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Abstract

In the last two decades, the design of intelligent vehicles that either assist or replace
the driver has attracted a lot of attention from both academic researchers and
industrial entrepreneurs. This thesis addresses the important problem of autonomous
vehicle control within tﬁe academic framework and provides new algorithms for
solving longitudinal vehicle following .based on adaptive and fuzzy control
methodologies. Throughout this thesis, the author reports the design of intelligent
controllers with more flexibility but less a priori knowledge about system models.

In the first stage, the author concentrates on the development of a novel adaptive
fuzzy controller. The vehicle longitudinal control system falls into a class of partially
known nonlinear systems. A fuzzy system is employed to approximate the ideal
controller. A relationship between approximation error and parameters of the fuzzy
controller is established first. Then, the adaptive laws of the fuzzy controller are
obtained based on Lyapunov synthesis approach. All the parameters of fuzzy
controller are adjustable. This is the major difference between my work and the
others.

However, a weakness of the proposed adaptive fuzzy controller is that it requires
some information about the system and it only aims at a specific nonlinear system. To
this end, I investigate Q-learning, a model free reinforcement learning (RL) method,
and its applicability as a controller design approach for real systems in a

knowledge-poor environment. The focus is on two issues: (i) the structure of the Q



estimator network and fuzzy controller, and (ii) the developmgnt of leaming
algorithms for both of them. A Takagi-Sugeno type fuzzy inference system and a
multiple-layer feed-forward neural network are employed as action producer and Q
estimator respectively. The learning algorithms for the Q estimator network and the
fuzzy controller are developed based on the temporal difference methods as well as
the gradient descent algorithm.

The efficiency of applying RL directly rﬁay not always be appropriate. Therefore,
the author proposes a controller based on dual heuristic programming (DHP) to
enhance the controller performance. The structure and adaptation algorithms of the
controller for vehicle following problems are presented. The proposed controller has
two advantages compared with other controllers based on adaptive critic designs: (i)
the system model is not required directly or indirectly, and (ii) it can take advantage
of the TS type fuzzy controller to incorporate a priori knowledge. The simulation
results of the controller based on RL and those of the controller based on DHP are
compared and the advantages of the technique are also explored.

The application of these intelligent adaptive controllers to autonomous vehicle
control systems has been described. Conclusions are drawn based on studies

performed via theoretical analysis and computer simulations.
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Chapter 1

Introduction

Autonomous systems are referred to as “intelligent machines” that continuously
interact with their operéting environment and respond appropriately to anomalies
from status quo in a similar fashion to hufnans. These systems are designed with the
state of art in sensor technology, hard and soft computing and are governed by
advanced control algorithms and are complex and multidisciplinary. Due to their vast
importance in diverse areas such as transportation, surveillance, inspection, cleaning
and entertainment, etc. [Tzafestas 1999]; research and industrial groups from all over
the world have taken the challenge of addressing numerous design and
implementation issues associated with this fascinating and rapidly emerging filed of
rescarch and development. The research studies reported in thesis focuses on an
important application area of autonomous systems, i.e. autonomous vehicles within
the context of Automated Highway Systems (AHS). AHS is the infrastructure through
which the road is shared with manually driven cars and individual or platoon of
autonomous vehicles. Advocates of AHS suggest that full automation can greatly
increase highway capacity while improving safety [Bender 1991, Shladover 1995].
This call is in response to unmanageable increase in highway congestion and the
number of traffic accidents. Transportation experts from all over the world agree that

majority of traffic accidents occur due to human fatigue and/or negligence. Another



important justification for AHS and autonomous vehicles has been a never ending
increase mn the number of cars in the roads in developed as well as developing
countries. Autonomous vehicles operate in two modes: In mode 1, they operate at a
supervisory level and assist or warn the human driver where appropriate (this mode
has already been implemented in many new luxury cars). In mode 2, the vehicle is
transformed to an intelligent driving agent that takes over the task of driving (this has
only been tried with prototype vehicle's)l. Problems associated with designing true
autonomous vehicles are numerous and challenging. Among the difficulties are
complex vehicle dynamics, nonlinearities and uncertainties, safety issues, control
algorithms and weather patterns, etc.

The focus of this thesis is to address the problem of control algorithms appropriate
for autonomous vehicles. Adaptive control is known to manage well the uncertainties
of environment and the controlled object. Intuitively, an adaptive controller is a
controller that can modify its behavior in response to changes in the dynamics of the
process and the character of the disturbances. The idea of adaptive is appealing.
Conventional control systems are designed using mathematical models of physical
systems. When the uncertainties in the plant and environment are large, the fixed
feedback controllers may not be adequate, and adaptive controllers are used. Note that
adaptive control in conventional control theory has a specific and rather narrow
meaning. In particular it typically refers to adapting to variations in the constant
coefficients of mathematical model describing the unknown' plant: these new

coefficient values are identified and then used, directly or indirectly, to reassign the



values of the constant coefficients in the controller.

However, the controller should cope with significant un-modeled dynamics and
unexpected changes in the plant, in the environment and in the control objectives.
This will involve the use of advanced decision making processes to generate control
actions such that a certain performance level is maintained even though there are little
knowledge about the model and drastic changes in the operating conditions. The need
to use intelligent methods in autonomous cbntrol stems from the need for an increased
level of autonomous decision making abilities in achieving complex control tasks.
Fuzzy control [Passino & Yurkovich 1998] is one such method that has been highly
popular and rather straightforward to implement. It has been regarded as a practical
alterﬁative for a variety of challenging control 'applicatic‘ms since it provides a
convenient method for cons@ctiné nonlinear controllers via the use of heuristic
information. Such heurist?d inférmgtion may come from an experienced operator or
existing knowledge. Therefore, fuzzy control providés a user-friendly formalism for
representing and implementing the ;:ontrol objecti-ves. In particular, it is believed that
since it fnay not require mathematical ‘model of the controlled object to achieve
acceptable performance, it should be very suitable for autonomous vehicle systems.

This thesis describes three possible 'approachés to implementing advanced decision
makiné processes on an autonomous vehiclé, operating in an unknown or partially
unknown environment. Before we proceed any further, let us explicitly set down the

objectives of this work, and also the justification for these objectives.



1.1 Objectives and Research Direction

The major goal of this work is to provide a framework that makes the use of adaptive
and fuzzy logic control or other soft computing techniques on autonomous vehicle
systems. Throughout this thesis, we try to design the controller with more flexibility
but less a priori know]edge about vehicle model or environment. In other words, we
want to design a vehicle controller whose parameters may vary on line during
op-eration, but the model constraints may not be strict. Therefore, it can be expected to
accommodate for a higher degree of uncertainty. We may tune the controller based on
desired t.rajectory or action signal. The former method is conventional adaptive
control, and the latter method is supervised learning. However, the conventional
adaptive control requires the model of the system directly or indirectly, and the
structure of the model must be available if the exact parameters of the system are not
known. The performance of supervised learning is related closely with the training
data, which may have the problem of that the performance is not good if the training
data lack of generalization.

It seems a dilemma between the performance achieved and the model information
required. To achieve high performance of the controller, we require a model (or
training data) as much as possible. But the cost to obtain models or training data may
be high, or they are even impossible to get due to the unavoidable uncertainties. In
this thesis, we want to achieve a trade-off between the above two aspects. We try to
get acceptable performance with less priori model information. The performance may

be improved by the interaction with environment.



In the first stage of our research, we will concentrate on the development of the
vehicle controller using the idea of conventional adaptive control. The proposed
controller is called adaptive fuzzy controller since it employs fuzzy logic systems and
the parameters of the fuzzy systems are adjustable. The adaptive fuzzy controller is
different from the non-adaptive fuzzy controller in the following two aspects: 1) The
fuzzy controller in the adaptive fuzzy control system is changing duning real-time
operation, whereas the fuzzy controller m the non-adaptive control system is fixed
before real-time operation, and ii) the additional component, the adaptation law, is
imtroduced to the adaptive fuzzy control system to adjust the fuzzy controller
parameters.

This work is to extend the works of other researchers. For the development of the
proposed adaptive fuzzy controlier, the objective can be summarized as follows:

1) For a-vehicle longitudinal system, it can fall into a class of specific
continuous time SISO nonlinear system with some unknown parameters. A
fuzzy system is employed to approximate the ideal controller. A relationship
between approximation error and parameters of the fuzzy controller should be
established first.

2) Design the adaptive laws of the parameters of the fuzzy controller for the
specific nonlinear system based on Lyapunov synthesis approach. We intend
to tune all the parameters of fuzzy controller to achieve better performance.
This 1s d.ifferent from the most of the current research on adaptive fuzzy

control which only tunes the parameters of the consequences of fuzzy rules.



The weakness of the adaptive fuzzy control is that we should have some model
knowledge about the controlled object, such as model structure, parameters range etc.
This model information as well as the training data may be unavailable or difficult to
obtain. Moreover, the proposed design approach only aims at the specific nonlinear
system. Therefore, we want to design a vehicle controller which need as less model
information and Uajning data as possible.

Reinforcement leamning has-been inﬁo&uced to solve the problems of lack of a
priori knowledge. For the reinforcement learning, it only needs the critic information,
i.e., rewards and punishments (evaluative signal), and it is based on the common
sense idéa that if an action is followed by a satisfactory state, or by an improvement,
then the tendency to produce that action is strengthened, i.e., reinforced. So, the actual
correct actions or their trajectories are not required. Since the evaluative signal
contains much-less information, the reinforcement learning is approprate for system
operating in a knowledge-poor environment [Chiang et al. 1997, Sutton & Barto
1998].

In the next stage of our research, we would make reinforcement learning more
applicable as controller design approach for finding the optimal controller (in other
words, tune the parameters of the controller). The objective is to derive methods that:

1)  Are able to deal with continuous state space problems, Most reinforcement

learning approaches are based on systems with discrete state and action space
configurations. However, controllers for real systems often have continuous

state values as input and continuous actions as output.



2)

3)

4)

Are able to deal with nonlinear system. This is necessary for vehicle
longitudinal control.

Do not need or need as less model information and training data as possible.
As we said before, it is unavailable or difficult to obtain the desired training
data, and also difficult to get the accurate vehicle model.

Some qualitative experiences may be incorporated into the design procedure

if possible. This can speed up the design procedure and avoid the unstable.

But the efficiency of application of reinforcement learning directly may not be

good. We may consider adaptive critic designs and make the output of the critic

network as the approximation of derivative of overall cost, instead of the

approximation of overall cost. To enhance the performance of the controller, the

farther objective may be expressed as follows:

1)

2)

Are able to design the vehicle longitudinal controller based on adaptive critic
designs, but without the model directly or indirectly. This is not easy
especially if we want the critic network to output the derivative of the overall

cost.

Are able to expedite the learning procedure. This is especially important for

practical probiems.

It should be mentioned that the objective of employing adaptive critic designs does

not preclude the objective of employing reinforcement learning, on the contrary, the

former is the extension and improvement of latter.



1.2 Motivation and Rationale

Our_ research work is significant both for theory development and for practical
applications. As we have mentioned in the beginning of this chapter, the design of
autonomous vehicle control system is an important part of AHS. Traffic congestion is
a big problem today, the principal motivation for an.AHS is to increase capacity. One
can also argue that an AHS will be safer, since data suggest that human error accounts
for 90% of accidents. Estimates of the actqal increase in capacity that an AHS would
provide range from factors; of 2 to 6 over current peak capacities (about 2000
vehicles/lane/hour) [Hedrick 1994]. Meanwhile, AHS would reduce emissions and
Elel consumptioh. While full automation is the ]onlg—term goal, AHS deployment is
likely to prdceed in incremental stages, utilizing available n_esu]ts as early as possible
[Yanakiev 2001]. Our research work is specific for autonomous vel_licl‘e longitudinal
 control system and can been .thou.ght as the first stage of this direction.

However, our research work does not 6niy simply ﬁpply the existiﬁg algorithms to
autonomous vehicle control probleﬁs. We have proposed the theory behind the
applicatioﬁs. In fact, the theory development is a more important part of our research.

For known model structure but unknown parameters, we propose the adaptive
fuzzy control design. Since the adaptive fuzzy controller can adjust all its parameters
to the c.hanging environment, better performaﬁce is usuaily achieved compared with
fuzzy controller with ﬁxed membership function and consequences of fuzzy rules.

If we lack of model information, we can design a fuzzy controller based on

reinforcement learning. The proposed controller can be adaptive and improve its



performance purely based on its interaction with environment.

To enhance the leaming efficiency of the controller based on reinforcement
learning, we can improve it based on adaptivc; critic designs.

The theory contributions of our research work are that it provides several applicable
design methods to design a controller which is adaptive and requires as little priori

knowledge as possible.'

1.3 Outline of the Thesis

We begin this thesis in chapter 2 with an introduction of intelligent control and
autonomous vehicle control. We emphasize the concepts of “adaptive” and “fuzzy”
because they will guide the controller ‘design in the following chapters. For
autonomous vehicle control, we present the background and define our research
direction, We f<_)cus on vehicle longitudinal control, so we also review the existing
algorithms which include conventional approaches and intelligent control approaches
in this area.

We then go on to address the adaptive fuzzy controller in chapter 3. In this chapter,
we mainly aim at how to approximaterthe ideal controller with fuzzy systems for a
special class of nonlinear systems. The adaptation of the parameters of fuzzy rules is
developed based on Lyapunov synthesi;; approach. We verify the proposed method by

simulation studies.

Chapter 4 discusses how to combine the fuzzy controller with reinforcement

learning to alleviate the requirement of the system model in chapter 3. We can expect



that the iJroposed controller can tune the parameters on-line and acquire some
experience of the world. Consequently, the performance of the controller is improved
step and step. We illustrate the effectiveness of the proposed controller for the vehicle
longitudinal control problem.

Chapter 5 shows the improvement of the controller performance based on dynamic
heuristic programming. We give the detailed design procedure for vehicle longitudinal
controller without vehicle models. Speciai consideration is dedicated to reduce the
computational complexity and speed up the training procedure. We also compare the
performance of the controller of this chapter with that of chapter 4.

Finally, chapter 6 summarizes the contributions made by this thesis, discusses their

relevance and suggests fruitful directions for further work.

1.4 Statements of Originality

The main contributions made by the éuthor in this thesis are given in the following

statements:

e A novel adaptive fuzzy controller is proposed based on some model information
of vehicle model. It can adjust the parameters of the consequences of fuzzy rules
as well as those of the membership functions of fuzzy systems. Consequently, a
stable and more flexible controller is achieved, compared with fuzzy controller
with fixed fuzzy rules.

* A new approach is suggested for tuning parameters of fuzzy controllers. The
parameters of fuzzy controllers are tuned based on reinforcement learning with
only the “evaluative signal”. The adaptation of the parameters of fuzzy controllers
does not require any model information. Unlike some existing approaches that

10



select an optimal action based on finite discrete actions, the proposed controller
obtains the continuous control output directly.

s A vehicle longitudinal controller is presented based on adaptive critic designs. It
.can tune its barameters through the interaction with environment. It has the
advantages of adaptive, no need of “teacher” signal. And some priori knowledge
can be incorporated iﬁto the controller due to fuziy systems employed. In addition,
unlike some existing controliers based on ACD, the system model, which may be
obtained before hand or by identiﬁclation, 1s not required for the proposed
controller.

¢ In this thesis, we want to achieve a trade-off between the controller performance

and model information required.

1.5 Publications

At the time of writiﬁg this thesis, 9 cci.mference papers have been published / accepted

~ as below. Also, there are 3 ;.)ape.rs that have been submitted -to international journals.

The full list is as follows:

1. Da, X, Li, C. K. and Rad, A.A B. “Performance Comparison of Autonomous
Vehicle Controllers”. Mechanical and Electrical Engineering Technology, Vol.31,
no.6, pp.117-121 (2002}

2. Dai, X, Li, C. K. and Rad, A. B. “A novel adéptive fuzzy controller for application
in ﬁutonomous vehicles”. Mechanical and Electrical Engineering Technology,
Vol.31, no.6, pp.121-126 (2002)

3. Dai, X, Li, C. K. and Rla..d, A.B. “”_l"he model of the artificial immune response”.

The 9th International Conference on Enhancement and Promotion of
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Computational Methods in Engineering and Science, Macao, August 5-8, 2003.
(This paper will also be collected in a book entitled "EPMESC IX -
Computational Methods in Engineering and Science” to be published by A. A.
Balkema of the Swets & Zeitlinger Publishers.

