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Abstract

Genome-Wide Association Studies (GWAS) have been successful strategies of ap-

plying biological insights into diseases in epigenetics and epigenomics in the past

two decades, by linking diseases or their traits with genomic variants, environmental

confounders, and clinically relevant information. The companion data used to be

of versatile dimensionality and of complex data structure, posing exciting challenges

and opportunities for new statistical methodology and inference, coupled with new

modeling and effective computing implementation. The thesis composes of three

parts and aims to address several important regression problems of estimation, hy-

pothesis testing, and classification arising from the prevailing GWAS data pool, to

meet the increasing need of statistical analytic toolsets.

Part I focuses on regression with censored survival outcomes and is motivated by

data of diffuse large B-cell lymphoma (DLBCL), which integrated a large number

of gene expression variants and censored survival time of patients with low sample

size. This calls for efficient algorithms for feature screening and delicate statistical

inference for the selected subset of influenced variables after dimensionality reduction.

In Chapter 2, we present the non-monotone proximal gradient (NPG) algorithm

to speed up sure joint screening for ultrahigh-dimensional Cox proportional hazard

model and prove its convergence with LASSO initiator. The accompanied R-package

named coxnpgsjs is fast and efficient to select a designated number of influenced gene

variants from the DLBCL data. In Chapter 3, we investigate the impact of such a
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subset of genetic factors on the survival time through the single-index hazard (SIH)

semiparametric regression model. The SIH model is robust but challenging in efficient

statistical inference owing to the nested single index structure. We propose a censored

version of multiple local linear regression to attain uniformly consistent estimator

of the nonparametric component and the semiparametric efficient bound for the

profile likelihood estimator of the parametric component. Two classes of estimations

equations are derived as the practical alternative of the score equation from the

perspective of double robustness. The proposed methods and results are applied

to estimate the gene effects and to detect its significance on the aforementioned

lymphoma.

Part II focuses on regression with sparse longitudinal responses and is motivated

by large-scale longitudinal GWAS for Alzheimer’s Disease in detecting Single Nu-

cleotide Polymorphisms (SNPs) level genotype effects on the phenotype response. It

is in urgent need of powerful test procedures to detect the significance at the GWAS

P-value significant threshold to the wide community of associated researchers. To

compare multiple treatments, Chapters 4 and 5 present practical strategies on boot-

strap procedures and apply successfully on models with Gaussian and non-Gaussian

phenotype response and gigantic SNP level genotypes. This unveils some interesting

association discoveries of generic effect on the disease at the GWAS significance level

for the well-known Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.

Part III focuses on regression with binary outcomes and is motivated by labeling

the Multiple Sclerosis disease precisely among a population where the projection

scores are skewed. In Chapter 6, we define a general distance to incorporate existing

optimal functional classifiers and interpret reasonably why our proposed quantile

classifier is robust. The optimal property of near perfect is derived. The accompanied

classification procedure is fast and accurate. A Shiny app is built for the convenience

of clinical practitioners.
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Chapter 1

Introduction

1.1 Introduction

Genome-wide Association Studies (GWAS) have been successful strategies of inte-

grating biological variants into diseases and their traits in epigenetics and epige-

nomics in the past two decades (Tam et al., 2019), generating data of various di-

mensionality covering from low- to ultrahigh- dimensional data, and intrinsically

infinite curve or image data. The blend of versatile data types and complicated

data structures in the GWAS provide many opportunities and poses new challenges

for statisticians to develop effective algorithms, new models, and the accompanying

methodology to meet the urgent need of statistical analytic toolsets. The thesis is

motivated by three data sets arising from the prevailing GWAS studies and aims to

address a series of regression analysis of estimation, testing, and classification.

Part I is motivated by microarray studies of censored survival time for diffuse

large-B-cell lymphoma cancer (DLBCL), the most common type of lymphoma world-

wide (Pasqualucci et al., 2011). The data set is quite typical in the GWAS, hundreds

of thousands to millions of genetic variants like gene expressions across genomes of

individuals in the human population together with a limited amount of patients,

and censored patient survival outcomes. The primary scientific interest is to identify

signature molecular features and to detect the influence of the important molecular
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CHAPTER 1. INTRODUCTION

factors on time to death in patients with DLBCL. This triggers our research interest

in two aspects.

On one hand, we present the non-monotone proximal gradient sure joint screening

(NPGSJS) algorithm to speed up joint screening for the popular Cox proportional

hazard model subject to ultrahigh-dimensionality. In the literature, there is rich liter-

ature for marginal sure screening methods for the data set of ultrahigh-dimensionality

but the joint screening is sporadic until feature screening based on generalized linear

models Xu and Chen (2014). Yang et al. (2016) firstly applied the spirit of joint

feature screening into a survival model. However, the implementation of their al-

gorithm for ultrahigh-dimensional Cox’s model was slow and lacked the theory of

convergence of the algorithm. It is known that the Cox proportional hazard model

is the most popular survival model widely used in biomedical studies. Therefore

computing convenient algorithms will benefit the community and theoretical proof

of convergent algorithm is necessary for safe use.

On the other hand, notice that the feature aberration at survival times (FAST)

screening procedure Gorst-Rasmussen and Scheike (2013) is an excellent and expe-

dient procedure to implement feature screening. However, there lack of the delicate

statistical inference for the single-index hazard regression model involved when all

important features are selected. Lin et al. (2011) pointed out that, the popularity

of Cox’s model has mathematical expedience to deal with, but may suffer misspec-

ification and incur bias. Thus more robust hazard regression will be remedial. It

also brings the theoretical challenge in establishing efficient asymptotic estimation

procedure. As evidence, Ding et al. (2013) showed that even strong consistency can

hardly be guaranteed unless strong assumptions are given.

Part II is driven by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) co-

hort study where phenotypic responses were collected at multiple time points. The

ADNI was launched in 2004 and has had a global impact by uniting multisite data to

— 2 —



CHAPTER 1. INTRODUCTION

investigate the progression of Alzheimer’s Disease (AD) to seek for better prevention

and treatment. The ADNI GWAS is longitudinal in the sense that the disease-related

phenotype response is repeatedly measured on irregular and sparse time points, and

thus correlation structure can not be avoided. Also, the Single Nucleotide Poly-

morphisms (SNPs) level genotypes are hundreds of thousand giants. The scientific

interest is to detect associated genotype effects on longitudinal phenotype response

at the GWAS significance threshold for multiple comparisons.

Longitudinal GWAS are quite recent and thus the methods for multiple compar-

isons of generic effects on longitudinal phenotypic responses are in short (Xu et al.,

2014; He et al., 2015; Wang et al., 2017; Visscher et al., 2017). The computational

feasibility is a great challenge in multiple comparisons of large-scale longitudinal

GWAS. Traditional cross-sectional methods for phenotypic data observed at a single

time point in most existing GWAS are not directly applicable to longitudinal GWAS.

Modeling longitudinal outcomes as functional response is a stream to develop test

procedures (Reimherr and Nicolae, 2014; Huang et al., 2017). Zhang (2013) sum-

marized fANOVA methods for dense functional data and Gaussian-type responses.

Tang et al. (2016) is the first one to raise the nonparametric likelihood ratio based-

test for common generalized partial linear models with sparse functional outcomes

that allow non-Gaussian. Zhu et al. (2020+) further improved the power of the gen-

eralized quasi-likelihood ratio (GQLR) test of Tang et al. (2016) by incorporating

within-subject correlation.

Our contribution lies in addressing the computing feasibility for comparison of

multiple treatments when there are giant bootstrap samples for large scale longitu-

dinal GWAS. We provide practical strategies and detailed procedures for the two

GQLR tests aforementioned to identify the SNP level generic effects on sparse lon-

gitudinal Gaussian and non-Gaussian responses, unveiling some interesting associa-

tions: We discover the 177 SNPs that are associated with the hippocampal volume

— 3 —
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trajectory at GWAS significant level for the ADNI 1 GWAS, coincided with some

known findings by independent studies. For the whole population of the ADNI1

cohort and MCI group, we detect out that the APOE allele significantly impacts the

delayed score RAVLT of patients as the count response.

Part III is motivated by Multiple Sclerosis (MS), another progressive neurological

disease. Diffusion tensor imaging (DTI) provides the tract profiles to discriminate

MS cases from healthy controls. The scientific problem is to assign a group label

to an observed random trajectory detected by the DTI technique. It looks as if a

regression problem where responses are binary categories and predictors are random

trajectories. Projection classifiers are one of the main research streams. Existing

projection classifiers enjoy good theoretical properties and satisfactory misclassifi-

cation rates in some cases. See Delaigle and Hall (2012), Dai et al. (2017), among

others. These is no unified framework to incorporate existing optimal functional

classifiers. In this part, we consider both computational efficiency and theoretical

development to construct a unified framework of projection classifiers. The proposed

robust and yet computational expedient classifiers will be a good tool, particularly

for large scale community monitoring in biomedical studies.

1.2 Organization of the thesis

The remaining of the thesis is organized as follows.

Chapter 2 presented the non-monotone proximal gradient sure joint screening

(NPGSJS) algorithm to speed up joint screening for the Cox proportional hazard

model subject to ultrahigh-dimensionality. We establish the convergence of the al-

gorithm with the LASSO initiator. An R package named coxnpgsjs is available.

Chapter 3 develops a censored version of multiple local linear regression to attain

semiparametric efficient bound for the profile likelihood estimator of the paramet-
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ric component, and uniformly consistent estimator of the nonparametric part in the

single-index hazard (SIH) semiparametric regression model. Doubly robust estima-

tion equations. Two classes of estimations equations from the perspective of double

robustness are presented as practical alternatives.

Chapters 4 and 5 focus on adapting bootstrap procedures to make multiple com-

parisons to reach the GWAS significance level for longitudinal GWAS data.

Chapter 6 defines a general distance to incorporate existing optimal functional

classifiers and propose the weighted-quantile classifier that is convenient to imple-

ment. The optimal property of perfect is derived. A Shiny app is built for the

convenience of clinical practitioners.

Chapters 2, 3, 4, 5, 6 are based on manuscripts Chen et al. (2020+); Liu et al.

(2020+); Li et al. (2020+); Zhu et al. (2020+), and Ma et al. (2020+), respectively.

Chapter 2 is under revision, Chapters 3, 5, and 6 are under review, and Chapter 4

is to appear.
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Chapter 2

An Efficient Algorithm for Joint

Feature Screening in

Ultrahigh-Dimensional Cox’s

Model

2.1 Introduction

At contemporary biology and gene epidemiology studies and multiple other fields

with survival outcomes, there is a data phenomenon called ultrahigh-dimensionality,

which is of data a large scale or a huge scale in exponentially increasing relative

to the so-called large-p-small-n high-dimensional data. Such ultrahigh-dimensional

data accompanied with survival outcomes are encountered in a wide range of ap-

plications, particularly in microarray gene expression studies. See the diffuse large

B-cell lymphoma study of Rosenwald et al. (2002), the mantle cell lymphoma study

of Rosenwald et al. (2003), the neuroblastoma study of Oberthuer et al. (2006),

the cytogenetically normal acute myeloid leukaemia study of Metzeler et al. (2008),

among others. Thus feature screening is inevitable before variable selection and ap-

plications of conventional statistical methods. In feature screening procedures, one

first concern is the effectiveness of methodologies, and the other top concern is the

computational feasibility in modern genetic studies.

7
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Hazard regression is an important tool to model survival outcome data. Within

the single-index hazard model, Gorst-Rasmussen and Scheike (2013) developed a

so-called FAST feature screening method, which is computationally efficient. In

practice, the semiparametric Cox model may be the most popular employed due to

its interpretability and high recognition. Within the Cox model, there are quite a

few feature screening methods such as SIS, P-SIS, and SJS (see Fan et al. (2010),

Zhao and Li (2012), Yang et al. (2016), among others). In the aforementioned

feature screening methods, Gorst-Rasmussen and Scheike (2013), Fan et al. (2010),

and Zhao and Li (2012) belong to the class of marginal screening methods, which is

performed in one-feature-at-a-time fashion by ranking some marginal utility, say the

Pearson correlation coefficient. The merit is that it is computationally highly efficient

in practice. Rather than such marginal sure independent screening (SIS) schemes,

as an analog to Xu and Chen (2014), Yang et al. (2016) employed a sure joint

screening (SJS) strategy in the sense that it jointly estimates the model coefficients.

Comparatively, SJS idea can capture more information naturally, but at the cost

of heavy computational burden. Considering the popularity of the Cox model, it

is imperative to develop efficient algorithms that are computational expedient for

feature screening under the ultrahigh-dimensional Cox model.

Recall that, Yang et al. (2016) presented a sparsity-restricted maximum par-

tial likelihood estimator (SMPLE) under Cox’s model with the idea analogue to

the sparsity-restricted maximum likelihood estimator (SMLE) in generalized linear

models of Xu and Chen (2014) because both models possess the likelihood structure.

It is known that the likelihood-based procedure is usually computationally costly.

Yang et al. (2016) applied directly the iterative hard-thresholding (IHT) algorithm

adopted by Xu and Chen (2014) and developed by She (2009). However, their the-

ory proof cannot ensure the local convergence of the partial likelihood sequence, and

therefore cannot assure the sure screening of the IHT iteration. This drives our work

— 8 —



CHAPTER 2. AN EFFICIENT ALGORITHM FOR JOINT FEATURE SCREENING IN ULTRAHIGH-DIMENSIONAL COX’S

MODEL

in this paper for the purpose of enhancement of the algorithm and establishment of

its optimality theories.

In our algorithm, we replace the diagonal matrix of the Hessian matrix by the sim-

ple identity matrix in the objective function inside each iteration. Such modification

saves the computational cost by avoiding the estimation of the second derivatives of

the likelihood functions, but at the cost of scarifying the effectiveness and accuracy.

As compensation, we borrow the strength of the solution to the locally Lipschitz

optimization problems from Chen et al. (2016) and Yang (2017) and adapt the non-

monotone proximal gradient (NPG) method for the Cox model based on two facts

in optimization theory: one is that the IHT algorithm can be viewed as a proximal

gradient (PG) algorithm with monotone line search under a more general framework,

and the other is that the NPG algorithm is able to significantly improve the efficiency

and accuracy in contrast to the monotone PG algorithm.

The contribution of this chapter is two-fold. On one hand, the proposed algo-

rithm is efficient in that it enjoys the advantage of joint feature screening as well as

its implementation is computationally fast. This is demonstrated in our simulation

study compared with the other existing methods. We develop R functions for the im-

plementation of the proposed screening procedure. This provides obvious expedience

for users in epigenetic studies. On the other hand, we establish the sure screening

property of the iterative screening algorithm with LASSO initial estimator strictly.

The selection of the initial value will impact the performance of an algorithm. The

LASSO initial estimator is preferable in practice since LASSO is a standard convex

relaxation formulation.

The remainder of this chapter is organized as follows. In Section 2.2, we set

up the local optimality of the constrained likelihood sequence after a brief review

of the ultrahigh-dimensional Cox model. In Section 2.3, we first derive the sure

screening property of the LASSO-initiated IHT algorithm. And we also provide
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an implementation procedure of the NPG algorithm. In Section 2.4, we carry out

several numerical studies to demonstrate the improvement of the enhanced algorithm

through comparing it with the existing methods. A real data example is illustrated

in Section 2.5. All theoretical proofs are left to Section 2.6.

2.2 Local Optimality of the Constrained Partial

Likelihood Sequence

Recall that, Cox’s model, or the proportional hazard regression, is to characterize

the dependence of survival time T on p-dimensional covariate Z “ pZ1, ¨ ¨ ¨ , Zpq
T in

the form of

λpt|Zq “ λ0ptqexppZTβq, (2.1)

where β “ pβ1, ¨ ¨ ¨ , βpq
T is a p-vector of unknown regression coefficients, and λ0ptq is

the unspecified baseline hazard function. The observed data is denoted by pXi, δi,Ziq,

i “ 1, ¨ ¨ ¨ , n, where Xi “ minpTi, Ciq, Ci, and δi “ IpXi ď Ciq are observed time,

censoring time, and censoring indicator for the ith subject. We assume the general

settings for survival outcomes. Briefly, 1) the parameter space B is a compact subset

of Rp and contains the true parameter β˚; 2) Xi and Ci are conditionally independent

given the covariates Zi, i.e. noninformative censoring; 3) there are no ties in the

observed failure time, otherwise the technique in Breslow (1974) can be adopted.

Let Niptq “ IpXi ď t, δi “ 1q and Yiptq “ IpXi ě tq be the counting and at

risk processes, respectively. Also, we put N̄ptq “
řn
i“1Niptq. Then the log partial

likelihood function (Cox (1975) and Andersen and Gill (1982)), can be written as

lnpβq “

n
ÿ

i“1

ż τ

0

”

ZT
i β ´ log

!

nSp0qpβ, tq
)ı

dNiptq, (2.2)

where τ is the maximum follow-up time and Splqpβ, tq “ n´1
řn
i“1 YiptqZ

bl
i exppZT

i βq,

l “ 0, 1, 2 withb being the Kronecker product. DefineMiptq “ Niptq´
şt

0
YipsqexppZT

i β
˚q
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dΛ0psq, where Λ0p¨q is the cumulative hazard function. Then Miptq is an orthogonal

local square integrable martingale with respect to filtration Fti “ σtNipsq,Zips
`q, Yips

`q,

0 ď s ď tu for i “ 1, ¨ ¨ ¨ , n. Let Z̄pβ, tq “ Sp1qpβ, tq{Sp0qpβ, tq and V pβ, tq “

Sp2qpβ, tq{Sp0qpβ, tq ´ Z̄pβ, tqb2. By differentiation and some simple algebraic ma-

nipulation, it is readily seen that the score function of (2) is 9lnpβq “ Blnpβq{Bβ “

řn
i“1

şτ

0

 

Zi´Z̄pβ, tq
(

dNiptq, and the Hessian matrix of´lnpβq is´:lnpβq “ ´B
2lnpβq{

pBβBβT q “
řn
i“1

şτ

0
V pβ, tqdNiptq “

şτ

0
V pβ, tqdN̄ptq.

The above description is a brief review of the Cox model. Going back to the

ultrahigh-dimensional setting, we assume that log p “ Opnmq for some 0 ď m ă 1{2.

Then β is a sparse parameter vector with p " n, the jth feature of which is referred

to important if β˚j ‰ 0, otherwise unimportant. According to the sparsity principle,

there are only a small number of non-zero β˚j ’s. Feature screening is to identify all

the important features with moderate size so that more sophisticated regularized

methods can be easily carried out. To this end, we introduce a few more notations.

Let M denote an arbitrary subset of t1, ¨ ¨ ¨ , pu. Denote βM “ tβj, j PMu and M0 to

be the subset of indices of all important features, i.e., M0 “ tj : β˚j ‰ 0u. Throughout

this paper, let } ¨ }0 be the number of non-zero coordinates or cardinality where ¨

represents a vector or a set, respectively. Then }M0}0 “ }β
˚}0 :“ q, q ă k, where

q is the number of the non-zero coordinates of the true model and k is a pre-given

positive integer. The number q may vary with n. Let Bpkq “ tβ P B|}β}0 ď ku.

Then the sparsity-restricted maximum partial likelihood estimator (SMPLE) of the

SJS procedure by Yang et al. (2016) is defined as a sparse solution

β̂ “ argmin
βPBpkq

t´lnpβqu, (2.3)

which has equivalent representation in (2.3) in Yang et al. (2016). Yang et al. (2016)

proved the sure screening of SMPLE in their Theorem 2 in subsection 2.2.

Besides the sure screening, Yang et al. (2016) also gave a result about the mono-
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tonicity of the constrained partial likelihood sequence through a Taylor expansion to

lnpβq, but they have no evidence for the local optimality. We are able to obtain the

local optimality because we apply a different technique ((2.7) in Section 2.6) so as

to achieve the sufficient ascent of the constrained likelihood sequence. The result is

reported in the theorem below.

Theorem 2.1. Let ρptq “ suptλmax

 şτ

0
V pβ̄, tqdN̄ptq

(

: β̄ “ αβpt`1q`p1´αqβptq, 0 ď

α ď 1u, where λmaxpAq represents the maximum eigenvalue of a matrix A, and the

iterated estimator of β is denoted by,

βpt`1q
“ argmin

βPBpkq
t´ppβ ´ βptqqT 9lnpβ

ptq
q ´

u

2
}β ´ βptq}22qu, (2.4)

for u ą 0. Then we have:

(1) If u ě ρptq, we have lnpβ
pt`1qq ě lnpβ

ptqq.

(2) Furthermore, if ρ “ suptě0ρ
ptq ă 8, u ě ρ and

şτ

0
V pβM , tqdN̄ptq is positive

definite for any βM with the cardinality of M being smaller than 2k, then tβptqu

converges to a local maximum of lnpβq subject to }β}0 ď k.

Remark 1. In the second result in afore Theorem 2.1, we give a value 2k as

a sparse recovery guarantee so that we have the local convergence property of the

algorithm. It further provides a theoretical support for the exercise of IHT in practice.

The first result of the monotonicity of the likelihood sequence in afore Theorem 2.1

corresponds to Theorem 1 in subsection 2.1 of Yang et al. (2016).

Remark 2. Notice that the objective function in Yang et al. (2016) and ours

can be unified in the form of Qnpβ | β
ptqq “ lnpβ

ptqq ` pβ ´ βptqqT 9lnpβ
ptqq ´ u{2pβ ´

βptqqTW pβ ´ βptqq. The working matrix W of Yang et al. (2016) is diagt:lpβptqqu,

whereas ours is an identity matrix I. The later reduces the heavy computation load

caused by :lpβptqq to some extend. But the side effect is that it may give rise to the

estimation inaccuracy. We address the problem in next section.
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Remark 3. Our iterative estimation (2.4) corresponds to the constrained maxi-

mization problem (2.5) in Yang et al. (2016). In implementation, one first solves (2.4)

without the L0 norm constraint and denotes the solution by β̃ “ βptq ` u´1 9lnpβ
ptqq.

Then, let

βpt`1q
“ Hpβ̃; kq ”

 

Hpβ̃1; β̃pkqq, ¨ ¨ ¨ , Hpβ̃p; β̃pkqq
(T
, (2.5)

where Hpβ̃j; β̃pkqq “ β̃jIp|β̃j| ě β̃pkqq and β̃pkq is the kth largest component of |β̃|. The

iteration (2.5) is called the iterative hard-thresholding (IHT) algorithm adapted from

the iterative thresholding algorithms in She (2009). Both Xu and Chen (2014) and

Yang et al. (2016) used such algorithm to realize their sparse likelihood estimation

procedure.

Remark 4. For the IHT algorithm, the selection of the step size, the reciprocal

of u, is an inevitable step. Although Yang et al. (2016) proposed the ITH algorithm

under the Cox model, they did not declare the method of selection u in practice.

The monotone line search for u recommended in Xu and Chen (2014) can also be

applied to the IHT iteration for the Cox model. In this way, the IHT algorithm with

the monotone line search that was used both in Xu and Chen (2014) and in Yang

et al. (2016) can be viewed as a proximal gradient (PG) algorithm with monotone

linear search within a more general framework. It is known that the non-monotone

proximal gradient (NPG), stacking up against PG, will be much more efficient in

practice since it potentially reduces number of inner loops. This motivates us to

employ the NPG to improve the IHT algorithm in the next section.

2.3 Sure Screening of Cox-LASSOi-IHT iteration

and an NPG Algorithm

In previous section, we have derived the local optimality of the constrained partial

likelihood sequence. Now it comes to the issues for computational feasibility of
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the whole feature screening algorithm. Our aim here is twofold. One is about the

selection of the initial value of the algorithm. We establish the sure screening for the

IHT procedure initiated by LASSO for the Cox model (abbreviated as Cox-LASSOi-

IHT hereinafter). The other is to present an NPG algorithm to settle down the

efficiency and accuracy problems mentioned in the Remarks 2 and 4 of Theorem 2.1.

2.3.1 Sure Screening of Cox-LASSOi-IHT iteration

Yang et al. (2016) derived the sure screening property of the SMPLE and used the

IHT algorithm. However, they left the unsolved question that whether the IHT al-

gorithm necessarily leads to the SMPLE so that Theorem 2 in Yang et al. (2016)

(sure screening property of SMPLE) is applicable. Unfortunately, there is no guar-

antee that β̂ is the outcome of a single run of the IHT due to the complexity of the

minimization problem in (2.3).

It is known that an appropriate selection of the initial value is able to increase the

chance of hitting the local maximizer and hence enhance the accuracy. In addition,

a good initial setup can further save the computational cost in the sense that less

number of the iterations are carried out. LASSO, as the standard convex relaxation

formulation for sparse learning, is widely used in practice because it leads to sparse

solution and is computational efficient (Zhang (2009)). Under certain conditions

(Zhao and Yu (2006), Meinshausen and Bühlmann (2006)), LASSO is model selection

consistency. Since LASSO considers the joint effects of the predictors, it can serve

as an initial estimator in the IHT procedure.

The following Theorem 2.2 states the sure screening property of the Cox-LASSOi-

IHT iteration.

Theorem 2.2. Under Assumptions 2.1 to 2.7 in Section 2.6, let logppq “ Opnmq,

τ1 ` τ2 ă
1
2
´m, 0 ď m ă 1{2, and u ą c6rn with r “ Opnτ3q, where τ3 is defined

in Assumption 2.7, and c6 is a positive constant. Define βp0q “ argminβt´lnpβq `
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nλ}β}1u, where λ satisfies λn
1
2
´m Ñ 8, λnτ1`τ2 Ñ 0 and maxjσ

2
j “ Opλn

1
2 q, and

let M ptq “ tj : β̂
ptq
j ‰ 0u, where σ2

j is defined in Assumption 2.3 and τ1 and τ2 are

defined in Assumption 2.4. Then we have

prpM0 ĂM ptq
q Ñ 1,

for any finite t ě 1, as n goes to infinity.

Although the exact SMPLE β̂ could not be obtained, the above Theorem 2.2

guarantees the sure screening property of the Cox-LASSOi-IHT iteration. It is still

hard to determine which estimator shall be employed in the entire solution path

of the LASSO. We select λ that recruits the first k features in the solution path

of LASSO as the chosen tuning parameter value. This selection works well for all

the numerical examples in next section. In addition, from the proof of Theorem

2.2, we have }βptq ´ β˚}8 “ oppwq for any t, where w´1 “ Opnτ1q (see the proof of

Theorem 2.2 in Section 2.6 for detail), implying that the SMPLE may have desirable

estimation accuracy, as is validated in our numerical studies.

2.3.2 An NPG Algorithm

Theorem 1 in Yang et al. (2016) provides insight about the choice of the step size,

but they did not declare their exact method of step size selection in the numerical

study. In the following, we allow the step size in each iteration is different to other

iterations. For the tth iteration, the step size is denoted by 1{ut. To provide a

feasible way of choosing the step size 1{ut in practice, we might apply the method

of choosing ut suggested in Xu and Chen (2014). That is, at each iteration, we will

keep decreasing the step size by multiplying a constant less than 1 till the new partial

likelihood value is larger than the last one. Under a more general framework, such

method can be viewed as a proximal gradient method. Analogue to Xu and Chen
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(2014), the algorithm in Yang et al. (2016) could be summarized as the proximal

gradient (PG) method.

Algorithm 1 Proximal Gradient

Obtain an initial estimator βp0q. Choose L0 ą 0, τ ą 1, and set t “ 0.

(1) Set ut “ L0

(1a) Solve the subproblem

γ “ argmin
βPBpkq

t´rlnpβ
ptq
q ` pβ ´ βptqqT 9lnpβ

ptq
q

´
ut
2
pβ ´ βptqqTW pβ ´ βptqqsu,

where W “ diagt´:lpβptqqu.

(1b) If lnpγq ą lnpβ
ptqq, go to Step 2.

(1c) Set ut Ð τut and go to step (1a).

(2) Set βpt`1q Ð γ, tÐ t` 1, and go to step (1).

END

Specifically, Xu and Chen (2014) kept doubling ut till the criterion 1(b) is satisfied,

that is, they used τ “ 2. Because the computation cost of W is large and the line

search method is monotone, the Algorithm 1 might be not efficient. To make the

method more applicable in applications, we employ non-monotone proximal gradient

(NPG) method (Algorithm 2), namely, the proximal gradient method with a non-

monotone line search for solving the minimization problem (2.4) (See Wright et al.

(2009) and Chen et al. (2016)).

In the step 1(a)’s of the both algorithms, the hard thresholding method of She

(2009) is applied for solving the subproblems. Specifically, one may first compute

the surrogate quantity without consider the constraint Bpkq. Then, the step 1(a)

can be solved by keeping the largest k values of entries of the surrogate quantity.

Notice that the working matrix W in Algorithm 1 is replaced by the identity matrix

in Algorithm 2 so that the computational loads reduced in the later algorithm.
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Algorithm 2 Non-monotone Proximal Gradient

Obtain an initial estimator βp0q. Choose Lmax ą Lmin ą 0, τ ą 1, c ą 0 and and
integer M ě 0. Set t “ 0.

(1) Choose L
ptq
0 P rLmin, Lmaxs arbitrarily. Set ut “ L

ptq
0

(1a) Solve the subproblem

γ “ argmin
βPBpkq

t´Qn,tpβ | β
ptq
qu,

where Qn,tpβ | β
ptqq “ lnpβ

ptqq ` pβ ´ βptqqT 9lnpβ
ptqq ´ ut

2
}β ´ βptq}22.

(1b) If

lnpγq ě min
pt´Mq`ďiďt

lnpβ
piq
q `

1

c
}γ ´ βptq}22,

go to Step 2.

(1c) Set ut Ð τut and go to step (1a).

(2) Set βpt`1q Ð γ, tÐ t` 1, and go to step (1).

END

NPG is an efficient strategy for accelerating PG method through finding a proper

step size at each iteration. The main difference of these two algorithms lies in the line

search step 1(b)’s. The monotone line search in PG method requires a larger number

of loops to find an appropriate step size. While the non-monotone line search in NPG

method relaxes the requirement for the choice of the step size. That is, instead of

requiring the new log likelihood value greater than the previous one in PG, the NPG

only requires the new log likelihood value greater than the minimum value of previous

M log likelihood values, where M is a positive integer. Our numerical experience

suggests that set M to be 4 works well for the proposed method. The parameter M

is also commonly set to be 4 in the practice of using non-monotone proximal gradient

methods, see Chen et al. (2016), Yang (2017), among others. Empirically, it has been

shown that NPG can obtain better numerical performance in many applications. Our

numerical experiments also demonstrate the advantage of the NPG method.
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minF pβ | βptqq :“ ´Qnpβ | β
ptq
q ` P pβq, (2.6)

where P pβq takes value 0 if β P Bpkq and8 otherwise. Then ´Qnpβ | β
ptqq and P pβq

satisfy the conditions in Assumption A.1 of Chen et al. (2016). Chen et al. (2016)

provided the sparse optimization solutions to three scenarios of objective functions,

nonconvex, locally Lipschitz, and non-Lipschitz. Our objective function belongs to

the second. See Section 2.6 for assumption verification in details.

In practice we use the Barzilai-Borwein method (see Barzilai and Borwein (1988))

for the choice of L
ptq
0 . That is,

L
ptq
0 :“ min

#

max

#

rβptq ´ βpt´1qsT r 9lpβpt´1qq ´ 9lpβptqqs

}βptq ´ βpt´1q}22
, Lmin

+

, Lmax

+

,

for any t ě 1. The Barzilai-Borwein step size approximates :lpβptqq through a single

constant. Therefore, compared with Algorithm 1, where :lpβptqq is approximated by

utdiagt:lpβ
ptqqu, Algorithm 2 saves more computational cost. Numerically, there is

often less than two loops in each non-monotone line search backtracking after the

initial iteration when the Barzilai-Borwein method is applied.

We use the termination criterion which is commonly used in the general iterative

shrinkage and thresholding algorithm. (See Gong et al. (2013) and Wright et al.

(2009)) That is, we terminate the algorithm if

} 9lpβptqq ´ 9lpβpt´1qq}2 ` ut}β
ptq ´ βpt´1q}2

maxt1, }βptq}2u
ď 10´3.

Another important problem in practice is choosing the hyperparameter k in the

estimation procedure. Choosing k “ rn{pa0q logpnqs, where a0 is a positive constant,

is widely used in practice, see Fan et al. (2010), Fan and Lv (2008), among others.

In our proposed procedure, we adopt this rule. Based on our experience from the
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numerical experience and real data analysis, a smaller k makes the proposed method

slightly easier to succeed.

2.4 Simulation Studies

In this section, we examine and compare the empirical performance of the proposed

NPGSJS method with several marginal independence screening alternatives includ-

ing the SIS/ISIS of Fan and Song (2010), the FAST/IFAST of Gorst-Rasmussen and

Scheike (2013), the SMPLE-based sure joint screening (abbreviated as SJS there-

after) of Yang et al. (2016), and the popular LASSO of Tibshirani (1997), through

extensive Monte Carlo simulations. We do not intend to compare our NPGSJS

screening with all the existing competitors, and believe that superiority of this ap-

proach over marginal screening and SJS methods could be fully exhibited through

our comparisons to SIS/ISIS, FAST/IFAST, and SJS. To have a fair comparison with

the SJS method, we use the LASSO as the initial estimator of the SJS, although there

is no theoretical support that the algorithm of SJS with the LASSO initial has sure

screening property.

We generate the survival time from model (2.1) with features, regression coeffi-

cients, and the baseline hazard function being λ0ptq “ 1 in Examples 2.1 to 2.3 and

2.5. In Example 2.4, the survival time follows the accelerated failure time model

with standard normally distributed error, which means that the distribution of the

survival time is misspecified by the Cox model. In all examples except Example 2.5,

the censoring time follows the uniform distribution on p0, c0q, where different c0’s

are chosen to produce approximately 30% to 35% censoring rate. In Example 2.5,

the censoring time is generated from the accelerated failure time model. Some other

detailed elements of the simulation setup are given as follows:

Example 2.1, with mutually independent features, is the most straightforward
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for variable screening, while Examples 2.2 and 2.3 allow for moderate and high

correlation between features become somewhat difficult.

Example 2.1. (The Cox model with mutually independent features) Z “ pZ1, ¨ ¨ ¨ , Zpq
T

follows the multivariate normal distribution with mean 0 and the covariance matrix

Σ “ pσijqpˆp with σii “ 1 and σij “ 0 for i ‰ j, i, j “ 1 ¨ ¨ ¨ , p. M0 “ t1, 2, 3, 4, 5, 6u,

βM0 “ p´1.6328, 1.3988,´1.6497, 1.6353,´1.4209, 1.7022qT , βMc
0
“ 0, and pn, pq “

p120, 10000q.

Example 2.2. (The Cox model with moderately correlated features) The same as

Example 2.1 except that σij “ 0.5 for i ‰ j, and pn, pq “ p120, 2000q.

Example 2.3. (The Cox model with highly correlated features) The same as Example

2.1 except that σij “ 0.8 for i ‰ j, and pn, pq “ p150, 2000q.

We then use Example 2.4 to check the robustness of all the methods to model

misspecification.

Example 2.4. (The survival time follows the accelerated failure time model) Z “

pZ1, ¨ ¨ ¨ , Zpq
T follows the multivariate normal distribution with mean 0 and the co-

variance matrix Σ “ pσijqpˆp with σii “ 1. M0 “ t1, 2, 3, 4u. When i ‰ j, σij “ 0.15

for i, j P M0 and σij “ 0.3 for i or j P M c
0 . βM0 “ p3, 3, 3, 3qT , βMc

0
“ 0, and

pn, pq “ p200, 1000q. In addition, the survival time T follows the accelerated failure

time model logpT q “ ZTβ ` ε with ε being Np0, 1q random variable.

Example 2.5. (The censoring time follows the accelerated failure time model) Z “

pZ1, ¨ ¨ ¨ , Zpq
T follows the multivariate normal distribution with mean 0 and the co-

variance matrix Σ “ pσijqpˆp with σii “ 1. M0 “ t1, 2, 3, 4u. When i ‰ j,

σij “ 0.15 for i, j P M0 and σij “ 0.3 for i or j P M c
0 . βM0 “ p3, 3, 3, 3qT , and

pn, pq “ p200, 1000q. Besides, the censoring time C follows the accelerated failure
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time model, logpCq “ ZTα ` ε, where α “ p1, 1, 0, 0, 0, 0, 1, 1, 0, ¨ ¨ ¨ , 0qT and ε fol-

lows Up3.5, 5q.

In Example 2.5, the distribution of censoring time relies on the features in the

way that the theoretical results in Gorst-Rasmussen and Scheike (2013) cannot be

guaranteed.

For SIS/ISIS, we use the univariate maximum partial likelihood estimator as

the marginal utility. Five loops are performed for ISIS, and in each loop features

are selected by LASSO with tuning parameter chosen using the BIC criterion. We

conduct FAST/IFAST directly by the function ”ahazisis” in R package ahaz. In

addition, for a fair comparison, we use IFAST in the same way that we perform for

ISIS. As for LASSO, we firstly obtain its entire regularization path by the function

”glmnet” in R package glmnet. Then the optimal tuning parameter is determined

by the BIC criterion. With the help of the LASSO initial estimator, we implement

the NPGSJS by the Algorithm 2 with τ “ 2, M “ 4, Lmax “ 108, Lmin “ 1,

and c “ 10´4. These settings are common for NPG, see Yang (2017), Chen et al.

(2016), among others. Our simulation results also demonstrate that these values work

well empirically. We developed R functions for the implementation of the proposed

screening procedure.

As was suggested by Fan et al. (2010) and was widely used in the literature, we

set the threshold to be k “ rn{p3logpnqqs. In our limited experience, the NPGSJS

screening is easier to succeed for smaller k.

All of our simulation results are based on L “ 1000 independently simulated

datasets. To summarize these results, we consider the following performance mea-

sures: RC, the retaining capacity of all important features, L´1
řL
l“1 IpM0 Ă M̂lq;

RCj, the retaining capacity of the jth important feature, L´1
řL
l“1 Ipβ̂

plq
j ‰ 0q for

j “ 1, ¨ ¨ ¨ , q; PSR, the positive selection rate, L´1
řL
l“1 }M0 X M̂l}0{q; FDR, the
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Table 2.1: Summary statistics for Examples 2.1 to 2.3.

Setup Method RC PSR FDR AMS TP L1.err L2.err Time
Example 2.1 SIS 0.011 0.605 0.546 8 3.630 9.446 10.632 -

ISIS 0.055 0.628 0.529 8 3.768 7.646 8.473 58.563
FAST 0.016 0.628 0.529 8 3.769 - - -
IFAST 0.092 0.668 0.499 8 4.009 8.702 11.427 0.768
LASSO 0.402 0.838 0.319 7 5.033 8.583 12.224 0.189

SJS 0.849 0.946 0.290 8 5.677 2.759 1.809 173.221
NPGSJS 0.926 0.969 0.274 8 5.812 2.515 1.388 43.250

Example 2.2 SIS 0.013 0.523 0.608 8 3.135 9.859 12.241 -
ISIS 0.309 0.749 0.438 7.736 4.493 5.403 5.403 15.317

FAST 0.017 0.554 0.584 8 3.326 - - -
IFAST 0.174 0.734 0.449 7.943 4.406 8.055 9.852 0.191
LASSO 0.428 0.845 0.306 7.326 5.067 8.300 11.438 0.016

SJS 0.675 0.918 0.323 8 5.506 3.407 2.447 23.643
NPGSJS 0.847 0.958 0.282 8 5.746 3.108 1.952 1.555

Example 2.3 SIS 0.024 0.468 0.688 9 2.810 10.060 13.383 -
ISIS 0.556 0.657 0.562 7.143 3.944 5.896 6.479 17.612

FAST 0.016 0.496 0.669 9 2.976 - - -
IFAST 0.365 0.735 0.510 8.214 4.413 7.037 7.361 0.199
LASSO 0.357 0.832 0.372 7.968 4.992 8.013 10.588 0.018

SJS 0.500 0.888 0.408 9 5.325 5.151 3.886 76.996
NPGSJS 0.754 0.941 0.373 9 5.643 4.131 2.836 5.627

˚Above the dashed line, marginal screening methods; below the dashed line, joint screening methods.

false discovery rate, L´1
řL
l“1 }M̂l ´ M0}0{}M̂l}0; AMS, the average model size,

L´1
řL
l“1

řp
j“1 Ipβ̂

plq
j ‰ 0q; TP, the average number of important feature selected,

L´1
řL
l“1

řq
j“1 Ipβ̂

plq
j ‰ 0q; L1err, L´1

řL
l“1 }β̂

plq ´ β}1 “ L´1
řL
l“1

řp
j“1 |β̂

plq
j ´ βj|;

L2err, L´1
řL
l“1 }β̂

plq ´ β}2 “ L´1
řL
l“1

‘
řp
j“1pβ̂

plq
j ´ βjq

2; Time, the average time,

in seconds, for each method. All the experiences are run in a server with an Intel

Xeon E7-4890 v2 CPU (2.80 GHz).

In our simulation results, we do not present L1err and L2err for the method of

FAST, because the function ”ahazisis” in R packages ahaz does not compute the

marginal regression coefficients, and the corresponding estimators from IFAST must

be more accurate than those obtained from FAST.

Simulation results for Examples 2.1 to 2.3 are presented in Tables 2.1 to 2.3, from

which we can see that the NPGSJS method outperforms the other methods uniformly

in terms of the above-mentioned measures. Overall, the joint screening methods
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Table 2.2: Retaining capability of Examples 2.1 to 2.3.

Setup Method RC1 RC2 RC3 RC4 RC5 RC6

Example 2.1 SIS 0.679 0.398 0.682 0.663 0.445 0.763
ISIS 0.703 0.426 0.705 0.684 0.478 0.772

FAST 0.696 0.444 0.696 0.684 0.48 0.769
IFAST 0.750 0.494 0.747 0.728 0.506 0.784
LASSO 0.898 0.710 0.878 0.890 0.745 0.912

SJS 0.955 0.905 0.954 0.956 0.933 0.974
NPGSJS 0.980 0.951 0.975 0.972 0.955 0.979

Example 2.2 SIS 0.560 0.415 0.570 0.583 0.394 0.613
ISIS 0.808 0.614 0.807 0.819 0.614 0.831

FAST 0.585 0.448 0.606 0.601 0.442 0.644
IFAST 0.781 0.585 0.803 0.793 0.612 0.832
LASSO 0.883 0.742 0.895 0.887 0.759 0.901

SJS 0.934 0.863 0.944 0.945 0.858 0.962
NPGSJS 0.962 0.921 0.969 0.966 0.946 0.982

Example 2.3 SIS 0.437 0.389 0.516 0.579 0.357 0.532
ISIS 0.683 0.548 0.722 0.714 0.619 0.659

FAST 0.492 0.405 0.532 0.611 0.389 0.548
IFAST 0.746 0.571 0.818 0.833 0.683 0.762
LASSO 0.841 0.714 0.921 0.929 0.730 0.857

SJS 0.937 0.802 0.944 0.881 0.810 0.952
NPGSJS 0.952 0.905 0.992 0.984 0.889 0.921

˚Above the dashed line, marginal screening methods;
below the dashed line, joint screening methods.

Table 2.3: Biases of coefficient estimators for Examples 2.1 to 2.3.

Setup Method β1 β2 β3 β4 β5 β6
Example 2.1 ISIS 1.062 -1.068 1.071 -1.074 1.053 -1.063

IFAST 1.386 -1.256 1.405 -1.397 1.277 -1.434
LASSO 1.461 -1.295 1.476 -1.467 1.314 -1.508

SJS 0.185 -0.194 0.191 -0.184 0.184 -0.184
NPGSJS 0.071 -0.073 0.068 -0.064 0.079 -0.067

Example 2.2 ISIS 0.630 -0.716 0.637 -0.625 0.716 -0.629
IFAST 1.274 -1.160 1.275 -1.272 1.179 -1.303
LASSO 1.410 -1.258 1.413 -1.411 1.275 -1.452

SJS 0.343 -0.353 0.340 -0.341 0.376 -0.335
NPGSJS 0.325 -0.314 0.318 -0.322 0.296 -0.316

Example 2.3 ISIS 0.616 -0.686 0.534 -0.584 0.622 -0.666
IFAST 1.046 -0.985 0.961 -0.953 0.961 -1.035
LASSO 1.353 -1.223 1.332 -1.337 1.234 -1.390

SJS 0.564 -0.613 0.544 -0.622 0.587 -0.581
NPGSJS 0.131 -0.168 -0.003 -0.084 0.141 -0.147

˚Above the dashed line, marginal screening methods;
below the dashed line, joint screening methods.
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(LASSO, SJS, and NPGSJS) outperform the independent screening methods. The

NPGSJS method has the highest overall RC and individual RCs, PSRs and TPs,

the smallest L1errs and L2errs, and nearly the smallest FDRs except for Example

2.3. Comparing with the marginal screening methods and LASSO, we find that the

improvements of the NPGSJS over the other methods are quite substantial. The

second best SJS method performs just slightly worse than the NPGSJS, but the its

computing time is much longer.

