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Abstract 

Point cloud data obtained from different platforms, such as aerial laser scanning 

(ALS), mobile laser scanning (MLS) and photogrammetric point clouds generated 

from dense image matching (DIM), can intuitively present the three-dimensional (3D) 

geometric features of objects and are therefore important data sources for 3D city 

reconstruction. In recent years, with rising demand for the development of digital or 

smart cities, a great deal of research has investigated the semantic interpretation of 

point clouds and 3D city reconstruction from such data sources. However, most of 

these studies are applicable to only relatively simple urban scenes with low-rise 

buildings. Considering the rapid development and importance of city planning and 

management, modern cities, especially metropolises such as Hong Kong, have an 

urgent need for effective 3D city reconstruction methods. 

However, the complexity of urban scenes (e.g., dense environments, various 

types of objects and high-rise buildings with manifold structures) in modern cities and 

the inevitable defects of point clouds (e.g., noise, loss of data and density anisotropy) 

make the automatic modelling of point clouds a challenging task. To overcome these 

difficulties, this research investigated the multiple relations contained in point clouds 

and exploited them for point cloud interpretation and 3D city reconstruction. 

Specifically, the multiple relations include geometric, contextual and topological 

relations. Geometric relations refer to local homogeneities of geometric properties, 

such as density isotropy, normal consistency, planarity, linearity and scattering. 

Contextual relations are related to neighbouring or adjacent relationships that could be 

associated with the specific labels assigned to the entities. Topological relations 

guarantee topological correctness during the generation of watertight and manifold 3D 

models that conform to CityGML. These multiple relations are comprehensively 

incorporated in the point cloud modelling process in three stages—segmentation, 

classification and 3D reconstruction. 

Based on the assumption that ground objects can be regarded as combinations of 
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different simple shapes, the segmentation of point clouds partitions objects into groups 

of linear, planar and scatter shapes. The segmentation method first eliminates outliers 

with a filter that is robust to the varying point density and then generates supervoxels 

with adaptive sizes based on the homogeneities at the point level. Relations between 

the supervoxels are then derived and used to cluster adjacent supervoxels with similar 

geometric properties into structural components. This segmentation method interprets 

the point clouds on the geometric level and helps to provide essential clues for 

subsequent semantic interpretation. This is of particular importance when the point 

clouds (such as MLS data) present abundant details of the objects. 

In the classification stage, structural information presenting the relations between 

structural components is derived at various scales. Such information can be of great 

help in distinguishing between objects with global or local similarities. In this research, 

structural, geometric and contextual information is comprehensively incorporated and 

encoded into a conditional random field (CRF) to make unary and pairwise inferences. 

High-order potentials defined upon regions independent of connection relationships 

are also introduced into the CRF to eliminate regional label noise. The classification 

finally outputs a point cloud with semantic labelling that is spatially smooth. 

In the 3D reconstruction stage, points labelled as building are clustered into 

individual buildings and treated as inputs to produce polygonal 3D models. To avoid 

complex topological computation, a space-partition-and-approximation strategy is 

used. The building surface is first approximated by a set of planar primitives that are 

refined based on several geometric relation-based rules. With these planar primitives, 

the space occupied by the bounding box of the building is partitioned into non-

overlapping convex cells based on a half binary space partition tree. The 3D space 

occupied by the building can be approximated by cells that are inside the building, and 

the interfaces between the inside and outside cells constitute the surface of the final 

building model. To ensure optimal selection of the inside cells, topological relations 

are extracted as interface facets and intersection edges, and are introduced into a global 
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energy function, which can be solved as a linear programming problem with binary 

integer variables. The surface components of the building are generated from the 

selected cells and each is assigned a specific surface type defined in CityGML. The 

relationships between the surface components, e.g., adjacency, parallelism and 

perpendicularity, are determined based on the relationships between the cell, facet and 

edge complexes. 

Experiments with point clouds from three representative data sources, including 

two MLS point clouds (in Paris and Hong Kong) and a photogrammetric point cloud 

(in Hong Kong), were carried out to evaluate the performances of the proposed 

methods in various scenarios. Nine and eleven different classes were recognised from 

the laser scanning point clouds with overall accuracies of 97.13% and 95.79%, 

respectively, indicating the effectiveness of the proposed classification method. For 

the photogrammetric point cloud, the classification result for a specific class, building, 

was evaluated and found to have a considerably good result, with an F1-score of 

82.40%. The buildings extracted from the photogrammetric data were further used to 

generate 3D building models in CityGML format via the proposed reconstruction 

method. The reconstruction results were qualitatively and quantitatively compared 

with the results of previous studies, and the comparisons suggested that the proposed 

method in this research performed best in terms of robustness and producing regular 

and geometrically accurate building models, with an average root-mean-square error 

of less than 0.9 m. 

This research investigates the use of multiple relations in the pipeline of 

segmentation, classification and modelling of unordered point clouds for 3D city 

reconstruction. The developed pipeline shows promising ability to interpret point 

clouds and reconstruct 3D building models in complex urban scenes. In addition, it 

has high levels of automation and efficiency. The developed methods advance the 

current 3D city modelling technology from point cloud data with more automation and 

better performance. The final output of the 3D city models in the CityGML format can 
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facilitate their use in various applications. The presented research and developments 

are significant for 3D city reconstruction and modelling, which will facilitate the 

construction of spatial data infrastructure for a smart city and have great potential to 

support applications in various domains, such as urban planning and design, urban 

management, and urban environmental studies. 
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Chapter 1 Introduction 

1 

Chapter 1 Introduction 

1.1 Research Background 

Three-dimensional (3D) models are the fundamental data that constitute the 

spatial data infrastructure for a digital city or smart city (Cocchia, 2014). 3D point 

clouds obtained from light detection and ranging (LiDAR) or photogrammetry through 

dense image matching (DIM) can intuitively show the 3D geometric features of urban 

objects with intensity or textural information, and they have therefore been essential 

data sources for 3D city reconstruction in past decades. Mature technology can 

produce triangulated irregular network (TIN) models (mesh models) from unordered 

point clouds (Früh and Zakhor, 2003). However, such TIN models of continuous 

surfaces cannot be used for complicated 3D analyses of smart cities due to the lack of 

semantic and topological information. Smart city applications require interoperable 

3D models that conform to a standard format (e.g., CityGML) (Gröger and Plümer, 

2012) for complicated applications. The generation of such 3D models still involves 

tremendous manual interference with computer-aided software systems (Hu et al., 

2003). Although particular interactive tools (Arikan et al., 2013; Nan et al., 2010) have 

been developed for modelling individual buildings, the interactive process is still time-

consuming and labour-intensive. 

Recent advances in automatic 3D city reconstruction have revealed that enriching 

the point clouds or TIN models with semantic segmentation and then reconstructing 

each segment, is an effective and scalable paradigm for large-scale reconstruction 

(Blaha et al., 2016; Lafarge and Mallet, 2012; Poullis, 2013; Verdie et al., 2015; Xiong 

et al., 2015). However, the semantic segmentation or classification of point clouds is 

non-trivial work because of the complexity of urban scenes (Blaha et al., 2016; Zhu et 

al., 2017), especially when the datasets have high spatial resolution but suffer from 

heavy noise. A general trend is to adopt a hierarchical classification strategy that starts 

with the geometric segmentation of the point clouds (Gerke and Xiao, 2014; 

Vosselman et al., 2017; Xu et al., 2014), which provides an opportunity for 
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incorporating multiple types of relations (Zhu et al., 2017) into the process of 3D 

reconstruction from point clouds. 

The geometric segmentation or partition of point clouds is useful for interpreting 

scenes at the geometric level and provides essential clues for subsequent semantic 

classification and interpretation. This is especially true for terrestrial laser scanning 

(TLS) and mobile laser scanning (MLS) data, where the object surfaces are presented 

in detail because of the close scanning distances. However, because of the obvious 

defects of point cloud data, such as noise, missing data and density anisotropy, existing 

segmentation and classification methods are not resilient and thus require extensive 

drudgery in the form of manual quality control, especially for DIM point clouds and 

mobile laser scanning data (Nex and Gerke, 2014; Yokoyama et al., 2013). 

The defects of point clouds, especially the loss of data, also cause problems in 

the reconstruction of buildings (Xiong, 2014). Missing data on the vertical surfaces of 

objects, mainly the façades of buildings, could be a serious problem in aerial laser 

scanning (ALS) data. Therefore, most of the previous work on 3D building 

reconstruction from ALS data only focused on the reconstruction of building rooftops 

(Chen et al., 2014; Hu et al., 2018b; Lafarge and Mallet, 2012; Sampath and Shan, 

2010) and only produced building models in 2.5D (Zhou and Neumann, 2010, 2011). 

Although DIM point clouds generated from oblique images through multi-view stereo 

(MVS) pipelines (Furukawa and Ponce, 2010; Vu et al., 2012) provide more 

information on vertical surfaces than ALS data, missing data remains an issue where 

there are occlusions between closely distributed high-rise buildings. 

In addition, the architectural styles of buildings can vary greatly by culture, 

location and time (Relph, 2016), which makes it impossible to fit the point clouds with 

a predefined model library as in the work of Kada and McKinley (2009) and Poullis 

and You (2009b). The complexity of buildings also increases the difficulty of 

topological computation, resulting in crack effects in the final results (Poullis, 2013; 

Poullis and You, 2009a; Xie et al., 2018) or needing extra work to automatically or 

manually correct the topological errors in the models (Xiong et al., 2014). Even when 

the topological errors are enforced to be corrected, e.g., multiple intersection lines are 
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enforced to join at the same point, the results might violate certain geometric relations 

with respect to regularity, such as co-planarity, parallelism and orthogonality. A 

number of methods have been proposed toward to preserve the topological relations 

while reconstructing the building rooftops (Chen et al., 2017; Chen et al., 2014), but 

they cannot capture the topological relations between two roof components when there 

is a large height-jump. 

All of the above methods only focused on the reconstruction of building rooftops; 

in contrast, the reconstruction of true 3D building models has not been intensively 

investigated. The reasons for this are two-folds. First, the points on building façades 

are much sparser than those on roofs or might be completely missing due to occlusion, 

as shown in Figure 1.1 (a). Second, at the LOD (level of detail)-2 scale, the building 

façades are likely to be assumed to be non-essential to facilitate the characteristics of 

buildings, but this is not the case for many modern buildings (as shown in Figure 1.1 

(b)). A strategy to generate true 3D models of buildings with a variety of appearances 

is to avoid topological computations during reconstruction but to use a set of space 

units (e.g., 3D faces, boxes and polyhedral cells) obtained through space partitioning 

to model the building surface (Boulch et al., 2014; Nan and Wonka, 2017; Verdie et 

al., 2015). Topological relations between these 3D faces have been used to guarantee 

the model to be watertight (Nan and Wonka, 2017); however, the use of topological 

relationships as constraints has not been systematically studied. 
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Figure 1.1 Challenges in reconstruction of true 3D building models from point 

clouds. 

Objects, especially man-made objects, always feature various relations, including 

geometric, semantic and topological relations. These relations form the complexity of 

the actual world and help to facilitate hypotheses about the objects, when the 

observation data suffer from quality issues. Introducing such relations into the 

framework of point cloud modelling can improve the understanding of the 3D data. 

Using this strategy, this research investigates the use of multiple relations in the 

pipeline of modelling unordered point clouds to overcome the defects of the point 

clouds and to produce true 3D models with correct topological relationships in 

CityGML format so that the models can be used for various 3D GIS applications. 

1.2 Research Objectives 

The aim of this research is to provide an automatic framework to segment and 

classify point clouds with semantic labels, and then based on the labelled point clouds 

to produce 3D models that conform to CityGML (Gröger and Plümer, 2012) for further 

3D GIS applications.. The objectives of this research are listed as follows. 
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(1) To develop a point cloud segmentation method that interprets the point clouds 

on the geometric level and decomposes objects into structural components 

with shape labels; 

(2) To develop a point cloud classification method that interprets the 3D scenes 

at the semantic level, and that is able to process point clouds with high 

complexity and various defects (e.g., noise, density anisotropy, missing data 

and data inaccuracy) from different sources; 

(3) Based on the segmented and classified point clouds, to develop an automatic 

and robust reconstruction method that produces true 3D models of buildings 

that are watertight, manifold, regularised and in CityGML format. 

(4) To systematically validate the developed methods and evaluate the 

performances with actual point clouds from different sources in 

representative urban scenes (e.g., Hong Kong). 

1.3 Innovation and Contributions of This Research 

The main novelty of this research lies in the development and incorporation of 

multiple relations, including geometric, contextual, structural and topological relations, 

in point cloud modelling. These relations help to overcome the defects of the point 

cloud data, and to facilitate the hypotheses about the complexity of the actual world. 

The contributions of this research are as follows: 

1) Multiple relations between different primitives and different levels are 

introduced to decompose objects into different structures. The density isotropy 

of the points is the basis of a novel noise filter that is adaptive to point clouds 

with varying point densities; the spatial and spectral homogeneities at the point 

level facilitate the generation of multi-size supervoxels, where local geometric 

shapes are well preserved in terms of linearity, planarity and scattering; and the 

contextual relations between the supervoxels guarantee that the segmentation 

is spatially smooth and remains physically meaningful. 

2) Structural information is derived from the shape labels of the structural 

components during the semantic interpretation. The structural information is 
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captured by multiple contextual relations and presents the structural 

environment of a specific object and the structural differences at different 

scales. These relations affect on both the inference and the refinement of the 

classification. Hence, the developed method can be applied to point clouds 

obtained from different sources and can be effective in dense scenes that have 

multiple classes of objects, even with local or global similarities. 

3) By adopting a space-partition-and-approximation strategy, the topological 

relations between 3D space units are extracted and used as constraints in the 

generation of 3D building models. The method developed in this research 

converts complex 3D topological computations into simple topological 

relations in lower dimensions. Therefore, the method is robust to buildings 

with various architectural styles and is able to produce watertight, manifold 

and regularised models, which are further converted into CityGML models for 

3D GIS applications. 

1.4 Outline of the Dissertation 

This thesis consists of seven chapters. Following the introduction chapter, the 

remainder of this thesis is organised as follows. 

Chapter 2 reviews previous work related to the first three objectives of this 

research: segmentation, classification and 3D building reconstruction of/from point 

clouds, in sequence. Short summaries of the various relations and their usages, and the 

previous methods used in related work, are given at the end of this chapter. 

Chapter 3 describes the segmentation method developed in this research. This 

method starts with a noise filter that can adaptively remove noise in the point cloud 

based on density isotropy. Then the proposed two segmentation steps, which are the 

generation of supervoxels based on point relations and the generation of structural 

components based on supervoxel relations, are given in detail. 

Chapter 4 presents the three aspects in the classification stage: extraction of 

discriminative features from contextual relations, training/inferencing and global 

energy optimisation with full-range contextual information. Structural information 



Chapter 1 Introduction 

7 

derived from the structural components is abstracted as contextual relations and used 

to establish a high-order CRF model for inference and optimisation. 

Chapter 5 demonstrates the process of producing 3D CityGML building models 

from point clouds. First, the building bounding box is partitioned into convex 3D cells 

with the planar primitives extracted from the point clouds and refined based on 

geometric relations. Then, the topological relations between the basic 3D cells are 

extracted as facets and edges, and are used as constraints to select optimal cells that 

approximate the building surface. Finally, the surface models are converted into 

CityGML models according to a set of knowledge-based rules. 

Chapter 6 describes the experimental evaluations using three datasets. For each 

dataset, a brief description of the dataset is first given. Then, the experimental results 

and corresponding analyses of the newly developed methods are described.  

Chapter 7 concludes and discusses the work of this research. Following a 

summary of the achievements in this research, conclusions are drawn, and 

recommendations are made for future research. 

Figure 1.2 shows the relationship of the chapters in this dissertation. 
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Figure 1.2 Schematic structure of this dissertation. 
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Chapter 2 Literature Review 

The modelling of point clouds is a broad research area. In this research, it 

specially involves three aspects: segmentation, classification and 3D reconstruction. 

The first two aspects interpret the point clouds at geometric and semantic levels, 

respectively, and the last aspect outputs models as a fundamental data infrastructure 

for smart cities. The following reviews the state-of-the-art developments in these three 

aspects. 

2.1 Segmentation of Point Clouds 

Geometric segmentation or partition is to understand the 3D point clouds at the 

geometric level. It could be a perquisite step for point cloud classification (Aijazi et 

al., 2013; Vosselman et al., 2017; Xu et al., 2014; Zhu et al., 2017) and 3D 

reconstruction of buildings (Verdie et al., 2015; Xie et al., 2017; Xiong et al., 2015). 

According to the purposes and strategies, there are different categories of 

segmentation methods that are detailed described in (Grilli et al., 2017; Nguyen and 

Le, 2013; Vo et al., 2015). The following presents the segmentation paradigms related 

to this research particularly. 

2.1.1 Shape Detection 

Random Sample Consensus (RANSAC) initially introduced by Fischler and 

Bolles (1981) is one of the most adopted shape detection paradigms in 3D data 

processing (Schnabel et al., 2007; Wang et al., 2018). It fits the input data with a set 

of mathematical model parameters of particular shapes, e.g., planes, cylinders, spheres, 

cones and tori. The RANSAC-based methods can detect the approximate shapes from 

the 3D point clouds, even in the presence of outliers up to 50% (Zolanvari et al., 2018). 

Hough Transform (Hough, 1962) is another fitting-based shape detection method, 

which was first introduced to detect linear features from the images. In the work of 
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Vosselman and Dijkman (2001), the Hough Transform was extended into 3D space for 

the detection of planar surfaces of buildings. Later, the 3D Hough Transform was 

further extended to recognize cylinders and spheres (Rabbani and Van Den Heuvel, 

2005; Tarsha-Kurdi et al., 2007; Vosselman et al., 2004). These methods have shown 

quite outstanding performances on detecting particular shapes from buildings that do 

not have significant protrusions or complex exterior structures. However, as the target 

shapes are limited only to simple mathematic models, these fitting-based methods are 

able to detect free-formed shapes. 

Region growing is another common method used to detect planes or other 

surfaces that have consistent features. This method first selects a set of seeds to 

initialize the features of the regions, and then iteratively includes the neighbouring 

entities that meet particular criteria into a region, while keeping refining the features 

of the regions (e.g., normal and curvature) with the newly included entities. Aiming to 

fit many planes, Vosselman et al. (2004) developed a surface growing method with a 

brute-force seed selection approach. This method was later used in the classification 

of ALS point clouds as the first step to generate fundamental entities to be classified 

(Gerke and Xiao, 2014; Vosselman et al., 2017; Xu et al., 2014). However, as surface 

growing can only capture planar objects, extra segmentation method, such as mean-

shift (Comaniciu and Meer, 2002), was adopted to cluster the non-planar segments for 

better segmentation of the point clouds. 

2.1.2 Voxelisation 

Voxelisation is to partition point clouds into supervoxels (or voxels) with similar 

sizes and shapes. “Supervoxel” is an extension of “superpixel” (Achanta et al., 2012; 

Ren and Malik, 2003) from 2D to 3D. It refers to a small cluster of unorganised points 

generated through space partitioning, and the points in each cluster maintain the 

original geometries but together constitute a regular shape. Recently, supervoxels have 

been widely used for the interpretation of large-scale point clouds (Dong et al., 2018; 
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Kang and Yang, 2018; Luo et al., 2018; Zhu et al., 2017) for three reasons. First, the 

local homogeneity is well preserved within the supervoxels. Secondly, supervoxels 

provide explicit adjacent relationships rather than vague neighbouring relationships 

among unorganised points. And thirdly, exploiting supervoxels instead of individual 

points can significantly reduce the computational load and time. 

 Early works on voxelisation were mainly based on the distances between point. 

For instance, Aijazi et al. (2013) defined a supervoxel’s size using radius search. Zhou 

et al. (2012) and Babahajiani et al. (2015) clustered points within a given radius into 

one supervoxel and limited the number of points to avoid bestriding object boundaries. 

Other properties, such as colours and normals (Lim and Suter, 2009; Papon et al., 

2013), were also introduced into the generation of supervoxels to restrict the size of 

supervoxels.  

Generally, the seeds of supervoxels were selected based on an octree structure 

with a fixed resolution, such as the widely adopted voxel cloud connectivity 

segmentation (VCCS) (Papon et al., 2013) and its extension (Zhu et al., 2017). Sizes 

of supervoxels generated by such methods are almost the same, resulting in 

supervoxels located in areas with sparse density containing insufficient points for 

feature extraction. This could be especially serious for TLS and MLS point clouds 

where the variations in point density are great. To obtain supervoxels that best present 

the local properties, Yang et al. (2015) generated two-scale supervoxels and merged 

them based on a set of prior rules. This method made the supervoxels somewhat 

adaptive to point density, but the knowledge-based rules could be inapplicable to other 

scenes or data. Instead of octree with a fixed resolution, Li and Sun (2018) selected 

supervoxel seeds with an adaptive octree and generated supervoxels by region 

growing. Lin et al. (2018) proposed a toward better boundary preserved (TBBP) 

method that formalised the supervoxel segmentation as a subset selection problem. 

Instead of the size of supervoxels, this method used the number of supervoxels as a 

direct constraint to select representative points, so that the final supervoxels would be 
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free of size constraint and well preserve the object boundaries. However, the 

adaptability to the boundaries of this method also causes a problem that the 

supervoxels are quite sensitive to linear and scatter features.  

