
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 
 
CONTRIBUTIONS TO POST-QUANTUM 

CRYPTOGRAPHIC TECHNIQUES 
 

 

 

XINGYE LU 
 
 
 
 
 
 

PhD 
 
 

The Hong Kong Polytechnic University 
2020 



The Hong Kong Polytechnic University

Department of Computing

Contributions to Post-Quantum Cryptographic
Techniques

Xingye Lu

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

October 2019



ii



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

Xingye Lu (Name of student)

iii



iv



Abstract

In recent decades, public-key cryptographic techniques have been widely employed to

secure digital communication infrastructure. Their security mainly relies on mathematical

assumptions that integer factorization problem and discrete logarithm problem are hard.

In 1994, Shor’s algorithm was proposed. It allows people to solve integer factorization

and discrete log problem using a quantum computer efficiently. As such, a quantum

computer will make the deployed public-key cryptographic techniques insecure. Facing

the rapid development of quantum computing, post-quantum cryptography, the study of

cryptographic techniques resilient to attacks from the quantum computer is now receiving

growing attention. Upgrading the modern public-key cryptography infrastructure as soon

as possible become the best approach to protect individual’s privacy under the threats

from quantum computers. In this thesis, we focus on designing practical and efficient

cryptosystems that are post-quantum secure based on lattice-based and hash-based

cryptography, two common approaches in the post-quantum cryptography. Specifically,

this thesis develops quantum-safe solutions for three cryptographic primitives.

Firstly, we propose a hash-based ad hoc anonymous identification scheme. Such a

scheme allows a participant to identify himself as a member of a group of users in a way

that his actual identity is not revealed. We demonstrate a highly efficient construction in the

symmetric-key setting based on the idea of program obfuscation. The salient feature of our

scheme is that only hash evaluations are needed. Consequently, our scheme outperforms

i



all previous constructions for a reasonably large ad hoc group size (of around 50000 users)

since no exponentiation nor pairing operation is involved.

We also present a new signature scheme, PASSG, relying on lattice-based cryptography.

It is based on signatures from the partial Fourier recovery problem PASSRS introduced by

Hoffstein et al. in 2014. Same as PASSRS , security of our construction is based on the

hardness of a special kind of Short Integer Solution problem and the hardness of partial

Fourier recovery problem. PASSG improves PASSRS in two aspects. Firstly, it comes

with a reduction proof and is thus provably secure. Secondly, we adopt rejection sampling

technique introduced by Lyubashevsky in 2012 to reduce the signature size and improve

the efficiency. We also present another security parameter set based on best known attack

using BKZ 2.0 algorithm introduced by Chen and Nguyen in 2011.

Furthermore, we design two new lattice-based (linkable) ring signature schemes. The

first scheme, Raptor, is the first practical construction of its kind that comes with an

implementation. We develop a generic construction of (linkable) ring signatures based on

the well-known generic construction from Rivest et al., which is not fully compatible with

lattices. We give instantiations from both standard lattice, as a proof of concept, and NTRU

lattice, as an efficient instantiation. We show that the latter construction, Raptor, is almost

as efficient as the classical RST ring signatures and thus may be of practical interest. We

also revisit the generic framework of ring signatures based on hash-then-one-way type

(Type-H) signatures presented by Abe et al. (AOS) in 2004 and made the following

contributions. First, we give a proof for the generic construction, in a strengthened security

model. Secondly, we also extend AOS’s framework to generically construct one-time

linkable ring signatures from Type-H signatures and one-time signatures. Lastly, we

instantiate the generic construction with an NTRU-based Type-H signature: FALCON and

obtain a post-quantum linkable ring signature scheme. Our analysis suggests that the

resulting linkable signature outperforms Raptor.

ii



Publications Arising from the Thesis

1. Xingye Lu, Man Ho Au, and Zhenfei Zhang. (Linkable) Ring Signature from Hash-

Then-One-Way Signature. In Proceedings of 18th IEEE International Conference

On Trust, Security And Privacy In Computing And Communications (TrustCom

2019), Rotorua, New Zealand, August 5-8, 2019.

2. Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based

(linkable) ring signature. In Proceedings of Applied Cryptography and Network

Security 17th International Conference (ACNS 2019), Bogota, Colombia, June 5-7,

2019, volume 11464 of Lecture Notes in Computer Science, pages 110–130.

3. Xingye Lu, Zhenfei Zhang, and Man Ho Au. Practical signatures from the

partial fourier recovery problem revisited: A provably-secure and gaussian-

distributed construction. In Proceedings of Information Security and Privacy - 23rd

Australasian Conference (ACISP 2018), Wollongong, NSW, Australia, July 11-13,

2018, volume 10946 of Lecture Notes in Computer Science, pages 813–820.

4. Xingye Lu and Man Ho Au. Anonymous identification for ad hoc group.

In Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security (AsiaCCS 2016), Xi’an, China, May 30 - June 3, 2016,

pages 583–591.

iii



iv



Acknowledgements

First and foremost, I am extremely grateful to my parents for their unconditional support

and encouragement. In the past 27 years, they always love me, guide me, protect me and

inspire me with all their heart. I am forever indebted to my parents for giving me the

experiences that have made me who I am.

I would like to sincerely thank my supervisor, Prof. Man Ho Au for his guidance,

support and patience thorough out my PhD study. Without him, this thesis could not

become a reality. He always supports me to do the research with my own interest and is

willing to discuss every research questions with me in detail. I have benefited a lot from

his expertise, vast knowledge and skill in the research area.

I am also deeply grateful to all of my friends and nice people who have willingly help

me out with their abilities.

v



vi



Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Anonymous Identification Scheme . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Lattice-Based Signature Scheme . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Lattice-Based (Linkable) Ring Signatures . . . . . . . . . . . . . . . . . 12

1.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminary 19

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Lattices and Hardness Assumptions . . . . . . . . . . . . . . . . 21

2.2.2 Preimage Sampleable Functions and FALCON . . . . . . . . . . . 24

vii



2.3 Ad Hoc Anonymous Identification Scheme . . . . . . . . . . . . . . . . 25

2.3.1 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Digital Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 One-Time Signature Scheme . . . . . . . . . . . . . . . . . . . . 30

2.4.2 FALCON Signature Scheme . . . . . . . . . . . . . . . . . . . . 31

2.5 Ring Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Linkable Ring Signature Scheme . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Anonymous Identification for Ad Hoc Group 41

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Our Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Practical Signatures from the Partial Fourier Recovery Problem Revisited 53

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Hardness Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Our Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Practical Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Best known attacks . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



5 Practical Lattice-Based (Linkable) Ring Signature Schemes 71

5.1 Raptor: Practical Lattice-Based (Linkable) Ring Signature Schemes . . . 71

5.1.1 Our Generic Constructions . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Instantiations from Lattice . . . . . . . . . . . . . . . . . . . . . 92

5.1.3 Parameters and Implementation . . . . . . . . . . . . . . . . . . 99

5.1.4 Known Attacks of RAPTOR . . . . . . . . . . . . . . . . . . . . 100

5.2 (Linkable) Ring Signature from Hash-Then-One-Way Signature . . . . . 101

5.2.1 AOS Ring Signature Revisited . . . . . . . . . . . . . . . . . . . 104

5.2.2 Our Generic Ring Signature with Linkability . . . . . . . . . . . 108

5.2.3 Instantiations from NTRU . . . . . . . . . . . . . . . . . . . . . 117

5.2.4 Linkable Ring Signature from Falcon . . . . . . . . . . . . . . . 117

5.2.5 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusion 121

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 123

ix



x



List of Figures

2.1 A lattice in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Warm-up construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Our anonymous identification protocol based on obfuscations . . . . . . . 45

4.1 Original Signing algorithm in PASSG . . . . . . . . . . . . . . . . . . . 59

4.2 Hybrid 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Hybrid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



xii



List of Tables

3.1 Number of operations for each scheme . . . . . . . . . . . . . . . . . . . 52

3.2 Running time for each operation (in millisecond) [50] . . . . . . . . . . . 52

3.3 Operation time for each scheme (in millisecond) . . . . . . . . . . . . . . 52

4.1 Parameter List for PASSG . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 PASSRS Signature Scheme Parameter . . . . . . . . . . . . . . . . . . . 68

5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Comparison of lattice-based (linkable) ring signature at security level
� = 100. Signature size increases with ring size (i.e. number of public
keys in the ring). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Comparison of lattice-based (linkable) ring signature at security level
� = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



xiv



Chapter 1

Introduction

In recent decades, cryptographic techniques have been widely implemented in global

communication digital infrastructure to protect people’s security and personal privacy in

many ways.

These days, most of the public-key infrastructures leveraged in Internet communication

such as digital signature schemes, encryption schemes, and key exchange schemes are

constructed from RSA cryptosystem, elliptic curve cryptosystems and Diffie-Hellman

key exchange whose security are mainly based on the number theoretic problems such

as integer factorization and discrete log problem. In 1994, Shor’s algorithms [89],

which are quantum algorithms for factoring large number and solving discrete log

problem, were proposed. Since Shor’s quantum algorithms can be used to solve integer

factorization and discrete log problem, it implies that cryptosystem based on RSA and

the hardness of discrete log problem can be easily broken in polynomial time by quantum

attacks. Ever since the discovery of Shor, the research on quantum algorithm has been

developed significantly. Moreover, the quantum computational operations have already

been executed on a small number of quantum bits. Facing the rapid development of

quantum computing in both practical and theoretical, while a quantum computer with

1



enormous processing power is still in its infancy, it is already a potential threat that cannot

be ignored towards the classical cryptography. Once a large quantum computer being built

in the near future, it can recover our today’s secret by harvest-then-decrypt attack.

To deal with the threats from quantum computers, post-quantum cryptography was

proposed. Different from quantum cryptography which uses quantum mechanical

properties of the matter for cryptographic application such as secure key distribution,

post-quantum cryptography is a cryptography that is resilient to attacks from quantum

computers. Currently, post-quantum cryptography mainly has following five categories.

1. Lattice-based cryptography: Lattice-based cryptography, which allows people to

build families of cryptographic functions in which breaking a random instance from

the family is as hard as solving worst-case instance of lattice problem, is currently

an important candidate for post-quantum cryptography. The seminal work of Ajtai

[2] shows the reduction from an average-case lattice problem, Short Integer Solution

(SIS), to the worst-case lattice problem. He also presented the construction of a one-

way function whose security is based on SIS. Ever since, numerous constructions

of other lattice-based cryptographic primitives such as collision resistant hash

functions, identification schemes, encryption schemes and digital signature schemes

have been proposed. Constructions from lattice-based cryptography always have the

property that easy to be implemented in hardware or software. However, they also

suffer from the issue of large user keys.

2. Code-based cryptography: Code-based cryptography is one of the promising can-

didates for post-quantum cryptography. The security of code-based cryptosystem

is based on the syndrome-decoding problem which has been proven NP-complete.

It puts the adversary in the condition of decoding a randomlike code. Code-based

cryptosystems are generally easy to implement and fast. However, their key sizes

2



are very large and reducing key size may lead to successful attacks on some of the

code-based cryptosystems.

3. Hash-based cryptography: Hash-based cryptosystems are cryptosystems con-

structed using hash functions. Hash-based cryptography is mainly concerned with

the development of digital signature schemes. Hash-based signatures include Lam-

port signature scheme [62], Merkle signature scheme [76], XMSS[23] and [17].

Since their security only relies on the collision resistance of the underlying hash

functions, so the construction of a secure hash-based scheme is independent of hard

number theoretic problems and the security requirements are minimal.

4. Multivariate polynomial cryptography: Multivariate polynomial cryptosystems

are based on the difficulty of solving Multivariate Quadratic polynomial equations

and the Isomorphism of Polynomials problem which have been proven to be NP-

hard or NP-complete. Multivariate polynomial cryptography is better as an approach

to construct signature schemes because of the short signature size.

5. Isogeny-based cryptography: Isogeny-based cryptography, the most recent field

in post-quantum cryptography, is originated from elliptic curve cryptography which

is a significant part of classical cryptography. The underlying hard problem of

isogeny-based cryptosystem states that it is hard to calculate an isogeny between two

given elliptic curves . The hard problem itself along with the possible attacks have

already been well studied. The main advantages of isogeny-based cryptosystems are

their small key sizes and high compatibility with the current elliptic curve primitives.

In 2017, the National Institute of Standards and Technology (NIST) called for post-

quantum cryptography standardization. At the end of year 2017, around 23 signature

schemes and 59 public-key encryption and key-establishment algorithms were submitted

in the first round. In 2019, NIST announced the 2-round candidates which includes 17

3



public-key encryption and key-establishment algorithms and 9 signature schemes. Among

all these 2-round candidates, 12 of which are constructed from lattice-based cryptography

covering both PKE/KEM and signature scheme. In the remaining 14 candidates, 8

PKE/KEM schemes are constructed from code-based and isogeny-based cryptography, 6

signature schemes are constructed from hash-based, multivariate polynomial cryptography

and post-quantum zero-knowledge proof system.

Digital signature scheme is one of the most widely used cryptographic infrastructures.

Besides its fundamental functionality of verifying authenticity of digital message, it can

be used to construct protocols such as identification protocol by asking a prover to sign

a message and pass the signature to verifier. With growing concerns to user privacy,

anonymous identification scheme which allows provers to identify themselves without

revealing true identity is attracting increasing attention. Similar to identification scheme

constructed from digital signature, anonymous identification scheme can be constructed

from a variant of signature scheme, which is called (linkable) ring signature scheme.

In this thesis, we focus on designing efficient post-quantum anonymous identification

scheme, signature and (linkable) ring signature scheme.

1.1 Thesis Outline

The rest of this thesis is organized as follow:

• Chapter 2 provides some preliminary knowledge for the following content including

some notations and definitions;

• Chapter 3 presents the construction of a symmetric-key based lightweight

anonymous identification scheme for ad hoc group;

• Chapter 4 gives the construction of a new lattice-based digital signature scheme

4



which is called PASSG;

• In Chapter 5, Section 5.1 presents a new generic constructions for (linkable) ring

signature scheme along with its standard lattice and NTRU lattice instantiations.

Section 5.2 gives a rigorous security proof for an existing generic ring signature

framework and extends it to its linkable version. It then instantiates the latter

construction to NTRU lattice.

1.2 Anonymous Identification Scheme

Leakage of personal information online is now regarded as a serious issue for people

who involved in Internet activities. The discoursed individual data contains not only

sensitive identity information but also user’s online behaviour which may be collected

and analyzed by websites. Anonymous identification scheme which allows a user proving

his/her identity in an anonymous way can be applied in scenarios where user privacy is

highly concerned.

Identification scheme, a method allowing a prover to prove his/her identity to a verifier,

can be applied in various situations. However, with the growing of privacy awareness, a

secure identification scheme may not satisfy the privacy demands. In some situations,

people simply prefer to authenticated themselves without revealing his/her identity to

protect privacy. In other words, anonymous identification is desired on some occasions.

For example, when students participate in an online evaluation for their teachers or

professors, they would prefer logging into the evaluation system anonymously. Recently,

the ABC4trust project1 has launched a pilot to employ privacy-preserving technologies

to allow eligible students to conduct online evaluations without revealing their identities.

Achieving a mean of 3.373 and a standard deviation of 1.03 on a 5-point Lickert scale, it

1 https://abc4trust.eu

5

https://abc4trust.eu


was concluded that most participants found the system useful for protecting their privacy

in the pilot assessment [90].

In the first work of this thesis, we propose an anonymous identification scheme for

ad hoc group. Our anonymous identification scheme is symmetric-key based and thus

can be easily applied to most of the website with password-based authentication. We

also give rigorous proof to demonstrate that our identification scheme satisfies security

requirements. The main technique we adopted in our construction is the program

obfuscation. An obfuscator O, informally, can be considered as a probabilistic ‘compiler’

which can transform a program into a new program without revealing any secret in the

original program. Thus, in the construction of our anonymous identification scheme, we

first have a function which takes a list of user password and a string as input, and output a

predetermined string � or 0 if the string is in the password list or not respectively. Then we

use obfuscator to obfuscate this function and obtain a new function which hides � properly.

The new function will be sent to the user trying to authenticate him/herself and the user

should return a string �0. The authentication is considered as a success if �0 == �. The

property of the obfuscation here guarantees that no user without a legitimate password can

successfully identifying him/herself. Also, if the verifier in the protocol is an honest-but-

curious verifier, then the identification scheme is anonymous.

The main building block in our anonymous identification scheme is hash function. As

mentioned previously, the security of hash functions is independent from hard number

theoretic problems and thus hash-based cryptographic constructions can be post-quantum.

Hence, our anonymous identification is also post-quantum. Even though the running time

of our identification scheme is linear to the group size. There is no expensive mathematical

operation, for example, pairing operation, involved in our construction. Our construction

is still very efficient for a reasonably small group.

6



1.2.1 Related Work

Anonymous identification scheme which allows participants in a user group to prove

their membership without revealing any information about the participants’ identity

has been successfully implemented in several approaches. The notion of anonymous

identification was first proposed in [30]. In previous works, anonymous identification

schemes were mainly constructed by group signature or ring signature schemes. Group

signatures, whose concept was first introduced in [26], provide users approaches to

anonymously sign a message on behalf of some group has been used to implement

anonymous identification schemes (for examples [24, 86, 63, 14]). The group formation

is performed by a trusted entity known as the group manager who is responsible for

registering users into the group. A group signature attests the fact that one of the registered

users endorsed the message being signed. Based on group signatures, Boneh and Franklin

in [19] first proposed an anonymous identification scheme allowing identity escrow and

subset queries.

The notion of ring signatures was formalized in [85] and further studied in [1, 30, 79,

28, 87, 25, 65]. Similar to group signatures, a ring signature allows a signer to endorse

a message on behalf of a group of potential signers. Unlike group signatures, however,

the formation of the group of the potential signer in a ring signature is spontaneous,

meaning that users could be completely unaware of being conscripted into the group.

Furthermore, ring signatures support full anonymity in the sense that there is no way to

revoke the anonymity and reveal the identity of the signer. Bresson, Stern and Szydlo

presented extensions to ring signatures [22]. Ring signatures can be used as an anonymous

identification in a typical challenge-response protocol where the verifier challenge the

prover to sign a random message. The first constant-size hoc anonymous identification

was introduced by Dodis, Kiayias, Nicolosi and Shoup [30]. The scheme, whose security

is rest on the strong RSA assumption, is based on the notion of accumulators with one-way

7



domain. The verification cost is time independent of the size of the ad hoc group while

the prover’s cost is close to constant if the group does not change rapidly. Nguyen [79]

proposed a dynamic accumulator scheme for bilinear pairings to construct identity-based

ring signatures2.

To this end, we re-visit the course evaluation scenario above. We observe that several

security requirements are desired. Firstly, anonymity is desirable, since the students would

be afraid of retribution from the teachers of the course being evaluated. Secondly, security,

meaning that only students of the course are eligible to provide feedback, is necessary.

Finally, the ability to support ad hoc group identification is needed as students may

enroll or withdraw from different subjects throughout the semesters. Ad hoc anonymous

identification based on ring signature schemes described above would fulfill these three

requirements. Having said that, we believe that there is no need to use a scheme as

powerful as a ring signature scheme, which allows a signer to convince any verifier

that he is the owner of a public key listed in a group of public keys associated with

the ring signature. In the evaluation scenario mentioned above, we observe that there is

only a single verifier who can anonymous identifies enrolled students of the course being

evaluated. Requiring all students to have their own public/private key pairs, and to have

the evaluation system to verify each of these keys might be too expensive. Based on this

simplified scenario, the research problem we tackled in Chapter 3 is to find a new and

more efficient approach to achieving anonymous identification in ad hoc group that can be

applied to scenarios like system login.

1.3 Lattice-Based Signature Scheme

Digital signature scheme, as a broadly used cryptographic scheme, allows individuals to

verify the authenticity of a document and guarantee the file not being altered during transit

2 A flaw of this construction was identified and rectified in [97].

8



through the Internet. Currently, most of the digital signature schemes applied in practice

are based on the hard number theoretic problems, for instance, integer factorization

and discrete logarithm problems. As mentioned previously, there are already quantum

algorithms developed to solve these problems. Even though there is still no quantum

computer can be used in practice, we, however, should prepare in advance.

In the second work of this thesis, we improve a lattice-based signature scheme proposed

by Hoffstein et al. in 2014 [53] to obtain a new digital signature scheme with detailed

security proof, smaller signature size and better time efficiency. The security of our new

digital signature scheme is based on a variant of Short Integer Solution (SIS) problem

which we defined as the Vandermonde-SIS problem. To reduce the signature size, we

change the distribution of the signature from uniform in [53] to Gaussian and adopting

the rejection sampling technique to decouple the signature from signer’s secret key. The

Gaussian distribution in our signature scheme also guarantees a smaller rejection rate and

higher time efficiency comparing with the original work. Besides reduction proof, we

also utilize the quantum sieving algorithm to analyze the security of our signature scheme

against quantum attackers. For the parameter sets we suggested, our signature scheme is

secure against quantum attacks.

1.3.1 Related Work

In 1999, Hoffstein, Lieman and Silverman [52] introduced Polynomial Authentication

and Signature Scheme (PASS) based on the hardness of recovering a constrained

polynomial from a small number of evaluations of this polynomial. A later version of

PASS, called PASS2, was proposed by Hoffstein and Silverman [58]. Compared with

PASS, PASS2 reduces the computation and communication costs. Similar to all other

“ancient” lattice based signatures such as GGHSign [45] and NTRUSign [51], PASS2

suffers from a kind of transcript attacks known as learn a parallelepiped [80, 35], which

9



essentially exploits the fact that the distribution of signatures leaks information of signing

key. To decouple the signature from the signing key, Hoffstein et al. [53] adopted the

celebrated rejection sampling technique from [71] and presented a revised version of

PASS2, which is called PASSRS . As a candidate of practical post-quantum signature

schemes, the security of PASSRS is based on a special hard problem known as partial

Fourier recovery. This problem requires recovery of a ring element with small norm

given an incomplete description of its Chinese remainder representation. Despite there

is no known reduction from lattice-based hard problems to the partial Fourier recovery

problem, [53] shows that this problem and the Short Integer Solution (SIS) problem are

related in some kind. By assuming the average-case hardness of a special SIS problem

which is called Vandermonde-SIS, the security of PASSRS is said to rely on the hardness of

Vandermonde-SIS. However, no security reduction between PASSRS and Vandermonde-

SIS is provided in [53].

In terms of practicality, PASSRS is efficient in that it enables fast signing and verification

operations through number theoretic transform (NTT). A major obstacle from deployment

remains the size of the signatures, compared to other lattice-based candidates [31, 40, 33,

57]. In Chapter 4, we present PASSG, an efficient lattice-based signature scheme based on

PASSRS that provides provable security along with more secure parameter sets comparing

with the original PASSRS .

Early candidates of lattice-based signature schemes, such as GGH signature scheme

[45] and NTRU signature [51], lack security proofs and have been broken subsequently

due to the aforementioned transcript attacks.

The seminal work of Gentry Peikert and Vaikuntanathan [43], known as the GPV

framework, opened up a new direction to build secure lattice-based signature schemes.

In this framework, one combines a hash-and-sign paradigm with a pre-image sampling

10



function. The signature schemes obtained through this fashion enjoys a provable security

based on the hardness of the SIS problem.

In the GPV framework, the efficiency of a signature scheme (in terms of both speed and

size) depends heavily on the preimage sampling function and the quality of secret basis

produced by the trapdoor generating function. Improving performance of these functions

becomes the research objective for the following studies [5, 82, 77]. Alwen and Peikert

[5] improves the trapdoor generating function to provide a hard random lattice along with

a relatively shorter basis when comparing with [43]. Peikert [82] provides a parallelizable

algorithm for preimage sampling which improves the efficiency of sampling signatures. To

the best of our knowledge, the most efficient construction following this direction while

admitting a security proof is due to Micciancio and Peikert [77]; while in [34, 40], Prest at

al. give an efficient instantiation using NTRU lattices, known as FALCON.

Besides GPV framework adopting “hash-and-sign” techniques, there are also lattice-

based signature schemes built through Fiat-Shamir heuristics. Lyubashevsky and

Micciancio [74] first presented a lattice-based one-time signature scheme based on the

ring-SIS problem with key size and computation both linear to the security parameter.

This one-time signature scheme can be transformed to a general lattice-based signature

scheme by using the standard hash-tree technique. Based on [74], Lyubashevsky [71] then

proposed a lattice-based interactive identification scheme and converted the scheme into a

signature scheme using Fiat-Shamir heuristics. In the identification scheme, the challenge

string from the verifier is an element in some polynomial ring and the prover only

needs to respond correctly once to the challenge. However, under some circumstances,

the responses from the prover may leak the information about the secret key. So, the

prover needs to abort and restart the whole identification protocol. After transforming the

identification scheme into a signature scheme, even though the signer still needs to perform

abortion during the signing procedure, the signer does not need to output those failure

11



attempts. Thus, the abortion will not increase the number of communications between

signer and verifier. This abortion techniques, usually known as rejection sampling, has

flourished modern lattice based signatures. For example, by rejecting the generated

signature to a Gaussian distribution [72] or a Bimodal Gaussian distribution [31], one

is able to reduce both the rejection rate and the size of the signatures. State-of-the-art

following this direction is Dilithium [33], whose hardness is based on the learning with

error problem over modular lattices.

Different from these previous lattice-based signatures schemes, Hoffstein et al. [53]

proposed PASSRS based on the partial Fourier recovery problem. It adopts the same

aborting technique used in [71] to decouple the signature from the secret key. Although the

time efficiency of PASSRS is comparable with BLISS, we note that there are still rooms

for improvement. First of all, PASSRS does not admit a formal reduction proof. Besides,

the size of signatures produced by PASSRS is quite large. Moreover, cryptanalysis has

been developing very rapidly during the past 2 years due to a new model [4] of analyzing

the cost of BKZ 2.0 lattice reduction algorithm [27]. As a consequence, the security level

of the original PASSRS will be significantly reduced. It is fair to say PASSRS may not be

secure if the originally suggested parameters are adopted. To solve these problems, we

apply the rejection sampling technique from [72] to PASSRS to construct a new scheme

known as PASSG. We give a formal reduction proof for our new construction, which

features reduced signature size thanks to the use of rejection sampling. We further provide

several sets of security parameters for our new scheme.

1.4 Lattice-Based (Linkable) Ring Signatures

Ring signature scheme, as a variant of signature schemes, allows a user to sign a

message on behalf of a group users in an anonymous way. In another word, when a

verifier try to verify a ring signature generated on a given group. The verifier will only

12



acquire the knowledge that whether the ring signature is generated by a member in the

group without knowing the true identity of the signer. Due to the anonymity provided by

ring signature scheme, it can be applied in scenarios like electronic voting and anonymous

identification where user’s identity should be protected. Linkable ring signature, besides

the property provided by ring signature scheme, has the feature that two signatures sharing

the same signer can be linkable. This feature is actually a balance between anonymity and

accountability. Nowadays, linkable ring signature scheme has becoming an significant

building block used to protect sender privacy in cryptocurrency transaction.

In Section 5.1, we present our new generic constructions of ring signature and linkable

ring signature scheme. Our new generic constructions are based on a building block we

defined as Chameleon hash plus (CH+). We give the specific security proof of our generic

construction and demonstrate that if the underline CH+ satisfies its security requirements,

the (linkable) ring signature scheme will also be secure. We also give instantiations from

both standard lattice, as a proof of concept, and NTRU lattice, as an efficient instantiation.

