
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



BULK SHIP ROUTING AND SCHEDULING

UNDER UNCERTAINTY

LINGXIAO WU

PhD

The Hong Kong Polytechnic University

2020



The Hong Kong Polytechnic University

Department of Logistics and Maritime Studies

Bulk Ship Routing and Scheduling under
Uncertainty

LINGXIAO WU

A thesis submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

March, 2020



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

(Signed)

LINGXIAO WU (Name of student)

i



Abstract

Bulk shipping contributes to nearly half of the global seaborne transportation volume.

In bulk shipping, ships are operated in two different modes: industrial shipping and

tramp shipping. In industrial shipping, an industrial corporation owns or controls

a fleet of bulk ships and transports cargoes to satisfy its own demand (i.e., the

corporation acts as the shipper and the carrier at the same time). In tramp shipping,

shipping companies act as carriers that transport cargoes from one port to another

by following the orders from the customers (shippers). Seaborne transportation is

known for its uncertainties which greatly impact the operations in both industrial and

tramp bulk shipping. This thesis focuses on two operations management problems in

bulk shipping under uncertainties. Particularly, we consider a bulk ship scheduling

problem in industrial shipping in Chapter 2 and a bulk ship routing problem in tramp

shipping in Chapter 3.

Chapter 2 explores a ship scheduling problem for an industrial corporation that

manages a fleet of bulk ships under stochastic environments. The considered problem

is an integration of three interconnected sub-problems from different planning levels:

the strategic fleet sizing and mix problem, the tactical voyage planning problem, and

the operational stochastic backhaul cargo canvassing problem. To obtain the optimal

solution of the problem, this chapter provides a two-step algorithmic scheme. In the

first step, the stochastic backhaul cargo canvassing problem is solved by a dynamic

programming (DP) algorithm, leading to optimal canvassing strategies for all feasible

voyages of all ships. In the second step, a mixed-integer programming (MIP) model

that jointly solves the fleet sizing and mix problem and the voyage planning problem

is formulated using the results from the first step. To efficiently solve the proposed
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MIP model, this chapter develops a tailored Benders decomposition method. Finally,

extensive numerical experiments are conducted to demonstrate the applicability and

efficiency of the proposed models and solution methods for practical instances.

Chapter 3 presents a robust optimization algorithm to solve a ship routing prob-

lem faced by bulk tramp shipping companies. In this problem, the cargo selection

behaviors in the settings where a group of cargoes should be treated as a batch are

considered. In view of the uncertainties observed in maritime transportation, we for-

mulate the problem in such a way that the solutions are robust against variations in

voyage costs. We first provide compact mixed integer linear programming formula-

tions for the problem and then convert them into a strengthened set covering model.

A tailored branch-and-price-and-cut algorithm is developed to solve the set covering

model. The algorithm is enhanced by a multi-cut generation technique aimed at

tightening the lower bounds and a primal heuristic aimed at finding high-quality up-

per bounds. Extensive computational results show that our algorithm yields optimal

or near-optimal solutions to realistic instances within short computing times and that

the enhancement techniques significantly improve the efficiency of the algorithm.

Keywords: Bulk shipping operations; Industrial shipping; Tramp shipping; Ship

routing and scheduling; Stochastic optimization; Robust optimization
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Chapter 1

Introduction

Ships carry 80% of cargoes by volume around the world, and the dry bulk ship-

ping sector accounts for nearly half of the global seaborne transportation volume,

amounting to 5.2 billion tons in 2018 (UNCTAD 2019). There are generally two

operational modes in dry bulk shipping: the so-called industrial shipping and tramp

shipping. In industrial shipping, an industrial corporation owns or controls a fleet

of ships and transport cargoes to satisfy its own demand. In this shipping mode,

the shipper is also the carrier. Therefore, the focus in industrial shipping operation

is to transport all the required cargoes at the minimum cost. In tramp shipping,

shipping companies act as carriers that transport cargoes from one port to another

by following the orders from the customers (shippers). A tramp shipping company

participates in maritime transportation by owning or controlling a fleet of bulk ships,

and profits from the freight gained by transporting cargoes.

In bulk shipping, the operations management problem faced by an industrial

shipping or tramp shipping carrier generally consists of three critical decisions, which

are fleet mix and sizing, shipment arrangement, and ship routing and scheduling.

Over a given planning horizon, fleet mix and sizing determines which ships to

charter in and out. Seaborne bulk transportation is capital intensive, with dai-

ly operational costs for a bulk ship amounting to tens of thousands of US dollars

(Greiner 2013). Therefore, in order to reduce their costs, bulk shipping carriers gen-

erally choose to adjust the composition of their fleet according to the variations in
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demand.

Shipment arrangement in bulk shipping refers to the decisions of a carrier regard-

ing the selection of cargoes to transport and the weight and timing of each shipment

for transporting the cargoes. The cargoes faced by a bulk shipping carrier can gen-

erally be classified into two groups: mandatory cargoes and optional cargoes. For

the carrier, mandatory cargoes must be transported while he/she has the freedom

of choosing optional cargoes. Once the cargoes to be transported are decided, the

carriers should arrange the shipments so that the cargoes are transported in a way

that meets the requirements from the shippers.

Given the results of the above two decisions, the carrier is then responsible for

routing and scheduling the ships so that all the shipments are performed and the

objective is to minimize the total transportation cost. This falls into the ship routing

and scheduling problem (in its most traditional sense).

It is obvious that these decisions are interconnected and should be tackled in

an integrated manner. However, a problem that jointly considers these decisions is

very complex and calls for dedicated designs of modeling and solution methodolo-

gies. What further complicates the operations management in bulk shipping is the

inevitable uncertainties in maritime transportation. For one thing, when making de-

cisions, a carrier may not have the full information of cargoes that will appear from

the spot market. For another, although voyage costs account for a large proportion

of the total operational cost, they suffer from great randomness in practice.

Operations management problems in bulk shipping have received great attention

in the literature. In fact, problems related to fleet mix and sizing, shipment arrange-

ment, and ship routing and scheduling in bulk shipping have solicited great attention

from the research community, particularly from the Operations Research (OR) cir-

cle. Many OR techniques (including various modeling and solution methods) have

been developed to solve these problems. However, most studies consider these deci-

sions in a separate fashion, which leads to sub-optimal solutions from a systematic

view. In addition, the inherent uncertainties in maritime transportation are mostly

not considered in the literature, making the derived results hard to implement in

practice.
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To fill the gaps between scientific research and practice, this thesis investigates

new modeling and solution methods for solving operations management problems in

bulk shipping. In these problems, we jointly consider fleet mix and sizing, shipment

arrangement, and ship routing and scheduling faced by a bulk shipping carrier in

an uncertain environment. There are many differences between industrial shipping

and tramp shipping, particularly when it comes to the arrangements of shipments for

transporting cargoes. We, therefore, study the bulk shipping operations management

problems under the two different operating modes.

This thesis consists of the following four parts:

(i) In Chapter 1, we introduce the background of the problems that are considered

in the thesis.

(ii) In Chapter 2, we address a bulk ship scheduling problem in industrial shipping

under stochastic environments. The considered problem is an integration of three

interconnected sub-problems from different planning levels: the strategic fleet sizing

and mix problem, the tactical voyage planning problem, and the operational stochas-

tic backhaul cargo canvassing problem. We develop a two-stage solution approach

for solving the problem. Extensive numerical experiments are performed to test the

performance of the solution approach and we also analyze the solution structure

through a case study.

(iii) In Chapter 3, we present a branch-and-price-and-cut algorithm to solve a robust

bulk ship routing problem in tramp shipping. In this problem, we consider the

cargo selection behavior of a tramp shipping company when it is faced with a set

of Contracts of Affreightment. We formulate the problem in a robust way such

that the shipping company’s profitability is protected against the variable voyage

costs. Several accelerating techniques are proposed to strengthen the algorithm. We

conduct extensive experiments to test the performance of the algorithm and we also

analyze the value of robustness in the problem.

(iv) In Chapter 4, we summarize the main findings from the two studies. Some future

research directions are discussed.
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Chapter 2

Bulk Ship Scheduling in Industrial

Shipping with Stochastic Backhaul

Canvassing Demand

2.1 Introduction

Industrial shipping is an integral part of the global supply chain for raw materials.

According to the estimates by UNCTAD (2017), the trade volumes of the five most

common raw materials (i.e., iron ore, grain, coal, bauxite and alumina, and phos-

phate rock) contributed over 30% of the global seaborne trade. These raw materials

are categorized as major bulk cargoes in the shipping market and are generally trans-

ported by bulk ships (mostly Capesize or Panamax carriers) in full shiploads from

one origin port to one destination port. In 2016, the iron ore trade increased 3.4%,

reaching 1.4 billion tons, and more than 70% of iron ores were imported to China

from Australia and Brazil using Capesize or Panamax carriers (UNCTAD 2017).

In industrial shipping, the industrial corporation owns or controls a fleet of bulk

ships and the focus of the corporation is to minimize the total transportation costs

while ensuring that all cargoes are transported to satisfy the demand. In the current

shipping market, industrial shipping is widely used in the transportation of these
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major bulk cargoes. For instance, Baowu Group (formally known as Baosteel), Chi-

na’s largest steel producer, imports iron ore from Brazil by chartering in bulk carriers

from a shipping company (Baosteel 2008). Seaborne bulk transportation is capital-

intensive, with daily operational costs for a Capesize or Panamax carrier amounting

to tens of thousands of US dollars (Greiner 2013). Thus, a proper scheduling of the

fleet is of tremendous importance for an industrial shipping operator to reduce costs.

Besides optimally scheduling the fleet to satisfy the demand at the minimum

cost, considering the required transportation is one-directional, each ship is able to

help further increase the savings by carrying cargoes from the spot market during

the return trip from the destination port to the origin one. Take the Brazil-to-

China iron ore transportation as an example. The required cargo is transported

one-directionally, and after unloading cargoes in China, a ship may return to Brazil

in ballast or instead it may carry cargoes during the return trip (our interviews

with several managers from different bulk shipping companies reveal that the most

common cargoes in the return trip include steam coal from Indonesia to India, and

coking coal from Australia to India or from Australia to Europe). In addition, a

recent report made by UNECLAC (2018) estimates that with the return cargoes,

the Brazil-to-China iron ore transportation cost can be saved up to 20%.

On the one hand, carrying cargoes in the return trip is an appealing opportunity

for the industrial corporation to better manage the fleet of ships. On the other, the

significant uncertainties in the spot transportation market, the potential delay due

to carrying return cargoes, and the restrictive requirements to fulfill the demand on

time significantly complicate the whole scheduling job. Therefore, in order to both

efficiently satisfy the shipping demand and acquire the benefits through carrying

potential return cargoes, advanced scheduling modeling and solution approaches are

desired to finally achieve efficient utilization of the transportation capacity of the

industrial corporation.

To this end, this chapter considers a stochastic bulk ship scheduling problem

in industrial shipping by considering the uncertainties from the spot market. In

this problem, we jointly consider three sub-problems from different planning lev-

els. The first sub-problem is the fleet sizing and mix problem which decides the
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number and size of ships the industrial corporation should charter in to fulfill the

transportation demand over the entire planning horizon. The second sub-problem

is the voyage planning problem which determines the start and end dates for each

voyage completed by each ship. Besides, additional profits can be made if ships are

able to carry cargoes from the spot market during the backhaul voyage. Hence, the

third sub-problem, i.e., a backhaul cargo canvassing problem, is studied. Given the

uncertainties from the spot transportation market, we consider the backhaul cargo

canvassing problem under stochastic environments. Since these problems are closely

intertwined, to obtain an optimal solution, we propose a two-step solution scheme

whose great effectiveness is demonstrated through extensive numerical experiments.

Ship scheduling problems have been well studied in the fields of liner shipping

(e.g., Wang and Meng 2012 and Song and Dong 2013), tramp shipping (e.g., Brønmo

et al. 2007a and Meng et al. 2015), and industrial shipping (e.g., Ronen 1986 and

Tirado et al. 2013). However, in most studies, we noticed that the cargoes (i.e.,

containers in liner shipping and minor bulk commodities in tramp and industrial

shipping) are assumed to be transported among multiple loading and discharging

ports in a pickup-and-delivery manner. It follows that the main focus of these stud-

ies was to identify optimal sequences for the ships to call at these ports. Besides,

since backhaul canvassing faces great uncertainties (including loading and discharging

ports, transportation revenues, costs, and detour lengths) in practice and most ship

scheduling studies are relied on (at least partially) deterministic demand assump-

tions, the backhaul canvassing problem has been rarely studied in the literature.

Different from the previous studies, this chapter aims to find an optimal shipping

schedule that consists of fleet sizing and mix decision, voyage plan, and backhaul

canvassing strategy under a stochastic environment. In particular, our main contri-

butions can be described as follows:

• We consider a stochastic bulk ship scheduling problem in industrial shipping,

which has never been well addressed in the literature, through incorporating

the consideration of the backhaul cargo canvassing strategy under uncertainty.

• We develop a two-step solution scheme consisting of 1) a dynamic program-

ming model and corresponding polynomial-time algorithm to obtain the op-
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timal cargo canvassing strategies, and 2) a tailored Benders decomposition

method utilizing the specific problem structure to efficiently solve the mixed-

integer programming formulation, leading to optimal integrated fleet sizing and

mix decision and voyage plan;

• We conduct extensive numerical experiments to demonstrate that the proposed

models and solution methods can well solve the considered problem in various

and practical sizes.

The remainder of this chapter is organized as follows. A literature review is given

in Section 3.2. Then, Section 3.3 provides a detailed description of the considered

problem. In Section 2.4, we propose a DP algorithm to solve the stochastic backhaul

cargo canvassing problem. Based on the solution of the stochastic backhaul cargo

canvassing problem, an MIP model for the integrated fleet sizing and mix and voyage

planning problem is formulated in Section 2.5. In Section 2.6, we propose a tailored

Benders decomposition method for the model proposed in Section 2.5. A series of

numerical experiments and a case study are conducted in Section 2.7. Finally, we

conclude our main findings in Section 2.8. We provide all mathematical proofs in

Appendix A.

2.2 Literature Review

Ship scheduling problems have received considerable attention in the literature.

Christiansen et al. (2004), Christiansen et al. (2007), and Christiansen et al. (2013)

provided an overall review of the problem. As ships are operated in three different

modes, i.e., liner, tramp, and industrial shipping, studies on ship scheduling problems

can also be generally divided into these three corresponding categories (Christiansen

et al. 2013). Since our study focuses on industrial shipping, we concentrate our

review on existing research on ship scheduling problems in this regard.

One stream of related studies focuses on the fleet sizing and mix problem, which

has been studied in the literature for more than four decades (see the recent reviewing

study of Pantuso et al. 2014a). Recent studies include Wang and Meng (2012) and
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Ng (2015) for liner shipping, and Fagerholt et al. (2010) and Alvarez et al. (2011a)

for tramp and industrial shipping. Research on the fleet sizing and mix problem

in industrial shipping starts from the pioneering work conducted by Dantzig and

Fulkerson (1954). In this study, the authors addressed a special fleet sizing problem

arising in Navy fuel oil transportation where all ships (tankers) were assumed to be

identical. The objective was to determine the minimum number of tankers needed to

meet the fixed transportation demand. The fleet sizing and mix problem in industrial

shipping was also studied by Mehrez et al. (1995). An MIP model was formulated for

the considered problem, where the decisions included the number and size of ships

chartered in and the voyages made by each chartered ship at each time period in a

planning horizon. More recently, Fagerholt et al. (2010) proposed a decision support

methodology for strategic planning in industrial and tramp shipping which solves

the fleet sizing and mix problem using simulation-based optimization. A robust

fleet sizing and deployment problem for industrial or tramp shipping operators was

analyzed by Alvarez et al. (2011a). The authors proposed a robust optimization

model for the considered problem in which decisions concerning fleet sizing and ship

deployment were made in an integrated manner.

The second stream of studies focuses on the ship routing and scheduling problem.

Most studies in this stream can be viewed as special applications of the Vehicle Rout-

ing Problem, where cargoes are transported among several loading and discharging

ports in a pickup-and-delivery manner and are different from the transportation of

major bulk cargoes. The objectives of these studies were to identify optimal port

calling sequences that satisfy various constraints (e.g., Brønmo et al. 2007b, Song

and Dong 2013, Meng et al. 2015, St̊alhane et al. 2012a, Tirado et al. 2013). There

are also some studies exploring the ship routing and scheduling problem in industrial

shipping, where cargoes are transported in full shiploads between a single origin port

and a single destination port. For example, Brown et al. (1987) analyzed a tanker

scheduling problem for a crude oil company where each tanker traveled between a

single loading port and a single discharging port. The study aimed at identifying

an optimal schedule of the fleet that minimizes the total cost. The problem was

modeled as a set partitioning problem which can be solved efficiently with all fea-
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sible schedules generated a prior. A liquefied natural gas (LNG) inventory routing

problem was investigated by St̊alhane et al. (2012b), where an LNG producer owns

a tanker fleet that is heterogeneous and considered as fixed for the planning horizon.

In each voyage of a tanker, LNG products are transported in full shiploads between a

single loading port and a single discharging port. The corresponding objective was to

create an annual delivery program of the fleet that exercises the producer’s long-term

contracts at minimum cost, while maximizing the revenue from selling LNG to the

spot market. Siddiqui and Verma (2015) considered a bi-objective oil-tanker routing

and scheduling problem, where both cost and operational risks were considered in

the objectives and an MIP model was formulated to solve the problem.

While most studies handle fleet sizing and mix problem and the ship routing

and scheduling problem separately, a few of them addressed the two problems in a

joint manner. One of them was conducted by Fagerholt and Lindstad (2000). They

considered a ship scheduling problem regarding a supply operation in the Norwegian

Sea where supplies should be transported using ships from a supply depot to several

offshore installations. The objective was to determine the optimal fleet and the

corresponding weekly schedules that meet the installations’ demands at the minimum

cost. A similar problem was considered by Halvorsen-Weare et al. (2012). The study

jointly solved the fleet sizing and routing problems of offshore supply ships. Another

study from Zeng and Yang (2007) considered a coal shipping problem between a set

of supply ports and a set of demand ports.

In practice, besides the required shipments that must be completed in the plan-

ning horizon, the optional cargo transportations in backhauls also need to be taken

into consideration. The backhaul canvassing problem in industrial shipping has rarely

been addressed before. The only literature we found is conducted by Bausch et al.

(1998). The author proposed a decision support system for a company to conduct a

medium-term (two to three weeks) schedule of coastal tankers and barges that trans-

port liquid bulk products to customers. Note that Bausch et al. (1998) considered

the backhaul transportation under deterministic environments.

Our research enriches the existing literature in two aspects. To begin with, we

consider the fleet sizing and mix problem and the ship scheduling problem in an
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integrated way, while most studies analyzed them separately. Besides, to the best of

our knowledge, our study is one of the preliminary studies to consider the stochastic

backhaul cargo canvassing problem, which makes the study more relevant to real and

dynamic situations.

2.3 Problem Description

Suppose an industrial corporation in a country needs to continuously import raw

materials from another country within a planning horizon (e.g., a steel plant in Chi-

na like Baowu Group needs to import iron ore from Brazil). These materials are

transported in full shiploads from a single loading port of the exporting country to

a single discharging port of the importing country. Meanwhile, the industrial cor-

poration considers utilizing the ships to carry return cargoes during their trips back

to the loading port, leading to revenues. To facilitate stable and economic trans-

portation, the corporation chooses to time-charter a fleet of Capesize or Panamax

bulk ships from the shipping market. The corporation is responsible for scheduling

its controlled fleet to ensure its demand is satisfied and the aim is to minimize the

overall net cost (i.e., total shipping cost minus revenues).

In the following part of this section, to describe the whole problem in detail,

we will introduce the demand structure in Section 2.3.1, the fleet sizing and mix

decision (sub-problem one) in Section 2.3.2, the voyage planning (sub-problem two)

in Section 2.3.3, the backhaul cargo canvassing (sub-problem three) in Section 2.3.4,

and the assumptions for the whole problem in Section 2.3.5. Meanwhile, a set of

decisions made by the corporation are summarized in Section 2.3.6, and a detailed

solution procedure is outlined in Section 2.3.7. To facilitate a better understanding

of the problem, we will use the example of Baowu Group in the following parts.

2.3.1 Demand Structure

The corporation conducts its production in a continuous process (Wikipedia contrib-

utors 2018), which requires stable supplies of raw materials during the entire planning
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horizon. Accordingly, the demand structure of the corporation can be stated as fol-

lows. To begin with, there is a total demand for cargoes that must be satisfied in

the entire planning horizon (e.g., Baowu Group needs to import approximately 2.5

million tons of iron ore every year to satisfy its annual production demand). In addi-

tion, the planning horizon is further divided into several sub-planning horizons, and

to maintain a suitable inventory level (which is decided by the consumption rate and

storage capacity of raw materials in the corporation), the corporation also sets lower

and upper bounds for the number of cargoes transported to the discharging port

at each sub-planning horizon (e.g., Baowu Group requires a stable and even arrival

flow of iron ore, and prevents drastic fluctuations in monthly imports). Note that

there may be overlaps among different sub-planning horizons. Given that cargoes

should be first produced and then transported from inland to the loading port in the

exporting country before they can be loaded to ships, and to avoid congestions in

port handling, inland transportation, and storage, a minimal time interval between

the start times of two consecutive voyages is set (e.g., the current practice in Baowu

Group is two weeks).

2.3.2 Fleet Sizing and Mix (Sub-problem One)

Fleet sizing and mix should be decided at the beginning of the planning horizon, as

a strategic plan. The corporation time-charters a fleet of ships from a candidate pool

composed of ships that have different chartering rates, capacities, operational costs,

and speeds. At the beginning of the planning horizon, the corporation should decide

the number and types of ships to charter-in. If charted, the ships serve for the entire

planning horizon. Besides, in accordance with common practices, we assume that all

the chartered ships are ready to load at the loading port and start a voyage at the

beginning of the planning horizon. In addition, these ships have to be redelivered at

the loading port at the end of the planning horizon. In Baowu Group, 4 Capesize

carriers whose chartering contracts are renewed on a yearly basis are rented to fulfill

its annual demand.
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2.3.3 Voyage Planning (Sub-problem Two)

The cargo transportation in this problem is conducted in a one-origin-one-destination

structure. As shown in Figure 3.1, the required cargoes are transported from Port

O to Port D (e.g., Brazil’s Tubarao Port to China’s Shanghai Port). In this chapter,

we define that a complete voyage starts when a ship starts loading at the loading

port and ends when it returns in empty to the same loading port. In addition, the

journey from Port O to Port D is defined as a forward voyage and the journey from

Port D back to Port O is defined as a backward voyage or a backhaul. Note that in

the following parts of this chapter, unless otherwise specified, a “voyage” is used to

refer to a complete journey that includes both the forward voyage and the backhaul.
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Figure 2.1: Voyage structures in the problem

There are generally two types of voyage structures. While both types have the

same forward voyage (i.e., from Port O to Port D), the backward routes can be

different. On the one hand, after discharging at Port D, the ship will return to Port

O in ballast without carrying any cargoes in the backhaul, leading to the first type of

voyage structure (see Figure 3.1a). On the other hand, there may be transportation

requests arising in the spot market for carrying cargoes between two ports that locate

near the route from Port D to Port O (referring to the iron ore transportation case,

the most common backhaul cargoes include steam coal from Indonesia to India and

coking coal from Australia to India or from Australia to Europe). A ship can decide

to accept a request and carry cargoes between two intermediate ports in the backward
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voyage (e.g. steam coal from Samarinda Port, Indonesia to Mundra port, India). In

such a case, the ship sails in the second type of voyage structure (see Figure 3.1b),

e.g., after unloading at Port D, the ship first detours to Port I1 (e.g. Samarinda),

loads cargoes at this port, sails towards Port I2 (e.g. Mundra), and finally sails to

Port O after discharging at Port I2 (e.g. Mundra).

Note that carrying cargoes in the backhaul may bring additional revenue and

meanwhile it also incurs voyage detours and additional time for loading and unloading

at intermediate ports. For example, carrying 150 thousand tons steam coal from

Samarinda to Mundra using a Capesize carrier generates approximately 900 thousand

US dollars’ revenue, 12 − 20 days’ detour, and 650 thousand US dollars’ additional

cost. In this case, compared with sailing to Brazil in ballast, cargo transportation in

the backhaul helps save 250 thousand US dollars.

In addition, we define the minimum required and maximum allowed durations

for each voyage. The minimum duration is determined by the minimum time a ship

needs to complete a voyage and the maximum duration may be set for operational

considerations of the corporation. For Baowu Group, a round trip from Brazil to

China should take at least 70 days, and normally, no voyages take more than 100

days.

2.3.4 Backhaul Cargo Canvassing (Sub-problem Three)

When sailing on a voyage, a ship may receive transportation requests from the spot

market for transporting cargoes in the backhaul. These requests are distinguished by

their cargo weights, required detour lengths, and revenues. In particular, they can be

divided into different request types based on these features, and more specifically, the

transportation requests with the same cargo weights, detour lengths, and revenues

belong to the same type. Note that the involved ships are chartered to facilitate the

stable transportation of cargoes from Port O to Port D. Therefore, from an economic

view, the ships are only possible to accept the types of requests that produce revenues

and are of acceptable cargo weights/detour lengths and to accept at most one cargo

transportation request from the spot market in a voyage. More specific reasons
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include (i) ships involved in this problem are Capesize or Panamax sizes ships that

have very high operational and port costs and thus not able to carry cargoes multiple

times; and (ii) it is not beneficial for these large ships to transport minor bulk cargoes

and operate in a pickup-and-delivery manner (even some ports are not large enough

to host these ships).

