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Abstract 

Construction cost estimation is a significant task because it provides valuable 

financial information for project decision making. In the early stage, the estimate is 

typically used to conduct initial feasibility studies. Since the flexibility to adjust the 

project scope, design, specification, and standards needs to be very high in this stage, 

construction cost estimation should be made as early as possible. However, it is 

irrational for construction companies to over-invest their design time and effort in the 

early stag

in the later estimation stages. Many researchers therefore have explored ECCE using 

various techniques. These techniques, which turn out to be helpful in assisting ECCE, 

are based on the historical database containing previous similar projects and the target 

project.  

By its very nature, early stage estimation involves a large amount of subjectivity, 

perience of vital importance. This makes case-based 

reasoning (CBR) an obvious candidate, as it not only includes such basic components 

as a reasoning cycle and case-base, but also relies on experience or knowledge  

making it a perfect match compared with other methods. Most importantly, it is also 

advantageous for long-term use.  

Since data growth has altered the way information is stored and processed, the 

continuously increasing amount of construction cost information facilitates the amount 

of data available. This fact creates huge opportunities and challenges for using the 

CBR model in ECCE. On the one hand, data growth greatly enriches the knowledge 

and experience in case-base, improving its overall performance. On the other hand, the 

historical database will continually increase over time as more data is added to it, 

resulting in a high requirement for updating and maintaining the ability of the case-

base. In particular, the changed resource costs, construction methods, design styles and 

economic conditions create outdated and inconsistent data, which should be carefully 

handled and eliminated. Without proper handling, these stale data will impair the 

performance of each component: the typical issues being the unstable knowledge 

structure and low efficiency because of the continuously increasing size of the case-
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base during long-term use. This inevitably raises the problem between the benefits of 

having more data and the deficiencies of having inappropriate data.  

This study therefore aims to improve the practice of long-term use of case-based 

reasoning in ECCE from several perspectives: understanding the parameter settings of 

CBR in the existing research and the case-

robustness of the CBR system; and enhancing the efficiency of the CBR system. It 

firstly identifies which parameter combinations are better and explores the influence 

the size of the case-base has on the performance of the CBR model. Then, a robustness 

weight determination method is introduced to improve the robustness of the ECCE 

CBR model, followed by an original case-base maintenance method based on weight 

coverage contribution to improve the efficiency of the reasoning process.  

The results indicate that the GA-CBR model is more accurate when the size of 

the case-base is small and there is no significant difference in accuracy between the 

MRA-CBR model and the GA-CBR model when the size of the case-base becomes 

large. However, GA does not have the advantage of producing a stable structure in the 

case-base during long-term use, while the MODAL-CBR model effectively improves 

the robustness and accuracy of the results. The CBM methods are classified into three 

strategies according to how the case-base and weight determination are selected. 

Strategy 1 and Strategy 2 can significantly compress the size of case-base for all CBR 

models. Strategy 1 generates better results in OLS-CBR while Strategy 2 generates 

better results in MODAL-CBR. More specifically, Strategy 1 can maintain the OLS-

while reducing the size of case-base by 28.13%. There is also a 

slight improvement in the accuracy of OLS-CBR models when the size of the case-

base is slightly reduced.  

The study provides valuable knowledge for improving the ECCE CBR model 

for long-term use, both theoretically and practically. The methods used not only help 

improve the performance of the CBR system by enhancing the robustness of 

generating a stable case-base knowledge structure, but also help maintain the 

efficiency of the case-base during long-term use. Valuable ideas are also provided of 

how future work can be conducted to improve the ECCE CBR model in the future. 
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Chapter 1: Introduction 1 

Chapter 1:  Introduction 

1.1 BACKGROUND 

Construction cost estimation is a significant task because it provides valuable 

financial information for project decision making (Tahir et al., 2018). The estimated 

cost helps managers to make justified decisions based on different project stages. 

Inaccurate cost estimation leads to missed development opportunities, low efficiency 

in use of resources, and unsuccessful project management (Oberlender & Trost, 2001b; 

Themsen, 2019). Various construction activities, including the bidding preparation, 

cost monitoring, and control of projects during the construction stage, as well as 

financial performance evaluation of the project, are significantly influenced by the 

result of construction cost estimation (Akintoye & Fitzgerald, 2000).  

The role of construction cost estimation differs according to different project 

stages. In the early stage, the estimate is typically used to conduct initial feasibility 

studies. The early construction cost estimation (ECCE ) helps managers to choose 

adequate alternatives and to avoid misjudging solutions at the early stage (Arafa & 

Alqedra, 2011a). ECCE influences various construction-planning activities, including 

team management, scheduling, and fundraising (Akintoye & Fitzgerald, 2000; Cheng 

et al., 2009; Larsen et al., 2015b). Since early decisions have the most influence on the 

overall project performance, the construction cost estimation should be conducted as 

soon as possible (Lowe, Emsley, & Harding, 2006; Shin, 2015). 

However, it is inefficient for construction companies to over-invest their design 

time and effort in the early stage with limited human resources. An estimator s time 

and effort will be more valuable in the later estimating stages. Many researchers 

therefore have explored ECCE using various databased techniques. These techniques  

turn out to be helpful in assisting ECCE and are based on the historical database 

containing previous similar projects as the target project.  

Compared with other methods, case-based reasoning (CBR) relies on experience 

and knowledge, making it a perfect match for ECCE. (An et al., 2007; Chen & Burrell, 

2001). By recalling previous projects in the case-base and adjusting to new 

requirements, CBR is considered to be more powerful than other approaches in long-

term use (KARANCI, 2010; Kim et al., 2004b). CBR is a problem-solving process 
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consisting of case-base and reasoning cycle. Case-base is a knowledge and experience 

container, which is made up of previous structured cases. The reasoning cycle is the 

process of retrieving and reusing the previous knowledge and experience for solving a 

target case. As the fundamental part of the CBR model, the case-base significantly 

influences the reasoning cycle (Smiti & Elouedi, 2018a).  

Since data growth has altered the way information is stored and processed, the 

increasing amount of construction cost information makes more data available (Bilal 

et al., 2016; García-Gil et al., 2019; Ilyas et al., 2015). This fact creates huge 

opportunities and challenges for using the CBR model in ECCE. On the one hand, data 

growth greatly enriches the knowledge and experience in case-base, improving its 

overall performance. On the other hand, the historical database will continually 

increase over time as more data is added to it, resulting in a high requirement for 

updating and maintaining the ability of the database.  

The popularity of data warehouses has highlighted the need to address the fitness 

of data for use. Fitness of data for use also refers to the data quality. Data quality 

implies that one needs to look beyond traditional concerns with the accuracy of the 

data (Tayi & Ballou, 1998). There are four dimensions in data quality: accuracy, 

completeness, consistency, and timeliness (Ballou & Pazer, 1985). Accuray is defined 

as the correctness of the fact recoding completeness as the relevance of the information 

recorded, consistency as the uniformity in the information recored, timeliness as the 

recording of information on time.  Poor data quality would result in negative impact 

on operation of the system (Coetzer & Vlok, 2019).  Furthermore, poor data quality 

cannot fullfil the requirement of the system, consequently resulting in the failure 

in achieving the expected results (Karkouch et al., 2016; Laranjeiro et al., 2015; Taleb 

et al., 2016).  

Construction cost estimation usually needs the cost data of the historical projects. 

The historical cost data will be useful for cost estimation only if they are collected and 

organized in a way that is compatible with future applications.  The consistency of the 

construction cost data is critical, since it provides the reliable baseline for the new 

project. Therefore, the information must be updated with respect to changes that will 

inevitably occur (Hendrickson et al., 2008). Without sufficient refining and updating, 

historical cost data  used carelessly. Changes in relative prices may have 

substantial impacts on construction costs, which have increased in relative price. 
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Unfortunately, systematic changes over a long period of time for such factors are 

inevitable. In particular, the changed resource costs, construction methods, design 

styles and economic conditions create the outdated and inconsistent data. Also, the size 

of the case-base can grow quickly with the continuous use of the CBR model (Smiti 

& Elouedi, 2018a). The efficiency of solving a new problem thus becomes increasingly 

slow, resulting in compromised overall performance of the CBR model (Khan et al., 

2019b; Lupiani et al., 2014b). Without proper handling, these problems caused by 

long-term use will impair the performance of the CBR model, the typical issues being 

the unstable knowledge structure and low efficiency because of the continuously 

increasing size of the case-base during long-term use. This inevitably raises the 

optimization problem between the benefits of having more data and the deficiencies 

of having inappropriate data.  

Therefore, this thesis attempts to improve the long-term use of the CBR model 

in ECCE. By addressing the gaps and limitations in the current studies, this research 

aims to answer the research question of how to improve the robustness of the CBR 

system and maintain case-base, while avoiding excessive storage and time complexity 

during its long-term use.  

1.2 RESEARCH PROBLEM 

The main aim of this research is to improve the CBR model of ECCE for long-

term use. Based on the previous research background, four particular research 

problems are proposed in achieving the research aims as follows:  

1. What limitations exist in the current ECCE CBR studies with respect to long-

term use?  

A comprehensive literature review on existing ECCE research fields is 

conducted to find the research gaps and limitations in previous studies. After carefully 

examining the current ECCE studies, the subsequent research questions are identified 

and proposed.  

2. What are the main differences caused by different parameter settings of 

ECCE CBR model?  

The literature review finds various parameters, including weight determination, 

similarity functions, and case adaptation, which are used in the previous ECCE CBR 
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model. However, there is no consensus on how to combine these parameters to achieve 

the optimal results in the CBR model. The literature review also finds that although 

several studies deem CBR advantageous for long-term use, there is no empirical study 

illustrating changes in performance of the CBR model with the increase in the number 

of cases in the case-base.  

This begs the question of the role of case-base size. Similar to sample size, case-

base size is the number of cases used to establish case-base. Different models may 

have different performance characteristics when dealing with various sample sizes - 

thought by some to be more attributable to the differences in results than the models 

themselves (Ji et al., 2010a; Marshall et al., 2013; Motrenko et al., 2014; RunZhi et al., 

2012; Wolf et al., 2013). In ECCE, it is necessary to take the influence of sample size 

into account when estimating costs by sampling from projects similar to the target 

project. However, too careful sampling produces less data to synthesize, and therefore 

less accuracy  resulting in the need to trade-off between the sample size used and its 

similarity to the target (Skitmore, 2001; Yeung & Skitmore, 2012; Yeung & Skitmore, 

2005). This research problem is a necessary part of the main research problem, and the 

research findings of this research problem facilitate answering the subsequent research 

question (c) and research question (d).  

3. How to maintain a stable knowledge structure of the CBR model during long-

term use?  

The literature review identifies some limitations on weight determination in the 

current ECCE CBR model. In the CBR model, the solution to a target case generates 

from most similar previous cases. This process is significantly influenced by the 

attribute weight. In the CBR system, each attribute can be seen as an index contains a 

part of the knowledge stored in the case-base. Attribute weight reflects the influence 

of this knowledge component on case-base. Therefore, attribute weights can be 

deemed as indicators of the overall knowledge structure of the case-base.  

In the ECCE CBR model, attribute weights inevitably change due to updating 

and refining of the case-base. However, these changes should be minimized because 

of the consistency requirement of the knowledge structure in case-base. Attribute 

weights should be maintained as consistent as possible to provide reliable results. The 

stability of the attribute weights can be considered as the indicators of the CBR model's 

robustness. Although several attribute weight determination methods have been 
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exploited in the current ECCE CBR model, how to maintain the stability of attribute 

weight in ECCE during the long-term use remains a question. When the size of the 

case-base gets large, it is inevitable to have a few cases which deviate considerably 

from the bulk of cases (Chan & Wong, 2007). The existing weight determination 

methods have limitations in being sensitive to the outliers. A single outlier can have a 

large injury on the parameter estimates, thus may reduce the accuracy of the model. 

Therefore, improving the robustness of the ECCE CBR is the primary task during long-

term use. 

4. How to improve the efficiency of the ECCE CBR model for long-term use?  

Additionally, the literature review finds some limitations on case-base 

maintenance (CBM) in the current ECCE CBR model. CBM is the process of refining 

the case-base to enhance CBR's performance. Since case-base is a fundamental 

component in the CBR system, numerous studies emphasize that additional 

maintenance of this case-base is necessary in the CBR system, especially when the 

knowledge in case-base changes over time (Lupiani et al., 2014a). However, the 

existing ECCE CBR model extensively focuses on the initial establishment of the 

reasoning cycle, resulting in ignorance of the case-base maintenance during long-term 

use. 

During the long-term use of the ECCE CBR model, the historical database will 

continually increase over time as more data is added to it, resulting in a high 

requirement for maintaining the quality of the case-base. In particular, changed 

resource costs, construction methods, design styles and economic conditions create 

outdated and inconsistent data, which should be carefully handled. Also, the size of 

the case-base can grow very fast with the continuous use of the CBR model (Smiti & 

Elouedi, 2018a). The efficiency of solving a new problem thus becomes slow, resulting 

in the compromised overall performance of the CBR model (Khan, et al., 2019b; 

Lupiani, et al., 2014b). Without proper handling, long-term use will impair the 

performance of the CBR model, the typical issues being low efficiency because of the 

continuously increasing size of the case-base. This inevitably raises the problem 

between the benefits of having more data and the deficiencies of having inappropriate 

data. 
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1.3 AIMS AND OBJECTIVES  

To address the above research issues, this study proposes four research 

objectives:  

1. To provide a comprehensive literature on the previous studies on ECCE CBR 

model 

To have an in-depth understanding of the ECCE CBR model, it is necessary to 

conduct an extensive literature review. The literature review chapter aims to provide a 

comprehensive summary of the related work on construction cost estimation, 

application of CBR in ECCE, and case-based maintenance. The literature review on 

construction cost estimation aims to provide the necessary knowledge to understand 

the research question. The literature review on the application of CBR in ECCE seeks 

to provide a careful examination of each step of using in ECCE CBR models and 

summarizes the widely used weight determination and similarity function, as well as 

identifying the research gaps. The literature review on CBM aims to provide the 

knowledge for case-base maintenance during long-term use.  

2. To conduct an empirical study to compare the methods for calculating weight 

and similarity, as well as exploring the influence of sample size on accuracy 

of ECCE CBR.  

The existing ECCE CBR models exploit various parameters, including weight 

determination, similarity functions and case adaptation. To understand how to 

combine these parameters to achieve the optimal results in the CBR model, this thesis 

aims to conduct a comparative study of different weight determination methods, 

similarity functions and case adaptation values. This thesis attempts to provide a 

comprehensive understanding of the effect of different combinations of parameters in 

the ECCE CBR model.  

Comparing the differences of accuracy results based on different sizes of case-

base, this thesis aims to provide an empirical study to test the hypothesis that CBR has 

the advantage over ANN and regression for long-term use. By exploring the influence 

of the sample size on the CBR model , this research aims to provide 

some insights in the contradictory results in previous studies. Additionally, 

comparison among different combinations of weight determination methods and 

similarity functions is also conducted. The research findings in this chapter can help 
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to provide a better understanding of the ECCE CBR model's performance. The results 

also assist in finding directions for improving the long-term use of CBR.  

3. To improve the robustness of the ECCE CBR model in long-term use. 

Since attribute weight determination significantly influences the reasoning 

process in CBR, it is necessary to optimize the weighting process from various 

perspectives. In the ECCE CBR model, attribute weights inevitably change due to 

updating and refining of the case-base. The existing research only focuses on the 

weight optimization in the initial establishment of the CBR model, while ignoring the 

reliability and consistency of the knowledge structure during the long-term use. The 

limitations in the existing studies that use equal weight for all cases in the case-base 

for attribute weighting, inevitably lead to the unstable knowledge structure of the case-

base (Chan & Wong, 2007).  

Therefore, this study aims to improve the robustness of the CBR model by 

introducing the robust attribute weighting method. By using a robust regression 

method, the attribute weighting in this study is more focused on the mainstream bulk 

of cases, resulting in being less sensitive to the changes in the case-base (Yao & Li, 

2014). A robust regression,modal regression (MODLR), is used in weighting attributes. 

MODLR is developed based on the conditional mode of the response Y, and thus 

focuses on the main characteristics of the data. The mode takes the value with the 

highest probability of occurrence and thus focuses on the main features of the data 

(Yao & Li, 2014). Using MODLR in weight determination, the research aims to 

improve the robustness of the CBR model by reducing the influence of the changes in 

the case-base on weighting attributes.  

4. To develop a CBM strategy for ECCE CBR models to maintain its efficiency 

during long-term use. 

The performance of a CBR system can be evaluated from several dimensions. 

There is no guarantee that all of them can be maximized simultaneously. Several 

constraints will limit the performance of the CBR model when solving a real-world 

problem. These constraints include the limit of the case-base size and the limit of time. 

Without proper maintenance on case-base, the performance of the ECCE CBR model 

when solving the real-world problem will be inferior. How to improve the performance 
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of the CBR model when solving the real-world problem motivates this study to explore 

the case-base compression in the framework of ECCE. 

Given the constraints in the real world, the typical issues of the low efficiency 

caused by the continuously increasing size of the case-base are addressed in this study. 

This research aims to develop a CBM method to effectively refine and update the case-

base. An original CBM method based on the weighted coverage contribution is 

proposed to reduce the storage requirements and enhance the processing cost of the 

CBR model. Given one training case, the editing rules consider either deleting or 

keeping the case unchanged according to their coverage contribution in the case-base. 

The cases with the lowest coverage contribution will be eliminated. The performance 

of the ECCE CBR model was compared before and after using the proposed CBM 

approach. 

1.4 SIGNIFICANCE 

By solving the problems of ECCE CBR during long-term use, this research 

contributes to improving the robustness and efficiency of the ECCE CBR models. The 

research outcomes may support work related to cost estimation for decision-makers 

ranging from beginners to experts in both academia and industry. This research can be 

broken into four research questions, and the significance of answering each research 

question is illustrated as follows. 

Firstly, this thesis conducts a comprehensive literature review on existing ECCE 

CBR studies. By providing a careful examination of each step of the CBR models in 

ECCE, the limitations in the previous research are identified and summarized. The 

literature review helps both researchers and practitioners achieve a better 

understanding of historied development and status quo of ECCE CBR. The gaps and 

limitations identified in current research provide the potential guidelines for improving 

the ECCE CBR model.  

This thesis firstly conducts a comparative study on attribute weighting and 

similarity function for various sample sizes. This part of the research may provide a 

reason for the contradictory results of previous studies. Also, comparison among 

different weight determination methods and similarity functions helps to understand 

the differences among the different parameter settings. Analysing the influence of 

sample size on the accuracy of the CBR model may help to understand the changes in 
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long-term use. The research has shown its considerable practical significance in the 

construction industry. Given the confidentiality of the cost data, the data collection for 

small organizations remains difficult (Gardner, Gransberg, Jeong, et al., 2016). The 

answer to the second research question not only helps researchers to understand the 

effect of the different settings in CBR's model but also assists practitioners by 

minimizing the data collection effort.  

Secondly, this thesis introduces a robust weight determination method. It 

enriches the existing ECCE CBR research in the literature by considering both the 

single-time performance and the stability of the long-term use. Besides, a robust 

weight determination method produces a stable knowledge structure and a more 

reliable result. By focussing on the main characteristics of the conditional distribution, 

the proposed method can minimize the changes in the knowledge structure in the case-

base. This study assists the ECCE CBR system in maintaining a consistent knowledge 

structure despite continuously updating the case-base. It better prepares construction 

cost agencies and organisations to tackle the massive growth in the volume of the data 

and help practitioners have a consistent understanding of the knowledge stored in the 

case-base. 

Finally, this thesis proposes a CBM strategy to improve the efficiency of ECCE 

by compressing case-base. To address the reduced efficiency caused by the constant 

increase in the case-base, this study develops a method based on a prototype selection 

using the weighted coverage contribution. The proposed method can reduce the storage 

requirements and improve the processing cost of the CBR model. A complete and 

efficient ECCE CBR model should not only have the function of retrieving, reusing, 

and updating knowledge in the case-base but also include the removal of useless and 

outdated cases (Lupiani, et al., 2014a). This chapter contributes to the research area of 

CBM in the ECCE CBR model by introducing a case selection method during long-

term use.  

Altogether, this thesis provides valuable theoretical  knowledge for improving 

the ECCE CBR model for long-term use. This study explores the existing parameters 

in the ECCE CBR model, resulting in a better and comprehensive understanding of the 

existing ECCE CBR model. Besides, it may help improve the performance of the CBR 

system by maintaining a stable and consistent knowledge structure, as well as reducing 

the time cost and storage requirement during the long-term use.  
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1.5 THESIS OUTLINE 

Chapter One provides a brief introduction and research background by 

illustrating the changes in the construction industry and the challenges ECCE is facing. 

The main research problem is proposed and broken down into four detailed research 

questions, each of which constitutes a subsequent chapter in this thesis. The aims and 

objectives are addressed to understand the motivation of this research, followed by the 

research significance, illustrating the potential use of this study.  

Chapter Two provides a comprehensive literature review including construction 

cost estimation, application of CBR in ECCE, and CBM. The literature review on 

construction cost estimation consists of a brief overview, the inaccuracy in 

construction cost estimation, factors influencing construction cost estimation 

performance, significance of ECCE, challenges in ECCE, and ECCE methods. The 

application of CBR in ECCE carefully examines each step of the existing CBR model 

in ECCE. After briefly introducing the CBR and its advantage in ECCE, problem 

formulation, case retrieval, case reuse, case revision, and CBM are reviewed to provide 

an in-depth understanding of the existing research. Section CBM includes the 

definition of CBM, the criteria for evaluating case-base, influencing factor in CBM, 

and classification of CBM strategy, case-base reduction strategy, case-base 

partitioning strategy, and case-base optimization strategy.  

Chapter Three introduces the research design. This chapter initially begins with 

the methodological considerations for solving the research problems. The overall 

framework of the research design is presented, together with the research hypotheses 

and their testing process. The process of data collection is then introduced. The 

procedure is presented to illustrate the overall schedule of the proposed study. The 

limitations are then summarized to show the potential weakness of the current research, 

followed by the direction for future studies.  

Chapter Four explains the data analysis and pre-processing. This chapter begins 

with data cleaning, which deals with missing values of data and out-of-range data. The 

data transformation with respect to data scale and time is represented, followed by the 

description of the data after removing missing value and outliers. Then the final 

predictors for developing the model are determined in this study.  

Chapter Five provides a comparative study of different weight determination 

methods, similarity functions and case adaptation values based on different sample 



 

Chapter 1: Introduction 11 

sizes. Three most widely used weight determination methods and the two most 

commonly used similarity functions are used in the CBR model. Given the sample size 

range in previous studies, different training sample sizes are used in this study. The 

Mean Average Percent Error (MAPE) and Root Mean Squared Error (RMSE) are used 

as measures of ECCE estimating performance.  

Chapter Six introduces a robust weight determination method for the ECCE CBR 

model. A robust regression MODLR is used in weight determination. After presenting 

the research background, the MODLR is briefly introduced, and the development of 

the CBR model using MODLR is illustrated. The comparative results among those 

using MODLR and others are presented, followed by the discussion and chapter 

summary.  

Chapter Seven develops an original method based on CBM to improve the 

efficiency of CBR for ECCE. By using the concept of weighted coverage contribution, 

this chapter develops a case selection strategy for avoiding excessive storage and time 

complexity caused by the continuous increase in the case-base during the long-term 

use. This chapter initially begins with the introduction of the research background, 

followed by an explanation of the proposed CBM strategy. Then it illustrates how to 

combine the CBR model and the proposed CBM strategy. The comparative results of 

the CBR model before and after using the proposed approach are used to illustrate the 

effect of the proposed method, followed by the discussion and chapter summary.  

Chapter Eight includes a brief overview of research objectives, conclusions on 

the research objectives, research contributions, limitations, and future 

recommendations. The research findings concerning research aim, research questions, 

and research objectives are reviewed to provide a comprehensive understanding of this 

research. The research contributions are divided into theoretical and practical 

perspectives. This chapter also outlines the limitations in this study as well as the 

recommendations for future ECCE CBR research.  

1.6 CHAPTER SUMMARY 

This chapter briefly introduces the research background and the research 

problem concerning the long-term use of the CBR model in ECCE. The challenges 

brought by the rapid data growth for ECCE and the significance of improving the CBR 

model's long-term use have been emphasised. The main research question of how to 
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improve the CBR model in ECCE for long-term use is identified and broken down into 

four detailed questions:  

1. What limitations exist in the current ECCE CBR studies with respect to long-

term use?  

2. What are the main differences among the existing parameter settings of 

ECCE CBR model?  

3. How to maintain a stable knowledge structure of the CBR model during long-

term use?  

4. How to improve the efficiency of the ECCE CBR model for long-term use?  

Then the following research objectives are proposed:  

1. to provide a comprehensive literature on the previous studies on ECCE CBR 

models  

2. to conduct an empirical study to compare the methods for calculating weight 

and similarity, as well as exploring the influence of sample size on ECCE 

CBR models;  

3. to improve the robustness of the ECCE CBR model by combining the CBR 

system and robust method;  

4. to develop a method to enhance the efficiency of the ECCE CBR model and 

maintain its performance during long-term use.  

Then the significance of this research has been emphasised from theoretical and 

practical perspectives, illustrating the importance and potential application of this 

research. Except for providing a better understanding of parameter setting in the CBR 

model, this thesis contributes to improving the robustness and efficiency of the ECCE 

CBR model during long-term use. Finally, the thesis outline is summarised through a 

brief description of each chapter. 
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Chapter 2: Literature Review 

2.1 CONSTRUCTION COST ESTIMATION 

2.1.1 Overview 

This chapter was restricted to studies that present in academic (peer-reviewed) 

journals. Other sources, such as the International Construction Measurement Standards 

(ICMS 1 & 2), as well as work done by professional societies in different regions on 

how costs can be captured and manipulated, have been excluded as outside the scope 

of this review.  The rationale behind this is that peer-reviewed journal articles are the 

most valuable sources of information, given the quality of the peer review process they 

go through prior to publication (Darko & Chan, 2017).  

The construction industry has a nature of being heterogeneous. There is no 

common  definition of construction industry (Ofori, 2015).  The Project Management 

Body of Knowledge Guide 

an approximation of the cost of resources needed to comple (U.S.), 

2017). The construction cost hereby refers to the cost of the resources needed to 

complete project activities. This work is normally carried out periodically throughout 

the project as needed.  

The cost of a construction project differs due to the role the parties played in the 

s both the initial 

capital cost and the subsequent operation and maintenance costs.  The capital cost 

covers the monetary expense related to the initial construction of the building including 

land acquisition, feasibility studies, architectural and engineering design, construction, 

monitoring of construction, the financial cost during the construction, insurances and 

taxes during the construction, and equipment that is not included in construction and 

inspection (Hendrickson, et al., 2008).  There are four main cost elements involved in 

initial capital cost:  the project decision cost, bidding cost, design costs and 

construction cost (Liu & Xie, 2013). 

The operation and maintenance costs include the project life cycle cost such as 

operating staff, labor and material for maintenance and repairs, periodic renovations, 

insurance and taxes, financing cost and utilities.  
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important to complete the construction with the lowest overall cost that match the 

,  while from the design and construction practicioners, the 

initial capital cost is the only cost they care about (Hendrickson, et al., 2008).  

Construction cost estimation is the process of forecasting the monetary resources 

needed to complete a project with a defined scope (Stackpole, 2010). It can be deemed 

as the implementation stage of cost modelling (Skitmore & Marston, 2005). 

Construction cost estimation is a part of cost engineering. According to the American 

Association of Cost Engineers, cost engineering is defined as that area of engineering 

practice where engineering judgment and experience are utilized in the application of 

scientific principles and techniques to the problem of cost estimation, cost control and 

profitability. 

Construction cost estimation is commonly provided by the cost engineer or 

estimator on the basis of available information. There are several approaches for 

construction cost estimation.  Production function is one of the widely used approaches 

in the construction cost estimation. In construction process, the scale of the 

construction can be used to expressed the production function. The production can be 

calculated using the function related to labor, material and equipment.  Empirical cost 

inference is also polular in construction cost estimation.  Based on mathematic 

techniques, empirical estimation of cost intends to use a range of project features and 

attributes to estimate the construction cost. In this approach, mathematics is commonly 

used to estimate the value of parameters in an assumed function. Unit cost for bill of 

quantities is another commonly used construction cost estimation method. For each 

cost component in the bill of quantities, a unit price is assigned.  The total cost is the 

sum amount of the bill of quantities multiplied by the corresponding unit costs.  

Compared with other methods, unit cost is simpler and more straightforward, but it 

requires more effort on preparation for the bill of quantities.  Allocation of joint costs 

is used to develop a cost function of an operatioin.  The core ideas of this method is 

that each expenditure item can be assigned to a specific feature of the operation.  The 

allocation of joint costs is expected to be related to the category of basic costs in an 

allocation process. In some cases, however, this relationship cannot  be identified or 

found.  

With the development of information technology, several computer-aided cost 

estimation systems are now available. From the simple spreadsheet calculation to the 
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integrated systems such as building information modelling, the computer-aided 

software greatly facilitates the work of construction cost estimators. Particularly, the 

efficiency of the construction cost estimation is significantly improved by these 

computer-aided systems.  The computer-aided construction system consists of several 

components. Database for cost items such as labor, equipment and material are 

necessary.  These databases can be used to estimate any construction project. If these 

rates change, the results can be updated based on the new rates. Import and output 

utilities and are also important in the construction aided system for providing the 

effective estimation system (Hendrickson, et al., 2008). Successful project 

management means the project accomplishes its design, maintains its schedule, and 

remains in its budget (Kim, et al., 2004b). Compared with other products, the 

construction project is quite different because each building is unique. Despite the 

identical design of buildings, the construction costs still differ because of the inherent 

uncertainties in the construction industry (Xiao et al., 2018). Therefore, construction 

cost estimation must be conducted for each individual project and the process may 

differ due to the different project situations.  

Cost estimating is a significant task critical to successful project management 

(Carr & Management, 1989; Dysert & Elliott, 2002; Shin, 2015). It is deemed to 

provide valuable financial information for construction decision making in different 

stages. Various planning activities, including the bidding preparation, cost monitoring 

and control of projects during the construction stage, and financial performance 

evaluation of the project, are significantly influenced by the result of construction cost 

estimation (Akintoye & Fitzgerald, 2000).  