We implement the latter construction, called (linkable) Raptor, and show that it is almost as

efficient as the classical ring signatures and thus has practical interest. Moreover, prior to

our work, we are not aware of any implementation of lattice-based (linkable) ring signature

schemes.

In Section 5.2, we revisit an existing generic framework of ring signature scheme

proposed by Abe et al. [1] and extend it to its linkable version. Furthermore, considering

in the original paper, security proof only given to concrete examples instead of the generic

construction. We thus present a security proof for the original generic ring signature

scheme and our linkable version. We instantiate our generic linkable ring signature to

its NTRU lattice version and suggest parameters that is secure against quantum attacks.

Comparing with our third work (linkable) Raptor, this lattice-based linkable ring signature

scheme has a smaller signature size and is more efficient than previous work related to

13



lattice-based linkable ring signature.

1.4.1 Related Work

The notion of ring signatures was put forth by Rivest, Shamir and Tauman in 2001 [85].

It is a special type of group signature [26, 24] where a signer is able to produce a signature

on behalf of a group of potential signers. Unlike group signatures, there is no central party

to manage group membership nor capable of revealing identity of the generator of the

signature. In a typical use case of ring signatures, each user is associated with a public key

and a group is formed spontaneously by collecting users’ public keys. It is a very attractive

property as it enables anonymity: the signer hides its identity within the group, and there

is no trusted third party that is capable of revocation.

Ring signatures offers very strong anonymity. In particular, signatures created by the

same signer are unlinkable. Observing that in some real-world applications, such as

electronic voting, unlinkability can be undesirable, Liu, Wei and Wong [67] put forth

the notion of linkable ring signatures. In such a scheme, the identity of the signer remains

anonymous. In the meantime, two signatures created by the same signer can be linked.

The properties of linkability and signer anonymity are very desirable in various

real world applications, including, but not limited to, e-cash, e-voting, and ad-hoc

authentication. For example, in the e-cash scenario, a linkable ring signature allows the

spender to remain anonymous, while making it possible for the bank to identify double

spenders. To date, linkable ring signature has become a mainstream solution to protect

sender privacy in cryptocurrency transaction [81].

All linkable ring signatures deployed in practice are based on number-theoretic

assumptions and thus vulnerable to quantum computers [89]. Even though quantum

computers are still in their infancy, many believed that general purpose quantum computers

14



will inevitably arrive, by when the exiting classical ring signatures will lose their

anonymity and/or unforgeability.

Lattice-based cryptography is one of the most promising families of candidates [78]

to the quantum apocalypse. To date, there exist a number of lattice-based ring signature

schemes and lattice-based linkable ring signature schemes [21, 75, 64, 38, 93, 13]. While

some of them are asymptotically efficient, they are hardly practical. In particular, to the

best of our knowledge, none of these constructions come with an implementation.

Classical ring signatures We review the existing constructions of (linkable) ring

signatures. The generic construction introduced by Rivest, Shamir and Tauman [85]

in 2001 (RST). This generic construction is based on one-way trapdoor permutations

along with a block cipher. It can be instantiated from the RSA assumption. In 2004,

Abe, Ohkubo and Suzuku [1] (AOS) proposed a new generic construction which allows

discrete-log type of keys. This generic construction can make use of hash-and-sign

signature or any three-move sigma-protocol-based signature. It can be instantiated from

RSA or discrete-log assumptions. Both of the RST and AOS constructions are secure in

the random oracle model and the signature sizes are linear to the ring size. To achieve

the security in standard model, Bender, Katz and Morselli [16] (BKM) presented a ring

signature scheme which adopts a public-key encryption scheme, a signature scheme and

a ZAP protocol for any language in NP [37]. Even though BKM construction is secure

in standard model, the signature size is still linear in the number of group members and

the generic ZAPs are quite impractical. Shacham and Waters [87] then proposed a more

efficient linear-size ring signature scheme without random oracle from bilinear pairing.

To reduce the signature size, Dodis et al. proposed the first ring signature scheme with

constant signature size in 2004 [30]. It relies on accumulator with one-way domain and

is secure in the random oracle model. The first ring signature with sub-linear without

15



random oracle model is due to Chandran, Groth and Sahai [25]. This scheme has signature

size O(
p
`) where ` is the number of users in the ring. All of the above sub-linear size

constructions are secure in the common reference string model which requires a trusted

setup. The first sub-linear ring signatures without relying on a trusted setup is due to Groth

and Kohlweiss [47]. It features logarithmic size signature and is secure in the random

oracle model.

Classical linkable ring signatures Since the first proposal of linkable ring signature

[67], a sequence of work [95, 7, 66, 92] which provides different features has been

proposed. In 2005, Tsang and Wei [95] extends the generic ring signature introduced

by Dodis et al. [30] to a linkable version, which also feature constant signature size and

is secure in the random oracle model. Au et al. [7] presented a new security model for

linkable ring signatures and a new short linkable ring signature scheme that is secure in

this strengthened model. In 2014, Liu et al. [66] presented the first linkable ring signature

scheme achieving unconditional anonymity. Sun et al. [92] proposed a new generic

linkable ring signature to construct RingCT 2.0 for Monero. There are also schemes with

special properties such as identity-based linkable ring signatures [94, 9] and certificate-

based linkable ring signatures [8].

Lattice-based ring signatures For ring signatures in the lattice setting, Brakerski and

Kalai [21] proposed a generic ring signature scheme in the standard model. This generic

construction is based on a new primitive called ring trapdoor functions. They instantiated

this function based on the inhomogeneous short integer solution problem (ISIS). However,

the resulting scheme is only secure under a weak definition. To achieve full security,

an inefficient transformation is needed. Melchor et al. [75] transforms Lyubashevsky’s

lattice-based signature [72] into a ring signature. As the authors pointed out themselves,

their scheme is “pretty unpractical”. In 2016, Libert et al. [64] presented a lattice-based

16



accumulator. With the accumulator and a lattice-based zero-knowledge proof system, they

build a ring signature scheme that features logarithmic signature size. However, the zero-

knowledge arguments applied in the accumulator is very inefficient. The state-of-the-art

is the lattice-based ring signature scheme proposed by Esgin et al. [38]. They adapt the

efficient one-out-of-many proof [47, 20] to build a lattice-based ring signature scheme.

Same as [64], [38] is also a logarithmic size ring signature scheme and is secure in the

random oracle model.

Lattice-based linkable ring signatures The first lattice-based linkable ring signature

scheme was proposed by Torres et al. in 2018 [93]. It can be seen and instantiation

of the AOS framework from the lattice-based BLISS signature [31], with adaption to

introduce linkability. The signature size is linear to the number of members in the ring

and is reported to be 51 KB per ring member. In the same year, Baum, Lin and Oechsner

[13] construct another lattice-based linkable ring signature scheme following a very similar

ideal to [93]. The signature size for [13] is claimed to be around 10.3KB per user. The

main difference between these two work is the way to achieve linkability. We are not

aware of any implementation of these work.

In terms of performance, lattice-based (linkable) ring signatures [75, 93, 13] are all

based on the lattice-based sigma-protocol-based signature and thus involve additional

overhead in the form of rejection sampling which affects the performance of the signature

scheme. As mentioned above, the inefficiency of the underlying zero-knowledge proof

system makes [64] quite impractical. It is fair to say constructing linkable ring signatures

from lattices (even with linear signature size) is non-trivial. Common framework such

as AOS does not give concrete security proof; and the RST framework relies on one-

way trapdoor permutation of which no lattice-based realization is known. In Section

5.1, we present a practical and efficient lattice-based (linkable) ring signature scheme

17



and implement it on a typical laptop. We also provide the performance comparison with

previous related works. In Section 5.2 we revisit the generic framework of ring signatures

based on the Type-H signatures presented in AOS framework and prove the security of the

generic construction in a strengthened model. We also instantiate AOS framework to its

linkable version and give its NTRU lattice-based instantiation.

18



Chapter 2

Preliminary

2.1 Notation

Elements in Zq are represented by integers in [� q
2 ,

q
2). We use cyclotomic polynomial

rings Rq = Zq[x]/(xn + 1) with n being a power of 2 and q being a prime. An

element a 2 Rq is represented as a polynomial a = a0 + a1x + a2x2 + · · · + an�1xn�1

with coefficients ai 2 Zq. We can also use vector [a0, a1, a2, · · · , an�1]T to represent

polynomial a. Thus, column vectors and elements in Rq are denoted by lower-case bold

letters (e.g. x). Matrices are denoted by upper-case bold letters (e.g. X). We use x̂ to

denote a column vector with entries from the ring.

In Chapter 4, we use ? to denote the multiplication on Rq and � to denote component-

wise multiplication of vectors. Assume q is a prime number and congruent to 1 mod 2n.

For any � with gcd(�, q) = 1, Fermat’s little theorem says �q�1 = 1 (mod q). Since

q = rn + 1, we have �rn = 1 mod q. We can define a ring homomorphism mapping

f ! f(�r) for any f 2 Rq. For any f1, f2 2 Rq,

(f1 + f2)(�
r) = f1(�

r) + f2(�
r) and (f1 ? f2)(�

r) = f1(�
r)� f2(�

r)

We define the exclusive-or operation of two matrix X
(1) 2 Zn⇥m

q and X
(2) 2 Zn⇥m

q ,

19



X
(1) �X

(2), as:

2

64
bq(x

(1)
11 )� bq(x

(2)
11 ) · · · bq(x

(1)
1m)� bq(x

(2)
1m)

... . . . ...
bq(x

(1)
n1 )� bq(x

(2)
n1 ) · · · bq(x

(1)
nm)� bq(x

(2)
nm)

3

75

where bq(x) means that transform a value x 2 Zq to its binary representation. bq(.) can be

efficiently computed.

For distribution D, x  D means sampling x according to distribution D. For set S,

x $ S means that x is chosen uniformly at random from S. kvk1 is the `1 norm of vector

v and kvk is the `2 norm of v.

The continuous normal distribution over Rn centered at v with standard deviation � is

defined as ⇢nv,�(x) = ( 1p
2⇡�2

)ne
�kx�vk2

2�2 . For simplicity, when v is the zero vector, we use

⇢n�(x).

The discrete normal distribution over Zn centered at v 2 Zn with standard deviation �

is defined as Dn
v,�(x) =

⇢nv,�(x)

⇢nv,�(Zn) .

Lemma 2.1.1 (Rejection Sampling [31]) Let V be an arbitrary set, and h : V ! R and

f : Zm ! R be probability distributions. If gv : Zm ! R is a family of probability

distribution indexed by all v 2 V with the property that

9M 2 R such that 8v 2 V, 8z 2 Zm,Pr[M · gv(z) � f(z)] � 1� ".

Then the output distribution of the following algorithm A:

1. v  h

2. z gv

20



3. output (z, v) with probability min
⇣

f(z)
M ·gv(z) , 1

⌘

is within statistical distance "
M of the output distribution of the following algorithm F:

1. v  h

2. z f

3. output (z, v) with probability 1
M

The probability of algorithm A output something is at least 1�"
M .

2.2 Lattice-Based Cryptography

2.2.1 Lattices and Hardness Assumptions

A lattice in m-dimension Euclidean space Rm is a discrete set

⇤(b1, · · · ,bn) =

(
nX

i=1

xibi|xi 2 Z
)

of all integral combinations of n linear independent vectors b1, · · · , bn in Rm (m  n).

We call matrix B = [b1, · · · ,bn] 2 Rm⇥n a basis of lattice ⇤. Using matrix notation, a

lattice can be defined as ⇤(B) = {Bx|x 2 Zn}.

Fig.2.1 shows a 2-dimensional example. Both (b1,b2) and (b01,b
0
2) are basis for this

lattice.

The discrete Gaussian distribution of a lattice ⇤, parameter s and center v is defined as

D⇤,v,s(x) =
⇢v,s(x)
⇢v,s(⇤)

.

Definition 2.2.1 Let m � n � 1 and q � 2. For arbitrary matrix A 2 Zn⇥m
q and vector

21



Figure 2.1: A lattice in R2

u 2 Zn
q define m-dimensional full-rank integer lattices and its shift:

⇤?(A) = {z 2 Zm : Az = 0 mod q},

⇤?u (A) = {z 2 Zm : Az = u mod q}.

Short Integer Solution (SIS) problem and Inhomogeneous Short Integer Solution (ISIS)

problem are two average-case hard problems frequently used in lattice-based cryptography

constructions.

Definition 2.2.2 (SISq,n,m,� problem) Given a uniformly chosen matrix A 2 Zn⇥m
q , find

x 2 ⇤?(A) and 0 < kxk  �.

Definition 2.2.3 (ISISq,n,m,� problem) Given a uniformly chosen matrix A 2 Zn⇥m
q and

vector u 2 Zn
q , find x 2 ⇤?u (A) and 0 < kxk  �.

According to [43], if q � !(
p
n log n)� and m, � = poly(n), then SISq,n,m,� and

ISISq,n,m,� is at least as hard as a standard worst-case lattice problem SIVP� (Shortest

22



Independent Vector Problem) with � = �Õ(
p
n). Similarly, R-SIS (R-ISIS) problems are

defined as an analogue of SIS (ISIS) problem in ideal lattices.

Definition 2.2.4 (R-SISq,m,� problem) Given a uniformly chosen vector â 2 Rm
q , find

x̂ 2 Rm such that âT · x̂ = 0 and 0 < kx̂k  �.

Definition 2.2.5 (R-ISISq,m,� problem) Given a uniformly chosen vector â 2 Rm
q and a

ring element u 2 Rq, find x̂ 2 Rm such that âT · x̂ = u and 0 < kx̂k  �.

The R-SIS problem was concurrently introduced in [83, 73]. According to [73], the

R-SISq,m,� is as hard as the SVP� (Shortest Vector Problem) for � = Õ(n�) in all lattice

that are ideals in R if R = Z[x]/(xn + 1), where n is a power of 2.

Definition 2.2.6 (NTRU assumption) Let a = g/f over Rq where kf ,gk1 is bounded by

some parameter � < q. The NTRU assumption says it is hard to distinguish a from a

uniformly random element from Rq.

Over the years, there has been a few different versions of the NTRU assumption

[56, 91, 68]. Here we use a decisional version that is most convenient for our proof.

Note that this assumption holds as long as GapSVP problem is hard for NTRU lattices.

Lemma 2.2.1 ([72]Lemma 3.3) 1. For any k > 0, Pr[kzk > k�
p
n; z  Dn

� ] <

kne
n

2 (1�k
2).

2. For any z 2 Zn, and � � 3/
p
2⇡, Dn

�(z)  2�n.

3. For any vector v 2 Rn and any �, r > 0, we have: Pr[|hz,vi| > r; z  Dn
� ] 

2 exp(� r2

2kvk2�2 )

4. For any positive real number s > 0, we have Prx Dm
s
[kxk  2

p
ms] � 1� 2�m.

23



2.2.2 Preimage Sampleable Functions and FALCON

Generating a ‘hard’ public basis A (chosen at random from some appropriate

distribution) of some lattice ⇤, together with a ‘good’ trapdoor basis T has been studied

since the work of Ajtai [2]. In 2008, Gentry, Peikert and Vaikuntanathan [44] construct a

preimage sampleable function using the ‘hard’ public basis and trapdoor basis, and apply

it as a building block to lattice-based signature schemes. This celebrated work (referred to

as the GPV framework) is followed by a sequence of improvements. Alwen and Peikert

[5] is able to generate a shorter trapdoor, compared to [44]; while Peikert [82] provides

a parallelizable algorithm to sample preimages. To the best of our knowledge, the most

efficient construction following this direction while maintaining a security proof is due to

Micciancio and Peikert [77]. Here we re-state one of their results.

Theorem 2.2.1 ([77], Theorem 5.1) There exists an efficient algorithm GenBasis (1n, 1m,

q) that given any integers n  1, q  2, and sufficiently large m = O(n log q), outputs

a parity-check matrix A 2 Zn⇥m
q and a ‘trapdoor’ T such that the distribution of A

is negl(n)-far from uniform. Moreover, there is an efficient algorithm PreSample. With

overwhelming probability over all random choices, for any u 2 Zn
q and large enough

s = O(
p
n log q), PreSample(A, T, u, s) samples from a distribution within negl(n)

statistical distance of D⇤?
u (A),s·!(

p
logn).

On the other hand, the most efficient GPV construction in practice is due to Prest at

al. [34, 40] using NTRU lattices [56]. The corresponding signature scheme is named

FALCON [40].

FALCON is a candidate lattice-based signature scheme to the NIST post-quantum

standardization process [78]. It is the resurrection of NTRUSign [51] with the

aforementioned GPV framework for transcript security [44, 34], and a fast Fourier

sampling for efficiency [36]. It is by far the most practical candidates among all submitted

24



proposals, in terms of the combined sizes of public keys and signatures; and the only

solution that provides a preimage sampleable function. In terms of security,

• FALCON stems from the provable secure GPV construction [43], under the

(quantum) random oracle model [18];

• although the parameters in FALCON does not support GPV’s security proof, they are

robust against best known attacks1.

The high level description of FALCON is in Section 2.4.2.

2.3 Ad Hoc Anonymous Identification Scheme

An ad hoc anonymous identification scheme consists of four efficient algorithms,

namely, Setup, Register, Pr, Vf, where:

• Setup(1�). On input a security parameter 1�, this algorithm generates the system’s

parameter param. We assume param is an implicit input to all the algorithms listed

below.

• Register(I). This algorithm allows users to register with the system. On input a new

user identity, I, this algorithm outputs the corresponding user secret key skI .

• Pr(skI)
LI ! Vf(Lsk). This is the interactive identification protocol runs between

PPT Pr and Vf. The common inputs to the algorithms are a list of user identities

LI := {I1, I2, . . ., I`} and the list of corresponding secret key Lsk := {skI1 , skI2 ,

. . ., skI`}. Upon successful completion of the protocol, Vf outputs 0/1 to indicate

rejection or acceptance.

1 In practical lattice-based cryptography, it is common to derive parameters from best known attacks other
than security proofs. For example, see [4, 3].

25



Typically, the identification system consists of one server (verifier) and a number of

users (provers). Algorithm Setup is usually executed by the server. Register could be

initiated by the server or a user, depending on the application scenario. When a user wishes

to identify anonymously to the server, the two parties engage in an interactive identification

protocol where Pr and Vf will be executed by the user and the server respectively. We note

that the common input LI can be chosen by either the server or the user, depending on the

application scenario.

Correctness. We required that an honest verifier will always accept the identification

from an honest prover. More formally, we require that the quantity

Pr

2

6666664

param Setup(1�)
skIi  Register(Ii)

for i = 1 to n
LI := {I1, . . . , In}

Lsk := {skI1 , . . . , skIn}
skI

R � Lsk

������������

Pr(skI)
LI ! Vf(Lsk)! 1

3

7777775

is greater than or equal to 1� negl(�).

2.3.1 Security Requirements

We consider two security requirements for an ad hoc anonymous identification scheme,

namely, anonymity and soundness. In this subsection, we formalize these requirements as

games between a challenger and an attacker.

Anonymity

To define the anonymity of an ad hoc anonymous identification scheme, we define the

following game, denoted as Gameanon, between a challenger C and an adversary A.

Setup. Challenger C runs Setup with security parameter 1� and generates system

26



parameter param. Then C sends param to adversary A.

Challenge. A sends a list of identity-key pairs {(Ji, skJi
)}`i=1 to C. A further specifies

two identities I0, I1 such that I0 = Jx and I1 = Jy for some x, y 2 {1, . . . , `}.

We use skI0 (resp. skI1) to denote skJx
(resp. skJy

). Define L⇤I to be {Ji}`j=1 and

L⇤sk := {skJi
}`i=1.

Then C flips a fair coin b 2 {0, 1} and invokes ⇡⇤  [Pr(skIb)
L⇤

I ! Vf(L⇤sk)]. The

resulting transcript, ⇡⇤, is given to A.

Guess. Finally, A outputs a bit b0. We say that A wins Gameanon if b = b0.

The advantage of A, advA,anon, is defined as the probability that it wins the above game

minus 1
2 .

Definition 2.3.1 An ad hoc anonymous identification scheme is said to offer anonymity if

for any adversary A, the advantage advA,anon in the above game is negligible.

In the above definition, A is not computationally bounded. In other words, a scheme

satisfying Definition 2.3.1 offers unconditional anonymity. We also note that the above

game allows the adversary to present maliciously chosen keys (i.e., keys that do not follow

the distribution of algorithm Register). In other words, anonymity has to be preserved even

when the keys are not properly chosen.

Soundness

Soundness of ad hoc anonymous identification scheme captures the requirement that a

user without a legitimate secret key for an identity in the list of authenticating users should

be rejected in an identification protocol by the verifier. We introduce Gamesec between a

challenger C and an attacker A to formally capture this intuition. The goal of A in the

game is to prove his identity without valid user ID and secret key pair (I, sk).

27



Setup. Challenger C runs Setup with security parameter 1� and generates system

parameter param. Then C sends param to adversary A. C maintains two lists,

namely, the list of honest users (LH) and corrupted users (LC).

Query. A can issue three types of queries in an adaptive manner.

• Register(I,!). A can issue Register-queries to C to introduce users into the

system. If ! =?, C invokes Register on input I and obtains skI . I is added to

LH . Otherwise, C sets skI := ! adds I to LC .

• Corrupt(I). A submits a user identity I. If I is included in LH , C returns to

A the corresponding skI and moves I from LH to LC .

• Trans(I,LI). A chooses a set of users LI ⇢ LC [ LH and a user I 2 LI to

obtain an identification transcript. C first collects the corresponding user secret

key Lsk := {skI |I 2 LI}. Next, it executes ⇡  [Pr(skI)
LI ! Vf(Lsk)] and

returns ⇡ to A.

Challenge. A chooses a set of user identities L⇤ ⇢ LH on which it wishes to be

challenged. C parses L⇤sk := {skI |I 2 L⇤}. Next, C plays the role of the verifier

with input (L⇤,L⇤sk) with A acting as a prover. We says that A wins the game if and

only if

A L⇤

 ! Vf(L⇤sk)! 1

The advantage of A, advA,sec, is defined as the probability that it wins the above game.

Definition 2.3.2 An ad hoc anonymous identification scheme is sound if for any PPT

adversary A the advantage advA,sec is negligible .

We would like to remark that our definitions (Definition 2.3.1 and Definition 2.3.2)

28



only allow the attacker to passively eavesdrop the communications. We note that this is a

common security requirement for identification protocols as in [30]. One possible reason

is that in most cases, the constructions are ⌃-protocol that will be converted generically

to its non-interactive form in which the generic construction requires the identification

protocol to be passively sound. However, we shall see in Chapter 3 that our protocol is not

a ⌃-protocol. The implication of the choice this security definition will be discussed after

we present our construction.

2.4 Digital Signature Scheme

A digital signature scheme consists of three algorithms, namely, KeyGen, Signing,

Verification, described as follows.

• KeyGen(1�) ! (sk, pk): This key generation algorithm generates private signing

key sk and public verification key pk.

• Signing(sk, µ)! �: On input signing key sk and message µ, the signing algorithm

outputs signature � on µ.

• Verification(µ, �, pk)! accept/reject: On input message µ, signature � and

verification key pk, the verification algorithm outputs accept if � is a signature on µ.

otherwise, it outputs reject.

Security of a digital signature scheme can be defined by a Game held between a

challenger C and a probabilistic polynomial-time adversary A. Game consists of three

phases, namely, Setup, Query and Output.

• Setup. The challenger C runs KeyGen algorithm and obtains private signing key

and public verification key pair (sk, pk). C sends verification key pk to the forger A.

29



• Query. Adversary A sends message µi to challenger C. C signs µi using sk and

returns the corresponding signature �i to A. Adversary A repeats the process n

times where n is polynomial in � and finally obtains a list of message and signature

pair ((µ1, �1),(µ2, �2),· · · ,(µn, �n)).

• Output. The adversary A outputs a forgery (µ⇤, �⇤). A wins Game if

(Verification(µ⇤, �⇤, pk)! accept)^((µ⇤, �⇤) /2 {(µ1, �1), (µ2, �2), · · · , (µn, �n)}).

Definition 2.4.1 A signature scheme (KeyGen, Signing, Verification) is said to be strong

unforgeable if for any polynomial-time adversary A, the probability of A winning Game

is negligible.

2.4.1 One-Time Signature Scheme

A digital signature scheme is said to be one-time secure if it satisfies following

definition,

Definition 2.4.2 A signature scheme (KeyGen, Signing, Verification) is said to be one-

time secure if for any polynomial-time adversary A, the probability of A winning Game⇤

is negligible.

Game⇤ consists of three phases, namely, Setup, Query and Output.

• Setup. The challenger C runs KeyGen algorithm and obtains private signing key

and public verification key pair (sk, pk). C sends verification key pk to the forger A.

• Query. Adversary A sends one message µ to challenger C. C signs µ using sk and

returns the corresponding signature � to A. Adversary A obtains a message and

signature pair (µ, �).

30



• Output. The adversary A outputs a forgery (µ⇤, �⇤). A wins Game if

(Verification(µ⇤, �⇤, pk)! accept) ^ ((µ⇤, �⇤) 6= (µ, �).

2.4.2 FALCON Signature Scheme

This section gives the high level description of FALCON signature scheme. The detail

of the scheme can be found in [40]. Here we assume the signature scheme works over a

polynomial ring Rq := Zq[x]/(xn + 1).

• FALCON.KeyGen(1�) ! (a,T): this algorithm takes security parameter 1� as

input and chooses random f and g polynomials (f ,g 2 Rq) using an appropriate

distribution. The public key will be set as a = g/f and the secret key T :=


f g

f̄ ḡ

�

is the trapdoor of a. f̄ and ḡ satisfy f ḡ�gf̄ = q mod (xn+1) and f , g, f̄ ḡ should

be short.

• FALCON.Sign(a,T;µ) ! (r0, r1): the signing algorithm first hashing the message

µ into a polynomial c 2 Rq. Then it uses the short trapdoor T to produce a pair of

short polynomials (r0, r1) such that r0 + ar1 = c.

• FALCON.Verify(a, (r0, r1), µ) ! 0/1: this algorithm verifies that (r0, r1) is a pair

of appropriately short polynomials and c = r0+ar1 where c is the hash of message

µ. If all pass, output 1; otherwise, output 0.

2.5 Ring Signature Scheme

In this section, we are going to give the syntax and security models for ring signatures.

31



2.5.1 Syntax

A ring signature scheme usually is a tuple of four algorithms (Setup, KeyGen, Signing,

Verify):

• Setup(1�)! param: On input security parameter 1�, this algorithm generates

system parameter param. We assume param is an implicit input to all the algorithms

listed below.

• KeyGen! (sk, pk): By taking system parameter param, this key generation

algorithm generates a private signing key sk and a public verification key pk.

• Signing(sk, µ, Lpk) ! �: On input message µ, a list of user public keys Lpk, and

signing key sk of one of the public keys in Lpk, the signing algorithm outputs a ring

signature � on µ.

• Verification(µ, �, Lpk)! accept/reject: On input message µ, signature � and list

of user public keys Lpk, the verification algorithm outputs accept if � is legitimately

created; reject, otherwise.

