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Abstract 

Micro-perforated panels (MPPs) are widely used for broadband sound absorptions. 

A MPP exposed to a grazing flow is an important problem in acoustics and has many 

practical engineering applications. Despite the considerable efforts and the progress 

made during the last decades, many fundamental issues still remain to be addressed. To 

mention a few, explanations on the sound energy dissipation mechanism in the presence 

of flow are not consistent and convincing in the open literature; existing acoustic 

impedance formulae based on different flow parameters give inconsistent results etc. 

This calls for a systematic investigation of these important issues and eventually find 

more intrinsic flow parameters allowing for a reliable acoustic impedance prediction.  

 

In this thesis, 3D CFD simulations are conducted on a MPP with a backing space 

in a flow duct. Numerical analyses allow scrutinizing the flow field near the perforation 

hole and its interaction with the incoming acoustic waves, identifying viscous 

dissipation in the shear layer near the orifice as the dominant sound energy dissipation 

mechanism in a linearly low acoustic excitation regime, identifying the flow velocity 

gradient in the viscous sublayer as the intrinsic flow parameter and showing its linear 

relationship with a flow-related term in the acoustic resistance formula. Through a 

linear regression analysis, a new set of acoustic impedance formula is proposed, 

applicable within a certain flow range under the linear acoustic regime. The proposed 

impedance formulae are validated through comparisons with existing impedance data 
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reported in the open literature as well as with experimentally measured results using an 

inverse derivation method. Results show a good agreement with these data and the 

superiority of the proposed impedance formulae over the existing ones in terms of 

prediction accuracy. 

 

Capitalizing on the established acoustic impedance prediction formulae, the noise 

attenuation performance of MPPs in flow ducts with grazing flow is investigated for 

various configurations. Incorporating the acoustic impedance formulae into the general 

Patch Transfer Function (PTF) framework, numerical analyses are conducted to analyze 

the effects of various system parameters and to shed light on the underlying sound 

attenuation mechanism of MPP silencers in flow ducts. Effects of various system 

parameters, such as grazing flow velocities, solid partitions inside the backing cavity of 

the MPPs, their dimension and other panel parameters, are examined in vies of 

providing guidelines for the practical design of MPP-based silencers. The numerically 

predicted noise attenuation curves are then validated through comparisons with 

measurements under various grazing flow conditions. 

 

Finally, the feasibility of integrating MPPs in a simplified home appliance model 

having a more complex geometry and being subjected to flow is explored. Two methods, 

the hybrid theoretical-numerical technique based on PTF approach and the other one 

using coordinate transformation technique, are presented to tackle the numerical 

challenges in coping with the increasing system complex. The possibility of 
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implementing MPP absorbers in practical industrial devices for acoustic noise 

mitigation is demonstrated. Results reveal a hybrid noise reduction mechanism and 

point at the need for proper systematic parameter tuning in order to achieve the noise 

control target. As an illustration, a few selected optimization problems are discussed to 

highlight the efficacy of the PTF approach alongside the proposed acoustic impedance 

prediction formulae established in this thesis. Meanwhile, the improved capability and 

efficiency of the improved PTF approach based on coordinate transformation are also 

demonstrated by comparing with the optimization results from hybrid theoretical-

numerical treatment. 
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Chapter 1. Introduction 

1.1 Background 

Noise has been recognized as one of the major issues, which impacts on people’s 

living quality as well as the competitiveness of products. Nowadays, noise control 

becomes a necessity and arouses an increasing interest and draws persistent attention 

of researchers, R&D engineers and practitioners. Typically, noise problem can be 

tackled from three aspects: noise reduction at the source, noise control in the 

propagation path and noise shielding at the receiver. Among existing solutions, sound 

absorption material is commonly used as one of the major means for noise control and 

mitigation. However, the use of traditional sound absorption materials, such as fibrous 

and porous materials, would cause numerous problems such as contamination, aging 

and environment-unfriendliness [1]. These problems can harm the health of people in 

the long run and jeopardize the practical use of the conventional materials in many 

applications. Therefore, new and more environmental-friendly materials which can 

provide efficient and reliable sound absorptions are in great need and of significant 

practical significance. 

  

A Micro-perforated panel (MPP) is a thin sheet with thickness-through perforations 

over its surface. With the hole size typically in the sub-millimeter range, a MPP 

provides a high acoustic resistance (loss) and a low acoustic reactance (mass) by the 

structure itself. Without the use of any porous material, broadband noise attenuation 
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could be achieved with a proper design. Meanwhile, MPPs can be manufactured by 

using fibrous-free, incombustible and cleanable materials. Owing to their unique and 

environmentally friendly nature, MPPs are being widely used in various noise control 

applications as an alternative to traditional porous/ fibrous sound absorption materials.  

 

MPPs have been extensively studied and firstly used in simple acoustic 

environment such as the one in both open and close space with still acoustic media. In 

many applications, however, MPPs are subjected to flow, especially the grazing flow, 

in which case flow arrives in the direction which is parallel to the MPP surface. One of 

the typical examples is mufflers or flow ducts. In the presence of flow, the problem 

turns out to be much more complicated than its counterpart without flow, and generally 

speaking, the problem has not been fully understood. Meanwhile, prediction tools, 

which are necessary to guide the design of MPPs for noise control with flow, are also 

lacking. Therefore, in the work presented here, the acoustic behavior of MPPs under 

fully developed turbulent grazing flow conditions within the linear acoustic regime is 

investigated, and their applications in flow ducts and complex noise control devices are 

presented.  

 

1.2 Literature review 

1.2.1 Conventional sound absorption materials 

Sound absorption materials are widely used for acoustic noise control. These 

materials can absorb the incident sound energy with little reflection. A large variety of 
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sound absorption materials exist, among which fibrous and porous materials are the 

most commonly used ones. These materials contain fibers or foam skeletons, forming 

small cavities or channels, through which sound waves propagate. The acoustic waves 

then generate the vibration of the air and that of the porous structure, at both the surface 

of the material and inside the pores. As a result, part of the incident sound energy is 

converted into heat through thermal and viscous losses at the walls of the interior pores 

and tunnels within the material [2].  

 

Propagation of sound waves in porous material is determined by two complex 

parameters: the characteristic impedance and the propagation coefficient. Various 

models have been developed to obtain these parameters through measurable non-

acoustic parameters such as porosity, flow resistance and tortuosity. Through 

transmission-line analysis on the measured acoustic quantities of a large amount of 

fibrous materials, Delany and Bazley [3] developed a simple empirical formula based 

on a single physical parameter: the flow resistance of the material. Owing to its 

simplicity, this model is widely used to describe the wave propagation in fibrous 

absorbent materials. To improve the low frequency accuracy of Delany and Bazley 

equation [3] for some specific porous materials, several slightly different but similar 

laws [4, 5] were developed. Generally, most of the models were established based on 

the assumption that the frame of the material is rigid. Although the complete poro-

elastic model [6], considering the structural non-rigidity, was developed as well, the 

accuracy of the simplified models with rigid material frame assumption is deemed 
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sufficient for most practical cases. The aforementioned models are generally called 

phenomenological models with the consideration that the porous medium is a globally 

compressive fluid and the mathematical expressions are simple. However, for porous 

materials with a complex geometry, these models [3-5] may not be suitable. In light of 

this, various microstructural models [7-10] were developed to describe acoustic wave 

propagation through porous materials with arbitrary orientation. The derivation of the 

characteristic impedance and the propagation coefficient often need more parameters. 

For instance, five parameters (porosity, flow resistance, tortuosity, and the viscous and 

thermal pore shape factors) are needed in the model established in [10]. 

 

In many practical cases, high-speed flow or large temperature variations exist, like 

in the case of exhaust pipes of engines. These circumstances are hostile to the use of 

classical porous materials which can be easily damaged. As a common practice, 

perforated panels are usually used to shield and protect the porous materials. In these 

cases, porous materials are enclosed by perforated panels with a hole size typically in 

the range of millimeter. With a hole size in such a large scale, as opposed to the so-

called micro-perforated panels to be investigated in this thesis, the panels themselves 

can hardly provide any meaningful sound absorption without porous components [11-

17]. 

 

Although widely used, porous absorption materials can cause numerous problems. 

For example, they can accumulate dust and oil and can be easily damaged. In the long 
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run, the bacterial contamination can also be generated, which is harmful to public health 

which hampers their use in some more rigorous conditions like in hospitals, food and 

pharmaceutical industries. As the concerns of public health increase, more effective, 

robust and environmental-friendly sound absorption materials are needed.     

 

1.2.2 Micro-perforated panels and Crandall’s theory on acoustic propagation in a 

single tube 

As an alternative to traditional porous sound absorbing materials, Micro-perforated 

Panels (MPPs) have been drawing persistent attention. A MPP is a thin panel with 

perforated holes over its surface. The typical structure of a MPP is shown in Fig.1.1. 

The size of the holes is typically in the sub-millimeter range. The holes are separated 

by a distance which is much larger than the hole size, but usually smaller than the 

wavelength of the impinging acoustic wave. Considering the perforated holes are 

uniformly distributed, each hole then has the same surrounding area sS  as shown in 

Fig. 1.1a. The perforation ratio   is defined as the ratio between the surface area of a 

single hole hS   and that of its surrounding area. The perforation ratio of MPPs is 

usually around 1%. With the hole size in the sub-millimeter range, the small hole 

ensures a small oscillating mass in the hole and an effective viscous dissipation in the 

shear layer of the hole. Thus, MPPs can provide a high acoustic resistance (loss) and a 

sufficiently low acoustic reactance (mass) by the structure itself, conducive to effective 

sound absorption with a proper design. More importantly, by using MPPs alone, 
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broadband noise attenuations can be achieved without the use of any porous materials. 

 

 

(a) 

 

(b) 

 

Figure 1.1. A Micro-perforated panel. 

 

The acoustic behavior of a MPP is usually characterized by its surface impedance. 

The development of the MPP impedance prediction tools originates from the sound 

propagation in a tube as proposed by Rayleigh [18]. Crandall [19] then simplified the 

model into a finite short tube, which was considered by him as a single hole in a 

perforated panel. Due to the viscous retardation near the wall of the hole, the fluid in 

the hole was treated as a collection of shear layers. By considering an angular ring of 
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fluid as the control volume, shown in Fig. 1.2, and applying the fundamental physical 

principles, the governing equation of motion of the fluid in the hole can be obtained. 

 

 

 

Figure 1.2. Schematic drawing of an angular ring of fluid. 

 

Taking the axis of the hole as x, the total driving force on the angular ring, at a 

radius r  , can be written as 2
p

rdrdx
x





 . This is balanced by the inertial force 

2
u

rdrdx
t

 



  and the net viscous resistive force 2

u
r drdx

r r
 
  
 

  
 , which is 

proportional to the gradient of the flow velocity and the contact area between the layers. 

Therefore, the equation of motion can be written as: 

 

u p
r u

r r r x




   
− = − 

   
, (1.1) 

 

where u  is the velocity of the air particle;   the density of air;   the air dynamic 

viscosity and r  the radius vector of cylindrical coordinates inside the tube. 
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When the length of the tube or that of the hole (thickness of the panel) is much 

smaller than an acoustic wavelength, the pressure gradient 
p

x




 can be approximated 

by the ratio between the pressure difference across the two ends of the hole p  and 

the hole length t , Eq. 1.1 can then be written as： 

 

u p
r u

r r r t




   
− = − 

  
. (1.2) 

 

In a harmonic regime, Eq. 1.2 becomes: 

 

u p
j u r

r r r t




   
− = 

  
, (1.3) 

 

where   is the angular frequency.  

 

By solving Eq. 1.3 and defining the acoustic impedance of a short tube or a hole 

as the ratio between the space average pressure difference across the hole p  over the 

space average velocity normal to the hole section u , one has 

 

( )
( )

1

1

0

2
1i

J K jp
Z j t

u K j J K j


−

 −  = = −
 − −
 

, (1.4) 
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where = /
2

d
K    is a parameter describing the ratio of the radius to the viscous 

boundary layer thickness inside the hole; d  the hole diameter; 
1J and 

0J  the Bessel 

functions of the first kind and first and zero order respectively. As the calculation of the 

Bessel function is difficult, historically, Eq. 1.4 has not been directly used to obtain the 

impedance of a hole. Instead, for 1K    and 10K   , the formulae developed by 

Crandall [19] are used to get the approximate values of 
iZ .  

 

1.2.3 Impedance model of Micro-perforated panels without flow 

In Eq. 1.4, K   lies between 1 and 10 for MPPs. The approximation values are 

obtained by Maa [20], written as: 

 

2

2 2

32 1
1 1

32
9

2

i

t K
Z j t

d K




 
 
 = + + +
 

+ 
 

. (1.5) 

 

Note that, only the air in the hole is considered in Eq. 1.4 or 1.5 without 

considering the end correction effects. However, for small holes, the hole diameter and 

the hole length are small compared to an acoustic wavelength. Under the incident 

acoustic excitation, the oscillating fluid would be more than that contained in the hole 

due to the mass inertia and the viscous effects. Therefore, for the case of small holes or 

tubes of finite length, an additional term must be added to Eq. 1.4 or 1.5. This additional 

term is called the end correction term. 
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The end correction effects of small holes were investigated experimentally and 

theoretically by Sivian [21] and Ingard [22]. The end correction for the resistance term 

accounts for viscous effects outside the hole at its both ends. The end correction for the 

reactance term accounts for the oscillation of the additional mass. After introducing the 

end corrections as suggested by Ingard [22], the normalized specific acoustic 

impedance (normalized by c  with c being the speed of sound) of a hole for all ranges 

of K  is proposed by Maa [20, 23] and expressed as: 

 

1
1/2

2 22

2

32 2
1 1 9 0.85

32 32 32
hole

t K d t K d
Z K j

cd t c t

 



−       = + + + + + +             

.        (1.6) 

 

With the assumption that no interactions between the holes takes place, the 

acoustic impedance prediction formula of a Micro-perforated panel is established by 

Maa [20, 23] by dividing the acoustic impedance of a single hole (Eq. 1.6) by the 

perforation ratio of the panel  , expressed as:  

 

= +MPPZ R j , (1.7a) 

1
2 2

2

32 2
= 1

32 32
in out

t K d
R R R K

cd t





 
  + = + +   
  

, (1.7b) 

1/2
2

= 1 9 0.85
32

t K d

c t






−  
+ + +  

   

. (1.7c) 
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The real part R   is called the acoustic resistance which is associated with the 

acoustic energy dissipation due to viscous effects. The first term inR  represents the 

viscous effects in the hole and the second one outR  describes the viscous effects outside 

the hole (end correction). The imaginary part   is referred to as the acoustic reactance, 

which is the inertial in nature. It should be noted that Eq. 1.7 only applies to MPPs 

without flow under a low acoustic excitation. 

 

1.2.4 Works on MPP without flow 

Since then, research on MPPs has been flourishing and intensifying, as evidenced 

by the large amount of papers published on the topics, ranging from studies on the 

acoustic behavior of MPPs under different conditions to the exploration of their 

applications. Typically, a MPP is backed by a cavity to form a MPP absorber. The air 

gap between the panel and the backing cavity together with the micro holes produce the 

so-called Helmholtz effects to ensure effective sound absorptions. Except for the 

conventional cases, in which the depth of the backing cavity is constant and under 

normal incident acoustic excitation, MPPs backed by an irregular-shaped cavity [24-27] 

or under oblique sound incidence [28-33] have also been investigated. It was found that 

the sound absorption of MPP absorbers can be improved with an irregular-shaped 

backing cavity due to the fact that more complex acoustical modes in the backing cavity 

can be activated and are coupled with the MPP, leading to a stronger coupling between 

the MPP and the cavity. For MPPs under oblique sound incidence [28-33], it was 
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revealed that, with the backing cavity being partitioned, the locations of the absorption 

peaks were roughly insensitive to the variation of the incidence angle. However, for the 

non-partitioned backing cavity, increasing the incidence angle results in an increase in 

the frequency of the main absorption peaks and the appearance of additional absorption 

peaks. To improve the acoustic performance of a MPP absorber, many studies have been 

conducted, such as introducing suitable partitions in the backing cavity [34-37], 

utilizing multi-layer MPPs [38-42] and parallel arrangement of multiple MPPs [43-45] 

etc. These works indicate that, by employing extra MPPs, the acoustic resistance 

increases while the acoustic reactance decreases, which gives rise to a widened 

absorption bandwidth in a lower frequency range. Of course, when more MPPs are used, 

the total number of control parameters affecting the absorption performance also 

increases and the optimal design of systems with more MPPs becomes more 

challenging. 

 

As a clean and efficient sound absorbing material, MPP absorbers have been widely 

used in many applications, such as construction equipment, building interiors, HVAC 

ducts and mufflers etc. Conventionally, MPPs found their early use in architectural and 

environmental acoustic problems. For example, the applications of MPPs on building 

ventilation window systems were investigated by Kang and Brocklesby [46] 

experimentally and Kang and Li numerically [47]. Asdrubali and Pispola [29] proposed 

a noise barrier using transparent polycarbonate MPPs. These works indicate that better 

noise insulation of the systems could be achieved by using MPPs. More recently, MPP 
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applications in compact mechanical systems start to draw more attention of the 

scientific community due to the increasing complexity of the problem related to system 

coupling. For example, Corin and Weste [48] utilized MPPs in an engine enclosure as 

an acoustical heat shield. Li and Mechefske [49] reported the utilization of MPP 

absorbers to reduce the noise of a magnetic resonance imaging (MRI) equipment. Yu et 

al investigated the application of MPPs in expansion chamber silencers [34] and 

ventilation systems in buildings [50]. It was shown that, being strongly affected by the 

surrounding acoustic environment, the acoustic behavior of MPPs is very different from 

the laboratory impedance tube condition. Results point at the need of considering MPPs 

as an integral part of the entire acoustic/vibro-acoustic system, which calls for the 

development of efficient modelling, analysis and optimization tools [51-53]. 

 

1.2.5 MPPs with grazing flow 

Apart from the work on MPP sound absorptions in still acoustic media, another 

important category of problems involves flow to which MPPs are exposed, among 

which the case of the grazing flow is the most representative and practically important. 

Typical examples include cases such as vehicle exhaust silencers, attenuators in air-

moving ducts, duct linings in jet engines or numerous domestic products. 

 

Existing work relating to the flow passing through a perforated hole in a plate has 

been arousing wide interest of the scientific community. As reported in many works 

[54-56], above a certain flow velocity, the resistance of the acoustic impedance 
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increases with the flow velocity while the reactance decreases. To understand the 

mechanisms behind these changes in the impedance, flow visualizations near the mouth 

of a hole were carried out [57-60]. These works revealed that, under an acoustic 

excitation, fluid would flow into and then out of the cavity through the hole during one 

cycle of oscillation. Meanwhile, vortices are generated from the leading edge of the 

orifice under the acoustic excitation and are convected downstream by the mean grazing 

flow. When inflow and outflow occur, the effective area for the fluid passage is smaller 

than the area of the hole and the discharge coefficient (the ratio between the core 

inflow/outflow area and the hole area) is used to describe this phenomenon. In addition, 

the shear layer above the orifice would move up within one oscillation cycle. Based on 

these observations, the sound energy dissipation mechanism was interpreted in different 

ways by different researchers. For example, in many works [61-64], the grazing flow 

effects were simply described as a ‘‘blowing away’’ of the oscillation fluid across the 

hole and the stored kinetic energy. Also many researchers [58, 65] believed that the 

movement of the shear layer above the hole contributes to the acoustic sound energy 

dissipation. While the research [54, 55, 66, 67] showed that the amount of sound energy 

consumed is related to that of fluid flowing into and out of the cavity through the hole 

and thus is related to the value of the discharge coefficient, the acoustically induced 

vortex shedding was used to describe the grazing flow effects in many works [56, 68]. 

 

To predict the acoustic properties of the perforated holes in the presence of grazing 

flow, theoretical [56, 64, 65, 68, 69] or semi-theoretical models [54, 58] were developed 
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upon making different simplifications on the interactions between the acoustic waves 

and the flow field near the perforated holes based on different interpreted sound energy 

dissipation mechanisms. For example, Rice [69] modeled the acoustic excitation 

imposed on the grazing flow as a spherically symmetrical perturbation. Ronneberger 

[64] simplified the problem as wavelike disturbances of a thin shear layer over the 

orifice. Howe et al. [68] and Jing et al. [56] established their respective models based 

on the vortex shedding from the upstream lip of an orifice. Walker and Charwat [65] 

proposed a hinged-lid model according to the motion of the shear layer above the orifice 

caused by the inflow and outflow of the fluid. Hersh and Walker [54] and Rogers and 

Hersh [58] proposed their semi-empirical acoustic prediction models based on the 

discharge coefficient to which the grazing flow effects were attributed. In both works, 

the discharge coefficients were determined experimentally. While shedding light on the 

underlying physics, most of these theoretical or semi-theoretical models only consider 

inviscid flow for a hole size which is beyond the micro-perforated range. Meanwhile, 

due to the problem simplification, the predicted acoustic impedance only qualitatively 

agree with experimental data [70].  

 

A continuous effort is to develop empirical models for the acoustic impedance 

prediction [70-79]. Through experimental data analyses, efforts were made to establish 

the flow parameters which can be intrinsically linked to the acoustic impedance of the 

MPP hole and that of the perforated panels. Various empirical models were proposed 

based on these flow parameters. Early attempts used the flow speed [71] or Mach 
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number [72-75] to characterize the grazing flow effects. These empirical models 

involve the assignment of some coefficient values in the proposed formula. It is noticed, 

however, that the problem is too complicated to be characterized only by a basic flow 

parameter such as Mach number [72-75]. Thus, many other studies then focused on 

exploiting other flow parameters which hopefully can better characterize the grazing 

flow effects. For example, Goldman and Chung [80] reported the effects of a stream-

wise pressure gradient in the boundary layer on the hole impedance. Goldman and 

Panton [81] investigated a series of parameters and finally adopted the use of the 

friction velocity, which later on led to the proposal of the acoustic impedance prediction 

models [70, 76-78]. Despite the efforts made, the search for pertinent flow parameters 

which can determine the acoustic impedance of the MPPs is still of actuality. Most 

importantly, different prediction models are shown to give very different results even 

using the same flow parameter [70]. Nevertheless, these studies indicate the necessity 

of including some boundary layer parameters to characterize the grazing flow effects. 

When the boundary layer is thick compared to the orifice diameter, the inner boundary 

layer parameters need to be included as suggested by Cummings [77]. 

