
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



STATISTICAL LEARNING WITH EMPIRICAL FEATURES AND

DATA OF DIFFERENT TYPES

HUIHUI QIN

PhD

The Hong Kong Polytechnic University

2020









The Hong Kong Polytechnic University

Department of Applied Mathematics

Statistical Learning with Empirical
Features and Data of Different Types

Huihui Qin

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

August 2020



ii



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

QIN Huihui (Name of student)

iii



iv



Abstract

The thesis consists of three parts that cover different aspects of statistical learning

for data mining.

In the first part, we propose a new algorithm, LESS (Learning with Empiri-

cal feature-based Summary statistics from Semi-supervised data), which uses only

summary statistics instead of raw data for regression learning. Nowadays the exten-

sive collection and analyzing of data is stimulating widespread privacy concerns, and

therefore is increasing tensions between the potential sources of data and researchers.

A privacy-friendly learning framework can help to ease the tensions, and to free up

more data for research. In LESS, The selection of empirical features serves as a

trade-off between prediction precision and the protection of privacy. We show that

LESS achieves the minimax optimal rate of convergence, in terms of the size of the la-

beled sample. LESS extends naturally to the applications where data are separately

held by different sources. Compared with existing literature on distributed learning,

LESS removes the restriction of minimum sample size on single data sources.

In the second part of the thesis, we study different approaches for analyzing

topics in text data. Topic modeling has been an important field in natural language

processing (NLP) and recently witnessed great methodological advances. Yet, the

development of topic modeling is still, if not increasingly, challenged by two critical

issues. First, despite intense efforts toward nonparametric/post-training methods,

the search for the optimal number of topics K remains a fundamental question in topic
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modeling and warrants input from domain experts. Second, with the development of

more sophisticated models, topic modeling is now ironically been treated as a black

box and it becomes increasingly difficult to tell how research findings are informed

by data, model specifications, or inference algorithms. Based on about 120,000

newspaper articles retrieved from three major Canadian newspapers (Globe and Mail,

Toronto Star, and National Post) since 1977, we employ five methods with different

model specifications and inference algorithms (Latent Semantic Analysis, Latent

Dirichlet Allocation, Principal Component Analysis, Factor Analysis, Non- negative

Matrix Factorization) to identify discussion topics. The optimal topics are then

assessed using three measures: coherence statistics, held-out likelihood (loss), and

graph-based dimensionality selection. Mixed findings from this research complement

advances in topic modeling and provide insights into the choice of optimal topics in

social science research.

In the third part, we consider the generalized linear hurdle model with grouped

and right-censored count data. This data type is widely applied in demography,

epidemiology, sociology, criminology, psychology, and many other branches of social

sciences. The corresponding generalized linear model and the zero-inflated model

recently draw much attention. In this part, we study the hurdle model which covers

not only zero inflation but also zero deflation. We provide sufficient conditions for the

asymptotic consistency and asymptotic normality of maximum likelihood estimator.

We represent the Fisher information matrix of the hurdle model in terms of the

vanilla grouped and right-censored model. We provide an elegant sufficient and

necessary condition for the Fisher information matrix of the hurdle model to be

strictly positive definite. The research complements the recent development of the

statistical inference with grouped and right-censored count data.
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Chapter 1

Semi-supervised Learning with
Summary Statistics

1.1 Introduction

Many reproducing kernel-based machine learning algorithms are designed without

considering privacy issues. In particular, under the structural risk minimization

scheme, as pointed out by the representer theorem, the whole input part of training

data, which may contain private information, has to be shipped along with the pre-

dicted function. Privacy concern would restrict the application of such algorithms.

On the other hand, usually there are unlabeled data available with the same marginal

distribution as the training data. For example, these unlabeled data could be pro-

duced by sampling from the estimated density, or be obtained from public domain

without privacy issues [105, 66]. In this paper, we study the methodology for masking

the sensitive private information in training data, with the help of unlabeled data.

Semi-supervised learning is a big class of machine learning problems where unla-

beled data are used in addition to the data points with labels, e.g., for classification

or regression. In recent years, unlabeled data are observed helpful for capturing the

underlying manifold structures of data distribution [21, 8], relaxing the requirement

on single-source minimum sample size in distributed learning [64, 45], and improving

the convergence under weak regularity assumptions of the regression function [45].
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In this chapter, unlabeled data (possibly also including the input part of the labeled

data) are used to build empirical features first. Then, we use the empirical features to

construct summary statistics, based on which we introduce a new algorithm, LESS

(Learning with Empirical feature-based Summary statistics from Semi-supervised

data), of which the main advantages are summarized below.

• LESS achieves the minimax optimal convergence rate, in terms of the size of

labeled sample.

• With the help of unlabeled data, LESS has an automatic generalization to

distributed learning, where the restriction on single-source minimum sample

size is completely removed.

• The summary statistics we adopt provide a protocol for communicating data

with privacy. Unlike classical kernel-based algorithms, LESS collects only the

summary statistics, instead of the private raw data, for the centralized learning

process.

Consider a regression learning problem with an input space X, which is a compact

metric space, and an output space Y Ă R. Let z “ tpxi, yiqu
m
i“1 be a sample drawn

independently from pZ “ XˆY, ρq, where ρ is an unknown Borel probability measure

such that the marginal distribution ρX on X is nondegenerate, i.e., ρXpAq ą 0 for

any measurable set A that has an interior point. The target of the regression problem

is to learn the regression function fρ : X Ñ R,

fρpxq “

ż

Y

ydρpy|xq,

from the sample z, where ρpy|xq is the conditional distribution of ρ at x.

There is a large literature of the kernel methods for machine learning. See [91, 90,

96, 103, 89, 63], and the reference therein. Let K : X ˆX Ñ R be a Mercer kernel.
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That is, K is a function which is symmetric, continuous, and positive, where positive

means
řl
i,j“1 cicjKpui, ujq ě 0 for any integer 1 ď l ă 8, any coefficients c1, . . . , cl P

R, and any elements u1, . . . , ul P X. Let pHK , 〈¨, ¨〉K , }¨}Kq be the reproducing kernel

Hilbert space generated by K. The classical kernel-based regularized least squares

algorithm is defined by

fz
λ “ arg min

fPHK

#

1

m

m
ÿ

i“1

pfpxiq ´ yiq
2
` λ}f}2K

+

, (1.1)

where λ ą 0 is the regularization parameter. Kernel-based learning algorithms usu-

ally have the flaws in privacy protection. For example, by the well-known representer

theorem [96], fz
λ in (1.1) takes the form

fz
λ “

m
ÿ

i“1

ciKxi , (1.2)

where c1, . . . , cm P R are the coefficients determined by (1.1), and for any x, u P X,

the function Kx : X Ñ R is defined by Kxpuq “ Kpx, uq. It is easy to see that to

ship fz
λ , the unlabeled part x “ txiu

m
i“1 of the sample z must be shipped together.

We put a discussion in Section 1.3. In this paper, we try to solve this problem on

privacy, by introducing the empirical feature-based summary statistics.

We assume that there is another sample u “ tuiu
n
i“1, drawn independently from

ρX without labels. For applications, the sample u may come from some openly

accessible sources, for example those with the privacy expired. Note that we do not

assume independence between u and x. In particular, a part, or even the whole of x

could just be put into u. This inclusion is sometimes useful, and is covered by our

analysis.

Define Lu
K : HK Ñ HK as an operator by

Lu
Kf “

1

n

n
ÿ

i“1

fpuiqKui , (1.3)
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where |u| “ n is the size of u. By the reproducing property [22] that for any f P HK

and u P X, 〈f,Ku〉K “ fpuq, one has that for any f, g P HK ,

〈Lu
Kf, g〉K “

1

n

n
ÿ

i“1

fpuiqgpuiq “ 〈f, Lu
Kg〉K .

In particular, 〈Lu
Kf, f〉K “ 1

n

řn
i“1 fpuiq

2 ě 0. So Lu
K is a positive semi-definite

operator with rank (i.e., the dimension of its image) at most n. Therefore, we can

write tpλui , φ
u
i qui as the eigensystem of Lu

K with λu1 ě λu2 ě . . . ě λun ě 0 “ λun`1 “

. . .. The zero eigenvalues are counted purposely to make tφu
i ui an orthonormal basis

of HK . Similarly, we define Lx
K and tpλxi , φ

x
i qui for the input part x of the sample z

by substituting u with x, and n with m “ |x| in (1.3).

Algorithm LESS. The sample dependent functions φu
i ’s are referred to as em-

pirical features (so are φx
i ’s). These functions are studied in literature [46, 110, 111]

as powerful tools for regression, classification, and nonlinear dimension reduction.

Let 1 ď N ď n be an integer. Consider the summary statistic d “ pd1, . . . , dNq
T ,

defined by

di “

〈
φu
i ,

1

m

m
ÿ

j“1

yjKxj

〉
K

, 1 ď i ď N. (1.4)

The superscripts u and z of d and di’s are dropped to avoid heavy notation. The

summary statistic d is then used to build the output function of LESS,

fu,z
λ “ pLu

K ` λIq
´1

N
ÿ

i“1

diφ
u
i “

N
ÿ

i“1

di
λui ` λ

φu
i , (1.5)

where λ ą 0 is the regularization parameter, and in this paper, I denotes the identity

operator, with its domain inferred from the context. Here, recall that φu
i is an

eigenfunction of Lu
K , Lu

Kφ
u
i “ λui φ

u
i . We have pLu

K ` λIq
´1φu

i “
1

λui `λ
φu
i .

We see that by the introduction of the empirical features φu
i ’s, the training sample

z is encoded into d, instead of directly shipped along the predicted function fu,z
λ .
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From the statistic d, it is even not trivial to recover the sample size m! Of course, a

safer design could be achieved by adding noise to d, which we leave as future work.

LESS for distributed learning. The summary statistics d provides an au-

tomatic and unified way for distributed learning. In fact, suppose that instead of

(1.4), the sample z is stored separately in ` sources z “ z1 Y z2 Y . . . Y z` without

overlapping, then one defines dJ “ pdJ1 , . . . , d
J
Nq

T by

dJi “

〈
φu
i ,

1

|zJ |

ÿ

px,yqPzJ

yKx

〉
K

, 1 ď J ď `, 1 ď i ď N. (1.6)

Again, one may centralize the summary statistics dJ ’s without directly collecting the

private data sets zJ ’s. More importantly, the weighted average of dJ ’s is exactly d,

d “
ÿ̀

J“1

|zJ |

|z|
dJ . (1.7)

So, without any configuration, LESS can be directly applied to distributed learning

problems, where data are separately held by different sources as privacy. From (1.7),

we see that the sizes of different data subsets have no effect on the learning process

(1.5). In another way of saying, our analysis on LESS applies automatically to this

distributed design (1.6).

The rest of this chapter is organized as follows. We first give our main results in

Section 1.2. Comparisons and discussions, as well as the details of implementations

are put in Section 1.3. Proofs are placed in Section 1.4.

1.2 Main Results

In this section, we formulate the main assumptions and our main results.

Write pL2
ρX
, }¨}ρq the Hilbert space of square-integrable functions on X with re-
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spect to the measure ρX . Define LK : L2
ρX
Ñ L2

ρX
by

f ÞÑ

ż

X

fpxqKxdρXpxq.

Since K is continuous and X is compact, LK is compact. It is easy to verify that LK

is positive semi-definite. Furthermore, LK is of trace class (hence Hilbert-Schmidt),

and since ρX is nondegenerate, }L
1{2
K f}K “ }f}ρ for any f P L2

ρX
. Denote κ “

maxt1, supxPX
a

Kpx, xqu. We have TracepLKq ď κ2. See [22] for detailed proofs. So

we write

λ1 ě λ2 ě . . . ě 0,

as all the eigenvalues of LK , and φ1, φ2, . . . the corresponding eigenfunctions, nor-

malized in HK . For λ ą 0, write

N pλq “ TracepLKpLK ` λIq
´1
q

the effective dimension of LK [102, 17, 12]. The following assumption (A1) charac-

terizes the capacity of the hypothesis space HK , and is widely adopted in learning

theory literature [64, 63, 11].

