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Abstract 

 

This thesis is dedicated to the development of a general damage detection framework 

for nominally identical structures (NISs) rather than only a particular single structure. The 

developed damage detection framework is formulated in an unsupervised learning 

scheme, which only makes use of response measurements from undamaged structures. It 

consists of two phases: the baseline and inspection phases. 

In the baseline phase, historical response measurements from multiple nominally 

identically undamaged structures are utilized to establish a data-driven baseline model for 

representing healthy population features of all NISs. Three types of sparse Bayesian 

modelling approaches are proposed to deal with multiple sources of uncertainty in the 

measured responses, including measurement noise (intra-structure uncertainty) and 

structural variability in the materials and/or manufacturing processes (inter-structure 

uncertainty). The first modelling approach is introduced simply by pooling the inter-

structure and intra-structure uncertainties such that standard sparse Bayesian learning 

(SSBL) can be implemented to model the population features of NISs. In the second 

modelling approach, an extension to SSBL termed heteroscedastic sparse Bayesian 

learning (HSBL) is proposed to address heteroscedastic training data, resulting from the 

pooling of multiple sources of uncertainty. In the third modelling approach, another 

extension to SSBL termed panel sparse Bayesian learning (PSBL) is proposed, in which 



IV 

different sources of uncertainty can be modelled separately. Their performance is assessed 

in terms of three model quality indices, including the root mean square residual (RMSR), 

the mean standardized log loss (MSLL) and the sparsity ratio 𝒦.  

In the inspection phase, Bayesian residuals between new response measurements and 

population features predicted by the baseline model are examined for the identification 

of damage in NISs. Three categories of probabilistic diagnostic logics including 

frequentist null hypothesis significance testing (NHST), Bayesian point null hypothesis 

testing (PNHT), and the novel Bayesian NHST are compared in the capacities of the 

detection of damage, the quantification of damage extent, and the warning of diagnostic 

risk. The impact on structural damage diagnostics, of the three types of sparse Bayesian 

modelling approaches for constructing the baseline model in the baseline phase is 

investigated. The optimal baseline modelling approach and the optimal damage 

diagnostic logic are found. A case study of online condition assessment for railway wheels 

is conducted throughout this thesis to validate the feasibility and effectiveness of the 

proposed methods. 
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Chapter 1 

Introduction 

1.1 Research Motivation 

Modern society relies heavily on critical infrastructures such as airplanes, high-speed 

railways, high-rise buildings and long-span bridges. However, these infrastructures may 

deteriorate inevitably over time due to aging, and natural or man-made disasters such that 

damage accumulates throughout their service life, giving rise to increasing risk to people. 

Given the crucial importance of these infrastructures to the national economy and the 

people’s life, proper measures should be taken to ensure their operational safety while 

considering the budget constraint. 

In general, there exist three types of maintenance strategies to ensure infrastructure 

safety. In the reactive maintenance strategy, the concerned structure continues to operate 

until it fails and then is replaced. This maintenance strategy is obviously unacceptable 

when the life safety is of a big concern. The preventive maintenance strategy could be the 

most common practice to ensure infrastructure safety that is usually performed on a time 

or mileage basis. Yet, the preventive maintenance strategy depends heavily on expert 

knowledge and its drawbacks include: (1) the expert knowledge is subjective such that 

different engineers may make different judgments on the same structure; (2) potential 
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structural damage cannot be revealed in time before arriving at a scheduled maintenance 

cycle; (3) the preventive maintenance strategy combined with regular inspection is often 

time-consuming. The predictive maintenance strategy with the help of advanced sensing 

technologies allows for real-time monitoring of the concerned structure and thus it is 

advocated in recent years. However, the monitoring cost can be very expensive. The best 

choice of maintenance strategies is essentially a trade-off between life safety, technology 

feasibility and maintenance cost. 

With the fast development of cost-competitive sensing and data acquisition 

technologies, structural health monitoring enables a novel and viable means for real-time 

inspection and condition-based maintenance for crucial infrastructures. Structural health 

monitoring (SHM) refers to the process of implementing a damage detection and 

characterization strategy for these infrastructures (Farrar and Worden 2006, Worden et al. 

2007, Farrar et al. 2012). Damage is physically defined as changes to the material and/or 

geometric properties of a structure, including changes to the boundary conditions and 

structural connectivity, which adversely affect the structural performance. The SHM 

process involves observation of a structure over time using periodically or continuously 

sampled structural response measurements from an array of sensors, extraction of 

damage-sensitive features from these measurements and statistical analysis of these 

features to identify the current structural state. The most important benefit it brings about 
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is to allow the current regular inspection or the time-based maintenance plan to evolve 

into a condition-based maintenance philosophy and thus maintenance activities are only 

required to be performed when certain indicators show signs of decreasing performance 

or upcoming failure of the structure in concern.  

Damage detection is an essential step for a successful SHM strategy via either 

physics-based approaches or data-driven approaches (Sohn et al. 2002, Worden et al. 2007, 

Farrar et al. 2012). Most current damage detection approaches in place are assumed to 

operate on a single structure of interest. Nevertheless, from the point of view of 

engineering needs, one may be often faced in monitoring and performing damage 

detection not on a single, but rather on a population of nominally identical structures that 

are made of the same materials, manufactured by the same specifications and assembled 

in the same factory. Typical examples of such structures are railway vehicles, aircraft 

fleets, wind turbines and many other more. If these nominally identical structures are 

possible to be monitored using the same device and assessed using the same damage 

detection method, the cost and time required will be significantly reduced. 

Damage detection in nominally identical structures is more challenging compared to 

the counterpart in a single structure due to multiple sources of uncertainty present in SHM 

data (Papatheou et al. 2014 and 2015, Vamvoudakis et al. 2014, 2016 and 2018). For any 

structural unit, SHM data are inevitably polluted by measurement noise, yielding 
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observation error in the measured structural responses (uncertainty within structural units). 

Besides, even nominally identical, these structures are not truly identical due to 

variabilities in material, manufacturing, boundary conditions and so on, which cause 

another type of uncertainty in the measured structural responses (uncertainty between 

structural units). Obviously, damage detection cannot be effectively achieved among 

nominally identical structures by using a single physical or data-based model that 

characterizes structural condition of one particular structural unit. The alternative of 

performing damage detection separately on each structure is not more advisable due to 

the increased computational cost. More importantly, structural condition information 

extracted from SHM data cannot be exchanged among nominally identical structures by 

using a single physical or data-based model. The most desirable solution to this problem 

might be to establish a single population model for representing structural healthy state 

of all nominally identical structures in the same group using all SHM data measured from 

a number of healthy structures such that the damage states of other structural units can be 

identified by checking the differences between new SHM data and the corresponding 

structural responses estimated by the population model.  

Stimulated by many engineering needs in the field of SHM applications, the research 

effort of this thesis is devoted to the exploration of damage detection in a population of 

nominally identical structures via sparse Bayesian learning (SBL) (Tipping 2001, Tipping 
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and Faul 2003). This work starts with the introduction of a model-free and response-only 

population model which enables the quantification of uncertainty in SHM data in 

nominally identical structures with the aid of SBL. Then, standard SBL is extended to the 

time-varying measurement noise case, which allows for heteroscedasticity in SHM data 

to be considered. After that, the panel SBL is proposed to allow different types of 

uncertainties resulting from measurement error within and structural variability between 

nominally identical structures to be considered separately in order to avoid the 

information overestimation in SHM data. Finally, a novel damage detection approach for 

the nominally identical structures is proposed based on the aforementioned three SBL 

population models and Bayesian hypothesis testing. It should be mentioned that the newly 

built structures are typically subjected to various load tests before they are put into service. 

These load tests ensure that initial defects or flaws, if any, in the newly built structures 

can be detected in time. Therefore, the group of nominally identical structures considered 

in this study are presumed to be initially undamaged. 

1.2 Research Objectives 

This study is intended to develop model-free and response-only damage detection 

approaches in nominally identical structures via sparse Bayesian learnings: 

1. To make use of standard SBL to establish a data-driven population model to quantify 
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uncertainty in SHM data due to measurement noise as well as structural unit-to-unit 

variability between nominally identical structures. 

2. To extend standard SBL to the heteroscedastic case to allow heteroscedasticity in the 

population dynamics of nominally identical structures to be modelled and quantified. 

3. To extend standard SBL to panel counterpart to avoid information overestimation in 

the modelling of population features of nominally identical structure. 

4. To develop an unsupervised damage detection approach for nominally identical 

structures based on Bayesian residual analysis and Bayesian hypothesis testing. 

1.3 Thesis Outline 

The thesis consists of the following seven chapters:  

Chapter 1 gives the research motivation, the research objectives and the structure of 

this thesis.  

Chapter 2 begins with a comprehensive review of research efforts on damage 

detection in individual structures, followed by the latest damage detection investigations 

achieved in a population of nominally identical structures. The merits and weaknesses of 

the existing damage detection approaches are discussed. 

Chapter 3 develops a data-driven population model using standard SBL to quantify 

uncertainties in damage-sensitive features due to measurement noise and structural 
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variability in nominally identical structural characteristics. In this population model, no 

physical model is needed and only response data are required. The uncertainties due to 

reducible and irreducible between nominally identical structures are pooled together such 

that standard SBL can be used to model the population features. The hyperparameters 

associated with standard SBL are estimated by type-II maximum likelihood estimation. 

This population model can serve as a reference model later to evaluate the condition of 

the rest of nominally identical structures when new monitoring data are available. A 

practical application to model SHM data for assessing railway wheel quality is presented 

by using a track-side monitoring system based on a distributed fiber-optic strain sensor 

array, which enables the monitoring of multiple wheels and multiple trains. 

Chapter 4 extends standard SBL to the heteroscedastic counterpart to account for 

heteroscedasticity in SHM data due to the combined uncertainty from measurement noise 

and inter-structure variability between nominally identical structures. In the 

heteroscedastic SBL, two standard sparse Bayesian models are employed, one to estimate 

the mean population features and the other to update the associated uncertainty. Such 

extension is critical for uncertainty quantification in SHM data due to various 

uncertainties and the subsequent damage identification based on statistical hypothesis 

tests. The effectiveness of the heteroscedastic SBL in uncertainty quantification is verified 

by comparison with the developed population model in the previous chapter. 
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Chapter 5 further extends standard SBL to panel SBL, allowing measurement error 

and inter-structure variability between nominally identical structures to be considered 

separately. It avoids information overestimation in SHM data. In addition, various 

uncertainties in the population features can be tracked and compared through analysis of 

variance due to measurement error and inter-structure variability between nominally 

identical structures. The superiority of the panel SBL in uncertainty quantification is 

verified by comparing the results given in Chapters 3 and 4. 

Chapter 6 develops a novel Bayesian damage detection approach for a population of 

nominally identical structures based on Bayesian residual analysis and Bayesian 

hypothesis testing. The novel damage detection approach is realized by examining the 

discrepancies between the estimated population characteristics from sparse Bayesian 

population models proposed in the previous three chapters and new observations from the 

rest of nominally identical structures. If the residuals are as small as expected, the new 

structural units are considered healthy; otherwise, they are considered damaged. The 

threshold of the expected residuals is related to the diagnostic risks in the procedure of 

structural damage detection. If a smaller threshold is used, it may result in a larger rate of 

false positive errors (the healthy structures are falsely diagnosed as damaged); if a larger 

threshold is used, it could give rise to a larger rate of false negative errors (the damaged 

structures are falsely diagnosed as healthy). Therefore, the choice of the residual threshold 
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is essentially a balance between the false positive and false negative error rates. Bayesian 

residuals are decorrelated and standardized by the Mahalanobis linear transformation to 

meet the fundamental assumption of statistical hypothesis tests: the residuals are 

independent and identically distributed from the same population. To overcome the 

Jeffreys-Lindley paradox in the current Bayesian point null hypothesis testing that has 

been commonly used in structural damage detection for individual structures, a novel 

Bayesian point-to-point hypothesis testing is proposed to identify and quantify damage 

in a population of nominally identical new structures, in terms of intrinsic Bayes factor. 

The effectiveness of the proposed damage detection approach in a population of 

nominally identical structures are verified using online monitoring data of high-speed 

railway wheels. 

Chapter 7 provides a summary of this thesis, the major findings and the potential 

future work. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The vibration-based damage detection, as part of the broader structural health 

monitoring, has been investigated across civil, mechanical and aerospace engineering 

fields over the past 40 years. The most important benefits it brings out include the fact 

that the vibration-based monitoring technique is relatively mature, the acquisition device 

is kept at a reasonable cost, the vibrational data can be available without interrupting the 

normal operation of the monitored structure.  

The basic premise of the vibration-based damage detection lies in that damage will 

introduce changes into the material properties, geometric properties, boundary conditions 

or energy dissipation characteristics of the structure, which, in turn cause changes into the 

dynamic response characteristics and adversely affect the current or future performance 

of the structure. The vibration-based damage detection allows for damage, even invisible 

in the monitored structure to be identified and located at the earliest time, thus giving rise 

to the increased safety and serviceability.  

In general, the vibration-based damage detection can be classified into two main 

categories, the physics-based approach and the data-driven approach. The physics-based 
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approach is usually implemented by building a physical model of the structure of interest 

such as a finite element model. The data-driven approach also needs to establish a model, 

but rather a statistical one to characterize structural conditions from all the possible 

healthy and damage states for the interested structure with the use of regression 

approaches or classification techniques such as neural networks, support/relevance vector 

machines and Gaussian processes. 

We start with literature review of the physics-based and data-driven damage detection 

approaches for individual structures in Section 2.2, followed by the review of the damage 

detection studies for a population of nominally identical structures in Section 2.3. Some 

concluding remarks are made in Section 2.4. 

2.2 Damage Detection for Individual Structures 

2.2.1 Physics-based damage detection methods 

Most of the current physics-based damage detection methods for individual structures 

examine changes in conventional basic modal properties such as natural frequencies, 

mode shapes and damping ratios (Cawley and Adams 1979, Idichandy and Ganapathy 

1990, Farrar and Cone 1994, Farrar et al. 1994, Farrar and Jauregui 1996, Salawu 1997, 

Ren and Roeck 2002, Peeters and De Roeck 2001, Teughels and De Roeck 2004). Typical 
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benchmark examples for damage detection of in-situ structures are the I-40 Bridge (Farrar 

and Cone 1994, Farrar et al. 1994 and 1995, Farrar and Jauregui 1996, Doebling and 

Farrar 1998) and the Z24 highway bridge (Peeters and De Roeck 2001, Teughels and De 

Roeck 2004). Low-frequency modal properties are often employed during the damage 

detection process due to measurement data incompleteness (Idichandy and Ganapathy 

1990). 

One of the major technical challenges associated with the physics-based damage 

detection is that damage is typically a local phenomenon and it may not significantly 

influence the low-frequency modal properties of a structure. In many real-world SHM 

applications, the physics-based damage detection is found to be insensitive to localized 

damage if only low-frequency modal properties are examined. Therefore, many efforts 

have been also made to find alternative features that have a higher sensitivity to localized 

damage such as modal shape curvature, modal strain energy and modal flexibility. Pandy 

et al. (1991) proposed to substitute mode shapes with mode shape curvatures in order to 

obtain spatial information about damage which have the effect of amplifying any 

discontinuities in the mode shape caused by localized damage. This approach was applied 

in assessing changes in mode shape curvature for the I-40 Bridge (Farrar et al. 1994), the 

Z24 bridge (Abdel Wahab and De Roeck 1999), an FRP highway bridge (Guan et al. 2006) 

and the plate-like structure (Rucevskis et al. 2015). Stubb et al. (1992) proposed the 
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concept of modal strain energy that is strain energy stored in a structure when it deforms 

as alternative features for local damage detection. The basic idea behind the modal strain 

energy-based damage detection lies in that damage will induce changes in the distribution 

of the strain energy stored in the undamaged and damaged structures, which is more 

appropriate to detect and locate local damage. Several successful applications of the 

physics-based damage detection based on modal strain energy can be found in Doebling 

et al. (1997), Cornwell et al. (1999), Shi et al. (1998 and 2000), Hu et al. (2006 and 2009), 

Yan et al. (2012).  

Apart from the aforementioned alternative features extracted from basic modal 

properties, the modal flexibility is also proposed to detect and localize damage in 

structures. For example, Pandey and Biswas (1994 and 1995) identified damage in a wide-

flange steel beam through the evaluation of the changes in the flexibility matrix of the 

structure. The modal flexibility was then used to assess the health condition of a three-

span reinforced-concrete highway bridge (Toksoy and Aktan, 1994). Ni et al. (2008) 

conducted the damage detection in the cable-stayed Ting Kau Bridge based on modal 

flexibility analysis. Other damage detection applications using modal flexibility can be 

found in Koo et al. (2010) and Sung et al. (2014). In many cases, these derived features 

from basic modal properties are based on a physical interpretation of the relationship 

between the changes in modal properties and the changes to the structural properties. 
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There are pros and cons for these derived features; the interested reader can find detailed 

discussions in Farrar and Worden (2012).  

Another major challenge associated with the physics-based damage detection is that 

the physics-based damage detection is in essence an inverse problem, which can be ill-

posed and ill-conditioned. As a result, the existence, uniqueness and stability of a solution 

to this inverse problem cannot be guaranteed (Tikhonov 1995, Friswell and Mottershead 

1995). Therefore, the inverse problem has to be solved in either an optimization procedure 

or some form of regularization. The optimization solution to the inverse problem often 

suffers from local minima and thus various global optimization algorithms have been 

proposed to obtain an optimum for the physics-based damage detection such as genetic 

algorithms (Chou and Ghaboussi 2001, Hao and Xia 2002, Perera and Torres 2006) and 

particle swarm optimization (Seyedpoor 2012).  

Initial regularization methods for the physics-based damage detection (Fritzen and 

Jennewein 1998, Friswell 2006, Chen 2008, Weber and Paultre 2009, Entezami and 

Shariatmadar 2014, Rucevskis et al. 2015) make use of the ℓ2-norm regularization that is 

also termed Tikhonov regularization to produce a smooth solution to the inverse problem. 

However, the solution is sometimes found to be over-smoothed as Tikhonov 

regularization promotes smoothness especially when the number of the available sensors 

is limited (Zhang and Xu 2016). More recent regularization methods for the inverse 
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damage detection problem employ sparsity constraints including ℓ1-norm regularization 

(Hernandez 2014, Zhou et al. 2015 and 2018, Zhang and Xu 2016, Zhang et al. 2017, Wu 

and Zhou 2018, Hou et al. 2018 and 2019) or the equivalent but more flexible Bayesian 

regularization (Huang et al. 2017 and 2018, Hou et al. 2019). The concept of sparsity is 

inherent in many practical engineering applications and for example, in the content of 

structural health monitoring, damage occurs in part of the elements or substructures of 

the whole structure. The sparsity constraints are generally serving as a term to penalize 

physical parameters that are relevant to structural damage such that those relevant to 

structural damage can be better identified. The regularization methods using various 

sparsity constraints allow for more robust damage detection results especially when the 

measurement noise is present in the measured structural response.  

The third major challenge confounded in the physics-based damage detection is that 

SHM data are often polluted by measurement noise, which may give rise to false damage 

detection results. Therefore, it is essential to analyze and quantify the uncertainty 

resulting from measurement noise in SHM data to determine the associated influence on 

the subsequent structural damage detection. Papadopoulos and Garcia (1998) developed 

a probabilistic framework to improve the robustness characteristics of current damage 

detection methodologies with the use of stochastic finite element models. Sohn and Law 

(1997) proposed a Bayesian probabilistic approach to locate and quantify damage using 
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estimated modal parameters when the measurement data are corrupted with measurement 

noise. This approach was then applied to identify damage of a reinforced‐concrete bridge 

column (Sohn and Law 2000). A series of Bayesian methodologies for the physics-based 

damage detection are proposed by Beck and his colleagues (Vanik et al. 2000, Beck et al. 

2001, Ching and Beck 2004, Yuen et al. 2004 and 2006, Lam et al. 2014, Huang et al. 

2017 and 2018). 

The fourth major challenge for the physics-based damage detection lies in the fact 

that the damage-sensitive features are also sensitive to the changing environment (for 

example temperature) and operational conditions (loading and boundary) and 

consequently this may have serious detrimental effects on damage detection performance 

due to the fact that changes in structural responses induced by the changing environment 

or operational conditions may be so significant as to mask those caused by damage 

(Peeters and Roeck 2001). To remove or alleviate the environmental or operational effect 

on structural damage detection, a vast of studies have been conducted. The most common 

solution to the damage detection in changing environmental and operational conditions is 

to correlate damage-sensitive features with the changing environmental or operational 

factors through regression or interpolation approaches before physics-based damage 

detection methods are applied (Peeters et al. 2001, Worden et al. 2002, Ni et al. 2005 and 

2009, Sohn 2006, Hua et al. 2007, Cross et al. 2011, 2012 and 2013, Coletta et al. 2019). 
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There are still many other technical challenges for the physics-based damage 

detection. For example, the process of extracting basis modal parameters from measured 

input and response data involves fitting a linear model to the data obtained before and 

after damage. Yet, many types of damage introduce nonlinearities into the interested 

structure and these nonlinearities may cause the structure to violate the three basic 

assumptions in experimental modal analysis (Weber et al. 2009, Li and Law 2010, 

Ebrahimian et al. 2017, Xin et al. 2019). These assumptions are: the structure is linear; 

the structure is time invariant; the structure exhibits reciprocity. 

2.2.2 Data-driven damage detection methods 

The data-driven damage detection approach is often dependent on a statistical model 

for SHM data such as the use of time series models or machine learning algorithms. 

a) Time series models 

Time series models can be employed to estimate the relationship between the 

measured dynamic response outputs and inputs when the monitored structure is known to 

be in its normal condition. The underlying assumption on damage detection using time 

series models is that damage causes the structure to response in a manner inconsistent 

with its undamaged relationship and thus the time series model would not be able to 

predict the subsequent monitoring data in its damage condition well. As a result, 



Chapter 2 Literature Review 

18 

significant changes in parameters associated with time series models or unexpectedly 

large prediction residuals can be attributed to the presence of damage. 

Initially, linear time series models were popularly used to recover the data input-

output relationship in a structure under healthy condition such as autoregressive (AR) 

model, autoregressive with exogenous (ARX) input model (Sohn and Farrar 2001 and 

Fugate et al. 2001), autoregressive moving average (ARMA) model (Nair et al. 2006, 

Nair and Kiremidjian 2007, Carden and Brownjohn 2008, Yao and Pakzad 2012) and 

autoregressive moving average with exogenous (ARMAX) model (Mei et al. 2016). 

Nonlinear time series models including nonlinear ARX (NARX) input model and 

nonlinear ARMAX (NARMAX) model were then proposed to better recover the input-

output relationship in a healthy structure that responds in a nonlinear manner in its initial 

undamaged state (Wei et al. 2005, Oh and Sohn 2009, Peng et al. 2011, Yao and Pakzad 

2012). It should be noted that in the application of time series models to damage detection, 

the model order and the associated model parameters have to be determined carefully 

through available techniques such as Akaike’s information criterion (AIC) or Bayesian 

information criterion (BIC) for choosing the model order while least square or maximum 

likelihood methods for estimating model parameters. 

Despite conventional time series models described above, there exist other types of 

time series models that are possible to derive a data-driven damage detection approach. 
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For example, Bernal (2013) proposed a novel damage detection method using a Kalman 

filter to deal with uncertainties in SHM data resulting from measurement noise and 

changing operational conditions. Yang et al. (2006 and 2007) made use of adaptive 

extended Kalman filter to identify structural damage without load information. Recently, 

a cointegration-based data model was proposed to remove the changing operational and 

environmental effects on long-term SHM data collected from in-situ structures (Cross et 

al. 2011). More recently, a Bayesian dynamic linear model was utilized to quantify 

uncertainty in model parameters and hidden state variables which tends to be more robust 

than conventional time series models (Nguyen et al. 2019) because the prior distributions 

placed on the model parameters provide an automatic “Occam’s razor” effect, penalizing 

unnecessarily complex model.  

b) Machine learning algorithms 

Another main stream of data-driven damage detection approach for individual 

structures is based on machine learning algorithms. For instance, Tsou and Shen (1994) 

identified structural damage characteristics (location and severity) from the change of its 

dynamic properties (eigenvalues and mode shapes) through an artificial neural network 

(ANN) model by which model damage location and severity could be identified. Zang 

and Imregun (2001) made use of the measured frequency response function data to train 

an ANN model such that principal component analysis could be applied to detect potential 
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structural damage.  

However, the ANN training may suffer from overfitting problem and the resulting 

data model tends to present to a low generalization performance. To deal with this 

problem, Yuen and Lam (2006) proposed a Bayesian probabilistic method for selecting a 

proper number of hidden layers and neurons in training an ANN model, which was then 

improved using Ritz vectors as damage-sensitive features to characterize damage-induced 

changes (Lam et al. 2006). Bayesian neural network (BNN) was recently proposed for 

bridge integrity assessment (Arangio and Beck 2012). Jiang et al. (2007 and 2009) and 

Jiang and Mahadevan (2008) developed a Bayesian wavelet neural network (BWNN) 

method to investigate the effect of noise on the accuracy of structural damage detection. 

To identify and quantify structural damage, Bayesian hypothesis testing was utilized 

(Jiang and Mahadevan 2008, Sankararaman and Mahadevan 2011 and 2013, and 

Subramanian and Mahadevan 2019). It was found that from comparative studies that the 

BWNN-based damage detection approaches outperformed the existing wavelet denoising 

methods when SHM data were corrupted by the measurement noise. 

Convolutional neural network (CNN) which is a more powerful machine learning 

algorithm was recently introduced in the data-driven damage detection (Jamshidi et al. 

2018, Abdeljaber et al. 2017 and 2018). The outstanding benefit of it lies in that it enables 

the extraction of optimal damage-sensitive features automatically from SHM data, 
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whereas it needs massive training data and large computational resource. For example, 

Abdeljaber et al. (2017 and 2018) developed one-dimensional CNN for structural damage 

detection using vibrational data, which was then verified on SHM benchmark data from 

IASC-ASCE Structural Health Monitoring Task Group. Bao et al. (2019) and Tang et al. 

(2019) proposed to convert the raw one-dimensional vibrational data to images such that 

they can be used to train two-dimensional CNNs for classifying structural conditions 

more easily.  

Apart from neural networks, many other machine learning algorithms are also 

possible to develop a data-driven damage detection approach. Support vector machine 

(SVM) that is computationally more efficient was utilized for structural damage detection 

(Worden and Lane 2001). Bornn et al. (2009) developed an autoregressive SVM for 

structural damage detection based on the measured time series data. Oh and Sohn (2009) 

made use of SVM to diagnose structural damage condition under the changing 

environmental and operation variations. A Bayesian extension to SVM was recently 

proposed by Wang et al. (2019) to develop a probabilistic damage detection method for 

rail condition assessment based on in-situ SHM data. Another extension to SVM, the 

relevant vector machine was employed for fast structural condition diagnostics and 

prognostics by Wang et al. (2012). 
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2.3 Damage Detection for Multiple Nominally Identical Structures (NISs) 

The problem of damage detection in a population of nominally identical structures 

was considered by Papatheou et al. (2014, 2015) who employed two different variants of 

the tail wing of a Piper PA-28 aircraft to create two pairs of nominally identical structures 

by separating the tail wings in half. An experimental investigation was conducted to 

explore the diversity and complexity in modal properties such as natural frequencies, 

mode shapes and frequency response function (FRF) magnitudes for the considered 

nominally identical aircraft wings. The Mahalanobis squared distance was used to 

quantify uncertainty in modal properties and identify potential damaged aircraft wings, 

where a proper threshold must be carefully determined.  

Chandrashekhar and Ganguli (2016) conducted numerically a damage detection 

study on a set of delaminated composite plates through Monte Carlo simulation. The 

effect of uncertainties due to material variability as well as measurement noise on 

statistical analysis of the modal frequencies for these nominally identical composite plates 

was investigated. It is found that the changes in modal frequencies due to high level of 

material variability may mask the ones induced by structural damage. A robust fuzzy logic 

system was then proposed to identify damaged composite plates under multiple sources 

of uncertainty.  