 

Most of the aforementioned studies considered perforations with a hole diameter 

typically around 1 mm or larger. This, in a strict sense, falls beyond the scope of the 

micro-perforation in the perspective of achieving sound absorption. Among the most 

relevant works, one may cite Allam and Abom [75] who proposed an set of impedance 

formulae based on the flow Mach number and the experimental work of Malmary et al 
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[55]. 

 

With the fast development of the computational capability, numerical methods such 

as DNS, LES and RANS are more frequently used to investigate these problems [66, 

82-87]. Powerful numerical means allow scrutinizing the flow field around the MPP 

hole with much more details, thus warranting a better understanding of the sound energy 

dissipation mechanism and a more accurate description of the acoustic properties of the 

perforated holes in the presence of flow. For example, DNS was applied to a single 

Helmholtz resonator to understand its sound energy dissipation mechanism [82-84]. 

Results indicated a transition from the viscous-dominant dissipation in the shear layer 

near the hole to the chaotic vortex shedding dominant dissipation with increasing sound 

pressure level. It was shown that [85-87], without using the highly computationally 

costly methods like DNS or LES, more cost-effective tools like 3D URANS CFD could 

reasonably predict the acoustic behavior of the Helmholtz resonator [85] and that of the 

perforated panel silencers [86] in both no-flow and flow conditions. 

 

1.3 Motivations and thesis layout 

Existing work allowed a qualitative description of the acoustic behavior of MPPs 

in the presence of a grazing flow. The case with flow turns out to be much more 

complicated than its counterpart without flow. Different flow patterns could be seen 

near the orifice when configurations change, such as orifices with different dimensions, 
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sound pressure levels of the acoustic excitation, the flow velocity and its evolution. 

Despite the considerable progress made during the past decades, on the exploration and 

understanding of the interactions between the acoustic excitation and the grazing flow, 

there are still much unknowns, which are summarized as follows:  

 

1)  The sound energy dissipation mechanisms have been interpreted in many 

diverse or even contradictory ways, which up to now is still not fully 

understood.  

 

2) Different from the no-flow condition, a universally accepted and consistent 

acoustic impedance formula to guide the practical design of MPPs in the 

presence of flow is still lacking.  

 

3) The intrinsic flow parameters which can characterize the inherent grazing flow 

effects on the acoustic impedance of MPPs still need to be found. 

 

4)  Due to the aforementioned problems, research works pertinent to the 

applications of MPPs with grazing flow are fairly limited [35, 88, 89]. 

Consequently, the influences of parameters, such as flow velocities, panel 

dimensions, perforation ratios and hole diameters on the sound absorption of 

MPP absorbers are not clear when a flow is present. 
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5) With the increasing complexity due to the presence of the flow and the intimate 

interaction between the MPPs with the surrounding acoustic media, suitable 

modelling tools need to be developed. Among the required attributes are the 

efficiency, flexibility and versatility of the modelling method to cope with the 

need for system analyses and optimization.  

 

Motivated by this, the present work investigates the acoustic behavior of MPPs 

under fully developed turbulent grazing flow conditions within the linear acoustic 

regime. Main focuses are put on four aspects.  

 

1). The flow field around the holes of a MPP and the sound energy dissipation 

mechanism are scrutinized and investigated.  

 

2). A new flow parameter which intrinsically relates the grazing flow effects with 

the acoustic impedance of the MPP is identified.  

 

3). A new impedance prediction formula is proposed to supplement the one by Maa 

in the no-flow condition [23].  

 

4). The applications of MPPs in complex acoustic environment with grazing flow 

are investigated to provide practical guidance for a few typical applications. 
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More specifically, in Chapter 2, numerical studies are carried out through 3D 

URANS CFD simulations. Computed results are then presented for validating the CFD 

model, analyzing flow field near the hole, exploring sound energy dissipation 

mechanism and identifying the new intrinsic flow parameter. Based on this, a new flow 

parameter, alongside a complete set of impedance prediction formula for MPPs with 

grazing flow, is established through numerical experiments in Chapter 3. Prediction 

results from the proposed formula are then compared with those from other existing 

formulae or experimentally measured data to show the accuracy and the improvement 

that the new impedance formula brings about. In Chapter 4, sound absorption properties 

of MPP absorbers in a relatively ideal and simple acoustic environment are investigated 

in terms of sound absorption coefficient by using the established impedance prediction 

formula. To cope with the need of modelling, analyzing and optimizing MPPs in a fully 

coupled acoustic system, a sub-structuring technique is then presented in Chapter 5. To 

provide practical guidance for the design of MPPs in complex acoustic environment 

with grazing flow, applications of MPPs in flow ducts and in a more complex noise 

control devices with grazing flow are investigated in Chapters 5 and 6, respectively. 

Concluding remarks along with future suggestions are finally given in Chapter 7. 
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Chapter 2. CFD Simulations and Energy Dissipation 

Mechanism 

In this chapter, numerical studies are carried out to investigate the flow field near 

the aperture of the MPP holes by solving the compressible three-dimensional (3D) 

unsteady Reynolds averaged Navier-Stokes equations (URANS). The finite volume 

based commercial CFD software FLUENT is used as the computational tool. The 

choice of the simulation tool is justified by the observations made in previous work on 

acoustic attenuators [85-87]. A single unit cell composed of a micro-perforated hole 

with a backing cavity, previously studied by Malmary et al. [55], is investigated. 

Computed results are then compared to the experiments to verify the accuracy of the 

CFD model. Studies on the flow field around the hole under different flow speeds and 

acoustic forcing are presented, which allow the exploration of the sound energy 

dissipation mechanism and the identification of a new flow parameter which is shown 

to be well correlated to the acoustic impedance in the next chapter. 

 

2.1. Computational model and simulation method 

2.1.1. Model  

Consider a MPP panel with a honeycomb backing cavity as shown in Fig. 2.1. Each 

hole in the face plate and the cavity cell behind it form a Helmholtz resonator. The 

entire honeycomb MPP absorber can be regarded as an assembly of an array of 
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Helmholtz resonators. We assume a low perforation ratio (typically around 1%) so that 

each resonator would act independently and the interaction between the holes are 

therefore neglected. Under this condition, the acoustic impedance of the panel is equal 

to that of a single isolated MPP hole divided by the perforation ratio. The computational 

model will use a single Helmholtz resonator, shown in Fig. 2.1.  

 

 

 

Figure 2.1. Perforated panel (left) modeled by a single Helmholtz resonator (right). 

 

Geometrical parameters of the MPPs being investigated hereafter are listed in Table 

2.1. All panels, to be used for simulations and comparisons, both numerically and 

experimentally, are typical Micro-perforated panels (with hole diameters smaller than 

1mm).  Note that, Panel 1, with cylindrical holes of a diameter d = 0.68 mm, is the 

configuration used by Malmary et al. [55]. All panels have the same size of 24 x 24mm, 

with a 10 mm deep backing cavity, same as [55]. The side length of each MPP cell, sL , 

is determined based on the perforation ratio. 
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TABLE 2.1. Geometry parameters of MPPs. Plate 1 is taken from Malmary et al. [55]. 

 

Panel 

Number 

Orifice diameter 

d (mm) 

Panel thickness t 

(mm) 

t/d Perforation ratio 𝛿 

1 0.68 1.02 1.7 1.39% 

2 0.5 1.02 2.04 1.39% 

3 0.3 0.3 1 1.39% 

 

 

The modelled system is shown in Fig. 2.2 (two-dimensional view). A MPP cell is 

flush-mounted on one sidewall of a square duct with a cross section of 24 x 24mm. The 

upstream portion of the duct is 1000mm long, which allows the flow to be fully 

developed. The downstream portion contains at least two acoustic wavelengths 

corresponding to the highest frequency of interest as suggested by [90].  

 

 

 

Figure 2.2. System model.  
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The computational domain is discretized by multi-size grids, by using structured 

and unstructured meshes for the duct and the backing cavity, respectively. Denser 

meshes are used in the region near the orifice and the wall of the duct. Away from these 

regions, the mesh size increases gradually. To ensure an accurate description of the flow 

field near the wall, the mesh size of the first layer adjacent to the duct wall was designed 

to ensure that / 1fly z U v

+ =   , in which U   is the friction velocity, 
flz   is the 

distance from the first layer mesh to the wall in the normal wall direction and v  is the 

kinematic viscosity of the air.  

 

Inside the hole, the average size of the elements is 0.015 mm. In the duct, the grid 

spacing in the stream-wise direction ranges from 0.015 to 1.6 mm upstream the 

resonator and from 0.015 to 2.4 mm downstream, which results in a minimum of about 

65 and 43 grids per acoustic wavelength upstream and downstream the resonator 

respectively at the highest frequency considered in the study. The grid spacing in the 

normal wall and span-wise direction ranges from 0.0075 to 1mm and from 0.015 to 

0.8mm respectively. This results in a total of about 3,000,000 elements. The 

convergence of the solution in relation to the meshing is conducted through 

investigating the time-domain variation of the acoustic pressure and that of the velocity 

at the hole inlet section, which are used to calculate the acoustic impedance of the hole. 

The original mesh contains about 1,800,000 nodes, while the refined mesh includes 

over 2,400,000 nodes, with most of the additional points located within the area near 

the hole. The time step is also reduced from 5e-6s in stable grazing flow and 5e-7s for 
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acoustic simulation to 2.5e-6s and 2.5e-7s, respectively. Calculations results are plotted 

and compared in Fig. 2.3. The comparison indicates that there are only minor 

differences between the two cases and the results converge to the accuracy needed for 

impedance prediction. 

 

 

(a) 

 

(b) 

 

Figure 2.3. Acoustic pressure (a) and the corresponding normal velocity (b) at the hole 

inlet section. M=0.2, 3.15 kHz, 0.025 /aV m s= . 
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2.1.2. Computational method 

The 3D URANS is adopted using the commercial CFD code, FLUENT. The 

equations of URANS are derived from instantaneous Navier-Stokes equations by 

separating the flow variables into the mean component and the fluctuating component. 

These equations allow for solutions to the mean flow filed of the turbulent flow by time 

averaging the flow quantities. The number of the unknowns in the equations of URANS 

is more than that of the equations. These equations are unclosed. The Realizable k-ε 

turbulence model is adopted for this closure problem. Enhanced wall treatment is 

adopted for near wall treatment so that the near wall flow field until viscous sublayer 

region can be resolved and reasonably captured but not modelled. The mass flow rate 

boundary condition is applied to the inlet of the duct, which can be calculated as 

m U S=  , where U   is the free-stream grazing flow velocity and S   the cross 

section surface area of the channel. The pressure at the outlet is set to be the atmospheric 

pressure. Solid wall boundary conditions with no slip are imposed to all wall surfaces. 

A pressure-based implicit solver is employed. The pressure-velocity coupling scheme 

PISO (Pressure-Implicit with Splitting of Operators) algorithm is applied for both the 

stable mean flow field and the aero-acoustic coupling simulation. The second order 

scheme is chosen for both the spatial discretization and time integration. We consider 

the situation in which the MPPs are exposed to a constant room temperature in this 

work. Notwithstanding of above, this effect can be easily investigated through the 

established CFD model by changing the values of the initial temperature of the entire 

simulation domain. In the current work, the temperature and the ambient pressure of 
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the entire simulation domain are always initially set at 293T K=  and 101p kPa= . 

 

A two-step approach is used to deal with the interaction between the flow and the 

acoustic wave near the hole. The stable mean flow field is first computed. Harmonic 

acoustic wave with a given velocity amplitude aV   is then added as the acoustic 

excitation sin(2 )aV ft  , where f   is the acoustic excitation frequency. The stable 

mean grazing flow is calculated by running the unsteady solver until flow properties 

stop changing. The time step size for the stable mean flow computation is 5e-6s. That 

used in acoustic simulations is 5e-7s. 

 

More details on the model setting and calculation are listed as follows: 

 

⚫ In the General window, the pressure-based and transient time options are 

selected for the type of solver with the gravity effect for air being omitted. 

 

⚫ In the Models window, the energy equation is selected to be solved. For the 

viscous model Realizable k-ε model is selected, and Enhanced wall treatment 

is selected for near-wall treatment. The model constants are set as default 

values.  

 

 

⚫ In the Material window, ideal-gas option is selected for the density of air, the 

default values are selected for other properties of air, such as specific heat, 
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thermal conductivity, viscosity and molecular weight. 

 

⚫ In the Boundary Conditions window, mass-flow-inlet and pressure-outlet are 

selected for the types of inlet and outlet conditions of the duct, respectively. In 

the Mass-Flow Inlet window, for Momentum, Mass Flow Rate is selected as 

the Mass Flow Specification Method. Without acoustic excitation, its value is 

m U S=  , otherwise sin(2 )am U S V ft = +  . Initial Gauge Pressure is 

set as zero. The x-Component of Flow Direction is set to be 1, while the ones 

in y and z directions are both set to be zero. Non-Reflecting Boundary is not 

employed in the current study. The k and Epsilon option is selected for 

Specification Method for turbulence, the Turbulent Kinetic Energy and 

Turbulent Dissipation Rate are set to be 1, the default values. The Total 

Temperature in the Thermal window is set as 293k. In the Pressure Outlet 

window, for Momentum, the Gauge Pressure is set to be zero. The option 

Normal to Boundary is selected as Backflow Direction Specification Method. 

The settings of Specification Method, Backflow Turbulent Kinetic Energy and 

Backflow Turbulent Dissipation Rate for Turbulence are the same as those in 

Mass-Flow Inlet window. The Radial Equilibrium Pressure Distribution, 

Average Pressure Specification, Target Mass Flow Rate and Non-Reflecting 

Boundary are not employed. The Backflow Total Temperature in the Thermal 

window is set as 293k. In the Wall window, the Stationary Wall and No Slip 

options are selected for Wall Motion and Shear Condition, respectively. The 
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setting in the Thermal window are set as default. 

 

⚫ In the Solution Methods window, PISO is selected as the Pressure-Velocity 

Coupling Scheme. Skewness-Neighbor Coupling is selected with both 

Skewness Correction and Neighbor Correction being one. Green-Gauss Cell 

Based option is chosen for Gradient, and the Second Order or Second Order 

Upwind scheme is selected for the spatial discretization of Pressure, Density, 

Momentum, Turbulent Kinetic Energy, Turbulent Dissipation Rate and Energy. 

The Second Order Implicit scheme is selected for Transient Formulation. The 

options like Non-Iterative Time Advancement, Frozen Flux Formulation and 

High Order Term Relaxation are not selected. 

 

 

⚫ The values of Under-Relaxation Factors in Solution Controls window are all 

set as default values. 

 

⚫ In the Monitors window, 0.001 is chosen as the residuals for the continuity 

equation, the velocities, the energy equation, k and epsilon. 

 

⚫ In the Solution Initialization window, the Standard Initialization is selected as 

the Initialization Methods. The Reference Frame is selected to be Relative to 

Cell Zone. After clicking Initialize, the Initial Values for Gauge Pressure, 

velocities, Turbulent Kinetic Energy, Turbulent Dissipation Rate and 
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Temperature can be obtained based on the above settings. 

 

 

⚫ In the Run Calculation window, at the beginning of the calculation, a small 

value, like 5e-08s, is assigned as the Time Step Size and a larger value, like 30 

is assigned to Max Iterations/Time Step to overcome the convergence 

difficulties. After the calculated results start to stabilize, the Time Step Size is 

changed to be 5e-6s for stable flow field simulation and 5e-7s for acoustic 

simulation and the number of Max Iterations/Time Step is adjusted to be 20 

for both cases. 

 

2.2. Validation of the CFD model  

The viscous sub-layer region which is adjacent to the flow field in the hole plays 

a key role in determining the acoustic impedance of the hole. The velocity gradient in 

this layer and the friction velocity are important parameters in this near-wall region. 

They are first investigated to ensure a truthful description of the physical phenomena 

by the CFD model. 

 

2.2.1. Mean stream-wise velocity 

To check the quality of the flow simulation, the mean stream-wise velocity profiles 

at two upstream locations at M=0.25 are shown in Fig. 2.4. The origin of the coordinates 
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is set at the center of the inlet surface of the MPP cell. The same flow velocity profiles 

observed for these two upstream positions demonstrate that the flow is fully developed 

before reaching the MPP cell.  

 

The corresponding semi-log plots of the mean stream-wise velocity at 50x mm= −  

is shown in Fig. 2.5, along with the well-known logarithmic law [91]. In the figure,

+ = /U U U , with U  being the mean stream-wise velocity. It can be seen that the 

predicted data agree well with the empirical equation [91], including the viscous 

sublayer region ( 5y+  ) where the CFD data follow quite well with the well-known 

trend + =U y+ . 

 

 

Figure 2.4. Mean x-velocity profiles at different locations upstream the resonator, 

through the y=0 cross section. M=0.25. 
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Figure 2.5. Semi-log plots of the mean stream-wise velocity profile upstream the 

resonator at 50x mm= − , through y=0 cross section. M=0.25. 

2.2.2. Friction velocity 

As to be demonstrated later, the acoustic impedance of the MPPs under grazing 

flow is well correlated to the velocity gradient in the viscous sublayer over the duct 

wall, G, defined as 

  

2U
G

v

= ,                                                         (2.1) 

 

with the friction velocity, 𝑈𝜏, calculated by 

 

= wU




,                                                        (2.2) 
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where 
w   is the wall shear stress, which can be determined from the free-stream 

grazing flow velocity U
 and the Darcy friction factor as 

2

8
w

U 
 =  ,                                                    (2.3) 

 

The expression developed by Fujita [92] is used to calculate whose accuracy is shown 

to be within engineering accuracy [70]: 

 

1/5

0.178
=

eR
 ,                                                        (2.4) 

 

where 
e

hU
R

v

=  is the Reynolds number with h  being the height of the square duct. 

 

The numerically calculated friction velocity is compared with the prediction by the 

empirical equation [92] in Fig. 2.6. The agreement between the two sets of results 

demonstrates the validity of the computational model. 
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Figure 2.6. Comparison of the friction velocity between CFD and the empirical 

equation [92]. 

 

2.2.3. Acoustic impedance simulation and comparisons with experiments 

The accuracy of the CFD model to predict the acoustic impedance of MPPs in the 

presence of grazing flow is validated through comparisons with experimental data 

reported in the literature. 

 

 According to the definition of the normalized acoustic impedance of a MPP hole 

(Eq. 1.5), the following equation is used for its calculation. 

 

1 in out
hole

P P
Z

c u

−
= ,                                                (2.5) 
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where inP  and outP  are the space-averaged acoustic pressure over the inlet and outlet 

surfaces of the hole, respectively, u  is the space-averaged acoustic velocity normal to 

the hole cross-section. Since the acoustic wavelength is much larger than the thickness 

of the hole, the normal acoustic velocities at both sides of the hole can be assumed to 

be the same. 

 

The normalized acoustic impedance of the entire MPP can then be obtained by 

 

= +hole
MPP

Z
Z R j


= ,                                                (2.6) 

 

where R and   are the normalized acoustic resistance and reactance, respectively. 

 

Fast Fourier transform (FFT) is performed on the stable cycles of the related time 

signals, and their complex values at the acoustic frequency are determined [90]. Using 

Eqs. 2.5 and 2.6, the normalized acoustic impedance of MPP is then deduced. 

 

The acoustic behavior of Panel 1 under different flow speeds is first investigated, 

for a Mach number varying from 0.04 to 0.25 and an acoustic excitation at 111 dB at 

3150 Hz. Note this frequency is chosen to enable comparisons with the data provided 

in reference [55]. The Mach numbers alongside the corresponding Reynolds numbers 

of the computation cases are listed in Table 2.2. 

 



 

36 
 

TABLE 2.2. Computational cases. 

 

Mach number 0.04 0.08 0.1 0.15 0.16 0.2 0.25 

eR  21108 43271 52769 79153 84430 105538 131923 

 

The acoustic impedance of Panel 1, obtained from the CFD simulations and from 

experimental measurements [55], is compared in Fig. 2.7. Both sets of results show that 

the acoustic resistance increases with the Mach number, while the reactance decreases. 

It can also be seen that the experimentally observed trend and the magnitude of the 

impedance terms are reasonably well reproduced by the CFD simulations.  

 

Note that, in the no-flow case, an end correction term appears in the reactance part 

in Eq. 2.6 to count for the effective mass flowing through the hole. This, however, is 

difficult to be precisely determined in the present case, which apparently depends on 

the flow conditions. The end-correction, however, is not necessary to the resistance part 

with flow, since dissipation mainly takes place inside the hole. It is also pertinent to 

note that previous work [90] has shown that, with grazing flow, the acoustic resistance 

is insensitive to frequency variations (also confirmed in the following analyses in 

Chapter 3). Therefore, the comparison, though at only one frequency, is deemed 

representative enough. 

 

The above validations confirm the validity of the acceptable accuracy of the 

proposed CFD model, which is to be used for flow analyses and the development of the 
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acoustic impedance prediction formula. 

 

 

 

Figure 2.7. Comparison of the normalized acoustic impedance of panel 1 between 

CFD and experiments. 

 

2.3. Flow field visualizations and analyses 

 In this section, the flow field near the MPP hole under different flow speeds and 

acoustic forcing is investigated and presented in detail with the aim to better understand 

the sound energy dissipation mechanism, the mechanisms behind the changes in 

impedance with grazing flow and find the intrinsic flow parameters which can better 

describe the grazing flow effects on the impedance.  
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2.3.1. Flow field at different Mach numbers 

 Analyses on the flow field near the MPP aperture and inside the hole would help 

better understand the physical process of the flow-acoustic-MPP interaction. To this 

end, the case without acoustic excitation is first examined. Fig. 2.8 shows the velocity 

streamlines of the mean grazing flow near the hole of the resonator at different Mach 

numbers. It can be seen that the flow passes over the hole with no visible fluid flowing 

into or out of the cavity through the hole, along with the formation of a shear layer 

above it. The grazing flow induces an additional flow motion inside the hole by the 

shear stress transmitted through the hole in the wall. At a low Mach number, i.e. M=0.04, 

two vortical flow regions in the hole are observable. In the upper region, a big vortex 

with clockwise rotation is formed, entraining a smaller one in the lower area with 

counterclockwise rotation. The vortices together with the small hole would prevent the 

fluid entrainment through the hole. When the flow velocity increases, the smaller vortex 

in the lower part of the hole disappears while the upper vortical flow region grows, 

leading to an increase in the contacting area between the vortical flow and the wall of 

the hole. 
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(a)                  (b)                   (c)  

 

Figure 2.8. Velocity stream-lines of mean grazing flow near the hole of the resonator 

through y=0 cross section at different flow Mach numbers. (a) M=0.04, (b) M=0.1, (c) 

M=0.25. 

