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Abstract

In this thesis, I examine the risk and return properties of individual dividend strips,

which are claims to short-term dividends from individual companies. First, contrary to

the conventional assumption that quarterly dividend payments from individual companies

are sticky and certain, I document considerable variability in short-term dividends at the

�rm level. Uncertainty in dividends of individual stocks in the next quarter can give

rise to short-term dividend risk premium at the �rm level, which a�ects the pricing of

claims on quarterly dividend payments. Then, I use exchange-traded options on individual

stocks to create synthetic dividend strips and use the put-call parity relation to compute

prices of dividend strips. During the sample period from 1996 to 2017, the dividend

strip aggregated from all individual �rms earns an average return of 4.62% per quarter,

higher than the average quarterly return of the S&P 500 index during the same period.

The high average return on the aggregate dividend strip is consistent with an average

downward-sloping term structure of equity premium documented by prior studies using

index derivatives. There are substantial cross-sectional di�erences in returns on dividend

strips among individual �rms sorted by average normalized dividend premium in the

previous four quarters, which is a measure of ex-ante dividend risk premium. Average



value-weighted returns on dividend strip portfolios in the highest and lowest quintiles of

dividend premiums are 11.91% and −2.87% per quarter, and the spread in return is highly

statistically signi�cant. Di�erences in dividend strip returns are not driven by potential

measurement errors in options prices, as option-implied dividends are strong predictors of

future dividend payments, and are not driven by di�erences between dividend payers and

non-payers, as the results hold for the subsample of stocks that have ever paid regular cash

dividends in the past �ve years. Variations in returns of claims on short-term dividends do

not diminish after controlling for short-sale constraints of underlying stocks and adjusting

early exercise premiums in prices of American-style options. In addition, results of both

the Fama and MacBeth (1973) cross-sectional regressions and the multivariate test of

Gibbons, Ross and Shanken (1989) indicate that the Fama and French (2015) �ve-factor

model can well describe average returns on dividend strips sorted by the ex-ante dividend

risk premium. In contrast, the Capital Asset Pricing Model, the Fama and French (1993)

three-factor model, and the Carhart (1997) four-factor model seem to be incomplete

models. I also use four well-known stock return predictors, book-to-market ratio (BM),

operating pro�tability (OP), total asset growth rate (ATG), and cumulative stock return

in the previous six months (RET(−1,−6)) as alternative sorting variables. The four stock

return predictors can predict subsequent dividend strip returns in the same direction

of prediction on stock returns. The �ve-factor model performs the best in explaining

variations in dividend strips of stocks with di�erent characteristics, which indicates that

the superior performance of the model is not speci�c to dividend strips sorted by historical



dividend premium. Dividend strip returns associated with di�erent sorts share common

exposures to risk factors other than the market risk which are well captured by the

pro�tability factor and the investment factor.
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Chapter 1

Introduction

This thesis examines the risk and return properties of individual companies' short-term

dividend strips synthetically replicated from individual equity options in the U.S. market.

Studying the pricing of dividends is important in light of the essential roles that div-

idends play in the �nancial market. Cash dividend is an essential way for companies to

distribute cash �ows to stockholders despite the growing popularity of alternative payout

policies like stock repurchases (Julio and Ikenberry, 2004; Michaely and Moin, 2019). For

investors in the U.S., dividends contribute to over one-third of the total return on equity

(Fama and French, 2007) and account for a large and growing proportion of personal

incomes (Lu and Karaban, 2009).

According to the present value model, a stock's price is equal to the sum of present

values of all future dividends from that stock (Gordon, 1962). A stock can be considered

as a portfolio of dividend strips, which entitle investors to dividends paid during some �-

nite periods. Analogous to zero-coupon bonds, dividend strips contain information about

the discount rate of equity at di�erent horizons. Therefore, studying how dividend strips
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CHAPTER 1. INTRODUCTION

are priced can improve our understanding of how stock price is formed.

Studying risk and return properties of dividend strips is a straightforward practice if

prices of equity cash �ows at di�erent horizons are available. Due to the lack of such

data in the past, the literature on equity valuation has been focusing on studying the

dynamics of the value of a stock as a whole. Recently, with the development of the equity

derivative market and the introduction of new �nancial assets like dividend derivatives,

investors can trade dividends directly in the market, and researchers have access to prices

of dividend strips with di�erent maturities. To better understand how stock price is

formed, the literature moves towards to investigate the pricing of individual dividends

paid over di�erent horizons. van Binsbergen, Brandt and Koijen (2012) use options on

the S&P 500 index to calculate prices of dividend strips that pay dividends only in the

near future and show that the short-term asset earns a higher return than the underlying

index on average. They �nd that though the short-term index dividend strip has a posi-

tive market beta, its average return is still too high to be explained by the Capital Asset

Pricing Model (CAPM). Introducing the size factor (SMB) and the value factor (HML)

as in Fama and French (1993) hardly helps to explain the high average near-term equity

risk premium. van Binsbergen, Brandt and Koijen (2013) use index dividend futures and

Cejnek and Randl (2016) use index dividend swaps to examine the pricing of short-term

index dividend strips and �nd similar results.

The current literature about dividend strips focuses on the market level. To better un-

derstand how short-term equity cash �ows are priced, it also stands to examine dividend

2



CHAPTER 1. INTRODUCTION

strips of individual stocks. First, dividends paid by individual stocks can be uncertain

and risky in the short run. Since the seminal paper of Lintner (1965) which uses a partial

adjustment model to study corporate payout policies and documents that managers prefer

to maintain a stable dividend policy, the literature has assumed that companies' dividend

policies are conservative and there is little uncertainty about dividends paid by individual

companies in the short run. However, several recent studies challenge this dividend stick-

iness assumption by showing that managers will cut dividends when faced with dividend

constraints (Kim, Lee and Lie, 2017) and will increase dividends as earnings increase

substantially (Lie, 2005). Besides, Bilinski and Bradshaw (2015) document an increasing

availability of analyst forecasts of quarterly dividends, which indicates investors' growing

demands for explicit forecasts on dividends due to variable dividend payments of indi-

vidual �rms in recent years. To measure the degree of uncertainty of dividend payments

from quarter to quarter, I compute the root mean squared error of quarterly dividend

surprises proxied by actual quarterly dividend growth rate or by analyst dividend fore-

cast error of dividends in the next �scal quarter. Contrary to the assumption of dividend

stickiness, the variability of dividend payments is high on average, suggesting that there

are signi�cant deviations between realized dividends in the next quarter and anticipated

levels. The high average quarterly dividend uncertainty at the �rm level may command a

dividend premium, which will a�ect the pricing of claims on quarterly dividend payments

from individual stocks. Second, the market of single stock dividend futures is growing

rapidly, suggesting increasing interests in trading individual dividends independent of un-

3



CHAPTER 1. INTRODUCTION

derlying stocks and greater exposures to dividend risks of investors (Manley and Mueller-

Glissmann, 2008). Studying how individual dividends are priced can help investors make

better portfolio decisions and manage dividend risks. Third, studying risk and return

properties of short-term cash �ows of individual stocks is essential for understanding how

prices of individual stocks are formed. Cash �ows at di�erent horizons of individual com-

panies should be discounted at appropriate discount rates re�ecting risk pro�les of cash

�ows with di�erent maturities. Discounting short-term cash �ows of individual stocks at

the same discount rate will result in misvaluation if there are cross-sectional di�erences

in risk exposures of near-term dividend payments from individual �rms (Ang and Liu,

2004). Finally, Manley and Mueller-Glissmann (2008) suggest that the high risk premium

of short-term dividend strips synthetically replicated by index dividend derivatives may

be due to the excess supply of dividend risk as banks issue high volumes of structured

products most often linked to equity index to retail and institutional investors and need

to buy index dividend swaps to hedge their long index dividend risk exposures. Claims

on index dividends can be replicated by a weighted portfolio of dividend strips of indi-

vidual stocks, which are less likely to be a�ected by selling pressures. Thus, studying the

pricing of the aggregate dividend strip made up of individual dividend strips can help us

understand whether the high average return of near-term dividend strip at the market

level is due to imbalanced demand and supply of dividend risk.

Studies on how individual dividends are priced in the cross section of companies are

very few. This thesis contributes to the literature by investigating the risk and return

4



CHAPTER 1. INTRODUCTION

properties of claims on near-term dividends at the �rm level and aims to answer three re-

search questions. First, is there a di�erence between the return of market dividend strips

and the return of dividend strip aggregated from dividend strips of individual stocks? Sec-

ond, do returns on near-term dividend strips vary across individual stocks? And third, if

there are cross-sectional variations in returns on dividend strips, whether the variations

in returns can be explained by rational asset pricing. Several recent papers also examine

the pricing of single cash �ows with di�erent maturities separately at the �rm level. To

estimate returns on short-term cash �ows of individual stocks, prior studies usually use

historical accounting or equity market data and have to make assumptions on processes

of expected dividend growth rates and/or stochastic discount factors. This paper di�ers

from other studies in the computation of prices of claims on near-term single cash �ows.

I use data on individual equity options to calculate prices of individual dividend strips, so

the identi�cation of returns on short term cash �ows does not rely on additional assump-

tions but only requires the absence of arbitrage opportunities. Another advantage of using

options data is that options prices contain forward-looking information about underlying

stocks. Besides, options written on individual stocks have relatively high liquidity, and a

large and growing fraction of listed stocks have options traded on them over time.

As in van Binsbergen, Brandt and Koijen (2012), I use equity options to create divi-

dend strips of individual stocks synthetically. One can replicate the payo� of a dividend

strip by trading a portfolio made up of the underlying stock, put and call options written

on the stock and risk-free bonds. Speci�cally, a strategy of selling a put option, buying

5



CHAPTER 1. INTRODUCTION

a call option and buying a risk-free bond (with the face value equal to the strike price

of the pair of options) replicates the ex-dividend payo� of the underlying stock at the

maturity date of the options. Since an investment in the strategy above is not entitled to

dividends paid during the life of the options, while an investment in the actual stock is,

the di�erence between the value of the actual stock and the value of the strategy is the

price of the future dividend. According to the put-call parity no-arbitrage relation (Stoll,

1969), the price of the future dividend, or option-implied dividend (DI) as the price is

inferred from options prices, is given by:

DI = S + P − C −KeRf τ , (1.1)

where S is the price of the stock, P and C are prices of put and call options with strike

price K and time to maturity τ , and Rf is the continuously compounding risk-free rate.

One thing to note is that the put-call parity relation only holds exactly for European-style

options, while individual equity options in the U.S. market are American-style options.

Therefore, the option-implied dividend is biased by the di�erences between early exercise

premiums (EEP) of put and call options. As discussed later, I adjust the early exercise

premiums in the options-implied dividends and �nd that adjusting EEP does not change

the empirical results.

I examine the how prices of short-term dividend strips are formed both at the aggre-

gate level and in the cross section of individual �rms. For the marker level, I construct a

dividend strip of the market by aggregating dividend strips of individual stocks and �nd

6
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that the aggregate dividend strip has risk and return properties similar to those of index

dividend strips documented by prior studies. Average quarterly return of the aggregate

dividend strip is 4.62%, higher than the average quarterly return on the S&P 500 index

(2.53%) during the sample period from January 1996 to December 2017, indicating that

the high average return on short-term equity cash �ows is not speci�c to indexes and

cannot be fully explained by index-linked structured products issuers' demands for hedg-

ing dividend risk. The CAPM cannot explain the high average return of the aggregate

dividend strip, as the CAPM beta of the near-term asset is low and the CAPM-alpha is

signi�cantly positive. I also examine whether multi-factor asset pricing models, includ-

ing the Fama and French (1993) three-factor model (FF3), the Carhart (1997) four-factor

model (FFM4), and the Fama and French (2015) �ve-factor model (FF5), which introduce

portfolio-based risk factors other than the market risk, can help improve the description

of the high near-term risk premium at the aggregate level. The aggregate dividend strip

has positive loadings on the value, investment, and pro�tability factors. The alphas rela-

tive to the FF3 and the FFM4 are still signi�cantly positive, while the alpha relative to

the FF5 becomes insigni�cant, suggesting that the FF5 performs the best in explaining

returns on the short-term asset at the market level.

Then I examine dividend strip returns across individual stocks. The average return

on individual dividend strip is 3.12% per quarter, with a �rst quartile of −13.07% and a

third quartile of 19.69%, indicating signi�cant cross-sectional variations in returns on div-

idend strips among individual �rms. I further study what may explain the cross-sectional

7



CHAPTER 1. INTRODUCTION

variations in returns on individual dividend strips. To mitigate the noises in the returns of

dividend strips based on individual equity options prices, I use a portfolio-based approach.

Speci�cally, at the end of each quarter, dividend strips are sorted into �ve portfolios by

the average price-normalized dividend premium in the previous four quarters (DP), where

the price-normalized dividend premium is de�ned as the di�erence between the present

value of the realized dividend and the option-implied dividend divided by current stock

price. DP is an ex-ante measure of dividend risk premium. A high normalized dividend

premium indicates that investors pay a low price and ask for a high premium for the right

to get a stock's dividend. The portfolio with the highest and lowest historical normalized

dividend premium earns a quarterly value-weighted average return of 11.91% and −2.87%.

The spread between the quarterly returns of the two portfolios is 14.78% and is highly

statistically signi�cant.

In a rational asset pricing framework, cross-sectional variations in asset returns should

be associated with di�erent exposures to systematic risks. I aim to explain the cross-

sectional variations in returns on individual short-term assets by di�erences in risk ex-

posures to asset pricing factors under the four asset pricing models. To this end, I use

a rolling window of �ve-year quarterly returns to estimate the beta coe�cients with re-

spect to di�erent risk factors. Portfolios sorted by historical dividend premium have very

di�erent exposures to risk factors. Portfolios with high (low) returns on dividend strips

are associated with high (low) market betas. For the characteristic-based risk factors

other than the market risk, returns on portfolios with high DP behave more like returns

8
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on stocks with high book-to-market ratio, large �rm size, high pro�tability, conservative

investment and high past return, and vice versa for portfolios with low DP. The results

from the Fama and MacBeth (1973) cross-sectional regressions show that the market risk

is signi�cantly positively priced in the cross section of individual dividend strips. How-

ever, the average regression intercept of the CAPM is still signi�cantly positive. The

GRS (Gibbons, Ross and Shanken, 1989) test rejects the CAPM model to describe av-

erage returns of the �ve portfolios sorted by DP with a p-value of 0.003. Introducing

the size, value, and momentum factor improves the description of dividend strip returns,

as suggested by the higher p-values of the GRS (1989) test on the three-factor and the

four-factor model. Adding RMW and CMA produces less signi�cant regression intercepts

with smaller absolute values, and the GRS (1989) test fails to reject the �ve-factor model

with a p-value of 0.123. The superior performance of the FF5 is also supported by the

fact that the FF5-alpha has the smallest magnitude and least statistical signi�cance for

the aggregate short-term dividend strip.

In addition to dividend risk premium, other factors like short-sale constraints of un-

derlying stocks and early exercise premiums in American-style options prices can make

the actual stock price and the American-style option-implied ex-dividend stock price dif-

ferent. Option-implied dividends can be overestimated and returns on dividend strips

can be underestimated if stocks are subject to short-sale constraints, resulting in a posi-

tive relation between normalized dividend premium and future dividend strip return. To

address this issue, I do a double-sorting analysis by �rst sorting stocks based on the per-

9
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centage of institutional holding (PIH), which is a proxy for short-sale constraint, and then

sorting stocks based on historical dividend premium. Within each PIH group, average

returns on dividend strips still increase with historical dividend premium and portfolios

in the �fth quintiles of DP signi�cantly outperform portfolios in the �rst quintiles of DP,

while return di�erences across PIH groups are not signi�cant, suggesting that short-sale

constraints do not drive the variations in returns on dividend strips. The results of the

cross-sectional regressions and the GRS (1989) test indicate that the FF5 is superior in

explaining variations of dividend strips returns, similar to results for the portfolios sorted

by historical dividend premium only. Using the 25 double-sorted portfolios as testing

portfolios in the Fama and MacBeth (1973) cross-sectional regressions, I �nd that the

market risk, HML, RMW, and CMA carry signi�cantly positive risk premium in the cross

section of individual short-term dividend strips.

I conduct a battery of robustness checks and additional analysis on the main results.

First, since DI is obtained from market options prices, it may be subject to measurement

errors or microstructure noises in the market. To investigate the information contents of

option-implied dividends (DI), I look at the dynamics of DI around announcement dates

of four signi�cant changes in dividend policies of Apple Inc. and General Motor Company.

I �nd that changes in dividend payments have been picked up by dividends implied from

options prices before the changes in dividend policies are announced. Before Apple Inc.

publicly announced its decision to initiate dividends in 2012 and the decision to increase

dividends in 2013, DI has been increasing higher than historical dividends, which suggests

10
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that option traders have anticipated the dividend initiation and the dividend increase in

light of the company's high pro�tability and large cash holding. Before General Motors

Company cut quarterly dividends in 2006 and suspended dividends in 2008, DI has been

decreasing lower than historical levels, as option traders expected dividends to decrease

in view of the company's deteriorating �nancial performances. The four examples pro-

vide preliminary evidence that option-implied dividends incorporate information about

future dividends. I also use a regression approach to examine the predictability of DI for

future dividends formally. For a given stock, I regress its dividend change (normalized

by quarter-end stock price) in the next quarter on normalized option-implied dividend

change at the end of this quarter. For over 70% of individual stocks in the sample, the

coe�cient on the option-implied dividend change is signi�cantly positive, suggesting that

option-implied dividends signi�cantly predict actual dividend changes and that option-

implied dividends indeed contain information about future dividends.

Second, I do the empirical analysis for a subsample of dividend payers, which are

companies that have ever paid a positive regular cash dividend in the previous �ve years.

Companies that paid dividends in the past are likely to continue dividend payments in

the future, and vice versa for dividend nonpayers. Thus, the cross-sectional variations in

dividend strip returns may be driven by di�erences between dividend payers and nonpay-

ers. I �nd that average returns on dividend strips also vary substantially among dividend

payers and the �ve-factor model can well describe average dividend strip returns of this

subsample of stocks, so the main empirical results are not merely driven by di�erences in
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dividend policies of companies.

Third, regarding the issue of early exercise premium, the American-style option im-

plied dividend is underestimated (overestimated) if EEP of a call option is higher (lower)

than EEP of a put option. To deal with this issue, I use a simple method to adjust for

EEP in prices of American-style options. OptionMetrics uses the Cox, Ross and Rubin-

stein (1979) binomial tree model and the most recent announced dividend to compute

the implied volatility of American options. Since the binomial tree takes the possibility

of early excise of options into account, the implied volatility calculated by OptionMetrics

has been adjusted for EEP. I substitute the implied volatility from OptionMetrics and the

most recent historical dividend into the Black and Scholes (1973) option-pricing formula

to calculate prices of options as if they were European-style options and calculate divi-

dends implied from the hypothetical European options prices. The main results do not

change after DI is adjusted by EEP. I also use an alternative simulation-based approach

under the Heston (1993) stochastic volatility model and use the average option-implied

dividend as a proxy for expected dividend to deal with the concerns that the Black and

Scholes (1973) model may misprice options and that historical dividends may not incor-

porate investors' most recent expectations for future dividends. This more sophisticated

approach gives very similar estimates of EEP of call and put options, and the di�erences

in di�erences of EEP of calls and puts are not correlated with prices of individual dividend

strips, the ex-ante measure of short-term dividend risk premium or short-sale constraints

of underlying stocks, suggesting that the results of sorting portfolio analysis will be similar
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under the two approaches to estimate EEP.

Finally, I examine the cross-sectional di�erences in returns on dividend strips of

stocks sorted by four equity characteristics, book-to-market ratio (BM), operating prof-

itability (OP), total asset growth rate (ATG) and cumulative return in the previous six

months (RET(−1,−6)), which are documented by prior studies to predict subsequent

cross-sectional stock returns (Fama and French, 1992, 2015; Titman, Wei and Xie, 2004;

Jegadeesh and Titman, 1993). Dividend strips of value stocks, pro�table stocks, stocks

with conservative investments, and past winners earn signi�cantly higher returns than div-

idend strips of growth stocks, unpro�table stocks, stocks with aggressive investments and

past losers, and the di�erences in portfolio returns are not driven by short-sale constraints

of underlying stocks. The �ve-factor model can well explain cross-sectional variations in

dividends strips with di�erent sorts, as evidenced by the small and insigni�cant average

regression intercepts from the cross-sectional regressions and the high p-values of the GRS

(1989) test on the model. The results indicate that the superior performance of the FF5

is not speci�c to portfolios sorted by ex-ante dividend risk premiums. Dividend strip re-

turns associated with di�erent sorting variables seem to share common exposures to risks

in addition to the market risk, which are well captured by the pro�tability factor (RMW)

and the investment factor (CMA).

The rest of this thesis is organized as follows. Chapter 2 gives a review of related

literature. Chapter 3 presents data sources and summary statistics of the characteristics

of stocks in the sample. Chapter 4 examines whether dividends paid from individual �rms
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are uncertain in the short run. In Chapter 5, I discuss how to estimate prices and returns

of individual dividend strips from market options prices. Chapter 6 and Chapter 7 ex-

amine risk and return properties and asset pricing implications of the dynamics of values

of the near-term claims at the aggregate level and across individual stocks. Chapter 8

conducts robustness tests. The �nal chapter concludes.
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Chapter 2

Literature Review

2.1 Aggregate Dividends

2.1.1 Importance of Dividends

Investigating how dividends are priced is an important research question in light of the

essential roles that dividends play in the �nancial market and the real economy. In the

U.S., dividends make a great contribution to the total return on equity investment and

are important sources of income for investors. Since 1926, dividends have represented

approximately one-third of the total return of the S&P 500 index (Fama and French,

2007). Over time, dividend incomes increase in proportion to increasing equity market

capitalization and account for a larger fraction of personal incomes in the U.S. market

(Lu and Karaban, 2009). Cash dividend is an important way for companies to distribute

cash �ows to stockholders. The literature has documented the `disappearing dividends'

phenomenon in the U.S. market, which refers to the empirical �ndings of a dramatic de-

cline in the percentage of �rms paying cash dividends (Fama and French, 2001) and of the

substitution of stock repurchases for dividends (Grullon and Michaely, 2002). However,
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recent studies �nd that the declining trend of dividends reverses signi�cantly since the

21st century. Julio and Ikenberry (2004) �nd that after reaching its lowest level of 36%

in 1999, the percentage of dividend payers climbed back to 46% at the end of 2004, as

more U.S. companies initiated dividend payments. Michaely and Moin (2019) examine

the fraction of dividend payers in a more recent sample period and also �nd a rebound of

cash dividends starting around 2000 and continuing throughout 2016. Figure 1 shows the

time-series plot of the percentage of dividend-paying stocks of all �rms listed on NYSE,

AMEX and NASDAQ (the black line) and of stocks traded on the three stock exchanges

with exchange-traded options (the blue line) in each quarter from 1996 to 2017. From

1996 to 2000, the fraction of dividend payers of all listed �rms decreased from 34% to

30%, and the decline was more dramatic for stocks with options (from 48% to 32%).

After 2000, for both samples, the proportion of dividend payers grew steadily. During the

subprime crisis from 2007 to 2009, a large number of �rms omitted dividend payments,

but the percentage of dividend payers recovered soon after the crisis and reached to about

45% at the end of 2017. The disappearing and reappearing of cash dividends over time

suggest uncertainty in aggregate dividends and that cash dividend remains an important

payout policy for companies.

2.1.2 The Pricing of Index Dividend Strips

Dividends are essential constitutes of equity. Studying the pricing and return of dividend

strips can provide information about the way the total value of equity is formed. How to

discount future cash �ow is an important question in �nance. The present value model
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says that the current price of a �nancial asset is equal to the sum of present values of

all future cash �ows generated by the asset at di�erent horizons. For example, the price

of a bond is equal to the sum of present values of coupons paid at di�erent dates and

the principal of the bond repaid at the bond maturity date. According to the law of

one price, the price of a bond should be equal to the sum of the value of bond strips

which are zero-coupon bonds with various time-to-maturities. Any mispricing should be

arbitraged away quickly. Similarly, a stock's price is equal to the sum of present values of

all future dividends from that stock paid at di�erent times. Analogous to a bond, a stock

can be considered as a portfolio of dividend strips, which are claims on single dividends

paid during �nite periods. Dividends paid at di�erent horizons contain information about

the term structure of expected dividend growth rate and equity risk premium. Therefore,

studying separate cash �ow strips of �nancial assets can help us understand investors' risk

preferences and the endowment process at di�erent horizons (van Binsbergen, Brandt and

Koijen, 2012) and provide information incremental to those contained in prices and re-

turns of aggregate equity cash �ows.

Returns of �xed income securities with di�erent time-to-maturities, often referred to

as the term structure of interest rate, have been extensively studied in the bond pricing

literature. In contrast, the equity valuation literature has been focusing on studying the

dynamics of the value of a stock or an equity index as a whole. One reason for the lack of

research about dividend strips is a lack of relevant data in the past. Unlike treasury strips

with various time-to-maturities, there is not a spot market to trade dividends directly,
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so current prices of future dividends are not observable. Early studies about the term

structure of equity use cross-sectional returns of stocks with di�erent cash �ow growth

rates or risk exposures to examine properties of short-term and long-term equity cash

�ows. This indirect approach to inferring properties of cash �ows at di�erent horizons

is subject to the problem that the results depend on the assumptions made about cash

�ow growth rates. Recently, with the development of the equity derivative market and

the introduction of dividend derivatives, researchers can obtain prices of dividend strips

directly. There are two ways to trade dividends in the market. First, dividend derivatives

(i.e., dividend futures and dividend swaps) allow investors to trade dividends directly.

Since around 2000, there emerged an over-the-counter market of dividend derivatives,

and later some contracts became exchange-traded.1 Alternatively, dividend strips can be

replicated using equity options or futures. van Binsbergen, Brandt and Koijen (2012) are

the �rst to use options on the S&P 500 index to replicate short-term dividend strips that

pay dividends in the near future and examine properties of the short-term assets. They

�nd that compared to the underlying index, the short-term assets earn higher average

returns and have higher volatility. Though the short-term assets have positive loadings

on market excess returns, suggesting that short-term equity cash �ows share general in-

formation with long-term equity cash �ows, alphas relative to the Capital Asset Pricing

1Dividend derivatives have been traded over-the-counter since early 2000, and the most popular div-
idend contracts are index dividend swaps. Dividend derivatives were �rst traded on exchange in 2002
in South-Africa. Eurex launched dividend futures on the Dow Jones Euro index in 2008. NYSE Li�e
launched futures on the FTSE100 dividend index in 2009. According to the factbook of Eurex, open
interests and trading volumes of the Dow Jones Euro index dividend futures have been increasing sig-
ni�cantly since the launch, and the success of this product led to the subsequent launch of dividend
derivatives based on major equity indexes of various markets, including the FTSE 100, the S&P 500, the
Nikkei 225 and other equity indexes.
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Model (CAPM) is still signi�cantly positive. The Fama and French (1993) three-factor

model which adds the size factor (SMB) and the value factor (HML) slightly helps ex-

plain the high average risk premium of near-term cash �ows, mainly due to a positive

slope coe�cient on HML. However, the improvement is limited as the FF3-alpha remains

signi�cantly positive. van Binsbergen, Brandt and Koijen (2013) use dividend futures of

major equity indexes to study near-term dividend strips in the U.S., Europe and Japan

market and have similar �ndings. Cejnek and Randl (2016) use index dividend swaps to

construct short-duration assets in four markets. They also �nd that the short-duration

investment strategy outperforms the equity index on a risk-adjusted basis.

2.2 Dividends Paid by Individual Firms

2.2.1 Dividend Stickiness

Existing literature on the pricing of short-term equity cash �ows usually focus on index

dividends, while only a few papers examine properties of separate cash �ows for individ-

ual �rms. One reason for the lack of such studies is that the literature generally believes

that dividends paid by individual companies are sticky in the short run. Lintner (1965)

observes that managers believe that investors put a premium on stocks with stable divi-

dend payments. When setting dividends in a quarter, managers use the dividend of the

previous quarter as a benchmark and try to avoid dividend changes. He proposes a par-

tial adjustment model in which managers set a target payout ratio and adjust dividends

continuously towards this target ratio. Since the seminal work of Lintner (1965), the liter-
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ature has assumed that dividends are sticky and that such a conservative dividend policy

will result in little uncertainty about dividends paid by individual companies in the short

run. Several recent papers challenge this view by showing that dividend policies are more

�exible in recent years. For example, Brav, Graham, Harvey and Michaely (2005) adopt

the partial adjustment model of Lintner (1965) on a cross section of individual companies

and �nd that the median target ratio and adjusted-R2 of the regression model decreases

over time, indicating a deterioration of performances of the model and that target payout

ratios no longer play a central role in making dividend policies. Among the 384 �nancial

executives surveyed in the study, 45% of them claim that they are �exible in pursuing

dividend goals and 12% of them do not have a target dividend at all, suggesting that

dividend policies are more �exible in recent years. Some papers show that companies will

change dividends in response to changes in earnings quickly. In his paper, Lintner (1965)

concedes that �stockholders would understand and accept the cut in dividends in the

face of any substantial or continued decline in earnings.� Consistent with this view, Lie

(2005) �nds that companies cut dividends when there is a substantial concurrent decline

in earnings in a �scal year and increase dividends when there is a concurrent positive

shock to operating incomes. Kim, Lee and Lie (2017) �nd that when facing dividend

constraints, companies are more likely to cut dividends than to manipulate earnings to

avoid dividend cuts. Guttman, Kadan and Kandel (2010) �nd that the probability that a

company keeps dividends constant in the next year conditional on the company changed

dividends in the last year is 16%, and they conclude that a large proportion of dividend
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payers do not engage in the dividend smoothing practice. Bilinski and Bradshaw (2015)

�nd that during the sample period from 2000 to 2012, 62% of U.S. dividend payers in-

crease dividends and 11% of them cut dividends from last �scal year. They argue that

the variability of dividend payments can reduce investors' reliance on historical dividends

as a benchmark for future dividends and can increase their demands for explicit dividend

forecasts. Consistent with this conjecture, they document that from 2001 to 2012, the

percentage of dividend payers with analyst dividend forecasts increase from 3% to 96%,

suggesting that analysts provide more information about future dividends in response to

increasing demands on such information of investors. The uncertainty about dividend

payments in the short-run from individual stocks may comprise dividend risk premium

at the �rm level, which will a�ect the pricing of short-term dividend strips of individual

companies.

2.2.2 The Market for Trading Individual Dividends

Investigating the pricing of claims on dividends at the �rm level is of interest as investors

have increasing interests in trading dividends of individual stocks. In addition to the rising

of the market for index dividend derivatives, single stock dividend derivatives also gain

popularity among investors as attractive investment vehicles. Major investment banks

have traded single stock dividend risk since 2015. Trading individual dividend strips

expands investment opportunities and can provide further diversi�cation opportunities

for investors (Manley and Mueller-Glissmann, 2008). Besides, individual dividend strips

enable investors to have exposures to individual cash �ows linked directly to a company's
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income statement of a speci�c maturity without having exposures to the underlying risk,

which should appeal for fundamental investors who can forecast future cash �ows at

speci�c horizons and for institutional investors with a stream of liabilities at speci�ed times

like pension funds. Eurex introduced single stock dividend futures in 2010. At the end of

2018, the products are traded on around 150 largest companies in Europe and the U.S.

market, with an average daily volume of over 27,092 contracts. As trading claims on single

cash �ows of individual companies becomes popular, investors have growing exposures to

uncertain dividend payments of individual �rms caused by time-varying capabilities and

propensities to pay dividends. Studying the pricing of individual dividend strips can help

investors better manage dividend risk down to a corporate level.

Studying the pricing of individual dividend strips can help us understand whether

the high average return of index dividend strip documented by prior studies is due to an

imbalance in demand and supply of dividend risk. The empirical �nding that risk premium

is higher in the short run than in the long run is puzzling since many leading asset pricing

models suggest the opposite. There is a rapidly growing literature that aims to explain

the high near-term risk premium.2 Manley and Mueller-Glissmann (2008) suggest that a

possible reason for the high average return on index dividend strip is the excess supply

of dividend risk of banks, which have started issuing high volumes of structured products

often linked to an equity index since 2000 and need to sell index dividend strips to hedge

their exposures to dividend risks. Dividend strips of equity indexes can also be replicated

2van Binsbergen and Koijen (2017) comprehensively summarizes potential explanations for an average
downward-sloping term structure of equity.
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by a weighted portfolio of individual dividend strips, which are less likely a�ected by

such selling pressures. Investigating the pricing of the dividend strip aggregated from

individual dividend strips can provide a robustness check on whether the high dividend

premium at the market level is due to the excess selling pressure of dividend risk.

2.2.3 The Pricing of Individual Dividend Strips

The growing popularity in dividend stripping among investors and increasing interest in

studying the pricing and return of single cash �ows of index equity at di�erent maturities

in the equity pricing literature spur recent studies to estimate and examine returns of

dividend strips of individual stocks. Studying how single cash �ows at di�erent maturities

of individual stocks is essential to understand the formation of prices of equity at the �rm

level. Ang and Liu (2004) show that using constant discount rates of near-term and long-

term cash �ows when the term structure of equity is actually not �at can lead to severe

misvaluations of individual stocks.

Several recent papers examine the pricing of near-term cash �ows of individual �rms.

To study separate cash �ows of individual stocks, some papers use historical �nancial

statements information or equity market data and usually make assumptions about the

cash �ow process and discount rate process. For instance, assuming that both returns

on equity and expected stock returns follow mean-reverting processes and using a log-

linearization approach, Lyle and Wang (2015) develop a stock price valuation model in

which expected return is a function of book-to-market ratio and return on equity. Using

historical accounting and stock return data, they estimate the expected holding period
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return of individual �rms at di�erent horizons and �nd the expected returns can predict

cross-sectional future stock returns. A potential problem of such an approach to estimate

return on single cash �ows is that results depend on the assumptions made about the

cash �ow process and discount rate process. More recently, several papers use derivative

data to examine the risks and returns of claims on near-term cash �ows of individual

companies. Callen and Lyle (2019) use options written on individual stocks in the U.S.

market to estimate the term structure of implied cost of capital at the �rm level, and

they �nd that option-implied cost of capital can predict future stock return and earnings

announcement premium. They document cross-sectional di�erences in the term structure

of implied cost of capital: �rms that have higher beta, lower pro�tability and more growth

opportunity have a more upward-sloping term structure. Their estimation of the term

structure of equity needs specifying a functional form for the stochastic discount factor

and thus is not fully model-free. Besides, they not only use options data but also use

historical equity market data to estimate the expected correlation between individual

stock return and market portfolio return. In a recent paper by Gormsen and Lazarus

(2019), they use single stock dividend futures to examine returns on dividend strips of

individual �rms up to �ve years during a sample period from 2010 to 2018. Although the

market for single stock dividend futures is developing rapidly, the market is still young

and their sample only covers about 150 �rms with very large market capitalization.They

do not �nd signi�cant cross-sectional variations on near-term dividend strips among their

sample of stocks. Clara (2018) uses individual equity options in the U.S. market to
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estimate near-term and long-term market betas of individual stocks. He �nds that the

slope of the term structure of beta can positively predict future stock return and is a

priced factor in the cross section of stock returns, even after controlling for the level of

term structure and for Fama and French (1993) three risk factors.

2.3 Incremental Contributions

This thesis is di�erent from prior studies and contributes to the literature in several ways.

First, contrary to the assumption made by prior literature, I document considerable vari-

ability in dividends from quarter to quarter of individual stocks. The uncertainty of

dividend payments at the �rm level suggests that in addition to studying the pricing of

near-term dividend strips at the aggregate level, it also stands to examine the pricing of

claims in dividends at the corporate level.

Second, this study provides a model-free approach to calculate prices and returns of

near-term dividend strips of individual �rms. To calculate prices of individual dividend

strips, I only use individual equity options data but not historical data on �rm fundamen-

tals or past equity market data. Using options data has the advantage that options prices

contain forward-looking information about the underlying stocks. Another advantage of

using options data is that the market of exchange-traded individual equity options is more

developed and liquid than the market of other derivatives in the U.S., and the proportion

of listed stocks with options traded is large and growing over time. Besides, the approach

to compute dividend strip prices from options data only requires no-arbitrage relations.
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It does not rely on a speci�c model and is free from assumptions on the process of cash

�ows or discount rates. This model-free approach presents its own issues that the esti-

mated prices of dividend strips can be contaminated by early exercise premiums (EEP)

of American-style options and short-sale constraints of underlying stocks (Ofek, Richard-

son and Whitelaw, 2004). I do robustness checks to alleviate the e�ects of these issues

and �nd that the main empirical results are not signi�cantly a�ected after controlling for

short-sale constraints and adjusting for EEP. In short, this paper provides a model-free

approach to directly and reliably estimate price and return on cash �ow at a particular

maturity date for individual stocks.

Third, the option-implied dividend is the present value of the expected future dividend

and is determined by the expected dividend growth rate and dividend risk premium. Prior

studies estimate expected dividends from options prices and �nd that option-implied divi-

dends can predict realized dividends (Bae-Yosef and Sarig, 1992; Fodor, Stowe and Stowe,

2017; Kragt, 2017). However, no existing study has considered individual option-implied

dividend as a measure of the price of dividend. This paper complements the literature by

showing that individual equity options prices also contain information about near-term

dividend risk premiums of individual �rms.

Next, this study is the �rst to document that returns on near-term dividend strips vary

across stocks and that the variations in returns are driven by di�erences in risk exposures

of near-term cash �ows. The �ndings suggest that variations in returns on the short-end

of the term structure of equity across stocks may also contribute to cross-sectional vari-
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ations in stock returns and that it is important to estimate a term structure of equity at

the �rm level.

Finally, this thesis con�rms and provides a possible explanation for the high average

return on index dividend strips documented by prior studies. The dividend strip aggre-

gated from individual dividend strips also earns an average return higher than that of the

equity index, ruling out the possibility that the high average return on the short-term

asset synthetically created from equity derivatives is simply driven by selling pressure of

dividend risk. Prior studies about the pricing of dividend strips at the market level �nd

that the CAPM has di�culty in explaining the average return on short-term assets, and

that introducing the size factor (SMB) and the value factor (HML) as in the Fama and

French (1993) three-factor model (FF3) does not produce improvements, leaving the high

average return on short-term claims a puzzle. Consistent with the �nding of prior studies,

I also �nd that the CAPM and the FF3 are incomplete descriptions of returns on short-

term dividend strips, both at the aggregate level and in the cross section of individual

stocks. I investigate whether the Carhart (1997) four-factor model which adds the mo-

mentum factor (UMD) and the Fama and French (2015) �ve-factor model which adds the

pro�tability factor (RMW) and the investment factor (CMA) are better descriptions of

average returns on near-term dividend strips. The results from asset pricing tests indicate

that the �ve-factor model can well explain the average return on the aggregate dividend

strip and the cross-sectional di�erences in returns on dividend strips of individual stocks,

suggesting that RMW and CMA may help explain the high near-term equity premium
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at the market level. Besides, if an asset pricing model is correctly speci�ed, the model

should be able to describe returns on all assets at all maturities. Using the individual

dividend strips as testing portfolios for asset pricing models complements existing studies

about the performances of models in describing asset returns.

28



Chapter 3

Data and Sample

The sample of this study includes common stocks listed on NYSE, AMEX or NASDAQ

during the sample period from January 1996 to December 2017 with options traded on

the stocks. Stocks that have prices lower than $5 at the quarter end are excluded from

the sample. Monthly data of individual companies are obtained from the Center for Re-

search in Security Prices (CRSP). CRSP also provides data on the amount, frequency of

payments, ex-dividend date and announcement date of cash dividends. However, CRSP

does not provide information about dividend announcement date if a �rm does not pay a

cash dividend in a given quarter. In this case, I use the earnings announcement date as

the dividend announcement date for the �rm in that quarter. Annual and quarterly infor-

mation about �nancial statements is obtained from CRSP/Compustat Merged database.

Daily option data, including closing bid and ask options price, open interest, trading vol-

ume, strike price, maturity date and implied-volatility, are obtained from OptionMetrics.

OptionMetrics also provides continuously compounded risk-free interest rates at di�erent
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maturities.3 Data on institutional holdings are obtained from the Thomson Financial In-

stitutional Holdings (13F) database. Stocks that cannot be matched with the companies

in the database are assumed to have zero institutional holdings.

