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ABSTRACT 

Increasing the importance of infrastructures demands an effective and timely structural 

health monitoring (SHM) systems. Structural damage detection using modal strain 

energy (MSE) is one of the efficient and reliable SHM techniques. However, some 

existing MSE methods have been validated only for special types of the structures 

such as beams or steel truss bridges or have had an unsatisfactory performance. This 

circumstance demands either improving the available methods or proposing new 

approaches. The current study focuses on improving a two-stage MSE-based damage 

detection method to accurately detect and quantify the damage in bridges. Primarily, 

it is attempted to more accurately establish an equation for the MSE stored in each 

element of the structure before and after the damage. This can be achieved by 

mathematically considering the actual damaged stiffness matrix into the traditional 

MSE equation as an unknown parameter.  Establishing a more exact amount of MSE 

change during the damage leads to attaining a more sensitive matrix which assists 

realizing the damage more accurately at an early stage of forming with higher 

reliability. It is also tried to generalize the improved method to be applicable for any 

bridge. The improved MSE method for detecting the structural damage has two 

consequent stages, stage one, locating the damage, and stage two, quantifying the 

damage. The crucial key for identifying the location of damage in the structure is to 

calculate the elemental MSE change of the structure before and after the damage. 

Therefore, an elemental MSE-based indicator is used to show the ratio of the MSE 

change for each element. The elements with the higher amount of MSE change ratio 



 

iii 

 

are the most likely elements to be damaged and are nominated for further investigation 

in the second stage. Sensitivity matrix is used to quantify the damage which is a matrix 

derived from MSE change with respect to extent of the damage as an unknown 

independent variable. To validate the improved method, numerical studies are 

performed on some structures including, a fixed-end beam, a three-story frame, a steel 

truss bridge and a concrete bridge frame model. Consequently, experimental 

verifications are conducted on a simply supported beam, a cantilever beam and a three-

story steel frame model. To examine the application of the improved method to a real 

model also, it is applied to the 4-DOF three-story structure of Los Alamos National 

Laboratory (LANL). In most of the numerical verifications, different scenarios 

including single and multiple damages, affected by up to seven percent noise are 

considered. Finally, to observe the applicability of the improved method in reality, it 

is applied to the I-40 Bridge in New Mexico; the USA using the available data. The 

results indicate that the improved method is able to detect any single or multiple 

damage at any element or node of the structure at most of the cases studied. In 

numerical case studies, the improved method is precisely able to detect and quantify 

the damage with minimal error. However, in experimental case studies, real structure 

and bridge, there are few errors because of some sources such as the difference 

between physical structure and FEM model, material properties modelling, incomplete 

and limited measurements, data processing, software and unknown factors and 

uncertainties. According to the findings of this dissertation the improved method is 

proper for health monitoring of complex bridges and well identifies the damage in the 

most cases and being more accurate and efficient than its predecessors in terms of well 

recognition of the location of the damage and identifying its extent. The findings of 

this study can confidently contribute to academic studies and bridge industry to realize 
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the genuine condition and behaviour of complex bridges during the damage to 

minimize the loss of lives and property by identifying the unforeseen structural 

damages. 
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CHAPTER 1 

INTRODUCTION 

1.1 Structural damage 

Degradation and deterioration of the infrastructure because of corrosion, fatigue, 

erosion and wear processes (Gopalakrishnan et al., 2011), during the service life 

contributes to damage in the structures which is defined as bearing capacity reduction 

(Chen and Ni, 2018). In other words, damage is inducing any changes to material 

and/or geometric properties of the boundary conditions and connectivity of the system 

that negatively influences the performance of the system (Farrar and Worden, 2012). 

Some types of damage are cracks, corrosion and concrete spalls that reduce the 

stiffness of structure. 

To ensure the health of the structures, there is a need to monitor the structure for the 

damage during the service life. One of the most common and inexpensive way is visual 

inspection (Choi et al., 2005). However, for complex structures, visual inspection is 

not adequate to recognize the damage in the structures, firstly, it is unreliable. Secondly, 

it is not applicable for any structure or any favorite location of the structure because 

some parts may not be accessible for visual inspection. Besides, some types of 

damages are not visible to be visually inspected. Furthermore, by visual inspection the 

extent of damage cannot be quantified.  
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1.2 Failure in bridges around the world 

From 2000 till 2017, about 96 bridges have been collapsed around the world. The list 

of most recent ones in 2016 and 2017 including name, location, date of collapse and 

casualties are listed in Table 1.1 (Wikipedia, 2017).  
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Table 1.1 List of bridge failures around the word during the years 2016 and 2017 

No Bridge name Location Country 
Date of 

collapse 
Casualties 

1 
Nipigon River 

Bridge 

Ontario Canada 

10 January 

2016 
- 

2 
Vivekananda 

Flyover Bridge 

Kolkata India 

31 March 

2016 

27 killed, 

80+ injured 

3 Railway bridge Tolten River Chile 
19 August 

2016 
- 

4 Nzi River Bridge near Dimbokro Ivory Coast 

6 September 

2016 
- 

5 
Yellow 'Love' 

Bridge 

Klungkung 

Regency 

Indonesia 

16 October 

2016 

9 killed, 

30 injured 

6 Lecco overpass 
Province of 

Lecco 

Italy 

28 October 

2016 

1 killed, 

5 injured 

7 Camerano overpass 
Province of 

Ancona 

Italy 

9 March 

2017 

2 killed, 

3 injured 

8 
Pfeiffer Canyon 

Bridge 

Pfeiffer Big Sur 

State Park, Big 

Sur, California 

United 

States 

11 March 

2017 
- 

9 I-85N Atlanta Atlanta 

United 

States 

30 March 

2017 
- 

10 
Sanvordem River 

Bridge 
Curchorem, Goa India 18 May 2017 

2 killed, 

30 missing 

11 Sigiri Bridge 

Nzoia River, 

Budalangi, 

Busia County 

Kenya 26 June 2017 3 injured 

12 

Bridge No 'B1187 - 

1978' on N3 at 

intersection with 

M2 

Johannesburg 

South 

Africa 

9 August 

2017 
6 injured 

13 

Ramat Elhanan 

Pedestrian Crossing 

on Highway 4 

Bnei Brak Israel 

14 August 

2017 
1 killed 

 

For instance, the I-35W Mississippi River Bridge (known as Bridge 9340) was 

collapsed on August 1, 2007 and led to killing 13 people and injuring 145 as shown in 

Figure 1.1. It was an eight-lane, steel truss arch bridge carrying 140,000 vehicles daily. 

https://en.wikipedia.org/wiki/Nipigon_River_Bridge
https://en.wikipedia.org/wiki/Nipigon_River_Bridge
https://en.wikipedia.org/wiki/Ontario
https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Vivekananda_Flyover_Bridge
https://en.wikipedia.org/wiki/Vivekananda_Flyover_Bridge
https://en.wikipedia.org/wiki/Kolkata
https://en.wikipedia.org/wiki/India
https://en.wikipedia.org/wiki/Nzi_River_Bridge_collapse
https://en.wikipedia.org/wiki/Dimbokro
https://en.wikipedia.org/wiki/Ivory_Coast
https://en.wikipedia.org/wiki/Klungkung_Regency
https://en.wikipedia.org/wiki/Klungkung_Regency
https://en.wikipedia.org/wiki/Indonesia
https://en.wikipedia.org/wiki/Province_of_Lecco
https://en.wikipedia.org/wiki/Province_of_Lecco
https://en.wikipedia.org/wiki/Italy
https://en.wikipedia.org/wiki/Province_of_Ancona
https://en.wikipedia.org/wiki/Province_of_Ancona
https://en.wikipedia.org/wiki/Italy
https://en.wikipedia.org/wiki/Pfeiffer_Canyon_Bridge
https://en.wikipedia.org/wiki/Pfeiffer_Canyon_Bridge
https://en.wikipedia.org/wiki/Pfeiffer_Big_Sur_State_Park
https://en.wikipedia.org/wiki/Pfeiffer_Big_Sur_State_Park
https://en.wikipedia.org/wiki/Big_Sur,_California
https://en.wikipedia.org/wiki/Big_Sur,_California
https://en.wikipedia.org/wiki/Interstate_85_bridge_collapse
https://en.wikipedia.org/wiki/Atlanta
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Sigiri_Bridge
https://en.wikipedia.org/wiki/Kenya
https://en.wikipedia.org/wiki/Johannesburg
https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/Bnei_Brak
https://en.wikipedia.org/wiki/Israel
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According to the National Transportation Safety Board (NTSB) report (Board, 2008), 

the cause of the collapse of the I-35W Bridge, was a design error by the firm (Sverdrup 

& Parcel and Associates, Inc.), causing the gusset plates having insufficient load 

capacity. Additionally, combination of additional weight on the bridge at the time of 

event, the traffic and concentrated construction loads were contributed to the 

unexpected collapse of the bridge.  

 

Figure 1.1 Collapse in I-35W Bridge in the US, Aug., 2007 

Another sample of the disastrous bridge collapse is the Highway 19 overpass at Laval 

(De la Concorde Overpass) at a bridge over Quebec Autoroute 19 near Montreal, 

Quebec, Canada, that was happened on September 30, 2006, killing five people and 

injuring six others as shown in Figure 1.2. The main reason of the overpasses collapsed 

accepted by the commissioners of the Quebec Government was shear failure in 

southeast abutment because of the following problems; 

https://en.wikipedia.org/wiki/Gusset_plates
https://en.wikipedia.org/wiki/De_la_Concorde_Overpass_collapse
https://en.wikipedia.org/wiki/Quebec_Autoroute_19
https://en.wikipedia.org/wiki/Montreal
https://en.wikipedia.org/wiki/Quebec
https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Quebec


 

5 

 

• The designed steel reinforcement was concentrated in one layer, although it was 

according to the design code at the time of design. 

• Putting reinforcement in an improper location during the construction.  

• Inferior quality of the abutment concrete resulting in poor freeze-thaw behaviour.  

 

Figure 1.2 Collapse in De la Concorde Overpass Bridge in Quebec, Canada Sept., 2006 

1.3 Bridge management and Bridge failure in Australia and New 

Zealand 

There are around 33500 and 17000 road bridges in Australia and New Zealand, 

respectively, in public ownership, which are managed by over 800 establishments. 

Austroads that is a responsible association dealing with improvement of the transport 



 

6 

 

in Australia and New Zealand, often estimates the maintenance and replacement costs 

of road bridges in Australia and New Zealand, as well. According to AP-R252/04, the 

overall estimation of road bridge replacement cost in Australia and New Zealand was 

about A$20b at June 2002. However, the maintenance expenditure was estimated 

around A$100m and NZ$15m in Australia and New Zealand in 2002/03, respectively 

(Dowling  and Rummey, 2004).  

The list of the most recent damaged bridges in Australia and New Zealand are shown 

in Table 1.2 (Wikipedia, 2017). The bridge failures happened in Australia are very 

recent occurring in the last decade. While the last bridge failure in New Zealand 

happened in 1953, which is known as the New Zealand's most horrible train disaster. 

Table 1.2 List of the most recent bridge failures in Australia and New Zealand 

No Bridge name Location Country 
Date of 

Collapse 
Casualties 

1 

Gosford 

Culvert 

washaway 

Gosford, New 

South Wales 
Australia 8 June 2007 5 killed 

2 
Somerton 

Bridge 

Somerton, New 

South Wales 
Australia 

8 December 

2008 
- 

3 

Devonshire 

Street 

pedestrian 

bridge 

Maitland, New 

South Wales 
Australia 

5 March 

2009 
4 injured 

4 

Gungahlin 

Drive 

Extension 

bridge 

Canberra, 

Australian 

Capital Territory 

Australia 
14 August 

2010 
15 injured 

5 

Whangaehu 

River Rail 

Bridge 

Tangiwai 
New 

Zealand 

24 December 

1953 
151 killed 

 

https://en.wikipedia.org/wiki/Gosford
https://en.wikipedia.org/wiki/Gosford
https://en.wikipedia.org/wiki/Gosford
https://en.wikipedia.org/wiki/Gungahlin_Drive_Extension
https://en.wikipedia.org/wiki/Gungahlin_Drive_Extension
https://en.wikipedia.org/wiki/Gungahlin_Drive_Extension
https://en.wikipedia.org/wiki/Gungahlin_Drive_Extension
https://en.wikipedia.org/wiki/Tangiwai_disaster
https://en.wikipedia.org/wiki/Tangiwai_disaster
https://en.wikipedia.org/wiki/Tangiwai_disaster
https://en.wikipedia.org/wiki/Tangiwai
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1.4 Non-destructive testing 

Another way for monitoring the health of the structures is non-destructive testing 

(NDT) methods. NDT stands for a variety range of methods for analysis of the material 

and component properties of a system inducing no damage in the system. The terms 

nondestructive examination or nondestructive evaluation (NDE) and nondestructive 

inspection (NDI) are also shows the same implication of NDT technology. NDT is 

used in several disciplines especially in civil engineering for structural damage 

detection. The most common NDT methods are radiographic, eddy-current, liquid 

penetrant, magnetic-particle, ultrasonic, and visual testing. Each of these methods are 

also subdivided to many other techniques and each of them is proper only for a special 

application and may not be applicable for other purposes. Therefore, the most 

important step in using NDT methods is selecting a proper method well-suited with 

the expected application. However, the traditional NDT methods are useful neither for 

global damage detection of the large complicated structures nor for quantifying the 

extent of the damage (Engineering, 1998). 

1.5 Structural health monitoring (SHM) 

The SHM is a new emerging technology that provides continuous or periodic 

information on the structure condition to predict its remaining life (Gopalakrishnan et 

al., 2011). One aspect of the SHM is to evaluate the possible damage in structures 

using analytical tools (Chan and Thambiratnam, 2011). Damage detection and 

characterization scheme is a process that is achieved using the SHM techniques. The 

https://en.wikipedia.org/wiki/Radiographic_testing
https://en.wikipedia.org/wiki/Eddy-current_testing
https://en.wikipedia.org/wiki/Liquid_penetrant_testing
https://en.wikipedia.org/wiki/Liquid_penetrant_testing
https://en.wikipedia.org/wiki/Magnetic-particle_inspection
https://en.wikipedia.org/wiki/Ultrasonic_testing
https://en.wikipedia.org/wiki/Visual_inspection
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SHM delivers a variety of vibration-based damage detection (VBDD) methods that 

the most common ones are as follows. 

• Natural frequency variation based Methods     

• Direct mode shape based method 

• Mode shape curvature based method 

• Dynamically measured flexibility based method 

• Modal strain energy based method 

• Frequency response function method 

• Genetic algorithm based method 

• Artificial neural network based method 

• Wavelet transforms techniques 

Unlike the primary and traditional NDT methods, new SHM techniques not only are 

practical for complicated structures but also are capable of quantifying the damage in 

most of the structures. This characteristic of the SHM methods has made them to be 

increasingly developed. 

From the literature reviewed, it is observed that modal strain energy (MSE) has been 

effectively used for structural damage detection. Yet, the MSE methods have mostly 

been validated for some types of structure such as beam like structures or steel truss 

bridges. To more accurately identify the location and severity of structural damage 

practically, it is essential to enhance/improve the available MSE methods. It leads to 

provide a more applicable and reliable approach for damage detection and 

quantification of any bridge. This study aims to improve an MSE scheme to be more 
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accurate and feasible to detect the minor damages in bridges with having a high 

number of degree-of-freedom (DoFs). Having such method with high capability, 

definitely results in decreasing the loss of lives and property by preventing the 

unexpected structural damages and finally providing the safety of bridges. 

Initially, an MSE method is mathematically developed and then numerically applied 

to some two-dimensional (2-D) structural case studies. The primary numerical 

verification indicates that the mathematically improved method in this study is more 

accurate and efficient than the similar method. Consequently, experimental 

verification is also performed. Finally, a real bridge is studied to evaluate the 

applicability of the present study for a real bridge. 

1.6 Research problems  

Occurring the damage in infrastructures, especially in bridges, during their service life 

is an undeniable phenomenon. Unmonitored structures may expose to unexpected 

damage and consequently lead to loss of lives and property. Therefore, a proper 

monitoring is necessary to identify the early structural damage and perform a timely 

repair to prevent/ minimize the disastrous structural damages.  

Although there are many existing VBDD methods available, it is necessary to extend 

and develop those methods to be more inexpensive, accurate and reliable for health 

monitoring. According to the literature reviewed, the following issues are still 

enclosed. 
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1. There is not enough classified study particularly on different bridges in terms of 

length, material properties and so on. Different researchers have addressed 

different problems for some types of bridges, which are very various. Therefore, 

having a unique method is required in general. 

2. The behavior of the structures with having a higher number of DoFs during the 

damage is unpredictable. 

3. Old bridges with different design methods demand different structural damage 

techniques. 

4. Measuring the rotational DoFs and all mode shapes of a structure is very expensive 

and difficult, so it is better to improve the methods that requires incomplete data 

i.e. the methods that can detect the structural damage using fewer data of mode 

shapes are more preferable to enhance/ improve. 

1.7 Aims and objectives 

The primary aim of this study is to develop a sensitivity matrix based MSE method 

for structural damage detection. Sensitivity matrix is a matrix in terms of MSE 

differentiation of each element at any mode shape with respect to fractional reduction 

of that element. The more sensitive matrix, the more accuracy in damage detection. It 

is also intended to make it applicable for real bridges in terms of physical model and 
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material properties. To achieve this, a mathematical formulation is improved, to detect 

the damage more accurately.  

The required input data for the improved method includes all mode shapes and natural 

frequencies of undamaged structure and only the first five mode shapes and natural 

frequencies of damaged structure. Therefore, in the numerical case study, the finite 

element (FE) analysis data of entire model/structure and induced damaged 

model/structure will be used by applying the improved formulations to validate its 

proficiency.  

The aims of this research are achieved through the following objectives. 

1. Improve an MSE method to precisely and safely locate and quantify the damage 

in bridges. 

2. Verify the improved method numerically and experimentally for some models and 

structures and compare the results 

3. Apply the improved method to real models and bridges.  

It is evident that in numerical case studies as many as mode shapes and natural 

frequencies required for the improved method can be easily derived from the simulated 

models using available FEM softwares. Therefore, it is predicted that the results of 

numerical studies be more coincided with reality. However, any incomplete and 

inaccurate data may affect the results of experimental studies. Although in this study, 

it is tried to overcome this issue using expansion mode shape; it is an undeniable to 
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face with some errors in experimental studies. However, overall it is expected to get 

the more accurate results or at least lesser errors than previous studies. 

To achieve these, the following procedure is projected. 

1. Improve the MSE equation and sensitivity matrix of an existing MSE method to 

increase the accuracy and performance of the method. 

2. Numerically verify the performance of the improved method for some structural 

models and compare with other similar approaches.  

3. Experimentally assess the fulfillment of the improved method for some laboratory 

models and compare the results with their numerical simulations.  

4. Apply the improved method to a real bridge and compare the results with those of 

from finite element method (FEM) analysis. 

1.8 Significance 

The outcomes of this research provide a safe and inexpensive SHM method for bridges. 

This can be simply applied to any real bridge, having incomplete measured data to 

determine the possible damages. Since, from the improved method, it is expected to 

detect the damage at the initial stage of formation, consequently, it can contribute to a 

confidently structural health investigation that decreases the lives and property losses.  
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1.9 Scope of the research 

This study concentrates on the MSE methods as a group of the VBDD methods to 

detect the damage in bridge structures. Therefore, the research scopes are limited to 

application of the MSE method to detect the damage in any bridge. Also, the damage 

type is considered as a fractional reduction in element stiffness or rotational stiffness 

at the end nodes of the element or incremental in element mass, i.e. the damage is an 

elemental or nodal damage. It means the structure should be considered as a compound 

of elements and then identify the damage elements. Therefore, any damage such as 

crack or loosening the joints that can be scaled or measured as a fraction of reduction 

of stiffness, rotational stiffness or increase of mass of the elements of the system can 

be identified by this method. The damage should be measured or expressed as a 

percent of reduction of stiffness or increment of mass from 0 to 100 percent. Otherwise, 

any other types of damage that cannot be included in this category cannot be 

recognized by the proposed method. Hence those types of damage are out of the scope 

of this study.  

1.10 Thesis outline 

This thesis consists of nine Chapters organized as follows. 

A review of some earlier works done in SHM is presented in Chapter 2. In Chapter 3, 

overall methodology and research plan of the improved MSE method is presented. In 

Chapter 4, the theory of study and mathematical development of the improved MSE 
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method is demonstrated. Chapter 5 deals with performance of the improved method 

compared to other methods. Chapter 6 numerically evaluates the performance of the 

improved MSE method. Chapter 7 validates the experimental studies on the improved 

MSE method. Chapter 8 presents the application of the developed MSE method to an 

actual model and a bridge. Finally, the thesis is concluded in Chapter 9 with some 

useful suggestions for the future work of researchers. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides an overview of some literature in common and the most recent 

SHM methods which have been used for identifying the structural damage. In the first 

part of this chapter, some VBDD methods based on natural frequency, mode shape, 

and MSE are presented. The second part of this chapter covers the review of some 

other approaches such as the Genetic algorithm (GA), Frequency Response Function 

(FRF), and Artificial Neural Network (ANN). The main argument performed in this 

chapter proposes that the MSE methods are more efficient than other damage detection 

methods which are based on only mode shape or natural frequency.  

This extensive literature reviews the gaps in SHM methods to improve an MSE 

method for detecting the bridge damage accurately and effectively and decreasing the 

time and computational cycles.  

2.1 Parametric based VBDD methods  

The first group of the methods reviewed are some common VBDD methods based on 

natural frequency, mode shape and MSE parameters as follows. 
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2.1.1 Natural frequency variation-based methods    

Natural frequency is one of the common approaches for detecting the existence of 

damage in simple structures such as beams and plates. It is based on change in the 

natural frequency of a structure in the presence of damage.  

A natural frequency-based damage detection approach was proposed by Zhong et al. 

(2008) for simply supported beams using the output-only time history. This method 

was based on auxiliary mass spatial probing which was computed by FEM using the 

spectral centre correction method (SCCM). Verification of the proposed method was 

performed through a numerical simulation.  The direct natural frequency curve did 

not exactly locate the location of the crack. However, its derivative graph could display 

the crack (damage). Although this method is inexpensive and efficient for damage 

detection of beam-like structures, for practical purposes it is expected that 

experimental noise corrupts the response data. 

Messina et al. (1998) validated a multiple-damage detection method entitled Multiple 

Damage Localization Assurance Criterion (MDLAC) for truss structures. Firstly, two 

algorithms were verified for the location and size of the damage using a three-beam 

test structure. Then, the required data including changes in the few natural frequencies 

of the structure between the damaged and undamaged states were measured for two 

truss structures. The MDLAC method that was based on the first order of sensitivity 

matrix was able to detect both location and absolute size of structural damages 

correctly.  Although the second order of the sensitivity matrix was also developed, 



 

17 

 

the difference between the results observed was insignificant compared to those of 

MDLAC. 

According to Wang et al. (2012) who cited Rytter (1993) that damage diagnosis can 

be categorized into four levels; 

Level 1: Identify the existence of damage 

Level 2: Recognize the location of damage 

Level 3: Discover the severity of the located damage 

Level 4: Predict the remaining life of the structure 

In general, the natural frequency vibration-based method is cost effective and easy to 

implement, but it requires highly precise measurement when frequency changes are 

low. Results can also be affected by environmental impacts which have the same effect 

on structural frequency (Park et al., 2001). Other disadvantages of this method include 

the fact that  

1. It is unable to detect the damage in symmetrical locations (Lu and Gao, 2005). 

2. It can detect a low level of damage assessment, however, it is less effective for 

higher levels (Hejll, 2004). 
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3. It is applicable only for structural components or elements such as beams, plates 

or frames (Gudmundson, 1982). 

2.1.2 Mode shape variation-based methods   

Despite the difficulty in measuring mode shapes and the necessity for large amounts 

of measurement data, mode shape variation-based methods are more sensitive in 

locating the damage compared to natural frequency and damping coefficients (Dutta 

and Talukdar, 2004, Kim et al., 2006). Also, mode shape with derivative indicators 

seems to be more precise and accurate than other mode shape techniques (Maeck and 

De Roeck, 2002, Dutta and Talukdar, 2004). Some of the most common of these 

methods are described in the following sections.  

2.1.2.1 Direct mode shape-based method 

The mode shape method is based on measuring the difference between two sets of 

mode shape data to represent the damage in the structure.  

A numerical damage detection approach was proposed by Yuen (1985) for a cantilever 

beam. The method was performed by determining the change in mode shapes and 

studying the relationship between the location and size of damage and Eigen 

parameters. 

Kim et al. (2006) proposed a method to detect the size and location of damage in 

beam-like structures using only a few lower mode shapes. Results of numerical 

simulations showed that this method can solve the mode selection, singularity and 
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axial force problems, however, it involves a dense measurement of grid and an 

accurate extraction of mode shapes. 

2.1.2.2 Mode shape curvature-based method 

Mode shape derivations normally provide more accurate information about the 

location of vibration change and consequently the damage situation (Dutta and 

Talukdar, 2004). Pandey et al. (1991) numerically applied a curvature mode shape to 

two beam samples, one cantilever and the other one simply supported. The required 

displacement mode shapes were derived using FEM. Curvature at any section of the 

beams was given 

 ν" =
𝑀

𝐸𝐼
 (2.1) 

 

The following equation shows using the central difference approximation showed that 

according to the assumed damages, change in modulus of elasticity could cause the 

change in mode shape curvatures.       