2.1.3 Graph-based Partitioning 

The graph-based partitioning converts the point cloud into a graphical model, 

where the nodes of the graph correspond to the points and the edges corresponds to 

the neighbouring relationships between the points (Nguyen and Le, 2013). The graph-

based segmentation of point clouds is an extension of the paradigm in the 2D images 

(Felzenszwalb and Huttenlocher, 2004). But unlike the regularly organised image data 

structure, the point cloud is unorganised and discrete, and therefore the neighbouring 

relationships are generally determined by k-nearest neighbours (KNN) (Golovinskiy 

and Funkhouser, 2009) or by an optimal neighbourhood (Landrieu et al., 2017; 

Weinmann et al., 2017) defined by a minimum entropy function (Demantke et al., 

2011).  

The point cloud is then segmented based on the cuts of the graph. The min-cut 

based segmentation proposed by Golovinskiy and Funkhouser (2009) is a well-known 

method. In this method, two extra nodes, namely source and sink, respectively 

corresponding to the foreground and background, were introduced into the graph and 

each node corresponding to the point was connected to the source and sink by two 

edges. A penalty function was defined to encourage smooth segmentation where the 

foreground was weakly connected to the background. This method can automatically 

segment an object out from the point cloud by each cut, but the location of the object 

is required as prior knowledge.  

The graph-based segmentation can also be cast into a labelling problem with 

multiple labels. For instance, Landrieu and Simonovsky (2018) computed four shape 

descriptors, namely linearity, planarity, scattering and verticality, from the optimal 

neighbourhood of each point and encoded them into the nodes of an underlying 
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graphical model. The geometric segmentation was then converted into a global energy 

optimisation problem defined as in Guinard and Landrieu (2017), which was solved 

via 0-cut (Landrieu and Obozinski, 2017). Rather than retrieving individual objects, 

this method decomposed objects into simple but homogeneous parts, that could be 

used for further semantic interpretation.  

The graph-based segmentation methods can effectively interpret the geometries 

of complex scenes, even in the presence of high-level noise and density anisotropy. 

However, because of the great data volume of points, the point-wise feature 

computation and labelling process cannot run real time (Nguyen and Le, 2013) and it 

requires vast amounts of memory space to establish the fundamental graphical model. 

A segmentation method combining different paradigms was proposed by Dong et al. 

(2018). This method first divided the point cloud into multiscale planar supervoxels 

and points corresponding to non-planar supervoxels, as basic units. Then a hybrid 

region growing algorithm was exploited to merge adjacent units to generate initial 

planes, which were further enriched and refined by optimizing the global energy via 

extended α-expansion (Delong et al., 2012). The fundamental graphical model of this 

method was built on the basis of initial planes, making the global energy optimisation 

much more efficient. However, this method only focused on the segmentation of 

planar surfaces and therefore inaccurate results could appear in non-planar areas.  

2.2 Classification of Point Clouds 

The purpose of classification is to interpret the point clouds at the semantic level, 

which generally refers to a process of assigning each point a semantic label, such as 

buildings, cars, trees and so forth. Generally, the steps constituting a classification 

framework can be summarised as primitive definition, feature extraction, inference 

and refinement. The specific steps are variable to different methods. For instance, 

methods adopting deep learning algorithms (LeCun et al., 2015) could be free of 

extracting handcrafted features and some methods do not refine the inference results 
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obtained from the classifiers (Guo et al., 2011; Mallet et al., 2011; Weinmann et al., 

2015a; Zhang et al., 2016b). The following reviews the contents related to the steps 

that are generally involved in a classification framework. 

2.2.1 Primitive Definition 

Individual points can be directly fed as the primitives for a point-wise 

classification framework. In this case, an appropriate neighbourhood needs to be 

defined for each point for feature extraction and the determination of adjacent 

relationships between points. The neighbourhood is generally an assemble of 3D 

points within a small local region, such as a sphere defined by fixed radius (Lee and 

Schenk, 2002) or k nearest points (Golovinskiy and Funkhouser, 2009) or nearest 

points within an optimal size (Hackel et al., 2016; Wang et al., 2015; Yang and Dong, 

2013), a cylinder defined by fixed-radius (Chehata et al., 2009) or k nearest points 

projected on 2D plane (Niemeyer et al., 2014). Some other work also organised the 

neighbouring relationships with the aid of triangular structures such as Delaunay TIN 

(Sánchez-Lopera and Lerma, 2014) and Voronoi Graph (Landrieu and Simonovsky, 

2018). 

Based on the assumption that points have homogeneous properties are likely to 

belong to the same object, segment-based classification methods have been proposed. 

A straightforward strategy is to make the segments containing as many homogeneous 

points as possible, by using algorithms like RANSAC, 3D Hough transform, region 

growing or graph-based method (Landrieu and Simonovsky, 2018; Vosselman et al., 

2017; Xiong et al., 2011). Hybrid primitives of individual points and point clusters at 

different scales were combined in some previous studies (Gerke and Xiao, 2014; Xu 

et al., 2014; Zhang et al., 2016b). Another strategy is to segment the point clouds into 

supervoxels. The supervoxels were either directly used to be classified (Kang and 

Yang, 2018; Luo et al., 2018; Zhu et al., 2017) or used to produce larger segments for 

the classification (Aijazi et al., 2013). 
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2.2.2 Feature Extraction 

After the definition of primitives, discriminative features are then extracted from 

these primitives (segments of point cloud or neighbourhoods defined for individual 

points). 3D geometric properties related to height, normal and derived from the 

covariance matrix (e.g., linearity, planarity, scattering, eigenentropy and so forth) are 

the most considered features in a great deal of previous studies (Landrieu et al., 2017; 

Weinmann et al., 2015a; Weinmann et al., 2017; Yang et al., 2015). The Fast Point 

Feature histograms (FPFHs) descriptor (Rusu et al., 2009) is also a well-known 3D 

feature that encodes the local surface geometry around a point. Adjacent information 

has also been investigated to derive discriminative features. For instance, Zhu et al. 

(2017) regarded the number of adjacent supervoxels sharing consistent normal vectors 

as a discriminative feature to distinguish between building and vegetation. Sánchez-

Lopera and Lerma (2014) defined an angular classifier that separated building points 

from vegetation and other small objects based on the surrounding ground points. By 

constructing a neighbourhood sphere centred at the centroid of a specific region, Xiong 

et al. (2011) defined what was above, below and adjacent to each region and appended 

contextual features with respect to such relations to feature vectors of regions. The 

contextual features derived from geometries were widely considered in classification 

frameworks based on graphical models, where the contextual features were encoded 

to the edges to capture the possibility of two connected nodes belonging to the same 

object (Niemeyer et al., 2014; Vosselman et al., 2017). 

Beside discriminative features retrieved from geometries, features derived from 

other sources, such as colour and intensity (Kang and Yang, 2018), also help to 

distinguish between objects. Fusing point clouds with images (Cao et al., 2011; Gerke 

and Xiao, 2014) is a common way to obtain extra colour information for feature 

extraction. Mallet et al. (2008) and Mallet et al. (2011) investigated the potential of 

echo-based and full-waveform features derived from full-waveform data in addition 

to the traditional geometric features, and found that two features computed from the 
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radiometric calibration of the full-waveform data significantly contributed to 

improving the accuracy of classification. 

2.2.3 Inference 

The inference is to compute the probability or conditional probability of a 

primitive belonging to a specific class based on the features extracted from the 

primitive. Generally, the inference strategies can be grouped into unsupervised and 

supervised ones. 

Unsupervised inference does not require training data, but certain prior 

knowledge about the classes in the presented scenes should be needed. The prior-

knowledge is generally about the value distributions of discriminative features on 

different classes, for eaxample, buildings should have larger elevation values than 

ground or clutters (Lafarge and Mallet, 2012). Based on such prior-knowledge, 

Lafarge and Mallet (2012), Verdie et al. (2015) and Zhu et al. (2017) defined a set of 

formulas to compute the probabilities corresponding to different classes. Rather than 

formulas, Yang et al. (2015) defined a set of rules that directly classified the primitive 

based on its geometric features and the geometric features of adjacent primitives. The 

unsupervised classification is simple and easy to implement, but it requires accurate 

prior knowledge of objects in the scenes and this would limit the scalability of such 

methods with respect to other data or scenarios. 

The supervised inference involves a process of learning. It first learns and trains 

a mathematic model with the training examples and then uses this model to predict the 

conditional probability of the target data. The learning schemes can be grouped into 

instance-based learning, rule-based learning, probabilistic learning, max-margin 

learning, ensemble learning and deep learning (Weinmann et al., 2015a). The first five 

ones can be regarded as classic machine learning schemes, including a great number 

of algorithms that have been widely adopted by many point cloud classification 

methods, such as Gaussian maximum-likelihood (Weinmann et al., 2014), support 
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vector machine (Mallet et al., 2011; Mallet et al., 2008; Yang and Dong, 2013), random 

forest (RF) (Chehata et al., 2009; Hackel et al., 2016; Landrieu et al., 2017; Niemeyer 

et al., 2014) and adaptive boosting (Lodha et al., 2007; Zhang et al., 2016a; Zhang et 

al., 2016b). Unlike the classic machine learning algorithms, deep learning can 

automatically learn effective features during training and therefore is free of extraction 

of handcrafted features. Because traditional convolutional deep learning architectures 

require highly regular formats of the input data, researchers converted the unorganised 

3D point cloud into a sequence of 2D images (Boulch et al., 2018) or regular 3D voxels 

(Huang and You, 2016; Maturana and Scherer, 2015; Wu et al., 2015b). However, as 

the converted data cannot present the points’ inherent 3D structure and loses fine 

details, Qi et al. (2017) proposed PointNet, which made it possible to directly 

implement convolution on individual points based on a key symmetric function. But 

according to Landrieu and Simonovsky (2018), the performance of PointNet or its 

extension (Engelmann et al., 2017) is limited by the size of input and fails to consider 

contextual information within both short- and long-range simultaneously. 

2.2.4 Refinement 

Semantic context has been widely considered and applied in the point cloud 

classification to refine the initial inference results. Generally, two types of methods 

are used to introduce semantic contextual information to the classification framework. 

The first is to use knowledge-based rules to determine or modify the semantic labels 

to make the labelling result more reasonable in terms of adjacency relationships. For 

instance, by using the rules defined based on building structures, Xu et al. (2014) were 

able to separate the roofs and walls from points that were labelled beforehand as 

buildings. Verdie et al. (2015) and Zhu et al. (2017) used semantic rules to modify the 

labels of objects according to their sizes, heights and the labels of adjacent objects. 

A more general way is to capture the semantic context with the edges of a 

graphical model and establish a random field, such as Markov random field (MRF) 
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(Li, 2009) and conditional random field (CRF) (Lafferty et al., 2001). Therefore, the 

labelling refinement is converted into a global energy optimisation problem, which 

can be formulated as Equation (2-1). 

  (2-1) 

where E denotes the global energy of the graphical model, v denotes the set of nodes 

of the graph and e denotes the set of edges. D(yi) is the unary potential describing the 

fidelity of labelling y to the observations, and V(yi,yj) is the pairwise potential that 

penalises discontinuities in labelling y. The purpose is to make the final labelling 

spatially smooth while remaining loyal to the initial inference by minimising the 

global energy via graph cuts (Boykov et al., 2001) or loopy belief propagation 

(Szeliski et al., 2008).  

Lafarge and Mallet (2012) and Niemeyer et al. (2014) adopted point-level 

semantic contextual information and encoded it as pairwise interactions in an MRF 

and a CRF, respectively. To make the labelling spatially smooth, even with isolated 

points, Niemeyer et al. (2016) added a high-order term to the CRF, in which the high-

order cliques corresponded to predefined segments and were modelled by the robust 

Pn Potts model (Kohli and Torr, 2009). Compared to the point-based graphical model, 

relatively longer interactions can be captured by constructing a graph from multi-scale 

point clusters or supervoxels (Landrieu and Simonovsky, 2018; Lim and Suter, 2009). 

To introduce more contextual information, a high-order model based on supervoxels 

was established by Luo et al. (2018). With the label cost introduced by Delong et al. 

(2012), Luo et al. (2018) modelled the label redundancies within connected cliques. 

However, as both the pairwise and high-order interactions in their work were defined 

based on adjacent supervoxels, no refinement could be achieved for those isolated 

supervoxels. This issue can become especially serious when the supervoxels are not 

adaptive to the variations in point density. 
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2.3 3D Reconstruction from Point Clouds 

3D reconstruction using point clouds obtained from ALS or aerial images has 

been an active topic in the photogrammetry, computer vision and remote sensing 

communities. Buildings, as the key features of urban areas, are the major study objects 

in related research. There is a considerable body of literature on the reconstruction of 

buildings, and these studies can be differentiated by several properties, such as data 

sources, output models, amount of automation and modelling strategies. In the 

following, the review of this topic is narrowed to the automatic reconstruction of 

polygonal building models, which is still considered a challenging task (Musialski et 

al., 2013; Wang et al., 2018). 

2.3.1 2.5D Reconstruction of Buildings 

2.5D reconstruction of buildings refers to the reconstruction of building rooftops 

only. A large number of methods have been proposed for this purpose, and a certain 

level of success has been achieved in generating rooftop models with different levels 

of detail (LOD). In general, these methods can be grouped into model-driven, data-

driven and hybrid-driven methods (Haala and Kada, 2010; Wang et al., 2018). 

A. Model-Driven Methods 

The model-driven methods take the building roof as a combination of a set of 

predefined primitives (e.g., a saddleback roof, sometimes with hip ends on one or both 

sides, pent, flat, tent and mansard roofs) (Huang et al., 2013; Kada, 2009; Kada and 

McKinley, 2009; Poullis and You, 2009b), as shown in Figure 2.1. Generally, the 

model-driven methods always start with the extraction and regularisation of building 

footprint boundaries. The regularised footprints are then decomposed into a set of 2D 

cells, and points corresponding to each cell are fitted by the primitives in the 

hypothetical model library with appropriate parameters. Finally, the building rooftops 

are automatically reconstructed by gluing the most fitted primitives with a set of 3D 
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Boolean operations (Rivers et al., 2010). 

 

Figure 2.1 The basic primitive libraries defined in model-driven methods. 

The boundaries of building footprints are generally extracted by conducting 2D 

alpha-shape (Liang et al., 1998) or ball-pivoting (Medeiros et al., 2004) algorithms on 

projected points, or from Delaunay triangulations (Maas and Vosselman, 1999). As the 

initial boundaries always have zig-zag shapes (Du et al., 2017; Poullis, 2013), 

simplification or regularisation of the initial boundaries is required. According to Xie 

et al. (2018), the boundary simplification and regularisation can be grouped into origin 

points using selection-based, local data fitting-based and dominant orientation-based 

methods. The Douglas Peucker (Douglas and Peucker, 1973) method is one of the 

most commonly used selection-based methods. This algorithm uses perpendicular 

distance as a global indicator. Points with a deviation exceeding a predefined threshold 

are kept and treated as the vertices constituting the final boundary. The second class 

of methods first detects line segments from the original boundary and then assembles 

them to from a closed polygon. Some researchers used the Douglas Peucker method 

to divide the original boundaries into a set of polylines and then further strengthened 

these polylines by fitting them with line segments (Jung et al., 2017; Kim et al., 2007). 
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In the third class of methods, the Manhattan assumption (Coughlan and Yuille, 2001) 

is adopted to produce simplified and regularised boundaries (Gross et al., 2005; Ma, 

2005). It first detects the dominant direction of the building by, e.g., intersecting 

horizontal lines in 3D space (Vosselman, 1999) and rectangle fitting (Gross et al., 

2005), and then enforces the rectangular shape constraints on the segments.  

The regularised boundaries of building footprints are then decomposed into a set 

of 2D cells, which are mostly non-intersecting and quadrangular sections (Brenner and 

Haala, 1998; Kada, 2009; Kada and McKinley, 2009; Vosselman and Dijkman, 2001). 

The reconstruction of building rooftops with complex structures is then reduced to the 

simple subtasks of determining roof types and estimating model parameters, for which 

solutions already exist. For instance, Poullis et al. (2008) used the Gaussian mixture 

model (GMM) for elevation distribution to estimate the parameters of primitives 

during the determination of the best fitting ones. Kada and McKinley (2009) 

determined the roof types based on the normal directions of roof surfaces and 

estimated the parameters based on one eaves height and up to two ridge heights. The 

Reversible Jump Markov Chain Monte Carlo model was used by Huang et al. (2013) 

to determine and fit the parametric primitives to the input data. However, as the 

predefined primitives were not able to capture all of the roof structures, interactive 

manual editing was often required (Brenner and Haala, 1998; Kada and McKinley, 

2009). Henn et al. (2013) proposed a model-driven method that used machine learning 

to determine the roof types and an enhanced RANSAC to estimate the model 

parameters, making the reconstruction of linear roof structures fully automatic. 

The model-driven methods provide an efficient and robust solution for 

reconstructing building rooftops, which can be presented by a combination of specific 

basic primitives. However, building rooftops, especially buildings in a metropolis, 

always have complex and arbitrary structures, making them unique from others, which 

limits the scalability of model-driven methods. 
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B. Data-Driven Methods 

Over the past two decades, many data-driven methods have been proposed with 

various strategies and technologies (Wang et al., 2018). A common idea in data-driven 

reconstruction is to extract the planar primitives, compute the pairwise intersection 

lines and then validate the corner points (Dorninger and Pfeifer, 2008; Maas and 

Vosselman, 1999; Vosselman, 1999; Vosselman and Dijkman, 2001). However, it can 

be non-trivial to guarantee that more than two intersection lines join at the same corner 

point and sometimes manual interferences are needed (Dorninger and Pfeifer, 2008). 

Sohn et al. (2008) proposed a method that used a binary space partitioning (BSP) tree 

to divide the building boundary into a set of small planes based on linear features, 

including step lines and intersection lines. These small planes were then used to build 

a plane adjacency graph and merged based on their normal directions. Jung et al. (2017) 

also used BSP to recover the topologies between primitives and regularised the 

building rooftop in a framework of minimum description length in combination with 

the hypothesize and test procedure. Methods adopting BSP can avoid complicated 

computation of intersections and produce rooftop models without topological errors, 

but erroneous linear features can lead to irregular shapes and corners. Sampath and 

Shan (2010) restored the interior corners of building rooftops using an adjacency 

matrix, where the adjacent relationships between planar primitives were determined 

based on the Voronoi diagram of the points. In this method, the flat roof planes that 

were not adjacent to any other roof planes, were regularised separately, which might 

lead to crack effects in stepped roof structures. 

Many methods have been proposed specifically for the reconstruction of high-

rise flat-roof buildings (Matei et al., 2008; Poullis, 2013; Poullis and You, 2009a; Zhou 

and Neumann, 2008). These methods generally involve the regularisation of 

boundaries extracted from individual flat roof primitives, which can be referred to the 

regularisation of building footprints. For instance, Zhou and Neumann (2008) 

determined the dominant directions based on the tangent directions of the original 
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boundary and then regularised the boundary by snapping the points on the original 

boundary to the dominant directions. Poullis (2013) determined the dominant 

directions based on the local tangent directions and constructed a GMM. The original 

boundary was then regularised by classifying the boundary points using a graphical 

model. The primitive boundaries were still extracted and regularised separately, which 

resulted in crack effects in the final models. To reduce crack effects, the boundary 

between two planar components of a building was extracted as one polyline using the 

subgraph of the Voronoi diagram in the work of Chen et al. (2014; 2017). The 

topological relationships between the flat roof components were well preserved and 

watertight and compact models could be produced, however, the topological 

relationships between roofs with large height jump could not be accurately restored. 

Methods have also been proposed for the reconstruction of non-linear roof 

structures. Generally, these methods were designed to produce watertight building 

models where the roofs were presented by simplified triangular meshes. Thus, 

triangulation processing methods, e.g., vertex decimation, vertex clustering and edge 

collapse (Haala and Kada, 2010; Wang et al., 2018), were often used in such methods. 

Lafarge and Mallet (2012) extracted planar, spherical, cylindrical and conoidal shapes 

from the point clouds by region growing and iterative non-linear minimisation. The 

primitives of different shapes were modelled as mesh-patches and intersected with 

adjacent ones to form the hybrid building roofs. Zhou and Neumann (2010) proposed 

a more general method using a 2.5D dual contouring (2.5D D-C). In this method, the 

points were first converted into surface and boundary Hermite data based on a 2D grid. 

The triangular mesh was created by computing a hyper-point in each quadtree cell and 

simplified by collapsing subtrees and adding quadratic error functions associated with 

leaf cells. Finally the mesh was closed by connecting hyper-points with surface and 

boundary polygons to generate a watertight mesh model. This method was extended 

by Zhou and Neumann (2011; 2012) to generate building mesh models with better 

topology control and global regularities. 
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The main advantage of data-driven methods is that they can reconstruct building 

rooftops with arbitrary and complex structures and are not restricted to a predefined 

primitive library. However, a specific data-driven method is always only applicable to 

certain types of buildings and might have drawbacks in terms of the topological 

correctness, sensitiveness to data quality and computation cost (Wang et al., 2018). 

C. Hybrid-Driven Methods 

The hybrid-driven reconstruction of building rooftops is a combination of the 

data-driven and model-driven methods. Such methods generally decompose the 

building rooftops into planar primitives and store the topological relationships 

between the primitives using a roof topology graph (RTG), as shown in Figure 2.2. 