[Insert Table 1 here]

During the sample period, in total, there are 8,355 unique individual stocks that can

be matched with exchange-traded options. On average, in a quarter, there are 2,385

stocks in the sample. The upper part of Panel A of Table 1 reports summary statistics

of characteristics of underlying stocks with options traded. For easy comparison with the

full sample of stocks listed on the three major stock exchanges, the lower part of Panel

A reports summary statistics of characteristics for the full sample of stocks. Statistics

are computed across stocks in each quarter, and the table reports time-series averages

of statistics. Equity characteristics are computed following prior literature. Firm size

is the product of stock price per share and total number of shares outstanding at the

end of June in a year. Stocks in the sample have an average logarithm of �rm market

capitalization (LogSIZE) of 20.97, higher than the average �rm size of the full sample of

stocks (average LogSIZE is 19.55), indicating that stocks with options traded tend to be

large �rms. Book-to-market ratio (BM) is the ratio of the book value of common stocks

for the �scal year ending in the last year over the market value of equity at the end of

December of last year. Stocks in the sample have an average BM of 0.57, which is lower

3The interest rate provided by OptionMetrics is a zero curve derived from LIBOR rates of the British
Bankers' Association (BBA) and settlement prices of Chicago Mercantile Exchange (CME) Eurodollar
futures.
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than the mean value of BM (0.69) for the full sample of stocks. The lower mean value of

BM suggests that stocks with options tend to be growth �rms. Investment is measured

as the annual growth rate in total assets (ATG) from the �scal year ending in the year

before last year to the �scal year ending in the last year. Stocks with options traded

have an average ATG of 24%, higher than the average ATG of 19% for the full sample of

stocks. Operating pro�tability (OP) is equal to annual revenues minus cost of goods sold,

interest expense, and selling, general, and administrative expenses divided by the book

value of equity for the �scal year ending in the last year. Stocks in the sample are on

average more pro�table (average OP is 31%) than the full sample of stock (average OP

is 17%). Average compounding return in the past six months (RET(−1,−6)) of stocks

with options traded is 7.66%, higher than mean RET(−1,−6) of all listed stocks (6.79%),

indicating that stocks in the sample tend to be past winners. As in Nagel (2005), I use

the percentage of institutional holdings (PIH), which is equal to the sum of stock holdings

of all reporting institutions for a stock in a quarter divided by the stock's total number of

shares outstanding at the end of that quarter, as a proxy for short-sale constraint. The

lower the PIH, the greater the short-sale constraint is. On average, 66% of shares of stocks

in the sample are held by institutional investors, while the full sample of stocks have an

average PIH of 46%, suggesting that stocks with options traded have lower short-sale

constraints.

At the end of each quarter, I compute cross-sectional Pearson correlations between

each pair of stock characteristics and report time-series averages of the correlations in
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Panel B of Table 1. Average correlations between all pairs of variables for the sample

with options traded (reported in the upper part) have the same signs with the counter-

parts for the full sample of listed stocks (reported in the lower part). For both samples,

stock characteristics have strong correlations with each other, except for the correlation

between ATG and OP for the full sample of stocks, which is insigni�cantly negative. The

results show that LogSIZE is on average positively correlated with ATG, OP, RET(−1,−6)

and PIH, while is on average negatively correlated with BM, consistent with the results

reported in Panel A that stocks with options with larger �rm sizes have higher ATG, OP,

RET(−1,−6), PIH and lower BM than the full sample. Consistent with the �nding in

Fama and French (2015), BM has negative associations with OP and ATG, suggesting

that value stocks tend to have weaker pro�tability and more conservative investments than

growth stocks. The negative relation between BM and RET(−1,−6) indicates that value

stocks tend to be past losers. On average, ATG is negatively correlated with OP and RET

(−1,−6), suggesting that �rms with aggressive investments tend to have weaker pro�tabil-

ity and earn lower historical returns. Pro�table stocks tend to outperform unpro�table

stocks in the last few months, as evidenced by the positive correlation between OP and

RET(−1,−6). Institutional holdings are strongly correlated with equity characteristics.

PIH is positively correlated with LogSIZE, ATG, OP and RET(−1,−6) and is negatively

correlated with BM, indicating that institutional holders tend to hold stocks with large

market capitalization, high asset growth rate, robust pro�tability, high historical return

and low book-to-market ratio.
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Chapter 4

Uncertainty of Individual Dividends

Empirical �ndings of recent studies suggest that contrary to the widespread belief of

smoothing dividends in the short run, there is considerable variability in dividend pay-

ments at the corporate level. In this section, I examine how uncertain quarterly dividends

of individual companies are. The uncertainty of quarterly dividends is measured by the

degree of deviation of realized dividends from expected dividends. Investors' expecta-

tions of dividends in the next quarter are not directly observable. I use either historical

dividend or analyst consensus forecast on dividend as a proxy for expected dividends.

4.1 Variability of Dividends: Naive Model

The `Naive Model', which assumes that investors expect the dividend to be paid in the

next quarter to remain the same as the dividend paid in the last quarter, is commonly

used by the literature to measure dividend surprises. I �rst follow the literature and use

the historical dividend to measure the expected dividend.

During the sample period from January 1996 to December 2017, 9,182 stocks listed on
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the three stock exchanges have ever paid a positive regular cash dividend,4 among which

4,796 stocks have options traded. Among 608,729 quarterly cash dividends of the full

sample of dividend payers, 29.75% of quarterly dividends represent an increase compared

to the dividend paid in the same quarter of last �scal year, and quarterly dividends are

reduced in 13.61% cases. For the sample of dividend payers with options traded, the

frequency of quarterly dividend changes is higher while the frequency of dividend cut is

lower. For the stocks with options, 46.12% of the 287,319 quarterly dividend payments

constitute a change in the amount of dividend, with dividend increase nearly four times

(35.23%) as often as dividend decrease (10.90%). The results indicate that dividend

changes are not rare events for individual companies.

I use the root mean squared error (RMSE) of quarterly dividend growth rate to mea-

sure the extent of variability of dividend payments. In a quarter q, for a stock i that

has ever paid a positive cash dividend during the sample period, I calculate its quarterly

dividend growth rate, gd,iq , as the percentage change of quarterly dividend:

gd,iq =
Di
q

Di
q−4

− 1, (4.1)

where Di
q is the dividend per share of stock i in quarter q and Di

q−4 is the dividend

per share of stock i in the previous fourth quarter.5 Quarterly dividends are compared

with quarterly dividends paid in the same �scal quarter in the previous year to diminish

4To reduce e�ects of extreme values, special dividends, which account for less than 0.5% of all dividend
announcements, are excluded from the sample.

5In case of monthly dividend frequency, the quarterly dividend Di
q is equal to the sum of monthly

dividends paid in that quarter. In case of semi-annual or annual dividend frequency, Di
q is equal to half

of the semi-annual dividend or a quarter of the annual dividend.
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seasonality in quarterly dividend payments. Note that the equation only applies to cases

when the historical dividend Di
q−4 is positive. In case that both the current dividend D

i
q−4

and the historical Di
q−4 are zero, the quarterly dividend growth rate is equal to zero.6 For

stocks with at least 12 quarters of observations, I compute the root mean squared error

(RMSE) of quarterly dividend growth rate, RMSE(gd,i), which is the square root of the

time-series average squared dividend growth rate,7 to measure the uncertainty of quarterly

dividends of the stock i.

[Insert Table 2 here]

Panel A.1 and A.2 of Table 2 report the summary statistics of quarterly dividend

growth rate and its root mean squared error across all stocks listed on NYSE, AMEX

and NASDAQ (8,571 stocks in total) and the sample of stocks with options traded (4,388

stocks in total). For the quarterly dividend growth rate, I �rst compute its time-series

average for each stock, and the table reports cross-sectional distributions of the average

dividend growth rate. The quarterly dividend growth rate (gd) is on average positive

for both samples of stocks. Quarterly dividend payments of the sample with options

grow faster (mean value of gd = 2.02%) than the full sample of stocks (mean value of gd

= 1.17%). On average, individual stocks' variability of quarterly dividend growth rate

(RMSE(gd)) is 31.85%. There is cross-sectional dispersion in dividend uncertainty. The

6The dividend growth rate cannot be calculated in cases of dividend initiations since the actual divi-
dend is positive while the last dividend is zero. Excluding dividend initiations will lead to underestimation
of the variability of dividend payments.

7I assume that investors' expected dividend growth rate is zero. I also use average quarterly dividend
growth rate in the previous three years as an alternative proxy for expected dividend growth rate and
�nd qualitatively similar results.

35



CHAPTER 4. UNCERTAINTY OF INDIVIDUAL DIVIDENDS

stock in the 25th percentile has a RMSE(gd) of 16.33% while the stock in the 75th per-

centile has a RMSE(gd) of 52.10%. Distributions of RMSE(gd) are similar among stocks

with options traded, with the mean value of RMSE of dividend growth rate slightly lower

(mean value of RMSE(gd) = 28.64%) than that of the full sample. The high average

variability of quarterly dividend growth rate indicates large magnitudes of changes in div-

idend payments from quarter to quarter and suggests considerable uncertainty in quarterly

dividend payments of individual companies.

4.2 Variability of Dividends: Analyst Forecast

While the `Native model' is commonly used in the literature, some studies �nd that

historical dividend is not a good proxy for investors' expected dividends because the

model does not incorporate the market's most recent expectations since the last dividend

payment (Yoon and Starks, 1995). Bae-Yosef and Sarig (1992) show that actual changes

in dividends are not correlated with the market's responses to dividend announcements.

Another estimate of expected dividend is the average analyst dividend forecast. Andres,

Betzer, van den Bongard, Haesner and Theissen (2013) document signi�cant stock price

reactions to dividend surprises measured as the di�erence between the actual dividend

and consensus analyst dividend forecast. After controlling for analyst dividend surprise,

they �nd no signi�cant relation between actual dividend changes and abnormal stock

returns around dividend announcements, suggesting that analyst dividend forecast is a

better measure of expected dividend than historical dividend. In the U.S. market, analyst
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forecasts for quarterly dividends have been available since 2001, and the proportion of

companies with dividend forecast is growing rapidly over time. Data on actual dividends

and analyst consensus forecasts are obtained from the Institutional Brokers' Estimate

System (I/B/E/S). From 2001 to 2017, analysts provide forecasts on quarterly dividends

for 4,867 stocks in total. Since the number of stocks with dividend forecasts is too small

in 2001, I use a sample period from 2002 to 2017.

For a �rm i that announces an actual dividend per share in a �scal quarter q, Di
q, I

use the last consensus8 forecast on dividend per share for the next �scal quarter9 made by

analysts prior to the announcement of dividend payments to measure expected dividend,

Eq−1(Di
q). Analyst dividend forecast error, ed,iq , is measured as:

ed,iq =
Di
q − Eq−1(Di

q)

Eq−1(Di
q)

. (4.2)

The equation only applies when a forecast dividend per share is positive. In case that

both the actual dividend and the forecast dividend are zero, the dividend forecast error

is zero. To ensure that dividend forecasts re�ect the most recent information, I exclude

observations when no analyst forecasts are available one month preceding dividend an-

nouncements. The sample only includes stocks covered by analysts for at least 12 quarters.

The requirements reduce the �nal sample to 4,655 stocks, among which 3,984 have options

traded. For each stock i meeting the requirements, I calculate the root mean squared an-

alyst dividend forecast error, RMSE(ed,i), which is the square root of time series average

8Consensus forecast is a simple average of dividend forecasts made by all analysts. I also use the
median of dividend forecast and �nd similar results.

9Forecast Period Indicator is 6.
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squared dividend forecast error, to measure its variability of dividend payments.

Prior studies �nd that �rm size is an important determinant of analyst following

(Barth, Kasznik and McNichols, 2001). To compare the sample with and without analyst

following, I compute summary statistics of the mean and RMSE of quarterly dividend

growth rate for the sample of stocks covered by analysts during the sample period from

2002 to 2017 and report the results in Panel A.3 and A.4 of Table 2. Compared with the

full sample of listed stocks, stocks followed by analysts have a higher average dividend

growth rate (mean value of gd = 2.26%). The average RMSE of dividend growth rate for

listed stocks with analysts following is 29.82%, lower than the counterpart value for the

all listed stocks, suggesting that analysts on average tend to cover stocks with relatively

less variable dividend policies.

Panel B of Table 2 reports distributions of time-series average of analyst dividend fore-

cast error and root mean squared analyst dividend forecast error across all stocks covered

by analysts and for the subsample of stocks with options traded. For both samples, the

mean values of dividend forecast errors are positive, suggesting that on average, analysts

make conservative estimates of future dividends. The average root mean squared dividend

forecast error, RMSE(ed), is 26.31%, for the full sample. The �rst and third quartiles of

RMSE(ed) are 9.44% and 45.43%, respectively, which indicates that the accuracy of div-

idend forecast varies across stocks. Results are similar when the sample is reduced to

stocks with options traded, with the average RMSE(ed) slightly lower that of all stocks

covered by analysts. The high average variability of dividend forecast error demonstrates
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di�culty in accurately forecasting dividend payments in the next quarter.

In short, I �nd that on average there is considerable uncertainty in quarterly dividend

payments at the �rm level when the expected dividend is measured either by historical

dividend or by consensus analyst dividend forecast and that there is cross-sectional disper-

sion of dividend uncertainty among individual stocks. Investors' exposures to uncertain

dividend payments in the next quarter should be compensated by dividend risk premium,

which will a�ect the pricing of claims on near-term dividends of individual stocks. In

the following chapters, I use the put-call parity relation to compute prices of individual

dividend strips from individual equity options and examine the risk and return properties

of the short-term assets at both the aggregate level and the �rm level.
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Research Methodology

5.1 Option-Implied Dividend

Suppose that a stock i pays quarterly dividends at the end of each quarter. Let Di
q+1

be the cash dividend of the stock i to be paid in the next quarter q + 1 and DIiq is the

price of the dividend in the next quarter at the end of this quarter q. 97.5% of dividend

payers in the sample pay quarterly dividends. In case that a stock pays monthly dividends

(0.64% of the sample), the unknown dividend in the next quarter is de�ned as the sum

of the three nearest unknown monthly dividend payments. In case that a stock pays

semi-annual or annual dividends (0.97% and 0.88% of the sample, respectively), quarterly

dividends in �scal quarters with no dividends are assumed to be announced as zero on

earnings announcement dates in that quarter. Special dividends (0.02% of the sample)

are excluded. Since the Options Clearing Corporation (OCC) adjusts options strike prices

for extraordinary dividends,10 options prices should not contain information about special

10Before February 1st 2009, dividends greater than 10% of the value of the underlying stock triggers an
option contract adjustment, so dividends with an amount higher than 10% of stock prices are excluded.
After February 1st 2009, ordinary dividends are de�ned as "cash dividends declared pursuant to a policy
or practice of paying such dividends on a quarterly or other regular basis". From then on, the OCC
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dividends.

Prices of dividend strips can be calculated either from futures or options on underlying

stocks. I use individual equity options because the options market of individual stocks is

more developed and liquid than the futures market in the U.S.. In the absence of arbitrage

opportunities, the put-call parity relation for European-style options should hold (Stoll,

1969), and the price of the dividend strip at the end of quarter q is given by:

DIiq = P i
q(T,K) + Siq − Ci

q(T,K)−KeR
f
q τ , (5.1)

where P i
q(T,K) and Ci

q(T,K) are mid prices of put and call options written on the un-

derlying stock i with strike price K and maturity date T at the end of quarter q, Siq is

quarter-end closing price of the stock i, Rf
q is the continuously compounding risk-free rate

at the quarter end, and τ = T − q is the time to maturity of options. For a pair of options

which mature on a given date, the appropriate risk-free rate should be the one of the

risk-free bond with a maturity date equal to that of the options. In case that the risk-free

rate for a given option maturity is not available, I linearly interpolate between the two

risk-free rates with closest maturities. The no-arbitrage relation shows that a dividend

strip can be synthetically replicated by buying a put option, writing a call option, buying

an underlying stock, and borrowing cash.

For a stock i at the end of a quarter q, I select pairs of call and put options that meet

the following criteria. To ensure that options have relatively high liquidity, only near the

adjusts extraordinary cash dividends with an amount of at least $12.50 per contract. After the new
dividend adjustment policy is adopted, I exclude dividends with a CRSP dividend code 1272 and with a
size of at least $0.125.
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money (0.8 6 K/S 6 1.2) and short-to-intermediate time-to-maturity options (20 6 τ 6

180) options are used. Closing bid and ask prices of options should be at least $0.5, and

closing bid price should be positive. I also require options to have positive open interests

and valid implied-volatility. Besides, options should not violate the no-arbitrage bounds

for American-style options (Guo and Su, 2006):

Ci
q(T,K) +KeR

f
q τ 6 P i

q(T,K) + Siq 6 Ci
q(T,K) +K + PVq(D

i
q+1). (5.2)

The left inequality imposes that the option-implied dividend is non-negative. The right

inequality ensures that the option-implied dividend is bounded from above to avoid arbi-

trage opportunities.11 The choice of the maturity date of options is important. For a stock

at the end of a quarter, I use the stock's cash dividend history to forecast its ex-dividend

dates of future dividends. Options should mature after the expected ex-dividend date

of the �rst unknown quarterly dividend but before the expected ex-dividend date of the

second unknown quarterly dividend. Thus, during the life of the options, the underlying

stock only has one cash dividend payment, and the synthetic dividend strip created from

the options entitles investors to and only to the nearest uncertain dividend. In case that

an option expires after ex-dividends of announced dividends, present values of announced

dividends are subtracted from the option-implied dividend. The option pricing date should

11Since the dividend to be paid in the next quarter q + 1 is unknown at the end of this quarter q, I
simply use the most recently announced dividend to estimate it. Other approaches to estimate Di

q+1 for
calculating the upper no-arbitrage bound do not change the empirical �ndings. The estimated price of
an individual dividend strip can be close to zero, and return on a dividend strip can be very high. To
mitigate noises in the estimation of prices of individual dividend strips, I only use the prices of synthetic
dividend strips with a quarterly return lower than or equal to 300%. Increasing the upper bound of
return to 500% or 1000% does not change the empirical results.
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be earlier than the dividend announcement date for the next not yet announced dividend

so that the actual dividend amount is uncertain, and the option-implied dividend at the

quarter end contains dividend risk premium information. Among options that meet all

the �ltering criteria above, I select the most at-the-money pair of put and call options

(i.e., K/S ratio closest to 1). The most at-the-money options have relatively high liq-

uidity. Besides, individual equity options traded in the U.S. market are American-style

options, so the option-implied dividend is biased by the di�erence between early exercise

premium (EEP) of put and call options. Using the most at-the-money options mitigate

errors in the price of dividend strip due to EEP because EEPs of at-the-money put and

call options have similar magnitudes and tend to o�set each other. In case that multiple

pairs of the most at-the-money options are available, I choose the pair of options with

time-to-maturities closest to 90 days.

[Insert Table 3 here]

Table 3 reports characteristics of individual equity options used to replicate claims on

near-term dividend payments of individual companies in the sample. As I restrict options

to near-the-money and short-to-intermediate maturity options, the average K/S ratio is

close to 1.00 and options have an average time to maturity (τ) of 90 days. The average

implied volatility (IV) is 49%. Open interest (OI) and daily trading volume (VOL) are on

average 911 contracts and 45 contracts, respectively, and both variables are right skewed.

Though the mean values are not low, quite a portion of options have zero daily trading

volumes or low open interests. The low liquidity of some options presents the issue that
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option-implied dividend may be contaminated by errors and noises in the options market

and may not re�ect option traders' most recent expectations about future dividends. To

address this concern, I use speci�c examples to examine information contents of option-

implied dividends.

5.2 Examples of Changes in Dividend Policies and In-

formation Contents of Option-Implied Dividends

Option-implied dividend (DI) is equal to the present value of the expected dividend and

is determined by options traders' expectations on the future dividend and dividend risk

premium. I take four speci�c dividend events, (1) the dividend initiation in 2012 and

(2) the dividend increase in 2013 of Apple Inc., and (3) the dividend cut in 2006 and

(4) the dividend omission in 2008 of General Motors Company, as examples to show that

dividends implied from options prices contain investors' anticipations for future dividends

before announcements.

Apple Inc.'s Dividend Initiation in 2012

Apple Inc. began to pay quarterly dividends since 1987 while stopped dividend payments

in 1995. During the past two decades, the company has a rapidly growing business and

a record of continuous pro�tability over the years. At the end of 2011, Apple Inc. has

become one of the largest �rms with a market capitalization of $377 billion and a giant

estimated cash holding of $80 billion, and the rumor was around that the company would

restart to pay cash dividends. On March 19th 2012, Apple Inc. stated its intention to
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initiate quarterly dividends from the fourth quarter of that year. On July 24th 2012, the

company announced that it would pay a quarterly dividend of $2.65 per share with an ex-

dividend date on August 9th 2012. For each day from the last quarter in 2011 until the last

quarter in 2012, I calculate option-implied dividends from prices of pairs of options which

expired on July 20th 2012 or on Oct 19th 2012, and take a simple average of option-implied

dividends across strike prices to get a daily average option-implied dividend. Then for each

week, I calculate an average option-implied dividend by averaging daily option-implied

dividends in that week. Figure 2(a) shows the time-series plot of weekly average option-

implied dividends calculated from options with two di�erent expiration dates 25 weeks

before and after the date of the public statement of dividend initiation in March 2012.

Before the company publicly stated its intention to initiate dividends, average implied

dividend had already increased from close to zero at the end of 2011 to about $0.5 per

share from options which expired on July 24th 2012 and to about $1 per share from options

which expired on October 19th 2012 as the statement date approached. The increasing

tendency of DI suggests that as new information arrived, investors' anticipation for the

future dividend increased. Note that the dividend implied from options that matured

in the fourth quarter of 2012 is generally higher than it is implied from options that

mature in the third quarter of 2012 because investors expect more dividends to be paid

during a more extended time length. After the company publicly stated its intention

to initiate dividends from the fourth �scal quarter, dividend implied from the option

expiring on July 24th 2012 decreased to nearly zero, indicating that investors were aware
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that dividend strips synthetically created from options expiring in July 2012 would not be

entitled to the cash dividend with an ex-dividend date in the fourth quarter of 2012. In

contrast, dividend implied from options expiring in late October 2012 gradually increased

from about $1 on the initial statement date to about $2.5 before the company announced

on July 24th 2012 that the exact ex-dividend date of the �rst cash dividend was August

9th 2012. After the announcement date, the option-implied dividend was near the realized

amount of $2.65 per share and decreased to near zero after the ex-dividend date. The

results suggest that options prices had re�ected investors' anticipations of the dividend

initiation before Apple Inc. publicly stated it. The di�erent patterns of dividends implied

from options with di�erent maturity dates suggest that investors consider not only the

amount but also the timing of future dividends.

Apple Inc.'s Dividend Increase in 2013

After its dividend initiation in late 2012, Apple Inc. maintained a quarterly cash divi-

dend of $2.65 per share for three quarters. On April 23th 2013, the company announced

that starting from the second quarter in 2013, its quarterly dividend would increase to

$3.05 per share, with the �rst ex-dividend on May 9th 2013. Figure 2(b) plots the time

series of implied dividends from prices of options which expired on July 19th 2013 from

the last ex-dividend date February 7th 2013 to one week after the ex-dividend date May

9th 2013. The plot shows that the option-implied dividend was initially around the level

of the last cash dividend ($2.65 per share), while about two weeks before the announce-

ment of dividend increase, the option-implied dividend gradually increased to about $3
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per share, suggesting that option-traders anticipated the dividend increase. Once the

new quarterly dividend was announced, there is a jump in option-implied dividend on

the announcement date, and the implied dividend remained close to the realized amount

until the ex-dividend date in May 2013.

The two examples of Apple Inc. show that options traders anticipate dividends to in-

crease when the company has robust pro�tability, and options prices incorporate investors'

expectations for future dividend increases.

General Motors' Dividend Cut in 2012

Next, I examine whether options prices re�ect decreases in dividends before announce-

ments, taking two dividend events of General Motors Company as examples. General

Motors is one of the largest automakers in the U.S.. From 1997 to 2005, the company

paid a steady quarterly dividend of $0.5 per share. However, since 2003, General Mo-

tors was haunted by several recall scandals and was burdened by huge health costs for

retired employees, and its stock price dwindled from over $60 in early 2003 to under

$20 in early 2006. After years of �nancial losses and market share losses to Japanese

automakers, since 2006, General Motors began to carry out bold restructures of opera-

tions, which would require massive investments. To save costs, on February 7th 2006, the

company announced that it would reduce quarterly dividends by half to $0.25 per share.

Figure 3(a) shows daily average dividend implied from options which expired on March

17th 2006 from the last ex-dividend date (November 8th 2005) of the original dividend to

one week after the ex-dividend date (February 14th 2006) of the reduced dividend. The
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option-implied dividend remained close to the $0.5 per share since the last dividend was

declared. On January 28th 2006, General Motors announced a net loss of $4.8 billion in

the fourth quarter of 2005, which was its �fth consecutive quarterly loss, and a net loss

of $8.6 billion for the entire �scal year of 2005, which was its �rst unpro�table year since

1992. After the earnings announcement, the option-implied dividend dropped to lower

than $0.3 per share, suggesting that option-traders lost faith in the company's ability to

maintain the historical dividend in light of its substantial �nancial losses. General Motors

�nally announced to cut its quarterly dividend by half on February 7th 2006, and the

dividend implied from options were close to the realized dividend until the ex-dividend

date.

General Motors' Dividend Omission in 2012

General Motors maintained a quarterly cash dividend of $0.25 per share from the �rst

�scal quarter of 2006 to the second �scal quarter of 2008. However, since the third �scal

quarter of 2007, a�ected by the subprime crisis, the company posted four consecutive

quarterly losses and announced a plan to suspend its quarterly dividend on July 15th

2008. I compute daily average dividend implied from options with an expiration date on

September 9th 2008 around the date when the intention to omit dividend was publicly

stated. As shown in Figure 3(b), before the dividend suspension was announced, there

was a gradual decline in option-implied dividends and a deep drop in implied dividends on

June 26th 2008, when the stock price of the company plumbed to its lowest level during the

past thirty years. After the company announced the dividend suspension, option-implied
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dividends dropped to around zero.

The two example of the General Motor illustrate that options traders expect decreases

in dividends when the company is faced with dividend constraints and weak pro�tability.

5.3 Return on Dividend Strip

Quarterly return on an individual dividend strip, riq+1, is equal to the payo� of the dividend

strip in the next quarter, xiq+1, divided by the price of the dividend strip at the end this

quarter, DIiq, minus 1:

riq+1 =
xiq+1

DIiq
− 1. (5.3)

For quarterly dividend payments, if the �rst unknown quarterly dividend is announced

in the next quarter q+ 1, the payo� of the stock i's dividend strip is the realized dividend

payment, Di
q+1, and the quarterly return on dividend strip is given by:

riq+1 =
Di
q+1

DIiq
− 1. (5.4)

In case that the �rst unknown quarterly dividend is not announced in the next quarter,

the quarterly return on stock i's dividend strip is the percentage change in the value of

the dividend strip from the end of this quarter q to the end of the next quarter q + 1:

riq+1 =
DIiq+1

DIiq
− 1. (5.5)

For stocks that pay monthly dividends, some of the three nearest not-yet-declared

monthly dividend payments may be announced in the next quarter while some may remain
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undeclared in the next quarter. In this case, the payo� of the dividend strip is made up of

two parts: the income component, which is any realized dividend(s) in the next quarter,

and the price component, which is the value of not-yet-declared dividend(s) at the end of

next quarter, and the return on the dividend strip is given by:

riq+1 =
Di
q+1 + DIiq+1

DIiq
− 1. (5.6)

5.4 Summary Statistics of Prices and Returns of Indi-

vidual Dividend Strips

[Insert Table 4 here]

Table 4 tabulates summary statistics of annual dividend yield DYq+1 = Dq+1/Sq ×FR,

annual option-implied dividend yield IDYq = DIq/Sq ×FR, where FR is the frequency

of cash dividends paid in a year, annual dividend premium DP, de�ned as the di�erence

between realized and options implied annual dividend yield, and the quarterly return on

individual dividend strips. Panel A reports results for all stocks with options traded.

Stocks in the sample have an average annual dividend yield of 1.18%, higher than the

average annual option-implied dividend yield of 1.10%. Annual dividend premium is on

average 0.08%, indicating that investors on average ask for a positive risk premium on

claims on near-term dividends of individual companies. Dividend premium varies across

stocks: the average �rst quartile of DP is −0.72% and the average third quartile of DP is

0.90%. The average quarterly return on dividends trips of stocks in the sample is 3.12%,

with a �rst quartile and third quartile of −13.07% and 19.69%, respectively, suggesting
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that returns on short-term assets of individual stocks are high on average and that there

are substantial variations in dividend strip returns among stocks.

Since options traded on individual stocks in the U.S. are American-style options,

dividends implied from the put-call parity relation are contaminated by early exercise

premium (EEP). I substitute OptionMetrics implied-volatility and the most recently an-

nounced dividend into the Black and Scholes (1973) option-pricing formula to calcu-

late hypothetical European put and call options prices, and use the prices to calculate

EEP-adjusted option-implied dividends. Panel B of Table 4 reports time-series averages

of statistics of annual dividend yields, annual EEP-adjusted options-implied dividend

yields, annual EEP-adjusted dividend premium and EEP-adjusted return on dividend

strips across stocks for which valid EEP can be estimated.12 After adjusting for EEP,

the average IDY is 1.04%, lower than the average IDY without adjusting for EEP, and

the average quarterly return on dividend strips is 3.98%, slightly higher than the coun-

terpart without adjusting for EEP. Note that distributions of DY in Panel B are di�erent

from those in Panel A because some stocks are removed from the sample due to the in-

consistently estimated EEP. To quantify the e�ect of EEP on option-implied dividends,

12When calculating implied volatility, OptionMetrics uses a proprietary algorithm to estimate the
frequency, timing, and amount of dividends. Speci�cally, OptionMetrics uses a stock's cash dividend
history to forecast the timing of dividends paid during options lives and calculates a stock's current
dividend yield, which is de�ned as the amount of most recently announced cash dividend divided by the
current price of the stock. The current dividend yield is assumed to remain constant during the remaining
term of options. I follow the documentation from OptionMetrics to forecast future dividend payments
and substitute the present value of dividends into the Black and Scholes (1973) option-pricing formula.
However, my estimation of future dividends may not be exactly the same as theirs and thus may result
in inconsistency. I drop about 2% of the observations for which the EEP-adjusted options price is less
than half of the market price, or the estimated EEP is negative with a magnitude greater than 5% of the
market price.
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I compute the di�erence between IDY with and without adjusting for EEP within the

sample of stocks for which EEP can be estimated. On average, IDY decreases by 0.02%

after EEP is adjusted, which is consistent with the �nding in prior studies that put op-

tions generally have higher EEP than call options do.13 Since the di�erence in IDY due

to EEP is small on average, suggesting that whether adjusting for EEP or not may not

matter signi�cantly for the estimation of IDY and returns on dividend strips, in the main

empirical analysis, I do not adjust for EEP. In a section of robustness check, I repeat the

empirical analysis using EEP-adjusted option-implied dividends to ensure that the results

are robust after adjusting for EEP.

Panel C of Table 4 reports the results for a subsample of dividend payers, where divi-

dend payers are stocks that have ever paid a positive regular cash dividend in the past �ve

years. On average, dividend payers account for about half of the full sample of stocks with

options traded. For the sample of dividend payers, DY, IDY, DP, and quarterly return

on dividend strips are all higher than counterparts of the full sample. The ranges of these

variables are also greater, suggesting greater cross-sectional variations in the variables

among dividend payers.

13For example, during the sample period from April 2nd 1986 to June 20th 1986 when CBOE concur-
rently listed European-style and American-style options on the S&P 500 Index, Dueker and Miller (2003)
compare di�erences between prices of the two types of index options and �nd that average early exercise
premiums range from 5.04% to 5.90% for call options and from 7.97% to 10.86% for put options.
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Return on Aggregate Dividend Strip

I �rst examine the pricing of shot-term dividend strips at the aggregate level. From the

prices of dividend strips of individual stocks, I calculate the price of dividend strip for

the aggregate market. Let DIAq be the price of the aggregate short-term dividend strip at

the end of quarter q. It is equal to the sum of each stock's product of number of shares

outstanding and option-implied dividend per share at quarter end. Since some stocks have

dividends announced while other stocks' dividends remain undeclared in the next quarter,

the payo� of the aggregate dividend strip has two components. The �rst component is the

realized dividend of the aggregate portfolio in the next quarter q + 1, DA
q+1, which is the

sum of products of number of shares outstanding and realized cash dividend per share of

stocks with the �rst unknown dividend announced in the next quarter q + 1. The second

component is the value of the aggregate dividend strip at the end of quarter q+ 1, DIAq+1,

which is equal to the sum of products of number of shares outstanding and option-implied

dividend per share of stocks whose �rst unknown dividend is not yet announced in the

next quarter q+ 1. Thus, the aggregate dividend strip is a value-weighted portfolio of all
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individual dividend strips in the sample, and it entitles an investor to all dividends paid

from all stocks in the next quarter. Quarterly return on the aggregate dividend strip is

rAq+1 = (DA
q+1 + DIAq+1)/ DIAq −1.

Figure 4 shows the time-series plot of prices of the aggregate short-term dividend strips

at quarter end and realized quarterly dividends of the aggregate portfolio in the next

quarter. During the sample period, there are two NBER recessions. The �rst recession

is the burst of the internet bubble, which occurred between March and November 2001,

and the second one is the U.S. subprime crisis, which occurred between December 2007

and June 2009. During the two recessions, dividend prices dwindled because during the

economic downturns expected dividend growth rate might decrease, and the discount rate

on cash �ows was likely to increase.

[Insert Table 5 here]

Table 5 tabulates time-series statistics of quarterly returns on the aggregate near-

term dividend strip during the sample period from January 1996 to December 2017. The

aggregate dividend strip earns an average return of 4.64% per quarter, with a standard de-

viation of 15.22%. The average return on the aggregate dividend strip is a value-weighted

average of returns on individual dividend strips, which is higher than the equal-weighted

average return of individual dividend strip returns (reported in Panel A of Table 4), sug-

gesting that stocks with higher market values of claims on quarterly dividends have higher

returns on the short-term assets. During the same sample period, the mean and standard

deviation of quarterly return on the S&P 500 index are 2.53% and 8.07%, respectively.
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The results that the aggregate short-term dividend strip has a higher average return and

higher volatility than the S&P 500 index are consistent with those in van Binsbergen,

Brandt and Koijen (2012).14

Then, I test whether the high average return on the aggregate short-term asset can

be explained by well-known asset pricing models. For the CAPM, I use return on the

S&P 500 index as a proxy for return on the aggregate market portfolio, rm. Data on the

S&P 500 index are obtained from CRSP. I also look at whether the three multi-factor

asset pricing models, including the Fama and French (1993) three-factor model (FF3),

the Carhart (1997) four-factor model (FFM4), and the Fama and French (2015) �ve-

factor model (FF5), can better explain the high return on claim on aggregate short-term

dividends by introducing risk factors in addition to the market risk factor. The portfolio-

based risk factors are constructed from returns on stocks listed on the three major stock

exchanges15 and are obtained from Kenneth R. French's website. The size factor (SMB),

the value factor (HML), the momentum factor (UMD), the pro�tability factor (RMW)

and the investment factor (CMA) are di�erences between the returns on diversi�ed port-

14van Binsbergen, Brandt and Koijen (2012) �nd that during the sample period from 1996 to 2010,
index dividend strip with one-year maturity replicated from S&P 500 index options earns an average
monthly return of 1.16% (3.48% a quarter) with a standard deviation of 7.80% (13.51% a quarter), while
during their sample period, S&P 500 index earns an average quarterly return of 1.68%, with a standard
deviation of 8.10%.

15To construct HML, at the end of June of each year, all listed stocks are allocated into six SIZE-BM
portfolios using the NYSE median market capitalization breakpoints and NYSE 30th and 70th percentile
book-to-market (BM) ratio breakpoints. HML is the average excess of the returns on the two high BM
portfolios minus the returns on the two low BM portfolios. RMW and CMA are constructed in a similar
way, except that the second sorting variable is operating pro�tability (OP) or annual total asset growth
rate (ATG). UMD is also formed similarly, except that the factor is updated monthly and that the second
sorting variable is cumulative stock return in the prior 2-12 months. SMB is the average excess of the
returns on the nine big stock portfolios with di�erent levels of BM, OP and ATG minus the returns of
nine counterparts portfolios with small �rm sizes.
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folios of stocks with small and large �rm size, high and low BM, high and low return in the

past one year, robust and weak pro�tability, and conservative and aggressive investment,

respectively. During the sample period from 1996 to 2017, all the portfolio-based factors

have positive mean values. Small �rms, value stocks, past winners, pro�table stocks and

high investment stocks outperform large stocks, growth stocks, past losers, unpro�table

stocks and low investment stocks by 0.58%, 0.64%, 1.13%, 1.14% and 0.72% per quarter,

respectively.

To test the models' ability to explain returns on the aggregate near-term dividend

strip, for each model, I run a full sample time-series regression of the aggregate dividend

strips' excess return, r̃Aq+1, on contemporaneous quarterly risk factors fq+1, where fq+1 =

r̃mq+1 (excess return on the S&P 500 index) for the CAPM, fq = [r̃mq+1, SMBq+1, HMLq+1]

for the FF3, fq+1 = [r̃mq+1, SMBq+1, HMLq+1, UMDq+1] for the FFM4, and fq+1 = [r̃mq+1,

SMBq+1, HMLq+1, RMWq+1, CMAq+1] for the FF5. Panel B of Table 5 reports the inter-

cepts and the slope coe�cients on risk factors and associated t-statistics and adjusted-R2

of the four full-sample time-series regressions. The aggregate short-term asset has a mar-

ket beta, βA,m, of 0.29, which is not statistically signi�cant (t-stat = 1.43). The excess

return on the aggregate dividend strip relative to the CAPM, αA,m is 3.50%, statistically

signi�cant with a t-statistic of 2.11. The results indicate that CAPM fails to explain

the high average return on the aggregate short-term asset. For the multi-factor models,

the alpha relative to the Fama and French (1993) three-factor model (αA,FF3 = 3.15%) is

smaller than it is for the CAPM, mainly due to the signi�cantly positive loading on HML
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(βA,h = 0.57, t-stat = 2.27). The slope on the size factor is insigni�cantly positive (βA,s

= 0.22, t-stat = 0.85). The positive coe�cient on HML seems to be consistent with the

duration-based explanation of the value premium. If value stocks have more cash �ows

loaded in the short-run than growth stocks, returns on value stocks should covary more

with returns on short-term aggregate equity cash �ows. However, the alpha relative to

three factor model is still high and has a t-statistic close to 2 (t-stat = 1.91), indicating

that value premium only partially explain the high average return on the aggregate div-

idend strip. The results are in line with those documented by prior studies using index

derivatives, and the consistent results suggest that short-term dividend strip at the index

level and the one aggregated from individual companies have similar risk properties.

Adding the momentum factor provides slight improvement, as evidenced by a smaller

and less signi�cant risk-adjusted return on the aggregate dividend (αA,FFM4 = 2.64%,

t-stat = 1.77). The aggregate short-term asset also have a positive loading on the prof-

itability factor (βA,r = 0.30, t-stat = 1.76) and a positive loading on the investment factor

(βA,c = 0.57, t-stat = 2.30). The alpha relative to the �ve-factor model is 2.29%, with a

t-statistic of 1.19. The results indicate that three multi-factor models are better than the

CAPM at explaining the high expected return on the aggregate dividend strip. Among the

multi-factor models, the Fama and French (2015) �ve-factor model performs the best. A

possible reason for the superior performance of the �ve-factor model in explaining returns

on claims on dividend payments is the close relations between pro�tability, investment,

and dividends. Fama and French (2001) �nd that pro�tability and investment are im-
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portant determinants of dividends. They document that �rms with high pro�tability

and low investments are more likely to pay dividends, and �nd that an important reason

for the 'disappearing dividend' phenomena from 1978 to 1999 is that publicly listed �rms

tilted towards �rms with low pro�tability and high investments during that sample period.
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Pricing of Dividend Strips in the Cross

Section

7.1 Portfolio Sorting

The previous section examines the properties of the short-term dividend strips at the

aggregate level. In this section, I examine the risk and return properties of dividend

strips across individual stocks. To mitigate noises in returns on dividend strips replicated

from individual equity options, I use a portfolio-based approach by �rst sorting stocks

based on ex-ante short-term dividend risk premiums and then calculating subsequent

realized portfolio returns. I use the normalized dividend premium to measure short-term

dividend risk premium, which can separate stocks with high returns on dividend strips

from those with low returns on dividend strips ex-ante. The annual normalized dividend

premium of a stock i in a quarter q, DPi
q, is given by:

DPi
q =

PVq(D
i
q+1)−DIiq
Siq

× FRi, (7.1)
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where Di
q+1 is the realized cash dividend from stock i in quarter q + 1, PVq(D

i
q+1) is the

value of the cash dividend paid in the next quarter discounted at the risk-free rate to the

end of quarter q, and DIiq is the price of D
i
q+1 implied from prices of options written on

the stock at the end of quarter q. Siq denotes the price of stock i at the end of quarter q.