Correctness: the scheme is correct if signatures generated according to above specification

are always accepted during verification.

2.5.2 Security Notions

The security requirements for a ring signature scheme have two aspects: unforgeability

and anonymity. Before presenting their definitions, we first introduce the following oracles

which can be used by adversaries in breaking the security of ring signature schemes:

• Registration Oracle RO(?) ! pki: On request, RO generates a new user and

returns the public key of the new user.

32



• Corruption Oracle CO(pki) ! ski: On input a user public key pki that is a query

output of RO, CO returns corresponding secret key ski.

• Signing Oracle SO(µ, Lpk, pk⇡) ! �: On input a list of user public keys Lpk,

message µ and the public key of the signer pk⇡ 2 Lpk, SO returns a valid signature

� on µ and Lpk.

Unforgeability

The unforgeability of a ring signature scheme is defined via the following game, denoted

by Gameforge, between an adversary A and a challenger C.

• Setup. The challenger C runs Setup with security parameter 1� and generates system

parameter param. C sends param to A.

• Query. The adversary A may query RO, CO and SO for a polynomial bounded

number of times in an adaptive manner.

• Output. The adversary A outputs a forgery (µ⇤, �⇤, L⇤pk). A wins Gameforge if

– Verification(µ⇤, �⇤, L⇤pk) = accept;

– (µ⇤, L⇤pk) has not been queried by A;

– all public keys in L⇤pk should be outputs of RO; and

– no public key in L⇤pk has been input to CO.

The advantage of A, denoted by adv
forge
A , is defined by the probability that A wins

Gameforge:

adv
forge
A = Pr[A wins Gameforge]

33



Definition 1 (Unforgeability) A ring signature scheme (KeyGen, Signing, Verification)

is said to be unforgeable if for any polynomial-time adversary A, advforge
A is negligible.

Anonymity

For a ring signature scheme, this notion captures that it is impossible for an adversary

to identify the actual signer with probability greater than 1
n where n is the size of the

ring. More specifically, the anonymity of a ring signature scheme can be defined by the

following game, denoted by Gameanon, between adversary A and challenger C:

• Setup. The challenger C runs Setup with security parameter 1� and sends the system

parameter param to A.

• Query. The adversary A may query RO and CO in an adaptive manner.

• Challenge. A picks a list of user public keys Lpk = {pk1,pk2, · · · ,pkn} and a

message µ. A sends (Lpk, µ) to C. C randomly picks ⇡ 2 {1, · · · , n} and runs

Signing(sk⇡,µ,Lpk)! �. C sends � to A.

• Output. A outputs a guess ⇡⇤ 2 {1, · · · , n}.

A wins Gameanon if ⇡⇤ = ⇡. The advantage of A is defined by

adv
anon
A = |Pr[⇡⇤ = ⇡]� 1

n
|.

Definition 2 (Anonymity) A ring signature scheme (KeyGen, Signing, Verification) is

said to be anonymous (resp. unconditionally anonymous) if for any polynomial-time

adversary (resp. unbounded adversary) A, advanon
A is negligible.

34



2.6 Linkable Ring Signature Scheme

In this section, we are going to present the syntax and security requirements of linkable

ring signatures. We emphasize that the linkable ring signature here is one-time linkable

ring signature and the public key for a signer is only supposed to use once.

2.6.1 Syntax

A linkable ring signature scheme usually consists of five algorithms, namely, (Setup,

KeyGen, Signing, Verification, Link):

• Setup(1�)! param: On input the security parameter 1�, this algorithm generates the

system parameter param. We assume param is an implicit input to all the algorithms

listed below.

• KeyGen! (sk, pk): By taking the system parameter param, this key generation

algorithm generates a private signing key sk and a public verification key pk.

• Signing(sk, µ, Lpk)! �: On input a message µ, a list of user public keys Lpk, and a

signing key sk of one of the public keys in Lpk, the signing algorithm outputs a ring

signature � on µ.

• Verification(µ, �, Lpk)! accept/reject: On input a message µ, a signature � and

a list of user public keys Lpk, the verification algorithm outputs accept if � is

legitimately created. otherwise, output reject.

• Link (�1, �2, µ1, µ2, L(1)
pk , L(2)

pk )! linked/unlinked: Takes two messages µ1, µ2

and their signatures �1 and �2 as input, output linked or unlinked.

Correctness: the scheme is correct if

• signatures signed as above is always accepted during verification; and

35



• two legally signed signatures are linked if and only if they share a same signer.

2.6.2 Security Notions

The security of a linkable ring signature should have four aspects, namely,

unforgeability, anonymity, linkability and nonslanderability. Same as the security notions

for ring signatures, there are also three oracles, namely, RO, CO and SO jointly model

the ability of an adversary:

The security definition of unforgeability for linkable ring signatures remains the same

as in section 2.5.2. The definitions of anonymity, linkability and nonslanderability are

adopted from Liu et al. [66].

Anonymity

We require that, for a secure linkable ring signature scheme, it should be impossible for

an adversary to identify the actual signer with probability greater than 1
n where n is the

size of the ring. More specifically, the anonymity of a linkable ring signature scheme can

be defined by the following game, Game⇤anon, held between adversary A and challenger C.

The difference between Game⇤anon and Gameanon is that, in Game⇤anon, A is only allowed to

query register oracle RO.

• Setup. The challenger C runs Setup with security parameter 1� and sends the system

parameter param to A.

• Query. The adversary A may query RO in an adaptive manner.

• Challenge. A picks a list of user public keys Lpk = {pk1, pk2, · · · , pkn} and a

message µ. All public keys in Lpk should be query outputs of RO. A sends (Lpk, µ)

to C. C randomly picks ⇡ 2 {1, · · · , n} and runs Signing(sk⇡, µ, Lpk)! �. C sends

� to A.

36



• Output. A outputs a guess ⇡⇤ 2 {1, · · · , n}.

A wins Game⇤anon if ⇡⇤ = ⇡. The advantage of A is defined by

adv
anon
A = |Pr[⇡⇤ = ⇡]� 1

n
|.

Definition 3 (Anonymity) A linkable ring signature scheme is said to be anonymous

(resp. unconditionally anonymous) if for any polynomial-time adversary (resp. unbounded

adversary) A, advanon
A is negligible.

Linkability

This notion captures that Link algorithm always outputs linked for two signatures

generated by a same signer. We use the following game, Gamelink, between a challenger C

and an adversary A to define linkability:

• Setup. The challenger C runs Setup and gives A system parameter param.

• Query. The adversary A is given access to RO, CO, SO and may query the oracles

in an adaptive manner.

• Output. A outputs k sets, {L(i)
pk , µi, �i} for i 2 [1, · · · , k], where L(i)

pk is a list of

public keys, µi is message, �i is signature.

A wins the game if

• all �is are not query output of SO;

• all public keys in L(i)
pk are query output of RO;

• Verification(µi, �i,L
(i)
pk ) = Accept ;

• A queried CO less than k times; and

37



• Link(�i, �j , µi, µj , L
(i)
pk , L(j)

pk ) = unlinked for i, j 2 [1, · · · , k] and i 6= j.

The advantage of A is defined by the probability A wins Gamelink:

adv
link
A = Pr[A wins Gamelink]

Definition 2.6.1 (Linkability) A linkable ring signature scheme is linkable if for any

polynomial-time adversary A, advlink
A is negligible.

Nonslanderability

The nonslanderability requires that a signer cannot frame other honest signers for

generating a signature linked with another signature not signed by the signer. We use the

following game, Gameslander, to define the nonslanderability of a linkable ring signature

scheme:

• Setup. The challenger C runs Setup and gives A system parameter param.

• Query. The adversary A is given access to RO, CO, SO and may query the oracles

in an adaptive manner.

• Challenge. A gives C a list of public keys Lpk, a message µ and a public key

pk⇡ 2 Lpk. C runs Signing(sk, µ, Lpk) and returns the corresponding signature �

to A. A still can queries oracles with arbitrary interleaving.

• Output. A outputs a list of public keys L⇤pk, message µ⇤, and a signature �⇤.

A wins Gameslander if the following holds:

• Verification(µ⇤, �⇤,L⇤pk) = accept;

• pk⇡ is not queried by A to CO;

• pk⇡ is not queried by A as an insider to SO; and

38



• Link(�, �⇤, µ, µ⇤) = linked.

The advantage of A is defined by:

adv
slander
A = Pr[A wins Gameslander]

Definition 2.6.2 (Nonslanderability) A linkable ring signature scheme is nonsladerable

if for any polynomial-time adversary A, advslander
A is negligible.

Theorem 2.6.1 [[10], Sec 3.2] If a linkable ring signature scheme is linkable and

nonslanderable, it is also unforgeable.

39



40



Chapter 3

Anonymous Identification for Ad Hoc
Group

In this chapter, we propose a conceptually simple and efficient approach to construct

an ad hoc anonymous identification scheme. Specifically, we make the following

contributions.

• We formalize the notion of symmetric-key based anonymous identifications for ad

hoc group and develop security models to capture security requirements.

• We introduce a conceptually simple approach based on program obfuscation and

a concrete construction of this primitive. We prove that our proposal satisfies the

security definitions.

• We conduct empirical analysis on the efficiency of our proposal and show that our

system out-perform existing solutions in practical settings.

3.1 Overview

As mentioned above, we use obfuscation in our scheme to achieve security. Informally,

an obfuscator O is an efficient and probabilistic “compiler” that transforms a program

41



P into a new program O(P ) which still has the same functionality with P and reveals

no secrets that may be used by P . This techniques can be very useful and with wide

applications, for example, to prevent tampering or protect copyright a software developer

needs obfuscation to hide secrets in the code while maintaining its functionality.

The theoretical investigation of obfuscation was initiated by Barak et al. [12] in

which they discovered several impossibility results. The first positive results in program

obfuscation was presented by Lynn, Prabhakaran and Sahai [70]. Before this, none of

the proposed program obfuscation schemes had proven its security properties. In [70],

several provably-secure obfuscation techniques were presented in the random oracle model

including the obfuscation of multi-point functions.

Assume each user is represented by a unique user identity, I, and that he/she shares a

secret key, skI , with the verifier. Define a function gL(·) such that

gL(skI) =

⇢
1 if skI 2 L
0 otherwise

At an abstract level, an identification for ad hoc group in the symmetric key setting is

a mechanism that realises a multi-point function. Specifically, the server specifies L and

accept an identification from a user if and only if gL(sk) = 1.

We further define a function fL,�(·) as fL,�(x) 7! gL(x)⇤�. Now fL,�(·) is a multi-input

multi-bit output point function. Below we outline our idea in constructing an anonymous

identification for ad hoc group in the symmetric key setting based on function fL,� . As

a warm-up, we first give a construction that possesses anonymity but not soundness. The

warm-up construction is illustrated in Figure 3.1. Note that the construction is trivially

anonymous, since the output of all legitimate users in the list L is indistinguishable. The

same can be said for users not in the list. However, one challenge remains. In the above

42



Prover Verifier

�
R � {0, 1}⇤

Choose user list L
fL,�(·) ���� Construct function fL,�(·)

�0 = fL,�(sk)

�0

������! If �0 = �, output 1
Otherwise, output 0

Figure 3.1: Warm-up construction

protocol, there is no mechanism to prevent an attacker from reading the value � from the

implementation of function fL,� and returns � to authenticate without the need to use a

secret key.

To tackle this challenge, we observe that it suffices if fL,� can be implemented as a

black-box. So, for the security of our scheme, we need to turn the function fL,� into a

black box which means no one can get any useful information by reading code after the

transition. In our scheme, we use obfuscation to obfuscate function fL,� and turn fL,� into

a black box. Looking ahead, the anonymity of our scheme is unconditional even in the

situation that obfuscation is broken while soundness is based on whether or not we can

implement function fL,� as a black box. This requirement is equivalent to the obfuscation

of a multi-input multi-bit output function of which efficient solution exists in the random

oracle model.

3.2 Our Construction

In this section, we give the details of our scheme.

Setup(1�): On input 1�, the algorithm chooses a hash function R : {0, 1}⇤ !

43



{0, 1}2�+s(�), where s(�) is a quantity polynomial in �. Set param as R, which will be

modelled as a random oracle.

Register(I): On input a new user identity, I, the algorithm first compares I with all

the identities stored in its database. If I exists, it returns false and abort. Otherwise, it

randomly generates random bit-string skI 2R {0, 1}�. Then, the tuple (I, skI) is stored in

its database.

Pr(skI)
LI ! Vf(Lsk): The pair of interactive algorithms are to be executed by the

prover and the verifier respectively. The prover and the verifier first agrees on the list of

user identities LI := {I1, I2, . . ., I`}. The anonymous identification protocol between

the prover and the verifier is a two-move protocol:

1. From LI , the verifier obtains the list of corresponding secret keys Lsk := {skI1 ,

skI2 , . . ., skI`} from the database. Then, it picks a random � 2R {0, 1}s(�). The

verifier computes OR(fLsk,�), the obfuscation of the function fLsk,� and sends it to

the prover. Recall that fLsk,� is a multi input multi-bit output point function with the

following specification:

fLsk,�(skI) =

⇢
� if sk 2 Lsk

0 otherwise

Details of OR(fLsk,�) will be discussed in the next paragraph.

2. Upon receiving OR(fLsk,�), the prover evaluates �0 := OR(fLsk,�)(skI). The prover

returns �0 to the verifier if �0 6= 0.

3. The verifier outputs 1 if and only if � = �0. Otherwise, it outputs 0.

Our construction is shown in Figure 3.2.

44



Pr Vf

OR(fLsk,�
)

 ��������� �  $ {0, 1}s(�)
Construct OR(fLsk,�)

�0 := OR(fLsk,�)(sk)
�0

���������! If �0 = �, output 1
Otherwise, output 0

Figure 3.2: Our anonymous identification protocol based on obfuscations

Details of OR(fLsk,�) In this paragraph, we discuss an efficient implement of OR(fLsk,�)

using obfuscation of multi-point functions based on the techniques from [70]. The

obfuscation of fLsk,� is constructed as follows.

• Denote by R1(·) the first 2� bits output of R and R2(·) the last s(�) bits of R.

Choose a random � 2R {0, 1}�.

• Parse Lsk as {sk1, . . . , sk`}, where ` = |Lsk|. For i = 1 to `, compute ai =

R1(�, ski), bi = R2(�, ski), ci = � � bi. The obfuscated function OR(fLsk,�) is

defined as (�, {ai, ci}`i=1).

• To evaluate OR(fLsk,�)(x), locate i such that ai = R1(�, x) and outputs ci�R2(�, x).

If i cannot be found, output 0.

Discussions Note that the downlink is of complexity O(`) while the uplink is of constant

complexity. The verifier’s computation is O(`), while that of the prover can be reduced to

O(1) if the list of identities is used to label the values ai’s so that the prover knows exactly

which i should he based his computation on.

45



3.3 Analysis

In this section we are going to prove the security of our scheme and give the efficiency

analysis.

3.3.1 Security Analysis

Theorem 3.3.1 Our ad hoc anonymous identification scheme is unconditionally

anonymous according to Definition 2.3.1.

Proof 1 Assume there exists an adversary trying to attack the anonymity of proposed

scheme, the adversary chooses two valid user identity and secret key pairs

(I0, skI0),(I1, skI1). To break the anonymity, the adversary is given the transcript between

Pr and Vf generated from one of the two pairs. The goal of the adversary is to guess

whether (I0, skI0) or (I1, skI1) is used to produce this transcript.

In our scheme, the transcript ⇡ between Pr and Vf consists of the obfuscation of function

fLsk,� and a string �0 which is the output of the obfuscation. If the input secret key of

obfuscated fLsk,� is a valid one, the string �0 should be equal to the string � which is

preselected by Vf and obfuscated in the obfuscation of fLsk,� no matter the valid secret key

belongs to which user. So in the view of adversary, transcripts generated from (Ib, skIb),

for b = 0 or 1, is identical. In other words, the view of the adversary is completely

independent to b. Thus, the probability for an adversary winning the game is the same

as random guessing. So the advantage for the adversary in game Gameanon is always

negligible. In other words, our scheme is secure according to Definition 2.3.1.

Theorem 3.3.2 Our ad hoc anonymous identification scheme is sound according to

Definition 2.3.2.

Proof 2 We describe the proof using the game-hoping technique with two games, where

46



the first game is the original soundness game defined in Section 2.3.1. We prove that for

a polynomial time adversary A, the probability that the advantage of A in the first game

is close to that in the second game. Next, we show that A wins the second game with

negligible probability. The two games are defined below:

Game 1: The first game is identical to the original soundness game described in 2.3.1.

Game 2: The second game has the following steps:

Setup. This is the same as in Game 1. System parameter param is generated by algorithm

Setup and passed to adversary A.

Query. A will issue three types of query:

• Register(I,!). When A issues Register-queries, if ! =?, a string will be

randomly sampled from secret key space as skI . I is added to LH . Otherwise,

C sets skI := ! adds I to LC .

• Corrupt(I). A submits user identity I. If I is included in LH , C returns to A

the corresponding skI and moves I from LH to LC . And meanwhile, R(�, skI)

will be programmed as aI ||(cI � �) for (�, aI , cI) from all queries of ⇡ in

Trans(I,LI) which LI includes I .

• Trans(I,LI). A chooses a set of users LI ⇢ LC [ LH and user I 2 LI

to obtain an identification transcript. Parse LI := {I1, I2, . . ., I`}. When

A queries for the transcription, � is randomly chosen from {0, 1}s(�) and

obfuscation of fLsk,� is constructed by randomly choosing aI1 , aI2 ..., aI` from

{0, 1}2�, cI1 , cI2 ..., cI` from {0, 1}s(�) and � from {0, 1}�. Transcript ⇡ is

constructed by � and the obfuscation of fLsk,� . ⇡ then will be sent to A.

R(�, skIi) will be programmed as aIi ||(cIi � �) for {skIi |i = 1...`, Ii 2 LC}

47



and R(�, skIi) will remain unprogrammed for the rest skIi .

Challenge. A chooses a set of user identities L⇤ ⇢ LH , L⇤ := {I1, I2, . . ., I`} on which

it wishes to be challenged. A will receive the obfuscation of function fLsk,� in which

�, aIi and cIi are randomly chosen from {0, 1}�, {0, 1}2� and {0, 1}s(�) (i = 1...`).

Next, A players the role of prover when receiving the obfuscation. We says that A

wins the game if and only if the output string from A equals to the randomly chosen

� in {0, 1}s(�) by C.

To adversary A, Game 2 is identical to the original game. In original obfuscation of

fLsk,� , aIi , bIi are all generated from random oracle and cIi = bIi � �, of which the

distribution to adversary A is the same as randomly choosing aIi , cIi from {0, 1}2�,

{0, 1}s(�). Since in the original obfuscation, aIi is computed by R1(�, skIi) and cIi is

computed by R2(�, skIi)� �. After programming the output of R(�, Ii) to aIi ||(cIi � �),

adversary A will not notice the secret key skIi he/she owing is not used to construct

obfuscation.

The only possible way for A to behalf differently in Game 1 and Game 2 is that A

queries the random oracle R(.) on any secret key in LH . Assume A queries the random

oracle q times, the probability for this happening is:

Pr 6 q`

2�
,

which is negligible (` is the number of user identity in LH).

Since in Game 2, adversary A gains no knowledge related to secret keys of users he/she

chose to attack during queries for transcript ⇡ and user secret keys. Besides, aIi and cIi

in the challenge obfuscation are chose at random and has no relation with either skIi or

48



�. Thus, the probability for A to successfully win Game 2 is:

Pr =
1

2s(�)
,

which is negligible.

To sum up, the probability for adversary A to win Game 1 is no more than
1

2s(�)
+ ql

2� which is also negligible. In other words, our scheme is secure according to

Definition 2.3.2.

Discussions In our construction, the set of eligible users, LI , has to be agreed by both

the prover and the verifier. For maximum user privacy protection, LI can be chosen as

the set of all eligible users. We would like to remark that our protocol is not a 3-move

⌃-protocol. Consequently, we cannot employ the classical results that turns an honest

verifier zero-knowledge protocol into a full zero-knowledge protocol [46]. In particular,

a malicious server could obfuscate a “wrong” program so that each user secret key will

output a different �. In other words, an active malicious verifier could break the anonymity

of the scheme. We outline a solution to mitigate this attack. Specifically, the server also

publishes H(�) for each authentication request. User can abort if the hash of the output

from the obfuscated program is not equivalent to the published hash value. This, however,

still do not prevent the selective-failure attack as the server can just put one valid secret

key inside the program to be obfuscated. This appears to be an inherent limitation in the

symmetric key setting, since an honest user has no way to ensure other user identities

included in the group are legitimate. Our protocol is, thus, suitable for applications where

the verifier is “honest-but-curious”.

3.3.2 Efficiency Analysis

We provide an empirical analysis of the efficiency of our proposal and compare it with

existing anonymous identification schemes. We first provide a breakdown of the time

49



cost of the schemes based on the number of exponentiation operations (EXP) and pairing

operations (PAIR). We remark that PAIR is usually regarded as an expensive operation

in comparison with EXP, which in turn takes significantly more time compared with the

evaluation of a hash function1. Assuming there are ` members in the ad hoc group, the

breakdown of the major operations for various schemes is summarized in Table 3.1. In

this table, EXPp and EXPv represents the number of exponentiation operation done by

prover and verifier. PAIRp and PAIRv represents the number of pairing operation done by

prover and verifier. We do not consider hash operations as a part of the time complexity

since compared with exponentiation and pairing operations, the time of evaluating a hash

function on a short input is rather insignificant. Since our scheme does not include any

pairing and exponentiation operation, the row of our scheme in Table 3.1 has 0 operation.

Comparing with [96], which also do not require exponentiation or pairing operations, we

are still more efficient. In [96], there are n � 1 modular squaring, addition and hash

operations, plus 1 square-root operation on the prover side, n modular squaring and hash

operations on the verifier side. In our scheme there are n hash operations on the prover

side and n hash and addition operations on the verifier side. Since modular squaring is an

expensive operation comparing with hash evaluation with short input. In other words, our

scheme is still more efficient compared with the state-of-the-art.

To give an estimate of the actual running time of these schemes, we instantiate the

numbers based on the benchmark results from [50]. The numbers are obtained, as per [50],

from a PIV 3-GHZ processor with 512-MB memory and a Windows XP operation system.

Running time for these operations is obtained by using a standard cryptographic library

MIRACL [88]. The benchmark results of each major operation is shown in Table 3.2.

Based on these numbers, we can calculate the approximate time for each scheme. The

1 The exception is to hash an arbitrary string into a point on an elliptic curve group, which could be
expensive or impossible to achieve depending on the underlying group structure.

50



results are presented in Table 3.1.

It is obvious that, as long as the ad hoc group size of our scheme is not large (say, less

than 50000), our scheme is more efficient than all the other schemes in the literature. The

threshold can be easily calculated from Table 3.3. The space complexity of our scheme

is linearly in the group size too, since the obfuscation of fLsk,� should contain all the

obfuscated user secret keys in the ad hoc group.

We argue that in practice, however, our scheme is more space-efficient than most

existing schemes. For a list of ` user identities, the total number of bits to be transmitted

is ` ⇤ (4�) + �, assuming we use I to label each ai, ci in the obfuscated point function2.

This number is, in fact, less than the public-key based scheme if we take into account the

list of public keys to be transmitted. Specifically, for a ring signature of ` ring members,

we need to transmit ` public keys and ` certificates. This is almost certainly larger than

that of 2`�. Concrete numbers are illustrated in Table 3.3.

We would like to remark again that our construction is applicable to a less general

scenario. Specifically, anonymous identification scheme based on ring signatures allows

a signer to convince all verifiers that the former belongs to a group while in our system,

we consider a single verifier. Having said that, the efficiency of our scheme allows it to be

used on lightweight devices and applied in system login scenario we mentioned above in

which a user only needs to confirm his/her identity with a single server. Lastly, we would

like to remark that similar to the other systems in the random oracle model, our protocol

is also of two rounds.
2 This will allow a prover to identify directly which index should he use, and thus reduce the evaluation of

the obfuscated function to the computation of a single hash value.

51



Scheme EXPp EXPv PAIRp PAIRv

Rivest-Shamir-
` ` 0 0Tauman [85]

Abe-Ohkubo-
` ` 0 0Suzuki [1]

Dodis-Kiayias- 8 14 0 0Nicolosi-Shoup [30]

Nguyen [79] 13 10 0 2

Chow-Liu-
` ` 0 0Wei-Yuen [28]

Shacham-Waters
4`+ 3 0 0 2`+ 3[87]

Chandran-Groth- `+1
3 + 6

p
` 1 0 l + 7

p
`

Sahai [25] +5 +5
Liu-Au- offline `� 1 0 0 `

Susilo-Zhou [65] online 1 0 0 `
Xiu-Wu- 0 0 0 0Liu-Chen[96]

Our scheme 0 0 0 0

Table 3.1: Number of operations for each scheme (EXPp and EXPv represents the number
of exponentiation operation done by Pr and Vf. PAIRp and PAIRv represents the number
of pairing operation done by Pr and Vf. ` is the group size)

operation pairing exponentiation hash
time 20.04 5.31 < 0.001

Table 3.2: Running time for each operation (in millisecond) [50]

scheme Prover Verifier
[85] 5.31` 5.31`
[1] 5.31` 5.31`
[30] 42.48 74.34
[79] 69.03 93.18
[28] 5.31` 5.31`
[87] 21.24`+15.93 40.08`+60.12
[25] 1.77`+ 31.86

p
`+ 28.32 20.04`+ 140.28

p
`+ 105.51

[65] offline:5.31(`-1) 20.04`
online:5.31 20.04`

ours < 0.001` < 0.001`
< 0.001 (optimized version) < 0.001`

Table 3.3: Operation time for each scheme (in millisecond)

52



Chapter 4

Practical Signatures from the Partial
Fourier Recovery Problem Revisited

In this chapter, we present a lattice-based signature scheme, PASSG, based on PASSRS

which was introduced by Hoffstein et al. [54]. Same as PASSRS , security of our

construction is based on the hardness of a variant of SIS problem and partial Fourier

recovery problem. PASSG improves PASSRS in two aspects. Firstly, unlike PASSRS ,

PASSG comes with a reduction proof and is thus provably secure. Secondly, we adopt

rejection sampling technique introduced by Lyubashevsky [72] to reduce the signature size

and improve the efficiency. The generated signatures of PASSG are Gaussian-distributed,

not uniform-distributed like PASSRS , and is more space efficient. We also present another

security parameter set based on best known attack using BKZ 2.0 algorithm introduced by

Chen and Nguyen [27].

4.1 Overview

We briefly sketch our proposed PASSG and discuss its improvements over the original

scheme PASSRS . In the following we will be using a similar notation as in [53].

We employ a polynomial ring Rq := Z[x]/(xn + 1). The secret key of the proposed

53



scheme is a polynomial f 2 Rq with small coefficients, and the public key f̂ |⌦ = F⌦f

is a partial discrete Fourier transform of f where F⌦ is the restriction of the Fourier

transform matrix. To sign a padded message µ, the signer first samples a polynomial

y 2 Rq according to a discrete Gaussian distribution D. Then the signer computes a short

challenge polynomial c 2 Rq = Hash(F⌦y, µ) and the potential signature z = f ? c + y

where ? is the polynomial multiplication over the ring. The pair of z and c will be output as

the signature. However, the distribution of (z, c) is affected by, and may leak information

of, secret key f . To decouple the distribution of signature from secret key, we apply

rejection sampling technique and output (z, c) with some probability.