. Dai, X, Li, C. K. and Rad, A. B. “Adaptive Control of a Class of Nonlinear
Systems with Fuizy Approximators”. The 12th IEEE International Conference on
Fuzzy Systems, St. Louis, USA, May 25.-28, 2003, pp.384-389 (2003)

. Dai, X, Li, C. K. and Rad, A. B. “An Approach to Tune Fuzzy Controllers Based
on Reinforcement Learning”. The 12th IEEE International Conference on Fuzzy
Systéms, St. Louis, USA, May 25-28, 2003, pp.517-522 (2003)

. Dai, X, Li, C. K. and Rad, A. B. “A Novel Adaptive Fuzzy Controller for
Application in Autonomous Vehicles”. IEEE Transactions on Vehicular
Technology; submitted.

. Dai, X, Li, C. K. and Rad, A. B. “An Approach to Tune Fuzzy Controllers Based
on Reinforcement Learning for Autonomous Vehicle Control”. JEEE Transactions

on Industrial Electronics, submitted.

. Dai, X,, Li, C. K. and Rad, A. B. “Autonomous Vehicle Longitudinal Control
Based on Adaptive Critic Designs”. IEEE Transactions on Systems, Man and
Cybernetics Part B, submitted.

. Li, CK., Tao, T. and Dai, X. “A dual adaptive model estimator for target tracking”.
The 2003 International Conference on Acoustics, Speech, and Signal Processing

(ICASSP'03), Hong Kong, April 6-10, 2003, pp. VI_53-VI 56 (2003).
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Chapter 2

Literature Review

The purpose of this chapter is to set the scene for the rest of the thesis. The intention
is to give a very selective yet sufficient overview of the general literature directly
related to the work reported in the thesis. Those citations closely related to a particular
topic of interest in this thesis are cited in the literature survey of the relevant chapter.
Although, the focus is the autonomous vehicle control, we also briefly explain the
area of intelligent control. In this research, the main element of intelligent control is
“fuzzy system”. To increase the flexibility of controller, we also consider the concept
of “adaptive”. The two basic principles in this thesis are *fuzzy” and “adaptive”.
These two concepts will guide the controller design in the following chapters.

For autonomous vehicle control, we present the background and define our research
direction. We focus on vehicle l:ongitudinal control and review the existing algorithms

which include conventional approaches and intelligent control approaches in this area.

2.1 Intelligent and Autonomous Control

2.1.1 Intelligent Control

The literature of control theory is abundant of references to intelligent control
especially in the last two decades. Academic researchers and industnal experts have

shown great interest in intelligent control and have provided solutions to problems
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that can not be well addressed by mathematical model-based techniques. The concept
of intelligent contrgl is based oﬁ a joint understanding ;)f the notions of “control
systéms” and “intelligent systems”. It emerged as an interdisciplinary field of
coﬁputer controlled systems and artificial intelligence in the late seventies or early
eighties [Hangos ¢t al. 2001].

A control system, that employs the techniques of fuzzy systems, neural networks,
expert and planning systems, and genetic ﬁlgorithms, may be considered as intelligent
control since these techniques are derived from human reasoning or biological
intelligence.

The traditional control has encounteted many difﬁculties in its applications [Cai
lm997].' First of all, the design and analysis for the traditional control systems are based
on their precise models that are usually difficult to achieve owing to complexity,
‘nonlinearity, uncertainty, timer§érying, and incomplete characteristic of the existing
practical systems. S-écondl.y, some criﬁcal hypotheses have to be put forward in
studying and modeling the cor;ltrol. systems; ho.we.ver, these hypotheses are hard to
match in 'practiée. Thirdly, in order to increase the control performances, the
complexity of systems has to be increased too. As a result, the reliability of the
control systems would be decreased. One of more effective ways to solve the above
problems is to use intelligent control, since intelligent control normally may not rely
on the development and use of a mathematical model of the procéss to be controlled.

Autonomous systems have the capability. to independently (and successfully)

perform complex tasks without human interactions. Consumer and governmental
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demands for such systems are frequently forcing engineers to push many functions
normally performed by humans into machines. The general trend has been for
engineers to incrementally “add more intelligence” in response to consumer, industrial,
and government demands and thereby create systems with increased levels of
autonomy. In this process of enhancing autonomy by adding intelligence, engineers
often study how hurﬁaris solve problems, and then try to directly automate their
knowledge and techniques to achieve high 'levels of automation.

From above, we can see that it is a good way to use intelligent control methods to
design autonomous control systems. In our research, we need to deal with
autonomous vehicle control problems. Naturally,r we think of intelligent control
approaches. We partially adopt fuzzy systems, neural networks and reinforcement
learning for autonomous vehicle control. We hope to take the advantages of intelligent
control to handle the un-modeled dynamics of the vehicle and the uncertainty of the

environment in a comparatively simple way.

2.1.2 Adaptive Control

Although, intelligent control can handle incomplete information about the
controlled object and environment to some extent, it would be better if we consider
the idea of “adaptive”. We may improve the controller performance further if we can

make the controller adaptive.

In English language, “to adapt” means to change a behavior to conform to new

circumstances. Although a meaningful definition of adaptive control is still lacking.
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We take the definition in the book of Astrom, K.J. and Wittenmark, B. [Astrom &
Wittenmark 1995]:

An adaptive controller is a controller with adjustable parameters and a mechanism
for adjusting the parameters.

The key element in the adaptive controller is the parameter adjustment mechanisms.
There are several ways to tune parameters, such as gain scheduling, model-reference
adaptive control, self-tuning control etc.

“ Adaptation” is attractive because an adaptive controller can be expected to
accommodate for a higher degree of uncertainty than a fixed control structure. So we
consider adaptation of the controller as the basic requirement during the controller
design procedure. Here, we should note that “intelligent control” is the upper level
approach, while “adaptive” is the lower level method. We hope to combine the

strengths of these two approaches to achieve better performance.

2.2 A Review of Techniques Relevant to This Thesis

The main techniques, which we use for intelligent control of autonomous vehicles, are

fuzzy control, reinforcement learning and adaptive critic designs.

2.2.1 Fuzzy Control

Fuzzy control [Passino 2001] is a methodology to represent and implement a (smart)
human’s knowledge about how to control a system. The main advantage of fuzzy
control is that 1t provides a heuristic (not necessarily model-based) approach to

nonlinear controller construction. In this thesis, we employ a Takagi-Sugeno type
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fuzzy controller since it has a mathematical expression as its consequence [Takagi &
Sugeno 1985]. This makes it easy to analyze theoretically.

In the earlier stage of fuzzy controller design, the fuzzy rules and their membership
functions were designed l;y the controller designers through translating the operator’s
manual control. This information, through a process of trial and error, generated a rule
table that could be implemented in the form of if-then rules. This heunstic-based
design is time consuming and has been fhe subject of some criticism to design of
fuzzy systems. Although the achievements of heuristic-based fuzzy control has been
significant, the design process has been viewed to be not rigorous due to its lack of
formal synthesis techniques, which guarantee the basic requirements for control
systems such as global stability and acceptable performance. The emergence of the
model-based design of fuzzy controllers [Driankov & Palm 1998] has provided
alternative solution. The model-based design combines the conventional/modern
control theory with the fuzzy logic control. The major objective of the model-based
fuzzy control is to use the full :available knowledge of existing linear and nonlinear
design and analysis methods to achieve better performances than either fuzzy control
or conventional control acting alone. The model-based fuzzy control shares the
advantages of analysis of stability, performance and robustness with classical methods.
It also has the advantages of fuzzy control such as incorporating the knowledge of

human experts or operators.
One of the model-based fuzzy control is adaptive fuzzy control. Fuzzy controllers

are supposed to handle incomplete information. Adaptive control is to maintain
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consistent performances of a system in the presence of uncertainties. Therefore,
adaptive fuzzy control may have the both advantages of fuzzy control and adaptive
control.

The basic idea of adaptive fuzzy control is as follows: For a plant with unknown
components, a fuzzy system is used to approximate the ideal controller directly, or
construct the controller indirectly by approximating the plant model. The parameters
of the fuzzy system are adjustable onlix;e such that the plant output tracks the
reference model output.

Adaptive fuzzy control and conventional adaptive control have similarities and
differences. They are similar in: 1) the basic conﬁgﬁration and principles are more or
less the same, and ii) the mathematical tools used in the analysis and design are very
similar. The main differences are: 1) the fuzzy controller has a special nonlinear
structure that is universal for different plants, whereas the structure of a conventional
adaptive controller changes from plant to plant, and ii) human knowledge about the
plant dynamics and controi s:trategies can be incorporated into adaptive fuzzy
controllers, whereas such knowledge is not considered in conventional adaptive
control systems. This second difference identifies the main advantage of adaptive
fuzzy control over conventional adaptive control.

The main advantages of adaptive fuzzy control over nonadaptive fuzzy control are:
1) better performance 1s usually achieved because the adaptive fuzzy controller can
adjust itself to the changing environment, and 11) less information about the plant is

required because the adaptation law can help to learn the dynamics of the plant during
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real-time operation.
The main disadvantages of the adaptive fuzzy control over nonadaptive fuzzy
control are: i) the resulting control system is more difficult to analyze because it is not

only nonlinear but also time varying, and ii) implementation is more costly.

2.2.2 Reinforcement Learning

Reinforcement learning (RL) has attracted considerable attention in the past because it

_provides an effective approach to control and decision problems for which optimal
solutions are analytically unavailable or difficult to obtain. Reinforcement learning is
based on the common sense idea that if an action is followed by a satisfactory state, or
by an improvement, then the tendency to produce that action is strengthened, 1.e.
reinforced. In essence, reinforcement learning is a direct adaptive optimal control
[Sutton et al. 1992].

In reinforcement learning, the system is told indirectly about the performance of the
current control action through evaluation signal. The study of reinforcement learning
relates to the credit assignment where, given the performance of a process, one has to
assign the reward or blame attribute to the individual elements contributing to that
performance. Temporal difference (TD) methods can be used to solve the temporal

credit assignment problem [Sutton & Barto 1998].
From a historical perspective, Sutton and Barto [Sutton & Barto 1998] identified
two key research trends that led to the development of reinforcement learning: the

trial and error learning from psychology and the dynamic programming methods from
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mathematics.

It is no surprise that the early researchers in reinforcement learning were motivated
by observing animals (and people) learning to solve complicated tasks. Notably,
Roger Thomdike's work in operant conditioning identified an animal's ability to form
associations between an action and a positive/negative reward that follows [Thomdike
1911].

The other historical trend in reinforcément learning arises from the “optimal
control” work performed in the early 1950s. By “optimal control”, we refer to the
mathematical optimization of reinforcement signals. Today, this work falls into the
category of dynamic programming and should not be confused with the optimal
control techniques of modern control theory. Mathematician Richard Bellman is
deservedly credited with developing the techniques of dynamic programming to solve
a class of deterministic “control problems” via a search procedure [Bellman 1957). By
extending the work in dynamic programming to stochastic problems, Bellman and
others formulated the early work: in Markov decision processes.

Barto and others combined these two historical approaches in the field of
reinforcement learning. The reinforcement learning agent interacts with an
environment by observing states, x, and selecting actions, a. After each moment of
interaction (observing x and choosing a), the agent receives a feedback signal, or
reinforcement signal, r, from the environment. This is much like the trial and error
approach from animal leaming and psychology. The goal of reinforcement learning is

to devise a control algorithm, called a policy, that selects optimal actions (a) for each
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observed state (x). By optimal we mean those actions which produce the highest
reinforcements () not only for the immediate action, but also for future actions not
yet selected. The mathematical optimization techniques of Bellman are integrated into
the reinforcement learning algorithm to arrive at a policy with optimal actions.
Reinforcement learning can solve some difficult and diverse control problems and
has some successful épplications. Cntes and Barto successfully applied reinforcement
learning to control elevator dispatching in iarge scale office buildings [Crites & Barto
1996]. Their controller demonstrates better service performance than state-of-the-art,
elevator-dispatching controllers. To further emphasize the wide range of
reinforcement leaming control, Singh and Bertsekﬁs have out-competed commercial
controllers for cellular telephone channel assignment [Singh & Bertsekas, 1996].
There has also been extensive application to HVAC control with promising results
[Anderson et-al. 1996]. Early applications of reinforcement learning include
world-class checker players [Samuel 1959] and backgammon players [Tesauro 1994].
Inverted pendulum [Si & Waing 2001], mountain car [Jouffe 1998), and robot
navigation [Zalama et al. 2002] etc. have emerged as benchmarks for reinforcement

leaming studies.

2.2.3 Adaptive Critic Designs

Adaptive Critic Designs are new optimization techniques based on the concepts of
reinforcement learning and approximate dynamic programming [Werbos 1990,

Prokhorov et al. 1995, Prokhorov & Wunsch 1997, Prokherov 1997, Eaton et al. 2000,
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Venayangamoorthy et al. 2002]. Adaptive Critic Designs are suitable for a given series
of control actions which must be taken sequentially, and not knowing the effect of
these actions until the end of the sequence, which may be difficult for supervised
learning [Venayangamoorthy et al. 2002]. More important, adaptive critic designs
may not need the training data or system models. The only requirements for ACD are
to know the final cost and the one-step cost.

Dynamic programming (DP) methods -use the principle of optimality [Bellman
1957] to find a strategy of action that optimizes a desired performance metric or cost
subject to nonlinear dynamical constraints. Although the backward DP approach
reduces the space of admissible solutions, it remains computationally too expensive
for higher dimensional systems, with a large number of stages. The required multiple
generation and expansion of the state and the storage of all optimal costs lead to a
number of computations that grows exponentially with the number of state variables,
commonly referred to as the “curse of dimensionality” or “expanding grid” [Kirk,
1970]. Approximate dynamic p;ogramming (ADP) and temporal difference methods
us¢ incremental optimization combined with a parametric structure to reduce the
computational complexity associated with evaluating the cost [Bellman 1973]. Unlike
discrete DP, ADP algorithms progress forward in time, and approximate both the
optimal policy and the cost in real time by considering only the present value of the

state.

Adaptive critic designs (ACD) reproduce the most general solution of ADP by

deriving recurrence relations for the optimal policy, the cost, and, possibly, their
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derivatives. The goal is to overcome the curse of dimensionality, while ensuring
convergence to a near-optimal solution over time [Howard 1960, Bertsekas &
Tsitsiklis 1996]. Adaptive critics offer a unified approach to dealing with the
controller’s nonlinearity, robustess, and reconfiguration for a system whose
dynamics can be modeled by a general ordinary differential equation.

The simplest form of adaptive critic design, Heuristic Dynamic Programming
(HDP), uses a parametric structure called an action network to provide control output

“u(¢) which approximates the control policy and another parametric structure called a
critic network to approximate the overall cost J(¢). In practice, since the parameters
of this architecture adapt only by means of the scalar cost, HDP has been shown to
converge very slowly [ Werbos 1990].

An alternative approach referred to as Dual Heuristic Programming (DHP) has been
prpposed [Werbos 1990, 1997]. Here, the critic network approximates the derivatives
of J(t) with respect to the state, thereby correlating the adjustable parameters in the
architecture to a larger numbef of dependent variables. Although the advantages of
DHP over HDP have been discussed extensively in the literature from a theoretical
point of view, few successful implementations have been reported. Due to the use of
derivative information, the recurrence relations that can be obtained for DHP are more
involved and may require an accurate model of the system to be controlled. The critic
network approximates a nonlinear mapping characterized by a much
larger-dimensional output space. Therefore, practical ;tspects such as function

approximation are more challenging in DHP than they are in HDP.
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Many other methodologies have been proposed over the years to alleviate some of
the difficulties mentioned above, producing more advanced designs. Global Dual
Heuristic Programming (GDHP), for example, has been developed with the purpose
of combining the advantages of both HDP and DHP architectures. In this case, the
critic network approximates both the overall cost J(¢f) and its derivatives.

Action-dependent (AD) versions of all these approaches are obtained by designing
a critic network that has direct knowledée of the control policy (produced by the
action network) through its inputs, as opposed to only having knowledge of its
dertvatives through its adaptation (as in the action-independent ACD designs). The
motivation behind this is convenient implementation for action-dependent ACD
designs. To adapt the action network, we ultimately need the derivative 8J(t)/ou(s),
rather than J(¢) itself. This problem becomes simple if the input of critic contains
u(t) , because- we can get AJ(¢)/du(t) directly from critic network based on
backpropagation.