Instead of an empirical statistical analysis of the FRF magnitude and phase measured 
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from a population of nominally identical structures, a closed-form probabilistic 

uncertainty quantification model of these extracted damage-sensitive features was 

developed by Mao and Todd (2016). A Bayesian recursive classification method was then 

proposed to statistically identify different damage types/locations in multiple ball 

bearings based on the sequential probability ratio test, that are viewed as nominally 

identical structures operating in rotating machinery. 

The cross-dependence of structural health monitoring data from a population of 

nominally identical structures was then considered by Schubert et al. (2015) through the 

comparison of two distinct linear models (the mixed-effects linear model and the random 

intercept linear model) in modelling the probability of detection process for fatigue crack 

in aircraft components. In the mixed-effects model, uncertainties that exist in the 

monitoring data due to the measurement error and variability between nominally identical 

structures are mixed together leading to an independent data assumption, while the two 

types of uncertainties are considered separately through the introduction of a particular 

correlation data structure in the random intercept model. Simulated data and experimental 

data from three test specimens of a wing attachment lug that is a crucial component of the 

aircraft were used to demonstrate the advantages of the random intercept model in 

analyzing structural health monitoring data acquired from a population of nominally 

identical structures. Nevertheless, as the authors indicated, the random intercept linear 
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model is of limited usage due to the fact that the underlying model can be strongly 

nonlinear in many more complex applications. More importantly, the correlation data 

structure in the random intercept linear model is defined manually that can be not the real 

case.  

The damage detection sensitivity characterization of the same structural health 

monitoring system applied to a population of nominally identical structures or crucial 

components under the same environmental conditions was investigated by Janapati et al. 

(2016). An experimental study was conducted on 30 identical composite plates by an 

active-sensing acousto-ultrasound-based SHM method and it was found that the position 

of each sensor–actuator pair with respect to a known damage location and the damage 

growth pattern reflecting the variability between nominally identical structures are the 

two most critical parameters influencing the reliability of the probability of damage 

detection. 

The problem of damage detection in a population of nominally identical structures 

for vibration response-only cases was preliminarily explored in a series of studies by 

Vamvoudakis et al. (2014, 2015, 2016, 2018) with the use of conventional statistical time 

series methods (2015), a multiple model (MM) scheme (2014), an unsupervised MM-

based method using autoregressive model (2015) and its enhanced version using principle 

component analysis (PCA) (2016). A more comprehensive study of the unsupervised 
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MM-based damage detection scheme using statistical time series methods was recently 

presented by the same authors (2018). The main idea behind the MM-based damage 

detection scheme is to establish a healthy sample space for nominally identical structures 

using vibrational response data measured from a number of nominally identical healthy 

structures, with which sample space the condition of the rest of structural units can be 

identified through statistical hypothesis testing such as likelihood ratio or Kullback-

Leibler divergence tests. Experimental studies conducted on 31 nominally identical 

composite beams that are served as main components of commercial unmanned aerial 

vehicles demonstrated that the unsupervised PCA-enhanced MM-based damage detection 

was the optimal solution to the data-driven response-only damage detection problem in a 

population of nominally identical structures. This data-driven damage detection scheme 

using statistical time series methods was recently extended by Poulimenos et al. (2019) 

to investigate the performance of transmittance function-based damage detection in a set 

of composite beams with manufacturing variability subject to impact damage varying 

operating conditions. The problem of damage detection in a population of nominally 

identical railway structures was investigated by Oregui et al. (2015). 

The effect of manufacturing uncertainty on the problem of damage detection in a 

population of composite airfoil structures was investigated by Teimouri et al. (2015 and 

2017). Conventional neural network models were employed to predict the size and 
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location of damage with five composite airfoil samples in different thicknesses (Teimouri 

et al. 2015). Gaussian process models which enable probabilistic modelling and 

quantitative evaluation of the associated uncertainty in damage state assessment for the 

rest of composite airfoil structures were proposed to derive a more robust and reliable 

structural health monitoring system (Teimouri et al. 2017).  

Studies not explicitly focused on the problem of damage detection in a population of 

nominally identical structures but addressing quantification of uncertainties due to inter-

structure variability and measurement error, were conducted by Eerland et al. (2016) and 

Tabor et al. (2018) via Gaussian process learnings. Eerland et al. (2016) proposed a 

Gaussian process model to capture the probability distribution of a set of aircraft 

trajectories from historical measurement data. A single probabilistic model was derived 

which can be used for both modelling the dispersion of trajectories along the common 

flightpath and for measuring the difference of new trajectories from historical data. 

Tabor et al. (2018) proposed an extension to standard Gaussian process regression 

(GPR) to model the data sets composed of only a few replicated specimens and displaying 

a heteroscedastic behavior. The heteroscedasticity in the experimental data is due to inter-

structure variability as well as several uncontrollable factors in laboratory experiments. A 

global Gaussian process model was established for probabilistic modelling of 

heteroscedastic experimental data and this model can be used to study probabilistically 
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the quantity how adding fibers to high-performance concrete decreases water 

permeability. An application of the method to the data of high-performance fiber-

reinforced concrete experiments highlights fiber-added benefits for reducing water 

permeability caused by macrocracks. 

2.4 Summary 

The problem of damage detection in individual structures has been well defined, 

whereas the counterpart in nominally identical structures remains challenging due to 

different sources of uncertainty present in SHM data. Taking into account the 

computational complexity in data modelling and uncertainty quantification in nominally 

identical structures, the data-driven damage detection approach would be more preferable 

than the physics-based approach. Nevertheless, the current data-driven damage detection 

approaches for nominally identical structures focuses on using conventional time series 

models, which is computationally inefficient. Moreover, the data-driven damage 

detection approaches based on conventional time series models can suffer from the 

overfitting problem as there exist many adjustable parameters in time series models. The 

essence of overfitting is that the elaborated time series models attempt to describe the 

effect of measurement noise instead of the underlying behavior of the structure of concern. 

To alleviate the overfitting problem in time series models, model selection techniques 
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such as AI and BIC have to be utilized, whereby the choice of optimal time series models 

has to be executed iteratively. As a result, additional SHM data and computational cost 

have to be taken on the determination of model order and the associated model parameters. 

Since damage detection approaches have to be executed for many times for a population 

of nominally identical structures, a computationally efficient and noise robust damage 

detection approach for nominally identical structures is highly desired. 
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Chapter 3 

SSBL for Population Features of NISs 

3.1 Introduction 

The problem of damage detection in a population of nominally identical structures is 

very challenging in that there exist two different categories of uncertainty in SHM data. 

The first one called epistemic uncertainty is due to measurement noise in the measured 

data. This type of uncertainty is sometimes referred to as reducible uncertainty. The 

second type of uncertainty called aleatory uncertainty in SHM data is caused by inherent 

variability that exists between nominally identical structures, made in the same way of 

the same materials but with material, geometric or manufacturing variability. This type of 

uncertainty is sometimes referred to as irreducible uncertainty. It is therefore essential to 

analyze and quantify the uncertainties in SHM data to determine the associated influence 

on the subsequent structural diagnosis and prognosis for the population of nominally 

identical structures.   

The simplest way in quantifying the associated uncertainties in SHM data is to simply 

combine the uncertainty within an individual structure due to measurement noise (intra-

structure uncertainty) and uncertainty between nominally identical structures due to 

material or manufacturing variability (inter-structure uncertainty). The differences 
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between the damage-sensitive features measured from an individual structure and the 

associated population feature of all nominally identical structures are further assumed to 

be independent and Gaussian-distributed with zero mean. This simplifying assumption 

allows a data-driven response-only population feature model to be formulated for 

representing the normal (healthy) condition of all nominally identical structures and 

quantifying uncertainties in damage-sensitive features for nominally identical structures. 

It should be noted that a population of nominally identical structures typically operate in 

the same operational and environmental conditions. Therefore, it is made possible to 

separate the changes in SHM data caused by the varying operational and environmental 

conditions from the changes due to structural damage. If the changes in SHM data are 

found to appear among the whole group of NISs, they are believed to be caused by the 

varying operational and environmental conditions; if the changes arise only in a few of 

nominally identical structures but are not observable for most of NISs, they are believed 

to be caused by potential structural damage. Thus, this study deals with two main sources 

of uncertainties: measurement noise and structural variability. 

We formulate the population feature model of nominally identical undamaged 

structures using standard sparse Bayesian learning (SSBL) in Section 3.2. SSBL is a fully 

probabilistic methodology, thus allowing for the consideration of various uncertainties in 

the population modelling of the damage-sensitive features for nominally identical 
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structures. Moreover, by assigning a hierarchical prior scheme, redundant basis functions 

employed in the standard sparse Bayesian modelling of the population damage-sensitive 

features can be automatically pruned, giving rise to a sparse population model that enables 

to maintain good reconstruction and prediction accuracies not only on training data but 

also on unseen data (the pruning procedure eliminates redundant basis functions in the 

standard sparse Bayesian modelling of the population damage-sensitive features while 

this procedure itself does not eliminate the damage-sensitive features). Furthermore, the 

sparse population model enables to make fast prediction and thus the subsequent damage 

detection performed on new structural units can be performed in a timely manner. We 

apply the type-II maximum likelihood algorithm to infer the model hyperparameters 

associated with the proposed data-driven population feature model. Section 3.3 illustrates 

the application of the proposed population model based on SSBL to a practical example. 

Section 3.4 presents a summary of the results of this chapter. 

3.2 Problem Formulation 

3.2.1 The training data 

Assume that we have 𝑀  nominally identical sample structures which are known 

undamaged. From the 𝑚th sample structure, we can extract a set of training data 𝐃𝑚 =
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{(𝐱𝑚𝑛, 𝑦𝑚𝑛): 𝑛 = 1, … , 𝑁}  to define the undamaged condition of the population of 

nominally identical structures, where 𝐱𝑚𝑛  is the vector-valued training input of 

dimension 𝑇 , 𝑦𝑚𝑛  is the corresponding scalar-valued training output, and 𝑁  is the 

number of the training input-output pairs from each sample structure. In the case of 𝑀 

nominally identical sample structures, we have in total 𝑀  training datasets 𝐃 =

{𝐃𝑚: 𝑚 = 1, … , 𝑀} and thus the total number of training data points is 𝐾 = 𝑀 × 𝑁. 

The training data can be the transformed responses in the frequency domain based on 

Fourier or wavelet transforms, such as Fourier amplitude spectrum and power spectrum 

density. They can be also specific components extracted from raw SHM data that are 

possible to define the normal (healthy) condition of nominally identical structures. 

3.2.2 Model specification 

As mentioned earlier, there are multiple types of uncertainty that exist in the training 

data and also it is difficult to consider these uncertainties separately. The simplest 

approach to take into account these uncertainties together is to define a single population 

model for representing the healthy status of all nominally identical structures. Before 

introducing the population model that defines healthy condition of nominally identical 

structure, the training inputs and outputs are first realigned as 𝐱 =

[𝐱11, … , 𝐱1𝑁, … , 𝐱𝑀1, … , 𝐱𝑀𝑁]T  and 𝐲 = [𝑦11, … , 𝑦1𝑁 , … , 𝑦𝑀1, … , 𝑦𝑀𝑁]T , where 𝐱  is 
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the 𝐾 × 𝑇  training input matrix and 𝐲  is the 𝐾 × 1  training output vector. By 

following a standard sparse Bayesian learning framework (Tipping 2001), the training 

output 𝑦𝑚𝑛  is assumed to be the population model output 𝑓(𝐱𝑚𝑛)  with the additive 

error 𝜀𝑚𝑛, 

 𝑦𝑚𝑛 = 𝑓(𝐱𝑚𝑛) + 𝜀𝑚𝑛 (3.1) 

where 𝑓(∙)  is the population feature model and the error term 𝜀𝑚𝑛  is the difference 

between the training output 𝑦𝑚𝑛  and the population feature model output 𝑓(𝐱𝑚𝑛) , 

which is further assumed to be independently normally distributed with zero mean and 

constant variance 𝜎2. 

A kernel method to infer the population model 𝑓(𝐱𝑚𝑛) can be represented as a linear 

combination of a set of nonlinear basis functions given by 

 
𝑓(𝐱𝑚𝑛) = 𝝓T(𝐱𝑚𝑛)𝐰 = ∑ 𝑘(𝐱𝑚𝑛, 𝐱𝑐𝑙)𝑤𝑙

𝐿

𝑙=1

 (3.2) 

where 𝑘(𝐱𝑚𝑛, 𝐱𝑐𝑙) is the basis (also called kernel) function centered on a pre-selected 

input location 𝐱𝑐𝑙 , 𝑤𝑙  is the associated weight and 𝐿  is the number of the basis 

functions considered. The basis function vector 𝝓 can be represented by 

 𝝓(𝐱𝑚𝑛) = [𝑘(𝐱𝑚𝑛, 𝐱𝑐1), 𝑘(𝐱𝑚𝑛, 𝐱𝑐2), … , 𝑘(𝐱𝑚𝑛, 𝐱𝑐𝐿)]T (3.3) 

which is centered respectively on input locations 𝐱𝑐 = [𝐱𝑐1, 𝐱𝑐2, … , 𝐱𝑐𝐿]T  and the 

associated weight vector 𝐰  is represented as 𝐰 = [𝑤1, 𝑤2 … , 𝑤𝐿]T . Due to the 

simplifying assumption on the error term 𝜀𝑚𝑛 , the likelihood of the training data 
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𝑝(𝐲|𝐰, 𝜎2) can be written as 

 P(𝐲|𝐰, 𝜎2) = 𝒩(𝐲|𝚽1𝐰, 𝜎2𝐈𝐾) 

= (2𝜋𝜎2)−𝐾/2exp(− ‖𝐲 − 𝚽1𝐰‖2
2 (2𝜎2)⁄ ) 

(3.4) 

where 𝐈𝐾  is the 𝐾 × 𝐾  identity matrix, ‖𝐲 − 𝚽1𝐰‖2  is the Euclidean distance 

between 𝐲 and 𝚽1𝐰, and 𝚽1 is the 𝐾 × 𝐿 design matrix defined on all training points 

given by 𝚽1 = [𝝓(𝐱11), … , 𝝓(𝐱1𝑁), … , 𝝓(𝐱𝑀1), … , 𝝓(𝐱𝑀𝑁)]T. 

The weight vector 𝐰 and the error term 𝜎2 are unknown parameters we would like 

to estimate. The ordinary least squares estimate of these unknowns from the Euclidean 

squared distance ‖𝐲 − 𝚽1𝐰‖2
2  or the equivalent maximum likelihood estimate from 

𝑝(𝐲|𝐰, 𝜎2)  may pose the overfitting problem as there are in general many weight 

parameters to be estimated. To avoid this, additional constraint has to be imposed on these 

unknown parameters to obtain a simpler model, resulting in the so-called regularized least 

squares or penalized maximum likelihood estimates. In a Bayesian treatment, this is 

achieved naturally by imposing a set of priors over the parameters 𝐰 and 𝜎2. These 

priors control the generalization ability of the learning process. In the SSBL framework 

(Tipping 2001), a hierarchical prior scheme is used to offer good generalization 

performance and more importantly to deliver a sparse population feature model which 

depends only on a small number of important basis functions. 
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3.2.3 Prior selection 

A popular choice of the prior over the weight parameter 𝐰  is the zero-mean 

Gaussian prior distribution given by 

 P(𝐰|𝛂) = ∏ 𝒩(𝑤𝑙|0, 𝛼𝑙
−1)

𝐿

𝑙=1
 (3.5) 

where the weight prior precision 𝛂 = [𝛼1, 𝛼2, … , 𝛼𝐿]T  is an 𝐿 × 1  hyperparameter 

vector which independently controls the strength of the prior over their associated weights.  

The zero-mean Gaussian prior itself is a conjugate distribution for the likelihood 

function and thus the posterior probability of the weight can be obtained in closed form. 

Moreover, most of the probability masses of the zero-mean Gaussian prior are 

concentrated around zero such that the posterior distribution of the weight is dominated 

by the data rather than the prior. If using a non-informative prior, too many of the 

probabilistic masses are placed on larger values of the weights that are unrealistic. In 

addition, the posterior distribution of the weight could become mathematically 

unmanageable. It is worth mentioning that zero-offset in the mean function of a GP prior 

does not imply that the resulting predictive distribution will also have a zero mean. In 

general, the mean function of the predictive distribution, which depends on the testing 

input data and the hyperparamters that are trained using the training data, is non-zero even 

when the GP prior is given with zero mean. The Gaussian prior itself does not ensure 

sparsity in the SSBL and it is achieved by placing a hierarchical prior over the 
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hyperparameters, given as 

 P(𝛂) = ∏ Γ(𝑎)−1𝑏𝑎𝛼𝑙
𝑎−1𝑒−𝑏𝛼𝑙

𝐿

𝑙=1
 (3.6) 

where Γ(∙)  is the gamma function, and 𝑎, 𝑏  are hyperparameters of the hierarchical 

prior over the weight precision. In the case of the prior over the error variance 𝜎2, a 

suitable prior is given as 

 P(1 𝜎2⁄ ) = Γ(𝑐)−1𝑑𝑐𝜎2(1−c)𝑒−𝑑/𝜎2
 (3.7) 

where 𝑐  and 𝑑  are hyperparameters of the prior over noise variance. To see how 

sparsity is introduced, one may marginalize out the weight P(𝑤𝑙) 

 P(𝑤𝑙) = ∫ P(𝑤𝑙|𝛼𝑙)P(𝛼𝑙)𝑑𝛼𝑙 

=
𝑏𝑎Γ(𝑎 + 1 2⁄ )

(2𝜋)1 2⁄ Γ(𝑎)
(𝑏 + 𝑤𝑙

2 2⁄ )−(𝑎+1 2⁄ ) 

(3.8) 

which corresponds to a Student’s t-distribution. Thus, the overall marginal weight prior 

is a product of independent Student-t distribution over the weight vector 𝐰. In the case 

of the uniform prior, with 𝑎 = 𝑏 = 0, we obtain the improper prior 

 P(𝑤𝑛) ∝ 1 |𝑤𝑛|⁄  (3.9) 

which is sharply peaked at zero, in charge of producing sparse population models. 

Therefore, the hyperparameters 𝑎 and 𝑏 should be set to as close as zero as machine 

precision allows. The hyperparameters 𝑐 and 𝑑 are also required to be fixed to small 

values to ensure that the unknown parameter posterior is dominated by the training data 

rather than the predefined prior. The Bayesian inference-based estimation of unknown 
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parameters is essentially the combination of information from the data and the priors 

about the unknown parameters. In sparse Bayesian learning, when the hyperparameters 

are set to as close as zero, the priors placed on the weights and the noise variance become 

more non-informative (the priors become uniform by setting the hyperparameters to zero) 

and thus the estimation results tend to be more objective as they are dominated by the 

data. There might exist the best options for tuning the hyperparameters, but in practical 

applications we just need to make sure that these hyperparameters are set to small values. 

3.2.4 Parameter inference 

With the likelihood function Equation (3.6) and the prior Equations (3.8) to (3.10), 

the posterior distribution over unknown parameters can be obtained using Bayes’ theorem 

as, 

 P(𝐰, 𝛂, 𝜎2|𝐲) = P(𝐲|𝐰, 𝛂, 𝜎2)P(𝐰, 𝛂, 𝜎2) P(𝐲)⁄  (3.10) 

where P(𝐲) is a normalizing constant independent of the unknown parameters, given by 

 P(𝐲) = ∫ P(𝐲|𝐰, 𝛂, 𝜎2)P(𝐰, 𝛂, 𝜎2)𝑑𝐰𝑑𝛂𝑑𝜎2 (3.11) 

Through the combination of the likelihood and the prior, the posterior distribution in 

Equation (3.10) captures everything we known about unknown parameters. However, this 

posterior distribution cannot be obtained analytically as the integral in Equation (3.11) is 

intractable. In general, one may resort to approximate fully Bayesian solutions such as 
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Markov chain Monte Carlo (MCMC) and variational inference which typically involve 

the high computational complexity. Alternatively, the joint posterior distribution over the 

unknown parameters P(𝐰, 𝛂, 𝜎2|𝐲) can be easily decomposed as 

 P(𝐰, 𝛂, 𝜎2|𝐲) = P(𝐰|𝐲, 𝛂, 𝜎2)P(𝛂, 𝜎2|𝐲) (3.12) 

Given (𝛂, 𝜎2), the conditional posterior distribution over the weight P(𝐰|𝐲, 𝛂, 𝜎2) 

is analytically possible and thus SSBL becomes a search for the most plausible value of 

the hyperparameter posterior over (𝛂, 𝜎2) . Using Bayes’ theorem, the posterior 

distribution over the scale parameters (𝛂, 𝜎2), 

 P(𝛂, 𝜎2|𝐲) =
P(𝐲|𝛂, 𝜎2)P(𝛂)P(𝜎2)

P(𝐲)
 

∝ P(𝐲|𝛂, 𝜎2)P(𝛂)P(𝜎2) 

(3.13) 

In the case of uniform hyperpriors (𝑎, b, c and 𝑑 are set to small values), the priors 

P(𝛂) and P(𝜎2) have almost no effect on the maximization of the product of the log 

marginal posterior over (𝛂, 𝜎2) and thus we need only maximize the term P(𝐲|𝛂, 𝜎2) 

with respect to (𝛂, 𝜎2), that is computable given by 

 P(𝐲|𝛂, 𝜎2)= ∫ P(𝐲|𝐰, 𝜎2) P(𝐰|𝛂)𝑑𝐰 

= 𝒩(𝛍1, 𝐊1) 

(3.14) 

where the mean vector and covariance matrix are given by 

 𝛍1 = 𝟎𝐾 (3.15) 

 𝐊1 = 𝜎2𝐈𝐾 + 𝚽1𝐀−1𝚽1
T (3.16) 
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where 𝟎𝐾  is the 𝐿 × 1  zero vector and 𝐀  is the 𝐿 × 𝐿  diagonal matrix with 𝐀 =

diag(𝛼1, 𝛼2 … , 𝛼𝐿). The most plausible value (𝛂MP, 𝜎MP
2 ) of (𝛂, 𝜎2) is given as 

 (𝛂MP, 𝜎MP
2 ) = argmax(𝛂,𝜎2) P(𝐲|𝛂, 𝜎2) (3.17) 

In Bayesian statistics, the quantity P(𝐲|𝛂, 𝜎2) is known as the marginal likelihood, and 

its maximization known as the type-II maximum likelihood method (Tipping 2001). 

Maximization with respect to (𝛂, 𝜎2)  can be done numerically using Expectation-

Maximization (EM) algorithm and incremental learning algorithm. 

This procedure often leads to a significant number of hyperparameters 𝛼𝑙 tending 

towards infinity, effectively removing or pruning the corresponding basis functions in 

Equation (3.2). The basic idea is that the basis functions that are not significantly 

contributing to explaining the training data are automatically removed, resulting in a 

sparse population model. The basis functions that survive are called relevance vectors and 

thus sparse Bayesian learning is also called relevance vector machine. Empirically it is 

often found that the number of relevance vectors is much smaller than the total number 

of training points. 

Note that we can compute analytically the posterior distribution over the weights 

given by 

 P(𝐰|𝐲, 𝛂MP, 𝜎MP
2 ) =

P(𝐲|𝐰,𝜎MP
2 )P(𝐰|𝛂MP)

P(𝐲|𝛂MP, 𝜎MP
2 )

 

= 𝒩(𝛍2, 𝐊2) 

(3.18) 
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with the covariance and the mean for the weight vector are given respectively by 

 𝐊2 = (𝐀MP + 𝜎MP
−2𝚽1

T𝚽1)−1 (3.19) 

 𝛍2 = 𝜎MP
−2𝐊2𝚽1

T𝐲 (3.20) 

where 𝐀MP = diag(𝛼1,MP, 𝛼2,MP … , 𝛼𝐿,MP). 

3.2.5 Predictive posterior probability density function 

Given a new test point 𝐱p = [𝐱p,1, … , 𝐱p,𝑆]T , predictions can be made for the 

population feature model outputs 𝐲p = [𝑦p,1, … , 𝑦p,𝑆]T  in terms of the posterior 

predictive probability density, given by  

 P(𝐲p|𝐲) ≈ ∫ P(𝐲p|𝐰, 𝜎MP
2 )P(𝐰|𝐲, 𝛂MP, 𝜎MP

2 )𝑑𝐰 

= 𝒩(𝛍p, 𝐊p) 

(3.21) 

with 

 𝛍p = 𝚽2
T𝛍2 (3.22) 

 𝐊p = 𝚽2𝐊2𝚽2
T + 𝜎MP

2 𝐈𝑆 (3.23) 

where 𝚽2 = [𝝓(𝐱p,1), … , 𝝓(𝐱p,𝑆)]T  is the new design matrix for population feature 

prediction and 𝐈𝑆 denotes an 𝑆 × 𝑆 identity matrix, and 𝛍p and 𝐊p are the posterior 

population feature mean and covariance, respectively. The predictive covariance in 

Equation (3.23) is the sum of two terms: the pooled uncertainty 𝜎MP
2 𝐈𝑆  from 

measurement noise and structural variability, and the modelling uncertainty 𝚽2𝐊2𝚽2
T 
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induced by SSBL for the population features of NISs. It is apparently important to derive 

an accurate estimate of the signal noise term as it can effectively dictate how much of 

uncertainty in the prediction is governed by measurement noise, and how much of it is 

explained by actual modelling uncertainty against the given dictionary. This is effectively 

a problem of optimizing the hyperparameters. 

3.2.6 The choice of kernel functions 

The choice of kernel functions is the crucial ingredient in SSBL, as it encodes our 

assumptions about the population model we wish to learn. An advantage of SSBL lies in 

that the kernel function 𝑘(𝐱, 𝐱𝑐)  is not required to satisfy Mercer’s condition. 

Commonly used kernel functions include polynomial kernel, Gaussian kernel and 

Laplace kernel. In this thesis, the Gaussian kernel is preferred due to its good smoothness, 

given as 

 𝑘(𝐱, 𝐱𝑐) = exp(− ‖𝐱 − 𝐱𝑐‖2
2 2⁄ 𝛾2) (3.24) 

where 𝛾 is kernel width. 

The update rules for the hyperparameters depend on computing the posterior weight 

covariance matrix, which requires an inverse operation (in fact, Cholesky decomposition) 

of order 𝒪(𝐿3) complexity and 𝒪(𝐿3) memory storage, with 𝐿 being the number of 

basis functions. In standard SBL, the basis function is typically centred on at all training 
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points, that is 𝐱𝑐 = 𝐱 . This leads to a computational complexity of 𝒪(𝐾3) , with 𝐾 

being the number of the total training point, which is computationally prohibitively 

expensive in the case of nominally identical structures. Due to the fact that 𝐱1𝑛 = 𝐱2𝑛 =

⋯ = 𝐱𝑀𝑛  for any 𝑛 , one may simply let 𝐱𝑐 = [𝐱11, 𝐱12, … , 𝐱1𝑁]T . As a result, the 

number of basis functions used in standard SBL is only 𝑁  and the computational 

complexity of the standard SBL algorithm will be reduced considerably from 

order 𝒪(𝐾3) to 𝒪(𝑁3). 

It should be noted that only the Gaussian kernel is used in the case study throughout 

the thesis. The optimal number of kernels is automatically determined by the hierarchical 

sparse Bayesian learning scheme and the optimal parameters associated with kernel 

functions in sparse Bayesian learning are determined by three model assessment indices, 

including root mean squared residual, mean standardized log loss and sparsity ratio which 

will be introduced later. 

3.3 Case study 

Nominally identical structures or components exist widely in the real world. For 

example, railway wheels are a typical example of nominally identical structures that are 

made of the same materials, manufactured in the same specifications and assembled in 

the same train. Damage in railway wheels is called wheel defects because of wheel out-
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of-roundness such as wheel flat, wheel shell and wheel polygonization (Nielsen and 

Johansson 2000, Johansson 2006). Wheel flat can arise due to unintentional sliding of the 

wheel on the rail. The primary cause of wheel flat is that the braking force is too high in 

relation to the available wheel/rail friction. The reason for this might be that the brakes 

are poorly adjusted, frozen or defective. Another reason might be that there are regions 

where wheel/rail frication incidentally and locally becomes low. Wheel polygonization is 

believed to be a coupling to the frequencies of natural vibration of the railway wheelset. 

Wheel shell can arise due to loss of flakes of material from the wheel tread. Excessive 

vertical wheel/rail contact forces with respect to the diameter of the wheel is the primary 

cause for this particular form of rolling contact fatigue. Wheel defects can cause severe 

damage to both rail and vehicle components such as sleepers, rails, wheelsets and bearings. 