Before we proceed further, let us briefly recall the notion of rejection sampling. The

rejection sampling method allows one to obtain a target probability distribution f from

another probability distribution g. Specifically, instead of directly sampling from f , one

can draw sample x from g and accept it with probability f(x)
Mg(x) , where M is a constant

satisfying 1  M < 1 and for all valid x, f(x) 6 Mg(x). The distribution produced

by rejection sampling will be the same as f and the expected number of iterations to

successfully generate a sample will be M .

In our scheme, we use a discrete Gaussian distribution to generate y. This is in analogy

to the target probability distribution f as in the above example. On the other hand, we view

z = f ? c+ y as the proposal distribution g. By choosing some appropriate constant value

M and accepting z with probability f(x)
Mg(x) , the signing algorithm will eventually produce

a signature pair (z, c) which is independent of signing key f . We remark that in order

to achieve a meaningful scheme, the quantity M needs to be polynomially bounded. In

practice, it is common to set it as a constant.

To verify signature (z, c) of message µ, the verifier first checks whether the norm bound

of z is “small”. This ensures that the signature is genuinely generated from the secret

54



key. Then the verifier need to be convinced that the signature is binded to the message.

This step is performed via computing Hash(F⌦z� f̂ |⌦� ĉ|⌦, µ) and checking whether the

output of the hash function equals to c. � here is the component-wise multiplication.

We highlight the differences between our PASSG and PASSRS . PASSRS samples

polynomial y uniformly with a `1 norm 6 t and requires kf ?ck1  b for some parameter

b. The signing algorithm only outputs z when kzk1 6 t� b. To guarantee the acceptance

rate and the security of the scheme, t is between 212 and 215 which leads to quite a

large signature size. In our work, we show that, by sampling y from a discrete Gaussian

distribution and choosing parameters appropriately, we can both reduce the size of z and

increase the acceptance rate. Besides, in section 4.4, we prove the strong unforgeability

of the proposed scheme and reduce the security of it to the hardness of a special kind

of SIS problem, namely, Vandermonde-SIS problem. We remark no reduction proof is

given for PASSRS . Moreover, as mentioned above, the security level of PASSRS using its

suggested parameter is questionable thanks to improved cryptanalysis techniques in [4],

where the core sub-routing, known as the enumeration methods with extreme pruning [42],

is replaced by a quantum sieving algorithm [11] that drastically improves the cost of the

BZK 2.0 algorithm [27]. To this end, we give new parameter sets that are robust against

this new analysis.

4.2 Hardness Assumption

Before introducing the hard problem in our construction, we first introduce the partial

Fourier recovery problem which requires recovering a signal from a restricted number of

its Fourier coefficients.

Let ! be the primitive N th root of �1 module q. We define the discrete Fourier

transform over Zq to be the linear transformation Ff = f̂ : Zn
q ! Zn

q given by

55



(F)i,j = !ij

The Fourier transform matrix F is a Vandermonde matrix

F =

2

6664

!0·0 !0·1 . . . !0·(n�1)

!1·0 !1·1 . . . !1·(n�1)

...
... . . . ...

!(n�1)·0 !(n�1)·1 . . . !(n�1)·(n�1)

3

7775

Let F⌦ be the restriction of F to the set of t rows specified by an index set, ⌦,

(F⌦)ij = !⌦ij

The partial Fourier recovery problem is that, given an evaluation f̂ |⌦ 2 Zt
q, find x with

small norm such that x̂|⌦ = f̂ |⌦ (mod q). The solution x is required to be small since

one can easily find a large x such that x̂|⌦ = f̂ |⌦. This problem has been well studied

and considered to be hard in general. Since partial transform matrix F⌦ is a restriction of

Fourier transform matrix F, the image f̂ |⌦ is expected to contain little information about

the hidden Fourier coefficients. The only possible way to recover f with small norm is

by combinatorial optimization procedure which is very expensive. The best way to solve

partial Fourier recovery problem is by solving the closest vector problem in the lattice

⇤?(F⌦), where

⇤?(F⌦) = {a 2 Zn
q : F⌦a = 0}.

The closest vector problem is defined as given vector y 2 Zn
q , find a lattice point

56



x 2 ⇤?(F⌦) such that ky � xk1  �. Since we have F⌦(y � x) = F⌦y = ŷ|⌦, if

we can find such lattice point x, we can find vector y0 = y � x with small norm such that

F⌦y
0 = ŷ|⌦.

We note that to date, there is no known reduction from lattice-based hard problem

to partial Fourier recovery problem. However, finding a short preimage by a given

evaluation and a transform matrix F⌦ is known to be related to solving the Short Integer

Solution (SIS) problem and the Inhomogeneous Short Integer Solution (ISIS) problem,

two average-case hard problems which are frequently used in lattice-based cryptography

constructions.

The main difference between SIS (ISIS) and the partial Fourier recovery problem is that

public matrix A in SIS and ISIS problems are uniformly chosen, while public matrix F⌦

in partial Fourier recovery problem is a restriction of discrete Fourier transform. So we

define a new average-case problem called Vandermonde-SIS problem.

Definition 4.2.1 (Vandermonde� SIS
K
q,t,n,� problem) Given a Vandermonde matrix

F⌦ 2 Zt⇥n
q drawn according to some distribution K, find a non-zero v 2 Zn

q such that

F⌦v = 0 and kvk  �.

The distribution K here refers to randomly samples t rows from discrete Fourier transform

matrix F.

We emphasize that we are not aware if there exists any reduction from a worst-case

lattice problem to Vandermonde-SIS. Here we assume that the hardness of SIS problem

is not relied on the structure of the public matrix A and the Vandermonde-SIS problem is

hard in average-case as in SIS and ISIS problem. In the following section, we are going to

prove that the security of our proposed signature scheme is based on the assumed average-

case hardness of the Vandermonde-SIS problem.

57



Parameter Definition

n Dimension
q Prime (⌘ �1 mod n)
! A primitive nth root of -1 in Zq

⌦ A subset of {!i : 1  i  n� 1}
t |⌦| (size of ⌦)
� Standard deviation of discrete normal distribution

 s.t. 2 ·
✓

n


◆
� 2128

Table 4.1: Parameter List for PASSG

4.3 Our Construction

In this section, we are going to present the construction of PASSG. Parameters and their

definitions are listed in Table 1.

KeyGen: This algorithm generates polynomial f 2 Rq with each coefficient indepen-

dently and uniformly sampled from {�1, 0, 1} as the secret key. The corresponding public

key is f̂ |⌦ = F⌦f . As described in section 4.2, F⌦ is the restriction of F to the set of t

rows. Thus, F⌦ can be generated by randomly picking t rows from the original Fourier

transform matrix F .

Signing(f , µ): To sign message µ, the signer first randomly samples polynomial y

from discrete Gaussian distribution Dn
� and computes ŷ|⌦ = F⌦y. The signer then

computes challenge c = FormatC(Hash(ŷ|⌦, µ)) where FormatC and Hash are two public

algorithms such that:

Hash : Zt
q ⇥ {0, 1}⇤ ! {0, 1}`,

58



Original Signing algorithm
Signing(f , µ,F⌦)
1: y Dn

�

2: c = FormatC(Hash(ŷ|⌦, µ))
3: z f ? c+ y

4: with probability min( Dn
� (z)

MDn

f?c,�(z)
, 1)

5: output (z, c)

Figure 4.1: Original Signing algorithm in PASSG

FormatC : {0, 1}` ! {v : v 2 {�1, 0, 1}n, kvk1  }.

Finally, the signer computes z = f ? c + y and outputs (z, c) with probability

min( Dn
� (z)

MDn

f?c,�(z)
, 1) where M = exp(28↵+1

2↵2 ) and � = ↵ · 
p
N .

Verification(µ, z, c,F⌦, f̂ |⌦): The verifier accepts the signature if and only if kzk 

k�
p
n and c = FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉ|⌦, µ)).

4.4 Security Analysis

The security of PASSG is based on the average-case hardness of the Vandermonde

-SISK
q,t,n,� problem in the random oracle model. In another words, if there is any forger

against the PASSG signature scheme, we can use the forger to solve Vandermonde-

SIS
K
q,t,n,� problem for � = 2k�

p
n+ 2

p
n.

Theorem 4.4.1 Assume there is a polynomial-time forger who can successfully forge a

PASSG signature with non-negligible probability � by making at most s queries to the

signing oracle and h queries to the random oracle FormatC � Hash. Then, there exits a

polynomial-time algorithm which can solve the Vandermonde� SIS
K
q,t,n,� problem for

59



Hybrid 1
Signing(f , µ,F⌦)
1: y Dn

�

2: c $ {v : kvk1  }
3: z f ? c+ y

4: with probability min( Dn
� (z)

MDn

f?c,�(z)
, 1)

5: output (z, c)
6: Program FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉ|⌦, µ)) = c

Figure 4.2: Hybrid 1

Hybrid 2
Signing(f , µ,F⌦)
1: c $ {v : kvk1  }
2: z DN

�

3: with probability 1
M

4: output (z, c)
5: Program FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉ|⌦, µ)) = c

Figure 4.3: Hybrid 2

� = 2k�
p
n+ 2

p
n with probability

1

2
(1� 2�128)

0

BB@� �
1

2 ·
✓

n


◆

1

CCA

0

BB@

� � 1/

✓
2 ·

✓
n


◆◆

s+ h
� 1

2 ·
✓

n


◆

1

CCA ⇡
�2

2(h+ s)

Proof 3 This theorem will be proved by Lemma 4.4.2 and 4.4.3. Lemma 4.4.2 shows that

the statistical distance between the original signing algorithm in Fig.4.1 and Hybrid 2 in

Fig.4.3 is negligible. In another words, the signing algorithm in PASSG can be replaced by

Hybrid 2 and the statistical distance of the two outputs is negligible. Lemma 4.4.3 shows

that if there is a forger who can produce a valid signature for PASSG with probability �

when the signing algorithm is from Hybrid 2, with probability ⇡ �2

2(h+s) , we can use this

forger to solve the Vandermonde� SIS
K
q,t,n,� for � = 2k�

p
n+ 2

p
n.

Lemma 4.4.1 For any Vandermonde matrix F⌦ 2 Zt⇥n
q where n > 81 + t · log q

log 3 ,

60



for randomly choose f
$ � {�1, 0, 1}n, with probability 1 � 2�128 there exists another

f
0 2 {�1, 0, 1}n such that F⌦f = F⌦f

0.

Proof 4 We consider F⌦ as a linear transformation whose output range has size qt. Thus,

there are at most qt � 1 elements in {�1, 0, 1}n do not collide with other elements. The

probability of randomly choosing an element from {�1, 0, 1}n which does not collide with

the remaining elements is:

qt � 1

3n
<

qt

381+t· log q

log 3

=
1

381
< 2�128

.

Lemma 4.4.2 Assume there is a distinguisher A who can query either the original signing

algorithm from PASSG or the signing algorithm from Hybrid 2 and the random oracle

FormatC � Hash. If A queries the random oracle at most h times and signing algorithm

at most s times, the advantage for A to distinguish the original signing algorithm from

Hybrid 2 is at most s(s+ h)2�t + s · 2�128

M .

Proof 5 Different from the original signing algorithm, in Hybrid 1, we first randomly

choose c from {v : kvk1  } and then program c as the answer to the random oracle

FormatC � Hash query FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉ|⌦, µ)) = FormatC(Hash(ŷ|⌦, µ)).

Since we program the random oracle without checking whether the value for (ŷ|⌦, µ) has

already been programmed yet. So, the only chance for a distinguisher A distinguish the

original signing algorithm from the one in Hybrid 1 is that, Hybrid 1 generates a y such

that ŷ|⌦ already showed in the previous queries. Since F⌦ is a Vardemonde matrix and

its columns are linearly independent. Thus, F⌦ can always be written in the “Hermite

61



Normal Form” as F⌦ = [F̄⌦kI]. According to Lemma.2.2.1, for any v 2 Zt
q, we have

Pr[F⌦y = v;y Dn
� ] = Pr[y1 = (v � F̄⌦y0);y Dn

� ]

 max
v02ZM

q

Pr[y1 = v
0;y1  Dt

�]

 2�t.

Thus, the probability for Hybrid 1 sampling y such that ŷ|⌦ already showed in the

previous queries is at most 2�t. Assume Hybrid 1 is queried s times and the random oracle

is queried h times by distinguisher A, the probability for such a collision happening is at

most s(s+h)2�t. So the advantage for A to distinguish Hybrid 1 from the original signing

algorithm is also at most s(s+ h)2�t.

We then prove the statistical distance between Hybrid 1 and Hybrid 2 is at most s · 2�128

M

when we set M = exp(28↵+1
2↵2 ). Since the vector representation of y is distributed

according to Dn
� , in Hybrid 1, z is distributed according to Dn

f?c,�, for any z
⇤ 2 Rn,

we have:

Pr[z = z
⇤] = Dn

f?c,�(z
⇤)

=
⇢f?c,�(z⇤)

⇢�(Zn)

=
1

⇢�(Zn)
exp(�kz

⇤ � f ? ck2
2�2

)

=
1

⇢�(Zn)
exp(�kz

⇤k2
2�2

� �2hz
⇤, f ? ci+ kf ? ck2

2�2
)

= Dn
�(z
⇤) exp(��2hz

⇤, f ? ci+ kf ? ck2
2�2

).

We have:

62



Dn
�(z
⇤)

Dn
f?c,�(z

⇤)
=

Dn
�(z
⇤)

Dn
�(z
⇤) exp(��2hz⇤,f?ci+kf?ck22�2 )

= exp(
�2hz⇤, f ? ci+ kf ? ck2

2�2
).

According to Lemma.2.2.1, when r = 14kvk�, with probability at least 1 � 2�128 we

have |hz⇤, f ? ci| < 14kf ? ck�. Then, with probability at least 1� 2�128, we have:

exp(
�2hz⇤, f ? ci+ kf ? ck2

2�2
) < exp(

28kf ? ck� + kf ? ck2
2�2

).

Since the coefficients of f are randomly picked from {�1, 0, 1} and kck1  , we have

kf ? ck 
p
n · 2 = 

p
N.

Assume � = ↵ · 
p
n. Then,

exp(
28kf ? ck� + kf ? ck2

2�2
)  exp(

28
p
n� + (

p
n)2

2�2
) = exp(

28↵ + 1

2↵2
)

Since Dn
�

Dn

f?c,�
< exp(28↵+1

2↵2 ) happens with probability at least 1 � 2�128, when M =

exp(28↵+1
2↵2 ), the statistical distance between the outputs of Hybrid 1 and Hybrid 2 is at

most 2�128

M according to Lemma 2.1.1. Thus, after calling the signing oracle for s times,

the statistical distance is no more than s · 2�128

M .

Lemma 4.4.3 Assume there is a polynomial-time forger F who can successfully forge a

PASSG signature with non negligible probability � by making at most s queries to the

63



signer in Hybrid 2 and h queries to the random oracle FormatC � Hash,. Then, there exits

a polynomial-time algorithm who can solve the Vandermonde-SISK
q,t,n,� problem for

� = 2k�
p
n+ 2

p
n with probability at least

1

2
(1� 2�128)

0

BB@� �
1

2 ·
✓

n


◆

1

CCA

0

BB@

� � 1/

✓
2 ·

✓
n


◆◆

s+ h
� 1

2 ·
✓

n


◆

1

CCA .

Proof 6 The output range of the random oracle FormatC � Hash is denoted by |DH | =

{v : v 2 {�1, 0, 1}N , kvk1  } = 2 ·
✓

n


◆
. Let p = s + h be the total number

of queries that F makes to the signer and random oracle. Given Vandermonde matrix

F⌦ 2 Zt⇥n
q drawn from distribution K, we pick signing key f

$ � {�1, 0, 1}n and release

the corresponding public key f̂ |⌦  F⌦ � f .

We also pick random coins  and � for the signer and forger respectively. Besides,

we pick {c1, c2, ..., cp}
$ � DH as the t responses of the random oracle FormatC � Hash.

Assume there is a subroutine denoted by S which takes (F⌦,f̂ |⌦,  ,�,c1, c2,...,cp) as input.

Subroutine S runs as follow:

• S gives public matrix F⌦ and public key f̂ |⌦ along with random coins � to forger F

to initialize F and run F.

• S uses random coins  to run the signing algorithm in Hybrid 2.

• When F issues a query to S to sign a message or to the random oracle FormatC �

Hash, the random oracle will be programmed and the output of the random oracle

will be the first ci 2 {c1, c2, · · · , cp} that has not been used yet. S will record all

the queries to the random oracle in a table to maintain the consistency.

• Finally, forger F outputs a forgery {(z, c), µ} such that kzk  k�
p
n and c =

64



FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉ|⌦, µ)) with probability �. S will output identical

{(z, c), µ}.

Notice that with probability 1� 1
|DH | , c output by S will be one of the ci 2 {c1, · · · , cp}.

Since if the random oracle was not queried or programmed on some input w =

ẑ|⌦ � f̂ |⌦ � ĉ|⌦, the probability for F to produce a c such that c = FormatC(Hash(w, µ))

is 1
|DH | . The probability for F to produce a forgery is �. Thus, the probability for F outputs

a forgery {(z, c), µ} and c = ci for some i is � � 1
|DH | .

Type 1 forgery: The first type of forgery is that, ci is a response of random oracle

FormatC � Hash on input (w0, µ0) = (ẑ|0⌦ � f̂ |⌦ � ĉi|⌦, µ0) during a signing query. Then

we have

FormatC(Hash(ẑ|⌦ � f̂ |⌦ � ĉi|⌦, µ)) = FormatC(Hash(ẑ|0⌦ � f̂ |⌦ � ĉi|⌦, µ0))

If ẑ|⌦ � f̂ |⌦ � ĉi|⌦ 6= ẑ|0⌦ � f̂ |⌦ � ĉi|⌦ or µ 6= µ0, we find a collision of the hash func-

tion. Thus, we must have ẑ|⌦ � f̂ |⌦ � ĉi|⌦ = ẑ|0⌦ � f̂ |⌦ � ĉi|⌦ and µ = µ0. We have

ẑ|⌦ � ẑ|0⌦ = F⌦(z � z
0) = 0 mod q. Since z 6= z

0 and kzk, kz0k  k�
p
n. We have

kz� z
0k  2k�

p
n.

Type 2 forgery: The second type of forgery is that, ci is a response of a random oracle

query issued by F. We first store the forgery {(z, ci), µ} and then picks new c
0
i, · · · , c0p

$ �

DH . We then run the subroutine S again on input (F⌦, f̂ |⌦, ,�, c1, ..., ci�1, c0i, · · · , c0p) .

According to the General Forking Lemma in [15], we obtain that c0i 6= ci and the forger

uses the random oracle response c
0
i in its forgery is at least

(� � 1

|DH |
)(
� � 1

|DH |

p
� 1

|DH |
).

65



In another words, with the same probability F will output a forgery {(z0, c0i), µ} and

ẑ|⌦ � f̂ |⌦ � ĉi|⌦ = ẑ|0⌦ � f̂ |⌦ � ĉi|0⌦ . Now we have

F⌦(z� z
0 + f ? (c0i � ci)) = 0

and kz� z
0 + f ? c0i � f ? cik  2k�

p
n+ 2

p
n.

We can prove that with probability at least 1/2, (z� z
0 + f ? (c0i � ci)) 6= 0. According

to Lemma 4.4.1, if f is randomly chosen, with probability at least 1 � 2�128 there exists

another different f 0 such that F⌦f = F⌦f
0. Which means that for every distinct key f such

that (z�z0+f ?(c0i�ci)) = 0, there is a distinct key f 0 such that (z�z0+f
0?(c0i�ci)) 6= 0.

Since both the subroutine S and the forger F do not know whether we generate a secret

key like f or f 0, with probability at least 1/2 we can obtain a non-zero answer with length

at most 2k�
p
n+ 2

p
n.

4.5 Practical Instantiation

In section 4.4, we show the security of our signature scheme is based on the average-case

hardness of Vandermonde-SIS problem. In this section, we are going to present a practical

instantiation with parameters choosing according to the lattice reduction algorithm BKZ

2.0. This gives us an approach to analyse the security of PASSG under best known attack.

Two sets of parameters with 128-bit security will be presented. Based on the two sets of

parameters, we can estimate the rejection rate and signature size of our PASSG.

4.5.1 Parameters

In the following we will give two sets of parameters. Both sets provides 128 bit security

against quantum attackers. The first set of parameters provides a similar security level as

the original PASSRS signature scheme, and is performance oriented. The second set is

security oriented and has a larger build in margin. This is to account for future advance in

cryptanalysis.

66



In the following we will be using the first set of parameters as an example. We

use polynomial ring x512 + 1 with q = 216 + 1 that allows for very efficient NTT

transformations. This choice of q > 2⌧� ensures that there will be no wraparound when

we sample a Gaussian vector.

Then, we choose  = 44. That is, there are 44 non-zero coefficients in challenge c for

the first parameter set. The space of challenges will be over 2256 for both parameter sets to

avoid any (quantum) searching algorithm [48].

The next task is to give a practical bound of f ? c. Here we further assume that the

coefficients of f ? c behave as if they are independent. Notice that each coefficient is a

sum of  different ±1s. As shown in [4], the distribution will be very close to a Gaussian

distribution (in terms of Renyi divergence) with a deviation of
p
. And since we have

assumed that each coefficient of f ? c behaves independent from the other, we obtain that

kf ? ck ⇡
p
n.

In practice, we can expect kf ? ck < 2
p
N with high probability. Therefore we set the

bound for kf ? ck to 2
p
n, and re-sample a c if this isn’t satisfied. As a result if we set

� = k
p
N ⇡ 2000, we can expect a repetition rate of exp(2k�+2

2�2 ) ⇡ e2 = 7.4.

Now we need to estimate the size of the keys and signatures. The public key is f̂ |⌦, a

t dimensional vector with coefficients between 0 and q. On the other hand, the signature

is a pair (z, c), where the first vector z is a Gaussian vector with variance �, we can use

Hoffman encoding, as suggested by [31], that effectively stores the vector with roughly

(log2 � + 2)N bits. The second vector c is a sparse binary vector with  non-zero

coefficients, and can be stored efficiently with min( log2 n, n) bits.

67



Parameter 1 Parameter 2
n 512 1024

q ⌘ 1 mod 2n 216 + 1 216 + 1
t = |!| 256 512

k 13.3 13.3
� 2000 1800

 s.t. 2 ·
✓

n


◆
� 2256 44 36

M = exp(2⌧�+2

2�2 ) ⇡ 7.4 ⇡ 7.4
Lattice strength 1.0035 1.0017

public key size (log2 q + 2)t 832 Bytes 1664 Bytes
signature length ⇡ (log2 � + 2)n+min( log2 n, n) 882 Bytes 1709 Bytes

Table 4.2: PASSRS Signature Scheme Parameter

4.5.2 Best known attacks

The best known lattice attack against our scheme is to look for the unique shortest vector

within a lattice spanned via the basis:

B =

2

4
qIt 0 0
F⌦ In 0
f̂ |⌦ 0 1

3

5

where It is a t dimensional identity matrix. This lattice has a unique shortest vector h0, f , 1i

with an l2 norm of approximately
p
2n/3 + 1. On the other hand, it has been shown in

[41] that the ability to locate a unique shortest vector in a lattice depends on the root

Hermite factor of the lattice, which is the N -th root of

Gaussian expected length
l2 norm of the target vector

where N = (n + t + 1) is the dimension of the lattice. We known that the Gaussian

expected length of this lattice is
q

n+t+1
2⇡e q

t

n+t+1 . This results in

0

@

q
n+t+1
2⇡e q

t

n+t+1

p
2n/3 + 1

1

A

1
n+t+1

68



With t ⇡ n/2, this quantity is

⇡
⇣p

9/(8⇡e)q
1
3

⌘ 2
3n
.

For the parameter sets that we are suggesting, this yields 1.0035 and 1.0017, respectively.

Applying the latest results of estimating the cost of the BKZ 2.0 algorithm with (quantum)

sieving [27, 4, 11], we estimate the cost to recover this shortest vector requires at least 2129

and 2198 operations.

69



70



Chapter 5

Practical Lattice-Based (Linkable) Ring
Signature Schemes

In this chapter, we present two generic constructions for linkable ring signature scheme.

In Section 5.1, we give a new generic construction for (linkable) ring signature scheme

inspired by RST framework. In Section 5.2, we revisit an existing generic ring signature

framework and proposes its linkable version. Both of these two generic constructions

can be instantiated to standard lattice and NTRU lattice. The latter NTRU instantiations

provide us practical lattice-based (linkable) ring signature schemes.

5.1 Raptor: Practical Lattice-Based (Linkable) Ring
Signature Schemes

Before presenting a high-level description of our construction, we first discuss the

subtlety of instantiating the RST generic construction from lattices. The main building

block of RST ring signatures is one-way trapdoor permutation. While trapdoor functions

can be built from lattices, they are not permutations by themselves and therefore cannot

be applied directly. Consequently, all existing linear-size lattice-based constructions opt

for the AOS framework, which can be built from any sigma-protocol based signatures.

71



Indeed, [93, 13] can be seen as instantiations from this framework. On the other hand,

we identify essential properties required by the underlying building blocks in the RST

framework.The result is a type of trapdoor function that we called Chameleon hash plus

(CH+), a construction that is similar to Chameleon hash functions.

Building block: CH+

The main building block for our generic constructions is a chameleon hash plus (CH+)

function. We recall the notion of chameleon hash function which was first formalized by

Krawczyk and Rabin in 2000 [60]. Chameleon hash functions are randomized collision-

resistant hash functions with an additional property that each hash key is equipped with a

trapdoor. With the trapdoor, one can easily find collisions for any input. More specifically,

on input a trapdoor tr corresponding to some chameleon hash key hk, two messages

m,m0 and a randomness r, one can efficiently compute another randomness r0 such that

Hash(hk,m, r) = Hash(hk,m0, r0).

Our CH+ consists of four algorithms, namely, Setup, TrapGen, Hash and Inv. See

Section 5.1.1 for details. Similar to a chameleon hash, without the trapdoor, CH+ needs to

be one-way and collision-resistant. There are two main difference in CH+:

• to compute new randomness r0 for any given message m0, only the hash value, C =

Hash(hk,m, r), is needed; whereas both the original message m and randomness r

are required in a classical Chameleon hash;

• optionally, there exists a system parameter paramch as an implicit input to all CH+

operations.

Our Generic Construction of Ring Signatures

We describe how we can built a ring signature from CH+. We assume paramch is

available at the setup. In the key generation procedure, a signer runs algorithm TrapGen

72



to obtain hash key hk and its trapdoor tr. Signer’s public key and secret key will be hk and

tr, respectively.

Suppose a signer, S⇡, with public and secret keys (hk⇡, tr⇡), tries to sign message µ on

behalf of a group of signer {S1, · · · , S`} (⇡ 2 {1, · · · , `}), S⇡ first collects all the public

keys of the group of signers {hk1, · · · , hk`}. Next,

• for i 6= ⇡, S⇡ randomly samples message mi, randomness ri and computes hash

output Ci = Hash(hki,mi, ri);

• for i = ⇡, i.e., the signer himself, S⇡ samples a C⇡.