 

Acoustic excitation is then added. As an example, the velocity streamlines near the 

hole with an acoustic excitation are shown in Fig. 2.9. It can be seen that, at a very low 

Mach number of M=0.04, different from the sole mean grazing flow case (Fig.2.8), 

fluid is entrained into the cavity. Meanwhile, the vortex in the upper area of the hole 

becomes smaller and the small vortex in the lower area of the hole with counter 

clockwise rotation disappears, as compared with the case without acoustic excitation 

(Fig. 2.8). However, the effect of the acoustic excitation on the global flow field is not 

obvious at other flow velocities. This can be explained by the fact that the size of the 

vortex in the hole gradually grows with the flow speed, along with an increase of the 

resistant effect of the vortex in the hole. In the present case, the acoustic energy is not 

strong enough to overcome the resistant effect of the vortex in the hole at high flow 

velocities. As a result, unlike the case of M=0.04, there is no fluid flowing into the 

cavity, and the streamline pattern near the hole is almost the same as the case without 
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acoustic excitation. 

 

 

(a)                     (b)                    (c)  

 

Figure 2.9. Velocity streamlines near the hole of the resonator through y=0 cross 

section at different flow velocities. 𝑓=3.15 kHz, |𝑉𝑎|=0.025m/s. (a) M=0.04, (b) 

M=0.1, (c) M=0.25. 

 

2.3.2 Flow field at different SPLs 

Figure 2.10 shows the velocity streamlines near the orifice at different instants 

within one cycle at different sound pressure levels (SPLs). At 111dB, the results shown 

in Fig. 2.9b have indicated that the fluid flows across the orifice with no obvious air 

flowing into the cavity through the orifice. At 120 dB, it can be seen that a portion of 

fluid starts to flow into and then out of the cavity through the orifice at different instants 

of one acoustic cycle. When the sound pressure level becomes even higher, the amount 

of fluid flowing into and out of the cavity through the orifice increases correspondingly. 

Meanwhile, the size of the vortex formed in the hole continuously shrinks and finally 

disappears. The inflow and outflow pattern together with the interactions between the 
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acoustic wave and the grazing flow field become more obvious, resulting in an increase 

in the movement of the shear layer above the orifice, larger effective areas for fluid 

flow through the orifice as well as the discharge coefficient. 

 

 

 

          (a) 120dB               (b) 140dB               (c) 160dB 

 

Figure 2.10. Velocity streamlines near the orifice of the resonator through y=0 cross 

section at different sound pressure level. M=0.1, 𝑓=3.15 kHz. 

 

The vorticity fields near the orifice at different SPLs are shown in Fig. 2.11. It can 

be seen that below 140 dB the excitation energy is not high enough to generate the shear 

layer separation from the wall of the orifice. Acoustic induced vortex shedding starts to 

appear at 140 dB, though not very obvious. At an even higher sound pressure level 160 

dB, the vorticity activity becomes much stronger. 
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(a) 120dB               (b) 140dB              (c) 160dB 

 

Figure 2.11. Vorticity field near the orifice through y=0 cross section at different 

sound pressure level. M=0.1, 𝑓=3.15 kHz. 

 

2.3.3 Sound energy dissipation mechanism 

It is believed that the vortex in the hole induced by the steady grazing flow can 

prevent fluid from going into and out of the cavity. When inflow and outflow occur, 

part of the sound energy is dissipated to overcome the resistant effects of the vortex in 

the hole. In addition, the shear layer above the hole would move up. This movement 

would contribute to the sound energy dissipation as well. Consequently, the sound 

energy consumed increases with the amount of fluid flowing into and out of the cavity 

as interpreted by many researchers [54, 55, 58, 65, 66]. As the discharge coefficient and 

the movement of the shear layer are related to the rate of the fluid reaching the cavity, 

some impedance models [54, 58, 65, 66] are proposed based on the discharge 

coefficient and the movement of the shear layer above the orifice. 



 

43 
 

 

 

 

Figure 2.12. Normalized resistance of panel 1 at different SPLs predicted by CFD. 

M=0.1, 𝑓=3.15 kHz. 

 

The acoustic resistance of panel 1 at different SPLs, predicted by CFD simulations, 

is plotted in Fig. 2.12. As can be seen, below 140 dB the resistance is almost constant, 

independent of the SPL, typical of linear behavior. Starting from 140 dB, it starts to 

increase. The above flow field analyses show that below 140dB, in its linear region, the 

phenomenon that fluid flows into and out of the cavity intensifies with the increase of 

the SPL and above 140 dB acoustic induced vortex shedding takes place. The result that 

the resistance remains nearly constant when inflow and outflow intensify and change 

until vortex shedding takes place clearly indicates that the enhancement of the inflow 

and outflow does not generate more sound energy dissipation and it is therefore 

plausible that the sound energy dissipated by overcoming the resistance of the vortex 

and the movement of the shear layer is much smaller than the viscous effects near the 
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hole. Thus, before vortex shedding takes place, the dominant acoustic energy 

dissipation mechanism should be the viscous effects. The effects of the resistance to the 

vortex in the hole as well as shear layer movement can be neglected compared to the 

viscous effects for the micro small-scale holes. 

 

Based on the above discussions, it is clear that the sound energy of MPPs is 

dissipated mainly due to the vicious effects and vortex shedding with a grazing flow. In 

the linear SPL region, most of the acoustic energy is dissipated through viscous 

dissipation in the shear layer near the orifice, irrespective of the amount of inflow and 

outflow fluid. At extremely high SPL, vortex shedding should be the dominant 

contributing factor to the energy dissipation. Between the high and linear sound 

pressure level range, the acoustic dissipation mechanism transits from viscous 

dissipation in the shear layer near the orifice to the chaotic vortex shedding dominated 

dissipation. 

 

2.3.4 Increase of the acoustic resistance with flow velocity 

 It is well established that the resistance part of the acoustic impedance increases 

with flow velocities. Based on the analysis of flow field near the orifice, the reasons 

behind this phenomenon could be explained as follows. 

 

As shown in Fig. 2.8, with the increase of the flow velocity, the vortex in the hole 
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becomes larger, resulting in an increase of the contact area between the vortical flow in 

the hole and the wall of the hole. Meanwhile, the velocity near the wall of the hole also 

increases, generating a larger velocity gradient at the wall. Since the viscous force is 

proportional to the gradient of the flow velocity and the contacting area, the viscous 

force near the wall of the hole would also increase with the flow velocity. Thus, under 

acoustic excitation, more energy could be dissipated through viscous effects due to the 

increase of the viscous effects near the wall of the hole. This can explain why the 

resistance increases with the flow velocities. This explanation is quite different from 

reasons given by previous researchers, such as, the “blowing away” process [61-64], 

the increase movement of the shear layer above the hole [58, 65] and the discharge 

coefficient [54, 55, 66, 67]. 

 

2.3.5. Intrinsic flow parameters for acoustic impedance prediction 

The flow field near the hole can be seen as a superposition of the oscillating flow 

field caused by the acoustic excitation and the grazing flow. It can be surmised that the 

flow parameter which can best determine the flow field near the hole would influence 

the acoustic impedance of the MPP holes. An enlightening example is the case of a 

linear shear flow passing over a plane wall with a circular hole, generating the so-called 

Stokes flow near the hole [93-97], in which case the local Reynolds number based on 

the diameter of the orifice is smaller than 1. The exact solution by Davis [97] suggests 

that the velocity gradient of the linear shear flow might be the key parameter which 

determines the distribution of the velocity and pressure near the hole. Enlightened by 
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the work of Davis [97], we propose the flow velocity gradient in the viscous sublayer 

as the new flow parameter, and subsequently establish its link to the acoustic impedance 

of the MPP hole in Chapter 3. The choice of the velocity gradient is also supported by 

the flow field analyses, reported in Section 2.3.1. With the viscous sublayer being 

adjacent with the flow field in the hole, the velocity gradient in this layer produces the 

shear stress, responsible for the flow pattern in the hole as well as the acoustic energy 

dissipation.  

  

2.4. Summary 

The acoustic behavior of micro-perforated panels, exposed to a fully developed 

grazing turbulent flow, is investigated through numerical simulations. Grazing flow- 

and acoustic wave-excited flow field near the orifice of the MPP under different flow 

conditions is scrutinized through 3D URANS CFD simulations. 

 

Based on the analyses of the flow field near the orifice, the following conclusions 

can be drawn. 

 

1. Flow pattern near the orifice of micro-perforated panels 

⚫ Without an acoustic excitation, the fluid flows across the hole of the MPP to form 

a thick shear layer above it. At a low flow speed, two vortical flow regions appear 

in the orifice. In the upper area, a big vortex with clockwise rotation is formed due 
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to the shear stress transmitted through the hole. It then entrains a smaller vortex 

with a counter clockwise rotation in the lower area of the hole. With the increasing 

flow speed, the smaller vortex disappears and the big vortex in the upper area of 

the hole becomes larger, creating an increasing resistance effect. 

 

⚫ Acoustic excitation promotes the flow passing through the hole at a low flow speed. 

This is due to the relatively smaller size of the vortex formed in the hole and 

relatively weak resistant effects. 

 

⚫ Because of the resistance effect of the vortex in the MPP hole, when the sound 

pressure level of the acoustic excitation is not high enough, the flow field near the 

hole is almost the same as the one with only grazing flow and the influence of the 

acoustic excitation on the flow field is insignificant. While increasing the sound 

pressure level, fluid starts to flow into and out of the cavity through the orifice. 

This inflow and out flow pattern becomes stronger with the increase of the sound 

pressure level. 

 

⚫ Acoustic induced vortex shedding happens near the hole at high sound pressure 

levels. 

 

2. Sound energy dissipation mechanism 

⚫ The resistance effects of the vortex, as well as the movement of the shear layer 
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above the hole, is negligible compared to the viscous effects and vortex shedding 

inside the hole and at its exit. The dominant sound energy mechanism is basically 

the viscous effects and vortex shedding effect with grazing flow.  

 

⚫ In linear sound pressure level region, most of the acoustic energy is dissipated 

through viscous dissipation in the shear layer near the wall of the hole, irrespective 

of the flow pattern.  

 

⚫ Between high and linear range sound pressure levels, the acoustic dissipation 

mechanism transits from viscous dissipation in the shear layer near the hole to the 

chaotic vortex shedding. 

 

⚫ When SPL far exceeds the linear sound pressure level region, vortex shedding 

dominates the energy dissipation. 

 

3. Explanation on the increase of the acoustic resistance with the flow velocitiy 

The increase of the viscous force near the wall of the hole with flow velocities leads 

to the increase of the sound energy being dissipated through the viscous effects in the 

shear layer near the hole wall. 

 

4. Flow parameters determining the acoustic impedance 

The velocity gradient in the viscous sublayer over the duct wall is identified as the 
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intrinsic flow parameter which is inherently correlated to the acoustic resistance of the 

MPPs with grazing flow. 

 

The numerical analyses conducted in this Chapter reveal the underlying physics of 

the flow-MPP interaction, the dominant energy dissipation mechanism and the intrinsic 

flow parameter to be used for the acoustic impedance prediction of MPPs. This paves 

the way forward to the establishment of prediction model for acoustic impedance of 

MPP in grazing flow, which will be reported in Chapter 3.  
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Chapter 3. Impedance Prediction Formula and Validation 

In this chapter, the relationship between the velocity gradient in the viscous 

sublayer region over the duct wall and the acoustic impedance of the MPP orifice under 

a grazing turbulent flow is investigated through numerical experiments. The excellent 

agreement of the acoustic resistance between the CFD and experimental data along with 

the relatively low computation cost of the URANS, as detailed in Chapter 2, establish 

the fact that the CFD is a reliable tool to be adopted. Based on a large amount of 

numerical simulations, a new acoustic impedance model of MPPs in grazing flow is to 

be proposed in this Chapter after identifying a new flow characteristic parameter. 

Measurements based on an inverse impedance derivation method are then carried out 

to experimentally obtain the acoustic impedance of a MPP under the low-speed grazing 

flow condition within a linear acoustic excitation region. Finally, the accuracy of the 

acoustic impedance prediction model and the improvement it brings about are 

demonstrated through comparisons with the measured data, as well as the experimental 

data published in the literature. 

 

3.1. Acoustic impedance prediction formula 

3.1.1. Relationship between the velocity gradient and the acoustic resistance of 

MPPs 

To establish the relationship between the velocity gradient in the viscous sublayer 

over duct wall, denoted by G, and the acoustic resistance of MPPs under a grazing 
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turbulent flow, numerical experiments are curried out. Panel 1, the same one used in 

[55] is firstly investigated . After finding the relationship between the velocity gradient 

in the viscous sublayer and the acoustic resistance of this panel, other panels will be 

used for further verifications. For each panel, additional computational cases are 

considered with details tabulated in Table 3.1. In each case, the panel is exposed to the 

same flow speed range and acoustic excitation level as Chapter 2, but at different 

frequencies.  

 

TABLE 3.1. Computational cases used to find the relation between G and the acoustic 

resistance. 

 

Velocity amplitude of the 

incident acoustic wave 

(m/s) 

Frequency (Hz) Mach number eR  

|𝑉𝑎| =0.025 

3150, 3000,  

2800,  

2600, 2400 

 

0.1 

 

52769 

3300, 3150, 

3000, 

2800, 2600, 

 

0.15 

 

79153 

3300, 3150, 

3000, 

2800, 2600, 

 

0.2 

 

105538 

3300, 3150, 

3000, 

2800, 2600, 

 

0.25 

 

131923 

 

In the presence of the grazing flow, we replace outR  in Eq. 1.7b (representing the 

viscous loss outside the hole for MPPs without flow) with a new term, , to account 
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for the changed viscous loss. Therefore, the normalized acoustic resistance of the MPP, 

flowR , writes 

  

flow inR R = + .                                                     (3.1) 

 

 

 

Figure 3.1. Relationship between   and G  for Panel 1. |𝑉𝑎|=0.025m/s. 

 

Both   and G  are non-dimensionalized as /c fd  and /Gt fd , respectively. 

Fig. 3.1 displays the CFD results using Panel 1 at different excitation frequencies 

ranging from 2400 to 3300 Hz at different flow velocities. The plot is regrouped into 

four groups, each having the same Mach number but different frequencies. The 

corresponding Mach number varies from 0.1 to 0.25. As observed in Fig. 3.1, although 

each group of results seems to have a slightly different slope, there seems to exist a 

rather linear relationship between the two parameters ( /c fd  and /Gt fd ) which 

can be reasonably well represented by a straight line. This also confirms that the 
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amended term in the acoustic resistance formula under grazing flow is related to the 

velocity gradient in the viscous sublayer region. 

 

To further confirm the generality of the observed linear relationship, two other 

MPPs (Panels 2 and 3 in Table 2.1) with different hole dimensions are also examined 

through CFD simulations (with cases listed in Table 3.1). Results are shown in Fig. 3.2, 

which show that, though following a different slope, the previously observed linear 

relationship between /c fd   and /Gt fd   still holds reasonably well, confirming 

the general nature of the observations made on Panel 1. 

 

 

Figure 3.2. Relationship between   and G  for panel 2 and 3. |𝑉𝑎|=0.025m/s. 

 

A linear regression analysis is then conducted to establish the observed linear 

relationship as： 
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=
c Gt

A B
fd fd


+ ,                                                     (3.2) 

 

where A and B, as a function of /t d , are to be determined. Curve-fitting the CFD 

calculated resistance data for panel 1, 2 and 3 leads to the following expression: 
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.                                  (3.3) 

 

3.1.2. Impedance prediction model of MPPs and validations 

Combining Eqs. 3.1 and 3.3, a normalized acoustic resistance formula for MPPs 

under grazing turbulent flow is established as follows: 
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 ,                     (3.4) 

 

with G  calculated by Eqs. 2.1 to 2.4 for square flow ducts.  

 

This new acoustic resistance prediction formula replaces the Maa’s formula [23] , 

to be applied when a grazing flow is present. As discussed in Chapter 2, the presence 
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of grazing flow affects the viscous effects near the hole. Therefore, the only flow-related 

term   can be interpreted as the one to account for the changes in the flow-induced 

viscous effects. This acoustic prediction formula also indicates that with the grazing 

flow, the acoustic behavior of MPPs is not only dependent on the traditional panel 

related parameters, such as the hole diameter d  , perforation ratio    and panel 

thickness t , but also the parameters which can change its surrounding flow field such 

as the size of the duct and the flow velocity, since the velocity gradient is determined 

by these parameters. The above analysis also demonstrates that the case with flow is 

much more complicated than the case without flow. 

 

 

 

Figure 3.3. Normalized acoustic resistance comparisons between proposed formula 

and experimental data for panel 1. 𝑓=3.15 kHz, |𝑉𝑎|=0.025m/s. 
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Figure 3.4. Normalized acoustic resistance comparisons between proposed formula 

and CFD for panel 1. 0.025 /aV m s= .  

 

 

 

Figure 3.5. Normalized acoustic resistance comparisons between proposed formula 

and CFD for panel 2. 0.025 /aV m s= .  
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Figure 3.6. Normalized acoustic resistance comparisons between proposed formula 

and CFD for panel 3. 0.025 /aV m s= .  

 

For validation purposes, Fig. 3.3 shows a comparison of the normalized acoustic 

resistance between the proposed formula (Eq. 3.4) and the experimental data for Panel 

1, reported in [55]. Meanwhile, the same comparisons with the CFD data for Panel 1, 2 

and 3 at other frequencies are also given in Figs.3.4-3.6, respectively, with different 

Mach numbers. These comparisons clearly show that the proposed formula can not only 

capture the trend but also agree well with both the experimental data and CFD 

simulations. They also confirm the fact that the resistance is nearly constant and 

insensitive to frequency variations.  

 

It should also be pointed out that the above analyses and the proposed acoustic 

resistance formula are based on a number of selected cases. Therefore, the validity 

range, as verified in the present study, is limited to the variation range of the parameters 
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used in the simulation, e.g. 131923eR    (corresponding to 0.25M    for current 

cases), 1 2
t

d
   and under linear acoustic excitation range.  

 

 

 

Figure 3.7. Comparisons between the proposed formula with that of Kirby and 

Cummings [70] and that of Allam and Abom [75] for panel 1. 𝑓=3.15 kHz, 

|𝑉𝑎|=0.025m/s. 

 

Additional comparisons with other existing models reported in the literature are 

finally conducted. To this end, Kirby and Cummings’ model [70] and Allam and 

Abom’s model [75] are used, with results shown in Fig. 3.7. To facilitate comparisons, 

experimental data [55] are also provided on the same figure. It can be seen that the 

prediction results by the present formula seem to fit the measured data better than the 

other two models. More specifically, compared with Kirby and Cummings’ model, the 

present model seems to work better, especially at low March number range before 0.1. 

In the higher Mach number region, the proposed formula follows better experimental 
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data than Allam and Abom’s model. Over the entire region, the proposed model can 

capture the nonlinearly increasing trend of the acoustic resistance.  

 

As a final remark, it should be noted that the above analyses heavily focus on the 

acoustic resistance part of the impedance formula. To complete the acoustic impedance 

prediction, the proposed resistance formula (Eq. 3.4) can be combined with the acoustic 

reactance prediction model proposed by Cummings [77], which was tested to show 

rather good consistency against the experimental results on Panel 1 as plotted in Fig. 

3.8. Casting Cummings’ reactance formula by using parameter G proposed in this paper 

is straightforward. Combined with Eq. 3.4, a complete set of the acoustic impedance 

prediction formula for MPPs with grazing flow within the linear acoustic regime is 

established and written as,  

 

flow flow flowZ R j= + ,                                                 (3.5) 

 

where 
flowR   and 

flow   are the normalized acoustic resistance and reactance of the 

MPPs, respectively, detailed as 
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Figure 3.8. Normalized acoustic reactance comparisons between Cummings’ [77] 

model and experimental data for panel 1. 𝑓=3.15 kHz, |𝑉𝑎|=0.025m/s. 

 

As mentioned before, both previous work [58, 65, 75] and the CFD simulations in 

Figs. 3.4-3.6 show that, with grazing flow, the acoustic resistance is roughly 

independent of frequency. Therefore, the experimental data found in literature, though 

at one frequency, is rather representative. Similarly, the limited cases being investigated 

in this section, actually cover a much wider scope and applicable for a range of different 

frequencies. However, considering the very scarce experimental research on MPPs with 

low grazing flow velocity under linear acoustic excitation region, the proposed formula 

has only been compared with a very limited amount of experimental data reported in 
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the literature [55] up to now. Meanwhile, in a broader sense, it is felt that the lack of 

sufficient experimental data on MPPs under well-controlled testing conditions is a 

bottlenecking problem, hampering the development of the acoustic impedance 

prediction tools for the study of MPPs in flow. 

 

Motivated by this, hereafter, experiments are conducted to educe the acoustic 

impedance data of a MPP under various flow velocities inside a flow duct using a 

previously developed impedance derivation technique [98]. The educed impedance data 

are then used to further validate the established impedance formulae.  

 

3.2. Impedance derivation method 

An inverse approach is used for the acoustic impedance derivation. The impedance 

of a liner, flushed mounted in a flow duct, can be inversely educed by minimizing the 

difference between the experiment results and a wave propagation model, as detailed 

in reference [98]. For the completeness of the study, the derivation method is briefly 

recalled here. 

 

 

Figure 3.9. Sketch of the system. 
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Figure 3.9 describes the system under investigation along with the Cartesian 

coordinate system used in the model. Incident acoustic waves propagate along the duct 

with a grazing flow. A locally reactive MPP absorber, with a length of L, is flush-

mounted on one of the side walls of the duct. The system is divided into three segments: 

a lined segment ( 0 Z L   ) with uniformly distributed surface impedance and two 

unlined ones, upstream ( Z L ) and downstream ( Z L ), denoted by segment 1, 2 and 

3, respectively. It is assumed that the incoming grazing flow in the duct, with an average 

(bulk) Mach number M, is inviscid and uniform across the cross section of the duct. 

Harmonic acoustic waves propagating in the uniform mean flow are governed by the 

convected wave equation: 

 

2 2( ) 0p jk M p
z


 − + =


,                                             (3.7) 

 

where 1j = −  and /k c=  is the free-space wave number.  