They also lead to increased impact and rolling noise levels and to discomfort for 

passengers owing to high vibration amplitudes. Therefore, wheel condition assessment is 

of great importance to ensure railway safety and to reduce the required cost for the 

maintenance of railway infrastructure. 

Wheel condition assessment, however, suffers from wheel defect diversity, random 

vehicle dynamics, track irregularity and limitations in the number of measurement sensors 

and their arrangement. Measurement results can be of high variability and randomness. 

In addition, these nominally identical structures are not truly identical due to variability 
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in the materials, manufacturing, assembly, boundary conditions, and so forth, which cause 

corresponding variability or uncertainty in the dynamics and the vibration response 

characteristics. Condition assessment of railway wheels within deterministic analysis is 

not reliable and improper use may lead to false estimation and prediction. Therefore, a 

Bayesian probabilistic model using SBL is proposed in this chapter to quantify the 

associated uncertainties in dynamic measurements for normal wheels, which can be used 

subsequently for wheel condition assessment.  

3.3.1 Track-side monitoring system 

To assess the condition of wheels, the monitoring data should be first collected. The 

monitoring data are collected from a track-side monitoring system (Liu and Ni 2018) that 

is based on fiber Bragg grating (FBG) sensors, mounted on the rail foot. The fiber sensing 

track-side monitoring system in this case study consists of two arrays of 42 FBG strain 

gauges, two optical cables, a high-speed optical interrogator, and a desktop computer. 

Each sensor array comprises 21 FBG gauges, evenly spaced at 0.15m intervals on rail 

foot of one single track and the total measurement range reaches 3.0m to cover the whole 

wheel circumference. By using two optical cables, these FBG sensors are connected to a 

high-speed optical interrogator, which real-timely reads their wavelength information. 

These wavelengths are then transformed into strain information in accordance with sensor 
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sensitivities. The high-speed optical interrogator is controlled by the desktop computer 

which is also used for data acquisition, data analysis and decision making for wheel 

maintenance scheduling. The optical interrogator and the desktop computer are both 

operated in an auxiliary office that is about 120m away from the monitoring area. Figure 

3.1 shows the configuration of the FBG-based track-side monitoring system and Figure 

3.2 gives the deployment of FBG strain gauges. The FBG sensors have been calibrated in 

laboratory before their installation, indicating a strain sensitivity of 1pm/𝜇𝜀  and a 

temperature sensitivity of 10pm/ Co . In this application, temperature compensation is 

not necessary because the online monitoring activity for a train can be done in several 

seconds, during which environment temperature will not change dramatically. For the 

same reason, the dynamic strain change due to rail temperature evolution is also 

disregarded. Figure 3.3 shows the rail strain variation monitored by the FBG sensor SEN-

D2 when a typical 8-car passenger train passes the instrumented rail section at a nominal 

speed of 10km/h. The sampling frequency 𝑓𝑠 is set to be 5kHz to ensure that abnormal 

wheels can be sensed. It is observed that rail bending strain varies between -100με and 

150με, wherein 32 peaks are consistent with 32 wheels on a single track. Figure 3.4 gives 

the corresponding Fourier amplitude spectrum (FAS) under a logarithmic scale and it is 

found that the strain signal is dominated by the low frequency components under 10Hz. 

Low-frequency components are believed to be dominated by axle loads, wheel bases and 
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long wave track irregularities, while high-frequency components are believed to be 

caused by wheel and rail surface roughness as well as measurement noises (Wei et al. 

2012, Filograno et al. 2012 and 2013). The loading conditions such as fully loaded and 

non-loaded trains do not significantly influence the wheel defect-incurred impact on the 

railway track, which has been validated by both numerical modelling (Uzzal et al. 2008) 

and field test (Nielsen and Johansson 2000).  
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(a) Schematic diagram of the FBG-based track-side monitoring system 

 

(b) Deployed FBG strain gauges 

Figure 3.1 FBG-based track-side monitoring system 
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Figure 3.2 Deployment of FBG gauges  
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Figure 3.3 Rail foot strain recorded by SEN-D2 

 

 

Figure 3.4 FAS of rail foot strain recorded by SEN-D2  
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3.3.2 Data preprocessing 

To obtain useful information for wheel condition assessment, Filograno et al. (2013) 

have proposed an empirical formula to extract the high frequency components from the 

monitoring strain data, which is defined as 

 𝑓𝑐 = 𝑘𝑣 (3.25) 

where the cutoff frequency 𝑓𝑐 is linearly proportional to the nominal train speed 𝑣 with 

the coefficient 𝑘. The coefficient 𝑘 is set to be 1.0Hz·h/km after many experiments and 

the train speed 𝑣 is fixed to its nominal value. The high frequency components termed 

detrended data in this study, can be extracted from raw strain monitoring data by using an 

ideal high-pass filter with the cutoff frequency 𝑓𝑐 determined by the train speed. The 

remaining part is the low frequency components, termed the trend. Figures 3.5 and 3.6 

shows the trend and detrended data respectively with a cutoff frequency 𝑓𝑐 = 10Hz. As 

shown in Figure 3.7, 32 data segments near strain peaks are separated from the detrended 

data and then allocated to each wheel, with each segment lasting 0.3s and consisting of 

1500 data points. An upper frequency limit 𝑓𝑢 is then utilized to exclude redundant high 

frequency components. The upper limit frequency 𝑓𝑢 is the upper bound of the wheel 

defect-induced effect on the variation of rail bending strain in the frequency domain. It is 

related to the train speed and the targeted possible maximum wheel defect. Typically, it 

is extremely difficult to explicitly determine such a relationship, partially because there 
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is a lack of samples of the possible maximum wheel defect for field test but mainly 

because the wheel defect-induced impact load on the rail nonlinearly depends on the train 

speed (Nielsen and Johansson 2000, Johansson and Nielsen 2003). In this study, the 

considered train speed is 𝑣 = 10km/h and the targeted maximum wheel defect length 

𝐿max = 150mm. The upper limit frequency 𝑓𝑢  is empirically set to be 300Hz, which 

guarantees that the chosen frequency-domain response components can deliver the richest 

information about wheel defect. The FASs of 32 detrended data segments are given in 

Figure 3.8.  
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Figure 3.5 Low-frequency component of rail foot strain recorded by SEN-D2 

 

 

Figure 3.6 High-frequency component of rail foot strain recorded by SEN-D2 
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Figure 3.7 High-frequency components for 32 wheels recorded by SEN-D2 

 

 

Figure 3.8 FASs of 32 detrended data segments  
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3.3.3 Feature extraction 

Fourier spectrum analysis is a common practice for feature extraction that is an 

essential step for wheel condition assessment. In this example, Fourier amplitude 

spectrum 𝑑(𝑓)  of high frequency components of raw strain monitoring data in the 

frequency band [𝑓𝑐 , 𝑓𝑢] is first normalized by its integration 𝑑𝐼 that is defined as 

 𝑑𝐼 = ∫ 𝑑(𝑓)𝑑𝑓
𝑓𝑢

𝑓𝑐

 (3.26) 

When a discrete Fourier transform (DFT) is employed, 𝑑𝐼 can be approximated by using 

the trapezoidal rule as 

 𝑑𝐼 ≈ ∑ (𝑑𝑖 + 𝑑𝑖+1)∆𝑓/2
𝑁−1

𝑖=1
 (3.27) 

where ∆𝑓 is the frequency resolution of DFT and 𝑁 is the number of frequency bins in 

[𝑓𝑐 , 𝑓𝑢] determined by 

 𝑁 = 𝑟𝑜𝑢𝑛𝑑{(𝑓𝑢 + 𝑓𝑐)/∆𝑓} (3.28) 

The round is a mathematical operation for taking integer. As a result, the normalized 

Fourier amplitude spectrum (NFAS) can be stated in a probabilistic logic and its CDF on 

discrete frequency bins can be derived as 

 
𝑦𝑖 = {

0,                                                     𝑖 = 1

∑ (𝑑𝑖 + 𝑑𝑖+1)∆𝑓/2
𝑁−1

𝑖=1
, 𝑖 ≠ 1

 (3.29) 

The values of all CDFs range from 0 to 1 in the frequency band [𝑓𝑐 , 𝑓𝑢]. The CDFs for 

32 NFASs of detrended segments are given in Figure 3.9 with ∆𝑓 = 3.3Hz and 𝑁 = 88. 



Chapter 3 SSBL for Population Features of NISs 

55 

In the next stage, these CDFs will be utilized for training a probabilistic population model 

to define healthy wheels by means of standard SBL and this population model will be 

used as a baseline reference model in the phase of wheel condition assessment when new 

monitoring data from railway wheels are available.  

 

Figure 3.9 CDFs of FASs in the frequency range of 10-300Hz for 32 wheels recorded by 

SEN-D2  
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3.3.4 SSBL for population features of nominally identical wheels 

In this section, raw monitoring data from the sensor SEN-D2 are taken as an example 

to illustrate the SSBL method for modelling the population features of nominally identical 

wheels. As shown in Figure 3.3, raw monitoring data from the sensor SEN-D2 contain 

condition assessment information of 32 wheels, in which high-frequency components 

sensitive to wheel condition assessment have been extracted and assigned to each wheel, 

as shown in Figure 3.4. Typically, the measured strain variation of rail bending can be 

classified into two parts (Wei et al. 2012; Filograno et al. 2012 and 2013): the low-

frequency component and the high-frequency component, by using the cutoff frequency 

𝑓𝑐 in Eq. (3.25) which is dependent on the train speed. The low-frequency component is 

found to be primarily controlled by axle loads, wheel bases and thus it is often used for 

the dynamic weighing, axle counting and identification of trains. By contrast, the high-

frequency component is mainly caused by wheel and rail surface roughness and 

measurement noises and thus it is often used for wheel condition assessment. The low-

frequency component (including the DC component at 0 Hz in Figure 3.4) does not affect 

the accuracy of sparse Bayesian learning results because the model training uses only 

damage-sensitive features extracted from the high-frequency component. Then, 32 CDFs 

that characterize wheel conditions have been derived, with 26 CDFs (𝑀 = 26) of healthy 

wheels used for learning a probabilistic population feature model of all healthy wheels 
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and the remaining 6 CDFs (𝑄 = 6 ) used for testing the performance of the learned 

population feature model. The total training set is composed of 2288 (𝐾 = 2288) samples 

points evenly distributed on 88 (𝑁 = 88) frequency bins. The Gaussian kernel function 

is employed here because of its good adaptability discussed before. In the framework of 

standard SBL (Tipping 2000 and 2003), the kernel width needs to be predefined. Although 

adaptive algorithms (Wipf and Bhaskar 2004, Mohsenzadeh and Sheikhzadeh 2014) have 

been proposed for automatic selection of kernel width, they can be computationally 

expensive especially when the training set is large. In this case study, a random 

initialization strategy is utilized to explore the optimal kernel width 𝛾 and three indices 

are employed to investigate the performance of the learned population feature model 

when different kernel widths are used. The first index is the root mean square residual 

(RMSR) given by 

 

RMSR = √∑ ∑
(𝑦𝑞𝑛 − 𝜇p,𝑛)2

𝑄𝑁

𝑁

𝑛=1

𝑄

𝑞=1

 (3.30) 

where 𝑁  is the number of frequency bins for each CDF, 𝑄  is the number of the 

remaining CDFs used for testing the performance of the learned population feature model, 

𝑦𝑞𝑛  is the observed value of the 𝑞 th CDF on the 𝑛 th frequency bin and 𝜇p,𝑛  is its 

expectation value predicted by the learned population feature model. The second index is 

the mean standardized log loss (MSLL), given by 



Chapter 3 SSBL for Population Features of NISs 

58 

 

 MSLL = −
1

𝑄𝑁
log P(𝐲) 

=
1

2𝑄𝑁
∑ ∑[log(2𝜋𝐊p,𝑛𝑛) + 𝐊p,𝑛𝑛

−1 (𝑦𝑞𝑛 − 𝜇p,𝑛)2]

𝑁

𝑛=1

𝑄

𝑞=1

 

(3.31) 

where 𝐲 denotes the testing outputs from the remaining sample structures and 𝐊p,𝑛𝑛 is 

the 𝑛th diagonal element of the posterior covariance matrix of the population features 

𝐊p. The third index is the sparsity ratio 𝒦, defined as 

 𝒦 =
𝑁𝑅𝑉

𝑀𝑁
× 100% (3.32) 

where 𝑁𝑅𝑉 is the number of non-zero weights in the learned population feature model. 

In this case study, the kernel widths 𝛾 = 1  and 100  are selected to be two extreme 

cases by tentative calculations. 

Then the SSBL-based population feature model is trained by successively increasing 

the kernel width 𝛾  from 1 to 100. Figures 3.10 to 3.13 show four SSBL population 

feature models in conjunction with their predicted expectations and the associated 95% 

confidence intervals when the kernel width is 𝛾 is equal to 1, 26, 41 and 100, respectively. 

Figures 3.14 and 3.15 show the variation of RMSR, MSLL and the sparse ratio 𝒦 against 

kernel width 𝛾 . From Figure 3.10, it is seen that the trained model is relatively 

complicated when the kernel width is too small and as a result, 79 relevance vectors (basis 

functions) are needed to represent the CDFs. Figures 3.11 and 3.12 provide two better 

alternative models, which are simpler and sparser with only 6 and 4 relevance vectors 
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used respectively. When the kernel width continues to increase, the probabilistic 

population feature model of nominally identically undamaged wheels will lose expressive 

ability as evidenced in Figure 13, where only 3 relevance vectors remain in the model but 

they are insufficient to characterize the CDFs. As shown in Figures 3.14 and 3.15, both 

RMSR and MSSL increase in general with the kernel width 𝛾. Within the kernel width 

range considered, there exist two different local optimal kernel widths, which are 𝛾 = 26 

and 41 for RMSR, and 𝛾 = 25 and 40 for MSLL, in relation to different explanations 

about the complexity of the population feature model. By contrast, the sparsity ratio 𝒦 

almost deceases continuously with the kernel width 𝛾 as shown in Figure 3.16. As a 

compromise between expressive ability and sparseness, the kernel width 𝛾 =40 is 

considered here as the optimal value to construct the population feature model that is 

fairly simple and favorably consistent with the likelihood of the training data. There exist 

only 4 relevance vectors (basis functions) in the probabilistic model when 𝛾 =40, 

justifying a sparse representation of the built model. Table 3.1 show the 4 relevance 

vectors including the distribution of active (nonzero) weights and the associated kernel 

functions. The kernel functions defined in Eq. (3.24) are isotropic and thus they have the 

same variance. They are centered at the input locations and in this study, the input 

locations are the 88 frequency bins, evenly distributed on the band 𝑥𝑓 = [10Hz, 300Hz], 

that has been scaled to integers among 𝑥 = [1, 88] by using a linear transformation 𝑥 =
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3𝑥𝑓 10⁄ − 2. Therefore, these kernel functions have integer mean values. 

Figure 3.17 shows the quantification of multiple sources of uncertainty in the 

obtained population feature model. It is seen that the posterior uncertainty of the 

population feature model of nominally identically undamaged wheels is dominated by the 

mixed uncertainty (the pooling of measurement noise-induced uncertainty and structural 

variability-induced uncertainty). The modelling-induced uncertainty in the SSBL of the 

population features is insignificant as there are as many as 2288 training points. 

It should be mentioned that the group of nominally identical structures to be analyzed, 

in the case of wheels are assumed to operate in the same operational and environmental 

condition. This is because the track-side monitoring system is often installed at a specific 

location before the trains arriving at the railway station, for the convenience of facilitating 

its use, management and maintenance. Therefore, this allows the trains, including not only 

normal-speed trains but also high-speed trains to pass the monitoring area at a fixed speed 

(the same operational and environmental condition). 
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Table 3.1 Active weights and associated kernel functions 

Weight number Weight distribution Associated kernel function 

𝑤1 𝒩(−5.35, 0.052) exp (−
‖𝑥 − 1‖2

2 × 402
) 

𝑤209 𝒩(5.65, 0.0482) exp (−
‖𝑥 − 9‖2

2 × 402
) 

𝑤1769 𝒩(−1.73, 0.0202) exp (−
‖𝑥 − 69‖2

2 × 402
) 

𝑤2263 𝒩(2.24, 0.0162) exp (−
‖𝑥 − 88‖2

2 × 402
) 
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Figure 3.10 CDF learning with kernel 𝛾 = 1 

 

 

Figure 3.11 CDF learning with kernel 𝛾 = 26  
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Figure 3.12 CDF learning with kernel 𝛾 = 41 

 

 

Figure 3.13 CDF learning with kernel 𝛾 = 100  
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Figure 3.14 RMSR against kernel width 𝛾 

 

 

Figure 3.15 MSLL against kernel width 𝛾  
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Figure 3.16 Sparsity ratio 𝒦 against kernel width 𝛾 

 

 

Figure 3.17 ANOVA of multiple sources of uncertainty in the homoscedastic population 

feature model   
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3.4 Summary 

This chapter presents a Bayesian probabilistic approach for modelling the population 

features in nominally identical structures. In this approach, the uncertainties in SHM data 

resulting from measurement noise and inter-structure variability are simply pooled 

together such that SSBL can be employed to model the population features of nominally 

identical structures and quantify the associated uncertainties. The advantage to this 

approach lies in the fact that SSBL is formulated in a fully probabilistic framework which 

easily takes into account uncertainties in damage-sensitive features for nominally 

identical structures. A further advantage of this approach is that redundant basis functions 

utilized in sparse Bayesian modelling of the population damage-sensitive features can be 

automatically pruned, giving rise to a sparse population model that enables to maintain 

good prediction accuracy not only on training data but also on unseen data. More 

importantly, the resulting data-driven population feature model using SSBL enables fast 

prediction such that the subsequent damage detection procedure can be performed on 

nominally identical structures in a more efficient and effective way. To validate the 

performance of SSBL in modelling the population features of nominally identical 

structure, a case study has been conducted using real-world SHM data.  

In addition, we have elaborated on how to extract damage-sensitive features from 

real-world structural health monitoring data. Based on the extracted damage-sensitive 
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features, we have also demonstrated the capacity of the standard sparse Bayesian learning 

on establishing a data-driven population feature model for nominally identical healthy 

structures. This lays a solid foundation for further studies conducted in the next two 

chapters for establishing better population feature models by using the variants of 

standard sparse Bayesian learning. 

To validate the performance of SSBL in modelling the population features of 

nominally identical structures, a case study has been conducted using real-world SHM 

data. As the case study shows, the pooling of different sources of uncertainty can cause 

heteroscedasticity in the training data and the homoscedastic baseline model learned by 

SSBL cannot correctly quantify the uncertainty associated with the population features of 

NISs. The heteroscedastic training data in the modelling of the population features of 

NISs will be considered in the next two chapters. 
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Chapter 4 

HSBL for Population Features of NISs 

4.1 Introduction 

A data-driven statistical framework has been pursued in the previous chapter to model 

the population features of nominally identical structures (NISs). In this framework, SHM 

data acquired from multiple NISs are simply pooled together and assumed to be 

homoscedastic such that standard sparse Bayesian learning (SSBL) can be implemented. 

In many cases, however, the pooled SHM data are often found to be heteroscedastic due 

to the existence of multiple sources of uncertainty, including the epistemic uncertainty 

resulting from the measurement noise and the aleatoric uncertainty from structural 

variability. The existence of heteroscedasticity can pose a big challenge when modelling 

the population features of NISs as it can make a statistical model inefficient to illustrate 

the true uncertainty of it. More importantly, it may invalidate statistical tests when an 

inefficient model is applied for damage detection. 

Currently, there exist a number of statistical modelling techniques available to deal 

with the heteroscedastic data and most of them are realized in heteroscedastic Gaussian 

process (HGP) regression. In the typical HGP regression, two standard Gaussian process 

(GP) models are often employed, with the one for modelling the function mean value and 
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the other for estimating the input-dependent error level. However, the combination of two 

GPs can give rise to a joint posterior distribution of the function value and the input-

dependent error, that is non-Gaussian and no longer analytically intractable. As a result, 

various approximate inference methods are employed which include sampling 

approaches (Goldberg et al. 1998, Wang 2014) and analytical approximations (Le et al. 

2005, Kersting et al. 2007, Lázaro-Gredilla and Titsias 2011, McHutchon and Rasmussen 

2011, McHutchon 2014, Muñoz-González et al. 2014 and 2016, McHutchon 2015, Urban 

et al. 2015). Nevertheless, it will often be computationally too expensive to train and 

make predictions using an HGP.  

In this chapter, we borrow the idea of Kersting et al. (2007) and make an extension 

to SSBL, termed heteroscedastic sparse Bayesian learning (HSBL) to address the 

heteroscedastic data when training a data-driven population feature model for NISs. Two 

SSBL models will be utilized in an HSBL, with one for estimating the posterior mean of 

population features of NISs and the other for updating the posterior uncertainty of them. 

We first introduce the basic theory of the HSBL in Section 4.2, followed by a comparative 

case study conducted in Section 4.3 to demonstrate the superiority of HSBL over SSBL 

in modelling the pooled data showing heteroscedasticity. Concluding remarks are made 

in Section 4.4. 
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4.2 Problem Formulation 

As described in the previous chapter, assume that we have a group of nominally identical 

structures being monitored, where 𝑀  structures are known undamaged. From any 

undamaged structure, we have a training dataset 𝐃𝑚 = {(𝐱𝑚𝑛, 𝑦𝑚𝑛)}𝑛=1
𝑛=𝑁, where 𝑦𝑚𝑛 is 

the scalar-valued training output, 𝐱𝑚𝑛  is the vector-valued training input, 𝑚  is the 

structure serial number, and 𝑛 is the serial number in the dataset of size 𝑁. In the case 

of 𝑀  undamaged structures, we have an assembled dataset 𝐃 = {𝐃𝑚}𝑚=1
𝑚=𝑀 =

{(𝐱𝑚𝑛, 𝑦𝑚𝑛)}𝑚=1,𝑛=1
𝑚=𝑀,𝑛=𝑁

 of size 𝐾 = 𝑀 × 𝑁  when developing a data-driven statistical 

model for the interpretation of healthy population features of all NISs. 

4.2.1 Model specification 

Following the pooled modelling framework in SSBL, we assume that the training 

output 𝑦𝑚𝑛 can be represented as 

 𝑦𝑚𝑛 = 𝑓p(𝐱𝑚𝑛) + 𝜀𝑚𝑛 (4.1) 

with 

 𝜀𝑚𝑛~𝒩(0, 𝑔2(𝐱𝑚𝑛)) (4.2) 

where the error term 𝜀𝑚𝑛  is the discrepancy of the training output 𝑦𝑚𝑛  from the 

population feature model output 𝑓p(𝐱𝑚𝑛)  at the 𝑛 th input point 𝐱𝑚𝑛  from the 𝑚 th 

structure. The error 𝜀𝑚𝑛  is assumed as a random variable that is independent and 
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normally distributed with zero mean as in SSBL, whereas its standard deviation is varying 

across the input in HSBL, which is described by a slowly-varying function 𝑔(𝐱𝑚𝑛). The 

slowly-varying function 𝑔(𝐱𝑚𝑛) is referred to the fact that it should be simpler than the 

population feature model 𝑓p(𝐱𝑚𝑛). Otherwise, we cannot determine the error function 

𝑔(𝐱𝑚𝑛)  using the idea of Kersting et al. (2007). Thus, two unknown functions are 

required to infer from the training data, including the population feature model 𝑓p(𝐱𝑚𝑛) 

and the non-negative error level function 𝑔(𝐱𝑚𝑛). 

4.2.2 Hierarchical Bayesian learning 

The proposed HSBL makes use of two SSBL models, with the first for estimating the 

mean population features of NISs and the other for adjusting the input-dependent error 

level. Assume that the heteroscedastic population feature model of NISs is also a 

generalization of the Gaussian probability distribution and the joint distribution of its 

population feature predictions 𝐲p,1 = [𝑦p,1, … , 𝑦p,𝑆]T  on the test points 𝐱p =

[𝐱p,1, … , 𝐱p,𝑆]T with 𝑆 being the number of the predictions, is given by 

 P(𝐲∗|𝐃) = 𝒩(𝛍p
HSBL, 𝐊p

HSBL) (4.3) 

where the posterior population feature mean 𝛍p
HSBL  and covariance 𝐊p

HSBL  are both 

required to be estimated. In the proposed hierarchical sparse Bayesian learning scheme, 

the posterior population feature mean 𝛍p
HSBL  is approximated by the corresponding 
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quantity in the homoscedastic population feature model, given by  

 𝛍p
HSBL ≈ 𝛍p

SSBL = 𝚽2
T𝛍2 (4.4) 

where 𝛍p
SSBL  is the posterior population feature mean from the first SSBL given in 

Equation (3.22), 𝛍2 is the marginal posterior mean of the weight parameters in the first 

SSBL defined in Equation (3.20), and 𝚽2 is the new design matrix for population feature 

prediction defined in the preceding chapter. The population feature covariance 𝐊p
HSBL, 

however, is generally inconsistent with the one from the first SSBL 

 𝐊p
HSBL ≠ 𝐊p

SSBL = 𝚽2𝐊2𝚽2
T + 𝜎MP

2 𝐈𝑆 (4.5) 

where 𝐊2 is the marginal posterior covariance of the weight parameters in the first SSBL 

defined in Equation (3.19), 𝜎MP
2  is the most plausible estimate of the error variance in 

the first SSBL, and 𝐈𝑆 is the 𝑆 × 𝑆 identity matrix. This is mainly due to the fact that 

𝜎MP
2 ≠ 𝑔2(𝐱p,𝑠). Therefore, the core problem in HSBL is to estimate the changing error 

level. 

In classical regression analysis, the regression residual is commonly used for the 

evaluation of the constant noise level 𝜎2 (Draper and Smith 2014). In light of this, we 

make use of the regression residual to infer the changing error level 𝑔(𝐱𝑚𝑛) . In the 

Bayesian paradigm, the residual is referred as the deviation of the training output from 

the corresponding estimated mean (Carlin and Louis 2010, Carlin et al. 2013). When 

developing a data-driven statistical model for representing the population features of NISs 
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based on SSBL, the residual is given as 

 𝑟𝑚𝑛 = 𝑦𝑚𝑛 − 𝜇p,𝑛
SSBL (4.6) 

where 𝜇p,𝑛
SSBL  is the posterior predictive population feature mean at the training input 

𝐱𝑚𝑛 in the first SSBL. By rewriting the residual 𝑟𝑚𝑛 as 

 

𝑟𝑚𝑛 = 𝑦𝑚𝑛 − 𝑓p(𝐱𝑚𝑛) + 𝑓p(𝐱𝑚𝑛) − 𝜇p,𝑛
SSBL 

= 𝜀𝑚𝑛 + [𝑓p(𝐱𝑚𝑛) − 𝜇p,𝑛
SSBL] 

(4.7) 

we can see that the residual 𝑟𝑚𝑛 is composed of two items: the first term 𝜀𝑚𝑛 is the 

error term and the other 𝑓p(𝐱𝑚𝑛) − 𝜇p,𝑛
SSBL is the modelling error. The error 𝜀𝑚𝑛 is a 

random variable, while the modelling error 𝑓p(𝐱𝑚𝑛) − 𝜇p,𝑛
SSBL is a deterministic variable. 

If the first SSBL model is well established, we may have 

 𝑓p(𝐱𝑚𝑛) − 𝜇p,𝑛
SSBL ≈ 0 (4.8) 

The residual 𝑟𝑚𝑛 is thus approximately a zero-mean Gaussian random variable, given as 

 𝑟𝑚𝑛 ≈ 𝜀𝑚𝑛~𝒩(0, 𝑔2(𝐱𝑚𝑛)) (4.9) 

The absolute residual |𝑟𝑚𝑛| at the input point 𝐱𝑚𝑛 follows a half-normal distribution 

and its mean is given by (Leone et al. 1961) 

 𝔼{|𝑟𝑚𝑛|} = 𝑔(𝐱𝑚𝑛) √𝜋 2⁄⁄  (4.10) 

Thus, we may estimate the standard deviation 𝑔(𝐱𝑚𝑛) of the input-dependent error at 

the training input location 𝐱𝑚𝑛 as 

 𝑔(𝐱𝑚𝑛) = √𝜋 2⁄ 𝔼{|𝑟𝑚𝑛|} (4.11) 
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Obviously, √𝜋 2⁄ 𝔼{|𝑟𝑚𝑛|} is an approximate unbiased estimate of the input-dependent 

error level 𝑔(𝐱𝑚𝑛). 