Referring to the Brazil-to-China iron ore transportation case, our interviews with

the industrial practitioners indicates that except the commonly recognized backhaul

transportation requests (i.e., coal transportation from Indonesia or Australia to India

or Europe), it is very rare to see other transportation requests arise in the backhaul

that are suitable for Panamax or Capesize ships. This is because requests with too

low cargo weights or too long detours are unacceptable due to the relatively low

freight rates in the backhaul and the high bunker and port costs. Thus, in practice,

a ship can take at most one such transportation request in the backhaul, otherwise,

the additional costs outweigh the additional revenues generated in the backhaul.

In addition, during a certain voyage, the ship is open to accept backhaul trans-

portation requests only in a certain period (denoted by the canvassing period there-

after). The canvassing period typically starts when the ship starts leaving Port D

and ends when the vessel passes the possible loading areas in the backhaul. The

corresponding reasons can be described in two aspects. First, a ship can begin to

accept transportation offers from the spot market only if it ensures that it can reach

the next loading port on time. Thus, generally, a ship only accepts the backhaul

requests after unloading at the current discharging port (i.e., Port D) and becom-

ing immediately ready, as the handling time at Port D can be uncertain. That is

also why cargo owners normally do not take a loaded ship as an option for trans-

porting their cargoes. Second, significant detouring cost and time are required for

transporting backhaul cargoes if the ship has sailed far away from the region where

the main loading ports of backhaul cargoes are located. For example, the typical

canvassing period in the backhaul of Brazil-to-China transportation starts from the

time when unloading is finished in China and ends at the time when the ship arrives

in Singapore for bunkering.

Spot transportation market is quite volatile and it is impossible to estimate the
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exact types of transportation requests that will arise at a certain time. However,

taking advantage of historical data, we can predict the possibility of receiving a

particular type of transportation request from the spot market at a particular time.

Hence, we handle the canvassing problem in a stochastic environment.

2.3.5 Assumptions

To better analyze the problem, we make the following assumptions:

A1. The planning horizon is divided into a series of discrete unit times and ship

scheduling decisions are made at each unit time.

A2. For simplicity, we assume that each voyage should start at the beginning of a

unit time and finish at the end of a unit time.

A3. Each ship runs at a constant speed, while the speeds can be different from one

ship to another.

A4. Different types of cargo transportation requests in the backhaul arise indepen-

dently.

A5. The requests for backhaul transportation are presented to a ship at the begin-

ning of a unit time, and the ship should also decide at the beginning of the

unit time whether to accept one of them or decline all.

2.3.6 Decisions

This section summarizes the decisions made in the considered problem. As shown

in Figure 2.2, there are three types of decisions the corporation should make, with

detailed descriptions provided as follows.

• At the beginning of the planning horizon, the strategic decision about which

ships should be chartered from the market should be first made.

• Then, for each chartered ship, the corporation should decide, at the tactical

level, the number of voyages each ship should complete during the horizon and

when each of these voyages should start and end.
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• Finally, at the beginning of each unit time of the canvassing period in each voy-

age, the corporation is able to observe the condition of requests for transporting

cargoes in the backhaul from the spot market. Therefore, the operational de-

cision the corporation should make at each unit time of the canvassing period

is whether to accept a type of transportation request or not.
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Figure 2.2: Decisions made in the problem

2.3.7 Solution Procedure

In the stochastic bulk ship scheduling problem, we solve the three sub-problems in an

integrated manner. The problem is hard to solve. First, all the three sub-problems

are difficult combinatorial optimization problems that involve a large number of

discrete decision variables. Second, the uncertainties in the backhaul canvassing

problem also further complicate the problem. Finally, the three sub-problems from
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different planning levels are closely intertwined and make the integrated problem

even harder to solve.

In order to effectively solve this problem, we develop an exact two-step solution

procedure that can generate an optimal solution for the stochastic bulk ship schedul-

ing problem. To begin with, by taking advantage of the predictable probabilities of

cargo types in the backhaul, we provide a DP method (see Section 2.4 for details)

to handle the stochastic backhaul cargo canvassing problem. The DP method can

obtain the optimal backhaul canvassing strategy for a given voyage of a certain ship.

Thus, in the first step, we generate the optimal backhaul canvassing strategy for

each possible voyage of each ship in the ship pool (i.e., sub-problem three). After

this step, the expected revenue generated by a voyage’s optimal canvassing strategy

can be attached as an attribute for the voyage. In this way, the original problem

is reduced from a stochastic system with three sub-problems into a deterministic

one with two sub-problems (i.e., the fleet sizing and mix problem and the voyage

planning problem), and we then solve them in the second step. The second step

tackles these two sub-problems in an integrated manner (see Sections 2.5 and 2.6 for

details). An MIP model is first proposed for integrated fleet sizing and mix and the

voyage planning problem (see Section 2.5.1 for details). We then further strengthen

the model by adding several families of valid inequalities (see Section 2.5.2 for de-

tails). Through preliminary experiments, we found that it took a very long time for

an off-shelf optimization solver to solve instances with realistic sizes using the MIP

model. Therefore, a tailored Benders decomposition algorithm utilizing the problem

structure and derived valid inequalities is proposed for solving the MIP model (see

Section 2.6 for details).

2.4 DP Model and Algorithm for the Stochastic

Backhaul Canvassing Problem

In this section, we focus on the stochastic backhaul canvassing problem for a given

voyage of a given ship. The problem aims to determine the optimal canvassing strat-
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egy in the canvassing period that satisfies the capacity and detour length constraints

to maximize the expected revenue obtained from backhaul cargo transportation. A

DP model is first formulated for the problem in Section 2.4.1 and we then propose

an algorithm to solve the model in Section 2.4.2.

2.4.1 A DP Model

Dynamic programming has been widely used in optimization problems, including

those in the sea transportation area (e.g., Wang et al. 2017 and Zhen et al. 2017).

We formulate a DP model to identify the best policy of backhaul cargo canvassing at

each unit time under uncertainty. Before presenting the model, we introduce several

additional parameters as follows. Suppose a ship starts a voyage at unit time ts and

ends the voyage at te and the minimum duration of a voyage conducted by the ship

is L (time units). L equals the distance of the complete voyage starting and ending

Port O (without carrying cargoes in the backhaul) divided by the ship speed plus

the total port times in the origin and destination ports. Note that L is independent

of ts and te. Besides, let D̄ denote the maximum allowed detour length (time units)

the ship is able to make in the current voyage for transporting backhaul cargoes. It

is easy to infer that D̄ = te − ts − L + 1. Obviously, any backhaul transportation

request that requires a detour length larger than D̄ cannot be accepted. Similarly,

requests with cargo weights larger than the capacity of the ship cannot be accepted

either. Furthermore, as the information of both the voyage and the ship is known,

the corresponding canvassing period can be derived accordingly. That is, we suppose

the canvassing period covers N unit times (lasting from time 1 to N).

For the considered voyage, we only need to consider all of the types of trans-

portation requests that enable feasible detour lengths and feasible weights. We let

M denote the set of such types of transportation requests. The revenue for trans-

porting a type-j request (j ∈ M) is denoted by ej. We assume that ej, j ∈ M
is independent of the time. In addition, we let ρnj be the probability that type-j

transportation requests appear at unit time n, where 0 ≤ ρnj ≤ 1. It is easy to see

that at each unit time n, there are 2|M| possible combinations of different requests
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faced by the ship and one possible combination is called one scenario. We let ξ

denote each scenario and the joint probability distribution of all scenarios at unit

time n is denoted by Pn. Meanwhile, we let binary parameter qj(ξ) denote whether

type-j requests arise at the beginning of a unit time under scenario ξ (qj(ξ)=1) or

not (qj(ξ)= 0). In addition, by letting pn(ξ) be the probability of the realization of

ξ at unit time n, we have

pn(ξ) =
∏
j∈M

[
qj(ξ)ρnj + (1− qj(ξ)) (1− ρnj)

]
, (2.1)

where the multiplication sign is a result of the independence of the request types,

and the term qj(ξ)ρnj + (1 − qj(ξ))(1 − ρnj) is equal to ρnj if type-j requests arise

under scenario ξ (i.e., qj(ξ) = 1) and equal to 1− ρnj if type j does not arise under

scenario ξ (i.e., qj(ξ) = 0).

We are now ready to present the DP model, which is formulated as follows. In

particular, we first define the state space and the decision variables of the model,

then introduce the state transition equation and the objective function, and finally

present the DP formulation.

The model involves N stages, where stage n corresponds to the nth unit time

within the canvassing period. For each stage n (n = 1, 2, . . . , N), a corresponding

state sn is defined to reflect whether the ship has made a decision to accept a request

before stage n begins (sn = 1) or not (sn = 0). It is obvious that s1 = 0 and if

any request is accepted subsequently before some stage n, the corresponding state

changes to sn = 1, after which no additional acceptance is allowed.

The decision variable of the model is denoted by χjn,ξ, which is binary, to represent

whether the ship accepts a type-j request at unit time n under scenario ξ (χjn,ξ = 1)

or not (χjn,ξ = 0). For notation convenience, we define an |M| − dimensional vector

χn,ξ := (χjn,ξ, j ∈M) to include the decisions for all types of transportation requests

under scenario ξ at the nth unit time. In addition, we use Xn,ξ(sn) to denote the

set of all feasible decisions χn,ξ at unit time n under scenario ξ if the state is sn. It
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follows that

Xn,ξ(sn) =

{
χn,ξ ∈ {0, 1}|M|

∣∣∣∣ χjn,ξ ≤ 1− sn, χjn,ξ ≤ qj(ξ), j ∈M;
∑
j∈M

χjn,ξ ≤ 1

}
,

(2.2)

which implies that: (i) a type of request can only be accepted if the ship has not

accepted any request at previous unit times (χjn,ξ ≤ 1 − sn), (ii) a type of request

can only be accepted if it arises (χjn,ξ ≤ qj(ξ)), and (iii) at most one type of request

can be accepted (
∑

j∈M χjn,ξ ≤ 1).

Besides, corresponding to each decision χn,ξ under each scenario ξ at stage n, we

let Kξ(χn,ξ) denote the immediate revenue (note that we remove sn in the notation

as the immediate revenue is independent of sn), which can be calculated as follows:

Kξ(χn,ξ) =
∑
j∈M

χjn,ξej, n = 1, 2, . . . , N. (2.3)

Furthermore, based on the state sn and the decision χn,ξ under scenario ξ at the

current stage n, we can derive the state of the next stage (sn+1) by the following

state transition equation:

sn+1(sn,χn,ξ) = sn +
∑
j∈M

χjn,ξ, n = 1, 2, . . . , N − 1. (2.4)

For the objective function, we define f ξn(sn,χn,ξ) to represent the total expected

revenue from stage n until the end if the system is of state sn at stage n under

scenario ξ, the immediate decision is χn,ξ and optimal decisions are made thereafter.

In addition, define f ξn(sn) to represent the maximum total expected revenue from

stage n until the end if the system is of state sn at stage n under scenario ξ. That

is, we have

f ξn(sn) = max
χn,ξ∈Xn,ξ(sn)

{
f ξn (sn,χn,ξ)

}
. (2.5)

Note that f ξn(1) = 0 since once a request has been accepted in previous stages, no

additional revenue can be generated. Our objective is to calculate the maximum
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expected revenue in the return voyage, i.e., EP1

[
f ξ1 (s1 = 0)

]
.

Therefore, a forward DP formulation can be represented as

f ξn(sn,χn,ξ) = Kξ(χn,ξ) + EPn+1

[
f ξn+1(sn+1(sn,χn,ξ))

]
, n = 1, 2, . . . , N − 1,

(2.6)

and the boundary condition is

f ξN(sN ,χN,ξ) = Kξ(χN,ξ). (2.7)

2.4.2 A Polynomial Time Algorithm

Intuitively, the DP model proposed in Section 2.4.1 can be solved by retrospective-

ly enumerating the value of all f ξn(sn,χn,ξ)’s. In addition, the calculation of each

f ξn(sn,χn,ξ) requires the values of Kξ(χn,ξ), f
ξ
n(sn), and EPn+1

[
f ξn+1(sn+1)

]
, which

can be obtained in O(|M|), O(2|M|) and O(2|M|) times, respectively. Therefore, to

obtain the optimal solution, we need to enumerate f ξn(sn,χn,ξ)’s under all scenario ξ’s,

at all stage n’s and for all combinations of χn,ξ and sn with regard to Xn,ξ(sn), leading

to O(N |M| 2|M|) time in total. Note that f ξn(sn) and EPn+1

[
f ξn+1(sn+1(sn,χn,ξ))

]
do not have to be calculated in each enumeration. Nevertheless, in general, we

have |M| ≥ 100 and the corresponding computation procedure can be very time-

consuming.

To improve the computational efficiency, we propose an algorithm that solves

the problem in O(N |M|2) time by utilizing the special structure of the problem. In

particular, we have the following property the enables this algorithm.

Proposition 2.1. Given stage n, EPn
[
f ξn(sn)

]
can be obtained within O(|M|2)

time.

By taking advantage of Proposition 2.1, to obtain the optimal solution of the

DP model, we can retrospectively enumerate EPn
[
f ξn(sn)

]
for all n’s without the

tedious calculation of all the corresponding f ξn(sn,χn,ξ)’s. This enables us to solve

the problem in O(N |M|2) time. Therefore, we can efficiently generate optimal can-

vassing strategies and the corresponding optimal expected transportation revenues
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for all the possible voyages of all ships under consideration. These revenues will be

used as a priori knowledge in our development of the solution method for the fleet

sizing and mix and voyage planning problems in the following sections.

2.5 An MIP model for the Integrated Fleet Sizing

and Mix and Voyage Planning Problem

In this section, we handle the fleet sizing and mix and voyage planning problems in

an integrated method. In particular, an integrated MIP model is first formulated in

Section 2.5.1 and in Section 2.5.2, the model is further strengthened by adding valid

inequalities.

2.5.1 Model Formulation

Given the maximum expected revenue for shipping cargoes in the route from Port

D to Port O in each possible voyage, the integrated fleet sizing and mix and voyage

planning problem decides which ships should be chartered in and when each voyage

should start and end. The problem is formulated as a MIP model. Before presenting

the model, we first introduce the notation in Table 3.1.

Table 2.1: Notation

Indices:

k Index for ships, arranging in an alphabetical order.

t, h, t1, t2 Index for unit times in a planning horizon, arranging in a chronological order.

i Index for sub-planning horizons.

Sets:

V Set of all ships.

T Set of unit times in a planning horizon, with 1 standing for the first unit time

and |T | standing for the last unit time in T (i.e., T lasts from the beginning of

unit time 1 to the end of unit time |T |.)
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Ti Set of unit times in sub-planning horizon i, with Ti and Ti standing for the first

and last unit time in Ti, respectively (i.e., Ti lasts from the beginning of unit

time Ti to the end of unit time Ti.)
I Set of sub-planning horizons.

[a, b]Z Set of integers that are no less than a and no larger than b, where a and b are

real numbers.

Parameters:

bk Minimum duration of ship k to complete a voyage.

bk Maximum duration of ship k to complete a voyage.

l Minimum interval between the start times of any two consecutive voyages made

by all the chartered ships.

Rk Chartering rate of ship k in the planning horizon.

vk Weight ship k carries from Port O to Port D in each voyage.

ck Voyage cost of ship k to complete a voyage.

di Minimum weight of cargo that must be shipped from Port O in sub-planning

horizon i. That is, the summation of the cargo weight shipped from Port O at

the beginning of each unit time in sub-planning horizon i should at least reach

di.

di Maximum weight of cargo that can be shipped from Port O in sub-planning

horizon i. That is, the summation of the cargo weight shipped from Port O at

the beginning of each unit time in sub-planning horizon i should not exceed di.

d̂ Total demand in the planning horizon, which serves as the minimum amount of

cargoes that must be shipped from Port O in the whole planning horizon.

gt1,t2k Maximum expected revenue for shipping cargoes in the route from Port D to

Port O generated by ship k if it starts the voyage at the beginning of unit time

t1, and ends the voyage at the end of unit time t2, where bk−1 ≤ t2−t1 ≤ bk−1;

gt1,t2k is calculated in Section 2.4.

Decision Variables:

xk 1 if ship k is chartered and 0, otherwise.

utk 1 if ship k starts a voyage at the beginning of unit time t and 0, otherwise.
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αt1,t2k 1 if ship k starts a voyage at the beginning of unit time t1 and ends the voyage

at the end of unit time t2 in a complete voyage, where bk − 1 ≤ t2 − t1 ≤ bk − 1

and 0, otherwise.

wtk 1 if ship k ends a voyage at the end of unit time t and 0, otherwise.

The mathematical formulation (M1) for the considered problem can be described

as follows.

(M1) min
∑
k∈V

Rkxk +
∑
k∈V

|T |−bk+1∑
t=1

cku
t
k −

∑
k∈V

|T |−bk+1∑
t1=1

min{t1+bk−1,|T |}∑
t2=t1+bk−1

gt1,t2k αt1,t2k (2.8)

s.t. − xk + utk ≤ 0, ∀t ∈ [1, |T | − bk + 1]Z ,∀k ∈ V , (2.9)

−
∑
k∈V

min{Ti,|T |−bk+1}∑
t=Ti

vku
t
k + di ≤ 0, ∀i ∈ I, (2.10)

∑
k∈V

min{Ti,|T |−bk+1}∑
t=Ti

vku
t
k − di ≤ 0, ∀i ∈ I, (2.11)

−
∑
k∈V

|T |−bk+1∑
t=1

vku
t
k + d̂ ≤ 0, (2.12)

t∑
t1=max{t−bk+1,1}

min{t1+bk−1,|T |}∑
t2=max{t,t1+bk−1}

αt1,t2k ≤ 1, ∀t ∈ [1, |T | − bk + 1]Z , ∀k ∈ V ,

(2.13)

min{t1+bk−1,|T |}∑
t2=t1+bk−1

αt1,t2k = ut1k , ∀t1 ∈ [1, |T | − bk + 1]Z ,∀k ∈ V , (2.14)

t2−bk+1∑
t1=max{1,t2−bk+1}

αt1,t2k = wt2k , ∀t2 ∈ [bk, |T |]Z ,∀k ∈ V , (2.15)
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∑
k∈V

t+l−1∑
h=t

uhk ≤ 1, ∀t ∈ [1, |T | − l + 1]Z , (2.16)

utk = 0, ∀t ∈ [|T | − bk + 2, |T |]Z , ∀k ∈ V , (2.17)

wtk = 0, ∀t ∈ [1, bk − 1]Z ,∀k ∈ V , (2.18)

αt1,t2k = 0, ∀t1 ∈ [|T | − bk + 2, |T |]Z , ∀t2 ∈ T ,∀k ∈ V , (2.19)

αt1,t2k = 0, ∀t1 ∈ [1, |T | − bk + 1]Z ,∀t2 ∈ [1, t1 + bk − 2]Z
⋃

[t1 + bk, |T |]Z ,∀k ∈ V ,
(2.20)

αt1,t2k = 0, ∀t2 ∈ [1, bk − 1]Z ,∀t1 ∈ T ,∀k ∈ V , (2.21)

utk, w
t
k ∈ {0, 1}, ∀t ∈ T , ∀k ∈ V , (2.22)

xk ∈ {0, 1}, ∀k ∈ V , (2.23)

αt1,t2k ∈ {0, 1}, ∀t1 ∈ T ,∀t2 ∈ T ,∀k ∈ V . (2.24)

The objective function (2.8) minimizes the total operational cost, i.e., the total

chartering and voyage cost minus the total revenue generated from cargo transporta-

tion in the backhaul. Constraint (2.9) ensures that a ship can be used for shipping

cargoes only it is chartered. Constraints (2.10) and (2.11) enforce lower and upper

bounds for the weight of cargo that can be shipped from Port O in each sub-planning

horizon, respectively. Since the durations of all ships traveling from Port O to Port

D are similar, these two constraints help maintain the inventory of the corporation

at Port D in a suitable level. Constraint (2.12) ensures that the overall demand in

the planning horizon can be met. Constraint (2.13) ensures that each ship can sail

on at most one voyage at any time t. Constraints (2.14) and (2.15) describe the

relationships among α, u and w. In addition, constraints (2.13)-(2.15) also ensure

that once ship k starts a voyage at unit time t, to ensure minimum voyage duration,

it cannot stop at any time before the end of t+ bk− 1 but must stop before or at the

end of t+ bk−1 or |T | if |T | < t+ bk−1 to meet the requirement of maximum dura-

tion limit. Constraint (2.16) ensures the minimum interval between two consecutive

voyages. Constraints (2.17)-(2.21) define the values of certain decision variables and

constraints (2.22)-(2.24) define binary variables.
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2.5.2 Strengthening the Formulation

In this section, to efficiently solve the problem, we will derive several families of

valid inequalities to strengthen the proposed MIP formulation (M1). In particular,

two families of problem-specific valid inequalities are proposed in Section 2.5.2 and

strengthened cover inequalities are derived in Section 2.5.2. In addition, we provide

the theoretical validity proofs for the derived valid inequalities and the detailed

procedure to generate strengthened cover inequalities, while their significant strength

and effectiveness are verified through numerical experiments in Section 2.7.

Problem-specific Valid Inequalities

We first derive two families of valid inequalities as follows by considering the rela-

tionships among α, u, and w.

t2∑
h=t1+1

uhk ≤ (t2 − t1)
(
1− αt1t2k

)
,

∀t1 ∈ [1, |T | − bk + 1]Z , ∀t2 ∈ [t1 + bk − 1,min{|T |, t1 + bk − 1}]Z ,∀k ∈ V ,
(2.25)

t2−1∑
h=t1

whk ≤ (t2 − t1)
(
1− αt1t2k

)
,

∀t1 ∈ [1, |T | − bk + 1]Z , ∀t2 ∈ [t1 + bk − 1,min{|T |, t1 + bk − 1}]Z , ∀k ∈ V .
(2.26)

Proposition 2.2. Inequality (2.25) is valid for (M1).

Proposition 2.3. Constraint (2.26) is valid for (M1).

Cover Inequalities

We continue to strengthen (M1) by deriving strengthened cover inequalities for the

model. In particular, we first introduce the method to theoretically construct the
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strengthened cover inequalities and then provide the procedure to generate these

inequalities selectively for the particular use.

Inequality construction. For (M1), we let polytope Pi be {(xk, utk) ∈ B|V | ×
B|V||Ti|: (2.9), (2.11) in (M1)} for each i ∈ I and define conv(Pi) to be the convex

hull of Pi. Note that Bn indicates n-dimensional space consisting of binary vectors

and (2.11) is a knapsack constraint that complicates the model significantly. We aim

to derive valid inequalities for conv(Pi) to improve the computational efficiency by

analyzing the polyhedral structure of Pi. It is worth noting that any valid inequalities

for conv(Pi) is also valid for the original formulation (M1).

Let set N include all the well-defined 2-tuple (k, t) for utk in Pi. First, we consider

a minimal cover of N , denoted by C (see Wolsey 1998 for the definition of minimal

cover), such that
∑

(kj ,ts)∈C vkju
ts
kj
> di, the cover inequality gives us

∑
(kj ,ts)∈C

utskj ≤ |C| − 1. (2.27)

Next, we strengthen inequality (2.27) in two ways, i.e., (1) considering the prob-

lem structure and (2) lifting, eventually leading to a family of strengthened cover

inequalities (2.31).

Suppose we have n ships considered in C. For each ship j (j = 1, 2, . . . , n),

we have Sj time period considered to construct the 2-tuple (kj, ts) in C, i.e., s =

1, 2, . . . , Sj. For instance, when j = 1, we have the 2-tuples (k1, t1), (k2, t2), · · · , (k1, kS1).

Thus, we have an equivalent format of (2.27):

n∑
j=1

Sj∑
s=1

utskj ≤ |C| − 1. (2.28)

By considering the effects from discrete decisions on chartering a ship or not, i.e., x,

we can strengthen the above cover inequality to be

n∑
j=1

Sj∑
s=1

utskj ≤ |C| − 1 +
n∑
j=1

(Sj − 1)
(
xkj − 1

)
, (2.29)
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which is stronger than (2.28) since xkj − 1 ≤ 0 for all j’s. Meanwhile, it is still valid

for Pi.

In addition, for cover inequality (2.28) defined on the minimal cover C, it can

also be strengthened by lifting to be

n∑
j=1

Sj∑
s=1

utskj + utk̄ ≤ |C| − 1 (2.30)

for some k such that vk ≥ vkj for all j = 1, 2, . . . , n and some t ∈ Ti. It follows that

we can further strengthen (2.29) to be

n∑
j=1

Sj∑
s=1

utskj + ut
k
≤ |C| − 1 +

∑
j∈N0

(Sj − 1)
(
xkj − 1

)
, (2.31)

where N0 ⊆ {1, 2, . . . , n} and vkj < vk for all j ∈ N0. It is easy to check that (2.31)

is valid for (M1).

Inequality generation. To enable an efficient generation of the derived strength-

ened cover inequality (2.31) for particular use like numerical experiments in Section

2.7, here we provide the detailed procedure in two steps: (1) for each sub-planning

horizon, a feasible minimal cover is identified; and (2) strengthened cover inequalities

are generated based on the minimal cover by using (2.31).

In particular, for each sub-planning horizon i, a feasible minimal cover C is

obtained by using the utk’s such that (k, t) ∈ N , where N is defined in Section 2.5.2.

