CCC(C(=O)O)O 

2-Hydroxyethanesulfonate 7866 HMDB0003903 C05123 OCCS(O)(=O)=O 

2-Octenoylcarnitine 53481667 HMDB0013324 N/A CCCCC/C=C/C(=O)O[C@@H](CCC(=O)[O-])[N+](C)(C)C 

3,5-Tetradecadiencarnitine 53481681 HMDB0013331 N/A CCCCCCCC/C=C/C=C/CC(=O)O[C@@H](CCC(=O)[O-])[N+](C)(C)C 

3-Hydroxydecanoyl carnitine 121454166 HMDB0061636 N/A CCCCCCCC(CC(=O)OC(CC(=O)[O-])C[N+](C)(C)C)O 

3-Indoleacetic acid 802 HMDB0000197 C00954 C1=CC=C2C(=C1)C(=CN2)CC(=O)O 

4-Acetamidobutanoic acid 18189 HMDB0003681 C02946  CC(=O)NCCCC(=O)O 

5-Methylthio-D-ribose 439904 HMDB0001087 C03089 CSC[C@@H]1[C@H]([C@H]([C@@H](O1)O)O)O 

9-Decenoylcarnitine 53481651 HMDB0013205 N/A C[N+](C)(C)CC(CC(=O)[O-])OC(=O)CCCCCCCC=C 

Betaine 247 HMDB0000043 C00719 C[N+](C)(C)CC(=O)[O-] 

Bilirubin 5280352 HMDB0000054 C00486 CC1=C(C=C)\C(NC1=O)=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(CCC(O)=

O)C(C)=C(N2)\C=C2/NC(=O)C(C=C)=C2C)N1 

Butyrylcarnitine 213144 HMDB0002013 C02862 CCCC(=O)O[C@H](CC(=O)[O-])C[N+](C)(C)C 

Choline 305 HMDB0000097 C00114 C[N+](C)(C)CCO 

cis-5-Tetradecenoylcarnitine 22833575 HMDB0002014 N/A CCCCCCCC/C=C\CCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C 

Citric acid 311 HMDB0000094 C00158 OC(=O)CC(O)(CC(O)=O)C(O)=O 

Cortisol 5754 HMDB0000063 C00735 C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2[C@H](C[C@]4([C@H]3

CC[C@@]4(C(=O)CO)O)C)O 

Creatinine 588 HMDB0000562 C00791 CN1CC(=O)N=C1N 

Decanoylcarnitine 10245190 HMDB0000651 N/A CCCCCCCCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C 

Dehydroepiandrosterone sulfate 12594 HMDB0001032 C04555 C[C@]12CC[C@H]3[C@H]([C@@H]1CCC2=O)CC=C4[C@@]3(CC[C@

@H](C4)OS(=O)(=O)O)C 

D-Glucose 5793 HMDB0000122 C00031 C([C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)O)O)O 

Dodecanoylcarnitine 168381 HMDB0002250 N/A CCCCCCCCCCCC(=O)O[C@H](CC(=O)[O-])C[N+](C)(C)C 

Hexanoylcarnitine 6426853 HMDB0000705 N/A CCCCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C 

Hippuric acid 464 HMDB0000714 C01586 C1=CC=C(C=C1)C(=O)NCC(=O)O 

Homovanillic acid sulfate 29981063 HMDB0011719 N/A COC1=C(C=CC(=C1)CC(=O)O)OS(=O)(=O)O 

Hydroxybutyrylcarnitine 53481617 HMDB0013127 N/A CC(CC(=O)O[C@@H](CC(=O)[O-])C[N+](C)(C)C)O 

Indole-3-lactic acid 92904 HMDB0000671 C02043 C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)O 

Indoxyl sulfate 10258 HMDB0000682 N/A C1=CC=C2C(=C1)C(=CN2)OS(=O)(=O)O 

Inosine 6021 HMDB0000195 C00294 C1=NC(=O)C2=C(N1)N(C=N2)[C@H]3[C@@H]([C@@H]([C@H](O3)C

O)O)O 

Kynurenic acid 3845 HMDB0000715 C01717 OC(=O)C1=CC(=O)C2=CC=CC=C2N1 

L,L-TMAP 134218393 HMDB0240365 N/A C[C@@H](C(=O)N1CCC[C@H]1C([O-])=O)[N+](C)(C)C 
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L-Acetylcarnitine 7045767 HMDB0000201 C02571 CC(=O)O[C@H](CC(=O)[O-])C[N+](C)(C)C 

L-Arginine 6322 HMDB0000517 C00062 C(C[C@@H](C(=O)O)N)CN=C(N)N 

L-Carnitine 10917 HMDB0000062 C00318 C[N+](C)(C)C[C@@H](CC(=O)[O-])O 

L-Citrulline 9750 HMDB0000904 C00327 C(C[C@@H](C(=O)O)N)CNC(=O)N 

L-Glutamic acid 33032 HMDB0000148 C00025 C(CC(=O)O)[C@@H](C(=O)O)N 

L-Glutamine 5961 HMDB0000641 C00064 C(CC(=O)N)[C@@H](C(=O)O)N 

L-Homocysteine 91552 HMDB0000742 C00155 N[C@@H](CCS)C(O)=O 

L-Kynurenine 161166 HMDB0000684 C00328 N[C@@H](CC(=O)C1=CC=CC=C1N)C(O)=O 

L-Leucine 6106 HMDB0000687 C00123 CC(C)C[C@H](N)C(O)=O 

L-Methionine 6137 HMDB0000696 C00073 CSCC[C@@H](C(=O)O)N 

L-Octanoylcarnitine 11953814 HMDB0000791 C02838 CCCCCCCC(=O)O[C@H](CC(=O)[O-])C[N+](C)(C)C 

L-Ornithine 6262 HMDB0000214 C00077 C(C[C@@H](C(=O)O)N)CN 

L-Phenylalanine 6140 HMDB0000159 C00079 C1=CC=C(C=C1)C[C@@H](C(=O)O)N 

L-Proline 145742 HMDB0000162 C00148 C1C[C@H](NC1)C(=O)O 

L-Threonine 6288 HMDB0000167 C00188 C[C@H]([C@@H](C(=O)O)N)O 

L-Tryptophan 6305 HMDB0000929 C00078 C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)N 

L-Tyrosine 6057 HMDB0000158 C00082 C1=CC(=CC=C1C[C@@H](C(=O)O)N)O 

L-Valine 6287 HMDB0000883 C00183 CC(C)[C@@H](C(=O)O)N 

LysoPE(18:1(11Z)/0:0) 53480949 HMDB0011505 N/A [H][C@@](O)(COC(=O)CCCCCCCCC\C=C/CCCCCC)COP(O)(=O)OCC

N 

L-β-aspartyl-L-leucine 3549397 HMDB0011166 N/A CC(C)CC(NC(=O)CC(N)C(O)=O)C(O)=O 

N-Acetylcarnosine 10221026 HMDB0012881 N/A CC(=O)NCCC(=O)N[C@H](CC1=CN=CN1)C(=O)O 

O-Adipoylcarnitine 71296139 HMDB0061677 N/A C[N+](C)(C)C[C@@H](CC([O-])=O)OC(=O)CCCCC(O)=O 

p-Cresol glucuronide 154035 HMDB0011686 N/A CC1=CC=C(C=C1)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)C(=

O)O)O)O)O 

p-Cresol sulfate 4615423 HMDB0011635 N/A CC1=CC=C(C=C1)OS(=O)(=O)O 

Phenol sulfate 74426 HMDB0060015 C02180 C1=CC=C(C=C1)OS(=O)(=O)O 

Propionylcarnitine 107738 HMDB0000824 C03017 CCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C 

Pseudouridine 15047 HMDB0000767 C02067 C1=C(C(=O)NC(=O)N1)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O 

Pyrocatechol sulfate 3083879 HMDB0059724 N/A OC1=C(OS(O)(=O)=O)C=CC=C1 

Stearoylcarnitine 3006797 HMDB0000848 N/A CCCCCCCCCCCCCCCCCC(=O)O[C@H](CC(=O)O)C[N+](C)(C)C 

Succinyladenosine 20849086 HMDB0000912 N/A C1=NC2=C(C(=N1)N[C@@H](CC(=O)O)C(=O)O)N=CN2[C@H]3[C@@

H]([C@@H]([C@H](O3)CO)O)O 

Succinylcarnitine 71464481 HMDB0061717 N/A C[N+](C)(C)C[C@@H](CC([O-])=O)OC(=O)CCC(O)=O 

Sulfotyrosine 514186 N/A N/A C1=CC(=CC=C1C[C@@H](C(=O)O)N)OS(=O)(=O)O 

Uracil 1174 HMDB0000300 N/A O=C1NC=CC(=O)N1 

Urea 1176  

HMDB0000294 

C00086 C(=O)(N)N 

Uric acid 1175 HMDB0000289 C00366 C12=C(NC(=O)N1)NC(=O)NC2=O 

Uridine 6029 HMDB0000296 C00299 C1=CN(C(=O)NC1=O)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O 

Valerylcarnitine 53481619 HMDB0013128 N/A CCCCC(=O)O[C@@H](CC(=O)[O-])C[N+](C)(C)C 

α-N-Phenylacetyl-L-glutamine 92258 HMDB0006344 C04148 C1=CC=C(C=C1)CC(=O)N[C@@H](CCC(=O)N)C(=O)O 

γ-Butyrobetaine 725 HMDB0006831 C01181 C[N+](C)(C)CCCC(=O)[O-] 
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Fig. 5.6 Demonstration of peak identification of the adduct [M-H]- of succinyladenosine 

compared with its reference standard. 
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Fig. 5.7 Validation process of potential candidates in all stages of CKD in discovery set using 

validation set 
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Table 5.9 Metabolites that had significant fold changes in different stages of MDRD GFR 

with respect to the normal groups in both discovery and validation sets.  

 Fold change P value 

Stage 1a vs normal control Discovery 

set 

Validation 

set 

Discovery 

set 

Validation 

set 

Hydroxybutyrylcarnitine 4.66 2.33 0.0095 0.0067 

D-Glucose 1.82 2.19 1.63E-08 0.0001 

Stearoylcarnitine 1.44 1.66 0.0064 0.0099 

2-Hydroxybutyric acid 1.38 2.20 0.0014 3.72E-07 

Cortisol 1.35 1.79 0.0189 0.0003 

L-Leucine 1.26 1.37 0.0039 0.0291 

γ-Butyrobetaine -1.28 -1.20 0.0015 0.0403 

L-Glutamine -1.56 -1.35 1.06E-10 0.0025 

1,5-Anhydro-D-glucitol -26.5 -17.75 1.68E-11 0.0005 

          

Stage 1b vs normal control         

Hydroxybutyrylcarnitine 3.91 1.62 0.0015 0.0032 

Ratio of glutamic acid to glutamine 2.28 1.43 7.80E-07 0.0294 

L-Leucine 1.39 1.54 2.11E-05 0.0002 

D-Glucose 1.32 1.65 2.73E-05 0.0001 

2-Hydroxybutyric acid 1.17 1.87 0.0371 5.83E-06 

L-Glutamine -1.25 -1.19 0.0001 0.0031 

Ratio of glutamine to glutamic acid -2.28 -1.43 7.80E-07 0.0294 

1,5-Anhydro-D-glucitol -7.88 -7.18 4.93E-06 8.40E-06 

          

Stage 2 vs normal control         

Hydroxybutyrylcarnitine 5.29 1.78 4.46E-05 0.0028 

Arabinose isomer 2.40 1.70 8.83E-11 0.0006 

2-(α-D-Mannopyranosyl)-L-tryptophan 2.08 1.43 1.46E-07 0.0001 

2-[3-(sulfooxy)phenyl]acetic acid 1.86 2.39 0.0047 0.0011 

4-Acetamidobutanoic acid 1.61 1.58 0.00010 0.0010 

Succinyladenosine 1.55 1.35 2.29E-07 0.0107 

D-Glucose 1.41 1.24 9.69E-07 0.0325 

LysoPE(18:1(11Z)/0:0) 1.38 1.43 0.0004 0.0116 

L,L-TMAP isomer 1.36 1.52 2.42E-05 0.0033 

Succinylcarnitine 1.35 1.73 4.48E-05 0.0118 

Creatinine 1.33 1.33 2.59E-06 0.0161 

5-Methylthio-D-ribose 1.32 1.66 0.0010 0.0019 

L-Leucine 1.28 1.37 0.0005 0.0053 

L,L-TMAP 1.27 1.40 0.0003 0.0029 

Pseudouridine 1.23 1.52 3.02E-07 0.0001 

Ratio of pseudouridine to uridine 1.18 1.38 0.001 0.0063 

Sulfotyrosine 1.15 1.28 0.0206 0.0189 

Ratio of kynurenine to tryptophan 1.15 1.36 0.0214 0.0081 

1,5-Anhydro-D-glucitol -8.97 -2.26 1.25E-11 0.0197 

          

Stage 3 vs normal control         

2-[3-(sulfooxy)phenyl]acetic acid 7.86 6.15 9.99E-10 1.71E-05 

Hydroxybutyrylcarnitine 5.79 2.50 0.0002 1.43E-06 

2-(α-D-Mannopyranosyl)-L-tryptophan 4.23 1.83 4.46E-14 1.96E-06 

O-Adipoylcarnitine 4.22 5.53 2.39E-06 9.12E-07 



 

186 

 

Arabinose isomer 3.8 2.45 7.10E-12 2.54E-06 

N-Acetylcarnosine 3.11 1.93 0.0006 0.0039 

4-Acetamidobutanoic acid 2.82 2.32 6.23E-14 3.99E-07 

Kynurenic acid 2.60 3.05 2.83E-07 0.0001 

5-Methylthio-D-ribose 2.48 2.22 2.97E-10 1.40E-06 

Ratio of kynurenine to tryptophan 2.23 1.62 8.39E-11 0.0001 

Succinyladenosine 2.20 1.95 1.85E-12 4.07E-07 

Ratio of glutamic acid to glutamine 2.18 1.97 4.77E-07 0.0005 

Homovanillic acid sulfate 2.09 3.72 0.0055 1.52E-06 

L,L-TMAP 2.01 1.91 7.94E-10 1.25E-06 

Ratio of kynurenic acid to kynurenine 1.97 1.91 0.0026 0.0029 

2-Octenoylcarnitine 1.95 2.88 0.0019 0.0051 

Sulfotyrosine 1.93 2.00 1.76E-09 7.44E-06 

Urea (mmol/L) 1.91 1.61 5.01E-09 0.0124 

Creatinine 1.88 1.78 4.34E-10 1.28E-05 

L,L-TMAP isomer 1.88 2.09 5.13E-09 1.17E-07 

Indole-3-lactic acid 1.87 1.63 8.09E-07 0.0002 

Pseudouridine 1.84 2.24 4.94E-14 2.77E-07 

Succinylcarnitine 1.79 2.52 2.25E-05 0.0002 

L-Glutamic acid 1.73 1.78 2.31E-06 0.0016 

Ratio of pseudouridine to uridine 1.72 2.15 1.14E-08 2.85E-06 

Valerylcarnitine 1.66 1.46 6.70E-06 0.0261 

Butyrylcarnitine 1.59 1.41 8.46E-06 0.0440 

L-Kynurenine 1.54 1.42 1.98E-07 0.0006 

Cortisol 1.38 1.42 0.02880 0.0206 

Choline 1.37 1.26 5.59E-07 0.0138 

D-Glucose 1.22 1.43 0.0310 4.68E-05 

Uric acid 1.21 1.25 0.0011 0.0177 

L-Leucine 1.20 1.30 0.0007 0.0192 

L-Phenylalanine 1.18 1.28 0.0001 0.0013 

L-Glutamine -1.24 -1.16 1.27E-05 0.0035 

Betaine -1.28 -1.54 0.0048 0.0015 

Ratio of tyrosine to phenylalanine -1.49 -1.34 6.26E-06 0.0004 

Ratio of glutamine to glutamic acid -2.18 -2.05 4.77E-07 0.0005 

1,5-Anhydro-D-glucitol -5.47 -2.88 3.22E-07 0.0001 

          

Stage 4 vs normal control         

2-[3-(sulfooxy)phenyl]acetic acid 139.84 267.82 1.96E-16 8.60E-12 

p-Cresol glucuronide 115.02 80.02 6.88E-12 0.0001 

Homovanillic acid sulfate 36.66 73.94 1.50E-11 1.04E-08 

O-Adipoylcarnitine 21.46 43.80 2.62E-13 1.29E-08 

Arabinose isomer 20.08 24.29 7.28E-11 3.51E-08 

L-β-aspartyl-L-leucine 14.67 8.44 2.42E-13 3.26E-06 

Kynurenic acid 14.29 57.82 2.90E-11 6.14E-08 

2-(α-D-Mannopyranosyl)-L-tryptophan 14.06 10.87 2.47E-16 5.27E-08 

N-Acetylcarnosine 11.41 10.69 1.14E-11 3.14E-06 

2-Hydroxyethanesulfonate 11.33 12.88 8.50E-12 1.00E-07 

α-N-Phenylacetyl-L-glutamine 11.05 31.16 1.92E-11 2.83E-07 

5-Methylthio-D-ribose 9.94 12.06 8.00E-18 3.92E-10 

4-Acetamidobutanoic acid 9.88 36.26 5.32E-11 1.76E-09 

Indoxyl sulfate 9.48 21.24 2.71E-10 3.22E-08 

Succinyladenosine 9.13 10.67 9.46E-14 1.85E-09 

Hydroxybutyrylcarnitine 9.07 4.50 0.0001 0.0002 

p-Cresol sulfate 8.61 11.55 2.92E-06 3.41E-05 
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Sulfotyrosine 7.60 8.34 7.50E-12 1.02E-11 

Ratio of kynurenic acid to kynurenine 7.31 20.32 2.25E-08 1.55E-07 

L,L-TMAP 7.29 12.58 2.44E-12 1.92E-09 

Ratio of kynurenine to tryptophan 6.67 8.65 1.84E-11 2.37E-06 

Ratio of pseudouridine to uridine 6.64 12.07 7.51E-13 7.23E-12 

Phenol sulfate 6.50 10.97 1.15E-07 1.07E-07 

Pyrocatechol sulfate 6.32 4.90 5.31E-10 0.0207 

Pseudouridine 5.17 12.36 2.11E-13 1.96E-11 

L,L-TMAP isomer 5.16 11.91 3.41E-12 1.77E-09 

Creatinine 4.39 9.01 1.03E-11 7.46E-10 

Urea 4.05 3.44 2.73E-14 7.18E-09 

Hippuric acid 3.38 6.08 0.0002 0.0118 

Succinylcarnitine 3.22 5.52 7.75E-15 3.71E-07 

Butyrylcarnitine 3.06 3.59 1.48E-10 0.0005 

Indole-3-lactic acid 2.89 2.95 1.04E-09 0.0001 

2-Octenoylcarnitine 2.49 4.44 1.21E-06 0.0003 

L-Citrulline 2.30 2.43 1.25E-08 1.28E-06 

Ratio of L-citrulline to arginine 2.12 2.35 0.0001 0.0002 

L-Kynurenine 1.83 2.26 3.47E-10 8.51E-07 

Valerylcarnitine 1.81 2.26 0.0002 0.0022 

3-Indoleacetic acid 1.79 2.64 0.0003 9.34E-06 

Ratio of glutamic acid to glutamine 1.70 1.98 5.21E-06 0.0182 

L-Glutamic acid 1.63 1.62 1.59E-05 0.0438 

Choline 1.57 1.31 2.89E-08 0.0006 

9-Decenoylcarnitine 1.47 2.04 0.0059 0.0021 

Citric acid 1.30 1.86 0.0027 1.22E-05 

L-Phenylalanine 1.23 1.10 1.73E-06 0.0460 

Uric acid 1.18 1.37 0.0364 0.0087 

Cortisol 1.13 2.00 0.0330 4.35E-05 

L-Glutamine -1.17 -1.17 0.0146 0.0054 

Betaine -1.32 -1.78 0.0122 0.0063 

L-Tyrosine -1.59 -1.58 1.86E-09 0.0002 

Ratio of glutamine to glutamic acid -1.7 -2.05 5.21E-06 0.0182 

L-Carnitine -2.2 -1.66 2.69E-08 0.0068 

Ratio of tyrosine to phenylalanine -2.29 -1.97 2.38E-12 7.91E-06 

L-Tryptophan -2.93 -5.26 4.66E-08 0.0001 

Bilirubin -3.49 -2.42 1.95E-09 0.0235 

1,5-Anhydro-D-glucitol -4.88 -7.15 7.64E-08 1.40E-06 

Fold change is the ratio of median at different stages over those at Stage 0. Negative sign indicates 

downward trend. P value is the Student’s t-test of log10-transformed data to minimize the variance. 
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Table 5.10 Metabolites that had significant fold changes between consecutive stages of 

MDRD GFR in discovery and validation sets.  

 
Fold change p value 

Stage 1b vs Stage 1a Discovery 

set 

Validation 

set 

Discovery 

set 

Validation 

set 

L,L-TMAP 1.28 1.36 0.0005 0.0462 

Creatinine 1.27 1.24 0.0349 0.0261 

γ-Butyrobetaine 1.25 1.17 0.0012 0.0303 

L,L-TMAP isomer 1.21 1.23 0.0030 0.0413 

Sulfotyrosine 1.21 1.43 0.0096 0.0138 

Succinyladenosine 1.17 1.14 0.0095 0.0066      

Stage 2 vs Stage 1b 
    

2-(α-D-Mannopyranosyl)-L-tryptophan 1.70 1.50 0.0001 0.0003 

5-Methylthio-D-ribose 1.49 1.52 0.0003 0.0019 

4-Acetamidobutanoic acid 1.42 1.59 0.0021 0.0008 

Succinyladenosine 1.34 1.43 0.0089 0.0047 

Creatinine 1.27 1.31 0.0005 0.0294 

Sulfotyrosine 1.21 1.28 0.0111 0.0308 

L,L-TMAP 1.21 1.31 0.0005 0.0150 

Ratio of pseudouridine to uridine 1.21 1.23 0.0384 0.0140 

Pseudouridine 1.19 1.35 4.33E-05 0.0002  
  

  
  

Stage 3 vs Stage 2 
    

O-Adipoylcarnitine 3.62 3.33 1.59E-05 0.0124 

2-(α-D-Mannopyranosyl)-L-tryptophan 2.04 1.28 1.28E-08 0.0194 

5-Methylthio-D-ribose 1.88 1.34 2.34E-07 0.0144 

4-Acetamidobutanoic acid 1.75 1.47 7.44E-07 0.0025 

L-Kynurenine 1.68 1.11 4.61E-07 0.0475 

Indole-3-lactic acid 1.68 1.27 2.43E-07 0.0407 

Sulfotyrosine 1.67 1.57 5.04E-07 0.0019 

Arabinose isomer 1.59 1.44 0.0151 0.0393 

L,L-TMAP 1.58 1.36 1.29E-06 0.0062 

Pseudouridine 1.49 1.47 2.99E-09 0.0027 

Ratio of pseudouridine to uridine 1.46 1.56 0.0002 0.0157 

Creatinine 1.42 1.34 3.60E-05 0.0122 

Succinyladenosine 1.42 1.45 4.72E-06 0.0063 

L,L-TMAP isomer 1.38 1.38 0.0001 0.0047 

Dehydroepiandrosterone sulfate -1.27 -1.38 0.0401 0.0333      

Stage 4 vs Stage 3 
    

2-[3-(sulfooxy)phenyl]acetic acid 17.78 43.54 1.19E-09 1.69E-09 

Homovanillic acid sulfate 17.54 19.86 1.74E-07 2.05E-06 

p-Cresol glucuronide 6.43 53.75 1.39E-05 0.0003 

Indoxyl sulfate 5.62 15.23 2.69E-07 2.28E-08 

Kynurenic acid 5.49 18.97 3.35E-07 4.84E-06 

Arabinose isomer 5.28 9.91 9.51E-07 2.10E-07 

O-Adipoylcarnitine 5.08 7.93 3.04E-06 4.49E-06 

Phenol sulfate 4.69 4.22 1.10E-06 1.16E-05 

2-Hydroxyethanesulfonate 4.42 7.68 4.55E-08 2.54E-07 

Succinyladenosine 4.15 5.46 2.97E-10 8.56E-12 
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5-Methylthio-D-ribose 4.01 5.43 2.30E-11 8.06E-08 

α-N-Phenylacetyl-L-glutamine 3.97 11.58 1.44E-08 2.97E-06 

Sulfotyrosine 3.94 4.17 1.40E-08 3.22E-09 

N-Acetylcarnosine 3.67 5.53 1.00E-06 0.0002 

L,L-TMAP 3.63 6.59 1.21E-08 2.78E-07 

L-β-aspartyl-L-leucine 3.52 5.28 3.91E-08 2.52E-05 

4-Acetamidobutanoic acid 3.51 15.61 3.50E-07 7.30E-08 

2-(α-D-Mannopyranosyl)-L-tryptophan 3.32 5.94 2.12E-08 2.97E-07 

Pseudouridine 2.81 5.53 1.98E-09 1.84E-09 

L,L-TMAP isomer 2.75 5.71 2.50E-08 2.91E-07 

Pyrocatechol sulfate 2.42 4.26 0.0067 0.0135 

MS-detected creatinine 2.33 5.06 4.73E-08 1.27E-07 

p-Cresol sulfate 2.33 13.03 0.0100 1.49E-05 

Urea 2.12 2.13 1.71E-08 1.21E-06 

Butyrylcarnitine 1.92 2.54 2.39E-05 0.0039 

Hippuric acid 1.91 4.83 0.0184 0.0067 

Succinylcarnitine 1.80 2.19 7.46E-06 0.0002 

3-Hydroxydecanoyl carnitine 1.65 1.95 0.0393 0.0037 

3-Indoleacetic acid 1.38 2.40 0.0051 0.0001 

L-Citrulline 1.25 2.19 0.0038 4.88E-05 

Citric acid 1.21 1.56 0.0365 0.0009 

L-Kynurenine 1.19 1.60 0.0128 0.0004 

Uracil -1.14 -1.27 0.0484 0.0423 

L-Leucine -1.25 -1.31 2.97E-06 0.0172 

L-Tyrosine -1.31 -1.84 4.60E-05 0.0008 

L-Valine -1.47 -1.08 1.51E-07 0.0392 

L-Carnitine -1.98 -1.49 1.04E-06 0.0290 

Bilirubin -1.99 -2.83 0.0003 0.0376 

L-Tryptophan -2.20 -4.43 2.43E-06 0.0001 

Ratio of pseudouridine to uridine 3.86 5.61 1.86E-09 4.68E-09 

Ratio of kynurenic acid to kynurenine 3.70 10.62 3.70E-06 3.61E-06 

Ratio of kynurenine to tryptophan 2.99 5.34 1.80E-07 1.74E-05 

Ratio of tyrosine to phenylalanine -1.54 -1.47 0.0004 0.0178 

Fold change is the ratio of median at the later stage over the previous stage. Negative sign indicates 

downward trend. p value is the Student’s t-test of log10-transformed data to minimize the variance. 
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Table 5.11 Spearman rank correlation of metabolites with MDRD GFR at different ranges 

with discovery and validation sets (absolute Spearman R > 0.40). 

Metabolites associated to MDRD GFR Stage 0-4  Stage 1-4  Stage 1-2 (GFR > = 60) 

Discovery  

(n=128) 

Validation  

(n=66) 

Discovery  

(n=108) 

Validation  

(n=56) 

Discovery  

(n=69) 

Validation 

(n=30) 

Ratio of tyrosine to phenylalanine 0.6981 0.7673 0.7243 0.7849 0.4603 0.4198 

L-Tryptophan 0.5866 0.4874 0.6230 0.5493 0.1238 -0.0625 

L-Tyrosine 0.5503 0.5576 0.6020 0.6455 0.2420 0.2943 

L-Carnitine 0.5132 0.4390 0.5393 0.4403 0.1801 0.2472 

Bilirubin 0.4928 0.5255 0.5562 0.6417 -0.0285 0.4652 

γ-Butyrobetaine -0.3502 -0.4051 -0.4073 -0.4200 -0.4149 -0.3789 

3-Indoleacetic acid -0.3886 -0.4846 -0.4303 -0.5126 0.0665 -0.1693 

3-Hydroxydecanoyl carnitine -0.3907 -0.5761 -0.4998 -0.5889 -0.3837 -0.2254 

Valerylcarnitine -0.4040 -0.4385 -0.4265 -0.4062 -0.1181 -0.1733 

9-Decenoylcarnitine -0.4191 -0.4195 -0.4965 -0.4292 -0.2803 -0.1168 

p-Cresol sulfate -0.4741 -0.4007 -0.5342 -0.4733 0.1000 0.0278 

Phenol sulfate -0.5065 -0.6050 -0.5619 -0.6265 -0.2028 -0.2774 

Homovanillic acid sulfate -0.5241 -0.8027 -0.5923 -0.8144 0.1074 -0.4300 

p-Cresol glucuronide -0.5253 -0.5068 -0.5708 -0.5697 0.1694 -0.0968 

L-Citrulline -0.5498 -0.5760 -0.6201 -0.6898 -0.1090 -0.0407 

Ratio of kynurenic acid to kynurenine -0.5650 -0.6602 -0.6263 -0.7037 -0.1099 -0.1631 

Indoxyl sulfate -0.5656 -0.6264 -0.6418 -0.6804 -0.0882 -0.4376 

α-N-Phenylacetyl-L-glutamine -0.5675 -0.5627 -0.6374 -0.6221 0.0031 -0.0407 

N-Acetylcarnosine -0.5839 -0.6347 -0.6304 -0.6384 -0.1987 -0.3540 

Urinary β2-microglobulin (mg/L) -0.6285 -0.7140 -0.6714 -0.7571 -0.2854 -0.1552 

Butyrylcarnitine -0.6353 -0.6309 -0.6996 -0.6592 -0.2030 -0.3117 

L-β-Aspartyl-L-leucine -0.6773 -0.7862 -0.7055 -0.8608 -0.3486 -0.7095 

Arabinose isomer -0.6815 -0.7660 -0.7161 -0.7932 -0.3068 -0.3090 

Indole-3-lactic acid -0.6894 -0.6941 -0.7438 -0.6713 -0.3363 -0.4478 

Serum urea (mmol/L) -0.6974 -0.7014 -0.7632 -0.7481 -0.2001 -0.3596 

L-Kynurenine -0.7096 -0.8325 -0.7580 -0.8486 -0.3547 -0.6583 

Kynurenic acid -0.7208 -0.8394 -0.7852 -0.8756 -0.3101 -0.6329 

2-[3-(sulfooxy)phenyl]acetic acid  -0.7579 -0.8080 -0.8211 -0.8225 -0.3793 -0.4149 

O-Adipoylcarnitine -0.7663 -0.8150 -0.8233 -0.8513 -0.4774 -0.4643 

Ratio of kynurenine to tryptophan -0.7711 -0.8004 -0.8236 -0.8342 -0.4089 -0.5186 

4-Acetamidobutanoic acid -0.7810 -0.8614 -0.8299 -0.8986 -0.4113 -0.5350 

Succinylcarnitine -0.8077 -0.6536 -0.8369 -0.6622 -0.6178 0.0581 

2-Hydroxyethanesulfonate -0.8136 -0.7400 -0.8710 -0.8170 -0.6043 -0.5310 

Ratio of pseudouridine to uridine -0.8137 -0.8836 -0.8601 -0.9063 -0.6251 -0.5591 

Sulfotyrosine -0.8200 -0.8874 -0.8719 -0.9226 -0.6038 -0.7152 

Succinyladenosine -0.8546 -0.9262 -0.8986 -0.9321 -0.7060 -0.8176 

L,L-TMAP isomer -0.8637 -0.8695 -0.9118 -0.9113 -0.7314 -0.6392 

L,L-TMAP -0.8659 -0.9013 -0.9206 -0.9222 -0.7341 -0.7393 

Creatinine -0.8692 -0.9124 -0.9004 -0.9161 -0.7124 -0.7393 

5-Methylthio-D-ribose -0.8731 -0.8979 -0.9110 -0.9171 -0.6975 -0.6574 

2-(α-D-Mannopyranosyl)-L-tryptophan -0.8753 -0.9276 -0.9180 -0.9353 -0.7326 -0.8469 

Pseudouridine -0.8962 -0.9389 -0.9394 -0.9530 -0.7889 -0.7918 

Serum creatinine (mg/dL) -0.9308 -0.9500 -0.9546 -0.9592 -0.8446 -0.8546 

Serum homocysteine (μmol/L)  -0.6371  -0.6768  -0.3877 

Serum cystatin C (mg/L) - -0.9126 - -0.9400 - -0.8016 
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 Network of metabolites 

In this study, metabolomics network diagrams were constructed using 72 metabolites (those had 

Pubmed ID listed in Table 5.8) based on their metabolic pathway and chemical similarity. They 

showed a gradual elevation of up-regulated metabolite numbers from 6 metabolites at Stage 1a up 

to 40 metabolites at Stage 4 with increasing fold changes with the severity of kidney function (Fig. 

5.8). The serum levels of metabolites in the later stages [Stages 3 (31 metabolites) and 4 (47 

metabolites)] were more changed than those in the early Stages 1a (9 metabolites), 1b  (6 

metabolites) and 2 (15 metabolites) when all were compared with the normal group. The 

metabolites that were structurally similar or KEGG-reaction pairs were clustered together and 

could be categorized into six classes: sulfate metabolites, amino acids and organic acids, 

acylcarnitine, purine derivatives, monosaccharides and their derivatives, and steroids. Among the 

altered metabolites, 1,5-anhydro-D-glucitol was markedly downregulated and 

hydroxybutrylcarnitine was upregulated at each stage of CKD compared with the normal group.  

The pathway enrichment analysis using Metaboanalyst with HMDB ID identified six amino-acid 

related metabolic pathways, namely tryptophan, phenylalanine, nitrogen, arginine and proline 

metabolisms, aminoacyl-tRNA biosynthesis and tryptophan, phenylalanine and tyrosine 

biosynthesis (FDR < 0.05) (Fig. 5.9). Among them, eight significantly changed metabolites 

matched the best with tryptophan metabolism (tryptophan, 3-indoleacetic acid, kynurenine and 

kynurenic acid) and phenylalanine metabolism (phenylalanine, tyrosine, hippuric acid and α-N-

phenylacetyl-L-glutamine) (pathway impact values from the pathway topology analysis > 0.1) 

(Fig. 5.9A-Fig. 5.9B). In comparison with the normal subjects, the kynurenine to tryptophan ratio 

[estimation of activity of indoleamine 2,3-dioxygenase (IDO)] (Debnath et al. 2017)] and 

kynurenic acid to kynurenine ratio [(estimation of activity of kynurenine aminotransferase (KAT) 
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(Myint et al. 2007; Birner et al. 2017)] were also increased in Stage 4, which might be related to 

the increase in the above metabolites in the tryptophan metabolism (Fig. 5.9C). The reduction of 

tyrosine to phenylalanine ratio (estimation of activity of phenylalanine hydroylase) supported the 

elevation in hippuric acid and N-phenylacetyl-L-glutamine sourced from phenylalanine in the 

phenylalanine metabolism (Fig. 5.9D). These altered metabolites, excluding phenylalanine and 

hippuric acid and the three ratios were also correlated with GFR (Absolute Spearman R = 0.43-

0.88 among diabetic patients) (Table 5.11), indicating the alteration of these pathways occurred 

during the development of CKD. 
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Fig. 5.8 Metabolomics network diagrams of 72 metabolites for visualization of their 

significant change in each stage of CKD compared with normal subjects. 

Red circle: upregulated; green circle: metabolites downregulated; grey circle denotes metabolites 

without insignificant change or inconsistent in both datasets. Circle sizes were proportional to the 

absolute value of fold change with respect to the normal group. 
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Fig. 5.9 Results of pathway analysis of all significantly altered metabolites with HMDB ID.  

(A) Metabolome view. (B) Table of the matched pathway with p values from pathway enrichment 

analysis and pathway impact values from the pathway topology analysis using MetaboAnalyst and 

KEGG database (Hits ≥ 2). (C-D) Simplified pathways of tryptophan metabolism and 

phenylalanine metabolism with the change trends of metabolites and their ratios at Stage 4 

compared with the normal group. A Dashed arrow indicates the skipped pathway. ^, not detected. 
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 Significantly changed metabolites at early stages: 1,5-anhydro-D-glucitol. 

Compared with the normal group, diabetic patients at Stage 1a had reduced levels of 1,5-anhydro-

D-glucitol, γ-butyrobetaine and L-glutamine, and increased levels of hydroxybutyrylcarnitine, D-

glucose, stearoylcarnitine, 2-hydroxybutyric acid, cortisol and L-leucine.  

Only 1,5-anhydro-D-glucitol were markedly reduced in each stage (fold change = -26.5 to -2.60 

against the normal individuals, Table 5.9). The contents of two clinical glycemic markers, FBG 

and serum hemoglobin A1c, were highly and inversely correlated with the serum 1,5-anhydro-D-

glucitol level within each stage (Stages 1-3) (Pearson R with hemoglobin A1c = -0.95 to -0.64; 

Pearson R with FBG = -0.87 to -0.42) (Table 5.12). This was more noticeable in hemoglobin A1c 

(Linear regression with R2 = 0.63-0.71 among Stage 1-3) (Fig. 5.10). The positive linear 

relationship of serum 1,5-anhydro-D-glucitol level with FBG was the strongest in Stage 1a 

(Pearson R with FBG = -0.87 to -0.72), followed by Stage 1b (Pearson R with FBG = -0.77 to -

0.65).  On the contrary, there were generally no association between the two clinical glycemic 

markers and MDRD GFR (p > 0.05, Table 5.12). 
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Fig. 5.10 Linear regression of UPLC-MS detected log[1,5-anhydro-D-glucitol] against hemoglobin A1c in (A) Stages 0-4 and (B) 

Stages 1-3 of CKD. 
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Table 5.12 Correlation between UPLC-MS detected 1,5-anhydro-D-glucitol, hemoglobin A1c, FBG, MS-detected D-glucose and MDRD 

GFR in each stage. 

