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Abstract

Hospital admissions due to respiratory diseases (HARD) has been widely discussed

in the past three decades, and has been linked to air pollutants, media information,

and dynamic weather conditions, which can be observed daily and act as smooth

trajectories. Classical research works mainly analyzed HARD through cross-sectional

studies. It is also interesting and challenging to detect the effects of environmental

conditions on HARD from the new perspective of functional data analysis. Motivated

by the aforementioned problem, the thesis aims to two targets based on functional

data analysis: one is to diagnose the risk of HARD through media information and

weather conditions; the other is to explore how air pollutants and weather conditions

impact on HARD through a new functional regression model.

Part I focuses on improving diagnosis of high- or low- hospital admissions by com-

bining media information with weather conditions, the multiple functional markers.

There is rich literature in combining scalar markers to improve diagnostic accuracy,

but they are inapplicable for functional markers. We propose a scalar feature to

represent the original functional curve, so that existing scalar combination methods

can be applied.

Part II tries to explore a new functional additive regression model to character-

ize the complicated influence of weather conditions and air pollutants on HARD. I

suggest some estimation procedures for the coefficients in the new functional model

with hospital admissions as response. Such investigation from functional data anal-
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ysis perspective can be also applied to other real worlds data problems that have

intense daily records over many years.
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Chapter 1

Introduction

1.1 Introduction

Respiratory disease has been one of the most common reasons for mortality and

hospitalization in Hong Kong. High hospital admissions due to respiratory diseases

(HARD) will cause heavy burden to the demand for medical services and governmen-

tal financial budget (Hernandez et al. (2009)). The HARD has been broadly studied

and linked to air pollutants such as sulphur dioxide (SO2), nitrogen dioxide (NO2),

respirable suspended particulates (RSP) and ozone (O3), dynamic weather condi-

tions such as temperature, relative humidity and dew point temperature, and media

information, by statistical community and environmental epidemiology community.

The thesis is motivated by the data arisen from the HARD associated with air

pollutants, dynamic weather conditions and media information between 2010 and

2017 in Hong Kong. The data of hospital admissions was provided by the Hong

Kong Hospital Authority, the data of air pollutants and weather conditions were

downloaded on the Hong Kong Observatory website, and the data of media infor-

mation was obtained through google trends. The data were collected daily in Hong

Kong from January 1st, 2010, to December 31st, 2017. In statistical community, a

data set collected during 1994 to 1997 analog to the HARD data during 2010 to 2017

in Hong Kong has been widely studied and demonstrated by time series data analysis
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and varying-coefficient modeling. For instance, the early study may be tracked to

Fan and Zhang (1999) where they studied the impact of three air pollutants on daily

hospital admissions response by a linear varying-coefficient model. As Xia et al.

(2002) pointed out and Xia et al. (2004) modeled, they may incorporate up to 42

covariates to characterize the association between hospital admissions response and

environmental and weather factors, if one tries to incorporate all possible correla-

tion among variables based on daily observations over several years. Therefore, if

the study is based on cross-sectional data, the statistical analysis looks tedious and

complicated. Still, one could hardly assure all information were involved.

Motivated by the real climate conditions in Hong Kong, and suggestions from

Xia et al. (2002) and Shao et al. (2009), we treat the daily measurements every

four weeks as a functional curve observation for every environmental and weather

covariate. Such functional data is dense since it includes twenty eight observations

on every trajectory. Compared to the pairwise scalar observations, the functional

curves are not partitioned and can keep the inherent correlation among observations

on a random curve naturally. To the best of our knowledge, functional data analysis

has not been applied to study within the HARD data setting. This has led to our

research interest in two aspects.

The first target is driven by forecasting high- or low- daily hospital admissions

based on environmental factors and other information in the previous four weeks, so

that it may help governmental hospitalization management. It is known that weather

conditions influence hospital admissions (Pun et al. (2014)), and contemporary me-

dia information from social network and internet may also play an important role in

forecasting people’s behavior (Cook et al. (2011)). Therefore we plan to combine me-

dia information with environmental and weather information to forecast the risk of

hospital admissions. Statistically, this turns into the problem of improving diagnostic

accuracy by combining multiple functional markers. There is rich literature for com-
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bining multiple scalar markers to improve diagnostic accuracy (Su and Liu (1993),

Liu et al. (2011)), and Xu et al. (2015), among others). Also there is no statistical

publication in combining functional markers, although there is a need in application

(Zhou et al. (2015)). However, all these scalar-based methods can not be applied

to combination of functional markers because of the intrinsic infinite dimensionality

of functional data. We aim to apply the tool of functional principal components to

do dimension reduction, so as to obtain a scalar feature to represent the original

functional curve. Then the existing combination methods for scalar markers can be

applied directly.

The second target is driven by exploring the relationship between hospital ad-

missions and environmental and weather factors. In environmental epidemiology

community, generalized linear models have been mainly employed to model the ef-

fects of weather conditions and air pollutants on HARD (Souza et al. (2014)). In

statistical community, researchers presented various regression models by techniques

of time series analysis based on pairwise cross-sectional data (Xia and Tong (2006)).

These cross-sectional based models were complicated and suffered computational in-

feasibility and/or difficulty in inference. To the best of our knowledge, there is no

publication of applying functional regression to model HARD data in environmental

epidemiology. Therefore, from the insight of functional data analysis, we explore to

propose a new functional additive regression model with versatile covariates types

and accumulated hospital admissions over a time period as the response. We inves-

tigate the identifiability of the model, and suggest possible estimation procedures.

1.2 Organization of the thesis

The remaining of the thesis is organized as follows. Chapter 2 introduced the method-

ology of combining multiple functional markers to improve diagnostic accuracy. It
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was applied to predict the high- or low- hospital admissions by combination of

weather and media information. Chapter 3 introduced our exploration of a new

functional additive regression model. We focused on model identifiability and poten-

tial estimation procedures. Chapter 4 is the discussion and conclusion.

Chapter 2 is based on the manuscript Ma et al. (2020), and has been accepted.
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Chapter 2

Combination of multiple functional

markers to improve diagnostic
accuracy

2.1 Introduction

Combination of multiple biomarkers is meaningful to improve the diagnostic accu-

racy, and is attractive for practitioners, clinical therapists and researchers. For a

continuous scalar marker that helps diagnosis, its diagnostic performance is usually

portrayed by the receiver operating characteristic (ROC) curve. Assuming that the

individuals with higher value of diagnostic marker are more prone or with higher

risk to be diseased, the subjects can be classified to diseased group with level of

biomarker higher than a certain threshold. With a certain threshold, the sensitivity

is the probability that a diseased subject is correctly diagnosed, and the specificity

is the probability that a non-diseased subject is correctly diagnosed. Then the ROC

curve is a plot of its sensitivity versus 1-specificity with thresholds varying on the

whole real line. The performance of the diagnostic marker is usually measured by

area or partial area under the ROC curve (AUC/pAUC, Bamber (1975)) and Youden

index (YI, Youden (1950)), with larger values of the two indices being better. In more

detail, AUC can be interpreted by average sensitivity of all values of specificity, and
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the vice versa. It can also be regarded as the probability that a diseased subject

has a greater marker than a non-diseased subject. AUC summarizes the average

performance of a diagnostic marker for all values of threshold. Besides, YI is defined

as J “ max
cPR

tSensitivitypcq ` Specificitypcq ´ 1u where c is the threshold. YI can

be explained as the maximum overall correct classification rate that a marker can

attain. It can not only summarize the performance of the ROC curve, but can also

be applied to select a certain threshold for classification.

Nowadays, with development of modern techniques, functional markers such as

curves or images play an important role in diagnosis. For instance, diffusion tensor

imaging can significantly affect the diagnosis for the central nervous system dis-

ease (Alexander et al. (2007)), arterial oxygen saturation of hemoglobin can help

metabolic syndrome diagnosis (Inácio et al. (2016), Inácio et al. (2012)), and func-

tional magnetic resonance imaging can be applied to diagnose for the Alzheimer’s

disease (Duc et al. (2020)) and for lympho-associated benign and malignant lesions

of the parotid gland (Zhu et al. (2019)). To the best of our knowledge, there are

only sporadic statistical works discussing functional markers to make the diagnosis,

among which, Inácio et al. (2016) and Inácio et al. (2012) applied one functional

marker to make the diagnosis by semiparametric and nonparametric functional re-

gression analysis. Furthermore, there does not exist any work studying combination

of functional markers to improve the diagnostic accuracy in the literature until now.

There exists rich works developing combinations for continuous scalar markers

to improve the diagnostic accuracy. Su and Liu (1993) proposed the best linear

combination when the diagnostic markers all come from Gaussian distribution. Be-

cause the normal assumption can be violated, other combination methods were also

studied. For instance, Pepe and Thompson (2000) obtained the best empirical lin-

ear combination when there are two continuous diagnostic markers. Furthermore,
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when there are three or more scalar markers, Chen et al. (2015) proposed a em-

pirical likelihood ratio (ELR) method to obtain the best linear combination, and

Kang et al. (2016) proposed a stepwise method to successfully obtain the optimal

empirical linear combination. Besides, min-max combination proposed by Liu et al.

(2011) can provide both high diagnostic accuracy and efficient computation. The

methods aforementioned above all focus on maximizing the AUC to derive the opti-

mal combinations, while there are also works regarding YI as the objective function

and the main measurement for the ROC curve. Among them, Yin and Tian (2014)

followed the idea of stepwise and min-max methods and obtained the best empirical

linear combination and min-max combination yielding optimal value of YI. More-

over, abandoning the linear structure, Xu et al. (2015) proposed a flexible non-linear

combination method to improve the diagnostic accuracy assessed by YI. Unlike the

combination methods based on AUC or YI, logistic regression for the binary disease

status can also provide an appropriate combination. All the methods had been well

developed and are worthy of reference.

It is impossible to apply scalar combination methods to the multiple functional

markers directly because of infinite dimensionality of functional markers. To address

this challenge, we want to find a bridge to connect functional markers and existing

scalar combination methods. In this article, we propose a scalar feature motivated

by square loss distance, as an alternative of the original functional curve in the sense

that, it can retain information to the most extent. The square loss distance is defined

as the function of projection scores generated from functional principal component

Such a dimension-reduction procedure is conducted by commonly used functional

principal component analysis (FPCA). Then the existing scalar combination methods

can be applied to the scalar feature to improve the diagnostic accuracy. Finally, a

mathematical procedure is performed to summarize our methodology.

Our methodology are verified and illustrated by a simulation study and real

7



data analysis. In our numerical study, diagnostic accuracy and computational effi-

ciency of existing scalar combination methods on our proposed features are taken

into comparison. Besides, to evaluate the effect of our proposed feature maintaining

information, logistic regression on functional observations and on the features are

also compared. In real data analysis, we diagnosed high- or low- admissions due to

respiratory disease in Hong Kong between 2010 to 2017 by several functional mark-

ers, including weather conditions and media information. Moreover, we also pro-

vide an R function for convenient application (https://github.com/Qinyi-Zhang/

FunctionalMarkersCombination). One can choose various methods to make the di-

agnosis through combinations of functional markers. The numerical results showed

that our proposed dimension-reduced features do maintain the information of their

corresponding functional markers to most extent.