In addition, to further strengthen these cover inequalities, constraints (2.13) and

(2.14) in (M1) are also considered in the procedure to construct the minimal cover

C. Furthermore, when constructing C, priorities are given to (k, t)’s corresponding to

smaller vk’s in order to generate more effective inequalities. Thus, inequality (2.31)

is generated selectively and further improved. The detailed procedure is shown as

follows:

The Inequality Generation Procedure.

Initiation: Let the number of the current iteration ς = 1; construct a sequence ∆ =
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{K1, K2, · · · , Ki, · · · , K|V|} to denote a sequence of all k’s, where vKi ≥ vKi+1

for all i ∈ [1, |V| − 1]Z ;

Step 1: Initiate the ready time φk (the time when a ship is ready to start a voyage)

for each ship k as φk = Ti, define v = vKς to represent the selection lower bound

(i.e., only (k, t)’s with the corresponding vk ≥ v can be selected to construct

C), let the weight of cargo shipped out in the sub-planning horizon σ = 0, and

let t = Ti and C = ∅;

Step 2: Identify a set V ′ to include all k’s such that t ≥ φk and vk ≥ v. If no such

k exists, go to Step 4; otherwise, go to Step 3;

Step 3: Let k be the index such that vk = min
k∈V ′

vk, add the corresponding (k, t) into

C, and update σ = σ + vk; update φk = t + bk and φk = t + l for each k 6= k.

If σ > di go to Step 5; otherwise, go to Step 4;

Step 4: Update t = t+ 1;

Step 5: Among all the (k, t)’s in C, identify the one corresponding to the smallest

vk and mark it as vk. If σ − vk < di go to Step 7; otherwise, go to Step 6;

Step 6: Update ς = ς + 1. If ς > |V|, output C = ∅; otherwise, go to Step 1;

Step 7: Output the minimal cover C.

If a non-empty minimal cover is identified by the above procedure for a sub-

planning horizon i, we add the corresponding strengthened cover inequality (2.31)

into the model.

2.6 A Benders Decomposition Algorithm for the

Integrated Fleet Sizing and Mix and Voyage

Planning Problem

In this section, to further enable the applicability and effectiveness of our proposed

formulation (M1) and valid inequalities at the scale required in the industry, we

develop a decomposition algorithm to solve the problem. In particular, a tailored

Benders decomposition algorithm will be proposed with our derived valid inequalities
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embedded. Note that Benders decomposition algorithm (Benders 1962) has been

successfully applied to a wide range of difficult optimization problems (e.g., Shen

and Chen 2013, An et al. 2014, and Arslan and Karaşan 2016).

Observe that once the values of the αt1,t2k variables are fixed, the values of the utk
and wtk variables are also fixed. In this case, the utk and wtk variables can be relaxed

to be continuous variables in the problem, which can be efficiently solved. Based

on this observation we develop a Benders decomposition algorithm for solving M1.

In the proposed algorithm, the model is divided into a master problem and a sub-

problem, both of which are solved iteratively and updated after each iteration. After

solving the sub-problem in each iteration with a given solution from the master

problem, new constraints (i.e., feasibility and optimality cuts) are added into the

master problem, which will be solved again towards the optimal solution. Using the

solutions of the master problem and the sub-problem, the lower and upper bounds of

the objective value of the original problem are updated, respectively. The algorithm

stops when the optimal solution is found or when the gap between the lower and

upper bounds of the problem reaches a preset threshold ε. Section 2.6.1 reformulates

(M1) into a master problem and a sub-problem. The cutting-plane method used

in the algorithm is introduced in Section 2.6.2. In Section 2.6.3, we outline the

procedure of the algorithm.

2.6.1 Model Reformulation

In the proposed solution method, model (M1) is divided into a master problem (MP)

and a sub-problem (SP). The master problem (MP) is formulated as follows:

(MP) min f =
∑
k∈V

Rkxk −
∑
k∈V

|T |−bk+1∑
t1=1

min{t1+bk−1,|T |}∑
t2=t1+bk−1

gt1,t2k αt1,t2k + η (2.32)

s.t.
∑

t∈[1,|T |−bk+1]

utk ≥ xk, (2.33)

η ≥ η, (2.34)
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(2.9), (2.11), (2.13)− (2.16), (2.19)− (2.24), (2.25), (2.26), (2.31),

feasibility cuts,

optimality cuts,

where feasibility and optimality cuts are added after solving the sub-problem at each

iteration and inequality (2.31) is generated through the inequality generation pro-

cedure described in Section 2.5.2. Constraint (2.33) ensures that a vessel chartered

must start at least one voyage. In constraint (2.34), η is a lower bound for η and is

calculated by the following equation:

η =

⌈
d̂

maxk{vk}

⌉
min
k
{ck} . (2.35)

In the equation above,
⌈

d̂
maxk{vk}

⌉
gives the minimum number of voyages needed to

fulfill the total demand and mink{ck} represents the minimum cost for each of the

voyages.

We then describe the sub-problem (SP). For model (M1), we can observe that

as long as the variable α is given, we have variables u and w fixed. Therefore, in

the following model of the sub-problem, we relax u and w to be continuous, leading

to a linear program. Note that when the sub-problem is a linear program, Benders

decomposition algorithm theoretically guarantees convergence to optimality after a

certain number of iterations (Laporte and Louveaux 1993).

(SP) min
∑
k∈V

|T |−bk+1∑
t=1

cku
t
k (2.36)

s.t. ut1k =

min{t1+bk−1,|T |}∑
t2=t1+bk−1

αt1,t2k , ∀t1 ∈ [1, |T | − bk + 1]Z ,∀k ∈ V , (2.37)

wt2k =

t2−bk+1∑
t1=max{1,t2−bk+1}

αt1,t2k , ∀t2 ∈ [bk, |T |]Z ,∀k ∈ V , (2.38)
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utk ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.39)

utk ≤ 1, ∀t ∈ T ,∀k ∈ V , (2.40)

wtk ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.41)

wtk ≤ 1, ∀t ∈ T ,∀k ∈ V , (2.42)

(2.10), (2.12), (2.17), (2.18),

where αt1,t2k is the optimal solution for αt1,t2k obtained by solving (MP).

The (SP) is then dualized, with dual variables µi, σ, λukt, λ
w
kt, θ

u
kt, θ

w
kt, π

u+
kt , πu−kt ,

πw+
kt and πw−kt corresponding to constraints (2.10), (2.12), (2.37), (2.38), (2.17), (2.18),

(2.39), (2.40), (2.41) and (2.42), respectively. Furthermore, let ITt denote the set of

sub-planning horizons that contain unit time t. The dual of the sub-problem, i.e.,

(SPD), is formulated as follows:

(SPD) max g =
∑
i∈I

diµi + d̂σ +
∑
k∈V

|T |−bk+1∑
t1=1

min{t1+bk−1,|T |}∑
t2=t1+bk−1

αt1,t2k

λukt1
+
∑
k∈V

|T |∑
t2=bk

 t2−bk+1∑
t1=max{1,t2−bk+1}

αt1,t2k

λwkt1 −∑
k∈V

∑
t∈T

πu−kt −
∑
k∈V

∑
t∈T

πw−kt

(2.43)

s.t. vk
∑
i∈ITt

µi + vkσ + λukt+π
u+
kt − π

u−
kt ≤ ck,

∀t ∈ [1,min{Ti, |T | − bk + 1}]Z ,∀i ∈ I, ∀k ∈ V ,
(2.44)

vkσ + λukt + πu+
kt − π

u−
kt ≤ ck, ∀t ∈ C[1,|T |−bk+1]

Z

⋃
i∈I

Ti, ∀k ∈ V , (2.45)

λwkt+π
w+
kt − π

w−
kt ≤ 0, ∀t ∈ [bk, |T |]Z ,∀k ∈ V , (2.46)

θukt − πu+
kt − π

u−
kt ≤ 0, ∀t ∈ [|T | − bk + 2, |T |]Z , ∀k ∈ V , (2.47)

θwkt − πw+
kt − π

w−
kt ≤ 0, ∀t ∈ [1, bk − 1]Z ,∀k ∈ V , (2.48)

µi ≥ 0, ∀i ∈ I, (2.49)
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σ ≥ 0, (2.50)

πu+
kt ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.51)

πu−kt ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.52)

πw+
kt ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.53)

πw−kt ≥ 0, ∀t ∈ T ,∀k ∈ V , (2.54)

where the feasible set of constraint (2.45) is defined as the set of t’s that belong to

the set [1, |T | − bk + 1]Z and do not belong to the set Ti for any i ∈ I.

2.6.2 Feasibility and Optimality Cuts

In each iteration, if (SPD) is found to be unbounded, a feasibility cut (2.55) is added

into (MP):

∑
i∈I

diµ
+
i + d̂σ +

∑
k∈V

|T |−bk+1∑
t1=1

min{t1+bk−1,|T |}∑
t2=t1+bk−1

αt1,t2k

λukt1
+
∑
k∈V

|T |∑
t2=bk

 t2−bk+1∑
t1=max{1,t2−bk+1}

αt1,t2k

λwkt1 −∑
k∈V

∑
t∈T

πu−kt −
∑
k∈V

∑
t∈T

πw−kt ≤ 0, (2.55)

where µ+
i , σ, λukt1 , λ

w
kt1

, πu−kt , and πw−kt correspond to the extreme ray of (SPD). Oth-

erwise, (SPD) is solved to the optimum and the following optimality cut is generated

for (MP):

∑
i∈I

diµ
+
i + d̂σ +

∑
k∈V

|T |−bk+1∑
t1=1

min{t1+bk−1,|T |}∑
t2=t1+bk−1

αt1,t2k

λukt1
+
∑
k∈V

|T |∑
t2=bk

 t2−bk+1∑
t1=max{1,t2−bk+1}

αt1,t2k

λwkt1 −∑
k∈V

∑
t∈T

πu−kt −
∑
k∈V

∑
t∈T

πw−kt ≤ η, (2.56)
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where µ+
i , σ, λukt1 , λ

w
kt1

, πu−kt , and πw−kt are optimal values delivered by solving (SPD).

2.6.3 Algorithm Procedure

The detailed procedure for the algorithm can be summarized as follows:

Initialization: Let the lower bound (LB) and the upper bound (UB) of the problem

to be −∞ and +∞, respectively; calculate the lower bound η for variable η

using the input problem data;

Step 1: Solve (MP) to optimum and update the optimal values at1,t2k and η of vari-

ables at1,t2k and η. Update LB = f if LB < f ;

Step 2: Solve (SPD) using at1,t2k delivered by Step 1 if (SPD) is bounded, go to Step

3; otherwise, go to Step 4.

Step 3: Calculate the optimal solution utk for (SPD) and update UB = f − η+ g if

UB > f − η + g. In addition, add optimality cut (2.56) into (MP);

Step 4: Add feasibility cut (2.55) into (MP);

Step 5: If UB−LB < ε , the algorithm stops and outputs the best-found solution;

otherwise, go to Step 1.

2.7 Numerical Experiments

In this section, we perform extensive computational experiments to verify the appli-

cability and effectiveness of our proposed models and solution methods. In addition,

we provide a case study to further investigate the solution structure of the problem.

We first generate a set of instances in terms of different input parameters and solve all

the instances by the two-step solution method proposed in previous sections. While

in the first step, we solve the stochastic backhaul canvassing problem using the DP

algorithm proposed in Section 2.4, in the second step, we solve the integrated fleet

sizing and mix and voyage planning problem by four different methods: (i) CPLEX

using model (M1), (ii) CPLEX using model (M1) with inequalities (2.25) and (2.26)

(denoted by M2), (iii) CPLEX using model (M1) with inequalities (2.25) and (2.26)

and strengthened cover inequalities generated in Section 2.5.2 (denoted by M3), and
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(iv) the Benders decomposition algorithm (denoted as BD). All the experiments are

coded in C++ calling CPLEX 12.6 and are conducted on an Intel Core i7 2.50 GHz

PC with 8 GB RAM.

2.7.1 Instance Generation

In order to test the performances of the proposed algorithms, we generated 20 in-

stances based on real-world cases. These cases have different settings of the length

of the planning horizon (|T |) and the number of ships in the candidate pool (|V|).
In particular, |T | is set to be 60, 90, 120, 150 and 180 unit times and |V| is set to

be 6, 9, 12 and 15. Other input data involving the demand structure, ships in the

candidate pool, and backhaul cargoes for these instances are generated as follows.

We first look at the demand structure of these instances. To begin with, for an

instance with a |T |-unit-time planning horizon, the total demand (d̂) is set as ω |T |
thousand tons, where ω is randomly generated within the range [20, 30]. In addition,

a total number of |T | /15 − 1 sub-planning horizons are generated, where the ith

(i = 1, 2, 3, . . . , |T | /15− 1) sub-planning horizon contains 30 unit times lasting from

the (15i−14)th to the 15(i+1)th unit time. Then, for each sub-planning horizon, we

set the lower and upper bounds for the amount of cargoes that can be shipped out of

Port O to ensure that the cargoes are transported in a stable and balanced manner.

Finally, the minimal time interval between the start times of two consecutive voyages

are randomly generated within the range [2, 5] (unit times).

As for the data of ships, first, the capacities of the ships are generated within

the range [160, 200] (thousand tons). Then, the chartering rates and voyage costs for

each ship are generated randomly within reasonable ranges, considering that ships

with larger capacities have higher chartering rates and voyage costs. In addition, the

minimum durations of voyages of these ships are also generated randomly, within

[17, 20] (unit times) (we set differences of minimum durations of voyages of ships in

one instance to be less than 2 unit times). Finally, the maximum duration of voyages

for each ship is set to be $ unit times longer than their minimum durations, where

$ is randomly generated within the range [3, 7] and we have the same $ for all ships
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in one instance.

In the backhaul cargo part, for each testing instance, we generated 100 types of

cargo transportation requests. First, the weights and required detour lengths of the

cargoes in these requests are generated randomly within ranges [120, 180] (thousand

tons) and [1, 10] (unit times), respectively. In addition, the canvassing period for each

voyage is set to be as long as 1/4 of the minimum voyage duration, starting from the

unit time which is 1/2 of the minimum voyage duration after the start time of the

voyage and ending at the unit time which is 3/4 of the minimum voyage duration

after the start time of the voyage. Finally, the freight rates of these backhaul cargoes

are generated randomly, considering that voyages with longer durations have higher

backhaul transportation freight rates.

2.7.2 Results of Numerical Experiments

We solve these instances by the proposed two-step solution method. Since in the

first step, the proposed DP algorithm can solve the stochastic backhaul canvassing

problem very efficiently for all instances, we only present the computational results

obtained by different methods in the second step. For each algorithm in the second

step, we set the optimality gap to be 0.5% and the time limit to be 7200 seconds.

The computational results are reported in Table 3.2.
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As shown in Table 3.2, the proposed Benders decomposition algorithm manages

to obtain optimal solutions for 19 out of the 20 instances, and the optimality gap

for the instance for which the algorithm failed to find an optimal solution is merely

1.05%. In comparison, M1, M2 and M3 can only optimally solve 17, 17, and 13 in-

stances, respectively. As for the solution speed, the proposed Benders decomposition

algorithm outperforms all the other methods for solving all instances.

Therefore, the experimental results attest that the proposed Benders decompo-

sition algorithm and our derived valid inequalities can solve the considered problem

efficiently.

2.7.3 Case Study

To further analyze the solution structure of the problem and to investigate the im-

pacts of various input parameters, this section presents a case study based on the

practices in Baowu Group (see Section 3.3 for details). We show the obtained opti-

mal solution of the instance and further examine the impacts of three key parameters

(i.e., the total demand, the maximal detour length, and the backhaul cargo condition)

upon the optimal solution.

Instance Data and Solution

Here we let one unit time indicate four days and thus the planning horizon contains

60 unit times (240 days) and total demand is 1500 thousand tons. In addition, the

planning horizon is divided into three sub-planning horizons whose covering ranges

are [1, 30], [16, 45], and [30, 59] (unit times), respectively. The upper bounds for the

weight of cargoes that can be transported in these sub-planning horizons are all 950

thousand tons and the lower bounds are set as 450 thousand tons for the first 2 sub-

planning horizons and 0 thousand ton for the last sub-planning horizon. In addition,

the minimal time interval between two consecutive voyages is 3 unit times. Moreover,

the condition of backhaul cargo transportation requests is generated according to

the description in the previous section. In particular, assuming a voyage with the

minimum duration d starts at the tsth unit time, the canvassing period of each
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voyage lasts from the beginning of the d0.5d+ tseth unit time to the beginning of

the d0.75d+ tseth unit time. Finally, the input data of the ships in the instance are

given in Table 2.3.

Table 2.3: Ship data of the case

Ship
Capacity Chartering rate Voyage cost Voyage duration range

(×103 tons) (×103 dollars) (×103 dollars) (unit times)

1 190 3114.72 1127.20 [18, 24]
2 170 2903.04 1050.40 [17, 23]
3 190 3134.88 1134.40 [18, 24]
4 200 3257.52 1178.80 [19, 25]
5 180 3010.56 1089.20 [18, 24]
6 180 3057.60 1106.40 [18, 24]

We solve the instance by the Benders decomposition algorithm, and the obtained

optimal total cost is 14.92 million dollars. In the optimal solution, three ships (Ships

1, 3, and 5) are chartered with the total chartering cost equal to 9.26 million dollars.

Ships 1 and 3 complete three voyages and Ship 5 completes two voyages during the

planning horizon and the detailed voyage planning results for these ships are shown

in Table 2.4. Take Ship 1 for example: the ship starts its first voyage at the beginning

of the first unit time at Port O and returns to the same port at the end of the 19th

unit time. In this voyage, the weight of cargoes transported from Port O to Port D is

190 thousand tons and the voyage cost is 1127.20 thousand dollars. In the backhaul

of this voyage, Ship 1 carries cargoes from the spot market and the expected revenue

is 263.74 thousand dollars.

Impact of the Total Demand

We first study the impact of the total demand upon the optimal solution. To do

this, we gradually change the demand from 1000 to 2000 (thousand tons) and solve

the instance with new demand requirements. Note that the lower and upper bounds

for the weight of cargoes to be transported in these sub-planning horizons are also

changed correspondingly. Table 2.5 shows the optimal solutions for the instance with
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Table 2.4: Voyage planning result of the case

Ship Voyage
Start End Cargo Weight Cost Revenue

(unit time) (unit time) (×103 tons) (×103 dollars) (×103 dollars)1

1
v1 1 19 190 1127.20 263.74
v2 20 38 190 1127.20 364.08
v3 39 60 190 1127.20 538.38

3
v1 4 22 190 1134.40 322.58
v2 23 41 190 1134.40 312.20
v3 42 60 190 1134.40 367.54

5
v1 7 30 180 1089.20 575.12
v2 31 54 180 1089.20 564.36

Total 1500 8963.20 3308.00

Notes: 1. Expected revenue for transporting cargoes in backhauls.

various demands.
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As can be seen in Table 2.5, the optimal total cost shows a generally increasing

trend with the growth of the total demand. To be more specific, the optimal cost

slightly increases when the total demand grows from 1000 to 1500 thousand tons.

Then, it undergoes a sharp increase when the total demand increases from 1500

thousand tons to 1600 thousand tons. The reason for the sharp increase is that the

number of chartered ships increases from three to four and the total number of voyage

increases from eight to nine in order to satisfy the strengthened demand requirement.

Afterward, the optimal cost gradually increases when the total demand changes from

1600 to 2000 thousand tons. It is worth noting that when the total demand reaches

2000 thousand tons, the corporation needs to charter in one more ship to fulfill the

increased demand. However, thanks to the increased revenue obtained in backhaul

cargo transportation, the total cost does not increase much.

Impact of the Maximal Detour Length

We then study the impact of the maximal detour length. The maximal detour length

for a voyage equals the difference between the maximal duration and the minimal

duration of the voyage, and we set congruent maximal detour lengths for all voyages

in an instance. We investigate its impact by varying the maximal detour length

from 0 to 8 unit times and comparing the corresponding optimal costs obtained by

solving the instance. Figure 2.3 shows the relationship between the optimal cost and

the maximal detour length. The figure shows that the optimal cost decreases with

the increase of the maximal detour length. However, the decreasing speed gradually

slows down.

Impact of the Backhaul Cargo Condition

In the last part, we analyze the impact of the backhaul cargo condition upon the opti-

mal solution. In the current setting, it is assumed that the freight rate of transporting

cargoes from the same type of request in the backhaul keeps unchanged during the

entire planning horizon. However, it is possible that within certain periods of the

horizon, the freight rates may fluctuate due to uncertainties in the shipping market.
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Figure 2.3: Optimal costs with changing maximal detour length

We inspect how such fluctuations would affect the ship scheduling result. To do this,

we suppose that the freight rates of transporting all types of cargoes first increase

by 30% during the period from the 20th to the 25th unit time and then decrease by

30% from the 40th to the 45th unit time. The instance is then solved under the new

settings. The obtained new optimal cost is 14.86 million dollars which is lower than

the previous 14.92 million dollars and the new voyage planning result is shown in

Table 2.6.

When comparing with Table 2.4, we can find that although the chartered ships

remain unchanged, the schedules of them have been adjusted. In particular, the start

time of the first voyage of ship 5 is rescheduled from the 7th unit time to the 11th

unit time, in order to embrace the increase in freight rates of transportation requests

that starts from the 20th unit time. Moreover, the start time of the second voyage

of the ship is deferred by 5 unit times to avoid canvassing in periods when freight

rates are lower than normal as much as possible.
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Table 2.6: Voyage planning result of the case with varied backhaul cargo condition

Ship Voyage
Start End Cargo Weight Cost Revenue

(unit time) (unit time) (×103 tons) (×103 dollars) (×103 dollars)1

1
v1 1 19 190 1127.20 263.74
v2 20 38 190 1127.20 364.08
v3 39 60 190 1127.20 538.38

3
v1 4 22 190 1134.40 322.58
v2 23 41 190 1134.40 312.20
v3 42 60 190 1134.40 367.54

5
v1 11 34 180 1089.20 655.56
v2 36 59 180 1089.20 545.86

Total 1500 8963.20 3369.94

Notes: 1. Expected revenue for transporting cargoes in backhauls.

2.8 Conclusion

Maritime transportation forms the backbone of the world economy and industrial

bulk shipping is an important part of maritime transportation. This chapter studied

the stochastic bulk ship scheduling problem in industrial shipping. The problem can

be divided into three inter-connected sub-problems from different planning levels,

which are the strategic fleet sizing and mix problem, the tactical voyage planning

problem, and the operational stochastic backhaul cargo canvassing problem. We

proposed a two-step solution method to solve the three sub-problems in an inte-

grated manner. In the first step, a dynamic programming algorithm was proposed

to solve the stochastic backhaul cargo canvassing problem and the obtained max-

imum expected revenues for backhaul cargo transportation of all possible voyages

were generated a priori for the second step. In the second step, we formulated a

mixed-integer programming model for the integrated fleet sizing and mix and voy-

age planning problem. To efficiently solve the model, we first strengthened it by

adding several families of valid inequalities and then proposed a tailored Benders

decomposition method. Extensive numerical experiments were conducted to test the

performance of the proposed models and the algorithms and the results demonstrat-

ed that our proposed approach can efficiently solve the considered problem. Finally,
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a case study with sensitivity analysis was conducted and the results were discussed

in detail.

For future studies, we find two promising directions. First, in view of the complex-

ity of the problem, it would be interesting to develop efficient heuristic algorithms for

solving the considered problem on larger scales. Second, industrial corporations may

choose to charter in and redeliver ships at different times within the planning hori-

zons and the consideration of the flexible chartering strategy is a natural extension

of the current study.
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Chapter 3

The Robust Bulk Ship Routing

Problem with Batched Cargo

Selection

3.1 Introduction

Ships carry 80% of cargoes by volume around the world, and the dry bulk shipping

sector accounts for nearly half of the global seaborne transportation volume, amount-

ing to 5.2 billion tons in 2018 (UNCTAD 2019). Tramp shipping, which operates on

customers’ callings, is by far the most commonly used transportation mode in dry

bulk shipping. In bulk tramp shipping, shipping companies act as carriers that trans-

port cargoes from one port to another by following the orders from the customers

(shippers). A tramp shipping company participates in maritime transportation by

owning or controlling a fleet of bulk ships, and profits from the freight gained by

transporting cargoes.

For a tramp shipping company, fleet adjustment, cargo selection, and ship routing

which directly impact its revenue, are the three most important decisions. Over

a given planning horizon (e.g., three months), fleet adjustment determines which

ships to charter in and out. Seaborne bulk transportation is capital intensive, with
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daily operational costs for a bulk ship amounting to tens of thousands of US dollars

(Greiner 2013). Therefore, in order to reduce their costs, tramp shipping companies

generally choose to adjust the composition of their fleet according to the variations

in demand. For instance, Pacific Basin (PB), one of the largest bulk tramp shipping

companies (Pacific Basin 2018), dynamically adjusts its fleet to meet changes in

demand. According to our interviews with managers from PB, the company controls

a fleet of 251 ships, among which nearly half (109) are short-term chartered (the

chartering periods can be several months).