(A1) There exist some constants 0 ă C1 ă 8 and 0 ă s ď 1 such that N pλq ď

C1λ
´s for any 0 ă λ ă 8.

The following assumption (A2) characterizes the regularity of the regression func-

tion.

(A2) There exists some gρ P L
2
ρX

and 1{2 ď r ď 1 such that fρ “ LrKgρ.

Note that Assumption (A2) implies fρ P HK .
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(A3)
ş

Z
y2dρpx, yq ă 8, and that there exist two constants 0 ă σ,M ă 8, such that

ż

Y

ˆ

exp

"

|y ´ fρpxq|

M

*

´
|y ´ fρpxq|

M
´ 1

˙

dρpy|xq ď
σ2

2M2
,

for ρX-almost all x P X.

In particular, (A3) holds with σ “
a

2pe2 ´ 3qM , when |y| ď M almost surely. For

more discussions on (A3), see [64, 7, 17, 97].

From the design (1.4) and (1.5), we see that intuitively, one needs sufficient

coordinates for d to guarantee the convergence. In particular, we characterize the

requirement by the following assumption (A4).

(A4) N is large enough (meaning that enough empirical features are used), so that

λN`1 ď κ2λ.

Theorem 1.1. Assume (A1), (A2), (A3), and n ě m. For any 0 ă δ ă 1, one has

with confidence at least 1´ δ that

}fu,z
λ ´ fρ}ρ ď

ˆ

2B2
n,λ

λ
` 2

˙ˆ

M ` σ

κ
` }fρ}K ` }gρ}ρ

˙

Bm,λ log3 10

δ

`

ˆ

2B2
n,λ

λ
` 2

˙r ˆ

λ`
4κ2
?
n
` λN`1

˙r

}gρ}ρ log3r 10

δ
` }gρ}ρ λ

r,

where

Bn,λ “
2κ2

n
?
λ
` 2κ

c

N pλq
n

, (1.8)

and Bm,λ is similarly defined by substituting n with m.

We cite from [45, Lemma B.1] the following lemma, which is standard, and the

proof can also be found in [63] and [48, Lemma 11].
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Lemma 1.1. Let R be a nonnegative random variable. Let α, β, γ ą 0. If for any

0 ă δ ă 1, one has with confidence at least 1 ´ δ that R ď α logγ β
δ
, then for any

µ ą 0,

pErRµ
sq

1{µ
ď α rβΓpµγ ` 1qs1{µ ,

where Γptq “
ş8

0
e´uut´1du is the Gamma function.

Corollary 1.1. Assume (A1), (A2), (A3), (A4), and n ě maxtm,m
2

2r`s u. Let

λ “ m´ 1
2r`s . For any 0 ă δ ă 1, one has with confidence at least 1´ δ that

}fu,z
λ ´ fρ}ρ ď C2m

´ r
2r`s log3 10

δ
, (1.9)

where C2 is a constant independent of m, n, or δ, and it is given at the end of the

proof. Moreover, for any µ ą 0, Lemma 1.1 gives

”

Ep}fu,z
λ ´ fρ}

µ
ρq

ı1{µ

ď C2 r10Γp3µ` 1qs1{µm´ r
2r`s . (1.10)

Remark 1.1. Recall that 1 ď N ď n. With the assumption n ě maxtm,m
2

2r`s u

and the setting λ “ m´ 1
2r`s , it is always possible to find some N ď n that satisfies

Assumption (A4). In fact, since the eigenvalues λ1 ě λ2 ě . . . of LK are arranged

in non-increasing order, λn ď
1
n
TracepLKq ď

κ2

n
ď κ2m´ 1

2r`s “ κ2λ.

Remark 1.2. It is well understood [17, 92, 7] that when 1{2 ď r ď 1, the minimax

optimal learning rate for learning algorithms that have only the access to z and with

output functions in HK, is Opm´ r
2r`s q. The bounds (1.9) and (1.10) in Corollary 1.1

match this rate.
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1.3 Discussions and Comparisons

1.3.1 Details for the Implementations

Recall m “ |x|. Define the sampling operator Sx : HK Ñ Rm,

f ÞÑ pfpxiqq
m
i“1 .

It is straightforward to see that the adjoint operator STx : Rm Ñ HK is defined by

pciq
m
i“1 ÞÑ

m
ÿ

i“1

ciKxi .

Let K be the Gram matrix of the Mercer kernel K on x, K “ pKpxi, xjqqmi,j“1. Then,

1

m
K “

1

m
SxS

T
x , Lx

K “
1

m
STxSx. (1.11)

So the eigenvalues of 1
m
K, counting multiplicity, are λx1 , . . . , λ

x
m, which are the first

m eigenvalues of Lx
K . Since K is positive semi-definite, we have the following eigen-

decomposition

1

m
K “ UΛUT , Λ “ diagtλx1 , . . . , λ

x
mu,

where U “ rU1, . . . , Ums is an orthogonal matrix. Some simple linear algebra shows

that if λxi “ 0, then 〈φx
i , L

x
Kφ

x
i 〉K “ 0, so Sxφ

x
i “ 0, which means φx

i is perpendic-

ular to the linear space spanned by tKx : x P xu. In this case we do not have a

representation of φx
i with tKx : x P xu. When λxi ą 0, from STxUi “

1
λxi
STx p

1
m
KUiq “

1
λxi
Lx
KpS

T
xUiq, and

›

›STxUi
›

›

2

K
“ m

〈
Ui,

1
m
KUi

〉
Rm “ mλxi , we can take

φx
i “

1
a

mλxi
STxUi, Ui “

1
a

mλxi
Sxφ

x
i .

For two samples x and u with sizes m and n respectively, denote Ku,x the nˆm

matrix of which the pi, jq entry is Kpui, xjq. Then Ku,x “ KT
x,u, and SuS

T
x “ Ku,x.

9



The Gram matrix Ku,u of size n ˆ n is similarly defined with the sample u. The

summary statistic d could be computed through

di “

〈
φu
i ,

1

m

m
ÿ

j“1

yjKxj

〉
K

“

〈
1

a

nλui
STuVi,

1

m
STx y

〉
K

“
1

m
a

nλui
〈Vi,Ku,xy〉Rn ,

where V “ rV1, . . . , Vns is the orthogonal matrix defined by the eigen-decomposition

1
n
Ku,u “ V diagtλu1 , . . . , λ

u
nuV

T .

1.3.2 Motivating Applications

Our work is inspired by two recent works [105, 66] in statistics. Consider the linear

regression model y “ Xβ ` ε, and its least squares solution β̂ “ pXTXq´1XTy.

Roughly speaking, the basic idea in [105, 66] is only to collect the summary statistic

XTy as a whole, and use a new estimator β̂1 “ pX̃T X̃q´1XTy to replace β̂. Here

X̃ is the coefficient matrix made by openly accessible and unlabeled data without

privacy issues. Real applications with data of both X and X̃ are studied in the

works. The relation between the predicted function fz
λ of regularized least squares,

and the predicted function fu,z
λ of LESS is similar to that between β̂ and β̂1. In fact,

for any f, g, h P HK , define f b g as an operator by pf b gqh “ 〈g, h〉K f . Define

PN : HK Ñ HK as the orthogonal projection onto the subspace spanned by tφu
i u

N
i“1.

That is, PN “
řN
i“1 φ

u
i b φu

i . It is well known [90] that fz
λ “ pLx

K ` λIq
´1 1

m
STx y,

and we can write fu,z
λ by replacing Lx

K by Lu
K , and inserting the projection PN as a

protocol,

fu,z
λ “ pLu

K ` λIq
´1 PN

1

m
STx y.

LESS can be used as a privacy-friendly substitute for regularized least squares

(1.1). The solution fz
λ in (1.2) of Problem (1.1) is a linear combination of kernel

10



functions on the sample. To compute fz
λ , the sample z must be collected from the

holder of data. To ship fz
λ to the users, at least the input part x should explicitly be

shipped, and the labels yi’s could thus be estimated via yi « fz
λpxiq. Although when

the input space X is an Euclidean domain with low dimension, one may ship fz
λ in

terms of its local approximations with splines or wavelets, such approximation could

be difficult when the dimension of X is high. LESS solves this problem by collecting

only the summary statistic d and shipping the predicted function fu,z
λ in terms of

the linear combination of φu
i ’s, which is eventually the linear combination of Kui ’s,

with ui P u free of privacy issues.

The dimension N of the summary statistic d balances the protection of privacy,

and the least squares error of the predicted function fu,z
λ . As suggested by Assump-

tion (A4) and Corollary 1.1, if N is large enough such that λN`1 ď κ2λ, d contains

sufficient information that supports the optimal learning rate. In many applications

the eigenvalues of LK decay quickly and we do not need a large N to achieve (A4).

For example, if X is an Euclidean domain and K is Sobolev smooth, then λi’s decay

polynomially [78]. If K is analytic, such as the widely used Gaussian kernel, then λi’s

decay exponentially [65]. From the proof of Theorem 1.1 and Corollary 1.1, we see

that empirically, Assumption (A4) can be replaced by λuN`1 ď κ2λ without affecting

the error estimate. A better privacy protection can be achieved by adding noise to d

(or to dj’s under the distributed setting). We leave the quantitative analysis of this

approach as future work.

For the case the sample z is held separately by ` different sources z “ Y`i“1zi,

there are recent works [19, 64, 45] that study the method of inflating each sub-sample

zi with a separate unlabeled sample. The inflation is done as follows. Suppose u is

an unlabeled sample divided into ` subsets u “ Y`i“1ui. For each i, all the sample

points in ui are equipped with a fake label 0, and all the labels in zi are scaled by

the factor p|zi| ` |ui|q{|zi| to compensate for these fake labels. Then zi and ui are

11



mixed as a sample to yield an output function fuiYzi
λ from regularized least squares.

The overall output function f̄z
λ is the weighted average of fuiYzi

λ ’s. By this operation,

[64] proved (with the assumptions |z1| “ . . . “ |z`| and |u1| “ . . . “ |u`|) that when

` ď
1

log5m` 1
min

!

pn`mq1{2m´ s`1
4r`2s , pn`mq1{3m

2r`s´2
6r`3s

)

, (1.12)

the output function f̄z
λ still achieves the minimax optimal learning rate.

Compared with the inflation method studied in [19, 64, 45], LESS provides a

way better solution to the learning problems with multiple sources of data. First,

although for the scenarios where it is not allowed to bring together the training data

from different sources, the distributed-learning setting solves the training problem,

one still has to ship out the new instances (to different sources of training data) for

prediction. Usually, these instances also contain private information, and it is not

appropriate to circulate them around. Second, in the worst case scenario, when the

sample size of each subset zi is Op1q, and without loss of generality we use ` “ m,

then (1.12) implies (recall 0 ă s ď 1)

n Á m2` 2
2r`s , (1.13)

where n Á fpmq means there exists some positive constant 0 ă C ă 8 such that

n “ npmq ě Cfpmq for any positive integer m. Note that in Corollary 1.1, the

functional relation npmq is implicitly given by the lower bound n ě maxtm,m
2

2r`s u.

The restriction (1.13) requires much more unlabeled sample points than LESS does

n ě maxtm,m
2

2r`s u, (1.14)

in Corollary 1.1. Third, when (1.13) is satisfied, in each single computing node

(located at the corresponding data source), according to the analysis in [64], the

regularized least squares algorithm would process an inflated sample of size

n

m
Á m1` 2

2r`s . (1.15)

12



While for LESS, since the computation is centralized, we do not need significant

computation provided by the data sources, and the sample size to be processed by

the central computing node for LESS could be reduced, as suggested by (1.14), to

O
´

max
!

m,m
2

2r`s

)¯

,

which is even much smaller than (1.15).