Action-dependent versions of HDP, DHP and GDHP can be named as ADHDP
(action-dependent heuristic dynamic programming), ADDHP (action-dependent dual
heuristic programming) and ADGDHP (action-dependent global dual heuristic
programming) respectively. ADHDP is similar with Q leaminé.

From above, we can see that adaptive critic designs can be divided into three

categories, and each of the categonies may also have the action dependent version.
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2.3 Autonomous Vehicle Control

2.3.1 Background

Traffic congestion problems and driving safety issues on highways have motivated an
increased amount of research on highway automation and it is being investigated
worldwide in several programs, such as ITS in the US and PVS, SSVS, and ARTS
under ITS Japan. Readers who are interested can refer the comprehensive overviews
of highway automation which are given by Bender [Bender 1991] and Shladover
[Shladover 1995). The field of AHS is very broad. From the control architecture, it
can consist of network layer, link layer, coordination layer, regulation layer and
physical layer. From the functions of AHS, it can be divided into sensors, signal
processing, control computation, control actuation and vehicle dynamics, etc [Varaiya
1993, Sheikholeslam & Desoer 1993, Raza & loannou 1996, loannou & Bose 1999,
Hérowitz & Varaiya 2000].

There are three AHS control tasks: 1) To assign a path to each vehicle. 2) To carry
out safely the maneuvers of platoon formation, stabilization and dissolution, lane
change, and entry and exit. 3) To implement those maneuvers via feedback laws
(algorithms) that control each vehicle’s throttle, braking and steering actuators
[Hedrick 1994).

The design of intelligent vehicle control system is an important part of AHS, and
the vehicle control may consider the maneuvers such as lead vehicle tracking,

follower, join, split, lane change, entry and exit.
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While full automation is the long-term goal, AHS deployment is likely to proceed
in incremental stages, utilizing available results as early as possible [Yanakiev &
Kanellakopoulos 2001]. In the first stage, for example, vehicles would have only
longitudinal control capabilities for vehicle following without inter-vehicle
communication, with the driver assuming responsibility for steering and emergency
situations. In that respect, systems currently in various stages of research and
development can be classified into three ca;regories:

* Autonomous systems: depend only on information obtained by the sensors located
on the vehicle itself, usually relative distance and velocity to stationary objects and
moving vehicles. They are, therefore, implementable in the immediate future and, in
fact, have started to appear as commercial products {(collision warning, adaptive cruise
control).

* Cooperative systems: add information transmitted by neighboring vehicles,

usually acceleration and steering inputs. Hence, they can perform more demanding .

tasks than autonomous systems <such as coordinated driving in"a group, but their time
to commercialization is likely to be longer.

* Automated highway systems: add information obtained from the roadway
infrastructure such as messages regarding traffic conditions and road geometry and
lateral information from magnetic nails or reflective guardrails installed on the
highway. Such systems can perform even more demanding tasks, like fully automated
driving in a platoon, but must face many more obstacles (standardization, liability

issues, public acceptance) on their way to implementation.
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Important research programmes like PROMETHEUS (PROgraM for Europe
Traffic with Highest Efficiency and Unprecedented Safety) in Europe, PATH
(Program on Advanced Technology for Highway) in the USA or PVS (Personal
Vehicle System) in Japan enabled great cooperation between car manufactures and
sensor or actuator suppliers, and have contnibuted much to this community [Vlacic et
al. 2001]. However, the largest and richest body of research has been in
vehicle-following longitudinal control sysfem, especially in more recent years. From

" the late 1970s, most relevant work has included nonlinear, time varying and adaptive

control considerations [Shladover 1995].

2.3.2 Scope and Direction of Research

Autonomous vehicle control is a complex cont%ol task. The vehicle model is a highly
nonlinear system with dynamic characteristics that vary with the changed operating
conditioﬁs, such as velocity, road conditions etc. Also, there are time delays with the
vehicle engine. The vehicle  longitudinal model, which s developed by the
longitudinal control group of University of California at Berkeley, is represented by
twelve state variables: four for the engine, two for the transmission, and six for the
drive wheel, plus two time delays associated with the engine [Guldner et al. 1997].
Although we may use a linearized model for vehicle lateral control, this is only valid
under the assumption of small angles during normal highway driving conditions (i.e.
non-emergency situations) within the physical limits of tires [Hedrick et al. 1993]). As

a result, effective vehicle control is not a trivial task.
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Automated vehicle longitudinal control and lateral control are two important parts
of Autonomous vehicle control. Lateral control maintains the vehicle in the center of
the lane (lane-keeping maneuver) and steers the vehicle to an adjacent lane
(lane-change maneuver), while maintaining good passenger comfort all times.
Longitudinal control assumes cars are driven along a line on the highway and consists
of the desired following distance and the design of a control system that regulates the
speed of the vehicle in accordance with thé given spacing policy.

In this thesis, we emphasize automated vehicle longitudinal control when a constant
spacing policy is employed by an autonomous vehicle. The task of vehicle
longitudinal control is to regulate both the relative velocity v, and the spacing
deviation Ax of the preceding car and folloWing car to zero. And this task can be
combined into the control objective v, +k-Ax=0, where % is a positive design
constant. This -control objective makes sense intuitively: if two vehicles are closer
than desired (Ax <0) and the control objective is satisfied (v, = ~Ax>0), then the
following car 1s moving .slower:than the preceding car, which is what we expect. And

the situation is also what we want if Ax>0.

If we think the position and velocity of the preceding car is v, and x

respectively, those of the following car are x and v respectively, then we define

v, (€)= v, () =), Ax(t)=x,(0)-x(t) @-1)

2.4 A Brief Review of Vehicle Longitudinal Control

A number of publications have reported on the autonomous vehicle control problem
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and there are many existing control algorithms to deal with the vehicle longitudinal
(car-following) problems in the literatures. In the following subsections, we will

introduce the conventional approaches and intelligent control approaches respectively.

2.4.1 Conventionall Approaches

The simplest controller is PD controller, which comes from the decision making of
human drivers. The human driver senses the distance between his car and the front car,

, and also estimates the possible change of the distance based on the velocity of the
controlled car and the front car. The PD controller is very simple, however, the
performance of the PD controlle; is very limited. Ioannou et al. linearized the vehicle

~ model around the operating point énd employed the PID controller with fixed gain
and gain scheduling scheme [Ioannou th al. 1993]. They also adopted Lyapunov
approach to dqsign an adaptj‘ve controller which ¢liminated the weakness of the PID
controller, because the latter is baséd on look-up tables that are developed a priori by
performing certain experimen.ts'.

Yanakiev and Kanellakopoulos also used the linearized vehicle model, but they
added a signed Quadratic (Q) term in the PI controller to make the controller more
aggressive at large errors, but it does not have the undesirable side effect of overshoot
[Yanakiéy & Kanellakopoulos 1996, 2001]. .

Ioannou and Chien also proposed an autonomous intelligent cruise control (AICC),
which followed directly from the theory of feedback linearization where one part of

the control action is used to cgincel the n_onlinearities, and the other part 1s used to
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assign the eigenvalues of the resulting linear system [Ioannou & Chien 1993].
Hedrick, Swaroop et al. design the longitudinal controller using “Multiple Sliding
Surface” methodology, which is closely related to the sliding mode control [Hedrick
1998, Swaroop et al. 2001]. The dynamic surface controller can achieve very good
performance. However, it requires communication with the leading vehicle.

So far, many lon'git'udinal controllers have been proposed. Each controller is
designed for different a purpose, therefore‘ the control laws and performances can not
be compared against each other. However, all studies above depended upon a precise
vehicle model to some extent. Deriving a precise model is difficult not only for the
complex'ity of the vehicle system, but also for the uncertainties and disturbances of the
vehicle due to numerous parameters including the vehicle, road, weéther conditions,
etc. Many researchers believe that intelligent control methods could be used to deal

with vehicle longitudinal control problems.

2.4.2 Intelligent Control Approaches

To circumvent the complexity of vehicle models, intelligent control approaches, such
as fuzzy and neuro-controllers have been applied to automated vehicle control system.
Kehtamavaz et al. [1994] generated the fuzzy rules of vehicle following controller by
a self-organizing neural network. Kim et al. [1996] adopted neural systems to learn
the fuzzy rules with both unsupervised and supervised learning, and implemented
fuzzy throttle and brake control. Huang and Ren [1999] constructed a neural fuzzy

network (NFN) for automated vehicle guidance control and used training data to
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identify the weights of NFN by mixed genetic/gradient algorithm. Mar and Lin [2001]
presented an ANFIS controller for car-following collision prevention system, which
used the reference signal to on-line update the parameters of ANFIS.

The main advantages of these methods are that they don not require the exact
model of vehicles and may not be sensible to imprecise data from sensor. But the
tradeoff is that the performance of the controller depends much on training data and
prion1 knowledge or experiences .of human 'operators. Therefore, the simple design of
fuzzy or neuro-controller may not be adequate. It would be better if fuzzy or
neuro-controllers could tune their parameters to achieve better performance according

to current situation or performance of the controller.
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Chapter 3

Autonomous Vehicle Controller based
on Adaptive Fuzzy Technique

The important desigﬁ consideration of adaptive fuzzy control is how to tune the
parameters of fuzzy controller, 1.e., how.to construct the adaptive laws. Recently,
"some researchers have proposed to construct adaptive fuzzy controllers by Lyapunov
synthesis approach [Wang 1993, Su & Stepanenko 1994, Spooner & Passino 1996,
Chen et é]. 1996, Tsay et al. 1999, Han et al. 2001; Feng 2002]. Using this approach,
we can adjust the parameters to guarantee the stability and also achieve better
performance. The success of this approach owes to the combination of robust adaptive
systems theory-and fuzzy approximation theory, where the fuzzy controller is used to
approximate the mkno@ system model or the controller.

However, most of the curre;1t research on adaptive fuzzy'control only tunes the
parameters of the consequences of fuzzy rules. This may cause the approximation
property of fuzzy systems not to be adequate. It also affects the performance of the
controller. Aiming at this problem, we intend to tune all the parameters of fuzzy
controller. In order to tune these parameters, a linear relationship between
approximation error and all parameters of fuzzy rules is established first. Then we
design the adaptive laws of these parameters based on Lyapunov synthesis approach.

The advantage of our method is that we can tune not only the parameters of the
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consequences of fuzzy rules, but also the parameters of the membership functions. As
a result, a stable and more flexible controller is achieved.

We have addressed several existing vehicle longitudinal controllers in Chapter 2.
However, for the controllers which employ soft computing technology, the parameters
of the controller may be fixed or tuned off-line. It would be attractive if the controller
can be tuned on-li.ne'to improve its performance. This motivates adaptive fuzzy
control for vehicle longitudinal control. We employ a direct adaptive fuzzy controller
" that approximates an ideal optimal controller. All parameters of the fuzzy controller
are tuned on-line. In order to tune these parameters, a linear relationship between
approx.imation error and parameters is first establrished. The corresponding adaptive
laws are designed next based on Lyapunov synthesis approach. The advantage of the
proposed method is that parameters of the consequences of fuzzy rules as well as
those of the membership functions are tuned. As a result, a stable and more flexible
controller is achieved.

The rest of this chapter is organized as follows. In section 3.1, the nonlinear model
and control objective are presented. Since we aim to approximate the ideal controller
using a fuzzy system, the fuzzy logic system is discussed in section 3.2, which is
composed of two parts: the structure of fuzzy systems and the error of fuzzy
approximators. Afterwards, section 3.3 explains our proposed adaptive fuzzy control
based on Lyapunov synthesis approach. In section 3.4, vehicle longitudinal control is

used to verify the theoretical analysis. Section 3.5 concludes this chapter.
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3.1 Problems Formulation

We consider a specific » th-order nonlinear system of the form:
x™ = Floxe o, x" )+ bu,
y=x (3-1)

where, f is unknown continuous function and b is unknown constant, u, R
and ye€R are the input and output of the system respectively. We assume that the
state vector x={x,,x,,»x,)" =(x%x"")" e R" is available for measurement.
The control objective is to force the output of the system y to follow a given
bounded reference signal y_(¢) under the constraints that all signals involved are
bounded.

Using feedback linearization, we know that there exists some ideal controller if f
and g are known.

W' =2 {=f @)+ () | (3-2)
where, v(t)=y" +k"e, e=(eé ,e"™) |, k=(k, k), .e=ym -y, let-
k=(k, k)" be such that all roots of the polynomial h(.;') =s" +ks" ++k,
are in the open left half plane.

If we apply the above ideal controller (equation (3-2)) to equation 1, then we

obtain:

e +kle(”‘1)+...+kue=0 (3-3)
T

The above equation implies that lime(t) =0, because we choose & =(%,,--k,)
f=3a0

as all roots of the polynomial A(s)=s"+k,s"" +---+k,  being in the left half plane.

However, we cannot obtain the ideal controller directly because f and b
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are unknown. Since a fuzzy system can be considered as a universal approximator, we
use a fuzzy controller to approximate the above unknown but existent ideal controller
u'. In this chapter, we construct the controller using a fuzzy system and directly
adjust all parameters of the fuzzy controller, i.e., we concentrate on a direct fuzzy
adaptive control. It is worth noting that our approach can tune all parameters

(including the parameters of membership functions) of fuzzy rules.

3.2 Description of Fuzzy Logic Systems

Before the fuzzy adaptive controller is proposed, we discuss the structure and the

approximation error of fuzzy logic systems we adopted.

3.2.1 Structure of Fuzzy Logic Systems

Consider a multiple-input single-output (MISO) fuzzy controller which performs a
mapping from an state vector x =(x,,x,,..,x,) €R" to a contr.ol input ueR.
Using the Takagi-Sugeno model, the IF-THEN rules of the fuzzy controller may be |
expressed as:

R TF x,is F' and---and x, is F!

THEN u = K g,(x) + K;8,(x) +- + K .2, (%) (3-4)
where F/ is the label of the fuzzy set in x;, for 1=12,..M. g(x),g,(x),...,and
g, (x) are any known function of the state vector. K/,K; ... and K] are the
constant coefficients of the consequent part of the fuzzy rule.

In this chapter, we would use product inference for the fuzzy implication and ¢

norm, singleton fuzzifier and center average defuzzifier, consequently, the final output
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value is:

Z(ﬁ#ﬁ' (xf)J'(K.’gl (x)+-+K,g, (z))

u(x) = 2= (3-5)

g[ﬁp""’ (x,-)J

1\ i=l

Here, we adopt Gaussian function as the membership function of the fuzzy system

because its excellent approximation properties [Liu & Si 1994], i.e.

u(x)= exp[—[x"o_ !c‘ J ] (3-6)

for i=12,.,n and /=12,.. .M.

And we can rewrite the (3-5) as:

u(x) =075(x) = 0"4(x| c,0) (3-7)
where 8= (K, K} K}, K2, K¥) is a parameter vector, ¢, are vectors
with the elements of ¢/ and o in equation (3-6) respectively, and
E(X) = (&) (X &L (), E2(x), - EX () EM (x))T s a regressive vector with the regressor

&(x) defined as

(l_i[#ﬁ'(xf)}g,-(z)
§i@ =
Z[ .MFJ (x;)J

(3-8)

I=]

3.2.2 Error of Fuzzy Approximators

We have mentioned that we use fuzzy systems to approximate the ideal controller. The
fuzzy systems approximate a function by covering the whole input space with fuzzy
rule patches and averaging patches that overlap. The approximation properties of

fuzzy systems are related to the number of fuzzy rules, the shape of membership
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functions (such as triangle, trapezoid, Gaussian, etc.) and parameters of each fuzzy
rule (including parameters of the membership functions and parameters of the
consequences).

Theoretically, the fuzzy system discussed in s_ection 3.3.1, that 1s the fuzzy systems
with product inference engine, singleton fuzzifier, center average defuzzifier and
Gaussian membership functions, can approximate any square-integrable function on
the compact set U/ cR” to arbitrary accur‘acy [Wang & Mendel 1992].

However, we may or may not find the aboye ideal fuzzy system which can
approximate any function to arbitrary accuracy due to some constraints such as the
number of fuzzy rules and the parameters of the membership functions. We will
discuss the error of fuzzy approximators next w.ithin this subsection.

Unlike some existing papers [Wang 1993, Spooner & Passino 1996, Tsay et al.
1999, Feng 2002], in which only adjusting the parameters of the consequences (6 of
section 3.3.1) is considered, we also consider how to adjust the parameters of the
membership functions (¢,0 of section 3.3.1), suc.h that the approximation properties
of the fuzzy system may be improved. However, tuning the parameters of the
Gaussian membership function is not a trivial work because the nonlinear relations
among the parameters. Some methods have been proposed to tune the parameters of
the membership functions, however, most of these methods require the training data

[Homaifar & McCormick 1995, Kim 1997].

