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Abstract 

Dissecting the computational components of the explore-exploit dilemma is critical to our 

understanding of how the mind works. A core component of the dilemma is understanding the 

contexts where option informativeness is either appetitive or irrelevant. In the present thesis, this 

computational problem was investigated using a novel multi-attribute bandit task and Bayesian 

model analyses, observing two critical results. First, a behavioral task was used to probe whether 

informativeness can defined as a quantifiable variable, as opposed to paradigms in the literature 

that use a categorical operational definition. Indeed, subjects considered this quantifiable 

definition of informativeness alongside value. Specifically, analyzing the behavioral experiment 

with traditional statistics demonstrated signature patterns of exploratory behavior that was 

consistent with the literature. Second, Bayesian modeling allowed further investigation of 

potential hypotheses underlying these patterns of exploration – namely, the modulatory role of 

uncertainty in the deliberation of value and informativeness. There are further questions about 

informativeness to explore, but this thesis presents a means of investigating and exploring this 

critical construct on more mathematical grounds.  

 

Keywords: value-based decision making, informativeness, learning, computational models 
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Chapter 1 – Literature Review 

Decision neuroscientists endeavor to understand how brains prefer. One contemporary 

method to accomplish this is by testing algorithmic theories of cognition and behavior to 

delineate the variable underpinnings of preferential choice (Chau et al., 2018; Farrell & 

Lewandowski, 2019; Glimcher, 2014; Kriegeskorte and Douglas, 2018; Wilson & Collins, 2019). 

Some relevant examples include sequential sampling during option valuation (Hunt et al., 2018; 

Maier et al., 2020; Shenhav et al., 2018), mutual inhibition during option comparison (Chau et 

al., 2014; Hunt et al., 2014; Wang, 2002), and precision weighting to depend more on reliable 

information to support our beliefs (Cao et al., 2019; Echeveste et al., 2020; Ernst & Banks, 2002; 

Meyniel & Dehaene, 2017). Research that furthers efforts to explain and predict value-based 

choice examine the extent that higher-order cognitive processes control beliefs and behavior 

(Collins & Frank, 2013; Cools & D’Esposito, 2011; Frank & Fossella, 2011; Kriegeskorte and 

Douglas, 2018; Lee et al., 2012; Lieder et al., 2018; Ott & Nieder, 2019; Radulescu et al., 2019). 

The higher-order process investigated here is the weight that perceived informativeness has on 

preferential choice. To elaborate the research question: do humans deliberate between 

informativeness and value in multi-attribute environments? If so, can this behavior be expressed 

algorithmically? The present thesis investigates information-seeking and value-based behavior 

by subjecting humans to an online, multi-attribute value-based decision-making and learning 

task. Further, it tests computational models based on Bayes’ rule to approximate the algorithms 

underlying decision making in the task. Bayes’ theorem is commonly applied in the decision 

neuroscience literature to compare human behavior with optimal inference-making under 

uncertainty (Bach & Dolan, 2012; Farrell & Lewandowski, 2018; Griffiths et al., 2012; 

Kriegeskorte & Douglas, 2018; O’Reilly, 2013; O’Reilly & Mars, 2015), but the extent that 
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information-based decision making occurs in multi-attribute environments is sparsely explored. 

The following sub-chapter briefly describes the theoretical and methodological principles 

underlying this present thesis. This is followed by sub-chapters on value-based decision making, 

learning, multi-attribute environments, and informativeness before concluding with a summary 

on the research gap and questions. 

1.1. The thesis and the approach 

Three principles from cognitive neuroscience are assumed in this thesis and guide its 

approach towards the research question about the extent that option informativeness influences 

preferential choice. The first is the computational theory of the human mind. The theory assumes 

the brain is an information-processing device wherein neurons transform sensory information 

into adaptive cognitive and motor behavior (Marr, 1982; Pinker, 2009). The second principle is a 

consequence of the first. Information-processing is algorithmic in nature, wherein processing 

events occur systematically. As such, these processes can be represented mathematically. Often 

termed computational models, these formularizations can be tested with, for examples, 

psychophysics or with measures of neuronal state and activity (Forstmann et al., 2011; 

Kriegeskorte and Douglas, 2018; Marr, 1982; O’Reilly and Mars, 2011; Passingham & Rowe, 

2014). The third principle follows the first and second, wherein a top-down approach, using 

computational models to describe higher-order cognitive processes, contributes and advances to 

our knowledge of mental functions (Chau et al., 2018; Kriegeskorte and Douglas, 2018; Marr, 

1982; Passingham & Rowe, 2014). These principles underlie the approach of this thesis. As such, 

these principles are elaborated on next. 

The first is a classic theoretical framework explicitly or implicitly assumed in the 

cognitive neuroscience literature (Edelman, 2008; Kriegeskorte and Douglas, 2018; Marr, 1982; 
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O’Reilly and Mars, 2011; Parr et al., 2018; Pinker, 2009). Our ability to perceive the world, 

identifying its colors and depths, requires astonishing engineering and computational feats that 

feel effortless but are mathematical ill-posed problems (Edelman, 2008; Marr, 1982; Pinker, 

2009). The computational theory of the human mind proposes that brains perform these 

astonishing feats, solving ill-posed problems, by making computational assumptions and 

efficiently using information received from the senses to infer the external environment e.g., 

combining information from multiple senses to infer the state of the environment (Cao et al., 

2019; Edelman, 2008; Ernst & Banks, 2002; Meyniel & Dahaene, 2017; O’Reilly & Mars, 2015; 

Pinker, 2009). An intriguing consequence of this theory is that we do not experience the world 

but instead experience our brain’s inferences or model about our environment, i.e., we are living 

in the world’s shadow (Pinker, 2009). This may explain our surprising susceptibility to optical 

illusions and behavioral oddities that can be clarified by flaws in algorithmically representation 

(Cohen et al., 2016; Martens & Wyble, 2010; Pinker, 2009; Watanabe et al., 2018). The theory of 

an algorithmic brain was made more evident to computer scientists who endeavored to make 

perceiving machines but found perception a complex problem. Marr (1982) posited that this 

inspired scientists to treat the brain as an information-processing device in order to understand 

and engineer perceiving and cognitive machines. Marr proposed three levels for understanding 

an information-processing device: a computational level describing the purpose of turning 

informative-inputs to outputs; a representation and algorithmic level describing how inputs are 

stored and how algorithmic processes transform inputs to outputs; and a hardware level 

describing the physical implementation of the second level. These laws have made the 

investigation on how the brain works tractable, evidenced by the profundity of the cognitive 

neuroscience literature (Cohen et al., 2016; D’Esposito & Postle, 2015; Edelman, 2008; 
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Forstmann et al., 2011; Kriegeskorte and Douglas, 2018; Ma et al., 2014; Marr, 1982; O’Reilly et 

al., 2012; Passingham & Wise, 2012; Pinker, 2009; Watabe-Uchida et al., 2017).  

The second principle posits that computational models, akin to algorithmic hypotheses, 

identify the variables underlying human behavior and cognition (Farrell & Lewandowski, 2018; 

Forstmann et al., 2011; Kriegeskorte & Douglas, 2018; Lee, 2013; O’Reilly et al., 2011; Marr, 

1982; Radulescu et al., 2019; Rangel & Clithero, 2014; Rescorla & Wagner, 1972; Wilson & 

Collins, 2019). In their recent overview on this topic, Wilson and Collins (2019) discussed four 

common applications of computational modeling in psychology and neuroscience: simulation, 

parameter fitting, model comparison, and latent variable inference. Together, these applications 

offer a way to examine latent cognitive and behavioral processes and patterns. To elaborate a bit 

further, analyses of complex systems like the brain benefit from sophisticated methods that can 

capture subtle but dynamic components of an information processing device beyond what 

descriptive statistics and linear models can discover. The present thesis approximates 

information-processing components of decision making by subjecting human subjects to a 

controlled, multi-attribute learning and choice task. Then, human choice patterns are compared 

with variants of a computerized chooser, i.e., Bayesian models, whose algorithm and statistical 

inferences about the environment is known. These variants are then compared, with the winning 

algorithm determined to be the best algorithmic hypothesis of human behavior. Ultimately, these 

algorithms can be used to search for brain regions or neuromodulator systems that correspond 

with the parameters of the winning models. This is a typical workflow in the cognitive 

neuroscience literature and exemplifies the practicality of the computational theory of mind and 

computational modeling (Busemeyer et al., 2019; Chau et al., 2018; Edelman, 2008; Farrell & 

Lewandowski, 2018; Forstmann et al., 2011; Griffiths et al., 2012; Marr, 1982; O’Reilly & Mars, 
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2015; Parr et al., 2018; Passingham & Rowe, 2014; Passingham & Wise, 2012; Pinker, 2009; 

Wilson & Collins, 2019). This way of resolving how the brain works is powerful and has been 

argued to be superior for research compared to invasive neuroscience methods thus far (Niv, 

Forthcoming). 

Kriegeskorte and Douglas (2018) reviewed disparate literatures investigating how the 

brain works, findings complementary methods and endorsed collaboration between cognitive 

science, computational neuroscience, and artificial intelligence. To briefly summarize, cognitive 

science investigates the complex, higher-order cognitive processed with robust and replicable 

findings (Zwaan et al., 2018). Higher-order cognitive processes include cognitive control, which 

be examined using computational models, as described above, but suffer from too large a scope, 

i.e., even the best fitting model is still the product of a myriad of simpler algorithms 

implemented by neurons that are outside the scope of behavioral and neuroimaging techniques. 

To ascertain these simpler algorithms, computational neuroscience investigates neuronal 

implementations, but suffer from too small a scope, i.e., these models describe simple algorithms 

but do not put these together to produce the sophisticated higher-order cognitive processes. To do 

so, artificial intelligence applies these simple algorithms to simulate neuronally feasible models 

to develop computerized intelligence (Kriegeskorte & Douglas, 2018). The present thesis has a 

place in this collaboration as the hand of cognitive science, because this thesis poses human 

subjects with a constrained computerized environment so that their cognitive processes can be 

examined with computational models (Kriegeskorte & Douglas, 2018; Marr, 1982; Niv, 

Forthcoming; Pinker, 2009). Submitting humans or animals to such environments allow 

cognitive neuroscientists to investigate a specified mental construct, applied in a broad range of 

fields including perception, neuroeconomics, and the modern study of human phenomenology 
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(Cohen et al., 2016; Fiedler et al., 2019; Lau & Rosenthal, 2011). More specifically, these tightly 

controlled and complex experiments allow cognitive scientists to identify the algorithmic 

problems resolved by behavior. To paraphrase Kriegeskorte and Douglas (2018) and Marr 

(1982), we cannot understand what neurons are doing without understanding the problems brains 

must solve.  

In summary, the present work falls under the scope of cognitive neuroscience. It utilizes 

its theories about the brain to develop behavioral experiment and model analysis to investigate 

human decision making in multi-attribute environments. In addition to value, the algorithmic 

nature of information-seeking and its influence on preferential choice are examined. To belabor 

the research question: does human preferential choice deliberate between information and value 

– specifically, is informativeness a quantitative component of the valuation process?  The 

following sub-chapters discuss the literature on value-based decision making and learning about 

simple and multi-attribute options. 

1.2. Value-based decision making 

Decision neuroscience literature is divided into two psychological constructs: preferential 

and perceptual decision making, with the former also referred to as value-based or subjective 

decision making (Glimcher, 2014). This sub-chapter highlights the differences between these 

constructs to highlight the core properties of value-based decision making. Value-based decision 

making is the process of selecting options that are preferred because they satisfy the chooser’s 

goals. In real life, it involves selecting between options with various idiosyncratic values. Given 

this, it is common to define optimal or rational value-base decision-making as behavior that 

always or more likely selects the option with the highest idiosyncratic values (Busemeyer et al., 

2019; Chau et al., 2018; Glimcher, 2014; Lee, 2013; Lee et al., 2012; O’Doherty et al. 2017; 
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O’Reilly, 2013; Ott & Nieder, 2019). To improve choice predictions, decision neuroscientists 

investigate the algorithms and neural source of subjective valuations and comparison. This is 

critical as healthy human decision making cannot be perfectly predicted even when options are 

objectively and parametrically defined (Chau et al., 2014; Gluth et al., 2018; Hunt et al., 2014; 

Jamali et al., 2019) or subjective values are obtained before the choice task (Fujiwara et al., 

2018; Gluth et al., 2020; Polanía et al., 2019; Voigt et al., 2019). Subjectivity distinguishes 

preferential from perceptual decision making, wherein perceptual decisions instead depend on 

the quality of sensory evidence that the brain uses to categorize items (Chalk et al., 2010; Cohen 

et al., 2016; Kohl et al., 2018). Put another way, preferential decisions depend more on an 

internal valuation mechanism of evidence whereas perceptual decision depend more on external 

sensory evidence (Glimcher, 2014; Passingham & Wise, 2012). Clinical cases further 

demonstrate the qualitative difference between preference and perception. For instance, drug 

addiction is thought to be the result of a suboptimal or irrational valuation mechanism (Haber & 

Behrens, 2014; Lee, 2013; Stahl, 2013). Patients may be aware of the aversiveness of their 

abused substance, but unlike their healthy counterparts, these beliefs do not outweigh the 

anticipated pleasure from consuming the substance (Calabresi et al., 2007; Cools & Robbins, 

2004; Crocket & Fehr, 2014; Dolan & Dayan, 2013; Haber & Behrens, 2014; Lee, 2013; Stahl, 

2013). Conversely, clinical examples of perceptual decision deficits abound in psychology. A 

classic case involves patient DF who suffered lesions to her lateral occipital cortex, leaving her 

with an inability to identify objects in her view. Interestingly, she is able to make appropriate 

motor decisions in response to those objects (Goodale et al., 1991; Whitwell et al., 2014). These 

clinical cases of preferential and perceptual decision-making highlight a qualitative difference 

between these constructs: the former is dependent on goals and beliefs to guide decisions; the 
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latter is dependent on sensory evidence to categorize (Dutilh & Rieskamp, 2016; Passingham & 

Wise, 2012). Further evidence distinguishing preferential and perceptual decision making is 

found in neuronal activity studies (Dutilh & Rieskamp, 2016; Jamali et al., 2019; Passingham & 

Wise, 2012). For instance, Jamali and colleagues (2019) performed a rare single-unit recording 

experiment on human dorsolateral prefrontal cortex (dlPFC), a brain region associated with 

cognitive control during decision making, working memory, and attention (Chau et al., 2018; 

Collins & Frank, 2013; Cools & D’Esposito, 2011; D’Esposito & Postle, 2015; Frank et al., 

2009; Meyer-Lindenberg et al., 2005; Ott & Nieder, 2019; Radulescu et al., 2019; Seamans & 

Yang, 2004; Williams et al., 1995). Jamali and colleagues observed that a subset of dlPFC 

neurons displayed activity patterns that correlated with subjective-decision patterns of patient. 

Critically, this relationship between dlPFC neurons and decisions was related to subjective but 

not perceptual decision making (Jamali et al., 2019).   

To summarize, decision neuroscience distinguishes preferential and perceptual decision 

making, implicating separate neural processes and behavioral outcomes. This thesis examines 

value-based decision making, with this sub-chapter focused on the literature of how values are 

learned and used to make rational decisions (Busemeyer et al., 2019; Chau et al., 2018; Daw & 

Tobler, 2014; Dolan & Dayan, 2013; Fiedler et al., 2019; Glimcher, 2014; Lee, 2013; Lee et al., 

2012; Mackintosh, 1975; O’Doherty et al. 2017; O’Reilly, 2013; Padoa-Schioppa, 2011; Pearce 

& Hall, 1980; Rangel & Clithero, 2014; Rescorla & Wagner, 1972; Watabe-Uchida et al., 2017). 

The decision processes seem to occur in parallel, such that option valuation occurs while options 

are compared with a response possible upon probing (Busemeyer et al., 2019; Rangel & Clithero, 

2014). An easy way to study these processes to observe the deliberation between two, clearly 

defined options. These simple choices allow psychologist, neuroscientists, and economist to 
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investigate the processes and patterns underlying preference (Fiedler et al., 2019; Rangel & 

Clithero, 2014). Findings by studies implementing simple-choice tasks describe a neural system 

composed of the following processes: an accumulative process for option valuation; a 

competitive inhibitory process for comparison; and a probabilistic process for responses. Two 

critical points are necessary before these processes are described. First, the literature suggests 

these stages do not occur sequentially or independently but occur in a distributed, parallel, and 

hierarchical manner (Hare et al., 2010; Hunt et al., 2014; Sarafyazd & Jazayeri, 2019). Second, 

this sub-chapter on value-based decision making assumes value learning has already occurred 

but values must be decoded and integrated during valuation. Learning is discussed in the 

following sub-chapter. 

1.2.1. Valuation: an accumulative process  

Evidence from the decision neurosciences suggest that values begin developing 

immediately after options are presented (Busemeyer et al., 2019; Fiedler et al., 2019; Glimcher, 

2014; Lee et al., 2012; Padoa-Schioppa, 2011; Rangel & Clithero, 2014; Ratcliff & McKoon, 

2008). The principle is critical in many computational models of decision making, such as 

sequential sampling theories (Busemeyer et al., 2019; Ratcliff & McKoon, 2008). These models 

propose that evidence for an option’s value accumulates up-to some threshold, ultimately 

producing a decision or belief (Busemeyer et al., 2019; Gluth et al., 2020; Hunt et al., 2018; 

Juechems et al., 2019; Krajbich et al., 2011; Kohl et al., 2018; Shenhav et al., 2018). To take a 

recent example, evidence that sequential sampling processes occur in the brain were observed by 

Hunt and colleagues (2018). Using single-unit recording on monkeys, the authors measured 

neuronal activity in multiple frontal cortical regions, notably the anterior cingulate cortex (ACC), 

while these monkeys underwent an attention-controlled decision-making task. ACC is implicated 



INFORMATION AND DECISION MAKING 15 

in several functional roles of value-based decision making and learning including, broadly 

speaking, uncertainty and belief updating about posed options (Behrens et al., 2007; Busemeyer 

et al., 2019; Chau et al., 2018; Fouragnan et al., 2019; Haber & Behrens, 2014; Hunt et al., 2018; 

Juechems et al., 2019; Muller et al., 2019; Shenhav et al., 2018). Hunt and colleagues steered 

monkey attention by controlling the sequence of required eye fixations onto specific attributes of 

the options displayed. Thereafter, monkeys were free to sample attributes before decision 

making. Controlling saccades this way had the effect of controlling the sequence of information 

sampling because, as studies show (Gluth et al., 2020; Krajbich et al., 2011), the rate that value 

information for an option accumulates faster with greater attention, with gaze serving as an 

approximation to attention (Fiedler et al., 2019; Glimcher, 2014). The authors observed that ACC 

activity was the strongest predictor of valuation beliefs relative to the current best option, i.e., 

whether the monkey hypothesized that the current best option was supported or rejected by new 

information through saccades. The finding reaffirms sequential sampling theories because 

neurons representing beliefs about values were updated with evidence, characteristic of 

accumulation-to-threshold processes and replicating human brain studies implicating the frontal 

cortices with valuation processes (Busemeyer et al., 2019; Chau et al., 2018; Haber & Behrens, 

2014; Haber & Knutson, 2010; Passingham & Wise, 2012).  

In summary, the valuation process begins at choice onset: once options are presented, the 

brain begins collecting information about value. Further, the process is accumulative, such that 

value develops as a function of attention time. Evidence for ACC and the effect of new evidence 

on behavior and neurons was described, but this is not to say the ACC is an independent 

processing unit for belief updating – the lateral intraparietal region also has an extensive 

literature implicating it to evidence accumulation (Beck et al., 2008; Dorris & Glimcher, 2004; 
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Lee et al., 2012; Louie et al., 2011; Passingham & Wise, 2012; Wang, 2002). Indeed, complex 

cognitive processes like valuation are highly distributed in the brain. To understand this process, 

it is necessary to identify the algorithms implemented by the brain, as opposed to only localizing 

neural correlates (Marr, 1982; Passingham & Rowe, 2014). This is true for the comparison 

process. In the same study, Hunt and colleagues (2018) measured the neuronal activity of the 

orbitofrontal cortex (OFC), finding that only monkey OFC neurons encoded dynamic value 

comparison as opposed to valuation. That is, comparison was specific to monkey OFC and was 

not observed in the other brain regions the authors investigated, i.e., ACC nor dlPFC (Hunt et al., 

2018).  

1.2.2. Comparison: an inhibitory process 

It is worth repeating that although valuation and comparison are described separately, 

evidence suggests these processes occur in a parallel, hierarchical, and distributed manner. Put 

succinctly: the evidence suggests that brains prefer while they evaluate. As mentioned above, 

Hunt and colleagues (2018) observed comparison signals in monkey OFC, consistent with the 

decision neuroscience literature pointing to the role of human ventromedial prefrontal cortex 

(vmPFC) in value comparison (Bartra et al., 2013; Chau et al., 2018; Chau et al., 2014; Chau et 

al., 2020; Glimcher, 2014; Haber & Behrens, 2014; Haber & Knutson, 2010; Jocham et al., 2012; 

Lee, 2013; Lee et al., 2012; Levy & Glimcher, 2011; Rangel & Clithero, 2014; Rouault et al., 

2019; Shiner et al., 2012; Voigt et al., 2019; Walton et al., 2015). Whereas value development 

was described as a sequential and accumulative process, preference development is described 

here as a competitive and inhibitory process (Chau et al., 2014; Fouragnan et al., 2019; Hunt et 

al., 2018; Wang, 2002). Two theories about value comparison are described next: the first 

presents an empirically supported theory that demonstrates calling value comparison an 
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inhibitory process as well as being an evidence supporting research into the brain as an 

information processing device; and the second feature explains how value comparison between 

different domains of value is possible.  

The work by Chau and colleagues (2014) is notable for predicting behavior and neural 

activity with a modified biophysical model (Passingham & Rowe, 2014). The model originally 

was designed by Wang (2002) as an inhibitory value comparison process termed mutual 

inhibition (Figure 1a). During simulations, a high valued option and low valued option were 

represented by a notional pool of neurons (respectively, ‘PHV’ and ‘PLV’). The biophysical model 

posits that each pool of neurons receives excitatory input in proportion to the value of the option 

each pool represents. Each pool then delivers excitatory input to a shared, inhibitory pool (‘Pi’) 

that simultaneously feeds back inhibitory inputs to each pool. The result is mutual inhibition, 

wherein each pool, ‘PHV’ and ‘PLV’, excites an inhibitory pool that in turn inhibits the original 

pool and the opposing pool of neurons (i.e., via ‘PHV’ inhibits ‘PLV’ and vice versa via ‘Pi’; 

Figure 1a). In addition to mediating this competition, this inhibitory component was included to 

control the excitation of the neural pools in the network (Brunel & Wang, 2001). ‘PHV’ receives 

greater excitatory inputs because it represents a higher valued option. It is therefore better suited 

to withstand inhibitory inputs from ‘Pi’ compared to ‘PLV’, which receives less excitatory input. 

Consequently, ‘PHV’  has a higher signal-to-noise ratio than ‘PLV’, granting these neurons a 

greater chance be selected for the decision process (Chau et al., 2014). Note the result of this 

competition only makes a decision more likely, implying the lack of determinism in decision 

making. There is stochasticity in decision making even when decisions are easy, e.g., when HV – 

LV is large. This is discussed in the next sub-chapter. Here, it suffices to point-out how value 
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comparison is modeled in the brain as an inhibitory process. The result is a biophysical model of 

the competitive, comparison process termed mutual inhibition (Chau et al., 2014; Wang, 2002). 

