

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ROBUST SPEAKER RECOGNITION USING DEEP
NEURAL NETWORKS

WEIWEI LIN

PhD

The Hong Kong Polytechnic University

2020

ROBUST SPEAKER RECOGNITION USING DEEP
NEURAL NETWORKS

WEIWEI LIN

A thesis submitted in partial fulfilment of the
requirements for the degree of Doctor of Philosophy

The Hong Kong Polytechnic University

April 2020

Department of Electronic and Information Engineering

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the
best of my knowledge and belief, it reproduces no material
previously published or written, nor material that has been
accepted for the award of any other degree or diploma, except
where due acknowledgement has been made in the text.

 (Signed)

 Lin Weiwei (Name of student)

Abstract

ROBUST SPEAKER RECOGNITION USING DEEP NEURAL

NETWORKS

Speaker recognition refers to recognizing a person using his/her voice. Although state-

of-the-art speaker recognition systems have shown remarkable performance, there are

still some unsolved problems. Firstly, speaker recognition systems’ performance de-

grades significantly when training data and test data have domain mismatch. Domain

mismatch is prevalent and is expected to happen during system deployment. This

could occur when the new environment has some specific noise or involves speak-

ers speaking different languages than training speakers. Directly using the existing

system in these situations could result in poor performance. Secondly, the statistics

pooling layer in state-of-the-art systems does not have rich representation power to

capture the complex characteristics of frame-level features. The statistics pooling

layer only uses the mean and standard deviation of frame-level features. However,

mean and standard deviation are insufficient for summarizing a complex distribu-

tion. Thirdly, state-of-the-art systems still rely on a PLDA backend, which makes

deployment difficult and hinders the potential of the DNN frontend.

This thesis proposes several solutions to the problems mentioned above. For re-

ducing the domain mismatch, this thesis proposes adaptation methods for both DNN

frontend and PLDA backend. The proposed backend adaptation uses an auto-encoder

to minimize the domain mismatch between i-vectors, while the frontend adaptation

focuses on producing speaker embedding that is both discriminative and domain-

invariant. Using the proposed adaptation framework, we achieve an EER of 8.69%

and 7.95% in NIST SRE 2016 and 2018, respectively, which are significantly bet-

ter than the previously proposed DNN adaptation methods. For better frame-level

information aggregation in the DNN, this thesis proposes an attention-based statis-

tics pooling method, which uses an expectation–maximization (EM) like algorithm to

produce multiple means and standard deviations for summarizing frame-level features

distribution. Applying the proposed attention mechanism to a 121-layer Densenet,

we achieve an EER of 1.1% in VoxCeleb1 and an EER of 4.77% in the VOiCES 2019

evaluation set. For facilitating end-to-end speaker recognition, this thesis proposes

several strategies to eliminate the need of a backend model. Experiments on NIST

SRE 2016 and 2018 show that with the proposed strategies, the DNN can achieve

state-of-the-art performance using simple cosine similarity and requires only half of

the computational cost of the x-vector network.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor Dr. M. W. Mak,

whose patience, expertise and encouragement is the reasons this work can be done.

Dr. M. W. Mak is not only an expert in the field of machine learning, bioinformatics,

software engineering, but also a excellent teacher in imparting passion and insight to

his students in often very challenging research works.

Besides, I would like to express appreciation to department of Electronic and

Information Engineering for offering me financial support during the writing up of

this thesis. I would also like to thank my course teachers in my PhD study. They

have been a huge source of help, wisdom and inspiration to me.

Last but not lease, I am much indebted to my parents for their years’ support and

understanding.

TABLE OF CONTENTS

List of Figures v

List of Tables ix

List of Abbreviations xii

Author’s Publications xvi

Chapter 1: Background 1

1.1 Speaker Recognition . 1

1.2 Evaluation Metrics for Speaker Verification 2

1.3 Key Issues in Speaker Recognition . 3

1.4 Key Contributions . 5

Chapter 2: The Classic i-vector/PLDA Framework 6

2.1 I-vector . 6

2.1.1 Generative Model . 6

2.1.2 I-vector Extraction . 7

2.1.3 I-vector Pre-processing . 9

2.2 PLDA Modeling . 11

2.3 Coupling between I-Vector Extraction and PLDA Modeling 13

2.4 EM Formulations for PLDA with Uncertainty Propagation 14

2.4.1 E-Step . 15

2.4.2 M-Step . 16

i

2.5 PLDA Scoring with UP . 17

Chapter 3: Deep Neural Networks for Speaker Embedding 20

3.1 X-vector Network . 21

3.2 Residual Networks . 22

3.3 DenseNets . 22

3.4 Additive Margin Softmax . 23

Chapter 4: Domain Adaptation for Speaker Recognition 27

4.1 Domain Adaptation as a Robust Speaker Verification Problem 27

4.2 Domain Mismatch in Speaker Recognition 27

4.3 Domain Adaptation Methods . 29

4.3.1 Backend Domain Adaptation 30

4.3.2 DNN Domain Adaptation . 34

Chapter 5: Multi-source MMD-Based Domain Adaptation 37

5.1 Limitation of IDVC . 37

5.2 Maximum Mean Discrepancy Autoencoder 38

5.2.1 Maximum Mean Discrepancy 38

5.2.2 Domain-invariant Autoencoder 39

5.2.3 Nuisance-attribute Autoencoder 42

5.2.4 Semi-supervised Nuisance-attribute Networks 44

5.3 Experimental Setup . 47

5.3.1 Speech Data and Acoustic Features 47

5.3.2 I-vector Extraction and PLDA Model Training 47

5.3.3 MMD Autoencoders and IDVC Training Details 48

5.4 Results and Discussions . 49

5.4.1 General Performance Analysis 49

ii

5.4.2 Robustness to Unseen Domains 51

5.4.3 Impact of the Hyperparameters 52

5.4.4 Impact of Data Partition . 52

5.4.5 Combined with PLDA Model Interpolation 53

5.4.6 Performance Analysis of Supervised DA 53

5.4.7 Impacts of Supervised Loss Functions 54

Chapter 6: DNN Speaker Embedding Adaptation Using MMD 63

6.0.1 Multi-level Adaptation . 64

6.0.2 Consistency Regularization Using MMD 66

6.0.3 Auxiliary BN . 68

6.1 Experiments . 68

6.1.1 Data Preparation . 68

6.1.2 DNN and Backend Training 69

6.1.3 Data Augmentation . 69

6.1.4 Evaluation . 70

6.2 Results . 70

6.2.1 Comparison with Other DNN Adaptations 70

6.2.2 Comparison with Backend Adaptation 71

6.2.3 Ablation Study of individual components 71

6.2.4 Auxiliary Batch Normalization 72

6.2.5 Influence of Network Architectures 73

6.2.6 Influence of MMD Kernels . 74

Chapter 7: Learning Mixture Representation for Deep Speaker Em-

bedding 80

7.1 Statistics Pooling in Deep Speaker Embedding Systems 80

iii

7.2 Statistics Pooling with Mixture Representation 84

7.3 Experiments . 86

7.3.1 Data Preparation . 86

7.3.2 DNN Architecture and Training 86

7.3.3 Backend Training . 87

7.3.4 Evaluation . 87

7.4 Results . 87

7.4.1 Performance Comparison . 87

7.4.2 Effect of the Number of Heads 89

Chapter 8: Towards End-to-end Speaker Verification 92

8.1 The Role of Backend PLDA Model 92

8.2 Two-Stage Approach in State-of-the-art SV Systems 92

8.3 Proposed End-to-end Approach . 93

8.3.1 Splice Sampling . 94

8.3.2 CNN Local Pooling . 94

8.3.3 Mask-pooling Layer . 96

8.4 Experiments . 97

8.4.1 Data Preparation . 97

8.4.2 Training of DNNs and PLDA 98

8.4.3 Evaluation . 98

8.5 Results . 98

Chapter 9: Conclusions and Future Works 101

Bibliography 103

iv

LIST OF FIGURES

1.1 A typical speaker verification system training and test pipeline. . . . 3

2.1 Pre-processing steps of i-vector/PLDA systems 10

3.1 A residual block in a ResNet. 23

4.1 Backend adaptation pipeline . 30

4.2 A flow chart showing the process of i-vector based domain adaptation

using the common feature-space approach. 35

4.3 (a) Scatter plot of 2-dimensional t-SNE embedded i-vectors. In the leg-

end, “M” and “F” stand for male and female, respectively, and “ENG”,

“CAN” and “TGL” stand for English, Cantonese, and Tagalog, respec-

tively. (b) Pairwise differences between the means. (c) Pairwise dif-

ferences between the covariance matrices. The means and covariances

differences are measured in the original space and are normalized to

the range between 0 and 1 for ease of comparison. 36

5.1 Architecture of the proposed domain-invariant autoencoder (DAE) when

data are from three different domains. Solid black arrows represent the

connections between neurons. Dashed red arrows represent the hidden

nodes’ outputs for computing the domain-mismatch loss or autoen-

coder’s outputs for computing the reconstruction loss. 41

v

5.2 Scatter plot of 2-dimensional t-SNE embedding of the hidden activa-

tions of DAE. In the legend, “M” and “F” stand for male and female,

respectively, and “ENG”, “CAN” and “TGL” stand for English, Can-

tonese, and Tagalog, respectively. 42

5.3 Architecture of the proposed nuisance-attribute autoencoder (NAE)

when data are from three different domains. Solid black arrows rep-

resent the connections between neurons. Dashed red arrows represent

the signal pathways for computing the domain-mismatch loss or recon-

struction loss. 44

5.4 Architecture of the proposed semi-supervised nuisance-attribute net-

work (SNAN) when data are from three different domains. Solid black

arrows represent the connections between neurons. Dashed red arrows

represent the signal pathways for computing the domain-mismatch loss

Lmismatch, reconstruction loss Lrecons or supervised loss Lsupervised such

as center loss or triplet loss. Note that for x3 we do not have Lsupervised,

which shows the semi-supervised nature of SNAN. 46

5.5 The relationship between the width σ of the radial basis function ker-

nel and the accuracy of the softmax domain classifier on the features

extracted from a DAE. 49

5.6 Bar charts showing the EERs of three domain adaptation methods with

and without using in-domain data. 55

5.7 Line plots showing the EERs of DAEs (top row) and NAEs (bottom

row) with different choices of λ’s and kernels. 57

vi

6.1 The architecture of our proposed framework. The network is trained

to minimize the classification loss and the domain loss with consis-

tency regularization (see Eq. 6.6). For target-domain data, no label

is required. The dotted lines indicate weight-sharing within individual

layers. 64

6.2 Diagrams demonstrate the difference between (a) utterance-level MMD

distanceD(H7
s,H7

t)), and (b) frame-level MMD distanceD(FLAT(H5
s),FLAT(H5

t))).

Blue and orange cubes represent a batch of 3-dimensional data from

two domains. In the case of utterance-level MMD distance, it is com-

puted after the aggregation along the temporal axis in the statistics

pooling layer. In the case of frame-level MMD distance, the temporal

axis is flattened to transform 3D array into 2D array for computing

MMD distance. 77

6.3 T-SNE plots of the hidden activations at the convolutional layers of the

x-vector network in Table 3.1. The orange dots correspond to the data

from the source-domain (SRE04–SRE10). The blue dots correspond to

the data from the target-dominance (SRE18 evaluation set.). 78

6.4 “One Aux. BN” means that the batch statistics of the source- and

target-domains are computed separately. In the case of “Two Aux.

BNs”, we further divided the mini-batch into clean source-domain data,

clean target-domain data, and augmented data when computing the

mini-batch statistics. The superscripts “s” and “t” stand for source-

and target-domains, respectively. 79

7.1 Line plots showing the EER of attentive statistics pooling (ASP) and

the proposed mixture representation pooling (MRP) with different

numbers of attention heads on VOiCES19-eval. 88

vii

7.2 The mixture assignments across frames on a speech segment chosen

from the VoxCeleb test set. Different colors represent different mixture

components in the mixture representation pooling (MRP). For ease of

interpretation, the assignments are converted to one-hot vectors by

setting the maximum assignment probability in Eq. 7.16 to 1 and the

rest to 0. 91

8.1 Splice sampling on a spectrogram. Three chunks are taken out of the

spectrogram and spliced together to form a training segment. 94

8.2 The x-vector network with the proposed mask-pooling layer operates

on a spectrogram. 100

viii

LIST OF TABLES

3.1 Summary of our neural network architectures. The kernel is specified

as kernel size, stride, and dilation. 25

3.2 Densenet architectures for speaker embedding. The growth rate for

the networks is 40. Note that each “conv” layer shown in the table

corresponds to the sequence BN-ReLU-Conv. ”conv 3” denotes 1-D

convolution with kernel size 3. 26

3.3 Summary of the number of parameters and the number of floating-

point operations in a forward pass for our Densenet121, the x-vector

network and the wide x-vector network for an input size of 23× 400. 26

4.1 The composition of SRE16 data. “Labeled” means speaker labels are

provided. “unLabeled” means speaker labels are not provided. 28

5.1 The Performance of four domain adaptation methods and the perfor-

mance of a classical i-vector PLDA system without domain adaptation

(No Adapt) in the SRE16 evaluation set. “Linear” and “sigm” mean

that the hidden nodes in the DAE and NAE use linear and sigmoid

activation functions, respectively. PCA: The weights of the linear au-

toencoder were found by PCA. IDVC: Inter-dataset variability com-

pensation. “mCprim” and “aCprim” are the minimum detection cost

and the actual detection cost as specified in the evaluation plan of

SRE16. 56

ix

5.2 The performance of various domain adaptation methods on the subsets

of the SRE16 evaluation set. In (a), the IDVC, DAE and NAE were

trained using both in-domain data and out-domain data. In (b), The

IDVC, DAE and NAE were trained without using in-domain data. . . 58

5.3 The performance of (a) DAEs and (b) NAEs with different choices

of kernels and λ’s. Quad is the quadratic kernel in Eq. 5.4. Both

DAEs and NAEs were trained by partitioning SRE04–10 and SRE16

development data into gender- and language-homogenous groups. . . 59

5.4 The performance of IDVC, DAE and NAE using different partition

schemes. 60

5.5 The performance of unsupervised PLDA model interpolation using un-

adapted i-vectors and i-vectors adapted by IDVC, DAEs and NAEs.

The interpolation parameter was set to 0.3 61

5.6 The performance of PLDA without adaptation, IDVC, and SNAN with

supervised loss only (β = 0 in Eq. 5.18) on the SRE16 evaluation

set. “mCprim” and “aCprim” are the minimum detection cost and the

actual detection cost as specified in the evaluation plan of SRE16. . 61

5.7 The performance of SNAN using different supervised loss functions on

SRE16 using i-vectors and x-vectors from the Kaldi’s SRE16 recipe. . 62

6.1 Comparison with other DNN adaptation methods. Sup. WGAN [1]

uses the labels of SRE16 and SRE18 development data. There is no

backend adaptation in all of the systems. 70

6.2 The Performances of CORAL, PLDA adaptation and the proposed

framework MSC. 71

6.3 Our proposed framework with different numbers of BNs per layer. Re-

fer to Fig. 6.4 for the details of BN types. 72

x

6.4 The performance of four DNN speaker embeddings with and without

the proposed adaptation framework. The details of x-vector based

networks and DenseNets are presented in Table 3.1 and Table 3.2,

respectively. 73

6.5 Ablation study of the individual components in the proposed framework. 74

6.6 The influence of the Gaussian kernel configuration on speaker embed-

ding adaptation . 76

7.1 Systems performance on VoxCeleb1, VOiCES19-dev, and VOiCES19-

eval. For VoxCeleb1, we used cosine scoring. For VOiCES19-dev and

VOiCES19-eval, we used a PLDA backend. 85

7.2 Performance of attentive statistics pooling (ASP) and our proposed

method (MRP) with different numbers of attention heads using Densenet121

on VOiCES19-eval. 86

8.1 Performances of x-vector systems and the proposed approach with dif-

ferent scoring methods. 99

xi

LIST OF ABBREVIATIONS

AHC Agglomerative hierarchical clustering.

ASP Attentive statistics pooling.

ASR Automatic Speech Recognition.

BN Batch normalization.

BP Backpropagation.

CMVN Cepstral mean-variance normalization.

CNN Convolutional neural network.

CORAL Correlation alignment.

DA Domain adaptation.

DAD Domain-invariant autoencoder.

DCF Decision cost function.

DNN Deep neural network.

EER Equal error rate.

EM Expectation-maximization.

xii

FC Fully-connected.

FGE Fast geometry emsemble.

GMac Giga multiply–accumulate operation.

GMM Gaussian mixture model.

IDVC Inter-dataset variability compensation.

JFA Joint factor analysis.

L-BFGS Limited-memory Broyden—Fletcher—Goldfarb—Shanno.

LDA Linear discriminative analysis.

LSGAN Least square GAN.

MAP Maximum a Posteriori.

MCMC Markov Chain Monte Carlo.

MFCC Mel-frequency cepstral coefficient.

MMD Maximum mean discrepancy.

MRP Mixture representation pooling.

NAD Nuisance attribute autoencoder.

NIST National Institute of Standards and Technology.

xiii

PCA Principal component analysis.

PLDA Probabilistic linear discriminative Analysis.

RBF Radial basis function.

SGD Stochastic gradient descent.

SN Score normalization.

SRE Speaker recognition evaluation.

SVM Support vector machine.

t-SNE T-distributed stochastic neighbor embedding.

TDNNs Time delay neural networks.

TI-SV Text-independent SV.

TV Total variability.

UBM Universal background model.

UP Uncertainty propagation.

VAD Voice activity detection.

VB Variational Bayes.

VI Variational inference.

xiv

WCCN Within class covariance normalization.

WGAN Wasserstein GAN.

xv

AUTHOR’S PUBLICATIONS

Journal Papers

1. W.W. Lin, M.W. Mak, N. Li, D. Su and D. Yu, “A Framework for Adapt-

ing DNN Speaker Embedding Across Languages”, Submitted to IEEE/ACM

Transactions on Audio, Speech and Language Processing, accepted with minor

changes.

2. W.W. Lin, M.W. Mak and J.T. Chien, “Multi-source I-vectors Domain Adap-

tation using Maximum Mean Discrepancy Based Autoencoders”, IEEE/ACM

Transactions on Audio, Speech and Language Processing, vol. 26, no. 12, pp.

2412–2422, Dec. 2018.

3. N. Li, M.W. Mak, W.W. Lin and J.T. Chien, “Discriminative Subspace Mod-

eling of SNR and Duration Variabilities for Robust Speaker Verification”, Com-

puter Speech and Language, vol. 45, pp. 87–103, 2017.

4. W.W. Lin, M.W. Mak, and J.T. Chien, “Fast Scoring for PLDA with Un-

certainty Propagation via I-vector Grouping”, Computer Speech and Language,

vol. 45, pp. 503–515, 2017.

Conference Papers

1. W.W. Lin, M.W. Mak and Y. Lu, ”Learning Mixture Representation for Deep

Speaker Embedding Using Attention”, Speaker Odyssey 2020.

xvi

2. W.W. Lin, M.W. Mak, N. Li, D. Su, D. Yu, “Multi-level Deep Neural Network

Adaptation for Speaker Verification using MMD and Consistency Regulariza-

tion”, ICASSP’20, Barcelona, May 2020.

3. W.W. Lin, M.W. Mak, Y.Z. Tu, and J.T. Chien, “Semi-supervised Nuisance-

Attribute Networks for Domain Adaptation”, ICASSP’19, Brighton, May, 2019,

pp. 6236–6240.

4. W.W. Lin, M.W. Mak, L.X. Li, and J.T. Chien, “Reducing Domain Mismatch

by Maximum Mean Discrepancy Based Autoencoders”, Speaker Odyssey 2018,

June 2018, Les Sables d’Olonne, France, pp. 162–167.

xvii

1

Chapter 1

BACKGROUND

1.1 Speaker Recognition

Speaker recognition refers to recognizing a person using his/her voice. Due to both

physical differences and style of speaking, speech is a unique biometric trait. Speaker

recognition is widely used in commercial products such as Apple Homepod, Amazon

Echo, and Nuance Gatekeeper.

A major application of speaker recognition is identity authentication. For exam-

ple, in countries with a high elderly population, the identities of pensioners must be

verified before any pension transactions can be proceeded. However, elderly people

are unlikely to travel to the banks often, which makes identity authentication diffi-

cult. With speaker recognition technology, a simple telephone call can identify the

claimer’s identity. Another important application of speaker recognition is speaker

diarization, also knowns as “who spoken when”, where the objective is to extract the

participant’s identity and speech from TV broadcasts or teleconference meetings.

Figure 1.1 shows the pipeline of a typical speaker verification system.

• Feature extraction: The raw speech signal is not amenable to machine learn-

ing algorithms. Normally, time-domain signals are converted to spectra. Then,

filter-bank features or Mel-frequency cepstral coefficients (MFCCs) are com-

puted from the spectra.