The rest of this article is organized as follows. In Section 2.2, we propose a

dimension-reduced scalar feature for functional markers, summarize some potential

useful combination methods, and construct a computational procedure. The simula-

tion studies are conducted to assess the performance (including diagnostic accuracy

and computational efficiency) of the scalar feature in Section 2.3. We further ana-

lyzed the high- or low- admissions due to respiratory diseases between 2010 and 2017

in Hong Kong by combining weather conditions and media information, which are

regarded as functional markers in section 2.4. Section 2.5 contains a summary and

discussion.

2.2 Methodology

In this section, we introduce our methodology in detail. For each functional marker,

we propose a scalar feature as an alternative, which can maintain information to the

most extent, and apply existing scalar combination methods to the scalar features. To
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be more specific, we apply FPCA method to provide a group of basis functions, and

then obtain the projection scores of the functional markers. By truncating the finite

sum of Karhunen-Loève (K-L) expansion, the infinite-dimension functional markers

can be mapped into finite-dimension projection vectors. Based on the projection

vectors, we construct a square-based scalar distance, which is indeed a function

of the projection scores and retains information of the functional markers to the

most extent. After obtaining the scalar features, we have transformed the functional

markers into scalar features, thus, various existing methods can be applied to improve

the diagnostic accuracy. In this section, empirical likelihood ratio method (Chen

et al. (2015)), stepwise method (Kang et al. (2016)), logistic regression, non-linear

combination (Xu et al. (2015)) and min-max combination (Liu et al. (2011)) are of

our interest.

2.2.1 Dimension reduction

Suppose there are p functional markers denoted by M “ pM1, ¨ ¨ ¨ ,Mpq on each

individual, where Mk P L
2pIq and I is a compact time interval. Conditioning on the

binary disease status G, the functional markers are denoted by X “ pX1, ¨ ¨ ¨ , Xpq

for a non-diseased subject (G “ 0) and by Y “ pY1, ¨ ¨ ¨ , Ypq for a diseased subject

(G “ 1). Due to the intrinsic infinite dimension of functional markers, it is impossible

to make the diagnosis by them directly. Furthermore, combining the functional

observations to make the diagnosis may lose much information, therefore, it seems

necessary to reduce their dimension. Specifically, for a functional marker Mk, let

tφkju
8
j“1 denotes an orthogonal basis, the projection score of Mk can be then obtained

by

ξkj “

ż

I
Mkptqφkjptqdt, j “ 1, 2, ¨ ¨ ¨ .
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Likewise, for the functional markers on a diseased or non-diseased subject, respec-

tively, their corresponding projection scores are

ζkj “

ż

I
Xkptqφkjptqdt, ηkj “

ż

I
Ykptqφkjptqdt, k “ 1, ¨ ¨ ¨ , p, j “ 1, 2, ¨ ¨ ¨ .

(2.1)

with the means of projections µkj “ Epζkjq, νkj “ Epηkjq. Thus, Xkptq and Ykptq

can be represented as

Xkptq “
8
ÿ

j“1

ζkjφkjptq, Ykptq “
8
ÿ

j“1

ηkjφkjptq, k “ 1, ¨ ¨ ¨ , p, j “ 1, 2, ¨ ¨ ¨ , (2.2)

In order to make accurate diagnosis through functional markersM “ pM1, ¨ ¨ ¨ ,Mpq,

it is of critical importance to remain the utility of every subject in implementing the

dimension reduction methods. Therefore, we try to define a scalar feature measur-

ing the difference of distances between the subject and the two populations. To be

more specific, for functional marker Mk, based on the square loss, we construct the

following ’distance’

Dk “

8
ÿ

j“1

tpξkj ´ νkjq
2
´ pξkj ´ µkjq

2
u, (2.3)

where νkj is the mean score for non-diseased group, and µkj is the mean score for

diseased group. Since the projection score ξkj is indeed a random variable, the

expectation of Dk can be represented by

EpDkq “

8
ÿ

j“1

tEpξkj ´ νkjq
2
´ Epξkj ´ µkjq

2
u “ p2G´ 1q

8
ÿ

j“1

pµkj ´ νkjq
2.

Thus, if a subject with functional markers M “ pM1, ¨ ¨ ¨ ,Mpq comes from diseased

population, the expected value of scalar Dk is larger than 0. Otherwise, the expected

value of Dk is less than 0. This indicates that the scalar feature, motivated by square
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loss distance, can maintain information of the functional marker to the most extent

and can act as a scalar marker that help diagnosis. Then the p-dimensional scalar

features D “ pD1, ¨ ¨ ¨ , Dpq
J can thus be utilized to improve the diagnostic accuracy.

2.2.2 Combination of features

One can always obtain dimension-reduced features D for a subject with functional

markers M by the approach proposed in section 2.2.1. Note that D is a p-variate

vector, it can be regarded as ’new’ scalar markers, and existing scalar combination

methods can be applied directly. For a non-diseased subject, its scalar features are

denoted by Dr0s “ tD
r0s
1 , ¨ ¨ ¨ , D

r0s
p u. Likewise, for a diseased subject, its features

are denoted by Dr1s “ tD
r1s
1 , ¨ ¨ ¨ , D

r1s
p u. The scalar features Dr0s and Dr1s are indeed

comprehensive functions of projection scores, the distributions of which are unknown

without additional assumptions, indicating that the distribution of them are inac-

cessible. Thus, without additional knowledge on distributions of Dr0s and Dr1s, we

mainly refer to the linear combinations, non-linear combination and min-max com-

bination.

Linear combination of features is given by

lpMq “ λ1D1 ` ¨ ¨ ¨ ` λpDp “ λ
JD, (2.4)

where λ “ pλ1, ¨ ¨ ¨ , λpq
J, and D “ pD1, ¨ ¨ ¨ , Dpq

J. Additionally, min-max combi-

nation is

mpMq “ Dmax ` λDmin (2.5)

where Dmax “ max
1ďkďp

Dk, Dmin “ min
1ďkďp

Dk. Linear combination yields the areas under

the ROC curves

A “ Prpλ1pD
r1s
1 ´D

r0s
1 q ` ¨ ¨ ¨ ` λppD

r1s
p ´Dr0sp q ą 0q, (2.6)
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and min-max combination yields the AUC

A “ PrppDr1smax ´D
r0s
maxq ` λpD

r1s
min ´D

r0s
minq ą 0q, (2.7)

respectively, where D
r1s
max “ max

1ďkďp
D
r1s
k and D

r1s
min “ min

1ďkďp
D
r1s
k . Besides, the non-linear

combination yields Youden index

J “ max
cPR

PrphpDr1s
q ą cq ` PrphpDr0s

q ď cq ´ 1, (2.8)

Equations (2.6) and (2.7) do have their maximizers with some mild assumptions, and

their maximizers are both unique under stronger conditions (Vexler et al. (2006)).

Moreover, Su and Liu (1993) proposed the optimal value for λ1, ¨ ¨ ¨ , λp as follows:

pλ1, ¨ ¨ ¨ , λpq
J
“ pΣr1s ` Σr0sq´1pµr1s ´ µr0sq, (2.9)

with assumption that Dr0s „ Npµr0s,Σr0sq and Dr1s „ Npµr1s,Σr1sq both come from

normal distribution.

However, the distribution of the features D is hard to assume, and the optimal

linear combination aforementioned is sensitive to assumptions. Thus, the optimal

linear combination can be derived by maximizing the Mann-Whitney statistic (Pepe

and Thompson (2000)) as follows:

W pλq “
1

n0n1

n0
ÿ

i“1

n1
ÿ

j“1

I
!

λJpD
r1s
i ´D

r0s
j q ě 0

)

“
1

n0n1

n0
ÿ

i“1

n1
ÿ

j“1

I

#

p
ÿ

k“1

λkpD
r1s
i,k ´D

r0s
j,kq ą 0q

+

,

(2.10)

where n0 and n1 denote the numbers of non-diseased and diseased subjects respec-

tively, D
r1s
i,k denotes the corresponding scalar feature of the k-th functional marker

for the i-th diseased subject, D
r0s
j,k denotes the corresponding scalar feature of the
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k-th functional marker for the j-th non-diseased subject, D
rGs
i “ pD

rGs
i,1 , ¨ ¨ ¨ , D

rGs
i,p q

for G “ 0, 1. Actually, Mann-Whitney statistic is not concave for λ, which implies

the optimization problem is difficult to solve. Thus, Kang et al. (2016) proposed

a stepwise method to obtain the optimal coefficients λ step by step. Although the

final solutions of the coefficients are not truly optimal, the method is at least com-

putationally accessible.

Besides, the optimal coefficients for linear combination can also be obtained by

maximizing the empirical likelihood ratio (Chen et al. (2015)):

LpAq “ sup

" n0`n1
ź

i“1

p̃i

ˇ

ˇ

ˇ

ˇ

n0`n1
ÿ

i“1

p̃i “ 1,
n0`n1
ÿ

i“1

p̃iṽipλq “ A

*

(2.11)

where

p̃ “ pp̃1, ¨ ¨ ¨ , p̃n0`n1q “ pp
r0s
1 , ¨ ¨ ¨ , pr0sn0

, p
r1s
1 , ¨ ¨ ¨ , pr1sn1

q,

ṽpλq “ pṽ1pλq, ¨ ¨ ¨ , ṽn0`n1pλqq “ pv
r0s
1 pλq, ¨ ¨ ¨ , v

r0s
n0
pλq, v

r1s
1 pλq, ¨ ¨ ¨ , v

r1s
n1
pλqq,

v
rGs
iG
pλq “

1

n0 ` n1

t

n0`n1
ÿ

j“1

Kh̃pλ
JD

rGs
iG
´ λJD̃jqu,

and

D̃ “ pD̃1, ¨ ¨ ¨ , D̃n0`n1q “ pD
r0s
1 , ¨ ¨ ¨ , Dr0sn0

, D
r1s
1 , ¨ ¨ ¨ , Dr1sn1

q

for G “ 0, 1, Kh̃p¨q is a symmetric kernel function with Kh̃pxq “
şx{h̃

´8
kpuqdu and

h̃ ą 0 is the bandwidth.

When the number of functional markers p is extremely large, which implies the

aforementioned methods are computational inefficient, min-max combination can be

applied instead. Denote that D
rGs
i,max “ max

1ďkďp
D
rGs
i,k , D

rGs
j,min “ min

1ďkďp
D
rGs
j,k for G “

0, 1, the optimal min-max combination can also be estimated by maximizing the

13



corresponding Mann-Whitney statistics:

W pλq “
1

n0n1

n0
ÿ

i“1

n1
ÿ

j“1

I
!

pD
r1s
i,max ´D

r0s
j,maxq ` λpD

r1s
i,min ´D

r0s
j,minq ą 0

)

, (2.12)

The optimal value of λ in (2.12) can be obtained by interpolation method.

When the obtained features are heteroscedastic in the diseased and non-diseased

groups, non-linear combination is a powerful tool. Instead of maximizing (2.8), Xu

et al. (2015) used the extended φδ´loss Lδpuq “ mint1
δ
pδ ´ uq`, 1u (Hedayat et al.