Chau and colleagues (2014) extended this model of value comparison to observe the 

consequences of a third, distracting option (Figure 1b). This model predicted a nonintuitive 

effect of the value of distracting option D, with representative neuronal pool ‘PD’, on the 

population activities of ‘PHV’ and ‘PLV’. Specifically, because of the influence of ‘D’ on the 

inhibitory interneuron pool, the model predicted diminished value comparison accuracy with 

lower values of ‘D’. First, the authors confirmed that it was easier for subjects to choose ‘HV’ 

when its value was greater than ‘LV’. Next, the authors observed that it was harder to choose 

‘HV’ when the distracting option ‘D’ was smaller (Chau et al., 2014). Their biophysical model 

predicted these results (Figure 1b): a smaller distractor value resulted in decreased interneuron 

inhibition in the model, followed by decreased control of the signal-to-noise ratio when the 

network continued to run the competition between ‘PHV’ and ‘PLV’ when the distractor option was 

revealed as unavailable (see Brunel & Wang, 2001, for a discussion on the inclusion of an 

inhibitory interneuron component in the recurrent network model). Chau and colleagues also 

observed neural correlates of the value comparison in the vmPFC and medial intraparietal sulcus 

using functional magnetic resonance imaging (fMRI). Notably, vmPFC signals were also weaker 

when ‘D’ was lower, and the signal strength scaled with subjective decision accuracy of the 

human subjects (Chau et al., 2014). The finding that the vmPFC is implicated in value 

comparison is consistent with the literature (Bartra et al., 2013; Glimcher, 2014; Haber & 

Behrens, 2014; Haber & Knutson, 2010). The result above suggests that  lapses in healthy 

decision making may be due to algorithmic limitations of a neurobiological implementation of 

value comparison (Chau et al., 2014).  
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The second but critical feature of value comparison in the brain is the concept of a 

common neural currency (Bartra et al., 2013; Levy & Glimcher, 2011; Rangel & Clithero, 2014). 

Humans can deliberate between options that are categorically different, such as choosing to keep 

writing instead of going out for an egg tart. Empirical evidence supporting the concept of a 

common neural currency was observed by Levy and Glimcher (2011). The authors tested 

subjects on a binary decision-making task where options were either money or food. The authors 

found distinct neural mechanisms for the valuation of money versus food: money was processed 

in the posterior cingulate cortex whereas food preference was processed in the hypothalamus. 

Levy and Glimcher next tested subjects on a version of the task where money was compared 

with food on each trial, allowing the authors to estimate how much money a certain amount of 

food is worth to each subject. The authors observed that the vmPFC represented these scaled 

valuations, further implicating the region with using a common neural currency that allowed 

human subjects to make decisions comparing categorically different options (Levy & Glimcher, 

Figure 1. A biophysical model of value comparison. The value of the high-valued option is referred 
to as ‘HV’ and the alternative, low-valued option is referred to as ‘LV’. (a) A feasible model for 
comparison of two options with an inhibitory mediator. (b) An extension of Wang’s (2002) model to 
include a third option. The figure is modified and adapted from Chau and colleagues (2014). 

a. b. 
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2011). Findings such as these and Chau and colleagues (2014) implicate the vmPFC as critical in 

the algorithms involving value comparison (Bartra et al., 2013; Behrens et al., 2007; Chau et al., 

2018; Chau et al., 2014; Chau et al., 2020; Glimcher, 2014; Haber & Behrens, 2014; Haber & 

Knutson, 2010; Jocham et al., 2012; Lee, 2013; Lee et al., 2012; Levy & Glimcher, 2011; Muller 

et al., 2019; Padoa-Schioppa, 2011; Rangel & Clithero, 2014; Rouault et al., 2019; Shiner et al., 

2012; Voigt et al., 2019; Walton et al., 2015). With options evaluated and compared, preferences 

are developed. Then, decision makers can respond in accordance with these preferences. Though 

the quality of this accordance is not straightforward. 

1.2.3. Response: a probabilistic process 

If one were to form an opinion about human decision making by examining 

computational models, decision making would look like a probabilistically process. Here, 

valuation functions simply influence decision probabilities, e.g., high value options have a higher 

probability of being chosen (Farrell & Lewandowski, 2018; Lee et al., 2012; Wilson & Collins, 

2019). To predict human choice behavior, studies use statistical tools to estimate the probability 

of a choice. Notably, these statistical tools artificially introduce noise in order match human 

behavior (Ballard et al., 2018; Chau et al., 2015; Collins & Frank, 2012; Hunt et al., 2012; Leong 

et al., 2017; Niv et al., 2015; Shiner et al., 2012). The softmax function one such example, often 

used as the chooser for many types of computational models: 

𝑝!(𝐸𝑉!) =
exp *𝐸𝑉!𝑇 ,

∑ exp	(𝐸𝑉"𝑇 )#
"$%

	 

value an option is weighed by a subjective temperature parameter, T. This parameter is used to 

estimate the level of stochasticity of the chooser, such that small values of T indicate precise 

decision and greater values indicate noisy decisions (Wilson & Collins, 2019), e.g., when T is 

[Equation 1] 
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small, the expected value of an option’s is more consequential, such that a greater expected value 

produces a greater probability of being chosen. Behaviorally, if a chooser can successfully 

discriminate between the choice values and accurately chooses high value options, then the 

chooser would be described by a small temperature, T. Conversely, temperature is large when 

decisions are random and indiscriminate of value. In this manner, the softmax function is an 

algorithmic expression for determining a chooser’s sensitive to value and the results probability 

they would choose according to values. A critical caveat is that the cause of this noise is typically 

not discussed. A recent paper from Polanía and colleagues (2019) discussed this issue and 

described the potential source of decision noise observed in value-based decision making. Their 

behavioral evidence suggested that noise, introduced in the conversion of comparison to 

response processes, is a by-product of Bayesian encoding and decoding of value representations 

by the brain. This would not be surprising as many features of the aforementioned decision 

processes are approximated by Bayesian models (Griffiths et al., 2012), such as the integration of 

evidence in accordance to precision during perception (Echeveste et al., 2020; Meyniel & 

Dehaene, 2017), findings from studies that manipulate information in the environment in way 

that targets the prior or likelihood components of a Bayesian observer and accordingly biasing 

human decisions (Chalk et al., 2010; Ting et al., 2015), and studies finding neural and 

neuromodulator correlates of uncertainty estimated by Bayesian inference (Muller et al., 2019). 

What is critical from these studies is that probabilistic algorithms are used to described the 

response process during decision making: responses appear to be a probabilistic process.  

1.3. Learning 

 Studies on value learning investigate how options and outcomes become associated. A 

well-accepted and intuitive theory is that value associations are the consequence of experience 
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and transfer (Daw & Tobler, 2014; Lee et al., 2012; Radulescu et al., 2019; Rangel & Clithero, 

2014;). In this view, values are learned through trial-and error, wherein a chooser observes the 

consequences of choosing some option and then assigns value to the relevant attributes of that 

option. In the present thesis, the algorithmic hypothesis that estimates a developing value in 

accordance with trial-to-trial observations is called a value functions (Lee, 2013; Lee et al., 

2012). Two types of value functions discussed in this sub-chapter are Rescorla-Wagner learning 

and Bayesian inference. 

The Rescorla-Wagner model captures iterative learning of animals and humans with 

successful simulations of behavior (Le Pelley et al., 2016; Rescorla & Wagner, 1972) 

neurobiological evidence of its implementation in the brain (Chau et al., 2018; Frank & Fossella, 

2011; Lee et al., 2012; Radulescu et al., 2019; Schultz et al., 1997; Watabe-Uchida et al., 2017). 

Even so, the learning model has critical limitations: it lacks a clear measure of certainty and the 

model struggles to learn if options are not specifically defined (Radulescu et al., 2019; Sutton & 

Barto, 2018). This problem has led new work studying how the brain assesses task structures to 

associate with outcomes (Collins & Frank, 2013; Radulescu et al., 2019).  It is discussed here to 

present iterative learning. Value functions can also be Bayesian, capable of learning by trial-and-

error while further estimating the level of uncertainty in its estimates (Bach & Dolan, 2012; 

Courville et al., 2006; Griffiths et al., 2010; Kriegeskorte & Douglas, 2018; O’Reilly, 2013; 

Muller et al., 2019). Though Bayesian models have neurobiological support (Ballard et al., 2018; 

Beck et al., 2008; Behrens et al., 2007; Chalk et al., 2010; Meyniel & Dahaene, 2017; Muller et 

al., 2019; O’Reilly et al., 2012; Ting et al., 2015) it is controversial to claim that brain deploys 

Bayesian inference or something approximating its model components computations (Bowers & 
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Davis, 2012a/2012b). Learning is discussed in this thesis by describing the literature on the 

aforementioned learning algorithms. 

1.3.1. By trial-and-error 

A simple example of iterative learning, or learning by trial-and-error, is classical 

conditioning, wherein learning occurs when an initially neutral stimulus, e.g., a light or sound, is 

followed by a reward that elicits an unconditioned response, e.g., food can be a reward that 

elicits salivation. If the pairing between the neutral stimulus occurs enough times, the stimulus 

and food become associated, invoking(Mackintosh, 1975; Rescorla & Wagner, 1972; Pearce & 

Hall, 1980). This stimulus-reward trial-to-trial association is thought to occur arithmetically in 

the brain, with the amount of reward expected, the expected value, updated iteratively by a 

reward prediction error (RPE) by the dopaminergic system (Watabe-Uchida et al., 2017).  

The RPE is simple formulated as (Rescorla & Wagner, 1975): 

𝑅𝑃𝐸 = 𝛼 ∗	(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 

In words, the RPE is the contrast between the outcome received after selecting an option with the 

outcome that was expected. This difference is subsequently weighted by a learning rate, 𝛼, which 

determines the extent that the resultant RPE updates our expectations in the future. It can take 

values between 0 and 1. A value closer to 1 describes a fast and adaptive learner whereas a value 

closer to 0 describes an inflexible or slow learner (Behrens et al., 2007; Courville et al., 2006). 

This simple arithmetic can capture many phenomena of learning (Le Pelley et al., 2016; Pearce 

& Mackintosh, 2010; Rescorla & Wagner, 1975; Watabe-Uchida et al., 2017).  Learning itself 

occurs when the expected value of options in the world, or the option-outcome association, is 

updated by the RPE: 

𝑉&'% = 𝑉& + 𝑅𝑃𝐸 

[Equation 2] 

[Equation 3] 
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The expected value of an option at time t, 𝑉&, is updated by RPE (Equation 2), producing the 

expected value for the next time, t + 1. The simplest example of this type of learning is Pavlov’s 

dog; when the dog was initially neutral to the bell, it believed the bell was neither rewarding nor 

aversive: the expected value, 𝑉&, for the bell equaled zero. Once food was delivered at the same 

time that the bell was rung, the value of the received reward was greater than what was expected: 

R𝑃𝐸 = 𝛼 ∗	(1 − 0) > 0 

Assuming the dog’s learning rate, 𝛼,was greater than 0, and the received reward can be 

quantified (for simplicity, it is assumed here the reward was a positive magnitude of 1), then the 

RPE should be a positive value with a magnitude indicating the amount of learning. In the 

literature, what is being learned can be due to the level of surprise or the extent that the bell 

predicted the food (Mackintosh, 1975; Pearce & Hall, 1980). In any case, the weight of RPE 

magnitude is determined by the learning rate and the value difference between the reward and 

what was expected: 

𝑉&'% = (0	 + (𝑅𝑃𝐸 > 0)) > 0 

With several trials of bell-food pairings, the expected value will gradually update towards the 

actual food value and the dog will have completely associated the bell with the food (Rescorla & 

Wagner, 1975). Conversely, when the value of the received reward is smaller than expected, such 

as when no food is delivered but was expected, then the RPE is negative with a magnitude 

proportional to the extent of disappointment (Daw & Tobler, 2013; Lee et al., 2012; Mackintosh, 

1975; Pearce & Hall, 1980; Pearce & Mackintosh, 2010; Rescorla & Wagner, 1972; Watabe-

Uchida et al., 2017).  Another feature of this learning algorithm is flexibility of the learning rate, 

which is influenced by the volatility of the environment (Behrens et al., 2007; Courville et al., 

2006; O’Reilly, 2013). For example, in a volatile environment where option-reward associations 

[Equation 4] 

[Equation 5] 
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change without warning, the learning rate will be high (near to 1) so that RPEs are large and the 

learner can adapt to its volatile environment. Conversely, in stable environments where option-

reward associations do not change or change predictable, the learning rate will be low (near to 0) 

so that learning does not dramatically change after one unexpected outcome. An adaptive learner 

will possess a flexible learning rate so that RPEs effect decision making in accordance with the 

learning environment.  

In the context of modeling of human behavior during experimentation, as in 

psychophysics task, the Rescorla-Wagner model computes the RPE after feedback is presented. 

The properties of the chosen option and feedback is then used to approximate the subject’s 

learning experience:   

𝑉&'% = 𝑉& + 𝛼 ∗	(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘	𝑣𝑎𝑙𝑢𝑒 − 𝑉&) 

As in Equation 3, notation 𝑉& on the right-hand side denotes the present belief on trial t 

with an initial value on trial one depending on the task, i.e., a value during a state of ignorance. 

For learning models, this value is updated after each trial by the RPE to iteratively compute 𝑉&'%, 

which is then equal to 𝑉& value for the next trial. This learning mechanism is simple and does 

well to explain behavior, but there are learning phenomenon that it cannot explain. For one, the 

model lacks an internal estimate of uncertainty. For instance, volatile environments induce 

uncertainty, which has been observed to affect the learning rate; but the algorithmic process of 

this flexible behavior is not included in the Rescorla-Wagner model (Radulescu et al., 2019). 

Additionally, the model does not clearly capture certain learning phenomenon, such as blocking 

effects, wherein a stimulus with a strong association disrupts learning about a second stimulus 

(Daw & Tobler, 2013; Rescorla & Wagner, 1972). Rescorla & Wagner (1972) proposed the effect 

occurred because the second, new stimulus does not provide new information about the 

[Equation 6] 
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environment that the first, initially informative stimulus already provides. This implies that all 

the objects and attributes in the environment are assigned an RPE for each option outcome. 

Algorithmically, Rescorla & Wagner posited an RPE-operation for each attribute in the value 

function of 𝑉&'%. A criticism of this proposed learning strategy is that it is computationally 

expensive (Cohen et al., 2016; Leong et al., 2017; Niv et al., 2015; Radulescu et al., 2019; Sutton 

& Barto, 2018), so-called the ‘curse of dimensionality.’ In the next sub-chapter, it is presented as 

a reason for the need to study learning and decision strategies in multi-attribute environments. 

The neural systems of learning and decision making are highly distributed and 

hierarchical (Busemeyer et al., 2019; Chau et al., 2018; Passingham & Wise, 2012; Radulescu et 

al., 2019), further involving neuromodulator systems controlling neuronal signaling and 

connectivity dynamics in the prefrontal cortex, with dopamine being particularly relevant in the 

study of RPE-type of learning (Cools & D’Esposito, 2011; Crockett & Fehr, 2014; Frank & 

Fossella, 2011; Lee, 2013; Ott & Nieder, 2019; Watabe-Uchida et al., 2017). But due to 

methodological limitations to study prefrontal dopamine, the role of this neuromodulator is 

typically inferred from non-invasive techniques (Cools & D’Esposito, 2011; Chau et al., 2018; 

Ott & Nieder, 2019). An essential process for learning as described above  is neuroplasticity 

(Calabresi et al., 2007; Cools & D’Esposito, 2011; Frank & Fossella, 2011; Ott & Nieder, 2019; 

Radulescu et al., 2019; Shen et al., 2008; van Schouwenburg et al., 2010). Notably, plastic 

frontostriatal connections are thought to underlie learning mechanisms described by RPE-based 

algorithms (Ballard et al., 2018; Reynolds et al., 2001; Shen et al., 2008; van Schouwenburg et 

al., 2010). RPE computations are specifically attributed to dopamine neurons, which project from 

the midbrain to the prefrontal and striatal regions of the brain that utilize the RPE signal for 

learning, decision making, attention, representation learning, and motor control (Chau et al., 
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2018; Collins & Frank, 2013; Cools & D’Esposito, 2011; Cools & Robbins, 2004; Crocket & 

Fehr, 2014; Dolan & Dayan, 2013; Eshel et al., 2015; Eshel et al., 2016; Frank & Fossella, 2011; 

Haber & Behrens, 2014; Haber & Knutson, 2011; Ott & Nieder, 2019; Radulescu et al., 2019; 

Shiner et al., 2012; Stahl, 2013; Watabe-Uchida et al., 2017).  

Interestingly, arithmetic RPE patterns have been observed in the firing patterns of 

midbrain dopamine neurons (Eshel et al., 2015; Schultz et al., 1997). For example, the rate of 

dopamine neuron activity in the nucleus accumbens increases with positive model estimates of 

RPEs, i.e., when the actual outcome is greater than expected in the task. Conversely, dopamine 

neuron activity drops below baseline after a negative RPE, when an outcome is lower than 

expected (Roitman et al., 2008; Shen et al., 2008; Schultz et al., 1997; Wickens et al., 2007). 

Further, this dopaminergic signal corresponds to the magnitude of the RPE: a highly unexpected 

reward produces a relatively high dopaminergic response (Fiorillo et al., 2003; Matsumoto & 

Hikosaka, 2009). Anatomically, greater release of dopamine results in faster learning 

corresponding with increased potentiation of frontostriatal connections (Lee et al., 2012; Watabe-

Uchida et al., 2017). In a pharmacological study on mice, Reynolds and colleagues (2001) 

observed frontostriatal potentiation when the dopamine producing neurons in the substantia nigra 

pars compacta were stimulated. Reynolds and colleagues then applied a dopamine D1-receptor 

antagonist and saw potentiation decrease after the same stimulation procedure, demonstrating 

that midbrain dopamine has a role in frontostriatal potentiation (Reynolds et al., 2001). This 

RPE-based plasticity in mice is also observed in humans and monkeys, suggesting a generalized 

learning mechanism across species (Matsumoto & Hikosaka, 2009; Passingham & Wise, 2012; 

Radulescu et al., 2019; Redgrave et al., 1999; van Schouwenburg et al., 2010). For instance, van 

Schouwenburg and colleagues (2010) conducted an fMRI study with human subjects to test 
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whether the basal ganglia had a role in delivering top-down signals that emphasize goal-relevant 

stimuli in the posterior visual processing regions. The authors observed striatal activity 

modulated PFC functional connectivity with posterior sensory regions, suggesting that the 

striatum tells the PFC when to switch top-down inhibitory signals to emphasize goal-relevant 

stimuli (van Schouwenburg et al., 2010). Further studies suggest that biasing attention in this 

way enhances frontostriatal potentiation or depression that is in turn mediated by the dopamine 

system (Calabresi et al., 2007; Cools & D’Esposito, 2011; Crocket et al., 2013; Ott & Nieder, 

2019; Redgrave et al., 1999).  

Modern psychopharmacological methods also support dopamine’s role in trial-and-error 

learning, as the Rescorla-Wagner seems to capture (Burke et al., 2018; Cools et al., 2009; Cools 

& D’Esposito, 2011; Chau et al., 2018; Crockett & Fehr, 2013). For instance, positron emission 

transmission scanning can track injected dopamine transmission in the nervous system during 

behavioral experiments (Cools et al., 2008; Liu et al., 2017; ). In other studies, asking patients 

who regularly take dopaminergic medication to withhold their treatment allows researchers to 

use neuroimaging while these patients perform experiments, then later be compared with 

healthier brains, to observe manifestations of dopaminergic deficits in humans (Pine et al., 2010; 

Shiner et al., 2012; Tost et al., 2009). Less invasive methods involve the use of dopaminergic 

genes whose dispositions influence the transmission of prefrontal or striatal dopamine critical for 

trial-and-error learning (Chau et al., 2018; Cools & D’Esposito, 2011; Doll et al., 2011; Doll et 

al., 2016; Elton et al., 2017; Filla et al., 2018; Frank et al., 2007; Frank et al., 2009; Frank & 

Fossella, 2011; Gao et al., 2016; Gershman & Tzovaras, 2018; Meyer-Lindenberg et al., 2005; 

Meyer-Lindenberg et al., 2007; Persson & Stenfors, 2018; Slifstein et al., 2008; Tost et al., 
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2009). Though this can be described by Rescorla-Wagner, it is not claimed here that this 

algorithm is exactly performed by the dopaminergic system and the network it mediates. 

Trial-and-error learning as observed behaviorally has a neural bases: the brain generates 

RPE signals and delivers these learning signals to the PFC and striatum where option values 

store and compared (Ballard et al., 2018; Behrens et al., 2007; Chau et al., 2018; Daw & Tobler, 

2013; Eshel et al., 2015; Eshel et al., 2016; Glimcher, 2013; Haber & Behrens, 2014; Lee et al., 

2012; Leong et al., 2017; Ott & Nieder, 2019; Pearce & Mackintosh, 2010; Schultz et al., 1997; 

Watabe-Uchida et al., 2017). Modern treatments for post-traumatic stress disorders and phobias 

involve reversal learning, a method similar to the one above for dissociating the sound of a bell 

from food. In the case of post-traumatic stress disorder, exposure therapies are used, which teach 

patients that a conditioned stimulus no longer predicts some traumatic event, an effort to 

dissociate a learned association (Bryant & Nickerson, 2013). As well, combining these theories 

with clinical applications, decoded neurofeedback was developed, used dissociate fear responses 

(Chiba et al., 2019). This all suggests that learning values by trial-and-outcome has a neural basis 

with RPE-based algorithms. However, Rescorla-Wagner model is just  algorithmic hypothesis 

that approximates this type of learning. 

1.3.2. By Bayesian inference 

 An alternate value function, applied in this thesis (Chapter 3 – Bayesian Models), is 

trial-and-error learning by Bayesian inference. Models based on Bayesian inference provide 

several advantages over the Rescorla-Wagner model. First, because Bayes’ theory is a 

mathematically optimal way to combine new with old information (Griffiths et al., 2012; Stone, 

2013), these models are used in the literature to simulate optimal behavior in tasks requiring 

inference. These simulations can be compared with human performance to identify where 
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behavior strays or is comparable with optimized behavior, such as learning and value-based 

decision making (Bach & Dolan, 2012; Collins & Frank, 2013; Frank et al., 2009; Kriegeskorte 

& Douglas, 2018; Meyniel & Dahaene, 2017; Muller et al., 2019). A second reason for choosing 

Bayesian inference over the Rescorla-Wagner model is the former accounts for the imprecision 

that is involved during behavior in uncertain situations. This can also be simulated and compared 

with human behavior to gain insight about the computational problems that brains must solve 

(Marr, 1982). Incidentally, neurons appear to approximate Bayesian computations (Beck et al. 

2008; Chalk et al., 2010; Echeveste et al., 2020; Ting et al., 2015), although, this interpretation of 

is debatable (Bowers & Davis, 2012a/2012b; Griffiths et al., 2012). This sub-chapter describes 

the application of Bayesian inference in human learning.  