Correlation 

Normal Stage 1a Stage 1b Stage 2 Stage 3 Stage 4 

Discovery Validation Discovery Validation Discovery Validation Discovery Validation Discovery Validation Discovery Validation 

n = 20 n =10 

HbA1c:  

n = 18 
n = 10 

HbA1c: 

n = 17 
n = 10 

HbA1c:  

n = 29 
n = 10 

HbA1c: 

n = 17 
n = 15 

HbA1c: 

n = 19 
n = 11 

FBG: 

n = 20 

FBG: 

n = 19 

FBG: 

n = 30 

FBG: 

n = 19 

FBG: 

n = 20 

log10 (1,5-Anhydro-D-glucitol) 

FBG^ 0.184 ns 0.311 ns -0.723 -0.865 -0.652 -0.766 -0.422 -0.650 -0.721 -0.585 0.225 ns -0.603 

Hemoglobin A1c^ - 0.534 ns -0.821 -0.831 -0.874 -0.835 -0.639 -0.954 -0.839 -0.827 -0.445 ns -0.669 

MDRD GFR^ 0.141 ns 0.312 ns -0.235 ns -0.443 ns 0.420 ns -0.448 ns -0.043 ns 0.075 ns -0.242 ns 0.052 ns 0.217 ns 0.587 ns 

Hemoglobin A1c 

MDRD GFR* - -0.308 ns 0.366 ns 0.663 -0.367 ns 0.673 -0.014 ns -0.172 ns 0.185 ns 0.117 ns 0.181 ns -0.132 ns 

FBG (mmol/L) 

MDRD GFR* -0.154 ns 0.219 ns -0.036 ns 0.588 ns -0.326 ns 0.527 ns -0.056 ns -0.273 ns 0.160 ns 0.236 ns 0.627 < 0.001 ns 

 

ns , no statistical significance (p > 0.05). 

^ Pearson correlation. 

*Spearman rank correlation 
HbA1c, hemoglobin A1c. 
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 Potential uremic retention solutes that were highly correlated to MDRD GFR 

Over 30 metabolites and 4 ratios of metabolites had high correlation with MRDR GFR range 

in Stages 0-4 (including diabetic patients and normal subjects) and Stages 1-4 (only diabetic 

patients: Spearman R > 0.4, Table 5.11). Among them, 28 MS-detected metabolites were 

uremic retention solutes in the serum samples and two were peptide uremic solutes that were 

elevated with the stages of CKD. According to their protein-binding affinity, molecular size 

and publication history (Vanholder, Smet, and Lameire 2004; Neirynck et al. 2012), they were 

classified into five classes: (1) five low-molecular-weight (≤ 300 Da), water-soluble and 

protein-unbound uremic solutes, (2) nine low-molecular-weight and protein-bound uremic 

solutes, (3) two middle-molecular-weight (300-15k Da) peptides, (4) nine uremic solutes that 

were reported but not classified, and (5) five uremic solutes that were not reported and could 

not be identified with standards. Most of their serum levels were much higher at Stage 4 than 

those at other stages (Tables 5.9-5.10), indicating a great loss of kidney clearance function. 

Their classification and correlation to MDRD GFR were summarized in Table 5.13. 

Using a Spearman rank coefficient cutoff of 0.8 for diabetic patients and 0.7 for those at early 

stages to select biomarkers altered along with MDRD GFR, four serum metabolites by UPLC-

Orbitrap-MS were significantly associated with the severity of kidney functions. The four 

metabolites were succinyladenosine ([M-H]-  = 382.1005 at 2.89 min), pseudouridne ([M-H]-  

= 243.0622 at 0.93 min), 2-(α-D-Mannopyranosyl)-L-tryptophan ([M-H]-  = 367.1497 at 2.21 

min) and L,L-TMAP ([M+H]+ = 229.1546 at 1.06 min). They were highly correlated with 

MDRD GFR (Spearman R = -0.95 to - 0.90) and were also correlated to each other (Spearman 

R =0.86 - 0.96) among Stages 1a - 4 (Fig. 5.11). Furthermore, similar high associations were 

observed in partial correlation with MDRD GFR (partial correlation R = -0.95 to -0.84) after 

controlling gender, age, SBP and UACR using log10-transformed data (Table 5.14). Their 
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correlations remained high in early Stages 1-2 (Spearman R = -0.85 to -0.71, partial correlation 

R = -0.76 to -0.53).  

Correlation analyses with other clinical factors showed that the four selected metabolites were 

also associated with other kidney function related markers (Fig. 5.11 and Table 5.15). They 

were increased with the rise in UACR (Spearman R = 0.68-0.80), urinary β2-microglobulin 

(Spearman R = 0.67-0.79), renal resistive index (Spearman R = 0.52 to 0.56) and the decline in 

the total BSA-related renal volume (Spearman R = -0.62 to -0.60) among diabetic patients. 

Importantly, most of their correlation performances were better than that of serum creatinine 

and only succinyladenosine had all of these correlation coefficients higher than that of serum 

cystatin C.   
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Table 5.13 Classification of 28 uremic solutes, 4 ratios and non-uremic solutes found in this studies and Spearman rank correlation to 

MDRD GFR at all, diabetic and early stages of CKD. 

Uremic solutes Metabolites associated to MDRD GFR Stage 0-4 Stage 1-4 Stage 1- 2 

Discovery Validation Discovery Validation Discovery Validation 

(n=128) (n=66) (n=108) (n=56) (n=69) (n=30) 

Middle-molecular-weight 

peptides 

Serum cystatin C (mg/L) - -0.913 - -0.940 - -0.802 

Urinary β2-microglobulin (mg/L) -0.629 -0.714 -0.671 -0.757 -0.285 -0.155 

Low-molecular-weight 

protein-unbound 

molecules 

Clinically measured serum creatinine 

(mg/dL) 
-0.931 -0.950 -0.955 -0.959 -0.845 -0.855 

Pseudouridine -0.896 -0.939 -0.939 -0.953 -0.789 -0.792 

MS-detected creatinine -0.869 -0.912 -0.900 -0.916 -0.712 -0.739 

Serum urea (mmol/L) -0.697 -0.701 -0.763 -0.748 -0.200 -0.360 

α-N-Phenylacetyl-L-glutamine -0.568 -0.563 -0.637 -0.622 0.003 -0.041 

Low-molecular-weight 

and protein-bound 

molecules 

Kynurenic acid -0.721 -0.839 -0.785 -0.876 -0.310 -0.633 

L-Kynurenine -0.710 -0.833 -0.758 -0.849 -0.355 -0.658 

Indole-3-lactic acid -0.689 -0.694 -0.744 -0.671 -0.336 -0.448 

Serum homocysteine (μmol/L) - -0.637 - -0.677 - -0.388 

Indoxyl sulfate -0.566 -0.626 -0.642 -0.680 -0.088 -0.438 

p-Cresol glucuronide -0.525 -0.507 -0.571 -0.570 0.169 -0.097 

Phenol sulfate -0.507 -0.605 -0.562 -0.627 -0.203 -0.277 

p-Cresol sulfate -0.474 -0.401 -0.534 -0.473 0.100 0.028 

3-Indoleacetic acid -0.389 -0.485 -0.430 -0.513 0.067 -0.169 

Other molecules that 

were reported but not 

classified 

2-(α-D-Mannopyranosyl)-L-tryptophan -0.875 -0.928 -0.918 -0.935 -0.733 -0.847 

L,L-TMAP -0.866 -0.901 -0.921 -0.922 -0.734 -0.739 

Succinyladenosine -0.855 -0.926 -0.899 -0.932 -0.706 -0.818 

Sulfotyrosine -0.820 -0.887 -0.872 -0.923 -0.604 -0.715 

2-Hydroxyethanesulfonate -0.814 -0.740 -0.871 -0.817 -0.604 -0.531 

Succinylcarnitine -0.808 -0.654 -0.837 -0.662 -0.618 0.058 

4-Acetamidobutanoic acid -0.781 -0.861 -0.830 -0.899 -0.411 -0.535 

O-Adipoylcarnitine -0.766 -0.815 -0.823 -0.851 -0.477 -0.464 

Butyrylcarnitine -0.635 -0.631 -0.700 -0.659 -0.203 -0.312 

N-Acetylcarnosine -0.584 -0.635 -0.630 -0.638 -0.199 -0.354 

L-Citrulline -0.550 -0.576 -0.620 -0.690 -0.109 -0.041 

Homovanillic acid sulfate -0.524 -0.803 -0.592 -0.814 0.107 -0.430 



 

201 

 

Other molecules that 

were not reported and 

putatively identified 

5-Methylthio-D-ribose -0.873 -0.898 -0.911 -0.917 -0.698 -0.657 

L,L-TMAP isomer -0.864 -0.870 -0.912 -0.911 -0.731 -0.639 

2-[3-(sulfooxy)phenyl]acetic acid  -0.758 -0.808 -0.821 -0.823 -0.379 -0.415 

Arabinose isomer -0.682 -0.766 -0.716 -0.793 -0.307 -0.309 

L-β-Aspartyl-L-leucine -0.677 -0.786 -0.706 -0.861 -0.349 -0.710 

Non-uremic solutes and 

ratios of metabolites 

Ratio of pseudouridine to uridine -0.814 -0.884 -0.860 -0.906 -0.625 -0.559 

Ratio of kynurenine to tryptophan -0.771 -0.800 -0.824 -0.834 -0.409 -0.519 

Ratio of kynurenic acid to kynurenine -0.565 -0.660 -0.626 -0.704 -0.110 -0.163 

L-Tyrosine 0.550 0.558 0.602 0.646 0.242 0.294 

L-Tryptophan 0.587 0.487 0.623 0.549 0.124 -0.063 

Ratio of tyrosine to phenylalanine 0.698 0.767 0.724 0.785 0.460 0.420 
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Fig. 5.11 Correlogram of Spearman rank correlation coefficient of biomarkers with clinical markers and GFRs calculated by different 

equations in validation sets at Stages 1-4. 
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Table 5.14 Correlation of clinical markers and biomarkers with MDRD GFR at different 

ranges of stages with and without controlling confounding factors. 

Metabolites 

Stage 0-4 Stage 1-4 Stage 1-2 

Discovery Validation Discovery Validation Discovery Validation 

(n = 128) (n = 66) (n = 108) (n = 56) (n = 69) (n = 30) 

Spearman Rank Correlation with MDRD GFR 

Succinyladenosine -0.855 -0.926 -0.899 -0.932 -0.706 -0.818 

L,L-TMAP -0.866 -0.901 -0.921 -0.922 -0.734 -0.739 

MS-detected creatinine -0.869 -0.912 -0.900 -0.916 -0.712 -0.739 

2-(α-D-Mannopyranosyl)-L-

tryptophan 
-0.875 -0.928 -0.918 -0.935 -0.733 -0.847 

Pseudouridine -0.896 -0.939 -0.939 -0.953 -0.789 -0.792 

Clinically measured serum 

creatinine 
-0.931 -0.950 -0.955 -0.959 -0.845 -0.855 

Serum cystatin C - -0.913 - -0.940 - -0.802 

Pearson Correlation with log [MDRD GFR] 

log [2-(α-D-Mannopyranosyl)-L-

tryptophan] 
-0.921 -0.976 -0.932 -0.975 -0.770 -0.819 

log [Succinyladenosine] -0.940 -0.957 -0.944 -0.954 -0.639 -0.697 

log [MS-detected creatinine] -0.955 -0.975 -0.957 -0.977 -0.715 -0.759 

log [L,L-TMAP] -0.959 -0.973 -0.965 -0.975 -0.739 -0.787 

log [Pseudouridine] -0.972 -0.976 -0.976 -0.976 -0.796 -0.793 

log [Serum cystatin C ] N/A -0.972 N/A -0.973 N/A -0.851 

log [Clinically measured serum 

creatinine] 
-0.983 -0.988 -0.984 -0.989 -0.869 -0.879 

Partial correlation of metabolites with log [MDRD GFR] after controlling gender, age, SBP and log [UACR] 

log [2-(α-D-Mannopyranosyl)-L-

tryptophan] 
-0.823 -0.956 -0.844 -0.958 -0.701 -0.755 

log [Succinyladenosine] -0.867 -0.898 -0.874 -0.898 -0.533 -0.571 

log [L,L-TMAP] -0.924 -0.950 -0.930 -0.953 -0.685 -0.698 

log [Pseudouridine] -0.941 -0.949 -0.947 -0.952 -0.739 -0.709 

log [MS-detected creatinine] -0.957 -0.975 -0.962 -0.976 -0.850 -0.847 

log [Serum cystatin C ] N/A -0.949 N/A -0.953 N/A -0.831 

log [Clinically measured serum 

creatinine] 
-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 
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Table 5.15 Spearman rank correlation of selected four metabolites to UACR, urinary β2-

microglobulin, total BSA-related renal volume and renal resistive index among diabetic 

patients at Stage 1-4 in the discovery and validation sets.  

 CKD risk factors 
UACR 

Urinary β2-

microglobulin 

Total BSA-

related renal 

volume 

Renal 

resistive 

index 

Discovery Validation Discovery Validation Validation Validation  
 (n=108) (n=55) (n=108) (n=55) (n=48) (n=48) 

2-(α-D-Mannopyranosyl)-

L-tryptophan 
0.801 0.746 0.664 0.731 -0.604 0.586 

Succinyladenosine 0.795 0.690 0.635 0.780 -0.615 0.556 

Pseudouridine 0.794 0.741 0.690 0.793 -0.599 0.588 

L,L-TMAP 0.743 0.676 0.670 0.681 -0.596 0.517 

Serum creatinine (mg/dL) 0.737 0.667 0.658 0.734 -0.571 0.446 

MS-detected creatinine 0.681 0.657 0.667 0.685 -0.473 0.459 

Serum cystatin C (mg/L) - 0.676 - 0.675 -0.614 0.544 
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 Gender differences and linear regression of potential biomarkers along with 

MDRD GFR 

The four biomarkers that had the highest correlation with MDRD GFR:  succinyladenosine, 2-

(α-D-mannopyranosyl)-L-tryptophan, pseudouridine and L,L-TMAP had no gender difference 

after comparison between male and female among all diabetic patients (Mann-Whitney U, p > 

0.07) (Fig. 5.12A). In the opposite, there were significant gender discrepancies in serum 

creatinine and cystatin C (p < 0.05) (Fig. 5.12A). Furthermore, univariate linear regression of 

female and male samples against MDRDGFR showed that the gender discrepancy of clinically 

measured and MS-detected creatinine was more obvious than that of pseudouridine, 

succinyladenosine and 2-(α-D-mannopyranosyl)-L-tryptophan and L,L-TMAP in the sample 

distribution and trendlines (Fig. 5.12B). The four biomarkers’ relative intensity changes along 

with MDRD GFR (slope of the trendlines in linear regression = -1.155 to -0.8328) were more 

sensitive than that of MS-detected creatinine (slopes = -0.7926) (Fig. 5.12B). 

Multivariate linear regression included gender as a covariate to test for the effect of gender in 

the relationship of four biomarkers to log [MDRD GFR]. Only L,L-TMAP showed gender 

significantly contributed to the linear fit (p < 0.05) but its model had a smaller unstandardized 

coefficient (β = 0.0627) than serum creatinine ( β = 0.1584). Gender had no effect in the linear 

relationship of log [pseudouridine], log [succinyladenosine] and log [2-(α-D-mannopyranosyl) 

-L-tryptophan] with log [MDRD GFR].  

These results suggested that the relationships of pseudouridine, succinyladenosine and 2-(α-D-

mannopyranosyl)-L-tryptophan with MDRD GFR are gender-independent. Gender had less 

effect on L,L-TMAP than serum creatinine. 
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Fig. 5.12 (A) Scatter plots in gender difference. (B) Relationship of clinically measured 

markers and MS-detected biomarkers with MDRD GFR. 

p value was calculated by Mann-Whitney U due to non-normal distributed data. Regression 

equations and R2 were determined by the trendline of all diabetic males and females from two 

cohorts. 
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Table 5.16 Univariate and multivariate linear regression analyses of biomarkers with log 

[MDRD GFR] trained with discovery set and tested with validation set among diabetic 

patients 

 log [MDRD GFR] 

Discovery set 

 

Validation 

set 

Unstandardized 

Coefficients (β) 
p value R2 * 

Adjusted 

R2 
RMSE 

 

R2 †  

 Univariate linear regression 

 log [MS-detected 

creatinine] 
-1.1804 p < 0.001 0.9160 - 0.1082 

 
0.9541 

log [pseudouridine] -1.2182 p < 0.001 0.9527 - 0.0812  0.9519 

log [L,L-TMAP] -0.9410 p < 0.001 0.9305 - 0.0985  0.9500 

log [succinyladenosine] -0.9431 p < 0.001 0.8905 - 0.1236  0.9104 

log [2-(α-D-

mannopyranosyl)-L-

tryptophan] 
-0.6691 p < 0.001 0.8688 - 0.1353 

 

0.9496 

 Multivariate linear regression 

Model L1   0.9583 0.9577 0.0765  0.9709 

constant 1.3591 p < 0.001      

log [MS-detected creatinine] -1.2513 p < 0.001      

gender 0.1584 9.76E-18      

Model L2   0.9531 0.9523 0.0812  0.95283 

constant 1.5353 p < 0.001      

log [pseudouridine] -1.2203 p < 0.001      

gender 0.0152 0.3352      

Model L3   0.9375 0.9363 0.0938  0.9569 

constant 1.4681 p < 0.001      

log [L,L-TMAP] -0.9531 p < 0.001      

gender 0.0627 0.0009      

Model L4   0.8908 0.8888 0.1240  0.9116 

constant 1.5852 p < 0.001      

log [succinyladenosine] -0.9446 p < 0.001      

gender 0.0138 0.5662      

Model L5   0.8690 0.8665 0.1358  0.9499 

constant 1.5295 p < 0.001      

log [2-(α-d-

mannopyranosyl)-l-

tryptophan] 

-0.6699 p < 0.001    

 

 

gender 0.0107 0.6834      

Model L6 (enter method)   0.9580 0.9519 0.0480  0.9872 

Constant 1.4315 p < 0.001      

 log [MS-detected 

creatinine] 
-0.6727 p < 0.001      

log [pseudouridine] -0.3135 0.0095      

log [L,L-TMAP] -0.1575 0.0227      

log [succinyladenosine] -0.0226 0.6510      
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log [2-(α-D-

mannopyranosyl)-L-

tryptophan] 

-0.0426 0.2328    
 

 

gender 0.0967 p < 0.001      

age -0.0019 0.0705      

SBP 0.0003 0.2942      

BMI 0.0018 0.3006      

log [UACR] 0.0033 0.6613      

Model L7 ( the best model  by stepwise method of model 2) 0.9788 0.9781 0.0550  0.9879 

Constant 1.4315 p < 0.001      

log [MS-detected creatinine] -0.6083 p < 0.001      

log [L,L-TMAP] -0.1403 0.0214      

log [pseudouridine] -0.4803 p < 0.001      

gender 0.0934 p < 0.001      

Gender, female = 1 and male = 2. 

Discovery set, n = 106; validation set, n =56. 

* R2 was based on the predicted log [MDRD GFR] against actual log [MDRD GFR] using the 

equation of the model and data of discovery set. 

† R2 was based on the predicted log [MDRD GFR] against actual log [MDRD GFR] using the 

equation of the model of discovery set and data of validation set. 

.
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 Multivariate linear regression for prediction of MDRD GFR using potential MS-

detected biomarkers  

Potential biomarkers had a strong linear relationship with log [MDRD GFR] with high R2 in 

univariate linear regression in the descending order; log [pseudouridine] > log [L,L-TMAP] > log 

[MS-detected creatinine] > log [succinyladenosine] > log [2-(α-D-mannopyranosyl)-L-

tryptophan] (Table 5.16).  

Stepwise multivariate linear regression analysis is a method that automatically do multiple 

regressions, remove variables with weak statistical contribution and retain variables that explain 

the distribution best. Only the patient’s gender, log [MS-detected creatinine], log [pseudourdine] 

and log [L,L-TMAP] remained significant (p < 0.05) as independent predictors for log [MDRD 

GFR] in the regression equation (Table 5.16, Model L7) while age, BMI, SBP, UACR, log 

[succinyladensine] and log [2-(α-D-mannopyranosyl)-L-tryptophan] were insignificant and 

excluded. The selected multiple regression equation of Model L7 is here: 

𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐥𝐨𝐠 [𝐌𝐃𝐑𝐃 𝐆𝐅𝐑]

= − 𝟎. 𝟔𝟎𝟖𝟑 𝐥𝐨𝐠 [𝐌𝐒 − 𝐝𝐞𝐭𝐞𝐜𝐭𝐞𝐝 𝐜𝐫𝐞𝐚𝐭𝐢𝐧𝐢𝐧𝐞] 𝟎. 𝟒𝟖𝟎𝟑 𝐥𝐨𝐠 [𝐩𝐬𝐞𝐮𝐝𝐨𝐮𝐫𝐢𝐝𝐢𝐧𝐞]

−  𝟎. 𝟏𝟒𝟎𝟑 𝐥𝐨𝐠 [𝐋, 𝐋 − 𝐓𝐌𝐀𝐏]  +  𝟎. 𝟎𝟗𝟑𝟒 𝐠𝐞𝐧𝐝𝐞𝐫 (𝐟𝐞𝐦𝐚𝐥𝐞, 𝟏;  𝐦𝐚𝐥𝐞, 𝟐)  

+  𝟏. 𝟒𝟑𝟏𝟓 

Model L7 had a high adjusted R2 value of 0.978 accounting for 97.8% variance of overall 

prediction. Root Mean Square Error (RMSE)  is the square root of the residual mean square. It 

estimated the mean squared error in prediction and equaled to 0.055, indicating a high reliability 

of the variables’ contribution to the model.  
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External validation was applied using the separate validation set to avoid overfitting. The R2 of the 

linear regression of predicted log [MDRD GFR] against actual values using validation set as 

testing samples was 0.988, indicating a good quality of curve fit was obtained. The two linear 

curves of the training and testing datasets were overlapped in Fig. 5.13 A2-B2 after conversion of 

log values to MDRD GFR. Model L7 (Fig. 5.13 B2) showed smaller variance in the distribution 

of the samples compared with log creatinine and gender alone (R2 = 0.915, Fig. 5.13 A2). These 

findings suggest that multiple regression equation using Model L7 could be used to predict MDRD 

GFR according to the regression equation.
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Fig. 5.13 Multivariate linear regressions of (A) Models L1 and (B) Model L7 with (1) log [MDRD GFR] and (2) conversion of 

log [MDRD GFR] trained with discovery set and tested with validation set.



 

212 

 

 Prediction of accuracy for differentiating CKD stages using random forest 

classification. 

The use of a combinations of multiple biomarkers might be more sensitive and specific in 

classification of the kidney function of diabetic patients than the simple measurement of serum 

creatinine method. Herein, we built a non-parametric method, univariate and multivariate 

random forest classification model with equal-size sampling in two classes for training and 

testing models to distinguish different GFR thresholds. Single metabolite model candidates that 

were used for differentiation of diabetic patients at Stage 1a (GFR >120) from patients at Stage 

1b-2 (GFR= 60-120), Stage 1a (GFR > 120) from Stages 1b-4 (GFR ≤ 120), Stage 1 (GFR ≥ 

90) from Stages 2-4 (GFR <  90), Stages 3-4 (GFR < 60) from Stage 1-2 (GFR ≥ 60), Stage 4 

(GFR < 30) to Stage 1-3 (GFR ≥ 30) are listed in Tables S5.7 - S5.10 (single metabolite 

models).  The two-metabolite models were first built on using the following four biomarkers: 

2-(α-D-Mannopyranosyl)-L-tryptophan, pseudouridine, succinyladenosine and L,L-TMAP 

with each other and in combination with MS-detected creatinine. Three-metabolite models 

were constructed using the four biomarkers with MS-detected creatinine. Their average AUC, 

sensitivity and specificity after 100 sampling tests using different GFR thresholds were listed 

in Tables S5.11 - S5.16. The tables also showed the results of commonly used logistic 

regression method for comparison, but random forest classification generally gained a better 

sensitivity result in ROC than logistic regression did. This suggested that the relative intensity 

of these biological metabolites did not have normal distribution and did not show a linear 

relationship with MDRD GFR. 

Random forest classification results revealed that the four metabolites accurately differentiated 

patients at early Stage 1a from Stage 1b-4, Stage 1a from Stages 1b-2, Stage 1b from Stage 2, 

Stages 1 from Stages 2-4 of diabetic patients (average AUC > 0.700, Tables 5.17). Their 

performances were comparable with that of MS-detected creatinine. Seven novel multiple-
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metabolite models were more predictive of CKD stages than MS-detected creatinine alone 

(Table 5.18). Among them, Model 1 (MS-detected serum creatinine plus pseudouridine), 

Model 1 plus either L,L-TMAP (Model 5), succinyladenosine (Model 6) or 2-(α-D-

Mannopyranosyl)-L-tryptophan (Model 7) predicted more accurately (Model 1, Model 5-7; 

average AUC > 0.800) than MS-detected creatinine alone when differentiating patients at Stage 

1a (hyperfiltration) from Stages 1b-2 (MS-detected creatine : AUC =0.754 - 0.763) and when 

differentiating patients at Stage 1b (normal GFR range) from Stage 2 (mild decreased GFR) 

(MS-detected creatinine: average AUC = 0.600 - 0.680) (Table 5.18). Model 1, 5-7 could be 

detected in a single UPLC-MS platform, so they were selected as better candidates for 

prediction of kidney function.
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Table 5.17 Average AUC of single metabolite models for differentiation between CKD stages in diabetic patients using random forest 

classification 

Classification Data set  
MS-detected serum 

creatinine 
Pseudouridine L,L-TMAP succinyladenosine 

2-(α-D-

mannopyranosyl)-L-

tryptophan 

Stage 1a vs Stages 1b-4 Discovery 0.849 ± 0.051 0.867 ± 0.072 0.849± 0.057 0.816 ± 0.065 0.811 ± 0.074 

(GFR > 120 vs GFR ≤ 120) Validation 0.879 ± 0.078 0.757 ± 0.078 0.774 ± 0.115 0.858 ± 0.066 0.780 ± 0.098 

Stage 1a vs Stages 1b-2 Discovery 0.754 ± 0.080 0.867 ± 0.072 0.849 ± 0.057 0.816 ± 0.065 0.811 ± 0.074 

(GFR > 120 vs GFR = 60-120) Validation 0.763 ± 0.109 0.757 ± 0.078 0.774 ± 0.115 0.858 ± 0.066 0.781 ± 0.100 

Stage 1b vs Stages 2 Discovery 0.681 ± 0.094 0.741 ± 0.079 0.680 ± 0.078 0.777 ± 0.069 0.707± 0.097 

(GFR = 90-120 vs GFR = 60-89) Validation 0.600 ± 0.170 0.982 ± 0.031 0.668 ± 0.157 0.889 ± 0.078 0.870 ± 0.092 

Stages 1 vs Stages 2-4 Discovery 0.918 ± 0.028 0.935± 0.035 0.906 ± 0.038 0.899 ± 0.038 0.935 ± 0.026 

(GFR ≥ 90 vs GFR < 90) Validation 0.927 ± 0.048 0.994 ± 0.011 0.928 ± 0.054 0.972 ± 0.031 0.954 ± 0.034 

Stages 1-2 vs Stages 3-4 Discovery 0.950 ± 0.025 0.985 ± 0.017 0.969 ± 0.020 0.958 ± 0.028 0.972 ± 0.025 

(GFR ≥ 60 vs GFR < 60) Validation 0.931 ± 0.039 0.949 ± 0.036 0.915 ± 0.046 0.912 ± 0.044 0.938 ± 0.035 

Stages 1-3 vs Stages 4 Discovery 0.989 ± 0.009 0.993 ± 0.020 0.983 ± 0.034 0.993 ± 0.018 0.988 ± 0.024 

(GFR ≥ 30 vs GFR < 30) Validation 0.976 ± 0.081 0.968 ± 0.061 0.984 ± 0.054 0.955 ± 0.051 0.953± 0.056 
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Table 5.18 Average AUC of MS-detected serum creatinine and multiple-metabolite models for differentiation between CKD stages in 

diabetic patients using random forest classification in discovery and validation sets. 

Classification Data set  

MS-detected 

serum 

creatinine 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

MS-detected 

creatinine + 

pseudouridine 

MS-detected 

creatinine + 

succinyladenosine 

Pseudouridine 

+ L,L-TMAP 

succinyladenosine 

+ pseudouridine 

MS-detected 

creatinine+ 

pseudouridine + 

L,L-TMAP 

MS-detected 

creatinine+ 

pseudouridine + 

succinyladenosine  

MS-detected 

creatinine + 

Pseudouridine +  

2-(α-D-

Mannopyranosyl)

-L-tryptophan 

Stage 1a vs Stages 1b-4 Discovery 0.849 ± 0.051 0.930 ± 0.025 0.912 ± 0.029 0.942 ± 0.022 0.921 ± 0.049 0.945 ± 0.021 0.937 ± 0.023 0.933 ± 0.024 

(GFR > 120 vs GFR ≤ 120) Validation 0.879 ± 0.078 0.932 ± 0.034 0.940 ± 0.041 0.917 ± 0.032 0.935 ± 0.028 0.930 ± 0.035 0.937 ± 0.030 0.922 ± 0.034 

Stage 1a vs Stages 1b-2 Discovery 0.754 ± 0.080 0.874 ± 0.047 0.840 ± 0.057 0.905 ± 0.037 0.877 ± 0.068 0.909 ± 0.035 0.888 ± 0.045 0.886 ± 0.041 

(GFR > 120 vs GFR = 60-

120) 
Validation 0.763 ± 0.109 0.849 ± 0.063 0.869 ± 0.072 0.834 ± 0.091 0.870 ± 0.066 0.892 ± 0.061 0.850 ± 0.067 0.811 ± 0.089 

Stage 1b vs Stages 2 Discovery 0.681 ± 0.094 0.810 ± 0.064 0.787 ± 0.070 0.776 ± 0.065 0.803 ± 0.065 0.807 ± 0.059 0.821 ± 0.059 0.831 ± 0.053 

(GFR = 90-120 vs GFR = 

60-89) 
Validation 0.600 ± 0.170 0.967 ± 0.058 0.856 ± 0.080 0.966 ± 0.056 0.986 ± 0.030 0.951 ± 0.067 0.982 ± 0.034 0.962 ± 0.052 

Stages 1 vs Stages 2-4 Discovery 0.918 ± 0.028 0.955 ± 0.016 0.932 ± 0.024 0.937 ± 0.023 0.942 ± 0.020 0.948 ± 0.021 0.957 ± 0.016 0.960 ± 0.016 

(GFR ≥ 90 vs GFR < 90) Validation 0.927 ± 0.048 0.995 ± 0.009 0.979 ± 0.018 0.999 ± 0.003 0.972 ± 0.022 0.993 ± 0.012 0.998 ± 0.004 0.997 ± 0.005 

Stages 1-2 vs Stages 3-4 Discovery 0.950 ± 0.025 0.990 ± 0.006 0.973 ± 0.012 0.988 ± 0.008 0.982 ± 0.010 0.987 ± 0.008 0.984 ± 0.008 0.990 ± 0.007 

(GFR ≥ 60 vs GFR < 60) Validation 0.931 ± 0.039 0.955 ± 0.026 0.955 ± 0.029 0.959 ± 0.026 0.941 ± 0.032 0.968 ± 0.019 0.959 ± 0.027 0.962 ± 0.026 

Stages 1-3 vs Stages 4 Discovery 0.989 ± 0.009 0.995 ± 0.014 0.999 ± 0.002 0.996 ± 0.012 0.999 ± 0.001 0.997 ± 0.006 0.999 ± 0.001 0.996 ± 0.009 

(GFR ≥ 30 vs GFR < 30) Validation 0.976 ± 0.081 0.992 ± 0.039 0.996 ± 0.020 0.990 ± 0.041 0.985 ± 0.034 0.980 ± 0.060 0.990 ± 0.030 0.988 ± 0.038 
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 Correlations of endogenous metabolites to urinary markers: UACR and urinary 

β2-microglobulin 

Correlations of 4-acetamidobutanoic acid, succinyladenosine, 2-(α-D-mannopyranosyl)-L-

tryptophan, pseudouridine, 2-[3-(sulfooxy)phenyl]acetic acid, 5-methylthio-D-ribose, 2-

hydroxyethanesulfonate, L,L-TMAP isomer, L,L-TMAP, ratio of kynurenine to tryptophan, 

sulfotyrosine, O-adipoylcarnitine, to UACR (Spearman R = 0.71-0.81 in the discovery set and 

0.66-0.75 in the validation set) were better than those of MS-detected creatinine (Spearman R 

= 0.68 in discovery set and 0.65 in the validation set) in diabetic patients at Stages 1-4 (Table 

5.19). The first five metabolites were better than serum cystatin C (Spearman R = 0.68 in 

validation set). However, the above metabolites did not show statistical consistency in the 

correlations between two cohorts among diabetic patients with UACR < 300 mg/g Cr. (p > 

0.05).  

Additionally, there were also significant positive correlations between proximal tubule injury 

indicator, urinary β2-microglobulin, and 13 MS-detected metabolites (including 

pseudouridine, L,L-TMAP, 2-(α-D-mannopyranosyl)-L-tryptophan, 4-acetamidobutanoic acid 

and succinyladenosine), two ratios of metabolites, clinically measured serum creatinine, serum 

cystatin C and UACR (Spearman R = 0.60-0.79) (Table 5.19). Pseudouridine (Spearman R = 

0.74-0.79) and 4-acetamidobutanoic acid (Spearman R = 0.71-0.81) outperformed clinically 

measured serum creatinine (Spearman R = 0.67-0.74) in the Spearman rank correlation. For 

diabetic patients with UACR < 300 mg/g Cr., their relationship to urinary β2-microglobulin 

was weak or insignificant (absolute Spearman R < 0.40).  

Details of the correlations of other metabolites with UACR and urinary β2-microglobulin could 

be seen in in Table S5.2 and Table S5.3, respectively.  
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Table 5.19 Spearman rank correlation of metabolites to UACR and urinary β2-

microglobulin at different ranges with combination of discovery and validation sets.  

(Absolute Spearman R > 0.60). 

Metabolites Stage 0-4 Stage 1-4 Stage 1-3 (UACR < 

300 ) 

Discovery 

(n=128) 

Validation 

(n=65) 

Discovery 

(n=108) 

Validation 

(n=55) 

Discovery 

(n=63) 

Validation 

(n=38) 

Metabolites associated to UACR 

4-Acetamidobutanoic acid 0.7903 0.7244 0.8119 0.7076 0.4984 0.2306 

Succinyladenosine 0.7799 0.6706 0.7947 0.6897 0.5159 0.1752 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.7643 0.7062 0.8009 0.7459 0.4483 0.2765 

Pseudouridine 0.7514 0.7330 0.7936 0.7411 0.4494 0.2734 

2-[3-(sulfooxy)phenyl] acetic 

acid 

0.7311 0.6968 0.7540 0.6789 0.3972 0.1896 

5-Methylthio-D-ribose 0.7124 0.6551 0.7626 0.6633 0.3946 0.1012 

2-Hydroxyethanesulfonate 0.6971 0.6040 0.7137 0.7109 0.3094 0.2520 

L,L-TMAP isomer 0.6951 0.6704 0.7308 0.6695 0.2957 0.1649 

L,L-TMAP 0.6940 0.6628 0.7426 0.6756 0.3237 0.1566 

Serum creatinine (mg/dL) 0.6880 0.6464 0.7367 0.6668 0.3251 0.2334 

Ratio of kynurenine to 

tryptophan 

0.6837 0.6625 0.7302 0.7114 0.3828 0.2518 

Sulfotyrosine 0.6466 0.6986 0.7160 0.7321 0.3260 0.3785 

MS-detected creatinine 0.6434 0.6349 0.6805 0.6569 0.2244 0.1737 

Serum cystatin C (mg/L)  0.6549 - 0.6758 - 0.1923 

Metabolites associated to urinary β2-microglobulin 

4-Acetamidobutanoic acid 0.6056 0.7871 0.6457 0.8056 0.2009 0.5240 

5-Methylthio-D-ribose 0.6569 0.6962 0.7100 0.7152 0.3875 0.3131 

L,L-TMAP isomer 0.6278 0.6460 0.6962 0.6814 0.2256 0.2824 

Pseudouridine 0.6270 0.7696 0.6900 0.7933 0.3189 0.5088 

UACR 0.6215 0.7000 0.6473 0.6938 0.1689 0.2709 

MS-detected creatinine 0.6183 0.6565 0.6670 0.6853 0.203 0.2908 

2-Hydroxyethanesulfonate 0.6179 0.5959 0.6684 0.6468 0.3413 0.1986 

Serum Creatinine (mg/dL) 0.6102 0.6981 0.6583 0.7336 0.2493 0.3919 

L,L-TMAP 0.6081 0.6557 0.6697 0.6809 0.1815 0.2534 

2-(α-D-Mannopyranosyl)-L-

tryptophan  

0.6063 0.6925 0.6638 0.7314 0.2206 0.3510 

O-Adipoylcarnitine 0.5962 0.7536 0.6181 0.7719 0.3647 0.4841 

Ratio of kynurenine to 

tryptophan 

0.5891 0.6671 0.6759 0.6979 0.2470 0.3280 

Succinyladenosine 0.5884 0.7412 0.6353 0.7802 0.1537 0.4771 

2-[3-(sulfooxy)phenyl] acetic 

acid 

0.5676 0.6673 0.5882 0.6990 0.2838 0.2898 

Ratio of pseudouridine to 

uridine 

0.5661 0.7365 0.6380 0.7657 0.2235 0.441 

Sulfotyrosine 0.5492 0.7136 0.6049 0.7680 0.2104 0.4638 

Serum cystatin C (mg/L) - 0.6365 - 0.6749 - 0.2779 
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 Prediction of accuracy for distinguishing the different ranges of UACR 

using random forest classification 

CKD albuminuria can be divided into three clinical stages:  normoalbuminuria (UACR 

< 30 mg/g Cr.), microalbuminuria (UACR = 30-300 mg/g Cr.) and macroalbuminuria 

(UACR > 300 mg/g Cr.). Pseudouridine, 2-(α-D-mannopyranosyl)-L-tryptophan, 

succinyladenosine, 4-acetamidobutanoic acid, and sulfotyrosine (AUC = 0.711-0.837)  

are better markers to differentiate patients with normoalbuminuria (UACR < 30 mg/g 

Cr.) from later clinical stages of albuminuria than serum creatinine (AUC = 0.677-0.774) 

but L,L-TMAP and its isomer were not in the validation set (AUC = 0.667-0.678) 

(Table 5.20 and S5.17). For differentiating patients with UACR = 30-300 mg/g Cr. from 

those  with UACR < 30 mg/g Cr., the five metabolites (AUC = 0.404- 0.701) did not 

have improved AUC compared with MS-detected creatinine (AUC =0.444 - 0.665) 

(Table S5.18).  Four two-metabolite models that used sulfotyrosine plus either MS-

detected creatinine, pseudouridine, 2-(α-D-mannopyranosyl)-L-tryptophan, 

succinyladenosine (AUC =0.668-0.706 in discovery set, 0.559-0.619 in validation set )  

had slightly improved AUC for differentiating patients with UACR = 30-300 mg/g Cr. 

from those with UACR < 30 mg/g Cr compared with MS-detected creatinine alone 

(AUC = 0.665 in discovery set, 0.444 in validation set) while the performances of the 

models that used sulfotyrosine plus L,L-TMAP (AUC = 0.653 in discovery set, 0.597 

in validation set) and sulfotyrosine plus or 4-acetamidobutanoic acid (AUC = 0.660 in 

discovery set, 0.606 in validation set ) were comparable with MS-detected creatinine 

alone (Table 5.21 and S5.19).  The three-metabolite model that used these metabolites 

in combination did not have any better results (data not shown). Single biomarkers, 

pseudouridine, 2-(α-D-mannopyranosyl)-L-tryptophan, succinyladenosine, 4-

acetamidobutanoic acid, L,L-TMAP and L,L-TMAP isomer (AUC = 0.893 - 0.957) 

slightly outperformed clinically measured serum creatinine (AUC = 0.884 - 0.887) and 
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MS-detected serum creatinine (AUC = 0.857 - 0.889) in differentiating patients at 

macroalbuminuria (UACR > 300 mg/g Cr.) from the rest (Tables 5.20, S5.20 - S5.21).  
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Table 5.20 AUC of significant metabolites for distinguishing CKD albuminuria categories at different UACR ranges using random forest 

classification. 