As for Examples 2.1 and 2.2, the RCs for the NPGSJS are larger than 0.92, which

means that the NPGSJS can recognize all the important features more than 92 times

in every 100 runs, while for other approaches, the values of RCs are always less than

0.92. The implication that NPGSJS can identify all important features can also be

seen from the TPs. On the other hand, the lowest FDR implies that the proposed

method selected least unimportant features. From the view of estimation accuracy,

the NPGSJS still works well based on the values of L1err and L2err. In Example 2.3,

results from all the other methods are not satisfactory, because of the presence of

high correlations between features. However, the NPGSJS, with significant shorter

computing time than that of SJS, is still working well.

From Table 2.2, we can see that the retaining capabilities of the NPGSJS for each

important feature are close to 1. In addition, the retaining capabilities of the other

methods for each important feature are not too small, while the overall retaining

capabilities are remarkably smaller than each individual retaining capability. Our

simulation results also suggest that moderate correlation between features could

improve the performance of iterative version of marginal independence screening

methods, which is also noted by Fan et al. (2010). The small values of L1err and

L2err for the k-sparse MPLE screening method prompt us to see how accurate the

estimated regression coefficients could be. Table 2.3 presents the biases of coefficient

estimators of important features, from which we can see that the NPGSJS is unbiased
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Table 2.4: Summary statistics for Examples 2.4 and 2.5.

Setup Method RC PSR FDR AMS TP L1.err L2.err Time
Example 2.4 SIS 0.000 0.306 0.898 12 1.222 23.200 53.548 -

ISIS 0.016 0.339 0.887 12 1.357 16.166 45.158 4.652
FAST 0.000 0.304 0.899 12 1.214 - - -
IFAST 0.103 0.423 0.859 11.992 1.691 12.767 37.307 0.208
LASSO 0.055 0.417 0.834 9.691 1.667 12.378 36.869 0.010

SJS 0.849 0.894 0.702 12 3.574 26.492 144.099 58.751
NPGSJS 0.992 0.992 0.669 12 3.968 37.273 957.691 4.110

Example 2.5 SIS 0.008 0.351 0.883 12 1.405 19.870 37.467 -
ISIS 0.087 0.389 0.870 12 1.556 13.120 29.676 5.160

FAST 0.000 0.314 0.896 12 1.254 - - -
IFAST 0.159 0.480 0.839 11.968 1.921 12.3334 33.510 0.219
LASSO 0.103 0.470 0.812 9.492 1.881 12.042 34.921 0.010

SJS 0.882 0.918 0.694 12 3.671 4.960 5.127 56.592
NPGSJS 0.992 0.992 0.669 12 3.968 12.947 863.341 4.316

˚Above the dashed line, marginal screening methods; below the dashed line, joint screening methods.

numerically, while estimators from other methods might be biased. This phenomenon

indicates that the NPGSJS can also be used for estimation.

Tables 2.4 displays the simulation results for Examples 2.4 and 2.5. These re-

sults suggest that the NPGSJS may not be sensitive to model misspecification and

is reliable for complex censoring mechanism, at least for the scenarios under our

consideration. Except the joint screening methods, all the other methods completely

fail in Examples 2.4 and 2.5. For both examples, the proposed NPGSJS method

obtains nearly 100% RCs and smallest FDRs. Although the performance of SJS is

acceptable, the NPGSJS is always performing slightly better than SJS with a signif-

icantly shorter computing time. Although the accuracy of the proposed method is

not satisfactory under these cases, the summary statistics like RC, PSR, and FDR

should be the top propriety indeed.

As we mentioned in Section 2, the SJS method takes the diagonal elements of the

Hessian matrix into account. As a result, theoretically, it should be more accurate

than the proposed method, at least when the model is specified correctly. However,

the simulation results for Examples 2.1 to 2.3 report that the proposed method is

more accurate than SJS in the sense that it obtains smaller L1err and L2err. The
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reason might be that the NPGSJS, benefits from the NPG algorithm, is able to obtain

the numerically larger likelihood and thus estimates the coefficients more accurately.

Figure 2.1 demonstrates the advantage and improvement of the NPG method by

comparing with the PG method. The left pane is the partial log likelihood value

versus the iterations plot of NPG (red solid line) and PG (blue dashed line) for

a single trail under data setting of Example 2.2. It typically illustrates how the

function value changes during the iterations. The red solid line is not monotone but

achieve a larger value faster than the blue dashed line. To show the average trend,

we plot the mean of the function values of 100 trails at the right pane. It is easy

to see that numerically, through the NPG method, we can obtain a larger function

value in smaller number of iterations.
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Figure 2.1: The partial log likelihood of NPG (red solid line) and PG (blue dashed
line) under data setting 2. The left pane is a single data set and the right one is the
average of 100 trails.

2.5 Analysis of Diffuse Large B-Cell Lymphoma

We apply our method for the diffuse large B-cell lymphoma data of Rosenwald et al.

(2002). The diffuse large-B-cell lymphoma is the most common type of lymphoma

— 26 —



CHAPTER 2. AN EFFICIENT ALGORITHM FOR JOINT FEATURE SCREENING IN ULTRAHIGH-DIMENSIONAL COX’S

MODEL

among adults. The survival time of patients with such kind of lymphoma after

chemotherapy is affected by genes of the tumors. In this dataset of Rosenwald et al.

(2002), 7399 gene expressions were obtained retrospectively from 240 patients with

untreated diffuse large-B-cell lymphoma who had no previous history of lymphoma

and receiving chemotherapy. The observed time after the chemotherapy ranges from

0 to 21.8 years. Of these 240 patients, 102 have censored survival times, causing

42.5% censoring rate.

Setting the threshold at k “ r240{p3logp240qqs “ 14, we employ various feature

screening methods to select the influential genes on the survival time. Univariate

feature selection method (Uni), as on of the most popular methods in medicine

research (see van Wieringen et al. (2009)), is also included for comparison. The

summary statistics reported below are computed through 5-fold cross-validation.

The important genes are selected through different feature screening methods based

on the training set. Then we fit the model through penalized partial likelihood with

LASSO and SCAD penalties based on the selected variables for the testing set. The

cross-validation procedure is repeated 100 times. The mean of log likelihood, AIC,

and BIC of each selected model are reported in Table 2.5. The best results are in

bolded.

Table 2.5: Log likelihood, AIC, and BIC of resulting models.

Log Likelihood AIC BIC
NPGSJS-SCAD -85.89 174.48 177.83
NPGSJS-LASSO -86.75 177.06 178.93

SJS-SCAD -86.94 175.87 178.60
SJS-LASSO -87.59 178.06 179.48
ISIS-SCAD -88.63 178.20 179.77
ISIS-LASSO -88.75 179.63 180.19

IFAST-SCAD -88.35 177.78 179.52
IFAST-LASSO -88.65 179.41 180.08

Uni-SCAD -88.42 177.87 179.53
Uni-LASSO -88.68 179.44 180.11

It is easy to see from the Table 2.5 that the proposed NPGSJS procedure greatest

log likelihood no matter SCAD or LASSO penalty is used. NPGSJS-SCAD also
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obtained the smallest AIC and BIC. The SJS procedure performs the second best

in the sense that the likelihood is greater than the other independent screening

procedures . The reason is that considering the effects of the features jointly makes

the selected model more effective. Benefit from the non-monotone proximal gradient

algorithm, which is able to obtain better results numerically, the NPGSJS procedure

outperforms the SJS procedure.

The selected gene IDs by different feature screening methods are report in Table

2.6. The Table 2.6 shows that the gene 1181 is selected by all the methods. Gene

1456 is selected by all the methods except SJS method, while genes 1826, 7069,

and 7357 are failed to be selected by IFAST but are selected by the others. The

reason might be that the single-index hazard model assumption by IFAST method

is different from the Cox model assumption by the other methods. Thus the final

selected features will be different numerically.

We are able to further investigate the selected features by the above methods,

except the IFAST method, by making statistical inference based on the Cox model.

Unlike the other methods which are based on the Cox model, the FAST(IFAST)

method is based on a more flexible single-index hazards model. After the feature

screening for such high- or ultrahigh- dimensional data setting by FAST, we still face

the problem of making delicate statistical inference in low-dimensional single-index

hazard models. To solve this problem, we will dive into details for the single-index

hazards models in Chapter 3.

2.6 Assumptions and Proofs

Assumption 2.1. There exist scalar, vector and matrix functions splqpβ, tq defined on

Bˆr0, τ s, l “ 0, 1, 2, that satisfy the following conditions: (i) suptPr0,τ s,β1PB1}S
plqpβ1, tq´

splqpβ1, tq}2 Ñ 0 in probability as n Ñ 8 for B1 Ă Rq, B1 Ă B; (ii) The functions
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Table 2.6: Selected gene IDs by different feature screening methods

Uni NPGSJS SJS IFAST ISIS
1181 254 1072 197 1072
1456 454 1181 1188 1188
1662 1188 1825 1456 1456
1681 1456 3810 1681 1825
1825 1547 4547 1825 4131
3799 1681 5027 2107 5027
3810 1825 6507 2109 5043
4131 4966 6565 2240 5055
5055 5649 6701 2311 5301
5301 6607 6706 4131 6519
5614 6956 7018 4317 6706
5950 7069 7069 5054 6860
7069 7343 7307 5649 7069
7357 7357 7357 6519 7357

splqpβ, tq are bounded and sp0qpβ, tq is bounded away from 0 on B ˆ r0, τ s; and the

family of functions splqp¨, tq, 0 ď t ď τ , is an equicontinuous family at β˚.

Assumption 2.2. Let z̄pβ, tq “ sp1qpβ, tq{sp0qpβ, tq. Denote dn “ suptPr0,τ s}Z̄pβ
˚, tq´

z̄pβ˚, tq}8 and en “ suptPr0,τ s}S
p0qpβ˚, tq ´sp0qpβ˚, tq}8. The random sequences dn

and en are bounded almost surely.

Assumption 2.3. Define εij “
şτ

0
tZij ´ z̄jpβ

˚, tqudMiptq, where z̄jpβ
˚, tq is the jth

component of z̄pβ˚, tq. Suppose that the Cramér condition holds for εij, i.e., E|εij|
l ď

2´1l!cl´2
1 σ2

j for all j, where c1 is a positive constant, l ě 2, and σ2
j “ varpεijq ă 8.

Assumption 2.4. There exist positive constants c2, c3, τ1 and τ2 such that minjPM0 |β
˚
j | ě

c2n
´τ1 and q ď k ď c3n

τ2.

Assumption 2.5. When n is sufficiently large, for βM P tβM : }βM ´ β
˚
M}2 ď δu,

M P M2k
` , it holds that λmintn

´1
şτ

0
V pβM , tqdN̄ptqu ě c4, where c4 and δ are positive

constants depending on k but not M , λminpAq is the minimum eigenvalue of the

matrix A, and V pβM , tq is a version of V pβ, tq based on the model M .
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Assumption 2.6. There exists a positive constant c5 such that, for sufficiently large

n,

ηT
ż τ

0

V pβ, tqdN̄ptqη ě c5n}ηM0
}

2
2,

for any η ‰ 0, }η
Mc

0
}1 ď 3}η

M0
}1, and β P B, where M c

0 is the complement of M0 in

t1, 2, ¨ ¨ ¨ , pu.

Assumption 2.7. suppβ,tqPBpβ˚,opwqqˆr0,τ s}V pβ, tq}8 “ Oppn
τ3q, where τ3 is a positive

constant, w “ minjPM0}β
˚
j }, and Bpβ˚, opwqq is a p-dimensional ball centered at β˚

with radius opwq.

Assumptions 2.1 to 2.3 are mild, which are necessities to obtain a large deviation

result, see Bradic et al. (2011) for more discussions of these assumptions. The first

part of Assumption 2.4 states that the marginal signals are strong enough to be

detected. Similar assumptions have been widely made in the ultrahigh-dimensional

data analysis. In the second part, we allow the dimension of the important features to

diverge to infinity at a polynomial speed. Assumption 2.5 is a very weak assumption

since it usually holds that n´1
şτ

0
V pβM , tqdN̄ptq is positive definite when k is not

too large by noting that the dimension of βM is k. For example, if k “ 5, βM is a

5-dimensional vector parametric. Then n´1
şτ

0
V pβM , tqdN̄ptq is a 5ˆ5 matrix, which

is positive definite with high probability when the sample size is moderate.

Assumption 2.6 is needed for deriving an error bound for the LASSO estimator.

There are many similar assumptions in the literature, such as Bickel et al. (2009) for

the linear model, Xu and Chen (2014) for the generalized linear model, Huang et al.

(2013) for the Cox model, and so on. As was discussed in Fleming and Harrington

(2011), V pβ, tq is an empirical covariance matrix of Zi with the weights proportional

to YiptqexptZT
i βu. Hence, assumption 2.7 points out that the association of features

should not be too strong. In particular, if all the features are mutually independent,
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this assumption is easily met. Similar assumptions can be found in Bradic et al.

(2011).

The proofs of the theorems can be obtained along the line of Xu and Chen (2014)

by combining the large deviation result for martingales of Bradic et al. (2011) under

our specific assumptions for the Cox model.

Proof of Theorem 2.1 Firstly, we prove the monotonicity. It is easy to see that

lnpβ
ptq
q

“ Qnpβ
ptq
|βptqq

ď Qnpβ
pt`1q

|βptqq

“ lnpβ
ptq
q ` pβpt`1q

´ βptqqT 9lnpβ
ptq
q ´

u

2
}βpt`1q

´ βptq}22

“ lnpβ
pt`1q

q ´
u

2
}βpt`1q

´ βptq}22 ` pβ
pt`1q

´ βptqqT 9lnpβ
ptq
q

`lnpβ
ptq
q ´ lnpβ

pt`1q
q

“ lnpβ
pt`1q

q ´
u

2
}βpt`1q

´ βptq}22 `
n
ÿ

i“1

δi

”

logpnSp0qpβpt`1q, Xiqq

´logpnSp0qpβptq, Xiqq ´ pβ
pt`1q

´ βptqqTZ̄pβptq, Xiq

ı

By the Taylor’s expansion of
řn
i“1 δilogpnSp0qpβpt`1q, Xiqq at βptq and some algebraic

manipulations, we have

lnpβ
ptq
q

ď lnpβ
pt`1q

q ´
u

2
}βpt`1q

´ βptq}22 `

1

2
pβpt`1q

´ βptqqT
n
ÿ

i“1

δi

´Sp2qpβ, Xiq

Sp0qpβ, Xiq
´
“Sp1qpβ, Xiq

Sp0qpβ, Xiq

‰b2
¯
ˇ

ˇ

ˇ

β“β̄
pβpt`1q

´ βptqq

“ lnpβ
pt`1q

q ´
u

2
}βpt`1q

´ βptq}22 `
1

2
pβpt`1q

´ βptqqT
ż τ

0

V pβ̄, tqdN̄ptqpβpt`1q
´ βptqq
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ď lnpβ
pt`1q

q ´
u

2
}βpt`1q

´ βptq}22 `
1

2
λmax

´

ż τ

0

V pβ̄, tqdN̄ptq
¯

}βpt`1q
´ βptq}22. (2.7)

So under the assumptions in Theorem 2.1, it finally arrives at

lnpβ
ptq
q

ď lnpβ
pt`1q

q ´
1

2
pu´ ρptqq}βpt`1q

´ βptq}22

ď lnpβ
pt`1q

q.

Secondly, we will show that tβptqu converges to a local maximum of lnpβq. It is

noted that lnp¨q is bounded with β being confined in B. From the proof of the first

part, we can see

lnpβ
pt`1q

q ´ lnpβ
ptq
q ě

1

2
pu´ ρq}βpt`1q

´ βptq}22.

By the monotonicity and boundness of lnp¨q, }β
pt`1q ´ βptq}2 Ñ 0 as t goes to 8.

It is noted that k and p are constants in the proof for convergence of tβptqu. For the

finite sparse patterns of tβptqu, we can always find a subsequence of tβptqu, say tβptmqu,

with a common sparse pattern M . Because
şτ

0
V pβM , tqdN̄ptq is positive definite for

any βM , lnp¨q is strictly concave for βM with sparse pattern M . Then tβptmqu is

bounded and has at least one limiting point, denoted by β: “ pβ:1, β
:

2, ¨ ¨ ¨ , β
:
pq
T .

Based on the facts that βptm`1q “ argmaxβPBpkqtQnpβ|β
ptmqqu and }βpt`1q´βptq}2 Ñ

0, we have β: “ argmaxβPBpkqtQnpβ|β
:qu This indicates that β: maximizes Qnpβ|β

:q

with respect to β and sparse pattern M .

If }β:}0 ă k, i.e., β: has fewer than k non-zero entries, it is easy to see that

9lnpβ
:q “ 0. So β: is the unconstrained maximizer of lnpβq and satisfies }β:}0 ď k.

If }β:}0 “ k, we will prove that β: is the unique maximizer for the sparse pattern

M . Note that

lnpβq “ Qnpβ|β
:
q ´Rpβ|β:q,
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where

Rpβ|β:q “ ´
u

2
}β ´ β:}22 ` pβ ´ β

:
q
T 9lnpβ

:
q ` lnpβ

:
q ´ lnpβq.

So it is easy to see that BRpβ|β:q
Bβ

|β“β: “ 0. In addition, BQpβ|β:q
Bβj

|β“β: “ 0, because

β: is the local maximizer for the sparse pattern M . Then we have Blnpβq
Bβj

|β“β: “ 0,

which implies β: is the unique maximizer of lnp¨q by the property of strict convexity.

Above all, any limiting point of tβptqu is a local maximizer satisfying }β}0 ď k.

By the finiteness of sparse patterns, there are at most finite many limiting points.

Furthermore, similarly to Xu and Chen (2014), by the techniques of mathematical

analysis, it can be shown that tβptqu has only one limiting point and thus converges.

Lemma 2.1. Define βp0q “ argmaxβtlnpβq´nλ}β}1u, where λ satisfies λn
1
2
´m Ñ 8,

λnτ1`τ2 Ñ 0. Under Assumptions 2.1 to 2.3 and 2.6, if maxjσ
2
j “ Opλn

1
2 q, we have

prp}βp0q ´ β˚}1 ď 16c´1
5 λqq Ñ 1,

where c5 is defined in Assumption 2.6.

Proof. It is easy to see that

lnpβ
p0q
q ´ nλ}βp0q}1 ´ plnpβ

˚
q ´ nλ}β˚}1q ě 0,

or equivalently

lnpβ
˚
q ´ lnpβ

p0q
q ď nλ}β˚}1 ´ nλ}β

p0q
}1.

Define δ “ pβp0q ´ β˚q “ pδ1, ¨ ¨ ¨ , δpq
T . By the Taylor’s expansion of lnpβ

p0qq at β˚,

we have

lnpβ
p0q
q ´ lnpβ

˚
q “ δT 9lnpβ

˚
q ´

1

2
δT

ż τ

0

V pβ, tqdN̄ptqδ,

where β is between βL and β˚. So

1

n
δT

ż τ

0

V pβ, tqdN̄ptqδ
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“
1

n

“

2δT 9lnpβ
˚
q ` 2lnpβ

˚
q ´ 2lnpβ

p0q
q
‰

ď
2

n
δT 9lnpβ

˚
q ` 2λ}β˚}1 ´ 2λ}βp0q}1

ď
2

n
|δ|T | 9lnpβ

˚
q| ` 2λ}β˚}1 ´ 2λ}βp0q}1.

Denote A “ tmax1ďjďp|
9lnjpβ

˚q| ď nλ
2
u.

Because maxjσ
2
j “ Opλn

1
2 q, together with Assumptions 2.1 to 2.3, the result of

the bound of tail probability in Theorem 3.1 in Bradic et al. (2011) can be applied

here via substituting their ξj by 9lnjpβ
˚q, that is, there exist positive constants c7 and

c8 such that prp| 9lnjpβ
˚q| ą

?
nunq ď c7expp´c8unq. Then we have

prpAc
q ď

p
ÿ

j“1

prp| 9lnjpβ
˚
q| ą

nλ

2
q “

p
ÿ

j“1

prp| 9lnjpβ
˚
q| ą

?
n

?
nλ

2
q

ď pc7expp´c8

?
nλ

2
q ď c7exppc10n

m
´ c8

?
nλ

2
q Ñ 0,

where c10 is a positive constant. So we can conclude that prpAq Ñ 1 and } 9lnpβ
˚q}8 “

Oppnλq. Under the event A, it is easy to see that

1

n
δT

ż τ

0

V pβ, tqdN̄ptqδ ď λ}δ}1 ` 2λ}β˚}1 ´ 2λ}βp0q}1.

So

1

n
δT

ż τ

0

V pβ, tqdN̄ptqδ ` λ}δ}1

ď 2λ}δ}1 ` 2λ}β˚}1 ´ 2λ}βp0q}1

ď 2λ
p
ÿ

j“1

`

|β
p0q
j ´ β˚j | ` |β

˚
j | ´ |β

p0q
j |

˘

“ 2λ
ÿ

jPM0

`

|β
p0q
j ´ β˚j | ` |β

˚
j | ´ |β

p0q
j |

˘
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ď 4λ
ÿ

jPM0

|δj|

ď 4λ}δM0}1.

It is easy to see that
şτ

0
V pβ, tqdN̄ptq is semipositive definite. Thus }δ}1 ď 4}δM0}1,

and furthermore }δMc
0
}1 ď 3}δM0}1. By the Cauchy-Schwarz inequality and Assump-

tion 2.6,

}δM0}
2
1 ď q}δM0}

2
2 ď qc´1

5 n´1
”

ż τ

0

V pβ, tqdN̄ptq
ı

ď 4c´1
5 λq}δM0}1.

So }δM0}1 ď 4c´1
5 λq. Then finally we arrive at

}δ}1 “ }δMc
0
}1 ` }δM0}1 ď 4}δM0}1 ď 16c´1

5 λq.

This finishes the proof.

Proof of Theorem 2.2 Recall that w “ minjPM0}β
˚
j }. We just need to show prp}βptq´

β˚}8 ă
w
2
q Ñ 1. It suffices to prove }βptq´β˚}8 “ oppwq. As in Xu and Chen (2014),

we use the method of mathematical induction to get this result.

When t “ 0, by Lemma 1, we have

prp}βp0q ´ β˚}1 ď 16c´1
5 λqq Ñ 1.

Because λ “ opn´pτ1`τ2qq, q “ Opnτ2q, w´1 “ Opnτ1q, λqw´1 “ opn´pτ1`τ2qqOpnτ2qOpnτ1q “

op1q. Thus λq “ opwq. So we have }βp0q ´ β˚}1 “ oppwq. It is noted }βp0q ´ β˚}8 ď

}βp0q ´ β˚}1. Then the desired result is obtained for t “ 0.

Suppose that }βpt´1q´β˚}8 “ oppwq. In the following, we will show that }βptq´

β˚}8 “ oppwq is also true. It is noted that βptq “ Hpβ̃; kq, where β̃ “ βpt´1q `

u´1 9lnpβ
pt´1qq. If }β̃ ´ β˚}8 “ oppwq holds, it can be seen that elements of β̃M0 are

among the ones with top k largest absolute values in probability. Thus }βpt´1q ´

β˚}8 ď }β̃ ´ β
˚}8 “ oppwq. So what remains is to prove }β̃ ´ β˚}8 “ oppwq. Note
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that }β̃ ´ β˚}8 ď }βpt´1q ´ β˚}8 `
1
u
} 9lnpβ

pt´1qq}8. By the Taylor’s expansion of

9lnpβ
pt´1qq at β˚, we have

} 9lnpβ
pt´1q

q}8

“ } 9lnpβ
˚
q ´

ż τ

0

V pβ̄, tqdN̄ptqpβpt´1q
´ β˚q}8

ď } 9lnpβ
˚
q}8 ` }

ż τ

0

V pβ̄, tqdN̄ptqpβpt´1q
´ β˚q}8

ď } 9lnpβ
˚
q}8 ` n}

1

n

ż τ

0

V pβ̄, tqdN̄ptq}8}pβ
pt´1q

´ β˚q}8

ď } 9lnpβ
˚
q}8 ` n}pβ

pt´1q
´ β˚q}8suppβ,tqPBpβ˚,opwqqˆr0,τ s}V pβ, tq}8,

where β̄ is between βpt´1q and β˚. So

1

u
} 9lnpβ

pt´1q
q}8

“
1

u
Oppnλq `

n

u
oppwqOppn

τ3q

ď pc6rnq
´1nλOpp1q ` pc6rnq

´1n1`τ3oppwqOpp1q

“ c´1
6 Opn´τ3qopn´pτ1`τ2qqOpp1q ` c

´1
6 Oppn

´τ3qnτ3oppwq

“ oppwq.

This ends up the proof.

Assumptions verification for optimization problem (2.6) We aim to verify that the

optimization problem (2.6) satisfies the assumptions in A.1 of Chen et al. (2016)

(page 1485-1486).

Let DompP q “ Bpkq. With a little abuse of definition, we redefine

´Qnpβ|β
ptq
q “

"

´lnpβ
ptqq ´ pβ ´ βptqqT 9lnpβ

ptqq ` u
2
}β ´ βptq}22 β P DompP q;

M˚ β R DompP q,

whereM˚ is a constant and larger than the maximum of´lnpβ
ptqq´pβ´βptqqT 9lnpβ

ptqq`

u
2
}β ´ βptq}22 over DompP q. Because β ´ βptq and }β ´ βptq}2 are continuous and
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DompP q is a compact set, they are bounded over DompP q. Thus M˚ exists. This

new definition will not affect the computation of our proposed algorithm.

(i) It is easy to be satisfied since ´Qnpβ|β
ptqq is continuously differentiable and

its derivative is bounded in a bounded closed set.

(ii) For any β: P Rp, if β: P Bpkq, then P pβ:q “ 0. Since lim inf
βÑβ:

P pβq ě 0, P pβ:q ď

lim inf
βÑβ:

P pβq. If β: R Bpkq, then P pβ:q “ 8. The complement of DompP q is

an open set, therefore, lim inf
βÑβ:

P pβq “ 8. Then P pβ:q ď lim inf
βÑβ:

P pβq. Hence

P is a lower semicontinuous function in Rp.

(iii) For β: P DompP q, Ωpβ:q “ tβ P Rp : ´Qnpβ|β
ptqq ď Qnpβ

:|βptqqu Ď DompP q.

Then ´Qnpβ|β
ptqq is bounded below in Ωpβ:q.

(iv) LetA “ supβPΩpβ:q }∇p´Qnpβ|β
ptqqq}, B “ supβPΩpβ:q P pβq and C “ infβPRp P pβq.

Because Ωpβ:q Ď DompP q and ∇p´Qnpβ|β
ptqqq is continuous, A ă 8. Fur-

thermore, B “ supβPΩpβ:q P pβq ď supβPDompP q P pβq “ 0 ă 8. In addition,

C “ 0 ă 8.

2.7 coxnpgsjs: an R package

An R package called coxnpgsjs for sure joint feature screening for ultrahigh-dimensional

Cox’s model using a non-monotone proximal gradient algorithm is built. For even

faster implementation, the core function is rewritten by C++. The package at

https://github.com/iantsuising/coxnpgsjs. One can install it to the local li-

brary by R command “devtools::install github(’iantsuising/coxnpgsjs’)”.
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Chapter 3

Estimation under Single-Index

Hazard Model

3.1 Introduction

In contemporary GWAS studies, high- or ultrahigh- dimensional data with survival

outcomes are very common. For example, the aforementioned DLBCL data set. To

deal with such data, feature screening or variable selection techniques are often ap-

plied at the first stage in practice. Based on the Cox model assumption, a number

of feature screening and variable selection methods are well studied. See Fan et al.

(2010), Benner et al. (2010), among others. However, a specific functional form

carries on a strong model assumption that maybe mostly for mathematical conve-

nience. Such an assumption tends to be violated because many gene expressions may

exhibit a more complicated effect than the log-linear effect. Based on a more flexible

single-index hazards (SIH) model, Gorst-Rasmussen and Scheike (2013) proposed the

feature aberration at survival times (FAST) statistic for feature screening. However,

after such exercise for high or ultra high dimensional data setting, we still face the

problem of making a delicate statistical inference in low-dimensional SIH models.

This motivates us to establish effective and even efficient estimation procedures for

the SIH model.

38



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

In this chapter, to study the right-censored survival outcomes with covariate

variables, we consider the following semiparametric SIH model

λtt | Zptqu “ λtt, βTZptqu, (3.1)

where λp¨, ¨q is an unspecified and positive bivariate hazards function, Zptq is a p-

dimensional vector of possibly time-dependent covariates, and β is an unknown re-

gression coefficient vector.

The SIH model (3.1) is a preferable exploratory tool allowing nonparametric

modeling of covariate effects in a parsimonious way via a single index. The index

structure helps achieve dimension reduction. The unspecified functional form makes

the model more robust in theory and more acceptable in applications when empiri-

cally the functional form is uncertain. Model (3.1) is flexible encompassing various

existing intensity models. See Cox’s proportional hazards model (Cox, 1972), addi-

tive hazards model (Lin and Ying, 1994), accelerated failure time model (Cox and

Oakes, 1984), link-unknown proportional hazards model (Wang, 2004), accelerated

hazards model (Chen and Wang, 2000), transformed hazards model (Zeng et al.,

2005), and among others.

However, the index structure, the unknown form of bivariate function, and in-

complete failure time observations together present great challenges for statistical

inference in model (3.1). The index structure impacts the support of the infinite-

dimensional “nuisance” nonparametric function λp¨, ¨q in the SIH model (3.1). Con-

sequently, it makes the partial derivative and the operation of convergence in prob-

ability not exchangeable in the hazard rate function λp¨, ¨q, as shown in our proof of

Proposition 3.3. In other words, to estimate λp¨, ¨q well means to “recover” the sup-

port of this bivariate function, to the extend possible. As evidence, Ding et al. (2013)

validated that the estimated parametric component in model (3.1) can hardly keep

consistency unless strong conditions are imposed when the nonparametric compo-
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nent is estimated by the traditional univariate nonparametric likelihood estimation.

To establish effective and even efficient estimation procedures for the vector of the

index coefficient, we need to develop a new methodology to tackle the challenge in

the inference procedure for model (3.1).

To deal with semiparametric models involving an index structure, there is vast

literature. To handle the estimation of the parametric component, two-stage meth-

ods are quite popular such as generalized estimation equations and (local) profile

likelihood. To tact estimation of the nonparametric component, there are ways like

Hermite polynomial system, B-splines, local constant, backfitting iteration, weighted

least squares. See Dong et al. (2015), Ma and Song (2015), Linton et al. (2003), Car-

roll et al. (1997), Ichimura (1993), and among others; However, notice that most

work is under a mean regression structure, say within a generalized linear model

framework or with explicit error terms. Also the data setting is assumed completely

observed and no censoring. Kernel smoothing or local linear expansion of Fan and

Gijbels (1996) is a common tool applied in the estimation of a univariate nonlinear

function. See Xia (2006), Liang et al. (2010) and Liu et al. (2013); among others. In

presence of random censorship, local linear expansion was also applied successfully

to estimate a univariate nonlinear function withing a hazard regression model. See

(Fan et al. (1997), Cai et al. (2008), Yin et al. (2008) and Lu and Zhang (2010)).

Nevertheless, such smoothing techniques cannot be applied directly in model (3.1)

since it lacks error terms and the hazard rate function is bivariate in essence.

Right in the form of model (3.1), there is relatively less work. Nielsen (1998)

studied a nonparametric hazard estimation by local linear regression, but it could

not extend to multivariate- and even bivariate- covariate situations due to the curse

of dimensionality. The average derivatives method by Gørgens (2004, 2006) could

not make the parametric component efficient, and so did the pseudo-integrated least

squares estimation procedure by Chiang et al. (2017). Xia et al. (2002) extended
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a dimension reduction technique Mave method to handle the hazard rate function.

However, the resulting hMave estimator of β in model (3.1) can avoid estimation of

variance and did not aim to achieve the information lower bound, thus not semipara-

metric efficient. Furthermore, they imposed strong restrictions on the state vector

requiring that all the covariates are continuous. This is not realistic and the method

may experience large variability when some covariates are discrete.

All in all, efficient estimation procedure in model (3.1) is essential but non-trivial

(Newey (1990)). In our methodology, we carry out inference on index coefficients

and other aspects relevant to the nonparametric component by first profiling the

log-likelihood with respect to index coefficients. Rather than applying univariate

local linear regression directly, to estimate the unknown functional form, we develop

a new local linear kernel weighted least square estimator which naturally handles the

random censorship and the bivariate local linear approximation jointly. This strat-

egy proves to be effective because the estimator of the essentially bivariate hazard

function is uniformly consistent. The consistency of λp¨, ¨q ensures the consistency

of the estimated index coefficients under quite mild conditions. Finally, the profiled

likelihood estimator of the index coefficient vector achieves the information lower

bound. In addition, the proof procedure inspires us to construct an efficient influ-

ential function. It leads to a class of estimation equations, the solution of which

is efficient. Based on the doubly robust property, we also give another two sets of

estimation equations of which the solutions are asymptotically equally efficient. The

main concern is for computational feasibility in the sense that these two sets of es-

timations equations can escape away from either estimation of the nonlinear hazard

rate function or estimation of its partial derivative.

The remainder of this chapter is organized as follows. In section 3.2, we intro-

duce the semiparametric efficient inference procedure for β under the SIH model

(3.1). That is, we derive the semiparametric efficient score and present that pro-
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posed consistent estimators achieve the semiparametric efficient bound. In Section

3.3, we construct a class of efficient estimation equations and another two sets of

estimation equations by using the components orthogonal to the nuisance tangent

space and their doubly robust property. We introduce the adapted Newton-Raphson

algorithm for computing β in Section 3.4. The estimation method and the asymp-

totic result for the nonparametric part of the model (3.1) are presented in Section

3.5. Simulation results and real data analysis are reported and discussed in Section

3.6 and 3.7, respectively. Section 3.8 concludes. Proofs of propositions and theorems

are strictly derived in Section 3.9. All lemmas presented in Section 3.9 are strictly

proved in Section 3.10.

3.2 Semiparametric Efficient Inference on β

Suppose a default occurs with random time T , and is censored by random time

C impacted by credit risky state vector Z. We then have a random sample of

size n with the i-th observation pXi “ minpTi, Ciq, δi “ IpTi ď Ciq,Ziptqq on a

time domain t P r0, τ s. Here δ is called censoring indicator and Ip¨q is an indicator

function. The censoring is noninformative in the sense that Ti and Ci are independent

given state vector Ziptq and its observed history on r0, τ s. Let Yiptq “ IpXi ě tq

be an at-risk process. Based on model (3.1), the log-likelihood of observed data

tXi, δi,Ziptq, t P r0, τ su
n
i“1 can be written as, up to the constant n´1,

`npβq “
n
ÿ

i“1

”

δi log λtXi, β
TZipXiqu ´

ż τ

0

λts, βTZipsquYipsqds
ı

,

which is a function of the unknown index coefficient vector β and the unknown

hazard function λ. Inference on β and other aspects relevant to the nonparametric

component is usualy carried out by first profiling the log-likelihood `npβq w.r.t. β.

That is, once λp¨, ¨q is known, the estimator of β can be obtained by maximizing the
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log-likelihood function.

3.2.1 Randomly Censored Bivariate Local Linear Regression
Estimation

Let Nptq “ IpX ď t, δ “ 1q be the counting process and the filtration for the

i-th observation be Ft,i “ σtNipuq,Zipuq, Yipu`q, 0 ď u ď tu with union σ-field

Ft “ Y
n
i“1Ft,i. An insight on derivative of the classical Doob-Meyer decomposition

Mipsq “ Nipsq ´
şs

0
YiptqλttZiptqudt within the counting process framework yields an

equivalence of model (3.1)

ErY psqdNpsq|Fs´s “ Y psqλts, βTZpsquds, s P r0, τ s. (3.2)

The equation (3.2) is a “nominal” traditional nonparametric regression as if Y psqdNpsq

is the response. This naturally motivates us to construct a kernel weighted least

square estimator for the bivariate λp¨, ¨q based on its local linear approximation

λts, βTZpsqu « λpt, uq `
Bλpt, uq

Bt
ps´ tq `

Bλpt, uq

Bu
tβTZpsq ´ uu

fi α0 ` α10ps´ tq ` α01tβ
TZpsq ´ uu, (3.3)

for ps, βTZpsqqT in a neighborhood of pt, uqT , where α0 “ λpt, uq, α10 “ Bλpt, uq{Bt ”

λ10pt, uq and α01 “ Bλpt, uq{Bu ” λ01pt, uq. The corresponding objective function is

n
ÿ

i“1

”

Yipsq∆Nipsq´Yipsqrα0`α10ps´tq`α01tβ
TZipsq´uus

ı2

Khts´t, β
TZipsq´uuds,

for any s P r0, τ s, where ∆Nipsq “ Nips`∆sq´Nips´q andKhp¨, ¨q “ h´1
1 h´1

2 Kp¨{h1, ¨{h2q

with Kp¨, ¨q being a bivariate kernel function and bandwidth-vector h “ ph1, h2q
T .

Integration over the time domain r0, τ s yields the final form of the criterion function

n
ÿ

i“1

ż τ

0

”

∆Nipsq ´α0´α10ps´ tq ´α01tβ
TZipsq ´ uu

ı2

Khts´ t, β
TZipsq ´ uuYipsqds.

(3.4)
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The minimizer of (3.4) with respect to pα0, α10, α01q is our anticipated local linear

weighted least squares estimators of tpλp¨, ¨q, λ10p¨, ¨q, λ01p¨, ¨qu.

By some algebraic manipulation, the minimizer of (3.4) takes the explicit form

pλpt, u; βq “
pS20S02 ´ S

2
11qT00 ` pS11S01 ´ S10S02qT10 ` pS10S11 ´ S20S01qT01

2S01S10S11 ´ S02S2
10 ´ S

2
01S20 ´ S00S2

11 ` S00S20S02

; (3.5)

pλ10pt, u; βq “
pS01S11 ´ S10S02qT00 ` pS00S02 ´ S

2
01qT10 ` pS10S01 ´ S00S11qT01

2S01S10S11 ´ S02S2
10 ´ S

2
01S20 ´ S00S2

11 ` S00S20S02

;(3.6)

pλ01pt, u; βq “
pS10S11 ´ S01S20qT00 ` pS01S10 ´ S00S11qT10 ` pS00S20 ´ S

2
10qT01

2S01S10S11 ´ S02S2
10 ´ S

2
01S20 ´ S00S2

11 ` S00S20S02

,(3.7)

where

Sjk “ Sjkpt, u; βq “ n´1
n
ÿ

i“1

ż τ

0

Khts´ t, β
TZipsq ´ uups´ tq

j
tβTZipsq ´ uu

kYipsqds;

Tjk “ Tjkpt, u; βq “ n´1
n
ÿ

i“1

ż τ

0

Khts´ t, β
TZipsq ´ uups´ tq

j
tβTZipsq ´ uu

kdNipsq,

for j, k “ 0, 1, 2. The forms of (3.5)-(3.7) under the random censorship are concise

and corroborate the bivariate local linear regression estimators in Section 4.5, Härdle

et al. (2004) for complete data. The explicit formulas are no doubt useful in practice.

For the true parameter vector β0 “ pβ
0
1 , β

0
2 , ¨ ¨ ¨ , β

0
pq
T , the local linear weighted least

squares estimator of the unknown hazard rate function λp¨, ¨q is uniformly consistent.

Here comes the result.

Proposition 3.1. Under Assumptions 3.1 to 3.4 in the section 3.9, then with h1 Ñ

0, h2 Ñ 0 and nÑ 8 such that nh1h2{ log nÑ 8, we have

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, βT0 z; β0q ´ λpt, β

T
0 zq

ˇ

ˇ

ˇ
“ Opp

a

log n{pnh1h2q ` h
2
1 ` h

2
2q.
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The consistency of λ̂p¨, ¨q ensures the consistency of the the proposed profile like-

lihood estimators in the next adjacent subsection. The convergence rate of λ̂p¨, ¨q

at the true parameter β0 has not been adequately discussed in the nonparametric

hazards estimation literature since the proof is not trivial.

3.2.2 Profile Likelihood Estimation of Index Coefficient Vec-
tor

For the sake of model identifiability, throughout this chapter, we assume that β

belongs to the parameter space Θ “ tβ “ pβ1, β2, ¨ ¨ ¨ , βpq
T : }β}2 “ 1, β1 ą 0u,

where }β}2 “ pβ2
1 ` β2

2 ` ¨ ¨ ¨ ` β2
pq

1{2. Note that the parameter space Θ is the

boundary point of the p-dimensional unit sphere. Thus, the function λpt, βTZptqq

does not have derivative at point β P Θ. To this end, we delete the first component

β1 by β1 “ p1 ´ }β
´1}

2q1{2, where β
´1 “ pβ2, ¨ ¨ ¨ , βpq

T P Rp´1, and the parametric

space of β is equivalent to

Θ
´1 “ trp1´ }β´1}

2
q
1{2, β2, ¨ ¨ ¨ , βps

T : }β
´1} ă 1u.

Then, the Jacobian matrix of β w.r.t β
´1 is

Jpβ
´1q “

Bβ

BβT
´1

“

ˆ

´p1´ }β
´1}

2q´1{2βT
´1

Ip´1

˙

,

where Ip´1 is a unit matrix of size pp´ 1q ˆ pp´ 1q.

Applying the fact that
şτ

0
∆Nipsqfpsqds “

şτ

0
fpsqdNipsq for any function fpsq,

we plug pλpt, u; βq in (3.5) to substitute unknown λp¨, ¨q in the log-likelihood function,

and obtain the profile log-likelihood

ˆ̀
npβq “

n
ÿ

i“1

”

ż τ

0

log λ̂ts, βTZipsq; βudNipsq ´

ż τ

0

λ̂ts, βTZipsq; βuYipsqds
ı

. (3.8)

The profile likelihood estimator of β
´1 is β̂

´1 “ arg max
β
´1PΘ´1

ˆ̀
npβq, leading to the

estimator of β denoted by β̂ “ pp1´ }β̂
´1}

2q1{2, β̂T
´1
qT .
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The solver β̂
´1 is the solution to the following score equation

0 “
B ˆ̀

npβq

Bβ
´1

“

n
ÿ

i“1

”

ż τ

0

Bλ̂ts, βTZipsq; βu{Bβ´1

λ̂ts, βTZipsq; βu
dNipsq ´

ż τ

0

Bλ̂ts, βTZipsq; βu

Bβ´1

Yipsqds
ı

.

Let β0 “ pβ0
1 , β

0
2 , ¨ ¨ ¨ , β

0
pq
T be the true vector parameter and β0

´1
“ pβ0

2 , ¨ ¨ ¨ , β
0
pq
T .

As shown in Lemma 3.4 of the Section 3.9, we have

B ˆ̀
npβ0q

Bβ
´1

“ JT pβ0
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|βT0 Zipsqs

ErY psq|βT0 Zipsqs

)λ01ts, β
T
0 Zipsqu

λts, βT0 Zipsqu
dMipsq

`opp
?
nq. (3.9)

Therefore, the profile likelihood estimator β̂ is asymptotically equivalent to the so-

lution to the following estimated equation

0 “ JT pβ
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

)

pλ01ts, β
TZipsq; βu

pλts, βTZipsq; βu
dxMipsq,(3.10)

where dxMipsq “ dNipsq ´ pλts, βTZipsq; βuYipsqds and pEr¨|βTZipsqs may be substi-

tuted for the kernel estimators mentioned later.

It is observed that the main term on the right-hand side of (3.9) is the estimator

of the semiparametric efficient score of β´1. Recall that the semiparametric efficient

score is defined as the projection of the score vector onto the orthogonal complement

of the nuisance tangent space, spanned linearly by the nuisance score function, refer

to pp.70, Bickel et al. (1997) or pp.47, Tsiatis (2006). This interesting finding is the

stepping stone of our main results on the estimation of parameter vector within our

model context.

Proposition 3.2. Assume that λpt, uq is positive and differentiable w.r.t. u, where

u P Uβ “ tu “ βTz : z P Zu and Z is a compact support set of Zptq. Then, the
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semiparametric efficient score for estimation of β´1 in model (3.1) is

SefftX, δ,ZpXqu “ JT pβ0
´1
q

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)λ01ts, β
T
0 Zpsqu

λts, βT0 Zpsqu
dMpsq.(3.11)

And ErSefftX, δ,ZpXqus “ 0. The information matrix of β´1 is ErSefftX, δ,ZpXqu
b2s “

Σ, where

Σ “ JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)b2λ2
01ts, β

T
0 Zpsqu

λts, βT0 Zpsqu
Y psqds

ı

Jpβ0
´1
q.

(3.12)

and αb2 “ ααT for any column vector α.

Note that the semiparametric efficient score function, SefftX, δ,ZpXqu is model-

dependent but does not depend on the observations.

Expressions (3.9) and (3.11) ensure that the profile likelihood estimator β̂
´1 is

semiparametric efficient, that is, β̂
´1 has the smallest variance among a class of

regular asymptotically linear estimators, shown in the following Theorem 3.1. Besides

Proposition 1, another proposition also plays important role in attaining the efficiency

in Theorem 3.1.

Proposition 3.3. Under Assumption 3.1, 3.2, and 3.4 in the Section 3.9, then with

h1 Ñ 0, h2 Ñ 0 and nÑ 8 such that nh1h
3
2{ log nÑ 8, it holds

sup
tPr0,τ s,zPZ

›

›

›

Bλ̂pt, βT0 z; β0q

Bβ´1

´ λ01pt, β
T
0 zqJ

T
pβ0
´1q

!

z´
ErY ptqZptq|U0ptq “ βT0 zs

ErY ptq|U0ptq “ βT0 zs

)›

›

›

“ Opph
2
1 ` h

2
2 ` h

´1
2

a

log n{pnh1h2qq,

where
Bλ̂pt,βT0 z;β0q

Bβ´1
“

Bλ̂pt,βT z;βq
Bβ´1

ˇ

ˇ

ˇ

β“β0
.