Bayesian inference is a statistical method for computing the probability of a hypothesis 

give new and old evidence (Griffiths et al., 2012; Farrell & Lewandowsky, 2018; O’Reilly et al., 

2012; Stone, 2013). This can be expressed as: 

𝑝(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠	|	𝑑𝑎𝑡𝑎) ∝ 𝑝(𝑑𝑎𝑡𝑎	|	ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) ∗ 	𝑝(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠) 

      Posterior          Likelihood        Prior 

or symbolically as: 

𝑝(ℎ𝑦𝑝|	𝑥) ∝ 𝑝(𝑥|ℎ𝑦𝑝) ∗ 𝑝(ℎ𝑦𝑝) 

   Posterior       Likelihood   Prior 

The above term is Bayes’ Factor, wherein ℎ𝑦𝑝 symbolizes some hypothesis under investigation 

and x represents the data observed. It should be noted that Bayes’ factor is a simplification of 

Bayes’ theorem. In the above formulation, the left-hand side is proportionate to the right and are 

not necessarily equivalent. Bayes’ theorem is more constraining:  

𝑝(ℎ𝑦𝑝|𝑥) =
𝑝(𝑥|ℎ𝑦𝑝) ∗ 	𝑝(ℎ𝑦𝑝)

𝑝(𝑥)  

[Equation 7]  

[Equation 8] 
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Where ℎ𝑦𝑝 and 𝑥 still represent some hypothesis and some data, respectively, but now, this term 

is normalized by the probability of the data, termed the marginal likelihood (Farrell & 

Lewandowski, 2018; Stone, 2013). As this value is the same for the space of hypotheses under 

study, it is not necessary for analyses that compare posterior distributions, the left-hand side of 

Equation 7 and 8, which is the case in present thesis (Farrell & Lewandowski, 2018; Stone, 

2013). In any case, Bayes’ theorem is a mathematically optimal method for probabilistically 

integrating new with past data to infer the most probable hypothesis under study (Farrell & 

Lewandowski, 2018; Griffiths et al., 2012; O’Reilly & Mars, 2015; Stone, 2013). In order to 

compute a posterior probability distribution, the prior and likelihood terms must be specified for 

every hypothesis and possible outcome, sometimes called the statespace or parameter space 

(Farrell & Lewandowsky, 2018; O’Reilly, 2013; Wilson et al., 2010). This is an important 

limitation, because it means the Bayesian model cannot make inferences about an undefined 

state, a point influencing the way Bayesian models were design in this thesis. 

Bayes’ theorem’s capability to compute the probability distribution of many possible 

outcomes is used hypothesis testing in wide range of scientific disciplines including psychology, 

neuroscience and engineering (Kriegeskorte & Douglas, 2018; O’Reilly et al., 2012; O’Reilly & 

Mars, 2015; Stone, 2013). Relevant here, cognitive neuroscientists use Bayesian models to 

approximate human inference making (Griffiths et al., 2012; O’Reilly et al., 2012; Wilson et al., 

2010). Bayesian estimates the probability of a hypothesis, among a statespace of hypotheses, 

being true. Hinging beliefs on the highest probability in this distribution or the weighted mean of 

this distribution would be optimal inference and utilized in the literature on perceptual and 

preferential decision making and learning (Chalk et al., 2010; Griffiths et al., 2012; Meyniel & 

Dahaene, 2017; Muller et al., 2019; Nassar et al., 2010; O’Reilly et al., 2012; O’Reilly & Mars, 
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2015; Ting et al., 2015). This procedure is herein called Bayesian learning, and looks like the 

diagram in Figure 2 adapted from Chalk and colleagues (2010). 

The Figure 2 diagram by Chalk and colleagues (2010) concisely summarizes Bayesian 

modeling. It is used here to describe the theory and literature underlying Bayesian modeling. At 

the start of this process, observers witness evidence or data, notated as the stimulus 𝜃 in the 

diagram. Because of inherent noise in perception, the potential for optimal behavior in response 

to 𝜃 is already diminished (Chalk et al., 2010; Polanía et al., 2019). Consequently, the 

observation used for Bayesian inference is an approximation of 𝜃, termed 𝜃()*. It is this 

observation, as opposed to the objective 𝜃, that is used in Bayes’ factor (Equation 7) – note, as 

mentioned in the introduction of this chapter, humans do not experience the objective external 

world, but instead experience its inference (Pinker, 2009). Continuing, the likelihood of seeing 

𝜃()* given a hypothesis is weighted by the probability of the hypothesis being true, or the prior 

in Equation 7. This product gives the posterior, which is the probability for hypothesis given 

𝜃()*. This can be done for all possible hypotheses in the statespace; obtaining products for each 

gives a posterior probability distribution. The hypothesis with the highest probability, the 

maximum a posteriori (MAP), can be used to produce a ‘perceptual estimate’ (𝜃+,-.) of 𝜃()*. 

With this estimate, the Bayesian observer can make Bayesian optimal decisions. But to do so, 

𝜃+,-. needs to be converted into a motor response. For reasons analogous to noise assumed in the 

Figure 2. Modeling Bayesian learning. Adapted here from Chalk and 
colleagues (2010) because the diagram summarizes the components of a 
Bayesian learner in the cognitive neuroscience literature. 
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softmax function for predicting value-based decisions in the preceding chapter, decoding 𝜃+,-. 

into a motor response further contributes to the diminished human performance (Chalk et al., 

2010; Polanía et al., 2019). Ultimately, this process returns an observable response based 

on		𝜃,*&. Such a response would be approximately Bayes-optimal, given environmental, sensory 

and motor imprecision (Bach & Dolan, 2012; Chalk et al., 2010; Griffiths et al., 2012; Muller et 

al., 2019; O’Reilly, 2013; Polanía et al., 2019; Ting et al., 2015).  

Whether human brains actually implement Bayes’ theorem may not be falsifiable with 

current research methods (Bowers & Davis, 2012ab), but empirical evidence has shown that 

behavioral and neural patterns are approximately Bayesian (Bach et al., 2012; Beck et al., 2008; 

Chalk et al., 2010; Collins & Frank, 2013; Courville et al., 2006; Frank et al., 2009; Griffiths et 

al., 2012; Körding & Wolpert, 2006; Kriegeskorte & Douglas, 2018; O’Reilly et al., 2012; 

O’Reilly, 2013; O’Reilly & Mars, 2015; Meyniel & Dahaene, 2017; Muller et al., 2019; Nassar 

et al., 2010; Parr et al., 2018; Polanía et al., 2019; Ting et al., 2015; Wilson et al., 2010). A few 

studies from perceptual- and preferential- decision making paradigms using Bayesian inference 

are described. Note, perceptual paradigms manipulate stimulus salience, whereas preferential 

paradigms typically control stimulus salience and instead manipulate stimuli values (Chau et al., 

2018; Fiedler et al., 2019; Glimcher, 2014; Rangel & Clithero, 2014). As such, Figure 2 applies 

to value-based decision making as it does in the perceptual literature. Instead of the 𝜃()* in 

Figure 2 representing an observed visual stimulus, 𝜃()* can represent an observed value, as 

opposed to the observed percept, in preferential paradigms (Polanía et al., 2019). Indeed, this 

idea that perceptual and preferential processing shares a common neural network is has a neural 

basis in the literature on cognitive maps (Boccara et al., 2019; Chau et al., 2018; Constantinescu 

et al., 2016). 
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The first example to discuss evidence on the efficacy of applying Bayesian inference with 

a neural basis is the work by Chalk and colleagues (2010). The authors tested a set of 

computational models to find the best algorithmic description of human behavior in a perceptual 

motion detection task. The authors manipulated the schedule of stimuli motion to induce priors 

strong enough to cause hallucinated motion in the predicted direction when no stimulus was 

presented in the task. Additionally, these induced priors improved motion detection when 

stimulus motion coincided with the prior. This behavior was best described by a Bayesian model 

that based decisions on an iteratively updated prior. Further, subjects were not aware their 

expectations were manipulated. This suggested that these Bayesian-like processes were not under 

conscious control but instead the outcome of internal processing, such as many cognitive biases 

(Nisbett & Wilson, 1977). Results such as these support the theory that human perception is 

approximately Bayesian (Cao et al., 2018; Chalk et al., 2010; Ernst et al., 2002; Meyniel et al., 

2017). 

The following examples describe relevant studies that used Bayesian inference do 

investigate value-based decision-making . Ting and colleagues (2015) submitted human 

participants to a lottery computerized task outside and then inside an fMRI. In the task, the 

weight of evidence, or the likelihood, was manipulated on each decision trial. The authors 

initially observed that posterior estimates computed by a normative Bayesian model (like the 

diagram in Figure 2) predicted behavior in the task. In other words, using the model estimates of 

the posterior as the subjects’ value functions was better at predicting behavior than only using 

prior or likelihood estimates. Next, the authors found that the mean of a posterior distribution, a 

summary-statistic also used in Chalk and colleagues (2010), had representation in the medial 

prefrontal cortex. Notably, the mean of the prior distribution and likelihood also had distinct 
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representation in this region. Finally, the optimal integration of these prior and likelihood 

patterns corresponded with Bayesian model estimates – analogous to precision weighting (Ernst 

& Banks, 2002; Meyniel & Dehaene, 2017). In addition to using Bayesian inference for 

hypothesis testing, researchers also investigate the extent that uncertainty plays during decision 

making. A study by Muller and colleagues (2019) subjected human participants to a different 

lottery game while undergoing fMRI. Critically, the game’s underlying statistics, i.e., the 

probability that an option is associated with a high reward versus a low reward, were volatile and 

changed without warning. The authors tested whether uncertainty, as measured by an ideal 

Bayesian observer model, could describe neuronal activations without obvious changes in the 

choice preference of subjects. That is, without any overt behavioral effects, the authors 

investigated whether neuroimaging estimates of uncertainty corresponded with Bayesian model 

estimates of uncertainty. The authors reported localized brain regions with activation patterns 

tracked by uncertainty estimates of the Bayesian model. This was further supported by a 

physiological measure: when an observer was presented surprising information i.e., when 𝜃()* 

highly strayed from the posterior (Equation 7), then pupils dilated. This dilation pattern of 

surprise is an indirect index of increased uncertainty and noradrenaline release (Preuschoff et al., 

2011). Muller and colleagues observed that pupil dilations corresponded to an increase in their 

Bayesian model’s estimated uncertainty, each further corresponded with neuronal activation 

signatures of uncertainty. 

To summarize, the use of Bayesian modeling in cognitive neuroscience has been a fruitful 

method to investigate cognition and behavior because they help explain and predict choice 

patterns as well as neuronal representation (Ballard et al., 2018; Behrens et al., 2007; Cao et al., 

2019; Courville et al., 2006; Ernst & Banks, 2002; Frank et al., 2009; Meyniel et al., 2017; 
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Muller et al., 2019; Polanía et al., 2019). Specifically, Bayesian model estimates have been used 

to estimate the influence of subjective parameters and latent cognitive variables underlying 

learning and decision making (Bach et al., 2012; Courville et al., 2006; Körding & Wolpert, 

2006; Kriegeskorte & Douglas, 2018; O’Reilly, 2013; O’Reilly & Mars, 2015; Parr et al., 2018) 

such as adaptive learning (Behrens et al., 2007), explorative versus exploitative decision making 

(Frank et al., 2009; Gershman & Tsovaraz, 2018; Muller et al., 2019), and optimal integration of 

sensory information (Cao et al., 2019; Ernst & Banks, 2002; Meyniel & Dehaene, 2017). Though 

the literature and present thesis cannot conclude whether human brains are indeed Bayesian, the 

evidence suggests, at least, that we cannot reject the Bayesian observer theory of the brain. In 

any case, the literature demonstrates the utility of Bayesian modeling in cognition and behavior 

research for hypothesis testing and tracking uncertainty. Therefore, these models are used here to 

examine information seeking during multi-attribute learning and decision making. 

1.4. Multi-attribute learning and decision making 

A limitation of the Rescorla-Wagner model described above was that it does well to learn 

about singularly defined objects but encounters a learning problem in multi-attribute 

environments. But unlike these models, human learners can identify relevant or predictive 

attributes for preferred outcomes with limited computational resources (Ballard et al., 2018; 

Leong et al., 2017; Niv et al., 2015). To illustrate this multi-attribute problem, imagine playing a 

“Spot the Difference” game wherein you are asked to find differences between two photos of the 

same messy environment. At first glance, the photos look the same. To find differences, you 

could try holding the photos away from you so you can conduct a parallel search for obvious 

discrepancies. This likely will not work, since peripheral vision computes a summary of the 

things surrounding your focal point and fails to identify subtleties in the environment (Cohen et 
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al., 2016). Conversely, you could try looking at each a subset of pixels your eye can process and 

compare each subset to the myriad of other subsets. Obviously, this is not how we choose to 

solve this game nor is it feasible given limits to our computational resources (Cohen et al., 2016; 

D’Esposito & Postle, 2015; Edelman, 2008; Ma et al., 2014; Wilhelm et al., 2013). Nevertheless, 

humans navigate the real world with relative ease and learn about its multi-attribute objects – this 

sub-chapter discusses the literature on strategy to resolve this computational problem. 

Multi-attribute environments are more realistic representations of the world and pose an 

algorithmic learning challenge that is often neglected by decision neuroscientists (Radulescu et 

al., 2019). In learning, that problem is the computational complexity of the environment. Another 

reason to consider attribute-based analyses is empirical evidence that humans can generalize 

learned attribute associations to novel stimuli (Rangel & Clithero, 2014). So-called the attribute 

integration model of subjective value computation, this theory posits that options are valuated 

according to their attributes as in the following: 

Option Value = ∑ (βi * attributei) 

In the formulation, the value of an option is equal to the sum of all its attributes (i.e., their 

salience or amount) and their corresponding weights, β, indicating an attribute’s relevance to 

value which depends on the priorities of the chooser. The β may vary across subjects, giving rise 

to idiosyncratic differences during preferential decision making. The critical implication of this 

equation is that option values depend on specific attributes (Hare et al., 2009; Hunt et al., 2014; 

Maier et al., 2020). For example, Hare and colleagues (2009) conducted a decision-making 

experiment with two accentuated attributes: food taste and healthiness. Based on subject 

performance in the behavioral task, they grouped human subjects according to their ability to 

self-control and avoid taste over healthiness: groups included those who had self-control, those 

[Equation 9] 
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who lacked self-control, and a neutral group who did not outweigh taste over healthiness and 

vice versa. Using fMRI, the authors found that preference was represented in the vmPFC 

whether or not subjects exercised self-control. Notably, the nature of this value correlation within 

vmPFC was group dependent: if subjects had self-control, vmPFC activations correlated with 

health and taste preferences; but if subjects were not in the self-control group, vmPFC 

activations only correlated with taste preference (Hare et al., 2009). In a separate fMRI study 

examining the role of attributes during value-based decision making, Hunt and colleagues (2014) 

found that intraparietal sulcus (IPS) activity correlated with value comparison between attributes 

while the dorsal medial prefrontal cortex (dmPFC) correlated with comparison of the whole 

option. In other words, the IPS activations correlated with the individual products of Equation 9 

before summing, while the dmPFC correlated with its final sum of Equation 9.  Hunt and 

colleagues posited that this was evidence of a hierarchical process of valuation, wherein different 

regions of the brain make value comparisons from varying points of view, e.g., dmPFC compares 

integrated option values and the IPS compares option attribute values; which comparison 

influences decision making depends on the chooser’s goals  (Collins & Frank, 2013; Hunt et al., 

2014; Sarafyazd & Jazayeri, 2019). However, as discussed in the trial-and-error sub-chapter on 

Rescorla-Wagner model, an attribute-based valuation processor would be overwhelmed by the 

myriad of attributes that compose the real world, so-called the “curse of dimensionality” (Sutton 

& Barto, 2018).  

1.4.1. “Curse of dimensionality” 

A simple solution to the “curse of dimensionality” is to make use of strategies that reduce 

resource demands (Radulescu et al., 2019; Sutton & Barto, 2018). To this end, selective attention 

can be used to bias learning to a subset of attributes in search of the attributes composing 
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predictive options in novel and complex environments (Collins & Frank, 2012; Cools & 

D’Esposito, 2011; Le Pelley et al., 2016; Leong et al., 2017; Niv et al., 2015; Ott & Nieder 2019; 

Radulescu et al., 2019). This process of learning relevant option structures, also called the 

structure representation, for associative learning is termed representation learning and is learned 

by trial-and-error (Radulescu et al., 2019). This learning depends on selective attention, which 

attends to different structure representations in the environment in search of most stable and 

predictive of preferred outcomes. Attention to a structure representation facilitates learning about 

that structure, so that choice outcomes become associated with it, at the cost of learning little to 

nothing about other possible unattended structure representations (Leong et al., 2017; Niv et al., 

2015; Radulescu et al., 2019). If the structure representation is highly predictive of a rewarding 

or aversive outcome, then it will be associated with those outcomes. Conversely, if the structure 

representation is a poor predictor of a rewarding or aversive outcome, then selective attention 

will test a different structure representation in search of a better combination of attributes in the 

environment (Ballard et al., 2017; Le Pelley et al., 2016; Leong et al., 2017; Mackintosh, 1975; 

Niv et al., 2015; Pearce & Mackintosh, 2010; Radulescu et al., 2019). This process of 

representation learning is thought to take advantage of RPE-like signals described in the 

preceding section, but learning is about the predictiveness of structure representations facilitated 

by selective attention (Ballard et al., 2018; van Schouwenburg et al., 2010). For instance, van 

Schouwenburg and colleagues (2010) used fMRI to monitored the sensory regions of human 

subjects a task requiring attention-switching. Their stimuli overlapped face and place images, 

and rules in the task asked subjects to adaptively focus their attention on either stimulus; as 

expected, focus on one stimulus resulted in the failure to notice when the other updated. 

Activation enhancements in the sensory regions were goal-dependent, e.g., activations in the 
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fusiform face gyrus increased when faces needed to be attended and likewise for place stimuli 

and parahippocampal place area (van Schouwenburg et al., 2010). The critical finding was that 

the basal ganglia, a region including the striatum which encodes RPE signals and connections to 

the prefrontal cortex (Ballard et al., 2018; Chau et al., 2018; Haber & Behrens, 2014; Haber & 

Knutson, 2010), signaled attention-switching. These findings demonstrate that a lack of attention 

to stimuli results in a failure to track changes of that stimuli in the environment. Likewise, 

learning requires attention, but its exact role is under debate. 

1.4.2. Opposing models of attention 

Although the effects of selective attention have been investigated during multiple 

timepoints of learning and decision making (Gluth et al., 2018; Hunt et al., 2018; Maier et al., 

2020) the nature of attentional bias is debatable (Pearce & Mackintosh, 2010; Radulescu et al., 

2019). Though attention itself is not investigated in this report, the characteristic behaviors of the 

type of attention deployed are examined in this thesis, i.e., exploitation and exploration. These 

two behaviors are characteristic of two highly contested attentional theories concerned with 

where attention is biased during learning and decision making. The first theory is attributed to 

Mackintosh (1975), wherein attention is biased towards the most predictive stimuli, as discussed 

above. This can be observed in exploitative value-based decision making predicted by the 

Rescorla-Wagner model: the learner seeks and attends the most rewarding stimuli, then the 

learner will exploit this option by continuously choosing and attending to it at the cost of 

exploring and learning about other options. The second theory was described by Pearce & Hall 

(1980), proposing that attention is biased towards stimuli that a learner is the most uncertain 

about. This can be observed when we choose options that are the most informative, regardless of 

reward amount (Le Pelley et al., 2016; Pearce & Mackintosh, 2010). Another point of debate 
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regarding selective attention is whether unconscious or conscious control of attention is more 

important for learning (Le Pelly et al., 2016). A distinction between unconscious and conscious 

attentional control is during their competitive deployment underlying exploitative versus 

exploratory decision making (Dolan & Dayan, 2013; Frank et al., 2009; Gershman & Tzovaras, 

2018; Le Pelley et al., 2016; Ott & Nieder, 2019). In their review of attention and learning 

theories, Le Pelley and colleagues (2016) suggested that studies investigating attentional bias 

should be designed to encourage both types of attention, unconscious and conscious, so as to 

assess the dissociable roles of these processes in learning and decision making. The assumption 

here is that human behavior implements both types of bias, deploying each according to their 

needs, priorities, and rules posed by the environment (Beesley et al. 2015; Dolan & Dayan, 2013; 

Wang et al., 2018). Though attention is not measure in the task of this thesis, these two types of 

attentional bias can be traced by observing response patterns: exploitative decision making is 

defined by value-based decision making (Mackintosh, 1975) and exploratory decision making 

yields a bias for informative decisions (Pearce & Hall, 1980). The deployment of these choice 

strategies varies with task requirements, such as environmental volatility or neuromodulator state 

(Behrens et al., 2007; Chau et al., 2018; Collins & Frank, 2013; Cools & D’Esposito, 2011; 

Dolan & Dayan, 2013; Findling et al., 2019; Frank & Fossela, 2011; Frank et al., 2009; 

Gershman & Tsovaraz, 2018; Le Pelley et al., 2016; O’Reilly, 2013; Ott & Nieder, 2019; Pearce 

& Mackintosh, 2010; Radulescu et al., 2019; Sarafyazd & Jazayeri, 2019; Trudel et al., 2020; 

Walton et al., 2015; Warren et al., 2017; Wilson et al., 2014; Zajkowski et al., 2017), but with 

accurate analyses, such as an appropriate computational model, these choice strategies can be 

made explicit. 
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1.5. Informativeness 

Exploratory behavior is defined here as a bias towards seeking information in order to 

reduce uncertainty (Wilson et al., 2020). In other words, option informativeness is specifically 

the quality that reduces uncertainty, identifiable by the decision making patterns it invokes: when 

subjects enter a state of high uncertainty, as when the predictiveness of our options are unknown 

or volatile (Behrens et al., 2007; Muller et al., 2019), then informativeness should contribute  an 

‘information bonus’ to the value of an option (Wilson et al., 2014); conversely, when the 

predictiveness of our options are known or consistent, then the informativeness of an option 

should not affect the value of an option. Consequently, option informativeness is critical when 

learning values for decision making. That is, decisions under uncertainty should consider option 

informativeness to facilitate learning so that value-based decisions are more accurate in the long-

run (Walton et al., 2015). This need is explicit in environments or contexts where outcome values 

must be learned by trial-and-error (Behrens et al., 2007; Frank et al., 2009; Le Pelley et al., 2016; 

Wilson et al., 2020). To be clear, the appetitive effects of informativeness on decision making is 

related to associative learning theories of attention described in the previous sub-chapter. 

According to Pearson and Hall (1980), attention is biased towards the options whose outcomes 

we are most uncertain about; likewise, during times of high uncertainty, preferential decision 

making is biased towards option informativeness. In the present thesis, only decision making was 

analyzed – there is no gaze detection or other attention estimates to report in this present thesis. 

Therefore, the literature on uncertainty and informativeness on decision making is detailed 

further in this sub-chapter. The clarification of this definition and pattern are critical to 

effectively communicate the research gap and questions in the final sub-chapter. 
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1.5.1. A quantitative variable 

As mentioned above, the informativeness of an option reduces uncertainty, and this value 

is different from the expected reward of an option. An intuitive and technical example are 

described next (Figure 3). The utility of informativeness is explicit in trial-and-error learning. 