UACR 

range 

(mg/g 

Cr.) 

Dataset AUC Clinically 

measured 

serum 

creatinine 

MS-detected 

creatinine 

4-Acetamidobutanoic 

acid 

Pseudouridine 2-(α-D-

Mannopyranosyl)

-L-tryptophan 

L,L-TMAP L,L-TMAP 

isomer 

Succinyl-

adenosine 

Sulfotyrosine 

 ≥ 30 

vs <30  

Discovery 

set 

AUC 0.774 ± 0.046 0.773 ± 0.050 0.811 ± 0.047 0.837 ± 0.038 0.829 ± 0.036 0.784 ± 0.055 0.753 ± 0.054 0.823 ± 0.051 0.776 ± 0.051 

Sens 0.587 ± 0.078 0.670 ± 0.068 0.693 ± 0.069 0.713 ± 0.064 0.726 ± 0.054 0.604 ± 0.107 0.581 ± 0.118 0.655 ± 0.081 0.576 ± 0.097 

Spec 0.900 ± 0.106 0.826 ± 0.134 0.826 ± 0.166 0.932 ± 0.080 0.848 ± 0.138 0.865 ± 0.126 0.799 ± 0.137 0.895 ± 0.100 0.896 ± 0.112 

Validation 

set 

AUC 0.705 ± 0.082 0.677 ± 0.077 0.738 ± 0.070 0.734 ± 0.057 0.711 ± 0.072 0.667 ± 0.080 0.678 ± 0.087 0.742 ± 0.076 0.823 ± 0.064 

Sens 0.437 ± 0.138 0.502 ± 0.118 0.563 ± 0.116 0.594 ± 0.098 0.624 ± 0.129 0.577 ± 0.181 0.4890 ± 0.171 0.551 ± 0.102 0.765 ± 0.115 

Spec 0.886 ± 0.168 0.874 ± 0.164 0.851 ± 0.167 0.848 ± 0.136 0.717 ± 0.220 0.660 ± 0.201 0.762 ± 0.176 0.886 ± 0.146 0.723 ± 0.174 

 30-

300 vs 

< 30 

Discovery 

set 

AUC 0.633 ± 0.063 0.665 ± 0.077 0.676 ± 0.072 0.701 ± 0.075 0.685 ± 0.067 0.633 ± 0.074 0.565 ± 0.078 0.686 ± 0.076 0.630 ± 0.063 

Sens 0.916 ± 0.086 0.777 ± 0.157 0.907 ± 0.119 0.919 ± 0.116 0.881± 0.137 0.766 ± 0.135 0.553 ± 0.154 0.829 ± 0.137 0.793 ± 0.160 

Spec 0.304 ± 0.126 0.543 ± 0.135 0.397 ± 0.086 0.486 ± 0.106 0.472 ± 0.106 0.479 ± 0.133 0.575 ± 0.148 0.470 ± 0.130 0.418 ± 0.129 

Validation 

set 

AUC 0.505 ± 0.119 0.444 ± 0.105 0.421 ± 0.102 0.428 ± 0.100 0.404 ± 0.100 0.452 ± 0.101 0.472 ± 0.112 0.464 ± 0.111 0.632 ± 0.125 

Sens 0.851 ± 0.177 0.434 ± 0.198 0.627 ± 0.182 0.448 ± 0.202 0.793 ± 0.183 0.854 ± 0.173 0.813 ± 0.180 0.377 ± 0.182 0.536 ± 0.186 

Spec 0.194 ± 0.150 0.479 ± 0.176 0.336 ± 0.151 0.426 ± 0.177 0.158 ± 0.127 0.090 ± 0.119 0.112 ± 0.145 0.580 ± 0.208 0.664 ± 0.206 

> 300 

vs 30-

300 

Discovery 

set 

AUC 0.833 ± 0.059 0.820 ± 0.055 0.876 ± 0.054 0.855 ± 0.052 0.848 ± 0.056 0.845 ± 0.054 0.841 ± 0.049 0.840 ± 0.055 0.820 ± 0.044 

Sens 0.704 ± 0.107 0.753 ± 0.097 0.741 ± 0.142 0.747 ± 0.140 0.825 ± 0.148 0.702 ± 0.118 0.828 ± 0.097 0.753 ± 0.151 0.612 ± 0.101 

Spec 0.854 ± 0.102 0.854 ± 0.085 0.839 ± 0.109 0.777 ± 0.128 0.700 ± 0.118 0.852 ± 0.097 0.811 ± 0.074 0.739 ± 0.118 0.893 ± 0.099 

Validation 

set 

AUC 0.860 ± 0.077 0.880 ± 0.081 0.915 ± 0.059 0.926 ± 0.056 0.948 ± 0.041 0.939 ± 0.043 0.892 ± 0.080 0.913 ± 0.057 0.921 ± 0.048 

Sens 0.701 ± 0.150 0.708 ± 0.182 0.833 ± 0.135 0.813 ± 0.156 0.873 ± 0.141 0.769 ± 0.139 0.761 ± 0.201 0.862 ± 0.137 0.804 ± 0.120 

Spec 0.899 ± 0.156 0.843 ± 0.160 0.901 ± 0.121 0.853 ± 0.138 0.844 ± 0.112 0.929 ± 0.135 0.804 ± 0.153 0.850 ± 0.097 0.870 ± 0.142 

> 300 

vs  ≤ 

300 

Discovery 

set 

AUC 0.887 ± 0.044 0.857 ± 0.059 0.922 ± 0.041 0.916 ± 0.038 0.915 ± 0.038 0.908 ± 0.034 0.895 ± 0.045 0.893 ± 0.035 0.873 ± 0.041 

Sens 0.773 ± 0.097 0.789 ± 0.091 0.909 ± 0.071 0.944 ± 0.057 0.945 ± 0.064 0.805 ± 0.117 0.825 ± 0.105 0.879 ± 0.080 0.833 ± 0.112 

Spec 0.878 ± 0.058 0.867 ± 0.082 0.792 ± 0.090 0.770 ± 0.062 0.808 ± 0.054 0.862 ± 0.068 0.858 ± 0.072 0.778 ± 0.078 0.750 ± 0.088 

Validation 

set 

AUC 0.884 ± 0.068 0.889 ± 0.060 0.930 ± 0.051 0.946 ± 0.048 0.957 ± 0.045 0.941 ± 0.046 0.908 ± 0.052 0.939 ± 0.041 0.940 ± 0.043 

Sens 0.724 ± 0.136 0.689 ± 0.137 0.851 ± 0.122 0.849 ± 0.157 0.922 ± 0.106 0.821 ± 0.155 0.832 ± 0.170 0.871 ± 0.121 0.838 ± 0.121 

Spec 0.926 ± 0.135 0.920 ± 0.098 0.963 ± 0.040 0.908 ± 0.081 0.890 ± 0.062 0.851 ± 0.116 0.812 ± 0.094 0.947 ± 0.041 0.932 ± 0.071 
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Table 5.21 AUC of two-metabolite model using sulfotyrosine and other significant metabolites for distinguishing between UACR =30-300 

and UACR <30 using random forest classification. 

Two-metabolite models 

 Sulfotyrosine 

MS-detected 

creatinine 
Succinyladenosine Pseudouridine 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

L,L-TMAP 

4-

Acetamidobutan

oic acid 

30-300 vs 

<30 

Discovery set 

AUC 0.671 ± 0.065 0.706 ± 0.076 0.691 ± 0.064 0.668 ± 0.063 0.653 ± 0.060 0.660 ± 0.068 

Sens 0.599 ± 0.193 0.663 ± 0.154 0.765 ± 0.165 0.744 ± 0.155 0.811 ± 0.131 0.852 ± 0.110 

Spec 0.653 ± 0.111 0.636 ± 0.142 0.549 ± 0.122 0.515 ± 0.129 0.450 ± 0.123 0.438 ± 0.103 

Validation set 

AUC 0.619 ± 0.124 0.616 ± 0.108 0.578 ± 0.101 0.559 ± 0.101 0.597 ± 0.099 0.606 ± 0.100 

Sens 0.529± 0.169 0.490 ± 0.158 0.517 ± 0.157 0.472 ± 0.154 0.519 ± 0.141 0.499 ± 0.171 

Spec 0.664 ± 0.186 0.693 ± 0.162 0.648 ± 0.188 0.665 ± 0.169 0.678 ± 0.157 0.659 ± 0.180 
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 Discussion 

To our knowledge, this is the first clinical study of untargeted serum metabolomics in 

association with all stages of CKD among type 2 diabetic Chinese patients. Patients 

showed a clear progression of metabolic changes with the severity of kidney function 

from the early Stages 1-2 to later Stages 3-4 (Fig. 5.8).  

 Abnormal kidney size in different stages 

This study examine early stages which many related studies (Sekula et al. 2016; 

Niewczas et al. 2017; Velenosi et al. 2019; Luo et al. 2019) excluded. In this study, the 

observation of enlargement of kidney size, followed by gradual diminishment in the 

present study (Fig.1.2) supported that diabetic patients starting from Stage 1a were most 

likely to have abnormal kidney hypertrophy and enlargement, followed with gradual 

renal atrophy and volume depletion from Stages 2 to 4 (Rigalleau et al. 2010; Jovanović 

et al. 2013). Experimental studies suggested that the renal hypertrophy might be due to 

the inhibition of kidney AMP-activated protein kinase by high glucose level, and that 

it is followed by glomerular hyperfiltration, and tubulo-glomerular feedback 

mechanism (Rigalleau et al. 2010).  

The degeneration in the later stage might lead to increases in renal vascular resistance 

and blood pressure as shown by the highest RRI and SBP in Stage 4. The elevation of 

RRI in this study supported that the increasing kidney arterial damage and renal 

arterial resistance with the rise in severity of CKD in diabetic patients (Afsar 

and Elsurer 2017). Research found that strict insulin treatment could reduce kidney 

size to normal size in diabetic patients  (Mogensen and Andersen 1975). Thus, early 

intervention in Stage 1a patients is of high importance. 
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 1,5-Anhydro-D-glucitol level monitoring as a marker of type 2 diabetes at 

early Stage 1 

Correlation analysis showed that the FBG and serum hemoglobin A1c levels, two 

clinical glycemic markers, did not show significant changes along with MDRD GFR 

but were highly correlated to the serum level of 1,5-anhydro-D-glucitol among diabetic 

patients within each stage of Stages 1-3 (Table 5.12), especially for  hemoglobin A1c 

(Fig. 5.10). Patients with a high level of serum hemoglobin A1c might have a high level 

of serum 1,5-anhydro-D-glucitol.  

Previous studies had also indicated similar findings that serum 1,5- anhydro-D-glucitol 

levels were little affected by GFR (Yamanouchi et al. 1988) and were not altered in 

diabetic patients at Stage 4 (Kim et al. 2012). 1,5-anhydro-D-glucitol is a dietary 1-

deoxyglucose (Yamanouchi et al. 1992) that glucose competes with it in the binding 

sites of transporters in the renal proximal tubules and blocks tubular reabsorption of 

1,5-anhydro-D-glucitol when blood glucose is higher than the renal threshold 

(Yamanouchi et al. 1996; Yamanouchi and Akanuma 1994; Kametani et al. 1987; 

Dworacka et al. 2002), leading to a rise in urinary loss and a reduction of blood 

concentration of 1,5-anhydro-D-glucitol. This was more obvious during the early stages 

of CKD probably because of tubular hyper-reabsorption of glucose (Anders et al. 2018). 

The serum level of 1,5-anhydro-D-glucitol would be a more sensitive clinical glycemic 

markers at early Stage 1 and might be mainly affected by the function of renal proximal 

tubules. 

 Potential biomarkers for prediction of MDRD GFR and UACR 

It has been well reported that serum creatinine is an inaccurate indicator of renal 

function. After investigating the correlation between metabolites and GFR, using ROC 
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for diagnosis of patients at different stages of CKD and prediction for MDRD GFR in 

this study, succinyladenosine, pseudouridine, L,L-TMAP and 2-(α-D-

mannopyranosyl)-L-tryptophan, that were identified with commercially available 

standards, had a high correlation with GFR and improved the accuracy in prediction.  

Using ROC for diagnosis of patients at different CKD albuminuria, using a single 

metabolite model or  two-metabolite models with the above four biomarkers, 4-

acetamidobutanoic acid and sulfotyrosine did not have obvious improvement on AUC 

compared with MS-detected serum creatinine, thus 4-acetamidobutanoic acid and 

sulfotyrosine were not discussed here (Table 5.20).  

Pseudouridine is a C-glycosidic derivative of uridine, a modified nucleoside found in 

RNA. The blood level of pseudouridine was elevated in the patients with diabetic 

kidney injuries and pseudouridine was suggested as a filtration marker for kidney 

function (Niewczas et al. 2017; Dzúrik et al. 1992; Titan et al. 2019; Sekula et al. 2016). 

L,L-TMAP, a recently identified metabolite that was newly identified by Velenosi’s 

team (Velenosi et al. 2019).  L,L-TMAP might be produced from the degradation 

of myosin light chain proteins (Henry et al. 1985). L,L-TMAP was reported to 

outperform serum creatinine in accurately identifying ESRD patients with 

MDRD GFR < 30 mL/min per 1.73 m2  (Velenosi et al. 2019).   

Succinyladenosine is a succinylpurine found in urine (Monostori et al. 2019), serum 

and the liver (Han et al. 2019). Succinyladenosine is traditionally used as a diagnostic 

target of patients with adenylosuccinate lyase deficiency (Hartmann et al. 2006; Jurecka 

et al. 2015; Monostori et al. 2019). Succinyladenosine has been reported in adenine-

induced rats with kidney failure (Kobayashi et al. 2014) and mentioned in one cohort 
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studying the relationship with the end stage-renal disease in patients with proteinuria. 

It has not been mentioned as a biomarker to differentiate CKD patients in different 

stages, especially in the early stages, and there was a lack of researches related to its 

correlation to other clinical markers like UACR and β2-microglobulin. 

2-(α-D-mannopyranosyl)-L-tryptophan is formed by C-mannosylation of an α-

mannose to the indole C2 carbon atom of a tryptophan residue. 2-(α-D-

Mannopyranosyl)-L-tryptophan is found in human serum, urine, and cerebrospinal 

fluid as well as in various food products (Gutsche et al. 1999). 

They were remarkably associated with severity of kidney function in diabetic patients. 

The Spearman rank correlations remained strong after controlling common 

confounding factors (Table 5.14). Compared with serum creatinine and cystatin C, their 

associations with MDRD GFR were comparably high and more sensitive in changes 

with the advantage of being independent or less dependent on gender (Fig. 5.12 and 

Table 5.16). Future application of the first three metabolites in the estimation of GFR 

might simplify calculation without concerning a subject’s gender. 

This study had concordant results with four other researches in the association of 

pseudouridine, 2-(α-D-mannopyranosyl)-L-tryptophan (Sekula et al. 2016; Niewczas 

et al. 2017), L,L-TMAP (Velenosi et al. 2019), succinyladenosine (Luo et al. 2019) 

with renal function decline in patients at later stage (GFR < 60). The results in this study 

suggested that these biomarkers were also useful to identify early stages of renal 

functions (GFR > 60), which were not investigated in these previous studies. Only one 

study identified pseudouridine and 2-(α-D-mannopyranosyl)-L-tryptophan as 

predictive markers in differentiating individuals in GFR < 60 from GFR > 60 (Solini et 

al. 2016). Succinyladenosine has not been reported in diabetic patients with chronic 
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kidney diseases at the early stages (Stages 1-2).  Our study extended these findings to 

show that the association of the four metabolites with GFR also occurred at early Stages 

1-2 (GFR > 60) of diabetic patients (Table 5.14). The four biomarkers comparably had 

accurate differentiate patients at early Stages as MS-detected creatinine did (Table 

5.17). Pseudouridine, 2-(α-D-mannopyranosyl)-L-tryptophan and succinyladenosine 

could differentiate between patients with UACR > 30 and patients with UACR ≤ 30 

better than clinically measured serum creatinine (Table 5.20). 

Prediction using combination of these metabolites with MS-detected serum creatinine 

revealed four novel multiple-metabolite models, Model 1 (MS-detected serum 

creatinine plus pseudouridine), Model 1 plus either L,L-TMAP, succinyladenosine or 

2-(α-D-Mannopyranosyl)-L-tryptophan as being more predictive of CKD stages than 

MS-detected creatinine alone (Table 5.18) which might improve the accuracy of serum 

creatine alone. Stepwise multivariate linear regression analyses selected Model L7 (log 

[MS-detected serum creatinine], log [pseudouridine], log [L,L-TMAP] plus gender) as 

the best regression equation to predict log [MDRD GFR] (Table 5.16). 

 Correlations of biomarkers with UACR and urinary β2-microglobulin to 

renal tubular markers 

Interestingly, the levels of pseudouridine, L,L-TMAP, 2-(α-D-mannopyranosyl)-L-

tryptophan and succinyladenosine were not only increased significantly with the 

decline in GFR but were also positively correlated with UACR, urinary β2-

microglobulin and were negatively correlated with BSA-related renal volume and renal 

resistive index (Fig. 5.11). Importantly, such correlation performances with these 

kidney-function related markers were generally better than that of serum creatinine and 

cystatin C.  
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The current results expanded their association with GFR to other clinical renal markers 

that might reflect other kidney physiological damages. This is because urinary β2-

microglobulin has a low molecular weight and about 95% is filtered through normal 

glomerulus freely and then almost completely reabsorbed in proximal tubules 

(Schardijn and Statius van Eps 1987). When the renal tubules become damaged or 

diseased, the concentrations of renal tubular reabsorption markers in urine would 

increase due to the decreased ability to reabsorb these proteins. 55% of 

normalbuminuric and 57% of microalbuminuric type 2 diabetic patients were found to 

have elevated β2-microglobulin as an indicator of diabetic tubulopathy in the early 

stages of CKD (Tanaka et al. 1989).  

 Biomarkers might be sourced from posttranslational modifications of 

nucleosides or proteins 

The levels of pseudouridine, L,L-TMAP, 2-(α-D-mannopyranosyl)-L-tryptophan, 

succinyladenosine and sulfotyrosine were also found to be highly correlated with each 

other and might have similarity in chemical structures or sources. This study suggested 

that they might be sourced from posttranslational modifications of nucleosides or 

proteins. A previous study proposed that the elevation in serum pseudouridine and 2-

(α-D-mannopyranosyl)-L-tryptophan might be atttributed to the increased 

posttranslational modifications in tissues of diabetic patients (Niewczas et al. 2017). 

Pseudouridine and 2-(α-D-mannopyranosyl)-L-tryptophan were C-glycosylated uracil 

and tryptophan, respectively (Sekula et al. 2016). Additionally, sulfotyrosine, that have 

a high correlation with UACR,  is O-sulfation of protein tyrosine residues, a post-

translational modification facilitated by Golgi tyrosyl-protein sulfotransferases in the 

secreted and transmembrane proteins (Ouyang, Lane, and Moore 1998; Bundgaard and 

Rehfeld 2013). Noticeably, the other two metabolites, succinyladenosine and L,L-
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TMAP were derived from succinylation of adenosine and methylation of alanylproline, 

respectively. These modifications might arise from chronic oxidative stress and/or 

carbon stress induced by cellular diabetic redox imbalance  (Lyons and Jenkins 1997; 

Zheng et al. 2016). Persistent hyperglycemia would cause redox imbalance between 

NADH and NAD+, resulting overproduction of reactive oxygen species to attack 

proteins and DNA and induce protein and nucleoside modifications (Yan 2014) .  

 Uremic retention solutes quicken CKD progression 

Most of the altered metabolites that were inversely correlated to GFR in this study, 

including the selected biomarkers have previously been reported as uremic retention 

solutes (Mair et al. 2018; Velenosi et al. 2019). Uremic retention solutes were 

accumulated in the circulation and tissues during the development of CKD, directly or 

indirectly owing to a lack of renal clearance by kidney degradation (Vanholder and De 

Smet 1999). Uremic retention solutes have been shown to quicken CKD progression 

by causing oxidative stress, renal fibrosis, functional impairment on kidney and 

cardiovascular system and other organs (Mair, Sirich, and Meyer 2018; Lisowska-

Myjak 2014). Indoxyl sulfate and p-cresol sulfate are two well-known protein-bound 

uremic solutes that depend on tubular secretion for elimination. Their accumulation 

induced the progression of cardiovascular and renal diseases and damaged bone 

metabolism in CKD patients (Liu, Tomino, and Lu 2018). At early stages of diabetes, 

uremic solute accumulation in the circulation would be a consequence of oxidative 

stress induced by diabetic redox imbalance but also played a role in quickening CKD 

progression simultaneously. 



 

229 

 

 Pathway analysis suggested dysregulation of amino acid and related 

pathways 

Evaluating pathway changes provides a systematic biology approach that can be used 

to understand the metabolic effects of CKD in diabetic pathobiology. In the present 

study, alternations were identified in the pathways that suggested dysregulation of 

amino acid and related pathways, especially tryptophan and phenylalanine metabolisms 

(Fig. 5.9). In the tryptophan metabolism, the rise in IDO (indoleamine 2,3-dioxygenase) 

activity as estimated by the kynurenine to tryptophan ratio was in line with the result of 

the Family Investigation of Nephropathy in Diabetes study (Debnath et al. 2017). The 

drop in the tyrosine to phenylalanine ratio in the phenylalanine metabolism was in line 

with a research that indicated an impairment in the conversion of phenylalanine to 

tyrosine in chronic kidney failure (Kopple 2007). In particular, the observation of 

increased IDO activity in the tryptophan metabolisms was in line with several CKD 

studies (Karu et al. 2016; Debnath et al. 2017; Zhang, Ruan, et al. 2017). Noticeably, 

the increased IDO activity was reported to be activated by the inflammatory signals to 

increase the biosynthesis of NAD+ for promoting immune tolerance and preventing 

inflammatory responses (Sorgdrager et al. 2019). The positive correlation of tryptophan 

with GFR and negative correlation of estimated IDO activity (the kynurenine to 

tryptophan ratio) implied that tryptophan catabolism got more active at later stages of 

CKD. 

 Strength of this study 

One major strength of this study is that the metabolite alternations in one cohort were 

reproducible in another independent cohort conducted at different time, a step that was 

usually absent in other studies (Colhoun and Marcovecchio 2018). Another strength 
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was that this study covered normal individuals and diabetic patient at all CKD stages, 

especially those at early Stages with GFR up to 60 - 150, suffering from glomerular 

hyperfiltration, mild and moderate renal damage, which other studies always lacked. 

More importantly, to our knowledge, succinyladenosine was the only biomarker that 

was first reported to have association with GFR > 60 in diabetic patients in this study. 

The correlation of succinyladenosine with GFR was first found to have no 

independence on gender whereas gender had smaller effect on L,L-TMAP than serum 

creatinine in relationship with with GFR. 

 Limitation 

There were limitations to this study. First, this study only focused on type 2 diabetic 

Chinese patients, so it might not be generalizable to the other racial populations and 

type 1 diabetic patients. Second, samples size in each group may not be enough to 

reflect entire population. Third, the relative intensities of the UPLC-MS detected 

biomarkers were used in the analysis of this study rather than their actual 

concentrations, but their stabilities monitored by QC samples were high. Thus, the 

relative intensity would be compared among samples. Fourth, this was a cross-sectional 

study and the serum samples were only collected at a single time point, so this was 

unable to monitor the trends of metabolite change over time in the same individual. A 

longitudinal study of the disease progression with repeated measures over prolonged 

period of time would certainly further validate the findings reported here. 

 Conclusion 

This study of two independent cohorts demonstrated the robust correlation of serum 

succinyladenosine, pseudouridine and 2-(α-D-mannopyranosyl)-L-tryptophan and L,L-

TMAP with MDRD GFR in type 2 diabetic patients, which were observed early at 
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MDRD GFR ≥ 60.  Gender as a covariate had no effect in the linear regression using 

either succinyladenosine, pseudouridine or 2-(α-D-mannopyranosyl)-L-tryptophan. 

Furthermore, prediction of MDRD GFR and CKD stages using these four biomarkers 

alone were comparable with serum creatinine. Combination of these biomarkers with 

serum creatinine improved the diagnostic ability of the serum creatinine alone in 

differentiation of early CKD stages. Stepwise multivariate linear regression selected 

pseudourdine and L,L-TMAP as significant and independent predictors, adding in the 

regression equation of MS-detected creatinine and gender in prediction of MDRD GFR. 

A longitudinal study and targeted analysis of these biomarker are warranted to replicate 

the respective changes along with the CKD progression for the same diabetic 

individuals and validate the associations reported in this study.  
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Chapter 6  Overall conclusion and prospects 

 Overall conclusion 

Untargeted metabolomics has emerged as a promising approach to address important 

research questions. Untargeted metabolomics with MS plays key roles in applications 

of underlying pathologic mechanism, biomarker and drug discovery. Unexpected 

changes in metabolite levels can be exploited to uncover novel mechanisms related to 

health and disease. 

Metabolomics has been used to examine the changes of metabolites in three cases with 

increasing complexity. The first study is a classic serum untargeted metabolic profiling 

for investigation of cholesterol-lowering effects of piceatannol. Validation of the results 

were done with a quantitative analysis and subsequent protein expression of the 

associated enzymes discovered from the pathways of biomarkers found. 

In the second study, more complex phytochemicals sourced from a Chinese herbal 

medicine that also contained piceatannol and its glucoside was studied in a more serious 

metabolic disorder, NAFLD. The herbal extract contains more complex chemicals and 

it may act on multiple sites and targets in the body to bring out the protective effect. In 

order to cover more metabolites, this study includes serum metabolomics and liver 

lipidomics. The two different sample preparations and analytical methods allow 

profiling of polar small molecules and less polar lipids to maximize the coverage of 

metabolites. In this study, bio-transformed resveratrol and/or polydatin derived 

metabolites via microbial transformation were unveiled with the help of multivariate 

statistics without any previous hypothesis.  
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The last cross-sectional study is a large-scale serum metabolomics of about 200 human 

serum samples with five stages of CKD in diabetes. This study involved plenty of data 

treatments as five groups were compared, and two independent cohorts were collected 

to enhance the robustness of the biomarker discovery. Clinical biochemical data were 

incorporated into MS-detected small molecule candidates for the differentiation 

between CKD stages and improvement of GFR estimation. The linear regression results 

showed there was a high relationship between MDRD GFR and MS-detected 

succinyladenosine, pseudouridine or 2-(α-D-mannopyranosyl)-L-tryptophan with the 

advantage of being independent on gender compared with the routine marker, serum 

creatinine. The finding proved the combination of pseudouridine and L,L-TMAP with 

serum creatinine and gender improved the accuracy in differentiation at early stages of 

CKD.  

Untargeted metabolomics in this study provided new research directions in drug 

discovery and gave hints of drug target sites for drug development. Resveratrol bio-

transformed metabolites in PCRR-retreated rat serum explained the reason of low 

bioavailability of resveratrol via oral administration and they might be candidates 

modified as new medicines. Moreover, piceatannol treatment on HFD-fed rats showed 

that ∆5-desaturase activity in fatty acid synthesis were upregulated in response to the 

influx of fat from HFD intake. The CYP7A1 activity was elevated after treatment with 

PCRR water extract to remove hepatic cholesterols. Chronic inflammation in diabetic 

patients activated kynurenine pathways in response to the inflammatory signals. 

However, the activated pathways might also generate excess products into toxic levels 

in the biological system such as kynurenine whose metabolic products (3-

hydroxykynurenine and quinolinic acid) in high levels may cause neurotoxicity (Parrott 

et al. 2016). Since the three pathways comprised multiple functional and important 
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enzymes and receptors for regulation, additional studies on the changes of enzyme 

protein expression and receptor genomic expression are warranted to figure out the 

possible drug targets for development of new medicines. Meanwhile, their possible 

adverse effects of drug actions should also be examined. 

The action of gut microbiota was commonly observed after investigation of the altered 

metabolites in the three chronic disorders and treatments. This could be explained by 

the imbalance of gut microbiota in association with chronic diseases (Jackson et al. 

2018; Durack and Lynch 2019). Their actions were observed in our metabolomics 

results: they bio-transformed primary bile acids into secondary bile acids in the gut; 

they deconjugated glycine and taurine-conjugated bile acids; they bio-transformed 

resveratrol and/or polydatin from PCRR extract into dihydroresveratrol and 3,4-

dihydrobibenzyl by reduction of the carbon-carbon double bond of resveratrol; they 

converted dietary tryptophan and tyrosine into indole and cresol respectively,  and then 

their derivatives such as 3-indoleacetic acid, indoxyl sulfate and p-cresol sulfate. There 

were plenty of direct interactions between gut microbiota and diets, medications and 

circulating metabolites. Thus, comparison of the relative abundance and genera of 

intestinal bacteria from the feces between groups could be achieved by the extraction 

of fecal microbial DNA. This would reveal new pathways on pathogenesis of chronic 

diseases. Treatment could be achieved by balancing targeted intestinal microflora’s 

abundance or composition. 

It is quite clear that more sophisticated data processing and multivariate techniques ae 

important for complex samples. The first two experiments analysed serum and tissue 

samples from rats. These animals were kept in well controlled facilities with consistent 

diets to reduce confounding factors. Thus, PLS-DA and OPLS-DA are already good 

enough to provide clear results. In the third experiment, when human subjects were 
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involved, there were more factors that could not be controlled. More sophisticated data 

processing methods were used to uncover and validate the differences observed. 

 Future Prospects 

These experiments demonstrated an untargeted metabolomics approach is a powerful 

technique for an overview of the metabolic status,  discovery of the biological pathways 

associated to disease pathogenesis and identifying the biological actions of treatment. 

Yet, there are still some future works for confirmation and validation of the findings.  

Outliers were observed in the animal studies and clinical cohorts but identification and 

removal of the outlier in each group caused a lot of works and reduced the sample size. 

A larger sample size would certainly improve the robustness of each study and weaken 

the effect of outliers in each group. The samples in each experiment conducted were 

only collected at a single time point. A longitudinal study may improve our 

understanding of the causes and effects of the diseases and therapy, such as collection 

of samples before and after treatments as well as a long term follow-up of the same 

subjects for disease progression. 

Apart from the bile acids in the first study, only relative quantification of metabolites 

was performed rather than actual concentration. The high stability in the data 

acquisition was reflected by QC samples, suggesting that the relative intensities of the 

metabolites could be used as dependable comparison among samples. To get the 

absolute content for future clinical application, the main challenges was the 

unavailability of each biomarker’s isotopic-labelled internal standard. This requires 

more explorative experiments to look for alternative internal standards that may have 

similar chemical properties as the biomarkers.  
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Another difficulty is the identification of novel compounds, like the transformed 

metabolites discovered in PCRR-treated rat serum in Chapter 4. Their identifies could 

only be confirmed by mass fragmentation due to the lack of commercially available 

reference standards. More experiments are needed to confirm its chemical 

identification.  

In the CKD study, protein or nucleoside modifications by the attack of overproduced 

reactive oxygen species in diabetic patients was proposed but their underlying 

mechanism was not validated in the current CKD clinical study. More investigation on 

the linkage of the reactive oxygen species with the modified metabolites was still 

warranted. 

In addition, studies of various samples types from the subjects, like gut microbiota, 

urine and faeces, would broaden the spectra of metabolites and discover inter-organ 

crosstalk. In particular, the changes of composition and contents of gut microbiota in 

the faeces due to the three chronic disorders and drug treatments might help explain the 

difference of circulating metabolic changes between controls, disease models and 

treatment groups. Integration of metabolomics and the other omics tools such as 

proteomics and genomics may improve the interpretation of the discover at different 

levels of omics data and generate new insights. These combination of sample types and 

omics tools may give a comprehensive view of the changes of each single 

molecular process. 
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Appendix I 

Table S3.1 The variation of intensity of the QC samples (A) negative ESI mode in UPLC-MS; (B) positive ESI mode in UPLC-QTOF-MS 

Table S3.1A 
 

L-Tryptophan Taurocholate  Taurodeoxy-

cholate  

Cholate  Chenodeoxy-

cholate  

LysoPC 

(18:2)  

LysoPC 

(18:1)  

LysoPC 

(20:2)  

LysoPC 

(20:0)  

Stearate  

Retention time 

(min 

3.16 4.06 4.79 5.19 6.77 7.4 8.62 9.09 .2 13.7 

Measured m/z 203.0812 514.2832 498.2882 407.279 391.2842 564.33 566.3455 592.3611 596.3924 283.263 

QC1 12250 10771 31848 30274 9775 83436 59307 5878 4276 2186 

QC2 12488 11166 33649 30699 9943 83488 71877 5590 4114 2335 

QC3 12267 10147 31918 29817 9474 101152 79956 5061 3528 2215 

QC4 11447 9880 31940 28503 9000 73454 61078 4638 3211 2069 

QC5 11262 9555 31301 28486 8735 73007 50262 5199 2848 1988 

QC6 12647 7735 29932 27103 8583 74342 58353 6440 5160 1750 

QC7 11913 8072 29814 28179 8717 73407 55552 5877 3874 1829 

QC8 12007 8621 32474 28755 9079 75912 55791 5255 3474 1860 

QC9 11591 8343 32264 28400 8759 72313 52709 5705 4074 1806 

QC10 12002 8311 32416 27396 8744 71854 55293 5163 3806 1787 

Mean of peak 

area 

11987 9260 31756 28761 9081 78237 60018 5481 3836 1983 

Standard 

deviation 

449 1205 1163 1173 483 9127 9137 518 639 208 

CV (%) 3.75 13.01 3.66 4.08 5.32 11.67 15.22 9.45 16.66 10.49 
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Table S3.1B 
 

L-Tryptophan Phytosphingo-

sine 

Cholic acid Chenodeoxy-

cholic acid 

LysoPC 

(18:2) 

LysoPC 

(20:4) 

LysoPC 

(18:1) 

LysoPC 

(18:0) 

Palmitic 

amide 

13-

Docosen-

amide 

Retention 

time (min) 

3.16 4.99 5.19 6.76 7.4 7.51 8.61 9.75 11.09 14.39 

Measured 

m/z 

205.0983 318.3007 355.2636 357.2793 520.3401 544.34 522.3555 524.3712 256.2643 338.3422 

QC1 2318 27808 29718 12278 244547 180388 138260 391141 20072 131534 

QC2 2542 28289 29016 12520 229777 170500 126757 357984 14587 125434 

QC3 2457 25610 26869 11824 204855 152653 113120 320687 11332 121769 

QC4 2360 23909 24515 10809 185431 134544 105649 287219 16834 116217 

QC5 2260 22968 24200 10757 182025 133367 98453 275012 16515 114107 

QC6 2944 27927 26489 11661 245094 192316 143677 397220 18411 159475 

QC7 2933 26670 25759 11422 233686 183302 136330 364942 17892 148929 

QC8 3005 26658 24845 10956 218304 170244 124738 342377 18886 146047 

QC9 2506 22593 21218 8900 183155 144834 107954 283546 16064 120597 

QC10 2121 21405 19527 7853 172423 136774 101015 254091 14131 113248 

Mean of peak 

area 

2545 25384 25216 10898 209930 159892 119595 327422 16472 129736 

Standard 

deviation 

312 2489 3151 1474 27872 22108 16500 50781 2589 16284 

CV (%) 12.27 9.8 12.5 13.52 13.28 13.83 13.8 15.51 15.72 12.55 
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Table S3.2 The variation of peak area ratio of EFA of the QC serum samples injected between study samples in GC-MS  

EFA EC14:0 EC15:0 EC16:0 EC16:1n7c EC17:0 EC18:0 EC18:1n9c EC18:2n6c EC18:3n6c EC18:3n3c EC20:0 EC20:2n6c EC20:3n6c EC20:4n6c EC20:5n3c EC22:6n3c 