Chaudhuri et al. [20] studied an algorithm that uses random features (instead of

the empirical features we use) for learning. Noise is added to the coefficients of the

random features to achieve differential privacy. Because of the adoption of random

features, this algorithm in [20] works only with translation invariant kernels.

1.4 Proof of the Main Theorem

We cite the following lemma from [11, Lemma E.4] and [9, Theorem IX.2.1].

Lemma 1.2. Let A and B be positive definite operators on a separable Hilbert space

H. Write }¨}oppHq the operator norm of H. Then for any 0 ď s ď 1, we have

}AsBs
}oppHq ď }AB}

s
oppHq. (1.16)

Write fλ “ pLK ` λIq´1LKfρ. One has λfλ “ LKpfρ ´ fλq. Write }¨}op the

operator norm of all the bounded linear operators on HK .

Lemma 1.3. We have the following error bound

}fu,z
λ ´ PNfλ}ρ ď Ωu,λ

´

Rz
λ ` }fρ}KW

x
λ ` }gρ}ρW

u
λ

¯

, (1.17)

where

Ωu,λ :“
›

›pLu
K ` λIq

´1
pLK ` λIq

›

›

op
, (1.18)

Rz
λ :“

›

›

›

›

pLK ` λIq
´1{2

ˆ

1

m
STx y ´ Lx

Kfρ

˙
›

›

›

›

K

, (1.19)

Wu
λ :“

›

›pLK ` λIq
´1{2

pLK ´ L
u
Kq

›

›

op
, (1.20)
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and W x
λ is defined in the same way as (1.20) by substituting u with x.

Proof. Since spantφu
i u

N
i“1 is an invariant subspace of Lu

K , PN and Lu
K commute. We

have

}fu,z
λ ´ PNfλ}ρ

“

›

›

›

›

L
1{2
K pL

u
K ` λIq

´1PN
1

m
STx y ´ L

1{2
K PNfλ

›

›

›

›

K

“

›

›

›

›

L
1{2
K pL

u
K ` λIq

´1{2PNpL
u
K ` λIq

´1{2

ˆ

1

m
STx y ´ pLu

K ` λIqfλ

˙
›

›

›

›

K

“

›

›

›
L
1{2
K pL

u
K ` λIq

´1{2
›

›

›

op
}PN}op

›

›pLu
K ` λIq

´1{2
pLK ` λIq

1{2
›

›

op

ˆ

›

›

›

›

pLK ` λIq
´1{2

ˆ

1

m
STx y ´ pLu

K ` λIqfλ

˙
›

›

›

›

K

. (1.21)

The right-hand side of (1.21) is the product of four norms. Below we bound them

one by one. First, obviously }PN}op ď 1. Since λ ą 0, for any f P HK ,

〈f, LKf〉K ď 〈f, pLK ` λIqf〉K .

Therefore we apply Lemma 1.2 to bound the first and the third factor of the right-

hand side of (1.21) by Ω
1{2
u,λ.

›

›

›
L
1{2
K pL

u
K ` λIq

´1{2
›

›

›

op
“

›

›pLu
K ` λIq

´1{2LKpL
u
K ` λIq

´1{2
›

›

1{2

op

ď
›

›pLu
K ` λIq

´1{2
pLK ` λIqpL

u
K ` λIq

´1{2
›

›

1{2

op

“
›

›pLu
K ` λIq

´1{2
pLK ` λIq

1{2
›

›

op
ď Ω

1{2
u,λ. (1.22)

Since r ě 1{2, we cite from [90] the bound that }fλ}K ď }gρ}ρ. Consider the

following decomposition

1

m
STx y ´ pλI ` Lu

Kqfλ “

ˆ

1

m
STx y ´ Lx

Kfρ

˙

` pLx
K ´ LKq fρ ` pLK ´ L

u
Kq fλ,
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which leads to the bound Rz
λ ` }fρ}KW

x
λ ` }gρ}ρW

u
λ of the fourth factor of the

right-hand side of (1.21), and thus completes the proof.

Lemma 1.4. Let 1{2 ď r ď 1 and λ ą 0. We have

}PNfλ ´ fλ}ρ ď Ωr
u,λpλ

u
N`1 ` λq

r
}gρ}ρ. (1.23)

Proof. Recall that PN and Lu
K commute. In particular,

pI ´ PNqpL
u
K ` λIq

r
“

˜

ÿ

iěN`1

φu
i b φ

u
i

¸˜

ÿ

jě1

pλuj ` λq
rφu

j b φ
u
j

¸

“
ÿ

jěN`1

pλuj ` λq
rφu

j b φ
u
j ,

so }pI ´ PNqpL
u
K ` λqr}op “ pλ

u
N`1 ` λqr. By Lemma 1.2 and Inequality (1.22), we

have

}PNfλ ´ fλ}ρ

“

›

›

›
L
1{2
K pI ´ PNqL

1
2
`r

K pLK ` λIq
´1L

1{2
K gρ

›

›

›

K

“

›

›

›
L
1{2
K pL

u
K ` λIq

´1{2
›

›

›

op

›

›

›
pLu

K ` λIq
1{2
pI ´ PNqpL

u
K ` λIq

r´ 1
2

›

›

›

op

ˆ

›

›

›
pLu

K ` λIq
´pr´ 1

2
q
pLK ` λIq

r´ 1
2

›

›

›

op

›

›

›
L
r` 1

2
K pLK ` λIq

´pr` 1
2
q

›

›

›

op
}gρ}ρ

ď Ωr
u,λpλ

u
N`1 ` λq

r
}gρ}ρ .

The proof is complete.

The following lemma is from [47, Proposition 1]. It is a powerful tool recently de-

veloped [63, 47] for the analysis of kernel-based regularized least squares and related

algorithms.

Lemma 1.5. Let λ ą 0 and 0 ă δ ă 1. One has with confidence at least 1´ δ that

Ωu,λ ď
2

λ
B2
n,λ log2 2

δ
` 2. (1.24)
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Denote HSpHKq the Hilbert space of all the Hilbert-Schmidt operators on HK .

Write }¨}HS the norm of HSpHKq. In the following lemma, Item 1 is the well-known

Hoffman-Wielandt inequality [51, 55, 10], and Item 2 is a standard corollary of

Pinelis’ vector-valued concentration inequality [75]. Detailed proof of Item 2 is avail-

able in [100, Proposition 5.3]. See also [53, 7, 17, 63, 90, 100, 110].

Lemma 1.6. 1. We have

8
ÿ

i“1

pλi ´ λ
x
i q

2
ď }LK ´ L

x
K}

2
HS. (1.25)

2. For 0 ă δ ă 1, we have with confidence at least 1´ δ that

}LK ´ L
x
K}HS ď

4κ2
?
m

log
2

δ
. (1.26)

For the following Lemma 1.7, the proof of (1.27) is available in [17]. The proof of

(1.28) is available in [63, Lemma 17]. The bound (1.29) follows directly from Lemma

1.6 by substituting x with u, and m “ |x| with n “ |u|.

Lemma 1.7. Let 0 ă δ ă 1. Each of the following bounds holds with confidence at

least 1´ δ.

Rz
λ ď

M ` σ

κ
Bm,λ log

2

δ
, (1.27)

Wu
λ ď Bn,λ log

2

δ
, and (1.28)

λui ď λi `
4κ2
?
n

log
2

δ
, for all i “ 1, 2, ¨ ¨ ¨ . (1.29)

Proof of Theorem 1.1. Recall that 1{2 ď r ď 1. By Lemma 1.3 and Lemma 1.4,

}fu,z
λ ´ fρ}ρ ď }fu,z

λ ´ PNfλ}ρ ` }PNfλ ´ fλ}ρ ` }fλ ´ fρ}ρ

ď Ωu,λpR
z
λ ` }fρ}KW

x
λ ` }gρ}ρW

u
λ q

`Ωr
u,λpλ

u
N`1 ` λq

r
}gρ}ρ ` λ

r
}gρ}ρ , (1.30)

16



where we have used the estimate }fλ ´ fρ}ρ ď λr }gρ}ρ (see [90]). Let 0 ă δ ă 1
5
,

then log 2
δ
ą log 10 ą 1. From Lemma 1.5 and Lemma 1.7, we have with confidence

at least 1 ´ δ that (1.24), (1.27), (1.28) (for both Wu
λ and W x

λ respectively), and

(1.29) hold true simultaneously. Now we assume these five inequalities. Then

Rz
λ ` }fρ}KW

x
λ ` }gρ}ρW

u
λ ď

ˆ

M ` σ

κ
` }fρ}K ` }gρ}ρ

˙

Bm,λ log
2

δ
.

We combine the argument above and (1.29) to continue the bound (1.30).

}fu,z
λ ´ fρ}ρ ď

ˆ

2B2
n,λ

λ
` 2

˙ˆ

M ` σ

κ
` }fρ}K ` }gρ}ρ

˙

Bm,λ log3 2

δ

`

ˆ

2B2
n,λ

λ
` 2

˙r ˆ

λ`
4κ2
?
n
` λN`1

˙r

}gρ}ρ log3r 2

δ
` }gρ}ρ λ

r,

The proof is completed by scaling δ to δ{5.

Proof of Corollary 1.1. Recall that 1{2 ď r ď 1, n ě m, and 0 ă s ď 1. With the

assumption N pλq ď C1λ
´s and the setting λ “ m´ 1

2r`s , (1.8) implies

Bn,λ ď Bm,λ ď
2κ2

m
m

1{2
2r`s ` 2κ

c

C1

m
m

s
2r`s ď 2κpκ`

a

C1qm
´ r

2r`s , (1.31)

so

B2
n,λ

λ
ď 4κ2pκ`

a

C1q
2m´ 2r´1

2r`s ď 4κ2pκ`
a

C1q
2. (1.32)

Recall the assumptions λN`1 ď κ2λ and n ě m
2

2r`s . Therefore 1?
n
ď m´ 1

2r`s “ λ

and

4κ2
?
n
` λN`1 ď 5κ2λ.
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So, Theorem 1.1 implies that

}fu,z
λ ´ fρ}ρ ď

ˆ

2B2
n,λ

λ
` 2

˙ˆ

M ` σ

κ
` }fρ}K ` }gρ}ρ

˙

Bm,λ log3 10

δ

`

ˆ

2B2
n,λ

λ
` 2

˙r ˆ

λ`
4κ2
?
n
` λN`1

˙r

}gρ}ρ log3r 10

δ
` }gρ}ρ λ

r

ď p8κ2pκ`
a

C1q
2
` 2qp2κpκ`

a

C1qq

ˆ

ˆ

M ` σ

κ
` }fρ}K ` }gρ}ρ

˙

m´ r
2r`s log3 10

δ

`p8κ2pκ`
a

C1q
2
` 2qrp1` 5κ2qr }gρ}ρm

´ r
2r`s log3r 10

δ

`}gρ}ρm
´ r

2r`s

ď C2m
´ r

2r`s log3 10

δ
,

where C2 “ p8κ
2pκ `

?
C1q

2 ` 2qp2κpκ `
?
C1qq

´

M`σ
κ
` }fρ}K ` }gρ}ρ

¯

` p8κ2pκ `

?
C1q

2 ` 2qrp1` 5κ2qr }gρ}ρ ` }gρ}ρ.