Say you become ill and are in search of a good-enough treatment. You are initially posed two 

options: Treatment L (the pill in Figure 3a) and Treatment R (the syringe in Figure 3a). You first 

try Treatment R but find your symptoms worsen. You fortunately survive for another opportunity 

to choose between Treatments L and R. The bad experience of Treatment R causes some 

avoidance, inclining you towards Treatment L in this new opportunity. This treatment makes 

your symptoms better, thus enabling your future inclination for the good Treatment L. With more 

experience, you find Treatment L is dependably good. Later, you are able to choose between a 

new Treatment I and the good Treatment L (Figure 3b): should you explore this unknown 

treatment or continue exploiting the known treatment? This choice conflict is termed the explore-

exploit dilemma. The reasons for choosing the unknown option may be intuitive: perhaps you are 

curious about its outcome; or perhaps you feel you are testing your luck with the known option 

and should consider alternatives. In any case, choosing the new option is akin to choosing to 

explore, this choice reduces your uncertainty about the treatments - a fact that may not be 

immediately worthwhile given the potential aversive outcome but knowing the qualities of your 

available treatments is useful in the long term. This dilemma can be represented in more 

technical terms (Figure 3b). 
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Estimates of value and uncertainty during and trial-and-error learning can be tracked with 

methods from probability theory (Farrell & Lewandowsky, 2018; O’Reilly & Mars, 2015; Stone, 

2013). First, the expected reward from an option and the certainty in that expectation can be 

represented as a probability distribution: that is, the distribution after plotting the probability for 

each element in the statespace of possible hypothesis (Figure 3b; also discussed in the sub-

chapter 1.3.2. Bayesian inference). To elaborate, options can be described as having two 

features essential during any kind of decision making: the first feature is whether outcome 

quality is appetitive or aversive; the second feature is whether this quality is constant or volatile 

x✔✔

✔✔

b.

a.

old option new option

Probability

Treatment Quality
-1 0 +1 -1 0 +1

Treatment Quality

Figure 3. The role of informativeness in trial-and-error learning. (a) Brief outcome 
history of two treatments. A checkmark indicates a positive, desired outcome; a red x 
indicates a negative, aversive outcome. (b) Top: one new treatment, vial, is presented 
with the old, learned treatment, pill. Below: during decision making, subjects must 
consider the expected reward (estimated, e.g., using the mean or mode of the probability 
distribution) and informativeness (the reduction of spread or width of the probability 
distribution). 
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(Behrens et al., 2007; Muller et al., 2019). The first feature can be represented by the mean or 

mode of a probability distribution (Figure 4). To clarify this idea, imagine seeing a new 

treatment option as discussed above – its treatment quality and reliability is unknown. This state 

of ignorance can be represented by a uniform distribution: all possible treatment qualities have 

an equal probability of being the true value (Farrell & Lewandowsky, 2018; Stone, 2013; Figure 

4, Trial 1). That is, the new treatment has an equal probability of being healing as it does of 

being poisonous. Decisions based on this state of ignorance, a uniform distribution, equate to 

guesses . Once the new option is chosen, its outcome is observed for the first time; let’s say this 

outcome is healing or appetitive. The update from the Trial 1 to Trial 2 plot in Figure 4 

demonstrates a learning effect: the probability distribution of possible treatment values converges 

under the observed value, with the plot now suggesting that the new treatment is good but with 

much uncertainty. The latter suggestion is a consequence of the width of distribution. After a 

second experience, Trial 3, the probability distribution converges further, indicating that the 

learner is more confident that the treatment quality is the observed value and more likely to occur 

again in future outcomes. Trial 4 demonstrates the effects that the same treatment would produce 

if its outcome was suddenly poisonous or aversive. This makes the learner uncertain about the 

treatments true value, indicated by a diverging distribution, and that the true value of the 

treatment may be aversive, indicated by a mode shifted towards the left side of zero. This thesis 

proposes that, while value affects the mode or mean of these probability distributions that reward 

based decisions are based on, information seeking is based on the width of these distributions. In 

this latter property, when the width is relatively large, informativeness is very appetitive and 

manifests as exploratory behavior that appears like expected reward is neglected; conversely, 

when the width is small, the informativeness of an option is negligible and expected reward is 
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critical, which manifests as exploitative behavior (Dolan & Dayan, 2013; Walton et al. 2015; 

Wilson et al., 2020). 

 

This method of tracking uncertainty, using the distribution widths of learned variable as 

those in Figure 4 and their relationship with information seeking, was implemented in Trudel 

and colleagues (2020). The authors posed subjects with two options on each trial, each defined 

by their predictiveness of a rewarding outcome. Here, subjects were required to learn option 

predictiveness by trial-and-error and use this knowledge to make decisions that maximize total 

reward in the task. Using Bayes’ rule to track estimates of predictiveness and uncertainty of the 

subjects, and fMRI to localize BOLD correlates in the brain, the authors identified three 

behavioral phases underlying patterns of value-based decision-making during learning: an 

exploratory phase, an exploitative phase, and a transition phase between these two phases. 

Critically, the exploratory phase was not random choice behavior, instead appearing strategic. 

Subjects preferred more uncertain options, i.e., less precise and predictive of rewarding 

outcomes, during early periods of a block. After a few trials, subjects switched to an exploitative 

phase where they preferred options that were more predictive of rewards. BOLD imaging 

patterns shifted with behavioral phases, described by the authors as a polarity change. The 

vmPFC, previously observed to be correlated with preference (Chau et al., 2014; Voigt et al., 

-1 0 +1

Treatment Quality

-1 0 +1 -1 0 +1 -1 0 +1

Trial 1 Trial 2 Trial 3 Trial 4

Probability à à à

Figure 4. Trial-and-learning learning represented as updating 
probability distributions, or priors, of the estimated treatment 
quality. 
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2019), was positively correlated in Trudel and colleagues (2020) with uncertainty during the 

exploratory phase - suggesting a preference for uncertainty. Then, vmPFC BOLD activity was 

negatively correlated with uncertainty in later exploitative phase – suggesting an aversion for 

uncertainty. Finally, this behavior was affected by the number of opportunities subjects had to 

make a choice before the predictiveness of the options changed. More known opportunities with 

the same options invoked longer exploratory periods (Trudel et al., 2020), replicating the 

conditions wherein overt and strategic exploratory behavior was manipulated (Warren et al., 

2017; Wilson et al., 2014). More on the application of Bayesian modeling is discussed in 

Chapter 3 – “Bayesian Models”; here it is sufficient to observe the use of these models in the 

literature to examine information seeking. The operation definition of this construct in the 

relevant literature is discussed in the next sub-chapter. 

1.5.2. Categorical definitions 

While informativeness is understood as a quantitative variable in the literature, it is 

typically operationally defined as a categorical variable. For instance, Wilson and colleagues 

(2014) produced a fairly recent study comparing the deployment of information-based versus 

value-based decision making. Their findings and paradigm inspired investigations using 

neuroimaging (Trudel et al., 2020), brain stimulation (Zajkowski et al., 2017) and 

psychopharmacology (Warren et al., 2017); these papers have additionally replicated the 

information seeking patterns observed by Wilson and colleagues. However, although Wilson and 

colleagues designed a clever experiment and paradigm, in essence, the authors binarized 

informativeness (Figure 5). For instance, their task controlled the amount of information 

subjects had about each option, done by manipulating the number of times subjects observed the 

outcomes of each possible choice. The left diagram in Figure 5 displays a sample trial in the task 



INFORMATION AND DECISION MAKING 48 

as described by Wilson and colleagues (2014), used here to described their operational definition 

of informativeness. In the trial, subjects had to choose between a left-red slot machine or a right-

blue slot machine. Wilson and colleagues controlled how much information subjects obtained 

about each slot machine by forcing their first four choices. In the sample trial in Figure 5, 

subjects were forced to choose the left-red three times and then the right-blue once. Then, on the 

fifth trial, subjects were free to choose either one of the two options: if subjects chose the option 

with the least amount of information, the right-blue option with only a single observation, then 

subjects were described as having made an informative choice (Wilson et al., 2014). Else, 

subjects were said to have made a value-based decision by ignoring the high uncertainty of the 

right option for the certainty of the left. Several aspects of the task were controlled, including the 

number of prospective options and the average reward amounts of their options – properties of 

the choice environment that influence the deployment of exploratory behavior. The critical point 

here is that a decision was defined as being information-seeking or exploitative. This operational 

definition of decision making was unable to capture the quantitative nature of informativeness 

discussed in the previous sub-chapter in the present thesis. This was also the case in the authors 

computational models (Figure 5, inside the box on the right-hand side). The value function 

estimates the value of an option after integrating all relevant variables; in the controlled task in 

Wilson and colleagues, this involved the amount of reward and an “information bonus”, positive 

for informative options as operationally defined, negative otherwise. This way of operationally 

defining informativeness, either a choice is or is not due to information seeking, however clever 

and inspirational in the literature, is problematic and limiting in the study of human exploratory 

behavior (Findling et al., 2019; Frank et al., 2009; Trudel et al., 2020; Warren et al., 2017; 

Wilson et al., 2014; Zajkowski et al., 2017). 
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1.6. Research gap and questions 

 Several critical points from the cognitive neuroscience literature on value-based decision 

making and learning in multi-attribute environments were discussed in the literature review. This 

included evidence of thee hierarchical, parallel, and distributed processes that underlie value-

based decision, trial-and-error theories of learning, computational problems, and solutions for 

learning and decision making in multiple attribute environments, and the current theories of the 

importance of informativeness attribute of our options. In the present thesis, the design of the 

behavioral experiment and Bayesian models were based on this research as discussed above. For 

instance, when option values are known and the environment is predictable, an exploitative 

decision strategy to maximize rewards will be optimal. But when attributes must be learned, as 

when the option-outcome associations are unstable, then a chooser should be more tactful, 

deploying exploratory learning strategies such as prioritizing option informativeness over value. 

These exploratory strategies must be tempered by exploitative strategies lest the final reward be 

disappointing. In an optimal chooser, these strategies are balanced in a way to enable learning 

while maximizing gains (Wilson et al., 2020). The neural and algorithmic theories underlying 

 

Figure 5. The behavioral paradigm (left) and a summary 
of the computational model (right) developed by Wilson 
and colleagues (2014). 

option valuei = rewardi + informationi

if an option is more informative,

informationi = 1

else,

informationi = -1
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learning and decision making were discussed in the preceding literature review as well, with the 

purpose to demonstrate and neural evidence for the methods used in the behavioral and modeling 

studies of this thesis.  

The research gap under question lies in the definition of informativeness that is sought 

during exploratory strategies to resolve a decision problem. Specifically, the literature’s 

operational definition of informativeness is categorical, either a decision is or is not an 

information seeking decision. This definition is rather constraining, as the effects of 

informativeness may be quantitative, as suggested by probability theory methods used to 

describe human learning. The research questions are twofold. First, can informativeness sought 

during exploration Can “informativeness” be captured by a more quantifiable definition? Second, 

can computational models of decision making be improved by using this new definition of 

informativeness? The next two chapters describe two methods to investigate the research 

question: Chapter 2 – “Behavioral experiment” describes the computerized environment 

developed to tease out information- and value-based decision making, examining the extent of 

deliberation between information and value in a multi-attribute environment; Chapter 3 – 

“Bayesian models” describes computational models to further examine these strategies by 

comparing the behavioral results with computerized performance. 
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Chapter 2 – Behavioral Experiment 

2.1. Introduction 

A behavioral experiment was conducted to examine how a quantified definition of 

informativeness influences choice behavior. This was done by designing a relatively novel 

computerized learning and decision-making task, so called a multi-attribute bandit task. Bandit 

tasks are a popular paradigm in the cognitive neuroscience literature because it allows tight 

control of the parameters influence preference. One reason for designing a task in-house was, 

first, to engage human subjects in the task by forcing them to keep track of distinct attributes and 

integrate their values to successfully maximize gains. The second reason was to examine whether 

and the extent that quantitative informativeness was strategically utilized during the task and its 

effect on human choice behavior. In short, a computerized bandit paradigm was used to tease-out 

this use of value and information.  

It should be noted that no additional estimates of attention or neural activity were 

collected besides the responses and response times in the behavioral task. However, this should 

not be interpreted as a weakness of the study, nor as if an essential research component is 

missing. Complex cognitive process such as information seeking require constrained tests and 

analyses to reverse engineer how it works, namely, to discover the questions or computational 

problems the brain must solve to implement cognition and behavior (Kriegeskorte & Douglas, 

2018; Marr, 1982). Further, it can be argued that the development of constrained behavioral 

paradigms contributes more to our understanding of the brain and mind than invasive techniques 

(Niv, Forthcoming). More specifically, Niv argues that invasive methods, while expensive, 

generally tell us where in the brain neuron activity corresponds with behavior, but not what those 

regions are doing – behavioral paradigms allow researchers to investigate the latter question. 
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2.2 Methods 

The bandit task is a computerized environment used in the cognitive neuroscience 

literature wherein subjects are asked to deliberate between distinct options that lead to rewarding 

or aversive outcomes (Figure 7a; O’Reilly & Mars, 2015). In learning versions of the task, 

outcomes are the only information subjects receive about their choices. From these outcomes, 

subjects must infer the environmental statistics so they can maximize their final reward (e.g., 

Behrens et al., 2007; Gershman & Tzovaras, 2018; Muller et al., 2019; Niv et al., 2015; Rouault 

et al., 2019). To pose such an environment on subjects in the present thesis, a multi-attribute one-

armed bandit was designed. Instead of learning singular option-outcome associations, subjects  

needed learn the about two attributes, and then integrate this knowledge to make accurate option 

comparisons and maximize rewards (Figure 7b). The task was designed to be an online 

experiment, prepared using the JavaScript based library, jsPsych (de Leeuw, 2015). 

 

2.2.1. Human subjects  

Healthy adults were emailed an invitation to play a web-based psychology game for 

monetary reward. Emails were obtained by solicitation or by reference using a recruitment flyer 

L R L1/2
L2/2

R1/2

R2/2

a. b. 

Figure 6. Typical designs of the bandit task. (a) A traditional bandit task with two discrete options, 
where subjects can choose either the left option, L, or the right option, R. This is a typical 
configuration, and it allows researchers to control the parameters that influence preference (e.g., 
Behrens et al., 2007; Gershman & Tsovaraz, 2018). (b) A multi-attribute bandit task wherein options 
are composed of two attributes each – to choose the high reward option, both the association between 
each attribute and its value must be learned. 
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shared via email or the WhatsApp mobile app (Appendix A). Subjects were mostly students or 

staff from the Hong Kong Polytechnic University with a few referred to the study by a friend or 

family member at this the university – the subject pool is therefore a convenience sample. Of 

those invited, 42 subjects completed the game. Three subjects were excluded due to poor 

performance (subjects chose the high value option less than 60% of the time). The remaining 39 

subjects (16 female) were on average 23.4 years old ranging between 18-30 years. No further 

demographic information was collected. This sample size was deemed appropriate because 

similar studies on the explore-exploit dilemma find significant with under 40 subjects (e.g., 

Behrens et al., 2007: 18 subjects; Wilson et al., 2014: 31 subjects). This project was approved by 

the Human Subjects Ethics Sub-committee (HSESC) or its delegate of The Hong Kong 

Polytechnic University (reference number: HSEARS20190416034).  

Exclusion Criteria 

Before initial consent could be granted, subjects were informed about the exclusion 

criteria in their invitation email. Subjects were asked to exclude themselves if they had a history 

of neurological impairment, vision was not normal or could not be corrected-to-normal, were 

younger than 18 years, were older than 40 years, or were left-handed. The reasons for these 

exclusions were as follow. The present thesis was interested the learning and decision-making 

abilities of healthy human brains. As discussed in the literature review, these processes are 

distributed, hierarchical, and occur in parallel in healthy brains - disruptions to any brain region 

may affect behavior in subtly but significant ways. Therefore, to reduce behavioral noise present 

between subject variation, neurological impairment was excluded; for similar reasons, age was 

restricted to the interval between 18-40, during the highly probable time of neural maturation and 

healthiness. Although stimulus salience was not manipulated, normal or corrected-to-normal 
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vision was critical in this study as it was required to read instructional documents and play the 

computerized game without a proctor to correct display issues that may arise. Finally, left-

handed subjects were excluded here to improve the homogeneity of the sample pool, as 

commonly practiced in the cognitive neuroscience literature. The idea that handedness predicts 

brain differences comes from demonstrations of neuroanatomical and functional differences 

between left-handed brains compared to the more ubiquitous right-handed brain (Willems et al., 

2014). Perhaps future versions of the task using neuroimaging can investigate left-handed 

performance to identify the extent that brain laterality has on multi-attribute learning and 

information seeking, but these potential findings were excluded from the present thesis. 

Figure 7. Confirmation checkboxes before the start of the main task. 
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2.2.2. Procedure and payment scheme 

Procedure 

After obtaining initial consent, subjects were emailed links to instructions and practice 

task. Subjects were free to study the English or Chinese versions of the instructions, then were 

asked to take the practice task once the instructions were understood. Practiced performance was 

assessed to confirm the task was understood before continuing in the experiment. Otherwise, 

subjects received feedback of their practice results if they failed and asked to try the practice task 

again. After subjects completed the practice task, they received an email with a link to the main 

task; at the start of the main task, subjects were asked for consent again (Appendix C). They 

could not start the main task unless they gave consent and confirmed they had time to complete 

the task and other requirements by reporting on checkboxes (Figure 7). As in the practice game, 

subjects returned their main task results via email – this was necessary because of problems with 

the server that hosted the game files prohibited the data files to be saved remotely. These data 

files needed to be saved locally on the subjects’ computers. All results were analyzed using 

MATLAB (Mathworks). Subjects received their feedback about reward size via email along with 

a request for their “PayMe from HSBC” account information (a popular Hong Kong money 

exchange mobile app) to pay subjects their monetary reward. This payment was used to 

incentivize effort in the task and its amount was based on trial-to-trial performance in the task. 

Incentivizing Performance 

Subjects who completed the task automatically earned a base reward of 50HKD 

(6.45USD). All 42 subjects that completed the game were entitled to this base reward. As this 

behavioral experiment was entirely remote, instructions and the task could not be proctored. A 

guaranteed base reward served to incentivized subjects to independently study the instructional 
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materials so they can reach the end of the experiment. In addition to this completion reward, 

subjects were offered an additional 150HKD (19.35USD) depending on their performance in the 

task as determined by two criteria: 1) choice accuracy rate, defined as the percentage of trials 

where subjects chose the high valued option; 2) survey accuracy rate, defined as the accuracy of 

survey trials interleaved in the tasks, wherein subjects were asked to report running current 

estimate of an unknown variable in the task, described further below; and 3) the percentage of 

trials with a proper response, as it was possible to miss trials when a subject was too slow or not 

paying attention. The results for each criterion were emailed to subjects after they completed the 

game. In short, the final reward was determined as follows: 

𝐹𝑖𝑛𝑎𝑙	𝑅𝑒𝑤𝑎𝑟𝑑 = $50 + [$150 ∗ (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − (missed	trials ∗ $10))] 

This payment scheme was described before the main task. The average final reward was $133.62 

and ranged between $50-$192.50. Note, $50 was the smallest amount that could be received. 

Subjects were warned they would only receive the $50 base reward if choice accuracy was too 

low. Only 1 of 42 subjects refused to receive payment. Payment was done remotely using the 

mobile phone app “PayMe from HSBC” as this app was widely used in Hong Kong to exchange 

money. Incentive schemes such as this are common in decision neuroscience experiments that 

aim to incentivize effortful value-based decision making and learning, improving the 

generalizability of results outside of the lab to real-world behavior (Chau et al., 2014; Fujiwara et 

al., 2018; Gluth et al., 2018; Hunt et al., 2014; Juechems et al., 2019; Nassar et al., 2010; Polanía 

et al., 2019; Stojić et al., 2020; Ting et al., 2015). 

2.2.3. Behavioral task 

Note that several terms are used here to describe the set of parameters that were manipulated in 

the behavioral task. To communicate the methods in the analysis clearly, these parameters are 
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referred to using acronyms collated in Figure 8 and are redundantly defined in the methods to 

avoid any confusion. To facilitate performance in the task, subjects were given a cover story 

where they role played as doctors treating patients with an unknown virus. Each treatment 

combined two drugs: a pill and syringe. On each decision trials, subjects were asked to choose 

one of two available treatments that combined varying amounts of pills and syringes, i.e., 

attribute magnitudes (AMs) refer to drug dose: the number of pill or number of syringes that 

make up a treatment, with doses ranging from 0 to 9. AMs were indicated by a number 

overlapping the corresponding drug symbol for pill or syringe (Figure 9a) Subjects were told the 

treatment value (TV) of each treatment was equal to the AMs weighted by drug effectiveness 

(DE): each drug had corresponding absorbance, which was defined as the drug dose that has an 

effect. DE could take a value from -90% and +90% and was represented by blue or red stars for 

the known DE, or a question mark cue for the unknown DE (Figure 8; Figure 9b). Subjects 

were instructed to choose treatments using the keyboard, pressing the ‘a’ key to select the left 

treatment and ‘d’ key to select the right treatment. Treatment values were computed using the 

following equation: 

𝑇𝑉 = [𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 ∗ 𝑘𝑛𝑜𝑤𝑛	𝐷𝐸] + [𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 ∗ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐷𝐸]															 

Note that the equation resembles the aforementioned attribute integration model of subjective 

value computation (Rangel & Clithero, 2014), Equation 9 is presented again for convenience: 

Option Value = ∑ (βi * attributei) 

This computation determined the feedback that was displayed to subjects after choices in the 

decision trials (Figure 9c). Additionally, it provides theoretical support for the analyses, the 

design of the behavioral paradigm implemented in the present thesis, and discussions of the 

results. 

[Equation 10] 
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Term Meaning in the task 
Attribute Magnitudes  

(AM) 
AM is the number of doses for either the syringe or pill 
of a given treatment option in the behavioral task. It is 
the “known AM” if the value refers to the drug (syringe 
or pill) with known attribute effectiveness or it is 
“unknown AM” if the value refers to the doses of the 
drug with unknown effectiveness. 

Attribute Effectiveness  
(DE) 

Multiplier for each drug (distinct for the pill and 
syringe). A “known DE” indicates the value is displayed 
to subjects during decision trials; a “unknown DE” 
indicates the value is hidden from subjects during 
decision trials. 

Treatment Value  
(TV) 

Treatment Values refer to the true reward amount of an 
option (left or right). This value is computed by the 
following function for each option: 

 
(known AM*known DE) + (unknown AM*unknown DE) 
        “known TV”                          “unknown TV” 

 
Here, “known TV” only refers to the known attribute 
magnitude weighted by the known drug effectiveness; 
“unknown TV” only refers to the unknown attribute 
magnitude weighted by the unknown drug effectiveness. 

known AM

unknown AM

known AM

unknown AM

known DE

unknown DE

Figure 8. Critical terms for the methods section. These terms refer to the critical parameters 
describing how value and informativeness were manipulated in the behavioral task. 
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Throughout the task, subjects were only shown the DE of one drug, either the pill or 

syringe, referred to here as the known DE. The DE of the other drug needed to be inferred using 

feedback, referred to here as the unknown DE. Note, the DE could be negative to indicate an 

aversive contribution to the treatment value, TV (Figure 9b). Contextualized as poisoning the 

patient, subjects endeavored to maximize healing and minimize poisonous treatments, i.e., their 

goal was to maximize the treatment value, TV. Altogether, subjects were required to learn about 

the unknown DE to develop an estimate of the unknown TV in order to combine with the known 

Figure 9. Decision in the task were 
contextualized as treatments. (a) An example 
of a decision trial. Each option is composed 
of two attributes, a pill and syringe, and their 
respective attribute magnitudes (AMs). In 
this example, the left treatment combines 8 
pills and 1 syringe. Conversely, the right 
combines 1 pill and 8 syringes. Drug 
effectiveness (DE) is also displayed for one 
of the two drugs, indicated by the number of 
stars and color (blue for healing, red for 
poisonous). The other drug needs to be 
learned, indicated by the question-mark 
symbol. (b) Stars indicate the absorbance of 
the drug, its DE, which itself ranges from -
90% to +90%. Negative DE symbolizes 
poisonous or adverse treatment and positive 
symbolizes healing or appetitive treatment. 
(c) Treatment values (TVs) are the sum of 
AMs weighted by their respective DE. AMs 
and their respective DE are boxed in yellow 
for clarity, while the sum of these gives the 
TV boxed in blue. In this example, the 8 pills 
have an absorbance of 3 stars (50%), so it 
has a known TV of 4. The 1 syringe has an 
absorbance of 1 star (10%), so it has an 
unknown TV of 0.1. Their sum, giving a TV 
of 4.1, serves as feedback for subjects. 
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TV. Accuracy here produced proper value-based decision making. Additionally, this design 

allowed investigation of value based decision-making strategies while navigating a computerized 

multi-attribute environment.  

After feedback, a small fixation button appeared at the center of the screen. Subjects were 

required to click this button to start the next trial (Figure 10 shows the time flow of the task). 