We define the approximation error between our controller and the ideal controller

which is mentioned in section 3.2 as:
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e(x)=u’(x)-u(x) (3-9)

Theorem 3-1: The function approximation error £(x) can be expressed as:

£(x) =45 4(x| c,0) + ¢/ u, +$7u, +d,(x) (3-10)
where,
¢,=6"-6, ¢,=c" -c, §,=0" -0, uc=%, uo=g (3-11)
dc do
d|<w’ .Y (3-12)

(where 8°,¢",0" represent the optimal parameter vectors of fuzzy approximator,

w € R* is an unknown constant vector which is related to some bounded constants

.

Proof: We denote ¢,(x) as the approximation error between the optimal fuzzy

and ¥ = (1|6} i} Jo

lo1-lelh™)

approximator and ideal controller, i.e.,
g(x)=u (x)-u(x|6",c’,0") (3-13)
where, u(x|0°,c’,0") represents the optimal fuzzy approximator with the change
of parameters 6,c,0, and 8 ,c",0" represent the optimal parameter vectors
accordingly, 1.e.,
@ ,c,0')= arg min[supfu(x | 6,¢,0) - u" (x)]] (3-14)
We assume £ (x) is bounded by a constant ¢, i.e.,

<g - (3-15)

&

u

This is reasonable because the fuzzy system with Gaussian membership has good

approximation properties, especially when all the parameters of fuzzy rules can be

adjusted.

Then we can rewrite (3-9) and (3-13) as:
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e(x)=u(x|6",c’,0") + £,(x) -u(x|6,c,0) (3-16)
If we deal with u(x|8",c’,0") using Taylor’s expansion at (#,c,0) based on

u(x|0°,¢",0")=0"¥x|c",0") and u(x)=0"¢(x|c,0), then

u(z]6".c" 10" ) =u(x]0.¢,0)+ (6 ~0) -2 n (¢~ - (o” o) A
o0 oc oo
+o(x[(8"-6),(c" ) (0" -0))
(3-17)
Let
¢8=9‘—9! ¢C=C‘—C, ¢U=O'."'J, uc=@! ucr='€u"' (3'18)
dc do
Then based on (3-7), we have
Ou _ _gr _ T
6—9—§(§|c,0'), u =£. 6, u, =¢ 6 (3-19)

where, &7 ‘and (f:' is the derivative of vector £(x}ec,o) with respect to ¢ and
o respectively.
Then from (3-17) we obtain:
u(x|6°,c’,0") = u(x16,¢,0) + §; £(x] ¢,0) + ¢/ u, +dyu, +0(x]4;.4..4,) (3-20)
Let
d,(x)=0(x|9g,8,.05) +£,(x) (3-21)
Using u(x) =8 £(x|c,5), and combining (3-16), (3-18), (3-19), (3-20), (3-21)

we have:

e(x) =, E(x|c,0)+ @ u, + ¢ u, +d,(x)

, , (3-22)
=3 5(x]c,0)+4/8;, 0+ 4,8, 0+d,(x)
From (3-20), we can express |o(x|#,.9..8,)| as follow:
loa1ds. 8= o7 eI 0D =078 sl o) - HEal ) - 4ET0-08T8]

= ”9"'[5(5 fe",o ) -E(xle,0)]-(c" —c) &7 - (o —o) &l 6
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Obviously, there should be constant 8, ¢ and o that satisfy:
||9'||s§, "c"SE and “0""53 (3-24)
We assume £(x|c,0) and the derivative of &(x|c¢,o) with respect to ¢ and

o are bounded.

g7 el <, (3-25)

k@&leo)<e,

<c, and
So, we have:
oz 65.8..0,)| < 286, +c+[d)- ¢, Jol+ @ +o e, Jo]  (3-26)
and

dul=!o(x|¢9’¢c’¢a)+£u(£)l .
<20c, +(c+|d)-c, - [o]+ (@ +|o]) - - |6] + & (3-27)
Jel-leblel-feln™ =w" - ¥

where, the facts |¢,|<¢",and ¢ is a constant, has been used, and

C

=Wy, w1 [L 6]

w, =20c, +¢
w, =cc, +0¢,

W, =ec, (3-28)

Q.E.D.
Remarks:
1) In some previous works only tuning parameter & is considered, the
approximation error is expressed as £(x) = ¢, £(x)}+d, (x) accordingly.
2) In order to tune parameters c¢,o, we need to express the approximation error
e(x)=u"(x)-u(x) withtheterm ¢, =c -c, ¢, =0 ~0o.

< &°, this is reasonable because we

3) We have made some assumptions here, 1)|g,
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can tune all the parameters of the fuzzy system so that the approximation error
between the optimal fuzzy approximator and the ideal controller could be small. ii)

the derivative of &(x|c,0) with respect to ¢ and o are bounded, i.c.

<c,, this may also be reasonable to the

er

<¢, and

T

EGleo)<e,,
bounded x,c,o.

T .
<w Y 15 an

d,

4) d,(x) 1s a residual term of the approximation error &(x),
important property for Lyapunov synthesis approach (see it in section 3.4). Although
"we do not know the value of w' clearly, we can estimate it by adaptive laws (see it

also 1n section 3.4).

Now, we discuss how to calculate #, and u#_ in (3-10). We could obtain vectors

u, and u, if we could get the vector components of them.

-l {27

v =Klg(x)++K.g,(x) (3-29)

If we let

M _’l M p a
a:Z(yz), b=Zz , u=g
=1 I=1

Then we can calculate the components of #, and u_ by the following equations:

u o o Y —u , 2x —c

y=5—,5—,=yb zn' (r[ 21) (3_30)
i AR o (c;)

ou du &' _l——u 2x, - ¢!)?

30! o @ '=yb o 3-31
i g; (o)
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3.3 Development of a Direct Adaptive Fuzzy Controller

Inspired from [Spooner & Passino 1996], we construct the control law as:
u, =u+u, +u, (3-32)
The above equation means that the direct adaptive control law is comprised of a
bounding control term, u,,,a compensating control term #_,, and an adaptive fuzzy
control term, u#, which ié mentioned in section 3.3 and is used to approximate the
ideal controller. The compensaﬁng controller is used to compensate for approximation
Verrors in representing the actual nonlinear dynamics by fuzzy systems with ideal
parameter values. The bounding control is used to restrict the output trajectory of the
system so that fuzzy systems may be defined for a small range of states. The bounding
controller in this manner is similar to the supervisory control (described in the

following sections). The structure of the proposed control is shown in Figure 3.1.

Yo
+
+ -
=) - Plant -
+
Upa e
- some knowledge =
Bounding Control, |« of plant
see EQ (40)
f A
d - Compensating Control, leg—
‘P h u see EQ (42) -
e

Adaptive laws of
(@, ¢, &) ,see EQ(50)

u Fuzzy Control
u(x)<0"¢(x|c,0)

e

Figure 3.1: The structure of our proposed adaptive fuzzy control

42



After substituting the control law into the system, we will have
X" = fx)+blu+u, +u,] (3-33)
After some straightforward manipulation, we can obtain the error equation of the

closed-loop system

é=Ae+Blu —u-u,-u,]

, (3-34)
= Ae+ Bl$y $(x|c,0) + 4/ u, + @ u, +d,(x) ~u, —u,,]
where
0 1 0 0 - 0 0] [0]
0O 0 1 0 - 0 0 0 ‘
A= . ) .. . |,B=|- (3-35)
0 0 0 O 0 1 .
=k, =k, oo e e =k b
3.3.1 Bounding Control
Define a function:
Vi =€ Pe (3-36)

And because all roots of the polynomial A(s)=s"+ks"" +---+k, are in the
open left half plane (k=(k,,-,k)" is user defined, which has been mentioned in
section 3.2), we can find P which is a symmetric positive definite matrix satisfying
the Lyapunov equation

A"P+ P4 =.—Q (3-37)

where (0 > 0. Differentiate the V,, with respectto ¢, we have

Vot =‘%€TQQ+§TPB[H' TU g gy ]

(3-38)
-
1—e PBu,,

< —%gng + IgTPB[[’u'l + |u' +lu_
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Assumption: We can determine a function fY(x) and constant b, such that
F@/<sY(x) and 0<b, <b (3-39)
This means we should have some knowledge of the system, but this is not very

difficult to get.
Under the above assumption and (3-2), we could construct the bounding control

u,, as:

tyg =Isgn(gTPB)[luI+|uc.,|+bi(f”(5)+|y,‘:’ +[k" el (3-40)

where /=1 if V,, >V (V is a constant specified by the designer) and /=0 if
Vi <V : And due to >0 (equation (3-39)), we can evaluate the value of
sgn(e’ PB). So, when V,, >V , we have |
V,<-—eDe<0 (3-41)
So, using the bounding control u,,, we always have ¥,, <V . This means we can

restrict the state of the system in a desired range using the bounding control.

3.3.2 Compensating Control

We use the compensating control to compensate for the approximation error in

modelling #~ by a fuzzy system.

From the equation (3-10), we know that 4, (x) is a residual term of the
approximation error £(x), and d,{(x) can not be expressed by linear combination of
parameter (8,c¢,0). To reduce the negative effect of d,(x) to our defined Lyapunov

functions, we consider the compensating control as:

u,, =sgn(e’ PR)w’Y (3-42)
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And also, due to 5>0, we can evaluate the value of sgn(e’ PB). However, in
order to avoid chattering of the system response around the equilibrium point where

the system error is zero, we can simply modify the equation of u_, to:

u,, =w' Ysat((e' P,)/ &) (3-43)
where
1, xz1
sat(x)=4x, 1>x>-1 (3-44)
-1, x<-1

& 1is a constant specified by the designer and £> 0.

3.3.3 Adaptive Laws

Consider the following Lyapunov function candidate:

1
Based on (3-34), taking the derivative with respectto ¢ yields:

V= -~ Qe+ " PBI]E(x| c,0)+ Tu, +$lu, +d, () |
2 \ (3-46)

b .- b . b . .
~sgn(e’ PBYW' Y —uy 1+ — ¢ by +=——0. b, +— 18, +— 0.8,
' 2y, 2y, 2y,

From (3-12), we obtain:

V< —%gTQﬁgTPB[a*J E(x|c,0) +¢Tu, +¢Tu, +sgnle’ PB)w" Y —sgn(e” PBYWTY u,]

b

$u
2y,

b . b . b .
+_¢6T¢9 +—¢cr¢c +—¢;¢o’ +
71 2y, 2y,
= —%gng +e" PB4 E(x | c,a)+Tu, +4Tu, +sgn(e’ PBYBLY —u,,]
b r: b r. b oo by
+t eyt —@ b+ — b b, +— L,
¥y 27, 2y, 2y,
(3-47)

From (3-40), we have
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& PBu, = 1(&" PR)sgn(e” P+ fuo |+ - (/¥ )+ 15"
L

+[E"eh120 (3-48)

then we obtain:

. 1 T b T . b r .
V<——e Qet+—¢;(r.e PEX+8,)+— ¢! [y, e Pu +4,]
2 ¥ 73
(3-49)
b T T H b T T T H
+—¢,[r.e P,.ua+¢a]+;~¢w[n sgn(e PB)e PY +¢ ]
4

3

where P, isthe last column of P.

We could choose the adaptive laws as:

6=y, PEX)

(3-50)
w=y,sgn(e’ PB)e' P.Y
Using the facts gﬁa =4, gic =-¢, gﬁa =-¢ and ¢, =—w, we obtain

VS—%EQg (3-51)

3.4 Example: Vehicle Longitudinal Controller

Within this section, we will apply our proposed adaptive fuzzy controller to vehicle
longitudinal control. The objective of the adaptive fuzzy controller is to maintain a
safe distance between the preceding car and the following car. The strength of our
approach 1s that we do not require the training data, and fuzzy rules can be updated
on-line according to the performance of the controller. And our approach needs little
knowledge about the car. As a result, it can be transported to any vehicles regardless

of the nonlinear and often unobservable dynamics.
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3.4.1 Vehicle Longitudinal Dynamics

Several vehicle models have been proposed for different purposes. For vehicle
longitudinal control design, we only consider throttle and brake control for
longitudinal control, and do not consider the steering wheel. The vehicle dynamics

may be expressed as the following mathematical model [Swaroop et al. 2001]:

22
golzer —d (3-52)
M
F= -1-(—F+up) (3-53)
T

where, in the first equation, x,F,c,d,M are the position, the engine traction force,
effective aerodynamic drag coefficient, rolling resistance friction, and effective inertia
respectively. If we consider the engine dynamics, we have the additional equation
(3-53), where the engine traction force F can be modeled as a first order system,
and u, is the control input.

We should say hére that, although we present the exact vehicle longitudinal model,
we use only some knowledge of this model to design our controller, and we may not
know the exact values of all parameters in equations (3-52) and (3-53), instead, we
should only know the bound of the parameters. In other words, the controller design

does not require a complete model.

3.4.2 Simulation Results

The main objective of vehicle longitudinal control is to maintain a constant safe
spacing between the preceding car and following car.

We consider the output of the vehicle as
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y=x-x _ (3-54)
We simply select y, =0, then we obtain:
e=yu-y=x,-x (3-55)

If we neglect the time lag of u,i.e,, =0 in vehicle model, then

YO = (5, —9) ==, —~ vt L g+ Ly
m m m
So, we have:
: 1 , 1 ) 1
fF)=-—cv'~—d-v,, b=—>0 (3-56)
m m m
And we obtain:
e=le,e] =[x, ~xv,-v, I =[Ax,y,] (3-57)

Next, from the (3-56), we may determine the upper bound of f(x) and the lower

bound of 5.
f@ <L+ Lid[+a,
=~ m m P |
Based on the information provided in [Kim et al. 1996], c=0.44kg/m ,

d =352 kgm/s*, and we assume the minimum mass of vehicle 1000 < m < 2000kg,

the acceleration of vehicle —3<a <1.5m/s*. We get

-+ —fd]+3

m_. Mo

fi=

nom

=0.0005=b, (3-58)

gx)2

max

Here, we consider the following fuzzy rules of the adaptive fuzzy controller.
R : IF AxisF' andv, is F,
THEN  u=K,+K/Ax+Kyy, (3-59)

The detailed implementation procedure of the car longitudinal controller is as
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follows;

1) Initialize the parameters (8,c,o) of fuzzy rules.

2) Obtain the relative speed and relative distance through the sensors of the car, and

then we can get system error e =[Ax,v,]".

3) Calculate the membership of Ax,v, based on equation (3-6).

4} Calculate &(x) i)aéed on equation (3-8) and fuzzy rule (3-59), and obtain the
fuzzy controller output # basedon & aﬂd &(x) (see equation (3-7)).

5) Obtain the compensating controller output #_, based on equation (3-43).

6) Calculate the bounding controller output #,, by equation (3-40) based on u
and u,, .which have been obtained in step 4 and 5, respectively.

7) Calculate the total control input u, of vehicie based on equation (3-32).

8) Update the parameter (&,c,o’) based on the adaptive laws {equation (3-50)).

9) Back to step 2.

We select k = (k,,k)" =(2,1)" (so that s*+ks'+k, are in the open left half .

plane, i.e. stable), Q = diag(10,10), and we get symmetric positive definite matrix

15 5
P= .
5 5
We adopt the fuzzy rules like equation (3-59) and totally have 9 rules in our
simulation. Initially we define three fuzzy sets over the interval [-1,1] for &, three
fuzzy sets over the interval [-0.5,0.5} for v_, which are shown in Figure 3.2.
In our simulations, the velocity profile of the preceding vehicle 1s shown in Figure

3.3. We simply choose all the parameters of & to be zero, ¢ and o are chosen as

Figure 3.2.
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Figure 3.2: Fuzzy membership function of Ax (left) and v, (right)

We should notice here, there is no acceleration of the preceding car to provide and
we can only obtain the information of the relative speed and relative distance between
the preceding car and the following car.

The simulation results of our proposed adaptive fuzzy control are shown in the
Figure 3.3 and Figure 3.4.

We can see from tile simulations that: 1) the following car follows the preceding car
very quickly (the velocity of the following car is almost same as the preceding car),
although the velocity of preceding car changes frequently, 2) the spacing deviation
between the leading car and the followiﬁg car converges to zero quickly and there 1s
no oscillation, 3) there are some large spacing deviations in the beginning due to the
initial parameters which are given randomly, and afier somé time, the parameters are
tuned better so that good performance is achieved.