Construction cost estimation also plays a significant role in the project 

scheduling . Numerous studies have made an effort to capture the 

qualitative and quantitative relationships between the construction cost and duration. 

This has led to several significant factors being explored as the significant causes of 

construction duration and cost overruns, such as unsuccessful early project planning, 

changes and adjustment in design or scope, and late or deferred payments (Famiyeh et 

al., 2017; Larsen et al., 2015a; Mulla & Waghmare, 2015; Shehu et al., 2014).  

The accuracy of construction cost estimation differs due to the different project 

stages. The cost estimates during the project planning phase can be adjusted because 

project stakeholders and investigators may revise the project before they are willing to 
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invest in the project (Yaman & Tas, 2007). After the project is well defined and with 

the release of information in the project design, the construction cost estimation is 

updated with more precision. Similarly, accurate pre-tender cost estimation helps to 

improve the design processe as more information is released gradually (Li et al., 2005; 

Skitmore, 1987, 1990). In projects in which detailed information has been clearly 

defined and the schedule is well planned, the range of construction cost estimation can 

reach ±10 percent (Stackpole, 2010). However, sometimes the high degree of 

complexity will increase the range of ECCE to ±50 percent (Stackpole, 2010). 

2.1.2 Accuracy 

Inaccurate early estimation will result in the failure of project planning, 

monitoring and management (Oberlender & Trost, 2001b). Both underestimation and 

overestimation have negative influences on the overall project performance (Swei et 

al., 2017). Overestimation of construction costs may result in the owner s cancellation 

or termination of the project or the inefficient investment of money, while 

underestimating may lead to time delay and the reduced quality of projects (Larsen, et 

al., 2015b). Large underestimation of project cost may even result in the bankruptcy 

of developers or contractors.  

Construction cost overrun is a common phenomenon that happens all over the 

world (Flyvbjerg et al., 2003; Rui et al., 2012). Several studies have explored the 

construction cost overrun for various types of buildings. Pohl and Mihaljek (1992) 

examine 1015 projects financed by the World Bank and find that 22% of projects 

experience cost overrun and 50% for time overrun (Pohl & Mihaljek, 1992). In one 

study conducted by Merrow (1998), nearly nine out of ten megaprojects have the 

overrun of 88% averagely. Project size is identified as the most significant factor 

influencing the cost overrun and the large projects intend to experience greater cost 

overrun (Merrow et al., 1988). Flyvbjerg et al. (2003) examine the cost performance 

by using 258 transport infrastructure projects in 20 nations. The results show the 

average cost overrun of rail projects is 45%, while for tunnels and bridges it is 34% 

and for roads 20% (Flyvbjerg, et al., 2003). Bordat et al. (2004) analysed the overall 

cost overrun rate of transportation projects in Indiana and found that more than half of 

projects financed by the Indiana Department of Transportation (INDOT) had cost 

overruns from 1996 to 2001 (Bordat et al., 2004). As for mining projects, almost one 

out of thirteen projects have cost overruns. Bertisen and Davis (2008) reviewed more 
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than 60 international mining projects and the results showed the average final cost was 

14% higher than as estimated in the early stage. In their study, projects in small sizes 

had more estimation inaccuracy than those with large size (Bertisen & Davis, 2008b).  

2.1.3  Influencing Factors  

Several researchers explore the influencing factors on cost overrun from 

different perspectives. Project features such as project size are initially deemed as 

potential causes of construction cost overrun. In a study that involved 56 projects and 

102 questionnaires, the result shows that project size is the most significant influencing 

factor for the accuracy of construction project estimation. Large projects are found to 

experience more cost overruns (Jahren et al., 1990). However, this result is 

contradictory with another study that cost overruns intend to be more predominant 

among smaller projects than the larger ones in road construction projects (Odeck, 

2004). Projects with small size suffered from more biased estimation than those with 

large size.  

Project type is another factor that is deemed to have an influence on construction 

cost estimation. Empirical evidence has been found that the public-private partnership 

(PPP) project has superiority with respect to construction cost and time performance 

when compared with traditional procurement in Australia (Raisbeck et al., 2010). For 

PPP projects, the influencing factors of cost overrun include the project cost, duration, 

length, specific maintenance and rehabilitation activities (Anastasopoulos et al., 2014). 

In a study using 122 projects including road, building, and drainage projects, the results 

show that cost overruns differ due to the project type. The cost overruns of building 

projects increased with contract amount while the cost overruns for drainage projects 

decreased with increasing contract prices (Senouci et al., 2016). Other factors 

including technical, psychological and political-economic factors are also deemed to 

have a potential effect on cost overruns (Flyvbjerg, 2007).  

Some studies have found that construction overrun and time overrun frequently 

occur together (Larsen, et al., 2015b). Thus, numerous studies attempt to understand 

the construction cost by exploring the quantitative relationship between construction 

duration and cost. Some studies use a linear model (Fulkerson, 1961), while other 

studies exploit non-linear methods such as the quadratic (Deckro et al., 1995) and 

exponential . There is a representative model that captures the 

relationship between cost and duration in Australia well (Bromilow, 1969). It is widely 
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used in different countries (Chan, 1999; Kaka & Price, 1991; Ogunsemi & Jagboro, 

2006; Thomas Ng et al., 2001; Yeong, 1994). Another potential reason for cost overrun 

is information asymmetries (Pindyck & Rubinfeld, 1998). The lack of practical 

knowledge and insufficient time to prepare documents are also deemed as main 

reasons (Akintoye & Fitzgerald, 2000). 

The recent studies mainly focus on the project management factors of cost 

overrun and time overruns (Adam et al., 2017). Some studies deem that the project 

management team has the incentive to underestimate cost (Bertisen & Davis, 2008a; 

Flyvbjerg, 2007). Larsen et al.( 2015a) find the most significant influential factor for 

cost overrun is the mistakes in consultant material, while insufficient project budgeting 

is the main reason for the time delay in public construction projects (Larsen, et al., 

2015b). The underlying reason is that planners and promoters intend to deliberately 

misrepresent costs to increase the likelihood to win the competition and get the funding 

(Flyvbjerg, 2007).  

2.1.4 Significance of ECCE 

Based on the availability of the information and accuracy, cost estimation can be 

classified into three categories: (1) Order of magnitude estimation  in this stage, only 

minimum project information is available, the accuracy of cost estimation is relatively 

low; (2) Conceptual estimation or early stage estimation  in this stage, primitive 

project information is available and with the release of information on project design, 

the construction cost estimation accuracy is updated with more precision; (3) Detailed 

estimation  in this stage, the project design and specification have been completed 

and the highest level of accuracy can be reached (Lai & Lee, 2006). ECCE usually 

refers to the first and second stage when the basic project design information and 

technologies for the design are known.  

ECCE is a significant task of construction project management and plays a vital 

 (Cheng, et al., 2009). Several researchers have 

emphasised the significance of ECCE from different perspectives (Balali et al., 2018; 

Canesi & Marella, 2017; Dysert & Elliott, 2002; Yu & Skibniewski, 2009). Firstly, 

ECCE has a great influence on early-stage decision making. It is an important project 

management activity in achieving a desired economic benefit (Ji, et al., 2010a). The 

accurate ECCE helps the managers to choose adequate alternatives and to avoid 

misjudging solutions (Arafa & Alqedra, 2011a). Various decisions with respect to the 
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main structural systems, major construction methods, and most construction materials 

need to be made at early stage (Yu & Skibniewski, 2009). The flexibility to adjust the 

project scope, design, specification, and standards at the early stage is very high. For 

helping project managers make valuable budgeting decisions, ECCE usually needs to 

be conducted as early as possible (Carr & Management, 1989; Sonmez, 2011). 

Secondly, ECCE is important for successful project management (Dysert & 

Elliott, 2002; Shin, 2015). Various management activities including team management, 

scheduling, and financial evaluation are significantly influenced by the result of ECCE 

(Akintoye & Fitzgerald, 2000; Cheng, et al., 2009; Larsen, et al., 2015b). The 

comparison between the estimated cost and the actual cost of the mile-stone point of 

the projects provides the baseline and guidance for the overall construction 

management (Motwani et al., 1995).  

Thirdly, ECCE is critical for all the participants in the construction process. The 

influence of construction cost estimation may differ due to different perceptions from 

stakeholders (Hampton et al., 2012). For the owners and investigators of the project, 

the inaccurate early cost estimation will cause the wrong decision in the project 

planning, which results in insufficient financial return and failure of optimizing the 

capital budget. For the contractors, the bidding decision is made based on the result of 

ECCE and the inaccurate early construction cost may cause serious business failure 

(Wu et al., 2018).  

2.1.5 Challenges in ECCE 

Information limitation at the early stage is the widely accepted reason for the 

difficulties encountered in preliminary cost estimation (Arafa & Alqedra, 2011b; 

Cheung et al., 2012; Haavisto, 2015; Hong et al., 2011; Jin, Han, Hyun, & Kim, 2014). 

The level of project scope is quite coarse at the early stage. For the order of magnitude 

estimation, it is usually made even before the facility is designed. Besides, the owners 

and contractors may adjust the project scope, design, specification, and standards in 

the early stage. This results in the high flexibility of ECCE, increasing its difficulty. 

The accuracy of ECCE is usually low because the project is not always well-defined 

and the estimates extend over a very long time period. 

Time constraints are deemed as another challenging factor for ECCE (Akintoye 

& Fitzgerald, 2000; Arafa & Alqedra, 2011a; Petroutsatou et al., 2011). ECCE is 
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typically prepared under stiff time constraints. Construction clients are usually keen to 

know the budget because the ECCE provides the guidance for the owners or the 

investigators to choose adequate alternatives (Cheung & Skitmore, 2006c). However, 

not all the companies and agencies can afford to overinvest their attention and effort 

in projects at the early stage. When facing limited time and resources

effort can be more valuable in the later design estimating stages (Gardner Brendon et 

al., 2016). All the investment in ECCE could then be considered worthless when the 

project is evaluated as unfeasible for further development after a cost-benefit analysis. 

For example, less than one-fifth of structural steel buildings that reach the early stage 

are ever constructed (Moselhi & Siqueira, 1998). 

Given subjective analysis has limitations such as human mistakes and changing 

results caused by different cost estimators, data-based ECCE is deemed to largely 

reduce the subjective influence of human error, as well as improve the efficiency and 

consistency of the result (Adeli & Wu, 1998b). However, the availability of historical 

project cost may be limited due to confidentiality issues (Hegazy & Ayed, 1998). 

Public information databases are costly to access and sometimes lacking relevancy to 

the target project, and many companies are unable or unwilling to invest time and 

effort in data collection (Gardner, Gransberg, & Jeong, 2016). Thus construction cost 

estimates are largely based on the experience of cost estimators (Cheung & Skitmore, 

2006a, 2006b). Several studies emphasise the importance of expertise in achieving 

accurate cost estimation in the early stage. In a series of experiments to measure early 

stage estimation abilities of quantity surveyors, the experienced quantity surveyors 

give more accurate estimates (Skitmore, 1985). However, subjective analysis has 

limitations such as human errors and varying results based on the proficiency of the 

estimator (Adeli & Wu, 1998b). The reliability of the ECCE based on experts are 

questioned.  

The accuracy of construction cost estimation improved due to the progress of the 

project design and construction (Gardner Brendon, et al., 2016). The accuracy of early 

construction cost could only reach ±25% of the final cost (Burke, 2013; Petroutsatou, 

et al., 2011), and sometimes even ranges from 30% to +50% of actual project cost 

(PMI 2008). 
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2.1.6 ECCE methods 

There are various classifications of construction cost estimation methods due to 

the different standards. In terms of modelling purposes, models can be classified into 

two types: deterministic models and stochastic methods (Smith & Mason, 1997). 

Single rate methods are the simplest deterministic method in ECCE. Unit estimating 

method, floor area estimating method and cube estimating method are considered as 

most conventional single rate models methods (Cheung & Skitmore, 2006c; Dang et 

al., 2018; Skitmore & Marston, 2005). Another single rate method is the obsolete cube 

method by using the volume of the building as the single variable. James developed 

the Storey Enclosure Model (SEM) by using a total weighted enclosure area or storey 

enclosure area (Cheung & Skitmore, 2006c). However, SEM is seldom used in practice 

because of lacking confidence in the arbitrarily prescribed weightings (Ashworth & 

Perera, 2015; Fortune & Lees, 1989). When there are sufficient historical data 

available on a particular type of project, it is appropriate to estimate the new project 

by using the data from a previous similar project. Single rate method is only limited to 

certain types of building and/or to early stages of the project when the available project 

information is not enough (Akinsiku et al., 2011; Cheung & Skitmore, 2006b).  

With the rapid development of data science, various estimation models based on 

data analysis have been proposed to improve the accuracy of estimating early 

construction costs (Martin Skitmore & Thomas Ng, 2003). Numerous studies have 

focused on cost prediction in the initial phase of a project using various data-based 

techniques, including statistical techniques (Lowe, Emsley, & Harding, 2006; 

Phaobunjong, 2002; Trost & Oberlender, 2003c); probabilistic analysis techniques and 

distribution analysis (Barraza et al., 2000; Nassar et al., 2005); Monte Carlo Simulation 

(MCS) (Juszczyk, 2017; Wing Chau, 1995); and artificial intelligence (AI) techniques 

such as ANN (Bode, 1998; Juszczyk, 2017; Kim et al., 2004a). Given subjective 

analysis has limitations such as human mistakes and changing results caused by 

different cost estimators, data-based ECCE is deemed to largely reduce the subjective 

influence of human error, as well as improve the efficiency and consistency of the 

result (Adeli & Wu, 1998b).   

There are a large number of regression models that have been developed for 

ECCE. These approaches focus on the designing a model that suits their own unique 

data (Chang et al., 1997; Hwang & Management, 2009; Jafarzadeh, Ingham, Walsh, 
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et al., 2014; Lowe, Emsley, & Harding, 2006; Lowe, Emsley, Harding, et al., 2006; 

Rui et al., 2011; Sonmez, 2008; Sonmez, 2004; Trost & Oberlender, 2003b). Chang et 

al. (1997) proposed a fuzzy regression method for construction cost estimation of 

water plants (Chang, et al., 1997). Trost and Oberlender (2003) combine factor 

analysis and multivariate regression together for predicting the accuracy of ECCE 

(Trost & Oberlender, 2003b). Shin (2015) uses the boosting regression trees for 

estimating the preliminary cost of building projects (Shin, 2015). 

Different from deterministic estimating methods, the probabilistic method could 

provide an uncertainty estimate (Skitmore, 2001). Several studies attempt to use 

different approaches such as MCS and uncertainty analysis under correlation to 

address the uncertainty in construction cost estimation (Briggs et al., 1999; Ökmen et 

al., 2010; Touran & Lopez, 2006; Touran & Management, 1993). However, the 

probabilistic models have limitations as the simulating process is time-consuming 

(Dang & Le-Hoai, 2018). The underlying assumption that probabilistic simulation is 

the independence between variables may be invalid in practice (Irfan et al., 2011). 

To find the most widely used techniques and provide a comprehensive literature 

review on ECCE, this study searched the Scopus database using the keywords related 

to ECCE ((conceptual cost estimat* or preliminary cost estimat* or early cost estimat* 

or predesign cost estimat*) and (  

 The wildcard character * is used to capture variations of a word, 

such as estimation and estimating. The result indicates more than 288 publications 

were found, including journal articles, conference papers, business articles, book 

chapters, books. Figure 2.1 indicates the research trend from 1977 to 2019.  

Figure 2.2 shows the percentage of the ECCE publications in different research 

fields. The majority of the publications closely related to the engineering discipline 

and computer science are found in the second largest research field. Other research 

fields including business, management and accounting, energy, environmental science, 

earth and planetary science also play a significant role in ECCE.  
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Figure 2.1 Annual publications relating to ECCE  

Among all the publications related to ECCE, the three most popular methods are 

identified as regression, neural network and CBR (Chau, 2018; Kim, et al., 2004b). 

Therefore, the following sections will discuss the application of these three methods 

in ECCE separately.  

 

Figure 2.2 The research area classification 

Regression  

A regression model is defined as the formal means of expressing the two 

essential ingredients of a statistical relation and it serves three main purposes, 

including description, control and prediction (Neter et al., 1989). It has a solid 

mathematical foundation and thus it has the most application in the construction 

industry (Wilmot et al., 2005).  
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Regression has been developed since the 1970s (Bowen & Edwards, 1985; 

Khosrowshahi et al., 1996; Kim, et al., 2004b; Kouskoulas & Koehn, 1974; Trost & 

Oberlender, 2003a). It is a very powerful statistical approach for analysing and 

predicting the result based on the historical data (Skitmore & Ng, 2003). Various 

studies have used regression analysis for various types of buildings. Lowe et al. (2006) 

use the regression model to identify the influence of the building feature. The results 

show that gross internal floor area, function, duration, mechanical installations, and 

piling are the most significant factors for building cost (Lowe, Emsley, Harding, et al., 

2006). Fragkakis et al. (2011) develop a model for estimating the predesign cost of 

bridge foundations. The whole model includes the foundation system selection, the 

material quantities estimation and the foundation cost estimation. Rui et al., (2011) 

develop five regression models to estimate the pipeline construction component cost 

and explore the influencing factor for different types of pipelines in different regions. 

Jafarzadeh et al., (2014) establish a statistical model for estimating seismic retrofit net 

construction cost of confined masonry buildings. The best predictors include total floor 

area, seismic weight indicator, floor and roof diaphragm type, and mortar quality.  

Regression is also used to evaluate the cost estimation accuracy (Oberlender & 

Trost, 2001a). Oberlender and Trost (2001) identify four influencing factors of 

construction cost estimation performance and develop an estimate scoring system to 

evaluate how well the construction cost can be estimated (Oberlender & Trost, 2001b). 

Trost and Oberlender (2003) further conduct a study to help estimators and project 

managers have an objective assessment of the early estimates. By using 45 potential 

drivers, basic process design, team experience and cost information, time allowed for 

preparing the estimate, site requirements, and bidding and labor climate are identified 

as the five most significant factors (Trost & Oberlender, 2003b). 

Furthermore, several robust regression methods have been developed to achieve 

high efficiency in estimating (Yu et al., 2017). Compared with the commonly used 

regression method, robust regressions have more advantages for handing the noisy 

data and outliers. The advances in the regression research area also benefit the 

application of regression in ECCE. To address the unusual y observations, M-estimates 

are designed in the normal equation with appropriate weight functions. M-estimates 

are limited for being sensitive to high leverage points on x (Huber, 2011). R-estimates 

attempt to minimize the sum of scores of the ranked residuals that have relatively high 
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efficiency but are limited in the low tolerance of breakdown points (Jaeckel, 1972). 

Several squares estimates are proposed including Least Median of Squares estimates 

and Least Trimmed Squares estimates to minimize the median or the trimmed sum of 

squared residuals (Rousseeuw, 1985; Siegel, 1982). To have a high breakdown point, 

S-estimates are introduced to minimize the variance of the residuals by decreasing the 

efficiency (Rousseeuw & Yohai, 1984). Later, Generalized S-estimates are developed 

and have a higher efficiency (Croux et al., 1994). MM-estimates, Mallows Generalized 

M-estimates and Schweppe Generalized M-estimates can be seen as variations of M-

estimates. MM-estimates have the advantage of simultaneously attaining a high 

breakdown point and efficiencies (Yohai, 1987), while Mallows Generalized M-

estimates and Schweppe Generalized M-estimates are limited because of their 

impaired efficiencies (Mallows, 1975) (Handschin et al., 1975). To address these 

limitations, Schweppe one-step Generalized M-estimates is proposed and can be 

calculated in one step (Coakley & Hettmansperger, 1993). An overall comparison of 

some of the mentioned robust methods has been conducted to show their strengths and 

weakness (Wilcox, 1996; You, 1999).  

Continuous development in robust regression has resulted in a number of recent 

studies. Robust and efficient weighted least-square estimator is introduced by Gervini 

and Yohai (2002) and it attempts to achieve a high breakdown point and high 

efficiency (Gervini & Yohai, 2002). Another robust approach is developed based on 

the regularization of case-specific parameters for each response and it deems M-

estimator as its special case (Lee et al., 2012; She & Owen, 2011). Later, a new modal 

linear regression (MODLR) based on the conditional mode of the response Y given 

the set of predictors x was proposed (Yao & Li, 2014). The mode takes the value with 

the highest probability of occurrence and thus provides a shorter prediction interval 

than other linear regressions (Yao & Li, 2014). When the data is not distributed as 

assumed, modal regression works quite robustly. MODLR is deemed to produce 

shorter predictive intervals than mean linear regression, median linear regression, and 

MM-estimators. It has received much research attention and is widely used in machine 

learning (Damir et al., 2007; Wang et al., 2017).  

Despite its advantage of having a well-defined mathematical basis (Kim, et al., 

2004b), regression is limited in ECCE because it cannot deal with a large amount of 

data (Chau, 2018). Regression analysis is designed to deal with the data containing 
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less than 1,000 samples and fewer than 50 variables (Neter, et al., 1989). MRA is also 

criticized because the data in the real world do not necessarily comply with its 

parametric assumptions (Adeli & Wu, 1998a; Bode, 2000; Yau & Yang, 1998). 

Besides, regression requires users to choose the relation between the predictors and 

responsors (e.g., linear, quadratics) (Sonmez, 2004). However, regression has an 

advantage over other models since it uses fewer parameters when the relations among 

the variables can be presented adequately (Sonmez, 2011).  

ANN 

ANN is another popular method that has drawn much attention in recent years 

in ECCE. The fundamental idea behind ECCE is to model the response as a nonlinear 

function of various linear combinations of predictors (Neter, et al., 1989). Several 

ANN models have been widely developed for ECCE for various types of constructions 

including building projects, highway projects, road tunnels, public school buildings. 

(Hegazy et al., 1998; Juszczyk et al., 2018; Kim, Choi, et al., 2005; Li et al., 1999; 

.  

Residential building has been mostly studied in the ECCE ANN model. 

buildings for both designers and project managers. By using cost and design data from 

thirty projects, this study indicates the applicability of ANN in structural systems of 

buildings and the average estimated accuracy reaches 93% . 

Kim et al. (2004b, 2005a) use an ANN model to estimate the construction cost of the 

residential building using 12 predictor variables. By combining genetic algorithms 

(GA) and backpropagation, their study aims to optimize the process of determining the 

Kim et al., (2005) combine ANN and GA to estimate the early 

cost of residential building in Seoul, Korea (Kim, Seo, et al., 2005). Cheng et al. (2009) 

design an Evolutionary Fuzzy Neural Inference Model to improve the building cost 

estimation accuracy. Their study combines the advantages of GA, fuzzy logic and 

ANN together, to obtain the optimal solution (Cheng, et al., 2009).  

 Other types of projects include highway projects, road tunnels, public school 

buildings. Petroutsatou et al. (2012) establish an ANN model for ECCE of road tunnels. 

In this study, several factors including geological factors, geometrical factors and work 

quantities-related factors are determined and two types of neural networks, including 

the multilayer feed-forward network and the general regression neural network, are 
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compared (Petroutsatou, et al., 2011). Jafarzadeh et al. (2014) develop an advanced 

ANN model for estimating retrofit net construction costs by using 158 earthquake-

prone public school buildings. Several components are defined and explored in the 

model including the number of hidden layers and neurons, learning rate and 

momentum by using sensitivity analysis (Jafarzadeh, Ingham, Wilkinson, et al., 2014). 

Hyari et al. (2016) attempt to estimate the cost of the engineering service of public 

construction projects by using the ANN model. This study predicts the percentage of 

engineering services in construction according to project type, engineering services 

category, project location, and project scope by using the data from the Governmental 

Tenders Department in Jordan (Hyari et al., 2015). 

However, ANNs have limitations in explaining the results of the model, as well 

as in choosing the optimal parameters. It is a black box technique, in which several of 

the trial-and-error processes are involved. The model processing is very time-

consuming, which makes the model less convincing (Chau, 2018; Creese & Li, 1995; 

Hegazy & MOSELHI, 1994; Li, 1995). Petroutsatou et al. (2012) explore the influence 

of the amount of data on the performance of the ANN model (Petroutsatou, et al., 

2011). Besides, ANNs accept only numerical input attributes and this may result in the 

loss of information during the data transformation process (Pal et al., 2018).  

In summary, ANN has the advantage of having the capacity to accommodate 

complex nonlinear behaviour and an ability to learn from numerical examples, but is 

criticized for being an impenetrable black box (Graves & Pedrycz, 2009) and only 

admitting numerical input data (Arditi; & Tokdemir, 1999) as well as being time 

consuming for obtaining optimal model networks (Sangyong & Jae Heon, 2014). 

CBR 

CBR is quite popular in the research field of ECCE as it provides an effective 

and comprehensive procedure for estimating project cost (Hu et al.). ECCE 

traditionally relies extensively on the previous knowledge and experience of 

practitioners, making CBR a perfect match for ECCE (An, et al., 2007). CBR is widely 

used for various types of projects including residential buildings, road, bridges, river 

facilities, military facilities, pump stations, craft and tunnels (Kim, et al., 2004b; Kim 

& Kim, 2010b; Lee et al., 2013a). Table 2.1 summarized the building types in the 

current ECCE CBR models.   
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Table 2.1 Distribution of project types in CBR cost estimation 
Project type Building features No. of studies 

Building 

Not mentioned 6 

Multiple-family housing 3 

Apartment 2 

Residential building 2 

High-rise building 1 

Building structure system  1 

Large building 1 

Historical building 1 

Total  17 

Road 

Pavement maintenance project 2 

Highway road 1 

Public road 1 

Total  4 

Bridge 

Not mentioned 3 

Railway bridge 1 

Total  4 

River facility Not mentioned 2 

Military facility 

Military barrack 1 

Not mentioned 1 

Total 2 

Pump station projects Not mentioned 1 

Craft Not mentioned 1 

Tunnel projects Not mentioned 1 

Construction projects Not mentioned 3 

 

Some studies compare the regression analysis, ANN and CBR. Kim et al., 

concludes that both CBR and ANN models are appropriate for estimating construction 

costs (Kim, et al., 2004b). Another study found CBR is more effective than ANN in 

ECCE for apartment building. The average mean error of CBR is only half of that in 

the ANN model (Kim, et al., 2005).  

The majority of the studies focus on building and optimization of the case 

retrieval process. . compare the three weight determination methods 

including feature counting, gradient descent, and genetic algorithms by using 29 

residential building projects. The results show that GA performed better than other 
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methods . Similarly, An et al. compare three weight determination 

methods including the analytic hierarchy process (AHP), feature counting and gradient 

descent. The result shows that AHP produces more accurate and explanatory attribute 

weights than the other models (An, et al., 2007). However, this weight determination 

is limited due to its reliance on questionnaires and its incompetency in updating with 

changes in the case-base. three different weight determination 

methods based on decision-tree in CBR model. The binary-dtree method, info-top 

method and info-dtree method are compared by using cost data of residential building 

projects. The result indicates that information gain is the best weight determination 

methods. Their study also shows that the performance of CBR largely depends on the 

data associated with the parameters used in the model (Do . Kim and 

Kim (2010) further optimize the CBR model using the GA in weight determination 

and the results show that GA is superior to other conventional methods (Kim & Kim, 

2010a). Koo et al. develop a hybrid CBR model for predicting construction cost and 

duration of multi-family projects simultaneously. It uses the GA as an optimizing 

method for improving the overall performance of the CBR model (Koo, Hong, Hyun, 

& Koo, 2010). Koo et al. improve the CBR model by introducing two optimized 

parameters: the minimum value for calculating attribute similarity and the range of 

attribute weights. By using the optimized method, their study explores the changes in 

the influence of project features on the  making. (Koo, Hong, Hyun, 

Park, et al., 2010). Ji et al. introduce the Euclidean distance concept in the case retrieval. 

The results sh

in terms of accuracy. This conclusion is deemed as a basis for further research on 

improving the CBR method (Ji, Park, & Lee, 2011). 

Except for case retrieval, research focus also needs to be paid on case revision 

and adaptation. Hong and Hyun (2010) proposed a revision method in CBR mode to 

improve the accuracy of the model. When there are insufficient established cases in 

the case-

(Ji et al., 2010c). Ji et al. introduce a case adaptation method that can help in demise 

and transformation of the data in case-base. Totally there are 129 military barrack 

projects in Korea used for training the model. The result was validated by using 13 test 

cases. Another 164 Korean public building projects are used for the applicability test 

(Ji et al., 2012b).  



 

30 Chapter 2: Literature Review 

 CBR is also used for estimating the cost of roads, bridges, military facilities and 

restoration costs of historical buildings. Kim uses combinations of features; criteria of 

similarities and retrieval ranks and applies  GA to optimize the attribute weight. The 

verification results show that the mean absolute error rate is 11.9% and the standard 

deviation is 12.7% (Kim, 2011). Ji et al. apply the ECCE CBR model to military 

projects in Korea. Their study uses 422 construction projects at 16 military facilities 

and involves ten military engineers for system validation experiments. Similarly, GA 

is used in weight determination. Their study illustrates the effectiveness of the system 

in terms of estimation accuracy and user-friendliness is confirmed (Ji, Park, et al., 

2011b). Chou develops a web-based CBR model for pavement maintenance. The 

attribute and case similarity can be calculated and displayed using browsers. 

Eigenvector and equal weighting methods are used in weight determination (Chou, 

2009). Wang et al. proposed an ECCE CBR model for historical buildings. Two 

retrieval techniques including inductive indexing and nearest neighbour are used in the 

case retrieval process (Wang et al., 2008). 

The more recent studies focus on the CBM of the CBR model and green building. 

To address the interrelation in the input attributes in the CBR model, Hong et al. use 

correlation analysis for selected cases. The attributes weight is determined by GA. 

Their results illustrate that CBR generates good results for early construction cost 

estimation (Hong, et al., 2011). Ji et al. produce a learning method for addressing the 

issues of insufficient data. By using the first cost-variance impact factor and data-

expansion rate, their study attempted to improve the s accuracy by generating 

training cases. This study shows how to generate the cases in the case-base when 

insufficient cases happens. It illustrates the significance of continuously updating of 

case-base and simplifying the updating process (Ji et al., 2018). 

(2018) develop a CBR model including the sustainability factor for cost estimating. 

Their study considers the environmental impact of the building, materials used, and 

the impact of the facility on the surroundings by using 143 construction projects. 

