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Abstract

Worldwide, annual epidemic like influenza results in millions severe illnesses. How-

ever, the coverage of vaccine, which is the most effective way to prevent infections,

is undesirably low. The vaccination coverage changes every flu-season, and is de-

termined by the minimum of supply and demand. Previous research on vaccination

coverage mainly focuses on single-period models and the supply shortage. In this

thesis, we study the vaccine supply chain under multi-period models, where we de-

note each period as one flu season for simplicity, and explore the demand uncertainty.

We conduct two studies on the inefficiency of a vaccine supply chain, i.e., the low

vaccination coverage, taking account of multi-period vaccine market and consumer

vaccination regret, respectively.

In the first study, we construct a multi-period vaccine demand model to study

multi-period vaccine supply decisions and government interventions. We assume that

members of the public make vaccination decisions at the beginning of a flu season,

given the situation of the last flu season. Both the manufacturer and government will

make multi-period decisions. We formulate the problem, characterize the solution

properties, and derive the multi-period profit-maximizing coverage and multi-period

socially optimal coverage. In addition, we show that, besides supply uncertainty,

vaccine demand decreases or increases with the vaccination coverage in the last flu

season, depending on vaccine effectiveness. Furthermore, the coverage convergence

depends on vaccine effectiveness and infection cost distribution. Accordingly, the

multi-period profit-maximizing coverage and multi-period socially optimal coverage

depend on the vaccine effectiveness and coverage convergence. We also conduct

numerical experiments to generate practical implications of the analytical findings.

Our results provide management insights on vaccine supply decisions, government
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interventions and vaccination coverage.

In the second study, we formulate a single-period vaccine demand model incor-

porating the free rider behavior and customer regret. Solving the model, we show

that, as the coefficient of customer regret increases, more people would like to be

free riders, which affects the vaccine market coordination. When the coefficient of

customer regret is large enough, there will be no risk-taking customers under the

socially optimal vaccination coverage. Extending the model to include incomplete

demand information and oligopolistic supply, we find that both inaccurate estima-

tion of customer regret and incomplete supply competition will lead to imbalance of

supply and demand. Finally, considering government’s subsidy allocations on both

supply and demand sides, we present a subsidy allocation mechanism to help the

market achieve the largest equilibrium coverage.
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Chapter 1

Introduction

Vaccination is the most effective way to prevent people from being infected by in-

fectious diseases. Every year millions of people take preventive vaccination before

an infectious disease emerges. Vaccine supply chain is an indispensable part of

successful vaccination campaigns.

The success of a vaccine supply chain, which an important part of healthcare

management, depends on individuals’ vaccination behaviors and manufacturer’s pro-

duction decisions. With the observation of vaccine market, the government can in-

tervene the supply side and the demand side to improve the vaccination coverage to

a socially optimal level. Considering vaccine supply chain with government interven-

tions, we conduct two studies, regarding multi-period vaccine market and consumer

regrets of vaccination. Our aim is to find the inefficiency of the vaccine supply chain,

and help the government intervene the vaccine market more efficiently.

First, people have different vaccination habits and vaccine demand changes in

every flu season. People make vaccination decisions around the beginning of a flu

season period, when they do not have the infection information of this period. Thus,

it is necessary to study individuals’ vaccination decisions in a multi-period setting

and improve the efficiency of vaccine market under a multi-period situation.

In Chapter 2, we construct a multi-period vaccine demand model to study multi-

period vaccine supply decisions and government interventions. We assume that

members of the public make vaccination decisions at the beginning of the flu season,

given the situation of the last flu season. Both the manufacturer and government will

make multi-period decisions. The vaccination coverage is determined by the mini-
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mum of supply and demand. We formulate the problem, characterize the solution

properties, and derive the multi-period profit-maximizing coverage and multi-period

socially optimal coverage. In addition, we show that, besides supply uncertainty,

vaccine demand decreases or increases with the vaccination coverage in the last flu

season, depending on vaccine effectiveness. Furthermore, the coverage convergence

depends on vaccine effectiveness and infection cost distribution. Accordingly, the

multi-period profit-maximizing coverage and multi-period socially optimal coverage

depend on the vaccine effectiveness and coverage convergence. We also conduct

numerical experiments to generate practical implications of the analytical findings.

Our results provide management insights on vaccine supply decisions, government

interventions and vaccination coverage.

Second, the imperfection of vaccine and herd immunity result in the situation

where vaccinated individuals can be infected and non-vaccinated individuals might

be healthy. Those non-vaccinated and healthy people benefit from free-riding behav-

ior. It is envisaged that the free-riding behavior is a main cause of the low vaccination

coverage and affected by customer regret. Customers’ vaccination decisions made

under uncertainty will lead to regret ex post. To the best of our knowledge, no

research has addressed this issue.

In Chapter 3, we consider customer regret in the vaccination demand model

when formulating customers’ free-riding behavior. In our model, regret is related to

the coefficient of regret and proportional to the difference between the customers’

actual utility and the best utility of the alternative choices. Our study is different

from those in the literature in that we do not impose a positive restriction on regret,

because we believe that when a person finds the utility of his choice is better than

the utility of all the alternative choices, he will feel happy or be proud of his choice.

We use negative regret to represent this kind of feeling. In this model, the coefficient

of regret affects the proportion of individuals that insist on being free riders. When

the coefficient of regret is large enough, we find that the socially optimal vaccina-

tion coverage does not encourage individuals to be risk-taking customers anymore.

Our study also examines government’s subsidy allocations on both the supply and
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demand sides with consideration of customer regret. Our mechanism could help the

market to achieve the largest equilibrium coverage, which is applicable even when

the government’s budget is limited.
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Chapter 2

Vaccine Supply Decisions and
Government Interventions under
Multi-period Demands

2.1 Introduction

Humans are plagued by infectious diseases, like influenza, perennially. Serious out-

comes of influenza infection can result in hospitalization or even death. The most

effective way to prevent influenza infection is by receiving vaccination every year

(CDC 2019). But vaccination coverage is always undesirably low and below the

socially optimal level (Blue 2008). On the supply side, supply shortage contributes

to the low level of vaccination coverage, where production uncertainty is an im-

portant characteristic of the vaccine production process (via embryonated chicken

eggs). On the demand side, the positive externality effect, i.e., vaccination not only

protects the vaccinated people, but also decreases the infection probability of the

non-vaccinated people by decreasing their contacts with the infected people, results

in low vaccine demand and low vaccination coverage (Fine et al. 2011, Gordis 2013).

So the efficiency of the vaccine supply chain, i.e., vaccination coverage, needs to be

studied and improved.

Many researchers have studied the vaccine supply chain in the single-period set-

ting, where we set each period as one flu season in this thesis. For example, Chick

et al. (2008) and Deo and Corbett (2009) study the production efficiency of the

vaccine manufacturer. Bauch and Earn (2004), Reluga et al. (2006) and Vietri et al.
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(2008) show that consumers make their own vaccination decisions based on the in-

fection probability and their own infection costs, which leads to insufficient demand.

Mamani et al. (2012) and Arifoğlu et al. (2012) analyze government interventions

to minimize the total social cost. However, in real practice, people might not make

the same decision in each period and do not know the real-time infection proba-

bility. Thus, it is necessary to study the efficiency of the vaccine supply chain in

multi-period setting.

The characteristics of the vaccine supply chain in the multi-period setting are as

follows: First, people have different vaccination habits and vaccine demand changes

in every flu season. Myopic consumers may be afraid of being infected while free-

riding consumers insist to be free riders. In addition, strategic consumers make

different decisions in each flu season based on the infection probability. Second,

vaccine demand is usually at its peak in October or November, and rapidly declines

afterwards (CDC 2018). So people make vaccination decisions around the beginning

of a flu season (period), when they do not have the infection information about the

current period. Third, due to the long production process (six to eight months for

influenza vaccines), the manufacturer makes the production decision far ahead of

the flu season. The manufacturer would seek to maximize its profit and avoid the

overstock risk. The government also intervenes in the vaccine market in each period

seeking to increase vaccine coverage in the community.

Motivated by the above observations, we study in this chapter the vaccine sup-

ply decisions and government interventions in the multi-period setting. We set out

to address the following research questions: How do people make vaccination deci-

sions? How does vaccination externality affect people’s decisions? How should the

manufacturer and the government more efficiently make production decisions and

intervene in the market, respectively?

To answer the above research questions, we develop a multi-period vaccine sup-

ply chain model, in which people make decisions in each flu season based on the

situation in the last flu season. All people make decisions at the beginning of a flu

season at the same time, and have no idea of the others’ choices in the current sea-
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son. We integrate consumers’ rational decisions with their vaccination habits. We

consider three types of consumers, namely myopic consumers, who receive vaccina-

tion under all circumstances; free-riding consumers, who receive vaccination under

no circumstances; and strategic consumers, who strategically make their vaccination

decisions. As such, the demands among the periods are related. For the decisions of

the manufacturer and the government, we first study a two-period model and then

extend it to a multi-period model. The manufacturer decides its production quantity

over two or an infinite number of periods to maximize its expected total profit, un-

der the assumption that the manufacturer knows the multi-period demand relations.

The government seeks to minimize the total social cost, comprising consumers’ util-

ity and the manufacturer’s profit. We also study the multi-period socially optimal

coverage in comparison with the demand convergence.

We find that the among-period demand relations are based on vaccine effec-

tiveness. The Australian government reports that influenza vaccine effectiveness is

between 30 and 60 per cent (AGDH 2018). While the basic reproduction number for

influenza is two to three (Wikipedia 2018), the critical fraction, i.e., the minimum

level of vaccination coverage necessary for providing herd immunity, can be higher

than or lower than one. If vaccine effectiveness is high enough to make the critical

fraction less than one, vaccine demand decreases with the coverage in the last period.

This result is due to the multi-period positive externality effect. We set the coverage

that makes the demands in following periods unchanged as the convergence value.

For the manufacturer, the two-period profit-maximizing coverage increases with the

actual production in the first period and decreases with the actual production in the

second period. For the government, the two-period and one-period socially optimal

coverages are on the same side of the coverage convergence value, and the two-period

socially optimal coverage is always closer to the coverage convergence value. If vac-

cine effectiveness is lower and makes the critical fraction larger than one, vaccine

demand increases with the coverage in the last period. In this situation, vaccines

cannot provide effective protection for the vaccinated and the in-direct protection for

the non-vaccinated is also negligible. Then more and more people choose to receive
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vaccination to avoid a high infection cost. For the manufacturer, the two-period

profit-maximizing coverage is always the highest demand and is not influenced by

production uncertainty.

The coverage convergence in a free market without government interventions

depends on vaccine effectiveness and infection cost distribution. We divide the

situations into six types according to the infection cost distribution. If the critical

fraction is less than one, the coverage follows an alternating sequence around the con-

vergence value. For the manufacturer, the multi-period profit-maximizing coverage

depends on the infection cost distribution and is on the same side of the convergence

value for the two-period profit-maximizing coverage. When the fluctuation of the

alternating sequence decreases, the multi-period profit-maximizing coverage is far-

ther away from the convergence value. In contrast, when the fluctuation increases,

the multi-period profit-maximizing coverage is closer to the convergence value. For

the government, when the fluctuation of the alternating sequence decreases, the

multi-period socially optimal coverage is on the same side of the convergence value

for the two-period socially optimal coverage. When the fluctuation increases, the

multi-period and two-period socially optimal coverages are in the same interval. If

the critical fraction is greater than one, the coverage might converge to the lowest

demand, the highest demand, or keep the value of the first period. For the manu-

facturer, the multi-period profit-maximizing coverage is always the highest demand

and does not change with production uncertainty.

We organize the rest of the paper as follows: In Section 2.2 we review the related

literature. In Section 2.3 we introduce the key elements of the model, covering the

demand, supply, and epidemiology aspects. In Section 2.4 we present a two-period

vaccine supply chain model, while in Section 2.5 we extend it to a multi-period

model. In Section 2.6 we conclude the paper and suggest topics for future research.

We present all the proofs in Appendix A.
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2.2 Literature Review

The efficiency of the vaccine supply chain, which is influenced by supply and demand,

has drawn much attention from operations management researchers (Chick et al.

2008, Deo and Corbett 2009, Cho 2010, Arifoğlu et al. 2012, Mamani et al. 2013).

Production uncertainty and insufficient production incentives for the manufacturer

are the main causes of supply shortage. Chick et al. (2008) study several types of

contracts with the objective of maximizing the benefits of the government and the

manufacturer at the same time. Deo and Corbett (2009) find that yield uncertainty

results from the industry concentration and output reduction. Wu et al. (2005) and

Cho (2010) propose that dynamic supply decisions can improve the social benefit.

On the demand side, positive vaccination externality is a main cause of insufficient

vaccine demand. Several studies (Bauch and Earn 2004, Reluga et al. 2006) analyze

the vaccine demand market using game theoretic models. Considering production

uncertainty, Arifoğlu et al. (2012) study the impact of inefficiency on both the supply

and demand sides. Most of these studies develop models in the single-period setting.

In contrast, we construct a multi-period vaccine demand model to study multi-period

vaccine supply decisions and government interventions.

Vaccination externality resulting from herd immunity influences strategic con-

sumers’ behaviour (Brito et al. 1991, Boulier et al. 2007, Cook et al. 2009, Arifoğlu

et al. 2012, and Tereyağoğlu and Veeraraghavan 2012). Dana and Petruzzi (2001)

assume that consumers are utility maximizing. Boulier et al.(2007) empirically il-

lustrate that the magnitude of vaccine externality is influenced by the efficacy of

vaccination. Chapman and Coups (1999) propose that vaccination acceptance is

related to whether consumers have received vaccination in the previous year. Vac-

cination externality also has different effects on people with different vaccination

habits. Aviv and Pazgal (2008) and Su and Zhang (2008) study the influence of

forward-looking consumer behaviour. Cachon and Swinney (2009) introduce three

types of consumers to analyze consumers’ strategic behaviour, including myopic

consumers, bargain-hunting consumers, and strategic consumers. MacDonald et al.

(2015) consider some people who accept all vaccines and some people who refuse all
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vaccines in their study of vaccine hesitancy. To the best of our knowledge, we are the

first to develop a multi-period vaccine demand model that incorporates vaccination

externality into people’s vaccination habits to study the vaccine supply chain. We

show that, due to vaccination externality, consumers’ vaccination decisions depend

on their vaccination habits and vaccine effectiveness.