• Speaker embedding network: A speaker embedding network takes MFCCs or

2

filter-bank features as input and produces a compact vector representation of

the speaker information in the speech. The network is trained with speaker

labels to minimize the cross-entropy loss.

• Backend probabilistic linear discriminant analysis (PLDA) model: Although

DNN speaker embeddings are already speaker discriminative, researchers found

that the embeddings can be further improved by using a probabilistic linear dis-

criminant analysis (PLDA) model at the backend. The PLDA model is trained

using the speaker embeddings extracted from full-length utterances and the

corresponding speaker labels.

• PLDA scoring: Given the embeddings of two utterances, the PLDA model

outputs a PLDA score, which is a likelihood radio between the hypothesis that

the two utterances (embeddings) are from the same speaker and that the two

utterances are from different speakers.

1.2 Evaluation Metrics for Speaker Verification

The main evaluation metrics used in this thesis are equal error rate (EER) and min-

imum detection cost function (minDCF).

• Equal error rate (EER): EER refers to the point where the false rejection rate

(FRR) and the false acceptance rate (FAR) are equal, where FRR and FAR are

defined as

FRR =
No. of true-speakers rejected

Total no. of true-speaker trials
(1.1)

FAR =
No. of impostors accepted

Total no. of impostor attempts
. (1.2)

• Minimum detection cost function (minDCF): minDCF refers to the minimum

3

Figure 1.1: A typical speaker verification system training and test pipeline.

detection cost for a weighted sum of the false acceptance rate and the false

rejection rate. Typically, the false acceptance rate has a higher weight.

1.3 Key Issues in Speaker Recognition

The i-vector/PLDA framework (see Chapter 2) had dominated the field of speaker

verification (SV) for many years. Recently, deep neural network (DNN) based meth-

ods have shown remarkable results [2]. However, many important problems remain

unsolved.

• Domain Adaptation: The success of machine learning relies on the assumption

that training data and test data are sampled from the same distribution [3, 4].

In practice, a lot of factors can undermine this assumption. This is especially

4

the case when we want to deploy an existing system to a new environment,

where the data have different properties than the training data. For speaker

verification, this could happen when the new environment has some specific

noise and channel conditions or involves speakers speaking different languages

than the training speakers. Directly using the existing system in these situations

could result in poor performance.

• End-to-end SV: State-of-the-art SV requires training a PLDA backend to achieve

excellent performance. An end-to-end approach using an integrated neural net-

work is more attractive in several aspects. Firstly, hyperparameter optimization

is easier in an end-to-end system. In an x-vector system, the DNN and the back-

end are optimized separately, which complicates the hyperparameter search as

validation has to be done for the network and backend separately. Secondly,

although training the backend itself is fairly fast when compared with training

the network, the extraction process can be time-consuming. Besides, it is not

clear which part of the dataset should be used for backend training. Thirdly,

an end-to-end system is easier to deploy and debug.

• Aggregation of Frame-level Information: The process of converting an acoustic

sequence to a fixed-dimensional representation is referred to as statistics pooling

in the literature [5]. It has been shown that the statistics pooling layer has a

significant impact on speaker embeddings’ performance. In [5], it was shown

that using both the mean and standard deviation of frame-level features has

significant improvement over using the mean alone. Although attentive statis-

tics pooling shows promising results [6], we believe that weighting frame-level

features is not enough to produce ideal speaker representation. The statistics

pooling layer needs to produce a good statistical summary of the frame-level fea-

tures. However, means and standard deviations are insufficient for summarizing

a complex distribution.

5

1.4 Key Contributions

This thesis proposes several solutions to the aforementioned problems:

• MMD-based Domain Adaptation. MMD (maximum mean discrepancy [7]) is a

popular measure for quantifying the distance between two probabilisty distribu-

tions. This thesis proposes using an MMD-based autoencoder to adapt i-vectors

and a powerful MMD-based framework for adapting deep speaker embeddings.

• Strategies Empowering end-to-end SV. This thesis proposes several strategies

to modify the x-vector system, making end-to-end SV possible. The strategies

include: (1) applying a sampling scheme to produce diverse training samples

by randomly splicing several speech segments from the original utterances, (2)

adding extra convolutional layers designed to reduce the temporal resolution so

as to save computational cost, and (3) introducing a mask-pooling layer that

augments the utterance-level representation in the speaker embedding network

by randomly masking the frames-level activations before statistics pooling.

• Mixture Representation Pooling. This thesis proposes a novel statistics pooling

method that can produce more descriptive statistics through a mixture rep-

resentation. The method is inspired by the expectation-maximization (EM)

algorithm in Gaussian mixture models (GMMs). However, unlike the GMMs,

the mixture assignments are given by an attention mechanism instead of the

Euclidean distances between frame-level features and explicit centers.

6

Chapter 2

THE CLASSIC I-VECTOR/PLDA FRAMEWORK

2.1 I-vector

A milestone in the speaker recognition research is the discovery that speaker informa-

tion within an utterance of arbitrary duration can be represented by a low dimension

vector called i-vector [8]. Different from joint factor analysis, the i-vector framework

does not attempt to suppress channel variation. Rather, it views all utterances as

if they come from different speakers and maps them from the supervector space to

a total variability space. Because each utterance is represented by a single point in

the i-vector space, we can suppress unwanted variability by classical statistic methods

such as LDA or its probabilistic counterpart PLDA.

2.1.1 Generative Model

I-vector [8] is based on the following factor analysis model:

β = m + Tη η ∼ N (0, I), (2.1)

where β is a speaker-dependent GMM-supervector, m is formed by stacking the mean

vectors of a Universal Background Model (UBM), η is a total-variability factor that

has a standard normal prior distribution, and T is a low-rank total variability matrix

mapping η from the total variability space to the supervector space. The i-vector is

the maximum-a-posteriori (MAP) estimate of η, which we denote as ω.

7

2.1.2 I-vector Extraction

Let the D-dimensional acoustic vectors of an utterance be

O = {o1, . . . ,oT},

where T is the number of frames in the utterance. Acoustic feature vectors are usually

modeled by a mixture of Gaussian densities. Assuming that a UBM with C mixtures

is given, the mixture weights, mean vectors, and covariance matrices are denoted as λc,

mc, and Σc, respectively, where c = 1, . . . , C. An R× 1 vector η and a D×R matrix

Tc are introduced to account for the inter-utterance difference in the c-th mixture. If

the alignments of {ot}Tt=1 with C mixture components are explicitly stated, then the

log-likelihood of an utterance can be written as:

L(O) =
∑
c

(
nc ln

1

(2π)D/2|Σc|1/2
− 1

2

∑
t∈Tc

(ot −Tcη −mc)
TΣ−1

c (ot −Tcη −mc)

)
,

(2.2)

where Tc contains the indexes of the frames that are aligned to mixture c and nc is the

size of Tc. Because the alignments are usually not given, their probabilistic estimates

are used instead. Let Ct denotes which of the c mixtures is responsible for generating

ot. By making use of the Bayes rule, we have the posterior probability of mixture

components c given ot

Pr(Ct = c|ot) =
λcN (ot; mc,Σc)∑C
c=1 λcN (ot; mc,Σc)

, c = 1, . . . , C. (2.3)

8

We denote this probability as γt(c) in the following for simplicity. Now the log-

likelihood can be rewritten as

L(O) =
∑
c

(∑
t∈Tc

γt(c) ln
1

(2π)D/2|Σc|1/2

− 1

2

∑
t∈Tc

γt(c)[ot −Tcη −mc]
TΣ−1

c [ot −Tcη −mc]

)
. (2.4)

In order to estimate the i-vector, we need to compute the sufficient statistics:

Nc =
T∑
t=1

γt(c) (2.5a)

F̃c =
T∑
t=1

γt(c)(ot −mc). (2.5b)

The posterior covariance and posterior mean associated with the utterance is given

by:

Cov(η,η|O) = L−1, (2.6)

and

ω = L−1
∑
c

TT
c Σc

−1F̃c, (2.7)

respectively, where

L = I +
∑
c

TT
c Σ−1

c NcTc (2.8)

is a precision matrix [9] and I is the identity matrix. Eq. 2.7 and Eq. 2.8 can be

written in a more compact form

ω = L−1TT(Σ(b))−1F̃ (2.9)

L = I + TT(Σ(b))−1NT, (2.10)

9

where N is a CD×CD diagonal matrix with diagonal blocks NcI, and F̃ is CD× 1

supervector formed by stacking F̃c, c = 1, . . . , C. Σ(b) is composed of the covariance

matrices of the UBM, i.e., Σ(b) = diag{Σ(b)
1 , . . . ,Σ

(b)
C }, which represents the variability

missed by the CD ×R total variability matrix T.

2.1.3 I-vector Pre-processing

PLDA assumes that i-vectors follow a Gaussian distribution. Therefore, proper pre-

processing of i-vectors is needed before PLDA modeling. Garcia-Romero and Espy-

Wilson [10] proposed to apply length normalization to gaussianize i-vectors, which

has proved to be very effective in practice. An alternative way is to assume that

i-vectors follow a non-Gaussian distribute. However, the computation of the model is

more expensive [11].

The Gaussianization process includes two steps. In the first step, i-vectors are

subjected to whitening. It can be written as:

ωwhiten = AT(ω − ω̄), (2.11)

where ω̄ is the mean of the training i-vectors, ωwhiten is the whitened i-vector and A

is a transformation matrix, which is computed by applying Cholesky decomposition

of the within-class covariance matrix of the training i-vectors. The second step of

Gaussianization involves applying length normalization to the whitened i-vectors:

ωl-norm =
ωwhiten

‖ωwhiten‖
. (2.12)

It was found that this simple non-linear transformation can significantly reduces the

mismatch between the i-vectors in the training set and the test set [10].

The next step of pre-processing is session-variability compensation. This is done by

applying linear discriminant analysis (LDA) to the length-normalized i-vectors. LDA

10

Gaussianization

Whitening

Length-‐
normalization

Session-‐variability	
Compensation

LDA

WCCN

PLDA

Figure 2.1: Pre-processing steps of i-vector/PLDA systems

finds a subspace that maximizes the between-class scatter while minimizes the within-

class scatter [12]. Because LDA assumes that data follow a Gaussian distribution, it

is necessary to apply Gaussianization to the i-vectors first. Let i be the speaker label

and j indexes the session of a speaker. The between-class covariance matrix Sb and

the within-class covariance matrix Sw are defined as:

Sb =
1

I

∑
i

(ω̄l-norm
i − ω̄l-norm)(ω̄l-norm

i − ω̄l-norm)T (2.13)

Sw =
1

I

∑
i

∑
j

1

Ni

(ωl-norm
i,j − ω̄l-norm

i)(ωl-norm
i,j − ω̄l-norm

i)T, (2.14)

where ω̄l-norm
i is the mean of length-normalized i-vectors of speaker i, ω̄l-norm is the

mean of all length-normalized i-vectors in the training set. The LDA projection is

11

found by solving the eigen-decomposition problem:

Sbv = λSwv. (2.15)

The number of eigenvectors that we chose to compose the LDA projection matrix

corresponds to the dimension of the LDA subspace. After LDA projection, we apply

within-class covariance normalization (WCCN) [13]. The WCCN seeks to attenu-

ate the high within-class variance in the LDA-projected vectors. We combine this

sequence of projections and denote the resulting projection matrix as P. Then the

i-vector after the third step of pre-processing can be written as:

x = Pωl-norm. (2.16)

For simplicity in notation, we denote x as the i-vector after pre-processing in this

thesis. We refer the Gaussianization and session-variability compensation together to

as pre-processing.

2.2 PLDA Modeling

Because i-vectors contain both speaker and channel information, channel compensa-

tion in i-vector space is needed. Probabilistic linear discriminant analysis (PLDA)

is one of such techniques. A PLDA model [14] is a generative model that uses low-

dimensional latent variables to explain the observed i-vectors. Given an utterance of

speaker i in session j, the PLDA model explains the variability of the corresponding

i-vector xi,j through the speaker factor hi, channel factor zi,j, and residue εi,j

xi,j = µ+ Vhi + Uzi,j + εi,j εi,j ∼ N (0,Σ), (2.17)

12

where µ is the global offset and the column vectors of V define the bases of the

speaker subspace. The column vectors of U define the bases of the channel subspace.

The prior of both h and z are assumed to follow a standard normal distribution,

and ε is assumed to follow a Gaussian distribution with zero mean and diagonal

covariance matrix Σ. The matrix (VVT) models between-speaker variability. The

channel component Uzi,j + εi,j models session variability. It changes from utterance

to utterance. In practice, i-vectors are typically of low dimension. Therefore, we

may assume that the covariance of channel (UUT) can be absorbed by the residual

covariance Σ if the latter is a full covariance matrix. The modified model is

xi,j = µ+ Vhi + εi,j εi,j ∼ N (0,Σ). (2.18)

The parameters θ = {µ,V,Σ} of the model can be learnt via the EM algorithm over

large amount of i-vectors.

Authentication is achieved by computing the ratio of two likelihoods, which is the

likelihood of a test utterance and a target utterance generated by the same latent

variable against the likelihood of the two utterances independently generated by two

different latent variables. Given a test i-vector xt and a target-speaker’s i-vector xs,

the log-likelihood ratio score is [10]

logSLR(xs,xt) =
1

2
xT
s Qxs + xT

s Pxt +
1

2
xT
t Qxt + const, (2.19)

where

Q = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1 (2.20)

P = Σ−1
totΣac(Σtot −ΣacΣ

−1
totΣac)

−1, (2.21)

13

where

Σac = VVT (2.22)

Σtot = VVT + Σ. (2.23)

Note that Q and P in Eq. 2.19 can be pre-computed before verification.

2.3 Coupling between I-Vector Extraction and PLDA Modeling

In the standard PLDA/I-vector framework, an utterance of arbitrary duration is

mapped to an i-vector of fixed dimension. Then, in PLDA modeling, we ignore

how i-vectors are extracted and pretend that they are generated by a PLDA model.

This decoupling between i-vector extraction and PLDA modeling enables very fast

authentication and performs very well when the durations of speech segments are

long enough. However, the performance of this approach degrades severely when

utterances are short. This is not surprising, because i-vectors are essentially a point

estimate calculated by evaluating the posterior expectation of latent variables using

Baum-Welch statistics extracted from the utterances. When the utterances are short,

there is a huge amount of uncertainty associated with such estimates. In other words,

the point estimates are no longer accurate and adequate for representing the speaker

information incorporated in speech segments.

Kenny et al. [15] proposed using both posterior expectations and posterior covari-

ance matrices to represent the speaker information in speech segments when utter-

ances are very short. The posterior covariance matrices of the latent variable can

be interpreted as the reliability of i-vectors estimates. We can also see from Eq. 2.8

that the shorter the utterance is, the larger this covariance matrix would be. To

incorporate the uncertainty of i-vectors, the PLDA model is written as:

xi,j = µ+ Vhi + Ui,jzi,j + εi,j, (2.24)

14

where Ui,j is the Cholesky decomposition of the posterior covariance matrix of the

corresponding i-vector and zi,j is a hidden variable assumed to have a standard Gaus-

sian prior. Ui,jzi,j quantifies the deviation of the i-vector from its point estimate

due to the uncertainty of the i-vector. When linear transformation P is used for

pre-processing, we have:

UUT = cov(Pη,Pη|O) = PL−1PT, (2.25)

where L is the posterior precision matrix in Eq. 2.8 and O is the set of acoustic

vectors in the utterance. But if length-normalization is applied to the i-vectors,

Eq. 2.25 cannot be applied. This is because length-normalization is not a linear

transformation. As a result, the pre-processing step cannot be represented by a single

transformation matrix P. Nevertheless, Kenny et al. [15] suggested the following

method to approximate U:

U← U

‖ωwhiten‖
. (2.26)

2.4 EM Formulations for PLDA with Uncertainty Propagation

The expectation maximization (EM) algorithm is a general purpose algorithm for

finding the maximum-likelihood solution of a generative model that involves latent

variables. The EM algorithm defines a lower bound of the true likelihood. It al-

ternately maximizes the lower-bound by updating the model parameters and the

posterior distribution of latent variables [12].

Assuming that we have a set of pre-processed [10] i-vectors X = {xi,j; i = 1, . . . , I; j =

1, . . . , Hi}, Eq. 2.24 can be written as [16]

xi,j = µ+ [V Ui,j]

 hi

zi,j

+ εi,j = µ+ Bi,jβi,j + εi,j, (2.27)

15

where Bi,j = [V Ui,j] and βi,j = [hT
i zT

i,j]
T. The model parameters θ = {µ,V,Σ} are

estimated via the EM algorithm and matrix Ui,j can be estimated from the posterior

covariance matrix of the i-vector xi,j using Eq. 2.26.

2.4.1 E-Step

In the E-step, we want to compute the posterior distribution of latent variables hi

and zi,j. The posterior distribution of latent variable hi can be written as [17]:

p(hi|xi,j,θ) ∝ p(xi,j|hi,θ)p(hi)

=

∫
p(xi,j, zi,j|hi,θ)p(hi)dzi,j

=

∫
p(xi,j|hi, zi,j,θ)p(zi,j)p(hi)dzi,j

=

∫
N (xi,j|µ+ Vhi + Ui,jzi,j,Σ)N (zi,j|0, I)N (hi|0, I)dzi,j

= N (xi,j|µ+ Vhi,Φi,j)N (hi|0, I)

∝ exp

{
hT
i VTΦ−1

i,j (xi,j − µ)− 1

2
hT
i (I + VTΦ−1

i,j V)hi

}
, (2.28)

where Φi,j = Ui,jU
T
i,j +Σ. Assume that each training speaker provides one utterance

(i.e. one i-vector only). Then, comparing Eq. 2.28 with a standard Gaussian [14]

leads to

〈hi|xi,j〉 =
(
I + VTΦ−1

ij V
)−1

VTΦ−1
ij (xi,j − µ)〈

hih
T
i |xi,j

〉
=
(
I + VTΦ−1

ij V
)−1

+ 〈hi|xi,j〉〈hi|xi,j〉T.
(2.29)

If speaker s has multiple i-vectors, the posterior expectations can be written as:

〈hi|x̃i,•〉 =
(
I +

∑Hi

j=1
VTΦ−1

i,j V
)−1

VT
∑Hi

j=1
Φ−1
i,j (xi,j − µ)〈

hih
T
i |x̃i,•

〉
=
(
I +

∑Hi

j=1
VTΦ−1

i,j V
)−1

+ 〈hi|x̃i,•〉〈hi|x̃i,•〉T,
(2.30)

16

where x̃i,• represents a set of i-vectors from speaker i.

The posterior probability of latent variable zi,j can be written as:

p(zi,j|xi,j,θ) ∝ p(xi,j|zi,j,θ)p(zi,j)

=

∫
p(xi,j,hi|zi,j,θ)p(zi,j)dhi

=

∫
p(xi,j|hi, zi,j,θ)p(zi,j)p(hi)dhi

=

∫
N (xi,j|µ+ Vhi + Ui,jzi,j,Σ)N (zi,j|0, I)N (hi|0, I)dhi

= N (xi,j|µ+ Ui,jzi,j,Ψ)N (zi,j|0, I)

∝ exp

{
zT
i,jU

T
i,jΨ

−1(xi,j − µ)− 1

2
zT
i,j(I + UT

i,jΨ
−1Ui,j)zi,j

}
, (2.31)

where Ψ = VVT + Σ. Comparing this posterior density with a standard Gaussian,

we have

〈zi,j|xi,j〉 =
(
I + UT

i,jΨ
−1Ui,j

)−1
UT
i,jΨ

−1(xi,j − µ)〈
zi,jz

T
i,j|xi,j

〉
=
(
I + UT

i,jΨ
−1Ui,j

)−1
+ 〈zi,j|xi,j〉〈zi,j|xi,j〉T.

(2.32)

2.4.2 M-Step

In the M-step, we maximize the lower bound of the likelihood [17] given the posterior

expectation of the latent variables hi and zi,j that we have estimated in the E-step:

B(θ) = EH,Z
{∑

i,j
lnN

(
xi,j
∣∣µ+ Vhi + Ui,jzi,j,Σ

)
N (hi|0, I)N (zi,j|0, I)

∣∣∣∣X ,θ}
= −1

2

∑
i,j

EH,Z
{

log |Σ|+ (xi,j − µ−Vhi −Ui,jzi,j)
T Σ−1

× (xi,j − µ−Vhi −Ui,jzi,j) + hT
i hi + zT

i,jzi,j
∣∣X ,θ} ,

(2.33)

where H = {hi; i = 1, . . . , I} and Z = {zi,j; i = 1, . . . , I; j = 1, . . . , Hi}. Differenti-

ating Eq. 2.33 with respect to V and Σ and set the resulting derivatives to zero, we

17

obtain

V =
[∑

i,j
(xi,j − µ−Ui,j〈zi,j|xi,j〉) 〈hi|x̃i,•〉T

] [∑
i,j
〈hihT

i |x̃i,•〉
]−1

(2.34)

Σ =
1∑
iHi

{∑
i,j

[
(xi,j − µ)(xi,j − µ)T − (V〈hi|x̃i,•〉+ Ui,j〈zi,j|xi,j〉) (xi,j − µ)T

]}
.