. Tatiya et al. developed a CBR model for estimating the cost 

of building deconstruction, which introduces an additional option of design for 

deconstruction of green buildings (Tatiya et al., 2018). The next subsection carefully 

examines each step of the existing ECCE CBR models to provide a detailed analysis. 
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2.2 APPLICATION OF CBR IN ECCE  

2.2.1 Overview of CBR 

CBR is a problem-solving process variously described as involving addressing 

a current issue by recalling and reusing previous knowledge and experience 

(Kolodneer, 1991), solving new problems by adapting the solutions of previous cases 

that have been successfully solved (Riesbeck & Schank, 1989) 

a new problem by remembering a previous similar situation and by reusing information 

and knowledge of that (Aamodt & Plaza, 1994).  

The origin of CBR can be traced to the work of the dynamic memory model of 

Roger Schank and his team at Yale University in the late 1970s. Since then, CBR has 

developed in four main phases. The first is from 1977 to 1992, which was characterized 

by schema-oriented memory models (Richter & Weber, 2013) including CYRUS 

(Schank, 1982, 1983), MEDIATOR (Simpson, 1985), CHEF (Hammond, 1986) and 

HOPY (Ashley, 1991). Schema-oriented 

work on the process of remembering (Bartlett & Burt, 1933). The first German 

workshop in 1992 marked the beginning of the second phase (Richter & Weber, 2013), 

the main feature of which was the wide application of engineering techniques that 

enabled the more systematic development of CBR theory. The complex techniques 

used, decreased the time and the cost of putting CBR theory into practice. The 

induction and reasoning from the case-based system INRECA provides a good 

example in this phase (Bergmann, 2001). Extensive CBR workshops that included a 

European Workshop on CBR, International Conference on CBR and International 

Joint Conference on Artificial Intelligence Workshop, were also organized globally 

during this period. The third phase started in the second half of 1990, when data mining 

and machine learning appeared more often in CBR publications (Aha et al., 2005). 

After the mid-2000s, CBR research entered its current period, which is characterized 

by a combination of Web searching, context-aware systems and textual mining 

(Greene et al., 2008). Since 1995, a large number of conferences and seminars have 

been organized all over the world. To provide a brief understanding of its development 

process, Table 2.2 summarise the historical development and application of CBR from 

1977 to 1995 .   

 Table 2.2 Historical development and application of CBR from 1977  
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1977  Scripts, Plans, Goals and Understanding: an Inquiry 

into Human Knowledge Structures provides the history behind the creation of 

CBR (Kolodner, 1992; Shin & Han, 1999).  

1982 Schank published Dynamic Memory: A Theory of Learning in Computer and 

People, which for the first time addressed the CBR framework and theory 

(Schank, 1983). 

1983 1. Roger Schank and his work team at Yale University introduced the dynamic 

memory framework, which has a reminding system of the earlier situations and 

situations in the process of problem solving and learning (Schank & Abelson, 

1977). Schank's theory is the earliest prototype of CBR system. 

2. Kolodner developed t , a question-

answering system with a rich knowledge of travelling and meetings of former 

US secretary of State, Cyrus Vance (An, et al., 2007; ChoongWan et al., 2011). 

It is widely recognised as the basis of the other CBR models.  

3. The first precedence reasoning framework in legal judgments was developed 

by Edwina Rissland and her group at the University of Massachusetts 

(Sangyong & Jae Heon, 2014). It is the basis of the HYPO system. 

1986  The first case-based planner CHEF was developed by Hammond. CHEF 

creates its plans by recalling old plans that worked under similar circumstances 

and modifying them to fit new situation (Hammond, 1986). It is the first CBR 

tool to be successfully commercialized. 

1988 1. The First Defence Advanced Research Projects Agency (DARPA) CBR 

workshop held on May 1988, Clearwater Beach, Florida, USA. 

2. The AAAI Workshop on CBR held on 21-26 August 1988 in Saint Paul, 
Minnesota, USA. 

1989 1.The Second Defense Advanced Research Projects Agency (DARPA) CBR 
workshop held in 1989, Pensacola Beach, Florida, USA. 

1991 1. The third Defense Advanced Research Projects Agency (DARPA) CBR 
workshop held in 1991, San Mateo, California, USA. The continuous DARPA 
CBR workshop from 1988 to 1991 formally marked the birth of the discipline 
of CBR.  
2. The CBR tool CBR-ExpressTM was developed by Inference Corp., which is a 

CBR environment tailored for developing help desk application. 

3. The first interpretive Case-based reasoner HYPO which works in the domain 

of law was developed by Ashley (Ng, 1996) 

4. The CBR was introduced in China and Japan. Chinese academic Zhizhong 

Shi introduced the memory network model and case retrieval method. Japanese 

Academic Kobayashi, Shigenobu and Nabeta, Shigeko discussed the problems 

for the CBR.  

1992 1. The first German CBR workshop was organised. (Riesbeck & Schank, 1989). 

2. The CBR tool ReMindTM (Cognitive System Inc.) was developed with the 

support of the US Defense Advanced Research Projects Agency. The 

ReMindTM formally marked the development of CBR shifting from cognitive 

science to artificial intelligence. 
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1993 1. The first British CBR seminar UK IEE Colloquium on CBR held in London, 

12 Feb 1993. 

2. The first European Workshop on CBR (EWCBR-93) held in Kaiserslautern, 

Germany. There were around 120 participants and more than 80 related CBR 

papers on scientific and application-oriented research. 

3. The CBR system of internal combustion engine oil product design system 
EOFDS was developed in China. It is the first CBR system developed in China. 

1994 1. The second European Workshop on CBR (EWCBR-94) was held in 

Chantilly, France. 

2. Aamodt and Plaza published an article where CBR cycle was systematically 

introduced and four process in CBR cycle were defined (Aamodt & Plaza, 

1994). 

1995 1. The first International Conference on CBR (ICCBR) held in Sesimbra, 

Portugal, which illustrates the interest in CBR growing internationally. 

2. The first United Kingdom CBR Workshop on Industrial Applications of 

CBR was organised, which marks the attention of the industrial practice of 

CBR. 

3. International Joint Conference on Artificial Intelligence Workshop (IJCAI-

95) held in Montréal, Canada. 

4. International Conference on Knowledge Discovery and Data Mining held in 

Montreal, Quebec, Canada. 

2.2.2 Advantages of CBR in ECCE  

ECCE is usually conducted before the construction is well designed, and thus 

must depend on the experience of cost estimators (Cheung & Skitmore, 2006a, 2006b). 

There are several studies that emphasise the importance of expertise in achieving 

accurate cost estimation in the early stage. In a series of experiments to measure early 

stage estimating abilities of quantity surveyors, the experienced quantity surveyors 

give more accurate estimates (Skitmore, 1985). The main reasons that experienced 

estimators give more accurate cost estimates are their capability of recalling previous 

projects and adjusting to new requirements (Skitmore, 1985, 1988). However, 

subjective analysis has limitations such as human errors and varying results based on 

the proficiency of the estimator (Adeli & Wu, 1998b). 

 The historical database containing previous construction projects is another 

option for preparing cost estimates. Many researchers have studied cost prediction in 

the initial phase of a project using various data-based techniques, including statistical 

analysis techniques such as MRA (Lowe, Emsley, & Harding, 2006; Phaobunjong, 

2002; Trost & Oberlender, 2003c), probabilistic analysis techniques including 
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distribution analysis (Barraza, et al., 2000; Nassar, et al., 2005), Monte Carlo 

Simulation (Juszczyk, 2017; Wing Chau, 1995), and artificial intelligence techniques 

(Bode, 1998; Juszczyk, 2017; Kim, et al., 2004a). Compared with subjective analysis 

based on different cost estimators, data-based ECCE is deemed to largely reduce the 

subjective influence of human error, as well as improve the efficiency and consistency 

of the result (Adeli & Wu, 1998b). To prepare a good cost estimation, historical data 

should be organized in a consistent and compatible format with further applications. 

Any changes in the historical data may have substantial impacts on the predicted 

results of the new project. Therefore, historical cost data must be used cautiously and 

maintained continuously for ECCE. 

CBR is quite popular in the research field of ECCE because of its capability of 

reusing the knowledge in historical cost data for a current case (Hu, et al.). Though 

CBR is a data-based method, it can solve a problem by reusing previous knowledge in 

case-base. It is a relatively convenient and efficient AI-based approach and it is 

deemed to have more advantages than MRA and ANN (Kim & Shim, 2013b). Besides, 

CBR is deemed as superior and powerful for long-term use and easy for practice (An, 

et al., 2007; Chen & Burrell, 2001). rtment 

buildings in South Korea, CBR mean error (3.68%) is only half of ANN models (Kim, 

et al., 2005).  

Numerous studies attempt to address ECCE issues in various project types 

including building (Ji, Park, & Lee, 2011; Tatiya, et al., 2018; Wang, et al., 2008), 

road (Choi et al., 2014), bridge (Kim, 2011), river facility (Lee et al., 2013b), military 

facility (Ji, Park, Lee, et al., 2011b) and tunnel projects (Petroutsatou, et al., 2011).The 

research attention has been extensively focused on improving the accuracy by 

selecting the good features or optimizing the attribute weight in the retrieval process 

(Ji, et al., 2010a; Kim & Hong, 2012a; Marzouk & Ahmed, 2011). Despite numerous 

mathematical methods having been developed for ECCE, only a few generate 

acceptable results and CBR is widely considered as one of them 

2018).  

CBR is made up of several steps including case representation, case retrieval and 

case retainment. Case representation is the conversion of the problem into a descriptive 

format for the CBR cycle (Richter & Weber, 2013); Retrieval and reuse are the 

processes of searching for previous cases in the case-base that best match the target 
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problem and using them for solving the new problem; revision and adaptation are the 

process of adapting the retrieved solution to solve the problem of the new case; and 

retention is the process of updating the case-base by storing the revised solution of the 

new problem (Byung Soo, 2011). To provide a detailed analysis on the ECCE CBR 

model, the following subsections carefully examine the problem formulation, case 

retrieval, case reuse and revision, case retainment. 

2.2.3 Problem Formulation in ECCE 

Case representation 

Case representation is the process of deciding what to store in a case and how to 

describe and organize the case contents in an appropriate structure (Aamodt & Plaza, 

1994). Typically, case representation comprises identifying the problem, identifying 

the solution and/or identifying the outcome (Watson, 1999). In ECCE CBR modelling, 

the problem is how to estimate the cost of a certain project and the solution is the 

calculated cost derived from the historical cases. The outcome is to know whether the 

estimated cost successfully represents the actual cost. The outcomes in the literature 

differ due to the case-base data used. For example, if the historical data of a project is 

consistent with the target project, then there is no need to consider the outcome. 

Otherwise, the outcome should be considered when establishing the model. In the 

current literature concerning ECCE CBR modelling, the data used for the training and 

testing samples are all from the same case-base. The common background of ECCE 

CBR applications is in early-stage estimation. Many papers contain 

(Byung 

Soo, 2011; Choi et al., 2013; Chou, 2009; Dogan et al., 2006; Dogan, Arditi, & 

Guenaydin, 2008; Hong, et al., 2011; Jin et al., 2012; Jin, Han, Hyun, & Kim, 2014; 

Kim, Seo, et al., 2012; Kim & Kim, 2010b; Kim & Shim, 2013a; Koo, Hong, Hyun, 

Park, et al., 2010).  

Case indexing 

Case indexing is the process of assigning characterizing attributes to the cases 

(Shin & Han, 1999) and is important for modelling a successful CBR system (An, et 

al., 2007; Dikmen et al., 2007). The cases can be indexed by a prefixed or open 

vocabulary, and within a flat or hierarchical index structure (Aamodt & Plaza, 1994). 

Although there is no consensus as to what information should be included in a case, 

there are two basic principles involved when conducting case indexing: the 
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functionality and the ease of acquisition of the information of the case index (Kolodner, 

2014).  

The case memory in the ECCE CBR model generally is a flat structure of 

historical project information relevant to construction cost (Jin, et al., 2012). In ECCE 

CBR models, index selection has a significant influence on recalling the case with the 

highest similarity score (KARANCI, 2010). Conventional index selection methods 

include literature review, questionnaire, expert subjective judgement and statistical 

analysis. Literature reviews provide a comprehensive overview of existing case indices 

and an extensive research background offers a reliable pool of case indices (Dikmen, 

et al., 2007). However, the problem with case indexing by literature review is the 

dilemma caused by having too many cost impact factors (Hong, et al., 2011). In 

practice, therefore, the literature review needs to be combined with other methods 

(Chou, 2009; Dikmen, et al., 2007; Kim & Kim, 2010b). 

Case storage 

 Case storage refers to how cases are collected and stored. Case can be stored in 

the form of experiences, or a series of similar cases may form a generalized case 

(Aamodt & Plaza, 1994). It involves a process of establishing the structure of the case-

base in preparation for the next step in the CBR cycle as the availability of historical 

data is important for developing a successful model because of its intimate relationship 

with the CBR cycle (Kim, Lee, et al., 2012). There are two things that need to be 

considered for case storage; its structure and the number case to be stored in the case-

base. The case storage structure should be consistent with the case representation and 

case indexing because it further reflects the idea of what is represented in the case and 

indices that characterize the case (Watson, 1999). In ECCE CBR models, the case is 

stored in a flat structure, which is similar to the case representation. In the general 

ECCE CBR situation, it is thought that the greater the number of cases, the more 

accurately the attributes and their weights can be determined (Ji, et al., 2010a). 

However, this is complicated by case storage also being critical in determining the 

relevance of the case-base in providing the data needed to find similar cases to the 

target case. A case-base containing too few relevant cases causes the ECCE CBR 

model to yield insufficiently accurate results (Dogan, et al., 2006; Dogan, Arditi, & 

Guenaydin, 2008; Lee, et al., 2013a). On the other side, a case-base containing too 

many cases will impair the efficiency of the CBR system. This begs the research 
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question of case-  is no consensus in the CBR community of the 

number of cases stored in the case-base. Some CBR models assume a large amount of 

cases while others are based on a more limited set of typical cases (Aamodt & Plaza, 

1994). As summarized in Figure 2.3, the various case storage sizes in the reported 

studies range from 9 to 786, with more than half being below 200 and only 5 out of 33 

above 500. 

 

 

Figure 2.3 Number of stored cases in the case-base in precious studies 

2.2.4 Case Retrieval in ECCE 

Case retrieval refers to the process of determining the best matching previous 

solutions for the current problem (Aamodt & Plaza, 1994). The major focus of ECCE 

CBR is to optimize case similarity to identify one most similar case, while some 

studies use several criteria as a filter to search for more than one case (ChoongWan, et 

al., 2011; Kim, 2013). Even though there are different methods available, case 

similarity is mainly determined by attribute similarity and attribute weight 

(ChoongWan, et al., 2011). 

Attribute similarity  

Attribute similarity is the similar degree between the attributes (ChoongWan et 

al., 2010). The method to calculate the attribute similarity differs due to the type of 

attributes. The attribute can be classified as either numerical or nominal (Ji, Park, et 

al., 2011a). For attributes measured on the nominal scale, the most widely used 

ere 1=true and 0=false (Choong-Wan et al., 2010). 

Further, Ji et al. (2011) introduce a type index, which transforms nominal data to a 
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numerical scale and Kim et al. (2012) propose a similarity score method where a 

qualitative attribute is determined by its agreement with a character string. As Table 

2.3 indicates, numerical attributes have various scores of similarity. Eqn 1 in Table 2.3 

is the most widely used attribute similarity function. Eqns 1 and 2 are based on the 

relative minimum and maximum between the attribute values for a given problem case 

and those of the corresponding retrieved case (ChoongWan, et al., 2010; Sangyong & 

Jae Heon, 2014). These two methods are criticized because the calculation of attributes 

using these methods always produces a value of 1 or less and only highlights whether 

two attributes are different without being able to determine the extent of the difference 

(Sangyong & Jae Heon, 2014). They can only be used for selecting similar cases and 

have limitations in the revision phase. Thus, Eqn 7 is offered as an improvement, as it 

not only expresses the difference between cases but also makes it possible to verify the 

minimum and maximum relationship of the cases (Kim, 2013; Sangyong & Jae Heon, 

2014). Eqns 3 and 6 are similar, because they are valid only when the minimum 

criterion for attribute similarity (MCAS) is less than its score. Eqn 4 is another popular 

similarity scoring method defined as true (matched=1) or false (not matched=0) for 

each search condition (Choi, et al., 2013; Kim, Seo, et al., 2012). Eqn 5 further refines 

the criterion for scoring attribute similarity (AS) by setting a ± percentage range for 

each search condition, as it can reduce the possibility of omitting cases similar to the 

target case (Kim & Hong, 2012a; Kim, Lee, et al., 2012). 

Table 2.3 Attribute similarity measures 

 

Eqn Function Frequency   

1 
 9 

 

2 

 
1 

 

3 

 1 
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4 

 5 

 

5 

 2 

 

6 

 1 

 

7 
 1 

 

8 

 6 

 

Where AS = Attribute Similarity, AV new-case = Attribute Value of new case, AV retrieved-case = 
Attribute Value of retrieved case. MCAS = minimum criterion for scoring the attribute 
similarity. Different level value, = the value of the ith attribute 
of case ,  =the weight of the case's attributes.  

 

 

Attribute weight determination 

Attribute weight determination significantly influences the process of case 

retrieval (Changchien & Lin, 2005). As attribute weights become more accurate, the 

estimation accuracy of the CBR model is enhanced (Lee, et al., 2013a). The major 

trend of the ECCE CBR model focuses on calculating the optimal attribute weights in 

the retrieval phase of the CBR cycle (ChoongWan, et al., 2010; Dogan, et al., 2006; 

Dogan, Arditi, & Murat Gunaydin, 2008; Kim & Kim, 2010b; Kim, Lee, et al., 2012; 

Kim, 2012; Lee, et al., 2013a; Sangyong & Jae Heon, 2014). The methods adopted 

include the Genetic GA, AHP, MRA, Principle Component Analysis (PCA), Feature 

Counting (FC), Gradient Descent Method (GDM), Decision Trees and correlation 

coefficient (Table 2.4). 

Table 2.4 Weight determination methods 
No. Weight determination methods Frequency 

1 GA 16 
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2 AHP 6 

3 MRA 5 

4 PCA 2 

5 FC 2 

6 GDM 1 

7 Decision tree 1 

8 Correlation coefficient  1 

 

GA is the most widely used weight determination method because of its ability 

to deal with nonlinear relationships between the error rate and attribute similarity 

scores (Kim & Kim, 2010b). GA is superior when the size of the case-base is small 

and the output attribute is not binary (Dogan, et al., 2006). The most widely used target 

function is predictive accuracy (Du & Bormann, 2014b). The mean square error 

(ChoongWan, et al., 2010) and error ratio (Byung Soo, 2011) are also popular choices, 

as is (Dogan, et al., 2006) 

power of the (Choi, et al., 2013). The optimal parametrics include: (1) 

the attribute weights (Kim & Kim, 2010b), (2) the retrieval criteria of similar cases 

(Choong-Wan, et al., 2010; Kim & Kim, 2010b), (3) the range of attribute weights, (4) 

the tolerance range of cross range between different methods (Choong-Wan, et al., 

2010). Various optimal parametrics enable the ECCE CBR model with GA to be a 

good weight determination method while simultaneously hindering practical 

applications because it is uneconomic to do so (Chiu, 2002). An appropriate weight 

assignment method should be utilized to retrieve not only similar past cases but also 

other suitable cases (Ahn et al., 2014). Another problem is the inconsistency of the 

values of the attribute weight between the retrieve  phase and the revise  phase (Kim 

& Hong, 2012b). Thus, it is difficult to accurately estimate costs when the similarity 

between the retrieved case and the test case is low (Jin et al. 2012).  

Other than GA, experts  opinions and surveys play an important role in attribute 

weight determination. While Kolodner (1992) suggests that experts should determine 

the weights, expert opinion and knowledge are difficult to measure (Kim, et al., 2004b; 

Xia et al., 2012). Besides, finding the right expert is not easy (Dogan, et al., 2006). 

Another problem is that expert intervention is a potential risk factor contributing to 

inaccuracy and uncertainty (Kim & Kim, 2010b; Morcous et al., 2002) and is likely to 

p
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the eigenvector method, is used together with surveys in weight determination to 

obtain a relatively objective result (Chou, 2008). AHP has the advantage in 

information being elicited by pairwise comparisons, with a series of mathematical 

manipulations being made to ensure that no inconsistencies exist between the different 

pairwise comparisons (Dogan, et al., 2006). It is used to convert experience into 

attribute values and has been shown to be superior compared with the use of equal 

weights and GDM (An, et al., 2007). This result is consistent with other research 

findings that AHP to be more reliable, accurate and explanatory than the gradient 

descent method (Kim, 2013). However, AHP, as an attribute weighting method, can 

be used together with questionnaire surveys (Chou, 2009). 

Regression coefficients, correlation coefficients and other statistical measures 

are widely used due to their relatively simple computation process and ease of 

interpretation (Ahn, et al., 2014). Several studies confirm their superiority when 

compared with FC (Ji, et al., 2010a) and GDM (Kim, et al., 2005). Estimating weights 

using the conventional linear planning method, on the other hand, is limited because 

of the nonlinear relationship between the error rate and the attribute similarity scores 

and is incapable of capturing complex nonlinear relationships between case features 

and corresponding solutions (Kim & Kim, 2010b). By contrast, the feature counting 

method applies a weight of one to all the attributes on the understanding that there is 

no need to apply a higher value than one (ChoongWan, et al., 2011; Dogan, et al., 2006) 

to prevent bias against any factor (Dikmen, et al., 2007). Therefore, feature counting 

means the overall similarity of a historical project is represented simply by the number 

of matches (Kim, Seo, et al., 2012), which is very crude compared with other weight 

determination methods. The FC method is criticized because important attributes 

should have greater similarity (Riesbeck & Schank, 1989). An alternative is GDM - 

an optimization algorithm used for machine learning. Similar to GA, GDM has various 

functions whose objective is to maximize mode performance or to minimise the extent 

of similarity between the target and stored cases (An, et al., 2007). GDM is criticized, 

however, because it can become stuck in a local optimum (Xia, et al., 2012). It is also 

difficult to understand the procedures involved in determining the importance weights 

(An, et al., 2007) another approach named ID3 to 

determine the attribute weights. ID3 offers a number of variations including the binary-
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tree method, info-top method and info-tree method (Dogan, Arditi, & Murat Gunaydin, 

2008). 

Case similarity 

A critical issue with the ECCE CBR model is the measurement of similarity 

between two cases (Changchien & Lin, 2005). Several distance functions have been 

used in measuring case similarity. The distance calculation is a critical step in case 

retrieval (Madhusudan et al., 2004; Slonim & Schneider, 2001). Three distance 

calculation formulas, which have been widely used in existing ECCE CBR studies, 

and their usage frequency, are shown in Table 2.5.  

The weighted sum of the attribute distance is the most popular. Its principle is to 

firstly determine the similarity of the target case to a case in the case-base for each 

case feature multiplied by a weighting factor; the weighted similarities are then 

summed to provide a measure of overall similarity (Wang et al., 2015). A typical 

algorithm for calculating nearest neighbour matching is the one used by Cognitive 

Systems' ReMind software reported in Kolodner (1993) and as shown in Eqn 1. 

Another popular distance measure is Euclidean distance (Eqn 2), calculated as the 

square root of the sum of the squares of the arithmetical differences between two 

corresponding objects (Pal & Shiu, 2004). This is the most basic algorithm for 

describing the relationship between two cases, with the most similar case being defined 

in terms of standard Euclidean distance (Mitchell, 1997). Furthermore, Mahalanobis 

distance is used to reduce unnecessarily influencing the covariance between variables 

(Du & Bormann, 2014b). 

Table 2.5 Distance calculation formulas 

Eqn Distance  Formula Frequency  

1 Weighted sum of the 

attribute distance 
 

24 

2 1-Euclidean distance

   

5 
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3 Mahalanobies 

distance  

CS=1

 

Detailed information can be seen in (Du & 

Bormann, 2014b)  

1 

5 No description / 4 

where CS = Case Similarity,  indicates the value of the ith attributes of case ,  = weight 

of the ith case's attributes, D is the covariance matrix, W can be calculated from W= ; S is the 

 and A can be calculated from 

 where X is the standardized values of input variables; P is the transformed uncorrelated 

variables and A is a linear transformation matrix on original input data, 

 

2.2.5 Case Reuse and Revision in ECCE 

Case reuse involves dealing with the differences between the target case and 

those in the case-base (Aamodt & Plaza, 1994). After the retrieval phase, the CBR 

system should adapt the retrieved solution from the case-base to the needs of the target 

case (Watson, 1999). This usually involves some degree of adaptation of the retrieved 

case (Ji et al., 2012a). The significance of case revision lies in that it is difficult to 

provide a construction cost estimate with sufficient accuracy because of the low 

similarity of the retrieved case and target case (Jin, et al., 2012). Several studies have 

proposed a variety of revision methods including human intervention (Perera & 

Watson, 1998) such as adaptation by experienced estimators or experts and regression 

analysis (Jin, et al., 2012; Jin, Han, Hyun, & Kim, 2014; Kim & Hong, 2012a). 

Watson and Marir (1994) mentioned that human collaboration should not be 

viewed as a weakness of CBR. Others considered that revision by humans is 

insufficiently reliable, inefficient and difficult to directly implement in the model (Jin, 

et al., 2012). Kim et al. (2012) propose a method in which estimators select or adjust 

the final estimate, wh

together to increase the accuracy of estimation. However, this method is limited in 

terms of verification, because it depends on the estimator selecting or adjusting the 

final estimate value. Different estimators may have different preferences and cannot 

cope with big databases (Kim, Seo, et al., 2012). Moreover, Marzouk and Ahmed 
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(2011) have prov

adaptation methods (null adaptation, weighted adaptation and Neuro-adaptation), 

while Ji et al., (2012) have also proposed an adaption method that decreases the need 

for adaptation and increases the capability of adaptation. 

MRA is popular in the application of case adaptation as well. For instance, Ji et 

al. (2010a) and Jin et al. (2012) explore how to compensate the differences in attributes 

between the target case and the retrieved case by using MRA to amend the numerical 

variable values. A non-standardized factor can be used to calculate the effect of the 

independent variables on the dependent variable (Kim & Hong, 2012a). Jin et al. (2014) 

further improve the MRA method to model the deviations of both categorical and 

numerical variables using dummy variables. However, this method is also criticized 

due to its assumption of a simple and straightforward connection between features and 

solutions, which is not always justified (Du & Bormann, 2014b).  

Case adaptation is the process of reducing the differences in the requirements 

between the new problem and the retrieved case (Craw et al., 2006). One of the most 

effective case adaptation approaches is to adjust the selection of promising candidate 

cases (Ji, et al., 2012b). Since using only one target case may not generate sufficient 

accurate results for the current problem, K-nearest neighbour (K-NN) method is 

widely used in case adaptation because of its convenience as the most basic instance-

based method for approximating a real-valued or discrete-valued target function 

(Changchien & Lin, 2005; Shin & Han, 1999). It ranks neighbours in the 

case-base and uses the labels of the K-most similar neighbour to predict the label of 

the new case (Liao et al., 2002). The weighted average value of the k most similar 

d for solving the current problem. However, K-NN has 

difficulty in deciding the value of k in a given situation since the determination of 

attribute weights has a significant influence on the efficiency and accuracy of the case 

retrieval (Barletta, 1991; Changchien & Lin, 2005). 

2.2.6 Case Retainment in ECCE  

Case retention is the process of updating the case-base by storing the revised 

solution of the new problem (Byung Soo, 2011). In case retainment, the question of 

what to retain and how to retain should be addressed. It can be deemed as the process 

of learning, triggered by the outcome of the evaluation and possible repair (Aamodt & 

Plaza, 1994). In practice, ECCE is usually conducted before the construction is 
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designed, and thus must depend on the case retained in the case-base previously. The 

retainment of the target case will be considered after its cost has been finalised. The 

decision whether to retain a case in the case-base can be made only when the project 

has been completed and the final cost has been calculated. Based on the evaluation of 

the solution provided by the CBR model and its final cost, the CBR system can be 

updated continuously. Despite the extensive work in CBR for ECCE (Ahn, et al., 2014; 

Ahn et al., 2017; Choi, et al., 2014; Chou et al., 2015; Ji, et al., 2018; Kim & 

Management, 2013; Lee, et al., 2013b; , 

there is a lack of research on case retainment.  

As the final step in the CBR model, case retainment has a large influence on 

case-base and is closely related to the CBM. CBM is the process of refining the case-

base to enhance the CBR system's performance. CBM not only involves the initial 

stage of case-base building, but also includes continuous case-base refinement and 

update (Leake & Wilson, 1998b). Although both case retainment and CBM involve 

case-base editing, the scope of CBM is much broader. In the ECCE CBR model, case 

retainment is used more frequently than CBM in existing ECCE studies. It includes 

several operations: deleting the cases to reduce the redundancy and inconsistency, 

clustering the cases to improve the reasoning power, editing the cases to repair 

incoherencies, etc. (Haouchine et al., 2007).  

Despite their great importance in practice, little research attention has been given 

to case retainment or CBM. The situation in which the actual cost of the testing cases 

is already known when building the model has led to the study of case retainment and 

CBM being overlooked in existing ECCE studies. It would be simpler to only focus 

on certain steps, such as case retrieval, reuse and revision. This ignorance on the CBM 

not only hinders the development of a complete framework for the CBR model of 

ECCE, it also leads to difficulties in the enhancement of implementing CCE CBR 

research results into practice.  

However, with the popularity of CBR applications in industrial environments, 

issues related to the building and maintenance of the case-base are becoming important 

(Khan et al., 2019a; Smiti & Elouedi, 2018b; Torrent-Fontbona et al., 2019). As data 

pre-processing is the most challenging and time-consuming for applying data mining 

techniques to real-world data, CBM has a significant 

performance (Bilal, et al., 2016). Recently, research has focused on CBM in ECCE. Ji 
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et al. (2018) produce a learning method to maintain and enhance the performance of 

ECCE CBR when there are insufficient cases in the case-base. The covariance effect 

in case-base has been addressed in another recent study (Ahn, et al., 2017). More 

research should focus on CBM to address the inconsistency between the existing 

research and practice.  

