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ABSTRACT 

This thesis examines how external factors influence the productivity of 

inventors, the most creative and precious personnel in many firms. The first 

factor I examine is terrorist attacks. Using fatal terrorist attacks as man-made 

disasters that shock the society, I examine their effects on inventor productivity. 

I find that after experiencing high-fatality attacks, local inventors tend to 

become more risk-averse and have lower productivity in the subsequent years, 

while those who witnessed terrorist attacks with low fatality tend to behave 

more risk-taking and produce more innovation outputs afterwards. I also find 

that inventors affected by high-fatality attacks are more likely to move to 

places without any significant terrorist attack history, but there is no such effect 

for low-fatality attacks. My findings are consistent with the notion that what 

does not kill you make you more risk-taking, and suggest that shocks to the 

society can be important external factors to reshape inventors’ risk-taking 

behaviour and affect their innovation. 

The second factor I examine is air pollution. Using the NOx budget 

trading program (NBP) as a quasi-natural experiment, I examine whether 

reduction in air pollution enhances inventor risk-taking, which makes them 

more innovative. I find that inventors located in the NBP participating states 

produce more patents after the NBP. These patents also receive more forward 

citations and have higher economic value. The effect of the NBP is larger for 

less experienced inventors, or inventors living in high-pollution areas. Further, 

inventors located in the NBP participating states engage more in experimental 
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innovation and less in specialization innovation after the NBP, which confirms 

the risk-taking channel. 

In sum, my thesis shows that external factors, such as terrorist attacks 

and air pollution, can have significant effects on inventor productivity. I also 

identify that risk-taking is an important channel of such effects. My thesis 

highlights the vulnerability of inventors to external factors, and stresses the 

importance of the external factors in shaping the risk-taking behaviour of 

inventors in the innovation process. 

 

Keywords: Terrorist attacks; Air pollution; Inventor productivity; Risk-

taking. 
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Chapter 1 Introduction 

Innovation is crucial for the long-term success of firms and is a key 

driving force of the development of the modern economy (Henderson and 

Cockburn, 1994). Since inventors are key figures in producing innovation 

outputs, it is important to understand factors that impact their productivity. As 

human beings, inventors are inevitably affected by the surrounding 

environment. In this study, I examine how inventors, the most creative and 

precious personnel in many firms, are affected by external factors, e.g. terrorist 

attacks and air pollution. More specifically, I examine whether these external 

factors induce changes to local inventors’ productivity and innovation choices 

and the channels through which this occurs.  

In Chapter 2, I examine how terrorist attacks influence the productivity 

of local inventors. Bernile et al. (2017) find that CEOs with early-life exposure 

to natural disasters with moderate or low numbers of fatalities are more willing 

to take risks in corporate management, while those who have early-life 

exposure to natural disasters with large numbers of fatalities lead the firms 

more conservatively. Their argument is that after experiencing disasters 

without tremendously negative effects, CEOs tend to become less sensitive to 

the adverse impacts of risk, while CEOs tend to have a more cautious and 

conservative attitude towards risk if they witness the tremendously damaging 

consequences of disasters. 
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As man-made disasters, terrorism is becoming one of the biggest 

threats to humanity,1  and the horror and destruction are embodied in the 

September 11 attacks, known as 9/11, in which 2,996 people died and there 

was tremendous damage to infrastructure and property in the U.S.2 As Scobell 

(2004) points out, after the attacks, many countries across the world enacted 

legislation to combat terrorism. Since then, despite the huge effort directed at 

fighting against terrorism, terrorist attacks seem to be occurring more 

frequently in recent years. Internationally, there was an increase in terrorism-

related incidents from 1,813 in 2000 to 16,860 in 2014, and fatalities rose 

sharply from 4,402 in 2000 to 43,566 in 2014.3 The emotional shock brought 

about by terrorist attacks is evident. For example, in a 2005 U.S. Gallup Poll, 

terrorist attacks are rated the highest ranked fear by a national sample of 

teenagers aged 13 to 17. Because terrorist attacks intensely affect people’s 

emotions, I argue that they also affect inventors’ emotions, which may further 

affect inventors’ attitudes towards risk and thus their innovation outputs. The 

question is: Do terrorist attacks affects inventors’ risk tolerance? If yes, is it a 

monotonic relation? 

 
1 In a 2004 UN report, Mr. Kofi Annan, Secretary General of United Nations, defines terrorism as any 

action “intended to cause death or serious bodily harm to civilians or non-combatants with the purpose 

of intimidating a population or compelling a government or an international organization to do or abstain 

from doing any act.” 
2  The Organization for Economic Cooperation and Development (OECD) estimates that the direct 

economic cost of the 9/11 terror attacks was US$27.2 billion (Brück and Wickström, 2004). With regard 

to the psychological damage caused by terrorism, Galea et al. (2002) assess the prevalence and correlates 

of post-traumatic stress disorder (PTSD) and depression among residents of Manhattan after the 9/11 

attacks, and report that many PTSD and/or depression cases were related to the attacks. Using a national 

survey, Schuster et al. (2001) report that respondents throughout the country exhibited symptoms of 

stress after 9/11, suggesting that even people who were not present at the attacks experienced stress 

reactions. 
3 The source of the statistics is the Global Terrorism Database (GTD). The website is: 

https://www.start.umd.edu/gtd/ 
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This question is important because risk-taking is an essential 

determinant of inventors’ engagement in R&D, which already carries 

considerable risk and has uncertain outcomes. Manso (2011) posits that 

promoting innovation requires strong risk-taking incentives, enough tolerance 

of early failures, and rewards for long-term success. Numerous studies confirm 

that risk-taking is one of the key success factors in innovation (e.g., Hirshleifer 

et al., 2012; Chemmanur et al., 2014; Chen et al., 2014). If inventors become 

more risk-averse after terrorist attacks, they may continue to engage in low risk 

R&D, and reduce or avoid R&D activities with high risk. Conversely, if 

inventors become greater risk-takers after terrorist attacks, they may pursue 

riskier R&D projects with potentially higher rewards. 

When terrorists strike, they usually want to cause as many casualties 

and as much damage as possible to spread the horror and terror throughout the 

society. Hence, high-fatality terrorist attacks, such as 9/11, leaved people who 

experienced it with serious and long-term psychological shadow. I suppose 

people who experienced such extremely fatal attacks are more likely to be 

fearful and overestimate the negative outcomes of risk, and thus become more 

risk-averse. However, in some cases, the extent of the damage and casualties 

are limited by circumstances or by law enforcement officials. For example, the 

Centennial Olympic Park bombing in Atlanta, Georgia, on July 27, 1996, only 

killed only one person, largely because a security guard discovered the bomb 

before it detonated, and cleared most of the spectators out of the park. That 

attack was contained and under control. It can be considered a low-fatality 
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attack. Because these low-fatality attacks do not cause very negative 

consequences in the end, such experience may lead the witnesses ignore the 

possible tremendously negative consequences. As a result, they tend to become 

more confident and underestimate negative outcomes of risk, and thus are more 

willing to take risks. 

With this reasoning and the importance of risk-taking in the innovation 

process, I hypothesize that high-fatality terrorist attacks cause local inventors 

(i.e., inventors who live near the attacked venue) to become more risk-averse, 

which results in a decline in their future innovation. In contrast, low-fatality 

attacks prompt local inventors to become greater risk-takers, which leads to an 

increase in their future innovation. 

To test my hypotheses, I examine 19 fatal terrorist attacks in the U.S. 

occurring between 1994 and 2007.4 To be included in the sample, a terrorist 

attack must be in the Global Terrorism Database (GTD) and The Washington 

Post (WP) Deadliest US Shooting list,5 cause at least one death, and be covered 

by the major media outlets. For inventors, I obtain inventor information from 

the Harvard Business School (HBS) patent inventor database, and define a 

local or affected inventor as one who lives within a 100-mile radius of a 

 
4 I focus on the terrorist attacks occurring since the 1990s because terrorism has developed 

rapidly over the past quarter-century. According to Chalk (1999), terrorist attacks since the 

1990s differ from those that happened before in two aspects. First, terrorist attacks have 

happened more frequently since the 1990s, with multiple actors leading to such situations, 

ranging from individual persons to fully organized groups. Second, with the development of 

modern weapons, terrorist attacks since the 1990s have become more effective and fatal. A 

single attack can lead to mass destruction and serious casualties. 
5 See http://www.washingtonpost.com/wp-srv/special/nation/deadliest-us-shootings/ for 

more information. 

http://www.washingtonpost.com/wp-srv/special/nation/deadliest-us-shootings/
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terrorist attack during the attack year. I use three measures of inventor 

productivity: the number of newly granted patents, the number of forward 

citations received by these patents, and the total economic value created by 

these patents. 

Using the difference-in-difference approach, I find evidence consistent 

with my hypothesis. Specifically, the results of the baseline regression suggest 

that if an inventor is located near the area of a low-fatality (high-fatality) 

terrorist attack, he/she will file more (fewer) patents in the three years after the 

attack than before, and his/her patents will also receive more (fewer) citations 

and create more (less) economic value, compared to inventors who are not 

located in the attack areas. The findings suggest that affected inventors 

experience an increase (decrease) in productivity after living through a low-

fatality (high-fatality) terrorist attack. In terms of economic significance, the 

number of patents, the number of citations, and the total economic value of the 

patents produced by local inventors affected by low-fatality attacks increase 

by 1.1%, 3.7%, and 3.0%, respectively. In contrast, after high-fatality attacks, 

the number of patents, the number of citations, and the total economic value of 

the patents produced by affected inventors decrease by 2.1%, 5.1%, and 5.2%, 

respectively. These numbers suggest that the effects of fatal terrorist attacks on 

inventor productivity are also economically significant. To validate my 

findings and exclude alternative interpretations, I conduct several robustness 

tests, including examining alternative definitions of high-fatality and low-

fatality attacks, longer test windows, alternative samples and specifications, 
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and additional control variables. The findings remain valid across all of the 

robustness tests. 

To test whether risk-taking is the main channel through which terrorist 

attacks impact inventor productivity, I conduct two sets of analyses. First, 

social identity theory (Tajfel, 1981; Abrams and Hogg, 1988) posits that 

individuals have a tendency to conform to the dominant values and behavioural 

norms of the groups they are associated with. For my setting, this theory 

implies that after witnessing a fatal terrorist attack that results in low fatality, 

local inventors living in more risk-taking environments, will increase their own 

risk-taking more because social risk-taking magnifies the tendency of 

underweighting extreme negative outcomes of risk induced by the low-fatality 

attack. In contrast, after witnessing a high-fatality terrorist attack, local 

inventors living in more risk-taking environments will reduce their risk-taking 

less because social risk-taking mitigates the increased sensitivity to risk 

induced by the high-fatality attack. As a result, I expect that the innovation 

output of local inventors living in more risk-taking environments will increase 

more following low-fatality attacks and decrease less following high-fatality 

terrorist attacks.  

Consistent with my expectation, I find that the positive (negative) 

effect of low-fatality (high-fatality) terrorist attacks on inventor productivity is 

stronger (weaker) for local inventors living in regions with more male residents 

because males generally take more risks than females (Powell and Ansic, 1997; 

Byrnes et al., 1999; Hartog et al., 2002; Eckel and Grossman, 2008). The 
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positive (negative) effect is also stronger (weaker) for local inventors living in 

regions with high murder rates because people tend to behave more 

aggressively and take more risks if they are frequently exposed to violence 

(Fantuzzo and Mohr, 1999; Holt et al., 2008). In addition, the positive 

(negative) effect is weaker (stronger) for local inventors living in highly 

religious regions because people in such regions tend to exhibit more risk 

aversion in their decision making (Diaz, 2000; Miller, 2000; Steinman and 

Zimmerman, 2004; Hilary and Hui, 2009; Boone et al., 2012). 

 Second, prior studies suggest that after attacks inventors may exploit 

and refine existing innovation, or explore new innovation (March, 1991; 

Benner and Tushman, 2002; Balsmeier et al., 2017). Compared to exploitative 

innovation, explorative innovation requires more risk-taking and thus its 

success relies more on the inventor’s willingness to take risk. If the positive 

(negative) effect of low-fatality (high-fatality) terrorist attacks on innovation 

is mainly through the risk-taking channel, the effects should be stronger for 

explorative innovation than exploitative innovation. Indeed, I find that local 

inventors affected by low-fatality (high-fatality) terrorist attacks increase 

(reduce) their explorative innovation, measured by the number of explorative 

patents and average patent originality. The effects on the exploitative 

innovation of local inventors (measured by the number of exploitative patents 

and average patent generality) are much weaker. Taken together, the findings 

from the two sets of tests are consistent with the notion that increased (reduced) 
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risk taking induced by low-fatality (high-fatality) terrorist attacks strengthens 

local inventors’ willingness (reluctance) to undertake riskier R&D projects. 

In addition, I find that distance matters. That is, the positive (negative) 

effect of low-fatality (high-fatality) terrorist attacks on inventor productivity 

decays as the distance from the inventor’s location to the attacked area 

increases. The results show that terrorist attacks are more salient for inventors 

located closer to the attacks, causing them to experience stronger 

psychological shock. 

I also examine whether terrorist attacks affect inventors’ relocation 

decisions. It is likely that the psychological distress caused by the shock of a 

high-fatality terrorist attack would not only reduce inventor productivity but 

would also prompt inventors to move to other places. My results show that 

inventors are indeed more likely to move to other cities, particularly those 

without any significant terrorist attack history, after the occurrence of a high-

fatality terrorist attack in their local area. However, low-fatality attacks do not 

produce this effect. 

In Chapter 3, I investigate whether reducing air pollution has an effect 

on inventor productivity. Air pollution has become one of the major health 

problems faced by people all over the world. The World Health Organization 

(WHO) lists the air pollution from both outdoor and indoor sources as the 

single largest environmental risk to health globally. Medical studies document 

numerous adverse effects of air pollution on physical health of local residents 

(e.g., Evans and Jacobs, 1981; Seaton et al., 1995; Brunekreef and Holgate, 
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2002; Mauzerall et al., 2005; Pope and Dockery, 2006; Maher et al., 2016). 

According to the latest WHO data, nine out of ten people worldwide breathe 

air containing high levels of pollutants, and air pollution kills around seven 

million people every year. 

Besides physical health, air pollution is also shown to impair people’s 

mental health. Psychology studies find that increases in air pollution are 

associated with higher levels of negative moods, such as annoyance, anxiety, 

depression, tension, stress, and low spirits (Bullinger, 1989; Chattopadhyay et 

al., 1995; Evans et al., 1988; Jones, 1978). These negative moods make people 

having pessimistic evaluations of future events, resulting in the biased-up risk 

estimates (Schwarz and Clore, 1983; Johnson and Tversky, 1983; Constans 

and Matthews, 1993; Mittal and Ross, 1998). Consequently, people affected 

by air pollution become more risk-averse when making decisions. 6  In 

supportive of this argument, there are a number of studies that document a 

negative effect of air pollution on stock returns and argue that increased 

investor risk aversion associated with air pollution-induced depression drives 

such effect (Levy and Yagil, 2011; Lepori, 2016; Li and Peng, 2016; Heyes et 

al., 2016). 

Given the adverse impact of air pollution on people’s physical and 

mental health, I examine a simple but important question in this study: Does 

air pollution affect the productivity of patent inventors? Innovation is crucial 

 
6 Medical studies show that higher levels of stress and tension induced by air pollution lead to 

a higher bodily level of cortisol, a stress hormone, and that cortisol is related with increased 

risk-aversion behavior (Rosenblitt et al., 2001; Coates and Herbert, 2008; Mehta et al., 2015). 



 

10 
 

for the long-term success of firms and is a key driving force of the development 

of the modern economy (Henderson and Cockburn, 1994). Inventors are key 

figures in producing innovation outputs. As human beings, they are inevitably 

affected by the surrounding environment. Therefore, it is important to 

understand behavioural factors that could impact inventor productivity. 

As I mentioned, innovation activities tend to carry lots of risks and have 

highly uncertain outcomes, and risk-taking is an extremely important factor for 

the success of innovation. Since air pollution results in negative moods which 

makes people more risk-averse, inventors affected by air pollution are likely 

to be more risk averse in decision making. This may lead to sub-optimal risk-

taking levels in the innovation process and hence lower inventor productivity. 

I adopt the Nitrogen Oxide (NOx) budget trading program (NBP) as a 

quasi-natural experiment to examine whether reduction in air pollution 

improves inventor productivity. The NBP is a cap and trade program designed 

to reduce NOx emissions in eastern U.S. states during the summer ozone 

season.7 According to U.S. Environmental Protection Agency (EPA), the NBP 

dramatically improves the air quality in eastern U.S. states by reducing NOx 

emissions from power plants and industrial sources during the summer months. 

Because the implementation of the NBP is largely exogenous to local 

innovation activities, it provides a setting in which endogeneity is less of a 

concern. 

 
7 NOx is a group of gases made up of nitrogen and oxygen, mainly referring to nitric oxide 

(NO) and nitrogen dioxide (NO2). As one of the main air pollutants, NOx contributes to a 

series of environmental problems, such as the formation of acid rain, smog, and elevated 

PM2.5 and most importantly, ozone concentrations.  
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The patent data along with the inventor information also comes from the 

Harvard Business School (HBS) patent inventor database (Li et al., 2014). I 

restrict my main analysis to inventors affiliated with U.S. publicly listed firms 

so that I can control for innovation inputs and characteristics of the firms where 

the inventors work in the analysis. There are 19 states in the U.S. that 

participated in the NBP during 2003 and 2004. I define the inventors located 

in these states as treated inventors. All remaining inventors, excluding those 

living in the adjacent states of the NBP participating states, are defined as 

controlled or non-treated inventors. I examine three years before and three 

years after the implementation of the NBP and define 2000 to 2002 as the pre-

treatment period and 2005 to 2007 as the post-treatment period. 

I perform a difference-in-difference test using the U.S. inventor-level 

data around the implementation of the NBP. The results show that treated 

inventors (i.e., inventors living in the NBP participating states) produce 

significantly more patents than controlled inventors (i.e., inventors living in 

the other states except those in the adjacent states of the NBP participating 

states) following the implementation of the NBP. The patents produced by 

treated inventors also generate more forward citations and have higher 

economic value. Specifically, relative to controlled inventors, treated inventors 

on average produce 2.8% more patents, and their patents receive 11.8% more 

forward citations and create 14.7% higher economic value following the 

implementation of the NBP. Overall, the findings suggest that reducing air 

pollution makes inventors more productive. My findings hold in various 
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robustness checks. I also perform a placebo test that randomizes the NBP 

participating states. The results suggest that my findings are unlikely to be 

obtained by chance.  

In cross-sectional analyses, I show that the reduction in air pollution by 

the NBP has a larger effect on the productivity of less experienced inventors 

(i.e., inventors with shorter tenure or non-superstar inventors). This is likely 

because these inventors are less resilient to air pollution due to the lack of 

experience. I also show that the NBP has a larger effect on inventors living in 

in counties with poorer air quality before its implementation, because the 

improvement of air quality is likely greater in these counties. 