(2015)) to overcome the discrete property of indicator function, then it is equivalent

to minimize the model-free estimation framework for php¨q, cq :

min
hPHK ,cPR

1

n0

n0
ÿ

i0“1

Lpc´ hpD
r0s
i0
qq `

1

n1

n1
ÿ

i1“1

LphpD
r1s
i1
q ´ cq ` λ0J phq,

where λ0 ą 0 is a tuning parameter, HK is a reproducing kernel Hilbert space

(RKHS, Wahba (1990)) associated with a pre-specified kernel function Kp¨, ¨q, and

thus J phq “ 1
2
}h}2HK

is the RKHS norm penalizing the complexity of hp¨q.

The representer theorem (Wahba (1990)) implies that the optimal non-linear

combination must be of the form ĥpMq “
řn0`n1

i“1 aiKpM̃i,Mq, and thus }h}2HK
“

aJKa with a “ pa1, ¨ ¨ ¨ , an0`n1q
J and K “ tKpM̃i, M̃jqu

n0`n1
i,j“1 . Then the optimal

non-linear combination can be obtained by minimizing

1

n0

n0
ÿ

j“1

Ltc´
n0̀ n1
ÿ

i“1

ajKpD̃i, D̃jqu`
1

n1

n1
ÿ

j“1

Lt
n0̀ n1
ÿ

i“1

ajKpD̃i, D̃jq´cu`
λ0
2

aJKa, (2.13)

where a P Rn0̀ n1 , c P R. This minimization problem can be solved by applying

difference convex algorithm (Le Thi Hoai and Tao (1997)).

Selection of combination is impacted by the sample size n0, n1 and number of

functional markers p. On the one hand, when p is relatively small, the linear combi-

nations can be expected to perform well and achieves rather high diagnosis accuracy
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with efficient computation; when the dimension p of functional markers is very large,

in order to reduce the computation time, min-max combination can be applied to

save the computing time. On the other hand, when the sample size n0 and n1 are

small, computational efficiency of non-linear combination is fair, and thus non-linear

combination can be applied to make accurate diagnosis.

2.2.3 Mathematical procedures

Suppose there are n0 non-diseased subjects and n1 diseased subjects with func-

tional markers Xi0ptq “ tXi01ptq, ¨ ¨ ¨ , Xi0pptqu, for i0 “ 1, ¨ ¨ ¨ , n0, and Yi1ptq “

tYi11ptq, ¨ ¨ ¨ , Yi1pptqu, for i1 “ 1, ¨ ¨ ¨ , n1. Without loss of generality, the compact

time interval can be assumed to be r0, 1s. In practice, since the functional observa-

tions are only measured and recorded at discrete time points, the entire functional

markers cannot be completely observed. Thus, the observed data is of the form

W 0
i0kl
“ Xi0kpTi0klq ` ε

0
i0kl
, W 1

i1kl
“ Yi1kpTi1klq ` ε

1
i1kl
,

for k “ 1, ¨ ¨ ¨ , p, l “ 1, ¨ ¨ ¨ , N , where N is the number of observed times, TiGkl is the

lth observation time for functional marker k on subject iG from group G “ 0 or 1.

ε0i0kl and ε1i1kl are independent zero-mean measurement errors.

For subjects with different diseased status G “ 0 and G “ 1, we shall estimate

their mean function µGk ptq, and covariance function CG
k ps, tq for the kth functional

marker, k “ 1, ¨ ¨ ¨ , p, by local linear smoothing approach as follows:

pb̂G1k, b̂
G
2kq “ arg min

pb1k,b2kq

1

nG

nG
ÿ

i“1

1

N

N
ÿ

l“1

tWG
ikl ´ b1k ´ b2kpTiGkl ´ tqu

2K

ˆ

TiGkl ´ t

hG1k

˙

,(2.14)

pĉG0k, ĉ
G
1k, ĉ

G
2kq “ arg min

pc0k,c1k,c2kq

1
nG

řnG

i“1
1

NpN´1q

ř

1ďl1‰l2ďN
tWG

ikl1
WG
ikl2
´ c0k

´c1kpTiGkl1 ´ sq ´ c2kpTiGkl2 ´ tqu
2K

´

TiGkl1
´s

hG2k

¯

K
´

TiGkl2
´t

hG2k

¯

,(2.15)
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for G “ 0, 1, where Kp¨q is the symmetric kernel function and hG1k, h
G
2k are the band-

widths which can be selected by cross-validation. Then the estimator of the mean

function is µ̂Gk ptq “ b̂G1kptq, and of covariance function is R̂G
k ps, tq “ ĉG0k ´ µ̂

G
k psqµ̂

G
k ptq,

for G “ 0, 1. The estimate of joint covariance for the two populations can be then

obtained by

R̂kps, tq “
n0

n0 ` n1

R̂0
kps, tq `

n1

n0 ` n1

R̂1
kps, tq. (2.16)

Based on the estimate of joint covariance function R̂kps, tq, we can derive the corre-

sponding eigenvalues tλ̂kju
8
j“1 and eigenfunctions tφ̂kjptqu

8
j“1, respectively. Thus, for

a new subject with functional markers Mptq “ pM1ptq, ¨ ¨ ¨ ,Mpptqq
T , its correspond-

ing projection scores can be estimated by m̂kj “
ş

I Mkptqφ̂kjptq, k “ 1, ¨ ¨ ¨ , p and

j “ 1, ¨ ¨ ¨ ,8.

One often observes the functional markers intermittently with potential measure-

ment errors, therefore, we first need to smooth the observations of Xi0k and Yi1k by

the local linear smoothing technique,

pâ0i0k, â1i0kq “ arg min
pa0i0k

,a1i0k
q

N
ř

l“1

 

W 0
i0kl
´ a0i0k ´ a1i0kpTi0kl ´ tq

(2
K

ˆ

Ti0kl´t

h̃0
i0k

˙

,

pd̂0i1k, d̂1i1kq “ arg min
pd0i1k

,d1i1k
q

N
ř

l“1

 

W 1
i1kl
´ d0i1k ´ d1i1kpTi1kl ´ tq

(2
K

ˆ

Ti1kl´t

h̃1
i1k

˙

,

leading to the local linear estimators X̂i0kptq “ â0i0k, Ŷi1kptq “ d̂0i1k, where Kp¨q

is a symmetric kernel function and h̃0i0k, h̃
1
i1k

are the bandwidths. The smoothed

trajectories can be then regarded as a fully observed random processes. Then the
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projection scores ζi0kj, ηi1kj and their means µkj, νkj can be estimated by

ζ̂i0kj “

ż 1

0

X̂i0kptqφ̂kjptqdt, µ̂kj “
1

n0

n0
ÿ

i“1

ξ̂ikj,

η̂i1kj “

ż 1

0

Ŷi1kptqφ̂kjptqdt, ν̂kj “
1

n1

n1
ÿ

i“1

η̂ikj,

(2.17)

with i0 “ 1, ¨ ¨ ¨ , n0, i1 “ 1, ¨ ¨ ¨ , n1, k “ 1, ¨ ¨ ¨ , p.

In order to address the difficulty caused by the infinite dimensionality of pro-

jection scores in (2.3), we will approximate the distance with number of projection

scores truncated at Sk, 1 ď k ď p. Thus, from (2.3) and (2.17), one can construct

the estimate of the marker (2.3) as follows

D̂k “

Sk
ÿ

j“1

tpξ̂kj ´ ν̂kjq
2
´ pξ̂kj ´ µ̂kjq

2
u, 1 ď k ď p. (2.18)

For the random sample tXi0ptqu “ pXi01ptq, ¨ ¨ ¨ , Xi0pptqq
n0
i0“1

and tYi1ptqu “ pYi11ptq,

¨ ¨ ¨ , Yi1pptqq
n1
i1“1

, their corresponding scalar markers are denoted by D̂
r0s
i0

and D̂
r1s
i1

,

which can be obtained by replacing the projection scores tξ̂kju
Sk
j“1 with the projec-

tion scores tζ̂i0kj0u
S0
k
j0“1

and tη̂i1kj1u
S1
k
j1“1

in (2.18), where S0
k and S1

k are the truncated

numbers for functional markers Xi0kptq and Yi1kptq respectively, where i0 “ 1, ¨ ¨ ¨ , n0,

i1 “ 1, ¨ ¨ ¨ , n1, k “ 1, ¨ ¨ ¨ , p.

Combinations of these scalar features can be applied to make the diagnosis. Be-

cause the obtained feature D̂
rGs
iGk

is a comprehensive function for the projection scores,

its distribution is inaccessible. Thus, we only apply combination methods without

additional assumptions to make the diagnosis. The optimal combinations can be

obtained by maximizing (2.10), (2.11), (2.12), or by minimizing (2.13) respectively.

A very important problem in these optimization problems is the choice of the trun-

cated numbers S0
k and S1

k , k “ 1, ¨ ¨ ¨ , p. Three criteria (AIC, BIC, and fraction of
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variance explained (FVE)) are commonly used in the functional data analysis (Li

et al. (2010), Yao et al. (2005)), and the AIC and BIC are defined as in Yao et al.

(2005). In this paper, we adopt the FVE method to select the truncated number of

projection scores for each functional marker. As for the bandwidths hG1k, h̃
0
i0k

and

h̃1i1k for the mean or the smoothed curve estimators, the generalized cross-validation

can be used, while the bandwidths hG2k for the covariance estimators are chosen by a

10-fold cross-validation to save computing time.

2.3 Simulations

Simulation studies are conducted to investigate the empirical performance of exist-

ing combination methods and the merit of the proposed scalar features. Overall,

we compare the performance of four combination methods, namely, Kang et al.’s

stepwise method, Chen et al.’s ELR method, Liu et al.’s min-max method, and Xu

et al ’s non-linear method. Besides, logistic regression methods for binary disease

status on features (denoted by ’logistic’) and on functional observations (denoted by

’logistic˚’) respectively are also compared to evaluate how well the scalar features

retain the information.

Since we study diagnostic accuracy by combining multiple functional markers,

conventional indices such as bias and mean square error (MSE) for estimators are

not preferred to evaluate the proposed methodology. In practice, either AUC or

YI is used to assess the diagnostic accuracy depending on the purpose of globally

inspecting or focusing on a specific cut-off point for classification respectively. Com-

puting time is utilized to compare the computational efficiency of all the methods

aforementioned. Besides, since the dimension reduction procedure is necessary to

obtain the scalar features, only computing time of all the scalar combinations is

recorded. Besides, since the dimension reduction procedure is necessary to obtain
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the scalar features, only computing time of all the scalar combinations is recorded.

Since logistic˚ is included to assess the effect of scalar features that maintaining in-

formation, its computing time is not of our interest. In this section, calculation of

linear regression is based on R package ’glmnet’. Optimization problems maximizing

Mann-Whitney statistic are all addressed by interpolation methods. Calculation of

ELR linear combination is mainly on the basis of on R package ’emplik’, and the

non-linear combination is obtained through a combination of some comprehensive

algorithms including difference convex algorithm.

Five different settings of the distributions of principal component scores were

studied with sample size n0 “ n1 “ 150. Scenarios p “ 5 and 10 are considered to

illustrate the performances of the combination methods, and scenarios p “ 1, 2, 3 are

studied to serve for the real data analysis, in which only three functional markers

are applied.

In each simulation case, 100 Monte Carlo samples are generated to obtain the

mean and standard error (SE) of the 5´fold cross-validation (CV) AUC and YI.