S⇡ further sets C⇤ = H(µ,C1, · · · , C`, hk1, · · · , hk`) where µ is the message to be

signed and H is a collision-resistant hash function. It then computes m⇡ which satisfies

m1� · · ·�m` = C⇤ and uses the trapdoor to find an r⇡ such that c⇡ = Hash(hk⇡,m⇡, r⇡).

The signature for S⇡ on µ is {(m1, r1), · · · , (m`, r`)}. Note that without the trapdoor, it is

hard to find such a randomness r⇡ since CH+ is one-way and collision-resistant.

To verify the signature, one can first compute Ci = Hash(hki,mi, ri) for i = 1, · · · , `.

Then check whether m1 � · · ·�m` is equivalent to H(µ,C1 ,· · · ,C` ,hk1,· · · ,hk`). If so,

the verifier accepts the signature as signed by one of the group members.

Our Generic Construction of Linkable Ring Signatures

Linkable ring signature scheme allows others to link two signatures sharing the same

signer. At a high level, we will use a tag to achieve this property. The tag is a representative

of the signer’s identity for each signature. Signatures that share a same tag are linked. It

is natural to enforce that each signer only obtains one unique tag; and this tag cannot be

forged, or transferred from/to another user. We use a one-time signature1 to achieve those

1 Here we will only use the public key once; the actual signature scheme does not necessarily need to be a
one-time signature scheme.

73



properties.

During the key generation procedure, in addition to a hk and its trapdoor tr, the signer

also generates a pair of public key and secret key (opk, osk) for a one-time signature. The

signer then masks hk by H(opk) and obtains a masked hash key hk0. The unique tag for

the signer will be the public key opk. In the end, the signer sets hk0 as public key and

(tr, opk, osk) as secret key.

When the signer S⇡ signs a message µ on behalf of a group of signers {S1, · · · , S`}

(⇡ 2 {1, · · · , `}), it will collect the public keys of the group {hk01, · · · , hk0`} as usual.

For each public key hk0i in the group, S⇡ computes hk00i = hk0i � H(opk). A new list

of “public keys”, {hk001, · · · , hk00`}, is then formed. Note that hk00⇡ is equivalent to the

original hk⇡. Next, the signer S⇡ invokes the (none linkable) ring signature with keys

{hk001, · · · , hk00`}, a trapdoor tr⇡ and a message µ, and obtains a (none linkable) ring

signature �R = {(m1, r1), · · · , (m`, r`)} on µ. Finally, S⇡ signs µ, �R and list of public

keys using osk⇡ and gets a one-time signature sig. The linkable ring signature produced

by S⇡ will be {�R, opk⇡, sig}.

As for verification, in addition to verifying �R, one should also check whether sig is a

valid signature on µ, �R and {hk01, · · · , hk0`} under opk⇡.

Our Contribution

We present RAPTOR, the first lattice-based (linkable) ring signature with implementa-

tion. It gets its name as it is the next generation of FALCON [40] that features a “stealth”

mode. RAPTOR is secure in the random oracle model, based on some widely-accepted lat-

tice assumptions. We also present a less efficient version that is based on standard lattice

problems. We implement RAPTOR, and its performance on a typical laptop is shown in

Table 5.1(a) and 5.1(b). The experimental setting is presented in Section 5.1.3.

74



Table 5.1: Performance

(a) RAPTOR-512

Users 5 10 50
KeyGen 29 ms 29 ms 29 ms

Sign 6 ms 9.5 ms 40 ms
verification 3 ms 6.5 ms 32 ms

PK 0.9 KB 0.9 KB 0.9 KB
SK 4.1 KB 4.1 KB 4.1 KB

Signature 6.3 KB 12.7 KB 63.3 KB

(b) Linkable RAPTOR-512

Users 5 10 50
KeyGen 57 ms 57 ms 57 ms

Sign 10.7 ms 17.4 ms 61 ms
verification 5.2 ms 11 ms 50 ms

PK 0.9 KB 0.9 KB 0.9 KB
SK 9.1 KB 9.1 KB 9.1 KB

Signature 7.8 KB 14.2 KB 64.8 KB

Our solution is in a sense optimal for the family of solutions where the signatures are

linear in terms of users: in our construction, the signature consists of a lattice vector and

a random nonce of 2� bits per user. It is unlikely that one is able to reduce the size

further within the linear domain. We believe that the only way to get substantially better

performance than RAPTOR is from the family of solutions that are logarithmic/constant

in the number of users. The best theoretical work in linear size is due to [13], where the

signature size is claimed to be 82.5KB with a ring size of 8. Comparing with the state-of-

the-art [38] with sublinear signature size, our work is still comparing favourably for ring

signature size / 1000. As a remark, a common use case of linkable ring signature, privacy

protection for cryptocurrency, often uses a ring size less than 20 and thus Raptor is more

preferable in this setting. The signature size of [38] is reported to be 930KB with 26 users

in the ring and 1409KB with 210 users in the ring. The comparison of signature size of

75



Table 5.2: Comparison of lattice-based (linkable) ring signature at security level � = 100.
Signature size increases with ring size (i.e. number of public keys in the ring).

[64] [93] [13] [38] RAPTOR
(linkable)
RAPTOR

Signature size growth logarithm linear linear logarithm linear linear
linkability ⇥ X X ⇥ ⇥ X

Implementation ⇥ ⇥ ⇥ ⇥ X X
Signature size ⇡ 37 MB ⇡ 649 KB ⇡ 585 KB 930 KB 80.6 KB 82.7 KBwith 26 users
with 28 users ⇡ 48.1 MB ⇡ 2474 KB ⇡ 2340 KB 1132 KB 332.6 KB 326.5 KB
with 210 users ⇡ 59.1 MB ⇡ 9770 KB ⇡ 9360 KB 1409 KB 1290.2 KB 1301.9KB
with 212 users ⇡ 70.2 MB ⇡ 39 MB ⇡ 37.4 MB 1492 KB 5161 KB 5203.3 KB

our RAPTOR and other existing lattice-based (linkable) ring signature scheme is shown in

Table 5.2.

In terms of security, (linkable) RAPTOR is backed by a new generic framework that

is provably secure in the random oracle model, under the assumption based on RST

construction. Instead of relying on one-way trapdoor permutation, the new generic

framework is based on a new primitive called Chameleon Hash Plus (CH+) which can

be instantiated from lattice setting (e.g. NTRU). Our generic construction can additionally

transform any ring signature into a one-time linkable ring signature.

Nonetheless, when CH+ is instantiated with a standard lattice problem (i.e., the short

integer solution problem), we base the security of (linkable) ring signature on the worst-

case lattice problems that are conjectured to be hard against quantum computers.

In practice, one often resorts to NTRU lattices [56] for better efficiency. Our (linkable)

RAPTOR scheme is such a case, where the CH+ function is instantiated from the pre-image

samplable function of FALCON [40].

5.1.1 Our Generic Constructions

In this section, we present our generic construction of CH+ and our (linkable) ring

signature scheme based on CH+.

76



Chameleon Hash Plus

CH+ can be considered as a variant of Chameleon hash functions. A CH+ consists of

four algorithms, namely, Setup, TrapGen, Hash and Inv, as follow:

• Setup(1�) ! paramch: On input security parameter 1�, this algorithm generates

system parameter paramch. paramch will be an implicit input to Hash and Inv.

• TrapGen(1�) ! (hk, tr): This algorithm takes security parameter 1� as input and

returns a pair (hk, tr) where hk and tr are respectively a hash key and a trapdoor.

• Hash(hk,m, r) ! C: On input hash key hk, message m and randomness r, this

algorithm returns hash output C.

• Inv(hk, tr, C,m0) ! r0: On input hash key hk, trapdoor tr, hash output C and

message m0, this algorithm returns randomness r0 s.t. Hash(hk,m0, r0) = C.

We require CH+ to satisfy following requirements:

1. CH+ should be one-way and collision resistant. In other words, for all PPT A

without a trapdoor, there exists a negligible function negl(l) such that

Pr[{(m0, r0), (m1, r1)} A(1�, hk, paramch) : (m0, r0) 6=

(m1, r1) ^ Hash(hk,m0, r0) = Hash(hk,m1, r1)] = negl(l);

Pr[(m, r) A(1�, C, hk, paramch) : Hash(hk,m, r) = C] = negl(l).

2. For hash key hk generated from TrapGen, assuming the range of hk is Rhk,

the distribution of hk should be either statistically close to uniform in Rhk; or

computationally close to the uniform distribution with an additional property that

the probability a randomly sampled h̄k $ Rhk has a trapdoor is negligible.

77



3. For r0 generated from Inv, the distribution of r0 should be with negl(l) distance from

the distribution where r is sampled from.

A New Framework for Ring Signatures

Our ring signature is constructed as follows:

• Setup(1�) ! param: On input the security parameter 1�, this algorithm chooses a

hash function H : {⇤}! RC . It also runs Setup(1�)! paramch.

• KeyGen! (sk, pk): This algorithm generates (hk, tr) TrapGen(1�). Then it sets

public key pk = hk and secret key sk = tr.

• Signing(sk⇡, µ, Lpk) ! �: On input a message µ, a list of user public keys

Lpk = {pk1, · · · , pk`}, and a signing key sk⇡ = tr⇡ of pk⇡ = hk⇡ 2 Lpk, the

signing algorithm runs as follow:

1. For i 2 [1, · · · , `] and i 6= ⇡, pick mi and ri at random. Compute Ci =

Hash(hki,mi, ri). For i = ⇡, pick C⇡ at random from its possible range RC .

2. Compute m⇡ such that m1 � · · ·�m⇡ � · · ·�mn = H(µ,C1, · · · , C`, Lpk).

3. Given m⇡ and C⇡, invoke Inv(hk⇡, tr⇡, C⇡,m⇡)! r⇡.

The ring signature of µ and Lpk is � = {(m1, r1), · · · , (m`, r`)}.

• Verification(µ, �, Lpk) ! accept/reject: On input a message µ, a signature �

and a list of user public keys Lpk, the verification algorithm first phrases � =

{(m1, r1), · · · , (m`, r`)}. It then checks whether each pair of (mi, ri) satisfies

Ci = Hash(hki,mi, ri) for all i 2 [1, · · · , `] and whether m1 � · · · � m` =

H(µ,C1, · · · , C`, Lpk). If yes, output accept. Otherwise, output reject.

78



Security Proof for Ring Signature

Theorem 5.1.1 (Unforgeability) Our generic ring signature scheme is unforgeable in

random oracle model if CH+ is collision resistant.

Proof 7 Assume there is an adversary A who can successfully forge a ring signature with

probability � by making at most qr queries to RO oracle, qc queries to CO oracle, qs

queries to SO oracle, and qh queries to random oracle H. We define the number of

possible values in the output range of H as DH. Then we can construct a simulator S who

can break the collision resistance of CH+ with a non-negligible probability.

S is given an instance as following: Given CH+ hash key hkc and CH+ system parameter

paramch
c, it is asked to output {(m0, r0), (m00, r00)} such that (m0, r0) 6= (m00, r00) and

Hash(hk0,m0, r0) = Hash(hk0,m00, r00) for paramch
c. In order to use A to solve this problem

instance, the simulator S needs to simulate the challenger C and oracles to play Gameforge

with A. S runs as follow:

Setup. Simulator S picks a hash function H. H will be modeled as a random oracle. S

picks {h1, h2, · · · , hp} $ DH as the qh responses of the random oracle. S gives random

coin � to A. Hash function H and paramch
c are set as system parameter.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): Assume the adversary A can only queries RO qr times (qr � 1). S

randomly picks an index I 2 [1, · · · , qr]. For index I, S assigns hkc to index I as the

public key. For other indexes, S generates the public key and secret key according

to the KeyGen algorithm. Upon the jth query, S returns the corresponding public

key.

• CO(pk): On input a public key pk returned by RO oracle, S first checks whether it

79



corresponds to the index I. If yes, S aborts. Otherwise, S returns the corresponding

secret key sk.

• SO(µ, Lpk, pk⇡): When A queries SO on message µ, a list of public keys Lpk =

{pk1, · · · , pk`} and the public key for the signer pk⇡ where pk⇡ 2 Lpk, S simulates

SO as follow:

– If pk⇡ 6= pkI , S runs Signing(sk⇡, µ, Lpk) where the output of the random

oracle will be programmed as the first hi 2 {h1, h2, · · · , hp} that has not been

used yet. S returns the signature � to A;

– If pk⇡ = pkI , for i 2 [1, · · · , `] and pki = hki, S samples mi, ri

and computes Ci = Hash(hki,mi, ri). S then programs random oracle as

H(µ,C1, · · · , C`) = m1 � · · ·�m`.

• Random Oracle H: For a query input that has already been programmed, S returns

the corresponding output. Otherwise, the output of the random oracle will be the

first hi 2 {h1, h2, · · · , hp} that has not been used yet. S will record all the queries

to the random oracle in a table, in case same query is issued twice.

Output. Finally, the adversary A will finish running and output a forgery (µ⇤, �⇤, L⇤pk)

with probability � such that Verification(µ⇤, �⇤, L⇤pk) = accept; (µ⇤, L⇤pk) has not been

queried by A for signature; and no public key in L⇤pk has been input to CO. If pkI /2 L⇤pk,

S aborts.

Simulator S then uses the forgery (µ⇤, �⇤, L⇤pk) to solve the problem instance. S

phrases �⇤ to {(m⇤1, r⇤1), · · · , (m⇤` , r⇤` )} and denotes m⇤1 � · · · � m⇤` by h⇤. Notice that

with probability 1 � 1
|DH| , h

⇤ will be one of the hi 2 {h1, · · · , hp} or the hash outputs

from the SO queries. Since if the random oracle was not queried or programmed

on some input, the probability for A to produce a {(m⇤1, r⇤1), · · · , (m⇤` , r⇤` )} such that

80



m⇤1 � · · · � m⇤` = H(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) where C⇤i = Hash(pk⇤i ,m
⇤
i , r
⇤
i ) is 1

|DH| . The

probability for A to produce a forgery is �. Thus, the probability for A outputs a forgery

(µ⇤, �⇤, L⇤pk) and h⇤ = H(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) has been queried in SO or RO is �� 1
|DH| .

Type 1 forgery: The first type of forgery is that, for the forgery (µ⇤, �⇤ = {(m⇤1, r⇤1), · · · ,

(m⇤` , r
⇤
` )}, L⇤pk), h⇤ is a response of random oracle H on H(µ0, C 01, · · · , C 0`0 , L0pk) during a

SO query. Then, we have

H(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) = H(µ0, C 01, · · · , C 0`0 , L0pk).

If µ⇤ 6= µ0, (C⇤1 , · · · , C⇤` ) 6= (C 01, · · · , C 0`0) or L0pk 6= L⇤pk, we find a collision to the hash

function. Thus, we must have µ⇤ = µ0, (C⇤1 , · · · , C⇤` ) = C 01, · · · , C 0`0 and L0pk = L⇤pk. Since

we require that (µ⇤, L⇤pk) has not been queried by A for signature. Type 1 forgery is not a

valid forgery.

Type 2 forgery: The second type of forgery is that, h⇤ = m1 � · · · � m` is a response

of a RO query issued by A. We store the forgery (µ⇤, �⇤ = {(m⇤1, r⇤1), · · · , (m⇤` , r⇤` )},

L⇤pk). Assume h⇤ = hi where hi 2 {h1, · · · , hp}, picks new h0i, · · · , h0p  $ DH . S then

run Gameforge again on (hkc, paramch
c, ,�, h1, · · · , hi�1, h0i, · · · , h0p). According to the

General Forking Lemma, we obtain that h0i 6= hi and the adversary A uses the new random

oracle response h0i in its forgery is at least

Pr = acc(
acc

qs + qh
� 1

|DH|
),

where

acc =
1

qr � qc
(� � 1

|DH|
� 1

qr
).

That is, with the same probability, A will output a forgery {µ0, �0 = {(m01, r01), · · · ,

(m0`0 , r
0
`0)}, L0pk} and µ⇤ = µ0, (C⇤1 , · · · , C⇤` ) = (C 01, · · · , C 0`0), L0pk = L⇤pk. Thus, ` = `0.

81



Assuming pkI = pkj 2 L⇤pk(L
0
pk), at least with probability 1

` , S has m⇤j 6= m0j . Since

C⇤j = Cj , S finds a collision (m⇤j , r
⇤
j ), (m

0
j, r
0
j).

The probability for S aborting during SO is no more than 1
qr

. The probability for S not

aborting during output is no less than 1
qr�qc . Thus, the probability for S solving problem

instance is no less than

(1� 1

qr
)(

1

qr � qc
) · Pr

which is non-negligible.

Theorem 5.1.2 (Anonymity) Our ring signature scheme is unconditional anonymous.

Proof 8 When Gameanon is played between challenger C and adversary A, for each RO

query, KeyGen algorithm runs and public key pk = hk is returned. For each CO(pk)

query, secret key sk = tr corresponding to hk will be returned. If adversary A ask for a

signature on message µ and ring {pk1, · · · , pk`}, C will random samples ⇡  $ [1, · · · , `]

and signs µ using sk⇡.

The signature will be in the form of � = {(m1, r1), · · · , (m`, r`)}. Assume the

signer of the signature is s⇡, for i 6= ⇡, mi and ri are sampled by S . For i = ⇡,

m⇡ = m1 � · · · � m⇡�1 � m⇡+1 � · · · � m` � H(µ,C0, · · · , C`), r⇡ is generated by

Inv(hk⇡, tr⇡, C⇡,m⇡). Since mi (i 6= ⇡) is uniformly sampled and H is a hash function,

the distribution of m⇡ should be also uniform over {0, 1}k. According to the requirements

of CH+, the distribution of r⇡ is within negl(l) statistical distance from the distribution S

used to sample other randomness. Thus, the best way for an adversary to win this game is

to make a guess. The probability for adversary to make a successful guess is no more than
1
` . Thus, the advantage adv

anon
A of an adversary should be negligible. Our ring signature

scheme is unconditional anonymous.

82



A New Framework for Linkable Ring Signatures

Our linkable ring signature is constructed as follows:

• Setup(1�) ! param: On input the security parameter 1�, this algorithm chooses

two hash functions H and H1. It also runs Setup(1�) ! paramch and selects a

one-time signature scheme ⇧OTS = {OKeygen,OSign,OVer}.

• KeyGen! (sk, pk): This algorithm first generates (hk, tr) TrapGen(1�). It also

generates a pair of ⇧OTS public key and secret key (opk, osk)  OKeygen(1�) and

computes mk = H1(opk). It then computes hk0 = hk � mk. Finally, it sets public

key pk = hk0 and secret key sk = {tr, opk, osk}.

• Signing(sk⇡, µ, Lpk) ! �: On input a message µ, a list of user public keys Lpk =

{pk1, · · · , pk`}, and a signing key sk⇡ = {tr⇡, opk⇡, osk⇡} of pk⇡ = hk0⇡ 2 Lpk, the

signing algorithm runs as follow:

1. Compute mk⇡ = H1(opk⇡).

2. For i 2 [1, · · · , n] and i 6= ⇡, pick mi and ri at random. Compute hki =

hk0i �mk⇡ and Ci = Hash(hki,mi, ri). For i = ⇡, pick C⇡ at random.

3. Compute m⇡ such that m1 � · · ·�m⇡ � · · ·�m` = H(µ,C1, · · · , C`, Lpk).

4. Given m⇡ and C⇡, compute r⇡  Inv(hk⇡, tr⇡, C⇡,m⇡).

5. Compute one-time signature sig=OSign(osk⇡; (m1, r1), · · · , (m`, r`),Lpk,

opk⇡).

The linkable ring signature of µ and Lpk is �={(m1, r1), · · · , (m`, r`), opk⇡, sig}.

• Verification(µ, �, Lpk)! accept/reject: On input a message µ, a signature � and a

83



list of user public keys Lpk = {hk01, · · · , hk0`}, the verification algorithm first phrases

� = {(m1, r1), · · · , (m`, r`), opk, sig}. This algorithm runs as follow:

1. It first computes mk = H1(opk). It also computes hki = hk0i � mk and

Ci = Hash(hki,mi, ri) for all i 2 [1, · · · , `];

2. It checks whether m1 � · · ·�m` = H (µ,C1, · · · , C`, Lpk);

3. Verify the signature via OVer(opk; sig; (m1, r1), · · · , (m`, r`), Lpk, opk).

If all pass, output accept. Otherwise, output reject.

• Link(�1, �2, µ1, µ2, L
(1)
pk , L

(2)
pk ) ! linked/unlinked: On input two message signature

pairs (µ1, �1) and (µ2, �2), this algorithm first checks the validity of signatures

�1 and �2. If Verify(µ1, �1, L
(1)
pk ) ! accept and Verify(µ2, �2, L

(2)
pk ) !

accept, it phrases �1={(m(1)
1 ,r(1)1 ), · · · ,(m(1)

` , r(1)` ), opk1,sig1} and �2 =

{(m(2)
1 , r(2)1 ), · · · , (m(2)

` , r(2)` ), opk2, sig2}. The algorithm outputs linked if opk1 =

opk2. Otherwise, output unlinked.

Our generic ring signature scheme and linkable signature scheme are both secure under

random oracle model.

Security Proof for Linkable Ring Signature Scheme

Theorem 5.1.3 (Anonymity) Our linkable ring signature scheme is anonymous in

random oracle model if the second requirement in section 5.1.1 holds for CH+.

Proof 9 Assume there is a simulator S who plays Game⇤anon with adversary A as follow:

Setup. Simulator S runs Setup(1�) ! param and passes system parameter param to

adversary A.

84



Oracle Simulation. For registration oracle RO(?), when adversary queries RO, S

samples pk uniformly at random from its possible range.

Challenge. A picks a list of user public keys Lpk = {pk1, pk2, · · · , pk`} and a message µ.

A sends (Lpk, µ) to S . S randomly picks ⇡ 2 {1, · · · , `}. S also generates a pair of ⇧OTS

public key and secret key (opk⇡, osk⇡)  OKeygen for pk⇡. For i = {1, · · · , `}, S first

computes pk0i = pki�H1(opk⇡). It also picks mi, ri and computes Ci = Hash(pk0i,mi, ri).

S programs H0(µ,C1, · · · , C`, Lpk) = m1 � · · · � m`. Finally, it computes one-time

signature sig = OSign(osk⇡; (m1, r1), · · · , (m`, r`), Lpk, opk⇡) and returns �={(m1, r1),

· · · , (m`, r`), opk⇡, sig} as signature.

For adversary A, A can not distinguish this game from the original one. Since in the

scheme, the signer public key pki is the result of the exclusive or of hki and H1(opki) where

H1(opki) is a hash output. Thus, A can not distinguish pk generated following the rule

from pk sampled uniformly at random from its possible range.

Case 1: In case 1, we have the distribution of hk statistically close to uniform over Rhk.

Thus for i = 1, · · · , `, all the pk0i = pki � H1(opk⇡) are indistinguishable from a true

hash key for A. The best way for A to win this game is to guess a ⇡⇤ 2 {1, · · · , `}. The

probability for ⇡⇤ = ⇡ is no more 1
` .

Case 2: In case 2, we have the distribution of the distribution of hk computationally close

to the uniform distribution and the probability for h̄k  $ Rhk and h̄k existing trapdoor

is negligible. Thus for i = 1, · · · , `, all pk0i = pki � H1(opk⇡) are computationally

indistinguishable from a true hash key for A. Since pk0i can be considered as sampled

uniformly at random from Rhk, the probability for pk0i having trapdoor is negligible. Thus

for A, the best way wining this game is to guess a ⇡⇤ 2 {1, · · · , `}. The probability for

⇡⇤ = ⇡ is no more 1
` .

85



The advantage adv
anon
A in this game is negligible. Our scheme is anonymous.

Theorem 5.1.4 (Linkability) Our linkable ring signature is linkable in random oracle

model if CH+ is collision resistant.

Proof 10 Assume there is an adversary A who can successfully forge a linkable ring

signature with probability � by making at most qr queries to RO oracle, qc queries to

CO oracle, qs queries to SO oracle, and qh queries to random oracle H0. We define the

number of possible values in the output range of H0 as |DH|. Then we can construct

a simulator S who can break the collision resistance of CH+ with a non-negligible

probability.

S is given an instance as following: Given CH+ hash key hkc and CH+ parameter

paramch
c, it is asked to output {(m0, r0), (m00, r00)} such that (m0, r0) 6= (m00, r00) and

Hash(hkc,m0, r0) = Hash(hkc,m00, r00) for paramch
c. In order to use A to solve this

problem instance, the simulator S needs to simulate the challenger C and oracles to play

Gameforge with A. S runs as follow:

Setup. Simulator S picks two hash functions H0, H1 and sets as system parameter. H0

will be modeled as random oracle. S picks random coins  , � for S and A respectively.

Besides, S also picks {h1, h2, · · · , hp}
$ � DH0 as the qh responses of the random oracle

H0 and S also picks {h01, h02, · · · , h0t}
$ � DH1 as the q0h responses of the random oracle

H1. S gives random coin � to A. S sets H0, H1, paramch
c as public parameter.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): Assume adversary A can only queries RO qr times (qr � 1). A random

picks an index I  $ [1, · · · , qr]. For index I, S sets pkI = hk0I = hkc � h0Q where

h0Q  $ {h01, h02, · · · , h0t}. For other index, S generates the public key and secret key

86



according to the KeyGen algorithm where the output of the random oracle H1 will

be the first h0i 2 {h01, h02, · · · , h0t} that has not been used yet. Upon the jth query, S

returns the corresponding public key.

• CO(pk): On input a public key pk returned by RO oracle, S first checks whether

it corresponds to index I. If yes, S aborts. Otherwise, S returns the corresponding

secret key sk. According to the requirements, A is allowed to query this oracle no

more than k � 1 times.

• SO(µ, Lpk, pk⇡): When A queries SO on message µ, a list of public keys Lpk =

{pk1, · · · , pk`} and the public key for the signer pk⇡ where pk⇡ 2 Lpk, S simulates

SO as follow:

– If pk⇡ 6= pkI ,S runs Signing(sk⇡, µ, Lpk) where the output of the random

oracle H0 will be the first hi 2 {h1, h2, · · · , hp} that has not been used yet. S

returns the signature � to A;

– If pk⇡ = pkI , for i 2 [1, · · · , `], pki = hk0i, S runs OKeygen(1�) !

(opk⇡, osk⇡) and programs H1(opk⇡) as the first h0i 2 {h01, h02, · · · , ht} that

has not been used yet. computes hki = H1(opk⇡) � hk0i for i 2 [1, · · · , `]. S

samples mi, ri and computes Ci = Hash(hki,mi, ri). S then programs random

oracle H0 as H0(µ,C1, · · · , C`, Lpk) = m1 � · · ·�m`. S also computes one-

time signature sig = OSign(osk⇡; (m1, r1), · · · , (m`, r`), Lpk, opk). S returns

signature � = {(m1, r1), · · · , (m`, r`), opk⇡, sig}.

• Random Oracle H0 (H1): For query input that has already been programmed, S

returns the corresponding output. Otherwise, the output of the random oracle will

be the first hi 2 {h1, h2, · · · , hp}(h0i 2 {h01, · · · , h0t}) that has not been used yet.