(2.35)

2.5 PLDA Scoring with UP

Given a test i-vector xt and target-speaker’s i-vector xs, the log likelihood-ratio score

is:

logSLR(xs,xt) = log

[
p(xs,xt|same-speaker)

p(xs,xt|different-speakers)

]
= log

[∫
p(xs,xt,η|θ)dη∫

p(xs,ηs|θ)dηs
∫
p(xt,ηt|θ)dηt

]
= log

[∫
p(xs,xt|η,θ)p(η)dη∫

p(xs|ηs,θ)p(ηs)dηs
∫
p(xt|ηt,θ)p(ηt)dηt

]

= logN

xs

xt

 ;

µ
µ

 ,
Σs Σac

Σac Σt

− logN

xs

xt

 ;

µ
µ

 ,
Σs 0

0 Σt

 . (2.36)

The global mean vector of all i-vectors is usually removed from i-vectors to save

computation. Σs, Σt, and Σac are respectively defined by:

Σs = VVT + UsU
T
s + Σ, (2.37)

Σt = VVT + UtU
T
t + Σ, (2.38)

18

and

Σac = VVT. (2.39)

The log likelihood-ratio is:1

logSLR(xs,xt) = −1

2

xs

xt

T Σs Σac

Σac Σt

−1 xs

xt

+
1

2

xs

xt

T Σs 0

0 Σt

−1 xs

xt

− 1

2
log

∣∣∣∣∣∣Σs Σac

Σac Σt

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σs 0

0 Σt

∣∣∣∣∣∣
= −1

2

xs

xt

T (Σs −ΣacΣ
−1
t Σac)

−1 −Σ−1
s Σac(Σt −ΣacΣ

−1
s Σac)

−1

−(Σt −ΣacΣ
−1
s Σac)

−1ΣacΣ
−1
s (Σt −ΣacΣ

−1
s Σac)

−1

xs

xt

+

1

2

xs

xt

T Σ−1
s 0

0 Σ−1
t

xs

xt

− 1

2
log

∣∣∣∣∣∣Σs Σac

Σac Σt

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σs 0

0 Σt

∣∣∣∣∣∣
=

1

2

xs

xt

T Σ−1
s − (Σs −ΣacΣ

−1
t Σac)

−1 Σ−1
s Σac(Σt −ΣacΣ

−1
s Σac)

−1

(Σt −ΣacΣ
−1
s Σac)

−1ΣacΣ
−1
s Σ−1

t − (Σt −ΣacΣ
−1
s Σac)

−1

xs

xt

− 1

2
log

∣∣∣∣∣∣Σs Σac

Σac Σt

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σs 0

0 Σt

∣∣∣∣∣∣
=

1

2

[
xT
s xT

t

]As,t Bs,t

Bs,t Cs,t

xs

xt

+Ds,t

=
1

2

[
xT
s As,txs + xT

s Bs,txt + xT
t Bs,txs + xT

t Cs,txt
]

+Ds,t

=
1

2

[
xT
s As,txs + 2xT

s Bs,txt + xT
t Cs,txt

]
+Ds,t (2.40)

1To simplify notation, we assume that the i-vectors have been subjected to mean removal.

19

where

As,t = Σ−1
s − (Σs −ΣacΣ

−1
t Σac)

−1 (2.41a)

Bs,t = Σ−1
s Σac(Σt −ΣacΣ

−1
s Σac)

−1 (2.41b)

Cs,t = Σ−1
t − (Σt −ΣacΣ

−1
s Σac)

−1 (2.41c)

Ds,t = −1

2
log

∣∣∣∣∣∣Σs Σac

Σac Σt

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σs 0

0 Σt

∣∣∣∣∣∣ . (2.41d)

20

Chapter 3

DEEP NEURAL NETWORKS FOR SPEAKER

EMBEDDING

This chapter introduces the deep neural network architectures that were used in

this work. Unlike, regular regression and classification tasks, speaker verification sys-

tems are typically composed of a deep neural network (DNN) for extracting speaker-

dependent vectors and a backend classifier for decision making. The backend typically

is a PLDA model or cosine scoring. The feature vectors from the DNN are referring

to as embeddings in the literature.

The early successes in DNN-based SV include the d-vector [18] and the triplet

network [19]. In [18], the authors proposed using a fully-connected network to process

contextual filter-bank features. The averaged activations at the last layer were used for

cosine-distance scoring. An advanced DNN architecture for SV was proposed in [19],

where a network comprising several inception blocks was trained by minimizing the

triplet loss. The most successful DNN-based SV is the x-vector network proposed

in [5]. The x-vector network consists of time-delay neural networks (TDNNs) followed

by a statistics pooling layer and fully-connection layers. The x-vector network is also

the first to include standard deviations in statistics pooling. More recently, ResNets

and DenseNets have been successfully applied to SV [20, 21]. The ResNets in [20]

consist of 2D convolutional layers instead of 1D TDNNs as in x-vector networks.

Compared with the x-vector variants, the ResNets are more compact. However, the

inference time of ResNets is significantly longer than that of x-vector networks.

21

3.1 X-vector Network

The x-vector network consists of three parts: Frame-level time-delay neural networks

(TDNNs), utterance-level fully-connected (FC) layers, and a statistics pooling layer

[5, 22]. A TDNN is a special form of convolutional neural networks (CNNs). It skips

the computation at chosen temporal positions while maintaining the same receptive

field size as a CNN. A statistics pooling layer concatenates the mean and standard

deviation of the activations from the last convolutional layer. The concatenated mean

and standard deviation are passed to two FC layers. The network is trained to

minimize the standard cross-entropy loss using small chunks of acoustic sequences

derived from the clean and augmented utterances. Typical chunk length for training

an x-vector network ranges from 200 ms to 400 ms.

After the network is trained, the embedding of each utterance is extracted from

the first affine layer after the statistics pooling layer. A backend consisting of LDA

and PLDA models is trained using the embeddings as input [14]. Although the

network is trained to minimize classification error, the ultimate goal is to produce

embeddings that perform well for the speakers that do not appear in the training set.

As the speaker information should not be limited to individual frames, the embeddings

should be extracted anywhere after statistics pooling. The pre-softmax affine layer

is too cumbersome to work with due to its large size. The best choice is usually

the last affine layer. However, it was found that the embeddings extracted from the

penultimate layer perform better than the ones extracted from the last layer in both

SRE16 and SRE18. It could be that both SRE16 and SRE18 have severe domain

mismatch between training and test data.

This thesis also used a wide x-vector network in which the number of channel per

layer is increased. Table 3.1 shows the architectures of the x-vector network and a

larger x-vector network used in this thesis. The number of floating-point operations

and model sizes of the x-vector networks are presented in Table 3.3.

22

3.2 Residual Networks

Residual networks were proposed in [23] to solve the gradient vanishing problem in

deep neural networks. Deep neural networks are difficult to train with standard

gradient descent. In a network with over a hundred layers, the bottom layers (layers

closed to the input) can only receive a very weak gradient signal, which makes training

difficult. The authors in [23] found that compared with their shallow counterparts,

deeper neural networks are more prone to under-fitting instead of overfitting. They

argued that a deeper neural network should be at least as powerful as the shallow one

if optimization is successful. They introduce a skip connection unit to help training

very deep networks.

Let x be the input to a few stacked layers and y be the output of the stacked

layers. In conventional neural networks, the goal of learning is to learn an input-to-

output mapping that minimizes a loss function. In a residual network, however, skip

connections are introduced so that the residual unit learns the difference between the

input and output. The output of a residual block is:

y = F (x) + x, (3.1)

where F (x) is the mapping shown in Fig. 3.1. The author in [23] found that it is

easier to learn the residue than the direct mapping from x to y. Fig. 3.1 illustrates a

residual block in a ResNet.

3.3 DenseNets

DenseNets were proposed in [24] for computer vision. A Densenet comprises two types

of blocks, namely, dense block and transition block. In a dense block, each layer is

connected by the outputs from all of the previous layers. To prevent the number of

feature maps from growing excessively, a transition block is introduced to reduce the

23

Convolutional Layer

Convolutional Layer

x

x

F(x)+x
relu

reluF(x)

Figure 3.1: A residual block in a ResNet.

feature map size. Suppose each convolutional layer produces k feature maps, then the

l-th layer inside the block has k0 + k × (l − 1) feature maps, where k0 is the number

of feature maps in the input layer. The parameter k is referred to as the growth rate.

In this thesis, we used a dense network composed of 1-dimensional convolution

layers. We used the same statistics pooling layer as that of the x-vector network. Be-

cause max-pooling and average pooling do not work well in speaker recognition, we

replaced the max-pooling layers by stride-2 convolution layers. Table 3.2 shows our

network architectures. Table 3.3 summarizes the number of parameters and the num-

ber of floating-point operations in a forward pass for our Densenet80 and Densenet121

for an input size of 23× 400.

3.4 Additive Margin Softmax

Margin-based loss has been very successful in face recognition [25] and speaker recog-

nition [26]. Additive margin loss enforces a minimum margin m between the target

24

class and non-target classes:

LAMS = − 1

n

n∑
i=1

log
es·(cos θyi−m)

es·(cos θyi−m) +
∑c

j=1,j 6=yi e
s·cos θj

= − 1

n

n∑
i=1

log
es·(W

T
yi
xi−m)

es·(W
T
yi
xi−m) +

∑c
j=1,j 6=yi e

sWT
j xi

,

(3.2)

where W is a weight matrix (Wj is the j-th column of W) and x is an embedding

vector, both of which are normalized to have unit length. s is a scaling constant.

25

Table 3.1: Summary of our neural network architectures. The kernel is specified as
kernel size, stride, and dilation.

X-vector network

Layer Kernel Channel in × Channel out

Conv1 5,1,1 MFCC DIM × 512

Conv2 3,1,2 512 × 512

Conv3 3,1,3 512 × 512

Conv4 1,1,1 512 × 512

Conv5 1,1,1 512 × 1536

Statistics pooling 1536 × 3072

FC6 – 3072 × 512

FC7 – 512 × 512

AM-softmax – 512 × N

Wide x-vector network

Layer Kernel Channel in × Channel out

Conv1 5,1,1 MFCC DIM × 1024

Conv2 3,1,2 1024 × 1024

Conv3 3,1,3 1024 × 1024

Conv4 1,1,1 1024 × 1024

Conv5 1,1,1 1024 × 2000

Statistics pooling 2000 × 4000

FC6 – 4000 × 512

FC7 – 512 × 512

AM-softmax – 512 × N

26

Table 3.2: Densenet architectures for speaker embedding. The growth rate for the
networks is 40. Note that each “conv” layer shown in the table corresponds to the
sequence BN-ReLU-Conv. ”conv 3” denotes 1-D convolution with kernel size 3.

Layers Densenet-80 Densenet-121

Convolution conv 3 conv 3

Dense Block (1)

[
conv 1

conv 3

]
× 6

[
conv 1

conv 3

]
× 6

Transition Layer (1) conv 2 stride 2 conv 2 stride 2

Dense Block (2)

[
conv 1

conv 3

]
× 10

[
conv 1

conv 3

]
× 12

Transition Layer (2) conv 2 stride 2 conv 2 stride 2

Dense Block (3)

[
conv 1

conv 3

]
× 14

[
conv 1

conv 3

]
× 24

Transition Layer (3) conv 2 stride 2 conv 2 stride 2

Dense Block (4)

[
conv 1

conv 3

]
× 10

[
conv 1

conv 3

]
× 16

Stats-pooling Layer - -

FC1 492× 512 Linear 2560× 512 Linear

FC2 512× 256 Linear 512× 256 Linear

Classification Layer 256×# of classes AM-Softmax 256×# of classes AM-Softmax

Table 3.3: Summary of the number of parameters and the number of floating-point
operations in a forward pass for our Densenet121, the x-vector network and the wide
x-vector network for an input size of 23× 400.

Model # of flops # of parameters

X-vector network 1000.043M 4.276M

Wide x-vector network 3000.705M 11.639M

Densenet80 572.172M 5.256M

Densenet121 958.143M 10.334M

27

Chapter 4

DOMAIN ADAPTATION FOR SPEAKER RECOGNITION

4.1 Domain Adaptation as a Robust Speaker Verification Problem

A fundamental assumption of machine learning is that training and test data are

sampled from the same distribution. However, a lot of factors can invalidate this

assumption. For speaker verification, this could happen when the new environment

has some specific noise and channel conditions or involves speakers speaking different

languages than the training speakers. We want the speaker verification systems to be

robust to these factors, which can be achieved through domain adaptation.

4.2 Domain Mismatch in Speaker Recognition

Using i-vector as an unsupervised feature extraction method and PLDA as a super-

vised channel compensation technique have been very successful in speaker verifica-

tion [8,14]. However, like many machine learning algorithms, i-vector/PLDA assumes

that the training data and test data are independently sampled from the same distri-

bution. When training data and test data have a severe mismatch, the performance

degrades rapidly [27–32]. The mismatch between training data and test data is not

uncommon, as it can be caused by a lot of factors such as languages, channels, noises,

and genders. Collecting more data to retrain the system is time-consuming and

computationally-expensive. Such a solution is unrealistic in some scenarios. It is de-

sirable to use the existing data and a small amount of target-specific data to modify

the system to meet the need, which is essentially what domain adaptation (DA) does.

To highlight the problems caused by domain mismatch in real-world scenarios, we

28

use the gender and language mismatch in NIST 2016 speaker recognition (SRE16) as

an example. SRE16 introduces various new challenges to speaker recognition [33,34],

among which the multilingual setup brought the most attention. Unlike the previous

SREs, both development (Dev) and evaluation (Eval) data in SRE16 comprise utter-

ances spoken in non-English languages. Table 4.1 shows the composition of SRE16

data. Because all of the SRE16 data are non-English, training using data from the

previous SREs results in poor performance. Training using only SRE16 development

data is also not feasible, as there are only 2,472 segments in total and a very small

number of them are labeled. Besides, the labeled development data are of different

languages than the evaluation data.

Table 4.1: The composition of SRE16 data. “Labeled” means speaker labels are
provided. “unLabeled” means speaker labels are not provided.

Dataset Category Language

Dev Unlabelled Cantonese and Tagalog

Dev Unlabelled Mandarin and Cebuano

Dev Labelled Mandarin and Cebuano

Eval Enrollment Cantonese and Tagalog

Eval Test Cantonese and Tagalog

Fig. 4.3(a) shows the t-distributed stochastic neighbor embedding (t-SNE) [35] of

i-vectors from SRE16 development data and the previous SRE data. In the figure,

datasets are colored according to speakers’ genders and languages. The gender- and

language-dependent clusters are clearly visible in this 2-dimensional embedded space.

Also, the multi-source mismatch occurs not only between the English data (ENG F

and ENG M) and SRE16 data but also within SRE16 data (CAN F, CAN M, TGL F,

and TGL M).

To compare the closeness between different language- and gender-clusters in the

29

original i-vector space, we computed the squared Euclidean distances between the

means of these clusters and normalized the pairwise distances by their maximum.

Fig. 4.3(b) shows these normalized distances. Apparently, some gender-language com-

binations (e.g., English-male) are more distinct from the others. To get a sense of

the degree of dispersion of these clusters, we may compare the maximum pairwise

distance (= 0.0021) with the trace of the total covariance matrix (= 0.0068). This

means that the maximum distance (occurs between CAN F and ENG M) is about

31% of the total variance, which is not a small value because if the i-vectors are

domain-independent, this value should be zero.

To compare the variances of these clusters, Fig. 4.3(c) shows the pairwise dif-

ferences between the covariance matrices of the i-vectors from the six language-

and gender-dependent groups. The differences are measured in terms of Frobenius

norm [36]. Again, the differences are normalized by the maximum difference. We can

see that the covariance matrices of these clusters are fairly different from each other.

In particular, even the minimum difference (ENG M–ENG F) is 55% of the maximum

difference (CAN M–TGL F). Interestingly, although CAN M and ENG F are closest

in terms of their means, the difference between their covariance matrix is the second

largest. Overall speaking, Fig. 4.3 shows that the i-vectors of these six groups differ

from each other not only by their means but also by their covariance matrices.

4.3 Domain Adaptation Methods

State-of-the-art SV systems are comprised of a deep neural network and a backend

model [5]. DA is typically carried out in the PLDA backend or directly during the

training of the speaker embedding network. We refer to adaptation in the PLDA

backend as backend domain adaptation and adaptation during the training of the

speaker embedding network as DNN adaptation. Figure 4.1 shows the processing

pipeline for adapting the PLDA backend.

30

Figure 4.1: Backend adaptation pipeline

4.3.1 Backend Domain Adaptation

Garcia-Romero and McCree [27] found that the mismatch between the out-of-domain

PLDA model and the in-domain test data contributes to most of the performance

degradation. Therefore, it is important to apply domain adaptation to reduce the

mismatch between in-domain and out-domain i-vectors before training the PLDA

model. Alternatively, a PLDA model trained on out-of-domain data can be adapted

to fit the in-domain data.

Earlier attempts in i-vector based DA require the in-domain data to have speaker

labels. For example, Garcia-Romero and McCree [27] computed the MAP-estimates

of the in-domain within-speaker and across-speaker covariance matrices in the i-vector

space using the speaker labels from the in-domain data. In [29], these matrices are

treated as latent variables and their joint posterior distribution is factorized using

variational Bayes so that MAP point estimates of the matrices can be computed from

the factorized distributions. The point estimates are then used for scoring in the target

environment. More recent approaches attempt to obviate the need for speaker labels.

For instance, Villalba and Lleida [37] extended their Bayesian adaptation in [29] by

treating the unknown speaker labels in the in-domain data as latent variables. Another

31

approach is to generate hypothesized speaker labels via unsupervised clustering [28,

38, 39]. Given the hypothesized labels, the covariance matrices of in-domain data

can be computed as usual and can be interpolated with the out-of-domain covariance

matrices to obtain an adapted PLDA model. Of course, correctly inferring all of the

missing labels is even harder than performing speaker verification. However, as is

shown in [28], even imperfect labels can achieve performance almost as good as the

correct labels. Still, cluster-based approaches require a lot of heuristics to set the

number of clusters.

It is also possible to carry out the unsupervised DA without inferring the missing

labels at all. Most of the methods in this category assume that there is a common

feature space in which in-domain and out-domain have a minimum mismatch. DA

aims to project data on such feature space and uses the projected data to train a

classifier. Fig 4.2 shows the process of i-vector based domain adaptation using the

common feature-space approach. As mismatch can be caused by multiple sources,

it is helpful to divide the training data into homogenous subsets according to their

sources before finding a common feature space. This is called multi-source domain

adaptation in the literature [40]. In addition to the robustness to heterogeneous

sources, this approach also has the potential to generalize to unseen domains, as

it does not assume a particular in-domain environment. Over the years, several

unsupervised DA techniques have been proposed to find a common feature space

that is less domain-dependent. These techniques include inter-dataset variability

compensation (IDVC) [30, 41, 42], source normalization (SN) [31] and discriminative

multi-domain PLDA [32]. IDVC divides the training data into several subsets, and

for each subset, the mean is computed. The means of these subsets are used to find

the directions of maximum inter-dataset variability; then the subspace corresponding

to these directions is removed from the i-vectors.

In [30], the author successfully used IDVC to reduce the mismatch between NIST

telephone data and switchboard data. In several NIST 2016 submissions [2, 43],

32

IDVC is also found to be very helpful in boosting system performance. Recently,

domain-adversarial training of neural networks has also been successfully applied to

unsupervised domain adaptation for speaker recognition [44]. In domain-adversarial

learning [45], a feature extraction network is trained to produce embedded features

that are indistinguishable to a domain classifier but are highly speaker discrimina-

tive to a speaker classifier. After training, the embedded features are believed to be

domain-invariant.

Specifically, IDVC follows the subspace removal approach proposed in [46]. It aims

to find the directions in the i-vector space with the largest inter-dataset variability

and remove the variability in these directions. This is achieved by projecting the

i-vectors x’s as follows:

x̂ = (I−WWT)x, (4.1)

where the columns of W span the subspace of unwanted variability. W comprises

the eigenvectors of the covariance matrix of the subset means. Recently, it has been

extended to reduce the inaccuracy of PLDA scores caused by domain mismatch [41].

Note that in IDVC the domain mismatch is defined by the covariances of the

subset means. However, the mismatch of datasets may not only manifest in the

dataset means but also in the higher-order statistics of these datasets. The limitation

of IDVC will become apparent when we consider some Gaussian distributions (one

for each dataset) with identical means but different covariance matrices. Despite the

severe mismatches among these Gaussians, IDVC considers these Gaussians to be

identical and will not remove any subspace (W in Eq. 4.1 is a null matrix) to reduce

the mismatches.