The nodes of an RTG denote the primitives and the edges denote the adjacency 

relationships between the primitives associated with topologies. The advantage of the 

RTG is that it can encode topologies and knowledge as constraints into the procedure 

of determination of essential features, such as roof types, heights, ridge directions and 

corner points so that the rooftops can be reconstructed with more accuracies and 

rationalities.  

 

Figure 2.2 Roof topology graphs (RTGs) defined in hybrid-driven methods. 

RTGs have been used to reconstruct building rooftops from images (Ameri and 

Fritsch, 2000), and Verma et al. (2006) introduced it into the reconstruction based on 
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point clouds. In the work of Verma et al. (2006), an RTG was established for each 

building, where the edges of the RTG were categorised into three groups based on the 

normal directions of corresponding primitives connected by the edges. Similarly, 

RTGs were also established for a set of simple sub-roof structures. Thus, the simple 

sub-roof structures constituting a complex roof could be recognised by subgraph 

matching with a brute-force search. Parts of the complex RTG that could not be 

matched were regarded as rectilinear objects and modelled based on their regularised 

outlines. Elberink (2009) and Elberink and Vosselman (2009) extended the library of 

the sub-roof structures and proposed a target-based graph matching method that could 

handle both complete and incomplete data. However, over- or under-segmentation of 

the roof planes, loss of roof planes and a lack of basic primitive models can cause 

incorrect matching in these methods. To correct the topological errors in RTGs, Xiong 

et al. (2014; 2015) identified four types of errors, i.e., false node, missing node, false 

edge and missing edge, and proposed a graph edit dictionary to correct such errors, 

but manual editing was required during the correction. Jarza˛bek-Rychard and 

Borkowski (2016) proposed an unambiguous decomposition method for building 

rooftop reconstruction. In this method, the basic model library contained a set of 

structure-dependent soft modelling rules rather than strict geometric primitives. 

Therefore, this method was more flexible than previous ones and a balance could be 

achieved between reconstruction precision and regularity. However, the RTG-based 

matching was still error-prone, and the scalability was limited by the predefined library.  

Instead of decomposing buildings into primitives with fixed structures, Lin et al. 

(2013) decomposed buildings with a hierarchy tree, where the top-level was blocks 

with closed surfaces, the middle level was pairs of surface patches and the bottom-

level was surface primitives labelled as wall, roof and column. The buildings were 

decomposed progressively based on this hierarchy tree and reconstructed with hard 

constraints on different levels. This hierarchy presentation of buildings made this 

method flexible enough for the reconstruction of buildings with various styles and 
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even with incomplete data. However, the hard constraints enforced in the procedure 

(e.g., about the symmetry), do not always exist in real situations. Hu et al. (2018b) also 

adopted a hierarchical decomposition strategy. This method first partitioned the RTG 

into sub-graphs, called structures, according to the convexity and concavity of the 

edges, and the structures were composed of a set of planar primitives. The structures 

were further refined according to gestalt laws, so that all of the structures could be 

presented as understandable sub-RTGs.  

2.3.2 3D Reconstruction of Buildings 

Unlike the reconstruction of building rooftops, the reconstruction of entire 

buildings as true 3D models using point clouds has not been intensively investigated. 

A review of the methods developed for the 3D reconstruction of buildings is presented 

below. 

One strategy of the existing methods is to model the building surface based on 

information derived from a series of horizontal contours. Following the idea of 

generating a topological surface model based on a contour tree (Wu et al., 2015a), Wu 

et al. (2017) proposed a method that reconstructed 3D building models using a graph-

based localised contour tree. This tree stored the topological relationships between the 

contours that were extracted from a normalised digital surface model (nDSM) with a 

constant interval. Surface models between every two contours connected in the tree 

were generated through weighted bipartite graph matching, and the building model 

was then generated by integrating all of the surface models. The interval between 

contours was important in this method: whereas a small interval can hinder 

computational efficiency, a large interval might lead to inaccuracies at the junctions 

between different building parts and the loss of small building structures. Instead of a 

constant contour interval, Yi et al. (2017) selected key contours based on the 

distribution histogram of boundary points in an upward direction. These key contours 

were regularised by decomposing them into linear primitives and fitting them with 
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constrained line segments. This method was efficient and able to reconstruct building 

models in a large-scale area with full automation, but the fundamental contour 

processing was sensitive to noise and short segments.  

A more frequently adopted strategy is to partition 3D space into basic units, e.g., 

3D faces, boxes and polyhedral cells, based on the planar primitives derived from the 

buildings, and then to select the optimal set of basic units to approximate the buildings. 

Verdie et al. (2015) partitioned the enveloping space of building meshes into 

polyhedral cells and considered the selection of occupied cells (cells that were inside 

the building meshes) as a binary labelling problem, which was formulated by a 

graphical model and solved via the max-flow algorithm (Boykov and Kolmogorov, 

2004). To reduce the complexity of accurately computing the probability of each cell 

being occupied, the 3D space was presented with the assistance of a set of discrete 

anchors (the corner points of a uniform grid), and it could easily be determined 

whether they were inside the building mesh or not. The adoption of discrete anchors 

made this method free of complex geometric computation, but the number of anchors 

could be extremely huge for large buildings, which might harm the efficiency of this 

method. To avoid this dilemma, Li et al. (2016a) partitioned the 3D space into boxes 

aligned to the building’s dominant direction. These boxes could be easily computed to 

be inside, outside or intersecting with the building meshes based on the eight corners, 

with the total number of boxes remaining acceptable. Li et al. (2016b) revised the box 

selection metric to a data fitting score computed based on the six faces of each box 

and the corresponding supporting points. An MRF formulation was adopted to make 

the optimal selection of boxes in terms of fitting scores and the connections between 

boxes. However, it is obvious that these two methods are only applicable to scenes 

that satisfy the Manhattan world assumption. Nan and Wonka (2017) proposed a more 

general method called PolyFit. PolyFit generated a set of hypothetical faces by 

intersecting planes extracted by RANSAC and selected faces that best approximated 

the building surface using binary integer linear programming. A hard edge constraint 
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that an edge must be connected by zero or two faces was encoded in the global energy 

formulation, to make the final model manifold and watertight. However, PolyFit was 

only intended for the reconstruction of simple polygonal surfaces, and in practical 

applications, this method might encounter computational bottlenecks with complex 

objects (Nan and Wonka, 2017).  

Although the above studies have made certain achievements, their performances 

were hindered by their own limitations. The automatic generation of true 3D models 

of various buildings in large-scale scenes remains a challenging task. In addition, all 

of the above methods stopped at restoring the building geometries. Further efforts, 

such as converting the geometric models into CityGML models for GIS applications, 

have rarely been made. 

2.4 Summary of Related Work 

Generally, three types of relations are considered in previous research. These 

three types of relations and their major usages in previous studies are summarised in 

Table 2.1. 
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Table 2.1 Summary of relations used in previous studies. 

Relation type Usage References 

Geometric 

relations 

Geometric homogeneity in terms 

of basic geometric properties, 

e.g., coordinates and normals. 

In segmentation: to decide if 

two points should be assigned 

to the same segment. 

(Papon et al., 2013; 

Schnabel et al., 2007; 

Tarsha-Kurdi et al., 2007; 

Vosselman et al., 2004) 

Orientation-based relations, e.g., 

parallelism, orthogonality, co-

plnarity and symmetry 

2D: Boundary regularisation. 
(Xie et al., 2017; Yi et al., 

2017) 

3D: Refinement of building 

planes. 

(Li et al., 2016b; Verdie et 

al., 2015) 

Contextual 

relations 

Class-oriented relations, e.g. roof 

is above building façade. 

Used as knowledge-based rules 

in the refinement of 

classification. 

(Verdie et al., 2015; Xu et 

al., 2014; Zhu et al., 2017) 

Label-oriented (the labels do not 

necessarily have physical 

meanings, e.g., a series of 

numbers.) 

In graph-based partitioning. 
(Landrieu and 

Simonovsky, 2018) 

In graph-based classification 

framework. 

(Luo et al., 2018; 

Niemeyer et al., 2013, 

2014; Vosselman et al., 

2017; Zhu et al., 2017) 

Topological relations 

Building structure analysis. (Wu et al., 2017) 

In hybrid-driven reconstruction 

of building rooftops. 

(Elberink, 2009; Elberink 

and Vosselman, 2009; 

Jarza˛bek-Rychard and 

Borkowski, 2016; Verma 

et al., 2006; Xiong et al., 

2014; Xiong et al., 2015) 

In 3D Reconstruction of 

buildings. 

(Li et al., 2016a; Li et al., 

2016b; Nan and Wonka, 

2017; Verdie et al., 2015) 

 

Figure 2.3 summarises the representative segmentation and classification 

methods as they are quite relevant. Segmentation is always performed before 

classification to obtain the primitives to be classified. However, the segments are 

generally input as pure geometric primitives without any physical meaning: in most 

existing methods, only simple contextual relations are captured by the edges of MRF 
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or CRF models. In the reference step, the unary features extracted from individual 

primitives play a decisive role; this might lead to inaccurate results, as the relations 

between the primitives and their environments are ignored. To introduce more 

relations into the essential reference step, and to enrich the relations used for the 

classification refinement, structural primitives should be generated and used to 

interpret the point clouds instead of pure geometric primitives; this is an objective of 

this research. 

The existing building reconstruction methods, as well as their limitations, are 

summarised in Figure 2.4. Although many methods have been developed in the past 

two decades, most of them only focus on the reconstruction of building rooftops. A 

number of methods investigate the reconstruction of buildings as a whole, but is 

applicable to large-scale scenes with various and complex buildings. In addition, few 

efforts have been made to investigate the generation of CityGML models that could 

be used in GIS applications. Therefore, one of the major objectives of this research is 

to reconstruct true 3D CityGML models in large-scale scenes with various and 

complex buildings by considering the geometric and topological relations between the 

building structures. 
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Figure 2.3 Summary of representative segmentation and classification methods. The 

coloured lines refer to different classification methods. 
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Figure 2.4 Summary of representative 3D reconstruction methods. 
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Chapter 3 Segmentation of Point Clouds Based on 

Multiple-Level Relations 

Objects are formed by various structures of different shapes (e.g., linear, planar 

and scatter shapes) and such structural information is essential for the recognition of 

objects, especially for objects presented with abundant details, such as the street 

facilities presented in MLS data. However, in previous studies, structural information 

has rarely been exploited to improve the precision of distinguishing between objects 

with global or local similarities, such as traffic signs and traffic lights. In addition, the 

defects of point clouds (e.g., the great data volume, anisotropy of point density and 

noise) and the complexity of scenes and objects make the decomposition of objects 

into physically meaningful structures remain a challenging issue. Hence, an effective 

segmentation method is first proposed in this research to decompose objects into 

different structures with physically meaningful labels. This method takes advantage of 

multiple-level relations, so that it is robust to data noise and the variations in point 

density and is capable of handling large-scale point clouds. 

Below presents the developed structrual segmentation method. Section 3.1 first 

gives an overview of the method, where the multilevel relations are addressed. Section 

3.2 describes a novel adaptive noise filter that takes effect based on anisotropy of point 

density. Section 3.3 presents a supervoxel segmentation algorithm that takes 

advantages of geometric relations at the point level. In Section 3.4, the supervoxels 

are further used to generate structural components based on a MRF framework, where 

the geometric relations and the contextual relations on the supervoxel level are 

encoded. Section 3.5 provides a summary of this chapter. 

3.1 Overview of the Point Cloud Segmentation Method 

The first step of the proposed segmentation method is to filter ground points using 

an adaptive surface filter proposed by Hu et al. (2014) to simplify long-range 
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connections between ground objects. A novel adaptive noise filter based on the density 

anisotropy at the point level is subsequently implemented on the non-ground points to 

further refine the connections between close objects. The remaining points are then 

segmented through two steps. In the first step, the non-ground points are partitioned 

into multi-size supervoxels through a coarse-to-fine seed selection process and a 

supervoxel expansion process based on relations in terms of point distance, angle 

between normal vectors and colour similarities (if colour exists), followed by 

recovering the adjacency relationships between supervoxels. In the second step, three 

shape descriptors, corresponding to linearity, planarity and scattering, are firstly 

derived from supervoxels and used to establish a MRF model, where the contextual 

information at the supervoxel level is encoded. The labelled supervoxels are finally 

clustered into structural components by region growing, according to the consistency 

of their labels. Figure 3.1 gives an overview of the proposed segmentation method. 

 

Figure 3.1 Overview of the segmentation method. The red dashed lines indicate there 

are relations encoded in the corresponding steps. 
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3.2 Adaptive Noise Filtering based on Density Anisotropy of Points 

The presence of noise poses a serious problem for the interpretation of point 

clouds and therefore needs to be removed as a pre-processing step. However, the point 

density of point cloud data always varies with the changing scanning distance, which 

is especially obvious for MLS and TLS data, and this is likely to make points located 

in sparse areas be removed by some common noise filters, e.g., the Statistical Outlier 

Removal (SOR) filter (Rusu et al., 2008) or the Radius Outlier Removal (ROR) filter 

(Rusu, 2018) in Point Cloud Library (PCL) (Rusu and Cousins, 2011).  

Although the point density varies, the variation is believed to be continuous on 

the same object surface. And based on this assumption, an adaptive noise filter is 

proposed in this research. In this algorithm, points with low density isotropy are 

considered as outliers and will be removed. The definition of density isotropy is as 

follows. First, find the k nearest neighbours for each point p in a given point set  (as 

shown in Figure 3.2 (a)) and record the maximum distance dmax between p and its k 

nearest neighbours. Second, for each p  , compute the average value of dmax of its 

k nearest neighbours, denoted as rs (as shown in Figure 3.2 (b)), and the density 

isotropy of p is defined as Equation (3-1). 

  (3-1) 



Chapter 3 Segmentation of Point Clouds Based on Multiple-Level Relations 

36 

 

Figure 3.2 The computation of density isotropy. The red point refers to an outlier, the 

green and blue points refer to points in dense and sparse areas, respectively. 

Generally, for points located in areas with even point density, rs is likely to be 

similar to, or even larger than, dmax, resulting in greater density isotropy Disotropy, even 

for points located in sparse areas, such as the blue point in Figure 3.2. Only points with 

Disotropy lower than a given threshold  are treated as outliers, as the red point shown 

in Figure 3.2, no matter it is located in dense or sparse areas. Theoretically, excluding 

heavier noise requires a larger . 

Compared to SOR and ROR filters, this adaptive noise filter provides a good 

trade-off between the capability of removing outliers and preserving the density 

consistency of the point cloud, as shown in Figure 3.3. In the comparison, k is set 20 

and  is set 0.5 for the adaptive noise filter. The k nearest neighbours is also set 20 for 

SOR filter and the standard deviation multiplier is set 1.0. For the ROR filter, the 

radius is set 0.3 and the minimum number of neighbours in radius is set 3. 
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Figure 3.3 Adaptive noise filtering result of point cloud with great variations in point 

density and comparisons with SOR and ROR filters.  

3.3 Generation of Supervoxels based on Point Relations 

The supervoxel segmentation algorithm in this research is an extension of the 

VCCS (Papon et al., 2013). Instead of fixed supervoxel seed resolution as in the VCCS, 

the developed algorithm adopts a coarse-to-fine seed selection strategy to make the 

supervoxels adaptive to the varying density of the point clouds. The coarse-to-fine 

seed selection process constrains the sizes of the supervoxels to be neither too large 

nor too small. If the supervoxels are too large, the segmentation might bestride 

boundaries between objects, and if too small, the features derived from the supervoxels 
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become meaningless. Then the supervoxels are generated by expanding the seeds with 

adaptive resolutions based on the relations at the point level. During the expansion, 

the adjacencies between supervoxels are also determined by the neighbouring 

relationships between the occupied points. 

3.3.1 Coarse-to-Fine Seed Selection 

For a point set  = {p1, p2, …, pn}, the purpose is to generate a set of supervoxels 

 = {V1, V2, …, Vm}, where each Vi = {p | p  } should contain sufficient points for 

local feature computation. Simultaneously, the size of Vi should not be too small so 

that it can effectively capture the local geometries at an appropriate scale. In other 

words, there are two constraints on the size of supervoxel Vi as shown in Equation (3-

2). 

  (3-2) 

where Ki is the number of points contained in Vi, and ri is the maximum size of the 

bounding box of Vi. Kmin and rmin are user-defined thresholds. 

First, based on the constraint Ki ≥ Kmin, the maximum seed resolution rmax can be 

determined as the following equation. 

  (3-3) 

where is the Kmin nearest neighbours of p and dmax(p,  ) denotes the 

maximum distance between p and . 

Then, a coarse octree is built based on the maximum seed resolution rmax and the 

coarse seeds Seed0 are selected as points that are closest to the centroids of the leaf 

nodes in the coarse octree. The coarse seeds Seed0 are then traversed individually. For 

each seed si  Seed0, the number of points occupied by corresponding octree leaf node 

is noted as Ki. If Ki is larger than 4Kmin (4Kmin is used here because in an octree built 

from point clouds, the number of points occupied by a node is generally a quarter of 

the number in its parent node), this leaf node will be further split into a deeper octree 
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structure with a corresponding resolution of rmax/2
n (n is the difference between the 

current octree depth and the depth of the coarse octree), as shown in Figure 3.4. The 

new seeds are then selected as the points closest to the centroids of all of the leaf nodes 

in the new octree. The traversing is repeated until all of the leaf nodes in the octree 

contain points less than 4Kmin or the supervoxel resolution ri becomes smaller than rmin. 

 

Figure 3.4 Coarse-to-fine supervoxel seed selection based on an octree structure. 

3.3.2 Supervoxel Expansion with Point Relations 

After the coarse-to-fine seed selection, a set of points is selected from  as the 

final seeds of supervoxels, denoted as s = {s1, s2, …, sm}, with corresponding multiple 

resolutions r = {r1, r2, …, rm}. Simultaneously, the initial centroids of supervoxels  

= {V1, V2, …, Vm} are determined by the seeds. The supervoxels are then expanded 

using a similar iterative strategy as the VCCS (Papon et al., 2013). In each iteration, 

the point relations are used to determine whether or not the k nearest neighbours  
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of a point pnew, which is newly assigned to a supervoxel V in the last iteration (pnew is 

the seed point in the first iteration), should be assigned to supervoxel V. The point 

relations are used to measure the homogeneity H(p, V) between a point p and the 

centroid of a supervoxel V in terms of coordinate, normal and colour (if colour exists), 

which are formulated as the following. 

  (3-4) 

  (3-5) 

where dEu (p, c) is the Euclidean distance between point p and the supervoxel centroid 

c, r is the resolution corresponding to the seed of supervoxel V,  (np, nV) denotes the 

angle between the normal of p and V, Cp and CV are corresponding colour vectors with 

RGB channels and m is the grayscale of single colour channel. 

The coordinate relation constrains the final supervoxels to be compact, the 

normal relation helps to preserve sharp features during the expansion, and the colour 

relation enhances the local homogeneity in addition to geometric properties. Instead 

of an adjacent octree as in the VCCS, the k-NN search is adopted to determine the 

neighbouring relationships between points during the expansion. In each expansion 

iteration, for two adjacent points pi  Va and pj  Vb, expansion operation (reassigning 

pj to Va) will be performed if H(pj, Va) < H(pj, Vb). Note that, pi and pj are regarded as 

adjacent only when they are mutually in each other’s k nearest neighbours as 

illustrated in Figure 3.5. If points pi and pj are adjacent and they belong to two different 

supervoxels, the supervoxels are also regarded as adjacent (as shonw in Figure 3.5 (b)). 

The pseudo-code for the supervoxel expansion is shown in Table 3.1. 
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Figure 3.5 Recovery of adjacency between points and supervoxels. The red and 

green points refer to two different supervoxels. 

Table 3.1 Pseudo-code for supervoxel expansion. 

Algorithm: Supervoxel expansion 

Input: The point cloud ; supervoxel seeds s; seed resolutions r. 

Output: the supervoxels  with adjacent relationships e. 

1:  Initialize: Vi = {si} (i = 1, …, |s|); e = ; 

            point pn’s (pn  ) adjacent neighbourhood:  = {p | pn }; 

            Vi’s ambiguous neighbourhood = {V| dEu(V,Vi) < rmax}; 

            the index of supervoxel occupying point pn  : VIdxn = -1; and the distance 

between them dVn = ; 

            Exchanged points P = . 

2:  for i = 0 to || - 1 

3:     search nearest point pn  ; dVn =H(pn, Vi); VIdxn = i. 

3:     push pn to P: P  pn. 

4:  end for 

5:  while P   

6:     old_P = P; P =  

7:     for j = 0 to | old_P| - 1 

8:         for n = 0 to | |- 1 

9:             for i = 0 to | |-1 

10:                if H(pn, Vi) < dVn 

11:                     push pn to Vi: Vi  pn; erase pn from ; 

13:                     push pn to P: P  pn.; dVn = H(pn, Vi); VIdxn = i 

14:                 else 

15:                     push e = (VIdxn, i) to e: e  e; if e  e. 

16:                 end if 

17:             end for 
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18:        end for 

19:    end for 

20:  end while 

21:  returen  and e 

 

Figure 3.6 demonstrates the process of coarse-to-fine seed selection and the result 

of supervoxel expansion. Each point in the final seeds corresponds to a leaf node in 

the multiple-resolution octree (see Figure 3.4). The points contained by the leaf nodes 

constitute the initial supervoxels as shown in Figure 3.6 (a). These supervoxels might 

bestride boundaries between object as shown in the magnified view in Figure 3.6 (a). 