S will record all the queries to the random oracle in a table, in case same query is

87



issued twice.

Output. Adversary A outputs k sets {L(i)
pk , µi, �i} for i 2 [1, · · · , k]. These k sets should

satisfy that Verification(µi, �i, L
(i)
pk ) = accept ; A queried CO less than k times; and

Link(�i, �j, µi, µj, L
(i)
pk , L

(j)
pk ) = unlinked for i 6= j and i, j 2 [1, · · · , k]. Since A is

allowed query CO less than k times. At least one of the output signatures should be

generated from the secret key that A does not obtain. Assume �j , j 2 {1, · · · , k} is not

produced by the secret key A obtaining. If pkI /2 L(j)
pk and H1(opkj) = h0Q, abort.

The probability for pkI 2 L(j)
pk is no less than 1

qr
and the probability for H1(opkj) = h0Q

is no less than 1
q0
h

. In the following we use (µ⇤, �⇤, L⇤pk) to denote (µj, �j, L(j)
pk ). Simulator

S then uses the set (µ⇤, �⇤, L⇤pk) to break the collision resistance of CH+. S phrases �⇤ to

{(m⇤1, r⇤1), · · · , (m⇤` , r⇤` ), opk
⇤, sig⇤} and denotes m⇤1 � · · · �m⇤` by h⇤. Notice that with

probability 1� 1
|DH| , h

⇤ will be one of the hi 2 {h1, · · · , hp} or the hash outputs from the

SO queries. Since if the random oracle was not queried or programmed on some input,

the probability for A to produce a {(m⇤1, r⇤1), · · · , (m⇤` , r⇤` )} such that m⇤1 � · · · � m⇤` =

H(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) is 1
|DH| . The probability for A to produce a forgery is �. Thus, the

probability for A outputs a forgery (µ⇤, �⇤, L⇤pk) and h⇤ = H0(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) has

been queried in SO or RO is � � 1
|DH| .

Type 1 forgery: The first type of forgery is that, for the forgery (µ⇤,�⇤ = {(m⇤1, r⇤1), · · · ,

(m⇤` , r
⇤
` ), opk

⇤,sig⇤},L⇤pk), m⇤1 � · · · � m⇤` = H(µ⇤, C⇤1 , · · · , C⇤` , L⇤pk) is a response of

random oracle H0 on H0(µ0, C 01, · · · , C 0`0 , L0pk) during a SO query. Then, we have

H0(µ
⇤, C⇤1 , · · · , C⇤` , L⇤pk) = H0(µ

0, C 01, · · · , C 0`0 , L0pk)

If µ⇤ 6= µ0, (C⇤1 , · · · , C⇤` ) 6= (C 01, · · · , C 0`0) or L0pk 6= L⇤pk, we find a collision of the hash

function. Thus, we must have µ⇤ = µ0, (C⇤1 , · · · , C⇤` ) = C 01, · · · , C 0`0 and L0pk = L⇤pk. Since

88



we require that (µ⇤, L⇤pk) has not been queried by A for signature. Type 1 forgery is not a

valid forgery.

Type 2 forgery: The second type of forgery is that, h⇤ = m⇤1 � · · · �m⇤` is a response of

a RO query issued by A. We store the forgery (µ⇤, �⇤={(m⇤1, r⇤1), · · · , (m⇤` , r⇤` ), opk
⇤,

sig⇤},L⇤pk). Assume h⇤ = hi where hi 2 {h1, · · · , hp}, picks new h00i , · · · , h00p  $ DH . S

then run Gameforge again on (hkc, paramch
c,  , �, h1, · · · , hi�1, h00i , · · · ,h00p). According to

the General Forking Lemma, we obtain that h00i 6= hi and the adversary A uses the random

oracle response h00i in its forgery is at least

Pr = acc(
acc

qs + qh
� 1

|DH|
),

where acc = (1 � 1
qr
) 1
qr·q0h

(� � 1
|DH|). Which means that with the same probability, A

will output a forgery {µ0, �0 = {(m01, r01), · · · , (m`0 , r`0), opk
0, sig0}, L0pk} and µ⇤ = µ0,

(C⇤1 , · · · , C⇤` )= (C 01, · · · , C 0`0), L0pk = L⇤pk, and opk0 = opk⇤. Thus, ` = `0. At least with

probability 1
` , m⇤I 6= m0I . Since C⇤I = C 0I , S has Hash(hkc,m⇤I , r⇤I) = Hash(hkc,m0I , r

0
I).

(m⇤I , r
⇤
I) and (m0I , r

0
I) is a collision for hash key hkc.

The probability for S aborting during CO is no more than 1
qr

. The probability for S not

aborting during output is no less than 1
qr
. 1
q0
h

. Thus, the probability for S solving problem

instance is no less than (1� 1
qr
) 1
qr·q0h

· Pr which is non-negligible.

Theorem 5.1.5 (Nonslanderability) Our linkable ring signature is nonslanderable in

random oracle model if the one-time signature scheme ⇧OTS is one-time unforgeable.

Proof 11 Assume there is an adversary A who can win Gameslander with probability �.

Then we can construct a simulator S who can break the unforgeability of the one-time

signature ⇧OTS used in our construction also with probability �.

89



S is given a ⇧OTS public key opk0 and is allowed to query the signature sig0 of a message

m0 once for any message of its choosing. S is said breaking the unforgeability of ⇧OTS if

it can produce (m00, sig00) such that (m00, sig00) 6= (m0, sig0) and OVer(opk0; sig00; m00 ) =

accept. In order to use A to break the unforgeability of ⇧OTS , the simulator S needs to

simulate the challenger C and oracles to play Gameslander with A. S runs as follow:

Setup. Simulator S picks two hash functions H0, H1. It also generates paramch  

Setup(1�). H0, H1, paramch and ⇧OTS will be set as system parameter.H0 and H1 will be

modeled as random oracles.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): S uniformly samples hk0 and returns hk0 as the public key.

• CO(pk): On input a public key pk = hk0 returned by RO oracle, S first checks

whether it is an output of RO query. If yes, S runs OKeygen(1�) ! (opk, osk). S

runs TrapGen(1�) ! (hk, tr). S returns (tr, opk, osk) as secret key and programs

H1(opk) = hk� hk0.

• SO(µ, Lpk, pk⇡): When A queries SO on message µ, a list of public keys Lpk =

{pk1, · · · , pk`} and the public key for the signer pk⇡ where pk⇡ = hk0 2 Lpk, S

simulates SO as follow:

– If pk⇡ has been queried to CO oracle,S runs Signing(sk⇡, µ, Lpk) and returns

the signature � to A;

– If pk⇡ has not been queried to CO, S runs OKeygen(1�) ! (opk, osk). For

i 2 [1, · · · , `], pki = hk0i, S computes hki = hk0i � H1(opk). S samples

mi, ri and computes Ci = Hash(hki,mi, ri). S then programs random

oracle H0 as H0(µ,C1, · · · , C`, Lpk) = m1 � · · · � m`. S Computes one-

90



time signature sig = OSign(osk; (m1, r1), · · · , (m`, r`), Lpk, opk). S returns

signature � = {(m1, r1), · · · , (m`, r`), opk, sig}.

• Random Oracle H0: For input that has already been programmed, S returns the

corresponding output. Otherwise, S randomly samples h0 and outputs h0. S will

record all the queries to the random oracle in a table, in case same query is issued

twice.

• Random Oracle H1: For input that has already been programmed, S returns the

programmed output. Otherwise, S randomly samples h1 and output h1. S will

record all the queries to the random oracle in a table, in case same query is issued

twice.

Challenge. A sends a list of public keys L0pk = {pk1, · · · , pk`}, message µ and public key

pk⇡ 2 Lpk. According to the requirements, pk⇡ should not been queried to CO or as an

insider to SO. Thus, there is no one-time signatures keys chosen for pk⇡ yet. S takes opk0

as the one-time signature public key for pk⇡. For i 2 [1, · · · , `], pki = hk0i, S computes

hki = hk0i � H1(opk
0). S samples mi,ri and computes Ci = Hash(hki,mi, ri). S then

programs random oracle H0 as H0(µ,C1, · · · , C`, Lpk) = m1� · · ·�m`. Then, S queries

for the one-time signature sig0 of message ⌫ 0 = {(m1, r1), · · · , (m`, r`), L0pk, opk
0)}. S

returns �0 = {(m1, r1), · · · , (m`, r`), opk
0, sig0} to A.

Output. A outputs a list of public keys L⇤pk, message µ⇤, and a signature �⇤ such that

Verify(µ⇤, �⇤, L⇤pk) = accept, Link(�, �⇤, µ, µ⇤, L0

pk, L
⇤
pk) = linked.

Simulator S then use (L⇤pk, µ
⇤, �⇤) to break the unforgeability of ⇧OTS . S phrases

�⇤ = {(m⇤1, r⇤1), · · · , (m⇤`0 , r⇤`0), opk
⇤, sig⇤}. Since Link(�, �⇤, µ, µ⇤, L0

pk, L⇤pk) = linked,

we must have opk0 = opk⇤ and OVer(opk⇤; sig⇤; (m⇤1, r
⇤
1), · · · , (m⇤`0 , r⇤`0),L⇤pk, opk

⇤) =

accept. Since �⇤, L⇤pk must be different from �0, L0pk. S obtains a one-time message

91



signature pair where message is ⌫⇤ = {(m⇤1, r⇤1), · · · , (m⇤`0 , r
⇤
`0), L⇤pk, opk⇤} 6= ⌫ 0 in

challenge. sig⇤ is a valid one-time signature for opk0 and ⌫⇤. S breaks the unforgeability

of ⇧OTS .

According to Theorem 2.6.1, our linkable ring signature scheme has nonsladerability

and linkability. Thus, it is also unforgeable.

For the two security requirements of our ring signature scheme, both of them achieve

the strongest security notions. Specifically, the unforgeability of our ring signature scheme

allows chosen key attack to the signing oracle and chosen subring attack to the target

signature. The anonymity of our ring signature scheme is unconditional and allow chosen

key attack. For our linkable ring signature scheme, the unforgeability and linkability

allows chosen key attack to the signing oracle and chosen subring attack to the target

signature. The scheme is anonymous under chosen subring attack and the slanderability

of our linkable ring signature scheme allows chosen key attack.

5.1.2 Instantiations from Lattice

In this section, we will show how to build CH+ from standard lattice problems and from

NTRU assumptions.

Instantiation of CH+ from Standard Lattice

Here we present our first instantiation of CH+ from standard lattice.

Setup(1�) ! H: On input the security parameter 1�, this algorithm randomly samples a

matrix H $ Zn⇥k
q . The matrix H will be an implicit input to Hash and Inv algorithm.

TrapGen(1�) ! (A,T): This algorithm runs GenBasis (1n, 1m, q) ! (A,T) where

A 2 Zn⇥m
q is a parity-check matrix and T is a ‘good’ trapdoor basis of ⇤?(A).

Hash(A,b, r) ! c: On input hash key A, binary message vector b 2 {0, 1}k and

92



randomness vector r Dm
s , this algorithm computes c = Hb+Ar and returns c.

Inv(A,T, c,b0)! r
0: On input hash key A 2 Zn⇥m

q and its trapdoor T, a vector c 2 Zn
q ,

a binary vector b0 2 {0, 1}k, it computes u = c �Hb
0 and r

0 = PreSample(A,T,u, s0)

where s = s0!(
p
log n).

Now we argue that this instantiation satisfies our requirements of CH+ in Section 5.1.1.

• Our instantiation is collision resistant and one-way if SISq,n,m0,� and ISISq,n,m0,� are

hard for m0 = m+ k, � =
p
8ms2 + 2k and � =

p
4ms2 + k respectively.

• For the second requirement, according to Theorem 2.2.1, we have the distribution

of parity-check matrix A 2 Zn⇥m
q generated from GenBasis algorithm is within

negl(n) far from uniform. Thus, the distribution of A is statistically close to uniform

in Zn⇥m
q . Our instantiation satisfies the second requirement.

• For the third requirement, this instantiation requires that randomness vector r is

sampled from Gaussian distribution Dm
s . According to Theorem 2.2.1, if we set

deviation s appropriately (i.e., greater than the smooth parameter of T, see [43]),

the random vector r0 sampled by algorithm Inv is within negl(n) statistical distance

of Dm
s . Thus our instantiation satisfies the third requirement.

Instantiation of CH+ from NTRU

The FALCON-based CH+ scheme consists of following algorithms:

Setup(1�) ! (h, Db, Dr): On input the security parameter 1�, this algorithm firstly sets

up the polynomial ring Rq and samples h $ Rq. It also sets related distributions:

• Db: a uniform distribution over Rq with binary coefficients;

• Dr: a discrete Gaussian distribution over Rq ⇥Rq.

93



TrapGen(1�)! (a,T): This algorithm takes security parameter 1� as input and then runs

FALCON key generation function to obtain a tuple (a,T) where the public description of

CH+, namely, a = g/f is computationally indistinguishable from uniform over Rq under

NTRU assumption; T :=


f g

f̄ ḡ

�
is the trapdoor of a.

Hash(a,b, r) ! c: On input a hash key a, a binary message string b 2 Db and

randomness r := (r0, r1) 2 Dr, this algorithm returns a hash output c := r0+ar1+hb 2

Rq.

Inv(a,T, c,b0) ! r
0: On input hash key a, its trapdoor T, a ring element c and a binary

message b0, this algorithm first computes u = c�b
0
h. It then generates a falcon signature

r
0 := (r00, r

0
1) on u such that r00+r

0
1a = u. It returns r0 2 Dr such that Hash(a,b0, r0) = c.

The distribution of r
0 will be identical to the distribution of r used in Hash due to the

property of GPV sampler.

This instantiation satisfies our requirements of CH+ in Section 5.1.1.

• The one-wayness and collision resistance of this instantiation is based on

NTRU assumption, R-SIS and R-ISIS. According to NTRU assumption, a is

computationally close to uniform. For a R-SIS3,q,� problem instance2 {e1, e2, e3},

we can compute {1, a0,h0} = {e1
e1
, e2e1 ,

e3
e1
}. a0 should be indistinguishable with a real

hash key a. By obtaining a collision {r(0)0 , r(0)1 ,b(0)}, {r(1)0 , r(1)1 ,b(1)} on hash key

a
0 and public parameter h0. We have

((r(0)0 � r
(1)
0 ) + a

0(r(0)1 � r
(1)
1 ) + h

0(b(0) � b
(1))) = 0.

We find a solution to the problem instance {e1, e2, e3}. We can use the similar way

to argue the one-wayness of NTRU instantiation.
2 We require at least one of the three elements is invertible over Rq . For FALCON-512, the probability is

(1� 1/q)N ⇡ 96%.

94



• Under NTRU assumption, FALCON public key is computationally indistinguishable

from uniform; and the probability that a uniform sampled ring element ā  $ Rq

having a FALCON trapdoor is negligible.

• FALCON is essentially a GPV sampler over NTRU. Therefore, according to Theorem

2.2.1, if the deviation s of Dr is greater than the smoothing parameter, then r
0

generated by algorithm Inv will be within negl(n) statistical distance of D⇤?
u (a),s.

Thus our instantiation satisfies the third requirement.

Full Description of RAPTOR

Now we are ready to present our instantiation. FALCON works over a polynomial ring

Rq := Zq[x]/(xn + 1) for n 2 {512, 1024} and q = 12289. There is a third parameter set

with a different, more complicated polynomial ring. For simplicity, we omit this parameter

set.

• Setup(1�) ! param: On input the security parameter 1�, this algorithm chooses

a hash function H: {⇤} ! {0, 1}n, a suitable R and distributions Db, Dr for

the security level, where Db := {0, 1}256, Dr := D2
R,⌘, D is a discrete Gaussian

distribution over R with deviation ⌘, and ⌘ ⇡ 1.17
p
q is the smooth parameter. It

also picks a public polynomial h $ Rq at random as paramch.

• KeyGen! (sk, pk): This algorithm firstly generates (a, f ,g, f̄ , ḡ)  

FALCON.KeyGen (param) where

1. a = g/f 2 Rq,

2. f ⇥ ḡ � g ⇥ f̄ = q,

3. k(f ,g)k and k(f̄ , ḡ)k are small.

95



Then it sets public key pk = {a} and secret key sk = {f ,g, f̄ , ḡ}.

• Signing(sk⇡, µ, Lpk) ! �: On input message µ, list of user public keys Lpk =

{pk1, · · · , pk`}, and signing key sk⇡ = {f⇡,g⇡, f̄⇡, ḡ⇡} of pk⇡ = {a⇡}, and the

system parameter param, the signing algorithm runs as follow:

1. For i 2 [1, · · · , `] and i 6= ⇡, picks bi  $ {0, 1}256 and (ri,0, ri,1)  D2
R,⌘.

Compute ci = ri,0 + airi,1 + hbi.

2. For i = ⇡, pick c⇡  $ Rq.

3. Compute b⇡ such that

b1 � · · ·� b⇡ � · · ·� b` = H(µ, c1, · · · , c`).

4. Set u⇡ = c⇡ � hb⇡.

5. Compute (r⇡,0, r⇡,1) = FALCON.sign(a⇡, sk⇡;u⇡) such that r⇡,0+r⇡,1a⇡ = u⇡.

The ring signature of µ and Lpk is � = {(ri,0, ri,1,bi)}`i=1.

• Verification(µ, �, Lpk)! accept/reject: On input message µ, signature � and a list

of user public keys Lpk, the verification algorithm performs as follows:

1. phrases � = {(ri,0, ri,1,bi)}`i=1;

2. checks whether for each tuple of (ri,0, ri,1,bi), kri,0k, kri,1k  B1 and bi 2

Db; outputs reject if not.

3. computes ci = ri,0 + airi,1 + hbi for all i 2 [1, · · · , `] and checks whether

b1 � · · ·� b` = H(µ, c1, · · · , c`); outputs reject if not.

4. outputs accept.

96



For a legitimately produced ring signature �, each (ri,0, ri,1) pair should be distributed

according to D2
R,⌘, thus the acceptance bound B1 of ri,0, ri,1 should be ⌫⌘

p
n where ⌫ is

set such that kri,0k, kri,1k  B1 with probability 1� 2�l Lemma 2.2.1.

Full Description of Linkable RAPTOR

Here we present the full description of linkable RAPTOR. FALCON works over a

polynomial ring Rq := Zq[x]/(xn + 1) for n 2 {512, 1024} and q = 12289. There is

a third parameter set with a different, more complicated polynomial ring. For simplicity,

we omit this parameter set. For easiness of implementation, we will also use FALCON to

instantiate ⇧OTS .

• Setup(1�) ! param: On input the security parameter 1�, this algorithm chooses

a hash function H: {⇤} ! {0, 1}n, a suitable Rq and distributions Db, Dr for the

security level, where Db := {0, 1}256, Dr := D2
Rq ,⌘, DRq ,⌘ is a discrete Gaussian

distribution over Rq with deviation ⌘, and ⌘ ⇡ 1.17
p
q is the smooth parameter. It

also picks a public polynomial h  $ Rq at random as paramch. It also chooses a

hash function H1: {⇤}! Rq.

• KeyGen! (sk, pk): This algorithm runs as follow

1. (a, f ,g, f̄ , ḡ) FALCON.KeyGen (param);

2. (aots, fots,gots, f̄ots, ḡots) FALCON.KeyGen(param);

3. set a0 := a+H1(aots) mod q.

The public key pk = a
0 and secret key sk = {f ,g, f̄ , ḡ, fots,gots, f̄ots, ḡots, aots}.

• Signing(sk⇡, µ, Lpk) ! �: On input message µ, list of user public keys Lpk =

{pk1, · · · , pk`}, and signing key sk⇡ = {f⇡,g⇡, f̄⇡, ḡ⇡, fots,gots, f̄ots, ḡots, aots} of

97



pk⇡ = a
0
⇡, and the system parameter param, the signing algorithm runs as follow:

1. For i 2 [1, · · · , `], compute ai = a
0
i �H1(aots) mod q.

2. For i 2 [1, · · · , `] and i 6= ⇡, picks bi  $ {0, 1}256 and (ri,0, ri,1)  D2
Rq ,⌘.

Compute ci = ri,0 + airi,1 + hibi.

3. For i = ⇡, pick c⇡  $ Rq.

4. Compute b⇡ such that b1 � · · ·� b⇡ � · · ·� b` = H(µ, c1, · · · , c`).

5. Set u⇡ = c⇡ � hb⇡.

6. Set (r⇡,0, r⇡,1) = FALCON.sign(a⇡, (f⇡,g⇡, f̄⇡, ḡ⇡);u⇡) such that r⇡,0 +

r⇡,1a⇡ = u⇡.

7. Compute sig := FALCON.sign (aots, (fots, gots, f̄ots, ḡots); ({ri,0, ri,1,bi}`i=1,{a0i}`i=1,

aots)).

The ring signature of µ and Lpk is � ={{ri,0, ri,1, bi}`i=1, aots, sig}.

• Verification(µ, �, Lpk)! accept/reject: On input message µ, signature � and a list

of user public keys Lpk, the verification algorithm performs as follows:

1. phrases �={{ri,0, ri,1,bi}`i=1, aots, sig};

2. For i 2 [1, · · · , `], compute ai = a
0
i �H1(aots) mod q;

3. checks whether for each tuple of (ri,0, ri,1,bi), kri,0k, kri,1k  B1 and bi 2

Db; outputs reject if not.

4. computes ci = ri,0 + airi,1 + hibi for all i 2 [1, · · · , `] and checks whether

b1 � · · ·� b` = H(µ, c1, · · · , c`); outputs reject if not.

98



5. verifies sig is a signature for ({ri,0, ri,1,bi}`i=1, {a0i}`i=1, aots) with public key

aots; outputs reject if fails.

6. outputs accept.

• Link(�1, �2, µ1, µ2, L
(1)
pk , L

(2)
pk ) ! linked/unlinked: On input two message signature

pairs (µ1, �1) and (µ2, �2), this algorithm first checks the validity of signatures �1

and �2. It then phrases �1={{r(1)i,0 , r(1)i,1 , b
(1)
i }`i=1, a

(1)
ots, sig1} and �2= {{r(2)i,0 , r(2)i,1 ,

b
(2)
i }`0i=1, a(2)

ots, sig2}. This algorithm outputs linked if a(1)
ots = a

(2)
ots. Otherwise, output

unlinked.

For a legitimately produced ring signature �, each (ri,0, ri,1) pair should be distributed

according to D2
Rq ,⌘, thus the acceptance bound B1 of ri,0, ri,1 should be ⌫⌘

p
n where ⌫ is

set such that kri,0k, kri,1k  B1 with probability 1� 2�100 according to Lemma 2.2.1.

Note that in this implementation we use additions and subtractions over the Rq

instead of bit-wise XOR operations. Under the random oracle model H1(aots) will

output a random ring element. This creates a perfect one-time mask that assures a
0 is

indistinguishable from random.

5.1.3 Parameters and Implementation

Here we give some parameter figures for RAPTOR-512, instantiated with FALCON-512.

Our RAPTOR-512 uses a signature size of (617⇥ 2 + 32)` ⇡ 1.26` kilo bytes, where ` is

the number of users in a signature. This is because, for each tuple {ri,0, ri,1,bi} within a

ring signature, we need a pair of ri,0 and ri,1, each of 617 bytes, and an additional 32 bytes

for bi to avoid any search attacks [49]. This parameter set yields 114 bits security against

classical attackers, and 103 bits security against quantum attackers, under the BKZ2.0

framework [27] with (quantum) sieving algorithm [4, 61].

99



As for linkable RAPTOR-512, we need an additional FALCON public key and signature

which is of size 897 + 617 ⇡ 1.5 kilo bytes. This accounts for a total of (1.3` + 1.5) kilo

bytes.

For conservative purpose, one may also choose FALCON-1024 for better security, which

results in a signature size of 2.5` kilo bytes for RAPTOR-1024, and (2.5` + 3) kilo bytes

for linkable RAPTOR-1024. The security level for both schemes will be over 256 bits.

We implemented RAPTOR-512 on a typical laptop with an Intel 6600U processor.

The performance is shown in Tables 5.1(a) and 5.1(b). Our source code is available at

[98]. This is a proof-of-concept implementation. We did not take into account potential

optimizations such as NTT-based ring multiplication and AVX-2 instructions. We leave

those to future work.

5.1.4 Known Attacks of RAPTOR

The NTRU assumption and the security of FALCON signature has been extensively

studied in the literature [55, 27, 3, 32, 34, 40]. Here we consider the hardness of inverting

the CH+. We note that the attack described here does not work for the FALCON parameters.

Indeed, this attack is strictly less efficient than forging a FALCON signature, or recovering

the secret keys directly.

Our CH+ is defined as c = r0 + ar1 + hb mod q. Therefore, one may build a lattice

with basis

2

4
qI
a I
1
↵h 0 1

↵I

3

5 where the vector (r0, r1,↵b) is a close vector to (c, 0, 0); ↵ is a

scaling factor of roughly ⇠ ⌘. Note that solving the CVP here is not equivalent to finding

a pre-image. Our b is a binary vector, therefore, to have a successful forgery we will also

require the third part of the output to be in the form of ↵ multiplying a binary vector.

It is easy to see that, even if we relax above the requirement, solving this CVP is still

100



harder than forging a FALCON signature, i.e., solving some CVP for

qI
a I

�
where the

root Hermite factor is a lot larger than that of attacks on the CH+ scheme.

5.2 (Linkable) Ring Signature from Hash-Then-One-
Way Signature

In this section, we first revisit AOS generic method for ring signatures. While they

provide a generic approach to construct ring signatures, in their paper, security proofs are

only given to the concrete examples. In other words, if one is to instantiate the AOS generic

method from other cryptographic setting, a new security proof is needed. Observing this

limitation, we give a security proof for the generic AOS transformation from Type-H

signature scheme to ring signature schemes. Moreover, in the original paper, the security

of its RSA instantiation is based on the one-wayness of the RSA trapdoor function. In our

new proof, we instead rely on the unforgeability of the underlying Type-H signature. Also,

different from the unforgeability security model in [1], we use a strengthened model that

allows for both a corruption oracle and a signing oracle with adversarially chosen keys.

We then extend AOS framework to its linkable variant. Borrowing the idea from [69],

we adopt a one-time signature scheme (⇧OTS). We build a generic method of constructing

linkable ring signature based on ⇧OTS and Type-H signature with uniform distributed

public key. During the key generation procedure, in addition to the public key and

secret key pair (pk, sk), each signer also generates a pair of public key and secret key

(opk, osk) of a one-time signature. The signer then computes PK = pk � Hash(opk) for

some appropriate hash function Hash(·). The new public key is PK and the secret key is

SK = (sk, opk, osk).

Suppose a signer with public key PK⇡ wants to sign a message µ on behalf of a group

of signers LPK = {PK1, · · · ,PK`} (⇡ 2 {1, · · · , `}). For each public key PKi in the

101



group, the signer computes pk0i = PKi � Hash(opk). The signer then obtains a new

list of “public keys”, {pk01, · · · , pk0`}. Note that, for the signer, pk0⇡ is equivalent to the

original ring signature public key pk⇡. The signer then runs the ring signature’s signing

algorithm with inputs µ, sk⇡ and {pk01, · · · , pk0`} to obtain a ring signature �R. Next, it

signs {LPK, µ, �R, opk⇡} using the one-time signature scheme. Denote by sig the one-

time signature. The linkable ring signature is � = {�R, opk⇡, sig}.