Proposition 3.3 suggests that Bλ̂pt, βT0 z; β0q{Bβ´1 does not converge in probability
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to λ01pt, β
T
0 zqJT pβ0

´1q owing to the fact that

lim
nÑ8

Bλ̂pt, βT0 z; β0q

Bβ´1

‰
BtlimnÑ8 λ̂pt, β

Tzqu

Bβ´1

ˇ

ˇ

ˇ

β“β0
.

The index coefficients actually impact the support of the nuisance nonparamtric

function λp¨, ¨q. See Section 3.9 for the detail proof.

Now it is safe to show asymptotic efficient result for the profile estimator β̂´1 in

the following theorem.

Theorem 3.1. Under the regularity conditions in Section 3.9, if nh8
1 Ñ 0 and nh8

2 Ñ

0, nh1h
3
2{ log nÑ 8 and nh2

1h
2
2 Ñ 8, then we have

(i) β̂´1 converges in probability to the true parameter β0
´1;

(ii) β̂´1 is a semiparametrically efficient estimator. That is,

?
npβ̂´1 ´ β

0
´1q

d
ÝÑ Np0,Σ´1

q;

(iii)
?
npβ̂ ´ β0q

d
ÝÑ Np0,Jpβ0

´1
qΣ´1Jpβ0

´1
qT q.

The strict theoretical derivation in Theorem 3.1 mainly relies on counting process

theory. Here the common martingale method is no longer feasible for the proof

due to the unpredictability in that the profile likelihood involves the estimation of

nonparametric function λp¨, ¨q, which uses all observational information. The result of

Theorem 4 in Mammen and Nielsen (2007) sheds light on our proof. See Section 3.9

for detail. Note that the profile estimator does not require undersmoothing of λp¨, ¨q

to obtain root-n consistency. This is primarily caused by the result in Proposition

3.3.
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3.2.3 Significant Test of Index Coefficients

From Theorem 3.1, the asymptotic covariance of β̂ achieves lower information bound.

It can be estimated by Jpβ̂
´1q

pΣ´1Jpβ̂
´1q

T , where pΣ has an empirical plug-in candidate

estimator of Σ

pΣ “
1

n

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|β̂TZipsqs

pErY psq|β̂TZipsqs

)b2pλ2
01ts, β̂

TZipsq; β̂u

pλts, β̂TZipsq; β̂u
Yipsqds,

where pErY psq|β̂TZpsq “ us and pErY psqZpsq|β̂TZpsq “ us may be obtained by the

kernel estimators,

pErY psq|β̂TZpsq “ us “

řn
i“1 kh3tβ̂

TZipsq ´ uuIpXi ě sq
řn
i“1 kh3tβ̂

TZipsq ´ uu
;

pErY psqZpsq|β̂TZpsq “ us “

řn
i“1 kh3tβ̂

TZipsq ´ uuZipsqIpXi ě sq
řn
i“1 kh3tβ̂

TZipsq ´ uu
,

with bandwidth h3. Note that pΣ is shown to be consistent for Σ, refer to proof of

Theorem 3.2. Then, looking λp¨, ¨q as if a nuisance function, for the semiparametric

testing problem

H0 : β “ β0 vs. H1 : β ‰ β0, (3.13)

a generalized Wald test statistic Wn may be defined as

Wn “ npβ̂ ´ β0q
T
!

Jpβ̂
´1q

pΣ´1Jpβ̂
´1q

T
)´1

pβ̂ ´ β0q.

This result may be applied to test whether a subset of coefficient variables is statis-

tically significant in the semiparametric model. We give the asymptotic distribution

in the following theorem.

Theorem 3.2. Under conditions of Theorem 3.1, the asymptotic null distribution

of Wn is χ2ppq, where p is the dimension of β.
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Another aspect in 3.1 is the selection of bandwidth. The conditions on bandwidth

ph1, h2q indicates Theorem 3.1 is applicable for a reasonable range of bandwidths,

where the bandwidths satisfy the optimal order hj “ Opn´1{6q, j “ 1, 2. In real

applications, we may use cross-validation method to select the optimal bandwidth.

More discussions on the choice of bandwidth can be found in Section 3.5.

3.3 Efficient and Doubly Robust Estimation

The property of semiparametric efficient bound in Section 3.2 naturally leads to per-

spective of constructing efficient estimation equations and the application of doubly

robust property in this section. In the proof of Proposition 3.2 in the previous sec-

tion, we have obtained the space orthogonal to the nuisance tangent space Λ in 3.33

in Section 3.9, denoted by

ΛK “
!

ż τ

0

”

αts,Zpsqu ´
Erαts,ZpsquY psq|βTZpsqs

ErY psq|βTZpsqs

ı”

dNpsq ´ λts, βTZpsquY psqds
ı)

,

for any arbitrary p ´ 1 dimensional measurable function αps, zq of ps, zq, z P Z.

This orthogonal component to the nuisance tangent space drives our study in this

section. A class of efficient estimation equations are motivated to be presented which

corroborate the semiparametric efficient score in Section 3.2. Meanwhile the insight

into the doubly robust property that each element in the orthogonal component

space possesses stimulates another two sets of estimation equations which enjoys

computing convenience to some extent.

Notice that the expectation of each element in ΛK is equal to 0. This leads us to

construct the influential equation

1

n

n
ÿ

i“1

ż τ

0

”

αts,Zipsqu ´
Erαts,ZpsquY psq|βTZipsqs

ErY psq|βTZipsqs

ı”

dNipsq ´ λts, β
TZipsquYipsqds

ı

“ 0,

refer to Chapter 5, Tsiatis (2006). Hence we are able to construct a class of efficient
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estimating equations. Another observation is that each element in ΛK enjoys double

robust property, that is, its expectation is equal to 0 if either the fraction part or

λts, βT0 Zpsqu is true, refer to Scharfstein et al. (1999), van der Laan and Robins

(2003), Cao et al. (2009), among others. This motivates us to present consistent

estimation equations for β without estimating λp¨, ¨q or its partial derivative λ01pt, uq.

The selection of αts,Zpsqu in ΛK will generate different estimation equations.

Specifically we take it by

αts,Zpsqu “ JT pβ
´1qγtZpsquωts, β

TZpsqu,

where γp¨q is an arbitrary p-dimensional measurable function of Zpsq and ωts, βTZpsqu

is any measurable weight function, yielding the following class of estimating equa-

tions of β
´1 :

JT pβ
´1q

n
ÿ

i“1

ż τ

0

”

γtZipsqu ´
ErY psqγtZpsqu|βTZipsqs

ErY psq|βTZipsqs

ı

ωps, βTZipsqq
”

dNipsq

´ λts, βTZipsquYipsqds
ı

“ 0. (3.14)

3.3.1 Efficient Estimation

In this subsection we propose a class of efficient estimation equations which corrobo-

rate the rational of score equation (3.10) based on the equation (3.14). Substituting

ωts, βTZpsqu “ λ01ts, β
TZpsqu{λts, βTZpsqu and γtZpsqu “ Zpsq into the left side of

(3.14), we have

JT pβ
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|βTZipsqs

ErY psq|βTZipsqs

)λ01ts, β
TZipsqu

λts, βTZipsqu
dMipsq,

which is exactly the linear approximation in the right-hand side of (3.9) through re-

placing β by the true parameter vector β0. Substituting λts, βTZpsqu, λ01ts, β
TZpsqu
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and Er¨|βTZpsqs with their estimators (3.5), (3.7) and kernel estimators aforemen-

tioned in previous section, we obtain a class of efficient estimation equations of β
´1

below

0 “ JT pβ
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

)

pλ01ts, β
TZipsq; βu

pλts, βTZipsq; βu

”

dNipsq

´pλts, βTZipsq; βuYipsqds
ı

, (3.15)

which is identical with score equation (3.10). The efficiency of (3.15) can be demon-

strated by some special cases. Take the popular proportional hazards model as the

true model for instance. That is, substitute the ratio minuend in the first bracket

with
“
řn
i“1 Yipsq exptβTZipsquZipsq

‰

{
“
řn
i“1 exptβTZipsquYipsq

‰

. Up to a Jacobian

coefficient matrix, (3.15) reduces to the partial likelihood score equation

n
ÿ

i“1

ż τ

0

”

Zipsq ´

řn
i“1 Yipsq exptβTZiuZi
řn
i“1 exptβTZiuYipsq

ı

dNipsq “ 0.

Denote β̌
´1 to be the solution to (3.15). Let β̌ “ pp1 ´ }β̌

´1}
2q1{2, β̌

´1q
T . As

expected, the following theorem shows that under regular conditions, β̌
´1 and β̌ can

reach the same asymptotic variance as β̂
´1 and β̂ do by the profile likelihood method

in Section 3.2.

Theorem 3.3. Under the mild regularity conditions given in Section 3.9, if nh8
1 Ñ 0

and nh8
2 Ñ 0, nh1h

3
2{ log nÑ 8 and h3 “ Opn´1{5q , then we have

(i)
?
npβ̌

´1 ´ β
0
´1q

d
ÝÑ Np0,Σ´1q;

(ii)
?
npβ̌ ´ β0q

d
ÝÑ N

´

0,Jpβ0
´1
qΣ´1Jpβ0

´1
qT
¯

.

3.3.2 Doubly Robust Estimation

In this subsection we explore feasible estimation of β in two directories: estima-

tion without estimating λp¨, ¨q (NEst.lambda), or estimation without estimating the
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partial derivative λ01pt, uq (NEst.Plambda).

Recall that in Section 3.2, we employ the multivariate local linear regression idea

to estimate the nonparametric component, λp¨, ¨q and its partial derivatives. However,

estimation of the nonparametric component will affect substantially the properties of

estimators of β. It therefore raises the question that whether consistency of estimator

of the parameter for β can be achieved without estimating the partial derivative

λ01pt, uq or even λp¨, ¨q itself. The doubly robust property in equation (3.14) provides

clues for presenting two sets of estimation equations.

From one perspective, we may avoid estimating λp¨, ¨q but obtain the consis-

tent estimators for β. Extremely, setting λts, βTZpsqu “ 0, ωts, βTZpsqu “ 1, and

γtZpsqu “ Zpsq, we obtain the estimating equation of β
´1 as

JT pβ
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|βTZipsqs

ErY psq|βTZipsqs

)

dNipsq “ 0. (3.16)

Comparing to the profile likelihood in (3.8), the estimating equations (3.16) only

require to estimateEr¨|βTZpsqs without estimating the bivariate function λps, βTZpsqq.

Notice that the estimator of Er¨|βTZpsqs can be estimated by some classical univari-

ate nonparametric regression methods, say, by kernel estimation, we have

pErY psq|βTZpsq “ us “

řn
i“1 kh3tβ

TZipsq ´ uuIpXi ě sq
řn
i“1 kh3tβ

TZipsq ´ uu

and

pErY psqZpsq|βTZpsq “ us “

řn
i“1 kh3tβ

TZipsq ´ uuZipsqIpXi ě sq
řn
i“1 kh3tβ

TZipsq ´ uu
,

separately with the bandwidth h3. An estimator of β
´1 can hence be obtained from

the following estimation equations

JT pβ
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

)

dNipsq “ 0. (3.17)
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Let β̂˚
´1

be the solution to (3.17) and hence an estimator of β be β̂˚ “ pp1 ´

}β̂˚
´1
}2q1{2, β̂˚T

´1
qT . We have the following asymptotic results for β̂˚

´1
and β̂˚ .

Theorem 3.4. Under the regularity conditions given in Section 3.9, if nh4
3 Ñ 0 and

nh3{ log nÑ 8, then we have

(i)
?
npβ̂˚´1 ´ β

0
´1q

d
ÝÑ Np0, A´1BA´1q;

(ii)
?
npβ̂˚ ´ β0q

d
ÝÑ N

´

0,Jpβ0
´1
qA´1BA´1Jpβ0

´1
qT
¯

,

where

A “ JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)b2

λ01ts, β
T
0 ZpsquY psqds

ı

Jpβ0
´1
q;(3.18)

B “ JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)b2

λts, βT0 ZpsquY psqds
ı

Jpβ0
´1
q.(3.19)

In order to obtain
?
n-consistency and asymptotic normality of β̂˚

´1
and β̂˚, The-

orem 3.4 indicates that we need to use an undersmoothing bandwidth, i.e, nh4
3 Ñ 0.

This is a common requirement in semiparametric estimation problems, see Carroll

et al. (1997). To this end, we may employ an ad hoc bandwidth h3 “ ĥ3,optˆn
´2{15 “

Oppn
´1{3q, where ĥ3,opt9n

´1{5 is the optimal bandwidth for ErY psq|βTZpsqs and

ErY psqZpsq|βTZpsqs. In our simulation studies, such a method is insensitive to the

choice of bandwidth h3.

From Theorem 3.4, the asymptotic covariance matrix of β̂˚ can be estimated by

Jpβ̂˚
´1
qÂ˚´1B̂˚Â˚´1Jpβ̂˚

´1
q
T ,

where Â˚ and B̂˚ are empirical plug-in estimators of A and B, taken by

Â˚ “ JT pβ̂˚
´1
q
1

n

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs

)b2
pλ01ts, β̂

˚TZipsq; β̂
˚
u
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YipsqdsJpβ̂
˚

´1
q;

B̂˚ “ JT pβ̂˚
´1
q
1

n

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs

)b2
pλts, β̂˚TZipsq; β̂

˚
u

YipsqdsJpβ̂
˚

´1
q.

For the test problem (3.13), we may define another Wald test statistic W ˚
n

W ˚
n “ npβ̂˚ ´ β0q

T
!

Jpβ̂˚
´1
qÂ˚´1B̂˚Â˚´1Jpβ̂˚

´1
q
T
)´1

pβ̂˚ ´ β0q.

Similar to Theorem 3.2, under the regular conditions, the asymptotic null distribution

of W ˚
n is χ2ppq.

Remark 3.1. Ignoring the Jacobian matrix coefficient, it is interesting to notice

that the useness and rationale of (3.17) is echoed by the so called screening statistic

FAST presented in Gorst-Rasmussen and Scheike (2013)

1

n

n
ÿ

i“1

ż τ

0

!

Zi ´

řn
i“1 ZiYipsq
řn
i“1 Yipsq

)

dNipsq,

of which the minuend in the bracket part can be looked as an approximation of the

corresponding part in (3.16). However, Gorst-Rasmussen and Scheike (2013) as-

sumed ErZ|βT0 Zs “ cβT0 Z for some constant c as a general condition for dimension

deduction in feature screening, whereas it is not required for our methodology and

theory derivation.

From the second perspective, we may avoid estimating λ01pt, uq and obtain the

consistent estimators through estimating λp¨, ¨q only. Setting extremely γpZpsqq “

Zpsq, ωts, βTZpsqu “ 1 and ErY psqγtZpsqu|βTZpsqs “ 0 in equation (3.14), it yields

JT pβ
´1q

n
ÿ

i“1

ż τ

0

Zipsq
”

dNipsq ´ Yipsqλts, β
TZipsquds

ı

“ 0.
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Replacing λts, βTZpsqu with pλts, βTZpsq; βu defined in (3.5), another class of esti-

mation equations of β
´1 is given by

JT pβ
´1q

n
ÿ

i“1

ż τ

0

Zipsq
”

dNipsq ´ Yipsqpλts, β
TZipsq; βuds

ı

“ 0. (3.20)

Let β̂˚˚
´1

be the solution to (3.20) and an estimator of β be β̂˚˚ “ pp1´}β̂˚˚
´1
}2q1{2, β̂˚˚T

´1
qT .

We have the following asymptotic result for β̂˚˚
´1

.

Theorem 3.5. Under the regularity conditions given in Section 3.9, if n1{2ph2
1 `

h2
2q Ñ 0, nh1h

3
2{ log nÑ 8 and nh2

1h
2
2 Ñ 8, then

(i)
?
npβ̂˚˚´1 ´ β

0
´1q

d
ÝÑ Np0, A´1BA´1q;

(ii)
?
npβ̂˚˚ ´ β0q

d
ÝÑ N

´

0,Jpβ0
´1
qA´1BA´1Jpβ0

´1
qT
¯

,

where A and B are defined in (3.18) and (3.19).

From Theorem 3.5, the undersmoothing bandwidth is necessary to obtain a more

accurate estimator of β̂˚˚. Comparing Theorems 3.4 and 3.5, we notice that in theory,

aforementioned two estimation methods can asymptotically reach the same efficiency

in the sense that their asymptotic covariance matrices are identical. However, in

practice, there are different application preference for these two estimation methods,

which will be demonstrated in simulation studies.

3.4 Adapted Newton-Raphson Algorithm for β

In this section we introduce an adapted Newton-Raphson algorithm to obtain the

efficient estimator β̂ from equation (3.10) or (3.15). In literature for semiparamet-

ric estimation, some authors obtain estimator of the parameter vector β through

minimizing the objective function ˆ̀
npβ´1q in (3.2) subject to the constraint that the
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norm of β´1 is less than 1. However, practical iteration is not robust due to involving

β̂
pm`1q
1 “

b

1´ ||β̂
pm`1q
´1 ||2, where βpmq and βpmq

´1
denote the m-th iterative estimators

of β and β
´1 , respectively. To solve the problem, we modify Newton-Raphson itera-

tive algorithm by using a first order approximation between deviation of β and β´1,

refer to equation (3.23). Furthermore, implementation of the algorithm involves ap-

proximation of the first and second order derivatives of the profile likelihood ˆ̀
npβ´1q.

Such derivatives are not easy to be computed since λ̂pt, βTZptq; βq contained in func-

tion ˆ̀
npβ´1q does not depend on β explicitly. Expression (3.9) from the result of

Lemma 5 provides an asymptotically equivalence, and hence a feasible score equa-

tion of B ˆ̀
npβq{Bβ´1 “ 0. In addition, based on results of Lemma 3.5 in Section 3.9

and applying Theorem 2.4.5, Chapter 2 of Fleming and Harrington (2011), we have

B2 ˆ̀
npβ´1q

Bβ
´1Bβ

T
´1

« ´JT pβ
´1q

n
ÿ

i“1

!

ż τ

0

!

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

)

ˆ
pλ01ts, β

TZipsq; βu

pλts, βTZipsq; βu
dxMipsq

)b2

Jpβ
´1q, (3.21)

where dxMipsq “ dNipsq´pλts, β
TZipsq; βuYipsqds, and pErY psq|βTZpsqs and pErY psqZpsq

|βTZpsqs are replaced by their kernel estimators.

Here comes our adapted Newton-Raphson algorithm.

Step 1. Let βp1q “ p1, 1, ¨ ¨ ¨ , 1qT {
?
p be an initial estimator of β. Set m “ 1.

Step 2. Given βpmq, calculate pλtt,Ziptq
Tβpmq; βpmqu and pλ01tt,Ziptq

Tβpmq; βpmqu, i “

1, ¨ ¨ ¨ , n by (3.5) and (3.7).

Step 3. Update βpmq. In this step, we first update βpmq
´1

by Newton-Raphson algo-

rithm

βpm`1q
´1

“ βpmq
´1
´

!B2 ˆ̀
npβ

pmq
´1
q

Bβ
´1Bβ

T
´1

)´1B ˆ̀
npβ

pmq
´1
q

Bβ
´1

, (3.22)
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where B ˆ̀
npβ

pmq
´1
q{Bβ

´1 and B2 ˆ̀
npβ

pmq
´1
q{Bβ

´1Bβ
T
´1

can be computed approximately

through (3.10) and (3.21). Then, using Taylor expansion, we obtain

βpm`1q
´ βpmq “ Jpβ

pmq
´1 qpβ

pm`1q
´1 ´ β

pmq
´1 q `Opp}β

pm`1q
´1 ´ β

pmq
´1 }

2
q. (3.23)

Combining (3.22) with (3.23), we obtain

βpm`1q
“ βpmq ´ Jpβ

pmq
´1 q

!B2 ˆ̀
npβ

pmq
´1
q

Bβ
´1Bβ

T
´1

)´1B ˆ̀
npβ

pmq
´1
q

Bβ
´1

.

Finally, update βpmq with normalized βpm`1q. That is, βpm`1q :“ βpm`1q{}βpm`1q}.

Set m :“ m` 1 and go to Step 2.

Step 4. Repeat Steps 2 and 3 until convergence.

3.5 Estimation for the Nonparametric Part

Given the profile estimator β̂, we obtain the fitted estimator of λpt, uq,

λ̂pt, uq ” λ̂pt, u; β̂q “
pŜ20Ŝ02 ´ Ŝ

2
11qT̂00 ` pŜ11Ŝ01 ´ Ŝ10Ŝ02qT̂10 ` pŜ10Ŝ11 ´ Ŝ20Ŝ01qT̂01

2Ŝ01Ŝ10Ŝ11 ´ Ŝ02Ŝ2
10 ´ Ŝ

2
01Ŝ20 ´ Ŝ00Ŝ2

11 ` Ŝ00Ŝ20Ŝ02

,

where

Ŝjk “ Sjkpt, u; β̂q “ n´1
n
ÿ

i“1

ż τ

0

Khts´ t, β̂
TZipsq ´ uups´ tq

j
tβ̂TZipsq ´ uu

kYipsqds,

T̂jk “ Tjkpt, u; β̂q “ n´1
n
ÿ

i“1

ż τ

0

Khts´ t, β̂
TZipsq ´ uups´ tq

j
tβ̂TZipsq ´ uu

kdNipsq,

for j, k “ 0, 1, 2, ¨ ¨ ¨ .

In this section, we first study the asymptotic behaviors of the nonparametric

estimator λ̂pt, uq. For a kernel function kp¨q, define

µj “

ż

ujkpuqdu, νj “

ż

ujk2
puqdu, j “ 0, 1, 2.
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Theorem 3.6. Under the regularity assumptions given in Section 3.9, if β̂ is
?
n-

consistent,

(i) if
?
nh1h2ph

2
1`h

2
2q is bounded and nh1h

3
2 Ñ 8 with h1 Ñ 0, h2 Ñ 0 and nÑ 8,

then we have

a

nh1h2

!

λ̂pt, β̂Tz; β̂q ´ λpt, βT0 zq ´ bpt, β
T
0 zq

)

d
ÝÑ

N

ˆ

0,
ν2

0λpt, β
T
0 zq

ErY ptq|βT0 Zptq “ βT0 zsfβ0pβ
T
0 zq

˙

,

where the asymptotic bias is bpt, βT0 zq “
1
2
h2

1µ2λ20pt, β
T
0 zq `

1
2
h2

2µ2λ02pt, β
T
0 zq.

(ii) Moreover, as nh1h
3
2{ log nÑ 8, we have

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, β̂Tz; β̂q ´ λpt, βT0 zq

ˇ

ˇ

ˇ
“ Opp

a

log n{pnh1h2q ` h
2
1 ` h

2
2q.

The uniform consistency as well as convergence rate of λ̂pt, uq has been established

in afore Theorem 3.6. The asymptotic normality of λ̂pt, uq for our semiparametric

model is the same as that of the local linear estimator in the nonparametric hazards

model (Nielsen, 1998). It lies in, once we attain
?
n-consistency for β̂, the local

linear method may be carried out to fit the nonparametric part of equation (3.5) as

if β is known. Compared with existing literature about nonparametric estimation

of hazards function, say local constance method in Nielsen and Linton (1995), one

challenge in proof that we need to overcome is the predictability issue raised in semi-

parametric models, where the integrand of martingale integrals is not predictable and

thus the classical counting process theory of martingales is not directly applicable,

refer to Mammen and Nielsen (2007).

Theorem 3.6 also indicates that the optimal bandwidth may be used. Note that

the estimation procedure involves selection of the bandwidths h “ ph1, h2q
T at two
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different goals: one is to obtain the estimation of β and the other is to get the

final fitted λpt, uq. For the latter, the theoretic optimal bandwidth is obtained by

minimizing the asymptotic mean squared error (AMSE) (Härdle et al., 2004)

AMSEph1, h2q “
1

4
µ2

2th
2
1λ20pt, β

T
0 zq `

h2
2λ02pt, β

T
0 zqu2 `

1

nh1h2

ν2
0λpt, β

T
0 zq

ErY ptq|βT0 Zptq “ βT0 zsfβ0pβ
T
0 zq

.

Thus, if we assume that h1 and h2 have the same order, the optimal bandwidth is

ĥopt
j 9n

´1{6, j “ 1, 2.

In practice, after we attain an estimator β̂, bandwidths for estimating λp¨, ¨q is chosen

by minimizing the cross-validation score w.r.t. h, as introduced by Nielsen and Linton

(1995)

Qphq “ n´1
n
ÿ

i“1

”

ż τ

0

λ̂2
hts, β̂

TZipsq; β̂uYipsqds´ 2

ż τ

0

λ̂
r´is
h ts, β̂TZipsq; β̂udNipsq

ı

,

(3.24)

where λ̂
r´is
h ps, β̂TZipsq; β̂q is the leave-one-out version of the estimator. By the general

discrete approximation technique, we may calculate the minimizer of Qphq by the 2-

dimensional grid search method, i.e. we define two-dimensional equally spaced grids

of 100 bandwidths, with h1 P rτ{n, τ{2s and h2 P rrangepβ̂TZiq{n, rangepβ̂TZiq{2s. In

the situation that the practical result of the minimizer of Qphq is at the boundary,

we adopt an indirect cross-validation and more robust bandwidth selection strategy,

called do-validation, see Mammen et al. (2011) and Pérez et al. (2013).

3.6 Simulation Studies

In this section, we assess the finite sample performance of the proposed methods in

Examples 1, 2 and 3. Example 3.1 aims to evaluate the accuracy and precision of
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estimation β for the three proposed methods, profile likelihood estimation (PL), esti-

mation without estimating λp¨, ¨q (NEst.lambda), and estimation without estimating

λ01pt, uq (NEst.Plambda). Example 3.2 compares performance of aforementioned

profile likelihood method with hMAVE method. Example 3.3 demonstrates perfor-

mance of the fitted hazards function. To save the computational cost, we use the

method in Pérez et al. (2013) for discrete approximations of the hazard estimator

and set the time grids approximately equal to quarter of the sample size. Each sim-

ulation is repeated 1000 times for various scenarios of censoring rate (C.rate) and

sample size n.

Example 3.1. We assume that Z “ pZ1, Z2, Z3q
T is generated from a multivari-

ate normal distribution with mean 0 and variance-covariance matrix pσijq3ˆ3, where

σij “ 0.5|i´j| for i, j “ 1, 2, 3. The true parameter vector is β0 “ p1{2,´
?

3{2, 0qT .

The following three simulation settings are considered:

(i) Proportional hazards model (PHM): λpt, βT0 Zq “ 0.5t exp pβT0 Zq;

(ii) Additive hazards model (ADH): λpt, βT0 Zq “ 1` βT0 Z;

(iii) Accelerated failure time model (AFT): logpT q “ βT0 Z` ε with ε „ Np0, 1q.

The censoring time C is generated from the uniform distribution r0, c0s, where c0

is modified to control an approximate censoring rate of 20% and 40%, respectively.

The bandwidth of h “ ph1, h2q
T is selected by the cross-validation method introduced

in Section 3.5.

Tables 3.1 and 3.2, for all proposed estimatorss, present the bias, sampling stan-

dard error of estimator of β0 (SSE), sampling mean of the standard error estima-

tor (SEE), and the empirical coverage probability (CP) of the 95% confidence in-

terval. Table 3.1 evaluates performance of the semiparametric efficient estimator
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by profile likelihood estimation procedure. According to the optimal bandwidth

ĥopt
j 9n

´1{6, j “ 1, 2, in the previous section, and the fact that 200´1{6 and 400´1{6

are pretty close, we use a unified bandwidth for both sample sizes 200 and 400 to

indicate that the accuracy and precision of estimators are not sensitive to the band-

width. Generally speaking, it is evident from the results in table 3.1 that the profiled

likelihood estimators have very small bias and yield reasonable SEEs and CPs. For

all the three models, the SSEs and SEEs get closer to each other and the CPs are

closer to the nominal level 95% as the sample size increases and censoring percentage

decreases. Thus, the result of table 3.1 is confirmatory to the asymptotic normality

of the parameter estimator established in Theorem 3.1. We also notice that, for Cox’s

model, SSEs and SEEs of a few estimators differ considerably, and thus CPs may be

not that close to the nominal level 95% in the situation of small sample size or high

censoring rate. We speculate that it is due to the fluctuation of the exponential tilt

in the representation of the proportional hazard function.

Table 3.2 assesses performance of two estimators derived from the doubly robust

property. The bandwidth selection is more stable than that for the profile likelihood

estimator. This may owe to less complicated kernel smoothing in that we avoid es-

timation of the unknown λp¨, ¨q or its partial derivative. It is noticeable that even

though we reduce the estimation workload by not estimating either the hazards func-

tion or its partial derivative, the resulting estimators are still accurate and precise.

Therefore, for expedient computation in practice, the two estimation equations built

up based on the doubly robust property can be an alternative of the profile likelihood

equation.

Example 3.2. In this example, we compare the performance of our method with

hMAVE method at sample size n “ 200. We consider two scenarios for generating Z:

all the covariates are continuous and a mixture of discrete and continuous covariates:
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Table 3.1: Example 3.1: Profile likelihood estimator (semiparametric efficient esti-
mation)

True model n “ 200 n “ 400
C.rate bandwidth Par. Bias SSE SEE CP Bias SSE SEE CP
20% (i) PHM β1 -0.0085 0.0829 0.0869 0.958 -0.0042 0.0542 0.0585 0.947

(0.2019, 1.6755) β2 0.0086 0.0479 0.0510 0.941 0.0034 0.0315 0.0340 0.945
β3 -0.0029 0.1189 0.1251 0.937 -0.0012 0.0786 0.0853 0.950

(ii) ADH β1 -0.0029 0.0477 0.0489 0.952 -0.0014 0.0289 0.0299 0.946
(1.0021, 1.6931) β2 0.0027 0.0269 0.0285 0.957 0.0008 0.0165 0.0173 0.945

β3 -0.0044 0.0670 0.0716 0.945 -0.0015 0.0404 0.0435 0.952

(iii) AFT β1 -0.0069 0.0755 0.0815 0.961 -0.0027 0.0506 0.0537 0.954
(1.6609, 1.3383) β2 0.0071 0.0440 0.0480 0.963 0.0034 0.0297 0.0313 0.954

β3 -0.0055 0.1069 0.1180 0.954 -0.0027 0.0715 0.0781 0.957

40% (i) PHM β1 -0.0104 0.0990 0.1006 0.949 -0.0044 0.0638 0.0664 0.960
(0.1919, 1.4255) β2 0.0286 0.1614 0.0615 0.938 0.0056 0.0366 0.0389 0.963

β3 -0.0029 0.1521 0.1438 0.945 -0.0022 0.0933 0.0961 0.952

(ii) ADH β1 -0.0074 0.0668 0.0684 0.950 -0.0032 0.0426 0.0424 0.947
(1.9021, 1.7931) β2 0.0040 0.0376 0.0396 0.951 0.0015 0.0241 0.0245 0.944

β3 -0.0028 0.0917 0.0994 0.956 -0.0005 0.0582 0.0618 0.961

(iii) AFT β1 -0.0066 0.0758 0.0849 0.967 -0.0029 0.0515 0.0546 0.955
(3.0609, 1.3383) β2 0.0106 0.0735 0.0506 0.964 0.0039 0.0300 0.0319 0.957

β3 -0.0085 0.1167 0.1218 0.955 -0.0054 0.0772 0.0794 0.951

Case 1: all the covariates are continuous. We take the PHM:

T “ Λ´1
0

!

ε exp p6ZTβ0 ` 1q
)

, Λ´1
0 pvq “ Φt5pv ´ 2qu, (3.25)

where Φp¨q is the cumulative distribution function of Np0, 1q, ε „ expp1q and

Z „ N7p0, I7q are independent. Let the true parameter β0 “ p1, 0,´1, 0,´1, 0, 1qT {2.

The censoring time C is generated from Φp2Z2` 2Z3q` c0, where c0 is selected

to control an approximate censoring rate of 0%, 20% or 40%. This design is

similar to Example 5.1 in Xia et al. (2010). The results are summarized in

Table 3.3.

Case 2: some covariates are categorical. We take the ADH model:

λpt, βT0 Zq “ 1` βT0 Z, (3.26)

where β0 “ p1, 1, ´ 1, ´ 1qT {2. We generate Z3 from nonlinear models:

— 63 —



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

Table 3.2: Example 3.1: Estimation without estimating λp¨, ¨q or without estimating
λ01pt, uq (doubly robust property estimation)

True model n “ 200 n “ 400
C.rate Bandwidth Par. Bias SSE SEE CP Bias SSE SEE CP

Estimation without estimating λp¨, ¨q
20% (i) PHM β1 -0.0076 0.0716 0.0763 0.960 -0.0033 0.0488 0.0513 0.963

(0.1571, 1.1764) β2 0.0063 0.0416 0.0446 0.951 0.0029 0.0283 0.0298 0.957
β3 -0.0021 0.1072 0.1105 0.954 -0.0002 0.0718 0.0745 0.956

(ii) AHD β1 -0.0033 0.0613 0.0615 0.950 -0.0010 0.0419 0.0403 0.944
(0.4864, 0.6383) β2 0.0058 0.0370 0.0362 0.952 0.0029 0.0242 0.0242 0.954

β3 -0.0052 0.0894 0.0901 0.950 -0.0027 0.0600 0.0600 0.946

(iii) AFT β1 -0.0064 0.0707 0.0733 0.944 -0.0022 0.0486 0.0496 0.948
(0.5609, 0.6383) β2 0.0063 0.0418 0.0432 0.943 0.0034 0.0287 0.0290 0.953

β3 -0.0088 0.1017 0.1064 0.951 -0.0042 0.0700 0.0721 0.946

40% (i) PHM β1 -0.0080 0.0852 0.0911 0.962 -0.0015 0.0586 0.0605 0.958
(0.1571, 1.1764) β2 0.0104 0.0499 0.0538 0.955 0.0060 0.0342 0.0356 0.958

β3 -0.0055 0.1267 0.1316 0.948 -0.0019 0.0858 0.0879 0.953

(ii) AHD β1 -0.0061 0.0822 0.0802 0.947 -0.0033 0.0547 0.0532 0.945
(0.4864, 0.6383) β2 0.0098 0.0482 0.0481 0.950 0.0039 0.0320 0.0310 0.942

β3 -0.0087 0.1176 0.1174 0.944 -0.0026 0.0772 0.0773 0.943

(iii) AFT β1 -0.0059 0.0739 0.0746 0.949 0.0027 0.0506 0.0511 0.952
(0.5609, 0.6383) β2 0.0076 0.0439 0.0442 0.943 0.0037 0.0298 0.0299 0.941

β3 -0.0081 0.1073 0.1080 0.945 -0.0048 0.0750 0.0738 0.943

Estimation without estimating λ01pt, uq
20% (i) PHM β1 -0.0118 0.0685 0.0886 0.982 -0.0061 0.0466 0.0567 0.989

(1.2571, 1.6764) β2 0.0029 0.0394 0.0513 0.976 0.0010 0.0270 0.0329 0.984
β3 -0.0158 0.1009 0.1342 0.988 -0.0136 0.0683 0.0869 0.982

(ii) AHD β1 -0.0041 0.0599 0.0708 0.982 -0.0020 0.0395 0.0442 0.969
(2.1021, 1.7931) β2 0.0045 0.0344 0.0416 0.977 0.0019 0.0227 0.0257 0.970

β3 -0.0073 0.0843 0.1080 0.986 -0.0030 0.0572 0.0669 0.980

(iii) AFT β1 -0.0036 0.0715 0.0820 0.964 0.0001 0.0474 0.0542 0.975
(1.5609, 0.7383) β2 0.0080 0.0484 0.0483 0.965 0.0044 0.0278 0.0316 0.976

β3 -0.0053 0.0992 0.1247 0.974 0.0017 0.0674 0.0824 0.982

40% (i) PHM β1 -0.0101 0.0793 0.1065 0.983 -0.0039 0.0544 0.0680 0.980
(1.2571, 1.6764) β2 0.0074 0.0469 0.0626 0.981 0.0040 0.0318 0.0398 0.985

β3 -0.0160 0.1186 0.1612 0.985 -0.0118 0.0812 0.1035 0.980

(ii) AHD β1 -0.0066 0.0783 0.0926 0.970 -0.0029 0.0524 0.0586 0.968
(1.1864, 0.7703) β2 0.0082 0.0453 0.0547 0.976 0.0036 0.0304 0.0341 0.965

β3 -0.0090 0.1114 0.1414 0.979 -0.0033 0.0740 0.0892 0.977

(iii) AFT β1 -0.0052 0.0723 0.0828 0.969 -0.0019 0.0487 0.0545 0.972
(1.5609, 0.7383) β2 0.0075 0.0433 0.0487 0.962 0.0039 0.0286 0.0381 0.972

β3 -0.0036 0.1049 0.1255 0.971 0.0009 0.0731 0.0827 0.969
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Z3 “ |Z1 ` Z2| ` |Z1|ε1, where εi’s are independently generated from the stan-

dard normal population; Z4 from a Bernoulli distribution with success proba-

bility exppZ1q{t1` exppZ1qu. The censoring time C is generated from uniform

distribution Up0, c0q, where c0 is selected to control an approximate censoring

rate of 20% or 40%. The results are summarized in Table 3.4.

Tables 3.3 and 3.4 show comparison of bias, standard error (SE) and mean square

error (MSE) among our proposed estimators and the estimator by hMAVE method.

When all covariates are continuous, we report the comparison results in Table 3.3.

All four estimators have sound bias and MSE. The two estimators based on doubly

robust property are comparable with hMAVE. Nevertheless, the profile likelihood

estimator outperforms hMAVE since it is semiparametric efficient, refer to the bolded

magnitudes.

Table 3.4 comes to the case when there exist discrete covariates. hMAVE, as

predicted, does not perform well because the continuity assumption is violated. In

contrast to hMAVE, our three proposed estimators still perform well since our meth-

ods only need that at least one covariate is continuous. The semiparametric efficient

estimator outplays all other methods in bias and MSE, refer to the bolded magni-

tudes.

Example 3.3. In this example, we examine the performance of the fitted estimation

of hazards function. Data are generated from the proportional hazards model in

Example 3.1(i). In this setting, the true hazards function is

λpt, uq “ 0.5t exppuq.

We take the sample size n “ 400 and the approximate censoring rate of 40% .

Figure 3.1 demonstrates the bias of λ̂pt, uq compared to λpt, uq at given grid

points. The results show that the shape of curved surface is captured well.

— 65 —



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

Table 3.3: Case 1, Example 3.2: all the covariates are continuous.

Method Censoring rate β1 β2 β3 β4 β5 β6 β7
PL 0% Bias -0.0015 0.0013 0.0039 0.0008 0.0026 0.0006 -0.0017

p0.2501, 1.7857q pc1 “ 2q SE 0.0349 0.0387 0.0368 0.0410 0.0348 0.0393 0.0341
MSE 0.0012 0.0015 0.0014 0.0017 0.0012 0.0015 0.0012

20% Bias -0.0021 -0.0017 0.0015 -0.0003 0.0024 0.0018 -0.0032
p0.1111, 2.1889q pc1 “ 0.5q SE 0.0341 0.0396 0.0330 0.0400 0.0321 0.0408 0.0329

MSE 0.0012 0.0016 0.0011 0.0016 0.0010 0.0017 0.0011
40% Bias 0.0029 0.0233 0.0227 -0.0015 -0.0053 0.0002 0.0033

p0.1111, 2.1889q pc1 “ 0.1q SE 0.0372 0.0407 0.0350 0.0404 0.0340 0.0420 0.0362
MSE 0.0014 0.0022 0.0017 0.0016 0.0012 0.0018 0.0013

hMAVE 0% Bias -0.0029 -0.0032 0.0032 -0.0007 0.0032 0.0021 -0.0023
pc1 “ 2q SE 0.0380 0.0433 0.0393 0.0422 0.0381 0.0445 0.0391

MSE 0.0015 0.0019 0.0016 0.0018 0.0015 0.0020 0.0015
20% Bias -0.0033 0.0039 0.0062 -0.0012 0.0015 0.0009 -0.0006

pc1 “ 0.5q SE 0.0374 0.0450 0.0379 0.0432 0.0378 0.0445 0.0374
MSE 0.0014 0.0020 0.0015 0.0019 0.0014 0.0020 0.0014

40% Bias -0.0040 -0.0096 -0.0031 0.0010 0.0050 0.0017 -0.0063
pc1 “ 0.1q SE 0.0381 0.0448 0.0393 0.0441 0.0400 0.0435 0.0396

MSE 0.0015 0.0021 0.0016 0.0019 0.0016 0.0019 0.0016

NEst.lambda 0% Bias -0.0006 0.0008 0.0058 0.0030 0.0024 0.0018 -0.0041
(0.1111,3.3262) pc1 “ 2q SE 0.0379 0.0427 0.0441 0.0467 0.0404 0.0459 0.0401

MSE 0.0014 0.0018 0.0020 0.0022 0.0016 0.0021 0.0016
20% Bias -0.0017 0.0002 0.0023 -0.0005 0.0028 -0.0011 -0.0057

(0.1111,1.9017) pc1 “ 0.5q SE 0.0385 0.0461 0.0411 0.0457 0.0386 0.0442 0.0395
MSE 0.0015 0.0021 0.0017 0.0021 0.0015 0.0020 0.0016

40% Bias -0.0019 -0.0007 0.0066 -0.0009 0.0035 -0.0005 -0.0030
(0.1111,1.9017) pc1 “ 0.1q SE 0.0395 0.0467 0.0508 0.0467 0.0489 0.0483 0.0410

MSE 0.0016 0.0022 0.0026 0.0022 0.0024 0.0023 0.0017

NEst.Plambda 0% Bias -0.0049 0.0003 0.0033 -0.0032 0.0033 -0.0011 -0.0029
p0.1111, 1.9017q pc1 “ 2q SE 0.0425 0.0491 0.0427 0.0485 0.0423 0.0489 0.0430

MSE 0.0018 0.0024 0.0018 0.0024 0.0018 0.0024 0.0019
20% Bias -0.0029 -0.0015 0.0064 0.0016 0.0010 -0.0019 -0.0050

p0.1111, 2.1889q pc1 “ 0.5q SE 0.0433 0.0507 0.0442 0.0503 0.0434 0.0509 0.0423
MSE 0.0019 0.0026 0.0020 0.0025 0.0019 0.0026 0.0018

40% Bias -0.0009 0.0072 0.0105 -0.0026 0.0026 -0.0007 -0.0059
p0.1362, 1.4373q pc1 “ 0.1q SE 0.0470 0.0560 0.0483 0.0550 0.0493 0.0602 0.0542

MSE 0.0022 0.0032 0.0024 0.0030 0.0024 0.0036 0.0030

3.7 Analysis of Diffuse Large B-Cell Lymphoma

In this section, we apply the proposed method on the selected 14 features of the

DLBCL data in Chapter 2 by the IFAST method. The results of the regression

analysis by Model (3.1) is reported in Table 3.5. The genes with p-values less than

0.05 are in bold. These genes are very possibly associated with the survival time of

lymphoma patients. The results verify that FAST is an effective feature screening

method. Among the genes selected by FAST, there are nine out of fourteen are

significant. Genes 1181 and 1456, which are also selected by most of Cox’s model
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Table 3.4: Case 2, Example 3.2: some covariates are categorical.

Method C.rate β1 β2 β3 β4
PL 20% Bias -0.0031 0.0003 0.0015 0.0012

p0.2401, 2.7749q pc0 “ 14q SE 0.0285 0.0325 0.0318 0.0514
MSE 0.0008 0.0011 0.0010 0.0026

40% Bias -0.0057 -0.0030 0.0024 0.0052
p0.2401, 2.7749q pc0 “ 3.5q SE 0.0480 0.0553 0.0552 0.0884

MSE 0.0023 0.0031 0.0030 0.0078

hMAVE 20% Bias -0.0031 0.0042 -0.0025 0.0187
pc0 “ 14q SE 0.0497 0.0553 0.0549 0.0789

MSE 0.0025 0.0031 0.0030 0.0066
40% Bias -0.0116 -0.0045 0.0014 0.0267

pc0 “ 3.5q SE 0.0872 0.1069 0.0978 0.1214
MSE 0.0077 0.0114 0.0096 0.0155

NEst.lambda 20% Bias -0.0010 0.0009 0.0014 0.0095
(0.1362, 1.1330) pc0 “ 14q SE 0.0401 0.0460 0.0442 0.0726

MSE 0.0016 0.0021 0.0020 0.0054
40% Bias -0.0079 0.0002 0.0037 0.0124

(0.1362, 1.1330) pc0 “ 3.5q SE 0.0615 0.0669 0.0634 0.1059
MSE 0.0038 0.0045 0.0040 0.0114

NEst.Plambda 20% Bias -0.0030 0.0025 0.0005 0.0094
p0.1362, 1.1330q pc0 “ 14q SE 0.0393 0.0452 0.0432 0.0698

MSE 0.0016 0.0020 0.0019 0.0050
40% Bias -0.0069 0.0021 0.0033 0.0126

p0.1362, 1.1330q pc0 “ 3.5q SE 0.0560 0.0635 0.0609 0.0980
MSE 0.0032 0.0040 0.0037 0.0098
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Figure 3.1: Example 3.1: Assume the true model is Cox’s model. The bias measures
the deviation between the proposed fitted hazard function and the true one.
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based feature screening methods, are significant under the SIH model. Notice that

genes 1681, 1825, 2311, 4317, 5649, 6519, which are only selected by FAST in Chapter

2, are significant, confirmed by the proposed method. These genes might be neglected

by the conventional Cox’s model but indeed deserve further investigation.