But from Figure 3.6 (b) it can be seen that, the sharp corners are finally well preserved 

by expanding supervoxels with point-level constraints. The adjacencies between 

supervoxels are also correctly recovered as shown in Figure 3.6 (c). 

 

Figure 3.6 The process of coarse-to-fine seed selection and the result of supervoxel 

expansion. 
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3.4 Generation of Structural Components based on Supervoxel 

Relations 

To generate structural components, the supervoxels with adaptive sizes are first 

classified into three structural categories, namely linearity, planarity and scattering, 

via an MRF framework, where the contextual relations at the supervoxel level are 

encoded. Then by region growing, the supervoxels with the same structural labels are 

clustered into structural components, of which the structural labels are inherently 

obtained from the corresponding supervoxels. 

3.4.1 Structural Labelling via MRF 

To label the supervoxels into different structural classes, the local geometric 

characteristics corresponding to linearity, planarity and scattering are measured by 

three local shape descriptors, which are defined based on the eigenvalues derived from 

the covariance matrix through the principle component analysis (Jolliffe, 2011). 

Different definitions of the shape descriptors are found in the work of Weinmann et al. 

(2014), Hackel et al. (2016) and Yang et al. (2015), but it is noted that the definition 

of Yang et al. (2015) has better ability of describing the scatter property of points as 

shown in Figure 3.7. Therefore, in this research, three shape descriptors fl, fp and fs 

describing the linearity, planarity and scattering of points are computed as defined in 

the work of Yang et al. (2015) and have the following formats. 

  (3-6) 

where 1 > 2 > 3 are the eigenvalues derived from the covariance matrix of each 

supervoxel. 
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Figure 3.7 Capabilities of differently defined shape descriptors of measuring local 

geometric characteristics. 

The structural labelling of the supervoxels can be determined by the three shape 

descriptors. To make the structural labelling spatially smooth, contextual relations at 

the supervoxel level are introduced to an MRF framework. Let x be the set of nodes 

that correspond to the supervoxels and let e be the set of edges that correspond to the 

adjacency relationships between supervoxels. A graphical model G(x,e) is therefore 

established. The global energy of G(x,e) is formulated as Equation (3-7). 

  (3-7) 

where y is a labelling configuration whose value space is  = {linearity, planarity, 

scattering}, i  x corresponds to a supervoxel, (i, j)  e corresponds to the edge 

between two adjacent supervoxels, and  (  (0,1)) is a constant parameter used to 

adjust the effectiveness of pairwise interactions.  

The unary potentials presenting the fidelity to the local geometric characteristics 

are given as Equation (3-8). 

  (3-8) 
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And the pairwise terms defined based on Potts model (Li, 2009) are given as 

  (3-9) 

where 1[•] is a binary function that equals to 0 if yi = yj, otherwise, 1[•] equals to 1. 

The minimum global energy minyE(y) is approximated using graph cuts with α-

expansion operations (Boykov et al., 2001) to obtain spatially smooth structural 

labelling y. 

3.4.2 Structural Component Growing 

After structural labelling, supervoxels with the same labels are merged into large 

segments, called structural components, by region growing (Vosselman et al., 2004). 

During the region growing, a supervoxel is first randomly selected as the seed of a 

structural component and its adjacent supervoxels are regarded as candidates. Only 

candidates having the same structural labels with the seed are merged into the 

structural components, and their adjacent supervoxels are pushed into the queue of the 

candidates. This process is repeated until no new candidates are found. Table 3.2 

shows the pseudo-code for the structural component growing. 
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Table 3.2 Pseudo-code for the structural component growing. 

Algorithm: Structural component growing 

Input: The supervoxels ; the structural labelling y; the adjacent relations between supervoxels e. 

Output: the structural components  with a corresponding structural labelling Y. 

1:  Initialize:  =; Y=.  

2:  Initialize: Remaining supervoxels ’ = ; remaining supervoxel labelling y’ = y.  

3:  while ’   

4:     Initialize: structural component S = {’0}; structural component label y = y’0. 

5:     erase ’0 from ’; erase y’0 from y’. 

6:     candidate supervoxels C ={V’| ee, e == (S0, ’i) && y’i == y }. 

7:     while C   

8:         for i = 1, …, |’| 

9:            if e = (C0, ’i) e && y’i == y 

10:              push ’i to C: C  ’i; push C0 to S: S  C0. 

11:              erase C0 from C. 

12:            end if 

13:         end for 

14:     end while 

15:     push S to :   S; push y to Y: Y  y. 

16:  end while 

17:  returen  and Y 

 

The label of the structural component is inherently obtained from the supervoxels 

constituting it. With the structural labels, the sizes of structural components 

corresponding to different shape categories may vary significantly, and this contributes 

to the semantic segmentation because the discrimination is enhanced. In the final result, 

if two adjacent supervoxels are in two different structural components, the 

corresponding structural components are also regarded as adjacent. Figure 3.8 (a) and 

(b) show the process of generating structural components from supervoxels via MRF, 

where the contextual relations between supervoxels are encoded. The results are 

compared with the results without using the contextual relations between supervoxels 

(as shown in Figure 3.8 (c)). It can be seen that adopting the contextual relations can 

significantly improve the consistency of the structural labelling and result in a more 
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reasonable decomposition of objects with structural components. 

 

Figure 3.8 Generation of structural components using contextual relations between 

supervoxels compared to the results without using the contextual relations between 

supervoxels. 

3.5 Summary and Discussion 

This chapter presents the segmentation method that decomposes objects into 

structural components by using multiple-level relations, which include density 

isotropy at the point level, geometric (and radisometric) homogeneity at the point level 

and contextual information at the supervoxel level. These point relations are exploited 

to tackle all the possible issues that may hinder the segmentation, and they take effect 
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at different stages of the segmentation and make the method more robust to noise and 

varying point density simultaneously compared with existing methods. The contextual 

information takes effect on the supervoxels via an MRF framework, resulting a 

spatially smooth and reasonable decomposition of the objects. Furthermore, because 

of changes of relations, such as the close distance between different objects, errors 

may be caused in the segmentation result. In fact, the adoptment of supervoxels and 

structural components provides a friendly way for interactive editing during manual 

quality control, which is inevitable in practice. 

The structural components generated from this stage help to understand the 

objects in the point clouds at the geometric level. The structural information derived 

from the components can further help to interpret the scenes at the semantic level as 

presented in the next chapter. 
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Chapter 4 Classification of Point Clouds Based on 

Contextual Relations 

Classification (or semantic segmentation) is the process of object recognition 

with respect to semantic classes (e.g., buildings, trees, cars, and so forth) and it plays 

an essential role in 3D city modelling (Lafarge and Mallet, 2012; Verdie et al., 2015). 

Although many efforts have been made in this field, most of them made the inference, 

which is the key step of classification, only based on information derived from 

individual entities (e.g., points, supervoxels and planar segments) (Mallet et al., 2008; 

Weinmann et al., 2015a; Weinmann et al., 2017). Contextual information has been 

used as knowledge-based rules or as a smooth constraint in graphical models 

(Niemeyer et al., 2014; Vosselman et al., 2017; Zhu et al., 2017), which, however, only 

takes effect during the refinement of the classification. 

In reality, objects can be very complex and formed by various structures of 

different shapes, especially for street facilities presented in MLS data with abundant 

details. Introducing structural information into the inference step of the classification 

can considerably improve the accuracy of classification. To this end, a point cloud 

classification method based on contextual relations between structural components is 

developed in this research. The contextual relations used here are specially associated 

with structural labels, namely linearity, planarity and scattering, which inherently 

exist in the structural components generated from the last stage. By taking advantage 

of such structural information, the proposed method can therefore distinguish between 

multiple classes of objects, even with local or global similarities. 

This chapter presents the developed point cloud classification method and is 

organised as follows. Section 4.1 shows an overview of the proposed method, where 

the contextual relations are embedded in a CRF framework. Section 4.2 presents how 

the contextual relations are abstracted as unary and pairwise features, which are further 

used to train two independent RF classifiers and make inferences corresponding to the 
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unary and pairwise potentials of the CRF, as described in Section 4.3. In Section 4.4, 

the global energy of the CRF is optimised with full-range contextual information. 

Finally, A summary of the proposed classification method and discussions are given 

in Section 4.5.  

4.1 Overview of the Point Cloud Classification Method 

The proposed point cloud classification method is to assign a semantic label (e.g., 

building, trees, cars, and so forth) to each structural component through a high-order 

CRF framework as shown in Figure 4.1. The high-order CRF is established on the 

basis of supervoxels and structural components generated from the segmentation stage, 

and high-order regions further defined on the basis of structural components. 

Contextual relations derived from these multiple entities, which inherently have 

structural labels (linearity, planarity and scattering), are integrated into different parts 

of the high-order CRF to take effect in the inference and refinement steps of the 

semantic labelling. Finally, the semantic labelling result is combined with the ground 

points obtained from the segmentation stage to generate the final classification result. 

 

Figure 4.1 Overview of the classification method based on contextual relations 

embedded in a hierarchical CRF. 
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The high-order CRF framework is established based on an undirected graphical 

model (, , ).  and  are the set of nodes and edges corresponding to the 

structural components and the adjacency relationships between them, respectively.  

is the set of high-order regions generated by clustering adjacent or close structural 

components. The purpose of semantic labelling is to find a label configuration f that 

makes the global energy minimum as Equation (4-1). 

  (4-1) 

where the first and second terms on the right-hand side are the unary and pairwise 

energies computed with the unary and pairwise RF classifiers. The contextual relations 

derived structural labels and the differences between supervoxels and structural 

components are used as important information while training the RFs. The third terms 

are high-order interactions, capturing the long-range contextual information in terms 

of label redundancies. Detailed descriptions of the training and inference with unary 

and pairwise RFs and global energy optimisation with full-range contextual 

information, are given below. 

4.2 Discriminative Features Derived from Contextual Relations 

Feature extraction is an essential step in the classification framework based on 

the classic machine learning algorithms. However, many previous studies mostly 

focused on unary features extracted from individual entities, but ignored the contextual 

relations between the entities. Even though some methods benefited from encoding 

simple contextual information as pairwise features into the MRF or CRF for the 

refinement of classification, the effects were limited. Therefore, in addition to the 

features extracted from individual entities or simple contextual relations, this research 

also investigates the feature extraction from contextual relations with structural labels 

as both unary and pairwise features, with a purpose to obtain a more accurate inference 

result for the classification. 
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4.2.1 Unary Features 

In previous research, the unary features were generally extracted from individual 

entities and described the characteristics of entities independently. Extraction of such 

independent unary features have been extensively investigated and well-described in 

previous studies (Landrieu et al., 2017; Vosselman et al., 2017; Weinmann et al., 2015a; 

Yang et al., 2012; Zhu et al., 2017). Among such unary features, those pertaining to 

this work are summarised into three types, namely height, 2D and covariance, as 

shown in  

Table 4.1, and they are extracted independently from the structural components. 

Besides, the structural labels of the structural components are also considered as a 

useful unary feature in this research. 

Table 4.1 Unary features derived from individual structural components. 

Feature type Description Dimension 

Height Maximum and minimum heights above the ground. 2 

2D 
Area, perimeter and shape constraint (Yang et al., 2012) of the 

structural components projected on xy-plane. 
3 

Covariance 

Features derived from the covariance matrix via principle 

component analysis, including linearity, planarity, scattering, 

length, area, volume, omni-variance, anisotropy, eigen-entropy 

and change of curvature (Landrieu et al., 2017; Weinmann et al., 

2015a; Weinmann et al., 2017). 

10 

Structural 

label 
Structural label of the structural component. 1 

 

In addition, this research also investigates the extraction of unary features from 

contextual information to distinguish between structural components having similar 

appearances, but belonging to different objects, such as the poles of traffic lights and 

traffic signs. The contextual relations here are twofold.  

First, they include “above” and “below” relations derived from adjacent 

structural components with respect to structural labels, as shown in Figure 4.2. The 



Chapter 4 Classification of Point Clouds Based on Contextual Relations 

 

53 

“above” and “below” relations are defined based on the height features. For a 

structural component, if both the maximum and minimum heights are larger than those 

of its neighbour, it is “above” its neighbour, and if both less, it is “below” (such as the 

traffic sign, traffic light and tree shown in Figure 4.2). If there is no “above” or “below” 

neighbour (such as the building façade and its appurtenances shown in Figure 4.2), the 

corresponding feature is set as 0. If there is more than one neighbour, the closest one 

is then selected.  

 

Figure 4.2 "Above" and "below" relationships between structural components. 

Second, they refer to the geometric differences between structural components 

and their occupied supervoxels as shown in Figure 4.3. This kind of differences 

presents the geometric variations of structural components from local to global scales 

and this can be an essential clue for object recoginisation. For example, for a thick tree 

trunk, the local geometry might be planar if the diameter of the trunk is much larger 

than the supervoxel sizes, but as a whole, the trunk presents a linear shape. It is similar 

to the tree branches and cars, which have linear and planar shapes at local scales but 

scatter shapes at the global scales.  
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Figure 4.3 Geometric differences between structural components and their occupied 

supervoxels.  

The detailed descriptions of the unary features derived from contextual relations 

are shown in Table 4.2. All of the unary features shown in Table 4.1 and Table 4.2 are 

normalised to the interval of [0~1] by the min-max normalisation (Ge et al., 2019). At 

this point, each node i   thus corresponds to a structural component with a 

normalised feature vector Xi. 

Table 4.2 Unary features derived from contextual relations. 

Feature type Description Dimension 

Features derived from structural labels of adjacent structural components 

Neighbours 

with linear 

labels 

2D shape constraint and length of above and below adjacent 

structural components labelled as linearity. 
4 

Neighbours 

with planar 

labels 

2D shape constraint and area of above and below adjacent 

structural components labelled as planarity. 
4 

Neighbours 

with scatter 

labels 

Volume of above and below adjacent structural component 

labelled as scattering. 
2 

Features derived from the differences between structural components and occupied 

supervoxels 

Covariance 

differences 

For each structural component, 10 covariance features are also 

derived from its occupied supervoxels. The differences are 

calculated by covariance features derived from the structural 

component minus the average value of those derived from the 

supervoxels. 

10 
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4.2.2 Pairwise Features 

Pairwise features are used here to directly describe the contextual relations 

between structural components. One type of pairwise features is defined on the basis 

of the intersecting points between adjacent structural components. The intersecting 

points refer to points occupied by two supervoxels that belong to different structural 

components as shown in Figure 4.4. Further information in terms of height, 2D and 

covariance are extracted from the intersecting points as pairwise features as shown in 

Table 4.3. Another type of pairwise features is derived from the structural labels of 

adjacent structural components. This type of pairwise features is abstracted as the 

combination of structural labels, including linearity-planarity, planarity-scattering, 

scattering-linearity, as described in Table 4.3. All of the pairwise features are 

normalised in the same way with the unary features and form a pairwise feature vector 

Xij for each pair of adjacent structural components (i,j)  . 

 

Figure 4.4 Intersecting points between adjacent structural components. 
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Table 4.3 Pairwise features extracted from adjacent structural components. 

Feature type Description Dimension 

Features derived from intersecting points 

Height 
Maximum and minimum heights of intersecting points above the 

ground. 
2 

2D 
Area, perimeter and shape constraint of the intersecting points 

projected on xy-plane. 
3 

Covariance 

Covariance features (e.g., linearity, planarity, scattering, omni-

variance, etc.) derived from the covariance matrix of intersecting 

points. 

10 

Features derived from structural labels 

Label 

combination 

Label combination types, i.e., linearity-planarity, planarity-

scattering, scattering-linearity (the combination is unordered). 
1 

 

4.3 Training and Inference 

At this stage, two independent RF classifiers are trained using the above 

described unary and pairwise features, respectively. The RF is a well-known bootstrap 

ensemble learning algorithm consisting of a number of randomised decision trees and 

it is adopted in this work for the following reasons. First, it is quite suitable for 

multiple-class classification and it can handle many features (Gislason et al., 2006), 

and second, it can provide a good trade-off between classification accuracy and 

computational efficiency (Hackel et al., 2016; Weinmann et al., 2017). 

With respect to the training of the RF classifiers, as noted by Landrieu and 

Simonovsky (2018), very small segments may harm the training of classifiers, 

therefore a minimum point number nmin = 40 (as in Landrieu and Simonovsky (2018)) 

is set for the selection of valid structural components as training samples. The unary 

RF is trained with feature vectors {Xi} to distinguish between multiple semantic 

classes, whilst the pairwise RF is only trained to learn whether the pairs of nodes 

connected by the edges belong to the same class based on feature vectors {Xij}. At the 
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same time, to guarantee an even distribution of sampling during the training, prior 

class probabilities are defined as the quotients of the total sample sizes dividing the 

maximum sample size. Table 4.4 shows an example of the sample size distribution of 

three classes, where the maximum sample size is 3079, and the prior class probability 

of each class is computed by the total sample size dividing the maximum sample size. 

In this research, each RF contains nT = 500 trees, and each tree is trained independently 

on a randomly selected subset of the training samples. The maximum depths of the 

trees are set as , where N (X) refers to the number of dimensions of feature 

vector X. 

Table 4.4 An example of the computation of prior class probabilities based on the 

size distribution of training samples. 

 
Linear 

sample size 

Planar 

sample size 

Scatter 

sample size 

Total 

sample size 

Prior class 

probability 

Building 1735 1165 179 3079 1 

Tree 176 23 28 227 13.56 

Car 173 59 15 247 12.46 

 

During the inference process, the feature vector X corresponding to a node or an 

edge of unknown class in the graphical model  is presented to the corresponding RF 

and each tree in the RF castes a vote for the most likely class. The unary energy in 

Equation (4-1) then is calculated based on the votes of trees in the unary RF using 

Equation (4-2). 

  (4-2) 

where Nfi (Xi) is the number of votes for the class labelled as fi based on the feature 

vector Xi,  is the total number of trees in the RF. 

For the pairwise issues, the RF is only used to determine whether the two 

connected nodes belong to the same class or not. Obviously, this designation will 
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markedly reduce the number of target classes so that the accuracy of the predictions 

of the pairwise RF will be improved. Similarly, the pairwise energy in Equation (4-1) 

is defined as 

  (4-3) 

where  refers to the number of votes for fi = fj (if fi = fj, 1[fi • fj] = 0) or fi  

fj (if fi  fj, 1[fi • fj] = 1), and  is the total number of trees in the pairwise RF. 

At this point, the unary and pairwise energies of the CRF model in Equation (4-1) 

are constructed, and these energies and the high-order energies introduced by regional 

label costs are further optimised as described below. 

4.4 Global Energy Optimisation with Full-Range Contextual Information 

The CRF provides a probabilistic framework for context-based classification. 

Relatively shorter-range contextual information has already been captured by the 

unary and pairwise energies of the CRF as described above. In this section, the longer-

range contextual information are investigated and modelled by the high-order energies 

of the CRF. So that global energy optimisation of the CRF can take advantage of 

considering full-range contextual information. 

4.4.1 Declaration of High-order Cliques 

Although the point density of the laser scanning point may vary with respect to 

the changes of scanning distance, the variation on the same object surface is believed 

to be consistent. Therefore, it can be assumed that the length of labels within a density-

consistent region should be as short as possible. During the expansion of supervoxels 

(see Section 3.3.2), the adjacency relationships between supervoxels are defined based 

on points that are mutually in each other’s neighbourhood. Therefore a density-

consistent region can be defined as a cluster of adjacent supervoxels. Simultaneously, 

as the structural components are clusters of adjacent supervoxels with the same 
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structural labels (see Section 3.4.2), which are the subsets of a density-consistent 

region, it is not hard to imagine that a density-consistent region is also a cluster of 

adjacent structural components as shown in Figure 4.5. Furthermore, small density-

consistent regions that contain fewer than 100 points are merged into the closest large 

regions if the shortest distance between them falls below a given threshold of 0.5 m 

(as shown in Figure 4.6), in order to reduce the fragmentation effect in the final 

semantic labelling result, which could be common on the far sides of the scanner, such 

as the tops of tree crowns and building facades. 

 

Figure 4.5 Density-consistent regions generated by clustering adjacent or close 

structural components. 
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Figure 4.6 Small density-consistent regions are merged into the closest large regions. 

At this point, each density-consistent region, noted as R, is generated as a set of 

structural components, which means R = {Si | Si  } (R  ). Therefore, the high-

order label cost (Delong et al., 2012), which measures the label redundancy within a 

density consistent region R, can be modelled with the high-order term H(fR) in 

Equation (4-1) as follow 

  (4-4) 

where is the per-label cost assigned to each label l (l  ,  is the namespace of 

the semantic labelling f) defined as in the work of (Luo et al., 2018), and  () is an 

indicator function formulated as 

  (4-5) 

4.4.2 Energy Optimisation 

The optimisation of the global energy with regional label cost can be NP-hard 

(Delong et al., 2012). But as the density-consistent regions are all spatially separated 

in this work, therefore there is no edge (i,j)   striding across a region R, the global 

energy of the CRF in Equation (4-1) can therefore be converted into the following 

format 
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  (4-6) 

where E   is the subset of edges that correspond to the adjacency relationships 

between structural components contained in R. 

Equation (4-6) transforms the problem of minimising the global energy of (, 

, ) with regional label costs into a problem of minimising the global energy of each 

subgraph G(R, E) with global label costs, as shown in Equation (4-7) and Equation 

(4-8). 