2.3 CASE-BASE MAINTENANCE 

2.3.1 Defining CBM 

CBM is defined as the process of refining the case-base to enhance the CBR 

contents (representation, domain content, accounting information, or implementation) 

of the case-base in order to facilitate future reasoning for a particular set of 

(Leake & Wilson, 1998a). It involves various maintenance 

operations and has a very broad scope. For example, CBM may include editing a single 

case or multiple cases (e.g., adding or delete information of the cases), adjusting the 

way a case is represented (e.g. revising the case indexes,) revising the domain 

knowledge in the case-base (e.g., adding or deleting an entire case), editing the 

structure or contents (e.g., changing the structure of the case-base), or revising the 

implementation process of the case-base (e.g., building a filter for case-base retrieval 

or changing the method to evaluate the distance between the target case and the 

previous case). The main objective of CBM is to enhance the problem-solving ability 

of the CBR system from various perspectives (Wilson & Leake, 2001a).  

In the CBR system, case-base is deemed as a fundamental component. 

Additional maintenance of case-base is necessary to deal with the problems that arise 

during long-term use, especially when the knowledge in case-base changes over time 

(Lupiani, et al., 2014a). CBM affects the case-base from different levels including 

representation level, the knowledge level, or the implementation level (Dietterich, 

1986). As one of the exemplar-

significantly influenced by the cases stored in the case-base. Therefore, the 

fundamental CBM strategy involves editing the case-base. In the case-base, 

insufficient data will impair the ability of the CBR model and cause potential negative 

effects on the results (Ji, et al., 2018). When the size of the case-base becomes large, 

there are more noises in the data and the retrieval process gets slow. This inevitably 

raises the question of how to select cases to avoid excessive storage and time 
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complexity (Khan, et al., 2019b). Thus research attention has been directed to CBM 

 retrieving solutions to the current 

problem, as well as the requirement of avoiding the interference of the noisy data in 

the CBR model (Wilson & Leake, 2001b). The CBM strategy could facilitate the 

accuracy of the CBR system by reducing the sensitivity to noise and the time for 

execution. Error reduction and redundancy reduction are the main focus of this area 

(Lopez De Mantaras et al., 2005). These techniques are designed based on the different 

requirements from the redundancy and noise level (Lupiani et al., 2016). 

2.3.2 Criteria for Evaluating Case-base 

The criteria for evaluating case-base are critical because how to maintain a CBR 

system is largely determined by the evaluating criteria (Leake & Wilson, 2000). 

Several concepts have been proposed to provide the basic knowledge for 

understanding and evaluating the case-base. The competence and the performance of 

case-base are two major dimensions for classifying these concepts (Smiti & Elouedi, 

2011c). Competence is defined by the range of the problems whose solution can be 

successfully provided by the system. Smyth and McKenna (1995) first defined two 

basic core concepts in competence: coverage and reachability. The coverage of a case 

refers to the range of problems whose answer can be satisfactorily provided by this 

case. The reachability of a target problem refers to the range of cases whose solution 

can be used for the target problem. Case-bases with high coverage and low reachability 

are usually deemed as competent cases (Smiti & Elouedi, 2011a). Later the concept of 

competence is extended from individual cases to group cases by introducing the 

retrieval-space and the adaptation space. The group coverage is defined as a function 

that is proportional to the size of the group and inversely proportional to the density of 

case-base (Smyth, 1998). It can be measured by two indicators: the time needed to 

produce the solution for case targets and the accuracy of solving the target problem by 

using the retrieved solution (Smiti & Elouedi, 2011c). These concepts of case-base 

provide the various evaluation criteria for evaluating the case-base. Based on these 

concepts, the performance of a CBR system can be evaluated from three dimensions 

(Smyt & McKenna, 1999):  

1. Efficiency of the CBR system (e.g., total problem-solving cost). 

2. Competence of the CBR system (e.g., the scope of target problems can be 

satisfactorily solved). 
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3. Quality of the CBR system (e.g., the average accuracy of solutions provided 

by the system). 

However, there is no guarantee that all the dimensions can be optimized at the 

same time. When CBR is used to solve a real-world problem, it is inevitable to 

encounter some constraints. These constraints, such as limited storage capacity of the 

case-base size, and the balance between long-term use and short-term use, are critical 

when using the ECCE CBR system in real-world problems (Leake & Wilson, 2000). 

The criteria for evaluating the system and constraints on CBR performance differ due 

to varying external circumstances.  

2.3.3 Influencing factor in CBM 

Several research efforts had been made to understand the influence of case-base 

properties including the number of cases stored in the case-base, the distribution of the 

cases indexes, and the density of cases (Barua et al., 2018; Ji, et al., 2018; Lieber, 1994; 

Smyth & Cunningham, 1996).   

Case-base size is deemed as an obvious factor for measuring the competence of 

case-base. Despite the close relationship between the size of the case-base and the 

competence of the resulting system, the precise nature of their interaction is still not 

clear. Though it is simple to measure the number of cases in the case-base, the size of 

case-base cannot completely influence competence (Smyth & Keane, 1995). For 

example, some cases in the case-base can solve a wide range of target problems while 

others may only be useful when the unusual problem occurs. Obviously, the former 

class of case makes a greater contribution in competence property of case-base while 

the latter one may contribute more in accuracy property of case-base by solving the 

rare problem. Thus, the research question has been directed to optimizing the 

performance of the ECCE CBR system by increasing the size in the case-base (Ji, et 

al., 2018). Besides, the size of the case-base indirectly influences the efficiency of the 

CBR systems resulting in a great number of case-base reduction strategies (Jalali & 

Leake, 2014; Leake & Schack, 2015, 2016).  

The density of cases in the case-base is also an important factor influencing the 

competence of case-base. The effect of the cases differs due to the density of the case-

base. For example, an individual case in the low-density group may have less 

contribution to the competence of the case-case than those in the high-density group. 
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This is mainly because dense groups contain more redundant cases than sparse groups. 

Compared with the size of case-base, the density of the case is more complicated to 

measure. The density of cases in the case-base is measured by a function of case 

similarity (Smyth & McKenna, 1998). Smiti and Elouedi (2010) propose a CBM 

method based on density for reducing its size and preserving the maximum 

competence of the system. By clustering the large case-base into small clusters of cases, 

the amount of cases stored in the case-base is reduced, which can be easily maintained 

during its operations (Smiti & Elouedi, 2010). Later, they propose a density-based 

CBM method named Density Based Spatial Clustering of Application with Noise 

(DBSCAN). DBSCAN is designed to efficiency. In their 

study, DBSCAN is combined with Gaussian-Means (GM) algorithms for clustering 

and is named for the DBSCAN-GM model. Their research has a hypothesis that the 

large case-base with weighted features can be transformed into a small case-base by 

enhancing its quality (Smiti & Elouedi, 2014). Although DBSCAN-GM has obvious 

advantages of automatically discovering the number of clusters and noisy data, it is 

limited for objects being often doubtfully classified. They further improve the 

DBSCAN-GM by combining DBSCAN-GM and fuzzy set theory. The simulation 

experiments on several datasets have shown the effectiveness of this method (Smiti & 

Elouedi, 2016). 

The distribution of cases is another significant factor (Yang & Zhu, 2001). The 

distribution of the dataset has a significant influence on how to set the CBR model. By 

using various parameters in case selection, the performance of the CBR model can be 

significantly enhanced (Kocaguneli et al., 2011). This conclusion is supported by a 

recent study that data distribution has an influence on calculating the optimal number 

for searching similar cases in the CBR model (Azzeh & Elsheikh, 2017). Azzeh and 

Elsheikh explore how to optimize the value of K from the data distribution. Results 

show that understanding of the data characteristic is advantageous in helping to search 

the optimal value of the model (Azzeh & Elsheikh, 2017). Furthermore, the 

distribution of solutions also matters when designing a CBM strategy. Despite the 

difference in the distribution of problem features, problems can still be solved well if 

all problems have very similar solutions, which means that space could be covered by 

a small number of cases or even several single well-chosen cases (Smyth & McKenna, 

1998). Several distribution assumptions are widely used to represent real value random 
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variables, but the data in the real world sometimes fails to match the assumption. The 

changes in the case distribution may have a n -

solving ability (Ji, et al., 2018). For example, when problem distributions are non-

uniform, the compactness and competence cannot be especially good indicators of 

(Wilson, 2001). When the features of the problem are not 

Gaussian distribution, the spread of the values will not be biased toward the center and 

the accuracy of the CBR system will be significantly impaired (Ji, et al., 2018). 

Therefore, the irregular cases should be retained and considered if cases are unevenly 

distributed. When the problems are from the densely packed region of the case-base, 

they have a bigger chance to be satisfactorily solved while those from a sparse region 

are more likely to remain unsolved or have solutions with more errors. Ji et al. 

proposed an learning method, which transforms the distribution of raw data from 

biased bell shape to uniform shape. Training samples can be continuously generated 

based on the most influential factor on the dependent value identified in the study. The 

results how that the performance of the ECCE CBR model can be improved by using 

specific parameters (Ji, et al., 2018). 

2.3.4  Classification of CBM Strategies 

Various CBM strategies have been proposed and researchers evaluate them 

based on different standards. Leake and Wilson (1998) proposed a CBM framework 

that classifies the CBM approaches into different processes based on their role played 

in determining when and how a CBR system should conduct CBM. This framework 

includes data collection, triggering and execution. Data collection is the process of 

gathering the data needed in the case-base and prepare the information for the next 

stage. Triggering is the process of determining whether maintenance operations should 

be conducted and selecting the maintenance operation based on the data collection. 

Execution is the process that the selected maintenance operation actually applies to the 

case-base (Leake & Wilson, 1998b).  

Wilson categorizes these strategies based on the way maintenance strategies are 

executed into three dimensions: strategies targeting domain content, strategies 

targeting indices, strategies targeting maintenance policies. Strategies targeting 

domain content can be further classified into strategies adding and deleting cases, and 

strategies revising internal case content (Wilson, 2001).  
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Mantaras et al. (2005) explored the reduction techniques in CBM and classified 

them into two groups: to shrink storage requirements and reduce sensitivity to noise. 

(Lopez De Mantaras, et al., 2005). Similarly, Massie et al. (2006) classify them into 

two major areas: the noise control and the redundancy reduction (Massie et al., 2006). 

The noise control strategies endeavour to improve the accuracy of the CBR system by 

editing case-base, while redundancy reduction strategies attempt to improve the 

efficiency of the CBR system by reducing the size of a case-base.  

Pan et al. (2007) classify CBM strategies based on three dimensions: case search 

direction, case order sensitivity and selection criteria. Based on case search direction, 

the CBM strategies can be classified into incremental strategy and decremental 

strategies. The incremental CBM strategies begin with an empty case-base and 

continuously add cases from the original case-base to form a new one until particular 

requirements are satisfied. Otherwise, it is called the decremental strategy. Based on 

case order sensitivity, the CBM strategies can be classified into order sensitive 

strategies and order insensitive strategies. The order sensitive CBM strategies measure 

the sequence of the case stored in case-base and use it as the selection criteria, while 

the order insensitive CBM strategies do not consider the influence of the order of case-

base when selecting cases. Based on selection criteria, the CBM strategies can be 

classified into local criteria strategies and global criteria strategies. The local criteria 

strategies rely only on the local case parameters while global criteria strategies make 

decisions based on all the cases in the case-base. (Pan et al., 2007b).  

Lupiani et al. (2016) classify the CBM strategies into four groups: nearest 

neighbour (NN) strategies, Instance-based strategies, DROP family, Competence and 

Complexity models (Lupiani, et al., 2016). Storage reducing is most widely used in 

NN strategies because it could significantly decrease the size of the storage needed by 

slightly sacrificing the learning rate and classification accuracy. However, the 

performance of NN strategies degrades rapidly with the level of attribute noise in 

training instances. Instance-based strategies are derived from the NN strategies (Aha 

et al., 1991b; Wilson & Martinez, 2000). Competence model and the Complexity 

Profiling Family conduct maintenance operations based on a comprehensive analysis 

of case-base. Several concepts including Coverage, Reachability and Relative 

Coverage are introduced in these studies (Smyth & McKenna, 1999; Zhu & Yang, 

1999). Strategies can also be classified according to whether CBM strategies are 
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deterministic or not (Lupiani, et al., 2016). The deterministic CBM strategies always 

produce the same result from a given case-base while the non-deterministic CBM 

strategies may have different results each time that the strategy is operated. 

To provide a comprehensive literature review on CBM, this research classifies 

CBM strategies in three groups: reduction approaches, partitioning approaches and 

optimization approaches. Reduction approaches refer to the methods that select a 

subset of cases from the original case-

Partitioning approaches are those establishing an elaborate case-base structure and 

maintaining it continuously. Optimization approaches attempt to optimize the 

performance of case-base given several real-world constraints. In the following 

subsections, this thesis provides overviews of each type of strategy.  

2.3.5  Case-base Reduction Strategies  

Reduction strategies are the methods that 

performance by removing cases. They can be classified based on their main purposes: 

enhancing the accuracy of the CBR model, or the efficiency of the model. Accuracy-

cases that have a detrimental effect on accuracy (Smiti & Elouedi, 2011a). The cases 

are classified into corrupt cases and non-corrupt cases. Corrupt cases are those with 

incorrect solutions. Therefore, the reduction strategy aims to minimize the effect of 

these cases on the CBR model by deleting them. Efficiency-based reduction methods 

cases that have minimum 

effect on its contribution in case-base. The reduction method may have a negative 

influence on other aspects of the ECCE CBR system, thus care must be given before 

using these methods. They can be either incremental, beginning with an empty set and 

adding cases from the original case-base, or decremental where cases are removed 

from the original case-base.  

Noise reduction strategies attempt to enhance competence by removing cases 

whose effect on accuracy is detrimental. Several noise reduction techniques are 

proposed including Edited Nearest Neighbour (ENN), Repeated Edited Nearest 

Neighbour (RENN), All k-NN and Blame Based Noise Reduction (BBNR) (Massie, 

et al., 2006; Tomek, 1976; Wilson, 1972). ENN is the best-known approach to address 

the noisy data. It removes the cases whose label cannot be correctly classified by using 

the solution of their k nearest-neighbours (Wilson, 1972). ENN intends to retain all the 
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internal cases and deletes the border cases. It is a decremental approach and it tends to 

sacrifice the competence of the case-base for consistency with the initial training set 

(Aha et al., 1991a; Wilson & Martinez, 2000). When the ENN algorithm is applied 

successively until no further cases can be removed, it is named RENN (Cummins & 

Bridge, 2011; Guan et al., 2009; Tomek, 1976). The All k-NN is similar to the iterative 

ENN, except that after each iteration the value of k is increased (Tomek, 1976). ENN 

and its variations can be deemed as noise removal techniques (Wilson & Martinez, 

2000). They are widely used in noise reduction in various research fields (Kanj et al., 

2016). Compared with traditional noise reduction methods such as statistics-based 

outlier mining technique and deviation-based outlier mining technique, ENN is a non-

parametric method without any assumption on data set parameters or distribution 

parameters, which aims to maintain perfect consistency with the initial training set 

(Aha, et al., 1991a).  

The Condensed Nearest Neighbour (CNN) rule is used to compress the size of 

the case-base (Hart, 1968). It compresses the case-base to a subset whose performance 

does not have too much difference with the original case-base. CNN scans all the cases 

searching for the cases whose label cannot be classified by using its k-nearest 

neighbours and then adds them to the new case-base. This searching process will be 

terminated when all the original cases are correctly labelled. This method facilitates 

the reduction in the size of case-base but is limited because it is sensitive to noise. 

Sometimes the noisy cases in the case-base may be deemed as important exceptions 

and provide an unsatisfying solution. Despite CNN and ENN sharing some common 

concepts, ENN intends to retain all the internal cases and deletes the border cases and 

the noisy cases. It is a decremental approach and it tends to sacrifice the competence 

of the case-base for consistency with the initial training set (Aha, et al., 1991a).  

Reduced Nearest Neighbour (RNN) rule is then introduced to further improve 

 (Gates, 

1972). RNN initially searches the cases in the original case-base whose removal does 

not cause any other cases to be misclassified and adds them to the new one. This 

searching process stops when no further reduction can be conducted. However, RNN 

is criticized for being time-consuming and expensive when the original case-base is 

large.  
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Ritter et al., proposed the Selective Nearest Neighbour Rule (SNN) to address 

the limitations in the previous method by setting a minimal consistent subset. SNN 

tends to sacrifice storage more than accuracy when there are noisy data in the case-

base. However, it is more complicated and thus the learning process is longer than 

others.  

Aha et al., introduce a series of Instance Base Learning (LBL) methods (Aha, et 

al., 1991b). LBL methods retain and use only selected instances to produce the 

predictions (Wilson, 1972). An instance can be deemed as a data structure with a vector 

of input attributes and output value. Thus, Instance-based strategies are deemed closely 

related to ENN. Several algorithms, including IB1, IB2, IB3 are proposed in Instance-

based strategies. The IB1 algorithm is the simplest instance-based learning algorithm. 

Compared with IB1, IB2 algorithm adds the function of saving only misclassified 

instances. The IB3 algorithm further extends the IB2 algorithm by using restrictive 

case selection criteria (Aha, 1992). Similar to NN strategies, Instance-based learning 

algorithms have to deal with the problem of determining which instances to retain for 

use in the learning process (Wilson & Martinez, 2000). It is inevitable to reduce the 

efficiency of learning, and leads to sensitivity to noise when too many instances are 

stored (Wilson & Martinez, 2000).  

The Blame Based Noise Reduction (BBNR) algorithm further extended the 

competence model by consideri

contribution to misclassifications of other cases. For any case, if the cases in its 

coverage can be successfully labelled without using it, this case will be deleted when 

its liability set covers at least one case. This method measures the focuses on 

apportioning blame for misclassifications. It can maintain or even slightly enhance the 

generalisation accuracy (Delany & Cunningham, 2004).  

Ni et al., proposed a CBM strategy based on outlier mining and case sieving 

methods (Ni et al., 2005). This method follows three steps: identifying outlier cases in 

the original case-base; deleting aggressive outlier cases; and sieving cases from non-

outliers. The case-base without outlier cases is known as non-outlier case-base. The 

goodness of each case is measured and the one who has the maximum goodness value 

is added to a new case-base and deleted from the original case-base. This process will 

be terminated when the searching criteria is reached.  



 

Chapter 2: Literature Review 55 

Wilson (2000) introduces the DROP families for editing the case-base (Wilson 

& Martinez, 2000). A key concept in these algorithms is the associate case. If one case 

P is selected in the neighbourhood of another case Q, the case Q is named as an 

associate of P. In DROP1, a case will be eliminated when the majority of the cases in 

the original case-base can be successfully predicted by CBR system without it. DROP2 

considers the influence of the removal of a case on all the cases in the original case-

base instead of considering only those cases selected in filtered case-base. DROP3 

redesigns DROP1algorithm by adding a noise-filtering process before executing and 

helps to reduce the 

CNN, SNN, ENN, RENN, ALL K-NN, the DROP algorithms show better performance, 

especially when dealing with the uniform class noise.  

Massie et al.(2005) introduce a case-base editing based on the case-base 

complexity profiling (Massie et al., 2005). It calculates the local complexity based on 

the spatial distribution of cases within the case-base, which forms the complexity 

metric. The complexity metric provides the probability of finding another case in the 

nearest neighbourhood of a case with the same solution. This method estimates not 

only the ratio of redundant and noisy cases, but also the inaccurate cases (Massie, et 

al., 2006). Despite its usefulness in case discovery, this method is limited in evaluating 

the case-base competence. 

2.3.6 Case-base Partitioning Strategies 

The partitioning strategies partition the original case-base into subsets. Each 

subset of the case-base structure can be seen as one cluster generated from the 

clustering process. A representative case is created in each cluster and it takes a subset 

of the case features. Thus, the case feature with sufficient information is retained to 

provide a wide coverage of case-base. These strategies add or delete cases in each 

cluster simultaneously instead of editing the whole original case-base.  

Shiu et al. uses a fuzzy decision-tree to update the knowledge between different 

case-base containers in the CBR system based on case coverage and reachability. The 

redundancy in the case-base can be significantly reduced by learning the fuzzy 

adaptation knowledge. This method follows four steps. The first step is to evaluate the 

feature weight of the case-base. The second step identifies different clusters in the 

case-base using the acquired feature-weights. The third step is to use fuzzy decision 

trees to mine the adaptation rules, followed by the final step of case selection (Shiu et 
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al., 2000). This approach works particularly well on the case-base, which has a lot of 

redundancy caused by the interaction among features. This type of redundancy can be 

reduced through learning the feature weights of the cases (Shiu et al., 2001). However, 

this method is limited for its great complexity in the  generation and the selection 

of the final cases.  

Cao et al. proposed another partitioning strategy based on the fuzzy-rough 

approach (Cao et al., 2001). This strategy attempts to make the big case-base become 

small by using several particular adaptation rules. The overall complexity becomes 

low and the process of knowledge adapting is more efficient when compared to the 

maintenance results of using fuzzy ID3.  

Yang and Wu (2000) proposed a density-based clustering approach for CBM. 

Each case is seen as an individual and the distance between different cases is 

measurable. The cases in one cluster share more common features than cases in 

different clusters. After transferring clusters to the new case-base, the contents of the 

new case-base become more concentrated and simpler to reuse and refine. The 

clustering result can be seen as a reference for a domain expert to adjust the case-base. 

Each cluster will be labelled with a name and a list of keywords that can briefly 

summarize the case-base. This method is simple and easy to use because it divides the 

large-scaled case-base into several small-scaled clusters of closely related cases. Then 

the number of cases in the case-base is small, any simple CBR method can be used 

(Yang & Wu, 2000). 

Smiti and Elouedi (2010) introduce a COID method: Clustering, Outliers and 

Internal cases Detection (Smiti & Elouedi, 2010). Firstly, it clusters the original case-

base into several small case-bases, which can be simple to maintain each one alone. 

Secondly, outlier detection is applied to identify the outlier cases and internal cases. 

This method tends to retain the cases that have an effect on the quality of each cluster 

of the case-base. It facilitates the maintenance of the case-base by ensuring each case-

base is small and can be maintained individually. This method can be further extended 

by adding the measurements 

performance (Smiti & Elouedi, 2011b). 
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2.3.7 Case-base Optimization Strategies 

Case-base optimization strategies refer to those optimizing the performance of 

case-base given several real-world constraints. When using the CBR system to solve 

the real-world problem, it is inevitable to encounter several application limitations 

(Leake & Wilson, 2000). The different organizations may have different requirements, 

resulting in the numerous studies on applying CBR with constraints. These constraints 

include the limited storage capability of the cases, the balance between long-term and 

short-term performance, the inconsistency between the data distribution and the 

availability of sources of cases (Leake & Wilson, 2000). Among those, suppressing 

the size of the case-base while maintaining the performance of the CBR system is most 

widely addressed. A lot of studies have been conducted to address this issue and some 

of them are summarised as follows.  

As the simplest approach, random deletion strategy, removing cases randomly 

when a certain limit of the size of the case-base, is given (Zhu & Yang, 1999). This 

strategy sometimes works as well as other more expensive methods (Smiti & Elouedi, 

2011a). However, it is criticized because of its limitation in the preservation of the 

competence of the case-base (Abdel-Aziz & Hüllermeier, 2015).  

Another simple approach, delete cases, depends on the frequency of each case 

used in the retrieving process (Minton, 1990). However, it may possibly delete the 

important cases which may be very good for reuse. This method over-sacrifices the 

competence of the case-base. Both of these strategies suffer from the drawback that 

important cases can be possibly deleted by mistake. Utility deletion approaches are 

then introduced to address the previous limitations by deleting the case with negative 

utility (Smyth, 1998). Various concepts of case utility are introduced in several studies 

(Minton, 1990; Smyth, 1998; Smyth & Keane, 1995). Minton's utility metric is used 

for measuring its performance benefits. The utility of a case is calculated as follows:  

Utility =[Application_Frequency * Average_Savings]  Match_Cost     2.1 

Where Application_Frequency refers to the number of times the case has been 

retrieved, Average_Savings refers to the time reduced by retaining that case in the 

case-base. Match_Cost is the expenditure to compute similarity.  

The utility deletion strategy deems the relation between the solution quality and 

the retrieving efficiency as a trade-off problem. The system efficiency is measured by 
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the total or average time to solve the target problems. In other words, reducing the 

retrieving time increases the system efficiency. The solution quality is determined by 

the average accuracy of the solutions or the quantity of good solutions provided by the 

system. These deletion policies suffer from the drawbacks of significantly impairing 

the competence of a CBR system and causing disastrous results. The possible deletion 

of important cases that may be very good for reuse will make certain target problems 

unsolvable.  

Smyth and Keane propose a footprint deletion method based on the case 

classification. Cases can be classified into pivotal cases, auxiliary cases, spanning 

cases and support cases. A case is deemed as a pivotal case if the competence of the 

case-base is reduced after deleting it. A pivotal case is only reachable by itself. If the 

deletion of a case does not affect the competence of the case-base, this case is an 

auxiliary cases. Spanning cases are those whose coverage spaces span regions of the 

problem spaces. Some special spanning cases are known as support cases because they 

provide similar coverage to the others in a group (Smyth & Keane, 1995). The footprint 

deletion strategy deletes the cases in the order of auxiliary cases, support cases and 

pivotal cases (Lawanna & Daengdej, 2010). When the size of the case-base exceeds 

the limits, footprint deletion can be combined with utility deletion. The footprint-utility 

deletion strategy follows the rule: firstly, the footprint methods are used for selecting 

the cases. If there is only one case, then it is deleted, otherwise, the coverage and the 

reachability of the selected cases will be calculated. The cases with the lowest utility 

will be deleted from the case-base. 

They also propose the competence guided editing strategy by using local case 

information to rank the cases for selection. Ranking the coverage and reachability can 

be deemed as a method for compressing the size of case-base (McKenna & Smyth, 

2000; Smyth & McKenna, 1999). An authoring system is then designed where the 

case-base developers could manage the selection of adding or deleting cases from the 

case-base (McKenna & Smyth, 2001).  

Iterative Case Filtering (ICF) is a method for filtering cases in the case-base 

based on coverage and reachability (Brighton & Mellish, 1999). The ICF algorithm 

exploits the lazy learning parallels and it deletes cases with size of reachable set larger 

than the coverage set. The rule is applied successively until no more cases can be 

removed. This strategy tends to retain boundary cases and remove central cases.  
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Yang and Zhu (2001) proposed a case-adding strategy that can generate a case-

base with good coverage quality. Firstly, the neighbourhood of each case in the case-

base is measured; secondly, adding the cases with the maximal benefit with respect to 

the existing neiborhood to the new case-base; thirdly, this process is continuously 

repeated until the stop criteria is satisfied. This method is provided with a theoretical 

analysis illustrating its capability to generate a well-defined range on coverage (Yang 

& Zhu, 2001). 

Salamo and Golobardes (2003) introduce an Accuracy-Classification Case 

Memory (ACCM) algorithm based on the rough sets theory. ACCM aims to reduce 

the size of the case-base by using reachability and coverage separately. Another 

algorithm named Negative Accuracy-Classification Case Memory (NACCM) further 

extends ACCM by allowing a broader range of case selection than the ACCM 

technique. It aims to maintain the minimal size of the case-base. NACCM selects the 

cases near the outlier region and fewer cases are maintained, thus producing more 

reduction (Salamó & Golobardes, 2003).  

Delaney and Cunningham propose the Conservative Redundancy Reduction 

(CRR) strategy, where cases with small coverage set are selected first. CRR strategy 

achieves a higher accuracy than those comparable but more aggressive strategies. It is 

always a trade-off problem between the level of compaction and competence 

preservation (Delany & Cunningham, 2004).  

The latest studies focus on combining CBM with other methods. Smiti and 

Elouedi develop a novel soft CBM method by using soft competency model and fuzzy 

clustering technique. By analysing and revising the theoretical foundations of the 

current CBM approaches, their study attempts to enhance the competence and 

efficiency of the CBR system (Smiti & Elouedi, 2018a). Khan et al. introduce a hybrid 

CBM method to deal with the large scale of case-base. By equally utilizing the benefits 

of case addition and case deletion strategies, this method maintains the case-base in 

online and offline modes respectively (Khan, et al., 2019b). Nakhjiri et al. introduce 

Reputation-Based Maintenance (RBM) to enhance the classification accuracy of a 

CBR model while shrinking the size of its case-base. In RBM algorithm, the reputation 

for each case in the case-based is measured and it can be used to represent the related 

competence (Nakhjiri et al., 2019). Smiti and Elouedi develop a dynamic CBM method 
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based on machine learning techniques to address the slow speed brought by the 

continuous growth in the case-base (Smiti & Elouedi, 2019). 

Previous studies assume that current case-base knowledge can be used as a proxy 

for future problems during the case retainment process. However, this assumption 

sometimes may not hold for sparse case-base during initial case-base growth, 

especially during dynamically changing domains. To address this issue, Leake and 

Schack presents a novel method named Expansion-Contraction Compression (ECC) 

when the assumption that current case-base knowledge can be used as a proxy for 

future problems during the case retainment process does not hold. Their study attempts 

to enhance the competence preservation when the representativeness assumption is 

only partially satisfied. ECCE attempts to broaden the range of the available cases by 

(Leake & Schack, 2018). It has good performance when used 

in cross-domain problem-solving. In summary, all these strategies solve the trade-off 

problem from different perspectives (Massie, et al., 2006). 

2.4 CHAPTER SUMMARY 

This chapter has provided a comprehensive literature review of the research 

problem and its related areas. The background of the construction cost estimation, 

inaccuracy in construction cost estimation, influence factors in construction cost 

performance are reviewed together with the significance and challenges in ECCE. The 

application of CBR in ECCE carefully examines each step of the existing CBR model 

in ECCE. After briefly introducing the CBR and its advantage in ECCE, problem 

formulation, case retrieval, case reuse and case revision, and CBM, are reviewed to 

provide an in-depth understanding of the existing research. Section CBM includes the 

definition of CBM, the criteria for evaluating case-base, influencing factors in CBM, 

and classification of CBM strategy, case-base reduction strategy, case-base 

partitioning strategy and case-base optimization strategy.  

Several findings are made based on the literature review. Firstly, MLA, ANN, 

and CBR are found to be the three most widely used methods for ECCE. Some studies 

show the contradictory results among these methods and thus, which of these methods 

performs the best remains a question. Although some research suggests the potential 

superiority of the CBR model for long-term use, there is no empirical evidence to 

support this assumption. 
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Secondly, despite some advantages brought by the increase of sample size, the 

current CBR models are limited when facing the challenges brought by informatization 

in the construction industry and rapid data growth. When the size of the case-base 

become large, noisy cases are inevitably increasing 

performance. As one of the exemplar- performance 

is significantly influenced by the cases stored in the case-base and will be impaired by 

the noisy cases. Therefore, how to improve the robustness of the CBR model becomes 

a critical question.  