With among-period demand relations, the multi-period socially optimal coverage

for the government is different from its single-period counterpart. Brito et al. (1991),

Geoffard and Philipson (1997), and Philipson (2000) consider the health economic

issues arising from vaccination and find that the vaccination coverage is below the

socially optimal level. Mamani et al. (2012) consider the costs and benefits of general

customers, as well as vaccine producers, to derive the total social surplus. Arifoğlu

et al. (2012) analyze the inefficiency on the vaccine supply and demand sides, and

highlight the interventions on both sides. They suggest that combining demand-

side intervention (Brito et al. 1991) and supply-side intervention (Chick et al. 2008)

could coordinate the entire supply chain. We study the socially optimal coverage

in the multi-period setting for the government, which can improve the efficiency of

government interventions.

2.3 Basic Model

In this section we discuss the basic assumptions and introduce the key elements of

our model, covering the demand, supply, and epidemiology aspects.

2.3.1 Demand

Similar to Cachon and Swinney (2009) and MacDonald et al. (2015), we consider

three types of consumers in our model, namely myopic consumers, who receive vac-

cination under all circumstances; free-riding consumers, who receive vaccination

under no circumstances and want to benefit from being free riders; and strategic

consumers, who strategically make their vaccination decisions. We set α ≥ 0 and

β ≥ 0 as the percentages of myopic consumers and free-riding consumers in the

population, respectively. We assume that all the people have the same probability
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to be myopic consumers or free-riding consumers. This means that the probability

distribution of the infection cost for the strategic consumers is the same as that

for all the consumers. We further assume that α and β are constants in a certain

population over several periods. Then the vaccination coverage in period t, denoted

by ft, is always in the interval [α, 1−β]. Besides, the strategic consumers sometimes

accept and sometimes refuse vaccines. They are self-interested and make decisions

based on the vaccination costs and the possible infection costs (Vietri et al. 2008,

Arifoğlu et al. 2012). In our multi-period model, all the people will make decisions

at the beginning of each flu season at the same time. People do not have information

as to whether other people will receive vaccination or not at the beginning of the flu

season. So they can only make decisions based on the information about the last flu

season, including the vaccination coverage and the related infection probability.

2.3.2 Supply

Most of injectable vaccines (over 97%) are produced from chicken egg embryos (Dan-

zon et al. 2005, Palese 2006, Arifoğlu et al. 2012). Production uncertainty is one of

the most important characteristics of the production method, which leads to serious

inefficiency on the supply side of the vaccine supply chain (Mamani et al. 2012, Deo

and Corbett 2009). Similar to the models developed by other researchers (Palese

2006, Chick et al. 2008, Deo and Corbett 2009), we set Yt as the average production

per egg in period t. Yt varies among the periods and is within the interval [0,+∞)

(Arifoğlu et al. 2012). We assume that Yt is a random variable with mean ξ and

standard deviation σ that follows a cumulative distribution function Z(.). Then the

number of vaccines obtained in period t, Qt, satisfies Qt = Ytnt, where nt is the

number of planned eggs in period t. Moreover, we set c as the unit cost of a planned

egg and assume that it remains unchanged among the periods. Any unsold vaccines

cannot be sold in the subsequent flu seasons and does have any salvage value because

flu virus changes every year. The manufacturer is profit maximizing and know the

demand relations among the periods, so they will predict the demands and decide

the number of planned eggs in each period.
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2.3.3 Epidemiology

In this study we use the susceptible, infected, and recovered (SIR) model to pre-

dict the disease spread (Hethcote 2000). We acknowledge that vaccines are not

perfect, which means the vaccinated could still be infected. We use φ to denote

vaccine effectiveness, which embrace the susceptibility and infectiousness effects

(Longini Jr et al. 1996, Weycker et al. 2005, Chick et al. 2008). Let H(ft) and

P (ft) be the infection probability functions for the vaccinated and non-vaccinated,

respectively. Letting r(ft) be the infection probability for the whole population, we

have r(ft) = ftH(ft) + (1 − ft)P (ft) (Bauch and Earn 2004, Adida et al. 2013).

Obviously, all these infection probabilities decrease with ft. Vaccination not only

enhances the probability of the vaccinated to become immune to an infection, but

also indirectly protects the non-vaccinated (Fine et al. 2011). Let R0 be the basic

reproduction number, which is a measure of the infectiousness of a disease (Anderson

and May 1992, Murray 1993). When most of the population are immune, the chains

of infection are likely to be disrupted, which stops the spread of the disease. When

the coverage achieves a certain level, the infection probability of the whole popula-

tion decreases to zero (Merrill 2015). This situation is called herd immunity. We

denote fcf as the minimum coverage to achieve herd immunity, which is known as

the critical fraction. According to Diekmann and Heesterbeek (2000), fcf = R0−1
φR0

. If

the vaccination coverage ft is zero, P (ft) = r(ft); if the vaccine coverage ft achieves

fcf , H(ft) = P (ft) = r(ft) = 0; otherwise, P (ft) > H(ft).

Table 2.1 summarizes the major notation used in this paper.

2.4 Two-period Decisions

We model a two-period vaccine market consisting of individuals, a manufacturer

and a government. Individuals make their own decisions based on the infection

probability in the last flu season. We show the demand relations among the periods

in Section 2.4.1. Knowing the among-period demand relations, the manufacturer

decides the production quantity in each period to maximize its total profit over the

two periods. We derive the profit-maximizing coverage in Section 2.4.2. In Section

12



Table 2.1: Notation

ft vaccination coverage in period t.
α The proportion of myopic consumers in the population.
β The proportion of free-riding consumers in the population.
Yt The average production per egg in period t.
Z(.) Probability density function of Yt.
nt The number of planned eggs in period t.
Qt The number of obtained vaccines in period t.
c The unit cost of planned eggs.
φ Vaccine effectiveness.
H(ft) Infection probability for vaccinated people according the vaccination coverage

in period t.
P (ft) Infection probability for non-vaccinated people according the vaccination cov-

erage in period t.
r(ft) Infection probability for the whole population according the vaccination cov-

erage in period t.
N The number of individuals in the population.
u Individual’s infection loss.
g(.) Probability density function of u.
G(.) Cumulative distribution function of u.
w The vaccination cost per person.
dt Vaccine demand in period t.
π2P Manufacturer’s profit for two periods.
πMP Manufacturer’s profit for M periods.
TC1P The total social cost for one period.
TC2P The total social cost for two periods.
TCMP The total social cost for M periods.

13



2.4.3 we derive the two-period socially optimal coverage from the perspective of

the government, where the government considers both individuals’ utility and the

manufacturer’s profit.

2.4.1 Demand Relations

We consider a population consisting of N individuals. u is the infection loss of

an individual. We assume that u ∈ [0, 1] and every individual has an expectation

of the infection cost (Meltzer et al. 1999, Galvani et al. 2007, Arifoğlu et al. 2012).

Based on the demand model in Section 2.3.1, u is a random variable with probability

density function g(.) and cumulative probability distribution G(.) for both strategic

consumers and the whole population. Let w be the vaccination cost per person. To

eliminate the case where no one is willing to receive vaccination, we assume w is

smaller than 1. In addition, w and g(u) do not vary among period.

As shown in Figure 2.1, the infection result of every individual can be one of the

four categories: (i) vaccinated and infected, (ii) vaccinated and healthy, (iii) non-

vaccinated and infected, and (iv) non-vaccinated and healthy, each with some prob-

ability. Vaccinated infected people has a cost of w+u with probability ftH(ft); vac-

cinated healthy people has a cost of w with probability ft[1−H(ft)]; non-vaccinated

infected people has a cost of u with probability (1−ft)P (ft); non-vaccinated healthy

people has a cost of 0 with a probability of (1− ft)[1−P (ft)]. As a whole, expected

cost for vaccinated people and non-vaccinated people is w + uH(ft) and uP (ft),

respectively.

The vaccination coverage in period t, ft, is restricted by the vaccine demand and

supply in the period. So ft = min{dt, Qt

N
}, where dt is the vaccine demand and Qt

N

is the vaccine supply. When the supply is less than the demand in a certain period,

every individual that would like to receive vaccination has the same probability to

be vaccinated.

In the multi-period model, people make decisions at the beginning of each flu

season. All people make decisions at the same time and have no idea about other

people’s choices. So they make decisions based on the infection probability in the last
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Figure 2.1: Consumer vaccination cost

flu season. For example, in period t+1, people consider that vaccinated people have

a probability of H(ft) to be infected and non-vaccinated people have a probability of

P (ft) to be infected. Strategic consumers compare their own vaccination cost with

non-vaccination cost and make choices. The marginal individual that is a strategic

consumer does not have any difference in receiving vaccination or not. umt+1 is the

infection cost of the marginal individual in period t+ 1. Then we have

w +H(ft)u
m
t+1 = P (ft)u

m
t+1. (2.1)

People whose infection cost is higher than the infection cost of the marginal individ-

ual, i.e., u > umt+1, receive vaccination and others do not receive vaccination. Then we

get the demand in period t+1, i.e., dt+1(ft) = Ḡ(umt+1), where Ḡ(umt+1) = 1−G(umt+1).

Demand relations between dt+1 and ft are presented in Proposition 1.

Proposition 1. The demand in period t + 1, dt+1, is a function of the coverage in

period t, ft, :

dt+1(ft) = (1− α− β)(1−G(
w

P (ft)−H(ft)
)) + α

where ft = min{dt, Qt

N
}.
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Proposition 1 indicates that the demand in period t+1 is related to the coverage

in period t. Then ft+1 is influenced by both ft and the production uncertainty in

period t + 1. The marginal individual in period t + 1 is indifferent to receiving

vaccination or not under the infection probability of period t. Obviously, G(.) is an

increasing function of u and w does not vary among the periods. Proposition 1 shows

that the demand in period t+1 is strongly related to P (ft)−H(ft), i.e., the infection

probability gap between the vaccinated and the non-vaccinated. The marginal-

benefit infection probability of a vaccination, d(P (ft)−H(ft))
dft

, means the change in

infection probability benefit per vaccination. Besides, the demand decreases with

w. A higher infection cost stimulates people to receive vaccination and a higher

vaccination cost decreases people’s willingness to receive vaccination.

We derive estimations of r(f) and H(f) from Mamani et al. (2012) as follows:

r(f) =


0 if f >

R0 − 1

φR0

1− φf − 1

R0

otherwise

H(f) = η(1− φ)r(f)

where φ is vaccine effectiveness, R0 is the basic reproduction number (Anderson and

May 1992) and η is a constant. Then we can get Proposition 2.

Proposition 2. (1) If vaccine effectiveness φ satisfies φ > 1− 1
R0

, vaccine demand

in period t+ 1 decreases with the coverage in period t.

(2) If vaccine effectiveness φ satisfies φ < 1 − 1
R0

, vaccine demand in period

t+ 1 increases with the coverage in period t.

(3) If vaccine effectiveness φ satisfies φ = 1 − 1
R0

, vaccine demand in period

t+ 1 does not change with the coverage in period t.

Proposition 2 divides vaccines into three types by vaccine effectiveness. Fig-

ure 2.2 shows the relationships between dt+1 and ft for different types of vaccines.

Proposition 2 (1) illustrates the situation of φ > 1− 1
R0

, where the critical fraction is

less than one. When the coverage achieves the critical fraction, the whole population

is safe and r(ft) = 0. The higher the coverage in period t is, the lower is the demand
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Figure 2.2: Demand relations and vaccine effectiveness

in period t + 1. At this time, the marginal-benefit infection probability of vaccina-

tion, d[P (ft)−H(ft)]
dft

, is less than 0. The infection probability gap between vaccination

and non-vaccination, P (ft)−H(ft), decreases with ft. So the willingness to receive

vaccination decreases with ft. A high coverage leads to extremely low demand in

the next period. When the coverage is low, this kind of unwillingness is weakened

and the high infection probability stimulates more people to receive vaccination in

period t+1. Therefore, when vaccine effectiveness φ satisfies φ > 1− 1
R0

, the vaccine

demand in period t+ 1 decreases with the coverage in period t.

Proposition 2 (2) illustrates the situation of φ < 1− 1
R0

, where the critical frac-

tion is greater than one. In this situation, even though all the people are vaccinated,

there are still people that might be infected. Vaccine demand increases with the

coverage in the last period. At this time, the marginal-benefit infection probability

of vaccination, d[P (ft)−H(ft)]
dft

, is larger than 0. The infection probability gap between

vaccination and non-vaccination, P (ft) −H(ft), increases with ft. This means the

marginal benefit of vaccination increases with ft. So the willingness to receive vac-

cination increases with the coverage. A higher coverage in period t stimulates more

vaccine demand in period t + 1. Consumers are willing to receive vaccination to
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avoid incurring more infection expenses. Therefore, when vaccine effectiveness φ

satisfies φ < 1− 1
R0

, the vaccines demand in period t+ 1 increases with the coverage

in period t.

Proposition 2 (3) shows that when vaccine effectiveness satisfies φ = 1− 1
R0

, the

vaccine demand in period t + 1 does not change with the coverage in period t and

the vaccine demand in period t+ 1 is a constant function of ft. But in reality, virus

changes every year. Vaccine effectiveness is out of the manufacture’s control and

it is hard to keep the effectiveness at a fixed level over several flu seasons. So this

situation cannot last for several flu seasons, and we do not discuss this situation in

detail in our study.

Lemma 1. If the vaccine effectiveness always satisfies φ > 1− 1
R0

, then dt+1(α) =

1−β and dt+1(1−β) = α. Besides, the demand is always below the critical fraction,

i.e. 1− β = fcf .

Lemma 1 implies that the coverage fluctuation will become smaller. When φ >

1 − 1
R0

, if dt+1(1 − β) > α, then the coverage could not achieve d−1
t+1(α), i.e., ft ≤

1 − β < d−1
t+1(α), where dt+1(ft) is a strictly decreasing function. People between

dt+1(1 − β) and α would never be stimulated to receive vaccination. Therefore,

in the multi-period situation, if vaccine effectiveness satisfies φ > 1 − 1
R0

, then

dt+1(α) = 1 − β and dt+1(1 − β) = α. But, in reality, vaccine effectiveness is

out of the manufacturer’s control. So vaccine effectiveness may not always satisfy

φ > 1− 1
R0

. For simplicity, we set dt+1(α) = 1− β and dt+1(1− β) = α for vaccines

φ > 1 − 1
R0

and dt+1(α) = α and dt+1(1 − β) = 1 − β for vaccines φ < 1 − 1
R0

in

Figure 2.2. Besides, Lemma 1 also shows that the vaccine demand is always lower

than fcf . When φ > 1− 1
R0

, 1−β = fcf . When φ < 1− 1
R0

, fcf ≥ 1. And β is hardly

equal to 0. So the demand is always below fcf in a free market without government

interventions.