                νji
" =

ν(j+1)i−2νji+ν(j−1)i

h2
 (2.2) 

where i is the mode shape number,  

     j is the node number and  

     h is the distance between the nodes (length of the element) 

So, the damage was located by observing the absolute change in curvature mode 

shapes. However, quantifying the damage has not been reported.  
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Dutta and Talukdar (2004) investigated the application of mode shape curvature on a 

simply supported and a continuous bridge deck to identify the possible multiple 

damages. The results demonstrated a greater accuracy of the method at lower modes. 

Besides, mode shape curvature (MSC) was more accurate than mode shape in respect 

to damage location. However, the multiple damage evaluation of complex structures 

using this method requires some necessary treatments such as deriving an enough 

number of modes and an appropriate mode selection. 

Sazonov and Klinkhachorn (2005) proposed a method to optimize the sampling 

interval for acquisition of the displacement mode shapes. The method minimizes the 

effect of noise measurement, increases the sensitivity to damage and maximizes the 

number of sampling points. Numerical verification was performed on a free-free 

aluminium beam. Damage detection was performed on the curvature and strain energy 

mode shapes using common methods. The results indicated a good performance of the 

proposed method for optimizing the sampling points. However, in practice, to 

determine several sampling points, there is a need to properly estimate the 

measurement errors which depends on the methodology under consideration and the 

measuring equipment.  

Tomaszewska (2010) proposed an absolute damage index to investigate the influence 

of statistical errors on structural damage detection. The method was first numerically 

applied to a simply supported beam and then applied to a real structure, tower of the 

Vistula Mounting Fortress in Gdansk. It was found that in the damage detection 

method based on using modal characteristics, the effect of modal characteristics error 

is significant and should be taken into account. Ignoring the modal characteristics 

contributes to false results in damage detection. Also, when damage detection is based 
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on using modal data, directly using a multi damage indicator gives better results than 

using only a single damage indicator. Furthermore, obtaining the true damage is 

depended on the extent of both damage and error level. However, the methods need to 

be numerically and experimentally verified for other indices and other type of 

structures.  

Wang et al. (2000) simulated the Tsing Ma Bridge using a 3-D FEM model in 

ABAQUS to analytically determine a proper modal parameter for damage detection 

in large-scale suspension bridges. For this purpose, ten damage cases were simulated 

in the bridge to evaluate the sensitivities of different modal parameters to different 

types of damage. The damages were induced by either disconnecting the tower, 

damage of hangers at mid-span or at the deck components at middle of the span or at 

near supports by reducing the element stiffness. Three modal parameters of natural 

frequency, mode shape curvature and modal flexibility were used to analytically 

determine the most sensitive one to the damage. The correlation between mode shapes 

of measured and calculated from the 3-D FEM was evaluated using MAC values. The 

results showed that the modal flexibility method studied is more sensitive to damage 

than other two methods of natural frequency and mode shape curvature. In other words, 

the natural frequency performed worse than other modal parameters studied. It means 

using only the natural frequency is an improper method for damage detection in such 

structures, although the frequency change may probably detect the damage. The modal 

parameters of mode shape and modal flexibility matrix performed better in detecting 

the damages at near the supports. However, yet it is difficult to practically apply this 

approach or extend it to other type of structures. 
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2.1.2.3 Dynamically measured flexibility-based method 

This method is also known as natural flexibility method, which uses the modal 

flexibility matrix as a modal derivative method. The derived modal flexibility matrix 

is expressed as follows (Pandey and Biswas, 1994, Pandey and Biswas, 1995), 

  F =  Φ Λ−1ΦT = ∑
1

ωi
2 ϕiϕi

T

𝑚

i=1

 (2.3) 

where Φ is the modal matrix, 

      Λ is the diagonal eigenvalue matrix, 

      ω is modal frequency, 

      ϕi is the ith mode shape and 

      m is the number of measured mode shapes 

Lu and Gao (2005) improved a flexibility-based damage locating vector (DLV) 

method to detect the damage in a continuous and long-term monitoring. The results 

from a numerical simulation of a 14-bay planer truss using the mentioned method 

demonstrated the capability of this method for detecting damage at both single and 

multiple damage scenarios. 

Shih et al. (2011) developed a multi-criteria procedure incorporating modal flexibility 

(MF) and MSE methods through a dynamic computer model. Then, it was applied to 

a truss bridge incorporating the two parameters, MF and MSE, besides change in 

natural frequencies, on both damaged and undamaged structural models. Each one of 

the deck flexural stiffness and the axial stiffness of truss members was also reduced 

by 50% to simulate two types of damage severity in the structure. Then, eight damage 
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cases were considered including, two cases consist of combined deck and truss girder 

together, two deck and four truss cases separately. The combination of MF and MSE 

parameters provided an optimum chance to accurately assess the damage.  

2.1.  Modal strain energy-based method 

MSE based method employs the MSE variable, which identifies the condition of an 

element in a structure as a relatively sensitive parameter. The MSE variable for the ith 

mode of a structure is derived (Stubbs et al., 1992) as. 

MSEi =
1

2
ϕi

T𝐾ϕi (2.4) 

where K is the stiffness matrix of the structure and 

     ϕi is the ith mode shape matrix 

Doebling et al. (1997b) developed an MSE based method for selecting a subset of the 

identified structural vibration modes to be used in FEM correlation and structural 

damage detection. The MSE modes measured were then ranked and used in 

descending order. It was observed that a mode selection strategy based on MSE 

provided more accurate results than a strategy using MF. 

Shi et al. (1998) established an MSE based damage indicator (DI) for damage location 

using the change of MSE in each element. Shi’s approach is simple and healthy, 

capable of detecting single or multiple damages of structures. The sensitivity of the 

MSE with respect to the damage was also derived as a function of the analytical mode 

shape change and stiffness matrix. Although in this approach only the incomplete 
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measured mode shapes and analytical system matrices are used for damage location 

and quantification, there is a need to more accurately quantify the damage severity. 

The results show that though the proposed approach is noise sensitive, it can locate 

single and multiple damages.  

Shih et al. (2009) blended a multi-criteria procedure incorporating MF and MSE 

methods that was applied to a plate and a beam structure. The purpose was to identify 

single and multiple damages via a dynamic computer simulation technique. Nine 

damage scenarios were considered in each element. It was found that for a single 

damage, modal flexibility change (MFC) and MSE change provide similar results with 

no location error. Although for multiple damage scenarios MSE change increased the 

accuracy of the damage location in the plate, but the simulation of the multiple damage 

needs more investigation. 

Yan et al. (2010b) formulated a damage detection method based on elemental MSE 

sensitivity. Yan’s method which was adapted a closed form of elemental MSE 

sensitivity, was numerically applied to some 2D structures and high efficiency results 

were noted.  

Wang et al. (2010) improved a modal strain energy correlation (MSEC) method using 

a theoretically derived MSE-to-damage sensitivity variable. Although this method was 

efficient, noise contamination might give false results. Wang’s method was further 

developed and validated for complicated steel truss bridges using a multi-layer genetic 

algorithm (ML-GA) method which become more efficient and feasible even in 

presence of noise (Wang et al., 2012, Wang, 2012). Though, this effective method 

might be verified for other types of bridge structures or buildings. 
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Wahalathantri et al. (2012) validated a damage index based MSE method that could 

capture damage in terms of quantifying and locating at any of the measured modes. 

By applying the method to a simply supported and a two-span beam it was observed 

that it is inexpensive and less time-consuming. Although this method is enough 

efficient, it is unique for simple beams only.   

Seyedpoor (2012) proposed a two-stage modal strain energy-based index (MSEBI) to 

locate and quantify the structural damage. The numerical results of two samples 

showed the reliability of the method in damage identification. However, convergence 

achieves after some iterations which usually demands high computations. Also, the 

effect of noise for the first case study has not been reported.  

Kisa and Arif (2005) developed a numerical model to investigate the vibration analysis 

in the cracked cantilever composite beams. The model employs FEM and component 

mode synthesis method which is based on total strain energy of the system. Having 

the modal data, the method, could identify the location and dimension of the defect 

(crack) in the beam. However, the method is unique for detecting the crack in 

cantilever composite beams with a special cross section. Also, it requires more studies 

for the same type of structure with different boundary conditions. 

Asgarian et al. (2009) numerically applied an MSE method to a 3D four-story frame 

of a jacket offshore platform for damage detection. Modal strain energy change ratio 

(MSECR) and cross modal strain energy (CMSE) were used for locating and 

quantifying the damage, respectively. Although this method performs well for these 

structures, it is not capable of detecting the damage in all directions of vertical bracing 
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of the case study demonstrated. Also, it needs experimental studies to be applicable 

for these types of structures.  

Brehm et al. (2010) enhanced a purely mathematical modal assurance criteria (MAC) 

called energy-based modal assurance criteria (EMAC) in terms of MSE. A numerical 

model and a benchmark study (cantilever truss) were presented to show the efficiency 

of the proposed method. The method sufficiently reduces uncertainties about mode 

shapes, particularly when limited spatial information is available. However, this 

methodology cannot replace a cautious preparation of modal tests. Srinivas et al. (2011) 

proposed a multi-stage approach to detect structural damage using MSE and GA-based 

optimization technique. The method was successfully applied to a simply supported 

beam and a plane truss. Although it has been mentioned that the method can be useful 

for damage detection in large-scale structures, no case study for this type of structures 

has been reported. 

Yan et al. (2010c) combined a CMSE with the niche genetic algorithms (GMs). The 

method was numerically used to detect the damage of an airfoil with composite 

materials. However, experimental works have not been reported in order to detect the 

structural damage in bridges or buildings. Wu and Sun (2011) compared and improved 

two damage identification methods, which were based on MSE. Numerical studies 

showed that Shi’s MSECR method is more accurate than Stubbs’ damage index 

method (SDIM). Since both methods are noise sensitive and have limited robustness 

in damage identification, to improve these concerns and also the modal expansion 

method, more studies are required. Hu et al. (2011) presented the surface crack 

detection in an aluminium circular hollow cylinder using MSE and scanning damage 

index methods. The experimental results indicated the accuracy of the method. 
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However, this method still needs to be more simplified for large structures and be 

applicable for a different type of structures and different size of damages. 

Li et al. (2013) calculated the sensitivity of elemental MSE of three structures 

including, a fixed–fixed beam, an automobile frame and a two-bar truss structure using 

the methods available in the literature and also the new method they proposed. The 

results of three numerical examples done from different methods were compared 

together. It was resulted that for large numbers of degrees of freedom (DoFs) and when 

the number of design variables exceeds the number of individual element stiffness 

matrices of interest, the proposed method has a good preferability. However, the 

storage capacity issue needs to be improved more. 

Wang (2013) developed an iterative modal strain energy (IMSE) method using 

frequency measurements to estimate the structural damage severity. Unlike the other 

MSE methods, this method requires only a few modal frequencies from damaged 

structure. The result of the experimental data from a clamped-free beam indicated the 

capability of the method in accurately quantifying the damage extent. Wang et al. 

(2013) developed a CMSE method to estimate the connection stiffness of the semi-

rigid joints. The numerical study was successfully performed for a four-story frame 

structure considering different connection type of beam and column in presence of 

noise. The outcome of this method can be directly used to create an accurate model 

for structural damage detection.  

Cha and Buyukozturk (2015) proposed a novel damage detection technique using 

hybrid multi-objective optimization algorithms based on the MSE. In this method, the 

Young’s modulus of the elements was reduced to simulate the damage/s in the 
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structure. The proposed hybrid multi-objective GAs was used to solve an inverse 

problem by minimizing the total differences of the MSE of structural elements. The 

method was applied to three different multistorey steel structures with three different 

multiple damage scenarios. 5% Gaussian random white noise-contaminated mode 

shape was also considered. The results indicated that the method was able to detect the 

multiple damages in the structure. The method also worked with incomplete mode 

shape data. Although the proposed method can be used for detecting the damage in 

various three-dimensional (3-D) structures, it has been validated for steel structures 

only so far. Experimental validation with real measurements is needed to evaluate the 

efficiency of the proposed method. Furthermore, inducing the damage in other types 

of structures by reducing the Young’s modulus with different material properties is 

another issue that requires more investigation.  

2.2 Frequency response function method 

The FRF is an output spectrum measuring system for a structure. It uses the structural 

dynamic responses in a time-invariant system. Some researches using the FRF 

methods are as follows.  

Furukawa et al. (2006) assembled a structural damage detection method to investigate 

the measuring error due to noise. The proposed method iteratively zoomed in on the 

damaged elements by excluding the undamaged elements from the damage candidates, 

step by step. It adapted hypothesis testing with the bootstrap method, which is a data-

re-sampling method established by Efron and Tibshirani (1994). Results on a 2D frame 
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structure showed that the method could improve the accuracy of identification in the 

presence of a large amount of noise.  

Hsu et al. (2011) constructed a laboratory integrated frequency response function 

change method (FRFCM) with a wireless sensing system (WSS) for building damage 

detection. The FRFCM received ground excitations before and after the structure was 

damaged. The WSS transformed the data to frequency spectrum using Fast Fourier 

Transform (FFT) algorithm. The damage could be recognized from the stiffness 

reduction. Verifications of a 6-story steel frame on the shaking table demonstrated the 

efficiency of the proposed method in locating and quantifying the damage under a free 

environmental-effect condition. 

2.  Mathematical and statistical tools for damage detection 

The second group of the damage detection techniques are some mathematical and 

statistical tools presented below.  

2. .1 Genetic algorithm-based method 

Another popular method is the GA, which is frequently used for damage detection of 

structures. The GA method is originated from a mechanism of biological evolution. 

Since the numbers of candidate elements of a structure exposure to damage are high, 

GA can diagnose the damaged elements. Many researchers have successfully studied 

the application of the GA in structural damage identification. Some of these studies 

are as follows,  
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Guo and Li (2009) for example, presented a two-stage scheme using the fusion 

technique and the GA to determine the location and extend the multiple structural 

damages. The results from a numerical simulation of a cantilever beam demonstrated 

the preference of the proposed method against natural frequency and mode shape 

methods.  

Wang et al. (2012) established an ML-GA method using correlation-based MSE as a 

variable vector to detect the damage in complicated truss bridges. In the ML-GA 

method, the suspicious elements to damage were split to several groups. In the first 

layer, optimization was done for all groups. In the second layer, the groups were 

merged to larger groups and finally there was only one group including all elements 

which then by a minor optimization, damage elements were detected.   

2. .2 Artificial neural network-based method 

ANN is a system originating from biological neural networks, and applicable in many 

disciplines, especially in structural damage detection. The ANN technique by 

networking the input and output patterns is able to nearly predict the damage even in 

case of being uncertain or incomplete data. Some of these studies are as follows, 

Ni et al. (2001) proposed a method based on Probabilistic Neural Network (PNN) for 

detecting the damage in the deck of Suspension Tsing Ma Bridge using only natural 

frequencies. The study demonstrated that the damage identification accuracy is much 

higher than that of from the traditional PNN. However, application of the method on 

other components of the suspension bridge has not been reported.  
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Jiang et al. (2011) simulated a two-stage numerical damage detection method which 

integrated data fusion and Fuzzy Neural Network (FNN) techniques. In the first stage, 

structural modal parameters were derived and fed into an FNN system as an input. In 

the second stage, the FNN output was fed into data fusion. Application of the method 

on a 7-DoF frame model showed the theoretical feasibility and efficiency of the 

proposed method. 

Bandara et al. (2014) formulated a novel technique using FRFs based damage index 

with ANNs for damage detection of building structures. Damage indices 

corresponding to different damage locations and severities are introduced as an input 

variable to develop neural networks. Primarily, Principal Component Analysis (PCA) 

was used to reduce the number of data feeding into a neural network model. Validation 

was performed through a 3-story bookshelf structure at Los Alamos National 

Laboratory, USA. By using Back Propagation (BP) neural network models associated 

with damage indices, damage location and severity were identified with good accuracy. 

Results demonstrated the suitability and effectiveness of the proposed method, 

especially when the numbers of baseline datasets or principal components increase. 

Although in most cases, ANN methods are useful but with a large amount of data are 

usually unstable. Also, training pattern to validate the ANN networks is almost 

difficult. 
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2. .  Wavelet transforms techniques 

Mathematical tool of wavelet transform is one of the popular methods of time-

frequency transformation which has been mostly used for structural damage detection. 

Some researches on this method are as follows, 

Nair et al. (2006a) analytically and computationally presented a wavelet coefficient 

sensitivity of structural responses of a single-story plane frame. It was resulted that the 

structural response was not sensitive as much as the wavelet coefficient for damage 

detection. Also, wavelet coefficient sensitivity was not sensitive to a different type of 

the model such as mass density, damping ratio and so on. 

Hu et al. (2011) experimentally studied the damage detection of a cantilever 

aluminium beam using wavelet transform. The study was performed for the beam, 

subjected to a static displacement to identify the crack at its free end. The results 

showed that the wavelet transform was effective in identifying the damage region even 

for the crack depth extends up to around a quarter of the thickness of the beam. 

Solís et al. (2013) proposed a beam damage detection methodology based on 

continuous wavelet analyses. The damaged and undamaged mode shapes of the 

structure were first obtained and then a continuous wavelet transform was applied. 

Finally, the result for each mode was computed along the structure and according to 

the variation of the natural frequencies, the wavelet coefficients were ranked. The 

method was experimentally validated for steel beams. The results showed the 

sensitivity of the method of capturing the little damages (cracks). 
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2.4 Concluding remarks 

The analysis of the literature on existing VBDD methods identified the followings. 

1. Natural frequency methods are used only for lower level damage detection and 

still have not been validated for structures other than beams, plates and frames. 

Although measuring the natural frequency does not require heavy sensors, it can 

be influenced by noise and be less accurate. 

2. Direct mode shape methods are easy to identify the vibration parameter and more 

reliable than natural frequency-based methods. Though, they can be affected by 

noise contaminations and are expensive because of requiring more sensors, as well. 

The mode shape curvature methods are based on higher order derivations and more 

sensitive to damage. Yet, they are usually expensive and require a substantial 

integrated sensory system and may also show false results. 

3. There are few literatures indicating the adequate capability of natural flexibility 

methods. Also, it needs a distributed sensor system. 

4. MSE methods are more precise than previous methods mentioned above using 

incomplete data. Some of these methods have been even experimentally validated 

for quantifying and locating the damage in bridges.  One of the enormous 

advantages of these methods is their capability to recognize the damage using the 
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first few measured mode shapes which normally can be acquired through the 

experimental tests using few sensors. However, MSE methods can be influenced 

by noise pollution and sometimes may give false results. Nevertheless, these 

methods are depending on accuracy of data acquired and processed. 

To recap the review of the mathematical and statistical approaches it can be concluded 

also, 

In GA approaches, definition of the size of data cannot be done clearly. ANN methods 

are usually unstable with a large amount of data and validation of ANNs for trained 

pattern is also a difficult task. FRF methods are also noise-influenced and require high 

levels of accurate input data for detection of severe damage/s and may provide some 

false results. Wavelet transforms are usually accurate in damage detection, although 

demand a lot of computations. 

This overall review of the literature identified that multi-approach methods would 

provide a better understanding of structural damage identification. In other words, in 

the modern SHM technology, the multiple-damage scenario of complex structures 

could best be realized by an approach of an efficient VBDD method in accompanying 

with any of the GA, ANN or FRF methods.   

2.5 Research gaps 

From the literature surveyed the following research gaps can be drawn. 
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1. Many numerical VBDD studies have been validated only for elementary structures 

such as beam and plate-like structures. So, there is a need to enhance the available 

methods for other types of the structures, especially real structures or propose new 

methods to be appropriate for detecting the damage.  

2. For the most infrastructure, the higher level of damage diagnosis (Level 3 and 4) 

is required, especially when small damage occurs at the initial stage of formation. 

Therefore, proposing a more sensitive and reliable damage index could help 

provide this.  

3. There are few literatures on effective recognition of the damage in the real 

structures having incomplete or limited data. Hence, an attempt needs to be made 

to propose/improve a method to be capable of recognizing the damage in such 

cases.  

4. There is a lack of the existing methods to perform well in presence of the 

environmental noise. So, there is a need to overcome the issue using a proper 

methodology.  
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CHAPTER 3  

METHODOLOGY AND RESEARCH PLAN OF THE 

IMPROVED MODAL STRAIN ENERGY METHOD 

This chapter draws the overall methodology and research plan of an improved modal 

strain energy (MSE)-based damage detection method for bridge health monitoring 

(BHM). The first part of the chapter, section 3.1, discusses the sources of structural 

damage, footprint of damage in structures and the methods for damage detection 

considering their importance. Section 3.2 presents the formulation of the two-stage 

MSE method with respect to establishing the new equations for MSE change and 

sensitivity matrix to damage, respectively. Besides, it demonstrates the two stages of 

locating the damage and quantifying the extent of the damage, respectively. Section 

3.3 proceeds with numerical and experimental verifications and lastly, applying the 

proposed method to an actual model and a real bridge. The overall approach is then 

concluded in the last section, section 3.4. 
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 .1 Introduction 

Infrastructures may experience damage by being influenced from the impact loads of 

orbital debris, material thermal degradation, structure assembling faults, faulty 

materials or element connections, and so on (Carrasco et al., 1997). These various 

environmental forces and actions continuously contribute to accumulating the damage 

during their service life. Structural damage often causes a loss of stiffness in one or 

more members of a structure affecting its modal characteristics such as modal 

frequencies and mode shapes (James Hu et al., 2006, Shi et al., 2000, Law et al., 1998).  

VBDD methods have increasingly become an essential field of research in structural 

damage detection and SHM because of their flexibility of measurement, cost-effective, 

and non-destructive approach of damages in a global structure (Hu et al., 2011). 

VBDD methods consider the fact that the vibration signatures of the structure are 

functions of the mechanical properties (stiffness, mass and damping) (Osegueda et al., 

1997, Osegueda et al., 1999). Many methods have been developed to identify the 

damage based on these alterations. However, most of them have difficulties to be 

applied to real complex structures (Shi et al., 1998). Generally, the process of damage 

identification can be divided into three stages, namely; (1) damage detection, i.e., 

determining the existence of the damage; (2) damage locating, i.e., determining the 

location of the damage, if current and (3) damage quantifying, i.e., determining the 

quantity of the damage (Pandey and Biswas, 1995). 
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Obviously, development of robust approaches for early damage detection is essential 

to prevent the occurrence of the possible catastrophic structural failure and structural 

deterioration beyond repair (Li et al., 2006, Doebling et al., 1997b, Pradeep et al., 

2014, Yan et al., 2010a). 

This chapter discusses the procedure and research plan of the current study, which is 

dealt with improving an MSE based method. The overall methodology of this research 

is drawn in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The overall methodology of the research 
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 .2 Formulating the two-stage MSE method 

Studies indicate that occurring damage in a structure causes changing the structural 

dynamic characteristics such as modal parameters, i.e. mode shapes, natural 

frequencies and damping values. Besides, it also changes the structural parameters, 

such as mass, damping, stiffness and flexibility matrices (Hwang and Kim, 2004). By 

drawing inspiration from this fact, the current study focuses on improving an MSE 

based method for damage detection of bridges to accurately formulate the change of 

MSE due to a possible damage in the bridge. The mathematical formulations of the 

MSE method proposed by Shi et al. (2000) is improved by extending the theory of 

study with respect to including the actual structural damaged stiffness matrix into the 

damaged MSE stored in the structure after the damage. It is also attempted to 

generalize the improved method to be applicable for any bridge by applying to 

different bridge models with different material properties and element types.  

 .2.1 Establishment of the MSE change and sensitivity matrix to damage 

The primary effort is to more accurately establish the difference between MSE stored 

in the structure before and after the damage. This can be achieved by counting the 

actual value of the damaged stiffness matrix in MSE equation after the damage through 

the mathematical formulation (Yan et al., 2010b) as Eq. (3.1). 
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MSEi,j
d =

1

2
{ϕi

d}
T
[Kj

d]{ϕi
d} (3.1) 

 

Where i is the mode shape and j is the element numbers  

However, the final equation necessarily should be transformed in terms of undamaged 

stiffness matrix to be calculable. This can be done considering the theoretical relation 

between stiffness matrices before and after the damage as Eq. (3.2).  

[Kd] = [K] + α[K] (−1 < α ≤ 0 ) (3.2) 

 

where Kd  and K  are global stiffness of the structure of damaged and undamaged 

cases, respectively, and  

      α  is the fractional reduction of elemental stiffness matrix representing the 

damage extent 

Having a more exact value of the change of MSE during the damage allows attaining 

a more sensitive matrix which assists realizing the damage more accurately at an early 

stage with higher reliability. The improved MSE method recognizes the structural 

damage in two consequent stages, stage one, locating the damage and stage two, 

quantifying the damage as following section. The details of the improved formulations 

are demonstrated in Chapter 4. 
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 .2.2 Stage one – Identifying the location of damage 

 

During the damage in a structure, the damaged elements and nodes theoretically 

receive a higher amount of the MSEC (Shi et al., 2000, Shih et al., 2009). So, the 

crucial key for identifying the location of the damage in this study is to calculate the 

MSEC of the structure using the MSE of the elements before and after the damage. 

Therefore, an elemental MSE-based indicator is used to show the ratio of the MSE 

change for each element. The elements with higher amounts of MSE change ratio are 

nominated as the most likely elements to the damage for further investigation in the 

second stage.  