Cargo selection arises when a set of cargo transportation offers from the shippers

are provided, and the company must decide which offers to accept and which ones

to reject. It is worth mentioning that in the current bulk shipping, most of the offers

come in the form of Contract of Affreightment (COA). Each COA may contain

multiple transportation requests covering a period ranging from a few months to

several years. The cargoes contained in one COA should be accepted or rejected

as a whole. COA has by far become the most commonly used framework for long-

term transportation contracts in tramp shipping and generates a large proportion of

revenues for most tramp shipping companies, and in some cases, the proportion can

be 100% (Fagerholt et al. 2010). Besides cargoes in COAs, cargoes from the spot

market serve as another source that brings additional revenues to tramp shipping

companies. Unlike those in COAs, cargoes from the spot market can be selected

on a one-by-one basis. For a tramp shipping company, selecting the most favorable

combination to transport from a set of offers of COAs and spot market cargoes is

vital for its profitability. The same problem is also faced by Pacific Basin. For

example, in its trans-Pacific business sector alone (i.e., cargo transportation between

the west coast of North America and the Far East), PB receives around 20 COA

offers every year and currently transports cargoes from 10 COAs between the west

coast of North America and the Far East.

Finally, based on the results of the two strategic decisions discussed above, the

company should decide how to arrange the ships in its fleet to transport the accepted

cargoes. This falls into the well-known ship routing problem (in its most traditional

sense), and the objective here is to complete the transportation tasks at the minimum
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cost.

Maritime transportation suffers from great uncertainties (see the discussion of

uncertainties in maritime transportation by Pantuso et al. 2014a). In particular,

the cost of a voyage between two ports frequently fluctuates due to uncertain sea

conditions (e.g., unpredictable weather and current conditions in the sea) and uncer-

tain ship status (e.g., trim and mechanical conditions of a ship). Nowadays, the dry

bulk shipping market is faced with overcapacity and declining demands. The profit

margins of bulk shipping companies are thin (typically within 5%) and voyage cost

accounts for a large proportion of the total operational cost. For example, according

to PB’s 2018 Annual Report (Pacific Basin 2018), the profit margin in that year was

5% (the number in 2017 was merely 1%) and the voyage cost accounts for nearly 50%

of the total cost. To survive in the harsh business environment, it is therefore prefer-

able if the operations of a tramp shipping company are robust against variations in

voyage costs.

Ship routing problems have been considered in numerous papers (see the two

recent surveys of Christiansen et al. 2004 and Christiansen et al. 2013). Regarding

the cargoes in COAs, they are taken as given parameters in almost all studies in this

area (i.e., by assuming a set of COAs has been accepted and cargoes in them must be

transported in a planning horizon). In addition, although seaborne transportation is

faced with great uncertainties, the majority of studies addressed ship routing prob-

lems in a deterministic environment. Interesting exceptions arise in ship scheduling

and routing for offshore oil and gas platforms (Kisialiou et al. 2018, 2019), in the

context of stochastic demands and weather conditions.

To fill these gaps, we consider the robust bulk ship routing problem with batched

cargo selection (RSRPB). In what follows, we first summarize our main contributions

and then introduce the structure of the remaining part of the chapter.

3.1.1 Summary of Our Scientific Contributions

Our main scientific contributions can be summarized as follows:

1. We consider a problem that jointly solves three interconnected subproblems in
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tramp shipping: the fleet adjustment problem, the batched cargo selection problem,

and the ship routing problem. For the batched cargo selection problem, we consider

the selection behavior in COA settings. In view of the uncertainties in voyage costs,

we solve the problem while ensuring the robustness of the solutions against random

voyage costs.

2. We formulate a compact model that is solvable for small-scale instances by

using standard MIP solvers and a strengthened set covering model. To solve the

problem, we develop a tailored branch-and-price-and-cut (BPC) algorithm. Several

enhancement strategies are proposed to improve the efficiency of the algorithm.

3. Results from extensive numerical experiments demonstrate that the algorithm

can solve problems with practical sizes to optimality or near-optimality. The efficacy

of the enhancement techniques is also attested by the experimental results.

3.1.2 Outline

The remainder of this chapter is structured as follows. We review the relevant studies

in Section 3.2, and formally describe the problem in Section 3.3. Compact models for

the problem are formulated in Section 3.4. In Section 3.5 we reformulate the problem

as a set covering model. The BPC algorithm is described in Section 3.6. Computa-

tional results are reported in Section 3.7, followed by conclusions in Section 3.8. We

provide all mathematical proofs in Appendix B.

3.2 Literature Review

Ship routing problems have received considerable attention in the scientific literature.

Christiansen et al. (2004) and Christiansen et al. (2013) provided an overall review

of the field. As ships are operated in three different modes, i.e., liner, tramp, and

industrial shipping, studies on ship routing problems can also be generally divided

into these three categories (Christiansen et al. 2013). Since our study focuses on

tramp shipping, we concentrate our review on the relevant research on tramp shipping

operations management problems.

49



3.2.1 Review of Studies on the Fleet Adjustment Problem

One stream of related research focuses on the fleet adjustment problem. This prob-

lem, in its broad definition, falls into two categories: the maritime fleet sizing and

mix problem (MFSMP), and the maritime fleet renewal problem (MFRP) (Pantuso

et al. 2014a). The MFSMP focuses on the design of a fleet for transporting cargoes

in a single period, whereas the MFRP is about the dynamic adjustment of a fleet in

multiple periods. The MFSMP in liner shipping has been well studied (e.g., Song and

Dong 2013, Ng 2015). Research on the MFSMP in tramp shipping is rooted in the

pioneering work of Schwartz (1968) which addresses the fleet sizing and mix problem

for a barge service company. The objective is to determine the optimal fleet compo-

sition and service schedules for the barges to complete transportation tasks over a

planning horizon. Pesenti (1995) considered a MFSMP for a fleet of container ships.

They proposed a hierarchical decision model and developed a heuristic algorithm to

solve the problem. Zeng and Yang (2007) studied a MFSMP in coal shipping, and

solved the problem by tabu search. More recently, Fagerholt et al. (2010) proposed a

decision support methodology for strategic planning in industrial and tramp shipping

which solves the fleet sizing and mix problem using simulation-based optimization.

Wang et al. (2018) considered a stochastic maritime fleet composition and deploy-

ment problem where the decisions include the type and number of ships to charter

and the length of the chartering periods. They developed a two-stage stochastic

programming model to solve the problem.

The MFRP has gained increased attention in recent years (e.g., Bakkehaug et al.

2014, Arslan and Papageorgiou 2017, and Zheng and Chen 2018). As the planning

horizons for MFRPs usually cover several years and the seaborne transportation

market is known for its volatility, most studies on the MFRP consider uncertainty

as an integral part of the problem. One such study was provided by Alvarez et al.

(2011b) who investigated the MFRP for industrial or tramp shipping companies.

The fleet adjustment decisions considered in the problem include purchase, sale, lay-

up, assignment to a market, charter-out, charter-in, and demolition. Uncertainties

in the purchase and chartering market were considered. Following Bertsimas and
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Sim (2003), the authors formulated the problem as a robust MILP model. Pantuso

et al. (2014b) considered a multi-period MFRP for a liner shipping company. In the

problem, the fleet of the company can be modified at each period in an uncertain

shipping market and the objective is to identify a fleet renewal and deployment plan

such that the expected total cost for controlling and operating ships in the planning

horizon is minimized. A multi-stage stochastic model was formulated and solved by

a decomposition algorithm.

3.2.2 Review of Studies on the Ship Routing Problem

The second stream of research focuses on the ship routing problem. Most studies

in this stream can be viewed as special applications of the vehicle routing problem,

where cargoes are transported between several loading and discharging ports. In most

studies on the ship routing problem, the focus is the routing and scheduling of a fixed

fleet of ships to transport a set of cargoes. Decisions are made in a deterministic

environment. Both mandatory (from long-term contracts) and optional (from the

spot market) cargoes can be considered. The objective can be to maximize the

revenue from transporting cargoes from the spot market or to minimize the total

transportation cost. Many heuristics have been developed for these problems (e.g.,

Brønmo et al. 2007a, Korsvik and Fagerholt 2010, and Kosmas and Vlachos 2012).

Among the exact algorithms, a column generation algorithm was proposed by

Brønmo et al. (2010) to solve a ship routing problem with flexible cargo sizes. This

algorithm was shown to be better than a method that generates all columns a priori.

St̊alhane et al. (2012a) developed a branch-and-price-and-cut algorithm for a ship

routing problem in which cargoes are transported in a pickup and delivery manner.

Meng et al. (2015) considered a joint ship routing and bunkering problem and solved

it by branch-and-price. In view of the volatile maritime market, Hwang et al. (2008)

considered a ship routing problem that limits the variance in profit. The problem

was solved by branch-and-price-and-cut.

While most studies in this area assume deterministic parameter settings, a few of

them considered uncertain environments. One such study was provided by Hwang
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et al. (2008) who considered uncertainties in revenues from chartering out ships and

from transporting spot market cargoes, as well as costs for transporting cargoes using

voyage charters. The uncertainties of these parameters were measured by a mean-

variance form. The authors considered a ship routing problem aiming at maximizing

the expected revenue of a shipping company under a constraint on the variance in

profit. Tirado et al. (2013) addressed a dynamic ship routing problem in which new

cargoes arrive stochastically. They proposed three heuristics to solve the problem.

Halvorsen-Weare et al. (2012) investigated a ship routing and scheduling problem

arising from the liquefied nature gas (LNG) business. In their problem, LNG is

transported from a single producer to a set of customers over a planning horizon.

All shipments are performed with full shiploads. The authors considered uncertain-

ties in the sailing times and daily production rate of LNG. They proposed several

strategies to enhance the robustness of solutions to the problem and they developed a

simulation-optimization framework for the problem. Uncertainties of travel times are

also considered by Agra et al. (2013) who developed a robust optimization algorithm

based on row and column generation.

Our study is also related to the robust vehicle routing problem (RVRP). However,

due to their land transportation backgrounds, most RVRPs focus on uncertainties

in traveling times or customer demands, and the objectives are to construct robust

routes for vehicles in terms of travel time or customer demand satisfaction. Hence,

the realizations of the uncertain travel times and demands in these problems are

independent of the routes. Examples of studies on such RVRPs include Lee et al.

(2012), Gounaris et al. (2013), Agra et al. (2013), and Munari et al. (2019). In our

problem, the realization of uncertain voyage costs cannot be considered separately

among different shipping routes. Therefore, the considered problem is essentially

different from most RVRPs considered in the literature. In particular, if such RVRPs

are solved by branch-and-price, the uncertainties in the parameters can be handled

independently in the pricing problems for constructing feasible routes (e.g., Lee et al.

2012, Munari et al. 2019). This is, however, not applicable to our problem.
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3.2.3 Review of Studies on the Joint Fleet Adjustment and

Ship Routing Problem

The interconnection between the fleet adjustment problem and the ship routing prob-

lem has been the object of several studies. Some have considered the composition of

a fleet to complete transportation tasks within a (short) period; once decided, the

fleet remains fixed for the entire planning horizon. Fagerholt and Lindstad (2000)

considered a ship scheduling problem regarding a supply operation in the Norwe-

gian Sea where supplies are transported using ships from a supply depot to several

offshore installations. The objective is to determine an optimal fleet and the corre-

sponding weekly schedules that meet the installations’ demands at minimum cost.

Similar studies include those of Zeng and Yang (2007), Fagerholt et al. (2010), and

Halvorsen-Weare et al. (2012).

3.2.4 Review of Studies on the Treatment of COAs

Almost all of the papers on the ship routing problem disregard decisions regarding

accepting or rejecting COAs. Two exceptions include the studies of Fagerholt et al.

(2010) and Laake and Zhang (2016). The former solves a problem that includes fleet

mix and sizing and COA cargo selection as strategic decisions, and ship routing as

a tactical decision. The authors use a simulation method to solve the problem. The

latter considers an integrated fleet renewal and COA cargo selection problem, where

the planning horizon can be several years and decisions are made at the beginning

of each year.

3.2.5 Contribution of Our Study to the Literature

Our research falls into the group that focuses on the joint fleet adjustment and ship

routing problem. We enrich the existing literature in multiple ways. First, to the

best of our knowledge, we are among the first to consider cargo selection under COA

settings in a ship routing problem. Second, while most relevant studies are based on

deterministic parameter assumptions, we consider uncertainties in the problem and
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solve it in a robust way. Third, to efficiently solve the problem, we develop a novel

exact algorithm that can be used to solve other families of routing and scheduling

problems with uncertain parameters.

3.3 Problem Description

We consider the case of a bulk tramp shipping company that has to make a series of

decisions regarding its operations in a planning horizon that typically covers several

months. At the beginning of the planning horizon, the company owns or controls a

fleet of heterogeneous ships and has a set of mandatory cargoes that must be trans-

ported (i.e., cargoes accepted in the previous planning horizon but not transported

yet) and a set of optional cargo transportation offers (i.e., COAs and cargoes in the

spot market). The decisions include (i) how to adjust its fleet over the planning

horizon, (ii) whether to accept or reject each transportation offer, and (iii) how to

route the ships in its fleet to complete the transportation of the mandatory cargoes

and of those from the accepted transportation offers. The objective is to maximize

the total profit, equal to the revenue from (i) chartering-out ships from the fleet of

ships controlled by the company at the beginning of the planning horizon and (ii)

freights from optional cargoes, minus the costs of (a) chartering-in ships from the

chartering market and (b) transporting cargoes.

In the remainder of this section, we will describe the problem in detail. We

will introduce the fleet adjustment in Section 3.3.1, the batched cargo selection in

Section 3.3.2, and the routing of ships in Section 3.3.3. The uncertainties in the

parameters of the problem are discussed in Section 3.3.4. Our assumptions for the

whole problem are presented in Section 3.3.5.

3.3.1 Fleet Adjustment

The fleet is composed of a set of ships denoted by V which belong to one of two

subsets V1 and V2. The set V1 consists of ships that are controlled by the shipping

company at the beginning of the planning horizon (these ships can either be owned
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or time-chartered by the company). The set V2 consists of ships that are in the

chartering market and can be chartered in by the company. The ships v ∈ V are

heterogeneous and can have different available times, initial positions, daily charter-

ing rates, capacities, operational costs, and speeds.

For the ships in V1, the company can choose to charter them out in the planning

horizon, which generates revenues. The company may also choose to charter in some

ships from V2 in the planning horizon, and in this case, it has to pay chartering costs.

3.3.2 Batched Cargo Selection

We consider two types of cargoes in the problem. The first type consists of mandatory

cargoes coming from COAs that were accepted in previous planning horizons and

must be transported in the current planning horizon. We denote the set of cargoes

of this type by Nm. At the beginning of the planning horizon, the shipping company

also has a set of optional cargoes from optional COAs and the spot market which

constitutes the second type of cargoes. We denote the set of these cargoes by N c, and

let N := Nm∪N c. Each cargo in N is specified by its weight, loading port, unloading

port, loading period (normally known as laycan) and the times of cargo handling at

the loading and unloading ports. Note that we assume the universal adoption of the

“reasonable dispatch” which requires the shipping company to dispatch the cargoes

onboard within reasonable times. Therefore, we do not set deadlines for unloading

the cargoes.

A COA is a long-term transportation contract between a shipowner (shipping

company) and a charterer (shipper). In a COA, the shipping company is required to

transport cargoes for a charterer in a specified period. The typical contract period

ranges from several months to one or two years. The charterer should specify the

weight (range) of cargoes to be transported in the period. Cargoes are transported

in different shipments. The loading weight in each shipment is usually at the option

of the shipping company but should be within the limits specified by the charterer.

A COA also specifies the freight rate for transporting the cargoes, and the actual

revenue gained by the shipping company is decided by the actual weight transport-
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ed. The loading periods of the shipments are generally arranged in two fashions. In

the first fashion, the contract provides an agreed upon shipment programme, which

specifies the loading periods of these shipments. In the second fashion, the shipping

company is only required to make the shipments fairly evenly spread over the period

of the contract. For details, the reader may refer to the template contracts for bulk

cargo COAs (i.e., VOLCOA and GENCOA) provided by BIMCO (2019), which is

the largest international shipping association representing shipowners. It is worth

mentioning that charterers who choose to use COAs to import or export their car-

goes periodically (e.g., monthly or bimonthly) usually have steady consumption or

production rates for these cargoes in the contract period. Besides, cargoes in a COA

usually have a fixed origin port and destination port.

Based on these features, we consider the following settings for COAs in the prob-

lem. First, for each COA k ∈ K, we first split the cargo to be transported into a

set of cargoes denoted by N c
k , each representing a shipment. The number of cargoes

in N c
k is either directly specified in a given shipment programme or decided by the

shipping company considering (i) the total weight (range) of cargoes to be trans-

ported in the contract period, (ii) the loading weight limits for each shipment, and

(iii) the requirement of regularity in transportation. For a tramp shipping company,

the cargoes in COAs are optional, but can only be accepted or rejected as a batch

(i.e., cargoes in one COA should be chosen as a whole). In this sense, a spot market

cargo can be treated as a COA k with |N c
k | = 1 in the problem. Second, we set the

weight of each cargo in N c
k to be equal to the maximum loading weight specified by

the charterer or the maximum total cargo weight divided by the number of cargoes

(whichever is smaller). We will discuss in Section 3.4.1 how to handle the cases in

which the actual loading weight is less than the maximum weight. Third, COA k

is also associated with a revenue parameter pk which represents the freight revenue

for the company by accepting it and transporting the maximum loading weight in

each shipment. Fourth, the loading periods for cargoes from a COA are set as fol-

lows. If the shipment programme of the COA is given, then the shipping company

should follow the loading periods specified in the shipment programme. Otherwise,

more freedom is given to the shipping company, and we set relatively longer loading
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periods for these cargoes. For concrete examples, refer to our problem instances for

numerical experiments in Section 3.7. Finally, for a COA k whose contract period

exceeds the current planning horizon, we split the cargoes in it into two parts in

such a way that the first part contains cargoes to be transported in the current plan-

ning horizon, and the second part contains the cargoes to be transported beyond the

current planning horizon. Using the cargoes in the first part, a new (shrunk) COA

k′ is generated and its revenue equals
pk|Nc

k′ |
|Nc
k|

. The COA k′ will then replace k in

the problem, and once k′ is accepted, the cargoes contained in the second part of k

become mandatory cargoes for the following planning horizons.

3.3.3 Ship Routing

Given the results from the above two decisions, the company is then responsible for

arranging the route of each ship in the fleet to transport cargoes in Nm, accepted

spot market cargoes, and those from the accepted COAs. The routes should be

feasible so that each cargo is loaded within the specified loading period and carried

by a cargoworthy and seaworthy ship. Being cargoworthy for a cargo means that the

capacity of the ship is larger than the (minimum) loading weight of the cargo and the

ship has a suitable draft to enter and leave the loading and unloading ports of the

cargo. In addition, seaworthiness requires the ship to be able to travel in the voyage

from the loading port to the unloading port of the cargo. The costs for the routes

of the ships are composed of the port charges and voyage costs associated with the

route, and these costs are ship-specific.

In our problem, following the practice in PB, we assume that cargoes can only be

transported in full shiploads. The same settings were used in Hwang et al. (2008),

Meng et al. (2015) and many other studies. Besides, it is also possible to transport

cargoes by using voyage charters from the spot market, which incurs additional costs.

For the ease of presentation, we introduce the following definitions.

Definition 3.1. Voyage. A (ship-specific) voyage refers to a certain ship sailing in

the sea from one port to another, either for transporting cargoes or for repositioning

an empty ship. A voyage is a laden voyage if the ship sailing in it is loaded, and is a
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ballast voyage if the ship is empty. Voyages that transport cargoes from their loading

ports to their unloading ports are laden voyages, whereas voyages that reposition a

ship from its initial location to a loading port of a cargo or from an unloading port

of a cargo to the loading port of another cargo are ballast voyages.

Definition 3.2. Trip. We define a trip (v, i, j), v ∈ V, i, j ∈ N as a sequence of

cargo handling operations and voyages of ship v that starts from the loading port of

cargo i and ends at the loading port of cargo j. A trip includes, in a chronological

sequence, loading of cargo i at its loading port, sailing in a laden voyage to transport

cargo i from its loading port to its unloading port, unloading of cargo i, and finally

sailing in the ballast voyage from the unloading port of cargo i to the loading port of

cargo j.

In particular, we denote by (v, 0, j) the trip of ship v from its initial position to

the loading port of cargo j, and by (v, i, T ) the trip of ship v for carrying cargo i as

its last transported cargo in the planning horizon. Note that trip (v, i, T ) includes

loading of cargo i at its loading port, transporting cargo i from its loading port to its

unloading port, and unloading cargo i at the unloading port.

3.3.4 Uncertainties

The parameters in the RSRPB can be classified into two categories, which are (1)

the parameters that are known at the beginning of the planning horizon, and (2)

the parameters that can only be estimated at the beginning of the planning horizon.

In particular, the parameters involved in the decisions in fleet adjustment and cargo

selection fall into the first category. This is because, in the fleet adjustment, the

company changes the composition of its fleet by time charters. Information regarding

chartering in or out a ship (e.g., the daily chartering rate, details of the ship, and

the chartering period) should be specified in a chartering contract that is signed

at the beginning of the planning horizon. Similarly, requirements and revenues for

transporting cargoes in each COA or a spot market cargo are stipulated in the

contracts. For a similar reason, the cost of outsourcing a cargo transportation task

to a voyage charter is also deterministic at the beginning of the planning horizon.
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There are also some parameters whose exact values are not known at the begin-

ning of the planning horizon. In particular, the time and the cost of sailing between

two ports can only be estimated. Further, in bulk shipping, since the time need-

ed by a ship to complete a voyage depends on the sailing speed which is largely

controllable by the shipping company, reliable estimates can be made for voyage

times. This observation also applies to PB’s practices, which takes reliability and

punctuality as the most important factors in its services, and delayed loading and

unloading are very rare (Pacific Basin 2019). In practice, by dynamically adjusting

ships’ speed, PB strives to deliver reliable on-time performance even when voyages

encounter unforeseen scheduling delays.

In comparison, greater uncertainties lie in the estimation of voyage costs. In our

interview with managers from PB, we were told that the cost of a voyage is signif-

icantly affected by weather and currents in the sea and hull and engine conditions

of the ship, and these conditions are largely unpredictable. In addition, as we dis-

cussed, when a voyage encounters unforeseen scheduling delays the ship may choose

to speed up in order to reach the load or unloading port by the agreed upon time

period. In this case, the cost of a voyage also increases. Therefore, to deal with the

uncertain voyage costs in the RSRPB, we seek robust solutions by adopting the con-

cept of the budget of uncertainty which was proposed by Bertsimas and Sim (2003).

In particular, let c̃r denote the random cost of a ship-specific voyage r. Following the

approach proposed by Bertsimas and Sim (2003), we assume that c̃r takes a value

in [c̄r, c̄r + dr], where c̄r is the nominal cost of the voyage (which corresponds to the

expected cost of the voyage), and dr ≥ 0 is the largest deviation of c̃r from c̄r.

3.3.5 Assumptions

To introduce the assumptions, we make use of the following notations:
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R Set of voyages.

Rv
i,j Set of voyages contained in trip (v, i, j), v ∈ V , i ∈ N ∪{0}, j ∈ N ∪{T}\{i}.

In particular, for i, j ∈ N , if cargo i’s unloading port is different from cargo

j’s unloading port, trip (v, i, j) contains two voyages which are a laden voyage

for transporting cargo i from its loading port to its unloading port, and a

ballast voyage for repositioning the ship from the unloading port of i to the

loading port of j. Meanwhile, if ship v’s initial position is different from cargo

i’s loading port, trip (v, 0, j) contains only one ballast voyage for repositioning

ship v from its initial position to the loading port of i. In addition, trip (v, i, T )

contains only one laden voyage for transporting cargo i from the loading port

to the unloading port.

tvi,j Time of trip (v, i, j), v ∈ V , i ∈ N ∪ {0}, j ∈ N ∪ {T} \ {i}.

ĉi Cost of transporting cargo i ∈ N using a voyage charter.

Cv
i,j Nominal cost for trip (v, i, j), v ∈ V , i ∈ N ∪ {0}, j ∈ N ∪ {T} \ {i}.

Cv
i,j = gvi +

∑
r∈Rvi,j

c̄r, where gvi , v ∈ V , i ∈ N ∪ {0} is the total port charges

for ship v to load and unload cargo i at the loading and unloading ports.

Specifically, gv0 = 0, v ∈ V .

To better analyze the problem, we make the following assumptions:

A1. The triangle inequality holds for the trip times so that tvi,j ≤ tvi,k + tvk,j, i ∈
N ∪ {0}, k ∈ N, j ∈ N ∪ {T} \ {i}, v ∈ V .

A2. For each i, j ∈ N, i 6= j and for each v ∈ V , let r′ be the ballast voyage in which

ship v sails from the unloading port of i to the loading port of j, we assume

Cv
i,j + dr′ ≤ Cv

i,k + Cv
k,j, k ∈ N, k 6= i, k 6= j.

A3. For each k, we assume that
∑

i∈Nc
k
ĉi > pk.
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The second assumption ensures that regardless of the realizations of voyage costs,

the cost of any ship v to complete trip (v, i, j) never exceeds the cost of completing

two consecutive trips (v, i, k) and (v, k, j) (note that Rv
i,j \ (Rv

i,k ∪ Rv
k,j) = {r′}). To

understand the third assumption, suppose a shipper provides a COA offer k to the

shipping company. Then, A3 states that the cost of the shipper for transporting all

cargoes in the COA using voyage charters (which equals
∑

i∈Nc
k
ĉi) is larger than the

cost of transporting them using a COA (which equals the freight the shipper pays

to the shipping company, pk). This is reasonable because otherwise, instead of using

a COA, it will be more favorable for the shipper to transport all the cargoes in the

COA using voyage charters (i.e., the COA will not exist at all). This assumption

also prevents a shipping company from profiting by accepting a spot market cargo

and then using a voyage charter to transport it.