Lemma 2. When φ > 1− 1
R0

, there must exist f0 satisfying dt+1(f0) = f0. For all

ft > f0, dt+1(ft) ≤ f0; for all ft < f0, dt+1(ft) ≥ f0.

Lemma 2 shows that, in the situation of Proposition 2 (1), if the coverage con-

verges to a certain value, it will be f0. The coverage convergence also depends on
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the distribution function G(.). Proposition 7 later characterizes the related coverage

convergence.

2.4.2 Profit-maximizing Coverage

Research on the vaccine supply chain has studied the efficiency of vaccine production,

most of which concerns the single-period setting. In reality, the manufacturer may

formulate a multi-period plan to improve its total profit. In the two-period model,

the manufacturer decides the number of planned eggs in each period that maximizes

its expected profit over the two periods π2P as follows:

max π2P (nt, nt+1) = wNE[ft]− cnt + wNE[ft+1]− cnt+1

where fi = min{di, Qi

N
} = min{di, niYi

N
} for i = t, t+ 1.

Proposition 3. The profit-maximizing numbers of planned eggs, n∗t and n∗t+1, in a

two-period problem are consistent with that in a single period problem and satisfy

w

∫ j

0

ydZy(y) = c

where j = Ndt
n∗t

for period t and j = Ndt+1

n∗t+1
for period t+1.

Proposition 3 is similar to the Proposition 4 in Arifoğlu et al. (2012), who derive

the profit-maximizing production quantity in the single-period model. This implies

that in both single-period and multi-period models, the profit-maximizing produc-

tion tries to meet the demand fully. We already assume that w, c and g(.) do not

change among the periods. From Proposition 3, we have Ndt
n∗t

= Ndt+1

n∗t+1
for each pe-

riod. The expected demand in a single-period model just repeats among periods.

In the multi-period model, dt+1 changes with dt, so the profit-maximizing coverage

is different. Setting Ndt
n∗t

= Ndt+1

n∗t+1
= K0, we have dt =

K0n∗t
N

and dt+1 =
K0n∗t+1

N
.

Then ft = min{K0n∗t
N

,
Ytn∗t
N
}, where the first term denotes the expected production

(= expected demand) and the second term denotes the actual production. We set

ht = min{K0, Yt}, then ft =
n∗t ht
N

and ft+1 =
n∗t+1ht+1

N
. For the single-period problem,

the manufacturer seeks to satisfy the demand in one period and makes the biggest

profit for this period. For the two-period problem where a high coverage in one
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period might lead to extremely low demand in the next period, so fully meeting the

demand in a period might not be optimal for the manufacturer. From Proposition

1, we see that the maximizing profit is a function of ft. Then we can find ft+1 by

Proposition 1, nt and nt+1 by ft =
n∗t ht
N

and ft+1 =
n∗t+1ht+1

N
, respectively. So

π2P (ft) = (w − c

ht
)Nft + (w − c

ht+1

)Nft+1 = etft + et+1ft+1, (2.2)

where et = (w − c
ht

)N and et+1 = (w − c
ht+1

)N . B(ft) = π(ft)
et+1

= ktft + ft+1.

We ignore the case ht ≥ c
w

, where the manufacturer cannot make any profit from

vaccine production. fM∗2P is the profit-maximizing coverage in period t for two-period

production.

Proposition 4. (1) When φ > 1 − 1
R0

, fM∗2P satisfies dB
dft

= 0. And fM∗2P increases

with kt.

(2) When φ < 1− 1
R0

, fM∗2P is 1− β. And the situation does not change with the

actual production.

Proposition 4 (1) illustrates the situation of φ > 1− 1
R0

. The manufacturer gets

the maximum profit when the expected coverage satisfies dB
dft

= 0. The sufficient

condition of d2B
df2t
≤ 0 is 2φg(j)

1−φft− 1
r0

+ g‘(j) ≥ 0. This assumption holds in some

common distribution cases including normal distribution and uniform distribution.

Under this situation, fM∗2P increases with kt. It means fM∗2P increases with the actual

production in period t and decreases with the actual production in period t + 1.

When the production in period t is as expected (i.e., Yt = K0), if Yt+1 < K0, the

production shortage in period t + 1 leads to un-met demand and a sub-optimal

situation. When the production in period t + 1 is as expected (i.e., Yt+1 = K0), if

Yt < K0, the production shortage in period t leads to un-met demand in period t

and a lower demand in period t + 1. If Yt < K0, Yt+1 < K0 and kt = 1, fM∗2P is the

same as the value when Yt = Yt+1 = K0. But the total profit decreases, because

π(ft) = et+1B(ft) decreases with et+1. All these inefficiencies result from production

uncertainty.

Proposition 4 (2) implies that, when φ < 1 − 1
R0

, regardless of whether or not

the actual production in periods t and t + 1 is equal to the expected production,
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the profit-maximizing coverage is the highest coverage. This result is consistent

with Proposition 2 (2). The demand in the period t+ 1 increases with the coverage

in period t. No matter what the actual production is, the total two-period profit

increases with the coverage. The optimal solution is to make the coverage achieve

the highest level.

Figure 2.3: Manufacturer’s profit and vaccination coverage

Referring to the assumption for Figure 2.2, Figure 2.3 shows the situation of

kt = 1, where B(α) = B(1 − β) for φ > 1 − 1
R0

. The actual production in periods

t and t + 1 is not less than the expected production when kt = 1. When kt < 1,

the actual production in period t + 1 is equal to the expected production and the

actual production in period t is less than the expected production. At this time,

B(α) > B(1 − β). Demand in period t decreases. It makes unmet demand smaller

and makes lost profit lower. When kt > 1, the actual production in period t is equal

to the expected production and the actual production in period t + 1 is less than

the expected production. In this situation, B(α) < B(1 − β). Demand in period t

increases and demand in period t+1 decreases. This makes a higher profit in period

t and leads to a smaller unmet demand in period t.

Sometimes different types of vaccines have different infection probabilities, and

different prices and costs, e.g., the trivalent influenza vaccine and the tetravalent
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influenza vaccine sell at different prices. When deciding the vaccine product type,

the manufacturer expects the actual production to be the expected production, i.e.,

Yt = Yt+1 = K0. Then, dt = ft. Let fI be the unique solution of πa(ft) = πb(ft).

Proposition 5. (1) If (wa − ca
K0

)(1 + α − β) ≥ 2(wb − cb
K0

)(1 − β), vaccines that

φ > 1− 1
R0

are always better.

(2) If (wa − ca
K0

)(1 + α − β) < 2(wb − cb
K0

)(1 − β), the situation varies with the

vaccine prices and costs. When α < dt ≤ fI , producing vaccines that φ > 1 − 1
R0

can make more profit. When fI < dt < 1 − β, vaccines that φ < 1 − 1
R0

can make

more profit.

Proposition 5 implies that, for different expected demands in period t, choosing

the right vaccine type could improve the manufacturer’s profit. The choice depends

on vaccine price, vaccine costs, et, and et+1. Figure 4 shows the situations of et = et+1

and wa− ca
K0

= wb− cb
K0

. Proposition 3 suggests that the optimal number of planned

eggs is determined by fully meeting the demand dt. In the multi-period model, the

demand in each period is related to the situation in the last period. The relationship

between dt+1 and ft is strongly influenced by vaccine effectiveness. For different

vaccine types with different vaccine effectiveness, the expected changes in coverage

vary widely. So a right choice of vaccine enables the manufacturer to make more

profit, as sated in Proposition 5.

2.4.3 Socially Optimal Coverage

The government considers not only people’s utility but also the manufacturer’s

profit. The government cooperates with the manufacturer and controls the pro-

duction quantity to maximize the total social utility. The government could make

direct purchase or require compulsory vaccination to stimulate consumers to receive

vaccination (Arifoğlu et al. 2012), so the socially optimal coverage is in the interval

[0,1] rather than [α, 1−β]. We assume that the government considers the population

as the priority group. The total social utility consists of the manufacturer’s profit

and m times the utility of the whole population, where m is not less than one.

First, we consider the single-period situation. The utility per individual is given
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by

PU = V̄ − wft −H(ft)

∫ 1

ut

vdG(v)− P (ft)

∫ ut

0

vdG(v)

where V̄ is the utility of a healthy person. The second term is the expected cost of

taking vaccine; the third term and the fourth term are the expected infection cost

for vaccinated people and non-vaccinated people, respectively.

The manufacturer’s profit is

MP = wNft −
cNft
K0

where the first term is the revenue of selling vaccines and the second term is the cost

of production.

The government wants to maximize the total social utility, i.e.,

max{m× PU +
MP

N
}

by achieving the socially optimal coverage for the single-period problem, i.e., fG∗1P .

TC1P is the total social cost in period t and fG∗1P is the socially optimal coverage

for the single-period model.

min{TC1P (ft)} = mH(ft)

∫ 1

ut

vdG(v) +mP (ft)

∫ ut

0

vdG(v) + (m− 1)wft +
cft
K0

where ut = Ḡ−1(ft).

Solving it, we derive fG∗1P in Lemma 3. Let fII be the unique solution of dTC1P

dft
= 0.

Lemma 3. (1) If φ > 1− 1
R0

,

fG∗1P =


0 if fII < 0,

1 if fII > 1,

fII otherwise

(2) When φ < 1− 1
R0

,

fG∗1P =

{
0 if τ < 0,

1 otherwise

where τ = mL(P (0)−H(1))− (m− 1)W − C/K0.

23



Lemma 3 gives the socially optimal coverages for different vaccine effectiveness

in the single-period model. While the optimal situation has been studied in the

literature, few studies consider the situation where φ < 1 − 1
R0

and three types of

consumers. In the two-period situation, the total social cost consists of the social

cost in period t and the social cost in period t + 1. The socially optimal coverage

achieves the minimum social cost in two periods. TC2P is the total cost for the two

periods. So the government’s problem is given by

min{TC2P (ft)} = TC1P (ft) + TC1P (ft+1)

where fG∗2P is the socially optimal coverage in period t for the two-period problem.

We characterize the relationship between fG∗2P and fG∗1P in Proposition 6.

Proposition 6. (1) If φ > 1 − 1
R0

, fG∗2P and fG∗1P are in the same side of f0. And

fG∗2P will be closer to f0 than fG∗1P .{
fG∗2P > fG∗1P if fII < f0,

fG∗2P ≤ fG∗1P if fII ≥ f0,

where fII satisfies dTC1P

dft
= 0.

(2) If φ < 1− 1
R0

,

{
fG∗2P ≥ 0 if τ < 0,

fG∗2P ≤ 1 otherwise

where τ = mL(P (0)−H(1))− (m− 1)W − C/K0.

Proposition 6 (1) shows the situation of φ > 1 − 1
R0

. It is strongly related to

Proposition 2 (1) which shows ft+1 is a decreasing function of ft. Set fV = d−1
t+1(fII).

If there are some ft in the interval [0, 1] satisfing min{fII , fV } ≤ ft ≤ max{fII , fV },

fG∗2P will be one of them. That ft = fII means achieving the minimum social cost in

period t and that ft = fV means achieving the minimum social cost in period t+ 1.

In two-period problem, the government considers the social cost in two periods at

the same time. So fG∗2P is a compromise between fII and fV . Then we consider

different situations respectively. When max{fII , fV } ≤ 0, fG∗2P = fG∗1P = 0. It means

that both of the social costs in periods t and t+ 1 achieve the minimum value when
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ft = 0. So fG∗2P = 0. When min{fII , fV } ≤ 0 < max{fII , fV }, fG∗2P ≥ fG∗1P = 0.

Either fII or fV is higher than 0 and the other is 0. fG∗2P will be in [0,max{fII , fV }].

The situation of min{fII , fV } ≥ 1 is similar to the situation of max{fII , fV } ≤ 0.

Both the socially optimal coverage in periods t and t+1 achieve the minimum value

when ft = 1. So the optimal situation of the two-period problem is ft = ft+1 = 1.

When min{fII , fV } < 1 ≤ max{fII , fV }, f ∗2P ≤ f ∗1P = 1. Either fII or fV is lower

than 1 and the other is 1. So fG∗2P will be in [min{fII , fV }, 1]. The last condition

is min{fII , fV } > 0 and max{fII , fV } < 1. In [0,min{fII , fV }], TC2P (ft) is a

decreasing function of ft. In [max{fII , fV }, 1], TC2P (ft) is an increasing function

of ft. So fG∗2P will be in the interval [min{fII , fV },max{fII , fV }]. We have already

known that either fII or fV is higher than f0 and the other is lower than f0. As a

whole, when fII < f0, fG∗2P > fG∗1P ; when fII ≥ f0, fG∗2P ≤ fG∗1P . Both fG∗2P and fG∗1P are

on the same side of f0. And fG∗2P will be closer to f0 than fG∗1P .

Proposition 6 (2) implies the situation of φ < 1 − 1
R0

. Proposition 2 (2) shows

that ft+1 is an increasing function of ft. When ft ≤ min{fII , fV }, TC2P is an

increasing function of ft. When ft > max{fII , fV }, TC2P is a decreasing function

of ft. So if max{fII , fV } < 0, fG∗2P = fG∗1P = 1. If min{fII , fV } > 1, fG∗2P = fG∗1P = 0.

Otherwise, fG∗2P is 0, 1, or in the interval [min{fII , fV },max{fII , fV }]. We need to

compare the social cost of ft = 0, ft = 1 and ft ∈ [min{fII , fV },max{fII , fV }] to

get the socially optimal coverage.

2.5 Multi-period Plan

In this section we extend the two-period model to a multi-period model. We study

the coverage convergence in Section 2.5.1. Then we consider an M -period model to

characterize the profit-maximizing coverage in Section 2.5.2 and the socially optimal

coverage in Section 2.5.3.