  (4-7) 

  (4-8) 

where f’ (f’  f ) is a labelling configuration for all of nodes in the subgraph G(R, E). 

The minimum energy presented by Equation (4-8) can be approximated using the α-

expansion algorithm, in which the label costs are encoded by a test-and-reject 

approach (Delong et al., 2012). The weighting parameter  is adjusted between the 

range of 0 ~ 1, and empirically,  being set between 0.3 ~ 0.5 leads to a reasonably 

smooth classification result. The other parameter  controls the weight of the label 

costs, and it imposes more costs on the number of used categories with a larger value. 

According to Luo et al. (2018), 20 ~ 120 is a reasonable range for the value of . In 

this research,  is set as 20 and it can effectively refine the fragmentation effect in the 

classification result as shown in Figure 4.7. 

After energy minimisation, a spatially smooth labelling, which assigns each 

structural component a semantic label, is obtained. These semantic labels are 

sequentially passed to the points, and the labelled points are fused with the ground 

points obtained from the segmentation stage to generate the final classified point cloud. 

Figure 4.7 shows the classification result of two test datasets using the high-order 

CRF compared with the results of the unary RF predictions and the pairwise CRF 
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(only the unary and pairwise energies are optimised). It can be seen that the unary RF 

prediction result has the heaviest fragmentation effect. The pairwise CRF, which 

considers more short-range contextual information, to some extent smoothens the 

semantic labelling result. And the high-order CRF is able to make the labelling 

spatially smooth, even for isolated segments, by taking advantage of full-range 

contextual information. 

 

Figure 4.7 Classification result of the high-order CRF ( = 0.3,  = 20) compared to 

the results of unary RF and pairwise CRF ( = 0.3). 

4.5 Summary and Discussion 

This chapter presents the contents of the three steps involved in the classification 

process via energy optimisation of a high-order CRF, which is established based on 

the supervoxels and structural components with structural labels. Multiple levels and 

types of contextual relations are derived and encoded into different parts of the CRF 

to make the classification accurate and spatially smooth. First, contextual information 

derived from the structural labels of neighbours, and geometric differences between 

the local and global scales, together with the general 2D and 3D information, are 

abstracted as unary features for the semantic inference of individual structural 

components. Second, contextual relations between structural components are derived 

from their structural labels and the intersecting points, in order to be used for the 
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pairwise inference judging whether or not two adjacent structural components belong 

to the same class. Long-range contextual information is modelled by the regional label 

costs, which are defined on the density-consistent regions and take effect or isolated 

fragments. 

The classified point cloud with semantic labels provides an intuitive 

interpretation about the scene presented. However, they cannot be directly used in GIS 

systems or applications because of its discrete property and great data volume. In 

consideration of such fact, the next chapter will further explore the generation of 3D 

models, which conform to CigyGML, from the classified point clouds. 
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Chapter 5 3D Reconstruction of CityGML Building 

Models Constrained by Topological Relations 

After the point cloud classification, the point clusters corresponding to specific 

classes can be extracted according to the semantic labels assigned to the points, which 

provide the fundamental data for the reconstruction of 3D objects. As buildings are the 

key features in urban areas, this research focuses on the 3D reconstruction of building 

models. This issue has gained increasing attention in academic communities in the 

past two decades, and various methods have been developed, including model-driven 

methods (Huang et al., 2013; Kada and McKinley, 2009), data-driven methods (Chen 

et al., 2017; Poullis, 2013; Sampath and Shan, 2010; Sohn et al., 2008; Vosselman and 

Dijkman, 2001) and hybrid-driven methods (Elberink and Vosselman, 2009; Lin et al., 

2013; Verma et al., 2006; Xiong et al., 2015). However, these methods only focus on 

the modelling of building rooftops and produce 2.5D building models. A recent trend 

that can generate true 3D building models is to partition the 3D space into a set of 

basic units and then use these basic units to approximate the building surfaces (Li et 

al., 2016a; Li et al., 2016b; Nan and Wonka, 2017; Verdie et al., 2015). However, the 

scalability of these methods is hindered by the lack of topological-relation constraints. 

In this research, an innovative method is developed for the 3D reconstruction of 

building models constrained by topological relations. This method adopts a space-

partition-and-approximation strategy, but unlike previous studies, the topological 

relations between the basic units, which can be regarded as Constructive Solid 

Geometries (CSGs) (Piekarski and Thomas, 2001), are extracted after the space 

partitioning and are then used as constraints in the approximation step to select the 

optimal basic units forming the CSG models of buildings. The topological-relation 

constraints enhance the fidelity of building models to the input point clouds, and to 

some extent, make the models regularised. The conversion from the CSG models to 

the CityGML models, a type of boundary representations, is also investigated in this 
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research to provide a complete pipeline of 3D building reconstruction for 3D GIS 

applications. 

This chapter is organised as follows. Section 5.1 presents an overview of the 3D 

building reconstruction method. Section 5.2 illustrates the generation of basic 3D cells, 

which are CSGs, based on a half BSP tree, where the geometric relations are used to 

regularise the space partition. Section 5.3 describes the extraction of topological 

relations between basic 3D cells as facet and edge features and the optimal selection 

of the basic cells that approximate the buildings. The polygonal models of buildings 

formed by the selected basic cells are then converted into CityGML models in Section 

5.4. Finally, a summary and discussions are given in Section 5.5. 

5.1 Overview of the 3D Reconstruction Method 

Figure 5.1 gives an overview of the 3D reconstruction method based on 

topological relations. This method consists of three steps. In the first step, planar 

primitives are extracted from the building point cloud by RANSAC and refined based 

on geometric relation constraints. The refined planar primitives are then used to 

partition the 3D space occupied by the building bounding box (the root CSG) into a 

set of basic cells (the leaf CSGs) based on a half BSP tree. The second step selects a 

set of cells that best approximates the building surface, and this can be modelled by a 

binary labelling problem and be solved by integer linear programming (ILP) (Schrijver, 

1998). Simultaneously, the topological relations between the cells are extracted as 

facet and edge features, which are encoded in the objective function and constraints 

of the ILP problem to make the modelling results more accurate and regularised. 

Taking advantage of CSGs that the objects are solid if all the primitive shapes are solid 

(Piekarski and Thomas, 2001), the polygonal models formed by the selected cells are 

guaranteed to be watertight. The last step analyses the surface features of the polygonal 

models conformed by the selected cells and decomposes the model surface into 

different components. These components are then recognised as specific surface types 
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defined by CityGML based on a set of rules, to finally produce 3D building models 

conforming to CityGML. 

 

Figure 5.1 Overview of the topological-relation constrained 3D reconstruction of 

CityGML building models. 

5.2 Generation of Cell Complex via 3D Arrangement 

In this reconstruction method, a set of 3D cells called a cell complex is used to 

present the 3D space occupied by the bounding box of a building. These cells have 

simple and convex geometries and are compactly connected with each other. The 3D 

cells are presented in the CSG way, therefore, a subset of the cell complex will 

facilitate the watertight and manifold polygonal modelling of buildings without any 

intersecting computation to determine the edges and corner points. The following 

presents the generation of the cell complex via a 3D arrangement with a set of planar 

primitives extracted from building point clouds. 

5.2.1 Extraction and Refinement of Planar Primitives with Geometric Relations 

Most buildings are constituted of planar components that conform to some 



Chapter 5 3D Reconstruction of CityGML Building Models Constrained by Topological Relations 

 

67 

common regularity rules in terms of geometric relations, e.g., parallelism, 

orthogonality, symmetry and so forth. If a building contains curved surfaces, they can 

be approximated by multiple planar surfaces. In this research, a set of initial planar 

primitives  = {P1, P2, …, Pn} are extracted using RANSAC (Schnabel et al., 2007) 

and simultaneously, the planar coefficients, including the normal vector ni and a 

distance coefficient di corresponding to each Pi  , are obtained.  

To enhance the regularities between the planar primitives, the initial planar 

primitives are refined based on a set of rules for geometric relationships, including 

parallelism, orthogonality, z-symmetry and co-planarity, as defined in Verdie et al. 

(2015). In addition, three more relations, verticality, horizontality and xy-parallelism, 

are also considered in this work. These six geometric relations are mathematically 

described in Table 5.1, with an angle threshold  and a Euclidean distance d. In Table 

5.1, nz denotes the unit vector in the z-axis and nxy denotes the projection of normal n 

on the xy-plane. 

Table 5.1 Geometric relations used to refine the building planar primitives. 

Relation type Description 

Horizontality Pi is vertical if  (ni, nz) < . 

Verticality Pi is vertical if  (ni, nz) > /2 - . 

Parallelism Pi and Pj are parallel if  (ni, nj) < . 

Orthogonality Pi and Pj are orthogonal if  (ni, nj) > /2 - . 

Z-symmetry Pi and Pj are z-symmetric if | (ni, nz) -  (nj, nz)| <.  

XY-Parallelism Pi and Pj are xy-parallel if  ( i, ) < . 

Co-planarity 
For two parallel plane primitives Pi and Pj, Pi and Pj are co-

planar if |di - dj| < d. 

 

As the geometric relations are mutually defined based on multiple planar 
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primitives, there can be conflicts between the geometric relations. For example, a 

planar primitive P can be parallel to Pi and, simultaneously, orthogonal to Pj, where Pi 

and Pj do not meet the orthogonality condition. To handle such conflicts, a geometric 

relation priority rank is defined as horizontality = verticality > parallelism > 

orthogonality > z-symmetry = xy-parallelism > co-planarity. Based on this priority 

rank, the initial planar primitives are refined as shown in Figure 5.2, where “//”, “⊥”, 

“” and “//xy” denote the parallel, orthogonal, z-symmetric and xy-parallel relations, 

respectively. First, the initial planar primitives are clustered into horizontal, vertical 

and oblique plane clusters based on the vertical and horizontal relations. For the 

horizontal planes, the normal vectors are forced to be nz. The normal vectors of the 

vertical planes are first forced to be orthogonal to nz and later adjusted in the xy-plane. 

The vertical and oblique planes are further clustered based on the parallel relation and 

the averaged normal is computed for each plane cluster. If the average normal is 

parallel, orthogonal or z-symmetric to any existing refined normal n’ (the first refined 

normal is nz if the horizontal plane exists), it will be adjusted according to n’; 

otherwise, the averaged normal will be added into the set of refined normals. For the 

oblique planes, the xy-parallel relation is also checked with the existing refined 

normals. This process is repeated with an order from the vertical plane clusters to the 

oblique plane clusters until all of the plane clusters are refined. Finally, the refined 

plane clusters are further clustered based on the co-planar relation. 
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Figure 5.2 The flowchart of the refinement of planar primitives based on geometric 

relations. 

Figure 5.3 shows the planar primitives extracted from the building point cloud 

and the comparison between the original normals and the refined normals of the plane 

clusters. It can be seen from the original normals of the plane clusters that, although 

they roughly meet the geometric relations, there are always small deviations between 

them. After the plane refinement, the geometric relations between them are stricter, 

which is consistent with the hypotheses about man-made objects.  
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Figure 5.3 Planar primitives extracted from the building point cloud and the 

refinement of plane normals. 

After the refinement, the points supporting each planar primitive are projected on 

the plane based on the refined normal, and the 2D alpha-shape (Liang et al., 1998) is 

used to extract its boundaries (including outer and inner boundaries) from the 

projected points. The planar primitives are finally presented in terms of the 

corresponding planar coefficients and their boundary points. 

5.2.2 3D Arrangement Based on a Half Binary Space Partition Tree 

After the extraction and refinement of the planar primitives, the bounding box of 

the building, which is expanded outward with a constant value, e.g., one meter, is then 

partitioned into a set of convex cells with 3D Boolean operations. By each partition, 

the parent cells are split into zero or two children cells, which can be recorded as a 
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BSP tree (as shown in Figure 5.4 and Figure 5.5). In the studies of Verdie et al. (2015) 

and Nan and Wonka (2017), the entire 3D space was partitioned with each individual 

plane, as shown in Figure 5.4, which is called a full BSP tree in this research. 

Obviously, this full BSP tree will result in a redundant cell complex and lead to a large 

computational cost in the propagation of the partitioning and later processing. 

Therefore, instead of full partition, this research uses a half BSP tree, which only 

partitions the parent cells occupying the planar primitive during each partition, as 

shown in Figure 5.5. 

 

Figure 5.4 Space partition of the building bounding box with planar primitives based 

on the full BSP tree. 

 

Figure 5.5 Space partition with planar primitive based on the half BSP tree. 
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Because the half BSP tree only partitions parent cells containing the planar 

primitives, the final cell complex is related to the partitioning order of the planar 

primitives. Thus, a partitioning order as shown in Figure 5.6 is defined in this research. 

First, vertical planar primitives are designed to have higher priority than horizontal or 

oblique ones to avoid incomplete partitioning caused by the missing data on the 

building façades, which is a common problem in point cloud data. Second, in the same 

priority class, planar primitives with larger areas are considered to have higher priority 

than smaller ones to make the size of the final cell complex as small as possible. 

 

Figure 5.6 Partitioning orders of the planar primitives. 

To further avoid incomplete partitioning caused by missing data for building roof 

structures, the planar primitives are all expanded with a constant value  (e.g.,  = 3 

m) during the partitioning, as shown in Figure 5.7 (a) and (b). Although the extension 

of the planar primitives increases the size of the final cell complex, the half partition 

strategy still makes it considerably smaller than the result based on a full BSP tree (as 

shown in Figure 5.7 (c) and (d)). 
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Figure 5.7 Extension of planar primitives and comparison of the final cell complexes 

based on full and half BSP trees. 

The surfaces of small building structures are prone to being incorrectly presented 

by point cloud data because of occlusions, sparse point densities and the limitations of 

multi-view stereo (MVS) pipelines. For the DIM point clouds, another problem is that 

the sharp corners are always presented as smooth conversions, which can be 

incorrectly recognised as planar primitives with thin and long shapes. To exclude these 

invalid planar primitives, two thresholds  and  (e.g.,  = 2 m2 and  = 0.2) for the 

area and shape factor of the primitives are set. The shape factor is defined based on 

the area and perimeter (including both inner and outer boundaries) of a planar 

primitive with the following format 

  (5-1) 

where P   is a planar primitive and Area(P) and Perimeter(P) denote the area and 

perimeter of P, respectively. Only primitives with either areas or shape factors greater 

than the corresponding threshold are considered valid for the 3D space partition. 

Finally, the 3D arrangement is based on the valid planar primitives and the final cell 
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complex is noted as . 

5.3 Optimal Selection of Occupied Cells Constrained by Topological 

Relations  

As the cell complex  is generated based on the planar primitives presenting the 

building surfaces, it can be assumed that there is no cell C  bestriding the building 

surfaces, which means that each C  is either occupied by the building (inside the 

building) or is empty (outside the building). Therefore, the geometric reconstruction 

of the building surface can be considered as the selection of occupied cells, which can 

be further modelled by a binary labelling problem. In solving the labelling problem, 

the topological relations between the cells are introduced as constraints. The 

topological relations include the interfaces, which are extracted as a set of 3D facets 

, and the intersection lines, which are extracted as a set of 3D edges , between the 

cells. The 3D cells, facets and edges are used together to establish the global energy 

function as follows: 

 (5-2) 

where l is the binary labelling configuration that assigns each cell, facet and edge a 

label lC, lF and lE, respectively ( lC, lF , lE  {0, 1}; 1 denotes that the cell/facet/edge 

is selected, and 0 denotes that it is not);  and  are two parameters that control the 

weights of the topological constraints. 

The optimal selection of occupied cells involves finding a labelling l that 

minimises the global energy E(l), and lC, lF and lE meet the constraints on the 

topological relations between the corresponding elements. Thus, the binary labelling 

is converted into an ILP problem, where Equation (5-2) is the objective function and 

the topological relations between the elements formulate the constraints of the ILP 

problem.  
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5.3.1 Extraction of Topological Relations as 3D Facets and Edges 

A. Extraction of 3D Facets 

The 3D facets refer to the interfaces between the 3D cells (as shown in Figure 

5.8). As the 3D cells are generated by partitioning the 3D space with planar primitives, 

it can be imagined that each 3D facet is connected to at most two cells and at least one 

cell (only facets on the surfaces of the building bounding box are connected to single 

cells). A facet that is connected to a pair of cells Ci and Cj (Ci, Cj  ) is denoted as 

Fij and that connected to a single cell Ck (Ck  ) is denoted as Fk. 

 

Figure 5.8 The interface between two cells. 

Take the set of facets connected with pairs of cells as 2 and the set of cells 

connected with single cells as 1. To extract these two types of facets, an iterative 

extraction and update process is designed based on 2D topological relations as follows. 

For a cell Ci  , the 3D faces constituting Ci are directly obtained from its geometric 

data structure. For each face Fi obtained from Ci, if there exists a facet Fj (Fj  1 

corresponds to cell Cj) that is co-planar with Fi, Fi and Fj are rotated onto their co-

plane to generate two 2D polygons Polyi and Polyj. Based on the topological relation 

between Polyi and Polyj, a set of new 2D polygons is generated with 2D Boolean 

operations. These new polygons are then re-rotated to the 3D space and output as new 

3D facets. A set of operations is defined as shown in Table 5.2 (where the red polygon 

denotes Polyi and the blue one denotes Polyj) to determine whether the new 3D facets 

are added to 1 or to 2.  
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Table 5.2 2D topological relations between facet projections and the corresponding 

outputs and operations. 

Topological relation Output Operations 

 
Separated 

 
Add Fi to 1. 

 
Connecting 

 
Add Fi to 1. 

 

Full-

overlapping  
Remove Fj from 1; add Fij to 2. 

 

Part-

overlapping1 
 

Remove Fj from 1; add Fij to 2; add Fj’ to 1. 

 

Part-

overlapped1 
 

Remove Fj from 1; add Fij to 2; add Fi’ to 1. 

 

Part-

overlapping2 
 

Remove Fj from 1; add Fij to 2; add Fj’, Fj’’ 

to 1. 

 

Part-

overlapped2 
 

Remove Fj from 1; add Fij to 2; add Fi’, Fi’’ 

to 1. 

 

Contained 

 

Remove Fj from 1; add Fij to 2; add Fj’, Fj’’ 

to 1. 

 

Containing 

 

Remove Fj from 1; add Fij to 2; add Fi’, Fi’’ 

to 1. 

 

Intersecting 

 

Remove Fj from 1; add Fij to 2; add Fi’ to 1; 

and Fj’ to 1. 

 

This iteration continues until all of the cells in  have been checked. Finally, the 

3D facet set  is obtained by merging 1 and 2. The pseudo-code for the extraction 

of 3D facets is shown in Table 5.3. As each facet in 2 records the indexes of two 

connected cells, the adjacency relationships between the 3D cells are therefore also 

obtained. 
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Table 5.3 Pseudo-code for the extraction of 3D facets from 3D cell complex. 

Algorithm: Extaction of 3D facets from 3D cell complex 

Input: Cell complex  

Output: Facet complex  

Note: Fij(k) refers to the kth element in the 3D facet set , and ij means this facet is connected with the 

cells Ci and Cj (Ci, Cj  ). 

1:  Initialize:  = ;  

            Set of facets connected with single cells 1 = ; 

            Set of facets connected with pairs of cells 2 = ; 

2:  for i: Ci   

3:     Get cell faces i = GetCellFaces(Ci). 

4:     for k: Fi(k)  i 

5:         for n: F(n)  1 

6:             Cell index j = GetCellIndexofFacet(F(n)); 

7:             if Fi(k) is co-planar with F(n) 

8:                 Plane normal n = GetFacetNormal(F(n)); 

9:                 Rotation matrix R = RotateZ-axisTo(n); 

10:                Polygon Polyi = Rotate3DFacet(Fi(k), R); 

11:                Polygon Polyj = Rotate3DFacet(F(n), R); 

12:                2D topological relation re = 2DTopologicalRelation(Polyi, Polyj); 

13:                if re == Seperated or re == Connecting 

14:                   Push Fi(k) to 1: 1  Fi(k); 

15:                else 

16:                   New polygons newPolys = GenerateNewPolygons(Polyi, Polyj); 

17:                   // The newPolys is a vector, where the first element always refers to  

18:                   // the overlapping part of Polyi,and Polyj. Elements corresponding to  

19:                   // Polyi rank in front of those corresponding to Polyj. 

20:                   New 3D facets newFacets = Rotate3DFacets(newPolys, R-1); 

21:                   Erase F(n) from 1; 

22:                   Note newPolys(0) as Fij; push Fij to 2: 2  Fij; 

23:                   In case: re == Full-overlapping 

24:                       Continue; 

25:                   In case: re == Part-overlapping1 

26:                       Note newpolys(1) as Fj; push Fj to 1: 1  Fj; 

27:                   In case: re == Part-overlapped1 

28:                       Note newpolys(1) as Fi; push Fi to 1:1  Fi; 
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29:                   In case: re == Part-overlapping2 or re == Contained 

30:                       Note newpolys(1) as Fj; push Fj to 1: 1  Fj; 

31:                       Note newpolys(2) as Fj; push Fj to 1: 1  Fj; 

32:                   In case: re == Part-overlapped2 or re == Containing 

33:                       Note newpolys(1) as Fi; push Fi to 1: 1  Fi; 

34:                       Note newpolys(2) as Fi; push Fi to 1: 1  Fi; 

35:                   In case: re == Intersecting 

36:                       Note newpolys(1) as Fi; push Fi to 1: 1  Fi; 

37:                       Note newpolys(2) as Fj; push Fj to 1: 1  Fj; 

38:                end if 

39:            end if 

40:        end for 

41:    end for 

42:  end for 

43:   = 2; 

44:  Insert facets in 1 to :   1; 

45:  returen  

 

B. Extraction of 3D Edges 

With the 3D facets, the 3D edges are then extracted from the intersecting lines 

between the facets. Theoretically, one intersecting line can correspond to multiple 

facets as shown in Figure 5.9 (a). In this research, the 3D edges are only defined based 

on the intersecting line segments between pairs of facets as shown in Figure 5.9 (b), 

for the following two reasons. First, it is easy to handle the misalignment between 

facets in a pairwise situation. Second, because the surface of the final polygonal model 

must be formed by pairwise-connected facets, constraints on the model surface can be 

easily encoded into the pairwise edges. 
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Figure 5.9 Intersecting line and 3D edges between 3D facets. 