Another very popular DA method for the backend is correlation alignment (CORAL),

which essentially whitens the source-domain data and recolors them with a whitening

matrix estimated from the target-domain data [47]. In [48], the author proposed a

33

Algorithm 1 CORAL for Unsupervised Domain Adaptation
Input: Source Data DS , Target Data DT

Output: Adjusted Source Data D∗s
CS = cov(DS)
CT = cov(DT)

DS = DS ∗ C
−1
2
S

D∗S = DS ∗ C
1
2
T

hybrid method combining PLDA model adaptation and CORAL and showed that it

is superior to the individual methods. Specifically, CORAL aims to minimize the

distance between the second-order statistics (covariance) of the source features CS

and target features CT . When using speaker embeddings, CORAL has the advantage

of fast adaptation without re-training the whole network for a new domain. CORAL

aims to find a transformation matrix A that minimizes the distance:

∥∥A>CSA−CT

∥∥2

F
. (4.2)

Eq. 4.2 has a closed form solution. Algorithm 1 shows the pseudo-code of CORAL

[47]. In the case of PLDA adaptation, CORAL is typically preceded by shifting

the mean of the PLDA model by the mean of the in-domain data, i.e., centering.

In [49], the author proposed to combine a variational auto-encoder (VAE) [50] with

a domain adversarial neural network (DANN) for x-vectors domain adaptation. The

DANN [45] part aims to retain speaker identity information and learn a feature space

that is robust against domain mismatch, while the VAE part is to impose variational

regularization on the learned features so that they follow a Gaussian distribution.

In [51], the authors extended their variational DANN by incorporating an information

maximization criterion [52] into the objective function.

34

4.3.2 DNN Domain Adaptation

DNN adaptation is relatively new in SV. Because DNN provides a larger parameter

space to explore, it is potentially more powerful than backend adaptation methods.

Most of the DA methods aim to minimize the divergence between the source-domain

data and the target-domain data. In the context of speaker verification, this means

minimizing the discrepancy between the source-domain speaker embeddings and the

target-domain speaker embeddings. In [1], the authors proposed to use adversarial

learning to adapt the speaker embeddings. Specifically, Wasserstein GANs [53] were

used to minimize the discrepancy between the source-domain and the target-domain

speaker embeddings. The authors also explored using other information such as lan-

guage labels and phone numbers and found that they are beneficial. However, their

method requires speaker labels to perform well, which limits the method’s applicabil-

ity. In [54], several GAN variants were proposed. Both adaptation and verification

were carried out end-to-end. However, the performance of the system is not as good

as the x-vector system with PLDA adaptation in Kaldi.

35

I-vector	extraction

Test	MFCC

Project	into	common	
feature	space

Preprocessing

PLDA	scoring

Enrolment	
MFCC

Figure 4.2: A flow chart showing the process of i-vector based domain adaptation
using the common feature-space approach.

36

F
ig

u
re

4.
3:

(a
)

S
ca

tt
er

p
lo

t
of

2-
d
im

en
si

on
al
t-

S
N

E
em

b
ed

d
ed

i-
ve

ct
or

s.
In

th
e

le
ge

n
d
,

“M
”

an
d

“F
”

st
an

d
fo

r
m

al
e

an
d

fe
m

al
e,

re
sp

ec
ti

ve
ly

,
an

d
“E

N
G

”,
“C

A
N

”
an

d
“T

G
L

”
st

an
d

fo
r

E
n
gl

is
h
,

C
an

to
n
es

e,
an

d
T

ag
al

og
,

re
sp

ec
ti

ve
ly

.
(b

)
P

ai
rw

is
e

d
iff

er
en

ce
s

b
et

w
ee

n
th

e
m

ea
n
s.

(c
)

P
ai

rw
is

e
d
iff

er
en

ce
s

b
et

w
ee

n
th

e
co

va
ri

an
ce

m
at

ri
ce

s.
T

h
e

m
ea

n
s

an
d

co
va

ri
an

ce
s

d
iff

er
en

ce
s

ar
e

m
ea

su
re

d
in

th
e

or
ig

in
al

sp
ac

e
an

d
ar

e
n
or

m
al

iz
ed

to
th

e
ra

n
ge

b
et

w
ee

n
0

an
d

1
fo

r
ea

se
of

co
m

p
ar

is
on

.

37

Chapter 5

MULTI-SOURCE MMD-BASED DOMAIN ADAPTATION

5.1 Limitation of IDVC

Several theoretical works in DA [3, 4, 55] and practical applications [56] suggest that

minimizing the divergence between the in-domain and out-domain distributions is very

important for obtaining a good representation. From this perspective, approaches

based solely on the differences among the domain-means, such as IDVC, are not

enough for finding a good representation. The reason is that even if the means of the

distributions are exactly the same, there could still be a severe mismatch between the

data distributions if their variances are very different. Thus, to reduce inter-dataset

mismatch, it is important to consider the statistics beyond the means.

To better utilize the statistics of multi-source data, this thesis applies maximum

mean discrepancy (MMD) [57] for domain adaptation. MMD is a nonparametric

method for measuring the distance between two distributions [7,58,59]. With a prop-

erly chosen kernel, MMD can utilize all moments of data. This thesis generalizes

MMD to measure the discrepancies among multiple distributions. By formulating

MMD as a part of the objective function for training autoencoders, the autoencoders

will learn the features that contain less domain-specific information but are still rel-

evant to the classification task. It also applies MMD to force an autoencoder to

capture the inter-data set variabilities. By subtracting out these variabilities, the

i-vectors become more domain-independent.

38

5.2 Maximum Mean Discrepancy Autoencoder

5.2.1 Maximum Mean Discrepancy

The theoretical works in DA [3, 4, 55] suggest that it is important to have a good

measurement of the divergence between the data distributions of different domains.

The maximum mean discrepancy is a distance measure in the space of probability.

Given two sets of samples {xi}Ni=1 and {yj}Mj=1, MMD computes the mean squared

difference of the statistics of the two datasets:

DMMD =

∥∥∥∥∥ 1

N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∥∥∥∥∥
2

, (5.1)

where φ is a feature map. When φ is the identity function, the MMD distance simply

computes the discrepancy between the sample means.

Eq. 5.1 can be expanded as:

DMMD =
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
Tφ(xi′)

− 2

NM

N∑
i=1

M∑
j=1

φ(xi)
Tφ(yj) +

1

M2

M∑
j=1

M∑
j′=1

φ(yj)
Tφ(yj′). (5.2)

As each term in Eq. 5.2 involves dot products only, the kernel trick can be applied:

DMMD =
1

N2

N∑
i=1

N∑
i′=1

k(xi,xi′)

− 2

NM

N∑
i=1

M∑
j=1

k(xi,yj) +
1

M2

M∑
j=1

M∑
j′=1

k(yj,yj′), (5.3)

where k(·, ·) is a kernel function. In the case of quadratic (Quad) kernels, we have:

k(x,y) = (xTy + c)2. (5.4)

39

Then, the MMD becomes:

DMMD = 2c

∥∥∥∥∥ 1

N

N∑
i=1

xi −
1

M

M∑
j=1

yj

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

xix
T
i −

1

M

M∑
j=1

yjy
T
j

∥∥∥∥∥
2

F

, (5.5)

where ‖·‖F represents the Frobenius norm. We can see that with a quadratic kernel,

MMD can match up to the second-order statistics and c can be adjusted to control

the trade-off of the matching between the first-order and the second-order moments.

Another popular kernel is the Gaussian kernel:

k(x,y) = exp

(
− 1

2σ2
‖x− y‖2

)
, (5.6)

where σ is the width parameter. With the Gaussian kernel, the feature space is of

infinite dimension and contains all moments of data. Minimizing MMD using the

Gaussian kernel is equivalent to matching all moments of two distributions [58]. It is

also possible to use a mixture of the Gaussian kernels [59]:

k(x,y) =
K∑
q=1

exp

(
− 1

2σ2
q

‖x− y‖2

)
, (5.7)

where σq is the width parameter of the q-th Gaussian kernel.

5.2.2 Domain-invariant Autoencoder

Assume that we have in-domain data {xin
i }

Nin
i=1 and out-domain data {xout

j }Nout
j=1 . We

want to learn a transformation h = f(x) such that the transformed data {hin
i }

Nin
i=1 and

{hout
j }Nout

j=1 are as similar as possible. The mismatch between the transformed data

40

can be measured by MMD:

DMMD =
1

N2
in

Nin∑
i=1

Nin∑
i′=1

k(hin
i ,h

in
i′)

− 2

NinNout

Nin∑
i=1

Nout∑
j=1

k(hin
i ,h

out
j) +

1

N2
out

Nout∑
j=1

Nout∑
j′=1

k(hout
j ,hout

j′). (5.8)

When the data come from multiple sources, we want the transformed data to be

as similar to each other as possible. To this end, we define a domain-wise MMD

measure. Specifically, given D sets of data {xdi }
Nd
i=1, where d = 1, 2, . . . , D, we want

the transformed data {hdi }
Nd
i=1 to have small loss as defined by the following equation:

Lmismatch =
D∑
d=1

D∑
d′=1
d′ 6=d

(
1

N2
d

Nd∑
i=1

Nd∑
i′=1

k(hdi ,h
d
i′)

− 2

NdNd′

Nd∑
i=1

Nd′∑
j=1

k(hdi ,h
d′

j) +
1

N2
d′

Nd′∑
j=1

Nd′∑
j′=1

k(hd
′

j ,h
d′

j)

)
. (5.9)

Of course, we also want to retain as much non-domain related information as possible.

Assume that another transformation can reconstruct the input from h:

x̃ = g(h), (5.10)

where x̃ is the reconstruction of the input x. We want to make x̃ as close to x as

possible by minimizing:

Lrecons =
1

2

D∑
d=1

Nd∑
i=1

∥∥xdi − x̃di
∥∥2
. (5.11)

Both objectives can be achieved by an antoencoder comprising an encoder network f

41

and a decoder network g, with the total loss:

Ltotal = Lmismatch + λLrecons, (5.12)

where λ is a parameter controlling the importance of the reconstruction loss. Note

that both f and g can be multilayer neural networks. As the autoencoder encodes

domain-invariant information, we call it domain-invariant autoencoder (DAE).1

Fig. 5.1 shows the architecture of DAE for the case of three domains (D = 3), with

each row corresponding to one domain. Note that the weights in the rows are shared

across all domains. Fig. 5.2 shows a scatter plot of 2-dimensional t-SNE embedding

Figure 5.1: Architecture of the proposed domain-invariant autoencoder (DAE) when
data are from three different domains. Solid black arrows represent the connections
between neurons. Dashed red arrows represent the hidden nodes’ outputs for com-
puting the domain-mismatch loss or autoencoder’s outputs for computing the recon-
struction loss.

of the hidden activations of a DAE. Compared with the t-SNE plot in Fig 4.3(a), we

1Not to be confused with the denoising autoencoder of Vincent et al [60].

42

can see that the embedding of the hidden activations have apparently less domain-

clustering effect than the embedding of i-vectors, which shows that the DAE indeed

learns a domain-invariant representation.

Figure 5.2: Scatter plot of 2-dimensional t-SNE embedding of the hidden activations
of DAE. In the legend, “M” and “F” stand for male and female, respectively, and
“ENG”, “CAN” and “TGL” stand for English, Cantonese, and Tagalog, respectively.

5.2.3 Nuisance-attribute Autoencoder

In addition to directly learning domain-invariant features, we can also train an au-

toencoder to remove the domain-specific features similar to the idea of IDVC. Note

43

that Eq. 4.1 can be written as:

x̂ = x−WWTx. (5.13)

The columns of matrix WT span the nuisance subspace. Thus, WTx represents

a nuisance vector in the subspace. WWTx represents the nuisance vector in the

original space. Instead of using principal component analysis (PCA) as in IDVC, we

may use an autoencoder to estimate the nuisance components. Specifically, Eq. 5.13

can be replaced by:

x̂ = x− x̃

= x− g(f(x)),
(5.14)

where x̃ is the output of the autoencoder. f(.) and g(.) are implemented by an encoder

and a decoder network, respectively. The parameters of f(.) and g(.) are learned using

backpropagation. Similar to the DAE, the autoencoder has an encoder h = f(x) and

a decoder x̃ = g(h). But unlike the DAE, the autoenconder is trained to make x̂ as

close to x as possible. The subtraction in Eq. 5.14 will make x̃’s to contain all of the

domain-specific information and x̂ to become less domain-dependent.

To achieve the goal mentioned above, we can use MMD to measure the discrepancy

between the distribution of x̂ across different datasets:

Lmismatch =
D∑
d=1

D∑
d′=1
d′ 6=d

(
1

N2
d

Nd∑
i=1

Nd∑
i′=1

k(x̂di , x̂
d
i′)−

2

NdNd′

Nd∑
i=1

Nd′∑
j=1

k(x̂di , x̂
d′

j) +
1

N2
d′

Nd′∑
j=1

Nd′∑
j′=1

k(x̂d
′

j , x̂
d′

j)

)
.

(5.15)

Also, we can add reconstruction loss between x and x̂. As this network encodes

the unwanted domain-specific information, we call it nuisance-attribute autoencoder

(NAE). Fig. 5.3 shows the architecture of NAE for the case of three domains (D = 3).

44

Figure 5.3: Architecture of the proposed nuisance-attribute autoencoder (NAE) when
data are from three different domains. Solid black arrows represent the connections
between neurons. Dashed red arrows represent the signal pathways for computing the
domain-mismatch loss or reconstruction loss.

5.2.4 Semi-supervised Nuisance-attribute Networks

Supervised DA can leverage the speaker labels in the out-of-domain data through the

center or triplet loss. Center loss was proposed in [61]. The motivation of center loss is

that the softmax loss only considers the separation of classes but it fails to take intra-

class distances into account. By introducing a center for each class and minimizing

the distances between data and class centers, center loss can help networks learn

more discriminative features. We refer to the nuisance-attribute networks with both

unsupervised loss and supervised loss as semi-supervised nuisance-attribute networks

(SNANs). To apply center loss to train an SNAN, we consider the network outputs

x̂i’s as the feature vectors, where i indexes the training samples in a mini-batch. Also

denote yi ∈ {1, . . . , K} as the class label for the i-th training sample. Then the center

45

loss is defined as:

Lcenter =
1

2

Byi∑
i=1

‖x̂i − cyi‖
2 , (5.16)

where cyi is the center of the yi-th class and Byi is the number of samples in the

mini-batch. Note that cyi should be updated using the x̂i’s in the mini-batch.

Triplet loss was proposed in [62]. Similar to center loss, triplet loss is also based

on the idea of maximizing inter-class distance and minimizing intra-class distance.

The key components are triplets. A triplet consists of three samples, namely, anchor

sample x̂a, positive sample x̂p and negative sample x̂n. Positive sample shares the

same class with the anchor while the negative sample comes from different classes.

To learn discriminative features, we need to maximize inter-class distance while min-

imizing intra-class distance. This can be achieved by minimizing the following loss

function:

Ltriplet = max{‖x̂a − x̂p‖2 − ‖x̂a − x̂n‖2 +m, 0}, (5.17)

where m is a margin term. We can also incorporate supervised loss function such as

center loss and triplet loss into the total loss:

Ltotal = Lmismatch + αLrecons + βLsupervised, (5.18)

where β is a parameter controlling the importance of supervised loss. Eq. 5.18 enables

the SNAN to leverage both labeled and unlabeled data. For labeled data, all of

the three terms will be involved in the minimization, whereas for unlabeled data,

the supervised loss is disabled by setting β to 0. In this way, we can make use of

both labeled out-domain data and unlabeled in-domain data. Fig. 5.4 shows the

architecture of SNAN for the case of three domains (D = 3).

46

Figure 5.4: Architecture of the proposed semi-supervised nuisance-attribute network
(SNAN) when data are from three different domains. Solid black arrows represent
the connections between neurons. Dashed red arrows represent the signal pathways
for computing the domain-mismatch loss Lmismatch, reconstruction loss Lrecons or su-
pervised loss Lsupervised such as center loss or triplet loss. Note that for x3 we do not
have Lsupervised, which shows the semi-supervised nature of SNAN.

47

5.3 Experimental Setup

5.3.1 Speech Data and Acoustic Features

Speech files from NIST 2004–2010 Speaker Recognition Evaluation (hereafter, referred

to as SRE04–SRE10)2 and the development set of SRE16 (SRE16-dev) was used as

the development data and speech files from the evaluation set of SRE16 (SRE16-eval)

were used as test data. The speech regions in the speech files were extracted by using

a two-channel voice activity detector [63]. For each speech frame, 19 MFCCs together

with energy plus their 1st and 2nd derivatives were computed, followed by cepstral

mean normalization and feature warping [64] with a window size of three seconds. A

60-dim acoustic vector was extracted every 10ms, using a Hamming window of 25ms.

5.3.2 I-vector Extraction and PLDA Model Training

SRE16 development data were used to train a gender-independent UBM with 512

mixture components and a total variability (TV) matrix with 300 total factors. After

training the UBM and the TV matrix, i-vectors were extracted from speech files in

SRE04–SRE10, SRE16–dev, and SRE16–eval.

Unless stated otherwise, i-vectors derived from SRE04–SRE10 and the SRE16

development set were used for training the DAEs, the NAEs, and the projection ma-

trices of IDVC. Note that the non-English speech in SRE04–SRE10 were filtered out.

The resulting networks and projection matrices were then used to transform i-vectors

derived from SRE04–SRE10 and SRE16. Then, we computed a PCA projection

matrix by using the transformed i-vectors from SRE04–SRE10 and reduced the di-

mension of i-vectors to 200. Length normalization was applied to the 200-dimensional

i-vectors [10]. Then, we trained a gender-independent PLDA model with 200 latent

variables using SRE04–SRE10 data only. PLDA scores were normalized by S-norm

2https://www.nist.gov/itl/iad/mig/speaker-recognition

48

using SRE16 development data as the cohort set [65].

Speech files with bad recordings (e.g., without speech or contain telephone tones

only) as detected by the VAD and speech files shorter than 10 seconds were excluded

from training any models (UBM, TV matrix, and PLDA) and networks (DAEs and

NAEs).

5.3.3 MMD Autoencoders and IDVC Training Details

We used quadratic kernels and Gaussian kernels in the MMD and utilized a softmax

(multi-class logistic regression) domain classifier to determine the best hyperparame-

ters of the RBF kernel. Specifically, for each candidate RBF width, we trained a DAE

and extracted vectors from the hidden nodes’ activations in Fig. 5.1 and used them

as the input to a softmax classifier with the number of outputs equals to the number

of domains.3 Similarly, another softmax domain classifier was trained to classify the

domain-removed vectors x̂ in Fig. 5.3. Because our goal is to make these vectors

as domain-invariant as possible, we selected the RBF width such that the resulting

MMD vectors and domain-removed vectors lead to the lowest accuracy in the domain

classifiers.

Fig. 5.5 shows the classification accuracy of the MMD vectors h’s with respect to

the RBF width. Evidently, the MMD vectors contain the least domain information

when σ = 1, as they lead to the lowest domain classification accuracy. For both

DAE and NAE, the weights in the decoder and encoder networks are always tied

as in [66]. Unless stated otherwise, we divided SRE04–10 and SRE16 data into

gender- and language-homogenous subsets to train the IDVC projection matrices,

the DAEs, and the NAEs. Excluding the minor data in SRE16, we have six subsets:

English male, English female, Cantonese male, Cantonese female, Tagalog male and

Tagalog female. The networks were optimized using the Limited-memory Broyden—

3Here, we define a softmax classifier as a single-layer network with softmax output.

49

Figure 5.5: The relationship between the width σ of the radial basis function kernel
and the accuracy of the softmax domain classifier on the features extracted from a
DAE.

Fletcher—Goldfarb—Shanno (L-BFGS) algorithm [67, 68]. The history size of L-

BFGS was set to 20 and the learning rate was set to 1. Optimizations were stopped

when the difference of loss between two iterations was smaller than 0.0001.

5.4 Results and Discussions

5.4.1 General Performance Analysis

Table 5.1 shows the performance of four i-vector adaptation methods. All systems use

PLDA as their backend. A classical i-vector PLDA system without domain adaptation

(No Adapt) is also included for comparison. For the DAEs and NAEs, we used a

quadratic kernel with c = 1 and λ in Eq. 5.12 was set to 1. Both linear and non-linear

autoencoders were used in the experiments.

We can also see from Table 5.1 that except for non-linear DAE, all of the DA

50

methods boost the performance significantly in term of EER, although in terms of

minimum Cprimary and actual Cprimary, the improvement is minor. We can also

observe that the linear DAE and NAE have a small improvement over IDVC. Sur-

prisingly, the non-linear DAE and NAE perform worse than their linear counterparts.

When we look into the losses of these autoencoders, we found that the non-linear

DAE and NAE produce higher losses than their linear counterparts. Considering

that non-linear autoencoders should have higher capacity in fitting the training data

(but they fail to do so), they probably got stuck in local minima [12,69,70]. Because

of the relatively poor performance of non-linear autoencoders, we only present and

discuss the results of linear autoencoders in the sequel.