FRi is the frequency of stock i's dividend payments. Normalization of nominal dividend

premium by stock price makes dividend premium comparable across stocks with di�erent

magnitudes of dividends.16 Stock i's annual normalized dividend premium DPi
q of quarter

q is computed as following. For each stock i in each day t in a quarter q, I use pairs of

options written on the stock that meet the �ltering criteria to compute option-implied

dividends and then take an average of option-implied dividends across strike prices to

get a daily option-implied dividend, DIiq,t. Daily dividend premium, DPi
q,t, is equal to

the di�erence between the present value of the realized dividend and daily average DI

normalized by the daily closing price of the stock. Within a quarter q, daily average

normalized dividend premium is averaged across days to calculate normalized dividend

premium in that quarter, DPi
q. Finally, to smooth out noises in option-implied dividends

and unexpected components of realized dividends, I take a simple average of quarterly

dividend premium in the previous four quarters to compute the historical normalized

dividend risk premium:

DP
i

q =
4∑
j=1

DPi
q−j

4
. (7.2)

16Another approach of normalization is to divide the nominal dividend premium by option-implied
dividend DIiq. However, DIiq can be very close to zero, so I normalize dividend premium by the stock
price.
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At the end of a quarter q, stocks in the sample are sorted into �ve portfolios by historical

dividend premium.17 Stocks in portfolio 1 (5) have the lowest (highest) historical dividend

premium. Panel A of Table 6 tabulates stock characteristics of �ve portfolios sorted by

DP. Several stock characteristics are correlated with dividend premium. Stocks with high

historical dividend premium tend to have larger �rm size (LogSIZE). Book-to-market ratio

(BM) and operating pro�tability (OP) increase from portfolio 1 to portfolio 5, suggesting

that high dividend premium stocks tend to be value stocks and high pro�tability stocks.

Total asset growth rate (ATG) decreases with historical dividend premium, suggesting

that stocks with high dividend premium have conservative investments. Average stock

return in the previous six months (RET(−1,−6)) is highest (lowest) for the portfolio with

the highest (lowest) dividend premium, indicating that past winners have higher dividend

premium than past losers. For each portfolio, I calculate its stock retaining ratio (RR),

which is the proportion of stocks sorted into a portfolio at the end of quarter q − 1 and

remain in the same portfolio at the end of quarter q. The two extreme portfolios have an

average RR of 92% and 95%. Average RRs of the three middle portfolios are lower than

those of portfolio 1 and 5, but they are still around 80%. The high average RRs indicate

that stocks with high historical dividend premiums in one quarter tend to have a high

dividend premium in the next quarter and that the portfolios have low rebalancing rates.

[Insert Table 6 here]

17short-sale constraints of underlying stocks can a�ect the calculation of option-implied dividend and
dividend premium. short-sale constraints should be most pronounced during the subprime crisis from the
third quarter of 2008 to the second quarter of 2009. To mitigate the e�ects of short-sale constraints, for
this period, I sort stocks by historical dividend premium calculated at the end of the second quarter of
2008, and portfolios are not re-balanced during the period.
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The put-call parity no-arbitrage relation can be violated due to short-sale constraints

of underlying stocks. For example, Ofek, Richardson and Whitelaw (2004) �nd that vi-

olations of the put-call parity relation are related to costs and di�culty of short selling.

In particular, investors can buy a put option or short a call option when the underlying

stock is overpriced. If the options market and the stock market are not fully integrated

and options traders are more sophisticated investors, the negative information about the

underlying stock will be incorporated into options prices faster than it is incorporated into

the stock price, and market stock price will be higher than price of stock synthetically

created from pairs of options. Thus, option-implied dividends may be overstated due to

the di�culty of short-selling in the stock market, and dividend premium will be under-

stated. If a stock has more severe short-sale constraints, the price of its dividend strip can

be more overstated and its dividend premium and return on individual dividend strip can

be more understated. Thus, the positive relation between DP and subsequent return on

dividend strips may be driven by di�erences in short-sale constraints of underlying stocks.

To see the potential e�ects of short-sale constraints on the results, I �rst look at the

relation between dividend risk premium and short-sale constraint, which is measured by

the percentage of institutional holding (PIH). Panel A of Table 6 shows that the �ve port-

folios sorted by DP have similar average PIH, suggesting that PIH is not correlated with

dividend premium and short-sale constraints may not be a big concern. To further address

the potential e�ect of short-sale constraints on returns of dividend strips, I do a double-

sorting analysis. Speci�cally, at each quarter end, dividend strips are �rst sorted by the
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underlying stocks' PIH, and within each PIH group, dividend strips are sorted by DP.

Thus, DP-sorted portfolios have similar levels of short-sale constraints. Panel B of Table 6

reports the characteristics of stocks in the 25 portfolios sorted by PIH and DP. The stock

characteristics across DP-sorted portfolios have similar patterns to those of �ve portfolios

sorted by DP alone. Within each PIH portfolio, logSIZE, BM, OP, and RET(−1,−6)

increase from the portfolio with the lowest dividend premium to the portfolio with the

highest dividend premium, while ATG tends to decrease as DP increases. Stocks across

DP have similar average PIH, indicating a low correlation between short-sale constraints

and dividend premium. All 25 portfolios have average retaining ratios (RR) higher than

60%. Within each PIH group, RRs are higher for stocks with the lowest and highest

dividend premium than for stocks in the middle portfolios. Consistent with the �nding

of Nagel (2005) that institutional holdings are positively correlated with market-to-book

ratio and lagged stock returns, Panel B of Table 6 shows that BM generally decreases

and RET(−1,−6) generally increases from portfolios with low PIH to portfolios with high

PIH, suggesting that institutional investors tend to hold growth stocks and past winners.

Besides, ATG, LogSIZE, and OP seem to be positively correlated with PIH, indicating

that institutional investors prefer to hold stocks with more aggressive investment, larger

�rm size, and higher pro�tability. The relations between PIH and stock characteristics

are consistent with the average correlations between PIH and other variables reported in

Panel B.1 of Table 1.
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7.2 Returns on Portfolios of Dividend Strips

For a portfolio p at the end of a quarter q, I calculate the quarterly return on the portfolio

of dividend strips, rpq+1 = (Dp
q+1 + DIpq+1)/DIpq+1 − 1. The current value of the dividend

strip portfolio at the end of quarter q, DIpq , is the sum of products of number of shares

outstanding and option-implied dividend per share of all stocks in the portfolio. The

realized dividend of the portfolio in the next quarter q + 1, Dp
q+1, is equal to the sum of

products of number of shares outstanding and realized cash dividend per share of stocks

in the portfolios with the �rst unknown dividend announced and paid in the next quarter

q + 1. The value of the dividend strip portfolio at the end of quarter q + 1, DIpq+1, is the

sum of products of number of shares outstanding and option-implied dividend per share

of stocks in the portfolio with the �rst unknown dividend not yet announced in quarter

q + 1. Thus, the quarterly return on the dividend strip portfolio p is a value-weighted

return on returns on individual dividend strips in the portfolio.18

[Insert Table 7]

Panel A of Table 7 reports time-series average quarterly returns on the �ve dividend

strip portfolios of stocks sorted by DP. Portfolios are rebalanced on a quarterly basis.

Average portfolio returns increase monotonically from low DP portfolio to high DP port-

folio. Portfolio 5 with the highest dividend premium earns an average quarterly return of

11.91% (t-stat = 4.60) and portfolio 1 with the lowest dividend premium earns an average

18I also calculate equal-weighted and total market capitalization-weighted average portfolio returns.
Results are qualitatively similar for di�erent weighting methods.
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quarterly return of −2.89% (t-stat = −1.26). The return spread between portfolio 5 and

1 is 14.78% and is highly statistically signi�cant (t-stat = 4.53). The results indicate that

there are substantial cross-sectional variations in returns on short-term dividend strips

among individual stocks with di�erent dividend risk premiums.

Panel B of Table 7 reports time-series average quarterly returns on 25 portfolios sorted

by PIH and DP. Within all �ve portfolios sorted by PIH, there is a strong positive rela-

tion between DP and subsequent quarterly return on portfolios of dividend strips: average

portfolio return increases monotonically from portfolios in the �rst quintile of DP to port-

folios in the �fth quintile of DP. The di�erence in returns of portfolios with extremely

high and extremely low DP tends to be greater among stocks with lower PIH, but return

spreads between the two extreme DP portfolios are statistically signi�cant regardless of

institutional holdings of underlying stocks. For each DP portfolio, I aggregate dividend

strips across the �ve PIH portfolios and report the average returns of the �ve aggregate

portfolios at the bottom of the table. The �ve aggregate portfolios have di�erent levels of

DP but have similar levels of PIH so that they can be considered as DP-sorted portfolios

controlling for short-sale constraints. Average returns of the aggregate portfolio 5 and the

aggregate portfolio 1 are 12.15% (t-stat = 5.29) and −3.59% (t-stat = −2.33), respec-

tively, and the return spread between the two extreme aggregate portfolios is 15.74% with

a t-statistic of 5.82, which is comparable to the return spread not controlling for PIH. In

contrast, there is no obvious relation between PIH and subsequent dividend strip returns.

If short-sale constraints drive the results, then dividend strips of stocks with lower PIH
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should earn lower returns due to the overestimation of prices of dividend strips. Within

the two portfolios with low DP, portfolio returns seem to decrease as PIH decreases.

However, within the three portfolios with mid and high DP, average returns are higher

for portfolios with lower PIH. In short, the cross-sectional di�erences in dividend strip

returns of individual stocks are robust after controlling for PIH and are not simply driven

by short-sale constraints of underlying stocks.

7.3 Risk Exposures

In a rational asset-pricing framework, expected returns on �nancial assets should vary

across di�erent types of �rms in a systematic way. A �nancial asset with a higher expected

return should be subject to a higher systematic risk, which is related to the covariance

between returns on the �nancial asset and stochastic discount factor. Measurements of

systematic risk are di�erent in di�erent asset pricing models. In the standard Capital As-

set Pricing Model (CAPM) (Lintner, 1965; Sharpe, 1964), the stochastic discount factor

is a linear function of the return on total wealth, which is often proxied by the return on a

market portfolio. The CAPM measures an asset's systematic risk by its correlation with

the market portfolio, usually referred to as market beta. The more an asset's return co-

varies with the market portfolio return, the higher the risk premium that investors ask on

the asset. Since the introduction of the CAPM, the literature on the pricing of equity has

examined the empirical validity of the asset pricing model in the real data. Prior studies

question the ability of the CAPM to explain cross-sectional stock returns. Many papers
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�nd that some stock characteristics can predict stock returns and di�erences in returns

on stocks sorted by the characteristics cannot be explained by the CAPM. The �ndings

suggest that CAPM is misspeci�ed and that additional factors are needed to describe

expected stock returns. Motivated by the implication of the dividend discount model

and the empirical �ndings that the CAPM fails to explain the higher average returns of

small stocks and value stocks than those of large stocks and growth stocks (Banz, 1981;

Basu, 1983), Fama and French (1993) propose a three-factor model (FF3) which adds

two additional factors, SMB (small minus big) and HML (high minus low), to the market

factor in CAPM and �nd that the FF3 can better describe cross-sectional di�erences in

average stock returns than the CAPM. Carhart (1997) adds the momentum factor, UMD

(up minus down), to the three-factor model and �nds the four-factor model (FFM4)

can better explain persistence in mutual funds performances. More recently, Novy-Marx

(2013) documents that pro�table stocks earn signi�cantly higher FF3-adjusted returns

than unpro�table stocks. Titman, Wei and Xie (2004) �nd that �rms which aggressively

increase investments subsequently earn lower average returns and that the underperfor-

mance cannot be explained by the FF3, suggesting that the FF3 is an incomplete model.

Motivated by the evidence, Fama and French (2015) propose a �ve-factor model (FF5) by

introducing two more factors, RMW (robust minus weak) and CMA (conservative minus

aggressive), into their three-factor model, and �nd that the FF5 improves descriptions of

average returns across stocks. The asset pricing factors in addition to the excess return

on the market portfolio can be interpreted as proxies for state variables and latent risks
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not captured by the CAPM. Results for the dividend strip aggregated from all individual

dividend strips con�rm the �nding of van Binsbergen, Brandt and Koijen (2012) that

the CAPM and the FF3 cannot fully explain average returns on index dividend strips. I

examine whether the two models have di�culty in describing returns of dividend strips

across individual stocks as well and whether introducing other risk factors can improve

the description of average dividend strip returns.

In the absence of arbitrage opportunities, there exists a stochastic discount factor M

that can price all future cash �ows. The value of the dividend strip portfolio p at the end

of quarter q, DIpq , is equal to the expected payo� of the portfolio during the next quarter

q + 1, xpq+1, discounted by the stochastic discount factor, based on the information set

available at the end of quarter q:

DIpq = Eq(Mq+1x
p
q+1), (7.3)

where Eq(·) denotes expectation conditional on information set at quarter q. The payo�

of the portfolio p, xpq+1, is equal to the sum of realized portfolio dividend in quarter q+ 1,

Dp
q+1, and the value of the dividend strip portfolio at the end of quarter q + 1, DIpq+1.

Using the de�nition of covariance and substituting Eq(Mq+1) = e−R
f
q , where Rf

q is the

continuously compounding quarterly risk free rate, gives the equations:

DIpq = Eq(Mq+1)Eq(xq+1) + Covq(Mq+1, x
p
q+1), (7.4)

= Eq(xq+1)e−R
f
q + Covq(Mq+1, x

p
q+1), (7.5)
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where Covq(Mq+1, x
p
q+1) is the q-conditional covariance between the stochastic discount

factor, Mq+1, and the future payo�, xpq+1. The covariance represents a risk adjustment

term. A dividend strip whose payo� has a low covariance with the stochastic discount

factor performs badly in a bad state of economy when investors' marginal utility is high

is less attractive and will sell for a lower price, re�ecting a discount for its high systematic

risk. In contrast, a dividend strip with a high covariance with the stochastic discount

factor serves as a hedge for a bad economic state and investors ask for a lower risk

premium on such an asset. Dividing both side of the equation above by the current value

of the portfolio p, DIpq+1, we have:

Eq(x
p
q+1)e−R

f
q −DIpq

DIpq
= Covq

(
Mq+1,

xpq+1 −DIpq
DIpq

)
, (7.6)

Eq(r̃
p
q+1) = −βp,Mq λMq . (7.7)

r̃pq+1 is the return on the portfolio p of dividend strips in excess of the risk free rate. βp,Mq

is the slope coe�cient from a time-series regression of quarterly returns on the portfolio,

rpq+1, on contemptuous stochastic discount factor, Mq+1. λ
M
q = Varq(Mq+1) is the price of

risk and is the same for all assets, where Varq(·) is q-conditional variance. Thus, di�erences

in expected returns of portfolios of dividend strips should be explained by di�erences in

the short-term assets' exposures to risk factors.

Di�erent asset pricing models approximate the pricing kernelM di�erently. I consider

four asset pricing models: the CAPM which ties the stochastic discount factor to the

return on the market portfolio, rmq+1; three multi-factor asset pricing models where the
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pricing kernel is a linear function of multiple factors. In the Fama and French (1993)

three-factor model, the asset pricing factors include the market risk (rmq+1), the size factor

(SMBq+1) and the value factor (HMLq+1) . The Carhart (1997) four-factor model includes

the three factors of Fama and French (1993) and the momentum factor (UMDq+1) .

The more recent �ve-factor model of Fama and French (2015) adds two new factors, the

pro�tability factor (RMWq+1) and investment factor (CMAq+1), to the Fama and French

(1993) three-factor model. Substituting the pricing kernels into the equation above, we

have the following relations between expected excess return on a portfolio of dividend

strips and and the portfolio's exposure(s) to risk factor(s) under the four asset pricing

models:

CAPM : Eq(r̃
p
q+1) = βp,mq λmq , (7.8)

FF3 : Eq(r̃
p
q+1) = βp,mq λmq + βp,sq λsq + βp,hq λhq , (7.9)

FFM4 : Eq(r̃
p
q+1) = βp,mq λmq + βp,sq λsq + βp,hq λhq + βp,uq λuq , (7.10)

FF5 : Eq(r̃
p
q+1) = βp,mq λmq + βp,sq λsq + βp,hq λhq + βp,rq λrq + βp,cq λcq. (7.11)

βp,fq is the q-conditional risk exposure of the portfolio p to a risk factor f , and λfq is the

q-conditional price of the risk factor f .

For a portfolio p in a quarter q, I estimate its risk exposures by running time-series

regressions of its quarterly return rpq on the contemporaneous asset pricing factors in a

rolling window. Since the return on portfolios of dividend strips is quarterly return, I
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regress it on quarterly risk factors.19 There is a trade-o� between a short and a long

rolling window to estimate risk exposures. On the one hand, a long rolling window which

includes more historical data enables us to estimate regression coe�cients more precisely

and gives more reliable estimations of risk exposures. On the other hand, a short rolling

window that puts more weight on recent data can better capture recent information and

is more suitable for a conditional asset pricing model in which risk exposures can be

time-varying. To balance reliability and relevance of the estimation of conditional risk

exposures, I use a rolling window from 12 quarters to 20 quarters as available.20

[Insert Table 8]

Panel A of Table 8 tabulates time-series averages of slope coe�cients on risk factors and

Newey and West (1987) t-statistics adjusted for autocorrelation and heteroscedasticity for

�ve portfolios sorted by DP. For the CAPM, portfolios of dividend strips with di�erent

levels of dividend premiums have di�erent exposures to the market risk factor. Market

beta (βp,m) increases monotonically as dividend premium increases. Portfolio 5 with

the highest DP have an average market beta of 1.68 (t-stat = 9.52), while portfolio 1

with the lowest DP has a negative market beta of −0.45 (t-stat = −4.99). The �ve

portfolios sorted by DP have di�erent exposures to risk factors other than the market

risk factor. For the Fama and French (1993) three-factor model, returns of dividend

19Stocks in a portfolio have di�erent ex-dividend dates in a quarter, so the return on a portfolio is
earned during the quarter rather than on the last date of the next quarter. The di�erences in payo�
dates results in a timing-mismatching issue that the returns on dividend strip portfolios do not match
exactly match the risk factors and leads to a bias in the estimated risk exposures towards zero.

20The results are qualitatively similar when lengths of rolling window vary from 8 quarters to 32
quarters.
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strip portfolios with high dividend premium tend to have negative exposures to SMB

and have positive exposures to HML, and vice versa for portfolios with low dividend

premium. Average slope coe�cients on the size factor (βp,s) for portfolio 5 and portfolio 1

are −0.41 (t-stat = −3.43) and 0.60 (t-stat = 4.05), respectively. Returns on the portfolio

in the �fth DP quintile covary positively with returns on value stocks, as suggested by

its signi�cantly positive coe�cient on the value factor (βp,h = 0.78, t-stat = 5.46). In

contrast, the portfolio in the �rst DP quintile has a signi�cantly negative exposure to

the value factor (βp,h = −0.45, t-stat = −3.91), suggesting that returns on portfolio

1 covary positively with growth stocks. The slope coe�cient on the momentum factor

(βp,u) in the Carhart (1997) four-factor model is signi�cantly positive for portfolio 5 (βp,u

= 0.48, t-stat = 3.37), and decreases monotonically to signi�cantly negative for portfolio

1 (βp,u = −0.27, t-stat = −2.48). For the pro�tability and investment factors in Fama

and French (2015) �ve-factor model, portfolio 5 has signi�cantly positive slope coe�cients

on RMW (βp,r = 0.96, t-stat = 5.03) and CMA (βp,c = 0.83, t-stat = 4.87), suggesting

that returns on dividend strips with high dividend premium behave more like returns

on pro�table stocks with conservative investments. RMW beta and CMA beta decrease

with DP, and become negative for portfolio in the lowest DP quintile, suggesting that

returns on portfolio 1 behave more like unpro�table stocks with aggressive investments.

Patterns of the coe�cients on the four characteristic-based risk factors of the �ve portfolios

line up with the average characteristics of stocks within the portfolios as in Panel A of

Table 6, which shows that stocks with high dividend premium tend to have larger �rm
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size, higher book-to-market ratio, higher pro�tability, more conservative investment and

higher historical stock return.

Panel B of Table 8 reports the time-series average risk exposures to di�erent asset

pricing factors and their Newey and West (1987) t-statistics for the 25 portfolios sorted

by PIH and DP. Patterns of slope coe�cients of portfolios with high and low dividend

premium for the double-sorted portfolios are similar to those for the univariate-sorting.

Within each PIH group, dividend strips portfolios with higher dividend premium have

more positive exposures to the market risk, value, momentum, pro�tability and investment

factors, while the slope e�cient on the size factor is lower for portfolios with higher

dividend premium. Slope coe�cients of the 25 double-sorted portfolios on risk factors

generally line up with average characteristics of stocks within the portfolios, but there

are several exceptions. For example, while Panel B of Table 6 reports that within the

portfolio with highest DP, stocks with higher PIH tend to earn higher average returns

in the previous six months, Panel B of Table 8 shows that UMD betas tend to decrease

with PIH for the �ve PIH-sorted portfolios within the highest DP quintile. The reason for

the mismatching may be that average portfolio characteristics are from univariate-sorting

while regression coe�cients are from multivariate regressions that capture the marginal

e�ect of a variable on another variable. The fact that results for the double-sorting analysis

are quantitatively similar to those for the univariate-sorting indicates that di�erences in

risk exposures among dividend strip portfolios sorted by DP are robust to controlling for

short-sale constraints of underlying stocks.
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7.4 Prices of Risk

To estimate the prices of risk factors, for each asset pricing model, I run quarter-by-quarter

Fama and MacBeth (1973) cross-sectional regressions of excess returns of dividend strip

portfolios on conditional beta coe�cients on risk factors, which are estimated from the

�rst-stage time-series regressions:

CAPM : r̃pq+1 = λCAPM
0 + λmβp,mq + εp,CAPM

q+1 , (7.12)

FF3 : r̃pq+1 = λFF3
0 + λmβp,mq + λsβp,sq + λhβp,hq + εp,FF3

q+1 , (7.13)

FFM4 : r̃pq+1 = λFFM4
0 + λmβp,mq + λsβp,sq + λhβp,hq + λuβp,uq + εp,FFM4

q+1 , (7.14)

FF5 : r̃pq+1 = λFF5
0 + λmβp,mq + λsβp,sq + λhβp,hq + λrβp,rq + λcβp,cq + εp,FF5

q+1 .(7.15)

If a model is correctly speci�ed, the intercept term from that model should be zero on

average. That is, portfolios with zero risk exposures should earn a risk premium of zero.

For the CAPM, I run the regressions on returns on both the �ve portfolios sorted by DP

and the 25 portfolios sorted by PIH and DP. For the three multi-factor asset pricing

models, the regressions are only run on the 25 double-sorted portfolios.

[Insert Table 9]

Table 9 reports the time-series average of intercepts and prices of risk factors, their

t-statistics and mean values of adjusted R2. Panel A reports the results of cross-sectional

regressions for the CAPM using the �ve portfolios sorted by DP as testing portfolios.

As shown in the last subsection, average market betas tend to be positive for portfolios
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with high DP (which earn high average returns) and negative for portfolios with low DP

(which earn low average returns), suggesting a positive premium on market risk in the

cross section of short-term assets. Consistent with the positive relation between market

beta and portfolio return, the average quarterly price of market risk, λm, is estimated to

be 2.72% with a t-statistic of 2.27. Di�erences in exposures to market risk explain 48.8%

of cross-sectional variations in returns on the �ve dividend strip portfolios. However, the

intercept of the CAPM is signi�cantly positive (λCAPM
0 = 3.52%, t-stat = 2.40), suggesting

that variations in market risk exposures alone cannot fully explain di�erences in expected

returns on portfolios of dividend strips.

Panel B reports the results of the cross-sectional regressions to test the four asset

pricing models' ability to explain average returns on the 25 portfolios sorted by PIH and

DP. For the CAPM, the estimated average market risk price is 3.08% (t-stat = 3.18),

which is comparable with that estimated from regressions on univariate-sorted portfolios.

For the three-factor model, average quarterly prices of the market risk (λm) and of the

value factor (λh) are 3.12% and 1.97%, both statistically signi�cant (t-stat = 2.25 and

2.13, respectively), suggesting that adding size and value factors does not depress the

statistical signi�cance of positive market risk premium and that the value factor carries

a positive premium in the cross section of individual dividend strips. The insigni�cant

negative price of the size factor (λs = −0.84%, t-stat = −1.46) indicates that SMB is

not a priced factor among portfolios with di�erent ex-ante dividend risk premiums. The

intercept of the FF3 is 2.05% per quarter, which is not statistically signi�cant (t-stat =
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1.59), and the three-factor model explains 45.4% of variations in returns on the 25 double-

sorted portfolios. The intercept with smaller magnitude and the higher average adjusted

R2 from the regression to test the FF3 indicate that introducing HML can improve the

description of cross-sectional di�erences in dividend strip returns. For the four-factor

model, the momentum factor is not a priced factor, as suggested by the insigni�cant price

of UMD estimated from the cross-sectional regressions (λu = 1.13%, t-stat = 1.08), while

the price of market risk and the price of HML remain signi�cantly positive. The intercept

of the FFM4 is 1.90% with a t-statistic of 1.44, slightly lower than that of the three-

factor model. The four-factor model on average explains 50.7% of variations in returns on

dividend strips, higher than that of the FF3. Introducing slope coe�cients on RMW and

CMA reduces the average regression intercept to 0.44%, which is statistically insigni�cant

with a t-statistic of 0.30. The price of RMW (λr) and the price of CMA (λc) are estimated

to be 1.61% (t-stat = 2.70) and 1.59% (t-stat = 3.31) per quarter, both statistically

signi�cant. On average, 57.0% of variations in portfolio returns can be explained by the

FF5, higher than those of other models. The results indicate that di�erences in exposures

to the pro�tability and investment factors play important roles in explaining di�erences

in average returns of individual dividend strips. Another thing to note is that introducing

beta coe�cients on pro�tability and investment factors does not depress the signi�cance

of risk premiums on the market risk and the value factor, which indicate that they are

not redundant factors. The four risk factors contain unique information about the pricing

of short-term individual dividend strips which are not subsumed by each other.
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Figure 5 and 6 give the plots of realized average quarterly excess portfolio returns

(r̃pq+1) against the theoretical values (Eq[r̃
p
q+1]) according to each of the four asset pricing

models. Figure 5 shows the plots of the �ve portfolios sorted by historical dividend

premium, and Figure 6 shows the plots of the 25 portfolios sorted by institutional holding

and dividend premium. The expected excess portfolio return, Eq[r̃
p
q+1], is given by:

Eq[r̃
p
q+1] =

f∑
β̄p,fλf (7.16)

where β̄p,f is time-series average of beta coe�cient on a risk factor f of portfolio p esti-

mated from the �rst-stage rolling-window time-series regressions, and λf is the price of

the risk factor f estimated from the second-stage cross-sectional regressions.

For the �ve univariate-sorted portfolios, in case of the CAPM, both average portfo-

lio risk exposures and marker risk premium are estimated from regressions on the �ve

portfolios; in case of the three multi-factor models, average risk exposures are estimated

from time-series regressions on the �ve portfolios, while prices of risk factors are estimated

from cross-sectional regressions on the 25 double-sorted portfolios. As shown in the left

upper of Figure 5, for the CAPM, points of portfolios with high (low) dividend premium

lie above (below) the 45-degree line, indicating that the portfolios of dividend strips are

underpriced (overpriced) according to the CAPM. For the three-factor model, the points

are distributed more closely around the 45-degree line, suggesting that introducing risk

factors other than the market risk can better describe returns on portfolios of dividend

strips. The better performances are mainly attributed to the signi�cantly positive pre-
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mium on the value factor and positive (negative) beta coe�cient on HML of portfolios

with high (low) DP. However, realized returns of portfolios with high (low) DP are still

higher (lower) than their theoretical values based on the �tted model. Introducing UMD

to the FF3 only slightly narrow the gaps between realized portfolio returns and expected

portfolio returns according to the FFM4 because the UMD carries an insigni�cantly pos-

itive risk premium. After introducing the pro�tability factor (RMW) and the investment

factor (CMA), expected excess portfolio returns according to the FF5 get closer to the

realized values. Expected returns of portfolios with high (low) ex-ante dividend risk get

higher (lower) due to their positive (negative) exposures to RMW and CMA, which are

positively priced in the cross section of dividend strips. Plots of the 25 double-sorted

portfolios show similar patterns. Points of the 25 portfolios are most evenly and closely

distributed around the 45-degree line for the �ve-factor model, while the CAPM, the FF3

and the FFM4 underestimate returns on portfolios with high DP and overestimate returns

on portfolios with low DP.

To summarize, results from the cross-sectional regressions indicate that the market

risk, HML, RMW and CMA are positively priced in the cross section of dividend strips

with di�erent ex-ante dividend premiums. Among the four models, the �ve-factor model

is superior in describing average returns of dividend strip portfolios, as suggested by

the smallest and the least signi�cant intercept and the highest adjusted R2 from the

cross-section regressions, and further supported by the small discrepancy between real-

ized portfolio returns and expected portfolios returns based on the model.
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7.5 Time-Series Regression and the GRS Test

Fama and French (1993) and Fama and French (2015) use the multivariate test proposed

by Gibbons, Ross and Shanken (1989) to examine the empirical support for their three-

factor model and �ve-factor model. Following them, I use the Gibbons, Ross and Shanken

(1989) test to evaluate how well the four asset pricing models can explain average returns

on dividend strips. If a model is correctly speci�ed, the test will fail to reject the null

hypothesis that all risk-adjusted portfolio returns are jointly equal to zero. The better the

performance of a model is, the higher the p-value of the GRS (1989) test on the model will

be. For each sorted portfolio of dividend strips, I run a full-sample time-series regression

of quarterly portfolio excess returns on contemporaneous quarterly asset pricing factors

under di�erent asset pricing models (i.e., quarterly excess return on the S&P 500 index in

case of the CAPM and quarterly market excess return along with quarterly portfolio-based

risk factors in case of the three multi-factor models).

[Insert Table 10 here]

Table 10 tabulates alphas and associated t-statistics from time-series regressions to

test the four asset pricing models to explain average returns of the �ve portfolios sorted

by DP (Panel A) and of the 25 portfolios sorted by PIH and DP (Panel B). 21 Test

statistics and p-values of the Gibbons, Ross and Shanken (1989) test on the four asset

pricing models are summarized at the bottom of each panel. For the �ve portfolios sorted

21Slope coe�cients on risk factors estimated from the full-sample time series regressions are not reported
since their values are similar to average risk exposures estimated from time series regression in a rolling
window.
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by DP, market beta (βp,m) increases monotonically from portfolio 1 with the lowest DP

to portfolio 5 with the highest DP. The troublesome portfolios are portfolios 4 and 5 with

high dividend premium, whose returns are still signi�cantly positive after adjusting for

market risk. The average absolute value of CAPM-alpha is 3.99% per quarter. The GRS

(1989) test rejects the CAPM with a p-value of 0.003. The three-factor model slightly

improves the description of average returns on DP-sorted dividend strips, as evidenced by

the lower average absolute value of alpha (3.83% per quarter) and lower GRS test statistic

(3.226). The intercept improvement centers on the signi�cantly positive exposures to the

value factor (βp,h) of two portfolios in higher DP quintiles. Returns on portfolios with

high dividend premium covary positively with returns of value stocks, and the high risk

exposures help explain their high average returns. However, slope coe�cients on SMB

(βp,s) go in opposite directions with ex-ante dividend risk premiums. βp,s of the portfolio

with extremely high DP is negative, suggesting that its returns covary positively with

stock returns of large companies, and vice versa for the portfolio with the lowest DP.

Lower SMB slopes for portfolios with higher dividend premium go in the wrong direction

to explain the pattern in average returns of portfolios sorted by DP and deteriorates

the performances of the three-factor model. Returns on the two portfolios with high

dividend risk premium remain unexplained, and the FF3 is rejected by the GRS (1989)

test with a p-value of 0.011. For the FFM4 which introduces the momentum factor, UMD

slopes are positively correlated with dividend premium. However, the dispersion of UMD

betas among portfolios seems to be smaller than the dispersion of betas on other risk
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factors. The positive relation between UMD slope βp,u and DP shrinks the absolute value

of FFM4-alpha to 3.49% per quarter. The improvement of the FFM4 over the FF3 is

limited. The GRS test statistics for the four-factor model is 2.565, and the test rejects

the null hypothesis that all FFM4-adjusted portfolio returns are jointly equal to zero

(p-value = 0.033). For the �ve-factor model which adds the pro�tability factor (RMW)

and the investment factor (CMA), the average absolute value of regression intercepts is

reduced to 2.92% per quarter, and the GRS (1989) test fails to reject the FF5 with a

p-value of 0.123. The improvements in the description of average returns on portfolios

of dividend strips produced by the �ve-factor model come from the positive relations

between average realized portfolio returns and slopes on RMW and CMA. Portfolios

with high dividend premium have positive exposures to RMW and CMA, indicating that

returns on dividend strips of stocks with high dividend premium behave more like returns

of stocks with high pro�tability and low investment. Positive exposures to the two factors

increase expected portfolio returns and reduce regression intercepts. After adjusting for

the two additional factors, the FF5-alpha of portfolio 4 becomes insigni�cant. Though the

risk-adjusted return of portfolio 5 is still signi�cantly positive, its magnitude is smaller

than the corresponding values of the other three models.

Results are similar for the 25 double-sorted portfolios. As shown at the bottom of

Panel B of Table 10, the CAPM is rejected by the GRS (1989) test with a p-value of

0.003. The average absolute value of CAPM-alpha is 4.30% per quarter. Problems come

from portfolios with high dividend premiums. CAPM-alphas are marginally signi�cant
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for portfolios in the third quintile of DP and are statistically signi�cant with t-statistics

greater than 2 for portfolios in the fourth and �fth quintiles of DP. One portfolio in the

�rst quintile of dividend premium has signi�cantly negative CAPM-alpha. Introducing

risk factors other than the excess return of the market portfolio helps explain cross-

sectional di�erences in average dividend strip returns. Within each PIH group, consistent

with the pattern of average portfolio returns, HML, UMD, RMW and CMA slopes tend

to be positive (negative) for portfolios with high (low) dividend risk premiums. Positive

exposures to the four risk factors shrink regression intercepts. However, the negative

relation between SMB slopes and DP exists among portfolios within each PIH group,

which worsens the performances of the multi-factor models. Regression intercepts of the

FF3 have an average absolute value of 4.23%. The majority of portfolios in the fourth

and �fth quintiles of DP have signi�cantly positive FF3-alphas with t-statistics greater

than 2. The FF3 still fail to explain the average low return of one portfolio with an

extremely low dividend premium. After adding UMD, risk-adjusted returns of portfolios

with high DP have smaller magnitudes and lower statistical signi�cance. After adding

RMW and CMA, only the �ve portfolios with extremely high DP have signi�cant FF5-

alphas. Negative exposures to RMW and CMA of the portfolio in the 2nd PIH quintile

with extremely low dividend premium help explain its very low average return and make

its FF5-alpha insigni�cant. The GRS (1989) test rejects the FF3's and the FFM4's ability

to explain returns on the 25 double-sorted dividend strip portfolios with p-values of 0.028

and 0.041, respectively, while the test fails to reject the null hypothesis that alphas of the
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25 portfolios relative to the FF5 are jointly equal to zero (p-value = 0.142).

In summary, consistent with the results of cross-sectional regressions, the results from

time-series regressions and the GRS (1989) test indicate that among the four asset pricing

models, the �ve-factor model performs the best in describing average returns on portfolios

of dividend strips with di�erent levels of ex-ante dividend premium.
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Chapter 8

Robustness Checks

In this chapter, I conduct a few robustness tests of the main empirical results. In the

�rst analysis, I examine whether option-implied dividends are informative about future

dividends beyond historical dividends. The positive results from this analysis would sug-

gest that dividends implied from options prices are reliable estimates of prices of dividend

strips and that the main empirical results are not driven simply by errors in option-implied

dividends due to, for example, short-sale constraints and.or liquidity issues. In the second

analysis, I examine the returns on dividend strips within the sample of dividend payers.

The results would shed light on whether the main empirical results are due to the poten-

tial di�erence between dividend payers and non-payers or are general for all stocks. The

third analysis examines the e�ects of early exercise premiums on the results. Finally, I

use �rm characteristics that can predict subsequent stock returns as alternative sorting

variables to sort individual dividend strips and examine whether the �ve-factor model can

best explain average returns of dividend strip portfolios with di�erent sorts. The analysis

intends to examine whether the superior performance of the FF5 is speci�c to portfolios
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sorted by DP only.

8.1 Predictability of Option-Implied Dividend

Prior studies suggest that options prices predict future dividends.22 The four examples

of changes in dividend policies of Apple Inc. and General Motors Company show that

dividends implied from prices of options written on the stocks of the two companies an-

ticipate the changes in dividends before announcements and provide preliminary evidence

of predictability of DI for future dividends. This section presents complementary and

formal evidence on the predictability of DI. I use a regression approach to show that

option-implied dividends contain information about future dividends beyond historical

dividends. On a day before the dividend announcement date of stock i's dividend in the

next quarter q + 1 (Di
q+1), I compute option-implied dividends (DI) from prices of pairs

of options which meet the �ltering criteria as discussed in the Chapter 5 and then take an

average of DI across time-to-maturities and strike prices of options to get a daily average

DI, which are then averaged across days to compute the average quarterly option-implied

dividend, DIiq. To ensure that options prices contain relevant information, I calculate

DI on days within 20 days before a dividend announcement date. Moreover, to ensure

that the predictability of option-implied dividends is not due to incorporation of relevant

22For example, using options written on 69 �rms on 226 dividend announcement dates from 1984 to
1985, Bae-Yosef and Sarig (1992) �nd that option-implied dividend surprises are signi�cantly related to
stock markets' reactions to dividend announcements. Fodor, Stowe and Stowe (2017) examine option-
implied dividends of 67 �rms that cut dividends during the �nancial crisis from 2008 to 2009 and �nd that
option-implied dividends can predict dividend omissions better than some equity market and account
variables. Kragt (2017) �nds that option-implied dividend growth rate can predict realized dividend
growth rate in the cross-section.
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information released on earnings announcements before dividend announcements,23 for a

given stock, I use options prices on days at least �ve days before the stock's earnings an-

nouncement date in the same quarter. For a stock i with at least one change in dividend

and with at least 12 quarters of observations,24 I run the following time-series regression

for the whole sample period with options data available:

Di
q+1 −Di

q

Siq
= γi

DIiq −Di
q

Siq
+
∑
j

ηijl
i
j,q+1 + εiq+1, (8.1)

where (Di
q+1 −Di

q)/S
i
q is price-normalized change in quarterly dividend and (DIiq −Di

q)/S
i
q

is price-normalized option-implied change in quarterly dividend. To control for seasonal-

ity in quarterly dividend payments, I include four dummy variables, lij,q+1 (j= 1, 2, 3 or

4), which take the value of 1 if quarter q + 1 is the jth �scal quarter in a year and take

the value of 0 if otherwise. If option-implied dividends contain information about future

realized dividends, the regression coe�cient γ should be signi�cantly positive.

[Insert Table 11 here]

Table 11 reports the distribution of the regression coe�cient γi, its Newey and West

(1987) t-statistics adjusted for autocorrelation and heteroscedasticity, and adjusted R2

across individual stocks. The average values of the regression coe�cient γi and its t-

statistics of the time-series regression are 0.457 and 4.949. The time-series regressions have

23Some papers �nd that earnings announcements and dividend announcements contain similar infor-
mation. For example, Kane, Lee and Marcus (1984) examine abnormal stock returns around earnings
and dividends announcements. They that the abnormal return corresponding to earnings announcements
depend on the value of contemporaneous dividend announcements, vice versa, suggesting a corroborative
relation between the two announcements.

243,734 stocks meet these requirements.
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an average adjusted R2 of 0.503, indicating that on average a considerable proportion of

time-series variations in changes in dividends can be explained by options-implied changes

in dividends. 74.40% of the individual stocks have signi�cantly positive coe�cients of γi.

The regression results indicate that dividends implied from options are informative about

future realized dividends and that option-traders' expectations about future dividends are

on average correct.

8.2 Dividend Payer Sample

Dividend policies vary across individual companies. Firms that have paid dividends in

the past, i.e., dividend payers, are likely to continue to pay dividends in the future, and

vice versa for dividend non-payers, which have not dividends in the past. As a result,

returns on dividend strips from dividend payers may be consistently high while those from

dividend non-payers may be consistently low. In this case, the main empirical results can

be simply due to the di�erence between dividend payers and non-payers. To examine

whether this drives the main results, I repeat the analysis using a subsample of dividend

payers, which are de�ned as companies that have ever paid a positive regular cash dividend

in the previous �ve years. The results are reported in Table 12.

[Insert Table 12]

As shown in Panel A of Table 12, average returns on dividend strips of dividend

payers seem to be higher than average returns on dividend strips of the full sample of

stocks with options. Within dividend payers, average portfolio returns of dividend strips
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also exhibit substantial variations across stocks sorted by DP. Portfolio 1 with the lowest

DP earns an average quarterly return of −2.90% (t-stat = −1.13), and average portfolio

return increases monotonically to 14.03% (t-stat = 5.04) per quarter for portfolio 5 with

the highest DP. The return spread between the two extreme portfolios is 16.93% (t-stat

= 4.58), which is larger and more signi�cant than the corresponding value for the full

sample. short-sale constraints of underlying stocks do not drive di�erences in returns of

dividend strips of dividend payers sorted by DP. For the 25 portfolios sorted by PIH

and DP, the di�erence between the average return of the portfolio in the �fth quintile

of DP and the average return of the portfolio in the �rst quintile of DP are statistically

signi�cant within each of the �ve PIH groups.