2.5.1 Coverage Convergence

We have already found the demand relations among periods. Regarding Proposition

2 and Lemma 1, the whole population is hardly in a safe status in a free market
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without government intervention, although the supply is sufficient. Then we explore

the characteristics about the convergence of the coverage. In a free market with

sufficient supply and without government intervention, the coverage in every period

is equal to the vaccine demand. Following the demand relations, we characterize

coverage convergence in Proposition 7. f0 is the convergence value from Lemma 2.

And we set Ji(fi) = (1−α− β)(1−G( w(1−fi)
r(fi)−H(fi)

)) +α for i = t, t+ 1 for expression

simplicity.

Proposition 7. (1) For vaccines that φ > 1 − 1
R0

, in a free market with sufficient

vaccine supply and without government intervention, the coverage convergence is as

below:

a. If Jt+1(Jt(ft)) < ft for ft > f0 or Jt+1(Jt(ft)) > ft for ft < f0, the coverage

converges to f0;

b. If Jt+1(Jt(ft)) > ft for ft > f0 or Jt+1(Jt(ft)) < ft for ft < f0, the coverage

does not converge to a certain value and coverage fluctuation will become larger and

larger;

c. If Jt+1(Jt(ft)) = ft, the coverage follows an alternating sequence and the

fluctuation keeps the same;

(2) For vaccines that φ < 1− 1
R0

, in a free market with sufficient vaccine supply

and without government intervention, the coverage convergence is as below:

d. If Jt(ft) < ft for all ft, the coverage converges to the minimum coverage α;

e. If Jt(ft) > ft for all ft, the coverage converges to the maximum coverage 1−β;

f. If Jt(ft) = ft for all ft, the coverage keeps the same;

Figure 2.4 shows the six situations of coverage convergence in Proposition 7. We

find that the coverage convergence is strongly related to the distribution of g(.),

because g(.) decides dt+1(ft). Proposition 7 (1) shows the situation of φ > 1 − 1
R0

.

For case (1)a, the coverage fluctuation gradually decreases and then the coverage

converges to f0. We get f0 from Lemma 2 and the value of f0 depends on α, β

and g(.). Based on some real-life reported data and related studies, stable coverage

achieved in a free market is always below the socially optimal level (Philipson 2000).

But it reminds the government that, if the converge value in a certain city is close
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Figure 2.4: Six types of coverage convergence

to the target coverage, once the coverage achieves the socially optimal level under

government intervention, the coverage could maintain in the optimal level. For case

(1)b, the coverage follows an alternating sequence and the fluctuation increases.

The coverage tends to an unstable status. It is easy to lead to an extremely low

coverage and a disease outbreak. For case (1)c, the coverage follows an alternating

sequence and the fluctuation keeps the same. Because of the uncertainty of the

vaccine effectiveness and g(.), this situation would not last for a long time.

Proposition 7 (2) implies the situation of φ < 1− 1
R0

. For case (2)d, the coverage

gradually converges to the minimum coverage. A low coverage is easy to lead to a

disease outbreak and make the whole population in a dangerous status. For case

(2)e, the coverage converges to the maximum coverage. In this situation, once the

supply is sufficient, the coverage will tend to a safe coverage. For case (2)f , the

coverage keeps the same. Because of the uncertainty of the vaccine effectiveness and

g(.), this situation would not last for a long time.

2.5.2 Multi-period Production

We consider an M -period model, where M > 2. Restricted by our results from

the two-period model, we assume M is even. In the multi-period situation, the

manufacturer decides the number of planed eggs for every periods and wants to
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maximize the total expected profit. πMP is the profit for multi-period production.

Thus, the production problem is

max πMP (nt, nt+1, ..., nM) = wNE[ft]−cnt+wNE[ft+1]−cnt+1+...+wNE[fM ]−cnM

where ft = min{dt, Qt

N
} = min{dt, ntYt

N
} for every period.

It’s easy to prove that the result in Proposition 3 is also applicable in a multi-

period model. The profit-maximizing number of planed eggs satisfies

w

∫ j

0

ydZy(y) = c

where j = Ndt
n∗t

for every period.

In a multi-period production plan, the manufacturer decides the production

quantity in period t to maximize the total profit from period t to period M . We do

not consider the production uncertainty in this section. It means ht = K0 = Yt for

every period. Then the total expected profit, πMP , is a function of ft. The coverage

in every period can be calculated by Proposition 1 and the correlated nt in every

period can be calculated by ft =
n∗t ht
N

. fM∗MP is the profit-maximizing coverage in

period t in a multi-period situation and is given by

max πMP (ft) = (w − c

ht
)Nft + (w − c

ht+1

)Nft+1 + ...+ (w − c

hM
)NfM

Regarding Equation (2.2), we have

max BMP (ft) = ft + ft+1 + ...+ fM

Then we characterize fM∗MP in Proposition 8.

Proposition 8. (1) When φ > 1− 1
R0

, fM∗MP and fV I are in the side of f0.

a. If Jt+1(Jt(ft)) < ft for ft > f0 or Jt+1(Jt(ft)) > ft for ft < f0, fV I is closer

than fM∗MP to f0.

{
fM∗MP < fV I if fV I < f0,

fM∗MP ≥ fV I if fV I ≥ f0,

b. If Jt+1(Jt(ft)) > ft for ft > f0 or Jt+1(Jt(ft)) < ft for ft < f0, fM∗MP is closer

than fV I to f0. {
fM∗MP > fV I if fV I < f0,

fM∗MP ≥ fV I if fV I ≥ f0,
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where fV I is fM∗2P when ht = ht+1.

(2) When φ < 1− 1
R0

, the profit-maximizing coverage fM∗MP = fM∗2P = 1− β. And

the situation does not change with the actual production.

Proposition 8 characterizes some relations between fM∗MP and fV I . Proposition

8 (1) lists the situation of φ > 1 − 1
R0

. For case (1)a, the coverage will gradually

be close to f0. Once M is large enough, πMP will be close to Mf0. There is no

the optimal coverage for M periods. If M is not large enough, we consider two

situations. If f0 > fV I , we have dπMP

dft
≤ 0 for all ft ≥ fV I . Then fM∗MP will be less

than fV I . If f0 ≤ fV I , we have dπMP

dft
≥ 0 for all ft ≤ fV I . Then fM∗MP will be higher

than fV I . So fM∗MP and fV I are on the same side of f0, and fV I is closer to f0 than

fM∗MP . That ft = fV I means making the highest profit in the first period. Because the

manufacturer makes more profit when ft < fV I < f0 than fV I < ft < f0, and makes

more profit when ft > fV I > f0 than that when fV I > ft > f0. When the coverage

converges to f0, the manufacturer cannot get optimal profit. So fM∗MP is more away

from f0 than fV I . On the other side, for case (1)b, the coverage will gradually be

away from f0. Then we have dπMP

dft
≤ 0 for all ft ≥ max{f0, fV I} and dπMP

dft
≥ 0 for

all ft ≤ min{f0, fV I}. And fM∗MP will be in the interval [min{f0, fV I},max{f0, fV I}].

As ft increases from f0, coverage fluctuation becomes larger and the profit decreases.

The manufacturer cannot get optimal profit when the coverage fluctuation is large.

So fM∗MP is closer to f0 than fV I . Proposition 8 (2) shows the situation of φ < 1− 1
R0

.

We have dB
dft

> 0 and dft+1

ft
≤ 0 for all ft. So dπMP

dft
≥ 0. The profit-maximizing

coverage fM∗MP is the same as fM∗2P . And the situation does not change with the actual

production. Referring to Proposition 2(2), people’s willingness of taking vaccines

increases with the coverage in the last period. Manufacturer’s profit increases with

the coverage.

2.5.3 Government Multi-period Plan

In this section we consider that government makes an M -period plan, where M > 2.

TCMP is the total social cost from period t to period M . The government seeks to
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minimize TCMP , i.e.,

min{TCMP (ft)} = TC1P (ft) + TC1P (ft+1) + ...+ TC1P (fM−1) + TC1P (fM) (2.3)

The multi-period socially optimal coverage is fG∗MP , which We characterize in the

situation of φ > 1− 1
R0

.

Proposition 9. When φ > 1− 1
R0

,

a. If Jt+1(Jt(ft)) < ft for ft > f0 or Jt+1(Jt(ft)) > ft for ft < f0, fG∗MP and fG∗2P

are in the same side of f0,

{
fG∗MP < f0 if max{fII , fV } < f0,

fG∗MP ≥ f0 if min{fII , fV } ≥ f0,

b. If Jt+1(Jt(ft)) > ft for ft > f0 or Jt+1(Jt(ft)) < ft for ft < f0, fG∗MP is in the

interval [min{fII , fV },max{fII , fV }], where fII satisfies dTC1P

dfII
= 0, fV = d−1

t+1(fII)

and f0 is the convergence value from Lemma 2.

Proposition 9 provides the results in the situation of fG∗MP when φ > 1 − 1
R0

. In

case a, fG∗MP and fG∗2P are on the same side of f0. In case b, both fG∗MP and fG∗2P are in

the interval [min{fII , fV },max{fII , fV }]. This is consistent with Proposition 8 (1).

The profit-maximizing coverage and socially optimal coverage are on the same side

of f0. This implies that the government should cooperate with the manufacturer

to formulate a multi-period production plan, which helps make the government

interventions more efficient.

2.5.4 Robustness Test

In this section we test the relationship between coverage and number of periods,

and investigate the robustness of the basic reproduction number R0. We assume

that c = 0.03 and w = 0.15 (Galvani et al. 2007, Deo and Corbett 2009, CDC

2009). To simplify the calculation, Mamani et al. (2012) and Adida et al. (2013)

assume that the infection cost follows a uniform distribution. Similarly, we assume

that g(.) follows a uniform distribution with mean 0.5 and standard deviation 1.

Following Arifoğlu et al. (2012), we assume ξ = 1 and σ = 0, which means Qt = nt.
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First, we test the multi-period profit-maximizing coverage and multi-period socially

optimal coverage in comparison with demand convergence. Second, we investigate

the robustness of the profit-maximizing coverage and socially optimal coverage with

respect to the basic reproduction number R0.

Effect of Number of Periods

In this section we take influenza vaccine for example. Then R0 = 3 (Wikipedia 2018).

We provide several types of demand convergence in Proposition 7. The demand

varies among periods following Proposition 1. Propositions 8 (1) and 9 illustrate

the multi-period profit-maximizing and multi-period socially optimal coverage for

vaccine φ > 1 − 1
R0

. So we set φ = 0.8, which satisfies φ > 1 − 1
R0

, in this section.

Figure 2.5 (a) shows the demand varies among periods with f1 = 0.7. When g(.)

follows U(0, 1), the coverage gradually converges to f0. Following Proposition 7,

we have 1 − G(J(1 − G(ft))) < ft for ft > f0 and 1 − G(J(1 − G(ft))) > ft for

ft < f0. Figure 2.5 (b) shows the multi-period profit-maximizing and multi-period

socially optimal coverage. When g(.) follows U(0, 1), the profit-maximizing and

socially optimal coverage for the same number of periods are the same. Following

Proposition 8 (1) a, fM∗MP and fM∗2p are on the same side of f0, and fM∗MP is more away

from f0. Following Proposition 9 a, fG∗MP and fG∗2p are on the same side of f0. This

case shows that, when the number of periods is the same, the government and the

manufacturer are highly consistent in their goals.

Figure 2.5: Sensitivity analysis on the number of periods
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Robustness of the Basic Reproduction Number

R0 represents the basic reproduction number, and is a measure of the infectiousness

of a disease (Anderson and May 1992). For example, R0 is in [0.3, 0.8] for MERS, in

[2, 3] for influenza and in [4, 7] for Mumps (Wikipedia 2018). So we study the two-

period profit-maximizing coverage and the socially optimal coverage, and analyze

their dependence in the basic reproduction number R0. van Boven et al. (2013) get

the proportion of myopic and free-riding consumers for Mumps vaccine as 0.12 and

0.17, respectively. We set α = 0.12 and β = 0.17 in this section. We get the profit-

maximizing coverage from Proposition 4 and the socially optimal coverage from

Lemma 3. We let fM∗ and fG∗ denote them respectively. We ignore the priority

that the government gives to the population, which means m = 1. We set R0 = 3.

The convergence value f0 will be 0.5. Regarding vaccine effectiveness, we include

two cases: φ > 1− 1
R0

and φ < 1− 1
R0

. We set φ = 0.8 in Figure 2.6 (a) and φ = 0.4

in Figure 2.6 (b).

Figure 2.6: Sensitivity analysis on the basic reproduction number

Figure 2.6 (a) illustrates how fM∗ and fG∗ vary in R0 when φ > 1 − 1
R0

. Both

fG∗ and fM∗ increase with R0. A disease with a higher R0 is more infectious. So

individuals will improve the coverage to avoid infections. As the demand increases,

fM∗ increases. And fG∗ also increases. But fG∗ is always larger than fM∗. Referring

to Proposition 6 (1), fG∗2P will be closer to f0 than fG∗1P . So when f < f0, fG∗2P is always

higher than fM∗2P . Under this situation, the government should intervene the supply

side to improve the production quantity and sometimes intervene in the demand side.

When f > f0, fG∗2P might be equal to fM∗2P . The government just needs stimulate
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consumers to keep the demand at this value. Once fM∗ achieves 1−β, the coverage

is restricted by free-riding consumers. At this time, the government can make direct

purchase or require compulsory vaccination to improve vaccination coverage. Figure

2.6 (b) shows the situation of φ < 1− 1
R0

. When R0 is low, fG∗ = 0. Because diseases

are not seriously infectious and vaccines are not effective enough. So the government

does not encourage consumers to receive vaccination. But vaccine demand is hard to

equal to 0. Under this situation, the government should try to improve the vaccine

effectiveness to minimize the social cost. When R0 is higher, fG∗ = 1. Diseases are

very infectious, which is easy to lead to a disease outbreak. The socially optimal

situation is that everyone receive vaccination. But fM∗ = 1 − β. The coverage is

restricted by the free-riding consumers. The government could make some demand-

side interventions to improve vaccination coverage.

2.6 Conclusion

In this paper we present a multi-period vaccine supply chain model taking into

account of among-period demand relations and production uncertainty. Combining

vaccination externality with customers’ vaccination habits, we consider three types

of consumers in our demand model, and derive the multi-period supply decisions

and the socially optimal coverage.

Our model highlights the significance of among-period demand relations. Vacci-

nation externality could be positive or negative, depending on vaccine effectiveness.