Table 3.5: Regression analysis for DLBCL data by Model (3.1)

Genes coefficient standard error p-value
197 0.1516 0.0862 0.0784

1188 0.2981 0.1145 0.0092
1456 -0.2941 0.0992 0.0030
1681 -0.3435 0.1038 0.0009
1825 -0.3798 0.1001 0.0001
2107 0.1462 0.1543 0.3435
2109 -0.1215 0.1373 0.3760
2240 0.1558 0.1158 0.1785
2311 0.3197 0.1021 0.0017
4131 0.3162 0.0841 0.0002
4317 -0.3970 0.0949 0.0000
5054 0.0263 0.1093 0.8096
5649 0.2077 0.0975 0.0332
6519 0.2746 0.0812 0.0007

3.8 Discussion

In this chapter, we have systematically studied efficient estimation of the single-

index hazards model with right-censored survival outcomes. Our proposed profile

maximum likelihood estimator of the parameter component reaches semiparama-

tric efficient bound. Meanwhile observation on the doubly robustness of influence

function class have motivated us to further develop a class of efficient estimation

equations. Furthermore, two classes of estimation equations are presented as a prac-

tical substitute of the efficient score equations. Rigorous theory proof have been

derived for the asymptotic results. univariate
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Ding et al. (2013) and Chiang et al. (2017) estimated the cumulative rather than

the hazard function directly, by nonparametric likelihood estimation and application

of local constant estimation of Nielsen and Linton (1995) separately. Instead, we

estimate λp¨, ¨q directly by treating it as a bivariate function.

Local linear regression by Fan and Gijbels (1996) is a widely used method to

estimate multivariate function for completely observed data. Nielsen (1998)’s non-

parametric hazards estimation actually represents an equivalent or corrected kernel

form to handle right censored data, refer to (3.28) in Section 3.9. In the presence of

index structure, we further develop multivariate local linear approach that is suit-

able and even efficient to deal with right-censored failure time. The equivalent kernel

nested in our method satisfies some basic properties and allows for the automatic

adjustment near boundary regions, refer to the proof in the Section 3.9.

As supplementary, for equation (3.14), if we set ωps, βTZpsqq “ 1, we can obtain

another estimating equation

JT pβ
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

)”

dNipsq ´ Yipsqpλts, β
TZipsquds

ı

“ 0. (3.27)

Similar to the proof of Theorems 3.4 and 3.5, we can show that the solution to

(3.27) is asymptotically normally distributed with mean 0 and covariance matrix

Jpβ0
´1
qA´1BA´1Jpβ0

´1
qT under certain regular conditions. However, the bandwidths

h1, h2 and h3 in (3.27), are different from the NEst.lambda and NEst.Plambda

methods. The optimal bandwidths can still be used.

In practice, there are several types of high dimensional covariates. This motivates

our future work to study multiple index hazards modeling that incorporates different

types of effects of covariates.

— 69 —



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

3.9 Proofs of propositions and theorems

In order to study the asymptotic behavior of the proposed estimators, we give the

following conditions:

Assumption 3.1. Assume that the hazard function λpt, uq is three times continu-

ously differentiable at pt, uq P r0, τ s ˆ Uβ, where Uβ “ tβTz : z P Zu and Z is a

compact support set of Zptq.

Assumption 3.2. Assume that φβpt, uq “ fβpuqErY ptq|β
TZptq “ us is positive and

has bounded second derivatives on r0, τ sˆUβ for β in some neighborhood of β0, where

fβpuq is the density function of βTZptq at u.

Assumption 3.3. fβpuqErY ptqZptq|β
TZptq “ us has bounded second derivatives at

pt, uq P r0, τ s ˆ Uβ.

Assumption 3.4. The kernel kp¨q is symmetric density function, with a bounded

derivative, and satisfies
ş8

´8
u2kpuqdu ă 8,

ş8

´8
u2jk2puqdu ă 8, j “ 0, 1, 2.

Assumption 3.5. Assume that, for any β ‰ β0, λpt, βTZptqq ‰ λpt, βT0 Zptqq holds,

with probability one.

Assumption 3.6. The matrices Σ and A are finite and nonsingular, where Σ and

A are defined in (3.12) and (3.18), respectively.

All of these conditions are analogous to those in the traditional single index

literature. Assumption 3.1 gives the smoothness condition of λp¨, ¨q. It is noteworthy

that Assumption 3.2 is similar to Assumption (S) of Theorem 1 in Nielsen and Linton

(1995). In fact, by Fubini’s theorem, simple calculation yields

E
”

ż τ

0

Khps´ t, β
TZpsq ´ uqY psqds

ı

“ fβpuqErY ptq|β
TZptq “ us ` op1q
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“ f˚pu, tqP pY ptq “ 1q ` op1q,

hj Ñ 0, j=1, 2, where f˚pu, tq is the density function of F pu, tq “ P pβTZptq ď

u|Y ptq “ 1q. Notice that the main term f˚pu, tqP pY ptq “ 1q is the definition of ϕpxq

in Nielsen and Linton (1995)’s Theorem 1. Assumption 3.3 is a mild smoothness

condition similar to the condition ErZ|βTZ “ us in the classical single index model

literature (Condition (C2) in Wang et al. (2010), Condition (a) in Cui et al. (2011)

and Condition (C2) in Ma and Zhu (2012)). Assumption 3.4 is a commonly used

assumption for second-order kernels. Assumption 3.5 ensures that the likelihood of

β is identifiable.

For notational convenience, we write U0ptq “ βT0 Zptq, Uptq “ βTZptq, U0iptq “

βT0 Ziptq and Uiptq “ βTZiptq. Let cn “
a

log n{pnh1h2q ` h
2
1 ` h

2
2. Define

Vnips, t, u; βq “ Khps´ t, Uipsq ´ uq
!

rS20pt, uqS02pt, uq ´ S
2
11pt, uqs

`rS11pt, uqS01pt, uq ´ S10pt, uqS02pt, uqsps´ tq (3.28)

`rS10pt, uqS11pt, uq ´ S20pt, uqS01pt, uqspUipsq ´ uq
)

and

Wnips, t, u; βq “
Vnips, t, u; βq

řn
i“1

şτ

0
Vnips, t, u; βqYipsqds

.

Note that Wnips, t, u; βq is similar to the bivariate equivalent kernel for the local

linear regression Fan and Gijbels (1996). Then, it is easy to verify that Wnips, t, u; βq

satisfies the following basic properties:

(1)
řn
i“1

şτ

0
Wnips, t, u; βqYipsqds “ 1;

(2)
řn
i“1

şτ

0
Wnips, t, u; βqps´ tqYipsqds “ 0;

(3)
řn
i“1

şτ

0
Wnips, t, u; βqpUipsq ´ uqYipsqds “ 0;
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(4) pλpt, u; βq “
řn
i“1

şτ

0
Wnips, t, u; βqdNipsq.

To prove Proposition 3.1, we first introduce the following Lemmas 3.1-3.3.

Lemma 3.1. Under Assumptions 3.2 and Assumption 3.4, we have, for j, k “

0, 1, 2, 3

sup
pt,z,βqPAn

|Sjkpt, β
Tz; βq ´ ErSjkpt, β

Tz; βqs| “ Opph
j
1h

k
2

a

log n{pnh1h2qq,

as h1 Ñ 0, h2 Ñ 0 and pnh1h2q{ log n Ñ 8, where An “ tpt, z, βq : pt, z, βq P

r0, τ s ˆ Z ˆRp, }β ´ β0} ď cn´1{2u for a given constant c ą 0.

Lemma 3.2. When Assumptions 3.2 and Assumption 3.4 hold, as h1 Ñ 0, h2 Ñ 0

and pnh1h2q{ log nÑ 8, for j, k “ 0, 1, 2, 3, we have

Sjkpt, u; βq “ φβpt, uqh
j
1h

k
2µjµk `

Bφβpt, uq

Bt
hj`1

1 hk2µj`1µk `
Bφβpt, uq

Bu
hj1h

k`1
2 µjµk`1

`Ophj1h
k
2cnq,

uniformly for t P r0, τ s, u P Uβ and }β ´ β0} ď cn´1{2.

Lemma 3.3. Under Assumptions 3.1, 3.2 and 3.4, as h1 Ñ 0, h2 Ñ 0 and pnh1h2q{ log nÑ

8, we have

λ̂pt, βTz; βq “ λ0pt, β
T
0 zq ` λ01pt, β

T
0 zqpβ´1 ´ β

0
´1q

TJT pβ0
´1
q

”

z´
ErY ptqZptq|Uptq “ us

ErY ptq|Uptq “ us

ı

`λ20pt, β
T
0 zqh

2
1µ2 ` λ02h

2
2µ2 ` Eβn,1pt, zq

`Oph3
1 ` h

3
2 ` h2}β0 ´ β} ` }β0 ´ β}

2
` cnq, (3.29)

λ̂10pt, u; βqh1 “ λ10pt, β
T
0 zqh1 ` Eβn,2pt, zq `Opcnq,

λ̂01pt, u; βqh2 “ λ01pt, β
T
0 zqh2 ` Eβn,3pt, zq `Opcnq,

uniformly for t P r0, τ s, u P Uβ and }β ´ β0} ď cn´1{2, where
¨

˝

Eβn,1pt, zq
Eβn,2pt, zq
Eβn,3pt, zq

˛

‚“
1

nφpt, βTzq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

dMipsq.
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Proof of Proposition 3.1. Since Miptq is a martingale process with the filtration

Ft,i and Ft “ _
n
i“1Ft,i, by a similar argument of Lemma 3.2, we have

sup
tPr0,τ s, zPZ

ˇ

ˇ

ˇ

řn
i“1

şτ

0
Khps´ t, β

T
0 pZipsq ´ zqqdMipsq

nErY ptq|Uptq “ βT0 zsfβ0pβ
T
0 zq

ˇ

ˇ

ˇ
“ Opp

a

log n{pnh1h2qq.

By Lemma 3.3, we obtain λ̂pt, βT0 z; β0q “ λpt, βT0 zq ` Oppcnq, uniformly for t P

r0, τ s, z P Z.

Proof of Proposition 3.2. Let p
X,δ,ZpXq

px, δ, zq be the joint density function of

pX, δ,ZpXqq. Then, in model (1), the likelihood of one random observation px, δ, zq

is given by

tλpx, βTzquδ exp
!

´

ż x

0

λps, βTzqds
)

tp
C|Zpxq

px|zqu1´δ
!

ż 8

x

p
C|Zpxq

pu|zqdu
)δ

p
Zpxq
pzq,

(3.30)

where β “
´

p1´}β
´1}

2q1{2, βT
´1

¯T

, p
Zpxq
pzq denotes the marginal density of Zpxq and

p
C|Zpxq

pu|zq denotes the conditional density of censoring time C given Zpxq. The

density (3.30) is equivalent to

p
X,δ,ZpXq

px, δ, zq “ λpx, βTzqδ exp
!

´

ż x

0

λps, βTzqds
)

λ
C|Zpxq

px|zq1´δ

ˆ exp
!

´ Λ
C|Zpxq

px|zq
)

p
Zpxq
pzq, (3.31)

where

λ
C|Zptq

pt|zq “ lim
hÑ0

P tt ď C ă t` h|C ě t,Zptq “ zu

h
, Λ

C|Zptq
pt|zq “

ż t

0

λ
C|Zpvq

pv|zqdv.

The log of the density in (3.31) is

log p
X,δ,ZpXq

px, δ, zq “ δ log λpx, βTzq ´

ż x

0

λps, βTzqds` p1´ δq log λ
C|Zpxq

px|zq
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´Λ
C|Zpxq

px|zq ` log p
Zpxq
pzq. (3.32)

Note that β
´1 is the p ´ 1 dimensional parameters of interest, and λpx, uq,

λ
C|Zpxq

px|zq and p
Zpxq
pzq are the nuisance parameters. Denote the nuisance tangent

space corresponding to λpx, uq, λ
C|Zpxq

px|zq and p
Zpxq
pzq to be Λ1s, Λ2s and Λ3s, re-

spectively. Obviously, the nuisance tangent space can be written as a direct sum of

three orthogonal spaces

Λ “ Λ1s ‘ Λ2s ‘ Λ3s.

Let dMCpt,Zptqq “ dIpX ď t, δ “ 0q´IpX ě tqλ
0C|Zptq

pt|Zptqqdt where λ
0C|Zptq

pt|Zptqq

denotes the true conditional hazard function of C given Zptq. By similar arguments

in Chapter 5 of Tsiatis (2006), we can obtain

Λ2s “

!

ż τ

0

αps,ZpsqqdMCps,Zpsqq, for all αps, zq
)

,

Λ3s “

!

αpZpXqq : ErαpZpXqqs “ 0, for all αpzq
)

,

where αps, zq and αpzq are p´ 1 dimensional measurable functions.

In order to derive the space Λ1s, we consider the parametric submodel

λpx, u, γ1q “ λpx, uq exptγT1 αpx, uqu,

for any arbitrary p´ 1 dimensional measurable function αpx, uq of px, uq, for u P Uβ.

This parametric submodel is valid because it contains the true model (i.e., when

γ1 “ 0) and λpx, u, γ1q is positive. Subsisting this parametric submodel into (3.32),

taking derivatives with respect to γ1 and setting γ1 “ 0 and β “ β0, the score

function is

Sγ1pX, δ,ZpXqq “ δαpX, βT0 ZpXqq ´

ż X

0

λps, βT0 Zpsqqαps, βT0 Zpsqqds

“

ż τ

0

αps, βT0 ZpsqqdMps, βT0 Zpsqq,
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where dMps, βT0 Zpsqq “ dMpsq “ dNipsq´Y psqλps, β
T
0 Zpsqqds. We hence conjecture

that

Λ1s “

!

ż τ

0

αps, βT0 ZpsqqdMps, βT0 Zpsqq, for all αps, uq, u P Uβ0
)

,

where αps, uq is p ´ 1 dimensional measurable function. To justify this conjecture,

we need to verify that, for any parametric submodel λps, u, γ1q (when γ1 “ γ10,

λps, u, γ10q “ λps, uq), the linear space spanned by its score vector with respect to γ1

belongs to Λ1s. Substituting the submodel λps, u, γ1q into (3.32) and setting γ1 “ γ10

and β “ β0, the score function is

Sγ1pX, δ,ZpXqq “
B

Bγ1

!

δ log λpX, βT0 ZpXq, γ10q ´

ż X

0

λps, βT0 Zpsq, γ10qds
)

“

ż τ

0

B log λps, βT0 Zpsq, γ10q

Bγ1

dMps, βT0 Zpsqq.

Thus, for any pp´ 1qˆ r1 dimensional matrix B, where r1 is the dimension of γ1, we

have BSγ1pX, δ,ZpXqq P Λ1s.

To find the orthogonal complement of the nuisance tangent space Λ, we can use

the method in Theorem 5.5 of Tsiatis (2006) to construct the space

Λ˚1s “
!

ż τ

0

αps,ZpsqqdMps,Zpsqq, for all αps, zq
)

,

where dMps,Zpsqq “ dNipsq ´ Y psqλ0T |Zpsq
ps|Zpsqqds, and λ

0T |Zpsq
ps|Zpsqq is the true

conditional hazard function of T given Zpsq with no restrictions on the distribution

of pX, δ,ZpXqq. Theorem 5.5 in Tsiatis (2006) shows that ΛK P Λ˚1s. Thus, elements

of ΛK belong to Λ˚1s and are orthogonal to Λ1s. Therefore, to identify elements of

ΛK, we can take an arbitrary element of Λ˚1s, denoted by

ż τ

0

αps,ZpsqqdMps,Zpsqq
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and find its residual after projecting it onto Λ1s. Toward that end, we can derive

α˚ps, uq, u P Uβ0 , so that

ż τ

0

αps,ZpsqqdMps,Zpsqq ´

ż τ

0

α˚ps, βT0 ZpsqqdMps, βT0 Zpsqq

is orthogonal to every element of Λ1s. That is,

Er

ż τ

0

rαps,Zpsqq ´ α˚ps, βT0 ZpsqqsTdMps,Zpsqq

ż τ

0

αps, βT0 ZpsqqdMps, βT0 Zpsqqs “ 0

for any arbitrary p´ 1 dimensional measurable function ηps, uq of ps, uq, u P Uβ0 . By

the theory of martingale stochastic integrals, we have

E
”

ż τ

0

rαps,Zpsqq ´ α˚ps, βT0 ZpsqqsTdMps,Zpsqq

ż τ

0

ηps, βT0 ZpsqqdMps, βT0 Zpsqq
ı

“ E
”

ż τ

0

rαps,Zpsqq ´ α˚ps, βT0 ZpsqqsTηps, βT0 ZpsqqY psqλps, βT0 Zpsqqds
ı

“

ż τ

0

E
”

tαps,Zpsqq ´ α˚ps, βT0 ZpsqquTηps, βT0 ZpsqqY psqλps, βT0 Zpsqq
ı

ds

“

ż τ

0

E
”

E
!

rαps,Zpsqq ´ α˚ps, βT0 ZpsqqsTY psq|βT0 Zpsq
)

ηps, βT0 Zpsqqλps, βT0 Zpsqq
ı

ds.

Since ηps, uq is arbitrary, above equation implies that

E
”

tαps,Zpsqq ´ α˚ps, βT0 ZpsqquTY psq|βT0 Zpsq
ı

“ 0. (3.33)

Solving (3.33), we obtain

α˚ps, βT0 Zpsqq “
Erαps,ZpsqqY psq|βT0 Zpsqs

ErY psq|βT0 Zpsqs
.

Therefore, the space orthogonal to the nuisance tangent space is given by

ΛK “
!

ż τ

0

”

αps,Zpsqq ´
Erαps,ZpsqqY psq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ı

dMpsq for all αps, zq
)

,(3.34)
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for any arbitrary p´ 1 dimensional measurable function αps, zq of ps, zq, z P Z.

The efficient score β
´1 is obtained by computing Sβ

´1
pX, δ,ZpXqq and projecting

this onto Λ . It is straightforward to calculate

Sβ
´1
pX, δ,ZpXqq “

B

Bβ
´1

!

δ log λpX, βT0 ZpXqq ´

ż τ

0

λps, βT0 ZpsqqY psqds
)

“ JT pβ0
´1
qδ
λ01pX, β

T
0 ZpXqq

λpX, βTZpsqq
Zpsq ´

ż τ

0

λ01ps, β
T
0 ZpsqqZpsqY psqds

“ JT pβ0
´1
q

ż τ

0

Zpsq
λ01ps, β

T
0 Zpsqq

λps, βT0 Zpsqq
dMps, βT0 Zpsqq.

Note that Sβ
´1
pX, δ,ZpXqq is an element of Λ˚1s, with

αps,Zpsqq “ JT pβ0
´1
qZpsq

λ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq
.

Therefore, the efficient score, derived as the residual after projecting Sβ
´1
pX, δ,ZpXqq

onto the nuisance tangent space, is given as

SeffpX, δ,ZpXqq “

ż τ

0

”

Zpsq ´
ErZpsqY psq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ıλ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq
dMps, βT0 Zpsqq.

Thus, the information matrix of β´1, namely ErSeffpX, δ,ZpXqq
b2s is

JT pβ0
´1
qE

”

ż τ

0

”

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ıb2λ2
01ps, β

T
0 Zpsqq

λps, βT0 Zpsqq
Y psqds

ı

Jpβ0
´1
q.

Proof of Proposition 3.3. From the proof of Lemma 3.3, we have

λ̂pt, βTz; βq ´ λ̂pt, βT0 z; β0q

“ λ01pt, β
T
0 zqpβ´1 ´ β

0
´1q

TJT pβ0
´1
q

”

z´
ErY ptqZptq|Uptq “ us

ErY ptq|Uptq “ us

ı

` rRnpβq ´Rnpβ0qs
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`tEβn,1pt, zq ´ Eβ0n,1pt, zqu `Oph2}β0 ´ β} ` }β0 ´ β}
2
q, (3.35)

where

Rnpβq “
1

2
λ02pt, β

T
0 zq

n
ÿ

i“1

ż τ

0

Wnips, t, β
Tz; βqpUipsq ´ β

Tzq2Yipsqds

`λ20pt, β
T
0 zq

n
ÿ

i“1

ż τ

0

Wnips, t, β
Tz; βqps´ tqpUipsq ´ β

TzqsYipsqds

`
1

2
λ20pt, β

T
0 zq

n
ÿ

i“1

ż τ

0

Wnips, t, β
Tz; βqps´ tq2Yipsqds

“ Rn,1pβq `Rn,2pβq `Rn,3pβq.

Note that the term Rnpβq comes from (3.63) in the proof of Lemma 3.3.

Firstly, we consider the difference

Rn,1pβq ´Rn,1pβ0q

“ λ02pt, β
T
0 zq

” 1

nφpt, βTzq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqqpUipsq ´ β

Tzq2Yipsqds

´
1

nφpt, βT0 zq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
0 pZipsq ´ zqqpU0ipsq ´ β

T
0 zq2Yipsqds

ı

t1` opp1qu.

By Taylor expansion,

Khps´ t, β
T
pZipsq ´ zqqpUipsq ´ β

Tzq2 ´Khps´ t, β
T
0 pZipsq ´ zqqpU0ipsq ´ β

T
0 zq2

“ rh´1
2 Kh,01ps´ t, β

T
0 pZipsq ´ zqqpU0ipsq ´ β

T
0 zq2

`Khps´ t, β
T
0 pZipsq ´ zqqpU0ipsq ´ β

T
0 zqspβ´1 ´ β

0
´1q

TJT pβ0
´1qpZipsq ´ zq

`Opp}β´1 ´ β
0
´1}

2
2q,

where Kh,01pt, uq “ BKhpt, uq{Bu. This leads to

Rn,1pβq ´Rn,1pβ0q “ Opph
2
2}β´1 ´ β

0
´1}q `Oppcn}β´1 ´ β

0
´1}p1` h2qq. (3.36)

— 78 —



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

By similar calculations, we can derive that

Rn,2pβq ´Rn,2pβ0q “ Opph
2
1}β´1 ´ β

0
´1}q `Oppcn}β´1 ´ β

0
´1}h

2
1h
´1
2 q (3.37)

and

Rn,3pβq ´Rn,3pβ0q “ Opph
2
1}β´1 ´ β

0
´1}q. (3.38)

By Taylor expansion, we have

Eβn,1pt, zq ´ Eβ0n,1pt, zq

“
1

nφpt, βTzq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqqdMipsq

´
1

nφpt, βT0 zq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
0 pZipsq ´ zqqdMipsq

“
1

nφpt, βT0 zq

n
ÿ

i“1

ż τ

0

rKhps´ t, β
T
pZipsq ´ zqq ´Khps´ t, β

T
0 pZipsq ´ zqqsdMipsq

´
φpt, βTzq ´ φpt, βT0 zq

nφpt, βT0 zq

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
0 pZipsq ´ zqqdMipsq `Opp}β´1 ´ β

0
´1}

2
q

“ Opp
a

log n{pnh1h2q}β´1 ´ β
0
´1}h

´1
2 q. (3.39)

Together with (3.35)-(3.39), the proof of Proposition 3.3 is completed by the defini-

tion of derivative.

Lemma 3.4. Under Assumption 3.1 to 3.4, as nh8
1 Ñ 0 and nh8

2 Ñ 0, nh1h
3
2{ log nÑ

8 and nh2
1h

2
2 Ñ 8, we have

1
?
n

B ˆ̀
npβ0q

Bβ´1

“
1
?
n
JT pβ0

´1q

n
ÿ

i“1

ż τ

0

”

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ıλ01ps, U0ipsqq

λps, U0ipsqq
dMipsq

`opp1q.
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Lemma 3.5. Under Assumption 3.1 to 3.4, we have

´
1

n

B2 ˆ̀
npβ0q

Bβ´1BβT´1

“ JT pβ0
´1qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)b2

ˆ
λ2

01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq
Y psqds

ı

Jpβ0
´1q ` opp1q.

Proof of Theorem 3.1. (i) To prove the consistency of β̂´1, we only need to verify

Exp. (5.8) in Theorem 5.7 of van der Vaart (2000). Specifically, we can show that,

for any ε

sup
β´1:}β´1´β0

´1}ěε

`pβ
´1q ă `pβ0

´1q, (3.40)

sup
β´1PΘ´1

|
1

n
ˆ̀
npβ´1q ´ `pβ´1q| “ opp1q, (3.41)

where

`pβ
´1q “ E

”

δ log λpX, βTZpXqq ´

ż τ

0

λps, βTZpsqqY psqds
ı

.

Firstly, consider (3.40). Note that

`pβ´1q ´ `pβ
0
´1
q

“ E
”

ż τ

0

tλps, βT0 Zpsqq log λps, βTZpsqq ´ λps, βTZpsqquY psqds
ı

´E
”

ż τ

0

tλps, βT0 Zpsqq log λps, βT0 Zpsqq ´ λps, βT0 ZpsqquY psqds
ı

“ E
”

ż τ

0

!

λps, βT0 Zpsqq log
λps, βTZpsqq

λps, βT0 Zpsqq
´ tλps, βTZpsqq ´ λps, βT0 Zpsqqu

)

Y psqds
ı

.

By the inequality log x ă x´ 1, for x ‰ 1, we have

λps, βT0 Zpsqq log
λps, βTZpsqq

λps, βT0 Zpsqq
´ tλps, βTZpsqq ´ λps, βT0 Zpsqqu ă 0,
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if λps, βTZpsqq ‰ λps, βT0 Zpsqq. Thus, under the condition (C7), we obtain that

sup
β´1:}β´1´β0

´1}ěε

`pβ
´1q ă `pβ0

´1q.

For Exp. (3.41), we can consider

sup
β´1PΘ´1

|
1

n
ˆ̀
npβ´1q ´

1

n
`pβ

´1q| ď sup
β´1PΘ´1

|
1

n
ˆ̀
npβ´1q ´

1

n
`npβ´1q|

` sup
β´1PΘ´1

|
1

n
`npβ´1q ´ `pβ´1q|. (3.42)

By Proposition 3.1, the first term on the right-hand of (3.42) is

1

n
ˆ̀
npβ´1q ´

1

n
`npβ´1q “

1

n

n
ÿ

i“1

ż τ

0

log
λ̂ps, βTZipsq; βq

λps, βTZpsqq
dNipsq

´
1

n

n
ÿ

i“1

ż τ

0

!

λ̂ps, βTZipsq; βqq ´ λps, β
TZpsqq

)

Yipsqds

“ opp1q.

By the uniform law of large numbers, we can obtain

sup
β´1PΘ

|
1

n
`npβ´1q ´ `pβ´1q| “ opp1q.

Therefore, by Theorem 5.7 of van der Vaart (2000), β̂´1 converges in probability to

β0
´1 .

(ii) By Taylor expansion

1

n
ˆ̀
npβ̂q “

1

n
ˆ̀
npβ0q ` pβ̂´1 ´ β

0
´1q

T 1

n

B ˆ̀
npβ0q

Bβ´1

`
1

2
pβ̂´1 ´ β

0
´1q

T 1

n

B2 ˆ̀
npβ

˚q

Bβ´1BβT´1

pβ̂´1 ´ β
0
´1q,

where β˚ lies between β̂ and β0. This together with Lemma 3.4–3.5 and the consis-

tency of β̂´1 yieds

?
npβ̂´1 ´ β

0
´1q “ Σ´1 1

?
n

B ˆ̀
npβ0q

Bβ´1

` opp1q
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“ Σ´1 1
?
n

JT pβ0
´1q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)λ01ps, U0ipsqq

λps, U0iq
dMipsq

`opp1q.

Then, by the martingale central limit theorem, we have

?
npβ̂´1 ´ β

0
´1q

d
ÝÑ Np0,Σ´1

q.

(iii) By the delta-method, we can obtain the result of Theorem 3.1 (iii).

Proof of Theorem 3.2. We first prove that pΣ is consistent to Σ. By similar ar-

guments of Lemma 3.3, we obtain that

sup
sPr0,τ s,zPZ,

}β´β0}ďcn´1{2

} pErY psqZpsq|Upsq “ βTzs´ErY psqZpsq|Upsq “ βTzqs} “ OP p
a

log n{nh3`h
2
3q,

sup
sPr0,τ s,zPZ,

}β´β0}ďcn´1{2

| pErY psq|Upsq “ βTzs ´ ErY psq|Upsq “ βTzs| “ OP p
a

log n{nh3 ` h
2
3q,

and

sup
sPr0,τ s,zPZ,

}β´β0}ďcn´1{2

›

›

›

pλ2
01ps, β

Tzq

pλps, βTzq
´
λ2

01ps, β
T
0 zq

λps, βT0 zq

›

›

›
“ Opph

2
1 ` h

2
2q `Oppc

2
nq.

Thus,

pΣ “
1

n

n
ÿ

i“1

ż τ

0

”

Zipsq ´
pErY psqZpsq|β̂TZipsqs

pErY psq|β̂TZipsqs

ıb2pλ2
01ps, β̂

TZipsqq

pλps, β̂TZipsqq
Yipsqds ÝÑ Σ,

as nÑ 8. This together with Theorem 3.1 yields

Wn “ npβ̂ ´ β0q
T
”

Jpβ̂
´1q

pΣ´1Jpβ̂
´1q

T
ı´1

pβ̂ ´ β0q

“

”?
nrJpβ0

´1
qΣ´1Jpβ0

´1
q
T
s
´1{2

pβ̂ ´ β0q

ıT”?
nrJpβ0

´1
qΣ´1Jpβ0

´1
q
T
s
´1{2

pβ̂ ´ β0q

ı
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`OP p
a

log n{nh3 ` h
2
3q `Opph

2
1 ` h

2
2q `Oppc

2
nq ÝÑ χ2

ppq,

under conditions of Theorem 3.1.

Proof of Theorem 3.3. (i) By the definition of β̌
´1 , we have

0 “ JT pβ̌
´1q

n
ÿ

i“1

ż τ

0

”

Zipsq ´
pErY psqZpsq|β̌TZipsqs

pErY psq|β̌TZipsqs

ı

pλ01ps, β̌
TZipsq; β̌q

pλps, β̌TZipsq; β̌q

”

dNipsq

´pλps, β̌TZipsq; β̌qYipsqds
ı

, (3.43)

where β̌ “
´

p1´ }β̌
´1}

2q1{2, β̌
´1

¯T

. Let

R˚
pβ
´1q “

n
ÿ

i“1

ż τ

0

”

Zipsq ´
pErY psqZpsq|βTZipsqs

pErY psq|βTZipsqs

ı

pλ01ps, β
TZipsq; βq

pλps, βTZipsq; βq

”

dNipsq

´pλps, βTZipsq; βqYipsqds
ı

.

According to the following decomposition of the right-hand of above expression

n
ÿ

i“1

ż τ

0

”!

Zipsq ´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)

´

!

pErY psqZpsq|Uipsqs

pErY psq|Uipsqs
´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)ı

ˆ

”!

pλ01ps, β
TZipsq; βq

pλps, βTZipsq; βq
´
λ01ps, Uipsqq

λps, Uipsqq

)

`
λ01ps, Uipsqq

λps, Uipsqq

ı

ˆ

”

dMipsq ` tλps, U0ipsqq ´ λps, Uipsqqu ´ tpλps, Uipsq; βq ´ λps, UipsqquYipsqds
ı

,

some algebraic manipulation yields

R˚pβ
´1q

“

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq
dMipsq

`

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq

”

λps, U0ipsqq ´ λps, Uipsqq
ı

Yipsqds
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´

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|Uipsqs

pErY psq|Uipsqs
´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq
dMipsq

´

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|Uipsqs

pErY psq|Uipsqs
´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq

”

λps, U0ipsqq ´ λps, Uipsqq
ı

Yipsqds

`

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|Uipsqs

pErY psq|Uipsqs

)”

pλ01ps, Uipsq;βq

pλps, Uipsq;βq
´
λ01ps, Uipsqq

λps, Uipsqq

ı

dMipsq

`

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|Uipsqs

pErY psq|Uipsqs

)”

pλ01ps, Uipsq;βq

pλps, Uipsq;βq
´
λ01ps, Uipsqq

λps, Uipsqq

ı”

λps, U0ipsqq ´ λps, Uipsqq
ı

Yipsqds

´

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq

”

pλps, Uipsq;βq ´ λps, Uipsqq
ı

Yipsqds

`

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|Uipsqs

pErY psq|Uipsqs
´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)λ01ps, Uipsqq

λps, Uipsqq

”

pλps, Uipsq;βq ´ λps, Uipsqq
ı

Yipsqds

´

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)”

pλ01ps, Uipsq;βq

pλps, Uipsq;βq
´
λ01ps, Uipsqq

λps, Uipsqq

ı

ˆ

”

pλps, Uipsq;βq ´ λps, Uipsqq
ı

Yipsqds

`

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|Uipsqs

pErY psq|Uipsqs
´
ErY psqZpsq|Uipsqs

ErY psq|Uipsqs

)”

pλ01ps, Uipsq;βq

pλps, Uipsq;βq
´
λ01ps, Uipsqq

λps, Uipsqq

ı

ˆ

”

pλps, Uipsq;βq ´ λps, Uipsqq
ı

Yipsqds

“

10
ÿ

k“1

R˚kpβ´1q. (3.44)

Using a similar decomposition of (3.48), we have

R˚
1pβ̌´1q “

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)λ01ps, U0ipsqq

λps, U0ipsqq
dMipsq

`opp
?
nq. (3.45)
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By Taylor expansion and the law of large numbers, we have

R˚
2pβ̌´1q “ ´

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

ZT
i psq

λ2
01ps, U0ipsqq

λps, U0ipsqq
Yipsqds

ˆJpβ0
´1
qpβ̌

´1 ´ β
0
´1q ` opp

?
nq

“ ´nE
”

ż τ

0

”

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ıb2λ2
01ps, β

T
0 Zpsqq

λps, βT0 Zpsqq
Y psqds

ı

ˆJpβ0
´1
qpβ̌

´1 ´ β
0
´1q ` opp

?
nq. (3.46)

By similar arguments of Proposition 3.3, we obtain

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂01pt, β

T
0 z; β0q ´ λ01pt, β

T
0 zq

ˇ

ˇ

ˇ
“ Opph

2
1 ` h

2
2 `

b

log n{pnh1h3
2qq.

Based on above facts and with similar techniques in the proofs of Theorems 3.4 and

3.5, it can be shown that

R˚
kpβ̌´1q “ opp

?
nq, k “ 3, ¨ ¨ ¨ , 10. (3.47)

Thus, combining with (3.44), (3.45), (3.46) and (3.47), we have

R˚
pβ̌
´1q “

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)λ01ps, U0ipsqq

λps, U0ipsqq
dMipsq

´nE
”

ż τ

0

”

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ıb2λ2
01ps, β

T
0 Zpsqq

λps, βT0 Zpsqq
Y psqds

ı

Jpβ0
´1
qpβ̌

´1 ´ β
0
´1q

`opp
?
nq.

Then, plugging the above equation into (3.43) and using the martingale central limit

theorem, we can obtain the result of the theorem.

(ii) By the delta-method, we can obtain the result of 3.3 (ii).

Proof of Theorem 3.4. (i) Note that the estimator β̂˚T
´1

satisfies

0 “ JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs

)

dNipsq,
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where β̂˚ “
´

p1´ }β̂˚
´1
}2q1{2, β̂˚T

´1

¯T

. To obtain the asymptotic properties of β̂˚T
´1

, we

need to study the right-hand side of above expression. Separating this term, we have

0 “ JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs

)

dNipsq

“ JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!´

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

¯

´

´

pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs
´

pErY psqZpsq|U0ipsqs

pErY psq|U0ipsqs

¯

´

´

pErY psqZpsq|U0ipsqs

pErY psq|U0ipsqs
´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

¯)!

dMipsq ` Yipsqλps, U0ipsqqds
)

“ JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

dMipsq

´JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|β̂˚TZipsqs

pErY psq|β̂˚TZipsqs
´

pErY psqZpsq|U0ipsqs

pErY psq|U0ipsqs

)

dNipsq

´JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|U0ipsqs

pErY psq|U0ipsqs
´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

dMipsq

´JT pβ̂˚
´1
q

n
ÿ

i“1

ż τ

0

!

pErY psqZpsq|U0ipsqs

pErY psq|U0ipsqs
´ Zipsq

)

Yipsqλps, U0ipsqqds

“ Ln,1 ´ Ln,2 ´ Ln,3 ´ Ln,4. (3.48)

Next consider Ln,j, j “ 2, 3, 4. By Taylor expansion, we obtain

Ln,2 “ JT pβ0
´1
q

n
ÿ

i“1

ż τ

0

B

BβT´1

!

pErY psqZpsq|βT0 Zipsqs

pErY psq|βT0 Zipsqs

)

dNipsqpβ̂
˚
´1 ´ β

0
´1q ` opp

?
nq

“ nJT pβ0
´1
qE

”

ż τ

0

B

BβT´1

!ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)

dNpsq
ı

pβ̂˚´1 ´ β
0
´1q ` opp

?
nq

“ nJT pβ0
´1
qE

”

ż τ

0

B

BβT´1

!ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)

Y psqλps, βT0 Zpsqqds
ı

pβ̂˚´1 ´ β
0
´1q
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`opp
?
nq.

Note that, using the product rule for derivatives, we have

0 “
B

BβT´1

!

E
”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)

Y psqλps, βT0 Zpsqqds
ı)

“ E
”

ż τ

0

B

BβT´1

!ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)

Y psqλps, βT0 Zpsqqds
ı

`E
”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)

Y psq
B

BβT´1

!

λps, βT0 Zpsqq
)

ds
ı

.

This leads to

Ln,2 “ nJT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|U0psqs

ErY psq|U0psqs

)

Y psqλ01ps, U0psqqZ
T
psqds

ı

ˆJpβ0
´1
qpβ̂˚´1 ´ β

0
´1q ` opp

?
nq. (3.49)

By similar arguments of Lemma 3.3, it can be shown that

sup
sPr0,τ s,zPZ

} pErY psqZpsq|U0psq “ βT0 zs´ErY psqZpsq|U0psq “ βT0 zqs} “ OP p
a

log n{nh3`h
2
3q,

sup
sPr0,τ s,zPZ

| pErY psq|U0psq “ βT0 zs ´ ErY psq|U0psq “ βT0 zs| “ OP p
a

log n{nh3 ` h
2
3q.

Note that
pErY psqZpsq|U0ipsqs
pErY psq|U0ipsqs

´
ErY psqZpsq|U0ipsqs
ErY psq|U0ipsqs

is a predictable process with the filtration

Ft,i. Thus, by the martingale central limit theorem, we have

Ln,3 “ OP p
a

log n{nh3 ` h
2
3qOpp

?
nq. (3.50)

Let

wnips, u; βq “
pβTZipsq ´ uqIpXi ě sq

řn
j“1 kh3pβ

TZjpsq ´ uqIpXj ě sq
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and Ln,4s denote the s-th component of Ln,4. Then,

E
” 1
?
n

Ln,4s

ı2

“
1

n
E
”

n
ÿ

i“1

ż τ

0

t

n
ÿ

j“1

wnjps, β
T
0 Zipsq; β0qZjspsq ´ ZispsquYipsqλps, U0ipsqqds

ı2

ď

n
ÿ

i“1

E
”

ż τ

0

t

n
ÿ

j“1

wnjps, β
T
0 Zipsq; β0qZjspsq ´ ZispsquYipsqλps, U0ipsqqds

ı2

ď

n
ÿ

i“1

ż τ

0

E
”

n
ÿ

j“1

wnjps, β
T
0 Zipsq; β0qZjspsq ´ Zispsq

ı2

ds

ď cnh4
3. (3.51)

The last inequality holds from similar arguments of Lemma 1 in Zhu and Xue (2006).

Together with (3.48), (3.49), (3.50) and (3.51), we have

0 “
1
?
n

JT pβ0
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

dMipsq

´JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|U0psqs

ErY psq|U0psqs

)

Y psqλ01ps, U0psqqZ
T
psqds

ı

ˆJpβ0
´1
q
?
npβ̂˚´1 ´ β

0
´1q `Opp

b

nh4
3q.

If nh4
3 Ñ 0 and nh3{ log nÑ 0, this leads to

?
nApβ̂˚´1 ´ β

0
´1q “

1
?
n

JT pβ0
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

dMipsq

d
ÝÑ N

´

0, JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|U0psqs

ErY psq|U0psqs

)b2

λps, U0psqqY psqds
ı

Jpβ0
´1
q

¯

,

by the martingale central limit theorem. Thus, the proof of Theorem 3.4 is completed

if A is nonsingular.

(ii) By the delta-method, we can obtain the result of Theorem 3.4 (ii).
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Proof of Theorem 3.5. (i) By the definition of β̂˚˚
´1

, we have

0 “ JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

Zipsq
”

dNipsq ´ Yipsqpλps,Z
T
i psqβ̂

˚˚; β̂˚˚qds
ı

,

where β̂˚˚ “
´

p1´ }β̂˚˚
´1
}2q1{2, β̂˚˚T

´1

¯T

. Note that

0 “
1
?
n

JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

Zipsq
”

dNipsq ´ Yipsqpλps,Z
T
i psqβ̂

˚˚; β̂˚˚qds
ı

“
1
?
n

JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

Zipsq
”

dNipsq ´ Yipsqλps, β
T
0 Zipsqqds

ı

´
1
?
n

JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

Zipsq
”

pλps,ZT
i psqβ̂

˚˚; β̂˚˚q ´ pλps, βT0 Zipsq; β0q

ı

Yipsqds

´
1
?
n

JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

Zipsq
”

pλps, βT0 Zipsq; β0q ´ λps, β
T
0 Zipsqq

ı

Yipsqds

“ Mn,1 ´Mn,2 ´Mn,3. (3.52)

Next consider Mn,2 and Mn,3. By Proposition 3.3, we have

Mn,2 “
1
?
n

JT pβ̂˚˚
´1
q

n
ÿ

i“1

ż τ

0

ZipsqYipsq
Bλ̂ps, βT0 Zipsq; β0q

BβT´1

dspβ̂˚˚´1 ´ β
0
´1q

`oP p
?
n}β̂˚˚´1 ´ β

0
´1}q

“
1

n
JT pβ0

´1
q

n
ÿ

i“1

ż τ

0

ZipsqYipsqλ01ps, U0ipsqq
”

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ıT

dsJpβ0
´1
q

ˆ
?
npβ̂˚˚´1 ´ β

0
´1q ` oP p

?
n}β̂˚˚´1 ´ β

0
´1}q. (3.53)

By Lemma 3.3, we obtain

Mn,3 “
1
?
n

JT pβ0
´1
q

n
ÿ

i“1

ż τ

0

ZipsqYipsq

řn
j“1

şτ

0
Khpt´ s, U0jptq ´ U0ipsqqdMjptq

nErY psq|U0ipsqsfβ0pU0ipsqq
ds
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`Oppn
1{2
ph2

1 ` h
2
2qq

“
1
?
n

n
ÿ

j“1

ż τ

0

! 1

n

n
ÿ

i“1

ż τ

0

ZipsqYipsqKhpt´ s, U0jptq ´ U0ipsqq

ErY psq|U0ipsqsfβ0pU0ipsqq
ds
)

dMjptq

`Oppn
1{2
ph2

1 ` h
2
2qq.

Note that the integrand

1

n

n
ÿ

i“1

ż τ

0

ZipsqYipsqKhpt´ s, U0jptq ´ U0ipsqq

ErY psq|U0ipsqsfβ0pU0ipsqq
ds

is not predictable with the filtration Ft,j. In addition, by Lemma 3.2,

max
j“1,¨¨¨ ,n

sup
tPr0,τ s

›

›

›

1

n

n
ÿ

i“1

ż τ

0

ZipsqYipsqKhpt´ s, U0jptq ´ U0ipsqq

nErY psq|U0ipsqsfβ0pU0ipsqq
ds´

ErY ptqZptq|U0jptqs

ErY ptq|U0jptqs

›

›

›
“ OP pcnq.

Then, by similar arguments of Lemma 3.4, we can show that

Mn,3 “
1
?
n

n
ÿ

i“1

ż τ

0

ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs
dMipsq `Oppn

1{2
ph2

1 ` h
2
2qq. (3.54)

Thus, combining with (3.52), (3.53) and (3.54), we obtain

?
nApβ̂˚˚

´1
´ β0

´1q “
1
?
n

JT pβ0
´1
q

n
ÿ

i“1

ż τ

0

!

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

)

dMipsq

d
ÝÑ N

´

0, JT pβ0
´1
qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|U0psqs

ErY psq|U0psqs

)b2

λps, U0psqqY psqds
ı

Jpβ0
´1
q

¯

,

under the condition n1{2ph2
1 ` h

2
2q Ñ 0.