Here we use 5-fold CV AUC (Kang et al. (2016)) and YI to assess the capability

of the methodology of diagnosis for new individuals. The truncated number Sk of

functional principal component analysis well be selected by FVE“ 0.99. In addition,

in most of time, we can only have observations of functional markers for only a short

time interval, therefore, only part of the generated data are included to make the

diagnosis.

One first generates

V 1
ijptq “

50
ÿ

k“1

ζ̃ijkφjkptq, V 0
ijptq “

50
ÿ

k“1

η̃ijkφjkptq,

for j “ 1, ¨ ¨ ¨ , p, p “ 1, 2, 3, 5 or 10, and t P r0, 1s, φjlptq are derived from Fourier

basis, φj,2l´1ptq “
?

2 costp2l´1qπtu and φj,2lptq “
?

2 sintp2l´1qπtu for l “ 1, ¨ ¨ ¨ , 25,
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ζ̃ijl and η̃ijl are both from zero-mean distributions. The functional markers are then

observed

Yijptq “ µ1
jptq ` V

1
ijptq ` 0.5pV 1

i1ptq ` V
1
i2ptqq ` ε

1
ijt,

Xijptq “ µ0
jptq ` V

0
ijptq ` 0.5pV 0

i1ptq ` V
0
i2ptqq ` ε

0
ijt,

(2.19)

where µ1
jptq “ 2t, µ0

jptq “ 0, εGijt „ Np0, 1q are independent of other variables for

G “ 0, 1.

Five different cases of the distributions of the principal component scores, ζ̃ijk

and η̃ijk, are generated as the following cases.

Case 1 (Gaussian distribution with the same variance): Let ζ̃ijk and η̃ijk indepen-

dently come from identical normal distribution. In other words, the difference be-

tween Y and X comes from the mean curves µ1
ijptq and µ0

ijptq only. For i “ 1, ¨ ¨ ¨ ,m,

j “ 1, ¨ ¨ ¨ , p and k “ 1, ¨ ¨ ¨ , 50, ζ̃0ijk come from normal distribution Np0, 1q, and

ζ̃ijk “ ζ̃0ijk{k. Similarly, for i “ 1, ¨ ¨ ¨ , n, j “ 1, ¨ ¨ ¨ , p and k “ 1, ¨ ¨ ¨ , 50, η̃0ijk also

come from normal distribution Np0, 1q, and η̃ijk “ η̃0ijk{k.

Case 2 (Gaussian distribution with different variance): In this case, the difference

between Y and X not only comes from the mean curve, but also comes from the

distribution of ζ̃ijk and η̃ijk. Let ζ̃ijk also come from the identical distribution as

in Case 1, but the variance of η̃ijk is different. For i “ 1, ¨ ¨ ¨ ,m, j “ 1, ¨ ¨ ¨ , p and

k “ 1, ¨ ¨ ¨ , 50, η̃0ijk comes from normal distribution Np0, 1 ` ujq with uj randomly

sampled from t0.5, 1, 1.5, 2, 2.5, 3u, and η̃ijk “ η̃0ijk{k.

Case 3 (Gamma-Normal distribution): Let the principal components coming

from the distribution of normal and gamma with equal allocation. The principal

components of V 0
ij and V 1

ij are obtained by adding scaled centered gamma dis-

tribution to the multivariate normal distributions in Case 2. To be more spe-

cific, let ζ̃1ijk were generated by adding a centered gamma variate with a shape

0.1, then ζ̃ijk “ 0.5pζ̃0ijk ` ζ̃1ijkq{k; let η̃1ijk were generated by a centered gamma
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variate with shape 0.2vj, where vj is randomly sampled from t3, 4, 5, 6u, and then

η̃ijk “ 0.5pη̃0ijk ` η̃
1
ijkq{k.

Case 4 (Student-t distribution with the same variance): Let the distribution of

principal components are symmetric and heavy-tailed t-distributions with the same

variance. Let the degree of freedom of the t-distributions is 3. For i “ 1, ¨ ¨ ¨ ,m,

j “ 1, ¨ ¨ ¨ , p and k “ 1, ¨ ¨ ¨ , 50, let ζ̃0ijk „ tp3q, and ζ̃ijk “ ζ̃0ijk{p
?

3kq. At the

same time, for i “ 1, ¨ ¨ ¨ , n, j “ 1, ¨ ¨ ¨ , p and k “ 1, ¨ ¨ ¨ , 50, let η̃0ijk „ tp3q, and

η̃ijk “ η̃0ijk{p
?

3kq.

Case 5 (Student-t distribution with the different variance): Let the distribution of

principal components are symmetric and heavy-tailed t-distributions with different

variance. ζ̃ijk in this case is obtained identically as in case 4. Let η̃t0ijk „ tp3q, and

η̃ijk “
a

1` uj η̃
t0
ijk{p

?
3kq.

The empirical means and SEs of 5-fold CV AUC, YI and computing time for

combination of each settings for p “ 5, 10, 1, 2 and 3 are shown in Tables 2.1-2.5

respectively. To explain empirical performances of different approaches, the results

for scenario p “ 5 in Table 2.1 are chosen for detailed illustration. Similar conclusions

can be obtained from Table 2.2. To illustrate the merit of our proposed scalar

features, logistic method and logistic˚ are compared. The high AUC and YI in all

the scenarios indicates that the obtained dimension-reduced features can maintain

the information of the functional markers to the most extent. For cases 1 and 4,

where the distributions of the principal components are symmetric and have the

same variance, linear combinations have better performances. For the other cases,

where the distributions of the principal component are asymmetric and/or have

different variance, the min-max and non-linear combination slightly performs better.

This may due to min-max and non-linear combination have more power to maintain

sensitivity and specificity when the variance of estimated projection scores from two
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groups are different. In other cases, non-linear method is dominated by some other

methods, this may be due to the non-linear method mainly focuses on penalized YI

rather than AUC or YI themselves.

Table 2.3 contains comprehensive numerical results in our simulation study when

there is only one functional marker that helps diagnosis. In this table, results of ELR,

min-max and logistic method are set to be missing, while the computing time for

all the methods (including logistic* method) except non-linear combination is also

omitted. The reasons why we set these cells to be missing are as follows. We add

logistic˚ method into comparison to reflect the merit of our proposed feature, thus,

its computing time is not of our interest and is set to be missing in all the tables.

There is only one functional marker, indicating that the stepwise, ELR and logistic

methods are indeed all the same and need not to be computed because they are all

linear combinations, thus, the cells for ELR and logistic methods are omitted, and

the computing time of them are also set to be missing. Min-max method requires

at least two scalar markers to make the combination, thus, it cannot be applied for

only one scalar feature, and the cells for min-max combination are set to be missing.

According to Tables 2.1-2.2, the scalar feature can retain more information than

combinations of functional observations, indicating that functional analysis has its

merit for diagnoses. By comparing the results in Tables 2.3-2.5, it is shown that

combination of multiple functional markers does improve the diagnostic accuracy.

At the same time, as p increases, which implies the number of coefficients in lin-

ear combinations grows up, the computing time (including stepwise method, ELR

method, and penalized logistic regression) also increases. Besides, since there is only

one coefficient to optimize, min-max combination always provide high computational

efficiency. Computational efficiency of non-linear combination is dominated by all

other methods. In most of the cases, computing efficiency of non-linear combination

may not be affected by the number of functional markers, while it would be signifi-
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cantly impacted in some other cases. This may due to the number of coefficients for

non-linear combination mainly depends on the sample size but not the number of

functional markers. Furthermore, ELR method can provide higher diagnostic accu-

racy than stepwise method when p is large, while the advantage of YI is higher than

AUC. This may due to the stepwise method maximizes the Mann-Whitney statistic

directly, thus, its AUC may be larger than ELR method when p is small. However,

when p is large, the coefficients obtained by stepwise method may be a little far from

the optimal coefficients, while the ELR method can always provide true optimizers.

In summary, when the number of functional markers is small, we suggest to use

linear or min-max combinations. When the number of functional markers is large,

the performance for ELR method may exceed the stepwise method, therefore, ELR

method or min-max combination method are both recommended for their high accu-

racy and efficient computation. When the number of functional markers is extremely

large, one can choose logistic regression, min-max combination or non-linear combi-

nation depending on their empirical performance. When the principal components

are symmetric distributed with equal variance, the linear combinations are recom-

mended, otherwise, the min-max combination is recommended.

2.4 Application in predicting high- or low- admis-

sions due to respiratory

In this section, we shall utilize the stepwise, ELR, min-max and non-linear, logistic,

and logistic˚ methods to predict high- or low- hospital admissions due to respira-

tory diseases in Hong Kong between 2010 and 2017. Weather conditions, including

temperature, dew point temperature do have significant contribution for respiratory

diseases (Davis et al. (2016)). Since patients with respiratory diseases and their fam-

ily are prone to search keyword ’influenza’, searching records of this keyword may
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

Case 1: Gaussian distribution with the same variance

AUC 0.8362 (0.0027) 0.8317 (0.0023) 0.8111 (0.0027) 0.8281 (0.0027) 0.8350 (0.0025) 0.8176 (0.0028)

YI 0.5473 (0.0045) 0.5379 (0.0044) 0.5025 (0.0048) 0.5311 (0.0050) 0.5442 (0.0050) 0.5222 (0.0050)

Time 17.778 (1.2137) 5.1037 (0.1114) 4.3243 (0.2948) - 4.2469 (0.3248) 26.512 (1.3641)

Case 2: Gaussian distribution with the different variance

AUC 0.7610 (0.0034) 0.7592 (0.0029) 0.8453 (0.0033) 0.7555 (0.0037) 0.7628(0.0033) 0.8535 (0.0031)

YI 0.4563 (0.0052) 0.4500 (0.0045) 0.5741 (0.0060) 0.4466 (0.0056) 0.4583 (0.0053) 0.5835 (0.0062)

Time 17.030 (0.4936) 4.9647 (0.1224) 4.2311 (0.1610) - 3.7488 (0.1357) 31.831 (0.5139)

Case 3: Gamma-Normal distribution

AUC 0.9473 (0.0013) 0.9458 (0.0013) 0.9300 (0.0015) 0.9399 (0.0015) 0.9468 (0.0013) 0.9393 (0.0016)

YI 0.7749 (0.0039) 0.7736 (0.0035) 0.7317 (0.0040) 0.7560 (0.0039) 0.7753 (0.0038) 0.7623 (0.0044)

Time 17.325 (0.5026) 4.0360 (0.0811) 4.1914 (0.1416) - 4.1225 (0.1567) 31.533 (0.5464)

Case 4: Student-t distribution with the same variance

AUC 0.8563 (0.0024) 0.8616 (0.0028) 0.8161 (0.0029) 0.8450 (0.0024) 0.8545 (0.0023) 0.8587 (0.0022)

YI 0.6039 (0.0044) 0.6121 (0.0047) 0.5453 (0.0054) 0.5833 (0.0043) 0.6025 (0.0040) 0.5895 (0.0046)

Time 16.596 (0.6275) 5.7831 (0.1396) 4.1209 (0.1646) - 3.7711 (0.1651) 31.665 (0.8114)

Case 5: Student-t distribution with different variance

AUC 0.7912 (0.0030) 0.7917 (0.0035) 0.8236 (0.0027) 0.7789 (0.0033) 0.7892 (0.0029) 0.8414 (0.0024)

YI 0.5121 (0.0048) 0.5133 (0.0059) 0.5501 (0.0048) 0.4877 (0.0054) 0.5093 (0.0047) 0.5655 (0.0050)

Time 16.844 (0.8242) 6.5262 (0.1498) 4.4276 (0.2494) - 4.0764 (0.2621) 30.030 (0.9559)

Table 2.1: Mean 5-fold CV AUC, YI, Time and their SEs (beneath in parentheses)
for p “ 5.

also reflect the varying of hospital admissions for respiratory diseases. In practice,

temperature, dew point temperature and searching records of keyword ’influenza’

through google in the past 4 weeks are regarded as functional diagnostic markers.