Therefore, a new training data 𝐃′ = {𝐱𝑚𝑛, 𝑧𝑚𝑛}𝑚=1,𝑛=1
𝑚=𝑀,𝑛=𝑁

 with 𝑧𝑚𝑛 = |𝑟𝑚𝑛| can be, 

therefore, created to train a second SSBL model to estimate the most likely noise level 

�̃�(𝐱p,𝑠) = √𝜋 2⁄ 𝜇zp,𝑠
 at the population feature test point 𝐱p,𝑠. It should be mentioned 

that the most likely noise level is required to refine �̃�(𝐱p,𝑠) = max (0, √𝜋 2⁄ 𝜇zp,𝑠
) to 

ensure a nonnegative noise level. The heteroscedastic sparse Bayesian learning is 

presented in Algorithm 1.  

The uncertainty associated with the population features of NISs is thus updated to 

 𝐊p
HSBL = 𝚽2𝐊2𝚽2

T + 𝐆p (4.12) 

where 

 𝐆p = diag(�̃�2(𝐱p,1), … , �̃�2(𝐱p,𝑆)) (4.13) 

with �̃�2(𝐱p,𝑠) = max (0, 𝜋𝜇zp,𝑠
2 2⁄ ). It should be mentioned that one may also update the 

posterior mean of the population features of NISs in Equation (4.3) using the updated 

noise level, whereas it is not necessary to improve the population model due to the fact 

that the first SSBL for estimating population mean is more reliable than the other for 

estimating the input-dependent error function.  

  



Chapter 4 HSBL for Population Features of NISs 

75 

 

 

 

 

 

 

Algorithm 1 Heteroscedastic Sparse Bayesian Learning (HSBL) 

1. Train the first SSBL model on the training dataset 𝐃 = {𝐱𝑚𝑛, 𝑦𝑚𝑛}𝑚=1,𝑛=1
𝑚=𝑀,𝑛=𝑁

 and 

estimate the posterior distribution of the population features over training locations 

𝑦𝑚𝑛|𝐃~𝒩(𝜇𝑦𝑚𝑛
, 𝜎𝑦𝑚𝑛

2 ); 

2. Calculate the residuals 𝑟𝑚𝑛 = 𝑦𝑚𝑛 − 𝜇𝑦𝑚𝑛
 and build a new training dataset 𝐃′ =

{𝐱𝑚𝑛, 𝑧𝑚𝑛}𝑚=1,𝑛=1
𝑚=𝑀,𝑛=𝑁

 with 𝑧𝑚𝑛 = |𝑟𝑚𝑛|; 

3. Train the second SSBL model on the new training dataset 𝐃′ and estimate the 

input-dependent noise standard deviation �̃�(𝐱p,𝑠) = √𝜋 2⁄ 𝜇zp,𝑠
; 

4. Update the most likely error standard deviations �̃�(𝐱p,𝑠) = max (0, √𝜋 2⁄ 𝜇zp,𝑠
); 

5. Make prediction on future observations 𝐲p|𝐃~𝒩(𝛍p,𝑠
HSBL, 𝐊p,𝑠𝑠

HSBL). 
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4.3 Case Study  

To demonstrate the advantages of HSBL over SSBL in developing a data-driven 

statistical model for the population features of NISs when the training data are found 

heteroscedastic, the case study conducted in the preceding chapter is examined again in 

this section. In order for a good model to interpret the training data, one may have to 

carefully select the optimal hyperparameters (kernel widths) of the kernel functions in 

sparse Bayesian machine learning. Three quality indices are used here for assessing such 

selection, including the root mean square residual (RMSR), the mean standardized log 

loss (MSLL) and the sparsity ratio 𝒦. The RMSR index is defined as 

 RMSR = √∑ ∑
(𝑦𝑞𝑛 − 𝜇p,𝑛

HSBL)2

𝑄𝑁

𝑁

𝑛=1

𝑄

𝑞=1

 (4.14) 

where 𝑦𝑞𝑛 is the 𝑛th testing output from the 𝑞th testing sample structure, 𝜇p,𝑛
HSBL is 

the corresponding posterior mean of the population feature predicted by HSBL, is the 

number of data points from each testing sample structure, and 𝑄 is the number of the 

remaining sample structures for model testing. The MSLL index is given by 

 

MSLL = −
1

𝑄𝑁
log P(𝐲) 

=
1

2𝑄𝑁
∑ ∑[log(2𝜋𝐊p,𝑛𝑛

HSBL) + (𝐊p,𝑛𝑛
HSBL)−1(𝑦𝑞𝑛 − 𝜇p,𝑛

HSBL)2]

𝑁

𝑛=1

𝑄

𝑞=1

 

(4.15) 

where 𝐲 denotes the testing outputs from all testing sample structures, and 𝐊p,𝑛𝑛
HSBL is the 

𝑛th diagonal element of the posterior covariance matrix 𝐊p
HSBL in the HSBL population 
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feature model. The sparsity ratio 𝒦 is defined as 

 𝒦 =
𝑁RV

HSBL

𝑀𝑁
× 100% (4.16) 

with 𝑁RV
HSBL the number of relevance vectors (the basis functions with nonzero weights) 

in the HSBL population feature model, calculated by 

 𝑁RV
HSBL = 𝑁RV

SSBL(𝑓)
+ 𝑁RV

SSBL(𝑔)
 (4.17) 

where 𝑁RV
SSBL(𝑓)

 and 𝑁RV
SSBL(𝑔)

 denote the number of relevance vectors in the first and 

second SSBL models, respectively. The SMSR, SMLL and sparsity ratio 𝒦 are three 

quantities to measure learning losses when some trivial model is preferred. Typically, 

lower values indicate better performance for the trivial model. 

4.3.1 HSBL for population features of nominally identical wheels 

An SSBL is first performed on the same training data used in the previous chapter in 

order to obtain the posterior mean of the population features of nominally identically 

healthy wheels, shown in Figure 4.1. Based on the first SSBL model, the regression 

residuals are then calculated and another SSBL is performed on the absolute values of the 

obtained residuals to update the posterior uncertainty of the population features of NISs, 

as shown in Figure 4.2. Finally, the combination of the above two SSBL models gives 

rise to an HSBL model for the population features for NISs, as plotted in Figure 4.3. 

Intuitionally, the heteroscedastic population feature model from HSBL is much more 
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consistent with the training data than the homoscedastic one from SSBL. This is achieved 

at the price of twice the learning effort of an SSBL model. Fortunately, the obtained 

heteroscedastic population feature model remains very simple benefitting from the 

mechanism of sparse Bayesian learning and it requires only three additional relevance 

vectors, as shown in Figure 4.3. 

In the process of learning the heteroscedastic population feature model, three indices 

are used to monitor the model performance and select the optimal kernel width, including 

RMSR, MSLL and sparsity ratio 𝒦 that have been defined before. The RMSR, MSLL 

and 𝒦 against with the kernel width 𝑟 are shown from Figures 4.4 to 4.6, respectively. 

It is found that the RMSR index of the heteroscedastic population feature model from an 

HSBL is exactly the same as that of the homoscedastic model from SSBL. This is because 

the posterior population feature means are not updated in the current HSBL framework. 

In general, the RMSR increases with the kernel width. Two local minima of the RMSR 

index can be found at around 𝛾 = 26 and 40, respectively, corresponding to different 

model explanations and complexities. 

Nevertheless, this is not the case for the MSLL and the sparsity ratio 𝒦. It is seen 

from Figure 4.5 that the MSLL of the heteroscedastic population feature model is much 

smaller than that of the homoscedastic model for the considered kernel widths. This is 

because the updated posterior uncertainty of the population features is more consistent 
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with the training data, thus significantly reducing the MSLL regression loss. There exist 

also two local minima for the MSLL at around 𝛾 = 24  and 45 , respectively. Since 

additional relevance vectors are required in an HSBL to update the posterior uncertainty 

of the population features of NISs, the sparsity ratio 𝒦 of the heteroscedastic population 

feature model is a little worse than that of the homoscedastic one, as shown in Figure 4.6. 

If there is no additional information about the model complexity, we usually prefer 

to make use of a larger kernel width that will give rise to a simpler model. However, it 

should be noted that the larger local optimal kernel width is different from the index 

RMSR, MSLL and 𝒦. In this study, we employ the larger local optimal kernel width 

associated with the MSLL index (𝛾 = 45) as this index is more compatible with data 

likelihood.  

Figures 4.7 and 4.8 provide a detailed comparison of the population feature model 

derived from SSBL and HSBL. It can be seen that the posterior means of the population 

features of NISs from SSBL and HSBL are exactly the same as those, not refined in the 

proposed HSBL. Yet, the posterior uncertainties of the population features obtained from 

the two different modelling frameworks are distinctly different. The posterior standard 

deviations of the heteroscedastic population features from HSBL are concave downwards 

and varying across the considered damage-sensitive frequency band, with smaller 

variability at both ends but larger variability in the middle. This is in agreement with the 
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input-dependent variability pattern present in the raw training data. By contrast, the 

posterior standard deviations of the homoscedastic population features from SSBL are 

nearly constant across the damage-sensitive frequency band as the fundamental 

assumption on SSBL is that the pooled uncertainties from measurement noise and 

structural variability remain homoscedastic across the damage-sensitive frequency bins. 

As a result, the homoscedastic population feature model stands to locally overestimate 

the posterior standard deviations in their low-uncertainty area, and is likely to 

underestimate them in their high-uncertainty area. Interestingly, it is found that the 

averaged posterior standard deviation of the population feature model from the SSBL is 

almost identical to that of the HSBL (𝜎𝑦
SSBL = 0.0224 ≈ 𝜎𝑦

HSBL = 0.0221) . This 

phenomenon is not a coincidence. In fact, the assumed constant standard deviation of the 

errors in the SSBL can be proved to be an approximately unbiased estimator for the 

averaged standard deviation of the heteroscedastic errors in the HSBL. 

Figure 4.9 shows the quantification of multiple sources of uncertainty in the obtained 

HSBL population feature model. It is seen that the posterior uncertainty of the population 

feature model for nominally identically healthy wheels remains dominated by the pooled 

uncertainty (the pooling of measurement noise-induced uncertainty and structural 

variability-induced uncertainty), whereas the updated one is found to be more consistent 

with the uncertainty present in the training data. The modelling-induced uncertainty in 
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the HSBL of the population features is also insignificant as there are as many as 2288 

training points.  
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Figure 4.1 Posterior means of the population features of NISs from SSBL(𝑓) 

 

 

Figure 4.2 Posterior standard deviations of the population features of NISs from 

SSBL(𝑔)  
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Figure 4.3 Updated population feature model from HSBL 

 

 

Figure 4.4 RMSR against 𝛾  
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Figure 4.5 MSLL against 𝛾 

 

 

Figure 4.6 Sparsity ratio 𝒦 against 𝛾  
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Figure 4.7 Posterior means of the population features of NISs 

 

 

Figure 4.8 Posterior standard deviations of the population features of NISs  
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Figure 4.9 ANOVA of multiple sources of uncertainty in the heteroscedastic population 

feature model  
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4.4 Summary 

This chapter presents another data-driven Bayesian probabilistic framework for 

modelling the population features of NISs. In this framework, a heteroscedastic variant 

to SSBL, termed heteroscedastic sparse Bayesian learning (HSBL) is first proposed to 

deal with the training data with the input-dependent variability, resulting from the pooling 

of different sources of uncertainty such as measurement noise and structural variability 

in SHM data. The proposed HSBL is a hierarchical learning-based approach consisting 

of two SSBL models, with the first for estimating the posterior means of the population 

features of NISs and the other for adjusting its biased posterior uncertainty. To quantify 

the input-dependent variability in the training data, we infer it from the absolute residuals 

in the first SSBL model by the method of moment estimation, which enables to provide 

an unbiased estimate of it. To demonstrate the advantages of HSBL over SSBL in the 

modelling of the population features of NISs, the same case study in the previous chapter 

is then conducted. The comparison results show that the heteroscedastic population 

feature model inferred from HSBL interprets the training data from NISs much better than 

that from SSBL, whereas this is achieved at the price of the additional computational 

effort.  

Up to now, we have presented two distinct statistical frameworks for the modelling 

of the population features of NISs, based on SSBL and HSBL, respectively. The two 
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frameworks share the same strategy for handling uncertainty in SHM data from multiple 

nominally identical structures by simply pooling the two different sources of uncertainty, 

resulting from measurement noise and structural variability. In this strategy, the data 

dependence is discounted, which may overestimate the information in SHM data, leading 

to an overly narrow confidence interval for the population feature model. In the next 

chapter, we will show another novel Bayesian probabilistic framework for modelling the 

population features of NISs, in which different sources of uncertainty in SHM data can 

be modelled separately, thus giving rise to a more reliable population feature model. 
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Chapter 5  

PSBL for Population Features of NISs 

5.1 Introduction 

In Chapter 3, two different types of uncertainty in SHM data are mixed together such 

that SSBL can be used for modelling and quantifying the combined uncertainty in the 

population features of nominally identical structures (NISs). A disadvantage caused by 

the pooled uncertainty is that it may lead to heteroscedasticity in the training data, which 

has been dealt with in Chapter 4 based on PSBL. Another more important disadvantage 

of the pooling of different types of uncertainty lies in the information overestimation of 

data interpretation to some extent (Schubert et al. 2015, Tabor et al. 2018). This may result 

in an underestimated uncertainty, giving rise to an overly narrow confidence. Therefore, 

it is important that the data-driven model is able to separately account for different sources 

of uncertainty in the modelling of population features of NISs. 

In this chapter, another novel data-driven population model is established by panel 

sparse Bayesian learning (PSBL) with which two different sources of uncertainty can be 

modelled and quantified separately and thus information overestimation is avoided. A 

group of sub-models will be used in PSBL to model the individual structural behaviors 

which results in a model space representing the population features of nominally identical 
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structures. The rest of the chapter is organized as follows. Theoretical aspects of the PSBL 

methodology is formulated in Section 5.2, followed by a case study carried out in Section 

5.3 to demonstrate the superiority of PSBL over SSBL and HSBL in the modelling and 

quantification of the data-driven population features of nominally identical structures. 

Concluding remarks are given in Section 5.4. 

5.2 Problem Formulation 

5.2.1 The training data 

As described in the previous two chapters, assume that we have a group of nominally 

identical structures being monitored, where 𝑀 structures are known undamaged. From 

any undamaged structure, we have a training dataset 𝐃𝑚 = {(𝐱𝑚𝑛, 𝑦𝑚𝑛)}𝑛=1
𝑛=𝑁 , where 

𝑦𝑚𝑛 is the scalar-valued training output, 𝐱𝑚𝑛 is the vector-valued training input, 𝑚 is 

the serial number of the sample structure for model training and 𝑛 is the serial number 

in the training dataset of size 𝑁. In the case of M undamaged structures, we have an 

assembled dataset 𝐃 = {𝐃𝑚}𝑚=1
𝑚=𝑀  = {(𝐱𝑚𝑛, 𝑦𝑚𝑛)}𝑚=1,𝑛=1

𝑚=𝑀,𝑛=𝑁
 of size 𝐾 = 𝑀 × 𝑁  when 

developing a data-driven statistical model for the interpretation of healthy features for all 

NISs. 
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5.2.2 Model specification 

Different from SSBL and HSBL that define a single population feature model in the 

training phase, the proposed PSBL makes use of a group of sub-models as 

 𝑦𝑚𝑛 = 𝑓𝑚(𝐱𝑚𝑛) + 𝜀𝑚𝑛, with 𝜀𝑚𝑛~𝒩(0, 𝜎2) (5.1) 

where 𝜀𝑚𝑛  is the difference between the training output 𝑦𝑚𝑛  and the associated 

individual sub-model output 𝑓𝑚(𝐱𝑚𝑛)  from the 𝑚 th structure at the training input 

location 𝒙𝑚𝑛. 𝜀𝑚𝑛 is assumed to be mutually independent and normally distributed with 

zero mean and a constant variance 𝜎2 . Using the kernel-based learning method, the 

individual sub-model output 𝑓𝑚(𝐱𝑚𝑛)  can be represented by a set of nonlinear basis 

functions as 

 𝑓𝑚(𝐱𝑚𝑛) = 𝛟𝑚
T (𝐱𝑚𝑛)𝐰𝑚 = ∑ 𝑘(𝐱𝑚𝑛, 𝐱𝑐𝑙)𝑤𝑚𝑙

𝐿

𝑙=1

 (5.2) 

where 𝛟𝑚(𝒙𝑚𝑛) = [𝑘(𝐱𝑚𝑛, 𝐱𝑐1), … , 𝑘(𝐱𝑚𝑛, 𝐱𝑐𝐿)]T is a vector of size 𝐿. Based on the 

white noise assumption, the likelihood of the training data can be written as 

 P(𝐲𝑚) =  𝒩(𝐟𝑚, 𝜎2𝐈𝑁) = 𝒩(𝚽1𝑚𝐰𝑚, 𝜎2𝐈𝑁) (5.3) 

where 𝐲𝑚 = [𝑦𝑚1, … , 𝑦𝑚𝑁]T  is an 𝑁 × 1  vector, 𝐟𝑚 = [𝑓𝑚1, … , 𝑓𝑚𝑁]T  is the 

associated model output and 𝐈𝑁 is the identity matrix of size 𝑁 × 𝑁, and 𝚽1𝑚 is an 

𝑁 × 𝐿 matrix, given as  
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𝚽1𝑚 = [𝛟𝑚(𝐱𝑚1), … , 𝛟𝑚(𝒙𝑚𝑁)]T 

= [
𝑘(𝐱𝑚1, 𝐱C1) ⋯ 𝑘(𝐱𝑚1, 𝐱C𝐿)

⋮ ⋱ ⋮
𝑘(𝐱𝑚𝑁 , 𝐱C1) ⋯ 𝑘(𝐱𝑚𝑁 , 𝐱C𝐿)

] 

(5.4) 

Based on the independent assumption on the error 𝜀𝑚𝑛, we can apply the product rule of 

probability theory to obtain the probability of all the training data as 

 

P(𝐲) = ∏ P(𝐲𝑚)

𝑀

𝑚=1

 

= ∏ 𝒩(𝐟𝑚, 𝛽−1𝐈𝑁)

𝑀

𝑚=1

 

= ∏ 𝒩(𝚽1,𝑚𝐰𝑚, 𝛽−1𝐈𝑁)

𝑀

𝑚=1

 

= 𝒩(𝚽1𝐰, 𝛽−1𝐈𝐾) 

(5.5) 

where 𝐲 = [𝐲1
T, … , 𝐲𝑀

T ]T is a vector of size 𝑀𝑁, 𝐰 = [𝐰1
T, … , 𝐰𝑀

T ]T is the associated 

weight vector of size 𝑀𝐿 , 𝐈𝐾  is the identity matrix of size 𝑀𝑁 × 𝑀𝑁 , 𝚽1  is the 

assembled design matrix given as 

 𝚽1 = [

𝚽1,1 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝚽1,𝑀

] (5.6) 

which is a block-diagonal matrix of size 𝑀𝑁 × 𝑀𝐿. 

5.2.3 Prior specification 

By following the SBL framework, a prior over the weight parameters 𝐰 is the zero-
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mean Gaussian prior distribution given by 

 

P(𝐰|𝛂) = ∏ P(𝐰𝑚|𝛂𝑚)

𝑀

𝑚=1

 

= ∏ ∏ P(𝑤𝑚𝑙|𝛼𝑚𝑙)

𝐿

𝑙=1

𝑀

𝑚=1

 

= ∏ ∏ 𝒩(0, 𝛼𝑚𝑙
−1)

𝐿

𝑙=1

𝑀

𝑚=1

 

(5.7) 

where the hyperparameters 𝛂 = [𝛂1
T, … , 𝛂𝑀

T ]T  and 𝛂𝑚 = [𝛼𝑚1, … , 𝛼𝑚𝐿]T  are vectors 

of size 𝑀𝐿 and 𝐿, respectively. A hierarchical prior over the hyperparameters, given as 

 

P(𝛂) = ∏ P(𝛂𝑚)

𝑀

𝑚=1

 

= ∏ ∏ P(𝛼𝑚𝑙)

𝐿

𝑙=1

𝑀

𝑚=1

 

= ∏ ∏ Gamma(𝛼𝑚𝑙|𝑎, 𝑏)

𝐿

𝑙=1

𝑀

𝑚=1

 

(5.8) 

In the case of the prior over the error term 𝜎2, a suitable prior is given as 

 P(1/𝜎2) = Gamma(1/𝜎2|𝑐, 𝑑) (5.9) 

where 𝑐 and 𝑑 are hyperparameters of the prior over noise term. 

5.2.4 Parameter inference 

For the case of uniform hyperpriors, we only need to maximize the term P(𝐲|𝛂, 𝜎2), 

which is analytically computable and given by 



Chapter 5 PSBL for Population Features of NISs 

94 

 

P(𝐲|𝛂, 𝜎2) = ∏ P(𝐲𝑚|𝛂𝑚, 𝜎2)

𝑀

𝑚=1

 

= ∏ ∫ P(𝐲𝑚|𝐰𝑚, 𝜎2) 𝑝(𝐰𝑚|𝛂𝑚)𝑑𝐰𝑚

𝑀

𝑚=1

 

= ∏ 𝒩(𝛍1,𝑚, 𝐊1,𝑚)

𝑀

𝑚=1

 

(5.10) 

with the mean vector 𝛍1,𝑚 and covariance matrix 𝐊1,𝑚 given by 

 𝛍1,𝑚 = 𝟎𝑁 (5.11) 

 𝐊1,𝑚 = 𝚽1,𝑚𝐀1,𝑚
−1 𝚽1,𝑚

T + 𝜎2𝐈𝑁 (5.12) 

where 𝟎𝑁 is the zero vector of size 𝐿 and 𝐀1,𝑚 is the diagonal matrix of size 𝐿 × 𝐿 

with 𝐀1,𝑚  = diag(𝛼𝑚1, 𝛼𝑚2 … , 𝛼𝑚𝐿). The most plausible value of (𝛂, 𝜎2) is denoted 

by (𝜶MP, 𝜎MP
2 ), derived from 

 (𝛂MP, 𝜎MP
2 ) = argmax(𝛂,𝜎2) P(𝐲|𝛂, 𝜎2) (5.13) 

Given (𝛂MP, 𝜎MP
2 ) , we can compute analytically the posterior distribution over the 

weights given by 

 

P(𝐰|𝐲, 𝛂MP, 𝜎MP
2 ) = ∏ P(𝐰𝑚|𝐲𝑚, 𝛂𝑚,MP, 𝜎MP

2 )

𝑀

𝑚=1

 

= ∏
P(𝐲𝑚|𝐰𝑚, 𝜎MP

2 )P(𝐰𝑚|𝜶𝑚,MP)

P(𝐲𝑚|𝛂𝑚,MP, 𝜎MP
2 )

𝑀

𝑚=1

 

= ∏ 𝒩(𝛍2,𝑚, 𝐊2,𝑚)

𝑀

𝑚=1

 

(5.14) 

where the mean vector 𝛍2,𝑚 and the covariance matrix 𝐊2,𝑚 are given respectively, 
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 𝐊2,𝑚 = (𝜎MP
−2𝚽1,𝑚

T 𝚽1,𝑚 + 𝐀1,𝑚)−1 (5.15) 

 𝛍2,𝑚 = 𝜎MP
−2𝐊2,𝑚𝚽1,𝑚

T 𝐲𝑚 (5.16) 

where 𝐀1,𝑚,MP = diag(𝛼𝑚1,MP, 𝛼𝑚2,MP … , 𝛼𝑚𝐿,MP). 

5.2.5 Posterior probability distribution prediction 

Given a set of new test points 𝐱p = [𝐱p,1, … , 𝐱p,𝑆]T of size 𝑆, predictions are made 

on the population feature model outputs 𝐲p,𝑚 = [𝑦p,𝑚1, … , 𝑦p,𝑚𝑆]T , in terms of the 

posterior predictive distribution 

 

P(𝐲p,𝑚|𝐲) ≈ ∫ P(𝐲p,𝑚|𝐰𝑚, 𝜎MP
2 )P(𝐰𝑚|𝛂𝑚,MP, 𝜎MP

2 )𝑑𝐰𝑚 

= 𝒩(𝛍3,𝑚, 𝐊3,𝑚) 

(5.17) 

where the mean vector 𝛍3,𝑚 and the covariance matrix 𝐊3,𝑚 are given respectively as 

 𝛍3,𝑚 = 𝚽2𝛍2,𝑚 (5.18) 

 𝐊3,𝑚 = 𝚽2𝐊2,𝑚𝚽2
T + 𝜎MP

2 𝐈𝑁 (5.19) 

with 𝚽2 the prediction matrix of size 𝑁 × 𝐿 matrix, given as 

 

𝚽2 = [𝛟(𝐱p,1), … , 𝝓(𝐱p,𝑆)]
T

 

= [

𝑘(𝐱p,1, 𝐱C1) ⋯ 𝑘(𝐱p,1, 𝐱C𝐿)

⋮ ⋱ ⋮
𝑘(𝐱p,𝑆, 𝐱C1) ⋯ 𝑘(𝐱p,𝑆, 𝐱C𝐿)

] 

(5.20) 

Therefore, we have the model space 𝓜 = {ℳ1, ⋯ , ℳ𝑀} with each individual model 

ℳ𝑚 consisting of a set of probability densities for random prediction, given as 
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 ℳ𝑚：P(𝐲p,𝑚|𝐲) = 𝒩(𝛍3,𝑚, 𝐊3,𝑚) (5.21) 

The associated model prior is 

 P(ℳ𝑚) = 𝜋𝑚 ∈ (0,1)  ∀𝑚 = 1, … , 𝑀 (5.22) 

which satisfies 

 ∑ P(ℳ𝑚)

𝑀

𝑚=1

= ∑ 𝜋𝑚

𝑀

𝑚=1

= 1 (5.23) 

Using the law of total probability, the population model prediction is 

 P(𝐲p) = ∑ P(𝐲p,𝑚|ℳ𝑚)P(ℳ𝑚)

𝑀

𝑚=1

≝ ∑ P(𝐲p|𝐲)𝜋𝑚

𝑀

𝑚=1

 (5.24) 

where the population feature prediction  𝐲p = [𝑦p,1, … , 𝑦p,𝑆]T is a vector of size 𝑆 and 

each component distribution is a multivariate Gaussian distribution.  

Since they are a linear combination of Gaussian densities, they inherit some of the 

advantages of the Gaussian distribution: they are analytically tractable for many types of 

computations; they have desirable asymptotic properties (e.g. the central limit theorem), 

and thus scale well with the data dimensionality. Furthermore, many natural data sets 

occur in clusters which are approximately Gaussian. Then, the predictive posterior mean 

and covariance of the population model are: 

 𝛍p = 𝔼P(𝐲p){𝐲p} = ∑ 𝛍3,𝑚𝜋𝑚

𝑀

𝑚=1

= ∑ 𝜋𝑚𝚽2𝛍2,𝑚

𝑀

𝑚=1

 (5.25) 
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𝐊p = 𝔼P(𝐲p) {(𝐲p − 𝛍p)(𝐲p − 𝛍p)
T

} 

= 𝔼P(𝐲p){𝐲p𝐲p
T} − 𝛍p𝛍p

T − 𝛍p𝛍p
T + 𝛍p𝛍p

T 

= ∑ P(ℳ𝑚)𝔼P(𝐲p|ℳ𝑚){𝐲p𝐲p
T}

𝑀

𝑚=1

− 𝛍p𝛍p
T 

= ∑ 𝜋𝑚𝔼P(𝐲p|𝐲){𝐲p,𝑚𝐲p,𝑚
T }

𝑀

𝑚=1

− 𝛍p𝛍p
T 

= ∑ 𝜋𝑚(𝐊3,𝑚 + 𝛍3,𝑚𝛍3,𝑚
T )

𝑀

𝑚=1

− 𝛍p𝛍p
T 

= ∑ 𝜋𝑚𝐊3,𝑚

𝑀

𝑚=1

+ ∑ 𝜋𝑚(𝛍3,𝑚𝛍3,𝑚
T − 𝛍p𝛍p

T)

𝑀

𝑚=1

 

= ∑ 𝜋𝑚 [𝐊3,𝑚 + (𝛍3,𝑚 − 𝛍p)(𝛍3,𝑚 − 𝛍p)
T

]

𝑀

𝑚=1

 

= ∑ 𝜋𝑚 [𝚽2𝐊2,𝑚𝚽2
T + 𝜎MP

2 𝐈𝑁 + (𝛍3,𝑚 − 𝛍p)(𝛍3,𝑚 − 𝛍p)
T

]

𝑀

𝑚=1

 

(5.26) 

As shown in Equation (5.25), the mean of population output is the average of means 

of posterior predictive distributions under a model set, using model probabilities as 

weights. The covariance of the population model output can be decomposed into the sum 

of three terms. As shown in Equation (5.26), the first term 𝚽2𝐊2,𝑚𝚽2
T is the training 

error, representing the modelling uncertainty in each model output 𝒚p,𝑚; the second term 

𝜎MP
2 𝐈𝑁 is due to the measurement noise, giving rising to the prediction uncertainty in each 

model output 𝒚p,𝑚  and the third term (𝛍3,𝑚 − 𝛍p)(𝛍3,𝑚 − 𝛍p)
T
  is due to structural 

variability, giving rising to prediction uncertainty on each model 𝒚p,𝑚  and the 
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population model output 𝒚p,𝑚 . The sum of the first two terms are called the intra-

structure uncertainty, while the last term is called the inter-structure uncertainty. 