The verification is similar to the non-linkable version, with an additional step to verify

the one-time signature.

Similar to [69], we also instantiate this generic linkable ring signature with NTRU lattice

using a NTRU-based Type-H signature scheme: FALCON [40].

Comparison with Other Lattice-Based (Linkable) Ring Signature Scheme

In this section, we give a brief overview of the difference between this work, Raptor [69]

and schemes from [13, 93]. We observe that at a high level, [13, 93] are both instantiations

of AOS framework from the lattice-based signature BLISS [31], a Three-move type (Type-

T) according to AOS’s terminology. There are mainly two drawbacks from the underlying

BLISS signature. First of all, for a lattice-based Type-T signature, a technique called

rejection sampling is always required to prevent the leakage of secret key from signatures.

Thus, ring signatures adopting BLISS require multiple iterations. Secondly, BLISS is

vulnerable to side-channel attacks [39] due to the usage of a Gaussian sampler.

Raptor [69] is a new generic framework for (linkable) ring signature based on RST

framework. Instead of relying on one-way trapdoor permutation as in the RST framework,

[69] firstly introduces a new primitive, named CH+, and then uses CH+ to construct

(linkable) ring signature scheme. They also showed how to build CH+ from one-way

trapdoor functions. Thus, their work allows instantiations from lattice-based one-way

102



Table 5.3: Comparison of lattice-based (linkable) ring signature at security level � = 100.
[64] [93] [13] [38] [69] Our

Signature logarithm linear linear logarithm linear linearsize growth
linkability ⇥ X X ⇥ X X
Sig size for

37 MB 649 KB 585 KB 930 KB 82.7 KB 82.0 KB
26 users
28 users 48.1 MB 2.47 MB 2.34 MB 1132 KB 326.5 KB 318.9 KB
210 users 59.1 MB 9.77 MB 9.36 MB 1409 KB 1301.9 KB 1266.6 KB
212 users 70.2 MB 39 MB 37.4 MB 1492 KB 5203.3 KB 5057.5 KB

trapdoor function (rather than permutation). In this paper, we focus on the AOS framework

with Type-H signature. Note that there are already lattice-based Type-H signatures in

the literature. Comparing with Type-H signature, Type-H does not require rejection

sampling. Comparing with linkable Raptor, we are able to achieve a slightly smaller

signature size under the same assumption.

Contribution

We summarize our contributions as follows.

• We present a new security proof for the AOS generic construction of ring signatures

from Type-H signature schemes. In the original paper, proofs are only given for

concrete instantiations.

• Our proof is in a stronger security model which allows corruptions and a signing

oracle with adversarially chosen keys. As a side note, we reduce the security of

the generic construction to the unforgeability of the underlying Type-H signature

(instead of the one-wayness of the underling trapdoor function), which allows

generic constructions from any given Type-H digital signatures.

• We give a generic method of constructing linkable ring signature from Type-H

signatures with uniformly distributed public key. We also provide the security proofs

for the generic construction based on the security of underlying Type-H signature

scheme.

103



• We instantiate the generic linkable ring signature from NTRU lattice and obtain

a post-quantum and efficient linkable ring signature scheme. Our scheme has the

shortest signature size when the ring size is reasonably small (i.e., less than 1024).

5.2.1 AOS Ring Signature Revisited

Recall that AOS’s generic method builds ring signature schemes from hash-then-

one-way type (Type-H) signature schemes. We first review the concept of (Type-H)

digital signatures. Specifically, in a Type-H signature, pk and sk, created from key

generation algorithm Gsig, are associated with a one-way trapdoor function and its trapdoor

respectively. Let F be a trapdoor one-way function and I be its inverse function. For any c

from appropriate domain, compute e = Fpk(c) is easy. However, given any e0, one cannot

find the preimage c0 such that e0 = Fpk(c0) in polynomial time without trapdoor. Secret key

sk can be considered as the trapdoor which allows one to efficiently compute one of the

preimages of e0. In signing algorithm Signing, Hash : {0, 1}⇤ ! � is a hash function that

hashes message µ and auxiliary information aux and I is the inverse function. Domain �

is supposed to be an abelian group. A Type-H digital signature has the following structure.

Signing(µ, sk)

1: c = Hash(µ, aux)
2: s = Isk(c)
3: return � = (s, aux).

Verification(�, µ, pk)

1: �
parsing����! (s, aux)

2: c = Hash(µ, aux)
3: e = Fpk(s)
4: return 1 if c = e,Otherwise, 0.

104



We first recall the generic method of constructing ring signature schemes.

Ring Signatures from Type-H Digital Signatures

Let Hashi : {0, 1}⇤ ! �i be a hash function where �i is an abelian group. For

a, b 2 �i, let a + b denote the group operation and a � b be the group operation with

inverse of b. �i depends on pki in user public key list Lpk.

• Setup(1�)! param: On input security parameter 1�, this algorithm generates

system parameter param which includes hash function H . We assume param is

an implicit input to all the algorithms listed below.

• KeyGen! (sk, pk): This key generation algorithm generates the key pair using the

key generation function of a signature scheme of his choice (sk, pk) Gsig(param).

• Signing(sk⇡, µ, Lpk) ! �: On input message µ, a list of user public keys Lpk =

{pk1, · · · , pk`}, and signing key sk⇡. the signing algorithm runs as follow:

G� 1 (Initialization): Compute e⇡ = �, �  $ �⇡. Then compute c⇡+1 =

Hash⇡+1(Lpk, µ, e⇡).

G� 2 (Forward Sequence): For i = ⇡ + 1, · · · , `,1,· · · ,⇡ � 1, compute ei = ci +

Fi(si, pki),where si is randomly chosen. Then compute ci+1 = Hashi+1(Lpk, µ, ei).

G� 3 (Forming the Ring): s⇡ = I⇡(� � c⇡, sk⇡). Output signature � =

{c1, s1, · · · , s`} for message µ and public key list Lpk.

• Verification(µ, �, Lpk)! accept/reject: On input message µ, signature � and list

of user public keys Lpk = {pk1, · · · , pkn}, the verification algorithm runs as follow:

For i = 1, · · · , `, compute ei = ci + Fi(si, pki) and then computes ci+1 =

Hashi+1(Lpk, µ, ei) if i 6= `. Accept if c1 = Hash1(Lpk, µ, e`). Otherwise, reject.

105



Security Analysis

In this section, we prove that the above generic construction is unconditional anonymous

and is unforgeable if the underlying signature scheme is unforgeable.

Theorem 5.2.1 (Anonymity) AOS ring signature scheme is unconditional anonymous.

Here we roughly sketch the proof below. RO can be perfectly simulated with properly

generated keys. The challenge signature will be created by programming the random

oracle without using the corresponding signing key. Specifically, the challenge signature

will be of the form � = {c1, s1, · · · , s`}. In the actual signing algorithm, s⇡ is generated

by I⇡(� � c⇡, sk⇡) while in the simulation, all si are sampled according to the output

distribution o Ii, and that ei = ci + Fi(si, pki), ci+1 = Hashi+1(Lpk, µ, ei), with

Hash1(Lpk, µ, e`) programmed to be c1 in the random oracle model. It is straightforward

to prove that the distribution of the simulated signature is the same as a real signature,

and that it is independent of the signer’s key. Therefore, the probability for adversary to

make a successful guess is no more than 1
` , meaning that the scheme is unconditionally

anonymous.

Theorem 5.2.2 (Unforgeability) AOS framework is unforgeable in random oracle model

if the underlying Type-H signature scheme is unforgeable.

Proof 12 Assume there is an adversary A who can successfully forge a ring signature

with probability � by making at most qr queries to RO oracle, qc queries to CO oracle,

qs queries to SO oracle, and qh queries to all the random oracles Hashi. Then we

can construct a simulator S who can break the unforgeability of the underlying Type-

H signature scheme with a non-negligible probability.

S is given a Type-H signature scheme public key pkc, it is asked to output �c such that �c

is a valid forgery for pkc. In order to use A to solve this problem instance, the simulator S

106



needs to simulate the challenger C and oracles to play Gameforge with A. S runs as follow:

Setup. Simulator S picks hash functions Hashi: {0, 1}⇤ ! �i. Hashis will be modelled as

random oracles. Assume A queries random oracles in the form of Q = (k, Lpk, µ, ek�1)

where k is a index in Lpk. S returns Hashk(Lpk, µ, ek�1) to A.

S then randomly picks message µc and queries the challenger from the underlying forge

game for its hash value (or uses the underlying signature’s hash function to compute the

hash value). S receives hash value h0c.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): Assume the adversary A can only queries RO qr times (qr � 1). S

randomly picks an index I 2 [1, · · · , qr]. For index I, S assigns pkc to index I

as the public key. For other indexes, S generates the public key and secret key

according to KeyGen. Upon the jth query, S returns the corresponding public key.

• CO(pk): On input a public key pk returned by RO oracle, S first checks whether it

corresponds to the index I. If yes, S aborts. Otherwise, S returns the corresponding

secret key sk.

• SO(µ, Lpk, pk⇡): When A queries SO on message µ, a list of public keys Lpk =

{pk1, · · · , pk`} and the public key for the signer pk⇡ where pk⇡ 2 Lpk, S simulates

SO as follow:

– If pk⇡ 6= pkI , S runs Signing(sk⇡, µ, Lpk)S returns the signature � to A;

– If pk⇡ = pkI , S randomly choose c1 from its range. For i 2 [1, · · · , `] and pki,

S samples si and computes ei = ci+Fi(si, pki), ci+1 = Hashi+1(Lpk, µ, ei). S

then programs random oracle as Hash1(Lpk, µ, e`) = c1. � = {c1, s1, · · · , s`}.

107



• Random Oracle Q: At beginning of the simulation, S randomly picks v, u  $

[1, · · · , qh] (1  v  u  qh). During simulation, if Qv = (k + 1, Lpk, µ, ek),

Qu = (k, Lpk, µ, ek�1). S programs Hashk(Lpk, µ, ek�1) = ek�h0c. For other query,

if a query input that has already been programmed, S returns the corresponding

output. Otherwise, the output of the random oracle will be randomly sampled from

its range. S will record all the queries to the random oracle in a table, in case same

query is issued twice.

Output. Finally, A will output a forgery (µ⇤, �⇤, L⇤pk) with probability � such that

Verification(µ⇤, �⇤, L⇤pk) = accept; (µ⇤, L⇤pk) has not been queried by A for signature;

and no public key in L⇤pk has been input to CO. If A wants to successfully forge such

a ring signature, A must close a gap in e⇤t � c⇤t for some pkt 2 L⇤pk by first querying

Q⇤1 = (t + 1, L⇤pk, µ
⇤, e⇤t ), then querying Q⇤2 = (t, L⇤pk, µ

⇤, e⇤t�1). The probability for S

successfully guessing Qv = Q⇤1 and Qu = Q⇤2 during random oracle simulation should

be at least 1
qh2 . The probability for pkt = pkI should be at least 1

qr
. S then have

e⇤t � c⇤t = Ft(pkt, s
⇤
t ) = FI(pkI , s

⇤
t ). Since Q⇤1 = Qv and Q⇤2 = Qu, we have e⇤t � c⇤t = h0c

where h0c is the hash output of µc. S outputs (µc, s⇤t ) as a forgery.The probability for S to

output such a forgery is at least �
qh2·qr .

5.2.2 Our Generic Ring Signature with Linkability

In this section, we give our generic construction of linkable ring signatures. Our generic

construction mainly has two building blocks, namely, a Type-H signature scheme and a

one-time signature scheme ⇧OTS .

Same as AOS ring signature scheme, we have Hashi : {0, 1}⇤ ! �i being a hash

function where range �i is an abelian group. For a, b 2 �i, let a + b denote the group

operation and a � b be the group operation with inverse of b. �i depends on pki in user

public key list Lpk. Also, the distribution of public key pk of the underlying Type-H

108



signature scheme should be uniformly distributed in its possible range. We emphasize

that, for RSA and one-way trapdoor functions in lattice [44, 40], their public keys are all

uniformly distributed.

• Setup(1�)! param: On input security parameter 1�, this algorithm generates

system parameter param which includes a hash function H . We assume param is an

implicit input to all the algorithms listed below. It also selects a one-time signature

scheme ⇧OTS = {OKeygen,OSign,OVer}

• KeyGen! (sk, pk): This key generation algorithm generates the key pairs using the

key generation function of a signature scheme of his choice (sk, pk) Gsig(param).

It also generates a pair of ⇧OTS public key and secret key (opk, osk)  

OKeygen(1�) and computes mk = Hash⇤(opk). It sets public key PK = pk � mk

and secret key SK = {sk, opk, osk}.

• Signing(SK⇡, µ, LPK)! �: On input message µ, a list of user public keys LPK =

{PK1, · · · ,PK`}, and signing key SK⇡ = {sk⇡, opk⇡, osk⇡}. For i 2 [1, · · · , `],

compute pki = PKi�mk⇡ where mk⇡ = Hash⇤(opk⇡). Signer obtains a new public

key list Lpk = {pk1, · · · , pk`}. The signing algorithm runs as follow:

G� 1 (Initialization): Compute e⇡ = � where �  $ �⇡. Then compute

c⇡+1 = Hash⇡+1(Lpk, µ, e⇡).

G� 2 (Forward Sequence): For i = ⇡ + 1, · · · , `, 1, · · · , ⇡ � 1, compute ei = ci +

Fi(si, pki) where si is randomly chosen. Then compute ci+1 = Hashi+1(Lpk, µ, ei).

G� 3 (Forming the Ring): s⇡ = I⇡(� � c⇡, sk⇡) Compute one-time

signature sig = OSign(osk⇡; (c1, s1, · · · , s`, LPK, opk⇡)). Output signature � =

{c1, s1, · · · , s`, sig, opk⇡} for message µ and public key list LPK.

109



• Verification(µ, �, LPK)! accept/reject: On input message µ, signature � and list

of user public keys LPK = {PK1, · · · ,PKn}. Parse � to {c1, s1, · · · , s`, sig, opk}.

For i 2 [1, · · · , `], compute pki = PKi � mk⇡ where mk⇡ = Hash⇤(opk). The

verification algorithm runs as follow: for i = 1, · · · , `, compute ei = ci+Fi(si, pki)

and then computes ci+1 = Hashi+1(Lpk, µ, ei) if i 6= `. Continue if c1 =

Hash1(Lpk, µ, e`). Otherwise, reject.

Check whether OVer(opk; (c1, s1, · · · , s`, LPK, opk)) = 1. If not,output reject. If all

pass, output accept.

• Link(�1, �2, µ1, µ2, L
(1)
PK, L

(2)
PK)! linked/unlinked: On input two message signature

pairs (µ1, �1) and (µ2, �2), this algorithm first checks the validity of signatures �1

and �2. If Verification(µ1, �1, L
(1)
PK) ! accept and Verification(µ2, �2, L

(2)
PK) !

accept, it parses �1={c(1)1 , s(1)1 , · · · ,s(1)` , opk1,sig1} and �2 = {c(2)1 , s(2)1 , · · · ,s(2)` ,

opk2, sig2}. The algorithm outputs linked if opk1 = opk2. Otherwise, output

unlinked.

Security Analysis

Theorem 5.2.3 (Anonymity) The linkable ring signature is anonymous in random oracle

model if the underlying Type-H signature scheme and ⇧OTS are unforgeable.

Proof 13 Assume there is a simulator S who plays Game⇤anon with adversary A as follow:

Setup. Simulator S runs Setup(1�) ! param and passes system parameter param to

adversary A.

Oracle Simulation. For registration oracle RO(?), when adversary queries RO, S

samples PK uniformly at random from its possible range.

110



Challenge. A picks a list of user public keys LPK = {PK1,PK2, · · · ,PK`} and a message

µ. A sends (LPK, µ) to S . S randomly picks ⇡ 2 {1, · · · , `}. S also generates a pair of

⇧OTS public key and secret key (opk⇡, osk⇡)  OKeygen for PK⇡. For i = {1, · · · , `},

S first computes pki = PKi � Hash⇤(opk⇡). S randomly choose c1 from its range. For

i 2 [1, · · · , `], S samples si and computes ei = ci+Fi(si, pki), ci+1 = Hashi+1(Lpk, µ, ei).

S then programs random oracle as Hash1(Lpk, µ, e`) = c1. S also computes one-time

signature sig = OSign(osk⇡; s1, · · · , s`, LPK, opk). S returns signature � = { s1, · · · , s`,

opk⇡, sig}.

For adversary A, A can not distinguish this game from the original one. Since in the

scheme, the signer public key PK⇡ is the result of the exclusive or of pk⇡ and Hash⇤(opk⇡)

where Hash⇤(opk⇡) is a hash output. Thus, A can not distinguish pk generated following

the rule from pk sampled uniformly at random from its possible range. Here we have

the distribution of pk uniformly over its possible range. Thus all the pki generated from

PKi � Hash⇤(opk⇡) are indistinguishable from a true signature public key for adversary

A. The best way for A to win this game is to guess a ⇡⇤ 2 {1, · · · , `}. The probability for

⇡⇤ = ⇡ is no more than 1
` .

The advantage adv
anon
A in this game is negligible. The linkable ring signature scheme

is anonymous.

Theorem 5.2.4 (Linkability) The linkable ring signature is linkable in random oracle

model if the underlying Type-H signature scheme and ⇧OTS are unforgeable.

Proof 14 Let A be an adversary who can successfully forge a linkable ring signature

with probability � by making at most qr queries to RO oracle, qc queries to CO oracle, qs

queries to SO oracle, and q⇤h queries to random oracle Hash⇤, qh queries to all the random

oracles Hashi. We show how to construct simulator S who can break unforgeability of the

underlying Type-H signature scheme with a non-negligible probability.

111



Given public key pkc of a Type-H signature scheme, S’s task is to output a forged

signature �c on any message of its choice. In order to use A to solve this problem instance,

the simulator S needs to simulate the challenger C and oracles to play Gameforge with A.

S runs as follow:

Setup. S picks hash functions Hash⇤, Hashis and sets as system parameter. Hash⇤,

Hashis will be modeled as random oracle. For Hashi, A queries it in the form

of Q(k, LPK, µ, ek�1). S returns Hashk(LPK, µ, ek�1) to A. For Hash⇤, S picks

{h⇤1, h⇤2, · · · , h⇤p⇤}  $ �⇤i as the q⇤h responses of random oracle Hash⇤.S then random

picks a message µc and queries the challenger from the forge game of the underlying

signature scheme for its hash value (or compute the hash value by the given hash function).

S receives hash value h0c.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): Assume adversary A can only queries RO qr times (qr � 1). A random

picks an index I  $ [1, · · · , qr]. For index I, S sets PKI = pkc � h⇤Q where

h⇤Q  $ {h⇤1, h⇤2, · · · , h⇤p⇤}. For other index, S samples PK uniformly random from

its possible range. Upon the jth query, S returns the corresponding public key.

• CO(PK): On input a public key PK returned by RO oracle, S first checks whether

it corresponds to index I. If yes, S aborts. Otherwise, S runs OKeygen(1�) !

(opk, osk). S runs Gsig(1�) ! (pk, sk). S returns (sk, opk, osk) as secret key and

programs Hash⇤(opk) = PK� pk.

• SO(µ, LPK,PK⇡): When A queries SO on message µ, a list of public keys

LPK = {PK1, · · · ,PK`} and the public key for the signer PK⇡ where PK⇡ 2 LPK, S

simulates SO as follow:

1). If PK⇡ has been queried to CO, S runs Signing(SK⇡, µ, LPK). S returns the

112



signature � to A;

2). If PK⇡ = PKI , S runs OKeygen(1�) ! (opk⇡, osk⇡) and assigns the first

h⇤i 2 {h⇤1, h⇤2, · · · , h⇤p⇤} that has not been used yet to Hash⇤(opk⇡). S computes

pki = Hash⇤(opk⇡) � PKi for i 2 [1, · · · , `]. S randomly choose c1 from its

range. For i 2 [1, · · · , `], S samples si and computes ei = ci + Fi(si, pki), ci+1 =

Hashi+1(Lpk, µ, ei). S then programs random oracle as Hash1(Lpk, µ, e`) = c1.

S also computes one-time signature sig = OSign(osk⇡; s1, · · · , s`, LPK, opk). S

returns signature � = { s1, · · · , s`, opk⇡, sig};

3). for other PK, S runs OKeygen(1�) ! (opk, osk). S runs Gsig(1�) ! (pk, sk).

S returns (sk, opk, osk) as secret key and programs Hash⇤(opk) = PK� pk. S runs

Signing(SK⇡, µ, LPK). S returns the signature � to A

• Random Oracle Hash⇤: For query input that has already been programmed, S

returns the corresponding output. Otherwise, the output of the random oracle will

be the first h⇤i 2 {h⇤1, h⇤2, · · · , h⇤p⇤} that has not been used yet. S will record all the

queries to the random oracle in a table, in case same query is issued twice.

• Random Oracle Q: At beginning of the simulation, S randomly picks v, u  $

[1, · · · , qh] (1  v  u  qh). During simulation, if Qv = (k + 1, LPK, µ, ek),

Qu = (k, LPK, µ, ek�1). S programs Hashk(LPK, µ, ek�1) = ek � h0c. For

other query, if a query input that has already been programmed, S returns the

corresponding output. Otherwise, the output of the random oracle will be randomly

sampled from its range. S will record all the queries to the random oracle in a table,

in case same query is issued twice.

Output. Adversary A outputs k sets {L(i)
PK, µi, �i} for i 2 [1, · · · , k]. These k sets should

satisfy that Verification(µi, �i, L
(i)
PK) = accept ; A queried CO less than k times; and

113



Link(�i, �j, µi, µj, L
(i)
PK, L

(j)
PK) = unlinked for i 6= j and i, j 2 [1, · · · , k]. Since A is

allowed query CO less than k times. At least one of the output signatures should be

generated from the opk that A does not obtain from CO or SO. If any of the opk from

the returned signatures are obtained from SO, A breaks the unforgeability of ⇧OTS .

Assume �j , j 2 {1, · · · , k} is not produced by the opk obtaining from CO or SO.

Hash⇤(opkj) 6= h⇤Q, abort.

The probability for Hash⇤(opkj) = h⇤Q is no less than 1
q⇤
h

. In the following we use

(µ⇤, �⇤, L⇤PK) to denote (µj, �j, L(j)
PK). If A wants to successfully forge such a linkable ring

signature, A must close a gap in e⇤t � c⇤t by first querying Q⇤1 = (t + 1, L⇤PK, µ
⇤, e⇤t ),

then querying Q⇤2 = (t, L⇤PK, µ
⇤, e⇤t�1). The probability for S successfully guessing

Qv = Q⇤1 and Qu = Q⇤2 during random oracle simulation should be at least 1
qh2 . The

probability for PKt = PKI should be at least 1
qr

. Since Hash⇤(opk⇤) = h⇤Q, we have

Hash⇤(opk⇤) � PKI = pkc. S then have e⇤t � c⇤t = Ft(pkc, s
⇤
t ). Since Q⇤1 = Qv and

Q⇤2 = Qu, we have e⇤t � c⇤t = h0c where h0c is the hash output of µc. S outputs (µc, s⇤t ) as a

forgery.The probability for S to output such a forgery is at least �
qh2·q⇤

h
·qr .

Theorem 5.2.5 (Nonslanderability) Our linkable ring signature is nonslanderable in

random oracle model if the one-time signature scheme ⇧OTS is one-time unforgeable.

Proof 15 Assume there is an adversary A who can win Gameslander with probability �.

Then we can construct a simulator S who can break the unforgeability of the one-time

signature ⇧OTS used in our construction also with probability �.

S is given a ⇧OTS public key opk0 and is allowed to query the signature sig0 of a message

m0 once for any message of its choosing. S is said breaking the unforgeability of ⇧OTS if

it can produce (m00, sig00) such that (m00, sig00) 6= (m0, sig0) and OVer(opk0; sig00; m00 ) =

accept. In order to use A to break the unforgeability of ⇧OTS , the simulator S needs to

114



simulate the challenger C and oracles to play Gameslander with A. S runs as follow:

Setup. S picks hash functions Hash⇤, Hashis and sets as system parameter. Hash⇤, Hashis

will be modeled as random oracle.

Oracle Simulation. S simulates the oracles as follow:

• RO(?): Upon request, S samples PK uniformly random from its possible range. S

returns the PK as the public key.

• CO(PK): On input a public key PK returned by RO oracle, S first checks whether

it is an output of RO query. If yes, S runs OKeygen(1�) ! (opk, osk). S

runs Gsig(param)!(sk, pk). S returns (sk, opk, osk) as secret key and programs

Hash⇤(opk) = PK� pk.

• SO(µ, LPK,PK⇡): When A queries SO on message µ, a list of public keys

LPK = {PK1, · · · ,PK`} and the public key for the signer PK⇡ where PK⇡ 2 LPK, S

simulates SO as follow:

– If PK⇡ has been queried to CO oracle, S runs Signing(SK⇡, µ, LPK) and

returns the signature � to A;

– If PK⇡ has not been queried to CO, S runs OKeygen(1�) ! (opk, osk). For

i 2 [1, · · · , `], compute pki = PKi � mk⇡ where mk⇡ = Hash⇤(opk⇡). S

obtains a new public key list Lpk = {pk1, · · · , pk`}. The signing algorithm

runs as follow:

G� 1 (Initialization): Compute e⇡ = � where �  $ �⇡. Then compute

c⇡+1 = Hash⇡+1(Lpk, µ, e⇡).

G� 2 (Forward Sequence): For i = ⇡ + 1, · · · , `, 1, · · · , ⇡ � 1, compute

115



ei = ci + Fi(si, pki) where si is randomly chosen. Then compute ci+1 =

Hashi+1(Lpk, µ, ei).

G� 3 (Forming the Ring): For i = ⇡, randomly choose s⇡ and computes

c⇡ = e⇡�F⇡(s⇡, pk⇡). Program c⇡ = Hash⇡(Lpk, µ, e⇡�1). Compute one-time

signature sig = OSign(osk⇡; (c1, s1, · · · , s`, LPK, opk⇡)). Output signature

� = {c1, s1, · · · , s`, sig, opk⇡} for message µ and public key list LPK.

• Random Oracle: For input that has already been programmed, S returns the

corresponding output. Otherwise, S randomly samples hash output and returns

the value. S will record all the queries to the random oracle in a table, in case same

query is issued twice.

Challenge. A sends a list of public keys LPK = {PK1, · · · ,PK`}, message µ and public key

PK⇡ 2 LPK. According to the requirements, PK⇡ should not been queried to CO or as an

insider to SO. Thus, there is no one-time signatures keys chosen for PK⇡ yet. S takes opk0

as the one-time signature public key for PK⇡. For i 2 [1, · · · , `], compute pki = PKi�mk⇡

where mk⇡ = Hash⇤(opk0). S obtains a new public key list Lpk = {pk1, · · · , pk`}.