We would like to acknowledge Professor Jian Huang for the helpful discussions,

in particular, the introduction of the works [105, 66] to us.
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Chapter 2

Search for K: Assessing Five

Topic-modeling Approaches to

120,000 Canadian Articles

2.1 Introduction

The past two decades have witnessed an explosion in methods, algorithms and tools

designed to identify discussion topics in automated text analysis. Noteworthy among

these research efforts, the Latent-Dirichlet-allocation (LDA) approach assuming a

Dirichlet prior distribution assigns a specific set of topics to each document, based

on a fixed number pKq of topics. By incorporating both observed and latent variables,

this Bayesian generative method allows for latent processes to capture similarities

among sets of observations and thus results in a more precise assignment of topics to

documents (and words to documents) [14]. While this method has been further de-

veloped to detect the number of optimal discussion topics based on a nonparametric

Bayesian model [94], in practice the ultimate decision on the choice of K still relies

on significant input from domain experts. In a more recent review of data analysis

with latent models, Blei highlights a tension between orthodox Bayesian thinking

and model criticism [13]. While the former attempts to integrate all possible sources

of uncertainties in a more complex mixture or “super” models, the latter tries to tell
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whether the essence of the data has been captured by model specification and/or

parameter inference. Yet, model criticism is becoming increasingly challenging with

the proliferation of latent models in that we do not necessarily know whether the

data, model specification, or inference algorithms plays a more significant part in

shaping the (approximate) posterior. In response to these issues, this research uses

various topic-modeling approaches to assess the choice of K via different training

methods, where model specification and inference algorithms play different roles in

shaping research findings.

2.2 Preprocessing Techniques

2.2.1 Data Cleaning and Stopwords Removal

Before applying topic models, the corpus needs to be cleaned. We first removed the

common stopwords in English [68] such as the, a, and an, then we apply RAKE [82]

to combine words into phrases such that words like united states are combined as

united-states.

2.2.2 Term Frequency-inverse Document Frequencies

To apply topic-modeling methods, we represent a large corpus of text using a document-

word matrix X, where each column corresponds to a document and each row cor-

responds to a word [59]. Since a word’s frequency in a corresponding document

cannot suggest the word’s relative importance in the whole corpus, elements of the

document-word matrix are often weighted by term frequency-inverse document fre-

quencies (tf-idf) [80]. One way to calculate the tf-idf weight wt,d associated with a

term (word) t and a document d is as follows [2],

wt,d “ tft,d ˆ log
N

dft
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where tft,d is a term t’s frequency in the document d, N is the total number of

documents, and dft is the total number of documents containing the term t. Clearly,

wt,d increases if a term has a higher frequency in a document but such increase is

offset by the term’s prevalence across all documents in text corpus. This tf-idf weight

thus tends to filter out common words or stopwords which appear to be popular in

most documents.

2.3 Five Approaches to Topic Modeling

To guide our assessment of different approaches to topic modeling, we next briefly

discuss methodological details of the five models being adopted in this research.

2.3.1 Latent Semantic Analysis

Theoretical Review

Based on singular value decomposition of the document-word matrix, latent semantic

analysis (LSA) has long been adopted by scholars from different disciplines to identify

topics and themes contained in text corpus [24]. This is achieved by providing a low-

rank approximation to the previously defined word-document matrix X [39]. To

understand how LSA works, we have its singular value decomposition (SVD) of X

as:

X “ UΣV T ,

where both U and V are orthogonal matrices and Σ is a diagonal matrix. To further

explore these three matrices, we first note that the square matrix XXT contains

all dot products denoting the correlation between any two word vectors across all

documents, and XTX contains all dot products denoting the correlation between
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any two document vectors. And we have:

UTXXTU “ ΣΣTand V TXTXV “ ΣTΣ, or

XXT
“ UΣΣTUTand XTX “ V ΣTΣV T .

In other words, XXT and XTX have the same non-zero eigenvalues expressed by

ΣΣT (or, equally by ΣTΣ), and their eigenvectors are contained in U and V , respec-

tively.

Application in Topic Modeling

The number of positive singular values in Σ suggests the rank of X, or the number

of topics in the current research setting, while the values of these singular values

suggests the relative importance of these topics. For a space spanned by singular

vectors corresponding to these singular values (i.e., topics), the coordinates of a word

i across all topics are denoted by the ith row of U and the coordinates of a document

j across all topics are denoted by the jth column of V T . The corresponding loadings

of all words on the kth topic are given by elements in the kth columns of U ; and the

corresponding loadings of all documents on the kth topic are given by elements in the

kth rows of V T . While topics identified by LSA can be viewed as clusters of words

and/or documents once they are projected to a “semantic space”, we use columns of

U to denote topics (and their corresponding relations with words). If the values of

singular values are small or below a certain threshold specified by researchers, it is

possible to remove these singular values and achieve a low-rank approximation [93].

2.3.2 Principal Component Analysis

Theoretical Review

The idea of principal component analysis (PCA) is very similar to that of SVD

[54]. For the document-word matrix X, PCA tries to project the data to orthogonal

directions so that distinctive features from the data can be retained as much as
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possible. In other words, if the covariance matrix associated with X is given by

XXT , PCA is looking for a projection matrix P such that after the projection the

covariance matrix Y TY of the resulted new document-word matrix Y “ PX has

the largest variance in these projection directions. Yet, one constraint in the search

for P is that these projection directions suggested by P should be basis vectors

and orthogonal to each other. Otherwise, the direction associated with the second

largest variance will be always parallel to or even overlap with that associated with

the largest variance (and so forth for the remaining directions), which provides little

information of the data. As a consequence, the off-diagonal elements (i.e., covariance)

of Y TY should be zero and PCA essentially deals with an issue of optimization with

a constraint. We have:

Y TY “ pPXqpPXqT “ PXXTP T
“ D

where D should be a diagonal matrix. Related to our discussion on SVD, if we rank

eigenvectors z1, z2, ¨ ¨ ¨ , zn of XXT and form a new matrix Z “ pz1, z2, ¨ ¨ ¨ , znq and

let:

ZTXXTZ “ ΣTΣ “ Λ “

¨

˚

˚

˚

˝

λ1
λ2

. . .

λn

˛

‹

‹

‹

‚

(2.1)

D will be a diagonal matrix if we make P “ ZT . Therefore, the matrix containing

all the eigenvectors of XXT provides the loadings of all words on any topic and

a solution to the application of PCA to topic modeling. The optimization issue

also corresponds to the maximization of zTi XX
Tzi when zTi zi “ 1. If we take the

derivative of zTi XX
Tzi´λzTi zi with respective to zi, we have pXXT ´λIqzi “ 0 and

zi must be an eigenvector of XXT .
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Application in Topic Modeling

We take these extracted principal components as topics, and extract the top words

of these topics by finding the top corresponding values in the principal component.

To summarize, the relation between LSA and PCA is similar to that between

maximum likelihood estimation and ordinary least squares estimation in linear re-

gression settings: they appear to follow different principles yet (sometimes) yield the

same result. Also, due to the fact that the components extracted by PCA or SVD are

often mixed with positive and negative values, the interpretation of negative values

can be less straightforward. Nevertheless, these two methods differ from each other

in terms of computing: the calculation involving covariance matrices is demanding

when observations and eigenvectors associated with PCA are large, while numerical

methods can be readily applied to the calculation of SVD.

2.3.3 Factor Analysis

Theoretical Review

While PCA tries to identify major components embedded in the data matrix, factor

analysis (FA) aims to represent the data matrix and its internal relations via latent

factors (variables). To do so, FA draws on a parametric model and a series of

assumptions/conditions. More specifically, if words in the document-word matrix X

are centered on its means in a document and we obtain a new document-word matrix

X˚, we try to express the p words using latent factors:

Ynˆp “ XT
˚ “ FnˆkAkˆp ` εnˆp

where F is a matrix containing all (latent) factors F1, F2, ..., Fk for each of n doc-

ument, A “ paijqkˆp is a loading matrix representing the loadings of all words on

each of the k factors, and ε is the Gaussian error term. The FA model satisfies the

following four assumptions/conditions:
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1. The expectation and covariance (matrix) of Fi are 0 and In, respectively;

2. The expectation and covariance (matrix) of εi are 0 and σ2
nˆn “ diagpσ2

1, σ
2
2, ¨ ¨ ¨ , σ

2
nq;

3. The covariance between ε and F is 0;

4. CovpYiq “ AAT ` σ2I and CovpYi, Fiq “ Akˆp.

This conclusion that CovpY q “ AAT ` σ2I has two implications. First, it is pos-

sible to calculate the loading matrix A first and then solve the latent factors using

F “ ΣyAT . Second, for the ith row ai in A and a word yi across all observations

(i.e., documents), we have varpyiq “ a1iai ` σ2
i and Covpyi, ykq “ a1iak. The sum of

squared loadings of yi on all factors, or a1iai (i.e., the common variance), denotes the

dependence of yi on all factors, or the extent to which yi is explained by all factors.

Factor analysis can be implemented in different ways and this study adopts the

EM algorithm to conduct factor analysis [42, 83]. Yet, in existing literature the link

between PCA and FA has been particularly noted [24, 74]. Related to Equation (2.1),

we have the eigenvalues of Y Y T as λ1, λ2, ¨ ¨ ¨ , λp, their corresponding standardized

eigenvectors as zy1 , zy2 , ¨ ¨ ¨ , zyp , and Y Y T “
řp
i“1 λizyiz

1
yi

given that:

Y Y T
“ ΛY “ ZY

¨

˚

˚

˚

˝

λ1
λ2

. . .

λp

˛

‹

‹

‹

‚

ZT
Y

“ pzy1 , zy2 , ¨ ¨ ¨ , zypq

¨

˚

˚

˚

˝

λ1
λ2

. . .

λp

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

z1y1
z1y2
...

z1yp

˛

‹

‹

‹

‚

“ p
a

λ1zy1 ,
a

λ2zy2 , ¨ ¨ ¨ ,
a

λpzypq

¨

˚

˚

˚

˝

?
λ1z

1
y1?

λ2z
1
y2

...
a

λpz
1
y4

˛

‹

‹

‹

‚

For the vector p
?
λ1zy1 ,

?
λ2zy2 , ¨ ¨ ¨ ,

a

λpzypq, its first m entries (where m ă p)
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provides a possible solution to A and thus correspond to m latent factors because:

Y Y T
« ÂÂT ` σ̂2

“ λ1zy1z
1
y1
` λ2zy2z

1
y2
` ¨ ¨ ¨ ` λmzymz1ym ` σ̂

2.

Finally, it should be noted that these factors identified are often rotated to achieve

maximum variance so that these independent factors can have better explanatory

power.

Application in Topic Modeling

The obtained factors are considered as the weight vectors for each topic, we identify

the top words according to the same principle as for SVD (LSA) and PCA, we sort

the words according to its factor value and retain those with high values.

2.3.4 Non-negative Matrix Factorization

Theoretical Review

Non-negative matrix factorization (NMF) decomposes a matrix V into two matrices

W and H and all elements of the three matrices are not negative [60]:

Vnˆm “ WnˆrHrˆm

where the dimension of r is often much smaller than that of m and n. The NMF

has a clear advantage over other similar algorithms in computing, interpretation and

data storage. By making all elements in the three matrices non-negative, any column

vector vi in V can be expressed by a weighted sum of all column vectors in W and

their corresponding weights are given by elements in the ith column of H:

vi “ w1h1i ` w2h2i ` ¨ ¨ ¨ ` wrhri “ Whi.

In other words, we can learn how a whole system consists of different parts via these

positive weights generated by NMF. The general idea behind NMF is also inherently
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related to how a whole system and its relations with different parts are perceived by

human beings.

Application in Topic Modeling

The relation between NMF and topic modeling, especially probabilistic latent se-

mantic analysis (PLSA), has been noted [40]. For the document-word matrix X,

we could define elements of W as wik “ P ptopickqP pwordi|topickq, elements in H as

hkj “ P pdocumentj|topickq and have elements xij as:

xij “
ÿ

wikhkj

“
ÿ

P ptopickqP pwordi|topickqP pdocumentj|topickq

The idea is similar to that of PLSA, where a probabilistic model is used to generate

topics, and words/documents are further generated based on the topic distribution.