When the critical fraction is less than one, which is always considered in extant

studies, demand decreases with the coverage in the last period. This results from

positive vaccine effectiveness. It also reminds the manufacturer and the government

that the largest coverage is not necessarily the best because a large coverage may

lead to extremely low demand in the next period. When the critical fraction is larger

than one, demand increases with the coverage in the last period. Because of low

vaccine effectiveness, the coverage tends to the highest demand. We also study the

multi-period profit-maximizing coverage for the manufacturer and the multi-period

socially optimal coverage for the government. We show that both coverages are
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strongly related to infection cost distribution, which decides coverage convergence.

Our results provide the manufacturer with helpful production suggestions and enable

the government to make their interventions more efficient.
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Chapter 3

Effect of Free-riding Behavior on
Vaccination Coverage with
Customer Regret

3.1 Introduction

Influenza is a seasonal disease that plagues people almost every year. Worldwide,

epidemics are estimated to result in about three to five million severe illnesses, and

about 290,000 to 650,000 respiratory deaths annually (WHO 2018a). Every year

billions of dollars are spent on influenza epidemic preparedness in order to prevent

even greater losses. Preventive vaccination is an important way of fighting against

influenza outbreaks. However, the vaccination coverage in population is undesirably

low, often below the socially optimal level that maximizes the total social welfare

(Blue 2008). If the global immunization coverage improves, an additional 1.5 million

deaths could be avoided (WHO 2018b).

On the demand side, the free-riding behavior is an important cause of the low

vaccination coverage. Herd immunity means that in a population where a large

number of individuals are immune, chains of infections are likely to be disrupted,

which stops or slows the spread of a disease (Merrill 2015). Vaccination not only

makes the vaccinated people immune to an infection, but also indirectly protects

the non-vaccinated people, who are called free riders (Fine et al. 2011). When more

and more people want to benefit from being free riders, the vaccination coverage will

become lower and lower. This is an inevitable problem in the vaccine market.
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We consider customer regret in the vaccination demand model when formulating

customers’ free-riding behavior. The value of the coefficient of customer regret affects

the proportion of free riders in the population. The imperfection of vaccination

and herd immunity result in the situation where the vaccinated individuals can

be infected while the non-vaccinated individuals might be healthy. So customers’

decisions made under uncertainty will lead to regret ex post. Quiggin (1994) and

Braun and Muermann (2004) consider regret only when one’s actual utility is worse

than the best utility of the alternative choices. In our model regret is related to

the coefficient of regret and proportional to the difference between the customers’

actual utility and the best utility of the alternative choices. Our study is different

from those in the literature in that we do not impose a positive restriction on regret,

because we believe that when a person finds the utility of his choice is better than

the utility of all the alternative choices, he will feel happy or be prond of his choice.

We use negative regret to represent this kind of feeling. In this model, the coefficient

of regret affects the proportion of individuals that insist on being free riders. When

the coefficient of regret is large enough, we find that the socially optimal vaccination

coverage does not encourage individuals to be risk-taking customers anymore.

In order to achieve the socially optimal level of vaccination coverage, the gov-

ernment needs to take some measures to improve the immune coverage; otherwise,

it would have to bear a lot of disease-outbreak losses. Adida et al. (2013) find that

without government intervention, the vaccination coverage cannot reach the socially

optimal level and show that a simple fixed subsidy could help achieve the optimal

coverage. Arifoğlu et al. (2012) set the vaccine market as a game model between

the customers and the manufacturer, and compare the efficiency of government in-

terventions on either the supply side or the demand side. Our study examines

government’s subsidy allocations on both the supply and demand sides with con-

sideration of customer regret. Our mechanism could help the market to achieve the

largest equilibrium coverage, which is applicable even when the government’s budget

is limited.
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3.2 Literature Review

Vaccination is an important part of a public medical system, and related to the so-

cial benefit. Brito et al. (1991), Philipson (2000) and Geoffard and Philipson (1997)

consider the health economic issues arising from vaccination and find that the vac-

cination coverage is below the socially optimal level. Many operations management

researchers focus on the optimization of the vaccine supply chain (Wu et al. 2005,

Kornish and Keeney 2008, Cho 2010). Arifoğlu et al. (2012) study the impact of

inefficiency on both the supply and demand sides considering rational customer be-

havior. Many supply-side papers (Mamani et al. 2013, Deo and Corbett 2009) find

that production uncertainty and insufficient incentives for vaccine manufacturers

could be the main causes of the low coverage. Duijzer et al. (2018) mention that

another uncertainty is related to the fluctuations in vaccination demand. Moreover,

the free-riding behavior on the vaccination demand side has not been fully concerned

in the vaccine market. Ibuka et al. (2014) design an experimental study that the

probability of vaccination acceptance by non-vaccinated people decreases with ob-

served vaccination coverage within the population, indicating that the free-riding

behavior truly exists in an influenza vaccine market. Bauch and Earn (2004) and

Reluga et al. (2006) study the free rider problem in a vaccine market through game

theory to relate population-level demand to decision-making by individuals. Deo

and Corbett (2009) study the effect of the vaccine price on the vaccination coverage

in the population. These papers believe that free riders truly exist and make the

vaccination coverage below the optimal level, but few of them analyze which effects

influence the proportion of free riders and how individuals’ idea of being free rider

affects the vaccination coverage. We believe that, because of the negative exter-

nality, free riders would be more in the actual situation than in the former models

and the number of free riders is related to the customer regret. Individuals will

compare the cost of taking vaccines with the possible loss of being free riders when

making decisions. We consider individuals, under customer regret, still tend to be

free riders when the infection loss is not much more than the cost of vaccination.

We set this influence as customer regret in the demand model. The coefficient of
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regret influences the willingness of customers to be free riders, thereby influencing

the vaccine market coordination.

Self-interested customers want to maximize their expected utility, consisting of

economic utility and emotional utility, i.e., regret. There are some papers about

customer regret. Bell (1982) develops the regret theory and finds that by explicitly

incorporating regret, expected utility theory not only becomes a better descriptive

predictor, but also may become a more convincing guide for prescribing behavior

to decision makers. Quiggin (1994) derives a number of special cases in which

regret theory is equivalent to other well-known theories of choice under uncertainty.

Besides, Braun and Muermann (2004) consider customer regret in insurance decision

making. Muermann et al. (2006) and Michenaud and Solnik (2008) apply regret to

portfolio and investment choices. Filiz-Ozbay and Ozbay (2007) and Engelbrecht-

Wiggans and Katok (2008) connect regret with auction issues, and Perakis and

Roels (2008) study regret in a newsvendor model. In operations management area,

Nasiry and Popescu (2012) explore the effects of anticipated regret on consumer

decisions and firms’ profits and policies in an advance selling context where buyers

have uncertain valuations. Özer and Zheng (2015) study sellers’ optimal pricing

and inventory strategies with the effects of anticipated regret. Jiang et al. (2016)

and Kuang and Ng (2018) consider the competitive context under customer regret.

We consider customer regret in the vaccine market. Because of the imperfection of

vaccination and herd immunity, customers’ decisions made under uncertainty may

lead to regret ex post. We think that customers in a vaccine market would anticipate

this regret and take anticipated regret into consideration the same as those in other

demand markets.

A low vaccination coverage is a matter of great concern to the government.

Geoffard and Philipson (1997) show that the market competition, by itself, cannot

eradicate an infectious disease from the population. They study several government

intervention strategies and find that, in a perfect market, price strategy can eradicate

the disease, while a monopoly manufacturer has an incentive to keep the disease alive.

Mamani et al. (2012) consider the costs and benefits of the general customers, as well
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as the vaccine producers, to derive the total social surplus. They find that, without

government subsidy, an oligopolistic market could not achieve the socially optimal

coverage, but with the government subsidy the market could reach the optimal

level. Mamani et al. (2008) study several types of contracts with the incentive of

maximizing the benefits of government and manufacturers at the same time. And

they show that the cost-sharing contract can optimize the coordination between the

government and manufacturers. Arifoğlu et al. (2012) analyze the inefficiency on

the vaccination supply and demand sides, and highlight the interventions on both

sides. They suggest that combining demand-side intervention (Brito et al. 1991)

and supply-side intervention (Chick et al. 2008) could coordinate the entire supply

chain. Our total utility model is similar to the surplus model of Mamani et al. (2012),

but we consider customer regret in the model and get some new findings. We find

that both the manufacturers’ inaccurate estimation of the coefficient of regret and

incomplete competition on the supply side will result in disequilibrium between the

supply and demand sides. Giving reasonable subsidies to the supply and demand

sides to achieve the equilibrium coverage is the most effective way of intervention to

achieve the optimal coverage. Then we present the subsidy allocation mechanism on

both sides, which is also applicable even when the government’s budget is limited.

3.3 Basic Model

In this section, we present the components of our model and discuss the assumptions.

3.3.1 Epidemiology Model

In this study, we use a compartmental model in epidemiology (Kermack and McK-

endrick 1927). This model is always used to predict the spread properties of various

types of epidemics, such as influenza, smallpox, and measles (Bauch et al. 2003, Hill

and Longini Jr 2003). The model varies a bit among different kinds of epidemics.

In this study, we use the flu-related data to simulate, so we only describe the model

which is always used to predict the dynamics of flu, that is the SIR model without

involving vital dynamics (Hethcote 2000). This model consists of three compart-
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ments: susceptible (S), infectious (I), and recovered (R). These variables (S, I and R)

represent the number of susceptible, infected and recovered (or immune) individuals

respectively.

Referring to Longini et al. (1996), we consider the vaccine is not perfect and set

the situation where the vaccinated people can still be infected. We use φ to denote

the effectiveness of the vaccine, including the susceptibility and infectiousness effects

(Chick et al. 2008). Obviously, 0 ≤ φ ≤ 1. When the vaccine is perfect, φ = 1.

Otherwise, φ = 0.9 is also a reasonable estimate for seasonal influenza vaccines

(Weycker et al. 2005).

We assume that every individual gets the same information and uses it to make

his own choice. We consider the population as a whole and define f as the vaccination

coverage, i.e., proportion, of the total population. Infection probabilities are different

for the vaccinated and non-vaccinated people (Anderson and Hanson 2005, Hughes

et al. 2002). P (f) and p(f) are the infection probabilities for non-vaccinated and

vaccinated people, respectively. And r(f) is the infection probability of the entire

population (Bauch and Earn 2004). Similar to Adida et al. (2013), it is easy to get:

r(f) = fp(f) + (1− f)P (f) (3.1)

and

P (f) =
r(f)− fp(f)

1− f
. (3.2)

From the epidemiology literature, r(f) has an estimation in (3.3). We use this

equation to obtain our results in the following.

r(f) =

{
0 if f > R0−1

φR0
,

1− φf − 1
R0

otherwise.
(3.3)

In (3.3), R0 represents the basic reproduction number and is a measure of the infec-

tiousness of a disease (Anderson and May 1992, Murray 1993). When the coverage

achieves F = R0−1
φR0

, the infection probability of the whole population decreases to

zero. In epidemiology, F is called the critical vaccination fraction. It represents the

minimum level of vaccination coverage necessary for providing herd immunity, a sit-

uation that arises when the vaccination level is sufficiently high so that it eliminates
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the disease from the population completely (Anderson and May 1985). And we also

provide an estimation of p(f) in Appendix B.

As mentioned above, our model has several assumptions: (I) Similar to Brito

et al. (1991), we assume the vaccine effectiveness φ, vaccination coverage f , and in-

fection probabilities p(f) and P (f) are common knowledge to all the social groups.

(II) Both p(f) and P (f) are continuous and non-increasing in f ; otherwise, individ-

uals do not have any incentive to take the vaccine. (III) We assume that r(f)−p(f)

is a non-increasing function of f . This implies that as f increases, the infection

probability gap between the vaccinated people and the whole population decreases.

When f reaches the critical vaccination fraction, the gap vanishes. (IV) We assume

that f(r(f)− p(f)) is a concave function of f in [0, F̄ ], where F̄ = min{F, 1}. This

assumption is commonly made in economics to ensure that the revenue is a concave

function and consistent with the extensive numerical testings in a real-world setting

(Mamani et al. 2012).

3.3.2 Demand Model with Customer Regret

Customer utility without regret. We model that the vaccine market consists of

profit-maximizing manufacturers, self-interested customers, and the society. Manu-

facturers produce the vaccines and sell them directly to the customers. Any infection

will bring an inevitable loss to society. Later we will consider the government’s in-

tervention in the market.

We consider the population as a whole, in which each healthy individual enjoys

utility V̄ . The health outcome of an individual can be one of the four categories: (i)

vaccinated and healthy, (ii) vaccinated and infected, (iii) non-vaccinated and healthy,

and (iv) non-vaccinated and infected, each with some probability. Among these four

results, the healthy non-vaccinated individuals are successful free riders and the

infected non-vaccinated individuals are unsuccessful free riders. The disutility of

taking the vaccine is W per person. An infected individual will have disutility Lu

(Meltzer et al. 1999, Galvani et al. 2007), including all direct and indirect losses

from an infection. Similar to Mamani et al. (2012), we assume that u follows a

uniform distribution between 0 and 1, and L represents the largest disutility from
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an infection.

We have the following assumptions about the vaccine supply chain: (V) At the

beginning of the influenza season, production has been finished and the vaccine

becomes available to the customers that will decide whether or not to take it. (VI)

The largest disutility from an infection L is larger than the disutility of taking the

vaccine W ; otherwise, no one will be willing to take the vaccine. (VII) The utility

V̄ and disutility W are common knowledge for the customers, and each individual

knows his own infection disutility Lu. Utility in Figure 3.1 shows the customer

utility of different groups without considering customer regret.

Figure 3.1: Customer vaccination utility with regret

Customer utility with regret. Individuals will compare the cost of vaccina-

tion with the probable loss of being free riders when making decisions. We consider

individuals, with the idea of gambler, still tend to be free riders when the infection

loss without regret is not much more than the cost of vaccination without regret.

We set this influence as a coefficient of customer regret to affect the vaccine market

coordination. Following the Regret Theory (Bell 1982, Loomes and Sugden 1982),

we assume that customers are strategic and emotionally rational. Given the ex-

pected utility of taking and not taking the vaccine, customers make choices in order

to maximize their own utility consisting of economic utility and emotional utility,

i.e., regret. Following Quiggin (1994) and Braun and Muermann (2004), we con-

sider regret is proportional to the disutility of not having chosen the ex post best
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forgone alternative. Our model is different from former models that we have not set

positive restriction on regret, because we think that when a person finds the cost

of his choice is less than the cost of the alternative choices, he will feel happy or

pride of his choice. We use the negative regret to represent this kind of feelings.