Throughout the data, patients with respiratory diseases in Hong Kong are divided

by districts, genders, and ages. Residents from nineteen districts are contained in the

hospital admissions dataset, and are classified by age less than 65 or not. Hospital

admissions due to respiratory diseases for any genders and ages are collected by each

day and district, in which the numbers less than 5 have been truncated. The whole

number of hospital admissions due to respiratory diseases are plotted in figure 2.1.

According to figure 2.1, obviously there exists an annual periodicity for the behavior

of hospital admissions. Hospital admissions are higher in Spring and Autumn, while
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

Case 1: Gaussian distribution with the same variance

AUC 0.8881 (0.0022) 0.9081 (0.0018) 0.8402 (0.0023) 0.8843 (0.0019) 0.9057 (0.0017) 0.8851 (0.0024)

YI 0.6424 (0.0047) 0.6779 (0.0045) 0.5519 (0.0046) 0.6348 (0.0041) 0.6794 (0.0041) 0.6403 (0.0051)

Time 10.839 (0.1364) 16.729 (0.5903) 1.2063 (0.0175) - 1.4269 (0.0211) 119.68 (5.7710)

Case 2: Gaussian distribution with the different variance

AUC 0.8080 (0.0031) 0.8350 (0.0028) 0.9087 (0.0024) 0.8116 (0.0032) 0.8330 (0.0027) 0.9259 (0.0020)

YI 0.5285 (0.0053) 0.5692 (0.0044) 0.6871 (0.0055) 0.5318 (0.0053) 0.5667 (0.0049) 0.7267 (0.0051)

Time 19.469 (0.9475) 20.525 (0.8209) 2.1733 (0.1142) - 2.4415 (0.1070) 12.807 (0.7327)

Case 3: Gamma-Normal distribution

AUC 0.9805 (0.0007) 0.9846 (0.0007) 0.9570 (0.0010) 0.9718 (0.0010) 0.9844 (0.0005) 0.9809 (0.0007)

YI 0.8743 (0.0026) 0.8939 (0.0026) 0.8023 (0.0030) 0.8459 (0.0032) 0.8913 (0.0022) 0.8747 (0.0028)

Time 39.253 (0.8466) 6.7141 (0.1884) 4.5696 (0.1423) - 6.0583 (0.1972) 28.005 (0.5403)

Case 4: Student-t distribution with the same variance

AUC 0.9043 (0.0021) 0.9145 (0.0020) 0.8210 (0.0031) 0.8967 (0.0023) 0.9130 (0.0017) 0.9131 (0.0021)

YI 0.6971 (0.0047) 0.7254 (0.0040) 0.5553 (0.0056) 0.6738 (0.0048) 0.7183 (0.0042) 0.6862 (0.0050)

Time 39.372 (0.9088) 15.636 (0.4788) 4.2307 (0.1427) - 5.2823 (0.1680) 28.209 (0.6618)

Case 5: Student-t distribution with different variance

AUC 0.8390 (0.0029) 0.8537 (0.0030) 0.8635 (0.0024) 0.8382 (0.0032) 0.8558 (0.0028) 0.9022 (0.0022)

YI 0.5929 (0.0056) 0.6167 (0.0051) 0.6227 (0.0046) 0.5859 (0.0058) 0.6216 (0.0053) 0.6774 (0.0049)

Time 29.011 (0.8438) 16.055 (0.5843) 3.2195 (0.1126) - 3.6093 (0.1161) 22.261 (3.2906)

Table 2.2: Mean 5-fold CV AUC, YI, Time and their SEs (beneath in parentheses)
for p “ 10.

lower in Summer and Winter. Besides the annual periodicity, there also exists weekly

periodicity on the hospital admissions.

Temperature and dew point temperature each day are displayed on the website

https://www.hko.gov.hk/contentc.htm. The searching records has been scaled

by each month with the highest day of searching frequency measured as 100. Tem-

perature, dew point temperature and searching records in Hong Kong are utilized to

predict high- or low- admissions due to respiratory diseases. The plots of tempera-

ture, dew point temperature and searching records are plotted in figure 2.2.

Because of the shorter work hours on Sunday in Hong Kong, we mainly focus

on each Sunday to overcome the weekly periodicity for the number of hospital ad-

missions. According to the histogram of hospital admissions on Sundays in figure

25
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

Case 1: Gaussian distribution with the same variance

AUC 0.7144 (0.0030) - - 0.7047 (0.0035) - 0.6738 (0.0037)

YI 0.3553 (0.0052) - - 0.3448 (0.0055) - 0.3315 (0.0063)

Time - - - - - 30.444 (0.5659)

Case 2: Gaussian distribution with the different variance

AUC 0.6653 (0.0037) - - 0.6523 (0.0044) - 0.6917 (0.0036)

YI 0.3329 (0.0047) - - 0.3126 (0.0059) - 0.3404 (0.0058)

Time - - - - - 31.153 (0.3670)

Case 3: Gamma-Normal distribution

AUC 0.8286 (0.0026) - - 0.8195 (0.0027) - 0.7883 (0.0030)

YI 0.5280 (0.0046) - - 0.5147 (0.0048) - 0.5108 (0.0051)

Time - - - - - 31.054 (1.0188)

Case 4: Student-t distribution with the same variance

AUC 0.7609 (0.0029) - - 0.7477 (0.0033) - 0.7422 (0.0032)

YI 0.4428 (0.0050) - - 0.4219 (0.0053) - 0.4234 (0.0057)

Time - - - - - 33.818 (0.5359)

Case 5: Student-t distribution with different variance

AUC 0.7045 (0.0035) - - 0.6844 (0.0045) - 0.7171 (0.0032)

YI 0.3885 (0.0052) - - 0.3533 (0.0064) - 0.3842 (0.0059)

Time - - - - - 31.623 (0.3566)

Table 2.3: Mean 5-fold CV AUC, YI, Time and their SEs (beneath in parentheses)
for p “ 1.
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Figure 2.1: Hospital admissions bewteen 2010 to 2017 (left), in 2010 (middle) and
in Jan, 2010 (right)
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

Case 1: Gaussian distribution with the same variance

AUC 0.7351 (0.0031) 0.7274 (0.0028) 0.7328 (0.0032) 0.7266 (0.0033) 0.7305 (0.0032) 0.7045 (0.0037)

YI 0.3819 (0.0049) 0.3736 (0.0050) 0.3789 (0.0053) 0.3734 (0.0054) 0.3775 (0.0052) 0.3589 (0.0059)

Time 2.3923 (0.1200) 1.7082 (0.0825) 2.4591 (0.1406) - 1.7655 (0.0985) 17.556 (0.9116)

Case 2: Gaussian distribution with the different variance

AUC 0.6864 (0.0034) 0.6678 (0.0036) 0.7291 (0.0033) 0.6728 (0.0044) 0.6810 (0.0036) 0.7479 (0.0035)

YI 0.3534 (0.0050) 0.3265 (0.0046) 0.4034 (0.0052) 0.3344 (0.0063) 0.3479 (0.0053) 0.4133 (0.0059)

Time 4.3864 (0.1288) 1.8558 (0.1581) 4.6836 (0.1484) - 3.4487 (0.1185) 32.345 (0.4624)

Case 3: Gamma-Normal distribution

AUC 0.8543 (0.0025) 0.8478 (0.0028) 0.8535 (0.0026) 0.8462 (0.0025) 0.8517 (0.0025) 0.8267 (0.0029)

YI 0.5758 (0.0045) 0.6626 (0.0040) 0.5773 (0.0049) 0.5613 (0.0048) 0.5723 (0.0046) 0.5614 (0.0049)

Time 4.5574 (0.2833) 1.5315 (0.0836) 4.8230 (0.3040) - 4.3062 (0.2998) 30.470 (0.9769)

Case 4: Student-t distribution with the same variance

AUC 0.7746 (0.0029) 0.7687 (0.0029) 0.7710 (0.0031) 0.7642 (0.0032) 0.7712 (0.0030) 0.7679 (0.0033)

YI 0.4699 (0.0051) 0.5284 (0.0049) 0.4647 (0.0052) 0.4487 (0.0052) 0.4613 (0.0055) 0.4507 (0.0056)

Time 3.9752 (0.1380) 1.7968 (0.0586) 4.1541 (0.1382) - 3.2716 (0.1293) 33.542 (0.6207)

Case 5: Student-t distribution with different variance

AUC 0.7156 (0.0034) 0.7088 (0.0038) 0.7507 (0.0029) 0.7004 (0.0041) 0.7094 (0.0038) 0.7545 (0.0031)

YI 0.3960 (0.0049) 0.4509 (0.0056) 0.4395 (0.0050) 0.3712 (0.0060) 0.3893 (0.0054) 0.4282 (0.0052)

Time 4.1538 (0.1236) 2.3717 (0.1072) 4.5683 (0.1454) - 3.4572 (0.1119) 33.169 (0.5927)

Table 2.4: Mean 5-fold CV AUC, YI, Time and their SEs (beneath in parentheses)
for p “ 2.
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Figure 2.2: Temperature, dew temperature and searching records during 2010 to
2017
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

Case 1: Gaussian distribution with the same variance

AUC 0.7725 (0.0027) 0.7750 (0.0029) 0.7661 (0.0025) 0.7654 (0.0029) 0.7715 (0.0027) 0.7489 (0.0037)

YI 0.4385 (0.0047) 0.4503 (0.0050) 0.4281 (0.0043) 0.4270 (0.0053) 0.4375 (0.0048) 0.4205 (0.0052)

Time 8.2934 (0.2626) 2.7989 (0.0893) 4.2788 (0.1665) - 3.5171 (0.1525) 33.641 (0.5778)

Case 2: Gaussian distribution with the different variance

AUC 0.7105 (0.0038) 0.7092 (0.0033) 0.7841 (0.0034) 0.7048 (0.0038) 0.7092(0.0037) 0.7903 (0.0040)

YI 0.3820 (0.0053) 0.3855 (0.0048) 0.4787 (0.0057) 0.3719 (0.0054) 0.3785 (0.0052) 0.4757 (0.0069)

Time 10.826 (0.5577) 3.2868 (0.1182) 5.7857 (0.3180) - 4.6966 (0.2856) 32.563 (1.1229)

Case 3: Gamma-Normal distribution

AUC 0.8956 (0.0017) 0.8971 (0.0020) 0.8886 (0.0018) 0.8879 (0.0020) 0.8949 (0.0018) 0.8816 (0.0021)

YI 0.6569 (0.0043) 0.6626 (0.0040) 0.6438 (0.0043) 0.6404 (0.0046) 0.6571 (0.0043) 0.6467 (0.0047)

Time 6.2395 (0.2454) 2.4987 (0.0677) 3.0796 (0.1033) - 2.8551 (0.1381) 25.729 (0.6669)

Case 4: Student-t distribution with the same variance

AUC 0.8127 (0.0023) 0.8117 (0.0026) 0.7990 (0.0026) 0.8054 (0.0025) 0.8114 (0.0022) 0.8108 (0.0026)

YI 0.5295 (0.0044) 0.5284 (0.0049) 0.5103 (0.0047) 0.5151 (0.0043) 0.5257 (0.0044) 0.5170 (0.0049)

Time 8.6609 (0.2902) 3.3166 (0.1371) 4.4444 (0.1860) - 3.6472 (0.1627) 34.019 (0.9702)

Case 5: Student-t distribution with different variance

AUC 0.7480 (0.0031) 0.7497 (0.0037) 0.7878 (0.0027) 0.7377 (0.0035) 0.7455 (0.0032) 0.7965 (0.0030)

YI 0.4493 (0.0051) 0.4509 (0.0056) 0.4971 (0.0048) 0.4275 (0.0055) 0.4451 (0.0052) 0.4881 (0.0059)

Time 8.6076 (0.2970) 3.4655 (0.1506) 4.3373 (0.1363) - 3.5444 (0.1385) 33.498 (0.7119)

Table 2.5: Mean 5-fold CV AUC, YI, Time and their SEs (beneath in parentheses)
for p “ 3.