Q1 0.4041 0.2074 0.6872 0.1863 0.2163 0.4630 0.6632 0.1771 0.1722 0.1835 0.4633 0.1773 0.1700 0.1378 0.1693 0.1428 

Q2 0.3926 0.2056 0.6669 0.1870 0.2171 0.4579 0.6618 0.1875 0.1794 0.1874 0.4754 0.1871 0.1798 0.1486 0.1821 0.1599 

Q3 0.4035 0.2092 0.6782 0.1896 0.2159 0.4657 0.6630 0.1848 0.1823 0.1889 0.4702 0.1870 0.1782 0.1533 0.1803 0.1661 

Q4 0.3929 0.2017 0.6637 0.1805 0.2109 0.4554 0.6526 0.1746 0.1696 0.1785 0.4541 0.1714 0.1646 0.1425 0.1666 0.1437 

Q5 0.3909 0.2021 0.6641 0.1839 0.2144 0.4615 0.6477 0.1820 0.1781 0.1830 0.4634 0.1834 0.1748 0.1519 0.1716 0.1513 

Q6 0.3847 0.2005 0.6670 0.1848 0.2149 0.4584 0.6532 0.1836 0.1834 0.1863 0.4659 0.1872 0.1851 0.1587 0.1798 0.1653 

Q7 0.3826 0.2017 0.6633 0.1841 0.2118 0.4593 0.6546 0.1947 0.1768 0.1843 0.4665 0.1872 0.1768 0.1624 0.1809 0.1555 

Q8 0.3872 0.2005 0.6726 0.1803 0.2111 0.4792 0.6601 0.2015 0.1763 0.1809 0.4629 0.1856 0.1765 0.1706 0.1753 0.1625 

Q9 0.3863 0.1993 0.6631 0.1799 0.2139 0.4565 0.6491 0.1873 0.1711 0.1812 0.4629 0.1823 0.1750 0.1507 0.1772 0.1571 

Q10 0.3857 0.2022 0.6630 0.1808 0.2106 0.4523 0.6519 0.1827 0.1756 0.1856 0.4630 0.1816 0.1729 0.1517 0.1783 0.1609 

Q11 0.3965 0.2044 0.6707 0.1858 0.2140 0.4549 0.6474 0.1826 0.1746 0.1833 0.4641 0.1840 0.1753 0.1477 0.1757 0.1564 

Q12 0.3867 0.2028 0.6627 0.1829 0.2107 0.4619 0.6549 0.1874 0.1756 0.1832 0.4684 0.1874 0.1790 0.1543 0.1786 0.1575 

Q13 0.3870 0.2015 0.6815 0.1862 0.2153 0.4755 0.6675 0.2015 0.1774 0.1886 0.4711 0.1906 0.1817 0.1674 0.1772 0.1657 

Q14 0.4024 0.2054 0.6818 0.1873 0.2169 0.4608 0.6643 0.1807 0.1818 0.1899 0.4785 0.1848 0.1757 0.1526 0.1813 0.1612 

Q15 0.3942 0.2059 0.6712 0.1848 0.2158 0.4608 0.6611 0.1799 0.1784 0.1848 0.4755 0.1845 0.1781 0.1479 0.1707 0.1612 

Q16 0.3956 0.2043 0.6840 0.1874 0.2171 0.4734 0.6733 0.1940 0.1774 0.1871 0.4683 0.1834 0.1769 0.1622 0.1756 0.1670 

Q17 0.4032 0.2099 0.6791 0.1885 0.2172 0.4672 0.6661 0.1761 0.1734 0.1849 0.4735 0.1820 0.1746 0.1506 0.1695 0.1587 

Q18 0.3951 0.2064 0.6728 0.1855 0.2165 0.4583 0.6621 0.1830 0.1803 0.1889 0.4697 0.1905 0.1791 0.1532 0.1785 0.1647 

Q19 0.3960 0.2070 0.6781 0.1853 0.2155 0.4631 0.6664 0.1812 0.1788 0.1899 0.4708 0.1883 0.1803 0.1542 0.1830 0.1634 

Q20 0.3974 0.2053 0.6705 0.1864 0.2156 0.4612 0.6526 0.1860 0.1808 0.1872 0.4672 0.1933 0.1841 0.1522 0.1777 0.1500 

Mean of 

peak 

area 

0.3932 0.2041 0.6721 0.1849 0.2146 0.4623 0.6586 0.1854 0.1772 0.1854 0.4677 0.1849 0.1769 0.1535 0.1764 0.1586 

Standard 

deviation 

0.007 0.003 0.008 0.003 0.002 0.007 0.007 0.008 0.004 0.003 0.006 0.005 0.005 0.008 0.005 0.007 

CV (%) 1.72 1.46 1.18 1.50 1.09 1.51 1.12 4.05 2.10 1.72 1.21 2.61 2.61 5.06 2.65 4.42 
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Table S3.3 The variation of concentration of the QC serum samples injected between study samples in UPLC-QQQ-MS/MS 

Standards QC1 QC2 QC3 QC4 QC5 QC6 QC7 CV (%) 

Ursodeoxycholate 95.27 91.48 108.48 97.72 89.28 96.48 92.52 6.56 

Hyodeoxycholate 678.71 746.84 743.44 729.68 669.20 745.24 723.08 4.50 

Chenodeoxycholate 362.69 352.16 371.84 394.96 359.52 373.44 404.92 5.13 

Lithocholate < LOD < LOD < LOD < LOD < LOD < LOD < LOD N/A 

Deoxycholate 623.11 612.80 640.64 628.40 626.36 652.52 653.44 2.43 

α-Muricholate 121.03 120.04 118.00 120.44 128.48 132.72 133.88 5.28 

β-Muricholate 220.57 238.16 235.96 242.84 231.96 223.84 249.52 4.35 

Cholate 956.44 967.84 989.88 944.56 1000.64 994.64 1012.56 2.55 

Glycoursodeoxycholate 6.07 6.13 5.86 4.95 5.74 7.75 7.45 15.67 

Glycohyodeoxycholate 117.91 121.20 113.20 116.16 114.80 122.04 117.20 2.74 

Glycochenodeoxycholate 40.28 42.60 40.36 40.28 38.52 42.24 40.36 3.38 

Glycodeoxycholate 382.55 376.24 369.04 357.48 345.76 369.56 352.24 3.65 

Glycocholate 327.19 318.68 339.00 332.60 302.72 316.24 303.60 4.34 

Tauroursodeoxycholate < LOD < LOD < LOD < LOD < LOD < LOD < LOD N/A 

Taurohyodeoxycholate 99.68624 96.66 95.05 111.32 97.67 105.64 106.94 6.02 

Taurochenodeoxycholate 193.86 184.72 171.40 158.04 143.28 175.04 148.00 11.20 

Taurodeoxycholate 32.68 28.72 27.40 28.96 28.52 29.88 27.48 6.19 

Taurocholate 164.39 169.32 165.28 167.92 166.08 185.20 183.32 5.12 
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Appendix II 

Table S5.1 Spearman rank correlation of metabolites with clinically measured serum 

creatinine at different ranges with discovery and validation sets (absolute Spearman R > 

0.40) 

Metabolites associated to clinically 

measured serum creatinine 

Stages 0-4 Stages 1-4   Stage 1-2 (GFR ≥ 60) 

Discovery  

(n=128) 

Validation  

(n=66) 

Discovery  

(n=108) 

Validation  

(n=56) 

Discovery  

(n=69) 

Validation 

(n=30) 
MS-detected serum creatinine 0.9569 0.9611 0.9648 0.9534 0.9115 0.8943 

L,L-TMAP 0.8848 0.9258 0.9181 0.9342 0.7267 0.7104 

L,L-TMAP isomer 0.8683 0.9014 0.9045 0.9261 0.7071 0.6732 

Pseudouridine 0.8654 0.9073 0.9052 0.9232 0.6776 0.6823 

Succinyladenosine 0.8301 0.9187 0.8765 0.9212 0.6343 0.7674 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.8234 0.9176 0.8720 0.9184 0.5849 0.7718 

5-Methylthio-D-ribose 0.8028 0.9287 0.8555 0.9395 0.5053 0.7885 

Succinylcarnitine 0.7851 0.7069 0.8152 0.6929 0.5454 0.1383 

Sulfotyrosine 0.7839 0.8944 0.8269 0.9099 0.4597 0.7115 

4-Acetamidobutanoic acid 0.7705 0.8815 0.8157 0.9045 0.3640 0.5572 

Ratio of pseudouridine to uridine 0.7652 0.9001 0.8074 0.9078 0.4771 0.5975 

2-[3-(sulfooxy)phenyl]acetic acid  0.7617 0.8006 0.8137 0.8247 0.3819 0.4165 

Indole-3-lactic acid 0.7576 0.7355 0.7763 0.7017 0.4384 0.5376 

2-Hydroxyethanesulfonate 0.7428 0.7514 0.8076 0.8298 0.3909 0.5465 

N-Acetylcarnosine 0.7377 0.7324 0.7592 0.7106 0.5395 0.5468 

O-Adipoylcarnitine 0.7294 0.8577 0.7920 0.8929 0.3833 0.6567 

Ratio of kynurenine to tryptophan 0.7076 0.7567 0.7593 0.8055 0.2187 0.3925 

L-Kynurenine 0.7071 0.8375 0.7294 0.8450 0.2809 0.6285 

Kynurenic acid 0.6972 0.8217 0.7618 0.8552 0.2480 0.5069 

Arabinose isomer 0.6913 0.7409 0.7300 0.7595 0.3595 0.2801 

L-β-Aspartyl-L-leucine 0.6640 0.7789 0.6971 0.8462 0.3200 0.5846 

Butyrylcarnitine 0.6470 0.6518 0.7093 0.6580 0.2215 0.2500 

Indoxyl sulfate 0.5682 0.7004 0.6681 0.7397 0.1713 0.5519 

Homovanillic acid sulfate 0.5661 0.7584 0.6254 0.7844 0.0205 0.2847 

α-N-Phenylacetyl-L-glutamine 0.5590 0.5878 0.6468 0.6365 0.0047 0.0677 

Ratio of kynurenic acid to kynurenine 0.5383 0.6293 0.6112 0.6725 0.0800 0.0363 

L-Citrulline 0.5163 0.5932 0.5708 0.6802 -0.0098 0.0888 

p-Cresol glucuronide 0.5129 0.5016 0.5841 0.5602 -0.1374 0.1757 

Valerylcarnitine 0.4974 0.5439 0.4945 0.5182 0.2781 0.3618 

Phenol sulfate 0.4908 0.5900 0.5601 0.6252 0.1925 0.1567 

p-Cresol sulfate 0.4845 0.4110 0.5747 0.4776 0.0138 -0.0443 

3-Hydroxydecanoyl carnitine 0.4776 0.6505 0.5806 0.6507 0.5575 0.2674 

9-Decenoylcarnitine 0.4726 0.5253 0.5553 0.5239 0.4369 0.2785 

γ-Butyrobetaine 0.4269 0.4627 0.4619 0.4591 0.5170 0.5755 

3-Indoleacetic acid 0.4056 0.5727 0.4345 0.5803 -0.0373 0.2643 

L-Tryptophan -0.4774 -0.4083 -0.5430 -0.5071 0.0792 0.2164 

L-Carnitine -0.5005 -0.4330 -0.5309 -0.4659 -0.1464 -0.1060 

L-Tyrosine -0.5126 -0.5369 -0.5773 -0.6564 -0.1645 -0.2531 

Ratio of tyrosine to phenylalanine -0.6663 -0.7429 -0.6955 -0.7613 -0.3634 -0.3680 

Serum homocysteine (μmol/L) - 0.7384 - 0.7501 - 0.6594 

Serum cystatin C (mg/L) - 0.9288 - 0.9450 - 0.8361 
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Table S5.2 Spearman rank correlation of metabolites with UACR at different ranges with discovery and validation sets. 

(Absolute Spearman R > 0.40) 

Metabolites  Stages 0-4 Stages 1-4 Stages 1-3 (UACR<300) Stages 1-2 (UACR<300) 

Discovery 

(n= 128) 

Validation 

(n=66) 

Discovery 

(n=108) 

Validation 

(n=56) 

Discovery 

(n=69) 

Validation 

(n=38)  

Discovery 

(n=69) 

Validation 

(n=30)  

4-Acetamidobutanoic acid 0.7903 0.7244 0.8119 0.7076 0.5128 0.2306 0.5065 0.1849 

Succinyladenosine 0.7799 0.6706 0.7947 0.6897 0.5327 0.1752 0.4900 0.1791 

2-(α-D-Mannopyranosyl)-L-tryptophan 0.7643 0.7062 0.8009 0.7459 0.4686 0.2765 0.4739 0.3068 

Pseudouridine 0.7514 0.7330 0.7936 0.7411 0.4685 0.2734 0.4467 0.2494 

2-[3-(sulfooxy)phenyl] acetic acid 0.7311 0.6968 0.7540 0.6789 0.4164 0.1896 0.3369 0.1697 

5-Methylthio-D-ribose 0.7124 0.6551 0.7626 0.6633 0.4176 0.1012 0.3665 0.0754 

L-β-aspartyl-L-leucine 0.7095 0.5806 0.6736 0.6724 0.3563 0.1485 0.3807 0.1902 

Arabinose isomer 0.7089 0.6716 0.6420 0.6591 0.2954 0.1095 0.2465 0.0171 

2-Hydroxyethanesulfonate 0.6971 0.6040 0.7137 0.7109 0.3328 0.2520 0.2812 0.3086 

L,L-TMAP isomer 0.6951 0.6704 0.7308 0.6695 0.3200 0.1649 0.2805 0.1248 

L,L-TMAP 0.6940 0.6628 0.7426 0.6756 0.3471 0.1566 0.2907 0.1132 

Serum creatinine (mg/dL) 0.6880 0.6464 0.7367 0.6668 0.3486 0.2334 0.2627 0.1734 

Ratio of kynurenine to tryptophan 0.6837 0.6625 0.7302 0.7114 0.4041 0.2518 0.3247 0.3330 

Sulfotyrosine 0.6466 0.6986 0.7160 0.7321 0.3497 0.3785 0.2515 0.2659 

MS-detected creatinine 0.6434 0.6349 0.6805 0.6569 0.2506 0.1737 0.1389 0.0843 

O-Adipoylcarnitine 0.6311 0.7017 0.7089 0.6785 0.3586 0.2993 0.2846 0.2436 

Ratio of pseudouridine to uridine 0.6212 0.7404 0.6672 0.7718 0.1955 0.3645 0.1498 0.3379 

Succinylcarnitine 0.6152 0.6863 0.6446 0.6102 0.1968 0.1688 0.1394 0.1800 

Indolelactic acid 0.5997 0.6167 0.6372 0.5987 0.2592 0.3951 0.2280 0.4047 

L-Kynurenine 0.5886 0.6263 0.6384 0.6223 0.3312 0.2960 0.2369 0.2747 

Urea (mmol/L) 0.5795 0.4845 0.6011 0.5098 0.1697 -0.0623 -0.0643 0.0574 

α-N-Phenylacetyl-L-glutamine 0.5616 0.4664 0.6036 0.4714 0.2370 0.0233 0.1102 -0.0278 

Kynurenic acid 0.5578 0.7553 0.6187 0.7460 0.3206 0.3667 0.0581 0.4670 

Butyrylcarnitine 0.5355 0.4758 0.5603 0.4732 0.0866 0.0795 -0.0010 0.1288 

p-Cresol glucuronide 0.5324 0.4299 0.5283 0.4478 0.1847 -0.0349 -0.0029 0.1831 

N-Acetylcarnosine 0.5315 0.6329 0.5504 0.6179 0.0275 0.2465 0.0621 0.3321 

L-Citrulline 0.5219 0.4984 0.5822 0.6252 0.1946 0.3623 0.1328 0.1835 

Homovanillic acid sulfate 0.5172 0.7267 0.5944 0.6837 0.2009 0.2397 0.1270 0.2476 

Choline 0.4907 0.5668 0.3795 0.5949 0.2332 0.1572 0.2669 0.1795 

Indoxyl sulfate 0.4592 0.4917 0.5338 0.5281 0.1205 0.1529 -0.0106 0.1457 

Ratio of kynurenic acid to kynurenine 0.4466 0.7075 0.4927 0.7032 0.2141 0.2638 -0.0547 0.3081 

Phenol sulfate 0.4312 0.5684 0.5028 0.5444 0.0956 0.2095 0.0955 0.2147 

Bilirubin -0.5010 -0.3373 -0.5507 -0.4443 -0.2458 -0.1008 -0.1470 -0.1003 

L-Tyrosine -0.5461 -0.4178 -0.6023 -0.5382 -0.3021 0.0614 -0.3089 0.1546 

L-Tryptophan -0.5934 -0.5703 -0.5917 -0.6472 -0.3116 -0.1084 -0.1961 -0.2494 

Ratio of tyrosine to phenylalanine -0.6742 -0.5629 -0.6760 -0.5526 -0.3970 -0.0675 -0.4015 -0.0113 

MDRD GFR -0.7325 -0.6911 -0.7786 -0.6634 -0.4146 -0.2244 -0.3927 -0.1889 

Serum cystatin C (mg/L)  0.6549  0.6758  0.1923  0.3427 
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Table S5.3 Spearman rank correlation of metabolites with urinary β2-microglobulin at different ranges with discovery and 

validation sets (absolute Spearman R > 0.40) 

Metabolites  Stage 0-4 Stage 1-4 Stages 1-3 

(UACR<300) 

Stages 1-2 

(UACR<300) 

Discovery 

(n=128) 

Validation 

(n=65) 

Discovery 

(n=108) 

Validation 

(n=55) 

Discovery 

(n=63) 

Validation 

(n=38) 

Discovery 

(n=55) 

Validation 

(n=28) 

5-Methylthio-D-ribose 0.6569 0.6962 0.7100 0.7152 0.3875 0.3131 0.3243 -0.0373 

L,L-TMAP isomer 0.6278 0.6460 0.6962 0.6814 0.2256 0.2824 0.1247 -0.0351 

Pseudouridine 0.6270 0.7696 0.6900 0.7933 0.3189 0.5088 0.2296 0.2950 

UACR 0.6215 0.7000 0.6473 0.6938 0.1689 0.2709 0.0436 0.2966 

MS-detected creatinine 0.6183 0.6565 0.6670 0.6853 0.2030 0.2908 0.0914 0.0027 

2-Hydroxyethanesulfonate 0.6179 0.5959 0.6684 0.6468 0.3413 0.1986 0.2561 0.1468 

Serum Creatinine (mg/dL) 0.6102 0.6981 0.6583 0.7336 0.2493 0.3919 0.1490 0.1006 

L,L-TMAP 0.6081 0.6557 0.6697 0.6809 0.1815 0.2534 0.0409 -0.0381 

2-(α-D-Mannopyranosyl)-L-tryptophan 0.6063 0.6925 0.6638 0.7314 0.2206 0.3510 0.0881 0.0985 

4-Acetamidobutanoic acid 0.6056 0.7871 0.6457 0.8056 0.2009 0.5240 0.0449 0.3155 

O-Adipoylcarnitine 0.5962 0.7536 0.6181 0.7719 0.3647 0.4841 0.2653 0.3883 

Ratio of kynurenine to tryptophan 0.5891 0.6671 0.6759 0.6979 0.2470 0.3280 0.1344 0.0225 

Succinyladenosine 0.5884 0.7412 0.6353 0.7802 0.1537 0.4771 0.0225 0.2011 

Succinylcarnitine 0.5781 0.6436 0.6332 0.6151 0.2566 0.3277 0.1547 0.1147 

2-[3-(sulfooxy)phenyl] acetic acid 0.5676 0.6673 0.5882 0.6990 0.2838 0.2898 0.1620 0.0195 

Ratio of pseudouridine to uridine 0.5661 0.7365 0.6380 0.7657 0.2235 0.4410 0.1539 0.1926 

Sulfotyrosine 0.5492 0.7136 0.6049 0.7680 0.2104 0.4638 0.1109 0.1976 

Kynurenic acid 0.5382 0.7501 0.5848 0.7538 0.2076 0.4278 0.0916 0.2244 

Arabinose isomer 0.5205 0.5946 0.5371 0.6354 0.0313 0.1557 -0.0963 -0.0966 

α-N-Phenylacetyl-L-glutamine 0.5147 0.5675 0.5628 0.6177 0.1606 0.3378 0.0413 -0.0601 

L-Kynurenine 0.5125 0.6294 0.5864 0.6352 0.2289 0.3371 0.1068 0.1023 

p-Cresol glucuronide 0.4832 0.5133 0.5337 0.5160 0.0916 0.2349 -0.0307 -0.0209 

N-Acetylcarnosine 0.4767 0.5208 0.5208 0.5100 -0.1054 0.1027 -0.2168 0.1136 

Indolelactic acid 0.4628 0.6052 0.4914 0.6101 0.1275 0.4050 -0.0194 0.3446 

Ratio of kynurenic acid to kynurenine 0.4597 0.6744 0.4888 0.6760 0.1562 0.2601 0.0680 -0.0060 

Butyrylcarnitine 0.4594 0.4768 0.5073 0.5014 0.1768 0.1621 0.0459 -0.1043 

Indoxyl sulfate 0.4543 0.4795 0.5176 0.5467 0.1589 0.1708 0.0886 -0.0628 

Homovanillic acid sulfate 0.4254 0.6172 0.4636 0.6284 -0.1413 0.1796 -0.1859 -0.1561 

L-β-aspartyl-L-leucine 0.4194 0.5703 0.4462 0.6591 -0.0253 0.2073 -0.0974 -0.0996 

Urea (mmol/L) 0.4159 0.5956 0.4526 0.6375 -0.0189 0.3580 -0.1780 0.0578 
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p-Cresol sulfate 0.4044 0.4221 0.4468 0.4853 0.1235 0.2826 -0.0038 0.1432 

L-Citrulline 0.3746 0.5191 0.4037 0.5951 -0.0207 0.2944 -0.0010 0.2939 

Phenol sulfate 0.3376 0.5120 0.4198 0.5291 -0.0060 0.2225 -0.0155 0.0252 

Bilirubin -0.3860 -0.3606 -0.4272 -0.4709 -0.0724 -0.1488 -0.0234 -0.0313 

L-Tryptophan -0.5280 -0.4947 -0.5652 -0.5620 -0.0672 -0.0449 0.0273 0.1649 

L-Tyrosine -0.5377 -0.4873 -0.5757 -0.6038 -0.1692 -0.1175 -0.1504 -0.0903 

Ratio of tyrosine to phenylalanine -0.5831 -0.6767 -0.6141 -0.7038 -0.1606 -0.3807 -0.1135 -0.2297 

MDRD GFR -0.6283 -0.7571 -0.6714 -0.7571 -0.2710 -0.4184 -0.1830 -0.0826 

Serum homocysteine (μmol/L) - 0.4174 - 0.4328 - 0.0119 - -0.0175 

Serum cystatin C (mg/L) - 0.6365 - 0.6749 - 0.2779 - 0.1290 
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Table S5.4 Spearman rank correlation of metabolites with clinically measured serum cystatin C, serum creatinine, CKD-EPI 

creatinine GFR, CKD-EPI creatinine–cystatin C GFR, CKD-EPI cystatin C GFR at different ranges in validation sets according to MDRD-

GFR stages (absolute Spearman R > 0.40) 

Metabolites  CKD-EPI creatinine GFR 

(ml/min/1.73 m2) 

CKD-EPI creatinine–cystatin C 

GFR (ml/min/1.73 m2)  

CKD-EPI cystatin C GFR 

(ml/min/1.73 m2) 

Serum cystatin C  Serum creatinine (mg/dL)  

Stages 0-4 

(n=66) 

1-4 

(n=56) 

1-2  

(n=31) 

0-4 

(n=58) 

1-4 

(n=48) 

1-2  

(n=28) 

0-4 

(n=58) 

1-4 

(n=48) 

1-2  

(n=27) 

0-4 

(n=58) 

1-4   

(n=48) 

1-2  

(n=30) 

0-4 

(n=66) 

1-4  

(n=56) 

 1-2  

(n=30) 

MDRD GFR 0.9850 0.9963 0.9851 0.9512 0.9756 0.9141 0.9212 0.9506 0.7825 -0.9500 -0.9592 -0.8546 -0.9126 -0.9400 -0.8016 

Ratio of tyrosine to 

phenylalanine 
0.7710 0.7707 0.5730 0.7472 0.7550 0.7441 0.7235 0.7359 0.4579 -0.7086 -0.7237 -0.3153 -0.7429 -0.7613 -0.3680 

L-Tyrosine 0.5428 0.6302 0.2617 0.5050 0.6448 0.6548 0.4915 0.6337 0.2372 -0.4718 -0.6247 -0.1885 -0.5369 -0.6564 -0.2531 

Bilirubin 0.5360 0.6349 0.3625 0.5496 0.6698 0.6994 0.5514 0.6712 0.4308 -0.5256 -0.6593 -0.4885 -0.5061 -0.6384 -0.4744 

L-Tryptophan 0.4723 0.5561 -0.1367 0.4608 0.5638 0.5107 0.4918 0.5990 0.1939 -0.4478 -0.5573 -0.1090 -0.4083 -0.5071 0.2164 

L-Carnitine 0.4183 0.4396 0.2560 0.5356 0.5620 0.4718 0.5275 0.5517 -0.1612 -0.5072 -0.5453 -0.0779 -0.4330 -0.4659 -0.1060 

2-Hydroxybutyric acid 0.3315 0.5278 0.3911 0.2936 0.5280 0.5053 0.3026 0.5349 0.2442 -0.2639 -0.4925 -0.2991 -0.3031 -0.4918 -0.3495 

Betaine 0.1461 0.0623 -0.1711 0.0374 -0.0852 -0.0633 0.0322 -0.0822 -0.3081 -0.0017 0.1155 0.5735 -0.0568 0.0324 0.5001 

L-Threonine 0.0959 0.0519 0.0633 0.0283 -0.0213 -0.0069 0.0172 -0.0307 -0.0119 0.0239 0.0653 0.2139 -0.0006 0.0233 0.2974 

D-Glucose 0.0492 0.2229 0.4694 0.0182 0.2006 0.2263 0.0214 0.2039 0.5563 0.0103 -0.1711 -0.4420 -0.0467 -0.2277 -0.4181 

1,5-Anhydro-D-glucitol 0.0260 -0.1692 -0.4851 -0.0709 -0.3333 -0.4100 -0.0928 -0.3510 -0.5709 0.0575 0.3204 0.5483 -0.0078 0.2075 0.4323 

L-Glutamine -0.0312 -0.1656 -0.3573 -0.1323 -0.2841 -0.2837 -0.1394 -0.2879 -0.4296 0.1399 0.2845 0.5319 0.0988 0.2398 0.4989 

Propionylcarnitine -0.1538 -0.0781 -0.2157 -0.1698 -0.1254 -0.1575 -0.1612 -0.1212 -0.4170 0.1884 0.1357 0.3935 0.1749 0.1089 0.2654 

Decanoylcarnitine -0.2092 -0.2067 -0.0004 -0.3299 -0.3835 -0.4350 -0.3272 -0.3784 -0.2513 0.3786 0.4189 0.2515 0.3116 0.2991 0.2366 

Cortisol -0.2192 -0.1374 0.1500 -0.1177 -0.0014 -0.0819 -0.1440 -0.0262 0.0089 0.1567 0.0318 -0.0245 0.2292 0.1373 -0.1167 

Hexanoylcarnitine -0.2711 -0.2667 -0.0048 -0.2369 -0.2566 -0.3310 -0.2342 -0.2511 -0.4799 0.2789 0.2882 0.3739 0.3254 0.3048 0.2956 

L-Octanoylcarnitine -0.2723 -0.3018 0.0016 -0.3183 -0.3817 -0.3786 -0.3162 -0.3769 -0.3486 0.3626 0.4117 0.2877 0.3569 0.3668 0.2171 

Uric acid -0.2971 -0.1811 -0.3177 -0.3924 -0.2644 -0.3843 -0.4099 -0.2865 -0.5074 0.4430 0.3186 0.6242 0.3886 0.2776 0.5343 

L-Proline -0.3022 -0.2905 -0.0032 -0.2465 -0.2012 -0.2062 -0.2323 -0.1886 -0.0116 0.3136 0.2527 0.2455 0.4107 0.3454 0.3653 

3,5-Tetradecadiencarnitine -0.3051 -0.3231 -0.0153 -0.3546 -0.4031 -0.3318 -0.3714 -0.4179 -0.2442 0.4004 0.4364 0.2984 0.3785 0.3747 0.1162 

γ-Butyrobetaine -0.3522 -0.3679 -0.3520 -0.2597 -0.2800 -0.3624 -0.2250 -0.2399 -0.3233 0.2755 0.2852 0.4099 0.4059 0.3949 0.5755 

Hydroxybutyrylcarnitine -0.3870 -0.3822 -0.0992 -0.3306 -0.3340 -0.2216 -0.3409 -0.3503 -0.1984 0.3651 0.3705 0.2671 0.4186 0.4240 0.1503 

L-Phenylalanine -0.3958 -0.3039 -0.4883 -0.3946 -0.2778 -0.3104 -0.3645 -0.2446 -0.3685 0.3781 0.2531 0.2693 0.3826 0.2713 0.3217 

p-Cresol sulfate -0.4105 -0.4841 -0.0722 -0.3498 -0.4280 -0.3954 -0.3590 -0.4346 0.0827 0.3440 0.4170 0.0162 0.4110 0.4776 -0.0443 

9-Decenoylcarnitine -0.4319 -0.4506 -0.0266 -0.4818 -0.5343 -0.5498 -0.4955 -0.5455 -0.3679 0.5417 0.5786 0.4150 0.5253 0.5239 0.2785 

L-Glutamic acid -0.4437 -0.4053 -0.3113 -0.3471 -0.2896 -0.3387 -0.3326 -0.2770 -0.2638 0.3508 0.2979 0.1271 0.4605 0.4229 0.2696 

Valerylcarnitine -0.4482 -0.4157 -0.0306 -0.5332 -0.4904 -0.4579 -0.5230 -0.4753 -0.2946 0.5560 0.5032 0.3737 0.5438 0.5182 0.3618 

Ratio of L-citrulline to 

arginine 
-0.4753 -0.5818 0.1020 -0.3585 -0.4734 -0.4399 -0.3733 -0.4807 -0.0018 0.3530 0.4766 0.0113 0.4312 0.5563 -0.0494 

p-Cresol glucuronide -0.5067 -0.5768 -0.1476 -0.4094 -0.5021 -0.4342 -0.4157 -0.5015 -0.0363 0.4206 0.5099 0.1998 0.5016 0.5602 0.1756 

Indoleacetic acid -0.5156 -0.5157 -0.1544 -0.4923 -0.5103 -0.4183 -0.4897 -0.5151 0.1011 0.5113 0.5266 0.1591 0.5727 0.5803 0.2642 

2-Octenoylcarnitine -0.5300 -0.5492 -0.2194 -0.5570 -0.5936 -0.5256 -0.5848 -0.6216 -0.2888 0.6028 0.6317 0.4912 0.5483 0.5587 0.3103 
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α-N-Phenylacetyl-L-

glutamine 
-0.5861 -0.6291 -0.1734 -0.5141 -0.5710 -0.4520 -0.5320 -0.5897 0.1966 0.5205 0.5738 0.0372 0.5878 0.6365 0.0677 

L-Citrulline -0.5954 -0.7010 0.0593 -0.4990 -0.6193 -0.5537 -0.5184 -0.6324 -0.0940 0.5206 0.6346 0.1653 0.5932 0.6802 0.0888 

Citric acid -0.5959 -0.6349 -0.2085 -0.5212 -0.5618 -0.6384 -0.4977 -0.5352 -0.3377 0.4932 0.5393 0.3287 0.5365 0.5878 0.1995 

3-hydroxydecanoyl carnitine -0.6048 -0.6068 -0.2448 -0.6825 -0.7103 -0.6420 -0.6948 -0.7197 -0.3474 0.7207 0.7364 0.4952 0.6505 0.6507 0.2674 

Phenol sulfate -0.6058 -0.6314 -0.3359 -0.6287 -0.6418 -0.6710 -0.6424 -0.6548 -0.5169 0.6251 0.6379 0.3805 0.5900 0.6252 0.1567 

Ratio of kynurenic acid to 

kynurenine 
-0.6442 -0.6962 -0.0218 -0.5997 -0.6657 -0.5413 -0.6025 -0.6690 0.0519 0.5975 0.6604 0.1260 0.6293 0.6725 0.0363 

Indoxyl sulfate -0.6500 -0.6837 -0.4254 -0.6251 -0.6892 -0.6960 -0.6381 -0.7046 -0.3920 0.6430 0.6993 0.4960 0.7004 0.7397 0.5519 

Butyrylcarnitine -0.6511 -0.6603 -0.1298 -0.6202 -0.6620 -0.6124 -0.6060 -0.6506 -0.2729 0.5988 0.6271 0.2884 0.6518 0.6580 0.2500 

N-Acetylcarnosine -0.6588 -0.6304 -0.3552 -0.6554 -0.6499 -0.6389 -0.6432 -0.6391 -0.1945 0.6974 0.7006 0.4883 0.7324 0.7106 0.5467 

Choline -0.6707 -0.6855 -0.2919 -0.6243 -0.6657 -0.5761 -0.6096 -0.6483 -0.1731 0.5991 0.6421 0.2192 0.6277 0.6411 0.2317 

Succinylcarnitine -0.6793 -0.6699 0.0024 -0.6267 -0.5973 -0.4085 -0.6233 -0.5941 0.1230 0.6706 0.6437 0.1177 0.7069 0.6929 0.1382 

UACR -0.6800 -0.6899 -0.0931 -0.6430 -0.6562 -0.1111 -0.6539 -0.6700 -0.2693 0.6464 0.6668 0.1734 0.6549 0.6758 0.3427 

Indolelactic acid -0.6874 -0.6630 -0.3298 -0.7540 -0.7584 -0.6752 -0.7518 -0.7592 -0.3395 0.7771 0.7801 0.5121 0.7355 0.7017 0.5376 

Urea (mmol/L) -0.7029 -0.7610 -0.3107 -0.6830 -0.7559 -0.6480 -0.6817 -0.7547 -0.1898 0.6936 0.7645 0.4504 0.6997 0.7643 0.3428 

2-Hydroxyethanesulfonate -0.7169 -0.8126 -0.4395 -0.7169 -0.8342 -0.7426 -0.7143 -0.8292 -0.4021 0.7278 0.8445 0.5844 0.7514 0.8298 0.5465 

Arabinose isomer -0.7654 -0.7932 -0.3440 -0.6825 -0.7252 -0.6039 -0.6781 -0.7253 -0.1762 0.6981 0.7430 0.3229 0.7409 0.7595 0.2801 

Homovanillic acid sulfate -0.7967 -0.8090 -0.3585 -0.7535 -0.7776 -0.6708 -0.7425 -0.7691 -0.1734 0.7285 0.7530 0.3027 0.7584 0.7844 0.2847 

Ratio of kynurenine to 

tryptophan 
-0.7973 -0.8373 -0.4565 -0.8335 -0.8804 -0.8378 -0.8549 -0.8982 -0.7199 0.8292 0.8809 0.7259 0.7567 0.8055 0.3925 

L-β-aspartyl-L-leucine -0.7993 -0.8609 -0.6270 -0.7489 -0.8716 -0.8512 -0.7316 -0.8590 -0.5911 0.7257 0.8544 0.6525 0.7789 0.8462 0.5846 

2-[3-(sulfooxy)phenyl]acetic 

acid 
-0.8176 -0.8300 -0.4044 -0.7769 -0.7980 -0.6505 -0.7654 -0.7894 -0.1417 0.7760 0.7988 0.3866 0.8006 0.8246 0.4165 

Kynurenic acid -0.8335 -0.8710 -0.4685 -0.8538 -0.9023 -0.8281 -0.8514 -0.8984 -0.5706 0.8511 0.8992 0.6803 0.8217 0.8552 0.5069 

O-Adipoylcarnitine -0.8383 -0.8568 -0.5085 -0.8320 -0.8531 -0.7586 -0.8213 -0.8381 -0.4708 0.8415 0.8612 0.6231 0.8577 0.8929 0.6567 

L-Kynurenine -0.8386 -0.8485 -0.6440 -0.8575 -0.8721 -0.8942 -0.8646 -0.8740 -0.7794 0.8660 0.8790 0.8494 0.8375 0.8450 0.6285 

4-Acetamidobutanoic acid -0.8755 -0.8946 -0.4871 -0.8671 -0.8829 -0.7266 -0.8676 -0.8836 -0.3630 0.8818 0.8951 0.5837 0.8815 0.9045 0.5572 

Ratio of pseudouridine to 

uridine 
-0.8839 -0.9054 -0.5851 -0.8739 -0.9018 -0.7897 -0.8760 -0.9037 -0.6201 0.8989 0.9125 0.7041 0.9001 0.9078 0.5975 

L,L-TMAP isomer -0.8986 -0.9219 -0.6831 -0.8634 -0.8992 -0.7964 -0.8575 -0.8919 -0.5147 0.8743 0.9021 0.6776 0.9014 0.9261 0.6732 

5-Methylthio-D-ribose -0.8993 -0.9191 -0.6952 -0.8876 -0.9145 -0.8162 -0.8867 -0.9113 -0.5535 0.9171 0.9404 0.7876 0.9287 0.9395 0.7885 

MS-detected creatinine -0.9092 -0.9159 -0.7621 -0.8618 -0.8796 -0.8216 -0.8378 -0.8566 -0.4824 0.8818 0.8951 0.7206 0.9611 0.9534 0.8943 

Sulfotyrosine -0.9121 -0.9240 -0.7552 -0.8891 -0.9081 -0.8646 -0.8898 -0.9081 -0.7297 0.8891 0.9028 0.7509 0.8944 0.9099 0.7115 

L,L-TMAP -0.9145 -0.9288 -0.7387 -0.9062 -0.9261 -0.8571 -0.8998 -0.9186 -0.6494 0.9116 0.9194 0.7475 0.9258 0.9342 0.7104 

Succinyladenosine -0.9244 -0.9281 -0.8129 -0.9301 -0.9378 -0.9102 -0.9187 -0.9317 -0.7864 0.9221 0.9321 0.8390 0.9187 0.9212 0.7674 

2-(α-D-Mannopyranosyl)-L-

tryptophan 
-0.9268 -0.9306 -0.8069 -0.9426 -0.9649 -0.9601 -0.9409 -0.9643 -0.9015 0.9437 0.9647 0.9209 0.9176 0.9184 0.7718 

Pseudouridine -0.9302 -0.9517 -0.7831 -0.9393 -0.9581 -0.9060 -0.9348 -0.9544 -0.7935 0.9356 0.9483 0.8174 0.9073 0.9232 0.6823 

Serum cystatin C (mg/L) -0.9307 -0.9426 -0.8210 -0.9814 -0.9811 -0.9582 -0.9859 -0.9852 -0.9181 - - - 0.9288 0.9450 0.8361 

Serum creatinine (mg/dL) -0.9527 -0.9603 -0.8594 -0.9173 -0.9416 -0.8841 -0.8947 -0.9206 -0.6328 0.9288 0.9450 0.8361 - - - 
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Table S5.5 Spearman rank correlation of metabolites with clinical glucose markers at different ranges with discovery and validation sets 

(absolute Spearman R > 0.40) 

Metabolites  Hemoglobin A1c (%) Fasting plasma glucose (mmol/L) 

Stage 0-4 Stage 1-4 Stage 1-2 Stage 0-4 Stage 1-4 Stage 1-2 

Validation Discovery Validation Discovery Validation Discovery Validation Discovery Validation Discovery Validation 

Hemoglobin A1c (%) - - - - - 0.6013 0.9145 0.6013 0.8860 0.4857 0.8961 

Fasting plasma glucose (mmol/L) 0.9145 0.6013 0.8860 0.4857 0.8961 - - - - - - 

D-Glucose 0.9020 0.6046 0.8603 0.4358 0.8908 0.8960 0.9363 0.8877 0.9150 0.8089 0.8621 

2-Hydroxybutyric acid 0.3883 0.4041 0.2418 0.2233 0.5240 0.5288 0.4133 0.5851 0.2733 0.5581 0.5172 

Stearoylcarnitine 0.3092 0.2490 0.2473 0.2809 0.4270 0.2808 0.2709 0.3063 0.2044 0.4300 0.4492 

MS-detected creatinine 0.0545 -0.2923 -0.1610 0.0758 -0.3457 -0.1682 0.0418 -0.3258 -0.1343 0.2565 -0.3099 

Serum cystatin C (mg/L) 0.0257 - -0.2304 - -0.4957 - 0.0180 - -0.1501 - -0.4248 

L-Glutamine -0.6750 -0.5939 -0.6290 -0.5494 -0.6920 -0.6461 -0.6469 -0.6412 -0.5920 -0.6039 -0.6538 

1,5-anhydro-D-glucitol -0.8530 -0.7777 -0.8309 -0.7809 -0.9298 -0.5963 -0.7690 -0.6022 -0.7228 -0.6409 -0.8291 
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Table S5.6 Spearman rank correlation of metabolites with total BSA-related renal volume and renal resistive index in validation set 

(absolute Spearman R > 0.40) 

Metabolites  Total BSA-related renal volume  Renal resistive index  

Validation (Stage 0-4) (n=58) Validation (Stage 1-4) (n=48) Validation (Stage 1-4) (n=48) 

MDRD GFR 0.5423 0.6376 -0.5253 

Bilirubin 0.5388 0.5533 -0.4234 

Stearoylcarnitine 0.4303 0.4694 -0.1478 

Ratio of tyrosine to phenylalanine 0.3868 0.4253 -0.4676 

L-Tryptophan 0.3190 0.3752 -0.5688 

L-Tyrosine 0.3086 0.3259 -0.4337 

SBP(mmHg) -0.0823 -0.1285 0.5961 

N-Acetylcarnosine -0.1373 -0.2279 0.4343 

Succinylcarnitine -0.2057 -0.3588 0.4011 

Ratio of kynurenic acid to kynurenine -0.2335 -0.3091 0.4990 

Citric acid -0.2454 -0.3223 0.4839 

Phenol sulfate -0.2479 -0.3182 0.4510 

Arabinose isomer -0.2643 -0.4015 0.6066 

Indolelactic acid -0.3073 -0.4087 0.4482 

3-hydroxydecanoyl carnitine -0.3101 -0.4894 0.3840 

Indoleacetic acid -0.3199 -0.4440 0.1961 

2-Octenoylcarnitine -0.3418 -0.4858 0.2388 

MS-detected creatinine -0.3521 -0.4729 0.4593 

Ratio of pseudouridine to uridine -0.3693 -0.5276 0.5435 

L,L-TMAP isomer -0.3756 -0.5602 0.4952 

O-Adipoylcarnitine -0.3898 -0.5784 0.3563 

Urea (mmol/L) -0.3912 -0.5352 0.5543 

Renal resistive index  - -0.3916 - 

2-[3-(sulfooxy)phenyl]acetic acid -0.4008 -0.5164 0.4072 

2-Hydroxyethanesulfonate -0.4291 -0.4807 0.5026 

Kynurenic acid -0.4322 -0.5372 0.5670 

Homovanillic acid sulfate -0.4365 -0.5474 0.4551 

4-Acetamidobutanoic acid -0.4397 -0.5573 0.4941 

Sulfotyrosine -0.4414 -0.5723 0.5347 

Serum Creatinine (mg/dL) -0.4434 -0.5705 0.4456 
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L,L-TMAP -0.4492 -0.5959 0.5173 

Butyrylcarnitine -0.4572 -0.6169 0.3690 

Pseudouridine -0.4656 -0.5988 0.5884 

5-Methylthio-D-ribose -0.4745 -0.6183 0.4655 

2-(α-D-Mannopyranosyl)-L-tryptophan -0.4801 -0.6035 0.5863 

L-β-aspartyl-L-leucine -0.4865 -0.5892 0.5783 

Serum cystatin C (mg/L) -0.5032 -0.6136 0.5442 

Succinyladenosine -0.5426 -0.6145 0.5561 

L-Kynurenine -0.5622 -0.6833 0.4724 

Ratio of kynurenine to tryptophan -0.5630 -0.6403 0.6128 
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Table S5.7 AUC of metabolites for distinguishing Stage 1a patients from Stage 1b-4 patients using random forest classification and logistic 

regression. 