The advantage of our proposed method is that the controller can tune all the

parameters (including parameters of Gaussian membership functions) automatically.
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Figure 3.3: Velocity responses of the preceding car (left) and the following car
(right) with the proposed adaptive fuzzy control
L]
0.5“
E 0.5
L] a4
%
® o8 | i 0a
- of
] 1 0N © = [ . wm wm w ] ) x ®° P & n L] 0 W
tme ts) L]

Figure 3.4: The acceleration of the controlled vehicle (left), and the spacing deviation

between the two vehicles (right)

We can also see the adaptive adjustment of parameters partially from Figure 3.5.
If we consider the model disturbance (the vehicle mass is changed from 1000kg to
2000kg) and some measurement noise, the simulation results of our proposed adaptive

fuzzy control are shown in the Figure 3.6.
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Figure 3.5: Evolution of parameters of fuzzy rules, (a) & with mnitial value 0, (b) ¢

with initial value 0, and (¢) o with imitial value 0.3
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Figure 3.6: (a) The velocity of the controlled vehicle, and (b) the spacing deviation

between the two vehicles with the model disturbance and measurement noise
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Compared Figure 3.6 with Figure 3.4 and Figure 3.5, we can say that our proposed
controller is immune to model uncertainty and measurement noise.

Our proposed adaptive fuzzy control has some advantages over some conventional
adaptive control in that 1t can incorporate a priori knowledge into our controller. The
priori knowledge can embody in the initial values of parameters, and these “good”

initial values can expedite the adaptation speed.

3.5 Conclusions

We have proposed an adaptive fuzzy control in this chapter. In order that the fuzzy
system exhibits a éood approximation property, wé tune all the parameters in the
fuzzy system including parameters of Gaussian membership functioﬁs. In order to
construct the adaptive laws of these parameters, linear relationship between
approximation error and parameters is established. The proposed controller includes
bounding control, ‘compensating control and fuzzy control which is used to
approximate the optimal ideal control. The advantage of our approach is that we do
not require the complete model, and fuzzy rules can be adjusted according to the
performance of the controller. Moreover, our controller is more flexible because more
tuned parameters are considered. Finally, we apply our approach to vehicle
longitudinal control, simulation results show that it provides satisfactory

performances in car-following,
While our approach presents significant advantages, there are several aspects for us

to consider. First, our control scheme is only for a class of specific continuous time
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SISO nonlinear system. Extension to other nonlinear systems is an important direction.
Second, the proposed method is only studied in simulation, more desirable approach

to take into account the implementation aspects for real-time control is expected.
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Chapter 4

A Model-Free Intelligent Adaptive
Controller and its Application

In Chapter 3, we remarked on some of the drawbacks of the adaptive fuzzy controller:
the control scheme is only for a class of ‘speciﬁc continuous time SISO nonlinear
system, and it needs some information of the model, such as model structure,
assumptions about model parameters, etc.

In this chapter, we suggest a new approach for tuning parameters of fuzzy
controllers based on reinforcement learning, in order to overcome the model
constraints. The architecture of the proposed approach comprises of a Q estimator
network (QEN) and a Takagi-Sugeno type fuzzy inference system (TS-FIS). Unlike
other fuzzy Q-leaming approaches that select an optimal action based on finite
discrete actions, the proposed controller obtains the control output directly from
TS-FIS. With the proposed architecture, the learning algorithms for all the parameters
of the Q estimator network and the FIS are developed based on the temporal
difference methods as well as the gradient descent algorithm. The performance of the
proposed design technique is itlustrated by simulation studies of a vehicle longitudinal

control system.

The rest of this chapter is organized as follows. Section 4.1 introduces

mathematical expresstons of reinforcement learning and gives some remarks. The
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architecture of the controller is described in section 4.2. The learning algorithms and
parameter update laws are presented in section 4.3. Section 4.4 illustrates the
performance of our proposed method through vehicle navigation. Finally, conclusions

are drawn in section 4.5.

4.1 Foundations of Reinforcement Learning

4.1.1 The Mathematical Expressidns of Reinforcement Learning

The application of reinforcement learning in control problems focuses on two main
types of algorithms: actor-critic leamning and Q-learning. The actor-critic learning

system contains two parts: one to estimate the state-value function¥?(x), and the

another to choose the optimal action for each state. While the Q-leaming system
estimates action-value function Q{x,a) for all state-action pairs and selects the

optimal control algorithm based on Q(x, a).

The state-value function ¥(x) is the expected discounted sum of reward with the

initial state x, and can be written as:

V(x) =E{Zykr.r+k+l II, =x} (4-1)

k=0
where, x is the state of the system, r,,,, is the reinforcement signal (instant
reward) at time ¢+ Ak +1, and y €[0,1] is a discount factor, E(:) is the expected

value function.

The action-value function Q(x,a) is the expected discounted sum of reward with

the initial state x and initial action a, and can be written as:
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O(x,a) =E{i7k’?+k+| |x, = x4, =a} (4-2)

k=0
where, @ is the action which acts on the system.
And the optimal state-value function ¥ *(x) -and the optimal action-value function
0" (x,a) are as follows: |
V" (x) = max{r(x,, ) + 17" (5,
Q' (x,8) = Ey(x,,)) +ymax Q' (x,,,,a) | %, = x,4, =a/
The Q-leaming estimates the Q" (x,a) based on TD error 0,:
S, = tymaxQ(x,,,a') - Q(x,,a,) (4-3)
And Qf(x,a) is updated according to the above TD error as:
- | 0. (x.a)=0,(x,,a) +ab, (4-4)
Wh-ere,l a is the learning rate.. Watkins [Watkins '1989] has shown that Q,(x,a)
convergences to Q' (x,a) wiﬂlprébability one 1if all actions continue to be tried form
all states, and the fo]lowing éonditions for a are sat‘is_ﬁed:
0<a, <1, 2o =w,and Y7 al<w
In fact, the deﬁm’tioﬁ of the above TD error is TD(0), and we can extend it to TD(N),

which considers the past and the current_estimated error using eligibility traces e, :
- s
e, =Y (A9 2, (k) (4-5)
k=0

where, A is recency factor (also called eligibilx;ty rate) and 0<A<1,

| )= 1 X, =X
£, 0= 0 otherwise
Then, Q(x,a) is updated according to following rule:

Q. (x,,8)=0,(x,,a,) +ad e, (4-6)
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After obtaining the estimate of the optimal action-value function Q" (x,a), we can

get the optimal action «”, which maximizes O (x,a) for the current state x, i.e.,

a’ =argmax Q" (x,a). But during the procedure of estimating Q°(x,a), we should

a

use a stochastic control rule that will take all possible actions to satisfy the
requirements of Watkins’ theorem. The Boltzmann exploration and ¢-greedy policy
are such stochaétic coﬁtrbl rules, which are often adopted [Sutton & Barto 1998, Yan
et a. 2001].

The reinforcement learning was proposed to deal with discrete states and discrete
actions originally based on Markovian Decision Problems (MDP) [Sutton & Barto
1998]. In the case of a large, continuous- state spa;ce, the discrete representation of
reinforcement learning is intractable. This problem is known as the curse of
dimensionality. To solve this problem and generalize from previously experienced
states to ones that have never been seen, we should combine the reinforcement
learning with existing generalization methods, such as a low-order polynomial, neural
network or fuzzy system instead of a look-ﬁp table. In others words, we can estimate
the optimal state-value function ¥ *(x) or the optimal action-value function

Q" (x,a) with approximators.

4.1.2 Remarks

We adopt Q-learning because it is conceptually simpler, and has been found
empirically to converge faster in many cases [Sutton et al. 1992). Although many

existing Q-learning approaches applied in control problems aim at tasks of continuous
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domains, they select the optimal action and get the control output directly based on
finite discrete actions and estimated Q"(x,a). This may bring the following
problems:

1) How to discretize the action space is a problem. When a coarse discretization
is used, the action is not smooth and the resulting performance is poor. When
a fine discretization is used, the number of state-action pairs become large,
which results in large memory storége and slow learning procedures.

2) The optimal action value is based on the current states x, and the
approximated value ((x,,a). This means that an error in any of these
approximations will be incorporated into the action value. If this is the case,
the action value a' and the consequent x',,, may be slightly different from
the optima! a and the consequentx, . This error may quickly accumulate
and produce a different action policy [Smart & Kaelbling 2000, Boyan &
Moore 1995] because of the different states x',,, and x,,,.

3) Reinforcement learning systems often perform extremely poorly in the early
stage of learning due to their more-or-less random action. They can act
appropriately until they acquire some experience of the world [Smart &
Kaelbling 2000]. The above problem is especially serious in domains where
the reward function is largely uniform and dealing with continuous systems
with small sample time, because different actions have similar effects.

In our research, assumption of some candidate discrete actions is not made, this

eliminates the requirement that discretizes the action space and does not have the first
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problem. In order to solve the problem 2, the action is not obtained directly based on
approximated value Q(x,a) and candidate discrete actions. Instead, we use a fuzzy
inference system (FIS) to provide the control output. The information of the estimated
Q(x,a) is only used to tune the parameters of FIS. A normal FIS can guarantee the
performance of control output not too bad, and it can restrict the control action in a
special region, and it can be thought as an initial knowledge. The initial knowledge
bootstrapped into the value function apprc;ximation allows the agent to learn more
effectively, and helps reduce the time spent acting randomly. So, the problem 3 is also
avoided to some extent.

As a result, our proposed algorithm need less a priori knowledge because only
evaluative signal is required for reinforcement learning, and is more applicable to real

systems because we combine reinforcement learning with fuzzy inference system.

4.2 Architecture of the Controller Based on RL

As we mentioned before, we use reinforcement signal to tune the parameters of fuzzy
controller, which provides the control output. So our proposed controller has two
main responsibilities: one is to estimate the optimal action-value function Q(x,a),
and the other is to get the control output based on the estimated action-value function
Q(x,a). We construct the controller with two parts — neural network and fuzzy

inference system - to deal with the above two different tasks respectively.
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4.2.1 Neural Network for Estimating Q" (x,q)

The Q°(x,a) estimator network (QEN) plays the role of approximating or predicting
the optimal action-value function Q°(x,a) associated with different input states and
control output.

As an approximator of value function of reinforcement learning, different types of
neural networks have beén proposed for different tasks and different objectives, such
as the ART (adaptive resonance theory) network [Lin & Lin 1996, Lin & Chung 1999],
Cerebellar Model Articulation Controller (CMAC) [Oh et al. 2002], standard
multi-layer feedforward neural network [Si & Wang 2001, Lin & Lee 1994],
competitive network [Yan et al. 2001], radial basis function (RBF) network [Koike &
Doya 1999], and neuro-fuzzy network [Jouffe 1998], etc.

Here, we simply use a two-layer feedforward neural network to estimate and
generalize the optimal action-value function. The estimation is based on the prediction

TD error &, that is defined in section 4.1. The architecture of the QEN is shown in -

Figure 4.1.

Figure 4.1: Architecture of the Q Estimator Network
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Because we want to estimate Q°{x,a) using QEN, the input of the network
includes system states and control output # which is same as the action a
mentioned before, and the output of the network is Q(x,u) .

In our proposed feedforward neural network, Q(x,u) will be the form of:

Ax,u) = £(O)

Ny
0= Z w}”p‘.

i=l

p. = f(0y)

0,: the summed input of the output node,

w": the weight between the i th hidden node and the output node,
p;.  the output of the hidden node,

0,;: the summ-ed input of the /th hidden node,

wi?:  the weight between the  th input node and i th hidden node,

the (r+1)thinput,ie., u,

n+l *

f 1 the activation function of the node

Here, we adopt sigmoid function as the activation function of the node, i.e.

1
1+ exp(—x)

S(x)

The QEN i1s used to guide the fuzzy controller to tune parameters so that the fuzzy

controller will achieve better performance. .
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4.2.2 Fuzzy Inference System for Producing the Control Qutput

Given the current state of the system and the action-value function Q(x,a) estimated

from the QEN, we may obtain the optimal action #~ based on the candidate discrete

action set U and Q-learning algorithm «' = argmax O(x,u) . Indeed, this is the basic
uel/

idea of most existing algorithms which adopt Q-learning. But the candidate discrete
action set U may be not known for us and the performance of the controller is
affected by the selected finite candidate actiens accordingly.

In our research, the inforihation about the candidate discrete action set U is not
required. The .Fuzzy Inference System (FIS), which will be explained in the rest of
this subsection, generate the control output #. And # will intend to maximize the
action-value function Q(x,u) produced by the QEN incrementally, and finally
output provided by FIS will maximi.ze Q(x,u) with respect to the all possible u,
instead of finite candidate discrete action set U.

We propose FIS as the controller for the following censiderations:

1) Compared with obtaining control output directly based on estimated Q(x,u),
FIS is robust with respect to the parameters which is related to the
action-value function Q(x,u). This means that FIS can achieve acceptable
performance even in the early stage of learning, in which the approximation
error of QO(x,u) is large.

2) Owing to the fect that reinforcement leaming may spend a huge amount of
time taking exploratory actions and learning nothing if it cannot search the

optimal regioﬁ, searching the whole space may be time-consuming. FIS,
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which can incorporate some initial knowledge, may guide the agent to some
“good” space, allow it to learn more effectively and expedite the leamning
process.

In this subsection, we present the architecture of FIS. Consider a multipie-input
single-output (MISO) fuzzy controller, which performs a mapping from a state vector
x=(x,,%,,.,x,) € R” to a control input # € R. Using the Takagi-Sugeno model,
the IF-THEN rules of the fuzzy controller Iﬁay be expressed as:

R,: IF x, is F and---and x, is F;
THEN u=K,+K!x, +Kix,+--+K'x,
where F! is the label of the fuzzy set in x;, for I=12,.,M . K}, K|, K} ...
and K! are the constant coefficients of the consequent part of the fuzzy rule.

In this chapter, we would use product inference for the fuzzy implication and ¢

norm, singleton fuzzifier and centre average defuzzifier, consequently, the final output

value is:

fl f L
(1w} (S )
I=] i=1 j=0

u(x) = —— (4-7)
!
T
1=t i=i
where, u # s the membership degree of the fuzzy set F/, x,=1.

We adopt Gaussian function as the membership function of the fuzzy system

because its excellent approximation properties,

‘uF,-" (x,.) = exp(— (x'.o:r(:i ] ] (4-8)

for i=1,2,...,n and I=12,.. .M.
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4.2.3 Stochastic Action Modifier

+

"
/ /““ r+rrqu(x,+, ,u')

/

* U
»—-—»AIS “1 sAM “»! System

> QE( ‘Q(xnu) ;?

Figure 4.2: Architectures of the prdposed controller

From section 4.1, we know that Q,(x,a) convergences to Q' (x,a)with probability
one if all actions continue to be tried form all states. But how can we guarantee all
actions to be tried? _

In order to solve the above problem, we implement the exploration‘ strategy for the
control output x . However, some existing exploration strategies such as Boltzmann
exploration and e-greedy policy mainly deal with discrete actions.

We add a stochastic action modifier (SAM) after the FIS and before the system
input. The SAM generates the control command u,, which is a Gaussian random
variable with mean u« recommended by FIS and standard deviation o,. And o,
satisfies the condition that it will converge to zero gradually, i.e. u, =u+0o,(t) n(t),
and ,11?.3 c,()=0.

As a result, the overall architecture of our proposed controller is shown in Figure
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4.2.

4.3 Adaptation Algorithms of the Controller

In this section, we develop the learning algorithms for the QEN and the FIS. The
leaming mechanism of the QEN is the combination of the TD methods and the
backpropagation algonithm. The learning mechanism of the FIS is based on gradient

algorithm.

4.3.1 Adaptation Algorithm for Q Estimator Network

From section 4.1, we know TD methods learn their estimates in part on the basis of
other estimates. We can also tune the parameters of our proposed QEN based on
generalized policy iteration (GPI). We can achieve the task of approximating the

optimal action-value function with the neural network by reducing the TD error &,

continuously.

5! - rt+| + y mj,lx Q(xr+l ’ul)_ Q(xr’ur) (4'9)
In other words, the objective of the neural network is to minimize the following

expression.