Thirdly, the research attention on improving the C r long-

term use is found to be far from enough. The majority of ECCE CBR modes focus on 

certain steps such as case retrieval or case reuse and the research area in CBM is largely 

neglected. To tackle performance problems of a CBR system, it is necessary to update 

the existing case-base while maintaining problem solving competence. By combining 

the CBM strategy, the current CBR model of ECCE will be improved by reducing the 

negative influence of noisy cases and be more adapted for long-term use.  

Several limitations are found in this chapter. Firstly, the existing research lacks 

a systematic understanding of the parameter setting in the CBR model. Various 

parameters, including weight determination, similarity functions, and case adaptation, 

are used in the previous ECCE CBR model, yet the question on how to combine these 

parameters to achieve the optimal results in the CBR model remains a question. There 

is no consensus on how to combine these parameters to achieve the optimal results in 

the CBR model. The literature review also finds that although several studies deem 

CBR advantageous for long-term use, there is no empirical study illustrating this 

advantage and how the performance of the CBR model changes with the increase in 

the number of cases in the case-base.  

The literature review also finds some limitations on weight determination in the 

current ECCE CBR model. In the CBR model, the solution to a target case generates 

from the most similar previous cases. This process is determined by the similarity 

function, which is significantly influenced by the attribute weight. In the CBR system, 

each attribute can be seen as an index that contains a part of the knowledge stored in 

the case-base. Attribute weight reflects the influence of this knowledge component on 

case-base. Therefore, attribute weights can be deemed as indicators of the overall 

knowledge structure of the case-base. In the ECCE CBR model, attribute weights 
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inevitably change due to updating and refining of the case-base. However, the existing 

studies have limitations in minimizing the changes of the structure of case-base.  

Additionally, the literature review finds some limitations on case-base 

maintenance (CBM) in the current ECCE CBR model. CBM is the process of refining 

the case-base to enhance CBR 's performance. Since case-base is a fundamental 

component in the CBR system, numerous studies emphasize that additional 

maintenance of case-base is necessary in the CBR system, especially when the 

knowledge in case-base changes over time (Lupiani, et al., 2014a). However, the 

existing ECCE CBR model extensively focuses on the initial establishment of the 

reasoning cycle, resulting in the ignorance of the case-base maintenance during long-

term use. During the long-term use of the ECCE CBR model, the historical database 

will continually increase over time as more data is added to it, resulting in a high 

requirement for maintaining the ability of the case-base. In particular, the changed 

resource costs, construction methods, design styles and economic conditions create the 

outdated and inconsistent data, which should be carefully handled. Also, the size of 

the case-base can grow very quickly with the continuous use of the CBR model (Smiti 

& Elouedi, 2018a). The efficiency of solving a new problem thus becomes slow, 

resulting in the compromised overall performance of the CBR model (Khan, et al., 

2019b; Lupiani, et al., 2014b). Without proper handling, this problem raised during 

long-term use will impair the performance of the CBR model: the typical issues being 

the low efficiency because of the continuously increasing size of the case-base. The 

research question of how to maintain the efficiency of the CBR system remains to be 

answered.  

 In summary, although various, the ECCE CBR applications have been 

developed, there is still a big gap between research and cost estimation practice. The 

popular trend of focusing on studying specific steps such as case retrieval, reuse, and 

revision has resulted in the other steps being ignored, which is hindering the 

development of a complete framework for CCE CBR. Based on the reviewed literature 

and research findings in this chapter, the proposed methodology and detailed research 

design is introduced in the next chapter.  
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Chapter 3: Research and Design 

3.1 INTRODUCTION  

The previous chapter provided a literature review on the related topics of the 

ECCE CBR model and the limitations in the current studies. This chapter next 

illustrates the research methodology to address the research questions and objectives 

in this study. It deals with developing and implementing the research plan for attaining 

the expected research outcomes. Several research components need to be considered 

during this process. As shown in Figure 3.1, this study considers the research approach, 

research methodology, research methods, model development, and data collection in 

the research design. This chapter begins by explaining the research approach used in 

this study. Section 3.2 provides the overall research framework by presenting research 

questions, research objectives, research methods, and expected research outcomes. 

Section 3.3 further explains the research methods used in this study. Section 3.4 shows 

the model development process. Section 3.6 discusses the data collection. Section 3.7 

summarizes the timeline and the potential research limitations. 

 

Figure 3.1 Structure of research plan  

Research Approach 

Research Methodology 

Research Method 

Model development 

Data collection 
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3.2 RESEARCH APPROACH 

The research approach is a methodological link between the research steps 

chosen by the researcher for addressing the research questions. For the research to be 

effective, it has to comply with certain accepted criteria and must follow a prescribed 

procedure. Research philosophy, approach to theory development, methodological 

choice, research strategies, time horizon, techniques and procedures make up the 

completed research design (Mark et al., 2015). To provide a qualified research, it is 

necessary to consider these factors when designing the research.  

There are five different research philosophies: positivism, critical realism, 

interpretivism, postmodernism, and pragmatism (Saunders, 2011). In this thesis, 

pragmatism and positivism are used. According to Saunders et al. (2011), pragmatism 

philosophy is based on the hypothesis that theory is only relevant where it supports 

action. Pragmatism emphasises the balance of objectivism and subjectivism, facts and 

values, accurate and rigorous knowledge, and different contextualised experiences. It 

evaluates and measures the role that the theories, concepts, ideas, hypotheses, and 

research findings play in attaining the expected practical outcomes in certain contexts. 

Pragmatism focuses on the practical effects and consequences of the ideas and 

knowledge.  

In pragmatism, research begins with a practical research problem and attempts 

to provide a solution. Since practical outcomes are deemed more important than 

abstract consequences, identifying the research problem is critical in pragmatism. Thus, 

the research problem should combine the pragmatist emphasis on practical outcomes. 

When the research problems do not clearly illustrate which type of method should be 

proposed, the research could work with different kinds of knowledge and techniques. 

It is common to use multiple techniques in one study. Pragmatists deem that it is 

necessary to conducting research from various perspectives because no single 

approach can ever provide the entire picture of a research domain.  

Positivist philosophy uses defined objectives and measures variables to derive 

conclusions. Positivist research uses a linear strategy of formulating hypotheses then 

attempts to disapprove these assumed relationships by concentrating on the null 

hypothesis. It is replicable and relies on deductive reasoning (Saunders, 2012). It 

allows the researchers to move from the theoretical position to a position based on 

empirical evidence (Cavana et al., 2001). The new position is based on the evidence 
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and assists in the identification of underlying theory that can be used to predict the 

behaviour of systems. In positivism, data gathering follows rigorous steps, and the 

quantitative data are analysed using statistical methods. To maintain objectivity during 

data collection and analysis, the researcher remains detached from the subjects. In this 

study, pragmatism and positivist philosophy are used together to identify the research 

problem, set the research objective, form the research hypothesis, analyse the results, 

and draw the conclusion. Table 3.1 has summarized the features of two types of 

philosophy. 

Table 3.1 Features of positivist and pragmatism philosophy 
Dimension Pragmatism  Positivist 

Assumptions  Concepts are only relevant where 
they support actions. 

This world can be measured by 
science and mirror  with 
privileged knowledge 

AIM To seek solutions to solve the 
practical problem.  

To explore the rules that can be 
used to predict how and why 
things will happen 

Stance of Researchers The standard of being 
may be different 

based on different situation 

Decisions should be made 
objectively.  

Values Resear
inquiry of the problem and drive the 
study.  

The influence of researchers 
 is denied; value-free;  

Research Plan Rigorous, based on the research 
question 

Rigorous, based on the research 
hypothesis 

Research Methods Mixed and multiple techniques, 
qualitative and quantitative methods 

Experiments; surveys; 
interviews; secondary data 
analysis; statistical analysis 

Goodness or quality of 
criteria 

Emphasis on the practical 

solutions and outcomes 

Reliability and objectivity; 
internal and external validity; 
benchmarks.  

Three approaches are used for theory development in this study: deduction, 

induction and abduction. If research aims to test the already formed theory by 

collecting data, then it is known as deductive research; if research attempts to generate 

or build theory to explain a phenomenon, then it is an inductive approach. If research 

attempts to collect data to explain a phenomenon, draw conclusions, and identify 

patterns, to establish a new theory, to improve an existing theory, it is an abduction 

research. The features of three different theory  development are shown in Table 3.2. 

Table 3.2 Summary of deduction, induction, and abduction  
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Dimension Deduction Induction Abduction 

Logic The deduction is in 
a deductive 
inference.  The 
conclusions must be 
true when the 
premises are true.  

 The induction is in an 
induction inference. The 
known premises are used 
to generate untested 
conclusions.   

The abduction is in an 
abdutive inference.  The 
premises which are known 
are used to generate testable 
conclusions.  

Generalisability The deduction is 
from the general to 
the specific 

The induction is from the 
specific to the general 

The abduction is from the 
interactions between 
specifics and the generals 

Use of Data To evaluate 
hypotheses or 
propositions related 
to an existing theory  

To explain a 
phenomenon, identify 
patterns and create a 
conceptual framwork 

To explore a phenomenon, 
identify patterns and locate 
the findings in a theoretical 
field.  

Theory Verifying the 
theory.  

Building and generating 
the theory.  

Generating, building and 
modifying the theory.  

 

Thornhill, 2012, Understanding Research Philosophies and Approaches, p. 145 

As shown in Table 3.3, positivist and pragmatism are used in research 

philosophy; induction and deduction are used as the approach for theory development. 

Mixed methods are used in methodology choice and strategies. A cross-sectional 

feature is adopted in the time horizon. CBR models, combined with GA, MRA, modal 

regression, and CBM, are used in the data collection and data analysis process.  

Table 3.3 Selection of approach in this study 
Research Elements  Selection of approach  

Philosophy  Pragmatism and Positivist 

Approach  Induction and deduction  

Methodological choice  Mixed method  

Strategies  Mixed methods research (literature review &Model 
development and validation)  

Time horizon  Cross-sectional  

Data collection and data analysis  Construction cost data  

CBR, GA, MRA, Modal regression. CBM 

3.3 RESEARCH METHODOLOGY 

Table 3.4 summarises the overall research framework in this thesis. The research 

framework is proposed to cooperate with research questions, research objectives, 

research methods, and expected research outcomes. 
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Table 3.4 Overall research framework 
No.  Research question Research objectives  Research 

method 
Expected research 
outcomes  

1 What limitations exist 
in the current ECCE 
CBR studies concerning 
long-term use? 

To well address the 
gaps and limitations in 
current ECCE CBR 
research. 

Literature 
review. 

Identify the potential 
factors and propose the 
following research 
question.  

2 Which methods are 
better for calculating 
weight and similarity 
based on different 
sample sizes? 

To compare the 
methods for calculating 
weight and similarity 
and explore the 
influence of sample 
size on CBR.  

CBR; 

MLR; 

GA; 

FC. 

Understand the 
influence of the sample 
size, determining the 
optimal parameters in 
the CBR model for 
later use.  

3 How to maintain a 
stable knowledge 
structure of the CBR 
model during long-term 
use? 

To improve the 
robustness of the 
ECCE CBR model by 
using a robust weight 
determination method. 

CBR; 

Robust 
regression.  

The proposed method 
can improve the 
robustness of the CBR 
model.  

4 How to improve the 
efficiency of the ECCE 
CBR model for long-
term use?  

To develop a CBM 
strategy for ECCE 
CBR models to 
maintain its efficiency 
during long-term use.  

CBR; 

CBM 
strategy. 

The proposed CBM 
strategy can improve 
the efficiency of the 
CBR model.  
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Figure 3.2  Research methodology (adapted from (Salkind & Rainwater, 2006)) 
 

Figure 3.2 illustrates the research methodology in this study (Salkind & 

Rainwater, 2006). Firstly, the main research question of how to improve the CBR 

model of ECCE for long-term use is proposed. Then, the critical factors are identified 

by conducting a literature review on ECCE, application of CBR in ECCE and CBM. 

Three research hypotheses are formulated to address the main research issue: it is 

necessary to consider the sample size when using ECCE CBR model; a robust weight 

determination would improve the robustness of the ECCE CBR model; and a CBM 

strategy for editing the case-base would improve the efficiency of ECCE during long-

term use.  

3.4 RESEARCH METHODS 

3.4.1 CBR 

CBR is a problem-reasoning process variously described as involving addressing 

a current issue by retrieving previous knowledge and experience (Kolodneer, 1991). 
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In the CBR system, new problems are solved by reusing and adapting the solutions of 

previous cases that have been successfully solved (Riesbeck & Schank, 1989). It is a 

process  a new problem by remembering a previous similar situation and by 

reusi (Aamodt & Plaza, 1994).  

There are two parts involved in the CBR system: problem formulation and the 

reasoning cycle, as shown in Figure 3.3 (Richter & Weber, 2013). Problem formulation 

is made up of three stages, including case representation, case indexing, and case 

storage. Case representation is the process of describing the problem (Richter & Weber, 

2013); case indexing is the process of assigning characterizing attributes to the cases 

(Chen & Burrell, 2001); and case storage is the process of establishing the structure of 

the case-base in preparation for the next step of the cycle (Watson, 1999). The CBR 

ocesses of retrieval, reuse, revision, and retention 

(Aamodt & Plaza, 1994; Byung Soo, 2011). Retrieval is the process of searching for 

previous solutions from the case-base that enable the best solution to the new problem; 

reuse is the process of using the retrieved solutions to solve the target problem; revision 

is the process of adapting the retrieved solutions to solve the target problem; and 

retention is the process of updating the case-base by storing the new problem and its 

solution (Byung Soo, 2011). 

Case representation  

Case representation is the process of deciding what to store in a case and how to 

describe and organize the case contents in an appropriate structure (Aamodt & Plaza, 

1994). Typically, case representation comprises identifying the problem, identifying 

the solution, and identifying the outcome (Watson, 1999). In ECCE CBR modelling, 

the problem is how to estimate the cost of a particular project, and the solution is the 

calculated cost derived from the historical cases. The outcome is to know whether the 

estimated cost successfully represents the actual cost, namely the error rate of the 

model. Two error measures, namely Mean Average Percent Error (MAPE) and the 

Root Mean Squared Error (RMSE) of the log values were calculated to evaluate the 

prediction performance as follows:  

 

 MAPE =    3.1 

 RMSE=  3.2 



 

70 Chapter 3: Research and Design 

 

Figure 3.3 Tasks in the CBR Process 

Case retrieval  

In ECCE, case retrieval is the process of searching the cost of a previous project 

in the training set used as the cost of the new project. The core in case retrieval is the 

similarity function. As summarised in Chapter 2, the most widely used similarity 

functions are the weighted sum of the attribute distance and weighted Euclidean 

distance. Therefore, this thesis includes these to similarity functions. Equation 3.3 and 

Equation 3.4 illustrate the weighted sum of the attribute distance and weighted 

Euclidean distance respectively.  

                                             3.3 

            3.4 

where AV new-case represents the attribute value of the new case, AV retrieved-case 

represents the attribute value of the retrieved case. 

Weight Determination  

The determination of attribute weights significantly influences the performance 

of the CBR system (Changchien & Lin, 2005). will be 

improved with the improvement of the evaluation of attribute weights (Lee, et al., 

2013a). As summarised in Chapter 2, the three most widely used methods in previous 
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studies are the GA, MRA, and FC. Therefore, this study uses these three weight 

determination methods.  

GA optimization  

GA is a computational algorithm inspired by evolution. It is deemed as an 

optimization method and can be widely used in various research areas. In the GA 

algorithm, the possible solution to a specific problem can be labelled as a chromosome-

like data structure. By applying recombination operators to these structures, the critical 

information is saved. Generally, the GA algorithm starts with a random population of 

chromosomes. Then these structures are evaluated, and reproductive opportunities are 

distributed in a manner that chromosomes with better solutions are offered more 

chances to reproduce than those with inferior solutions. (Whitley, 1994).  

In this study, GA is used as another weight determination method in the ECCE 

CBR model. After computing the weight vector, they are used to label the attribute 

weight in the CBR model. More specifically, the attribute similarity and case similarity 

are computed by using these weights. Following the previous study (Ji, et al., 2018), 

the cost function that a case can be representing by appropriately weighting its 

attributes is measured as follows:  

                               3.5 

Where , ,  are the actual cost of the jth sample, the weight of the ith invariables, 

and the ith attribute value of jth sample, respectively. This formula can be represented 

using the following matrix: 

                                         3.6 

This research uses  to represent the distance between the actual cost of the jth 

sample and the sum of the product of the value of  and attribute value  , to 

optimize the value of . To find the optimal value of , this research conducts a 

minimization of the sum of the distance  by using GA. The fitness-function is 

defined as follows: 

,                                            3.7 

when                           3.8 
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 The MATLAB R2019 can be used to develop the GA model. The crossover rate and 

the mutation rate were set as 0.8 and 0.01.  

MRA 

MRA is a highly general and flexible data analysis method built on a defined 

mathematical basis (Kim, et al., 2004b). Basic MRA can be used whenever a 

quantitative variable, and the dependent variable Y, is to be studied as a function of 

the relationship (Cohen et al., 2013). There are several types of MRA, and ordinary 

least squares (OLS) are one of those widely used in determining the weight in the CBR 

model (Jin, et al., 2012; Jin, Han, Hyun, Kim, et al., 2014). OLS is a parameter 

estimating method, which minimizes the linear squares in a linear regression model. 

As one of the most powerful statistical purposes, OLS is convenient in practice 

(KARANCI, 2010; Kim, et al., 2004b). OLS assumes that the cost of a case can be 

represented by appropriately weighting its attributes and constant as follows:  

                                                  3.9 

where , , =  

Where ,  are the dependent variable and independent variables respectively,  is the 

estimated value.  can be deemed as the estimated total cost, and  can be deemed as 

measures of variables for estimating Y. For example, X1 could be storeys and X2 could 

be the total height of the building.  is the estimated constant, and  can be seen as 

parameters estimated by OLS. MATLAB R2019 can be used to develop the regression 

model. 

Feature counting 

The feature counting (FC) method deems all the features equal because of the 

assumption that no feature is more important than others (ChoongWan, et al., 2011; 

Dogan, et al., 2006). FC is considered to be effective for preventing bias against any 

factor (Dikmen, et al., 2007). Therefore, feature counting means the overall similarity 

of a historical project is only influenced by the quality of the cases themselves (Kim, 

Seo, et al., 2012).  

Case adaptation 

Case adaptation is the process of reducing the differences in the requirements 

between the new problem and the retrieved case (Craw, et al., 2006). One of the most 
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effective case adaptation approaches is to adjust the selection of the promising 

candidate cases (Ji, et al., 2012b). K-NN method is widely used as the case adaptation 

method. The K-NN ranks neighbours in the case-base and uses the labels of 

the k most similar neighbour to predict the label of the new case (Liao, et al., 2002). A 

different number of neighbours can be used in the case adaptation.  

3.4.2 Modal Linear Regression 

Different from OLS, MODLR is another type of MRA method developed based 

on the conditional mode of the response Y. Mode is defined as the number that appears 

most often in a set of numbers. Therefore, in MODLR regression, the value with the 

highest probability of occurrence of Y is taken (Yao & Li, 2014).  

Compared with other regression methods, MODLR generates a shorter 

prediction interval, and produces a more robust result when the data is not distributed 

as assumed. MODLR regression allows a skewed conditional distribution, and 

therefore the model pays greater attention to the main characteristics of the conditional 

distribution. It has received much research attention and is widely used in machine 

learning and artificial intelligence (Damir, et al., 2007; Wang, et al., 2017).  

Basic concepts  

There are several basic concepts in MODAL. As one of the MRA methods, 

MODAL shared some similar concepts with OLS. Given the independent and 

identically distributed observations ( , ), i=1, ,n, to explore the relationship 

between the response  and the covariates d the 

following linear regression model:  

 =  +                                                3.10 

distributed and independent of  with E(  | ) = 0. OLS method estimate  by 

minimizing the sum of squared residuals as follows:  

                                           3.11 

Introduction to MODLR  

Suppose a probability density function f(y|x) denotes the distribution of the 

response variable Y given the set of predictor x. MODLR assumes there is a unique 
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mode of f (y|x), denoted by Mode (Y|x) = argmax y (f(y|x)). Therefore, Mode(Y|x) is 

a linear function of x, i.e. 

                                         3.12 

In (5.3) the first element of x is the intercept term and assumed to be 1.The error 

is denoted as follows:  

 =                                                  3.13 

The conditional density of  given x by g( |x) can be deemed as the error 

distribution. To estimate the parameters, it is necessary to consider the condition of 

error distribution. When g( |x) is symmetric about 0, the estimate of  in (Equation 

3.12) will be equal to results obtained by conventional mean linear regression; when 

g( |x) is skewed, the results obtained by modal regression and classic mean linear 

regression will be different. For example, let (x,Y ) satisfy the following model 

assumption 

                                            3.14 

where  has density h(·). Suppose h(·) is a skewed density with mean 0 and mode 

1. If m(x) = xT  xT , then 

              3.15 

In this condition, both mean regression and modal regression can assume Y 

depends on x linearly; If m(x x) = xT , then 

3.16 

Equation 3.14 to 3.16 shows that Y does not depend on x in terms of the 

conditional mean; while Y does depend linearly on x in terms of conditional mode. 

The difference between modal regression and OLS regression can be seen clearly in 

this instance.  

function is developed based on the kernel density function as shown in (Equation 3.17).  

                              3.17 
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where  and  is a kernel density function. Aftering choosing 

this kernel, the M-step of the MEM algorithm can be used for parameter estimating by 

maximizing the objective function in (Equation 3.17) by .  

Modal EM algorithm 

Similar to an EM algorithm, the MEM algorithm consists of an E-step and an 

M- (0), repeat the following two steps until it converges(Li, Ray, 

and Lindsay, 2007; Yao, 2013): 

E- (k)),j = 1,...,n as 

                     3.18 

M-Step: In this step, we update (k+1)  

                 3.19

    ,                                                    3.20 

where X = (x1,...,xn)T, Wk is an n×n diagonal matrix with diagonal elements 
(k))s, and y = (y1,...,yn ) T . 

 The major difference between the OLS estimate and the MODLR lies in the E 

step.  

E-Step is a critical step causing the major difference between MODAL and OLS. 

In the OLS regression, equal weights are used for each observation. However, in 

MODAL regression, the weights of observations depend on how close yi is to the 

modal regression line. By using unequal weights of observations, MODAL can 

minimize the influence of observations far away from the modal regression line.  

Since the normal kernel is exploited in Equation 3.17, the function optimized in 

the M-step is a weighted sum of log-likelihoods corresponding to OLS regression. As 

the starting point influences the MEM algorithm, it is difficult to guarantee that the 

algorithm will converge to the optimal global solution (Equation 3.20). Therefore, it is 

necessary to use different starting points to run the algorithm multiple times to find the 

best local optimal. For any choice of kernel for  in (Equation 3.17), the proposed 

MEM has the ascending property. Each iteration of (Equation 3.19) and (Equation 3.20) 
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will monotonically non-decrease the objective function (Equation 3.17), i.e., Qh
(k+1) )

Qh
(k) ), for all k. 

Bandwidth Selection  

Bandwidth selection is a critical step in the MODLR regression. Although 

theoretical results on the traditional M-estimators cannot be directly applied to the 

proposed MODLR estimator, the asymptotic optimal bandwidth h for estimati 0 

can be obtained by minimizing the asymptotic mean squared errors (MSE) (Yao & Li, 

2014). Since the asymptotically optimal bandwidth formula contains the unknown 

variables, these unknown variables are replaced by their estimates.  

Given the initial residual ,  is estimated by the robust estimate 

proposed in the previous study (Huber, 1984), later, their mode  can be estimated by 

maximizing the kernel density estimator (Parzen, 1962). It is assumed that  is 

independent of x and x,  approximately has density g(·), thus g(v)(0|x) can be 

estimated by using the following equation 

                 3.21 

where h is determined by using the method proposed in the previous study 

(Botev et al., 2010) and K(v)(·) is the vth derivative of kernel density function K(·). 

Then J, K, and L can be estimated by using the following equation:  

3.22 

                            3.23 

                           3.24 

Therefore, the asymptotic optimal bandwidth  can be estimated by using the 

following equation:  

                       3.25 

where  and tr ( ) is the trace of  and W is 

a diagonal matrix, whose diagonal elements reflect the importance of the accuracy in 

estimating different coefficients. 
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When W = (J-1LJ-1)-1= JL-1J, it can be deemed as proportional to the inverse of 

the asymptotic variance of . Therefore, asymptotic optimal bandwidth  can be 

estimated by using the following equation  

                      3.26  

The bandwidth selection can be iteratively updated by recalculating the residual 

 given by estimated value in MODAL. In MODLR model the weight of observation 

differs due to the distance between the  and the modal regression, while in OLS 

regression, each observation has equal weight (Yao & Li, 2014). The further distance 

between the point  and the modal regression line, the less weight of the point . By 

using the MODLR regression in weight determination, the robustness of the CBR 

model can be improved, and the negative effect of noisy cases in the CBR model can 

be reduced.  

3.4.3 CBM Strategy 

With the long-term use of the ECCE CBR model, the historical database will 

continually increase over time as more data is added to it, resulting in a high 

requirement for updating and maintaining the ability of the case-base. Thus the CBM 

strategy can enhancing the CBR system's efficiency. The term case-base editing  is 

used when referring to the process of updating a given case-base through adding, 

deleting, and combining cases. 

Basic concepts  

Several basic concepts in the CBM strategy should be introduced (Pan et al., 

2007a). A case-base is a set of cases collected in practice. It can be defined as a 

problem-solution pair. Namely, any given case c in a case-base can be seen as a pair c 

=( x, s), where s  S is a solution to a problem description , and S is a set of solutions. 

For any training case-base T denoted by T= , the objective is to 

select a subset, which is called a new case-base, denoted by CB= 

, that the performance of the model based on the new CB is better for future 

problems. For each problem in a case-base T, the corresponding solution  can be 

seen as a function of the problem description, namely = . Therefore,  can be 
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represented by ( ,  ). Let N ( ) be the set of problem  whose solution  

is deemed close to . More formally: 

N( )=                                3.27         

Where L is an allowed similarity difference between the  to . Essentially, N 

defines a coverage of . N( ) is the coverage or neighbourhood of . It shows the 

problem solving capability of  in the existing case-base. After evaluating the 

neighbourhoods of all cases in a case-base, a case is deemed good when its problem 

solving capability is high. To select good cases, the frequency of cases occurring 

should be taken into consideration. For example, if the cost of a project is more used 

as the solution of other projects, then this project is naturally deemed as a better project 

for minimizing the searching cost.  

To evaluate the contribution of each case in the case-base, the coverage is 

defined as follows. 

Given a case space X, let x  X be a case. For any given case-base x, denote N(x) 

the neighbourhood of x. For each x, its coverage can be determined given the value of 

L. P(x

X. Therefore, the coverage contribution (CC) of a case x in the case-base X, is defined 

by the total frequency that x is selected as a neighbourhood of remaining cases in the 

case-base. The ratio between CC of a case x and total neighbourhood of case-base is 

represented by the coverage contribution ratio (CCR). More formally, the coverage 

contribution of x in the case-base T is defined as:  

M(x) =                                       3.28 

Then CCR of any cases x in any case-base X is defined as:  

R (x) = 3.29 

Since x  X, the case coverage is a real number between 0 and 1, and the sum 

of the coverage contribution ration of each case in case-base equals one. (Zhu & Yang, 

1999).  
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Weighted coverage contribution 

For a given case , N( ) differs due to the value of L. The larger value of L 

provides a broader range of neighbourhood while the smaller value of L provides a 

narrower range of similar cases. For any two different  and , the neighbourhood 

of  is determined as follows:  

 ( )=                             3.30  

 ( )= 3.31 

If the value of  is less than then the neighbourhood of determined by  

can be seen as a subset of the neighbourhood of determined by , namely, if 

 ( )  ( ). Since L is an allowed difference between the  to , it is 

naturally assumed that N( ) calculated by the smaller value of L may be deemed more 

important. Therefore, a weight function given the value of L is necessary to measure 

the difference caused by different values of L. Since K-NN is used in the case adaption, 

the different value of K decides a different range of neighbourhood of  . Given the 

influence of the neighbourhood range, the coverage contribution is weighted given the 

value of the K.   

For any given integer K, define a set S= . F , the value of 

the L is determined by choosing the value of . Accordingly, the neighbourhood of  

can be defined as follows: 

  ( )=                     3.32 

The value of  determines the  ( ), thus the neighbourhood of  can be 

classified into K sets ( ) given the value of . When =1, the neighbour of 

denoted by  ( ), is the smallest and  ( ) can be seen as ; When =2, the 

neighbour of , denoted by , contains  ( ). Therefore, the difference of the 

( ) from , denoted by  ( ), can be seen as . Similarly, for 

any given  =  ( ), i=2, . For each element in , 

coverage contribution should be evaluated differently by considering which set it 

belongs to. To better measure the coverage contribution, a weight function of  is 

proposed to represent the differences in each set. For any , the coverage contribution 

weight (CCW) can be defined as follows: 
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CCW =                                        3.33 

Where  is the neighbourhood of ,  significantly influences the 

process of case adaptation. By using CCW, the differences in coverage contributions 

are considered in the case-base. Note that when K equals one, the coverage 

contribution of cases is deemed as equal. Table 3.5 provides the summary of the major 

notations in this chapter.  

Table 3.5 Summary of the major notation.  
  

  

x Problem  

s  

T Any training case-base 

 The function between problem description and solution  

N(x) Coverage or neighbourhood of x 

P(x) Frequency that x is  

M(x) CC of x in the case-base T 

R (x) of x in the case-base T 

CCW (x)  

Case-base editing methods  

Case searching direction is a significant factor to consider when editing the case-

base. CBM strategies can be classified into incremental strategies and decremental 

strategies. The incremental CBM strategies begin with an empty case-base and 

continuously add cases from the original case-base to form a new one until particular 

requirements are satisfied. On the contrary, the decremental CBM strategies begin with 

the original case-base and continuously delete cases from it until particular 

requirements are satisfied (Pan, et al., 2007a). Compared with the incremental CBM 

strategies, detrimental CBM strategies have a global view of the remaining case-base. 