 .2.  Stage two – Quantifying the damage 

Sensitivity matrix is used to quantify the damage which is a matrix derived from MSE 

change with respect to extent of the damage as an unknown independent variable as 

Eq. (3.3). 

Sensitivity matrix=
𝜕∆𝑀𝑆𝐸𝑖𝑗

𝜕𝛼𝑗
=

𝜕(MSEi,j
d −MSEi,j)

𝜕𝛼𝑗
 (3.3) 

          

where 𝑀𝑆𝐸𝑖𝑗 and 𝑀𝑆𝐸𝑖,𝑗
𝑑   are the MSE of element j at mode i before and after the 

damage, respectively, and 

      𝛼𝑗 is the damage extent (percent) at element j 
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For a structure with n elements, the maximum dimension of sensitivity matrix can be 

n× n. However, to decrease the computational cycles, it is required to lessen the 

sensitivity matrix dimension. To do this, some of the most likely elements to the 

damage are selected from the first stage as the suspected elements. By selecting p 

suspected elements, the dimension of the sensitivity matrix considerably decreases to 

p×p.  

In this study, it is tried to improve the sensitivity matrix to achieve higher accuracy 

and sensitivity to minor damages at the initial stage of creation and performing with 

the existence of some noise in the environment. The method should be able to identify 

the damage in elements or nodes. For elemental damage the damage is considered as 

a fractional change of the elemental stiffness matrix while for nodal damage it is 

considered as a fractional change in the rotational stiffness.  

 .2.4 Damage detection with noise polluted data 

To simulate the actual condition of the structure, a reasonable percentage of noise is 

included into the calculations to intensify the data, including mode shapes and natural 

frequencies of the structure by a usual range of up to 10 percent. The details are 

presented in Chapter 4.  
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3.3 Verifications 

To evaluate the accuracy and efficiency of the improved method, it is numerically and 

experimentally validated using some numerical simulations and experimental models. 

Some damage scenarios including single and multiple damages are simulated in the 

numerical case studies or created in the laboratory prototypes.  

Initially, for each model, all analytical eigenvalues including mode shapes and natural 

frequencies (Segerlind and Saunders, 1987) are derived using FEM software packages 

such as STRAND7, SAP2000, DIAMOND (Doebling et al., 1997a), and a MATLAB 

code (Kattan, 2010, Smith and Pournami, 2013). Whereas, for any damaged case, only 

the first five mode shapes, and natural frequencies are required. Then, the performance 

of the improved method for each model will be assessed using the couple dataset 

obtained from the damaged and undamaged cases of that model through a MATLAB 

code. Lastly, the performance of current study using the data obtained is compared 

with the existing method. 

 . .1 Numerical simulations 

Some numerical models are considered to use for verification of the improved method. 

The models are various to represent a different type of structures, element type and 

material properties as follows.  
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3.3.1.1 Case study 1: A fixed-end steel beam 

The numerical simulation is started with a simple structure which is a fixed-end beam 

consisting of 12 elements and 13 nodes as shown in Figure 3.2. The model is a steel 

beam with a total length of 7.2 m. The details are given in Chapter 6.     

 

Figure 3.2 The FEM model of the fixed-supported beam 

3.3.1.2 Case study 2: A three-story steel frame 

The second case study is a three-story steel frame consisting of nine elements and eight 

nodes as shown in Figure 3.3. The material properties and geometric data will be 

presented in Chapter 6.  

 
 

Figure 3.3 The FEM model of the three-story steel frame 
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Numerical verification of the improved method is further performed by applying to 

two other structures, a steel truss bridge and a concrete bridge frame representing the 

framework of the short- and medium-span bridge samples, respectively. These 

simulations examine the efficiency of the improved method on this category of bridges 

in terms of dimension and type of the structure. The effect of material properties on 

performance of the improved method is also observed. These two samples are as 

follows. 

3.3.1.3 Case study 3: A 2D steel truss structure 

The third numerical case study is a 2D steel truss structure as shown in Figure 3.4 

consisting of 12 nodes and 21 elements. The material properties and geometric data 

are presented in Chapter 6. 

 

Figure 3.4 The FEM model of the steel truss model 
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3.3.1.4 Case study 4: A concrete bridge frame 

The last case study is a concrete bridge frame as shown in Figure 3.5 consisting of 

eight nodes and seven elements. The material properties and geometric data are 

presented in Chapter 6.  

 

 

 

 

Figure 3.5 The FEM model of the concrete bridge frame 

 . .2 Experimental studies 

The laboratory tests are conducted at Banyo Pilot Plant Precinct of the Queensland 

University of Technology (QUT) and the HKPU to examine the performance of the 

improved method. Each model is tested at two cases, healthy and damaged. To collect 

the data, a sensory system is installed at the defined nodes. The model is excited by an 

impact hammer and the time history data is measured. The natural frequencies and 

mode shapes are extracted from measured time history data and FRFs (Fu and He, 

2001). 

Simulation of the damage is performed by either increasing the mass at selected 

elements or decreasing the cross section of the elements. Similarly, for the 
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experimental case studies, the performance of the improved method for each model 

will be evaluated using the couple experimental dataset obtained from the damaged 

and undamaged cases of each model through a MATLAB code. To accurately acquire 

the experimental data, each test is repeated several times and averaged to overcome 

the effect of errors. However, the data are associated with only translational DoFs, 

since measuring the rotational DoFs, is a difficult and expensive task, although having 

those DoFs could give a better result and help understand the real behaviour of the 

structure.  

In addition to performing each case twice, damaged and undamaged, the models are 

also numerically modelled, and all analytical characteristics are derived as the healthy 

structures. The results will be compared with the experimental ones. The selected 

models to be studied are as follows. 

3.3.2.1 Case study 1: A cantilever beam model 

The first experimental model is a cantilever steel beam consisting of eight elements 

and nine nodes as shown in Figure 3.6. The material properties, geometric data and 

damage details are presented in Chapter 7.  
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Figure 3.6 The FEM model of the cantilever beam model (dimensions are in mm) 

3.3.2.2 Case study 2: A steel simply-support beam 

The second experimental case study is a simply-support steel beam consisting of eight 

elements and nine nodes as shown in Figure 3.7 performing at QUT. The material 

properties, geometric data and damage details are presented in Chapter 7. 

        

 

 

     

     a. Cross section           b. Node and element numbering 

Figure 3.7 The FEM model of the steel simply-support beam 

3.3.2.3 Case study 3: A three-story steel frame 

The third experimental case study is a three-story steel frame consisting of 15 elements 

and 14 nodes as shown in Figure 3.8 performing at HKPU. The material properties, 

geometric data and damage details are presented in Chapter 7.  

 

50 mm 

25 mm 

2.2 mm 
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Figure 3.8 The FEM model of the three-story steel frame laboratory model 

 . .  Applying to a real model and a real bridge 

Once the improved method is verified, it is applied to a real structural model and a real 

bridge to observe its real performance.  However, for the real bridge, the available 

data will be used. Besides, a comparison will be made using the simulation via an 

FEM model through a MATLAB code and the data given. 

3.3.3.1 The Los Alamos National Laboratory 4-DOF three-story structure  

The LANL model, which is a three-story frame structure, is used as a real-world 

structure for applying the improved method as shown in Figure 3.9. The LANL 4-DOF 

three-story structure is shown in Figure 8.14. The structure consists of aluminium 
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columns and plates gathered using bolted joints with a rigid Base. There are four 

columns at each floor located at the corners connected to the aluminium plates. The 

dimension of column and aluminium plates are (17.7 × 2.5 × 0.6 cm) and 

(30.5×30.5×2.5 cm), respectively. 

 

 

 

 

 

 

 

 

Figure 3.9 The Los Alamos National Laboratory 4-DOF three-story structure 

3.3.3.2 I-40 Bridge  

The damage identification experiments on I-40 Bridge in New Mexico, USA, has been 

reported by using data from a series of modal tests of a section of a highway bridge 

(Farrar et al., 1994, Farrar et al., 2000). Before destruction in 1993, a series of modal 

tests has been performed on this bridge after closing to traffic. The section of the bridge 

instrumented for this series of modal tests consisting of three spans with a combined 

length of about 130 m is shown in Figure 3.10. As a real bridge, the improved MSE 



 

51 

 

method will be applied to this bridge using available data and compared with the FEM 

analysis results. The details and results will be presented in Chapter 8. 

 

Figure 3.10 I-40 Bridge, New Mexico, USA 

 .4 Conclusion 

Because of significance of damage identification in structures especially bridges, the 

current study focuses on improving an MSE-based damage detection method for BHM. 

The two-stage method is mathematically established based on the changes in structural 

modal characteristics affected by occurring damage in the structure. The major 

contributions of the improved method are improving the MSE change equation and 

the sensitivity matrix. In the first stage, the location of the damage is identified using 

the ratio of MSE change in elements of the structure. In the consequent stage, using 

the sensitivity matrix, the extent of the damage at selected elements among the 

suspected elements from the first stage is also quantified.  
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The accuracy and performance of the proposed method is validated via several 

numerical and experimental studies and lastly, completed by applying to an actual 

model and a real bridge. 
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CHAPTER 4 

THEORY OF STUDY AND MATHEMATICAL 

IMPROVEMENT OF THE MODAL STRAIN ENERGY 

METHOD 

This chapter elaborates an improved MSE-based damage detection method for bridge 

damage assessment. First, the theory of MSE study for damage detection is presented 

in section 4.1. Second, the traditional elemental MSE method and its previous 

application is described in section 4.2. Section 4.3 demonstrates the comprehensive 

mathematical improvement of the proposed MSE method by establishing an accurate 

MSE equation and sensitivity matrix in two consequent stages. Stage one identifies 

the elemental and nodal damage locations. Accordingly, stage two deals with 

quantifying those damage extents. Number of mode shapes and natural frequencies 

required, and effect of noise pollution are also presented. Lastly, section 4.4 draws 

concluding remarks.  
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4.1 Theory of study 

Researches show, occurring the damage in a structure, regardless of its creating source, 

results in changing the global dynamic characteristics of the structure such as natural 

frequencies and mode shapes (Zhou et al., 2002). Theoretically, as these parameters 

are frequently quantifiable, monitoring their changes over the time is useful to 

diagnose the damage/s in the structure. For instance, the eigenvectors changes at mode 

i are as follows.  

{ϕi
d} = {ϕi} + {Δϕi} (4.1) 

 

where {ϕi
d}  and {ϕi}  are mode shapes of the damaged and undamaged cases at 

mode i, respectively 

However, expanding this perception to real structures requires more deliberations and 

considerations because of structural complexity and lots of uncertainties associated 

with time-varying environmental and operational conditions (Kim et al., 2015). For 

example, significance changes in environment temperature and humidity can similarly 

affect the structure (Adams and Coppendale, 1976, Salawu, 1997, Purkiss et al., 1994). 

The above idea is the basis of VBDD methods. MSE-based methods, as a widely used 

category of VBDD techniques, in addition of using Eigen parameters, employ the 
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stiffness of the structure that incorporates the physical properties of the structures into 

the account, also. According to these methods, the amount of MSE of the healthy 

structure stored in the jth element at mode i is generally stated as Eq. (4.2).  

MSEi,j =
1

2
{ϕi}

T[Kj]{ϕi} (4.2) 

 

where [Kj] is the stiffness of the undamaged case at element j 

Using two Eigen datasets of the structure at two subsequent statuses and from changes 

of the MSE stored in the elements of the structure, the damage in the structure can be 

recognized through a mathematical procedure. The next sections describe an iterative 

traditional MSE method and its mathematical improvement, respectively. 

4.2 Traditional MSE method 

The extent of MSE stored in an element of a structure has been recognized as a reliable 

index for identifying the structural damage. Shi et al. (1998) proposed a structural 

damage detection method based on MSE change before and after the damage. 

According to this method, change in structural parameters such as mode shapes, 

natural frequencies and stiffness are as follows, respectively. 

{ϕi
d} = {ϕi} + {Δϕi} = {ϕi} + ∑cir{ϕr}

𝑚𝑑

r=1

 (4.3) 
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where cir =
{ϕr}

T[ΔK]{ϕi}

λi−λr
 (i ≠ r),  

      md is the number of analytical modes, and 

      {ϕi
d} and {ϕi} are mode shapes at mode i of the damaged and undamaged 

cases, respectively 

λi
d = λi + Δλi (4.4) 

 where λi
d  and λi  are eigenvalues (frequencies) at mode i of the damaged and 

undamaged cases, respectively 

Also, 

[Kd] = [K] + ∑[ΔKm]

L

m=1

= [K] + ∑ αm[Km]

L

m=1

 

 

(−1 < αm  ≤ 0 ) (4.5) 

 

where Kd  and K  are global stiffness of the structure of damaged and undamaged 

cases, respectively,  

      m is element number, 

      L is number of elements and 

      𝛼 is the damage extent 

The extent of MSE stored in the jth element at mode i of the damaged structure is 

anticipated to be 

MSEi,j
d =

1

2
{ϕi

d}
T
[Kj]{ϕi

d} (4.6) 
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Subtracting Eq. (4.2) from Eq. (4.6), ignoring the coefficient ½ and combining with 

Eq. (4.3) leads to MSE change at mode i and element j (MSECij) 

MSECij = {ϕi
d}

T
[Kj]{ϕi

d} − {ϕi}
T[Kj]{ϕi} (4.7) 

     

After simplifying 

 

MSECij = 2{ϕi}
T[Kj] (∑−

{ϕr}
T[∆K] {ϕi}

λr − λi

𝑛

𝑟=1

{ϕr})          (i ≠ r) (4.8) 

Supposing only one damage happens in member p and substituting Eq. (4.5) into Eq. 

(4.8) yields  

 

MSECij = ∑ −2𝛼𝑝{ϕi}
T[Kj]∑

{ϕr}
T[K𝑝] {ϕi}

λr − λi

𝑛

𝑟=1

{ϕr}

𝐿

𝑝=1

      (i ≠ r) 

 

(4.9) 

To detect the location of damage, one of the following indicators is used. 

MSECRij =
|MSEi,j

d − MSEi,j|

MSEi,j
 (4.10) 

  

MSECRj =
1

m
∑

MSECRij

MSECRi,max

𝑚

i=1

 (4.11) 

where MSECR is the Modal Strain Energy Change Ratio and 
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      MSECRj is the average of MSECRij summation for the first m mode shapes   

normalized with respect to the largest value (MSECRi,max) of each mode 

Lastly, after selecting the suspected elements to damage, in order to quantify the 

damage extent, Eq. (4.9) is expressed in the following form  

[

MSECi1

MSECi2

⋮
MSECiJ

] =

[
 
 
 
β11 β12 … β1𝑞

β21 β22 … β2𝑞

⋮
β𝐽1

⋮
β𝐽2

⋱
…

⋮
β𝐽𝑞]

 
 
 

[

α1

α2

⋮
αq

] (4.12) 

 

where β𝐽𝑞 = −2∑ {ϕi}
T[KJ]

{ϕr}
T[Kq] {ϕi}

λr−λi

𝑛
𝑟=1 ϕr, (𝑟 ≠ 𝑖) and 

 n is the number of analytical modes  

The method can be used to detect the damage at nodes, also. In this case, the damage 

in the structure is known to be a loss of rotational stiffness at joints. For this purpose, 

the Eq. (4.5) is converted to  

[Kd] = [K] + ∑[ΔKj]

L

j=1

= [K] + ∑∑
𝜕[Kj]

𝜕[S𝑙]
[∆S𝑙]        [∆S𝑙] = α𝑙𝑆

2

𝑙=1

L

j=1

 (4.13) 

 

where ∆S𝑙 is change in rotational stiffness at the lth joint, 

      
𝜕[Kj]

𝜕[S𝑙]
 is sensitivity of the jth elemental stiffness matrix with respect to a change 

in the rotational stiffness in the lth joint and 

      α𝑙 is fractional change in the lth rotational stiffness 
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Similarly, to quantifying the damage at nodes, a new β𝑠𝑡  can be obtained by 

substituting β𝑠𝑡 from Eq. (4.13) into Eq. (4.8)  

β𝑠𝑡 = −2S∑{ϕi}
T[Ks]

{ϕr}
T 𝜕[Kt]
𝜕[Sk]

{ϕi}

λr − λi

𝑛

𝑟=1

ϕr,    (𝑟 ≠ 𝑖) (4.14) 

4.2.1 Direct Modal Strain Energy Correlation  

Wang et al. (2012) used the previous MSEC index and improved an MSE correlation 

method called direct model strain energy correlation (DMSEC). The MSE change of 

element j at mode k subjected to a known damage case theoretically is  

δMSEj
(k)

= {ϕk
0}

T
[Kj

0]{ϕk
0} − {ϕk

d}
T
[Kj

0]{ϕk
d} (4.15) 

The MSE change matrices from theory and measurement for a structure are as follows, 

respectively. 

[δMSE] =

[
 
 
 
 δMSE1

(1)
δMSE2

(1)
⋯ δMSEN

(1)

δMSE1
(2)

δMSE2
(2)

⋯ δMSEN
(2)

⋮ ⋮ ⋱ ⋮

δMSE1
(md)

δMSE2
(md)

⋯ δMSEN
(md)

]
 
 
 
 

 (4.16) 

and 

[∆MSE] =

[
 
 
 
 ∆MSE1

(1)
∆MSE2

(1)
⋯ ∆MSEN

(1)

∆MSE1
(2)

∆MSE2
(2)

⋯ ∆MSEN
(2)

⋮ ⋮ ⋱ ⋮

∆MSE1
(md)

∆MSE2
(md)

⋯ ∆MSEN
(md)

]
 
 
 
 

 (4.17) 

where N is the number of elements and  
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     md is the number of mode shapes 

The 𝑣𝑒𝑐{δMSE}  and 𝑣𝑒𝑐{∆MSE}  are row-condensed vectors to facilitate the 

optimization process as follows. 

𝑣𝑒𝑐{δMSE}

= [∑𝜔𝑟{δMSE1
(r)

}

𝑚𝑑

𝑟=1

∑𝜔𝑟{δMSE2
(r)

}

𝑚𝑑

𝑟=1

⋯ ∑𝜔𝑟{δMSEN
(r)

}

𝑚𝑑

𝑟=1

] 
(4.18) 

 

𝑣𝑒𝑐{∆MSE}

= [∑𝜔𝑟{∆MSE1
(r)

}

𝑚𝑑

𝑟=1

∑𝜔𝑟{∆MSE2
(r)

}

𝑚𝑑

𝑟=1

⋯ ∑𝜔𝑟{∆MSEN
(r)

}

𝑚𝑑

𝑟=1

] 
(4.19) 

Finally, the optimization objective function used for DMSEC was proposed as 

𝐷𝑀𝑆𝐸𝐶

=
|{𝑣𝑒𝑐{∆MSE}}

𝑇
{𝑣𝑒𝑐{δMSE}}|

2

({𝑣𝑒𝑐{∆MSE}}
𝑇
{𝑣𝑒𝑐{∆MSE}}) ({𝑣𝑒𝑐{δMSE}}

𝑇
{𝑣𝑒𝑐{δMSE}})

  
(4.20) 

4.  The improved MSE method  

In this section, the previous study performed by (Shi et al., 2000) is mathematically 

improved to increase the sensitivity to damage  and accuracy of damage detection, 

reduce the computational cycle and iteration efforts (Moradipour et al., 2015, 

Moradipour et al., 2013). 
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In this method, the extent of elemental or nodal damage is expressed as a fractional 

reduction of the elemental or rotational stiffness matrix. The current study mainly 

employs the structural damaged stiffness matrix to establish a more accurate MSE 

change equation and sensitivity matrix. However, the final equations are transformed 

to be in terms of undamaged stiffness matrix, which is a known variable.  

4. .1 Improved modal strain energy change 

Initially, it is aimed to find an accurate MSE equation and consequently a more precise 

sensitivity matrix. Assuming element m is damaged with damage extent of αm, the 

local stiffness of element m after damage is  

[Km
d ] = [Km] + [ΔKm] = [Km] + αm[Km]    (−1 < αm  ≤ 0 ) (4.21) 

 

where [Km
d ] and [Km] are stiffness matrices of damaged and undamaged cases of 

element m, respectively and 

      αm is the fractional reduction coefficient of mth elemental stiffness matrix 

Assuming a structure with L elements that all of them are damaged, extending the Eq. 

(4.13) for all elements and globally integrating for the entire structure leads to 

∑[Km
d ]

L

m=1

= ∑[Km]

L

m=1

+ ∑[ΔKm]

L

m=1

= ∑[Km]

L

m=1

+ ∑ αm[Km]

L

m=1

 (4.22) 
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Simplifying yields 

[Kd] = [K] + [ΔK] = [K] + ∑[ΔKm]

L

m=1

= [K] + ∑ αm[Km]

L

m=1

 (4.23) 

where Kd  and K  are global stiffness of the structure of damaged and undamaged 

cases, respectively 

The MSE stored in the jth element at mode i after damage is  

MSEi,j
d =

1

2
{ϕi

d}
T
[Kj

d]{ϕi
d} (4.24) 

Subtracting Eq. (4.2) from Eq. (4.24) gives the change in MSE 

ΔMSEij
imp

= MSECij
𝑖𝑚𝑝 = MSEi,j

d − MSEi,j

=
1

2
{ϕi

d}
T
[Kj

d]{ϕi
d} −

1

2
{ϕi}

T[Kj]{ϕi} 
(4.25) 

where “imp” stands for the improved method 

Substituting for {ϕi
d} and [Kj

d] in Eq. (4.25) from Eqs. (4.3) and (4.13), respectively. 

ΔMSEij
imp

=
1

2
{ϕi + Δϕi}

T([Kj] + αj[Kj]){ϕi + Δϕi}

−
1

2
{ϕi}

T[Kj]{ϕi} 
(4.26) 

Simplifying and neglecting the higher order terms leads to 

ΔMSEij
imp

=
1

2
αj{ϕi}

T[Kj]{ϕi}

+
1

2
(1 + αj)[{ϕi}

T[Kj]{Δϕi} + {Δϕi}
T[Kj]{ϕi}] 

(4.27) 
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Substituting for {Δϕi} from Eq. (4.3) into Eq. (4.27) yields 

ΔMSEij
imp

=
1

2
αj{ϕi}

T[Kj]{ϕi} +
1

2
(1 +

αj) ({ϕi}
T[Kj] ∑

{ϕr}
T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr} +

∑
{ϕr}

T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr}

T[Kj]{ϕi})        (i ≠ r) 

(4.28) 

where i generally is in the range of 1 to 5 and 

      r is the number of analytical modes under consideration (r ≤ no. of DOFs) 

Simplifying  

ΔMSEij
imp

=
1

2
αj{ϕi}

T[Kj]{ϕi} +

1

2
{ϕi}

T[Kj] ∑
{ϕr}

T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr} +

1

2
∑

{ϕr}
T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr}

T[Kj]{ϕi}+

  
1

2
αj ({ϕi}

T[Kj] ∑
{ϕr}

T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr} +

∑
{ϕr}

T[ΔK]{ϕi}

λi−λr

md
r=1 {ϕr}

T[Kj]{ϕi})    (i ≠ r) 

(4.29) 

Substituting for [ΔK]  from Eq. (4.5) into Eq. (4.29) ( [ΔK] = ∑ α𝑘[K𝑘]
𝑝
k=1  ) and 

simplifying 

ΔMSEij
imp

=
1

2
αj{ϕi}

T[Kj]{ϕi} +

1

2
{ϕi}

T[Kj] ∑ αk
𝑝
𝑘=1 ∑

{ϕr}
T[Kk]{ϕi}

λi−λr

md
r=1 {ϕr} +

1

2
∑ αk

𝑝
𝑘=1 ∑

{ϕr}
T[Kk]{ϕi}

λi−λr

md
r=1 {ϕr}

T[Kj]{ϕi}+

(4.30) 
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1

2
αj ({ϕi}

T[Kj] ∑ αk
𝑝
𝑘=1 ∑

{ϕr}
T[Kk]{ϕi}

λi−λr

md
r=1 {ϕr} +

∑ αk
𝑝
𝑘=1 ∑

{ϕr}
T[Kk]{ϕi}

λi−λr

md
r=1 {ϕr}

T[Kj]{ϕi})    (i ≠ r) 

where p is the number of damaged elements of the system 

Ignoring the higher order terms leads to the equation of change in the MSE of element 

j at mode i as follows. 

ΔMSEij
imp

=
1

2
αj{ϕi}

T[Kj]{ϕi}

+
1

2
{ϕi}

T[Kj] ∑ αk

𝑝

𝑘=1

∑
{ϕr}

T[Kk]{ϕi}

λi − λr

md

r=1

{ϕr}

+
1

2
∑ αk

𝑝

𝑘=1

∑
{ϕr}

T[Kk]{ϕi}

λi − λr

md

r=1

{ϕr}
T[Kj]{ϕi}              

(i ≠ r) 

(4.31) 

4. .2 Improved sensitivity matrix 

Partial differentiating Eq. (4.31) with respect to 𝛼  results in sensitivity matrix at 

mode i and element j as follow, 

𝜕MSEij
imp

𝜕𝛼
=

1

2
{ϕi}

T[Kj]{ϕi}

+
1

2
∑ ∑{ϕi}

T[Kj]
{ϕr}

T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}

𝑝

𝑘=1

+
1

2
∑ ∑

{ϕr}
T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

  (i ≠ r) 

(4.32) 

For a single damage, p equals 1. Therefore, Eq. (4.32) is converted to 
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𝜕MSEij
imp

𝜕𝛼
=

1

2
{ϕi}

T[Kj]{ϕi} +
1

2
∑{ϕi}

T[Kj]
{ϕr}

T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}

+
1

2
∑

{ϕr}
T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}
T[Kj]{ϕi}  (i ≠ r) 

(4.33) 

where Kk=Kj 

The sensitivity matrix can also be formed for m modes and N elements as the following 

expanded form or matrix notation.  