Metabolites Stage 1a vs Stages 1b-4 (GFR > 120 vs GFR ≤ 120) 

Discovery set Validation set  

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically 

measured serum 

creatinine 

0.9626+/-

0.0154 

0.8807+/-

0.0402 

0.9560+/-

0.1424 

0.9648+/-

0.0144 

0.8909+/-

0.0779 

0.8460+/-

0.1694 

0.9399+/-

0.0700 

0.8561+/-

0.0664 

0.8800+/-

0.2078 

0.9597+/-

0.0226 

0.9587+/-

0.0921 

0.3580+/-

0.3547 

Pseudouridine 0.9148 ± 

0.0543 

0.9334 ± 

0.0534 

0.6880 ± 

0.1485 

0.9432 ± 

0.0239 

0.8134 ± 

0.1081 

0.8570 ± 

0.1344 

0.9148 ± 

0.0543 

0.9334 ± 

0.0534 

0.6880 ± 

0.1485 

0.9432 ± 

0.0239 

0.8134 ± 

0.1081 

0.8570 ± 

0.1344 

L,L-TMAP 0.8984 ± 

0.0461 

0.8102 ± 

0.0661 

0.9020 ± 

0.1319 

0.9394 ± 

0.0219 

0.9305 ± 

0.0832 

0.8984 ± 

0.0461 

0.8102 ± 

0.0661 

0.9020 ± 

0.1319 

0.9394 ± 

0.0219 

0.9305 ± 

0.0832 

0.8984 ± 

0.0461 

0.8102 ± 

0.0661 

L,L-TMAP isomer 0.8915 ± 

0.0492 

0.7639 ± 

0.0670 

0.8820 ± 

0.1431 

0.9280 ± 

0.0237 

0.8995 ± 

0.0901 

0.5910 ± 

0.2940 

0.8696 ± 

0.0684 

0.8204 ± 

0.0656 

0.7700 ± 

0.2689 

0.9086 ± 

0.0389 

0.3743 ± 

0.1503 

1.0000 

2-(α-D-

Mannopyranosyl)-

L-tryptophan 

0.8878 ± 

0.0659 

0.8320 ± 

0.1096 

0.7530 ± 

0.1565 

0.9212 ± 

0.0315 

0.8932 ± 

0.0922 

0.6680 ± 

0.2395 

0.8930 ± 

0.0648 

0.8522 ± 

0.0740 

0.8060 ± 

0.2521 

0.9398 ± 

0.0303 

0.3861 ± 

0.1378 

1.0000 

Succinyladenosine 0.8877 ± 

0.0584 

0.8318 ± 

0.0591 

0.7910 ± 

0.1582 

0.9147 ± 

0.0306 

0.8973 ± 

0.1112 

0.5720 ± 

0.2895 

0.9228 ± 

0.0499 

0.8657 ± 

0.0674 

0.8240 ± 

0.1795 

0.9513 ± 

0.0291 

0.4691 ± 

0.1296 

1.0000 

MS-detected 

serum creatinine 

0.8491 ± 

0.0508 

0.7207 ± 

0.1175 

0.8760 ± 

0.1201 

0.8966 ± 

0.0337 

0.8470 ± 

0.0774 

0.7080 ± 

0.1677 

0.8787 ± 

0.0777 

0.9196 ± 

0.0996 

0.6740 ± 

0.1825 

0.9298 ± 

0.0414 

0.4352 ± 

0.1679 

0.9940 ± 

0.0341 

Sulfotyrosine 0.8513 ± 

0.0529 

0.7945 ± 

0.0780 

0.7970 ± 

0.1513 

0.8965 ± 

0.0338 

0.4707 ± 

0.0849 

0.9990 ± 

0.0099 

0.8333 ± 

0.1104 

0.7974 ± 

0.1225 

0.7740 ± 

0.2361 

0.9003 ± 

0.0498 

0.4583 ± 

0.1252 

0.9880 ± 

0.0475 

5-Methylthio-D-

ribose 

0.8446  ± 

0.0606 

0.7396 ± 

0.0774 

0.8420 ± 

0.2471 

0.8871 ± 

0.0469 

0.4317 ± 

0.1245 

1.0000 0.8446 ± 

0.0606 

0.7396 ± 

0.0774 

0.8420 ± 

0.2471 

0.8871 ± 

0.0469 

0.4317 ± 

0.1245 

1.0000 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.8 AUC of metabolites for distinguishing Stage 2-4 patients from Stage 1 patients using random forest classification and logistic 

regression. 

Metabolites Stage 2-4 vs Stages 1 (GFR < 90 vs GFR ≥ 90) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured 

serum creatinine 

0.9529+/

-0.0242 

0.7721+/

-0.0619 

0.9568+/

-0.0897 

0.9594+/

-0.0149 

0.8565+/

-0.0932 

0.8600+/

-0.1112 

0.9568+/

-0.0334 

0.8678+/

-0.0675 

0.8880+/

-0.1699 

0.9737+/

-0.0175 

0.6917+/

-0.2010 

0.9930+/

-0.0453 

Pseudouridine 0.9348 ± 

0.0349 

0.8741 ± 

0.0579 

0.9047 ± 

0.0828 

0.9526 ± 

0.0184 

0.7574 ± 

0.1130 

0.9605 ± 

0.0455 

0.9942 ± 

0.0105 

0.9661 ± 

0.0359 

0.9760 ± 

0.0634 

0.9992 ± 

0.0020 

0.5911 ± 

0.1728 

0.9980 ± 

0.0199 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9348 ± 

0.0259 

0.7779 ± 

0.0639 

0.9195 ± 

0.0977 

0.9383 ± 

0.0197 

0.8279 ± 

0.0947 

0.8316 ± 

0.1112 

0.9544 ± 

0.0337 

0.9394 ± 

0.0940 

0.8570 ± 

0.0828 

0.9769 ± 

0.0179 

0.6117 ± 

0.2081 

0.9640 ± 

0.1171 

5-Methylthio-D-ribose 0.9294 ± 

0.0298 

0.6891 ± 

0.0914 

0.9474 ± 

0.0640 

0.9424 ± 

0.0208 

0.7747 ± 

0.1142 

0.8979 ± 

0.0905 

0.9579 ± 

0.0284 

0.8967 ± 

0.0657 

0.9410 ± 

0.0708 

0.9686 ± 

0.0220 

0.8361 ± 

0.1704 

0.8080 ± 

0.2942 

L,L-TMAP isomer 0.9214 ± 

0.0314 

0.8094 ± 

0.0786 

0.9389 ± 

0.0665 

0.9489 ± 

0.0190 

0.8494 ± 

0.1119 

0.8442 ± 

0.1598 

0.8953 ± 

0.0518 

0.7817 ± 

0.1098 

0.8730 ± 

0.1441 

0.9277 ± 

0.0343 

0.6250 ± 

0.2138 

0.9560 ± 

0.1116 

L,L-TMAP 0.9064 ± 

0.0380 

0.7809 ± 

0.0571 

0.9395 ± 

0.0810 

0.9333 ± 

0.0234 

0.8144 ± 

0.1209 

0.8321 ± 

0.1899 

0.9281 ± 

0.0536 

0.7844 ± 

0.0851 

0.9290 ± 

0.1409 

0.9509 ± 

0.0252 

0.6350 ± 

0.2076 

0.9600 ± 

0.1058 

MS-detected serum 

creatinine 

0.9183 ± 

0.0281 

0.7244 ± 

0.0708 

0.9068 ± 

0.0953 

0.9197 ± 

0.0229 

0.6665 ± 

0.0818 

0.9642 ± 

0.0464 

0.9268 ± 

0.0480 

0.8111 ± 

0.0813 

0.9100 ± 

0.1453 

0.9518 ± 

0.0280 

0.6589 ± 

0.2239 

0.9590 ± 

0.0960 

Succinyladenosine 0.8990 ± 

0.0378 

0.7874 ± 

0.0594 

0.9016 ± 

0.0917 

0.9213 ± 

0.0278 

0.8097 ± 

0.1092 

0.8468 ± 

0.1739 

0.9715 ± 

0.0314 

0.9306 ± 

0.0787 

0.9250 ± 

0.1062 

0.9901 ± 

0.0088 

0.8250 ± 

0.1479 

0.9370 ± 

0.1324 

Sulfotyrosine 0.8682 ± 

0.0382 

0.7206 ± 

0.0755 

0.9458 ± 

0.0739 

0.9034 ± 

0.0292 

0.7965 ± 

0.1135 

0.8142 ± 

0.1587 

0.9118 ± 

0.0597 

0.8872 ± 

0.0928 

0.8250 ± 

0.1486 

0.9404 ± 

0.0313 

0.6272 ± 

0.1493 

0.9640 ± 

0.0625 

O-Adipoylcarnitine 0.8687 ± 

0.0445 

0.7247 ± 

0.0769 

0.8816 ± 

0.0778 

0.9048 ± 

0.0270 

0.6100 ± 

0.1153 

0.9626 ± 

0.0472 

0.8556 ± 

0.0612 

0.7344 ± 

0.1295 

0.7600 ± 

0.1530 

0.8789 ± 

0.0483 

0.6261 ± 

0.1897 

0.8540 ± 

0.2651 

Ratio of pseudouridine 

to uridine 

0.8679 ± 

0.0436 

0.7997 ± 

0.0805 

0.8505 ± 

0.1009 

0.9013 ± 

0.0336 

0.7918 ± 

0.1059 

0.8568 ± 

0.1087 

0.9320 ± 

0.0366 

0.8056 ± 

0.0776 

0.9280 ± 

0.0906 

0.9486 ± 

0.0275 

0.7583 ± 

0.2007 

0.8640 ± 

0.2052 

2-

Hydroxyethanesulfonat

e 

0.8650 ± 

0.0449 

0.7218 ± 

0.0709 

0.9205 ± 

0.0827 

0.9075 ± 

0.0327 

0.5891 ± 

0.1401 

0.9695 ± 

0.0511 

0.8120 ± 

0.0657 

0.7150 ± 

0.1068 

0.8250 ± 

0.1615 

0.8761 ± 

0.0484 

0.6261 ± 

0.1767 

0.9110 ± 

0.1348 

4-Acetamidobutanoic 

acid 

0.8541 ± 

0.0409 

0.7679 ± 

0.0722 

0.9158 ± 

0.0973 

0.8850 ± 

0.0328 

0.7029 ± 

0.1476 

0.9100 ± 

0.1921 

0.9444 ± 

0.0296 

0.8567 ± 

0.0734 

0.9030 ± 

0.1307 

0.9590 ± 

0.0200 

0.5406 ± 

0.2425 

0.9480 ± 

0.1775 
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Ratio of kynurenine to 

tryptophan 

0.8322 ± 

0.0425 

0.6268 ± 

0.0814 

0.9084 ± 

0.0779 

0.8583 ± 

0.0366 

0.5091 ± 

0.1134 

0.9842 ± 

0.0273 

0.8930 ± 

0.0669 

0.7572 ± 

0.0999 

0.8740 ± 

0.1481 

0.9171 ± 

0.0352 

0.7083 ± 

0.2181 

0.8110 ± 

0.2912 

Kynurenic acid 0.8319 ± 

0.0417 

0.7150 ± 

0.0940 

0.8174 ± 

0.0969 

0.8526 ± 

0.0394 

0.6441 ± 

0.1717 

0.8274 ± 

0.2677 

0.9357 ± 

0.0365 

0.8228 ± 

0.1026 

0.8810 ± 

0.1146 

0.9499 ± 

0.0270 

0.6950 ± 

0.2875 

0.7010 ± 

0.4241 

2-[3-

(sulfooxy)phenyl]acetic 

acid  

0.8250 ± 

0.0504 

0.5982 ± 

0.1090 

0.9311 ± 

0.0758 

0.8587 ± 

0.0366 

0.2794 ± 

0.0695 

1.0000 ± 

0.0000 

0.8854 ± 

0.0456 

0.6922 ± 

0.1366 

0.8620 ± 

0.1690 

0.9039 ± 

0.0376 

0.6100 ± 

0.3210 

0.6720 ± 

0.4407 

Ratio of tyrosine to 

phenylalanine 

0.8226 ± 

0.0469 

0.6865 ± 

0.0734 

0.8763 ± 

0.0840 

0.8595 ± 

0.0384 

0.7194 ± 

0.0787 

0.8063 ± 

0.1466 

0.8648 ± 

0.0553 

0.8589 ± 

0.1404 

0.7030 ± 

0.1153 

0.8884 ± 

0.0378 

0.5900 ± 

0.1229 

0.9310 ± 

0.1083 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.9 AUC of metabolites for distinguishing Stage 3-4 patients from Stage 1-2 patients using random forest classification and logistic 

regression. 

Metabolites Stage 3-4 vs Stages 1-2 (GFR < 60 vs GFR ≥ 60) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured 

serum creatinine 

0.9715+/

-0.0306 

0.9542+/

-0.0754 

0.8818+/

-0.0757 

0.9901+/

-0.0060 

0.9347+/

-0.0752 

0.9003+/

-0.0979 

0.9665+/

-0.0340 

0.9192+/

-0.1073 

0.8600+/

-0.0978 

0.9769+/

-0.0163 

0.7262+/

-0.2228 

0.9447+/

-0.0725 

Pseudouridine 0.9820 ± 

0.0213 

0.9042 ± 

0.0757 

0.9491 ± 

0.0444 

0.9912 ± 

0.0056 

0.9195 ± 

0.0753 

0.9335 ± 

0.0535 

0.9515 ± 

0.0341 

0.9054 ± 

0.0960 

0.8827 ± 

0.0905 

0.9702 ± 

0.0201 

0.7931 ± 

0.1993 

0.8727 ± 

0.1744 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9743 ± 

0.0212 

0.9232 ± 

0.0646 

0.8979 ± 

0.0549 

0.9825 ± 

0.0095 

0.9705 ± 

0.0449 

0.8226 ± 

0.1001 

0.9395 ± 

0.0393 

0.7862 ± 

0.1335 

0.8633 ± 

0.1358 

0.9387 ± 

0.0274 

0.6800 ± 

0.2069 

0.8987 ± 

0.1607 

L,L-TMAP 0.9691 ± 

0.0199 

0.9495 ± 

0.0566 

0.8512 ± 

0.0737 

0.9833 ± 

0.0089 

0.9411 ± 

0.0806 

0.8418 ± 

0.1369 

0.9151 ± 

0.0459 

0.8446 ± 

0.1109 

0.8580 ± 

0.0878 

0.9438 ± 

0.0268 

0.6962 ± 

0.2467 

0.8980 ± 

0.1224 

5-Methylthio-D-ribose 0.9687 ± 

0.0243 

0.9100 ± 

0.0679 

0.9529 ± 

0.0458 

0.9854 ± 

0.0079 

0.8684 ± 

0.0882 

0.9629 ± 

0.0457 

0.9424 ± 

0.0386 

0.9346 ± 

0.0900 

0.7753 ± 

0.0903 

0.9528 ± 

0.0257 

0.8223 ± 

0.1819 

0.7773 ± 

0.2239 

2-

Hydroxyethanesulfonat

e 

0.9685 ± 

0.0179 

0.9800 ± 

0.0420 

0.8503 ± 

0.0422 

0.9692 ± 

0.0128 

0.8032 ± 

0.1458 

0.9026 ± 

0.1390 

0.8551 ± 

0.0692 

0.7785 ± 

0.1436 

0.7540 ± 

0.1243 

0.8793 ± 

0.0485 

0.6808 ± 

0.1785 

0.8033 ± 

0.1898 

4-Acetamidobutanoic 

acid 

0.9666 ± 

0.0196 

0.9611 ± 

0.0570 

0.8447 ± 

0.0440 

0.9693 ± 

0.0130 

0.9432 ± 

0.1174 

0.6774 ± 

0.2850 

0.9408 ± 

0.0396 

0.9131 ± 

0.0719 

0.9080 ± 

0.0842 

0.9548 ± 

0.0267 

0.6531 ± 

0.2508 

0.8660 ± 

0.2767 

2-[3-

(sulfooxy)phenyl]acetic 

acid  

0.9663 ± 

0.0197 

0.9558 ± 

0.0599 

0.8982 ± 

0.0431 

0.9742 ± 

0.0131 

0.5426 ± 

0.1386 

0.9776 ± 

0.1403 

0.8775 ± 

0.0533 

0.7977 ± 

0.1134 

0.7627 ± 

0.1829 

0.9073 ± 

0.0396 

0.4600 ± 

0.1804 

0.9607 ± 

0.1749 

L,L-TMAP isomer 0.9560 ± 

0.0217 

0.9337 ± 

0.0643 

0.8094 ± 

0.0890 

0.9702 ± 

0.0140 

0.8026 ± 

0.1149 

0.9388 ± 

0.0612 

0.9188 ± 

0.0441 

0.8777 ± 

0.0949 

0.8040 ± 

0.1131 

0.9510 ± 

0.0250 

0.7031 ± 

0.2393 

0.8947 ± 

0.1427 

Succinyladenosine 0.9581 ± 

0.0276 

0.9116 ± 

0.0755 

0.8412 ± 

0.0774 

0.9648 ± 

0.0141 

0.9163 ± 

0.1114 

0.7968 ± 

0.1588 

0.9118 ± 

0.0437 

0.8992 ± 

0.0861 

0.8427 ± 

0.1005 

0.9522 ± 

0.0292 

0.8346 ± 

0.1792 

0.8380 ± 

0.1494 

Ratio of kynurenine to 

tryptophan 

0.9582 ± 

0.0260 

0.8853 ± 

0.0856 

0.9229 ± 

0.0477 

0.9705 ± 

0.0154 

0.8468 ± 

0.1153 

0.9318 ± 

0.0759 

0.8814 ± 

0.0644 

0.7531 ± 

0.1137 

0.8787 ± 

0.1205 

0.8968 ± 

0.0427 

0.5531 ± 

0.2242 

0.9400 ± 

0.1102 

MS-detected serum 

creatinine 

0.9500 ± 

0.0247 

0.9189 ± 

0.0789 

0.8803 ± 

0.0800 

0.9658 ± 

0.0173 

0.8758 ± 

0.1072 

0.9147 ± 

0.0477 

0.9306 ± 

0.0385 

0.9323 ± 

0.0655 

0.8173 ± 

0.1090 

0.9502 ± 

0.0253 

0.6854 ± 

0.2396 

0.9133 ± 

0.0877 

Sulfotyrosine 0.9553 ± 

0.0325 

0.9305 ± 

0.0640 

0.9009 ± 

0.0547 

0.9763 ± 

0.0159 

0.8537 ± 

0.1174 

0.9588 ± 

0.0319 

0.9314 ± 

0.0420 

0.8300 ± 

0.0892 

0.9287 ± 

0.0906 

0.9562 ± 

0.0230 

0.8323 ± 

0.1611 

0.8593 ± 

0.1417 
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O-Adipoylcarnitine 0.9463 ± 

0.0308 

0.9026 ± 

0.0638 

0.8800 ± 

0.0651 

0.9635 ± 

0.0210 

0.8200 ± 

0.1302 

0.9388 ± 

0.0697 

0.9195 ± 

0.0477 

0.9169 ± 

0.0989 

0.7767 ± 

0.0949 

0.9245 ± 

0.0341 

0.5623 ± 

0.1996 

0.9707 ± 

0.0392 

Kynurenic acid 0.9398 ± 

0.0324 

0.8453 ± 

0.0825 

0.9253 ± 

0.0475 

0.9643 ± 

0.0153 

0.6100 ± 

0.1330 

0.9809 ± 

0.0218 

0.9258 ± 

0.0423 

0.9200 ± 

0.0910 

0.7533 ± 

0.0950 

0.9203 ± 

0.0408 

0.4985 ± 

0.2345 

0.9573 ± 

0.1585 

Ratio of pseudouridine 

to uridine 

0.9323 ± 

0.0242 

0.9416 ± 

0.0566 

0.7697 ± 

0.0600 

0.9414 ± 

0.0199 

0.7153 ± 

0.1248 

0.9144 ± 

0.0731 

0.9407 ± 

0.0378 

0.9262 ± 

0.1002 

0.8407 ± 

0.0666 

0.9605 ± 

0.0256 

0.7600 ± 

0.2090 

0.8560 ± 

0.1786 

Succinylcarnitine 0.9318 ± 

0.0267 

0.9053 ± 

0.0666 

0.8176 ± 

0.0663 

0.9375 ± 

0.0290 

0.9258 ± 

0.0494 

0.7991 ± 

0.0610 

0.8318 ± 

0.0882 

0.8138 ± 

0.1183 

0.7800 ± 

0.1172 

0.8780 ± 

0.0498 

0.8062 ± 

0.1209 

0.8013 ± 

0.1139 

L-Kynurenine 0.9303 ± 

0.0277 

0.9100 ± 

0.0810 

0.8847 ± 

0.0421 

0.9475 ± 

0.0231 

0.9021 ± 

0.0674 

0.8903 ± 

0.0448 

0.9087 ± 

0.0478 

0.8162 ± 

0.1181 

0.7787 ± 

0.1388 

0.9187 ± 

0.0354 

0.7823 ± 

0.1292 

0.8387 ± 

0.1021 

Indole-3-lactic acid 0.9272 ± 

0.0327 

0.8258 ± 

0.0989 

0.8482 ± 

0.0787 

0.9372 ± 

0.0219 

0.8784 ± 

0.0743 

0.8321 ± 

0.0597 

0.8240 ± 

0.0599 

0.8015 ± 

0.1492 

0.7613 ± 

0.1258 

0.8583 ± 

0.0493 

0.8738 ± 

0.1018 

0.7100 ± 

0.1231 

Butyrylcarnitine 0.9159 ± 

0.0423 

0.8268 ± 

0.0939 

0.8365 ± 

0.0768 

0.9191 ± 

0.0259 

0.8047 ± 

0.0843 

0.8709 ± 

0.0575 

0.7186 ± 

0.0743 

0.5969 ± 

0.1480 

0.7660 ± 

0.1462 

0.8027 ± 

0.0623 

0.6500 ± 

0.1481 

0.8093 ± 

0.1120 

Indoxyl sulfate 0.9144 ± 

0.0398 

0.8047 ± 

0.0888 

0.8771 ± 

0.1088 

0.8904 ± 

0.0394 

0.7558 ± 

0.1396 

0.9103 ± 

0.0876 

0.7888 ± 

0.0745 

0.6800 ± 

0.1514 

0.7027 ± 

0.2165 

0.7966 ± 

0.0617 

0.4977 ± 

0.1812 

0.9780 ± 

0.0517 

α-N-Phenylacetyl-L-

glutamine 

0.9133 ± 

0.0419 

0.7842 ± 

0.0827 

0.9412 ± 

0.0566 

0.9106 ± 

0.0308 

0.7837 ± 

0.0911 

0.8862 ± 

0.0978 

0.8578 ± 

0.0501 

0.7669 ± 

0.1006 

0.8193 ± 

0.1097 

0.8220 ± 

0.0647 

0.4423 ± 

0.2113 

0.9700 ± 

0.0791 

p-Cresol glucuronide 0.9082 ± 

0.0419 

0.8495 ± 

0.0819 

0.8497 ± 

0.0781 

0.9081 ± 

0.0370 

0.6184 ± 

0.1795 

0.9141 ± 

0.1573 

0.7330 ± 

0.1003 

0.7185 ± 

0.1596 

0.5993 ± 

0.1664 

0.7917 ± 

0.0569 

0.4438 ± 

0.2323 

0.8807 ± 

0.2468 

p-Cresol sulfate 0.9081 ± 

0.0475 

0.7447 ± 

0.0948 

0.9353 ± 

0.0561 

0.8676 ± 

0.0483 

0.7568 ± 

0.0811 

0.9385 ± 

0.0285 

0.6847 ± 

0.0882 

0.5046 ± 

0.1386 

0.7760 ± 

0.1504 

0.7284 ± 

0.0670 

0.4869 ± 

0.1595 

0.8893 ± 

0.1186 

Homovanillic acid 

sulfate 

0.8958 ± 

0.0336 

0.8305 ± 

0.1085 

0.7779 ± 

0.0858 

0.9019 ± 

0.0313 

0.6679 ± 

0.1486 

0.8926 ± 

0.1065 

0.8705 ± 

0.0605 

0.8877 ± 

0.0853 

0.7280 ± 

0.1169 

0.8984 ± 

0.0418 

0.4754 ± 

0.2209 

0.9300 ± 

0.1903 

Arabinose isomer 0.8852 ± 

0.0409 

0.8089 ± 

0.1078 

0.7974 ± 

0.0853 

0.9038 ± 

0.0260 

0.8532 ± 

0.1562 

0.6138 ± 

0.3202 

0.8547 ± 

0.0686 

0.7646 ± 

0.1235 

0.8387 ± 

0.1337 

0.9090 ± 

0.0432 

0.5046 ± 

0.1748 

0.9740 ± 

0.0603 

Ratio of kynurenic acid 

to kynurenine 

0.8622 ± 

0.0390 

0.7221 ± 

0.0836 

0.8915 ± 

0.0573 

0.8801 ± 

0.0287 

0.6016 ± 

0.1436 

0.9297 ± 

0.0539 

0.8190 ± 

0.0634 

0.6938 ± 

0.1250 

0.8440 ± 

0.1311 

0.8547 ± 

0.0555 

0.5062 ± 

0.1869 

0.9660 ± 

0.0792 

L-Citrulline 0.8591 ± 

0.0479 

0.7663 ± 

0.1196 

0.8509 ± 

0.0703 

0.8717 ± 

0.0414 

0.8095 ± 

0.0899 

0.8159 ± 

0.0556 

0.8109 ± 

0.0612 

0.7015 ± 

0.1034 

0.8467 ± 

0.1507 

0.8743 ± 

0.0500 

0.6846 ± 

0.1501 

0.9300 ± 

0.0911 

Pyrocatechol sulfate 0.8535 ± 

0.0462 

0.7558 ± 

0.1035 

0.8291 ± 

0.0768 

0.8763 ± 

0.0390 

0.8563 ± 

0.1198 

0.6388 ± 

0.2827 

0.4680 ± 

0.1102 

0.9062 ± 

0.1353 

0.0607 ± 

0.1059 

0.6316 ± 

0.0816 

0.4231 ± 

0.1586 

0.7827 ± 

0.1199 

Bilirubin 0.8455 ± 

0.0499 

0.7932 ± 

0.0894 

0.7826 ± 

0.0810 

0.8622 ± 

0.0343 

0.8232 ± 

0.0949 

0.7841 ± 

0.0943 

0.6323 ± 

0.0816 

0.7415 ± 

0.1763 

0.4200 ± 

0.1653 

0.7246 ± 

0.0748 

0.6154 ± 

0.1849 

0.6213 ± 

0.1185 

L-β-aspartyl-L-leucine 0.8426 ± 

0.0382 

0.7784 ± 

0.1102 

0.8359 ± 

0.0639 

0.8671 ± 

0.0344 

0.8868 ± 

0.0830 

0.6294 ± 

0.1657 

0.8481 ± 

0.0653 

0.7546 ± 

0.1458 

0.7680 ± 

0.1516 

0.8857 ± 

0.0462 

0.5869 ± 

0.1568 

0.9420 ± 

0.0728 

Ratio of tyrosine to 

phenylalanine 

0.8424 ± 

0.0519 

0.8121 ± 

0.0991 

0.7282 ± 

0.1396 

0.8637 ± 

0.0334 

0.8189 ± 

0.0633 

0.7785 ± 

0.0652 

0.8965 ± 

0.0528 

0.8092 ± 

0.0958 

0.8400 ± 

0.1024 

0.9233 ± 

0.0334 

0.7592 ± 

0.1118 

0.9173 ± 

0.0755 
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L-Tryptophan 0.8367 ± 

0.0492 

0.8463 ± 

0.0851 

0.6153 ± 

0.1489 

0.8640 ± 

0.0361 

0.8258 ± 

0.0877 

0.7171 ± 

0.1002 

0.6763 ± 

0.0621 

0.5377 ± 

0.1299 

0.7393 ± 

0.1617 

0.7516 ± 

0.0675 

0.6031 ± 

0.1442 

0.7907 ± 

0.1135 

N-Acetylcarnosine 0.8137 ± 

0.0561 

0.7753 ± 

0.1039 

0.7068 ± 

0.1200 

0.8554 ± 

0.0440 

0.7647 ± 

0.1190 

0.7853 ± 

0.0796 

0.7471 ± 

0.0821 

0.7654 ± 

0.1732 

0.6167 ± 

0.1468 

0.8030 ± 

0.0573 

0.7015 ± 

0.2416 

0.6493 ± 

0.1861 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity.  
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Table S5.10 AUC of metabolites for distinguishing Stage 4 patients from Stage 1-3 patients using random forest classification and logistic 

regression. 