Thus this research decides to use the detrimental strategies for editing the training case-

base.  

Given a case space X= , let x  X be a case whose cost should be 

estimated. The proposed method to edit the case-base is shown as follows:  
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(1) Calculating the coverage contribution weight for any given K;  

(2) For each training case  in  =  calculated its 

coverage N ( ); 

(3) Calculating the weighted coverage contribution of each training case in the case-

base ; 

(4) Ranking the training cases with respect to their weighted coverage contribution 

and determining the threshold of weighted coverage contribution.  

(5) Selecting a subset D containing p instances with the lower weighted coverage 

contribution; 

(6) Updating the case-base by deleting those in D; 

3.5 MODEL DEVELOPMENT 

As shown in Figure 3.4, this study consists of two parts. The first part includes 

establishing a classic CBR model. The classic CBR model includes reasoning cycle 

and case-base. The reasoning cycle includes problem formulation and the CBR cycle. 

Problem formulation is the process of identifying the problem, identifying the solution, 

and identifying the outcome, and it involves organizing case representation, 

identifying evaluation indicators, and planning data collection. CBR cycle consists of 

case retrieval, case adaptation, and case retainment. Case retrieval refers to the process 

of determining the best matching previous solutions for the current problem. In this 

study, calculations of attribute weights and retrieval of the similar case constitute the 

case retrieval process. In the classic model, the calculations of attribute weights include 

the three most widely used methods in previous studies: GA, MRA, and feature 

counting. Retrieval of similar cases includes the two most popular distance functions: 

the weighted sum of the attribute distance and weighted Euclidean distance. Case 

adaptation is the process of reducing the differences in the requirements between the 

new problem and the retrieved case. One of the most effective case adaptation 

approaches is K-NN by adjusting the selection of the promising candidate case. 

Therefore, the K-NN method is used in case adaptation. Two error measures, MAPE 

and RMSE, were used as evaluation indicators in this study. 
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Figure 3.4 Model development 

The ECCE CBR model includes the most widely used weight determination and 

retrieval method in previous studies. The first part of the research involves a 

comparative study of different combinations of parameter settings of the CBR model. 
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It aims to explore how sample size influences the performance of the CBR model and 

how to combine the parameters to get the optimal results. The comparative study 

provides a clear understanding of the advantages and disadvantages of each setting. 

The results assist in testing the hypothesis, that CBR has the advantage for long-term 

use when compared with other methods, as well as providing a reference for 

subsequent optimization of the long-term use of the ECCE CBR model.  

 The second part includes the optimizations in terms of the robustness and 

efficiency of the ECCE CBR model during long-term use. The first optimization is 

proposed to improve the robustness of the existing model. In the ECCE CBR model, 

attribute weights inevitably change due to updating and refining of the case-base. 

However, these changes should be minimized because of the consistency requirement 

of the knowledge structure in case-base. The stability of the attribute weights can be 

considered as the indicators of the CBR model's robustness. When the size of case-

base gets large, it is inevitable to have a few cases which deviating from those 

mainstream bulk of cases (Chan & Wong, 2007). The existing weight determination 

methods have limitations in being sensitive to the outliers. A single outlier can have a 

large effect on the parameter estimates, thus will reduce the accuracy of the model. 

Therefore, improving the robustness of the ECCE CBR is the primary task during long-

term use. To address this issue, a robust weight determination method, modal 

regression, is introduced in this study. By comparing this weight determination method 

with the existing methods, the superiority and effectiveness of the proposed method is 

validated.  

The other optimization method is designed to improve the efficiency of the CBR 

model. Since case-base is a fundamental component in the CBR system, additional 

maintenance of case-base is necessary in the CBR system, especially when the 

knowledge in case-base changes over time. During the long-term use of the ECCE 

CBR model, the efficiency of solving a new problem becomes slow, resulting in the 

compromised overall performance of the CBR model. Therefore, an original CBM 

strategy is designed to improve the efficiency of CBR for ECCE. Several concepts 

including coverage, coverage contribution and weighted coverage contribution are 

introduced to evaluate the cases, followed by the illustration of the CBM strategy. By 

comparing the results of the CBR model before and after applying the proposed CBM 

strategy, the effect of the CBM method can be evaluated. All weight determination 
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methods including OLS, GA, MODAL are used to illustrate the effectiveness of the 

proposed method. By introducing the concept of weighted coverage contribution, this 

research attempts to compress the case-base to address the low efficiency of the 

retrieval process caused by the continuous growth in the size of case-base. The results 

can help the ECCE CBR model to avoid excessive storage and time complexity when 

dealing with the rapid growth of data in the construction industry. 

3.6 DATA COLLECTION  

3.6.1 Project Type 

For the selection of predictor variables for ECCE, the basic classification is 

project type (e.g., buildings, roads, facilities and bridges), because the variables 

involved vary significantly for each. For example, the gross floor area is a typical 

major variable for buildings, while the length is a major variable for roads. The 

uncertainty surrounding the project phase of application due to lack of design 

development also means that some studies can only use early information such as 

landscape area (RunZhi, et al., 2012) and building type (Jin, Han, Hyun, & Kim, 2014),  

while others are able to utilize such detailed project information as the area of exterior 

finishes (Kim, Seo, et al., 2012), and type of overhang design . 

As shown in section 2.1.9, residential building is most widely studied in the CBR 

model because of its significance in the construction sector and strong market demand. 

Therefore, this study uses residential building for data collection.  

3.6.2 Predictor Variables  

Despite the extensive research on ECCE, there is no generally accepted standard 

set of predictors involved. Information and time constraints are two factors that need 

or ECCE. ECCE usually 

is deemed as the initial construction cost estimate completed for a construction project, 

as shown in Figure 3.5 (Gardner Brendon, et al., 2016). At the early stage, only the 

least amount of project information is available. With the release of details on project 

design, the construction cost estimation accuracy is updated with more precision.  
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Figure 3.5 Construction cost estimating timeline (adapted from (Gardner Brendon, et 

al., 2016) 

Data collection effort constraints also need to be considered when determining 

the predictors. (Akintoye & Fitzgerald, 2000; Arafa & Alqedra, 2011a; Petroutsatou, 

et al., 2011). ECCE provides the basis for the owners or the investigators to choose 

adequate alternatives and it requires high accuracy (Cheung & Skitmore, 2006c). 

However, the accuracy of an estimate and its preparation cost is not always 

proportional (Sanders et al., 1992). At some point, increased accuracy cannot justify 

the additional costs incurred. The sooner ECCE is developed, the more effort and cost 

can be saved for subsequent work.  

Table 3.6 Summary of variables used in previous research for residential buildings 

No Reference Predictors 
Type of 

buildings  

1 
(Kim, et al., 

2004b) 

(1) the value of the gross floor area. (2) the value of 
storeys. (3) the value of the total unit number. (4) the 
value of duration. (5) the value of roof types. (6) the 
value of FDN types. (7) the value of the usage of the 
basement. (8) the value of finishing grades. 

Residential 
building 

2 
(Kim, et al., 

2005) 

(1) the value of location. (2) the value of the area. (3) 
the value of storeys. (4) the value of roof types. (5) 
the value of the total unit. (6) the value of the unit per 
storey. (7) the value of the average area of the unit. 
(8) the value of the foundation type. (9) the value of 
the usage of the basement. (10) the value of finishing 
grades. (11) the value of duration. 

Residential 
building 

8 
2008) 

(1) the value of the total area of the building. (2) the 
value of the ratio of the typical floor area to the total 
area of the building. (3) the value of the ratio of the 
footprint area to the total area of the building. (4) the 
value of the number of floors. (5) the value of the 
overhang design type. (6) the value of the foundation 
system. (7) the value of the floor structure type. (8) 
the value of the location of the core. 

Residential 
building  
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3 
(Koo, Hong, 

Hyun, & 
Koo, 2010) 

(1) the value of the delivery method (DB or DBB). 
(2) the value of multi-family house type. (3) the value 
of households number. (4) the value of location. (5) 
the value of non-working days. (6) the value of the 
total floor area. (7) the value of no. of storeys above 
the ground. (8) the value of no. of storeys below the 
ground. (9) the value of the size of the household. 
(10) the value of land ratio. 

Residential 
building 

4 
(KARANCI, 

2010) 

(1) the value of the year. (2) the value of duration. (3) 
the value of total construction area. (4) the value of 
the total site area. (5) the value of the total number of 
apartment blocks. (6) the value of the total number of 
apartments. (7) the value of percent area of social 
buildings in the total construction area. (8) the value 
of the earthquake region. (9) the value of the category 
of site topography. (10) the value of the type of 
insulation. (11) the value of the number of elevator 
stops. (12) the value of classification for degree day. 

Residential 
building 

5 
(Hong, et al., 

2011) 

(1) the value of the structure type. (2) the value of the 
foundation type. (3) the value of the ground plan of 
the building type. (4) the value of façade type. (5) the 
value of household type. (6) the value of the ground 
plan of the household. (7) the value of floor height. 
(8) the value of the number of layers. (9) the value of 
pilotis size. (10) the value of building-to-land ratio. 
(11) the value of building ratio. (12) the value of the 
gross floor area. (13) the value of lot area. (14) the 
value of basement gross area. (15) the value of 
landscaping area. (16) the value of the gross floor 
area of the subsidiary facilities. (17) the value of the 
area of the underground parking lot. (18) the number 
of buildings (19) the number of households 

Residential 
building 

6 
(Ji, Park, & 
Lee, 2011) 

(1) the number of households. (2) the quantity of 
gross floor area. (3) the value of unit floor 
households. (4) the number of elevators. (5) the 
number of floors. (6) the quantity of pilotis with 
household scale. (7) the number of households of unit 
floor per elevator. (8) the value of height between 
storeys. (9) the value of depth of the pit. (10) the 
value of the roof type. (11) the value of hallway type. 
(12) the value of structure type (RC). 

Residential 
building 

7 
(RunZhi, et 
al., 2012) 

(1) the value of the site area. (2) the value of the 
underground area. (3) the value of the ground area. 
(4) the value of the building area. (5) the value of 
building coverage ratio. (6) the value of the floor area 
ratio. (7) the number of underground floors. (8) the 
number of floors. (9) the value of height. (10) the 
value of landscape area 

Residential 
building 

8 
(Ji, et al., 
2012a) 

(1) the number of households. (2) the quantity of 
gross floor area. (3) the number of unit floor 
households;(4) the number of elevators; (5) the 
number of floors; (6) the number of pilotis with 
household scale; (7) the number of households of unit 
floor per elevator. (8) the value of the height between 
stories. (9) the value of the depth of the pit. (10) the 
value of the roof type. (11) the value of the hallway 
type. (12) the value of the structure type.  

Residential 
building 
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9 
(Ahn, et al., 

2014) 

(1) the number of households. (2) the quantity of 
gross floor area. (3) the quantity of unit floor 
households. (4) the number of elevators. (5) the 
number of floors. (6) the quantity of pilotis with 
household scale. (7) the number of households of unit 
floor per elevator. (8) the quantity of the height 
between storeys. (9) the value of depth of the pit. (10) 
the value of the roof type. (11) the value of hallway 
type.  

Residential 
building 

10 
(Jin, Han, 
Hyun, & 

Kim, 2014) 

(1) the value of the gross floor area. (2) the value of 
building coverage ratio. (3) the value of the floor area 
ratio. (4) the value of the number of households. (5) 
the number of floor households. (6) the number of 
floors. (7) the number of elevators. (8) the quantity of 
pilotis floors. (9) the value of the apartment type. (10) 
the value of hallway type. (11) the value of the 
foundation system. (12) the value of the roof type. 
(13) the value of the structure type. 

Residential 
building 

11 
al., 2008) 

(1) the value of total building area. (2) the ratio of the 
typical floor area to the total building area. (3) the 
value of the ratio of the footprint area to the total area 
of the building. (4) the number of floors. (5) the value 
of the type of overhang design. (6) the value of the 
foundation system. (7) the value of floor structure. 
(8) the value of the core location. 

Residential 
building  

12 
(Ji, et al., 

2018) 

(1) the number of households. (2) the value of 
building gross floor area. (3) the number of 
households per unit. (4) the number of elevators. (5) 
the number of floors. (6) the scale of pilotis with 
household. (7) the number of households of unit floor 
per elevator. (8) the quantity of height between 
storeys. (9) the quantity of depth of the pit. (10) the 
value of the roof type. (11) the value of hallway type. 
(12) the value of structure type (RC). 

Residential 
building 

 

Researchers usually only have a one-time opportunity to collect cost predictors 

(Smith & Mason, 1997). If the predictors selected in the study require a great amount 

of data collection and preparation time and effort, then they impair the usefulness of 

the model for early cost estimation (Gardner, et al., 2016). Therefore, the effectiveness 

and availability of the predictors both need to be considered. A comprehensive 

literature review of the predictors in previous studies was conducted to provide a clear 

understanding of the predictors in residential building, as shown in Table 3.6. To well 

understand the effectiveness of the predictors and maintain the consistency of data in 

different studies, the attribute weights are transferred by using the following equation:  

                                           3.34  
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where  are the transferred weight and original weight of the ith invariables in 

previous studies. Table 3.7 summarized the original attribute weight and transferred 

attribute weight in previous studies. Despite the extensive input attributes used in 

previous studies, there are only a handful of effective attributes of residential building 

(Ji, et al., 2018). These effective attributes contribute to more than 80% of the total 

attribute weight. The most influencing attributes of previous studies  effective 

predictors are gross floor area (total construction area), foundation type, no. of storeys 

below the ground.  

Table 3.7 Weight and transferred weight of predictors  
Reference Predictors Weight Transferred 

Weight 
Weight 
method 

(Kim, et 
al., 2005) 

the value of location, 

the value of area, 

the value of roof type, 

the value of total unit, 

the value of average area of unit, 

the value of foundation types, 

the value of basement, 

the value of duration 

[0.3296, 

0.0029, 

0.0426, 

0.0071, 

0.0243, 

0.3029, 

0.2489, 

0.0414] 

[0.3296, 

0.0029, 

0.0426, 

0.0071, 

0.0243, 

0.3029, 

0.2489, 

0.0414] 

 

 

 

MRA 

al., 2008) 
the value of ratio of floor area to total area, 

the value of overhang design, 

the value of core location, 

the value of foundation system 

[1 

1 

1 

1] 

[0.25, 

0.25, 

0.25, 

0.25] 

 

Binary 
dtree; 

al., 2008) 
the value of total area,  

the value of ratio of floor area to total area,  

the value of ratio of footprint area to total 
area,  

the value of number of floors,  

the value of overhang design,  

the value of core location, 

the value of floor type,  

the value of foundation system 

 

[0.387129, 

0.451902, 

0.439009, 

0.355676, 

0.509398, 

0.511249, 

0.189805, 

0.783560] 

 

[0.10671, 

0.12457, 

0.12101, 

0.09804, 

0.14042, 

0.14093, 

0.05232, 

0.21599] 

 

 

 

 

Info 
dtree, 

 

al., 2008) 
the value of ratio of floor area to total area,  

the value of overhang design,  

the value of core location, 

the value of foundation system 

[0.204025, 

0.243221, 

0.604721, 

0.783560] 

[0.11115, 

0.13251, 

0.32945, 

0.42689] 

 

Info 
dtree 
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(KARAN
CI, 2010) 

the value of building Construction Cost 
Index, 

the value of total construction area, 

the value of total number of apartment 
blocks,  

the value of type of insulation 

[0.264787, 

0.406413, 

0.108421, 

0.220376] 

[0.264787, 

0.406413, 

0.108421, 

0.220376] 

 

  GDM 

(Koo, 
Hong, 
Hyun, 

Park, et 
al., 2010) 

 

 

 

the value of plottage area,  

the value of total floor area, 

the value of land ratio,  

the value of floor area ratio, 

the value of stories below the ground,  

the value of stories above the ground,  

the value of parking lots,  

the value of landscape area,  

the value of public open space, 

the value of facility function,  

the value of site location  

 

[0.114, 

0.5730  

0.0027, 

0.2019, 

0.9320, 

0.2426, 

0.5583, 

0.5142, 

0.0212, 

0.4293, 

0.2940] 

[0.02871, 

0.14766, 

0.00070, 

0.05203, 

0.24017, 

0.06252, 

0.14387, 

0.13251, 

0.00546, 

0.11063, 

0.07576] 

 

 

 

 

 

GA 

(Ji, et al., 
2012b) 

the number of beds,  

the number of floors,  

the value of gross floor area,  

the value of unit floor area,  

the number of underground floors,  

pit,  

the value of quarter area ratio, 

the value of office area ratio, 

the value of pile foundation, 

the value of air conditioning 

[0.080580,  

0.017112;  

0.875692;  

0.004620,  

0.000025,  

0.027897,  

0.000017, 

0.000019, 

0.000062, 

0.000023] 

[0.080580,  

0.017112;  

0.875692;  

0.004620,  

0.000025,  

0.027897,  

0.000017, 

0.000019  

0.000062, 

0.000023] 

 

 

 

 

GA 

(Ahn, et 
al., 2014) 

the number of households,  

the value of gross floor area,  

the number of unit floor households,  

the number of elevators, 

the number of floors,  

the value of pilotis with household scale,  

the value of households of unit floor per 
elevator, 

the value of height between stories, 

the value of depth of the pit, 

the value of roof type, 

the value of hallway type 

[67.52, 

7433.60, 

4.87, 

0.97, 

9.48, 

3.88, 

2.73, 

-0.05, 

0.07, 

0.43, 

-0.41] 

[0.00898, 

0.98810, 

0.00065, 

0.00013, 

0.00126, 

0.00052, 

0.00036, 

-0.00001, 

0.00001, 
0.00006, 

-0.00005] 

 

 

 

 

Attribute 
impact 
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(Ahn, et 
al., 2014) 

the number of households,  

the value of gross floor area,  

the number of unit floor households, 

the number of elevators, 

the number of floors,  

the number of pilotis with household scale,  

the households of unit floor per elevator,  

the height between storeys;  

the depth of pit;  

the value of roof type, 

the value of hallway type 

[0.00654,  

0.93701, 

-0.1615, 

0.13886, 

-0.04609,  

0.11363, 

-0.0929,  

0.01528,  

0.07564, 

0.05241] 

[0.00654,  

0.93701, 

-0.1615, 

0.13886, 

-0.04609,  

0.11363, 

-0.0929,  

0.01528,  

0.07564, 

0.05241] 

 

 

 

 

 

MRA 

(Ahn, et 
al., 2014) 

the number of households,  

the gross floor area,  

the number of unit floor households, 

the number of elevators, 

the number of floors,  

the value of pilotis with household scale,  

the value of households of unit floor per 
elevator;  

the value of height between storeys;  

the value of depth of pit;  

the value of roof type, 

the value of hallway type 

[0.019, 
0.361, 
0.176, 

0.004, 

0.292, 

0.007, 

0.041, 

0.002, 

0.006, 

0.007, 

0.024] 

[0.02023, 

0.38445, 

0.18743, 

0.00426, 

0.31097, 

0.00745, 

0.04366, 

0.00213, 

0.00639, 

0.00745, 

0.02556] 

 

 

 

 

 

GA 

(Jin, Han, 
Hyun, 

Kim, et 
al., 2014) 

the value of gross floor area, 

the number of households, 

the number of elevators, 

the value of pilotis floors, 

the value of apartment type, 

the value of hallway type, 

the value of foundation system 

[0.8396, 
0.0764, 
0.1071, 
0.1220, 

0.6730, 

0.1809, 

0.0222] 

[0.41542, 

0.03780, 

0.05294, 

0.06036, 

0.33299, 

0.08951, 

0.01098] 

 

 

 

MRA 

(Ji, et al., 
2018) 

the value of gross floor area,  

the number of pilotis of a household scale 

[0.9803, 
0.0197] 

[0.9803, 
0.0197] 

GA 

 

It appeared that high influence attributes with low effort in data collection are 

the most preferred input variables for ECCE (Gardner, et al., 2016). A common feature 

is that the early stage variables reflecting primary design decisions have a bigger 

impact on the eventual building price than variables reflecting the more detailed later 

design decisions (e.g., Kirkham, 2014). The general principle, therefore, is that only 
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the variables for which information is available in the early design stages and that have 

a significant impact on cost are to be selected as predominant attributes 

2008). Therefore, to guarantee the prediction performance, three most influencing 

predictors including gross floor area (GFA), foundation type (FY) and no. of stories 

below the ground (NSBG) are identified. Considering the data availability and research 

focus, other factors including total above floor area (TAF), total below floor area 

(TBF), storey (S), no. of stories above the ground (NSAG), duration (D), 

commencement Date (CD), finish Date (FD), average storey height (ASH), and the 

total height of building (TH) are also considered. Totally, this study identified the 

following variables as predictors: GFA, TAFA, TBFA, S, NSAG, NSBG, D, ASH, 

THB and FT. Table 3.8 summarizes the predictors used in this study.  

Table 3.8 Predictors for ECCE 
NO. Abbreviation Predictors 

1 TFA Total floor area 

2 TAFA Total above floor area 

3 TBFA Total below floor area 

4 S Storey 

5 NSAG No. of stories above the ground 

6 NSBG No. of stories below the ground 

7 D Duration 

8 CD Commencement Date 

9 FD Finish Date 

10 ASH Average storey height 

11 THB Total height of building 

12 FT Foundation type 

3.6.3 Sample Size  

The sample size is a significant part of preparing cost estimates in practice. Any 

changes in the historical database may have substantial impacts on the predicted results 

of the new project. It is also a very fundamental and critical issue in academic research 

(Marshall, et al., 2013). Numerous qualitative and quantitative studies have explored 

its effect (Marshall, et al., 2013; Motrenko, et al., 2014; Wolf, et al., 2013). The 

performance of various ECCE models is greatly affected by sample size (Ji, et al., 

2010a). Therefore, it is necessary to take sample size into account when establishing 
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the ECCE CBR model (Skitmore, 2001; Yeung & Skitmore, 2012; Yeung & Skitmore, 

2005)).  

Generally, the solution quality of the CBR model increases with case-base size 

(Haouchine et al., 2008). However, there is no agreement in existing studies of the 

relationship between sample size and the accuracy of ECCE methods. Previous studies 

of data-driven ECCE models make no mention of the sample size, even though this 

appears to plays an important role in ECCE.  

To address the research questions of exploring the influence of sample size on 

CBR, it is necessary to consider the sample size used in previous studies. As shown in 

Figure 3.6 and Table 3.9, the sample sizes in previous studies range from 20 to 786, 

with more than half below 100, and only a few above 500. Since this study partly aims 

to test the hypothesis that CBR has the advantage for long-term use. The sample size 

should be large enough to provide reliable results. On the other hand, construction cost 

related to trade secrets are quite confidential in construction companies and agencies. 

Too many samples could result in inefficiencies. Taking into account the above factors, 

this study collects more than 1000 cases of residential building.  

 

Figure 3.6 Number of stored cases in the case-base in previous studies 

Table 3.9 Number of stored cases in the case-base in previous studies 
No Reference No. of samples Type of buildings  

1 (Kim, Seo, et al., 2012) 8 Large building projects 

2 (Ji, et al., 2010c) 9 Multifamily Housing 

3 (Yildiz et al., 2014) 13  Construction projects 
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4  29 Residential buildings 

5  29 Residential buildings 

6 
(Jin, Han, Hyun, Kim, 

et al., 2014) 
47  Crafts 

7 
(Kim & Management, 

2013) 
48 Highway project 

8 
(Jin, Han, Hyun, Kim, 

et al., 2014) 
91  Apartment buildings 

9 (Ahn, et al., 2017) 99 Multi-family housing 

10 (Koo et al., 2011) 101  Multi-family housing projects 

11 
(Koo, Hong, Hyun, & 

Koo, 2010) 
101 Multifamily Housing 

12 (Lee, et al., 2013b) 121 Eco-type pavement trade cases 

13 (Kim, 2011) 123  Railroad bridge 

14 (Lee, et al., 2013b) 124 Eco-type structural trade cases 

15 (Ji, et al., 2012b) 142 Military barrack projects 

16 (Tatiya, et al., 2018) 143  Sports fields 

17 (Ahn, et al., 2014) 163  Apartment building 

18 (Ji, et al., 2012b) 164  Apartment  

19  164  Apartment 

20 (Ji, Park, & Lee, 2011) 164 Residential buildings 

21 
(Du & Bormann, 

2014a) 
207  Road projects 

22 (Kim & Kim, 2010a) 216 Beam bridges 

23 (Chou, et al., 2015) 275  Bridge 

24 (Wang, et al., 2008) 293  Restoration projects 

25 (Chou, 2009) 300 Pavement maintenance project 

26 (Kim, 2011) 422  Military facility projects 

27 (Kim, et al., 2004b) 530 Residential buildings 

28 (An, et al., 2007) 580  Residential buildings 
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29 
  (Kim & Shim, 

2013b) 
590 High-rise building projects. 

30 (Hong, et al., 2011) 786  Multifamily Housing 

3.6.4 Collection Process 

To keep the study aligned with the research philosophy and to maintain 

compatible logic, the data needs to be carefully collected and well organized. To 

guarantee the scale and quality of the data, the researcher contacted several 

construction consulting companies and agencies in China. About 1690 apartment cases 

from one construction cost consulting company in China were collected. This company 

is one of the largest cost consulting agencies covering projects in more than 20 

provinces in China. It has more than ten years of history and provides a standard cost 

estimation service.  

The data includes total floor area (TFA), total above floor area (TAFA), total 

below floor area (TBFA), storey (S), no. of stories above the ground (NSAG), no. of 

stories below the ground (NSBG), duration (D), commencement date (CD), finish date 

(FD), average storey height (ASH), the total height of the building (AHB), and 

foundation type (FT).  

3.6.5 Cross-validation Algorithm  

Cross-validation is a model validation technique used for evaluating how the 

results of the model will generalize to other data sets. It is widely used in the prediction 

model for estimating how accurate this model could be in practice. In a prediction 

problem, a model is established by using a known data set (training dataset) where the 

training process is conducted. An unknown dataset (validation dataset or testing set) 

set -validation aims to evaluate the 

a new dataset, which has not been used in estimating to avoid 

overfitting and selection bias.  

The cross-validation method techniques can be classified into one round cross-

validation technique and multiple round validation techniques. One round of cross-

validation technique splits the sample dataset into complementary subsets. The model 

is developed based on one subset (training set) and evaluated on the other subset 

(called the validation set or testing set). Usually, one round of cross-validation 

technique selects approximately P*N samples to hold out as the test set. N is the total 



 

Chapter 3: Research and Design 95 

number of the sample used in this study. P is the proportion of samples to hold out for 

the testing set. P must be a scalar between 0 and 1. The most widely used P is 20% or 

25%, corresponding to one-fifth or one-fourth holdout sample. 

Multiple rounds of cross-validation techniques use different partitions and the 

test results are averaged over the rounds to provide an overall estimate of the model's 

prediction performance. The k-fold cross-validation is widely used to reduce bias with 

respect to the random sampling of training and to test data samples (Hastie et al., 2009). 

Several studies have confirmed that K-fold cross validation optimizes the computation 

time (Han et al., 2011; Kohavi, 1995).  

 Basically, k-fold cross-validation uses part of the available data to fit the model, 

and a different part of testing it. In K-fold, the data is randomly split into K separate 

sets of equal size, as shown in Figure 3.7. The value of K may differ due to the research 

problem and aims (Hastie, et al., 2009). To avoid repetition with K in K-NN, the KF 

is used to represent the value of K in K-fold. The cross-validation is conducted in the 

following steps:  

 

Figure 3.7 K-fold cross validation algorithm  
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(1) Split the training data T into KF sets (folds) with equal size ; 

(2) For each KF kf-1, kf) fit the model  to the training set 

excluding the kth fold; 

(3) Compute the predicted values =  for the observations in the 

kth fold, based on the training data that excluded this fold; 

(4) The cross-validation of the error rate of MAPE and RMSE for a set is 

calculated by the following equation:  

 =                        3.35   

     =                                 3.36 

(5) The overall cross-validation errors are:  

                                               3.37  

                                               3.38 

3.7 CHAPTER SUMMARY 

This chapter discovered the research design, considering the research approach, 

research methodology, research methods, model development, and data collection. 

The research philosophy, approach to theory development, methodological choice and 

strategies, timeline horizon, techniques, and procedures are presented in the research 

approach. Positivist and pragmatism are used in research philosophy. Induction and 

deduction are used as the approach for theory development. Mixed methods are used 

in methodology choice and strategy. A cross-sectional feature is adopted in the time 

horizon.  

In the research framework, the main research question of how to improve the 

CBR model of ECCE for long-term use is proposed. The critical factors are identified 

to answer the research question by conducting a literature review on exploring the 

influence of sample size, improving the robustness, and the efficiency of the ECCE 

CBR model. Three research hypotheses are formulated to address the main research 

issue: that accuracy will be improved with the increase in the size of the case-base; a 
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robust weight determination will improve the robustness of the ECCE CBR model; 

and a CBM strategy for editing the case-base will improve the efficiency of ECCE.  

Research methods, including CBR, GA, OLS, MODAL regression, and CBM 

strategy, are illustrated in the research methods. The case representation, case retrieval, 

weight determination, and case adaptation are illustrated in CBR. Two error measures, 

MAPE and RMSE, are used to evaluate the prediction performance, and three weight 

determination methods comprising GA, MRA, and feature counting are chosen for 

weight determination. A comparative study of different combinations of CBR settings 

based on different sample sizes is conducted. The basic concepts of linear regression 

are introduced, and modal linear regression is explained, followed by the illustration 

of the modal EM algorithm and bandwidth selection. After introducing modal linear 

regression, a CBM strategy is proposed for case-base editing. The basic concepts of 

CBM are illustrated, followed by the introduction of the weighted coverage 

contribution and case-base editing methods.  

Model development represents the process of developing the classic CBR model 

and optimization model. The classic CBR model explores how sample size influences 

the performance of the CBR model and provides a clear understanding of the 

advantages and disadvantages of each setting. Two optimization algorithms with 

respect to robustness and efficiency are proposed to improve the long-term 

performance of the ECCE CBR model. The performance of the CBR model is 

evaluated before and after using the proposed methods. Data collection is stated from 

project type, predictor variables, and sample size and collection process, followed by 

the timeline and limitations. Altogether, this chapter provides the overall research 

design by considering the research approach, research methodology, research methods, 

model development, and data collection. 