𝑆𝑀𝑆𝐸 =
𝜕𝑀𝑆𝐸

𝜕𝛼𝑁
=

[
 
 
 
 
 
 
 
𝜕𝑀𝑆𝐸1

𝜕𝛼1

𝜕𝑀𝑆𝐸1

𝜕𝛼2
…

𝜕𝑀𝑆𝐸1

𝜕𝛼𝑁

𝜕𝑀𝑆𝐸2

𝜕𝛼1

𝜕𝑀𝑆𝐸2

𝜕𝛼2
…

𝜕𝑀𝑆𝐸2

𝜕𝛼𝑁

⋮
𝜕𝑀𝑆𝐸𝑚

𝜕𝛼1

⋮
𝜕𝑀𝑆𝐸𝑚

𝜕𝛼2

⋮

…
𝜕𝑀𝑆𝐸𝑚

𝜕𝛼𝑁 ]
 
 
 
 
 
 
 

 (4.34) 

 

where m is the number of modes under consideration and  

     𝑀𝑆𝐸𝑚 is the MSE of the system at mode m 

     N is the number of desired elements 

The recent equations of sensitivity matrix, Eqs. (4.32) and (4.34) are used in the next 

sections for locating and quantifying the damage in the structure. 

4. .  Locating the damage 

The first stage of this method is to detect the location of damage/s in the structure. For 

this purpose, the amount of the damage location indicator named MSECR is plotted 

for all elements. Then elements with a higher value of MSECR are selected as the 
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suspect elements to damage to be further investigated in the second stage. Therefore, 

the locations of damage/s is a set of elements that acquire the highest amounts of 

MSECR.  

MSECR can be either calculated for a specific single mode as given in Eq. (4.10) or 

normalized for several modes as set in Eq. (4.11). Hence, to locate the damage, any of 

Eqs. (4.10) or (4.11) can be separately used for calculating the MSECR indicator. 

However, in any of these equations, the MSEC or ΔMSE is upgraded to ΔMSE from 

Eq. (4.30) in the improved method which is very accurate and closer to the actual MSE 

stored in the elements of the system.  

In case of using Eq. (4.10) any of the first five modes can be used i.e. i = any of 1 to 

5. Though, the number of modes of damaged structure selected should be necessarily 

associated with that of an undamaged one. However, using the Eq. (4.11) which mostly 

gives better results, requires a set of favourite modes, usually the first five modes or 

more of both damaged and undamaged structures i.e. i =5. 

4. .4 Quantifying the damage 

4.3.4.1 Quantifying the elemental damage 

The second stage of the improved method is to quantify the damage. Damage 

quantifying process is conducted among the suspect elements that have primarily been 

selected in the first stage. In this procedure, the amount of α’s as the extent of damages 
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of suspect elements are iteratively calculated. Lastly, the amounts of α ’s for true 

damaged elements converge to their real damage percentage while for other suspect 

elements converge to zero. However, depending on complexity of the structure, 

number of suspect elements and number of modes under consideration, the exact 

amount of each set of α’s may be obtained through several iterations. The improved 

procedure is as follows. 

From Eq. (4.34) ignoring coefficient 
1

2
, it can be derived. 

[β]{α} = {MSECimp} (4.35) 

where MSECimp  is obtained from change between damage and undamaged cases 

from Eq. (4.25) and β is 

 βk,s =
𝜕𝑀𝑆𝐸

𝜕𝛼
= {ϕi}

T[K𝑠]{ϕi} + ∑{ϕi}
T[Ks]

{ϕr}
T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}

+ ∑
{ϕr}

T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}
T[K𝑠]{ϕi}      (i ≠ r) 

(4.36) 

where s is a selected element for computation of the MSEC and  

     k is a suspect damaged element  

Substituting for Kj
d from Eq. (4.23) into Eq. (4.25), simplifying and then arranging 

MSECij
imp

= αj{ϕi}
T[Kj]{ϕi} + {ϕi

d}
T
[Kj]{ϕi

d} − {ϕi}
T[Kj]{ϕi}  (4.37) 
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Combining Eq. (4.7) and Eq. (4.37) gives 

MSECij
imp

= αj{ϕi}
T[Kj]{ϕi} + MSECij (4.38) 

 

Substituting Eqs. (4.36) and (4.38) into Eq. (4.35)  

[ {ϕi}
T[K𝑠]{ϕi} + ∑ {ϕi}

T[Ks]
{ϕr}

T[Kk] {ϕi}

λi−λr

n
r=1 {ϕr} +

∑
{ϕr}

T[Kk] {ϕi}

λi−λr

n
r=1 {ϕr}

T[Ks]{ϕi}] {α} = α𝑠{ϕi}
T[K𝑠]{ϕi} + {MSEC} 

    (i ≠ r) 

(4.39) 

Simplifying 

[−[{ϕi
d}

T
[K𝑠]{ϕi

d} + {ϕi}
T[Ks]{ϕi}] +

∑ {ϕi}
T[Ks]

{ϕr}
T[Kk] {ϕi}

λi−λr

n
r=1 {ϕr} + ∑

{ϕr}
T[Kk] {ϕi}

λi−λr

n
r=1 {ϕr}

T[Ks]{ϕi}] {α} =

{MSEC}   (i ≠ r) 

(4.40) 

Combining Eq. (4.7) and Eq. (4.40) 

[−[MSEC] + ∑{ϕi}
T[Ks]

{ϕr}
T[K𝑘] {ϕi}

λi − λr

n

r=1

{ϕr}

+ ∑
{ϕr}

T[Kk] {ϕi}

λi − λr

n

r=1

{ϕr}
T[Ks]{ϕi}] {α}

= {MSEC}           (i ≠ r) 

(4.41) 

                                                                            

Denoting  βk,s
∗ = −MSECij and  βk,s

′ = ∑ {ϕi}
T[Ks]

{ϕr}
T[Kk] {ϕi}

λi−λr

n
r=1 {ϕr} +

{ϕr}
T[Ks]{ϕi}, then, βk,s can be written in the following form 



 

69 

 

βk,s = βk,s
∗ + βk,s

′  (4.42) 

 

Reconstructing Eq. (4.35) in matrix notation, 

([β∗] + [β′]){α} = {MSEC} (4.43) 

or  

(

 
 

[
 
 
 
 
β∗

11
0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

 [

α1

α2

⋮
αq

] =

 [

MSECi1

MSECi2

⋮
MSECiq

]     

(4.44) 

where q is the number of selected suspected elements 

[β∗]  which is a diagonal matrix is proposed in this study in order to increase the 

accuracy of {α} ’s. Each array of [β∗]  is a function of MSEC of the associated 

element in a specific mode. MSEC is in terms of undamaged stiffness of the structure 

that can easily be achieved. Finally, from Eq. (4.44), {α}’s are obtained in expanding 

form as 
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[

α1

α2

⋮
αq

] =

(

 
 

[
 
 
 
 
β∗

11
0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

−1

 [

MSECi1

MSECi2

⋮
MSECiq

] 

(4.45) 

Accordingly, to calculate the alpha coefficients, using Eq. (4.45), two sets of mode 

shapes and natural frequencies of damaged and undamaged structure are required. 

From Eq. (4.41), the number of mode shapes required from undamaged case is r which 

can be less than or upmost equal the number of DOFs of the structure under 

consideration (r ≤ no. of DOFs) . In numerical models, the number of undamaged 

modes can be coincided to the analytical mode shapes. However, the process of 

damage quantifying can be stopped when it converges that may occur at a mode 

number much lower than the nominated number of DOFs. Whereas, from damaged 

case, only one mode is adequate, where, the number of required modes is i that equals 

any of modes from 1 to 5. Since mode one or three normally gives a better result 

(because of lower natural frequency) as demonstrated by Shi et al. (1998), thus i= 1 or 

3.  

4.3.4 Quantifying the nodal damage 

Similarly, substituting Eq. (4.13) into Eq. (4.9) 
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  MSECij = −2{ϕi}
T[Kj]∑ ∑ ∑

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
[∆S𝑙]{ϕi}

λr − λi

2

𝑙=1

𝑝

𝑘=1

𝑛

𝑟=1

{ϕr} 

(i ≠ r) 

(4.46) 

where p is the number of damaged elements of the system 

Substituting for [∆S𝑙] = α𝑙𝑆 from Eq. (4.13) 

MSECij = −2{ϕi}
T[Kj]∑ ∑ ∑ α𝑙𝑆

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
{ϕi}

λr − λi

2

𝑙=1

𝑝

𝑘=1

𝑛

𝑟=1

{ϕr} 

(i ≠ r) 

(4.47) 

However, in the improved method, firstly to derive the MSE change at node n, rewrite 

Eq. (4.29), ignoring coefficient 
1

2
 and the last two terms. 

ΔMSEij
imp

= {ϕi}
T[ΔKj]{ϕi} + {ϕi}

T[Kj]∑
{ϕr}

T[ΔK]{ϕi}

λi − λr

md

r=1

{ϕr}

+ ∑
{ϕr}

T[ΔK]{ϕi}

λi − λr

md

r=1

{ϕr}
T[Kj]{ϕi}  (i ≠ r) 

(4.48) 

Substituting for [ΔK]  from Eq. (4.13) into Eq. (4.48) ( [ΔK] = ∑ α𝑘[K𝑘]
𝑝
k=1  ) and 

simplifying 



 

72 

 

ΔMSEij
imp

= ∑{ϕi}
T
𝜕[K𝑗]

𝜕[S𝑙]
[∆S𝑙]

2

𝑙=1

{ϕi}

+ {ϕi}
T[Kj]∑ ∑ ∑

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
[∆S𝑙]{ϕi}

λr − λi

2

𝑙=1

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑ ∑
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

[∆S𝑙]{ϕi}

λr − λi

2

𝑙=1

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

 

(i ≠ r) 

(4.49) 

where p is the number of damaged elements of the system 

Substituting for [∆S𝑙] = α𝑙𝑆 from Eq. (4.13) into Eq. (4.49) 

ΔMSEij
imp

= ∑{ϕi}
T
𝜕[K𝑗]

𝜕[S𝑙]
α𝑙[Sj]

2

𝑙=1

{ϕi}

+ {ϕi}
T[Kj]∑ ∑ ∑ α𝑙[Sk]

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
{ϕi}

λr − λi

2

𝑙=1

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑ ∑α𝑙[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

2

𝑙=1

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

 

(i ≠ r) 

(4.50) 

where 𝑆𝑘 is the rotational stiffness of the kth element 

At node n, Eq. (4.50) becomes 
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ΔMSEij
imp

= {ϕi}
T
𝜕[Kj]

𝜕[Sj]
αn[Sj]{ϕi}

+ {ϕi}
T[Kj]∑ ∑ αn[Sk]

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
{ϕi}

λr − λi

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑ αn[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

 

 

(i ≠ r) 

(4.51) 

 

Then, to quantify the damage at node n, rewrite Eq. (4.37) and combine with Eq. (4.13) 

MSECij
imp

= {ϕi
d}

T 𝜕[Kj]

𝜕[Sj]
αn[Sj]{ϕi

d} + {ϕi
d}

T
[Kj]{ϕi

d} − {ϕi}
T[Kj]{ϕi} (4.52) 

Combining Eq. (4.7) and Eq. (4.52) gives 

MSECij
imp

= {ϕi
d}

T 𝜕[Kj]

𝜕[Sj]
αn[Sj]{ϕi

d} + MSECij (4.53) 

Substituting Eq. (4.51) into Eq. (4.53)  

({ϕi}
T
𝜕[Kj]

𝜕[Sj]
[Sj]{ϕi} + {ϕi}

T[Kj]∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

){α}

= {ϕi
d}

T 𝜕[Kj]

𝜕[Sj]
αn[Sj]{ϕi

d} + MSECij 

 

(4.54) 
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(i ≠ r) 

Simplifying 

(−{ϕi
d}

T 𝜕[Kj]

𝜕[Sj]
[Sj]{ϕi

d} + {ϕi}
T
𝜕[Kj]

𝜕[Sj]
[Sj]{ϕi}

+ {ϕi}
T[Kj]∑ ∑[Sk]

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
{ϕi}

λr − λi

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

){α}

= MSECij 

(i ≠ r) 

(4.55) 

 

Combining Eq. (4.7) into Eq. (4.55) 

(−[MSEC] + {ϕi}
T[Kj]∑ ∑[Sk]

{ϕr}
T 𝜕[K𝑘]

𝜕[S𝑙]
{ϕi}

λr − λi

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

){α}

= {MSEC} 

(i ≠ r) 

(4.56) 

Denoting βk,s
∗ = −MSECij  and  
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 βk,s
′ = {ϕi}

T[Kj]∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

𝑝

𝑘=1

𝑛

𝑟=1

 {ϕr}

+ ∑ ∑[Sk]
{ϕr}

T 𝜕[K𝑘]
𝜕[S𝑙]

{ϕi}

λr − λi

{ϕr}
T[Kj]{ϕi}

𝑝

𝑘=1

𝑛

𝑟=1

 

Then, βk,s can be written in the following form 

βk,s = βk,s
∗ +  βk,s

′  (4.57) 

Reconstructing Eq. (4.58) in matrix notation, 

([β∗] + [β′]){α} = {MSEC} (4.58) 

or  

(

 
 

[
 
 
 
 
β∗

11
0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

 [

α1

α2

⋮
αq

] =  [

MSECi1

MSECi2

⋮
MSECiq

] (4.59) 

Similarly, [β∗] is a diagonal matrix proposed in this study in order to increase the 

accuracy of {α}’s that are nodal damages here. Finally, from Eq. (4.59), {α}’s are 

obtained in expanding form as 
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[

α1

α2

⋮
αq

] =

(

 
 

[
 
 
 
 
β∗

11
0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

−1

 [

MSECi1

MSECi2

⋮
MSECiq

] 

(4.60) 

4. .5 Required modes shapes and natural frequencies 

The number of mode shapes and natural frequencies required for the two stages of the 

improved method are as follows, respectively. 

• Stage 1 or locating the damage 

• The first five (or more) modes of both damaged and undamaged structures 

• Stage 2 or quantifying the damage 

All analytical mode shapes and natural frequencies or as many as analytical mode 

shapes and natural frequencies that are available or can be derived.  

From undamaged structure, as many modes as possible, the more the better (at least 

the first five modes used in the first stage with their associated natural frequencies). In 

numerical models, more analytical mode shapes can be effortlessly derived and used. 
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In practice, mode measuring may be incomplete because of some parameters such as 

a smaller number of sensors, improper placement of sensors, difficulty in measuring 

the rotational DOFs, effect of noise and error in processing the data. Though, normally 

at least the first five modes can be obtained. So, in this method, there is no difficulty 

in locating the damage. However, having a smaller number of modes from undamaged 

structure may decrease the damage quantification accuracy.  

To overcome this issue, the mode expansion method proposed by Shi et al. (1995) can 

be used to expand the inadequate number of DOFs measured to the full dimension of 

FEM. Also, according to Hu (1987), when the stiffness of a structure changes, each 

perturbed mode shape can be linearly expressed as a combination of the original mode 

shapes. 

4. .6 Noise effect 

To consider some uncertainties and noise effect, Eq. (4.61) is applied to the mode 

shapes (Shi et al., 2000, Cha and Buyukozturk, 2015). 

φ̅ij = φij(1 + γi
φ
ρφ|φmax,j|) (4.61) 

 

where φ̅
ij
 and φ

ij
 are the mode shape components of the jth mode at ith DOF, 

      γ
i

φ
 are the random numbers with the mean of zero and a variance of one, 

      ρφ is the noise level (percent), and 
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      φ
max,j

 is the largest component of the jth mode shape 

4.4 Concluding remarks 

Since energy quantity has been recognized as a reliable index for featuring the 

structural damage, this chapter proposed an improved MSE-based damage detection 

method for bridge damage detection. The aim of the study was increasing the damage 

sensitivity and consequently damage detection accuracy of an existing method. For 

this purpose, the damaged stiffness matrix of the structure was used to establish a more 

accurate MSE change equation and sensitivity matrix.  

The mathematical formulations were comprehensively improved. In the first step, the 

MSE equation was accurately established to be used in the first stage for more truthful 

locating the damage. Then, the sensitivity matrix was derived to be used in the second 

stage to quantify the more precise damage extent. Both elemental and nodal damage 

quantifying were well mathematically improved and formulated, respectively. The 

number of mode shapes and natural frequencies required for applying the method and 

the way of applying noise effect were also discussed and presented.  

The next chapters discuss the comparative studies, numerical and experimental 

applications of the improved MSE method to some structural models. 
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CHAPTER 5 

COMPARATIVE STUDIES 

This Chapter compares the performance of the improved MSE method with its 

ancestor. Section 5.1 introduces the numerical model selected for performing the 

comparison. Section 5.2 compares the results for a single damage scenario. Section 

5.3 shows the results of both methods for a multiple damage scenario applied to the 

model. Section 5.4 discusses the results of sections 5.2 and 5.3. Finally, the last section, 

section 5.5, wraps the overall conclusion. 

5.1 The numerical fixed-end beam model 

The numerical fixed-end beam model consisting of 12 elements and 13 nodes shown 

in Figure 5.1 is considered to some comparison between the current study and previous 

research by Shi et al. (2000). The model is a steel beam with a total length of 7.2 m.  

The material properties and geometric information are as Table 5.1.  
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Figure 5.1 The FEM of the fixed-supported beam 

Table 5.1 Material properties and geometric information – numerical case study 

Material or physical parameter Symbol Amount Unit 

Length of each element L 0.6 M 

Total length of the model L 7.2 m 

Modulus of elasticity E 206 × 109 N/m2 

Cross-sectional area A 0.0016 m2 

Second moment of area I 3.4133 × 10−9 m4 

Mass density 𝜌 7870 kg/m3 

 

5.2 Study of the accuracy and convergence of the improved MSE 

method 

As stated in Eq. (4.21), the actual damage extent (α) is a negative coefficient between 

-1 and 0 or equals 0. However, in this study for more convenience, the sign convention 

of the damage extent is assumed to be positive. The comparison between the improved 

method (MSECimp) and the previous method (MSEC) proposed by Shi et al. (2000) 

is performed with the following cases. The Eigen parameters of the model at any case 

of damaged and undamaged is derived through a MATLAB code. 
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5.2.1 Single damage  

As a single damage scenario, element 5 is damaged with the stiffness loss of 10 percent. 

The MSECR of all elements of the model is shown in Figure 5.2. 

 

Figure 5.2 The MSECR of the elements, single damage (element 5 with a stiffness loss of 

10%) 

From Figure 5.2, elements 4, 5 and 6 are selected as suspected elements. Quantifying 

the extent of the damage performed by increasing the number of analytical mode 

shapes starting from mode 5. The results of damage extent quantification of element 5 

for both methods are shown in Figure 5.3. The results for other suspected elements 4 

and 6 are also shown in Figures 5.4 and 5.5, respectively. 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12

M
S

E
C

R

Element number

Single damage - no noise



 

82 

 

 

Figure 5.3 Damage extent of element 5 quantified with mode 1 in both MSEC and 

MSECimp methods 

 

 

Figure 5.4 Damage extent of element 4 quantified with mode 1 in both MSEC and 

MSECimp methods 
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Figure 5.5 Damage extent of element 6 quantified with mode 1 in both MSEC and 

MSECimp methods 

The comparison of damage extents quantified by both MSEC and MSECimp methods 

for the damaged element (element 5) is shown in Table 5.2. 

Table 5.2 Comparison of damage extents quantified using MSEC and MSECimp methods - 

single damage 

Single damage 
Damage extent (%) 

Element no. Quantified Actual Difference (%) 

MSECimp 5 10.11 10 +1.11 

MSEC 5 11.35 10 +13.47 

 

-250.0

-230.0

-210.0

-190.0

-170.0

-150.0

-130.0

-110.0

-90.0

-70.0

-50.0

-30.0

-10.0

10.0

5 6 7 8 9 10 11 12 13 14 15 20

A
lp

h
a 

Mode number

Single damage - element 6, Mode 1

MSECimp MSEC



 

84 

 

5.2.2 Multiple damage 

Similarly, in multiple damage scenario, elements 4 and 9 are damaged with the 

stiffness loss of 10 and 15 percent, respectively. The MSECR of all elements of the 

model is shown in Figure 5.6. 

From Figure 5.6, elements 4, 8 and 9 are selected as suspected elements. Quantifying 

the extent of the damage performed by increasing the number of analytical mode 

shapes starting from mode 5. The results of damage extent quantification of elements 

4, 8 and 9 for both methods are shown in Figures 5.7-5.9, respectively. 

 

Figure 5.6 MSECR of the elements, multiple damage, (elements 4 and 9 with a stiffness loss 

of 10 and 15%, respectively) 
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Figure 5.7 Damage extent of element 4 quantified with mode 1 in both MSEC and 

MSECimp methods 

 

 

Figure 5.8 Damage extent of element 8 quantified with mode 1 in both MSEC and 

MSECimp methods 
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Figure 5.9 Damage extent of element 9 quantified with mode 1 in both MSEC and 

MSECimp methods 

The comparison of the damage extents quantified by both MSEC and MSECimp 

methods for the damaged elements (elements 4 and 9) is shown in Table 5.3. 

Table 5.3 Comparison of damage extents quantified using MSEC and MSECimp methods - 

multiple damage 

Multiple damage 
Damage extent (%) 

Element no. Quantified Actual Difference (%) 

MSECimp 4 9.77 10 -2.30 

MSEC 4 11.15 10 +11.49 

MSECimp 9 15.11 15 +0.75 

MSEC 9 17.99 15 +19.92 
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5.2.  Results and discussions 

From Figures 5.3-5.5 of single damage and Figures 5.7-5.9 of multiple damage, it is 

seen that MSEC method has a big deviancy at the lower modes. For the single damage, 

according to the sign convention, Figure 5.3 shows element 5 has damaged. At the 

beginning that is started with mode 5, MSEC gives 379% damage extent, while 

MSECimp gives 132% damage extent that shows a considerable deviation between 

two methods. By increasing the mode number, this trend continues, and both methods 

converge to the actual damage extent. Although, by increasing the mode number, the 

difference between quantified damage extents of two methods becomes smaller, the 

deviation of the MSECimp method from the actual damage extent is always lesser. It 

means the convergence rate of MSECimp method is faster than that of MSEC method. 

In other words, for the same mode number, MSECimp method always gives a very 

much better result i.e. converges with a smaller number of modes. The results of last 

mode (mode 20) of the both methods are shown in Table 5.2. It is seen that MSEC 

method has +13.47% difference with the actual damage extent, while the results of 

current study are deviated only +1.11% from the actual damage extent of 10%. This 

trend is true for undamaged elements as well. For undamaged elements, the MSECimp 

converges to zero faster than MSEC.  

Similarly, in the multiple damage, Figures 5.7 and 5.9 show elements 4 and 9 have 

damaged. At mode 5, MSEC gives 45 and 103% damage extent for elements 4 and 9, 
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respectively. While MSECimp gives 38 and 56% damage extent for those elements, 

respectively. By increasing the mode number, the convergence is similarly proceeded 

till mode 20. The significance difference between the two methods is clearly seen in 

Figures 5.7 and 5.9. The results of the last mode (mode 20) of both methods for the 

damaged elements 4 and 9 are shown in Table 5.3. The MSEC method shows +11.49 

and +19.92% difference with the actual damage extents, while the present study gives 

only -2.3 and +0.75% from the actual damage extents of 10 and 15%, respectively. It 

is seen, the MSECimp method always perform better and converges with a smaller 

number of modes. This trend is also true for the undamaged element 8.  

For example, in Figure 5.7, the MSECimp gives 13.8% damage extent at mode 9 that 

is more accurate than 14.2% damage extent obtained from the MSEC method at mode 

14. Similarly, in Figure 5.9, MSECimp and MSEC give 22.2 and 22.3% damage extent 

at modes 9 and 14, respectively, that shows the accuracy and better performance of the 

current study at a lower number of mode shapes. 

5.  Conclusion 

Studies performed on damage identification using the current study and previous 

method indicate the improved method is able to identify the damage more accurately 

by having a smaller number of mode shapes. This highlights the capability of the 

MSECimp for sensitivity to capture any damage in the structure.  
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CHAPTER 6 

NUMERICAL SIMULATIONS 

In this Chapter, Section 6.1 briefly introduces the details of the models studied. Section 

6.2 shows the application of the proposed method to a fixed-end steel beam with 2D 

frame elements. Section 6.3 illustrates the applicability of the proposed method to a 

three-story steel frame with 2D frame elements. Section 6.4 explains the damage 

detection of a 2D steel truss structure using the improved MSE method. Section 6.5 

describes the performance of the proposed method on a concrete bridge frame. Finally, 

the last section, section 6.6, wraps the overall conclusion. 

6.1 Introduction  

This chapter deals with numerical validation of the improved MSE method presented 

in Chapter 4. The method is applied to different structural models such as a beam, a 

frame and a truss models with different material properties and element type, size, 

material properties and structural type. Different damage scenarios including single 

and multiple damage are also considered for each model. Additionally, all simulations 

data are contaminated with up to seven percent noise to pretend the actual situation of 
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noise pollution in the environment. In the last two case studies, the improved method 

is further verified for two different models representing medium span bridges. 