To investigate whether risk-taking is the specific channel through which 

air pollution affects inventor productivity, I first test whether treated inventors 

change their innovation strategies to purse high-risk-and-high-reward 

innovation after the implementation of the NBP. Specifically, I compare 

changes in their experimentation innovation (i.e., innovation in unfamiliar 

fields) versus specialization innovation (i.e., innovations based on existing 

knowledge and expertise). The former involves more risks and is more 

challenging than the latter. I find that treated inventors engage more in 

experimentation innovation and less specialization innovation after the 

implementation of NBP, suggesting greater risk-taking by treated inventors in 

innovation. Next, I investigate whether improved air quality associated with 

the NBP increases inventor working hours and hence their productivity. I fail 

to find evidence that air pollution reduces the working hours of local residents, 



 

13 
 

which is inconsistent with the working hour channel. My findings about 

innovation strategies are also inconsistent with this channel because if it works, 

treated inventors should increase both experimentation and specialization 

efforts, rather than increasing experimentation effort, while reducing 

specialization effort. Taken together, these findings are consistent with the 

notion that reducing air pollution improves inventors’ mood and hence their 

risk-taking behaviour in the innovation process, which in turn makes inventors 

more productive. 

Last, I conduct a number of additional analyses. The results show that 

improved air quality associated with the NBP also enhances the average 

quality of patents generated by treated inventors. Further, I show that my main 

findings hold for all inventors, regardless of whether they work in publicly 

listed firms or not. My findings also hold in a large-scale panel regression in 

which air pollution is directly measured by the air quality index of the local 

area.  

My study contributes to the finance and economic literature in several 

aspects. First, I extend the findings of Bernile et al. (2017) by showing that not 

only natural disasters, man-made disasters, like terrorist attacks, can have a 

nonmonotonic impact on the individuals’ risk choices. In addition, unlike 

Bernile et al. (2017) focusing on early-life exposure to disasters, I examine the 

change of inventor productivity immediately after they experience terrorist 

attacks, which makes my results more straightforward and convincing. 



 

14 
 

Second, I extend recent studies on the impact of terrorist attacks on 

economic activities. Ahern (2018) analyzes the 2004 Madrid train bombing 

and the 2005 London metro attacks, the two largest terrorist attacks in 

European history, and finds that terrorist attacks negatively influence both 

individual psychology and macroeconomic outcomes. Antoniou et al. (2016a) 

find that financial analysts located near terrorist attacks issue more pessimistic 

earnings forecasts afterwards. They also show that firms located near terrorist 

events tend to carry out more conservative corporate policies–they increase 

their cash holdings and reduce their R&D expenditures and long-term leverage 

around such events. Further, Wang and Young (2019) find that increased 

terrorism levels in the U.S. reduce the aggregate investor risk preference. Dai 

et al. (2020) document higher compensation for the CEOs of firms located near 

terrorist attacks. My study adds to this strand of the literature by showing that 

although high-fatality terrorist attacks have a negative effect on inventor 

productivity, low-fatality attacks, surprisingly, have a positive effect on 

innovation. Thus, my findings reveal an indirect channel through which 

terrorist attacks affect local innovation and economic growth. More 

importantly, I show that high-fatality attacks and low-fatality attacks have 

opposite effects on inventors’ risk-taking, in line with Bernile et al. (2017), 

who assert that CEOs with early-life exposure to natural disasters producing 

large numbers of fatalities are more risk-averse, whereas those with early life 

exposure to natural disasters with moderate or low numbers of fatalities are 

more willing to take risks. 
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Third, my study contributes to the finance literature about the 

behavioural impacts of air pollution. Existing studies in this regard mainly 

focus on the effects of air pollution on stock market participants. For example, 

a number of studies document a negative relation between air pollution and 

stock market returns and resort to increased investor risk aversion associated 

with air pollution as the explanation (e.g., Leve and Yagil, 2011; Lepori, 2016; 

Li and Peng, 2016; Heyes et al., 2016). There are also studies showing that air 

pollution-induced negative mood affects analyst forecast bias (Dong et al., 

2019) and investor trading behaviour (Li et al., 2019; Huang et al., 2019). My 

study shows that in addition to stock market participants, air pollution also 

impacts the productivity of patent inventors through reshaping their risk 

attitudes. Given the importance of innovation in firm growth, our findings 

document a real effect of air pollution on the economy and help people better 

estimate the social and economic value of efforts that attempt to reduce air 

pollution. 

Fourth, my study adds to the economics literature on the negative 

impact of air pollution on worker productivity. Prior studies document that 

high levels of air pollution reduces the productivity of agricultural workers 

(Graff Zivin and Neidell, 2012), indoor pear packers (Chang et al., 2016), and 

call-center workers (Chang et al., 2019). Nevertheless, these studies mainly 

focus on labor-intensive worker. There is little research that investigates 

whether air pollution also affects the productivity of workers that rely more on 

intelligence. My study fills this gap in existing research by documenting that 
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air pollution also affects the productivity of patent inventors, the most creative 

and precious personnel in many firms.   

Last, my study contributes to the growing literature in both finance and 

economics that examines the determinants of innovation success.8 The existing 

literature mainly focuses on the determinants of innovation at the firm level. 

There is a lack of empirical work on which factors influence innovation outputs 

from the perspective of inventors, who have direct control over the innovation 

process. As human beings, inventors are subject to various behavioural traits. 

My study identifies terrorist attacks and air quality as two important external 

factors that have effects on inventor productivity. The findings enhance our 

understanding of the roles external factors play in shaping corporate innovation 

success. 

 

  

 
8 See Ederer and Manso (2011), Kerr and Nanda (2015), and He and Tian (2018) for detailed 

review of the corporate innovation literature.  
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Chapter 2 Terrorist Attacks and Inventor 

Productivity 

In this Chapter, I examine the effects of terrorist attacks on innovation 

output of affected inventors. Section 2.1 describes the data and sample. Section 

2.2 shows the results of my baseline tests and robustness checks. Section 2.3 

presents the results of channel tests and Section 2.4 reports the results of 

additional analyses. Section 2.5 concludes this chapter. 

 

2.1. Data 

2.1.1. Sample 

The data used in this study come from several sources. I obtain data on 

terrorist attacks from the Global Terrorism Database (GTD). The GTD 

database offers information on the date, location (including latitude and 

longitude), number of causalities, and the type of terrorist attacks occurring 

internationally since 1970. Because the patent inventor data is for the U.S., I 

exclude terrorist attacks happening outside of the U.S. I follow Antoniou et al. 

(2016a, 2016b) and further restrict my sample to terrorist attacks that caused 

at least one casualty and were covered by major media outlets, including The 

Los Angeles Daily News, The New York Daily News, The New York Post, 

The New York Times, The Wall Street Journal (U.S. edition), The Washington 

Post, and USA Today. These events are more likely to raise the attention of 

local people, including local inventors. Information on the news coverage of 
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these major media outlets is retrieved from Factiva. I only use terrorist attacks 

with fatalities that were covered by major media outlets because not all terrorist 

attacks are salient. I contend only relatively high-fatality attacks attract 

people’s attention and hence are likely to affect inventors’ risk preferences. 

Table 2.1 lists the 18 terrorist attacks used in my study, which are 

geographically dispersed among various regions of the U.S.  

I obtain the patent data along with inventor information from the 

Harvard Business School (HBS) patent inventor database (Li et al., 2014), 

which covers every patent granted by the U.S. Patent and Trademark Office 

(USPTO) from 1976 to 2010. The database provides information on the 

inventor(s) of each patent, including the names, city of residence, zip code, 

latitude and longitude. Each individual inventor is assigned a unique identifier 

based on a disambiguation algorithm method. Thus, I am able to track the 

innovation information of each inventor, along with his/her accurate residential 

location. To control for innovation inputs and the characteristics of the firms 

where the inventors work, I restrict my analysis to inventors affiliated with U.S. 

public firms. I match the inventors to these firms based on the patent 

information of Kogan et al. (2017), which provides the CRSP firm identifier 

for each patent. Firm financial information is obtained from Compustat. To 

measure the scientific and economic importance of the patents, I use the 

forward citation data and patent value data of Kogan et al. (2017).  

As the HBS patent inventor database only records inventor information 

when the inventor files a patent, my initial sample consists of inventor-year 
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observations in which the underlying inventor files at least one patent during 

the year. To create time-series data for inventors, I follow Chen et al. (2019) 

and identify the first year and the last year an inventor appears in the patent 

inventor database (i.e., the first year and the last year the inventor files patents). 

I then assign a value of zero to the inventor’s innovation output variables for 

the years in between when there are no patent records. As I can only observe 

inventor location when an inventor files a patent, I use this to update and assign 

the inventor location information for subsequent years in which there are no 

patent records until I observe another patent filed by the inventor.9 

In my empirical analysis, I use the application year rather than the grant 

year of the patents because the former is closer to the time when the new 

technology appears.10 Given that there are usually two to three years of time 

lag between the application year and the grant year (Hall et al., 2001), I exclude 

the last two years from the analysis (i.e., 2009 and 2010). My final sample 

includes 132,290 unique inventors from 2,792 publicly listed firms spanning 

the period from 1994 to 2007. The sample allows me to track the innovation 

record of each inventor, along with his/her location information and the 

financial information of the firm where he/she works. 

2.1.2 Variables 

2.1.2.1. Exposure to Terrorist Attacks 

 
9 I conduct robustness checks using different ways to assign location information for years with no patent 

records (see Panel A of Table 5). All of the results hold, which suggests that my findings are not driven 

by the particular way I assign inventor locations. 
10 Hall et al. (2001) note that the application year is a better indicator of the actual innovation date. 
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Following Antoniou et al. (2016a), I define an inventor as an affected 

inventor if he/she lives within a 100-mile radius of a terrorist attack during the 

attack year. I calculate the geographic distance between each inventor and 

terrorist attack using the latitude and longitude of both the inventor’s 

residential address and the place where the terrorist attack occurs.11 I define 

high-fatality attacks as attacks resulting in more than one casualty, and low-

fatality attacks as attacks resulting in only one casualty.12  The number of 

casualties is one of the most important characteristics of terrorist attacks, 

because those with larger numbers of casualties are usually more traumatic and 

thus generate stronger negative emotions among individuals. I define high-

fatality attack (High) as a dummy variable equal to one if the inventor is 

located within 100 miles of a high-fatality terrorist attack, and zero otherwise. 

Similarly, I define low-fatality attack (Low) as a dummy variable equal to one 

if the inventor is located within 100 miles of a low-fatality terrorist attack, and 

zero otherwise. 

Table 2.1 presents the fatalities for each terrorist attack. It also shows 

the total number of inventors for the year when the terrorist attack occurs, the 

number of inventors affected by the terrorist attack, and the proportion of 

affected inventors. The table shows that the proportion of inventors affected 

by the terrorist attacks ranges from 0.2% to 15.5%, suggesting that some of the 

terrorist attacks affect a large proportion of inventors and that there are large 

 
11 The distance is calculated using the Vincenty (1975) equation. 
12 In one of the robustness checks, I use three casualties as the cut-off to define high-fatality attacks. In 

another robustness check, I also use the media coverage of terrorist attacks to differentiate high-fatality 

attacks from low-fatality attacks. My results hold in both tests. 
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variations in the terrorist attacks that affect inventors. One thing to note is that 

both the total number of inventors and the number of affected inventors drop 

significantly for the terrorist attacks occurring in 2006 and 2007 (i.e., Seattle 

Jewish Federation and Virginia Tech). The decline is likely to be due to 

truncation bias. Even if I remove the last two years of patent data (i.e., 2009 

and 2010) from my sample, some patent applications take more than two years 

to finalize. As a result, the number of patents and hence the total number of 

affected patent inventors drop when approaching the end of the sample. In one 

of the robustness checks, I exclude the last two terrorist attacks from the 

analysis and obtain consistent results.  

[Insert Table 2.1] 

2.1.2.2. Innovation Variables 

I consider three measures of inventor innovation output. The first 

measure is the number of patents, calculated as the number of an inventor’s 

newly filed patents that are eventually granted. The second measure is the 

number of citations, calculated as the sum of forward citations for all of the 

inventor’s newly filed patents. Prior studies show that forward citations of a 

patent reflect the patent’s scientific value. Breakthrough patents are expected 

to receive more citations than other patents (Hall et al., 2001; Hall et al., 2005; 

Aghion et al., 2013). The third measure is total patent value, calculated as the 

sum of the economic value of all of the inventor’s newly filed patents. 

Following Kogan et al. (2017), the patent value measure is calculated as the 

increase in the market value of the firm (after adjusting for benchmark returns) 
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in a three-day window following the patent grant announcement. As the three 

innovation output measures are highly skewed, I take the natural logarithm of 

one plus the number of patents (LnPat), number of citations (LnCit), and total 

patent value (LnPatVal), respectively, and use these log transformed measures 

in the analysis.  

To examine the inventors’ innovation strategies, I construct variables 

capturing their propensity for exploration versus exploitation strategies in 

innovation. First, I follow Benner and Tushman (2002) and calculate the 

number of exploratory and exploitative patents filed during the year, 

respectively. A patent is defined as exploratory if more than 60% of its 

backward citations are outside the inventor’s existing knowledge base. A 

patent is defined as exploitative if more than 60% of its citations are within the 

inventor’s existing knowledge base. An inventor’s existing knowledge base is 

defined as the combination of the inventor’s patents and the patents that have 

been cited in the inventor’s previous patents.  As exploratory patents are 

outside the inventor’s expertise, they reflect the inventor’s pursuit of 

innovation in new fields (i.e., exploration strategy). In contrast, exploitative 

patents are based on the inventor’s expertise. Thus, they capture the inventor’s 

tendency to specialize in existing fields (i.e., exploitation strategy). Similarly, 

I take the natural logarithm of one plus the number of exploratory patents 

(LnExplore), and exploitative patents (LnExploit), respectively. 

In addition, I follow Trajtenberg et al. (1997) and employ the patent 

originality and generality measures. Originality of each patent is calculated as 
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the one minus the Herfindahl-Hirschman index of citations to other patents 

over patent classes, while generality is calculated as one minus the Herfindahl-

Hirschman index of citations received from other patents over patent classes. 

Higher originality suggests that the patent cites a broader range of patent 

classes, indicating more efforts in exploration innovation strategy. In contrast, 

higher generality means the patent is cited by a broader range of patent class, 

implying more efforts in exploitative innovation strategy. To get the inventor-

level measures, I calculate the average across all the patents for each inventor 

over the future three years. 

 

2.1.2.3. Control Variables 

My analysis is based on a sample of inventors affiliated with U.S. 

public firms. Because corporate policies may impact inventor productivity, I 

control for a set of firm-level variables in the analysis. This includes firm size 

(FirmSize), defined as the natural logarithm of total assets, because large firms 

usually generate more patents and citations (Hall and Ziedonis, 2001). To 

control for firm innovation input, I include R&D expenses (R&D), defined as 

R&D expenditures scaled by total assets. Following Hirshleifer et al. (2012), I 

set the R&D expenses of observations with missing R&D information in 

Compustat to zero. I control for firm capital investments (CapEx), defined as 

capital expenditures scaled by total assets; return on assets (ROA), defined as 

earnings before interest and tax divided by total assets; and leverage ratio 

(Leverage), defined as the book value of debt scaled by total assets. To control 
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for firm growth opportunities, I include book to market ratio (Book-to-market), 

defined as the book value of equity scaled by the market value of equity. I also 

control for firm cash holdings (Cash), defined as cash and short-term 

investments scaled by total assets. Last, I control for the effect of firm life cycle 

by including firm age (Firm Age), defined as the natural logarithm of the 

number of years elapsed from the first year the firm appeared in the Compustat 

database. 

As information on inventor characteristics is limited, inventor tenure 

(Inventor Tenure) is the only inventor-level variable I control. This is defined 

as the natural logarithm of one plus the number of years between the year the 

inventor enters the patent database and the observation year. Detailed 

descriptions of all the variables in the analysis are shown in the Appendix. 2.A. 

2.1.3. Descriptive Statistics 

Table 2.2 reports the summary statistics of the variables used in this 

study. The table shows that the mean values of the high-fatality attack dummy 

and the low-fatality attack dummy are 0.02 and 0.04, respectively. This 

suggests that 2% of inventor-years are affected by high-fatality attacks and 4% 

of inventor-years are affected by low-fatality attacks. 

In terms of the innovation output variables, the mean values of LnPat 

and LnCit are 0.99 and 1.89, respectively, corresponding to 1.69 patents and 

5.62 forward citations. Regarding the patent value measure, the mean value of 

LnPatVal is 2.62, corresponding to US$12.74 million. The mean values of 

LnExploit and LnExplore are 0.36 and 0.70, respectively.  
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With regard to the control variables, on average, the size of the firms 

affiliated with the inventors in my sample is 9.14, corresponding to 

US$9,320.77 million, and their R&D expense is 7% of total assets. The 

average return on assets, leverage ratio, capital investments, book to market 

ratio, cash holdings, and age of these firms are 0.14, 0.21, 0.06, 0.33, 0.16, and 

3.43, respectively. In addition, the mean value of inventor tenure is 1.67, 

corresponding to 4.31 years. This suggests that there is relatively long time-

series data for each inventor.  

[Insert Table 2.2] 

 

2.2. Empirical Results 

2.2.1. Baseline Analysis 

In this section, I perform regression analysis on whether experiencing 

terrorist attacks affects the productivity of inventors located near the attacked 

areas. The baseline regression specification is as follows.  

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 𝑡𝑜 𝑡+2 = 𝛽0 + 𝛽1𝐻𝑖𝑔ℎ𝑖,𝑡−1 + 𝛽2𝐿𝑜𝑤𝑖,𝑡−1 + 𝛽3𝐹𝑖𝑟𝑚 𝑆𝑖𝑧𝑒𝑖,𝑡−1 

+𝛽4𝑅&𝐷𝑖,𝑡−1 + 𝛽5𝑅𝑂𝐴𝑖,𝑡−1 + 𝛽6𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡−1 + 𝛽7𝐶𝑎𝑝𝐸𝑥𝑖,𝑡−1 + 𝛽8𝐵𝑀𝑖,𝑡−1 

+𝛽9𝐶𝑎𝑠ℎ𝑖,𝑡−1 + 𝛽10𝐹𝑖𝑟𝑚 𝐴𝑔𝑒𝑖,𝑡−1 + 𝛽11𝑇𝑒𝑛𝑢𝑟𝑒𝑖,𝑡−1

+ 𝛽12𝑃𝑎𝑠𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖,𝑡−1 

          +𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟 + 𝑌𝑒𝑎𝑟 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 + 𝜀𝑖,𝑡                                       (1) 

where subscript i and t denote inventor i and year t; and ε is the error term. The 

dependent variable Innovation in Eq. (1) consists of the three innovation output 
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variables (i.e., LnPat, LnCit, and LnPatVal) in the following three years. 

Inventor, Year, and Industry denote inventor, year, and industry fixed effects, 

respectively. The variable of interest, the high-fatality (low-fatality) terrorist 

attack dummy, is a dummy variable equal to one if the inventor is located 

within 100 miles of a high-fatality (low-fatality) terrorist attack during the year 

and zero otherwise. The regressions are performed by ordinary least squares 

(OLS), with standard errors clustered at the inventor level. 