To address the proposed research questions well, the research tasks are broken 

into several parts: identifying the research problem, conducting the literature review, 

choosing the methodology, planning and conducting the data collection, developing 

and optimizing the model. Accordingly, this thesis includes six components: abstract, 

introduction, literature review, methodology, results and discussion, and conclusion. 

The abstract provides a comprehensive summary of this study. The introduction 

provides the research background and research problem, identifying the research aims, 

objectives, and significance. The literature review offers a clear understanding of the 
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existing research related to research topics. Methodology includes the methodological 

considerations for solving the research questions. It consists of the research approach, 

research design, research methods, and the development of the CBR model. Results 

and discussions consist of the research findings and analysis from the classic CBR 

model and the optimized CBR model. The conclusion involves a summary of the 

research contribution, research limitation, and recommendation for future research.  
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Chapter 4: Data Analysis 

4.1 INTRODUCTION  

This chapter presents the data pre-processing, data summary, and the selection 

of predictor variables. Data pre-processing deals with the data preparation for 

improving the data quality. Descriptive statistics provide the introduction of the data 

used in the model development. The selection of predictors  variables identified the 

final variables for subsequent model development. 

The data collection process is usually loosely controlled, which may cause 

missing values, out-of-range values, and inconsistent values. Accordingly, data pre-

processing involves operations for data cleaning, data transformation, and data 

reduction, as shown in Figure 4.1. Data pre-processing is a significant procedure 

before model development and data analysis. The widely used phrase "garbage in, 

garbage out" refers to the concept that flawed input data would lead to nonsense output. 

If data has not been carefully screened, the analysis may produce misleading results. 

Accordingly, the representation and quality of data is first and foremost before model 

development and result analysis. Data cleaning aims to address the missing value and 

out-of-range values of data. Data transformation in this study involves data 

standardization. Data reduction involves the operation of selecting and extracting the 

final features for the model development.  

This chapter begins with data cleaning, which deals with missing values of data 

and out-of-range data. Section 4.2 introduces the data transformation concerning data 

scale and time. Section 4.4 represents the description of the data after removing 

missing value and outliers in the data. Section 4.5 illustrates how the final predictors 

for developing the model are determined in this study. Note that data pre-processing 

may influence the way in which outcomes of the final data processing can be 

interpreted. This influence should be carefully considered when the interpretation of 

the results.  
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Figure 4.1 Data pre-processing  

4.2 DATA DESCRIPTION 

Cost data from a total of 1640 apartment building projects completed between 

2006 to 2015 from six provinces (Guangzhou, Beijing, Shanghai, Chongqing, Henan, 

Shaanxi) in China were collected for model development. Figure 4.2 illustrates the 

distribution of the project locations. The data collected includes gross floor area (GFA), 

total above floor area (TAFA), total below floor area (TBFA), storey (S), no. of stories 

above the ground (NSAG), no. of stories below the ground (NSBG), duration (D), 

commencement Date (CD), finish Date (FD), average storey height (ASH), the total 

height of the building (THB), and foundation type (FT). Table 4.1 provides a 

descriptive summary of the raw data collected for the model development. To 

guarantee the quality of research, data pre-processing of data cleaning, data 

transformation, and data reduction is conducted before developing the model.  

 

Data  cleaning Data transformation Data  reduction 

Missing value 

Outlier 

Time 
standardization

Normalization 

Final  

Predictor 

Data preparation 
operations

Refined data 

Data collection 

Model development 
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Figure 4.2 Location distribution of collected cases 

Table 4.1 Information contained in the cases 

1 Location type Categorical Region 1, 2,3,4,5,6 

2 Building type Categorical Apartment 

3 Total floor area Numerical 186~ 92,472.8 m2, NA 

4 Total above floor area Numerical 186~82,181.95 m2 s NA 

5 Total below floor area Numerical 0~40038.30 m2 s, NA 

6 Storey Numerical 6~52 floors, NA 

7 No. of storeys above the ground Numerical 6~47 floors, NA 

8 No. of storeys below the ground Numerical 0~5 floors, NA 

9 Storey height Numerical 2.0~5.8 m, NA 

10 Basement height Numerical 1.0~6.0 m, NA 

11 Commencement date Date 2008-2015, NA 

12 Finish date Date 2009~2017, NA 

13 Duration Numerical 63~1515 days, NA 

14 Total height of building Numerical 13.4~138 m  

15 Foundation type Categorical Concrete pile; Concrete pile and 
bolt support, NA 

16 Total amount of contract Numerical CNY 624,365~151,599,908 

NA represents the missing value.  

4.3 DATA CLEANING 

4.3.1 Missing Data 

Missing data are valid omitted values on one or more variables that are not 

available for analysis. Generally, research analysis requires completed information for 

12%

22%

8%36%

13%

9%

Location distribution 

Region1 Region2 Region3 Region4 Region5 Region6
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each case. Missing data may have a practical and substantive influence on the research 

result and analysis. The practical implication of dealing with missing data may result 

in sample size reduction, while the substantive implication of that may result in biases 

in the research finding (Allison, 2001). Like all other studies, missing data should be 

adequately handled before analysis (Hair et al., 2017, p. 48). To ensure the quality of 

the data, it is necessary to conduct data cleaning. Data cleaning is a process of dealing 

with any missing values in the dataset. Missing data is the absence of one or more 

values of the variables in the data set (Bannon Jr, 2015). It might be caused by 

incomplete information stored in the database or data entry errors.  

Since missing data has an influence on researching the findings, data-screening 

is developed for handling missing data. Data screening checks and finds the errors in 

variables, and then fixes or deletes the error values in the data file (Pallant, 2013). 

Data-screening can also be classified based on how they are being handled: case 

deletion, single imputation, and multiple imputation (Scheffer, 2002). Case deletion is 

widely used for handling missing value. The cases containing missing data are deleted. 

It can be either complete case only or pairwise-available case. Single imputation may 

use the value of group means, medians or modes to replace the missing value, or use 

regression imputation, stochastic regression imputation, or expectation maximisation 

algorithm imputation to predict the missing value, or use last value carried forward for 

longitudinal data to replace the missing values. Multiple imputations. Multiple 

imputation refers to predict missing value by multiple imputing. When the imputation 

model fails to converge, multiple imputation can be based on propensity scoring. 

Bayesian MI uses the non-informative algorithm to generate m separate datasets to 

estimate the posterior distribution for random extraction. End-users may avoid 

multiple imputations because multiple dataset computation is difficult and time-

consuming, even for statisticians (Scheffer, 2002). The total percentage of missing 

values is approximately 8 % in this study. Since the percentage of missing values is 

small, removing these cases is deemed to have little influence on this study. Therefore, 

case deletion is used for handing missing values. The cases that have missing values 

in the attributes are deleted. Totally, there are 131 cases that have been deleted.  

4.3.2 Outliers 

After dealing with the missing value in the data set, the other issue of data 

cleaning is the outlier. Outliers are the extreme values in a data set that are located well 
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above or well below in comparison with other values, far away from the mean (Pallant, 

2013). They are observations outside the bulk of the data and usually have a unique 

combination of characteristics (Hair et al., 2010). The outlier may have a practical and 

substantive impact on the data analysis. From the practical perspective, outliers may 

influence data analysis by impacting variance, while from the substantive perspective, 

outliers can be deemed as how representative they are of the population (Hair, et al., 

2010). They are inconsistent with the majority of the data and are usually higher or 

lower than other observations, which affect the mean and the variance.  

 Outliers can be a valid value that represents the extreme value, or it can result 

from the failure of non-compliance on the part of the respondent, or due to the 

methodological error on the part of the researcher. Outliers can occur due to procedural 

errors, extraordinary events or observations, or the combination of all (Hair, et al., 

2010). Whatever the reason for the occurrence of outliers, the

classified as beneficial or problematic but rather looked into from the perspective of 

what insight they provide for the research. The beneficial outliers provide information 

about the population that might not be collected in the normal course, and the 

problematic outliers are not representative of the population and can distort results 

(Hair, et al., 2010). Classification of the observations as beneficial or problematic is 

determined by their effect on the data. Due to the impact of the outliers, it is important 

that the researcher should identify outliers.   

There is no single and reliable method for identifying outliers. Although more 

than 50 different tests are used for this purpose, it is not rare that two or more tests 

applied to the same data set can yield different outliers (Sheskin, 2010). Some tests 

only identify a single outlier, whereas others can identify multiple outliers. It is a 

common practice for detecting outliers by determining an interval spanning over the 

mean plus/minus three standard deviations in practice (Howell et al., 1998; Leys et al., 

2013). Therefore, this study uses this method to identify the outlier in the data set. In 

this method, outliers are defined as elements of more than three standard deviations 

from the mean.  

 Once identified, outliers can be addressed by several methodologies: trimming; 

winsorization; modified winsorization; semi-winsorization; and deleting. Trimming 

focuses on removing 10% of extreme data from both the tales, whereas, in 

winsorization, a fixed number of extreme values in the distribution are replaced with 
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the score that is in close proximity to the outliers in the tails (Sheskin, 2010). Modified 

Winsorization allows transforming only one data point in the distribution, and semi-

winsorization allows converting the outlier/s, not to the nearest value but to a value 

representing the pre-determined number of standard deviations away from the mean 

(Reifman & Keyton, 2010).  

The decision about retaining or handling outliers is based on the assertions of 

what information they provide about the population/sub-population. The researcher 

should decide about the retention or exclusion of the outlier not only on the 

characteristic of the outlier as beneficial or problematic but also on the type of the 

information they provide within the objective of the analysis (Hair, et al., 2010). Since 

retaining the outliers of the population can undermine the findings, in this study, 

identified outliers are deleted to avoid the harmful effects on model development. 

Totally, there are 161 cases with missing values, and 29 cases with outlier values are 

deleted. Table 4.2 provides a summary after the data cleaning.  

Table 4.2 Case information after data cleaning 
1 Location type Categorical Region 1, 2,3,4,5,6 

2 Building type Categorical Apartment 

3 Total floor area Numerical 359.6~ 38,871 m2  

4 Total above floor area Numerical 269~37,349m2 

5 Total below floor area Numerical 0~8875.39m2  

6 Storey Numerical 6~47 floors  

7 No. of storeys above the ground Numerical 6~47 floors, 

8 No. of storeys below the ground Numerical 0~4 floors, 

9 Storey height Numerical 2.0~5.8 m, 

10 Basement height Numerical 1.0~6.0 m, 

11 Commencement date Date 2008-2015, 

12 Finish date Date 2009~2017 

13 Duration Numerical 92~1405 days, 

14 Total height of building Numerical 16.8~138 m  

15 foundation type Categorical Concrete pile; Concrete pile and 
Bolt support  

16 Total amount of contract Numerical CNY706,940~64,541,256.13 
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4.4 DATA TRANSFORMATION  

4.4.1 Time Standardization  

To minimize the diverse characteristics and differences in the collected data, this 

study firstly conducts the time standardization. Accordingly, the time and regional 

differences in the data need to be eliminated. This study converted the cost data of all 

project information to an identical point of time (2015) by using the price indices of 

construction and installation from the National Bureau of Statistics of China. (Ji, et 

al., 2010a). This index evaluates the changes in the purchase prices of major 

construction materials, chemical materials, labor, equipment, and tools. The cost index 

applied to the conversion was official statistical data prepared to estimate the price 

fluctuation of input resources by 100 times scale as the price of the construction cost 

of a project at a certain point in time. Regional differences are illuminated by using 

regional Price Indices of Construction and Instalment. The detailed source of the Price 

Indices of Construction and Instalment can be obtained from the website of the 

National Bureau of Statistics. Table 4.3 summarizes the price indices of construction 

and installation from 2010 to 2015.  

Table 4.3 Price indices of construction and instalment 
 Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

2006 99.7 100.1 101.5 100.7 101.1 103.5 

2007 104.1 104.6 106.3 103.8 106 105.6 

2008 111.8 112.1 112.1 112.2 113.7 113.3 

2009 94.3 94.8 94.6 95.3 97 99.1 

2010 104 106.1 104.9 104.3 102.7 105.3 

2011 109.7 110.6 110.1 108 107.8 107.9 

2012 99 98.7 101.4 101.9 102.1 103.4 

2013 97.3 99.8 99.8 101.9 100.5 102.3 

2014 98.5 100.3 100.1 102 100.4 101.2 

2015 94.4 94.9 96.5 98.4 97.5 98.4 

The price in last year equals 100.  

The cost data of all the cases were converted to the year of 2015 cost level. For 

example, 2006 data in Region 1 were converted into 2007 data by multiplying 2006 

cost data by the value (104.1/100) calculated by dividing 104.1 (the index value for 

2007) by 100 (the absolute index in 2006). Appendix A provides the detailed 

conversion of the index to 2015. Table 4.4 summarizes the converted index.  
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Table 4.4 The converted index  
Year Transferred 

year 
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

2006 2015 1.1215  1.2230  1.2727  1.3030  1.3000  1.4190  

2007 2015 1.0773  1.1692  1.1973  1.2553  1.2265  1.3438  

2008 2015 0.9636  1.0430  1.0680  1.1188  1.0787  1.1860  

2009 2015 1.0219  1.1002  1.1290  1.1740  1.1120  1.1968  

2010 2015 0.9826  1.0370  1.0763  1.1256  1.0828  1.1366  

2011 2015 0.8957  0.9376  0.9775  1.0422  1.0045  1.0533  

2012 2015 0.9047  0.9499  0.9640  1.0227  0.9838  1.0187  

2013 2015 0.9298 0.9518  0.9660  1.0037  0.9789  0.9958  

2014 2015 0.9440  0.9490  0.9650  0.9840  0.9750  0.9840  

4.4.2 Normalization 

To handle categorical variables, regression analysis is used to convert it into 

dummy variables (Keller, 2015). For example, the foundation type variable having two 

categories (e.g., Concrete pile foundation and Mixed pile foundation) can be converted 

into the dummy variable, as shown in Table 4.5. 

Table 4.5 Converting the foundation type into dummy variables 
Foundation type Dummy variables 

Concrete pile foundation 0 

Mixed pile foundation 

(Concrete pile foundation and Bolt 

support) 

1 

 

After transforming the categorical variable into dummy variables, data 

normalization should be conducted. Different attributes may have different units. 

Therefore, this study minimizes the inconsistent units of the measurement in the 

attributes by using Equation 4.1.  

                                      4.1 

Where  represents the normalized value of the ith attribute;  represents the 

original attribute value.  
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4.5 SELECTION OF PREDICTOR VARIABLES 

Pearson correlation (PC) analysis is used for the final selection of variables (Ahn, 

et al., 2014; Hong, et al., 2011). The Pearson correlation matrix of the variables is 

shown in Table 4.6. Foundation type is excluded from the input variables because of 

its low correlation with total cost. To reduce multicollinearity, total floor area, storeys 

and average storey height are excluded. Finally, this research identified six variables 

as significant (at the 1% level): total above floor area, total below floor area, no. of 

stories above the ground, no. of stories below the ground, duration, total height of 

building. 

Table 4.6 Pearson correlation analysis of the input attributes 
Correlations TC FT TFA TAFA TBFA S NSAG NSBG ASH D THB 

TC P C 1.00 -0.04 .942 .932 .493 .774 .767 .386 -.151 .318 .770 

Sig.   0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FT P C -0.04 1.00 -.089 -.095 0.00 -.129 -.133 -0.01 -0.01 -.093 -.136 

Sig.  0.14   0.00 0.00 0.89 0.00 0.00 0.66 0.76 0.00 0.00 

TF P C .942 -.089 1.00 .994 .495 .783 .779 .354 -.162 .346 .785 

Sig.  0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TAF P C .932 -.095 .994 1.00 .406 .787 .789 .288 -.159 .345 .795 

Sig.  0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TBF P C .493 0.00 .495 .406 1.00 .313 .263 .688 -.101 .169 .264 

Sig.  0.00 0.89 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 

S P C .774 -.129 .783 .787 .313 1.00 .996 .430 -.306 .416 .986 

Sig.  0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 

SA P C .767 -.133 .779 .789 .263 .996 1.00 .357 -.303 .408 .990 

Sig.  0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 

BS P C .386 -0.01 .354 .288 .688 .430 .357 1.00 -.164 .240 .351 

Sig.  0.00 0.66 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 

ASH P C -.151 -0.01 -.162 -.159 -.101 -.306 -.303 -.164 1.00 -.204 -.239 

Sig.  0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 

D P C .318 -.093 .346 .345 .169 .416 .408 .240 -.204 1.00 .402 

Sig.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00 

TH P C .770 -.136 .785 .795 .264 .986 .990 .351 -.239 .402 1.00 

Sig.  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

Correlation is significant at the 0.01 level (2-tailed). 
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4.6 CHAPTER SUMMARY 

Data pre-processing involves operations for data cleaning, data transformation 

and data reduction, as shown in Figure 4.1. It is a significant procedure before model 

development. This chapter begins with data cleaning, which deals with missing values 

of data and out-of-range data. Section 4.2 introduces the data transformation with 

respect to data scale and time. Section 4.4 represents the description of the data after 

removing missing values and outliers in the data. Section 4.5 illustrates how the final 

predictors for developing the model are determined in this study. 

After the data pre-processing, six variables including total above floor area, total 

below floor area, no. of stories above the ground, no. of stories below the ground, 

duration and total height of building are identified as the final predictors in this study. 

Totally 1450 cases were retained after the data pre-processing. Note that data pre-

processing may influence the way in which outcomes of the final data processing can 

be interpreted. This influence should be carefully considered when interpreting the 

results.  
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Chapter 5: Comparative Study of Existing 
CBR Models 

5.1 INTRODUCTION 

In this chapter, the most widely used weight determination methods and 

similarity functions are compared with respect to different sample sizes. This chapter 

aims explicitly to shed light on the questions: (1) What influence does sample size 

have on the efficiency of CBR? (2) What changes in accuracy occur with increasing 

sample size? and (3) Does CBR have an advantage in terms of long-term use in ECCE?  

This chapter explores the influence of sample size on the accuracy of the CBR. 

From this, the differences in the different parameter settings of various sample sizes 

are explored as well as their general trends as size continues to increase. This chapter 

provides a comparison among different weight determination methods and similarity 

functions. Three weight determinations (MRA(W1), GA(W2), FC(W3) and two 

similarity functions (weighted sum of the attribute distance (S1) and 1-Euclidean 

distance (S2)), and three case adaptation values (5,3,1) are used in this chapter. Leave 

one cross validation is used for validating the model.  

Totally, 1450 Chinese apartment building projects were retained in the dataset in 

this study. Given the sample size range in previous studies, the training sample sizes 

of 50, 100, 200, 400,600, 800, and 1000 are used. The training samples were randomly 

selected from the database, with a 20% project hold-out sample. This process is 

repeated ten times. The MAPE and RMSE are used as measures of ECCE 

accuracy and are computed for each of the ten trials. The comparison of settings in 

CBR, justification the sample size and the data-oriented results are discussed in the 

discussion.  

5.2 RESULTS 

5.2.1 MAPE and RMSE 

Table 5.1, for example, gives the results of the 50-size sample (K=5). MAPE and 

RMSE vary greatly during the 10 trials. For CBR-W1S1, the MAPE ranges from 18.39% 

and 61.57%; and RMSE ranges from 20.56% to 70.39%. For CBR-W2S1, the MAPE 

ranges from 18.96% and 49.58%; and RMSE ranges from 21.7% to 49.49%. For CBR-
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W3S1, the MAPE ranges from 26.55% and 56.28%; and RMSE ranges from 27.65 % 

to 64.12%. For CBR-W1S2, the MAPE ranges from 17.44 % and 47.08%; and RMSE 

ranges from 20.99% to 38.32%. For CBR-W2S2, the MAPE ranges from 17.25% and 

36.81 %; and RMSE ranges from 20.27% to 38.32%. For CBR-W3S2, the MAPE 

ranges from 19.31% and 65.63%; and RMSE ranges from 21.42 % to 65.63 %. The 

results of remaining parameter settings can be seen in Appendix B-1 to B-20.   

Table 5.1 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-W1S2 
and CBR-W2S2 CBR-W3S2 (50-size sample and K=5)  

MAPE  

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 25.68% 23.27% 34.54% 27.66% 23.40% 32.05% 

Round2 61.57% 49.58% 56.28% 47.08% 36.81% 68.16% 

Round3 42.67% 43.44% 39.57% 31.87% 28.33% 38.73% 

Round4 52.83% 32.40% 55.25% 47.47% 19.70% 49.01% 

Round5 42.44% 45.81% 60.41% 35.59% 28.76% 49.19% 

Round6 41.78% 41.70% 48.81% 46.68% 29.78% 48.10% 

Round7 35.49% 26.84% 44.68% 26.07% 25.02% 40.72% 

Round8 39.60% 26.97% 38.99% 35.08% 25.55% 37.85% 

Round9 28.09% 31.68% 43.91% 35.11% 29.40% 42.58% 

Round10 18.39% 18.96% 26.55% 17.44% 17.25% 19.31% 

Average 38.85% 34.06% 44.90% 35.01% 26.40% 42.57% 

RMSE 
 

CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 27.51% 25.92% 35.57% 28.52% 24.91% 34.63% 

Round2 70.39% 49.49% 64.12% 49.55% 38.32% 65.63% 

Round3 39.96% 41.01% 39.33% 32.98% 31.13% 37.47% 

Round4 46.52% 30.86% 47.58% 43.25% 23.36% 44.66% 

Round5 41.91% 45.61% 62.95% 39.38% 31.83% 48.94% 

Round6 45.20% 40.96% 53.29% 48.41% 31.98% 51.48% 

Round7 35.66% 28.44% 42.80% 27.64% 26.84% 39.14% 

Round8 63.43% 30.81% 66.71% 53.12% 32.60% 51.91% 

Round9 31.85% 35.81% 46.40% 39.42% 33.91% 45.29% 

Round10 20.56% 21.70% 27.65% 20.99% 20.27% 21.42% 

Average 42.30% 35.06% 48.64% 38.33% 29.52% 44.06% 
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(a)                              (b) 

 

(c)                             (d) 

 

(e)                             (f) 

Figure 5.1 Comparative results of MAPE (K=5) 
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(a)                              (b) 

 

(c)                             (d) 

 

(e)                             (f) 

Figure 5.2 Comparative results of RMSE (K=5) 
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(a)                                                    (b) 

 

(c)                                                          (d) 

 

(e)                                                     (f) 

Figure 5.3 Comparative results of MAPE (K=3) 
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(a)                                               (b) 

 

(c )                                               (d) 

 

(c )                                         (d) 

Figure 5.4 Comparative results of RMSE (K=3) 

0

0.1

0.2

0.3

0.4

0.5

0.6
Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W1S1

50 100 200 400

600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6
Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W1S2

50 100 200 400

600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6
Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W2S1

50 100 200 400

600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6
Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W2S2

50 100 200 400

600 800 1000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W3S1

50 100 200 400

600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Round1

Round2

Round3

Round4

Round5

Round6

Round7

Round8

Round9

Round10

RMSE CBR-W3S2

50 100 200 400

600 800 1000



  

Chapter 5: Comparative Study of Existing CBR Models 115 

 

 
( a )                                         ( b ) 

 

(c )                                            ( d ) 

 

( e)                                             ( f ) 

Figure 5.5 Comparative results of MAPE (K=1) 
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( a )                                                     ( b ) 

 
( c )                                                        ( d ) 

  
( e)                                                    ( f ) 

Figure 5.6 Comparative results of RMSE (K=1) 
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Figure 5.1 to Figure 5.6 illustrate the comparative results of parameter setting 

based on different sample sizes. In each figure, there are six subfigures representing 

the MAPE/ RMSE of a specific model setting. The different colour lines represent the 

different sample sizes ranging from 50 to 1000. For example, in Figure 5.1 (a), the 

blue lines represent the MAPE of 50 training samples and the dark red lines represent 

the results of 100 training samples when case adaptation value is five.  

Despite the changes in the weighting method and similarity function, the results 

of the 50 sample sizes have the largest fluctuations during the multiple calculations. 

With the increase in the sample size, the variances are getting less, resulting in more 

stable performance. Generally, CBR-W2S2 has the least mean MAPE, followed by 

CBR-W1S2. CBR-W3S1 has the weakest performance among all the CBR models. 

Despite the various parameter settings, this ranking remains the same.  

5.2.2 Average Performance 

Table 5.2 to 5.7 illustrates the changes in mean MAPE and RMSE with sample 

size. Figure 5.7 to Figure 5.12 shows the changing trend with the increase in the size 

of the case-base. Figure 5.7, for example, shows how mean MAPE decreases with the 

increase in the size of case-base (K=5). The remaining Figures 5.8 to 5.12 are 

interpreted in the same way. 

 From Table 5.2 to 5.7, 

improves significantly, and both the MAPE and RMSE of CBR decrease dramatically, 

with an increased sample size. For example, in Table 5.2, when case adaptation is set 

as 1, the mean MAPE of CBR-W1S1 decreases from 38.85 % to 24.30%; the mean 

MAPE of CBR-W2S1 decreases from 34.06% to 23.73%; the mean MAPE of CBR-

W3S1 decreases from 44.90% to 28.88%; the mean MAPE of CBR-W1S2 decreases 

from 35.01% to 19.02 %; the mean MAPE of CBR-W2S2 decreases from 24.90 % to 

19.09 %; the mean MAPE of CBR-W3S2 decreases from 42.57 % to 21.72%. 

Similarly, the mean RMSE of CBR-W1S1 decreases from 42.30 % to 27.03%; the 

mean RMSE of CBR-W2S1 decreases from 35.06% to 26.53%; the mean RMSE of 

CBR-W3S1 decreases from 48.64% to 40.83%; the mean RMSE of CBR-W1S2 

decreases from 38.33% to 23.83%; the mean RMSE of CBR-W2S2 decreases from 

29.52 % to 23.04%; the mean RMSE of CBR-W3S2 decreases from 44.06 % to 

26.78%. The remaining  Tables  5.3 to 5.7 are interpreted in the same way. 
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Table 5.2 Changes in mean MAPE with sample size ( K=5) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 38.85% 28.06% 24.34% 22.80% 23.17% 24.04% 24.30% 

CBR-W2S1 34.06% 26.92% 23.11% 22.28% 22.80% 23.34% 23.73% 

CBR-W3S1 44.90% 35.85% 31.39% 29.70% 30.20% 29.81% 28.88% 

CBR-W1S2 35.01% 24.17% 21.23% 19.31% 18.39% 18.63% 19.02% 

CBR-W2S2 24.90% 20.65% 20.38% 19.73% 18.76% 18.96% 19.09% 

CBR-W3S2 42.57% 38.06% 28.08% 24.06% 23.24% 22.10% 21.72% 

 

Table 5.3 Changes in mean RMSE with sample size ( K=5) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 42.30% 30.86% 28.97% 25.74% 26.25% 26.86% 27.03% 

CBR-W2S1 35.06% 30.47% 26.14% 25.31% 25.80% 26.33% 26.53% 

CBR-W3S1 48.64% 42.40% 42.50% 41.09% 44.42% 41.60% 40.83% 

CBR-W1S2 38.33% 29.05% 25.57% 23.48% 23.28% 23.23% 23.83% 

CBR-W2S2 29.52% 25.78% 24.06% 23.01% 22.98% 22.96% 23.04% 

CBR-W3S2 44.06% 41.29% 33.02% 28.80% 28.97% 27.48% 26.78% 

 
Table 5.4 Changes in mean MAPE with sample size ( K=3) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 35.81% 26.06% 25.07% 24.02% 25.02% 24.85% 25.31% 

CBR-W2S1 28.38% 24.13% 24.26% 23.39% 24.37% 24.24% 24.92% 

CBR-W3S1 39.29% 35.43% 31.43% 30.18% 31.07% 30.73% 30.05% 

CBR-W1S2 32.53% 23.71% 21.41% 19.64% 18.25% 18.66% 19.51% 

CBR-W2S2 24.90% 20.65% 20.38% 19.73% 18.76% 18.96% 19.09% 

CBR-W3S2 39.20% 34.87% 28.41% 22.69% 22.64% 21.85% 21.75% 
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Table 5.5 Changes in mean RMSE with sample size ( K=3) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 40.42% 29.56% 29.96% 27.18% 28.05% 27.79% 28.12% 

CBR-W2S1 30.55% 28.01% 27.51% 26.51% 27.45% 27.30% 27.80% 

CBR-W3S1 45.11% 43.28% 43.97% 41.99% 46.27% 43.32% 42.95% 

CBR-W1S2 36.78% 28.68% 26.23% 23.97% 23.51% 23.61% 24.56% 

CBR-W2S2 27.96% 26.02% 24.91% 23.80% 23.68% 23.56% 23.72% 

CBR-W3S2 43.17% 38.63% 33.62% 27.81% 29.01% 27.48% 27.20% 

 

Table 5.6 Changes in mean MAPE with sample size ( K=1) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 38.45% 27.01% 29.12% 28.54% 28.34% 28.22% 28.42% 

CBR-W2S1 31.32% 28.25% 27.20% 28.40% 28.24% 27.61% 28.24% 

CBR-W3S1 39.96% 37.63% 33.40% 33.04% 34.38% 34.95% 33.99% 

CBR-W1S2 29.72% 27.56% 22.30% 22.58% 20.91% 21.51% 21.68% 

CBR-W2S2 28.47% 25.17% 22.26% 22.56% 21.37% 21.96% 21.20% 

CBR-W3S2 45.63% 41.21% 36.95% 32.61% 32.69% 31.40% 31.83% 

 

 
Table 5.7 Changes in mean RMSE with sample size ( K=1) 

Sample size 50 100 200 400 600 800 1000 

CBR-W1S1 50.92% 31.35% 33.61% 32.79% 32.42% 32.24% 32.27% 

CBR-W2S1 42.74% 32.48% 32.33% 32.42% 32.18% 31.86% 32.06% 

CBR-W3S1 50.96% 47.61% 49.96% 46.87% 52.79% 49.79% 49.70% 

CBR-W1S2 35.27% 33.96% 28.85% 29.04% 27.53% 28.17% 28.05% 

CBR-W2S2 34.12% 32.80% 28.32% 29.02% 27.92% 28.21% 27.40% 

CBR-W3S2 45.63% 41.21% 36.95% 32.61% 32.69% 31.40% 31.83% 
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Figure 5.7 Changes in mean MAPE with sample size ( K=5) 

 

 

Figure 5.8 Changes in mean RMSE with sample size ( K=5) 

 

Figure 5.9 Changes in mean MAPE with sample size (K=3) 
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Figure 5.10 Changes in mean RMSE with sample size (K=3) 

 

 

 Figure 5.11 Changes in mean MAPE with sample size (K=1) 

 

  Figure 5.12 Changes in mean RMSE with sample size (K=1) 
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5.3 DISCUSSION 

5.3.1 Comparison of Settings in CBR 

The influence of weight determination 

Despite different sample sizes, CBR-W2S2 produces the least error rates. The 

results of each weight determination based on different sample sizes are represented 

in Figure 5.1 to 5.6. For example, from Figure 5.1, when the sample sizes are small 

(50/100/200) , the CBR-W2S2 has the smallest MAPE and RMSE. When sample size 

reaches 400, there is no significant difference between CBR- -W2 

  

When the sample size is small (<400), the weight determination method GA has 

more advantages than MRA in terms of accuracy. This illustrates that GA is more 

suitable to be used in weight determination when dealing with a smaller sample size. 