3.4 Compact Models

In this section, several compact formulations are developed for the RSRPB. We start

by providing a mixed integer linear programming (MILP) model for the deterministic

counterpart of the problem in Section 3.4.1. The model will then be converted into

a series of robust MIP models in Section 3.4.2. Finally, we discuss the complexity

of the problem in Section 3.4.3. Before presenting the models, we summarize the

notations in Table 3.1.

Table 3.1: Notation.

Indices:

v Index for ships.

k Index for cargo transportation contracts (offers, COAs).

i, j Indices for cargoes. We use 0 and T to denote the dummy beginning and ending

cargoes for each ship, respectively.

r Index for voyages. Note that voyages are ship-specific.

Sets:

V Set of all ships, V = V1 ∪ V2.
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V1 Set of ships controlled by the tramp shipping company at the beginning of the

planning horizon.

V2 Set of ships available from the chartering market.

K Set of cargo transportation contracts (offers, COAs).

N Set of cargoes, N = Nm ∪N c. N does not include the dummy cargoes 0 and T .

Nm Set of mandatory cargoes that must be transported.

N c Set of cargoes in the contracts in K.

N c
k Set of cargoes in contract k. N c =

⋃
k∈K N

c
k .

R Set of voyages.

Rvi,j Set of voyages contained in trip (v, i, j), where v ∈ V, i ∈ N ∪ {0}, and j ∈
N ∪ {T} \ {i}.

Parameters:

ov Available time of ship v ∈ V .

fv Chartering revenue (cost) of ship v ∈ V1 (v ∈ V2) in the planning horizon.

pk Revenue made for accepting the offer for transporting cargoes in contract k ∈ K.

ei Earliest loading start time of cargo i ∈ N .

li Latest loading start time of cargo i ∈ N .

gvi Port charges for ship v to load and unload cargo i at the loading and unloading

ports.

c̄r Nominal cost of voyage r.

Iv,i Ship-cargo compatibility index which is obtained by considering the cargoworth-

ness and seaworthness of each ship for transporting each cargo. Iv,i equals 1 if

cargo i ∈ N can be carried by ship v ∈ V , and 0, otherwise. Specifically, we let

Iv,0 = 1 and Iv,T = 1, v ∈ V .

tvi,j Time of trip (v, i, j), where v ∈ V , i ∈ N ∪ {0}, and j ∈ N ∪ {T} \ {i}.
Cvi,j Nominal cost of trip (v, i, j), where v ∈ V , i ∈ N ∪ {0}, and j ∈ N ∪ {T} \ {i}.

Cvi,j = gvi +
∑

r∈Rvi,j
c̄r.

ĉi Cost of transporting cargo i ∈ N by a voyage charter from the spot market.

M A large constant.

Decision Variables:

wk 1, if the offer of contract k is accepted and 0, otherwise.
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xv 1, if ship v ∈ V is included in the fleet in the planning horizon and 0, otherwise.

yvi,j 1, if trip (v, i, j) is included in the shipping routes, where v ∈ V , i ∈ N ∪ {0},
and j ∈ N ∪ {T} \ {i} and 0, otherwise.

zi, 1, if cargo i is transported using a voyage charter from the spot market and 0,

otherwise.

bi Time to start loading cargo i ∈ N .

3.4.1 The Deterministic Model

The deterministic model (M1) is as follows:

(M1) Maximize
b,w,x,y,z

Z1 =
∑
k∈K

pkwk −
∑
v∈V

fvxv −
∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

Cv
i,jy

v
i,j −

∑
i∈N

ĉizi

(3.1)

subject to ∑
v∈V

∑
i∈N∪{0}

yvi,j + zj = 1, j ∈ Nm

(3.2)

∑
v∈V

∑
i∈N∪{0}

yvi,j + zj = wk, j ∈ N c
k , k ∈ K (3.3)

∑
j∈N

yv0,j = xv, v ∈ V (3.4)∑
j∈N∪{0}\{i}

yvj,i =
∑

j∈N∪{T}\{i}

yvi,j, i ∈ N, v ∈ V (3.5)

∑
i∈N

yvi,T = xv, v ∈ V (3.6)

bj ≥ (ov + tv0,j)y
v
0,j, j ∈ N, v ∈ V (3.7)

bj ≥ bi + tvi,j +M(yvi,j − 1), i ∈ N, j ∈ N \ {i}, v ∈ V (3.8)

bi ≥ ei, i ∈ N (3.9)

bi ≤ li, i ∈ N (3.10)
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wk ∈ {0, 1}, k ∈ K (3.11)

xv ∈ {0, 1}, v ∈ V (3.12)

yvi,j ∈ {0, 1}, Iv,i = 1, Iv,j = 1, i ∈ N ∪ {0}, j ∈ N ∪ {T} \ {i}, v ∈ V (3.13)

zi ∈ {0, 1}, i ∈ N. (3.14)

The objective function (3.1) maximizes the profit of the shipping company over

the planning horizon (Z1), which equals the freight revenue (
∑

k∈K pkwk) minus (i)

the opportunity cost for not chartering-out ships in the current fleet and the cost for

chartering-in ships from the market (
∑

v∈V fvxv), (ii) the cost [
∑

v∈V
∑

i∈N∪{0}
∑

j∈N∪{T}\{i}C
v
i,jy

v
i,j]

of transporting cargoes, and (iii) the cost (
∑

i∈N ĉizi) of using voyage charters. Con-

straints (3.2) mean that mandatory cargoes must be transported, either by ships in

the fleet or by voyage charters. Constraints (3.3) ensure that once a COA is accept-

ed, the cargoes in it must be transported. Constraints (3.4) assign an initial task to

each ship included in the fleet. Constraints (3.5) ensure flow balance on the route

of each ship. Constraints (3.6) assign a final task to each ship included in the fleet.

Constraints (3.7) and (3.8) state that the loading of cargo j can only start after the

assigned ship has arrived at the loading port from its initial position or from the port

where it finished unloading the previous cargo, respectively. Constraints (3.9) and

(3.10) mean that the loading of cargoes should start within the given time windows

(laycans). Constraints (3.11)–(3.14) define the domains of the variables. Note that

Constraints (3.14) also enforce the ship-cargo compatibility.

It is worth commenting on several important aspects of this formulation. First,

Constraints (3.8) can be strengthened by replacing M with M ′
v,i,j = max{0, li+ tvi,j−

ej}. Second, the model is also capable of handling the cases in which the weights

of cargoes come in ranges, e.g., the shipper of a cargo may stipulate the loading

weight to be “30,000 tons, 10% more or less”, which indicates that the carrier can

choose any weight between [27000, 33000] tons to be loaded onboard. Note that in

such cases, the actual freight revenue earned by the shipping company is calculated

by the actual transported weight times the freight per unit weight. To handle such

cases, we calculate pk based on the maximum loading weight of each cargo i ∈ N c
i .

64



Then, if ship v or a ship from a voyage charter cannot load the maximum weight,

we add the reduced revenue caused by not carrying the maximum weight of cargo i

into Cv
i,j or ĉi.

3.4.2 Robust Models

In this section, we convert the deterministic model M1 into robust models. As

discussed in Section 3.3.4, the voyage costs are uncertain at the beginning of the

planning horizon. Let c̃r denote the random voyage cost of r. Following the approach

proposed by Bertsimas and Sim (2003), we assume that c̃r takes a value in [c̄r, c̄r+dr],

where dr ≥ 0 is the largest deviation of c̃r from c̄r. To avoid over-conservative

solutions, Bertsimas and Sim (2003) use a budget of uncertainty which allows at

most Γ of the c̃r’s to deviate from c̄r. The RSRPB is to find a solution whose worst-

case profit is maximized. Let H be the decision variable that represents the robust

cost (i.e., the largest deviation from the nominal total cost). The robust problem

can be formulated in the following model (denoted by M2), where the robustness of

the solutions is ensured by Constraints (3.16):

(M2) Maximize
a,b,w,y,z,H

Z2 =
∑
k∈K

pkwk −
∑
v∈V

fvxv −
∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

Cv
i,jy

v
i,j

−
∑
i∈N

ĉizi −H
(3.15)

subject to

(3.2)–(3.14)

H −
∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

∑
r∈G∩Rvi,j

dry
v
i,j ≥ 0, G ∈ Θ,

(3.16)

where Θ := {G|G ⊆ R, |G| ≤ Γ}.
M2 is equivalent to the following model (M3). Note that in the model, we intro-

duce a set of new decision variables ur, which decide the proportions of the deviations

dr that should be included in the robust cost:
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(M3) Maximize
a,b,w,y,z,u

Z3 =
∑
k∈K

pkwk −
∑
v∈V

fvxv −
∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

Cv
i,jy

v
i,j

−
∑
i∈N

ĉizi −max
u

∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

∑
r∈Rvi,j

drury
v
i,j

(3.17)

subject to

(3.2)–(3.14)

∑
r∈R

ur ≤ Γ (3.18)

0 ≤ ur ≤ 1, r ∈ R. (3.19)

Let θ be the dual variable of Constraint (3.18) and let gr be the dual variables

of Constraints (3.19). By applying strong duality, M3 can be reformulated into

the following MILP model (M4). Note that M4 can be solved by an off-the-shelf

optimization software (e.g., CPLEX).

(M4) Maximize
a,b,w,y,z,g,θ

Z4 =
∑
k∈K

pkwk −
∑
v∈V

fvxv −
∑
v∈V

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}

Cv
i,jy

v
i,j

−
∑
i∈N

ĉizi − Γθ −
∑
r∈R

gr
(3.20)

subject to

(3.2)–(3.14)

gr + θ ≥ dry
v
i,j, r ∈ Rv

i,j, v ∈ V, i ∈ N ∪ {0}, j ∈ N ∪ {T} \ {i} (3.21)

θ ≥ 0 (3.22)

gr ≥ 0, r ∈ R. (3.23)
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3.4.3 Complexity of the Problem

In this section, we demonstrate the RSRPB is NP-hard in the strong sense. To do so,

we show that the decision version of the problem is strongly NP-hard. That is, given

settings of ships, contracts, and cargoes, it cannot be determined in polynomial time

or even in pseudo-polynomial time whether there exists a solution to the problem

whose objective value Z4 is no smaller than a given constant E unless P=NP.

Proposition 3.1. The RSRPB is NP-hard in the strong sense.

3.5 A Strengthened Set Covering Formulation

Because the RSRPB is NP-hard, we propose to solve the problem by branch-and-

price-and-cut (BPC). To this end, we reformulate the problem as a set covering

model. We first introduce the columns that enable the formulation in Section 3.5.1

and we then present the model in Section 3.5.2. The model is then strengthened in

Section 3.5.3.

3.5.1 Columns

In the model, we define a column q as a route of a ship for transporting a set of

cargoes. There are in total a set Q of columns for modeling the problem and each

column q has a set of attributes which are shown in Table 3.2.

The set Q is partitioned into Q1, Q2, and Q3. The set Q1 contains a set of

columns that are for the purpose of “contract selection”. It has |K| elements, each

for one contract. For each contract k, the following column q is added into Q1 where

(i) Vq = ∅, (ii) cq = pk, (iii) Φq = N c
k , and (iv) Ξq = ∅. Denote by q1

k the column

corresponding to contract k in Q1. In the set covering formulation, a contract k will

be accepted if and only if χq1k = 0 in the solution. By contrast, a contract k will be

rejected when χq1k = 1 in the solution, and the rejection reduces the revenue by pk.

The set Q2 contains the set of columns representing the “voyage chartering”

choices for all cargoes. In particular, each cargo i ∈ N corresponds to a column q2
i

67



Table 3.2: Parameters of columns.

Sets:

Vq Set of ships v ∈ V used in column q, where |Vq| ≤ 1.
Φq Set of cargoes i ∈ N covered in column q.
Ξq Set of voyages r ∈ R covered in column q.

Parameters:

cq Cost of selecting column q.
αq,v 1, if v ∈ Vq; 0, otherwise.
βq,i 1, if i ∈ Φq; 0, otherwise.
γq,r 1, if r ∈ Ξq; 0, otherwise.

Decision Variables:

χq 1, if column q ∈ Q is selected and 0, otherwise.
H Robust cost.

in Q2 such that (i) Vq2i = ∅, (ii) cq2i = ĉi, (iii) Φq2i
= {i} and (iv) Ξq2i

= ∅. In the set

covering formulation, cargo i will be transported by a voyage charter if and only if

χq2i = 1 in the solution.

The set Q3 contains all feasible cargo transportation routes for all ships. Denote

a route by h, let vh be the ship that travels on the route, and let Nh 6= ∅ be the

set of cargoes transported on h. Further, let in, n = 1, 2, ..., |Nh| denote the nth

transported cargo on the route. Route h is said to be feasible if and only if the

following Constraints (3.24)–(3.28) hold:

xvh = 1, (3.24)

Ivh,i = 1, i ∈ Nh, (3.25)

ei ≤ bi ≤ li, i ∈ Nh, (3.26)

bi1 ≥ ovh + tvh0,i1 , (3.27)

bin+1 ≥ bin + tvhin,in+1
, n ∈ {1, 2, ..., |Nh| − 1}. (3.28)

Constraint (3.24) ensures that the ship is included in the fleet in the planning

horizon. Constraints (3.25) ensure the ship-cargo compatibility. Constraints (3.26)
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ensure that each cargo should start loading within a feasible time window. Finally,

Constraints (3.27) and (3.28) state that loading a cargo can only start after the

assigned ship arrives at the loading port from the initial position of the ship or from

the port where the ship finishes unloading the previous cargo.

If a feasible route h has been found, a column q is added into Q3, such that (i)

Vq = {vh}, (ii) cq = fvh + Cvh
0,i1

+
∑|Nh|−1

n=1 Cvh
in,in+1 + Cvh

i|Nh|,T
, (iii) Φq = {i1, ..., i|Nh|},

and (iv) Ξq = {r|r ∈
⋃|Nh|−1
n=1 Rvh

in,in+1 ∪ R
vh
0,i1
∪ Rvh

i|Nh|,T
}. Finally, denote by q3

h the

column corresponding to route h in Q3. In the set covering formulation, a route h

will be utilized if and only if χq3h = 1 in the solution.

3.5.2 The Basic Model

We are now ready to formulate the set covering model (M5). Let Z̄ denote the

total revenue from COAs, which is calculated by Z̄ =
∑

k∈K pk, and recall that

Θ := {G|G ⊆ R, |G| ≤ Γ}. M5 is formulated as follows:

(M5) Maximize
χ,H

Z5 = Z̄ − (
∑
q∈Q

cqχq +H) (3.29)

subject to ∑
q∈Q

αq,vχq ≤ 1, v ∈ V (3.30)

∑
q∈Q

βq,iχq ≥ 1, i ∈ N (3.31)

H −
∑
q∈Q

∑
r∈G

drγq,rχq ≥ 0, G ∈ Θ (3.32)

χq ∈ {0, 1}, q ∈ Q. (3.33)

In the above model, the objective function (3.29) is to maximize the profit of

the company, which is calculated by deducting the cost of selected columns and the

robust cost (H) from Z̄. Constraints (3.30) ensure that each ship travels in at most

one route. Constraints (3.31) mean that every cargo should be covered by columns
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in the solution. We use Constraints (3.32) to ensure the robustness of the solution.

The last constraints define the χq as binary variables.

Proposition 3.2. The set covering model M5 is equivalent to the compact models

M2, M3, and M4.

3.5.3 Strengthening the Model

In this section, we strengthen M5 in two ways. First, we derive a family of valid

inequalities for the model. Then, we propose a method to reduce the redundancy of

the constraints.

Valid Inequalities

For any accepted contract k, cargoes i ∈ N c
k can either be transported by a ship

v ∈ V or by using voyage charters. Recall that cargoes in N c
k have similar weights

and share the same loading and unloading ports (while the loading time windows are

different). Let Lk denote the lower bound of the number of cargoes in N c
k that are

transported by ships v ∈ V in an optimal solution to the RSRPB. From assumption

A3, it is clear that Lk = 1 is valid for any accepted contract k. We use the procedure

given in Algorithm 1 to obtain a tighter Lk.
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Algorithm 1 The Lk Calculation Procedure.

Input: pk, N
c
k , ĉi, i ∈ N c

k and Cvi,T , v ∈ V, i ∈ N c
k ;

Output: Lk;
1: for i ∈ N c

k do
2: V̄ = {v|Iv,i = 1, ov + tv0,i ≤ li, v ∈ V };
3: MCi = minv∈V̄ C

v
i,T ;

4: DFi = ĉi −MCi;
5: end for
6: MR = pk −

∑
i∈Nc

k
MCi;

7: N ′ = N c
k ;

8: SN = 0;
9: while MR > 0&N ′ 6= ∅ do

10: i′ = arg mini∈N ′ DFi;
11: MR = MR−DFi′ ;
12: N ′ = N ′ \ {i′};
13: if MR > 0 then
14: SN = SN + 1;
15: end if
16: end while
17: Lk = |N c

k | − SN .
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Lemma 3.1. Algorithm 1 calculates a lower bound of the number of cargoes from

N c
k that should be transported by ships from V for any accepted contract k ∈ K in

an optimal solution to M5.

Following Lemma 3.1, we derive the following inequalities:∑
q∈Q

nkqχq ≥ Lk, k ∈ K, (3.34)

where nkq is set as follows:

nkq =

{
Lk, if q = q1

k,

0, if q 6= q1
k,

k ∈ K, q ∈ Q1, (3.35)

nkq = 0, k ∈ K, q ∈ Q2, (3.36)

nkq = |Φq ∩N c
k |, k ∈ K, q ∈ Q3. (3.37)

Proposition 3.3. Inequalities (3.34) are valid for M5.

Reducing the Redundancy of Constraints

The number of Constraints (3.32) is extremely large in practice. In principle, to

enumerate all constraints, we need to add A =
∑Γ

n=1 Cn|R| into M5 (Γ ≤ |R|). The

following proposition shows that it is safe to reduce the number of Constraints (3.32)

from A to A′ = CΓ
|R|.

Proposition 3.4. Constraints (3.32) can be equivalently replaced by at most A′

constraints.

Considering Z̄ is a constant, M5 can be solved by solving the following model

(M6), and Z5
∗ = Z̄ − Z6

∗, where Z6
∗ is the optimal solution of M6.

(M6) Minimize
χ,H

Z6 =
∑
q∈Q

cqχq +H, (3.38)

subject to (3.30)–(3.34).
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Solving M6 can be very difficult for two reasons. First, the binary variables χq

require the model to be solved within a branch-and-bound (BB) framework. Second,

even solving the linear relaxation of M6 (denoted by LM6) is not easy. The difficul-

ty of solving LM6 stems from its huge number of constraints (rows) and variables

(columns). Even with Proposition 3.4, the number of constraints generated by (3.32)

is still exponential in |V |, |N | and Γ. In addition, the number of columns in Q (Q3)

is also exponential in |N |.
Therefore, to deal with these difficulties, we propose a branch-and-price-and-cut

(BPC) algorithm to solve M6. In the algorithm, M6 is solved in a branch-and-

bound framework, where the rows (for Constraints (3.32)) and columns (from Q3) are

generated dynamically for solving the LM6 at each node N in the BB tree (denoted

by LM6(N)).

3.6 Branch-and-price-and-cut Algorithm

This section describes the branch-and-price-and-cut algorithm we have developed to

solve M6. Before presenting the algorithm, we introduce the following definition.

Definition 3.3. Integer Solutions and Fractional Solutions. Let (X, H) be

a solution obtained by solving an LM6(N), where X is a |Q|-dimensional vector of

χq’s. Regardless of the value of H, the solution is defined to be integral if and only

if all χq’s in X are integral and is defined to be fractional, otherwise.

The BPC solves the LM6(N) through column-and-row generation at each node

N of a BB tree (refer to Sections 3.6.2 and 3.6.3), where columns are generated

by solving a pricing problem (denoted by PP) and rows are generated by solving

a separation problem (denoted by SP). If the solution to an LM6(N) is integral, a

valid upper bound is obtained for M6, otherwise, branching is used to eliminate the

current fractional solution (refer to Section 3.6.1). To improve the efficiency of the

algorithm, we also develop a primal heuristic that generates upper bounds based on

fractional solutions (refer to Section 3.6.4).
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The algorithm used to solve LM6(N) at each node N is given in Algorithm 2,

which solves the problem in a column-and-row generation fashion. At each iteration,

the algorithm solves a reduced version of the LM6(N) [denoted by RLM6(N)]. Let

Θ̃ and Q̃ denote the current set of rows for Constraints (3.32) and the current set of

columns in the RLM6(N), respectively. It is easy to see that Θ̃ ⊆ Θ, and Q̃ ⊆ Q.

After the RLM6(N) has been solved, we check whether there are any columns with

negative reduced cost by solving a pricing problem. Let Q′ denote the set of columns

with negative reduced cost. If Q′ 6= ∅, set Q̃ = Q̃ ∪ Q′, and solve RLM6(N) again.

The procedure will be repeated until Q′ = ∅. Afterwards, a separation problem is

solved to check the feasibility of the current solution with regard to (3.32). If new

rows (constraints) are separated, we solve a new RLM6(N) with the updated Θ̃ by

a new round of column generation.

When no new rows and columns can be found, the LM6(N) has been solved to

optimality. If the solution to the LM6(N) is fractional, then depending on whether its

objective value is smaller than the upper bound, the corresponding node is fathomed

(if no) or branched to generate new nodes (if yes). If the solution is integral, we then

update the upper bound if its objective value is smaller than the current one.
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Algorithm 2 The Column-and-Row Generation Procedure.

Input: LM6(N);
Output: The optimal objective value Z(N)∗ of the LM6(N) and an optimal solution

(X∗, H∗) to the LM6(N);
1: Row Initiation: Let Θ̃ = Θ0, where Θ0 corresponds to the incumbent set of rows; .

For the root node, Θ0 = ∅, and for a non-root node, Θ0 is the set of all G’s that have
been generated in the algorithm.

2: while True do
3: Column Initiation: Let Q̃ = Q0, where Q0 is the initial set of columns for the

current RLM6(N) (Section 3.6.2); . Columns are initiated when
the algorithm (i) solves the initial RLM6(N) (i.e., Θ̃ = Θ0) of node N and (ii) solves a
new RLM6(N) with updated Θ̃ (i.e., new constraints are separated).

4: while True do
5: Solve the RLM6(N) with the current set of columns (Q̃) and rows (Θ̃);
6: Solve the PP of RLM6(N), and obtain Q′ (set of columns with negative reduced

cost) (Section 3.6.2);
7: if Q′ = ∅ then
8: Break the inner while loop;
9: end if

10: Q̃ = Q̃ ∪Q′;
11: end while
12: if Z(N)∗ < UB then . UB is the incumbent upper bound for M6.
13: Solve the SP, and obtain Θ′ (set of violated rows) (Section 3.6.3);
14: end if
15: if Θ′ = ∅ then
16: Break the outer while loop;
17: end if
18: Θ̃ = Θ̃ ∪Θ′;
19: end while
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3.6.1 Branching Strategy

This section introduces how the BB tree is explored and extended. It is explored

using the best-bound rule, i.e., we select the node with the overall minimum lower

bound to branch. When generating new nodes, we adopt a three-level branching

strategy which combines, in descending order of their priorities, contract-branch,

ship-cargo-branch, and cargo-link-branch. Let Q̃ denote set of columns generated

for solving the LM6(N) at node N. Note that Q̃ = Q1 ∪ Q2 ∪ Q̃3 where Q̃3 ⊆ Q3

is generated dynamically during the solution procedure (refer to Section 3.6.2). Let

(X∗, H∗) denote the optimal solution to the LM6(N). If all χq
∗ in X∗ take binary

values, then there is no need to branch. Otherwise, branch decisions are made based

on the results of the following calculations.

First, for each trip (v, i, j), we calculate

ϕvi,j =
∑
q∈Q̃

Υq,v
i,j χq

∗,

where Υq,v
i,j = 1, if (v, i, j) is included in q and 0, otherwise. Then, for each ship-cargo

combination (v, i), we calculate

%v,i =
∑

j∈N∪{T}

ϕvi,j.

Finally, we define a couple (i, j) to be a cargo-link on the routes of ships, representing

(i) cargo j is the first loaded cargo (i = 0, j ∈ N), (ii) cargo j is loaded immediately

after transporting cargo i (i, j ∈ N , i 6= j), and (iii) cargo i is the last transported

cargo (i ∈ N , j = T ) on the routes. Then for each cargo-link (i, j), we calculate

σij =
∑
v∈V

ϕvi,j.

We distinguish the following three conditions according to the values of χq
∗’s,

%v,i’s, and σij’s:

Condition (I) Regardless of the χq
∗ for q ∈ Q2 ∪ Q̃3, at least one χq

∗ is fractional
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for q ∈ Q1;

Condition (II) All χq
∗ are integral for q ∈ Q1, at least one χq

∗ for q ∈ Q2 ∪ Q̃3 is

fractional, and at least one %v,i is fractional;

Condition (III) All χq
∗ are integral for q ∈ Q1, at least one χq

∗ for q ∈ Q2 ∪ Q̃3 is

fractional, all %v,i’s are integral, and at least one σij is fractional.

It is easy to see that any fractional solution to LM6(N) satisfies one of these three

conditions. To impose the branching results at the nodes, let Bv
i,j (v ∈ V , i ∈ N∪{0},

j ∈ N ∪{T}\{i}) be an indicator which equals 1 (resp., 0) to denote whether ship v

can (resp., cannot) travel in trip (v, i, j) in the nodes generated by branching, and let

M be a sufficiently large constant. For Condition (I), we identify the q ∈ Q1 with χq
∗

closest to 0.5 (denoted by q∗), and branch on k∗, which is the contract covered by q∗.