If there is no additional information about the preference of the candidate models, 

one can simply assume prior ignorance about which model is preferred through a vague 

prior, that assumes no model is more favored than any other and the observed data carry 

all the information. Thus, we can assign prior probabilities to the models as 𝑝(ℳ𝑚) ≝

𝜋𝑚 = 1/𝑀. Therefore, the population model output in Equation (5.18) becomes 

 P(𝐲p) =
1

𝑀
∑ P(𝐲p,𝑚|ℳ𝑚)

𝑀

𝑚=1

=
1

𝑀
∑ P(𝐲p,𝑚|𝐲)

𝑀

𝑚=1

 (5.27) 

Thus, the mean vector and covariance matrix of the population feature outputs become 

 𝛍p =
1

𝑀
∑ 𝚽2𝛍2,𝑚

𝑀

𝑚=1

 (5.28) 

 𝐊p =
1

𝑀
∑ [𝚽2𝐊2,𝑚𝚽2

T + 𝜎MP
2 𝐈𝑁 + (𝛍3,𝑚 − 𝛍p)(𝛍3,𝑚 − 𝛍p)

T
]

𝑀

𝑚=1

 (5.29) 

It should be noted that the population model output is a multivariate Gaussian mixture 

distribution (Titterington et al. 1985), which is not necessarily Gaussian. In particular, 

they can be sometimes multimodal distributions. 

5.3 Case Study 

To demonstrate the superiority of PSBL over SSBL and HSBL in developing a data-

driven statistical model for the population features of NISs, the case study conducted in 
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the previous two chapters is examined again in this section. In order for the best statistical 

model to interpret the training data, one should carefully select the optimal widths of the 

kernel functions in sparse Bayesian learning. In the section, three model quality indices 

are employed for such selection, including the root mean square residual (RMSR), the 

mean standardized log loss (MSLL), and the sparsity ratio 𝒦. The RMSR index in the 

PSBL framework is defined as 

 RMSR = √∑ ∑
(𝑦𝑞𝑛 − 𝜇p,𝑛)2

𝑄𝑁

𝑁

𝑛=1

𝑄

𝑞=1

 (5.30) 

where 𝑁  is the number of the testing data from each individual sample structure for 

model testing, 𝑄 is the total number of the testing sample structures, 𝑦𝑞𝑛 is the 𝑛th 

testing point in the 𝑞th testing sample structure, and 𝜇p,𝑛 is the corresponding HSBL 

population feature model prediction. The MSLL index is given by 

 

MSLL = −
1

𝑄𝑁
log P(𝐲) 

=
1

2𝑄𝑁
∑ ∑[log[2𝜋𝐊p,𝑛𝑛] + 𝐊p,𝑛𝑛

−1 (𝑦𝑞𝑛 − 𝜇p,𝑛)2]

𝑁

𝑛=1

𝑄

𝑚=1

 

(5.31) 

where 𝐲 denotes the testing outputs from all sample structures for model testing, and 

𝐊p,𝑛𝑛 is the 𝑛th diagonal element of the posterior covariance matrix 𝐊p in the PSBL 

population feature model. The sparsity ratio 𝒦 is defined in PSBL as 

 𝒦 =
𝑁𝑅𝑉

𝑀𝑁
× 100% (5.32) 

where 𝑁𝑅𝑉 is the total number of kernel functions with non-zero weights in the panel 



Chapter 5 PSBL for Population Features of NISs 

100 

sparse Bayesian learning framework. The SMSR, SMLL and sparsity ratio 𝒦 are three 

quantities for measuring the regression losses when some trivial model is preferred and 

typically, lower values indicate better performance for the trivial model. 

5.3.1 PSBL for population features of nominally identical wheels 

We perform PSBL on the training data that have been used in the previous two 

chapters in order to obtain the new statistical model for representing the population 

features of nominally identical railway wheels. To assess the resulting model performance 

and choose the best kernel width, three indices are employed in the learning process, 

including RMSR, MSLL and sparsity ratio 𝒦, that are defined in the last section. Figures 

5.1 to 5.3 show the change of the RMSR, MSLL and sparsity ratio 𝒦 against the kernel 

width 𝛾, respectively. From Figures 5.1 and 5.2, it can be observed that the RMSR and 

MSLL regression losses increase noticeably with the kernel width 𝛾. Within the kernel 

width range considered, there exist two different local optimal kernel widths, with 𝛾 =

24  and 45  for the RMSR, but 𝛾 = 24  and 42  for the MSLL, corresponding to 

different explanations about the complexity of the population feature model for NISs. By 

contrast, the sparsity ratio 𝒦 almost deceases gradually with the kernel width 𝛾, giving 

rise to a population feature model increasingly simple (Figure 5.3). As a compromise 

between expressive ability and sparseness, the kernel width 𝛾 = 42 is considered in this 
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study as the optimal value to construct the probabilistic population feature model that is 

fairly simple and favorably consistent with the likelihood of the training data. If the kernel 

width 𝛾 = 24 is used, the resulting population feature model tends to be more complex, 

but with a reduced generalization performance. 

Comparing the regression losses caused by the three different modelling frameworks 

when developing a data-driven statistical model for representing the population features 

for the monitored railway wheels, it can be found that within the kernel width 𝛾 = 0~70, 

the SMSR and MSLL losses caused by PSBL are much less than those by SSBL and 

HSBL. This is mainly because the separate modelling scheme of different sources of 

uncertainty in PSBL has eliminated the effect of structural variability on the two 

regression loss items. By taking advantage of the separate modelling scheme, it is possible 

to calculate the regression loss in PSBL that is only caused by the measurement noise and 

modelling error. By contrast, the regression loss in the pooled modelling schemes 

including SSBL and HSBL is caused by the measurement noise, structural variability and 

modelling error, with the first two components pooled. However, when we increase the 

kernel width to 100, the PSBL may lose the ability to interpret the training data, leading 

to the SMSR and MSLL losses even larger than those in SSBL and HSBL. The sparsity 

of the population feature model given by PSBL is typically much worse than that by SSBL 

and HSBL (Figure 5.3), due to the fact that the population feature model in PSBL is in 
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fact a collection of many sub-models and for each sub-model, a sufficient number of 

relevance vectors have to be used to interpret the training data. As a result, the total 

number of relevance vectors in PSBL is far more than that in SSBL and PSBL. 

Figure 5.4 gives the obtained population feature model from PSBL, that is much more 

sophisticated than that from SSBL (Figure 3.12) and HSBL (Figure 4.3). In the PSBL, 

153 relevance vectors are required, whereas 3 and 5 relevance vectors are only required 

in SSBL and in HSBL, respectively. This suggests that the population feature model from 

PSBL is much more complicated, and different sources of uncertainty will greatly 

increase the modelling complexity of the population feature model. Fortunately, since 

these models are all data-driven, the resulting population feature model given by PSBL 

remains quite simple and fast damage diagnostics for nominally identical structures can 

be achieved. 

A more detailed comparison of the three SBL frameworks in developing data-driven 

statistical models for representing the population features of nominally identical railway 

wheels is given in Figures 5.5 and 5.6. It is found that the three CDF curves in Figure 5.5 

for representing the posterior means of the population features of railway wheels almost 

coincide, which suggests that the three different SBL frameworks do not have a serious 

impact on the modelling of the mean population features of NISs. However, this is not 

the case for the estimated posterior uncertainties associated with the population features 
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of NISs. From Figure 5.6, it can be observed the standard deviations of the population 

features of railway wheels estimated from SSBL are approximately a straight line in the 

damage-sensitive frequency band, due to the assumption of homoskedasticity in SSBL. 

This does not match the heteroscedasticity in the training data. By contrast, those 

estimated from HSBL stand to be a concave curve, with smaller variability at both ends 

of the damage-sensitive frequency band but larger variability in the middle, which is more 

consistent with the heteroscedastic training data. The inferred standard deviations of the 

population features of railway wheels from PSBL share the same heteroscedastic pattern 

in the damage-sensitive frequency band as those from HSBL, with smaller variability at 

both ends but larger variability in the middle, though the corresponding curve is the most 

complicated. In addition, the averaged standard deviations of the population features of 

railway wheels from PSBL is obviously larger than that from SSBL or HSBL (�̅�𝑦
PSBL =

0.0247 > 𝜎𝑦
SSBL = 0.0224 ≈ 𝜎𝑦

HSBL = 0.0222) . This advocates that the pooling of 

different types of uncertainty utilized in both SSBL and HSBL, indeed, may lead to an 

underestimation of the uncertainty associated with the population features for NISs. It 

should be mentioned that if the nominally identical structures are monitored under strong 

measurement noise, the multiple sources of uncertainty in the monitoring data could be 

underestimated significantly due to the fact that the pooling scheme neglects the intrinsic 

dependence within the monitoring data that is collected from some individual structures. 
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As such, the posterior uncertainty of the population feature model learned from SSBL and 

HSBL will be underestimated. Therefore, the separate modelling strategy of different 

types of uncertainty used in PSBL should be preferred when considering a data-driven 

statistical model for characterizing the population features of NISs. 

Another remarkable advantage of the separate modelling strategy in PSBL is that it 

allows us to conduct the analysis of variance (ANOVA) and determine separate 

contributions of different sources of uncertainty to the diversity of the learned population 

features of NISs. In this case study, structural variability contributes the most uncertainty 

in the population features of nominally identical railway wheels as shown in Figure 5.7. 

Although the measurement noise contributes a considerable amount of uncertainty in the 

population features, whereas it is significantly less than that induced by structural 

variability. The uncertainty induced by the modelling error in the population features is 

barely visible due to the fact that we make use of as many as 2288 training points in 

developing the data-driven model for the population features of NISs.  
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Figure 5.1 SMSR against kernel width 𝛾 

 

 

Figure 5.2 MSLL against kernel width 𝛾  
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Figure 5.3 Sparsity ratio 𝒦 against kernel width 𝛾 

 

 

Figure 5.4 Population feature model derived from PSBL  
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Figure 5.5 Posterior means of the population features of NISs 

 

 

Figure 5.6 Posterior standard deviations of the population features of NISs 
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Figure 5.7 ANOVA of multiple sources of uncertainty in the panel population feature 

model 
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5.4 Summary 

This chapter presents another novel data-driven probabilistic framework for 

modelling the population features of nominally identical structures, based on panel sparse 

Bayesian learning. In the framework, different sources of uncertainty in the acquired 

SHM data are made possible to be dealt with separately, including the measurement noise 

within each individual structure and structural variability between multiple nominally 

identical structures. The obtained population feature model of nominally identical 

structures from panel sparse Bayesian learning becomes a collection of sparse Bayesian 

sub-models, with each sub-model representing the feature behavior of each sample 

structure monitored. With the aid of the panel sparse Bayesian learning framework, the 

problem of information overestimation in both standard and heteroscedastic sparse 

Bayesian learnings is avoided, resulting from the simple pooling of these different 

categories of uncertainty. More importantly, these different categories of uncertainty can 

be quantified separately in panel sparse Bayesian learning.  

To validate the superiority of the PSBL over SSBL and PSBL in developing a data-

driven population feature model for nominally identical structures, the case study 

throughout the thesis is carried out again. It can be found that no matter which framework 

of sparse Bayesian learning is used, the posterior means of the population feature for 

nominally identical structures are almost the same. Nevertheless, the estimated posterior 
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uncertainties associated with the population feature of nominally identical structures from 

PSBL stand to be larger than those inferred from SSBL and HSBL, which indicates the 

necessity of panel sparse Bayesian learning framework.  

In the next chapter, we will further examine the impact of the three SBL modelling 

frameworks on the subsequent damage diagnostics for the concerned nominally identical 

structures.
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Chapter 6  

Statistical Tests for Damage Diagnostics of NISs 

6.1 Introduction 

This thesis aims to develop a data-driven damage detection method specifically 

targeted at a population of nominally identical structures (NISs). The method is 

formulated in an unsupervised learning scheme which makes only use of response data 

acquired from a number of undamaged structures being nominally identical. The scheme 

consists of two phases: the baseline phase and the inspection phase. In the baseline phase, 

response-only data are employed to build a data-driven statistical model for representing 

population features of all nominally identical undamaged structures. This has been 

pursued in the preceding three chapters to obtain the optimal population model based on 

three possible modelling frameworks: standard sparse Bayesian learning (SSBL), 

heteroscedastic sparse Bayesian learning (HSBL) and panel sparse Bayesian learning 

(PSBL). In the inspection phase, new measurements will be compared to predictions from 

the population feature model established in the baseline phase and, as a result, the 

identification and quantification of damage in NISs can be attained by following some 

objective diagnostic criteria, which is the main focus of this chapter. 

There exist a vast of diagnostic criteria available for structural damage identification 
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and quantification. The most commonly used criterion is to use Euclidean distance to 

measure the differences or residuals between new measurements and model predictions. 

Oftentimes, a certain threshold is empirically predetermined to classify the structures of 

interest as damaged or undamaged (Chang et al. 2000, Sohn and Law 2001, Titurus et al. 

2003, Yuen et al. 2004). A preferable measure is to use the Mahalanobis distance in order 

to take into account the changing precisions in model predictions (Mosavi et al. 2012, 

Figueiredo et al. 2014, Vamvoudakis-Stefanou et al. 2018, Yeager et al. 2019, Villani et 

al. 2019). Yet, the distance-based diagnostic methods are relatively subjective. More 

importantly, when an inappropriate threshold value is selected, the induced risk of false 

damage detection results cannot be illustrated. Alternatively, one may resort to statistical 

hypothesis tests to seek a more scientific procedure for structural damage identification 

and quantification. For example, classical null hypothesis significant testing (NHST) can 

be used to not only identify the damage but also to illustrate the induced risk of such a 

diagnostic procedure, in terms of the significance level (Mao and Todd 2013, Yuen and 

Ortiz 2017, Jamshidi et al. 2017). Yet, it is difficult to quantify the damage extent in a 

direct manner. By contrast, Bayesian point null hypothesis testing (PNHT) that allows 

structural damage to be identified and quantified in terms of Bayes factor has been 

recently employed (Jiang and Mahadevan 2008, Sankararaman and Mahadevan 2011 and 

2013, Wang et al. 2018). The resulting risk of it is averaged over the priors for unknown 
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parameters in the hypotheses and thus it is more robust than the distance-based diagnostic 

methods. Nevertheless, Bayesian PNHT is very sensitive to the unknown parameter priors, 

giving rise to the so-called Jeffreys-Lindley paradox. A detailed interpretation and 

discussion of statistical hypothesis tests for structural damage identification and 

quantification will be presented in the next two sections. 

In this chapter, a novel damage diagnostic logic is proposed based on Bayesian null 

hypothesis significance testing (NHST) with which these disadvantages of the damage 

diagnostic criteria mentioned above can be avoided. The rest of the chapter is organized 

as follows. Two types of Bayesian residuals including the raw Bayesian residual and the 

standardized Bayesian residual are introduced in Section 6.2. Upon the standardized 

Bayesian residual, three categories of statistical hypothesis tests served as structural 

damage diagnostics are then presented in Section 6.3, including classical NHST, Bayesian 

PNHT and the newly proposed Bayesian NHST. A case study that has been conducted in 

the last three chapters is investigated in Section 6.4 to verify the effectiveness of the 

Bayesian NHST on damage diagnostics in a population of nominally identical structures. 

The concluding remarks are presented in Section 6.5. 

6.2 Bayesian Residuals 

In the preceding three chapters, we have made used of 𝑀 healthy sample structures 
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being nominally identical to derive a population feature model for the representation of 

all nominally identical healthy structures. In this chapter, we are required to diagnose 

whether or not a structure of concern is in an undamaged state. The concerned structure 

can be one of the nominally identical sample structures used in the baseline phase, with 

its initial state known undamaged but its current state unknown. It can be also one of the 

structures, while not used in the baseline phase, in the same category as the sample 

structures, operating in the same operational environment). From the concerned structure, 

we may also extract a set of damage-sensitive feature outputs 𝐲u = [𝑦u,1, … , 𝑦u,𝑆]T at 

the feature inputs 𝐱u = [𝑥u,1, … , 𝑥u,𝑆]T, with the 𝑆 being the number of feature input-

output pairs. From the population feature model, we can obtain the predicted population 

feature outputs 𝐲p = [𝑦p,1, … , 𝑦p,𝑆]T  at the feature inputs 𝐱u . As a result, damage 

diagnostics of the concerned structure can be attained by examining the discrepancies 

(also called residuals) between the newly extracted damage-sensitive feature outputs 𝐲u 

and the corresponding population feature model predictions 𝐲p. If the residuals are as 

small as expected, the concerned structure is diagnosed undamaged. By contrast, if the 

residuals are extraordinarily large, the concerned structure is diagnosed damaged. Before 

introducing statistical tests for damage diagnostics in NISs, we first present three types 

of Bayesian residuals in order to meet with the fundamental assumption among any 

statistical hypothesis test: samples to be tested are mutually independent and identically 
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distributed from the same population. 

6.2.1 Raw Bayesian residual 

In the context of Bayesian regression analysis, residuals are referred to as the 

differences between the observed outputs and the corresponding posterior means from a 

probabilistic prediction model that is learned from Bayesian inference (Carlin et al. 2010, 

Gelman et al. 2013). For the problem of damage diagnostics of nominally identical 

structures considered in this thesis, the residuals are referred to as the differences between 

the damage-sensitive feature outputs of the concerned structure and the corresponding 

posterior predictive means from some population feature model. Though the population 

feature model can be pursued in distinct modelling frameworks (SSBL, HSBL or PSBL), 

the corresponding posterior predictive means can be described by a joint Gaussian 

distribution, given by 

 𝐲p~𝒩(𝛍p, 𝐊p) (6.1) 

where 𝛍p and 𝐊p are, respectively, the posterior mean vector and covariance matrix of 

the predicted population feature outputs 𝐲p , corresponding to the extracted damage-

sensitive feature outputs 𝐲u  at the damage-sensitive feature inputs 𝐱u  from the 

concerned structure. The posterior mean vector 𝛍p and the posterior covariance matrix 

𝐊p are given, respectively, in Equations (3.22) and (3.33), equations (4.4) and (4.12), 
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and Equations (5.25) and (5.26). Using the definition of the residuals in the problem of 

damage diagnostics for NISs, we have 

 𝐫 = 𝐲u − 𝔼{𝐲p} = 𝐲u − 𝛍p (6.2) 

where 𝐫 = [𝑟1, … , 𝑟𝑆]T are termed Bayesian raw residuals, without transformation. If the 

population feature model is well defined and the concerned structure happens to be 

undamaged, the residuals, according to the Gaussian identity, is jointly Gaussian with 

zero means and the covariance 𝐊p, given by 

 𝐫 = 𝐲u − 𝛍p~𝒩(𝟎𝑆, 𝐊p) (6.3) 

whereas 𝟎𝑆 denotes the zero vector of size 𝑆. It can be found from Equation (6.3) that 

the residuals 𝐫 are not necessarily mutually independent and identically distributed as 

the covariance matrix 𝐊p is unnecessarily a scalar matrix, whose off-diagonal elements 

are not all zero and diagonal elements are not all equal. For instance, when the population 

feature model is formulated in the SSBL framework, the posterior covariance matrix 𝐊p 

of the predicted population features is composed of two items: 𝚽2𝐊2𝚽2
T and 𝜎MP

2 𝐈𝑆. 

The first item 𝚽2K2𝚽2
T, typically, is not a scalar matrix, though the second item 𝜎MP

2 𝐈𝑆 

is a scalar. The sum of the two items may result in the correlation and heteroscedasticity 

among the raw Bayesian residuals 𝐫. Similar conclusions can be made in the case of the 

population feature model established by HSBL or PSBL. Therefore, generally, the raw 

Bayesian residuals cannot be directly tested if pursuing a more accurate diagnostic result 
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of the health state about the concerned structure. 

6.2.2 Standardized Bayesian residual 

The raw Bayesian residuals should be decorrelated and standardized before 

conducting statistical hypothesis tests to make certain the health state of the concerned 

structure. There exist a number of techniques to decorrelate and standardize the raw 

Bayesian residuals such that they can satisfy the independent and identically distributed 

assumption among statistical hypothesis tests. Due to the fact that the posterior covariance 

matrix 𝐊p  is always positive definite, the raw Bayesian residuals 𝐫  can be linearly 

transformed into 

 𝛏 = 𝐊p
−1/2

𝐫 = 𝐊p
−1/2

(𝐲u − 𝛍p)~𝒩(𝟎𝑆, 𝐈𝑆) (6.4) 

where 𝟎𝑆  is the zero vector of size 𝑆 , 𝐈𝑆  is the identity matrix of size 𝑆 , and 𝛏 =

[𝜉1, … , 𝜉𝑆]T  are termed the standardized Bayesian residuals which are mutually 

independent and identically distributed with each 𝜉𝑠~𝒩(0,1). This linear transformation 

is known as the Mahalanobis transformation which is in charge of the decorrelation and 

standardization of random variables (Härdle and Simar 2015). The Mahalanobis 

transformation is believed the optimal in the sense that the transformed random variables 

(the standardized Bayesian residuals 𝛏 ) have the maximum similarity to the original 

variables (the raw Bayesian residuals 𝐫) but the minimal additional adjustment, though 
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there remain other linear transformation techniques to eliminate the correlation and 

heteroscedasticity among random variables (e.g. Kessy et al. 2018). 

6.3 Statistical Tests for Damage Diagnostics 

To develop a scientific procedure for damage diagnostics of nominally identical 

structures, statistical hypothesis tests should be employed. Without loss of generality, we 

conduct statistical hypothesis tests on the standardized Bayesian residuals 𝛏, which are 

mutually independent and identically distributed standard normal random variables. To 

be specific, we examine whether or not the mean of the standardized Bayesian residuals 

is around zero. If their mean is found around zero, there is no discrimination between the 

newly extracted damage-sensitive feature outputs and the corresponding predictions from 

the population feature model, that is, the concerned structure is classified as healthy; 

discrimination exists if otherwise, that is, the concerned structure is diagnosed as 

damaged. Three categories of statistical hypothesis tests, including classical NHST, 

Bayesian PNHT and Bayesian NHST are introduced in this section to illustrate the 

benefits of the Bayesian NHST over frequentist NHST and Bayesian PNHT in developing 

a scientific damage diagnostic method for nominally identical structures. 
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6.3.1 Frequentist null hypothesis significance testing 

The frequentist NHST can be the most common practice when pursuing a scientific 

methodology for structural damage diagnostics. In the case of the standardized Bayesian 

residuals 𝜉𝑠 , we may assume that 𝜉𝑠~𝒩(𝜇𝜉 , 𝜎2) , where 𝜎2 = 1  is known. To 

determine whether or not the concerned structure is undamaged, two mutually exclusive 

hypotheses 𝐻0 (null hypothesis) and 𝐻1 (alternative hypothesis) can be made for the 

concerned structure in its undamaged state and damaged state, given by  

 𝐻0: 𝜇𝜉 = 0 (the concerned structure is undamaged) 

𝐻1: 𝜇𝜉 ≠ 0 (the concerned structure is damaged) 

(6.5) 

In frequentist NHST, a usual 𝑧  statistic is often calculated to test the two competing 

hypotheses. For the standardized Bayesian residuals, the 𝑧 statistic is given as 

 𝑧 =
|𝜉̅ − 0|

1 √𝑆⁄
= √𝑆|𝜉̅| (6.6) 

where 𝜉̅ =
1

𝑆
∑ 𝜉𝑠

𝑆
𝑠=1  .Then, one can easily obtain the usual 𝑝 -value in the above 

frequentist NHST as 

 𝑝 = 2[1 − Φ(|𝑧|)] (6.7) 

where Φ is the cumulative distribution function of standard normal random variable and 

the 𝑝 -value is the probability that a statistical summary would be equal to or more 

extreme than the observed value, when the null hypothesis 𝐻0 is true (Wasserstein and 

Lazar 2016). When the 𝑝-value exceeds a certain threshold, called the significance level 
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of the test, traditionally 0.05 or 0.01 and denoted as 𝛼 , that suggests that the null 

hypothesis 𝐻0 should not be rejected. In other words, the concerned structure will be 

diagnosed as healthy when 𝑝 > 𝛼. Otherwise, the null hypothesis 𝐻0 is rejected and the 

alternative hypothesis 𝐻1 should be accepted. Thus, the concerned structure is judged as 

damaged when 𝑝 < 𝛼.  

Typically, there exist two categories of testing errors among statistical hypothesis 

tests: type-I error and type-II error (DeGroot and Schervish 2002, Lehmann and Romano 

2006). The type-I error, called the significance level 𝛼 (also known as the false-positive 

error) is the rejection of a true null hypothesis, while the type-II error (also known as 

false-negative error, denoted as 𝛽 ) is the non-rejection of a false null hypothesis. 

Consequently, there are two types of diagnostic risks associated with the procedure of 

structural damage diagnostics. The type-I diagnostic risk is the error that a healthy 

structure is falsely judged as damaged with the error rate being no more than 𝛼, while 

the type-II diagnostic risk is the error that a damaged structure is incorrectly diagnosed 

as healthy, with the error rate being no more than 𝛽. Many of statistical tests desire to 

minimize both of the two testing or diagnostic errors, which appears impractical due to 

the fact that the real alternative to the null hypothesis is not available but supposed. In the 

case of unsupervised structural damage detection, for example, the statistical model of 

the concerned structure in its damaged state is assumed rather than inferred from its 

https://scholar.google.com.hk/citations?user=4sLyr8AAAAAJ&hl=zh-CN&oi=sra
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damaged data. Consequently, most frequentist tests, in essence, is controlling the type-I 

testing or diagnostic error rate (the significance level 𝛼). The testing errors associated 

with structural damage diagnostics are illustrated in Table 6.1. 

Although frequentist NHST is helpful for the identification of damage in a structure, 

a number of important limitations attached to it can be found. First, the 𝑝 -value in 

frequentist NHST is a conditional probability that only figures out the likelihood of the 

data (or any mor extreme result), given that the null hypothesis is correct: P(𝐷|𝐻0). It is 

incapable of providing the direct evidence for the acceptance or rejection of the null 

hypothesis 𝐻0, that is the probability of the null hypothesis being true, given the data: 

P(𝐻0|𝐷). Second, frequentist NHST is only utilized to make a choice of the null and 

alternative hypotheses and the 𝑝-value itself does not offer an assessment of the strength 

of the evidence in favor of the null hypothesis (Kass and Raftery 1995). As a result, the 

identification of damage in the concerned structure is possible, but the quantification of 

damage is difficult. Third, there may be other useful information that could be used to 

construct an alternative hypothesis; that is, there was prior information. The prior 

information, however, is difficult to be encoded in the alternative hypothesis in frequentist 

NHST.  