 

Over the rigid and unlined portion of the duct walls, the normal particle velocity 

vanishes, yielding either 

 

0
p

x


=


,       (3.8) 

or 

0
p

y


=


,                             (3.9) 

on the respective parts of the duct. 
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Over the lined duct portion in segment 2, Ingard-Myers boundary condition is 

imposed, which writes 

 

2( , , ) [ ] ( , , )y sjkv x b z Z jk M p x b z
z


= +


,                                (3.10) 

 

where sZ  is the normalized surface acoustic impedance of the liner absorber. 

 

The acoustic pressure ( ), ,p x y z   in different duct segments can then be 

expressed in the following form based on the classical mode-decomposition theory: 

 

1( , , ) ( )N Nj z j z

N N N

N

p x y z A e A e
 
+ −− −+ −= + ,                                (3.11) 

2 ( , , ) ( )N Nj z j z

N N N

N

p x y z B e B e
 
+ −− −+ −= + ,                                (3.12) 

3( , , ) ( )N Nj z j z

N N N

N

p x y z C e C e
 
+ −− −+ −= + ,                                 (3.13) 

 

where N , N  and N  are the Nth mode shape functions of the cross section of the 

duct in segments 1, 2 and 3, respectively, analytically expressed as 

 

1 1( , ) cos( )cos( )N m nx y k x k y = ,                                   (3.14) 

2 2( , ) cos( )cos( )N m nx y k x k y = ,                                   (3.15) 

3 3( , ) cos( )cos( )N m nx y k x k y = ,                                (3.16) 
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with the wave numbers in x  and y  directions being 

 

1 1 /mk m a= , 1 1 /nk n b= , and 1 1, 0,1,2.....m n = ,                     (3.17) 

2 2 /mk m a=  , and 
2 0,1,2.....m = ,                                   (3.18) 

3 3 /mk m a=  3 3 /nk n b= , and 3 3, 0,1,2.....m n = .                        (3.19) 

 

The wave number in the y-direction 2nk  in segment 2 can be sought from the 

following eigenvalue problem: 

 

2 2

1
( )[ ] tan( )N N n n

s

k M k M jkk k b
Z

  − − − = .                  (3.20) 

 

The axial wave numbers N  , N   and N   in the three segments and their 

corresponding wavenumbers in the x   and y   directions satisfy the dispersion 

relation: 

 

2 2 2 2( ) ( ) ( ) ( )x y z zk k k k Mk + + = − ,                  (3.21) 

 

where the plus and minus superscripts denote waves travelling in the positive and 

negative z directions, respectively. The axial wavenumbers   and   in the unlined 

parts, segments 1 and 3, can be directly derived by using Eqs. 3.17, 3.19 and 3.21. 

 

By defining 1
=s f

s

A A
Z

=  , considering both 
sA   and 

2nk   as functions of   
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ranging from 0 (rigid) to 1 (absorber), and differentiating Eqs. 3.20 and 3.21 with 

respect to  , the following ordinary differential equation can be obtained 

 

2

2

2

0 2 2 2 2

( )

tan( ) sec ( ) 2 ( /

f zn

n n n f z n

A k Mkdk

d jk k b jbkk k b A MW k Mk k k 

−
=
− − + − ）

,   (3.22) 

2 2 22 2= 1 1 (1 )[( ) ( ) ]m nk k
W M

k k
− − + .                             (3.23) 

 

Using the 4th order Runge-Kutta integration scheme by integrating Eq. 3.22 over   

from 0 to 1, the positive and negative axial wavenumbers as well as their corresponding 

wave numbers in y  direction in the lined part (segment 2) can then be extrapolated. 

 

The acoustic fields in the three segments are coupled together by using the mode-

matching method by ensuring the continuity of the acoustic pressure and axial particle 

velocity at the interface between each pair of segments and the unknown modal 

amplitudes A, B and C in Eqs. 3.11-3.13 can be readily obtained given that the incidence 

and the boundary condition at the termination of the duct are known. 

 

The unknown liner impedance is then obtained through an iterative procedure by 

minimizing the following objective function, 

 

* *

, ,exp , ,exp= ( )( )
N

n sim n n sim n

n

F p p p p− − ,                                   (3.24) 
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where the superscript * represents the complex conjugate; 
,expnp  and 

,n simp  are the 

measured and computed sound pressure in the duct, respectively. 

 

Considering only plane wave can propagate in the unlined downstream segment 

for the present study, the reflection effect of the termination of the duct is included by 

introducing the reflection coefficient only for the plane wave mode, as 
0

0

0

C
R

C

−

+
=  , 

which can be obtained by two microphones flushed mounted in the downstream unlined 

part of the duct. 

 

3.3 Measurements 

3.3.1 Test sample  

The test sample, as shown in Fig. 3.10, is a single layer MPP absorber consisting 

of a micro-perforated panel, a honeycomb core and an aluminum backing plate. The 

edges of the absorber are carefully sealed to avoid acoustic leakage. The sample is 

designed to have a maximum sound absorption near 1200 Hz, below the cut-on 

frequency of the flow duct. The MPP, made of aluminum, has a dimension of 500 x 100 

mm with cylindrical holes manufactured through chemical corrosion. The holes are 

manufactured to be uniformly distributed over the sample surface. The perforation ratio 

of the panel is 0.945%. Both the diameter of the hole and the thickness of the panel are 

0.5mm. The honeycomb core is made of ABS resin, forming a backing layer of 25mm 

thick. It is designed and 3D printed to ensure that the center of each honeycomb cell is 
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coaxially aligned with a MPP hole. The honeycomb core is bonded to the MPP to 

rigidify the thin panel and make the MPP absorber locally reactive[53]. 

 

 

(a) 

 

(b) 

Figure 3.10. Test sample (a) Honeycomb core; (b) assembled honeycomb MPP 

absorber. 

3.3.2 Experimental set-up 

Measurements are conducted in a closed-loop low-speed acoustic wind tunnel with 

a background noise of around 82dB at the maximum flow speed considered in the 

current study. The working section is about 1.8m long with a cross section of 100 x 100 

mm, corresponding to a cut-on frequency of 1700 Hz. As shown in Figs. 3.11 and 3.12, 

the honeycomb MPP absorber is flush-mounted on the upper wall of the square duct 

within its working section. Eleven 1 4  -inch microphones (B&K 4935) are used to 
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measure the acoustic pressure at different locations along the duct. They are flush-

mounted on the wall of the duct opposite to the absorber and connected to conditioning 

amplifiers (B&K Nexus 2691). The positions and the separation distance between the 

microphones are shown in Fig. 3.11. A single-tone acoustic excitation generated by a 

loudspeaker is used as the sound source within the frequency range below the cut-off 

frequency of the duct, thus allowing the sample to be exposed to a grazing plane wave 

excitation. Microphone 1 is used to monitor the sound pressure of the acoustic source. 

Preliminary tests are made to ensure the linear property of the MPP absorber by varying 

the incidence pressure levels up to 130dB. In the subsequent analyses, test cases using 

pure tone excitation at 110 dB, are used to make sure the results presented in this work 

are in a range where the MPP behave linearly. The middle span flow profile, upstream 

the absorber, is obtained by measuring the axial velocities at different positions in the 

normal wall direction through moving a pitot tube transversely across the duct. 

 

Prior to the impedance derivation tests, microphones are calibrated to guarantee 

the quality of the measured data. As shown in Fig. 3.13, two microphones are closely 

mounted in the duct opposite to each other, whose outputs are used to calibrate the 

pressure amplitude and phase. For the calibration, the central portion of the duct are 

closed by rigid caps. 
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Figure 3.11. Sketch of the test setup for derivation of the acoustic impedance of a 

MPP liner.  

 

 

Figure 3.12. Experimental setup for derivation of the acoustic impedance of a MPP 

liner. 
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Figure 3.13. Setup for microphone calibrations. 

 

3.4. Results and discussions 

3.4.1 Mean flow profile in the duct 

For a fully developed flow in a duct, the following well-adopted equations [91] can 

be used to calculate the mean stream-wise velocity. 

 

U y+ +=                for 5y+   in viscous sublayer,            (3.25) 

1
ln 5.2

0.41
U y+ += +      for 0.1

y

e
  in the inner flow region,        (3.26) 

2.760.008( )
clu U y

u e

−
−

=     for 0.1
y

e
  in the outer flow region,        (3.27) 

 

where  clu   is the centerline velocity and e   the half channel height. The friction 

velocity U
 can be calculated by using Eqs. 2.2-2.4 for square flow ducts. 
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The inner flow region described by Eqs. 3.25 and 3.26 is universal and 

independent of the channel geometry. However, the geometry of the channel is 

important to the outer flow region described by Eq. 3.27, which here is interpolated 

from the experimental data. The measured mean stream-wise velocity profiles, 

upstream the MPP absorber, for different average flow Mach numbers are shown in Fig. 

3.14, along with the theoretically calculated profiles. The good agreement between the 

two sets of data confirms the full development of the flow and also verifies the averaged 

Mach numbers calculated from the measured data. 

 

 

 

Figure 3.14. Mean flow profiles upstream the liner at different flow velocities. 

 

3.4.2 Measured and predicted MPP acoustic impedance 

 The proposed formulae Eq. 3.6, for the prediction of the acoustic impedance of 
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MPPs with grazing flow, are compared with the educed impedance data. The formulae 

have been validated in Section 3.1.2 through comparisons with the experimental data 

reported in reference [55]. However, as the published experimental data on MPPs with 

grazing flow are scarce and limited to some very specific test configurations, we will 

use the educed experimental impedance data under various flow velocities to provide 

further validation of the proposed impedance formulae. 

 

Fig. 3.15 shows the comparison of the acoustic impedance between the results 

predicted by the proposed impedance formulae and the experimentally educed data at 

different flow speeds, corresponding to three different Mach numbers. The comparison 

shows acceptable agreement between the two sets of results. Discrepancies on the 

resistance observed at low frequencies are mainly due to the limited length of the liner 

with respect to the acoustic wavelength to support the impedance derivation process 

[99]. The distance between microphones, micL = 80mm in the current study, actually 

determines the effective frequency range for measurement. Apparently, any frequency 

above lim ( ) / 4it micf c U L= +   cannot be reasonably measured. Meanwhile, when 

approaching the cut-on frequency of the duct, the non-planary nature of the acoustic 

waves start to gradually show, which may also partly explain the deviation at the high 

frequency end of the curves. Nevertheless, the comparison indicates that although the 

acoustic resistance prediction formula is established based on CFD generated data 

through numerical experiments in a relatively ideal environment, a reasonable 

agreement between the prediction results and experimental data at various flow speeds 
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can still be observed. As to the reactance part, the formula developed by Cummings [77] 

can give reasonably good agreement with the experimental data as well. It is worth 

noting that the experiments were designed and carried out in accordance with the 

validation range of the proposed impedance formulae, specified in Section 3.1.2. As to 

other more complex cases which go beyond the flow-duct configuration or the pre-

defined application range in Section 3.1.2, like flow with a higher Reynolds number 

over an open space, further investigations are needed to assess the applicability of the 

proposed impedance formula. 

 

 

(a) 
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(b) 

 

(c) 

 

Figure 3.15. Comparisons of the acoustic impedance obtained from the prediction 

formulae and experiments at different flow velocities. 
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3.5. Summary 

In this chapter, the acoustic impedance of Micro-perforated panels exposed to a 

fully developed grazing flow is investigated both numerically and experimentally. 

Numerical experiments are first carried out to find the relationship between the newly 

identified intrinsic flow parameter in Chapter 2, namely the velocity gradient in the 

viscous sublayer over the duct wall, and the flow-related part in the acoustic resistance 

formula. Numerical results reveal a linear relationship between them. Based on this, a 

new resistance formula is proposed, which is shown to be applicable at a certain 

Reynolds number under the linear acoustic excitation regime. Combined with 

Cummings’ reactance model, a complete set of the acoustic impedance prediction 

formula for MPPs with grazing flow is established. Meanwhile, an inverse impedance 

derivation method is employed to experimentally obtain the acoustic impedance of a 

MPP under low-speed grazing flow within a linear acoustic excitation region. The 

accuracy and the superiority of the established prediction formula as compared with the 

existing ones are demonstrated through comprehensive comparisons with the data 

provided in the open literature and the measured data. It is shown that the proposed 

formula agrees well with the experimental data and outperforms existing models in 

terms of both prediction accuracy and application range. 
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Chapter 4. MPPs in Simple Acoustic Environment under a 

Grazing Flow 

Typically, a MPP is backed by a cavity to form a MPP absorber as shown in Fig.4.1. 

The air gap between the panel and the backing wall of the cavity together with the micro 

holes produce the so-called Helmholtz effects, conducive to broadband noise 

absorption. Conventional applications of MPP absorbers consider a plane acoustic 

wave normally incident on an infinite MPP with an air gap of the same depth. In this 

case, MPPs are locally reacting and the coupling effects between the MPPs and their 

surrounding acoustic environment are usually ignored, thus forming a so-called simple 

acoustic environment. The absorption coefficient of such MPP absorber depends on 

multiple parameters such as the hole diameter, panel thickness, perforation ratio, cavity 

depth and grazing flow speed etc. Without flow, the influence of these parameters on 

the sound absorption coefficient has been well established. This, however, is not the 

case when a flow is present due to the very limited research on MPPs with grazing flow 

and in particular, the lack of the reliable acoustic impedance prediction tool. In this 

chapter, the effects of the associated system parameters on the absorption coefficient of 

an infinite MPP absorbers under normal acoustic excitation are revisited using the 

newly established acoustic impedance prediction formula with grazing flow, as shown 

in Fig. 4.1. The flow field that the MPPs are exposed to, in this case, can be considered 

as a flow in a duct with infinite width and length (high aspect ratio rectangular duct). 
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Figure 4.1. Sketch of a MPP absorber under a grazing flow. 

 

4.1. Absorption coefficient calculations 

For an infinite MPP absorber under normal acoustic excitation, without flow, the 

equivalent electric circuit method is employed to calculate the sound absorption 

coefficient as [23]: 

 

( ) ( )( )
22

4

1 cot /

R

R D c


 
=

+ + −
 ,                                    (4.1) 

 

where D  is the depth of the backing cavity. 

 

By introducing the grazing flow effects on the acoustic impedance of a MPP, the 

sound absorption coefficient of the infinite MPP absorber under a grazing flow for the 
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uncoupled case, as shown in Fig.4.1, can be obtained by applying the impedance 

prediction formula Eq. 3.6 established in Chapter 3 considering grazing flow effects 

and Eq. 4.1.  

 

4.2. Grazing flow effects 

Figure 4.2 shows the effects of grazing flow on the sound absorption coefficient of 

the MPP absorber. Firstly, it can be observed that the absorption coefficient curves of 

the locally reacting MPP absorbers exhibit a bell-curve variation trend with one major 

peak, typical of one single degree of freedom behavior. This can be explained, since for 

the locally reacting case, the acoustic waves inside the backing cavity can only 

propagate in the direction normal to the panel. In this case, the micro holes and the 

backing cavity together generate the so-called Helmholtz effects and the peak is induced 

by the quarter-wavelength Helmholtz-type resonance in the backing cavity.  

 

Considering the relatively simple variation trend of the absorption curve, the 

grazing flow effects can be described by the variations of the maximum value max , 

the resonance frequency rf  and the half absorption bandwidth BW . Variations of 

these parameters are shown graphically in Fig. 4.2, where 1f  and 2f  are the lower 

and higher half-absorption frequencies, respectively. The half sound absorption 

bandwidth BW   is defined as the frequency range between 1f   and 2f  , 

2 1BW f f= − . The comparison results in Fig. 4.2 clearly indicate that an increase in the 
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grazing flow speed shifts the absorption peak rf   to a higher frequency, while 

widening the absorption bandwidth BW   and altering the maximum value of the 

absorption max . The changes in the absorption coefficient curve are attributed to the 

change in both the resistance and the reactance of the MPP observed in Chapter 2, with 

the former one increasing and the latter one decreasing with the flow velocity. On one 

hand, the reduction in the reactance shifts the peak absorption to a higher frequency. 

On the other hand, the increase in the resistance generally yields a broader absorption 

band [23] and leads to the variations of the maximum absorption value. 

 

 

 

Figure 4.2. Absorption coefficient of a MPP absorber with different flow velocities. 

 

To quantify the extent to which the grazing flow affects the absorption behavior of 

the locally reacting MPP absorbers in the current uncoupled simple acoustic 

environment, the absolute value of the difference in the absorption coefficient 
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maximum value max , resonant frequency rf  and half absorption bandwidth BW  

between M=0 and other grazing flow velocities are quantified using the following 

definition: 

 

0

max max max

dif M  = − ,  

0dif M

r r rf f f= − , 

0dif MBW BW BW= −  ,                                            (4.2) 

 

where 0

max  , 0

rf  and 0BW   are the maximum absorption coefficient value, resonant 

frequency and the bandwidth of the absorption coefficient curve for M=0; 
max

M , M

rf ,

MBW  are their corresponding counterparts at other grazing flow velocities. 

 

The above defined quantities with different hole diameters, perforation ratios and 

flow velocities are presented in Fig. 4.3, which describe the overall grazing flow effects 

in a more intuitive and comprehensive way. It is straightforward to see that for the 

maximum absorption value, the grazing flow mainly shows its effects when the hole 

size is large and the perforation ratio is low. As to the resonant frequency, the grazing 

flow mainly affects those panels with small holes. For the absorption bandwidth, the 

grazing flow mainly affects the panels with small holes and low perforation ratio. In 

another word, for panels with a large hole size and a low perforation ratio, the grazing 

flow mainly affects their maximum absorption value and for panels with small holes, 

the grazing flow mainly affects their resonant frequency and absorption bandwidth. 
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         (a)                     (b)                     (c)    

 

Figure 4.3. Absolute value of the difference in the maximum absorption value, 

resonant frequency and absorption bandwidth between no flow and other grazing flow 

conditions for different MPP absorbers with t/d=1. 

 

The effects of the grazing flow on the absorption coefficient of MPPs with 

different t/d ratios are presented in Fig. 4.4. A reduced flow effects on resonant 

frequency and absorption bandwidth and an increased effects on the maximum 

absorption value with t/d ratios can be seen from these figures. Results indicate that 

MPPs with a small t/d ratio are more likely to be influenced by the grazing flow. 
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(a) t/d=1                (b) t/d=1.5               (c) t/d=2 

 

Figure 4.4. Absolute value of the difference in the maximum absorption value, 

resonant frequency and absorption bandwidth between no flow and other grazing flow 

conditions for different MPP absorbers with different t/d ratios. 

 

4.3. Effects of the hole diameter 

In the following analyses, the hole diameter and the panel thickness of MPPs are 

taken to be the same. In this case, to examine the influence of the MPP hole diameter 
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on the absorption coefficient with grazing flow, the resonant frequency rf , maximum 

absorption coefficient max   and half absorption bandwidth BW   of the locally 

reactive MPP absorbers having different hole diameters but same perforation ratio (1%) 

with and without grazing flow are presented in Figs 4.5-4.7. 

 

It can be seen that, without flow, increasing the diameter of the hole shifts the 

resonant frequency rf   to a lower frequency; the maximum absorption coefficient 

max   increases first and then decreases; the half sound absorption bandwidth BW  

becomes narrower. With grazing flow, the same trend can be observed. These 

phenomena can be attributed to the fact that an increase in the hole diameter decreases 

the viscous effects and increases the air mass in the hole, which consequently shifts the 

maximum absorption to lower frequencies, narrows the absorption bandwidth and 

varies the maximum absorption value. As the results indicate that the panels with large 

holes have low resonant frequency and narrow sound absorption bandwidth with or 

without grazing flow, for broadband noise absorption, panels with small hole size are 

preferred, irrespective whether grazing flow exists or not. 

 

These figures also show that the grazing flow effect on the maximum absorption 

value increases while the resonant frequency shifting decreases with hole diameters. 

The low flow velocity (M=0.1 for current case) could influence the resonant frequency 

and absorption bandwidth but has little effects on the maximum absorption value.  
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Figure 4.5. Resonant frequency of MPP absorbers with different hole diameters. 

 

 

 

Figure 4.6. Maximum absorption coefficient of MPP absorbers with different hole 

diameters. 

 



 

85 
 

 

 

Figure 4.7. Bandwidth of MPP absorbers with different hole diameters. 

 

4.4. Effects of the perforation ratio 

The resonant frequency rf , the maximum absorption coefficient max  and the 

half absorption bandwidth BW  of the locally reacting MPP absorbers having different 

panel perforation ratios but the same hole diameters 0.5d mm=   with and without 

grazing flow are shown in Figs 4.8-4.10. 

 

Without flow, it can be seen that, when increasing the perforation ratio, the resonant 

frequency of the absorber is shifted to a higher frequency, alongside a decrease in the 

maximum absorption value and an increase in the half sound absorption bandwidth. 

Thus, panels with a high perforation ratio have a high resonant frequency and a wide 

sound absorption bandwidth but a low maximum absorption value without grazing flow. 

The same trend can be seen for the resonant frequency with grazing flow. However, 
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different from the no-flow condition, the maximum value of the absorption coefficient 

increases, and the half sound absorption bandwidth remains almost constant with 

respect to the perforation ratio. Therefore, with the grazing flow, for panels with a high 

perforation ratio, both the location of the resonant frequency and the maximum 

absorption coefficient value are higher compared to the panels with a low perforation 

ratio. 

 

These figures also show that the effects of the grazing flow on the maximum value 

of the absorption coefficient together with the half absorption bandwidth decrease with 

respect to the panel perforation ratio. 

 

 

 

Figure 4.8. Resonant frequency of MPP absorbers with different perforation ratio. 
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Figure 4.9. Maximum absorption coefficient of MPP absorbers with different 

perforation ratio. 

 

 

 

Figure 4.10. Bandwidth of MPP absorbers with different perforation ratio. 

 

Overall speaking, the acoustic behavior of the infinite locally reacting MPPs with 

flow depends on the full set of MPP and flow parameters in a less intuitive manner even 
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in a simple uncoupled acoustic environment. The adjustment of these parameters can 

provide considerable rooms for the tuning of desired sound absorption performance of 

MPP absorbers based on need. As the grazing flow can broaden the sound absorption 

bandwidth, generally, with an appropriate panel thickness and perforation ratio, holes 

with a smaller diameter is helpful for achieving broader-band sound absorption in the 

presence of grazing flow. 

 

4.5. Summary 

Using the acoustic impedance prediction tools developed in the previous Chapter, 

the sound absorption properties of infinite locally reacting MPP absorbers are 

investigated. The analyses are performed by ignoring the acoustic coupling between the 

MPP and the surrounding environment upon assuming a normal incident acoustic 

excitation. The following conclusions can be drawn. 