[Insert Table 2.3] 

The regression results are presented in Table 2.3. Column (1) shows 

that the coefficient of the high-fatality attack dummy is negative and 

significant at the 1% level. This suggests that inventors located near high-

fatality attacks produce fewer new patents in the three years following the 

attacks. In contrast, the significantly positive coefficient of the low-fatality 

attack dummy indicates that inventors affected by low-fatality attacks file more 

patents following such attacks. Columns (2) and (3) show the results for the 

number of citations and the total patent value, respectively. Again, the 

coefficient of the high-fatality attack dummy is significantly negative whereas 

the coefficient of the low-fatality attack dummy is significantly positive in both 

regressions. This suggests that terrorist attacks also affect the scientific and 

economic value of the patents produced by the affected inventors. Therefore, 

high-fatality (low-fatality) terrorist attacks not only negatively (positively) 

affect the quantity of innovation, but also the quality of the innovation 

produced by the affected inventors.  
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The negative effects of high-fatality attacks on inventor productivity 

are also economically significant. On average, the affected inventors file 2.1% 

fewer patents, their patents receive 5.1% fewer forward citations, and they 

create 5.2% less economic value in the three years following an attack. In 

contrast, in the three years following low-fatality attacks, the affected inventors 

file 1.1% more patents, their patents receive 3.7% more citations and they 

create 3.0% more economic value. Overall, the findings are consistent with my 

hypothesis, that high-fatality attacks lead inventors to become more risk-averse 

and less innovative, whereas low-fatality attacks lead inventors to become 

more risk-tolerant and more productive. 

In terms of control variables, firm size is positively associated with all 

three inventor innovation output measures, suggesting that large firms are able 

to produce more innovation output. Return on assets, capital investments, and 

cash holdings are also positively associated with innovation output, showing 

that more profitable firms, firms that invest more, and firms with large cash 

holdings, are more innovative. The significantly negative coefficients of firm 

age and book to market ratio indicate that young firms and growth firms are 

more innovative. Further, the coefficients of R&D expenses are significantly 

negative. This is likely to be due to the inclusion of inventor fixed effects, 

which may subsume some of the effects of R&D expenses. The reason could 

also be that the innovation output variables in my tests are at the inventor-level, 

whereas R&D expenses are measured at the firm-level, resulting in their 
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limited explanatory power. Regarding inventor-level controls, inventor tenure 

is negatively associated with innovation output. 

2.2.2. Robustness Tests 

To further verify my findings and exclude alternative explanations, I 

conduct a number of robustness checks. Some people may be concerned that 

my findings do not hold if I use a longer sample period or remove some of the 

filters on terrorist attacks. To address this concern, I construct an alternative 

sample starting from 1976, and I use all of the terrorist attacks that cause at 

least one fatality, regardless of whether the attack is covered by the major 

media. I re-estimate the baseline regression model for this alternative sample 

and report the results in Panel A of Table 2.4. The coefficient of the high-

fatality attack dummy remains negative and significant except for column (3), 

whereas the coefficient of the low-fatality attack dummy remains positive and 

significant across all three columns. 

Second, I use three fatalities rather than one fatality as the cut-off. The 

attacks causing more than three fatalities are defined as high-fatality attacks, 

and the remainder are defined as low-fatality attacks. I re-estimate the 

regression model using the new definitions and show the results in Panel B of 

Table 2.4. The coefficient of the high-fatality attack dummy remains 

significantly negative, whereas the coefficient of the low-fatality attack 

dummy remains significantly positive. 

 Third, following previous studies (e.g., Antoniou et al., 2016a), I use 

news coverage as the alternative measure of the severity of terrorist attacks. I 
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classify terrorist attacks as high-influence attacks if they were reported more 

than the sample median times by the major U.S. media outlets mentioned 

previously. The remainder of the terrorist attacks are defined as low-influence 

attacks. I obtain the number of news articles on terrorist attacks from Factiva. 

Then, I re-estimate the baseline model with definitions of the high-influence 

and low-influence attack dummies and present the results in Panel C of Table 

2.4. The coefficient of the high-influence attack dummy remains significantly 

negative, and the coefficient of the low-influence attack dummy remains 

significantly positive in all three columns.  

Fourth, I replace the future three years of innovation output with the 

future five years of innovation output as the dependent variables. Then, I re-

estimate the baseline regression model and report the results in Panel D of 

Table 2.4. The coefficient of the high-fatality (low-fatality) attack dummy 

remains negative (positive) and statistically significant in all of the regressions. 

Fifth, for one patent applied by N inventors, I count the patent as one 

for each inventor. To avoid the measurement error, in this robustness test, I 

count the patent as 1/N for each inventor. The number of citations received, 

and the economic value generated by this patent is also calculated as the 

original value divided by N for each patent. I updated the number of patents, 

the number of citations, and the total economic value of the patents produced 

by each inventor in each year using this new calculation approach, and then re-

estimate the baseline regression. The results are shown in Panel E of Table 2.4. 

The coefficient of the high-fatality attack dummy remains significantly 



 

30 
 

negative, whereas the coefficient of the low-fatality attack dummy remains 

significantly positive. 

Sixth, in my baseline analysis, I assign the inventor’s location 

information to the subsequent years when there is no patent record, because I 

can only observe the inventor’s location in a given year if he/she files at least 

one patent during that year. A potential problem is that the inventors may move 

to new locations during the zero patent years, which may result in inaccurate 

location information and potential bias in my estimations. I take four steps to 

mitigate this concern. First, I only keep non-zero patent observations so that I 

do not need to make any assumption on inventor location. Second, I exclude 

inventors that ever change their location during my sample period. Third, 

instead of using the previous location of inventors that ever move, I assign a 

new location (i.e., the location shown in the next patent filling) to zero-patent 

observations. Finally, instead of assigning the previous location to all 

subsequent zero-patent observations for inventors that ever move, I assign the 

previous location to the first half and new location to the second half of the 

zero-patent periods. The results of the robustness checks are presented in 

Panels F-I of Table 2.4. In almost all of these tests, the coefficient of the high-

fatality (low-fatality) attack dummy is negative (positive) and statistically 

significant, suggesting that my findings are not driven by the way I assign 

location information to zero-patent observations.  

[Insert Table 2.4] 
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Seventh, one could argue that my findings are driven by the negative 

shock of terrorist attacks on the local economy, which in turn affects firms’ 

ability to finance innovative projects. In the baseline regressions, I already 

control for firms’ innovation input, R&D spending, and several variables 

related to firms’ financial condition. To further mitigate the concern, I include 

a number of state-level macroeconomic variables in the robustness check, 

including state-level income, relative state unemployment rate, and the 

aggregate sales of all firms headquartered in the state. I obtain the state-level 

labor income data from the Bureau of Economic Analysis (BEA), the state-

level unemployment data from the Bureau of Labor Statistic (BLS), and the 

aggregate state-level firm sales from Compustat. I take the natural logarithm 

of the state-level labor income and aggregate state-level firm sales. The relative 

state unemployment rate is defined as the state-level unemployment rate in 

each year divided by the moving average of the state-level unemployment rate 

over the previous four years. The results are reported in Panel J of Table 2.4. 

They show that the coefficients of the high-fatality (low-fatality) attack 

dummy remain negative (positive) and statistically significant. This suggests 

that my baseline findings are not driven by the negative effect of terrorist 

attacks on the local economy.13 

Eighth, Antoniou et al. (2016b) find that managers affected by terrorist 

attacks tend to switch to more conservative corporate policies. For example, 

 
13 I conduct an additional test to examine whether terrorist attacks have significant influence on these 

macro-economic indicators. The results suggest that terrorist attacks do not significantly damage state-

level macro-economic conditions. 
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affected managers temporarily reduce R&D expenditures and long-term 

leverage, and increase cash holdings after terrorist attacks. Conservative 

corporate policies, in turn, may affect inventor productivity by reducing firm 

investments and risk-taking in innovation. As stated above, I already control 

for firm innovation input and several firm characteristics that are related to 

corporate policies. Nevertheless, there may still be some unobservable factors 

induced by conservative corporate policies that have a negative influence on 

inventor productivity. In the robustness check, I exclude inventors located in 

the same city as their firms’ headquarters, so that terrorist attacks affecting the 

inventors are less likely to also impact their firms’ policies. I present the results 

in Panel K of Table 2.4. The coefficients of the high-fatality (low-fatality) 

attack dummy remain significantly negative (positive), and the magnitudes are 

also similar to those in the baseline regression model in Table 2.3. Thus, I 

conclude that my findings are not driven by the influence of terrorist attacks 

on corporate policies. 

Ninth, terrorist attacks could have differential impact across industries. 

To ensure that the results are not driven by firms operating in industries that 

are more affected by terrorist attacks, such as aircraft and defense industries, I 

conduct analysis by removing the firms operating in these two industries and 

then re-estimate the baseline regression. The results are shown in Panel L of 

Table 2.4. The coefficients of the high-fatality (low-fatality) attack dummy 

remain negative (positive) and statistically significant, suggesting that my 

main findings remain robust. 
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Tenth, instead of using the full sample, I use a propensity score 

matched sample to further address the concern that my findings are driven by 

differences in the characteristics of affected and non-affected inventors. I 

calculate the propensity score based on firm size, inventor tenure, and the 

Fama-French 48 industries. To construct the matched sample, I use the nearest 

one to one matching, which allows me to match each affected inventor with an 

unaffected inventor sharing similar characteristics. I re-estimate the baseline 

regression model based on this matched sample. The results are presented in 

Panel M of Table 2.4. The coefficients of the high-fatality (low-fatality) attack 

dummy remain negative (positive) and the magnitudes are even larger than 

those in the full sample. 

Eleventh, given that my analysis is based on a sample of 736,699 

inventor-year observations, it is possible that any variable could generate a 

statistically significant result. I conduct two placebo tests to examine this 

possibility. First, I randomize the date and location of terrorist attacks and re-

estimate the baseline regression model for 100 times. Second, among the 18 

18 terrorist attacks, I randomly assign 8 attacks as high-fatality attacks and the 

remaining 10 attacks as low-fatality attacks, and then re-estimate the baseline 

regression model for 100 times. I report the mean of the coefficients and the 

standard errors of these placebo tests in Panel N and Panel O of Table 2.4, 

respectively. The results show that for both placebo tests, the mean coefficients 

of the high-fatality attack dummy and the low-fatality attack dummy are 
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statistically insignificant, indicating that my findings are not simply obtained 

by chance. 

Last, in the baseline regression, I exclude years 2009 and 2010 from 

the analysis due to the time lag between the patent application year and the 

grant year. To further alleviate the concern over truncation bias, I re-estimate 

the baseline model on a sample that ends in 2006 (i.e., excluding years 2007-

2010). The results, shown in Panel P of Table 2.4, suggest that my findings are 

not sensitive to truncation bias.  

 

2.3. Testing the Channel of the Effects 

I posit that high-fatality attacks cause inventors to become more risk-

averse and less innovative, whereas low-fatality attacks lead inventors to 

become more risk-tolerant and innovative. The findings in the baseline 

analysis are consistent with my hypothesis. To examine whether risk-taking is 

the channel through which terrorist attacks affect inventor productivity, I 

perform two analyses. In the first analysis, I examine whether inventors located 

in regions with different levels of risk tolerance vary in their responses to 

terrorist attacks. In the second analysis, I investigate whether terrorist attacks 

affect inventors’ innovation strategies. 

2.3.1. Local Attitudes Toward Risk 

Inventors have different personal characteristics and live in areas with 

varying cultural environments. The shocks of terrorist attacks on inventors’ 
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psychological states may vary depending on the inventors’ attributes. If risk-

taking is the channel through which terrorist attacks impact inventor 

productivity, I would expect risk-averse inventors to reduce their risk-taking 

activities more after high-fatality attacks because risk aversion could magnify 

their sensitivity to risks induced by high-fatality attacks. In this case, their 

innovation output would decrease more than it would for less risk-averse 

inventors. In contrast, after low-fatality attacks, risk-averse inventors should 

increase their risk-taking activities, but to a lesser extent, because their risk-

aversion mitigates their willingness to take extra risks. Consequently, their 

innovation output would increase, but less, following low-fatality attacks. 

I am unable to directly observe inventors’ personal characteristics due 

to the limited inventor information in the HBS patent inventor database. 

Nevertheless, I have information on the inventors’ locations, allowing me to 

infer their local social norms. Social norm theory suggests that individuals tend 

to conform to their peer groups so that social norms impact the behaviour of 

the local population (Kohlberg, 1984). Based on this, I test whether inventors’ 

reactions to high-fatality attacks and low-fatality attacks are affected by local 

risk aversion.  

Previous studies suggest that religious individuals have more 

conservative moral standards (Terpstra et al., 1993; Barnett et al., 1996; 

McGuire et al., 2012; Callen and Fang, 2015). They also exhibit greater anxiety 

and fear of uncertainty (Rokeach, 1968; Ahmad, 1973), which results in greater 

risk aversion in their decision making (Diaz, 2000; Miller, 2000; Steinman and 
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Zimmerman, 2004; Hilary and Hui, 2009; Boone et al., 2012). In addition to 

religiosity, gender is also related to individual reactions to emotional shock. 

Studies document that females are more sensational and anxious in the face of 

uncertain situations (Grossman and Wood, 1993; Kring and Gordon, 1998; 

Bradley et al., 2001; Stevens and Hamann, 2012), which results in their greater 

risk aversion in making decisions (Powell and Ansic, 1997; Byrnes et al., 1999; 

Hartog et al., 2002; Eckel and Grossman, 2008). Further, psychology studies 

show that exposure to violent environments may lead people to become more 

aggressive, and thus more risk-loving (e.g. Fantuzzo and Mohr, 1999; Holt et 

al., 2008). As a result, I expect inventors living in areas with higher levels of 

religiosity, larger proportions of female residents, and lower murder rates to 

experience a larger decline in productivity after encountering high-fatality 

attacks, and a smaller increase in productivity after experiencing low-fatality 

attacks.  

Using the inventor location information in the HBS patent inventor 

database, I determine the county and state in which each inventor lives. I then 

merge the inventor data with the religiosity data from the American Religion 

Data Archive (ARDA), the male-female data from the U.S. Census Bureau, 

and the murder rate data from the FBI’s uniform crime reporting (UCR) 

program. The religiosity ratio (Religiosity) is defined as a dummy variable 

equal to one if the inventor lives in a county where the ratio of religious people 

is higher than the sample median. The male-female ratio (Male-female) is a 

dummy variable equal to one if the inventor lives in a county where the male-
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female ratio is higher than the sample median. Murder rate (Murder) is a 

dummy variable equal to one if the inventor lives in a state where the murder 

rate is higher than the sample median.14 I interact the high-fatality and low-

fatality attack dummies with the three variables, respectively, and include the 

interaction terms in the baseline regression model. The regression results are 

presented in Table 2.5.   

[Insert Table 2.5] 

Columns (1)-(3) of Table 2.5 show that the coefficient of 

High*Religiosity is negative and significant in all three regressions, suggesting 

that the productivity of inventors living in regions with higher levels of 

religiosity declines more after high-fatality attacks. The coefficient of 

Low*Religiosity is negative and significant in columns (1)-(3), providing 

evidence that inventors living in regions with higher levels of religiosity have 

a lower increase in productivity after low-fatality terrorist attacks. Columns 

(4)-(6) show that the coefficients of both interaction terms (High*Male-

Female and Low*Male-Female) are significantly positive in all of the 

regressions, indicating that inventors living in regions with higher proportions 

of female residents, react more negatively to high-fatality attacks and less 

positively to low-fatality attacks. Last, columns (7)-(9) show that the 

coefficients of both interaction terms (High*Murder and Low* Murder) are 

positive and significant in all the regressions as well, which is consistent with 

 
14 I use the state-level murder rate instead of the county-level murder rate due to the unavailability of 

accurate county-level data. 
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the argument that inventors living in regions where violence is low are more 

affected by high-fatality attacks and less affected by low-fatality attacks. 

Overall, the findings displayed in Table 2.5 are consistent with my expectation 

that high-fatality attacks have stronger impacts and low-fatality attacks have 

weaker impacts on local inventors’ productivity when inventors are subject to 

more risk-averse social norms. The findings also suggest that risk-taking is the 

channel through which terrorist attacks affect inventor productivity. 

2.3.2. Innovation Strategies 

I document in the baseline analysis that inventors affected by high-

fatality (low-fatality) terrorist attacks have lower (higher) productivity due to 

increased (reduced) risk aversion in the innovation process after such attacks. 

In this section, I perform tests on inventors’ innovation strategies to further 

investigate whether risk-taking is the primary channel through which terrorist 

attacks affect inventor productivity.  

The innovation process is unavoidably associated with risk and there 

are significant variations in risk-taking among different innovation strategies. 

Usually, an exploration innovation strategy (i.e., a strategy that pursues 

inventions in unfamiliar fields) is associated with greater risk than an 

exploitation innovation strategy (i.e., a strategy that innovates based on the 

inventor’s existing knowledge and expertise). March (1991) argues that 

exploitation is characterized by refinement, choice, production, efficiency, 

selection, implementation, and execution, whereas exploration is captured by 

search, variation, risk-taking, experimentation, flexibility, and discovery. If 
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high-fatality (low-fatality) terrorist attacks affect inventor productivity 

primarily by reducing (increasing) inventor risk-taking incentives, I would 

expect inventors to be more reluctant (willing) to enter into new fields after 

experiencing high-fatality (low-fatality) terrorist attacks. Thus, the effects of 

terrorist attacks should be stronger for exploratory innovation than exploitative 

innovation.  

As described in Section 2.1.2, I use the number of explorative patents 

(LnExplore) and average patent originality (Originality)to measure inventors’ 

explorative innovation strategies, and the number of exploitative patents 

(LnExploit) and average patent generality (Generality) to measure inventors’ 

exploitative innovation strategies. I re-estimate the baseline regression model 

with the two variables as the dependent variable, respectively. The results are 

presented in Table 2.6.  

[Insert Table 2.6] 

Column (1) and (2) of Table 2.6 shows that the coefficients of the high-

fatality (low-fatality) terrorist attack dummy are negative (positive) and 

statistically significant when the number of explorative patents and average 

patent originality are the dependent variable. The results indicate that inventors 

reduce (increase) their explorations of unfamiliar fields after experiencing 

high-fatality (low-fatality) terrorist attacks. In column (3), where the number 

of exploitative patents is the dependent variable, the coefficient of the high-

fatality attack dummy is less significant and the magnitudes are also much 

smaller, whereas the coefficient of the low-fatality attack dummy becomes 
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insignificant. In column (4), where the average patent generality is the 

dependent variable, the coefficients of both high-fatality attack dummy and 

low-fatality dummy are insignificant. This suggests that inventors make less 

change to innovation efforts using their existing knowledge and expertise after 

experiencing terrorist attacks. Overall, the findings demonstrate that terrorist 

attacks influence inventors’ productivity primarily by changing their 

incentives to explore new and unfamiliar fields of research. This is consistent 

with the risk-taking channel in which inventors become more (less) risk-averse 

after being affected by high-fatality (low-fatality) terrorist attacks.  

 

2.4. Additional Analysis 

In this section, I conduct a number of additional analyses to further 

investigate the effect of terrorist attacks on inventor productivity. First, I 

examine whether the effect of terrorist attacks on inventor productivity 

diminishes when the geographical distance between the inventor and the 

attacks are larger. Then, I explore whether inventors are more likely to move 

to another location after the occurrence of a terrorist attack in their local area.  