The 3D edges between the pairs of facets are extracted with a similar strategy to 

that for the extraction of facets. First, two edge sets 1 and 2 are initialised to store 

the edges connected by individual facets and pairs of facets. Note that in no situation 

is an edge in the complex connected to a single facet. Thus, 1 is only a temporary set 

that stores the candidate edges. For a facet Fi  , the edges constituting the boundary 

of Fi are obtained from its geometric data structure. For each boundary edge Ei, if there 

is an edge Ej  1 (j refers to the index of the facet, to which the edge is connected) 

that is co-linear with Ei, the topological relation between Ei and Ej is computed. Based 

on their topological relation, new edges are generated and are further added into 1 or 

2 as described in Table 5.4, where the red line segment refers to Ei and the blue one 

refers to Ej. Note that, for an edge Eij  2, i and j refer to the indices of the two 

connected facets. 
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Table 5.4 1D topological relations between the co-linear 3D edges and the 

corresponding outputs and operations. 

Topological relation Output Operations 

 
Separated 

 
Add Ei to 1. 

 
Connecting 

 
Add Ei to 1. 

 

Full-

overlapping  

Remove Ej from 1; add 

Eij to 2. 

 

Part-

overlapping  

Remove Ej from 1; add 

Eij to 2; add Ej’ to 1. 

 

Part-

overlapped1  

Remove Ej from 1; add 

Eij to 2; add Ei’ to 1. 

 
Contained 

 

Remove Ej from 1; add 

Eij to 2; add Ej’, Ej’’ to 1. 

 
Containing 

 

Remove Ej from 1; add 

Eij to 2; add Ei’, Ei’’ to 1. 

 
Intersecting 

 

Remove Ej from 1; add 

Eij to 2; add Ei’ to 1; and 

Ej’ to 1. 

 

Because only facets that belong to the same cell or adjacent cells can produce 

edges, the owner–member relationships between the cells and facets and the adjacency 

relationships between corresponding cells are considered during the iteration to speed 

up the extraction. The pseudo-code for the extraction of 3D edges is shown in Table 

5.5. Figure 5.10 shows the extracted 3D facet and edge complexes of two example 

buildings. 
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Table 5.5 Pseudo-code for the extraction of pairwise 3D edges from 3D facet 

complex. 

Algorithm: Extaction of 3D pairwise edges from 3D facet complex 

Input: Facet complex ; Cell complex . 

Output: Edge complex  

Note: Eij(k) refers to the kth element in the 3D edge set , and ij means this edge is connected to the 

ith and jth facets Fi, Fj (Fi, Fj  ). 

1:  Initialize:  = ;  

            Set of facets connected with single cells 1 = ; 

            Set of facets connected with pairs of cells 2 = ; 

2:  for i: Fi   

3:     Boundary edges i = GetBoundaryEdges(Fi); 

4:     Pair of cells {Ci1, Ci2} = GetConnectedCells(Fi); 

5:     for k: Ei(k)  i 

6:         for n: E(n)  1 

7:             Facet index j = GetFacetIndexofEdge(E(n)); 

8:             Pair of cells {Cj1, Cj2} = GetConnectedCells(Fj); 

9:             if Cim == Cjn or Cim and Cjn are neighbors (m, n  {1,2}) 

10:                if Ei(k) is co-linear with E(n) 

11:                    Line direction dir = GetEdgeDirection(E(n)); 

12:                    Rotation matrix R = RotateX-axisTo(dir); 

13:                    Rotated edge E’i = Rotate3DEdge(Ei(k), R); 

14:                    Rotated edge E’j = Rotate3DEdge(E(n), R); 

15:                    1D topological relation re = 1DTopologicalRelation(E’i, E’j); 

16:                    if re == Seperated or re == Connecting 

17:                       Push Ei(k) to 1: 1  Ei(k); 

18:                    else 

19:                       New edges newEdges = GenerateNewEdges(E’i, E’j); 

20:                       // The newEdges is a vector, where the first element always refers 

21:                       // to the overlapping part of E’i,and E’j. Elements corresponding 

22:                       // to E’i rank in front of those corresponding to E’j. 

23:                       New 3D edges new3DEdges = Rotate3DEdges(newEdges, R-1); 

24:                       Erase E(n) from 1; 

25:                       Note new3DEdges (0) as Eij; push Eij to 2: 2  Eij; 

26:                       In case: re == Full-overlapping 

27:                          Continue; 
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28:                       In case: re == Part-overlapping 

29:                          Note new3DEdges(1) as Ej; push Ej to 1: 1  Ej; 

30:                       In case: re == Part-overlapped 

31:                          Note new3DEdges (1) as Ei; push Ei to 1:1  Ei; 

32:                       In case: re == Contained 

33:                          Note new3DEdges (1) as Ej; push Ej to 1: 1  Ej; 

34:                          Note new3DEdges (2) as Ej; push Ej to 1: 1  Ej; 

35:                       In case: re == Containing 

36:                          Note new3DEdges (1) as Ei; push Ei to 1: 1  Ei; 

37:                          Note new3DEdges (2) as Ei; push Ei to 1: 1  Ei; 

38:                       In case: re == Intersecting 

39:                          Note new3DEdges (1) as Ei; push Ei to 1: 1  Ei; 

40:                          Note new3DEdges (2) as Ej; push Ej to 1: 1  Ej; 

41:                    end if 

42:                end if 

43:            else 

44:                Continue; 

45:            end if 

46:        end for 

47:     end for 

48:  end for 

49:   = 2; 

50:  returen  

 

Figure 5.10 3D facet and edge complexes extracted from the cell complexes of two 

example buildings. 
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5.3.2 Topological-Relation Constrained Selection of Cells 

A. Cell Energies 

In this research, the cells inside the building are defined as occupied, and those 

outside the building are defined as empty. As the cell complex  is generated by 

partitioning the 3D space based on planar primitives, all of the cells in  are supposed 

to be convex and not to bestride the building surface. Therefore, whether a cell C   

is occupied or empty can be determined by checking whether its centroid is inside or 

outside the building. Figure 5.11 is a 2D diagrammatic sketch of the determination of 

occupied and empty cells, based on the number of intersection points that the rays 

starting from the cell centroids have with the building surfaces. In theory, for a point 

inside the building, a ray starting from this point and extending in any upper or 

horizontal direction must have an odd number of intersection points with the building 

surface (as shown in Figure 5.11 (b)). For a point outside the building, the number of 

intersection points will be even (as shown in Figure 5.11 (c)). 

 

Figure 5.11 Occupied and empty cells illustrated in 2D. 

As the exact building surface is not available at this point, in this research, the 

planar primitives with boundaries (see Section 5.2.1) are used to roughly present the 

building surface. Because there can be holes and crack effects between the planar 

primitives because of the missing data, using a ray in a single direction to determine 
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whether the cells are occupied or empty might lead to inaccuracies. Therefore, for each 

cell C  , a number of rays starting from its centroid are generated with an angle 

interval of  (e.g.,  = 30) to determine whether its centroid is inside or outside the 

building. The probability of C being occupied can be formulated as 

  (5-3) 

where N(rays) is the total number of rays drawn from C’s centroid, and Nood(rays) is 

the number of rays that have odd numbers of intersection points with the planar 

primitives. 

Cells with high probabilities of being occupied should be selected to form the 

polygonal building model. Therefore, the cell energy in Equation (5-2) is given as 

  (5-4) 

where N() is the number of cells in , lC  {0, 1} is the binary label assigned to C 

and lC = 1 denotes that C is occupied and 0 denotes that it is empty. 

B. Facet Energies 

If a 3D facet F   is supported by points in the building point cloud, it is defined 

as occupied, otherwise, it is empty, as shown in Figure 5.12 (b) and (c). The points 

with perpendicular distances to facet F smaller than d (d is the same as the distance 

threshold used to determine the co-planar relation; see Section 5.2.1) are regarded as 

supporting points of F. 
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Figure 5.12 Occupied and empty facets illustrated in 2D. 

With the supporting points of facet F, the coverage ratio is calculated as described 

in Nan and Wonka (2017). This coverage ratio is defined as the probability of F being 

occupied and has the following format: 

  (5-5) 

where F is the set of supporting points of F and Polygon(F) is the polygon extracted 

from F by alpha-shape. 

Facets with high probabilities are supposed to be visible in the final polygonal 

model of the building. The facet energy in Equation (5-2) can be formulated as 

  (5-6) 

where N() is the number of facets in , lF  {0, 1} is the binary label assigned to F 

and lF = 1 denotes that F is occupied and 0 denotes that it is empty. 

C. Edge Energies 

Unlike the cell and facet energies, which measure the fidelities of the modelled 

surfaces to the point clouds, the edge energies are used to introduce regularity 

constraints on the buildings into the optimal selection. Because man-made objects are 

generally believed to conform to planarity and orthogonality, in this research, the flat 
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and right angles between pairs of facets are favoured, while other angles are penalised 

as shown in Figure 5.13. 

 

Figure 5.13 Different types of edge angles between pairs of facets. 

For each edge E  , the edge angle between the corresponding connected facets 

is computed, and a regularity value of 0 is set to E if the angle is 0 or 180, and 1 

otherwise. The edge energy in Equation (5-2) is thus given as Equation (5-7). 

  (5-7) 

where N() denotes the number of edges in  and A(E) is the regularity value set to 

an edge E  . 

D. Energy Optimisation 

With the cell, facet and edge energies defined as above, the global energy in 

Equation (5-2) is presented as a sectional continuous function. To simplify the ILP 

problem, the continuous occupied probabilities of the cells and facets are binarilised 

into {0, 1} based on the two user-defined thresholds C and F (e.g., C = 0.5 and F = 

0.3), as shown in Equations (5-8) and (5-9). 

  (5-8) 

  (5-9) 
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The global energy in Equation (5-2) can therefore be turned into the quadratic 

format as follows: 

  (5-10) 

where  controls the weight of the facet energy. Because both the cell energy and the 

facet energy measure the fidelity of the modelling to the point clouds,  is set as 1 in 

this research so that they play equal roles during the energy optimization.  controls 

the weight of the edge energy, and it exposes more regularity with a larger value. 

Theoretically, to make a balance between the fidelity and the regularity of the 

modelling, the value  should be at least set as 2. But considering that only a small 

portion of the edges correspond to irregular angles (not right or flat angles),  needs a 

larger value to modify the irregularities. In this research,  is set as 5. 

Simultaneously, because of the topological relationships between the cells, facets 

and edges, the binary variables lC, lF and lE (C  , F   and E  ) also meet the 

following constraints 

  (5-11) 

The first constraint means that a facet F   is visible (lF = 1) when only one of 

its connected cells is selected (lC = 1); otherwise, it is invisible (lF = 0). The second 

constraint means that an edge E   is valid (lE = 1) when both of its connected facets 

are visible (lF = 1); otherwise, it is invalid (lE = 0). 

With the objective function in Equation (5-10) and the constraints in Equation 

(5-11), the ILP problem can be solved by the Gurobi solver (Gurobi, 2015). Finally, 

the building model is formed by the selected cells with visible facets and valid edges 

labelled as 1, as shown in Figure 5.14.  

By comparing Figure 5.14 (c) with (d), it can be seen that small protrusions, 

which are caused by clutter or inaccuracies in the point clouds, can be removed with 

the edge regularity terms, making the modelling results more consistent with the 
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hypotheses about the geometries of man-made objects. 

 

Figure 5.14 Geometric models of a building formed by occupied cells selected with 

different parameter values. 

5.4 Generation of CityGML Models 

5.4.1 Identification of CityGML Surface Types 

To produce building models that can be used for urban applications, the 

geometric models generated through the above steps are further converted into formats 

that conform to CityGML (Gröger and Plümer, 2012). CityGML defines five building 

surface types: GroundSurface, WallSurface, RoofSurface, OuterCeilingSurface, and 

OuterFloorSurface, as shown in Figure 5.15.  
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Figure 5.15 Building surface types defined by CityGML (Gröger and Plümer, 2012). 

As shown in Figure 5.15, the surface normals are very important for the 

recognition of building surface types. The normal vector of each selected (labelled as 

1) facet Fij   is determined with the following two steps (note that if a facet Fij is 

labelled as 1, there must be only one cell Ci or Cj that is also labelled as 1 according 

to the first constraint in Equation (5-11)). First, an initial normal vector n’ is computed 

based on three non-collinear vertexes of Fij chosen in anti-clockwise order. Second, 

the centroids of Fij and its connected cell Ci or Cj, which is also labelled as 1, are joined 

to form a vector d. If n’ d >0, Fij’s final normal vector n = n’, and n = -n’ otherwise. 

Note that if n = -n’, the vertexes of Fij will be restored in the inverted order. 

The facets with modified normals are then clustered into surface components 

based on their adjacent and co-planar relationships, which are already recorded in the 

edge complex (refer to Section 5.4.2 for the specific clustering process). Each of the 

surface components of the building is assigned a CityGML surface type as mentioned 

above, based on the rules described in Table 5.6. Note that the angle and distance 

thresholds  and d in Table 5.6 are the same as those in Table 5.1,  refers to the 

elevation of the centroid of the surface components and zmin and zmax denote the 

minimum and maximum elevation values of the buildings, respectively. 
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Table 5.6 Knowledge-based rules for the determination of the building surface type. 

Normal direction Elevation information Surface type 

| (n’, nz)|  /2 -  - WallSurface 

 < | (n’, nz)| < /2 -  

n’, nz > 0 - RoofSurface 

n’, nz < 0 - WallSurface 

| (n’, nz)|   

n’, nz > 0 

< zmin + (zmax - zmin)/3 

and < 10 m 
OuterFloorSurface 

otherwise RoofSurface 

n’, nz < 0 

< zmin + d GroundSurface 

otherwise OuterCeilingSurface 

 

Figure 5.16 shows two example buildings with simple and complex structures, 

for which all five surface types (shown in different colours) defined by CityGML are 

recognised based on the rules. 

 

Figure 5.16 Surface type recognition of two example buildings. 

5.4.2 Recovery of Relationships between Building Surfaces 

According to the second constraint in Equation (5-11), for each Eij   that is 
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labelled as 1, the two corresponding facets Fi and Fj must be also labelled as 1. 

Therefore, the relationships between the surface components are recovered based on 

the edge complex , and the selected facets are clustered as follows. 

For each Eij (Eij   and  = 1), if A(Eij) <  ( is the angle threshold and is 

the same as in Table 5.1 and Table 5.6), the two corresponding facets Fi and Fj belong 

to the same surface component. Otherwise, Fi and Fj belong to two different surface 

components, the two corresponding surface components are considered adjacent and 

Eij contributes to the intersection edge between the two surface components. 

After the clustering, each surface component in the CityGML model corresponds 

to a set of facets {F   | lF = 1}, and each pair of adjacent surface components 

corresponds to a set of edges {E   | lE = 1}. The normal of each surface component 

is determined by averaging the normals of its corresponding facets, and then the angles 

between the adjacent surface components are computed. The two angles of 0 ( ) 

and 90 ( ) are recorded to present the parallel and perpendicular relationships, 

respectively. 

Table 5.7 shows an example of the recovered relationships, i.e., adjacent, parallel 

and perpendicular, between the surface components of a building model. The 

visualised result is shown in Figure 5.17, where the target surfaces are shown in red 

and the queried surfaces are in yellow. 
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Table 5.7 Relationships between the surface components of an example building. 

SurfaceID1 SurfaceID2 Adjacent Parallel Perpendicular Angle 

Surface0 Surface1 1 0 1 90.0 

Surface0 Surface2 0 0 1 90.0 

Surface0 Surface3 1 0 0 135.0 

Surface0 Surface4 0 1 0 0.0 

… … … … … … 

Surface1 Surface0 1 0 1 90.0 

Surface1 Surface2 1 0 0 135.6 

Surface1 Surface3 0 0 0 45.0 

… … … … … … 

 

 

Figure 5.17 Topological and geometric relationships between the surface 

components of an example building. 

5.5 Summary and Discussion 

This chapter presents the reconstruction of the true 3D building models that 

conform to CityGML from points known to belong to the building class. The 
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geometric models of the buildings are first generated through a space-partition-and-

approximation strategy. Multiple relations are introduced into this procedure, 

including the geometric relationships between the planes for the refinement of 

building planar primitives, the 2D and 1D topological relationships for the extraction 

of facet and edge elements, and the topological relationships between the cells encoded 

in the ILP functions for the optimal selection of occupied cells. All of these 

relationships are used comprehensively to constrain the geometries of the building 

models to be watertight, manifold and regularised. The geometric models of buildings 

with refined surface normals are then converted into CityGML format with specified 

surface types. Topological relationships between the building surfaces are also 

determined and recorded for applications related to spatial query. 

The geometric and CityGML modelling results of several example buildings are 

shown in this chapter to emphasise the features of the developed method. In the next 

chapter, 3D reconstruction results of large-scale buildings are examined using 

systematic experimental evaluations, where the segmentation and classification results 

of the point clouds are also demonstrated and evaluated. 
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Chapter 6 Experimental Evaluation and Analysis 

This chapter systematically evaluates the developed methods described above 

using three datasets. The first dataset is a benchmark MLS point cloud Paris-rue-

Cassette (Vallet et al., 2015), the second is a point cloud obtained from the mobile 

mapping system (MMS) and presents a scene in Sham Shui Po, Hong Kong, and the 

third is a DIM point cloud acquired in Central, Hong Kong, generated from oblique 

images via the MVS pipeline. For quantitative evaluation, the following metrics are 

defined. 

  (6-1) 

  (6-2) 

  (6-3) 

  (6-4) 

where precision measures the correctness of the segmentation/classification, recall 

measures the completeness, and F1-score is a comprehensive metric of correctness and 

completeness. 

For the quantitative evaluation of the geometric accuracy of models generated 

from the building point clouds, the root-mean-square error (RSME) formulated as in 

Equation (6-6) is used. 

  (6-5) 

where || p – B || denotes the Euclidean distance between a point p and the geometric 

model B of a building B, and N (B) is the number of points in the building point 

cloud B. 
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The remainder of this chapter is organised as follows. The experimental results 

of the Paris-rue-Cassette and the Hong Kong (Sham Shui Po) datasets are described 

and evaluated in Sections 6.1 and 6.2, respectively. As these two datasets are ground-

obtained point clouds, the buildings therein are highly incomplete; therefore, the 

developed 3D building reconstruction method is not tested on these two datasets. 

Detailed results of the 3D building reconstruction with (mostly) complete buildings 

extracted from the classification results of the DIM point cloud, the Hong Kong 

(Central) dataset, are given and evaluated in Section 6.3. 

6.1 Experiment Using the Paris-rue-Cassette Dataset 

6.1.1 Data Description 

The Paris-rue-Cassette dataset (Vallet et al., 2015) was acquired in Paris with a 

Stereopolis II MLS system (Paparoditis et al., 2012) in January 2013. This dataset 

consists of 300 million points covering 10 km of streets and a 1 km2 square in the 6th 

district of Paris, as shown in Figure 6.1, where the two black boxes give detailed views 

of the square and a street scene. In this dataset, 12 million points covering a street of 

about 200 m (as shown in the yellow rectangle in Figure 6.1) have point-wise ground-

truth labels in terms of both segments and classes. Therefore, in the following, the 

experimental evaluations and analyses of this dataset are made based on the part with 

ground-truth, as did in Weinmann et al. (2015b) and Hackel et al. (2016). 
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Figure 6.1 Overview of the Paris-rue-Cassette dataset (colour-coded by height). 

Before the segmentation of the point cloud, which is the first step of the point 

cloud modelling framework proposed in this work, an adaptive surface filter (Hu et 

al., 2014) is used to separate the non-ground points from the ground points, aiming to 

reduce the long interactions between different ground objects. The ground and non-

ground points extracted from the Paris-rue-Cassette dataset are shown in Figure 6.2. 

 

Figure 6.2 Ground and non-ground points extracted from the Paris-rue-Cassette 

dataset. 
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For the MLS point cloud, the point density can vary dramatically with the 

scanning distance changing from the near ranges to the far ranges. The variations in 

point density of the Paris-rue-Cassette dataset are quantitatively evaluated on the 

basis of dmax — the maximum distance between a point and its k (k = 20) nearest 

neighbours, as shown in Figure 6.3 (a). Note that dmax is inversely related to point 

density. Figure 6.3 (b) shows the statistical results of the dmax of the ground and façade 

points versus their scanning distances dis. It can be seen that with the scanning distance 

increasing, dmax increases (i.e., point density decreases) with a considerable rate for 

both ground and façade points. 