2.4, there exists a heavy tail for high hospital admissions. Thus, we mainly consider

high- and low- admission days ( higher than 85%- and lower than 15% empirical quan-

tiles, respectively). The truncation numbers in the FPCA procedure are selected by

FVE=0.99.

Temperature, dew point temperature and searching records observed are regarded

as functional markers to predict high- or low- hospital admissions. For each diag-

nostic method, we assess the performances of each single process respectively, then

the combinations of each two processes, and finally the combinations of all the three

processes. Table 2.6 and 2.7 respectively reflects the 5-fold cross-validation AUC and

YI based on 100 replications with standard errors listed in the parentheses. Com-

puting time of all the combinations are listed in Table 2.8. ROC curves obtained by
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temperature; temperature & dew point temperature and the three functional mark-

ers respectively are displayed in Figure 2.3, with the mean AUC shown in the figure

for instance, and the corresponding YI can be found in Table 2.7.

We first assess the performances of our proposed features. Linear combination

of features outperforms linear combination of observed data, indicating that the

dimension-reduced feature maintained most of the correlation information within one

stochastic process. The performances of the three functional markers are then com-

pared respectively. Among the three functional markers, temperature and searching

records provide the highest and lowest diagnostic accuracy respectively. Moreover, as

an additional functional marker is added to a combination, the diagnostic accuracy

will be improved with higher AUC.

The empirical performance of each combination method is considered as follows.

The stepwise linear combination has the best performance among all the methods, no

matter which marker(s) is (are) applied. The more functional markers are considered

in diagnosis, the less is the difference between stepwise and ELR linear combinations.

The non-linear combination is not recommended in our real data analysis because of

its low diagnostic accuracy and computational efficiency. Since the number of func-

tional markers is not very large, the computing efficiency of any combination methods

is all efficient except non-linear combination. Thus, despite the efficient computing

of min-max combination, the stepwise linear combination is most recommended for

this problem.

2.5 Conclusion

In this paper, we combine the functional markers to improve the diagnostic accu-

racy, and applied the combinations to diagnose for high- or low- hospital admissions

between 2010 and 2017 in Hong Kong. To be more specific, we construct a scalar
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Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

temp 0.8823 (0.0007) - - 0.8658 (0.0011) - 0.8258 (0.0016)

dew 0.8342 (0.0006) - - 0.8265 (0.0009) - 0.8263 (0.0017)

influenza 0.7145 (0.0012) - - 0.5840 (0.0046) - 0.7016 (0.0025)

temp & influenza 0.8899 (0.0010) 0.8786 (0.0013) 0.9060 (0.0008) 0.8699 (0.0012) 0.8899 (0.0006) 0.8268 (0.0015)

dew & influenza 0.8591 (0.0013) 0.8454 (0.0018) 0.9061 (0.0009) 0.8250 (0.0014) 0.8599 (0.0008) 0.8199 (0.0016)

temp & dew 0.9148 (0.0016) 0.9006 (0.0021) 0.8884 (0.0011) 0.8670 (0.0011) 0.9042 (0.0009) 0.8379 (0.0015)

temp, dew & influenza 0.9351 (0.0010) 0.9327 (0.0016) 0.9031 (0.0010) 0.8688 (0.0014) 0.9267 (0.0008) 0.8411 (0.0016)

Table 2.6: The AUC derived by each curve and combinations by extreme quantile
0.15 and 0.85.

Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

temp 0.6943 (0.0003) - - 0.6780 (0.0019) - 0.6931 (0.0005)

dew 0.6516 (0.0009) - - 0.6476 (0.0021) - 0.6423 (0.0013)

influenza 0.3814 (0.0024) - - 0.2019 (0.0064) - 0.3634 (0.0033)

temp & influenza 0.6548 (0.0015) 0.6486 (0.0021) 0.6990 (0.0010) 0.6582 (0.0027) 0.6502 (0.0015) 0.6923 (0.0007)

dew & influenza 0.5744 (0.0017) 0.5729 (0.0021) 0.6940 (0.0026) 0.5638 (0.0025) 0.5724 (0.0015) 0.6437 (0.0012)

temp & dew 0.7137 (0.0011) 0.7071 (0.0016) 0.6250 (0.0014) 0.6816 (0.0021) 0.7084 (0.0013) 0.6904 (0.0007)

temp, dew & influenza 0.7739 (0.0032) 0.7610 (0.0072) 0.6958 (0.0006) 0.6534 (0.0028) 0.7377 (0.0026) 0.6909 (0.0011)

Table 2.7: The YI derived by each curve and combinations by extreme quantile 0.15
and 0.85.

Methods Stepwise ELR Min-max Logistic˚ Logistic Non-linear

temp 0.5042 (0.0042) - - - 1.1842 (0.0093) 51.513 (0.2882)

dew 0.5067 (0.0045) - - - 1.1676 (0.0089) 54.443 (0.3047)

influenza 0.5135 (0.0033) - - - 1.1439 (0.0099) 55.319 (0.2646)

temp & influenza 0.5017 (0.0061) 1.4120 (0.2246) 0.5314 (0.0068) - 1.1881 (0.0118) 64.904 (0.5599)

dew & influenza 0.4954 (0.0056) 1.7640 (0.2182) 0.5216 (0.0063) - 1.1619 (0.0135) 64.684 (0.5667)

temp & dew 0.4772 (0.0083) 16.740 (0.7582) 0.5086 (0.0080) - 1.2863 (0.0185) 66.090 (0.9314)

temp, dew & influenza 1.8780 (0.0419) 4.8752 (0.4383) 0.9622 (0.0221) - 0.8718 (0.0212) 19.481 (0.4387)

Table 2.8: The computing time for each curve and combinations by extreme quantile
0.15 and 0.85.
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Figure 2.3: ROC curve of different diagnosis given by different markers
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Figure 2.4: Histogram of hospital admissions on Sunday

feature motivated by square loss distance, which is an alternative of the original func-

tional marker and can maintain the information. Then existing scalar combination

methods are applied to make the diagnosis. In detail, common FPCA is utilized

in the dimension reduction procedure. Linear combinations (including stepwise and

ELR methods), non-linear combination and min-max combination are applied on

the scalar features to improve the diagnostic accuracy. In addition, we provide an

implement procedure and an R function for convenient application.

Simulations and real data analysis are studied to illustrate existing scalar com-

bination methods and effectiveness of our proposed feature maintaining information

of the original functional marker. On the basis of numerical analysis, the logis-

tic regression on the proposed features outperforms logistic regression on functional

observations directly, indicating the dimension reduction procedure retains the infor-
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mation to the most extent. Linear combinations have almost the best performance,

with high diagnostic accuracy and fair computational efficiency. Min-max combina-

tion can efficiently save computing time and provide high diagnostic accuracy. Non-

linear combination costs a lot more time than linear and min-max combinations,

while its performance is better than linear combinations in a few cases. Thus, all

the combination methods can be applied to make the diagnosis, and their empirical

performances can help the selection of them.

There exist several directions for future research. Firstly, one can use some other

method to reduce the dimension of functional data rather than functional principal

components analysis. For instance, instead of obtaining projections on basis func-

tions derived by FPCA, one can obtain the projections on some other basis functions.

Secondly, some other distance can be constructed, while other combinations of func-

tional markers can also be studied. Thirdly, when functional and scalar markers are

observed simultaneously, how to combine the functional markers and scalar markers

is also an interesting problem for further research, although it has been studied com-

prehensively already. Finally, functional markers may not be necessarily transformed

to scalars, some other extension are also worth a study for combination.
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Chapter 3

Functional semivarying-coefficient

additive model

3.1 Motivation

High hospital admissions will cause burden for healthcare system. Thus, analysis

and prediction for hospital admissions may help hospitalization management.

Respiratory hospital admissions associated with weather conditions and air pol-

lutants have been broadly studied. In environmental epidemiology community, hos-

pital admissions have been mainly modeled by generalized linear model, which do

not contain dynamic structure, and the effect of time on hospital admissions would

not be discussed. Thus, in statistical community, cross-sectional time series mod-

els were mainly used to study hospital admissions data, such as varying coefficient

models (Fan and Zhang (1999)), semi-varying coefficient models (Xia et al. (2004)),

semi-parametric partially linear single-index models (Xia and Härdle (2006)), and

generalized additive models (Zhang et al. (2015)). Although a functional additive

cumulative time series model were proposed by Kong et al. (2010), the model was

reduced to cross-sectional generalized additive model with cumulative effects (Xia

and Tong (2006)) in their application for studying hospital admissions data. To the

best of our knowledge, there is no publications focusing on hospital admissions from
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the perspective of functional regression models.

In this topic, we aim to explore a new functional regression model to study

hospital admissions associated with weather conditions and air pollutants in the

previous four weeks on respiratory hospital admissions. In our data set, hospital

admissions, weather conditions including temperature, dew point temperature and

relative humidity, and air pollutants including SO2, NO2, RSP and O3 are observed

daily between 2010 to 2017 in Hong Kong. Motivated by the real climate conditions

in Hong Kong, and suggestions from Xia et al. (2002) and Shao et al. (2009), we treat

the daily measurements for air pollutants every four weeks as functional curves. The

functional trajectories are dense since they include twenty eight observations on each

curve.

There is rich literature studying functional regression models of versatile types

(Wang et al. (2016)). However, existing models may not be suitable enough for our

real world problem. Although a functional additive cumulative time series model were

proposed by Kong et al. (2010), the model was reduced to cross-sectional generalized

additive model with cumulative effects (Xia and Tong (2006)) in their application

for studying hospital admissions data. In our study, we aim to explore the format of

functional regression model based on potential influential factors other than air pol-

lutants and weather conditions, and how these influential factors impact on hospital

admissions.