2.4.1. Test of Geographical Distance 

In this test, I investigate whether the effect of terrorist attacks on 

inventor productivity becomes weaker when the attacks are more 

geographically distant from the inventors. As terrorist attacks occurring in 

more remote areas are usually less salient to individuals (Antoniou et al., 2016a; 

Antoniou et al., 2016b), I expect the emotional shocks associated with terrorist 
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attacks to diminish when the distance between the inventor and the attack is 

larger. To perform the test, I include in my baseline regression model the 

variables High(0 to 100miles), High(100 to 150miles) and High(150 to 

200miles), which are dummy variables equal to one if an inventor is located 

less than 100 miles, 100-150miles, and 150-200 miles from an high-fatality 

terrorist attack, respectively. Similarly, I include Low(0 to 100miles), Low(100 

to 150miles) and Low(150 to 200miles), and then re-estimate the baseline 

regression model.  

[Insert Table 2.7] 

The results shown in Table 2.7 indicate that the negative (positive) 

effect of high-fatality (low-fatality) attacks is mainly limited to inventors living 

within 100 miles of the terrorist attacks. This finding confirms that the effect 

of terrorist attacks on inventor productivity is greater when the attacks are more 

salient and generate stronger psychological shocks to inventors.  

2.4.2. Inventor Relocation 

Prior studies show that high skilled workers such as inventors are quite 

mobile in general (Miguelez and Fink, 2013; Akcigit et al., 2016). Therefore, 

it is likely that the emotional shocks associated with terrorist attacks not only 

reduce inventor productivity, but also induce inventors to move to other places. 

In the second additional test, I examine whether inventors have a higher 

propensity to move to another city after experiencing terrorist attacks.  
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As I can only observe an inventor’s location when he/she files a patent, 

I restrict the sample for this test to those with at least two years of consecutive 

patent records. Thus, this test is performed on a relatively small sample. I 

construct the inventor move dummy (Inventor Move) as a dummy variable 

equal to one if the inventor moves to another city (i.e., the inventor is located 

in a different city than the previous year), and zero otherwise. Further, I 

investigate the direction of the inventors’ moves. If inventors move because of 

the emotional shocks associated with terrorist attacks, they are more likely to 

move to more peaceful cities (i.e., cities having no previous experience with 

significant terrorist attacks), rather than to cities with a significant history of 

terrorist attacks. To perform the test, I construct two dummy variables. The 

move to attack dummy (Move to Attack) is a dummy variable equal to one if 

the inventor moves to a city with a significant terrorist attack history,15 and 

zero otherwise. The move to peace dummy (Move to Peace) is a dummy 

variable equal to one if the inventor moves to a city without a significant 

terrorist attack history, and zero otherwise. 

[Insert Table 2.8] 

I perform a Logit regression, with the dependent variable being the 

three dummy variables, respectively. I include all of the control variables in 

Equation (1), in addition to the state-level income, relative state unemployment 

rate and state-level total sales. I further include year, state, and industry fixed 

 
15 I define a city as having a significant terrorist attack history if at least one terrorist attack 

with a casualty happens there. 
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effects. The regression results are presented in Table 2.8. Column (1) shows 

that the coefficient of the high-fatality attack dummy is positive and 

statistically significant, but the coefficient of the low-fatality attack dummy is 

insignificant, suggesting that inventors are more likely to move to new places 

only after experiencing high-fatality attacks. With regard to the direction of 

inventor moves, columns (2) and (3) show that the coefficient of the high-

fatality attack dummy is insignificant when the move to attack dummy is the 

dependent variable, and positive and significant when the move to peace 

dummy is the dependent variable. This suggests that inventors are only more 

likely to move to cities with a peaceful environment after experiencing high-

fatality attacks. Further, the results show that the low-fatality attacks have no 

such effect on inventors’ moving decisions.16 

Overall, the results suggest that high-fatality attacks not only reduce 

the productivity of local inventors, but also give rise to inventor departures to 

more peaceful places. Given the importance of human capital in the innovation 

process, the findings of this section document another channel through which 

terrorist attacks affect local innovation and then local economic growth.  

 

 
16 I re-estimate the inventor relocation regression by excluding the relocations that are likely 

to be caused by inventors moving to the city where the firms’ headquarters is located. My 

findings in Table 2.8 remain robust. 
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2.5. Conclusion 

This study shows that low-fatality (high-fatality) terrorist attacks have 

a positive (negative) influence on the innovation performance of the inventors 

who are located nearby.  

Based on the findings of Bernile et al. (2017), I conjecture that attack-

induced change in individuals’ attitudes towards risk is the transmission 

mechanism for this effect, i.e., high-fatality attacks increase witnesses’ 

concerns of risk, leading affected inventors to become more risk-averse and 

less innovative, but low-fatality attacks make witnesses less sensitive to risk, 

causing affected inventors to take more risks and hence become more 

innovative. 

Analysing U.S. inventor-level data, I provide compelling empirical 

evidence to support my hypothesis. Specifically, I find that after experiencing 

a low-fatality (high-fatality) terrorist attack, inventors tend to produce 

significantly more (fewer) patents during the three years after the attack than 

before, and that their patents receive more (fewer) forward citations and 

generate more (less) economic value. To augment my main findings, I conduct 

a battery of robustness tests to ensure that my results are not induced by the 

misallocation of the inventors’ residential location, and to exclude other 

possible explanations.  

Next, I perform two sets of analyses to examine whether risk-taking is 

the channel for the effect of terrorist attacks. I show that the positive (negative) 

effect of low-fatality (high-fatality) attacks is more (less) pronounced for 
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inventors living in regions with a more risk-taking culture (e.g., regions with a 

greater proportion of male residents, a relatively high murder rate, or a lower 

level of religiosity). I also find that after experiencing low-fatality (high-

fatality) terrorist attacks, inventors significantly increase (reduce) their 

exploratory activities, whereas the change in their exploitive activities is much 

less significant. The findings are consistent with the risk-taking channel. In 

additional tests, I find that terrorist attacks that are geographically closer to 

inventors have a stronger effect on inventor productivity. I further show that 

inventors are more likely to move to places without any significant history of 

terrorist attacks after experiencing high-fatality attacks. 

Overall, this study shows the nonmonotonic effects of terrorist attacks 

on innovation because high-fatality attacks cause people to make risk-averse 

choices, while low-fatality attacks engender risk-seeking choices. My findings 

highlight the vulnerability of inventors, revealing the need for disaster 

management so that firms can care for their inventors if and when a high-

fatality terrorist attack occurs. Although terrorist attacks create destruction in 

society, this study also reveals that low-fatality attacks appear to make 

inventors “stronger” and more innovative. 
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Chapter 3 Air Pollution and Inventor Productivity 

In this chapter, I investigate whether reducing air pollution has an effect 

on inventor productivity. The rest of this chapter organized as follows. Section 

3.1 introduces NOx budget trading program (NBP), which is used as a quasi-

experiment in this study. Section 3.2 describes the data, sample, and variables. 

Section 3.3 shows the main empirical results. Section 3.4 presents the results 

of cross-sectional analyses. Section 3.5 reports the results of channel tests and 

Section 3.6 presents the results of additional analyses. Section 3.7 concludes 

this chapter.  

 

3.1. Air pollution and NOx budget trading program 

According to EPA, “ground-level ozone is created by chemical reactions 

between oxides of nitrogen (NOx) and volatile organic compounds (VOC). 

This happens when pollutants emitted by cars, power plants, industrial boilers, 

refineries, chemical plants, and other sources chemically react in the presence 

of sunlight.” While ozone has the same chemical structure whether it occurs 

miles above the earth or at ground-level, ground-level ozone is considered 

"bad" because it has negative impacts on people and environment. Specifically, 

breathing ozone can trigger a series of health problems, such as chest pain, 

coughing and reduced lung function. Ground-level ozone is also harmful to the 

sensitive vegetation and ecosystems. In addition to contributing to the 

formation of ground-level ozone, NOx itself is one of the main air pollutants. 
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NOx contributes to a series of environmental problems, such as the formation 

of acid rain, smog, and elevated PM2.5.  

The NBP is a cap and trade program designed to reduce NOx emissions 

in eastern U.S. states during the summer ozone season (i.e., May 1 through 

September 30), when ground-level ozone concentrations are highest. 

Specifically, this market-based program sets a regional cap on NOx emissions 

from power plants and other large combustion sources during the ozone season. 

To meet the cap, sources are required to reduce emissions significantly below 

baseline levels in each participating state. States allocate allowances (each 

allowance equals one ton of emissions) to sources and sources then use 

emissions trading to achieve the most cost-efficient reductions possible.  For 

example, they can install emissions control equipment, switch to low NOx 

burners, or buy emission allowances through the open market. If emissions are 

below the cap levels, sources can "bank" unused allowances and use or trade 

the banked allowances to cover emissions in a subsequent ozone season. 

Eight north-eastern states (Connecticut, Delaware, Maryland, 

Massachusetts, New Jersey, New York, Pennsylvania, and Rhode Island) and 

District of Columbia started to implement the NBP on May 1, 2003. Then, 

eleven states (Alabama, Illinois, Indiana, Kentucky, Michigan, North Carolina, 

Ohio, South Carolina, Tennessee, Virginia and West Virginia) joined this 

program on May 31, 2004. Figure 3.1 shows the implementation of the NBP 

among the U.S. states. 

[Insert Figure 3.1] 
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According to EPA, the NBP dramatically reduced NOx emissions from 

power plants and industrial sources during the summer months, contributing 

significantly to improvements in ozone air quality in eastern U.S. states.17  For 

example, a case study conducted by the Maryland Department of the 

Environment (MDE), cooperated with the University of Maryland, finds that 

NOx emissions reductions driven by the implementation of the NBP 

dramatically decreased the observed ground-level ozone concentrations and, 

as a result, the air quality in Maryland has enhanced remarkably since the 

implementation of the NBP. Also, EPA designated 126 areas as nonattainment 

for the 8-hour ozone standard in April 2004, of which 104 are in the east. 

Although there are still 35 nonattainment areas in the east in 2007, the 

concentrations have fallen by 7% on average for these areas.  

As shown in Figure 3.2, ozone season NOx emissions from all NBP 

sources decreased monotonically and dramatically since 2003. In 2007, the 

NOx emissions from NBP sources are only about 506,000 tones, around 60% 

below that in 2000, and 74% below that in 1990. Because most of the 

reductions in NOx emissions occurred after 2003, it is obvious that the NBP 

plays an important role in improving air quality in eastern U.S. states. EPA 

estimates that more than 78 million American citizens living in these areas are 

experiencing improved air quality. In a recent study, Deschênes et al. (2017) 

find that the NBP decreases the pharmaceutical expenditures and mortality 

 
17 Beginning in 2009, the NBP was effectively replaced by the ozone season NOx program 

under the Clean Air Interstate Rule, which required further summertime NOx reductions from 

the power sector. 
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rates, suggesting that the NBP indeed reduces air pollutions of participating 

states, which, in turn, improves local people’ health conditions. 

[Insert Figure 3.2] 

 

3.2 Data and Sample 

3.2.1. Sample Construction 

I collect the patent data along with the inventor information from the 

Harvard Business School (HBS) patent inventor database (Li et al., 2014). This 

database records every patent granted by the U.S. Patent and Trademark Office 

(USPTO) during the period from 1976 to 2010. From the database, I obtain 

detailed information of the inventor(s) of each patent, including their names 

and cities of residence and zip codes. Using a disambiguation algorithm 

approach, the database allocates each individual inventor a unique identifier, 

which enables me to track the innovation record of each inventor, along with 

his/her accurate residential information. To account for the heterogeneity 

among inventors, I need to control for innovation inputs and characteristics of 

the firms where the inventors work. Thus, I restrict my main analysis to 

inventors affiliated with U.S. publicly listed firms. Patent inventors are 

matched to U.S. publicly listed firms based on the patent data of Kogan et al. 

(2017), which provides the CRSP firm identifier for each patent. I collect the 

financial data of these publicly listed firms from Compustat. I also employ the 

forward citations data and patent value data from Kogan et al. (2017) to 

measure the scientific and economic values of inventors’ innovation output. 
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Because the inventor appears in the HBS patent inventor database only 

when he/she files a patent, my original sample consists of inventor-year 

observations in which the underlying inventor files at least one patent during 

the year. I identify the first and last year an inventor files patents in the patent 

inventor dataset. Then, I assign a value of zero to the inventor’s innovation 

output variables for the years in between and without any patent record. In this 

way, I create a consecutive time-series data for all the inventors. Since an 

inventor’s residential information is available only when he/she files a patent, 

I assign the inventor’s most recent residential information to the years when 

the inventor does not have any patent record. I use the application year of the 

patents instead of the grant year as the time indicator in my empirical analysis, 

because the application year is closer to the time when the new technology is 

invented.18  

Since innovation is a long-term process, it takes time for the NBP to 

generate a real effect on inventors’ innovation output. Therefore, I examine 

three years before and three years after the implementation of the NBP in the 

empirical analysis. Specifically, I exclude 2003 and 2004 from the analysis 

because these two years are the implementation years of the NBP. I set 2000 

to 2002 as the pre-treatment period and 2005 to 2007 as the post-treatment 

period. Following Deschênes et al. (2017), I exclude states that are adjacent to 

the NBP states in my empirical analysis, including Wisconsin, Iowa, Missouri, 

Gerorgia, Mississippi, Manie, New Hampshire, and Vermont. Even though 

 
18 Hall, Jaffe, and Trajtenberg (2001) note that the application year is a better indicator of the 

actual innovation date. 
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these states did not participate in the NBP, the air quality in these states may 

also be affected by the program. As a result, I classify the inventors located in 

the NBP participating states as the treatment group, and the remaining 

inventors excluding those living in excluded adjacent states as the control 

group.19 My final sample spans the period 2000 to 2007 (excluding 2003 and 

2004) and includes 34,340 unique inventors from 1,276 publicly listed firms.  

3.2.2. Variables 

I employ three measures for an inventors’ innovation output. The first 

measure, the number of patents, is calculated as the number of newly filed 

patents by the inventor during the year that are eventually granted. The second 

measure is the number of citations, which is calculated as the sum of the 

forward citations received by all the newly filed patents by the inventor during 

the year. Prior studies show that forward citations received by a patent reflect 

the patent’s scientific value, where breakthrough patents are expected to 

receive more citations as compared to less ground-breaking patents (Hall et al., 

2001; Hall et al., 2005; Aghion et al., 2013). The third measure is total patent 

value, calculated as the sum of the economic value of all the newly filed patents 

by the inventor during the year. Following Kogan et al. (2017), the patent value 

measure is calculated as the increase in the market value of the firm (after 

adjusting for benchmark returns) in a three-day window following the patent 

grant announcements. Since the three innovation output measures are highly 

skewed, I take the natural logarithm of one plus number of patents (LnPat), 

 
19 If the inventor has ever moved between the NBP states and the non-NBP states, I classify 

he/she as a treated inventor if he/she lived in a NBP state in 2003 or 2004.  
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number of citations (LnCit), and total patent value (LnPatVal), respectively, 

and use these log transformed measures in the analysis.  

To examine inventor’s innovation strategies, I construct variables 

capturing inventors’ propensity to pursue experimentation versus 

specialization strategies in innovation. First, I follow Benner and Tushman 

(2002) and calculate the number of exploratory and exploitative patents filed 

during the year, respectively. A patent is defined as an exploratory patent if 

more than 60% of its backward citations are outside of the inventor’s existing 

knowledge base. A patent is defined as an exploitative patent if more than 60% 

of its citations are within the inventor’s existing knowledge base. An inventor’s 

existing knowledge base is defined as the combination of the inventor’s patents 

and the patents that have been cited by the inventor’s previous patents. As an 

alternative measure of the inventor’s experimentation strategy, I follow 

Balsmeier et al. (2017) and define first patents as the number of newly filed 

patents during the year that belong to the technology class that the inventor has 

never filed before. I also employ self-citations as an alternative measure of the 

inventor’s specialization strategy. Following Chava et al. (2013) and 

Balsmeier et al. (2017), I define self-citations as the number of citations made 

by the inventor’s newly filed patents that cite his/her previous patents. Since 

exploratory patents and first patents are outside of the inventor’s expertise, 

they reflect inventors’ efforts to pursue innovation in new fields (i.e., 

experimentation strategy). In contrast, exploitative patents and self-citations 

are based on the inventor’s expertise. Thus, they capture inventors’ tendency 
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to be specialized in existing fields (i.e., specialization strategy). Similarly, I 

take the natural logarithm of one plus number of explorative patents 

(LnExplore), number of exploitative patents (LnExploit), number of first 

patents (LnFirstPat), and number of self-citations (LnSelfcite), respectively. 

My analysis is based on a sample of inventors affiliated with U.S. public 

firms, which enables me to control for a set of firm-level variables in the 

analysis. First, since large firms usually generate more patents and citations 

(Hall and Ziedonis, 2001), I include firm size (Firm Size), defined as the 

natural logarithm of total assets, in the control set. To control for firm 

innovation input, I include R&D expenses (R&D), defined as R&D 

expenditures scaled by total assets. Following prior studies (e.g., Hirshleifer et 

al., 2012), I set R&D expenses of observations with missing R&D information 

in Compustat to zero. I also control for the firm’s capital investments (CapEx), 

defined as capital expenditures scaled by total assets; return on assets (ROA), 

defined as earnings before interest and tax divided by total assets; cash 

holdings (Cash), defined as cash and short-term investments scaled by total 

assets; and, leverage ratio (Leverage), defined as book value of debt scaled by 

total assets. To control for firm growth opportunities, I include book-to-market 

ratio (Book-to-market), defined as book value of equity scaled by market value 

of equity. Last, I control for the effect of firm life cycle by including firm age 

(Firm Age), defined as natural logarithm of the number of years elapsed since 

the first year that the firm appeared in the Compustat database. Since 

information about inventor characteristics is limited, inventor tenure (Tenure) 
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is the only inventor-level variable I control for, which is defined as the natural 

logarithm of one plus the number of years between the year that the inventor 

enters the patent database and the observation year. Detailed descriptions of all 

the variables in the analysis are shown in the Appendix. 

3.2.3. Descriptive statistics 

Table 3.1 reports the descriptive statistics of the key variables in the 

empirical analysis. I present the descriptive statistics of the inventors in the 

treatment and the control groups separately. The treatment group (64,417 

inventor-years) has a smaller number of observations than the control group 

(85,287 inventor-years). For treated inventors, the mean values of LnPat and 

LnCit are 0.63 and 0.95, which correspond to 0.87 patents and 1.59 forward 

citations, respectively. While for controlled inventors, the mean values of 

LnPat and LnCit are 0.69 and 1.18, which correspond to 0.99 patents and 2.25 

forward citations, respectively. Regarding the patent value measure, the mean 

value of LnPatVal is 1.76 for treated inventors and 1.78 for controlled 

inventors, corresponding to $4.81 million and $4.93 million, respectively. 

Furthermore, the mean values of LnExploit, LnExplore, LnSelfcit, and 

LnFirstPat are 0.20, 0.42, 0.22, and 0.27, respectively, for the treated inventors. 