1

E=—
2

8}

The weight update rule for the neural network based gradient descent method is

given by:
OF |
t41)=wity-7 & 410
w(t +1) = w(t) U (4-10)
OF 520 __5 00Cu) @-11)
ow " ow ow
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Combining the above two equations, we can obtain:

W(t"‘l): W(t)'*'ﬂ&r M (4-12)
ow
for w=w" and w =Aw;.2) respectively.
. 00(x,, : .
We can obtain 90(x,,,) based on chain rules for w{” and w{” respectively.

0Q(x,,u,) _ 0Q(x,,u,) 80, _
aw® 80, WV

S1O)p; = p,Qx,,u ) 1-0(x,,4,)]

(for i=1,..,N,) (4-13)

0Q(x,,u,) _ 8Q(x,,u,) 80, dp; 00, D
= - —= f'(O)w;” f'(0,;)x;
ow;” 30,  dp,; 80, aw S Ow S (O,
=w}”ij(x,,ut)[l—Q(x,,u,)]p,-[l—p,.]

(for i=1,.,N,, j=1.,N,) (4-14)

where, the fact that /' (O) = f(O)[1- f(O)] is used for sigmoid function.

And we can also obtain %:
u

80(x,,u,) _ 80(x,,u,) (80, 8p; 805\ _ .\ B[ ) o N
Ou 00, g[apf 30, J_f © )‘E (wi / (OZf)wi'-Nf)

. (4-15)
= Q(xr U, )[1 - Q(xi 2 U, )]Z (mewf,ﬂ. Pi [1 — Py ])
i=)
where, it is noticed that control output of FIS is the N, thinput,ie. x, =u.

In the above equations (4-14) and (4-15), w? =0 if the /th hidden node is not

connected to the output node, w!’) =0 ifthe jth input node is not connected to the

i th hidden node.

Eligibility traces record the past and current gradients, and adopting eligibility

traces could speed up a learning process, the eligibility traces for the QEN is defined
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G, = pid, + 20t @-16)

with &, =0.
Then the parameters learning algorithm for QEN is derived as follow:

Wt +1) = w(t)+76,8, (4-17)

4.3.2 Adaptation Algorithm for FIS

Now, we consider how to improve the control policy using the associated value
function. In other words, we consider how to t@c the parameters of the fuzzy
controller baséd on the approximated (Q(x,u) obtained from the subsection 4.3.1.

For the discrete finite actions, we may obtain the optimal control action based on
.finite comparisons of the value function we have approximated. However, this
approach is obviously infeasible for c.ontinuoils actions.

For continuous-time sys_téms withput discrete states and a(;tions, we may generalize
the value function .( V(x) or Q(x,u)) uéing neural network based 6n reinforcement
signal &§,, so we can deal with coﬁtinuous states.. But how to deal with continuous
actions is not a trivial work. Gullapalli proposed the stochastic real-valued (SRV) unit
algorithm, in which the parameters of the action network are updated by gradient
estimation [Gullapaili 1990]. Baird proposed -the advantage updating method, in
~ which Both the value function ¥(x) and the édvantage function A(x,u) are updated
[Baird 1994]. -It should be noticed here that the above algorithms obtain the

continuous actions based on state-value function ¥ (x), not the action-value function
O(x,u).
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In order to make the output of FIS to be optimal, we can update the parameters of
FIS to maximize action-value function Q(x,u) with respect to the control output u

for the current state. As a result, the learning algorithms of FIS can be derived using

gradient rules:

£(t+1) =r§(t)+ﬂ§—Q—(;'§’—u’) (4-18)

00(x,u) _ 80(x,u) ou (4-19)
8¢ ou  0f

where, ¢ is parameters to be tuned in fuzzy systems such as K, ¢/ and o.

We have obtained BQ(;,,u,)
u

already in the previous subsection (see (4-15)). We

will only need to deduce o

If we let

n 1\?
2= exol — X, —C;
_ H p[ ( p

- ! !
y =K, +K/x +--+K,x,

(4-20)
Mo, ; M , a
a=Z(yz ), b=Zz , U=—
i=1 I=1 b
ou : .
Then we can calculate -ég by the following equations:
ou z'
—=x, (4-21)
K, b’
du ou 'y —u ,2x -c
R T @)
—I
ou ou o7 —u ,2x, —c')?
90! &' 8o =yb 2 ((la");) (4-23)
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4.3.3 Implementation Procedures

After the above discussion, we present the detailed implementation procedures as

follows:

1)

2

3)

4)

5)

6)

7

8)

9)

Initialize Q(x,,u,), the parameters w, w® of QEN and the parameters
¢ of FIS.

Obtain the new.cohtrol output «,, based on equation (4-7) and input of the
fuzzy inference system.

Before it 1s fed to the actual system, u is processed by SAM according to
u,=u+o,(t)-nit).

SAM provides u_,and u_ acts as the control value of the system.

Based on our requirements for the system, we evaluate the performance of the
controller as r, which is only the “evaluative signal” instead of the “teacher”

signal. And we also obtain the states of the system.

Obtain the approximated Q(x,,,,u,,,) from QEN based on the current

control action, the current states.
From r, QO(x,,u,) and (x4, ), we can calculate the TD error &,

based on equation (4-9). Here, we think QO(x,,,,u,,,)=maxQ(x,,,u")
because u,,, obtained from FIS which continuously maximizes Q(x,u)

with respect to the control output «.

Based J, obtained from step 7, we can update the parameters of QEN
according to equation (4-13), (4-14), (4-16) and (4-17).

Tune the parameters of FIS based on equation (4-18)-(4-23).
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10) Substitute Q{x,,u,) with Q(x,,,,u,,,).
11) If the parameters are not changed any more or after predefined iterations, the

learning procedure is terminated, otherwise, back to step 2.

4.4 Simulation Studies for Vehicle Following Problems

In designing the controller, the dynamic model of car is assumed to be unknown to the
controller. The proposed controller adopt reinforcement learning to tune the fuzzy
controller, therefore it is a model-free paradigm that is capable of learning the optimal
strategy through trial-and-error interactions with a dynamic environment.

Because the objective of the longitudinal controller is to maintain a safe distance
between the preceding car and following car, we consider the spacing deviation Ax
and relative speed v, as the two input variables of FIS. Then the fuzzy rules of the
adaptive fuzzy controller are considered as follows:

R: | IF Ax is F! and v, is F)
THEN u=Kj+K Ax+Klv,

We adopt 9 fuzzy rules to construct the controller, and initially we define three
fuzzy sets over the interval [-5,5] for Ax, three fuzzy sets over the interval [-0.5,0.5]
for v .

The input vector to QEN consisted of seven components or nodes: spacing
deviation Ax, relative speed v, and .the control input u. The output to QEN is
Q(x,u) corresponding to the action-value function of reinforcement leamning. The

topology of QEN is considered to be a three-layer structure having 3-10-1 nodes.

71



nm?e-)
Figure 4.3: The velocity profile of the leading car

In our simulation, the velocity profile of the leading car is shown in Figure 4.3.

The next step is to define the reinforcement signal r. We evaluate the performance
of the controller by the maximum absolute value of spacing deviation |Ax|, because
the objective of the longitudinal controller is to maintain a safe distance and make the
spacing deviation as small as possible. We think the larger spacing ]Ax|, the poorer
performance is for the controller. In our simulations, we think the maximum allowed
spacing deviation is 6m. Therefore, failure is defined as the spacing deviation between
the preceding car and the following car is larger than 6m. The reinforcement signal r
may be defined as follows:

~2jad |ad<6
-1 |Ax| > 6, fail

r(®)=

In our simulation, the fuzzy controller based on reinforcement leaming was tested

for 200 trnals (periods) of the velocity profile of the leading car. The controller learns
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TABLE 4.1

SUMMARY OF PARAMETERS USED IN THE SIMULATION

Parameters 4 A n(0) n(f)

Value 0.95 0.9 0.25 0.005

the experience, and .upd.ate the fuzzy parameters continuously based on the
reinforcement signal. In our learning proéedures, the system 1s reset to the initial
states and resume learning once the “fail” signal happens. The simulation was
conducted to evaluate the effectiveness of our control design. The parameters used in
the simulation are summarized in Table 4.1 with th;e proper notations defined in the
following:

y: discount factor of the TD error &, ;

A: eligibility rate

7(0): initial feaming rate of the QEN
n(t): learning rate of the QEN at time ¢ which is decreased with ¢ until it

reaches 0.005 and it stays at 7(f) = 0.005;

We can see from Figure 4.4 that failures occurred frequently at the beginning of the
learning. This means the performance of the initially proposed controller is poor, in
other words, the parameters of the controller is not optimal. And the failures often
occurred at time near 10s because the acceleration of the leading vehicle is changed
suddenly at this time. However, the controller was able to successfully drive the

vehicle with the spacing deviation less than 6m all the while after 68 trials.
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Figure 4.5: Velocity response of the controller before and after learning takes place

We can illustrate the effectiveness of our learning approach by comparing the
performance of the controller before leaming takes place and after learning takes

place. We can see the simulation results clearly from Figure 4.5 and Figure 4.6.
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Figure 4.6: Evolution of spacing deviation in simulation

In Figure 4.5, the dot line is the velocity response of the fuzzy controller before
learning takes place, the dash-dot line is the velocity response of the fuzzy controller
after learning takes place, and the solid line is the leading car velocity. From
simulation results, we can coﬁclude:

1) Not only the spacing deviation is decreased gradually, but also the velocity
response 1s better accordingly, this is basic characteristic of reinforcement
learning which can continuouély improve its performance without a teacher
purely based on trnal and error.

2) The velocity response of the controlled car after leaming is not identical to the
leading velocity, this is due to the sudden velocity change of the leading car (we
can see the deviation is especially obvious for these unexpected situations) and
the limit of number of fuzzy rules,

3) During the learning procedure, the maximum spacing deviation may be increased,
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this is due to the exploration strategy {stochastic action modifier) we have
implemented. However, the maximum spacing is decreased as a whole.

4) The final spacing deviation is not zero because we only take few fuzzy rules.

It is worth noting here, our proposed method needs no model information and
training data, but it can achieve better performance with few fuzzy rules (only 9 rules

in our simulations).

4.5 Conclusions

This chapter presents the controller arc.hjtecture comprised of the QEN and the FIS for
solving continuous space reinforcement learning problems. The QEN is used to
estimate the optimal action-value function, and the FIS is used to get the control
output based on the estimated action-value function provided by the QEN. With the
proposed architectm"e, the parameters adaptation algorithms for the QEN and the FIS
are developed based on techniques of temporal difference and gradient descent
algorithm. Finally, the simulation studies of vehicle longitudinal control demonstrated
the validity and performance of the proppsed leaming algorithms.

The main advantage of the proposed RL based controller is the model of the
process 1s not required for the adaptation of the controller. The only information
available for learning is the system feedback, which describes in terms of reward and
punishment the task the fuzzy controller has to realize. And the controller can tune

itself to achieve better performance based on these evaluative signals during its

76



interaction with environment.

A disadv;mtage of this method is a longer training time since adaptation is only
performed after many trials. From the simulation, we know that the performance and
thehlearning speed of our proposed controller are affected by the parameters of the
controller, such as the standard deviation of the stochastic action modifier and the

learning rate. Currently, we choose these parameters based on a heuristic approach.
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Chapter 5

Improvement on Vehicle Longitudinal
Controller by DHP

In chapter 4, we have made some achievements for a vehicle longitudinal control
system based on the principle of reinforceﬁent learning. The main advantage is that
the model of the process was not required for the adaptation of the controller. There
are still some problems for us to consider. From the simulation studies, we observed
that the performance and the leamning speed of our pr.oposed controller were affected
by the parameters of the controller, such as the standard deviation of the stochastic
action modifier and the learning rate. We selected these parameters based on a
heuristic approach. If we choose these parameters not well, the leaning algorithm may
not be robust and even fail completely.

Therefore, the efficiency of applying reinforcement learning directly may not be
good. In this chapter, we hope to improve the performance of the proposed vehicle
- control based on dual heuristic programming (DHP), one approach of Adaptive Critic
Designs (ACDs).

To deal with control problems, Adaptive Critic Designs have been emerged
recently as a synthesis of reinforcement learning, approximate dynamic programming,
and backpropagation [Werbos 1990, Prokhorov et al. 1995, Prokhorov & Wunsch

1997]. Adaptive critic methods design controllers in a manner that we need only

78



include the problem-domain control task and constraints in the Utility Function, the
controller will optimize itself gradually based on the two distinct loops: a control
training loop and a critic training loop.

It should be noted that the controller design based on Q-learning can be subsumed
by adaptive critic designs. But the controller design based on DHP is more effective.

The rest of this chapter is organized as follows. In section 5.1, the basic idea of
adapttve critic designs is described. The cﬁtic network and action network are given
in section 5.2, including their architectures and their adaptation. In section 5.3, the
training procedures, simulation results and performance analysis are presented. In
section 5.4, the controller proposed in chapter 4 and that in this chapter is compared.

Finally, some conclusion remarks are given in section 5.5.

5.1 Foundations of Adaptive Critic Designs

5.1.1 Basic Idea of ACD

The one-step cost (or it can be called “primary” utility function) U(¢) should be
known for ACD. U(r) represents the instant cost related with the control objective.
And U(f) may also contain the imposed constraints such as stability, energy
consumption etc. Therefore, the choice of U(¢) is an important aspect for controller
design. U(¢) is similar to r, in reinforcement learning (see chapter 4). The
guideline for controller design is not to optimize the instant cost U(z) only, but

optimize the overall cost J(¢), which can be written as:

79



J(t) = iy"U(t+k) (5-1)
k=0

where y is a discount factor for finite horizon problems (0 <y <1), and J(¢) is
called secondary utility function, and is similar to Q, in reinforcement learning (see
chapter 4). Here, J and U may be related with state of the plant and control

action.

We can approximate J(¢f) by approximate dynamic programming based on the
following equation:

J@Oy=U{)+x(t+1) : (5-2)

The above equation can be called Bellman’s Recursion. We can estimate the overall
cost J(¢) based on the above equation and function approximators such as neural
networks, fuzzy systems or any other building blocks which have the universal
approximation properties. The function approximator is named critic network, which
has the similar function with Q estimator network {(QEN) in chapter 4.. We can get the
optimal control action based on the principle that the control action minimizes the
estimation of J(r). The structure which produces the optimal control action based on
the critic network is named action network, which has the similar function with the
Takagi-Sugeno type fuzzy inference systeﬁ'l (TS-F1S) in chapter 4.

From.the above, we notice that the adaptive critic method determines optimal
control laws for a system by successively adapting two networks, namely, an action
network (which dispenses the control signals) and a critic network (which “learns” the
desired performance index for some function associated with the performance index).

These two networks approximate the Hamilton-Jacobi-Bellman equation associated
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with optimal control theory. The adaptation process starts with a nonoptimal,
arbitrarily chosen, control by the action network; the critic network then guides the
action network toward the optimal solution at each successive adaptation. During the
adaptations, neither of the networks need any “information” of an optimal trajectory,
only the desired cos{ needs to be known. This is the basic idea of adaptive critic
designs. The critic nétwork and the action network comprise the architecture of

adaptive critic designs.

5.1.2 Remarks

Although multiplayer neural networks are well known to be universal approximators
of not only a function itself but also its deri.vatives with respect to the network’s input,
Prokhoriov and Wunsch [Prokhorov & Wunsch 1997, Prokhorov 1997] noted that the
quality of a direct approximation of derivatives of a function is always better than that
of any indirect appr;)ximatign for given sizes of the network and the training data. In
other words, it is expected that DHP should be more effective and contribute a more
superior performance than HDP, because the small estimated error of J(t) may
result in large error for the derivative of J(¢) [Prokhorov & Wunsch 1997, Eaton et
al. 2000].

In this chapter, we focus on the ADDHP approach. The reason behind this is that
the performance of HDP may be poor aithough it is the simplest one, and training the
critic of GDHP is a complex task {Prokhorov & Wunsch 1997, Prokhorov 1997]. The

advantages for adopting ADDHP instead of DHP are that, as we can see clearly later,
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Figure 5.1: The architecture and adaptation in the proposed controller

not only just one output node is needed, but also the training of the action network

does not require the system model.

3.2 Structure and Adaptation of the Proposed Controller

As we mentioned 1n section 5.1, our proposed controller is designed based the
principle of ADDHP. The Architecture of the controller is composed of two parts: one
1s the critic network and the other is the action network. And they have two different
roles respectively: the critic network is used to estimate the derivative of the overall
cost; the action network is used to provide the control action which would be fed into

the system. We adopt three-layer feedforward neural network as critic network, and

we construct fuzzy controller as action network.