 

 With increasing flow speed, the presence of the grazing flow affects the sound 

absorption coefficient curves in following ways:  

 

⚫ Resonant frequency (absorption peak) is shifted to a higher frequency. 

⚫ The maximum value of the absorption coefficient is varied.   

⚫ Half absorption bandwidth is broadened. 

⚫ For panels with a large hole size and a low perforation ratio, the grazing flow 
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mainly affects their maximum absorption value; while for panels with small holes, 

the grazing flow mainly affects their resonant frequency and absorption bandwidth. 

⚫ MPPs with a small t/d ratio are more likely to be influenced by the grazing flow. 

 

Panels with a larger hole size exhibit a lower resonant frequency, a reduced 

maximum absorption value and a narrower sound absorption bandwidth with or without 

grazing flow. For broadband noise absorption, panels with a smaller hole size are 

preferred, irrespective whether grazing flow exists or not. 

 

The panels with a high perforation ratio exhibit a high resonant frequency, wider 

sound absorption bandwidth but a lower maximum absorption value without flow. With 

the grazing flow, both the resonant frequency and the maximum absorption coefficient 

of panels with a high perforation ratio are higher compared to the panels with low 

perforation ratio. 
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Chapter 5. MPPs in Flow Ducts 

The sound absorption coefficients of MPP absorbers in a relatively ideal and simple 

acoustic environment have been investigated in the previous Chapter 4. However, 

MPPs are usually coupled with the surrounding media and the coupling effects cannot 

be ignored as indicated by many research works [33, 51-53]. In what follows, the 

applications of MPPs in a coupled environment under grazing flow are investigated, 

aiming at providing practical guidance for the design of MPPs in applications such as 

flow ducts. 

 

As one of such applications, MPPs are widely used in silencer design for duct noise 

control. An initial attempt to use MPPs in the duct was made by Wu [88], in which the 

acoustic performance of a micro-perforated panel silencer was investigated with 

grazing flow using theoretically derived sound attenuation prediction equations. 

However, due to the limitations of the assumptions made in the study, the prediction 

results only qualitatively agree with experiments and the discussions on the effects of 

silencer geometric parameters are restricted to the locally reacting case only. Recently, 

Allam and Abom [35, 89] investigated MPP silencers with grazing flow to show the 

effect of partitioning the backing cavity and that of the grazing flow without particular 

focus on other MPP geometrical parameters. By introducing MPPs, Wang et al. [100] 

proposed a hybrid non-locally reacting silencer, both dissipative and reactive, 

consisting of an expansion chamber with two side-branch cavities covered by two light 
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and moderately stiff MPPs, and demonstrated that, with MPPs, a wider acoustic 

attenuation bandwidth could be achieved compared to a flexible plate without micro-

perforations. Shi et al. [101] investigated the acoustic attenuation of a periodically 

arranged array of micro-perforated tube mufflers and found that, by selecting an 

appropriate periodic distance, the periodic MPP silencers can be tuned for the control 

of lower frequency noise within a broader frequency range. Yu et al.[102] studied the 

hybrid noise attenuation mechanism of MPP silencers and analyzed the possible 

influences of the system parameters, without however considering the grazing flow 

effects like many other investigations reported in the open literature[100, 101, 103].  

 

These works revealed useful physical insights for guiding the design of MPP 

silencers. However, in general, while cases without flow [100-103] have been 

extensively studied using classical acoustic impedance formulae proposed by Maa [23], 

research on MPPs in ducts considering grazing flow effects is fairly limited [35, 88, 89]. 

One possible explanation for the abovementioned situation is that the presence of flow 

inside a duct poses significant challenges. As previously reviewed in Chapter 1, due to 

the complex interaction between the acoustic waves and the flow field within and in the 

vicinity of the MPP holes, many fundamental issues arise and remain unanswered, 

among which is the realistic acoustic impedance prediction.  

 

Meanwhile, MPPs in a flow duct are exposed to the surrounding acoustic 

environment so that the coupling of the MPPs with the duct and the backing cavity 
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needs to be considered. For predicting the acoustic attenuation performance of MPP 

silencers, the conventionally used modeling techniques face many numerical challenges. 

For example, one dimensional modeling techniques [88] are too simple to include these 

coupling effects and limited to only low-order acoustic mode propagation, while 

techniques like modal approach with interface matching technique [104, 105] or finite 

element method (FEM) [35] would become very tedious when coping with the 

increasing system complexity, for example, when the backing cavities are partitioned. 

Consequently, appropriate modeling tools are lacking and there is a need to seek more 

efficient and flexible prediction tools for the design of MPP silencers. 

 

Motivated by this and capitalizing on the previously developed acoustic impedance 

prediction tool detailed in Chapter 3, a previously developed subsystem treatment 

technique, referred to as Patch Transfer Function approach (PTF) [102], is used to tackle 

the aforementioned numerical challenges, in the context of a flow duct. This modeling 

approach, in conjunction with the impedance prediction formulae established in 

Chapter 3, which consider the grazing flow effects, will be employed to investigate the 

acoustic performance of MPP silencers in a flow duct and provide guidelines for their 

practical design. 

 

Following this, the principle of the PTF approach and its theoretical formulation to 

deal with MPP silencers with and without grazing flow are first presented. The 

established PTF model is then validated through comparisons with experiments in 
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terms of noise attenuation curves. Finally, the effects of various system parameters and 

the underlying physics are investigated and discussed through numerical simulations to 

provide guidelines for the practical design of MPP silencers in flow ducts. 

 

5.1. Principle of the PTF approach 

PTF method is a sub-structuring modelling approach [106]. Before illustrating all 

technical details pertinent to the PTF method, its essence is first summarized as follows.  

 

The implementation of the PTF approach needs the global system to be firstly 

partitioned into several subsystems, along with the generation of the coupling interface 

between each pair of adjacent subsystems. Each coupling surface is then segmented 

into small elements, called patches. These coupling interfaces are considered to be 

flexible and the segmented patches on these interfaces can thus vibrate and be 

considered as the vibrating boundary of the corresponding subsystem. Once coupled, 

energy can then be transmitted from one subsystem to another through these coupling 

interfaces via the vibrations of the patches. Consequently, the subsystems are connected 

and assembled by applying the continuity condition on the patches, namely, the force 

balance and the velocity continuity on both sides of each patch. Previous studies [51, 

106, 107] have shown that when the size of the patch is smaller than the half wavelength 

of the highest frequency of interest, the pressure or velocity at any given point on the 

patch can be reasonably approximated by the space-averaged pressure or velocity over 
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the patch. Considering this, the acoustic field in each subsystem can then be coupled 

together through patch-based interface matching technique by ensuring the dynamic 

balance of the mean pressure and the continuity of the normal velocity of each patch on 

its two sides.  

 

Before coupling all of them together, each subsystem needs to be a priori 

characterized separately. This is achieved by calculating the so-called transfer functions 

between different patches, called patch transfer functions (PTFs). The patch transfer 

functions describe the relationship between the response on a receiving patch and the 

excitation on an excited patch, be it for an acoustic subsystem or a vibrating subsystem. 

Therefore, subsystems may comprise structural components such as flexible panels or 

acoustic components such as acoustic cavity or sound absorption material. For a 

mechanical structure, the PTFs are defined as the ratio of the mean velocity on a 

receiving patch over the mean force applied on an excitation patch, equivalent to patch 

structural mobility. For an acoustic component, the PTFs are defined as the ratio of the 

mean acoustic pressure on a receiving patch over the mean velocity, imposed on an 

excitation patch, which are the patch acoustic impedance. Upon obtaining these transfer 

function terms of each uncoupled subsystem, the superposition principle alongside the 

patch-based interface matching technique can be applied to describe the coupled system. 

This allows calculating the response of a global system by inverting a square symmetric 

matrix whose dimension corresponds to the number of patches. 
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The major portion of the computation incurred in the PTF approach is the 

calculation of the PTFs of each uncoupled subsystem. These calculations, however, are 

quite flexible, for which various methods can be employed depending on the subsystem. 

For example, when the geometry of the subsystem is regular, analytical approach can 

be used. For complex cases, FEM or even experimental methods can be adopted. It is 

relevant to recall that before all the subsystems are coupled together, the PTFs of each 

uncoupled subsystem are calculated separately. Benefiting from this modular nature, 

when optimizations are needed, only the PTFs of those subsystems subject to 

modifications need to be re-calculated. The patch-based interface matching technique, 

coarse meshing criteria ( / 2w ), multiple options for PTF calculation and the modular 

nature of the method collectively empower the PTF approach with the flexibility and 

efficiency needed to deal with system complexity. 

 

To further detail the implementation procedure of the PTF approach, let us consider 

a basic vibro/acoustic system presented in Fig. 5.1, in which two acoustic domains are 

connected by an elastic panel. The whole system is firstly divided into three subsystems: 

one elastic panel and two acoustic domains, one closed and another open. The coupling 

surface, occupied by the panel, is formed and segmented into N  patches. The size of 

the patch should be smaller than the half wavelength of the highest frequency of interest, 

whether acoustic or structural [51, 106, 107]. 
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Figure 5.1. Sketch of a simple vibro/acoustic coupled system. 

 

PTFs for each subsystem are then defined. For the vibrating structure, the PTF 

between patches writes, 

r
re

e

u
Y

f
= ,                                                         (5.1) 

where
, ,

1

r
r x y z

S
r

u u dS
S

=    is the mean normal velocity on the receiving patch r  

resulted from the mean normal force excitation 
, ,

1

e
e x y z

S
e

f f dS
S

=    exerted on the 

excited patch e , while no forces being imposed on other patches, in which 
rS  and 

eS  are the surface area of the receiving and excited patch, respectively. 

 

For the coupling surfaces in the acoustic domain, upon imposing a mean normal 

velocity , ,

1
e x y z

Se
e

u u dS
S

=   on patch e , the mean acoustic pressure on the receiving 

patch r , , ,

1

r
r x y z

S
r

p p dS
S

=  , yields the PTF between the two patches, written as, 
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r
re

e

p
Z

u
= .                                                         (5.2) 

 

When coupled, the mean acoustic pressure on each patch is the sum of the pressure 

resulted from the vibrations of all patches in this subsystem and the external pressure 

~

rp  in this subsystem before coupling. Consequently, the linearity of the system finally 

leads to the equation below, describing the mean pressure on each patch on both sides: 

 

1 1~ 1 1

1

N

r r re e

e

p p Z u
=

= + ,  1,...,r N  ,                                        

2 2~ 2 2

1

N

r r re e

e

p p Z u
=

= + ,  1,...,r N  .                                    (5.3) 

 

Similarly, the normal force exerted on one single patch of a vibrating structure 

interface can result in the vibration of the patch itself and all other patches on this 

interface. Owing to the linearity of the system, the mean normal velocity of a single 

patch is thus the sum of the velocities induced by the force exerted on all the patches in 

the interface and the velocity ~s

ru  resulted from the mechanical force exerted on this 

patch before coupling, which writes 

 

~

1

N
s s s s

r r re e

e

u u Y f
=

= + ,  1,...,r N  .                               (5.4) 

 

  Finally, after applying the continuity condition on the patches, namely, the force 
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equilibrium and the normal velocity equality of each patch on its two sides, the 

subsystems are coupled together as 

 

1 2 s

i i iu u u= = ,  1,...,i N  ,  

1 2( )s

i i i if p p S= − ,  1,...,i N  .                                  (5.5) 

 

Substituting Eqs. 5.3 and 5.5 into Eq. 5.4 yields 

 

1 ~ 1~ 2~ 1 1 2 1

1 1

( ) ( )
N N N N

s s s

r r re e e e re e ej j ej j

e e j j

u u Y S p p Y S Z u Z u
= =

= + − + −    ,  1,...,r N  .   (5.6) 

 

The above equation can be written in the following condensed matrix form, with 

1

ru  as unknowns: 

 

1 ~ 1~ 2~ 1 2 1( ) ( )s s s

e eU U Y S P P Y S Z Z U= + − + − ,                          (5.7) 

 

which can be further arranged as 

 

1 1 2 1 ~ 1~ 2~[ ( )] [ ( )]s s s

e eU I Y S Z Z U Y S P P−= − − + − ,                         (5.8) 

where I   is an N N   identity matrix. Upon solving Eq.5.8, the unknown patch 

velocities can be obtained. The acoustic pressure and other quantities can then be 

obtained based on the calculated patch velocities. 
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5.2. PTF calculations of conventional subsystems 

In this section, the detailed formulation of the PTFs for several typical subsystems 

used in this thesis is summarized, including acoustic cavity, semi-infinite duct and MPP. 

5.2.1 PTFs of an acoustic cavity 

For a 3D rectangular cavity, shown in Fig. 5.2, based on the classical modal-

decomposition theory, the acoustic pressure in the cavity can be written as 

 

( , , ) i i

i

p x y z a= ,                                                (5.9) 

 

where ia  is the ith modal amplitude of the cavity and i  the corresponding ith mode 

shape function. The following rigid-walled acoustic mode shape function is used: 

 

( , , ) cos cos cos
yx z

i

rr r
x y z x y z

Lx Ly Lz

 


    
=     

    
, , , 0,1,2.....x y zr r r = ,         (5.10) 

 

where xL , 
yL and zL  are the side lengths of the 3D rectangular cavity 

 

Figure 5.2. A 3D rectangular cavity with a vibrating boundary eu . 
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The distribution of the pressure field inside the cavity is governed by the 

Helmholtz equation: 

 

2 2+ 0p k p = ,                                                    (5.11) 

 

in which k
c


=  is the wave number;   the angular velocity and c  the sound speed. 

 

The pressure field inside the cavity having a boundary cS  excited by one single 

vibration patch with a mean normal velocity eu   can be described by the Green’s 

function as 

 

( )2 2

c

i
i i i c

S

p
p p dV p dS

n n


  



  
 −  = − 

  
  .                           (5.12) 

 

According to the momentum equation, the following boundary equations can be 

prescribed for the excited vibration patch and the rest of rigid surfaces, respectively. 

 

= e

p
j u

n



−


,                                                               (5.13) 

=0
p

n




,                                                                     (5.14) 

 

where   is the density of the acoustic medium. 

 

After substituting Eqs. 5.9, 5.11, 5.13 and 5.14 into Eq. 5.12 and applying the 
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modal orthogonality, the following equation can be derived: 

 

2 2( ) =
e

i i i e i e
S

a k k j u dS −   ,                                      (5.15) 

 

where 2=i i
c

dV


  . 

 

Substituting Eq. 5.15 into Eq. 5.9, the sound pressure field in the cavity is then 

obtained as 

 

( ) 2 2
, , ( , , ) ( , , )

( )
i e i e

i i i Se

j
p x y z x y z u x y z dS

k k


 =

 −
  .                    (5.16) 

 

Subsequently, the mean pressure on a receiving patch rep   resulted from the 

vibration of one particular excitation patch is 

 

2 2
( , , ) ( , , )

( )
r

re e i r i e

i i i r S Se

j
p u x y z dS x y z dS

k k S


 =

 −
   .                  (5.17) 

 

According to Eq. 5.2 the PTF between patches in the cavity is 

 

2 2
( , , ) ( , , )

( )
r

re i r i e

i i i r S Se

j
Z x y z dS x y z dS

k k S


 =

 −
   .                    (5.18)  
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5.2.2 PTFs of a semi-infinite duct 

In a semi-infinite duct with a rectangular cross-section sketched in Fig 5.3, the 

sound pressure at the end of the duct ( 0y = ) can be expressed as 

 

( , ) d d

d i i

i

p x z a = ,                                                 (5.19) 

 

where d

ia   is the ith modal amplitude of the duct; d

i   the corresponding ith mode 

shape function expressed as 

  

( , ) cos cos
d d

d x z
i d d

x z

r r
x z x z

L L

 


   
=    

  
, , 0,1,2.....d d

x zr r = ,                    (5.20) 

 

where d

xL  and d

zL  are the side lengths of the duct. 

 

 

Figure 5.3. A rectangular semi-infinite duct with a vibrating boundary eu . 

 

Assuming an excited patch at the end of the duct ( 0y = ) vibrating with the mean 

normal velocity d

eu , the modal amplitude can be calculated as [108], 
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1

sin
d
e

d d d d

i e i ed S
i i

a c u dS
N

 


=   ,                                     (5.21) 

 

where d

eS  is the surface area of the excited patch in the duct; 
d
e

d d d d

i i i e
S

N dS =   and 

the modal phase angle 

 

( ) ( )

( )

2 2

2

/ /
sin 1

/

d d d d

x x z zr L r L
j

c

 




 +
  = − − .                              (5.22) 

 

According to Eq. 5.19, the radiated sound pressure at the end of the duct excited 

by the vibration of a particular patch can then be written as 

 

1
( , )

sin
d
e

d d d d

d i e i ed S
i i

p x z c u dS
N

  


=   .                              (5.23) 

The space averaged pressure on one receiving patch d

rep  at the end of the duct 

resulted from the vibration of one particular excitation patch is 

 

1

sin
d d
r e

d d d d d d

re e i r i ed d S S
i i r

p u c dS dS
N S

  


=    .                          (5.24) 

Therefore, the PTF between a receiving patch and an excitation patch in the semi-

infinite duct, according to the definition defined in Eq. 5.2, can be written as, 

 

1

sin
d d
r e

d d d d d

re i r i ed d S S
i i r

Z c dS dS
N S

  


=    .                             (5.25) 
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5.2.3 PTFs of the MPP 

Considering a flexible micro-perforated panel, the pressure difference across the 

panel, 1 2p p− , generates the vibration of the air in the hole with a velocity hu  and the 

panel with a velocity 
pu  as shown in Fig. 5.4. Given the dimension of the hole is much 

smaller than the acoustic and flexural wavelengths of interests, the mean MPP vibration 

velocity can be approximated by [51]: 

 

(1 )MPP p hu u u = − + .                                            (5.26) 

 

Figure 5.4. Pressure and velocity description for a MPP. 

 

The viscous force in the hole along with the inertial force due to the air motion in 

the hole, contribute to the pressure difference across the MPP. Considering the vibration 

of the panel, the viscous force depends on the relative motion between the air in the 

hole and the structure, 
h pu u− . Therefore, one can write [51]: 

 

1 2 Re{ }( ) Im{ }h h p h hp p p Z u u j Z u = − = − + ,                          (5.27) 
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where Re{} and Im{} denote the real and imaginary parts of the hole impedance. 

Without flow, the formulae established by Maa [23] are used to calculate the hole 

impedance hZ , while in the presence of grazing flow, the formulae developed in 

Chapter 3 are adopted. 

 

The vibration velocity of the panel is expressed as: 

 

(1 )MPP

s p p p patchu Y f Y pS = =  − ,                                      (5.28) 

 

where 
pY  is the mobility of the MPP plate base and MPP

patchS  the surface area of the 

segmented patch. 

 

From Eqs. 5.26-5.28, the PTF between patches for MPP, MPPY  , can be written 

according to Eq. 5.1 as,  

 

Re{ }
= (1 )[(1 ) ]hMPP

MPP pMPP MPP

patch h h patch

Zu
Y Y

pS Z Z S


  = − − + +


.                 (5.29) 

 

It can be seen that for a rigid MPP, 0pY = , the PTFs of the MPP retreats to: 

 

=MPP MPP

h patch

Y
Z S


.                                                  (5.30) 
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5.3. Formulations of the flow duct problem 

The system under investigation is illustrated in Fig. 5.5. A MPP, backed by an 

acoustic cavity, is flush-mounted on one wall of a flow duct with a rectangular cross 

section. The PTF approach is employed here to simulate the acoustic behavior of this 

MPP silencer with and without grazing flow. In the present case, only low speed flow 

is considered. Therefore, the grazing flow effects are only incorporated into the acoustic 

impedance of MPPs and the convective effects of the flow on the wave propagation in 

the duct are neglected [35]. Based on the principle of the PTF approach, separated by 

the coupling surfaces C1, C2 and C3, the whole system is divided into five subsystems, 

namely, an inlet duct, a main cavity, an outlet duct, an MPP and a side branch cavity, as 

shown in Fig. 5.6. Each side of a coupling surface belongs to a different subsystem. 

Taking the coupling surface C3, occupied by the MPP, as an example, its upper side, 

donated as 3MC , belongs to the main cavity while the lower side 3SC  belongs to the 

side branch cavity. Each coupling surface is then meshed and divided into patches, 

according to the half-wavelength rule described above[51, 106, 107].  

 

 

 

Figure 5.5. Sketch of the investigated flow duct system. 
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Figure 5.6. Sub-system treatment by using PTF approach. 

 

The calculations of the PTFs of each subsystem, before it is coupled to the adjacent 

subsystems, are carried out. Both the main cavity and the side branch cavity without 

partition can be modeled as a 3D rectangular cavity using classical modal approach. 

The PTFs of these two subsystems are calculated by using Eq. 5.18. As to the 

rectangular inlet and outlet ducts, their PTFs can be obtained by using Eq. 5.25. In the 

current case, the vibration of the MPP is not considered, thus Eq. 5.30 is used for its 

PTF calculation. 

 

After applying the continuity condition on the connecting patches of three 

coupling surfaces, namely the force balance of each patch and the equality of the normal 

velocity, the five divided individual subsystems are finally coupled together. 

 

The force equilibrium of the patches at interface 1, 2 and 3 leads to the following 

expressions: 
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31 1 2

1 3 31 1 1 1 2 2~ 1 1 1 1

1

NN N N
MC MC MCMC MC MC MC MC MCd d d d

re e re e re e re e

e e e e

p Z u Z u Z u Z u+ = + +    ,  

 11,...,r N   at interface 1, 

32 1 2

2 3 32 1 1 2 2 22 2 2
NN N N

MC MC MCMC MC MC MC MC MCd d d

re e re e re e re e

e e e e

Z u Z u Z u Z u= + +    ,  

 21,...,r N   at interface 2, 

3 3 31 2

3 1 3 2 3 3 3 3 3 31 2( )
N N NN N

MC MC MC MC MC MC MC SC SC SCMC MCMPP MPP

re e ej j ej j ej e ej j r

e j j j j

Y S Z u Z u Z u Z u u+ + − =     ,  

 31,...,r N   at interface 3,                                        (5.31) 

 

where 
1N , 

2N  and 
3N  are the total number of patches at the coupling interfaces 1, 2 

and 3, respectively. 