(ii) By the delta-method, we can obtain the result of Theorem 3.5 (ii).

Proof of Theorem 3.6. (i) Note that

a

nh1h2

!

λ̂pt, β̂Tz; β̂q ´ λpt, βT0 zq
)

“
a

nh1h2

!

λ̂pt, β̂Tz; β̂q ´ λ̂pt, βT0 z; β0q

)
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`
a

nh1h2

!

λ̂pt, βT0 z; β0q ´ λpt, β
T
0 zq

)

.

By Taylor expansion, we have

λ̂pt, β̂Tz; β̂q ´ λ̂pt, βT0 z; β0q “ pβ̂´1 ´ β
0
´1q

T Bλ̂pt, β
T
0 z; β0q

Bβ´1

t1` oP p1qu.

By the similar arguments of Proposition 3.3, we obtain

Bλ̂pt, βT0 z; β0q

Bβ´1

“ λ01pt, β
T
0 zqJT pβ0

´1q

!

z´
ErY ptqZptq|U0ptq “ βT0 zs

ErY ptq|U0ptq “ βT0 zs

)

`Opph
2
1 ` h

2
2 ` h

´1
2

a

1{pnh1h2qq,

as nh1h
3
2 Ñ 8. This, together with Theorem 3.1, yields

a

nh1h2

!

λ̂pt, β̂Tz; β̂q ´ λ̂pt, βT0 z; β0q

)

“ OP p
a

nh1h2{
?
nq. (3.55)

Using the same arguments of Lemma 3.3, we can show that

λ̂pt, βT0 z; β0q ´ λpt, β
T
0 zq “

1

2

n
ÿ

i“1

ż τ

0

Wnips, t, β
T
0 z; β0qλ02pt, Ũ

˚
1ipsqqpβ

T
0 rZipsq ´ zsq2Yipsqds

`
1

2

n
ÿ

i“1

ż τ

0

Wnips, t, β
T
0 z; β0qλ20pt̃

˚, Ũ˚2ipsqqps´ tq
2Yipsqds

`

řn
i“1

şτ

0
Khps´ t, β

T
0 rZipsq ´ zsqdMipsq

nErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

`Oppc
2
nq

“
1

2
h2

1µ2λ20pt, β
T
0 zq `

1

2
h2

2µ2λ02pt, β
T
0 zq

`

řn
i“1

şτ

0
Khps´ t, β

T
0 rZipsq ´ zsqdMipsq

nErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

`opp
a

1{pnh1h2q ` h
2
1 ` h

2
2q,

where t̃˚ lies between s and t; Ũ˚1ipsq and Ũ˚2ipsq are values between βT0 Zipsq and βT0 z.

By the martingale central limit theorem,

a

nh1h2

!

λ̂pt, βT0 z; β0q ´ λpt, β
T
0 zq ´ bpt, βT0 zq

)
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“

c

h1h2

n

řn
i“1

şτ

0
Khps´ t, β

T
0 rZipsq ´ zsqdMipsq

ErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

t1` opp1qu

d
ÝÑ N

ˆ

0,
ν2

0λpt, β
T
0 zq

ErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

˙

, (3.56)

where the asymptotic bias is

bpt, βT0 zq “
1

2
h2

1µ2λ20pt, β
T
0 zq `

1

2
h2

2µ2λ02pt, β
T
0 zq.

Combining with (3.55) and (3.56),

a

nh1h2

!

λ̂pt, β̂Tz; β̂q ´ λpt, βT0 zq ´ bpt, βT0 zq
)

d
ÝÑ N

ˆ

0,
ν2

0λpt, β
T
0 zq

ErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

˙

.

(ii) By Proposition 3.1, (3.55) holds uniformly for t P r0, τ s and z P Z, as

nh1h
3
2{ log nÑ 8. By Lemma 3.3, we have

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, βT0 z; β0q ´ λpt, β

T
0 zq ´

řn
i“1

şτ

0
Khps´ t, β

T
0 rZipsq ´ zsqdMipsq

nErY ptq|U0ptq “ βT0 zsfβ0pβ
T
0 zq

ˇ

ˇ

ˇ

“ Opph
2
1 ` h

2
2q `Oppc

2
nq,

as h1 Ñ 0, h2 Ñ 0 and pnh1h2q{ log nÑ 8. Note that

sup
tPr0,τ s, zPZ

ˇ

ˇ

ˇ

řn
i“1

şτ

0
Khps´ t, β

T
0 pZipsq ´ zqqdMipsq

nErY ptq|Uptq “ βT0 zsfβ0pβ
T
0 zq

ˇ

ˇ

ˇ
“ Opp

a

log n{pnh1h2qq.

Thus, we have

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, βT0 z; β0q ´ λpt, β

T
0 zq

ˇ

ˇ

ˇ
“ Opph

2
1 ` h

2
2 `

a

log n{pnh1h2qq `Oppc
2
nq.

Therefore, if nh1h
3
2{ log nÑ 8, we have

sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, β̂Tz; β̂q ´ λpt, βT0 zq

ˇ

ˇ

ˇ
ď sup

tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, β̂Tz; β̂q ´ λ̂pt, βT0 z; β0q

ˇ

ˇ

ˇ
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` sup
tPr0,τ s,zPZ

ˇ

ˇ

ˇ
λ̂pt, βT0 z; β0q ´ λpt, β

T
0 zq

ˇ

ˇ

ˇ

“ Opph
2
1 ` h

2
2 `

a

log n{pnh1h2qq,

which proves Theorem 3.6(ii).

3.10 Proofs of auxiliary lemmas

Proof of Lemma 3.1. To prove these results, we only need to verify (A.1) and

(A.2) in Lemma A.1 of Wang et al. (2010). Let

ξipt, β
Tz, βq “

?
nh1h2

hj1h
k
2

?
log n

!

ż τ

0

Khps´ t, β
T
pZipsq ´ zqqps´ tqjtβT pZipsq ´ zqukYipsqds

´E
”

ż τ

0

Khps´ t, β
T
pZipsq ´ zqqps´ tqjtβT pZipsq ´ zqukYipsqds

ı)

,

fpt,z,βqpViq “ ξipt, z, βq, Vi “ pXi, δi,ZipXiq, t P r0, τ sq
T , i “ 1, 2, ¨ ¨ ¨ , n.

By condition (C4) on the kernel function, we calculate that

1

n

n
ÿ

i“1

|fpt,z,βqpViq ´ fpt˚,z˚,β˚qpViq| ď cnap}β ´ β˚} ` }z´ z˚} ` |t´ t˚|q,

for some constant c and a. Thus, (A.1) in Wang et al. (2010) is satisfied.

We next verify that (A.2) in Wang et al. (2010) is satisfied. By Cauchy-Schwarz

inequality, we obtain

V arp
1

n

n
ÿ

i“1

ξipt, β
Tz, βqq ď h1´2j

1 h1´2k
2 plog nq´1E

”

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

ˆps´ tqjrβT pZipsq ´ zqskYipsqds
ı2

ď h1´2j
1 h1´2k

2 plog nq´1E
”

ż τ

0

K2
hps´ t, β

T
pZipsq ´ zqq

ˆps´ tq2jrβT pZipsq ´ zqs2kYipsqds
ı

.
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Furthermore, by Fubini’s theorem, we have

V arp
1

n

n
ÿ

i“1

ξipt, β
Tz, βqq ď h1´2j

1 h1´2k
2 plog nq´1

ż ż

r0,τ sˆUβ
k2
h1
ps´ tqk2

h2
pu´ βTzq

ˆps´ tq2jpu´ βTzq2kφβps, uqduds

ď plog nq´1

ż ż

r0,τ sˆUβ
k2
prqk2

pwqr2jw2k

ˆφβpt` h1r, β
Tz` h2wqdwdr

“ Opplog nq´1
q, (3.57)

holds uniformly for pt, z, βq P An, under conditions (C2) and (C4). Thus, given a

εn ą 0, by Chevbychev’s inequality and (3.57), we have

P
!
ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ξipt, β
Tz, βq

ˇ

ˇ

ˇ
ą

1

2
εn

)

ď 4ε´2
n V arp

1

n

n
ÿ

i“1

ξipt, β
Tz, βqq

ď cε´2
n plog nq´1

ă 1{2,

as n Ñ 8. Hence, (A.2) in Wang et al. (2010) is satisfied. Again, using (3.57), we

have

1

n2

n
ÿ

i“1

Erξ2
i pt, β

Tz, βqs “ V arp
1

n

n
ÿ

i“1

ξipt, β
Tz, βqq “ Oppplog nq´1

q.

Thus, given a sufficiently large M ą 0, by Markov’s inequality, we have

P
! 1

n2

n
ÿ

i“1

ξ2
i pt, β

Tz, βq ąMplog nq´1
)

ď
n´2

řn
i“1Erξ

2
i pt, β

Tz, βqs

Mplog nq´1
ď c

1

M
.

Hence,

1

n2

n
ÿ

i“1

ξ2
i pt, β

Tz, βq “ Oppplog nq´1
q.

Then, from Lemma (A.1) in Wang et al. (2010), we have, for j, k “ 0, 1, 2

P
!

sup
pt,z,βqPAn

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ξipt, β
Tz, βq

ˇ

ˇ

ˇ
ą

1

2
εn

)

ď c1n
2paε´2p

n expt´c2ε
2
n log nu

— 94 —



CHAPTER 3. ESTIMATION UNDER SINGLE-INDEX HAZARD MODEL

for some constants c1 and c2. As h1 Ñ 0, h2 Ñ 0 and n Ñ 8, by choosing a

sufficiently large εn, it follows that the right-hand side of the above formula tends to

zero. Therefore, we have

sup
pt,z,βqPAn

ˇ

ˇ

ˇ
Sjkpt, β

Tz; βq ´ ErSjkpt, β
Tz; βqs

ˇ

ˇ

ˇ
“ Opph

j
1h

k
2

a

log n{pnh1h2qq.

Proof of Lemma 3.2. By changing variables to r “ ps´tq{h1 and v “ pw´uq{h2,

we have, for j, k “ 0, 1, 2

ErSjkpt, u; βqs “

ż τ

0

E
”

ErKhps´ t, Upsq ´ uqps´ tq
j
pUpsq ´ uqkY psq|Upsqs

ı

ds

“

ż τ

0

ż

wPUβ
kh1ps´ tqkh2pw ´ uqps´ tq

j
pw ´ uqkErY psq|Upsq “ ws

ˆfβpwqdwds

“

ż τ´t
h1

´t
h1

ż

Ũβ
kprqkpvqph1rq

j
ph2vq

kφβpt` h1r, u` h2vqdvdr

“ φβpt, uqh
j
1h

k
2µjµk `

Bφβpt, uq

Bt
hj`1

1 hk2µj`1µk `
Bφβpt, uq

Bu
hj1h

k`1
2 µjµk`1

`Ophj1h
k
2ph

2
1 ` h

2
2qq,

with Ũβ “ tv : v “ pw ´ uq{h2, w P Uβu. The last equality holds by a second-

order Taylor expansion of φβpt` h1r, u` h2vq. Combining this with Lemma 3.1, we

complete the proof.

Proof of Lemma 3.3. Let

Sβnpt, zq “ n´1
n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸
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ˆ
`

1 ps´ tq{h1 βT pZipsq ´ zq{h2

˘

Yipsqds

and

¨

˝

T β00pt, zq

T β10pt, zq

T β01pt, zq

˛

‚“ n´1
n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

dNipsq.

By Lemma 3.2, we have

Sβnpt, zq “

¨

˚

˝

φpt, βTzq Bφpt,βT zq
Bt

h1µ2
Bφpt,βT zq
BpβT zqT

h2µ2

Bφpt,βT zq
Bt

h1µ2 φpt, βTzqµ2 0
Bφpt,βT zq
BpβT zq

h2µ2 0 φpt, βTzqµ2

˛

‹

‚

`Opcnq.

Using the matrix equality

tA` pAn ´Aqu´1
“ A´1

´A´1
pAn ´AqrIp `A´1

pAn ´Aqs´1A´1,

we have

Sβnpt, zq
´1

“ φpt, βTzq´1

¨

˝

1 0 0
0 1{µ2 0
0 0 1{µ2

˛

‚ (3.58)

`tφpt, βTzqµ2u
´1

¨

˚

˝

0 Bφpt,zq
Bt

h1
Bφpt,βT zq
BpβT zq

h2

Bφpt,zq
Bt

h1 0 0
Bφpt,βT zq
BpβT zq

h2 0 0

˛

‹

‚

`Opcnq.

Using dNipsq “ λ0ps, β
T
0 ZiqYipsqds` dMipsq, we have

¨

˝

T β00pt, zq

T β10pt, zq

T β01pt, zq

˛

‚

“ n´1
n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

Yipsqλ0ps, β
T
0 Zipsqqds

` n´1
n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

dMipsq.

(3.59)
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By the Taylor expansion of λ0ps, β
T
0 Zipsqq at pt, βT0 zq, we have

λ0ps, β
T
0 Zipsqq

“ λ0pt, β
T
0 zq ` λ10pt, β

T
0 zqps´ tq ` λ01pt, β

T
0 zqβT0 pZipsq ´ zq

`
1

2
ps´ t, βT0 pZipsq ´ zqqHpt, βT0 zqps´ t, βT0 pZipsq ´ zqqT

`Op|s´ t|3 ` |βT0 pZipsq ´ zq|3q

“ λ0pt, β
T
0 zq ` λ10pt, β

T
0 zqps´ tq ` λ01pt, β

T
0 zqβT pZipsq ´ zq

`
1

2
ps´ t, βT pZipsq ´ zqqHpt, βT0 zqps´ t, βT pZipsq ´ zqqT

`λ01pt, β
T
0 zqpβ0 ´ βq

T
pZipsq ´ zq `Rnps,Zipsq ´ zq, (3.60)

where Rnps,Zipsq ´ zq “ Op|s ´ t|3 ` |βT0 pZipsq ´ zqq|3 ` |βT pZipsq ´ zqq||Zipsq ´

zq||β0 ´ β| ` |Zipsq ´ zq|2|β0 ´ β|
2q. It is easy to see that

tnSβnpt, zqu
´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

tλ0pt, β
T
0 zq

` λ10pt, β
T
0 zqps´ tq ` λ01pt, β

T
0 zqβT pZipsq ´ zquYipsqds

“

¨

˝

λ0pt, β
T
0 zq

λ10pt, β
T
0 zqh1

λ01pt, β
T
0 zqh2

˛

‚.

(3.61)

By Lemma 3.2 and (3.58), we have

tnSβnpt, zqu
´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

ˆ λ01pt, β
T
0 zqpβ0 ´ βq

T
pZipsq ´ zqYipsqds

“

¨

˝

λ01pt, β
T
0 zqpβ ´ β0q

T rz´ ErY ptqZptq|Uptq“us
ErY ptq|Uptq“us

s

Op}β0 ´ β}h1q

Op}β0 ´ β}h2q

˛

‚`Op}β0 ´ β}cnq.

(3.62)
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Again, by Lemma 3.2 and (3.58), we have

tnSβnpt, zqu
´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

ps´ t, βT pZipsq ´ zqqHpt, βT0 zqps´ t, βT pZipsq ´ zqqTYipsqds

“

¨

˝

λ20pt, β
T
0 zqh2

1µ2 ` λ02pt, β
T
0 zqh2

2µ2

Oph3
1q `Oph1h

2
2q

Oph3
2q `Oph

2
1h2q

˛

‚`Opth1 ` h2ucnq

(3.63)

and

tnSβnpt, zqu
´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

Rnps,Zipsq ´ zqYipsqds

“ Oph3
1 ` h

3
2 ` h2}β0 ´ β} ` }β0 ´ β}

2
q.

(3.64)

Consider the noise term in (3.59). By (3.58), we have

tnSβnpt, zqu
´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

dMipsq

“ tnφβpt, β
Tzqu´1

n
ÿ

i“1

ż τ

0

Khps´ t, β
T
pZipsq ´ zqq

˜

1
ps´ tq{h1

βT pZipsq ´ zq{h2

¸

dMipsq

`Opcn
a

log n{pnh1h2qq.

(3.65)

Combining (3.59)-(3.65), we complete Lemma 3.3.

Proof of Lemma 3.4. Without confusion, denote

Bλ̂ps, βT0 Zipsqq

Bβ´1

“
Bλ̂ps, βTZipsq; βq

Bβ´1

ˇ

ˇ

ˇ

β“β0
.

By the definition of Miptq “ Niptq ´
şt

0
Yipsqλps, β

T
0 Zipsqqds, t P r0, τ s, which is a

martingale process with the filtration Ft,i and Ft “ _
n
i“1Ft,i, we have

1
?
n

B ˆ̀
npβ0q

Bβ´1

“
1
?
n

n
ÿ

i“1

”

ż τ

0

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq
dNipsq ´

ż τ

0

Bλ̂ps, βT0 Zipsqq

Bβ´1

Yipsqds
ı
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“
1
?
n

n
ÿ

i“1

ż τ

0

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq
dMipsq

´
1
?
n

n
ÿ

i“1

ż τ

0

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq
tλ̂ps, βT0 Zipsqq ´ λps, β

T
0 ZipsqquYipsqds

“ Rn,1 ´Rn,2. (3.66)

Note that Bλ̂ps, βT0 Zipsqq{Bβ´1 and λ̂ps, βT0 Zipsqq, s P r0, τ s in Rn,1 use all obser-

vational information and leads to unpredictability. Instead, we apply Theorem 4 in

Mammen and Nielsen (2007) to address the problem. Toward this end, define

f̄
pnq
i psq “

1
?
n

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq
,

f̃
pnq
i psq “

1
?
n

JT pβ0
´1q

”

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ı λ01ps, U0iq

λps, U0ipsqq
,

and

f
˚,pnq
i psq “

1
?
n

Bλ̂r´isps, βT0 Zipsqq{Bβ´1

λ̂r´isps, βT0 Zipsqq
, f

˚˚,pnq
i,j psq “

1
?
n

Bλ̂r´i,jsps, βT0 Zipsqq{Bβ´1

λ̂r´i,jsps, βT0 Zipsqq
,

where λ̂r´isp¨, ¨q and λ̂r´i,jsp¨, ¨q are the leave-one-out and leave-two-out versions of

λ̂p¨, ¨q, respectively. Let h
pnq
i psq “ f

˚,pnq
i psq´ f̃

pnq
i psq and h

pnq
i,j psq “ f

˚˚,pnq
i,j psq´ f̃

pnq
i psq.

According to Theorem 4 in Mammen and Nielsen (2007), we need to calculate the

orders of
řn
i“1

şτ

0
pf̄
pnq
i psq ´ f

˚,pnq
i psqqdMipsq,

řn
i“1 ρ

2
i and

řn
i“1 %

2
i , where

ρi “
”

E

ż τ

0

th
pnq
i psqu

2λps, βT0 ZipsqqYids
ı1{2

,

%i “ max
1ďjďn

”

E

ż τ

0

th
pnq
i psq ´ h

pnq
i,j psqu

2λps, βT0 ZipsqqYids
ı1{2

.

Next, we consider these three approximate error. It follows from conditions (C1)
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and (C4) that, j, k “ 0, 1, 2,

sup
sPr0,τ s,uPUβ ,
}β´β0}ďcn´1{2

|Sjkpt, u; βq ´ S
r´is
jk pt, u; βq| “ Opppnh1h2q

´1
q,

sup
sPr0,τ s,uPUβ ,
}β´β0}ďcn´1{2

|Tjkpt, u; βq ´ T
r´is
jk pt, u; βq| “ Opppnh1h2q

´1
q,

uniformly for i “ 1, ¨ ¨ ¨ , n. Thus, it is easy to show that

sup
sPr0,τ s,uPUβ ,
}β´β0}ďcn´1{2

ˇ

ˇ

ˇ
λ̂ps, uq ´ λ̂r´isps, uq

ˇ

ˇ

ˇ
“ Opppnh1h2q

´1
q.

This leads to

sup
sPr0,τ s

ˇ

ˇ

ˇ
f̄
pnq
i psq ´ f

˚,pnq
i psq

ˇ

ˇ

ˇ
“ Oppn

´1{2
pnh1h2q

´1
q. (3.67)

Thought
şt
pf̄
pnq
i psq´f

˚,pnq
i psqqdMipsq, t P r0, τ s, may be not a martingale process with

the filtration Ft,i, it is a Lebesgue-Stieltjes integration. Then, by the law of large

numbers, we obtain that

n
ÿ

i“1

ż τ

0

pf̄
pnq
i psq ´ f

˚,pnq
i psqqdMipsq “ nOppn

´1{2
pnh1h2q

´1
q

“ Opppn
1{2h1h2q

´1
q. (3.68)

Secondly, consider
řn
i“1 ρ

2
i . Combining Proposition 3.3 and Exp. (3.67), we have

th
pnq
i psqu

2
“ rtf

˚,pnq
i psq ´ f̄

pnq
i psqu ` tf̄

pnq
i psq ´ f̃

pnq
i psqus2

ď 2tf
˚,pnq
i psq ´ f̄

pnq
i psqu2 ` 2tf̄

pnq
i psq ´ f̃

pnq
i psqu2

ď cn´1
rpnh1h2q

´2
` ph2

1 ` h
2
2 ` h

´1
2

a

log n{pnh1h2qq
2
s.

Thus, we have

n
ÿ

i“1

ρ2
i “ Opppnh1h2q

´2
` ph2

1 ` h
2
2 ` h

´1
2

a

log n{pnh1h2qq
2
q. (3.69)
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Finally, consider
řn
i“1 %

2
i . By similar arguments of Exp. (3.67), we obtain that

max
1ďjďn

th
pnq
i psq ´ h

pnq
i,j psqu

2
“ max

1ďjďn
tf
˚,pnq
i psq ´ f

˚˚,pnq
i,j psqu2 “ Oppn

´1
pnh1h2q

´2
q.

Thus, we have

n
ÿ

i“1

%2
i “ Opppnh1h2q

´2
q. (3.70)

Combining (3.68), (3.69) and (3.70), Theorem 4 in Mammen and Nielsen (2007)

implies that

Rn,1 ´
1
?
n

JT pβ0
´1q

n
ÿ

i“1

ż τ

0

”

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ıλ01ps, U0ipsqq

λps, U0ipsqq
dMipsq

“ OP

´

n
ÿ

i“1

ż τ

0

pf̄
pnq
i psq ´ f

˚,pnq
i psqqdMipsq ` t

n
ÿ

i“1

ρ2
i u

1{2
` t

n
ÿ

i“1

%2
i u

1{2
¯

“ Opppn
1{2h1h2q

´1
q `Opppnh1h2q

´1
` h2

1 ` h
2
2 ` h

´1
2

a

log n{pnh1h2qq `Opppnh1h2q
´1
q.

Thus, as h1 Ñ 0, h2 Ñ 0, nÑ 8, nh1h
3
2{ log nÑ 8 and nh2

1h
2
2 Ñ 8, we have

Rn,1 “
1
?
n

JT pβ0
´1q

n
ÿ

i“1

ż τ

0

”

Zipsq ´
ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ıλ01ps, U0ipsqq

λps, U0ipsqq
dMipsq

`opp1q. (3.71)

For the term Rn,2, by the proof of Proposition 3.3, we have

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq
“

λ01ps, U0ipsqq

λps, U0ipsqq
rZipsq ´

ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ı

`Opph
2
1 ` h

2
2 ` h

´1
2

a

log n{pnh1h2qq,

uniformly for s P r0, τ s and i “ 1, ¨ ¨ ¨ , n. Note that the order h´1
2

a

log n{pnh1h2q of

above expression is based on (3.39), which is a martingale integral. By similar proofs
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of Rn,1 with respective to unpredictability, we obtain

Rn,2 “ Oppcnq
1
?
n

n
ÿ

i“1

ż τ

0

λ01ps, U0ipsqq

λps, U0ipsqq
rZi ´

ErY psqZpsq|U0ipsqs

ErY psq|U0ipsqs

ı

Yipsqds

`
?
nOppcnqOpph

2
1 ` h

2
2q `OppcnqOpph

´1
2

a

log n{pnh1h2qq

“ opp1q,

if nh8
1 Ñ 0 and nh8

2 Ñ 0. This together with (3.71) proves this lemma.

Proof of Lemma 3.5. By the definition of Miptq “ Niptq´
şt

0
Yipsqλps, β

T
0 Zipsqqds,

t P r0, τ s, simple algebra gives that

1

n

B2 ˆ̀
npβ0q

Bβ´1BβT´1

“
1

n

n
ÿ

i“1

ż τ

0

”

B2λ̂ps, βT0 Zipsqq{Bβ´1Bβ
T
´1

λ̂ps, βT0 Zipsqq
´

´

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq

¯b2ı

dNipsq

´
1

n

n
ÿ

i“1

ż τ

0

B2λ̂ps, βT0 Zipsqq

Bβ´1BβT´1

Yipsqds

“ ´
1

n

n
ÿ

i“1

ż τ

0

´

Bλ̂ps, βT0 Zipsqq{Bβ´1

λ̂ps, βT0 Zipsqq

¯b2

dNipsq

`
1

n

n
ÿ

i“1

ż τ

0

B2λ̂ps, βT0 Zipsqq

Bβ´1BβT´1

” 1

λ̂ps, βT0 Zipsqq
´

1

λps, βT0 Zipsqq

ı

dMipsq

“ En,1 ` En,2.

Clearly, Proposition 3.3 implies that

sup
sPr0,τ s,ZpsqPZ

›

›

›

Bλ̂ps, βT0 Zpsqq{Bβ´1

λ̂ps, βT0 Zpsqq
´JT pβ0

´1q

”

Zpsq´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

ıλ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq

›

›

›
“ opp1q.

Thus, by the martingale central limit theorem and the law of large numbers, we have

En,1 “ ´
1

n

n
ÿ

i“1

ż τ

0

”

JT pβ0
´1q

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)λ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq

ıb2

dNipsq ` opp1q
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“ ´
1

n

n
ÿ

i“1

ż τ

0

”

JT pβ0
´1q

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)λ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq

ıb2

dMipsq

´
1

n

n
ÿ

i“1

ż τ

0

”

JT pβ0
´1q

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)λ01ps, β
T
0 Zpsqq

λps, βT0 Zpsqq

ıb2

λps, βT0 ZiqYipsqds` opp1q

“ ´JT pβ0
´1qE

”

ż τ

0

!

Zpsq ´
ErY psqZpsq|βT0 Zpsqs

ErY psq|βT0 Zpsqs

)b2λ2
01ps, β

T
0 Zpsqq

λps, βT0 Zpsqq
Y psqds

ı

Jpβ0
´1q ` opp1q. (3.72)

Under the regular conditions, it can be shown that
λ̂ps,βT0 Zipsqq

Bβ´1BβT´1
“ Opp1q. This together

with Proposition 3.3 yields

ξps, βT0 Zipsqq “
B2λ̂ps, βT0 Zipsqq

Bβ´1BβT´1

” 1

λ̂ps, βT0 Zipsqq
´

1

λps, βT0 Zipsqq

ı

“ opp1q.

Therefore, even thought ξps, βT0 Zipsqq may be not a predictable process with the

filtration Ft,i, we have

En,2 “
1

n

n
ÿ

i“1

ż τ

0

ξps, βT0 ZipsqqrdNipsq ` Yipsqdss “ opp1q, (3.73)

by the law of large numbers. Combining (3.72) with (3.73), Lemma 3.5 is proved.
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Part II

for the Alzheimer’s Disease Neuroimaging Initiative∗

∗Data used in preparation of this part were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can be found at: http:

//adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Chapter 4

Multiple Testing of Genetic

Association with Longitudinal

Phenotypes for Large-Scale ADNI

GWAS

4.1 Introduction

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal study

uniting transdisciplinary research fields to investigate the progression of Alzheimer’s

Disease (AD) for better clinical prevention and treatment. One key aim of the

ADNI is to provide researchers the combined genetics and clinical data to help in-

vestigate mechanisms of Alzheimer’s disease. It has been extended once and again,

and currently composes of ADNI 1 (launched in 2003 and lasted 5 years), ADNI

GO (launched in 2009 and lasted 2 years), ADNI 2 (launched in 2011 and lasted 5

years), and ADNI 3 (launched in 2016 and will last 5 years), generating genotyping

and sequencing data including ANDI 1 GWAS and ADNI GO/2 GWAS, and ADNI

WGS, refer to the webpage, http://adni.loni.usc.edu/about/.

Phenotypes such as disease-progression or severity used to be longitudinally col-

lected at multiple time points in the ADNI GWAS, and can not be analyzed through

traditional association studies for cross-sectional phenotypic data observed at a single
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time point in most existing GWAS. This raises the challenge to identify the associ-

ation between Single Nucleotide Polymorphisms (SNPs) level genetic variants and

repeatedly measured human phenotypes (He et al. (2015) and Visscher et al. (2017)).

In this chapter, we aim to provide practical strategies and detailed procedures to test

the association between a random trajectory of longitudinal phenotype outcomes and

SNP-level genotypes from the perspective of functional data analysis. This is in the

sense that we model the AD-related phenotype response observed on irregular time

points as sparse functional data, and detect functional genotype effects while con-

trolling the confounding effects of environmental covariates (Ramsay and Silverman

(2005) and Yao et al. (2005)). The question turns to test if the mean phenotype

trajectories differ across different genotypes.

Within the ADNI 1 GWAS, the real problem is to make multiple comparison

H0 : θ1 “ θ2 “ θ3, vs H1 : not all θi’s are equal, (4.1)

where θ1is represent the functional genotype effects of three genetic groups accord-

ing to genetic traits on the longitudinal phenotypes. In the ADNI cohort, a SNP

is disease-related if θ1is are different across the genotypes defined by a SNP. Such

hypothesis testing problems widely exist in many non-GWAS settings, e.g. longitu-

dinal AIDS clinical trial data Li (2011), and therefore is worth investigating in its

own right.

There is a large volume of recent literature on methods and applications of func-

tional linear models and functional analysis of variance (fANOVA) under various

designs (Brumback and Rice, 1998; Morris and Carroll, 2006; Zhang and Chen, 2007;

Zhou et al., 2010; Li et al., 2015; Xu et al., 2018). For the fANOVA test (4.1) and

analog, existing work mainly considers dense functional data with Gaussian-type

responses, where observations on each curve are made on a dense grid. A compre-

hensive account of fANOVA methods for dense functional data and Gaussian-type

— 106 —



CHAPTER 4. MULTIPLE COMPARISONS I FOR LONGITUDINAL ADNI GWAS

responses is provided in the monograph of Zhang (2013). Reimherr and Nicolae

(2014) and Huang et al. (2017) also applied similar test procedures in genetic stud-

ies. This brings out two concerns. One is that their test statistics were based on the

integrated square error rather than the likelihood, and hence are not applicable to

data with non-Gaussian type response; The other is that the available asymptotic

theories were developed for dense functional data, which lead to χ2 mixture limit-

ing distributions for the test statistics, and are not applicable to sparse longitudinal

data. The nonparametric test of Tang et al. (2016) is remedial for such longitudinal

GWAS test by applying the working-independent estimation to build the generalized

likelihood ratio (GQLR) test within a semiparametric partially generalized linear re-

gression model (Lin and Carroll, 2001).

One will encounter two major challenges when applying the GQLR test to multi-

ple hypotheses testing in large-scale longitudinal GWAS data. One is the computa-

tional infeasibility to run bootstrap for hundreds of thousands of SNPs. The other is

that it requires a gigantic bootstrap sample to reach genome-wide significance levels

10´7 (Fadista et al., 2016; Huang et al., 2017). Notice that GQLR enjoys a property

called the Wilks phenomenon (Fan et al., 2001), meaning that the null distribution of

the test statistic does not depend on the unknown model parameters. We therefore

suggest to select a small number of SNPs randomly and to fit a χ2 distribution to

the bootstrap sample using maximum likelihood estimation and use the fitted χ2 dis-

tribution to determine the p-values for all SNPs. Meanwhile, within a quite general

semiparametric generalized linear model, we present the complete F-test procedure

based on the description of Zhang (2013) for the large-scale longitudinal test.

In the remainder of this chapter, we model the longitudinal phenotype data by

a class of generalized functional concurrent linear models, where the responses are

allowed to be either Gaussian or non-Gaussian. Then for a general hypothesis state-

ment that incorporates the multiple treatment test in (4.1), we provide two test pro-

— 107 —



CHAPTER 4. MULTIPLE COMPARISONS I FOR LONGITUDINAL ADNI GWAS

cedures and apply to the large-scale longitudinal ADNI data, where the responses

are Alzheimer related phenotypes modeled as sparse functional data. Data used in

the preparation of this and next chapters were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partner-

ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early AD. Simulation at the real data set is conducted to

assess the performances of the two tests.

4.2 Functional Modeling of Longitudinal Pheno-

type Data and Estimation Procedure

4.2.1 Model and Hypotheses

Let Yiptq be the phenotype of the ith subject observed at time t P T , i “ 1, . . . , n,

where T is a closed time interval, XXX iptq is a p-dim subject-specific covariate vector

representing environmental confounders, and Zi is a time-variant q-dim genetic pre-

dictor. Suppose that E tYiptq|Zi,XXX ipsq, s P T u “ E tYiptq|Zi,XXX iptqu “ µiptq (Pepe

and Couper, 1997). We propose a generalized functional concurrent linear model

gtµiptqu “XXXT
i ptqβββ ` ZT

i θθθptq, (4.2)

where gp¨q is a known monotonic and differentiable link function, βββ is a p-vector of

unknown coefficients representing environmental effects and θθθptq ” pθ1, . . . , θqq
T “

pθ1ptq, . . . , θqptqq
T is a vector of unknown smooth functions representing the genotype

effect. The parameter βββ is merely used to control the confounding effect of the envi-

ronment covariates, and the primary interest is to make inference on the functional

genotype effects θθθ. When Z is vector of group indicators, model (4.2) reduces to
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the functional analysis of covariance (fANCOVA) model (Zhang, 2013; Tang et al.,

2016) since the treatment effect for genotype k is represented by a nonparametric

function θkptq. In semiparametric regression literature, model (4.2) is also referred

to as a generalized partially linear varying coefficient model. We are interested in

testing the following general hypotheses

H0 : CCCθθθptq “ cccptq vs. H1 : CCCθθθptq ‰ cccptq, (4.3)

where CCC is r ˆ q matrix of linear contrasts, cccptq is an r-dim function, and r “

rankpCCCq ď q. Hypotheses (4.3) reduce to

H0 : θ1ptq “ ¨ ¨ ¨ “ θqptq, vs H1 : not all θk’s are equal, (4.4)

in Tang et al. (2016) when CCC is an identity matrix and cccptq “ 0.

In the ADNI, some of the most important Alzheimer-related phenotypes include

the hippocampal volume, the decay of which is known to be related to memory loss

(Schuff et al., 2009), and the Rey Auditory Verbal Learning Test (RAVLT) score;

some environmental covariates include age, sex, education, marital status, etc.; and

a genetic predictor can be the genotypes defined by a SNP, which is AA, AB or BB

defined by the two alleles. To include the effects of one SNP in model (4.2), Zi is a

3-dim vector of indicators for the three genotypes. The practical hypotheses (4.1) is

a special case of (4.4) for q “ 3 and a special case of (4.3) with θθθptq “ pθ1, θ2, θ3q
Tptq.

Although model (4.2) is defined in continuum, observations on Yiptq andXXX iptq are,

in practice, made on discrete and subject-specific time points. Let TTT i “ pTi1, ¨ ¨ ¨ , Timiq
T

be the random observation time points for subject i in genotype k, where mi is the

number of repeated measurements. Denote YYY i “ pYi1, ¨ ¨ ¨ , Yimiq
T, µi “ pµi1, ¨ ¨ ¨ , µimiq

T,

XXX i “ pXXX i1, ¨ ¨ ¨ ,XXX imiq
T, where Yij “ YipTijq, µij “ µipTijq and XXX ij “ XXX ipTijq. We

assume the conditional covariance of Yiptq is a bivariate positive semidefinite function

Rpt1, t2q “ cov tYipt1q, Yipt2q|XXX ipsq, s P T u , for any t1, t2 P T . (4.5)
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The covariance structure is assumed to be the same across subjects. Let ΣΣΣi “

covpYYY i | XXX i,TTT iq “ tRpTij, Tij1qumij,j1“1 be the subject-specific covariance matrices.

Since the true covariance function R is unknown, the covariance model Vpt1, t2q

adopted in data analysis is commonly referred to as a “working” covariance, which

is subject to misspecification. Historically, a working covariance model is usually

assumed to be member of a parametric family, such as the Matérn family. Let

VVV i “ tVpTij, Tij1qumij,j1“1 be the “working” covariance matrix for subject pk, iq, which

is the interpolation of the continuous covariance function V on the subject-specific

time points. The simplest working covariance is the working independence (WI), i.e.

VVV i “ IIImi . It is known that misspecified working covariance can still lead to consistent

estimators, although such estimators are not semiparametric efficient (Wang et al.,

2005).

We refer to the model under the null hypothesis in (4.3) as the reduced model and

that under the alternative hypothesis as the full model. Denote pβββR and pθθθRptq as the

estimators under the reduced model and pβββF and pθθθF ptq as the estimators under the

full model. Our estimation procedures under both models are based on profile-kernel

estimating equations.

4.2.2 Estimation Under the Full Model

We first consider estimation under the full model. By Taylor’s expansion, for any Tij

in a neighborhood h of t, θθθpTijq can be approximated locally by a linear polynomial

θθθpTijq « θθθptq ` θθθ1ptqpTij ´ tq “ ααα0 `ααα1pTij ´ tq{h.

Let Kp¨q be a symmetric probability density function and denote Khptq “ h´1Kpt{hq

where h is the bandwidth. Put Ti “ pTTT i ´ tq{h, UUU ijptq “ tZ
T
i ,Z

T
i pTij ´ tq{huT, and

UUU iptq “ tUUU i1ptq, . . . ,UUU imiptqu
T “ p111ZT

i ,TiZT
i q. For a given βββ, θθθptq is estimated by
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solving the following local linear estimating equation regarding ααα “ pαααT
0 ,ααα

T
1 q

T,

n
ÿ

i“1

UUU iptq
T∆iptqW´1

i KKKhpTTT i ´ tqtYYY i ´ µiptqu “ 0, (4.6)

where KKKhpTTT i ´ tq “ diagtKhpTij ´ tqumij“1, µiptq “ pµi1, . . . , µimiq
Tptq, µijptq “

g´1tXXXT
ijβββ`UUU

T
ijptqαααu, ∆iptq “ diagtµ

p1q
ij ptqu

mi
j“1, µ

p1q
k,ijptq is the first derivative of µp¨q “

g´1p¨q evaluated at XXXT
ijβββ `UUU

T
ijptqααα, and Wi is a weight matrix to be specified below.

The local linear estimator is given by pθθθF pt;βββq “ pααα0, where ppαααT
0 , pααα

T
1 q

T is the solution

of (4.6). Then pβββF is obtained by solving

000 “
n
ÿ

i“1

"

XXXT
i `

q
ÿ

k“1

Zik
Bpθk,F pTTT i;βββq

Bβββ

*

∆ipTTT iqW´1
i rYYY i ´ g

´1
tXXX iβββ ` pθθθ

T

F pTTT i;βββqZius.(4.7)

At convergence of the algorithm described above, the nonparametric estimator needs

a final update as pθθθF ptq “ pθθθF pt, pβββF q.

As shown by Lin and Carroll (2001), the most efficient estimators within the

class defined by (4.6) are obtained by setting Wi “ diagtωpµijqu
mi
j“1 where ωp¨q is a

working variance function. Similar kernel estimators are widely used in longitudinal

and functional data analysis, see Fan and Li (2004); Yao et al. (2005); Hall et al.

(2006); Li and Hsing (2010). The working variance function ωp¨q can be replaced by

a nonparametric variance estimator described in Section 4.4.

Under the special case of identical link, gpxq “ x, the solution of (4.6) is

pααα “

#

n
ÿ

i“1

UUU iptq
TW´1

i UUU iptq

+´1 # n
ÿ

i“1

UUU iptq
TW´1

i pYYY i ´XXX iβββq

+

,

then

pθθθpt,βββq “ pIII,000q

#

n
ÿ

i“1

UUU iptq
TW´1

i UUU iptq

+´1 # n
ÿ

i“1

UUU iptq
TW´1

i pYYY i ´XXX iβββq

+

,
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Bpθθθ

BβββT
pt,βββq “ ´pIII,000q

#

n
ÿ

i“1

UUU iptq
TW´1

i UUU iptq

+´1 # n
ÿ

i“1

UUU iptq
TW´1

i XXX i

+

.

Define rXXX i “ p
rXXX i1, . . . , rXXX imiq

T and rYYY i “ prYi1, . . . , rYimiq
T, where

rXXX
T

ij “ XXXT
ij ` ZT

i

Bpθθθ

BβββT
pTij,βββq

“ XXXT
ij ´ pZ

T
i ,000q

#

n
ÿ

i1“1

UUU i1pTijq
TW´1

i1 UUU i1pTijq

+´1 # n
ÿ

i1“1

UUUT
i1 pTijqW´1

i1 XXX i1

+

,

rYij “ Yij ´ pZ
T
i ,000q

#

n
ÿ

i1“1

UUU i1pTijq
TW´1

i1 UUU i1pTijq

+´1 # n
ÿ

i1“1

UUUT
i1 pTijqW´1

i1 YYY i1

+

.

The solution of (4.7) is

pβββF “

˜

n
ÿ

i“1

rXXX
T

i W´1
i

rXXX i

¸´1 ˜ n
ÿ

i“1

rXXX
T

i W´1
i

rYYY i

¸

.

4.2.3 Estimation Under the Reduced Model

We now consider estimation under the reduced model. We first partition the contrast

matrix CCC in (4.3) into CCC “ pCCC1,CCC2q, where CCC1 is rˆpq´rq and CCC2 is rˆr. Partition

θθθ accordingly into pθθθT
1 , θθθ

T
2 q

T, where dimpθθθ2q “ r. Without loss of generality, suppose

CCC2 is full rank, then under the null hypothesis CCCθθθptq “ cccptq,

θθθ1ptq “ CCC´1
1 tcccptq ´CCC2θθθ2ptqu.

By a simple reparameterization, let ϑϑϑptq “ θθθ2ptq, then θθθptq “ ccc˚ptq `DDDϑϑϑptq, where

ccc˚ptq “

ˆ

CCC´1
1 cccptq

000

˙

, DDD “

ˆ

´CCC´1
1 CCC2

III

˙

.

For a given βββ, the profile local linear estimator for ϑϑϑptq is given by pϑϑϑpt,βββq “ paaa0,
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where paaa “ ppaaa0,paaa1q
T is the solution of

n
ÿ

i“1

Uiptq
T∆iptqW´1

i KKKhpTTT i ´ tqtYYY i ´ µiptqu “ 0, (4.8)

Uiptq “ tUi1ptq, . . . ,Uimiptqu, µiptq “ pµi1, . . . , µimiq
Tptq, Uijptq “ tZ

T
i DDD,Z

T
i DDDpTij ´

tq{huT, µijptq “ g´1tXXXT
ijβββ `Ziccc

˚ptq `U T
ij ptqaaau, ∆iptq “ diagtµ

p1q
ij ptqu

mi
j“1, and µ

p1q
k,ijptq

is the first derivative of µp¨q “ g´1p¨q evaluated at XXXT
ijβββ ` Ziccc

˚ptq `U T
ij ptqaaa.

Denote Zi “ DDDTZi “ pZi1, . . .Zi,q´rq
T and ϑϑϑptq “ pϑ1, . . . , ϑq´rq

Tptq. The re-

duced model estimator pβββR is obtained by solving

000 “
n
ÿ

i“1

"

XXXT
i `

q´r
ÿ

j“1

Zij
BpϑjpTTT i;βββq

Bβββ

*

∆ipTTT iqW´1
i

ˆrYYY i ´ g
´1
tXXX iβββ ` Ziccc

˚
ptq `Z T

i
pϑϑϑpTTT i;βββqus. (4.9)

At convergence, the nonparametric estimator is updated as pθθθRptq “ ccc˚ptq`DDDpϑϑϑpt, pβββRq.

4.3 Two Testing Procedures on Genotype Effects

We now direct our focus back to testing the hypotheses in (4.3) and we will discuss

two test procedures the Generalized Quasi-Likelihood Ratio (GQLR) test and the

functional F -test.

4.3.1 Generalized Quasi-Likelihood Ratio Test

For model (4.2) and longitudinal data set in the chapter, the quasi-likelihood function

Q satisfies

BQpµ,YYY q
Bµ

“ VVV pµq´1
pYYY ´ µq, (4.10)
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where YYY is an m-vector of response within a subject, µ “ g´1tXXXβββ ` θθθT
pTTT qZu is the

conditional mean vector and VVV pµq is a working covariance matrix not necessarily the

same as the true covariance ΣΣΣpµq.

The quasi-likelihood of the data is

`pθθθ,βββq “
n
ÿ

i“1

Qrg´1
tXXX iβββ ` θθθ

T
pTTT iqZiu,YYY is. (4.11)

The GQLR test statistic under the model (4.2) is defined as the difference of the

quasi-likelihoods under the full and reduced models

λnpH0q “ `ppθθθF , pβββF q ´ `p
pθθθR, pβββRq. (4.12)

The GQLR test statistic λnpH0q in (4.12) meets the result of Wilks phenomenon

if a working independence covariance model is used in both estimation and hypoth-

esis testing and if the true covariance function of the functional response is used

guaranteed by Theorem 1 in Tang et al. (2016). Therefore the distribution of λnpH0q

does not depend on βββ0, θ0ptq or the true correlation structure Rpτττq, making it easy

to assess the approximating distribution of λnpH0q.