S then computes e⇡ = � where �  $ �⇡ and c⇡+1 = Hash⇡+1(Lpk, µ, e⇡). For

i = [⇡ + 1, · · · , `, 1, · · · , ⇡ � 1], compute ei = ci + Fi(si, pki) where si is randomly

chosen. Then compute ci+1 = Hashi+1(Lpk, µ, ei). For i = ⇡, S randomly chooses s⇡ and

computes c⇡ = e⇡ � F⇡(s⇡, pk⇡). Program c⇡ = Hash⇡(Lpk, µ, e⇡�1). Then, S queries

for the one-time signature sig0 of message ⌫ 0 = (c1, s1, · · · , s`, LPK, opk
0). S returns

� = {c1, s1, · · · , s`, LPK, opk
0, sig0} to A.

Output. A outputs a list of public keys L⇤PK, message µ⇤, and a signature �⇤ such that

Verification(µ⇤, �⇤, L⇤PK) = accept, Link(�, �⇤, µ, µ⇤, LPK, L⇤PK) = linked.

Simulator S then use (L⇤pk, µ
⇤, �⇤) to break the unforgeability of ⇧OTS . S phrases

116



�⇤ = {c⇤1, s⇤1, · · · , s⇤`0 , LPK, opk
⇤, sig⇤}. Since Link(�, �⇤, µ, µ⇤, LPK, L⇤PK) = linked, we

must have opk0 = opk⇤ and OVer(opk⇤; sig⇤; c⇤1, s
⇤
1, · · · , s⇤`0 , LPK, opk

⇤) = accept. Since

�⇤, L⇤PK must be different from �, LPK. S obtains a one-time message signature pair where

message is ⌫⇤ = {c⇤1, s⇤1, · · · , s⇤`0 , LPK, opk
⇤} 6= ⌫ 0 in challenge. sig⇤ is a valid one-time

signature for opk0 and ⌫⇤. S breaks the unforgeability of ⇧OTS .

According to Theorem 2.6.1, our linkable ring signature scheme is nonsladerable and

linkable. Thus, it is also unforgeable.

5.2.3 Instantiations from NTRU

In this section, we are going to instantiate the linkable ring signature to NTRU lattice

using a NTRU based Type-H signature scheme: FALCON. In 2008, Gentry, Peikert and

Vaikuntanathan [44] construct a one-way trapdoor function using ’hard’ basis and ’good’

basis of a lattice and apply it to construct a lattice-based Type-H signature schemes. Prest

at al. [34, 40] then use NTRU lattices [56] to instantiate the GPV construction. The

corresponding NTRU-based Type-H signature scheme is named FALCON [40].

5.2.4 Linkable Ring Signature from Falcon

FALCON signature scheme is a Type-H signature scheme. Thus, we can apply the

generic method of transforming Type-H signature scheme to linkable ring signature

scheme to FALCON.

• Setup(1�)! param: On input security parameter 1�, this algorithm chooses Hash⇤,

Hashi : {0, 1}⇤ ! Rq, Db, Dr and ⌘.

• KeyGen! (sk, pk): This algorithm firstly generates

– (a, f ,g, f̄ , ḡ) FALCON.KeyGen(param), and

117



– (aots, fots,gots, f̄ots, ḡots) FALCON.KeyGen(param)

Then it sets a0 := a+ Hash⇤(aots) mod q. The public key pk = {a0} and secret key

sk = {sk0 = {f ,g, f̄ , ḡ}, sk1 = {fots,gots, f̄ots, ḡots}, aots}.

• Signing(sk⇡, µ, Lpk) ! �: On input message µ, list of user public keys Lpk =

{pk1, · · · , pk`}, and signing key sk⇡ = {sk0⇡ = {f⇡,g⇡, f̄⇡, ḡ⇡}, sk1⇡ = {fots,gots,

f̄ots, ḡots }, aots} of pk⇡ = {a0⇡}, and the system parameter param, the signing

algorithm runs as follow:

1. for i 2 [1, · · · , `], compute ai = a
0
i � Hash⇤(aots) mod q. Signer then obtains

a new list L = {a1, · · · , a`}.

2. it then randomly samples a polynomial e⇡  $ Rq and computes c⇡+i =

Hash⇡+1(L, µ, e⇡);

3. for i = ⇡ + 1, · · · , `, 1, · · · , ⇡ � 1, compute ei = ci + xi,0 + aixi,1 where

xi = (xi,0,xi,1) D2
R,⌘ and ci+1 = Hashi+1(L, µ, ei);

4. compute (x⇡,0,x⇡,1) = FALCON.sign(sk0⇡; e⇡ � c⇡) such that x⇡,0 + a⇡x⇡,1 =

e⇡ � c⇡;

5. it then generates a signature sig on µ0 = {{xi}ii=1, c1, Lpk, aots} by computing

sig=FALCON.sign(sk1⇡;µ
0).

The linkable ring signature of µ and Lpk is � ={{{xi}`i=1,c1,aots, sig}.

• Verification(µ, �, Lpk)! accept/reject: On input message µ, signature � and a list

of user public keys Lpk, the verification algorithm performs as follows:

1. parses � ={x1, · · · , x`, c1,aots, sig};

118



2. For i 2 [1, · · · , `], compute ai = a
0
i � Hash⇤(aots) mod q;

3. checks whether for all i 2 [1, · · · , `], kxik1  �; outputs reject if not;

4. for all i 2 [1, · · · , `], computes yi = xi,0 + aixi,1, ei = ci + yi. Then

compute ci+1 = Hashi+1(L, µ, ei) if i 6= `. Continue if c1 = Hash1(L, µ, e`).

Otherwise, reject.

5. verify whether sig is a FALCON signature for ({xi}`i=1, c1, {a0i}`i=1, aots) with

public key aots; outputs reject if fails.

6. outputs accept.

• Link(�1, �2, µ1, µ2, L
(1)
PK, L

(2)
PK)! linked/unlinked: On input two message signature

pairs (µ1, �1) and (µ2, �2), this algorithm first checks the validity of signatures �1

and �2. If Verification(µ1, �1, L
(1)
PK)! accept and Verification(µ2, �2, L

(2)
PK)! ac-

cept, it parses �1={{{x(1)
i }`i=1,c

(1),a1
ots, sig1} and �2 = {{{x(2)

i }`i=1,c
(2),a2

ots, sig2}.

The algorithm outputs linked if a1
ots = a

2
ots. Otherwise, output unlinked.

Note that in this implementation we use additions and subtractions over the Rq instead of

bit-wise XOR operations. Under the random oracle model H1(aots) will output a random

ring element. This creates a perfect one-time mask that assures a0 is indistinguishable from

random.

5.2.5 Efficiency Analysis

Here we give some estimated performance of instantiating generic construction with

FALCON-512. The estimated linkable signature size is around 617⇥ 2(`+ 1)+ 2 ⇤ 897 ⇡

1.23(` + 1) + 2 ⇤ 0.897 kilo bytes, where ` is the number of users in a signature. For a

signature of FALCON-512, the size is around 2⇥ 617 bytes. Besides, 897 bytes is the size

119



of a ring element in FALCON-512.

We give comparison with some other (linkable) ring signature schemes in Table 5.3.

Comparing with other linear-size linkable ring signature, we have the smallest signature

size. Comparing with scheme with logarithmic signature size, our linkable ring signature

scheme has a better performance with a small ring (ring size  210). Thus, our linkable

ring signature is practical and can be applied in scenarios with small groups.

120



Chapter 6

Conclusion

Post-quantum cryptography is now attracting more and more attentions because of

its property of resistance to quantum attacks. Even though there is still no practical

large quantum computers. Considering the possibility that someone stores sensitive

communication data and information from Internet and analyzes it when quantum

computer really appears. Designing post-quantum cryptosystems and applying them in

the real world as soon as possible is meaningful. In particular, quantum computational

operations have already been executed on a small number of quantum bits. In this thesis,

our works mainly focus on designing cryptosystems that is resistance to quantum attacks.

Firstly, we propose a symmetric-key based post-quantum anonymous identification

protocol for ad hoc group based on hash-based cryptography. We also develop security

models to capture the security requirements of anonymous identification scheme. Our

protocol is simple in concept and concrete in construction which can be easily compatible

with widely used password-based authentication. Additionally, we show that our protocol

is more efficient then related works priori to it.

Secondly, we present a new lattice-based signature scheme based on a signature scheme

proposed by Hoffstein et al. [53]. Our new signature scheme out-performs the original

121



one in both running time and signature size. Moreover, to prove the security of our

construction, we give specific reduction proof, which was lack in [53], and reduce the

security to a variant of lattice-based hard problems. We also analyze the security of our

signature scheme using quantum sieving algorithm and show that our construction is post-

quantum.

The last two works of this thesis are both focusing on generic frameworks of (linkable)

ring signature and their lattice instantiations. In Section 5.1, we propose a new generic

construction of (linkable) ring signature schemes. The new generic construction is

then instantiated to both standard lattice and NTRU lattice setting. We also give our

NTRU lattice-based (linkable) ring signature scheme a name called (linkable) Raptor.

Furthermore, we implement (linkable) Raptor and show the efficiency of it comparing

with lattice-based (linkable) ring signature proposed before it. In Section 5.2, we revised

an existing generic ring signature [1] to its linkable version and gives the security proofs

for both the original and linkable version of the generic framework. The security proof for

generic construction is lack in the original paper. We instantiate our generic linkable ring

signature to NTRU lattice and obtains a lattice-based linkable ring signature slightly more

efficient than our work in Section 5.1.

6.1 Future Work

In our first work, anonymous identification for ad hoc group, we require that verifier in

the scheme should be honest but curious. However, in the real world, we must consider

the possibility that verifier is dishonest and try to actively gain personal information from

prover. Thus, we could improve the scheme to maintain its anonymity even if verifier does

not act following the scheme. At the same time, we should still keep the advantages of

high efficiency and compatibility of our scheme.

122



Besides, we will continuously work on the thesis from following aspects. Our two

lattice-based linkable ring signature schemes, while are practical enough to be applied in

the real world scenarios, still need improvement. The signature size of our linkable ring

signature schemes are linear to the number of members in the ring. Thus, a large ring

size can increase the signature size rapidly. Despite our linkable ring signature schemes

have a signature size roughly 1.6 KB per member. It is, nevertheless, an important job

for us to try to shrink the signature size in various ways. One solution is that we can

reduce the size of signature for each user. However, the core problem has not yet been

addressed. The best approach is that, we should let the linkable ring signature size be

logarithmic or even be constant to the ring size. Thus, our future target in improving the

efficiency of linkable ring signature scheme is that, we should design a logarithmic size

linkable ring signature scheme that is practical enough to be implemented. One possible

way to construct a logarithmic size linkable ring signature scheme is by adopting zero-

knowledge proof techniques. The major obstacle of applying existing lattice-based zero-

knowledge proof systems to constructing a practical ring signature scheme is that, most

of the existing lattice-based zero-knowledge proof systems have large overhead or are not

efficient enough to be implemented. Thus we could focus on constructing practical and

efficient lattice-based zero-knowledge proof system.

123



124



Bibliography

[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from
a variety of keys. In Advances in Cryptology - ASIACRYPT 2002, 8th International
Conference on the Theory and Application of Cryptology and Information Security,
Queenstown, New Zealand, December 1-5, 2002, Proceedings, pages 415–432,
2002.

[2] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the twenty-eighth annual ACM symposium on theory of computing,
STOC 1996, pages 99–108. ACM, 1996.

[3] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player,
Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all
the LWE, NTRU schemes! Cryptology ePrint Archive, Report 2018/331, 2018.
https://eprint.iacr.org/2018/331.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange - A new hope. In 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016., pages 327–343, 2016.

[5] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium
on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009,
Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages 75–86. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[6] Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors.
Automata, Languages and Programming, 34th International Colloquium, ICALP
2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes
in Computer Science. Springer, 2007.

125

https://eprint.iacr.org/2018/331


[7] Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short
linkable ring signatures revisited. In Public Key Infrastructure, Third European
PKI Workshop: Theory and Practice, EuroPKI 2006, Turin, Italy, June 19-20, 2006,
Proceedings, pages 101–115, 2006.

[8] Man Ho Au, Joseph K. Liu, Willy Susilo, and Tsz Hon Yuen. Certificate
based (linkable) ring signature. In Information Security Practice and Experience,
Third International Conference, ISPEC 2007, Hong Kong, China, May 7-9, 2007,
Proceedings, pages 79–92, 2007.

[9] Man Ho Au, Joseph K. Liu, Willy Susilo, and Tsz Hon Yuen. Secure id-based
linkable and revocable-iff-linked ring signature with constant-size construction.
Theor. Comput. Sci., 469:1–14, 2013.

[10] Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-oriented k-times revocable-
iff-linked group signatures. In Information Security and Privacy, 11th Australasian
Conference, ACISP 2006, Melbourne, Australia, July 3-5, 2006, Proceedings, pages
223–234, 2006.

[11] Shi Bai, Thijs Laarhoven, and Damien Stehle. Tuple lattice sieving. Cryptology
ePrint Archive, Report 2016/713, 2016. https://eprint.iacr.org/2016/
713.

[12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6, 2012.

[13] Carsten Baum, Huang Lin, , and Sabine Oechsner. Towards practical lattice-based
one-time linkable ring signatures. Cryptology ePrint Archive, Report 2018/107,
2018. https://eprint.iacr.org/2018/107.

[14] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture
Notes in Computer Science, pages 614–629. Springer, 2003.

[15] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on

126

https://eprint.iacr.org/2016/713
https://eprint.iacr.org/2016/713
https://eprint.iacr.org/2018/107


Computer and Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober
30 - November 3, 2006, pages 390–399. ACM, 2006.

[16] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings, pages 60–79, 2006.

[17] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 368–
397. Springer, 2015.

[18] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 41–69. Springer, 2011.

[19] Dan Boneh and Matthew K. Franklin. Anonymous authentication with subset
queries (extended abstract). In Juzar Motiwalla and Gene Tsudik, editors, CCS ’99,
Proceedings of the 6th ACM Conference on Computer and Communications Security,
Singapore, November 1-4, 1999., pages 113–119. ACM, 1999.

[20] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on DDH. In Computer
Security - ESORICS 2015 - 20th European Symposium on Research in Computer
Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I, pages 243–
265, 2015.

[21] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures, ring
signatures and identity based encryption in the standard model. IACR Cryptology
ePrint Archive, 2010:86, 2010.

[22] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring signatures
and applications to ad-hoc groups. In Moti Yung, editor, Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,

127



California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in
Computer Science, pages 465–480. Springer, 2002.

[23] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical
forward secure signature scheme based on minimal security assumptions. In Bo-Yin
Yang, editor, Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, volume 7071
of Lecture Notes in Computer Science, pages 117–129. Springer, 2011.

[24] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups (extended abstract). In Jr. [59], pages 410–424.

[25] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size
without random oracles. In Arge et al. [6], pages 423–434.

[26] David Chaum and Eugène van Heyst. Group signatures. In Davies [29], pages 257–
265.

[27] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In
ASIACRYPT 2011, pages 1–20. Springer, 2011.

[28] Sherman S. M. Chow, Joseph K. Liu, Victor K. Wei, and Tsz Hon Yuen. Ring
signatures without random oracles. IACR Cryptology ePrint Archive, 2005:317,
2005.

[29] Donald W. Davies, editor. Advances in Cryptology - EUROCRYPT ’91, Workshop on
the Theory and Application of of Cryptographic Techniques, Brighton, UK, April 8-
11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science. Springer,
1991.

[30] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 609–626,
2004.

[31] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 40–56. Springer, 2013.

128



[32] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, volume 8042 of LNCS, pages 40–56. Springer, 2013.

[33] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from module lattices.
IACR Cryptology ePrint Archive, 2017:633, 2017.

[34] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in
Computer Science, pages 22–41. Springer, 2014.

[35] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology – ASIACRYPT 2012, number 7658 in Lecture Notes in Computer
Science, pages 433–450. Springer Berlin Heidelberg, January 2012.

[36] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings of the
ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC
2016, Waterloo, ON, Canada, July 19-22, 2016, pages 191–198, 2016.

[37] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 283–293, 2000.

[38] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi
Liu. Short lattice-based one-out-of-many proofs and applications to ring signatures.
Cryptology ePrint Archive, Report 2018/773, 2018. https://eprint.iacr.
org/2018/773.

[39] Thomas Espitau, Pierre-Alain Fouque, Benoit Gerard, and Mehdi Tibouchi. Side-
channel attacks on bliss lattice-based signatures – exploiting branch tracing against
strongswan and electromagnetic emanations in microcontrollers. Cryptology ePrint
Archive, Report 2017/505, 2017. https://eprint.iacr.org/2017/505.

[40] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and
Zhenfei Zhang. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU.

129

https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2017/505


[41] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart,
editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 31–51. Springer, 2008.

[42] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, 2010.

[43] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[44] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the 40th annual ACM
symposium on Theory of computing, STOC ’08, page 197–206, New York, NY, USA,
2008. ACM.

[45] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Jr. [59], pages 112–131.

[46] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Jeffrey Scott Vitter, editor,
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 399–408. ACM, 1998.

[47] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a
secret and spend a coin. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 253–280,
2015.

[48] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[49] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of

130



Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219,
1996.

[50] Debiao He, Jianhua Chen, and Jin Hu. An id-based proxy signature schemes without
bilinear pairings. Annales des Télécommunications, 66(11-12):657–662, 2011.

[51] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSIGN: digital signatures using the NTRU lattice. In Marc
Joye, editor, Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the
RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings,
volume 2612 of Lecture Notes in Computer Science, pages 122–140. Springer, 2003.

[52] Jeffrey Hoffstein, Daniel Lieman, and Joseph H. Silverman. Polynomial rings and
efficient public key authentication. In City University of Hong Kong. Press.

[53] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Practical signatures from the partial fourier recovery problem. In Ioana
Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography
and Network Security - 12th International Conference, ACNS 2014, Lausanne,
Switzerland, June 10-13, 2014. Proceedings, volume 8479 of Lecture Notes in
Computer Science, pages 476–493. Springer, 2014.

[54] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Transcript secure signatures based on modular lattices. In Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON,
Canada, October 1-3, 2014. Proceedings, pages 142–159, 2014.

[55] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt. IACR Cryptology
ePrint Archive, 2015:708, 2015.

[56] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

[57] Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei Zhang. A signature
scheme from learning with truncation. Cryptology ePrint Archive, Report 2017/995,
2017. http://eprint.iacr.org/2017/995.

131

http://eprint.iacr.org/2017/995


[58] Jeffrey Hoffstein and Joseph H. Silverman. Polynomial Rings and Efficient Public
Key Authentication II, pages 269–286. Birkhäuser Basel, Basel, 2001.

[59] Burton S. Kaliski Jr., editor. Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer Science. Springer,
1997.

[60] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2000, San Diego,
California, USA, 2000.

[61] Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL,
USA, April 9-11, 2018, Proceedings, pages 292–311, 2018.

[62] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
report, Technical Report CSL-98, SRI International Palo Alto, 1979.

[63] Chan H. Lee, Xiaotie Deng, and Huafei Zhu. Design and security analysis of
anonymous group identification protocols. In David Naccache and Pascal Paillier,
editors, Public Key Cryptography, 5th International Workshop on Practice and
Theory in Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14,
2002, Proceedings, volume 2274 of Lecture Notes in Computer Science, pages 188–
198. Springer, 2002.

[64] Benoı̂t Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge
arguments for lattice-based accumulators: Logarithmic-size ring signatures and
group signatures without trapdoors. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
pages 1–31, 2016.

[65] Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. Online/offline ring
signature scheme. In Sihan Qing, Chris J. Mitchell, and Guilin Wang, editors,
Information and Communications Security, 11th International Conference, ICICS
2009, Beijing, China, December 14-17, 2009. Proceedings, volume 5927 of Lecture
Notes in Computer Science, pages 80–90. Springer, 2009.

[66] Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. Linkable ring signature
with unconditional anonymity. IEEE Trans. Knowl. Data Eng., 26(1):157–165, 2014.

132



[67] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups (extended abstract). In Huaxiong
Wang, Josef Pieprzyk, and Vijay Varadharajan, editors, Information Security and
Privacy: 9th Australasian Conference, ACISP 2004, Sydney, Australia, July 13-15,
2004. Proceedings, volume 3108 of Lecture Notes in Computer Science, pages 325–
335. Springer, 2004.

[68] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012.

[69] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based
(linkable) ring signature. Cryptology ePrint Archive, Report 2018/857, 2018.
https://eprint.iacr.org/2018/857.

[70] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume
3027 of Lecture Notes in Computer Science, pages 20–39. Springer, 2004.

[71] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, pages 598–616, 2009.

[72] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and
Johansson [84], pages 738–755.

[73] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are
collision resistant. In Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, pages
144–155, 2006.

[74] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based
digital signatures. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of
Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008., volume
4948 of Lecture Notes in Computer Science, pages 37–54. Springer, 2008.

[75] Carlos Aguilar Melchor, Slim Bettaieb, Xavier Boyen, Laurent Fousse, and Philippe
Gaborit. Adapting lyubashevsky’s signature schemes to the ring signature setting.
In Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on

133

https://eprint.iacr.org/2018/857


Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings, pages 1–25,
2013.

[76] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 218–238. Springer, 1989.

[77] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Pointcheval and Johansson [84], pages 700–718.

[78] National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization, 2017.

[79] Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred
Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track
at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005,
Proceedings, volume 3376 of Lecture Notes in Computer Science, pages 275–292.
Springer, 2005.

[80] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures. J. Cryptology, 22(2):139–160, 2009.

[81] Shen Noether. Ring signature confidential transactions for monero. Cryptology
ePrint Archive, Report 2015/1098, 2015. https://eprint.iacr.org/
2015/1098.

[82] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal
Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume
6223 of Lecture Notes in Computer Science, pages 80–97. Springer, 2010.

[83] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, pages 145–166, 2006.

[84] David Pointcheval and Thomas Johansson, editors. Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, volume 7237 of Lecture Notes in Computer Science. Springer, 2012.

134

https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098


[85] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 552–565, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[86] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Communication-
efficient anonymous group identification. In Li Gong and Michael K. Reiter,
editors, CCS ’98, Proceedings of the 5th ACM Conference on Computer and
Communications Security, San Francisco, CA, USA, November 3-5, 1998., pages
73–82. ACM, 1998.

[87] Hovav Shacham and Brent Waters. Efficient ring signatures without random oracles.
In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography -
PKC 2007, 10th International Conference on Practice and Theory in Public-Key
Cryptography, Beijing, China, April 16-20, 2007, Proceedings, volume 4450 of
Lecture Notes in Computer Science, pages 166–180. Springer, 2007.

[88] Shamus Software Ltd. Miracl library. http://www.shamus.ie/index.
php?page=home.

[89] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factoring on
a quantum computer. In Algorithmic Number Theory, First International Symposium,
ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings, page 289, 1994.

[90] Souheil Bcheri, Erik Bjork, Daniel Deibler, Goran Hanell, Jimm Lerch, Maksym
Moneta, Monika Orski, Eva Schlehahn, Welderufael Tesfay. D6.3 evaluation of the
school pilot. https://abc4trust.eu/download/Deliverable%20D6.
3.pdf.

[91] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 27–47, 2011.

[92] Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency
monero. In Computer Security - ESORICS 2017 - 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,
Part II, pages 456–474, 2017.

[93] Wilson Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, Veronika
Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob Cheng. Post-quantum

135

http://www.shamus.ie/index.php?page=home
http://www.shamus.ie/index.php?page=home
https://abc4trust.eu/download/Deliverable%20D6.3.pdf
https://abc4trust.eu/download/Deliverable%20D6.3.pdf


one-time linkable ring signature and application to ring confidential transactions in
blockchain (lattice ringct v1.0). Cryptology ePrint Archive, Report 2018/379, 2018.
https://eprint.iacr.org/2018/379.

[94] Patrick P. Tsang, Man Ho Au, Joseph K. Liu, Willy Susilo, and Duncan S. Wong. A
suite of non-pairing id-based threshold ring signature schemes with different levels
of anonymity (extended abstract). In Swee-Huay Heng and Kaoru Kurosawa, editors,
Provable Security - 4th International Conference, ProvSec 2010, Malacca, Malaysia,
October 13-15, 2010. Proceedings, volume 6402 of Lecture Notes in Computer
Science, pages 166–183. Springer, 2010.

[95] Patrick P. Tsang and Victor K. Wei. Short linkable ring signatures for e-voting, e-cash
and attestation. In Information Security Practice and Experience, First International
Conference, ISPEC 2005, Singapore, April 11-14, 2005, Proceedings, pages 48–60,
2005.

[96] Xu Yang, Wei Wu, Joseph K. Liu, and Xiaofeng Chen. Lightweight anonymous
authentication for ad hoc group: A ring signature approach. In Man Ho Au and
Atsuko Miyaji, editors, Provable Security - 9th International Conference, ProvSec
2015, Kanazawa, Japan, November 24-26, 2015, Proceedings, volume 9451 of
Lecture Notes in Computer Science, pages 215–226. Springer, 2015.

[97] Fangguo Zhang and Xiaofeng Chen. Cryptanalysis and improvement of an id-
based ad-hoc anonymous identification scheme at ct-rsa 05. Information Processing
Letters, 109(15):846 – 849, 2009.

[98] Z. Zhang. Raptor source code. online. available from https://github.com/
zhenfeizhang/raptor.

136

https://eprint.iacr.org/2018/379
https://github.com/zhenfeizhang/raptor
https://github.com/zhenfeizhang/raptor

	Declaration
	Abstract
	Publications Arising from the Thesis
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Outline
	1.2 Anonymous Identification Scheme
	1.2.1 Related Work

	1.3 Lattice-Based Signature Scheme
	1.3.1 Related Work

	1.4 Lattice-Based (Linkable) Ring Signatures
	1.4.1 Related Work


	2 Preliminary
	2.1 Notation
	2.2 Lattice-Based Cryptography
	2.2.1 Lattices and Hardness Assumptions
	2.2.2 Preimage Sampleable Functions and Falcon

	2.3 Ad Hoc Anonymous Identification Scheme
	2.3.1 Security Requirements

	2.4 Digital Signature Scheme
	2.4.1 One-Time Signature Scheme
	2.4.2 Falcon Signature Scheme

	2.5 Ring Signature Scheme
	2.5.1 Syntax
	2.5.2 Security Notions

	2.6 Linkable Ring Signature Scheme
	2.6.1 Syntax
	2.6.2 Security Notions


	3 Anonymous Identification for Ad Hoc Group 
	3.1 Overview
	3.2 Our Construction
	3.3 Analysis
	3.3.1 Security Analysis
	3.3.2 Efficiency Analysis


	4 Practical Signatures from the Partial Fourier Recovery Problem Revisited
	4.1 Overview 
	4.2 Hardness Assumption 
	4.3 Our Construction
	4.4 Security Analysis
	4.5 Practical Instantiation
	4.5.1 Parameters
	4.5.2 Best known attacks


	5 Practical Lattice-Based (Linkable) Ring Signature Schemes
	5.1 Raptor: Practical Lattice-Based (Linkable) Ring Signature Schemes
	5.1.1 Our Generic Constructions
	5.1.2 Instantiations from Lattice
	5.1.3 Parameters and Implementation
	5.1.4 Known Attacks of Raptor

	5.2 (Linkable) Ring Signature from Hash-Then-One-Way Signature
	5.2.1 AOS Ring Signature Revisited
	5.2.2 Our Generic Ring Signature with Linkability
	5.2.3 Instantiations from NTRU
	5.2.4 Linkable Ring Signature from Falcon
	5.2.5 Efficiency Analysis


	6 Conclusion
	6.1 Future Work

	Bibliography