For the controlled inventors, the corresponding values are 0.24, 0.45, 0.30 and 

0.25, respectively. 

With regard to the control variables, on average, Firm Size for the 

treatment group is 9.81 and R&D is 0.06. As for the control group, Firm Size 

is 9.10 and R&D is 0.09. The average ROA, Leverage, CapEx, Book-to-Market, 
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Cash, and Firm Age for the firms in the treatment group are 0.13, 0.27, 0.05, 

0.30, 0.14, and 3.59, respectively. For the firms in the controlled group, the 

mean values of the corresponding variables are 0.15, 0.14, 0.05, 0.29, 0.27 and 

3.22, respectively. In addition, the mean value of inventor tenure is 2.00 and 

1.81 for the treated and the controlled inventors, corresponding to 6.39 years 

and 5.11 years, respectively, suggesting a relatively long time-series data for 

the average inventor in both the treated and the controlled group.  

[Insert Table 3.1] 

 

3.3. Empirical Results 

3.3.1. Baseline Analysis 

I employ the difference-in-difference (DiD) estimation approach as my 

main identification strategy to examine whether air pollution has a real effect 

on treated inventors’ innovation output. First, I perform a univariate analysis 

of the changes in innovation output around the implementation of the NBP. I 

calculate the average values of each innovation output (i.e., LnPat, LnCit, and 

LnPatVal) measure for treated inventors and controlled inventors in each year, 

respectively, and plot the average values in Figure 3.3. The graphs show that 

in the pre-NBP period (i.e., 2000-2002), inventors in the control group have 

higher average innovation output than inventors in the treatment group and the 

average values of the two groups are almost parallel. In the post-NBP period 

(i.e., 2005-2007), the differences between the two groups are smaller and 

smaller over time, and even reversed for the total patent value measure. The 
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findings are consistent with my hypothesis that treated inventors have greater 

increase in innovation output relative to controlled inventors after the 

implementation of the NBP. 

[Insert Figure 3.3] 

Next, I perform a multivariant regression analysis with the regression 

specification as follows: 
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(2) 

where subscript i and t denotes inventor i and year t; and ε is the error term. 

State denotes state fixed effects, Inventor denotes inventor fixed effects, Year 

denotes year fixed effects, and Industry denotes industry fixed effects. 

Innovation is the three innovation output variables (i.e., LnPat, LnCit, and 

LnPatVal). The treatment dummy (Treat) is a dummy variable equal to one if 

the inventor belongs to the treatment group (i.e., inventors located in the NBP 

participating states), and zero if the inventor belongs to the control group (i.e., 

remaining inventors excluding those living in adjacent states). The post 

dummy (Post) is a dummy variable equal to one for the post-NBP period (i.e., 

2005-2007), and zero for the pre-NBP period. (i.e., 2000-2002). The 

independent variable of interest is Treat*Post, which is the product of two 

dummy variables, Treat and Post. The interaction term Treat*Post captures 

the changes in innovation output of the treated inventors, relative to the 

controlled inventors, around the implementation of the NBP. I do not include 
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the Treat and Post as independent variables in the regression model because 

the inventor fixed effects and year fixed effects absorb the effects of Treat and 

Post, respectively. All independent variables except for Treat*Post are lagged 

one year relative to the dependent variable.20 The regressions are performed by 

ordinary least squares, with standard errors clustered at the inventor level.21 

 [Insert Table 3.2] 

Table 3.2 reports the regression results for the baseline analysis. Column 

(1) shows that the coefficient of Treat*Post is positive and statistically 

significant at the 1% level (coefficient 0.028 with t-statistics 4.00) in the LnPat 

regression, suggesting that treated inventors generate more patents after the 

implementation of the NBP as compared to controlled inventors. In columns 

(2) and (3), the coefficient of Treat*Post is positive and significant as well in 

the LnCit regression (coefficient 0.118 with t-statistics 7.38) and LnPatVal 

regression (coefficient 0.147 with t-statistics 7.74), indicating that the 

implementation of the NBP not only improves the quantity but also the quality 

of patents produced by treated inventors. In terms of economic significance, 

treated inventors file 2.8% more patents, and their patents receive 11.8% more 

forward citations and create 14.7% higher economic value relative to 

controlled inventors after the implementation of NBP. Therefore, the effect of 

the NBP on inventor innovation is also economically sound. 

 
20 Using one year’s lag is reasonable because it takes time for the inventors to generate patents. 

Besides, one year’s lag is widely used in empirical innovation studies (e.g. Balsmeier et al., 

2017, and Bhattacharya et al., 2017). 
21 The results are similar when the standard errors are two-way clustered by inventor and year. 
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In terms of control variables, Firm Size and Cash are positively 

associated with all three inventor innovation output measures, suggesting that 

inventors affiliated with larger firms and firms with more cash holdings – 

which tend to have more resources – are able to produce more innovation 

output. Furthermore, Book-to-Market and Firm Age are negatively associated 

with innovation output, implying that inventors, who work in growth firms and 

younger firms, are more innovative. Regarding inventor-level control, the 

coefficient of Tenure is significantly negatively, suggesting that inventors with 

longer tenure become less innovative.  

Overall, the results in the baseline analysis suggest that the 

implementation of the NBP makes inventors located in the NBP participating 

states more productive in innovation. This is consistent with my expectation 

that reducing air pollution improves inventors’ mood and hence their risk-

taking behaviour. Because risk-taking is a key determinant of firm innovation 

success, inventors become more innovative after experiencing a reduction in 

air pollution. 

3.3.2. Robustness Tests 

To check the validity of my results and exclude alternative explanations, 

I conduct a number of robustness tests. In the first set of tests, I examine 

whether my results are sensitive to alternative sample. In the baseline analysis, 

I assign a value of zero to the innovation output variables for the years without 

any patent record and between the first year and that last year that the inventor 

files a patent. To assure that my results are not driven by this treatment, I only 
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keep non-zero patent observations in the sample and re-estimate the baseline 

analysis on this sample. I present the results in Panel A of Table 3.3 and obtain 

consistent findings.  

Next, some inventors in my sample have ever moved between the NBP 

states and the non-NBP states during my sample period, which makes their 

treatment status more ambiguous. To address the concern that my findings are 

affected by such inventors, I drop these inventors from the sample and then re-

estimate my baseline regression. I report the results in Panel B of Table 3.3 

and my findings hold.  

Further, my baseline difference-in-difference test is conducted upon an 

unbalanced sample (i.e., an inventor can have missing data within sample 

years). To make sure that my results are not driven by such unbalance, I re-

estimate my difference-in-difference test on a balanced sample, where I require 

inventors must have non-missing data three years before and three years after 

the implementation of the NBP. The results are reported in Panel C of Table 

3.3 and are consistent with those based on the full (i.e., unbalanced) sample.  

Instead of using the full sample, I also use a propensity score matched 

sample in the robustness test to address the concern that my findings are driven 

by differences in characteristics among treated and controlled inventors. I use 

firm size, inventor tenure and Fama-French 48 industries to generate the 

propensity score. To construct the matched sample, I use nearest one-to-one 

matching, which allows me to match each affected inventor with an unaffected 

inventor sharing similar characteristics. I re-estimate the baseline regression 



 

60 
 

model based on this matched sample. The results are presented in Panel D of 

Table 3.3. Once again, the results are consistent with the full sample. 

Last, I only focus on those states joining the program in 2003 as it is 

possible that inventors in other states may anticipate the implementation of 

NBP so exogeneity could be weakened. To address this concern, I exclude the 

states joining the program in 2004 from the sample and then re-estimate the 

baseline regression. I present the results in Panel E of Table 3.3 and my main 

findings remain robust. 

In the second set of tests, I examine whether my results are sensitive to 

alternative regression specifications. In my baseline analysis, I exclude year 

2003 and 2004 because the post status for these two years are ambiguous. 

However, it is possible that the NBP have already partially affected inventors’ 

innovation output during these two years. To take this into account, I include 

2003 and 2004 in the analysis. I set Post equal to 0.5 for these two years and 

re-estimate the baseline test. The results are shown in Panel F of Table 3.3 

which are similar to those in the baseline regression.  

Second, for one patent applied by multiple inventors, the patent count 

is recorded as one for each inventor. People may complain that this approach 

will lead to biased up innovation output measures at inventor level, and thus 

inaccurate regression estimates. To address this concern, in this robustness test, 

I count the patent as 1/N for each inventor, where N is the number of inventors 

for each patent. I also re-calculate the number of citations received, and the 

economic value generated for each patent using this new approach, and then 
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update the inventor-level measures. Then, I use these updated innovation 

output measures as dependent variables and re-estimate the baseline regression. 

The results are shown in Panel G of Table 2.4. My findings still hold. 

Further, to mitigate the concern that my results are obtained from biased 

estimates due to that the dependent variables in the baseline regression are 

positively serially correlated, I follow Bertrand et al. (2004) and collapse the 

innovation output variables by NBP implementation. For each firm, I calculate 

the sum of the innovation output variables across all years in the pre-NBP 

period and post-NBP period, respectively. I also calculate the average value of 

control variables across all years in the two periods as well. Then, I collapse 

the sample of inventor-year observations into a sample of inventor-period 

observations. I re-estimate the baseline regression on this sample and report 

the results in Panel H of Table 3.3. My findings hold. 

[Insert Table 3.3] 

In the third set of tests, I investigate whether my findings are driven by 

economic changes induced by the implementation of the NBP. It is possible 

that the NBP impacts inventor productivity through affecting the local 

economy or the business operations and corporate policies of the affiliated 

firms, which in turn affects firms’ ability to finance innovation projects. In the 

baseline analysis, I focus on inventors affiliated with public firms so that I can 

control for a number of firm characteristics that might affect inventor 

productivity. I further address this issue using the following five tests.  
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First, to ensure that the results are not driven by firm policies, I directly 

examine the relation between the adoption of NBP and corporate risk taking, 

such as R&D, and policies that may affect inventor performance, i.e., corporate 

social responsibility. The regression is performed at firm-level. All controls 

except inventor tenure, firm fixed effects and year fixed are included. The 

regression results are displayed in Panel I of Table 3.3. I find that the adoption 

of NBP does not have a significant influence on firms’ R&D or corporate social 

responsibility, indicating that my findings are less likely to be driven the 

effects of the implementation of NBP on firm policies. 

Prior studies (Palmer et al., 2001; Linn, 2010) show that because of the 

imposed restrictions on NOx emissions, the NBP most directly affects firms in 

the utility industry, especially power plants. Thus, I exclude inventors that 

work in utility firms from the sample, and then re-estimate the baseline 

regression. The results are shown in Panel J of Table 3.3. All my findings hold.  

Next, EPA (1999) and Platts Research and Consulting (2003) predicted 

that the NBP may increase electricity prices which may affect manufacturing 

firms’ business operations. Thus, I exclude inventors working in 

manufacturing firms from the sample, and then re-estimate the baseline 

regression. I present the results in Panel K of Table 3.3 and my findings still 

hold.  

In addition, the adoption of NBP may have adverse impact on the 

innovation output of inventors from healthcare, medical equipment or 

pharmaceutical products industries, as they may have been trying to develop 



 

63 
 

medicines or pharmaceutical products against diseases related to air pollution 

before the NBP, but may discontinue afterwards. To ensure my estimates in 

baseline regression are not biased by this possibility, I exclude inventors from 

these industries and then re-estimate the baseline model. The results are 

presented in Panel L of Table 3.3 and my findings hold. 

Further, I include a number of state-level macroeconomic variables to 

mitigate the concern that my findings are driven by changes in local economic 

conditions. These variables include state-level income, state GDP growth, 

relative state unemployment rate, and aggregate sales of all firms 

headquartered in the state. I obtain the state-level labor income and GDP 

growth data from Bureau of Economic Analysis (BEA), state-level 

unemployment data from Bureau of Labor Statistic (BLS), and aggregate state-

level firm sales from Compustat. I take natural logarithm of the state-level 

labor income and aggregate state-level firm sales. The relative state 

unemployment rate is defined as the state-level unemployment rate in each 

year divided by the moving average of the state-level unemployment rate over 

the previous four years. The results are reported in Panel M of Table 3.3, which 

show that my finding hold after controlling for local macroeconomic factors.  

In the last test, I conduct a placebo test to mitigate the concern that my 

results are obtained by chance. Because my analysis is based on a sample of 

149,704 inventor-year observations, it is possible that any variable can 

generate a statistically significant result in such a large sample. To address the 

issue, I randomly assign 19 states as the NBP participating states and define 
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the inventors located in these states as treated inventors. All the remaining 

inventors are defined as controlled inventors. Then, I re-estimate the baseline 

regression model for 100 times and report the mean of the coefficients and the 

standard errors of the placebo test in Panel N of Table 3.3. The results show 

that the mean coefficient of Treat*Post is statistically insignificant, indicating 

that my findings are not simply obtained by chance. 

Overall, the results of the robustness checks suggest that my findings are 

not sensitive to alternative sample and regression specifications. In addition, 

my findings are not driven by the impacts of the NBP on the local economy or 

the business operations and corporate policies of the affiliated firms. The 

placebo test also suggests that my findings are not obtained by chance. 

 

3.4. Cross-Sectional Analysis 

3.4.1. The Role of Inventor Experience 

As suggested by Graff Zivin and Neidell (2012), more experienced 

workers are more resilient to the effects of air pollution because they are better 

able to self-adjust. As a result, their productivity should be influenced less by 

improvements in air quality associated with the NBP. I use two measures of 

inventor experience. The first one is inventor tenure (Tenure), because 

inventors with longer tenure are likely to be more experienced. The second one 

is the superstar inventor dummy (Superstar), defined following Akcigit et al. 

(2016) as a dummy variable if the inventor’s total adjusted forward citations 

are among the top 10% in my sample, and zero otherwise. Superstar inventors 
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are more likely to be experienced as compared with the other inventors. I 

interact Treat*Post with these two variables, respectively, and include the 

interaction terms in the baseline regression model. I do not include the 

superstar inventor dummy as an independent variable because it is time-

invariant and hence is absorbed by inventor fixed effects. The results are 

reported in Table 3.4. 

[Insert Table 3.4] 

Columns (1)-(3) of Table 3.4 show that the coefficients of the interaction 

term between Treat*Post and Tenure are negative and statistically significant 

in all three regressions, suggesting that the productivity of a treated inventor is 

less influenced by the implementation of the NBP if the inventor has a longer 

tenure. When I use Superstar to indicate the inventors’ experience in column 

(4)-(6), the coefficient of the interaction term Treat*Post*Tenure is also 

significantly negative in all the regressions, confirming that inventors with 

more experience are more resilient to air pollution. Thus, the results imply that 

the reduction in air pollution by the NBP has a larger effect on the productivity 

of less experienced inventors as they are less resilient to air pollution. 

3.4.2. Pre-NBP Air Pollution Level 

I conjecture that inventors living in counties with poorer air quality 

before the implementation of the NBP should experience a greater increase in 

productivity, because the improvement of air quality is greater in these 

counties. Thus, the NBP should have a larger effect on inventors living in 

counties with poorer air quality prior to the NBP.  
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I collect the county-level air pollution data from the U.S. EPA.22 I adopt 

two measures of air pollution. Annual air quality (AnnualAQ) is calculated as 

the median of the daily Air Quality Index (AQI) for each county during the 

year. Proportion of unhealthy days (Unhealthy) is the proportion of unhealthy 

days for each county during the year, where an unhealthy day is defined as a 

day with the AQI larger than 100. Higher value of the two measures indicate 

more severe air pollution. Using the inventor location information in the HBS 

patent inventor database, I merge the inventor data with the air pollution data. 

I define the pre-NBP air quality (PreAQ) as a dummy variable equal to one if 

the inventor lives in a county with the average AnnualAQ during 2000 to 2002 

higher than the sample median, and zero otherwise. Similarly, I define pre-

NBP unhealthy (PreUnhealthy) as a dummy variable equal to one if the 

inventor lives in a county with the average Unhealthy during 2000 to 2002 

higher than the sample median, and zero otherwise. Again, I interact 

Treat*Post with each of these two air quality variables, and include the 

interaction terms in the baseline regression model, respectively. I do not 

include the two standalone dummy variables as independent variables because 

they are time-invariant and are thus absorbed by the inventor fixed effects. The 

regression results are presented in Table 3.5. 

[Insert Table 3.5] 

Columns (1)-(3) of Table 3.5 show that the coefficient of the interaction 

terms between Treat*Post and PreAQ is positive and statistically significant 

 
22 https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual. 

https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual
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in all regressions, indicating that inventors who live in counties with worse air 

quality prior to the NBP react more strongly to the implementation of the NBP. 

The results in columns (4)-(6) are similar which show that the coefficient of 

the interaction terms between Treat*Post and PreUnhealthy is positive and 

statistically significant in all regressions as well. Overall, the findings are 

consistent with my expectations that inventors living in counties with poorer 

air quality before the implementation of the NBP should have a greater 

improvement in their productivity. 

 

3.5. Channel Tests  

I document in the baseline analysis that the implementation of the NBP 

makes inventors in the NBP participating states more innovative. In this 

section, I further investigate whether risk-taking is the primary channel 

through which air pollution impacts inventor productivity. 

3.5.1. The Effects of NBP on Inventor Innovation Strategies 

The innovation process is unavoidably associated with risk and there are 

significant variations in risk-taking among different innovation strategies. 

March (1991) argues that experimentation is captured by search, variation, 

risk-taking, flexibility, and discovery, while specialization is characterized by 

refinement, choice, production, efficiency, selection, implementation and 

execution. Several studies have noted that inventors may explore brand-new 

innovation, or exploit and refine existing innovation (March, 1991; Benner and 

Tushman, 2002; Balsmeier et al., 2017). Usually, experimentation innovation 
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strategy is associated with greater risk than specialization innovation strategy 

(March, 1991; Chava et al., 2013; Balsmeier et al., 2017). If air pollution 

affects inventor productivity primarily through reducing inventor risk-taking 

incentives, I would expect inventors to be more willing to enter into new fields 

after local air quality improves, and thus the enhancement in inventor 

productivity should come primarily from experimentation innovation rather 

than specialization innovation.  

As described in Section 3.2., I employ the number of explorative patents 

(LnExplore) and the number of first patents (LnFirstPat) as the measures of 

inventors’ experimentation innovation strategy, and the number of exploitative 

patents (LnExploit) and the number of self-citations (LnSelfcite) as the 

measures of inventors’ specialization innovation strategy. I re-estimate the 

baseline regression model with the four variables as the dependent variable, 

respectively. The results are presented in Table 3.6.  

[Insert Table 3.6] 

Columns (1) and (2) of Table 3.6 show that the coefficient of Treat*Post 

is positive and statistically significant when LnExplore and LnFirstPat are the 

dependent variables. The results indicate that inventors in the NBP 

participating states increase their efforts in exploring unfamiliar fields after the 

implementation of the NBP. In columns (3) and (4) where LnExploit and 

LnSelfcite are the dependent variables, the coefficient of Treat*Post is negative 

and statistically significant in both regressions, suggesting that inventors in the 
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NBP participating states reduce innovation efforts in their existing knowledge 

and expertise after the implementation of the NBP.  