 

The equality of the normal velocity on each side of the patches at the three 

coupling interfaces writes: 

 

1

1 1

1 MCd

n nu u= ,  1 11,...,n N   at interface 1, 

2

2 2

2 MCd

n nu u= ,  2 21,...,n N   at interface 2, 

3 3

3 3 3

MC SCMPP

n n nu u u= = − ,  3 31,...,n N   at interface 3.                    (5.32) 

 

The above equations can then be written in the following condensed matrix form: 

1 3 31 1 1 1 1 2 2~ 1 1 1 MC MC MCd MC MC MC MC MC MCd d d

n n n nP Z V Z V Z V Z V+ = + + ,  

2 3 32 1 1 2 2 22 2 2 MC MC MCMC MC MC MC MC MCd d d

n n n nZ V Z V Z V Z V= + + , 

3 1 3 2 3 3 3 3 3 31 2( )
MC MC MC MC MC MC MC SC SC SCMC MCMPP MPP

e n n n n nY S Z V Z V Z V Z V V+ + − = , 
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1 1MC d

n nV V= ,  

2 2MC d

n nV V= , 

3 3MC SCMPP

n n nV V V= = − .                                             (5.33) 

 

Equation 5.33 can be further condensed into the following form, 

    =Z V F ,                                               (5.34) 

 

where,

1 31 1 1 2

2 32 1 2 1
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. 

 

If the side branch cavity is to be partitioned into smaller cavities, as shown in Fig. 

5.6, the case can be seen as a combination of multiple unit cells, each comprising an 

MPP facing and an acoustic backing cavity. Assuming the unit cells are well separated 

from each other by solid partition walls, the side branch mobility MPPY  and impedance 

3 3SC SC
Z  can be constructed by combing all the unit cells as a common subsystem as 

[102]: 

1
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=
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Y
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,  1,..., si N  ,              (5.35) 

 

where sN  is the number of sub-chambers in the side-branch cavity. For each unite cell, 

the element of the corresponding mobility matrix MPP

iY and impedance matrix 3 3SC SC

iZ  

can be obtained by using Eqs. 5.30 and 5.18. 

 

Once Eq. 5.35 is solved, the patch response can be obtained, which allows the 

calculation of all other acoustic quantities of the MPP silencer. 

 

To characterize the silencing performance of the silencer, parameters such as 

Transmission Loss (TL), sound absorption coefficient and reflection coefficient of the 

MPP silencer are investigated. TL is defined as: 

10=10log in

out

TL



,                                                (5.36) 

where 

2

1

0

=
2

i

in

p
S

c
 ,                                                  (5.37) 

 
2

2 2 2

1
= Re

2
out

S
P V dS  ,                                       (5.38) 

 

are the incident and transmitted sound power, respectively. ip  is the acoustic pressure 
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amplitude of the incidence wave; 2V  and 
2P  are the normal velocity and the sound 

pressure at interface 2; 1S  and 2S  are the total surface area of interface 1 and 2 and 

the superscript * represents the complex conjugate. 

 

The sound reflection coefficient 
efR  is defined as the ratio between the reflected 

sound power at interface 1, r , and the incidence sound power, in , which writes, 

 

1

= = in tr
ef

in in

R
 −

 
,                                             (5.39) 

 

where 1

t
 is the transmitted sound power through interface 1, calculated by: 

 

 
1

1 1 1 1

1
= Re

2

t

S
P V dS  ,                                          (5.40) 

 

in which 1V  and 
1P  are the normal velocity and the sound pressure at the interface 1, 

respectively. 

 

The sound absorption coefficient   is defined as the fraction of the sound power 

absorbed by the MPP absorber when an incidence plane wave propagates through the 

duct, which writes 

1=
t

out

in


 −


.                                                   (5.41) 
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5.4. Experimental validations  

Experiments are first conducted to validate the PTF model and the implemented 

calculation scheme. The TL is measured by using the four-microphone-two-source 

method [109]. The same microphone (one downstream microphone, microphone 3) is 

used as reference for both upstream and downstream excitations. To ensure a good 

measurement quality, the signal from the reference microphone should be strong 

enough. However, it was observed that this can hardly be achieved when the acoustic 

source is put on the upstream the sample [109]. To tackle this problem, modifications 

proposed in [110] are adopted: for upstream source, microphones 1 or 2 is used as 

reference, while for downstream source, microphones 3 or 4 is used. Thus when 

microphone 1 is used as the reference, the transfer functions in reference [109] should 

be changed as follows, 13 311/H H=  , 23 21 31/H H H=   and 43 41 31/H H H=  . The 

sound absorption coefficient   can then be obtained through the following equations: 

 

exp exp exp

exp
= in out r

in


 − −


,                                            (5.42) 

 

where 

2
exp

exp

2

i

in duct

p
S

c
 = ,                                                (5.43) 

2
exp

exp

2

r

r duct

p
S

c
 = ,                                               (5.44) 

are the measured incident and reflected sound power in the inlet duct, respectively. In 
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Eqs. 5.43 and 5.44, ductS  is the cross-section area of the duct; 
exp

ip  and 
exp

rp  are 

the measured pressure amplitude of the incident and reflected wave in the inlet part of 

the duct, which can be obtained from two upstream microphones (M1 and M2 in Fig. 

5.7) by using model-decomposition method. exp

out  is the measured transmitted sound 

power, which can be derived by using the following equation according to the definition 

of the TL. 

 

exp
exp

1010

in
out TL


 = .                                                 (5.45) 

 

The experimental setup is sketched in Fig. 5.7. The cross section of the duct is 100 

x 100 mm with a cut-on frequency of 1700 Hz. Four 1/4-inch. microphones are used 

here with two of them flush-mounted upstream the silencer and the two others flushed 

mounted in the downstream segment. The separation distance between the microphones 

is shown in Fig. 5.7. 

 

 

Figure 5.7. Sketch of the experimental setup. 
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The test sample, shown in Fig. 5.8, is a single layer MPP backed by a honeycomb 

structure with a thickness of 25 mm, forming a honeycomb MPP silencer. The 

aluminum MPP is 100mm wide and 500mm long, with a perforation ratio of 0.945%. 

The diameter of the perforated hole and the thickness of the MPP are both 0.5mm. 

 

 

 

Figure 5.8. Test sample. 

 

The accuracy of the PTF calculation is validated through comparisons with the 

measured data. The TL and the sound absorption coefficient of the honeycomb MPP 

silencer under various grazing flow velocities are presented and compared in Figs. 5.9-

5.11. The comparison shows that the prediction results fit the experimental data 

reasonably well with a good agreement between them at various flow speeds in terms 

of the TL, absorption curve bandwidth as well as the location of their peak frequencies. 

The observed deviations of the predicted maximum values from the measured ones are 

mainly due to the venerable signal to noise ratio. Since with the presence of the flow, 

the background noise is increased due to the flow-induced noise. As the level of the 

imposed acoustic excitation should be limited to ensure the linear behavior of the MPP, 

the signal to noise ratio becomes worse. Therefore, the predicted high TL cannot be 
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measured during experiments. Nevertheless, overall speaking, the above validations 

confirm the validity of the PTF approach. 

 

 

(a) 

 

(b) 

Figure 5.9. Comparisons between predictions and the experimental data at 

0.035M = , (a) TL, (b) sound absorption coefficient. 
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(a) 

 

(b) 

 

Figure 5.10. Comparisons between prediction and the experimental data at 

0.048M = , (a) TL, (b) sound absorption coefficient. 

 



 

117 
 

 

(a) 

 

(b) 

 

Figure 5.11. Comparisons between prediction and the experimental data at 

0.064M = , (a) TL, (b) sound absorption coefficient. 
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5.5. Numerical results and analyses 

To gain understanding on the sound attenuation mechanism of the MPP silencers 

and provide guidelines for their design in flow ducts, various issues such as the 

influences of the flow velocities, solid partition arrangements in the backing cavity, 

panel dimensions, perforation ratios and hole diameters are investigated. By employing 

the validated PTF approach, their effects on the acoustic attenuation performance of 

MPPs in flow ducts are scrutinized. In the analyses, the hole diameter and panel 

thickness of MPPs are taken to be the same. The dimension of the investigated system 

(Fig. 5.5) is the same as the one used in experiment, described in Fig. 5.7. 

 

5.5.1. Grazing flow effects 

The TL curves of a non-partitioned MPP silencer under different flow velocities 

are compared in Fig. 5.12. A typical TL curve is first taken for analyses, for example, 

0.05M =  . It can be seen that for the non-partitioned case, several dips and peaks 

appear in the TL curves, resulting in relatively low peak value but broadband acoustic 

attenuation. The peaks on the TL curve are due to the coupling of the MPP with the 

backing cavity and main duct system, with their locations corresponding to the coupled 

system natural frequencies. With grazing acoustic wave incidence, the axial or grazing 

modes of the backing cavity are activated, which finally give rise to the appearance of 

these dips [28]. These axial modes occur at frequencies corresponding to 
, = / 2A nf nc L , 

with L  being the length of the backing cavity in the axial direction (500 mm in the 
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present configuration) and n  corresponding to the number of half-wavelengths span 

the length of the backing cavity. The sound pressure distribution inside the silencer at 

one selected dip on the TL curve, at =0.05M  and 
,4 1377Af f Hz= = , around one 

axial mode of the backing cavity, is presented in Fig. 5.13. It can be seen that the sound 

pressure features four nodal planes in the backing cavity, corresponding to four half-

wavelengths. Meanwhile, the axial locations of these nodal planes in the backing cavity 

are coincident with those in the main duct. Consequently, the pressure across the MPP 

is almost the same and in-phase, thus resulting small pressure difference across the MPP. 

Under this circumstance, the vibration velocity of the air inside the hole of the MPP is 

trivial and eventually neutralized as expected, thus annulling possible energy 

dissipation, since the acoustic energy can only be dissipated by the vibration of the air 

inside the hole. In the present case, the MPP can hardly provide any sound energy 

dissipation. To enable effective MPP energy dissipation, the panel should be put into an 

acoustic environment with significant acoustic pressure difference across the MPP. 
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(a) 

 

 

(b) 

 

Figure 5.12. Silencing performance of MPP silencers without solid partitions under 

different flow velocities. (a)TL, (b) sound absorption and reflection coefficient. 
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Figure 5.13. Sound pressure distribution inside the MPP silencer without solid 

partitions at 1377f = Hz and 0.05M = . 

 

The comparison in Fig. 5.12a also indicates that the presence of the grazing flow 

enhances the sound attenuation performance below roughly 1000 Hz. However, above 

this frequency, the grazing flow lifts up the troughs, smooths out the peaks while shifts 

them to higher frequencies, and finally results in a more flattened TL curve. It should 

be noted that the locations of the troughs do not seem to be affected by the grazing flow. 

As illustrated before, the troughs on the TL curves are due to the standing waves in the 

backing cavity occurred at axial resonance frequencies, which depend only on the axial 

length of the backing cavity, thus the flow cannot affect the locations of the troughs. As 

the peaks are induced by the coupling in the duct system, and the grazing flow alters 

the impedance of the MPP and thus the coupling effects, variations in the peak values 

and peak locations are thus observed. 

 

To better understand the underlying physical phenomena, the associated sound 
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absorption and reflection coefficient curves are plotted in Fig. 5.12b. It can be seen that 

both dissipation and reflection effects contribute to the observed overall sound 

attenuation. The acoustic attenuation mechanism of this non-partitioned MPP silencer 

is thus not purely dissipative or reflective, but their combination, thus being referred to 

as hybrid behavior. The overall effects of the grazing flow on the sound absorption 

coefficient are in line with the corresponding TL curve variation, i.e. the trough lifting 

up, peak smoothing out and higher frequency shifting. As to the reflection coefficient, 

the grazing flow reduces both the peaks and troughs and shifts them to higher 

frequencies.  

 

By adding partitions inside the backing cavity, the effects of the grazing flow on 

the silencing performance of honeycomb or locally reacting MPP silencers are 

presented in Fig. 5.14. Firstly, it can be observed that, different from the non-partitioned 

case with several dips and peaks, the TLs of the locally reacting honeycomb MPP 

silencers exhibit only one major peak and show one single freedom behavior. This can 

be explained, since with the honeycomb structure in the backing cavity, the acoustic 

waves inside the cavity can only move in the direction normal to the panel. In this case, 

the peak is induced by the quarter-wavelength Helmholtz-type resonance in the backing 

cavity.  

 

Using the same configuration, the variations of the TL maximum value maxTL  , 

peak frequency 
pf  and 5dB TL bandwidth 

TL TL

u lW f f= −  are used to describe the 
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grazing flow effects on the TL, where TL

uf   and TL

lf   are the lower and upper 

frequencies corresponding to 5 dB TL. Fig. 5.14a shows the variation of these defined 

parameters for three selected flow speeds. It can be seen that the grazing flow shifts the 

location of the peak frequency 
pf  to a higher frequency when flow speed increases, 

reduces the peak maxTL  value and broadens the bandwidth W . Figure 5.14b shows 

that for locally reacting MPP silencers, the grazing flow affects the corresponding sound 

absorption coefficient in the way which is similar to TL in terms of the peak frequency 

shifting, peak value variation and bandwidth enlargement. It is worth noting that the 

presence of the grazing flow typically results in a wider acoustic attenuation bandwidth. 

Consequently, although the grazing flow can reduce the peak value, compared to the 

no-flow condition, better broadband acoustic attenuation performance could be 

expected provided that the MPP parameters are properly selected. 

 

 

(a) 
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(b) 

 

Figure 5.14. Silencing performance of honeycomb MPP silencers under different flow 

velocities. (a) TL, (b) sound absorption coefficient. 

 

To quantify the extent to which the grazing flow affects the TLs of locally reacting 

MPP silencers, the absolute value of the difference in the TL maximum value maxTL , 

peak frequency 
pf  and 5dB TL bandwidth W  between M=0.025 and other grazing 

flow velocities are quantified using the following definition: 

 

0.025

max max max

dif MTL TL TL= − ,  

0.025dif M

p p pf f f= − , 

0.025dif MW W W= − ,                                              (5.46) 

 

where 0.025

maxTL  ,
0.025

pf  and 0.025W   are the maximum TL value, peak frequency and 
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bandwidth of the TL curve for M=0.025; 
max

MTL  ,
max

Mf  , MW   are their corresponding 

counterparts at other grazing flow velocities. 

 

The above defined quantities with different hole diameters and perforation ratios 

are presented in Fig. 5.15. It is clear that, the grazing flow mainly affects the maximum 

value when the hole size of the panels is large and the perforation ratio is low. As to the 

peak frequency, more obvious effects can be observed for panels with a small hole. For 

the TL bandwidth, the panels with a high perforation ratio are more likely to be 

influenced by the grazing flow. In other words, for panels with a large hole size and low 

perforation ratios, the grazing flow mainly affects their maximum TL values and for 

panels with small holes, the grazing flow mainly affects their peak frequencies. 

 

 

(a)                       (b)                    (c) 

 

Figure 5.15. Absolute value of the difference in the TL maximum value, peak 

frequency and TL bandwidth between M=0.025 and other grazing flow velocities for 

different MPP silencers with t/d=1. 
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5.5.2. Effects of the partition inside the backing cavity  

The TL, the absorption coefficient and the reflection coefficient of the MPP 

silencers with a backing cavity having different solid partitions are compared in Fig. 

5.16. The results indicate that different partitions lead to quite different acoustic 

attenuation performance of the MPP silencers. Increasing the number of partitions 

reduces the number of ripples on both the TL curves and the absorption curves, giving 

rise to a narrower bandwidth but a higher peak value. Meanwhile, the reflection effect 

also decreases with the partitions and finally becomes negligible compared to the 

absorption effect. When further increasing the partitions, the acoustic behavior of the 

MPP silencer stops changing and approaches the locally reacting (honeycomb) MPP 

silencer with only one main peak. In a sense, to achieve the locally reacting effect, it is 

not necessary to employ a honeycomb structure which is usually designed to contain 

one hole in the panel by one cell in the backing cavity or a densely partitioned design. 

As long as the size of the divided sub-cavity is sufficient small as compared to the 

acoustic wavelength, wave motion in the sub-cavity is basically confined to the 

direction normal to the panel so that the surface impedance can be considered as locally 

reacting. Based on the discussion in Section 5.5.1, the length of the divided sub-cavity 

should be smaller than the half wavelength of the highest frequency of interest so that 

the axial modes of the divided sub-cavity cannot be activated and the acoustic wave 

would not propagate in the axial direction. 

 

The increase of the absorption and the reduction in the reflection with increasing 



 

127 
 

number of partitions indicate a transition in the acoustic attenuation mechanism from a 

hybrid mechanism (both dissipation and reflection) to almost a purely dissipative 

mechanism. Therefore, most of the attenuated acoustic energy are dissipated by MPP 

silencers with sufficient partitions or honeycomb MPP silencers. 

 

(a) 

 

(b) 
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(c) 

 

Figure 5.16. Silencing performance of MPP silencers with different solid partitions. 

(a) TL, (b) sound absorption coefficient, (c) reflection coefficient. 

 

5.5.3 Effects of panel parameters 

5.5.3.1 Hole diameter 

The maximum TL value maxTL , peak frequency 
pf  and 5dB TL bandwidth W  

of the honeycomb MPP absorbers having different hole diameters, but the same 

perforation ratios (1%) with and without grazing flow are shown in Fig. 5.17. In the 

absence of the flow, it can be seen that increasing the diameter of the hole reduces the 

peak frequency. Meanwhile, the maximum TL value increases first and then decreases, 

while the TL bandwidth reduces. In the presence of grazing flow, the same trend can be 
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observed. Therefore, it can be expected that, to achieve a broadband acoustic 

attenuation for locally reacting case, the panels with small holes are preferred, 

irrespective of whether flow exists or not. This is understandable since for locally 

reacting silencer, the sound energy attenuation is predominantly due to the dissipation 

effects and smaller holes can usually provide wider absorption bandwidth. Therefore, 

to achieve broadband noise control, a locally reacting silencer with small holes is 

usually the best choice. This is different from the non-locally reacting case relying on 

hybrid sound attenuation investigated in Ref. [102], in which case, to achieve optimal 

broadband silencing performance, a balance between the dissipation and reflection 

effects needs to be struck. This explains why the comparison results for non-partitioned 

silencers shown in Fig. 5.18 show that the panel with smallest hole size 0.2d t mm= =  

cannot provide the best acoustic attenuation performance.  

 

 

(a) 
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(b) 

 

Figure 5.17. (a) TL peak value, (b) TL peak frequency and bandwidth of MPP 

silencers with different hole diameters. 

 

 

 

Figure 5.18. TLs of non-partitioned MPP silencers with different hole diameters. 
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5.5.3.2 Perforation ratio 

The effects of the perforation ratio on the honeycomb MPP silencers with and 

without grazing flow are shown in Fig. 5.19. It can be seen that, without flow, when the 

perforation ratio of the panel increases, TL peak frequency is shifted to a higher 

frequency, whilst the peak TL value first increases and then decreases. However, the TL 

bandwidth keeps almost constant, seemingly unaffected by the perforation ratio. In the 

presence of grazing flow, the effects of panel perforation ratio on honeycomb MPP 

silencers are similar to the no-flow condition.  

 

 

(a) 
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(b) 

Figure 5.19. (a) TL peak value, (b) TL peak frequency and bandwidth of MPP 

silencers with different perforation ratio. 

 

5.5.3.3 Panel dimension 

 

(a) 



 

133 
 

 

(b) 

 

Figure 5.20. Silencing performance of honeycomb MPP silencers with different panel 

lengths. (a) TL, (b) sound absorption coefficient. 

 

 

 

Figure 5.21. Sound pressure field of a MPP silencer with a backing cavity containing 

nine partitions at the peak frequency 863f = Hz and 0.05M = . 

 

The effect of the MPP panel dimension on the acoustic performance of MPPs is 

investigated. To this end, honeycomb MPP silencers with different panel lengths are 
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compared in terms of TL, as shown in Fig. 5.20. It is clear that the TLs of the locally 

reacting MPP silencers depend significantly on the size of the panel. More specifically, 

the maximum level and the bandwidth of both the TL and the absorption coefficient 

curves increase with the panel length, without, however, noticeable variations in the 

peak location. Meanwhile, increasing the panel length can actually enhance the acoustic 

performance of the silencers in a significant manner. The pressure field of an MPP 

silencer with a backing cavity containing nine partitions at the peak frequency 

863f Hz=   and 0.05M =   is shown in Fig. 5.21. It can be seen that the energy 

intensity of the acoustic wave, propagating in the duct, decays continuously in the 

downstream direction so that more acoustic energy can be dissipated when the panel 

becomes longer. Therefore, a sufficiently large panel is needed when designing locally 

reacting MPP silencers for effective noise attenuation. 

 

The same issue is revisited for non-partitioned MPP silencers, as shown in Fig. 

5.22 at =0.05M  . As the length of the panel can change the coupling of the entire 

system, in particular the frequencies at which the axial modes of the backing cavity 

appear, it is obvious that the number of dips and peaks on the TL curves as well as their 

locations are all affected by the dimension change of the panel. The variation trend, 

however, is much more complex than the case of locally reacting silencers. 

Consequently, unlike the case of locally reacting silencer, which always requires the 

use of the largest possible dimension, the optimal length of a non-partitioned silencer 

needs to be tuned to cope with a targeted frequency bandwidth. 
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To better understand the way to select the optimal value of the panel length for 

non-partitioned silencers, the pressure field of a non-partitioned MPP silencer with a 

panel length of 500 mm at one peak frequency 1221f Hz=  and 0.05M =  is plotted 

in Fig. 5.23. It can be observed that, the energy distribution of the acoustic wave, 

propagating in the duct, does not necessarily decay continuously in the axial direction 

in the lined part, which is different from the locally reacting case. The complex sound 

pressure distribution across the MPP panel also testifies the increasing complexity of 

the acoustic coupling in the non-partitioned silencer. In such cases, a system 

optimization, with the help of the PTF model developed in this Chapter, becomes 

possible and necessary.  

 

 

 

Figure 5.22. TLs of non-partitioned MPP silencers with different panel lengths at 

=0.05M . 

 



 

136 
 

 

 

Figure 5.23. Sound pressure distribution inside a non-partitioned MPP silencer with 

panel length of 500mm at one peak frequency 1221f Hz=  and 0.05M = . 

 

5.6. Summary 

The acoustic behavior of micro-perforated panels in flow ducts is investigated 

numerically using a PTF model after experimental validations. The effects of solid 

partitions inside the backing cavity, as well as those of the grazing flow, the hole 

diameter, the perforation ratio and the panel dimension are systematically investigated 

to provide guidance for MPP silencer design.  