Chapter 6 Statistical tests for damage diagnostics in NISs 

122 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1 Diagnostic errors in structural damage detection 

Decision 

𝐻0 is true 

 (the concerned structure is 

undamaged) 

𝐻0 is false 

(the concerned structure is 

damaged) 

Accept 𝐻0 

Correct decision 

(the undamaged structure is 

correctly judged as healthy) 

Type-II error 𝛽 

(the damaged structure is falsely 

judged as undamaged) 

Reject 𝐻0 

Type-I error 𝛼 

(the undamaged structure is judged 

as damaged) 

Correct decision 

(the damaged structure is 

correctly judged as damaged) 
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6.3.2 Bayesian point null hypothesis testing 

To overcome the limitations associated with classical NHST, Bayesian hypothesis 

testing was introduced by Harold Jeffreys in 1939. Bayesian hypothesis testing through 

Bayes factor provides researchers with several key practical advantages. First, the Bayes 

factor quantifies evidence for and against the two competing statistical hypotheses. It does 

not matter whether one of the two hypotheses under testing is a null hypothesis. Hence, 

the strength of evidence in favor of the null hypothesis can be quantified, something that 

is impossible using the 𝑝-value in frequentist NHST. Second, the posterior probabilities 

of the two hypotheses P(𝐻0|𝐷) and P(𝐻1|𝐷) can be obtained, that are the ultimate goal 

of statistical tests. Third, Bayesian hypothesis testing provides a means of including other 

information when assessing the evidence for a hypothesis. Prior information about 

unknown parameters in the testing is easily incorporated.  

Over the past decade, Bayesian hypothesis testing had been applied to facilitating 

structural damage diagnostics in a probabilistic inference procedure. For example, a 

probabilistic damage identification method, for example, was established by Jiang and 

Mahadevan (2008) by implementing Bayesian hypothesis testing on the residuals 

between the measured responses and predictions from a nonparametric fuzzy wavelet 

neural network model. This method was then applied to facilitating the updating of the 

uncertainty (Sankararaman and Mahadevan 2011) and the quantification of damage 
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(Sankararaman and Mahadevan 2013) in a structural frame and a hydraulic actuation 

system. Recently, Bayesian hypothesis testing was proposed by Wang et al. (2018) to 

establish a fully Bayesian inference framework for the identification, localization and 

quantification of damage in the railway turnout in operation. The novel diagnostic logic 

enables the damage identification and quantification in a probabilistic sense, while it is 

difficult to indicate the associated diagnostic risk. 

To illustrate the Bayesian hypothesis testing procedure for structural damage 

diagnostics, we consider the same hypotheses made in Equation (6.5). Different from 

frequentist NHST, the unknown mean parameter 𝜇𝜉 in Bayesian hypothesis testing is 

considered as a random variable. For the standardized Bayesian residuals, a prior 

distribution is placed on the unknown mean parameter 𝜇𝜉 in the alternative hypothesis 

𝐻1, 

 P(𝜇𝜉) = 𝒩(0, 𝜏2) (6.8) 

where 𝜏 is the standard deviation of the prior distribution, chosen to reflect the believed 

plausible range of 𝜇𝜉 if the alternative hypothesis 𝐻1 were true. Then, the Bayes factor 

is a ratio of the marginal likelihood of the null hypothesis 𝐻0  and the alternative 

hypothesis 𝐻1, given by 
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𝐵𝐹01 =
P(𝛏|𝐻0)

P(𝛏|𝐻1)
 

=
P(𝛏|𝜇𝜉 = 0)

∫ P(𝛏|𝜇𝜉) P(𝜇𝜉)𝑑𝜇𝜉

 

=
∏ (2π)−1/2 exp(− 𝜉𝑠

2 2⁄ )𝑆
𝑠=1

∫ (2π𝜏2)−1/2 exp(− 𝜇𝜉
2 2𝜏2⁄ ) ∏ (2π)−1/2 exp(− 𝜉𝑠

2 2⁄ )𝑆
𝑠=1

+∞

−∞
𝑑𝜇𝜉

 

= √1 + 𝑆𝜏2exp [−
1

2
𝑧2 (1 + 1 𝑆𝜏2⁄ )⁄ ] 

(6.9) 

where 𝑧 = √𝑆|𝜉̅| is the same as the usual test statistic for the standard normal random 

variable in frequentist NHST and the subscript of the Bayes factor 𝐵𝐹01 identifies which 

hypotheses are being compared, and the order denotes which hypothesis is in the 

numerator and which is in the denominator. Such a testing procedure is often known as 

Bayesian point null hypothesis testing (Berger and Sellke 1987, Berger and Delampady 

1987, Aitkin et al. 2005). Due to the fact that the Bayes factor is always positive, it is 

more useful to consider twice the natural logarithm of the Bayes factor that is on the same 

scale the familiar deviance and likelihood ratio test statistics (Jeffreys 1961, Kass and 

Raftery, 1995), given by 

 2ln(𝐵𝐹01) = ln(1 + 𝑁𝜏2) − 𝑧2 [1 + 1 𝑁𝜏2⁄ ]⁄  (6.10) 

The Bayes factor has a natural and straightforward interpretation. It is constructed as a 

rational means to measure the evidence brought by the data in favor of the null hypothesis 

relative to the alternative hypothesis. A decision about which hypothesis to select is then 

based on the numerical value of 𝐵𝐹01, the default boundary between null and alternative 

being 𝐵𝐹01 = 1, as the data then brings the same evidence in favor of both hypotheses. 
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One of the most common interpretations of the Bayes factor is shown in Table 6.2, first 

proposed by Jeffreys in 1961 and slightly modified by Kass and Raftery in 1995. 

 

Table 6.2 Interpretation of Bayes factors 

𝐵𝐹01 2ln (𝐵𝐹01) Strength of Evidence 

>150 >10 Very strong evidence for 𝐻0 

20~150 6~10 Strong evidence for 𝐻0 

3~20 2~6 Positive evidence for 𝐻0 

1~3 0~2 Not worth more than a bare mention evidence for 𝐻0 

1 0 No evidence 

1/3~1 -2~0 Not worth more than a bare mention evidence for 𝐻1 

1/20~1/3 -6~-2 Positive evidence for 𝐻1 

1/150~1/20 -10~-6 Strong evidence for 𝐻1 

<1/150 <-10 Very strong evidence for 𝐻1 

 

While the Bayes factor is useful to quantify the strength of evidence, one should keep 

in mind that the posterior probabilities of the two hypotheses are our ultimate goal. To 

derive the posterior probabilities of the null and alternative hypotheses, we are required 

to define prior probabilities over the hypothesis 𝐻0 and 𝐻1 being true, denoted P(𝐻0) 

and P(𝐻1), respectively. As there are only two hypotheses in the testing, the two priors 

hold that 

 P(𝐻0) + P(𝐻1) = 1 (6.11) 

The prior odds ratio is given by 

 𝜋01 =
P(𝐻0)

P(𝐻1)
 (6.12) 

Using Bayes’ law, the posterior probability of the null hypothesis 𝑝0 is given by 



Chapter 6 Statistical tests for damage diagnostics in NISs 

127 

 𝑝0 = P(𝐻0|𝛏) =
P(𝛏|𝐻0)P(𝐻0)

P(𝛏)
 

=
P(𝛏|𝐻0)P(𝐻0)

P(𝛏|𝐻0)P(𝐻0) + P(𝛏|𝐻1)P(𝐻1)
 

=
𝐵𝐹01P(𝐻0)

𝐵𝐹01P(𝐻0) + P(𝐻1)
 

=
𝐵𝐹01𝜋01

𝐵𝐹01𝜋01 + 1
 

(6.13) 

and the posterior probability of the alternative hypothesis 𝑝1 is given by 

 𝑝1 = P(𝐻1|𝛏) =
P(𝛏|𝐻1)P(𝐻1)

P(𝛏)
 

=
P(𝛏|𝐻1)P(𝐻1)

P(𝛏|𝐻0)P(𝐻0) + P(𝛏|𝐻1)P(𝐻1)
 

=
P(𝐻1)

𝐵𝐹01P(𝐻0) + P(𝐻1)
 

=
1

𝐵𝐹01𝜋01 + 1
 

(6.14) 

The posterior probabilities of the null and alternative hypotheses explicitly derived in 

Bayesian hypothesis testing, providing us with the direct evidence in favor of the two 

hypotheses, that is impossible in frequentist NHST. 

When the two hypotheses 𝐻0 and 𝐻1 are equally probable, we may have 

 P(𝐻0) = P(𝐻1) = 0.5 (6.15) 

and the prior odds ratio is 

 𝜋01 = 1 (6.16) 

Then, the posterior probability of the null hypothesis 𝑝0 is reduced to 

 𝑝0 = P(𝐻0|𝛏) =
𝐵𝐹01

𝐵𝐹01 + 1
 (6.17) 

and the posterior probability of the alternative hypothesis 𝑝1 becomes 
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 𝑝1 = P(𝐻1|𝛏) =
1

𝐵𝐹01 + 1
 (6.18) 

Bayesian PNHT has been increasingly advocated to develop a probabilistic 

framework for structural damage diagnostics as it enables us not only to identify potential 

damage in the concerned structure (that can be also attained in frequentist NHST), but 

also to quantify the extent of damage in the concerned structure (that cannot be attained 

in frequentist NHST), in terms of Bayes factor and posterior probabilities of structural 

conditions. Despite the fact that the diagnostic risk associated with Bayesian PNHT is not 

be explicitly available, the likelihood of the data is averaged over the prior of the unknown 

in the alternative hypothesis and thus, if the prior is well defined, the damage diagnostic 

results should be much more robust than those from frequentist NHST, which uses an 

significance level 𝛼, empirically prespecified. 

While the merits of Bayesian hypothesis testing have been reported repeatedly (Kass 

and Raftery, 1995, Morey et al. 2016, Wagenmakers et al. 2018), the Bayes factor is very 

sensitive to the defined prior in the alternative hypothesis. As 𝜏2 → +∞ or 𝑆 → +∞, it 

is immediate that 2ln(𝐵𝐹01) → +∞ , 𝐵𝐹01 → +∞  and P(𝐻0|𝛏) → 1 , providing 

overwhelming evidence for 𝐻0 , even though the usual test statistic 𝑧 = √𝑆𝜉̅  for the 

standard normal random variable in frequentist NHST was any large value. This indicates 

that the testing result always supports the null hypothesis 𝐻0, regardless whether or not 

it holds true (in that case, the concerned structure would be diagnosed as healthy no matter 
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whether it is undamaged or damaged). This gives rise to the so-called Jeffreys-Lindley 

paradox (Lindley 1957, Bartlett 1957, Berger and Sellke 1987, Robert 1993, Cousins 

2017), in the sense that Bayesian and non-Bayesian methods can reach quite different 

conclusions in testing. The Jeffreys-Lindley paradox illustrates a counterintuitive 

situation in statistical inference where frequentist and Bayesian approaches to a 

hypothesis testing problem give inconsistent results. When testing structural health state 

in the light of monitoring data, we may find that the diagnostic results from frequentist 

and Bayesian approaches can be at odds. The structure of concern could be diagnosed as 

damaged by the frequentist approach, while be diagnosed as undamaged by the Bayesian 

approach. As such, we will be at a loss as to what the true health state of the structure of 

concern is. 

Some statisticians have argued that an arbitrarily diffuse prior is not appropriate for 

the alternative hypothesis as the marginal likelihood of the alternative hypothesis is the 

weighted average of the likelihood over all possible point hypotheses, where the prior 

serves as the weight. As 𝜏2 is increased, a greater relative weight is assumed on larger 

values of 𝜇𝜉 , that are impossible. Unreasonably large values of 𝜇𝜉  in the alternative 

hypothesis reversely provide increased support for the null hypothesis 𝐻0. When these 

unreasonably large values of 𝜇𝜉 have increasing weight, the average favors the null to a 

greater extent. As a consequence, specifications of alternatives that weight unreasonably 
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large values of 𝜇𝜉 heavily will yield the Bayes factor that too heavily supports the null 

hypothesis. 

A reasonable setting is 𝜏2 = 𝜎2, giving a unit-information prior on the unknown 𝜇𝜉 

in the alternative hypothesis, that has been extensively employed in the context of 

probabilistic damage detection algorithms (Jiang and Mahadevan 2008, Sankararaman 

and Mahadevan 2013, Wang et al. 2018). The Bayes factor in Equation (6.9) is reduced 

to 

 𝐵𝐹01 = √1 + 𝑆exp [−
1

2
𝑧2 (1 + 1 𝑆⁄ )⁄ ] (6.19) 

The setting is believed reasonable as the prior distribution P(𝜇𝜉) placed on the unknown 

𝜇𝜉 in the alternative hypothesis 𝐻1 does not include much mass on highly implausible 

regions. With this setting, the prior P(𝜇𝜉) has only a small amount of information in 

the alternative hypothesis. However, it still can be found that as 𝑆 → +∞, 2ln(𝐵𝐹01) →

+∞, 𝐵𝐹01 → +∞ and P(𝐻0|𝛏) → 1. This indicates that the Jeffreys-Lindley paradox 

cannot be fully avoided in the current Bayesian PNHT by simply adjusting the prior. As 

a result, one has to make use of the customized Bayes factor according to the sample 

size to be tested (Sellke et al. 2001, Rouder et al. 2009). 

6.3.3 Bayesian null hypothesis significance testing 

To overcome the so-called Jeffreys-Lindley paradox in Bayesian PNHT, a novel type 
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of Bayesian hypothesis testing, termed Bayesian null hypothesis significance testing is 

proposed in this section. 

a) Simple alternative hypothesis 

Different from the alternative hypothesis that is composite, made in frequentist NHST 

and Bayesian PNHT, a simple point alternative hypothesis is proposed in Bayesian NHST, 

in the light of the idea proposed by West and Harrison (1997), given by 

 𝐻0: 𝜇𝜉 = 0 (the concerned structure is undamaged) 

𝐻1 = {
𝐻1

−ℎ: 𝜇𝜉 = −ℎ or 

𝐻1
+ℎ: 𝜇𝜉 = +ℎ    

 (the concerned structure is damaged) 

(6.20) 

where ℎ is the chosen mean shift value, describing the expected difference between the 

population means of the standardized Bayesian residuals when the concerned structure is 

respectively in its undamaged state and damaged state. The shift value h is related to the 

false positive diagnostic risk 𝛼, which will be discussed later. The choice of ℎ reflects 

the understanding of professionals regarding the presumed discrepancies in the features 

for classifying structures with and without damage. Its choice is essentially a balance 

between the false positive and false negative error rates. If the value of h is smaller, a 

higher rate of false alarm of damage on structures occurs; while a larger value of h 

corresponds to a higher rate of missing alarm. For different application domains, one may 

use a customized value of ℎ, according to the total loss caused by the two types of errors. 

The shift value h is assumed to have the same absolute value as the standardized residuals 
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are the standard normal variables. The concept of shift can be still effective for multiple 

dimensions by using a shift vector. The alternative 𝐻1 is composed of two potential cases, 

with a negative mean shift value −ℎ and a positive mean shift value +ℎ. Typically, the 

alternative hypothesis, either 𝐻1
−ℎ or 𝐻1

+ℎ, with a higher probability should be preferred 

and thus we have 

 P(𝛏|𝐻1) = max{P(𝛏|𝐻1
−ℎ), P(𝛏|𝐻1

+ℎ)} (6.21) 

where 𝛏 = [𝜉1, … , 𝜉𝑆]T are the standardized Bayesian residuals, defined in Section 6.2.2. 

This type of hypothesis testing is termed Bayesian null hypothesis significance testing 

because the mean shift value ℎ  is directly related to the significance level 𝛼  (type-I 

diagnostic risk) which will be discussed later in this section. It can be also called Bayesian 

simple hypothesis testing (HST) due to the fact that the null and alternative hypotheses 

are both conditional on a single point hypothesis. Such a hypothesis test was used by 

Lipowsky et al. (2010) to facilitating the change detection of gas turbine performance and 

then by Wang (2017) to identify potential outliers in SHM data. 
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b) Intrinsic Bayes factor 

The Bayes factor with a negative mean shift value denoted as 𝐵𝐹01
−ℎ, is given by 

 𝐵𝐹01
−ℎ =

P(𝛏|𝐻0)

P(𝛏|𝐻1
−ℎ)

 

=
P(𝛏|𝜇𝜉 = 0)

P(𝛏|𝜇𝜉 = −ℎ)
 

=
∏ (2π)−1/2 exp(− 𝜉𝑠

2 2⁄ )𝑆
𝑠=1

∏ (2π)−1/2 exp[− (𝜉𝑠 + ℎ)2 2⁄ ]𝑆
𝑠=1

 

= exp[𝑁ℎ(ℎ/2 + 𝜉̅)] 

(6.22) 

where 𝜉̅ =
1

𝑆
∑ 𝜉𝑠

𝑆
𝑠=1 . Then, the Bayes factor with a positive mean shift value denoted as 

𝐵𝐹01
+ℎ, is given by 

 𝐵𝐹01
+ℎ =

P(𝛏|𝐻0)

P(𝛏|𝐻1
+ℎ)

 

=
P(𝛏|𝜇𝜉 = 0)

P(𝛏|𝜇𝜉 = +ℎ)
 

=
∏ (2π)−1/2 exp[− 𝜉𝑠

2 2⁄ ]𝑆
𝑠=1

∏ (2π)−1/2 exp[− (𝜉𝑠 − ℎ)2 2⁄ ]𝑆
𝑠=1

 

= exp[𝑆ℎ(ℎ/2 − 𝜉̅)] 

(6.23) 

Hence, the preferable Bayes factor is given by 

 𝐵𝐹01 =
P(𝛏|𝐻0)

P(𝛏|𝐻1)
 

=
P(𝛏|𝐻0)

max{P(𝛏|𝐻1
−ℎ), P(𝛏|𝐻1

+ℎ)}
 

= min{𝐵𝐹01
−ℎ, 𝐵𝐹01

+ℎ} 

= exp[𝑆ℎ(ℎ/2 − |𝜉̅|)] 

(6.24) 

Twice the natural logarithm of the Bayes factor in Bayesian NHST is given by 

 2ln(𝐵𝐹01) = 𝑆ℎ(ℎ − 2|𝜉̅|) (6.25) 
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As shown in Equations (6.24) and (6.25), the Bayes factor 𝐵𝐹01  in Bayesian NHST 

remains heavily dependent on the testing sample size 𝑆 (the number of the standardized 

Bayesian residuals), which could also cause the so-called Jeffreys-Lindley paradox. 

Fortunately, it is found that the Bayes factor in Bayesian NHST is easy to be normalized 

by the sample size 𝑆, thus possibly avoiding the Jeffreys-Lindley paradox. By taking the 

𝑆th root of the Bayes factor in Equation (6.24). we have 

 𝐼𝐵𝐹01 = (𝐵𝐹01)1/𝑆 = exp[ℎ(ℎ/2 − |𝜉̅|)] (6.26) 

where 𝐼𝐵𝐹01 is termed the intrinsic Bayes factor, that was coined by Berger and Pericchi 

(1996) in the investigation of the problem of multiple model comparison and prediction. 

Two forms of intrinsic Bayes factors were proposed in their paper, with one averaged 

arithmetically and the other averaged geometrically on the number of potential models to 

be selected. We prefer the geometric intrinsic Bayes factor as it better follows the law of 

probability (the probability of intersection). Twice the natural logarithm of the geometric 

intrinsic Bayes factor is given by 

 2ln(𝐼𝐵𝐹01) = ℎ(ℎ − 2|𝜉̅|) (6.27) 

From Equations (6.26) and (6.27), it is observed that the intrinsic Bayes factor and its its 

twice the natural logarithm are both independent on the sample size 𝑆 and thus the novel 

Bayesian NHST does not suffer from the Jeffreys-Lindley paradox. By contrast, the Bayes 

factor in Bayesian PNHT cannot be easily normalized due to the complicated relationship 
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between the Bayes factor and the sample size 𝑆, as shown in Equations (6.9) and (6.10). 

c) Intrinsic prior 

To derive the posterior probabilities of the two competing hypotheses associated with 

the intrinsic Bayes factor in geometric average, one has to define two novel priors over 

the null and alternative hypotheses 𝐻0 and 𝐻1, termed the intrinsic priors, wherein the 

intrinsic prior of the null hypothesis 𝐻0 is denoted as 𝜋0
𝐼  and the intrinsic prior of the 

alternative hypothesis 𝐻1 is denoted as 𝜋1
𝐼 . The two intrinsic priors satisfy 

 𝜋0
𝐼 + 𝜋1

𝐼 = 1 (6.28) 

The odds ratio of the two intrinsic priors, termed the intrinsic prior odds and denoted as 

𝜋01
𝐼  is given by 

 𝜋01
𝐼 = 𝜋0

𝐼 𝜋1
𝐼⁄ = (𝜋01)1/𝑆 (6.29) 

Based on the above two equations, we have the intrinsic prior probability 𝜋0
𝐼  over the 

null hypothesis 𝐻0 

 𝜋0
𝐼 =

𝜋01
𝐼

1 + 𝜋01
𝐼  (6.30) 

and the intrinsic prior probability 𝜋1
𝐼  over the alternative hypothesis 𝐻1 

 𝜋1
𝐼 =

1

1 + 𝜋01
𝐼  (6.31) 

It should be mentioned that one cannot get 𝜋0
𝐼 = [𝜋0]1/𝑆 and 𝜋1

𝐼 = [𝜋1]1/𝑆, necessarily. 

d) Intrinsic posterior 

Similarly, we denote the intrinsic posterior probability of the null hypothesis 𝐻0 as 
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𝑝0
𝐼  and the intrinsic posterior probability of the alternative hypothesis 𝐻1 as 𝑝1

𝐼 , which 

satisfy 

 𝑝0
𝐼 + 𝑝1

𝐼 = 1 (6.32) 

The odds ratio of the two intrinsic posteriors, termed the intrinsic posterior odds and 

denoted by 𝑝01
𝐼  is given by 

 𝑝01
𝐼 = 𝑝0

𝐼 𝑝1
𝐼⁄ = (𝑝01)1/𝑆 (6.33) 

Thus, the intrinsic posterior probability 𝑝0
𝐼  of the null hypothesis 𝐻0 is given by 

 𝑝0
𝐼 =

𝑝01
𝐼

1 + 𝑝01
𝐼  (6.34) 

and the intrinsic posterior probability 𝑝1
𝐼  of the alternative hypothesis 𝐻1 is given by 

 𝑝1
𝐼 =

1

1 + 𝑝01
𝐼  (6.35) 

Also, one cannot also get 𝑝0
𝐼 = (𝑝0)1/𝑆 and 𝑝1

𝐼 = (𝑝1)1/𝑆, necessarily. From Equations 

(6.34) and (6.35), it can be found that the key to derive the intrinsic posterior probability 

𝑝0
𝐼  of the null hypothesis 𝐻0 and the intrinsic posterior probability 𝑝1

𝐼  of the alternative 

hypothesis 𝐻1 is to obtain the intrinsic posterior odds 𝑝01
𝐼  of the two hypotheses. 

Due to the fact that the Bayes factor 𝐵𝐹01 is the ratio of the posterior odds 𝑝01 to 

its prior odds 𝜋01 of 𝐻0 and 𝐻1 (Kass and Raftery, 1995), we have  

 𝑝01 = 𝐵𝐹01𝜋01 (6.36) 

Similarly, by taking the 𝑆th root of both sides of the above equation, we have  

 𝑝01
𝐼 = (𝑝01)1/𝑆 = (𝐵𝐹01𝜋01)1/𝑆 = (𝐵𝐹01)1/𝑆(𝜋01)1/𝑆 = 𝐼𝐵𝐹01𝜋01

𝐼  (6.37) 
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Interestingly, it can be found that Equations (6.36) and (6.37) share the same form of 

expression. Thus, the intrinsic Bayes factor 𝐼𝐵𝐹01  can be stated as the ratio of the 

intrinsic posterior odds 𝑝01
𝐼  to its prior odds 𝜋01

𝐼  of 𝐻0 and 𝐻1.  

By substituting the intrinsic posterior odds 𝑝01
𝐼  with 𝐵𝐹01

𝐼 𝜋01
𝐼  in Equations (6.34) 

and (6.35), we have the intrinsic posterior probability 𝑝1
𝐼  of the null hypothesis 𝐻0 as  

 𝑝0
𝐼 =

𝐼𝐵𝐹01𝜋01
𝐼

1 + 𝐼𝐵𝐹01𝜋01
𝐼  (6.38) 

and the intrinsic posterior probability 𝑝1
𝐼  over the alternative hypothesis 𝐻1 as 

 𝑝1
𝐼 =

1

1 + 𝐼𝐵𝐹01𝜋01
𝐼  (6.39) 

If the two hypotheses 𝐻0 and 𝐻1 are equally probable, we have 

 P(𝐻0) =  P(𝐻1) = 0.5 (6.40) 

The intrinsic prior odds ratio of the two hypotheses 𝐻0 and 𝐻1 are  

 𝜋01
𝐼 = (𝜋01)1/𝑆 = [P(𝐻0)/P(𝐻1)]1/𝑆 = 1 (6.41) 

Therefore, the intrinsic posterior probability 𝑝0
𝐼   of the null hypothesis 𝐻0  and the 

intrinsic posterior probability 𝑝1
𝐼  of the alternative hypothesis 𝐻1 are given respectively 

by 

 𝑝0
𝐼 =

𝐼𝐵𝐹01

1 + 𝐼𝐵𝐹01
 (6.42) 

 𝑝1
𝐼 =

1

1 + 𝐼𝐵𝐹01
 (6.43) 

In the newly proposed Bayesian NHST, a very clear interpretation of the measure of 

evidence for supporting the two competing hypotheses is given, in terms of the intrinsic 
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Bayes factor and intrinsic posterior probabilities. More importantly, the novel intrinsic 

Bayes factor averaged geometrically on the number of the testing sample and the resulting 

posterior probabilities of the two competing hypotheses become scale-invariant quantities 

such that the so-called Jeffreys-Lindley paradox is avoided. This paves the way for 

practical engineering applications of Bayesian hypothesis testing.  

e) Diagnostic risk 

The choice of the mean shift value ℎ affects the evaluated value of intrinsic Bayes 

factor (or its twice the natural logarithm) and thus has a crucial influence on the structural 

damage diagnostic result. Table 6.3 shows the influence of the mean shift value ℎ on 

intrinsic Bayes factor and diagnostic results for testing the standardized Bayesian 

residuals. It can be found that the condition diagnostic result of a structure depends on 

both the absolute mean value |𝜉̅|  of the standardized Bayesian residuals and the 

prespecified mean shift value ℎ. If a larger value of the mean shit ℎ is chosen, it turns 

out be difficult to reject the null hypothesis 𝐻0 such that a damaged structure may be 

falsely judged healthy. By contrast, if a smaller mean shit value ℎ is adopted, the null 

hypothesis 𝐻0 can be easily rejected, giving rising to the type-I diagnostic risk (a healthy 

structure is inclined to be incorrectly classified damaged).  
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Table 6.3 Influence of the mean shift value ℎ on intrinsic Bayes factor and diagnostic 

results 

Decision 

interval 
𝐼𝐵𝐹01 2ln(𝐼𝐵𝐹01) Decision 

|𝜉̅| < ℎ/2 𝐼𝐵𝐹01>1 2ln(𝐼𝐵𝐹01) > 0 

𝐻0 is accepted; 

(The concerned structure is 

diagnosed as healthy) 

|𝜉̅| = ℎ/2 𝐼𝐵𝐹01 =1 2ln(𝐼𝐵𝐹01) = 0 
No evidence 

(More SHM data are required) 

|𝜉̅| > ℎ/2 𝐼𝐵𝐹01 <1 2ln(𝐼𝐵𝐹01) < 0 

𝐻0 is rejected 

(The concerned structure is 

diagnosed as damaged) 

 

 

 

Figure 6.1 Intrinsic Bayes factor (ℎ = 4) 
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Figure 6.1 shows the value of twice the natural logarithm of the intrinsic Bayes factor 

when the chosen mean shit value ℎ  is 4. It can be found that if |𝜉̅| < 2 , we have 

2ln(𝐼𝐵𝐹01) > 0 and 𝐻0 will be accepted (the concerned structure will be diagnosed as 

healthy); if |𝜉̅| > 2, we have 2ln(𝐼𝐵𝐹01) < 0 and 𝐻0 will be rejected (the concerned 

structure will be diagnosed as damaged); if |𝜉̅| = 2, no decision can be made due to the 

fact that the data support the two hypotheses equally (in other words, the health condition 

of the concerned structure is not clear, based on the limited data being tested). To quantify 

structural health condition in terms of intrinsic Bayes factor in a more specific way, one 

can refer to Table 6.2.  