And customers only have two choices, taking the vaccine or not. Then in other

words, regret in our model is proportional to the difference between one’s actual

utility and the ex post best utility of the other alternative choices. We will analyze

the relationship between the customer regret and the proportion of free riders later.

ξ, which is between 0 and 1, is the coefficient of customer regret. The utility with

customer regret consideration is also depicted in Figure 3.1. The maximum utility

of non-vaccinated people is V̄ , then for infected vaccinated individuals, the regret

value is ξ(W + Lu), their total utility becomes V̄ − (1 + ξ)(W + Lu). Similarly, for

healthy vaccinated people, the regret value is ξW , total utility is V̄ − (1 + ξ)W . On

the other hand, the maximum utility of vaccinated individuals is V̄ −W , then for

infected non-vaccinated people, the regret value is ξ(Lu −W ) and total utility is

V̄ − Lu− ξ(Lu−W ). The regret value for healthy non-vaccinated people is −ξW ,

and their utility is V̄ + ξW .

Marginal customers. Customers that choose to take the vaccine will have

a lower probability of getting infection than those customers who do not. But

because of the vaccine’s imperfection, vaccinated individuals, albeit less likely, could

be infected. Vaccinated individuals will be infected with probability p(f) and enjoy

the utility V̄ − (1 + ξ)(W + Lu), where f is the vaccination coverage. They will

be healthy with probability 1− p(f) and enjoy the utility V̄ − (1 + ξ)W . Then the

expected utility of getting vaccinated is V̄ − (1 + ξ)(W + Lup(f)). On the other

hand, non-vaccinated individuals will be infected with probability P (f) and enjoy

the utility V̄ −Lu− ξ(Lu−W ). They will be healthy with probability 1−P (f) and

enjoy the utility V̄ +ξW , yeilding the expected utility for non-vaccinated consumers

as V̄ − LuP (f)(1 + ξ) + ξW . Therefore, an individual with the infection disutility

Lû will not take the vaccine unless:

V̄ − (1 + ξ)(W + Lûp(f)) > V̄ − LûP (f)(1 + ξ) + ξW.
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Lemma 4. In equilibrium, for given W and L, if an individual whose infection

utility is û does not take the vaccine, then none of the individuals whose infection

utility is less than û will take the vaccine. Then we can find that for the marginal

individual that is indifferent to taking the vaccine or not as follows:

V̄ − (1 + ξ)(W + Lup(f)) = V̄ − LuP (f)(1 + ξ) + ξW. (3.4)

Figure 3.2: Infection utility and the coverage

As Figure 3.2 shows, the infection utility u follows a uniform distribution from

0 to 1. Then the market achieves equilibrium and the coverage f will have a rela-

tionship with the u of the marginal customer. That is

u = 1− f. (3.5)

For simplicity, we set w = W
L

and v̄ = V̄
L

to denote the unit normalized vaccine price

and utility, respectively. With (3.2) and (3.5), (3.4) could be transformed into:

w =
1 + ξ

1 + 2ξ
(r(f)− p(f)). (3.6)

Robbins and Lunday (2016) emphasize that the customers’ subsequent vaccine

selection decision problem must be considered with the vaccine price. (3.6) illustrates

the relationship between the vaccine price and the customers’ selection. And f in

(3.6) denotes the coverage that the customers are willing to achieve. In Figure 3.3,

we set a fixed and reasonable value for w (Weycker et al. 2005, CDC 2009) and

depict the relationship between the coverage and ξ. This value of ξ is an estimate

of the entire social group.

Lemma 5. As the coefficient of regret ξ increases, the proportion of free riders in

the whole population increases, resulting in the coverage decreases.
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Figure 3.3: The equilibrium coverage as a function of ξ

We illustrate Lemma 5 on the left of Figure 3.3, and give the proof in Appendix

B. Self-interested customers want to improve their utility, then more and more indi-

viduals tend not to take the vaccine. This means even if the vaccine price remains

the same, as ξ increases, the proportion of free riders will become more. We believe

no one will insist on being a free rider when his infection loss is much more than the

cost of vaccination. Customers tend to be free riders based on his infection utility

and the probability of being a successful free rider.

This figure also shows that as the effectiveness of the vaccine declines, the cover-

age will be more and more affected by ξ. The vaccine effectiveness decides the prob-

ability of the vaccinated customers getting infected, i.e., p(f). When the vaccine

effectiveness decreases, the expected utility of the vaccinated individuals decreases.

Then customers tend not to take the vaccine and the coverage decreases. But this

rule is not always true, it depends on the formulated functions of r(f) and p(f) we

use.

Lemma 6. P (f)− p(f) is a concave function of f in [0, F̄ ].

We illustrate Lemma 6 on the right of Figure 3.3. When f = 0 or f = F̄ , P (f) is

equivalent to p(f) and P (f)−p(f) is zero. When f is between them, P (f)−p(f) will

be positive because non-vaccinated individuals have a larger probability of getting

infection. Then, as f increases from 0 to fm, P (f)−p(f) increases. When f increases

between fm and 1, P (f)− p(f) decreases. We also use the formulated functions to
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prove this lemma in Appendix B.

3.4 The Total-utility Problem

In this part, we consider the utility for different parties and combine them into a

total-utility problem. We consider three groups: manufacturers, customers and the

society. We accrue the utility of different parties as the total social welfare and

maximize it, thereby getting the optimal vaccination coverage.

Customers’ problem. In this part, we consider the utility of vaccinated cus-

tomers and non-vaccinated customers separately. As in Figure 3.2, customers with

infection utility from 1− f to 1 would choose to take the vaccine. The accumulated

utility for them is:

Vaccinated utility =

∫ 1

1−f
[V̄ − (1 + ξ)(W + Lup(f))]du. (3.7)

On the other hand, customers with infection utility from 0 to 1− f would not take

the vaccine. The accumulated utility for them is:

Non-vaccinated utility =

∫ 1−f

0

[V̄ − LuP (f)(1 + ξ) + ξW ]du. (3.8)

Manufacturers’ problem. Let the production cost of a vaccine be T . Then

the unit normalized cost of production is t = T
L

. Manufacturers produce the vaccine

based on the coverage f and would like to maximize the expected profit. Thus, the

manufacturers’ problem is to maximize:

Manufacturers utility = (w − t)f. (3.9)

The society’s problem. In addition to the infection cost borne by the infected

customers, we also consider another cost that may accrue on the society as a whole,

including the loss of work time, the burden on the public health system, and so on

(Mamani et al. 2012). We assume that every infected customer (including vaccinated

and non-vaccinated) poses a loss of λL to the society. A fraction r(f) of the total

population might get infected, so we can get the unit societal utility:

Societal utility = −λr(f). (3.10)
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3.4.1 Total Social Welfare

Similarly, we set v̄ = V̄
L

and normalize (3.7) and (3.8). Then we combine these unit

normalized equations with (3.9) and (3.10) together to get the total social welfare:

Total social welfare = v̄ − tf − (1 + ξ)(p(f)
1− (1− f)2

2
+ P (f)

(1− f)2

2
)

−2ξwf + ξw − λr(f). (3.11)

Considering v̄ as a constant, we maximize (3.11), which is equivalent to minimizing

SC:

min SC = tf + (1 + ξ)
(1− f)r(f) + fp(f)

2
+ 2ξwf − ξw + λr(f)

= tf + (λ+
1 + ξ

2(1 + 2ξ)
)r(f) +

ξ(1 + ξ)

1 + 2ξ
p(f)

+
(2ξ − 1)(ξ + 1)

2(1 + 2ξ)
f(r(f)− p(f)). (3.12)

Proposition 10. For ξ < 0.5, let f = f̃ be the solution of:

t− (λ+
1 + ξ

2(1 + 2ξ)
)φ− ξ(1 + ξ)

1 + 2ξ
φµ(1− φ) +

(2ξ − 1)(ξ + 1)

2(1 + 2ξ)

d(f(r(f)− p(f))

df
= 0.

Then the equilibrium level of vaccination coverage can be written as

f ∗ =


0 if t > m2,

f̃ if m1 ≤ t ≤ m2,
min{R0−1

φR0
, 1} otherwise,

where

m1 = (λ+
1 + ξ

2(1 + 2ξ)
)φ+

ξ(1 + ξ)

1 + 2ξ
φµ(1− φ) +

(2ξ − 1)(ξ + 1)

2(1 + 2ξ)
F̄ (φ+ p′(F̄ )),

m2 = (λ+
1 + ξ

2(1 + 2ξ)
)φ+

ξ(1 + ξ)

1 + 2ξ
φµ(1− φ)− (2ξ − 1)(ξ + 1)

2(1 + 2ξ)
(
R0 − 1

R0

− P (0)).

Figure 3.4 plots the optimal coverage of different values of the coefficient of regret.

ξ = 0 means we do not consider customer regret at all, and ξ = 0.1 illustrates the

results of Proposition 10. In this figure, t is mainly influenced by L, because t = T
L

,

where T is far less than L. In the first case, when the infection cost L is high, i.e.,

t < m1, the socially optimal coverage achieves the critical vaccination fraction, at

which the probability of getting infection for every individual is all equal to zero. In
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Figure 3.4: The socially optimal coverage (φ = 0.9)

the second case, when the infection cost L is low, i.e., t > m2, the market would best

not to produce and sell the vaccine at all. In the third case, when t is between these

two extreme values, some people will take the vaccine, but the coverage does not

achieve the critical vaccination fraction. As a whole, the socially optimal coverage

doesn’t increase as the infection cost decreases. Referring to some data of influenza

(Weycker et al. 2005), t always cannot reach the extremely high level, i.e., t > m2.

However, with government intervention, some medical social expenses can reimburse

most of the medical expenses. Then, the second or the third case could happen. This

kind of welfare could provide protection for people, but, for epidemic diseases, high

medical welfare would decrease people’s willingness of taking the vaccine. When the

coverage is very low, disease outbreak might happen. Therefore, we suggest that

the government should control the reimbursement system for medical expenses for

epidemic diseases, so that t will not reach an excessively high level.

Figure 3.4 also shows the difference of the socially optimal coverage between

considering customer regret and not considering. We have known that the increase

of ξ will decrease customers’ willingness of taking the vaccine, thereby decreasing

the coverage that customers are willing to achieve. However, the decrease of f will

increase both the infection probability for vaccinated individuals and non-vaccinated

individuals.
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When the infection cost is high and t is relatively low, i.e., in area I, the opti-

mal coverage under customer regret is larger than or equal to the coverage without

customer regret. The socially optimal coverage under regret suggests individuals

should have a higher vaccination coverage. As t increases, i.e., in area II, the op-

timal coverage with regret will finally be below the optimal coverage without it.

The socially optimal coverage under regret encourages fewer customers to take the

vaccine. Therefore, we can get Proposition 11.

In Figure 3.4, ξ = 0.5 and ξ = 0.9 illustrate Proposition 11. When the customer

regret reaches or exceeds 0.5, the optimal coverage would change a lot. When the

infection cost is high, i.e., t > t̃, the market would not produce the vaccine at all

and make the coverage equal to zero. When the infection cost is low, i.e., t 6 t̃,

the socially optimal coverage is the critical vaccination fraction. The third case in

Proposition 10, in which the coverage is between zero and the critical vaccination

fraction, does not exist anymore.

Proposition 11. For ξ ≥ 0.5, let t = t̃ be the solution of:

t̃ = φ(λ+
1 + ξ

2(1 + 2ξ)
(1 + 2µξ(1− φ)).

Then,

f ∗ =


0 if t > t̃,

min{R0−1
φR0

, 1} if t 6 t̃.

In this situation, the socially optimal coverage does not encourage individuals to

be risk-taking vaccinated customers anymore. Customers take the vaccine and make

the coverage reach the critical vaccination level, in which the whole population is in

a safe state; or do not take the vaccine at all when t is occasionally high. Customers

seem to be more united. With the increase of regret value, more customers should

take the vaccine and help to achieve the critical vaccination coverage, i.e., in area I of

Figure 3.4, people do not voluntarily take the vaccine to reach the critical vaccination

fraction when people do not consider the regret value or the coefficient of regret is

small, but they do when the regret value increases.

For different vaccine effectiveness, the range of different influences will be dif-

ferent. We show the optimal coverages of different vaccine effectiveness, i.e., φ, in
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Figure 3.5. This figure plots the situation of φ = 0.8 on the left and φ = 1 on the

Figure 3.5: The socially optimal coverage (φ = 0.8 and 1)

right. From these two graphs, we can get Proposition 12.

Proposition 12. For φ is an uncertain value between 0 and 1, sometimes the op-

timal coverage under a higher coefficient of regret suggests a higher coverage, some-

times a lower coverage.

As the effectiveness of the vaccine decreases, the range of the third case in Propo-

sition 10 becomes smaller. Thereby, the optimal coverages for ξ = 0 and ξ = 0.1

become similar to those for ξ = 0.5 and ξ = 0.9. Under this vaccine effectiveness,

for a wide range of t, the optimal coverage under higher coefficient of regret suggests

more individuals to take the vaccine and to achieve the critical vaccination fraction.

We can get the special case of φ = 1 on the right of Figure 3.5. This figure plots

that, when the vaccine is perfect, the optimal coverage of ξ = 0.9 will be less than

the coverage of ξ = 0.5.

3.5 Government Intervention

In this section, we consider self-interested customers and profit-maximizing manufac-

turers. We find that both manufacturers’ inaccurate estimation of ξ and incomplete

competition in the supply market will result in disequilibrium between the supply

and demand. Therefore, we present the subsidy allocations on both supply and de-
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mand sides. Our mechanism could help the market to achieve the largest equilibrium

coverage, which is also applicable even when the government’s budget is limited.

3.5.1 Demand Market

In the previous model, we estimate the value of the coefficient of regret and assume

every party knows it. But, in real life, if the government does not make specific

investigations and report them, manufacturers might not know the specific coefficient

of customer regret. Then, in this section, we consider an incomplete-information

market, where the manufacturers may not know the actual coefficient of customer

regret. We set ξd as the actual coefficient of customer regret and the customers will

voluntarily achieve a coverage of fd.