3.2 Functional regression modeling with hospital

admissions response

Since the accumulative hospital admissions over a month, the response of our interest,

has a annual period, the month of the year can influence the monthly hospital admis-

sions. Besides, weather conditions may have a varying impact on hospital admissions
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based on the value of them. Moreover, air pollutants, the functional covariates, may

not only affect hospital admissions with nonliearity, but also have interaction with

weather conditions. Thus, the following model is explored:

Y “ ZJθ `
q
ÿ

k“1

gkp

ż

I
Xkptqγkptqdt, Uq ` ε,

Epε|Z,X, Uq “ 0, V arpε|Z,X, Uq “ σ2,

(3.1)

where Y P R is a scalar response, Z P Rp is the scalar covariates, U is a univariate

variable to avoid the ”curse of dimensionality”, Xk P L
2pIq is the functional covariate

for k “ 1, ¨ ¨ ¨ , q, gkp¨, ¨q are unknown functions, I is the impact time interval, and ε

is the error term.

In our application, Y is the accumulative hospital admissions over a month, Z

are the dummy variables indicating the month of the year, U P R is the average

temperature, relative humidity or dew point temperature over the previous month,

and Xkptq are the four air pollutants curves for k “ 1, ¨ ¨ ¨ , 4.

We call the model (3.1) a functional semi-varying coefficient additive model (FSV-

CAM). On the one hand, if the unknown nonlinear function gkpx, uq “ x ¨ αkpuq,

γkptq “ 1 and Xkptq “ xk for any t P I , then model (3.1) is reduced to the semi-

varying coefficient model (Xia et al. (2004)):

y “ ZJθ `
q
ÿ

k“1

αkpUqxk ` ε,

Epε|U,x,Zq “ 0, V arpε|U,x,Zq “ σ2
pUq,

(3.2)

where x “ px1, ¨ ¨ ¨ , xqq
J. On the other hand, if gkpx, uq “ gkpxq, model (3.1) is

reduced to the functional additive cumulative effects model (Kong et al. (2010)):

Y “ ZJθ `
q
ÿ

k“1

gkp

ż

I
Xkptqγkptqdtq ` ε. (3.3)
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Since the model (3.1) has not been studied before, we need to explore some con-

ditions for model identifiability. To be more specific, the nonidentifiability may come

from several aspects. First, the nonlinear unknown functions gkp¨, ¨q may be added

to some non-zero constants, and the model identifiability is broken. Second, the

coefficients γk and index functions gkp¨, ¨q would also make the model not identifiable

by multiply/divided a non-zero constant.

To address this problem, motivated by the conditions suggested by Shen et al.

(2014), Fan et al. (2015), and Kong et al. (2010), we explore the following conditions

for identifiability:

C0. The functional covariates X are conditional independent to Z given U .

C1. The response and scalar covariates are both centered:

EpY q “ 0 and EpZq “ 0.

C2. The nonlinear function gp¨, ¨q is also centered given U :

E

„

gk

"
ż

I
Xkptqγkptqdt, U

*ˇ

ˇ

ˇ

ˇ

U



“ 0.

C3. The functional coefficients were scaled:
ş

I γ
2
kptqdt “ 1 and

ş

I γkptqdt ą 0 for

k “ 1, ¨ ¨ ¨ , q.

Remark. Condition C0 is a strong condition requiring the conditional independence

between scalar covariates Z and functional covariates X given U . If gkpx, uq “ hpxq

do not depend on u, independence between functional and scalar covariates are not

common used in functional regression analysis. This condition may be possible to be

loosen in future work.

Condition C1 is a general conditions for semi-varying coefficient model (Xia et al.

(2004), Shen et al. (2014)) to center all the random variables in the model.
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Condition C2 is a general assumption explored by the common used condition for

functional additive model (Fan et al. (2015)), which was also applied in Kong et al.

(2010). In Fan et al. (2015) and Kong et al. (2010), they assumed that the index

functions are centered. In this thesis, condition C2 means that the index functions are

centered condition on U . The condition C2 is equivalent to E
“

gk
 ş

I Xkptqγkptqdt, c
(‰

“

0 for any constant c P R. If condition C2 changes to

Etgkp

ż

I
Xkptqγkptqdt, Uqu “ 0,

suppose g1px, uq, ¨ ¨ ¨ ,g4px, uq are functions satisfying our explored model (3.1), then

another group of functions g˚1 px, uq “ g1px, uq ` αpuq, g˚2 px, uq “ g2px, uq ´ αpuq,

g˚3 px, uq “ g3px, uq and g˚4 px, uq “ g4px, uq satisfying both model (3.1) and Condition

C2, where αp¨q is a non-zero function satisfying EtαpUqu “ 0. The model identifia-

bility will be broken. Thus, the condition C2 seems necessary for model identifiability.

Condition C3 is to scale the functional parameter γkptq without loss of generality.

Similar condition
ş

I γkptqdt “ 1 was commonly used in functional regression models

(Hall et al. (2007), Kong et al. (2010)).

Proposition 3.1. With conditions C0 - C3, the model (3.1) is identified.

Proof. Assume there are both sets of parameters and functions tθ, tgku
q
k“1, tγku

q
k“1u

and tθ˚, tg˚ku
q
k“1, tγ

˚
ku

q
k“1u satisfy conditions C0 to C3 and the model (3.1), then we

shall prove that θ “ θ˚, gkpx, uq “ g˚kpx, uq for k “ 1, ¨ ¨ ¨ , q, and γkptq “ γ˚k ptq

almost surely for k “ 1, ¨ ¨ ¨ , q.

We shall prove θ “ θ˚ first. By conditions C0 and C2, the conditional expectation

of Y given Z and U would be

EpY |Z, Uq “ EpZJθ|Z, Uq ` E

„

gk

ˆ
ż

I
Xkptqγkptqdt, U

˙
ˇ

ˇ

ˇ

ˇ

Z, U



` Epε|Z, Uq

“ ZJθ ` Epε|Z, Uq,
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and similarly,

EpY |Z, Uq “ ZJθ˚ ` Epε|Z, Uq,

which indicates that ZJθ “ ZJθ˚ for any Z P Rp, and thus θ “ θ˚.

Then we shall show that gkpx, uq “ g˚kpx, uq for any x, u, and γkptq “ γ˚k ptq almost

surely. Since θ “ θ˚, for any fixed U , let hkpxq “ gkpx, Uq and h˚kpxq “ g˚kpx, Uq,

then we have

q
ÿ

k“1

hk

"
ż

I
Xkptqγkptqdt

*

“

q
ÿ

k“1

h˚k

"
ż

I
Xkptqγkptqdt

*

with E
“

hkt
ş

I Xkptqγkptqdtu
‰

“ E
“

h˚kt
ş

I Xkptqγkptqdtu
‰

“ 0. According to Fan et al.

(2015), hkpxq “ h˚kpxq for any x, and γkptq “ γ˚k ptq almost surely by conditions

C2 and C3. Thus, gkpx, uq “ g˚kpx, uq for any x, u P R. The model (3.1) is then

confirmed to be identified.

3.3 Estimation Procedures

The estimation procedure is as follows. Firstly, orthonormal functions tφkmptqu
8
m“1

for k “ 1, ¨ ¨ ¨ , q and m “ 1, 2, ¨ ¨ ¨ can be found and act as basis functions in L2pIq

space. Basis functions derived by FPCA are applied in our method. Based on the

obtained orthonormal basis functions tφ̂kmptqu
Sk
m“1 where Sk is the truncation point

which can be selected by specified fraction of variance explained (FVE) threshold

(for instance), tXik, γk, gku
q
k“1 can be approximated by

Xikptq´EtXikptqu «
Sk
ÿ

m“1

ξ̂ikmφ̂kmptq, γkptq «
Sk
ÿ

m“1

γkmφ̂kmptq, gkpx, Uq « ηkpUq
Jψpxq,

(3.4)

where ξ̂ikm “
ş

IrXikptq´EtXikptqusφ̂kmptqdt is the principal component score for Xi,

γkm “
ş

I γkptqφ̂kmptqdt, ηk P R
d and ψk is a d-dimensional B-spline basis function,
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where d is the number of basis functions selected. When number of functional pre-

dictors q is low, the unknown function gkpx, Uq can also be approximated by kernel

method. However, to avoid curse of dimensionality as q increases, we prefer the or-

thogonal basis functions to approximate the unknown functions. Besides, B-spline is

only a try and an exploration of in the estimation procedure. Other basis functions

(such as Fourier basis and P-spline basis) can also be utilized be potentially useful.

Based on the results of basis expansions (3.4), the model can be rewritten as

Yi « ZJi θ `
q
ÿ

k“1

ηkpUiq
Jψk

ˆ Sk
ÿ

m“1

ξ̂ikmγkm

˙

` εi,

Epεi|Z,U,Xptq for t P Iq “ 0, V arpεi|Z, U,Xptq for t P Iq “ σ2.

(3.5)

In addition, the proposed conditions for model identifiability indicates that

Etψkp
řSk

m“1 ξ̂ikmγkmqu « 0,
řSk

m“1 γ
2
km « 1 and

řSk

m“1 γkm ą 0 for k “ 1. ¨ ¨ ¨ , q.

Let wij “
KhpUi´Ujq

řn
j0“1

řn
i0“1KhpUi0

´Uj0
q
, i, j P t1, 2, ¨ ¨ ¨ , nu, using the local linear approx-

imation, the estimation will be constructed by minimizing:

1

n2

n
ÿ

j“1

n
ÿ

i“1

rYi ´ ZJi θ ´ b0j ´ cJ0jpUi ´ Ujq

´ tbj `
q
ÿ

k“1

ckjpUik ´ Ujkquψpξ̂i,γqs
2
¨ wij,

(3.6)

with respect to θ, b0j, c0j, bj, ckj and γ, where ξi “ tξ̂ikmu k“1,¨¨¨ ,q
m“1,¨¨¨ ,Sk

, γ “ tγkmu k“1,¨¨¨ ,q
m“1,¨¨¨ ,Sk

,

ψpξ̂i,γq “ tψ1p
řS1

m“1 ξ̂i1mγ1mq
J, ¨ ¨ ¨ ,ψrp

řSq

m“1 ξ̂irmγrmq
JuJ “ tψ1pξ̂

J
i1γ1q

J, ¨ ¨ ¨ ,ψqpξ̂
J
irγqq

JuJ.

Based on the objective function (3.6), we propose the estimation procedure as

follows:

Step 1. Apply the FPCA procedure to derive the FPC scores ξ and truncation numbers

Sk for k “ 1, ¨ ¨ ¨ , q by FVE.
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Step 2. Initialize θ and γ with model without nonlinear additive elements or varying

coefficients. That is, the initial values θ̂ and γ̂˚ of θ and γ˚ respectively are

derived by minimizing:

1

n

n
ÿ

i“1

"

Yi ´ ZJi θ ´
q
ÿ

k“1

Sk
ÿ

m“1

ξ̂ikmγkm

*2

wi, (3.7)

with respect to θ and γ. Obtained the minimizer γ̂˚, let γ̂k “ sgnp
řSk

m“1 γkmqγ̂
˚
k {p

řSk

m“1 γ̂
˚2

kmq

for k “ 1, ¨ ¨ ¨ , q, where γ̂˚k “ pγ̂
˚
k1, ¨ ¨ ¨ , γ̂

˚
kSk
qJ.