In [71], the authors showed that a linear autoencoder works like PCA if their

weights are found by minimizing the mean-squared error (MSE). A natural question

that arises is whether the linear DAE and NAE are the same as PCA. Note that

in [71], the objective function of the autoencoders comprises the MSE loss only. On

the other hand, the objective function of DAE and NAE comprises both the MMD

loss and MSE loss. As MMD loss is totally different from MSE loss, DAEs and NAEs

will not reduce to PCA even with linear units. To demonstrate that our linear NAE

and DAE are different from PCA, we also report results obtained by using PCA to

preprocess the i-vectors in Table 5.1. Evidently, using PCA alone could not improve

the performance significantly.

To gain more insights into the performance of IDVC, DAEs, and NAEs, we report

the performance of the three systems on four gender- and language-dependent subsets

in Table 5.2(a) and Fig 5.6. The results suggest that Tagalog is more challenging

than Cantonese, with EERs of 20.55% and 19.89% for males and females, respectively.

Because the Tagalog and the Cantonese speech were collected in the regions with

different telephone systems, the performance gap could be caused by the difference in

the quality of the telephone systems. Also, the female subsets seem to be more difficult

than the male ones. The performance of the four subsets improves significantly after

51

applying the three domain adaptation methods.

5.4.2 Robustness to Unseen Domains

In the previous section, we partitioned the training data into gender- and language-

homogenous groups. There are always data in the training set that match both

the gender and the language of the test set. However, it is not always feasible to

obtain training data that match the gender and language of the test data for domain

adaptation. Therefore, we conducted a domain robustness experiment. Specifically,

for each gender and language (Tagalog or Cantonese) in test sessions, we excluded

the speech of the same gender who speaks that language from training. In other

words, there is no in-domain data for domain adaptation. Here, the term “domain”

refers to genders and languages, and in-domain data are evaluation data with a specific

combination of gender and language. For example, for the evaluation of male Tagalog,

we exclude male Tagalog data for training the IDVC, DAE and NAE. Note that the

gender and language information can be obtained from the key file of the development

data provided by NIST.

Table 5.2(b) shows the results of the three DA methods on unseen domains. Fig.

5.6 shows the EERs of the DA methods with and without using in-domain training

data. Not surprisingly, without in-domain data for training, the performance of all DA

methods degrades. Despite the performance degradation, the performance of these

DA methods is still better than the one without domain adaptation. More impor-

tantly, DAE and NAE appear to suffer less when compared with IDVC. In particular,

for Cantonese speakers, the DAE has 6.8% and 5.2% relative improvement over IDVC

for female and male speakers, respectively. We believe that the incorporation of high

moments of the data distributions is the reason that MMD-based methods are more

robust to unseen domains.

52

5.4.3 Impact of the Hyperparameters

Comparing with IDVC, DAEs, and NAEs have more hyper-parameters to tune. In

this subsection, we present the results of DAEs and NAEs with different values of λ

and different choices of kernels. The kernels we experimented with include quadratic

kernels with c = 0 and c = 1, RBF kernels with σ = 1, and the mixture of four RBF

kernels with width equals to 1, 3, 5, and 10, respectively. Tables 5.3(a) and 5.3(b)

show the results of DAEs and NAEs with different choices of λ’s and kernels. Fig. 5.7

shows the EERs of DAEs and NAEs with different choices of λ and kernels.

Three phenomena can be observed from the results in Table 5.3 and Fig. 5.7.

Firstly, quadratic kernels and RBF kernels require different values of λ to obtain good

performance. Specifically, both NAEs and DAEs with quadratic kernels perform the

best when λ is equal to 0.1 or 1, while NAEs and DAEs with RBF kernels perform

the best when λ is equal to 0.01 or 0.1. Secondly, for NAEs, the quadratic kernel with

c = 0 generally performs poorly in most cases. Recall that c controls the trade-off

between the matching in the first and the second moments. It seems that matching

the second moment alone is not enough in most cases. Thirdly, there is no noticeable

performance gain from using RBF kernels or a mixture of RBF kernels. Theoretically,

RBF kernels can match up to infinite moments of data distributions and are therefore

better than quadratic kernels for reducing the domain mismatch. However, in our

experiments, RBF kernels have no advantage over quadratic kernels. It may be due

to the fact that PLDA only uses up to the second moment.

5.4.4 Impact of Data Partition

In the previous sections, we partitioned i-vectors by both genders and languages. In

this section, we investigated the influence of different partitioning schemes. Accord-

ing to gender and language, we can partition data into gender-homogenous groups,

language-homogenous groups, or gender- and language-homogenous groups. Table 5.4

53

shows the results of the DA methods using different partitioning schemes. For all of

the three DA methods, it is apparent that partitioning by both genders and languages

achieves the best result, which clearly demonstrates the advantage of multi-source do-

main adaptation.

5.4.5 Combined with PLDA Model Interpolation

It is also possible to combine i-vector domain adaptation with PLDA model interpola-

tion [28]. Specifically, the unlabelled i-vectors in the target domain were clustered to

obtain some hypothesized labels, which were used to train a PLDA model. As PLDA

models obtained in this way may not be very reliable, a better approach is to linearly

interpolate the parameters of the source as well as the target PLDA models [28].

Table 5.5 shows the results of i-vector adaptation in combination with model interpo-

lation. The interpolation parameter was set to 0.3. When compared with using the

unadapted i-vectors, it is clear that adapting the i-vectors improves the performance

of the PLDA model interpolation. Also, the best performance was achieved by the

proposed DAE.

5.4.6 Performance Analysis of Supervised DA

Table 5.6 shows the performance of IDVC and SNAN with only unsupervised loss

functions. All systems use a PLDA backend. A classical i-vector PLDA system

without domain adaptation (No Adapt) is also included for comparison. The SNAN

uses a quadratic kernel with c = 1 and α and in Eq. 5.12 was set to 1.

For the i-vector systems, we can see from Table 5.6 that both IDVC and SNAN

improve the performance in term of EER, although in terms of minimum Cprimary

and actual Cprimary, the improvement is minor. We can also observe that SNAN

performs better than IDVC by a small margin.

For the x-vector systems, surprisingly IDVC degrades the performance. Although

SNAN still outperforms the baseline system, the improvement is marginal. It could

54

be that the x-vectors are more robust to domain mismatch, which diminishes the

benefit of domain adaptation.

5.4.7 Impacts of Supervised Loss Functions

In this section, we investigate the impacts of supervised loss functions on the perfor-

mance of SNANs. There are three supervised loss functions, namely, cross-entropy

loss, center loss as in Eq. 5.16 and triplet loss as in Eq. 5.17. Table 5.7 shows the re-

sults of SNANs with these loss functions together with SNANs with only unsupervised

loss functions. For i-vector based systems, we can see that in general adding super-

vised losses indeed improves the performance of SNANs. However, there is no clear

winner among the three supervised loss functions. For x-vector based systems, adding

supervised loss functions does not give a significant improvement in performance.

55

C
A

N
_F

C
A

N
_M

TG
L_

F
TG

L_
M

681012141618 EER

9.
47

8.
74

17
.5

0

15
.7

5

10
.2

2
9.

67

18
.1

1

16
.7

1

ID
V

C

w
ith

 in
-d

om
ai

n
da

ta
w

ith
ou

t i
n-

do
m

ai
n

da
ta

C
A

N
_F

C
A

N
_M

TG
L_

F
TG

L_
M

9.
15

8.
61

17
.2

6

15
.5

9

9.
52

9.
17

17
.7

4
16

.8
3

D
A

E

w
ith

 in
-d

om
ai

n
da

ta
w

ith
ou

t i
n-

do
m

ai
n

da
ta

C
A

N
_F

C
A

N
_M

TG
L_

F
TG

L_
M

9.
27

8.
73

17
.3

4

15
.5

9

9.
82

9.
44

17
.9

3
16

.8
9

N
A

E

w
ith

 in
-d

om
ai

n
da

ta
w

ith
ou

t i
n-

do
m

ai
n

da
ta

F
ig

u
re

5.
6:

B
ar

ch
ar

ts
sh

ow
in

g
th

e
E

E
R

s
of

th
re

e
d
om

ai
n

ad
ap

ta
ti

on
m

et
h
o
d
s

w
it

h
an

d
w

it
h
ou

t
u
si

n
g

in
-d

om
ai

n
d
at

a.

56

T
ab

le
5.

1:
T

h
e

P
er

fo
rm

an
ce

of
fo

u
r

d
om

ai
n

ad
ap

ta
ti

on
m

et
h
o
d
s

an
d

th
e

p
er

fo
rm

an
ce

of
a

cl
as

si
ca

l
i-

ve
ct

or
P

L
D

A
sy

st
em

w
it

h
ou

t
d
om

ai
n

ad
ap

ta
ti

on
(N

o
A

da
pt

)
in

th
e

S
R

E
16

ev
al

u
at

io
n

se
t.

“L
in

ea
r”

an
d

“s
ig

m
”

m
ea

n
th

at
th

e
h
id

d
en

n
o
d
es

in
th

e
D

A
E

an
d

N
A

E
u
se

li
n
ea

r
an

d
si

gm
oi

d
ac

ti
va

ti
on

fu
n
ct

io
n
s,

re
sp

ec
ti

ve
ly

.
P

C
A

:
T

h
e

w
ei

gh
ts

of
th

e
li
n
ea

r
au

to
en

co
d
er

w
er

e
fo

u
n
d

b
y

P
C

A
.

ID
V

C
:

In
te

r-
d
at

as
et

va
ri

ab
il
it

y
co

m
p

en
sa

ti
on

.
“m

C
p
ri

m
”

an
d

“a
C

p
ri

m
”

ar
e

th
e

m
in

im
u
m

d
et

ec
ti

on
co

st
an

d
th

e
ac

tu
al

d
et

ec
ti

on
co

st
as

sp
ec

ifi
ed

in
th

e
ev

al
u
at

io
n

p
la

n
of

S
R

E
16

.

A
rc

h
it

ec
tu

re
E

E
R

(%
)

m
C

p
ri

m
aC

p
ri

m
L

m
is

m
a
tc

h
L

re
co

n
s
L

to
ta

l

N
o

A
d

ap
t

-
15

.8
4

0.
89

0.
93

-
-

-

P
C

A
-

14
.7

7
0.

89
0.

92
-

-
-

ID
V

C
-

13
.0

8
0.

86
0.

93
-

-
-

L
in

ea
r

D
A

E
3
00

-3
00

(l
in

ea
r)

-3
00

1
2
.7
9

0.
85

0.
91

0.
00

2
0.

01
2

0.
01

4

N
on

-l
in

ea
r

D
A

E
3
00

-3
00

(s
ig

m
)-

30
0(

li
n

ea
r)

-3
00

(l
in

ea
r)

-3
00

(s
ig

m
)-

30
0

24
.3

6
0.

98
0.

99
0.

00
1

0.
22

0
0.

22
1

L
in

ea
r

N
A

E
30

0-
10

(l
in

ea
r)

-3
00

12
.8

1
0.

85
0.

91
0.

00
3

0.
21

1
0.

21
4

N
on

-l
in

ea
r

N
A

E
30

0-
10

(s
ig

m
)-

10
(l

in
ea

r)
-1

0(
li

n
ea

r)
-1

0(
si

gm
)-

30
0

14
.7

3
0.

93
0.

93
0.

15
6

2.
03

2
2.

18
8

57

F
ig

u
re

5.
7:

L
in

e
p
lo

ts
sh

ow
in

g
th

e
E

E
R

s
of

D
A

E
s

(t
op

ro
w

)
an

d
N

A
E

s
(b

ot
to

m
ro

w
)

w
it

h
d
iff

er
en

t
ch

oi
ce

s
of
λ

’s
an

d
ke

rn
el

s.

58

T
ab

le
5.

2:
T

h
e

p
er

fo
rm

an
ce

of
va

ri
ou

s
d
om

ai
n

ad
ap

ta
ti

on
m

et
h
o
d
s

on
th

e
su

b
se

ts
of

th
e

S
R

E
16

ev
al

u
at

io
n

se
t.

In
(a

),
th

e
ID

V
C

,
D

A
E

an
d

N
A

E
w

er
e

tr
ai

n
ed

u
si

n
g

b
ot

h
in

-d
om

ai
n

d
at

a
an

d
ou

t-
d
om

ai
n

d
at

a.
In

(b
),

T
h
e

ID
V

C
,

D
A

E
an

d
N

A
E

w
er

e
tr

ai
n
ed

w
it

h
ou

t
u
si

n
g

in
-d

om
ai

n
d
at

a.

C
an

to
n

es
e

T
ag

al
og

F
em

al
e

M
al

e
F

em
al

e
M

al
e

E
E

R
m

C
p

ri
m

a
C

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m

N
o

A
d

ap
t

1
0.

92
0.

77
0
.8

7
10

.8
7

0.
74

0.
96

20
.5

5
0.

93
0.

94
19

.8
9

0.
94

0.
96

ID
V

C
9
.4

7
0
.7

4
0.

88
8.

74
0.

68
0.

96
17

.5
0

0.
91

0.
93

15
.7

5
0.

90
0.

96

D
A

E
9
.1
5

0
.7
3

0.
84

8
.6
1

0.
67

0.
94

1
7
.2
6

0.
90

0.
91

15
.5

9
0.

89
0.

94

N
A

E
9
.2

7
0
.7

4
0
.8
3

8.
73

0.
67

0.
94

17
.3

4
0.

90
0.

91
15

.5
9

0.
89

0.
94

(a
)

C
an

to
n

es
e

T
ag

al
og

F
em

al
e

M
al

e
F

em
al

e
M

al
e

E
E

R
m

C
p

ri
m

a
C

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m

N
o

A
d

ap
t

1
0.

92
0.

77
0
.8

7
10

.8
7

0.
74

0.
96

20
.5

5
0.

93
0.

94
19

.8
9

0.
94

0.
96

ID
V

C
1
0.

22
0.

75
0
.8

7
9.

67
0.

70
0.

96
18

.1
1

0.
91

0.
93

1
6
.7
1

0.
92

0.
95

D
A

E
9
.5
2

0
.7
3

0
.8

3
9
.1
7

0
.6
8

0.
95

1
7
.7
4

0.
91

0
.9
1

16
.8

3
0
.9
1

0.
94

N
A

E
9.

82
0.

74
0
.8
2

9.
44

0.
69

0.
95

17
.9

3
0
.9
1

0.
92

16
.8

9
0.

92
0.

94

(b
)

59

T
ab

le
5.

3:
T

h
e

p
er

fo
rm

an
ce

of
(a

)
D

A
E

s
an

d
(b

)
N

A
E

s
w

it
h

d
iff

er
en

t
ch

oi
ce

s
of

ke
rn

el
s

an
d
λ

’s
.

Q
u
ad

is
th

e
q
u
ad

ra
ti

c
ke

rn
el

in
E

q
.

5.
4.

B
ot

h
D

A
E

s
an

d
N

A
E

s
w

er
e

tr
ai

n
ed

b
y

p
ar

ti
ti

on
in

g
S
R

E
04

–1
0

an
d

S
R

E
16

d
ev

el
op

m
en

t
d
at

a
in

to
ge

n
d
er

-
an

d
la

n
gu

ag
e-

h
om

og
en

ou
s

gr
ou

p
s.

Q
u

ad
(c

=
0)

Q
u

ad
(c

=
1)

R
B

F
M

ix
tu

re
R

B
F

λ
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m

0.
01

1
3.

76
0.

86
0
.9

3
14

.0
7

0.
87

0.
91

1
2
.9
4

0.
85

0.
92

1
3
.0
1

0.
85

0.
90

0
.1

1
2
.8
1

0
.8
5

0
.9
1

12
.8

5
0
.8
4

0.
90

13
.2

9
0.

85
0.

90
13

.2
3

0.
85

0.
91

1
12

.9
0

0
.8

6
0.

93
1
2
.7
9

0.
85

0.
91

14
.1

3
0.

87
0.

89
14

.0
5

0.
88

0.
91

1
0

13
.7

3
0
.8

7
0.

89
13

.3
6

0.
86

0.
90

14
.2

6
0.

87
0.

89
14

.3
1

0.
87

0.
89

(a
)

Q
u

ad
(c

=
0)

Q
u

ad
(c

=
1)

R
B

F
M

ix
tu

re
R

B
F

λ
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m
E

E
R

m
C

p
ri

m
aC

p
ri

m

0.
01

1
3
.2
7

0
.8

6
0.

91
12

.8
0

0.
85

0.
91

1
2
.9
7

0.
85

0.
92

13
.1

1
0.

85
0.

91

0.
1

1
3.

47
0
.8
5

0.
93

1
2
.7
9

0.
85

0.
91

13
.0

2
0.

85
0.

90
1
3
.0
4

0.
85

0.
91

1
1
3.

72
0.

86
0
.9
0

12
.8

1
0.

85
0.

91
13

.8
1

0.
85

0
.8
9

14
.1

0
0.

85
0
.9
0

1
0

13
.8

0
0
.8

6
0.

91
13

.0
5

0.
85

0.
91

13
.9

9
0.

85
0.

92
13

.9
0

0.
88

0.
91

(b
)

60

Table 5.4: The performance of IDVC, DAE and NAE using different partition
schemes.

Partitioning Scheme
IDVC

EER mCprim aCprim

Gender and Language 13.08 0.86 0.93

Gender 13.75 0.87 0.9

Language 13.59 0.85 0.93

Partitioning Scheme
DAE

EER mCprim aCprim

Gender and Language 12.79 0.85 0.91

Gender 13.09 0.85 0.90

Language 13.29 0.85 0.90

Partitioning Scheme
NAE

EER mCprim aCprim

Gender and Language 12.81 0.85 0.91

Gender 13.03 0.86 0.92

Language 13.29 0.85 0.90

61

Table 5.5: The performance of unsupervised PLDA model interpolation using un-
adapted i-vectors and i-vectors adapted by IDVC, DAEs and NAEs. The interpolation
parameter was set to 0.3

Adaptation Method EER mCprim aCprim

No Adaptation 13.47 0.86 0.91

IDVC 12.88 0.85 0.93

DAE 12.43 0.84 0.90

NAE 12.51 0.84 0.91

Table 5.6: The performance of PLDA without adaptation, IDVC, and SNAN with
supervised loss only (β = 0 in Eq. 5.18) on the SRE16 evaluation set. “mCprim” and
“aCprim” are the minimum detection cost and the actual detection cost as specified
in the evaluation plan of SRE16.

Feature Adaptation EER(%) mCprim aCprim

i-vector No Adapt 12.78 0.74 0.94

IDVC 12.17 0.73 0.9

SNAN 11.95 0.72 0.87

x-vector No Adapt 10.74 0.65 0.86

IDVC 11.24 0.65 0.89

SNAN 10.35 0.61 0.81

62

Table 5.7: The performance of SNAN using different supervised loss functions on
SRE16 using i-vectors and x-vectors from the Kaldi’s SRE16 recipe.

Feature Supervised Loss EER(%) mCprim aCprim

i-vector None 11.95 0.72 0.87

Softmax 11.61 0.71 0.87

Softmax+Center 11.76 0.72 0.86

Triplet 11.67 0.72 0.85

x-vector None 10.35 0.61 0.81

Softmax 10.28 0.61 0.81

Softmax+Center 10.31 0.61 0.81

Triplet 10.57 0.62 0.80

63

Chapter 6

DNN SPEAKER EMBEDDING ADAPTATION USING

MMD

In this chapter, we propose a novel DNN adaptation method for speaker recog-

nition across languages. Most of the previous works in DNN adaptation focus on

utterances-level adaptation, i.e., the domain divergence is estimated from the speaker

embeddings. Although backpropagation could tune the parameters of the whole net-

work to minimize the domain divergence, we argue that it is still better to explicitly

adapt frame-level features. The reason is that training data typically only has a fixed

duration range. As a result, adapting utterance-level features may only benefit a spe-

cific duration range. Adapting frame-level features, on the other hand, is less prone

to overfitting a specific duration range only.

Another innovative aspect of our method is making use of unlabeled target-domain

data. Data augmentation is an important part of DNN-based SV. However, the aug-

mentation is done only for the labeled data. It was unclear how to apply data aug-

mentation to the unlabeled data. To leverage the unlabeled data, we propose to add

a consistency regularization that minimizes the divergence between the augmented

and the clean target-domain data. In this way, the consistency regularization makes

the target speaker embeddings robust to adverse perturbations. We also propose aux-

iliary batch normalization in each layer of the neural networks. This is, to the best of

our knowledge, the first use of separate batch normalization units in domain adapta-

tion. In summary, we investigates the use of multilevel domain loss, separate batch

normalization, and consistency regularization for speaker embeddings. We abbreviate

64

the proposed method as MSC.

.

.