Referring to (3.4), we get Lemma 7.

Lemma 7. The marginal-customer function under incomplete-information market

would become:

w =
1 + ξd
1 + 2ξd

(r(fd)− p(fd)). (3.13)

3.5.2 Oligopolistic Supply Market

We consider the vaccine market as a Cournot competition among n identical vaccine

manufacturers (Mamani et al. 2012) and apply the concept of the rational expec-

tation Cournot equilibrium (Katz et al. 1985). foi is the market share of producer

i. Because we consider n manufacturers are identical, they will have identical wi

and ti. We assume manufacturers share the same estimation of the coefficient of

customer regret, i.e., ξs, but this estimation might not be accurate. Then it is easy

to prove fo1 = fo2 = ... = fon = f
n
. The ith manufacturer faces the following decision

problem:

max
fi

πi = (wi − ti)fi = (
1 + ξs
1 + 2ξs

(r(f)− p(f))− t)fi. (3.14)

Lemma 8. In an oligopolistic vaccine market with n identical producers engaged in

a Cournot competition, the total market coverage is given by

fn =

{
0 if t > 1+ξs

1+2ξs
(R0−1

R0
− p(0)),

f̂ otherwise,
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where f = f̂ is the solution of:

−t+
1 + ξs
1 + 2ξs

(r(f)− p(f)) +
f

n

1 + ξs
1 + 2ξs

(r′(f)− p′(f)) = 0.

3.5.3 Government Subsidy

Figure 3.6: The relationship between fd and fn

We consider an incomplete-information market where the actual coefficient of

customer regret is ξd and n manufacturers have an estimation of customer regret ξs.

In Figure 3.6, we depict the self-interested customers’ coverage fd and the profit-

maximizing manufacturers’ coverage fn, under the situation that φ = 0.9. When

manufacturers underestimate the coefficient of regret, i.e., ξs < ξd, the situation is

depicted on the left of this figure. And the situation of overestimation, i.e., ξs > ξd,

is depicted on the right of this figure. For fd, we assume that for critical conditions

where w = c, manufacturers will still be willing to produce to meet the demand in

order to increase the market share.

Proposition 13. The government should reduce medical subsidies and keep other

medical expenses reimbursement, like medical insurance, under control. If the infec-

tion cost L is increased, then t and w will decrease, and the coverage will increase.

Figure 3.6 shows that both customers’ willingness to pay and manufacturers’

willingness to produce decrease as t or w increases. When t or w achieves an ex-

tremely high level, the coverage decreases from the critical vaccination fraction and
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even to zero. This situation easily leads to disease outbreak. Therefore, we have

Proposition 13.

Proposition 14. When manufacturers underestimate the coefficient of regret, i.e.,

ξs < ξd, there will be two kinds of situations: fd > fn and fd < fn. When manufac-

turers overestimate the coefficient of regret, i.e., ξs > ξd, there is only fd > fn.

Area I, i.e., fd < fn, in Figure 3.6 represents that manufacturers are willing to

produce, but self-interested customers are not willing to pay. Referring to Lemma 5,

a higher ξ will result in a lower coverage. This gap is resulted from the manufacturers’

underestimation of customer regret, i.e., ξs < ξd. Because manufacturers suppose a

lower coefficient of regret, the supply will be higher than the actual demand. Area

II, i.e., fd > fn, on the left and the right of Figure 3.6 represents the situation that

customers are willing to buy, but manufacturers are not willing to produce anymore.

This gap in the left figure is resulted from the limited number of manufacturers on

the supply side. Except this reason, the gap in the right figure is also resulted

from the manufacturers’ overestimation of customer regret, i.e., ξs > ξd. In this

situation, the government could encourage more vaccine manufacturers to enter the

market and make the competition more complete. Besides, if the manufacturers

could estimate the customer’s regret value more accurately, the inefficiency of Areas

I and II will both be reduced and Area I could even be eliminated. Therefore,

both manufacturers’ inaccurate estimation of the coefficient of regret and incomplete

competition in the supply market will result in disequilibrium status between the

supply and demand. And more accurate estimation of ξ for manufacturers and more

complete competition in supply market could help balance the supply and demand.

Government Subsidy. Without government intervention, the actual vaccina-

tion coverage will be min{fd, fn}. The dotted line in Figure 3.6 denotes the situation

of ξs = ξd. The actual coverage of ξs < ξd is better than the coverage of ξs = ξd and

the actual coverage of ξs > ξd is worse than the coverage of ξs = ξd. Therefore, if the

government know the actual value of ξd, it should announce it to the manufacturers

to improve coverage if the probability of ξs > ξd is more than the probability of

ξs < ξd, and not announce it to the manufacturers, otherwise.
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As in Figure 3.6, Area I represents that the manufacturers are willing to produce,

but utility-maximizing customers are not willing to pay. Giving subsidy to customers

could achieve the demand-supply equilibrium. Area II shows that the customers

are willing to buy, but the manufacturers are not willing to produce. Then giving

subsidy to manufacturers could help to achieve the demand-supply equilibrium. The

suggestions that we have made above could make the vaccine market cooperation

more efficient to achieve the demand-supply equilibrium, but could not help the

coverage to achieve the socially optimal level. At this time, both the customers and

manufacturers have no incentive to increase the coverage, we need to give subsidies

to both of them to achieve the socially optimal coverage.

Figure 3.7: The socially optimal coverage

When we do not have any related information, the probability of ξd < 0.5 is equal

to the probability of ξd > 0.5. We set a situation of ξd < 0.5, where the government

knows the actual ξd and announces it to the manufacturers, to be an example in

Figure 3.7.

Based on Proposition 10 and Lemma 7, we can get the subsidy giving to the
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customers.

s =


0 if w > m2,

w − 1+ξd
1+2ξd

(r(f ∗)− p(f ∗)) if m1 ≤ w ≤ m2,

w − 1+ξd
1+2ξd

(r(F̄ )− p(F̄ )) otherwise,

where

m1 = (λ+
1 + ξ

2(1 + 2ξ)
)φ+

ξ(1 + ξ)

1 + 2ξ
φµ(1− φ) +

(2ξ − 1)(ξ + 1)

2(1 + 2ξ)
F̄ (φ+ p′(F̄ )),

m2 = (λ+
1 + ξ

2(1 + 2ξ)
)φ+

ξ(1 + ξ)

1 + 2ξ
φµ(1− φ)− (2ξ − 1)(ξ + 1)

2(1 + 2ξ)
(
R0 − 1

R0

− P (0)).

Then every individual could get 1/N of this subsidy, where N is the number of

people of this population.

Based on Proposition 10 and Lemma 8, we can get the subsidy giving to the

manufacturers.

s =



0 if t > m2,

t− 1+ξ
1+2ξ

(r(f ∗)− p(f ∗))− f∗

n
1+ξ
1+2ξ

(r′(f ∗)− p′(f ∗)) if m1 ≤ t ≤ m2,

t− 1+ξ
1+2ξ

(r(F̄ )− p(F̄ ))− F̄
n

1+ξ
1+2ξ

(r′(F̄ )− p′(F̄ )) otherwise.

Then every manufacturer could get 1/n of this subsidy.

We find different formulation of the socially optimal coverage for different regret

coefficient in our model, and we only take the situation of φ = 0.9 and ξ = 0.1

as an example. But it is easy to get the suitable subsidy for other situations. Be-

sides, sometimes the government does not have enough money to make the market

achieve the socially optimal level. Our mechanism can also make reasonable budget

allocation to help the market achieve the largest equilibrium coverage under limited

budget. This will help the government to allocate subsidies the most efficient way.

Proposition 15. Assume the government’s budget is B and the coefficient of cus-

tomer regret is ξ, and before giving subsidy t = t0 and w = w0. Then the subsidy to

manufacturers is:

Sm = B × lm.

The subsidy to customers is:

Sc = B × lc.
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where

lm = t0 −
1 + ξs
1 + 2ξs

(r(f)− p(f))− f

n

1 + ξs
1 + 2ξs

(r′(f)− p′(f)),

lc = w0 −
1 + ξd
1 + 2ξd

(r(f)− p(f)),

lm + lc = 1.

In Proposition 15, f is the equilibrium coverage after giving subsidies.

3.6 Conclusion

To the best of our knowledge, we are the first one to incorporate the customer

regret into a vaccine demand model. We formulate the proportion of free riders in

the whole population by considering customer regret in the vaccine demand model.

We consider that no matter what choices the customers make, they may end up with

a feeling of regret or pride, i.e., positive regret or negative regret. The regret will

change with the vaccine price and medical expenses, and will also be affected by the

coefficient of regret ξ. The higher ξ is, the more individuals tend to be free riders. We

find that as the infection cost decreases, the socially optimal coverage will decrease

from the critical vaccination fraction. It is because when the medical expenses are

low, customers do not enough incentives to take the vaccine. In general, the infection

cost will not fall to such a low level. However, it also reminds the government not to

provide high welfare to epidemic infection costs, and also to adopt some policies to

control the reimbursement of some related medical insurance for this kind of costs.

For different coefficients of customer regret, the socially optimal coverage changes

a lot. When the coefficient of regret is large enough, the socially optimal coverage

does not encourage individuals to be risk-taking customers anymore, who take the

vaccine and still have a probability to be infected. At this time, customers take

the vaccine and make the coverage reach the critical vaccination level, in which the

whole population is in a safe state; or do not take the vaccine at all. However,

the influence of customer regret should be considered with vaccine effectiveness.

Sometimes, a higher coefficient of regret suggests a higher vaccination coverage but

sometimes a lower coverage.

56



When we consider customer demand and manufacturer supply, we find that both

manufacturers’ inaccurate estimation of the coefficient of customer regret and in-

complete competition in the supply side will make the disequilibrium between the

supply side and the demand side. Manufacturers’ underestimation of the coefficient

of regret will improve the actual coverage and their overestimation will decrease the

coverage. Therefore, we need to compare the probability of underestimation and the

probability of overestimation to decide whether the government should announce the

actual coefficient to manufacturers.

Finally, we propose a government subsidy policy on both the supply and de-

mand sides. The government provides subsidies to both sides in proportion to its

own budget to achieve the most efficient subsidies. This subsidy policy enables the

market to achieve the largest equilibrium coverage, which is applicable even when

the government’s budget is limited.
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Chapter 4

Summary and Future Research

In this thesis, we conduct two studies on the vaccine supply chain, considering multi-

period vaccine market and customer vaccination regret, respectively. In this section,

we summarize these two studies, point out some future research directions, and

conclude the overall contributions of the two studies.

In the first study, we present a multi-period vaccine supply chain model taking

account of demand relations and production uncertainty. We combine vaccination

externality with vaccination habits and include three types of consumers in our de-

mand model. Multi-period supply decisions and socially optimal coverage have also

been studied. Our results provide management insights on vaccine supply decisions,

government interventions and vaccine coverage.

In the second study, we incorporate the customer regret into a vaccine demand

model. We formulate the proportion of free riders in the whole population by con-

sidering customer regret in the vaccine demand model. For different coefficients of

customer regret, the socially optimal coverage changes a lot. We also propose a gov-

ernment subsidy policy on both the supply and demand sides. This subsidy policy

enables the market to achieve the largest equilibrium coverage, which is applicable

even when the government’s budget is limited.

This thesis provides several interesting avenues for future research. One extension

is to consider a more complicated oligopolistic market in our model, where manu-

facturers have different costs and prices, thereby getting different market shares.

Another direction is to consider different groups of individuals. In reality, school

children or old people may have a higher priority to get vaccinated. Then the model
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will be closer to the real situation.

In summary, the two studies capture the customer vaccination behaviors in multi-

period market and customer regret. These studies contribute to the efficiency of

vaccine supply chain on production decisions and government interventions. In fact,

the inefficiency of vaccine supply chain are far more complex. First, there may be

more than one manufacturer in the vaccine supply market. They offer different

vaccine prices and compete with each other. Second, not all vaccines are ready to

use at the beginning of a flu season. Some vaccines are supplied to the market at

the middle or the end of a flu season. Thus, a lot of research directions in vaccine

supply chain remain to be explored.
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Appendix A

Proofs for Chapter 2

Proof of Proposition 1.

umt+1 = w
P (ft)−H(ft)

= w(1−ft)
r(ft)−H(ft)

; dt+1 = (1−α−β)Ḡ(umt+1)+α = (1−α−β)Ḡ( w(1−ft)
r(ft)−H(ft)

)+

α.

Proof of Proposition 2.

d(dt+1)
d(ft)

= −w(1−α−β)[(r(ft)−H(ft))+(1−ft)(r
′
(ft)−H

′
(ft))]

(r(ft)−H(ft))2
−dG(umt )

dumt

=
−w(1−α−β)(φ+ 1

R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)2
dG(umt )

dumt
;

d2(dt+1)

df2t
= −g( w(1−ft)

r(ft)−H(ft)
)[
−2w(1−α−β)φ(φ+ 1

R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)3
]−g′( w(1−ft)

r(ft)−H(ft)
)

w(1−α−β)(φ+ 1
R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)2

(1)φ > 1− 1
R0

, d(dt+1)
d(ft)

< 0, dt+1(ft) is a decreasing function.

(2)φ < 1− 1
R0

, d(dt+1)
d(ft)

> 0, dt+1(ft) is an increasing function.

(3)φ = 1− 1
R0

, d(dt+1)
d(ft)

= 0, dt+1(ft) is a constant function.

Proof of Lemma 1.

When the vaccine effectiveness always satisfies φ > 1 − 1
R0

, for ft < α, dt+1(ft) =

1−β. Then dt+1(1−β) = α. And the coverage would never beyond [α, 1−β] Besides,

when 1−β > fcf , r(1−β) = H(1−β) = P (1−β) = r(fcf ) = H(fcf ) = P (fcf ) = 0.

At this time, dt+1(1− β) = dt+1(fcf ). It contradicts Proposition 2 (1).

Proof of Lemma 2.

For φ > 1− 1
R0

, dt+1(f0) is a decreasing function in [α, 1−β]. There are dt+1(α)−α ≥

0 and dt+1(1− β)− (1− β) ≤ 0. So there must exist an f0 satisfying dt+1(f0) = f0.
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Proof of Proposition 3.

First, setting n∗t and calculating n∗t+1,

∂π(nt,nt+1)
∂nt+1

= w
∫ Ndt+1

nt+1

0 ydZy(y)− c; ∂π2(nt,nt+1)

∂n2
t+1

= −w (Ndt+1)2

(nt+1)3
z(Ndt+1

nt+1
) < 0.