4.3.2 Functional F -Test

Zhang and Chen (2007) and Zhang (2013) (Chapter 6) proposed a functional F -test

for hypothesis (4.3), however their test was developed fore Gaussian response under

dense functional data setting and without covariates. We now extend their procedure

into our setting with the link function gp¨q restricted to be an identity link.

Define sum of squares

SSHnptq “

"

CCCpθθθptq ´ cccptq

*T"

CCCpZTZq´1CCCT

*´1"

CCCpθθθptq ´ cccptq

*

,
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where Z “ pZ1, . . . ,Znq
T. The F test statistic is defined as

F “

ş

SSHnptqdt{r
ş

pRpt, tqdt
, (4.13)

where pRpt, tq is an estimator of the variance function. For dense functional data,

pRpt, tq is expressed as mean square error in Zhang (2013). For sparse functional data,

the covariance function need to be estimated using methods described in Section 4.4.

According to Zhang (2013) (page 217),

F „ Frpκ,pn´p´qqpκ approximately, (4.14)

where pκ “ tr2p pRq
trp pRb2q

and pR is an estimator of the covariance function (4.5). When the

covariance function yields a spectral decomposition pRps, tq “
ř8

k“1 pωk
pψkpsq pψkptq,

where t pψkptq, k “ 1, 2, . . .u are orthonormal eigenfunctions, then

trp pRq “
ÿ

k

pωk, trp pRb2
q “

ÿ

k

pω2
k.

The approximating distribution (4.14) were developed under dense functional data

and was never previously tested on longitudinal or sparse functional data. This

approximation also suggest that the F -test does not enjoy the Wilks phenomenon

that its null distribution does depend on nuisance parameters such as the eigenvalues

of the covariance function.

4.4 Nonparametric Covariance Estimation

In this section, we will focus on the nonparametric covariance models advocated by

Yao et al. (2005); Li and Hsing (2010). For the rest of this section, we will focus on

the case gp¨q is an identical link, let εiptq “ Yiptq ´ tXXX iptq
Tβ ` ZT

i θθθptqu be the error

process.
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We model Rpt1, t2q as a bivariate nonparametric function, which is smooth ex-

cept for the points on the diagonal line, tt1 “ t2u, to allow possible nugget effects.

To see this point, we assume that εiptq can be decomposed into two independent

components, εiptq “ εi0ptq ` εi1ptq, where εi0p¨q is a longitudinal process with smooth

covariance function R0pt1, t2q, εi1p¨q is a white noise process usually caused by mea-

surement errors. Let σ2
1ptq “ vartεi1ptqu, then

Rpt1, t2q “ R0pt1, t2q ` σ
2
1pt1qIpt1 “ t2q, (4.15)

where Ip¨q is an indicator function. In equation (4.15), σ2
1p¨q is the nugget effect

causing discontinuity in Rp¨, ¨q. We assume that both R0p¨, ¨q and σ2
1p¨q are smooth

functions. As a result, Rpt1, t2q is a smooth surface except on the diagonal points

where t1 “ t2, and it is also smooth along the diagonal direction. For time series data,

without additional assumptions, some confounding will occur if both the mean and

covariance functions are modeled nonparametrically. However, this identifiability

issue will not occur for longitudinal data, because of the independence structure

between subjects.

Let pεij “ Yij ´tXXX
T
ij
pβββ `ZT

i
pθθθpTijqu be the residual of the full model in Section 4.2.

The variance function is estimated applying a smoother to the squares of residuals.

Let pβββ and pθθθptq be the full model estimators described in Section 4.2, and define the

residuals as pεij “ Yij´XXX
T
ij
pβ´Zi

pθθθpTijq. Then σ2ptq can be estimated by a local linear

estimator pσ2ptq “ pα0, where ppα0, pα1q minimizes

1

N

n
ÿ

i“1

mi
ÿ

j“1

tpε2ij ´ α0 ´ α1pTij ´ tqu
2KhpTij ´ tq, (4.16)

and Kp¨q and h are the kernel function and bandwidth. Suppose R has a decompo-

sition as in (4.15); we first estimate the smooth part R0 using a bivariate local linear
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smoother. Let pR0pt1, t2q “ pα0, where ppα0, pα1, pα2q minimizes

1

n

n
ÿ

i“1

mi
ÿ

j“1

ÿ

j1‰j

"

pεijpεij1 ´ α0 ´ α1pTij ´ t1q ´ a2pTij1 ´ t2q

*2

ˆKhpTij ´ t1qKhpTij1 ´ t2q. (4.17)

Define NR “
řn
i“1mipmi ´ 1q,

Spq “
1

NR

n
ÿ

i“1

mi
ÿ

j“1

ÿ

j1‰j

ˆ

Tij ´ t1
h

˙pˆ
Tij1 ´ t2

h

˙q

KhpTij ´ t1qKhpTij1 ´ t2q,

Rpq “
1

NR

n
ÿ

i“1

mi
ÿ

j“1

ÿ

j1‰j

pεijpεik

ˆ

Tij ´ t1
h

˙pˆ
Tij1 ´ t2

h

˙q

ˆKhpTij ´ t1qKhpTij1 ´ t2q.

Then the following solution for (4.17) is given in Hall et al. (2006):

pR0ps, tq “ pA1R00 ´A2R10 ´A3R01qB´1, (4.18)

where A1 “ S20S02´ S
2
11, A2 “ S10S02´ S01S11, A3 “ S01S20´ S10S11, B “ A1S00´

A2S10 ´A3S01.

As described above, the diagonal values on Rp¨, ¨q require a special treatment.

The variance function can be written as σ2ptq “ R0pt, tq ` σ2
1ptq, and be estimated

by the local linear smoother in (4.16).

The covariance function is estimated by

pRps, tq “ pR0ps, tqIps ‰ tq ` pσ2
ptqIps “ tq. (4.19)

Li and Hsing (2010) and Li (2011) proved that nonparametric covariance function

estimator in (4.19) is uniformly consistent to the true covariance function

sup
s,tPT

| pRps, tq ´Rps, tq| “ Op

„

h2
` tlog n{pnh2

qu
1{2



.
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The detailed convergence rate for the nonparametric covariance estimator can be

found in Li (2011). However, as noted in previous literature (Hall et al., 1994; Li et

al., 2007), the kernel covariance estimator in (4.19) is not guaranteed to be positive

semi-definite, and therefore some adjustment is needed to enforce the condition. One

possible adjustment is though a spectral decomposition of the covariance estimator.

A commonly used spectral decomposition of the covariance functions for longitu-

dinal data is (Yao et al., 2005; Hall et al., 2006)

R0ps, tq “
8
ÿ

k“1

ωkψkpsqψkptq,

where ω1 ě ω2 ě ¨ ¨ ¨ ě 0 are the eigenvalues of the covariance function, and ψkptq

are the corresponding eigenfunctions with
ş

T ψkptqψk1ptqdt “ Ipk “ k1q.

An adjustment procedure has been proposed and theoretically justified by Hall

et al. (2008) to transform pR0 into a valid covariance function. We take a spectral

decomposition of pR0 and truncate the negative components. Letting pωk and pψkp¨q,

k “ 1, 2, . . ., be the eigenvalues and eigenfunctions of pR0, and Kn “ maxtk; pωk ą 0u,

then the adjusted estimator for R is

rR0ps, tq “
řKn
k“1 pωk

pψkpsq pψkptq,

rRps, tq “ rR0ps, tqIps ‰ tq ` pσ2
ptqIps “ tq. (4.20)

4.5 Analysis of Longitudinal GWAS Data from

ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an NIH-funded longitu-

dinal observational study, the goal of which is to develop biomarkers to detect and

track Alzheimer’s Disease (AD). The original ADNI cohort included a total of 800

subjects, many of whom has repeated measurements on AD related biomarkers, such
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as the hippocampal volume (HV) and Rey Auditory Verbal Learning Tests (RAVLT),

over 10 years of followups. The HV is a Gaussian-type continuous variable, which

can be modeled by Model (4.2) with an identity link; in contrast, the RAVLT data

are non-Gaussian count data.

Genotype of 620,901 SNPs were measured for the ADNI subjects, and our goal

is to identify the SNPs related to AD biomarkers such as HV and RAVLT. As men-

tioned before, the genotypes for each SNP are AA, AB, and BB, determined by the

two alleles of the SNP. After excluding SNPs with large portions of missing values

and unevenly distributions, our analysis focuses on 311,417 SNPs with at least 5%

subjects in each of the three genotypes. Demographical variables, such as baseline

age, sex, years of education, race, and marital status, are collected as covariates.

4.5.1 Analysis of the Hippocampal Volume Data

Among the biomarkers considered in ADNI, there has been some documented ev-

idence that loss of hippocampal volume in human brain may be associated with

memory loss and Alzheimer’s Disease (Schuff et al., 2009). In the ADNI cohort, 629

subjects have repeatedly measured hippocampal volume using neuroimaging methods

during the 10-year follow-up. The measurement times are irregular and random, and

the number of repeated measures per subject ranges between 2 and 11 with a median

of 4. The distribution of observation time is highly skewed and observations become

increasingly sparse after year 6, we therefore take a log-transformation to time and

let t “ logp1`actual visit timeq, which brings the time domain to T “ r0, 2.4s.

Figure 4.1 shows twenty randomly selected hippocampal volume trajectories in log-

transformed time.

Genotype of 620,901 SNPs were measured for the ADNI subjects. Our goal is

to identify the SNPs related to hippocampal volume loss by testing hypothesis (4.3)

for each SNP. the genotypes for each SNP are AA, AB, and BB, determined by two
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Figure 4.1: Twenty randomly selected hippocampal volume trajectories from the
ADNI cohort with log-transformed time.
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Table 4.1: Summary of the covariates in the ADNI data

Age
Min. 1st Qu. Median Mean 3rd Qu. Max.
55.10 70.90 74.80 74.81 79.70 90.90

Education
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 14.00 16.00 15.63 18.00 20.00

Gender Race Marital
Female Male White Non-white Married Not married

256 (40.69%) 373 (59.30%) 588 (93.48%) 41 (6.52%) 490 (77.90%) 139 (22.10%)

alleles. After excluding SNPs with large portions of missing values and unevenly

distributions, our analysis focuses on 311,417 SNPs with at least 5% subjects in each

of the three genotypes among the 629 subjects. Demographical variables including

age, gender, years of education, race, and marital status are considered as covariates

in Model (4.2). Summary statistics of these covariates are provided in Table 4.1. We

repeat the test for each SNP, taking into account of the multiple hypothesis testing

issue by a Bonferroni procedure.

To perform SNP level tests for hundreds of thousands of times, we encounter

two technical difficulties. First, it is computationally infeasible to run bootstrap for

hundreds of thousands of SNPs. Second, the commonly used genome-wide significant

levels are 10´5 or 10´7 (Fadista et al., 2016; Huang et al., 2017), hence it requires a

— 120 —



CHAPTER 4. MULTIPLE COMPARISONS I FOR LONGITUDINAL ADNI GWAS

gigantic bootstrap sample for the bootstrap p-value to reach such accuracy.

Between the two tests discussed in Section 4.3, the GQLR test is more feasible

to address these statistical challenges. First, the Wilks phenomenon in Section 4.3.1

implies that the null distribution the GQLR test is the same for all SNPs so that

there is no need to repeat bootstrap for hundreds of thousands of SNPs. In contrast,

no Wilks phenomenon is established for the F -test. Second, our simulation study also

suggest that the GQLR test is more power than the F -test. We therefore perform

the GQLR test to all SNPs, but only apply the bootstrap procedure on 20 randomly

selected SNPs, with 1,000 bootstrap samples for each SNP. As the model exhibits

heteroskedasticity, wild bootstrap is applied Mammen (1993). We follow the wild

bootstrap procedure under the sparse functional data setting in Tang et al. (2016) for

a single SNP. We then combine these bootstrap test statistics from the 20 SNPs and

fit a χ2 distribution to the combined sample using maximum likelihood estimation,

and use the fitted χ2 distribution to evaluate the p-values for all SNPs. Figure 4.2

shows the empirical distribution of the combined bootstrap sample for the working

independent test statistic and its χ2 approximation. The bandwidth is selected using

leave-one-out cross validations on 20 randomly selected SNPs, the average of these

selected bandwidths is adjusted by multiplying a factor n´1{45 for undersmoothing

and then fixed for all SNPs.

The GQLR test detects 3 SNPs associated with HV at 10´7 significance level,

52 SNPs at 10´5 significance level. The 50 most significant SNPs are reported in

Table (4.5.1), where we report the name of the SNP, the corresponding gene and

chromosome, and the position of the SNP on chromosome. The most significant

SNP is in gene APOE, which has been identified by multiple independent studies

to be related to HV and AD (Grupe et al., 2007; Ferencz et al., 2013). The second

most significant SNP is located at gene ABLIM2, the association of which with AD

was found by Gasparoni et al. (2018). For the third SNP ‘rs2800235’ on the list is
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Figure 4.2: The empirical distributions (black sold line) and their χ2 approximations
(red dashed line).

not found in any existing literature, and thus merits further investigation. We also

show in Figure 4.3 the functional genotype effects for the top three most significant

SNPs. The solid curve in each plot is the overall mean function, while the dashed,

dotted and dash-dot curves are the estimated genotype effects for AA, AB and BB,

respectively.

4.5.2 Analysis of the RAVLT Data

The RAVLT is a neuropsychological assessment designed to evaluate verbal memory

in patients and it can also be used to evaluate the nature and severity of memory

dysfunction. During the test, the patient hears a list of 15 nouns (List A) and is asked
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Table 4.2: Top 50 SNPs associated with HV, with the names of SNP and correspond-
ing gene, the chromosome, and the position of the SNP on chromosome.

Order SNP Gene Chr Position Order SNP Gene Chr Position
1 rs2075650 APOE 19 44892363 26 rs13420500 C2orf88 2 190070149
2 rs11936149 ABLIM2 4 8120770 27 rs7068990 LOC105378515 10 120329401
3 rs2800235 - 1 224861046 28 rs1673887 - 3 103882935
4 rs1673874 - 3 103868142 29 rs11247613 SLC9A1 1 27149295
5 rs2061345 - 3 103869583 30 rs2516104 - 6 117770467
6 rs17300532 LOC105379028 5 72084529 31 rs1474359 C2orf88 2 190068281
7 rs6044895 DSTN 20 17586934 32 rs4518082 - 3 139685328
8 rs1885082 RRBP1 20 17613340 33 rs4980200 - 10 123698107
9 rs2655997 TMEM63C 14 77204147 34 rs10936959 LINC02015 3 177873287

10 rs10495753 DTNB 2 25452827 35 rs1361417 - 6 102290539
11 rs10439990 ZBTB20 3 114396188 36 rs4920338 PAX7 1 18664300
12 rs4972625 - 2 173988067 37 rs433627 LOC105376126 9 87212499
13 rs10895739 - 11 97410246 38 rs2257468 ABR 17 1083503
14 rs7889761 FRMPD4 X 12520193 39 rs405509 APOE 19 44905580
15 rs4740801 - 9 4790166 40 rs3909086 - 20 6270993
16 rs10931440 C2orf88 2 190018635 41 rs12713521 AFTPH 2 64590123
17 rs10995440 - 10 63108822 42 rs29327 ANK2 4 113286511
18 rs1345516 - 2 64476153 43 rs1890202 MCF2L 13 112900737
19 rs228815 - 6 39139170 44 rs10518258 - 19 29185868
20 rs6136143 DSTN 20 17592113 45 rs4947936 - 7 50839056
21 rs9874829 - 3 139681798 46 rs7233189 EPB41L3 18 5480543
22 rs11633192 THSD4 15 71555974 47 rs6054058 - 20 6281541
23 rs733217 - 3 69671518 48 rs5030938 LOC101928994 10 69216161
24 rs2395891 LOC107985278 19 2032150 49 rs10992211 - 9 90129734
25 rs972795 FHIT 3 59774393 50 rs1062980 IREB2 15 78500186

to recall as many words from the list as possible. After five repetitions of free-recall,

a second interference list (List B) is presented, and the participant is asked to recall

as many words from List B as possible. The participant is asked to recall the words

from List A immediately after the interference trial and after a 30 min delay. The

delayed RAVLT score is the number of words that the participant correctly recall

from List A after the delay interval, which has been used for identifying patients at
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Figure 4.3: Estimated genotype effects for the top three SNPs related to HV in the
ADNI data.
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high risks of cognitive decline and subsequent dementia (Andersson et al., 2006).

In the ADNI cohort, 358 subjects with mild cognitive impairment (MCI) were

administered the RAVLT test at months 0, 6, 12, 18, 24 and 36, but actual mea-

surement times varied randomly around the scheduled dates. A histogram of delay

RAVLT scores is provided in Figure 4.4. These scores are count data, skew to the

right and obviously non-Gaussian. Our goal is the establish the association between

RAVLT test score and the gene APOE.
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Figure 4.4: The histogram of all observed RAVLT delay scores.

We fit Model (4.2) with log link to RAVLT data, where XXX includes the baseline

age and sex (0 for man and 1 for woman) and Z is a vector of indicators for APOE

alleles numbers (0, 1 or 2). The estimated coefficients for age and sex are β̂age “

´0.0024 and β̂sex “ ´0.1992 with standard errors 0.006382 and 0.09997, respectively,

indicating a significant effect of sex. To test the significance of the effect of APOE

on RAVLT scores, the proposed GQLR test is applied. The obtained p-value for the
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null hypothesis: θ1ptq “ θ2ptq “ θ3ptq is 0.039 by the wild bootstrap procedure with

sample size 1000. This result illustrated that APOE is significant with the mean curve

of RAVLT curve. The estimated functional effects of APOE are shown in Figure

(4.5), where the dark solid curve is pϑptq under the null hypothesis representing the

overall mean curve and the other three curves represent the group mean functions for

APOE alleles 0, 1 and 2, respectively. It shows that RAVLT scores of MCI patients

with APOE allele(s) decline dramatically over time, while scores of those without

APOE alleles remain almost the same level.
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Figure 4.5: The estimated functional effects of APOE on RAVLT scores in the ADNI
data.

4.6 Simulation Studies

4.6.1 Gaussian Case

For Gaussian-type sparse functional data, both GQLR test and functional F -test

can be used to test hypothesis (4.3), however, their powers have not been previously

compared. We now provide such a comparison through simulation studies.

— 125 —



CHAPTER 4. MULTIPLE COMPARISONS I FOR LONGITUDINAL ADNI GWAS

We generate data from model (4.2) with an identity link, p “ 2 environmental

predictors and q “ 4 genetic predictors. There are mi “ 5 repeated measures

of Y on each subject, where the observation times are iid with Tij „ Unifp0, 1q.

The first environmental predictor is time dependent with X1,ij “ Tij ` Uij, where

Uij „ Unifp´1, 1q; and the second environmental predictor X2,i is a binary, time-

invariant covariate that equals 0 or 1 with probability 0.5. Suppose the subjects are

classified into 4 groups according to genetic traits, and Zi is a 4-dimensional vector

of indicators for the groups. We simulate a total of n “ 200 subjects with nk “ 50

subjects in each genetic group, k “ 1, . . . , 4. The goal is to test if there are any

genetic effects, i.e.

H0 : θ1ptq “ ¨ ¨ ¨ “ θ4ptq ” θ0ptq. (4.21)

We generate the errors εij as discrete observations on a zero-mean Gaussian

process εiptq and consider two covariance settings: (i) ARMA(1,1) covariance with

ρpt1, t2; γ, ϕq “ γ expp´|t1 ´ t2|{ϕq, where γ “ 0.75, ϕ “ 1, and variance func-

tion σ2ptq “ 0.5 (ii) a nonparametric covariance induced by the mixed model εij “

ξ0,ij `
ř3
l“1 ξliφlpTijq, where ξ0,ij, ξli „ Np0, 0.3q are independent random effects and

φ1ptq “ t2 ` 0.5, φ2ptq “ sinp3πtq, φ3ptq “ cosp3πtq.

We set βββ “ p1, 1qT, and θ1ptq “ θ0ptq ´ 2δSptq, θ2ptq “ θ0ptq ´ δSptq, θ3ptq “

θ0ptq ` δSptq and θ4ptq “ θ0ptq ` 2δSptq, where θ0 “ sinp2πtq and Sptq “ sinp6πtq.

We set δ “ t0, 0.05, 0.1, 0.15, 0.2, 0.25u, where δ “ 0 correspond to the null hypothesis

(4.21) and the true model deviates further from H0 as δ increases. For each value of

δ, we simulate 200 datasets and apply both the GQLR test and the F -test to test

the null hypothesis (4.21).

Note that the hypothesis (4.21) is an ANOVA hypothesis, under which case the
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F test statistic can be written as

F “

ş

T
řq
k“1 nkt

pθF,kptq ´ pθRptqu
2dt{pq ´ 1q

ş

T
pRpt, tqdt

.

There are two ways to estimate null distribution of the F statistic: the asymptotic F

distribution given in Section 4.3.2 (F -asymp) with the covariance function estimated

using the nonparametric method described in Section 4.4 and the wild bootstrap

method (F -boot). For the GQLR test statistic, we use a Gaussian quasi-likelihood

Qpµ,YYY q “ ´pYYY ´µqTVVV ´1
pYYY ´µq{2, where VVV is a diagonal variance matrix using the

estimated variance function (4.16) interpolated at subject-specific time points. The

null distribution of the GQLR test is estimated by bootstrap.

The empirical powers of the three tests as functions of δ are shown in Figure 4.6,

where the two panels correspond to the two covariance settings. The F test based

on asymptotic theory does not hold the nominal size in our second covariance set-

ting, which is understandable since the asymptotic distribution in Section 4.3.2 was

developed under dense functional data. This result shows that the asymptotic F

approximation for the F test may not be legitimate under our sparse functional data

setting. Both the GQLR and F test hold the nominal size when the null hypothe-

sis is estimated by bootstrap, however the GQLR test is more powerful under both

simulation settings.

4.6.2 Non-Gaussian Response

To demonstrate the use of the methods described, we also simulate data from model

(4.2) under a logarithm link. The covariates XXX and Z are simulated in the same way

as in Section 4.6.1. Suppose there are mi “ 4 repeated measures on each subject

with observation times uniformly distributed in r0, 1s. Conditional on XXX ij and Zi,

Yij are generated from Poisson distribution with mean µij “ exptXXXT
ijβββ ` ZT

i θθθpTijqu

and exchangeable correlation within the same subject.
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Figure 4.6: Empirical power of three tests. The horizontal dotted line is set at 0.05.
The left panel is the result under covariance setting (i) where the true covariance
is ARMA(1,1); the right panel is the result under covariance setting (ii) where the
errors are generated from a mixed model with nonparametric factors.

The correlated multivariate Poisson random variables are simulated by the method

of Yahav and Shmueli (2012), using auxiliary normal distributions. To be more

specific, we generate standard normal distribution Y 1ij with exchangeable within-

cluster correlation such that corrpY 1ij, Y
1
ij1q “ ρjj1 “ 0.3 for j ‰ j1, and generate

Yij “ F´1
ij tΦpY

1
ijqu where Φp¨q is the distribution function of standard normal and

Fijp¨q is the distribution function of a poisson distribution with mean µij.

We test the same ANOVA hypothesis in (4.21). Note that the F -test was not

developed for non-Gaussian response, we therefore only consider the GQLR test

using a Poisson quasi-likelihood Qpµi,YYY iq “ YYY T
i logpµiq ´ µ

T
i 111.

To demonstrate the Wilks phenomenon of the GQLR test, we consider the fol-

lowing three scenarios with different setting of βββ and θ0:

Scenario I : β1 “ 1, β2 “ 1, θ0ptq “ sinp2πtq;

Scenario II : β1 “ 0.5, β2 “ 1.5, θ0ptq “ sinp2πtq;

Scenario III : β1 “ 1, β2 “ 1.5, θ0ptq “ cosp2πtq.

We simulate 200 datasets for each scenario and apply the GQLR test to each simu-
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lated data set. Figure 4.7 shows the estimated densities for λnpH0q under the three

scenarios using kernel smoothing. We perform a k-sample Anderson-Darling test and

find no significant difference among the three distributions (p-value: 0.53). These

results show Wilks phenomenon holds for the GQLR test under non-Gaussian case

that the distribution of λnpH0q does not depend on the true value of the parameters.
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Figure 4.7: Simulation under non-Gaussian case: demonstration of the Wilks phe-
nomenon. The three curves are the estimated distribution of λnpH0q under the three
simulation scenarios.

Next, we study the power of the GQLR test. We focus on the simulation setting

described in Scenario I and consider local alternatives with θ1ptq “ θ0ptq ´ 2δGptq,

θ2ptq “ θ0ptq ´ δGptq, θ3ptq “ θ0ptq ` δGptq, and θ4ptq “ θ0ptq ` 2δGptq. We set

Gptq “ sinp4πtq and consider different δ values. The null hypothesis is true when

δ “ 0 and as δ increases the model deviates further away from H0. Specifically,

we set the significance level at α “ 0.05 and use the wild bootstrap procedure to

estimate the null distribution. Figure 4.8 shows the power of the GQLR test as a

function of δ. As we can see, the test holds the nominal size and the power increases

to 1 as δ increases.
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Figure 4.8: Simulation under non-Gaussian case: power of the GQLR test

4.7 Summary

In this chapter, we demonstrate the use of functional data modeling and inference

methods to analyze longitudinal GWAS data, where aging disease related pheno-

types are repeatedly measured over time. The method can be used to analyze both

Gaussian-type (such as the HV data in ADNI) and non-Gaussian (such as the RAVLT

scores) response, taking into account the parametric effects of environmental covari-

ates and functional effects of genotypes. In testing the functional genotype effects,

we compare the effectiveness of two widely used nonparametric tests and show ad-

vantages the GQLR test over the functional F -test when analyzing sparse functional

data from longitudinal GWAS. First, the GQLR test can be used for both Gaus-

sian and non-Gaussian responses, but the F -test was only developed for Gaussian

response. Second, the GQLR test enjoys the Wilks property making it feasible for

large scale multiple SNP-level hypotheses testing, but the F -test does not enjoy such

property. Third, the GQLR test is shown to enjoy the minimax optimal power, while
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the local power of the F -test is largely unknown. Our simulation studies suggest the

GQLR test has higher power than the F-test, where there is inhomogeneity and

correlation in the data.
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Chapter 5

Improved Power for Multiple

Testing of Genetic Association

with Longitudinal Phenotypes for

Large-Scale ADNI GWAS

5.1 Introduction

In the previous Chapter 4, for the hypotheses (4.1), GQLR test is more powerful than

F-test but still limited detecting only three SNPs at the genome-wide significance

level (P ă 10´7). This lies in the reason that the GQLR test for sparse longitudinal

response in Chapter 4 was developed based on the working independence (WI) es-

timation of Lin and Carroll (2001), which ignored the correlation structure entirely.

Noticed that Wang et al. (2005) modified WI of Lin and Carroll (2001) by incorpo-

rating within-subject correlation by imputing a correlation function into components

of mean response vector. This motivates the seemingly unrelated functional analysis

of covariance (SU-fANCOVA) test procedure in Zhu et al. (2020+). The bootstrap

version of SU-fANCOVA can be a good solution for the hypothesis problem (4.1)

for the longitudinal phenotypic ADNI 1 GWAS. The real data analysis on ADNI 1

GWAS again shows that the SU-fANCOVA is much powerful at GWAS significance

level to detect out over 100 significant SNPs that may be related to AD.
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The rest of this chapter is organized as follows. We first analyze the ADNI data

for both Gaussian and non-Gaussian responses and compare the results with those in

Chapter 4. Then we assess the performance of SU-fANCOVA test for non-Gaussian

response by simulation studies.

5.2 Covariance Estimation for Non-Gaussian Re-

sponse

In the previous chapter, one needs not to estimate the entire covariance function

of the sparse functional response since the working independent covariance is used.

However, in this chapter, the SU-fANCOVA test procedure employs working correla-

tion covariance, and hence the entire covariance function should be estimated. When

the longitudinal response is non-Gaussian, the nonparametric method described in

Section 4.4 cannot be applied. We recommend the method by Lin (2007) for the

covariance estimation for non-Gaussian response in this section.

For non-Gaussian longitudinal data, the variance-covariance structure usually

depends on the conditional mean response. Therefore, to estimate the whole co-

variance function, we would prefer the semiparametric covariance models that re-

spect the mean-covariance dependency relationship. For ADNI Rey Auditory Ver-

bal Learning Test data, the longitudinal responses are count variables, and can be

modeled by a Poisson Mixed Model (Lin, 2007). A Poisson functional analysis of

variance model with a subject-specific random effect is Yk,ij „ Poissonpµuk,ijq and

µuk,ij “ exptXXXT
k,ijβββ ` θkpTk,ijq ` Uk,iu, where Uk,i „ independent Normalp0, σ2

uq are

random effects. Integrating out the random effects, the marginal mean and within-

subject variance-covariance structure are

µk,ij “ exptXXXT
k,ijβββ ` θkpTk,ijq ` σ

2
u{2u,

varpYk,ijq “ µk,ij ` µ
2
k,ijtexppσ2

uq ´ 1u,
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covpYk,ij1 , Yk,ij2q “ µk,ij1µk,ij2texppσ2
uq ´ 1u, for j1 ‰ j2. (5.1)

Notice that the random effect only creates a shift σ2
u{2 to the functional treatment

effects θkptq and hence will not affect the test results. Lin (2007) proposed to estimate

the covariance parameter γ “ σ2
u by maximizing a Gaussian quasi-likelihood

pγγγ “ argmaxγγγ ´
1
2

řq
k“1

řnk
i“1 log |VVV k,ipγq| ` pYYY k,i ´ µk,iq

TVVV ´1
k,i pγqpYYY k,i ´ µk,iq, (5.2)

with µk,i substituted by working independent pilot estimators and VVV k,ipγq recon-

structed from (5.1). For Gaussian type functional analysis of variance models, we

assume covariance functions are equal across treatment groups. This assumption can

be replaced by the assumption that the correlation parameter is equal across groups,

and all of the theoretical results in Zhu et al. (2020+) still hold.

5.3 Analysis of Longitudinal GWAS Data from

ADNI

We apply seemingly unrelated functional analysis of variance test to the same ADNI

data in Chapter 4.

5.3.1 Analysis of the Hippocampal Volume Data

We first apply the working independent functional analysis of variance test to screen

for the important SNPs. The bandwidth is selected using cross validations on 20

randomly selected SNPs, the average of these selected bandwidths is adjusted by

multiplying a factor n´1{45 for undersmoothing and then fixed for all SNPs. Follow-

ing the bootstrap procedure by Zhu et al. (2020+), we perform wild bootstrap on

20 randomly selected SNPs, with 1,000 bootstrap samples for each SNP, and fit a

χ2 distribution to the combined bootstrap sample using maximum likelihood estima-

tion. The left panel of Figure 5.1 shows the empirical distribution of the combined
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bootstrap sample for the working independent test statistic and its χ2 approxima-

tion. We then use the fitted χ2 distribution to evaluate the p-values for all SNPs. At

the 10´7 significance level, the working independent test detects 3 SNPs associated

with hippocampal volume.

Figure 5.1: The empirical distributions (black sold line) and their χ2 approximations
(red dashed line) by the working independent method (the left panel) and nonpara-
metric method (the right panel).

Next, we apply the seemingly unrelated functional analysis of variance test to

the top 2000 SNPs screened by the working independent test. We adopt the same

bandwidth for the mean estimation as the working independent procedure, estimate

the covariance function separately for each SNP using the nonparametric procedure

described in Section 4.4, where the bandwidth for covariance estimation is chosen

by leave-one-out cross-validation in 20 randomly selected SNPs. To estimate the

null distribution, we run wild bootstrap on 20 randomly selected SNPs; the em-

pirical distributions of rKλ
˚
npH0q from the combined bootstrap sample and its χ2

approximation are shown in the right panel of Figure 5.1. The closeness of the two

distributions corroborates of the results in Corollary 1 in Zhu et al. (2020+). At

significance level 10´7, the proposed test detects 177 SNPs that are associated with
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Table 5.1: Top 50 SNPs associated with HV.

SNP Chr Position Gene SNP Chr Position Gene
rs2075650 19 50087459 TOMM40 rs2722385 7 24393080 LOC107986777
rs3817959 1 14280602 KAZN rs7922793 10 62496958
rs1890202 13 112603051 MCF2L rs11223157 11 131999715 OPCML
rs4646737 3 127328950 ALDH1L1 rs10995440 10 64538587
rs1938590 11 58668028 FAM111A rs815845 9 83405910 TLE1
rs17033413 2 45393229 rs2865297 2 57111147
rs4649222 1 231558060 MAP3K21 rs3888289 11 71017315
rs4356778 3 28646361 LINC00693 rs447479 21 14258290 ANKRD20A11P
rs1439930 2 224088364 rs12045968 1 33463285
rs11936149 4 8173396 ABLIM2 rs1429310 2 57126215
rs1147917 10 42398979 ZNF33B rs11851025 14 50873678 LINC00640
rs2054365 6 107184195 RTN4IP1 rs2473113 10 42504435 LINC01518
rs11589265 1 27468449 WDTC1 rs1032669 3 1158679 CNTN6
rs2705594 2 217564387 LOC101928278 rs7594454 2 237202674
rs7939969 11 58620351 LOC105369315 rs17625895 16 25682603 HS3ST4
rs994883 12 17243041 VWF rs2605877 8 74309320
rs10069076 5 93815065 KIAA0825 rs982003 10 18747302 CACNB2
rs7530701 1 27448495 WDTC1 rs9295895 6 30546205
rs10510816 3 59630570 LOC105377110 rs916775 7 24399278 LOC107986777
rs10869183 9 74325645 TMC1 rs10928003 1 14290773 KAZN
rs4849996 2 3880801 rs2940556 5 8402784 LINC02226
rs2940554 5 8395988 LINC02226 rs6491729 13 102492286
rs965921 4 150276699 rs9407390 9 7805985
rs2257468 17 933492 ABR rs4787760 16 25678156 HS3ST4
rs9534812 13 47235539 rs5906966 X 44178162

hippocampal volume. These SNPs deserve further investigation using independent

studies. We summarize the top 50 SNPs detected by the proposed test in Table 5.1.

The SNPs are ranked by their significance level. We provide the names of the SNPs,

the chromosomes they are on, and the gene names for SNPs located in known genes.

The most significant SNP is rs2075650 located in gene APOE and some other top

genes include MCF2L, OPCML, TLE1, FAM111A, and ALDH1L1, all of which have

been identified by multiple independent studies to be related to hippocampal volume

and Alzheimer’s Disease. References of these genes are listed in the Supplementary

Material. On the other hand, the proposed method also finds some new genes, such

as LOCI107986777 and KAZN, which we could not find in the existing literature

and merit further investigation. Figure 5.2 shows the estimated functional genotype

effects for the top three SNPs, rs2075650, rs2722385, and rs3817959, located in genes

APOE, LOCI107986777, and KAZN, respectively. In each panel of Figure 5.2, the

solid curve is the overall mean function, while the dashed, dotted and dash-dot curves
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are the estimated mean functions for different genotypes.
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Figure 5.2: Estimated genotype effects for the top three SNPs in the ADNI data.

5.3.2 Analysis of the Rey Auditory Verbal Learning Test
Data

Different from that in Section 4.5.2 we here apply the SU-fANCOVA test to the

whole subjects in ADNI cohort rather than the MCI patients.
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Figure 5.3: ADNI Rey Auditory Verbal Learning Test data: The left panel is the
histogram of all observed scores; the right panel contains estimated functional effects
of APOE on the scores.

In the ADNI cohort, 721 subjects were administered the Rey Auditory Verbal

Learning Test at months 0, 6, 12, 18, 24, and 36, but actual measurement times varied

randomly around the scheduled dates. A histogram of the test scores is provided in
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the left panel of Figure 5.3. These scores are count data, skew to the right and

obviously non-Gaussian. We fit the following model

logtµk,iptqu “XXXT
k,iptqβββ ` θkptq, (5.3)

to the data using a logarithm link, where the covariates include baseline age and

sex (0 for man and 1 for woman) and the treatment groups are defined by the

alleles of APOE. The within-subject correlation is modeled by the Poisson Mixed

Model described in Section 5.2, with the correlation parameter estimated by the quasi

maximum likelihood method. The estimated coefficients for age and sex are pβage “

´0.0399 and pβsex “ ´0.0522 with standard errors 0.025 and 0.071, respectively. The

estimated functional effects of APOE are shown in the right panel of Figure 5.3,

where the dark solid curve is pθptq under the null hypothesis representing the overall

mean curve and the other three curves represent the group mean functions for APOE

allele numbers 0, 1 and 2, respectively. By wild bootstrap with sample size 1000,

the p-value for hypothesis (4.1) is 0.005, which suggests a significant relationship

between APOE and the test scores.

5.4 Simulation Studies

To demonstrate the proposed methods under the non-Gaussian response, we also

simulate data from the model (5.3). We simulate data for q “ 4 treatment groups

with nk “ 50 subjects in each group, and mi “ 4 repeated measures on each

subject. The responsesYk,ij are generated from Poisson distribution with mean

µk,ij “ exptXXXT
k,ijβββ ` θkpTk,ijqu and an exchangeable correlation structure, where

Tk,ij „ Unifp0, 1q, X1,k,ij “ Tk,ij ` Uk,ij is a time varying covariate with Uk,ij „

Unifp´1, 1q, and X2,k,i is a binary, time-invariant covariate that equals 0 or 1 with

probability 0.5. The correlated multivariate Poisson random variables are simulated

by the method of Yahav and Shmueli (2012), using auxiliary normal distributions. To
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be more specific, we generate standard normal distribution Zk,ij with exchangeable

within-subject correlation such that corrpZk,ij, Zk,ij1q “ 0.3 for j ‰ j1, and generate

Yk,ij “ F´1
k,ijtΦpZk,ijqu where Φp¨q is the distribution function of standard normal and

Fk,ijp¨q is the Poisson distribution with mean µij.

We set β1 “ β2 “ 1 and θkptq to be θ0ptq ˘ δSptq and θ0ptq ˘ 2δSptq, where

θ0ptq “ 1.5 ` sinp2πtq, Sptq “ sinp4πtq and δ “ t0, 0.01, 0.02, 0.03, 0.04, 0.05u. Since

the F -test was not developed for non-Gaussian response, we consider two versions of

the proposed GQLR test to test the null hypothesis in (4.1) both based on a Gaussian

quasi-likelihood as in (5.2), one under working independence and the other under the

compound symmetry correlation with the correlation parameter estimated using the

QMLE method. We set the significance level at α “ 0.05 and use the wild bootstrap

procedure with sample size 1000 to estimate the null distribution. Figure 5.4 shows

the power of the GQLR test as a function of δ. As we can see, both tests hold the

nominal size and the test take into account the correlation is far more powerful than

the WI test.
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Figure 5.4: Simulation under non-Gaussian case: power of the GQLR test
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Chapter 6

Weighted Multiple-Quantile

Classifiers for Functional Data

6.1 Introduction

Classification for functional data is a challenging and yet appealing research field

that has a rich literature and steady study interest over the past two decades because

functional data are increasingly encountered in medical studies (Delaigle and Hall

(2012), Dai et al. (2017), Berrendero et al. (2018), among others). In this chapter,

we are interested in constructing a unified framework by minimizing the expected

loss to incorporate existing projection classifiers for functional data. It sheds light

on the proposed quantile based nonparametric functional classifier.

There are two main streams of dimension reduction in classification of functional

data, by transforming the functional data into multivariate vectors and applying dis-

criminant analysis (Park and Simpson (2019)), or by projecting random trajectories

into random variables (Kraus and Stefanucci (2019). The projection scores are an

excellent approximation to the original random process, and thus play an impor-

tant role in difference methods of classification (Delaigle and Hall (2012) and Dai

et al. (2017)). Thus it is natural to measure the deviation between projection scores

instead of random trajectories.
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To construct a suitable distance measure is a popular spirit for clustering and

classification for various data sets. The L2-norm distance is a usual choice between

random curves or its derivatives but not applicable to projection scores (Alonso et al.

(2012)). We are motivated by a probability operator to define a generalized distance

based on probabilistic components of projection scores. It is intuitive to interpret

the underlying mechanisms of existing projection classifiers. For instance, the strong

assumptions of at least one distinct for mean and variance in Bayes classifier (Dai

et al. (2017)) are necessary; the centroid classifier (Delaigle and Hall (2012) is invalid

if one does not assume identical variances of the projection scores. We also involve

weights into the proposed method which can be obtained accurately hitting upon

the important projection scores for classification. Theoretically, it helps settle down

the consistency property of the presented classifier.

Particularly we take the quantile rather than moments of projection scores into

consideration to develop a weighted multiple-quantile classifier (weMulQ). The quan-

tile technique is a guarantee of robustness against outliers or skewness. For heavy-

tailed or non-exponential family distributions, the weMulQ classifier outperforms the

existing methods, particularly for mixture distributions. This weakens the assump-

tions for Bayes classifier based on density ratio of distributions of projection scores.

The weMulQ classifier is accurate even when the means of scores are approximately

equal in that multiple quantile locations make the classifier take account of almost

the full vision of the distribution shape of a projection score. Simultaneously it sim-

plifies the implementation procedure and gains computing expedience. The weMulQ

is compatible with other classifier competitors for Gaussian-process scenarios.

In literature, other studies of classification of functional data include classification

of sparsely or irregular sampled functional data (Park and Simpson (2019)) and

incompletely observed functional curve or fragments (Delaigle and Hall (2013) and

Kraus and Stefanucci (2019)), among others. The weMulQ classifier works for dense
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functional samples.

6.2 Generalized Distance Minimizing the Risk

We focus on binary classification. Let X “ Xptq be a square integrable random

function defined on a compact interval I and Y be a Bernoulli random variable

indicating a group label. The observed random trajectories of X come from a mixture

of sub-populations Π0 and Π1. That is, X
d
“ X rks if X is from population k, where

k “ 0, 1 and
d
“ means equivalence in distribution. Projection scores of an arbitrary

X0p¨q P L2pIq and the stochastic process X rksp¨q are

x0
j “

ż

I
X0psqψjpsqds, ξ

rks
j “

ż

I
X rks

psqψjpsqds, j “ 1, 2, . . . , k “ 0, 1,

respectively, where ψjpsq’s are the orthonomal basises of L2pIq .

Given a new infinite dimensional random trajectory X0 P L2pIq, one needs to

identify whether X0 comes from Π0 or Π1. This can be discriminated by measuring

the distance of X0 away from the specific functional group. Instead, we inspect the

distance of their pertinent projection scores following the optimal decision rule of

minimizing the risk or expected loss. Let Lpθ, aq be the loss function for the true

state θ and an action a, and EtLpθ, dpXqqu be the expected loss with a decision rule

d based on random functional data X ( chapter 2, Young et al. (2005)). Denote the

expectation operator of a random variable Z by

EpZq :“ arg min
qPR

EtLpZ, qqu.

This comes up with a generalized distance between X0 and population Πk as

DpX0,Πkq :“
8
ÿ

j“1

wjLtx
0
j , Epξ

rks
j qu, (6.1)
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with the weights wj’s measuring the effect of deviation between projection scores of

X0 and X rks. Let Ip¨q be the indicator function and q
rks
j pτq “ inftu : F

ξ
rks
j
puq ě τu

for τ P S “ ra0, 1´ a0s with 0 ă a0 ă 0.5. Taking the asymmetric absolute function

ρτ psq “ τs´ sIps ă 0q “ |s|rτIps ą 0q ` p1´ τqIps ď 0qs

as the loss function, we have the optimal solution

q
rks
j pτq ” Epξrksj q “ arg min

qPR
Etρτ pξrksj ´ qqu, (6.2)

when the τ -quantile of the projection score ξ
rks
j acts as the minimizer. This motivates

the following weighted quantile classification criterion based on the first J projection

scores txju
J
j“1 of X “ x,

QJpx, τ,wq “
J
ÿ

j“1

wjrL1jpx, τq ´ L0jpx, τqs, (6.3)

where w “ pw1, . . . , wJq, and Lkjpx, τq :“ Lrxj, Epξrksj qs “ ρτtxj ´ q
rks
j pτqu can be

viewed as an L1-distance between xj and the τ -quantile q
rks
j pτq, k “ 0, 1. The weight

wj is imposed on the jth component of the quantile-based classifiers, reflecting the

relative importance of the jth projection score for classification.

Consequently, for a fixed quantile level τ P S, given two sets of observations

from populations Π0 and Π1 along with a new observation x P L2pIq, x is assigned

to Π0 if QJpx, τ,wq ą 0, and to Π1 otherwise. Let πk “ P pY “ kq be the prior

probability that an observation belongs to population Πk, k “ 0, 1. In order to

choose the optimal values of J , τ and the weight w, we consider the probability of

correct classification based on (6.3),

ΨpJ, τ,wq “ π0P rQJpX, τ,wq ą 0|Y “ 0s ` π1P rQJpX, τ,wq ď 0|Y “ 1s. (6.4)
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Equation (6.4) represents the theoretical rate of correct classification based on the

first J true projection scores and the true quantiles. The theoretical optimal values

of J , τ and the weight w can be obtained by maximizing the probability of correct

classification (6.4).