The first case study is a fixed-end beam with frame element as a basic structure that 

can simply represent a deck of a bridge or a part of any structure. The second case 

study is a three-story-frame with frame element representing a frame of a building or 

a frame system supporting the bridge deck. The last two case studies verify the 

improved method for medium span bridges. In these case studies, in addition to the 

size and length of the structures, the element type and material properties are also 

dissimilar. Therefore, the improved method is expansively examined in different 

aspects using various numerical samples.  

The modal analysis of each model at different cases including intact, single and 

multiple damage is performed using STRAND7 (Strand7_Manual, 2010). The mode 

shapes and natural frequencies obtained are then used in the improved MSE method 

using MATLAB to detect the location and quantify the severity of the damage (Smith, 

2008, Smith and Pournami, 2013).  

6.2 Guideline for practical application of the improved method 

The overall guideline for practical application of the current study is as follows. 
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a) Stage one is always performed for all structural elements for one specific mode 

shape or few numbers of modes, for example, mode 1 to 3. Therefore, there is a 

value of MSECR for each member. The MSEC versus element number from one 

to n (number of total elements) is drawn.  

b) Calculate the average of MSECRs for all elements. The average of MSECR is the 

threshold for selecting the suspected elements either for single damage or multiple 

damage cases. In other words, the elements with MSECR greater than 𝑀𝑆𝐸𝐶𝑅𝑎𝑣𝑔 

should be selected for quantifying the damage extent for the second stage. 

However, for the multiple damage, the threshold can be considered slightly around 

5% greater than the nominal threshold.  

c) If the number of suspected elements is less than or equals 25% of the total number 

of elements, continue to stage two of the improved method. 

d) If the number of suspected elements became over 25% of the total number of 

elements, then 

i. Select another mode shape or choose few numbers of mode shapes and repeat 

b and c and repeat this for different modes. If condition c is not satisfied then, 

ii. Select all suspected element with higher MSECR than 𝑀𝑆𝐸𝐶𝑅𝑎𝑣𝑔. 
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e) Divide the suspected element (in the same order) to few sets in which the number 

of elements in each set becomes less than or equals 25% of the total number of 

elements. Continue to stage two for each set as a separate case and finally combine 

all the extents obtained from different sets for each case or scenario. 

f) Finally, the true damage elements will be identified with non-zero extent in stage 

two of the method. 

6.  Case study 1: A fixed-end steel beam 

The first numerical simulation is a simple structure which is a fixed-end steel beam 

consisting of 12 elements and 13 nodes with 33 DoFs as shown in Figure 6.1. The 

material properties and geometric information are as follows.  

Table 6.1 Material properties and geometric information – numerical case study 1 

Material or physical parameter Symbol Amount Unit 

Length of each element l 0.6 m 

Total length of the model L 7.2 m 

Modulus of elasticity E 206 × 109 N/m2 

Cross-sectional area A 0.0016 m2 

Second moment of area I 3.4133 × 10−9 m4 

Mass density 𝜌 7870 kg/m3 
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Figure 6.1 The FEM model of the steel fixed-supported beam 

Three damage scenarios are assumed to be occurred in the beam. Scenario1 is a single-

damage that occurs in element 7 with a stiffness loss of 5% and scenario 2 is a 

multiple-damage with damage in elements 4 and 10 with stiffness loss of 5 and 10%, 

respectively. Scenario 3 is a multiple damage with damage in elements 3, 6 and 11 

with stiffness loss of 5, 3 and 8%, respectively. Three, five and seven percent of noise 

are also considered in each damage scenario, respectively.  

Initially, the model is analysed in STRAND7 to get its Eigenvalues and Eigen vectors 

representing the frequencies and mode shapes of the structure, respectively. The 

analysis is done for three different cases including, undamaged, single damaged and 

multiple damaged. The damages are applied to the model by decreasing the local 

stiffness of the desired elements. It should be noted that the sign convention of the 

damage extent in this dissertation is considered positive as assumed in Chapter 5.  

6. .1 Results of case study 1 

In the first stage, to detect the location of the single damage, the MSCER indicator is 

calculated and shown in Figure 6.2 using Eq. (4.11). For this purpose, the first five 

mode shapes of both single damaged and undamaged cases are used i.e. m equals 5. 
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The second stage is to calculate the alpha coefficients as the damage extents. 

According to Eq. (4.29), the number of analytical modes required for undamaged case 

is r which equals or is less than the number of DoFs of the structure (𝑟 ≤ no of DoFs). 

While, for damaged case, the number of required modes is i that equals any of modes 

from 1 to 5. Since, mode one normally gives better solution (because of lower 

frequency), generally i equals 1. So, in this case study, r =33 and i =1. Finally, the α’s 

of the improved method are calculated from Eq. (4.44). The calculation is performed 

through an iteration process. In each iteration, the global stiffness of the structure is 

updated as a new undamaged case considering the stiffness of the selected elements 

using obtained α’s of the previous iteration. Following that the system is reanalysed, 

and the process is repeated until convergence in α’s. The computation results of five 

iterations for scenarios 1-3 are shown in Tables 6.2-6.4, respectively. It is seen, the 

damage extent quantification process normally converges after two or three iterations.  

The single damage coefficients (α ’s) of iteration 3 using the improved method 

quantified with the first mode are shown in Figure 6.3. Similarly, the results of the first 

and second stage for the multiple damages (scenarios 2 and 3) are shown in Figures 

6.4-6.7, respectively. 
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Figure 6.2 The MSECR of the elements, single damage, scenario 1 (element 7 with a 

stiffness loss of 5%) 

According to Figure 6.2, elements 6, 7 and 8 are selected for stage 2 to quantify their 

damage extents because of getting the higher MSECR. The details are shown in Table 

6.2 and Figure 6.3. As mentioned in Eq. (4.21), in reality, the damage extent (α) is a 

negative coefficient between -1 and 0 or equals 0. However, in this study, the real 

damage extent conventionally considered positive, because showing the amount of 

damage upward positive is more convenient. Therefore, α with a negative amount 

makes little sense and automatically considered 0.  
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Table 6.2 Damage extent of selected element at each iteration, single damage, scenario 1 

(element 7 with a stiffness loss of 5%) 

Element 

number 

Iteration number 

l 2 3 4 5 

   
no noise 

 
  

6 -0.0464 -0.0485 -0.0485 -0.0485 -0.0485 

7 5.0321 5.0091 5.0092 5.0092 5.0092 

8 -0.0512 -0.0506 -0.0506 -0.0506 -0.0506 

 
 

3% noise 

6 0.1710 0.1682 0.1682 0.1682 0.1682 

7 5.0307 5.0070 5.0072 5.0072 5.0072 

8 0.0952 0.0951 0.0951 0.0951 0.0951 

 
 

5% noise 

6 0.3118 0.3085 0.3085 0.3085 0.3085 

7 4.9785 4.9546 4.9547 4.9547 4.9547 

8 0.1504 0.1501 0.1501 0.1501 0.1501 

 
 

7% noise 

6 0.4452 0.4415 0.4416 0.4416 0.4416 

7 4.8854 4.8618 4.8619 4.8619 4.8619 

8 0.1749 0.1746 0.1746 0.1746 0.1746 
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Figure 6.3 The extent of the damage, single damage, scenario 1 (element 7 with a stiffness 

loss of 5%) 

 

 
 

Figure 6.4 The MSECR of the elements, multiple damage, scenario 2 (elements 4 and 10 

with stiffness loss of 5 and 10%, respectively) 

For the second scenario as shown in Figure 6.4, elements 4, 9, 10 and 11 are selected 

for next stage to quantify their damage extents because of receiving the higher MSECR. 

The details are shown in Table 6.3 and Figure 6.5. 
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Table 6.3 Damage extent of selected element at each iteration, multiple damage, scenario 

2 (elements 4 and 10 with stiffness loss of 5 and 10%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

4 5.0819 5.0148 5.0157 5.0157 5.0157 

9 0.0132 0.0153 0.0152 0.0152 0.0152 

10 10.3934 10.2503 10.2523 10.2522 10.2522 

11 -0.0321 -0.0293 -0.0293 -0.0293 -0.0293 

 
 

3% noise 

4 4.9830 4.9150 4.9160 4.9160 4.9160 

9 -0.6910 -0.6801 -0.6802 -0.6802 -0.6802 

10 10.3188 10.1723 10.1745 10.1744 10.1744 

11 -0.1061 -0.1024 -0.1025 -0.1025 -0.1025 

 
 

5% noise 

4 4.8724 4.8045 4.8055 4.8055 4.8055 

9 -1.1252 -1.1084 -1.1087 -1.1087 -1.1087 

10 10.2484 10.1006 10.1028 10.1027 10.1027 

11 -0.1603 -0.1561 -0.1562 -0.1562 -0.1562 

 
 

7% noise 

4 4.7283 4.6613 4.6623 4.6623 4.6623 

9 -1.5279 -1.5056 -1.5059 -1.5059 -1.5059 

10 10.1693 10.0209 10.0231 10.0231 10.0231 

11 -0.2155 -0.2107 -0.2108 -0.2107 -0.2107 
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Figure 6.5 The extent of the damage, multiple damage, scenario 2 (elements 4 and 10 with 

stiffness loss of 5 and 10%, respectively) 

  
 

Figure 6.6 The MSECR of the elements, multiple damage, scenario 3 (elements 3, 6 and 11 

with stiffness loss of 5, 3 and 8%, respectively) 

In the last case, according to Figure 6.6, elements 2, 3, 6, 10 and 11 are suspected to 

damage because of receiving the higher MSECR. The process of quantifying the 

damage extents is shown in Table 6.4 and Figure 6.7. 
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Table 6.4 Damage extent of selected element at each iteration, multiple damage, scenario 

3 (elements 3, 6 and 11 with stiffness loss of 5,3 and 8%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

2 -0.0129 -0.0137 -0.0137 -0.0137 -0.0137 

3 5.1528 5.0831 5.0840 5.0840 5.0840 

6 3.0105 2.9683 2.9689 2.9689 2.9689 

10 -0.0702 -0.0709 -0.0709 -0.0709 -0.0709 

11 8.0422 7.9367 7.9381 7.9381 7.9381 

 
 

3% noise 

2 -0.0287 -0.0292 -0.0292 -0.0292 -0.0292 

3 5.2319 5.1581 5.1591 5.1591 5.1591 

6 3.3850 3.3362 3.3369 3.3369 3.3369 

10 -0.0827 -0.0837 -0.0837 -0.0837 -0.0837 

11 8.2465 8.1337 8.1353 8.1353 8.1353 

 
 

5% noise 

2 -0.0371 -0.0374 -0.0374 -0.0374 -0.0374 

3 5.2645 5.1882 5.1893 5.1893 5.1893 

6 3.6329 3.5797 3.5805 3.5805 3.5805 

10 -0.0885 -0.0897 -0.0897 -0.0897 -0.0897 

11 8.3729 8.2554 8.2571 8.2571 8.2571 

 
 

7% noise 

2 -0.0442 -0.0443 -0.0443 -0.0443 -0.0443 

3 5.2848 5.2065 5.2076 5.2076 5.2076 

6 3.8766 3.8189 3.8198 3.8198 3.8198 

10 -0.0995 -0.1006 -0.1006 -0.1006 -0.1006 

11 8.4911 8.3692 8.3710 8.3710 8.3710 
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Figure 6.7 The extent of the damage, multiple damage, scenario 3 (elements 3, 6 and 11 with 

stiffness loss of 5,3 and 8%, respectively) 

6. .2 Discussion on case study 1 

Scenario 1: The first scenario investigates the performance of the improved method 

when single damage occurs in the structure.  As shown in Figure 6.2, for the case of 

no noise, the MSECR peaks at element 7 that represents it is the highly suspected 

element to damage. Even though, elements 5, 6, 8 and 9 are also likely exposure to 

damage because of having the higher MSECR index. However, to decrease the 

computation cycles, few suspected elements such as 6, 7, and 8 are selected for next 

stage to quantify their damage extents as the α  coefficients. Quantifying the α 

coefficient for selected elements is depicted in Figure 6.3. From this figure, it is seen 

that for the case of no noise, the amount of α’s converge to zero except  α7 which 

converges to 5 that accurately equals the assumed damage.  
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Similarly, in presence of noise, it is seen that although the amount of MSECR index 

in Figure 6.2 is slightly affected by noise, the elements with a higher amount of 

MSECR are same with case of no noise. However, in the second stage, the extent of 

damages quantified in those elements varies. In other words, by increasing the noise, 

the accuracy of the method to detect the actual extent of the damage decreases. From 

Figure 6.3 it is seen, the method shows the extent of the damage at element 7 with 

0.14, -0.91 and -2.76% error for the noise level of 3, 5 and 7 percent, respectively. It 

means, by increasing the percentage of the random noise level, the accuracy of the 

method to quantify the damage slightly decreases. 

Scenario 2: The second scenario deals with multiple damage in the structure.  As 

shown in Figure 6.4, for the case of no noise, the MSECR tops at elements 4, 9, 10 

and 11. These elements are selected as the suspected elements for the next stage to 

quantify their damage extents as the α coefficients. Quantifying the α coefficient 

for selected elements is depicted in Figure 6.5. From this figure, it is seen that for the 

case of no noise, the amount of α ’s converge to zero except  α4  and α10  which 

converge to 5.02 and 10.25, respectively, that almost equals the assumed damage.  

Similarly, in presence of noise, the same elements are selected for the next stage. 

However, in the second stage, the extent of damages quantified in those elements 

slightly changes. From Figure 6.5 it is seen, the method shows the extent of damage 

at element 4 with -1.68, -3.89 and -6.75% error for the noise level of 3, 5 and 7 percent, 
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respectively. For element 10 the errors are 1.75, 1.03 and 0.02% for the noise levels 

applied, respectively.  

Scenario 3: For the last scenario as another multiple damage scenario by assuming 

damage in three elements, the results are shown in Figures 6.6 and 6.7. The MSECR 

indicator identifies elements 2, 3, 6, 10 and 11 as suspected elements. After quantifying 

the damage at these elements in presence of three levels of noise as shown in Figure 

6.7, it is seen, elements 3, 6 and 11 are the true damage elements with damage extents 

of 5.08, 2.97 and 7.93% for the case of no noise, respectively. The amount of error for 

each element at each level of noise is as follows. 

Table 6.5 The percentage of error of damage extent for selected elements with different 

noise level, scenario 3 (elements 3, 6 and 11 with stiffness loss of 5,3 and 8%, 

respectively) 

Element number 
Noise level 

No noise 3% 5% 7% 

3 1.68 3.18 3.76 4.15 

6 -1.33 11.23 19.35 27.32 

11 -0.77 1.69 3.21 4.63 

 

The above Table shows that the improved method is noise sensitive and performs 

better with lower noise level up to 5 percent.  
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6.4 Case study 2: A three-story steel frame 

The second case study is a three-story steel frame with frame elements of three DoFs 

at each end consisting of nine elements and eight nodes with 18 DoFs as shown in 

Figure 6.8. The material properties and geometric information are as follows.  

Table 6.6 Material properties and geometric information – numerical case study 2 

Material or physical parameter Symbol Amount Unit 

Length L 3.0 m 

Modulus of elasticity E 206 × 109 N/m2 

Cross-sectional area A 0.0015 m2 

Second moment of area I 1.125 × 10−7 m4 

Mass density 𝜌 7870 kg/m3 

 

 
 

Figure 6.8 FEM of the three-story steel frame 

Similarly, two damage cases, single and multiple damage scenarios, are assumed to be 

occurred in the frame. Scenario 1 is a single-damage that occurs in a beam (element 
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7), with a stiffness loss of 8% and scenario 2 is a multiple-damage with damages in a 

column and a beam, elements 4 and 8, with stiffness loss of 5 and 8 percent, 

respectively. Three and five percent noise are also considered in each damage scenario, 

respectively.  

Primarily, the modal analysis of the model is performed in STRAND7 to acquire the 

Eigenvalues and Eigenvectors. The damages are applied to the model by decreasing 

the local stiffness of the elements under consideration. Three different analysis 

including undamaged, single damaged and multiple damaged are performed. Then the 

noise is applied to the mode shape and natural frequencies of each case. 

6.4.1 Results of case study 2 

In the first stage, to detect the location of the damages, using the pair of the first five 

mode shapes of both damaged and undamaged of each case using Eq. (4.11) with m 

equals 5. The MSCER indicator for all elements of the single and multiple damage 

cases is calculated and shown in Figures 6.9 and 6.11, respectively. In the second stage, 

to get the alpha coefficients, Eq. (4.44) is used, however, in this case study r =18 and 

i =1. The single and multiple damage coefficients (α’s) using the improved method 

quantified with the first mode are shown in Figures 6.10 and 6.12, respectively.  
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Figure 6.9 The MSECR of the elements, single damage, scenario 1 (element 7 with stiffness 

loss of 8%) 

According to Figure 6.9, for single damage, suspected elements are 1, 4 and 7. The 

computation results of five iterations for scenarios 1 are shown in Table 6.7 and drawn 

in Figure 6.10. 
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Table 6.7 Damage extent of selected element at each iteration, single damage, scenario 1 

(element 7 with stiffness loss of 8%) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

1 -0.0464 -0.0327 -0.0328 -0.0328 -0.0328 

4 -0.0464 -0.0329 -0.0330 -0.0330 -0.0330 

7 7.7281 7.6595 7.6603 7.6603 7.6603 

 
 

3% noise 

1 0.1522 -0.0336 -0.0328 -0.0328 -0.0328 

4 0.1572 -0.0338 -0.0330 -0.0330 -0.0330 

7 7.3424 7.6616 7.6603 7.6603 7.6603 

 
 

5% noise 

1 0.2826 -0.0344 -0.0328 -0.0328 -0.0328 

4 0.2912 -0.0346 -0.0330 -0.0330 -0.0330 

7 7.0733 7.6623 7.6603 7.6603 7.6603 

 
 

7% noise 

1 -0.0011 -0.0352 -0.0328 -0.0328 -0.0328 

4 0.4235 -0.0353 -0.0330 -0.0330 -0.0330 

7 6.7935 7.6632 7.6602 7.6603 7.6603 

 

 
 

Figure 6.10 The extent of the damage, single damage, scenario 1 (element 7 with stiffness 

loss of 8%) 
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Figure 6.11 MSECR of the elements, multiple damage, scenario 2 (elements 4 and 8 with 

stiffness loss of 5 and 8%, respectively) 

According to Figure 6.11, for the multiple damage, suspected elements are 2, 4, 7 and 

8. The details of iteration and extents are shown in Table 6.8 and drawn in Figure 6.12. 
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Table 6.8 Damage extent of selected element at each iteration, multiple damage, scenario 

2 (elements 4 and 8 with stiffness loss of 5 and 8%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

2 -0.3041 -0.3095 -0.3093 -0.3093 -0.3093 

4 4.8214 4.7727 4.7735 4.7734 4.7734 

7 -0.2355 -0.2151 -0.2153 -0.2153 -0.2153 

8 7.6789 7.5599 7.5617 7.5617 7.5617 

 
 

3% noise 

2 -0.6984 -0.3077 -0.3093 -0.3093 -0.3093 

4 4.4756 4.7739 4.7734 4.7734 4.7734 

7 -0.7387 -0.2152 -0.2153 -0.2153 -0.2153 

8 6.9753 7.5666 7.5616 7.5617 7.5617 

 
 

5% noise 

2 -0.9410 -0.3066 -0.3093 -0.3093 -0.3093 

4 4.2388 4.7747 4.7734 4.7734 4.7734 

7 -1.0531 -0.2154 -0.2153 -0.2153 -0.2153 

8 6.5269 7.5709 7.5615 7.5617 7.5617 

 
 

7% noise 

2 -1.1650 -0.3056 -0.3094 -0.3093 -0.3093 

4 3.9976 4.7755 4.7734 4.7734 4.7734 

7 -1.3480 -0.2156 -0.2153 -0.2153 -0.2153 

8 6.0982 7.5752 7.5615 7.5617 7.5617 
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Figure 6.12 The extent of the damage, multiple damage, scenario 2 (elements 4 and 8 with 

stiffness loss of 5 and 8%, respectively) 

6.4.2 Discussion on case study 2 

Similarly, in single-damage scenario, according to Figure 6.9, element numbers 1, 4 

and 7 are selected as the suspect damaged elements. The obtained coefficient of α7 

is 7.66 percent as shown in Figure 6.10. The error in damage extent quantified is -4.25 

percent for any noise levels applied. In multiple-damage scenario also based on Figure 

6.11, among the selected suspect elements 2, 4, 7 and 8, the amount of α4 and α8 

are calculated 4.77 and 7.56, respectively, as shown in Figure 6.12. Almost for all noise 

level studied, the amount of error is -4.6 and -5.5 percent for elements 4 and 8, 

respectively. 

It should be mentioned that for selecting the suspect damaged elements, there is no 

limitation neither in the number nor order of elements. It is because of that only the 
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true damaged elements will finally converge to a non-zero coefficient of damage. 

However, selecting many suspected elements at the same time could increase the 

computational cycles, particularly for complex structures, but it does not affect 

identifying the true damaged elements. 

6.5 Case study  : A 2D steel truss structure 

For further investigation, the improved method is applied to two other models, a steel 

truss bridge and a concrete bridge frame as the models of the short- and medium-span 

of bridges framework. These simulations, firstly, examine the efficiency of the 

improved method on this category of bridges in terms of dimension and type of 

structure and element. In addition, the effect of material properties on performance of 

the improved method is observed.  

The next numerical case study is a 2D steel truss bridge with truss element of two 

DoFs at each end consisting of 12 nodes and 21 elements with 20 DoFs as shown in 

Figure 6.13. The material properties and geometric information are as follows. 

Table 6.9 Material properties and geometric information – numerical case study 3 

Material or physical parameter Symbol Amount Unit 

Length L 5.0 m 

Modulus of elasticity E 206 × 109 N/m2 

Cross-sectional area A 0.04 m2 

Mass density 𝜌 7870 kg/m3 
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Figure 6.13 The FEM model of the steel truss model 

Two damage scenarios including single- and multiple-damage are considered being 

occurred in each structure. Scenario one is a single-damage that occurs in element 5 

with a stiffness loss of 3% and scenario two is a multiple-damage with damages in 

elements 16 and 19 with stiffness loss of 5 and 12%, respectively, as encircled in 

Figure 6.13. Modal analysis is performed for structure at a different state of the intact 

and damaged (both single- and multiple-damage scenarios) structure using STRAND7. 

The effect of up to 5 percent noise is also comprised. The simulated mode shapes and 

natural frequencies derived are then used in MATLAB to identify the damage.  

6.5.1 Results of case study   

To apply the improved method and determine the suspected elements, MSECR 

indicator is calculated using Eq. (4.11). Attempt for finding the true damaged elements 

is then performed among the suspected elements using the Eq. (4.44). The effect of 

noise is also included using Eq. (4.61) for two different assumed percentages of 3 and 

5.  
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Locating the single- and multiple-damage are shown in Figures 6.12 and 6.14, 

respectively. The alpha coefficients of single- and multiple-damage quantified with 

the first mode are also shown in Figures 6.13 and 6.15, respectively. The last iteration 

of stage 2 for quantifying the single- and multiple-damage extents are shown in Tables 

6.10 and 6.11, respectively. 

 
 

Figure 6.14 The MSECR of the elements, single damage, scenario 1 (element 5 with 

stiffness loss of 3%) 

Like previous case studies, as seen in the Figure 6.14, for the single damage, suspected 

elements are 5, 6 and 16. The details of iteration and extents of damages are shown in 

Table 6.10 and drawn in Figure 6.15. 
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Table 6.10 Damage extent of selected element at each iteration, single damage, scenario 1 

(element 5 with stiffness loss of 3%) 

Element 

number 

Iteration number 

L 2 3 4 5 

   no noise   

5 3.0262 3.0098 3.0099 3.0099 3.0099 

6 -0.0072 -0.0050 -0.0050 -0.0050 -0.0050 

16 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 

 
 

3% noise 

5 2.5737 3.0106 3.0099 3.0099 3.0099 

6 0.6046 -0.0058 -0.0050 -0.0050 -0.0050 

16 -0.0325 -0.0001 -0.0001 -0.0001 -0.0001 

 
 

5% noise 

5 2.1457 3.0120 3.0099 3.0099 3.0099 

6 0.9508 -0.0064 -0.0050 -0.0050 -0.0050 

16 -0.0683 -0.0001 -0.0001 -0.0001 -0.0001 

 
 

7% noise 

5 1.7319 3.0136 3.0098 3.0099 3.0099 

6 1.1988 -0.0069 -0.0050 -0.0050 -0.0050 

16 -0.1175 -0.0002 -0.0001 -0.0001 -0.0001 

 

 
 

Figure 6.15 The extent of the damage, single damage, scenario 1 (element 5 with stiffness 

loss of 3%) 
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Figure 6.16 The MSECR of the elements, multiple damage, scenario 2 (elements 16 and 19 

with stiffness loss of 5 and 12%, respectively) 

Similar to the previous case study, as seen in Figure 6.16, for the multiple damage, 

suspected elements are 1, 16 and 19. The details of iteration and extent of damages are 

shown in Table 6.11 and drawn in Figure 6.17. 
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Table 6.11 Damage extent of selected element at each iteration, multiple damage, scenario 

2 (elements 16 and 19 with stiffness loss of 5 and 12%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

1 -0.1061 -0.1940 -0.1927 -0.1927 -0.1927 

16 5.0355 4.9593 4.9605 4.9605 4.9605 

19 12.6110 12.4825 12.4835 12.4835 12.4835 

 
 

3% noise 

1 -2.8596 -0.1720 -0.1928 -0.1927 -0.1927 

16 1.9586 4.9977 4.9601 4.9605 4.9605 

19 12.3161 12.4741 12.4837 12.4835 12.4835 

 
 

5% noise 

1 -6.6947 -0.1450 -0.1930 -0.1927 -0.1927 

16 -0.2967 5.0222 4.9598 4.9605 4.9605 

19 11.5311 12.4626 12.4839 12.4835 12.4835 

 
 

7% noise 

1 -11.2071 -0.1188 -0.1930 -0.1927 -0.1927 

16 -2.5106 5.0012 4.9600 4.9605 4.9605 

19 10.4281 12.4450 12.4842 12.4835 12.4835 

 

 

 
 

Figure 6.17 The extent of the damage, multiple damage, scenario 2 (elements 16 and 19 with 

stiffness loss of 5 and 12%, respectively) 
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6.5.2 Discussion on case study   

In the single-damage scenario, shown in Figure 6.14, it is seen that the MSECR crests 

at elements 5 and 16 which represent they are highly suspected elements to damage. 