For nodes in the left branch (i.e., contract k∗ should be accepted), we set cq1
k∗

= M

(q1
k∗ ∈ Q1); for nodes in the right branch (i.e., contract k∗ should be rejected), we

set (i) cq2i = M , i ∈ N c
k∗ (q2

i ∈ Q2), and (ii) Bv
i,j = 0, i ∈ N c

k∗ , j ∈ N ∪ {T} \ {i}. For

Condition (II), we branch on the (v, i) with %v,i closest to 0.5 (denoted by (v∗, i∗)).

For the nodes in the left branch (i.e., %v∗,i∗ is fixed at zero, or ship v∗ should not

be used to transport cargo i∗), we set Bv∗
i∗,j = 0, j ∈ N ∪ {T} \ {i∗}; for the nodes

in the right branch (i.e., %v∗,i∗ is fixed at one, or cargo i∗ must be transported by

v∗), we set (i) cq1k = M (q1
k ∈ Q1), if i∗ ∈ N c

k , (ii) cq2
i∗

= M (q2
i∗ ∈ Q2), and (iii)

Bv
i∗,j = 0, j ∈ N ∪{T} \ {i∗}, v ∈ V \ {v∗}. For Condition (III), the node is branched

on cargo-link (i, j) with σij closest to 0.5 (denoted by (i∗, j∗)). For the nodes in the

left branch, we set Bv
i∗,j∗ = 0, v ∈ V . For those in the right branch, we set (i) cq1k = M

(q1
k ∈ Q1), if i∗ ∈ N c

k or j∗ ∈ N c
k , (ii) cq2

i∗
= M , cq2

j∗
= M (q2

i∗ , q
2
j∗ ∈ Q2), and (iii)

Bv
i,j∗ = 0, i ∈ N ∪ {0} \ {i∗, j∗}, v ∈ V , and Bv

i∗,j = 0, j ∈ N ∪ {T} \ {i∗, j∗}, v ∈ V .

3.6.2 Column Generation

In this section, we first introduce the method we have developed to generate an initial

set of columns for solving an RLM6(N) and then propose the pricing problem (PP)
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for identifying columns with negative reduced cost. Finally, we propose the labeling

algorithm to solve the PP.

Column Initiation

To save the time for generating columns, we propose the following methods for the

generation of the initial set of columns (denoted by Q0) when solving an RLM6(N).

At the root node, we set Q0 = Q1 ∪ Q2. For a non-root node N, we generate Q0

as Q0 = Q1 ∪ Q2 ∪ Q̂3. Q̂3 ⊆ Q3 comprises two subsets denoted by Q̂1
3 and Q̂2

3. In

particular, Q̂1
3 := {q|q ∈ Q̃′3, χ̃′q > 0, Bv

i,j = 1, (v, i, j) ∈ Λq}. Here Q̃′3 and χ̃′q’s are the

set of generated columns and their solutions for solving the LM6 at the parent node

of the N. In addition, Λq is the set of (v, i, j)’s covered in q. Besides, Q̂2
3 is non-empty

only when the row generation identifies new constraints for the previous RLM6(N)

(i.e., the RLM6(N) without the new constraints found by the row generation this

time) and a new RLM6(N) with an updated Θ̃ is solved by column generation. In

this case, Q̂2
3 := {q|q ∈ Q̃′′3, χ̃

′′
q > 0}, where Q̃′′3 and χ̃′′q ’s are the set of generated

columns and their solutions for solving the previous RLM6(N).

The Pricing Problem

The pricing problem (PP) for solving an RLM6(N) is composed of |V | subproblems,

each corresponding to one ship. We denote by PSPv the subproblem for ship v. To

define PSPv, let πv, v ∈ V , $i, i ∈ N , ηG, G ∈ Θ̃ (Θ̃ ⊆ Θ is the current set of G’s

separated by row generation) and ϑk, k ∈ K be the dual values for constraints (3.30),

(3.31), (3.32), and (3.34), respectively, after solving the RLM6(N).

The pricing problem for ship v ∈ V (PSPv) is formulated as follows. The decision

variables in this model are (i) λi,j which is set to be 1, if trip (v, i, j) is traveled by

the ship and 0, otherwise, and (ii) the loading start time of cargo i (bi). The model

is as follows:
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(PSPv) Minimize
b,λ

Z7 = fv + πv +
∑

i∈N∪{0}
∑

j∈N∪{T}\{i}C
v
i,jλi,j

−
∑

i∈N$i

∑
j∈N∪{T}\{i} λi,j +

∑
G∈Θ̃ ηG

∑
r∈G∩Rvi,j

drλi,j

+
∑

k∈K ϑk
∑

i∈Nc
k

∑
j∈N∪{T}\{i} λi,j,

(3.39)

subject to ∑
j∈N∪{T}\{i}

λi,j ≤ 1, i ∈ N (3.40)

∑
j∈N

λ0,j = 1 (3.41)

∑
j∈N∪{0}\{i}

λj,i =
∑

j∈N∪{T}\{i}

λi,j, i ∈ N (3.42)

∑
i∈N

λi,T = 1 (3.43)

λi,j ≤ Bv
i,j, i ∈ N, j ∈ N \ {i} (3.44)

bi ≥ ei, i ∈ N (3.45)

bi ≤ li, i ∈ N (3.46)

bj ≥ (ov + tv0,j)λ0,j, j ∈ N (3.47)

bj ≥ bi + tvi,j +M ′
v,i,j(λi,j − 1), i ∈ N, j ∈ N \ {i} (3.48)

λi,j ∈ {0, 1}, Iv,i = 1, Iv,j = 1, i ∈ N ∪ {0}, j ∈ N ∪ {T} \ {i}, (3.49)
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where M ′
v,i,j are defined in Section 3.4.1.

The objective function (3.39) minimizes the reduced cost of a route for the ship.

Constraints (3.40) prevent a cargo from appearing on the route more than once.

Equations (3.41)–(3.43) are flow conversation constraints. The branching results at

the current node are imposed by Constraints (3.44). Constraints (3.45) and (3.46)

ensure the feasibility of the loading time for each cargo. Constraints (3.47) and (3.48)

calculate and sequence the loading start times for cargoes on the route. Finally, we

define λi,j variables to be binary and guarantee the ship-cargo compatibility in the

last set of constraints.

The Labeling Algorithm

The problem formulated in PSPv for each v ∈ V can be solved by a labeling algo-

rithm. The algorithm works on a graph Gv = (N̄v, Ēv), where N̄v is a set of nodes,

and Ēv is a set of arcs. N̄v and Ēv are defined by

N̄v := {i ∈ N, Iv,i = 1} ∪ {0, T},

and

Ēv := {(i, j)|i, j ∈ N̄v, B
v
i,j = 1}.

In Gv, travelling on an arc (i, j) is equivalent to ship v travelling in a trip (v, i, j).

The time of travelling on an arc (i, j) is defined to be tvi,j. We now derive the cost of

travelling on an arc (i, j) in graph Gv (denoted by ζi,j).

Then, ζi,j can be calculated by the following equation:

ζi,j =


fv + Cv

i,j + πv −$j +
∑

G∈Θ̃ ηG
∑

r∈G∩Rvi,j
dr −

∑
k∈K ϑkI

K(j, k), i = 0, j ∈ N,
Cv
i,j −$j +

∑
G∈Θ̃ ηG

∑
r∈G∩Rvi,j

dr −
∑

k∈K ϑkI
K(j, k), i, j ∈ N,∑

G∈Θ̃ ηG
∑

r∈G∩Rvi,j
dr, i ∈ N, j = T,

(3.50)

where IK(i, k) is an indicator function which equals 1 if i ∈ N c
k and 0, otherwise.

Let P denote a path in Gv. We define a P to be feasible if it satisfies the following
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three conditions: (1) P starts from node 0 (i.e, the initial position of ship v) at time

ov, (2) P is elementary (i.e., visits each node i ∈ N̄v at most once), and (3) each

node i in P is visited by the ship within the time window [ei, li]. Let Pv be the set

of all feasible paths in Gv. Moreover, the cost of P , denoted by ξP , is calculated by

adding the ζi,j of all arc (i, j) contained in the path.

Therefore, the PSPv can be defined as finding a path P ∗ ∈ Pv such that

P ∗ ∈ arg min
P∈Pv

ξP .

The PSPv can be taken as an elementary shortest path problem with time win-

dows (ESPPTW), which can be solved by a labeling algorithm. In the labeling

algorithm for the ESPPTW defined on Gv = (N̄v, Ēv), labels are used to represent

partial paths starting from node 0. Corresponding to each label ς, let nς , sς , tς , and

cς denote the last visited node i ∈ N̄v, the set of previously visited nodes in the path,

the time when ship v is ready to load cargoes at node nς and the cost of the path,

respectively.

The algorithm starts by creating an initial label ς at node 0, such that nς = 0,

sς = ∅, tς = ov, and cς = 0. To find the path with the minimum reduced cost, the

labels are extended forwardly. In particular, for a label ς with nς = i, the algorithm

extends the corresponding partial path from i to any j ∈ N̄v such that (i) j 6= i, (ii)

j /∈ sς , (iii) (i, j) ∈ Ēv and (iv) tς + tvi,j ≤ lj. For any feasible j, a new label ς ′ such

that nς′ = j, sς′ = sς ∪ {i}, tς′ = max{tς + tvi,j, ej}, and cς′ = cς + ζi,j is created.

The algorithm terminates when no new labels can be created. Besides, a label ς1 is

dominated by another label ς2 if (i) nς1 = nς2 , (ii) sς1 ⊆ sς2 , (iii) tς1 ≥ tς2 , and (iv)

cς1 ≥ cς2 . Dominated labels are discarded to accelerate the algorithm.

Algorithm Refinements

In the following sections, we improve the efficiency of the labeling algorithm in three

ways.

Shrinking the graph. To further narrow down the searching space, we define a
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set of infeasible arcs for ship v (IAv), such that

IAv := {(i, j)|i, j ∈ N̄v,

ov + tv0,j > lj, if i = 0,

ei + tvi,j > lj, if i 6= 0}.

Then Gv for PSPv can be reduced into G′v = (N̄v, Ē
′
v), where Ē ′v = Ēv \ IAv.

q-route relaxation. To enable stronger dominance relationships among labels, we

relax the constraint that the path generated by the algorithm should be elementary.

Instead, we allow cycles to appear in the paths. Hence, when extending a label ς to j,

the algorithm does not check whether j has been included in the path corresponding

to ς. Besides, when checking the dominance between two labels, the algorithm does

not compare the sets of nodes visited in the two paths corresponding to the labels.

Enhancement using branching results. We also speed up the labeling algo-

rithm using the branching results. For PSPv, let F̄v be the set of nodes that must

be visited by v due to the branching decisions at the current path. Further, let F ′ς

denote the set of nodes in F̄v that have not been visited in the corresponding partial

path. The algorithm is enhanced as follows. Every time a new label ς is generated,

we check whether the label can still be extended to each i in F ′ς . If any i ∈ F ′ς cannot

be visited by extending the current partial path, the label will be discarded. Mean-

while, as for the dominance check, we require F ′ς2 ⊆ F ′ς1 to be a necessary condition

for label ς1 to be dominated by ς2. In addition, for any v, we only generate columns

q such that F̄v ⊆ Φq, which reduces the likelihood of generating fractional solutions

for q ∈ Q3.

3.6.3 Row Generation

Rows are generated when the RLM6(N) of node N has been solved to optimality by

column generation (i.e., the inner while loop of Algorithm 2 has been completed). In

this section, we first formulate the problem for separating violated constraints and

then propose an algorithm that solves the separation problem in polynomial time.

By taking advantage of the special structures of the problem we propose a multi-cut
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generation technique to further strengthen the cuts.

The Separation Problem

Suppose an RLM6(N) has been solved to optimality by column generation. To

check the feasibility of the current solution, a separation problem (SP) is solved. If

violations are identified, new constraints are generated for the RLM6(N) (i.e., a set

of G’s is added into Θ̃). Let χq
∗, q ∈ Q̃, H∗ be the optimal solution to the current

RLM6(N). We separate constraints for Equation (3.32) of the LM6(N) by solving

the following separation problem (SP). In SP, the decision variable is ρr, which is

binary and decides whether dr should be included as part of the robust cost:

(SP) Maximize Z8 =
∑
r∈R

ρrdr
∑
q∈Q̃

γq,rχq
∗ −H∗

(3.51)

subject to ∑
r∈R

ρr = Γ (3.52)

ρr ∈ {0, 1}, r ∈ R, (3.53)

where Equation (3.52) is derived from Proposition 3.4.

Let Z8
∗ and ρr

∗ be the optimal objective value and the optimal solution to the

SP. If Z8
∗ > 0 in the optimal solution to the SP, then a violation of Equation (3.32)

is detected and we add G := {r|ρr∗ = 1, r ∈ R} into Θ̃. In this case, a new RLM6(N)

with the updated Θ̃ will again be solved by column generation. If Z8
∗ ≤ 0, then the

LM6(N) has been solved to optimality.

A Polynomial-time Algorithm for Solving the SP

We solve the SP by Algorithm 3 whose correctness in given in Proposition 3.5.

Proposition 3.5. Algorithm 3 solves the SP in O(|R||Q̃|+ |R| log |R|) time.
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Algorithm 3 The Row Generation Procedure.

Input: χq
∗, q ∈ Q̃, and H∗;

Output: Z8
∗ and G;

1: Generate Ḡ := {r|dr
∑

q∈Q̃ γq,rχq
∗ > 0, r ∈ R};

2: if |Ḡ| ≤ Γ then
3: Generate G = Ḡ;
4: end if
5: if |Ḡ| > Γ then
6: Generate G by selecting from Ḡ the r’s with |Γ| largest dr

∑
q∈Q̃ γq,rχq

∗;
7: end if
8: Z8

∗ =
∑

r∈G dr
∑

q∈Q̃ γq,rχq
∗ −H∗.

Multi-cut Generation

In the row generation procedure, supposing a new constraint is separated, then the

following constraint is generated for the RLM6(N) and all the LM6(N)’s at nodes

generated later in the algorithm:

H −
∑
q∈Q

∑
r∈G

drγq,rχq ≥ 0, (3.54)

where G is a set of voyages (r) returned by Algorithm 3. Each voyage r in G

corresponds to a ship sailing from an origin to a destination. Let R̄r denote the set

of voyages that share the same origin and the same destination with r (while the

ships sailing in them can be different).

We can tighten (3.54) to be

H −
∑
q∈Q

∑
r′∈Ḡ

dr′γq,r′χq ≥ 0, (3.55)

where Ḡ :=
⋃
r∈G R̄r.

Proposition 3.6. Constraint (3.55) is valid for M6.
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Remedy of Infeasible Integer Solutions

We consider the situation in which the χq
∗ variables in the solution delivered by

the column generation procedure are all integral. Then, if Z8
∗ ≤ 0, the solution is

feasible for M6. In this case, Z6
∗ is a feasible upper bound (denoted by UB′) for M6

(Z6
∗ is the optimal objective value of the RLM6(N)). Meanwhile, if Z8

∗ > 0, the

solution is infeasible for M6, but we can easily construct a feasible upper bound for

M6, which is calculated as UB′ = Z6
∗ + Z8

∗. In either case, if UB′ is smaller than

the incumbent upper bound (denoted by UB) for M6, we update UB = UB′.

3.6.4 A Primal Heuristic

A high-quality upper bound for M6 helps to prune nodes in the B&B tree in early

stages. In order to quickly identify high-quality upper bounds, we develop a heuristic

to construct a feasible integer solution using a fractional solution delivered by the

algorithm. The construction is completed in three phases, these being the route-

construction phase, the cargo-check phase, and the robustness-check phase. We run

the heuristic if the obtained solution is fractional when an RLM6(N) has been solved

to optimum by column generation.

The Route-construction Phase

In the first phase, we construct routes for ships that will be used to construct an

integer solution. The routes are constructed based on a set of columns Q̃′ such

that Q̃′ := {q|χq > 0, q ∈ Q̃ ∩ Q3}, where Q̃ is the set of columns generated for

solving the RLM6(N). During the construction, we first prioritize each column, and

columns with higher priorities have greater chances of being selected to be included

in the integer solution. The priorities for the columns are assigned according to three

strategies (ι’s), and we will construct an integer solution Sι for each ι.

To describe each strategy, the following additional notations will be used. First,

let nr1
q denote the “Net revenue I” of column q, which is calculated by nr1

q =∑
i∈Φq

ĉi − cq. Second, let nr2
q denote the “Net revenue II” of column q, which is
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calculated by nr2
q =

∑
i∈Φq∩Nm ĉi +

∑
k∈K pk

|Φq∩Nc
k|

|Nc
k|
− cq. The following three strate-

gies are adopted to prioritize columns in Q̃′:

Strategy 1 Prioritize the columns in a sequence with non-decreasing nr1
q ’s;

Strategy 2 Prioritize the columns in a sequence with non-decreasing nr2
q ’s;

Strategy 3 Prioritize the columns in a sequence with non-decreasing χq’s, and for

two columns with the same χq, give higher priority to the one with the larger

nr1
q .

The detailed procedure to construct the columns in Q3 under each strategy ι

(denoted by Q̂ι, ι = 1, 2, 3) is demonstrated in Algorithm 4 in B.2.1.

The Cargo-check Phase

In the first phase, we have identified three sets of columns each constructed based on

one prioritizing strategy. Each column q in these sets Q̂ι represents a route traveled

by a ship (i.e., q ∈ Q3). To generate a complete solution, we need to further construct

solutions for columns from Q1 and Q2. To this end, we first decide whether a contract

k ∈ K should be accepted or not. Then for each i ∈ Nm and i ∈ N c
k such that k is

decided to be accepted, we need to decide whether it should be transported by a ship

v ∈ V or by a voyage charter. Further, columns in Q̂ι require modification based on

these decisions. Algorithm 5 presented in B.2.2 is applied for these purposes.

The Robustness-check Phase

In the last phase, we identify the minimum feasible robust costs Hι’s for the con-

structed integer solutions. In particular, for each ι, let Qι = Q̌ι
1 ∪ Q̌ι

2 ∪ Q̌ι
3. To

calculate Hι, we solve the SP (Section 3.6.3) by letting χq
∗ = 1, ∀q ∈ Qι and H∗ = 0,

and set Hι = Z8
∗. This completes the whole construction procedure.

Finally, the objective value (Z6ι) for each Sι is calculated by Z6ι =
∑

q∈Qι cq+Hι.

The current upper bound for M6 (UB) is updated to be UB = min3
ι=1{Z6ι} if

UB > min3
ι=1{Z6ι}.
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3.7 Numerical Experiments

We now perform extensive computational experiments in order to confirm the ap-

plicability and effectiveness of our models and algorithms. The experiments include

three parts. In the first part, we examine the performance of a standard MIP solver

for model M4 and we compare it with the BPC algorithm. The impact of the multi-

cut generation technique is also tested in the first part. In the second part, we analyze

the effects of using the strengthened set covering model and the primal heuristic on

the performance of the BPC algorithm. In the third part, we evaluate the value of

robust optimization in the ship routing problem with batched cargo selection.

3.7.1 Algorithmic Settings and Computational Platform

In the numerical experiments, we will compare the performances of five differen-

t algorithms for solving the instances of the RSRPB. These algorithms are (i) the

branch-and-cut algorithm in CPLEX for solving model M4 (denoted by CPLEX),

(ii) the branch-and-price-and-cut algorithm using the basic set-covering model (M5)

without multi-cut generation and the primal heuristic (we denote this algorithm by

OBPC), (iii) the branch-and-price-and-cut algorithm using the basic set-covering

model (M5) and the multi-cut generation technique without the primal heuristic (we

denote this algorithm by OBPC+MC), (iv) the branch-and-price-and-cut algorithm

using the strengthened set-covering model (M6) and the multi-cut generation tech-

nique without the primal heuristic (we denote this algorithm by OBPC+MC+SM),

and (v) the branch-and-price-and-cut algorithm using the strengthened set-covering

model (M6), the multi-cut generation technique, and the primal heuristic (we denote

this algorithm by OBPC+MC+SM+PH).

In all experiments, unless otherwise specified, we use the following algorithmic

settings. First, the time limits for the algorithms to solve the instances are all set

to 3,600 seconds. Second, we set the optimality tolerance level to be 0.1%. That is,

when solving an instance, we allow the algorithm to stop when the optimality gap

between the upper bound and the lower bound is no larger than 0.1%.

All experiments are coded in C++ and performed on an Intel Core i7 2.20 GHz
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PC with 32 GB RAM. For ease of comparison, all experiments are conducted in a

single thread environment. CPLEX 12.6 is used as the MIP solver for model M4 and

also the LP solver in the branch-and-price-and-cut algorithms.

3.7.2 Instance Generation

We generated the instances based on PB’s Pacific Ocean business sector (i.e., car-

go transportation along or between the west coast and the east coast of the Pacific

Ocean). The instances have different settings for the number of ships |V | in the

candidate pool and the number of COA offers |K| faced by the company. In par-

ticular, |V | is set to 10, 20 and 30, and |K| is set to 10 and 20. We also consider

three planning horizon lengths (L): 90, 120, and 150 days. In our tests, we consider

14 different combinations of L, |V | and |K|. For each combination we generate five

random instances, yielding 70 instances in total. The nth (n = 1, 2, 3, 4, 5) instance

with L days’ planning horizon, |V | ships, and |K| offers is denoted by (L, |V |, |K|)-n.

We first generate a set of loading and unloading ports in the instances. As

shown in Figure 3.1, cargoes are mainly transported between six areas in PB’s Pacific

Ocean business sector. To generate the ports, we identify a center point in each area

and then generate 20 ports that are randomly located in a disk with 500nm radius

centered at the point (nm is the abbreviation for nautical mile). Associated with

each port p is a port charge rate prp which is randomly generated in [0.2, 0.5] (dollars

per ton per day).

The ship parameters are as follows. Half of the ships in V are controlled by

the company at the beginning of the planning horizon, and half come from the

chartering market (i.e., |V1| = |V2| = |V |/2). The capacity (scv) and the speed of

each ship are randomly generated in [25, 65] (thousand tons) and [12, 16] (knots),

respectively. In addition, for the ships in V1, we set ov ∈ [1, 30], and fv ∈ [(L −
ov)(3 + 0.04scv), (L − ov)(3 + 0.07scv)] (thousand dollars). For those in V2, we set

ov ∈ [1, 60], and fv ∈ [(L − ov)(3.15 + 0.04scv), (L − ov)(3.15 + 0.07scv)] (thousand

dollars). The initial position (port) for ship v (denoted by ps
v) is randomly selected

from the 120 ports by considering the historical distribution of cargoes among the
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Figure 3.1: Main trading areas around the Pacific Ocean.

trade links.

In the instances, we distinguish between three types of cargoes: mandatory car-

goes, spot market cargoes, and COA cargoes. Note that a spot market cargo is

treated as a COA with a single cargo in the model and in the algorithm. The car-

goes are generated as follows. First, in an instance, the number of mandatory cargoes

is set to be |Nm| = d|V1|L/30e. We set the number of cargoes from the spot market

to be d0.5|V1|L/30e. The number of cargoes contained in a COA within the plan-

ning horizon is dL/30e. Second, the loading and unloading ports for each cargo are

generated as follows. We first identify 14 main trade links (each link corresponds to

a particular loading and unloading area), as shown in Figure 3.1. Before generating

the exact loading and unloading ports for a cargo, we first randomly allocate the

cargo to a particular trade link. In all instances, the possibility of a spot market,

a mandatory cargo or the cargoes in a COA belonging to each link is set according

to the historical distribution of cargoes among these links. After the trade link of a

cargo is decided, we then generate its loading (unloading) port by randomly selecting
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one port from the 20 ports in the corresponding loading (unloading) area. We assume

that cargoes in the same COA share the same loading (unloading) port. Third, the

weight of a cargo (denoted by cwi) is randomly generated in [0.8sc, sc], where sc and

sc represent the minimum and maximum capacities of ships in V , and cargoes in the

same COA have the same weight. Fourth, for each mandatory cargo or spot market

cargo, the start time of its loading period (ei) is randomly generated in [1, L − 15]

(day). Meanwhile, the ei of cargoes in the same COA are uniformly distributed over

the planning horizon. In addition, for each cargo, we let li = ei + DDi, where DDi

is a random number in [1, 3] (days) for spot market cargoes and in [3, 10] (days) for

mandatory cargoes and cargoes in COAs. We also let cargoes that belong to the

same COA share an identical DDi. The freight revenue obtained from a COA k is

calculated as pk =
∑

i∈Nc
k
cpi, and cpi = 10, 000 + ufi · cwi · vdi (dollars), where ufi

is randomly generated in [35, 50] and vdi is the distance (nm) for transporting the

cargo which equals the Euclidean distance between the loading and unloading ports.

The freight revenue for a spot market cargo i is set similarly, by letting N c
k = {i}.

Finally, as for the ship-cargo compatibility (Iv,i), we set Iv,i = 1 if svv ≥ cwi and 0,

otherwise (it is assumed that all ships v ∈ V can sail between any two ports).

We set the parameters of voyages and trips as follows. First, in all instances, the

unit time is set to one day. Second, for cargo i, let pl
i and pu

i denote the loading and

unloading ports of it. The handling times at the loading and unloading ports, pti,pli
and pti,pui are both randomly generated in [1, 3] (days). Then, the port charge of a

ship v for loading (unloading) cargo i at port p is calculated as pcvi,p = prp · scv · pti,p.
Second, we let tvi,j = pti,pli +pti,pui +stvi,j, where stvi,j is the time for ship v to sail in the

laden voyage from port pl
i to port pu

i and the ballast voyage from port pu
i to port pl

j.