Portfolios of dividend strips of dividend payers with di�erent average returns have

di�erent exposures to the market risk. As shown in Panel B of Table 12, same as the

results for the full sample of stocks, average market beta (β̄p,m) increases from −0.45

(t-stat = −4.43) for portfolio 1 with the lowest dividend premium to 1.83 (t-stat = 9.49)

for portfolio 5 with the highest dividend premium. The risk premium of the market factor

λm is estimated to be 3.50% (t-stat = 3.77) per quarter, which is comparable with the one

estimated from dividend strips of the full sample of stocks, and the CAPM explains over

50% of variations in returns on the �ve portfolios sorted by DP. However, the CAPM

intercept from the cross-sectional regression is still signi�cantly positive. The average

absolute value of the CAPM-alpha (reported in Panel D) from the time-series regressions

of quarterly excess returns of the quintile portfolios on quarterly excess return on the
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market portfolio is 4.73%, and the GRS (1989) test rejects the CAPM with a p-value

that is zero to three decimal places (reported in Panel E). Results are similar for the 25

double-sorted portfolios. The results from the cross-sectional and time-series regressions

indicate that the CAPM does not well explain average returns on dividend strips for the

sample of dividend payers.

Multi-factor models that introduce portfolio-based risk factors other than the market

risk perform better than the CAPM, and the �ve-factor model performs the best. As

shown in Panel B, portfolios of dividend payers' dividend strips have very di�erent tilts

toward portfolio-based risk factors. Returns on portfolios with high DP are positively

correlated with HML, UMD, RMW and CMA and are negatively correlated with SMB,

suggesting that portfolios with high dividend premiums tilt toward stocks which have

high book-to-market ratio, perform well in the past year, have high pro�tability, invest

conservatively and have large market capitalization. Using the 25 double-sorted dividend

strip portfolios as testing portfolios in quarter-by-quarter cross-sectional regressions to test

the FF5, average prices of HML (λh), RMW (λr) and CMA (λc) are estimated to be 1.79%

(t-stat = 2.75), 1.91% (t-stat = 3.27) and 1.81% (t-stat = 4.27) , which are comparable

with the risk premiums estimated from the full sample of stocks with options traded. SMB

and UMD do not carry signi�cant risk premiums in the cross section of dividend payers'

dividend strips. Average intercepts from the cross-sectional regression to test the FF3

and the the FFM4 are 3.31% and 3.11%, lower than it is for the CAPM (4.76%), but are

still statistically signi�cant with t-statistics of 2.67 and 2.51, respectively. Adding RMW
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and CMA betas reduces the regression intercept to 1.44% (t-stat = 1.76), suggesting that

the FF5 is better than the other three models in describing average dividend strip returns

within the subsample of dividend payers. Results from the time-series regressions (as

reported in panel D and E) con�rm the superior performance of the FF5. For the �ve

portfolios sorted by DP, average absolute value of risk-adjusted dividend strip returns

of dividend payers relative to the FF3, the FFM4, and the FF5 are 4.55%, 4.19% and

3.39%, lower than the counterpart of the CAPM for the dividend payer sample while

slightly higher than the corresponding values for the full sample of stocks. The GRS

(1989) test rejects the FF3 and the FFM4 with p-values of 0.009 and 0.017, while the test

fails to reject the FF5 at conventional signi�cance level (p-value = 0.078). The FF3 is

better than the CAPM due to the positive association between average realized portfolio

returns and HML betas. Positive (negative) exposures to the value factor help explain

the high (low) average return of portfolios with high (low) dividend premiums. However,

similar to the results for the full sample, adding SMB deteriorates the performance of

multi-factor models, since lower SMB betas of portfolios with higher DP contradict their

higher average returns. Adding the momentum factor (UMD) produces improvements as

UMD betas increase monotonically from the �rst DP quintile portfolio to the �fth DP

quintile portfolio. The improvements in the description of average dividend strip returns

produced by the FF5 trace to patterns of the RMW and CMA slopes that absorb the

patterns in average portfolio returns. Speci�cally, the positive (negative) exposures to

RMW and CMA increase (decrease) the predicted returns of portfolios with high (low)
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DP and push regression intercepts toward zero. All results of time-series regressions to test

the three multi-factor models hold for the 25 portfolios sorted by dividend premium and

institutional holding, suggesting that the results are not a�ected by short-sale constraints

of underlying stocks.

In short, the main empirical �ndings of the full sample of stocks with options traded

are qualitatively similar for the subsample of dividend payers, which indicate that the

results are not driven by potential di�erences between dividend payers and non-payers

and are general among all stocks.

8.3 Early Exercise Premium

8.3.1 The Black and Scholes (1973) Model Approach

Options traded on exchange and written on individual stocks in the U.S. market are

American-style options that can be exercised at any time on or before the option expi-

ration date. Prices of American-style put options and call options written on dividend-

paying stocks should contain early exercise premium (EEP). Therefore, dividends implied

by American options prices from the put-call parity relation are contaminated by the

di�erence between the EEP of put and call options. To examine the e�ect of EEP on the

main results, I repeat the sorting portfolio analysis using option-implied dividends which

are adjusted for EEP and report the results in Table 13.

[Insert Table 13]

Both the sorting variable DP and portfolio returns rp are adjusted by EEP since
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it a�ects the measurements of prices of dividend strips. Panel A of Table 13 reports

average EEP-adjusted returns of portfolios of dividend strips sorted by EEP-adjusted

historical dividend premium. Again, to alleviate the e�ects of short-sale constraints, I do

a double-sorting analysis by sorting dividend strips by institutional holding (PIH) and

DP. After adjusting for EEP, average portfolios seem to be higher than the counterparts

not adjusted for EEP, suggesting that EEP of put options are on average higher than EEP

of call options and that the di�erence in EEP of put and call options on average lead to

an overestimation of prices and an underestimation of returns on dividends strips. Cross-

sectional variations on returns on dividend strips are robust to adjusting for EEP. For

the �ve univariate-sorted portfolios, average realized returns increase monotonically from

−2.39% for portfolio 1 with the lowest DP to 12.16% for portfolio 5 with the highest DP.

The �fth quintile portfolio outperforms the �rst quintile portfolio by 14.55% per quarter,

and the large return spread is statistically signi�cant, with a t-statistic of 3.53. For the 25

double-sorted portfolios, return spreads between the two portfolios with extremely high

and low dividend premiums seem to be larger among stocks with lower PIH, but spreads

in return are signi�cantly positive within each PIH group. As shown in the bottom of

Panel A, the return spread between the portfolio with the highest DP and the portfolio

with the lowest DP aggregated from all PIH groups is signi�cantly positive (16.82%, t-stat

= 4.25). Thus, cross-sectional variations in realized returns of portfolios sorted by the

ex-ante measure of dividend risk are robust to adjusting for EEP and are not driven by

short-sale constraints of underlying assets.
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Variations in dividend strip returns after adjusting for EEP can be well explained

by their exposures to risk factors of the �ve-factor model. As reported in Panel C of

Table 13, for the 25 double-sorted portfolios, average intercept estimated from the quarter-

by-quarter cross-sectional regressions of the FF5 has the smallest magnitude and least

statistical signi�cance (λ0 = 0.28%, t-stat = 0.21) compared to the corresponding values

of the CAPM (λ0 = 3.59%, t-stat = 3.11), the FF3 (λ0 = 2.10%, t-stat = 1.62) and

the FFM4 (λ0 =1.79%, t-stat = 1.57), and the �ve-factor model explains the highest

proportion of variations in dividend strip returns (average adjusted R2 = 58.5%). Results

of the time-series regressions and the GRS (1989) test con�rm the results from the cross-

sectional regressions. Panel D reports the pricing errors of di�erent asset pricing models of

the �ve univariate-sorted portfolios and the 25 double-sorted portfolios. For univariate-

sorting, though the higher market betas of portfolios with higher dividend premiums

(reported in Panel B) go in the correct direction to explain the average portfolio returns,

di�erences in market betas cannot fully explain di�erences in portfolio returns. CAPM-

alphas of the DP-sorted quintile portfolios of dividend strips has an average absolute

value of 4.20%. The portfolio in the middle quintile has marginally signi�cant CAPM

alpha, and the fourth and �fth quintile portfolios have signi�cantly positive CAPM-alphas

more than two standard errors above zero. As shown in Panel B, positive exposures to

HML of the three portfolios with high dividend premium help explain their high average

returns. However, the negative exposures to the size factor of portfolios 4 and 5 plague

the three-factor model. FF3-alphas of the fourth and �fth portfolio remain signi�cantly
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positive. Introducing UMD reduces the absolute value of regression intercepts to 3.65%.

UMD slopes of the two portfolios with high dividend premiums are signi�cantly positive,

but still not high enough to explain their high average returns. The GRS (1989) test

rejects the CAPM, the FF3, and the FFM4 with p-values of 0.003, 0.008, and 0.027,

respectively. After RMW and CMA are added, the average absolute value of FF5-alphas

decreases to 3.17%, and the p-value of the GRS (1989) test is 0.115. The improvements

in the explanation of average dividend strip returns of the �ve-factor model come from

the fact that returns on high dividend premium portfolios covary positively with returns

on stocks with high pro�tability and conservative investments, while the returns of low

dividend premium portfolios behave more like returns on stocks with low pro�tability

and aggressive investments. Positive (negative) exposures to the two risk factors increase

(decrease) expected portfolio returns of high (low) DP portfolios and push risk-adjusted

return toward zero. Results are similar for the 25 portfolios sorted by PIH and DP. The

CAPM is strongly rejected by the GRS (1989) test with a p-value of 0.001, as CAPM-

alphas of portfolios in the fourth and �fth quintiles of DP are highly signi�cantly positive

and the CAPM-alphas have a high average absolute value of 4.75%. The FF3 and the

FFM4 improve the description of average portfolio returns, as suggested by a lower average

absolute value of regression intercepts (4.61% and 4.21%, respectively). However, the

improvements are limited, as the high average returns of portfolios in the fourth and

�fth quintiles remain unexplained, and the GRS (1989) test rejects the two models with

p-values less than 0.05. After RMW and CMA are introduced, only one portfolio in
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the fourth quintile of DP has a positive FF5-alpha with a t-statistics greater than 2,

and while portfolios in the �fth quintile of DP still remain signi�cantly positive, their

magnitudes get smaller than counterparts without RMW and CMA. The average absolute

value of regression intercepts for the FF5 is reduced to 3.66%, and the �ve-factor model's

ability to describe portfolio returns is not rejected by the GRS (1989) at the conventional

signi�cance level (p-value = 0.102).

In summary, after prices of dividend strips are adjusted by EEP of American options,

dividend strip returns of portfolios sorted by ex-ante dividend risk measure still present

substantial cross-sectional variations, and the variations can be explained by portfolios'

di�erent exposures to risk factors of the �ve-factor model, which con�rms the superior

ability of the FF5 to describe average returns of dividend strips.

8.3.2 The Least-Square Simulation Methodology under the Hes-

ton (1993) Stochastic Volatility Model

In the analysis above, I use the di�erence between quoted price of American-style op-

tions and the hypothetical European-style options price estimated by substituting Op-

tionMetrics implied-volatility and the most recently announced dividend into the Black

and Scholes (1973) (BS) option-pricing formula to measure EEP. There are two concerns

with this approach. First, this approach assumes that the BS model holds. However, the

BS model assumes that stock returns are log-normally distributed with constant volatil-

ity, which is inconsistent with what is observed in the �nancial market. Many papers

test the empirical validity of the model and �nd that prices obtained from the model
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di�er from quoted options prices (Derman and Kani, 1994; Rubinstein, 1985). Thus, the

hypothetical European options prices and estimated EEP under the BS model may be

biased by di�erences in mispricing relative to the BS model of put and call options. Sec-

ond, since OptionMetrics uses the most recently announced dividend for dividend-paying

stocks when calculating option-implied volatility, I also use historical dividend as a proxy

for expected dividend when calculating the BS European options prices. However, I �nd

that on average dividends paid by individual �rms change a lot from quarter to quarter,

suggesting that it may be problematic to assume that future dividends will remain at

the historical levels. Prior studies often criticize the historical dividend as a measure of

expected dividend since it may not incorporate investors' most recent expectations for the

future dividend. Therefore, EEP calculated under the constant dividend assumption may

be contaminated by di�erences between investors' true expectations for future dividends

and historical dividends.

To address the two concerns with the approach to estimate EEP under the BS model

using historical dividend as a proxy for expected dividend, I use an alternative simulation-

based approach under a stochastic volatility option-pricing model and use option-implied

dividend as a measure of expected dividends to calculate hypothetical European-style

options prices and to estimate EEP, and I examine whether di�erences in EEP estimated

under the old and new approach will a�ect calculation of prices of individual dividend

strips and cross-sectional variations in returns on the short-term assets.
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The Heston (1993) Stochastic Volatility Model

In light of biases that are associated with the BS, the option-pricing literature has made

substantial progress to develop more realistic option-pricing models which relax the re-

strictive assumptions of the model. Bakshi, Cao and Chen (1997) examine performances

of various option-pricing models that allow for stochastic volatility, interest rates, and/or

jumps in stock price. They �nd that incorporating stochastic volatility can reduce both

in-sample and out-of-sample pricing errors and improve hedging performances as well. I

consider the Heston (1993) stochastic volatility (HSV) option-pricing model , which is

commonly used in the literature, as an alternative to the BS model. Speci�cally, under

the risk-neutral measure, dynamics of the price of an underlying stock i, Sit , are governed

by the following stochastic di�erential equation:

dSit = rft S
i
tdt+

√
V i
t S

i
tdW

S,i
t , (8.2)

where rft is the risk-free rate and dW
S,i
t is a standard Wiener process of the price of stock

i. If the stock i pays a dividend, Di
t, the price of stock i will drop by the amount of

dividend before and after the ex-dividend date:

Sit+ − Sit− = Di
t, t

− < t < t+. (8.3)

The variance of the stock i, V i
t , follows a mean-reverting process in the following form:

dV i
t = κi(θi − V i

t )dt+ ξi
√
V i
t dW

V,i
t , (8.4)
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where κi is the rate of mean-reversion, θi is the long-run variance of stock i, ξi is the

volatility of stock i's variance, and dW V,i
t is a standard Wiener process of variance of

stock i. To take into account the leverage e�ect, Wiener stochastic processes dW S,i
t and

dW V,i
t are assumed to be correlated with a correlation ρi,S,V :

dW S,i
t · dW

V,i
t = ρi,S,V dt. (8.5)

The Least Square Monte Carlo Simulation Algorithm

The Heston (1993) model does not have an analytical solution for American-style options.

I use the least-square methodology of Longsta� and Schwartz (2001) (LSM) to calculate

American-style options prices under the stochastic volatility model using Monte Carlo

Simulation.

Suppose that an American-style option written on a stock i can be exercised for N

discrete times during the option's life (0 < t1 6 t2 6 · · · 6 tN = T ).25 Under the

LSM, at any time tn before the option maturity date T on a given path w of the price of

the underlying stock i, holders of an in-the-money American-style option written on the

stock choose the optimal exercise time by comparing the payo� from immediate exercise

(max(Sitn −K, 0) for call options and max(K − Sitn , 0) for put options) and conditional

expected payo� from continuation, which is the expected value under the risk-neutral

25Exchange-traded individual equity options in the U.S. market are continuously exercisable. The
LSM can approximate the value of the options by taking N to be su�ciently large. When calibrating
the stochastic volatility model and calculating simulated options prices, I assume that options can be
exercised once a day. Using more frequent exercising gives similar results.
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measure Q of remaining discounted cash �ows from holding the option:

F i(w; tn) = EQ

[ N∑
j=n+1

exp

(
−
∫ tn

tj

r(w, t)dt

)
CFi(w, tj; tn, T ) | Ftn

]
, (8.6)

where CFi(w, tj; tn, T ) denotes the path of cash �ows of an option written on the stock i

if the option is not exercised at or prior to time tn and will be exercised on or after time

tn based on the optimal stopping rule.

Under the LSM, F i(w; tn) is represented by a weighted linear combination of Laguerre

polynomials basis functions, Lp(X). Assuming thatX is the value of the underlying stock,

the expected value from holding the option, F i(w; tn), is given by:

F i(w; tn) = ai +
∞∑
j=0

bijLp(X), (8.7)

Lp(X) = exp(−X/2)
eX

n!

dn

dXn
(Xne−X). (8.8)

The intercept term ai and coe�cients on polynomials bij are estimated using least squares

by regressing discounted values of cash �ows from an option, CFi(w, tj; tk, T ), on the basis

functions of stock prices26 for paths where the option is in-the-money. The �tted value

from the regression is the estimated expected value to continue holding the option at time

tn , F̂ i(w; tn).

The goal of the LSM algorithm is to �nd the optimal stopping rule which can maximize

the value of an American-style option. To implement the algorithm, I work backward

from time tN−1, the last exercisable time before the option maturity date T . I run the

26Following Longsta� and Schwartz (2001), I use the �rst three Laguerre polynomials. Using three
basis functions is su�cient to obtain convergence.
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cross-sectional regressions to estimate expected value from continuation at time tN−1,

F̂ i(w; tN−1), for each in-the-money path at that time. On a particular in-the-money path

at time tN−1, optionholders should exercise an option if the payo� from immediate exercise

is equal to or greater than F̂ i(w; tN−1). Thus, the paths of cash �ows CFi(w, tj; tN−1, T )

can be estimated. Then I repeat the procedure one-period backward each time until the

exercising decision at each time on each path is determined. On each path where at least

for one time an American option should be exercised, the �rst exercisable time is the

optimal stopping time, and the payo� from exercising at that time is the expected cash

�ows from the option on the path. Finally, the price of the American option is computed

by taking an average of present values of expected cash �ows from the option over all

stock price paths.

Calibration of the Heston (1993) Model

For each stock i at the end of quarter q, I calibrate the Heston (1993) model to the

mid prices of the pair of call and put options written on the stock used to construct the

synthetic dividend strip, Ci
q(T,K) and P i

q(T,K). Speci�cally, I calculate LSM-simulated

prices of the American-style call and put based on 100,000 paths of the stock price.27

On each path, investors expect the stock price to drop by the amount of dividend paid

during option life, Di
q+1. I use the dividends implied from options averaged across strike

prices, time-to-maturities and days on and before the quarter q end, DIiq, as a proxy for

the expected dividend. As shown in the �rst robustness test, option-implied dividend

2750,000 plus 50,000 antithetic paths.
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can predict future realized dividend beyond the historical dividend, and prior studies �nd

that option-implied dividends incorporate investors' expectations for dividends better

than historical dividends.

For a stock i with N i
Q quarterly observations of options prices, four parameters of

the stochastic volatility model, the rate of mean reversion of variance (κi), the long-term

variance (θi), the volatility of variance (ξi) and the correlation between stock price and

variance (ρi,S,V ), are �xed parameters that do not vary over time. The instantaneous

variances for each quarter, V i
q (1 6 q 6 N i

Q), are allowed to be time-varying. The stock

i's parameters of the Heston (1993) model, Θi = {V i
1 , V

i
2 , ..., V

i
N i

Q
, κi, θi, ξi, ρi,S,V }, are

estimated by solving the following constrained optimization problem:

min
Θi

N i
Q∑

q=1

wi,C(T,K)
q

[
CΘi

q (T,K)− Ci
q(T,K)

]2
+ wi,P (T,K)

q

[
PΘi

q (T,K)− P i
q(T,K)

]2
, (8.9)

s.t. lb 6 Θi 6 ub, (8.10)

ξi
2

6 2κiθi. (8.11)

The correlation between stock price and variance is bounded between −1 and 1, and the

other parameters have a lower bound of 0. CΘi

q (T,K) and PΘi

q (T,K) are model-implied

prices of call and put options written on the stock i with strike price K and maturity date

T at the end of quarter q.28 w
i,C(T,K)
q and w

i,P (T,K)
q are the weightings of squared pricing

28The model's parameters are calibrated to quoted prices of the most at-the-money call and put options
which are used to replicate synthetic dividend strips. Calibrating parameters to all options which meet
the �ltering criteria gives similar results, except that pricing errors are on average higher.
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errors of call and put options. Squared pricing errors are weighted by the number of

options contracts traded. Thus, for each stock i, the estimated set of parameters, Θ̂i, are

the ones that can minimize the trading volume weighted average squared pricing errors

of options written on the stock across all quarters.

[Insert Table 14 here]

Panel A of Table 14 reports summary statistics of estimated parameters of the He-

ston (1993) model for individual stocks with options traded. Individual stocks have a

high average rate of mean-reversion of variance (κ) of 8.05, suggesting that variances of

individual stocks revert to long-term means fast. For the instantaneous variance (V ), I

�rst calculate its time-series mean (V ) and standard deviation (σ(V )) for each stock, and

report the distributions of V and σ(V ) across stocks. For the other parameters, cross-

sectional distributions are reported. The correlation between individual stock price and

variance (ρS,V ) has a mean value of −0.11, which indicates that typically declining stock

prices are accomplished by rising stock variances.

Panel B of Table 14 tabulates summary statistics of relative pricing errors of the

Heston (1993) option-pricing model of call and put options used to replicate synthetic

individual dividend strips, eC = (CΘ̂ − C)/C and eP = (P Θ̂ − P )/P , which are the dif-

ferences between model-implied options prices and quoted mid options prices normalized

by the mid market prices, and the absolute values of relative pricing errors, |eC | and |eP |.

On average, the Heston (1993) model overprices call options by 0.17% and overprices put

options by 0.14%, respectively. The mean values of magnitudes of relative mispricing are
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0.60% and 0.52% for call and put options. The small discrepancy between model-implied

and observed market options prices indicate that the Heston (1993) model performs well

in describing prices of options written on individual stocks.

EEP of American Options under the Heston (1993) Model

Based on the estimated parameters of the stochastic volatility model, for each stock i

at the end of each quarter q, I use the simulation approach to calculate model-implied

American-style call and put options prices and hypothetical European-style call and put

options prices, and take a di�erence to estimate EEP.

Panel C of Table 14 reports summary statistics of EEP of call and put options as

a percentage of mid market prices of options under the simulation-based Heston (1993)

stochastic volatility (HSV) option pricing model (EEPHSV(C) and EEPHSV(P )) using the

average dividend implied from options prices as a proxy for expected dividends, and the

di�erence between EEP of calls and puts as a percentage of average mid options prices.

(EEPHSV(P −C)) . For easy comparison, the table also shows corresponding values under

the closed-form Black and Scholes (1973) (BS) option-pricing model using the historical

dividend to measure expected dividends. On average, under the BS, EEP of call options

accounts for less than 1% (0.65%) of mid call prices, and EEP of put options accounts for

a slightly higher yet still low average proportion of mid put prices (0.83%). The average

positive di�erence in EEP of put and call options as a percentage of average mid prices of

puts and calls (0.18%) is consistent with the �nding in the previous section that average

returns on individual dividend strips get higher after adjusting for EEP. After considering
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stochastic volatility and using option-implied dividends to measure expected dividends,

average values of EEP relative to mid options prices of both call and put options get

higher (0.72% and 0.89%, respectively). The positive change in EEP of calls (mean value

= 0.07% of mid call prices) is on average greater than the increase in EEP of puts (mean

value = 0.05% of mid put prices), resulting in a lower average di�erence between EEP of

put and call options under the new approach to estimate EEP. A possible reason for this

is that options-implied dividends incorporate investors' expectations for dividend growth,

and higher expected dividends may make it more optimal to exercise call options writ-

ten on dividend-paying stocks before maturity dates. Overall, the results indicate that

under both approaches to estimate EEP, the di�erences in EEP of call and put options

amount to low proportions of American-style options prices and may not signi�cantly

a�ect the main empirical results. The di�erence in di�erence between EEP of put and

call (EEPHSV−BS(P − C)) has a mean value of −0.01%, which indicates that on average,

the two approaches give similar approximations for EEP. However, the di�erences in dif-

ferences of EEP of calls and puts are −0.57% and 0.67% of average mid options prices

for underlying stocks in the �rst quartile and in the third quartile respectively, suggest-

ing that the di�erences in di�erences of calls' and puts' EEP estimated under the two

approaches vary across individual �rms.

To trace the source of di�erences in EEP estimated under the old and the new ap-

proach, for the pooled sample of all stocks with options traded in all quarters, I regress

di�erences in EEP of calls as percentage of mid call prices (EEPHSV−BS(C)), di�erences
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in EEP of puts as percentage of mid put prices (EEPHSV−BS(P )), and di�erences in dif-

ferences of EEP of puts and calls (EEPHSV−BS(P −C)) as percentage of average mid call

and put prices estimated under the HSV model and the BS model on calibrated param-

eters of the Heston (1993) model, the risk-free rate (rf ), options time-to-maturity days

(τ), moneyness ratio (K/S) and average option-implied dividend yield (DI/S). Panel D

of Table 14 reports beta coe�cients and associated t-statistics of the full-sample pooled

regressions. Parameters of the stochastic volatility option-pricing models seem to explain

the di�erences in EEP estimated under the old and the new approach. Regression coe�-

cients of κ and ξ on EEPHSV−BS(P ) are signi�cantly negative, suggesting that relative to

the HSV model, the BS model overestimates EEP of puts more for stocks whose variances

mean revert to long-term values faster and vary more over time. The rate of mean re-

version and volatility of variance also negatively a�ect EEPHSV−BS(C), though the e�ects

are insigni�cant and much weaker than those for put options. Beta coe�cients of the

long-run stock variance (θ) on di�erence in EEP of both calls and puts under the two

approaches are signi�cantly positive, and regression coe�cients of the instantaneous vari-

ance on EEPHSV−BS(C) and EEPHSV−BS(P ) are signi�cantly and marginally signi�cantly

positive, indicating that the old approach underestimates EEP of both calls and puts more

for more volatile stocks in the short and long run. The correlation between stock price and

stock variance (ρS,V ) loads signi�cantly negative on EEPHSV−BS(C) and EEPHSV−BS(P ),

which indicates that the new approach increases the estimate of EEP of both call and

put options more for stocks with greater leverage e�ects. The level of risk-free rate also
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a�ects the di�erence in EEP estimated under the two approaches. The signi�cantly neg-

ative coe�cients of the risk-free rate (rf ) on EEPHSV−BS(C) and EEPHSV−BS(P ) indicate

that the HSV model gives higher estimate of EEP for both call and put options than

the BS model when risk-free rate is lower. Both options time-to-maturity (τ) and mon-

eyness (K/S) a�ect the estimates of EEPs, and the e�ects are opposite for call and put

options: the regression coe�cient of τ on EEPHSV−BS(C) is signi�cantly positive while

on EEPHSV−BS(P ) is signi�cantly negative, and K/S has signi�cantly negative loading

on EEPHSV−BS(C) while signi�cantly positive loading on EEPHSV−BS(P ), suggesting that

the higher estimate of EEP under the HSV model is greater for more in-the-money call

options with longer time-to-maturity and for more in-the-money put options with shorter

time-to-maturity. The estimate of EEP of call options under the two approaches is a�ected

by expected dividends. The signi�cantly positive coe�cient of DI/S on EEPHSV−BS(C)

indicates that EEPs of calls are more underestimated under the old approach for call

options written on underlying assets with higher expected dividends. Expected dividends

also positively a�ect EEPHSV−BS(P ), but the regression coe�cient is insigni�cant. The

di�erence in potential bias in prices of individual dividend strips caused by di�erences in

EEP of put and call options under the new and old approaches (EEPHSV−BS(P − C)) is

greater for stocks with lower volatility of variance, lower long-term stock variance, lower

instantaneous variance, options with shorter time-to-maturity and options with higher

moneyness ratio.

To check whether and how the cross-sectional variations in di�erences in estimation
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of EEP under the two approaches may a�ect the cross-sectional variations in the pric-

ing of individual short-term synthetic dividend strips, I examine the correlations between

EEPHSV−BS(P − C) and prices of individual dividend strips. Speci�cally, at the end of

each quarter, stocks with options whose EEPs can be estimated under both approaches

are sorted into quintile portfolios by stock price normalized dividend implied from the pair

of call and put options used to replicate individual dividend strips, and I calculate the

mean values of EEPHSV−BS(P−C) of stocks in each portfolio. Panel D of Table 14 reports

time-series averages of the di�erences in di�erences of EEP of paired put and call options

of the quintile portfolios. For all the sorted portfolios with di�erent levels of normalized

prices of individual dividend strips, average di�erence in EEP of puts and calls gets lower

under the new approach to estimate EEP, and the quintile portfolios have similar levels

of average values of EEPHSV−BS(P − C), suggesting that the estimated potential biases

in prices of individual dividend strips due to di�erences in EEP of call and put options

estimated under the two approaches do not di�er systematically with prices of individual

dividend strips inferred from American-style options prices.

To further check whether di�erent approaches to estimate EEP will a�ect the cross-

sectional variations in returns on short-term assets among individual stocks with di�erent

levels of dividend risk premium, I also examine whether EEPHSV−BS(P −C) is correlated

with the two variables, DP, an ex-ante measure of dividend risk premium, and PIH, a

proxy for short-sale constraints of underlying assets, by which individual dividend strips

are sorted into portfolios. The last two rows of Panel E of Table 14 report mean values of
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EEPHSV−BS(P −C) of stocks sorted by DP and PIH. The table shows no obvious patterns

of the di�erences in di�erences of calls' and puts' EEP estimated under the HSV model

and the BS model among stocks with di�erent dividend risk premiums or short-sale con-

straints: regardless of the level of DP or PIH, EEP estimated under the new approach

is slightly lower than it is under the old approach, and the average magnitude of the

di�erence is similar across DP-sorted and PIH-sorted portfolios. The results indicate that

using the new approach which considers stochastic volatility and uses option-implied div-

idends to measure expected dividends to adjust for EEP will slightly increase the current

values and slightly reduce the returns on individual dividend strips by similar amounts,

and the cross-sectional variations in EEP-adjusted returns on dividend strips sorted by

DP and/or PIH should be similar under the two approaches to estimate EEP.

As a summary, the potential biases in prices of individual dividend strips due to di�er-

ences in EEP of call and put options estimated under the Black and Scholes (1973) model

using historical dividends to measure expected dividends and under the Heston (1993)

stochastic volatility model using option-implied dividends to measure expected dividends

on average have very similar magnitudes, and the variations in di�erences in biases due

to EEP estimated under the two approaches are not correlated with prices of individual

dividend strips, dividend risk premium or short-sale constraints of underlying assets. The

�ndings indicate that the two problems of the approach used in the previous section to

adjust for EEP�that options can be mispriced by the BS model and that historical div-

idends are not good proxy for expected dividends�are not big concerns, and adjusting
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for EEP under this simpler approach will give results of sorting portfolio analysis similar

to those if a more realistic option-pricing model with stochastic volatility and a better

proxy for expected dividends are used.

8.4 Portfolios Sorted by Stock Characteristics

In the main empirical analysis, dividend strips are sorted into portfolios by the ex-ante

measure of dividend risk premium. In this section, I sort dividend strips into port-

folios by four well-known variables, book-to-market ratio (BM), operating pro�tabil-

ity (OP), total asset growth rate (ATG) and cumulative stock return in the past six

months (RET(−1,−6)), which are documented by prior studies to predict subsequent

cross-sectional stock returns (Fama and French, 1992, 2015; Titman, Wei and Xie, 2004;

Jegadeesh and Titman, 1993). A stock can be considered as a portfolio of dividend

strips maturing at di�erent horizons. The total stock return is a value-weighted average

of returns on short-term and long-term dividend strips and contains information about

short-run risk and long-run risk of a �rm. If the �rm characteristics are related to risks

of �rms, and short-run risk embedded in claims on near-term cash �ows and long-run

risk embedded in claims on long-term cash �ows of a stock share common information, it

stands to reason that the �rm characteristics are also associated with subsequent returns

on short-term dividend strips. I �rst test this conjecture by investigating whether there

are variations in returns on dividend strips whose underlying stocks have di�erent �rm

characteristics and then examine whether the predictability of stock characteristics on
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subsequent returns on short-term assets can be explained by asset pricing models. This

analysis is a robustness check on whether the superior performances of the �ve-factor

model is limited to the portfolios sorted by DP.

8.4.1 Portfolio Sorting and Realized Portfolio Returns

At the end of each quarter, dividend strips are sorted into quintile portfolios by one of the

four stock return predictors. As shown in Table 2, distributions of the four variables are

di�erent between the sample of all listed stocks and the sample of listed stocks with options

traded. To ensure that stocks in the sorted portfolios have similar average values of �rm

characteristics as the full sample, I use quintile breakpoints of the four variables of all listed

stocks to sort dividend strips. To control for short-sale constraints of underlying stocks,

for each �rm characteristic, I do a double-sorting analysis by �rst sorting stocks based

on PIH and then sorting stocks based on the �rm characteristic within each PIH group.

For each sorted portfolio in each quarter, I compute its realized quarterly value-weighted

returns and report the time-series average portfolio returns and associated t-statistics in

Table 15.

[Insert Table 15 here]

Panel A reports time-series average returns of portfolios of dividend strips sorted by

each of the four �rm characteristics of underlying stocks. The four stock return predictors

can strongly predict subsequent dividend strip returns in the same directions with their

predictions on subsequent stock returns. For univariate-sorting, average returns of port-
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folios of dividend strips increase monotonically as book-to-market ratio (BM), operating

pro�tability (OP) and cumulative returns in the past six months (RET(−1,−6)) increase,

and average portfolio returns are lower for stocks with more aggressive investments (higher

ATG). Dividend strips of extreme value stocks signi�cantly outperform dividend strips

of extreme growth stocks by 9.81% per quarter (t-stat = 4.56). Return spread between

portfolio 5 with the highest pro�tability and portfolio 1 with the lowest pro�tability is

12.13%, which is statistically signi�cant, with a t-statistic of 3.17. Stocks that invest most

aggressively earn an average dividend strip return of −2.21%, signi�cantly lower than the

average dividend strip return of 9.52% of stocks with the most conservative investments.

Near-term dividend strips of stocks that perform best in the past six months earn sig-

ni�cantly higher average returns than those of stocks with lowest returns in the past six

months (average return spread = 10.14%, t-stat = 3.38).

Cross-sectional variations in dividend strip returns of portfolios sorted by the four �rm

characteristics are robust after short-sale constraints are controlled. Spreads between re-

turns of portfolios with extreme values of �rm characteristics tend to be larger among

stocks with lower PIH. However, within each PIH group, average portfolio returns in-

crease with BM, OP, and RET(−1,−6) and decrease with ATG in a monotonic way. For

each quintile portfolio sorted by a �rm characteristic, I construct a portfolio by aggre-

gating dividend strips across the �ve PIH portfolios and report the time-series average

returns of the aggregated portfolios in the row labeled `ALL'. The aggregate portfolios

have similar levels of PIH so that di�erences in returns among the portfolios will not
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be driven by di�erences in short-sale constraints. The return spreads between the �fth

and �rst quintile portfolios with the highest and lowest BM, OP, ATG and RET(−1,−6)

are 9.99% (t-stat = 6.12), 11.66% (t-stat = 5.52), −10.83% (t-stat = −7.09) and 10.10%

(t-stat = 5.22), which are statistically signi�cant and comparable with the counterparts

for univariate-sorting. Though not the main interest of this study, the results show that

there is not a clear relation between PIH and subsequent dividend strip returns. Among

stocks with low BM, low pro�tability, aggressive investments, and low past returns, aver-

age dividend strip portfolio returns tend to be lower for stocks with lower PIH. However,

average portfolio returns are positively associated with PIH for value stocks, pro�table

stocks, stocks with conservative investments, and past winners. In short, the predictabil-

ity of the �rm characteristics on future dividend strip returns is not driven by short-sale

constraints of underlying stocks.

8.4.2 Asset Pricing Tests

Then I examine whether di�erences in average portfolio returns of stocks sorted by �rm

characteristics can be explained by variations in exposures to risk factors of the four asset

pricing models. Table 16 reports average slope coe�cients on of portfolio returns with

respect to di�erent risk factors estimated from time-series regressions in a rolling window.

Panel A reports results for quintile portfolios sorted by �rm characteristics alone, and

Panel B reports results for 25 portfolios sorted by PIH and �rm characteristics. I use both

the Fama and MacBeth (1973) cross-sectional regressions and full sample period time-

series regressions to examine the performances of the asset pricing models in describing
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average returns on portfolios with di�erent sorts and report the results of regression

analysis in Table 17 and Table 18.

Portfolios Sorted by BM

Variations in dividend strip returns of growth stocks and value stocks can be explained by

the three multi-factor models, while the CAPM is an incomplete description of BM-sorted

dividend strip returns. As shown in Panel A of Table 18, for the �ve portfolios sorted by

BM, portfolio 4 and 5 with high BM have signi�cantly positive time-series CAPM-alphas

that are more than two standard errors above zero. The GRS (1989) test (Panel C of

Table 18) rejects the CAPM to explain average returns on the �ve BM-sorted dividend

strip portfolios with a p-value of 0.001. The lousy performance of the CAPM model traces

to the fact that the association between market betas and BM-sorted portfolio returns

are not monotonic and not strong. Notably, as shown in Panel A of Table 16, the �rst

quintile portfolio with the lowest BM and the lowest realized return has a positive market

beta as high as that of the middle portfolio with neutral BM. Though the market beta

increases from portfolio 2 to portfolio 5, the positive exposures to the market risk of

portfolio 4 and 5 are not high enough to explain their high average returns. Adding risk

factors other than the market risk factor improves the description of average portfolio

returns, as portfolios sorted by BM have very di�erent tilts toward portfolio-based risk

factors. SMB betas and HML betas of the �ve portfolios increase monotonically as BM

increases. Returns on dividend strips of value stocks have positive exposures to SMB

and HML, which increase expected portfolio returns and shrink regression intercepts. In
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contrast, returns on dividend strips of growth stocks behave more like stock returns of

growth stocks with large �rm size, and the negative exposures to SMB and HML help

explain their low average returns. Absolute values of FF3-alphas of all portfolios are

lower than the counterparts of the CAPM, and only the portfolio with extremely high

BM remains signi�cantly positive. The GRS (1989) test fails to reject the three-factor

model at the conventional signi�cance level (p-value = 0.065). Adding UMD produces

slight improvements in explaining average returns. Portfolios in the �rst and second

quintiles of BM have negative UMD betas while the three portfolios with higher BM

have positive UMD slopes. However, the relation between the UMD beta and BM is not

monotonic. The portfolio of dividend strips of extreme value stocks does not have the

highest exposure to the momentum factor. The four-factor model is not rejected by the

GRS (1989) test with a slightly higher p-value of 0.077. Introducing RMW and CMA

signi�cantly improves the description of average BM-sorted dividend strip returns. The

strongly positive regression intercept of the highest BM portfolio in the three other models

becomes insigni�cant in the �ve-factor model. The GRS (1989) test fails to reject the FF5

with a p-value of 0.239. Panel B shows that the improvement produced by the FF5 traces

to the patterns of RMW and CMA slope coe�cients among portfolios sorted by BM. The

positive exposures to RMW and CMA of portfolios with high BM and negative exposures

to RMW and CMA of portfolios with low BM push regressions intercepts toward zero.

Results are similar for the 25 portfolios sorted by PIH and BM. Regression intercepts of

the FF5 have the smallest average absolute value, and the GRS (1989) test fails to reject
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the FF5 with the highest p-value of 0.175. Within each PIH group, slopes of SMB, HML,

RMW, and CMA increase in a monotonic way from portfolios of extreme growth stocks to

portfolios of extreme value stocks. The issue of non-monotonic relations between market

beta and UMD beta and average portfolio returns concentrates among stocks with low

PIH. Contrary to the patterns of realized returns, extreme growth stocks with low PIH

do not have low exposures to market risk, and extreme value stocks with low PIH do

not have high exposures to the momentum factor, which plague the performances of the

CAPM and the four-factor model.

Results from cross-sectional regressions also show that the �ve-factor model performs

the best in explaining average returns of dividend strips sorted by BM. As shown in

Table 17, risk premiums of all risk factors except for the UMD are estimated to be

signi�cantly positive. Average regression intercept is most statistically positive for the

CAPM (λ0 = 3.04%, t-stat = 2.08) and is smallest and least signi�cant for the FF5 (λ0

= 1.01%, t-stat = 0.80). The �ve-factor model explains 63.1% of variations in average

returns of the 25 portfolios sorted by PIH and BM, which is the highest among the four

models.

Portfolios Sorted by OP

Dividend strips of stocks with high and low pro�tability have di�erent exposures to risk

factors. Patterns of portfolios' beta coe�cients on the market factor, RMW, and CMA are

consistent with patterns of realized portfolio returns. As shown in Panel A of Table 13, for

the �ve portfolios sorted by OP, slope coe�cients on the market factor, RMW, and CMA
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increase monotonically from the portfolio with the most unpro�table underlying stocks to

the portfolio with the most pro�table underlying stocks. For the 25 PIH and OP double-

sorted portfolios, the monotonic patterns between the three risk exposures and realized

portfolio returns hold within each PHI group. Relations between betas coe�cients on

HML and UMD and pro�tability of underlying stocks are humped. For the univariate-

sorting, HML and UMD betas increase from portfolio 1 to portfolio 4 but then decrease

from portfolio 4 to portfolio 5. The humped pattern of UMD beta is more pronounced

among stocks with low PIH, suggesting that returns on portfolios in the highest OP

quintile with low PIH behave more like returns of past losers. Low exposures to the value

factor are common for portfolios with the highest pro�tability within each PIH group, and

the problem is the most serious for the portfolio with the highest OP and highest PIH,

which has a negative HML beta. Returns on dividend strips of stocks with high (low) OP

behave more like returns on large (small) market capitalization stocks, as suggested by

the monotonically decreasing SMB betas from portfolio 5 to portfolio 1. The pattern of

SMB betas of portfolios sorted by OP is inconsistent with the pattern of average portfolio

returns. For the 25 double-sorted portfolios, the negative relation between SMB beta and

OP is universal within each PIH group.