Element 6 also has probably damaged because of getting the high amount of the 

MSECR. Figure 6.15 shows the amounts of alphas versus element number that 

indicates the amount of all alphas converge to zero except 𝛼5 which converges to a 

non-zero amount around 3%. In other words, it means for this damage scenario, only 

element 5 is a true damaged element. It is evident that since other suspected elements 

6 and 16 have got the alphas with the amount of almost zero, so no damage has 

occurred in those elements. Element 16 has received a high MSECR, but it is not 

damaged at all. It may because of the location of the element at the middle of the 

structure that has received a lot of energy, but it has not actually damaged. 

Similarly, in the multiple-damage scenario, shown in Figure 6.16, the MSECR peaks 

at elements 16 and 19 which represents their highly possibility of damage. Elements 

1, 2, 5, 6 and 9 are also probably damaged elements because of getting the higher 

MSECR. Figure 6.17 shows that the amount of 𝛼16 and 𝛼19 converge to 4.96 and 

12.48%, respectively, while element 1 converges to zero. Likewise, the single-damage 

scenario, it can be concluded that elements 16 and 19 are the true damaged elements, 

however other suspected elements have experienced no damage.  
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6.6 Case study 4: A concrete bridge frame  

The last case study is a concrete bridge frame with frame elements of three DoFs at 

each end consisting of eight nodes and seven elements with 12 DoFs as shown in 

Figure 6.16. The material properties and geometric data are as follows.  

Table 6.12 Material properties and geometric information – numerical case study 4 

Material or physical parameter Symbol Amount Unit 

Length L 6.0 m 

Modulus of elasticity E 30 × 109 N/m2 

Cross-sectional area A 0.75 m2 

Second moment of area I 0.140625 m4 

Mass density 𝜌 2500 kg/m3 

 

 

Figure 6.18 The FEM model of the concrete bridge frame 

Two damage scenarios are assumed to be happened in the frame structure. Scenario 1 

is a single-damage that occurs in a beam with element number of 3 with a stiffness 

loss of 6% and scenario 2 is a multiple-damage with damage in elements 3 and 6 with 

stiffness loss of 6 and 4%, respectively. 
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Modal analysis is done for structure at three different states of the intact, single 

damaged and multiple damaged using STRAND7. The data is polluted by up to 7 

percent noise as well. The simulated mode shapes and natural frequencies derived are 

lastly used to identify the damage via MATLAB. 

6.6.1 Results of case study 4 

Similarly, Eqs. (4.11), (4.44) and (4.61) are used to calculate the MSECR indicator, 

the amounts of alphas and effects of 3, 5 and 7% noise, respectively. Locating the 

single- and multiple-damage are shown in Figures 6.19 and 6.21, respectively. The 

amounts of alphas coefficients of the suspected elements of single- and multiple-

damage quantified with the first mode are also shown in Figures 6.20 and 6.22, 

respectively. The calculated results of the five iterations for scenarios 1-2 are shown 

in Tables 6.13-6.14, respectively. 
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Figure 6.19 The MSECR of the elements, single damage, scenario 1 (element 3 with 

stiffness loss of 6%) 

As seen in the Figure 6.19, for the single damage, suspected elements are 3, 6 and 7. 

The details of iterations and extent of damages are shown in Table 6.13 and Figure 

6.20. Similarly, for the multiple damage scenario, also, the same elements are selected. 

However, the details of iterations and extent of damages are shown in Table 6.14 and 

drawn in Figure 6.22, respectively. 
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Table 6.13 Damage extent of selected element at each iteration, single damage, scenario 1 

(element 3 with stiffness loss of 6%) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

3 5.6643 5.6264 5.6267 5.6267 5.6267 

6 -0.1306 -0.1289 -0.1289 -0.1289 -0.1289 

7 -0.1307 -0.1199 -0.1200 -0.1200 -0.1200 

 
 

3% noise 

3 5.4700 5.6218 5.6267 5.6267 5.6267 

6 -0.6552 -0.1283 -0.1289 -0.1289 -0.1289 

7 -0.4646 -0.1202 -0.1200 -0.1200 -0.1200 

 
 

5% noise 

3 5.3696 5.6192 5.6267 5.6267 5.6267 

6 -0.9470 -0.1279 -0.1289 -0.1289 -0.1289 

7 -0.6543 -0.1204 -0.1200 -0.1200 -0.1200 

 
 

7% noise 

3 5.2911 5.6170 5.6267 5.6267 5.6267 

6 -1.1733 -0.1276 -0.1289 -0.1289 -0.1289 

7 -0.8311 -0.1205 -0.1200 -0.1200 -0.1200 

 

 

 

 

 



 

122 

 

 
 

Figure 6.20 The extent of the damage, single damage, scenario 1 (element 3 with stiffness 

loss of 6%) 

 
 

Figure 6.21 The MSECR of the elements, multiple damage, scenario 2 (elements 3 and 6 

with stiffness loss of 6 and 4%, respectively) 
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Table 6.14 Damage extent of selected element at each iteration, multiple damage, scenario 

2 (elements 3 and 6 with stiffness loss of 6 and 4%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

3 5.692986 5.623254 5.624419 5.6244 5.624401 

6 3.85973 3.792221 3.793276 3.793259 3.79326 

7 -0.12064 -0.0911 -0.09149 -0.09148 -0.09148 

 
 

3% noise 

3 5.039364 5.632981 5.624246 5.624403 5.624401 

6 2.821409 3.803218 3.793118 3.793262 3.79326 

7 -0.92053 -0.09427 -0.09143 -0.09148 -0.09148 

 
 

5% noise 

3 4.663839 5.640296 5.624124 5.624405 5.624401 

6 2.077853 3.810915 3.793005 3.793264 3.79326 

7 -1.26413 -0.0961 -0.09139 -0.09148 -0.09148 

 
 

7% noise 

3 4.364969 5.647602 5.624007 5.624407 5.624401 

6 1.359343 3.818214 3.792896 3.793265 3.79326 

7 -1.44111 -0.09757 -0.09135 -0.09148 -0.09148 

 

 

Figure 6.22 The extent of the damage, multiple damage, scenario 2 (elements 3 and 6 with 

stiffness loss of 6 and 4%, respectively) 
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6.6.2 Discussion on case study 4 

In the single-damage scenario, shown in Figure 6.19, it is seen that the MSECR peaks 

at element 3 which represents it is a highly suspected element to damage. Elements 6 

and 7 also have probably damaged because of getting the high amount of the MSECR. 

Figure 6.20 shows the alpha versus element number that indicates the amount of all 

alphas converge to zero except 𝛼3  which converges to a non-zero amount around 

5.63%. In other words, it means for this damage scenario, only element 3 is a true 

damaged element.  

In multiple-damage scenario also among the suspected elements of 3, 6 and 7 as shown 

in Figure 6.21, the amount of 𝛼3  and 𝛼6  and are calculated as 5.62 and 3.79%, 

respectively, whereas, 𝛼7 converges to zero that are drawn in Figure 6.22. This also 

represents that elements 3 and 6 are the correct damaged elements with reduction 

stiffness of 5.62 and 3.79%, respectively.  

6.7 Quantifying the minimum damage magnitude  

In this section, it is tried to evaluate the improved method for diagnosis of a very small 

damages in the structures. For this purpose, two scenarios are considered for the model 

studied in case study one. Scenario 1 is a single damage at element 7 with the amount 

of 1% and scenario 2 is a multiple damage with the amount of 0.5, 1 and 0.75% at 
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elements 3, 6 and 11, respectively. The computation results of the five iterations for 

scenarios 1-2 are shown in Tables 6.15-6.16, respectively. 

The results shown in the following Tables and Figures perfectly indicate that the 

method is strongly able to detect the small damages assumed and even smaller ones. 

The application can be applied to any other model, and the method is nicely able to 

detect any minor damages in the system. 

 
 

Figure 6.23 The MSECR of the elements, single damage, scenario 1 (element 7 with 

stiffness loss of 1%) 

As seen in Figure 6.23, this scenario is like scenario 1 in case study 1, however, it is 

in a very smaller scale. So, elements 6, 7 and 8 are selected for the next stage to 

quantify their damage extents because of receiving a higher MSECR. The details are 

shown in Table 6.15 and drawn in Figure 6.24, respectively. 
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Table 6.15 Damage extent of selected element at each iteration, single damage, scenario 1 

(element 7 with stiffness loss of 1%) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

6 -0.00175 -0.00185 -0.00185 -0.00185 -0.00185 

7 1.00135 1.00043 1.00043 1.00043 1.00043 

8 -0.00193 -0.00193 -0.00193 -0.00193 -0.00193 

 
 

3% noise 

6 0.04098 0.04086 0.04086 0.04086 0.04086 

7 1.00119 1.00022 1.00022 1.00022 1.00022 

8 0.02671 0.02669 0.02669 0.02669 0.02669 

 
 

5% noise 

6 0.06844 0.06830 0.06830 0.06830 0.06830 

7 0.99035 0.98937 0.98937 0.98937 0.98937 

8 0.03719 0.03716 0.03716 0.03716 0.03716 

 
 

7% noise 

6 0.09425 0.09410 0.09410 0.09410 0.09410 

7 0.97097 0.97001 0.97001 0.97001 0.97001 

8 0.04141 0.04138 0.04138 0.04138 0.04138 
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Figure 6.24 The extent of the damage, single damage, scenario 1 (element 7 with stiffness 

loss of 1%) 

 

 
 

Figure 6.25 The MSECR of the elements, multiple damage, scenario 2 (elements 3, 6 and 11 

with stiffness loss of 0.5, 1 and 0.75%, respectively) 
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As seen in Figure 6.25, elements 3, 6 and 11 are selected for the next stage to quantify 

their damage extents because of receiving a higher MSECR. The details are shown in 

Table 6.16 and drawn in Figure 6.26, respectively. 

Table 6.16 Damage extent of selected element at each iteration, multiple damage, scenario 

2 (elements 3,6 and 11 with stiffness loss of 0.5, 1 and 0.75%, respectively) 

Element 

number 

Iteration number 

l 2 3 4 5 

   no noise   

3 0.50385 0.50283 0.50283 0.50283 0.50283 

6 1.00199 1.00005 1.00005 1.00005 1.00005 

11 0.75014 0.74864 0.74864 0.74864 0.74864 

 
 

3% noise 

3 0.48211 0.48114 0.48114 0.48114 0.48114 

6 1.03134 1.02926 1.02926 1.02926 1.02926 

11 0.84701 0.84525 0.84526 0.84526 0.84526 

 
 

5% noise 

3 0.47023 0.46928 0.46928 0.46928 0.46928 

6 1.04813 1.04596 1.04596 1.04596 1.04596 

11 0.91208 0.91015 0.91015 0.91015 0.91015 

 
 

7% noise 

3 0.46116 0.46021 0.46021 0.46021 0.46021 

6 1.06292 1.06066 1.06066 1.06066 1.06066 

11 0.97662 0.97450 0.97451 0.97451 0.97451 
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Figure 6.26 The extent of the damage, multiple damage, scenario 2 (elements 3,6 and 11 

with stiffness loss of 0.5, 1 and 0.75%, respectively) 

6.7.1 Discussion on quantifying the small damages 

As shown in Figure 6.23, in single-damage scenario, elements 6, 7 and 8 are selected 

as the suspect damaged elements. The calculated coefficient of α7 is 1.0004 percent 

as shown in Figure 6.24. The error in damage extent quantification is 0.04, 0.02, -1.06 

and -3 percent for the conditions of no noise,3, 5 and 7 percent noise level applied, 

respectively. In multiple-damage scenario also based on Figure 6.25, among the 

selected suspected elements 3, 6 and 11, the amount of α3 , α6  and α11  are 

calculated 0.50 1.00 and 0.75, respectively, as shown in Figure 6.26. The amount of 

error is shown in the following Table. 
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Table 6.17 The percentage of error of damage extent for selected elements with different 

noise level, scenario 2 (elements 3,6 and 11 with stiffness loss of 0.5, 1 and 0.75%, 

respectively) 

Element number 
Noise level 

No noise 3% 5% 7% 

3 0.56 -4.0 -6.2 -7.96 

6 0 2.93 4.6 6.07 

11 -0.186 12.7 21 29.93 

 

6.8 Conclusion 

Verification of the improved method in Chapter 4 was performed by applying it to 

several plane structures from simple to multi-part structures with different types of 

element, material properties, dimensions and numbers of DoFs. Single and multiple 

damage scenarios were considered for each structure as well. The mode shapes and 

natural frequencies were also contaminated by 3, 5 and 7 percent noise to simulate the 

environmental noise pollution. The improved method perfectly recognizes the damage 

in two stages. Stage one uses the first five modes to discriminate the probable elements 

that are exposure to damage. Stage two quantifies the extent of the damage among the 

suspected elements recognized from stage one.  

The results indicate that the performance of the improved method is in a good 

agreement with the numerically assumed damages doing few computational cycles. It 

is because of that the improved method, firstly, has been established based on a very 

accurate MSE equation that decreases the error accumulation in computations. 
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Secondly, it employs a more accurate sensitivity matrix that helps decrease 

computations and accelerates convergence.  

Besides, the method shows applicability to detect the damage in different types of 

structures such as beam, frame and truss models. Moreover, it can diagnose the 

damage in structures with a different type of elements such as beam, frame and truss 

elements and even different type of material properties. In this method, the size and 

dimension of the structure is not an issue, whatsoever. Furthermore, the method is 

capable of detecting any single and multiple damage in the structure. Finally, in 

presence of up to 7 percent noise, it quite performs well with almost the same number 

of iterations that normally requires for the case of no noise. Although the method is 

able to correspondingly detect the damage in presence of higher noise percentage, 

however, quantifying the damage in the second stage will require more efforts that 

demands more time and computational cycles which may not be cost effective for 

complex structure.  
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CHAPTER 7 

EXPERIMENTAL VERIFICATIONS 

This chapter illustrates experimental verifications of the improved MSE method 

proposed in Chapter 4. The proposed method is applied to some laboratory models 

with different features such as beam and frame like structures. Section 7.1 concisely 

presents the details of the models studied. Section 7.2 demonstrates the application of 

the proposed method to a simply-support steel beam. Section 7.3 explains the 

applicability of the proposed method to a cantilever beam model. Section 7.4 gives 

details of the damage detection of a three-story steel frame model using the improved 

MSE method. Lastly, section 8.5, concludes the overall results and observations.  

7.1 Introduction 

The laboratory tests were conducted at Banyo Pilot Plant Precinct of QUT and the 

HKPU to examine the performance of the improved method. Each model was tested 

at two cases, healthy and damaged. To collect the data, a sensory system was installed 

at the defined nodes. Each model was excited by an impact hammer as the input force. 

Then, the time history data was measured. Finally, the natural frequencies and mode 
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shapes were extracted from the measured time history data (acceleration) and FRFs 

(Fu and He, 2001). 

Simulation of the damage was performed by either increasing the mass at selected 

elements (specimen 1) or decreasing the cross section of the elements (specimens 2 

and 3). The numerical Eigen parameters of each model at two cases of damaged and 

undamaged are obtained through a MATLAB code or SAP2000. However, 

experimental mode shapes and natural frequencies are derived through DIAMOND 

(Doebling et al., 1997a). Similar to the numerical studies, the performance of the 

improved method for each model is evaluated using a pair of datasets obtained from 

the damaged and undamaged cases of each model through a MATLAB code. To 

accurately acquire the experimental data, each test was repeated several times and 

averaged to overwhelm the effect of errors. However, the data are associated with only 

translational DoFs, since measuring the rotational DoFs is a difficult and expensive 

task. Although having those DoFs could give a better result and help understand the 

real behaviour of the structure.  

In addition to performing each test in two cases, damage and undamaged, the models 

are also numerically modelled, and all analytical characteristics are derived as the 

healthy structures. The results are then compared with the experimental ones. The 

selected models studied are as follows. 
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The first specimen is a simply-support steel beam with the frame element as a basic 

structure that can simply characterize a part of any bridge or structure. The second 

model is a cantilever beam representing a part of any structure. The last sample is a 

three-story steel frame model representing a part of a building or a bridge. In these 

case studies, damages are created in different ways by adding mass or decreasing the 

stiffness of the desired elements. Moreover, different single and multiple damage 

scenarios at different parts of the models are studied. The results of each model are 

compared with its own FEM analysis, as well. Therefore, the improved method is 

comprehensively examined in different aspects.  

7.1.1 Data processing 

To process the data in the experimental case studies, the following equations are 

primarily used for normalization and standardization of the data.  

7.1.1.1 Data normalization 

To make the numerical and experimental data comparable, firstly, there is a need to all 

the time signals be normalized (Nair et al., 2003) as follows. 

 

𝑦𝑠, 𝑙(𝑡) =
𝑦𝑙(𝑡)

√∑ 𝑦𝑗𝑙(𝑡)2𝑛
𝑗=1

 

 

(7.1) 

where 



 

135 

 

S= Sensor location 

l =Direction of measurement 

j = the number of data points of the signal 

7.1.1.2Data standardization 

In the next step, the data should be standardized (Lei et al., 2003, Nair et al., 2003, 

Nair et al., 2006b, Krishnan Nair and Kiremidjian, 2007). 

𝑦𝑠𝑛, 𝑙(𝑡) =
𝑦𝑠, 𝑙(𝑡) − 𝜇

𝜎
 

 

(7.2) 

𝜇 : The mean and 

σ : Standard deviation of ys, l(t) (of normalized data) 

7.2 Case study 1 (Specimen 1): A simply-support steel beam 

The first experimental case study is a simply-support steel beam consisting of eight 

elements and nine nodes with 23 DoFs as shown in Figure 7.1 conducted at the QUT. 

The FEM model of the specimen is shown in Figure 7.2, as well. The material 

properties, geometric data and damage details are as follows.  
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Table 7.1 Material properties and geometric information – experimental case study 1 

Material or physical parameter Symbol Amount Unit 

Length of each element l 0.4125 m 

Total length of the model L 3.30 m 

Modulus of elasticity E 206 × 109 N/m2 

Cross-sectional area (Hollow 

rectangular) 
A 3.1064× 10−4 m2 

Second moment of area I 3.18853 × 10−8 m4 

Mass density 𝜌 7870 kg/m3 

 

 

Figure 7.1 Physical model of the simply-support beam sample 

  

a. Cross section b. Node and element numbering 

Figure 7.2 The FEM model of the simply-support beam 

The current method uses the Eigenvalues and Eigenvectors of the structure in both 

damaged and undamaged cases and the stiffness of the structure in undamaged case. 

From the solution to the governing equation 𝑀𝑥̈ + 𝐾𝑥 = 𝑓(𝑡) as an Eigen problem, 

it is mathematically clear that the effect of decreasing the stiffness of the system on 
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Eigenvalues and Eigenvectors equals adding a mass of the system. Therefore, in this 

study besides studying the effect of the stiffness reduction, an attempt was made to 

experimentally investigate the equivalency of adding mass and decreasing the stiffness 

and compare the experimental results with the numerical studies. Definitely, any 

damage that can be scaled or measured as a fraction reduction of the stiffness or 

increase of mass of the elements of a system can be recognized by the proposed 

method. However, there are many other types of damage that cannot be included in 

this category. Hence those types of damage are out of the scope of this study. 

7.2.1 Damage cases made 

One damage scenario is created in the model. The single damage created at element 7 

by adding one kg mass on the element. The damage and the data measurement for each 

case is separately performed by exciting the structure using an impact hammer at a 

point near the left support. The excitation location is selected in such a way to acquire 

more experimental mode shapes.  

7.2.2 Results of case study 1 

In stage 1, to detect the damage location, the MSCER indicator is calculated and 

shown in Figure 7.3 using experimental data and Eq. (4.11).  For this purpose, the 

first five mode shapes of both damaged and undamaged cases are used i.e. m =5. The 
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suspected elements are picked up for further investigation in stage 2. As a single 

damage, elements 2, 3, 5 and 7 are selected because of having higher MSECR. 

In stage 2, it is attempted to find the alpha coefficients to quantify the damage among 

the suspected elements. The single damage coefficients (α ’s) using the improved 

method, applying Eq. (4.29) are shown in Figure 7.4.  

 

Figure 7.3 Experimental elemental MSECR, single damage scenario (element 7 with added 

mass of 1 kg) 

As, it is seen from Figure 7.3, elements 2, 3, 5 and 7 are the suspected elements. So, 

they are selected, and their damage extent are quantified as Figure 7.4. 
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Figure 7.4 Experimental damage extents, single damage scenario (element 7 with added 

mass of 1 kg) 

To find the equivalent damage caused by adding mass on the structure, the modal 

analysis of the system is performed considering it as a lumped mass added to the mass 

of the element under consideration. The natural frequencies and mode shape of the 

healthy and the damaged structure by adding mass are compared with those of 

damaged structure by loss in the stiffness. By interpolation, it is found that for a single 

damage, effect of adding 1 kg on element 7 equals around 31% loss in the stiffness of 

that element. The natural frequency of the structure for the first ten modes at different 

cases including healthy, damaged by adding mass and damaged by stiffness loss of 25-

35% in element 7 are given in Table 7-2. 
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Table 7.2 Natural frequency of the structure in different cases, single damage (element 7 

with added mass of 1 kg) 

Mode 

no 

Natural frequency (Hz) 

A B C D E F 

1 7.48 7.31 7.38 7.35 7.35 7.32 

2 29.91 28.58 28.95 28.70 28.64 28.41 

3 67.38 65.00 65.26 64.75 64.65 64.21 

4 120.10 117.73 117.97 117.47 117.37 116.94 

5 188.65 185.24 186.46 185.85 185.72 185.17 

6 274.08 268.26 269.61 268.40 268.15 267.06 

7 377.76 372.08 371.13 369.61 369.30 368.01 

8 531.10 525.41 522.23 520.30 519.91 518.32 

9 661.23 651.20 649.77 647.09 646.53 644.20 

10 780.17 786.55 759.25 753.80 752.65 747.78 

              A: Healthy structure 

                    B: Damaged by adding 1 kg mass on element 7 

C: Damaged By stiffness loss of 25% at element 7 

D: Damaged By stiffness loss of 30% at element 7 

E: Damaged By stiffness loss of 31% at element 7 

F: Damaged By stiffness loss of 35% at element 7 

 

To compare the applicability of the improved method, the numerical data obtained 

from loss of stiffness of 31% at both damage scenarios are presented in the following 

figures. 
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Figure 7.5 Numerical elemental MSECR, single damage scenario (elements 7 with added 

mass of 1 kg) 

Figure 7.5 shows the suspected elements are 6, 7 and 8. The alphas are calculated and 

shown in Figure 7.6. It is seen that the only damaged element is element 7 with the 

amount of 32.80%.  
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Figure 7.6 Numerical extent of the damage, single damage scenario (element 7 with added 

mass of 1 kg) 

7.2.  FEM analysis 

FEM analysis is accomplished in order to, firstly, evaluate the correlation between 

mode shapes and natural frequencies from experiment and simulation that is presented 

in section 7.2.4. Secondly, to observe the theoretical equivalent damage in the model 

by adding the masses instead of damaging the cross sectional of the elements. From 

the Table 7.2, it is realized that for the single damage; the damage created by adding 1 

kg mass equals around 31% decrease in local stiffness of the element under 

consideration.  
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Mode 1 

𝑓1= 7.48 Hz 

Mode 2 

𝑓2= 29.91 Hz 

 
 

Mode 3 

𝑓3= 67.38 Hz 

Mode 4 

𝑓4= 120.10 Hz 

  

Mode 5 

𝑓5= 188.65 Hz 

Mode 6 

𝑓6= 274.08 Hz 

Figure 7.7 The first six numerical mode shapes of undamaged - sample 1 

7.2.4 MAC value comparison 

The MAC or modal correlation coefficient is used to determine the level of correlation 

between the mode shapes obtained from the experimental tests and the finite element 
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method (FEM) through the following equation (Farrar et al., 2000, Sinou, 2009, 

Allemang, 2003) 

𝑀𝐴𝐶(ϕ1𝑖, ϕ2𝑖) =
(ϕ1𝑖

𝑇 ϕ2𝑖
𝑇 )2

(ϕ1𝑖
𝑇 ϕ1𝑖)(ϕ2𝑖

𝑇 ϕ2𝑖)
 

 

(7.3) 

where i  is the mode shape 

The MAC values for the first eight mode shapes identified from FEM are compared 

with those mode shapes acquired from experiments to evaluate their correlation. This 

index is shown in Table 7.3 using Eq. (7.3) for the single damage.  