.

fc7

prediction

Classification
loss	(Eq.	6.1)

Domain
loss	(Eq.	6.4)

Consistency
Regularization	(E.q 6.6)

fc7 fc7

fc6 fc6 fc6

stats-pooling

conv1 conv1 conv1

Source	domain	
data

Target	domain	
data

Augmented	Target	
domain	data

conv5
.
.
.

.

.

.

conv5 conv5

stats-pooling stats-pooling

Figure 6.1: The architecture of our proposed framework. The network is trained to
minimize the classification loss and the domain loss with consistency regularization
(see Eq. 6.6). For target-domain data, no label is required. The dotted lines indicate
weight-sharing within individual layers.

6.0.1 Multi-level Adaptation

Assuming that we have a labeled dataset {(osi , ysi)}Ii=1 from the source-domain and

the set of network parameters Θ = {Wl,bl}Ll=1 , the objective function of the network

65

can be written as

min
Θ

1

I

I∑
i=1

J(pΘ(y|osi), ysi), (6.1)

where J is the cross-entropy function and pΘ(y|osi) is the conditional probability

that the network assigns osi to the class y. Minimizing this objective alone will

not guarantee the generalization to the target-domain. To make generalization to

the target-domain possible, we need to reduce the divergence between the marginal

distribution of the source-domain and the target-domain. In neural networks, we

typically reduce the divergence in the hidden activations. Let Hl
∗ = {hli} denotes the

activations at the l-th layer for source or target data. The cross-entropy loss together

with MMD distance is

min
Θ

1

I

I∑
i=1

J(pΘ(y|osi), ysi) + λ · D(Hl
s,Hl

t), (6.2)

where λ is a constant controlling the trade-off between the two objectives.

As mentioned in [59], upper layers typically have larger domain discrepancy gaps.

Therefore, it is very common to minimize the divergence at the network’s last layer.

In the x-vector network shown in Table 3.1, it is the 7-th layer (i.e., l = 7). The

current DNN training scheme typically uses very short speech segments (200 frames

to 400 frames) for training and relies on the backend to compensate for the duration

discrepancy during the verification phase. However, the embedding distribution shifts

with speech duration. The divergence estimated from short utterances is a poor

substitution for the divergence estimated from long utterances. Adapting frame-level

activations, on the other hand, has no such problem. Therefore, we argue that it is

important to adapt frame-level features as well. Here, we choose the last convolutional

layer before statistics pooling, i.e., l = 5, for adaptation. However, the MMD distance

in Eq. 5.1 only works with vectors. Frame-level activations are represented by tensor

66

with dimension B × T × C, where B is the batch size, T is the number of frames in

the segment, and C is the number of channels (filters). We propose to flatten along

the temporal axis to convert the frame-level activations of speech segments into a

batch of TC-dimensional vectors and then compute the MMD distance between the

two batches of flattened vectors:

D(FLAT(H5
s),FLAT(H5

t))), (6.3)

where FLAT(.) denotes flattening a 3D tensor along the temporal axis. Fig. 6.2(b)

illustrates the flattening procedure for frame-level activations. Minimizing Eq. 6.3

can reduce domain mismatch even though utterances from the source- and target-

domains are of different contexts. This is because the filters (feature detectors) in the

lower CNN layers can extract the relevant features irrespective of the location of the

features. The total domain loss is:

λ · D(H7
s,H7

t) + α · D(H5
s,H5

t)), (6.4)

where α is a constant controlling the importance of Eq. 6.3.

6.0.2 Consistency Regularization Using MMD

Data augmentation plays an important role in the success of the x-vector framework.

However, how to use data augmentation on unlabeled data has not been explored

in SV. Consistency training has been successfully explored in semi-supervised learn-

ing [72]. The idea is to enforce or regularize a network such that the network pre-

dictions are consistent even if the network’s input is subjected to noise perturbation

for unlabeled data. In [72], the regularization is achieved by minimizing the following

KL divergence:

E
q(ôunlab|ounlab)

[KL(pΘ(y|ounlab)||pΘ(y|ôunlab))], (6.5)

67

where ounlab denotes the clean unlabeled data, ôunlab denotes the augmented unlabeled

data, and q(ôunlab|ounlab) is a data augmentation transformation. For Eq. 6.5 to work,

pΘ(y|ounlab) has to be very close to the true class distribution. This is typically

achieved by training the network on a large amount of labeled data {olabel, y}, where

olabel denotes the labeled data. As a result, the network is discriminative for the class

y and pΘ(y|ounlab) is very close to the true class distribution. However, if we do not

have labeled data {olabel, y} to train the network, the softmax output pΘ(y|ounlab) is

less useful.

We propose another form of consistency penalty that does not require labeled data

to work. Instead of minimizing the KL divergence between the softmax output of the

clean unlabeled data and the augmented unlabeled data, we propose minimizing the

discrepancy between the embeddings produced by the clean data and the embeddings

produced by the augmented data. The motivation is that DNN embedding should

be robust to input perturbation. After all, the goal of the DNN is to create speaker

embedding instead of prediction. We use MMD to measure consistency between the

two sets of embeddings. LetH7
t and Ĥ7

t denotes the set of Layer-7’s hidden activations

obtained from the clean and the augmented target-domain data, respectively. The

consistency regularization using MMD is written as:1

D(H7
t , Ĥ7

t) =
1

N2

N∑
i=1

N∑
i′=1

k(h7
i ,h

7
i′)−

2

NM

N∑
i=1

M∑
j=1

k(h7
i , ĥ

7

j) +
1

M2

M∑
j=1

M∑
j′=1

k(ĥ
7

j , ĥ
7

j′),

(6.6)

where N and M are the number of speech segments in source-domain and target-

domain, respectively. By combining the consistency regularization with Eq. 6.5 we

have the total loss function:

min
Θ

1

I

I∑
i=1

J(pΘ(y|osi), ysi) + λ · D(H7
s,H7

t) + α · D(H5
s,H5

t)) + β · D(H7
t , Ĥ7

t). (6.7)

1To simplify notation, the subscript t is omitted in the right side of Eq. 6.6.

68

Fig 6.1 summarizes the architecture and objective functions.

6.0.3 Auxiliary BN

Batch normalization (BN) is an essential part of modern deep neural networks. The

input features are normalized using the mean and the variance computed from the

mini-batch. The underlying assumption is that the input data are homogenous. How-

ever, if data are heterogeneous, the statistics used by BN is inaccurate. In domain

adaptation, it is obvious that the source-domain data and the target-domain data

come from two different distributions, as exemplified by the t-SNE plots in Fig. 6.3.

Thus we argue that we need two separate BNs to obtain more accurate batch statis-

tics. A similar idea is proposed in [73], where the authors used two different BNs for

clean and adversary inputs. The heterogeneity could also come from data augmenta-

tion [73]. Thus, we could also use three BNs per layer, i.e., one for the source-domain

data, one for the target-domain data, and one for the augmentation data. Fig. 6.4

illustrates the idea of auxiliary BN.

6.1 Experiments

6.1.1 Data Preparation

The training data include NIST SRE 2004–2010 (SRE04–10 in short) and all of the

Switchboard data. We used the data augmentation strategy in the Kaldi SRE16

receipt. The training data were augmented by adding noise, music, reverb, and babble

to the original speech files in the datasets. After filtering out utterances shorter than

500 frames and speakers with less than 8 utterances, we are left with 4,808 speakers.

23-dimensional Mel-frequency cepstral coefficients (MFCC) were computed from 8kHz

speech files. Mean normalization was applied to the MFCC using a 3-second sliding

window. Non-speech frames were removed using Kaldi’s energy-based voice activity

detector.

69

6.1.2 DNN and Backend Training

The value of λ, β and α in Eq. 6.7 were all set to 1. All DNNs were trained using a

batch size of 32 and were optimized by the Adam optimizer [74] with a learning rate of

0.001. The networks were implemented in Pytorch [67]. We used a standard backend

comprised of LDA, length-normalization, and PLDA. Both LDA and PLDA were

trained using embeddings extracted from full-length utterances. We used correlation

alignment [47] for domain adaptation in the PLDA backend.

6.1.3 Data Augmentation

In addition to data augmentation in [5], we also used speech conversion tools in

FFmpeg.2 Every speech file was accompanied by one of the following augmentations:

• Reverberation: Reverberation effect was added to the speech by convolving it

with a simulated room impulse response (RIR) filter. [75].

• Music: A randomly selected music file from MUSAN was added to the original

speech at an SNR of 5–15dB.

• Noise: Noise from MUSAN was added to the recording intermittently with SNR

between 0dB and 10dB.

• Babble: Babble noise was added to the original speech with an SNR of 0dB–

10dB.

• Speed: the original speech was speeded up by 1.3 percent using FFMpeg.

Both the target-domain data and the source-domain data were augmented.

2https://www.ffmpeg.org

70

Table 6.1: Comparison with other DNN adaptation methods. Sup. WGAN [1] uses
the labels of SRE16 and SRE18 development data. There is no backend adaptation
in all of the systems.

SRE16 SRE18

Adaption Method EER (%) minDCF EER(%) minDCF

WGAN [1] 13.25 0.899 9.59 0.652

Sup. WGAN [1] 9.59 0.746 8.88 0.619

LSGAN [76] 11.74 - - -

MSC 8.69 0.556 7.95 0.500

6.1.4 Evaluation

All systems were evaluated on the evaluation set of SRE 2016 and 2018. The SRE16

evaluation set is composed of Tagalog and Cantonese telephone conversations. For

SRE18, we only conducted evaluations on the CMN2 portion, which consists of

Tunisian Arabic conversations. We report results in terms of equal error rate (EER)

and minimum cost function (DCF) using the scoring tools provided by NIST.

6.2 Results

6.2.1 Comparison with Other DNN Adaptations

In this section, we compared the proposed framework (MSC) with other DNN-based

adaptation methods. The latter includes Wasserstein GAN (WGAN) adaptation,

supervised WGAN adaptation [1], and least square GAN (LSGAN) [76]. The results

are presented in Table 6.1. All the results in Table 6.1 are without additional backend

adaptation. It is clear from the table that MSC performs significantly better than

the existing methods. It is worth noting that MSC even performs better than the

supervised adaptation in [1].

71

Table 6.2: The Performances of CORAL, PLDA adaptation and the proposed frame-
work MSC.

SRE16 SRE18

Adaption Method EER(%) minDCF EER(%) minDCF

MSC 8.69 0.556 7.95 0.500

CORAL Adapt. 8.49 0.560 8.74 0.553

PLDA Adapt. 8.55 0.556 8.88 0.563

MSC+CORAL Adapt. 8.13 0.530 7.70 0.486

MSC+PLDA Adapt. 8.22 0.542 8.12 0.502

6.2.2 Comparison with Backend Adaptation

In this section, we compared the proposed framework with two popular backend adap-

tation methods, namely, CORAL [47] and Kaldi’s PLDA adaptation [5]. The potential

of combining the proposed framework with the backend adaptation methods was also

investigated. The results are presented in Table 6.2. As can be seen from Table 6.2,

in SRE16, CORAL is the most effective adaptation method. However, in SRE18,

MSC has a clear advantage over the backend adaptation. This, we believe, is due to

the fact that SRE18 has more data for adaptation (over 4,000 utterances compared

with only 2,340 in SRE16). Besides, it seems that the proposed framework works well

with the backend adaptation, as combining them improves the performance.

6.2.3 Ablation Study of individual components

To investigate the effect of individual components in our framework, we conducted an

ablation study. Table 6.5 starts with only utterance-level adaptation (Utt. Adapt.)

in the second row and incrementally adds frame-level adaptation (Frame Adapt.),

consistency regularization (Consist. Reg.), and auxiliary BN (Aux. BN). We can

see that utterance-level adaptation alone already gives a great improvement over no

72

Table 6.3: Our proposed framework with different numbers of BNs per layer. Refer
to Fig. 6.4 for the details of BN types.

BN type SRE16 SRE18

EER minDCF EER minDCF

Standard BN 9.03 0.559 8.21 0.509

One Aux. BN 8.69 0.556 7.95 0.500

Two Aux. BNs 9.28 0.566 8.33 0.511

adaptation. Adding frame-level adaptation gives a considerably performance gain

for both SRE16 and SRE18. Consistency regularization also further improves the

performance in both SRE16 and SRE18. Finally, using auxiliary BN evidently helps.

6.2.4 Auxiliary Batch Normalization

The T-SNE plots in Fig. 6.3 motivate us to use separate batch normalizations for the

source-domain data and the target-domain data. In this section, we investigated how

the separate batch normalization affects performance. Specifically, we investigated

three kind of batch normalization schemes. The first one is the vanilla BN that

conflates the source-domain data and the target-domain data in a mini-batch. The

second one uses two separate BNs for the source-domain data and the target-domain

data, respectively. We refer to this as “One Aux. BN” in Table 6.3. The third one uses

three BNs for the clean source-domain data, the clean target-domain data, and the

augmented data, respectively. We refer to this as “Two Aux. BN” in Table 6.3 (also

see Fig. 6.4). We can see from Table 6.3 that separating the source-domain data and

the target-domain data improves the performance in both SRE16 and SRE18, while

further separating the augmented data from clean data degrades the performance.

One possible explanation is that when using three separate batch normalizations per

layer, there are not enough data to compute the mean and the variance reliably. A

73

similar phenomenon was also reported in [77].

6.2.5 Influence of Network Architectures

Table 6.4: The performance of four DNN speaker embeddings with and without
the proposed adaptation framework. The details of x-vector based networks and
DenseNets are presented in Table 3.1 and Table 3.2, respectively.

(a) EER(%)

DNN Embedding

X-vector Wide-x-vector Densenet61 Densenet121

SRE 16 w/o adapt 12.36 11.90 11.87 11.64

SRE 16 w/ adapt 8.69 8.37 8.31 7.81

SRE 18 w/o adapt 11.83 10.62 10.73 9.47

SRE 18 w/ adapt 7.95 7.63 7.65 7.02

(b) minDCF

DNN Embedding

X-vector Wide-x-vector Densenet61 Densenet121

SRE 16 w/o adapt 0.985 0.851 0.854 0.820

SRE 16 w/ adapt 0.556 0.534 0.520 0.515

SRE 18 w/o adapt 0.761 0.692 0.703 0.600

SRE 18 w/ adapt 0.500 0.482 0.482 0.460

Generally speaking, large models and better architectures often improve DNN’s

performance. However, it is not clear whether domain adaptation will benefit from

large models and better architectures. To investigate this, we used two DNN ar-

chitectures, namely, the x-vector networks and DenseNets, with different number of

parameters. The configuration of the two x-vector networks are shown in Table 3.1

and the configuration of the two DenseNets are shown in Table 3.2. The results

74

Table 6.5: Ablation study of the individual components in the proposed framework.

SRE16 SRE18

Utt. Adapt. Frame Adapt Consist. Reg. Aux. BN EER(%) DCF EER(%) DCF

× × × × 12.02 0.990 11.59 0.720

X × × × 9.79 0.621 9.08 0.580

X X × × 9.63 0.606 8.77 0.555

X X X × 9.03 0.585 8.33 0.520

X X X X 8.69 0.556 7.95 0.500

are presented in Table 6.4. It is clear from Table 6.4 that increasing the model size

improves the speaker embeddings’ performance. We also observed, under the same

amount of parameters, the DenseNets outperform the x-vector networks consistently.

Besides, DNN domain adaptation does benefit from larger models. By widening the

x-vector networks we achieved 3.68% and 4.02% improvement in SRE16 and SRE18,

respectively. Using larger DenseNets, we achieved 6.01% and 8.23% improvement on

SRE16 and SRE18, respectively. Clearly, DA benefits more from deep architectures

than the swallow ones.

6.2.6 Influence of MMD Kernels

The most important component for MMD based DA is the kernel. The Gaussian

kernel is theoretically more powerful than the quadratic kernel in that it can match

up to infinite moments of two distributions. However, it is much harder to find

appropriate bandwidth parameters for the Gaussian kernels, which is still an on-

going research area [78]. A heuristic is to use the median pairwise distance computed

from data [79]. Another way is to use multiple Gaussian kernels and hope that some

of the kernels are close to the ideal ones. It is also possible to combine the median

heuristic and the multi-kernel approach. Table 6.6 shows the effectiveness of different

75

Gaussian kernels for DA in SRE16 and SRE18.

For the median heuristic, we randomly sampled 10,000 frames of MFCC vectors

from the unlabeled part of SRE16 and SRE18 and used the sampled data to compute

the pairwise median distance. For the multi-kernel approach, we chose σq = 1 in

Eq. 5.6 and used a multiplicative step-size of 0.1. Specifically, with 5 Gaussian kernels,

the bandwidth parameters range from 10−2σq to 102σq, with a multiplicative step-size

of 0.1. With 19 Gaussian kernels, the bandwidth parameters range from 10−9σq to

109σq, with a multiplicative step-size of 0.1. For combining the median heuristic

with the multi-kernel approach, the bandwidth parameter σq was set to the median

computed from data and a multiplicative step-size of 0.1 was used. We can see

from Table 6.6 that the single kernel with arbitrarily chosen σq = 1 performs even

worse than no adaptation, which shows that good kernel parameters are essential

for MMD domain adaptation. On the other hand, the median heuristic performs

much better than the single kernel with σq = 1. With the multi-kernel approach, the

performance of the adaptation improves significantly, even though σq was arbitrarily

chosen. The multiple kernel approach performs significantly better than the median

heuristic. Finally, combining the multi-kernel approach with the median heuristic

achieves the best results.

76

Table 6.6: The influence of the Gaussian kernel configuration on speaker embedding
adaptation

Kernel Configuration SRE16 SRE18

EER minDCF EER minDCF

No Adaptation 12.02 0.990 11.59 0.720

Single Gaussian Kernel with σq = 1 14.93 0.841 13.33 0.776

Median Heuristic [79] 10.85 0.660 10.33 0.636

5 Gaussian Kernels 9.69 0.569 8.77 0.529

9 Gaussian Kernels 9.17 0.559 8.01 0.510

19 Gaussian Kernels 8.99 0.547 8.31 0.510

19 Gaussian Kernels with Median Heuristic 8.69 0.556 7.95 0.50

77

Stat-pooling	
and	FCs

MMD	distance

Batch	axis

Temporal	axis
Channel	axis

(a)

Batch	axis

Temporal	axis
Channel	axis

Flatten	along
time	axis	

MMD	distance

(b)

Figure 6.2: Diagrams demonstrate the difference between (a) utterance-level MMD
distance D(H7

s,H7
t)), and (b) frame-level MMD distance D(FLAT(H5

s),FLAT(H5
t))).

Blue and orange cubes represent a batch of 3-dimensional data from two domains.
In the case of utterance-level MMD distance, it is computed after the aggregation
along the temporal axis in the statistics pooling layer. In the case of frame-level
MMD distance, the temporal axis is flattened to transform 3D array into 2D array
for computing MMD distance.

78

Figure 6.3: T-SNE plots of the hidden activations at the convolutional layers of
the x-vector network in Table 3.1. The orange dots correspond to the data from
the source-domain (SRE04–SRE10). The blue dots correspond to the data from the
target-dominance (SRE18 evaluation set.).

79

ReLU

BN

Conv

ReLU

BN

Conv

Auxiliary	BN

Standard	BN One	Aux.	BN

ReLU

BN

Conv

Auxiliary	BN2 Auxiliary	BN1

Two	Aux.	BNs
Figure 6.4: “One Aux. BN” means that the batch statistics of the source- and
target-domains are computed separately. In the case of “Two Aux. BNs”, we further
divided the mini-batch into clean source-domain data, clean target-domain data, and
augmented data when computing the mini-batch statistics. The superscripts “s” and
“t” stand for source- and target-domains, respectively.

80

Chapter 7

LEARNING MIXTURE REPRESENTATION FOR DEEP

SPEAKER EMBEDDING

How to effectively convert a sequence of variable length frame-level features to a

fixed-dimension representation has always been a research focus in speaker recogni-

tion. In the x-vector network, the conversion is implemented by concatenating the

mean and standard deviation of a sequence of frame-level features. However, mean

and standard deviation are limited statistics for describing an acoustic sequence even

with powerful feature extractors such as convolutional neural networks. In this chap-

ter, we propose a novel statistics pooling method that can produce more descriptive

statistics through a mixture representation. Applying the proposed mixture represen-

tation pooling (MRP) to the VOiCES19 dataset, we found that the MRP improves the

robustness of speaker embeddings against distracting noise and room reverberation.