The patterns of risk exposures give hints on the performances of the four asset pricing

models in describing returns on dividend strips portfolios sorted by OP. As shown in

Panel A of Table 18, though market betas are positively associated with average returns

on OP-sorted portfolios, dispersion in market risk exposures is not enough to explain the
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substantial di�erences in average dividend strip returns. CAPM-alphas from the time-

series regressions of portfolio 4 and 5 are strongly positive with t-statistics greater than 2.

For the 25 double-sorted portfolios, high average returns of portfolios in the fourth and

�fth OP quintiles within all PIH groups are left unexplained by the CAPM. The signi�cant

regression intercepts result in a strong rejection of the CAPM by the GRS (1989) test in

describing average returns of the univariate-sorted portfolios (with a p-value of 0.009) and

the double-sorted portfolios (with a p-value of 0.014). Introducing SMB and HML hardly

produces improvements. FF3-alphas of three of the �ve portfolios sorted by OP have

absolute values higher than the counterparts of the CAPM. For the 25 portfolios sorted

by PIH and OP, highly signi�cant regression intercepts of portfolios in the fourth and

�fth OP quintiles do not disappear in the three-factor model. The failure of the FF3 is

linked to the negative (positive) exposures to the size factor of portfolios with high (low)

OP, which push expected returns away from realized returns. Besides, returns of dividend

strip portfolios with the highest OP do not have strong enough associations with the value

factor, especially for portfolios with high PIH. Adding the momentum factor improves

the description of average returns slightly as positive (negative) loadings on UMD helps

explain the high average returns of dividend strips of pro�table (unpro�table) stocks.

The two exceptions are the two portfolios with extremely high OP and with low PIH,

whose regression intercepts are higher after UMD is added because their returns covary

more with past losers than with past winners. Both the FF3 and the FFM4 are rejected

by the GRS (1989) test with p-values smaller than 0.05. The �ve-factor model which
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adds RMW and CMA moves regression intercepts of all portfolios toward zero and makes

the intercepts less signi�cant. The GRS (1989) test fails to reject the FF5 in describing

average returns on the �ve OP-sorted portfolios and on the 25 portfolios sorted by PIH

and OP at the 10% signi�cance level. Major contributions are made by RMW slopes,

which are strongly positive for higher three quintile portfolios and are strongly negative

for lower two quintile portfolios sorted by OP. The pattern holds within each PIH group

for the 25 double-sorted portfolios. CMA betas have a similar while less pronounced

pattern.

Results of cross-sectional regressions using the 25 portfolios sorted by PIH and OP

as testing portfolios on the four asset pricing models are reported in Table 17. The

market risk, RMW, and CMA are priced factors with signi�cantly positive risk premiums

in the cross section of dividend strips sorted by PIH and OP. Prices of HML and UMD

are estimated to be positive while not statistically signi�cant, while the price of SMB is

insigni�cantly negative. Consistent with results from the GRS (1989) test, the �ve-factor

model can well explain di�erences in returns of dividend strips sorted by OP, as evidenced

by the small and insigni�cant regression intercept (λ0 = 1.02%, t-stat = 1.00) and the

high average adjusted R2 (58.5%) from cross-sectional regressions to test the FF5.

Portfolios Sorted by ATG

Results from cross-sectional regressions (reported in Table 17) and time-series regressions

(reported in Table 18) agree that the FF5 provides the best description of average re-

turns of ATG-sorted and PIH-ATG sorted dividend strip portfolios. Notably, the average
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intercept from cross-sectional regressions using the PIH-ATG double-sorted portfolio as

testing portfolios for the CAPM is signi�cantly positive (λ0 = 3.74%, t-stat = 2.15), indi-

cating di�culty of the CAPM in describing average portfolio returns. Average regression

intercepts slightly decreases to 3.56% (t-stat = 1.94) for the FF3 which adds SMB and

HML and to 3.13% (t-stat = 1.78) for the FFM4 which further adds UMD, indicating

that exposures of portfolio returns to the three factors do not play central roles in ex-

plaining average returns of dividend strips whose underlying stocks have di�erent levels

of investments. Introducing RMW and CMA substantially reduces the average regression

intercept to 1.02%, which is insigni�cant with a t-statistic of 1.17, and the �ve-factor

model explains 60.1% of variations in returns of the 25 PIH-ATG sorted portfolios, which

is higher than the proportions explained by the other three models. For time-series anal-

ysis, regression intercepts of the CAPM are signi�cantly positive for portfolios in the �rst

and second ATG quintiles. The FF3 and the FFM4 models move regression intercepts

toward zero. However, the models still produce positive intercepts, which are about two

standard errors above zero for the lower two ATG quintile portfolios. The �ve-factor

model can explain the strongly positive intercepts of the second ATG quintile portfolios

under the other models, and though high average returns of portfolios with extremely low

ATG still remain unexplained, absolute values of their regression intercepts get smaller

than corresponding values without RMW and CMA. The GRS (1989) test statistic to

test the FF5's ability to explain average portfolio returns is 1.787 (p-value = 0.125) for

ATG-sorted portfolios and is 1.411 (p-value = 0.142) for PIH-ATG double-sorted portfo-
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lios, which are lower than the test statistics on the CAPM, the FF3, and the FFM4.

Patterns of average exposures of portfolio returns to risk factors (as reported in Ta-

ble 17) help interpret the performances of asset pricing models. Market betas generally

decrease from portfolios with low asset growth rates to portfolios with high asset growth

rates, though the relation is not strictly monotonic from portfolio 4 to portfolio 5. The

double-sorting analysis reveals that the problem comes from portfolios with the highest

ATG and low PIH, which have market betas higher than portfolios in the fourth ATG

quintiles with low PIH. The pattern of market betas of the portfolios shrinks returns

spreads between portfolios with high and low ATG. However, dispersion in market be-

tas is not enough to fully explain di�erences in average portfolio returns. Exposures to

portfolio-based risk factors vary across the dividend strip portfolios and produce improve-

ments over the CAPM. Portfolios with lower ATG have more positive SMB betas, which

holds for both univariate-sorted portfolios and quintile portfolios of ATG within each PIH

group. The pattern of SMB slopes is consistent with the pattern of realized portfolio re-

turns and improves the description of average returns for the FF3 model. The pattern

of HML slopes is not monotonic. In particular, the portfolio with the most conservative

investments has low exposure to the value factor. The double-sorting analysis shows that

this issue is common for all portfolios in the lowest ATG quintile and is more severe for

stocks with higher PIH. Except for portfolios with extremely low ATG, HML betas are

generally higher for portfolios with lower ATG, which helps explain average returns of the

portfolios and contributes to the better performance of the FF3 than the CAPM. The
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FFM4 that adds UMD performs better than the FF3, which is due to the monotonically

positive relation between UMD betas and realized portfolio returns, for both univariate-

sorted portfolios and double-sorted portfolios. However, the dispersion in UMD slopes is

not large compared to exposures to other risk factors, so the improvement of the FFM4

is limited. The �ve-factor model which adds RMW and CMA provides more signi�cant

improvements than the four-factor model does. The primary lifting of the FF5 comes

from the pattern of CMA betas. For both univariate-sorting and double-sorting, CMA

betas decrease monotonically from dividend strips of stocks with the most conservative

investments to dividend strips of stocks with the most aggressive investments. RMW

betas show a similar while relatively less pronounced pattern. Portfolios in the �rst ATG

quintile have strongly positive exposures to RMW, while portfolios in the �fth ATG quin-

tile have strongly negative exposures to RMW. Positive (negative) RMW and CMA betas

help explain high (low) average returns of dividend strip with pro�table (unpro�table)

underlying stocks.

Portfolios Sorted by RET(−1,−6)

The signi�cant outperformance of dividend strips of past winners over those of past losers

cannot be explained by the CAPM. As shown in Table 16, for the �ve portfolios sorted

by lagged stock returns, average market betas increase monotonically from portfolio 1 to

portfolio 5. For portfolios sorted by PIH and RET(−1,−6), the positive relation between

market beta and lagged stock return holds within each PIH group. However, compared

to that of portfolios sorted by other variables, the dispersion in market betas among divi-
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dend strip portfolios sorted by RET(−1,−6) is less wide. For both univariate-sorting and

double-sorting, though market betas of the portfolios in the fourth and �fth quintiles of

RET(−1,−6) are higher than market betas of the three lower RET(−1,−6) quintiles, their

market betas are not high enough to explain the high realized portfolio returns and time-

series regression intercepts of the two portfolios are signi�cantly positive with t-statistics

greater than two. The GRS (1989) test strongly rejects the CAPM in explaining average

returns of univariate-sorted portfolios and double-sorted portfolios with p-values less than

0.01. Consistent with results from time-series analysis, average regression intercept from

cross-sectional regressions of quarterly excess returns of the 25 double-sorted portfolios

on quarterly excess return of the market portfolio is 2.85%, statistically signi�cant with

a t-statistic of 2.01, and the CAPM on average explains 26.7% variations in portfolio

returns, indicating that the CAPM does not well describe average returns on dividend

strips sorted by RET(−1,−6).

The three-factor model is better at explaining dividend strip returns sorted by lagged

returns than the CAPM. Introducing SMB and HML shrinks time-series intercepts of

the portfolios. The FF3 is still rejected by the GRS (1989) test at conventional signif-

icance level, but the p-values are higher than those of the CAPM (p-value = 0.021 for

univariate-sorting and p-value = 0.017 for double-sorting). Average intercept of cross-

sectional regressions is smaller and less signi�cant (λ0 = 2.11%, t-stat = 1.97) and av-

erage adjusted R2 gets higher (average R̄2 = 39.9%) after betas on SMB and HML are

included as explanatory variables. Improvement of the FF3 mainly traces to the pattern
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of SMB slopes of the portfolios. Dividend strips of past winners (losers) have positive

(negative) exposures to SMB, which increase (decrease) expected portfolio returns. HML

slopes also contributes to the better performance of the FF3, as portfolios in the three

higher quintiles of RET(−1,−6) have positive exposures to HML and portfolios in the two

lower quintiles of RET(−1,−6) have negative exposures to HML. The pattern of HML is

not strictly monotonic, as the portfolio with the highest lagged stock return has a HML

beta lower than that of the portfolio with the second highest lagged stock return. The

double-sorting analysis shows that the non-monotonic issues concentrates on portfolios

with low PIH. The portfolios have very di�erent exposures to the momentum factor. For

both univariate-sorting and double-sorting, UMD betas increase monotonically from sig-

ni�cantly negative for the �rst RET(−1,−6) quintiles to signi�cantly positive for the �fth

RET(-1.-6) quintiles. Though the FFM4 still underestimates expected returns of portfo-

lios with extremely high RET(−1,−6), compared to the FF3, intercepts from time-series

regressions of the portfolios are pushed toward zero and the p-values of the GRS (1989)

test (p-value = 0.090 for univariate-sorting and p-value = 0.112 for double-sorting) are

higher than those of the three-factor model. The FF5 factor model which adds RMW and

CMA also provides big improvements in the description of average returns on portfolios

sorted by RET(−1,−6). Dividend strips whose underlying stocks earn high cumulative

returns in the previous six months have positive RMW and CMA betas, suggesting that

returns on such dividend strips behave more like returns on pro�table stocks with conser-

vative investments. Positive exposures to RMW and CMA help explain the high realized
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returns of past winners' dividend strips and move time-series regression intercepts toward

zero. Regression intercepts of the FF5 are smaller and less signi�cant than intercepts of

the CAPM and FF3, and are comparable in terms of magnitudes and signi�cance with

those of the four-factor model which includes the momentum factor. The FF5 model is

rejected by the GRS (1989) test with p-values (0.112 for univariate-sorting and 0.126 for

double-sorting) slightly higher than those of the FFM4. Results from cross-sectional re-

gressions also indicate that both the FFM4 and the FF5 are better descriptions of average

portfolio returns of dividend stripes sorted by PIH and RET(−1,−6) than the FF3 and

the CAPM. Average regression intercepts of the FF5 is 1.09% (t-stat = 1.47), smaller

and less signi�cant than that of the FFM4 (λ0 = 1.43%, t-stat = 1.78), and the average

proportion of variations in average portfolio returns explained by the FF5 is 55.5%, higher

than that of the FFM4 (average R̄2 = 49.4%).

Summary of Asset Pricing Tests

In summary, similar to their ability to predict future stock returns, the four �rm char-

acteristics can also predict subsequent dividend strip returns, indicating that �rm risks

in the short run and in the long run may share common information. Variations in av-

erage returns of dividend strips sorted by underlying stocks' characteristics can be well

explained by the �ve-factor model while the other three models seem to be incomplete

speci�cations. Dividend strips of stocks with �rm characteristics that are associated with

high realized dividend strip returns (i.e., high DP, high BM, high OP, low ATG and high

RET(−1,−6)) typically have positive exposures to RMW and CMA, and dividend strips
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with low realized returns (i.e., low DP, low BM, low OP, high ATG and low RET(−1,−6))

generally have negative loadings on RMW and CMA. RMW and CMA carry signi�cantly

positive risk premiums regardless of the testing portfolios. Market betas of dividend strip

portfolios have a similar pattern. However, the positive relation between market beta and

realized dividend strip return is not strong enough to fully explain di�erences in average

dividend strip returns. Patterns of SMB betas produce mixed results. Relations between

SMB betas and sorting variables are in the correct direction to explain average returns of

dividend strips sorted by BM, ATG and RET(−1,−6) while are in the wrong direction

for portfolios sorted by DP and OP. HML betas help improve descriptions of dividend

strip returns in many cases but show strong humped relations with realized returns in

some cases. For the momentum factor, UMD betas are generally positively associated

with realized portfolio returns for all sorting variables. However, except to the portfolios

sorted by RET(−1,−6), the relation between UMD betas and realized portfolio returns

are relatively �at and price of UMD is estimated to be insigni�cantly positive in the cross

section of dividend strips. The results suggest the superior performance of the FF5 is

not speci�c to dividend strip portfolios sorted by historical dividend premium and that

average dividend strip returns associated with di�erent �rm characteristics share common

exposures to risks other than the market factors which are better captured by RMW and

CMA than by HML, SMB and UMD. Low RMW and CMA, i.e., when �rms with robust

pro�tability and conservative investments underperform �rms with weak pro�tability and

aggresive investments, represent a bad economic state. Dividend strips that have negative
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association with RMW and CMA provide hedge against the bad state and investors ask

for low risk premium on such assets. Dividend strips that have positive association with

RMW and CMA perform badly in the bad state and are less attractive assets for which

investors ask high risk premiums.
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Conclusions

Cash dividend remains an essential way for companies to distribute cash �ows to equity

holders, and is an important component of stock price. Studying the pricing of dividend

strips which entitle investors to dividends paid during a �nite period and contain infor-

mation about equity discount rates at di�erent maturities can help us better understand

the formation of stock price. I use options written on individual equity in the U.S. market

to replicate claims on near-term dividend payments from individual �rms and recover

their values from the put-call parity relation. I examine the asset pricing properties of

dividend strips at the aggregate level and in the cross section of individual �rms. The

return on individual dividend strip is on average high, which is related to the fact that

in contrast to the conventional wisdom of sticky dividends, actual quarterly dividends on

average deviate a lot from expected dividends measured either by historical dividends or

by analyst consensus dividend forecasts, suggesting considerable uncertainty in quarterly

dividend payments from individual stocks. Returns of claims on short-term dividends

vary substantially across stocks sorted by the ex-ante measure of dividend risk premium.
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Asset pricing tests indicate that both the average return on the aggregate dividend strip

made up of all individual dividend strips and the cross-sectional variations dividend strip

returns can be well explained by the Fama and French (2015) �ve-factor model, but are

not driven by measurement errors, di�erences in dividend policies, short-sale constraints

of underlying stocks or early exercise premiums in prices of American-style options. The

�ve-factor model also performs the best in explaining variations in returns on dividend

strips of stocks with di�erent �rm characteristics, suggesting that dividend strip returns

associated with di�erent sorts share common exposures to risk factors well captured by

the pro�tability (RMW) and investment (CMA) factors.

Results from this thesis indicate that and adding RMW and CMA may help explain

the puzzling �nding of the high average return of claims on short-term equity cash �ows

documented by prior studies using index derivatives. The high average value and sub-

stantial cross-sectional variations of returns on single cash �ows of individual companies

indicate that it is interesting to examine the term structure of equity at the corporate

level. This thesis provides a model-free approach that can reliably calculate prices and

returns of claims on single cash �ows at the �rm level from options prices. Future research

can use this model-free approach to estimate a term structure of equity for individual �rms

when the market of derivatives on individual stocks becomes more liquid, and contracts

with longer time-to-maturities are available.
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Tables

Table 1
Summary Statistics: Stock Characteristics

Panel A.1 and A.2 present equity characteristics for listed stocks with options and for all stocks
listed on NYSE, AMEX and NASDAQ. LogSIZE is the natural logarithm of total market
capitalization. BM is the book-to-market ratio. ATG is the annual total asset growth rate.
OP is the operating pro�tability. RET(−1,−6) is the compounding stock return in the prior
six months and is reported in percentage. PIH is the percentage of institutional holdings.
Mean, standard deviation (std), �rst quartile (p25), median (p50) and third quartile (p75) are
reported. Panel B.1 and B.2 report cross-sectional Pearson correlations between each pair of
variables for the stocks with options and for all listed stocks. I �rst calculate cross-sectional
statistics in each quarter and report time-series averages of the statistics. The sample period is
from January 1996 to December 2017.

A. Stock Characteristics

A.1 Sample of Stocks with Options Traded
mean std p25 p50 p75

LogSIZE 20.97 1.62 19.83 20.84 21.98
BM 0.57 0.70 0.26 0.51 1.10
ATG 0.24 0.88 −0.01 0.09 0.24
OP 0.31 3.73 0.00 0.25 0.39
RET(−1,−6) 7.66 40.07 −13.18 3.51 21.48
PIH 0.66 0.25 0.51 0.72 0.86

A.2 Sample of Stocks Listed on NYSE, AMEX and NASDAQ
mean std p25 p50 p75

LogSIZE 19.55 2.06 18.08 19.48 20.93
BM 0.69 0.73 0.29 0.58 1.01
ATG 0.19 1.51 −0.03 0.06 0.20
OP 0.17 2.82 0.01 0.18 0.34
RET(−1,−6) 6.79 43.09 −14.51 2.58 20.55
PIH 0.46 0.32 0.16 0.47 0.74
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Table 1

Summary Statistics: Stock Characteristics, Cont.

B. Correlation Matrix

B.1 Sample of Stocks with Options Traded
BM ATG OP RET(−1,−6) PIH

LogSIZE −0.076 −0.054 −0.033 −0.033 −0.435
BM −0.007 −0.001 −0.003 −0.011
ATG −0.001 −0.029 −0.008
OP −0.006 −0.016
RET(−1,−6) −0.051

B.2 Sample of Stocks Listed on NYSE, AMEX and NASDAQ
BM ATG OP RET(−1,−6) PIH

LogSIZE −0.083 −0.044 −0.087 −0.011 −0.127
BM −0.035 −0.021 −0.042 −0.029
ATG −0.017 −0.045 −0.002
OP −0.014 −0.076
RET(−1,−6) −0.067
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Table 2
Uncertainty of Individual Dividends

Panel A and B report cross-sectional distributions of the mean and root mean square error of
quarterly dividend growth rate and analyst dividend surprise, respectively. In Panel A, gd is
time-series average of quarterly dividend growth rate, which is equal to the percentage change
of dividend of a stock in a quarter from the dividend of that stock in the same �scal quarter of
the previous �scal year. RMSE(gd) is the root mean squared error of quarterly dividend growth
rate, which is the square root of mean squared quarterly dividend growth rate. A.1 reports
results for all stocks listed on NYSE, AMEX and NASDAQ with at least one positive regular
cash dividend during the sample period. A.2 reports results for listed dividend payers with
options traded. A.3 presents results for listed stocks with analyst dividend forecasts available.
A.4 presents results for listed stocks with analyst following and with options traded. In Panel B,
ed is analyst dividend forecast error, de�ned as the ratio of actual dividend per share to the last
consensus analyst forecast on dividend per share preceding dividend announcements minus 1.
RMSE(ed) is the root mean squared analyst dividend forecast error. Mean, standard deviation
(std), the �rst quartile (p25), median (p50) and third quartile (p75) are reported in percentage.
For Panel A.1 and Panel A.2, the sample period is from January 1996 to December 2017.
For Panel A.3, Panel A.4 and Panel B, the sample period is from January 2002 to December 2017.

A. Naive Model
A.1 All Dividend Payers

mean std p25 p50 p75

gd 1.17 25.34 −4.53 1.60 8.38
RMSE(gd) 31.85 50.55 16.33 29.62 52.10

A.2 Dividend Payers with Options
mean std p25 p50 p75

gd 2.02 18.37 −1.99 2.40 8.29
RMSE(gd) 28.64 35.93 15.98 26.19 42.63

A.3 Dividend Payers with Analyst Forecasts
mean std p25 p50 p75

gd 2.26 17.83 −2.87 2.85 7.99
RMSE(gd) 29.82 37.14 16.18 26.98 43.11

A.4 Dividend Payers with Analyst Forecasts and with Options
mean std p25 p50 p75

gd 3.14 16.94 −1.45 3.35 8.32
RMSE(gd) 27.06 37.47 15.60 25.88 42.08
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Table 2

Uncertainty of Individual Dividends, Cont.

B. Analyst Dividend Forecast
B.1 Dividend Payers with Analyst Forecasts

mean std p25 p50 p75

ed 0.87 18.88 −3.56 0.29 3.02
RMSE(ed) 26.31 38.62 9.44 24.44 45.43

B.2 Dividend Payers with Analyst Forecasts and with Options
mean std p25 p50 p75

ed 0.71 17.93 −2.89 0.23 3.29
RMSE(ed) 24.96 35.07 9.26 23.66 40.99
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Table 3
Summary Statistics: Options Characteristics

This table presents characteristics of option contracts written on individual stocks that
are used to calculate values of dividend strips. K/S is the ratio of strike price to the
price of the underlying stock, τ is number of days until the option maturity date, IV is
option-implied volatility, OI is open interest, and VOL is daily trading volumes of options
in contracts. Mean, standard deviation (std), �rst quartile (p25), median (p50) and third
quartile (p75) are reported. I �rst calculate cross-sectional statistics in each quarter and report
time-series averages of the statistics. The sample period is from January 1996 to December 2017.

mean std p25 p50 p75

K/S 1.00 0.04 0.96 1.00 1.04
τ 90 33 59 89 115
IV 0.49 0.25 0.32 0.43 0.60
VOL 45 302 0 1 12
OI 911 3,758 41 154 574
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Table 4
Summary Statistics: Dividend Premium, Dividend Yield and Option-Implied
Dividend Yield

DY is annualized dividend (D) in the next quarter divided by current stock price, IDY is
annualized option-implied dividend (DI) divided by current stock price, DP is di�erence between
present value of annualized D and annualized DI divided by current stock price, and r is
quarterly return on dividend strips. I �rst calculate cross-sectional statistics in each quarter
and report the time-series averages of the statistics. Panel A presents summary statistics for
the full sample of stocks with options traded. Panel B reports summary statistics of variables
with DI adjusted for early exercise premium. DIF is the di�erence between IDY not adjusted
for and adjusted for early exercise premium. Panel C presents summary statistics for the sample
of dividend payers, de�ned as stocks that have ever paid a positive regular cash dividend in the
previous �ve years. DP, DY, IDY and DIF are in annual percentage terms, and r is in quar-
terly percentage terms. Mean, standard deviation (std), the �rst quartile (p25), median (p50)
and third quartile (p75) are reported. The sample period is from January 1996 to December 2017.

A. Full Sample
mean std p25 p50 p75

DY 1.18 2.27 0.00 0.06 1.72
IDY 1.10 1.95 0.04 0.20 1.68
DP 0.08 2.20 −0.72 0.05 0.90
r 3.12 32.62 −13.07 1.66 19.69

B. Adjust for Early Exercise Premium
mean std p25 p50 p75

DY 1.11 2.21 0.00 0.05 1.67
IDY 1.04 1.96 0.01 0.18 1.62
DP 0.07 2.12 −0.67 0.10 0.86
r 3.98 32.46 −12.34 3.08 21.77
DIF 0.02 0.95 −0.05 0.03 0.09

C. Dividend Payers
mean std p25 p50 p75

DY 2.57 2.74 0.91 1.95 3.40
IDY 2.27 2.14 0.81 1.75 3.12
DP 0.30 2.52 −0.85 0.06 1.05
r 5.61 36.53 −15.50 3.31 26.75
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Table 5
Return on Aggregate Dividend Strip

Panel A reports times-series statistics of quarterly return on the aggregate dividend strip,
quarterly return on the market portfolio and quarterly portfolio-based risk factors. Return
on the aggregate dividend strip rAq+1 = (DA

q+1 + DIAq+1)/DIAq − 1, where DA
q+1 is the realized

aggregate dividend in quarter q + 1, and DIAq and DIAq+1 are the values of the claim on
aggregate dividend at the end of quarter q and quarter q + 1. rm is the return on the S&P
500 index. r̃A and r̃m are the return on the aggregate dividend strip and on the market index
in excess of the risk-free rate. SMB is the size factor. HML is the value factor. UMD is the
momentum factor. RMW is the pro�tability factor. CMA is the investment factor. Mean,
median (med), standard deviation (std), skewness (skew) and kurtosis (kurt) are reported.
Numbers are reported in quarterly percentage terms. Panel B reports intercepts and slope
coe�cients from regressions of excess return on the aggregate dividend strip on risk factors
of di�erent asset pricing models. αA,CAPM, αA,FF3, αA,FFM4 and αA,FF5 are intercepts of the
capital asset pricing model (CAPM), the Fama and French (1993) three-factor model (FF3),
the Carhart (1997) four-factor model (FFM4) and the Fama and French (2015) �ve-factor
model (FF5). Alphas are reported in percentage. βA,m, βA,s, βA,h, βA,u, βA,r, and βA,c are the
slope coe�cients of the excess return on the aggregate dividend strip on the excess return on
the market portfolio, SMB, HML, UMD, RMW and CMA, respectively. R̄2 is adjusted R2. t-
statistics are reported in parentheses. The sample period is from January 1996 to December 2017.

A. Summary Statistics of Returns on Assets and Risk Factors
mean med std skew kurt

rm 2.53 3.12 8.07 −0.54 3.54
r̃m 1.98 2.62 8.09 −0.52 3.43
SMB 0.58 0.44 4.72 0.07 2.84
HML 0.64 0.31 6.40 0.84 5.88
UMD 0.72 −0.14 4.39 1.34 6.52
RMW 1.13 0.67 5.52 0.94 8.11
CMA 1.14 1.36 8.84 −0.85 7.98
rA 4.62 4.25 15.22 −0.06 3.52
r̃A 4.08 3.89 15.53 −0.07 3.31
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Table 5

Return on Aggregate Dividend Strip, Cont.

B. Asset Pricing Tests on Aggregate Dividend Strip

αA,CAPM βA,m R̄2

CAPM 3.50 0.29 0.0476
( 2.11) ( 1.43)

αA,FF3 βA,m βA,s βA,h R̄2

FF3 3.15 0.27 0.22 0.57 0.102
( 1.90) ( 1.32) ( 0.85) ( 2.27)

αA,FFM4 βA,m βA,s βA,h βA,u R̄2

FFM4 2.64 0.26 0.16 0.55 0.10 0.125
( 1.77) ( 1.00) ( 0.38) ( 2.22) ( 0.54)

αA,FF5 βA,m βA,s βA,h βA,r βA,c R̄2

FF5 2.29 0.27 0.16 0.61 0.30 0.57 0.174
( 1.19) ( 1.38) ( 0.57) ( 2.04) ( 1.76) ( 2.30)
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Table 6
Sorting Portfolio Analysis: Stock Characteristics

This table presents average values of characteristics of quintile portfolios sorted by DP, the
average normalized dividend premium in the last four quarters, and 25 portfolios sorted by
PIH, the percentage of institutional holding, PIH, and DP. For the univariate-sorting, at
the end of each quarter q, stocks are sorted into portfolios based on DP. Portfolio 1 (5) has
the lowest (highest) DP. For double-sorting, at the end of each quarter q, stocks are �rst
sorted into �ve portfolios based on PIH, and within each portfolio, stocks are then sorted
by DP. In the column labeled DP, Portfolio 1 (5) has the lowest (highest) DP. In the row
labeled PIH, Portfolio 1 (5) has the lowest (highest) PIH. LogSIZE is the natural logarithm
of total market capitalization. BM is the book-to-market ratio. ATG is the annual total
asset growth rate. OP is the operating pro�tability. RET(−1,−6) is the compounding stock
return in the prior 6 months and is reported in percentage. PIH is de�ned as shares held
by institutions divided by total number of shares outstanding. RR is portfolio retaining
rate, de�ned as the proportion of stocks in a portfolio in the previous quarter that remains
in the same portfolio in this quarter. In each quarter for each portfolio, I calculate mean
values of characteristics of stocks in the sample and report time-series averages of mean val-
ues of the variables for each portfolio. The sample period is from January 1996 to December 2017.

A. Stock Characteristics, Quintile Portfolios Sorted by DP

DP

1 2 3 4 5
BM 0.41 0.49 0.55 0.64 0.72
LogSIZE 19.53 19.97 20.76 21.35 21.79
ATG 0.34 0.29 0.25 0.22 0.16
OP 0.15 0.27 0.34 0.40 0.45
RET(−1,−6) 1.26 1.70 2.21 2.46 2.78
PIH 0.69 0.68 0.66 0.67 0.67
RR 0.92 0.85 0.78 0.81 0.95
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Table 6

Sorting Portfolio Analysis: Stock Characteristics, Cont.

B. Stock Characteristics, 25 Portfolios Sorted by PIH and DP

PIH: Percentage of Institutional Holding

DP
1 2 3 4 5

1 0.37 0.30 0.29 0.28 0.27
2 0.58 0.59 0.58 0.59 0.56

PIH 3 0.73 0.73 0.72 0.72 0.73
4 0.84 0.84 0.83 0.84 0.84
5 0.94 0.94 0.93 0.93 0.94

BM: Book-to-market Ratio

DP
1 2 3 4 5

1 0.45 0.51 0.58 0.68 0.74
2 0.43 0.49 0.57 0.66 0.72

PIH 3 0.41 0.51 0.56 0.63 0.72
4 0.40 0.50 0.52 0.62 0.70
5 0.38 0.48 0.51 0.60 0.68

LogSIZE: Firm Size

DP
1 2 3 4 5

1 19.04 19.29 20.26 20.51 21.00
2 19.78 19.91 20.53 21.15 21.95

PIH 3 19.85 20.32 21.00 21.14 21.12
4 19.70 20.01 20.81 21.49 22.05
5 19.42 20.30 20.44 21.19 22.11

ATG: Total Assets Growth Rate

DP
1 2 3 4 5

1 0.30 0.25 0.23 0.21 0.14
2 0.32 0.24 0.25 0.22 0.16

PIH 3 0.33 0.27 0.25 0.21 0.18
4 0.35 0.28 0.24 0.23 0.19
5 0.35 0.32 0.25 0.22 0.19
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Table 6

Sorting Portfolio Analysis: Stock Characteristics, Cont.

B. Stock Characteristics, 25 Portfolios Sorted by PIH and DP

OP: Operating Pro�tability

DP
1 2 3 4 5

1 −0.06 0.15 0.32 0.33 0.39
2 −0.17 0.23 0.34 0.37 0.44

PIH 3 −0.17 0.29 0.36 0.38 0.46
4 −0.18 0.29 0.36 0.40 0.46
5 −0.21 0.31 0.35 0.42 0.45

RET(−1,−6): Past 6-months Stock Return

DP
1 2 3 4 5

1 0.56 1.11 1.64 2.33 2.60
2 1.39 1.71 1.92 2.14 2.55

PIH 3 1.41 1.82 2.28 2.49 2.65
4 1.42 1.92 2.35 2.61 3.21
5 1.34 1.87 2.48 3.03 3.24

RR: Retaining Ratio

DP
1 2 3 4 5

1 0.93 0.77 0.71 0.75 0.88
2 0.87 0.74 0.68 0.77 0.87

PIH 3 0.86 0.74 0.68 0.70 0.79
4 0.79 0.66 0.60 0.62 0.72
5 0.88 0.73 0.66 0.67 0.81
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Table 7
Portfolio Realized Returns

Panel A reports time-series average returns on portfolios, rp, in quarterly percentage terms,
of the �ve portfolios of dividend strips sorted by DP. At the end of each quarter q, stocks
are sorted into portfolios based on DP, the average historical normalized dividend premium
in the last four quarters. Portfolio 1 (5) has the lowest (highest) DP. Panel B reports
time-series average returns on the portfolios of dividend strips, rp, in quarterly percentage
terms, of the 25 portfolios sorted by PIH and DP. At the end of each quarter q, stocks are
�rst sorted into �ve portfolios based on the percentage of institutional holding, PIH, and within
each portfolio, stocks are then sorted into �ve sub-portfolios based on the average dividend
premium in the last four quarters, DP. In the row labeled DP, Portfolio 1 (5) has the lowest
(highest) DP. In the column labeled PIH, Portfolio 1 (5) has the lowest (highest) PIH. In each
column, the �ve PIH portfolios are aggregated into one portfolio, and returns on the aggregate
portfolios are reported in the last row labeled by ALL. Column labeled 5−1 represents spread
in returns between Portfolio 5 and 1. The sample period is from January 1996 to December 2017.

A. Portfolio Realized Returns rp, univariate-sorting

DP

1 2 3 4 5 5−1
−2.87 −1.55 3.71 7.38 11.91 14.78
(−1.26) (−0.69) ( 2.12) ( 3.27) ( 4.60) ( 4.53)

B. Portfolio Realized Returns rp, double-sorting

DP

1 2 3 4 5 5−1
1 −3.32 −2.83 4.75 8.34 14.63 17.95

(−1.29) (−1.15) ( 2.46) ( 3.25) ( 4.89) ( 4.09)
2 −5.87 −1.22 4.83 8.48 11.93 17.80

(−2.21) (−0.50) ( 2.50) ( 3.44) ( 4.46) ( 4.90)
PIH 3 −3.07 −1.37 4.78 6.51 11.33 14.40

(−1.21) (−0.50) ( 2.26) ( 2.56) ( 4.11) ( 4.54)
4 −3.09 −0.54 4.11 4.36 10.75 13.84

(−1.31) (−0.21) ( 2.09) ( 1.79) ( 4.01) ( 4.11)
5 −2.62 −0.42 3.44 6.77 12.11 14.73

(−1.02) (−0.17) ( 1.79) ( 2.92) ( 4.41) ( 4.00)

ALL −3.59 −1.28 4.38 6.89 12.15 15.74
(−2.33) (−0.59) ( 2.61) ( 3.37) ( 5.29) ( 5.82)
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Table 8
Portfolio Risk Exposures

This table reports the time-series means of conditional risk exposures and associated t-statistics
of the �ve portfolios sorted by DP (Panel A) and of the 25 portfolios sorted by PIH and DP
(Panel B). β̄p,m, β̄p,s, β̄p,h, β̄p,u, β̄p,r and β̄p,c are time-series averages of risk exposures of
dividend strip portfolio p's return, rp, with respect to the market risk factor, the size factor
(SMB), the value factor (HML), the momentum factor (UMD), the pro�tability factor (RMW)
and the investment factor (CMA), and are estimated from time-series regressions in a rolling
window of data. t-statistics of betas are adjusted for autocorrelation and heteroscedasticity.
The sample period is from January 1996 to December 2017.

A. Risk Exposures, univariate-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m −0.45 −0.21 0.29 −0.74 −1.68 t(β̄p,m) −4.99 −1.97 3.25 −7.71 −9.52

FF3: Fama and French Three-Factor Model

β̄p,m −0.41 −0.23 0.28 −0.74 −1.63 t(β̄p,m) −4.85 −1.98 3.08 −5.86 −9.46
β̄p,s −0.60 −0.46 0.24 −0.18 −0.41 t(β̄p,s) −4.05 −2.17 1.97 −1.45 −3.43
β̄p,h −0.45 −0.25 0.35 −0.65 −0.78 t(β̄p,h) −3.91 −2.55 2.62 −5.27 −5.46

FFM4: Carhart Four-Factor Model

β̄p,m −0.41 −0.22 0.32 −0.81 −1.69 t(β̄p,m) −5.28 −2.02 2.58 −6.08 −9.12
β̄p,s −0.61 −0.37 0.32 −0.27 −0.41 t(β̄p,s) −4.60 −1.68 2.04 −2.23 −2.74
β̄p,h −0.44 −0.19 0.35 −0.63 −0.75 t(β̄p,h) −3.19 −2.26 3.07 −4.65 −5.55
β̄p,u −0.27 −0.20 0.22 −0.38 −0.48 t(β̄p,u) −2.48 −1.99 1.94 −3.33 −3.37

FF5: Fama and French Five-Factor Model

β̄p,m −0.45 −0.19 0.30 −0.81 −1.64 t(β̄p,m) −4.00 −2.32 2.95 −5.75 −8.81
β̄p,s −0.57 −0.48 0.27 −0.22 −0.42 t(β̄p,s) −4.03 −2.06 1.97 −1.37 −3.54
β̄p,h −0.46 −0.25 0.32 −0.65 −0.79 t(β̄p,h) −3.26 −2.19 2.45 −4.96 −5.81
β̄p,r −0.34 −0.27 0.46 −0.65 −0.96 t(β̄p,r) −3.15 −2.33 2.42 −2.90 −5.03
β̄p,c −0.30 −0.09 0.39 −0.67 −0.83 t(β̄p,c) −2.57 −0.72 3.44 −3.90 −4.87
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Table 8 Portfolio Risk Exposures, Cont.

B. Risk Exposures, double-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m t(β̄p,m)

1 −0.40 −0.23 0.43 0.76 1.53 −4.49 −2.50 3.89 6.76 9.52
2 −0.48 −0.26 0.43 0.82 1.67 −5.68 −1.96 3.96 6.15 9.52

PIH 3 −0.16 −0.25 0.37 0.82 1.54 −1.52 −2.29 3.37 6.69 9.54
4 −0.40 −0.11 0.28 0.68 1.36 −5.09 −1.29 3.14 6.02 8.08
5 −0.26 −0.13 0.31 0.64 1.37 −3.95 −1.14 3.23 6.00 8.25

FF3: Fama and French Three-Factor Model

β̄p,m t(β̄p,m)

1 −0.39 −0.26 0.46 0.73 1.52 −4.29 −2.43 3.02 6.02 8.68
2 −0.47 −0.27 0.42 0.76 1.53 −4.46 −2.20 4.12 5.05 8.02

PIH 3 −0.19 −0.27 0.27 0.78 1.49 −1.76 −2.10 3.32 4.59 9.12
4 −0.46 −0.10 0.25 0.66 1.38 −3.25 −0.99 2.98 6.66 7.73
5 −0.26 −0.16 0.22 0.66 1.38 −2.53 −0.98 3.01 5.89 8.29

β̄p,s t(β̄p,s)

1 1.00 0.72 0.40 −0.09 −0.59 6.21 4.96 2.15 −0.59 −2.76
2 0.74 0.69 0.29 −0.14 −0.60 4.25 3.79 1.50 −0.95 −3.88

PIH 3 0.57 0.42 0.26 −0.17 −0.73 4.49 2.80 2.08 −1.24 −5.16
4 0.44 0.38 0.28 −0.19 −0.34 2.53 2.24 1.29 −1.30 −2.51
5 0.36 0.43 0.25 −0.29 −0.76 2.45 3.59 1.51 −2.05 −5.24

β̄p,h t(β̄p,h)

1 −0.67 −0.29 0.46 0.67 0.85 −4.18 −3.36 3.46 4.10 6.50
2 −0.46 −0.27 0.41 0.75 0.81 −4.48 −2.93 3.42 4.21 4.96

PIH 3 −0.52 −0.24 0.33 0.56 0.70 −4.18 −1.69 3.05 5.12 3.57
4 −0.18 −0.08 0.22 0.58 0.62 −1.91 −1.30 3.10 3.46 4.09
5 −0.19 −0.09 0.16 0.52 0.65 −1.00 −1.15 1.14 3.49 4.89
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Table 8 Portfolio Risk Exposures, Cont.