Table 7.3 MAC values for comparison mode shapes identified from FEM compared with 

mode shapes acquired from experiments, single damage, case study 1 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 7/Exp 8/Exp 

1/FEM 1.000 0.005 0.009 0.001 0.021 0.000 0.024 0.000 

2/FEM 0.000 0.991 0.018 0.017 0.000 0.041 0.000 0.022 

3/FEM 0.020 0.002 0.977 0.012 0.029 0.000 0.042 0.001 

4/FEM 0.000 0.035 0.001 0.984 0.004 0.034 0.000 0.027 

5/FEM 0.021 0.000 0.035 0.000 0.992 0.009 0.025 0.001 

6/FEM 0.000 0.032 0.000 0.033 0.002 0.979 0.017 0.027 

7/FEM 0.021 0.000 0.030 0.001 0.039 0.005 0.968 0.002 

8/FEM 0.000 0.018 0.000 0.016 0.000 0.031 0.008 0.996 

 

7.2.5 Discussion on case study 1 

According to Figure 7.3, as a single-damage scenario, element 7 has received the 

highest amount of the MSECR. Therefore, in addition to element 7, elements 2, 3, 5 

and 7 are selected as the suspected damaged elements. The α coefficients calculated 
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in the second stage are shown in Figure 7.4 which indicate that the only true damaged 

element is element 7 with the extent of 39.74% loss in its local stiffness. Whilst the 

extent of the damage in other elements is negative and consequently zero.  

It is seen, the MAC values shown in Table 7.3 demonstrate that the amount of mode 

shapes obtained from analytical solution and experimental studies has a good 

agreement.  

However, there is some errors and false results. Because, the difference between the 

assumed and the actual boundary conditions of the model, effect of a high level of the 

noise, dis-connectivity of the mass added to the structure, and difference between the 

assumed and actual material properties of the model may contribute to error.  

7.  Case study 2 (Specimen 2): A cantilever beam model 

The second experimental model is a cantilever steel beam consisting of eight elements 

and nine nodes as shown in Figure 7.8. The FEM model of the specimen is shown in 

Figure 7.9, also. The material properties, geometric data and damage details are as 

follows. 
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Table 7.4 Material properties and geometric information – experimental case study 2 

Material or physical parameter Symbol Amount Unit 

Length of each element l 0.10 m 

Total length of the model L 0.80 m 

Modulus of elasticity E 207 × 109 N/m2 

Cross-sectional area A 2.500 × 10−4 m2 

Second moment of area I 5.208 × 10−10 m4 

Mass density 𝜌 7870 kg/m3 

 

 

  
a) Before installing the sensors b) After installing the sensors 

Figure 7.8 The cantilever beam model 

 

Figure 7.9 The FEM model of the cantilever beam model (dimensions are in mm) 
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7. .1 Damage case created  

The beam is divided into eight equal elements as shown in Figure 7.10. The only 

damage is introduced at the first element by reduction of cross section width from 50 

mm to 30 mm as shown in Figure 7.10.  Since the ratio of width of the cross section 

after damage to before damage is 3/5=0.60, therefore, the ratio of reduction in the area 

and second moment of inertia are also 0.60. As stiffness is directly related to the area 

and the second moment inertia of the cross section, so the remaining stiffness is 0.60 

which represents 0.40 loss. Practically, inducing a larger damage in the model is better 

to decrease the error in measurement of the geometry and overcome the noise pollution 

of the lower damage percentage in the environment. Therefore, in this case study, 

damage of 40% is applied to the model. 

  

(a) Cantilever beam (b) Cross section width   

Figure 7.10 The cantilever beam model (dimensions are in mm) 

7. .2 Results of case study 2 

In stage 1, to detect the damage locations, the MSCER parameter is calculated and 

shown in Figure 7.11 using Eq. (4.11).  For this purpose, damage extent of 40% is 
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applied to the model and shown in Figure 7.12. The suspected elements are selected 

for further investigation in stage 2. In stage 2, it is tried to find the alpha coefficients 

to quantify the damage among the suspected elements of 1, 2 and 3 as the elements 

with the higher amounts of MSECR. The single damage coefficients (α’s) using the 

improved method for different percentages, using Eq. (4.29) are shown in Figure 7.16.  

 

Figure 7.11 Numerical MSECR of the elements, single damage scenario (element 1 with 

stiffness loss of 40%) 
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Figure 7.12 Numerical extent of the damage, single damage scenario (element 1 with 

stiffness loss of 40%) 

To compare with the experimental observation, the results of the experimental single 

damage with stiffness loss of 40% in element 1 are shown in Figure 7.13. It is seen, 

elements 1 and 2 are the suspected elements. Figure 7.14 shows the alphas for 

suspected elements. 
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Figure 7.13 Experimental MSECR of the elements, single damage scenario (element 1 with 

stiffness loss of 40%) 

 

 

Figure 7.14 Experimental extents of the damage, single damage scenario (element 1 with 

stiffness loss of 40%) 
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7. .  FEM analysis 

Similar to the case study 1, the FEM analysis is performed to assess the correlation 

between mode shapes and natural frequencies from experimental test and numerical 

simulation that is shown in section 7.3.4. It is seen that the FEM analysis of the 

damaged model gives a good agreement with experimental results. For more 

information, the first six numerical mode shapes of undamaged model are shown in 

Figure 7.15. 
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Mode 1 

𝑓1= 6.49 Hz 

Mode 2 

𝑓2= 40.65 Hz 

  

Mode 3 

𝑓3= 113.88 Hz 

Mode 4 

𝑓4= 223.52 Hz 

  
Mode 5 

𝑓5= 370.80 Hz 

Mode 6 

𝑓6= 557.30 Hz 

Figure 7.15 The first six numerical mode shapes of undamaged sample 1 

7. .4 MAC value comparison 

The comparison of the MAC values of the first eight mode shapes identified from 

FEM are shown in Table 7.5.  
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Table 7.5 MAC values for comparison mode shapes identified from FEM compared with 

mode shapes acquired from experiments, single damage, case study 2 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 7/Exp 8/Exp 

1/FEM 0.999 0.370 0.078 0.107 0.056 0.061 0.061 0.057 

2/FEM 0.351 1.000 0.288 0.097 0.140 0.094 0.097 0.125 

3/FEM 0.076 0.284 0.996 0.216 0.086 0.131 0.098 0.136 

4/FEM 0.115 0.103 0.174 0.986 0.183 0.075 0.148 0.084 

5/FEM 0.049 0.154 0.096 0.104 0.990 0.184 0.046 0.226 

6/FEM 0.067 0.079 0.135 0.084 0.101 0.992 0.261 0.013 

7/FEM 0.045 0.114 0.069 0.138 0.057 0.134 0.974 0.429 

8/FEM 0.070 0.101 0.192 0.054 0.236 0.028 0.225 0.925 

 

7. .5 Discussion on case study 2 

In this case study only one single damage scenario is conducted. As shown in Figure 

7.13, element 1 has received the highest amount of the MSECR. Other elements have 

received a lesser amount of the MSECR. So, element 1 is one of the suspected 

elements with a strong possibility of damage. The damage extents calculated in stage 

2, shown in Figure 7.14, state that element 1 is really damaged although other elements 

also show some damage extents.  

Besides, in is also seen, the method recognizes the damage using numerical mode 

shapes in Figures 7.11 and 7.12. It is seen that there is an agreement between analytical 

solution and experimental damage implemented in the model. Another reason for this 

is the MAC values which also shows a good agreement between analytic and 

experimental mode shapes as has indicated in Table 7.2.  
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However, there are some errors and false results. For this case, the similar reasons 

stated at section 7.2.5 are possible. In addition, creating the exact damage in the model 

is difficult and even may increase the modelling error. For the last model studied, 

limited sensors to simultaneously measure the required DoFs, and therefore data 

processing, also impacts the results.  

7.4 Case study   (Specimen  ): A three-story steel frame model 

The last experimental case study is a three-story steel frame consisting of 15 elements 

and 14 nodes with 36 DoFs as shown in Figure 7.16 conducted at HKPU. The FEM 

model of the specimen is also shown in Figure 7.17. The material properties, geometric 

data and damage details are as follows.  

Table 7.6 Material properties and geometric information – experimental case study 3 

Material or physical parameter Symbol Amount Unit 

Beam cross-sectional area 𝐴𝑏 1.476 × 10−3 m2 

Column cross-sectional area 𝐴𝑐 1.449 × 10−4 m2 

Beam second moment of area 𝐼𝑏 1.074 × 10−7 m4 

Column second moment of area 𝐼𝑐 1.029 × 10−10 m4 

Modulus of elasticity E 207 × 109 N/m2 

Mass density 𝜌 7870 kg/m3 
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a) Top view b) Side view 

Figure 7.16 Physical model of the three-story steel frame  

 

Figure 7.17 FEM model of the three-story steel frame model 
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Several tests are performed at different cases of entire and damaged model. The 

discrete time data is collected via accelerometers using an impact hammer. The details 

of the sensor’s sensitivity are tabulated in Table 7.7. 

Table 7.7 Sensitivity of accelerometer sensors 

Channel no. 1 2 3 4 5 

Sensitivity 

(pc/ms-2) 
3.15 3.16 12.09 9.99 3.22 

Channel no. 6 7 8 Hammer  

Sensitivity 

(pc/ms-2) 
3.17 11.49 11.28 4.19  

 

The model is excited using an impact hammer. Each dataset includes accelerations at 

nine channels (including force) during 90 sec with the frequency of 1000 Hz. A typical 

vibration from sensor 4 (data set 155), case 1 is shown in Figure 7.18 considering only 

the first 10 seconds.  

 

Figure 7.18 Typical time series data acquired from Channel 4, case1 
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There were only eight sensors available, which are very limited to measure 24 DOFs. 

Therefore, several tests were done with different locations of the eight sensors and 

then the data were combined. One of the typical sensor locations is shown in Figure 

7.19. 

  
(a) Set 1 (b) Set 2 

Figure 7.19 Typical sensor placement 

7.4.1 Damage cases created 

Three damage scenarios were created in the model as follows. 

a) Case 1: Single damage at left column in the third floor (note, the column is also 

considered as two elements.) 

b) Case 2: Multiple damage at both columns in the third floor (note, this column is 

also considered as two elements.) 
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c) Case 3: Multiple damage at left column in the third floor and a beam in the second 

floor 

To get more accuracy, each column is divided into two elements, therefore, the amount 

of damage implemented at each case is as follows. 

a) Case 1: 20% damage in any of element 5 and 6. The damage was created by 

decreasing the width of the beam by 20%, 10 percent from each side.  

b) Case 1:  20% damage in any of element 5, 6, 11 and 12. The damage was created 

like case 1.  

c) Case 3: 20% damage in any of element 5 and 6 and 99% in element 14. The damage 

at elements 5 and 6 was created like case 1 and 2 and the damage in the beam was 

conducted by adding a beamlike mass as shown in Figure 7.20. 

7.4.2 Results of case study   

In stage 1, for experimental studies, to detect the single and multiple damage locations, 

the MSCER indicator is calculated and shown in Figures 7.20, 7.26 and 7.31, 

respectively, using Eq. (4.11).  For this purpose, the first five mode shapes of both 

damaged and undamaged cases are used i.e. m =5. The suspected elements are selected 

for further investigation in stage 2. In stage 2, it is tried to find the alpha coefficients 
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to quantify the damage among the suspected elements. The single and multiple damage 

coefficients (α ’s) using the improved method, applying Eq. (4.29) are shown in 

Figures 7.21-22, 7.27-28 and 7.32, respectively. For each case, the numerical study 

comes after the experimental as follows. 

 

 

Figure 7.20 The Experimental elemental MSECR, Multiple damage, Case 1 (elements 5 and 

6 with stiffness loss of 20% in each) 

From Figure 7.20, elements 3, 4, 6, 10, 13, 14 and 15 have received a higher amount 

of the MSECR. These are selected as the suspected elements. However, it is better to 

select a smaller set of elements at each iteration step in order to get more accuracy. 

Normally, selecting a maximum 25% of the total number of elements as a set gives a 

reasonable result. So, here, the suspected element is divided by two sets. Set 1, 

elements 3, 4, 6, 9 and 10 and set 2 elements 13, 14 and 16. The stage two (quantifying 

the damage) separately applies to each set as shown in Figures 7.21 and 7.22. It is seen, 

some elements receive a negative amount of the damage that means there is no damage.  
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Figure 7.21 Experimental damage extent, Multiple damage, Case 1, Set 1 (elements 5 and 6 

with stiffness loss of 20% in each) 

 

Figure 7.22 Experimental damage extent, Multiple damage, Case 1, Set 2 (elements 5 and 6 

with stiffness loss of 20% in each) 

Numerical simulation is also conducted for each case and instantly presented after that 

experimental case. However, the procedure of damage detection for numerical and 

experimental of each case is same. 
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Figure 7.23 Numerical elemental MSECR, Multiple damage, Case 1 (elements 5 and 6 with 

stiffness loss of 20% in each) 

 

 

Figure 7.24 Numerical damage extent, Multiple damage, Case 1, Set 1 (elements 5 and 6 

with stiffness loss of 20% in each) 
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Figure 7.25 Numerical damage extent, Multiple damage, Case 1, Set 2 (elements 5 and 6 

with stiffness loss of 20% in each) 

For the second case, since there are many suspected candidates for damage, again the 

elements are divided into two set to get the better results.  

 

Figure 7.26 Experimental elemental MSECR, Multiple damage, Case 2 (elements 5, 6, 11 

and 12 with stiffness loss of 20% in each) 
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Figure 7.27 Experimental damage extent, Multiple damage, Case 2, Set 1 (elements 5, 6, 11 

and 12 with stiffness loss of 20% in each) 

 

Figure 7.28 Experimental damage extent, Multiple damage, Case 2, Set 1 (elements 5, 6, 

11 and 12 with stiffness loss of 20% in each) 
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Figure 7.29 Numerical elemental MSECR, Multiple damage, Case 2 (elements 5, 6, 11 and 

12 with stiffness loss of 20% in each) 

 

 

 

 

Figure 7.30 Numerical damage extent, Multiple damage, Case 2 (elements 5, 6, 11 and 12 

with stiffness loss of 20% in each) 
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Figure 7.31 Experimental elemental MSECR, Multiple damage, Case 3 (elements 5, 6 and 

14 with stiffness loss of 20, 20 and 99%, respectively) 

 

 

Figure 7.32 Experimental damage extent, Multiple damage, Case 3 (elements 5, 6 and 14 

with stiffness loss of 20, 20 and 99%, respectively) 
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Figure 7.33 Numerical elemental MSECR, Multiple damage, Case 3 (elements 5, 6 and 14 

with stiffness loss of 20, 20 and 99%, respectively) 

 

 

 

Figure 7.34 Numerical damage extent, Multiple damage, Case 3 (elements 5, 6 and 14 with 

stiffness loss of 20, 20 and 99%, respectively) 
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7.4.  FEM analysis 

Similarly, the FEM analysis is performed using SAP2000 and MATLAB to assess the 

correlation between mode shapes and natural frequencies from experiment and 

simulation that is shown in section 7.4.4. Also, FEM analysis of the damaged model 

shows a good agreement with experimental results. For more information, the first six 

numerical mode shapes of undamaged model are shown in Figure 7.35. 
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Mode 1 Mode 2 Mode 3 

𝑓1= 4.47 Hz 𝑓2= 11.86 Hz 𝑓3= 17.47 Hz 

   

Mode 4 Mode 5 Mode 6 

𝑓4= 154.15 Hz 𝑓5= 158.05 Hz 𝑓6= 173.63 Hz 

Figure 7.35 The first six numerical mode shapes of undamaged sample 3 
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7.4.4 MAC value comparison 

The comparison of the MAC values of the first eight mode shapes identified from 

FEM for three cases of single and multiple damages are shown in Tables 7.8-7.10, 

respectively.  

 

Table 7.8 MAC values for comparison mode shapes identified from FEM compared with 

mode shapes acquired from experiments, single damage, case 1, case study 3 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 7/Exp 8/Exp 

1/FEM 0.998 0.001 0.000 0.001 0.014 0.000 0.010 0.000 

2/FEM 0.005 0.995 0.000 0.000 0.002 0.000 0.040 0.000 

3/FEM 0.000 0.014 0.999 0.000 0.015 0.000 0.004 0.000 

4/FEM 0.000 0.000 0.000 0.989 0.000 0.000 0.000 0.000 

5/FEM 0.010 0.002 0.020 0.010 0.999 0.000 0.000 0.000 

6/FEM 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

7/FEM 0.011 0.042 0.003 0.000 0.000 0.000 1.000 0.000 

8/FEM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

  

 

Table 7.9 MAC values for comparison mode shapes identified from FEM compared with 

mode shapes acquired from experiments, multiple damage, case 2, case study 3 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 7/Exp 8/Exp 

1/FEM 0.992 0.000 0.001 0.001 0.000 0.002 0.024 0.000 

2/FEM 0.013 0.983 0.001 0.000 0.000 0.005 0.004 0.001 

3/FEM 0.002 0.033 0.996 0.000 0.000 0.001 0.017 0.000 

4/FEM 0.000 0.000 0.000 0.953 0.020 0.000 0.022 0.000 

5/FEM 0.010 0.001 0.021 0.045 0.996 0.003 0.055 0.001 

6/FEM 0.000 0.000 0.000 0.000 0.000 0.954 0.061 0.001 

7/FEM 0.014 0.042 0.002 0.001 0.002 0.142 0.967 0.006 

8/FEM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.981 
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 Table 7.10 MAC values for comparison mode shapes identified from FEM compared 

with mode shapes acquired from experiments, multiple damage, case 3, case study 3 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 7/Exp 8/Exp 

1/FEM 0.966 0.001 0.000 0.000 0.000 0.001 0.000 0.030 

2/FEM 0.000 0.974 0.024 0.116 0.369 0.000 0.103 0.077 

3/FEM 0.000 0.022 0.997 0.068 0.031 0.000 0.468 0.005 

4/FEM 0.000 0.113 0.030 0.998 0.383 0.000 0.000 0.008 

5/FEM 0.000 0.346 0.021 0.384 0.985 0.015 0.000 0.027 

6/FEM 0.004 0.001 0.000 0.000 0.000 0.998 0.000 0.029 

7/FEM 0.000 0.105 0.469 0.000 0.000 0.000 0.980 0.000 

8/FEM 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.977 

 

7.4.5 Discussion on case study   

In case 1, Figure 7.20 shows a high possibility for damage at elements 3, 4, 6, 10, 13, 

14 and 15. After performing stage two, results of quantifying damage from candidate 

elements are obtained. Elements 4 and 6 are recognized as damaged elements as shown 

in Figure 7.21. Actually, element 4 is a false damage element and has not been 

damaged. While element 6 which is a truly damaged element and element 5 form one 

member (a column) of the frame model on the third floor. 

In case 2, as a multiple damage scenario shown in Figure 7.26, the suspected elements 

to damage are 5, 6, 11, 12, 13, 14 and 15. Proceeding to the second stage shown in 

Figures 7.27-7.28, clarifies that the actual damaged elements are elements 6, 11 and 

12.  Each pair of elements 5 and 6 and elements 11 and 12 form a column on third 

floor of the model.  
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The last case is also a multiple damage scenario (damage in one column and one beam) 

shown in Figure 7.31. The candidate elements to damage are 5, 6, 10, 11 and 14. 

Performing the second stage shown in Figure 7.32 leads to identifying the true 

damaged elements 5, 11 and 14 although their damage extents are not very accurate. 

Also, there is a false in elements 4 and 10. As it is observed, in all cases, the elements 

and damages detected mostly agree with the experimental damages created in the 

models or analytical solutions. It is also seen, in all cases, the numerical verification 

mostly agrees with experimental studies.  

The correlation between modes of simulated and experimental are shown in Tables 

7.10-7.12 which indicates the good agreement and coincidence.  

However, for the error and false results occurred, the similar reasons stated at sections 

7.2.5 and 7.3.5 are likely. Besides, limited sensors to simultaneously measure the 

required DoFs, and therefore data processing, also impact the results.    

7.5 Conclusion 

In this chapter, verification of the improved method proposed in Chapter 4 was 

performed by applying to some laboratory models. Different damage scenario 

including single and multiple damage scenarios were considered and studied.  
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The results show that the improved method performs in a good agreement between the 

implemented damages in the models by reducing the cross section or adding mass and 

those of from closed form solution. Furthermore, the MAC values of all models 

studied in this Chapter are also a good witness of well data measurement and efficiency 

of the improved method, too. 

However, for the experimental cases studied in this Chapter, there are some error and 

false results. Generally, the issue can be originated from some sources including, effect 

of a high level of the noise, difference between the physical model of the structure and 

its FEM model, incomplete and limited measurements, data processing and unknown 

parameters and uncertainties. Moreover, for case 1, the actual boundary conditions of 

the model, dis-connectivity of the mass added to the structure, and difference between 

the assumed and actual material properties of the model contributes to error. For case 

2, the similar reasons are possible. In addition, creating the exact amount of the 

damage in the model is difficult and even may increase the modelling error. For the 

last model studied, limited sensors to simultaneously measure the required DoFs, and 

therefore data processing, also impacts the results.  
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CHAPTER 8 

APPLICATION OF THE IMPROVED MODAL STRAIN 

ENERGY METHOD TO LOS ALAMOS NATIONAL 

LABORATORY MODEL AND A REAL BRIDGE  

This chapter outlines the application of the improved MSE-based damage detection 

method in reality. The Los Alamos National Laboratory (LANL) 4-DOF three-story 

structure is studied as a real-world structure and I-40 Bridge is examined as a real 

bridge using the available data.  Section 8.1 is allocated to application of the 

improved method to the LANL bookshelf. The model is a complete model of 3D steel 

structure with several damage cases. Subsequently, section 8.2 demonstrates the 

application of the improved MSE method to the real bridge of the I-40 in the US using 

the available data from Los Alamos National Laboratory.  The details of application, 

comparison of the results with the FEM analysis and MAC values are also described. 

Lastly, concluding remarks are presented in section 8.3.  
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8.1 Case study 1: LANL 4-DOF Three-story Model   

The LANL 4-DOF three-story structure is shown in Figure 8.14. The structure consists 

of aluminium columns and plates gathered using bolted joints with a rigid Base. There 

are four columns at each floor located at the corners connected to the aluminium plates. 

The dimension of column and aluminium plates are (17.7x2.5x0.6 cm) and 

(30.5x30.5x2.5 cm), respectively. Moreover, a centre column (15.0x2.5x2.5 cm) is 

suspended from the top floor, which is used to induce nonlinear behaviour, shown in 

Figure 8.14 (b). The structure can only move in the x-direction using the rails, as 

shown in Figure 8.14 (a). The dimension of the structure from different angles are also 

shown in Figure 8.15. The structure can be modelled as Figure 8.16 as a four-DOF 

structure.  
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    (a) Three-story frame structure 
 (b) The adjustable bumper and 

suspended column 

Figure 8.1 The LANL 4-DOF three-story structure 

 

Figure 8.2 Basic dimensions of the LANL three-story structure 
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Figure 8.3 The FEM model of the LANL three-story structure 

8.1.1 Results of different damage states 

Eight damage states including states 1, 2, 17, 18, 21, 22, 23 and 24 as shown in Table 

8-1 are considered for evaluating the performance of the improved method. For each 

damage state, state 13 which is the baseline condition is considered as undamaged 

states. As stated in section 4.3.5 of Chapter 4, the required mode shape for the 

improved method is at least the first five mode shapes. However, the case study 

structure has only four DOFs which is less than even the required mode shapes for the 

first stage of the improved method, which is damage locating. Although, more than 

five mode shapes are required to accurately quantify the damage extents. Therefore, it 

is predicted that the improved method does not properly detect or especially quantify 

the damages. The experimental Eigen parameters of the model at each state of 

damaged and undamaged are derived through DIAMOND. The results of two stages 
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of each states are shown in the following Figures, respectively, using Eqs. (4.10), (4.11) 

and (4.44) and a MATLAB code. Since the number of elements is limited to four, in 

all studied states, all elements are selected in both stages of the improved method. 