The value of ℎ is directly related to the significance level 𝛼, given by 

 𝛼 = 2[1 − Φ(ℎ/2)] (6.44) 

where Φ is the cumulative distribution function of the standard normal random variable. 

The significance level 𝛼 in Bayesian NHST is a risk-controlling quantity, the same as in 

classical NHST, referred to as the probability of rejecting the null hypothesis 𝐻0 when 

it is true. When Bayesian NHST is used to identify structural damage, it is referred to as 

the probability that a healthy structure is falsely judged damaged. 

In the implementation of Bayesian NHST for structural damage diagnostics, the first 

step that we are required to take is to choose a proper significance level 𝛼 in order to 

control the type-I diagnostic risk (the same as in frequentist NHST). Then, given the 
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significance level 𝛼, one can easily derive the corresponding mean shift ℎ in Bayesian 

NHST as 

 ℎ = 2Φ−1(1 − 𝛼/2) (6.45) 

where Φ−1  is the inverse of cumulative distribution function of the standard normal 

random variable. Typical significance levels and corresponding mean shift values are 

given in Table 6.4. 

 

Table 6.4 Typical significance levels and corresponding mean shift values 

Significance level 𝛼 61.71% 31.73% 13.36% 4.55% 1.24% 0.27% 

Mean shift value ℎ 1 2 3 4 5 6 
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6.4 Case Study 

The campaign of online condition assessment of railway wheels is served as a case 

study in this section to compare, in detail, the performance of the proposed unsupervised 

damage diagnostic methods, based on three categories of population feature models 

(SSBL, HSBL and PSBL used in the baseline phase) and three categories of damage 

diagnostic logics (frequentist NHST, Bayesian PNHT and Bayesian NHST used in the 

inspection phase). A typical 8-car high-speed passenger train equipped with sixty-four 

undefective wheels is first run on the rail instrumented with the track-side monitoring 

system that has been described in Chapter 3. Online condition monitoring data are 

collected to establish a healthy population feature model for all nominally identical 

undefective wheels. This population feature model is served as a baseline to identify 

wheels, potentially, with defects in the inspection phase. To obtain the optimal population 

feature model, three categories of modelling frameworks have been compared based on 

SSBL (Chapter 3), HSBL (Chapter 4) and PSBL (Chapter 5), respectively. Then, a blind 

test is conducted by replacing some healthy wheels by defective wheels and running the 

train equipped with several defective wheels on the same rail. New monitoring data are 

acquired to validate and compare the performance of the proposed unsupervised damage 

diagnostics methods of NISs, based on the three different population feature models and 

the three different diagnostic logics. After the blind test, all tested wheels are delivered to 
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a maintenance workshop for offline wheel profile measurement. As such, a comparison 

between the online diagnostic results by the proposed methods and the offline inspection 

results from wheel profile measurement system can be made. 

It is worth noting that the monitoring data collected by a single sensor might be unable 

to capture the defect-relevant information in case the minor defective tread (e.g. a small 

flat) didn’t roll over the rail section deployed with the sensor; it would result in a false 

negative if using only the monitoring data from the single sensor. When using the 

monitoring data from all the deployed sensors, more reliable defect detection results 

would be obtained as the effect of minor defective tread must be sensed by at least one 

sensor if the sensors are densely deployed along a rail segment longer than the wheel 

perimeter. In the following, both the wheel defect detection results by using the 

monitoring data from a single sensor (SEN-A2 deployed on the left rail track and SEN-

D2 deployed on the right rail track) and from all the sensors are presented. 

In the implementation of frequentist NHST and Bayesian NHST on the condition 

assessment of the nominally identical wheels, the chosen significance level is 𝛼=1.24%, 

at price of a false-positive diagnostic error rate being no more than 1.24%. The 

corresponding mean shift value ℎ in Bayesian NHST is 5, according to Equation (6.45). 

To derive the intrinsic posterior probabilities of the two hypotheses made for the blindly 

tested wheels with and without defects, an equal prior probability is assigned to the null 
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hypothesis 𝐻0  and the alternative hypothesis 𝐻1 , with P(𝐻0) = P(𝐻1) = 0.5 . When 

conducting Bayesian PNHT for the condition assessment of these nominally identical 

wheels, a unit-information prior P(𝜇𝜉) = 𝒩(0,1) is assigned to the unknown parameter 

associated with the alternative hypothesis. To the posterior probabilities of the blindly 

tested wheels with and without defects, an equal prior probability is also placed on the 

null hypothesis 𝐻0 and the alternative hypothesis 𝐻1 in Bayesian PNHT. 

6.4.1 Diagnostic results of wheel defects using a single senor 

The wheel defect diagnostics is first pursued by using the monitoring data from a 

single sensor. The sensors SEN-A2 and SEN-D2 deployed respectively on the left and 

right trail tracks are taken as an example to illustrate the influence of three categories of 

population feature models (established by SSBL, HSBL and PSBL, respectively) on the 

defect diagnostic results of nominally identical wheels. The advantages and limitations of 

the three categories of statistical diagnostic tests on structural damage identification are 

investigated, including frequentist NHST, Bayesian PNHT and the novel Bayesian NHST 

proposed in this thesis. 

a) Frequentist NHST results 

The condition assessment results of left wheels are shown in Figures 6.2 to 6.4 by 

using frequentist NHST on the monitoring data from the sensor-A2 deployed on the left 
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rail track, with the population feature models established by SSBL, HSBL and PSBL, 

respectively. The condition assessment results of the right wheels are shown in Figures 

6.5 to 6.7 by using frequentist NHST on the monitoring data form the sensor-D2 installed 

on the right rail track, with the population feature models built by SSBL, HSBL and PSBL, 

respectively. The magenta lines in the six figures are the chosen significance level 

𝛼=1.24%, served as a threshold for classifying wheels with and without defect at a price 

of the false-positive error rate no more than 1.24%. It is observed that the 𝑝-values of the 

27th left wheel, and 24th and 27th right wheels are under the magenta line (the case 𝑝 <

𝛼 in frequentist NHST) and thus the three left wheels are diagnosed as defective. By 

contrast, the 𝑝-values of other left wheels are all above the chosen significance level (the 

case 𝑝 > 𝛼  in frequentist NHST) and therefore, these left wheels are diagnosed as 

undefective. It is found that when using different categories of population feature models, 

the calculated 𝑝-values are varied, they have no decisive impact on the ultimate condition 

classification of these wheels. Besides, the 𝑝 -values in frequentist NHST are found 

difficult to quantify the extents of wheel defects as shown in the six figures.  
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Figure 6.2 𝑝-values of left wheels using monitoring data from SEN-A2 deployed on 

left rail track (SSBL and Frequentist NHST) 
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Figure 6.3 𝑝-values of left wheels using monitoring data from SEN-A2 deployed on 

left rail track (HSBL and Frequentist NHST) 
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Figure 6.4 𝑝-values of left wheels using monitoring data from SEN-A2 deployed on left 

rail track (PSBL and Frequentist NHST) 
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Figure 6.5 𝑝-values of right wheels using monitoring data from SEN-D2 deployed on 

right rail track (SSBL and Frequentist NHST) 
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Figure 6.6 𝑝-values of right wheels using monitoring data from SEN-D2 deployed on 

right rail track (HSBL and Frequentist NHST) 
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Figure 6.7 𝑝-values of right wheels using monitoring data from SEN-D2 deployed on 

right rail track (PSBL and Frequentist NHST) 
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b) Bayesian PNHT results 

The condition assessment results of left wheels using Bayesian PNHT on the 

monitoring data from the sensor SEN-A2 are shown in Figures 6.8 to 6.13, with the 

population feature models established by SSBL, HSBL and PSBL, respectively. The 

condition assessment results of right wheels using Bayesian PNHT on the monitoring data 

from the sensor SEN-D2 are shown in Figures 6.14 to 6.19, with the population feature 

models established by SSBL, HSBL and PSBL, respectively. The magenta lines in the 

twelve figures are the thresholds for classifying wheels with and without defects, whereas 

the resulting diagnostic risk is not clear. The lengths of the bars in Figure 6.9, 6.11, 6.13, 

6.15, 6.17 and 6.19 are all one due to the fact that Pr(𝐻0|𝐃) + Pr(𝐻1|𝐃) = 1.  

When using the SSBL population feature model, the Bayes factor (the Bayes factor 

in this case study is, by default, referred to as its twice the natural logarithm) for the 27th 

left wheel is -22.0 (Figure 6.8) with a posterior probability of defect is almost 100% 

(Figure 6.9). This advocates very strongly that the 27th left wheel is heavily defected. The 

Bayes factors for the 1st, 6th, 13th, 19th, 20th, 29th and 30th left wheels are all between 

-2 and 0, and their corresponding posterior probabilities of defect are between 50.0% and 

73.1%, providing evidence that these wheels are weakly defected. Other left wheels are 

diagnosed as undefective because of having Bayes factors being all positive and posterior 

probabilities of defect being all under 50.0%. Despite the eight left wheels, one more left 
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wheel (the 3rd left wheel) is diagnosed as defective (weakly) when using the HSBL 

population feature model, with a Bayes factor being -0.08 (Figure 6.10) and a posterior 

probability of defect being 51.0% (Figure 6.11). On the contrary, one less left wheel (the 

13th left wheel) is diagnosed as defected if using the PSBL population feature model, 

with its Bayes factor being positive (Figure 6.12) and its posterior probability of defect 

less than 50.0% (Figure 6.13). 

Regardless of which type of population feature models used, the 24th right wheel is 

diagnosed as seriously defective because its Bayes factors are all less than -10 (Figure 

6.14, 6.16 and 6.18) and its posterior probabilities of defect are all more than 99.3% 

(Figure 6.15, 6.17 and 6.19). The Bayes factors of the 27th right wheels are respectively 

-7.2, -5.3 and -4.8 based on the SSBL, HSBL and PSBL population feature models, and 

the corresponding posterior probabilities of defect are respectively 97.3%, 93.4% and 

91.7%. Hence, the 27 right wheel is diagnosed respectively as moderately, mildly and 

mildly defected if the population feature model in the baseline phase is established by 

SSBL, HSBL and PSBL. For the SSBL and PSBL population feature models, the Bayes 

factors of the 4th, 6th, 9th, 26th, 28th and 31st right wheels are all between -2 and 0 and 

their posterior probabilities of defect are between 50.0% and 73.1%, which suggests that 

the six right wheels are weakly defected. Other right wheels are diagnosed as undefective 

because of having a Bayes factor being positive and a probability of defect less than 50%. 
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By contrast, if using the HSBL population feature model, one more right wheel (the 13th 

right wheel) is diagnosed as defective (weakly), with its Bayes factor being -0.1 and a 

probability of defect being 51.2%.  

In comparison to the diagnostic results from frequentist NHST, in which only the 27th 

left wheel and the 24th and 27th right wheels are identified as defected, more wheels are 

diagnosed as defected in Bayesian PNHT. This indicates that the diagnostic results from 

frequentist NHST and Bayesian PNHT are inconsistent in this case study, triggering the 

well-known Jeffrey-Lindley paradox in statistical tests. The inconsistency between the 

frequentist NHST and the Bayesian PNHT diagnostic results could be alleviated to some 

extent by adjusting the significance level 𝛼 in frequentist NHST or the prior assigned on 

the unknown parameter associated with the alternative hypothesis in Bayesian PNHT. 

However, it can never be eliminated in the current Bayesian hypothesis testing. In 

addition, it is found that evidence to support the null hypothesis (the wheel is without 

defect) and the alternative hypothesis (the wheel is with defect) is out of proportion in 

Bayesian PNHT. For example, there is decisive evidence to support the claim that the 

27th left wheel and the 24th right wheel are seriously defected no matter which type of 

population feature models used. Yet, no overwhelming evidence is found to support that 

the wheels identified as undefective are definitely without defect.  
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Figure 6.8 Bayes factors of left wheels using monitoring data from SEN-A2 deployed 

on left rail track (SSBL and Bayesian PNHT) 
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Figure 6.9 Posterior probabilities of left wheels using monitoring data from SEN-A2 

deployed on left rail track (SSBL and Bayesian PNHT) 
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Figure 6.10 Bayes factors of left wheels using monitoring data from SEN-A2 deployed 

on left rail track (HSBL and Bayesian PNHT) 
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Figure 6.11 Posterior probabilities of left wheels using monitoring data from SEN-A2 

deployed on left rail track (HSBL and Bayesian PNHT) 

  



Chapter 6 Statistical tests for damage diagnostics in NISs 

159 

 

 

Figure 6.12 Bayes factors of left wheels using monitoring data from SEN-A2 deployed 

on left rail track (PSBL and Bayesian PNHT) 
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Figure 6.13 Posterior probabilities of left wheels using monitoring data from SEN-A2 

deployed on left rail track (PSBL and Bayesian PNHT) 
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Figure 6.14 Bayes factors of right wheels using monitoring data from SEN-D2 deployed 

on right rail track (SSBL and Bayesian PNHT) 
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Figure 6.15 Posterior probabilities of right wheels using monitoring data from SEN-D2 

deployed on right rail track (SSBL and Bayesian PNHT) 
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Figure 6.16 Bayes factors of right wheels using monitoring data from SEN-D2 deployed 

on right rail track (HSBL and Bayesian PNHT) 
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Figure 6.17 Posterior probabilities of right wheels using monitoring data from SEN-D2 

deployed on right rail track (HSBL and Bayesian PNHT) 
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Figure 6.18 Bayes factors of right wheels using monitoring data from SEN-D2 deployed 

on right rail track (PSBL and Bayesian PNHT) 
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Figure 6.19 Posterior probabilities of right wheels using monitoring data from SEN-D2 

deployed on right rail track (PSBL and Bayesian PNHT) 
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c) Bayesian NHST results 

Figures 6.20 to 6.25 show the diagnostic results for left wheels using Bayesian NHST 

on the monitoring data from the SEN-A2, with the population feature models built in 

SSBL, HSBL and PSBL, respectively. Figures 6.26 to 6.31 show the diagnostic results 

for right wheels using Bayesian NHST on the monitoring data from the SEN-D2, with the 

population feature models established in SSBL, HSBL and PSBL, respectively. The 

magenta lines in the twelve figures are the thresholds for classifying the wheels with and 

without defect, under the significance level 𝛼 =1.24%. The lengths of the bars in Figure 

6.21, 6.23, 6.25, 6.27, 6.29 and 6.31 are all one as P(𝐻0|𝐃, 𝛼 = 1.24%) +

P(𝐻1|𝐃, 𝛼 = 1.24%) = 1.  

It is observed that the intrinsic Bayes factors of the 27th left wheel are -32.9 (Figure 

6.20), -32.6 (Figure 6.22) and -28.5 (Figure 6.24), respectively, based on the SSBL, HSBL 

and PSBL population feature models. The corresponding posterior probabilities of defect 

are all nearly 100% (Figures 6.21, 6.23 and 6.25). Hence, the 27th left wheel is diagnosed 

as heavily defected, regardless of which category of population feature models employed. 

Other left wheels are diagnosed as undefective due to the fact that their intrinsic Bayes 

factors are all positive and posterior probabilities of defect are all less than 50%.  

The intrinsic Bayes factors of the 24th right wheel are -46.3 (Figure 6.26), -40.2 

(Figure 6.28) and -36.0 (Figure 6.30), based on the SSBL, HSBL and PSBL population 
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feature models, respectively. The corresponding posterior probabilities of defect are all 

almost 100% (Figures 6.27, 6.29 and 6.31). Hence, the 24th right wheel is diagnosed as 

heavily defected, regardless of the kinds of population feature models.  

The intrinsic Bayes factors associated with the 27th right wheel are respectively -9.1, 

-6.3 and -4.1 based on the three categories of population feature models and their 

corresponding posterior probabilities of defect are respectively 98.9%, 95.9% and 88.6%. 

Consequently, the 27th right wheel is identified respectively as moderately, moderately 

and mildly defected based on the SSBL, HSBL and PSBL population feature models. 

Other right wheels are identified as undefective because their intrinsic Bayes factors are 

all positive and their posterior probabilities with defect are all less than 50%.  

Different from Bayesian PNHT, the diagnostic results from frequentist NHST and 

Bayesian NHST are found consistent. For example, when using the monitoring data from 

a single sensor, only the 27th left wheel, and the 24th and 27th right wheels are identified 

as defected in both frequentist NHST and Bayesian NHST. By contrast, more wheels are 

diagnosed as defective in Bayesian PNHT in addition to the three wheels identified as 

defective in frequentist and Bayesian NHSTs. Therefore, it is concluded that the 

diagnostic results from non-Bayesian and Bayesian hypothesis tests could be consistent 

if making a more reasonable alternative hypothesis in Bayesian hypothesis testing. The 

reasonability lies in that the refined alternative hypothesis in the novel Bayesian 
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hypothesis testing makes it possible to explicitly control the type-I diagnostic risk, the 

same as it in frequentist hypothesis testing. Nevertheless, this may not be possible in 

Bayesian PNHT as the type-I diagnostic risk is averaged over the prior of the unknown 

parameter associated with the alternative hypothesis such that the diagnostic risk is not 

explicitly controllable. 

In comparison to frequentist NHST, Bayesian NHST provides direct evidence for the 

condition assessment of nominally identical wheels, in terms of the intrinsic posterior 

probabilities of defect. More importantly, the extent of defect on wheels can be 

quantitatively quantified in Bayesian NHST, in terms of intrinsic Bayes factors. Besides, 

evidence to support the null hypothesis and alternative hypothesis is found comparable. 

In this case study, strong evidence exists to support both the claims that wheels are with 

and without defects.  
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Figure 6.20 Intrinsic Bayes factors of left wheels using monitoring data from SEN-A2 

deployed on left rail track (SSBL and Bayesian NHST) 
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Figure 6.21 Intrinsic posterior probabilities of left wheels using monitoring data from 

SEN-A2 deployed on left rail track (SSBL and Bayesian NHST) 
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Figure 6.22 Intrinsic Bayes factors of left wheels using monitoring data from SEN-A2 

deployed on left rail track (HSBL and Bayesian NHST) 
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Figure 6.23 Intrinsic posterior probabilities of left wheels using monitoring data from 

SEN-A2 deployed on left rail track (HSBL and Bayesian NHST) 
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Figure 6.24 Intrinsic Bayes factors of left wheels using monitoring data from SEN-A2 

deployed on left rail track (PSBL and Bayesian NHST) 
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Figure 6.25 Intrinsic posterior probabilities of left wheels using monitoring data from 

SEN-A2 deployed on left rail track (PSBL and Bayesian NHST) 
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Figure 6.26 Intrinsic Bayes factors of right wheels using monitoring data from SEN-D2 

deployed on right rail track (SSBL and Bayesian NHST) 
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Figure 6.27 Intrinsic posterior probabilities of right wheels using monitoring data from 

SEN-D2 deployed on right rail track (SSBL and Bayesian NHST) 
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Figure 6.28 Intrinsic Bayes factors of right wheels using monitoring data from SEN-D2 

deployed on right rail track (HSBL and Bayesian NHST) 
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Figure 6.29 Intrinsic posterior probabilities of right wheels using monitoring data from 

SEN-D2 deployed on right rail track (HSBL and Bayesian NHST) 
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Figure 6.30 Intrinsic Bayes factors of right wheels using monitoring data from SEN-D2 

deployed on right rail track (PSBL and Bayesian NHST) 
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Figure 6.31 Intrinsic posterior probabilities of right wheels using monitoring data from 

SEN-D2 deployed on right rail track (PSBL and Bayesian NHST) 
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6.4.2 Diagnostic results of wheel defects by integrating all sensors 

The wheel defect diagnostics is the pursued by using the monitoring data from all 

sensors deployed on two sides of rail tracks. As we are interested in finding defective 

wheels, the worst wheel condition indices are preferred, including the smallest 𝑝-values 

in frequentist NHST, the smallest Bayes factors and the largest posterior probabilities of 

defect in Bayesian PNHT, and the smallest intrinsic Bayes factors and the largest intrinsic 

posterior probabilities of defect in Bayesian NHST. These indices are given, respectively, 

by 

 𝑝 = min{𝑝(1), … , 𝑝(𝑁𝑠)} (6.46) 

 2ln (𝐵𝐹01) = min{2ln(𝐵𝐹01(1)) , … ,2ln(𝐵𝐹01(𝑁𝑠))} (6.47) 

 𝑝0 = min{𝑝0(1), … , 𝑝0(𝑁𝑠)} (6.48) 

 𝑝1 = max{𝑝1(1), … , 𝑝1(𝑁𝑠)} (6.49) 

 2ln (𝐼𝐵𝐹01) = min{2ln(𝐼𝐵𝐹01(1)) , … ,2ln(𝐼𝐵𝐹01(𝑁𝑠))} (6.50) 

 𝑝0
𝐼 = min{𝑝0

𝐼 (1), … , 𝑝0
𝐼 (𝑁𝑠)} (6.51) 

 𝑝1
𝐼 = max{𝑝1

𝐼 (1), … , 𝑝1
𝐼 (𝑁𝑠)} (6.52) 

where 𝑁𝑠 is the number of sensors deployed on each side of the rail track. For the track-

side monitoring system in this thesis, 𝑁𝑠 = 21.  

a) Frequentist NHST results  

Figures 6.32 to 6.34 illustrate the condition assessment results of left wheels by using 
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frequentist NHST on the monitoring data from all 21 sensors deployed on the left rail 

track, with the population feature model established from SSBL, HSBL and PSBL, 

respectively. It is observed that regardless of which type of population feature models 

used, the 1st, 6th and 27th left wheels are diagnosed as defected as their 𝑝-values are 

below the magenta lines (𝛼 = 1.24%) and other left wheels are diagnosed as undefective 

as their associated 𝑝-values are above the magenta lines.  

Figures 6.35 to 6.37 show the condition assessment results for right wheels by using 

frequentist NHST on the monitoring data from all 21 sensors deployed on the right rail 

track with the population feature model established from SSBL, HSBL and PSBL, 

respectively. It is found that when using the SSBL population feature model, five right 

wheels are diagnosed as defective, including the 1st, 6th, 24th, 27th and 31st wheels. 

Other right wheels are diagnosed as undefective because their 𝑝-values are larger than 

the prespecified significance level 𝛼 = 1.24%. However, if using the HSBL or PSBL 

population feature models, only four right wheels are identified as defective, including 

the 1st, 6th, 24th and 27th wheels. Thus, a qualitative difference is found in the condition 

classification of right wheels from the three categories of population feature models when 

using the monitoring data from all 21 sensors deployed on the right rail track. 

By comparing Figures 6.2 to 6.7 with Figures 6.32 to 6.37, it is also found that using 

only the monitoring data from a single sensor may fail to identify potentially defective 
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wheels. For instance, using only the monitoring data from the sensor SEN-A2 fails to 

identify potential defects on the 1st and 6th left wheels, while using only the monitoring 

data from the sensor SEN-D2 fails to identify potential defects on the 1st and 6th right 

wheels, regardless of the kinds of population feature models employed. 
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Figure 6.32 𝑝-values of left wheels using monitoring data from all sensors deployed on 

left rail track (SSBL and Frequentist NHST) 
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Figure 6.33 𝑝-values of left wheels using monitoring data from all sensors deployed on 

left rail track (HSBL and Frequentist NHST) 
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Figure 6.34 𝑝-values of left wheels using monitoring data from all sensors deployed on 

left rail track (PSBL and Frequentist NHST) 
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Figure 6.35 𝑝-values of right wheels using monitoring data from all sensors deployed 

on right rail track (SSBL and Frequentist NHST) 
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Figure 6.36 𝑝-values of right wheels using monitoring data from all sensors deployed 

on right rail track (HSBL and Frequentist NHST) 
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Figure 6.37 𝑝-values of right wheels using monitoring data from all sensors deployed 

on right rail track (PSBL and Frequentist NHST) 
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b) Bayesian PNHT results 

The diagnostic results of left wheels using Bayesian PNHT on the monitoring data 

from all 21 sensors deployed on the left rail track are shown in Figures 6.38 to 6.43, with 

the population feature models established by SSBL, HSBL and PSBL, respectively. It is 

found that when using the SSBL or HSBL population feature model, all left wheels are 

diagnosed as defective as their associated Bayes factors are all negative and their 

associated posterior probabilities of defect are all more than 50.0%. If using the PSBL 

population feature model, except the 9th, 26th and 30th left wheels, all other left wheels 

are identified as defective. The diagnostic results of right wheels using Bayesian PNHT 

on the monitoring data from all 21 sensors deployed on the right rail track are shown in 

Figures 6.44 to 6.49, with the population feature models established by SSBL, HSBL and 

PSBL, respectively. It is found that the Bayes factors of right wheels are all negative and 

their corresponding posterior probabilities of defect are all more than 50%. Thus, all right 

wheels are identified as defective regardless of the kinds of population feature models. 

Comparing Figures 6.38, 6.40, 6.42, 6.44, 6.46 and 6.48, it is seen that among the 

three types of population feature models, the Bayes factors are the smallest, calculated 

from the SSBL population feature model. This is mainly attributed to the fact that multiple 

sources of uncertainty are pooled together in the SSBL population feature model, 

including measurement noise in the online monitoring activity of railway wheels (intra-
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structure uncertainty) as well as variability in wheel material and/or manufacturing 

process (inter-structure uncertainty). The pooling of multiple sources of uncertainty yields 

an underestimation of uncertainty associated with the population features of all nominally 

identical undefective wheels. Consequently, the obtained Bayes factors are included to be 

underestimated, while the extents of defects on the wheels are overestimated. Although 

the HSBL population feature model can be useful to alleviate the overestimation of the 

extent of defect on the wheels, the most reliable diagnostic results are given by the PSBL 

population feature model, in which multiple sources of uncertainty can be modelled 

separately. 

Comparing the diagnostic results on the wheels from frequentist NHST (Figures 6.32 

to 6.37), it is found that more wheels are identified as defective if using Bayesian PNHT 

on the monitoring data from all sensors deployed on each side of the rail. For example, if 

using frequentist NHST, only three left wheels are diagnosed as defective, while no more 

than five right wheels are identified as defected no matter which category of the employed 

population feature models. By contrast, nearly all wheels (except the 26th and 30th left 

wheels) are diagnosed defective when using Bayesian PNHT. The Jeffreys-Lindley takes 

place again in this case study even though the monitoring data from all deployed sensors 

are utilized. 
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Figure 6.38 Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (SSBL and Bayesian PNHT) 
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Figure 6.39 Posterior probabilities of left wheels using monitoring data from all sensors 

deployed on left rail track (SSBL and Bayesian PNHT) 
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Figure 6.40 Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (HSBL and Bayesian PNHT) 
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Figure 6.41 Posterior probabilities of left wheels using monitoring data from all sensors 

deployed on left rail track (HSBL and Bayesian PNHT) 
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Figure 6.42 Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (PSBL and Bayesian PNHT) 
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Figure 6.43 Posterior probabilities of left wheels using monitoring data from all sensors 

deployed on left rail track (PSBL and Bayesian PNHT) 
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Figure 6.44 Bayes factors of right wheels using monitoring data from all sensors 

deployed on right rail track (SSBL and Bayesian PNHT) 
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Figure 6.45 Posterior probabilities of right wheels using monitoring data from all 

sensors deployed on right rail track (SSBL and Bayesian PNHT) 
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Figure 6.46 Bayes factors of right wheels using monitoring data from all sensors 

deployed on right rail track (HSBL and Bayesian PNHT) 
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Figure 6.47 Posterior probabilities of right wheels using monitoring data from all 

sensors deployed on right rail track (HSBL and Bayesian PNHT) 
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Figure 6.48 Bayes factors of right wheels using monitoring data from all sensors 

deployed on right rail track (PSBL and Bayesian PNHT) 
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Figure 6.49 Posterior probabilities of right wheels using monitoring data from all 

sensors deployed on right rail track (PSBL and Bayesian PNHT) 
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c) Bayesian NHST results 

The diagnostic results of left wheels using the Bayesian NHST on the monitoring data 

from all 21 sensors deployed on the left rail track are shown in Figures 6.50 to 6.55, with 

the population feature models established by SSBL, HSBL and PSBL, respectively. It is 

found that regardless of which type of population feature models, the intrinsic Bayes 

factors associated with the 1st, 6th and 27th left wheels are all negative and their 

corresponding posterior probabilities of defect are more than 50.0%. Thus, the three left 

wheels are diagnosed as defective. Other left wheels are diagnosed as undefective as their 

intrinsic Bayes factors are all positive and their posterior probabilities of defect are all 

less than 50.0%.  