DP DP

1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m t(β̄p,m)

1 −0.40 −0.22 0.41 0.70 1.46 −3.55 −2.89 2.85 5.33 8.78
2 −0.45 −0.26 0.40 0.83 1.66 −4.29 −2.12 3.42 6.61 8.81

PIH 3 −0.15 −0.19 0.29 0.77 1.56 −1.21 −1.56 2.97 5.03 8.02
4 −0.38 −0.16 0.38 0.73 1.39 −3.19 −1.36 2.76 6.08 7.19
5 −0.19 −0.09 0.30 0.67 1.42 −1.68 −0.94 2.80 5.82 7.94

β̄p,s t(β̄p,s)

1 0.96 0.74 0.46 −0.09 −0.57 5.09 4.08 2.43 −0.42 −2.22
2 0.83 0.65 0.34 −0.17 −0.61 4.25 5.24 2.11 −1.12 −3.58

PIH 3 0.57 0.43 0.28 −0.15 −0.61 3.94 2.14 1.15 −1.07 −3.92
4 0.41 0.33 0.25 −0.18 −0.33 2.15 1.86 1.62 −1.16 −2.39
5 0.35 0.44 0.19 −0.22 −0.76 2.74 2.51 1.21 −1.38 −5.12

β̄p,h t(β̄p,h)

1 −0.65 −0.23 0.49 0.65 0.84 −4.32 −2.46 3.23 3.96 5.26
2 −0.51 −0.30 0.42 0.62 0.87 −4.78 −3.12 3.01 5.04 5.64

PIH 3 −0.43 −0.12 0.25 0.57 0.77 −4.46 −0.75 2.11 4.34 4.33
4 −0.16 −0.13 0.24 0.55 0.71 −1.44 −1.54 3.14 4.14 4.32
5 −0.09 −0.05 0.17 0.57 0.69 −0.70 −0.55 1.22 3.43 4.45

β̄p,u t(β̄p,u)

1 −0.75 −0.56 0.25 0.45 0.58 −3.94 −2.43 2.36 2.71 4.02
2 −0.50 −0.31 0.28 0.36 0.48 −3.77 −1.24 3.27 2.52 4.39

PIH 3 −0.26 −0.20 0.25 0.36 0.47 −1.45 −1.26 3.73 3.28 3.27
4 −0.14 −0.09 0.15 0.33 0.50 −0.51 −0.70 1.16 2.50 3.21
5 −0.05 −0.01 0.13 0.35 0.42 −0.30 −0.09 1.41 3.18 2.90
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Table 8 Portfolio Risk Exposures, Cont.

DP DP

1 2 3 4 5 1 2 3 4 5

FF5: Fama and French Five-Factor Model

β̄p,m t(β̄p,m)

1 −0.43 −0.24 0.42 0.71 1.49 −3.88 −2.90 3.09 5.60 8.59
2 −0.43 −0.27 0.43 0.82 1.65 −4.25 −2.47 3.80 6.36 9.00

PIH 3 −0.12 −0.25 0.31 0.79 1.55 −1.70 −2.11 3.61 5.58 8.72
4 −0.41 −0.11 0.33 0.67 1.38 −2.92 −0.99 3.43 6.62 7.61
5 −0.21 −0.07 0.28 0.68 1.40 −2.00 −0.71 2.89 5.55 8.29

β̄p,s t(β̄p,s)

1 0.98 0.76 0.45 −0.07 −0.55 5.33 4.80 2.85 −0.40 −1.77
2 0.82 0.73 0.32 −0.15 −0.63 3.87 4.46 1.99 −0.83 −3.79

PIH 3 0.57 0.42 0.26 −0.09 −0.61 3.83 2.49 1.22 −0.65 −4.90
4 0.44 0.35 0.24 −0.14 −0.35 3.83 2.46 1.53 −0.81 −1.87
5 0.31 0.43 0.19 −0.22 −0.73 2.46 2.29 1.46 −1.26 −4.97

β̄p,h t(β̄p,h)

1 −0.65 −0.24 0.46 0.63 0.87 −4.15 −2.26 3.42 4.06 5.90
2 −0.51 −0.28 0.47 0.65 0.84 −5.40 −3.93 3.04 4.79 5.13

PIH 3 −0.44 −0.11 0.26 0.57 0.75 −5.08 −1.37 2.31 4.08 4.71
4 −0.13 −0.10 0.24 0.54 0.70 −1.73 −1.90 3.00 3.93 4.35
5 −0.10 −0.04 0.19 0.60 0.68 −1.05 −0.69 0.84 3.95 4.80

β̄p,r t(β̄p,r)

1 −0.53 −0.39 0.48 0.70 0.93 −2.44 −3.25 2.35 3.33 4.23
2 −0.62 −0.31 0.52 0.66 1.08 −4.76 −3.15 2.31 2.93 5.27

PIH 3 −0.29 −0.25 0.46 0.69 1.08 −2.67 −1.81 3.34 3.01 5.16
4 −0.20 −0.21 0.49 0.63 0.89 −1.17 −2.45 3.22 3.73 4.87
5 −0.24 −0.02 0.39 0.58 1.16 −1.80 −0.18 2.83 3.60 5.34

β̄p,c t(β̄p,c)

1 −0.34 −0.21 0.49 0.66 1.07 −1.70 −1.49 2.31 3.06 5.83
2 −0.49 −0.25 0.46 0.68 0.90 −4.31 −1.70 1.75 2.95 5.25

PIH 3 −0.29 −0.20 0.43 0.70 0.87 −3.97 −2.06 1.59 2.90 5.20
4 −0.19 −0.07 0.36 0.56 0.97 −1.30 −1.22 1.52 2.58 4.41
5 −0.20 −0.14 0.25 0.63 0.90 −1.82 −2.05 1.09 2.72 4.07

150



Tables

Table 9
Cross-sectional Regressions and Price of Risk

This table reports the cross-sectional regression results of quarterly excess returns of portfolios
of dividend strips, r̃p, on conditional beta coe�cients on risk factors under the four asset pricing
models, the Capital Asset Pricing Model (CAPM), the Fama and French (1993) three-factor
model (FF3), the Carhart (1997) four-factor model and the Fama and French (2015) �ve-factor
model. λ0 is regression intercept. λm, λs, λh, λu, λr and λc are prices of the market risk factor,
the size factor (SMB), the value factor (HML), the momentum factor (UMD), the pro�tability
factor (RMW) and the investment factor (CMA). The table reports time-series average of
estimated prices of risks, t-statistic adjusted for autocorrelation and heteroscedasticity in
parentheses, and mean value of adjusted R2, R̄2 of regressions. In Panel A, testing portfolios
are the quintile portfolios sorted by DP. In Panel B, testing portfolios are the 25 portfolios
sorted by PIH and DP. The sample period is from January 1996 to December 2017.

A. Quintile Portfolios Sorted by DP

λ0 λm λs λh λu λr λc R̄2

Est. 3.52 2.72 0.488
t-stat ( 2.40) ( 2.27)

B. 25 Portfolios Sorted by PIH and DP

λ0 λm λs λh λu λr λc R̄2

Est. 3.45 3.08 0.405
t-stat ( 2.25) ( 3.18)
Est. 2.05 3.12 −0.84 1.97 0.454
t-stat ( 1.59) ( 2.25) (−1.46) ( 2.13)
Est. 1.90 3.17 −0.85 1.86 1.13 0.507
t-stat ( 1.44) ( 2.69) (−1.37) ( 2.06) ( 1.08)
Est. 0.44 3.09 −1.12 1.59 1.61 1.59 0.570
t-stat ( 0.30) ( 2.64) (−1.78) ( 2.08) ( 2.70) ( 3.31)
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Table 10
Time-series Regression and GRS Test

The table reports pricing errors for the CAPM (αCAPM), the FF3 (αFF3), the FFM4 (αFFM4) and
the FF5 (αFF5) estimated from the time-series regression of portfolio quarterly excess returns
r̃pq+1 on quarterly risk factors fq+1:

r̃pq+1 = αp + βpfq+1 + εpq+1,

where fq+1 = r̃mq+1 (excess return on the S&P 500 index) for the CAPM, fq+1 = [r̃mq+1, SMBq+1,
HMLq+1] for the FF3, fq+1 = [r̃mq+1, SMBq+1, HMLq+1, UMDq+1] for the FFM4, and fq+1 =
[r̃mq+1, SMBq+1, HMLq+1, RMWq+1, CMAq+1] for the FF5. Panel A is for the quintile portfolios

sorted by DP, average normalized dividend premium in the last four quarters, and Portfolio 1
(5) has the lowest (highest) DP. Panel B is for the 25 portfolios sorted by PIH, the percentage
of institutional holdings, and by DP. In each row labeled DP, Portfolio 1 (5) has the lowest
(highest) DP, and in each column labeled PIH, Portfolio 1 (5) has the lowest (highest) PIH.
Bottoms of Panel A and B report Gibbons, Ross and Shanken (1989) test statistics and p-values.
The sample period is from January 1996 to December 2017.

A. univariate-sorting, Pricing Errors

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM −2.51 −1.63 2.58 5.20 8.02 t(αCAPM) −1.09 −0.71 1.43 2.37 3.72
αFF3 −2.56 −1.70 2.23 4.87 7.76 t(αFF3) −1.15 −0.74 1.25 2.13 3.32
αFFM4 −2.31 −1.54 1.90 4.52 7.20 t(αFFM4) −1.04 −0.67 1.05 1.98 3.04
αFF5 −2.04 −1.39 1.34 3.71 6.14 t(αFF5) −0.95 −0.61 0.74 1.62 2.64

`
univariate-sorting, GRS (1989) Test

CAPM FF3 FFM4 FF5

GRS 3.914 3.226 2.565 1.798
p-value 0.003 0.011 0.033 0.123
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Table 10 Time-series Regression and GRS Test, Cont.

B. double-sorting, Pricing Errors

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −3.05 −2.92 3.39 6.24 11.06 −1.19 −1.16 1.74 2.46 4.08
2 −5.47 −1.21 3.42 6.29 8.13 −2.05 −0.48 1.74 2.61 3.56

PIH 3 −3.31 −1.35 3.63 4.34 7.67 −1.28 −0.48 1.67 1.73 3.16
4 −2.80 −0.89 3.04 2.50 7.45 −1.18 −0.34 1.51 1.03 3.08
5 −2.67 −0.71 2.28 4.94 8.86 −1.02 −0.27 1.17 2.16 3.53

αFF3 t(αFF3)

1 −3.23 −3.15 2.81 6.04 10.89 −1.30 −1.28 1.42 2.37 3.80
2 −5.59 −1.41 3.04 5.94 8.06 −2.09 −0.58 1.57 2.41 3.11

PIH 3 −3.31 −1.52 3.30 4.10 7.74 −1.38 −0.55 1.52 1.59 3.14
4 −2.95 −1.00 2.76 2.29 7.25 −1.24 −0.39 1.40 0.93 2.81
5 −2.78 −0.84 2.15 4.75 8.86 −1.08 −0.33 1.09 2.08 3.27

αFFM4 t(αFFM4)

1 −2.31 −2.45 2.56 5.49 10.35 −0.96 −0.99 1.29 2.14 3.63
2 −5.07 −1.06 2.62 5.52 7.55 −1.94 −0.44 1.34 2.23 2.97

PIH 3 −3.01 −1.22 2.95 3.63 7.17 −1.26 −0.44 1.35 1.40 2.89
4 −2.73 −1.02 2.62 1.90 6.84 −1.15 −0.40 1.32 0.78 2.66
5 −2.74 −0.88 1.96 4.45 8.36 −1.07 −0.34 1.00 1.89 3.11

αFF5 t(αFF5)

1 −2.35 −2.57 1.97 4.73 9.20 −0.98 −1.06 0.98 1.82 3.33
2 −4.50 −0.94 2.03 4.74 6.20 −1.70 −0.39 1.03 1.92 2.61

PIH 3 −2.85 −1.19 2.46 2.89 5.83 −1.24 −0.44 1.13 1.14 2.37
4 −2.66 −0.75 1.95 1.19 5.54 −1.16 −0.30 0.97 0.49 2.21
5 −2.57 −0.90 1.44 3.63 7.02 −1.02 −0.35 0.71 1.65 2.65

`
double-sorting, GRS (1989) Test

CAPM FF3 FFM4 FF5

GRS 2.400 1.847 1.752 1.410
p-value 0.003 0.028 0.041 0.142
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Table 11
Robustness Test: Predictability of Option-Implied Dividend

This table reports the estimated coe�cients of the time-series regression:

Di
q+1 −Di

q

Siq
= γi

DIiq −Di
q

Siq
+
∑
j

ηijl
i
j,q+1 + εiq+1,

where Di
q+1 is realized dividend of stock i in the next quarter q+1 and DIiq is the option-implied

quarterly dividend estimated before the next dividend announcement date averaged across
strike prices, time to maturities and option-pricing dates. Siq is stock price at the end of quarter
q. lij,q+1 (j= 1, 2, 3 or 4) are dummy variables which take the value of 1 if quarter q + 1 is the

jth �scal quarter in a year and take the value of 0 if otherwise. t(γi) is t-statistics of γi and is
adjusted for autocorrelation and heteroscedasticity according to Newey and West (1987). R̄2,i

is adjusted R2. Mean, standard deviation (std), �rst quartile (p25), median (p50) and third
quartile (p75) of γi, t(γi) and R̄2,i are reported. The sample period is from January 1996 to
December 2017.

mean std p25 p50 075
γi 0.457 0.441 0.175 0.423 0.832
t(γi) 4.949 6.099 1.848 3.802 9.650
R̄2,i 0.503 0.341 0.174 0.472 0.704

154



Tables

Table 12
Robustness Test: Dividend Payer Sample

This table tabulates results of portfolio analysis for the sample of dividend payers, de�ned
as �rms which have ever paid a positive regular cash dividend in the previous �ve years.
Panel A reports time-series mean quarterly portfolio returns, rp, in percentage, and associated
t-statistics in parentheses. For the univariate-sorting analysis, at the end of each quarter q,
stocks are sorted into portfolios based on DP, the average dividend premium in the last four
quarters. Portfolio 1 (5) has the lowest (highest) DP. 5−1 is the spread in average returns
between Portfolio 5 and 1. For double-sorting analysis, at the end of each quarter q, stocks
are �rst sorted into �ve portfolios based on PIH, the percentage of institutional holdings, and
within each portfolio, stocks are then sorted into �ve sub-portfolios by DP. In the row labeled
DP, Portfolio 1 (5) has the lowest (highest) DP. In each column, the �ve PIH portfolios are
aggregated into one portfolio, and returns on the aggregate portfolios are reported in the last
row labeled by ALL. The sample period is from January 1996 to December 2017.

A. Portfolio Realized Returns rp, univariate-sorting

DP

1 2 3 4 5 5−1
−2.90 −1.05 4.92 8.87 14.03 16.93
(−1.13) (−0.47) ( 2.55) ( 3.60) ( 5.04) ( 4.58)

Portfolio Realized Returns rp, double-sorting

DP

1 2 3 4 5 5−1
1 −2.25 −1.00 6.71 9.46 17.74 19.98

(−0.69) (−0.37) ( 2.17) ( 3.15) ( 5.25) ( 4.05)
2 −3.21 −0.55 6.30 9.28 14.72 17.93

(−0.92) (−0.17) ( 2.07) ( 3.20) ( 4.43) ( 3.89)
PIH 3 −2.68 −0.13 5.23 8.45 14.49 17.17

(−0.80) (−0.05) ( 1.57) ( 2.70) ( 4.33) ( 4.17)
4 −1.72 −0.00 5.29 8.14 15.30 17.02

(−0.54) (−0.00) ( 1.59) ( 2.68) ( 4.99) ( 4.52)
5 −0.79 −0.05 5.08 8.04 15.36 16.15

(−0.28) (−0.02) ( 1.64) ( 2.30) ( 4.94) ( 4.09)

ALL −2.13 −0.29 5.72 8.67 15.52 17.65
(−0.99) (−0.12) ( 2.07) ( 3.25) ( 5.90) ( 5.79)
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Table 12

Robustness Test: Dividend Payer Sample, Cont.

Panel B reports the time-series means of conditional risk exposures and associated t-statistics
of the �ve portfolios sorted by DP (Panel A) and of the 25 portfolios sorted by PIH and DP
(Panel B) of dividend payers. β̄p,m, β̄p,s, β̄p,h, β̄p,u, β̄p,r and β̄p,c are time-series averages of
risk exposures of portfolio p's return, rp, with respect to the market risk factor, the size factor
(SMB), the value factor (HML), the momentum factor (UMD), the pro�tability factor (RMW)
and the investment factor (CMA), and are estimated from time-series regressions in a rolling
window of data. t-statistics of betas are adjusted for autocorrelation and heteroscedasticity.

A. Risk Exposures, univariate-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m −0.45 −0.17 0.40 −0.93 −1.83 t(β̄p,m) −4.43 −2.21 3.30 −6.86 −9.49

FF3: Fama and French Three-Factor Model

β̄p,m −0.47 −0.21 0.43 −1.02 −1.86 t(β̄p,m) −4.16 −2.25 4.35 −6.35 −8.42
β̄p,s −0.57 −0.37 0.29 −0.33 −0.69 t(β̄p,s) −4.90 −3.10 1.67 −2.03 −4.25
β̄p,h −0.47 −0.26 0.41 −0.52 −0.80 t(β̄p,h) −5.06 −2.42 3.73 −4.06 −5.69

FFM4: Carhart Four-Factor Model

β̄p,m −0.46 −0.20 0.47 −0.99 −1.86 t(β̄p,m) −4.23 −1.89 3.82 −6.47 −9.30
β̄p,s −0.57 0.40 0.24 −0.27 −0.72 t(β̄p,s) −4.35 −3.05 1.82 −2.01 −5.09
β̄p,h −0.47 −0.17 0.36 −0.50 −0.75 t(β̄p,h) −4.95 −1.76 3.70 −4.44 −5.72
β̄p,u −0.26 −0.19 0.33 −0.39 −0.51 t(β̄p,u) −2.01 −1.23 2.30 −3.20 −3.51

FF5: Fama and French Five-Factor Model

β̄p,m −0.47 −0.17 0.46 −0.97 −1.90 t(β̄p,m) −3.95 −1.76 3.63 −6.07 −9.59
β̄p,s −0.57 0.43 0.23 −0.28 −0.69 t(β̄p,s) −4.68 −3.34 1.69 −2.35 −4.73
β̄p,h −0.46 −0.21 0.40 −0.51 −0.78 t(β̄p,h) −4.15 −2.54 3.89 −4.78 −5.65
β̄p,r −0.35 −0.15 0.45 −0.72 −0.98 t(β̄p,r) −2.76 −0.80 3.57 −4.12 −5.45
β̄p,c −0.33 −0.17 0.46 −0.66 −0.90 t(β̄p,c) −2.16 −1.13 3.08 −3.88 −4.63
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Table 12 Robustness Test: Dividend Payer Sample, Cont.

B. Risk Exposures, double-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m t(β̄p,m)

1 −0.43 −0.35 0.47 0.97 1.83 −4.07 −3.44 3.14 7.07 9.99
2 −0.63 −0.35 0.47 0.85 1.85 −6.70 −3.55 4.10 7.25 10.08

PIH 3 −0.50 −0.31 0.43 0.88 1.83 −7.85 −3.03 4.11 8.52 9.59
4 −0.33 −0.18 0.41 0.93 1.97 −2.90 −0.69 3.76 8.91 9.69
5 −0.15 −0.05 0.45 0.92 1.97 −1.43 −0.48 4.03 8.38 9.62

FF3: Fama and French Three-Factor Model

β̄p,m t(β̄p,m)

1 −0.53 −0.35 0.45 1.01 1.88 −5.32 −2.68 3.16 7.45 9.52
2 −0.64 −0.38 0.43 0.86 1.79 −5.05 −3.74 3.29 6.91 9.32

PIH 3 −0.49 −0.22 0.50 0.89 1.85 −4.22 −2.62 4.88 6.97 9.42
4 −0.30 −0.24 0.30 0.88 1.85 −2.56 −2.71 3.75 7.19 9.26
5 −0.14 −0.07 0.44 0.93 1.91 −1.99 −1.18 5.22 7.19 10.17

β̄p,s t(β̄p,s)

1 0.98 0.77 0.40 −0.17 −0.39 5.48 3.78 2.67 −1.00 −2.81
2 0.73 0.64 0.44 −0.21 −0.59 4.94 3.77 2.37 −1.41 −3.17

PIH 3 0.76 0.43 0.29 −0.25 −0.63 3.67 2.52 2.33 −1.30 −3.37
4 0.44 0.33 0.21 −0.03 −0.53 3.49 1.82 2.01 −0.18 −4.03
5 0.29 0.44 0.16 −0.27 −0.76 1.43 2.71 1.11 −1.99 −4.36

β̄p,h t(β̄p,h)

1 −0.73 −0.34 0.44 0.66 1.06 −5.04 −1.53 2.05 4.40 5.83
2 −0.59 −0.24 0.46 0.65 0.79 −4.03 −1.64 2.26 5.27 4.23

PIH 3 −0.44 −0.22 0.32 0.68 0.81 −4.07 −1.10 2.60 4.25 4.94
4 −0.42 −0.17 0.29 0.66 0.80 −2.50 −1.15 2.60 4.12 4.71
5 −0.15 −0.13 0.28 0.65 0.76 −1.16 −0.68 1.65 4.41 4.53
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Table 12 Robustness Test: Dividend Payer Sample, Cont.

DP DP

1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m t(β̄p,m)

1 −0.53 −0.39 0.47 1.08 1.86 −4.92 −2.89 4.23 7.65 9.85
2 −0.64 −0.31 0.45 0.92 1.84 −4.67 −2.99 4.40 7.14 9.26

PIH 3 −0.56 −0.36 0.48 0.90 1.85 −3.61 −3.70 4.20 7.02 9.38
4 −0.33 −0.22 0.37 0.91 1.94 −2.52 −2.98 4.05 7.97 9.07
5 −0.17 −0.10 0.44 0.95 1.88 −1.70 −1.32 4.87 7.11 9.82

β̄p,s t(β̄p,s)

1 1.08 0.81 0.39 −0.14 −0.47 5.60 3.18 2.74 −0.81 −3.73
2 0.73 0.66 0.32 −0.23 −0.55 4.27 3.45 2.63 −1.65 −2.99

PIH 3 0.62 0.39 0.29 −0.12 −0.66 3.94 2.46 3.13 −0.68 −3.86
4 0.46 0.34 0.32 −0.06 −0.54 2.61 1.47 2.45 −0.49 −3.87
5 0.38 0.44 0.07 −0.27 −0.79 1.82 2.69 0.66 −2.07 −4.86

β̄p,h t(β̄p,h)

1 −0.63 −0.34 0.51 0.73 0.92 −4.46 −1.35 3.08 5.57 6.51
2 −0.65 −0.21 0.47 0.73 0.90 −4.74 −1.76 3.45 5.51 5.17

PIH 3 −0.46 −0.21 0.32 0.64 0.81 −3.18 −1.68 3.09 3.99 3.75
4 −0.35 −0.04 0.35 0.68 0.78 −2.82 −0.22 2.82 3.17 3.74
5 −0.14 −0.17 0.20 0.61 0.68 −1.00 −1.54 0.90 4.79 3.94

β̄p,u t(β̄p,u)

1 −0.47 −0.21 0.31 0.33 0.62 −2.12 −1.43 2.45 2.52 4.94
2 −0.47 −0.20 0.28 0.35 0.63 −2.97 −0.68 2.26 2.76 4.39

PIH 3 −0.39 −0.28 0.25 0.41 0.66 −1.97 −1.45 2.22 2.27 4.81
4 −0.17 −0.31 0.24 0.44 0.73 −0.69 −2.70 1.40 2.23 4.44
5 −0.04 −0.02 0.35 0.37 0.76 −0.16 −0.07 1.52 2.70 5.07
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Table 12 Robustness Test: Dividend Payer Sample, Cont.

DP DP

1 2 3 4 5 1 2 3 4 5

FF5: Fama and French Five-Factor Model

β̄p,m t(β̄p,m)

1 −0.47 −0.35 0.50 1.04 1.89 −5.12 −2.21 3.70 7.73 9.26
2 −0.65 −0.30 0.48 0.90 1.91 −5.01 −2.10 4.06 7.40 9.38

PIH 3 −0.43 −0.30 0.44 0.89 1.86 −3.36 −3.31 3.78 7.50 9.47
4 −0.29 −0.16 0.36 0.90 1.94 −3.08 −1.77 3.02 7.67 9.20
5 −0.16 −0.04 0.44 0.92 1.90 −2.49 −0.54 3.96 7.17 8.23

β̄p,s t(β̄p,s)

1 0.94 0.81 0.40 −0.07 −0.44 4.98 4.00 2.73 −0.39 −2.85
2 0.76 0.69 0.38 −0.16 −0.57 4.27 3.46 2.88 −0.97 −2.47

PIH 3 0.63 0.45 0.22 −0.21 −0.67 3.71 2.53 2.16 −1.05 −3.52
4 0.45 0.33 0.26 0.06 −0.48 2.81 1.80 2.40 0.37 −3.40
5 0.30 0.42 0.19 −0.26 −0.74 1.39 3.11 1.45 −1.55 −4.30

β̄p,h t(β̄p,h)

1 −0.69 −0.28 0.52 0.68 0.92 −4.11 −1.45 2.98 4.98 5.71
2 −0.58 −0.25 0.46 0.67 0.81 −3.85 −1.89 2.80 5.08 4.38

PIH 3 −0.42 −0.21 0.38 0.61 0.80 −2.70 −1.50 3.16 4.06 4.25
4 −0.34 −0.06 0.36 0.61 0.76 −2.24 −0.39 3.50 4.32 4.62
5 −0.13 −0.01 0.25 0.60 0.68 −0.62 −0.06 0.70 4.00 4.57

β̄p,r t(β̄p,r)

1 −0.55 −0.34 0.53 0.75 0.99 −1.67 −1.22 2.88 4.64 6.01
2 −0.61 −0.30 0.44 0.65 1.05 −2.57 −1.17 2.42 4.92 6.17

PIH 3 −0.28 −0.13 0.54 0.66 1.00 −1.23 −0.87 2.47 3.84 5.49
4 −0.14 −0.11 0.48 0.64 0.91 −0.73 −0.65 3.45 3.19 5.96
5 −0.14 −0.04 0.38 0.59 0.93 −0.50 −0.10 2.58 3.23 5.06

β̄p,c t(β̄p,c)

1 −0.42 −0.26 0.59 0.77 1.13 −1.96 −1.38 2.71 3.78 5.74
2 −0.48 −0.19 0.56 0.65 0.88 −2.48 −1.52 2.62 3.36 4.31

PIH 3 −0.27 −0.21 0.44 0.62 0.90 −1.71 −1.20 2.12 2.96 4.30
4 −0.20 −0.18 0.32 0.64 0.90 −0.92 −1.13 2.13 3.37 4.33
5 −0.25 −0.12 0.35 0.55 0.89 −1.10 −0.50 1.92 3.30 4.03
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Table 12

Robustness Test: Dividend Payer Sample, Cont.

This table reports the cross-sectional regression results of quarterly excess returns on portfolios
of dividend strips of dividend payers, r̃p, on conditional beta coe�cients on risk factors under
di�erent asset pricing models, the Capital Asset Pricing Model (CAPM), the Fama and French
(1993) three-factor model (FF3), the Carhart (1997) four-factor model and the Fama and
French (2015) �ve-factor model. λ0 is regression intercept. λm, λs, λh, λu, λr and λc are
prices of the market risk factor, the size factor (SMB), the value factor (HML), the momentum
factor (UMD), the pro�tability factor (RMW) and the investment factor (CMA). The table
reports time-series average of estimated coe�cients, t-statistic adjusted for autocorrelation and
heteroscedasticity in parentheses, and mean value of adjusted R2, R̄2 of regressions.

C. Cross Sectional Regression: Price of Risk

Quintile Portfolios Sorted by DP

λ0 λm λs λh λu λr λc R̄2

Est. 2.97 3.50 0.512
t-stat ( 2.16) ( 3.77)

25 Portfolios Sorted by PIH and DP

λ0 λm λs λh λu λr λc R̄2

Est. 4.76 3.57 0.286
t-stat ( 2.76) ( 3.79)
Est. 3.31 3.69 −0.21 1.83 0.377
t-stat ( 2.67) ( 3.60) (−0.36) ( 2.28)
Est. 3.11 3.57 −0.79 1.78 1.04 0.430
t-stat ( 2.51) ( 4.01) (−1.24) ( 2.31) ( 1.22)
Est. 1.44 3.49 −0.59 1.79 1.94 1.81 0.512
t-stat ( 1.76) ( 4.36) (−0.91) ( 2.75) ( 3.27) ( 4.27)
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Table 12

Robustness Test: Dividend Payer Sample, Cont.

Panel D report pricing errors for the CAPM (αCAPM), the FF3 (αFF3), the FFM4 (αFFM4) and
the FF5 (αFF5) of the time-series regression of portfolio quarterly excess returns r̃pq+1 for the
sample of dividend payers on quarterly risk factors fq+1:

r̃pq+1 = αp + βpfq+1 + εpq+1,

where fq+1 = r̃mq+1 (excess return on the S&P 500 index) for the CAPM, fq+1 = [r̃mq+1, SMBq+1,
HMLq+1] for the FF3, fq+1 = [r̃mq+1, SMBq+1, HMLq+1, UMDq+1] for the FFM4, and fq+1 =
[r̃mq+1, SMBq+1, HMLq+1, RMWq+1, CMAq+1] for the FF5. Panel E reports Gibbons, Ross and
Shanken (1989) test statistics and p-values.

D. Pricing Errors of Times Series Regressions

univariate-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM −2.54 −1.27 3.58 6.44 9.84 t(αCAPM) −0.97 −0.55 1.82 2.70 4.30
αFF3 −2.53 −1.30 3.05 6.20 9.66 t(αFF3) −1.03 −0.57 1.52 2.58 3.75
αFFM4 −2.25 −1.13 2.71 5.75 9.12 t(αFFM4) −0.93 −0.50 1.34 2.35 3.52
αFF5 −2.01 −1.17 1.97 4.33 7.48 t(αFF5) −0.82 −0.51 0.95 1.74 2.79

double-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −1.92 −1.08 5.21 6.97 13.56 −0.83 −0.46 2.65 2.94 5.72
2 −2.73 −1.17 4.77 6.96 10.43 −1.03 −0.46 2.32 3.21 4.69

PIH 3 −2.08 −1.02 3.86 6.12 10.30 −0.81 −0.40 1.94 2.54 4.36
4 −1.61 −1.16 3.93 5.78 10.84 −0.62 −0.43 2.02 2.43 4.83
5 −1.01 −0.90 3.61 5.69 11.03 −0.36 −0.37 1.81 2.62 4.84

αFF3 t(αFF3)

1 −2.04 −1.27 4.50 6.24 12.62 −0.90 −0.56 2.23 2.66 4.48
2 −2.79 −1.32 4.12 6.30 10.03 −1.06 −0.54 1.89 2.89 3.72

PIH 3 −2.38 −1.33 3.20 5.78 9.94 −0.96 −0.52 1.57 2.28 4.04
4 −1.70 −1.19 3.54 5.22 10.48 −0.67 −0.45 1.80 2.18 3.96
5 −1.08 −1.06 3.39 5.23 10.89 −0.39 −0.45 1.69 2.34 3.89

161



Tables

Table 12

Robustness Test: Dividend Payer Sample, Cont.

DP DP

1 2 3 4 5 1 2 3 4 5

αFFM4 t(αFFM4)

1 −1.56 −0.91 3.77 5.43 11.80 −0.70 −0.40 1.85 2.30 4.27
2 −2.20 −1.18 3.70 5.62 8.96 −0.84 −0.48 1.71 2.57 3.36

PIH 3 −1.66 −0.64 2.85 5.02 9.06 −0.67 −0.25 1.39 1.97 3.67
4 −1.38 −0.87 3.01 4.50 9.52 −0.54 −0.33 1.53 1.87 3.58
5 −1.24 −0.92 2.83 4.64 9.94 −0.45 −0.39 1.40 2.06 3.57

αFF5 t(αFF5)

1 −1.09 −0.72 3.23 4.58 10.61 −0.50 −0.31 1.56 1.89 3.89
2 −1.75 −0.96 2.99 4.49 7.80 −0.67 −0.40 1.37 1.93 2.87

PIH 3 −1.74 −0.78 2.44 4.36 7.86 −0.70 −0.31 1.17 1.67 3.10
4 −1.36 −0.97 2.66 3.95 8.61 −0.54 −0.37 1.31 1.59 3.30
5 −0.68 −1.01 2.68 4.35 9.32 −0.25 −0.43 1.31 1.89 3.36

`
E. GRS (1989) Test

univariate-sorting double-sorting

GRS p-value GRS p-value

CAPM 3.924 0.003 3.387 0.000
FF3 3.310 0.009 2.173 0.008
FFM4 2.952 0.017 2.060 0.012
FF5 2.076 0.078 1.589 0.076
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Table 13
Robustness Test: Early Exercise Premium

This table tabulates results of portfolio analysis, where the option-implied dividend is adjusted
for early exercise premium (EEP). Panel A reports time-series mean EEP-adjusted quarterly
portfolio return, rp, in percentage, and t-statistics in parentheses. For the univariate-sorting
analysis, at the end of each quarter q, stocks are sorted into portfolios based on DP, the average
normalized dividend premium adjusted for EEP in the last four quarters. Portfolio 1 (5) has
the lowest (highest) EEP-adjusted DP. 5−1 is the spread in returns between Portfolio 5 and
1. For double-sorting analysis, at the end of each quarter q, stocks are �rst sorted into �ve
portfolios based on PIH, the percentage of institutional holdings, and within each portfolio,
stocks are then sorted by EEP-adjusted DP. In the row labeled DP, Portfolio 1 (5) has the
lowest (highest) EEP-adjusted DP. In the column labeled PIH, Portfolio 1 (5) has the lowest
(highest) PIH. In each column, the �ve PIH portfolios are aggregated into one portfolio, and re-
ported in the last row labeled by ALL. The sample period is from January 1996 to December 2017.

A. Portfolio Realized Returns rp, univariate-sorting

DP

1 2 3 4 5 5−1
−2.39 −0.69 4.49 8.21 12.16 14.55
(−0.95) (−0.32) ( 2.40) ( 3.42) ( 4.53) ( 3.53)

Portfolio Realized Returns rp, double-sorting

DP

1 2 3 4 5 5−1
1 −3.79 −1.41 4.51 9.53 15.36 19.15

(−1.46) (−0.62) ( 2.36) ( 3.92) ( 5.73) ( 4.64)
2 −4.07 −1.60 4.87 8.68 16.35 20.42

(−1.61) (−0.71) ( 2.49) ( 3.53) ( 5.96) ( 5.29)
PIH 3 −2.48 −0.41 4.21 8.03 14.86 17.34

(−0.93) (−0.16) ( 2.18) ( 3.73) ( 5.78) ( 4.84)
4 −1.02 −0.75 3.92 7.36 12.18 13.20

(−0.41) (−0.30) ( 2.15) ( 3.06) ( 4.38) ( 3.58)
5 −1.22 −0.98 3.93 8.17 12.77 13.99

(−0.45) (−0.39) ( 2.01) ( 3.43) ( 4.59) ( 3.50)

ALL −2.52 −1.03 4.29 8.35 14.30 16.82
(−1.95) (−0.55) ( 3.15) ( 4.91) ( 6.60) ( 4.25)

163



Tables

Table 13

Robustness Test: Early Exercise Premium, Cont.

Panel B reports the time-series means of conditional risk exposures and associated t-statistics
of the �ve portfolios sorted by EEP-adjusted DP (Panel A) and of the 25 portfolios sorted
by PIH and EEP-adjusted DP (Panel B). β̄p,m, β̄p,s, β̄p,h, β̄p,u, β̄p,r and β̄p,c are time-series
averages of risk exposures of portfolio p's EEP-adjusted return with respect to the market
risk factor, the size factor (SMB), the value factor (HML), the momentum factor (UMD), the
pro�tability factor (RMW) and the investment factor (CMA), and are estimated from time-series
regressions in a rolling window of data. t-statistics of betas are adjusted for autocorrelation and
heteroscedasticity.

A. Risk Exposures, univariate-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m −0.32 −0.06 0.31 −0.89 −1.64 t(β̄p,m) −3.78 −0.97 3.06 −6.40 −8.82

FF3: Fama and French Three-Factor Model

β̄p,m −0.32 −0.11 0.33 −0.86 −1.63 t(β̄p,m) −3.08 −1.73 2.67 −5.92 −9.74
β̄p,s −0.61 −0.41 0.24 −0.25 −0.66 t(β̄p,s) 3.85 2.93 1.42 −2.07 −5.09
β̄p,h −0.47 −0.18 0.38 −0.52 −0.84 t(β̄p,h) −4.22 −1.97 2.78 −3.64 −5.40

FFM4: Carhart Four-Factor Model

β̄p,m −0.33 −0.09 0.36 −0.89 −1.59 t(β̄p,m) −3.58 −1.44 3.02 −7.04 −9.35
β̄p,s −0.56 −0.42 0.26 −0.30 −0.68 t(β̄p,s) −4.31 −3.13 1.87 −2.05 −5.37
β̄p,h −0.47 −0.26 0.39 −0.63 −0.79 t(β̄p,h) −4.11 −2.61 3.60 −4.16 −5.36
β̄p,u −0.30 −0.18 0.30 −0.40 −0.58 t(β̄p,u) −3.34 −1.41 2.06 −2.62 −4.28

FF5: Fama and French Five-Factor Model

β̄p,m −0.30 −0.10 0.32 −0.88 −1.61 t(β̄p,m) −3.36 −2.23 2.75 −5.28 −8.92
β̄p,s −0.56 −0.40 0.24 −0.28 −0.65 t(β̄p,s) −3.97 −2.18 2.00 −2.46 −4.63
β̄p,h −0.47 −0.18 0.41 −0.56 −0.83 t(β̄p,h) −3.19 −2.35 2.85 −3.14 −5.23
β̄p,r −0.25 −0.15 0.44 −0.73 −0.93 t(β̄p,r) −1.85 −1.51 3.60 −4.77 −5.16
β̄p,c −0.33 −0.16 0.44 −0.69 −0.89 t(β̄p,c) −1.84 −1.33 3.08 −3.18 −3.80

164



Tables

Table 13 Robustness Test: Early Exercise Premium, Cont.