Table 8.1 List of damage states 

No State Condition of damage 

1 1 Mass on the 1st floor 

2 2 Mass at the base 

3 13 Baseline condition 

4 17 Column: 1BD – 50% stiffness reduction 

5 18 Column: 1AD + 1BD – 50% stiffness reduction 

6 21 Column: 3BD – 50% stiffness reduction 

7 22 Column: 3AD + 3BD – 50% stiffness reduction 

8 23 Column: 2AD + 2BD – 50% stiffness reduction 

9 24 Column: 2BD – 50% stiffness reduction 

 

 

  
                (a) MSECR index              (b) Damage extent 

Figure 8.4 Damage state 1, mass on the 1st floor 
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                (a) MSECR index              (b) Damage extent 

Figure 8.5 Damage state 2, mass at the base 

  
(a) MSECR index (b) Damage extent 

Figure 8.6 Damage state 17, Column: 1BD – 50% stiffness reduction 

 

  
(a) MSECR index (b) Damage extent 

Figure 8.7 Damage state 18, Column: 1AD + 1BD – 50% stiffness reduction 

 

 

0

0.2

0.4

0.6

1 2 3 4

M
S

E
C

R

Element number

S2

1 2 3 4

S2 5.59 -22.21 -99.98 2.24

-100
-75
-50
-25

0
25
50
75

100

D
am

ag
e 

%

S2

0

0.2

0.4

0.6

1 2 3 4

M
S

E
C

R

Element number

S17

1 2 3 4

S17 6.96 6.49 -99.86 11.29

-100
-75
-50
-25

0
25
50
75

100

D
am

ag
e 

%

S17

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

M
S

E
C

R

Element number

S18

1 2 3 4

S18 29.27 6.57 -33.91 -26.47

-100
-75
-50
-25

0
25
50
75

100

D
am

ag
e 

%

S18



 

179 

 

  
                (a) MSECR index              (b) Damage extent 

Figure 8.8 Damage state 21, Column: 3BD – 50% stiffness reduction 

 

 

  
                (a) MSECR index              (b) Damage extent 

Figure 8.9 Damage state 22, Column: 3AD + 3BD – 50% stiffness reduction 

 

  
                (a) MSECR index              (b) Damage extent 

Figure 8.10 Damage state 23, Column: 2AD + 2BD – 50% stiffness reduction 
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                (a) MSECR index              (b) Damage extent 

Figure 8.11 Damage state 24, Column: 2BD – 50% stiffness reduction 

8.1.2 Discussion 

Adding any mass at level 1 is associated with damage at any of the columns at lover 

level, the base level. In other words. According to Figure 8.3, damage state 1 is 

associated with damage at element 2. Figure 8.4(b) shows this with damage extent of 

13.9 percent at element 2. However, there is also false damage of 44.31 percent at 

element 1. Similarly, when the mass is added to the base floor, it equals to occurring 

the damage at element 1 in Figure 8.3. Figure 8.5(b) shows the damage of 5.59 percent 

at element 1. However, there is a 2.24 percent damage at element 4 also that can be 

ignored.  

According to Figure 8.6, 6.49 percent damage occurred at element 2 is true. However, 

its actual amount is 12.5 percent. Damages at elements 1 and 4 are also false. In Figure 

8.7, damage at element 2 is 6.57 percent that is true and should be greater, 25 percent. 

Damage at element 1 is false. 
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In Figure 8.8, damage at element 2 is true. However, the actual damage is 12.5 percent. 

Damage at element 3 is also false. Moreover, Figure 8.9 shows 6.57 percent damage 

at element 4, which is a true damage. Damage at other elements is zero. However, the 

actual damage at element 4 is 12.5 percent. 

In Figure 8.10, elements 3 and 4 have damaged with the amount of 20.62 and 43.67 

percent, respectively. However, the true damaged element is element 3 with actual 

damage of 12.5 percent. In the last figure, element 3 has shown damaged with the 

extent of 19.38 percent, which is the only true damaged element. However, its actual 

amount of damage is 25 percent. The damage at other elements is also zero.  

All in all, in the most states, although the improved method can recognize the location 

and approximate extent of the damage, there are some false damages, as well. As it 

was previously mentioned, it is because of that the structure does not provide the 

minimum mode number and natural frequency required for the proposed method. 

Since the structure has only 4 DOFs, consequently, the maximum number of mode 

shapes and natural frequencies is 4 which is less than the required number for the 

improved method that is at least five for stage 1 and more for stage 2 to quantify the 

damage. Anyhow, the improved method in most states has almost recognized the 

damages in terms of locating and quantifying.  
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8.2 Case study 2: I-40 Bridge, New Mexico, USA  

The damage identification on the I-40 Bridge over the Rio Grande River in 

Albuquerque, the U.S. state of New Mexico shown in Figure 8.12, has been studied 

by many researchers (Alvin, 1995, James et al., 1994, Mayes, 1994, Zimmerman, 1995) 

using the experimental data sets provided by Farrar et al. (1994). The data sets are still 

one of the most useful data of a real bridge in vibration-based damage identification. 

The data was acquired from a series of modal tests of a section of a highway bridge. 

Before destruction in 1993, a series of modal tests has been performed on this bridge 

after closing to traffic. Later on, a comprehensive study was performed by Farrar et al. 

(1999) on the Alamosa Canyon and I-40 Bridge with respect to examine the statistical 

significance of the damage identification results.  

 

Figure 8.12 I-40 Bridges over the Rio Grande River in Albuquerque, New Mexico (Farrar et 

al., 1999) 

https://en.wikipedia.org/wiki/New_Mexico
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The concrete deck of bridge was approximately 13.3 m wide and 17.8 cm thick, 

supported by two steel plate girders, each 3.05 m high, and three steel stringers. For 

performing the modal tests, a section of the bridge including three continuous spans 

with the total length of about 130 m was considered and instrumented as Figures 8.13 

and 8.14. 

 

Figure 8.13 Typical cross section geometry of the bridge (Farrar et al., 1994) 

 

Figure 8.14 Bridge substructure (Farrar, 1994) 
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8.2.1 Instrumentation 

The instrumentation consisted of 13 accelerometers installed on each of the two main 

plate girders along the length of the three spans, for measuring the total of 26 responses 

as shown in Figure 8.15. A 9863 kg reaction mass supported by three air springs moved 

by a 9.79 kN hydraulic actuator provided the excitation system. The actuator system 

was located on the deck right over one of the plate girders in the middle of the span 

closest to the abutment (Farrar et al., 1999) as detailed in (Farrar et al., 1994). 

 

 (a) Accelerometer locations 

 

(b) Node and element numbering 

Figure 8.15 Instrumentation and DoF numbering 
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8.2.2 Damage cases created 

The created damage was intended to simulate fatigue cracking that has been observed 

in plate-girder bridges. The damage location was at near node 7 in Figure 8.15.a or at 

DoF number 20 either in the modal data sets or in Figure 8.15.b. Four damage cases 

were created by making various torch cuts in the web and flange of the girder, as shown 

in Figure 8.16.  

• Case 1, cutting the web from mid-height toward the bottom of the section with a 

61-cm-long (2 ft) and 10-mm-wide (3/8-in.) nominated as C1.  

• Case 2, continuing this cut to the bottom of the web to create the second case of 

damage nominated as C2. 

• Case 3, cutting the flange also halfway in from either side directly below the cut 

in the web nominated as C3. 

• Case 4, the flange was completely cut through the whole flange nominated as C4.  

In this way, only the top flange and the top 1.22 m of the web were left to carry the 

load at this location. 
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 (a) (b) (c) (d) 

Figure 8.16 The four damage cases created in the I-40 plate girder 

8.2.  Mode shape comparison  

To obtain the numerical Eigen parameters of the bridge, the mass and stiffness matrices 

given are used. The first six experimental mode shapes and natural frequencies are 

also given. Therefore, the first six numerical and experimental mode shapes of the 

bridge at undamaged case are primarily compared in the following Figures. 
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Figure 8.17 Comparison of numerical and experimental mode shape - Mode 1 

 

 

Figure 8.18 Comparison of numerical and experimental mode shape – Mode 2 
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Figure 8.19 Comparison of numerical and experimental mode shape – Mode 3 

 

 

Figure 8.20 Comparison of numerical and experimental mode shape – Mode 4 
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Figure 8.21 Comparison of numerical and experimental mode shape – Mode 5 

 

 

 

Figure 8.22 Comparison of numerical and experimental mode shape – Mode 6 

As it is seen from the Figures 8.17-8.22, there is not much differences between 

numerical and experimental mode shapes. Even though, as the final assurance check, 

for each damage scenario, the MAC values will also be calculated and checked using 

numerical and experimental datasets of those damage cases. 
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8.2.4 Application of the improved MSE method   

The proposed methodology of the improved MSE method is applied to the available 

data of the I-40 Bridge, as a real bridge, in different damage cases introduced in section 

8.2.2. In the first stage, in order to identify the location of the damage, the first five 

mode shapes of damaged and undamaged of each damage case are used applying Eq. 

(4.11) using a MATLAB code. The results of cases 1-4 are shown in Figures 8.23, 8.25, 

8.27 and 8.30, respectively.  

In these figures, the MSECR index is versus the 12 elements of the bridge section 

under consideration. However, the damage has occurred in a node (node 20). Therefore, 

in the second stage, Eq. (4.44) is used for quantifying the damage using the mode 

expansion method (Shi et al., 1995). For this purpose, the number of nodes to be 

examined are 13, which are the total number of nodes under consideration and 

measurement stated in section 8.2.1. However, to decrease the computational cycles, 

in each case, some suspected elements (and finally nodes) are selected. The results of 

the second stage for cases 1-4 are also shown in Figures 8.24, 8.26, 8.28-29 and 8.31, 

respectively.  
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8.2.5 Results and discussion 

8.2.5.1 Damage case 1: 

The MSECR index versus elements for the case 1 using the first five modes and Eq. 

(4.11) are shown in Figure 8.23. The suspected elements to damage are elements 16, 

19, 20 and 21. However, in stage 2, quantifying, the damage is performed using Eq. 

(4.44). The results shown in Figure 8.24 indicate that the element 19 has damaged with 

the extent of 3.43% which is a true element. Elements 16 and 20 have negative or zero 

and the last element has received less than 1% damage.   

 

Figure 8.23 MSECR vs element number of I-40 Bridge, Case 1 
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Figure 8.24 Damage extent vs element number of I-40 Bridge, Case 1 

8.2.5.2 Damage case 2 

Similarly, the MSECR index versus elements for the case 2 using the first five modes 

and Eq. (4.11) are shown in Figure 8.25. The suspected elements to damage are 

elements 18, 19, 20 and 21. In the second stage, to quantify the damage, element 20 

has got 10.59% damage which is false and other elements have got negative or zero 

damage. It means, in this case, the proposed method does not identify the extent of the 

damage, however, the location (element 19) is among the suspected elements.  
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Figure 8.25 MSECR vs element number of I-40 Bridge, Case 2 

 

 

Figure 8.26 Damage extent vs element number of I-40 Bridge, Case 2 
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in Figures 8.28-8.29. The results show that the damage is occurred at element 19 with 

amount of 3.79 percent which is true and also at element 23 with amount of 3.79 

percent which is false. Other elements show negative damage or zero.  It means the 

proposed method shows the proper results at this case also. 

 

Figure 8.27 MSECR vs element number of I-40 Bridge, Case 3 

 

 

Figure 8.28 Damage extent vs element number of I-40 Bridge, Case 3, set 1 
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Figure 8.29 Damage extent vs element number of I-40 Bridge, Case 3, set 2 

8.2.5.4 Damage case 4 

For the last case, the MSECR index versus elements using the first five modes and Eq. 

(4.11) are shown in Figure 8.30. The suspected elements to damage are elements 17, 

18, 19 and 20. In the second stage, to quantify the damage as shown in Figure 8.31, 

the method perfectly shows the both true damaged elements of 18 and 19 with a high 

amount of 33.14 and 30.93%, respectively. Showing an almost close amount for both 

elements is another good reason of the capability of the proposed method of capturing 

the damage in the bridge. Also, in this case, the bridge has critically damaged, and the 

proposed method properly has identified this.  
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Overall, the method is able to detect and quantify the damage in this real bridge in 

three cases 1, 3 and 4 with high certainty. 

 

Figure 8.30 MSECR vs element number of I-40 Bridge, Case 4 

 

 

 

Figure 8.31 Damage extent vs element number of I-40 Bridge, Case 4 
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8.2.6 MAC value comparison 

The MAC or modal correlation coefficient is used to determine the level of correlation 

between mode shapes obtained from the tests and the finite element method (FEM) 

through the Eq. (7.1) (Farrar et al., 2000, Sinou, 2009). 

The MAC values for the first six mode shapes identified from FEM are compared with 

those mode shapes acquired from experiments for different cases in Tables 8.2 to 8.6. 

Table 8.2 compares MAC values of the undamaged case of the bridge nominated as 

C0 while Tables 8.3 to 8.6 characterize the MAC values of damaged cases 1 to 4 

presented in section 8.2.2. 

Table 8.2 MAC values for comparison mode shapes identified from FEM compared with 

mode shapes acquired from experiments-Case C0 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 

1/FEM 0.9968 0.0015 0.0001 0.0126 0.0004 0.0011 

2/FEM 0.0007 0.9945 0.0000 0.0002 0.0000 0.0089 

3/FEM 0.0008 0.0004 0.9930 0.0003 0.0111 0.0001 

4/FEM 0.0038 0.0001 0.0010 0.9830 0.0113 0.0139 

5/FEM 0.0000 0.0017 0.0046 0.0055 0.9755 0.0002 

6/FEM 0.0001 0.0032 0.0000 0.0084 0.0000 0.9832 
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Table 8.3 MAC values for mode shapes identified from FEM compared with mode shapes 

acquired from experiments-Case C1 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 

1/FEM 0.9956 0.0010 0.0002 0.0149 0.0000 0.0008 

2/FEM 0.0004 0.9942 0.0000 0.0000 0.0002 0.0165 

3/FEM 0.0011 0.0006 0.9969 0.0000 0.0086 0.0000 

4/FEM 0.0019 0.0000 0.0003 0.9917 0.0007 0.0109 

5/FEM 0.0000 0.0007 0.0010 0.0001 0.9835 0.0002 

6/FEM 0.0005 0.0015 0.0000 0.0053 0.0053 0.9846 

  

 

Table 8.4 MAC values for mode shapes identified from FEM compared with Mode 

Shapes acquired from Experiments-Case C2 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 

1/FEM 0.9921 0.0003 0.0001 0.0133 0.0001 0.0015 

2/FEM 0.0000 0.9952 0.0000 0.0003 0.0000 0.0113 

3/FEM 0.0018 0.0000 0.9946 0.0016 0.0131 0.0000 

4/FEM 0.0019 0.0000 0.0012 0.9839 0.0003 0.0118 

5/FEM 0.0001 0.0002 0.0025 0.0007 0.9840 0.0003 

6/FEM 0.0000 0.0012 0.0000 0.0101 0.0007 0.9846 

 

 

Table 8.5 MAC values for Mode Shapes Identified from FEM Compared with Mode 

Shapes acquired from Experiments-Case C3 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 

1/FEM 0.9964 0.0001 0.0003 0.0132 0.0000 0.0014 

2/FEM 0.0000 0.9949 0.0002 0.0004 0.0001 0.0045 

3/FEM 0.0013 0.0008 0.9937 0.0024 0.0092 0.0001 

4/FEM 0.0021 0.0001 0.0016 0.9863 0.0021 0.0126 

5/FEM 0.0000 0.0002 0.0021 0.0003 0.9852 0.0013 

6/FEM 0.0000 0.0014 0.0001 0.0073 0.0015 0.9821 
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Table 8.6 MAC values for Mode Shapes Identified from FEM Compared with Mode 

Shapes acquired from Experiments-Case C4 

Mode/Test 1/Exp 2/Exp 3/Exp 4/Exp 5/Exp 6/Exp 

1/FEM 0.8726 0.0741 0.0006 0.0258 0.0000 0.0026 

2/FEM 0.0874 0.9073 0.0001 0.0096 0.0001 0.0142 

3/FEM 0.0022 0.0007 0.9946 0.0023 0.0091 0.0000 

4/FEM 0.0039 0.0071 0.0014 0.9709 0.0091 0.0009 

5/FEM 0.0003 0.0003 0.0007 0.0069 0.9617 0.0067 

6/FEM 0.0033 0.0003 0.0001 0.0019 0.0189 0.9834 

 

The MAC index operates based on orthogonality properties of mode shapes to 

compare the analytical and experimental mode shapes. When the modes are identical, 

the MAC index becomes a scalar value of one. If the modes are orthogonal and 

dissimilar, a value of zero is achieved. According to Ewins (1984) that indicates 

practically correlated modes will yield a value greater than 0.9, the MAC values of all 

cases in Tables 8.2-8.6 are well correlated. As shown it is seen, using the mode shape 

expansion method, the proposed method is able to detect the location of the damage 

in all four cases and properly quantify the damage in three cases including cases 1, 2 

and 4. While, in the reference research by Farrar et al. (2000), only locating the 

damage at the first three cases has been reported. 

However, there is an error because of the difference between physical structure and 

the FEM model in the case studies. In addition, creating an exact amount of damage 

in the model is difficult. The actual material properties may also be slightly different 

with the assumed ones. Another difficulty is the incomplete and limited measurements 

corrupted by environmental effects and noise pollution. For example, the rotational 
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DoF measurements are misplaced and are not included. Likewise, some errors occur 

during the processing of the experimental data using different software. There is also 

a big issue in acquiring the favourite and required mode shapes and natural frequencies 

from the experimental data.  

8.  Conclusion 

Following the numerical and experimental verifications at Chapters 6 and 7 of the 

improved MSE method presented in Chapter 4, further corroboration is performed to 

perceive the application of the proposed method to a real-world model and a real 

bridge. For this purpose, the LANL steel truss bridge model was chosen as a real model 

that has been noticed by many researchers. Also, the I-40 Bridge in the US, with 

available data and compatible with the proposed methodology, was also selected as a 

real bridge for examining the proposed method. The improved method was 

successfully applied to these structures in a different case and situation of damages.  

The results indicate that the improved method is able to mostly detect the damage in 

both structures studied, including perfect diagnosis of the damage location and extent 

through two consequent stages.  It also shows that the method can easily detect the 

damage either in elements or nodes of the model and bridge having the first few modes 

and natural frequencies. Moreover, it is capable of capturing any single or multiple 

damage at any part of the system.  
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There are many reasons that numerical simulations show more accuracy compared to 

the experimental results in this study. First of all, structural modelling in the numerical 

simulations has less error. Besides, using the available FEM software allows to easily 

derive as many as numerical mode shapes and natural frequencies required for the 

proposed MSE method. These data are used as the input to the improved MSE method 

for identifying the assumed damage in the models. Moreover, mode shapes of 

transitional and rotational DoFs can be easily derived using the FEM package 

available. Damage simulation in the model can also be readily imposed and 

implemented. Considering all of these matters provides a very accurate data of the 

system as the input for the improved MSE method. Therefore, the accumulated error 

during the two-stage computation of the improved method is less and almost zero.  

However, for the experimental cases the situation is different. The error can be 

accumulated from some sources such as,  an error because of the difference between 

physical structure and the FEM model in the case studies, the error in creating the 

exact amount of damage in the model, difference between the assumed and actual 

material properties, incomplete and limited measurements corrupted by environmental 

effects and noise pollution,  error during the processing of the experimental data 

using different software,  and effect of unknown factors and uncertainties on any 

experimental studies. 

In conclusion, all of the above-mentioned errors accumulated during the application 

of the improved MSE method rise to the false results in some cases. Definitely, by 
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minimizing any of these errors the results of the improved MSE method in the 

experimental studies can be improved and become more accurate. 
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CHAPTER 9 

CONCLUSION AND FUTURE STUDIES 

By increasing the importance of infrastructures especially bridges, the structural health 

monitoring has become more vital and challenging. Many literatures that indicate the 

global dynamic characteristics of the structure are affected by any damage in the 

structure or environmental temperature and humidity. Since the structures are always 

exposure to damage and environmental changes, there is more demand on a timely, 

safe, non-destructive and inexpensive structural monitoring. On the other hand, any 

structure or bridge requires its own especial method for monitoring. Besides, there is 

no unique solution to recognize the damage in structures and most of the studies 

performed are on some simple structure such as beam, plate and so on. Therefore, this 

study has focused on an MSE method for detecting the damage in bridges. The main 

features of the improved method are as follows. 

• The improved MSE method has mathematically been established to increase the 

sensitivity to damage recognition and accuracy of the damage detected, reduce the 

computational cycles and number of iterations. 

• The extent of elemental or nodal damage is expressed as a fractional 

reduction/increment of the elemental stiffness/mass matrix or rotational stiffness 
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matrix. The current study mainly uses the structural damaged stiffness matrix 

which is primarily unknown to establish a more accurate MSE change equation 

and, consequently, leads to a delicate sensitivity matrix. For the case of incremental 

mass matrix, primarily, a process is used to convert the case to an equivalent 

stiffness matrix reduction problem. 

• Initially, an accurate MSE equation is formulated using damaged elemental 

stiffness which is an unknown variable. The MSE equation derived is then used 

for deriving an accurate sensitivity matrix that can perfectly quantify the damage. 

• The improved MSE method identifies the damage in two stages, stage one, 

locating the damage and stage two, quantifying the damage through a cycle of 

mathematical process.  

• The improved MSE method is able to identify both elemental and nodal damages 

in any structure. 

• The improved MSE method is able to identify different damage scenarios 

including single or multiple damage scenarios. 

• The improved MSE method is able to identify the aimed damages in contamination 

with up to 7 percent noise. 
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• The improved MSE method requires the following number of mode shapes and 

natural frequencies to identify the damage in the structure.  

For stage 1, locating the damage requires only a pair of the first five (or more) 

modes of both damaged and undamaged cases of the structure. 

For stage 2, quantifying the damage involves with all analytical mode shapes and 

natural frequencies or as many as analytical or experimental mode shapes and 

natural frequencies that are available or can be derived.  

9.1 Conclusions 

A new improved MSE method has been well numerically and experimentally 

improved and verified for some models and real structures. The findings of this 

research can be drawn as follows.   

1. An MSE equation is established considering damaged elemental stiffness as a core 

improvement of an MSE method in Chapter 4. The MSE equation is then used for 

derivation of a new sensitivity matrix which is directly improved the accuracy of 

the damage extent and makes the method capable of recognizing the small 

damages in the system. 
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2. The improved method is numerically applied to different structural models such 

as a beam, a frame and a truss models with different material properties and 

element type, size, and structural type. As stated in Chapter 6, different damage 

scenarios including single and multiple damage are also considered for each model. 

Additionally, all simulations data are contaminated with up to seven percent noise 

to pretend the actual situation of noise pollution in the environment. In the last two 

case studies, the improved method is further verified for two different models 

representing medium span bridges. The results show the proficiency of the 

proposed method in all cases and, also, a well agreement with the numerical 

damages assumed in the models and closed form solution.  

3. A case study of adding mass as a damage has also been successfully performed in 

Chapter 7. For this purpose, the case study is converted to an equivalent case of 

change/ damage in the structural stiffness and then the improved method is applied.  

4. Experimental verifications on some laboratory models are also show that the 

improved method is able to recognize the damage in most cases in the continuation 

of Chapter The results indicate that the performance of the improved method is in 

a good agreement with the damages implemented and also with the FEM 

simulations.  

5. In Chapter 8, the application of the improved method has been performed on the 

Los Alamos National Laboratory (LANL) bookshelf with several cases of single 
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and multiple damage at nodes. The results show the satisfactory performance of 

the improved method, although the structure does not provide the minimum mode 

number requirement for the proposed method.  

6. Application of the proposed method to I-40 Bridge, in the USA, as a real bridge 

using the available data is the most important achievement of this research. Using 

available incomplete data, the proposed method is able to detect the damage in 

most cases.  

However, the error and false results occurred in the experimental and real case studies 

in this dissertation, can be created from some sources including, effect of a high level 

of noise, difference between the physical model of the structure and its FEM model, 

limited sensors to simultaneously measure the required DoFs, error in creating the 

actual damage in the model, difference between the assumed and actual material 

properties of the model, difference between the assumed and actual boundary 

conditions, data processing and unknown parameters and uncertainties.  

9.2 Significance and contributions 

This study focuses on a sensitivity matrix based MSE technique for structural damage 

detection in bridges. The improved MSE method with a very sensitive matrix is able 
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to be applied to any structure/ bridge to evaluate its health condition in a different state 

and time. The improved MSE is characterized as follows. 

1. The improved method is more accurate than previous methods because it 

calculates the actual MSE stored in the structure using an accurate MSE equation 

established. Also, the sensitivity matrix derived from the MSE equation is more 

accurate than similar methods.   

2. The improved method converges very fast using few numbers of analytical modes. 

3. The improved method is very sensitive to small damages and is able to simply 

recognize the small size damages with an amount of 1% or less.  

4. The improved method is able to recognize the damage in both elements and nodes. 

However, the damage indicator is always stated in terms of elemental change.  

5. The improved method can be applied to any structure including building or bridges 

regardless of type of the structure or material properties. However, in this study it 

has been applied to some numerical and laboratory models, a real structure and a 

real bridge using available data. 

The findings of this study can be numerically extended to 2D and 3D infrastructures, 

particularly bridges to more accurately detect and quantify the damage. The method is 

capable of providing a proper SHM that facilitates timely maintenance of bridges to 
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minimize the loss of lives and property by identifying the unforeseen structural 

damages. 

9.  Recommendations for Further Researches 

According to the above conclusions, the following recommendations can be suggested 

for the future studies. 

1. The improved MSE method can be more extended and improved by developing 

the MSE equation and consequently sensitivity matrix or either MSE equation or 

sensitivity matrix using mathematical tools of the GA and ANN. However, it is 

expected to be more noise sensitive. If so, another approach is also required to 

overcome the issue. 

2. In a similar way, the current study can be numerically extended for any 2D and 3D 

structure and observe the results regardless of type of the structure and material 

properties.  

3. Also, the improved method can practically be tested for any laboratory model or 

real structure regardless of the type of the structure or material properties by 

measuring the first five mode shapes of the model or prototype.  
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4. More efforts can be put into using the improved method of having incomplete 

measurements to make it compatible with having fewer data available from the 

structure to use for detecting the damage in the structure. 
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