The architecture of the critic network and the action network is shown in Figure 5.1.
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The adaptation of the critic network and action network is also shown in this figure.

5.2.1 Critic Network

The role of the critic network is to estimate the derivative of J (overall cost). The
input of the critic network is the states, or observable variables, and because we adopt
ADDHP approach, the input of the neural network also includes the control action.

The output of the neural network is the derivative of J(f) with respect to u(z), i.e.

A(t) = g'u]é; . From Bellman’s Recursion (equation 5-2), we have

'éu“(T) ()—au—()(U(t)wJ(rﬂ)) (5-3)

“Because the instant cost (primary utility function) U(z) may be written as the

function of state variables and control action, using the chain rule we have:

eu(t) R (1) aU(t).
v = ZaR @ () ould) -4

where, R,(t) is the input variable of the critic network.
Because the input of the critic network contains state variables and control action,

using the chain rule we have:

aJ(t+1) OR (t+1) 6J(t+1) Au(t+1)

é"(_ *h= ZaR ) Bu() o) dud) (-3

After combination with (5-3), (5-4), and (5-5), we have:

A(0) = Z U (t) oR, (1) aU(:)+ Z aJ(t+1) aR,.(t+1)+6J(t+1) ou(t+1)
OR, (1) au(z) du(t) — OR,(t+1) Ou(t) Su(t+1) du(t)

(3-6)

Because the Bellman’s Recursion is only satisfied for the optimal J({¢), the value
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obtained by (5-6) is the desired value A() for A(r) actually. So, we can rewrite

(5-6) as
. <« dU() 3R, AUQ)  du(t+1) 8R,(+1) du(t +1)
'w)'Z'aR,.(z) ) oult) (ZA’(”DaR,.(Hl) w0 J

(5-7)

aJ(t+1)
Bu(t +1)

The fact A(t+1)= 1s used in the above equation.

To evaluate the right side of .(5-7), the system dynamics which contains the terms

OR.(t+1) Ou(t+1) Ou(t+1) and OR. (1)

, , are required, and this may need the
ou(t) ou(t) = OR(t+1) Ou(t)

system model. For this reason, DHP may be also called model-based method.

In most of the literature of ACD, the complete system model must be needed to get
the plant derivatives. This model may be assumed to know [Lendaris et al. 1999], or
may be obtained by system identification [Prokhorov & Wunsch 1997, Eaton et al.
2000, Venayangamoorthy et al. 2002}, or by perturbation through plant model
[Schultz et al. 2001]. Howe\;er, it may be unavailable or difficult to obtain the system
derivatives by obtaining the system model first. Much more, if the model is known,
some other design approach may be better.

Nevertheless, our proposed controller does not require the complete vehicle model,
and we do not construct a vehicle médel using neural networks or fuzzy systems. As
we can see later, the model information for the proposed controller is very little about
vehicle longitudinal model.

Now, we discuss the critic network design for the special case of vehicle

longitudinal control. From chapter 2, we know the task of vehicle longitudinal control
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can be described as v, +k-Ax=0. Therefore, we define e(f} and construct the
primary utility function as:
e(t)=v (t)+k- Ax(t) (5-8)
U(t)=e* =(v, +k-Ax) (5-9)
For the critic network design, it worth noting here that we should keep the number
of the input variables as small as possible. This is because we use the critic network as
a function approximator. If the neural netﬁork has large number of input nodes, the
training procedure would be very slow because more training samples are required
(increase with the input nodes exponentially) for the same estimation accuracy, we
may call this phenomenon as “curse of dimensionality”. For the vehicle longitudinal
c‘ontrol problem, only one input node is needed besides the control action u(f). We
take spacing deviation Ax(t) as input variable. This information may be enough for.
estimating the derivative of J(¢), because spacing deviation can reflect the
performance of the controller clearly for longitudinal control.
So, we choose the critic network structure for the vehicle longitudinal problem as a
three-layer feedforward neural network with 2 inputs, a hidden layer of 5 nodes, and 1

output.

Afier we have the configuration of the critic network, we discuss the training of the

critic network.

Combining with (5-7), (5-8), (5-9) and (2-1), we have the expected A(t) as

follows:

A(t) = 2e(r) g—i% + YA+ 1)(

(5-10)

Ou(t+1)  Bu(t+1) ox(r+1)
Ou(t) OAx(t+1) OJu(t)

85



The critic network tires to minimize the following error measure at time ¢ :

~ 2
E. (=10~ A0) (5-11)
The parameters update equations of the critic network are as follows:

a0(t)

0t+1)=0()-n, =22 = o) -7, (z(r)—i(z))%g; (5-12)

where, @ is the weights of the neural network, 7, is learning rate of the neural
network. Backpropagation .can determine all the update of the parameters of the critic
network.

In order to obtain the desired 8J(¢)/du(t) from (5-10), we need to know the value
of A(z+1), which corresponds to the derivative of J with Ax(¢+1) and u(¢+1).
This seems difficult because we do not know Ax(z+1) and u(¢t+1) at time ¢ if
the system model is not provided. But we can use the “forward-in-time” method to
solve this problem [LiuA 2002]. The basic idea of “forward-in-time” method is to
obtain the actual value of Ax(r+1) and u(¢t+1) after u{r) is fed into the system.
Then, we can obtain A(z + 1). from the copy of the critic network at time ¢ based on
Ax(t+1) and u(f+1). Finally, we could update the critic network at time ¢ instead
oftime ¢ + 1.

From (5-10), we can see that the ‘much troublesome problem for vehicle
longitudinal control is how to obtain de(?)/du(t), u(t+1)/u(t), u(t+1)/Ax(t+1)
and x(t+1)/u(t) to get the desired BJ(I)/au(t). The details will be discussed in

section 5.2.2.
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5.2.2 Action Network

The role of action network is to produce the control action which would be fed into
the system. Here, “network” means the controller of any forms whose output is
differential with respect to the tuned parameters, although neural network is adopted
frequently [Eaton et al. 2000, Venayangamoorthy et al. 2002]. The strength of neural
network is the promise of fast computation, versatile representational ability of
nonlinear maps, fault tolerance, and the capability to generate quick, robust,
suboptimal solutions [Venayangamoorthy et al. 2002]. But the interpretation of neural
networks may be rather opaque. It is also difficult to incorporate a priori knowledge
into neural networks. The above drawbacks of neural networks may make the training
procedure slow. More badly, it may even make the system unstable. Some strategies
are taken to deal with this problem, in [Venayangamoorthy et al. 2002], the action
neural network is pretrained with conventional controllers controlling the plant in a
linear region. Another promising strategy is to adopt fuzzy controll;er as the action
network, because the fuzzy controller offers a way around the difficulty of opaque
interpretation in many application contexts.

However, the application of fuzzy control to complex system may be not a trivial
task because the size of the rule base in a typical fuzzy control architecture will be
increase exponentially with the size of variables [Jamshidi 1997]. To handle this
exponential explosion of the size of the rule base, sensory fusion or hierarchical fuzzy
control may be adopted.

In this chapter, we also employ Takagi-Sugeno (TS) fuzzy controller as the action
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network for the special case of vehicle longitudinal control. TS model offers an
analytical expression for adaptive critic designs. The control action u(t) is related
with the relative velocity v, (f) and the spacing deviation Ax(r). We also know the
current velocity of the vehicle v(¢) also affects u(z). Meanwhile, in order to reduce
the fuzzy rules, we fuse Ax(f), v,(r) as e{t)=v, (f)+kAx(t) (see equation (5-8)).
From the above consideration, the input variables of TS type fuzzy controller fro
longttudinal control is e(¢) and w(¢).

The consequence of TS fuzzy controller is 2 mathematical expression. We choose
the form of the consequence based on.the works of Yanakiev and Kanellakopoulos
[Yanakiev & Kanellakopoulos 1996, 2001]. They did not employ fuzzy controller, but
the performance of their proposed adaptive PIQ controller is good based on a
nonlinear reference model with autonomous operation. Because the performance of
the conventional PI controller is not acceptable, a signed quadratic (Q) term of the
form (v, +kAx)]v, +kAx| is added to the PI controller. Then the controller is more
aggressive at large errors, but does not have the undesirable side effect of overshoot
with the signed Q term. The form of their proposed adaptive PIQ is as follows:

u=k,(v, +k-Mx)+k +k (v, +k-AQlv, +k-Ax] (5-13)

As we know, the effective aerodynamic drag of vehicle is proportional to the square

of the current velocity of the vehicle y(t), and the aerodynamic drag is negative to

the control action. Therefore, we compensate the aerodynamic drag using the term

k,v'(t) in the consequence of the fuzzy rules. This can be looked as a priori

knowledge which is incorporated into the fuzzy controller.
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Then, the fuzzy rules of the action network are as foliows:
R: TF e(t) is F/ and v(1) is F),
THEN u(t) =k e() +k! +kle@le®|+ kv’ @) (5-14)
where, F' and F] are the labels of the fﬁzzy sets for e(t) and v(t)

respectively. k,, k; k, and k| are the constant coefficients of the consequent part

of the fuzzy rules.
We can obtain the total output of fuzzy controller as the following expression:
> m (K ety + k! + k! e@le(t)] + kv ()
uft) = = (5-15)

2m
1

where, m, isthe membership degree for the /th rule.

=

The goal of the action network is to minimize J (zf) , thereby optimizing the overall
cost expressed as a sum ofall U(t) over the horizon of the problem. Thjs is achieved
“by training the action with 2(!) - aJ(t)/6u(t), which we can.obtain directly from the
output of the critic r;etwork. .Therefore, we can obtain the update of the parameters of

the action network as follows:

B VO @) _ ou(t)
- n Al
st "V sy pay - O T 0 500

at+1) = aft)—n, —= (5-16)

where, a is the parameters of action network, 77, is the learning rate. In order to

calculate (5-16), we also need to get du(t)/da(t).

For the special case of longitudinal control, it is easy to get u(t)/8a(t) from the

(5-16).
outy  m, o our)  m,  ou@r) m, au(t) m o
. S T Sm & Sm (e, S Y

B 4 : k I3 &
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(5-17)
Combining (5-16) and (5-17), we can obtain the update rules of the parameters of
the fuzzy rules. Here, we assume the membership functions are fixed, and we only

tune the sequence of fuzzy rules.

We can also obtain the derivative of control action #(f) with respect to the input
variables v(¢) and e(t):

) Z 2m, k(1) )y Z m, (k! +2k![e(z))

e Ym, de(t) Y m, C-18)

Now, we return to the problem of how to obtain de(r)/ou(t), u(t+1)/u(r),
u(t+1)/Ax(t+1) and x(t+1)/u(t) to get the desired AJ(1)/du(t), which was
mentioned in section 5.2.1.

1} We can get Ou(¢)/de(t) from (5-18), but how to get de(r)/du(t)? We think
the absolute value of Je(t)/0u(t) -can be determined by the reciprocal of the
absolute value ;)f Ou(t)/de(t) , and the sign of de(t)/du(z) is the inverse of the
sign of du(¢)/de(t), we can explain this as follows: u(t) will increase when

e(t) increase, but e(f) will decrease when u(f) increase. So, we have

de(t) _ (ou())” (5-19)
ou(t) | de(d)

2) Based on x(lr+1)=x(t)+v-At+—21-a¢(At)2 and aocA—uJ— , W& can estimate
ox(t +1)/du(t) as:

Ox(t+1) _ (a)

Bu(t)  2M (5-20)

where, M is the mass of the vehicle, Ar is the step size.
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Based on (¢t +1) = v(f}+a-At, we can estimate dv(t+1)/0u(t) as:

ov(t+l) At
ou(t) M

(5-21)

3) Basedon e(t)=v,(f)+k-Ax(t), we have the following expression from (5-20)

and (5-21):
De(t+1) | _ov(e+D) | ax(t+1) _ 28r+k(ar)’ (5-22)
Bu(t) du(t) Qu(t) 2M
Using the chain rule, we have:
Ou(t+1) _ u(t+1) de(t+1)  Bu(t+1) dwt+1) (5-23)

du(t)  de(t+1) du(t) ov(t+1) du()
In (5-23), we can get du(t+1)/de(t+1) and Bu(t+1)/dv(t +1) from (5-17),
so we can get du(z +1)/8u(t) by combing (5-18), (5-21) and (5-22).
4) We can obtain du(t +1)/0Ax(t +1) based on e(f) = v, (£) + k- Ax(t):

Ou(t+1)  Ou(t+1) Oe(t+1) " ou(t+1)

= = (5-24)
BAx(t+1)  Oe(t+1) 8Ax(t+1)  de(t+1)

where, Ou(t+1)/0e(t+1) can be determined from (5-18) with e(t+1)

instead of e(f).

For the above estimations of Je(t)/Ou(r), u(t+1)fu(t), u(t+1)/Ax(++1) and
x(t +1)/u(r), we have the following remarks.
Remarks:
1) In most of the previous papers, the system which may be obtained before hand
or by system identification is required. The function of the system is to obtain

the derivative values of the system for the training of critic network and
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2)

3)

4)

network, and get the next state for obtaining A{f +1). However, in this chapter
the system model is not required throughout the development of the critic
network and the action network. The only information needed is some common
sense such as the acceleration of the vehicle is proportion to the control effort,
and is inverse proportion to the mass of the vehicle (a o TEIH ).

It is pointed out by T. Shannon and G Lendaris that as long as the approximate
derivative values obtained had the correct sign (positive or negative) most of
the time, the model was adequate for use in DHP, in other words, only
qualitative model is required [Shannon 1999, Lendaris & Shannon 1999].
Although we do not obtain (5-21), (5-22) and (5-23) based on the accurate
vehicle model, this is not very important, and the estimated derivative values
are enough for successful controller training.

Because TS type fuzzy controller is employed in this chapter, we can
incorporate thc;, priori knowledge into the consequences of fuzzy rules. We can
adopt the expression of the controller developed by other researchers as the
consequence of fuzzy rules. We can also add the term in the fuzzy controller to
eliminate the aerodynamic drag. Obviously, all of these make the controller
more interpretable, training much faster and even more stable compared with
the neural network controller.

To avoid “curse of dimensionality”, the input variables of the critic network and
action network should be kept as small as possible, so some measures such as

sensor fusion are taken.

92



5.3 Simulation Studies of Vehicle Longitudinal Control

5.3.1 Training Procedures for the Critic and Action Network

Before training the critic and action network, we may prestructure the consequence
parameters of TS type fuzzy controller using a priori knowledge such as the
experience of human operators or some developed conventional controllers.

| There are two approaches to train the critic and action network: one consists of two
separate training cycles; and another trains the critic network and action network
simultaneously. The former approach only tunes the critic’s parameters initiaily with
the prestructured action network, to ensure the whole system not to introduce
instabilities. After the critic training, the action network is trained further while
keeping the critic’s parameters fixed. This process of training the critic and action one
after the other, is repeated until an acceptable performance is reached.

In this chapter, we adopt the latter approach to train the critic and. action network
simultaneously, since the simultaneous stepping approach is about twice as fast as the
alternating approach [Shannon & Lendaris 2000], and no training process becomes

instable in our simulation.
The training procedures for the critic and action network are as follows:
1) Repeat the following steps until the acceptable performance is reached.
2) Initialize =0 and the state varif;tbles of the plant.
3) Obtain the measurement of v(t), e{t)=v,(¢)+ k- Ax(z) based on (2-1), (5-8),

then get the output u(t) of TS fuzzy controlier at time ¢ based on (5-15).
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4)

5)

6)

7

8)

9

Calculate the critic output A(s) based on Ax(f), u(f) and the critic network
at time ¢.
Obtain the next state w(¢t+1), v, (¢+1) and Ax(z+1) when u(f) from step 4

is fed into the vehicle system.

Get the output u(£+1) of TS fuzzy controller based on (5-15), the parameters
of the fuzzy conﬁol is still unchanged, i.e. the parameters are same as those at
time ¢.

Calculate the critic output A(z +1) based on Ax(z+1), u(z+1) and the critic
network at time ¢.

Upciate the parameters of the fuzzy controller based on (5-16) anq (5-17).

Calculate the desired critic output A(f) based on (5-10), (5-19)-(5-24).

10) Update the parameters of the critic neural network based on A(f) obtained

from step 4, A(¢) obtained from step 9 and equation (5-12).

I1)If ¢ less than the termination time (the duration of one trial) return to step 3),

else return to step 2).