7.1 Statistics Pooling in Deep Speaker Embedding Systems

The process that converts an acoustic sequence to a fixed-dimensional representation

is referred to as statistics pooling in the literature [5]. Given a sequence of frame-

level features {ht}Tt=1, a statistics pooling layer computes the mean µ and standard

81

deviation σ over {ht}Tt=1:

µ =
1

T

T∑
t=1

ht (7.1)

σ =

√√√√ 1

T
Diag

(
T∑
t=1

hth
T
t − µµT

)
, (7.2)

where Diag(A) means the diagonal of A and the square root is applied element-

wise. The utterance-level representation x is obtained by concatenating the mean

and standard deviation:

x = CONCAT(µ,σ) (7.3)

In [6, 80], the authors argued that each frame should not be treated equally when

computing the statistics for an input sequence. They proposed to use an attention

mechanism to calculating the score(ht,v) for each frame, where v is an attention

vector and score(., .) is a score function. A score function parameterized by a single-

layer neural network was used:

score(ht,v) = vTf(Wht + b), (7.4)

where f(.) is a non-linear activation function. The score is normalized across frames

using a softmax function:

αt =
exp (score(ht,v))∑T
t=1 exp (score(ht,v))

. (7.5)

82

The normalized scores are used to weight each frame:

µ =
T∑
t=1

αtht (7.6)

σ =

√√√√Diag

(
T∑
t=1

αthth
T
t − µµT

)
. (7.7)

Some researchers conjecture that vowels may have higher αt because vowels are gen-

erally more speaker discriminative [81]. Other researchers suggest that αt merely

differentiates speech and non-speech frames [6]. We refer to this statistics pooling as

attentive statistics pooling (ASP) in the rest of the chapter. The attentive statistics

pooling is further extended to multi-head attention in [6], where multiple attention

heads are used to weight each frame to produce multiple means and standard devia-

tions for an input sequence.

Suppose each attention head k is parameterized by vk, where k = 1, . . . , K. Then

the attention scores for each head can be written as:

score(ht,vk) = vT
k f(Wht + b), (7.8)

where vk is the attention vector for head k. The normalized scores are obtained by:

αt,k =
exp (score(ht,vk))∑T
t=1 exp (score(ht,vk))

. (7.9)

The normalized scores are used to weight the frame-level features:

µk =
T∑
t=1

αt,kht (7.10)

σk =

√√√√Diag

(
T∑
t=1

αt,khth
T
t − µµT

)
. (7.11)

83

The utterance-level representation x is obtained by concatenating the means and

standard deviations from all attention heads:

x = CONCAT (µ1,σ1, . . . ,µK ,σK) . (7.12)

A regularization term was also introduced to prevent the attention heads from learning

the same information [6]. In [82], the idea is further extended to the frequency axis.

Instead of weighting frames alone, the authors proposed to weight both the frames

and the frequency bins simultaneously.

Although attentive statistics pooling shows promising results, we believe that

weighting frame-level features is not enough to produce ideal speaker representation.

We believe that the statistics pooling layer needs to produce a good statistical sum-

mary of the frame-level features. However, means and standard deviations are limited

statistics for summarizing a distribution. Because mixture models are more powerful

models to capture the underlying distribution, we propose to incorporate mixture

representation into the statistics pooling layer. Although the attention mechanism

in [6] can produce multiple means and standard deviations for an input sequence, it

does not produce a valid mixture representation. A valid mixture model requires the

probability mass sums to 1 across all mixture assignments for the same input. There

is no mechanism in [6] to enforce this requirement. Therefore, the multiple attention

heads merely increase the number of parameters in the network without producing

a richer representation from a statistical point of view. Instead, our method explic-

itly uses an attention mechanism to produce valid mixture assignments, from which

the means and standard deviations are computed just like the M-step in Gaussian

mixture models.

Work similar to ours was proposed in [83], where a dictionary of centers are learned

from data and the center assignments are computed based on the Euclidean distances

between frame-level features and the centers. There are two key differences between

84

our method and that of [83]. First, unlike [83], our method does not explicitly use

the centers to compute the assignments; instead, we use an attention mechanism to

produce mixture assignments. Because the score function in the attention mechanism

is more general than Euclidean distances, our method can have more desirable mixture

assignments. Second, the means and standard deviations are computed based on the

sufficient statistics as in the EM for GMMs, which makes our multi-head attention to

have a probabilistic interpretation.

7.2 Statistics Pooling with Mixture Representation

Gaussian mixture models (GMMs), which are exemplified by the GMM-HMM in ASR

and the i-vectors in speak recognition [8], are very popular in the speech community

to model complex distributions. A GMM is typically trained by the EM algorithm

that alternates between the E-step and the M-step [12]. Assume that the mixture

assignments of frame ht are αt,k, where k = 1, . . . , K; then the parameters of each

mixture component can be computed by:

Nk =
T∑
t=1

αt,k (7.13)

µk =
1

Nk

T∑
t=1

αt,kht (7.14)

σk =

√√√√Diag

(
1

Nk

T∑
t=1

αt,k (ht − µk) (ht − µk)
T

)
. (7.15)

The attention scores are still produced by the score function in Eq. 7.8. However, the

scores are normalized across the attention heads:

αt,k =
exp (score(ht,vk))∑K
k=1 exp (score(ht,vk))

. (7.16)

85

The normalized scores are used to compute the means and standard deviations as in

Eqs. 7.13–7.15. The interpretation of Eq. 7.16 is totally different from that of Eq. 7.9.

The αt,k in Eq. 7.16 is similar to the mixture assignments in Gaussian mixture models,

while αt,k in Eq. 7.9 acts as a frames selector without probabilistic interpretation. We

refer to this statistics pooling method as mixture representation pooling (MRP) in

the rest of the chapter.

Table 7.1: Systems performance on VoxCeleb1, VOiCES19-dev, and VOiCES19-eval.
For VoxCeleb1, we used cosine scoring. For VOiCES19-dev and VOiCES19-eval, we
used a PLDA backend.

VoxCeleb1

Model Pooling Method EER(%) minDCF

X-vector network Mean & STD 2.14 0.197

Wide x-vector network Mean & STD 2.03 0.219

Densenet121 Mean & STD 1.37 0.156

Densenet121 ASP 1.22 0.150

Densenet121 MRP 1.10 0.131

VOiCES19-dev VOiCES19-eval

Model Pooling Method EER(%) minDCF EER(%) minDCF

X-vector network Mean & STD 2.66 0.300 6.98 0.520

Wide x-vector network Mean & STD 2.65 0.294 6.62 0.503

Densenet121 Mean & STD 1.53 0.222 5.53 0.415

Densenet121 ASP 1.84 0.197 5.20 0.402

Densenet121 MRP 1.65 0.184 4.77 0.390

86

Table 7.2: Performance of attentive statistics pooling (ASP) and our proposed method
(MRP) with different numbers of attention heads using Densenet121 on VOiCES19-
eval.

EER(%) minDCF

of Heads ASP MRP ASP MRP

1 5.20 5.53 0.402 0.415

2 5.50 4.86 0.428 0.397

3 5.69 4.77 0.442 0.390

4 5.77 5.20 0.453 0.404

5 6.00 5.73 0.430 0.413

7.3 Experiments

7.3.1 Data Preparation

The training data includes the VoxCeleb1 development set and the VoxCeleb2 devel-

opment set [84,85]. We followed the data augmentation strategy in the Kaldi SRE16

receipt. The training data were augmented by adding noise, music, reverb, and babble

to the original speech files in the datasets. After filtering out the utterances shorter

than 400-ms and the speakers with less than 8 utterances, we are left with 7,302

speakers. We used the filter bank feature implemented in Kaldi. Mean normalization

was applied to the filter-bank features using a 3-second sliding window. Non-speech

frames were removed using Kaldi’s energy-based voice activity detector.

7.3.2 DNN Architecture and Training

We experimented with three different networks, namely, the standard x-vector net-

work as in [5], the wide x-vector network, and Densenet121 as mentioned in Section

3.3. The wide x-vector network has the same structure as the x-vector network except

that the channel size in each convolutional layer is doubled.

87

The networks were trained using additive margin softmax with a margin of 0.35.

The networks were optimized using stochastic gradient descent (SGD). For each mini-

batch, we randomly selected 64 utterances from the training set and then randomly

cropped 400-ms speech segments from these utterances. We define one epoch as

looping through 120,000 such segments. We trained the networks for 320 epochs.

The learning rate was set to 0.005 and was divided by 10 at epoch 80, epoch 120, and

epoch 160. All networks were implemented in PyTorch [67].

7.3.3 Backend Training

We used a standard backend comprised of linear discriminant analysis (LDA), length-

normalization, and probabilistic linear discriminant analysis (PLDA). We concate-

nated speech from the same video session in VoxCeleb1 and VoxCeleb2. These con-

catenated speech segments were used to train LDA and PLDA models. We used

adaptive score normalization [65] in all systems.

7.3.4 Evaluation

We evaluated the performance of various statistics pooling methods on the VoxCeleb1

test set, VOiCES19 development set, and VOiCES19 evaluation set [86]. We report

results in terms of equal error rate (EER) and minimum cost function (DCF) with

Ptarget = 0.01.

7.4 Results

7.4.1 Performance Comparison

We compared the proposed mixture representation pooling (MRP) with the attentive

statistics pooling (ASP) and the vanilla single mean and standard deviation pooling.

To make a fair comparison with vanilla single mean and standard deviation pooling, we

fixed the dimension of the concatenated means and standard deviations in Eq. 7.12. In

88

1 2 3 4 5

of Heads

4.8

5.0

5.2

5.4

5.6

5.8

6.0

E
E

R
(%

)
ASP
MRP

Figure 7.1: Line plots showing the EER of attentive statistics pooling (ASP) and the
proposed mixture representation pooling (MRP) with different numbers of attention
heads on VOiCES19-eval.

other words, increasing the number of attention heads would reduce the dimensionality

of the individual mean and standard deviation vectors.

The first three rows of Table 7.1 show the results of the x-vector network, the wide

x-vector network, and Densenet121. Our Densenet121 outperforms the x-vector net-

work and the wide x-vector network significantly. For VoxCeleb1, Densenet121 almost

reduces the EER by half when compared with the x-vector network. What’s more,

our Densenet121 requires even lower flops than the x-vector network, as shown in Ta-

ble 3.3. Although the wide x-vector network has more parameters than Densenet121

and the x-vector network, the former only has very small performance gain over the

89

x-vector network, which suggests that increasing the depth is more beneficial than

increasing the number of channels.

The last two rows of Table 7.1 show the results of our Densenet121 with attentive

statistics pooling and the proposed method, respectively. The numbers of heads were

set to 1 and 3, respectively, as these hyper-parameters lead to the best performance in

the two systems. The proposed method outperforms the attentive statistics pooling

in all of the experiments.

7.4.2 Effect of the Number of Heads

We investigated the effect of the number of attention heads on speaker verification per-

formance. We fixed the dimension of the concatenated means and standard deviations

in Eq. 7.12 to prevent the model from gaining the benefit of having more parameters.

The results are shown in Table 7.2. MRP with the number of heads equal to 1 is

just the vanilla mean and standard deviation pooling. As can be observed from Ta-

ble 7.2, the number of heads influences the performance quite significantly. Actually,

attentive statistics pooling with 5 heads performs even worse than the model without

any attention. The performance of the proposed method degrades when the number

of heads increases beyond 3, but it is still better than the vanilla single mean and

standard deviation pooling.

To gain some insights into how the attention mechanism assigns mixture compo-

nents, we plotted the mixture assignments for a speech segment from the VoxCeleb1

test set in Fig. 7.2. For ease of visualization, we assume that each frame is assigned to

the attention head (mixture) with the highest probability in Eq. 7.16. The first row

and the second row of Fig. 7.2 show the MRP with three heads and five heads, respec-

tively. There are more assignment transitions in the five-head model. Compared with

the model with three heads, the five heads model has more assignment transitions

occurred in short periods. This is undesirable, as the adjacent frames are typically

similar to each other and should be assigned to the same mixture, the assignment

90

transitions should not occur frequently.

91

(A) MRP with three heads0 1 2

Frame

(B) MRP with five heads0 1 2 3 4

Figure 7.2: The mixture assignments across frames on a speech segment chosen from
the VoxCeleb test set. Different colors represent different mixture components in the
mixture representation pooling (MRP). For ease of interpretation, the assignments
are converted to one-hot vectors by setting the maximum assignment probability in
Eq. 7.16 to 1 and the rest to 0.

92

Chapter 8

TOWARDS END-TO-END SPEAKER VERIFICATION

8.1 The Role of Backend PLDA Model

It is worth noting that the x-vector system is not an end-to-end system. After the

network is trained, the embeddings are extracted from an utterance-level layer using

full-length utterances as inputs. Because embeddings are not good enough for verifi-

cation, a backend model is trained on these embeddings and used for verification. The

reason for the extra backend model is that the x-vector network is trained on short

speech segments only, which results in poor performance on long speech segments. A

backend model trained on speaker embeddings extracted from long speech segments

can mitigate this problem. In other words, the backend model makes the SV system

robust to the duration mismatch. In this section, we propose an end-to-end SV sys-

tem without a backend model, which is achieved by using the three strategies that

are designed to make speaker embeddings robust to duration mismatch.

8.2 Two-Stage Approach in State-of-the-art SV Systems

An end-to-end system using only an integrated neural network is attractive in several

aspects. Firstly, hyperparameter optimization is easier in an end-to-end system. In

an x-vector system, the DNN and the backend are optimized separately, which com-

plicates the hyperparameter search as validation has to be done for the network and

backend separately. Secondly, although training the backend itself is fairly fast when

compared with training the network, the extraction process can be time-consuming.

Besides, it is not clear which part of the dataset should be used for backend training.

93

Thirdly, an end-to-end system is easier to deploy and debug.

In this chapter, we propose three modifications to improve DNN embeddings’

discriminative ability without relying on a backend. Firstly, instead of randomly

sampling a single segment out of an utterance, multiple segments are sampled from

an utterance and spliced together to form a long training sample. Secondly, we intro-

duce additional convolutional layers as a learnable pooling layer to save computation

cost by reducing temporal resolution, which is especially desirable for working with

long speech segments. Thirdly, we introduce a mask-pooling layer as a special form

of data augmentation inside the network. The mask-pooling layer produces multiple

utterance-level representations out of a single speech segment by randomly masking

out frame-level activations and then computing the temporal statistics of the remain-

ing activations across the temporal axis.

8.3 Proposed End-to-end Approach

In x-vector systems, the segments for training the network are densely sampled from

the original utterances. The sampled segments typically range from 200 ms to 400

ms, which are much shorter than the original utterances. As a result, the embeddings

may not be good representations of long utterances. A simple solution is to use

longer segments or directly use the original utterances for training. This strategy,

however, also has problems. Because the training segments are sampled from the

original utterances, long segments have less sample diversity than short segments.

Training with long segments alone may lead to overfitting. Another disadvantage is

that long segments require more computation and GPU memory. Ideally, we want to

have both short and long segments for training. This approach, however, will lead

to a substantial computational burden. We propose three techniques that reduce the

duration discrepancy between the training and test data while maintaining the sample

diversity and computation cost at a reasonable level.

94

8.3.1 Splice Sampling

When training an x-vector network, one segment is sampled from one utterance. A

drawback of this sampling approach is that each training segment only comprises a

number of consecutive frames. A good speaker embedding should be able to exploit

speaker information across time. Therefore, we propose to sample several chunks of

non-consecutive segments from each training utterance and splice them together to

form a single training segment as shown in Fig. 8.1. This approach can diversify

training data when using long segments for training.

Frequency
bin

Time	axis

join join

Figure 8.1: Splice sampling on a spectrogram. Three chunks are taken out of the
spectrogram and spliced together to form a training segment.

8.3.2 CNN Local Pooling

Subsampling operation, such as max-pooling or mean pooling, can significantly reduce

the computation cost of a CNN by decreasing the resolution of the input. In addition,

max-pooling or mean pooling introduces invariance to translation. Although transla-

tion invariance is not very important to speaker embedding as the statistics pooling

layer computes the mean and variance across the time axis, the computational reduc-

95

tion is still very attractive. In this chapter, we consider the pooling operation over

the time axis.

Denote I as the feature map to be input to a pooling layer. The output O of max

pooling takes the maximum value inside the kernel and move the kernel with stride

S:

O[i, t] = max
k=0,...,K−1

I[i, S × t+ k], (8.1)

where k indexes the elements inside the kernel, K is the length of the kernel, i is

the channel index, and t is the time index of the output. The mean pooling can be

described in a similar manner:

O[i, t] =
1

K

∑
k=0,...,K−1

I[i, S × t+ k]. (8.2)

It was demonstrated in [87] that the pooling operations in Eq. 8.1 and Eq. 8.2 can

be replaced by a convolutional layer with increased stride without loss in accuracy.

Given the input feature map I and the convolutional filter matrix W, the output of

the convolutional layer at channel j and frame t is

O[j, t] =
∑

k=0,...,K−1

∑
i

W[j, i] · I[i, S × t+ k], (8.3)

where j indexes the output channel and i indexes the input channel. Here we omit

the bias term for simplicity. We can see the similarity between the convolutional

layer and the pooling layer from the above equations. In fact, if we use a kernel

parameterized by 1/K with kernel size K and stride S, the convolutional layer would

act like mean pooling [87]. We adopt two 1D convolutional layers with kernel size 2

and stride 2 in our DNN as a way to reduce subsequent computation. The architecture

of our network is summarized in Table 3.1. Because the two convolutional layers with

stride 2 reduce the temporal resolution by half for the following convolutional layers,

96

for an input sequence of size 23 × 3000, our network requires only 4.3 GMac (Giga

multiply–accumulate operations) to produce an embedding as compared to 8.0 GMac

in the original x-vector network.

8.3.3 Mask-pooling Layer

Besides high computational cost, another disadvantage of using long training segments

is the lack of sample diversity. We propose a novel mask-pooling layer that augments

training data without significantly increasing computational cost. Assume that the

activation at the last convolutional layer (after flattening) is zt, where t is a time

index. The mask-pooling layer involves the following operations. First a mask rt is

sampled from a Bernoulli distribution parameterized by p. Then we multiply zt with

rt to decide whether we keep this frame or not. The resulting frames are denoted as

{ẑt}. Finally, the utterance-level representation x is obtained by concatenating the

mean and the standard deviation of {ẑt}:

rt ∼ Bernoulli(p), (8.4)

ẑt = rt · zt, (8.5)

x = Concat(MEAN({ẑt}), STD({ẑt}). (8.6)

Here MEAN(·) and STD(·) are operated on non-zero elements in {ẑt}. We denote

Eq. 8.4–8.6 in whole as:

x = MaskPooling({zt}, p). (8.7)

The above operations are very similar to Dropout [88]. However, unlike Dropout,

we can applied the operations I times with a different pi sampled from a uniform

distribution over 0 to 1:

xi = MaskPooling({zt}, pi), i = 1, . . . , I. (8.8)

97

Suppose f(·) represents the operations of the fully-connected layers and the softmax

layer. Assume that the loss function is L(·). Then the loss for these I copies of the

augmented data is:

I∑
i=1

L(f(xi), y), (8.9)

where y is the label of all xi. Different from the data augmentation methods in [5],

where noise and reverberation were added to the waveforms, our mask-pooling layer

operates on the internal representation of the network. In terms of the augmentation

effect, mask-pooling produces utterance-level representations with different durations.

It is similar to the cutout and spectrum augmentation [89,90] in that the augmented

sampled are produced by withholding information. An important advantage of the

proposed method over cutout and spectrum augmentation is that for I augmented

samples, there is only one forward propagation through the convolutional layers and

I forward propagations through the fully-connected layers.

8.4 Experiments

8.4.1 Data Preparation

The training data include NIST SRE 2004–2010 (SRE04–10 in short) and all of

Switchboard data. We followed the data augmentation strategy in the Kaldi SRE16

receipt [5, 91]. The training data were augmented by adding noise, music, reverb,

and babble to the original speech files in the datasets. After filtering out utterances

shorter than 500 ms and speakers with less than 8 utterances, we are left with 4,808

speakers. 23-dimensional Mel-frequency cepstral coefficients (MFCC) were computed

from 8kHz speech files. Mean normalization was applied to the MFCC using a 3-

second sliding window. Non-speech frames were removed using Kaldi’s energy-based

voice activity detector.

98

8.4.2 Training of DNNs and PLDA

For fair comparisons, all systems under evaluation were trained to minimize the ad-

ditive margin loss using an Adam optimizer [74] with a learning rate set to 0.001. In

the x-vector systems, embeddings were extracted from the affine transform layer after

statistics pooling. For the proposed system, the embeddings were extracted from the

last fully-connected layer before computing log-softmax. We used a standard back-

end comprised of LDA, length-normalization, and PLDA. Both LDA and PLDA were

trained using embeddings extracted from full-length utterances. We used correlation

alignment [47] for domain adaptation before presenting the embeddings to the PLDA

backend. For the end-to-end systems, we applied a whitening transformation to the

embeddings of enrollment data and the test data before cosine-distance scoring. The

whitening matrix was estimated using target-domain data.

8.4.3 Evaluation

All systems were evaluated on the evaluation sets of SRE 2016 and 2018. The

SRE16 evaluation set is composed of Tagalog and Cantonese telephone conversations.

For SRE18, we only conducted evaluations on the CMN2 portion, which consists of

Tunisian Arabic conversations. Both evaluations aim to evaluate the robustness of

systems against noise, channel, and language mismatches. We report results in equal

error rate (EER) and minimum cost function (DCF). Both metrics are obtained using

the scoring tools provided by NIST.