2.3.5 Latent Dirichlet Allocation (LDA)

Theoretical Review

In topic modeling, LDA provides a generative statistical model allowing for observed

words and documents to be explained by latent topics that capture the similarities

of words/documents [14]. For a text corpus, the generative process of LDA can be

briefly summarized as follows. First, the (optimal) number of topics K needs to

be specified. Second, a parameter θi which governs the distribution of K topics in

the ith document, is drawn from a Dirichlet prior distribution Dpαq. The hyper-

parameter α is a K-dimensional vector with its elements (positive real numbers)

denoting the relative weights of the K topics. Third, a parameter ϕk, which governs

the distribution of all V words occurring in a topic k, is drawn from another Dirichlet

prior distribution Dpβq. The hyper-parameter β is a V -dimensional (sparse) vector

with its elements denoting the relative weights of the V words. Finally, for a word
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Xj,l in the lth location of the jth document, its corresponding topic tj,l is drawn from

a multinomial distribution Mpθjq and the word is then generated from a multinomial

distribution Mpϕtj,lq. The likelihood function of the model is:

P pX, t, θ, ϕ;α, βq

“

K
ź

i“1

P pϕi; βq
N
ź

j“1

P pθj;αq

Lj
ź

l“1

P ptj,l|θjqP pXj,l|ϕtj,lq

We adopted the online variational Bayes algorithm [52] to optimize the model, by

optimizing the Evidence Lower BOund (ELBO), details can be found in the reference.

Application in Topic Modeling

The LDA model is designed for topic modeling, therefore the connection is clear

and simple: the estimated posterior ϕ represents the word distribution in each topic

while the estimated posterior θ represents the topic distribution in each document.

2.4 Data and Measures

2.4.1 Data

The text corpus used in the current study was retrieved from three major newspapers

in Canada with national influence: The Globe and Mail, (The) Toronto Star and

National Post. All newspaper articles published in any of the three newspapers from

January 1st 1977 to June 30th 2019 are retrieved as long as they contain the word

“Chinese”. The data retrieval process took place from 2017 to 2019. In total, 52,317,

43,529, and 23,634 articles were retrieved from The Globe and Mail, Toronto Star and

National Post, respectively. Based on lists of stop words and results from preliminary

data analysis, the research team performed multiple rounds of data cleaning and

28



compiling to remove stop words and meaningless words for topic modeling (e.g.,

reporters’ names, street address) prior to our analysis.

2.4.2 Measures

In search for the optimal number of topics K, we compare three types of measures

to assess results estimated from the five topic-modeling methods: held-out likeli-

hood (or reconstruction loss when applicable), coherence statistics, and graph-based

dimensionality selection [18, 104, 73, 70].

Fitting Error Measure

We calculate the held-out likelihood of fitted models using 3-fold cross validation [5].

Specifically, we split the text corpus into three parts, treat one part as a test set and

the other two as training sets. We repeat the estimation process for all three parts

of the text corpus and calculate the average of the held-out likelihood/loss. We then

compute either held-out likelihood or loss based on type of model, we have PCA,

FA and LDA implemented as probabilistic models. It should be noted, however, the

focus of the held-out-likelihood/loss approach is the predictive power of a specific

model instead of the latent structure (e.g., topics) of the text corpus at stake. Also

note that for log-likelihood, higher value indicates better performance, vice versa for

reconstruction loss.

Coherence Statistics

Four measures of coherence are adopted in this study: Cv, Cnpmi, Cuci, Umass [81].

If a set of statements or terms mutually support each other, we say that this set

of statements is coherent. For a specific topic, these coherence measures capture

the degree of semantic similarity among words in the topic, thus allow scholars to

assess whether topic modeling results represent actual semantic topics or statistical
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artifacts. We use the average of a coherence measure of each topic as a within-topic

measure of topic coherence.

We first define the notion of pointwise mutual information:

PMIpx, yq “ log

ˆ

P px, yq ` ε

P pxqP pyq

˙

where ε is the smoothing constant and is often set to 1.

These four measures of coherence can be briefly described as follows. Cuci is prob-

ably the earliest statistic proposed to address topic coherence, which uses a sliding

window and pointwise mutual information to measure the co-occurrence probability

of every word pairs in a topic. It has been suggested that Cuci provides an extrinsic

measure of coherence since it pairs every single word with every other word in the

topic [73].

Suppose we have a topic of three words {a, b, c}. The co-occurrence probability

of any two words would be calculated based on sliding windows, for example, if our

text is “a is b”, the virtual documents with a size 2 sliding window would be “a is”,“is

b”. In this case, P paq “ 1
2

(appeared once in two virtual documents), P pa, bq “ 0

(no co-occurrence of a and b), and

Cuci “
1

3
rPMIpa, bq ` PMIpa, cq ` PMIpb, cqs

Cnpmi can be viewed as an enhanced version of Cuci because the former uses

normalized pointwise mutual information (NPMI) instead of pointwise mutual infor-

mation [3]. The NPMI is defined as the following:

NPMIpx, yq “

˜

log P px,yq`ε
P pxqP pyq

logp´P px, yq ` εq

¸γ

where ε is the smoothing constant and higher γ givers higher NPMI more weight.

30



Cv is proposed most recently and deals with indirect similarities between words [81],

that is, some words should belong to the same topic but they rarely occur together;

yet, their adjacent words should look similar. For example, suppose there are two

statements “McDonald makes chicken nuggets” and “KFC serves chicken nuggets”,

one will probably want to put McDonald and KFC together in the same topic. The

mathematical details of Cv also appears to be somewhat complicated. The use of

co-occurrence counts in the calculation of the NPMI of every top word to every other

top word results in a set of vectors. For every top word, there is a corresponding vec-

tor. The indirect similarity is then calculated between the vector of every top word

and the sum of all other top-word vectors. Cosine distance is used as a similarity

measure.

Finally, based on the idea that the occurrence of every top word should be sup-

ported by every preceding top word, Umass measures the conditional probability of

weaker words given the presence of their corresponding stronger words in a topic.

Different from the other three measures, Umass is an intrinsic measure since the word

list needs to be ordered and a word is compared only to its preceding and succeeding

words [70]. To avoid the calculation of the logarithm of zero, a pairwise score function

of the empirical conditional log-likelihood based on smoothing counts is used.

It it noteworthy that each coherence measure should be considered as independent

therefore comparing intra-indicators is not meaningful. Also, all coherence indicators

are higher the better.

Dimensionality Selection

The last measure originates from graph-based dimensionality selection. Since in

methods like SVD (LSA) and PCA, we have a natural importance indicator which is

the eigenvalue. People has used scree plots to identify the primary principal compo-

nents, but given the very large dimensions (e.g., numbers of eigenvectors) associated
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with about 120,000 newspaper articles, the traditional threshold of dimensionality

selection (eigenvalue as 1.0) cannot be readily applied to a big-data project. We

thus relies on an automatic procedure, which maximizes a simple profile likelihood

function, to search for the elbow point in a scree plot [104].

2.5 Results

The three types of measures based on results from the five methods of topic modeling

are presented from Figure 2.1 to Figure 2.12. For the SVD (LSA) method, it is clear

that the coherence statistics, especially for the Cuci and Umass measures, favor fewer

topics (see Figure 2.1). This opposite conclusion holds for the measure of held-

out likelihood because more topics are associated with smaller errors (see Figure

2.3). Yet, according to the graph-based dimensionality selection, the optimal topics

number appears to be 669 (see Figure 2.2).

Findings based on PCA are similar to these based on the SVD method. Coherence

statistics, especially Cuci and Umass, tend to suggest a smaller number of topics (see

Figure 2.4). This pattern stands in contrast with the held-out likelihood, where

the more the merrier (see Figure 2.6). The optimal number of topics suggested by

dimensionality detection is 698 (see Figure 2.5). The coherence statistics for the FA

method also prefer a smaller number of topics, although the value of Umass slightly

increases with a larger number of topics after 600 (see Figure 2.7). Yet, the held-out-

likelihood measure of the FA model is able to specify the optimal number of topics,

which appears to be 100 (see Figure 2.8).

The coherence statistics for the NMF methods reveal an interesting picture (see

Figure 2.9). While the curves of Cnpmi and Cv are relatively flat, results based on

the Cuci and Umass measures do not agree with each other: Umass prefers a smaller

number of topics but Cuci suggests that the value of K should be somewhere around
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50 to 100. In Figure 2.10, the held-out error tends to support a larger number of

optimal topics.

Finally, for the LDA method, the Cnpmi and Cv measures do not show a strong

preference over a particular number of topics (see Figure 2.11). The Cuci measure

suggests that the value of K should be between 50 and 80 but the Umass measure still

favors a large number of topics. Finally, the held-out likelihood measure suggests

that the optimal number of topics should be 20.
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Figure 2.1: The SVD (LSA) method:
Coherence.
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Figure 2.2: The SVD (LSA) method:
Dimensionality selection.
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Figure 2.3: The SVD (LSA) method:
Held-out error.
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Figure 2.4: The PCA method: Coher-
ence.
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Figure 2.6: The PCA method: held-
out likelihood.
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Figure 2.7: The FA method: Coher-
ence.
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Figure 2.8: The FA method: held-out
likelihood.

2.6 Conclusion

Based on an application of five approaches to topic modeling of about 120,000 news-

paper articles in Canada, major findings comparing from three measures for the

optimal number of topics can be summarized in Table 2.1. It should be noted, how-

ever, these findings are based on a specific text corpus and can vary if other forms

of data are used.

As suggested by Table 2.1, when two approaches of topic modeling are method-

ologically similar to each other (i.e., SVD and PCA), these measures tend to report

comparable results. Yet, the optimal number of topics can vary greatly across dif-
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Figure 2.10: The NMF method: Held-
out error.
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Figure 2.11: The LDA method: Co-
herence.
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Figure 2.12: The LDA method: Held-
out likelihood.

ferent approaches and measures. For the same method of topic modeling, different

assessment measures can also suggest different and even opposite conclusions. Among

these five topic modeling methods being investigated, only assessment measures per-

taining to LDA modeling tend to suggest similar numbers of optimal topics. These

interesting findings beg a key question in the search for an optimal number of topics:

why should measures and methods based on different methodological philosophies

and computing algorithms report similar, if not identical, numbers of optimal top-

ics? Is there, in fact, an optimal number of topics to be discovered by more advanced

methods? Without the input from domain experts, to what extent should optimal

numbers of topics be viewed as methodological artifacts or distinctive features of the

35



Table 2.1: A summary of optimal number of topics suggested by different measures
and methods

SVD PCA FA NMF LDA
Cuci Small Small Small 50+ 50-80
Cv Small* Small* Small* 50- 25*
Cnpmi Small* Small* Small* 50- 25*
Umass Small Small Small Small Small
Held-out

Large Large 100 Large 20
likelihood (loss)
Dimensionality

669 698 NA NA NA
selection
Note: *possibly related to the scale of graphs, the conclusion
suggested by this measure may not be very clear.

text corpus at stake? While the current study cannot answer all these questions, our

mixed findings seem to suggest that optimality should be first defined in terms of,

but not limited to, data reduction, latent structure, or predictive power, before any

search for optimal topics takes place.
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Chapter 3

Hurdle Model for Grouped and

Right-censored Counts

3.1 Introduction

The modeling of count data has been an important field in applied mathematics,

statistics, and social sciences [88, 1, 16, 101, 23, 43, 50]. Over the last few decades,

several statistical models guided by different principles have been developed, imple-

mented, tested, and applied by scholars to analyze count data across various fields of

research, which include but not limited to Poisson models, negative binomial models,

hurdle models, zero-inflated models [34, 31, 32, 15, 49, 56, 76, 84, 109, 4, 57, 98]. One

major reason for an explosion of methods for modeling count data is that the observed

distributions of counts are often dispersed and with excessive zeros. A concrete un-

derstanding of the source of over-dispersed count data is warranted to account for

excessive zeros beyond that expected by a theoretical distribution [6, 77, 98].