This served two purposes: to control attentional bias that may occur if subjects endogenously due 

to a preference for leftward or rightward options or exogenously due to a preference to the pill or 

syringe stimuli (Fiedler et al., 2019; Gluth et al., 2020; Hunt et al., 2018) and to record and 

punish failed attention on the task, such as when subjects were away from their keyboard. As this 

was a remote task without a proctor, subjects were warned that missing too many trials and 

fixation button clicks would disqualify their participation in the experiment. No data was 

excluded over this scenario. Examining only the 39 subjects who completed the task with a 

Figure 10. The time flow of decision trials. 
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choice accuracy rate above 60%, no subject missed more than 1.5% of trials, with the average 

rate of missed trials across subjects equaling 0.19%. 

Subjects were also probed about their running estimate of the unknown DE (Figure 11). 

These survey trials were interleaved with decision trials, occurring at a pseudo-random schedule 

to avoid signaling any changes in DE. Subjects were instructed how to use the slider to report 

their running estimates. If they were certain about their estimate, they were advised to slide the 

white square directly over the number of stars that represents the unknown DE (Figure 11). 

However, if subjects were uncertain about their estimate in the unknown DE, they should slide 

the white block between these ticks, or nearer their more certain choice. For example, a subject 

believed +2 or +3 stars can explain their observations (Figure 11; see Figure 9b for DE values 

that stars represent). 

Finally, subjects were instructed that the values of the known and unknown DE could 

take and update-to after some trials. However, they received no signal when DE updates did or 

might occur. The update occurred for the known and unknown DE, though not at the same time. 

Changes to either DE did not signal changes to the other. Subjects were notified about this 

update process, but not notified about the schedule or occurrence of updates. The purpose for 

these updates without warning was to promote attention on both attributes in the task and to 

examine trial-and-error learning, which makes information seeking behaviors explicit (Chapter 

1.5. – “Informativeness”). Additionally, the location of the unknown DE swapped after a block, 

e.g., if subjects started the task with the unknown DE on top in the first block, the unknown DE 

was at the bottom in the next block (Figure 8). The initial location of the unknown DE was 

randomized.  
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Figure 11. Survey trials were pseudo-randomly interleaved with decision trials in the task. Pseudo-
random, because these were interleaved in a manner that could not signal a change in unknown DE. 

Specifications 

The practice task was composed of 30 decision trials and 4 survey trials; its schedule was 

the same for all subjects (shown in Figure 12). The purpose of the practice task was to confirm 

the rules of the task were understood; to ensure subjects could run the experiment on their 

computer without any technical issues; and confirm data could obtained.  
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Figure 12. The practice task schedule of decision and survey trials. The horizontal axis indicates the trial 
number, the vertical access represents the DE value of the known (blue line) and unknown (red line) 
drugs. Asterisks indicate survey trials. Survey trials probed subjects about their running estimate of the 
unknown DE (red line). These survey trials occurred on trials 8, 15, 24, and 30 for all subjects. 

Subjects began the main task after practice results were satisfactory. The main task was 

composed of 200 decision trials with 20 interleaved survey trials in one total session. One 

possible schedule is shown in Figure 13 (the rest are shown in Appendix G) Subjects completed 

2 blocks of 100 trials. Each block was characterized by whether the unknown DE was on the top 

(pill effectiveness) or at the bottom (syringe effectiveness) during decision trials (Figure 10). 

The subjects received a 1-minute rest period between blocks. Within a block, both the known and 

unknown DE updated every 20 choice trials. This update was offset between the DEs, i.e., the 

first DE updated on decision trial 10 and then every 20 trials thereafter; meanwhile, the other DE 
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first updated on trial 20 and then every 20 trials thereafter. DE updates were indicated by a 

change in the number of stars and color on the same row as the corresponding drug and were 

constrained to a specified set of stars (Figure 9b). Subjects were not told nor signaled when DE 

updates would occur in the task. The schedule for survey trials was the same across subjects 

regardless of assigned decision trial schedule. Survey trials were interleaved with decision trials 

and occurred twice within the duration of each unknown DE: once during the first ten trials after 

the unknown DE updated and again during the last 10 trials after an unknown DE update. The 

survey trial involved moving a white-box slider over a 100 ticked black bar with 10 possible DEs 

displayed; one for each star level (Figure 9b).The survey trials served as an independent 

measure for whether the models made accurate estimates of the unknown DE and used to 

confirm that the observed human behavior was due to understanding the rules of the task. Lastly, 

subjects were aware about time pressure during the survey t  rials but were not aware of its exact 

duration of 15 seconds. Fixation buttons needed to be left-clicked within 5 seconds or subjects 

would receive feedback about their slow response and the amount of money lost before starting 

the next decision trial. Decision trials also had time pressure. Subjects pressed ‘a’ key or ‘d’ key 

to select the left or right treatment, respectively, within 15 seconds or be penalized $10. If 

subjects missed the decision trial, they received feedback that they were too slow, and the 

amount of money lost (Figure 10). There was no time pressure for the web pages preceding the 

main task, e.g., subjects were free to read the consent page (Appendix C) and take as long as 

needed to fulfill the checkboxes confirming the subject is under appropriate conditions to start 

the main task (Figure 7). 
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Figure 13. One possible schedule of the DE (“betas”) of the main task over 200 trials. Subjects were 
randomly assigned a schedule when the link to the main task was clicked. The red line indicates the 
schedule of the unknown DE and the blue line indicates the known DE. All the DE schedules that could be 
assigned are presented in Appendix G. 

According to the cover story that was presented to subjects, the main task was a series of 

treatments, where each treatment was a consequence of the choices made between two 

treatments in the decision trials. Figure 14a displays an example of an easy decision trial, which 

assumes that subjects learned the unknown DE (star values in Figure 14a and Figure 14b are 

displayed for didactic purposes). Easy decision trials occurred when the TV difference between 

options was large, as when the known and unknown DE differences was high. Conversely, 

decision trials were hard when the known and unknown were similar as in Figure 14b. Figure 

14c depicts a more typical scenario. In addition to manipulating expected reward (the TV), 

option informativeness was also manipulated. Informativeness was manipulated by varying the 

attribute magnitudes (AMs), i.e., the number of doses of each drug composing a treatment. 

Informativeness was assumed to depend on the AMs, as these and feedback were the only known 

information for subjects to use to facilitate value-based decision making. Here, it was speculated  
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Figure 14. Examples of easy and hard value-based decision making. (a). An example of an easy choice 
trial. Both DEs are shown here for clarity, so that this example assumes the subject knows the value of the 
unknown DE. In this example, the pill DE (3 stars; 50% of the AM heals) is greater than the syringe DE 
(1 star; 10% of the AM heals). Since the right option, selected by pressing the ‘d’ key, includes more pills, 
its treatment value is greater, i.e., 4.5 (right, ‘d’ option) compared to 0.9 (left, ‘a’ option). These 
treatment values were the only feedback subjects received regarding their choices in the game. Note that 
this decision is easier than the decision trial shown in (b). (b) An example of a harder decision trial that 
(a), where both DEs are shown here for clarity. Here, it is harder to determine which option has a higher 
TV. In this case, the right option returns 4.9 treatment value whereas the left option returns 4.2. It should 
be harder to choose the high TV when its similar to the low TV.  

that a higher, known AM would be more useful when compared to feedback, e.g., if the known 

drug dose was large, but feedback was small (the rational is discussed below). This was 

formulated as follows: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑢𝑛𝑘𝑛𝑜𝑤	𝐴𝑀 

Information should be the most appetitive soon after an update to the unknown DE is detected, as 

seen in the literature on the explore-exploit dilemma (Wilson et al., 2020). Notably, this estimate 

of informativeness is more quantifiable that the categorical measures in the literature (e.g., 

Trudel et al., 2020; Warren et al., 2017; Wilson et al., 2014; Zajkowski et al., 2017). As discussed 

in Chapter 1.5 – “Informativeness”, informativeness is an option attribute whose outcome 

results in the reduction of uncertainty. The rational of Equation 11 is represented in Figure 15, 

which shows an example decision trial. In a scenario where the subject is uncertain about the 

[Equation 11] 
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unknown DE, such as when a change has been detected, subjects should make decisions that 

makes facilitates learning – in this case, they should make decisions that allows them to 

maximize how much of the expected feedback they understand. This is accomplished by 

choosing the treatment with the highest known AM (this is left option in the decision trial in 

Figure 15) and makes examining the contribution of the unknown TV easier to interpret. For 

example, if the known AM is maximized and feedback is observed to be mostly from the known 

TV, then the known DE is likely greater than the unknown DE; conversely, if the known AM is 

maximized but most of feedback is not explained by the known TV, then it is likely that the 

unknown DE is greater than the known DE. The consequence of this decision strategy is an 

accelerated reduction of uncertainty following feedback; this behavior is an example of the 

definition of informativeness: the reduction of uncertainty, albeit an indirect measure (Chapter 

1.5. – Informativeness).  

 

Figure 15. Rationale for the quantitative measure of informativeness in this thesis. Informativeness 
should be the most appealing after an unknown DE has been detected. During this period of high 
uncertainty, decisions should focus on facilitating learning from the outcome. 

Known > unknown Known ≈ unknown Known < unknown

feedback

known contribution unknown contribution
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2.3. Results 

A reminder that the critical terms describing the manipulated variables in this analysis are 

described in Figure 8.  

In order to control the difficulty of the main task, DE schedules were constrained to eight 

possible sets (Appendix G). In a pilot run with the same task but with AMs and DEs generated 

randomly, half of eleven subjects finished with choice accuracy rates below 60% – which would 

have disqualified them from further analysis. The average choice accuracy was 67%±5% in this 

pilot sample. These preliminary results suggested that the task was too difficult. To make the task 

easier and retain more subject data, AM and DE schedules were generated pseudorandomly so 

that AMs of opposing treatments were more mirrored. That is, more trials contained AMs in 

which one attribute had the same magnitude on the opposite attribute in the alternate treatment, 

allowing for treatments to be compared more easily (e.g., Figure 14a). However, this increased 

the potential for problematic multicollinearity. Multicollinearity needed to be reduced to avoid 

confounds from unintended patterns between the parameters (i.e., known and unknown AMs, 

DEs, and TVs). Figure 16a presents a data array with correlation coefficients represented by 

scaled color matrixes; these correlations compared TVs and AMs across the eight possible 

schedules. Appendix D displays the corresponding correlation coefficients and standard errors 

numerically. The bottom-left quartile in Figure 16a is relevant in this discussion (with the 

bottom-left quartile in Appendix D serving as a numerical representation). Therein, each AM 

was compared with that same AM weighted by its respective DE (i.e., the known and unknown 

TVs, the amount of treatment contributed by the drug), showing that correlation coefficients are 

all below 0.2 for between attribute magnitudes (pill or syringe) and treatment value schedules. To 

ensure that multicollinearity was not a significant confound when using these schedules in a 
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logistic regression, Figure 16b shows variance inflation factors (VIF). In this analysis, 

regressors were the AMs and their respective TVs after weighting with the respective DE. VIF is 

measure of multicollinearity (e.g., O’Hora et al., 2015) wherein values above five indicate 

problematic multicollinearity between the regressors. VIF analysis produced values well below 

this problematic threshold (Figure 16b). 

 

Figure 16. Intercorrelations of TVs (AMs weighted by respective DEs) and the attribute magnitudes 
(unweighted AMs) for known and unknown treatment options. (a) The color matrix is easier to 
understand as a set of quadrants. In the top-left quadrant, correlation coefficients between known and 
unknown TVs are compared between known and unknown AMs for the left and right option (giving 4x4 
matrix). Naturally, correlations are high (near +0.5) when comparing AMs weighted by the same DE, 
i.e., weighted by the known or unknown DE. In these cases, DE is shared for the left and right treatments. 
Comparing TVs across DEs, i.e., comparing unknown with known weighted AMs by DEs, correlation 
coefficients are closer to 0 (Appendix D). The top right and bottom left quadrants are the same analysis. 
Here, weighted AMs with unweighted AMs are compared. The correlation coefficients in this comparison 
are at or below 0.2, a good indication of decorrelation. The bottom-right quadrant compares AMs. The 
mirror-like constrained introduced to make the task easier is evident in this quadrant (discussed in the 
main text). When a known AM is small, it’s counterpart (left or right) is small and conversely, when the 
unknown AM is high, its counterpart is high. Abbreviations (note that treatment value, TV, and expected 
value, EV, are analogous terms in this figure): Left and known expected value, LknEV; right and known 
expected value, RknEV; left and unknown expected value, LunEV; right and unknown expected value, 
RunEV; left and known attribute, LknAt; right and known attribute, RknAt; left and unknown attribute, 
LunAt; right and unknown attribute, RunAt. (b). The variance inflation factor (VIF) is used to identify 
unintended correlations between independent variables of a regression. Specifications were constrained 
before data collection using VIF, confirming values were all below 5, suggesting that multicollinearity is 
not problematic in the following analyses. 

On average, subjects chose the high valued option 82.9% ± 1.30% (Appendix E displays 

behavioral responses and schedules for each subject). During the task, subjects learned the values 
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of the unknown DE through trial-and-error. To examine whether learning occurred, trials were 

binned by five-trials after an unknown DE updated. The duration of unknown DEs was twenty 

trials, producing four time-dependent bins of five trials for the following analyses: specifically, 

the trial bins combined the first five trials, the second five, the third five, and the fourth five trials 

of the unknown DE duration (Figure 17a). An ANOVA analysis comparing these four bins 

revealed a significant effect of the trial time and choice accuracy (F(3, 152) = 6.9, p = 0.002). A 

Tukey-Kramer post-hoc analysis further suggested that performance in the first trial bin was 

significantly lower than performance in the subsequent bins. Additionally, the bins after the first 

five were not significantly different from each other, suggesting asymptotic performance after a 

learning phase (Figure 17b).   

 

Figure 17. Behavioral task choice accuracy analyses. (a) Boxplot and whisker plots demonstrating the 
spread of subject accuracy rates as binned by 5-trials from the onset of a new unknown DE. Red markers 
indicate the median and box edges indicate the first (q1) and third (q3) quartiles of the sample of subject 
accuracy means in the analysis. Values beyond the whiskers (greater than q3+ 1.5 × (q3– q1) or smaller 
than q1– 1.5 × (q3– q1) are outliers and indicated by crosses. ANOVA results found a significant main 
effect of trial bin and accuracy (F(3, 152) = 6.9, p = 0.002; also indicated by the low overlap of the 
spread in accuracy in the “First 5” compared to the subsequent trial bins). (b). Tukey-Kramer post-hoc 
analysis comparing accuracy rates by bin. Center circle indicate accuracy means; horizontal lines are 
the 95% confidence intervals. This post-hoc analysis revealed that the “First 5” trial bin had a 
significantly lower mean than the subsequent bins. Negative mean differences indicate an improvement in 
performance: First 5 - Second 5 mean difference = -0.083; p = 0.0009; First 5 – Third 5 mean difference 
= -0.068, p = 0.01; First 5 – Fourth 5 mean difference = -0.089, p = 0.0003. Further, the differences 
between bin after First 5 were not significant (Second 5 – Third 5 mean difference = -0.016, p = 0.89; 
Second 5 – Fourth 5 mean difference = -0.001, p = 0.99; Third 5 – Fourth 5 mean difference = -0.021, p 
= 0.77). 
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Subjects were asked twice to give running estimates for each unknown DE: once during 

the first ten trials of the duration of the unknown DE, and again during the last ten trials. Subjects 

were also asked to report their uncertainty: the number of stars nearest to their preferred slider 

response. These survey trials were considered accurate it they were equal or nearest to the true 

DE (Figure 11). Using this definition of survey accuracy, subjects had an average survey 

accuracy of 58.9% ± 4.57%. An ANOVA analysis comparing survey accuracy rates interleaved in 

the first ten trials (accuracy: 52.1% ± 4.63%) with those interleaved in the last ten choice trials 

(accuracy: 67.1% ± 4.85%) showed a significant difference (F(1, 76) = 5.1, p = 0.02). Providing 

further support for the occurrence of learning in the task. 

Though treatment values and their drug dose attributes were decorrelated (Figure 16), it 

was still conceivable that subjects chose according to drug dose magnitude. Further, as learning 

was observed, it was critical to investigate the trials where learning may have occurred; namely, 

whether information seeking was evidence in the “First 5” bin (Figure 17). To conduct this 

examination, a multiple logistic regression was conducted with weighted AMs (i.e., known and 

unknown TVs) and AMs as regressors (terms can be reviewed in Figure 8). The dependent 

variable was a binary variable indicating whether the treatment on the right was chosen or not (in 

other words, whether the ‘d’ key was pressed or not during decision trials); trials where subjects 

were too slow to make decisions were omitted. Regression results demonstrate that subjects 

generally based decision on the known and unknown TVs and less-so on AM (Figure 18), 

suggesting learning occurred and that increasing performance in the task was due to adherence to 

the rules of the behavioral task. Note that the Figure 18 regressors and dependent variable 

vectors are arranged in five trial bins, like the accuracy analysis described above. This made 

explicit the evolving preference for the right option more when right known and unknown TVs 
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were greater, as opposed to greater respective AMs. Conversely, subjects increasingly preferred 

the right option less when left known and unknown TVs, and not the respective AMs, increased 

in value (Figure 18; Appendix F). As discussed above, unknown DEs were typically in effect 

for twenty trials, producing four bins of five trials each (Figure 18). Put concisely, decisions 

corresponded with weighted AMs over time as evidenced by the observation that subjects 

increasingly chose the right treatment more over-time when the right drug was greater and 

conversely chose the right option less when the left drug greater (Figure 18). These effects were 

notably greater for bins after the first five trials, compared to the second bin and onwards, 

suggesting that the increase in accuracy rates after the first 5 trials was due to an increasing 

adherence to basing decisions on the known and unknown TVs. Additionally, those regression 

results showed decreased and sustained independence from AMs on decisions after the first 

trials. That is, subsequent bins showed small and insignificant beta coefficients for all AM 

regressors, known and unknown. However, the beta coefficients in the first five bin for left 

unweighted drug doses were significant or approached significance, indicating these attributes 

were initially influential during decision making. One reason for this trend may be that subjects 

made more random decision that incidentally correlated with AMs; or perhaps AMs were used 

strategically during decision making when the unknown DE had recently updated. That is, 

subjects may have used attribute magnitudes to tease out the value of the unknown DE when its 

true value was the most uncertain, e.g., in a manner that made their consequence informative. 

This would be expected if exploratory behavior were engaged in the task, as it would have to 

occur in the first 5 trials when the unknown DE had updated, and feedback no longer coincided 

with expected TV. This was the basis of the following analysis. 
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Figure 18. Multiple logistic regression with weighted and unweighted AMs as regressors and a binary 
dependent variable indicating whether subjects chose the right option (equals 1) or not (equals 0). 
Abbreviations (note that treatment value, TV, and expected value, EV, are analogous terms in this figure): 
Intercept, int; Left and known expected value, LknEV; right and known expected value, RknEV; left and 
unknown expected value, LunEV; right and unknown expected value, RunEV; left and known attribute, 
LknAt; right and known attribute, RknAt; left and unknown attribute, LunAt; right and unknown attribute, 
RunAt. Missed trials were omitted in this analysis. Bars indicate the mean of the beta coefficient; error 
bars indicate SEM; more positive or negative bars indicate greater effect of the weighted or unweighted 
AM on choosing or avoiding the right option. Each bar plot presents results for 5 trial bins of the 20-
trials an unknown DE was in effect. Green bars indicate p < 0.05, blue bars indicate p < 0.10 but p > 
0.05, and red bars indicate p > 0.10. The red, horizontal, and dotted lines indicate the mean of the beta 
coefficients for the effect of the weighted unknown AMs during the first 5 trials. The same beta 
coefficients in the subsequent 5 trial bins (b, c, d) surpass these lines, indicating greater effect of the 
weighted unknown AM with subsequent trials, while the unknown DE stays the same. Notably, attribute 
magnitudes (the regressors labelled LknAT, RknAt, LunAT, and RunAt) do not approach significance 
after the first 5 trial bin, suggesting subjects did not depend on these values after this early period of an 
unknown DE. The effect of known weighted AMs remained high and significant, indicating subjects 
understood the task. Appendix F displays logistic regression results in further detail. 

a. b.

c. d.
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The next analysis examined whether information seeking was conducted. Like value, the 

option treatment value (TV), one treatment typically had a higher treatment value than the 

alternate. Likewise, it is proposed here that one treatment was also typically more informative 

than the other. This discussion describes two definitions of informativeness – both are presented 

here: the first is to demonstrate evidence for why it is not a suitable definition to explain subject 

behavior; the second is the definition of informativeness discussed in the methods section of this 

chapter (Equation 11). To analyze treatment informativeness and tease out its consequential 

behavior, the first definition of informativeness was proposed as follows: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 

This ratio refers to the drug doses, or also the attribute magnitudes (AMs; Figure 8). The 

numerator is simply the unknown AM, divided by the denominator, which is the sum of the 

unknown AMs that compose a treatment. Consequently, the value of this ratio is high when the 

unknown AM is high. The logic for this first definition was as follows. When the unweighted 

AM of the unknown DE is greater than the unweighted AM of the known DE,  it would be easier 

for the subject to learn about the unknown DE because its contribution to outcome should be 

larger. To take an extreme case as an example, when the unknown AM equals the maximum 

magnitude of 9 and the known AM equals the minimum magnitude of 0, the result of entering 

these values into equation 12: 

/#0#(1#	34
/#0#(1#	34'0#(1#	34

 = 5
5'6

 = 1 

In this scenario, the treatment’s informativeness is maximal. That is, if subjects chose an option 

with this informative value, then the TV outcome would be entirely the result of the relationship 

between the unknown AM and unknown DE. Learning is maximal in this case. In the opposite 

[Equation 12] 
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extreme, when the unknown attribute equals 0 and the known attribute equals 9, the resulting 

computation is as follows: 

/#0#(1#	34
/#0#(1#	34'0#(1#	34

 = 6
6'5

 = 0 

In this scenario, the treatment’s informativeness is minimal. That is, if subjects chose an option 

with this informative value, then the TV outcome would be entirely uninformative with regards 

of the relationship between the unknown AM and unknown DE. Consequently, this treatment 

would provide no information and so learning could not occur in this case. Note that, although a 

treatment with these latter AMs would teach nothing about the unknown DE, it may be tempting 

given a high known DE. Therefore, if informativeness was irrelevant, then decisions should be 

entirely value-based throughout the task, and this should be observed regardless of the five-trial 

bin (i.e., time during the duration of an unknown DE). Conceptually, this definition of 

informativeness (Equation 12) in the task appears to be reasonable and comparable to Equation 

11. However, they are complementary and not equal. This was easy to see in the following 

analysis for effects of informativeness on decision making in the task. As before, decision trials 

were binned by five trial for a second multiple logistic regression. Here, the four regressors 

included left and right option treatment values and left and right informativeness of options in 

each trial. As before, the dependent variable was binary and defined as whether the right option 

was chosen on a given trial. To be clear, the dependent variable equaled a value of one on 

decision trials where subjects chose the right option and equaled zero on decision trials where 

subjects chose the left option. The decision trials where subjects failed to make a choice, i.e., 

trials where the response was too slow, were excluded from the analysis (Figure 19; Appendix 

F). The results of informativeness on decision making (Equation 12) appeared counterintuitive 

to the findings of information seeking in the literature (Chapter 1.5. – “Informativeness”). 
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Figure 19. Informativeness had a significant effect only on the first 5 trials, however the results appear 
counterintuitive. There were no further significant effects of informativeness on decision making after the 
first 5 trials. Multiple logistic regression with treatment values (left and right) and treatment 
informativeness (left and right) as regressors and a binary vector indicating whether subjects chose the 
right option or not. Abbreviations: Intercept, int; Left treatment value, LEV; right treatment value, REV; 
left treatment informativeness, Linfo; right treatment informativeness, Rinfo. The red, dotted, horizontal 
bars indicate the level of the mean of beta coefficients for LEV and REV in the first 5 trials (a) to 
demonstrate the progressive development of the beta coefficient in the subsequent trials (b, c, d). Green 
bars indicate p < 0.05; blue bars indicate p >0.05 but p < 0.10; red bars indicate p > 0.10.  
Informativeness is defined as the unknown AM of a treatment divided by the sum of the unknown and 
known AMs composing the treatment option. Appendix F displays logistic regression results in further 
detail. 