In addition, tv0,j = stv0,j and tvi,T = pti,pli + pti,pui + stvi,T , where stv0,j is the time for ship

v to sail in the ballast voyage from port ps
v (the initial port of ship v) to port pl

j and

stvi,T is the time for the ship to sail in the laden voyage between ports pl
i and pu

i . st
v
i,j,

stv0,j, and stvi,T are obtained by dividing the Euclidean distances between the ports

by the daily sailing distance and making the results integral by applying the ceiling

operator. Third, we set Cv
i,j = pcv

i,pli
+ pcvi,pui + scvi,j (in thousand dollars), where scvi,j

denotes the sailing cost of the laden voyage for transporting cargo i and the ballast
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voyage to reposition the ship to load cargo j. In addition, we let Cv
0,j = scv0,j and

Cv
i,T = pci,pli + pci,pui + scvi,T , where scv0,j is the cost for ship v to sail from port ps

v to

port pl
j and scvi,T is the cost for the ship to sail in the laden voyage for transporting

cargo i. Moreover, scv0,j, sc
v
i,j, and scvi,T are calculated using the daily bunker costs of

ship v multiplied by the corresponding sailing times in laden and ballast voyages. In

particular, when a ship is sailing in laden voyages, its daily bunker cost is randomly

generated in [9, 24] (thousand dollars) and we let ships with larger capacities have

higher daily bunker costs. Meanwhile, the daily bunker cost of the same ship in

ballast voyages is set to be 90% of that in laden voyages. The cost for using a voyage

charter to transport cargo i is set to be bi = bi + vfi · cwi · vdi (dollars), where bi and

vfi are randomly generated in [15, 000, 20, 000] and [52.5, 100], respectively, and vdi

is the distance (nm) for transporting cargo i.

Finally, for the uncertainty budget, we let Γ = |Nm| and dr = rd · c̄r, where rd is

randomly generated in [0, 1]. For each generated instance, we verify that the three

assumptions A1 to A3 hold and make modifications if necessary.

3.7.3 Comparison of CPLEX, OBPC, and OBPC+MC

We first compare the performances of CPLEX (solving model M4), OBPC (the

branch-and-price-and-cut algorithm using the basic set covering model without multi-

cut generation and primal heuristic), and OBPC+MC (which is OBPC with multi-

cut generation). We tested the three solution methods by solving 20 instances with

90 days’ planning horizon, 10 or 20 ships, and 10 or 20 COAs. The results are pre-

sented in Table 3.3. Column 2 shows the total number of cargoes (|N |) in an instance.

Columns 3 and 4 show the optimality gap (in percentage) delivered by CPLEX for

solving M4 and the associated computational time. Columns 5 and 6 report the

optimality gap and the computational time of OBPC. The optimality gap and the

computational time of OBPC+MC are reported in Columns 7 and 8, respectively.

Note that we report the optimality gap as “0.10%” if the resulting optimality gap of

an algorithm for solving an instance does not exceed a tolerance of 0.10%. Similarly,

if the computational time of an algorithm for solving an instance is less than or equal
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to one second, we report it as “1s” in the table. In “Average” Rows, we report the

average optimality gaps and the computational times of the algorithms for solving

10 instances that share the same planning horizon length and the same number of

ships.

Table 3.3: Comparison of the three algorithms.

Instance |N | CPLEX OBPC OBPC+MC
Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

(90,10,10)-1 50 0.10 2 0.10 12 0.10 1
(90,10,10)-2 50 0.10 3 0.10 19 0.10 1
(90,10,10)-3 50 0.10 2 0.10 1 0.10 1
(90,10,10)-4 50 0.10 7 0.10 128 0.10 1
(90,10,10)-5 50 0.10 1 0.10 1 0.10 1
(90,10,20)-1 80 0.10 10 0.10 1 0.10 1
(90,10,20)-2 80 0.10 1 0.10 8 0.10 1
(90,10,20)-3 80 0.10 2 0.10 1 0.10 1
(90,10,20)-4 80 0.10 5 0.10 103 0.10 2
(90,10,20)-5 80 0.10 2 0.10 2 0.10 1

Average 0.10 4 0.10 28 0.10 1

(90,20,10)-1 70 11.54 3600 58.96 3600 0.10 6
(90,20,10)-2 70 1.98 3600 31.98 3600 0.10 3
(90,20,10)-3 70 5.25 3600 2.05 3600 0.10 2
(90,20,10)-4 70 5.18 3600 1.73 3600 0.10 2
(90,20,10)-5 70 8.84 3600 40.95 3600 0.10 1
(90,20,20)-1 100 6.82 3600 29.75 3600 0.10 1
(90,20,20)-2 100 11.75 3600 3.13 3600 0.10 4
(90,20,20)-3 100 6.43 3600 27.24 3600 0.10 8
(90,20,20)-4 100 15.61 3600 2.44 3600 0.10 11
(90,20,20)-5 100 6.83 3600 39.59 3600 0.10 2

Average 8.02 3600 23.68 3600 0.10 4

We see from Table 3.3 that all the three algorithms can provide optimal solutions

to all instances with 10 ships in short times. CPLEX is able to solve each instance

in no more than 10s. Compared with CPLEX, OBPC requires more time to solve

five out of the 10 instances and the average computational time (28s) is also longer

than that of CPLEX (4s). The OBPC+MC outperforms the other two methods
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when solving the first 10 instances, which reports the shortest solution time for each

instance.

Both CPLEX and OBPC fail to deliver optimal solutions to all instances with 20

ships within 3,600s, and the average optimality gaps delivered by CPLEX and OBPC

are 8.02% and 23.68%, respectively. In comparison, OBPC+MC is able to provide

optimality certificates for all of the 10 instances, and the average computational time

is only 4s.

The results in Table 3.3 demonstrate that the branch-and-cut algorithm used by

CPLEX can well solve instances with small scales but cannot provide solutions with

proven high qualities to instances with slightly larger scales. In addition, the great

superiority of OBPC+MC against OBPC demonstrates the efficacy of the multi-cut

generation technique in improving algorithm efficiency.

3.7.4 Comparison of OBPC+MC, OBPC+MC+SM, and OBPC

+MC+SM+PH

In order to evaluate the impacts of the strengthened set covering model and the

primal heuristic on the performance of the BPC algorithm, we compare the perfor-

mances of three algorithms, i.e., OBPC+MC, OBPC+MC+SM, and OBPC+MC+SM+PH

in this section. We use the three algorithms to solve 50 instances with 90 to 150 days’

planning horizon, 20 or 30 ships and 10 or 20 COAs.

We report the computational results in Tables 3.4 and 3.5. Column 2 reports

the total number of cargoes in an instance. Columns 3 and 4 present the optimal-

ity gaps (in percentage) and the computational times (in seconds) of OBPC+MC

for solving the instances. Columns 5 to 8 present the similar results of the algo-

rithm after incrementally including the usage of the strengthened set covering mod-

el M6 (which becomes OBPC+MC+SM) and the primal heuristic (which becomes

OBPC+MC+SM+PH). Note that we report the optimality gap as “0.10%” if the

resulting optimality gap of an algorithm for solving an instance does not exceed a

tolerance of 0.10%. Similarly, if the computational time of an algorithm for solving

an instance is less than or equal to one second, we report it as “1s” in the table.
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In “Average” Rows, we report the average optimality gaps and the computational

times of the algorithms for solving 10 instances that share the same planning horizon

length and the same number of ships.

We see from Tables 3.4 and 3.5 that both the strengthened set covering model

and the primal heuristic significantly improve the performance of the BPC algo-

rithm. In the 50 instances, OBPC+MC+SM and OBPC+MC+SM+PH are able

to solve one more instance to optimum (i.e., instance (120,30,20)-3) when com-

pared with OBPC+MC. For instances that can be solved to the optimum by all the

three methods, the OBPC+MC+SM+PH generally reports the least computation-

al times followed by OBPC+MC+SM and OBPC+MC. For instances that cannot

be solved to the optimum by any of the three methods, OBPC+MC+SM+PH also

generally reports the smallest computational gaps followed by OBPC+MC+SM and

OBPC+MC.

The importance of primal heuristic for the BPC algorithm is especially obvious for

solving instances with large scales. Particularly, the average optimality gap obtained

by the algorithms for solving the instances with 150 days’ planning horizon and 30

ships decreases from 26.54% to 1.04% after incorporating the primal heuristic.
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Table 3.4: Comparison of the three BPC algorithms (part I).

Instance |N | OBPC+MC OBPC+MC+SM OBPC+MC+SM+PH
Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

(90,30,10)-1 90 0.10 6 0.10 6 0.10 6
(90,30,10)-2 90 0.10 1 0.10 1 0.10 1
(90,30,10)-3 90 0.10 332 0.10 54 0.10 39
(90,30,10)-4 90 0.10 393 0.10 398 0.10 100
(90,30,10)-5 90 0.10 378 0.10 97 0.10 29
(90,30,20)-1 120 0.10 20 0.10 8 0.10 8
(90,30,20)-2 120 0.10 63 0.10 30 0.10 32
(90,30,20)-3 120 0.10 1 0.10 1 0.10 1
(90,30,20)-4 120 0.10 2833 0.10 1295 0.10 1208
(90,30,20)-5 120 0.10 1 0.10 1 0.10 1

Average 0.10 403 0.10 189 0.10 143

(120,20,10)-1 100 0.10 1684 0.10 1077 0.10 572
(120,20,10)-2 100 0.67 3600 0.55 3600 0.51 3600
(120,20,10)-3 100 0.10 3 0.10 4 0.10 4
(120,20,10)-4 100 0.10 3 0.10 3 0.10 1
(120,20,10)-5 100 0.10 37 0.10 32 0.10 25
(120,20,20)-1 140 0.10 20 0.10 16 0.10 16
(120,20,20)-2 140 0.10 39 0.10 31 0.10 32
(120,20,20)-3 140 0.24 3600 0.18 3600 0.14 3600
(120,20,20)-4 140 0.10 166 0.10 108 0.10 58
(120,20,20)-5 140 0.10 317 0.10 251 0.10 254

Average 0.17 947 0.15 872 0.15 816

(120,30,10)-1 130 0.47 3600 0.44 3600 0.24 3600
(120,30,10)-2 130 0.32 3600 0.17 3600 0.15 3600
(120,30,10)-3 130 0.10 21 0.10 20 0.10 7
(120,30,10)-4 130 0.10 350 0.10 284 0.10 177
(120,30,10)-5 130 0.10 35 0.10 4 0.10 4
(120,30,20)-1 170 64.12 3600 64.19 3600 1.06 3600
(120,30,20)-2 170 0.10 457 0.10 496 0.10 489
(120,30,20)-3 170 0.25 3600 0.10 1960 0.10 1976
(120,30,20)-4 170 0.28 3600 0.30 3600 0.28 3600
(120,30,20)-5 170 58.92 3600 58.81 3600 0.47 3600

Average 12.48 2246 12.44 2076 0.27 2065
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Table 3.5: Comparison of the three BPC algorithms (part II).

Instance |N | OBPC+MC OBPC+MC+SM OBPC+MC+SM+PH
Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

(150,20,10)-1 120 0.10 10 0.10 10 0.10 10
(150,20,10)-2 120 0.10 158 0.10 64 0.10 56
(150,20,10)-3 120 0.47 3600 0.90 3600 0.46 3600
(150,20,10)-4 120 0.10 122 0.10 116 0.10 57
(150,20,10)-5 120 0.10 1205 0.10 1055 0.10 1005
(150,20,20)-1 170 1.15 3600 1.47 3600 1.24 3600
(150,20,20)-2 170 0.10 1646 0.10 809 0.10 633
(150,20,20)-3 170 0.10 41 0.10 27 0.10 27
(150,20,20)-4 170 0.10 140 0.10 68 0.10 57
(150,20,20)-5 170 0.10 85 0.10 73 0.10 52

Average 0.24 1061 0.32 942 0.25 910

(150,30,10)-1 155 70.08 3600 1.06 3600 0.70 3600
(150,30,10)-2 155 72.16 3600 71.45 3600 1.23 3600
(150,30,10)-3 155 57.78 3600 57.44 3600 1.28 3600
(150,30,10)-4 155 0.10 1173 0.10 675 0.10 590
(150,30,10)-5 155 0.10 459 0.10 438 0.10 201
(150,30,20)-1 205 1.40 3600 1.26 3600 1.05 3600
(150,30,20)-2 205 45.94 3600 1.36 3600 1.35 3600
(150,30,20)-3 205 38.38 3600 38.15 3600 1.21 3600
(150,30,20)-4 205 45.96 3600 45.65 3600 1.62 3600
(150,30,20)-5 205 48.46 3600 48.86 3600 1.75 3600

Average 38.04 3043 26.54 2991 1.04 2959
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3.7.5 Value of Robustness

In this section, we evaluate the value of robustness (VOR) in the ship routing problem

with batched cargo selection.

We derive VOR of an instance with Γ = n as follows. First, let Z6
∗(n) be the

optimal objective value delivered by the BPC algorithm. Second, based on Z6
∗(n),

we calculate the “robust optimal operational cost” (in thousand dollars) rc(n) by

rc(n) = Z6
∗(n) −

∑
k∈K pk. Note that rc(n) equals the cost paid by the shipping

company for operating the ships in its fleet (we approximate the cost for operating

ship v by fv), transporting cargoes (either using ships in the fleet or using voyage

charters) and the robust cost, minus the revenue obtained from freight collected from

COAs and spot cargoes. Note that the cost of operating the ships in its fleet includes

the cost of chartering-in ships from the market and the cost of managing the ships in

the fleet of a shipping company but does not include the operating cost of ships that

are chartered-out or the voyage costs of the ships in the fleet. Third, by solving the

same instance with Γ = 0, we obtain the optimal solution to the nominal case of the

instance where all voyage costs are at their nominal values. Let Z6
∗(0) denote the

optimal objective value of the nominal case. Fourth, given an optimal solution to the

nominal case, by supposing that the costs of at most n voyages in the solution can

deviate from their nominal values, we can calculate a worst-case robust cost which

is denoted by H(n). Fifth, the worst-case operational cost (in thousand dollars)

derived from the optimal solution to the nominal case (denoted by dc(n)) is obtained

by dc(n) = Z6
∗(0) −

∑
k∈K pk + H(n). Finally, we define the value of robustness

(VOR) for an instance with Γ = n as the gap (in percentage) between rc(n) and

dc(n), which is calculated by 100(dc(n)− rc(n))/dc(n).

To evaluate the value of robustness, we solve 20 instances with 90 days’ planning

horizon and 10 or 20 ships under different values of Γ. For a fair comparison, we set

the optimality gap in the BPC algorithm to be 0% when solving the instances in this

part and all instances (with different Γ) were solved to their optimum.

As shown by Table 3.6, the VOR increases with the value of Γ. The average

VORs for instances with different Γ ranges from 0.25% to 2.10%. In extreme cases,
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Table 3.6: The Value of Robustness under Different Values of Γ.

Instance
Γ = 5 Γ = 10 Γ = 15 Γ = 20

dc(5) rc(5) VOR dc(10) rc(10) VOR dc(15) rc(15) VOR dc(20) rc(20) VOR

(90,10,10)-1 7045 7045 0.00 7552 7531 0.28 7920 7868 0.66 8138 8081 0.70
(90,10,10)-2 9375 9375 0.00 10016 9970 0.46 10327 10112 2.08 10503 10155 3.31
(90,10,10)-3 7671 7657 0.18 8351 8252 1.19 8758 8559 2.27 8922 8644 2.89
(90,10,10)-4 9160 9160 0.00 9836 9751 0.86 10298 10063 2.28 10601 10222 3.58
(90,10,10)-5 8614 8597 0.20 8906 8889 0.19 9126 9109 0.19 9295 9278 0.18
(90,10,10)-1 8450 8239 2.50 9278 8925 3.80 9678 9305 3.85 9872 9467 4.10
(90,10,10)-2 9251 9204 0.51 9585 9480 1.10 9724 9576 1.52 9801 9640 1.64
(90,10,10)-3 9670 9668 0.02 10272 10266 0.06 10684 10544 1.31 10887 10763 1.14
(90,10,10)-4 9375 9375 0.00 9960 9907 0.53 10358 10214 1.39 10607 10459 1.40
(90,10,10)-5 7795 7777 0.23 8354 8315 0.47 8791 8677 1.30 9042 8859 2.02

Average 8641 8610 0.36 9211 9129 0.89 9566 9403 1.69 9767 9559 2.10

Instance
Γ = 10 Γ = 20 Γ = 30 Γ = 40

dc(10)rc(10)VOR dc(20) rc(20) VOR dc(30) rc(30) VOR dc(40) rc(40) VOR

(90,20,10)-1 1168511639 0.39 13036 12986 0.38 14126 14058 0.48 14817 14591 1.53
(90,20,10)-2 1743117422 0.05 18910 18830 0.42 19928 19541 1.94 20463 19973 2.39
(90,20,10)-3 1292912929 0.00 14115 14076 0.28 14910 14780 0.87 15320 15089 1.51
(90,20,10)-4 1275112694 0.45 13978 13878 0.72 14649 14544 0.72 14969 14897 0.48
(90,20,10)-5 1386813820 0.35 15080 14986 0.62 15874 15580 1.85 16307 15823 2.97
(90,20,10)-1 1359413551 0.32 14640 14551 0.61 15355 15197 1.03 15805 15667 0.87
(90,20,10)-2 1319113150 0.31 14601 14543 0.40 15704 15553 0.96 16473 16064 2.48
(90,20,10)-3 1641916372 0.29 17838 17692 0.82 18788 18336 2.41 19309 18697 3.17
(90,20,10)-4 9102 9074 0.31 10475 10407 0.65 11462 11340 1.06 12187 11942 2.01
(90,20,10)-5 1003210032 0.00 11392 11261 1.15 12378 12101 2.24 12988 12659 2.53

Average 1310013068 0.25 14407 14321 0.60 15317 15103 1.36 15864 15540 1.99
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the VOR of an instance can be over 4%. Considering the thin revenue margins of

tramp bulk shipping companies, savings of even small proportions of the operational

costs can be critical to the profitability of the companies. Therefore, by using robust

optimization, a shipping company is capable of securing its profitability in the face

of uncertain voyage costs.

3.8 Conclusion

We have studied a robust bulk ship routing problem with fleet adjustment, batched

cargo selection, and uncertain voyage costs. In the problem, we allow the target

shipping company to dynamically adjust its fleet composition. We also require that

cargoes in one COA should be accepted and rejected as a batch. The uncertainties

of voyage costs are also considered and are handled through an uncertainty budget.

We have developed MIP models for the problem and showed that it is strongly NP-

hard. To solve the problem, we have developed a tailored branch-and-price-and-cut

algorithm. We have also proposed several acceleration strategies to improve the

performance of the algorithm. Extensive computational results have shown that the

proposed BPC algorithm outperforms a state-of-the-art MIP optimization solver and

that the acceleration techniques provide significant enhancements for the algorithm.

99



Chapter 4

Summary and Future Research

4.1 Conclusions

This thesis has investigated the bulk ship routing and scheduling problem under un-

certainties. It comprises two main parts. In the first part, we have considered a bulk

ship scheduling problem in industrial shipping with stochastic backhaul canvassing

demand. In the problem, an industrial corporation is responsible for the transporta-

tion of its raw materials or products. We have jointly solved three subproblems

from different decision levels: the strategic fleet sizing and mix problem, the tactical

voyage planning problem, and the operational stochastic backhaul cargo canvassing

problem. In industrial shipping, the required transportation is one-directional and

various constraints regarding the arrangement of shipments for transporting the car-

goes should be respected. To generate additional revenues, the ships are allowed to

canvass from the spot market in the backhaul and we have considered the uncer-

tainties in this spot market. To solve this complicated problem, a tailored two-step

solution approach has been developed. The first step solves the stochastic back-

haul cargo canvassing problem using a DP algorithm. Based on the results from

the first step, we have formulated the remaining two subproblems as an integrated

MIP model which has been solved by a Benders decomposition algorithm. Extensive

numerical experiments have been performed and the results have demonstrated the
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great efficiency of our solution approach.

The second part focuses on a practical bulk ship routing problem in tramp ship-

ping. In this problem, we have considered the batched cargo selection behavior of

a tramp shipping company when it is faced with COAs. Considering the random

voyage costs, we have proposed a robust optimization model for the problem. The

problem has been formulated as a compact MILP and we have then reformulated

it as a strengthened set covering model. To solve the problem, we have developed

a tailored branch-and-price-and-cut algorithm. Several acceleration strategies have

been proposed to further improve the performance of the algorithm. We have per-

formed extensive numerical experiments and the results have demonstrated that our

algorithm can well solve instances with practical sizes and that the enhancement

techniques greatly improve the efficiency of the algorithm. We have also compared

the solutions to instances under different robustness settings, and the results have

indicated that our solution method can secure the profitability of a shipping company

in uncertain environments.

The contributions of this thesis are two-folded. From the industrial perspective,

we have proposed two research problems that are of great practical importance but

have not been well studied in the literature. Therefore, our research can provide

references to industrial and tramp shipping companies and can help improve their

current operations. From the academic perspective, our research has developed two

novel and effective exact algorithms for solving the considered problems. We believe

that the frameworks of the two algorithms and the acceleration techniques used

in them can be adopted for solving other routing and scheduling problems under

uncertainty.

4.2 Future Research

Several future research directions related to the above studies are introduced as

follows.

First, in the two studies, we developed algorithms that can solve the studied

problems exactly. It is interesting to identify strategies that can further enhance
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the performances of these algorithms. For the Benders decomposition algorithm in

the first study, future studies can try to design additional cuts that help tighten

the lower bounds in the algorithm. For the branch-and-price-and-cut algorithm, it is

interesting to look at the impact of stabilization on the column generation procedure.

Another promising direction is to identify strategies that can reduce the number of

pricing subproblems to be solved in the algorithm. The studies demonstrated that

our proposed algorithms are able to solve instances with practical sizes. However,

real applications may require solving instances with even larger sizes that cannot be

well solved by our algorithm. Therefore, future research can consider how to design

efficient heuristic algorithms that can obtain high-quality solutions to the problems

in short computational times.

Second, in both studies presented in this thesis, we assume that the speed of each

ship is constant. In practice, a carrier may choose to dynamically adjust the speeds

of ships to achieve better utilization of these ships. Therefore, incorporating speed

optimization in ship routing and scheduling problems should be a very interesting

extension of the current studies. Besides, all the cargoes are “exogenous” (i.e., the

weights and timings for each shipment are given as inputs) in the first study. Since

the shipper is also the carrier in industrial shipping, to further improve the efficiency

of an industrial shipping operator, one can solve the inventory management problem

and the ship routing and scheduling problem in an integrated manner. This leads

to the inventory routing problem, and how to solve this problem in the presence of

uncertain backhaul cargo demand would be an interesting extension of the current

study.

Finally, uncertainties affect the operations of all sectors in maritime transporta-

tion, including dry bulk shipping, liner shipping, liquid bulk shipping, as well as port

operations. The recent advances in the global vessel tracking system (i.e., Automatic

Identification System, AIS) have brought new opportunities for handling uncertain-

ties in problems in maritime transportation. By leveraging the large-volume vessel

traffic data provided by AIS, one can solve these problems in a “Smart Predict, then

Optimize” manner. Future studies can consider how to develop data-driven opti-

mization approaches to solve OR problems arising in shipping and port operations.
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Appendix A

Mathematical Proofs for Chapter 2

This appendix presents proofs to propositions in Chapter 2.

A.1 Proof of Proposition 2.1

Proof. Proof of Proposition 2.1. We discuss the following two possible cases in terms

of the value of sn:

(i) If sn = 1, this directly follows that EPn
[
f ξn(1)

]
= 0 , and the computation takes

no time.

(ii) If sn = 0, we can calculate the value of EPn
[
f ξn(0)

]
as follows. Let ∆ =

{J1, J2, · · · , Ji, · · · , J|M|} denote a sequence of all j’s, where eJi ≥ eJi+1
, i =

1, . . . , |M| − 1. Note that (1) at most one transportation request can be ac-

cepted at each stage and that (2) the rising possibility ρnj’s are independent

from one to another. Therefore, for 1 ≤ n ≤ N − 1 we have:

EPn
[
f ξn(0)

]
=pnJ1 max

{
eJ1 ,EPn+1

[
f ξn+1(0)

]}
+
M∑
i=2

pnJi

i−1∏
k=1

(
1− pnJk

)
max

{
eJi ,EPn+1

[
f ξn+1(0)

]}
, (A.1)
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and for n = N , we have:

EPN
[
f ξN(0)

]
= pNJ1eJ1 +

M∑
i=2

pNJi

i−1∏
k=1

(
1− pNJk

)
eJi . (A.2)

In (A.1), pnJ1 and pnJi
i−1∏
k=1

(
1− pnJk

)
, i = 2, . . . , |M| give the possibility

that the type of transportation requests with the ith (i = 1, . . . , |M|) highest

revenue for the ship arise and no ones with higher revenues arise at stage n.