Metabolites Stage 4 vs Stages 1-3 (GFR < 30 vs GFR ≥ 30) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured 

serum creatinine 

0.9817+/

-0.0308 

0.9330+/

-0.0849 

0.9814+/

-0.0194 

0.9989+/

-0.0016 

0.9640+/

-0.0671 

0.9755+/

-0.0254 

0.9760+/

-0.0814 

0.9520+/

-0.1628 

1.0000+/

-0.0000 

1.0000+/

-0.0000 

0.9580+/

-0.1531 

0.9964+/

-0.0153 

Pseudouridine 0.9925 ± 

0.0197 

0.9140 ± 

0.0959 

0.9734 ± 

0.0267 

0.9977 ± 

0.0025 

0.9980 ± 

0.0199 

0.9245 ± 

0.0479 

0.9679 ± 

0.0606 

0.8820 ± 

0.1676 

0.9832 ± 

0.0219 

0.9975 ± 

0.0040 

0.9740 ± 

0.0673 

0.9727 ± 

0.0280 

Succinyladenosine 0.9933 ± 

0.0176 

0.9420 ± 

0.0929 

0.9834 ± 

0.0154 

0.9994 ± 

0.0010 

0.9690 ± 

0.0643 

0.9850 ± 

0.0148 

0.9550 ± 

0.0508 

0.8860 ± 

0.1241 

0.9873 ± 

0.0386 

0.9956 ± 

0.0066 

0.8420 ± 

0.1531 

1.0000 ± 

0.0000 

L,L-TMAP isomer 0.9893 ± 

0.0130 

0.9570 ± 

0.0840 

0.9645 ± 

0.0243 

0.9955 ± 

0.0042 

0.9850 ± 

0.0654 

0.9530 ± 

0.0241 

0.9850 ± 

0.0572 

0.9580 ± 

0.1394 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9840 ± 

0.0784 

0.9977 ± 

0.0099 

MS-detected serum 

creatinine 

0.9894 ± 

0.0093 

0.9670 ± 

0.0736 

0.9748 ± 

0.0147 

0.9930 ± 

0.0059 

0.9780 ± 

0.0642 

0.9655 ± 

0.0285 

0.9760 ± 

0.0814 

0.9520 ± 

0.1628 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9760 ± 

0.1176 

0.9968 ± 

0.0116 

Sulfotyrosine 0.9882 ± 

0.0347 

0.9390 ± 

0.1130 

0.9598 ± 

0.0271 

0.9939 ± 

0.0047 

0.8650 ± 

0.1472 

0.9684 ± 

0.0300 

0.9630 ± 

0.0483 

0.9140 ± 

0.0990 

0.9914 ± 

0.0220 

1.0000 ± 

0.0000 

0.9680 ± 

0.0733 

0.9727 ± 

0.0380 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9879 ± 

0.0239 

0.9260 ± 

0.0976 

0.9730 ± 

0.0276 

0.9972 ± 

0.0027 

0.9530 ± 

0.0806 

0.9618 ± 

0.0328 

0.9529 ± 

0.0555 

0.9060 ± 

0.1112 

0.9955 ± 

0.0198 

1.0000 ± 

0.0000 

0.8720 ± 

0.1372 

1.0000 ± 

0.0000 

Ratio of pseudouridine 

to uridine 

0.9859 ± 

0.0269 

0.9090 ± 

0.1158 

0.9634 ± 

0.0234 

0.9958 ± 

0.0040 

0.9870 ± 

0.0439 

0.8825 ± 

0.0944 

0.9564 ± 

0.0803 

0.9080 ± 

0.1610 

0.9718 ± 

0.0307 

0.9959 ± 

0.0058 

0.9500 ± 

0.1245 

0.9586 ± 

0.0347 

5-Methylthio-D-ribose 0.9852 ± 

0.0272 

0.9210 ± 

0.1089 

0.9684 ± 

0.0271 

0.9974 ± 

0.0028 

0.9980 ± 

0.0140 

0.9491 ± 

0.0300 

0.9534 ± 

0.0541 

0.8780 ± 

0.1323 

0.9877 ± 

0.0294 

0.9973 ± 

0.0042 

0.8540 ± 

0.1381 

0.9991 ± 

0.0064 

L,L-TMAP 0.9825 ± 

0.0340 

0.9340 ± 

0.1142 

0.9505 ± 

0.0285 

0.9944 ± 

0.0046 

0.9340 ± 

0.0874 

0.9561 ± 

0.0288 

0.9840 ± 

0.0543 

0.9380 ± 

0.1347 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9580 ± 

0.0992 

1.0000 ± 

0.0000 

2-

Hydroxyethanesulfonat

e 

0.9845 ± 

0.0202 

0.9200 ± 

0.1000 

0.9720 ± 

0.0195 

0.9952 ± 

0.0045 

0.9990 ± 

0.0099 

0.3800 ± 

0.3754 

0.9486 ± 

0.0605 

0.8900 ± 

0.1338 

0.9873 ± 

0.0232 

1.0000 ± 

0.0000 

0.8840 ± 

0.1528 

0.9700 ± 

0.0597 

4-Acetamidobutanoic 

acid 

0.9814 ± 

0.0292 

0.9200 ± 

0.0906 

0.9868 ± 

0.0133 

0.9991 ± 

0.0014 

0.9640 ± 

0.1044 

0.8057 ± 

0.2874 

0.9477 ± 

0.0683 

0.8920 ± 

0.1426 

0.9918 ± 

0.0260 

1.0000 ± 

0.0000 

0.8800 ± 

0.1523 

0.9959 ± 

0.0145 

α-N-Phenylacetyl-L-

glutamine 

0.9715 ± 

0.0259 

0.9150 ± 

0.0887 

0.9705 ± 

0.0380 

0.9962 ± 

0.0040 

0.9480 ± 

0.0781 

0.9448 ± 

0.0554 

0.9335 ± 

0.0755 

0.7900 ± 

0.1480 

0.9614 ± 

0.0734 

0.9767 ± 

0.0226 

0.8240 ± 

0.1504 

1.0000 ± 

0.0000 
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Ratio of kynurenine to 

tryptophan 

0.9693 ± 

0.0219 

0.9450 ± 

0.0517 

0.9648 ± 

0.0194 

0.9867 ± 

0.0094 

0.9560 ± 

0.0864 

0.9336 ± 

0.0655 

0.9727 ± 

0.0596 

0.8940 ± 

0.1279 

0.9895 ± 

0.0191 

1.0000 ± 

0.0000 

0.8200 ± 

0.1822 

0.9968 ± 

0.0173 

2-[3-

(sulfooxy)phenyl]acetic 

acid  

0.9674 ± 

0.0306 

0.8960 ± 

0.1019 

0.9748 ± 

0.0280 

0.9971 ± 

0.0032 

0.9210 ± 

0.1251 

0.6755 ± 

0.4440 

0.9740 ± 

0.0550 

0.9000 ± 

0.1637 

0.9836 ± 

0.0218 

0.9979 ± 

0.0038 

0.7600 ± 

0.1789 

1.0000 ± 

0.0000 

O-Adipoylcarnitine 0.9638 ± 

0.0396 

0.9160 ± 

0.1074 

0.8793 ± 

0.0554 

0.9799 ± 

0.0122 

0.8420 ± 

0.1408 

0.9173 ± 

0.0824 

0.9493 ± 

0.0509 

0.8140 ± 

0.1860 

0.9732 ± 

0.0397 

0.9861 ± 

0.0152 

0.8540 ± 

0.1646 

0.9768 ± 

0.0284 

Succinylcarnitine 0.9539 ± 

0.0444 

0.8980 ± 

0.1149 

0.9182 ± 

0.0340 

0.9843 ± 

0.0089 

0.9340 ± 

0.0851 

0.9055 ± 

0.0517 

0.8957 ± 

0.0936 

0.6940 ± 

0.1969 

0.9564 ± 

0.0718 

0.9578 ± 

0.0345 

0.7280 ± 

0.1588 

0.9836 ± 

0.0269 

L-β-aspartyl-L-leucine 0.9514 ± 

0.0311 

0.9070 ± 

0.1051 

0.8677 ± 

0.0753 

0.9728 ± 

0.0139 

0.8950 ± 

0.1381 

0.9016 ± 

0.0492 

0.9624 ± 

0.0757 

0.8240 ± 

0.2421 

0.9400 ± 

0.0476 

0.9825 ± 

0.0139 

0.9460 ± 

0.1493 

0.7541 ± 

0.2792 

Kynurenic acid 0.9475 ± 

0.0499 

0.8490 ± 

0.1179 

0.9473 ± 

0.0432 

0.9879 ± 

0.0093 

0.9250 ± 

0.0973 

0.7411 ± 

0.3489 

0.9870 ± 

0.0688 

0.9640 ± 

0.1480 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.7140 ± 

0.2388 

0.9877 ± 

0.1010 

Arabinose isomer 0.9454 ± 

0.0440 

0.8280 ± 

0.1217 

0.9525 ± 

0.0284 

0.9766 ± 

0.0134 

0.9260 ± 

0.1246 

0.7507 ± 

0.2860 

0.9855 ± 

0.0565 

0.9440 ± 

0.1551 

0.9868 ± 

0.0206 

1.0000 ± 

0.0000 

0.9260 ± 

0.1566 

0.9141 ± 

0.1946 

N-Acetylcarnosine 0.9431 ± 

0.0399 

0.8760 ± 

0.1087 

0.8868 ± 

0.0749 

0.9702 ± 

0.0220 

0.9100 ± 

0.0806 

0.8916 ± 

0.0522 

0.8760 ± 

0.0971 

0.7320 ± 

0.2195 

0.9195 ± 

0.1098 

0.9418 ± 

0.0539 

0.7600 ± 

0.2154 

0.9486 ± 

0.0673 

Indoxyl sulfate 0.9429 ± 

0.0497 

0.9020 ± 

0.1166 

0.8893 ± 

0.0638 

0.9825 ± 

0.0104 

0.8630 ± 

0.1055 

0.9468 ± 

0.0403 

0.9800 ± 

0.0600 

0.8860 ± 

0.1477 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9020 ± 

0.1732 

0.9873 ± 

0.0335 

p-Cresol glucuronide 0.9424 ± 

0.0504 

0.8650 ± 

0.1472 

0.8455 ± 

0.0719 

0.9690 ± 

0.0159 

0.7580 ± 

0.1234 

0.9720 ± 

0.0502 

0.8286 ± 

0.1005 

0.6800 ± 

0.1897 

0.9955 ± 

0.0151 

0.9301 ± 

0.0679 

0.7260 ± 

0.2166 

0.9450 ± 

0.1954 

Homovanillic acid 

sulfate 

0.9401 ± 

0.0381 

0.8820 ± 

0.0829 

0.8941 ± 

0.0948 

0.9756 ± 

0.0165 

0.8570 ± 

0.1290 

0.9466 ± 

0.0582 

0.9620 ± 

0.0772 

0.8780 ± 

0.1741 

0.9959 ± 

0.0171 

1.0000 ± 

0.0000 

0.9240 ± 

0.1569 

0.6623 ± 

0.4233 

L-Tryptophan 0.9324 ± 

0.0437 

0.8470 ± 

0.1253 

0.9586 ± 

0.0285 

0.9770 ± 

0.0129 

0.9470 ± 

0.0591 

0.8823 ± 

0.0663 

0.9488 ± 

0.0520 

0.8800 ± 

0.1327 

0.9214 ± 

0.1096 

0.9854 ± 

0.0195 

0.8880 ± 

0.1451 

0.9927 ± 

0.0167 

Ratio of kynurenic acid 

to kynurenine 

0.9311 ± 

0.0564 

0.8710 ± 

0.1275 

0.8791 ± 

0.0713 

0.9667 ± 

0.0219 

0.9050 ± 

0.1126 

0.7264 ± 

0.2806 

0.9673 ± 

0.0750 

0.8700 ± 

0.1752 

0.9759 ± 

0.0276 

0.9983 ± 

0.0036 

0.8140 ± 

0.2470 

0.8891 ± 

0.1770 

Butyrylcarnitine 0.9219 ± 

0.0548 

0.8690 ± 

0.1247 

0.8634 ± 

0.0727 

0.9524 ± 

0.0267 

0.8610 ± 

0.0835 

0.9223 ± 

0.0482 

0.8547 ± 

0.0913 

0.7040 ± 

0.1865 

0.9732 ± 

0.0511 

0.9150 ± 

0.0656 

0.7440 ± 

0.1835 

0.9664 ± 

0.0415 

L-Valine 0.9181 ± 

0.0538 

0.8170 ± 

0.1209 

0.9259 ± 

0.0394 

0.9585 ± 

0.0215 

0.8850 ± 

0.0865 

0.8936 ± 

0.0466 

0.6429 ± 

0.1260 

0.4060 ± 

0.2473 

0.7523 ± 

0.1554 

0.7281 ± 

0.0829 

0.2340 ± 

0.1651 

0.9655 ± 

0.0538 

L-Carnitine 0.9076 ± 

0.0571 

0.6810 ± 

0.1197 

0.9948 ± 

0.0215 

0.9464 ± 

0.0306 

0.8890 ± 

0.1224 

0.7611 ± 

0.0894 

0.7720 ± 

0.1050 

0.5180 ± 

0.2317 

0.8941 ± 

0.0811 

0.8105 ± 

0.1024 

0.7140 ± 

0.1606 

0.8223 ± 

0.0818 

Ratio of tyrosine to 

phenylalanine 

0.9019 ± 

0.0484 

0.8210 ± 

0.1306 

0.8714 ± 

0.0499 

0.9293 ± 

0.0292 

0.9270 ± 

0.0947 

0.8402 ± 

0.0570 

0.8518 ± 

0.0926 

0.7440 ± 

0.2401 

0.8818 ± 

0.0564 

0.8905 ± 

0.0644 

0.9000 ± 

0.1077 

0.8555 ± 

0.0650 

D-Glucose 0.9006 ± 

0.0672 

0.7790 ± 

0.1802 

0.8607 ± 

0.0617 

0.9364 ± 

0.0283 

0.9030 ± 

0.0932 

0.8164 ± 

0.0728 

0.5169 ± 

0.1040 

0.2300 ± 

0.1682 

0.8995 ± 

0.0834 

0.4265 ± 

0.1026 

0.2260 ± 

0.1460 

0.8050 ± 

0.1415 
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Phenol sulfate 0.8992 ± 

0.0533 

0.8150 ± 

0.1459 

0.9064 ± 

0.0357 

0.9292 ± 

0.0403 

0.9040 ± 

0.0799 

0.8284 ± 

0.0823 

0.9347 ± 

0.0570 

0.7740 ± 

0.2013 

0.9523 ± 

0.0465 

0.9714 ± 

0.0230 

0.8460 ± 

0.1852 

0.9436 ± 

0.0531 

Pyrocatechol sulfate 0.8970 ± 

0.0474 

0.8970 ± 

0.1330 

0.7793 ± 

0.1098 

0.9330 ± 

0.0256 

0.7410 ± 

0.1632 

0.9055 ± 

0.0458 

0.8291 ± 

0.1119 

0.5840 ± 

0.2310 

0.9495 ± 

0.0514 

0.7875 ± 

0.1221 

0.7240 ± 

0.1644 

0.8909 ± 

0.0884 

Indole-3-lactic acid 0.8952 ± 

0.0801 

0.8320 ± 

0.1555 

0.8436 ± 

0.0715 

0.9403 ± 

0.0319 

0.9430 ± 

0.0738 

0.7691 ± 

0.0719 

0.7320 ± 

0.1188 

0.6660 ± 

0.2546 

0.7309 ± 

0.1293 

0.8455 ± 

0.0796 

0.6180 ± 

0.2099 

0.8814 ± 

0.0567 

p-Cresol sulfate 0.8942 ± 

0.0465 

0.7620 ± 

0.1522 

0.9118 ± 

0.0645 

0.9137 ± 

0.0514 

0.8900 ± 

0.0964 

0.8155 ± 

0.0732 

0.9099 ± 

0.0718 

0.7780 ± 

0.1467 

0.9932 ± 

0.0371 

0.9492 ± 

0.0467 

0.8220 ± 

0.1622 

0.9923 ± 

0.0204 

Bilirubin 0.8869 ± 

0.0439 

0.8510 ± 

0.1446 

0.8173 ± 

0.0666 

0.9228 ± 

0.0279 

0.9450 ± 

0.0555 

0.7870 ± 

0.0531 

0.8309 ± 

0.1032 

0.5780 ± 

0.1741 

0.9173 ± 

0.0817 

0.8963 ± 

0.0566 

0.7280 ± 

0.1638 

0.8814 ± 

0.0665 

L-Tyrosine 0.8811 ± 

0.0577 

0.7830 ± 

0.1436 

0.8984 ± 

0.0625 

0.9282 ± 

0.0336 

0.8560 ± 

0.0875 

0.8707 ± 

0.0605 

0.8984 ± 

0.0829 

0.7340 ± 

0.2118 

0.9555 ± 

0.0450 

0.9214 ± 

0.0577 

0.8640 ± 

0.1439 

0.8995 ± 

0.0693 

L-Citrulline 0.8740 ± 

0.0611 

0.8500 ± 

0.1360 

0.7702 ± 

0.0680 

0.9141 ± 

0.0343 

0.9070 ± 

0.1022 

0.7302 ± 

0.0752 

0.9276 ± 

0.0647 

0.8640 ± 

0.1670 

0.8968 ± 

0.0721 

0.9704 ± 

0.0233 

0.8840 ± 

0.1419 

0.8986 ± 

0.0449 

L-Kynurenine 0.8739 ± 

0.0514 

0.8360 ± 

0.1473 

0.8052 ± 

0.0716 

0.9233 ± 

0.0260 

0.8420 ± 

0.0951 

0.8541 ± 

0.0469 

0.9110 ± 

0.0822 

0.7640 ± 

0.1609 

0.9518 ± 

0.0609 

0.9652 ± 

0.0228 

0.8000 ± 

0.1497 

0.9400 ± 

0.0683 

L-Leucine 0.8732 ± 

0.0618 

0.6240 ± 

0.1443 

0.9245 ± 

0.0429 

0.9047 ± 

0.0366 

0.8120 ± 

0.1125 

0.8216 ± 

0.0615 

0.7799 ± 

0.0738 

0.7060 ± 

0.2374 

0.7009 ± 

0.1373 

0.8104 ± 

0.0571 

0.8860 ± 

0.1175 

0.6850 ± 

0.1047 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity.  
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Table S5.11 AUC of selected single and multiple metabolites for distinguishing Stage 1a patients from Stages 1b-4 patients using 

random forest classification and logistic regression. 

Metabolites Stage 1a vs Stages 1b-4 (GFR > 120 vs GFR ≤ 120) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured serum 

creatinine 

0.9626+/-
0.0154 

0.8807+/-
0.0402 

0.9560+/-
0.1424 

0.9648+/-
0.0144 

0.8909+/-
0.0779 

0.8460+/-
0.1694 

0.9399+/-
0.0700 

0.8561+/-
0.0664 

0.8800+/-
0.2078 

0.9597+/-
0.0226 

0.9587+/-
0.0921 

0.3580+/-
0.3547 

MS-detected creatinine 0.8491 ± 

0.0508 

0.7207 ± 

0.1175 

0.8760 ± 

0.1201 

0.8966 ± 

0.0337 

0.8470 ± 

0.0774 

0.7080 ± 

0.1677 

0.8787 ± 

0.0777 

0.9196 ± 

0.0996 

0.6740 ± 

0.1825 

0.9298 ± 

0.0414 

0.4352 ± 

0.1679 

0.9940 ± 

0.0341 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.8878 ± 
0.0659 

0.8320 ± 
0.1096 

0.7530 ± 
0.1565 

0.9212 ± 
0.0315 

0.8932 ± 
0.0922 

0.6680 ± 
0.2395 

0.8930 ± 
0.0648 

0.8522 ± 
0.0740 

0.8060 ± 
0.2521 

0.9398 ± 
0.0303 

0.3861 ± 
0.1378 

1.0000 ± 
0.0000 

Pseudouridine 0.9148 ± 

0.0543 

0.9334 ± 

0.0534 

0.6880 ± 

0.1485 

0.9432 ± 

0.0239 

0.8134 ± 

0.1081 

0.8570 ± 

0.1344 

0.8742 ± 

0.0555 

0.8461 ± 

0.0697 

0.7280 ± 

0.2458 

0.9297 ± 

0.0329 

0.4096 ± 

0.1309 

1.0000 ± 

0.0000 

Succinyladenosine 0.8877 ± 
0.0584 

0.8318 ± 
0.0591 

0.7910 ± 
0.1582 

0.9147 ± 
0.0306 

0.8973 ± 
0.1112 

0.5720 ± 
0.2895 

0.9228 ± 
0.0499 

0.8657 ± 
0.0674 

0.8240 ± 
0.1795 

0.9513 ± 
0.0291 

0.4691 ± 
0.1296 

1.0000 ± 
0.0000 

L,L-TMAP 0.8984 ± 

0.0461 

0.8102 ± 

0.0661 

0.9020 ± 

0.1319 

0.9394 ± 

0.0219 

0.9305 ± 

0.0832 

0.5070 ± 

0.2779 

0.8686 ± 

0.0887 

0.8322 ± 

0.1316 

0.6720 ± 

0.2616 

0.9105 ± 

0.0467 

0.3961 ± 

0.1607 

0.9960 ± 

0.0398 

MS-detected creatinine 

reatinine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9229 ± 

0.0282 

0.8711 ± 

0.0666 

0.7220 ± 

0.1467 

0.9287 ± 

0.0260 

0.7966 ± 

0.0980 

0.8740 ± 

0.1254 

0.9181 ± 

0.0426 

0.9283 ± 

0.0568 

0.6240 ± 

0.1882 

0.9465 ± 

0.0309 

0.9043 ± 

0.1120 

0.5820 ± 

0.3465 

MS-detected creatinine 

reatinine + Pseudouridine 

0.9296 ± 

0.0249 

0.8482 ± 

0.0574 

0.8090 ± 

0.1504 

0.9451 ± 

0.0223 

0.7632 ± 

0.1081 

0.9590 ± 

0.0680 

0.9317 ± 

0.0344 

0.8909 ± 

0.0610 

0.6740 ± 

0.2239 

0.9561 ± 

0.0288 

0.8474 ± 

0.1369 

0.7720 ± 

0.2815 

MS-detected creatinine 

reatinine + Succinyladenosine 

0.9119 ± 

0.0288 

0.8198 ± 

0.0541 

0.7990 ± 

0.1284 

0.9235 ± 

0.0265 

0.7732 ± 

0.0890 

0.9260 ± 

0.0986 

0.9396 ± 

0.0407 

0.9361 ± 

0.0646 

0.7400 ± 

0.1685 

0.9526 ± 

0.0275 

0.8343 ± 

0.1330 

0.8520 ± 

0.1889 

MS-detected creatinine 

reatinine + L,L-TMAP 

0.9100 ± 

0.0429 

0.8441 ± 

0.0744 

0.8770 ± 

0.1441 

0.9226 ± 

0.0280 

0.7816 ± 

0.0911 

0.8940 ± 

0.0988 

0.9168 ± 

0.0517 

0.8887 ± 

0.0881 

0.7220 ± 

0.1895 

0.9371 ± 

0.0355 

0.9017 ± 

0.1158 

0.6480 ± 

0.2759 

Succinyladenosine + 

Pseudouridine 

0.9206 ± 

0.0492 

0.7950 ± 

0.0929 

0.8920 ± 

0.1146 

0.9482 ± 

0.0234 

0.7309 ± 

0.1130 

0.9270 ± 

0.0798 

0.9347 ± 

0.0278 

0.8926 ± 

0.0572 

0.7520 ± 

0.2138 

0.9501 ± 

0.0309 

0.7991 ± 

0.1465 

0.8980 ± 

0.2107 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9203 ± 

0.0422 

0.8239 ± 

0.0883 

0.8120 ± 

0.1373 

0.9353 ± 

0.0271 

0.7389 ± 

0.1050 

0.8920 ± 

0.0891 

0.8988 ± 

0.0367 

0.8630 ± 

0.0505 

0.7100 ± 

0.2439 

0.9346 ± 

0.0386 

0.8630 ± 

0.1371 

0.6340 ± 

0.3991 

Pseudouridine + L,L-TMAP 0.9419 ± 
0.0222 

0.8673 ± 
0.0467 

0.8320 ± 
0.1580 

0.9546 ± 
0.0175 

0.7348 ± 
0.1107 

0.9670 ± 
0.0679 

0.9167 ± 
0.0323 

0.8787 ± 
0.0607 

0.7160 ± 
0.2564 

0.9441 ± 
0.0305 

0.8548 ± 
0.1518 

0.6740 ± 
0.3402 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9159 ± 

0.0387 

0.8607 ± 

0.0827 

0.7820 ± 

0.1374 

0.9258 ± 

0.0312 

0.5914 ± 

0.0741 

0.9950 ± 

0.0218 

0.9270 ± 

0.0451 

0.8900 ± 

0.0541 

0.7920 ± 

0.1853 

0.9465 ± 

0.0320 

0.8478 ± 

0.1308 

0.7620 ± 

0.3196 

Succinyl-adenosine + L,L-

TMAP 

0.9432 ± 

0.0217 

0.8684 ± 

0.0579 

0.8300 ± 

0.1480 

0.9489 ± 

0.0199 

0.7602 ± 

0.1314 

0.9030 ± 

0.1559 

0.9073 ± 

0.0597 

0.8700 ± 

0.0737 

0.8120 ± 

0.1894 

0.9457 ± 

0.0335 

0.8339 ± 

0.1384 

0.7820 ± 

0.2385 

MS-detected creatinine 

reatinine + Succinyladenosine 

+ Pseudouridine 

0.9374 ± 
0.0248 

0.8952 ± 
0.0520 

0.7440 ± 
0.1485 

0.9518 ± 
0.0190 

0.7120 ± 
0.1089 

0.9860 ± 
0.0583 

0.9371 ± 
0.0299 

0.9296 ± 
0.0641 

0.6400 ± 
0.1855 

0.9561 ± 
0.0291 

0.7930 ± 
0.1346 

0.9460 ± 
0.1260 
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MS-detected creatinine 

reatinine + Pseudouridine + 

 L,L-TMAP 

0.9452 ± 
0.0212 

0.8970 ± 
0.0471 

0.8150 ± 
0.1590 

0.9519 ± 
0.0192 

0.7177 ± 
0.1105 

0.9770 ± 
0.0581 

0.9297 ± 
0.0352 

0.8830 ± 
0.0740 

0.6600 ± 
0.2236 

0.9572 ± 
0.0300 

0.5709 ± 
0.1526 

1.0000 ± 
0.0000 

MS-detected creatinine 

reatinine + L,L-TMAP + 

Succinyladenosine 

0.9375 ± 

0.0240 

0.8723 ± 

0.0572 

0.8430 ± 

0.1557 

0.9395 ± 

0.0237 

0.7230 ± 

0.1075 

0.9520 ± 

0.0700 

0.9293 ± 

0.0467 

0.9426 ± 

0.0659 

0.6760 ± 

0.1975 

0.9628 ± 

0.0259 

0.5970 ± 

0.1340 

1.0000 ± 

0.0000 

MS-detected creatinine + 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9248 ± 

0.0291 

0.8775 ± 

0.0593 

0.7280 ± 

0.1422 

0.9388 ± 

0.0229 

0.7266 ± 

0.1041 

0.9570 ± 

0.0863 

0.9362 ± 

0.0436 

0.9130 ± 

0.0735 

0.6840 ± 

0.2063 

0.9534 ± 

0.0299 

0.5783 ± 

0.1474 

1.0000 ± 

0.0000 

MS-detected creatinine + L,L-

TMAP + Succinyladenosine 

0.9375 ± 

0.0240 

0.8723 ± 

0.0572 

0.8430 ± 

0.1557 

0.9395 ± 

0.0237 

0.7230 ± 

0.1075 

0.9520 ± 

0.0700 

0.9293 ± 

0.0467 

0.9426 ± 

0.0659 

0.6760 ± 

0.1975 

0.9628 ± 

0.0259 

0.5970 ± 

0.1340 

1.0000 ± 

0.0000 

MS-detected creatinine 

reatinine + L,L-TMAP + 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.9306 ± 

0.0251 

0.8511 ± 

0.0731 

0.8260 ± 

0.1572 

0.9397 ± 

0.0218 

0.7305 ± 

0.1089 

0.9500 ± 

0.0854 

0.9201 ± 

0.0522 

0.8791 ± 

0.0812 

0.6980 ± 

0.2182 

0.9512 ± 

0.0343 

0.5613 ± 

0.1614 

1.0000 ± 

0.0000 

MS-detected creatinine + 

Pseudouridine + 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.9331 ± 

0.0244 

0.8705 ± 

0.0538 

0.7750 ± 

0.1329 

0.9522 ± 

0.0193 

0.7152 ± 

0.1087 

0.9730 ± 

0.0563 

0.9215 ± 

0.0337 

0.8817 ± 

0.0674 

0.6340 ± 

0.2228 

0.9558 ± 

0.0293 

0.5504 ± 

0.1639 

1.0000 ± 

0.0000 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.12 AUC of selected single and multiple metabolites for distinguishing Stage 1a patients from Stage 1b-2 patients using 

random forest classification and logistic regression. 

Metabolites Stage 1a vs Stages 1b-2 (GFR > 120 VS GFR= 60-120) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured serum 

creatinine 

0.8569+/-
0.0749 

0.9933+/-
0.0663 

0.5090+/-
0.1167 

0.8416+/-
0.0698 

0.9744+/-
0.1121 

0.4930+/-
0.1329 

0.9053+/-
0.0712 

0.8936+/-
0.1461 

0.6260+/-
0.1847 

0.9169+/-
0.0544 

0.6436+/-
0.1503 

0.9780+/-
0.0795 

MS-detected serum creatinine 0.7543 ± 

0.0800 

0.6433 ± 

0.1007 

0.8050 ± 

0.1615 

0.8077 ± 

0.0612 

0.5721 ± 

0.1124 

0.8800 ± 

0.1105 

0.7633 ± 

0.1085 

0.9091 ± 

0.1150 

0.6360 ± 

0.2086 

0.8596 ± 

0.0805 

0.9300 ± 

0.1112 

0.6560 ± 

0.1768 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.8111 ± 
0.0737 

0.8400 ± 
0.0931 

0.7040 ± 
0.1455 

0.8576 ± 
0.0501 

0.8604 ± 
0.0840 

0.6990 ± 
0.1300 

0.7805 ± 
0.0996 

0.6718 ± 
0.1408 

0.7940 ± 
0.2340 

0.8747 ± 
0.0687 

0.7627 ± 
0.1219 

0.7960 ± 
0.1523 

Pseudouridine 0.8672 ± 

0.0721 

0.8812 ± 

0.0889 

0.6960 ± 

0.1385 

0.8973 ± 

0.0393 

0.9312 ± 

0.0505 

0.6490 ± 

0.1323 

0.7566 ± 

0.0776 

0.6509 ± 

0.1418 

0.7600 ± 

0.2433 

0.8469 ± 

0.0669 

0.7391 ± 

0.1065 

0.8240 ± 

0.1607 

Succinyladenosine 0.8157 ± 
0.0652 

0.6883 ± 
0.1224 

0.8070 ± 
0.1675 

0.8472 ± 
0.0528 

0.6687 ± 
0.1186 

0.8540 ± 
0.1187 

0.8575 ± 
0.0656 

0.8191 ± 
0.1434 

0.7300 ± 
0.1729 

0.9051 ± 
0.0646 

0.6836 ± 
0.1388 

0.9260 ± 
0.0966 

L,L-TMAP 0.8485 ± 

0.0567 

0.7508 ± 

0.0779 

0.8120 ± 

0.1762 

0.8806 ± 

0.0379 

0.7171 ± 

0.0917 

0.8720 ± 

0.1217 

0.7736 ± 

0.1154 

0.8636 ± 

0.1209 

0.4940 ± 

0.2087 

0.8325 ± 

0.0877 

0.8455 ± 

0.1203 

0.6740 ± 

0.1591 

MS-detected Creatinine + 2-(α-

D-Mannopyranosyl)-L-

tryptophan 

0.8390 ± 

0.0530 

0.6833 ± 

0.1090 

0.8040 ± 

0.1489 

0.8754 ± 

0.0424 

0.8775 ± 

0.0642 

0.6660 ± 

0.1751 

0.8260 ± 

0.0826 

0.8491 ± 

0.1268 

0.5920 ± 

0.1831 

0.8929 ± 

0.0524 

0.8318 ± 

0.1249 

0.7260 ± 

0.1803 

MS-detected Creatinine + 

Pseudouridine 

0.8743 ± 
0.0466 

0.7079 ± 
0.1253 

0.8130 ± 
0.1376 

0.9106 ± 
0.0341 

0.8462 ± 
0.0606 

0.7300 ± 
0.1367 

0.8494 ± 
0.0629 

0.8355 ± 
0.1340 

0.5880 ± 
0.1807 

0.8962 ± 
0.0525 

0.6682 ± 
0.1571 

0.8900 ± 
0.1819 

MS-detected Creatinine + 

Succinyladenosine 

0.8398 ± 

0.0568 

0.6758 ± 

0.1154 

0.8010 ± 

0.1439 

0.8757 ± 

0.0419 

0.7504 ± 

0.0940 

0.7900 ± 

0.1493 

0.8687 ± 

0.0717 

0.8736 ± 

0.1198 

0.6980 ± 

0.1822 

0.9055 ± 

0.0548 

0.9473 ± 

0.0805 

0.6760 ± 

0.1955 

MS-detected Creatinine + L,L-

TMAP 

0.8684 ± 
0.0557 

0.7908 ± 
0.0903 

0.8180 ± 
0.1615 

0.8875 ± 
0.0442 

0.8646 ± 
0.0701 

0.7330 ± 
0.1349 

0.8340 ± 
0.0793 

0.9036 ± 
0.0870 

0.5980 ± 
0.1822 

0.8769 ± 
0.0655 

0.8291 ± 
0.1300 

0.7320 ± 
0.1702 

Succinyladenosine + 

Pseudouridine 

0.8767 ± 

0.0676 

0.8337 ± 

0.1128 

0.7920 ± 

0.1560 

0.9070 ± 

0.0394 

0.7988 ± 

0.0882 

0.8240 ± 

0.1150 

0.8695 ± 

0.0659 

0.8264 ± 

0.1207 

0.7460 ± 

0.1621 

0.8942 ± 

0.0650 

0.7664 ± 

0.1362 

0.8840 ± 

0.1362 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.8598 ± 
0.0572 

0.8842 ± 
0.0839 

0.6520 ± 
0.1466 

0.8891 ± 
0.0476 

0.8800 ± 
0.0861 

0.7150 ± 
0.1252 

0.7981 ± 
0.0813 

0.7091 ± 
0.1091 

0.7560 ± 
0.2128 

0.8604 ± 
0.0661 

0.6700 ± 
0.1155 

0.9680 ± 
0.0786 

Pseudouridine + L,L-TMAP 0.9054 ± 

0.0374 

0.7917 ± 

0.0750 

0.8060 ± 

0.1593 

0.9240 ± 

0.0311 

0.8604 ± 

0.0701 

0.7490 ± 

0.1453 

0.8342 ± 

0.0908 

0.7336 ± 

0.1416 

0.7560 ± 

0.1888 

0.8822 ± 

0.0617 

0.7036 ± 

0.1713 

0.8540 ± 

0.1763 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.8374 ± 

0.0628 

0.8938 ± 

0.0749 

0.6830 ± 

0.1497 

0.8663 ± 

0.0522 

0.8858 ± 

0.0696 

0.7220 ± 

0.1110 

0.8700 ± 

0.0823 

0.7645 ± 

0.1299 

0.8360 ± 

0.1706 

0.8878 ± 

0.0618 

0.6155 ± 

0.1537 

0.9320 ± 

0.1174 

Succinyl-adenosine + L,L-

TMAP 

0.9126 ± 
0.0439 

0.8908 ± 
0.0738 

0.6730 ± 
0.1642 

0.9116 ± 
0.0362 

0.7913 ± 
0.1076 

0.8500 ± 
0.1367 

0.8615 ± 
0.0810 

0.8036 ± 
0.1371 

0.7600 ± 
0.1766 

0.8862 ± 
0.0668 

0.6345 ± 
0.1641 

0.9060 ± 
0.1482 

MS-detected creatinine + 

Succinyladenosine + 

Pseudouridine 

0.8882 ± 

0.0449 

0.8262 ± 

0.0856 

0.7530 ± 

0.1315 

0.9051 ± 

0.0365 

0.7871 ± 

0.0799 

0.8350 ± 

0.1178 

0.8496 ± 

0.0674 

0.7636 ± 

0.1483 

0.7240 ± 

0.2311 

0.8947 ± 

0.0539 

0.7491 ± 

0.1312 

0.8420 ± 

0.1656 
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Creatinine + Pseudouridine + 

 L,L-TMAP 

0.9091 ± 
0.0355 

0.8379 ± 
0.0721 

0.7810 ± 
0.1586 

0.9210 ± 
0.0288 

0.6967 ± 
0.1080 

0.9570 ± 
0.0738 

0.8915 ± 
0.0614 

0.8082 ± 
0.1226 

0.7120 ± 
0.2405 

0.8844 ± 
0.0536 

0.6582 ± 
0.1349 

0.8740 ± 
0.1460 

MS-detected Creatinine + L,L-

TMAP + Succinyladenosine 

0.9081 ± 

0.0399 

0.8688 ± 

0.0581 

0.7090 ± 

0.1443 

0.9019 ± 

0.0354 

0.7754 ± 

0.0803 

0.8700 ± 

0.1145 

0.8633 ± 

0.0905 

0.8945 ± 

0.1245 

0.5840 ± 

0.2292 

0.8891 ± 

0.0621 

0.8845 ± 

0.1127 

0.6680 ± 

0.1503 

MS-detected Creatinine + 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.8849 ± 
0.0485 

0.9017 ± 
0.0772 

0.6330 ± 
0.1569 

0.8790 ± 
0.0463 

0.8250 ± 
0.0784 

0.7370 ± 
0.1197 

0.8538 ± 
0.0849 

0.8964 ± 
0.1136 

0.6700 ± 
0.1841 

0.8995 ± 
0.0561 

0.9191 ± 
0.0935 

0.6040 ± 
0.1720 

MS-detected Creatinine + L,L-

TMAP + Succinyladenosine 

0.9081 ± 
0.0399 

0.8688 ± 
0.0581 

0.7090 ± 
0.1443 

0.9019 ± 
0.0354 

0.7754 ± 
0.0803 

0.8700 ± 
0.1145 

0.8633 ± 
0.0905 

0.8945 ± 
0.1245 

0.5840 ± 
0.2292 

0.8891 ± 
0.0621 

0.8845 ± 
0.1127 

0.6680 ± 
0.1503 

MS-detected Creatinine + L,L-

TMAP + 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.8995 ± 

0.0366 

0.8604 ± 

0.0715 

0.7380 ± 

0.1660 

0.9009 ± 

0.0387 

0.8304 ± 

0.0757 

0.7840 ± 

0.1206 

0.8413 ± 

0.0830 

0.8973 ± 

0.1018 

0.6640 ± 

0.1895 

0.8733 ± 

0.0644 

0.8936 ± 

0.1106 

0.6560 ± 

0.1551 

MS-detected Creatinine + 

Pseudouridine + 

 2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.8858 ± 

0.0412 

0.8308 ± 

0.0835 

0.7170 ± 

0.1607 

0.9037 ± 

0.0398 

0.7879 ± 

0.0894 

0.8390 ± 

0.1094 

0.8109 ± 

0.0890 

0.8518 ± 

0.1352 

0.6280 ± 

0.2079 

0.8887 ± 

0.0552 

0.6673 ± 

0.1337 

0.9440 ± 

0.1098 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.13 AUC of selected single and multiple metabolites for distinguishing Stage 1b patients from Stage 2 patients using 

random forest classification and logistic regression. 