Notice that, the generalized distance framework (6.1) provides a unified frame-

work to incorporate existing projection functional classifiers by assigning distinct

loss functions. For example, assuming that projection scores ξ
rks
j ’s are independent

and identically normally distributed with mean µ
rks
j and variance λ

rks
j , the Bayesian

classifier by Dai et al. (2017) can be obtained by taking the square error loss function

Lrxj, Epξrksj qs “ pxj ´ µ
rks
j q

2 and the weight wj “ p2λ
rks
j q

´1, j “ 1, . . . , J . Likewise,

taking the unity weight, the centroid classifier by Delaigle and Hall (2012) can be de-

rived by taking square error loss function Lpθ, aq “ pθ ´ aq2 since the corresponding

expectation operator EpZq “ arg minz0PR
ş8

´8
pz ´ z0q

2dFZpzq induces the distance

measurement Dcpx,Xpkqq “
8
ř

j“1

wjtxj ´Epξjqu
2. The classifiers for high-dimensional

data can also be interpreted by taking the absolute loss Lpθ, aq “ |θ ´ a| and the

median operator medianpZq “ arg minz0PR
ş8

´8
|z ´ z0|dFZpzq, leading to the com-

panion distance Dmpx,Xpkqq “
8
ř

j“1

wj|xj ´ medianpξjq|. See Hall et al. (2009) and

its extension Henning and Viroli (2016). Such a perspective based on (6.1) gives an

intuitive interpretation of why the quantile-based classifier is notable more informa-

tive because it is based on ‘location’ (quantile) of distribution rather than some kind

of i-th order moments.
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6.3 Implementation of Functional Multiple-Quantile

Classification

In this section, we first estimate the projection scores of functional predictors, and

then obtain the estimate of the proposed weighted multiple-quantile classifier. We

provide an computation procedure for implementation afterwards.

Denote n “ n0 ` n1, where nk is the number of functional predictors from pop-

ulation k, k “ 0, 1. In practice, the entire predictor trajectories tXiu
n
i“1 are not

observable. Instead, the observations of the ith subject are measured at mi time

points tTilu
mi
l“1 and contaminated with measurement errors, i.e., X̃il “ XipTilq ` eil,

where eil’s are identically and independently distributed and independent of predic-

tor trajectories Xi’s. For the observed tpTil, X̃il, Yiqu
mi
l“1, we may get the smoothed

estimate of Xi by the local linear smoothing technique (Fan and Gijbels (1996)),

pâ0i, â1iq “ arg min
pa0i,a1iq

mi
ÿ

l“1

!

X̃il ´ a0i ´ a1ipTil ´ tq
)2

K

ˆ

Til ´ t

hi

˙

, i “ 1, . . . , n, (6.5)

leading to the local linear estimator X̂iptq “ â0i, where Kp¨q is a symmetric kernel

function and hi is bandwidth. The smoothed trajectories can be then regarded as a

fully observed random curves.

Denote the covariance function of population k byGrksps, tq “ CovrX rkspsq, X rksptqs,

and assume Grksps, tq is continuous. It follows from Mercer’s theorem that Grksps, tq “

8
ř

j“1

λ
rks
j ψ

rks
j psqψ

rks
j ptq, where the orthonormal eigendecomposition yields eigenfunc-

tions ψ
rks
j p¨q’s and eigenvalues λ

rks
1 ě λ

rks
2 ě ¨ ¨ ¨ ě 0 satisfying

8
ř

j“1

λ
rks
j ă 8 for k “ 0, 1.

Applying the weighted local linear smoothing approach of Li and Hsing (2010), we

have the local linear estimators µ̂rksptq “ b̂0k and Ĝrksps, tq “ ĉ0k ´ µ̂rkspsqµ̂rksptq of
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mean and covariance functions of population k, k “ 0, 1, based on

pb̂0k, b̂1kq “ argmin
pb0k,b1kq

1

nk

ÿ

i: Yi“k

1

mi

mi
ÿ

l“1

!

X̃il ´ b0k ´ b1kpTil ´ tq
)2
K

ˆ

Til ´ t

hµ

˙

, (6.6)

and

pĉ0k, ĉ1k, ĉ2kq “ argmin
pc0k,c1k,c2kq

1

nk

ÿ

i:Yi“k

1

mipmi ´ 1q

ÿ

l1‰l2

!

X̂il1X̂il2 ´ c0k ´ c1kpTil1 ´ sq

´c2kpTil2 ´ tqu
2K

ˆ

Til1 ´ s

hG

˙

K

ˆ

Til2 ´ t

hG

˙

, (6.7)

where X̂il “ X̂ipTilq, hµ and hG are bandwidths.

Under the common eigenfunction assumption, the estimate of joint covariance op-

erator G “ π0G
r0s`π1G

r1s can then be denoted by Ĝps, tq “ π̂0Ĝ
r0sps, tq`π̂1Ĝ

r1sps, tq,

with π̂k “ nk{n. Let pλ̂j, ψ̂jq be the jth eigenvalue-eigenfunction pair of Ĝ. The

projection scores for the ith functional predictor X
rks
i can be estimated by ξ̂

rks
ij “

ş

I X̂
rks
i psqψ̂jpsqds, i “ 1, . . . , nk, j “ 1, 2, . . ..

6.3.1 The Weighted-Multiple Quantile Classifier

Denote the empirical τ -quantile of ξ̂
rks
j by q̂

rks
jn pτq, and the empirical representation of

Lkjpx, τq by L̂kjnpx, τq “ |x̂j´ q̂
rks
jn pτq|rτItx̂j ą q̂

rks
jn pτqu`p1´τqItx̂j ď q̂

rks
jn pτqus, k “

0, 1, where x̂j “
ş

I xpsqψ̂jpsqds is the projection score of the new functional obser-

vation xpsq along the direction ψ̂j. For a fixed quantile level τ P S, the estimated

criterion function for classification is given by

Q̂Jpx, τ,wq “
J
ÿ

j“1

wjrL̂1jnpx̂j, τq ´ L̂0jnpx̂j, τqs. (6.8)
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In order to determine the empirical optimal values of J , τ and w for classification,

we use the observed rate of correct classification

Ψ̂npJ, τ,wq “ n´1

„

ÿ

i: Yi“0

I
!

Q̂JpXi, τ,wq ą 0
)

`
ÿ

i: Yi“1

I
!

Q̂JpXi, τ,wq ď 0
)



, (6.9)

and select

pĴ , τ̂n, ŵq “ arg max
τPS,JPZ,wjPr0,1s,

řJ
j“1 wj“1

Ψ̂npJ, τ,wq,

as the estimated optimum of J , τ and w. Therefore, the empirically optimal quantile

classifier for functional data can be defined by assigning x to Π0 if

Q̂Ĵpx, τ̂n, ŵq “
Ĵ
ÿ

j“1

wjrL̂1jnpx̂j, τ̂nq ´ L̂0jnpx̂j, τ̂nqs ą 0. (6.10)

Note that in (6.8), we fix a single quantile level only for all projection scores. It is

known that quantiles on various locations can reflect the whole vision of distribution

information. Thus, naturally, we have the following accumulated quantile-based

criterion function using multiple quantile levels

Q̂M
J px, τ

M ,wM
q “

J
ÿ

j“1

#

M0
ÿ

m“1

wjm

”

L̂1jnpx̂j, τmq ´ L̂0jnpx̂j, τmq
ı

+

, (6.11)

where we use M0 quantile levels τM “ pτ1, . . . , τM0q for every component of quantile-

based classifiers, and wM “ pw11, . . . , w1M0 , . . . , wJ1, . . . , wJM0q. As for the choice of

the quantile levels pτ1, . . . , τM0q, the number J of projection scores, and the weight

wM , we can select the optimal values pĴ , τ̂M , pwM
q by maximizing the observed rate

of correct classification Ψ̂npJ, τ
M ,wMq, which is obtained by replacing Q̂Jpx, τ,wq

with the criterion function (6.11) in p6.9q. Thus, the corresponding empirical optimal

multiple-quantile classifier is defined by assigning x to Π0 if Q̂M
Ĵ
px, τ̂M , pwM

q ą 0, and

to Π1 otherwise.
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6.3.2 Implementation Procedure

In this subsection, we provide the detailed steps for implementation of the weighted

multiple-quantile classifiers based on (6.11).

Step 0 : Smooth the discretely observed data tpTil, X̃ipTilqqu
mi
l“1 by (6.5), for

i “ 1, . . . , n. The smoothed random trajectories are denoted as tX̂iu
n
i“1.

Step 1 : Estimate the mean and covariance functions of the two populations

Πk, k “ 0, 1 by (6.6) and (6.7), and obtain the pooled covariance function by

Ĝps, tq “ π̂0Ĝ
r0sps, tq ` π̂1Ĝ

r1sps, tq.

Step 2 : Estimate the eigenfunctions tψju
8
j“1 by solving the eigen-equation

ż

I
Ĝps, tqψ̂jpsqds “ λ̂jψ̂jptq, j “ 1, 2, . . . ,

where ψ̂j’s are subject to
ş

I ψ̂
2
j psqds “ 1,

ş

I ψ̂j1psqψ̂j2psqds “ 0, j1 ‰ j2,

and the projection scores ξ̂
rks
ij of random curve Xi can be obtained by ξ̂

rks
ij “

ş

I X̂
rks
i psqψ̂jpsqds, i “ 1, . . . , n, j “ 1, 2, . . ..

Step 3 : Given the number J of projection scores, the number M0 of quantile

levels, the weight wM , and the quantile levels τM “ pτ1, . . . , τM0q, obtain the

empirical τj-quantile q̂
rks
jn pτjq of ξ̂

rks
j , j “ 1, . . . ,M0, and the estimated multiple

quantile classification criterion function (6.11).

Step 4 : Select the optimal number J of projection scores by controlling the

fraction of variances explained. Let τ1, . . . , τM0 be equally spaced on the subset

S, where τ1 “ a0, τM0 “ 1 ´ a0. Set a0 “
1

2n
. One can select M0 by grid

search. Let m0 be a proper integer. Select M0 and the optimal weight wM by

maximizing the following observed rate of correct classification

pM̂0, pw
M
q “ arg max

tM0Pt1,...,m0u,wMPr0,1sJM0u

Ψ̂npJ, τ
M ,wM

q, (6.12)
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where wM is subject to
řJM0

j“1 wj “ 1.

Step 5 : For a new functional trajectory X “ x, which is independent of the

training data, we classify it to Π0 if and only if Q̂M
Ĵ
px, τ̂M , ŵM

q ą 0.

In Steps 0 and 1, the bandwidth used in each smoothing step is chosen by gener-

alized cross-validation. In Step 4, we look for the optimal values of wM for τM in S, a

closed interval not containing zero. In practice, we should choose a0 as small as pos-

sible while ensuring that the estimated τ -quantiles are still of some use. In contrast,

we should choose M0 as large as possible in order to characterize more distribution

information while ensuring that the proposed procedure is still efficient. Given M0,

one can use the constrained optimization algorithm (e.g., we use fmincon() from

MATLAB’s optimization toolbox) for maximizing (6.12) in Step 4, thus to obtain

the optimal value ŵM . Empirically, when M0 “ 5, i.e. 5 equally spaced quantile

levels, the proposal classifier generally performs well. The reason might be that,

like five number summary of Boxplot, even 5 equally spaced quantile levels are able

to characterize the whole distribution of the principle scores approximately. Both

simulation studies and real data analysis show such that implementation procedure

obtains good classification results.

Remark 6.1. The single quantile classifier in (6.8) is analogous to the quantile-

based classifiers for high-dimensional situation in Henning and Viroli (2016) but

not a trivial extension from cross-sectional variables to infinite dimensional observa-

tions. For example, projecting of infinite dimensional data into a random variable

adds the extra task of estimation of the projection scores for functional data. Also,

Henning and Viroli (2016) only validated for finite p-dim vector, leaving consistency

unsolved when p goes to infinity for high-dimensional classification. Nevertheless un-

der functional data setting, the unknown truncated number J (corresponding to p) of
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projection scores needs to be estimated, and meanwhile theoretically it shall tend to

infinity, thus posing a serious challenge in proof. Furthermore, our proposed single

quantile classifier (6.8) serves as a stepping stone for functional classification. In-

volvement of weights together with multiple quantile locations make it more powerful

in classification.

Remark 6.2. One may also try the adaptive weighted quantile criterion based on the

fact that we use the first J projection scores to construct the weighted quantile-based

classifiers and their distributions may be different. Thus different quantile levels

correspond to different projection scores. Let τA “ pτ1, . . . , τJq. Then we have

Q̂A
J px, τ

A,wq “
J
ÿ

j“1

wj

”

L̂1jnpx̂j, τjq ´ L̂0jnpx̂j, τjq
ı

, (6.13)

where tτju
J
j“1 may be different from each other. The optimal values pĴ , τ̂A, ŵq for

classification can be also computed by maximizing the observed rate of correct clas-

sification Ψ̂npJ, τ
A,wq obtained by replacing Q̂Jpx, τ,wq with the criterion function

(6.13) in p6.9q. Thus the corresponding empirical optimal adaptive quantile-based

classifier is defined by assigning x to Π0 if Q̂A
Ĵ
px, τ̂A, ŵq ą 0, and to Π1 otherwise.

However it is computationally expensive. This indicates that treatments for high-

dimensional and functional data are quite different.

6.4 Asymptotic Properties

In this section, we consider the case where J tends to infinity as nÑ 8, and establish

some asymptotic properties for the weighted quantile-based classifier (6.10).

Denote the covariance function of population k byGrksps, tq “ CovrX rkspsq, X rksptqs.

Assume thatGrksps, tq is continuous. Mercer’s theorem tellsGrksps, tq “
8
ř

j“1

λ
rks
j ψ

rks
j psqψ

rks
j ptq,
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where the orthonormal eigendecomposition yields eigenfunctions ψ
rks
j p¨q’s and eigen-

values λ
rks
1 ě λ

rks
2 ě ¨ ¨ ¨ ě 0 satisfying

8
ř

j“1

λ
rks
j ă 8 for k “ 0, 1. Assume that the two

populations Π0 and Π1 share the same set of eigenfunctions, not necessarily with the

same order, following the thought of projecting the data from both groups onto the

same basis in Hall et al. (2001). We reorder the eigenfunctions such that ψ
rks
j ” ψj

holds, but λ
rks
j ’s are not necessarily in descending order, for k “ 0, 1.

Let S “ ra0, 1´ a0s for arbitrarily small 0 ă a0 ă 0.5, and WJ “ tw|
řJ
j“1wj “

1, 0 ď wj ď 1, j “ 1, . . . , Ju. To proceed, we need the following conditions:

Assumption 6.1. For all j “ 1, . . . , J , k “ 0, 1, q
rks
j pτq is a continuous function of

τ P S.

Assumption 6.2. For all τ P S, supJPZ supwPWJ
P
 

QJpX, τ,wq “ 0
(

“ 0.

Assumption 6.3. The quantile functions q
rks
j pτq have bounded derivative, and satisfy

sup
jě1

sup
τPS

ˇ

ˇpq
rks
j q

1

pτq
ˇ

ˇ ă 8, k “ 0, 1.

Assumption 6.4. The weights twju
J
j“1 satisfy

řJ
j“1wj “ 1, wj ě 0, j “ 1, . . . , J ,

for any J P Z.

Assumption 6.5. The covariance operators Gkps, tq under the populations Π0 and

Π1 have common eigenfunctions.

Assumption 6.6. J
b

logn
n
Ñ 0, as J Ñ 8, nÑ 8.

Assumption 6.1 is the same as Assumption 1 in Henning and Viroli (2016). As-

sumption 6.2 is similar to Assumption 2 in Henning and Viroli (2016), enforced

uniformly for τ P S, J P Z,w P WJ . Assumption 6.3 ensures the derivations of
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q
rks
j pτq are bounded uniformly. Assumption 6.4 concerns a standard weight condi-

tion, and Assumption 6.5 is identical to Condition 1 in Dai et al. (2017). Assumption

6.6 controls the convergence rate of the number J of projection scores as nÑ 8.

For given J P Z and w P WJ , define τ̂npJ,wq ” arg maxτPS Ψ̂npJ, τ,wq, and

τ0pJ,wq ” arg maxτPS ΨpJ, τ,wq. We drop the argument pJ,wq for τ̂npJ,wq and

τ0pJ,wq when no confusion arises. Then we have the following asymptotic result.

Theorem 6.1. Under Assumptions 6.1-6.6 and 6.13-6.16 in the Section 6.8, for any

ε ą 0, there exists a sequence J “ Jpn, εq Ñ 8 such that

inf
wPWJ

P

"

|ΨpJ, τ̂n,wq ´ΨpJ, τ0,wq| ď ε

*

Ñ 1, as nÑ 8.

Remark 6.3. This theorem means that, the empirical optimal τ̂n in the weighted

quantile-based classifiers achieves the true correct classification probability for the

true optimal τ0, as nÑ 8 and J Ñ 8.

Let ζ “ pζ1, ζ2, . . .q denote an infinite sequence of random variables, where each

ζj has τ -quantiles qjpτq for all τ P S and median zero. Assume that there is at

most value u with Fζjpuq “ τ for all τ P S, j “ 1, 2, . . .. For infinite sequences

of constants pυ01, υ02, . . .q and pυ11, υ12, . . .q, assume that for each J P Z, the J-

dimensional vector pξ
r0s
1 , . . . , ξ

r0s
J q is identically distributed as pυ01 ` ζ1, . . . , υ0J `

ζJq, and the J-dimensional vector pξ
r1s
1 , . . . , ξ

r1s
J q is identically distributed as pυ11 `

ζ1, . . . , υ1J ` ζJq, respectively. Thus, the τ -quantile of ξ
r0s
j is q

r0s
j pτq “ υ0j ` qjpτq,

and the τ -quantile of ξ
r1s
j is q

r1s
j pτq “ υ1j ` qjpτq. We also assume that pXi, Yiq

n
i“1

are independent and identically distributed. The following assumption are needed in

Theorem 6.2:

Assumption 6.7. The differences |q
r1s
j pτq ´ q

r0s
j pτq| are uniformly bounded.
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Assumption 6.8. For sufficiently small c ą 0, the proportion of values of j P r1, Js

for which |q
r1s
j pτq ´ q

r0s
j pτq| ą c for all τ P S is bounded away from zero as J Ñ 8.

Assumptions 6.7 and 6.8 are closely related to Assumptions (7) and (8) in Henning

and Viroli (2016). Assumption 6.7 imposes the condition that the differences of

the quantiles of projection scores between the two groups are uniformly bounded,

and Assumption 6.8 requires that a non-negligible proportion of the componentwise

differences of the quantiles be bounded away from zero.

The next result states that the proposed weighted quantile-based classifiers achieve

near perfect classification under certain conditions.

Theorem 6.2. Under Assumptions 6.7- 6.8, Assumptions 6.9- 6.12 and 6.13-6.16

given in Section 6.8, with probability converging to one as n Ñ 8 and J Ñ 8, the

weighted quantile-based classifier (6.10) makes the correct decision,

sup
τPS

sup
wPWJ

“

PΠ0tQ̂JpX, τ,wq ď 0u ` PΠ1tQ̂JpX, τ,wq ą 0u
‰

Ñ 0.

This theorem extends the previous results on near perfect classification for high-

dimensional data, such as those in Hall et al. (2009) and Henning and Viroli (2016),

to the proposed classifiers for functional data. From Theorem 6.2, it is easy to see

that near perfect classification occurs if there are infinitely many projection scores

relevant to classifying the groups apart. Conditions B1-B2 are different from that

in Dai et al. (2017), in which they assumed that there are sufficient differences in

the mean or variance functions under the two groups for achieving near perfect

classification. However, we only require that there are sufficient differences between

two groups in the quantile function of projection scores in the directions of tail

eigenfunctions. Thus, Assumptions 6.7-6.8 are weaker than that in Dai et al. (2017).

In addition, since we cannot observe the entire predictor trajectories tXiu
n
i“1, but

rather obtain the irregular/regular repeated measurements of the predictors, the
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smoothing errors caused by smoothing the discrete observations for every subject

and its influence carried over to the principle components scores estimates should be

taken into account. Furthermore, the eigenfunctions are estimated from the observed

data, and the estimated errors resulted from the estimates of eigenfunctions must

be also considered in the proofs of Theorems 6.1 and 6.2. Thus, in order to obtain

theoretical results under presmoothing, we need Assumptions 6.13-6.16 in Section

6.8, which are identical to those in Kong et al. (2016b) and Dai et al. (2017).

6.5 Simulation Studies

To assess the performance of the proposed weMulQ classifier, we consider two scenar-

ios with six examples of Monte Carlo simulation experiments in total, and compare

them with some of the existing methods, including

(a) Bayes classifier (Bayes) by Dai et al. (2017);

(b) centroid classifier (Cent) by Delaigle and Hall (2012);

(c) functional logistic regression (Logistic) by Araki et al. (2009).

The random curves of classification objects are discretized at 51 equally spaced

time-points over I “ r0, 1s, and are disturbed with independent small normal mea-

surement errors with mean zero and standard deviation 0.1. In each case, a training

sample curves with moderate sample sizes of n “ 50, 100 based on 200 replications

are generated for training the classifiers, and the same number of curves for evaluat-

ing the predictive performance. Each curve is equally likely drawn from either preset

population.

We compare the performances of the classifiers in terms of their misclassification

rate (MCR). We also draw the Box plots so as to compare their standard error trends.
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All simulations are coded in MATLAB 2017b 9.3.0.713579, and executed on a Unix

laptop with an Inter Core i7-6700HQ processor and 16 Gbites memory.

6.5.1 Scenario I

In this subsection, the random samples from two populations are generated in the

form of X rkspsq “ µrkspsq ` erkspsq, s P I, k “ 0, 1, where µrkspsq “ ErX rkspsqs, and

e
rks
i psq are Gaussian processes or generalized Gaussian processes (Student-t processes,

see Shah et al. (2014)). Using generalized Gaussian processes (Student-t processes)

allows to simulate potentially heavy-tailed error terms. Such heavy-tailed error terms

are more general and have important usage in stock return modeling and financial

time series.

In the first example, we consider two populations with the same mean but dif-

ferent covariances. One error process in Example 1 is Gaussian and the other is

heavy-tailed. In the next two examples, we consider two Student-t processes with

different means but the same covariance.

Example 6.1. (Gaussian process versus Student-t process (GP vs tP)). In

this example, we have the following two functional populations:

Group 0 : X
r0s
i psq “ e

r0s
i psq and Group 1 : X

r1s
i psq “ e

r1s
i psq,

where e
r0s
i is a Gaussian process with mean zero and covariance function

σpt, sq “ 0.25 expp´|t´ s|2q,

and e
r1s
i is a Student-t process with mean zero, shape parameter σpt, sq, and degree of

freedom 3.

Example 6.2. (More complicated mean curves). In this example, we have the

following two functional populations:

Group 0 : X
r0s
i psq “ Uih1psq ` p1´ Uiqh2psq ` e

r0s
i psq,
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Group 1 : X
r1s
i psq “ Vih1psq ` p1´ Viqh3psq ` e

r1s
i psq,

where Ui and Vi are uniform random variables on the interval r0, 1s,

h1psq “ maxp6´ |s´ 10|, 0q{20,

h2psq “ h1tps´ 4q{20u,

h3psq “ h1tps` 4q{20u,

and e
rks
i , k “ 0, 1, are Student-t processes with mean zero, degree of freedom 3, and

shape parameter σ̃pt, sq “ 1, for t “ s, and σ̃pt, sq “ 0, otherwise. This example

is similar to that in Alonso et al. (2012), whereas te
rks
i psq, s P Iu in Alonso et al.

(2012) are Gaussian white noise instead of heavy-tailed t distribution.

Example 6.3. (Mean curves with different pulses). In this example, we have

the following two functional populations:

Group 0 : X
r0s
i psq “ 4s`

1

100
fpsq ` e

r0s
i psq,

Group 1 : X
r1s
i psq “ 4s` e

r1s
i psq,

where fpsq is the probability density function of Np0, 0.0012q, and te
rks
i , k “ 0, 1u are

the same as the Student-t process in Example 6.1.

Table 6.1 shows the means of misclassification rates with empirical standard errors

in brackets for the above three examples. The best results in all the tables are in

bold. In Example 6.1, two groups have no difference between the mean curves but

differ in the setting of the error processes. In this case, the proposed classifier is

optimal in the sense that the MCRs and the standard errors are the smallest. The

Bayes classifier is comparable with ours. However, the performance of centroid and

logistics classifiers perform rather worse. This may be attributed to that the centroid
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and Logistic methods only work in the cases where the differences are exclusively in

the mean.

In Example 6.2, the mean curves are different but the error processes are the

same for the two populations. The weMulQ classifier still has superior performance,

although the centroid and Logistic classifiers obtain comparable results. The Bayes

method performs relatively poorly and the corresponding MCRs are approximately

triple as much as those of the proposed method.

Example 6.3 is similar to the previous one but the difference in the mean curves

only comes from a pulse. This case is more difficult to classify than the case in

Example 2, and thus the magnitude of misclassification rates are larger than those

in Example 6.2. The proposed classifier still outperforms the others. Particularly,

when n “ 50, the weMulQ classifier obtains MCR 21.48%, which is 88% of MCR

of the second best classifier, i.e., the Cent classifier. The results of the centroid

and logistic classifiers are comparable with those of the proposed method while the

misclassification rates of the Bayes classifier are approximately 50% worse than the

proposed method.

To demonstrate the robustness of the proposed classifier, the boxplots of the

misclassification for the above examples are shown in Figure 6.1. It is easy to see that

the quantile classifier has small medians and standard errors of the misclassification

rates. Especially, when the sample size is large, the quantile classifier works even

better.

Overall, the proposed quantile classifier works well in the sense that it has the

smallest misclassification rates, medians, and standard errors. The quantile and

Bayes methods work well when the mean curves are the same; and all the methods

except the Bayes classifier perform well when the mean curves are different.
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Table 6.1: The means and standard errors (in brackets) of the MRCs for Examples
6.1-6.3 Scenario I

n Quantile Bayes Cent Logistic
Example 6.1 (Mean curves same, GP vs tP)

50 0.1169 (0.0480) 0.1238 (0.0520) 0.4280 (0.0716) 0.4611 (0.0776)
100 0.1080 (0.0330) 0.1163 (0.0405) 0.4356 (0.0493) 0.4687 (0.0591)

Example 6.2 (More complicated mean curves)
50 0.0545 (0.0347) 0.1481 (0.1643) 0.0668 (0.0366) 0.0724 (0.0427)
100 0.0532 (0.0238) 0.1618 (0.1846) 0.0597 (0.0258) 0.0584 (0.0289)

Example 6.3 (Mean curves with different pulses)
50 0.2148 (0.0632) 0.3507 (0.1044) 0.2438 (0.0873) 0.2528 (0.0845)
100 0.1960 (0.0440) 0.2988 (0.0955) 0.1980 (0.0559) 0.2201 (0.0566)

6.5.2 Scenario II

In this subsection, all the random curves are generated in a more ideal way, that is,

the curves come from linear combinations of the presetted eigenbases. The ran-

dom samples from the two populations are generated in the form of X rkspsq “

µrkspsq`
ř50
j“1 ξ

rks
j φjpsq, s P I, k “ 0, 1, where µrkspsq is the mean function of X rkspsq,

ξ
rks
j ’s are projections scores with mean zero and variance λ

rks
j but from different

distributions, and φjp¨q is the jth function in the Fourier basis, that is, φ1psq “ 1,

φ2psq “
?

2 cosp2πsq, φ3psq “
?

2 sinp2πsq, and so on. For the mean functions µrkspsq,

we set µr0spsq “ 0 and set µr1spsq “ 0 or t for the same or different mean settings,

respectively. The variance of ξ
rks
j under the population Π0 are λ

r0s
j “ expp´j{3q, and

those under the population Π1 are λ
r1s
j “ expp´j{3q or λ

r1s
j “ expp´j{2q for the same

or different variance settings, respectively.

Example 6.4. (Mixture Gaussian). The samples are generated using X
rks
i psq “

µrkspsq`
ř50
j“1 ξ

rks
ij φjpsq, where µr0spsq “ 0 and µr1spsq “ 0 or t for the same or different

mean settings, respectively, and ξ
rks
ij are independent normal random variables with

mean zero and variance λ
rks
j .
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Figure 6.1: The boxplots of misclassification rates for Examples 6.1-6.3 in Scenario
I.
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Table 6.2: The means and standard errors (in brackets) of the MCRs for Examples
6.4-6.6 in Scenario II (n “ 50)

µ λ Quantile Bayes Cent Logistic
Example 6.4 (Mixture Gaussian)

same diff 0.2676 (0.0739) 0.2176 (0.0680) 0.4916 (0.0692) 0.5003 (0.0671)
diff same 0.3881 (0.0734) 0.4246 (0.0786) 0.4007 (0.0769) 0.4141 (0.0727)
diff diff 0.2116 (0.0677) 0.1772 (0.0660) 0.3750 (0.0760) 0.3845 (0.0801)

Example 6.5 (Norm-t(3))
same same 0.4427 (0.0671) 0.4548 (0.0724) 0.4993 (0.0672) 0.5108 (0.0697)
same diff 0.3753 (0.0719) 0.3476 (0.0947) 0.4958 (0.0683) 0.5161 (0.0672)
diff same 0.3376 (0.0715) 0.3819 (0.0834) 0.3738 (0.0735) 0.3853 (0.0798)
diff diff 0.2640 (0.0743) 0.2726 (0.0777) 0.3572 (0.0717) 0.3725 (0.0729)

Example 6.6 (Norm-Cauchy)
– – 0.0669 (0.0397) 0.1438 (0.0663) 0.4029 (0.0643) 0.4257 (0.0819)

Example 6.5. (Gaussian and Student-t (Norm-t(3))). The samples are gen-

erated in the way similar to that in Example 4 except that ξ
rks
ij , k “ 0, 1 are indepen-

dent and identically distributed random variables following normal distribution and

t-distribution with degree of freedom 3, respectively.

Example 6.6. (Gaussian and Cauchy (Norm-Cauchy)). The samples are

generated using X
rks
i psq “

ř50
j“1 ξ

rks
ij φjpsq, where ξ

r0s
ij and ξ

r1s
ij are independent normal

random variables and Cauchy random variables, respectively, with the same scale

parameter expp´j{6q.

Example 6.4 was designed by Dai et al. (2017). While the last two examples are

designed to demonstrate the advantages of the proposed method in the cases where

the distributions of the scores in different populations are different.

Tables 6.2 and 6.3 display the misclassification rates results with empirical stan-

dard errors in brackets for the above three examples in Scenario II for sample size

50 and 100, respectively.

In Example 4, the result coincides with our anticipation that the quantile classifier

might not perform the best while the Bayes method has the best performance. When
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Table 6.3: The means and standard errors (in brackets) of the MCRs for Examples
6.4-6.6 in Scenario II (n “ 100)

µ λ Quantile Bayes Cent Logistic
Example 6.4 (Mixture Gaussian)

same diff 0.2094 (0.0694) 0.1479 (0.0391) 0.4905 (0.0501) 0.5063 (0.0514)
diff same 0.3747 (0.0533) 0.3924 (0.0664) 0.3695 (0.0538) 0.3659 (0.0543)
diff diff 0.1687 (0.0582) 0.1206 (0.0366) 0.3358 (0.0555) 0.3361 (0.0548)

Example 6.5 (Norm-t(3))
same same 0.4184 (0.0510) 0.4404 (0.0652) 0.5061 (0.0474) 0.5101 (0.0509)
same diff 0.3354 (0.0616) 0.2827 (0.0478) 0.5061 (0.0517) 0.5035 (0.0482)
diff same 0.3137 (0.0476) 0.3642 (0.0620) 0.3515 (0.0472) 0.3503 (0.0514)
diff diff 0.2306 (0.0601) 0.2201 (0.0499) 0.3247 (0.0495) 0.3288 (0.0545)

Example 6.6 (Norm-Cauchy)
– – 0.0499 (0.0234) 0.1540 (0.0543) 0.3918 (0.0520) 0.4267 (0.0661)

n “ 50, the MCR of weMulQ classifier is 1.23 and 1.19 times of the that of the Bayes

classifier under the same-diff and diff-diff cases, respectively. Under the diff-same

case, the proposed classifier has the best performance. Although the quantile method

is not the best under the Gaussian cases, our method still performs better than the

centroid and Logistic methods. The boxplots of the MCRs in Figures 6.2 and 6.3

indicate that the Bayes classifier outperforms the others when the variances of scores

in two populations are different, while the quantile classifier performs slightly worse

but significantly better than the other two classifiers. In the case that the means are

different but the variances of scores are the same for the two populations, the four

methods are comparable but the proposed one is better for small samples.

For other settings in Dai et al. (2017), where the distributions of the scores are

the same for the two populations, the proposed method is still comparable with the

Bayes method. Therefore, we do not report these cases here but emphasize on the

cases where the distributions of scores are different.

Example 6.5 is designed for generating the curves whose distributions of the scores

are different. Tables 6.2 and 6.3 show that the proposed method outperforms the

others generally. In the cases when the means are different, the quantile methods
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Figure 6.2: The boxplots of misclassification rates for Example 6.4, the mixture
Gaussian case (n “ 50).
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Figure 6.3: The boxplots of misclassification rates for Example 6.4, the mixture
Gaussian case (n “ 100).

outperforms the others. In the case where the means are the same but the variances of

scores are different, the Bayes method obtains better results. The MCR of proposed

classifier is comparable with that of the Bayes one, for example, when the sample size

is 50, the ratio between the MCRs of the weMulQ and the Bayes classifier is 1.08.

In the most difficult case, where both the means and variances of the scores are the

same, the proposed classifier is able to obtain smaller misclassification rates. When

the means and variances of scores are the same, the classification methods based on

the first two moments fail but the quantile classifier is still able to work well since

the quantile of the distributions of the scores are still different, and thus can be used

to classify the curves. Also, we observe from the boxplots of the MCRs in Figures
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6.4 and 6.5 that the proposed classifier and the Bayes classifier are comparable when

the variances of the scores are different while the proposed classifier outperforms the

others when the variances of the scores are the same.
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Figure 6.4: The boxplots of misclassification rates for Example 6.5, the norm-t case
(n “ 50).
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Figure 6.5: The boxplots of misclassification rates for Example 6.5, the norm-t case
(n “ 100).

Example 6.6 is similar to Example 6.5 but the t-distribution is replaced by the

Cauchy distribution. Therefore, the mean and variance of the scores in one popula-

tion are not controllable. From Tables 6.2 and 6.3, it can be seen that the proposed

method has much smaller MCRs. The boxplots of the MRCs for Example 6.6 for

sample size 50 and 100 are shown in Figures 6.6 and 6.7, respectively. The box-

plots indicate that the quantile classifier is the most accurate and robust one among

others.
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Figure 6.6: The boxplots of misclassification rates for Example 6.6, the norm-cauchy
case (n “ 50).
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Figure 6.7: The boxplots of misclassification rates for Example 6.6, the norm-cauchy
case (n “ 100).

Overall, the proposed method has good performance in this subsection, especially

when the sample size is small. The quantile method works the best when the means

are different but the variances of scores are the same or both the means and variances

of scores are the same. This conclusion coincides with that in Scenario I.

From the simulation results, it can be seen that the MCRs of the quantile method

decrease as the sample size increases. However, we observe that in some cases (Ex-

amples 6.2 and 6.6), the performance of the Bayes method is not robust since the

corresponding MCRs increase as the sample size increases. In addition, the comput-

ing time of the proposed method is much smaller than that of the others. Figure 6.8
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shows the average CPU time over 200 simulations for the four methods in Example

6.6. In Figure 6.8, the line corresponding to the quantile method lies lower than

the others, which indicates that the proposed weighted multiple quantile classifier is

computationally efficient. The small-scaled grid search for M0 in (6.12), combined

with the constrained optimization algorithm, makes the implementation fast. The

method does not require a complicated procedure for parameter tuning but is able to

obtain a small misclassification rate. The hyperparameter tuning procedures of the

classifiers by Dai et al. (2017) require a large number of loops which cost much more

computation resources. Thus the proposed classifier is faster than the others. The

R package named QuiCFun for the proposal WeMulQ is developed and is available

upon request.
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Figure 6.8: The CPU time (in seconds) of the classifiers.

6.6 Analysis of Diffusion Tensor Imaging data

Multiple sclerosis (MS) is the most prevalent chronic neurological disease of the

central nervous system that disrupts the flow of information within the brain, and

between the brain and body. The US annual 2012 MS extrapolated population was
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403,630 according to National Multiple Sclerosis Society (2017). Typical symptoms

range from numbness and tingling to blindness and paralysis owing to multifocal

demyelinating lesions in the while matter as well as gray matter lesions. Most people

with MS are diagnosed between the ages of 20 and 50. Once an individual is detected

for MS, clinically early treatment may delay the onset of future attack. Diffusion

tensor imagining (DTI) is a quantitative technique that has been widely applied to

measure and grade the clinical manifestation and evolution of MS at different stages

of the disease (Rovaris et al., 2005; Filippi et al., 2016). It is crucial to classify the

degenerative progression of MS using DTI data, for the purpose of effectively treating

and managing MS patients( Chen et al. (2017), Vafajoo et al. (2018), Dilokthornsakul

et al. (2016), Zwibel and Smrtka (2011), Miller (2004)).

There are several well identified white matter tracts such as right/left corti-

cospinal tract (rCST, lCST), corpus callosum (CCA), and right/left optic radiations

tract (rOPR, lOPR) (see Pomann et al. (2016)). Along the afore white matter tracts,

there are several modalities that DTI provides: fractional anisotropy (FA), parallel

diffusivity, and perpendicular diffusivity ( Goldsmith et al. (2012), among others).

Goldsmith et al. (2011) and McLean et al. (2014) analyzed tract profiles to discrim-

inate multiple sclerosis cases from healthy controls through functional generalized

linear models and functional generalized additive models. Goldsmith et al. (2012)

studied the relationship between the white matter tracts in MS patients and cognitive

impairment over time through longitudinal penalized functional regression. Pomann

et al. (2016) tested the distributions of white matter tract profiles between MS and

control groups. Gertheiss et al. (2013) selected important tracts that are associated

with the disease status. Other studies related to the DTI data in MS can be found

in Morris (2015), Ivanescu et al. (2015), Kong et al. (2016a), Scheipl et al. (2015),

among others. However, to the best of our knowledge, there is no methodology

developed from the view of classification of functional data.
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In this section, we inspect the white matter tract CCA and the modality FA

profile to classify MS patients. The data set consists of 100 subjects with MS and

42 healthy controls. For each subject, FA profile at 93 locations along CCA were

collected. The data set is available in the R package refund.

Figure 6.9 shows the random curves and the mean curves for both groups. Figure

6.10 shows the difference between the covariance functions of the two groups. From

Figures 6.9 and 6.10, we see that there is a shift between the two mean curves but the

covariance functions are approximately the same since the difference of the covariance

surfaces fluctuates around zero. In this case, the method by Dai et al. (2017) may

not perform well from our experience in Scenario I of the simulation study.
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Figure 6.9: White matter measurement trajectories, left panel; mean curves for
both groups, right panel.

Since the proposed classifier as well as most of the existing classifiers for functional

data are developed based on the projection scores, we check whether the projection

scores are different between the two groups. The means and variances of the func-

tional principle component (FPC) scores, which explain 97.01% of the variability,

for both groups are plotted in Figure 6.11. The figure indicates that the means and

variances of the FPC scores are approximately the same. This might raise the diffi-
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Figure 6.10: The difference between two covariance functions.

culty of classifying the curves based on the FPC scores. Nevertheless, the same mean

and variance do not imply the same distribution. Therefore, we report the empirical

probability density functions of the projection scores in Figure 6.12. It is obvious

that some of the scores have different distributions. Based on our experience from

Scenario II in our simulation study, the proposed classifier is able to outperform the

existing classifiers in the cases where the projection scores have the same mean and

variance but different distributions.

Figure 6.13 presents the misclassification rates of the four methods. The markers

corresponding to the best results are solid. We can see that the quantile classifier is

the most precious one in the real data case. The weighted indicator (WI) method

(Alonso et al. (2012)), a classification method with a semi-distance based on the

functional curves directly, is good at rate of false positive. However, more impor-

tantly, one should concern about the false negative rate because this retards the

treatment to prevent deterioration, incurring loss of labor force and more medical

insurance and heath resources. For example, if the rate of misspecification is 3%
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Figure 6.11: Mean and variance for the first nine FPC scores (Π1 blue dashed line,
Π0 red solid line).
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Figure 6.12: pdfs for the first nine FPC scores.
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difference, then every 100 subjects, one may diagnose three MS patients as healthy

individuals. This kind of misclassification, macroscopically, significantly increases

the economic burden of society and the loss of labor force, and hence it is much

serious than the false positive error. The other three existing methods were devel-

oped based on projection scores. These methods have preferably low false negative

rates. However, their false positive rate are relatively high. The proposed classier,

which is developed based on the projection scores and the generalized distance, gives

the lowest false negative rate and the lowest false positive rate among all projection

score-based methods. Overall, the total misclassification rate of our classifier is the

lowest. Consequently, the application of the proposed classifier in MS screening will

benefit the patients and the medical management of the government because the

health risk of the patients and the economic burden of the society can be reduced

while the resources of hospitalizations and emergency case can be saved.
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Figure 6.13: Misclassification rates of the existing methods: H|MS indicates the
event that an MS patient is misdiagnosed as healthy one, and verse visa for MS|H .
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6.7 Discussion

Although the proposed weighted quantile-based classifiers are developed for problems

of binary functional supervised classification, the extension of (6.8) to multiple-class

functional classification is straightforward. Specifically, we first assume that the co-

variance operators Gkps, tq under tΠku
K
k“1, K ą 2, have common eigenfunctions, we

then project all observations onto this shared set of eigenfunctions, and estimate the

weighted quantile distances
řJ
j“1wjLjkpx, τq, k “ 1, . . . , K. At last, by definition,

the weighted quantile-based classifier rule for allocating an new observation X “ x

to one of K populations Π1, . . . ,ΠK is to allocate X “ x to the population Πk‹ ,

which gives the lowest weighted loss measurement
řJ
j“1wjLjkpx, τq, k P t1, . . . , Ku.

Similarly, (6.11) and (6.13) can be extended to multiple-class functional classification

problems. Although such extension is theoretically straightforward, the numerical

results would be unstable and not satisfactory in some cases according to our simu-

lation experience. Another solution is to minimize the softmax function instead of

the misclassification rate. Softmax loss is widely used for multi-class classification in

deep learning community (He et al., 2016). Softmax loss is a multi-class classification

version of the binary cross-entropy loss, which is the likelihood function of the lo-

gistic regression model under a traditional statistical view. Designing the projection

classifier departing from the softmax loss directly might obtain a good numerical re-

sult. But it also poses challenges in theoretical development. Such extension deserves

further investigation.

6.8 Proofs

In this section, we list some mild assumptions, which are used in Theorems 6.1 and

6.2, and provide some Lemmas and the detailed proofs of the asymptotic results.
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6.8.1 Assumptions

Again, let S “ ra0, 1 ´ a0s for arbitrarily small 0 ă a0 ă 0.5. Let ζ “ pζ1, ζ2, . . .q

denote an infinite sequence of random variables, where each ζj has τ -quantiles qjpτq

for all τ P S and median zero. Assume that there is at most value u with Fζjpuq “ τ

for all τ P S, j “ 1, 2, . . . For infinite sequences of constants pυ01, υ02, . . .q and

pυ11, υ12, . . .q, assume that for each J P Z, the J-dimensional vector pξ
r0s
1 , . . . , ξ

r0s
J q

is identically distributed as pυ01 ` ζ1, . . . , υ0J ` ζJq, and the J-dimensional vec-

tor pξ
r1s
1 , . . . , ξ

r1s
J q is identically distributed as pυ11 ` ζ1, . . . , υ1J ` ζJq, respectively.

Thus, the τ -quantiles of ξ
r0s
j is q

r0s
j pτq “ υ0j ` qjpτq, and the τ -quantiles of ξ

r1s
j is

q
r1s
j pτq “ υ1j ` qjpτq. We also assume that pXi, Yiq

n
i“1 are independent and identi-

cally distributed. The following assumptions are needed in Theorem 6.2.

Assumption 6.9. limλÑ8 supjě1Et|ζj|Ip|ζj| ą λqu “ 0.

Assumption 6.10. Let Ljtζ, τ, qjpτqu “ tτ ` p1´ 2τqIrζj ď qjpτqsu|ζj ´ qjpτq|. For

each c ą 0,

inf
jě1

inf
|u|ěc

inf
τPS

ˆ

ErLjtζ, τ, qjpτq ` uus ´ ErLjtζ, τ, qjpτqus

˙

ą 0.

Assumption 6.11.

inf
jě1

inf
τPS

ˆ

minrτ ´ P tζj ď qjpτq ´ cu, 1´ τ ´ P tζj ě qjpτq ` cus

˙

ą 0.