 

The following conclusions can be drawn from the numerical analyses. Partitions 

inside the backing cavity can lead to quite different acoustic attenuation performance 

of the MPP silencers. The design of the backing cavity should be determined based on 

specific needs. Grazing flow typically shifts the TL peak to a higher frequency, alters 

its maximum level and flattens the TL curve with a wider bandwidth. The effects of the 

hole diameter and the perforation ratio on the silencing performance of MPPs under 

grazing flow are similar to cases without flow. The panel dimension actually 
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significantly affects the acoustic performance of the MPPs. While exhibiting a more 

intuitive influencing manner in the case of locally reacting case, the size of the MPP in 

a non-partitioned silencer, however, needs more meticulous consideration, which calls 

for a systematic system optimization to target a prescribed frequency range. In that 

sense, the model proposed in this Chapter could serve as a useful and indispensable tool. 
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Chapter 6. MPPs in Noise Control Devices with Complex 

Geometry 

Different from the MPPs in a straight duct with a regular geometry studied in 

Chapter 5, the feasibility of integrating MPPs in a home appliance having a more 

complex geometry and being subjected to flow is explored in this Chapter. The PTF 

approach is again employed to tackle the aforementioned numerical challenges 

(Chapter 5) in terms of coping with the need to efficiently model systems with complex 

geometry. Two methods, the FEM method and coordinate transformation technique, are 

presented here to calculate the PTFs of the irregular subsystems. For the former, 

referred to as hybrid theoretical-numerical technique, analytical approach is adopted 

for PTFs calculations of subsystems with regular geometry and FEM for subsystems 

with complex geometry. For the latter, a coordinate transformation technique is 

proposed to treat the irregular subsystem, before being incorporated into the previously 

developed PTF framework. Meanwhile, the feasibility of implementing MPP absorbers 

in a practical industrial device to reduce acoustic noise is demonstrated. By the same 

token, the capability and the effectiveness of the PTF approach along with the 

impedance prediction formulae established in Chapter 3 are further demonstrated under 

a more practical context. 

 

In what follows, the PTF-based hybrid theoretical-numerical implementation 

procedure is first presented in Section 6.1. The accuracy of the hybrid modeling 
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approach is then compared with experimental measurement. Through numerical 

analyses, presented in Section 6.3, the potential of using MPPs to improve the silencing 

performance of a home appliance is demonstrated. Influences of the grazing flow on 

the acoustic performance of the system and those of the MPP parameters are 

investigated, highlighting the necessity of performing parameter tunings to achieve 

desired silencing performance. Subsequently, optimizations are conducted. In Section 

6.4, the formulation and the implementation procedure of the coordinate transformation 

technique are presented and validated. The improvement brought by this technique 

compared with the hybrid theoretical-numerical treatment is demonstrated through an 

optimization study. Meanwhile, the capability and the computational efficiency of the 

PTF approach are evidenced through these analyses. 

 

6.1. Formulation of the problem 

The PTF approach is employed to predict the in-situ acoustic performance of MPPs 

in the complex acoustic environment with grazing flow. A representative configuration, 

shown in Fig. 6.1 (left), is considered here. The model is inspired by a mock-up of the 

housing of a range hood for households, which can be simplified as two inter-connected 

cavities as shown in Fig 6.1. For noise reduction purposes, MPPs are placed on its inner 

wall surfaces. As an illustrative example, the case of a single MPP exposed to grazing 

flow is considered here. Similar as before, the assumption of low flow speed is used. 

Therefore, the effects of the grazing flow are introduced only via the acoustic 
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impedance of MPPs by using the impedance prediction formulae established in Chapter 

3, and the medium is considered to be still provided that the convective effects on the 

wave propagation can be neglected. The module with MPP is put into a duct and the 

whole system is partitioned into six subsystems as illustrated in Fig. 6.2: an inlet duct, 

a main cavity above the MPP liner, a sub-cavity of a trapezoidal shape, an outlet duct, 

an MPP and its backing cavity. Four coupling interfaces are then formed, donated by 

C1, C2, C3 and C4, respectively. These four interfaces are segmented into patches with 

a half-wavelength criterion [51], numbered as 
1N  , 

2N  , 
3N   and 

4N  , respectively. 

Before considering the coupling, the PTFs of each uncoupled subsystem are firstly 

calculated separately. 

   

 

 

Figure 6.1. Housing of a range hood (right) and its mock-up (left). 
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Figure 6.2. Sub-structure treatment of the whole system. 

 

Both the main cavity and the backing cavity can be modeled as a 3D rectangular 

cavity. Therefore, their corresponding PTFs can be calculated by using Eq. 5.18. The 

PTFs of the inlet and outlet duct, both being treated as semi-infinite ducts, can be 

obtained by using Eq. 5.25. In the present case, the vibration of the MPP is not 

considered, thus Eq. 5.30 is used for the associated PTF calculations. For the trapezoidal 

sub-cavity, FEM is firstly employed for its PTF calculation. Consequently, with this 

sub-structure treatment, instead of purely relying on FEM, a hybrid theoretical-

numerical model will be developed to deal with system with complex geometry. 

 

After calculating the PTFs of all separated subsystems, by applying the continuity 

condition on the connecting patches of the four coupling surfaces, subsystems are 

finally coupled together. The force balance of the patches at four coupling interfaces 

leads to the following expressions: 
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The equality of the normal velocity across the patches at the four coupling faces 

writes: 

 

1 1

1 1

MC d
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2 1

2 2

MC SC

e eu u= ,            2 21,...,e N   at interface 2, 

2 2

3 3

SC d

e eu u= ,             3 31,...,e N   at interface 3,                            

3 4

4 4 4

MC BC MPP

e e ru u u= − = ,     4 4 41,...,r e N =   at interface 4.             (6.2) 

 

Equations 6.1 and 6.2 can be written in the following condensed matrix form: 
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Eq. 6.3 can be further condensed into the following form as, 
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If the backing cavity is to be partitioned into smaller cavities, as shown in Fig. 6.2, 

the case can be seen as a combination of multiple unit cells, each comprising an MPP 

facing and an acoustic backing cavity. Assuming the unit cells are well separated from 

each other by solid partition walls, the mobility matrixY of the coupling surface C4 and 

the backing cavity impedance matrix 
44

BCZ  can be constructed by combing all the unit 
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cells as a common subsystem as 
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where sN  is the number of sub-chambers in the partitioned backing cavity. For each 

unit cell, the element of the corresponding mobility matrix iY  and impedance matrix 

BC

iZ  can be obtained by using Eqs. 5.30 and 5.18. 

 

Upon solving Eq. 6.4, the mean pressure and normal velocity of the patches in 

each subsystem can then be obtained, different acoustic metrics of the entire system can 

be calculated using the calculated patch responses. The TL, sound absorption 

coefficient and reflection coefficient calculations of the system are used for analyses. 

The TL is calculated by using Eq. 5.36, for this system the transmitted sound power 

out  is calculated through the following equation, 
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 
3

3 3 3

1
= Re

2
out

S
P V dS  ,                                           (6.7) 

 

where 3V   and 
3P   are the normal velocity and the sound pressure at interface 3, 

respectively, 3S  is the total surface area of interface 3. 

 

The reflection coefficient 
efR   and sound absorption coefficient    can be 

obtained by using Eqs. 5.39 and 5.41, respectively. 

 

6.2. Experimental validations 

Experiments are conducted to validate the model. Same as before, the TL is 

measured by the four-microphone-two-source method [109]. The sound absorption 

coefficient   is experimentally obtained through the method described in Section 5.4 

by using Eq. 5.42. 
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Figure 6.3. Test sample. 

 

A sample, as shown in Fig. 6.3, is constructed and tested. An aluminum MPP is 

placed on one surface of the main cavity with a width and a length of 100 and 500 mm, 

respectively. The perforation ratio of the MPP is 0.945%. The diameter of the MPP hole 

and thickness of the panel are both 0.5mm. The depth of the backing cavity behind the 

MPP is 25 mm, which is partitioned into 30 cells. The MPP absorber in this case can be 

regarded as locally reacting. The detailed dimension of the model is also illustrated in 

Fig. 6.3. 

 

The experimental setup is sketched in Fig. 6.4. Measurements are conducted in the 

same closed-loop low-speed acoustic wind tunnel described in Chapter 3. Four 1/4-

inch., microphones are used here with two of them flush-mounted upstream the testing 

sample and the two others flushed mounted in the downstream segment. The separation 

distance between a pair of the microphones is 80mm. Figure 6.5 shows a photo of the 
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test set-up. 

 

 

 

Figure 6.4. Sketch of the test set-up. 

 

 

 

Figure 6.5. Photo of the experimental setup. 

 

The accuracy of the PTF model is validated through comparisons with measured 

data. The TL, sound absorption coefficient and reflection coefficient curves correspond 

to various grazing flow velocities are compared in Figs. 6.6-6.8. The comparisons show 
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that the prediction curves can fit the experimental data reasonably well and a good 

agreement between the prediction and the measured data is observed for various flow 

speeds. However, same as before, with flow, an obvious deviation of the predicted 

maximum TL values from the measured ones can be observed. In fact, the measured 

maximum TL values are always lower than the predicted ones. This can be explained 

by the same reason put forward in Section 5.4 in that the presence of grazing flow 

increases the background noise, and by maintaining the low limited acoustic excitation 

to avoid nonlinear effects, the signal to noise ratio that can be achieved in the 

experiment is not good enough. Apparently, the high TL values cannot be measured 

when flow is present. Nevertheless, the above comparisons can still confirm the validity 

of the numerical approach. 

 

 

 

(a) 
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(b) 

 

(c) 

 

Figure 6.6. Comparisons between the predictions and experimental data at M=0, (a) 

TL, (b) sound absorption coefficient, (c) reflection coefficient. 
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(a) 

 

(b) 
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(c) 

Figure 6.7. Comparisons between the predictions and experimental data at

0.035M = , (a) TL, (b) sound absorption coefficient, (c) reflection coefficient. 

 

 

(a) 
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(b) 

 

(c) 

 

Figure 6.8. Comparisons between the predictions and experimental data at

0.064M = , (a) TL, (b) sound absorption coefficient, (c) reflection coefficient. 
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6.3. Numerical results and analyses 

6.3.1. Duct without MPP 

The Transmission Loss of the model without MPP in the absence of flow is first 

investigated, with the corresponding TL curve presented in Fig. 6.9. It can be seen that 

two peaks appeared on the TL curve, with their locations corresponding to 1169f Hz=  

and 1625f Hz= , respectively, where a high acoustic attenuation can only be achieved 

at these two frequencies with very narrow bandwidth. The locations of these two TL 

peaks roughly correspond to the two natural frequencies of the hard-walled trapezoidal 

cavity 1216irr

rf Hz=   and 1608irr

rf Hz=  . It is obvious that these two TL peaks are 

induced by the excitation of two corresponding trapezoidal cavity modes. To better 

understand the physical mechanism behind these phenomena, the absorption and 

reflection coefficient curves are plotted in Fig. 6.10 by using Eqs. 5.39 and 5.41 to 

separate the absorbed and reflected energy components. It can be seen that the acoustic 

energy is attenuated only by the reflection through typical reactive behavior, as 

expected, with virtually zero absorption across the entire frequency range, and 

consequently, only the reflection contributes to the appearance of these two peaks. The 

reactive effects are obviously due to the impedance mismatch induced by the cross-

sectional changes in the trapezoidal part of the model. Meanwhile, this also points at 

the necessity of adding absorptions to the system to enhance the acoustic mitigation 

performance.  

 

For further illustration, the sound pressure level distribution inside the model at the 
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two peaks ( 1169f Hz=  and 1625f Hz= ) on the TL curve are presented in Fig. 6.11. 

It can be clearly seen that due to the reflection effects, standing waves are generated 

inside the duct with the maxima and minima of the acoustic amplitude appearing 

alternatively along the axial direction, as a result of the interference between the 

arriving and the reflected waves. 

 

 

 

Figure 6.9. TL of the model without MPP. 
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Figure 6.10. Sound absorption and reflection coefficient curves of the model without 

MPP. 

 

 

(a) 

 

(b) 

Figure 6.11. Sound pressure field of the model without MPP in the absence of grazing 

flow, (a) 1169f Hz= , (b) 1625f Hz= . 
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6.3.2. Effects of the MPP absorber 

The predicted TL curves of the model with and without MPP are compared and 

presented in Fig. 6.12. The parameters of the MPP ( 0.5d t mm= = , =0.945% ), the 

partitions and the dimension of the backing cavity are the same as the test sample shown 

in Fig. 6.3. It can be seen that the MPP absorber generates an additional dominant peak 

on the TL curve ( 979f Hz= ), increases the TL value and broadens the attenuation 

bandwidth. Clearly, the acoustic performance of the system is improved after adding 

the MPP absorber.  

 

 

Figure 6.12. TL curves of the range hood model with and without MPP. 

 

To further illustrate the above changes brought about by the MPP absorber, the 

absorption and reflection curves of the system are plotted in Fig. 6.13. It can be seen 

that the location of the absorption peak coincidences with that of the newly appeared 

TL peak ( 979f Hz= ). Clearly, the new peak is due to the absorption effects of the 
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MPP absorber. The partition inside the backing cavity makes the MPP locally reacting, 

as previously analyzed in Chapters 4 and 5. Consequently, the absorption peak on the 

absorption curve is induced by the quarter-wavelength Helmholtz-type resonance in the 

backing cavity. Results in Fig. 6.13 also indicates that the absorption effects provided 

by the MPP absorber becomes dominant whilst the reflection effect reduces. To explain 

this phenomenon the sound pressure distribution inside the duct at 979f Hz=   is 

presented in Fig. 6.14. It can be seen that the incoming acoustic wave first interacts 

with MPP, and then enters into the trapezoidal part of the model and encounters an 

cross-sectional change, thus entailing wave reflections. The acoustic energy in the lined 

part decays continuously in the axial direction, thus, within the frequency range where 

MPP works effectively, most of the energy is absorbed and consequently the energy 

reflection reduces. However, Fig. 6.13 also shows that when MPP loses its absorption 

effect, the reflection provided by the system itself can compensate for the deficiency in 

energy dissipation of the MPP to ensure a broadband acoustic attenuation. Altogether 

such a hybrid mechanism finally ensures a relatively high and broadband TL. Therefore, 

a good design should be the one which allows a good balance between the absorption 

and reflection effects. Of course, it can be expected that, even when the absorption 

effect dominates, MPP absorbers with optimized parameters warrant even better 

silencing performance.  
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Figure 6.13. Sound absorption and reflection coefficient curves of the range hood 

model with MPP. 

 

 

 

Figure 6.14. Sound pressure field in the model with MPP at 979f Hz=  in the 

absence of grazing flow. 

6.3.3. Parametric studies 

Striving for an optimal TL, influences of various system parameters with and 

without flow are examined numerically hereafter. In the following simulations, the 
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basic geometric configuration of the model remains unchanged, the flow velocity and 

the parameters related to the panel are varied. 

 

The effects of the grazing flow are examined firstly. The TL curves of the system 

with MPP under different grazing flow velocities are compared in Fig. 6.15. Results 

show that the presence of grazing flow obviously affects the silencing performance of 

the system. More specifically, the grazing flow shifts the location of the TL peak at 

979f Hz=  , which is induced by the quarter-wavelength Helmholtz-type resonance 

effect, to a higher frequency and reduces its peak value. Accordingly, the TL value, the 

attenuation bandwidth and the effective frequency range are all altered by the presence 

of the flow. Generally speaking, the grazing flow results in a lower but wider TL curve, 

which is consistent with the conclusions drawn from MPPs in straight flow ducts in 

Section 5.5.1. 

 

The corresponding sound absorption coefficient curves are plotted in Fig. 6.16 as 

well to explain the above observed changes. It can be seen that the grazing flow 

apparently influences the in-situ acoustic behavior of the MPP absorber, in terms of the 

shifting of the absorption curve to higher frequencies, changes in the maximum 

absorption value as well as the widening of the absorption bandwidth. These changes 

are consistent with those observed on the TL curve, which confirms that the changes of 

the TL curve are mainly attributed to the variations of the acoustic behavior of the MPPs. 

The above observation again demonstrates that the acoustic of MPP is sensitive to the 
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grazing flow.  

 

 

Figure 6.15. TL curves of the range hood model with MPP under different flow 

velocities. 

 

 

 

Figure 6.16. Absorption coefficient curves of the range hood model with MPP under 

different flow velocities. 
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The influence of the hole diameter with the grazing flow is presented in Fig. 6.17. 

The plotted TL curves correspond to MPPs with three different hole diameters, ranging 

from 0.3 to 0.8 mm. The thickness of the panel is taken as the same with the diameter 

of the hole and the perforation ratio remains =0.945% . It can be seen that different 

hole diameter gives rise to quite different TL response. The increase of the hole 

diameter moves the Helmholtz-type resonance induced TL peak toward a lower 

frequency and changes the corresponding peak value. However, as expected, no 

noticeable variations on the TL peaks, induced by the reflection effects of the system 

without MPP, can be observed. The results also indicate that a smaller hole is generally 

beneficial to improve the silencing performance with a wider attenuation bandwidth. It 

should be noted that this is only true for locally reacting cases, since the discussions in 

Section 5.5.2 indicate that locally reacting MPPs can only provide absorption effects. 

As to the non-locally reacting cases, however, the MPPs show hybrid behavior: both 

dissipative and reflective. Under these circumstances, to achieve optimal broadband 

performance, a balance between the dissipation and reflection effects needs to be struck 

and the panel with a small hole size may not necessarily be the best choice. The one 

with a proper hole diameter may provide the best combination of the dissipation and 

reflections.  
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Figure 6.17. TL curves of the range hood model with MPP having different diameters 

under grazing flow. 

 

Besides the diameter of the hole, the effects of the perforation ratio are also 

examined (not shown here), the main conclusion drawn from these analyses is that the 

TL is sensitive to the variations of MPP parameters in the presence of grazing flow. 

These effects can be predicted from the variation of the sound absorptions of the MPPs. 

 

The above discussions indicate that the TL of the system is sensitive to many 

system parameters. Therefore, there is a considerable room for parameter tuning to 

achieve the so-called optimized system. To illustrate this and the potential advantages 

of the PFT approach, the following analyses show an example of optimization to find 

the best parameter combination to achieve the ultimate TL performance. 
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6.3.4. Optimizations 

As an illustrative example, an optimization is performed through the tuning of two 

MPP parameters: the perforation ratio   and the diameter of the hole d . For a given 

incident sound power, the total transmitted sound power in a prescribed frequency range 

is used to evaluate the silencing performance of the system, which is expressed as 

 

1

(d, )= ( )
f

u

l

N
f

out out out

sum i
f

i

f df
=

  =  ,                                    (6.8) 

 

where lf   and uf   are the lower and upper bounds of the target frequency range, 

respectively; 
fN  is the number of discrete frequency points used for calculation and 

out

i  is the transmitted sound power at one discrete frequency point i  in the target 

frequency range. 

 

A better acoustic performance means a lower total transmitted sound power in the 

target frequency range. Hence, the whole optimization process is to find the optimal 

parameters to generate this minimum value. The problem can be formulated as: 

 

min. ( , )out

sum d  ,                                                  (6.9a) 

s.t. 0.1 0.9d  , =0.05d mm ,                                              (6.9b) 

0.6% 2%  , =0.1% ,                                                 (6.9c) 
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where out

sum  is the objective function; min. is the abbreviation of minimize and s.t. is 

the abbreviation of subject to. The constraint condition Eq. 6.9b imposes a restriction 

on the diameter of the perforation hole, which is incremented by a step of 0.05 mm (17 

points in total). The constraint condition in Eq. 6.9c indicates that perforation ratio is 

varied within the constraint range from 0.6% to 2% with an increment of 0.1% 

amounting to a total of 15 points. Overall, this results in 255 different combinations of 

d  and  . 

 

Two optimized problems are defined. The first case considers a broadband 

optimization, targeting a frequency range from 500 to 1700 Hz with an increment of 10 

Hz. Owing to the sub-structure treatment, during the optimization process, only the 

subsystems being changed need to be recalculated. In the current case, only the mobility 

matrix of the MPP Y in Eq. 6.4 needs to be recalculated in each optimization loop, 

while the recalculations of the acoustic quantities of other subsystems are not needed. 

Finally, the computational time for the calculations of these 255 cases is less than 10 

minutes using a standard personal computer, which further demonstrates the efficiency 

of the PTF approach for the design of MPPs in complex acoustic environment.  
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Figure 6.18. Distribution of the total transmitted power with respect to the diameter of 

the hole and perforation ratio. 

 

The result of this first optimization study case is shown in Fig. 6.18, which shows 

the distribution of the total transmitted sound power defined in Eq. 6.8 with respect to 

d  and  . Results demonstrate the existence of a minimum total transmitted power 

and the corresponding MPP parameters to get the optimized acoustic mitigation 

performance. Within the pre-defined constraint range, the combination with 

0.3d mm=  and =0.6%  can best meet the designed requirement. The corresponding 

TL curve along with that of the model without MPP are compared in Fig. 6.19. The 

comparison clearly shows that the optimized configuration warrants significantly 

improved TL in the target frequency range and exhibits broadband TL characteristics 

compared with the one without MPP. 
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Figure 6.19. TL curves of optimization and empty model. 

 

As an additional example, the targeted frequency range is set from 300 to 1200 Hz, 

thus a narrower and lower frequency bandwidth. The optimization process finally 

results in an optimal combination with 0.85d mm=  and =0.6% . The corresponding 

TL curve is also plotted in Fig. 6.19, showing that the TL of the system in the targeted 

frequency range can be significantly improved by the optimized combination. 

 

To get further insights into the optimization results, the absorption and reflection 

curves for both case 1 and case 2 are plotted in Fig. 6.20 and 6.21, respectively. Fig. 

6.20 shows that the broadband TL of the system is mostly due to the absorption effect 

provided by the MPP with a small hole size, which is consistent with the analyses in 

Section 5.5.3.1 in that for locally reacting case MPPs, smaller holes can provide wider 

acoustic attenuation performance. However, the results shown in Fig. 6.21 indicate that 
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the optimized silencing performance from 300 to 1200 Hz in case 2 is achieved by 

simultaneous absorption and reflection effects. Below 1000 Hz the absorption effect 

dominates, while above it the absorption effect decreases while the reflection effect 

increases correspondingly to provide compensation. This can be explained by the fact 

that the diameter of the hole in case 2 is relatively large. As a result, the absorption 

bandwidth is not wide enough to cover the entire targeted frequency range. Therefore, 

reflections are needed. This eventually results in a balanced hybrid effect in the system. 