 

Figure 6.3 Variations in point density of the Paris-rue-Cassette dataset. 

6.1.2 Segmentation Result 

Figure 6.4 (a) ~ (c) shows the intermediate productions and the final structural 

labelling result of the Paris-rue-Cassette dataset. It can be found that supervoxels in 

areas with low point densities, e.g., tree crowns and tops of buildings, have larger sizes 

than those in areas with high point densities. This guarantees that effective local shape 

descriptors can be derived from the supervoxels for the structural labelling. To 

quantitatively evaluate the accuracy of the structural labelling result, the non-ground 

points in the test area (the yellow box in Figure 6.1) are manually labelled into three 

structural categories, i.e., linearity, planarity and scattering, as shown in Figure 6.4 

(d). The result shows that the total overall labelling accuracy of the Paris-rue-Cassette 
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dataset is 93.32%. 

 

Figure 6.4 Multi-size supervoxels and structural labelling result of the Paris-rue-

Cassette dataset. 

The structural labelling result is compared with the results based on supervoxels 

generated by two other methods, which are the VCCS (Papon et al., 2013) and TBBP 

(Lin et al., 2018). The VCCS is a well-known method that produces supervoxels with 

fixed sizes, resulting in that supervoxels in areas with low point densities contain 

insufficient points for the computation of meaningful local features, as shown in 

Figure 6.5 (a). The TBBP is one of the state-of-the-art methods that produces 

supervoxels with adaptive sizes, and it can well preserve the boundaries of objects. 

However, the adaptivity of this method tends to make it susceptible to data quality and 

present scatter objects as linear ones, as shown in Figure 6.5 (b). The fixed resolution 

of the VCCS, the expected resolution of the TBBP, and the minimum resolution of the 

proposed method are all set as 0.3 m. The overall accuracies of the results based on 

VCCS and TBBP are 91.87% and 87.94%, respectively, considerably lower than the 

result of the method proposed in this research (93.32%). 
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Figure 6.5 Structural labelling result of the Paris-rue-Cassette dataset compared with 

the results based on VCCS and TBBP. 

Based on the structural labelling result, total 3442 structural components of the 

Paris-rue-Cassette dataset were generated as shown in Figure 6.6 (a) and the ground-

truth of the segmentation is shown in Figure 6.6 (b). A structural component SSC and 

a segment in the ground-truth SGT are defined as matched if 

  (6-6) 

where |  | denotes the cardinal (number of points) of a set, and m = 0.5 results in a 1-

to-1 matching result. 
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Based on Equation (6-6), 255 structural components were matched with the 

segments in the ground-truth (matched objects are coloured in yellow in Figure 6.6 

(c), and those mismatched are in red), leading to a recall value of 60.7% and a low 

precision value of 7.4%. This might be because m = 0.5 is a very strict constraint that 

penalises over-segmentation too much (Vallet et al., 2015), while “over-

segmentation”, e.g., to separate wall lamps from the building façade (as shown in the 

top row of Figure 6.6 (d)), is one of the purposes of the generation of structural 

components. In addition, fragmental point sets (as shown in the bottom row in Figure 

6.6 (d)) could be easily determined as structural components, while they belong to one 

segment with the building façade in the ground-truth. The fragmentation of the point 

cloud is extremely serious, leading the number of structural components to be far 

greater than the number of segments in the ground-truth. 

 

Figure 6.6 Structural components of the Paris-rue-Cassette dataset and comparison 

with the ground-truth. 
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6.1.3 Classification Result 

With respect to semantic objects, nine categories (façade, ground, vegetation, 

car, motorcycle, pedestrian, traffic sign, street lamp and bollard) of objects appearing 

in this street are considered. To train the RF classifiers, a number of objects 

corresponding to the above categories were firstly manually detected as training 

samples from areas beyond the yellow rectangle in Figure 6.1. Each category contains 

training samples with different point densities (as shown in Figure 6.7), and the 

distribution of structural components containing more than nmin = 40 points generated 

from these samples is shown in Table 6.1. 

 

Figure 6.7 Examples of manually selected training samples with different point 

densities. Red, green and blue refer to linear, planar and scatter structural components, 

respectively. 
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Table 6.1 Number distribution of manually selected samples and valid structural 

components generated from these samples. (Ground refers to small, isolated ground 

patches). 

 Sample size 
Linear structural 

component size 

Planar structural 

component size 

Scatter structural 

component size 

Facade 8 1735 1165 179 

Ground 20 29 13 0 

Vegetation 30 176 23 28 

Car 35 173 59 15 

Motorcycle 35 99 42 35 

Pedestrian 30 22 22 11 

Traffic sign 26 30 26 1 

Street lamp 15 18 17 10 

Bollard 56 56 0 0 

 

Figure 6.8 shows the semantic classification and visualised evaluation of the 

testing area in the Paris-rue-Cassette dataset. Figure 6.8 (a) and (b) show the ground-

truth from two different views (grey in the ground-truth refers to unidentified points), 

(c) and (d) are the classification results of the developed method, (e) and (f) compare 

the classification results with the ground-truth, where yellow refers to correctly 

classified points, red refers to misclassified points and blue refers to points 

unidentified in the ground-truth. 
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Figure 6.8 Semantic classification and visualised evaluation results of the testing 

area in the Paris-rue-Cassette dataset. 

The quantitative evaluation results were compared with those of the studies of 

Weinmann et al. (2015b) and Hackel et al. (2016), as shown in Table 6.2 ~ 6.5. Note 

that, the unweighted mean F1-scores shown in Table 6.5 are computed based on the 

F1-scores of the in common categories in this research and previous studies. In terms 

of class-wise metrics, the proposed method yields the best results for most categories. 

Especially for vegetation, the proposed method significantly increases the precision 

and F1-score by 35.81% and 23.09%, respectively, compared with the best results of 

the previous studies. The proposed method also shows the best performance in 

extracting pedestrians, with a high recall value of 93.36% and the highest precision 

and F1-scores of 38.52% and 54.54%, respectively. With respect to the categories of 

façade and ground, which constitute more than 90% of the Paris-rue-Cassette dataset, 

extremely good results, with all three class-wise metrics higher than 96%, are derived 

from this research, whilst façade has the highest F1-score of 98.60%. The recall values 

of car and motorcycle are relatively lower than the best results from previous studies. 



Chapter 6 Experimental Evaluation and Analysis 

104 

This might be caused by that around 12% of the points labelled as car in the ground-

truth (as shown in the left-bottom of Figure 6.8 (a)) are labelled as ground by the 

proposed method (see the result shown in Figure 6.8 (c) and the visualised comparison 

in Figure 6.8 (e)), for which it is believed that the result of the proposed method is 

more reasonable than the ground-truth. 

Table 6.2 Recall (%) of the classification result of the Paris-rue-Cassette dataset 

compared with previous studies. 

 Façade Ground Vegetation Car 
Motor-

cycle 
Pedestrian 

Traffic 

sign 

Street 

lamp 
Bollard 

(Weinmann et 

al., 2015b) 
87.21 96.46 86.02 61.12 82.85 82.25 76.57 - - 

(Hackel et al., 

2016) 
94.21 98.22 84.78 93.07 97.58 96.87 89.63 - - 

Proposed 

method 
97.95 99.45 89.59 76.56 87.86 93.36 96.16 92.74 82.64 

 

Table 6.3 Precision (%) of the classification result of the Paris-rue-Cassette dataset 

compared with previous studies. 

 Façade Ground Vegetation Car 
Motor-

cycle 
Pedestrian 

Traffic 

sign 

Street 

lamp 
Bollard 

(Weinmann et 

al., 2015b) 
99.28 99.24 25.66 67.67 17.74 14.95 9.24 - - 

(Hackel et al., 

2016) 
99.64 98.71 56.62 86.08 51.99 18.99 24.88 - - 

Proposed 

method 
99.25 96.89 92.43 93.07 42.46 38.52 14.63 8.36 89.63 
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Table 6.4 F1-score (%) of the classification result of the Paris-rue-Cassette dataset 

compared with previous studies. 

 Façade Ground Vegetation Car 
Motor-

cycle 
Pedestrian 

Traffic 

sign 

Street 

lamp 
Bollard 

(Weinmann et 

al., 2015b) 
92.85 97.83 39.53 64.23 29.23 16.61 25.01 - - 

(Hackel et al., 

2016) 
96.85 98.47 67.90 89.43 67.84 39.60 31.34 - - 

Proposed 

method 
98.60 98.15 90.99 84.01 57.25 54.54 25.40 15.34 85.99 

 

Table 6.5 Overall accuracy and mean F1-score of the classification result of the 

Paris-rue-Cassette dataset compared with previous studies. 

 (Weinmann et al., 2015b) (Hackel et al., 2016) Proposed method 

Overall accuracy (%) 89.60 95.74 97.13 

Mean F1-score (%) 52.18 70.20 72.70 

 

Another reason for the low recall values might be that the proposed method, 

which takes advantage of structural information, is likely to fail to identify fragmented 

cars and motorcycles (as shown in Figure 6.9 (a)), where the geometric structures and 

relationships are destroyed. Similarly, fragments of façade can be incorrectly 

identified as other objects, e.g., traffic sign, as shown in Figure 6.9 (b), which results 

in relatively lower precision values of the corresponding categories.  
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Figure 6.9 Misclassifications (in the red circles) of car, motorcycle and façade 

caused by fragmentation of the point cloud. 

Two additional categories — street lamp and bollard — are considered in this 

research. Although the street lamp has low precision value for the same reason with 

traffic sign (see Figure 6.8 (b), (d), (f) and Figure 6.9 (b)), it yields a high recall value 

of 92.74%. Furthermore, the high recall values of traffic sign, street lamp and bollard 

indicate the proposed method is able to distinguish between various pole-like objects. 

According to the global metrics shown in Table 6.5, the proposed method yields the 

highest overall accuracy of 97.13% and the highest mean F1-score of 72.70%, 

indicating the effectiveness of the proposed method. 

6.2 Experiment Using the Hong Kong (Sham Shui Po) Dataset 

6.2.1 Data Description 

The Hong Kong (Sham Shui Po) dataset was acquired by an UltraCam Mustang 

MMS, which was equipped with a multi-beam rotating light detection and ranging 
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(LiDAR) system and a high-resolution camera. The LiDAR point cloud consists of 

more than 115 million points and covers approximately 2 km of streets in Sham Shui 

Po, Hong Kong, as shown in Figure 6.10, where the two magnified views in the middle 

show the details of two crossroads with their corresponding image views shown on 

the right. This dataset features with heavy noise and large variations in point density 

and various classes of objects, including the building façades and multiple street 

facilities.  

 

Figure 6.10 Overview of the Hong Kong (Sham Shui Po) dataset. 

The surface filtering result of the Hong Kong (Sham Shui Po) dataset is shown in 

Figure 6.11, and the variations in point density of this dataset (shown in Figure 6.12) 

are estimated in the same way with the Paris-rue-Cassette dataset (see Section 6.1.1). 

According to Figure 6.12 (b), the dmax values of the façade points increase from 0.034 

m to 1.425 m along with their scanning distances (dis) increasing to about 20 m away 

from the scanner. Figure 6.12 (b) suggests that the point densities of the façade points 

are about 40 times in close ranges of those in far ranges. The density variations of the 

ground points are less significant compared with the façade points, but the variations 

are still notable. 
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Figure 6.11 Ground and non-ground points extracted from the Hong Kong (Sham 

Shui Po) dataset. 

 

Figure 6.12 Variations in point density of the Hong Kong (Sham Shui Po) dataset. 

6.2.2 Segmentation Result 

The multiple-size supervoxels generated from the Hong Kong (Sham Shui Po) 

dataset and the corresponding structural labelling result are shown in Figure 6.13 (a) 

~ (c), and the overall labelling accuracy is 96.9% according to the manually labelled 

ground-truth (as shown in Figure 6.13 (d)). The structural labelling result of this 

dataset is also compared with the results based on supervoxels generated by VCCS 

(Papon et al., 2013) and TBBP (Lin et al., 2018), which have overall labelling 

accuracies of 95.9% and 85.3%, respectively. 
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Figure 6.13 Multi-size supervoxels and structural labelling result of the Hong Kong 

(Sham Shui Po) dataset. 

The visualised comparisons with the results based on VCCS and TBBT are 

shown in Figure 6.14. Similar to the Paris-rue-Cassette dataset, the local structural 

features derived from fixed-sized supervoxels generated by VCCS are erroneous in 

sparse areas because of the insufficiency of points (as shown in the magnified views 

of the façade tops in Figure 6.14 (a)). And the TBBT once again shows its weakness 

at presenting scatter shapes, which are mainly the tree crowns as shown in Figure 6.14 

(b). It therefore can be concluded that, compared with VCCS and TBBT, the proposed 

method performs best for the structural labelling purpose. 
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Figure 6.14 Structural labelling result of the Hong Kong (Sham Shui Po) dataset 

compared with the results based on VCCS and TBBP. 

The structural components of the Hong Kong (Sham Shui Po) dataset are also 

compared with the results of another graph partition method — the 0-cut (Landrieu 

and Obozinski, 2017), which is performed on the same multi-size supervoxels. From 

Figure 6.15 it can be seen that the structural components are generally consistent with 

the result of 0-cut, while the proposed method deals better with small objects as shown 

in the magnified views in Figure 6.15. In addition, the 0-cut partitions the supervoxels 

into a set of segments without meaningful labels, but only a series of numbers. On the 

contrary, the structural components generated by the proposed method inherently have 

labels indicating their local geometric characteristics. 
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Figure 6.15 Structural components generated from the Hong Kong (Sham Shui Po) 

dataset and the segmentation result of 0-cut. 

6.2.3 Classification Result 

In the Hong Kong (Sham Shui Po) dataset, more categories are considered, 

including façade, ground, vegetation, car, pedestrian, guardrail, traffic sign, traffic 

light, street lamp, others and mussy points. Others refers to some less common objects, 

e.g., fire hydrants, post-boxes and garbage bins, and mussy points refers to scanning 

artefact caused by fast-moving vehicles or pedestrians.  

The classification result of the entire Hong Kong (Sham Shui Po) dataset is shown 

in Figure 6.16. The ground-truth semantic labels of points in the training area covering 

a ~380 m street and in the testing area covering ~660 m streets were manually labelled. 

The testing area includes a piece of urban arterial road and a relatively narrow street, 

as shown in Figure 6.16.  
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Figure 6.16 Overview of the classification result of the Hong Kong (Sham Shui Po) 

dataset. 

The qualitative evaluation results in the testing area are shown in Figure 6.17, 

where (a) and (b) are the ground-truth, (c) and (d) are the classification results from 

two different views, and (e) and (f) show the comparisons between the classification 

results and the ground-truth. According to Figure 6.17, misclassifications occur 

mainly with fragmented objects that have very sparse densities and connected objects 

with similar shapes (e.g., the guardrail connected to the green belt in the middle of the 

road as shown in the black circles in Figure 6.17 (a), (c) and (e)). Close proximity 

between objects and unexpected appurtenances (e.g., a sign on the pole of a street 

lamp) may also cause partial misclassifications of the objects, as illustrated by the 

black boxes in Figure 6.17 (b), (d) and (f). These errors in classification were probably 

propagated from errors in the segmentation, because the objects are too close to be 

correctly decomposed. In practice, such misclassifications can be interactively 

corrected at the supervoxel level in an efficient way. In general, the proposed method 

showed considerably good performance in distinguishing multiple objects, even 
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objects that are locally or globally similar, e.g., the traffic sign, traffic light and street 

lamp. 

 

Figure 6.17 Semantic classification and visualised evaluation results of the testing 

area in the Hong Kong (Sham Shui Po) dataset. 

To verify the effectiveness of the structural information and high-order 

contextual information, three comparative trials are designed for quantitative 

comparison. The first trail (SV + RF) uses the height, 2D and covariance features 

extracted from individual supervoxels to train a single RF classifier, and no structural 

or contextual information is used. The second trial (SC + RF) uses all features 

described in Section 4.2.1 extracted from structural components to train a single RF, 

and no contextual information is introduced. The third trail (SC + pairwise CRF) 

introduces pairwise contextual information on the basis of the second trail. The results 

of these comparative trials are quantitatively compared with the results of the proposed 
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method (SC + high-order CRF), as shown in Table 6.6 ~ 6.9. The pairwise weight 

factor α is set 0.3 in both the third trial and the proposed method, and the high-order 

weight factor β is 20. 

Table 6.6 Recall (%) of the classification result of the Hong Kong (Sham Shui Po) 

dataset compared with comparative trials. 

 Façade Ground Vegetation Car Pedestrian Guardrail 
Traffic 

sign 

Traffic 

light 

Street 

lamp 

Mussy 

points 
Others 

SV + RF 89.12 99.76 33.73 75.53 44.21 35.01 66.97 74.95 37.77 60.64 35.99 

SC + RF 94.87 99.78 80.86 81.85 54.63 76.09 71.46 85.48 52.29 88.62 35.11 

SC +  

pairwise CRF 
95.90 99.77 83.65 83.61 60.96 78.18 68.86 87.15 54.38 95.67 26.81 

SC +  

high-order CRF 
96.06 99.75 84.02 83.73 61.14 78.18 68.92 87.24 54.27 96.14 26.49 

 

Table 6.7 Precision (%) of the classification result of the Hong Kong (Sham Shui Po) 

dataset compared with comparative trials. 

 Façade Ground Vegetation Car Pedestrian Guardrail 
Traffic 

sign 

Traffic 

light 

Street 

lamp 

Mussy 

points 
Others 

SV + RF 79.02 99.32 65.51 84.63 45.98 84.16 22.24 86.31 41.72 40.46 25.94 

SC + RF 96.82 99.68 82.11 91.98 51.94 83.89 55.19 76.04 36.30 79.43 34.34 

SC +  

pairwise CRF 
96.32 99.72 85.67 94.52 61.78 86.34 73.55 79.36 43.69 87.08 38.42 

SC +  

high-order CRF 
96.30 99.74 85.61 93.92 63.46 86.17 75.45 79.87 51.76 87.30 43.38 

 

Table 6.8 F1-score (%) of the classification result of the Hong Kong (Sham Shui Po) 

dataset compared with comparative trials. 

 Façade Ground Vegetation Car Pedestrian Guardrail 
Traffic 

sign 

Traffic 

light 

Street 

lamp 

Mussy 

points 
Others 

SV + RF 83.77 99.54 44.53 79.82 45.08 49.45 33.39 80.23 39.65 48.54 30.15 

SC + RF 95.84 99.73 81.48 86.62 53.25 79.80 62.28 80.48 42.85 83.77 34.72 

SC +  

pairwise CRF 
96.11 99.74 84.65 88.73 61.37 82.06 71.13 83.07 48.45 91.17 31.58 

SC +  

high-order CRF 
96.18 99.74 84.81 88.53 62.28 81.98 72.04 83.39 52.99 91.51 32.89 
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Table 6.9 Overall accuracy (%) and mean F1-score (%) of the classification result of 

the Hong Kong (Sham Shui Po) dataset compared with comparative trials. 

 SV + RF SC + RF SC + pairwise RF SC + high-order CRF 

Overall accuracy 86.47 93.33 95.68 95.79 

Mean F1-score 57.65 72.80 76.19 76.94 

 

Table 6.6 shows that 10 of 11 categories have increased recall values with the 

introduction of structural information, and the increases are more than 10% for more 

than half of the categories. For vegetation and guardrail especially, the increases 

exceed 40%. A notable increase in precision values can also be found in Table 6.7; 

half of the categories have increases in precision of greater than 5%, and the precision 

of two categories (traffic sign and mussy points) are increased by more than 30%. 

Generally, the introduction of structural information can significantly increase both 

the completeness and correctness of classification, as indicated by the F1-scores in 

Table 6.8, in which all categories have increased F1-scores, and the F1-scores in four 

categories (vegetation, guardrail, traffic sign and mussy points) are increased by 30% 

or more. 

The introduction of pairwise contextual information could further improve the 

results of the second trial, as suggested by Table 6.6 ~ 6.9, and this is in agreement 

with many previous studies (Lim and Suter, 2009; Niemeyer et al., 2014; Zhu et al., 

2017). After the high-order interactions being introduced, although for some 

categories the recall or precision values do not significantly improve or even slightly 

decline, a global increase is suggested by the highest overall accuracy and mean F1-

score of 95.79% and 76.94%, respectively. In general, F1-scores increase for more than 

half of the categories. The greatest improvement can be found for the street lamp, for 

which the precision is increased by 8% and the F1-score is increased by 4.5%. Most 

small, isolated components appearing among tree crowns or at façade edges are likely 

to be misclassified, as demonstrated in Figure 6.18 (c); this could not be corrected by 
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pairwise interactions, but high-order interactions were able to take effect on such 

isolated fragments (as shown in Figure 6.18 (d)). 

 

Figure 6.18 Classification results of two regions in different comparative trials (a) ~ 

(c) and the proposed classification framework (d). White circles in (c) and (d) highlight 

the misclassifications corrected by the regional label costs. 