Assumption 6.12.

lim
NÑ8

sup
j1,j2:|j1´j2|ěN

sup
B1,B2PB

|P pζj1 P B1, ζj2 P B2q ´ P pζj1 P B1qP pζj2 P B2q| “ 0.

Assumptions 6.9-6.12 is similar to Assumptions 3-6 in Henning and Viroli (2016).

Assumption 6.9 requires that the first moments of the variables ζj be uniformly
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bounded in a strong sense, for example, Assumption 6.9 holds if the ζj’s are identical

distributed with finite mean. Assumptions 6.10-6.11 concern uniform continuity and

well-definedness of the quantiles. If variables ζj’s are identically distributed, then

these conditions hold under the basic assumption of uniquely defined τ -qunatile.

Assumption 6.12 is a strong α-mixing condition, which implies that variables with

different index numbers will be approximately independent.

Since we can not observe the entire predictor trajectories tXiu
n
i“1, but rather

obtain the irregular/regular repeated measurements of the predictors, contaminated

with additional measurement errors, we must implement the smoothing step with

local polynomial fitting to obtain smooth estimates of the predictor trajectories

tXiu
n
i“1. In order to obtain the asymptotic results of Theorem 6.1 and 6.2 under

presmoothing, we also need the following additional mild assumptions.

Assumption 6.13. For k “ 0, 1, X rkspsq is twice continuously differentiable on I

with probability approaching one, such that
ş

JX
E
 

d2X rkspsq{dt2
(

dsă8.

Assumption 6.14. For i “ 1, . . . , n, the measurement times tTil, l “ 1, . . . ,miu

can be generated by Til “ G´1
i tpl ´ 1q{pmi ´ 1qu, where Giptq “

şt

´8
gipsqds, and the

density function gip¨q is uniformly smooth over i, satisfying
ş

I gipsqds“ 1, 0 ă C1 ă

infitinfsPI gipsqu ă supitsupsPI gipsqu ă C2 ă 8.

Assumption 6.15. There exist a common sequence of bandwidths h such that 0 ă

infi“1,...,n hi{h ă supi“1,...,n hi{h ă 8, where hi is the bandwidth for smoothing Xi.

The kernel function κp¨q is smooth and compactly supported on I.

Assumption 6.16. Let I “ ra0, b0s, Ti0 “ a0, Timi “ b0, ∆i “ suptTil`1 ´

Til, l “ 1, . . . ,miu, m0 “ infi“1,...,nmi, we have supi ∆i “ Opm´1
0 q, h „ m

´1{5
0

and m0n
´5{4 Ñ 8, as nÑ 8.

Assumption 6.13 is standard for local linear smoothers. Assumptions 6.14 and
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6.16 concern how the functional predictors are sampled and smoothed. Assumption

6.15 is aimed to guarantee that the smooth estimates X̂i serve as well as the true

functional predictors Xi. Assumptions 6.13-6.16 are also used in Kong et al. (2016b)

and Dai et al. (2017). From Assumption 6.16, we know that the repeated observations

are sufficiently dense for each subject.

6.8.2 Lemmas

To prove Theorem 6.1, we need the following Lemma.

Lemma 6.1. For any given w PWJ , and any ε ą 0, there exists a sequence J Ñ 8

such that

P

ˆ

sup
τPS

|Ψ̂npJ, τ,wq ´ΨpJ, τ,wq| ď ε

˙

Ñ 1, nÑ 8, J Ñ 8.

Proof of Lemma 6.1. Denote

ΨnpJ, τ,wq “
1

n

"

ÿ

i:Yi“0

I

«

J
ÿ

j“1

wjtL1jnpξij, τq ´ L0jnpξij, τqu ą 0

ff

`
ÿ

i:Yi“1

I

«

J
ÿ

j“1

wjtL1jnpξij, τq ´ L0jnpξij, τqu ď 0

ff

*

, (6.14)

where Lkjnpξij, τq ” Ljpξij, τ, q
rks
jn pτqq “ rτ ` p1 ´ 2τqItξij ď q

rks
jn pτqus|ξij ´ q

rks
jn pτq|,

and q
rks
jn pτq is the empirical τ -quantile of ξ

rks
j , k “ 0, 1, j “ 1, 2, . . . In words, we use

the true projection scores ξij and the true empirical quantile q
rks
jn pτq to define the

observed rate of correct classification p6.14q. From the definition of Ψ̂npJ, τ,wq and

ΨpJ, τ,wq, we obtain

sup
τPS

|Ψ̂npJ, τ,wq ´ΨpJ, τ,wq|

ď sup
τPS

|Ψ̂npJ, τ,wq ´ΨnpJ, τ,wq| ` sup
τPS

|ΨnpJ, τ,wq ´ΨpJ, τ,wq|

”U1n ` U2n.

(6.15)
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We first consider the term U2n. Suppose that U2n
p
ÝÑ 0 does not hold as n Ñ 8

and J Ñ 8. It means that there exist ε ą 0, δ ą 0, J P Z, a sequence M of

t1, 2, . . .u, and tτ˚mumPM such that P t|ΨmpJ, τ,wq ´ ΨpJ, τ,wq| ą εu ě δ, for any

m P M. Since tτ˚mumPM is bounded and at least a subsequence has a limit, there

exists τ˚ “ lim
mÑ8

τ˚m. Note that for any m PM and J P Z,

|ΨmpJ, τ
˚
m,wq ´ΨpJ, τ˚m,wq|

ď |ΨmpJ, τ
˚
m,wq ´ΨmpJ, τ

˚,wq| ` |ΨmpJ, τ
˚,wq ´ΨpJ, τ˚,wq|

`|ΨpJ, τ˚,wq ´ΨpJ, τ˚m,wq|

” U21m ` U22m ` U23m. (6.16)

Since Ψp¨, τ, ¨q is continuous with respect to τ , for any J P Z and w PWJ , the term

U23m converges to zero as m Ñ 8. For the term U22m, we define a true version of

ΨnpJ, τ,wq, using the true quantiles instead of the empirical ones, that is,

Ψ̃npJ, τ,wq “
1

n

"

ÿ

i:Yi“0

I

„ J
ÿ

j“1

wjpL1jpξij, τq ´ L0jpξij, τqq ą 0



`
ÿ

i:Yi“1

I

„ J
ÿ

j“1

wjpL1jpξij, τq ´ L0jpξij, τqq ą 0

*

,

where Lkjpξij, τq “ rτ ` p1´ 2τqIpξij ď q
rks
j pτqqs|ξij ´ q

rks
j pτq|. Thus, we have

U22m “ |ΨmpJ, τ
˚,wq ´ΨpJ, τ˚,wq|

ď |ΨmpJ, τ
˚,wq ´ Ψ̃mpJ, τ

˚,wq| ` |Ψ̃mpJ, τ
˚,wq ´ΨpJ, τ˚,wq|

” U221m ` U222m.

Because of the strong law of large numbers, limmÑ8 |Ψ̃mpJ, τ
˚,wq´ΨpJ, τ˚,wq|

a.s.
ÝÑ

0, for any given J P Z, w PWJ . Since Lkjpξij, τq ” Lkjrξij, τ, q
rks
j pτqs is continuous on
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q
rks
j pτq, and lim

mÑ8
q
rks
jmpτq

a.s.
“ q

rks
j pτq, j “ 1, 2, . . . Thus, for any given J P Z, w P WJ ,

U221m
a.s.
ÝÑ 0, and then U22m

a.s.
ÝÑ 0 as mÑ 8.

We now consider the term U21m “ |ΨmpJ, τ
˚,wq ´ΨmpJ, τ

˚,wq|. Note that

ΨmpJ, τ,wq “
1

m

ˆ

ÿ

i:Yi“0

I

«

J
ÿ

j“1

wjtL1jmpξij, τq ´ L0jmpξij, τqu ą 0

ff

`
ÿ

i:Yi“1

I

«

J
ÿ

j“1

wjtL1jmpξij, τq ´ L0jmpξij, τqu ď 0

ff

˙

,

(6.17)

where Lkjmpξij, τq “ rτ ` p1´ 2τqIpξij ď q
rks
jmpτqqs|ξij ´ q

rks
jmpτq|. Note that

|q
rks
jmpτ

˚
mq ´ q

rks
jmpτ

˚
q|

ď|q
rks
jmpτ

˚
q ´ q

rks
j pτ

˚
q| ` |q

rks
jmpτ

˚
mq ´ q

rks
j pτ

˚
mq| ` |q

rks
j pτ

˚
mq ´ q

rks
j pτ

˚
q|.

(6.18)

It follows from Theorem 3 in Mason (1982) that lim
mÑ8

sup
τPS

|q
rks
jmpτq´ q

rks
j pτq|

a.s
ÝÑ 0, for

j P Z. Hence, the first two terms on the right-hand side of (6.18) converge to zero

almost surely as m Ñ 8. For the last term of (6.18), since τ ‹m Ñ τ ‹ as m Ñ 8,

applying conditions (A1) and (A3) gives sup
jě1

ˇ

ˇq
rks
j pτ

˚
mq ´ q

rks
j pτ

˚q
ˇ

ˇ

a.s
ÝÑ 0 as m Ñ 8.

Then it follows from (6.18) that

|q
rks
jmpτ

˚
mq ´ q

rks
jmpτ

˚
q|

a.s
ÝÑ 0, as mÑ 8, j “ 1, 2, . . . . (6.19)

Let

QJpX, τ,wq “
J
ÿ

j“1

wjrL1jpξj, τq ´ L0jpξj, τqs,

Q̃JpX, τ,wq “
J
ÿ

j“1

wjrL1jnpξj, τq ´ L0jnpξj, τqs.
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For any fixed ε ą 0, define

XεpJ,wq “

"

X

ˇ

ˇ

ˇ

ˇ

|QJpX, τ,wq| ą ε

*

X

"

X

ˇ

ˇ

ˇ

ˇ

J
ÿ

j“1

wj|ξj| ď ε´1

*

.

Then we have

|ΨmpJ, τ
˚
m,wq ´ΨmpJ, τ

˚,wq|

“
1

m

"

ÿ

i:Yi“0
XiPXεpJ,wq

`

IrQ̃JpXi, τ
˚
m,wq ą 0s ´ IrQ̃JpXi, τ

˚,wq ą 0s
˘

`
ÿ

i:Yi“1
XiPXεpJ,wq

`

IrQ̃JpXi, τ
˚
m,wq ď 0s ´ IrQ̃JpXi, τ

˚,wq ď 0s
˘

`
ÿ

i:Yi“0
XiRXεpJ,wq

`

IrQ̃JpXi, τ
˚
m,wq ą 0s ´ IrQ̃JpXi, τ

˚,wq ą 0s
˘

`
ÿ

i:Yi“1
XiRXεpJ,wq

`

IrQ̃JpXi, τ
˚
m,wq ď 0s ´ IrQ̃JpXi, τ

˚,wq ď 0s
˘

*

”m´1
pV1m ` V2m ` V3m ` V4mq.

For large m and arbitrarily δ ą 0, we have

m´1
pV3m ` V4mq ď 1´ P tXεpJ,wqu ` δ, a.s.

As for the term m´1pV1m ` V2mq, we note that for X P XεpJ,wq,

|Q̃JpX, τ
˚
m,wq ´ Q̃JpX, τ

˚,wq|

ď 2
J
ÿ

j“1

wj|ξj||τ
˚
m ´ τ

˚
| ` 8

J
ÿ

j“1

wj|q
rks
jmpτ

˚
mq ´ q

rks
jmpτ

˚
q|. (6.20)

Since |τ˚m ´ τ˚| Ñ 0 as m Ñ 8, and
řJ
j“1wj|ξj| ď ε´1 for X P XεpJ,wq, the first

term on the right hand side of (6.20) can be arbitrarily small, for large enough m
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and X P XεpJ,wq. Applying the well-known results in Csörgo and Révész (1981),

we have

lim sup
nÑ8

plog log nq´1{2n1{2 sup
τPT

ˇ

ˇq
rks
jn pτq ´ q

rks
j pτq

ˇ

ˇ

a.s
“ 2´1{2, k “ 0, 1, (6.21)

for j “ 1, 2, . . . For the second term on right hand side of (6.20), by applying (6.18),

(6.21) and Condition (A3), we have

J
ÿ

j“1

wj
ˇ

ˇq
rks
jmpτ

˚
mq ´ q

rks
jmpτ

˚
q
ˇ

ˇ

ď

J
ÿ

j“1

wj
“

|q
rks
jmpτ

˚
q ´ q

rks
j pτ

˚
q| ` |q

rks
jmpτ

˚
mq ´ q

rks
j pτ

˚
mq| ` |q

rks
j pτ

˚
mq ´ q

rks
j pτ

˚
q|
‰

“

˜

J
ÿ

j“1

wj

¸

Oa.s.

˜

c

log log n

n

¸

`

˜

J
ÿ

j“1

wj

¸

|τ˚m ´ τ
˚
|
a.s.
ÝÑ 0,

as m Ñ 8, for any J P Z. Then, |Q̃JpXi, τ
˚
m,wq ´ Q̃JpXi, τ

˚,wq|
a.s.
ÝÑ 0 for large

enough m, Xi P XεpJ,wq, and all J P Z, i “ 1, . . . , n. Thus, for Xi P XεpJ,wq,

Q̃JpXi, τ
˚
m,wq and Q̃JpXi, τ

˚,wq are identical in sign, and the corresponding indi-

cator functions therefore are the same, almost surely. It follows from Condition

(A.2) that P tXεpJ,wqu Ñ 1, as ε Ñ 0, for any J P Z and w P WJ , which implies

U21m
a.s.
ÝÑ 0, for large m and any J P Z. Thus, we have U2n

a.s.
ÝÑ 0, as mÑ 8.

We next consider the term U1n. Note that

Ψ̂npJ, τ,wq “
1

n

"

ÿ

i:Yi“0

I

«

J
ÿ

j“1

wjtL̂1jnpξ̂ij, τq ´ L̂0jnpξ̂ij, τqu ą 0

ff

`
ÿ

i:Yi“1

I

«

J
ÿ

j“1

wjtL̂1jnpξ̂ij, τq ´ L̂0jnpξ̂ij, τqu ď 0

ff

*

,

where L̂kjnpξ̂ij, τq “ rτ ` p1´ 2τqIpξ̂ij ď q̂
rks
jn pτqqs|ξ̂ij ´ q̂

rks
jn pτq|. Since Q̃JpXi, τ,wq “

řJ
j“1wjrL1jnpξij, τq´L0jnpξij, τqs, and Q̂JpXi, τ,wq “

řJ
j“1wjrL̂1jnpξ̂ij, τq´L̂0jnpξ̂ij, τqs,
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we have

Ψ̂npJ, τ,wq ´ΨnpJ, τ,wq

“
1

n

ÿ

i:Yi“0

 

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s
(

`
1

n

ÿ

i:Yi“0

 

IrQ̂JpXi, τ,wq ď 0s ´ IrQ̃JpXi, τ,wq ď 0s
(

.

Note that

Q̂JpXi, τ,wq ´ Q̃JpXi, τ,wq

“

J
ÿ

j“1

wjrL̂1jnpξ̂ij, τq ´ L̂0jnpξ̂ij, τqs ´
J
ÿ

j“1

wjrL1jnpξij, τq ´ L0jnpξij, τqs

“

J
ÿ

j“1

wj

"

rτ ` p1´ 2τqIpξ̂ij ď q̂
r1s
jn pτqqs|ξ̂ij ´ q̂

r1s
jn pτq|

´rτ ` p1´ 2τqIpξ̂ij ď q̂
r0s
jn pτqqs|ξ̂ij ´ q̂

r0s
jn pτq|

*

´

J
ÿ

j“1

wj

"

rτ ` p1´ 2τqIpξij ď q
r1s
jn pτqqs|ξij ´ q

r1s
jn pτq|

´rτ ` p1´ 2τqIpξij ď q
r0s
jn pτqqs|ξij ´ q

r0s
jn pτq|

*

.

Thus, we focus on

ξ̂ij ´ q̂
rks
jn pτq “ pξ̂ij ´ ξijq ` rξij ´ q

rks
j pτqs ´ rq̂

rks
jn pτq ´ q

rks
jn pτqs ´ rq

rks
jn pτq ´ q

rks
j pτqs

” D1 `D2 ´D3 ´D4,

and ξij ´ q
rks
jn pτq “ tξij ´ q

rks
j pτqu ´ tq

rks
jn pτq ´ q

rks
j pτqu ” D2 ´ D4, for k “ 0, 1. For
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any X P L2pIq, we have

Q̂JpX, τ,wq ´ Q̃JpX, τ,wq “
J
ÿ

j“1

wj

"

rτ ` p1´ 2τqIpx̂j ď q̂
r1s
jn pτqqs|x̂j ´ q̂

r1s
jn pτq|

´ rτ ` p1´ 2τqIpxj ď q
r1s
jn pτqqs|xj ´ q

r1s
jn pτq|

*

´

J
ÿ

j“1

wj

"

rτ ` p1´ 2τqIpx̂j ď q̂
r0s
jn pτqqs|x̂j ´ q̂

r0s
jn pτq|

´ rτ ` p1´ 2τqIpxj ď q
r0s
jn pτqqs|xj ´ q

r0s
jn pτq|

*

“

J
ÿ

j“1

wjrR1jpx, τq ´R0jpx, τqs,

where

Rkjpx, τq “ rτ ` p1´ 2τqIpx̂j ď q̂
rks
jn pτqqs|x̂j ´ q̂

rks
jn pτq|

´ rτ ` p1´ 2τqIpxj ď q
rks
jn pτqqs|xj ´ q

rks
jn pτq|,

for k “ 0, 1. Denote 4pτq ” ´px̂j ´ xjq ` q̂rksjn pτq ´ q
rks
jn pτq. Then we have

|Rkjpx, τq| “|tτ ` p1´ 2τqIrxj ď q
rks
jn pτq `4pτqsu|xj ´ qrksjn pτq ´4pτq|

´ rτ ` p1´ 2τqIpxj ď q
rks
jn pτqqs|xj ´ q

rks
jn pτq|.

Let ρτ puq “ urτ ´ Ipu ă 0qs. We then have

|Rkjpx, τq| “ |ρτ rxj ´ q
rks
jn pτq ´4pτqs ´ ρτ rxj ´ qrksj pτqs|.

Applying the following identity

ρτ pu´ νq ´ ρτ puq “ ´νϕτ puq `

ż ν

0

rIpu ď sq ´ Ipu ď 0qsds,

where ϕτ puq “ τ ´ Ipu ă 0q, τ P p0, 1q, we obtain

Rkjpx, τq “ ´4pτqϕτ rxj´qrksjn pτqs`
ż 4pτq

0

 

rIpxj´q
rks
jn pτq ď sqs´rIpxj´q

rks
jn pτq ď 0qs

(

ds.
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Since ϕτ p¨q and the indicator function are bounded, we have

|Rkjpx, τq| ď |4pτq| ` 2|4pτq| “ 3|4pτq|.

Therefore, we only need to study the property of 4pτq. Since

|4pτq| ď |x̂j ´ xj| ` |q̂rksjn pτq ´ q
rks
jn pτq|

“

ˇ

ˇ

ˇ

ˇ

ż

I
x̂psqψ̂jpsqds´

ż

I
xpsqψjpsqds

ˇ

ˇ

ˇ

ˇ

` |q̂
rks
jn pτq ´ q

rks
jn pτq|,

ξ̂ij ´ ξij “

ż

I
X̂ipsqψ̂jpsqds´

ż

I
Xipsqψjpsqds

“

ż

I
X̂ipsqrψ̂jpsq ´ ψjpsqsds`

ż

I
rX̂ipsq ´Xipsqsψjpsqds,

we have

|ξ̂ij ´ ξij| ď

ˇ

ˇ

ˇ

ˇ

ż

I
Xipsqrψ̂jpsq ´ ψjpsqsds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

I
pX̂ipsq ´Xipsqqrψ̂jpsq ´ ψjpsqsds

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

I
pX̂ipsq ´Xipsqqrψjpsqsds

ˇ

ˇ

ˇ

ˇ

ď }Xipsq}}ψ̂j ´ ψj} ` }X̂ipsq ´Xi}}ψ̂j ´ ψj} ` }X̂ipsq ´Xipsq}.

For fixed ε ą 0, set c such that P p}X} ą cq “ P tX R F0pcqu ď
ε
2
, where F0pcq “

 

X
ˇ

ˇ}X} ď c
(

for c ą 0 with } ¨ } being the L2 norm. According to the Lemma 1 of

Kong et al. (2016b), we know that

Er}X̂i ´Xi}
2
s “ opn´1

q, E

"
ż

rX̂ipsq ´Xipsqs
4ds

*

“ opn´2
q. (6.22)

Thus, }X̂i ´ Xi} “ oppn
´1{2q, for i “ 1, . . . , n. By applying Corollary 3.7 of Li and

Hsing (2010), we have }ψ̂j ´ ψj}
a.s.
“ Op

b

logn
n
q.
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To prove sup
τPS

|Ψ̂npJ, τ,wq ´ ΨnpJ, τ,wq|
p
ÝÑ 0 as n Ñ 8 and J Ñ 8, for any

w PWJ , it is suffice to prove that

sup
wPWJ

sup
τPS

1

n

ÿ

i:Yi“0

ˇ

ˇ

ˇ

ˇ

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0,

and

sup
wPWJ

sup
τPS

1

n

ÿ

i:Yi“1

ˇ

ˇ

ˇ

ˇ

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0.

Thus, we only need to prove

sup
wPWJ

1

n

ÿ

i:Yi“0

sup
τPS

ˇ

ˇ

ˇ

ˇ

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0,

sup
wPWJ

1

n

ÿ

i:Yi“1

sup
τPS

ˇ

ˇ

ˇ

ˇ

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0.

(6.23)

According to the aforementioned results, we have

Q̂JpXi, τ,wq ´ Q̃JpXi, τ,wq “
J
ÿ

j“1

wjrR1jpXi, τq ´R0jpXi, τqs,

|RkjpXi, τqq| ď 3|4ipτq|,

|4ipτq| ď }Xi}}ψ̂j ´ ψj} ` }X̂i ´Xi}}ψ̂j ´ ψj} ` }X̂i ´Xi} ` |q̂
rks
jn pτq ´ q

rks
jn pτq|,

where

Rkjpx, τq “ rτ ` p1´ 2τqIpx̂j ď q̂
rks
jn pτqqs|x̂j ´ q̂

rks
jn pτq|

´ rτ ` p1´ 2τqIpxj ď q
rks
jn pτqqs|xj ´ q

rks
jn pτq|

“ rτ ` p1´ 2τqIpxj ď q
rks
jn pτq ´ px̂j ´ xjqq ` q̂

rks
jn pτq ´ q

rks
jn pτqs

|xj ´ q
rks
jn pτq ` px̂j ´ xjq ´ pq̂

rks
jn pτq ´ q

rks
jn pτqq|

´ rτ ` p1´ 2τqIpxj ď q
rks
jn pτqqs|xj ´ q

rks
jn pτq|.
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Since 4pX, τq ” 4pτq “ ´px̂j ´ xjq ` rq̂rksjn pτq ´ q
rks
jn pτqs, |RkjpX, τq| ď 3|4pτq|, and

|4pτq| ď |x̂j ´ xj| ` |q̂rksjn pτq ´ q
rks
jn pτq|,

we have

RkjpXi, τq ď 3|4ipτq| ” 3|4pτq| ď 3
 

|ξ̂ij ´ ξij| ` |q̂
rks
jn pτq ´ q

rks
jn pτq|

(

“ 3
 

}Xi}}ψ̂j ´ ψj} ` }X̂i ´Xi}}ψ̂j ´ ψj} ` }X̂i ´Xi} ` |q̂
rks
jn pτq ´ q

rks
jn pτq|

(

.

For (6.23), we have

1

n

ÿ

i:Yi“0

sup
τPS

ˇ

ˇ

ˇ

ˇ

IrQ̂JpXi, τ,wq ą 0s ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

“
1

n

ÿ

i:Yi“0

sup
τPS

ˇ

ˇ

ˇ

ˇ

IrQ̃JpXi, τ,wq ą ´tQ̂JpXi, τ,wq ´ Q̃JpXi, τ,wqus ´ IrQ̃JpXi, τ,wq ą 0s

ˇ

ˇ

ˇ

ˇ

.

Thus, in order to prove the equation (6.23), it is sufficient to show that

sup
wPWJ

sup
τPS

|Q̂JpXi, τ,wq ´ Q̃JpXi, τ,wq|
p
ÝÑ 0, (6.24)

as nÑ 8 and J Ñ 8. For any w PWJ , we have

sup
τPS

|Q̂JpXi, τ,wq ´ Q̃JpXi, τ,wq|

“

J
ÿ

j“1

wj sup
τPS
r|R1jpXi, τq| ` |R0jpXi, τq|s

“

J
ÿ

j“1

wj sup
τPS

|R1jpXi, τq| `
J
ÿ

j“1

wj sup
τPS

|R0jpXi, τq| (6.25)

“
ÿ

k“0,1

" J
ÿ

j“1

wj sup
τPS

|RkjpXi, τq|

*

ď C
ÿ

k“0,1

"

p

J
ÿ

j“1

wj}ψ̂j ´ ψj}q}Xi} ` }X̂i ´Xi}

J
ÿ

j“1

wj}ψ̂j ´ ψj}
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`

J
ÿ

j“1

wjp}X̂i ´Xi}q `

J
ÿ

j“1

sup
τPS

|q̂
rks
jn pτq ´ q

rks
jn pτq|

*

“ C}Xi}

ˆ J
ÿ

j“1

wj}ψ̂j ´ ψj}

˙

` C}X̂i ´Xi}

ˆ J
ÿ

j“1

wj}ψ̂j ´ ψj}

˙

`C}X̂i ´Xi}

ˆ J
ÿ

j“1

wj

˙

` C
J
ÿ

j“1

sup
τPS

|q̂
rks
jn pτq ´ q

rks
jn pτq|,

For the first three terms in (6.25), it follows from (6.22) and Theorem 3.6 in Li and

Hsing (2010) that the first three terms in (6.25) are opp1q as J Ñ 8 and n Ñ 8.

Thus, if we want to derive (6.24), we need to prove that
řJ
j“1 sup

τPS
|q̂
rks
jn pτq´q

rks
jn pτq|

p
ÝÑ

0 as J Ñ 8. Note that q̂
rks
jn pτq “ inftx|F̂njpxq ě τu and q

rks
jn pτq “ inftx|Fnjpxq ě τu,

where F̂njpxq “ n´1
řn
i“1 Ipξ̂ij ď xq, Fnjpxq “ n´1

řn
i“1 Ipξij ď xq, and F

ξ
rks
j
puq :“

F
rks
j puq. So, we have

sup
xPR

|F̂njpxq ´ Fnjpxq| “ sup
xPR

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

rIpξ̂ij ď xq ´ Ipξij ď xqs

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
xPR

n´1
n
ÿ

i“1

|Irx´ pξ̂ij ´ ξijq ď ξij ď xs|

“ n´1
n
ÿ

i“1

sup
xPR

|Irx´ pξ̂ij ´ ξijq ď ξij ď xs|.

Denote πij “ ξ̂ij´ξij, |πij| “ |ξ̂ij´ξij| ď }Xi}}ψ̂j´ψj}`}X̂i´Xi}}ψ̂j´ψj}`}X̂i´Xi}.

Then we have

sup
xPR

|F̂njpxq ´ Fnjpxq| “ sup
xPR

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

Irx´ πij ď ξij ď xs

ˇ

ˇ

ˇ

ˇ

.

Denote Fipcq “ t}Xi} ď c,
?
n}X̂i ´ Xi} ď cu for c ą 0. On one hand, letting

Fpcq “ F1pcq XF2pcq X . . .XFnpcq, we have }πij} ď c}ψ̂j ´ψj} ` c{
?
n on Fpcq. On
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the other hand, by applying Theorem 3.6 in Li and Hsing (2010), we get }ψ̂j´ψj}
a.s.
“

O
´
b

logn
n

¯

. Thus, we have |πij|
a.s.
“ O

´
b

logn
n

¯

on Fpcq.

Similar to the proof of Glivenko’s theorem, we have sup
xPR

|F̂njpxq ´ Fnjpxq|
a.s.
“

O
´
b

logn
n

¯

, n´1
řn
i“1 Ipx ´ πij ď ξij ď xq

a.s.
Ñ cfjpxq

b

logn
n

on Fpcq as n Ñ 8,

where fjpuq denotes the density function of the projection score ξj. Assume that

sup
jě1

sup
uPR

|fjpuq| ă 8. Then one can obtain

sup
xPR

|F̂njpxq ´ Fnjpxq|
a.s.
“ O

˜

c

log n

n

¸

. (6.26)

Thus, we have
řJ
j“1 sup

τPT
|q̂
rks
jn pτq ´ q

rks
jn pτq| “ OpJ

b

logn
n
q as n Ñ 8 and J Ñ 8.

From the fact X is a square integrable random function and (6.22), it holds that

P tFpcqu Ñ 1 as cÑ 8. We then obtain I1n
p
ÝÑ 0, and

sup
τPS

|Ψ̂npJ, τ,wq ´ΨpJ, τ,wq|
p
ÝÑ 0, as J Ñ 8, nÑ 8.

Thus, we have ΨpJ, τ̂n,wq ´ΨpJ, τ0,wq
p
ÝÑ 0, as nÑ 8 and J Ñ 8. We complete

the proof of Lemma 1.

6.8.3 Proofs of Main Results

Proof of Theorem 6.1. Define

Ljpx, τ, qq ” rτ ` p1´ 2τqIpxj ď qqs|xj ´ q|,

and abbreviate Ljtx, τ, q
rks
j pτqu as Lkjpx, τq. It follows from Lemma 3 in Henning

and Viroli (2016) that

|Ljpx, τ1, q1q ´ Ljpx, τ2, q2q| ď |xj||τ1 ´ τ2| ` 4|q1 ´ q2|, (6.27)
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where q1 ” q1pτ1q and q2 ” q2pτ2q for j “ 1, . . . , J and x P L2pIq. From (6.27),

we know that Lkjpx, τq is a continuous function with respect to τ , implying the

continuity of ΨpJ, τ,wq with respect to τ . Then the convergence of the integrals

of indicator functions within Ψ can be guaranteed by the dominated convergence

theorem for τ̂n Ñ τ , τ P S. For any J P Z and w P WJ ,

|ΨpJ, τ̂n,wq ´ΨpJ, τ0,wq|

ď|ΨpJ, τ̂n,wq ´ Ψ̂npJ, τ̂n,wq| ` |Ψ̂npJ, τ0,wq ´ΨpJ, τ0,wq| ` |Ψ̂npJ, τ̂n,wq ´ Ψ̂npJ, τ0,wq|

”I1n ` I2n ` I3n.

By applying Lemma 6.1, for any w P WJ , we have I1n
p
Ñ 0 and I2n

p
Ñ 0 as n Ñ

8, J Ñ 8. For the term I3n, by definition, we have Ψ̂npJ, τ̂n,wq ě Ψ̂npJ, τ0,wq,

ΨpJ, τ0,wq ě ΨpJ, τ̂n,wq. Thus, it follows that

Ψ̂npJ, τ̂n,wq ´ Ψ̂npJ, τ0,wq

“Ψ̂npJ, τ̂n,wq ´ΨpJ, τ0,wq `ΨpJ, τ0,wq ´ Ψ̂npJ, τ0,wq

”I31n ` I32n ď |I31n| ` |I32n|.

By applying Lemma 6.1 again, for any w P WJ , it is easy to show that |I32n|
p
Ñ 0 as

nÑ 8 and J Ñ 8. As for the term I31n, note that

Ψ̂npJ, τ0,wq ´ΨpJ, τ0,wq ď Ψ̂npJ, τ̂n,wq ´ΨpJ, τ0,wq ă Ψ̂npJ, τ̂n,wq ´ΨpJ, τ̂n,wq.

From Lemma 6.1 and the Sandwich theorem, we have I31n
p
Ñ 0 as n Ñ 8 and

J Ñ 8. Thus, for any ε ą 0, we can conclude that

inf
wPWJ

P

"

|ΨpJ, τ̂n,wq ´ΨpJ, τ0,wq| ď ε

*

Ñ 1, as nÑ 8, J Ñ 8.

This completes the proof of Theorem 1.
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Proof of Theorem 6.2. To prove the asymptotic result of Theorem 2, it is

sufficient to show that

inf
τPS

inf
wPWJ

“

PΠ0tQ̂JpX, τ,wq ą 0u Ñ 1, as nÑ 8, J Ñ 8,

inf
τPS

inf
wPWJ

“

PΠ1tQ̂JpX, τ,wq ď 0u Ñ 1, as nÑ 8, J Ñ 8. (6.28)

Note that Q̂JpX, τ,wq “ Q̃JpX, τ,wq ` tQ̂JpX, τ,wq ´ Q̃JpX, τ,wqu. By applying

Assumptions 6.7-6.12 and using arguments similar to those in Henning and Viroli

(2016) and Hall et al. (2009), one can show that

inf
τPS

inf
wPWJ

“

PΠ0tQ̃JpX, τ,wq ą 0u Ñ 1, as nÑ 8, J Ñ 8,

and

inf
τPS

inf
wPWJ

“

PΠ1tQ̃JpX, τ,wq ď 0u Ñ 1, as nÑ 8, J Ñ 8.

Thus, to prove (6.28), we only need to prove that, for any ε ą 0,

sup
τPS

sup
wPWJ

|Q̂JpX, τ,wq ´ Q̃JpX, τ,wq|
p
ÝÑ 0, as nÑ 8, J Ñ 8. (6.29)

Then it follows from (6.25) that (6.29) holds. Hence, the proof is complete.

6.9 An R Package and Shiny App for Quantiles-

Based Classifier for Functional Data

An R package quicfun (QUantIles-based Classifier for FUNctional data) is available

at https://github.com/iantsuising/quickfun. For easy implementation and

tuning, we also develop a Shiny App, a web-based interface for practitioners or non-

R users. The App is available at https://ianxu.shinyapps.io/quicfun/. The

source of the web interface is available at https://github.com/iantsuising/qui

ckfun-app.
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Chapter 7

Future Work

In Part I, we study the single-index hazard model for survival outcomes. In modern

biomedical and GAWS studies, for example, breast cancer studies, the outcomes

could be recurrent. The covariates could be divided into several groups based on

prior information, for example, a group of demographical factors, a group of genetic

variates, a group of clinical assessments, among others. The complexity of both

response and covariates motivates us to extend the single-index hazard model to a

multiple-index hazard model by developing a sufficient dimension reduction paradigm

for counting process data. The proposed single-index hazard model could be regarded

as a special case of the more general multiple-index hazard model where the number

of the occurrence of the event is less or equal one and the number of the group of

the covariate is one.

In Part II, the applied methods are limited to sparse functional data where the

number of repeated measure m on each curve is bounded by a fixed constant. In

model biomedical studies, for example, functional magnetic resonance imaging stud-

ies, the data could be treated as dense and regular observed functional data. For

dense functional data, there has been some literature on nonparametric tests in-

cluding Zhang and Chen (2007) and Wang et al. (2018), which are also based on

the working independence principle. Taking into account the within-subject covari-

190



CHAPTER 7. FUTURE WORK

ance can potentially improve the power of these tests as well. However, extending

our methodology to dense functional data may encounter some technical difficulties,

since the SU-based method requires inverting the within-subject covariance matrix,

which becomes a high dimensional random matrix if m goes to infinity. One possi-

ble solution is to reduce the rank of the covariance matrix by functional principal

component analysis. This is an important problem that calls for future research.

In Part III, we consider the classification problem for the subject with only one

functional biomarker. In real-world applications, the number of functional predictors

could be larger than one. For example, one may obtain several DTI functional pre-

dictors from different brain regions of each subject. In this case, combining the func-

tional biomarkers can naturally increase the diagnosis accuracy. One of our future

work is to extend the proposed quantile-based functional classifier to a quantile-based

combination of functional predictors to improve diagnosis accuracy.
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and limitations of genome-wide association studies. Nature Reviews Genetics, 20,
467–484.

Tang, J., Li, Y. and Guan, Y. (2016) Generalized quasi-likelihood ratio tests for
semiparametric analysis of covariance models in longitudinal data. Journal of the
American Statistical Association, 111, 736–747.

Tibshirani, R. (1997) The lasso method for variable selection in the cox model.
Statistics in Medicine, 16, 385–395.

Tsiatis, A. (2006) Semiparametric Theory and Missing Data. New York: Springer.

van der Vaart, A. W. (2000) Asymptotic Statistics. New York: Cambridge University
Press.

Vafajoo, A., Rostami, A., Parsa, S. F., Salarian, R., Rabiee, N., Rabiee, G., Ra-
biee, M., Tahriri, M., Vashaee, D., Tayebi, L. et al. (2018) Early diagnosis of
disease using microbead array technology: A review. Analytica Chimica Acta,
https://doi.org/10.1016/j.aca.2018.05.011.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. and
Yang, J. (2017) 10 years of GWAS discovery: biology, function, and translation.
The American Journal of Human Genetics, 101, 5–22.

— 201 —



BIBLIOGRAPHY

Wang, H., Zhong, P.-S., Cui, Y. and Li, Y. (2018) Unified empirical likelihood ratio
tests for functional concurrent linear models and the phase transition from sparse
to dense functional data. Journal of the Royal Statistical Society, Series B, 80,
343–364.

Wang, J., Xue, L., Zhu, L. and Chong, Y. (2010) Estimation for a partial-linear
single-index model. The Annals of Statistics, 38, 246–274.

Wang, N., Carroll, R. J. and Lin, X. (2005) Efficient semiparametric marginal esti-
mation for longitudinal/clustered data. Journal of the American Statistical Asso-
ciation, 100, 147–157.

Wang, W. (2004) Proportional hazards regression models with unknown link function
and time-dependent covariates. Statistica Sinica, 885–905.

Wang, Z., Xu, K., Zhang, X., Wu, X. and Wang, Z. (2017) Longitudinal snp-set
association analysis of quantitative phenotypes. Genetic epidemiology, 41, 81–93.

van Wieringen, W. N., Kun, D., Hampel, R. and Boulesteix, A.-L. (2009) Survival
prediction using gene expression data: a review and comparison. Computational
Statistics and Data Analysis, 53, 1590–1603.

Wright, S. J., Nowak, R. D. and Figueiredo, M. A. (2009) Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57, 2479–2493.

Xia, Y. (2006) Asymptotic distributions for two estimators of the single-index model.
Econometric Theory, 22, 1112–1137.

Xia, Y., Tong, H., Li, W. and Zhu, L.-X. (2002) An adaptive estimation of dimension
reduction space. Journal of Royal Statistical Society, Series B, 64, 363–410.

Xia, Y., Zhang, X. and Xu, J. (2010) Dimension reduction and semiparametric esti-
mation of survival models. Journal of the American Statistical Association, 105,
278–290.

Xu, C. and Chen, J. (2014) The sparse mle for ultrahigh-dimensional feature screen-
ing. Journal of the American Statistical Association, 109, 1257–1269.

Xu, Y., Li, Y. and Nettleton, D. (2018) Nested hierarchical functional data model-
ing and inference for the analysis of functional plant phenotypes. Journal of the
American Statistical Association, 113, 593–606.

Xu, Z., Shen, X., Pan, W., Initiative, A. D. N. et al. (2014) Longitudinal analysis is
more powerful than cross-sectional analysis in detecting genetic association with
neuroimaging phenotypes. PloS one, 9.

— 202 —



BIBLIOGRAPHY

Yahav, I. and Shmueli, G. (2012) On generating multivariate poisson data in man-
agement science applications. Applied Stochastic Models in Business and Industry,
28, 91–102.

Yang, G., Yu, Y., Li, R. and Buu, A. (2016) Feature screening in ultrahigh dimen-
sional cox’s model. Statistica Sinica, 26, 881.

Yang, L. (2017) Proximal gradient method with extrapolation and line search for a
class of nonconvex and nonsmooth problems. arXiv preprint arXiv:1711.06831.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association, 100, 577–590.

Yin, G., Li, H. and Zeng, D. (2008) Partially linear additive hazards regression with
varying coefficients. Journal of the American Statistical Association, 103, 1200–
1213.

Young, G. A., Young, G. A., Severini, T. A., Smith, R., Smith, R. L. et al. (2005)
Essentials of statistical inference, vol. 16. Cambridge University Press.

Zeng, D., Yin, G. and Ibrahim, J. (2005) Inference for a class of transformed hazards
model. Journal of the American Statistical Association, 100, 1000–1008.

Zhang, J. T. (2013) Analysis of Variance for Functional Data. CRC Press, New
York.

Zhang, J. T. and Chen, J. W. (2007) Statistical inferences for functional data. The
Annals of Statistics, 35, 1052–1079.

Zhang, T. (2009) Multi-stage convex relaxation for learning with sparse regulariza-
tion. In Advances in Neural Information Processing Systems, 1929–1936.

Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. Journal of
Machine Learning Research, 7, 2541–2563.

Zhao, S. D. and Li, Y. (2012) Principled sure independence screening for cox models
with ultra-high-dimensional covariates. Journal of Multivariate Analysis, 105,
397–411.

Zhou, L., Huang, J., Martinez, J. G., Maity, A., Baladandayuthapani, V. and Carroll,
R. J. (2010) Reduced rank mixed effects models for spatially correlated hierarchical
functional data. Journal of the American Statistical Association, 105, 390–400.

Zhu, L. and Xue, L. (2006) Empirical likelihood confidence regions in a partially
linear single-index model. Journal of Royal Statistical Society, Series B, 68, 549–
570.

— 203 —



BIBLIOGRAPHY

Zhu, W., Xu, S., Li, Y. and Liu, C. (2020+) Minimax powerful functional tests for
longitudinal genome-wide association studies. Technical Report, Submitted.

Zwibel, H. L. and Smrtka, J. (2011) Improving quality of life in multiple sclerosis:
an unmet need. The American Journal of Managed Care, 17, 139–145.

— 204 —


	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Organization of the thesis

	Part I
	2 An Efficient Algorithm for Joint Feature Screening in Ultrahigh-Dimensional Cox's Model
	2.1 Introduction
	2.2 Local Optimality of the Constrained Partial Likelihood Sequence
	2.3 Sure Screening of Cox-LASSOi-IHT iteration and an NPG Algorithm
	2.3.1 Sure Screening of Cox-LASSOi-IHT iteration
	2.3.2 An NPG Algorithm

	2.4 Simulation Studies
	2.5 Analysis of Diffuse Large B-Cell Lymphoma
	2.6 Assumptions and Proofs
	2.7 coxnpgsjs: an R package 

	3 Estimation under Single-Index Hazard Model
	3.1 Introduction
	3.2 Semiparametric Efficient Inference on 
	3.2.1 Randomly Censored Bivariate Local Linear Regression Estimation
	3.2.2 Profile Likelihood Estimation of Index Coefficient Vector
	3.2.3 Significant Test of Index Coefficients

	3.3 Efficient and Doubly Robust Estimation
	3.3.1 Efficient Estimation
	3.3.2 Doubly Robust Estimation

	3.4 Adapted Newton-Raphson Algorithm for 
	3.5 Estimation for the Nonparametric Part
	3.6 Simulation Studies
	3.7 Analysis of Diffuse Large B-Cell Lymphoma
	3.8 Discussion
	3.9 Proofs of propositions and theorems
	3.10 Proofs of auxiliary lemmas

	Part II
	4 Multiple Comparisons I for Longitudinal ADNI GWAS
	4.1 Introduction
	4.2 Functional Modeling of Longitudinal Phenotype Data and Estimation Procedure
	4.2.1 Model and Hypotheses
	4.2.2 Estimation Under the Full Model
	4.2.3 Estimation Under the Reduced Model

	4.3 Two Testing Procedures on Genotype Effects
	4.3.1 Generalized Quasi-Likelihood Ratio Test
	4.3.2 Functional F-Test

	4.4 Nonparametric Covariance Estimation
	4.5 Analysis of Longitudinal GWAS Data from ADNI
	4.5.1 Analysis of the Hippocampal Volume Data
	4.5.2 Analysis of the RAVLT Data

	4.6 Simulation Studies
	4.6.1 Gaussian Case
	4.6.2 Non-Gaussian Response

	4.7 Summary

	5 Multiple Comparisons II for Longitudinal ADNI GWAS
	5.1 Introduction
	5.2 Covariance Estimation for Non-Gaussian Response
	5.3 Analysis of Longitudinal GWAS Data from ADNI
	5.3.1 Analysis of the Hippocampal Volume Data
	5.3.2 Analysis of the Rey Auditory Verbal Learning Test Data

	5.4 Simulation Studies

	Part III
	6 Weighted Multiple-Quantile Functional Classifiers
	6.1 Introduction
	6.2 Generalized Distance Minimizing the Risk
	6.3 Implementation of Functional Multiple-Quantile Classification
	6.3.1 The Weighted-Multiple Quantile Classifier
	6.3.2 Implementation Procedure

	6.4 Asymptotic Properties
	6.5 Simulation Studies
	6.5.1 Scenario I
	6.5.2 Scenario II

	6.6 Analysis of Diffusion Tensor Imaging data
	6.7 Discussion
	6.8 Proofs
	6.8.1 Assumptions
	6.8.2 Lemmas
	6.8.3 Proofs of Main Results

	6.9 An R Package and Shiny App for Quantiles-Based Classifier for Functional Data

	7 Future Work
	Bibliography