 

 

 

Figure 6.20. Sound absorption and reflection coefficient curves for the first 

optimization case. 
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Figure 6.21. Sound absorption and reflection coefficient curves for the second 

optimization case. 

 

The above discussions demonstrate the capability of the PTF approach as a 

practical design and optimization tool for the design of MPPs to achieve desired 

silencing performance in a complex acoustic environment with grazing flow. Note that, 

more variables can also be integrated into the optimization model for any given problem 

considering the demonstrated efficiency and flexibility of the PTF approach. 

 

6.4. Improved PTF approach for systems with geometric complexities 

The hybrid theoretical-numerical treatment presented above only allows for the 

system optimization through tuning system parameters related to MPP. It becomes 
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cumbersome when more complex subsystem parameters, such as the shape of the 

irregular acoustic cavities, are also included into the optimization process, since the 

PTFs of these irregular cavities are calculated through FEM. Therefore, an efficient 

treatment of the subsystems with irregular geometry is needed.  

 

In the following, a new technique based on coordinate transformation is proposed 

to calculate the PTFs of an irregular shape cavity, exemplified by a trapezoidal cavity. 

Upon establishing its formulation and validation, the proposed technique is integrated 

into the previous PTF framework. 

 

6.4.1. PTF calculations of irregular cavity with coordinate transformation 

 

 

 

Figure 6.22. Illustration of coordinate transformation technique. 

 

Consider a trapezoidal cavity shown in Fig. 6.22. Its description in the physical x-
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y-z coordinate system can be mapped into a regular rectangular cavity with unite length 

described in a different coordinate system ξ-η-ζ by performing coordinate 

transformation, as shown in Fig. 6.22. After transformation, the PTF calculations of the 

irregular cavity with inclined walls can be analytically performed since the geometry 

of the transformed cavity has a regular and simple shape. 

 

The mapping relationship between these two coordinate systems can be 

determined by the location relationship of eight vertexes ( ), ,i i ix y z  of the trapezoidal 

cavity shown in Fig. 6.22 through the following equations: 

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8+ + + + + +x N x N x N x N x N x N x N x N x= + ,  

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8+ + + + + +y N y N y N y N y N y N y N y N y= + ,  

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8+ + + + + +z N z N z N z N z N z N z N z N z= + ,                     (6.10) 

where 

1=(1 )(1 )(1 )N   − − −
, 2 = (1 )(1 )N   − −

, 

3 = (1 )N  −
, 4 =(1 ) (1 )N   − −

, 

5 =(1 )(1 )N   − −
, 6 = (1 )N   −

, 

7 =N 
, 8 =(1 )N  −

.                                          (6.11) 

 

Based on Eqs. 6.10 and 6.11, the relationship between the first spatial derivative 

with respect to x , y , z  and  ,  ,   can be expressed as follows 
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() () ()

() () ()
= =

() () ()

x y z

x x

x y z

y y

x y z

z z

   

   

   

           
                   
           
      
           

           
      
           

J ,                             (6.12) 

 

where J  is called Jacobin matrix. The elements of the first column of this matrix write 

( ) ( )

( )

1 2 3 4 5 6 7 8 1 2 3 4

1 2 5 6 1 2

x
x x x x x x x x x x x x

x x x x x x

 





= − + − + + − + − + − + −



+ − − + − +

,         (6.13 a) 

( ) ( )

( )

1 2 3 4 5 6 7 8 1 2 3 4

1 4 5 8 1 4

x
x x x x x x x x x x x x

x x x x x x

 





= − + − + + − + − + − + −



+ − − + − +

,         (6.13 b) 

( ) ( )

( )

1 2 3 4 5 6 7 8 1 4 5 8

1 2 5 6 1 5

+
x

x x x x x x x x x x x x

x x x x x x

 





= − + − + + − + − + − −



+ − − + − +

.         (6.13 c) 

 

The pressure of a point in the irregular cavity ( , , )irrp x y z , is expressed as the 

summation of a series of cosine functions, expressed in terms of their corresponding 

locations in the transformed regular cavity as 

 

0 0 0

( , , ) ( , , ) cos( )cos( )cos( )

N N N

irr irr m m m

m m m

p x y z p m m m
  

  

  

        
= = =

= =    , (6.14) 

 

where 
m m m  
  is the unknown coefficient. 

 

The unknown coefficients 
m m m  
  in Eq. 6.14 are to be determined based on the 
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energy principle. The total potential irrU  and kinetic energies irrT  of the trapezoidal 

cavity are expressed as 

 

1 1 1
2 2

2 2 0 0 0

1 1
( , , ) ( , , )

2 2
irr irr irr

V
U p x y z dV p d d d

c c
     

 
= =    J ,          (6.15) 

and 

22 2

2
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1 1 1 2

2 11 12 130 0 0
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2
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= [( )
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(

irr irr irr

irr
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irr

V
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(6.16) 

where -1J   is the inverse of Jacobin matrix J , and 1

ij

−  J  is the element ( ),i j  in 

matrix -1J . 

 

The work done by one excitation patch of the trapezoidal cavity, like the patch on 

the interface where 0y =  shown in Fig. 6.22, excited with uniformly distributed unit 

displacement is written as, 

 

2 2 2 2

1 1 1 1
2 2( ,0, ) ( , ,0)

e e e e

e e e e

x z

e irr irr
x z

W p x z dxdz p d d
 

 
   = =    J ,  21,...,e N  ,   (6.17) 
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where 
2 2 =

x z

x z

 

 



  
  
 
  

   

J .  

 

The Lagrangian for the trapezoidal acoustical cavity can be written as 

 

irr irr eL U T W= − − .                                                 (6.18) 

 

Applying Lagrange equation with respect to all the unknown coefficients yields 

 

0
m m m m m m m m m

dL L L L

dt
        

  

   
  − = =
   
 

 ,  0,...,I Im N   ,                 (6.19) 

 

where the subscript index I  can be  ,   or  . 

 

The above equations can then be written in the following condensed matrix form: 

 

2

 
− = 

 

irr
irr

K
M W  ,                                               (6.20) 

 

where Mirr and Kirr can be interpreted as the mass and stiffness matrices of the irregular 

cavity with rigid walls,   is the unknown coefficient vector and W is the external 

work vector done by one excitation patch of the trapezoidal cavity. 
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Once Eq. 6.20 is solved, the unknown coefficient 
m m m  
  can then be obtained, 

which allows the calculation of the pressure field in the irregular cavity through Eq. 

6.14. 

 

Finally, according to Eq. 5.2, the PTF between patches in the irregular cavity, for 

example, when the receiving patch is on the interface where 0y =  shown in Fig. 6.22, 

can be obtained as 

 

( )
2 2

1 1

, ,0
=

r r

r r
r r

irr
irr irr irr
re e r

irr rec

p d dp p
Z

u j j S

 

 
   

 
= =

 
 ,                            (6.21) 

 

where r

recS  is the surface area of one receiving patch in the transformed rectangular 

cavity. 

 

The accuracy of the proposed technique is validated through comparison with 

FEM results. The TL curves of the complex system shown in Fig. 6.3 in the no-flow 

case are compared in Fig. 6.23, showing good agreement, which confirms the validity 

of the coordinate transformation technique. 
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Figure 6.23. Comparison of the TL curve between coordinate transform technique and 

FEM method, 0.5d t mm= = , =0.945%  and 0M = . 

 

6.4.2. Effects of the shape of irregular cavity 

Since the PTFs of the irregular trapezoidal cavity can now be analytically 

calculated through coordinate transformation, it is convenient to explore the effects of 

the cavity shape on the TL performance of the system. As illustrated in Fig. 6.22, the 

shape of the trapezoidal cavity is determined by its depth irrL  and the inclined angles 

of three tilted walls, 1

irr  , 2

irr   and irr  . In the following simulations, the basic 

geometric configuration of the model remains unchanged and three tilted walls are 

inclined with the same angle ( 1 2= =irr irr irr   ), the cavity depth irrL  and inclined angles 

of the tilted walls are varied. 
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Figure 6.24. TL curves of the range hood model having MPP with the trapezoidal 

cavity having different inclined angles, 0.7d t mm= = , =1%  and 0.048M = . 

 

The effects of the inclined angle are examined firstly. The TL curves of the system 

with MPP having different inclined angles of the trapezoidal cavity under grazing flow 

are compared in Fig. 6.24. Results show that the inclined angle of the tilted walls 

obviously affects the silencing performance of the system. More specifically, increasing 

the inclined angle, the number of the peaks on the TL curve increases, with peaks shifted 

toward lower frequency range; consequently, the TL performance in low frequency 

range is improved. The reason is that, except for the peak induced by the absorption 

effects provided by the MPP absorber at 1043f Hz= , other peaks are generated by the 

reflection effects due to the impedance mismatch induced by the cross-sectional 

changes in the trapezoidal part of the model. The locations of these peaks correspond 

to the natural frequencies of the irregular cavity. Since the resonant frequencies 

decrease and the number increases in the frequency range of interest with respect to the 
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increasing size of the cavity, more cavity modes are excited, thus leading to an increase 

in the number of peaks on the TL curve and downward shift of the TL peaks when the 

angle of the tilted walls increases. 

 

 

 

Figure 6.25. TL curves of the range hood model with MPP having different irregular 

cavity depths, 0.7d t mm= = , =1%  and 0.048M = . 

 

The influence of the trapezoidal cavity depth is shown in Fig. 6.25, for irregular 

cavities with three different depths, ranging from 90 to 270 mm. It can be seen that 

different cavity depths give rise to quite different TLs. Since the increase of the cavity 

depth can also lead to the increase of the irregular cavity dimension, the changes on the 

TL curves induced by the increase of the inclined angles can also be observed when the 

cavity depth increases, such as the increase in the number of peaks on the TL curve and 

the shift of TL peaks toward lower frequencies and the improvement of low frequency 

TL performance.  
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The above discussions indicate that the TL of the system is sensitive to the shape 

of the irregular cavity. An eventual optimal design need to take this factor into account.  

 

6.4.3. Optimizations 

To show the improvement brought about by further considering the cavity shape, 

the optimization study performed in Sec. 6.3.4 is revisited hereafter. The objective 

function, the constraints imposed on the hole diameter and perforation ratio of the MPP 

(Eq. 6.9) as well as the target frequency range for two optimization cases, case 1 and 

case 2, where the frequency range is set from 500 to 1700 Hz and 300 to 1200 Hz, 

respectively, both with an increment of 10 Hz, all remain the same as before. The only 

difference is that the parameters determine the shape of the irregular sub-system, 

inclined angles of three tilted walls (set to be the same) and the depth of the trapezoidal 

cavity, are now included in the optimization process. The constraints imposed on these 

two parameters are described as 

 

0.12 0.24irrm L m  , =0.03irrL m ,                                        (6.22a) 

1 220 = = 60irr irr irr     , =10irr  .                                        (6.22b) 

 

A total of 6375 different combinations are generated and calculated for each 

optimization case. The total computation time for the entire calculations is less than 6 
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hours using a standard personal computer, which demonstrates the efficiency of the 

improved PTF approach to model systems with complex geometry. The optimization 

process finally results in an optimal combination with 0.3d mm=  , =0.6%  , 

0.18irrL m=  , 30irr =   for case 1 and 0.7d mm=  , =0.6%  , 0.21irrL m=  , 

40irr =  for case 2. 

 

 

 

Figure 6.26. Optimized TL curves for case 1, 0.048M = . 

 

The optimized TL curve achieved from employing coordinate transformation 

technique with the shape of the irregular cavity being considered and the one presented 

in Section 6.3.4 achieved by using hybrid theoretical-numerical treatment without 

considering the shape of the irregular cavity are compared in Fig. 6.26. It can be seen 

that for case 1, detailed in Section 6.3.4, where the target frequency range is set from 

500 to 1700 Hz with an increment of 10 Hz, after using coordinate transformation 
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technique and including more system parameters, an additional peak appears on the 

optimized TL curve, which results in an enlargement of 10dB TL stop bandwidth. The 

optimized TL performance in the target frequency range is further improved as 

compared with the result from hybrid theoretical-numerical treatment. It is reasonable 

since the optimized combination result indicates that the inclined angle is increased 

from 20irr =  to 30irr = after including the shape of the irregular cavity into the 

optimization process, the increase of the inclined angle generates additional peak on the 

TL curve as analyzed before. The improvement on the TL curve has also been observed 

from the comparisons with the other case (not shown here). These analyzes demonstrate 

that, by considering shape changes after integrating the coordinate transformation 

technique into the framework of PTF approach, the efficacy of the proposed approach 

is further improved. Note that, through system mapping, cavities with more general 

irregular shape can be dealt with. As a result, the proposed improved PTF approach 

actually can be applied to more general cases, not limited to the trapezoidal cavity 

investigated in the current work. 

 

6.5. Summary 

Through a combined numerical and experimental investigation, the potential of 

using MPPs in complex acoustic environment with grazing flow is explored. To tackle 

the numerical challenges and to facilitate the design of MPPs, the PTF approach is 

employed. The patch-based interface matching technique, loosely selected meshing 
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criteria and the modular nature of the present method collectively make it an efficient 

and practical tool for the design of practical industrial devices with MPP.  

 

The hybrid theoretical-numerical technique based on PTF approach is firstly 

employed to numerically predict the acoustic behavior of a mock-up of a range hood 

having a complex geometry with MPP under grazing flow. An experiment is conducted 

to validate the numerical method and the accuracy of the calculations. The presented 

numerical simulations show that with MPP, the silencing performance of the range hood 

model can be significantly improved and be used for noise mitigation. With MPPs, the 

system shows a hybrid acoustic attenuation mechanism. Upon ensuring a proper 

balance among these effects through a suitable parameter tuning, a broadband silencing 

performance can be achieved. The influence of the grazing flow and the associated MPP 

parameters are investigated through parametric study. Results show that the silencing 

performance of the system is sensitive to the presence of grazing flow and other system 

parameters, and to meet specific TL requirements, system optimization is needed and 

definitely possible. As such, two optimization examples are given, with results further 

demonstrating the effectiveness of the presented hybrid theoretical-numerical method 

for the practical design of MPPs in complex acoustic environment with grazing flow. 

Finally, a coordinate transformation technique is proposed to calculate the PTFs of 

irregular subsystems. After integrating this technique into the PTF framework, the 

efficacy of the PTF approach is further improved as demonstrated by the revisited 

optimization study. 
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Chapter 7. Conclusions and Future Work 

This thesis examines the acoustic behavior of MPPs under fully developed grazing 

flow in the linear low acoustic excitation region as well as typical applications in 

complex acoustic environment with grazing flow.  

 

To deepen the understanding of the flow-acoustic interaction, the grazing flow and 

the acoustic wave-excited flow field near the orifice of the MPPs under different flow 

and excitation conditions are first scrutinized through 3D URANS CFD method. Based 

on the flow field analyses, the underlying physics of the flow-MPP interaction are 

revealed, mainly from three aspects: 1) The resistance effects of the vortex in the hole, 

as well as the movement of the shear layer above the hole are shown to be negligible. 

Within the considered linear acoustic regime, the viscous dissipation in the shear layer 

near the hole is identified as the dominant sound energy dissipation mechanism, which 

will gradually be taken over by the chaotic vortex shedding effect when the acoustic 

excitation SPL increases;  2) The reason behind the increase of the acoustic resistance 

with flow velocity is found to be a result of the enhancement of the viscous effect near 

the wall of the hole due to the increased size of the vortex in the hole with flow velocity; 

3) The velocity gradient in the viscous sublayer over the duct wall is identified as the 

intrinsic flow parameter which is inherently correlated with the acoustic resistance of 

the MPPs with grazing flow. 
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Following the flow field analyses, numerical experiments are carried out, and a 

linear relationship between the velocity gradient in the viscous sublayer and the flow-

related part in the acoustic resistance formula is revealed. Based on this linear 

relationship, a new acoustic resistance formula is proposed, which is shown to be 

applicable at a certain Reynolds number range under the linear acoustic excitation 

regime. Combined with Cummings’ reactance model, a complete set of the acoustic 

impedance prediction formulae for MPPs with grazing flow is established. For 

validations, an inverse impedance derivation method is employed to experimentally 

obtain the acoustic impedance of a MPP under low-speed grazing flow within a linear 

acoustic excitation region. The accuracy and the superiority of the proposed prediction 

formula over the existing ones are demonstrated through comprehensive comparisons 

with the data provided in the open literature and those from experiments. It is shown 

that the proposed formula agrees well with the experimental data and outperforms 

existing models in terms of both prediction accuracy and application range. The 

impedance formulae are then used to investigate the grazing flow effects on the sound 

absorptions of infinite MPP absorbers under normal plane acoustic wave excitation. 

Results indicate that the grazing flow significantly affect the sound absorptions of MPP 

absorbers, which needs to be considered even for the applications of MPPs in simple 

acoustic environment. 

 

Applications of MPPs in coupled acoustic environment under grazing flow are 

also exploited based on the developed impedance prediction formula and the PTF 
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approach. Investigations of MPPs in flow ducts show that partitions inside the backing 

cavity significantly affect the acoustic attenuation performance of the MPP silencers. 

The design of the backing cavity should be determined based on specific needs. Grazing 

flow typically shifts the TL peak to a higher frequency, alters its maximum level and 

flattens the TL curve with a wider bandwidth. The effect of the hole size and that of the 

perforation ratio on the silencing performance of MPPs under grazing flow are similar 

to the cases without flow. The panel dimension actually significantly affects the 

acoustic performance of the MPPs. While exhibiting a more intuitive influencing 

manner in locally reacting cases, the size of the MPP in a non-partitioned silencer, 

however, needs more meticulous consideration, which calls for a systematic system 

optimization to target a prescribed frequency range.  

 

The investigations of MPPs in a domestic device having a more complex geometry 

and being subjected to flow show that, with MPP, the silencing performance of the 

range hood model can be significantly improved and be used for noise mitigation. With 

MPPs, the system shows a hybrid acoustic attenuation mechanism. Upon properly 

balancing these effects through suitable parameter tuning, a broadband noise 

attenuation can be achieved. The silencing performance of the system is sensitive to the 

presence of grazing flow and other system parameters, and to meet specific TL 

requirements, a system optimization is needed, which can be readily achieved by using 

the PTF approach established in this thesis.  
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In summary, the major contributions of this work can be summarized in three 

aspects. 

 

1). Proposal of a full set of impedance prediction formula. A complete set of acoustic 

impedance prediction formula for MPPs with fully developed grazing flow under linear 

acoustic excitation region is established and validated through comparisons with 

experimental and CFD generated data. This enriches and extends the pioneer work of 

Maa and fills the gap left over for dealing with MPPs in flow. 

 

2). Revelation of new physical insights. Depending on the energy level of the acoustic 

excitation, the dominant sound energy dissipation mechanism could be the viscous 

dissipation in the shear layer near the hole, chaotic vortex shedding effect or the 

combination of them with grazing flow. The traditionally-believed dissipation 

mechanisms based on overcoming the resistance effects of the vortex in the hole, or the 

movement of the shear layer above the hole are found to be negligible for small MPP 

holes. This new mechanism finally leads to a different explanation on the increase of 

the acoustic resistance with flow velocity. More specifically, the increase of the viscous 

force near the wall of the hole with flow velocities is responsible for the increase in the 

sound energy dissipation through the viscous effects in the shear layer near the hole 

wall. This is different from the explanations given in the open literature, such as the 

“blowing away” process, the changes of the extent of the movement of the shear layer 

above the hole and the variations of the discharge coefficient. Finally, a new flow 
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parameter, namely the velocity gradient in the viscous sublayer over the duct wall, is 

identified as the intrinsic flow parameter which can describe the grazing low effects on 

the acoustic resistance of the MPPs with grazing flow. 

 

3). Provision of an effective analysis and optimization tool to guide practical 

applications. The established PTF-based sub-structuring approach allows an effective 

handling of complex acoustic systems with MPPs as integrative system components. 

Its application on MPPs in a coupled complex acoustic environment under grazing flow 

provide useful guidance for practical design of the MPPs. 

 

In addition to the above major conclusions, a few future suggestions arising from 

the present thesis are proposed. 

 

1) The acoustic impedance formula presented in this work is established and 

validated based on the data obtained from a square flow duct carrying a fully developed 

grazing flow within a certain flow speed range. Therefore, strictly speaking, the 

validated acoustic impedance formulae have only been shown to be applicable to flow 

ducts in the application range defined in this thesis. As to other more complex cases 

which go beyond the pre-defined range, like flow with a higher Reynolds number or 

over an open space, although we still believe that, as far as the grazing incidence is 

concerned, the proposed formula should still apply to a certain extent, further 

verifications are definitely needed before a conclusive statement can be made. 
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2) The current study only considers the acoustic behaviors of the MPPs under fully 

developed turbulent flow, in which case the thickness of the boundary layer is larger 

than the diameter of the hole. Although it is often the case in practice, studies of cases 

where the boundary layer thickness is comparable with or smaller than the size of the 

hole would probably allow a better understanding on the influence of the boundary 

layer towards the MPPs. 

 

3) The perforation ratios of the MPPs being investigated in this work are relatively 

low. As a result, interactions between MPP holes are considered to be week and 

negligible. Increasing the perforation ratio, the interactions between holes would 

increase and affect the acoustic behavior of MPPs. Meanwhile, the current research 

focuses on the region where MPPs behave linearly under low SPL excitation. Increasing 

the SPL would definitely affect the acoustic impedance of MPPs. Last but not the least, 

the temperature effect on the acoustic behavior of MPPs is not considered in this work, 

which may constitute a real issue for some applications. Therefore, the impedance 

formulae established in this work should be employed with care. Obviously, more 

future efforts are still needed to develop the impedance prediction formulae applicable 

for high perforation ratio, high SPL regime and with possible temperature variations. 

 

4) The presented numerical method, PTF approach, only considers still media with 

the convection effects on the propagation of acoustic wave ignored. Though reasonable 

for low-speed flow cases, it does not allow the consideration of the flow convection 
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effects, or in a more general case, the aero-acoustic noise induced by turbulent flow 

itself. In addition, the current PFT version only allows the consideration of linear 

systems. Therefore, its further extension to consider the above factors will definitely be 

a giant leap forward. 

  

5) In Chapter 6, a hybrid theoretical-numerical technique and an improved PTF 

approach are presented to extend the applications of MPPs to more real-life and 

complex systems, with the PTFs of a complex sub-system calculated through either 

FEM or coordinate transformation technique. Although the capability and the efficiency 

of these treatments have been well demonstrated, it is definitely desirable if more 

applications involving complex systems can be explored.  
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