Since a ship can choose to accept at most one transportation request from the

spot market in the backhaul, it can accept at most one request at any stage n

which corresponds to the nth unit time in the canvassing period. Further, when

type-Ji requests generate the highest revenue for the ship at stage n, the best s-

trategy for accepting a request at this stage is to accept one type-Ji request and

it thus has no incentive to accept other types of requests at this stage. In ad-

dition, max
{
eJi ,EPn+1

[
f ξn+1(0)

]}
, i = 1, . . . , |M|, gives the revenue (can be

expected) corresponding to the ship’s optimal decision if type-Ji requests arise

as the requests with the highest revenue at stage n. That is, if the revenue for

the ship by accepting one of the type-Ji requests, i.e., eJi , is larger than the ex-

pected revenue that the ship can obtain by rejecting these requests and making

optimal decisions at subsequent stages, i.e., EPn+1

[
f ξn+1(0)

]
, the ship should

accept a type-Ji request, and the corresponding revenue is eJi ; otherwise, the

ship should reject type-Ji requests and the corresponding maximum expected

revenue is EPn+1

[
f ξn+1(0)

]
. Furthermore, the calculation of pnJi

i−1∏
k=1

(
1− pnJk

)
for each i = 2, . . . , |M| takes O(|M|) time, and corresponding to |M | types of

requests, the total operation in (A.1) should be done |M| times. Hence, the

computation of EPn
[
f ξn(0)

]
can be done in O(|M|2) time.

Therefore, the proposition is proved.
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A.2 Proof of Proposition 2.2

Proof. Proof of Proposition 2.2. We discuss the following two possible cases in terms

of the value of αt1t2k :

(i) If αt1t2k = 0, then (2.25) converts to
t2∑

h=t1+1

uhk ≤ (t2 − t1), which is valid since

uhk ≤ 1 due to constraint (2.22).

(ii) if αt1t2k = 1, then (2.25) converts to
t2∑

h=t1+1

uhk ≤ 0. To show this inequality holds,

we will prove uhk = 0 for any h ∈ [t1 + 1, t2]Z . We do this by contradiction:

assume there exists ut3k = 1 where t3 ∈ [t1 + 1, t2]Z . Then, due to constraint

(2.14), there must exist an αt3,t4k such that

min{t3+bk−1,|T |}∑
t4=t3+bk−1

αt3,t4k = 1 (A.3)

Considering t1 ≥ max{t3 − bk + 1, 1}, t1 ≤ t3, t2 ≥ max{t3, t1 + bk − 1},
t2 ≤ min{t1+bk−1, |T |}, t4 ≥ max{t3, t3+bk−1}, and t4 ≤ min{t3+bk−1, |T |}
we can easily infer that the following equation must hold:

t3∑
t5=max{t3−bk+1,1}

min{t5+bk−1,|T |}∑
t6=max{t3,t5+bk−1}

αt5,t6k ≥ αt1,t2k + αt3,t4k = 2. (A.4)

which contradicts constraint (2.13) and thus the proof is complete.

A.3 Proof of Proposition 2.3

Proof. Proof of Proposition 2.3. The proof is similar to that in Proposition 2.2 and

thus omitted here.
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Appendix B

Proofs and Supplement for

Chapter 3

B.1 Mathematical Proofs

This appendix presents proofs to lemmas and propositions in Chapter 3.

B.1.1 Proof of Proposition 3.1

Proof. Proof of Proposition 3.1. We prove the strong NP-hardness of the RSRPB

by reducing a well-known strongly NP-hard problem, the Travelling Salesman Prob-

lem (TSP), to a decision version of the RSRPB. The decision version of the TSP

can be stated as follows. Let GTSP = (V TSP , ATSP ) be a graph where V TSP =

{vTSP1 , ..., vTSPn } is a set of vertices and ATSP is a set of arcs. Let cTSPi,j > 0 be the

travel cost associated with each arc (vTSPi , vTSPj ) ∈ ATSP . The TSP asks whether

there exists a path P in GTSP that starts from vTSP1 , visits all vertices (except vTSP1 )

exactly once, and returns to vTSP1 such that the total traveling cost of P is no larger

than a given constant CTSP .

Given an arbitrary instance of TSP, we construct a corresponding instance of the

RSRPB as follows. There is a set Nm = {1, ..., |Nm|} of mandatory cargoes (i’s) to

be transported by a single ship v (i.e., |V | = 1). Specifically, we set other parameters
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as follows:

|Nm| = |V TSP |+ 1, (B.1)

K = N c = ∅, (B.2)

fv = 0, (B.3)

ov = 0, (B.4)

ei = 0, i ∈ Nm \ {|Nm|}, (B.5)

e|Nm| = CTSP , (B.6)

li = CTSP , i ∈ Nm \ {1}, (B.7)

l1 = 0, (B.8)

Iv,i = 1, i ∈ Nm, (B.9)

tvi,j = cTSPi,j , i ∈ Nm \ {|Nm|}, j ∈ Nm \ {i, |Nm|}, (B.10)

tv0,1 = 0, (B.11)

tvi,|Nm| = cTSPi,1 , i ∈ Nm \ {1, |Nm|}, (B.12)

tv1,|Nm| = CTSP , (B.13)

Cv
i,j = 0, i ∈ Nm ∪ {0}, j ∈ Nm ∪ {T} \ {i}, (B.14)

dr = 0, r ∈ R, (B.15)

Γ = 0, (B.16)

ĉi = 1, i ∈ Nm, (B.17)

E = 0. (B.18)

Clearly, this transformation can be conducted in polynomial time. We will show

that there exists a feasible solution to the constructed instance of the RSRPB if and

only if the answer to the TSP is “yes”.
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First, we prove the “if” part. Suppose the answer to the TSP is “yes”. Then

consider the following solution (S) to the constructed instance of the RSRPB. First,

all cargoes in Nm are transported by ship v (zi = 0, i ∈ Nm). Second, ship v

transports cargo 1 first after leaving its initial position, then transports cargo i

(1 < i ≤ |V TSP |) in the same sequence of vTSPi being visited in P , and finally

transports cargo |Nm| after all the other cargoes have been transported. Third,

the ship loads cargo 1 at time 0. Afterwards, let C̃i, 1 < i ≤ |V TSP | be the total

traveling cost when the salesman arrives at vTSPi in P , then ship v starts loading

cargo i, 1 < i ≤ |V TSP | at time bi = C̃i. Finally, the ship starts loading cargo |Nm|
at time b|Nm| = CTSP .

The feasibility of S to the instance of the RSRPB can be verified as follows. To

begin with, Equations (B.9) indicate that ship v is cargoworthy and seaworthy for

each i ∈ Nm. Then, given Equations (B.10)–(B.12), it is easy to show by induction

that the ship v is able to transport all cargoes i ∈ Nm in the specific sequence and

start loading each cargo i at time bi. Then, given Equations (B.5)–(B.8) and con-

sidering that b1 = 0, bi = C̃i ≤ CTSP , 1 < i ≤ |V TSP |, and b|Nm| = CTSP , all cargoes

are loaded within their loading time windows in the S. Besides, Equations (B.2),

(B.3), and (B.14)–(B.17) indicate that the objective value Z4 of S which is calcu-

lated in Equation (3.20) can be equivalently calculated by Z4 = −
∑

i∈Nm zi. Since

zi = 0, i ∈ Nm, we have Z4 = 0 ≥ E. Therefore, S is feasible to the instance of the

RSRPB.

Conversely, for the “only if part”, suppose that there exists a feasible solution

to the constructed instance of the RSRPB such that Z4 ≥ E = 0. Since Z4 =

−
∑

i∈Nm zi, it is easy to infer that zi = 0, i ∈ Nm. Hence, there must exist a feasible

path (P ′) for ship v such that (i) all cargoes i ∈ Nm are transported by v exactly

once, (ii) cargo 1 starts loading at time 0 and cargo |Nm| starts loading at time

CTSP , and (iii) the ship starts loading each cargo i ∈ Nm \{1, |Nm|} within the time

window [0, CTSP ]. Note that (i) is a result of assumptions A1 and A2. Besides,

from (ii) and (iii) it follows that |Nm| is the last cargo transported by v and that

the total traveling time of ship v to reach the loading port of cargo |Nm| in P ′ is no

larger than CTSP .
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Then consider constructing a path (P ′′) for the TSP such that (a) the path

starts from node vTSP1 , (b) vTSPi is visited in the same sequence in which cargo

1 < i ≤ |V TSP | is transported by ship v, and (c) the path returns to vTSP1 after

visiting the last node vTSPi ∈ V TSP \ {vTSP1 }. The feasibility of P ′′ can be verified as

follows. First, from (i), we have that except vTSP1 , each node in P ′′ is visited exactly

once. Second, considering Equations (B.10)–(B.12) it is easy to infer that P ′′ is a

feasible path for the TSP such that the total traveling cost of P ′′ is no larger than

CTSP . Therefore, P ′′ is a feasible solution to the TSP. This completes the proof.

B.1.2 Proof of Proposition 3.2

Proof. Proof of Proposition 3.2. Recall that in Section 3.4.2 we have shown that

model M2, M3 and M4 are equivalent. Therefore, it is sufficient to show that M5 is

equivalent to M2. Let Z2
∗ and Z5

∗ denote the optimal objective values of M2 and M5,

respectively. It is sufficient to show that Z2
∗ = Z5

∗. Suppose xv
∗, bi

∗, wk
∗, yvi,j

∗, zi
∗,

and H∗ comprise the optimal solution to M2, then Z2
∗ =

∑
k∈K pkwk

∗−
∑

v∈V fvxv
∗−∑

v∈V
∑

i∈N∪{0}
∑

j∈N∪{T}\{i}C
v
i,jy

v
i,j
∗ −

∑
i∈N ĉizi

∗ −H∗. Let V ∗ ⊆ V denote set of

ships that are used (i.e., V ∗ = {v|xv∗ = 1, v ∈ V }) in the optimal solution. It is easy

to infer that Z2
∗ =

∑
k∈K pkwk

∗−
∑

v∈V ∗ fv−
∑

v∈V ∗
∑

i∈N∪{0}
∑

j∈N∪{T}\{i}C
v
i,jy

v
i,j
∗−∑

i∈N ĉizi
∗ −H∗.

Correspondingly, we can construct a solution [denoted by (X, H)] to M5 as fol-

lows. Note that X is a Q-dimensional vector consisting of χq’s. First, let Qv :=

{q|Vq = {v}, q ∈ Q} (note that
⋃
v∈V Qv = Q3). Then, for each v ∈ V ∗, gener-

ate the route h of ship v by (i) constructing Nh (i.e., cargoes transported on the

route) using cargo i’s such that
∑

j∈N∪{T}\{i} y
v
i,j
∗ = 1 and transporting the cargoes

using the same sequence as specified by yvi,j
∗’s (i.e., by letting the ship travel in

all trips (v, i, j) such that yvi,j
∗ = 1), and (ii) setting bi = bi

∗, i ∈ Nh. Then set

χq3h = 1 and χq = 0, q ∈ Qv \ {q3
h}. In addition, for each v ∈ V \ V ∗, set χq = 0,

q ∈ Qv. The cost for selecting these columns in Q3 is C3 =
∑

v∈V ∗
∑

q∈Qv cqχq =∑
v∈V ∗ fv +

∑
v∈V ∗

∑
i∈N∪{0}

∑
j∈N∪{T}\{i}C

v
i,jy

v
i,j
∗. Then, for each zi

∗, set χq2i = 1

if zi
∗ = 1, and χq2i = 0 otherwise. The cost for selecting these columns in Q2 is
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C2 =
∑

i∈N ĉizi
∗. Finally, for each k, set χq1k = 1 if wk

∗ = 0, and χq1k = 0 otherwise.

The cost for selecting these columns in Q1 is C1 =
∑

k∈K pk(1 − wk∗). Finally, let

H = H∗.

Next, check the feasibility of the (X, H) for M5. First, we have
∑

j∈N y
v
0,j
∗ ≤

1, v ∈ V in M2, which implies that at most one column q such that αq,v = 1 is

selected in the solution, hence Constraints (3.30) are satisfied. Besides, as implied by

Constraints (3.2) and (3.3), each cargo from Nm or
⋃
k∈K:wk∗=1 N

c
k is associated with∑

v∈V
∑

j∈N∪{T}\{i} y
v
i,j
∗ = 1 or zi

∗ = 1. This implies that these cargoes are covered

in selected columns from Q2 and Q3. In addition, each i ∈
⋃
k∈K:wk∗=0N

c
k is covered

in selected columns from Q1. Therefore, each cargo i ∈ N is covered at least once

by the selected columns, which implies that Constraints (3.31) are also satisfied. In

addition, considering the two solutions contain the same set of voyages and H = H∗,

it can be easily verified that Constraints (3.16) and (3.32) are equivalent. This follows

that Constraints (3.32) are also satisfied. Therefore (X, H) is feasible for M5. It

follows that Z5
∗ ≤ Z5[(X, H)] = Z̄ − C1 − C2 − C3 −H∗ =

∑
k∈K pk −

∑
v∈V ∗ fv −∑

v∈V ∗
∑

i∈N∪{0}
∑

j∈N∪{T}\{i} (Cv
i,jy

v
i,j
∗)−

∑
k∈K pk(1−wk∗)−

∑
i∈N ĉizi

∗−H∗ = Z2
∗,

that is, Z5
∗ ≤ Z2

∗.

We can also convert an optimal solution to M5 into a feasible solution to M2, by

reversing the above logic. This gives us that Z2
∗ ≤ Z5

∗. It follows immediately that

Z2
∗ = Z5

∗, which completes the proof.

B.1.3 Proof of Lemma 3.1

Proof. Proof of Lemma 3.1. To begin with, it is easy to see that Cv
i,T is the lower

bound of the cost incurred by transporting cargo i using ship v. It follows that

MCi is the lower bound of the cost incurred by transporting cargo i using ships in

V . Therefore, the MR calculated in Line 6 in Algorithm 1 gives the upper bound

of the profit brought by accepting contract k and transporting all the cargoes in

it using ships in V . Then, from Line 9 to 16, the algorithm identifies the largest

number of cargoes (SN) that can be transported using spot charters such that MR

is positive. Finally, Lk = |N c
k | − SN . Hence, for any accepted k, transporting any

110



number N ′ < Lk cargoes from N c
k using ships from V incurs net cost for the shipping

company. Then considering assumptions A1 and A2, it is easy to infer that in any

optimal solution to the RSRPB, a contract k is accepted only when it is possible to

bring (positive) profit to the shipping company. Therefore, it is readily seen that at

least Lk cargoes from N c
k should be transported by using ships in V if k is accepted

in an optimal solution to M5.

B.1.4 Proof of Proposition 3.3

Proof. Proof of Proposition 3.3. Considering Equations (3.35)–(3.37), we have
∑

q∈Q n
k
qχq =

Lkχq1k +
∑

q∈Q3
nkqχq, k ∈ K. We discuss the following two possible cases in terms of

the value of χq1k :

(i) If χq1k = 1, then (3.34) converts to Lk +
∑

q∈Q3
nkqχq ≥ Lk, which is valid since

nkq ≥ 0.

(ii) If χq1k = 0, then (3.34) converts to
∑

q∈Q3
nkq ≥ Lk. In this case, contrac-

t k is accepted. Therefore, from Lemma 3.1, at least Lk cargoes from N c
k

should be transported by ships from V . Meanwhile, Equation (3.37) infers

that
∑

q∈Q3
nkqχq calculate the number of cargoes from k that are transported

using ships from V . Thus the inequality is valid.

This completes the proof.

B.1.5 Proof of Proposition 3.4

Proof. Proof of Proposition 3.4. It is sufficient to show that we can reduce Θ :=

{G|G ⊆ R, |G| ≤ Γ} to Θ′ := {G|G ⊆ R, |G| = Γ}, without changing the optimal

solution to M5. Consider an arbitrary constraint C1 of Constraints (3.32) with

G = G1 such that |G1| < Γ. Given C1, we can construct a valid constraint C2 for

M5 with G = G2 such that G1 ⊆ G2, and |G2| = Γ. The different between the right-

hand sides of C2 and C1 is calculated by
∑

q∈Q
∑

r∈G2
drγq,rχq−

∑
q∈Q
∑

r∈G1
drγq,rχq

=
∑

r∈G2\G1
drγq,rχq −

∑
r∈G1\G2

drγq,rχq =
∑

r∈G2\G1
drγq,rχq ≥ 0. Therefore C2 is
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at least as tight as C1. Hence, it is safe to replace C1 with C2. Since C1 is arbitrarily

chosen, we can replace any constraint with |G| < Γ with a constraint with |G| = Γ.

Therefore, it is safe to only use constraints with |G| = Γ for Constraints (3.32). Note

that all constraints with |G| = Γ belong to the set Θ′.

B.1.6 Proof of Proposition 3.5

Proof. Proof of Proposition 3.5. To begin with, the SP solves a maximization prob-

lem. Therefore, it can be solved by only considering r’s such that dr
∑

q∈Q̃ γq,rχq
∗ > 0.

Let Ḡ := {r|dr
∑

q∈Q̃ γq,rχq
∗ > 0}. Then if |Ḡ| ≤ Γ, we have G = Ḡ. Otherwise,

we construct G using voyages r that have the |Γ| largest dr
∑

q∈Q̃ γq,rχq
∗. Finally,

Z8
∗ =

∑
r∈G dr

∑
q∈Q̃ γq,rχq

∗ −H∗.
Generating Ḡ and takes O(|R||Q̃|) time and given Ḡ, G can be constructed in

O(|R| log |R|) time. Therefore, the algorithm solves the SP in O(|R||Q̃|+ |R| log |R|)
time.

B.1.7 Proof of Proposition 3.6

Proof. Proof of Proposition 3.6. To show that (3.55) is valid for M6, it is equivalent to

show that (3.55) (i) makes the current solution to the RLM6(N) at node N infeasible

and (ii) does not change the optimal solution to M6.

First, we show that (i) holds. Let χq
∗, q ∈ Q̃, and H∗ be the current op-

timal solution to the RLM6(N). For any separated Constraint (3.54), we have

H∗ <
∑

q∈Q̃
∑

r∈G drγq,rχq
∗. Considering G ⊆ Ḡ, we have

∑
q∈Q̃
∑

r∈G drγq,rχq
∗ ≤∑

q∈Q̃
∑

r′∈Ḡ dr′γq,r′χq
∗, which implies H∗ <

∑
q∈Q̃
∑

r′∈Ḡ dr′γq,r′χq
∗. Therefore, the

current solution is infeasible.

Second, given assumptions A1 and A2, it is safe to claim that in any optimal

solution to M6 (denoted by χq
∗∗, q ∈ Q and H∗∗),

∑
r′∈R̄r

∑
q∈Q γq,r′χq

∗∗ ≤ 1 (i.e.,

at most one ship sail from a specific origin to a specific destination). This implies∑
r′∈Ḡ

∑
q∈Q γq,r′χq

∗∗ =
∑

r∈G
∑

r′∈R̄r
∑

q∈Q γq,r′χq
∗∗ ≤ |G| ≤ Γ. Hence, in Con-

straint (3.55), the costs of at most Γ voyages can deviate from their nominal values.

Therefore, it is readily seen that (ii) holds as well.
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B.2 Pseudo-codes for Algorithms in the Primal

Heuristic

This appendix presents the pseudo-codes of the primal heuristic proposed in Sec-

tion 3.6.4 in Chapter 3.

B.2.1 The Pseudo-code for the Route-construction Proce-

dure

For ease of presentation, we make use of the following notations in the pseudo-

code. We start by using prιq, q ∈ Q̃′, ι = {1, 2, 3} to indicate the priority of column

q assigned by strategy ι such that a larger prιq indicates higher priority. Then,

V Dv, v ∈ V and CDi, i ∈ N are used to indicate whether ship v has been used in the

columns in Q̂ι to transport cargoes (V Dv = 1) or not (V Dv = 0) and whether cargo

i has been transported in the solution (CDi = 1) or not (CDi = 0), respectively.

Besides, QDq, q ∈ Q̃′ denotes whether column q has been checked in the procedure

(QDq = 1) or not (QDq = 0).

Algorithm 4 generates five sets of columns based on different prioritizing strategies

(Q̂ι’s). These sets are generated iteratively. In particular, at each iteration, we first

update the set of feasible columns (Q̃′′). A column q is feasible if (i) it has not been

checked (QDq = 0), (ii) the ship used in q has not been used by any column in Q̂ι

(V ′q 6= ∅) and (iii) at least one cargo has not been transported by columns in Q̂ι

(N ′q 6= ∅) (Lines 9 and 10). Then from Q̃′′, we select the column (q∗) that has the

minimum number of cargoes that have been transported by columns in Q̂ι, and if

there is more than one such column, select the one with the highest priority (Lines

12–14). After that, a column q is generated by removing cargoes that have been

transported by columns in Q̂ι and reconstructing a route using the remaining cargoes

(Line 16). We will add q into Q̂ι if its cost cq is less than the cost of transporting all

cargoes in Nq by using voyage charters. The state parameters (i.e., QDq, V Dv, and

CDi) are updated in each iteration (Lines 15 and 19). The construction completes

when Q̃′′ = ∅.
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Algorithm 4 The Route-construction Procedure.

Input: Q̃′;
Output: Set of selected columns Q̂ι, ι = 1, 2, 3;
1: for ι ∈ {1, 2, 3} do
2: Set Q̂ι = ∅ and set V Dv = 0,∀v ∈ V and CDi = 0,∀i ∈ N , QDq = 0,∀q ∈ Q̃′;
3: Initiate the set of feasible columns Q̃′′ = Q̃′;
4: while Q̃′′ 6= ∅ do
5: UV D := {v|V Dv = 0, v ∈ V }; UCD := {i|CDi = 0, i ∈ N}; . UV D

and UCD are the set of ships and the set of cargoes that have not been covered in Q̃′,
respectively.

6: for q ∈ Q̃′′ do
7: V ′q := Vq ∩ UV D; N ′q := Nq ∩ UCD; N ′q := Nq \ UCD;
8: end for
9: Q̃′′′ = {q|QDq = 0, V ′q 6= ∅, N ′q 6= ∅, q ∈ Q̃′′};

10: Q̃′′ = Q̃′′′;
11: if Q̃′′ 6= ∅ then
12: NCD = minq∈Q̃′′{|N ′q|};
13: Q̌ := {q||N ′q| = NCD, q ∈ Q̃′′};
14: q∗ = arg maxq∈Q̌ pr

ι
q;

15: QDq∗ = 1;
16: Construct a column q based on q∗ by (i) letting Vq = Vq∗ and Nq = N ′q∗ ,

(ii) generating Ξq by transporting cargoes in Nq using ship v ∈ Vq (Vq is a single-
ton) according to the same sequence as in Nq∗ and (iii) calculating cq = fv + Cv0,i1 +∑|Nq |−1

n=1 Cvin,in+1 + Cvi|Nq |,T
. Here, in is the n-th cargo transported by v in Nq.

17: if cq <
∑

i∈Nq ĉi then

18: Q̂ι = Q̂ι ∪ {q};
19: V Dv = 1; CDi = 1, ∀i ∈ Nq;
20: end if
21: end if
22: end while
23: end for
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B.2.2 The Pseudo-code for the Cargo-check Procedure

The notations used in the pseudo-code are as follows. First, for each set Q̂ι, let

N̂ι :=
⋃
q∈Q̂ι Nq. Then, given N̂ι, we identify the following sets of cargoes: (i)

N̄m
ι := {i|i /∈ N̂ι, i ∈ Nm} and (ii) N̄ c

ι,k := {i|i /∈ N̂ι, i ∈ N c
k}, k ∈ K. Outputs of the

algorithm are Q̌ι
1 ⊆ Q1, Q̌ι

2 ⊆ Q2, and Q̌ι
3 ⊆ Q3, and the columns from these three

sets will be used to further construct the integer solution under strategy ι.
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Algorithm 5 The Cargo-check Procedure.

Input: Q̂ι, N ;
Output: Q̌ι1, Q̌ι2, Q̌ι3;
1: Q̌ι1 = ∅, Q̌ι2 = ∅, Q̌ι3 = ∅;
2: Initiate the set of contracts to reject as K̄ = ∅;
3: Initiate the set of cargoes transported by ships v ∈ V as Nv = ∅;
4: Initiate the set of cargoes that need to be transported as N t = Nm;
5: for k ∈ K do
6: pck =

∑
i∈N̄ι,k ĉi;

7: if pck ≥ pk then
8: K̄ = K̄ ∪ {k};
9: Q̌ι1 = Q̌ι1 ∪ {q1

k}; . Recall that q1
k is the column corresponding to contract k in

Q1.
10: else
11: N t = N t ∪N c

k ;
12: end if
13: end for
14: N̄ c :=

⋃
k∈K̄ N

c
k ;

15: for q ∈ Q̂ι do
16: N ′q := Nq ∩ N̄ c;
17: if N ′q = ∅ then

18: Q̌ι3 = Q̌ι3 ∪ q;
19: Nv = Nv ∪Nq;
20: else
21: Construct a column q′ based on q by (i) letting Vq′ = Vq and Nq′ = Nq \

N ′q, (ii) generating Ξq′ by transporting cargoes in Nq′ using ship v ∈ Vq′ (Vq′ is a
singleton) according to the same sequence as in Nq and (iii) calculating cq = fv +

Cv0,i1 +
∑|Nq′ |−1

n=1 Cvin,in+1 +Cvi|Nq′ |,T
. Here, in is the n-th cargo transported by v in Nq′ .

22: if cq′ <
∑

i∈Nq′
ĉi then

23: Q̌ι3 = Q̌ι3 ∪ {q′};
24: Nv = Nv ∪Nq′ ;
25: end if
26: end if
27: end for
28: for i ∈ N t \Nv do
29: Q̌ι2 = Q̌ι2 ∪ q2

i (q2
i is the column corresponding to cargo i in Q2);

30: end for
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