6.3 Experiment Using the Hong Kong (Central) Dataset 

6.3.1 Data Description 

The DIM point cloud acquired in Central, Hong Kong covers an area of 770 m  

900 m as shown in Figure 6.19. This dataset was generated using the software 

ContextCapture by Bentley (http://www.acute3d.com/contextcapture/) using oblique 

images, and it was resampled with a uniform spatial distance of 0.2 m, resulting more 

than 120 million points. As illustrated in Figure 6.19, most of this area is densely 

covered by high-rise buildings, including many landmark buildings (the buildings 

highlighted in yellow boxes in Figure 6.19), and only small parts of this area are 

covered by vegetation and other objects, such as cars and fences. The tallest building 

in this area, the International Finance Centre (IFC) building (Phase-2), has its top part 

missing (as shown in the red box in Figure 6.19), possibly because of low flight height 

and the lack of overlap between the oblique images. 

http://www.acute3d.com/contextcapture/
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Figure 6.19 Overview of the Hong Kong (Central) dataset. 

The ground and non-ground points of the Hong Kong (Central) dataset extracted 

by adaptive surface filtering are shown in Figure 6.20. As this point cloud is resampled 

with a uniform spatial distance, the ground and non-ground points all have even point 

densities. 
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Figure 6.20 Ground and non-ground points extracted from the Hong Kong (Central) 

dataset. 

6.3.2 Segmentation and Classification Results 

In the Hong Kong (Central) dataset, the buildings are densely located (as shown 

in Figure 6.21 (a)) and sometimes have connecting structures between them (e.g., 

footbridges as shown in Figure 6.21 (b)). Vegetation and junctions between different 

objects are mostly presented by the DIM point cloud as smooth surfaces (as shown in 

Figure 6.21 (c)). Therefore, an over-segmentation of planar objects (as shown in 

Figure 6.21 (d) – (f)) was preferred for this dataset to obtain sufficient training 

examples for the classification. The extra constraint that  (nSV1, nSV2) < 30 was 

adopted during the growing of structural components, which were labelled as 

planarity. 
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Figure 6.21 Characteristics of the Hong Kong (Central) dataset and structural 

components generated by over-segmentation. 

For classification, the Hong Kong (Central) dataset was split into two areas: the 

testing area covering 2/3 of the entire area (as shown in Figure 6.22 (a)) and the 

training area covering the rest of the area (as shown in Figure 6.22 (b)). To train the 

RF classifiers, objects in the training area were manually labelled into four categories: 

including building, vegetations, ground and others. Footbridges were also grouped 

into the category of building according to the ground-truth obtained from a manually 

labelled ALS point cloud covering the same area, and others refers to small objects, 

such as cars and fences. 
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Figure 6.22 The training and testing areas in Central, Hong Kong, and the 

classification result of the Hong Kong (Central) dataset in 2D view. 

Figure 6.23 shows the classification result in the testing area of the Hong Kong 

(Central) dataset in 3D view. From Figure 6.22 and Figure 6.23, it can be ascertained 

that most of the buildings (including footbridges) were correctly detected by the 

proposed method. There were no other objects with areas larger than 50 m2 incorrectly 

detected as buildings, except a Ferris wheel, as shown in the blue boxes in Figure 6.22 

(a) and Figure 6.23, perhaps due to the lack of training samples corresponding to the 

Ferris wheel. The main vegetation areas were also found by the proposed method, 

although some vegetation areas on the roofs of buildings or in the middle of roads (as 

shown in the blue circles in Figure 6.22 (a)) were incorrectly detected, perhaps due to 

the unexpected fluctuation in the surfaces of buildings or densely located cars. 
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Figure 6.23 Classification result in the testing area of the Hong Kong (Central) 

dataset in 3D view. 

As the classified point cloud is used to generate 3D building models, which is the 

final purpose of this research, the building class in was further quantitatively analysed 

by comparing it with the ground-truth obtained from a manually labelled ALS point 

cloud. Because most buildings in the ALS point cloud lack points on their façades, the 

comparison was conducted in 2D by projecting the points labelled as building into a 

grid of 0.85 m/pixel (which is about the resolution of the ALS point cloud), as shown 

in Figure 6.24. The true positive (TP), false positive (FP) and false negative (FN) 

detections are highlighted in yellow, red and blue, respectively. The quantitative 

evaluations of the classification results are shown in Table 6.10, in which recall = TP 

/ (TP + FN), precision = TP / (TP + FP) and the F1-score is computed as in Equation 

(6-4). 



Chapter 6 Experimental Evaluation and Analysis 

122 

 

Figure 6.24 Visualised evaluation of the classification result in the testing area of the 

Hong Kong (Central) dataset. 

Table 6.10 The evaluations (in percentage) of the classification result in the testing 

area of the Hong Kong (Central) dataset. 

Recall Precision F1-score 

90.61 75.56 82.40 

 

The recall value of 90.61% indicates the high completeness of the detected 

buildings. The main false negative detections appeared in the regions R1 ~ 3 as shown 

in Figure 6.24. Figure 6.25 (a) and (b) demonstrate the detailed comparisons in regions 

R1 and R2. The false negative detections in the DIM point cloud are mainly caused 

by points of low elevation, which are first recognised as ground points by the surface 

filter (Hu et al., 2014), with the corresponding points in the ALS labelled as building. 

Labelling these points as ground instead of building is more reasonable, because many 

cars (as shown in the black circle in Figure 6.25 (a)) are found above these points. 

Another reason for large false detections is that the images from which the DIM point 

cloud was generated and the ALS point cloud were acquired at different times, and 
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changes might have taken place in the area. As shown in Figure 6.25 (c), the buildings 

detected in the ALS are missing in the DIM point cloud. 

Figure 6.25 (d) shows the classification result in region R4 in detail. The 

buildings detected in the DIM point cloud are unclassified in the ALS, resulting in 

false positive detections in the comparison. Points appearing in the DIM but missing 

in the ALS can also lead to false positive detections, as shown in Figure 6.25 (e) and 

(f). The missing points are either caused by changes of objects (see Figure 6.25 (e)) or 

occlusions between high-rise buildings (see Figure 6.25 (f)). This latter reason is 

universal for nearly all of the buildings in the ALS data, resulting in a relatively lower 

precision value of 75.56%. 

 

Figure 6.25 Detailed comparisons of the classified DIM (the Hong Kong (Central) 

dataset) and the ALS point clouds. 

Misclassifications also exist at small or parts of objects, such as complex building 

structures with low elevations and fluctuant surfaces being classified as vegetation or 
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others. However, in general, the classification result of the Hong Kong (Central) 

dataset by the proposed method is consistent with the manual labelling result of the 

ALS point cloud. Considering the inherent differences between the DIM and ALS 

point clouds, the comprehensive evaluation metric, the F1-score, was of 82.40%, 

which suggests that the result for building detection is quite good, and it can be further 

applied in the reconstruction of 3D building models. 

6.3.3 3D Building Reconstruction Results 

After classification, points labelled as building were extracted as building point 

clusters, and in total, 105 buildings with complete structures (as shown in Figure 6.26 

(a)) were selected by manual checking and refinement (footbridges and incomplete 

buildings, such as the IFC building (Phase-2) shown in Figure 6.19, were manually 

excluded). Figure 6.26 (b) shows the reconstructed 3D building models of the 105 

buildings in the CityGML format, where red, grey and yellow indicate roof, wall and 

outer-floor surfaces, respectively. 
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Figure 6.26 Overview of the 3D building reconstruction result of the Hong Kong 

(Central) dataset. Red, grey and yellow indicate roof, wall and outer-floor surfaces, 

respectively. 

Figure 6.27 shows the detailed reconstruction results for four challenging types 

of buildings: buildings with complex structures, buildings with missing data, buildings 

with curved surfaces and buildings with true 3D structures. 
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Figure 6.27 Reconstruction results for four challenging types of buildings in CityGML 

format. Red, grey, yellow and pink indicate roof, wall, outer-floor and outer-ceiling 

surfaces, respectively. 
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Taking Figure 6.26 and Figure 6.27 together, it can be qualitatively concluded 

that the proposed reconstruction method had outstanding performance for modelling 

buildings with various architectural styles. Even with the complexity of buildings and 

poor-quality input data, the proposed method produced satisfactory building models. 

Figure 6.28 and Figure 6.29 show the quantitative evaluations of the 

reconstruction results of several buildings, which are also compared with the results 

of PolyFit (Nan and Wonka, 2017) and 2.5D (D-C) (Zhou and Neumann, 2010). For 

buildings with simple structures (as shown in Figure 6.28), both PolyFit and the 

proposed method can produce polygonal models with high regularity, whereas 2.5D 

(D-C) produced models in the triangular mesh format and with irregular boundaries 

(see the magnified views showing the details of the reconstructed building rooftops in 

Figure 6.28). The proposed method had the smallest RSME values, 0.67 m and 0.58 

m, for two simple buildings, indicating higher modelling accuracy than PolyFit and 

2.5D (D-C). The main inaccuracies of the models generated by the proposed method 

occurred at linear and small structures on the building roofs, which were eliminated 

during the extraction of the planar primitives of the buildings. Points carved into the 

building, which were generated by mismatching during the MVS pipeline, could also 

cause inaccuracies on the building façades (such as Building-1 shown in Figure 6.28); 

this was consistent with the results of PolyFit and 2.5D (D-C). 
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Figure 6.28 Evaluations of the reconstruction results of two simple buildings and 

comparison with the results of PolyFit and 2.5D (D-C). The details of the reconstructed 

building rooftops are shown in the black rectangles, where the input point clouds are 

overlapped on the building models. 
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Figure 6.29 Evaluations of the reconstruction results of three complex buildings and 

comparison with the results of PolyFit and 2.5D (D-C). The details of the reconstructed 

building rooftops are shown in the black rectangles, where the input point clouds are 

overlapped on the building models. 

Although PolyFit showed competitive performance in reconstructing simple 

buildings with high regularity, it tended to generate extremely inaccurate models for 
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buildings with complex structures (such as Building-3 shown in Figure 6.29) or 

directly failed to output the building models (such as Building-4 and 5 shown in Figure 

6.29). In contrast, both the proposed method and 2.5D (D-C) showed high robustness 

in the reconstruction of buildings with various complex architectural styles. However, 

again, 2.5D (D-C) only produced triangular mesh models with highly irregular 

boundaries, mostly with relatively lower geometric accuracy compared with the 

proposed method (as indicated by the RSME measurements of Building-1~4 shown in 

Figure 6.28 and Figure 6.29). With respect to the modelling of small structures on the 

building rooftops, 2.5D (D-C) had better performance than the proposed method (as 

illustrated by Building-3 in Figure 6.29), because of the failure to present such small 

structures with planar primitives. However, 2.5D (D-C) only focuses on the 

reconstruction of non-vertical structures (e.g., building rooftops), whereas the 

proposed method considers the structures of entire buildings and has better 

performance in modelling building façades (as illustrated by Building-4 in Figure 

6.29). 

In general, both the proposed method and 2.5D (D-C) have higher robustness 

than PolyFit, and the proposed method can generate polygonal models with high 

regularity and true 3D structures, which is beyond the capability of 2.5D (D-C). The 

proposed method can also convert the geometric models into CityGML formats for 

further urban applications.  

However, compared with manually generated 3D models, the 3D building models 

generated by the proposed approach may be unsatisfactory with respect to details. This 

may be because the 3D cells forming the geometries of the building models are 

generated based on 3D planes, and planes cannot present details perfectly. In fact, this 

is a common issue with reconstruction methods based on planar segments. The 3D 

modelling results are also limited by the quality of the input point clouds, which also 

present details in an undesirable way. In general, the proposed method has outstanding 

performance considering the limited quality of the input data. 
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Chapter 7 Conclusions and Discussion 

This dissertation presents a complete framework of point cloud modelling. Three 

innovative methods – segmentation, classification and 3D building reconstruction – 

and systematic experimental analyses are described in detail in the previous chapters. 

This chapter summarises the achievements, draws conclusions from this research and 

then makes recommendations for future research. 

7.1 Summary of the Research Work 

In this research, three mutually connected methods based on multiple relations 

were developed for modelling point clouds that may have serious defects (e.g., varying 

point density, noise and missing data). 

First, a segmentation method of point clouds based on multi-level relations was 

introduced. During segmentation, supervoxels with adaptive sizes were generated, and 

the local shape descriptors were derived from the supervoxels for structural labelling, 

providing essential clues for further decomposition of objects into different 

components with meaningful labels.  

After the segmentation, structural components were classified based on the 

contextual relations between them. The contextual relations presenting the structural 

information were encoded in a CRF framework and affected both the 

training/inference and the refinement stages of the classification. High-order 

contextual information was also introduced into the CRF for refining regional label 

redundancies.  

With the classified point clouds, building points are easily extracted and clustered. 

For each individual building, a true 3D model in the CityGML format can be 

automatically generated by the developed 3D reconstruction method, which benefits 

from the use of topological-relation constraints. This method adopts a space-partition-

and-approximation strategy and abstracts the topological relations between the space 
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elements as constraints of an ILP problem, for which mature solutions have already 

been found. 

Based on the proposed methods, a package of tools for point cloud modelling was 

developed in C++ using Microsoft Visual Studio 2017. This tool package consists of 

four modules: a basic module for data management and three functional modules 

corresponding to the three proposed methods. During the development of the point 

cloud modelling tools, several open source libraries, including PCL (Rusu and Cousins, 

2011), OpenCV (Bradski and Kaehler, 2000), CGAL (Fabri and Teillaud, 2011) and 

Gurobi solver (Gurobi, 2015), were used to solve some specific problems, as shown 

in Figure 7.1. 
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Figure 7.1 Module design of the point cloud modelling tools developed in this research. 

The interfaces of the developed tools are shown in Figure 7-2, and each of the 

tools is accompanied by a console to show the processing log. 
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Figure 7.2 Interfaces of the developed tools and their output logs. 
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With these developed tools, three systematic experiments were carried out to 

investigate the performances of the proposed methods using datasets acquired from 

different sources, including an MLS point cloud (in Paris), a point cloud obtained from 

MMS (in Sham Shui Po, Hong Kong) and a DIM point cloud (in Central, Hong Kong). 

Qualitative and quantitative evaluations were made based on the experimental results 

of these three datasets, and the results were compared with previous methods. 

7.2 Conclusions 

The main novelty of this study lies in the introduction and combination of 

multiple relations, including geometric relations, structural relations and topological 

relations, during the process of object decomposition, recognition and 3D building 

reconstruction. The following summarises the effectiveness of the multiple relations 

during each stage of the modelling of point clouds, and the results of the experiments. 

(1) Density anisotropy is important during noise filtering, especially for ground-

obtained point clouds, in which there are large variations in the point densities. 

For such point clouds, multiple-level relations can help to obtain a better 

segmentation of objects in an efficient way. The multi-size supervoxels 

generated based on the point relations can significantly reduce the 

computational cost in the further segmentation step, while well preserving the 

local characteristics of the data. In addition, the relations at the supervoxel 

level make the final segmentation spatially smooth and reasonable. The 

segmentation produces both supervoxels and structural components, and this 

enables a flexible way at different scales for interactively modifying the errors 

in the segmentation, which may have influences on the following 

classification and reconstruction. 

(2) Objects are formed by structures of different shapes, and such structural 

information is essential for the recognition of objects, especially objects 

presented in detail. Capturing structural information as contextual relations 
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and abstracting them as discriminative features at the inference stage of the 

classification, can be more effective than applying them only during the 

refinement stage of the classification. With structural information, multiple 

classes of objects, even with local or global similarities, will be correctly 

recognised. 

(3) By adopting a space-partition-and-approximation strategy, complex 

topological computations or modifications can be avoided, and the 

topological relations can be easily obtained from the space units obtained 

from the space partition. This strategy also provides an opportunity to use the 

topological relations to constrain the geometric model to be topologically 

correct. Extra constraints in terms of regularity can also be attached to the 

topological relations so that the final building model can be consistent with 

some architectural design principles. 

(4) In the experiments, the ground-obtained datasets feature greatly varying point 

density and noise. The quantitative evaluation and comparison with previous 

studies and comparative trials indicated that the proposed method performed 

best in the identification of multiple categories. The results also suggested 

that the introduction of structural information could significantly improve the 

completeness and accuracy of classification. The effectiveness of the 3D 

building reconstruction method was verified using the DIM point cloud, from 

which relatively more complete buildings could be extracted. Compared with 

two typical previous methods, the proposed method showed outstanding 

performance and high robustness for the reconstruction of various buildings, 

even those have serious data missing issues, which are probably caused by 

occlusions. 

(5) In general, the segmentation, classification and building modelling pipeline 

proposed in this research provides a practicable solution for 3D city 

reconstruction with high automation and efficiency. The adoption of 
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supervoxels instead of points can significantly reduce the computation load 

of the graph-based segmentation, thus making the segmentation more 

efficient. The segmentation also provides a more flexible way to obtain the 

training samples for classification. Because each of the structural components 

is designed only to correspond to one object, users can easily click on the 

structural component and choose an appropriate class label for it during the 

production of training samples. With respect to the 3D reconstruction of 

buildings, although some manual interventions were involved to remove 

extremely incomplete buildings and footbridges in the experiments in this 

research, the reconstruction of individual buildings is totally automatic and 

does not require reduplicative parameter tuning. In addition, the half space 

partition strategy designed in this research significantly reduces the size of 

the 3D cell complex, while preserving the completeness of the space partition, 

thus contributing to the efficiency of the subsequent optimal selection of 

occupied cells. 

7.3 Discussion and Future Works 

Following the conclusions drawn from the proposed methods and the 

experimental analyses, recommendations for future research are presented below. 

(1) Point cloud segmentation and classification 

As the initial inference in the classification is largely based on structural 

information about objects, any changes, such as close distance and unexpected 

appurtenances, may lead to misclassifications. Fragmentation and missing data that 

break down the point density consistency may also make the high-order interactions 

useless during the refinement stage of the classification. Although the DIM point cloud 

suffers much less from fragmentation and missing data, the smooth planarised 

presentation of objects and inaccuracy of data are serious defects that may limit the 



Chapter 7 Conclusions and Discussion 

138 

extraction of structural information.  

These challenges are commonly faced by many segmentation and classification 

methods that use only the geometric properties of the point cloud. In future research, 

new methods will be investigated to solve these problems based on this research, such 

as exploiting the properties of full-waveform LiDAR or fusing spectral images with 

the point clouds. 

With the development of convolutional networks, e.g., the 3D convolutional 

neural networks (Huang and You, 2016), graph convolutional networks (Landrieu and 

Simonovsky, 2018; Qi et al., 2017) and interpolated convolutional networks (Mao et 

al., 2019), deep learning becomes more and more popular in the classification of point 

cloud data. In fact, the framework developed in this research allows the flexible 

selection of classifiers for the inference, including the graph convolution networks. In 

future research, the performance of the proposed framework will be further 

investigated with the state-of-the-art deep learning algorithms. 

(2) 3D reconstruction of buildings 

Although mature plane detection algorithms such as RANSAC can produce 

satisfactory results for the majority of buildings, small structures presented by a very 

few points are likely to be omitted. In addition to planar structures, buildings can also 

consist of linear structures or curved surfaces. Although large non-planar components 

can be approximated by multiple planes, the approximation as a whole tends to have 

less regularity and accuracy. 

Occlusion caused by densely located objects or complex terrain relief, is another 

problem for the generation of accurate 3D models with fine details. Although the 

proposed 3D reconstruction approach is able to produce complete building models 

from point clouds that have serious data missing issues, details cannot be recovered 

because they are not captured in the images due to occlusions. The most effective way 

to solve this problem is to introduce more data from different sources, such as the 

mobile and backpack mapping systems, which are flexible enough to mapping zones 
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that are blind to the aerial images. 

In the future, efforts will be made to investigate the generation of more accurate 

models with higher LODs using data from multiple sources. In addition to the 

polygonal models generated by the method proposed in this research, the non-planar 

structures will be presented as triangular meshes, and the final building models can 

therefore output hybrid presentations as in the study of Hu et al. (2018a). Efforts will 

also be made to investigate the benchmark of 3D building models, to find the most 

appropriate way to evaluate the 3D building models, with respect to not only geometry, 

but also semantics. 

(3) Enrich the model components in CityGML 

As the models will have more details and be presented in a hybrid format, a new 

automatic method needs to be developed to automatically convert the new models into 

CityGML format. In addition to the geometries, the enrichment of the topological, and 

semantical components in CityGML will also be investigated in the future, so that the 

models can be used to support various 3D GIS analysis functions. 

Furthermore, the semantic and topological information is investigated only for 

independent buildings in this research. In fact, in urban areas, especially in 

metropolises like Hong Kong, buildings are often connected by, e.g., footbridges, and 

this is an important part of the spatial infrastructure for smart city. Therefore, further 

efforts will be made to analyze the connectivity rules between complex building 

shapes and investigate the methods to embed them in the CityGML models. 

(4) Generation of virtual reality models 

Besides the generation of building models with higher LODs and detailed 

semantic information, texture mapping is another essential step for the generation of 

virtual reality city models (Buyukdemircioglu et al., 2018; Lee and Yang, 2019). 3D 

models generated from photogrammetric point clouds by dense image matching 

inherently take advantage of the projection relationships from the 2D images to the 
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3D space. Co-registration and fusion technologies of LiDAR and image data 

(Poliyapram et al., 2019) also make it possible to achieve texture mapping for 3D 

models generated from LiDAR point clouds.  

However, generation of virtual reality models is still facing many challenges, 

especially for building models with complex structure and high level of details, such 

as the selection of optimal images for texture mapping with respect to both visual 

angles and occlusions, and the uniform of tones between different images. Based on 

the modelling result of this research, further study will be conducted in the future to 

study the efficient and effective methods for seamless, consistent and photorealistic 

texture mapping. 
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