 Similar to Figure 18, the predictiveness of TVs on choosing the right treatment was 

negative with regards to the left TV (labeled “LEV” in Figure 19), such that greater left option 

TVs decreased the odds of choosing the right option; the converse was true for the right TV 

(labeled “REV” in Figure 19), where greater right option TVs increased the odds of choosing the 

right option (Figure 19). The effect of informativeness was significant only in the first five trials, 

a. b.

c. d.
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however, this result was counterintuitive. To elaborate these effects of informativeness on 

decisions (i.e., the “Linfo” and “Rinfo” regressors), when the left treatment was more 

informative, subjects appeared to avoided it and choose the right option. Conversely, if the right 

treatment was more informative, subjects avoided this highly informative right treatment. 

Additionally, the regressors for left and right TV with informativeness in the first five trial bin 

were additionally not correlated (left Pearson rLEV-Linfo = 0.10, right Pearson rREV-Rinfo = -0.03; 

subject-by-subject correlations all had p-values greater than 0.05). As discussed in the literature 

review (Chapter 1.5 – “Informativeness”, if informativeness was a factor, then it is expected to 

be appetitive during exploratory phases. These phases are critical in the first bin. However, 

informativeness was not appetitive; it was instead aversive to value-based decision making in the 

task (Figure 19). It is clear that informativeness is realistically described by the complement of 

Equation 12. This complement is Equation 11 that was discussed in the methods section of this 

chapter, repeated below for convenience: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 	
𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑘𝑛𝑜𝑤	𝐴𝑀 

To be clear, the difference between these formulae is whether the numerator reflects the 

magnitude of the known or the unknown AM. Using the former definition of informativeness 

results in a rational pattern of decision making that is expected in a learning task. Specifically, 

the significant appetitive effects of informativeness during the first five trials are consistent with 

the literature on the explore-exploit dilemma (Figure 20; Appendix Fc), as this is the period 

when information seeking behavior is typically observed. To elaborate, left treatments with 

increasing informativeness during the first five trials significantly reduced the odds of choosing 

the right treatment; conversely, right treatments with increasing informativeness during the first 
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five trials significantly increased the odds of choosing the right treatment. Notably, these effects 

did not extent to subsequent bins (Figure 20). 

 

Figure 20. Multiple logistic regression with treatment values (left and right) and treatment 
informativeness (left and right) as regressors and a binary dependent variable indicating whether 
subjects chose the right option or not. Abbreviations: Intercept, int; Left treatment value, LEV; right 
treatment value, REV; left treatment informativeness, Linfo; right treatment informativeness, Rinfo. The 
red, dotted, horizontal bars indicate the level of the mean of beta coefficients for LEV and REV in the first 
five trials (a) to demonstrate developments of the beta coefficient into the subsequent trial bins (b, c, d). 
Green bars indicate p < 0.05; blue bars indicate p >0.05 but p < 0.10; red bars indicate p > 0.10. 
Informativeness is defined as the known AM of a treatment divided by the sum of known and unknown 
AMs composing the treatment. Appendix F displays logistic regression results in further detail. 

Perhaps the above reasoning for using Equation 11 over Equation 12 may seem like a 

speculative reasoning. One consequence of assuming Equation 12 as the definition of 

informativeness is the case when the known AM equals zero. Here, as discussed above, 

informativeness would be maximal. If subjects were using the unknown AM to make informative 

a. b.

c. d.
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choices, they would exploit this case of maximum informativeness when the known AM is zero. 

To examine whether this occurred, an ANOVA analysis was conducted with four vectors, one for 

each five-trial bin that an unknown DE was in-effect as in the previous analyses, with rates based 

on the percentage of trials that subjects chose the maximal informative choice (Figure 21). There 

were no significant effects (F(3, 152) = 2.51, p = 0.061), suggesting that subjects neglected these 

maximally informative options and supporting using Equation 11 implementation of 

informativeness with the known AM as the numerator for further analysis (Chapter 3 – 

“Bayesian models”).  

 

Figure 21. Resultant box and whisker plot from an ANOVA analysis comparing the rate subjects chose 
the maximally information treatment assuming Equation 12. That is, whether subjects chose an option 
when its known AM equaled 0 and its unknown AM was greater than zero (resulting in an informativeness 
value of 1). Choice behavior did not significantly vary between 5-trial bins that an unknown DE was in-
effect. Red markers indicate the median and box edges indicate the first (q1) and third (q3) quartiles of the 
sample of subject choice means in the analysis. Values beyond the whiskers (greater than q3+ 1.5 × (q3– 
q1) or smaller than q1– 1.5 × (q3– q1) are outliers and indicate by red crosses. 
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2.4. Discussion 

This behavioral was conducted to investigate whether informativeness can be tracked 

using a quantifiable operational definition – at least more quantifiable than the categorical 

definitions found in the value-based decision neuroscience literature examining the explore-

exploit dilemma. First, behavioral results suggested that subjects understood the task and learned 

to use weighted attributes to make high valued choices, as intended. That is, value-based 

decisions were dependent on the treatment values and not simply the attribute magnitudes 

(Figure 18). Further, these appetitive effects of the true treatment value significantly increased as 

the task progressed, an indication of learning (Figure 17). Specifically, choice accuracy was 

significantly lower and dependent more on the attribute magnitudes during the first five trials 

compared to the subsequent trials of the duration of an unknown drug effectiveness (Figure 18). 

It is proposed here that the dependence on attribute magnitudes during the first five trials was 

strategic and not random. The use of the attribute magnitudes could be described by a simple 

arithmetic definition of informativeness suggesting that subjects utilized the attributes during a 

phase where learning occurred. This phase occurred during the first five trials, as the subsequent 

trials found asymptotic performance, suggesting no learning occurred after the first five trials 

(Figure 17). Herein lies a limitation in the present thesis thus far: it is difficult to support that 

strategic decision making occurred (to facilitate learning) without gaze data or neuroimaging 

methods to estimating where attention was directed; such measures could contribute evidence for 

or against strategic decision making in the task (Fiedler et al., 2019; Gluth et al., 2020; Hunt et 

al., 2018). In any case, analyzing behavioral results alone suggested that subjects utilized 

attribute magnitudes in a manner described by Equation 11 in a phase that coincided with 

learning in the task (Figure 20). One possible reason for this is that this manner removed the 
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known treatment value contributed by weighting the known attribute magnitude by the known 

drug effectiveness (note, terms as they related to the behavioral task are described in Figure 8) 

first, allowing subjects to more easily infer the unknown drug effectiveness from the left-over 

feedback (Figure 15). That is, it is speculated here that subjects performed the following 

computation to arrive at the unknown drug effectiveness value:  

𝑇𝑉 − 𝑘𝑛𝑜𝑤𝑛	𝑇𝑉
𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐷𝐸 

Subjects were more inclined to perform the above computation wherein a small numerator, as in 

the case when the known attribute magnitude is larger than the unknown attribute magnitude, is 

easier to learn about than a large numerator. An argument against using the known attribute 

magnitude this way were cases when it equaled zero. Therein, learning could not occur unless 

informativeness was based on the unknown attribute (Equation 12). In this case, when the 

known attribute equaled zero, informativeness would be instead be maximal. However, results 

showed that subjects did not significantly choose the option with the known attribute magnitude 

equal to zero during the first five trial bin, when information was preferred (Figure 20). This 

finding, and that information seeking was significant in the first bin, supports the description of 

exploratory behavior based on the known attribute magnitude (Equation 12).  

In summary, subjects understood the behavioral task and performed as intended, 

deploying attribute-based, information-seeking decision making during learning phases – a sign 

of exploratory behavior. This preference for information and value changed a function of time, 

such that informativeness was influential during early-timepoints after the unknown drug 

effectiveness updated but then attenuated to insignificance on subsequent trials. At those 

subsequent phases after learning, value-based decision making was strictly deployed – a sign of 

exploitative behavior. These behavioral results contribute to the literature by demonstrating that 

[Equation 13] 
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learning in a multi-attribute task demands for a deliberation between option value and 

informativeness, lending support to the attribute integration model of subjective value. Further 

and critically, informativeness of options can be quantifiable, where greater informativeness is 

more appetitive. However, the algorithmic underpinnings of the information-seeking decision 

making strategy has not been discussed. To be specific: what conditions, or latent variables, 

signal when to deploy exploratory and exploitative behaviors? The literature on these phenomena 

suggest it is the amount of uncertainty – this is maximal during periods when the drug 

effectiveness has update and must be re-learned. However, the next research questions 

investigates whether the quantifiable definition of informativeness can improve the ability of 

computational models to explain human decision making. In the next chapter, study two sought 

to examine this question by utilizing Bayesian modeling methods. These models can test the 

extent that information-seeking occurred for each subject and allowed examination this strategy 

was an optimizing or a hindering strategy of value-based decision making. 
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Chapter 3 – Bayesian Models 

This chapter describes the computational modeling of simulated data and the behavioral 

findings in “Chapter 2 – Behavioral Experiment”.  Computational models are algorithmic 

hypotheses of behavior or cognition that allow researchers to probe non-linear and complex 

systems that are otherwise intractable with traditional or descriptive analyses (Farrell & 

Lewandowsky, 2018; Kriegeskorte & Douglas, 2018; Wilson & Collins, 2019). In an overview 

on the method, Wilson and Collins (2019) described a subset of applications of computational 

models. These applications are critical ideas to the approach in this chapter and so are briefly 

described in the first sub-chapter, in addition to their application in this chapter. In the following 

sub-chapter, a methods section describes the development of three Bayesian models that were 

used to explain human behavioral results in “Chapter 2 – Behavioral Experiment”. Before 

briefly presenting these models, a critical variable needs to be discussed. The expected value 

(EV) of an option differs from that option’s objective value (in the context of this thesis and 

behavioral experiment: the treatment value or TV; Figure 8). The TV is the objective true value 

of an option; the EV is the subjective value of an option, that integrates an estimate of relevant 

variables in the task (Glimcher, 2014). In this thesis, the two variables that influences the 

expected value are the estimate of the TV and the informativeness. These two terms should not 

be confused to be synonymous – they are distinct variables. Regarding the Bayesian models, 

each version is iteratively more complex, with the simplest model deliberating option EVs that 

only consider, a slightly more complex model caring about informativeness in addition to value, 

and a final complex model caring about informativeness and value as a function of uncertainty. 

Following the methods sub-chapter are model comparison results to identify the winning model 

and a discussion about the interpretation of these results and critical limitations.  
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3.1. Introduction 

As mentioned, Wilson and Collins summarized the use and applications of computational 

in a 2019 review, describing four critical uses: simulations, parameter fitting, model comparison, 

and latent variable estimation. The first application is to simulate behavior; simulation methods 

analyze computer-generated data produced by a task-performing version of the computational 

model under study. The model parameters can be manipulated in order to simulate subjective 

differences between subjects – this enables mathematically grounded predictions of human 

performance in the real task. In addition to predictions, simulated data gives modelers a means to 

test whether their computational models and task paradigms are capable of measuring the 

psychological constructs under study (Farrell & Lewandowski, 2018; Wilson & Collins, 2019; 

for examples of simulation methods: Chau et al., 2014; Collins & Frank, 2012; Hunt et al., 2014; 

Rescorla & Wagner, 1972; Wang, 2002; Wang et al., 2018). To this end, simulation methods were 

applied in the present thesis to assess the behavior of the computational models under study. That 

is, using simulated data, the models returned the probability of choosing each treatment option in 

accordance with their EV (integrating their TV and informativeness). In doing so, human 

decisions could be understood subject-by-subject and mathematical based predictions can be 

made about human decision making. The second application of computational models is 

parameter fitting, or free parameter estimating, which allows researchers to account for 

differences of subjective variables that are theorized to underlie behavioral and cognitive 

constructs under study (Farrell & Lewandowsky, 2018; Wilson & Collins, 2019). There are a few 

methods to get these estimates, such as finding the maximum likelihood of the free parameter 

value given the data or by using optimization algorithms that test a myriad of rational values to 

see which describe, or fit, the data best (Cohen, 2017). The present thesis applied the latter 



INFORMATION AND DECISION MAKING 85 

approach to estimate the degree of two free parameters: the first was related to how well subject 

decision making adhered to the true value of treatments; the second accounted for the extent of 

information-seeking expressed by each subject. More technically, models estimated a free 

parameter of value-based decision stochasticity and a second free parameter for the predilection 

towards information seeking (Farrell & Lewandowski, 2018; Wilson & Collins, 2019; for 

examples of parameter estimation discussed in this thesis: Chalk et al., 2010; Chau et al., 2014; 

Hunt et al., 2014; Levy & Glimcher, 2011; Ting et al., 2015). A third application of 

computational modeling is comparing different algorithmic hypotheses. This involves observing 

how well different models explain human or animal data relative to other models being tested. 

The best explanation of behavior is the winning model, and thus, the superior algorithmic 

hypothesis in the set of models under study (Farrell & Lewandowski, 2018; Wilson & Collins, 

2019). In this thesis, the model comparison methods penalized for the number of free parameters 

in the model and considered the sample size – this benefitted simpler explanations of behavior 

(Akaike, 1974; Schwarz, 1978). In this thesis, the simpler explanation is the model without a free 

parameter for a predilection informativeness, which is the model that only cares about value, i.e., 

the null hypothesis, that informativeness is not considered during decision making, benefits in 

this thesis for being simpler. The fourth application is latent variable estimation, which allows 

researchers to estimate variables that evolve over time during behavior and cannot be captured 

by a static variable, such a free parameter (Bach & Dolan, 2012; Courville et al., 2006; O’Reilly, 

2013; O’Reilly & Mars, 2015; for examples of latent variable estimation of uncertainty: Behrens 

et al., 2007; Courville et al., 2006; Meyniel & Dahaene, 2017; Muller et al., 2019; Nassar et al., 

2010). Here, latent variable estimation was used to track subject estimates of the unknown DE 

(terms in Figure 8 are used in this chapter as well) in the task and the amount of uncertainty 
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about those estimates on every trial. Bayesian inference was chosen to conduct these estimates 

because it is an optimal statistical procedure for imprecise decision making and trial-and-error 

learning (discussed in “Chapter 1.3.2. – By Bayesian inference”; O’Reilly, 2013; O’Reilly & 

Mars, 2015; Stone, 2013). A critical disclaimer regarding the use of Bayes’ theorem in this thesis 

is warranted. As is common in the cognitive neuroscience literature, Bayesian inference is used 

here to compare and approximate inferential strategies implemented by humans in the behavioral 

experiment (Bowers & Davis, 2012b; Griffiths et al., 2012). In other words, it is used to 

approximate a subject’s internal model of the task environment that is underlying their choices in 

the decision trials (Figure 10). The purpose was not to test whether humans are or are not 

Bayesian observers (discussed in the literature review). Instead, the statistical tool was used to 

approximate the role of trial-to-trial uncertainty in information-seeking versus value-based 

decision making. 

3.2. Methods 

Three versions of Bayesian models are described in this chapter. Generally speaking, 

these three differed in their preference for value and information and were composed of two 

central functions: a value function and an information function. The value function was based on 

Bayesian learning:  

𝑝(𝜃	|	𝑥&) ∝ 𝑝(𝑥&	|	𝜃) ∗ 𝑝(𝜃) 

          Posterior ∝	Likelihood * Prior 

In the context of this sub-chapter, θ is notation for a value that the unknown DE can take 

and 𝑥& indicates an observation at trial t. A demonstration of how Bayesian inference was applied 

is shown in Figure 22. The plot displays the schedule of unknown DE during a simulated run of 

the task with 185 trials and the black- and green- dashed line indicates the estimate or inference 

[Equation 14] 
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of the same unknown DE. Note that these simulation results only tested the Bayesian inference 

learner and so the update schedule and task duration are different than the actual behavioral 

experiment. Figure 22 shows the learning patterns of the typical Bayesian learner and the 

evolution of uncertainty over time, with uncertainty indicated by the spread of the color map of 

each possible unknown DE over each trial – warmer colors indicating an increasing probability 

of the unknown DE being the true value. For instance, once the task began and when the 

unknown DE updated, the Bayesian observer became maximally uncertain. This is indicated by 

the high spread of warmer colors around the estimated (observed) unknown DE when the white 

line jumps to a new value in the statespace of possible unknown DEs. As more experience is 

gained, the Bayesian observer steadily reduces uncertainty after an updated unknown DE, 

indicated by a converging spread and warming of colors around the estimated value of the 

unknown DE; note the convergence towards the true value of the unknown DE (Figure 22). 

Predictions of human behavior can be extrapolated from these simulation results. For example, 

the unknown DE updates a little amount between trials 60 and 80. The model failed to detect an 

unknown DE update if the change in unknown DE is quantifiably subtle. Additionally, the model 

also predicts that with more experience, confidence in the estimated unknown DE reaches 

asymptote, regardless of the number of trials experienced (note estimates after trial 80 when the 

unknown DE no longer updates; Figure 22). Bayesian inference learning is special for this 

reason: it can mathematically infer a probable estimate of parameters while also keeping track of 

the amount of uncertainty in those estimates (Figure 22). This was utilized in the present thesis 

to examine human behavior in the behavioral experiment. Specifically, these components of 

Bayesian inference learning were critical to the computational models. The development, design, 

and results of these models are described in the upcoming sub-chapters. 
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Figure 22. A sample of the Bayesian observer learning the unknown DE in a similar task that human 
subjects performed. This figure plots the observer’s beliefs, namely, the  posterior probability 
distribution, over the course of the task. The horizontal axis indicates the trial; the vertical axis 
represents the statespace of the unknown DE, i.e. the possible values the unknown DE could take; cold 
colors indicate very low probability of the unknown DE at that trial of the corresponding value in the 
statespace; warmer colors indicate increasing probability that the corresponding value at that trial is the 
value of the unknown DE observed; color scale bar is shown on the right; the solid white line indicates 
the true value of the unknown DE on each trial; the dashed line indicates the running estimate of the 
unknown DE, i.e., the maximum a posteriori, at the corresponding trial.  

In summary, the computational models deploy Bayesian inference to estimate the 

unknown DE (Equation 14; repeated below for the convenience):  

𝑝(𝜃	|	𝑥&) ∝ 𝑝(𝑥&	|	𝜃) ∗ 𝑝(𝜃) 

The probability that the unknown DE equaled θ given an observation (the posterior probability) 

is proportional to the probability of a recent observation assuming that the unknown DE equaled 

θ (the likelihood) weighted by the probability of θ being the true value of the unknown DE (the 

prior probability); this latter computation is typically based on experience or some other 

heuristic. Finding the posterior for all possible values of the unknown DE gives a probability 

distribution that can be used to infer an estimate of the unknown DE (O’Reilly & Mars, 2015). 

The following discussion describes the implementation of these components of Bayesian 

learning and their integration to produce an estimate of the unknown DE after each trial.  
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3.2.1. Value 

As mentioned above, the computational models had a value function and an information 

function. The value function is the learning algorithm of the models that estimates the unknown 

DE of a treatment by using feedback, AMs and the known DE in a decision trial, then uses this 

estimate to contribute to the expected value of future treatments (terms can be reviewed in 

Figure 8). The process to do this is described next. First, a vector whose elements represent all 

the possible values, i.e., the statespace, of the unknown DE was defined. This is notated by Θ 

and included real numbers between -1 and +1. Or notationally: 

Θ = (-1, 1)   

Note, the actual number of real numbers in this range is infinity, so a continuous account of this 

range must be approximated discretely to be analytically tractable. Approximating this range is 

easily implemented in MATLAB by creating a vector with the first element equal to -0.99, then 

iterating up to +0.99 by 0.01 as below (written as pseudocode for MATLAB): 

𝑠𝑡𝑎𝑡𝑒𝑠𝑝𝑎𝑐𝑒 = [−0.99: 0.01: 0.99] 	= 	 [−0.99, −0.98, −0.97, … , 0.97, 0.98, 0.99] 

The resulting vector is the statespace of the unknown absorbance with 199 elements 

approximating a continuous distribution in Equation 15. At trial 1, subjects had no a priori 

information about the unknown DE. To represent this initial ignorance, the prior distribution was 

made uniform. These ‘ignorant’ distributions consider all the possible values in the statespace to 

be equally probable. In this case, the probability for each possible unknown DE, θ, in the 

statespace is as follows: 

p(θ) =
1

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑡𝑎𝑡𝑒𝑠𝑝𝑎𝑐𝑒 =
1
199 

A probability for each θ that makes up the statespace composes the prior probability distribution 

of the unknown DE; in the initial trial, this is a uniform distribution (for example, Figure 3b, 

[Equation 15] 

[Equation 16] 
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bottom right). The estimate of the unknown DE used by the value function is a product of the 

mean and standard deviation of this prior distribution. This is computed by taking the weighted 

sum of the values in the statespace with their corresponding probabilities in the prior distribution 

at trial 1 (O’Reilly, 2013). Notationally: 

θ789,9 =h𝑝&(θ;)
%55

"$%

∗ θ; 

The estimated unknown DE at trial t,	θ789,9, is equal to the sum of possible values, approximated 

by the statespace with 199 elements, weighted by corresponding prior probabilities of each being 

the true DE. This estimation method is chosen over the alternate method of using the statespace 

element with the highest probability of being true, the maximum a posteriori (MAP). This latter 

method uses the peak of the distribution and is would optimize decision making if preference 

were based on this value. However, this estimate not account for the uncertainty, i.e., the 

standard deviation of the distribution, unlike the weighted sum (O’Reilly, 2013; O’Reilly & 

Mars, 2015). One potential flaw in using the weighted sum is that it starts with an estimate 

unknown DE of zero on trial 1 when the prior is a uniform distribution, introducing potential bias 

towards small absorbance values in the first trial. However, the effects of the prior become 

irrelevant over experience (Farrell & Lewandowsky, 2018; Stone, 2013): the uniform prior 

distribution results in the first posterior probability after trial 1 to be equal to the likelihood 

produced of the first observation. This likelihood function was Gaussian, with two parameters to 

define its distribution. The mean parameter was the observation after a choice and the standard 

deviation parameter was the standard deviation of the prior distribution. Notationally:  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	~	𝑁(𝑥" , 𝑠𝑡𝑑(p(Θ) ∗ Θ)) 

[Equation 17] 

[Equation 18] 
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Thereafter, the likelihood distribution was normalized before weighting with the prior to produce 

the posterior distribution, per Bayes’ theorem (Equation 14). In subsequent trials after the first, 

the prior distribution was equal to the posterior distribution produced by the previous 

observation. That is: 

𝑝(Θ) ∝ 𝑝(Θ|	𝑥"<%) 

The estimate of the unknown DE was obtained by computing the weighted mean of these prior 

distribution.  