When counts are treated as covariates (or independent variables) in empirical

research, they can be easily analyzed as categorical variables by adopting an ap-

propriate data coding method, such as dummy coding, effects coding, or spline

regression [41, 72, 33, 62, 107, 108, 106]. Moreover statistical methods includ-

ing ridge regression, principle component regression, cross-classified mixed-effect
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models, and the least absolute shrinkage and selection operator (the lasso) have

been developed in the presence of collinearity among these categorical variables

[58, 79, 36, 37, 38, 99, 27, 67, 69, 71, 95]. When counts are used as outcome vari-

ables, the modeling of counts becomes a complex issue especially with the presence

of grouped and right-censored counts [28, 44, 76, 29].

In survey methodology, ordered selections with grouped and right-censored counts

are often used to collect information on sensitive topics or from individuals with less

cognitive capacities, such as children, the depressed, or the elderly [86, 87, 85]. Al-

though ordered selections with grouped and right-censored counts are shown to be

a valid and popular tool in data collection, the analysis of such data structure has

been challenged by the absence of algorithms, programs, and models in analyzing

grouped and right-censored counts. Although several Poisson-based methods have

been recently proposed by pioneering studies to model grouped and right-censored

counts in surveys [28, 76, 29], the hurdle model have not been specifically considered

in the research context of grouped and right-censored counts. By adopting a trun-

cated Poisson distribution, the hurdle model uses a different way to consider excessive

zeros, which have not been fully considered in zero-inflated Poisson or negative bino-

mial models. Moreover, as well demonstrated in existing literature, the hurdle model

provides a flexible way to model counts with zero-inflation because both inflation and

deflation of zeros can be considered [109, 16]. Next, we develop a general approach

to consider hurdle models in the context of grouped and right-censored counts in

surveys.
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3.2 Methods

3.2.1 Hurdle Models for Count Data

In this work, count observations are those taking values from the set N :“ t0, 1, . . .u

of all the non-negative integers. For example, let Y be a random variable that has a

Poisson distribution Y „ Poispµq with mean µ ą 0, then

ProbpY “ kq “ e´µ
µk

k!
, for any k in N.

One has EpY q “ VarpY q “ µ. With a sample tyiu
N
i“1 drawn independently from

Poispµq, the method of moment estimator µ̂MME “ ȳ :“ 1
n

řn
i“1 yi coincides with the

maximum likelihood estimator (MLE) µ̂MLE “ ȳ.

Another example is the negative binomial distribution NBpµ, νq, where µ, ν ą 0.

Let Y „ NBpµ, νq, then

ProbpY “ kq “
Γpk ` νq

k!Γpνq
πνp1´ πqk, for any k in N, (3.1)

where Γpxq “
ş8

0
e´ttx´1dt for x ą 0 is the gamma function, and π “ ν

ν`µ
. One has

EpY q “ µ and VarpY q “ µ ` µ2

ν
. As ν Ñ 8, NBpµ, νq converges in law to Poispµq.

The MLE of µ is µ̂MLE “ ȳ, but to our best knowledge, there is no closed-form

expression of ν̂MLE. There are many ways of parameterization of negative binomial

distributions in the literature. For example, pπ, νq in (3.1) is already a different

parameterization. Also, we use α “ ν and β “ µ{ν to have [26]

ProbpY “ kq “
Γpα ` kq

k!Γpαq

βk

p1` βqk`α
, for any k in N.

In real applications, it is usually observed from data that EpY q and VarpY q

are different. This suggests that Poisson is not the true model for data generation

and sometimes NBpµ, νq is adopted. In some other scenarios, where the count at
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zero is disproportionately large or small, the hurdle Poisson model HPpµ, pq is often

employed. In particular, for Y „ HPpµ, pq with µ ą 0 and 0 ă p ă 1, one has

ProbpY “ kq “

"

1´ p, k “ 0,
p

1´e´µ
e´µ µ

k

k!
, k ě 1.

So, the hurdle model HPpµ, pq assigns probability 1´ p to zero, and the conditional

distribution for k ě 1 is the truncated Poisson. We see that when 1 ´ p “ e´µ,

HPpµ, pq “ Poispµq. When 1 ´ p ą e´µ, we say that the zero outcome is inflated.

When 1´ p ă e´µ, we say that the zero outcome is deflated.

Let fpkq be a general probability mass function supported on N. That is, f is

defined on N with fpkq ą 0 for all k P N, and
ř

kPN fpkq “ 1. The corresponding

hurdle model with a parameter p P p0, 1q is the distribution with the mass function

fp on N, defined by

fppkq “

"

1´ p, k “ 0,
p

1´fp0q
fpkq, k ě 1.

There is another model for the inflated zero outcome, called the zero inflated model,

that parallels the hurdle model. In particular, the zero inflated model fZI,p̃ with

parameter 0 ă p̃ ă 1, is a probability mass function on N defined by

fZI,p̃ “

"

1´ p̃` p̃fp0q, k “ 0,
p̃fpkq, k ě 1.

We see that when p ă 1´ fp0q, fp “ fZI,p̃ with

p̃ “
p

1´ fp0q
.

For the case p ě 1 ´ fp0q, the hurdle model has no longer a fZI,p̃ representation. In

particular, when p “ 1 ´ fp0q, fp “ f . When p ą 1 ´ fp0q, one has 1 ´ p ă fp0q,

which corresponds to the distribution with deflated zero outcome. In this sense, the

hurdle model provides a more flexible characterization of data. If the mean of the
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distribution f is µ, then the means µp and µZI,p̃ for the distributions fp and fZI,p̃ are

respectively,

µp “
p

1´ fp0q
µ, and µZI,p̃ “ p̃µ.

Furthermore, if the variance of the distribution f is σ2, then the variances of the

distributions fp and fZI,p̃ are respectively,

σ2
p “

pσ2

1´ fp0q
`

„

p

1´ fp0q
´

p2

p1´ fp0qq2



µ2, and

σ2
ZI,p̃ “ p̃σ2

` pp̃´ p̃2qµ2.

3.2.2 Regression Analysis of Hurdle Models with Grouped
and Right-censored Data

We consider a family tfpk;θqu of distributions on N, parameterized by θ “ pθ1, . . . , θrq
T .

Here, for any 1 ď l ď r, we assume that θl takes values from an open interval Il. For

example, Il may be p0, 1q, p0,8q, or the whole real line R. Write I “ I1ˆ¨ ¨ ¨ˆIr as

the parameter space. Let p take value from an open interval I0. We use the following

assumptions on regularity.

(A1). fpk;θq is uniformly supported on positive integers. That is, for any θ P I and

any integer k ě 1, fpk;θq ą 0. Note that fp0;θq may either be positive or

zero, for different values of θ.

(A2). fpk;θq is C2 on θ. That is, for any fixed k P N, all the first order and second

order partial derivatives of fpk;θq are continuous on I.

It is easy to verify that Poispµq and NBpµ, νq both satisfy (A1) and (A2).

We now build the generalized linear model for the hurdle model fp of f . For

0 ď l ď p, let gl : Il Ñ R be a link function such that gl is invertible, g´1l is C2,

and pg´1l q
1ptq ą 0 for all t P R. Most commonly used link functions satisfy these
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conditions. For example, the identity link gidptq “ t on R, the log link glogptq “ logptq

on p0,8q, the logit link glogitptq “ log t
1´t

on p0, 1q, the probit link gprobitptq “ Φ´1ptq

on p0, 1q where Φptq “ 1?
2π

şt

´8
e´u

2{2du, and so on.

For the l’th parameter θl, we assume θl “ g´1l pβ
T
l Xlq. Here, βl “ pβ

1
l , . . . , β

dl
l q

T P

Rdl is the coefficient vector, and Xl “ pXl,1, . . . , Xl,dlq
T P Rdl is the vector of covari-

ates. For the model with intercept, one simply sets Xl,1 ” 1. Note that for different

l’s, the covariate vectors Xl may share some common components. The hurdle pa-

rameter p “ g´10 pβ
T
0X0q P I0 is similarly defined on an open interval I0 Ă p0, 1q.

Write d “ d0 ` d1 ` ¨ ¨ ¨ ` dr. There are d parameters that specify the generalized

linear hurdle model fppk;θq.

We model the grouped and right-censored counts by separating N into finite

subsets, which we call groups. In particular, let N be the number of groups. We use

a sequence of N integers 0 “ l1 ă l2 ă ¨ ¨ ¨ ă lN ă 8 to mark the boundaries of the

groups. Write lN`1 “ 8. For 1 ď k ď N , the k’th group is

Gk “ ti P N : lk ď i ă lk`1u.

Denote G “ tlku
N`1
k“1 the grouping scheme. By grouping the probability masses of

fp, we obtain a categorical distribution on t1, . . . , Nu, of which the probability mass

function fG is defined by

fp,Gpk;θq “
ÿ

lkďiălk`1

fppi;θq, for 1 ď k ď N.

We now formulate the structure of sample with covariates. WriteD “
 

pX i, Y i
Gq
(n

i“1

as a sample of n independent observations drawn from the same distribution. Here

X i “ pX i
0, . . . ,X

i
rq
T , X i

0 “ pX i
0,1, . . . , X

i
0,d0
qT is the covariate vector for p, and

X i
l “ pX i

l,1, . . . , X
i
l,dl
qT is the covariate vector for θl. In the literature, the covari-

ate X i can be modeled either as deterministic vectors (deterministic design), or

as random from some unknown distribution (random design). We will discuss the
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design later. When X i is given, the conditional distribution of Y i
G P t1, . . . , Nu

is specified by the probability mass function fp,Gpk;θiq, where θi “ pθi1, . . . , θ
i
rq
T

with θil “ g´1l pβ
T
l X

i
l q and p “ g´10 pβ

T
0X

i
0q. So for estimating the coefficient vector

β “ pβ0, . . . ,βrq
T , the log-likelihood function takes the form

`Gpβq “
n
ÿ

i“1

log fp,GpY
i
G,θ

i
q.

The grouping and right-censoring procedure usually spoils good algebraic prop-

erties of a distribution. For example, even if the original distribution f belongs to

the exponential family, since the group number N is finite, the categorical distribu-

tion fp,G of the corresponding hurdle model is in general not an exponential family

distribution. Nonetheless, if f is smooth enough with respect to its parameters, and

if smooth link functions are used, then the maximum likelihood estimator of the

coefficient vector still enjoys asymptotic consistency and asymptotic normality. We

characterize these properties in Theorem 3.1. Here we adopt the randomness as-

sumption, that is, we assume that the predictors X i’s are drawn independently and

identically from some unknown distribution. We point out that in the literature, the

setting of fixed design parallels random design [25]. Here, the fixed design setting

takes the predictors X i’s as deterministic variables.

Theorem 3.1. Assume (A1), (A2), and that

1. The sample D “ tpX i, Y i
Gqu

n
i“1 is independently and identically drawn from a

joint Borel probability distribution ρ on Rd ˆ t1, ¨ ¨ ¨ , Nu. Here, the marginal

distribution ρX on Rd is supported on a compact set X Ă Rd, and for any x P

X , the conditional distribution ρp¨|xq on t1, . . . , Nu is specified above through

the grouped and right-censored hurdle model fp,G with the coefficient vector β˚,

and the link functions tglu
r
l“0.
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2. fp,Gpk;θq is C2 with respect to β, and g´1l is C2 with pg´1l q
1 ą 0 everywhere for

0 ď l ď r.

3. For any 0 ď j ď r and any ξ P Rdjzt0u,

EX„ρj
“

〈X, ξ〉2
‰

ą 0,

where ρj is the marginal distribution of ρX on Rdj for j’th predictor vector of

the model.

4. The matrix Ipfp,G,θq is continuous and strictly positive definite at any θ P I

and any p P I0.