To be specific, when using the SSBL population feature model, the intrinsic Bayes 

factors associated with the 1st, 6th and 27th left wheels are respectively -12.6, -8.2 and -

33.6, and their corresponding posterior probabilities of defect are 99.8%, 98.4% and 

100.0%, respectively. Hence, the three left wheels are diagnosed respectively as heavily, 

moderately and heavily defected. If using the HSBL population feature model, the 

intrinsic Bayes factors of the three left wheels are respectively -9.2, -5.2 and -32.6, and 

their corresponding intrinsic posterior probabilities of defect are 99.0%, 93.0% and 

100.0%, respectively. Thus, the three left wheels are diagnosed as moderately, mildly and 

heavily defected, respectively. If using the PSBL population feature model, the intrinsic 
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Bayes factors with respect to the 1st, 6th and 27th left wheels are respectively -5.8, -1.8 

and -28.5, and their posterior probabilities of defect are 94.9%, 71.2% and 100.0%, 

respectively. Therefore, the three left wheels are diagnosed as mildly, weakly and heavily 

defected, respectively. Though quantitative differences can be found in the diagnostic 

results for left wheels based on different categories of population feature models, no 

qualitative differences exist in the ultimate condition classification of the left wheels.  

The diagnostic results of right wheels using the Bayesian NHST on the monitoring 

data from all 21 sensors deployed on the right rail track are shown in Figures 6.56 to 6.61, 

with the population feature models established by SSBL, HSBL and PSBL, respectively. 

It is seen that when using the SSBL population feature model, the intrinsic Bayes factors 

of the 1st, 6th, 24th, 27th and 31st right wheels are respectively -8.6, -5.7, -46.0, -16.7 

and -0.44, with the corresponding intrinsic posterior probabilities of defect being 98.7%, 

94.5%, 100.0%, 100.0% and 55.5%, respectively. Thus, the five right wheels are 

diagnosed respectively as moderately, mildly, heavily, heavily and weakly defected. Other 

right wheels are diagnosed as undefective as their intrinsic Bayes factors are positive and 

their intrinsic posterior probabilities of defect are less than 50.0%. By contrast, if using 

the HSBL population feature model, only four right wheels are diagnosed as defected, 

including the 1st, 6th, 24th and 27th wheels. The intrinsic Bayes factors for the four 

wheels are respectively -6.6, -2.5, -40.0, and -13.5 and their corresponding intrinsic 
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posterior probabilities of defect are respectively 96.4%, 77.7%, 100.0% and 99.9%. Thus, 

the four right wheels are diagnosed respectively as moderately, mildly, heavily and 

heavily defected. Similarly, if using the PSBL population feature model, only the 1st, 6th, 

24th and 27th right wheels are diagnosed as defected, whereas their associated intrinsic 

Bayes factors and posterior probabilities of defect increase to -4.0, -2.0, -36.0 and -8.8, 

and 88.1%, 73.3%, 100.0% and 98.8%, respectively. Therefore, the four right wheels are 

identified respectively as mildly, slightly, heavily and moderately defected when using 

the PSBL population feature model. Both quantitative and qualitative differences are 

found in the condition assessment of right wheels if using different types of population 

feature models. 

Different from Bayesian PNHT, the diagnostic results from frequentist NHST and 

Bayesian NHST are again coincided in the condition classification of wheels even though 

the monitoring data from all deployed sensors are used. For instance, the 1st, 6th and 27th 

left wheels are diagnosed as defected in both frequentist NHST (Figures 6.32 to 6.34) and 

Bayesian NHST (Figures 6.50 to 6.55), regardless of the types of the population feature 

models. On the contrary, almost all left wheels, except the 26th and 30th left wheels 

(Figures 6.38 to 6.43), are identified as defected based on Bayesian PNHT. The diagnostic 

results of right wheels are also consistent between frequentist NHST and Bayesian NHST, 

with the 1st 6th 24th 27th and 31st right wheels identified as defected when using the 
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SSBL population feature model (Figure 6.35, and Figures 6.56 and 6.57), and with the 

1st 6th 24th and 27th right wheels diagnosed as defected if using the non-standard 

population feature models (Figures 6.36 and 6.37, and Figure 6.58 to 6.61). However, all 

right wheel wheels are diagnosed as defected if using the Bayesian PNHT on the three 

categories of population feature models. As this case study shows, the Jeffrey-Lindley 

paradox can be indeed eliminated by making a refined alternative hypothesis in Bayesian 

hypothesis testing. The refined alternative hypothesis allows the significance level 𝛼 

(the type-I error or diagnostic risk) associated with Bayesian hypothesis testing to be 

explicitly controlled as the same as the level in frequentist NHST. By contrast, the Jeffrey-

Lindley paradox cannot be avoided in Bayesian PNHT as the induced diagnostic risk it 

gives rise to is not explicitly controllable. 

In addition, it is found that the strength of evidence to support the null hypothesis (the 

wheel is with defect) and alternative hypothesis (the wheel is without defect) is 

comparable in Bayesian NHST. There is both very strong evidence to support the 

hypotheses that the wheel is with or without defect. By contrast, there is no overwhelming 

evidence to support the claim that the wheel is without defect in Bayesian PNHT.   

Comparing Figures 6.32 to 6.37 with Figures 6.50 to 6.61, it is seen that direct 

evidence (the intrinsic posterior probability of defect) in Bayesian NHST is obtained for 

the condition assessment of wheels, whereas 𝑝-values in frequentist NHST can only be 
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served as indirect evidence to support claims about wheel conditions. More importantly, 

the extent of defect can be quantified more easily in Bayesian NHST, in terms of intrinsic 

Bayes factors, which is difficult in frequentist NHST.  

By comparing Figures 6.20 to 6.31 with Figures 6.50 to 6.61, it is found that using 

only the monitoring data from a single sensor fails to identify some potentially defective 

wheels. For example, using only monitoring data from the sensor SEN-A2 fails to identify 

the suspected defects on the 1st and 6th left wheels, while using only the monitoring data 

from the sensor SEN-D2 fails to detect the suspected defects on the 1st and 6th right 

wheels. 
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Figure 6.50 Intrinsic Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (SSBL and Bayesian NHST)  
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Figure 6.51 Intrinsic posterior probabilities of left wheels using monitoring data from all 

sensors deployed on left rail track (SSBL and Bayesian NHST) 
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Figure 6.52 Intrinsic Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (HSBL and Bayesian NHST) 
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Figure 6.53 Intrinsic posterior probabilities of left wheels using monitoring data from all 

sensors deployed on left rail track (HSBL and Bayesian NHST) 
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Figure 6.54 Intrinsic Bayes factors of left wheels using monitoring data from all sensors 

deployed on left rail track (PSBL and Bayesian NHST) 
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Figure 6.55 Intrinsic posterior probabilities of left wheels using monitoring data from all 

sensors deployed on left rail track (PSBL and Bayesian NHST) 
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Figure 6.56 Intrinsic Bayes factors of right wheels using monitoring data from all 

sensors deployed on right rail track (SSBL and Bayesian NHST) 
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Figure 6.57 Intrinsic posterior probabilities of right wheels using monitoring data from 

all sensors deployed on right rail track (SSBL and Bayesian NHST) 
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Figure 6.58 Intrinsic Bayes factors of right wheels using monitoring data from all 

sensors deployed on right rail track (HSBL and Bayesian NHST) 
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Figure 6.59 Intrinsic posterior probabilities of right wheels using monitoring data from 

all sensors deployed on right rail track (HSBL and Bayesian NHST) 
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Figure 6.60 Intrinsic Bayes factors of right wheels using monitoring data from all 

sensors deployed on right rail track (PSBL and Bayesian NHST) 
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Figure 6.61 Intrinsic posterior probabilities of right wheels using monitoring data from 

all sensors deployed on right rail track (PSBL and Bayesian NHST) 
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Figure 6.62 Measured signal when the 24th right wheel passes through the location of 

the sensor SEN-D2.  

 

Figure 6.63 Measured signal when the 27th right wheel passes through the location of 

the sensor SEN-D2. 

Figures 6.62 and 6.63 show the measurement segments of rail strain recorded by 

SEN-D2, when the 24th and the 27th right wheels pass through the location of the sensor. 

Visible disturbances are found in the measured signals of rail strain, due to the wheel 

defect-incurred impact on the rail track, with a more serious disturbance observed in the 

measured signal of rail strain for the 24th right wheel.  
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d) Comparison to blind test results 

To validate the effectiveness of the proposed online diagnostic methods for nominally 

identical railway wheels, offline inspection is conducted afterwards in a train depot. The 

offline wheel tread profile measurement indicates that among the sixty-four wheels, seven 

wheels are in fact defected, including the 1st, 6th and 27th left wheels, and the 1st, 6th, 

24th and 27th right wheels. The defective wheels are listed in Tables 6.5 and 6.6, with the 

measured defect lengths shown in parentheses.  

It is found that the 27th left wheel and 24th right wheel are with larger flats, with 

defect lengths being longer than the allowed tolerance limit (30mm in length), regulated 

by Operation and Maintenance Regulations for Railway Electric Multiple Units (TG/CL 

127-2017). Thus, the two railway wheels should be reprofiled, immediately. Though an 

immediate reprofiling is not required to be conducted on other defective wheels with 

smaller flats (less than 30mm in length), close attention should be paid on them to monitor 

the deterioration of their conditions. No special measures are required to be taken on the 

undefective wheels. 

By comparing the diagnostic results from the offline inspection and the online 

monitoring, it is found that the condition assessment results of these wheels from 

Bayesian PNHT are generally non-informative as it gives rise to too many diagnostic 

errors (many undefective wheels are falsely identified as defective), whenever using the 
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monitoring data from a single sensor or from all sensors deployed on the rail track. This 

is mainly attributed to theoretical problems in Bayesian PNHT (e.g. inability to use the 

same prior as used for inference; the Jeffreys-Lindley paradox) and therefore, it is 

concluded that the current Bayesian PNHT is not a good diagnostic methodology for the 

development of a general unsupervised damage detection framework, specially targeted 

at a group of nominally identical structures.  

On the contrary, the condition assessment results from frequentist NHST and 

Bayesian NHST are quite informative. When using the monitoring data from all sensors 

deployed on the rail track, all defective wheels are successively identified, at the price of 

a very low false-positive error rate. Among the fifty-seven undefective wheels, only one 

wheel (the 31st right wheel) is falsely diagnosed as defected when using the SSBL 

population feature model. If using the non-standard SBL population feature models, no 

false-positive error occurs. It should be mentioned that using only the monitoring data 

from a single sensor fails to identify all defective wheels and more accurate diagnostic 

results can be obtained when using the monitoring data from all the deployed sensors. 

Though the condition classification results (qualitative assessment) of the sixty-four 

wheels are exactly the same between frequentist NHST and Bayesian NHST, the Bayesian 

diagnostic methodology provides us with a more useful tool to evaluate the extents of 

wheel defects (quantitative assessment). For example, the extents of the wheel defects are 
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difficult to measure in frequentist NHST, where they can be quantitatively quantified 

easily in terms of intrinsic Bayes factors in Bayesian NHST (the extents of defects on the 

suspected defective wheels are given in parentheses in Tables 6.1 and 6.2). As a result, a 

more pertinent maintenance strategy can be followed if using Bayesian NHST to assess 

the extents of defects on the concerned wheels, which is impossible if using frequentist 

NHST for the identification of defects on wheels. 

It should be mentioned the using the classification criterion on discrimination strength 

as shown in Table 6.2 to quantitatively assess the extents of wheel defects is a little bit 

subjective because of no physical implication. However, we may find in this case study 

that the classification intervals of the obtained intrinsic Bayes factors happen to perfectly 

match the severities of wheel defects if using the PSBL population feature models. When 

using the PSBL population feature models, the online diagnostic results suggest that the 

27th left wheel and 24th right wheel are heavily defected, while other suspected defective 

wheels are diagnosed as defected in lower severity grades. The online diagnostic results 

are found to perfectly match the offline inspection results, with the 27th left wheel and 

24th right wheel found to be with flats over 30mm in length and other suspected defective 

wheels to be with smaller flats (under 30mm in length). The other two categories of 

population feature models turn out to overestimate the extents of defects to some extent. 

Therefore, we may conclude that the PSBL population feature model used in the baseline 



Chapter 6 Statistical tests for damage diagnostics in NISs 

226 

phase and the Bayesian NHST used in the inspection phase can be the best option for 

developing a general unsupervised damage detection framework, specially targeted at a 

group of nominally identical structures. Even if the classification intervals do not well 

match the extents of wheel defects, they can be calibrated and pertinently refined to 

provide more precise mapping between the ranges of intrinsic Bayes factors and the 

extents of defects. 

It also should be mentioned that the choice of the level of significance 𝛼 is critical 

to defect detection results. In the present study, the significance level 𝛼 is set to be 1.24% 

in both frequentist NHST and Bayesian NHST, at the 1.24% diagnostic risk that a healthy 

wheel is falsely diagnosed as defective. When more offline measurement results of 

defective wheels with different defect extents are available, a more appropriate choice of 

the significance level 𝛼 is probably made. 
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Table 6.5 Comparison of defective wheels identified from offline inspection and online 

monitoring (on the left rail track) 

Offline 

inspection 

results 

Wheel profile measurement system 

27th (34.6mm); 

1st (23.7mm); 

6th (18.3mm); 

Online 

monitoring 

results 

A single 

sensor 

deployed on 

the left rail 

track (e.g. 

SEN-A2) 

Frequentist 

NHST 

SSBL 27th; 

HSBL 27th; 

PSBL 27th; 

Bayesian 

PNHT 

SSBL 

27th (heavily);  

1st, 6th, 13th, 19th, 20th, 29th and 

30th (weakly); 

HSBL 

27th (heavily);  

1st, 3rd 6th, 13th, 19th, 20th, 29th 

and 30th (weakly); 

PSBL 

27th (heavily);  

1st, 6th, 19th, 20th, 29th and 30th 

(weakly); 

Bayesian 

NHST 

SSBL 27th (heavily); 

HSBL 27th (heavily); 

PSBL 27th (heavily); 

All 21 

sensors 

deployed on 

the left rail 

track  

Frequentist 

NHST 

SSBL 1st, 6th and 27th; 

HSBL 1st, 6th and 27th; 

PSBL 1st, 6th and 27th; 

Bayesian 

PNHT 

SSBL 

27th (heavily);  

1st and 6th (moderately); 

18th (mildly); 

All others (Weakly); 

HSBL 

27th (heavily);  

1st (moderately); 

4th and 18th (mildly); 

All others (weakly); 

PSBL 

27th (heavily);  

1st and 6th (mildly); 

All others excluding the 9th, 26th 

and 30th (weakly); 

Bayesian 

NHST 

SSBL 
1st and 27th (heavily);  

6th (moderately); 

HSBL 

27th (heavily);  

1st (moderately);  

6th (mildly); 

PSBL 

27th (heavily);  

1st (mildly);  

6th (weakly); 
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Table 6.6 Comparison of defective wheels identified from offline inspection and online 

monitoring (on the right rail track) 

Offline 

inspection 

results 

Wheel profile measurement system 

24th (36.0mm); 

27th (26.9mm); 

1st (21.4mm); 

6th (17.5mm); 

Online 

monitoring 

results 

A single 

sensor 

deployed on 

the left rail 

track (e.g. 

SEN-A2) 

Frequentist 

NHST 

SSBL 24th and 27th; 

HSBL 24th and 27th; 

PSBL 24th and 27th; 

Bayesian 

PNHT 

SSBL 

24th (heavily);  

27th (moderately); 

4th, 6th, 9th, 26th, 28th and 31st 

(weakly); 

HSBL 

24th (heavily);  

27th (mildly); 

4th, 6th, 9th, 13th, 26th, 28th and 

31st (weakly); 

PSBL 

24th (heavily);  

27th (mildly); 

4th, 6th, 9th, 26th, 28th and 31st 

(weakly); 

Bayesian 

NHST 

SSBL 
24th (heavily); 

27th (moderately); 

HSBL 
24th (heavily); 

27th (moderately); 

PSBL 
24th (heavily); 

27th (mildly); 

All 21 

sensors 

deployed on 

the left rail 

track  

Frequentist 

NHST 

SSBL 1st, 6th, 24th, 27th and 31st 

HSBL 1st, 6th, 24th and 27th 

PSBL 1st, 6th, 24th and 27th 

Bayesian 

PNHT 

SSBL 

24th and 27th (heavily);  

1st and 6th (moderately); 

31st (mildly); 

All others (weakly); 

HSBL 

24th (heavily);  

27th (moderately); 

1st, 6th and 31st (mildly); 

All others (weakly); 

PSBL 

24th (heavily);  

27th (moderately); 

1st, 6th and 31st (mildly); 

All others (weakly); 

(To be continued) 
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Online 

monitoring 

results 

All 21 

sensors 

deployed on 

the left rail 

track 

Bayesian 

NHST 

SSBL 

24th and 27th (heavily);  

1st (moderately); 

6th (mildly); 

31st (weakly);  

HSBL 

24th and 27th (heavily);  

1st (moderately); 

6th (mildly); 

PSBL 

24th (heavily); 

27th (moderately);  

1st (mildly); 

6th (weakly); 
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6.5 Summary 

This chapter proposes a novel unsupervised diagnostic methodology for the 

identification and quantification of damage in a population of nominally identical 

structures. The diagnostic logic is based on Bayesian null hypothesis significance testing 

which allows the unsupervised damage detection procedure to be formulated in a fully 

probabilistic inference scheme, ranging from the development of statistical reference 

model for all nominally identical undamaged structures in the baseline phase to the 

probabilistic damage diagnostics of the concerned identical structures in the inspection 

phase. To validate its performance, a set of SHM strain data acquired from an FBG-based 

track-side monitoring system are used for online wheel condition assessment. Main 

findings are as follows: (1) the proposed damage diagnostics method allows much 

diagnostic capability beyond the simple identification of damage, additionally including 

the quantification of damage extent (in terms of the intrinsic Bayes factor) and the 

evaluation of the diagnostic risk (the significance level 𝛼  that is the probability of a 

healthy structure falsely identified as damaged) it gives rise to; (2) it avoids the so-called 

Jeffreys-Lindley paradox in the current Bayesian damage diagnostic approaches based on 

Bayesian point null hypothesis testing and the attained damage assessment index is a 

normalized quantity, which no longer depends on the number of sample data to be tested; 

(3) in this case study, the diagnostic results show the choice of population feature models 
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for NISs in the baseline phase is critical to the subsequent damage identification in the 

inspection phase. The uncertainty associated with the population features of all nominally 

identical undamaged structures turns out to be underestimated in the SSBL population 

feature model, due to the pooling of multiple sources of uncertainty in SHM data, 

including measurement noise and structural variability. This, in turn, will overestimate 

the extent of damage in NISs. In serious cases, undamaged structures would be falsely 

diagnosed as damaged, giving rise to the false-positive diagnostic error. Although this 

detrimental effect can be alleviated by using the HSBL population feature model, the most 

reliable diagnostic results is given by the PSBL population feature model, in which 

multiple sources of uncertainty can be modelled separately and thus the uncertainty 

associated with the population features of all nominally identical undamaged structures 

is correctly evaluated. Though the damage detection results from SSBL proposed by 

Tipping (2001) show acceptable performance, they are indeed improved by the two 

variants of SSBL including HSBL and PSBL to some extent, as shown in Tables 6.5 and 

6.6. Moreover, this study addresses the general problem of damage detection in nominally 

identical structures by using sparse Bayesian learning approaches, which is not limited to 

the studied case in which the two sources of uncertainty in wheel condition monitoring 

data are dominated by structural variability. Therefore, it is concluded that the PSBL 

population feature model the Bayesian NHST used in the baseline and inspection phases 
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respectively are the option in the development of an unsupervised damage detection 

method for nominally identical structures. 
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Chapter 7  

Conclusions and Recommendations 

7.1 Conclusions 

This thesis has focused on the issue of damage detection in a population of nominally 

identical structures. It arises in many practical SHM applications to civil, mechanical and 

aerospace structures such as wind turbines, railway vehicles and aircraft fleets. This issue 

can be very challenging due to multiple sources of uncertainty present in SHM data 

including measurement noise in the monitoring of each individual structure (intra- 

structure uncertainty) and structural variability, for example, in the materials and/or 

manufacturing and assembling processes (inter-structure uncertainty). The case study 

conducted throughout the thesis is the monitoring campaign of railway wheels that are a 

typical example of nominally identical structures, made of the same steel material, 

manufactured with the same specification and assembled in the same train. The damage 

in railway wheels considered is geometrically manifested by out-of-roundness of wheel 

circumference such as wheel flat, shell and polygonization. A distributed optical fiber 

sensing track-side monitoring system has been deployed to online monitor, analyze and 

visualize SHM data for wheel condition assessment, with which multiple railway wheels 

or even multiple trains are made possible to be monitored in real time.  
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The major contribution of the thesis is the development of a general damage detection 

framework specifically targeted at a group of nominally identical structures rather than 

only a particular structure. Within this framework, a number of nominally identical 

structures or components are made possible to be monitored online using the same device 

and assessed simultaneously using the same diagnostic procedure. The developed damage 

detection methodology is formulated in an unsupervised learning scheme, which only 

makes use of response measurements from undamaged structures. It is composed of two 

successive phases: the baseline phase and the inspection phase. In the baseline phase, 

response measurements from multiple undamaged structures are employed to establish a 

data-driven statistical baseline model for modelling the population features of all 

nominally identical healthy structures. The statistical model is a probabilistic one such 

that multiple sources of uncertainties in SHM data can be modelled and quantified. Three 

modelling frameworks have been in turn proposed in this thesis with differences in the 

ways of dealing with multiple sources of uncertainties in the baseline model. All three 

modelling frameworks are based on sparse Bayesian learning (SBL), one of the state-of-

the-art probabilistic machine learning methodologies following a probabilistic inference 

procedure. SBL is chosen here due to the advantages as follows: (1) It uses a probabilistic 

inference technique and thereby multiple sources of uncertainties in SHM data can be 

easily incorporated in the establishment of the data-driven reference model; (2) These 
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basis functions that are not essential in modelling the undamaged population features will 

be pruned automatically such that the resulting reference model will have a good 

prediction performance not only on the training SHM data, but also the unseen ones; (3) 

Relying on the sparse baseline model, the subsequent damage diagnostics in the 

inspection phase on the concerned structures can be achieved at the earliest possible time 

(the concerned structures can be the sample structures used in the baseline phase with 

their initial state being known undamaged but current state unknown; they can be also the 

structures unused in the baseline phase, but are of the same category as the sample 

structures). 

In the inspection phase, new measurements are compared to the estimated population 

features from the data-driven reference model built in the baseline phase. Large 

discrepancies or residuals indicating possible damage in the monitored structures are 

signaled based on Bayesian null hypothesis significance testing, avoiding the limits in the 

current unsupervised damage detection approaches based on Euclidean distance, 

Mahalanobis squared-distance, classical null hypothesis significance testing or Bayesian 

point null hypothesis testing. Damage extent in the monitored group structures can be 

evaluated quantitatively and qualitatively in a probabilistic sense. 

Chapter 3 introduced the first modelling framework simply by pooling the two types 

of uncertainties in SHM data such that standard sparse Bayesian learning (SSBL) can be 
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implemented to model the population features of all undamaged identical structures, with 

model parameters inferred from the Type-II maximum likelihood estimate. Chapter 4 

presented the second modelling framework based on heteroscedastic sparse Bayesian 

learning (HSBL), an extension to SSBL in order to address the heteroscedasticity in 

training data, resulting from the mixed effects of two types of uncertainties. The HSBL 

consists of two modelling procedures, with the one for estimating the mean population 

features and the other for updating the associated uncertainty of it. Chapter 5 illustrated 

the third modelling framework in which two sources of uncertainties in SHM data are 

modelled separately using panel sparse Bayesian learning (PSBL), another extension to 

SSBL. Chapter 6 interpreted important limits in the current most popular unsupervised 

approaches for structural damage detection, followed by a novel diagnostic procedure 

based on Bayesian null hypothesis significance testing.  

The major findings are as follows: (1) The first modelling framework is the simplest 

and the most computationally efficient, whereas its performance can be the worst in 

modelling the undamaged population features because different sources of uncertainties 

in SHM data are simply pooled together in SSBL and thus the uncertainty associated with 

the population features is often underestimated. Another adverse impact of the pooled 

uncertainties is that it gives rise to the heteroscedastic training data, which cannot be 

addressed in SSBL. Although the heteroscedasticity in the training data can be settled in 
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the aid of PSBL at the price of twice the computational effort of SSBL, the second 

modelling framework is still likely to underestimate the uncertainty of the population 

features. The third modelling framework is the most computationally intensive as many 

sub-models are required to recover each individual structural behavior. However, it can 

be the most reliable as different sources of uncertainties can be separately modeled in 

PSBL, which is most consistent with the information that the SHM data can deliver. More 

importantly, the quantification of different sources of uncertainties in the baseline model 

can be tracked and the respective contribution of them to the posterior uncertainty of the 

population features can be quantified. This essential merit can never be achieved in the 

first two modelling frameworks; (2) Regarding the impact on structural damage detection, 

the first two modelling frameworks may cause biased diagnostic results as the uncertainty 

in the healthy population features is underestimated and thus healthy structures are likely 

to be wrongly judged as damaged. Therefore, it is concluded that the third modelling 

framework is the best option in the establishment of a data-driven baseline model for 

nominally identical structures undamaged; (3) The Bayesian null hypothesis significance 

testing-based diagnostic logic makes it possible structural damage detection achieved in 

both qualitative and quantitative manners, which cannot be obtained in the current 

unsupervised approaches based on distance or classical significance test. In the meantime, 

it avoids the so-called Jeffrey-Lindely’s paradox in Bayesian point null hypothesis testing 
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that has had popular use in the unsupervised damage detection. It should be noted, 

however, that the significance level in the newly developed diagnostic approach has to be 

carefully determined and it should be adjusted to the value that is consistent with SHM 

data from samples of damaged structures if available. 

7.2 Recommendations for Further Research 

The thesis has laid a foundation on the investigation of damage detection in a 

population of nominally identical structures based on unsupervised statistical machine 

learning approaches, to be specific, sparse Bayesian learnings. Yet, various future works 

can be still pursued in the areas: (1) Despite the fact that the kernel-based sparse Bayesian 

learnings are computationally competitive and robust in establishing a data-driven 

population reference model in the baseline phase, its sparsity and performance heavily 

depend on the selection of the appropriate kernel functions. Typically, this can be 

achieved by the aid of the model quality indices such as RMSR, MSLL and 𝒦 employed 

in the thesis or alternatively a cross-validation procedure. A preferable methodology is to 

automatically select kernels during the model learning process (Tzikas et al. 2009); (2) 

The unknown parameters associated with the three SBL-based population reference 

models are all inferenced from the Type-II maximum likelihood estimation (Tipping 2001 

and 2003). This might open up the possibility of overfitting, especially if there are many 
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hyperparameters in SBL-based population models. A more robust parameter estimation 

technique is to use a fully Bayesian inference framework such as MCMC sampling (Gilks 

et al. 1995) or variational inference methods (Bishop and Tipping 2000, Shutin et al. 

2011), but it typically requires additional computational efforts; (3) In the practice of 

SHM, the nominally identical structures can be in service in the changing operational and 

environmental conditions rather than some certain condition. In the case study throughout 

the thesis, for example, the railway train can run at different velocities corresponding to 

a changing operational condition. The changing operational condition can produce the 

third source of uncertainty in the recorded SHM data and consequently it can cause a 

serious detrimental effect on damage detection performance due to the fact that the change 

in the structural response characteristics may be so significant as to nearly mask that 

caused by structural damage (Vamvoudakis-Stefanou et al. 2018, Poulimenos and 

Sakellariou 2019). Therefore, a considerable body of future research should be devoted 

to overcoming or alleviating this problem posed by the changing operational and 

environmental conditions in the damage detection in a population of nominally identical 

structures; (4) In the thesis, the structures of concern are presumed to be time-invariant 

and future research may include time-variant structures. 
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