Overall, the results suggest that after the implementation of the NBP, 

inventors in the NBP participating states delegate more efforts to exploring 

new and unfamiliar fields of research. Because experimentation innovation 

strategy involves more risks, the findings provide supporting evidence to the 

risk-taking channel. That is, improving air quality of the NBP participating 

states enhances the emotional states of inventors located in these states. This 

induces more risk-taking by these inventors, which results in greater inventor 

productivity.  

3.5.2. The Effects of NBP on Local Working Hours 

Deschenes et al. (2017) document that NBP improves the air quality of 

participating states, which results in lower pharmaceutical expenditures and 

mortality rates. Because NBP enhances local people’s physical health, it is 

likely that it improves inventor productivity by making inventors healthier and 

hence having longer working hours. Due to the unavailability of data on 

inventor working hours, I am unable to directly test whether NBP makes 

inventors in participating states work longer. As an alternative, I examine how 

air quality influences the number of working hours by local residents. 

I obtain the data on local working hours from the American Time Use 

Survey (ATUS), which is conducted every year from 2003 to 2017 by the U.S. 

Census Bureau. ATUS documents the time use information of each respondent, 

such as average working hours, sleeping hours, and time spent alone. I define 
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LnWorkingHours as the natural logarithm of one plus the average weekly 

working hour of each respondent during the year. One shortcoming of the 

ATUS data is that the data starts in 2003, which makes it unable to perform a 

difference-in-difference test around the implementation of NBP. As an 

alternative, I perform a panel regression using the two air quality measures 

defined in Section 5.2, namely, annual air quality (AnnualAQ) and proportion 

of unhealthy days (Unhealthy). Because the ATUS data only indicate the living 

state, rather than the living county, of the respondents, I construct two state-

level air quality measures, StateAQ and StateUnhealthy, which are the 

averages of AnnualAQ and Unhealthy of all counties in the state, respectively. 

I regress LnWorkingHours against the two state-level air quality measures, as 

well as state, year, industry, and job category fixed effects. The regression 

results are report on Table 3.7. 

[Insert Table 3.7] 

The table shows that the coefficients of StateAQ and StateUnhealthy are 

both statistically insignificant, suggesting that the air pollution does not 

significantly reduce the working hours of local residents. Therefore, I fail to 

find evidence that supports the working hour channel. My findings in Section 

6.1 are also inconsistent with the working hour channel because if the channel 

works, treated inventors should increase both experimentation and 

specialization efforts, rather than increasing experimentation efforts while 

reducing specialization efforts. Therefore, it is unlikely that my findings in the 



 

71 
 

baseline analysis is driven by increased working hours by inventors in NBP 

participating states following the implementation of NBP.  

 

3.6. Additional Analyses  

3.6.1. Average Patent Quality 

The evidence from my baseline analysis suggests that inventors in NBP 

participating states produce more patents after the implementation of NBP. 

These patents also generate more forward citations and have higher economic 

value. To perform the test, I adopt two average patent quality measures. 

Average citations per patent (LnAvgCit) is defined as the natural logarithm of 

one plus the average number of forward citations received by the inventor’s 

newly filed patents. Average economic value per patent (LnAvgPatVal) is 

defined as the natural logarithm of one plus the average economic values of 

the inventor’s newly filed patents. I re-estimate the baseline regression model 

using the two average patent quality measures. The sample size of this test is 

much smaller than the baseline test in the baseline analysis, because 

observations with zero patents are excluded by construction. The regression 

results are presented in Table 3.8. 

[Insert Table 3.8] 

The table shows that the coefficients of Treat*Post are positive and 

statistically significant in both regressions, suggesting that the patents generate 

by inventors in the NBP participating states have higher average citations and 

economic values following the implementation of NBP. Therefore, 
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improvements air quality associated with the implementation of NBP enhances 

not only the number, but also the average quality of patents generated by 

inventors in NBP participating states, both of which contribute to the increase 

in total patent citations and economic values.  

3.6.2. All Inventors 

In the baseline analysis, I only focus on inventors affiliated with publicly 

listed firms so that I can control for innovation inputs and characteristics of the 

firms where the inventors work. In this section, I extend the analysis to all 

inventors regardless of whether they are affiliated with publicly listed firms or 

not. Hence, the sample in this test includes all U.S. inventors except for those 

located in the states that are adjacent to the NBP participating states. I exclude 

the patent value measure (i.e., LnPatVal) in this analysis because it only applies 

to the inventors affiliated with publicly listed firms.  I control for inventor 

tenure, as well as state, year, and inventor fixed effects in the regressions. The 

regression results are presented in Table 3.9. 

[Insert Table 3.9] 

The table shows that the coefficient of Treat*Post is positive and 

statistically significant in both regressions. The results are consistent with 

those in my baseline analysis, which suggest that my findings hold for all 

inventors, not just those affiliated with publicly listed firms.  

3.6.3. Direct Measures of Air Pollution 

In the last test, I directly examine the effect of local air pollution levels 

on inventor productivity using a panel data. I adopt the same county-level air 



 

73 
 

pollution measures as in Section 5.2, namely, annual air quality (AnnualAQ) 

and proportion of unhealthy days (Unhealthy). Because of the air pollution data 

is available from 1981 to 2008, the sample in this test is much larger than that 

in the baseline analysis. I replace Treat*Post in the baseline regression with 

these two air pollution measures and then re-estimate the regression model. 

The regression results are reported in Table 3.10. 

[Insert Table 3.10] 

Columns (1)-(3) of Table 3.10 show that the coefficient of AnnualAQ is 

negative and statistically significant in all regressions, suggesting that 

inventors located in counties with greater air pollution in general file fewer 

new patents, and these patents also receive fewer forward citations and 

generate lower economic value. Similarly, columns (4)-(6) show that the 

coefficient of Unhealthy is negative and significant in all the regressions as 

well, confirming the negative effect of air pollution on inventor productivity. 

Collectively, the test in this section provides additional evidence on the 

negative effect of air pollution on inventor productivity, which further validate 

my finding from the NBP setting. 

 

3.7. Conclusion 

Motivated by studies showing that air pollution impairs people’s mental 

health and makes them pessimistic and risk averse, I examine whether air 

pollution affects productivity of patent inventors. I employ the NBP, which 

significantly reduced the NOx emissions in the eastern states in the U.S., as a 
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quasi-natural experiment to air pollution and perform a difference-in-

difference analysis around its implementation. I find that treated inventors (i.e., 

inventors living in the NBP participating states) produce significantly more 

patents and their patents receive more forward citations and generate higher 

economic value than controlled inventors (i.e., inventors living in the other 

states except those in the adjacent states of the NBP participating states) 

following the implementation of the NBP. The effect is stronger for less 

experienced investors or inventors living in counties with higher pre-NBP air 

pollution levels. Further, I show that inventors located in the NBP participating 

states create more experimentation innovation and less specialization 

innovation after the implementation of the NBP. I also fail to find evidence 

that air pollution reduces the working hours of local residents. Taken together, 

the findings are consistent with the story that reduction in air pollution by the 

NBP improves the mental states of inventors. This makes them less risk-averse 

in the innovation process and hence more innovative.   

My study contribute to finance literature about the behavioural impacts 

of air pollution by showing that air pollution-induced mood not only affect 

stock market participant also patent inventors, who play a key role in corporate 

innovation success. My study also contributes to the economics literature about 

the impact of air pollution on worker productivity. Different from prior studies 

that mainly focus on labor-intensive workers, I explore the effect of air 

pollution on the productivity of inventors, who rely more on intelligence. Last, 

my study is related to the growing literature that explores the determinants of 
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innovation success. I contribute to this literature by investigating behavioural 

factors that influence the innovation outputs of individual inventors. My 

findings also have policy implications in that motivated by the positive 

externalities of the NBP, the government should play a more active role in 

controlling air quality through imposing regulations on the emission of air 

pollutants. 
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Chapter 4 Conclusion 

This study shows that both terrorist attacks and air pollution have an 

influence on inventor productivity, and the channel is risk-taking. I find that 

after experiencing high-fatality attacks, local inventors tend to become more 

risk-averse and have lower productivity in the subsequent years, while those 

who witnessed terrorist attacks with low fatality tend to behave more risk-

taking and produce more innovation outputs afterwards, consistent with 

Bernile et al. (2017). I also find that reducing air pollution improves inventor 

productivity through making inventors become more risk-tolerant. I contribute 

to the literature by identifying terrorist attacks and air quality as two important 

external factors that have effects on inventor productivity. 

My findings highlight the vulnerability of inventors to external factors, 

such as terrorist attacks and air pollution, which may adversely affect 

innovation through increased risk aversion among local inventors. The results 

on terrorist attacks and inventor productivity reveals the need for disaster 

management so that firms can care for their inventors if and when a high-

fatality terrorist attack occurs. By showing the negative effects of air pollution 

on inventor productivity, my study also suggests that government can play an 

important role in helping inventors to generate high-value innovation and 

foster economic growth by adopting regulations to reduce air pollution. 
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Appendices 

Appendix. 2.A Variable Definition 

 

Variables  Description 

Panel A. Terrorist attack variable 

High Dummy variable equals to one if the inventor was affected by a high-

fatality attack, and zero otherwise. 

Low Dummy variable equals to one if the inventor was affected by a low-

fatality attack, and zero otherwise. 

Panel B. Innovation variables 

LnPat Natural logarithm of one plus the number of newly filed patents. 

LnCit Natural logarithm of one plus the number of forward citations received 

by newly filed patents. 

LnPatVal Natural logarithm of one plus the total economic value of newly filed 

patents.  

LnExplore Natural logarithm of one plus the number of newly filed patents for 

which more than 60% of their citations are outside of the inventor’s 

knowledge base. 

LnExploit Natural logarithm of one plus the number of newly filed patents for 

which more than 60% of their citations are within of the inventor’s 

knowledge base. 

Originality Originality of each patent is calculated as the one minus the Herfindahl-

Hirschman index of citations to other patents over patent classes. To get 

the inventor-level measures, I calculate the average across all the 

patents for each inventor over the future three years. 

Generality Generality is calculated as one minus the Herfindahl-Hirschman index 

of citations received from other patents over patent classes. To get the 

inventor-level measures, I calculate the average across all the patents 

for each inventor over the future three years. 

Panel C. Control variables 

Firm Size Natural logarithm of total assets. 

CapEx Capital expenditure scaled by total assets. 

R&D R&D expenditures scaled by total assets. 

ROA Operating income before depreciation scaled by total assets. 

Leverage Book value of debt scaled by total assets. 

BM Book value of equity scaled by market value of equity. 

Cash Cash and short-term investments scaled by total assets. 

Firm Age Natural logarithm of the number of years elapsed since the first year 

that firm appeared in the Compustat database. 

Tenure Natural logarithm of the one plus number of years between the year that 

the inventor enters the patent database and the observation year. 

Panel D. Other variables 

Religiosity Dummy variable equals to one if the inventor lives in a county with the 

religious people ratio higher than the sample median. 

Male-Female Dummy variable equals to one if the inventor lives in a county with the 

male-female ratio higher than the sample median. 

Murder Dummy variable equals to one if the inventor lives in a state with the 

murder rate higher than the sample median. 

Inventor Move Dummy variable equals to one if the inventor moves to another city 

(i.e., did not locate at the same city as he/she did in the previous year). 

Move to Attack Dummy variable equals to one if the inventor move to a city with 

terrorist attack history. 

Move to Peace Dummy variable equals to one if the inventor move to a city without 
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terrorist attack history. 

StateIncome Natural logarithm of the state-level labor income. 

StateUnemp State-level unemployment rate in each year divided by the moving 

average of the state-level unemployment rate over the previous four 

years. 

StateSale Natural logarithm of the total sales of all firms headquartered in each 

state. 

 

Appendix. 3.A Variable Definition 

 

Variables  Description 

Panel A. Key variables 

Treat Dummy variable equals to one if the inventor lives in NBP 

participating states, and zero if the inventor lives in the other states 

except for states that are adjacent to NBP participating states. 

Post Dummy variable equals to one for the period 2000-2002, and zero for 

the period 2005-2007. 

Panel B. Innovation variables 

LnPat Natural logarithm of one plus the number of newly filed patents. 

LnCit Natural logarithm of one plus the number of forward citations received 

by newly filed patents. 

LnPatVal Natural logarithm of one plus the total economic value of newly filed 

patents.  

LnExplore Natural logarithm of one plus the number of newly filed patents for 

which more than 60% of their citations are outside of the inventor’s 

knowledge base. 

LnExploit Natural logarithm of one plus the number of newly filed patents for 

which more than 60% of their citations are within the inventor’s 

knowledge base. 

LnFirstPat Natural logarithm of one plus the number of newly filed patents that 

belong to the technology class that the inventor has never filed before. 

LnSelfcite Natural logarithm of one plus the number of citations made by newly 

filed patents that cite this inventor’s previously field patents.  

LnAvgCit Natural logarithm of one plus the average number of forward citations 

received by the newly filed patents. 

LnAvgPatVal Natural logarithm of one plus the average economic value of newly 

filed patents. 

Panel C. Control variables 

Firm Size Natural logarithm of total assets. 

CapEx Capital expenditure scaled by total assets. 

R&D R&D expenditures scaled by total assets. 

ROA Operating income before depreciation scaled by total assets. 

Leverage Book value of debt scaled by total assets. 

BM Book value of equity scaled by market value of equity. 

Cash Cash and short-term investments scaled by total assets. 

Firm Age Natural logarithm of one plus the number of years elapsed since the 

first year that firm appeared in the Compustat database. 

Tenure Natural logarithm of one plus the number of years between the year 

that the inventor enters the patent database and the observation year. 

Panel D. Other variables 

Superstar Dummy variable equals to one if the inventor has adjusted forward 

citations among top 10% in our sample. 

AnnualAQ Median of the daily AQI for a given year in a county. 

Unhealthy Proportion of the unhealthy days in a given year in a county, where 

the unhealthy day is defined as a day with AQI larger than 100. 
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PreAQ Dummy variable equals to one if the inventor lives in a county with 

average AnnualAQ during 2000 and 2002 higher than the sample 

median. 

PreUnhealthy Dummy variable equals to one if the inventor lives in a county with 

average Unhealthy during 2000 and 2002 higher than the sample 

median. 

StateAQ Average of the AnnualAQ of all counties in a state. 

StateUnhealthy Average of the Unhealthy of all counties in a state. 

StateIncome Natural logarithm of the state-level labor income 

StateUnemp State-level unemployment rate in each year divided by the moving 

average of the state-level unemployment rate over the previous four 

years 

StateSale Natural logarithm of the total sales of all firms headquartered in each 

state 

LnWorkingHours Natural logarithm of one plus the weekly working hours 
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Table 2.1. List of Terrorist Attacks 

This table lists the 18 terrorist attacks used in this paper, which took place in the U.S., caused at least one casualty, and were covered by major media 

outlets. Affected inventors are inventors located within 100 miles to a terrorist attack. 

 

No. Events Date Location Fatalities 

Total 

Number of 

Inventors 

Number of 

Affected 

Inventors 

Proportion 

of Affected 

Inventors 

1 Brooklyn Bridge 1-Mar-94 New York City, NY 1 49,681 7,643 0.154 

2 Unabomber - Thomas Mosser 10-Dec-94 North Caldwell, NJ 1 49,681 7,708 0.155 

3 Planned Parenthood Clinic 30-Dec-94 Brookline, MA 1 49,681 3,048 0.061 

4 Alfred P. Murrah Federal Building Booming 19-Apr-95 Oklahoma City 168 55,987 271 0.005 

5 Unabomber - Gilbert Murray 24-Apr-95 Sacramento, CA 1 55,987 6,005 0.107 

6 Olympic Park Bombing 27-Jul-96 Atlanta, GA 1 57,258 586 0.010 

7 Empire State Building 23-Feb-97 New York City, NY 1 60,789 8,460 0.139 

8 Abortion Clinic Bombing 29-Jan-98 Birmingham, AL 1 61,579 154 0.003 

9 U.S. Capitol 24-Jul-98 Washington, DC 2 61,579 1,766 0.029 

10 Barnett Slepian Murder 23-Oct-98 Amherst, NY 1 61,579 2,819 0.046 

11 Columbine High School 20-Apr-99 Littleton, CO 15 62,282 1,349 0.022 

12 Korean Methodist Church 4-Jul-99 Bloomington, IN 2 62,282 858 0.014 

13 9/11 Attacks: World Trade Center 11-Sep-01 New York City, NY 1383 63,925 7,472 0.117 

14 9/11 Attacks: Hijacked Plane Crashed 11-Sep-01 Alexandria, VA 44 63,925 1,332 0.021 

15 9/11 Attacks: Hijacked Plane Crashed 11-Sep-01 Somerset County, PA 189 63,925 365 0.006 

16 Bank of America 5-Jan-02 Tampa, FL 1 63,980 138 0.002 

17 LA International Airport 4-Jul-02 Los Angeles, CA 3 63,980 3,353 0.052 

18 Seattle Jewish Federation 28-Jul-06 Seattle, WA 1 27,288 597 0.022 
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Table 2.2. Summary Statistics 

This table shows the summary statistics of the variables used in the analysis. Variable 

definitions are shown in the Appendix. 2.A. 

 

  Mean Std. 25% Median 75% 

High 0.02 0.15 0.00 0.00 0.00 

Low 0.04 0.20 0.00 0.00 0.00 

LnPat 0.99 0.71 0.69 0.69 1.39 

LnCit 1.89 1.66 0.00 1.79 3.14 

LnPatVal 2.62 1.76 1.30 2.69 3.88 

LnExploit 0.36 0.56 0.00 0.00 0.69 

LnExplore 0.70 0.65 0.00 0.69 1.10 

Originality 0.49 0.22 0.35 0.51 0.66 

Generality 0.35 0.25 0.13 0.37 0.55 

Firm Size 9.14 2.13 7.94 9.56 10.53 

R&D 0.07 0.07 0.03 0.06 0.10 

ROA 0.14 0.12 0.10 0.15 0.20 

Leverage 0.21 0.15 0.09 0.20 0.30 

CapEx 0.06 0.04 0.03 0.05 0.08 

BM 0.33 0.22 0.18 0.27 0.42 

Cash 0.16 0.18 0.03 0.09 0.21 

Firm Age 3.43 0.71 3.00 3.83 3.93 

Tenure 1.67 0.93 1.10 1.79 2.40 
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Table 2.3. Terrorist Attack and Inventor Innovation Output 

This table presents the regression results of the effect of terrorist attack on inventor innovation 

output. The regressions are performed by ordinary least squares, with standard errors (reported 

in parentheses) clustered at the inventor level. ***, **, * indicate significance at the 1%, 5%, 

and 10% significance levels, respectively. Variable definitions are shown in the Appendix. 2.A. 