B. Risk Exposures, double-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m t(β̄p,m)

1 −0.41 −0.27 0.27 0.84 1.65 −4.17 −2.33 2.44 5.98 9.74
2 −0.59 −0.45 0.29 0.91 1.54 −6.20 −3.68 2.54 6.40 8.63

PIH 3 −0.16 −0.14 0.29 0.74 1.32 −2.03 −0.86 2.55 6.06 8.14
4 −0.24 −0.19 0.26 0.84 1.45 −2.01 −1.09 2.28 5.78 7.49
5 −0.14 −0.08 0.18 0.84 1.46 −1.76 −1.31 1.81 6.54 8.16

FF3: Fama and French Three-Factor Model

β̄p,m t(β̄p,m)

1 −0.43 −0.27 0.27 0.85 1.65 −3.80 −3.21 2.81 5.66 9.16
2 −0.60 −0.45 0.37 0.90 1.61 −5.04 −3.01 3.49 6.29 9.02

PIH 3 −0.16 −0.17 0.34 0.82 1.44 −1.94 −1.23 2.40 6.89 8.44
4 −0.24 −0.09 0.30 0.81 1.42 −2.34 −1.01 2.32 5.89 8.40
5 −0.25 −0.04 0.25 0.77 1.44 −2.01 −0.47 3.44 6.05 8.04

β̄p,s t(β̄p,s)

1 0.89 0.74 0.35 −0.11 −0.61 5.58 4.01 2.68 −0.57 −3.66
2 0.79 0.66 0.35 −0.14 −0.70 5.00 3.93 2.44 −1.31 −3.49

PIH 3 0.55 0.45 0.32 −0.17 −0.83 4.28 2.86 2.39 −1.10 −5.23
4 0.47 0.37 0.22 −0.26 −0.46 3.50 2.56 2.03 −2.19 −3.65
5 0.34 0.37 0.10 −0.24 −0.76 2.55 2.98 0.96 −1.46 −4.83

β̄p,h t(β̄p,h)

1 -0.64 -0.26 0.52 0.68 0.95 -4.40 -2.23 3.73 4.20 5.43
2 -0.55 -0.24 0.46 0.68 0.95 -3.72 -2.32 2.82 3.38 4.78

PIH 3 -0.32 -0.07 0.40 0.61 0.80 -3.05 -0.63 2.39 3.69 4.28
4 -0.12 -0.04 0.37 0.57 0.79 -1.05 -0.27 2.82 3.44 4.56
5 -0.10 -0.12 0.33 0.67 0.77 -0.64 -1.15 3.14 3.83 4.45
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DP DP

1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m t(β̄p,m)

1 −0.48 −0.28 0.35 0.78 1.61 −4.08 −3.22 3.25 5.80 9.63
2 −0.67 −0.41 0.37 0.92 1.58 −5.85 −3.62 3.39 6.43 9.48

PIH 3 −0.15 −0.09 0.25 0.81 1.38 −1.41 −0.68 2.82 6.41 8.71
4 −0.28 −0.16 0.27 0.81 1.44 −3.02 −1.89 3.10 7.08 7.94
5 −0.21 −0.09 0.21 0.84 1.42 −1.25 −0.90 2.70 7.75 8.59

β̄p,s t(β̄p,s)

1 0.86 0.71 0.38 −0.10 −0.58 4.47 4.21 3.04 −0.51 −3.32
2 0.83 0.65 0.39 −0.20 −0.65 5.23 3.99 2.74 −1.93 −3.28

PIH 3 0.59 0.47 0.33 −0.03 −0.76 3.95 2.74 2.52 −0.16 −4.58
4 0.47 0.33 0.26 −0.34 −0.50 2.97 1.98 2.32 −3.01 −3.96
5 0.39 0.42 0.08 −0.32 −0.77 2.44 2.96 0.68 −1.74 −4.11

β̄p,h t(β̄p,h)

1 −0.62 −0.26 0.45 0.65 0.94 −3.32 −2.10 2.66 4.42 5.35
2 −0.56 −0.26 0.52 0.71 0.93 −3.13 −2.04 3.77 4.03 5.32

PIH 3 −0.37 −0.12 0.35 0.51 0.84 −3.13 −1.05 3.06 3.75 4.45
4 −0.19 −0.02 0.38 0.57 0.77 −1.40 −0.09 2.49 2.87 5.41
5 −0.03 −0.10 0.31 0.65 0.75 −0.17 −0.87 2.92 2.50 3.39

β̄p,u t(β̄p,u)

1 −0.75 −0.50 0.27 0.46 0.59 −2.53 −2.47 2.01 3.11 4.15
2 −0.54 −0.25 0.29 0.44 0.60 −2.04 −1.90 2.24 2.03 3.89

PIH 3 −0.35 −0.32 0.25 0.34 0.44 −2.50 −2.53 2.91 2.96 2.81
4 −0.16 −0.12 0.17 0.34 0.44 −1.17 −0.41 2.78 2.78 3.63
5 −0.13 −0.09 0.09 0.36 0.58 −0.65 −0.86 0.56 2.78 4.73
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DP DP

1 2 3 4 5 1 2 3 4 5

FF5: Fama and French Five-Factor Model

β̄p,m t(β̄p,m)

1 −0.42 −0.24 0.31 0.88 1.67 −3.33 −2.83 2.37 5.72 9.19
2 −0.62 −0.40 0.37 0.92 1.63 −4.98 −3.48 3.62 5.93 9.47

PIH 3 −0.12 −0.12 0.26 0.74 1.43 −0.88 −0.85 2.50 5.14 8.41
4 −0.24 −0.16 0.28 0.86 1.48 −2.13 −1.49 2.04 5.96 8.29
5 −0.19 −0.13 0.19 0.83 1.44 −1.40 −1.35 2.20 5.57 8.44

β̄p,s t(β̄p,s)

1 0.87 0.72 0.38 −0.04 −0.57 5.06 4.26 2.61 −0.17 −2.79
2 0.77 0.65 0.34 −0.16 −0.67 4.82 4.29 2.05 −1.02 −3.34

PIH 3 0.57 0.46 0.27 −0.08 −0.78 3.71 2.88 2.02 −0.56 −4.72
4 0.48 0.36 0.22 −0.36 −0.48 3.59 2.06 1.99 −2.56 −3.30
5 0.34 0.38 0.09 −0.25 −0.81 2.03 2.49 0.35 −1.49 −4.03

β̄p,h t(β̄p,h)

1 −0.56 −0.27 0.48 0.68 0.95 −3.13 −2.35 3.10 3.91 5.50
2 −0.56 −0.26 0.50 0.67 0.92 −3.03 −2.17 3.42 3.81 4.82

PIH 3 −0.34 −0.10 0.39 0.57 0.83 −2.01 −0.69 3.39 4.13 3.97
4 −0.18 −0.08 0.38 0.57 0.81 −1.10 −0.36 2.54 3.03 4.26
5 −0.06 −0.07 0.34 0.58 0.79 −0.40 −0.56 2.70 2.43 3.27

β̄p,r t(β̄p,r)

1 −0.54 −0.19 0.45 0.77 1.03 −2.11 −0.97 2.83 3.38 5.55
2 −0.66 −0.24 0.44 0.75 1.09 −3.47 −1.46 2.73 3.35 4.72

PIH 3 −0.28 −0.11 0.49 0.72 0.95 −1.20 −0.52 3.04 3.37 4.19
4 −0.23 −0.04 0.43 0.63 0.90 −0.95 −0.15 2.40 3.20 4.01
5 −0.11 −0.03 0.39 0.60 0.96 −0.38 −0.15 2.65 3.26 4.51

β̄p,c t(β̄p,c)

1 −0.40 −0.20 0.47 0.75 1.14 −1.79 −1.42 2.66 3.19 5.22
2 −0.52 −0.19 0.54 0.71 1.10 −2.80 −1.29 3.02 2.73 5.16

PIH 3 −0.31 −0.17 0.36 0.70 1.09 −1.22 −1.51 2.53 3.03 4.38
4 −0.21 −0.05 0.47 0.62 0.93 −1.18 −0.15 3.11 3.30 3.91
5 −0.14 −0.06 0.36 0.63 0.96 −0.95 −0.44 2.97 2.70 4.02
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Robustness Test: Early Exercise Premium, Cont.

This table reports the cross-sectional regression results of EEP-adjusted quarterly excess returns
of portfolios of dividend strips, r̃p, on conditional beta coe�cients on risk factors under di�erent
asset pricing models, the Capital Asset Pricing Model (CAPM), the Fama and French (1993)
three-factor model (FF3), the Carhart (1997) four-factor model and the Fama and French
(2015) �ve-factor model. λ0 is regression intercept. λm, λs, λh, λu, λr and λc are prices of
the market risk factor, the size factor (SMB), the value factor (HML), the momentum factor
(UMD), the pro�tability factor (RMW) and the investment factor (CMA). The table reports
time-series average of estimated risk premiums, t-statistic adjusted for autocorrelation and
heteroscedasticity in parentheses, and mean value of adjusted R2, R̄2 of regressions.

C. Cross Sectional Regression: Price of Risk

Quintile Portfolios Sorted by DP

λ0 λm λs λh λu λr λc R̄2

Est. 3.36 3.69 0.479
t-stat ( 2.00) ( 2.04)

25 Portfolios Sorted by PIH and DP

λ0 λm λs λh λu λr λc R̄2

Est. 3.59 3.71 0.337
t-stat ( 3.11) ( 4.00)
Est. 2.10 3.22 −0.65 1.99 0.427
t-stat ( 1.62) ( 2.71) (−0.92) ( 2.69)
Est. 1.79 3.47 −0.51 1.78 1.61 0.492
t-stat ( 1.57) ( 2.90) (−0.76) ( 2.52) ( 1.42)
Est. 0.28 3.56 −0.85 1.89 1.74 1.73 0.585
t-stat ( 0.21) ( 2.96) (−1.20) ( 2.37) ( 2.19) ( 3.45)
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Panel D reports pricing errors for the CAPM (αCAPM), the FF3 (αFF3), the FFM4 (αFFM4) and
the FF5 (αFF5) of the time-series regression of portfolio quarterly excess returns r̃pq+1 which are
adjusted for EEP on quarterly risk factors fq+1:

r̃pq+1 = αp + βpfq+1 + εpq+1,

where fq+1 = r̃mq+1 (excess return on the S&P 500 index) for the CAPM, fq+1 = [r̃mq+1, SMBq+1,
HMLq+1] for the FF3, fq+1 = [r̃mq+1, SMBq+1, HMLq+1, UMDq+1] for the FFM4, and fq+1 =
[r̃mq+1, SMBq+1, HMLq+1, RMWq+1, CMAq+1] for the FF5. Panel E reports Gibbons, Ross and
Shanken (1989) test statistics and p-values.

D. Pricing Errors of Times Series Regressions

univariate-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM −2.30 −1.03 3.37 5.90 8.38 t(αCAPM) −0.90 −0.47 1.77 2.55 3.84
αFF3 −2.31 −1.14 2.89 5.76 8.20 t(αFF3) −0.92 −0.54 1.48 2.33 3.24
αFFM4 −1.91 −0.98 2.52 5.24 7.62 t(αFFM4) −0.76 −0.47 1.29 2.11 3.05
αFF5 −1.80 −0.94 2.13 4.43 6.55 t(αFF5) −0.71 −0.45 1.11 1.83 2.52

double-sorting

DP DP

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −3.50 −1.41 3.43 7.26 11.50 −1.36 −0.61 1.77 3.10 5.10
2 −3.37 −1.25 3.72 6.33 12.75 −1.34 −0.55 1.88 2.69 5.32

PIH 3 −2.80 −0.68 3.10 6.08 11.68 −1.03 −0.26 1.58 2.90 5.04
4 −1.13 −0.93 2.82 5.11 8.74 −0.45 −0.36 1.53 2.22 3.51
5 −1.42 −1.41 3.00 6.00 9.42 −0.51 −0.55 1.51 2.61 3.73

αFF3 t(αFF3)

1 −3.53 −1.59 2.89 6.83 11.26 −1.38 −0.71 1.45 2.98 4.49
2 −3.40 −1.42 3.07 6.02 12.44 −1.42 −0.63 1.49 2.66 4.99

PIH 3 −2.79 −0.85 2.67 5.55 11.52 −1.04 −0.33 1.32 2.41 5.12
4 −1.25 −1.25 2.48 5.02 8.48 −0.50 −0.49 1.38 2.25 3.82
5 −1.53 −1.61 2.70 5.83 9.34 −0.55 −0.63 1.35 2.49 3.68
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DP DP

1 2 3 4 5 1 2 3 4 5

αFFM4 t(αFFM4)

1 −2.66 −1.13 2.48 6.59 10.66 −1.01 −0.50 1.24 2.79 4.16
2 −2.73 −1.20 2.66 5.41 11.73 −1.09 −0.55 1.28 2.34 4.51

PIH 3 −2.40 −0.57 2.45 5.14 10.95 −0.91 −0.22 1.20 2.23 4.69
4 −0.95 −0.93 2.25 4.71 7.97 −0.38 −0.36 1.24 2.10 3.43
5 −1.43 −1.46 2.73 5.33 8.70 −0.52 −0.57 1.37 2.25 3.37

αFF5 t(αFF5)

1 −2.70 −1.29 2.02 5.50 9.23 −1.06 −0.58 0.95 2.25 3.66
2 −2.26 −1.06 2.29 4.62 10.41 −0.93 −0.48 1.08 1.97 3.93

PIH 3 −2.33 −0.66 1.93 4.36 9.64 −0.88 −0.25 0.94 1.88 4.16
4 −0.82 −1.06 1.59 3.87 6.79 −0.33 −0.42 0.85 1.63 2.75
5 −1.32 −1.50 2.08 4.62 7.59 −0.48 −0.58 1.02 1.88 2.80

`
E. GRS (1989) Test

univariate-sorting double-sorting

GRS p-value GRS p-value

CAPM 3.938 0.003 2.579 0.001
FF3 3.426 0.008 2.468 0.002
FFM4 2.685 0.027 1.798 0.034
FF5 1.838 0.115 1.506 0.102
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Table 14
Robustness Test: Alternative Approach to Estimate EEP

This table tabulates results of the Longsta� and Schwartz (2001) least-square Monte Carlo
simulation approach under the stochastic volatility model of Heston (1993) (HSV) using average
option-implied dividend as a measure of expected dividend to estimate EEP of American
options. This new approach is an alternative to the simple approach to estimate EEP under
the Black and Scholes (1973) (BS) closed-form option-pricing formula using historical dividends
as inputs. Panel A reports summary statistics of parameters of the Heston (1993) model across
individual stocks. The parameters are estimated by calibrating the HSV model to quoted prices
of paired call and put options used to replicate synthetic individual dividend strips. κ is the
rate of mean reversion. θ is the long-run variance of stock. ξ is the volatility of variance. ρS,V

is the correlation between stock price and variance. V is the instantaneous variance. V and
σ(V ) are time-series mean and standard deviations of instantaneous variance. Panel B reports
summary statistics (in percentage) of pricing errors of the Heston (1993) model relative to
mid quoted options prices of calls and puts (eC and eP ) and their absolute values (|eC | and
|eP |). Panel C reports summary statistics (in percentage) of EEP of calls and puts under the
BS model as a percentage of mid call and put options prices, EEPBS(C) and EEPBS(P ), and
under the HSV model, EEPHSV(C) and EEPHSV(P ), and di�erences in EEP of puts and calls
under the two models as a percentage of average mid prices of calls and puts, EEPBS(P − C)
and EEPHSV(P −C). EEPHSV−BS(C), EEPHSV−BS(P ) and EEPHSV−BS(P −C) are di�erences
in EEP of calls under the two models as a percentage of mid call prices, di�erences in EEP of
puts under the two models as percentage of mid put prices, and di�erences in di�erences of puts
and calls under the two models as a percentage of average mid prices of puts and calls. Mean,
standard deviation (std) , �rst quartile (p25), median (p50) and third quartile (p75) are reported.
Panel D tabulates beta coe�cients and associated t-statistics of full-sample pooled regressions
of parameters of the Heston (1993) model, the risk-free rate (rf ), options time-to-maturity
(τ), moneyness ratio (K/S) and average option-implied dividend normalzied by stock prcie
(DI/S) on (percentage) EEPHSV−BS(C), EEPHSV−BS(P ) and EEPHSV−BS(P − C). Panel E
reports time-series mean values of EEPHSV−BS(P −C) of quintile portfolios of underlying stocks
sorted by stock price normalized option-implied dividend (DI/S), historical average normalized
dividend risk premium (DP) and percentage of institutional holding (PIH). Portfolio 5 (1) has
the highest (lowest) value of a sorting variable. The sample period is from January 1996 to
December 2017.

A. Summary Statistics of Parameters of the Heston (1993) Model

mean std p25 p50 p75

κ 8.05 6.00 3.20 6.55 14.03
θ 0.23 0.20 0.11 0.19 0.29
ξ 0.40 0.25 0.19 0.40 0.56
ρS,V −0.11 0.48 -0.34 -0.06 0.23

V 0.35 0.25 0.16 0.26 0.41
σ(V ) 0.45 0.31 0.11 0.23 0.55
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Table 14

Robustness Test: Alternative Approach to Estimate EEP, Cont.

B. Pricing Errors of the Heston (1993) Model
mean std p25 p50 p75

eC 0.17 0.72 −0.27 0.11 0.54
|eC | 0.60 0.49 0.29 0.47 0.77
eP 0.14 0.65 −0.25 0.06 0.45
|eP | 0.52 0.46 0.24 0.44 0.67

C. Summary Statistics of EEP estimated under the Black and Scholes (1973) Model

and the Heston (1993) Model

mean std p25 p50 p75

EEPBS(C) 0.65 1.63 0.10 0.31 0.68

EEPBS(P ) 0.83 1.75 0.26 0.46 0.92

EEPBS(P − C) 0.18 1.69 −0.14 0.39 0.86

EEPHSV(C) 0.72 1.58 0.01 0.40 0.95

EEPHSV(P ) 0.89 0.69 0.41 0.79 1.28

EEPHSV(P − C) 0.17 1.81 −0.30 0.35 1.02

EEPHSV−BS(C) 0.07 1.37 −0.31 0.20 0.63

EEPHSV−BS(P ) 0.05 1.73 −0.22 0.26 0.67

EEPHSV−BS(P − C) −0.01 1.51 −0.57 0.03 0.67
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Table 14
Robustness Test: Alternative Approach to Estimate EEP, Cont.

`
D. Di�erences in EEPs under the Black and Scholes (1973) Model and

the Heston (1993) Model: Pooled Regression

EEPHSV−BS(C) EEPHSV−BS(P ) EEPHSV−BS(P − C)

β t-stat β t-stat β t-stat

κ −0.0009 ( −1.53) −0.0018 ( −2.54) −0.0003 ( −0.54)
ξ −0.0041 ( −0.30) −0.0621 ( −3.59) −0.0362 ( −2.37)
θ −0.1948 ( 13.51) −0.1680 ( 8.40) −0.1055 ( −5.87)
V −0.0841 ( 7.58) −0.0220 ( 1.58) −0.0906 ( −7.41)
ρS,V −0.0164 ( −2.46) −0.0154 ( −1.85) −0.0075 ( 1.02)
rf −1.7079 (−12.67) −1.4461 ( −8.58) −0.1791 ( 1.20)
τ −0.0006 ( 8.70) −0.0006 ( −8.07) −0.0011 (−15.78)
K/S −0.0231 ( −3.44) −0.0268 ( 2.63) −0.0587 ( 7.87)
DI/S −1.5787 ( 2.20) −1.0840 ( 1.09) −0.0318 ( −0.04)

E. Sorting Portfolio Analysis: Di�erences in Di�erences of EEP of Puts and Calls
under the Black and Scholes (1973) Model and the Heston (1993) Model

EEPHSV−BS(P − C)

1 2 3 4 5

DI/S −0.0076 −0.0075 −0.0072 −0.0070 −0.0077
DP −0.0077 −0.0067 −0.0087 −0.0059 −0.0081
PIH −0.0079 −0.0080 −0.0077 −0.0062 −0.0075
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Portfolios Sorted by Firm Characteristics: Realized Returns

Panel A reports time-series average returns on portfolios of dividend strips, rp, in quarterly
percentage terms, of the �ve portfolios of dividend strips sorted by underlying stocks' book-to-
market ratio (BM), operating pro�tability (OP), total asset growth rate (ATG) or cumulative
stock returns in the previous six months (RET(−1,−6)). At the end of each quarter q, stocks
are sorted into portfolios by quintile breakpoints of a �rm characteristic among all listed stocks.
Portfolio 1 (5) has the lowest (highest) value of a �rm characteristic. Panel B reports time-series
average returns on the portfolios of dividend strips, rp, in quarterly percentage terms, of the
25 portfolios sorted by PIH and �rm characteristics. At the end of each quarter q, stocks are
�rst sorted into �ve portfolios based on the percentage of institutional holding, PIH, and within
each portfolio, stocks are then sorted into �ve sub-portfolios by quintile breakpoints of a �rm
characteristics. In the rows labels with a �rm characteristic, Portfolio 1 (5) has the lowest
(highest) value of the �rm characteristic. In the column labeled PIH, Portfolio 1 (5) has the
lowest (highest) PIH. In each column, the �ve PIH portfolios are aggregated into one portfolio,
and returns on the aggregate portfolios are reported in the last row labeled by ALL. Column
labeled 5-1 represents spread in returns between Portfolio 5 and 1. The sample period is from
January 1996 to December 2017.

A. Portfolio Realized Returns rp, univariate-sorting

BM

1 2 3 4 5 5−1
−1.64 −0.78 3.94 6.57 8.17 9.81
(−0.71) (−0.38) ( 2.16) ( 2.90) ( 3.45) ( 4.56)

OP

1 2 3 4 5 5−1
−2.32 −1.12 4.12 7.18 9.81 12.13
(−1.02) (−0.47) ( 2.06) ( 3.00) ( 3.78) ( 3.17)

ATG

1 2 3 4 5 5−1
9.52 6.82 4.32 −1.22 −2.21 −11.73

( 3.72) ( 2.92) ( 2.22) (−0.53) (−0.93) ( −4.27)

RET(−1,−6)
1 2 3 4 5 5−1

−1.73 −1.02 4.31 6.18 8.41 10.14
(−0.80) (−0.50) ( 2.22) ( 3.01) ( 3.73) ( 3.38)
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Table 15

Portfolios Sorted by Firm Characteristics: Realized Returns, Cont.

B. Portfolio Realized Returns rp, double-sorting

BM

1 2 3 4 5 5−1
1 −2.14 −1.34 4.15 6.73 8.65 10.79

(−0.93) (−0.61) ( 2.00) ( 2.94) ( 3.46) ( 3.48)
2 −2.46 −1.06 4.10 6.62 8.25 10.71

(−1.00) (−0.45) ( 2.01) ( 2.88) ( 3.33) ( 4.18)
PIH 3 −1.65 −0.75 3.95 6.58 8.27 9.92

(−0.67) (−0.33) ( 1.94) ( 2.77) ( 3.22) ( 4.50)
4 −1.35 −0.35 3.92 6.29 7.95 9.30

(−0.55) (−0.15) ( 1.92) ( 2.93) ( 3.23) ( 4.15)
5 −1.23 0.56 3.87 6.30 8.02 9.25

(−0.53) (−0.26) ( 1.92) ( 2.62) ( 3.02) ( 3.05)

ALL −1.77 −0.59 4.00 6.50 8.23 9.99
(−1.00) (−0.31) ( 2.38) ( 3.22) ( 3.90) ( 6.12)

OP

1 2 3 4 5 5−1
1 −3.36 −1.43 4.32 8.21 9.92 13.28

(−1.49) (−0.66) ( 2.13) ( 3.59) ( 3.97) ( 3.87)
2 −2.27 −1.54 4.27 8.02 10.21 12.48

(−0.98) (−0.63) ( 2.08) ( 3.72) ( 3.95) ( 3.34)
PIH 3 −1.59 −1.17 4.15 7.26 9.83 11.42

(−0.70) (−0.53) ( 2.05) ( 2.99) ( 3.76) ( 4.61)
4 −1.21 −0.92 3.96 7.17 9.26 10.47

(−0.53) (−0.43) ( 1.95) ( 3.20) ( 3.81) ( 4.66)
5 −1.32 −1.25 3.87 6.87 9.34 10.66

(−0.58) (−0.55) ( 1.95) ( 2.99) ( 3.60) ( 3.52)

ALL −1.95 −1.26 4.11 7.51 9.71 11.66
(−1.45) (−0.73) ( 2.23) ( 3.86) ( 4.50) ( 5.52)
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Portfolios Sorted by Firm Characteristics: Realized Returns, Cont.

B. Portfolio Realized Returns rp, double-sorting

ATG

1 2 3 4 5 5−1
1 9.95 7.03 4.85 −1.33 −3.21 −13.16

( 3.86) ( 2.97) ( 2.35) (−0.59) (−1.36) ( −4.10)
2 9.72 6.92 4.72 −1.26 −3.54 −13.26

( 3.77) ( 2.89) ( 2.30) (−0.51) (−1.37) ( −6.74)
PIH 3 9.53 6.80 4.29 1.12 2.23 −7.30

( 3.67) ( 2.86) ( 2.08) ( 0.47) ( 0.86) ( −2.55)
4 9.24 6.72 4.12 −0.96 −1.32 −10.56

( 3.72) ( 2.77) ( 1.95) (−0.43) (−0.57) ( −4.40)
5 8.95 6.32 3.92 −0.82 −0.92 −9.87

( 3.69) ( 2.78) ( 1.92) (−0.38) (−0.41) ( −3.29)

ALL 9.48 6.76 4.38 −0.65 −1.35 −10.83
( 4.72) ( 3.33) ( 2.51) (−0.34) (−0.83) ( −7.09)

RET(−1,−6)
1 2 3 4 5 5−1

1 −2.21 −1.32 4.61 6.20 8.51 10.72
(−1.03) (−0.61) ( 2.39) ( 2.86) ( 3.71) ( 3.38)

2 −2.03 −1.22 4.51 6.22 8.94 10.97
(−0.93) (−0.56) ( 2.31) ( 2.85) ( 3.83) ( 3.21)

PIH 3 −1.72 −1.02 4.32 6.17 8.41 10.13
(−0.76) (−0.50) ( 2.24) ( 2.85) ( 3.74) ( 3.93)

4 −1.24 −0.94 4.21 5.93 8.21 9.45
(−0.60) (−0.48) ( 2.19) ( 2.91) ( 3.65) ( 4.60)

5 −1.19 −0.93 4.23 6.21 8.05 9.24
(−0.58) (−0.43) ( 2.19) ( 3.02) ( 3.76) ( 3.55)

ALL −1.68 −1.09 4.38 6.15 8.42 10.10
(−1.32) (−0.67) ( 2.84) ( 3.37) ( 4.45) ( 5.22)
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Table 16
Portfolios Sorted by Firm Characteristics: Risk Exposures

The table reports the time-series mean of conditional risk exposures. β̄p,m, β̄p,s, β̄p,h, β̄p,u, β̄p,r and β̄p,c are exposures of quarterly excess returns on portfolios
of dividend strips with respect to the quarterly excess returns of the market portfolio, SMB, HML, UMD, RMW and CMA, respectively, and are estimated
from the time-series regressions in a rolling window of data. t-statistics of betas are adjusted for autocorrelation and heteroscedasticity. Panel A is for �ve
portfolios sorted by underlying stocks' book-to-market ratio (BM), operating pro�tability (OP), total asset growth rate (ATG) or cumulative stock returns in
the previous six months (RET(−1,−6)). Panel B is for 25 portfolios sorted by percentage of institutional holding (PIH) and each of the four �rm characteristics.

A. Risk Exposures, univariate-sorting

BM OP ATG RET(−1,−6)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m 0.29 -0.06 0.30 0.45 0.61 -0.27 -0.11 0.31 0.40 0.74 0.74 0.49 0.26 -0.15 -0.06 -0.20 -0.09 0.34 0.50 0.51
t(β̄p,m) 3.92 -0.56 4.66 5.48 6.11 -3.66 -1.27 3.76 4.27 8.37 7.21 5.48 3.62 -2.82 -1.37 -3.67 -2.15 4.68 7.33 7.74

FF3: Fama and French Three-Factor Model

β̄p,m 0.28 -0.09 0.33 0.51 0.63 -0.25 -0.12 0.32 0.44 0.78 0.73 0.47 0.32 -0.24 -0.05 -0.27 -0.14 0.33 0.50 0.44
t(β̄p,m) 3.56 -1.15 4.76 5.45 7.04 -3.26 -1.62 4.00 5.85 7.04 8.29 5.00 4.03 -2.98 -0.87 -3.55 -1.84 3.55 5.81 5.03
β̄p,s -0.62 -0.22 0.32 0.53 0.61 0.78 0.57 0.30 -0.26 -0.52 0.67 0.54 0.31 -0.38 -0.73 -0.46 -0.28 0.25 0.56 0.65
t(β̄p,s) -5.07 -2.85 3.12 3.88 5.61 5.87 4.62 3.69 -2.90 -4.70 5.47 4.45 3.16 -3.74 -5.11 -4.48 -2.49 2.84 5.03 6.07
β̄p,h -0.61 -0.24 0.47 0.86 1.47 -0.37 -0.23 0.46 0.64 0.04 -0.16 0.64 0.43 -0.28 -0.45 -0.38 -0.22 0.44 0.58 0.39
t(β̄p,h) -3.76 -2.09 4.21 6.52 9.29 -4.62 -3.05 3.83 6.08 0.46 -1.74 6.77 4.27 -2.40 -4.42 -3.29 -2.44 3.61 5.34 2.99
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Table 16

Portfolios Sorted by Firm Characteristics: Risk Exposures, Cont.

A. Risk Exposures, univariate-sorting

BM OP ATG RET(-1,-6)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m 0.28 -0.08 0.31 0.52 0.64 -0.26 -0.15 0.35 0.44 0.75 0.77 0.48 0.35 -0.20 -0.08 -0.26 -0.12 0.39 0.51 0.47
t(β̄p,m) 3.93 -1.09 4.45 5.48 6.47 -3.17 -1.52 3.68 5.48 7.14 7.63 5.18 3.92 -2.69 -1.16 -3.41 -1.21 4.07 5.44 4.04
β̄p,s -0.51 -0.23 0.32 0.49 0.57 0.69 0.55 0.31 -0.31 -0.59 0.67 0.56 0.26 -0.31 -0.64 -0.42 -0.24 0.32 0.54 0.65
t(β̄p,s) -4.27 -2.92 3.64 3.56 5.38 5.95 5.16 3.38 -3.11 -4.59 5.92 4.73 2.54 -3.43 -4.90 -4.32 -2.37 3.43 4.83 6.20
β̄p,h -0.49 -0.27 0.47 0.88 1.32 -0.33 -0.25 0.44 0.64 0.07 -0.11 0.66 0.42 -0.27 -0.54 -0.40 -0.34 0.46 0.63 0.38
t(β̄p,h) -3.40 -2.32 2.81 6.14 8.22 -4.08 -3.23 3.60 7.00 0.70 -1.56 7.13 4.33 -2.36 -5.24 -4.73 -3.52 3.28 5.83 2.27
β̄p,u -0.28 -0.18 0.20 0.33 0.20 -0.31 -0.28 0.25 0.35 0.28 0.44 0.30 0.25 -0.19 -0.35 -0.77 -0.46 0.33 0.77 1.12
t(β̄p,u) -2.50 -3.45 1.80 2.57 1.36 -2.72 -2.00 2.40 3.44 0.79 4.92 3.64 3.02 -1.95 -3.88 -6.56 -3.26 2.78 5.53 9.17

FF5: Fama and French Five-Factor Model

β̄p,m 0.30 -0.09 0.29 0.46 0.64 -0.29 -0.17 0.34 0.45 0.77 0.68 0.47 0.30 -0.22 -0.08 -0.22 -0.13 0.30 0.50 0.47
t(β̄p,m) 3.76 -1.03 4.30 5.66 6.64 -3.03 -2.25 3.79 5.03 7.17 7.67 5.14 3.52 -3.42 -1.21 -3.41 -2.11 3.96 5.52 4.25
β̄p,s -0.57 -0.28 0.31 0.46 0.57 0.74 0.55 0.32 -0.25 -0.54 0.67 0.53 0.28 -0.35 -0.70 -0.48 -0.25 0.30 0.56 0.64
t(β̄p,s) -5.26 -3.19 2.58 3.92 4.79 6.01 3.97 2.86 -2.25 -4.46 3.79 3.70 2.48 -2.99 -4.47 -4.35 -2.59 2.88 4.97 5.99
β̄p,h -0.53 -0.20 0.45 0.85 1.38 -0.36 -0.22 0.47 0.66 0.01 -0.12 0.63 0.40 -0.28 -0.46 -0.41 -0.28 0.49 0.56 0.41
t(β̄p,h) -3.19 -1.56 2.94 6.43 9.00 -3.73 -2.18 3.89 4.90 0.12 -0.55 7.94 3.56 -1.82 -3.90 -3.67 -2.92 3.31 5.05 2.86
β̄p,r -0.39 -0.21 0.37 0.47 0.56 -0.70 -0.35 0.43 0.83 1.52 0.68 0.62 0.43 -0.28 -0.41 -0.28 -0.17 0.48 0.64 0.69
t(β̄p,r) -2.11 -1.61 2.06 3.10 3.93 -4.21 -2.72 4.10 6.09 8.56 6.43 5.98 3.71 -2.26 -4.22 -2.45 -1.19 3.21 4.88 6.26
β̄p,c -0.37 -0.14 0.46 0.57 0.66 -0.41 -0.30 0.36 0.60 0.64 1.34 0.91 0.47 -0.31 -0.43 -0.35 -0.21 0.41 0.59 0.67
t(β̄p,c) -2.64 -1.25 2.87 3.14 4.22 -3.06 -2.13 3.26 5.39 6.56 9.22 7.16 4.42 -2.36 -5.05 -2.45 -2.26 3.27 5.28 5.73
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Table 16 Portfolios Sorted by Firm Characteristics: Risk Exposures, Cont.

B. Risk Exposures, double-sorting

BM BM OP OP
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m t(β̄p,m) β̄p,s t(β̄p,s)

1 0.35 -0.20 0.28 0.43 0.39 3.99 -2.18 3.05 4.07 3.13 -0.32 -0.24 0.26 0.47 0.69 -4.56 -3.35 2.61 4.78 6.98
2 0.25 -0.16 0.35 0.48 0.49 4.82 -1.54 4.35 5.54 4.61 -0.36 -0.21 0.33 0.46 0.70 -4.64 -3.27 3.46 4.70 7.09

PIH 3 0.07 -0.11 0.38 0.46 0.75 0.78 -1.09 3.86 4.73 6.19 -0.23 -0.12 0.33 0.56 0.78 -2.42 -1.76 3.79 5.61 8.87
4 -0.14 -0.05 0.33 0.44 0.69 -1.71 -0.56 3.64 5.68 6.32 -0.18 -0.03 0.29 0.49 0.76 -2.93 -0.46 2.79 4.71 8.36
5 -0.18 0.13 0.32 0.47 0.70 -1.47 1.15 2.94 4.86 6.36 -0.18 -0.11 0.28 0.53 0.78 -1.23 -1.55 3.01 5.11 8.79

FF3: Fama and French Three-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.35 -0.14 0.29 0.37 0.39 3.26 -2.21 3.20 3.84 2.80 -0.25 -0.23 0.31 0.37 0.73 -3.97 -2.63 3.38 3.51 8.05
2 0.25 -0.10 0.32 0.46 0.48 3.52 -1.82 3.50 4.53 4.88 -0.36 -0.14 0.32 0.40 0.70 -4.23 -1.77 3.75 4.88 7.75

PIH 3 0.03 -0.10 0.33 0.44 0.73 0.49 -2.19 3.69 4.60 5.81 -0.31 -0.13 0.34 0.57 0.82 -4.38 -2.35 3.24 5.85 9.08
4 -0.20 -0.05 0.32 0.43 0.67 -3.08 -0.54 3.31 4.05 5.42 -0.12 -0.06 0.29 0.44 0.78 -1.92 -1.03 3.39 5.44 8.80
5 -0.20 0.08 0.32 0.46 0.69 -1.81 1.17 3.40 4.31 5.41 -0.18 -0.12 0.28 0.53 0.80 -2.03 -1.90 3.23 5.30 8.30

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 -0.39 -0.16 0.31 0.55 0.82 -5.74 -1.51 2.87 5.79 7.70 0.88 0.63 0.43 -0.07 -0.27 7.02 5.11 3.01 -0.58 -2.62
2 -0.47 -0.16 0.34 0.53 0.69 -3.48 -1.54 2.30 4.54 6.48 0.80 0.59 0.38 -0.24 -0.33 6.30 4.55 3.50 -3.25 -3.42

PIH 3 -0.54 -0.17 0.29 0.51 0.65 -3.45 -1.30 2.79 3.78 6.10 0.68 0.57 0.33 -0.28 -0.48 6.35 4.64 3.60 -2.59 -4.72
4 -0.60 -0.34 0.35 0.42 0.55 -5.22 -2.95 3.74 4.48 5.64 0.73 0.44 0.25 -0.36 -0.56 6.46 4.75 2.85 -3.31 -4.05
5 -0.64 -0.49 0.25 0.17 0.26 -4.01 -2.82 2.11 1.61 2.40 0.58 0.45 0.27 -0.47 -0.84 4.33 3.98 2.66 -3.66 -6.12

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 -0.64 -0.26 0.52 1.04 1.62 -4.38 -2.36 3.87 5.64 11.61 -0.44 -0.27 0.61 0.84 0.33 -4.28 -2.73 4.33 7.80 3.61
2 -0.52 -0.23 0.44 0.96 1.33 -3.44 -1.71 3.87 6.44 8.88 -0.39 -0.20 0.56 0.70 0.14 -3.97 -1.93 4.50 6.54 1.69

PIH 3 -0.30 -0.18 0.44 0.88 1.40 -2.84 -1.37 3.93 4.70 7.28 -0.31 -0.24 0.54 0.70 0.25 -3.13 -2.60 4.52 7.00 2.25
4 -0.36 -0.11 0.44 0.69 1.03 -3.08 -0.60 4.23 5.50 7.41 -0.30 -0.28 0.43 0.59 0.14 -3.60 -3.11 4.22 5.64 1.45
5 -0.32 -0.03 0.35 0.79 1.03 -2.40 -0.30 2.98 4.80 6.43 -0.24 -0.18 0.39 0.45 -0.39 -2.88 -2.01 3.30 4.54 -3.64
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B. Risk Exposures, double-sorting

BM BM OP OP
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.35 -0.14 0.30 0.39 0.39 4.21 -2.17 3.03 2.90 2.69 -0.40 -0.23 0.30 0.46 0.73 -5.78 -2.32 4.32 5.21 7.75
2 0.28 -0.04 0.32 0.45 0.49 3.40 -0.35 3.98 5.60 4.32 -0.34 -0.16 0.37 0.47 0.71 -4.24 -2.24 3.91 5.17 7.31

PIH 3 0.03 -0.11 0.32 0.47 0.76 0.32 -1.03 3.61 5.50 6.07 -0.34 -0.14 0.41 0.56 0.79 -3.45 -1.94 3.43 5.72 8.02
4 -0.21 -0.03 0.31 0.54 0.68 -2.13 -0.33 3.37 5.30 6.05 -0.13 -0.09 0.32 0.47 0.77 -2.03 -1.02 2.80 4.81 7.84
5 -0.25 0.09 0.29 0.47 0.69 -2.39 0.94 3.47 4.72 5.74 -0.21 -0.19 0.33 0.58 0.79 -1.28 -2.53 2.60 5.39 7.42

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 -0.37 -0.22 0.30 0.65 0.75 -5.37 -2.02 2.84 5.71 7.70 0.84 0.69 0.43 -0.23 -0.28 7.79 6.64 3.04 -1.95 -2.87
2 -0.44 -0.13 0.29 0.53 0.67 -3.30 -1.26 2.05 5.50 6.07 0.78 0.62 0.35 -0.25 -0.35 7.11 6.16 2.75 -2.84 -3.86

PIH 3 -0.55 -0.23 0.25 0.48 0.61 -3.35 -1.58 2.43 3.93 5.74 0.66 0.59 0.34 -0.21 -0.48 6.66 5.72 3.21 -1.93 -4.30
4 -0.57 -0.30 0.33 0.47 0.56 -4.62 -2.65 3.64 4.40 5.49 0.65 0.54 0.25 -0.30 -0.51 6.84 5.43 2.43 -2.35 -4.13
5 -0.64 -0.53 0.24 0.18 0.27 -3.77 -2.77 2.65 1.90 2.23 0.64 0.49 0.21 -0.38 -0.87 6.42 5.82 2.20 -2.42 -6.30

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 -0.37 -0.22 0.30 0.65 0.75 -5.37 -2.02 2.84 5.71 7.70 0.84 0.69 0.43 -0.23 -0.28 7.79 6.64 3.04 -1.95 -2.87
2 -0.44 -0.13 0.29 0.53 0.67 -3.30 -1.26 2.05 5.50 6.07 0.78 0.62 0.35 -0.25 -0.35 7.11 6.16 2.75 -2.84 -3.86

PIH 3 -0.55 -0.23 0.25 0.48 0.61 -3.35 -1.58 2.43 3.93 5.74 0.66 0.59 0.34 -0.21 -0.48 6.66 5.72 3.21 -1.93 -4.30
4 -0.57 -0.30 0.33 0.47 0.56 -4.62 -2.65 3.64 4.40 5.49 0.65 0.54 0.25 -0.30 -0.51 6.84 5.43 2.43 -2.35 -4.13
5 -0.64 -0.53 0.24 0.18 0.27 -3.77 -2.77 2.65 1.90 2.23 0.64 0.49 0.21 -0.38 -0.87 6.42 5.82 2.20 -2.42 -6.30

β̄p,u t(β̄p,u) β̄p,u t(β̄p,u)

1 -0.36 -0.32 0.21 0.31 -0.16 -3.43 -2.66 1.63 2.12 -0.92 -0.48 -0.32 0.31 0.15 -0.15 -4.41 -2.39 2.26 0.72 -0.52
2 -0.24 -0.30 0.19 0.29 -0.34 -2.27 -3.43 1.85 3.14 -2.86 -0.36 -0.31 0.31 0.04 -0.09 -3.89 -2.11 3.37 0.24 -0.59

PIH 3 -0.23 -0.13 0.19 0.31 0.48 -1.87 -1.25 2.12 2.10 5.29 -0.34 -0.26 0.29 0.44 0.54 -2.92 -2.14 1.88 5.92 3.53
4 -0.26 -0.04 0.11 0.31 0.47 -2.38 -0.34 1.82 2.40 6.31 -0.32 -0.26 0.29 0.50 0.55 -2.02 -2.22 2.61 5.00 6.41
5 -0.24 -0.04 0.17 0.22 0.50 -1.60 -0.38 3.67 1.72 6.45 -0.18 -0.17 0.24 0.47 0.57 -1.29 -1.24 2.65 4.42 6.37
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Table 16 Portfolios Sorted by Firm Characteristics: Risk Exposures, Cont.