Step 3. In this step, we take the non-linear function into consideration, and then derive

the estimation of θ, αpUjq and ηpUjq by minimizing:

1

n2

n
ÿ

j“1

n
ÿ

i“1

rYi ´ ZJi θ̂ ´ tbj `
q
ÿ

k“1

ckjpUik ´ Ujkqu
Jψpξ̂i, γ̂qs

2
¨ wij, (3.8)

with respect to bj and ckj, while the estimator for ηpUjq are η̂pUjq “ b̂j. The

efficient estimation proposed by Xia et al. (2004) is applied in this step.

Step 4. We aim to estimate γ in this step. Direct estimation for γ is difficult due to

the nonlinearity of the basis functions ψkpxq. To overcome this difficulty, with

the estimator of η̂pUjq from step 3 and current value γk,old of γk, the nonlinear

functions ψkpxq can be approximated by

ψkpξ̂
J
ikγkq « ψkpξ̂

J
ikγk,oldq `ψ

1
kpξ̂

J
ikγk,oldq ¨ ξ̂

J
ikpγk ´ γk,oldq,

and thus γ˚ can be observed by minimizing

1

n2

n
ÿ

j“1

n
ÿ

i“1

„

Yi ´ ZJi θ̂

´ tb̂j `
q
ÿ

k“1

ĉkjpUik ´ Ujkqu
J

$

’

&

’

%

ψ1pξ̂
J
i1γ1,oldq `ψ

1
1pξ̂

J
i1γ1,oldq ¨ ξ̂

J
i1pγ1 ´ γ1,oldq

...

ψqpξ̂
J
irγr,oldq `ψ

1
qpξ̂

J
irγr,oldq ¨ ξ̂

J
irpγr ´ γr,oldq

,

/

.

/

-

2

¨ wij,

(3.9)
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with respect to γ. Then the estimator γ̂ can be obtained by

γ̂k “ sgnp
řSk

m“1 γkmqγ̂
˚
k {p

řSk

m“1 γ̂
˚2

kmq for k “ 1, ¨ ¨ ¨ , q. Similar algorithm for

nonlinear functions was proposed in Fan et al. (2015).

Step 5. Repeat Step 3 and Step 4 until θ̂ and γ̂ convergence.

3.4 Simulation study

In this section, we show the performance of our explore estimation procedure and the

model identifiability by a simulation example. In particular, the unknown function

gk are set to be gkpx, uq “ xαkpuq and we let ψpxq “ x in the estimation procedures.

The simulated data tYiu
n
i“1 are generated from the model

Yi “ ZJi θ `
q
ÿ

k“1

gkp

ż 1

0

Xikptqγkptqdt, Uiq ` εi “ ZJi θ `
q
ÿ

k“1

gk

ˆ

ÿ

l

γklξikl, U

˙

` εi,

with q “ 2 functional predictors, p “ 5 dimensional covariates Z, and univari-

ate U ; ε1, ¨ ¨ ¨ , εn are independent and identically distributed from Np0, 0.25q; θ is

the scalar vector for scalar covariates; gkpx, uq “ xαkpuq are the nonlinear func-

tions. The underlying regression function is γkptq “
ř4
m“1 γkmφkptq, a linear com-

bination of the eigenbasis. The scalar covariates Zi “ pZ1, ¨ ¨ ¨ , Zpq are generated

by Bernoulli and Gaussian distributions, in our settings, p “ 5. To be more spe-

cific, let Z̃i “ pZ̃1, ¨ ¨ ¨ , Z̃pq are jointly normal with zero mean, unit variance and

AR(0.5) correlation structure. Then Zij are generated by Bernoulli distribution

BernoullipΦ´10 pZ̃ijqq for j “ 1, 2 where Φ0 is the cumulative distribution func-

tion of standard normal distribution; Zij “ Z̃ij for j “ 3, ¨ ¨ ¨ , p. The univari-

ate variable Ui are generated from uniform distribution U r0, 1s for i “ 1, ¨ ¨ ¨ , n.

Next, we describe how to generate the predictors Xikptq. The functional predic-

tors have mean zero and covariance function derived from the Fourier basis Φptq “
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pφ1ptq, φ2ptq, φ3ptq, φ4ptqq
J “ p

?
2 sinpπtq,

?
2 cospπtq,

?
2 sinp3πtq,

?
2 cosp3πtqqJ. For

l “ 1, ¨ ¨ ¨ , q, define Vikptq “
ř4
m“1 ξ̃ikmφmptq, where tξ̃ikmu

n
i“1 are independent and

identically distributed as Np0, k´2q for different i and k. The two functional predic-

tors are then derived through the linear combinations

Xi1 “ 1.5Vi1 ` 0.5Vi2, Xi2 “ 0.5Vi1 ` 1.5Vi2.

Here, the two functional predictors are correlated with each other. The actual obser-

vations of Xikptq are at 101 equally spaced times ttikl P r0, 1su
100
l“1 with independent

and identically distributed noise ε̃ikl „ Np0, 1q.

We use 100 Monte Carlo runs for model assessment. Bandwidth h is selected to

be 1
2
n´

1
5 , which is suggested to be Opn´

1
5 q in Xia et al. (2004). Since the parameter

θ, unknown function gkpx, uq are of our interest, we report the Monte Carlo averages

of bias and its standard error for θ, and plot the estimated αkpuq which is equivalent

to estimation for gkpx, uq multiplied by x. The fitted values for Yi is given by

Ŷi “ ZJi θ̂ `
q
ÿ

k“1

α̂kpUiq
Sk
ÿ

m“1

ξ̂ikmγ̂km.

The mean square error (MSE) will also be reported with its standard error.

We propose two designs for our simulation study. In design 1, the sample size

is set to be n “ 100, 200 and 300. θ0 “ p1,´1, 1,´1, 1qJ, α1puq “ u2, α2puq “

sinp2πuq. In design 2, the sample size is also set to be n “ 100, 200 and 300. θ0 “

p2, 1, 0.5,´1,´2q, α1puq “ cospπuq, α2puq “ exppuq. Besides, in both designs, let

γ˚1 “ p1, 0.8, 0.5, 0.2q
J, γ˚2 “ p0.7, 0.5, 0.3, 0.1q

J and then γk “ sgnp
ř101
l“1 γ

J
k φkptiklqqγ

˚
k {}γ

˚
k }2

for k “ 1, 2.

To show the merit of our explored model, similar results for estimation of our

explored model (3.1) and (3.10) are also reported in Table 3.1 - 3.2. To illustrate

the estimation results, we compare our proposed estimation with the general partial
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Model Bias MSE

FSVCAM θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
n=100 0.0062(0.0005) 0.0056(0.0005) 0.0061(0.0005) 0.0212(0.0008) 0.0144(0.0006) 0.171(0.051)
n=200 0.0042(0.0002) 0.0057(0.0002) 0.0082(0.0002) 0.0047(0.0003) 0.0026(0.0003) 0.220(0.026)
n=300 0.0025(0.0001) 0.0014(0.0001) 0.0004(0.0002) 0.0005(0.0002) 0.0007(0.0001) 0.227(0.021)

PFLM θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
n=100 0.0118(0.0012) 0.0092(0.0012) 0.0067(0.0014) 0.0207(0.0015) 0.0036(0.0016) 0.723(0.124)
n=200 0.0061(0.0005) 0.0159(0.0005) 0.0101(0.0006) 0.0058(0.0008) 0.0014(0.0006) 0.845(0.117)
n=300 0.0010(0.0003) 0.0068(0.0004) 0.0076(0.0006) 0.0037(0.0004) 0.0098(0.0004) 0.878(0.087)

Table 3.1: Biases for θ̂1 to θ̂5 and MSE for Ŷ in design 1. The results are shown as averages over 100 replicates
with standard errors listed in the parentheses.

Model Bias MSE

FSVCAM θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
n=100 0.0034(0.0003) 0.0094(0.0005) 0.0006(0.0005) 0.0198(0.0009) 0.0056(0.0007) 0.199(0.058)
n=200 0.0035(0.0002) 0.0036(0.0002) 0.0061(0.0003) 0.0027(0.0003) 0.0051(0.0003) 0.244(0.026)
n=300 0.0031(0.0001) 0.0015(0.0001) 0.0013(0.0002) 0.0007(0.0002) 0.0003(0.0001) 0.251(0.024)

PFLM θ̂1 θ̂2 θ̂3 θ̂4 θ̂5
n=100 0.0034(0.0010) 0.0058(0.0011) 0.0037(0.0012) 0.0068(0.0020) 0.0151(0.0013) 0.626(0.117)
n=200 0.0028(0.0004) 0.0011(0.0004) 0.0145(0.0006) 0.0128(0.0007) 0.0030(0.0006) 0.751(0.080)
n=300 0.0022(0.0003) 0.0019(0.0003) 0.0037(0.0002) 0.0027(0.0004) 0.0028(0.0003) 0.742(0.071)

Table 3.2: Biases for θ̂1 to θ̂5 and MSE for Ŷ in design 2. The results are shown as averages over 100 replicates
with standard errors listed in the parentheses.

functional linear regression model (PFLM):

Y “ ZJθ `
q
ÿ

k“1

ż 1

0

Xkptqγkptqdt` ε. (3.10)

The bias of θ̂, and MSE for fitted value by the model (3.10) are also reported in

Table 3.1 - 3.2. According to the two tables, most of estimators for θ1 to θ5 by

FSVCAM are more accurate with less biases, and more precise estimation with less

standard errors than FPLM, when sample size n is large. Besides, the prediction

for response Y by FSVCAM is much more accurate than prediction by FPLM in all

cases. According to Table 3.1-3.2, the MSEs, which can be treated as estimators of

σ2, are increasing nearer to 0.25, the true value of σ2, as sample size increases. the

standard errors for all the estimators and prediction will decrease, and most of biases

will also be less. The estimators of function α̂k and the 95% confidence interval (CI)

in both designs with sample size n “ 300 are plotted in Figure 3.1 - 3.2. According

to the plotted figures, the estimated functions fit well for true functions.
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Figure 3.1: Estimated (dashed) and true (solid line) function g1px, uq{x (left) and g2px, uq{x (right) in u, and
their 95% CI (gray) with sample size n “ 300 in design 1.
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Figure 3.2: Estimated (dashed) and true (solid line) function g1px, uq{x (left) and g2px, uq{x (right) in u, and
their 95% CI (gray) with sample size n “ 300 in design 2.

44



Chapter 4

Conclusion and Discussion

The thesis focuses on improving diagnostics accuracy by combining multiple func-

tional markers, together with the exploring of new functional regression modeling

motivated from the HARD data setting with information of hospital admissions and

environmental factors.

In Chapter 2, some uncertainties in our work need to be discussed. There is no

unified criteria to distinguish high- or low- hospital admissions. Motivated by the

effect modifier discussed in Katsouyanni et al. (2001), we treated daily higher/lower

than 85/15 percent quantile as high- or low- hospital admissions. This classification

may be sort of artificial because it is not a real binary classification. In a real

dichotomous discriminant case, our methodology may behave better.

In Chapter 3, we tried to propose a functional additive regression model with

versatile covariates types, including varying-coefficients, scalar covariates, and func-

tional covariates. There are existing statistical models including both functional and

scalar covariates (Lu et al. (2014), Kong et al. (2016)), however, none of them have

discussed functional additive regression models with similar format to model (3.5).

Thus, we need to make sure for model identifiability. Computational feasibility for

functional regression models is another important problem. It is known nontrivial

and deserves more future work in separate.
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