8.5 Results

We present the performance of the proposed method and x-vector systems on SRE16

and SRE18. We conducted experiments for three different DNNs, namely Xvec short,

Xvec long, and Our Xvec. Xvec short refers to the x-vector network trained on

200ms-400ms chunks. Xvec long refers to the x-vector network trained on 1200ms

99

chunks. Our Xvec refers to the x-vector network with the proposed three modifi-

cations. We also compared systems using the PLDA backend with systems directly

using cosine similarity.

As can be seen from Table 8.5, when directly using cosine similarity for scoring,

Xvec long outperforms Xvec short. However, with the PLDA backend, it is the other

way around. Still, the best performance for x-vector systems is obtained by using

short training segments with a PLDA backend. The proposed approach outperforms

the best x-vector system with simply cosine-distance scoring. Another interesting

finding is that the proposed approach does not benefit from the PLDA backend as

the x-vector system does, which suggests that a backend is no longer necessary.

Table 8.1: Performances of x-vector systems and the proposed approach with different
scoring methods.

SRE16 SRE18

Front-end Scoring EER DCF EER DCF

Xvec short PLDA 8.34 0.593 8.73 0.556

Xvec long PLDA 8.96 0.593 8.83 0.570

Our Xvec PLDA 8.90 0.600 8.91 0.598

Xvec short Cosine 10.57 0.674 11.98 0.681

Xvec long Cosine 9.88 0.653 11.12 0.643

Our Xvec Cosine 8.26 0.583 8.65 0.551

100

Co
nv
s

Co
py

Co
py

M
as
k

St
at
s	

po
ol
in
g

St
at
s	

po
ol
in
g

pr
ed

ict
io
n

La
be

ls

Ti
m
e	
ax
is

Fr
eq

ue
nc
y	

bi
n

pr
ed

ict
io
n

M
as
k

Ti
m
e	
ax
is

Ch
an
ne

ls

Sp
ec
tro

gr
am

Fe
at
ur
e	
m
ap

Fe
at
ur
e	
m
ap

M
as
ke
d	
Fe
at
ur
e	
m
ap

Em
be

dd
in
g

Cl
as
s	p

ro
ba
bi
lit
ie
s

F
ig

u
re

8.
2:

T
h
e

x
-v

ec
to

r
n
et

w
or

k
w

it
h

th
e

p
ro

p
os

ed
m

as
k
-p

o
ol

in
g

la
ye

r
op

er
at

es
on

a
sp

ec
tr

og
ra

m
.

101

Chapter 9

CONCLUSIONS AND FUTURE WORKS

This thesis proposed several solutions for domain adaptation, end-to-end speaker

verification, and efficient statistics pooling. For domain adaptation, Chapter 6 presents

a framework for adapting DNN speaker embeddings across languages. We studied all

three individual components of our framework (multi-level adaptation, separate batch

normalization, and consistency regularization) in detail and found that combining

them achieves the best result. This thesis also studied the effect of the kernel param-

eters in MMD and found that the multi-kernel approach, together with the median

heuristic, gives the best result. As the proposed framework does not make specific

assumptions about the characteristics of domain mismatch, it should be applicable

to domain mismatch beyond the language mismatch studied in this thesis. It would

be interesting to investigate other factors such as noise- and channel-induced domain

differences in the future.

For end-to-end speaker verification, Chapter 8 shows that with three modifications

to the x-vector system, it is possible to train a state-of-the-art speaker embedding

system without a backend. The proposed methods not only eliminate the need for

the complicated backend but also reduce the x-vector extraction time to about half.

However, it is still not very clear how the duration mismatch of training and test

speech will affect the speaker embeddings. In the future, we will investigate this

problem in depth.

For efficient statistics pooling, Chapter 7 presents a new way of performing statis-

tics pooling for deep speaker embeddings. The method is inspired by Gaussian mix-

ture models and attention mechanisms. Chapter 7 introduces the concept of mixture

102

representations into statistics pooling by using multi-head attention in a novel way.

The experimental results show that the mixture representation pooling is more ef-

fective than the previously proposed attentive statistics pooling. More importantly,

the proposed method is less prone to overfitting when the number of heads increases.

In future work, we will explore how to regularize the attention mechanism when the

number of attention heads increases further.

103

BIBLIOGRAPHY

[1] J. Rohdin, T. Stafylakis, A. Silnova, H. Zeinali, L. Burget, and O. Plchot,

“Speaker verification using end-to-end adversarial language adaptation,” in Proc.

ICASSP, pp. 6006–6010, 2019.

[2] O. Plchot, P. Matějka, A. Silnova, O. Novotný, M. D. Sánchez, J. Rohdin,

O. Glembek, N. Brümmer, A. Swart, J. Jorŕın-Prieto, P. Garćıa, L. Buera,

P. Kenny, J. Alam, and G. Bhattacharya, “Analysis and description of ABC

submission to NIST SRE 2016,” in Proc. Interspeech, pp. 1348–1352, 2017.

[3] S. B. David, T. Lu, T. Luu, and D. Pál, “Impossibility theorems for domain

adaptation,” in Proc. the Thirteenth International Conference on Artificial In-

telligence and Statistics, pp. 129–136, 2010.

[4] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation: Learning

bounds and algorithms,” arXiv preprint arXiv:0902.3430, 2009.

[5] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors:

Robust DNN embeddings for speaker recognition,” in Proc. ICASSP, pp. 5329–

5333, 2018.

[6] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive speaker embed-

dings for text-independent speaker verification,” in Proc. Interspeech, pp. 3573–

3577, 2018.

[7] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, “A kernel

104

method for the two-sample-problem,” in Proc. Advances in Neural Information

Processing Systems, pp. 513–520, 2007.

[8] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end fac-

tor analysis for speaker verification,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[9] Y. Jiang, K. A. Lee, and L. Wang, “PLDA in the i-supervector space for text-

independent speaker verification,” EURASIP Journal on Audio, Speech, and Mu-

sic Processing, vol. 2014, no. 1, p. 29, 2014.

[10] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length normal-

ization in speaker recognition systems,” in Proc. Interspeech, pp. 249–252, 2011.

[11] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Odyssey,

p. 14, 2010.

[12] C. Bishop, Pattern Recognition and Machine Learning. Springer, New York,

2007.

[13] O. Glembek, J. Ma, P. Matejka, B. Zhang, O. Plchot, L. Burget, and S. Mat-

soukas, “Domain adaptation via within-class covariance correction in i-vector

based speaker recognition systems,” in Proc. ICASSP, pp. 4032–4036, 2014.

[14] P. Li, Y. Fu, U. Mohammed, J. Elder, and S. Prince, “Probabilistic models for

inference about identity,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, no. 1, pp. 144–157, 2012.

[15] P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alam, and P. Dumouchel, “PLDA for

speaker verification with utterances of arbitrary duration,” in Proc. ICASSP,

pp. 7649–7653, 2013.

105

[16] M.-W. Mak, X. Pang, and J.-T. Chien, “Mixture of PLDA for noise robust i-

vector speaker verification,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 24, no. 1, pp. 130–142, 2015.

[17] M.-W. Mak and J.-T. Chien, “Machine learning for speaker recognition,” Cam-

bridge University Press, 2020.

[18] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez,

“Deep neural networks for small footprint text-dependent speaker verification,”

in Proc. ICASSP, pp. 4052–4056, 2014.

[19] C. Zhang and K. Koishida, “End-to-end text-independent speaker verification

with triplet loss on short utterances.,” in Proc. Interspeech, pp. 1487–1491, 2017.

[20] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “BUT system

description to voxceleb speaker recognition challenge 2019,” arXiv preprint

arXiv:1910.12592, 2019.

[21] W. Lin, M. W. Mak, and L. Yi, “Learning mixture representation for deep

speaker embedding using attention,” in Proc. Odyssey 2020 The Speaker and

Language Recognition Workshop, pp. 210–214, 2020.

[22] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network archi-

tecture for efficient modeling of long temporal contexts,” in Proc. Interspeech,

pp. 3214–3218, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

106

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proc. Computer Vision and Pattern Recogni-

tion (CVPR), pp. 4700–4708, 2017.

[25] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face

verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[26] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker verification,”

arXiv preprint arXiv:1904.03479, 2019.

[27] D. Garcia-Romero and A. McCree, “Supervised domain adaptation for i-vector

based speaker recognition,” in Proc. ICASSP, pp. 4047–4051, 2014.

[28] D. Garcia-Romero, A. McCree, S. Shum, N. Brummer, and C. Vaquero, “Unsu-

pervised domain adaptation for i-vector speaker recognition,” in Proc. Odyssey,

pp. 260–264, 2014.

[29] J. Villalba and E. Lleida, “Bayesian adaptation of PLDA based speaker recog-

nition to domains with scarce development data,” in Proc. Odyssey, pp. 47–54,

2012.

[30] H. Aronowitz, “Inter dataset variability compensation for speaker recognition,”

in Proc. ICASSP, pp. 4002–4006, 2014.

[31] M. McLaren and D. Van Leeuwen, “Source-normalized LDA for robust speaker

recognition using i-vectors from multiple speech sources,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 20, no. 3, pp. 755–766, 2012.

[32] A. Sholokhov, T. Kinnunen, and S. Cumani, “Discriminative multi-domain

PLDA for speaker verification,” in Proc. ICASSP, pp. 5030–5034, 2016.

107

[33] S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. Greenberg, D. Reynolds, E. Singer,

L. Mason, and J. Hernandez-Cordero, “The 2016 NIST speaker recognition eval-

uation,” in Proc. Interspeech, pp. 1353–1357, 2017.

[34] K. Jones, S. Strassel, K. Walker, D. Graff, and J. Wright, “Call My Net corpus:

A multilingual corpus for evaluation of speaker recognition technology,” in Proc.

Interspeech, pp. 2621–2624, 2017.

[35] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[36] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2012.

[37] J. Villalba and E. Lleida, “Unsupervised adaptation of PLDA by using variational

bayes methods,” in Proc. ICASSP, pp. 744–748, 2014.

[38] S. H. Shum, D. A. Reynolds, D. Garcia-Romero, and A. McCree, “Unsupervised

clustering approaches for domain adaptation in speaker recognition systems,” in

Proc. Odyssey, pp. 265–272, 2014.

[39] L. Li and M. Mak, “Unsupervised domain adaptation for gender-aware PLDA

mixture models,” in Proc. ICASSP, 2018.

[40] G. Csurka, “Domain adaptation for visual applications: A comprehensive sur-

vey,” arXiv preprint arXiv:1702.05374, 2017.

[41] H. Aronowitz et al., “Compensating inter-dataset variability in PLDA hyper-

parameters for robust speaker recognition,” in Proc. Odyssey, pp. 282–286, 2014.

[42] H. Aronowitz, “Inter dataset variability modeling for speaker recognition,” in

Proc. ICASSP, pp. 5400–5404, 2017.

108

[43] K. A. Lee and et al, “The I4U mega fusion and collaboration for NIST speaker

recognition evaluation 2016,” in Proc. Interspeech, pp. 1328–1332, 2017.

[44] Q. Wang, W. Rao, S. Sun, L. Xie, E. S. Chng, and H. Li, “Unsupervised do-

main adaptation via domain adversarial training for speaker recognition,” in

Proc. IEEE International Conference on Acoustics, Speech and Signal Process-

ing, pp. 4889–4893, 2018.

[45] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,

M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-

works,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030,

2016.

[46] A. Solomonoff, C. Quillen, and W. M. Campbell, “Channel compensation for

SVM speaker recognition.,” in Proc. Odyssey, vol. 4, pp. 219–226, 2004.

[47] B. Sun, J. Feng, and K. Saenko, “Correlation alignment for unsupervised domain

adaptation,” in Domain Adaptation in Computer Vision Applications, pp. 153–

171, Springer, 2017.

[48] K. A. Lee, Q. Wang, and T. Koshinaka, “The CORAL+ algorithm for unsuper-

vised domain adaptation of PLDA,” in Proc. ICASSP, pp. 5821–5825, 2019.

[49] Y. Tu, M. W. Mak, and J. T. Chien, “Variational domain adversarial learning

for speaker verification,” Proc. Interspeech 2019, pp. 4315–4319, 2019.

[50] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[51] Y. Z. Tu, M. W. Mak, and J. T. Chien, “Information maximized variational

109

domain adversarial learning for speaker verification,” Proc. ICASSP, pp. 6444–

6448, 2020.

[52] S. Gao, R. Brekelmans, G. V. Steeg, and A. Galstyan, “Auto-encoding total

correlation explanation,” arXiv preprint arXiv:1802.05822, 2018.

[53] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint

arXiv:1701.07875, 2017.

[54] G. Bhattacharya, J. Monteiro, J. Alam, and P. Kenny, “Generative adversarial

speaker embedding networks for domain robust end-to-end speaker verification,”

in Proc. ICASSP, pp. 6226–6230, 2019.

[55] P. Germain, A. Habrard, F. Laviolette, and E. Morvant, “A PAC-Bayesian ap-

proach for domain adaptation with specialization to linear classifiers,” in Proc.

International Conference on Machine Learning, pp. 738–746, 2013.

[56] H.-Y. Chen and J.-T. Chien, “Deep semi-supervised learning for domain adap-

tation,” in IEEE International Workshop on Machine Learning for Signal Pro-

cessing (MLSP), pp. 1–6, 2015.

[57] W. W. Lin, M. W. Mak, L. X. Li, and J. T. Chien, “Reducing domain mismatch

by maximum mean discrepancy based autoencoders.,” in Odyssey, pp. 162–167,

2018.

[58] Y. Li, K. Swersky, and R. Zemel, “Generative moment matching networks,” in

Proc. International Conference on Machine Learning, pp. 1718–1727, 2015.

[59] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features

with deep adaptation networks,” in Proc. International Conference on Machine

Learning, pp. 97–105, 2015.

110

[60] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-

posing robust features with denoising autoencoders,” in Proceedings of the 25th

international conference on Machine learning, pp. 1096–1103, ACM, 2008.

[61] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning ap-

proach for deep face recognition,” in Proc. European Conference on Computer

Vision, pp. 499–515, Springer, 2016.

[62] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” in Proc. the IEEE conference on computer vision

and pattern recognition, pp. 815–823, 2015.

[63] M.-W. Mak and H.-B. Yu, “A study of voice activity detection techniques for

NIST speaker recognition evaluations,” Computer Speech & Language, vol. 28,

no. 1, pp. 295–313, 2014.

[64] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verification,”

in Proc. Odyssey, 2001.

[65] P. Matejka, O. Novotnỳ, O. Plchot, L. Burget, and J. Cernockỳ, “Analysis of

score normalization in multilingual speaker recognition,” in Proc. Interspeech,

2017.

[66] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “PyTorch: An imperative style, high-

performance deep learning library,” in Advances in Neural Information Process-

ing Systems, pp. 8024–8035, 2019.

111

[68] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale

optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[69] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT press

Cambridge, 2016.

[70] Y. Bengio et al., “Learning deep architectures for AI,” Foundations and Trends R©

in Machine Learning, 2009.

[71] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and

singular value decomposition,” Biological cybernetics, vol. 59, no. 4-5, pp. 291–

294, 1988.

[72] Q. Xie, Z. Dai, E. Hovy, M. T. Luong, and Q. V. Le, “Unsupervised data aug-

mentation,” arXiv preprint arXiv:1904.12848, 2019.

[73] C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille, and Q. V. Le, “Adversarial examples

improve image recognition,” arXiv preprint arXiv:1911.09665, 2019.

[74] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[75] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on

data augmentation of reverberant speech for robust speech recognition,” in Proc.

ICASSP, pp. 5220–5224, 2017.

[76] G. Bhattacharya, J. Alam, and P. Kenny, “Adapting end-to-end neural speaker

verification to new languages and recording conditions with adversarial training,”

in Proc. ICASSP, pp. 6041–6045, 2019.

[77] Y. Wu and K. He, “Group normalization,” in Proceedings of the European Con-

ference on Computer Vision (ECCV), pp. 3–19, 2018.

112

[78] C. L. Li, W. C. Chang, Y. Cheng, Y. Yang, and B. Póczos, “MMD GAN: Towards

deeper understanding of moment matching network,” in Proc. Advances in Neural

Information Processing Systems, pp. 2200–2210, 2017.

[79] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola,

“A kernel statistical test of independence,” in Advances in Neural Information

Processing Systems, pp. 585–592, 2008.

[80] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling for deep

speaker embedding,” pp. 2252–2256, 2018.

[81] Q. Wang, K. Okabe, K. A. Lee, H. Yamamoto, and T. Koshinaka, “Attention

mechanism in speaker recognition: What does it learn in deep speaker embed-

ding?,” in IEEE Spoken Language Technology Workshop (SLT), pp. 1052–1059,

IEEE, 2018.

[82] X. Miao, I. McLoughlin, and Y. Yan, “A new time-frequency attention mecha-

nism for TDNN and CNN-LSTM-TDNN, with application to language identifi-

cation,” Proc. Interspeech, pp. 4080–4084, 2019.

[83] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss function in

end-to-end speaker and language recognition system,” in Proc. Odyssey, pp. 74–

81, 2018.

[84] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker

identification dataset,” in Interspeech, 2017.

[85] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recogni-

tion,” in Interspeech, 2018.

113

[86] C. Richey, M. A. Barrios, Z. Armstrong, C. Bartels, H. Franco, M. Gracia-

rena, A. Lawson, M. K. Nandwana, A. Stauffer, J. van Hout, et al., “Voices

obscured in complex environmental settings (VOiCES) corpus,” arXiv preprint

arXiv:1804.05053, 2018.

[87] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for sim-

plicity: The all convolutional net,” in ICLR (workshop track), 2015.

[88] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[89] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural

networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[90] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.

Le, “Specaugment: A simple data augmentation method for automatic speech

recognition,” arXiv preprint arXiv:1904.08779, 2019.

[91] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-

nemann, P. Motlicek, Y. Qian, P. Schwarz, et al., “The Kaldi speech recognition

toolkit,” in Proc. Workshop on Automatic Speech Recognition and Understand-

ing, 2011.

	List of Figures
	List of Tables
	List of Abbreviations
	Author's Publications
	Background
	Speaker Recognition
	Evaluation Metrics for Speaker Verification
	Key Issues in Speaker Recognition
	Key Contributions

	The Classic i-vector/PLDA Framework
	I-vector
	Generative Model
	I-vector Extraction
	I-vector Pre-processing

	PLDA Modeling
	Coupling between I-Vector Extraction and PLDA Modeling
	EM Formulations for PLDA with Uncertainty Propagation
	E-Step
	M-Step

	PLDA Scoring with UP

	Deep Neural Networks for Speaker Embedding
	X-vector Network
	Residual Networks
	DenseNets
	Additive Margin Softmax

	Domain Adaptation for Speaker Recognition
	Domain Adaptation as a Robust Speaker Verification Problem
	Domain Mismatch in Speaker Recognition
	Domain Adaptation Methods
	Backend Domain Adaptation
	DNN Domain Adaptation

	Multi-source MMD-Based Domain Adaptation
	Limitation of IDVC
	Maximum Mean Discrepancy Autoencoder
	Maximum Mean Discrepancy
	Domain-invariant Autoencoder
	Nuisance-attribute Autoencoder
	Semi-supervised Nuisance-attribute Networks

	Experimental Setup
	Speech Data and Acoustic Features
	I-vector Extraction and PLDA Model Training
	MMD Autoencoders and IDVC Training Details

	Results and Discussions
	General Performance Analysis
	Robustness to Unseen Domains
	Impact of the Hyperparameters
	Impact of Data Partition
	Combined with PLDA Model Interpolation
	Performance Analysis of Supervised DA
	Impacts of Supervised Loss Functions

	DNN Speaker Embedding Adaptation Using MMD
	Multi-level Adaptation
	Consistency Regularization Using MMD
	Auxiliary BN

	Experiments
	Data Preparation
	DNN and Backend Training
	Data Augmentation
	Evaluation

	Results
	Comparison with Other DNN Adaptations
	Comparison with Backend Adaptation
	Ablation Study of individual components
	Auxiliary Batch Normalization
	Influence of Network Architectures
	Influence of MMD Kernels

	Learning Mixture Representation for Deep Speaker Embedding
	Statistics Pooling in Deep Speaker Embedding Systems
	Statistics Pooling with Mixture Representation
	Experiments
	Data Preparation
	DNN Architecture and Training
	Backend Training
	Evaluation

	Results
	Performance Comparison
	Effect of the Number of Heads

	Towards End-to-end Speaker Verification
	The Role of Backend PLDA Model
	Two-Stage Approach in State-of-the-art SV Systems
	Proposed End-to-end Approach
	Splice Sampling
	CNN Local Pooling
	Mask-pooling Layer

	Experiments
	Data Preparation
	Training of DNNs and PLDA
	Evaluation

	Results

	Conclusions and Future Works
	Bibliography