 It is worth repeating that subjects did not receive warnings about updates to the unknown 

DE in the behavioral task. Further, subjects did not receive any hints about the schedule of these 

updates and were only notified that changes to the known and unknown DEs would occur at 

different separate times in the task. To capture the effects of anticipation of these updates in the 

model, a ‘leak’ was introduced to the estimated prior probability for each trial (Courville et al., 

2006; Nassar et al., 2010; Wilson et al., 2010). This was formulated as follows: 

𝑝&'%(θ;) = 𝑝&(θ;|𝑥&) ∗ (1 − 𝐻) + 𝑈(θ) ∗ 𝐻 

The notation H refers to the hazard rate, sometimes called the transition function, and indicates 

the probability that unknown DE, θ, had updated in the current trial (Courville et al., 2006; Eshel 

et al., 2015; Eshel et al., 2016; Muller et al., 2019; Nassar et al., 2010; O’Reilly, 2013; O’Reilly 

& Mars, 2015; Sarafyazd & Jazayeri, 2019; Wilson et al., 2010). Consequently, the above 

formulation states that the prior distribution for the upcoming trial t+1 is equal to the running 

posterior distribution after a recent observation, xt , and is weighted by the probability that a 

change has not occurred (1 – H). This is then summed to the uniform distribution weighted by 

the probability that a change has occurred (H, the hazard rate). In short, the above formulation is 

a concise computational representation of the belief that the variable that is being inferred, the 

[Equation 19] 

[Equation 20] 
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unknown DE, may be the same or different in the next trial by adjusting the running prior 

estimate towards an ignorant state, the uniform distribution. In the behavioral experiment, the 

unknown DE updated every 20 trials. This update was not signaled; therefore, it was expected 

that the true hazard rate needed to be inferred. To identify and formulate this learning, three 

assumptions were implemented as computational models beyond the three discussed in this 

chapter: in the first case, 1) subjects knew the true value of H, which is reasonable if subjects 

obtained enough information about the hazard rate from the known absorbance which changed at 

the same rate but offset to the updates of the unknown DE; alternatively, 2) each subject had a 

subjective estimate of the volatility of the task, in which case, this can be estimated by an 

optimization algorithm with the hazard rate as a free parameter; or 3) subjects learned the hazard 

rate by a similar mechanism as the unknown DE, i.e. a latent variable learned via Bayesian 

inference. Models implementing the second and third possibility did not significantly improve 

the ability of the value function to predict human choices. Therefore, the models discussed in this 

chapter adopted the simplest assumption of a flat hazard rate equal to the true probability of an 

update (i.e., equal to 1/20). This assumption and the above description of the value function were 

kept constant for the three models discussed in the present chapter.  

3.2.2. Informativeness and uncertainty 

The distinguishing feature of the three models compared here are their implementation of 

informativeness. The informativeness a treatment option was discussed in “Chapter 2 – 

Behavioral Experiment”; Equation 11 repeated below for convenience: 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	(𝐼𝐹) = 	
𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 

This estimate of informativeness was combined with the value function to approximate 

subjective preferences for the treatments on decision trials, i.e., they were combined to estimate 



INFORMATION AND DECISION MAKING 93 

the deliberation of value and informativeness to produce the expected value (EV) of treatments. 

In the most complex model, this interplay between value and information was moderated by the 

amount of uncertainty about the running estimate of the unknown DE, generated by 

observations. The capability of Bayesian inference to estimate uncertainty in latent variables was 

deployed to this end, and could be formulated simply as below, described using pseudocode for 

MATLAB (a reminder that Θ represents the statespace defined in Equation 15): 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑠𝑡𝑑([p(Θ) ∗ Θ]) 

Model uncertainty was equal to the standard deviation of the probability distribution weighted by 

the corresponding statespace values – the spread of this product is the precision of the unknown 

DE, which is the definition of uncertainty. This ability of Bayesian inference is the reason it is 

attractive to researchers who want to investigate the effects of conscious imprecision during 

perceptual and preferential decision making (Bach & Dolan, 2012; Behrens et al., 2007; Cao et 

al., 2019; Chalk et al., 2010; Courville et al., 2006; Ernst & Banks, 2002; Frank et al., 2009; 

Gottlieb et al., 2020; Griffiths et al., 2012; Meyniel & Dahaene, 2017; Muller et al., 2019;  

O’Reilly, 2013; Nassar et al., 2010; Parr et al., 2018; Polanía et al., 2019; Radulescu et al., 2019; 

Stojić et al., 2020; Ting et al., 2015; Wilson et al., 2010).  

3.2.3. Models and simulations 

Ultimately, the goal is to identify the best algorithmic hypothesis of human behavior in 

the behavioral experiment by comparing three models deploying information-seeking differently. 

For brevity, the value function described above is abbreviated as VF. This was amended with an 

information function described above, abbreviated IF. Altogether, the general structural of the 

models estimates the EV for each option by combining the VF and IF as below: 

𝐸𝑉 = 𝑉𝐹 + 𝑘 ∗ 𝐼𝐹 

[Equation 21] 

[Equation 22] 

t] 
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The variable 𝑘 is a free parameter that scales the IF (Equation 11) to make its value comparable 

with that of the VF – so that if this were true for a subject, they would then consider the possible 

reward of the option to be on par to its informativeness. So then, the free parameter k was 

necessary because VF had a maximum value of 16.2 – as in the case where both known and 

unknown DEs were positive 5-stars (see Figure 9b to see start-DE relationship) and their AMs 

were nine each (per Equation 10):  

𝑇𝑉 = (9 ∗ 0.9) + (9 ∗ 0.9) = 16.2 

But IF has a maximum value of one – as in the case where the unknown AM equals zero (per 

Equation 11):  

𝑘𝑛𝑜𝑤𝑛	𝐴𝑀
𝑘𝑜𝑤𝑛	𝐴𝑀	 + 	0 = 1 

Therefore, the k variable in Equation 22 can be described as an estimate of information appetite, 

indicating how important, relative to the VF, informativeness was to a subject during decision 

trials. As such, 𝑘 was a free parameter: 0 was its lower bound and indicated that informativeness 

was irrelevant to a subject; 16.2 was the max value of the VF and was used as the upper bound 

for 𝑘, indicating that IF was as important as VF to subjects while they deliberated between 

options. The method of getting these estimates of k is described below in the sub-chapter on 

model fitting; it suffices to mention here that if informativeness was irrelevant to the subject, 

then the best fitting k value will be near zero, reducing the EV function in Equation 22 to simply 

VF. But if subjects cared about informativeness as defined by Equation 11, then the EV function 

of Equation 22 would best describe human performance in the task. In this latter case, the 𝑘 free 

parameter will be greater than zero. Note, both formulations of EV described above (with IF and 

without) are static estimations of option values, and do not vary as a function of experience. For 

example, it is expected that subjects should be maximally uncertain at the start of the task or after 
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an update to the unknown DE and should attenuate with experience. The Bayesian learner 

captures this influence of uncertainty during the task. Specifically, the width of the probability 

distribution with respect to the unknown DE, i.e., its standard deviation, gives a measurement of 

precision in the estimated unknown DE.  

This estimate of trial-by-trial uncertainty (Equation 21) about the unknown DE that 

subjects may have experience while learning was implemented in the EV function as follows: 

𝐸𝑉 = [(1 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ 𝑉𝐹] + [𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∗ 	𝑘 ∗ 𝐼𝐹] 

Model uncertainty was computed by taking the square root of weighted variance of the 

statespace, weighted by the running prior distribution (Equation 21) – the same as the second 

parameter describing the likelihood distribution in the value function (Equation 18). After an 

update to the unknown DE was detected, model uncertainty spiked, and then decreased towards 

zero as the task proceeded (e.g., Figure 22). The EV function (Equation 23) predicts that an 

appetite for informativeness is maximal during high uncertainty, e.g., after the unknown DE 

update is detected resulting in more information-based decisions – exploratory behavior. This 

information appetite diminishes as model uncertainty approaches zero, resulting in more value-

based decisions – exploitative behavior. The Equation 23 model predicts that decisions would be 

influenced by both value and informativeness in a manner modulated by uncertainty: initially 

preference for information is greater than value and attenuates as the model becomes more 

certain in its estimate of the unknown DE.  

 The above describes the mathematical bases of the theories tested via modeling. The 

models are described next. The first model is the simplest, baseBayes. This is the case where EV 

is exclusively a function of estimated treatment value, therefore, this model is described as: 

𝐸𝑉 = 𝑉𝐹 [Equation 24] 

[Equation 23] 

t] 
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The next model, infoBayes_v1, considers informativeness of options but does not weigh the VF 

and IF with uncertainty. Therein, informativeness and value have a static preference throughout 

the task: 

𝐸𝑉 = [𝑉𝐹] +	[𝑘 ∗ 𝐼𝐹] 

The third model, infoBayes_v2, accounts for uncertainty, assuming value is greater during low 

uncertainty and informativeness is greatest during high uncertainty: 

𝐸𝑉 = [(1 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ [𝑉𝐹]] + [(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ [𝑘 ∗ 𝐼𝐹]] 

In order to test whether these models are in-line with predictions, simulations were 

conducted to confirm model choice patterns (Wilson & Collins, 2019). The task environment 

during simulations was similar to the environment subjects performed in, with the critical 

modification that one option was always the high-value, but low-information option and the 

alternative was the high-information but low-value option. If the models only sought value 

without considering information, the probability of the model choosing the high treatment value 

should always be at or above chance level (50% for two options) when the unknown DE update 

has been detected. Else, if the model seeks information when the unknown DE update is 

detected, the probability of choosing the high informative option should be greater than chance 

level. As mentioned, three models were tested. Model choice probabilities for the left and right 

option were estimated using the softmax function (Equation 1):  

𝑝!(𝐸𝑉!) =
exp *𝐸𝑉!𝑇 ,

∑ exp	(𝐸𝑉"𝑇 )#
"$%

	 

Here again: x indicates any one option among an n number of options, 𝐸𝑉! indicates the expected 

value of x, and 𝑝! indicates the probability of choosing option x. For the two alternate forced 

choice paradigms described in Chapter 2, the function above refers to the left option as ‘1’ and 

[Equation 25] 

[Equation 26] 
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the right option as ‘2’. It states that the probability of choosing the left option is equal to the 

exponential of the expected value of the left treatment, EV1, divided by the free parameter, T, 

also called the temperature, then this exponential is normalized for both displayed options in the 

trial to give the probability of a decision given the expected value. These are probabilities, so the 

sum of the probability for each option equals 1. Therefore, the probability of choosing the right 

option, EV2, can be computed simply by 1 - EV1 (and vice versa). As discussed in the chapter on 

value-based decision making, the T free parameter is an estimate of the stochasticity of subject 

behavior, where low T values near 0 indicate value-based, deterministic decisions and higher T 

values indicate more random behavior (Farrell & Lewandowsky, 2018; Wilson & Collins, 2019). 

This parameter is commonly used in the decision neuroscience literature to estimate the accuracy 

of subjects’ assessments, i.e., their predilection for choosing the high valued options (for 

examples: Ballard et al., 2018; Chau et al., 2015; Collins & Frank, 2012; Hunt et al., 2012; 

Jocham et al., 2012; Leong et al., 2017; Niv et al., 2015; Shiner et al., 2012). The decision 

patterns that these models predict can then be compared with human behavior. The MATLAB 

scripts implemented for simulations were adapted to analyze and fit models of human behavior, 

as will be described below. For clarity, the models described in this main body are summarized in 

Table 1 below. 

Table 1. The computational models under study. 

 

3.2.4. Model fitting and comparison 

Human performance in the behavioral experiment was compared with the choice 

preferences of the three models in Table 1. The goal was to identify the extent that these models, 

Model Name Value Function (VF) Information Function (IF) Expected Value (EV)
baseBayes p(Θ|x) weighted sum [ VF ]

infoBayes_v1 p(Θ|x) weighted sum kn_attr / (unkn_attr + kn_attr) [ VF ]  + [ k * IF ]
infoBayes_v2 p(Θ|x) weighted sum kn_attr / (unkn_attr + kn_attr) [ (1 - !) * VF ] + [ ! * (k * IF) ]
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algorithmic hypotheses of value-based and information-seeking in the task, are able to predict 

decision making and compare their explanatory power in order to, ultimately, identify the 

winning model – the model that best describes human decision making. To restate the 

aforementioned models, if humans do not use information during the task and just care about 

their estimates of the treatment values (TVs; terms are described in Figure 8), then the 

baseBayes model should perform best; else, if information is a factor during decision making 

and statically competes with value, then the info_Bayes_v1 should perform better than the 

baseBayes model; further still, if subjects used information to the extent they were uncertain, 

such as when the unknown DE recently updated, then the infoBayes_v2 model should 

outperform the info_Bayes_v1 and baseBayes models. This sub-chapter describes how model 

fitting and comparison were used to identify the best fitting model of human performance in the 

task described in “Chapter 2 – Behavioral Experiment”. 

First, choice probabilities were obtained using a softmax function in the same manner as 

in the simulations. After choice probabilities were generated for all the options in each trial, the 

probabilities of the actually chosen options were used to compute log likelihood, a measure of 

how well the model described behavior. The measurement depends on parameter values and 

model under study (Farrell & Lewandowsky, 2018; Wilson & Collins, 2019). Notationally: 

𝐿𝐿 =h𝑙𝑜𝑔	𝑝(𝐸𝑉.=(*,#|	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠,𝑚𝑜𝑑𝑒𝑙) 

In short, the log likelihood is the probability of observing the data given the model and its 

parameters. In this case, the data are the choices made by subjects and the model was either 

baseBayes, infoBayes_v1, or the infoBayes_v2. The number of free parameters varied between 

the baseBayes and the information models (either infoBayes_v1 or infoBayes_v2; Table 2). All 

models had a temperature, T, for the softmax function (Equation 1). The free parameter was free 

[Equation 27] 
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to take any real number between 0 and 100. The information models included a second free 

parameter, k, which scaled the information function (discussed in “3.2.3. Models and 

simulations”) to make informativeness comparable with value. This free parameter could take 

any real number between 0 and 16.2; the upper bound was chosen because it was the max value 

of the value function. 

Table 2. The free parameters of the models under study. Treatment values are learned and estimated by 
taking the means of probability distributions of the unknown DE generated by Bayesian inference. This 
property is shared across models. Informativeness is considered by two of the models the three models, 
infoBayes_v1 and infoBayes_v2. Additionally, uncertainty (Equation 21) factors into the infoBayes_v2 
model. 

 

The free parameter values that produced the smallest log likelihood served as indicator of 

fit. The free parameters were obtained using MATLAB’s optimization algorithm, fminsearch, to 

seek global minima solutions of the models under study (Cohen, 2017). Notably, the log 

likelihood is computed using a sum of probabilities of the selected options. As these are 

probabilities, with values less than 1 entered into Equation 27, the sum is a negative value. Note 

the following limitation: the best fitting model will have the smallest negative magnitude, but 

fminsearch searches for the minimum which would lead it to choose values towards negative 

infinite (Cohen, 2017). A blunt solution, used here, is to feed the optimization algorithm the 

negative of the log likelihood. A second limitation of optimization algorithms is that they identify 

local minima, with no guarantee that these minima are the desired global minimum. To overcome 

this limitation, fminsearch function was conducted with several starting values within the 

bounded range of values of the respective free parameters. These methods were adopted from 

published applications in the fields of perceptual and preferential decision neuroscience (Wilson 

& Collins, 2019; for examples: Chalk et al., 2010; Chau et al., 2014).  

Value Function Info Function Free Parameters
baseBayes Bayesian latent variable T 

infoBayes_v1 Bayesian latent variable known attribute/(known + unknown attributes) T, k
infoBayes_v2 (1-!) * Bayesian latent variable ! * known attribute/(known + unknown attributes) T, k
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Model comparison was performed using two criteria: the Akaike Information 

Criterion, herein the AIC (Akaike, 1974) and the Bayes Information Criterion, herein the BIC 

(Schwarz, 1978), each respectively formulated below: 

𝐴𝐼𝐶 = 	−2	𝑥 log(𝐿𝐿) + 2	𝑥	𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝐵𝐼𝐶 = 	−2	𝑥 log(𝐿𝐿) + 𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠	𝑥 log(𝑛𝑢𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠) 

The AIC accounts for the log likelihood and the number of free parameters, whereas the BIC 

further accounts for the number of observations, making the model comparison more sensitive to 

the number of parameters. Each criterion assigns each model a score. The model with the 

smallest score, i.e., approaching negative infinity, is the winning model (Akaike, 1974; Farrell & 

Lewandowsky, 2018; Schwarz, 1978; Wilson & Collins, 2019). The BIC penalizes models for 

the number of parameters so as to further avoid a type II error, but otherwise this and the AIC are 

both commonly used in the cognitive neuroscience literature for model comparison (Farrell & 

Lewandowsky, 2018; Wilson & Collins, 2019). To be comparable with the literature, both scores 

are reported below.  

3.3. Results  

First, the simulation results are presented first. Simulations demonstrated the preference patterns 

predicted by the computational models while deliberating between two options during simulated 

decision trials. The first option was high in value but low in informativeness; the alternate option 

was low in value but high in informativeness. These simulated decision trials are intentionally 

different than the decision trials in the behavioral task, wherein option value and informativeness 

varied pseudo-randomly (Figure 16). This allowed plotting simulation results concisely in 

Figure 23: if subjects prefer value over informativeness, the probability “P(high chosen)” will be 

[Equation 28] 

[Equation 29] 
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greater than chance level of 50%. Conversely, if subjects prefer informativeness over value, then 

“P(high chosen)” will fall below 50%. The simulation results in Figure 23 are described below. 

baseBayes 

The computerized chooser quickly learned to choose the high treatment value (Figure 

23a). If subjects were Bayesian optimal in the task, their performance would look like the 

baseBayes results in Figure 23a. Therein, after the first trial, the model developed a near-perfect 

estimate of the unknown DE. Notably, when the update was detected, the model was uncertain 

but did not seek the informative choice, as evident by the chance level probability of choosing 

the high treatment value soon after the DE updated. After only one trial from task onset or 

unknown DE update, the baseBayes model chose the high treatment option with over 90% 

accuracy. Additionally, after a few more trials, accuracy plateaued near 99% accuracy (Figure 

23a). Whether subject performance adhered to this near-perfect accuracy depends on the 

temperature parameter of the softmax function, wherein high temperature may cause subjects to 

rarely choose the high treatment option. In Figure 23, the temperature was held constant 

infoBayes_v1  

This model utilized informativeness (Figure 23b). After task onset or an unknown DE 

update, the probability of choosing the high treatment value dropped well below 50% for the first 

trial, indicating a strong preference for the high informative treatment. Notably, this 

consideration of informativeness appears to distract from the accuracy value-based decision 
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a.

b.

c.
baseBayes

infoBayes_v1

infoBayes_v2

making, indicating by diminished choice accuracy overall and a lower plateaued accuracy value 

to 91% given the same temperature free parameter.  

infoBayes_v2  

This model weighed informativeness and value by uncertainty (Figure 23c), evidenced 

by a diminished slope during the first five trials after task onset or unknown DE update. This 

indicated that the model initially preferred informativeness during a period when it was highly 

uncertain, as when the task begins, or the unknown DE has updated. Notably, choice accuracy is 

further diminished, plateauing near 80% accuracy given the same free parameter values as the 

previous model, infoBayes_v1. This is due to the inclusion of the uncertainty as a latent variable 

in the model (Equation 26). 

 

 

 

 

 

 

   

Figure 23. Simulation results of the probability 
of choosing the high treatment option as a 
function of time. The horizontal axis indicates the 
trial number; the vertical axis indicates the 
probability of choosing the high value option; 
vertical red bars indicate that an update to the 
estimated unknown absorbance has occurred. (a) 
shows the results of baseBayes model; (b) shows 
the results of the infoBayes_v1 model; (c) 
infoBayes_v2 is shown. 
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Model Fitting and Comparison 

Next, model fitting and comparison results were conducted with an optimization 

algorithm by MATLAB to obtain the best fitting parameters of the models. This optimization 

function was conducted for each by subject (Cohen, 2017). Then, MATLAB was used to 

compute the AIC (Equation 28) and BIC (Equation 29) scores for model comparison. The 

infoBayes_v2 model was the winning model (Figure 24) given its significantly lower AIC score 

across subjects (mean = 153.2 ±	7.54; Figure 24, left) and BIC scores (159.8 ± 7.54; Figure 24, 

right) relative to results of the baseBayes model (AIC mean = 161.3 ±	7.48; BIC = 164.6 ± 

7.48; conducting a t-test comparing baseBayes with infoBayes_v2 yields the following 

comparisons: tAIC(38) = 3.75, pAIC = 0.0006; tBIC(38) = 2.24, pBIC = 0.03) and comparison with 

inforBayes_v2 with the infoBayes_v1 model (AIC mean = 158.0 ±	7.32; BIC = 164.6 ± 7.32) 

yields the following t-test results: tAIC(38) = 3.94, pAIC = 0.0003; tBIC(38) = 3.94, pBIC = 0.0003). 

To summarize the above (a reminder that lower scores indicate better fit): 

AIC results: infoBayes_v2 < infoBayes_v1 < baseBayes 

BIC results: infoBayes_v2 < infoBayes_v1 = baseBayes 

The results comparing the baseBayes with the infoBayes_v1 models were less 

consistent. AIC results suggested that the infoBayes_v1 was the runner-up model but the BIC 

comparison indicated no difference between these model fits (t-tests comparing baseBayes with 

infoBayes_v1: tAIC(38) = 2.31, pAIC 0.03; tBIC(38) = 0.047, pBIC = 0.96). A reminder that an 

information appetite parameter k was computed for each subject with MATLAB. This allowed a 

straightforward and final comparison of information-seeking with performance of human 

subjects in the behavioral experiment. A moderate and significant correlation was observed 

between the value of the information appetite and the rate of choosing the high value option in 
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the task (r = -0.63, p < 0.01): greater accuracy results in the task significantly correlated with a 

lower information appetite. 

 

Figure 24. Model comparison results. One asterisk indicates significant difference with p < 0.05 but p > 
0.01; three asterisks indicate p < 0.01. Lower AIC and BIC scores indicate better model fit. 

3.4. Discussion 

 Bayesian modeling was used to track learning and preference for option informativeness 

and value and in the multi-attribute bandit task described in “Chapter 2 – Behavioral 

Experiment”. Additionally, informativeness was operationally defined as a quantitative variable, 

a contrast from the decision neuroscience literature wherein an option is or is not and informative 

option (sub-chapter “1.5. Informativeness”). The first model, baseBayes, had no preference for 

informativeness, instead basing decisions only on value. The second model, infoBayes_v1, 

accounted for informativeness but assumed its influence was static, only based on the attributes. 

That is, this model had a constant preference for value and informativeness throughout the task, 

not adapting to how much it has learned and its own imprecision. The third model, 

infoBayes_v2, preferred value and informativeness as a function of uncertainty. That is, when 

uncertainty was highest after the unknown DE updated, the model preferred informative options, 

but this appetite for information attenuated with experience. The infoBayes_v2 was the winning 

model, being the best descriptor of human decision making in the task. As observed in the 

a. b.a

***
*

***

* ***
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behavioral analysis, subjects utilized the attribute magnitudes during the first five trials that an 

unknown DE was in effect in a manner unrelated to treatment values. The infoBayes_v2 model 

suggests this manner was information seeking – when subjects were the most uncertain, this 

winning model significantly preferred informative options, then it reverted to value-based 

decision making exclusively following more experience. In the literature the former strategy is 

termed exploratory behavior and the latter termed exploitative behavior – the results suggest that 

both of these strategies are driven by quantitative processes. Exploration assessed 

informativeness in a quantitative manner similar to the assessment of value, as opposed to a 

categorical assessment of information implied by the literature on information seeking. Notably, 

in this thesis, information seeking predicted low performance. It is speculated here that an 

appetite for information was higher when subjects found the task more difficult, prolonging the 

need for information-based decision making compared to subjects who found the task easy. 

Indeed, mathematically savvy subjects would be able to learn the value of the unknown DE after 

a single trial when the unknown attribute did not equal zero, leading to a smaller information 

appetite. To get around this potential confound, future versions of the task may base stimuli 

attribute magnitudes on visual properties, such as volume or color intensity, instead of numbers. 