Metabolite and model Stage 1b vs Stages 2 (GFR = 90-120 vs GFR = 60-89) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured serum 

creatinine 

0.7955+/

-0.0647 

0.4660+/

-0.1235 

0.9389+/

-0.1518 

0.8171+/

-0.0655 

0.4433+/

-0.1393 

0.9578+/

-0.1284 

0.7678+/

-0.1288 

0.5360+/

-0.1937 

0.8520+/

-0.2377 

0.8100+/

-0.0912 

0.4940+/

-0.2029 

0.9460+/

-0.1545 

MS-detected serum 

creatinine 

0.6805 ± 

0.0938 

0.7847 ± 

0.1766 

0.4467 ± 

0.1872 

0.7547 ± 

0.0719 

0.8227 ± 

0.1276 

0.4900 ± 

0.1268 

0.6002 ± 

0.1698 

0.4800 ± 

0.2383 

0.6840 ± 

0.2656 

0.7336 ± 

0.1457 

0.3220 ± 

0.1764 

0.9840 ± 

0.0784 

2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.7073 ± 

0.0974 

0.6873 ± 

0.1796 

0.5978 ± 

0.1904 

0.8176 ± 

0.0629 

0.7687 ± 

0.1109 

0.7122 ± 

0.1353 

0.8698 ± 

0.0918 

0.8420 ± 

0.2566 

0.7920 ± 

0.1521 

0.9296 ± 

0.0623 

0.7360 ± 

0.1830 

0.8380 ± 

0.1434 

Pseudouridine 0.7410 ± 

0.0791 

0.6787 ± 

0.1085 

0.7722 ± 

0.1527 

0.8205 ± 

0.0667 

0.7413 ± 

0.1148 

0.7922 ± 

0.1615 

0.9822 ± 

0.0307 

0.9000 ± 

0.1000 

0.9160 ± 

0.1501 

0.9900 ± 

0.0173 

0.8700 ± 

0.1634 

0.9680 ± 

0.0786 

Succinyladenosine 0.7766 ± 

0.0693 

0.5560 ± 

0.1212 

0.8156 ± 

0.1701 

0.7785 ± 

0.0667 

0.7020 ± 

0.1822 

0.6733 ± 

0.2282 

0.8890 ± 

0.0784 

0.7660 ± 

0.2210 

0.8020 ± 

0.1887 

0.9424 ± 

0.0535 

0.5420 ± 

0.2861 

0.9400 ± 

0.1149 

L,L-TMAP 0.6801 ± 

0.0780 

0.5180 ± 

0.1268 

0.7600 ± 

0.1851 

0.7575 ± 

0.0824 

0.4387 ± 

0.1016 

0.9544 ± 

0.0787 

0.6684 ± 

0.1565 

0.4780 ± 

0.2448 

0.7780 ± 

0.2575 

0.8076 ± 

0.0946 

0.6440 ± 

0.2201 

0.7300 ± 

0.1634 

MS-detected creatinine + 

2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.7813 ± 

0.0734 

0.5907 ± 

0.1054 

0.8844 ± 

0.1594 

0.8627 ± 

0.0494 

0.6920 ± 

0.1107 

0.8589 ± 

0.1413 

0.8620 ± 

0.0954 

0.7620 ± 

0.2293 

0.8120 ± 

0.1351 

0.9312 ± 

0.0554 

0.7000 ± 

0.1755 

0.8840 ± 

0.1239 

MS-detected creatinine + 

Pseudouridine 

0.8096 ± 

0.0644 

0.6507 ± 

0.1383 

0.8311 ± 

0.1383 

0.8541 ± 

0.0528 

0.7613 ± 

0.1124 

0.7778 ± 

0.1523 

0.9666 ± 

0.0579 

0.8980 ± 

0.1183 

0.9140 ± 

0.1679 

0.9440 ± 

0.0625 

0.6480 ± 

0.2334 

0.9840 ± 

0.0674 

MS-detected creatinine + 

Succinyladenosine 

0.7868 ± 

0.0700 

0.5820 ± 

0.1511 

0.8800 ± 

0.1437 

0.7698 ± 

0.0671 

0.4553 ± 

0.1455 

0.9078 ± 

0.1043 

0.8562 ± 

0.0803 

0.7580 ± 

0.1904 

0.7700 ± 

0.2007 

0.8944 ± 

0.0864 

0.6740 ± 

0.2556 

0.8720 ± 

0.1638 

MS-detected creatinine + 

L,L-TMAP 

0.7303 ± 

0.0796 

0.5747 ± 

0.1001 

0.8933 ± 

0.1414 

0.7933 ± 

0.0578 

0.5140 ± 

0.1064 

0.9289 ± 

0.0778 

0.6918 ± 

0.1321 

0.5560 ± 

0.2070 

0.7080 ± 

0.2675 

0.8220 ± 

0.0987 

0.5100 ± 

0.1884 

0.8980 ± 

0.1483 

Succinyladenosine + 

Pseudouridine 

0.8034 ± 

0.0654 

0.7213 ± 

0.1105 

0.7400 ± 

0.1581 

0.7918 ± 

0.0686 

0.6347 ± 

0.1368 

0.8656 ± 

0.0972 

0.9860 ± 

0.0305 

0.8860 ± 

0.1449 

0.9060 ± 

0.1660 

0.9976 ± 

0.0111 

0.8160 ± 

0.2239 

0.9860 ± 

0.0510 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.8040 ± 

0.0531 

0.6893 ± 

0.0910 

0.8144 ± 

0.1432 

0.8359 ± 

0.0597 

0.6140 ± 

0.1234 

0.8567 ± 

0.1147 

0.9882 ± 

0.0313 

0.9260 ± 

0.1154 

0.8920 ± 

0.1560 

0.9636 ± 

0.0463 

0.7560 ± 

0.2376 

0.8920 ± 

0.1181 

Pseudouridine + L,L-

TMAP 

0.7763 ± 

0.0653 

0.7093 ± 

0.0892 

0.7533 ± 

0.1584 

0.8086 ± 

0.0543 

0.5667 ± 

0.1305 

0.9167 ± 

0.0935 

0.9660 ± 

0.0560 

0.8580 ± 

0.1632 

0.9240 ± 

0.1544 

0.9896 ± 

0.0352 

0.6560 ± 

0.2099 

0.9980 ± 

0.0199 

Succinyladenosine + 2-(α-

D-Mannopyranosyl)-L-

tryptophan 

0.7918 ± 

0.0746 

0.7227 ± 

0.1382 

0.7178 ± 

0.1808 

0.7781 ± 

0.0676 

0.4213 ± 

0.1087 

0.9400 ± 

0.0656 

0.9346 ± 

0.0592 

0.8660 ± 

0.1498 

0.8340 ± 

0.1298 

0.9568 ± 

0.0451 

0.7900 ± 

0.1729 

0.8880 ± 

0.1107 

Succinyl-adenosine + L,L-

TMAP 

0.7473 ± 

0.0719 

0.6267 ± 

0.1178 

0.7189 ± 

0.1795 

0.7424 ± 

0.0667 

0.5280 ± 

0.1235 

0.9011 ± 

0.0830 

0.8348 ± 

0.1039 

0.7200 ± 

0.2383 

0.7840 ± 

0.1869 

0.8716 ± 

0.0927 

0.6980 ± 

0.1865 

0.8800 ± 

0.1356 
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MS-detected creatinine + 

Succinyladenosine + 

Pseudouridine 

0.8215 ± 

0.0589 

0.7300 ± 

0.0995 

0.7911 ± 

0.1468 

0.8238 ± 

0.0616 

0.6940 ± 

0.1222 

0.7956 ± 

0.1062 

0.9818 ± 

0.0342 

0.8320 ± 

0.1406 

0.9500 ± 

0.1034 

0.9644 ± 

0.0614 

0.7420 ± 

0.2232 

0.9900 ± 

0.0520 

MS-detected creatinine + 

Pseudouridine + 

 L,L-TMAP 

0.8067 ± 

0.0593 

0.7187 ± 

0.0955 

0.7789 ± 

0.1637 

0.8436 ± 

0.0483 

0.7147 ± 

0.1219 

0.7967 ± 

0.1187 

0.9514 ± 

0.0672 

0.8320 ± 

0.1434 

0.9140 ± 

0.1703 

0.9492 ± 

0.0662 

0.6760 ± 

0.2112 

0.9880 ± 

0.0621 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.7762 ± 

0.0641 

0.6473 ± 

0.0954 

0.8211 ± 

0.1523 

0.7797 ± 

0.0626 

0.6873 ± 

0.1023 

0.7567 ± 

0.1537 

0.8428 ± 

0.0966 

0.6840 ± 

0.2353 

0.8300 ± 

0.2086 

0.9024 ± 

0.0962 

0.6960 ± 

0.2088 

0.9000 ± 

0.1755 

MS-detected creatinine + 

Succinyladenosine + 2-(α-

D-Mannopyranosyl)-L-

tryptophan 

0.7904 ± 

0.0546 

0.7407 ± 

0.1062 

0.6411 ± 

0.1968 

0.8347 ± 

0.0635 

0.7033 ± 

0.1175 

0.7844 ± 

0.1350 

0.9200 ± 

0.0682 

0.8640 ± 

0.1546 

0.8360 ± 

0.1584 

0.9480 ± 

0.0498 

0.8400 ± 

0.1549 

0.8860 ± 

0.1030 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.7762 ± 

0.0641 

0.6473 ± 

0.0954 

0.8211 ± 

0.1523 

0.7797 ± 

0.0626 

0.6873 ± 

0.1023 

0.7567 ± 

0.1537 

0.8428 ± 

0.0966 

0.6840 ± 

0.2353 

0.8300 ± 

0.2086 

0.9024 ± 

0.0962 

0.6960 ± 

0.2088 

0.9000 ± 

0.1755 

MS-detected creatinine + 

L,L-TMAP + 

2-(α-D-Mannopyranosyl)-

L-tryptophan  

0.7726 ± 

0.0630 

0.6180 ± 

0.0874 

0.8900 ± 

0.1356 

0.8483 ± 

0.0521 

0.6833 ± 

0.1186 

0.8122 ± 

0.1429 

0.8698 ± 

0.0879 

0.7180 ± 

0.2351 

0.8000 ± 

0.1855 

0.9208 ± 

0.0601 

0.4680 ± 

0.1726 

0.9940 ± 

0.0341 

MS-detected creatinine + 

Pseudouridine + 

 2-(α-D-Mannopyranosyl)-

L-tryptophan  

0.8313 ± 

0.0533 

0.7220 ± 

0.1011 

0.7989 ± 

0.1488 

0.8581 ± 

0.0484 

0.7280 ± 

0.1243 

0.8211 ± 

0.1369 

0.9622 ± 

0.0524 

0.8680 ± 

0.1420 

0.8800 ± 

0.1549 

0.9520 ± 

0.0496 

0.7560 ± 

0.1992 

0.8720 ± 

0.1281 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity.  
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Table S5.14 AUC of selected single and multiple metabolites for distinguishing Stages 1 patients from Stages 2-4 patients using 

random forest classification and logistic regression. 

Metabolite Stages 1 vs Stages 2-4 (GFR ≥ 90 vs GFR < 90) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured serum 

creatinine 

0.9529+

/-0.0242 

0.7721+

/-0.0619 

0.9568+

/-0.0897 

0.9594+

/-0.0149 

0.8565+

/-0.0932 

0.8600+

/-0.1112 

0.9568+

/-0.0334 

0.8678+

/-0.0675 

0.8880+

/-0.1699 

0.9737+

/-0.0175 

0.6917+

/-0.2010 

0.9930+

/-0.0453 

MS-detected serum 

creatinine 

0.9183 ± 

0.0281 

0.7244 ± 

0.0708 

0.9068 ± 

0.0953 

0.9197 ± 

0.0229 

0.6665 ± 

0.0818 

0.9642 ± 

0.0464 

0.9268 ± 

0.0480 

0.8111 ± 

0.0813 

0.9100 ± 

0.1453 

0.9518 ± 

0.0280 

0.6589 ± 

0.2239 

0.9590 ± 

0.0960 

2-(α-D-Mannopyranosyl)-L-

tryptophan  

0.9348 ± 

0.0259 

0.7779 ± 

0.0639 

0.9195 ± 

0.0977 

0.9383 ± 

0.0197 

0.8279 ± 

0.0947 

0.8316 ± 

0.1112 

0.9544 ± 

0.0337 

0.9394 ± 

0.0940 

0.8570 ± 

0.0828 

0.9769 ± 

0.0179 

0.6117 ± 

0.2081 

0.9640 ± 

0.1171 

Pseudouridine 0.9348 ± 

0.0349 

0.8741 ± 

0.0579 

0.9047 ± 

0.0828 

0.9526 ± 

0.0184 

0.7574 ± 

0.1130 

0.9605 ± 

0.0455 

0.9942 ± 

0.0105 

0.9661 ± 

0.0359 

0.9760 ± 

0.0634 

0.9992 ± 

0.0020 

0.5911 ± 

0.1728 

0.9980 ± 

0.0199 

Succinyladenosine 0.8990 ± 

0.0378 

0.7874 ± 

0.0594 

0.9016 ± 

0.0917 

0.9213 ± 

0.0278 

0.8097 ± 

0.1092 

0.8468 ± 

0.1739 

0.9715 ± 

0.0314 

0.9306 ± 

0.0787 

0.9250 ± 

0.1062 

0.9901 ± 

0.0088 

0.8250 ± 

0.1479 

0.9370 ± 

0.1324 

L,L-TMAP 0.9064 ± 

0.0380 

0.7809 ± 

0.0571 

0.9395 ± 

0.0810 

0.9333 ± 

0.0234 

0.8144 ± 

0.1209 

0.8321 ± 

0.1899 

0.9281 ± 

0.0536 

0.7844 ± 

0.0851 

0.9290 ± 

0.1409 

0.9509 ± 

0.0252 

0.6350 ± 

0.2076 

0.9600 ± 

0.1058 

MS-detected creatinine + 2-

(α-D-Mannopyranosyl)-L-

tryptophan 

0.9488 ± 

0.0169 

0.8224 ± 

0.0561 

0.9042 ± 

0.1110 

0.9575 ± 

0.0152 

0.8053 ± 

0.0751 

0.9621 ± 

0.0610 

0.9811 ± 

0.0181 

0.9300 ± 

0.0710 

0.8730 ± 

0.1130 

0.9738 ± 

0.0191 

0.8817 ± 

0.1323 

0.8750 ± 

0.1602 

MS-detected creatinine + 

Pseudouridine 

0.9549 ± 

0.0161 

0.8909 ± 

0.0417 

0.8605 ± 

0.0977 

0.9596 ± 

0.0135 

0.8865 ± 

0.0837 

0.8389 ± 

0.1096 

0.9954 ± 

0.0094 

0.9711 ± 

0.0328 

0.9530 ± 

0.1081 

0.9914 ± 

0.0087 

0.8133 ± 

0.1502 

0.9710 ± 

0.0941 

MS-detected creatinine + 

Succinyladenosine 

0.9317 ± 

0.0238 

0.8341 ± 

0.0626 

0.8742 ± 

0.0835 

0.9398 ± 

0.0198 

0.7932 ± 

0.0876 

0.9242 ± 

0.0734 

0.9789 ± 

0.0184 

0.9161 ± 

0.0752 

0.9120 ± 

0.1211 

0.9887 ± 

0.0119 

0.8150 ± 

0.1350 

0.9880 ± 

0.0515 

MS-detected creatinine + 

L,L-TMAP 

0.9238 ± 

0.0281 

0.8297 ± 

0.0525 

0.8705 ± 

0.1011 

0.9425 ± 

0.0177 

0.7974 ± 

0.0866 

0.9016 ± 

0.0949 

0.9588 ± 

0.0267 

0.8800 ± 

0.0697 

0.9360 ± 

0.1221 

0.9706 ± 

0.0211 

0.6522 ± 

0.2030 

0.9970 ± 

0.0222 

Succinyladenosine + 

Pseudouridine 

0.9422 ± 

0.0197 

0.8718 ± 

0.0479 

0.8621 ± 

0.0911 

0.9456 ± 

0.0171 

0.8824 ± 

0.0808 

0.8084 ± 

0.1493 

0.9723 ± 

0.0220 

0.9072 ± 

0.0694 

0.9230 ± 

0.1103 

0.9992 ± 

0.0020 

0.7617 ± 

0.1458 

0.9940 ± 

0.0443 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.9490 ± 

0.0199 

0.8521 ± 

0.0496 

0.9016 ± 

0.0904 

0.9976 ± 

0.0034 

0.7944 ± 

0.1726 

0.9600 ± 

0.1421 

0.9988 ± 

0.0027 

0.9811 ± 

0.0307 

0.9480 ± 

0.0889 

0.9659 ± 

0.0207 

0.7869 ± 

0.1839 

0.8933 ± 

0.1300 

Pseudouridine + L,L-TMAP 0.9374 ± 

0.0227 

0.8679 ± 

0.0475 

0.8747 ± 

0.0867 

0.9529 ± 

0.0161 

0.8826 ± 

0.0796 

0.8179 ± 

0.1379 

0.9987 ± 

0.0034 

0.9794 ± 

0.0357 

0.9640 ± 

0.0641 

0.9996 ± 

0.0022 

0.8094 ± 

0.1510 

0.9790 ± 

0.1061 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.9909 ± 

0.0106 

0.9622 ± 

0.0502 

0.8780 ± 

0.0955 

0.9940 ± 

0.0070 

0.8006 ± 

0.1423 

0.9850 ± 

0.0572 

0.9300 ± 

0.0263 

0.8432 ± 

0.0677 

0.8474 ± 

0.1011 

0.9459 ± 

0.0269 

0.8038 ± 

0.1745 

0.8613 ± 

0.1349 
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Succinyl-adenosine + L,L-

TMAP 

0.9331 ± 

0.0243 

0.8376 ± 

0.0530 

0.8711 ± 

0.0963 

0.9356 ± 

0.0198 

0.7703 ± 

0.0962 

0.9611 ± 

0.0480 

0.9967 ± 

0.0097 

0.9689 ± 

0.0579 

0.9640 ± 

0.0889 

0.9844 ± 

0.0125 

0.8256 ± 

0.1237 

0.9730 ± 

0.0676 

MS-detected creatinine + 

Succinyladenosine + 

Pseudouridine 

0.9573 ± 

0.0165 

0.8703 ± 

0.0520 

0.9084 ± 

0.0589 

0.9591 ± 

0.0176 

0.8591 ± 

0.0762 

0.8900 ± 

0.0859 

0.9982 ± 

0.0038 

0.9567 ± 

0.0475 

0.9840 ± 

0.0463 

0.9973 ± 

0.0038 

0.9128 ± 

0.1123 

0.9030 ± 

0.1700 

MS-detected creatinine + 

Pseudouridine + 

 L,L-TMAP 

0.9477 ± 

0.0208 

0.8635 ± 

0.0548 

0.8963 ± 

0.0796 

0.9612 ± 

0.0164 

0.8612 ± 

0.0807 

0.8926 ± 

0.0947 

0.9930 ± 

0.0116 

0.9411 ± 

0.0597 

0.9940 ± 

0.0420 

0.9898 ± 

0.0114 

0.7817 ± 

0.1914 

0.9770 ± 

0.0847 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.9368 ± 

0.0224 

0.8124 ± 

0.0524 

0.9368 ± 

0.0729 

0.9459 ± 

0.0197 

0.7874 ± 

0.0784 

0.9558 ± 

0.0530 

0.9766 ± 

0.0184 

0.9022 ± 

0.0699 

0.9400 ± 

0.0735 

0.9888 ± 

0.0123 

0.8072 ± 

0.1736 

0.9860 ± 

0.0633 

MS-detected creatinine + 

Succinyladenosine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.9484 ± 

0.0194 

0.8676 ± 

0.0576 

0.8363 ± 

0.1036 

0.9589 ± 

0.0171 

0.8782 ± 

0.0681 

0.8684 ± 

0.1132 

0.9888 ± 

0.0095 

0.9494 ± 

0.0504 

0.9230 ± 

0.0870 

0.9899 ± 

0.0113 

0.8017 ± 

0.1845 

0.9790 ± 

0.0637 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.9368 ± 

0.0224 

0.8124 ± 

0.0524 

0.9368 ± 

0.0729 

0.9459 ± 

0.0197 

0.7874 ± 

0.0784 

0.9558 ± 

0.0530 

0.9766 ± 

0.0184 

0.9022 ± 

0.0699 

0.9400 ± 

0.0735 

0.9888 ± 

0.0123 

0.8072 ± 

0.1736 

0.9860 ± 

0.0633 

MS-detected creatinine + 

L,L-TMAP + 

2-(α-D-Mannopyranosyl)-L-

tryptophan 

0.9451 ± 

0.0188 

0.8253 ± 

0.0478 

0.9605 ± 

0.0588 

0.9589 ± 

0.0167 

0.8741 ± 

0.0737 

0.8521 ± 

0.1238 

0.9794 ± 

0.0149 

0.9150 ± 

0.0705 

0.8970 ± 

0.1063 

0.9803 ± 

0.0145 

0.8067 ± 

0.1959 

0.9300 ± 

0.1473 

MS-detected creatinine + 

Pseudouridine + 

2-(α-D-Mannopyranosyl)-L-

tryptophan  

0.9600 ± 

0.0160 

0.8512 ± 

0.0562 

0.9368 ± 

0.0686 

0.9688 ± 

0.0151 

0.8629 ± 

0.0781 

0.9184 ± 

0.0810 

0.9970 ± 

0.0050 

0.9683 ± 

0.0498 

0.9480 ± 

0.0741 

0.9913 ± 

0.0092 

0.7689 ± 

0.1989 

0.9710 ± 

0.0840 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity.  
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Table S5.15 AUC of selected single and multiple metabolites for distinguishing Stages 1-2 patients from Stages 3-4 patients using 

random forest classification and logistic regression. 

Metabolite Stages 1-2 vs Stages 3-4 (GFR ≥ 60 vs GFR < 60 ) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured 

serum creatinine 

0.9715 ± 

0.0306 

0.9542 ± 

0.0754 

0.8818 ± 

0.0757 

0.9901 ± 

0.0060 

0.9347 ± 

0.0752 

0.9003 ± 

0.0979 

0.9665 ± 

0.0340 

0.9192 ± 

0.1073 

0.8600 ± 

0.0978 

0.9769 ± 

0.0163 

0.7262 ± 

0.2228 

0.9447 ± 

0.0725 

MS-detected serum 

creatinine 

0.9500 ± 

0.0247 

0.9189 ± 

0.0789 

0.8803 ± 

0.0800 

0.9658 ± 

0.0173 

0.8758 ± 

0.1072 

0.9147 ± 

0.0477 

0.9306 ± 

0.0385 

0.9323 ± 

0.0655 

0.8173 ± 

0.1090 

0.9502 ± 

0.0253 

0.6854 ± 

0.2396 

0.9133 ± 

0.0877 

2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.9715 ± 

0.0254 

0.8921 ± 

0.0760 

0.9259 ± 

0.0546 

0.9841 ± 

0.0092 

0.9779 ± 

0.0466 

0.8053 ± 

0.1143 

0.9378 ± 

0.0347 

0.8492 ± 

0.1569 

0.7853 ± 

0.1274 

0.9402 ± 

0.0315 

0.6854 ± 

0.2157 

0.9000 ± 

0.1669 

Pseudouridine 0.9850 ± 

0.0168 

0.9242 ± 

0.0696 

0.9321 ± 

0.0509 

0.9921 ± 

0.0057 

0.9963 ± 

0.0226 

0.8121 ± 

0.1213 

0.9492 ± 

0.0361 

0.8923 ± 

0.0973 

0.8947 ± 

0.0817 

0.9724 ± 

0.0195 

0.8069 ± 

0.1935 

0.8767 ± 

0.1425 

Succinyladenosine 0.9581 ± 

0.0276 

0.9116 ± 

0.0755 

0.8412 ± 

0.0774 

0.9648 ± 

0.0141 

0.9163 ± 

0.1114 

0.7968 ± 

0.1588 

0.9118 ± 

0.0437 

0.8992 ± 

0.0861 

0.8427 ± 

0.1005 

0.9522 ± 

0.0292 

0.8346 ± 

0.1792 

0.8380 ± 

0.1494 

L,L-TMAP 0.9691 ± 

0.0199 

0.9495 ± 

0.0566 

0.8512 ± 

0.0737 

0.9833 ± 

0.0089 

0.9411 ± 

0.0806 

0.8418 ± 

0.1369 

0.9151 ± 

0.0459 

0.8446 ± 

0.1109 

0.8580 ± 

0.0878 

0.9438 ± 

0.0268 

0.6962 ± 

0.2467 

0.8980 ± 

0.1224 

MS-detected creatinine + 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9814 ± 

0.0094 

0.8911 ± 

0.0753 

0.9282 ± 

0.0466 

0.9860 ± 

0.0090 

0.9205 ± 

0.0972 

0.9159 ± 

0.0659 

0.9493 ± 

0.0271 

0.8669 ± 

0.1225 

0.8720 ± 

0.0770 

0.9668 ± 

0.0198 

0.8569 ± 

0.1949 

0.8033 ± 

0.1737 

MS-detected creatinine + 

Pseudouridine 

0.9898 ± 

0.0062 

0.9179 ± 

0.0597 

0.9347 ± 

0.0400 

0.9905 ± 

0.0060 

0.9774 ± 

0.0628 

0.8800 ± 

0.0769 

0.9550 ± 

0.0264 

0.8977 ± 

0.1061 

0.8987 ± 

0.0797 

0.9741 ± 

0.0161 

0.8115 ± 

0.1870 

0.8967 ± 

0.1156 

MS-detected creatinine + 

Succinyladenosine 

0.9726 ± 

0.0124 

0.8553 ± 

0.0830 

0.9235 ± 

0.0489 

0.9754 ± 

0.0117 

0.8795 ± 

0.1309 

0.9050 ± 

0.0664 

0.9553 ± 

0.0294 

0.9008 ± 

0.0787 

0.8840 ± 

0.0798 

0.9583 ± 

0.0252 

0.8346 ± 

0.1831 

0.8693 ± 

0.1123 

MS-detected creatinine + 

L,L-TMAP 

0.9795 ± 

0.0110 

0.9121 ± 

0.0614 

0.9044 ± 

0.0479 

0.9804 ± 

0.0103 

0.8747 ± 

0.1131 

0.9182 ± 

0.0573 

0.9426 ± 

0.0317 

0.8769 ± 

0.0991 

0.8727 ± 

0.0766 

0.9730 ± 

0.0182 

0.8669 ± 

0.1988 

0.8047 ± 

0.1794 

Succinyladenosine + 

Pseudouridine 

0.9819 ± 

0.0098 

0.9053 ± 

0.0845 

0.9115 ± 

0.0477 

0.9885 ± 

0.0068 

0.9553 ± 

0.0872 

0.8835 ± 

0.0770 

0.9414 ± 

0.0317 

0.8423 ± 

0.0919 

0.8900 ± 

0.0824 

0.9597 ± 

0.0233 

0.7746 ± 

0.1785 

0.9047 ± 

0.1008 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9883 ± 

0.0072 

0.9226 ± 

0.0611 

0.9118 ± 

0.0452 

0.9900 ± 

0.0056 

0.9705 ± 

0.0615 

0.8703 ± 

0.0732 

0.9492 ± 

0.0259 

0.8746 ± 

0.1001 

0.8813 ± 

0.0820 

0.9659 ± 

0.0207 

0.7869 ± 

0.1839 

0.8933 ± 

0.1300 

Pseudouridine + L,L-

TMAP 

0.9879 ± 

0.0082 

0.9063 ± 

0.0814 

0.9397 ± 

0.0398 

0.9932 ± 

0.0048 

0.9668 ± 

0.0769 

0.8918 ± 

0.0758 

0.9594 ± 

0.0261 

0.8762 ± 

0.0978 

0.9000 ± 

0.0745 

0.9706 ± 

0.0191 

0.8177 ± 

0.1936 

0.8987 ± 

0.1157 

Succinyladenosine + 2-

(α-D-Mannopyranosyl)-

L-tryptophan 

0.9747 ± 

0.0123 

0.8679 ± 

0.0724 

0.9121 ± 

0.0546 

0.9807 ± 

0.0099 

0.8742 ± 

0.1372 

0.8962 ± 

0.0830 

0.9559 ± 

0.0234 

0.8662 ± 

0.0927 

0.8560 ± 

0.1014 

0.9459 ± 

0.0269 

0.8038 ± 

0.1745 

0.8613 ± 

0.1349 
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Succinyl-adenosine + 

L,L-TMAP 

0.9766 ± 

0.0104 

0.8721 ± 

0.0820 

0.9076 ± 

0.0539 

0.9799 ± 

0.0093 

0.8400 ± 

0.1494 

0.9206 ± 

0.0689 

0.9553 ± 

0.0287 

0.8662 ± 

0.0914 

0.8847 ± 

0.0711 

0.9504 ± 

0.0269 

0.8331 ± 

0.1846 

0.8480 ± 

0.1337 

MS-detected creatinine + 

Succinyladenosine + 

Pseudouridine 

0.9837 ± 

0.0082 

0.8832 ± 

0.0867 

0.9271 ± 

0.0439 

0.9875 ± 

0.0070 

0.9653 ± 

0.0788 

0.8985 ± 

0.0530 

0.9586 ± 

0.0275 

0.8969 ± 

0.0732 

0.9060 ± 

0.0865 

0.9612 ± 

0.0208 

0.9015 ± 

0.1389 

0.8020 ± 

0.1437 

MS-detected creatinine + 

Pseudouridine + 

 L,L-TMAP 

0.9874 ± 

0.0075 

0.8989 ± 

0.0914 

0.9450 ± 

0.0403 

0.9921 ± 

0.0056 

0.9716 ± 

0.0696 

0.9062 ± 

0.0548 

0.9677 ± 

0.0189 

0.8923 ± 

0.0857 

0.8787 ± 

0.0780 

0.9722 ± 

0.0189 

0.9300 ± 

0.1157 

0.7700 ± 

0.1797 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.9805 ± 

0.0096 

0.9174 ± 

0.0687 

0.8941 ± 

0.0487 

0.9824 ± 

0.0089 

0.8721 ± 

0.1255 

0.9353 ± 

0.0508 

0.9539 ± 

0.0271 

0.8915 ± 

0.0800 

0.8993 ± 

0.0751 

0.9526 ± 

0.0231 

0.9338 ± 

0.0948 

0.7353 ± 

0.1688 

MS-detected creatinine + 

Succinyladenosine + 2-

(α-D-Mannopyranosyl)-

L-tryptophan 

0.9802 ± 

0.0077 

0.8805 ± 

0.0815 

0.9088 ± 

0.0527 

0.9848 ± 

0.0083 

0.8963 ± 

0.1123 

0.9282 ± 

0.0513 

0.9603 ± 

0.0293 

0.9015 ± 

0.0785 

0.8853 ± 

0.0885 

0.9503 ± 

0.0242 

0.9200 ± 

0.1151 

0.7213 ± 

0.1844 

MS-detected creatinine + 

L,L-TMAP + 

Succinyladenosine 

0.9805 ± 

0.0096 

0.9174 ± 

0.0687 

0.8941 ± 

0.0487 

0.9824 ± 

0.0089 

0.8721 ± 

0.1255 

0.9353 ± 

0.0508 

0.9539 ± 

0.0271 

0.8915 ± 

0.0800 

0.8993 ± 

0.0751 

0.9526 ± 

0.0231 

0.9338 ± 

0.0948 

0.7353 ± 

0.1688 

MS-detected creatinine + 

L,L-TMAP + 

 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9862 ± 

0.0077 

0.9042 ± 

0.0796 

0.9282 ± 

0.0349 

0.9890 ± 

0.0073 

0.9074 ± 

0.1045 

0.9462 ± 

0.0370 

0.9573 ± 

0.0238 

0.8715 ± 

0.1003 

0.8780 ± 

0.0778 

0.9690 ± 

0.0182 

0.8362 ± 

0.1839 

0.8673 ± 

0.1220 

MS-detected creatinine + 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9896 ± 

0.0066 

0.9137 ± 

0.0786 

0.9309 ± 

0.0458 

0.9923 ± 

0.0052 

0.9832 ± 

0.0470 

0.8974 ± 

0.0510 

0.9624 ± 

0.0258 

0.9046 ± 

0.1136 

0.8653 ± 

0.1028 

0.9735 ± 

0.0188 

0.9162 ± 

0.1337 

0.7513 ± 

0.1957 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.16 AUC of selected single and multiple metabolites for distinguishing Stages 1-3 patients from Stage 4 patients using 

random forest classification and logistic regression 

Top metabolite  Stages 1-3 vs Stages 4 (GFR ≥ 30 vs GFR < 30) 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Clinically measured serum 

creatinine 

0.9817+/

-0.0308 

0.9330+/

-0.0849 

0.9814+/

-0.0194 

0.9989+/

-0.0016 

0.9640+/

-0.0671 

0.9755+/

-0.0254 

0.9760+/

-0.0814 

0.9520+/

-0.1628 

1.0000+/

-0.0000 

1.0000+/

-0.0000 

0.9580+/

-0.1531 

0.9964+/

-0.0153 

MS-detected serum 

creatinine 

0.9894 ± 

0.0093 

0.9670 ± 

0.0736 

0.9748 ± 

0.0147 

0.9930 ± 

0.0059 

0.9780 ± 

0.0642 

0.9655 ± 

0.0285 

0.9760 ± 

0.0814 

0.9520 ± 

0.1628 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9760 ± 

0.1176 

0.9968 ± 

0.0116 

2-(α-D-Mannopyranosyl)-

L-tryptophan  

0.9879 ± 

0.0239 

0.9260 ± 

0.0976 

0.9730 ± 

0.0276 

0.9972 ± 

0.0027 

0.9530 ± 

0.0806 

0.9618 ± 

0.0328 

0.9529 ± 

0.0555 

0.9060 ± 

0.1112 

0.9955 ± 

0.0198 

1.0000 ± 

0.0000 

0.8720 ± 

0.1372 

1.0000 ± 

0.0000 

Pseudouridine 0.9925 ± 

0.0197 

0.9140 ± 

0.0959 

0.9734 ± 

0.0267 

0.9977 ± 

0.0025 

0.9980 ± 

0.0199 

0.9245 ± 

0.0479 

0.9679 ± 

0.0606 

0.8820 ± 

0.1676 

0.9832 ± 

0.0219 

0.9975 ± 

0.0040 

0.9740 ± 

0.0673 

0.9727 ± 

0.0280 

Succinyladenosine 0.9933 ± 

0.0176 

0.9420 ± 

0.0929 

0.9834 ± 

0.0154 

0.9994 ± 

0.0010 

0.9690 ± 

0.0643 

0.9850 ± 

0.0148 

0.9550 ± 

0.0508 

0.8860 ± 

0.1241 

0.9873 ± 

0.0386 

0.9956 ± 

0.0066 

0.8420 ± 

0.1531 

1.0000 ± 

0.0000 

L,L-TMAP 0.9825 ± 

0.0340 

0.9340 ± 

0.1142 

0.9505 ± 

0.0285 

0.9944 ± 

0.0046 

0.9340 ± 

0.0874 

0.9561 ± 

0.0288 

0.9840 ± 

0.0543 

0.9380 ± 

0.1347 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9580 ± 

0.0992 

1.0000 ± 

0.0000 

MS-detected creatinine + 

2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.9953 ± 

0.0164 

0.9100 ± 

0.1034 

0.9875 ± 

0.0141 

0.9970 ± 

0.0029 

0.9620 ± 

0.0892 

0.9741 ± 

0.0196 

0.9940 ± 

0.0310 

0.9120 ± 

0.1275 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9780 ± 

0.0795 

0.9823 ± 

0.0287 

MS-detected creatinine + 

pseudouridine 

0.9950 ± 

0.0141 

0.9180 ± 

0.1004 

0.9875 ± 

0.0145 

0.9969 ± 

0.0030 

0.9600 ± 

0.0721 

0.9743 ± 

0.0184 

0.9920 ± 

0.0392 

0.9340 ± 

0.1498 

0.9977 ± 

0.0099 

1.0000 ± 

0.0000 

0.9840 ± 

0.0612 

0.9732 ± 

0.0328 

MS-detected creatinine + 

succinyladenosine 

0.9990 ± 

0.0024 

0.9340 ± 

0.1051 

0.9886 ± 

0.0146 

0.9977 ± 

0.0024 

0.9980 ± 

0.0199 

0.9680 ± 

0.0236 

0.9960 ± 

0.0196 

0.9020 ± 

0.1400 

0.9995 ± 

0.0045 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.6345 ± 

0.2829 

MS-detected creatinine + 

L,L-TMAP 

0.9955 ± 

0.0049 

0.9080 ± 

0.1294 

0.9802 ± 

0.0160 

0.9952 ± 

0.0043 

0.9990 ± 

0.0099 

0.9355 ± 

0.0465 

0.9920 ± 

0.0392 

0.9580 ± 

0.1274 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9740 ± 

0.1045 

0.9932 ± 

0.0175 

Succinyladenosine + 

pseudouridine 

0.9990 ± 

0.0015 

0.9090 ± 

0.1150 

0.9898 ± 

0.0141 

0.9999 ± 

0.0004 

0.9980 ± 

0.0199 

0.9616 ± 

0.0270 

0.9851 ± 

0.0344 

0.8880 ± 

0.1336 

0.9868 ± 

0.0225 

0.9978 ± 

0.0039 

1.0000 ± 

0.0000 

0.7018 ± 

0.2406 

Pseudouridine + 2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.9921 ± 

0.0226 

0.8760 ± 

0.1106 

0.9880 ± 

0.0177 

0.9989 ± 

0.0016 

0.8890 ± 

0.1067 

0.9859 ± 

0.0195 

0.9832 ± 

0.0415 

0.8960 ± 

0.1341 

0.9932 ± 

0.0175 

1.0000 ± 

0.0000 

0.9560 ± 

0.0828 

0.9636 ± 

0.0407 

Pseudouridine + L,L-

TMAP 

0.9956 ± 

0.0124 

0.8770 ± 

0.1190 

0.9811 ± 

0.0206 

0.9987 ± 

0.0016 

0.9650 ± 

0.0669 

0.9702 ± 

0.0220 

0.9900 ± 

0.0412 

0.9340 ± 

0.1328 

0.9986 ± 

0.0078 

1.0000 ± 

0.0000 

0.9820 ± 

0.0638 

0.9750 ± 

0.0393 

Succinyladenosine + 2-(α-

D-Mannopyranosyl)-L-

tryptophan 

0.9988 ± 

0.0017 

0.8920 ± 

0.1093 

0.9907 ± 

0.0129 

0.9994 ± 

0.0010 

0.9240 ± 

0.1040 

0.9893 ± 

0.0126 

0.9576 ± 

0.0499 

0.9080 ± 

0.1146 

0.9977 ± 

0.0099 

0.9965 ± 

0.0056 

0.9940 ± 

0.0341 

0.5018 ± 

0.3906 

Succinyl-adenosine + L,L-

TMAP 

0.9977 ± 

0.0054 

0.9040 ± 

0.1113 

0.9857 ± 

0.0169 

0.9979 ± 

0.0022 

0.9930 ± 

0.0406 

0.9573 ± 

0.0299 

0.9920 ± 

0.0271 

0.9080 ± 

0.1146 

1.0000 ± 

0.0000 

0.9998 ± 

0.0013 

0.9960 ± 

0.0280 

0.5432 ± 

0.3547 
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MS-detected creatinine + 

succinyladenosine + 

pseudouridine 

0.9993 ± 

0.0014 

0.9390 ± 

0.1019 

0.9850 ± 

0.0158 

0.9986 ± 

0.0019 

1.0000 ± 

0.0000 

0.9718 ± 

0.0176 

0.9900 ± 

0.0300 

0.8720 ± 

0.1537 

0.9982 ± 

0.0089 

1.0000 ± 

0.0000 

0.9640 ± 

0.0768 

0.9700 ± 

0.0296 

MS-detected creatinine + 

pseudouridine + 

 L,L-TMAP 

0.9969 ± 

0.0057 

0.9110 ± 

0.1057 

0.9809 ± 

0.0205 

0.9974 ± 

0.0027 

1.0000 ± 

0.0000 

0.9564 ± 

0.0220 

0.9800 ± 

0.0600 

0.8960 ± 

0.1907 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9860 ± 

0.0707 

0.9900 ± 

0.0219 

MS-detected creatinine + 

L,L-TMAP + 

succinyladenosine 

0.9988 ± 

0.0023 

0.9560 ± 

0.0791 

0.9807 ± 

0.0194 

0.9975 ± 

0.0026 

1.0000 ± 

0.0000 

0.9675 ± 

0.0219 

0.9890 ± 

0.0343 

0.8980 ± 

0.1709 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9580 ± 

0.0815 

0.9973 ± 

0.0126 

MS-detected creatinine + 

succinyladenosine + 2-(α-

D-Mannopyranosyl)-L-

tryptophan 

0.9992 ± 

0.0016 

0.9410 ± 

0.1078 

0.9843 ± 

0.0160 

0.9981 ± 

0.0022 

1.0000 ± 

0.0000 

0.9730 ± 

0.0187 

0.9898 ± 

0.0300 

0.8760 ± 

0.1379 

0.9995 ± 

0.0045 

1.0000 ± 

0.0000 

0.9440 ± 

0.0898 

0.9823 ± 

0.0294 

MS-detected creatinine + 

L,L-TMAP + 

succinyladenosine 

0.9988 ± 

0.0023 

0.9560 ± 

0.0791 

0.9807 ± 

0.0194 

0.9975 ± 

0.0026 

1.0000 ± 

0.0000 

0.9675 ± 

0.0219 

0.9890 ± 

0.0343 

0.8980 ± 

0.1709 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9580 ± 

0.0815 

0.9973 ± 

0.0126 

MS-detected creatinine + 

L,L-TMAP + 

2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.9975 ± 

0.0030 

0.9160 ± 

0.1093 

0.9798 ± 

0.0195 

0.9966 ± 

0.0033 

0.9980 ± 

0.0140 

0.9536 ± 

0.0240 

0.9880 ± 

0.0382 

0.8840 ± 

0.1654 

1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9720 ± 

0.0849 

0.9968 ± 

0.0116 

MS-detected creatinine + 

pseudouridine + 

 2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.9963 ± 

0.0089 

0.8970 ± 

0.1044 

0.9814 ± 

0.0207 

0.9974 ± 

0.0026 

0.9960 ± 

0.0242 

0.9525 ± 

0.0286 

0.9880 ± 

0.0382 

0.8780 ± 

0.1467 

0.9995 ± 

0.0045 

1.0000 ± 

0.0000 

0.9760 ± 

0.0709 

0.9800 ± 

0.0304 

AUC, area under curve of ROC; Sens: Sensitivity; Spec: Specificity. 
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Table S5.17 AUC of metabolites for distinguishing UACR ≥ 30 from UACR < 30 of diabetic patients using logistic regression 

and random forest classification (AUC > 0.70). 