5.3.2 Simulation Results

We demonstrate the proposed controlier on a vehicle longitudinal control system. The

profile of the velocity and acceleration of the preceding car is shown Figure 5.2.

v, (t) = % (t-cos(0.04m)), a,(r)=1.5sin(0.047) (5-25)

The whole simulation lasts 100 s. The system is sampled at 20Hz and the numerical

simulation is performed with a fixed step size 4™ order Runge-Kutta algorithm.
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Figure 5.2: The velocity (left) and acceleration (right) profile of the leading car

As we mentioned in section 5.2.1, the critic network structure for the vehicle
longitudinal problem is a three-layer feedforward neural network with 2 inputs u(¢)
and Ax(r), a hidden layer of 5 nodes, and 1 output A(f)=2aJ(t)/du(t) . The
activation function of the hidden nodes is sigmoidal function, and that of the output
node is linear function.

We define 9 fuzzy; sets over the interval [-10, 10] for e(¢), 4 fuzzy sets over the
interval [0, 30] for w(r). We simply take the membership of e(t) and w({¢) as
triangle shape (see Figure 5.3). So, the TS type fuzzy controller consists of 36 rules
totally.

In our simulation, the critic and action network were trained simultaneously for 100
trials. Based on the analysis of the previous sections and [Yanakiev &

-Kanellakopoulos 2001, Shannon & Lendaﬁs 2000], the parameters used in the
simulation are summarized in Table 5.1 with the proper notations defined in the

following:
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Figure 5.3: The membership degree of e(r) (left) and w(r) (right)
y @ adiscount factor for finite horizon problems
k the parameter of fusing relative speed v, () and spacing deviation
Ax(?)
Ne the learning rate of critic neural network
k:, one of the coefficients of consequence of /th fuzzy rule in (3-14)
k] one of the coefficients of consequence of /th fuzzy rule in (3-14)
k; one of the coefficients of consequence of /th fuzzy rule in (3-14)
k! one of the coefficients of consequence of /th fuzzy rule in (3-14)
Map the learning rate for |
T the learning rate for &/
4q the learning rate for &,
Mo the learning rate for &/
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TABLE 5.1

SUMMARY OF PARAMETERS USED IN SIMULATION

- . @ - —_—

Parameters | 7 k e k, k! k,

Value 0.9 1 0.001 100 0 0
- —— —— ——

Parameters k: 4 4 Mg 7

Value 0 1 1 0.05 0.001

e e ——— [ ———————————— —  ——— ———————————————

Here, wé: only select kf, as 100, other parameters in fuzzy consequence all equal
to 0, this means the priori knowledge of us is very limited, we only take the controller
similar with P controller initially,

We can illustrate the effectiveness of our learning approach by comparing the -
vehicle velocity after 1% learning procedure and 100™ learning procedure. We can see
the simulation result from Figure 5.4.

We observe that 'Ehe velocity of the controlled vehicle is nearly identical to the
velocity of the leading car after training, although there is a large deviation when the
controller is initially trained. This means that the fuzzy controller learns the
information from the critic neural network, then tune itself towards good performance.
The critic information may be not accurate at the beginning of the training procedure,
however, the critic neural network is also trained continuously to estimate the
derivative of the overall cost with respect to the current control. The simultaneous

training of the critic and action network makes the controller better and better.
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Figure 5.4: The comparison of the vehicle velocity after 1% training procedure and
P

100™ training procedure

We can see the spacing deviation and relative speed between the preceding car and
following car after 100 trials clearly from Figure 5.5 and Figure 5.6 respectively. The
maximum spacing deviation is less than 2.0 m and the maximum relatilve speed is less
than 1.0 m/s. We also observe that there are some obvious overshoots for spacing
deviation and relative speed. This is expected due to the maximum acceleration of the
leading car at these points.

The evolutions of the spacing deviation and relative speed with trials are shown in
Figure 5.7 and Figure 5.8 respectively. We are glad to see that both of the spacing
deviation and relative speed decrease monotonously when trials increase. This

explains the efficiency of the proposed controller.
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Figure 5.5: The spacing deviation between the preceding car and following car after

100 training trials
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Figure 5.6: The relative speed between the preceding car and following car after

100 training trials
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Figure 5.8: The evolution of the maximum relative speed in each trial with the
training trials

100



We should emphasize here, the performance of our controller is limited by (or
depends on) the following factors:

1) The measurement values we can get: it is obvious that the performance of the
controller will be better if more measurement values are obtained. For the
special case of vehicle longitudinal control, if we could know the future
velocity of the leading car, the performance of the longitudinal controller must
be better.

2) The structure of the controller: for the special case of vehicle longitudinal
control, if we select more fuzzy rules or pbtain a more optimal form of
consequence, the performance may be improved.

3) The model information we used: if we can obtain more accurate derivative
information based on accurate model, the performance may be better. So, it may
be not realistic to expect that the spacing deviation and relative speed tend to be
zero for our simulations.

In our simulation, we assume that we can only obtain the following input variables:
the current position and velocity of the controlled car and the leading car. In addition,
we think we do not know the vehicle models. Nevertheless, the proposed controller
achieved satisfied performance. The “performance cost ratio” of the proposed

controller 1s high.
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Figure 5.9: The spacing deviation (top) and relative speed (bottom) between the

preceding car and following car after 100 training trials without 4/ and &/

As comparison, if we take the fuzzy rules without “Q” term and aerodynamic drag

compensating term (i.e. no k:, and k'), the performance of the controller is
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degraded, which is shown in Figure 5.9. The maximum spacing deviation with k;

and k! in Figure 5.5 is about 2.0 m, while the maximum spacing deviation without
k, and k| in Figure 5.9 is about 3.7 m. And the relative speed is more oscillated in
Figure 5.9 than that in Figure 5.6. So, we should keep it in mind that a priori
knowledge shouid be incorporated into the controller design to enhance the
performance. This also éxplains the advantage of taking fuzzy controller as the action

network.

5.4 Comparisons

At the end of this chapter, we would compare the con&oller proposed in chapter 4 and
that in chapter 5. We abbreviate the former gontroller as RLC (reinforcement leaming
controller) since it is based on reinforcement leaming; and abbreviate the latter
controller as DHPC (dual heuristic programming controller) since it is based on dual
heuristic programmin’g.
First, we list the similarities between RLC and DHPC :
1) The main structures of RLC and DHPC both comprise two networks, namely,
an action network (which dispenses the control signals) and a critic network
(which “learns” the desired performance associated with the performance
index).
2)  The parameters update laws are both developed based on the output of critic
network.

3) For RLC and DHPC design, we need only include the problem-domain
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4)

5)

control task and constraints in the cost (» for RLC and U{(¢) for DHPC),

and system model may not required.

RLC and DHPC offer a unified approach to dealing with the controiler’s

nonlinearity.

RLC and DHPC can tune themselves to achieve better performance during its

mteraction with environment.

Although the above similarities, there are some obvious differences between these

two controllers:

1)

2)

3)

4)

Derivative information is required for DHPC, while this is not required for
RLC.

Stochastic action modifier (SAM) is included in the controller structure of
RLC, the performance of RLC may be unacceptable if we do not employ

SAM to implement the exploration strategy. While this is not necessary for

1

DHPC.

For RLC, the parameters of the architecture adapt only by means of the scalar
cost, so it has been shown to converge very slowly [Werbos 1990]. While for
DHPC, the critic network approximates the derivatives of J(r) with respect
to the state, thereby correlating the adjustable parameters in the architecture to
a larger number of dependent variables. And also because we use the
derivatives of J(¢f) to tune the parameters of action network, there are some
advantages of DHPC over RLC from a theoretical point of view.

It is expected that the performance of DHPC is better than that of RLC, we
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can venify this from the following simulations.

We will compare their performance by simulation studies. It should be noted here
that the velocity profile of preceding car and parameters of vehicle longitudinal
control simulation studies are same for RLC and DHPC.

The performance of RLC after training of 100 trials is shown in Figure 5.10, which
mcludes spacing'deviat-ion' and relative speed between the preceding car and the
controlled car. Comparing with Figure 5.5 and‘Figure 5.6, which are the performances
of DHPC with the same conditions, we find that although the spacing deviation of
RLC is nearly same as that of DHPC, the relative speed of RLC is more fluctuant than
that of DHPC. The fluctuation of relative sp;:ed means the control smoothness is not
good for RLC. Control smoothness affects the comfort of passengers and drivers. And
improving control smoothness can enhance safety and reducing fuel consumption.

Besides the controller performance after learning, we should also pay attention to
the ]eéming procedure since it is important for practical problems. The evolution of
the maximum spacing deviation and the maximum relative speed during the learning
procedure of RLC is shown in Figure 5.11. Although the maximum spacing deviation
and the maximum relative speed decrease from the whole training, we can see some
large oscillations during the learning of RLC, especially at the beginning of leaming
procedure. This is due to the stochastic action medifier of RLC, which implements
exploration strategies thereby increasing the uncertainties and oscillations for the
controller. These oscillations may destroy the practical system before it can achieve

good performance. This is not expected, although we can not see the negative effects
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Figure 5.10: The spacing deviation (top) and relative speed (bottom) of RLC

for simulation studies. As a comparison, we can refer the learning procedure of DHPC

from Figure 5.7 and Figure 5.8, the maximum spacing deviation and the maximum
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Figure 5.11: The evolution of the maximum spacing deviation (top) and relative

speed (bottom) in each trial with the training trials

relative speed both decrease monotonously. This is the case we prefer. So, we may
conclude that the learning efficiency of RLC is worse than that of DHPC.
The introduction of stochastic action modifier increases the uncertainty, but this is
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necessary since the performance of RLC is very poor without the stochastic action
modifier. The choice of the controller parameters such as learning rate and the
magnitude of the stochastic action modifier affects the performance sensitively. We
can see this from Figure 5.12 clearly. In this figure, we change the magnitude of the
stochastic action not too much, but the evolution of the maximum spacing deviation
and relative speed incfeaQse at 60" trial suddenly. The learning procedure becomes
unstable and the performance becomes unacl:ceptable. Currently, it seems there is no
systematic approach to select the parameters of SAM. This problem does not exist for

DHPC since there is no need to add SAM.

After tﬁe above simulation comparisons and analyéis between RLC and DHPC, we
~may conclude that:

1) The structures of RLC and DHPC are similar. They both comprise critic
network and action network.

2) The requirements of controller design for RLC and DHPC are different. The
only information for RLC design may be evaluative information r (scalar
value) of the controller during its interaction with environment, while some
information about system model may be required for DHPC design to get the
derivative information.

3) The performance of RLC and DHPC are different. DHP should be more
effective and contribute a more superior performance than HDP, the reason
may exist in that the output of the critic network of DHPC is the derivative of

the overall cost J directly instead of .J, which makes the derivative of J
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for RLC intrinsically less accurate. And also RLC introduces a stochastic

action modifier, which makes the learning efficiency not good but is a must

for RLC.
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Figure: 5.12 The evolution of the maximum spacing deviation (top) and relative

speed (bottom) with the change of some parameters
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5.5 Conclusions

This chapter has presented a novel vehicle longitudinal controller based on dual
heuristic programming. A brief overview of adaptive critic designs is introduced first,
and we delve into the details of the specific technique by which we develop our
proposed controller. We describe the architectures of critic network and action
network, and propose thcif adaptation. The training procedures, simulation results are
presented and the performance of the controller is discussed. There are two distinct
differences between our proposed controller and other controllers: 1) the system
model, which may be obtained in advance or by system identification, is not required
for the proﬁosed controller which is applied to a vehicle longitudinal control system, 2)
we can incorporate a priori knowledge into the controller, since TS type fuzzy
controller is employed as the action network instead of neural network. As a result, it
is convenient for us to adopt the idea or structure of conventional controllers for
action network design. This 'makes the controller more interpretable,\ training much
faster and even more stable compared with the neural network controller. Finally, we
compare the controller proposed in chapter 4 (RLC) and the céntroller in this chapter

(DHPC) from the aspects of control structure, design requirements and performance,

etc.
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Chapter 6
Conclusions and Future Directions

6.1 Conclusions

In the last five chapters, thé author presented his modest contributions to the area of
autonomous intelligent control. The focus has been developing algorithms with more
ﬂéxibility and less a priori knowledge for the problem of vehicle following control. To
deal with the complexity of vehicle dynamics, we employed intelligent control
technologies including fuzzy control, neural networks, reinforcement learning and
adaptive critic design. To accommodate for a higher degree of uncertainty, we have
integrated the idea of “adaptive control” into the vehicle longitudinal controller. This
thesis describes three possible approaches to implementing advanced decision-making
processes on an autonomous vehicle.

The first stage of the research involved the design of an adaptive fuzzy control
algorithm. The vehicle longitudinal control problem falls into a class of specific
continuous-time SISO nonlinear system with some unknown parameters. We have
extended the studies by other researchers to tune all the parameters of fuzzy controller.
As aresult, a flexible and stable fuzzy controller is achieved.

However, the weakness of the proposed adaptive fuzzy controller is that some
model information is required and it only aims at a specific nonlinear system. To this

end, we have investigated Q-learning, a model free reinforcement learning (RL)
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method, and its applicability as a controller design approach in a knowledge-poor
environment. The focus has been on two issues: (i) the structure of the Q estimator
network and the fuzzy controller, and (ii) the development of leamning algorithms for
both of them.

Nevertheless, the learning efficiency of applying RL directly may not be sufficient.
Furthermore, we proposé a controller based on dual heuristic programming (DHP) to
enhance its performance. The structure and adaptation algorithms of the controller for
vehicle following problems are also presented. The proposed controller has two
advantages compared with other controllers based on adaptive critic designs: (i) the
system model is not required directly or indirectly, aﬁd (it) it takes advantage of the
TS type fuzzy controller to incorporate a priori knowledge. We solved the problem of
requirement for the vehicle model dexterously by some estimation. In the design
procedure, we can expedite the leaming process by the TS type fuzzy controller.

Finally, we presented comparisons between the controller based on RL directly and
the controller based on DHP. It has been shown, by simulation studies, that the
performance of the controller based on DHP has some advantages over the controller

- based on RL directly, although the latter is much simpler than the former.

6.2 Future Directions

Our research indicates the possibility of combining the intelligent control with
adaptive control to deal with incomplete information and dynamic environment.

However, there are other aspects that may be explored in further depth in the future.
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One important task is the stability analysis of the controllers design based on RL or
DHP. This objective 1s not trivial since the RL algorithms used for the control of
continuous state space tasks are based either on heuristic or on discrete RL methods
and DHP are based on RL algorithms. Moreover, one of the characteristics of RL
(DHP) is that it optimizes the controller based on interactions with the system. Both
the action and the cﬁtié networks have to be trained, where the approximation of the
action network is trained based on the cﬁtic network. This makes the training
procedure rather tedious and its outcome hard to analyze. Moreover, some parameters
of the controller are selected based on a heuristic approach for the time being. We
could not .give the exact meaning and effect of thése parameters to the controller
performance.

The aforesaid means the performance of the controller is not very well understood
when RL (DHP) is applied to a control system. Stability during leaming may not be
guaranteed. Therefore, solid theoretical studies to prove convergence to the optimal
controller should be carried out in the future.

The applications of several intelligent adaptive controllers for autonomous vehicle
control systems have been described in this thesis. However, current studies have been
studied only via simulations. Therefore, another future direction of this research is to
improve the algorithms for practical implementation on a real vehicle. This may

include:

1) A reliable controller is needed for real control tasks. If we cannot guarantee

the stability of the controller, it may be useless in the practical situations. This
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also explains the hesitation in applying the algorithms based on RL directly on
real systems in the existing literatures.

2)  We should speed up the training procgdure. One disadvantage of algerithms
based on RL (DHP) is their inherent time-consuming processes due to the
nature of RL (DHP), which requires large amount of interactions with the
environment. One way to speed this up may be to use algorithms that require
less training.

As we mentioned before, automated vehicle control includes longitudinal control
and lateral control. In this thesis, we have mainly focused on vehicle longitudinal
control, although we have studied vehicle lateral coﬁtrol in lesser detail. In the next
stage, we may investigate the control algorithms for vehicle lateral control. Compared
with longitudinal control, lateral control may contain more uncertainty, such as the
parameters of vehicle dynamics, road conditions (road curvature, road adhesion), and
even nonlinear tire characteristics or wind gusts. Moreover, existing literature also
suggest that the control is especially difficult when the car speed is high.

This brings to end the author’s work at this stage. The autonomous vehicle control
" is a fast emerging area of research and development. The work reported in this
volume is a contribution towards the design of a completely autonomous vehicle to

address the problems of highway congestion and alleviating traffic accidents.
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