B. Risk Exposures, double-sorting

BM BM OP OP
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FF5: Fama and French Five-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.32 -0.15 0.30 0.40 0.39 3.66 -2.01 3.47 3.91 2.57 -0.29 -0.27 0.28 0.46 0.73 -3.52 -2.38 3.22 5.00 6.77
2 0.25 -0.09 0.31 0.47 0.48 3.01 -0.79 3.93 5.78 4.59 -0.31 -0.19 0.35 0.44 0.70 -2.91 -1.76 3.38 5.32 6.04

PIH 3 0.01 -0.09 0.33 0.45 0.73 0.08 -1.21 3.78 4.94 6.38 -0.29 -0.14 0.38 0.56 0.82 -2.72 -1.83 3.80 5.73 8.27
4 -0.18 -0.04 0.32 0.44 0.68 -2.05 -0.42 3.14 4.78 5.94 -0.13 -0.09 0.24 0.49 0.78 -1.82 -0.85 3.68 4.68 7.90
5 -0.21 0.12 0.31 0.45 0.70 -2.12 1.21 3.15 4.93 6.22 -0.23 -0.13 0.28 0.56 0.82 -1.57 -1.57 2.30 5.50 8.15

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 -0.43 -0.17 0.28 0.57 0.74 -5.55 -1.52 2.13 6.27 7.53 0.86 0.69 0.41 -0.09 -0.32 5.50 3.76 2.29 -0.71 -3.30
2 -0.46 -0.21 0.28 0.52 0.67 -3.71 -2.26 1.58 5.38 6.82 0.76 0.59 0.36 -0.24 -0.39 5.57 3.66 2.58 -2.71 -3.29

PIH 3 -0.55 -0.17 0.25 0.49 0.59 -3.70 -1.00 2.03 4.01 6.24 0.67 0.58 0.30 -0.24 -0.45 4.86 3.47 2.78 -2.03 -3.49
4 -0.56 -0.34 0.35 0.49 0.55 -4.52 -2.16 3.28 4.07 5.27 0.70 0.49 0.26 -0.26 -0.55 5.28 3.08 2.21 -2.26 -4.31
5 -0.63 -0.51 0.20 0.17 0.25 -4.76 -3.01 1.65 1.10 1.71 0.58 0.41 0.26 -0.36 -0.91 4.49 3.06 1.95 -2.14 -6.21

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 -0.56 -0.21 0.48 1.00 1.60 -4.44 -1.68 3.66 5.72 10.09 -0.47 -0.37 0.58 0.79 0.33 -3.91 -2.15 2.98 5.49 3.08
2 -0.48 -0.22 0.46 0.95 1.37 -3.43 -1.23 3.99 5.64 9.32 -0.35 -0.27 0.55 0.66 0.13 -2.96 -2.18 3.22 4.57 0.94

PIH 3 -0.29 -0.19 0.43 0.82 1.27 -1.89 -1.24 3.84 4.97 7.92 -0.33 -0.24 0.51 0.69 0.20 -3.40 -2.16 3.45 5.88 0.79
4 -0.37 -0.12 0.45 0.70 0.95 -2.67 -0.54 3.68 4.46 6.85 -0.29 -0.21 0.44 0.55 0.17 -2.35 -1.99 3.91 5.26 1.02
5 -0.36 -0.05 0.35 0.73 1.00 -1.63 -0.33 2.26 4.46 5.89 -0.20 -0.15 0.37 0.44 -0.30 -0.92 -0.78 2.96 3.74 -2.82

β̄p,r t(β̄p,r) β̄p,r t(β̄p,r)

1 -0.48 -0.20 0.37 0.49 0.59 -3.01 -1.22 2.24 2.53 3.62 -0.85 -0.62 0.43 0.88 1.82 -6.20 -3.60 2.45 6.87 9.86
2 -0.47 -0.17 0.36 0.45 0.61 -3.23 -1.22 2.16 3.21 3.58 -0.63 -0.46 0.44 0.79 1.43 -4.04 -2.32 2.95 6.30 9.86

PIH 3 -0.40 -0.16 0.37 0.44 0.55 -2.22 -0.78 2.14 2.73 3.06 -0.58 -0.34 0.45 0.76 1.38 -4.32 -1.97 3.24 6.53 8.74
4 -0.31 -0.22 0.35 0.42 0.54 -1.34 -1.17 1.98 3.03 3.06 -0.45 -0.28 0.45 0.82 1.48 -3.39 -2.40 3.45 7.71 8.73
5 -0.11 -0.15 0.28 0.44 0.51 -0.61 -0.93 1.90 2.15 2.09 -0.32 -0.32 0.47 0.78 1.61 -2.35 -1.82 3.23 5.95 9.68

β̄p,c t(β̄p,c) β̄p,c t(β̄p,c)

1 -0.31 -0.24 0.56 0.67 0.81 -2.48 -1.41 3.98 4.71 5.66 -0.39 -0.12 0.36 0.66 0.71 -3.20 -1.24 1.94 4.50 7.27
2 -0.35 -0.27 0.52 0.51 0.61 -3.22 -2.03 4.06 4.03 4.25 -0.52 -0.17 0.43 0.51 0.67 -4.15 -1.05 3.14 4.57 6.49

PIH 3 -0.26 -0.20 0.44 0.50 0.60 -1.30 -0.90 3.28 4.38 4.18 -0.38 -0.25 0.42 0.56 0.57 -3.18 -1.71 2.66 4.85 6.04
4 -0.27 -0.15 0.43 0.53 0.60 -2.07 -0.96 2.25 4.06 4.47 -0.38 -0.24 0.35 0.59 0.67 -2.66 -2.02 2.54 5.92 6.09
5 -0.23 -0.06 0.38 0.46 0.63 -1.40 -0.35 1.91 3.36 5.25 -0.27 -0.23 0.34 0.47 0.58 -2.15 -2.27 2.67 4.34 5.92
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Table 16 Portfolios Sorted by Firm Characteristics: Risk Exposures, Cont.

B. Risk Exposures, double-sorting

ATG ATG RET(−1,−6) RET(−1,−6)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CAPM: Capital Asset Pricing Model

β̄p,m t(β̄p,m) β̄p,s t(β̄p,s)

1 0.65 0.47 0.23 -0.24 0.08 7.61 5.61 3.40 -2.22 0.43 -0.25 -0.21 0.36 0.48 0.43 -3.71 -2.85 4.38 5.17 6.21
2 0.69 0.42 0.35 -0.25 0.22 7.72 5.25 4.01 -2.63 2.02 -0.33 -0.17 0.35 0.48 0.47 -4.56 -2.55 4.79 5.74 6.93

PIH 3 0.86 0.50 0.28 -0.18 -0.27 8.42 5.64 2.63 -2.56 -4.12 -0.18 -0.12 0.30 0.54 0.64 -3.67 -1.53 3.69 5.77 7.53
4 0.76 0.48 0.28 -0.12 -0.24 8.31 5.34 3.70 -1.90 -3.74 -0.16 -0.07 0.24 0.54 0.58 -2.59 -0.83 2.64 6.12 7.11
5 0.79 0.42 0.30 -0.11 -0.29 7.91 5.37 4.67 -2.40 -3.23 -0.08 -0.05 0.21 0.44 0.55 -1.67 -0.86 2.85 5.62 6.98

FF3: Fama and French Three-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.58 0.45 0.19 -0.29 0.10 5.30 5.04 2.25 -2.97 0.89 -0.33 -0.20 0.36 0.48 0.45 -4.54 -2.43 4.27 4.32 3.97
2 0.67 0.44 0.38 -0.24 0.26 6.77 4.52 3.71 -2.68 2.78 -0.35 -0.22 0.35 0.43 0.47 -5.31 -2.58 4.24 4.61 4.76

PIH 3 0.95 0.54 0.28 -0.18 -0.34 9.38 5.26 3.20 -2.15 -4.91 -0.20 -0.14 0.32 0.53 0.65 -2.34 -1.47 4.32 5.21 5.87
4 0.87 0.49 0.28 -0.17 -0.28 8.97 4.04 3.58 -2.23 -3.35 -0.15 -0.07 0.26 0.53 0.62 -2.45 -1.21 3.28 4.52 5.67
5 0.77 0.45 0.30 -0.19 -0.30 8.25 4.63 3.65 -2.24 -3.37 -0.13 -0.03 0.29 0.51 0.48 -1.23 -0.27 3.99 4.88 4.21

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 0.82 0.57 0.42 -0.27 -0.62 9.26 4.18 3.93 -1.56 -4.43 -0.56 -0.33 0.43 0.69 0.79 -4.86 -3.71 3.31 4.89 5.73
2 0.68 0.50 0.42 -0.27 -0.66 6.61 4.02 3.77 -2.43 -3.44 -0.45 -0.31 0.35 0.72 0.73 -4.22 -3.24 3.95 6.22 5.80

PIH 3 0.67 0.53 0.29 -0.40 -0.63 6.38 4.46 2.32 -4.13 -4.61 -0.32 -0.24 0.38 0.52 0.65 -2.73 -2.79 3.77 5.66 5.71
4 0.58 0.46 0.21 -0.32 -0.67 4.77 4.14 1.72 -3.25 -7.24 -0.27 -0.18 0.34 0.42 0.59 -2.95 -1.81 3.97 4.58 5.85
5 0.60 0.45 0.27 -0.41 -0.80 5.09 4.40 2.76 -2.88 -7.08 -0.33 -0.21 0.19 0.37 0.49 -2.77 -1.98 1.92 3.72 5.65

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 0.22 0.69 0.45 -0.35 -0.61 1.68 6.31 4.37 -4.47 -5.31 -0.47 -0.34 0.54 0.66 0.16 -4.07 -3.65 4.13 7.23 2.11
2 0.04 0.66 0.47 -0.25 -0.45 0.30 5.32 4.59 -2.29 -3.86 -0.60 -0.33 0.56 0.59 0.18 -5.94 -3.09 3.89 6.44 2.55

PIH 3 -0.09 0.62 0.39 -0.22 -0.43 -0.81 4.43 3.77 -2.45 -3.51 -0.37 -0.34 0.51 0.69 0.60 -3.07 -3.21 3.72 6.32 5.45
4 -0.24 0.61 0.46 -0.14 -0.29 -2.54 4.71 4.21 -1.63 -2.83 -0.38 -0.30 0.50 0.59 0.70 -3.73 -2.54 3.61 5.21 6.58
5 -0.33 0.55 0.37 -0.13 -0.18 -3.64 4.95 3.70 -1.57 -1.93 -0.22 -0.10 0.38 0.46 0.61 -2.71 -1.20 3.32 5.74 5.22
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B. Risk Exposures, double-sorting

ATG ATG RET(−1,−6) RET(−1,−6)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FFM4: Carhart Four-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.62 0.45 0.25 -0.28 0.06 5.11 4.73 2.75 -2.47 0.54 -0.31 -0.22 0.36 0.48 0.53 -4.10 -2.61 3.56 4.33 6.42
2 0.70 0.46 0.35 -0.29 0.24 5.99 4.04 3.82 -2.98 2.47 -0.32 -0.19 0.33 0.46 0.69 -5.20 -2.51 4.54 4.54 6.79

PIH 3 0.86 0.49 0.32 -0.20 -0.32 7.24 4.22 3.29 -2.26 -4.26 -0.24 -0.14 0.33 0.57 0.64 -3.41 -1.37 4.03 5.22 5.71
4 0.79 0.51 0.31 -0.19 -0.29 7.21 4.03 3.83 -2.22 -3.23 -0.16 -0.09 0.26 0.54 0.59 -2.99 -1.31 3.65 4.86 4.20
5 0.75 0.49 0.36 -0.20 -0.27 6.87 4.78 4.04 -2.01 -3.24 -0.16 -0.07 0.28 0.46 0.57 -1.36 -0.71 2.92 4.04 4.55

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 0.86 0.59 0.38 -0.26 -0.64 8.86 4.25 3.92 -1.73 -4.70 -0.56 -0.31 0.45 0.63 0.77 -4.16 -3.23 3.42 5.30 6.00
2 0.70 0.52 0.37 -0.21 -0.63 7.16 3.82 3.00 -2.00 -3.71 -0.46 -0.31 0.37 0.64 0.53 -5.02 -3.02 3.48 5.86 6.23

PIH 3 0.71 0.52 0.34 -0.36 -0.62 7.14 4.92 2.31 -4.40 -5.49 -0.34 -0.21 0.36 0.52 0.63 -3.52 -2.34 2.81 5.25 6.93
4 0.62 0.43 0.15 -0.40 -0.67 5.94 3.72 1.64 -4.99 -7.32 -0.30 -0.15 0.24 0.47 0.56 -3.26 -1.35 3.05 3.99 6.13
5 0.55 0.49 0.19 -0.42 -0.74 5.77 4.99 2.02 -3.56 -7.29 -0.35 -0.21 0.24 0.35 0.48 -3.38 -1.70 2.49 3.64 5.24

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 0.31 0.72 0.47 -0.38 -0.66 2.40 5.94 3.91 -4.29 -6.12 -0.47 -0.35 0.53 0.63 0.17 -5.42 -3.59 4.47 7.07 1.72
2 0.04 0.66 0.47 -0.23 -0.43 0.25 4.52 4.21 -2.09 -4.54 -0.66 -0.36 0.55 0.64 0.19 -6.07 -3.84 4.52 7.01 2.77

PIH 3 -0.06 0.63 0.42 -0.27 -0.39 -0.60 4.15 3.81 -3.05 -4.07 -0.38 -0.37 0.49 0.63 0.62 -4.10 -3.63 4.76 7.51 7.31
4 -0.24 0.63 0.36 -0.15 -0.33 -2.03 6.47 3.76 -1.45 -3.39 -0.34 -0.34 0.46 0.52 0.65 -3.52 -2.49 4.37 5.72 7.34
5 -0.31 0.55 0.38 -0.17 -0.20 -3.27 5.08 3.41 -2.19 -2.39 -0.28 -0.04 0.37 0.40 0.58 -2.88 -0.36 4.14 5.23 6.40

β̄p,u t(β̄p,u) β̄p,u t(β̄p,u)

1 0.44 0.34 0.25 -0.27 -0.44 4.07 2.22 1.38 -1.95 -3.54 -1.08 -0.66 0.37 0.85 1.30 -8.29 -6.44 3.55 7.05 8.20
2 0.52 0.35 0.24 -0.24 -0.39 4.52 3.36 2.16 -1.52 -2.62 -0.84 -0.52 0.37 0.79 1.16 -7.73 -4.90 3.46 7.23 7.80

PIH 3 0.45 0.36 0.21 -0.19 -0.28 3.74 2.25 1.36 -1.76 -2.65 -0.76 -0.31 0.28 0.75 1.04 -6.74 -2.34 2.35 7.15 8.14
4 0.44 0.30 0.20 -0.16 -0.31 3.34 2.23 1.05 -1.86 -2.68 -0.60 -0.40 0.28 0.71 0.98 -4.82 -3.53 3.22 6.11 7.81
5 0.44 0.32 0.23 -0.11 -0.17 3.83 2.67 2.24 -1.18 -1.44 -0.46 -0.20 0.20 0.66 1.02 -4.06 -1.18 3.25 6.53 8.05
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Table 16 Portfolios Sorted by Firm Characteristics: Risk Exposures, Cont.

B. Risk Exposures, double-sorting

ATG ATG RET(−1,−6) RET(−1,−6)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FF5: Fama and French Five-Factor Model

β̄p,m t(β̄p,m) β̄p,m t(β̄p,m)

1 0.59 0.45 0.22 -0.29 0.10 5.74 4.70 3.40 -2.21 0.73 -0.27 -0.23 0.37 0.46 0.46 -4.40 -3.12 4.33 5.13 5.15
2 0.69 0.44 0.38 -0.25 0.23 7.28 4.80 4.54 -2.58 2.16 -0.33 -0.20 0.34 0.46 0.47 -4.98 -2.47 3.91 4.89 5.11

PIH 3 0.86 0.51 0.28 -0.18 -0.30 8.73 4.80 3.83 -1.68 -3.24 -0.18 -0.14 0.34 0.54 0.64 -2.11 -2.07 3.77 5.94 8.31
4 0.77 0.48 0.27 -0.18 -0.26 8.23 4.66 3.56 -2.45 -3.18 -0.15 -0.12 0.26 0.54 0.58 -2.57 -1.17 3.68 5.14 6.73
5 0.79 0.43 0.31 -0.17 -0.28 8.96 4.39 4.09 -1.76 -2.71 -0.10 -0.09 0.24 0.47 0.56 -0.97 -0.93 3.13 5.12 6.76

β̄p,s t(β̄p,s) β̄p,s t(β̄p,s)

1 0.84 0.56 0.42 -0.25 -0.60 5.42 4.00 3.82 -1.42 -3.72 -0.53 -0.32 0.43 0.67 0.79 -4.49 -2.29 2.76 5.10 6.04
2 0.70 0.53 0.38 -0.26 -0.63 4.31 3.14 2.52 -1.64 -4.04 -0.49 -0.33 0.41 0.68 0.75 -4.34 -3.15 2.90 5.57 5.17

PIH 3 0.65 0.51 0.29 -0.34 -0.66 4.62 3.75 2.02 -2.55 -4.95 -0.36 -0.24 0.39 0.56 0.66 -2.91 -1.78 2.86 4.96 5.00
4 0.56 0.46 0.19 -0.35 -0.68 3.96 3.89 1.23 -2.77 -5.06 -0.30 -0.15 0.23 0.44 0.57 -2.26 -1.81 2.05 3.67 4.48
5 0.55 0.42 0.14 -0.44 -0.81 3.59 3.05 1.16 -2.87 -4.97 -0.35 -0.19 0.17 0.39 0.41 -3.41 -1.28 1.30 3.63 4.34

β̄p,h t(β̄p,h) β̄p,h t(β̄p,h)

1 0.23 0.70 0.47 -0.34 -0.64 1.22 4.03 2.32 -3.35 -4.34 -0.46 -0.33 0.54 0.65 0.12 -4.86 -3.08 3.62 4.91 1.00
2 0.02 0.67 0.45 -0.25 -0.41 0.12 4.25 2.72 -1.87 -4.10 -0.66 -0.37 0.52 0.59 0.17 -6.07 -2.79 3.51 4.76 1.27

PIH 3 -0.04 0.60 0.43 -0.23 -0.45 -0.32 4.12 2.20 -1.44 -4.51 -0.34 -0.35 0.50 0.62 0.62 -3.82 -2.44 3.27 4.43 3.79
4 -0.23 0.62 0.37 -0.16 -0.34 -1.11 3.89 2.93 -1.10 -2.59 -0.29 -0.28 0.46 0.56 0.68 -2.40 -2.45 3.74 4.29 5.52
5 -0.32 0.57 0.36 -0.13 -0.18 -1.66 2.76 3.50 -1.15 -2.10 -0.23 -0.11 0.36 0.43 0.56 -2.09 -0.72 2.94 3.61 4.41

β̄p,r t(β̄p,r) β̄p,r t(β̄p,r)

1 0.76 0.65 0.45 -0.42 -0.55 6.49 3.93 3.55 -2.35 -4.67 -0.45 -0.30 0.51 0.64 0.69 -3.48 -2.36 3.55 4.63 5.75
2 0.69 0.70 0.45 -0.34 -0.47 5.56 3.91 2.70 -1.90 -4.00 -0.44 -0.18 0.51 0.62 0.68 -3.76 -1.48 3.25 4.67 4.88

PIH 3 0.68 0.63 0.42 -0.31 -0.41 5.19 4.70 2.57 -2.23 -2.83 -0.32 -0.18 0.47 0.65 0.62 -2.38 -1.45 4.89 5.41 4.35
4 0.65 0.52 0.38 -0.19 -0.32 4.46 3.40 2.70 -1.34 -2.14 -0.12 -0.09 0.51 0.62 0.67 -0.47 -0.65 4.22 4.64 5.49
5 0.68 0.55 0.38 -0.16 -0.20 5.50 3.73 2.84 -1.52 -1.86 -0.10 -0.07 0.43 0.60 0.56 -0.64 -0.24 3.39 4.43 4.47

β̄p,c t(β̄p,c) β̄p,c t(β̄p,c)

1 1.82 1.16 0.66 -0.43 -0.64 9.93 6.12 3.25 -4.09 -6.51 -0.53 -0.32 0.43 0.65 0.62 -4.12 -2.87 3.65 4.45 4.38
2 1.64 0.91 0.63 -0.36 -0.59 9.05 5.80 3.08 -2.68 -5.14 -0.48 -0.29 0.41 0.62 0.71 -3.91 -2.40 3.73 4.77 6.08

PIH 3 1.29 0.85 0.50 -0.27 -0.31 7.58 6.00 2.35 -2.45 -3.47 -0.34 -0.20 0.43 0.60 0.66 -2.50 -1.51 3.01 4.51 6.27
4 1.01 0.76 0.47 -0.18 -0.28 6.90 3.34 3.31 -2.05 -2.29 -0.10 -0.21 0.38 0.52 0.61 -0.95 -1.26 2.40 4.76 4.38
5 0.97 0.73 0.44 -0.11 -0.22 4.20 2.87 2.42 -1.10 -1.80 -0.11 -0.03 0.40 0.53 0.60 -1.37 -0.17 3.13 4.98 6.44
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Table 17
Portfolios Sorted by Firm Characteristics:
Cross-sectional Regressions and Price of Risk

This table reports the cross-sectional regression results of portfolio quarterly excess returns, r̃p,
on conditional beta coe�cients on risk factors under di�erent asset pricing models, the Capital
Asset Pricing Model (CAPM), the Fama and French (1993) three-factor model (FF3), the
Carhart (1997) four-factor model (FFM4) and the Fama and French (2015) �ve-factor model
(FF5). λ0 is regression intercept. λm, λs, λh, λu, λr and λc are prices of the market risk factor,
the size factor (SMB), the value factor (HML), the momentum factor (UMD), the pro�tability
factor (RMW) and the investment factor (CMA). Testing portfolios are 25 portfolios sorted
by PIH and �rms characteristics, including book-to-market ratio (BM), operating pro�tability
(OP), total asset growth rate (ATG) and cumulative stock return in the previous six months
(RET(−1,−6)). The table reports time-series average of estimated coe�cients, t-statistic
adjusted for autocorrelation and heteroscedasticity in parentheses, and mean value of adjusted
R2 (R̄2) of regressions. The sample period is from January 1996 to December 2017.

25 Portfolios Sorted by PIH and BM

λ0 λm λs λh λu λr λc R̄2

Est. 3.04 2.26 0.284
t-stat ( 2.08) ( 2.38)
Est. 1.99 3.02 1.58 2.26 0.413
t-stat ( 1.94) ( 2.23) ( 2.45) ( 2.80)
Est. 1.88 2.60 1.51 2.11 1.24 0.494
t-stat ( 1.86) ( 2.18) ( 2.34) ( 2.43) ( 1.32)
Est. 1.01 2.01 1.31 2.03 1.68 1.59 0.631
t-stat ( 0.80) ( 1.75) ( 2.08) ( 2.98) ( 2.89) ( 3.34)

25 Portfolios Sorted by PIH and OP

λ0 λm λs λh λu λr λc R̄2

Est. 3.13 2.95 0.311
t-stat ( 2.36) ( 2.95)
Est. 3.37 3.28 −0.38 1.58 0.390
t-stat ( 3.13) ( 1.91) (−0.43) ( 1.37)
Est. 3.17 3.21 −0.43 1.59 1.68 0.452
t-stat ( 3.02) ( 2.33) (−0.54) ( 1.64) ( 1.58)
Est. 1.02 3.32 −0.28 1.25 2.27 1.42 0.585
t-stat ( 1.00) ( 2.47) (−0.36) ( 1.58) ( 3.43) ( 2.66)
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Table 17 Portfolios Sorted by Firm Characteristics:

Cross-sectional Regressions and Price of Risk, Cont.

25 Portfolios Sorted by PIH and ATG

λ0 λm λs λh λu λr λc R̄2

Est. 3.74 2.84 0.339
t-stat ( 2.15) ( 3.22)
Est. 3.56 3.15 2.00 1.27 0.384
t-stat ( 1.94) ( 2.38) ( 2.57) ( 2.10)
Est. 3.13 3.17 1.46 1.06 2.97 0.437
t-stat ( 1.78) ( 3.30) ( 2.00) ( 1.83) ( 2.38)
Est. 1.02 2.82 1.40 1.16 1.58 2.39 0.601
t-stat ( 1.17) ( 2.51) ( 2.22) ( 1.83) ( 2.24) ( 5.06)

25 Portfolios Sorted by PIH and RET(−1,−6)
λ0 λm λs λh λu λr λc R̄2

Est. 2.85 3.47 0.267
t-stat ( 2.01) ( 3.34)
Est. 2.11 3.46 2.70 0.60 0.399
t-stat ( 1.97) ( 2.12) ( 3.28) ( 0.66)
Est. 1.43 3.49 2.46 0.70 2.39 0.494
t-stat ( 1.78) ( 2.84) ( 3.14) ( 0.83) ( 2.33)
Est. 1.09 3.54 2.65 1.17 1.42 1.77 0.555
t-stat ( 1.47) ( 2.45) ( 3.51) ( 1.47) ( 2.53) ( 3.96)
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Table 18
Portfolios Sorted by Firm Characteristics:
Times-Series Regressions and GRS Test

Panel A and B report pricing errors for the CAPM (αCAPM), the FF3 (αFF3), the FFM4
(αFFM4) and the FF5 (αFF5) of the time-series regression of quarterly excess returns r̃pq+1 of
portfolios of dividend strips on quarterly risk factors fq+1, where fq+1 = r̃mq+1 (excess return on
the S&P 500 index) for the CAPM, fq+1 = [r̃mq+1, SMBq+1, HMLq+1] for the FF3, fq+1 = [r̃mq+1,
SMBq+1, HMLq+1, UMDq+1] for the FFM4, and fq+1 = [r̃mq+1, SMBq+1, HMLq+1, RMWq+1,
CMAq+1] for the FF5. Panel A is for quintile portfolios sorted by book-to-market ratio (BM),
operating pro�tability (OP), total asset growth rate (ATG) or cumulative stock return in the
previous six months (RET(−1,−6)). Panel B is for portfolios �rst sorted by percentage of
institutional holding (PIH) and then by one of the four �rm characteristics. Panel C summarizes
GRS (1989) test statistics and p-values.

A. Pricing Errors of Times Series Regressions: univariate-sorting

BM BM

1 2 3 4 5 1 2 3 4 5

αCAPM −2.73 −1.20 2.84 5.12 6.43 t(αCAPM) −1.16 −0.56 1.52 2.23 2.73
αFF3 −1.99 −0.89 2.27 4.20 5.08 t(αFF3) −0.93 −0.44 1.27 1.87 2.31
αFFM4 −1.77 −0.64 2.10 3.81 4.97 t(αFFM4) −0.84 −0.32 1.18 1.69 2.27
αFF5 −1.40 −0.57 1.62 3.35 4.11 t(αFF5) −0.68 −0.29 0.92 1.46 1.89

OP OP

1 2 3 4 5 1 2 3 4 5

αCAPM −2.31 −1.42 2.97 5.83 7.80 t(αCAPM) −1.01 −0.58 1.45 2.39 3.02
αFF3 −2.59 −1.55 2.43 5.48 8.00 t(αFF3) −1.19 −0.66 1.19 2.25 3.01
αFFM4 −2.17 −1.23 2.16 5.16 7.74 t(αFFM4) −1.01 −0.52 1.06 2.13 2.91
αFF5 −1.50 −0.89 1.62 4.19 5.84 t(αFF5) −0.72 −0.38 0.77 1.72 2.35

ATG ATG

1 2 3 4 5 1 2 3 4 5

αCAPM 7.56 5.31 3.27 −1.50 −2.61 t(αCAPM) 2.99 2.24 1.63 −0.63 −1.07
αFF3 7.25 4.66 2.69 −0.92 −1.92 t(αFF3) 2.79 2.06 1.40 −0.40 −0.85
αFFM4 6.68 4.33 2.46 −0.75 −1.53 t(αFFM4) 2.57 1.90 1.26 −0.33 −0.67
αFF5 5.44 3.27 1.93 −0.43 −1.19 t(αFF5) 2.21 1.50 1.01 −0.20 −0.51

RET(−1,−6) RET(−1,−6)
1 2 3 4 5 1 2 3 4 5

αCAPM −1.87 −1.36 3.12 4.70 6.94 t(αCAPM) −0.85 −0.65 1.58 2.28 3.06
αFF3 −1.25 −0.93 2.66 3.94 6.35 t(αFF3) −0.62 −0.46 1.40 1.90 2.80
αFFM4 −0.47 −0.46 2.25 3.04 5.00 t(αFFM4) −0.22 −0.22 1.22 1.50 2.22
αFF5 −0.79 −0.62 1.82 2.82 5.04 t(αFF5) −0.40 −0.31 0.93 1.33 2.23
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B. Pricing Errors of Times Series Regressions: double-sorting

BM BM

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −3.36 −1.62 3.03 5.42 7.33 −1.45 −0.72 1.44 2.34 2.90
2 −3.48 −1.39 2.93 5.17 6.77 −1.38 −0.57 1.41 2.22 2.71

PIH 3 −2.25 −1.08 2.77 5.18 6.29 −0.88 −0.47 1.33 2.14 2.46
4 −1.49 −0.83 2.76 4.90 6.09 −0.60 −0.35 1.32 2.26 2.49
5 −1.35 −0.14 2.71 4.85 6.11 −0.57 −0.06 1.31 2.00 2.31

αFF3 t(αFF3)

1 −2.73 −1.36 2.48 4.33 5.82 −1.24 −0.62 1.20 2.01 2.51
2 −2.94 −1.11 2.39 4.20 5.51 −1.26 −0.47 1.14 1.87 2.36

PIH 3 −1.71 −0.87 2.27 4.28 4.98 −0.71 −0.39 1.09 1.84 2.03
4 −0.98 −0.48 2.24 4.18 5.07 −0.41 −0.21 1.11 1.92 2.09
5 −0.82 −0.12 2.33 4.23 5.30 −0.35 −0.06 1.17 1.81 2.02

αFFM4 t(αFFM4)

1 −2.40 −0.98 2.24 4.05 6.08 −1.09 −0.45 1.08 1.89 2.61
2 −2.69 −0.80 2.29 3.94 5.98 −1.16 −0.34 1.10 1.76 2.54

PIH 3 −1.45 −0.68 2.11 3.94 4.46 −0.60 −0.30 1.01 1.71 1.83
4 −0.60 −0.42 2.15 3.61 4.49 −0.25 −0.18 1.07 1.65 1.86
5 −0.44 −0.23 2.10 4.00 4.78 −0.19 −0.11 1.06 1.71 1.81

αFF5 t(αFF5)

1 −1.99 −1.05 1.75 3.50 4.70 −0.91 −0.49 0.84 1.63 2.00
2 −2.22 −0.79 1.71 3.39 4.48 −0.99 −0.34 0.82 1.54 1.95

PIH 3 −1.13 −0.61 1.61 3.49 4.08 −0.49 −0.27 0.76 1.50 1.70
4 −0.43 −0.26 1.56 3.33 4.12 −0.18 −0.11 0.77 1.54 1.72
5 −0.51 −0.31 1.76 3.45 4.25 −0.22 −0.15 0.88 1.50 1.62
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B. Pricing Errors of Times Series Regressions: double-sorting

OP OP

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −3.39 −1.50 3.21 6.86 7.93 −1.49 −0.69 1.54 2.97 3.21
2 −2.09 −1.76 3.08 6.69 8.29 −0.89 −0.70 1.47 3.06 3.22

PIH 3 −1.52 −1.44 2.93 5.61 7.66 −0.66 −0.63 1.42 2.28 2.98
4 −1.54 −1.35 2.84 5.74 7.19 −0.66 −0.62 1.36 2.54 3.01
5 −1.49 −1.55 2.80 5.27 7.23 −0.65 −0.67 1.38 2.28 2.83

αFF3 t(αFF3)

1 −3.55 −1.77 2.60 6.27 7.93 −1.60 −0.84 1.28 2.67 3.07
2 −2.31 −1.87 2.50 6.28 8.47 −0.99 −0.75 1.18 2.86 3.12

PIH 3 −1.72 −1.63 2.42 5.31 7.81 −0.76 −0.73 1.19 2.17 2.82
4 −1.71 −1.45 2.37 5.48 7.44 −0.77 −0.69 1.15 2.47 2.88
5 −1.66 −1.72 2.37 5.18 7.97 −0.73 −0.75 1.20 2.19 2.76

αFFM4 t(αFFM4)

1 −2.75 −1.32 2.21 6.20 8.06 −1.26 −0.62 1.08 2.67 3.09
2 −1.71 −1.72 2.26 6.25 8.45 −0.72 −0.68 1.07 2.85 3.11

PIH 3 −1.25 −1.38 2.00 4.80 7.18 −0.55 −0.61 0.98 1.94 2.60
4 −1.33 −1.24 1.99 4.94 6.78 −0.59 −0.57 0.96 2.19 2.60
5 −1.55 −1.44 2.06 4.62 7.34 −0.67 −0.63 1.03 1.94 2.53

αFF5 t(αFF5)

1 −2.34 −0.89 1.83 4.80 5.45 −1.03 −0.42 0.89 2.05 2.28
2 −1.25 −1.35 1.73 5.02 6.27 −0.54 −0.55 0.80 2.28 2.43

PIH 3 −0.72 −1.08 1.63 4.03 5.81 −0.34 −0.49 0.79 1.61 2.22
4 −0.99 −1.07 1.58 4.22 5.36 −0.45 −0.51 0.75 1.94 2.25
5 −1.11 −1.27 1.65 3.97 5.75 −0.50 −0.57 0.84 1.69 2.47
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Times-Series Regressions and GRS Test, Cont.

B. Pricing Errors of Times Series Regressions: double-sorting

ATG ATG

1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 8.18 5.59 3.89 −1.38 −3.76 3.20 2.34 1.84 −0.60 −1.56
2 7.80 5.52 3.42 −1.27 −4.46 3.04 2.27 1.64 −0.50 −1.68

PIH 3 7.30 5.26 3.17 −0.92 −2.25 2.88 2.19 1.51 −0.38 −0.85
4 7.17 5.25 3.06 −1.26 −1.34 2.93 2.14 1.42 −0.56 −0.57
5 6.86 4.93 2.76 −1.16 −0.91 2.89 2.14 1.33 −0.53 −0.40

αFF3 t(αFF3)

1 7.63 4.84 3.39 −0.93 −3.20 3.07 1.98 1.63 −0.41 −1.42
2 7.46 4.80 2.89 −1.02 −3.89 2.87 2.02 1.40 −0.42 −1.57

PIH 3 6.92 4.50 2.74 −1.31 −2.93 2.41 1.97 1.32 −0.56 −1.16
4 6.97 4.55 2.60 −0.89 −0.72 2.52 1.93 1.25 −0.41 −0.31
5 6.76 4.34 2.42 −0.71 −0.31 2.49 1.91 1.18 -−0.33 −0.14

αFFM4 t(αFFM4)

1 5.42 3.20 2.33 −0.14 −2.11 2.32 1.37 1.16 −0.06 −0.96
2 5.43 3.27 1.95 −0.30 −2.94 2.14 1.41 0.96 −0.13 −1.23

PIH 3 5.27 3.23 1.88 −1.76 −3.63 2.03 1.50 0.95 −0.77 −1.49
4 5.48 3.40 1.92 −0.50 −0.16 2.23 1.55 0.92 −0.23 −0.07
5 5.28 3.16 1.67 −0.44 −0.07 2.13 1.48 0.83 −0.21 −0.03

αFF5 t(αFF5)

1 7.04 4.38 3.08 −0.60 −2.63 2.86 1.81 1.49 −0.27 −1.16
2 6.76 4.30 2.68 −0.69 −3.48 2.62 1.81 1.30 −0.28 −1.43

PIH 3 6.49 4.20 2.48 −1.56 −3.30 2.29 1.84 1.19 −0.66 −1.30
4 6.46 4.22 2.37 −0.67 −0.34 2.33 1.78 1.13 −0.30 −0.15
5 6.27 3.93 2.08 −0.54 −0.19 2.30 1.72 1.00 −0.25 −0.09

190



Tables

Table 18 Portfolios Sorted by Firm Characteristics:
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B. Pricing Errors of Times Series Regressions: double-sorting

RET(−1,−6) RET(−1,−6)
1 2 3 4 5 1 2 3 4 5

αCAPM t(αCAPM)

1 −2.27 −1.44 3.38 4.76 7.14 −1.05 −0.66 1.71 2.18 3.07
2 −1.90 −1.42 3.28 4.79 7.50 −0.87 −0.64 1.65 2.16 3.18

PIH 3 −1.93 −1.30 3.22 4.54 6.61 −0.84 −0.62 1.63 2.09 2.95
4 −1.50 −1.38 3.23 4.33 6.54 −0.71 −0.69 1.64 2.13 2.90
5 −1.58 −1.41 3.36 4.87 6.40 −0.75 −0.64 1.69 2.33 2.99

αFF3 t(αFF3)

1 −1.51 −1.08 2.76 3.92 6.55 −0.72 −0.54 1.42 1.75 2.94
2 −1.22 −0.97 2.71 4.00 6.91 −0.63 −0.48 1.39 1.75 2.96

PIH 3 −1.42 −0.95 2.56 3.83 5.83 −0.64 −0.48 1.31 1.74 2.56
4 −1.05 −1.18 2.69 3.67 5.71 −0.53 −0.62 1.37 1.79 2.46
5 −1.21 −1.25 2.77 4.17 5.89 −0.58 −0.57 1.44 1.99 2.75

αFFM4 t(αFFM4)

1 −0.40 −0.29 2.36 2.94 4.88 −0.21 −0.14 1.20 1.40 2.14
2 −0.20 −0.36 2.28 3.05 5.63 −0.09 −0.17 1.15 1.35 2.37

PIH 3 −0.54 −0.56 2.28 2.89 4.66 −0.25 −0.28 1.17 1.29 2.13
4 −0.42 −0.64 2.36 2.83 4.60 −0.20 −0.34 1.20 1.42 2.02
5 −0.59 −0.85 2.64 3.42 4.57 −0.28 −0.39 1.35 1.61 2.13

αFF5 t(αFF5)

1 −0.68 −0.46 1.89 2.74 5.78 −0.32 −0.24 0.95 1.19 2.57
2 −0.36 −0.54 1.84 2.84 5.99 −0.19 −0.27 0.93 1.20 2.56

PIH 3 −0.88 −0.56 1.70 2.64 4.88 −0.40 −0.28 0.85 1.15 2.14
4 −0.94 −0.80 1.86 2.63 4.96 −0.47 −0.42 0.92 1.24 2.15
5 −0.99 −1.13 2.11 3.18 5.00 −0.48 −0.52 1.09 1.53 2.37
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Times-Series Regressions and GRS Test, Cont.

`
C. GRS (1989) Test

univariate-sorting, BM double-sorting, BM

GRS p-value GRS p-value

CAPM 4.544 0.001 2.507 0.002
FF3 2.179 0.065 1.653 0.058
FFM4 2.079 0.077 1.582 0.077
FF5 1.386 0.239 1.348 0.175

univariate-sorting, OP double-sorting, OP

GRS p-value GRS p-value

CAPM 3.326 0.009 2.018 0.014
FF3 3.370 0.008 1.880 0.024
FFM4 2.862 0.020 1.784 0.036
FF5 1.844 0.114 1.497 0.105

univariate-sorting, ATG double-sorting, ATG

GRS p-value GRS p-value

CAPM 3.930 0.003 2.589 0.001
FF3 2.947 0.017 1.908 0.022
FFM4 2.480 0.039 1.740 0.043
FF5 1.787 0.125 1.411 0.142

univariate-sorting, RET(−1,−6) double-sorting, RET(−1,−6)
GRS p-value GRS p-value

CAPM 3.372 0.008 2.578 0.001
FF3 2.835 0.021 1.976 0.017
FFM4 1.985 0.090 1.464 0.117
FF5 1.856 0.112 1.445 0.126
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Figure 1
Fraction of Dividend Payers

The �gure shows the times series of the percentage of stocks that pay cash dividends in a quarter. The
black line is for all stocks listed on NYSE, AMEX and NASDAQ. The blue line is for stocks listed on the
three stock exchanges with exchange-traded options. The sample period is from the �rst quarter of 1996
to the fourth quarter of 2017.
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(a) DI of Apple Inc. around Dividend Initiation in 2012

 

(b) DI of Apple Inc. around Dividend Increase in 2013

Figure 2
Predictability of Option-Implied Dividends: Apple Inc.

The �gures show average dividend implied from prices of options written on stocks of Apple Inc. around
the dividend initiation in 2012 and the dividend increase in 2013. Figure 2(a) plots weekly average
dividend implied from options which expire on July 20th 2012 (the blue line) and on October 19th 2012
(the black line) of weeks before and after the company publicly stated its intention to initiate quarterly
dividends on March 19th 2012. Figure 2(b) plots daily average dividend implied from options which expire
on July 19th 2013 on days before and after the company announced to increase its quarterly dividend
from $2.65 to $3.05 per share on April 23th 2013.
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(a) DI of General Motors Company around Dividend Cut in 2006

 

(b) DI of General Motors Company around Dividend Omission in 2008

Figure 3
Predictability of Option-Implied Dividends: General Motors Company

The �gures show average dividend implied from prices of options written on stocks of General Motors
Company around the dividend cut in 2006 and the dividend omission in 2008. Figure 3(a) plots daily
average dividend implied from options which expire on March 17th 2006 on days before and after the
company announced on February 7th that it would reduce quarterly dividends by half from $0.5 to $0.25
per share. Figure 3(b) plots daily average dividend implied from options which expire on September 9th

2008 on days before and after the company announced on July 15th that it would suspend cash dividends.
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Figure 4
Prices and Realizations of Aggregate Dividend Strip

The �gure shows the prices of the aggregate dividend strip at the end of each quarter (the black line)
and realized aggregate dividends in the next quarter (the blue line). The two shaded areas cover two
NBER recession periods. The �rst recession period is from the �rst quarter of 2000 to the third quarter
of 2000. The second recession period is from the fourth quarter of 2007 to the second quarter of 2009.
The sample period is from 1996 to 2017.
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Figure 5
Cross-sectional Fit: Average Realized Excess Return and Expected Excess
Return of Quintile Portfolios Sorted by DP

The �gure shows the scatter plot of average excess return of portfolios of dividend strips in quarter q+ 1,
r̃pq+1, against expected quarterly excess returns according to the CAPM, the FF3, the FFM4 and the FF5.

Dividend strips are sorted into quintile portfolios by DP at the end of a quarter q. The line represents
the 45 degree line. The sample period is from January 1996 to December 2017.
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Figure 6
Cross-sectional Fit: Average Realized Excess Return and Expected Excess
Return of 25 Portfolios Sorted by PIH and DP

The �gure shows the scatter plot of average excess return of portfolios of dividend strips in quarter q+ 1,
r̃pq+1, against expected quarterly excess returns according to the CAPM, the FF3, the FFM4 and the
FF5. Dividend strips are �rst sorted into quintile portfolios by PIH and then within each PIH group are
sorted into quintile portfolios by DP at the end of a quarter q. The line represents the 45 degree line.
The sample period is from January 1996 to December 2017.
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