But it should be noted that if this confound was significant across subjects, then the unknown DE 

would be immediately detectable. In which case, the probability distributions estimating the 

unknown DE would be composed of zeros except for a singularity over the observed outcome 

(Farrell & Lewandowsky, 2018). However, neither human performance on decision trials nor 

survey trials approached this deterministic learning. Further, the baseBayes model would have 

been the winning model because it only considers the running estimate of the treatment value 

and ignores informativeness during option deliberation. Therefore, although deterministic 
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learning was possible, the results suggest learning was trial-and-error based, wherein 

information- and value-based decisions were deliberated during the deployment of exploratory or 

exploitative decision making. Ultimately, these results contribute to the literature by using 

Bayesian models in a multi-attribute value-learning environment and the attribute integration 

model of subjective value to enlighten the quantitative nature of exploratory behavior.  
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4. General Discussion 

The present thesis utilized theories and methods from the cognitive neuroscience 

literature to simulate and test algorithmic hypothesis of information- and value-based human 

decision making. Specifically, the attribute integration model of subjective value (Rangel & 

Clithero, 2014) was used to develop a novel, computerized behavioral task for human subjects to 

examine the influence of option informativeness, operationally defined as a quantitative variable 

and manipulated alongside option value, on preferential decision making. Indeed, this 

quantitative operation definition contrasts with the typical categorical definition observed in the 

relevant studies of information seeking during the explore-exploit dilemma (Frank et al., 2009; 

Trudel et al., 2020; Wilson et al., 2014). That is, it was observed that increasing option 

informativeness results in increasingly more appetitive options to subjects, subsequently 

increasing the probability that the more informative option would be selected, independent of the 

value (Figure 20). This was done using traditional descriptive statistics and Bayesian modeling, 

the latter of which allowed further examination of for a potential explanation about the periods 

when information was significantly appetitive. Subjects preferred informativeness during periods 

of high uncertainty, then updating their preferences to value exclusively after the learning period 

was finished (a pattern captured by Equation 26). In these analyses, informativeness was 

defined by an arithmetic expression: the known attribute magnitude of an option divided by the 

sum of all its component attributes magnitudes. This definition of informativeness in the task 

was straightforward given the use of numerical stimuli determining option values. Another 

critical observation is that subjects initially pursued more informative options after the unknown 

drug effectiveness updated but not after more experience with this same drug effectiveness. This 

was not the case when the known drug effectiveness updated, suggesting subjects understood the 
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task and were responding to increased uncertainty with exploratory behavior. Notably, the use of 

informativeness as described above was akin to noise reduction. That is, during the period where 

subjects preferred informativeness, the options with a higher known attribute magnitude were 

significantly preferred (Figure 20). This had the effect of minimizing the contribution of the 

unknown drug effectiveness to feedback during a period when its estimated drug effectiveness 

was the least precise. Given the nature of the task, it is speculated here that this made the task 

easier for the subjects: subjects could infer the unknown drug effectiveness with better precision 

when its weighted value was smaller (Figure 20). Traditional statistics (Figure 17) and Bayesian 

modeling results supported this interpretation that the present definition of informativeness was 

in-fact related to the effects of information discussed in the sub-chapter “1.5. Informativeness”. 

Information as defined was sought during uncertain periods. The best fitting model for behavior 

deliberated value and informativeness during preferential choice, further considering 

informativeness when uncertainty was high, like during early periods after an unknown drug 

effectiveness updated. Following experience, value-based decision making was the preferred 

strategy over information-based decision making. 

However, there are several limitations and potentially problematic model design choices 

in this thesis. First, the estimate of the unknown drug effectiveness generated by the Bayesian 

models were not directly affected by informativeness itself, as defined in the literature review 

(Figure 4). It is expected that option informativeness should accelerate learning – however, these 

influences were not implemented by the model. A second limitation is the indirectness of the 

operational definition of informativeness used in this thesis (Equation 11). As defined, 

information is the quality that reduces uncertainty and is most simply represented by Equation 

12. However, the behavioral results indicated that this strategy was not deployed by subjects in 
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the task (Figure 20 and Figure 21), with patterns of information seeking better captured by 

Equation 11. A third concern is a mathematical ability confound. Subjects who are 

mathematically savvy may find the task easy relative to non-math savvy subjects. However, as 

described in “Chapter 1 – Bayesian Models”, such an occurrence would have manifested in 

perfect performance after the first five trials, which was not case for any subject. Further, 

“Chapter 2 – Bayesian Models” would have identified this perfect performance as a singularity 

occurrence, which was not the case for any subject. Regardless, this problematic confound could 

be resolved by converting the numerical presentation of the stimuli into a visual representation, 

such as varying the volume or shape size of stimuli to indicate the same schedule of attribute 

magnitudes and drug effectiveness. A fourth limitation is the focus on behavioral data and lack of 

supplementary neural activity measure, such as fMRI, or attention estimate, such as eye tracking. 

However, as it has been argued by Niv (Forthcoming), understanding the computational 

problems of behavior and cognition or quintessential to understanding how the human brain 

works. The focus on developing a paradigm and computational model in this paper are 

significant in this regard; additionally, the behavioral task was developed in preparation for these 

traditionally neuroscientific research endeavors – as they are easy to adapt to such investigations. 

A fifth limitation in this thesis regards a common issue with research comparing different 

computational models (Griffiths et al., 2012; Wilson & Collings, 2019). It was possible that a 

superior information-seeking or value-seeking-only model not considered here exists or can be 

designed. For example, models based on Polanía’s and colleagues’ (2019) proposed method of 

computing choice predictions according to Bayesian inference (as opposed to the softmax 

function; Equation 1) or extending sequential sampling theories (Busemeyer et al., 2019). This 

issue was not acknowledged during the analysis of the three models presented; the goal here was 
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simply to investigate the influence of common estimate of uncertainty generated via Bayesian 

inference. Future investigations should observe whether alternate measures do better to test these 

hypotheses. A sixth issue with this thesis is the justified concern that the literature may not need a 

new cognitive task to investigate the effects of uncertainty on information seeking. For instance, 

Wilson and colleagues (2014) developed an oft used and clever paradigm they called the 

‘horizon task’ to investigate directed exploration and the effect that varying the number of 

decision opportunities has on the willingness to explore; Frank and colleagues (2009) used a 

paradigm called the ‘temporal utility integration task’ to investigate information-based decisions 

that confirmed the appetitive or aversive quality of options; the famous and clinically critical 

‘Wisconsin Card Sorting task’ can yield data that can be analyzed in the context of information-

seeking, allowing for clear generalizability. As discussed in “1.5. Informativeness”, these 

paradigms in the literature operationally define an information-seeking choice categorically: a 

choice in the task is either value-based or information-based. In the present thesis, 

informativeness was defined as a more quantitative variable in a similar range as value. This 

operational definition is a novelty in the research on the neuroeconomics of the explore-exploit 

dilemma, with the aforementioned paradigms being unable to answer the research questions 

presented in sub-chapter “1.6. Research gap and questions”. Therefore, an important 

contribution to the literature is the behavioral task itself as the potential to explore the following 

question: does informativeness have the same qualities as reward amount? That is, much has 

been shown about the effects of reward amount on preference, such as ceiling effects on 

appetitive qualities and the over-sensitivity to aversive outcomes (Glimcher, 2014). Do these 

same properties describe informativeness, the quality that reduces uncertainty? This is a critical 
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line of investigation that is possible to explore with paradigms like the one developed for the 

present thesis. 

In summary, the illumination of the explore-exploit dilemma is critical to our 

understanding of how the human brain works. Indeed, it has been suggested that this dilemma, as 

a computational problem (Kriegeskorte & Douglas, 2018; Marr, 1982), has guided the evolution 

of the granular prefrontal cortex (Passingham & Wise, 2012). This computational problem was 

investigated using a novel multi-attribute bandit task and Bayesian model analysis in the present 

thesis. First, the behavioral task allowed investigation for whether informativeness can defined as 

a quantifiable variable, as opposed to the literature that defines it as a categorical operational 

definition. Indeed, this quantifiable variable was able to capture a typical pattern of exploratory 

behavior found in the literature. Second, Bayesian modeling allowing the investigation of a 

potential hypothesis for the reasons underlying the patterns of exploration – namely, the 

influence of uncertainty in the deliberation of value and informativeness. There are further 

questions about informativeness to explore, but this thesis presents a means of investigating and 

exploring this critical construct mathematically.  
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Appendix A. Recruitment flyer 

Psychology Experiment:  

get paid to play an online game from home! 

This experiment is entirely remote: 

1. Materials are emailed. 
2. Practice and instructions take 10-20 minutes. 
3. Full game takes ~15 minutes to complete. 
4. Reward can reach up-to HKD200 

(based on performance, paid via the PayMe app). 

Please note our restrictions: 

• No history of neurological impairment.
• Normal or corrected-to-normal vision. 
• Be between 18-40 years old. 
• Must be right-handed. 

If you are interested and fit the criteria, please email me below: 

cristian.giron@ 

For more information about the experiment: 

Information Sheet 
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Appendix B. English and Chinese Task Instructions 

Subjects received task instructions by email via links to PDFs saved on Google Drive. 

Instructions (in English): 

https://drive.google.com/open?id=1N4OJcvc_w8-vktC-T7A6KDIzX00RKGzt 

Instructions (in Chinese): 

https://drive.google.com/open?id=1z7fXJO4QEUuHIHI00H5tr9PcAAN0XZ03 
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Appendix D. Correlation coefficients of task specifications  

 

Shaded colors by quadrant as discussed in Figure 16, including standard errors. Left and known 
expected value, LknEV; right and known expected value, RknEV; left and unknown expected 

value, LunEV; right and unknown expected value, RunEV; left and known attribute, LknAt; right 
and known attribute, RknAt; left and unknown attribute, LunAt; right and unknown attribute, 

RunAt. 

 

  

LknEV RknEV LunEV RunEV LknAt RknAt LunAt RunAt
LknEV 1 0.535 ± 0.011 -0.089 ± 0.028 -0.101 ± 0.047 0.191 ± 0.025 -0.054 ± 0.019 -0.097 ± 0.017 0.123 ± 0.023
RknEV 0.535 ± 0.011 1 -0.111 ± 0.043 -0.093 ± 0.025 -0.048 ± 0.02 0.198 ± 0.035 0.123 ± 0.033 -0.1 ± 0.021
LunEV -0.089 ± 0.028 -0.111 ± 0.043 1 0.532 ± 0.009 -0.087 ± 0.013 0.135 ± 0.025 0.199 ± 0.021 -0.07 ± 0.016
RunEV -0.101 ± 0.047 -0.093 ± 0.025 0.532 ± 0.009 1 0.169 ± 0.012 -0.107 ± 0.009 -0.079 ± 0.01 0.206 ± 0.018
LknAt 0.191 ± 0.025 -0.048 ± 0.02 -0.087 ± 0.013 0.169 ± 0.012 1 -0.341 ± 0.001 -0.61 ± 0 0.605 ± 0
RknAt -0.054 ± 0.019 0.198 ± 0.035 0.135 ± 0.025 -0.107 ± 0.009 -0.341 ± 0.001 1 0.606 ± 0 -0.595 ± 0
LunAt -0.097 ± 0.017 0.123 ± 0.033 0.199 ± 0.021 -0.079 ± 0.01 -0.61 ± 0 0.606 ± 0 1 -0.344 ± 0.001
RunAt 0.123 ± 0.023 -0.1 ± 0.021 -0.07 ± 0.016 0.206 ± 0.018 0.605 ± 0 -0.595 ± 0 -0.344 ± 0.001 1
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Appendix E. Task performance of each subject 

 

The behavioral results for each subject (n = 39). Unknown and known absorbance schedules are 

indicated by red and blue lines, respectively. Red stars indicate survey response. Black stars at 

the top and bottom (i.e., on the horizontal line on 1 and 0, respectively) indicate whether subjects 
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chose the high value treatment on that trial: 1 for yes, 0 for no. Black stars inside each plot 

indicates that subject’s trial options were equivalent. Subject choice and survey accuracy rates 

are also shown. 
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Appendix F. Logistic Regression Results 

a. Attribute expected values and magnitudes 

 

b. Regressors: Option expected values and informativeness  

(= /#0#(1#	>&&-")/&,
/#0#(1#	>&&-")/&,'0#(1#	>&&-")/&,

) 

 

int LknEV RknEV RunEV LunEV LknAt RknAt LunAt RunAt
mean 0.128 -3.189 2.957 -1.133 0.798 -0.442 0.282 -0.363 0.123

SD 0.390 1.814 1.874 1.668 1.375 0.812 0.952 0.989 1.140
First 5 Trials t 1.804 -9.631 8.641 -3.720 3.180 -2.983 1.624 -2.008 0.593

df 29 29 29 29 29 29 29 29 29
p 0.0815569 1.54E-10 1.62E-09 0.0008502 0.0034961 0.0057354 0.1152475 0.0539995 0.557504403

int LknEV RknEV RunEV LunEV LknAt RknAt LunAt RunAt
mean 0.311 -3.707 3.706 -2.405 2.136 0.241 -0.372 0.167 -0.007

SD 1.679 2.317 2.428 1.747 1.572 1.201 1.181 0.928 1.432
Second 5 Trials t 0.830 -7.156 6.826 -6.155 6.075 0.898 -1.409 0.807 -0.023

df 19 19 19 19 19 19 19 19 19
p 0.4169938 8.42E-07 1.63E-06 6.48E-06 7.66E-06 0.380387 0.1749662 0.4296244 0.981844031

int LknEV RknEV RunEV LunEV LknAt RknAt LunAt RunAt
mean 0.202 -3.804 3.732 -2.582 2.762 0.172 0.126 -0.417 0.178

SD 1.105 2.481 2.417 2.144 2.364 1.334 0.831 1.647 1.711
Third 5 Trials t 0.879 -7.355 7.406 -5.777 5.604 0.619 0.728 -1.215 0.500

df 22 22 22 22 22 22 22 22 22
p 0.3891476 2.32E-07 2.07E-07 8.22E-06 1.24E-05 0.5424105 0.4745444 0.2371182 0.622095654

int LknEV RknEV RunEV LunEV LknAt RknAt LunAt RunAt
mean 0.038 -4.046 3.792 -3.046 2.522 0.628 -0.163 0.096 0.252

SD 0.676 2.501 2.470 2.398 1.987 1.683 1.358 0.830 0.978
Fourth 5 trials t 0.246 -7.051 6.692 -5.536 5.532 1.626 -0.525 0.506 1.123

df 18 18 18 18 18 18 18 18 18
p 0.808296 1.41E-06 2.82E-06 2.96E-05 2.98E-05 0.1213635 0.6061908 0.6187876 0.276319857

int LEV REV Linfo Rinfo
'mean' 0.0438698 -2.331075 2.1051865 0.2022397 -0.3020818
'SD' 0.3674694 1.3625994 1.2142876 0.5311079 0.5886064

First 5 Trials 't' 0.7359302 -10.545808 10.687123 2.3473376 -3.1636717
'df' 37 37 37 37 37
'p' 0.4664134 1.06E-12 7.27E-13 0.0243679 0.0031097

int LEV REV Linfo Rinfo
'mean' 0.2166745 -3.6547919 3.6083526 0.0991934 -0.1355759
'SD' 0.7884149 2.0592995 2.0538844 0.4623168 0.7454315

Second 5 Trials 't' 1.505267 -9.7208393 9.6226259 1.1751787 -0.9961745
'df' 29 29 29 29 29
'p' 0.1430706 1.25E-10 1.57E-10 0.2494821 0.3274053

int LEV REV Linfo Rinfo
'mean' -0.0104889 -3.4217839 3.4455689 -0.1223169 -0.1597597
'SD' 0.7849806 2.0087315 1.9849483 0.687017 0.8169946

Third 5 Trials 't' -0.0767585 -9.7856044 9.9716889 -1.0227655 -1.1233239
'df' 32 32 32 32 32
'p' 0.9392936 3.84E-11 2.43E-11 0.3140889 0.2696571

int LEV REV Linfo Rinfo
'mean' -0.0230268 -3.9047148 3.9689998 -0.0410684 -0.0547043
'SD' 0.584877 2.0358955 2.3114119 0.8540865 0.7347735

Fourth 5 trials 't' -0.2227118 -10.849478 9.7135668 -0.2720075 -0.4211556
'df' 31 31 31 31 31
'p' 0.8252207 4.41E-12 6.39E-11 0.7874197 0.6765473
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c. Option expected values and informativeness  

(= 0#(1#	>&&-")/&,
/#0#(1#	>&&-")/&,'0#(1#	>&&-")/&,

) 

 

  

int LEV REV Linfo Rinfo
'mean' 0.0438698 -2.331075 2.1051865 -0.2022397 0.3020818
'SD' 0.3674694 1.3625994 1.2142876 0.5311079 0.5886064

First 5 Trials 't' 0.7359302 -10.545808 10.687123 -2.3473376 3.1636717
'df' 37 37 37 37 37
'p' 0.4664134 1.06E-12 7.27E-13 0.0243679 0.0031097

int LEV REV Linfo Rinfo
'mean' 0.2166745 -3.6547919 3.6083526 -0.0991934 0.1355759
'SD' 0.7884149 2.0592995 2.0538844 0.4623168 0.7454315

Second 5 Trials 't' 1.505267 -9.7208393 9.6226259 -1.1751787 0.9961745
'df' 29 29 29 29 29
'p' 0.1430706 1.25E-10 1.57E-10 0.2494821 0.3274053

int LEV REV Linfo Rinfo
'mean' -0.0104889 -3.4217839 3.4455689 0.1223169 0.1597597
'SD' 0.7849806 2.0087315 1.9849483 0.687017 0.8169946

Third 5 Trials 't' -0.0767585 -9.7856044 9.9716889 1.0227655 1.1233239
'df' 32 32 32 32 32
'p' 0.9392936 3.84E-11 2.43E-11 0.3140889 0.2696571

int LEV REV Linfo Rinfo
'mean' -0.0230268 -3.9047148 3.9689998 0.0410684 0.0547043
'SD' 0.584877 2.0358955 2.3114119 0.8540865 0.7347735

Fourth 5 trials 't' -0.2227118 -10.849478 9.7135668 0.2720075 0.4211556
'df' 31 31 31 31 31
'p' 0.8252207 4.41E-12 6.39E-11 0.7874197 0.6765473
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Appendix G. Possible known and unknown DE schedules 

 

Eight possible schedules of the drug effectiveness were developed. Subjects were randomly 

assigned to one of these schedules in the set – blue lines indicate the schedule of the known DE 

and red indicates the schedule of the unknown DE. 
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Appendix H. List of Figures 

Page 
Number 

Figure Number 
(and letters) Description 

19 1 (a, b) A biophysical model of value comparison. 
32 2 Modeling Bayesian learning. 
44 3 (a, b) The role of informativeness in trial-and-error learning. 

46 4 Trial-and-error learning represented as updating probability 
distributions. 

49 5 The behavioral paradigm and a summary of the computational 
model developed by Wilson and colleagues (2014). 

52 6 (a, b) Typical designs of the bandit task. 
54 7 Confirmation checkboxes before the start of the main task. 
58 8 Critical terms for the methods section. 
59 9 (a, b, c) Decision in the task were contextualized as treatments. 
60 10 The time flow of decision trials.  

62 11 Survey trials were pseudo-randomly interleaved with decision 
trials in the task. 

63 12 The practice task schedule of decision and survey trials. 

65 13 One possible schedule of the DE (“betas”) of the main task over 
200 trials. 

66 14 (a, b) Examples of easy and hard value-based decision making. 

67 15 Rationale for the quantitative measure of informativeness in this 
thesis. 

69 16 (a, b) 
Intercorrelations of TVs (AMs weighted by respective DEs) and 
the attribute magnitudes (unweighted AMs) for known and 
unknown treatment options. 

70 17 (a, b) Behavioral task choice accuracy analyses. 

73 18 (a, b, c, d) 
Multiple logistic regression with weighted and unweighted AMs 
as regressors and a binary dependent variable indicating whether 
subjects chose the right option (equals 1) or not (equals 0). 

76 19 (a, b, c, d) Informativeness had a significant effect only on the first 5 trials, 
however the results appear counterintuitive. 

78 20 (a, b, c, d) 

Multiple logistic regression with treatment values (left and right) 
and treatment informativeness (left and right) as regressors and a 
binary dependent variable indicating whether subjects chose the 
right option or not. 

79 21 
Resultant box and whisker plot from an ANOVA analysis 
comparing the rate subjects chose the maximally information 
treatment assuming Equation 12. 

88 22 A sample of the Bayesian observer learning the unknown DE in 
a similar task that human subjects performed. 

102 23 (a, b, c) Simulation results of the probability of choosing the high 
treatment option as a function of time. 

104 24 Model comparison results. 
 



INFORMATION AND DECISION MAKING 142 

Appendix I. List of Equations 

Page 
Number 

Equation 
Number Equation 

20 1 𝑝!(𝐸𝑉!) =
exp *𝐸𝑉!𝑇 ,

∑ exp	(𝐸𝑉"𝑇 )#
"$%

 

23 2 𝑅𝑃𝐸 = 𝛼 ∗	(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 
23 3 𝑉&'% = 𝑉& + 𝑅𝑃𝐸 
24 4 R𝑃𝐸 = 𝛼 ∗	(1 − 0) > 0 
24 5 𝑉&'% = (0	 + (𝑅𝑃𝐸 > 0)) > 0 
25 6 𝑉&'% = 𝑉& + 𝛼 ∗	(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘	𝑣𝑎𝑙𝑢𝑒 − 𝑉&) 
30 7 𝑝(ℎ𝑦𝑝|	𝑥) ∝ 𝑝(𝑥|ℎ𝑦𝑝) ∗ 𝑝(ℎ𝑦𝑝) 

30 8 𝑝(ℎ𝑦𝑝|𝑥) =
𝑝(𝑥|ℎ𝑦𝑝) ∗ 	𝑝(ℎ𝑦𝑝)

𝑝(𝑥)  

37 9 Option Value = ∑ (βi * attributei) 
57 10 𝑇𝑉 = [𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 ∗ 𝑘𝑛𝑜𝑤𝑛	𝐷𝐸] + [𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 ∗ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐷𝐸] 

66 11 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑢𝑛𝑘𝑛𝑜𝑤	𝐴𝑀 

74 12 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀

𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 + 𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 

81 13 𝑇𝑉 − 𝑘𝑛𝑜𝑤𝑛	𝑇𝑉
𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐴𝑀 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝐷𝐸 

86 14 𝑝(𝜃	|	𝑥&) ∝ 𝑝(𝑥&	|	𝜃) ∗ 𝑝(𝜃) 
89 15 Θ = (-1, 1)   

89 16 p(θ) =
1

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑡𝑎𝑡𝑒𝑠𝑝𝑎𝑐𝑒 =
1
199 

90 17 θ789,9 =h𝑝&(θ;)
%55

"$%

∗ θ; 

90 18 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	~	𝑁(𝑥" , 𝑠𝑡𝑑(p(Θ) ∗ Θ)) 
91 19 𝑝(Θ) ∝ 𝑝(Θ|	𝑥"<%) 
91 20 𝑝&'%(θ;) = 𝑝&(θ;|𝑥&) ∗ (1 − 𝐻) + 𝑈(θ) ∗ 𝐻 
93 21 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑠𝑡𝑑([p(Θ) ∗ Θ]) 
93 22 𝐸𝑉 = 𝑉𝐹 + 𝑘 ∗ 𝐼𝐹 
95 23 𝐸𝑉 = [(1 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ 𝑉𝐹] + [𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∗ 	𝑘 ∗ 𝐼𝐹] 
95 24 𝐸𝑉 = 𝑉𝐹 
96 25 𝐸𝑉 = [𝑉𝐹] + [𝑘 ∗ 𝐼𝐹] 
96 26 𝐸𝑉 = [(1 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ [𝑉𝐹]] + [(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) ∗ [𝑘 ∗ 𝐼𝐹]] 
98 27 𝐿𝐿 =h𝑙𝑜𝑔	𝑝(𝐸𝑉.=(*,#|	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠,𝑚𝑜𝑑𝑒𝑙) 
100 28 𝐴𝐼𝐶 = 	−2	𝑥 log(𝐿𝐿) + 2	𝑥	𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
100 29 𝐵𝐼𝐶 = −2𝑥 log(𝐿𝐿) + 𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠	𝑥 log(𝑛𝑢𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠) 

 