Then, there exists a random integer n1 and a sequence β̂n of random vectors, such

that with the sample size nÑ 8, the following properties hold true.

(a). asymptotic existence, i.e., Prob
´

∇β`Gpβ̂nq “ 0 for all n ě n1

¯

“ 1;

(b). strong consistency, i.e.,
›

›

›
β̂n ´ β

˚

›

›

›

a.s.
´́Ñ 0, as nÑ 8;

(c). asymptotic normality, i.e.,

?
n
´

β̂n ´ β
˚
¯

in law
´́ Ñ́ N p0,Fpβ˚q´1q,

where Fpβ˚q “ ´ 1
n
E rHessianp`Gqpβ˚qs is the Fisher information matrix.

Theorem 3.1 is a direct corollary of Theorem A.1 in [35] and therefore we do not

expand the proof.

3.2.3 The Computation of Fisher Information

We first consider the vanilla count model fpk;θq. Denote fG the probability mass

function on t1, . . . , Nu obtained by grouping the probability mass of f according to

the scheme G. Define

fGpk;θq “
ÿ

iPGk

fpi;θq.
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Denote IpfG;θq the Fisher information matrix of size rˆ r, of the distribution fG

at θ. Since fG is a categorical distribution, an expectation with respect to fG is just

a finite sum, which is always interchangeable with partial differential operators, we

have that for any 1 ď i, j ď N ,

IpfG,θqi,j “EX„fG

„ˆ

B

Bθi
log fGpX;θq

˙ˆ

B

Bθj
log fGpX;θq

˙

“´ EX„fG

„

B2

BθiBθj
log fGpX;θq



“´

N
ÿ

k“1

fGpk;θq
B2

BθiBθj
log fGpk;θq

“

N
ÿ

k“1

1

fGpk;θq

ˆ

B

Bθi
fGpk;θq

˙ˆ

B

Bθj
fGpk;θq

˙

.

We see that for computing IpfG,θq, we need only to compute fGpk,θq and ∇θfGpk,θq.

In general, this can be achieved by computing

b´1
ÿ

i“a

fpi;θq, and ∇θ

b´1
ÿ

i“a

fpi;θq,

for some integers (or infinity) 0 ď a ă b ď 8.

For Poisson distributions Poispµq, let fPoispµq denote the probability mass function.

Let λi “ e´µµi{i! for i ě 0. For the sake of unified notation, let λi “ 0 for i ă 0 and

let λ8 “ 0. We have

d

dµ
λi “ λi´1 ´ λi, for ´8 ă i ď 8.

So now, θ “ µ P I1 “ p0,8q and

d

dµ
f
Poispµq
G pk;µq “ λlk´1 ´ λlk`1´1, and

IpfPoispµq
G , µq “

N
ÿ

k“1

`

λlk´1 ´ λlk`1´1

˘2

f
Poispµq
G pk;µq

.
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For negative binomial distributions NBpµ, νq, let (recall that π “ ν{pµ` νq)

ωi “ ωipµ, νq “
Γpi` νq

i!Γpνq
πνp1´ πqi.

For computing
ř

ωi, we need the incomplete beta function

Iqpa, bq :“
1

Bpa, bq

ż q

0

ta´1p1´ tqb´1dt,

where 0 ď q ď 1, a, b P p0,8q, and

Bpa, bq “

ż 1

0

ta´1p1´ tqb´1dt “
ΓpaqΓpbq

Γpa` bq

is the beta function. One has Bpa, bq “ Bpb, aq and

B

Ba
Bpa, bq “ Bpa, bq

ˆ

Γ1paq

Γpaq
´

Γ1pa` bq

Γpa` bq

˙

“ Bpa, bqpψpaq ´ ψpa` bqq,

where ψpaq “ d
da

log Γpaq is the digamma function.

The mathematics of using incomplete beta function to represent and compute

the probability mass function of NBpµ, νq is well known. For example, this method

has already been implemented in R (see, for example, [61] for a numerical algorithm

for computing Iqpa, bq with high precision). We include the derivation for the sake

of completeness. For any integer m ě 0, we have

B

Bπ
Iπpν,m` 1q “

Γpν `m` 1q

ΓpνqΓpm` 1q
πν´1p1´ πqm.

Meanwhile,

B

Bπ

m
ÿ

k“0

Γpν ` kq

k!Γpνq
πνp1´ πqk

“

m
ÿ

k“0

Γpν ` kq

k!Γpνq

 

νπν´1p1´ πqk ` p1´ π ´ 1qkπν´1p1´ πqk´1
(

“

m
ÿ

k“0

Γpν ` k ` 1q

k!Γpνq
πν´1p1´ πqk ´

m
ÿ

k“1

Γpν ` kq

pk ´ 1q!Γpνq
πν´1p1´ πqk´1

“
Γpν `m` 1q

ΓpνqΓpm` 1q
πν´1p1´ πqm “

B

Bπ
Iπpν,m` 1q.
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Since

lim
πÑ0`

Iπpν,m` 1q “ lim
πÑ0`

m
ÿ

k“0

Γpν ` kq

k!Γpνq
πνp1´ πqk “ 0,

one has

Iπpν,m` 1q “
m
ÿ

k“0

ωk.

For computing B

Bµ

ř

ωi, consider

B

Bµ
ωi “

Γpi` νq

i!Γpνq
πνp1´ πqi

ˆ

ν2

π

p´1q

pµ` νq2
`

i

1´ π

µ` ν ´ µ

pµ` νq2

˙

“
Γpi` νq

i!Γpνq
πνp1´ πqi

ˆ

´π `
iπ

µ

˙

“
1

µ
ωiπpi´ µq

“
1

µ
piωi ´ pi` 1qωi`1q .

Therefore we have that for any two integers 0 ď a ă b ă 8,

B

Bµ

b´1
ÿ

i“a

ωi “
1

µ
paωa ´ bωbq . (3.2)

One checks B

Bµ

řa´1
i“0 ωi “ ´ 1

µ
aωa to find that the identity (3.2) also holds true for

b “ 8 (here we use ω8 “ 0 for the sake of unified notation).

To our best knowledge, one has to take item-wise derivatives for computing

B

Bν

ř

ωi and there is no simpler method.

Now we start to discuss the representation of Ipfp,G,θq in terms of IpfG,θq. The

motivation is to develop a general numerical algorithm for computing Ipfp,G,θq with

IpfG,θq as input. Note that Ipfp,G,θq P Rpr`1qˆpr`1q and IpfG,θq P Rrˆr. In par-

ticular, we reserve the last row and the last column of Ipfp,G,θq for p. Denote the
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gradient ∇θh as a column vector for any C1 function hpθq. Write Ipfp,G,θqr1 : r, 1 : rs

the top left r ˆ r sub-matrix of Ipfp,G,θq, and write Ipfp,G,θqr1 : r, r ` 1s the top

right sub-matrix of size rˆ1. We summarize the representation in Theorem 3.2. We

drop the vector θ for light notations and write fpkq “ fpk;θq, fGpkq “ fGpk;θq, and

fp,Gpkq “ fp,Gpk;θq, respectively.

Theorem 3.2. Write R “ p1´ fGp1qq{p1´ fp0qq. We have

Ipfp,G,θqr1 : r, 1 : rs “
p

1´ fp0q
IpfG,θq`

p

p1´ pRqp1´ fp0qq2
r∇θfp0q,∇θfGp1qs

˜

R ´1

´1 p´1`fp0q
fGp1q

¸

r∇θfp0q,∇θfGp1qs
T ,

(3.3)

Ipfp,G,θqr`1,r`1 “
R

pp1´ pRq
, and (3.4)

Ipfp,G,θqr1 : r, r ` 1s “
1

p1´ pRqp1´ fp0qq
pR∇θfp0q ´∇θfGp1qq . (3.5)

Proof. Recall that

fp,Gp1q “1´ p`
p

1´ fp0q

ÿ

jPG1,jě2

fpjq

“1´ p`
ppfGp1q ´ fp0qq

1´ fp0q

“1´Rp,

and R “ 1 when 0 is isolated (i.e., when 0 is separated out as a single group,

G1 “ t0u). When 0 is not isolated, our assumption that f is supported on the whole

N yields 0 ă R ă 1. For 2 ď k ď N ,

fp,Gpkq “
p

1´ fp0q
fGpkq.
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For any 1 ď i, j ď r, recall that B

Bθi
log p “ 0,

Ipfp,G,θqi,j “´
N
ÿ

k“1

fp,Gpkq
B2

BθiBθj
log fp,Gpkq

“ ´ p1´ pRq
B2

BθiBθj
logp1´ pRq

´

N
ÿ

k“2

p

1´ fp0q
fGpkq

B2

BθiBθj

ˆ

log p` log
fGpkq

1´ fp0q

˙

“:J1 ` J2 ` J3,

where J1, J2, and J3 will be defined and calculated below. First,

J1 “´ p1´ pRq
B

Bθi

ˆ

´p

1´ pR
¨
BR

Bθj

˙

“
p2

1´ pR

BR

Bθi

BR

Bθj
` p

B2R

BθiBθj
.

Next,

J2 “´
p

1´ fp0q

N
ÿ

k“2

fGpkq
B2

BθiBθj
log fGpkq

“
p

1´ fp0q
IpfG,θqi,j `

p

1´ fp0q
fGp1q

B2

BθiBθj
log fGp1q

“
p

1´ fp0q
IpfG,θqi,j `

p

1´ fp0q

B2

BθiBθj
fGp1q

´
p

p1´ fp0qqfGp1q

BfGp1q

Bθi

BfGp1q

Bθj
.
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Then,

J3 “
p

1´ fp0q

N
ÿ

k“2

fGpkq
B2

BθiBθj
logp1´ fp0qq

“p
1´ fGp1q

1´ fp0q

B

Bθi

ˆ

´1

1´ fp0q
¨
Bfp0q

Bθj

˙

“´
pR

1´ fp0q

B2fp0q

BθiBθj
´

pR

p1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj
.

We now revisit J1. From

BR

Bθi
“´

1

1´ fp0q

BfGp1q

Bθi
`

1´ fGp1q

p1´ fp0qq2
Bfp0q

Bθi

“
´1

1´ fp0q

BfGp1q

Bθi
`

R

1´ fp0q

Bfp0q

Bθi
, (3.6)

we have

B2R

BθiBθj
“

´1

p1´ fp0qq2
Bfp0q

Bθj

BfGp1q

Bθi
´

1

1´ fp0q

B2fGp1q

BθiBθj

`
R

p1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj
`

R

1´ fp0q

B2fp0q

BθiBθj

`
1

1´ fp0q

Bfp0q

Bθi

ˆ

R

1´ fp0q

Bfp0q

Bθj
´

1

1´ fp0q

BfGp1q

Bθj

˙

“
´1

1´ fp0q

B2fGp1q

BθiBθj
´

1

p1´ fp0qq2

ˆ

Bfp0q

Bθi

BfGp1q

Bθj
`
BfGp1q

Bθi

Bfp0q

Bθj

˙

`
R

1´ fp0q

B2fp0q

BθiBθj
`

2R

p1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj
.

Therefore,

J1 “
p2

p1´ pRqp1´ fp0qq2
BfGp1q

Bθi

BfGp1q

Bθj
`

p2R2

p1´ pRqp1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj

´

ˆ

p2R

p1´ pRqp1´ fp0qq2
`

p

p1´ fp0qq2

˙ˆ

Bfp0q

Bθi

BfGp1q

Bθj
`
BfGp1q

Bθi

Bfp0q

Bθj

˙

´
p

1´ fp0q

B2fGp1q

BθiBθj
`

pR

1´ fp0q

B2fp0q

BθiBθj
`

2pR

p1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj
.
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We combine the above calculation to obtain

Ipfp,G,θqi,j “
p

1´ fp0q
IpfG,θqi,j `

ppp´ 1` fp0qq

fGp1qp1´ pRqp1´ fp0qq2
BfGp1q

Bθi

BfGp1q

Bθj

`
pR

p1´ pRqp1´ fp0qq2
Bfp0q

Bθi

Bfp0q

Bθj

´
p

p1´ pRqp1´ fp0qq2

ˆ

Bfp0q

Bθi

BfGp1q

Bθj
`
BfGp1q

Bθi

Bfp0q

Bθj

˙

,

which proves (3.3).