 Top metabolite UACR ≥ 30 VS UACR <30  

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Pseudouridine 0.8375 ± 

0.0382 

0.7126 ± 

0.0644 

0.9320 ± 

0.0805 

0.8511 ± 

0.0352 

0.5544 ± 

0.0887 

1.0000 ± 

0.0000 

0.7341 ± 

0.0566 

0.5939 ± 

0.0977 

0.8480 ± 

0.1360 

0.8013 ± 

0.0567 

0.5717 ± 

0.1308 

0.9370 ± 

0.0868 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.8293 ± 

0.0358 

0.7262 ± 

0.0545 

0.8480 ± 

0.1376 

0.8595 ± 

0.0339 

0.5667 ± 

0.1071 

0.9987 ± 

0.0133 

0.7106 ± 

0.0720 

0.6239 ± 

0.1291 

0.7170 ± 

0.2205 

0.7991 ± 

0.0577 

0.5772 ± 

0.1529 

0.8820 ± 

0.1519 

Succinyladenosine 0.8227 ± 

0.0513 

0.6549 ± 

0.0813 

0.8953 ± 

0.0999 

0.8454 ± 

0.0376 

0.4705 ± 

0.1115 

0.9940 ± 

0.0191 

0.7416 ± 

0.0765 

0.5511 ± 

0.1020 

0.8860 ± 

0.1463 

0.7749 ± 

0.0605 

0.5083 ± 

0.0954 

0.9800 ± 

0.0616 

4-Acetamidobutanoic 

acid 

0.8109 ± 

0.0474 

0.6928 ± 

0.0690 

0.8260 ± 

0.1665 

0.8419 ± 

0.0389 

0.4510 ± 

0.1469 

0.9967 ± 

0.0197 

0.7380 ± 

0.0700 

0.5633 ± 

0.1160 

0.8510 ± 

0.1670 

0.7804 ± 

0.0604 

0.3461 ± 

0.1204 

0.9990 ± 

0.0099 

L,L-TMAP 0.7843 ± 

0.0554 

0.6041 ± 

0.1072 

0.8647 ± 

0.1263 

0.8233 ± 

0.0406 

0.7762 ± 

0.1330 

0.6373 ± 

0.2764 

0.6673 ± 

0.0796 

0.5772 ± 

0.1814 

0.6600 ± 

0.2010 

0.7589 ± 

0.0653 

0.5594 ± 

0.1915 

0.7940 ± 

0.1495 

Sulfotyrosine 0.7763 ± 

0.0508 

0.5759 ± 

0.0967 

0.8960 ± 

0.1125 

0.7872 ± 

0.0414 

0.4744 ± 

0.0798 

0.9973 ± 

0.0161 

0.8231 ± 

0.0641 

0.7650 ± 

0.1152 

0.7230 ± 

0.1737 

0.8228 ± 

0.0554 

0.6006 ± 

0.1188 

0.9180 ± 

0.0953 

Clinically measured 

serum_creatinine 

(mg/dL) 

0.7738 ± 

0.0459 

0.5867 ± 

0.0781 

0.9000 ± 

0.1065 

0.8036 ± 

0.0367 

0.4844 ± 

0.0927 

0.9873 ± 

0.0308 

0.7054 ± 

0.0822 

0.4372 ± 

0.1385 

0.8860 ± 

0.1679 

0.7521 ± 

0.0686 

0.5672 ± 

0.1524 

0.8000 ± 

0.1364 

MS-detected 

creatinine 

0.7726 ± 

0.0499 

0.6703 ± 

0.0676 

0.8260 ± 

0.1343 

0.7646 ± 

0.0384 

0.5559 ± 

0.0820 

0.9547 ± 

0.0639 

0.6770 ± 

0.0775 

0.5017 ± 

0.1180 

0.8740 ± 

0.1641 

0.7329 ± 

0.0664 

0.3178 ± 

0.0846 

1.0000 ± 

0.0000 

L,L-TMAP isomer 0.7535 ± 

0.0539 

0.5810 ± 

0.1176 

0.7993 ± 

0.1371 

0.8083 ± 

0.0402 

0.7885 ± 

0.1194 

0.5960 ± 

0.2508 

0.6783 ± 

0.0866 

0.4889 ± 

0.1714 

0.7620 ± 

0.1765 

0.7535 ± 

0.0680 

0.2867 ± 

0.0877 

0.9990 ± 

0.0099 

2-

Hydroxyethanesulfo

nate 

0.7248 ± 

0.0561 

0.5785 ± 

0.0943 

0.8200 ± 

0.1129 

0.7682 ± 

0.0428 

0.4000 ± 

0.1217 

0.9500 ± 

0.0502 

0.6796 ± 

0.0830 

0.6978 ± 

0.1289 

0.5990 ± 

0.1622 

0.7919 ± 

0.0595 

0.3694 ± 

0.1386 

0.9420 ± 

0.0737 

1,5-Anhydro-D-

glucitol 

0.4544 ± 

0.0668 

0.8915 ± 

0.0746 

0.0940 ± 

0.0828 

0.4518 ± 

0.0539 

0.9756 ± 

0.0416 

0.0153 ± 

0.0387 

0.5109 ± 

0.0790 

0.8300 ± 

0.1283 

0.2140 ± 

0.1364 

0.5461 ± 

0.1071 

0.9656 ± 

0.0532 

0.1410 ± 

0.1087 
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Table S5.18 AUC of significant metabolites for distinguishing UACR = 30-300 from UACR < 30 of diabetic patients using random forest 

classification and logistic regression (AUC > 0.70). 

Top metabolite UACR = 30-300 vs UACR < 30 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Pseudouridine 0.7011 ± 

0.0755 

0.9193 ± 

0.1156 

0.4858 ± 

0.1065 

0.7061 ± 

0.0636 

0.8107 ± 

0.1203 

0.5337 ± 

0.1323 

0.4279 ± 

0.0996 

0.4478 ± 

0.2021 

0.4260 ± 

0.1770 

0.5699 ± 

0.1115 

0.9956 ± 

0.0218 

0.0010 ± 

0.0099 

Succinyladenosine 0.6857 ± 

0.0761 

0.8293 ± 

0.1367 

0.4700 ± 

0.1300 

0.7124 ± 

0.0580 

0.6320 ± 

0.1851 

0.6579 ± 

0.1388 

0.4643 ± 

0.1113 

0.3767 ± 

0.1825 

0.5800 ± 

0.2078 

0.5164 ± 

0.1101 

0.6400 ± 

0.1906 

0.3910 ± 

0.2210 
2-(α-D-Mannopyranosyl)-L-

tryptophan 
0.6854 ± 

0.0673 

0.8813 ± 

0.1371 

0.4716 ± 

0.1063 

0.7135 ± 

0.0652 

0.6840 ± 

0.0996 

0.6532 ± 

0.1018 

0.4045 ± 

0.0996 

0.7933 ± 

0.1833 

0.1580 ± 

0.1266 

0.5537 ± 

0.1142 

0.9733 ± 

0.0687 

0.0290 ± 

0.0816 

4-Acetamidobutanoic acid 0.6762 ± 

0.0716 

0.9073 ± 

0.1188 

0.3968 ± 

0.0860 

0.6888 ± 

0.0582 

0.8833 ± 

0.0845 

0.4516 ± 

0.1104 

0.4212 ± 

0.1018 

0.6267 ± 

0.1816 

0.3360 ± 

0.1513 

0.5232 ± 

0.1157 

0.9956 ± 

0.0218 

0.0000 ± 

0.0000 
MS-detected creatinine 0.6649 ± 

0.0767 

0.7773 ± 

0.1570 

0.5426 ± 

0.1347 

0.5782 ± 

0.0760 

0.8360 ± 

0.1450 

0.3574 ± 

0.1166 

0.4443 ± 

0.1052 

0.4344 ± 

0.1982 

0.4790 ± 

0.1762 

0.4299 ± 

0.0832 

0.9567 ± 

0.1029 

0.0150 ± 

0.0517 

Serum_creatinine (mg/dL) 0.6329 ± 

0.0634 

0.9160 ± 

0.0862 

0.3037 ± 

0.1256 

0.6445 ± 

0.0575 

0.8347 ± 

0.1216 

0.4358 ± 

0.1200 

0.5053 ± 

0.1192 

0.8511 ± 

0.1772 

0.1940 ± 

0.1502 

0.4907 ± 

0.1190 

0.5389 ± 

0.2145 

0.4940 ± 

0.2541 

L,L-TMAP 0.6328 ± 

0.0744 

0.7660 ± 

0.1352 

0.4795 ± 

0.1331 

0.6679 ± 

0.0660 

0.8020 ± 

0.1308 

0.4842 ± 

0.1104 

0.4517 ± 

0.1010 

0.8544 ± 

0.1733 

0.0900 ± 

0.1187 

0.4393 ± 

0.1000 

0.5889 ± 

0.1882 

0.3790 ± 

0.1935 

Sulfotyrosine 0.6302 ± 

0.0632 

0.7933 ± 

0.1604 

0.4184 ± 

0.1288 

0.6209 ± 

0.0656 

0.8753 ± 

0.1153 

0.3932 ± 

0.1145 

0.6316 ± 

0.1255 

0.5356 ± 

0.1862 

0.6640 ± 

0.2057 

0.6740 ± 

0.1125 

0.4789 ± 

0.1762 

0.8370 ± 

0.1128 

L,L-TMAP isomer 0.5648 ± 

0.0785 

0.5533 ± 

0.1545 

0.5753 ± 

0.1480 

0.6387 ± 

0.0656 

0.7387 ± 

0.1138 

0.5174 ± 

0.1203 

0.4719 ± 

0.1120 

0.8133 ± 

0.1805 

0.1120 ± 

0.1451 

0.4519 ± 

0.1066 

0.5833 ± 

0.2105 

0.3950 ± 

0.2174 

2-Hydroxyethanesulfonate 0.5331 ± 

0.0885 

0.7307 ± 

0.1630 

0.3468 ± 

0.1281 

0.5843 ± 

0.0773 

0.9140 ± 

0.0999 

0.2032 ± 

0.1285 

0.4554 ± 

0.1112 

0.6444 ± 

0.1963 

0.3290 ± 

0.1669 

0.4847 ± 

0.1370 

0.8011 ± 

0.2190 

0.1940 ± 

0.2249 
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Table S5.19 AUC of two metabolite models using significant metabolites for distinguishing UACR = 30-300 from UACR < 30 of diabetic 

patients using random forest classification and logistic regression 

  

  

 Top metabolite models 

  

UACR = 30-300 vs UACR <30 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

Sulfotyrosine Succinyladenosine 0.7065 ± 

0.0763 

0.6633 ± 

0.1539 

0.6358 ± 

0.1421 

0.6727 ± 

0.0695 

0.8413 ± 

0.1173 

0.5163 ± 

0.0984 

0.6159 ± 

0.1085 

0.4900 ± 

0.1580 

0.6930 ± 

0.1620 

0.6528 ± 

0.0795 

0.4344 ± 

0.1626 

0.8230 ± 

0.1295 

Sulfotyrosine Pseudouridine 0.6908 ± 
0.0636 

0.7653 ± 
0.1648 

0.5489 ± 
0.1221 

0.6899 ± 
0.0745 

0.9040 ± 
0.0886 

0.4626 ± 
0.0994 

0.5776 ± 
0.1010 

0.5167 ± 
0.1566 

0.6480 ± 
0.1879 

0.6464 ± 
0.0970 

0.4722 ± 
0.1688 

0.8060 ± 
0.1362 

Sulfotyrosine MS-detected creatinine 0.6708 ± 

0.0654 

0.5993 ± 

0.1926 

0.6526 ± 

0.1114 

0.6110 ± 

0.0690 

0.9567 ± 

0.0621 

0.2679 ± 

0.0991 

0.6187 ± 

0.1237 

0.5289 ± 

0.1686 

0.6640 ± 

0.1858 

0.6573 ± 

0.0964 

0.4767 ± 

0.1628 

0.7880 ± 

0.1437 

Sulfotyrosine  2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.6684 ± 
0.0630 

0.7440 ± 
0.1548 

0.5147 ± 
0.1290 

0.6881 ± 
0.0760 

0.9440 ± 
0.0691 

0.3953 ± 
0.0994 

0.5594 ± 
0.1011 

0.4722 ± 
0.1535 

0.6650 ± 
0.1693 

0.6412 ± 
0.0996 

0.6111 ± 
0.1544 

0.6670 ± 
0.1844 

Sulfotyrosine 4-Acetamidobutanoic 

acid 

0.6605 ± 
0.0681 

0.8520 ± 
0.1098 

0.4379 ± 
0.1031 

0.6771 ± 
0.0679 

0.9407 ± 
0.0816 

0.4116 ± 
0.0840 

0.6063 ± 
0.0996 

0.4989 ± 
0.1710 

0.6590 ± 
0.1801 

0.6420 ± 
0.0951 

0.5356 ± 
0.1574 

0.7370 ± 
0.1641 

Sulfotyrosine L,L-TMAP 0.6526 ± 

0.0597 

0.8113 ± 

0.1307 

0.4505 ± 

0.1226 

0.6475 ± 

0.0740 

0.8920 ± 

0.0770 

0.4011 ± 

0.0926 

0.5967 ± 

0.0993 

0.5189 ± 

0.1441 

0.6780 ± 

0.1572 

0.6519 ± 

0.0924 

0.5011 ± 

0.1461 

0.7940 ± 

0.1399 

Sulfotyrosine L,L-TMAP isomer 0.6188 ± 
0.0637 

0.7913 ± 
0.1499 

0.4179 ± 
0.1176 

0.6242 ± 
0.0677 

0.9133 ± 
0.0775 

0.3279 ± 
0.0896 

0.5724 ± 
0.0944 

0.5200 ± 
0.1448 

0.6030 ± 
0.1775 

0.6574 ± 
0.0948 

0.4889 ± 
0.1625 

0.7700 ± 
0.1552 

Sulfotyrosine 2-

Hydroxyethanesulfonate 

0.5927 ± 

0.0565 

0.6107 ± 

0.1602 

0.5121 ± 

0.1302 

0.5987 ± 

0.0767 

0.9260 ± 

0.0938 

0.3111 ± 

0.0942 

0.5714 ± 

0.1074 

0.5078 ± 

0.1657 

0.6520 ± 

0.1723 

0.6177 ± 

0.0900 

0.4878 ± 

0.1498 

0.7370 ± 

0.1623 

2-

Hydroxyethanesulfonate 

4-Acetamidobutanoic 

acid 

0.6418 ± 
0.0747 

0.7213 ± 
0.1559 

0.4989 ± 
0.1425 

0.6729 ± 
0.0694 

0.8600 ± 
0.1141 

0.4468 ± 
0.1006 

0.4259 ± 
0.1135 

0.5822 ± 
0.1827 

0.3270 ± 
0.1714 

0.4723 ± 
0.1297 

0.2944 ± 
0.1590 

0.6790 ± 
0.1745 

MS-detected creatinine 2-

Hydroxyethanesulfonate 

0.6572 ± 

0.0772 

0.7753 ± 

0.1332 

0.4558 ± 

0.1187 

0.5686 ± 

0.0821 

0.8640 ± 

0.1107 

0.3358 ± 

0.1088 

0.3951 ± 

0.1059 

0.3756 ± 

0.1654 

0.4650 ± 

0.1819 

0.4161 ± 

0.1132 

1.0000 ± 

0.0000 

0.0000 ± 

0.0000 

MS-detected creatinine 4-Acetamidobutanoic 

acid 

0.7446 ± 
0.0724 

0.8400 ± 
0.1139 

0.5784 ± 
0.1161 

0.6718 ± 
0.0681 

0.9667 ± 
0.0529 

0.3495 ± 
0.0850 

0.4068 ± 
0.1030 

0.4878 ± 
0.1839 

0.3810 ± 
0.1547 

0.4757 ± 
0.1169 

1.0000 ± 
0.0000 

0.0000 ± 
0.0000 

MS-detected creatinine L,L-TMAP 0.6914 ± 

0.0771 

0.5687 ± 

0.1696 

0.7042 ± 

0.1321 

0.6444 ± 

0.0726 

0.8847 ± 

0.0884 

0.3811 ± 

0.1079 

0.3931 ± 

0.1108 

0.4511 ± 

0.1720 

0.4020 ± 

0.1667 

0.4078 ± 

0.0926 

1.0000 ± 

0.0000 

0.0000 ± 

0.0000 

MS-detected creatinine L,L-TMAP isomer 0.6642 ± 
0.0703 

0.6293 ± 
0.1544 

0.6289 ± 
0.1334 

0.6126 ± 
0.0700 

0.8527 ± 
0.1038 

0.3684 ± 
0.1182 

0.4074 ± 
0.1045 

0.3689 ± 
0.1609 

0.5060 ± 
0.1917 

0.4068 ± 
0.1022 

1.0000 ± 
0.0000 

0.0000 ± 
0.0000 

MS-detected creatinine  2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.7616 ± 

0.0555 

0.9073 ± 

0.0997 

0.5184 ± 

0.1122 

0.6869 ± 

0.0725 

0.8887 ± 

0.0966 

0.4584 ± 

0.1043 

0.4203 ± 

0.0999 

0.6544 ± 

0.1859 

0.2520 ± 

0.1389 

0.4748 ± 

0.1101 

0.6578 ± 

0.2181 

0.3100 ± 

0.1921 

MS-detected creatinine Pseudouridine 0.7584 ± 

0.0625 

0.9173 ± 

0.0865 

0.5274 ± 

0.1126 

0.6873 ± 

0.0752 

0.9887 ± 

0.0284 

0.3284 ± 

0.0993 

0.4194 ± 

0.1085 

0.7889 ± 

0.1856 

0.1330 ± 

0.1312 

0.5347 ± 

0.1083 

0.4567 ± 

0.1865 

0.5660 ± 

0.1893 

MS-detected creatinine Succinyladenosine 0.7256 ± 
0.0727 

0.7000 ± 
0.1701 

0.6368 ± 
0.1353 

0.6709 ± 
0.0793 

0.7967 ± 
0.0954 

0.4879 ± 
0.1096 

0.4530 ± 
0.1129 

0.4156 ± 
0.1857 

0.5360 ± 
0.2003 

0.4763 ± 
0.1098 

1.0000 ± 
0.0000 

0.0000 ± 
0.0000 
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L,L-TMAP 2-

Hydroxyethanesulfonate 

0.6262 ± 
0.0680 

0.8153 ± 
0.1302 

0.3474 ± 
0.1191 

0.6349 ± 
0.0718 

0.8560 ± 
0.1010 

0.3426 ± 
0.1110 

0.4156 ± 
0.1222 

0.5133 ± 
0.2047 

0.3870 ± 
0.1592 

0.4207 ± 
0.1311 

0.8178 ± 
0.1739 

0.1580 ± 
0.1662 

L,L-TMAP 4-Acetamidobutanoic 

acid 

0.6809 ± 

0.0781 

0.8913 ± 

0.1094 

0.3921 ± 

0.1002 

0.6939 ± 

0.0628 

0.9060 ± 

0.0989 

0.4416 ± 

0.0964 

0.4244 ± 

0.1206 

0.4433 ± 

0.1928 

0.4590 ± 

0.1408 

0.4748 ± 

0.1205 

0.3022 ± 

0.1548 

0.7090 ± 

0.1855 

L,L-TMAP  2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.6888 ± 
0.0624 

0.8027 ± 
0.1346 

0.5042 ± 
0.1156 

0.7039 ± 
0.0656 

0.8780 ± 
0.0905 

0.4600 ± 
0.1128 

0.4336 ± 
0.1140 

0.8067 ± 
0.1883 

0.1400 ± 
0.1407 

0.4867 ± 
0.1226 

0.2822 ± 
0.1486 

0.6780 ± 
0.2033 

L,L-TMAP Succinyladenosine 0.6879 ± 

0.0681 

0.6840 ± 

0.1478 

0.5932 ± 

0.1220 

0.7094 ± 

0.0632 

0.8007 ± 

0.0996 

0.4942 ± 

0.1058 

0.4435 ± 

0.1109 

0.5033 ± 

0.1795 

0.4140 ± 

0.1643 

0.4738 ± 

0.1041 

0.9578 ± 

0.0979 

0.0180 ± 

0.0456 

L,L-TMAP isomer 2-

Hydroxyethanesulfonate 

0.5938 ± 

0.0736 

0.8147 ± 

0.1378 

0.2979 ± 

0.1264 

0.6034 ± 

0.0747 

0.8207 ± 

0.1098 

0.3184 ± 

0.1251 

0.4373 ± 

0.1186 

0.6133 ± 

0.1760 

0.3050 ± 

0.1819 

0.4262 ± 

0.1272 

1.0000 ± 

0.0000 

0.0000 ± 

0.0000 

L,L-TMAP isomer 4-Acetamidobutanoic 

acid 

0.6604 ± 

0.0721 

0.8827 ± 

0.1189 

0.3968 ± 

0.1008 

0.6862 ± 

0.0663 

0.8833 ± 

0.1068 

0.4405 ± 

0.1028 

0.4401 ± 

0.1019 

0.6433 ± 

0.1814 

0.2810 ± 

0.1501 

0.4774 ± 

0.1131 

0.3033 ± 

0.1594 

0.6790 ± 

0.1996 

L,L-TMAP isomer L,L-TMAP 0.6080 ± 

0.0687 

0.7120 ± 

0.1511 

0.4742 ± 

0.1235 

0.6711 ± 

0.0717 

0.7733 ± 

0.1353 

0.5174 ± 

0.1097 

0.4349 ± 

0.1088 

0.4544 ± 

0.1860 

0.4510 ± 

0.1769 

0.4257 ± 

0.1051 

1.0000 ± 

0.0000 

0.0000 ± 

0.0000 

L,L-TMAP isomer  2-(α-D-

Mannopyranosyl)-L-

tryptophan  

0.6757 ± 

0.0669 

0.8340 ± 

0.1384 

0.4595 ± 

0.1143 

0.6949 ± 

0.0680 

0.9633 ± 

0.0592 

0.3300 ± 

0.0926 

0.4397 ± 

0.1048 

0.6711 ± 

0.1993 

0.2560 ± 

0.1675 

0.4908 ± 

0.1172 

0.8244 ± 

0.1983 

0.1650 ± 

0.1711 

L,L-TMAP isomer Succinyladenosine 0.6771 ± 

0.0666 

0.7213 ± 

0.1446 

0.5284 ± 

0.1348 

0.6967 ± 

0.0612 

0.7980 ± 

0.0921 

0.4816 ± 

0.1067 

0.4479 ± 

0.1055 

0.4467 ± 

0.1721 

0.5200 ± 

0.1844 

0.4846 ± 

0.1131 

1.0000 ± 

0.0000 

0.0000 ± 

0.0000 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

2-

Hydroxyethanesulfonate 

0.6812 ± 
0.0635 

0.8733 ± 
0.1168 

0.4211 ± 
0.0968 

0.6859 ± 
0.0729 

0.9687 ± 
0.0592 

0.3274 ± 
0.0981 

0.4297 ± 
0.1076 

0.7978 ± 
0.1759 

0.1550 ± 
0.1596 

0.4680 ± 
0.1223 

0.2900 ± 
0.1721 

0.7100 ± 
0.1847 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

4-Acetamidobutanoic 

acid 

0.6991 ± 
0.0688 

0.8673 ± 
0.1149 

0.5026 ± 
0.0989 

0.7188 ± 
0.0660 

0.9633 ± 
0.0606 

0.4368 ± 
0.0952 

0.4313 ± 
0.0948 

0.8156 ± 
0.1709 

0.1390 ± 
0.1413 

0.5010 ± 
0.1308 

0.2933 ± 
0.1659 

0.6900 ± 
0.1814 

2-(α-D-

Mannopyranosyl)-L-

tryptophan 

Succinyladenosine 0.7004 ± 
0.0678 

0.8387 ± 
0.1324 

0.4779 ± 
0.0932 

0.7150 ± 
0.0673 

0.8780 ± 
0.0864 

0.4679 ± 
0.1104 

0.4328 ± 
0.1052 

0.8156 ± 
0.1694 

0.1310 ± 
0.1332 

0.5070 ± 
0.1187 

0.4633 ± 
0.1618 

0.5740 ± 
0.1942 

Pseudouridine 2-

Hydroxyethanesulfonate 

0.6659 ± 

0.0698 

0.8900 ± 

0.1021 

0.4100 ± 

0.1040 

0.6837 ± 

0.0756 

0.9820 ± 

0.0409 

0.3258 ± 

0.0908 

0.4077 ± 

0.1112 

0.5633 ± 

0.1881 

0.3030 ± 

0.1473 

0.4989 ± 

0.1215 

0.3367 ± 

0.1651 

0.7030 ± 

0.1857 

Pseudouridine 4-Acetamidobutanoic 

acid 

0.7070 ± 

0.0714 

0.9053 ± 

0.0905 

0.4842 ± 

0.1039 

0.7178 ± 

0.0614 

0.9687 ± 

0.0503 

0.4237 ± 

0.0928 

0.4273 ± 

0.1145 

0.8211 ± 

0.1699 

0.1040 ± 

0.1318 

0.5409 ± 

0.1281 

0.3111 ± 

0.1474 

0.7350 ± 

0.1780 

Pseudouridine L,L-TMAP 0.6921 ± 

0.0685 

0.8640 ± 

0.1233 

0.4737 ± 

0.1153 

0.7072 ± 

0.0672 

0.8973 ± 

0.0819 

0.4458 ± 

0.1105 

0.4401 ± 

0.1091 

0.8344 ± 

0.1774 

0.0910 ± 

0.1242 

0.5068 ± 

0.1254 

1.0000 ± 

0.0000 

0 

Pseudouridine L,L-TMAP isomer 0.6875 ± 

0.0709 

0.8460 ± 

0.1250 

0.4589 ± 

0.1119 

0.6988 ± 

0.0704 

0.8940 ± 

0.0948 

0.4347 ± 

0.1075 

0.4311 ± 

0.0964 

0.7600 ± 

0.1897 

0.1510 ± 

0.1526 

0.5184 ± 

0.1349 

1.0000 ± 

0.0000 

0 

Pseudouridine  2-(α-D-

Mannopyranosyl)-L-

tryptophan 

0.6872 ± 

0.0658 

0.8993 ± 

0.1125 

0.4953 ± 

0.1010 

0.7189 ± 

0.0678 

0.9073 ± 

0.0952 

0.4947 ± 

0.1045 

0.3888 ± 

0.0981 

0.7167 ± 

0.2002 

0.1950 ± 

0.1431 

0.5438 ± 

0.1426 

1.0000 ± 

0.0000 

0 

Pseudouridine Succinyladenosine 0.6963 ± 

0.0715 

0.7580 ± 

0.1637 

0.5616 ± 

0.1179 

0.7163 ± 

0.0630 

0.8360 ± 

0.0892 

0.5453 ± 

0.0922 

0.4193 ± 

0.1064 

0.8478 ± 

0.1830 

0.0870 ± 

0.1197 

0.5301 ± 

0.1263 

0.4256 ± 

0.1626 

0.6050 ± 

0.1878 

Succinyladenosine 2-

Hydroxyethanesulfonate 

0.6361 ± 
0.0647 

0.7747 ± 
0.1410 

0.4579 ± 
0.1003 

0.6788 ± 
0.0675 

0.7773 ± 
0.1008 

0.4832 ± 
0.1054 

0.4287 ± 
0.1086 

0.4278 ± 
0.1535 

0.4790 ± 
0.1633 

0.4780 ± 
0.1203 

0.4422 ± 
0.1610 

0.5570 ± 
0.2178 
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Succinyladenosine 4-Acetamidobutanoic 

acid 

0.6843 ± 
0.0693 

0.8413 ± 
0.1312 

0.5000 ± 
0.0989 

0.7168 ± 
0.0604 

0.8893 ± 
0.1076 

0.4895 ± 
0.0958 

0.4385 ± 
0.0944 

0.4100 ± 
0.1864 

0.4930 ± 
0.1444 

0.5093 ± 
0.1242 

0.4222 ± 
0.1507 

0.6290 ± 
0.1941 
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Table S5.20 AUC of significant metabolites for distinguishing UACR > 300 from UACR = 30-300 of diabetic patients using random forest 

classification and logistic regression (AUC > 0.70). 

 

Top metabolite UACR > 300 vs UACR = 30-300 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

4-Acetamidobutanoic 

acid 

0.8763 ± 

0.0541 

0.7411 ± 

0.1425 

0.8389 ± 

0.1088 

0.9021 ± 

0.0343 

0.4363 ± 

0.1279 

0.9753 ± 

0.0302 

0.9146 ± 

0.0586 

0.8333 ± 

0.1347 

0.9011 ± 

0.1206 

0.9484 ± 

0.0418 

0.5511 ± 

0.1523 

1.0000 ± 

0.0000 

Pseudouridine 0.8548 ± 

0.0518 

0.7468 ± 

0.1400 

0.7774 ± 

0.1280 

0.8801 ± 

0.0405 

0.5516 ± 

0.0937 

0.9200 ± 

0.0502 

0.9261 ± 

0.0562 

0.8133 ± 

0.1563 

0.8533 ± 

0.1378 

0.9553 ± 

0.0279 

0.6667 ± 

0.1414 

0.9911 ± 

0.0301 

 2-(α-D-

Mannopyranosyl)-L-

tryptophan   

0.8483 ± 

0.0564 

0.8247 ± 

0.1483 

0.7000 ± 

0.1176 

0.8711 ± 

0.0421 

0.4911 ± 

0.1063 

0.9400 ± 

0.0542 

0.9485 ± 

0.0410 

0.8733 ± 

0.1406 

0.8444 ± 

0.1122 

0.9711 ± 

0.0184 

0.5711 ± 

0.1449 

0.9989 ± 

0.0111 

L,L-TMAP 0.8450 ± 

0.0536 

0.7021 ± 

0.1177 

0.8521 ± 

0.0975 

0.8900 ± 

0.0414 

0.5589 ± 

0.1195 

0.9458 ± 

0.0360 

0.9393 ± 

0.0430 

0.7689 ± 

0.1394 

0.9289 ± 

0.1347 

0.9590 ± 

0.0296 

0.5822 ± 

0.1483 

1.0000 ± 

0.0000 

L,L-TMAP isomer 0.8412 ± 

0.0494 

0.8284 ± 

0.0975 

0.8111 ± 

0.0745 

0.8880 ± 

0.0415 

0.5684 ± 

0.0933 

0.9437 ± 

0.0409 

0.8925 ± 

0.0796 

0.7611 ± 

0.2015 

0.8044 ± 

0.1533 

0.9199 ± 

0.0454 

0.5933 ± 

0.1476 

1.0000 ± 

0.0000 

Succinyladenosine 0.8397 ± 

0.0549 

0.7526 ± 

0.1508 

0.7395 ± 

0.1182 

0.8656 ± 

0.0426 

0.5126 ± 

0.0844 

0.9442 ± 

0.0481 

0.9127 ± 

0.0566 

0.8622 ± 

0.1371 

0.8500 ± 

0.0973 

0.9390 ± 

0.0388 

0.6100 ± 

0.1544 

0.9389 ± 

0.0636 

Serum creatinine 

(mg/dL) 

0.8327 ± 

0.0590 

0.7037 ± 

0.1075 

0.8537 ± 

0.1025 

0.8779 ± 

0.0421 

0.5547 ± 

0.1233 

0.9426 ± 

0.0415 

0.8599 ± 

0.0775 

0.7011 ± 

0.1505 

0.8989 ± 

0.1564 

0.9166 ± 

0.0481 

0.6100 ± 

0.1674 

1.0000 ± 

0.0000 

2-

Hydroxyethanesulfonat

e 

0.8262 ± 

0.0583 

0.7647 ± 

0.1403 

0.6921 ± 

0.1421 

0.8588 ± 

0.0450 

0.4037 ± 

0.1300 

0.9468 ± 

0.0390 

0.9377 ± 

0.0433 

0.8044 ± 

0.1441 

0.8944 ± 

0.1211 

0.9683 ± 

0.0217 

0.5433 ± 

0.1539 

1.0000 ± 

0.0000 

MS-detected creatinine 0.8205 ± 

0.0549 

0.7526 ± 

0.0969 

0.8537 ± 

0.0854 

0.8782 ± 

0.0455 

0.5705 ± 

0.1304 

0.9432 ± 

0.0399 

0.8805 ± 

0.0806 

0.7078 ± 

0.1817 

0.8433 ± 

0.1603 

0.9210 ± 

0.0448 

0.6089 ± 

0.1543 

1.0000 ± 

0.0000 

Sulfotyrosine 0.8200 ± 

0.0439 

0.6116 ± 

0.1015 

0.8932 ± 

0.0986 

0.8515 ± 

0.0463 

0.5379 ± 

0.1249 

0.9595 ± 

0.0439 

0.9206 ± 

0.0485 

0.8044 ± 

0.1198 

0.8700 ± 

0.1423 

0.9307 ± 

0.0543 

0.6567 ± 

0.1736 

1.0000 ± 

0.0000 
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Table S5.21 AUC of significant metabolites for distinguishing UACR > 300 from UACR ≤ 300 of diabetic patients using random forest 

classification and logistic regression (AUC > 0.70). 

Top metabolite UACR > 300 vs UACR ≤ 300 

Discovery set Validation set 

Random Forest Logistic Regression Random Forest Logistic Regression 

AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 

4-Acetamidobutanoic acid 0.9217 ± 

0.0408 

0.9089 ± 

0.0706 

0.7921 ± 

0.0897 

0.9361 ± 

0.0231 

0.9200 ± 

0.1190 

0.5394 ± 

0.3445 

0.9305 ± 

0.0513 

0.8511 ± 

0.1219 

0.9632 ± 

0.0404 

0.9607 ± 

0.0337 

0.7978 ± 

0.2295 

0.7342 ± 

0.3783 

Pseudouridine 0.9160 ± 

0.0385 

0.9442 ± 

0.0566 

0.7697 ± 

0.0617 

0.9235 ± 

0.0259 

0.7363 ± 

0.1320 

0.8856 ± 

0.0621 

0.9459 ± 

0.0476 

0.8489 ± 

0.1568 

0.9084 ± 

0.0811 

0.9737 ± 

0.0189 

0.7889 ± 

0.1629 

0.9468 ± 

0.0616 

2-(α-D-Mannopyranosyl)-

L-tryptophan 

0.9151 ± 

0.0381 

0.9447 ± 

0.0638 

0.8085 ± 

0.0542 

0.9259 ± 

0.0233 

0.9600 ± 

0.0582 

0.6450 ± 

0.1948 

0.9573 ± 

0.0448 

0.9222 ± 

0.1060 

0.8895 ± 

0.0625 

0.9811 ± 

0.0143 

0.8278 ± 

0.2151 

0.8305 ± 

0.2424 

L,L-TMAP 0.9076 ± 

0.0339 

0.8053 ± 

0.1173 

0.8618 ± 

0.0682 

0.9183 ± 

0.0307 

0.9153 ± 

0.0902 

0.6276 ± 

0.2500 

0.9415 ± 

0.0461 

0.8211 ± 

0.1547 

0.8511 ± 

0.1156 

0.9513 ± 

0.0275 

0.7778 ± 

0.2250 

0.8053 ± 

0.2155 

L,L-TMAP isomer 0.8949 ± 

0.0453 

0.8247 ± 

0.1053 

0.8576 ± 

0.0718 

0.9141 ± 

0.0296 

0.7663 ± 

0.1487 

0.8688 ± 

0.0942 

0.9085 ± 

0.0519 

0.8322 ± 

0.1696 

0.8121 ± 

0.0936 

0.9218 ± 

0.0375 

0.5711 ± 

0.1499 

0.9968 ± 

0.0125 

Succinyladenosine 0.8931 ± 

0.0355 

0.8795 ± 

0.0796 

0.7782 ± 

0.0785 

0.9094 ± 

0.0282 

0.9042 ± 

0.1180 

0.6012 ± 

0.2688 

0.9392 ± 

0.0407 

0.8711 ± 

0.1214 

0.9468 ± 

0.0411 

0.9607 ± 

0.0270 

0.8000 ± 

0.2031 

0.9105 ± 

0.0879 

Serum creatinine (mg/dL) 0.8869 ± 

0.0440 

0.7732 ± 

0.0972 

0.8785 ± 

0.0576 

0.9054 ± 

0.0326 

0.8700 ± 

0.1049 

0.6935 ± 

0.1820 

0.8840 ± 

0.0681 

0.7244 ± 

0.1356 

0.9258 ± 

0.1348 

0.9202 ± 

0.0412 

0.6856 ± 

0.1572 

0.9705 ± 

0.0757 

2-

Hydroxyethanesulfonate 

0.8817 ± 

0.0381 

0.8079 ± 

0.1144 

0.7674 ± 

0.0839 

0.8913 ± 

0.0296 

0.8068 ± 

0.1718 

0.6738 ± 

0.2742 

0.9318 ± 

0.0414 

0.8489 ± 

0.1436 

0.8589 ± 

0.0838 

0.9647 ± 

0.0209 

0.6667 ± 

0.2172 

0.9479 ± 

0.0739 

Sulfotyrosine 0.8735 ± 

0.0415 

0.8326 ± 

0.1120 

0.7503 ± 

0.0884 

0.8867 ± 

0.0338 

0.8611 ± 

0.1199 

0.6091 ± 

0.2372 

0.9404 ± 

0.0434 

0.8378 ± 

0.1211 

0.9321 ± 

0.0715 

0.9450 ± 

0.0450 

0.8522 ± 

0.1441 

0.9289 ± 

0.0715 

MS-detected creatinine 0.8569 ± 

0.0594 

0.7895 ± 

0.0906 

0.8674 ± 

0.0816 

0.8953 ± 

0.0377 

0.7989 ± 

0.1056 

0.8500 ± 

0.0809 

0.8895 ± 

0.0602 

0.6889 ± 

0.1370 

0.9205 ± 

0.0978 

0.9320 ± 

0.0363 

0.6600 ± 

0.1593 

0.9742 ± 

0.0638 

 L-β-aspartyl-L-leucine 0.8513 ± 

0.0436 

0.7838 ± 

0.0999 

0.7379 ± 

0.1131 

0.8579 ± 

0.0329 

0.7626 ± 

0.1145 

0.7426 ± 

0.1372 

0.9200 ± 

0.0441 

0.8184 ± 

0.0749 

0.9044 ± 

0.1187 

0.9492 ± 

0.0231 

0.8900 ± 

0.1319 

0.6878 ± 

0.1653 
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