 

 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

        

High -0.021*** -0.051*** -0.052*** 

  (0.004) (0.009) (0.010) 

Low 0.011*** 0.037*** 0.030*** 

  (0.003) (0.008) (0.008) 

Firm Size 0.023*** 0.029*** 0.130*** 

  (0.002) (0.005) (0.005) 

R&D -0.286*** -0.571*** -0.260*** 

  (0.034) (0.078) (0.078) 

ROA 0.041*** 0.141*** 0.802*** 

  (0.016) (0.036) (0.037) 

Leverage -0.100*** -0.022 0.130*** 

  (0.014) (0.031) (0.031) 

CapEx 0.556*** 1.114*** 1.026*** 

  (0.041) (0.096) (0.094) 

BM -0.098*** -0.128*** -0.158*** 

  (0.006) (0.014) (0.013) 

Cash 0.089*** 0.210*** 0.253*** 

  (0.013) (0.029) (0.030) 

Firm Age -0.163*** -0.363*** -0.337*** 

  (0.005) (0.011) (0.011) 

Tenure -0.052*** -0.107*** -0.113*** 

  (0.003) (0.008) (0.008) 

Year FE Yes Yes Yes 

Inventor FE Yes Yes Yes 

Industry FE Yes Yes Yes 

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 
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Table 2.4. Robustness Tests 

This table presents the results for robustness tests. The regressions are performed by ordinary 

least squares, with standard errors (reported in parentheses) clustered at the inventor level. All 

the control variables and year, inventor, and industry fixed effects are included in the 

regressions but are not reported. ***, **, * indicate significance at the 1%, 5%, and 10% 

significance levels, respectively. Variable definitions are shown in the Appendix. 2.A. 

 

 

Panel A.  Use alternative sample 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.010*** -0.023*** -0.010 

  (0.003) (0.007) (0.007) 

Low 0.011*** 0.025*** 0.012** 

  (0.002) (0.006) (0.005) 

Controls and FEs included       

Obs. 1,403,451 1,403,451 1,403,451 

Adj. R2 0.484 0.442 0.522 

 

Panel B.  Define high-fatality and low-fatality attacks using 3 fatalities as cut-off 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.026*** -0.063*** -0.074*** 

  (0.005) (0.012) (0.013) 

Low 0.007** 0.024*** 0.021*** 

  (0.003) (0.007) (0.007) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 

 

Panel C. Define high-fatality and low-fatality attacks using news coverage 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.019*** -0.044*** -0.044*** 

  (0.004) (0.009) (0.010) 

Low 0.009*** 0.032*** 0.025*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 

 

Panel D. Use future five years’ innovation output as dependent variables 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.022*** -0.042*** -0.047*** 

  (0.004) (0.008) (0.008) 

Low 0.011*** 0.029*** 0.029*** 

  (0.003) (0.007) (0.007) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.636 0.674 0.672 
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Panel E. Divide patent count, citations or economic value by the number of inventors 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.017*** -0.039*** -0.047*** 

  (0.003) (0.007) (0.008) 
Low 0.005** 0.025*** 0.023*** 

  (0.002) (0.006) (0.007) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.568 0.570 0.564 

 

Panel F. Exclude zero-patent observations 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.024*** -0.053*** -0.061*** 

  (0.007) (0.015) (0.015) 

Low 0.008 0.021 0.005 

  (0.006) (0.013) (0.014) 

Controls and FEs included       

Obs. 352,453 352,453 352,453 

Adj. R2 0.486 0.518 0.516 

 

Panel G. Exclude inventors that ever moved 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.023*** -0.044*** -0.059*** 

  (0.005) (0.011) (0.012) 

Low 0.008** 0.022** 0.012 

  -0.023*** -0.044*** -0.059*** 

Controls and FEs included       

Obs. 472,600 472,600 472,600 

Adj. R2 0.529 0.567 0.557 

 

Panel H. Assign new locations to zero-patent observations for inventors that ever moved 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.020*** -0.048*** -0.052*** 

  (0.004) (0.009) (0.010) 

Low 0.015*** 0.044*** 0.037*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 735,000 735,000 735,000 

Adj. R2 0.528 0.548 0.538 
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Panel I. Assign new locations to half of zero-patent observations for inventors that ever 

moved 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.020*** -0.048*** -0.052*** 

  (0.004) (0.009) (0.010) 

Low 0.012*** 0.035*** 0.029*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 735,508 735,508 735,508 

Adj. R2 0.528 0.548 0.538 

 

Panel J. Control for state-level macroeconomics conditions 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.015*** -0.033*** -0.024** 

  (0.004) (0.009) (0.010) 

Low 0.007** 0.025*** 0.012 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 726,130 726,130 726,130 

Adj. R2 0.529 0.550 0.540 

 

Panel K. Exclude inventors located at the same city with their firms' headquarters 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.019*** -0.045*** -0.048*** 

  (0.004) (0.009) (0.010) 

Low 0.016*** 0.047*** 0.042*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 659,094 659,094 659,094 

Adj. R2 0.525 0.546 0.538 

 

Panel L. Exclude inventors in aircraft and defense industries 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.022*** -0.051*** -0.055*** 

  (0.004) (0.009) (0.010) 
Low 0.010*** 0.036*** 0.031*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included       

Obs. 711,273 711,273 711,273 

Adj. R2 0.529 0.550 0.542 

 

  



 

86 
 

Panel M. Results from matched sample 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.041*** -0.086*** -0.076*** 

  (0.010) (0.023) (0.026) 

Low 0.013* 0.040** 0.022 

  (0.008) (0.019) (0.021) 

Controls and FEs included       

Obs. 56,381 56,381 56,381 

Adj. R2 0.515 0.501 0.499 

 

Panel N. Randomized terrorist attack year and location 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High 0.001 0.002 0.010 

  (0.005) (0.010) (0.011) 

Low 0.002 0.005 0.009 

  (0.004) (0.010) (0.011) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 

 

Panel O. Randomized high-fatality attacks and low-fatality attacks 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High 0.001 0.012 0.007 

  (0.004) (0.009) (0.010) 

Low -0.003 -0.007 -0.010 

  (0.004) (0.010) (0.010) 

Controls and FEs included       

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 

 

Panel P. Sample ends in 2006 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

High -0.020*** -0.046*** -0.048*** 

  (0.004) (0.009) (0.010) 

Low 0.012*** 0.037*** 0.032*** 

  (0.003) (0.008) (0.008) 

Controls and FEs included    
Obs. 694,181 694,181 694,181 

Adj. R2 0.549 0.548 0.544 
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Table 2.5. Cross-Sectional Tests by Local Demographic Characteristics 

This table shows how the effect of terrorist attack on inventor innovation output varies with local demographic characteristics. The regressions are 

performed by ordinary least squares, with standard errors (reported in parentheses) clustered at the inventor level. All the control variables and year, 

inventor, and industry fixed effects are included in the regressions but are not reported. ***, **, * indicate significance at the 1%, 5%, and 10% significance 

levels, respectively. Variable definitions are shown in the Appendix. 2.A. 

 

 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Variable LnPat LnCit LnPatVal LnPat LnCit LnPatVal LnPat LnCit LnPatVal 

                    

High 0.005 -0.001 0.008 -0.045*** -0.109*** -0.099*** -0.030*** -0.066*** -0.084*** 

  (0.007) (0.014) (0.016) (0.006) (0.012) (0.014) (0.005) (0.011) (0.013) 

Low 0.020*** 0.076*** 0.068*** 0.003 0.010 -0.011 0.004 0.006 -0.025** 

  (0.006) (0.015) (0.016) (0.004) (0.010) (0.010) (0.004) (0.010) (0.010) 

High*Religiosity -0.042*** -0.083*** -0.098***       
  (0.009) (0.019) (0.021)       
Low*Religiosity -0.013* -0.060*** -0.056***       
  (0.007) (0.018) (0.019)       
Religiosity -0.033*** -0.089*** -0.122***       
  (0.006) (0.013) (0.014)       
High*Male-Female    0.054*** 0.125*** 0.097***    
     (0.008) (0.018) (0.020)    
Low*Male-Female    0.021*** 0.072*** 0.117***    
     (0.007) (0.017) (0.018)    
Male-Female    -0.001 -0.024* -0.096***    
     (0.006) (0.013) (0.013)    
High*Murder       0.023*** 0.040** 0.085*** 

        (0.008) (0.018) (0.021) 

Low*Murder       0.017** 0.076*** 0.136*** 

        (0.007) (0.017) (0.018) 

Murder       -0.008** -0.011 -0.012 

        (0.003) (0.007) (0.008) 

Firm Size 0.023*** 0.030*** 0.131*** 0.023*** 0.030*** 0.131*** 0.023*** 0.029*** 0.131*** 

  (0.002) (0.005) (0.005) (0.002) (0.005) (0.005) (0.002) (0.005) (0.005) 

R&D -0.302*** -0.610*** -0.318*** -0.298*** -0.595*** -0.288*** -0.286*** -0.568*** -0.260*** 

  (0.035) (0.080) (0.080) (0.035) (0.080) (0.080) (0.034) (0.078) (0.078) 

ROA 0.036** 0.125*** 0.772*** 0.038** 0.130*** 0.778*** 0.041*** 0.140*** 0.802*** 

  (0.016) (0.037) (0.037) (0.016) (0.037) (0.037) (0.016) (0.036) (0.037) 
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Leverage -0.108*** -0.043 0.113*** -0.108*** -0.043 0.107*** -0.100*** -0.024 0.129*** 

  (0.014) (0.032) (0.032) (0.014) (0.032) (0.032) (0.014) (0.031) (0.031) 

CapEx 0.559*** 1.108*** 0.991*** 0.560*** 1.114*** 1.002*** 0.555*** 1.112*** 1.020*** 

  (0.043) (0.099) (0.096) (0.043) (0.099) (0.096) (0.042) (0.096) (0.094) 

BM -0.098*** -0.130*** -0.156*** -0.097*** -0.129*** -0.155*** -0.098*** -0.130*** -0.160*** 

  (0.006) (0.014) (0.013) (0.006) (0.014) (0.013) (0.006) (0.014) (0.013) 

Cash 0.079*** 0.197*** 0.245*** 0.081*** 0.201*** 0.251*** 0.090*** 0.209*** 0.252*** 

  (0.013) (0.030) (0.031) (0.013) (0.030) (0.031) (0.013) (0.029) (0.030) 

Firm Age -0.162*** -0.362*** -0.328*** -0.162*** -0.363*** -0.330*** -0.164*** -0.364*** -0.337*** 

  (0.005) (0.012) (0.012) (0.005) (0.012) (0.012) (0.005) (0.011) (0.011) 

Tenure -0.051*** -0.103*** -0.109*** -0.051*** -0.104*** -0.110*** -0.052*** -0.106*** -0.112*** 

  (0.004) (0.008) (0.008) (0.004) (0.008) (0.008) (0.003) (0.008) (0.008) 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Obs. 705,270 705,270 705,270 705,268 705,268 705,268 736,426 736,426 736,426 

Adj. R2 0.529 0.549 0.540 0.529 0.549 0.539 0.528 0.548 0.537 
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Table 2.6. Terrorist Attack and Inventor Innovation Strategy 

This table presents the regression results of the effect of terrorist attack on inventor innovation 

strategy. The regressions are performed by ordinary least squares, with standard errors 

(reported in parentheses) clustered at the inventor level. ***, **, * indicate significance at the 

1%, 5%, and 10% significance levels, respectively. Variable definitions are shown in the 

Appendix. 2.A. 

 

 

  Exploration Exploitation 

  (1) (2) (3) (4) 

Variable LnExplore Originality LnExploit Generality 

High -0.018*** -0.004** -0.007** -0.002 

  (0.004) (0.002) (0.003) (0.002) 

Low 0.010*** 0.005*** -0.002 -0.002 

  (0.003) (0.001) (0.002) (0.002) 

Firm Size 0.014*** 0.001 0.013*** -0.003*** 

  (0.002) (0.001) (0.002) (0.001) 

R&D -0.249*** -0.024* -0.186*** -0.012 

  (0.031) (0.012) (0.027) (0.015) 

ROA 0.101*** -0.007 -0.069*** -0.002 

  (0.015) (0.006) (0.013) (0.007) 

Leverage -0.055*** -0.015*** -0.097*** 0.023*** 

  (0.013) (0.005) (0.010) (0.006) 

CapEx 0.414*** 0.015 0.288*** 0.029* 

  (0.040) (0.015) (0.031) (0.017) 

BM -0.096*** 0.005** -0.041*** 0.013*** 

  (0.006) (0.002) (0.004) (0.003) 

Cash 0.018 0.005 0.095*** -0.004 

  (0.012) (0.005) (0.010) (0.005) 

Firm Age -0.127*** -0.003* -0.072*** -0.004* 

  (0.005) (0.002) (0.004) (0.002) 

Tenure -0.062*** -0.001 0.005* 0.001 

  (0.003) (0.001) (0.003) (0.001) 

Year FE Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

Obs. 736,699 338,662 736,699 282,564 

Adj. R2 0.450 0.617 0.581 0.640 
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Table 2.7. Test on Geographical Distance 

This table presents the regression results of the test on geographical distance between the 

affected inventors and terrorist attacks. The regressions are performed by ordinary least 

squares, with standard errors (reported in parentheses) clustered at the inventor level. ***, **, 

* indicate significance at the 1%, 5%, and 10% significance levels, respectively. Variable 

definitions are shown in the Appendix. 2.A. 

 

 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

        

High(0 to 100miles) -0.021*** -0.051*** -0.050*** 

  (0.004) (0.009) (0.010) 

High(100 to 150miles) -0.002 0.001 0.005 

  (0.006) (0.014) (0.017) 

High(150 to 200miles) -0.005 0.007 0.024* 

  (0.005) (0.012) (0.014) 

Low(0 to 100miles) 0.012*** 0.038*** 0.032*** 

  (0.003) (0.008) (0.008) 

Low(100 to 150miles) 0.013** 0.007 0.021 

  (0.006) (0.014) (0.016) 

Low(150 to 200miles) 0.011* 0.003 0.010 

  (0.006) (0.015) (0.015) 

Firm Size 0.023*** 0.029*** 0.130*** 

  (0.002) (0.005) (0.005) 

R&D -0.286*** -0.572*** -0.261*** 

  (0.034) (0.078) (0.078) 

ROA 0.042*** 0.141*** 0.801*** 

  (0.016) (0.036) (0.037) 

Leverage -0.100*** -0.022 0.131*** 

  (0.014) (0.031) (0.031) 

CapEx 0.557*** 1.113*** 1.023*** 

  (0.041) (0.096) (0.094) 

BM -0.097*** -0.128*** -0.159*** 

  (0.006) (0.014) (0.013) 

Cash 0.089*** 0.210*** 0.253*** 

  (0.013) (0.029) (0.030) 

Firm Age -0.163*** -0.363*** -0.337*** 

  (0.005) (0.011) (0.011) 

Tenure -0.052*** -0.107*** -0.113*** 

  (0.003) (0.008) (0.008) 

Year FE Yes Yes Yes 

Inventor FE Yes Yes Yes 

Industry FE Yes Yes Yes 

Obs. 736,699 736,699 736,699 

Adj. R2 0.527 0.548 0.537 
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Table 2.8. Terrorist Attack and Innovator Relocation 

This table presents the regression results of the effect of terrorist attack on the probability and 

direction of inventor move. The regressions are performed by logit model. Standard errors are 

reported in parentheses. ***, **, * indicate significance at the 1%, 5%, and 10% significance 

levels, respectively. Variable definitions are shown in the Appendix. 2.A. 

 

 

  (1) (2) (3) 

Variable Inventor Move Move to Attack Move to Peace 

High 0.112** 0.337 0.104** 

  (0.046) (0.224) (0.047) 

Low 0.029 0.043 0.035 

  (0.038) (0.213) (0.038) 

Firm Size 0.060*** 0.096*** 0.057*** 

  (0.006) (0.031) (0.006) 

R&D 0.538*** -0.180 0.569*** 

  (0.158) (0.732) (0.160) 

ROA -0.109 -0.958** -0.062 

  (0.082) (0.375) (0.084) 

Leverage -0.362*** -1.026*** -0.323*** 

  (0.066) (0.312) (0.067) 

CapEx 0.706*** -1.057 0.803*** 

  (0.223) (1.080) (0.227) 

BM 0.033 -0.134 0.041 

  (0.039) (0.184) (0.040) 

Cash 0.401*** 0.056 0.413*** 

  (0.057) (0.255) (0.059) 

Firm Age -0.098*** 0.031 -0.101*** 

  (0.015) (0.069) (0.015) 

Tenure 0.009 -0.004 0.010 

  (0.007) (0.031) (0.007) 

StateIncome -0.005 -0.032 -0.005 

  (0.024) (0.110) (0.025) 

StateUnemp -0.256*** -0.111 -0.264*** 

  (0.072) (0.331) (0.074) 

StateSale 0.017 -0.011 0.020 

  (0.023) (0.096) (0.024) 

Year FE Yes Yes Yes 

State FE Yes Yes Yes 

Industry FE Yes Yes Yes 

Obs. 209,491 169,035 209,482 

Pseudo R2 0.013 0.010 0.013 
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Table 3.1. Summary Statistics 

This table shows the summary statistics of the variables used in the analysis. Variable definitions are shown in the Appendix. 3.A. 

 

  Treated Inventors (64,417 inventor-years)   Controlled Inventors (85,287 inventor-years) 

  Mean Std. 25% Median 75%   Mean Std. 25% Median 75% 

LnPat 0.63 0.60 0.00 0.69 1.10 
 

0.69 0.63 0.00 0.69 1.10 
LnCit 0.95 1.28 0.00 0.00 1.79 

 
1.18 1.44 0.00 0.69 2.20 

LnPatVal 1.76 1.69 0.00 1.64 3.09 
 

1.78 1.61 0.00 1.81 3.00 
LnExploit 0.20 0.41 0.00 0.00 0.00 

 
0.24 0.45 0.00 0.00 0.69 

LnExplore 0.42 0.52 0.00 0.00 0.69 
 

0.45 0.55 0.00 0.00 0.69 
LnSelfcite 0.27 0.60 0.00 0.00 0.00 

 
0.30 0.65 0.00 0.00 0.00 

LnFirstPat 0.22 0.37 0.00 0.00 0.69 
 

0.25 0.39 0.00 0.00 0.69 
Firm Size 9.81 2.11 8.72 10.19 11.39 

 
9.10 1.98 7.83 9.56 10.69 

R&D 0.06 0.06 0.02 0.05 0.08 
 

0.09 0.06 0.05 0.08 0.11 
ROA 0.13 0.10 0.09 0.14 0.18 

 
0.15 0.12 0.10 0.16 0.22 

Leverage 0.27 0.17 0.16 0.24 0.35 
 

0.14 0.14 0.01 0.10 0.22 
CapEx 0.05 0.03 0.03 0.04 0.06 

 
0.05 0.04 0.02 0.04 0.07 

BM 0.30 0.23 0.14 0.25 0.37 
 

0.29 0.21 0.15 0.24 0.36 
Cash 0.14 0.16 0.04 0.08 0.17 

 
0.27 0.20 0.10 0.21 0.40 

Firm Age 3.59 0.70 3.58 3.93 4.01 
 

3.22 0.75 2.77 3.37 3.93 
Tenure 2.00 0.88 1.61 2.08 2.64 

 
1.81 0.86 1.39 1.95 2.40 
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Table 3.2. NBP Implementation and Inventor Innovation Output 

This table presents the regression results of the baseline difference-in-difference test on a sample of inventors 

affiliated with public firms. The regressions are performed by ordinary least squares, with standard errors 

(reported in parentheses) clustered at the inventor level. All independent variables except Treat*Post are 

lagged by one year. ***, **, * indicate significance at the 1%, 5%, and 10% significance levels, respectively. 