Then n∗t+1 satisfies ∂π(nt,nt+1)
∂nt+1

= 0. Then calculating n∗t ,
∂π(nt,nt+1)

∂nt
= w

∫ Ndt
nt

0 ydZy(y)−

c+∂π(nt,nt+1)
∂n∗t+1

dn∗t+1

dnt
; ∂π

2(nt,nt+1)

∂n2
t

= −w (Ndt)2

(nt)3
z(Ndt

nt
)+(∂π

2(nt,nt+1)
∂(n∗t+1)2

(
dn∗t+1

dnt
)2+∂π(nt,nt+1)

∂n∗t+1

d2n∗t+1

d(nt)2
.

Because n∗t+1 satisfies ∂π(nt,nt+1)
∂nt+1

= 0, ∂π
2(nt,nt+1)
∂(n∗t+1)2

< 0 and (
dn∗t+1

dnt
)2 > 0, then ∂π2(nt,nt+1)

∂n2
t

<

0. So n∗t satisfies ∂π(nt,nt)
∂nt

= 0.

Proof of Proposition 4.

dB
dft

= −g(J(ft))[
w(1−α−β)(φ+ 1

R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)2
] + kt;

d2B
df2t

= −g(J(ft))[
2w(1−α−β)φ(φ+ 1

R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)3
] − g

′
(J(ft))

w(1−α−β)(φ+ 1
R0
−1)

(1−η(1−φ))(1−φft− 1
R0

)2
. (1) φ >

1− 1
R0

. When 2φg(J(ft))

1−φft− 1
R0

+g′(J(ft)) ≥ 0, where J(ft) = w(1−ft)
r(ft)−H(ft)

, d2B
df2t
≤ 0. It is easy

to prove that 2φg(J(ft))

1−φft− 1
R0

+ g′(J(ft)) ≥ 0 when ft is not higher than 1− β for normal

distribution and that 2φg(J(ft))

1−φft− 1
R0

+ g′(J(ft)) > 0 for uniform distribution. Then fM∗2P

satisfies dB
dft

= 0. (2) φ < 1− 1
R0

. kt > 0, dB
dft

> 0, fM∗2P = 1− β.

Proof of Lemma 3.

dTC1P

dft
= m[LdH(ft)

dft

∫ 1

ut
vdG(v)−LH(ft)utg(ut)

dut
dft

+LdP (ft)
dft

∫ ut
0
vdG(v)+LP (ft)utg(ut)

dut
dft

]+

(m− 1)W + C
K0

;

d2TC1P

f2t
= m[2Lutg(ut)

ut
ft

d(P (ft)−H(ft))
dft

+L(P (ft)−H(ft))g(ut)(
dut
dft

)2+Ld2P (ft)

df2t

∫ ut
0
vdG(v)] <

mLg(ut)
dut
dft

d(ut(P (ft)−H(ft)))
dft

(1) φ > 1− 1
R0

, d(P (ft)−H(ft))
dft

< 0, d2P (ft)

df2t
> 0, d2TCt

df2t
> 0,

so TCt is a convex function. (2) φ < 1− 1
R0

, d(P (ft)−H(ft))
dft

> 0, d2P (ft)

df2t
< 0. Because

ut and ft are for the same period, Lut(P (ft)−H(ft)) = W and dLut(P (ft)−H(ft))
dft

= 0.

Then TCt is a concave function.

Proof of Proposition 6.

dTC2P

dft
= dTC1P (ft)

dft
+ dTC1P (ft+1)

dft+1

dft+1

dft
; set dTC1P (ft)

dfII
= 0 and fV = d−1

t+1(fII). (1) Regard-

ing Propositions 4 and 5, we get dft+1

dft
< 0, d

2ft+1

df2t
< 0, d

2TC1P (ft)

df2t
> 0, d

2TC1P (ft+1)

df2t+1
> 0.

When ft ≤ min{fII , fV }, dTC1P (ft)
dft

< 0 and dTC1P (ft+1)
dft+1

> 0. Then dTC2P

dft
< 0. When

ft > max{fII , fV }, dTC1P (ft)
dft

> 0 and dTC1P (ft+1)
dft+1

< 0. Then dTC2P

dft
> 0. So fG∗2P
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is in the interval [min{fII , fV },max{fII , fV }]. (2) Regarding Propositions 4 and

5, we get dft+1

dft
> 0, d2TC1P (ft)

df2t
< 0, d2TC1P (ft+1)

df2t+1
< 0. When ft ≤ min{fII , fV },

dTC1P (ft)
dft

> 0 and dTC1P (ft+1)
dft+1

> 0. Then dTC2P

dft
> 0. When ft > max{fII , fV },

dTC1P (ft)
dft

< 0 and dTC1P (ft+1)
dft+1

< 0. Then dTC2P

dft
< 0. So fG∗2P is 0, 1, or in the interval

[min{fII , fV },max{fII , fV }].

Proof of Proposition 7.

a. It means dt+2 < ft for ft > f0 or dt+2 > ft for ft < f0. Then it is easy to get the

proposition. b. It means dt+2 > ft for ft > f0 or dt+2 < ft for ft < f0. c. It means

dt+2 = ft. d. It means dt+1 < ft. e. It means dt+1 > ft. f. It means dt+1 = ft.

Proof of Proposition 8.

dπMP

dft
= 1

e
[d(ft+ft+1)

dft
+ d(ft+2+ft+3)

dft+2

dft+2

ft+1

dft+1

ft
+ ...] (1) Regarding Proposition 4, we get

d2B
df2t
≤ 0. Besides, dft+2

dft+1
≤ 0 and dft+1

dft
≤ 0. a. We first consider the situation of

ft+2 < ft for ft > f0 or ft+2 > ft for ft < f0. If f0 > fV I , for all ft > fV I ,

we will have ft+2 > fV I , ft+4 > fV I ... Referring to Proposition 4, we can get

fM∗MP < fV I . If f0 < fV I , for all ft < fV I , we will have ft+2 < fV I , ft+4 < fV I ...

Referring to Proposition 4, we can get fM∗MP > fV I . b. The situation of ft+2 > ft for

ft > f0 or ft+2 < ft for ft < f0 is as follows. For all ft > max{f0, fV I}, we have

ft+2 > max{f0, fV I}, ft+4 > max{f0, fV I}... For all ft < min{f0, fV I}, we have

ft+2 < min{f0, fV I}, ft+4 < min{f0, fV I}... Referring to Proposition 4, we can get

fM∗MP in the interval [f0, fV I ].

(2) When φ < 1− 1
R0

, dB
dft

> 0 and dft+1

ft
≤ 0 for all ft. So dπMP

dft
≥ 0.

Proof of Proposition 9.

dTCMP (ft)
dft

= dTC2P (ft)
dft

+ dTC2P (ft+2)
dft+2

dft+2

dft
+ ...+ dTC2P (fm−1)

dfm−1

dfm−1

dft
. (1) Regarding Propo-

sition 1 (1), it is easy to prove that dft+2

dft
≥ 0, ...dfm−1

dft
≥ 0. In case a, the cov-

erage will gradually be close to f0. Regarding Proposition 6, fG∗2P is in the in-

terval [min{fII , fV },max{fII , fV }]. If max{fII , fV } < f0, for ft ≥ f0 we have

dTC2P (ft)
dft

≥ 0, dTC2P (ft+2)
dft+2

≥ 0, ..., dTC2P (fm−1)
dfm−1

≥ 0. Then we get fG∗MP < f0. And it

is easy to prove that fG∗MP ≤ f0 when min{fII , fV } ≥ f0. In case b, the coverage is
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gradually away from f0. So fG∗MP is also in the interval [min{fII , fV },max{fII , fV }].
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Appendix B

Proofs for Chapter 3

SIR model.

The SIR model, which is a basic and simple infectious disease model, origins from

Kermack and McKendrick (1927). For influenza and other diseases, the dynamics

of which is always much faster than the dynamics of birth and death, we always use

the SIR model without vital dynamics to formulate its dynamics (Hethcote 2000).

From Bauch and Earn (2004), Mamani et al. (2012) and Chick et al. (2008), we get

the estimation of r(f) ((3.3) and p(f): p(f) = η(1− φ)r(f)). Mamani et al. (2012)

find that for the special case where φ = 0.9, when µ = 3.3, the figure is quite close

to reality. Therefore, we simulate our propositions with the above approximation.

Proof for Lemma 5.

Weycker et al. (2005) estimate the average direct infection cost as 96 dollars. CDC

(2009) shows that the wholesale prices of vaccine are in the range of six to 14 dollars.

So we assume w = 0.1 in Figure 3.3. Actually, it does not matter which value we set

to w, because we just want to find the relationship between ξ and f . We can get the

first derivative of ξ from (3.6) as follows: w
(1+ξ)2

= (r′(f) − p′(f)) df
dξ
. Obviously, the

left-hand side of this equation is larger than or equal to zero. From the assumption

(III) in Section 3.1, it is easy to get (r′(f) − p′(f)) ≤ 0. So we can get df
dξ
≤ 0,

thereby establishing this lemma.
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Proof for Lemma 6.

P (f) − p(f) = r(f)−p(f)
1−f . Referring (3.3) and p(f) (i.e., p(f) = η(1 − φ)r(f)), we

can get d2(P (f)−p(f))
df2

= 1
(1−f)4

[(2 − 2f)(1 − η(1 − φ))(− 1
R0

)]. Because 0 ≤ f ≤ 1,

(1 − f)4 and (2 − 2f) will be positive. p(f) = η(1 − φ)r(f) and p(f) ≤ r(f), so

1− η(1− φ) ≥ 0. And − 1
R0
< 0. Then P (f)− p(f) is a convex function of f .

Proof for Propositions 10 and 11.

In Figure 3.4, φ = 0.9, λ = 0.1 (Mamani et al. 2012), and R0 = 2 (Wikipedia,

Basic reproduction number, 1918). From (3.12), we can easily get: dSC
df

= t− (λ +

1+ξ
2(1+2ξ)

)φ− ξ(1+ξ)
1+2ξ

φµ(1−φ)+ (2ξ−1)(ξ+1)
2(1+2ξ)

d(f(r(f)−p(f))
df

, and d2SC
df2

= (2ξ−1)(ξ+1)
2(1+2ξ)

d2(f(r(f)−p(f))
df2

.

Through the assumption that f(r(f)− p(f)) is a concave function, the total social

cost is a convex function when ξ < 0.5, and a concave function when ξ > 0.5. When

ξ = 0.5, min SC = tf + (λ + 1+ξ
2(1+2ξ)

)r(f) + ξ(1+ξ)
1+2ξ

p(f), dSC
df

= t − (λ + 1+ξ
2(1+2ξ)

)φ −
ξ(1+ξ)
1+2ξ

φµ(1− φ) = t− (λ+ 3
8
)φ− 3

8
φµ(1− φ). It is easy to get f ∗:

f ∗ =


0 if t > (λ+ 3

8
)φ+ 3

8
φµ(1− φ),

min{R0−1
φR0

, 1} if t 6 (λ+ 3
8
)φ+ 3

8
φµ(1− φ).

This situation is the same as the case where ξ > 0.5. Then we can get Propositions

10 and 11. We also consider the special case where the vaccine is perfect. At this

time, φ = 1 and p(f) = 0. Then we can get: When ξ < 0.5,

f ∗ =


0 if t > n0,

(2ξ+1)(c+h−λ)
(ξ+1)(2ξ−1)

+ ξ−1
2ξ−1
− 1

2R0
if m0 ≤ t ≤ n0,

R0−1
R0

otherwise,

where

m0 = λ+
1 + ξ

2(1 + 2ξ)
(2ξ +

1− 2ξ

R0

),

n0 = λ+
1 + ξ

2(1 + 2ξ)
(2− 2ξ +

2ξ − 1

R0

).

When ξ ≥ 0.5

f ∗ =


0 if t > c̃0,

R0−1
R0

if t 6 c̃0,

where t̃0 is the solution of S(0) = S(R0−1
φR0

).
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Proof for Proposition 12.

Sometimes the optimal coverage under a higher coefficient of regret suggests a higher

coverage (e.g., in area I of Figure 3.4), and sometimes a lower coverage (e.g., in area

II of Figure 3.4). For φ = 0.8 or φ = 1, these two kinds of situations also exist at the

same time. When φ decreases to a small value, there might be only the situation

where the optimal coverage under a higher coefficient of regret suggests a higher

coverage. But when φ is an uncertain value in [0,1], the optimal coverage under a

higher coefficient of regret is possible to suggest a higher coverage, and also a lower

coverage.

Proof for Lemma 8.

From (3.14), it is easy to get: dπi
dfi

= −t + 1+ξ
1+2ξ

(r(f)− p(f)) + f
n

1+ξ
1+2ξ

(r′(f)− p′(f)).

Because f(r(f)−p(f)) is a concave function, (3.14) is also a concave function. When

f = 0, dπi
dfi

= 1+ξ
1+2ξ

(r(0)−p(0))−t. When f = F̄ , dπi
dfi

= −t+ F̄
n

1+ξ
1+2ξ

(r′(f)−p′(f)). This

derivative is always less than zero, because r(f)− p(f) is a non-increasing function.

Proof for Proposition 13.

Figure 3.6 shows the relationship between customers’ demand and manufacturers’

supply. From Lemma 7, we get w = 1+ξd
1+2ξd

(r(fd) − p(fd)). Since 1+ξd
1+2ξd

> 0 and

r′(f)− p′(f) < 0, (3.6) will be a non-increasing function of w. Similarly, it’s easy to

prove that the supply function in Lemma 8 is also a non-increasing function of t.

Proof for Proposition 14.

Referring to Lemma 8, when t = 0, we have 1 − 1
R0

+ ( 1
n
− φ)fn = 0. It is easy to

find that as n increases, the value of fn when t = 0 increases. When n achieves +∞,

fn = fd = f ∗. Referring to Lemmas 7 and 8, when w achieves 1+ξ
1+2ξ

(r(0) − p(0)),

f begins to be equal to 0 and when t = 1+ξ
1+2ξ

(r(0) − p(0)), f begins to be equal

to 0. And it is easy to know 1+ξ
1+2ξ

is a decreasing function for ξ between 0 and 1.

Therefore, we can get Proposition 14.
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