For Ipfp,G,θqr`1,r`1, we have

Ipfp,G,θqr`1,r`1 “´
N
ÿ

k“1

fp,Gpkq
B2

Bp2
log fp,Gpkq

“ ´ p1´ pRq
B2

Bp2
logp1´ pRq

´

N
ÿ

k“2

p

1´ fp0q
fGpkq

B2

Bp2

ˆ

log p` log
fGpkq

1´ fp0q

˙

“
R2

1´ pR
`

1´ fGp1q

pp1´ fp0qq

“R

ˆ

R

1´ pR
`

1

p

˙

“
R

pp1´ pRq
.

For Ipfp,G,θqr1 : r, r ` 1s, recall (3.6). Now the cross terms in the sum
řN
k“2 are
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all zero. Let 1 ď i ď r to obtain

Ipfp,G,θqi,r`1 “´
N
ÿ

k“1

fp,Gpkq
B2

BpBθi
log fp,Gpkq

“ ´ p1´ pRq
B2

BpBθi
logp1´ pRq

´

N
ÿ

k“2

p

1´ fp0q
fGpkq

B2

BpBθi

ˆ

log p` log
fGpkq

1´ fp0q

˙

“´ p1´ pRq
B

Bθi

´R

1´ pR

“p1´ pRq

ˆ

1´ pR ` pR

p1´ pRq2

˙

BR

Bθi

“
1

p1´ pRqp1´ fp0qq

ˆ

R
Bfp0q

Bθi
´
BfGp1q

Bθi

˙

.

The proof is complete.

The following corollary is obtained by noting that when G1 “ t0u, we have

fp0q “ fGp1q and R “ 1. When 0 is isolated, fp,Gp1q “ 1´ p. The representation of

Ipfp,G,θq by IpfG,θq has a simpler form.

Corollary 3.1. When 0 is isolated, that is, when G1 “ t0u for the grouping scheme

G, we have

Ipfp,G,θq “

»

—

—

–

p

1´ fp0q

ˆ

IpfG,θq ´
∇θfp0q∇θfp0q

T

fp0qp1´ fp0qq

˙

0

0
1

pp1´ pq

fi

ffi

ffi

fl

(3.7)
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Proof. In (3.3), we substitute fGp1q “ fp0q, ∇θfGp1q “ ∇θfp0q, and R “ 1 to obtain

p

p1´ pRqp1´ fp0qq2
r∇θfp0q,∇θfGp1qs

˜

R ´1

´1 p´1`fp0q
fGp1q

¸

r∇θfp0q,∇θfGp1qs
T

“
p

p1´ pqp1´ fp0qq2

ˆ

´1`
p´ 1` fp0q

fp0q

˙

∇θfp0q∇θfp0q
T

“´
p

fp0qp1´ fp0qq2
∇θfp0q∇θfp0q

T .

This proves the top left corner of the matrix in (3.7). The rest part of the matrix is

evident. The proof is complete.

As suggested by Theorem 3.1, it is important to make sure that Ipfp,G,θq is

strictly positive definite, during the design of the grouping scheme G. To develop the

theory, we write G0
: the grouping scheme that has zero isolated and the rest integers

in N put as the other group. Namely,

G0
: “ t0, 1,8u.

Therefore,

fG0
:
p1q “fp0q,

fG0
:
p2q “1´ fp0q.

The Fisher information matrix is computed by

IpfG0
:
,θq “

2
ÿ

k“1

1

fG0
:
pkq

∇θfG0
:
pkq∇θfG0

:
pkqT

“

ˆ

1

fp0q
`

1

1´ fp0q

˙

∇θfp0q∇θfp0q
T

“
1

fp0qp1´ fp0qq
∇θfp0q∇θfp0q

T .

This observation links Ipfp,G,θq and IpfG,θq by

Ipfp,G,θq “

»

—

–

p

1´ fp0q

´

IpfG,θq ´ IpfG0
:
,θq

¯

0

0
1

pp1´ pq

fi

ffi

fl

.
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More importantly, we have the following characterization of Ipfp,G,θq when 0 is

isolated in G. The theorem follows directly from Corollary 3.1.

Theorem 3.3. When 0 is isolated, that is, when G1 “ t0u for the grouping scheme

G, Ipfp,G,θq is strictly positive definite if and only if IpfG,θq ´ IpfG0
:
,θq is strictly

positive definite.

Before we move on, we would prepare some notations.

• For any grouping scheme G, denote |G| the number of groups contained in G;

• For any grouping scheme G with |G| ě 2, let G: denote the grouping scheme

obtained by merging all but the first group of G as one. That is, if N “ |G| ě 2

with G “ t0 “ l1, l2, . . . , lN`1 “ 8u, then |G:| “ 2 with G: “ tl1, l2, lN`1u. So,

if N “ 2, G “ G:.

The following theorem provides a characterization for the structure of general

grouped and right censored hurdle models. It covers Theorem 3.3 as a direct conse-

quence.

Theorem 3.4. Let G be a grouping scheme. Here, the integer zero may either be

isolated or not, so the first group G1 of G may contain either only zero, or more

integers. Then, Ipfp,G,θq is strictly positive definite if and only if IpfG,θq ´ IpfG: ,θq

is strictly positive definite.

The proof is organized as follows. We shall write

P Ipfp,G,θqP T
“

»

—

–

p

1´ fp0q

`

IpfG,θq ´ IpfG: ,θq
˘

0

0T
R

pp1´ pRq

fi

ffi

fl

, (3.8)

where P is an invertible matrix. Then the proof is completed by noting the facts

that p
1´fp0q

ą 0 and R
pp1´pRq

ą 0.
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Proof of Theorem 3.4. We use

P “

„

I ´vP
0T 1



,

where I P Rrˆr is the identity matrix, 0 P Rrˆ1 is a zero vector, and

vP “
pp1´ pRq

R

1

p1´ pRqp1´ fp0qq
pR∇θfp0q ´∇θfGp1qq .

Obviously P is invertible. Note that for A P Rrˆr, b P Rrˆ1 and c P R, we have
„

I ´vP
0T 1

 „

A b
bT c

 „

I 0
´vTP 1



“

„

A´ vP b
T b´ cvP

bT c

 „

I 0
´vTP 1



“

„

A´ vP b
T ´ bvTP ` cvPv

T
P b´ cvP

bT ´ cvTP c



.

We substitute the matrix
„

A b
bT c



by Ipfp,G,θq to obtain that first,
`

P Ipfp,G,θqP T
˘

r1 : r, 1 : rs

“
p

1´ fp0q
IpfG,θq `

pR

p1´ pRqp1´ fp0qq2
∇θfp0q∇θfp0q

T

´
p

p1´ pRqp1´ fp0qq2
`

∇θfp0q∇θfGp1q
T
`∇θfGp1q∇θfp0q

T
˘

`
ppp´ 1` fp0q

p1´ pRqp1´ fp0qq2fGp1q
∇θfGp1q∇θfGp1q

T

´
pp1´ pRq

Rp1´ pRq2p1´ fp0qq2
pR∇θfp0q ´∇θfGp1qq pR∇θfp0q ´∇θfGp1qq

T .

In the above equation, the coefficient of ∇θfp0q∇θfp0q
T is

pR

p1´ pRqp1´ fp0qq2
´

pR2p1´ pRq

Rp1´ pRq2p1´ fp0qq2
“ 0.
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The coefficient of ∇θfGp1q∇θfGp1q
T (excluding the component in p

1´fp0q
IpfG,θq) is

(recall that R “ p1´ fGp1qq{p1´ fp0qq)

ppp´ 1` fp0qq

p1´ pRqp1´ fp0qq2fGp1q
´

p

Rp1´ pRqp1´ fp0qq2
(3.9)

“
p2R ´ pp1´ fGp1qq ´ pfGp1q

Rp1´ pRqp1´ fp0qq2fGp1q
(3.10)

“´
p

p1´ fp0qqfGp1qp1´ fGp1qq
. (3.11)

The coefficients of ∇θfp0q∇θfGp1q
T and ∇θfGp1q∇θfp0q

T are the same,

´p

p1´ pRqp1´ fp0qq2
`

pR

Rp1´ pRqp1´ fp0qq2
“ 0.

Therefore,
`

P Ipfp,G,θqP T
˘

r1 : r, 1 : rs

“
p

1´ fp0q
IpfG,θq ´

p

p1´ fp0qqfGp1qp1´ fGp1qq
∇θfGp1q∇θfGp1q

T .

Recall that since G and G: share the same first group, fGp1q “ fG:p1q. Since G: has

only two groups, fG:p2q “ 1´ fG:p1q “ 1´ fGp1q. We have

IpfG: ,θq “
2
ÿ

k“1

1

fG:pkq
∇θfG:pkq∇θfG:pkq

T

“

ˆ

1

fGp1q
`

1

1´ fGp1q

˙

∇θfGp1q∇θfGp1q
T

“
1

fGp1qp1´ fGp1qq
∇θfGp1q∇θfGp1q

T .

This yields
`

P Ipfp,G,θqP T
˘

r1 : r, 1 : rs “
p

1´ fp0q

`

IpfG,θq ´ IpfG: ,θq
˘

.

Next,
`

P Ipfp,G,θqP T
˘

r1 : r, r ` 1s

“
1

p1´ pRqp1´ fp0qq
pR∇θfp0q ´∇θfGp1qq ´

R

pp1´ pRq
vP “ 0.
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Similarly,

`

P Ipfp,G,θqP T
˘

rr ` 1, 1 : rs “ 0T .

So, (3.8) is proved, and the proof is complete.

Let G and G 1 be two grouping schemes. We say that G 1 is finer than G and write

G 1 ą G or G ă G 1, if G 1 is obtained by dividing one or several groups of G to smaller

groups respectively. By this operation, each group in G 1 is contained entirely in one

group in G, G Ă G 1 and |G 1| ě |G| ` 1.

The following theorem is from [30].

Theorem 3.5 ([30]). Consider two grouping schemes G and G 1. Let 0 ă µ ă 8.

Then G ă G 1 implies IpfPoispµq
G , µq ă IpfPoispµq

G1 , µq.

As a direct consequence, we have the following corollary.

Corollary 3.2. Let |G| ě 3. Then IpfPoispµq
p,G , µq is strictly positive definite for any

0 ă p ă 1 and 0 ă µ ă 8.

Corollary 3.2 shows that with the other assumptions in Theorem 3.1, one needs

only 3 groups for an asymptotically consistent parameter inference for generalized

linear models with hurdle Poisson distributions.

For negative binomial distributions, we have not found similar results. We would

leave the topic as future research.

3.3 Discussion and Conclusions

In this work, we explored some inspiring and interesting properties of grouped and

right-censored hurdle models. In particular, we showed that under mild conditions

the maximum likelihood estimator of grouped and right-censored hurdle models is

asymptotically consistent and normal. We discussed the computational issues of

Fisher information, and established the relations between the Fisher information

57



matrices of grouped and right-censored models and the corresponding hurdle models,

with the motivation of developing a stand-alone algorithm for grouped and right-

censored hurdle model inference that is independent of specific count distribution

families. As a consequence, we developed a simple sufficient and necessary condition

for the Fisher information matrix of grouped and right-censored hurdle model to be

strictly positive definite. Therefore, we now see that one needs only three groups for

Poisson distributions to achieve such strictly positive definiteness.
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