Variable definitions are shown in the Appendix. 3.A. 

 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.028*** 0.118*** 0.147*** 

  (0.007) (0.016) (0.019) 

Firm Size 0.035*** 0.024** 0.262*** 

  (0.004) (0.010) (0.011) 

R&D -0.373*** -1.252*** -0.724*** 

  (0.076) (0.171) (0.184) 

ROA -0.138*** -0.212*** 0.069 

  (0.030) (0.070) (0.078) 

Leverage -0.080*** -0.044 -0.045 

  (0.025) (0.056) (0.062) 

CapEx 0.268*** 0.345 1.028*** 

  (0.096) (0.218) (0.237) 

BM -0.123*** -0.330*** -0.482*** 

  (0.012) (0.027) (0.028) 

Cash 0.169*** 0.212*** 0.203*** 

  (0.023) (0.052) (0.058) 

Firm Age -0.130*** -0.260*** -0.437*** 

  (0.010) (0.022) (0.025) 

Tenure -0.189*** -0.513*** -0.710*** 

  (0.006) (0.014) (0.015) 

State FE Yes Yes Yes 

Year FE Yes Yes Yes 

Inventor FE Yes Yes Yes 

Industry FE Yes Yes Yes 

Obs. 149,704 149,704 149,704 

Adj. R2 0.309 0.346 0.301 
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Table 3.3. Robustness Tests 

This table presents the results for robustness tests. The regressions are performed by ordinary least squares, 

with standard errors (reported in parentheses) clustered at the inventor level. All independent variables except 

Treat*Post are lagged by one year. All the control variables and year, inventor, and industry fixed effects are 

included in the regressions but are not reported. ***, **, * indicate significance at the 1%, 5%, and 10% 

significance levels, respectively. Variable definitions are shown in the Appendix. 3.A. 

 

Panel A. Exclude zero-patent observations 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.036*** 0.177*** 0.183*** 

  (0.007) (0.018) (0.015) 

Controls and FEs included     
Obs. 96,298 96,298 96,298 

Adj. R2 0.322 0.537 0.630 

 

Panel B. Exclude inventors that ever moved between NBP states and non-NBP states 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.029*** 0.124*** 0.153*** 

  (0.008) (0.016) (0.019) 

Controls and FEs included     
Obs. 143,708 143,708 143,708 

Adj. R2 0.307 0.346 0.301 

 

Panel C. Results from balanced sample 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.055*** 0.187*** 0.182*** 

  (0.015) (0.033) (0.036) 

Controls and FEs included     
Obs. 39,726 39,726 39,726 

Adj. R2 0.401 0.422 0.352 

 

Panel D. Results from matched sample 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.082*** 0.183*** 0.275*** 

  (0.022) (0.047) (0.060) 

Controls and FEs included     
Obs. 51,734 51,734 51,734 

Adj. R2 0.248 0.306 0.255 
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Panel E. Exclude states joining NBP in 2004 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.008 0.070*** 0.072*** 

  (0.009) (0.019) (0.022) 

Controls and FEs included     

Obs. 126,004 126,004 126,004 

Adj. R2 0.314 0.350 0.307 

 

Panel F. Sample includes 2003 and 2004 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.023*** 0.121*** 0.130*** 

  (0.007) (0.015) (0.017) 

Controls and FEs included     
Obs. 249,671 249,671 249,671 

Adj. R2 0.334 0.351 0.313 

 

Panel G. Divide patent count, citations or economic value by the number of inventors 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.026*** 0.157*** 0.123*** 

  (0.005) (0.012) (0.014) 

Controls and FEs included     

Obs. 149,704 149,704 149,704 

Adj. R2 0.369 0.370 0.329 

 

Panel H. Collapse the sample by NBP implementation 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.087*** 0.233*** 0.266*** 

  (0.010) (0.020) (0.020) 

Controls and FEs included     
Obs. 59,612 59,612 59,612 

Adj. R2 0.355 0.436 0.442 

 

Panel I. NBP and corporate policies 

  (1) (2) 

Variable R&D CSR 

Treat*Post -0.002 -0.002 

  (0.002) (0.014) 

Controls and FEs included   

Obs. 13,888 12,364 

Adj. R2 0.605 0.843 
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Panel J. Exclude inventors in utility industry 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.028*** 0.119*** 0.146*** 

  (0.007) (0.016) (0.019) 

Controls and FEs included     
Obs. 149,694 149,694 149,694 

Adj. R2 0.309 0.346 0.301 

 

Panel K. Exclude inventors in manufacturing industries 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.070*** 0.204*** 0.255*** 

  (0.009) (0.020) (0.023) 

Controls and FEs included     

Obs. 103,565 103,565 103,565 

Adj. R2 0.315 0.360 0.297 

 

Panel L. Exclude inventors in medical industries 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.029*** 0.116*** 0.146*** 

  (0.008) (0.017) (0.019) 

Controls and FEs included     

Obs. 134,298 134,298 134,298 

Adj. R2 0.316 0.348 0.303 

 

Panel M. Control for state-level macroeconomics conditions 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.037*** 0.120*** 0.167*** 

  (0.008) (0.017) (0.019) 

Controls and FEs included     

Obs. 148,158 148,158 148,158 

Adj. R2 0.310 0.347 0.303 

 

Panel N. Randomized NBP participating states 

  (1) (2) (3) 

Variable LnPat LnCit LnPatVal 

Treat*Post 0.009 0.014 0.020 

  (0.008) (0.017) (0.020) 

Controls and FEs included     
Obs. 233,388 233,388 233,388 

Adj. R2 0.304 0.326 0.303 
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Table 3.4. Inventor Experience 

This table shows how the effect of air pollution on inventor innovation output varies with inventor experience. 

The regressions are performed by ordinary least squares, with standard errors (reported in parentheses) 

clustered at the inventor level. ***, **, * indicate significance at the 1%, 5%, and 10% significance levels, 

respectively. Variable definitions are shown in the Appendix. 3.A. 

 

  (1) (2) (3) (4) (5) (6) 

Variable LnPat LnCit LnPatVal LnPat LnCit LnPatVal 

Treat*Post 0.087*** 0.274*** 0.347*** 0.084*** 0.280*** 0.283*** 

  (0.009) (0.021) (0.024) (0.007) (0.016) (0.019) 

Treat*Post*Tenure -0.107*** -0.280*** -0.362***       

  (0.013) (0.027) (0.033)       

Treat*Post*Superstar       -0.333*** -0.951*** -0.806*** 

        (0.019) (0.039) (0.041) 

Firm Size 0.035*** 0.023** 0.262*** 0.035*** 0.025** 0.263*** 

  (0.004) (0.010) (0.011) (0.004) (0.010) (0.011) 

R&D -0.368*** -1.240*** -0.708*** -0.358*** -1.210*** -0.688*** 

  (0.076) (0.171) (0.184) (0.076) (0.171) (0.183) 

ROA -0.141*** -0.219*** 0.058 -0.142*** -0.222*** 0.059 

  (0.030) (0.070) (0.078) (0.030) (0.069) (0.078) 

Leverage -0.082*** -0.048 -0.050 -0.072*** -0.021 -0.025 

  (0.025) (0.056) (0.062) (0.025) (0.055) (0.062) 

CapEx 0.271*** 0.352 1.037*** 0.261*** 0.326 1.011*** 

  (0.096) (0.218) (0.236) (0.096) (0.217) (0.236) 

BM -0.124*** -0.333*** -0.486*** -0.118*** -0.316*** -0.471*** 

  (0.012) (0.027) (0.028) (0.012) (0.027) (0.028) 

Cash 0.171*** 0.217*** 0.209*** 0.171*** 0.216*** 0.207*** 

  (0.023) (0.052) (0.058) (0.023) (0.051) (0.058) 

Firm Age -0.128*** -0.256*** -0.432*** -0.129*** -0.257*** -0.434*** 

  (0.010) (0.022) (0.025) (0.010) (0.022) (0.025) 

Tenure -0.222*** -0.600*** -0.823*** -0.211*** -0.577*** -0.764*** 

  (0.007) (0.016) (0.018) (0.006) (0.014) (0.015) 

State FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes Yes 

Obs. 149,704 149,704 149,704 149,704 149,704 149,704 

Adj. R2 0.310 0.347 0.302 0.314 0.355 0.305 
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Table 3.5. Original Air Quality Level 

This table shows how the effect of air pollution on inventor innovation output varies with the pre-NBP air 

quality level. The regressions are performed by ordinary least squares, with standard errors (reported in 

parentheses) clustered at the inventor level. All independent variables except Treat*Post are lagged by one 

year. ***, **, * indicate significance at the 1%, 5%, and 10% significance levels, respectively. Variable 

definitions are shown in the Appendix. 3.A. 

 

  (1) (2) (3) (4) (5) (6) 

Variable LnPat LnCit LnPatVal LnPat LnCit LnPatVal 

              

Treat*Post 0.012 0.060*** 0.077*** 0.013 0.056** 0.065*** 

  (0.009) (0.020) (0.023) (0.010) (0.022) (0.024) 

Treat*Post*PreAQ 0.045*** 0.142*** 0.212***       

  (0.012) (0.025) (0.031)       

Treat*Post*PreUnhealthy       0.032*** 0.117*** 0.188*** 

        (0.012) (0.025) (0.030) 

Firm Size 0.034*** 0.024** 0.259*** 0.034*** 0.023** 0.258*** 

  (0.004) (0.010) (0.011) (0.004) (0.010) (0.011) 

R&D -0.382*** -1.235*** -0.776*** -0.381*** -1.231*** -0.770*** 

  (0.078) (0.176) (0.189) (0.078) (0.176) (0.189) 

ROA -0.152*** -0.248*** 0.001 -0.152*** -0.246*** 0.004 

  (0.031) (0.072) (0.081) (0.031) (0.072) (0.081) 

Leverage -0.093*** -0.062 -0.097 -0.093*** -0.065 -0.104 

  (0.026) (0.058) (0.065) (0.026) (0.058) (0.065) 

CapEx 0.296*** 0.358 0.911*** 0.299*** 0.362 0.912*** 

  (0.101) (0.229) (0.247) (0.101) (0.229) (0.247) 

BM -0.132*** -0.352*** -0.489*** -0.132*** -0.353*** -0.491*** 

  (0.013) (0.029) (0.029) (0.013) (0.029) (0.029) 

Cash 0.153*** 0.202*** 0.209*** 0.153*** 0.202*** 0.209*** 

  (0.024) (0.054) (0.060) (0.024) (0.054) (0.060) 

Firm Age -0.128*** -0.251*** -0.412*** -0.127*** -0.249*** -0.408*** 

  (0.010) (0.023) (0.026) (0.010) (0.023) (0.025) 

Tenure -0.182*** -0.506*** -0.690*** -0.182*** -0.507*** -0.693*** 

  (0.006) (0.014) (0.015) (0.006) (0.014) (0.016) 

State FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes Yes 

Obs. 136,444 136,444 136,444 136,444 136,444 136,444 

Adj. R2 0.312 0.349 0.303 0.312 0.349 0.303 
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Table 3.6. NBP Implementation and Inventor Innovation Strategy 

This table presents the regression results of the effect of NBP implementation on inventor innovation strategy. 

The regressions are performed by ordinary least squares, with standard errors (reported in parentheses) 

clustered at the inventor level. All independent variables except Treat*Post are lagged by one year. ***, **, 

* indicate significance at the 1%, 5%, and 10% significance levels, respectively. Variable definitions are 

shown in the Appendix. 3.A. 

 

  Exploration Exploitation 

  (1) (2) (3) (4) 

Variable LnExplore LnFirstPat LnExploit LnSelfcite 

Treat*Post 0.020*** 0.050*** -0.013*** -0.016** 

  (0.005) (0.007) (0.005) (0.007) 

Firm Size 0.011*** 0.022*** 0.013*** 0.003 

  (0.003) (0.004) (0.003) (0.004) 

R&D -0.251*** -0.311*** -0.208*** -0.229*** 

  (0.049) (0.066) (0.055) (0.073) 

ROA -0.050** -0.117*** -0.054** -0.008 

  (0.020) (0.028) (0.022) (0.029) 

Leverage -0.066*** -0.130*** 0.012 0.069*** 

  (0.016) (0.022) (0.017) (0.024) 

CapEx 0.126** -0.002 0.270*** 0.139 

  (0.064) (0.090) (0.063) (0.085) 

BM -0.077*** -0.132*** -0.020** -0.031** 

  (0.008) (0.011) (0.009) (0.012) 

Cash 0.028* 0.078*** 0.109*** 0.023 

  (0.015) (0.021) (0.017) (0.022) 

Firm Age -0.059*** -0.115*** -0.021*** -0.001 

  (0.007) (0.009) (0.006) (0.008) 

Tenure -0.381*** -0.298*** 0.126*** 0.122*** 

  (0.004) (0.006) (0.004) (0.006) 

State FE Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes 

Obs. 149,704 149,704 149,704 149,704 

Adj. R2 0.188 0.206 0.352 0.420 
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Table 3.7. Air Pollution and Working Hours 

This table shows how air pollution affects the working hours of local residents. The regressions are performed 

by ordinary least squares. All independent variables are in the same year of dependent variables. ***, **, * 

indicate significance at the 1%, 5%, and 10% significance levels, respectively. Variable definitions are shown 

in the Appendix. 3.A. 

 

  (1) (2) 

Variable LnWorkingHours LnWorkingHours 

StateAQ 0.000  
  (0.001)  
StateUnhealthy  0.006 

   (0.101) 

State FE Yes Yes 

Year FE Yes Yes 

Industry FE Yes Yes 

Job Category FE Yes Yes 

Obs. 112,456 112,456 

Adj. R2 0.070 0.095 
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Table 3.8. NBP Implementation and Quality of Innovation 

This table presents the regression results of the effect of NBP implementation on average patent quality, 

measured by the average citations and economic value per patent. The regressions are performed by ordinary 

least squares, with standard errors (reported in parentheses) clustered at the inventor level. All independent 

variables except Treat*Post are lagged by one year. ***, **, * indicate significance at the 1%, 5%, and 10% 

significance levels, respectively. Variable definitions are shown in the Appendix. 3.A. 

 

  (1) (2) 

Variable LnAvgCit LnAvgPatVal 

Treat*Post 0.130*** 0.135*** 

  (0.014) (0.011) 

Firm Size -0.052*** 0.215*** 

  (0.009) (0.009) 

R&D -0.447*** -0.191 

  (0.156) (0.134) 

ROA -0.189*** 0.439*** 

  (0.062) (0.051) 

Leverage 0.120** -0.140*** 

  (0.052) (0.039) 

CapEx -0.136 0.389*** 

  (0.192) (0.148) 

BM -0.057** -0.455*** 

  (0.026) (0.020) 

Cash -0.057 -0.323*** 

  (0.046) (0.041) 

Firm Age 0.005 -0.170*** 

  (0.020) (0.021) 

Tenure 0.012 -0.019** 

  (0.011) (0.009) 

State FE Yes Yes 

Year FE Yes Yes 

Inventor FE Yes Yes 

Industry FE Yes Yes 

Obs. 96,298 96,298 

Adj. R2 0.542 0.766 
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Table 3.9. Analysis on All the Inventors 

This table presents the regression results of the difference-in-difference test on all the inventors (regardless 

of whether they are affiliated with public firms or not). The regressions are performed by ordinary least 

squares, with standard errors (reported in parentheses) clustered at the inventor level. ***, **, * indicate 

significance at the 1%, 5%, and 10% significance levels, respectively. Variable definitions are shown in the 

Appendix. 3.A. 

 

  (1) (2) 

Variable LnPat LnCit 

Treat*Post 0.033*** 0.129*** 

  (0.004) (0.010) 

Tenure -0.207*** -0.570*** 

  (0.003) (0.008) 

State FE Yes Yes 

Year FE Yes Yes 

Inventor FE Yes Yes 

Obs. 381,903 381,903 

Adj. R2 0.297 0.325 
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Table 3.10. Local Air Quality and Inventor Innovation Output 

This table presents the regression results of the relation between local air quality and inventor innovation 

output. The regressions are performed by ordinary least squares, with standard errors (reported in parentheses) 

clustered at the inventor level. All independent variables are lagged by one year. ***, **, * indicate 

significance at the 1%, 5%, and 10% significance levels, respectively. Variable definitions are shown in the 

Appendix. 3.A. 

 

  (1) (2) (3) (4) (5) (6) 

Variable LnPat LnCit LnPatVal LnPat LnCit LnPatVal 

AnnualAQ -0.013*** -0.044*** -0.042***    
  (0.004) (0.011) (0.011)    
Unhealthy    -0.027** -0.125*** -0.132*** 

     (0.011) (0.032) (0.031) 

Firm Size 0.030*** 0.048*** 0.204*** 0.030*** 0.048*** 0.204*** 

  (0.002) (0.004) (0.004) (0.002) (0.004) (0.004) 

R&D 0.064** 0.062 0.679*** 0.064** 0.059 0.675*** 

  (0.030) (0.084) (0.076) (0.030) (0.084) (0.076) 

ROA 0.070*** 0.291*** 1.011*** 0.071*** 0.292*** 1.011*** 

  (0.012) (0.034) (0.033) (0.012) (0.034) (0.033) 

Leverage -0.030*** 0.001 -0.070*** -0.030*** 0.001 -0.070*** 

  (0.009) (0.024) (0.022) (0.009) (0.024) (0.022) 

CapEx 0.238*** 0.615*** 0.399*** 0.238*** 0.612*** 0.395*** 

  (0.026) (0.074) (0.065) (0.026) (0.074) (0.065) 

BM -0.024*** -0.048*** -0.129*** -0.025*** -0.049*** -0.130*** 

  (0.003) (0.009) (0.008) (0.003) (0.009) (0.008) 

Cash 0.104*** 0.332*** 0.368*** 0.104*** 0.333*** 0.368*** 

  (0.010) (0.028) (0.026) (0.010) (0.028) (0.026) 

Firm Age -0.106*** -0.305*** -0.266*** -0.106*** -0.305*** -0.266*** 

  (0.003) (0.010) (0.009) (0.003) (0.010) (0.009) 

Tenure -0.256*** -0.939*** -0.824*** -0.256*** -0.939*** -0.824*** 

  (0.002) (0.005) (0.005) (0.002) (0.005) (0.005) 

State FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Inventor FE Yes Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes Yes 

Obs. 1,528,468 1,528,468 1,528,468 1,528,704 1,528,704 1,528,704 

Adj. R2 0.201 0.248 0.281 0.201 0.248 0.281 
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Figure 3.1. Participation in NBP by State 

This figure presents the NBP participation status for U.S. states. Dark blue states were NBP participating 

states during the period 2003 to 2007, and the inventors in these states are treated inventors. Light blue states 

did not participate in the NBP, and the inventors in these states are controlled inventors. Inventors in the 

shaded states are excluded from my empirical analysis. This figure comes from Deschênes et al. (2017). 
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Figure 3.2. Ozone Season NOx Emissions from All NBP Sources 

This figure presents the change of ozone season emissions in NBP participating states during the period 

1990 to 2007. This figure comes from EPA (2007). 
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Figure 3.3. Parallel Trend of Innovation output around the implementation of NBP 

This figure presents the trends in innovation output for the treatment and control group firms around the 

implementation of NBP.  
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