After the size of the case-base become large (>400), there is no significant difference 

between models using MRA and GA. FC has the weakest performance in terms of 

accuracy, especially when combining Similarity1 function. CBR-W3S1 and CBR-

W3S2 have the largest MAPE and RMSE. This illustrates the inferiority of feature 

counting as the weight determination method in ECCE CBR. It also illustrates the 

significance to weight attributes differently. Compared with equally weighting, 

considering differences in the contribution of attribute provides more reasonable 

results.  

Similarity function  

Totally, there are two similarity functions used in this chapter. In summary, 

Similarly 2 is better than Similarity 1 despite different weight determination methods. 

The results of each similarity function based on different sample sizes are represented 

in Table 5.2 to Table 5.7. Overall, CBR-W1S2 and CBR-W2S2 have the smaller 

MAPE and RMSE than CBR-W1S1 and CBR-W1S1. When Similarity 2 and FC are 

used together, the CBR-W3S1 model has the weakest performance in terms of 

accuracy. The results show that the Similarity 2 function has better performance than 

Similarity 1 on average.  

Case adaptation value  

K-NN is widely used as the case adaptation method. The K-NN ranks 

neighbours in the case-base and uses the labels of the K most similar neighbour to 

predict the label of the new case. A different number of neighbours can be used in the 
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case adaptation. In this study, the value of K is set to five, three, and one. The results 

show that the CBR model has the best performance when K is set to 5 averagely. 

Despite the changes in the sample size and different weight determinations, the results 

show that adjusting case adaption value could improve the performance of the CBR 

model. For example, the mean MAPE of CBR-W1S1 for 100-, 200-, 400-, 600-, 800-,  

1000-sample size can be decreased from 27.01%, 29.12%, 28.54%, 28.34%, 28.22% 

and 28.42% to 28.06%, 24.34%, 22.80%, 23.17%, 24.04%, 24.30% when the value of 

case adaptation is adjusted from 1 to 5. However, the results show that the optimal 

case adaptation value differs in each situation. For different sample sizes, the optimal 

case adaptation value may differ. When the sample size is 50, the optimal case 

adaptation value is 3, while in other situations, the optimal case adaptation value is 5. 

The finding shows us that multiple case adaptation values should be tried in the CBR 

study to have the best performance.  

5.3.2 Justification of Sample Size in ECCE 

Existing studies do not consider the influence of sample size when developing 

the ECCE CBR models, nor the implications of increasing it to as large as 1000. 

Therefore, using the different sample sizes, this research demonstrates the need to 

consider the influence of sample size used in ECCE studies. The results show that the 

performance of CBR improves with the increase of the sample size.  

What is also becoming apparent is that expanding the database to contain more 

cases containing a small number of highly influential predictor variables (six in this 

case) may be a good use of resources. Therefore, even though ECCE lacks detailed 

target project information at the early stage, increasing the sample size may be 

sufficient to produce reliable results by objective methods. 

Another finding is that the marginal contribution of the increasing size of case-

base decreases. For example, when K is set to 1, the mean MAPE of CBR-W1S1 

decreases from 38.45% to 28.54% by increasing the size of case-base from 50 to 400; 

while the performance of the model CBR-W1S1 remains the same after the size of 

case-base increases. This trend keeps the same in the remaining CBR models despite 

the differences in the case adaptation values. For example, when case adaptation value 

is set to 5, the mean MAPE of CBR-W1S2 decreases from 32.53% to 19.64 % by 

increasing the size of case-base from 50 to 400; while the mean MAPE of CBR-W1S1 

remains the same after the size of case-base increasing (> 400).  
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5.3.3 Explanation of Data-oriented Results 

The results show that existing studies are heavily data-based, given the difficulty 

of data collection for ECCE. When the sample size is small, MAPE and RMSE vary 

significantly. For example, as shown in Table 5.1, the MAPE of the CBR-W1S1 is 

from 18.39% to 61.57% in 10 trials, although their sample sizes are both 50. When the 

sample size is 50, the best case adaptation value is 3, while in other situations, the best 

case adaptation value is 5. Since there are various settings in the CBR model, the 

performance of the CBR method significantly relies on the quality of the case-base. 

This may provide a justified reason for the contradictory results in the previous 

comparative studies on CBR, ANN, and MRA.  

This study also illustrates the necessity to consider the influence of sample size 

when establishing an ECCE CBR model. The optimal parameter settings may differ 

due to the different sample size. GA is more suitable to be used in weight determination 

when dealing with a smaller sample size. When the sample size is small (<400), the 

weight determination method GA has more advantages than MRA in terms of accuracy. 

After the size of the case-base becomes large (>400), there is no significant difference 

between models using MRA and GA. Besides, the optimal case adaptation value may 

differ based on different sample size. When the sample size is 50, the optimal case 

adaptation value is 3, while in other situations, the optimal case adaptation value is 5. 

Several limitations are also found in the existing CBR model. The current research 

focuses on optimizing the accuracy of the CBR system for a single time running, while 

ignoring the long-term use of the CBR model. Except for accuracy, the robustness of 

the case-

the data. Besides, after the size of the case-base reaches a certain amount, an increase 

in the size of the case-base has a limited impact on improving the accuracy of the CBR 

system.  

Therefore, improving the long-term use of the case-base, should not only consider 

the benefits of the increase in the size of case-base, but also address the stability and 

efficiency problem brought by continuous growth in the number of cases stored in the 

case-base. When the size of case-base gets large, it is inevitable to have a few cases 

which deviate from those mainstream bulk of cases. This begs the problem of 

robustness of the CBR system. Besides, with the increase in the number of cases stored 

in the case-base, the case-base can grow very fast in the sense that it can slow the speed 

of the query execution time concerning case-research phase. This inevitably raises the 
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question of how to select cases for avoiding excessive storage and time complexity, 

on these issues of the long-term use of the ECCE CBR system.  

5.4 CHAPTER SUMMARY 

This chapter provides a comparative study of the different model settings of CBR 

based on a collected ECCE database of 1450 completed Chinese apartment building 

projects. Given the sample size range in previous studies and the size of the collected 

database, seven sample sizes of 50, 100, 200, 400, 600, 800, and 1000 contracts, cover 

the range of sample sizes used in previous studies. Three weight determination 

methods (MRA, GA, FC) and two similarity functions are compared by random 

selections from the database, with a 20% project hold-out sample. MAPE and RMSE 

are used as measures of ECCE forecasting performance.  

The results in this chapter help to provide a better understanding of the settings 

in the CBR models. CBR-W2S2 and CBR-W1S2 are the best CBR models for all 

sample sizes. However, GA has more advantages when dealing with smaller sample 

sizes. After the size of the case-base becomes large (>400), there is no significant 

difference between models using MRA and GA. FC has the weakest performance in 

terms of accuracy, uniquely when combining Similarity1 function. Besides, the 

Similarity 2 function has better performance than Similarity1 on average. Also, 

adjusting case adaptation values in case adaption may improve the performance of the 

CBR model. However, for different sample sizes, the best case adaptation value may 

be different. Therefore, multiple case adaptation values should be tried in the CBR 

study to find the best performance. 

Several limitations are also found in the existing CBR model. The results show 

that ECCE CBR models are heavily data-based. Different sample size and training 

sample will cause huge differences in the results. Besides, the current research focuses 

on optimizing the accuracy of the CBR system for a single time running while ignoring 

the maintenance of CBR model during its operation. Except for accuracy, the 

robustness and efficiency of the case-base are also necessary to be considered during 

the application of ECCE CBR system. 

As a core component of CBR, the case-base is the knowledge and experience 

container. The knowledge structure in the case-base plays a key role in the ECCE CBR 
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model. Therefore, improving the robustness of the knowledge structure becomes 

essential.  

Since the marginal contribution of the increasing volume of the case-base 

decreases, additional maintenance of it is necessary to deal with the problems that arise 

during long-term use, especially when the knowledge in case-base changes over time. 

The question of how to select cases for avoiding excessive storage and time complexity 

should be explored.  
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Chapter 6: Improving the ECCE CBR 
Model by using MODAL 

6.1  INTRODUCTION 

The previous chapter explored the influence of sample size on the accuracy of 

the three most studied ECCE methods. The results confirmed that the CBR model has 

an advantage in long-term use for ECCE. To further improve the ECCE CBR model, 

this chapter introduces a robust weight determination method, since attribute weights 

significantly influence on the efficiency and accuracy of case retrieval. The estimation 

accuracy improves when attribute weights become more robust (Changchien & Lin, 

2005; Lee, et al., 2013a).  

When the size of the case-base gets large, it is inevitable to have a few cases 

deviating from the mainstream bulk of cases (Chan & Wong, 2007). Existing weight 

determination methods have limitations in being sensitive to outliers. A single outlier 

can have a large influence on the parameter estimates, reducing the accuracy of 

attribute weight (Yao & Li, 2014). To minimize the influence of noisy data in the case-

base, the ECCE CBR should increase the robustness for long-term use. Here 

robustness means the consistency in results (Schall et al., 2005). Given the significance 

of the weight determination in case retrieval, improving the robustness of the weight 

determination is the primary task when dealing with large volumes of data (Aamodt & 

Plaza, 1994).  

The stable structure of the case-base is critical because it affects the consistency 

of knowledge updating in the CBR model. This is particularly important for ECCE 

because of the consistency of knowledge on related project features help practitioners 

have a consistent understanding of ECCE. 

Therefore, this chapter uses the MODLR to increase the robustness of the weight 

determination. Based on the principle of MODAL introduced in section 3.4.2, this 

chapter presents the results of the MODAL-CBR model. A case study was used to 

illustrate the process of weight determination based on MODLR regression in the CBR 

model for ECCE. K-folder cross-validation is used for model validation.  K-fold cross-

validation uses part of the available data to fit the model, and a different part for testing 
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it. The data is split into K separate sets of equal size. Note that when the value of K is 

1450, K-folder cross-validation equals leave one cross-validation. The larger the value 

of K in K-fold, the greater the proportion of duplicate cases in the training set in each 

calculation. The reason for using multiple K-folder cross-validation is to show the 

changes in the weighting with respect to the changes in the training set.  

Given the influence of the number of cases in the test dataset on model 

development, the value of K-folder is set to be 10, 20, 40, 80, 160, 320 and 1450. The 

measure of the estimation accuracy includes the MAPE and RMSE. The results are 

compared with those using ordinary least squares (OLS) regression and GA in weight 

determination, followed by the discussion on the overall robustness of the weight 

determination.  

6.2 RESULTS 

6.2.1 Weight Calculation  

Table 6.1 to Table 6.3 represent attribute weights calculated by OLS, GA and 

MODLR when the values of KF in K-fold are 10, 20, 40, 80, 160, 320 and 1450. For 

example, when K -fold is 10, the mean value of weights calculated by OLS are 0.644, 

0.206, 0.035, 0.056, 0.048 and 0.011; the mean value of weights calculated by GA are 

0.625, 0.277, 0.044, 0.022, 0.015, 0.017; the mean value of weights calculated by 

MODAL are 0.494, 0.186, 0.102, 0.015, 0.023, and 0.180. Similarly, when K -fold is 

10, the variances of weights calculated by OLS are 8.49E-05, 1.22E-04, 1.06E-04, 

1.60E-05, 4.54E-06, 2.36E-05; the variances of weights calculated by GA are 4.15E-

04, 2.96E-04, 5.23E-04, 1.96E-04 ,4.69E-05, 2.67E-04; the variances of weights 

calculated by MODAL are 8.32E-05, 2.68E-05, 4.70E-05, 1.49E-05, 4.16E-06, 4.87E-

05.  

In OLS, the most significant attribute is the total above-floor area, followed by 

total below-floor area, no. of storeys below the ground, duration, no. of storeys above 

the ground and total height of building. Similarly, in GA, the most significant attribute 

is total above-floor area, followed by total below-floor area, no. of storeys above the 

ground, no. of storeys below the ground, total height of the building and duration. In 

MODAL, the most significant attribute is total above-floor area, followed by total 

below-floor area, total height of building, no. of storeys above the ground, duration 

and no. of storeys below the ground. 
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Table 6.1 Attribute weights calculated by OLS  
 Mean 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 0.6437 0.2055 0.0353 0.0560 0.0482 0.0113 

20 0.6444 0.2055 0.0352 0.0562 0.0482 0.0105 

40 0.6454 0.2054 0.0350 0.0564 0.0483 0.0095 

80 0.6459 0.2055 0.0350 0.0564 0.0483 0.0088 

160 0.6462 0.2056 0.0350 0.0565 0.0484 0.0083 

320 0.6463 0.2056 0.0350 0.0565 0.0484 0.0083 

1450 0.6466 0.2056 0.0350 0.0565 0.0484 0.0079 

Average 0.6455 0.2055 0.0351 0.0564 0.0483 0.0092 
 Variance 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 8.49E-05 1.22E-04 1.06E-04 1.60E-05 4.54E-06 2.36E-05 

20 1.16E-04 5.65E-05 1.10E-04 1.80E-05 1.96E-06 6.48E-05 

40 2.63E-05 3.30E-05 5.36E-05 1.15E-05 1.06E-06 2.48E-05 

80 1.91E-05 2.03E-05 3.11E-05 3.93E-06 5.74E-07 1.44E-05 

160 8.26E-06 9.66E-06 1.45E-05 1.84E-06 3.07E-07 7.10E-06 

320 1.15E-05 7.62E-06 1.46E-05 1.78E-06 2.71E-07 8.15E-06 

1450 1.07E-06 1.03E-06 1.69E-06 2.10E-07 3.23E-08 8.81E-07 

 

Table 6.2 Attribute weights calculated by GA 
 Mean 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 0.6252  0.2768  0.0440  0.0216  0.0154  0.0169  

20 0.6343  0.2627  0.0387  0.0277  0.0164  0.0202  

40 0.6379  0.2632  0.0304  0.0283  0.0158  0.0243  

80 0.6372  0.2664  0.0346  0.0243  0.0159  0.0215  

160 0.6384  0.2636  0.0341  0.0269  0.0156  0.0213  

320 0.6387  0.2635  0.0307  0.0277  0.0156  0.0237  

1450 0.6377  0.2639  0.0333  0.0273  0.0155  0.0223  

Average 0.6356  0.2657  0.0351  0.0263  0.0158  0.0215  

 Variance 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 4.1483E-04 2.9627E-04 5.2310E-04 1.9612E-04 4.6859E-05 2.6664E-04 

20 7.6623E-04 5.8544E-04 3.9157E-04 2.1340E-04 3.9835E-05 4.3158E-04 

40 5.2765E-04 4.9299E-04 4.9029E-04 2.0390E-04 6.2274E-05 2.8568E-04 

80 6.4862E-04 4.1861E-04 4.1208E-04 1.7982E-04 6.3973E-05 3.9141E-04 

160 6.6739E-04 4.5397E-04 4.0471E-04 1.8253E-04 6.1593E-05 3.1935E-04 
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320 6.3412E-04 4.1778E-04 4.1534E-04 1.9402E-04 5.6318E-05 4.3230E-04 

1450 6.9116E-04 4.8254E-04 4.5643E-04 1.8747E-04 5.5706E-05 3.6701E-04 

 

Table 6.3 Attribute weights calculated by MODLR 
 Mean 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 0.4942  0.1862  0.1020  0.0145  0.0232  0.1799  

20 0.5068  0.1846  0.0989  0.0075  0.0255  0.1769  

40 0.5011  0.1846  0.1005  0.0108  0.0246  0.1783  

80 0.4984  0.1848  0.1014  0.0123  0.0241  0.1790  

160 0.4927  0.1847  0.1040  0.0148  0.0229  0.1809  

320 0.4947  0.1847  0.1030  0.0140  0.0234  0.1802  

1450 0.4960  0.1846  0.1025  0.0134  0.0236  0.1799  

Average 0.4977  0.1849  0.1018  0.0125  0.0239  0.1793  

 Variance 

K-fold Weight1 Weight2 Weight3 Weight4 Weight5 Weight6 

10 8.3211E-05 2.6849E-05 4.6967E-05 1.4948E-05 4.1610E-06 4.8667E-05 

20 5.0139E-05 2.7375E-05 3.2899E-05 9.4225E-06 7.7599E-07 1.5000E-05 

40 1.3189E-05 1.2394E-05 2.0046E-05 3.6729E-06 7.7038E-07 1.1531E-05 

80 1.4210E-05 7.3865E-06 8.8455E-06 2.8601E-06 4.4637E-07 6.6906E-06 

160 4.9882E-06 2.7578E-06 3.9636E-06 1.1300E-06 2.1997E-07 3.1429E-06 

320 5.7037E-06 3.2006E-06 4.0616E-06 9.3401E-07 2.1408E-07 3.6225E-06 

1450 6.6460E-07 3.7565E-07 5.2755E-07 1.0484E-07 2.4021E-08 3.6023E-07 

 

It can be seen that the total above-floor area is the most significant attribute in 

all weight determination methods. The average weights of the total above-floor area 

are 0.6455 by OLS, 0.6356 by GA, 0.4977 by MODAL. The second most important 

attribute weight is the total below-floor area. The average weights of total below-floor 

area are 0.2055 by using OLS, 0.2675 by using GA, 0.1849 by using MODAL. The 

third most significant attribute differs due to the weight determination methods. The 

third is the no. of storeys below the ground (0.0564) by using OLS, no. of storeys 

above the ground (0.0351) by using GA, the total height of the building (0.1793) by 

MODAL. Except for Modal, duration and the total height of the building are the least 

significant attribute weight for ECCE.  
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It can be seen that OLS and GA are not much different in the mean value of 

attribute weight. The total above-floor area is less important in weighting, and the total 

height of the building is more important when using MODAL.  

Variance of weight attribute is used for measuring the weight robustness. K-fold 

cross-validation uses part of the available data to fit the model, and a different part for 

testing. The smaller the value of KF in K-fold, the more repeatability among training 

samples during the calculation of each fold. The changes in the attribute weight of each 

fold represents the changes in case-

training sample. For the long-term use of the system, it is necessary to reduce the 

fluctuations of the case- in the training sample 

while ensuring the mo the ECCE CBR 

model should be capable of capturing the feature of the mainstream bulk of cases and 

reduce the unnecessary changes caused by minority or outliers of the data. The 

variance of weight attributes is used to measure the robustness of attribute weight. The 

smaller variance of weight attributes represents less sensitivity to the minority of cases 

and greater robustness of the CBR model.  

Table 6.1 to Table 6.3 represents the changes in the attribute weight in each 

calculation. For example, when the value of KF is ten, and weight determination 

method is OLS, the average weight of total above floor area is 0.6437; the average 

weight of total below floor area is 0.2055; the average weight of the no. of storeys 

above the ground is 0.0353; the average weight of the no. of storeys below the ground 

is 0.0560; the average weight of duration is 0.0482; the average weight of the total 

height of the building is 0.0113. Accordingly, the variances of total above-floor area, 

no. of storeys above the ground, no. of storeys below the ground, duration, total height 

of the building are 8.49E-05,1.22E-04,1.06E-04, 1.60E-05, 4.54E-06 and 2.36E-05. 

Similarly, when using GA and the value of KF is ten, the variances of total 

above-floor area, no. of storeys above the ground, no. of storeys below the ground, 

duration, total heights of the building are 4.15E-04, 2.96E-04, 5.23E-04, 1.96E-04, 

4.69E-05, 2.67E-04. When using MODAL and the value of KF in K-fold is ten, the 

variances of weights of total above-floor area, no. of storeys above the ground, no. of 

storeys below the ground, duration, and total height of the building are 8.32E-05, 

2.68E-05, 4.70E-05, 1.49E-05, 4.16E-06 and 4.87E-05.  
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Figure 6.1 to Figure 6.7 represent the changes of the attribute weight in each 

calculation based on different values of KF. Despite the differences in the case 

adaptation value of K-fold, MODAL has the least weight variance compared with 

other methods. MODAL shows excellent performance in weight stability.  

 
 

 
 

 
 

 
Figure 6.1 Attribute weights of each fold (k=10) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(e)                                     (f) 

 

 Figure 6.2 Attribute weights of each fold (k=20) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(a)                                    (b) 

 
(c)                                     (d) 

 

(e)                                   (f) 

 

Figure 6.3 Attribute weights of each fold (k=40) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(a)                                    (b) 

 
(c)                                        (d) 

 

(e)                                    (f) 

 

Figure 6.4 Attribute weights of each fold (k=80) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(a)                                     (b) 

 
(c)                                     (d) 

 

(e)                                     (f) 

 

Figure 6.5 Attribute weights of each fold (k=160) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(a)                                     (b) 

 
(c)                                     (d) 

 

(e)                                     (f) 

 

Figure 6.6 Attribute weights of each fold (k=320) : (a) total above floor area; (b) total 

below floor area; (c) No. of storeys above the ground; (d) No. of storeys below the 

ground; (e) duration; (f) total height of building 
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(a)                                     (b) 

 
(c)                                     (d) 

 

(e)                                     (f) 

 
Figure 6.7 Attribute weights of each fold (k=1450) : (a) total above floor area; (b) 

total below floor area; (c) No. of storeys above the ground; (d) No. of storeys below 

the ground; (e) duration; (f) total height of building 
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6.2.2 Error Rate 

Tables 6.4 to 6.6 show the results of the CBR model using OLS, GA and 

MODAL. When the parameters of case adaptation are 5/3/1, the average value of 

MAPE in the OLS-based CBR model is 0.1770/0.1812/0.2001, the average value of 

MAPE in GA-based CBR model is 0.1730/ 0.1765/0.1765, the average value of MAPE 

in MODAL-based CBR model is 0.1528/0.1463/0.1746. The accuracy of the CBR 

model differs due to the different setting parameters in case adaptation. The OLS and 

GA show the best results when the parameter of case adaptation is 5, while MODAL 

has the best performance when the parameter of case adaptation is 3. The parameter of 

case adaptation represents the number of similar cases needed to produce the final 

results. Of the three methods, MODAL-based CBR model has the least mean MAPE 

(0.1463) and mean RMSE (0.1880), followed by GA-based CBR model (MAPE 

=0.1730, RMSE=0.2128) and OLS-based CBR model (MAPE=0.1770, 

RMSE=0.2206). 

Table 6.4 The result of the OLS-CBR model  
K-fold K=5 K=3 K=1 

  MAPE RMSE MAPE RMSE MAPE RMSE 

10 0.1791  0.2246  0.1817  0.2304  0.1995  0.2647  

20 0.1768  0.2225  0.1794  0.2271  0.1974  0.2621  

40 0.1776  0.2230  0.1809  0.2277  0.1998  0.2644  

80 0.1766  0.2206  0.1817  0.2268  0.2022  0.2631  

160 0.1766  0.2156  0.1822  0.2223  0.2013  0.2571  

320 0.1755  0.2141  0.1810  0.2204  0.2012  0.2553  

1450 0.1767  0.2236  0.1816  0.2305  0.1990  0.2644  

Average 0.1770  0.2206  0.1812  0.2265  0.2001  0.2616  

 

Table 6.5 The result of the GA -CBR model  
K-fold K=5 K=3 K=1 

  MAPE RMSE MAPE RMSE MAPE RMSE 

10 0.1719  0.2137  0.1762  0.2203  0.1956  0.2556  

20 0.1719  0.2147  0.1750  0.2195  0.1966  0.2624  

40 0.1739  0.2149  0.1760  0.2211  0.1947  0.2564  

80 0.1737  0.2142  0.1752  0.2173  0.1982  0.2574  

160 0.1733  0.2111  0.1791  0.2180  0.1998  0.2539  

320 0.1722  0.2067  0.1777  0.2138  0.2003  0.2507  

1450 0.1741  0.2140  0.1765  0.2219  0.1938  0.2554  

Average 0.1730  0.2128  0.1765  0.2188  0.1970  0.2560  
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Table 6.6 The result of the MODAL-CBR model  
K-fold K=5 K=3 K=1 

  MAPE RMSE MAPE RMSE MAPE RMSE 

10 0.1563  0.1983  0.1492  0.1941  0.1759  0.2334  

20 0.1523  0.1939  0.1460  0.1900  0.1750  0.2302  

40 0.1530  0.1937  0.1454  0.1893  0.1751  0.2305  

80 0.1532  0.1920  0.1472  0.1886  0.1754  0.2284  

160 0.1515  0.1858  0.1453  0.1821  0.1732  0.2195  

320 0.1519  0.1873  0.1459  0.1816  0.1739  0.2181  

1450 0.1513  0.1940  0.1449  0.1906  0.1737  0.2311  

Average 0.1528  0.1921  0.1463  0.1880  0.1746  0.2273  

 

 

Figure 6.8 Average of MAPE of CBR model based on OLS,MA,GA 

 

 

Figure 6.9 Average of RMSE of CBR model based on OLS, MA, GA 
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6.3 DISCUSSION 

6.3.1 Weight Robustness 

Different KF value in K-fold is used to measure the differences in the training 

set during each calculation. The larger the value of KF in K-fold, the more repeatability 

among training samples during the calculation of each fold. This means a smaller 

difference in the training set during each calculation. From Figure 6.1 to Figure 6.7, 

the trend of attribute weight during each calculation follows the fundamental principle 

that changes in weighting in each calculation decreases with the increase in the KF 

value of K-fold.  

Despite the differences in the KF value of K-fold, Modal regression has the least 

variance compared with OLS and GA. MODAL shows excellent performance in 

weight stability. The variance of weight attributes during each calculation is used to 

measure the robustness of attribute weight. The smaller variance of weight attributes 

represents greater robustness of the CBR model. In the ECCE CBR model, the changes 

in the attribute weight of each fold represent the changes in case-

caused by the difference in the training sample. For the long-term use of the system, it 

is necessary to reduce the fluctuations of the case-

changes in the training sample while ensuring the 

determination in the ECCE CBR model should be capable of capturing the feature of 

the mainstream bulk of cases and reducing the unnecessary changes caused by 

minority or outliers of the data.  

Another interesting finding is that GA is not suitable for weight determination 

in the ECCE CBR model, concerning long-term us

optimization for a single calculation, the result produced by GA is difficult to repeat, 

and inconsistent. This is expected to be caused by the randomization evolving process 

involved in GA. Case-base is deemed as the fundamental component in the CBR 

system. Since the structure of case-base affects case representation, knowledge storage 

and model implementation, the stable structure of case-base is significant for long-

term use of the CBR model for ECCE.  

6.3.2  Comparison of Three Weight Determination Methods 

Compared with other methods, MODAL regression shows excellent 

performance in weight stability. Figure 6.1 to Figure 6.7 illustrates the superiority of 
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MODAL concerning robustness. Despite the difference in the value of K, the 

MODAL-CBR model has the most stable performance in weight determination. 

MODAL-CBR model can reduce the sensitivity of the noisy data and support long-

term use of the ECCE CBR model.  

The influence of the changes in the training sample on the MODAL-CBR model 

is not as significant as on the OLS-CBR model and GA-CBR model. The accuracy 

differs due to the different values of case adaptation. The OLS and GA show the best 

results when the parameter of case adaptation is 5, while MODAL has the best 

performance when the setting of case adaptation is 3. The setting of case adaptation 

represents the number of similar cases needed to produce the final results. The larger 

the parameter of case adaptation, the more adaptation capability requirement of the 

model. Accordingly, the MODAL-CBR model requires less case adaptation.  

As a robust regression based on the conditional mode of the response value, 

MODAL takes the value with the highest probability of occurrence and thus provides 

a more stable performance than other weight determination methods (Yao & Li, 2014). 

Accordingly, the MODAL-CBR model focuses on the main characteristics of the cases 

and maintains the stable structure of case-base despite the changes in the cases. The 

results show that the MODAL-CBR model significantly improves the MAPE from 

0.17 to 0.1463 and RMSE from 0.22 to 0.18.  

6.4 CHAPTER SUMMARY 

This chapter introduces a robust weight determination method for improving the 

long-term use of the ECCE CBR model. The MODAL regression is used in weight 

determination to increase the -folder cross-validation is used for 

the model validation, and different KF values of 10, 20, 40, 80, 160, 320 and 1450 are 

used, given their influence on the training sample.  

The results show that the total above-floor area is the most significant attribute 

in all weight determination methods, followed by total underground floor area. The 

significance of remaining attributes differs due to the methods used. The third-most 

significant attribute differs due to the weight determination methods. Except for 

MODAL, duration and the total height of the building are the least weight for ECCE.  

The model is evaluated from robustness and accuracy perspectives. Variance of 

weight attribute of each calculation is used for measuring the weight robustness. The 
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measure of estimation accuracy includes the MAPE and RMSE. The results are 

compared with those using the OLS and GA in weight determination, followed by the 

discussion on the overall robustness of the weight determination. From the robustness 

perspective, MODAL-CBR model has the least attribute variance compared with those 

with OLS and GA. The results show the superiority of the MODAL-CBR model in 

weighting stability. From the accuracy perspective, the results showed that the 

MODAL- CBR model has the least mean MAPE and mean RMSE, followed by the 

GA-based CBR model and OLS-based CBR model.  
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Chapter 7: Improving the ECCE CBR 
Model by using CBM 

7.1 INTRODUCTION  

The previous chapter represents the results of OLS-CBR, GA-CBR and 

MODLR-CBR. The comparative results with respect to robustness and prediction 

accuracy are provided. The results show that the MODAL-CBR model has the largest 

robustness compared with those with OLS and GA, which illustrates the superiority of 

the MODAL-CBR model in weighting stability. From the accuracy perspective, the 

results showed that the MODAL-CBR model has the least mean MAPE and mean 

RMSE, followed by the GA-based CBR model and OLS-based CBR model. 

Except for robustness, efficiency is also a significant factor to be considered 

during the long-term running of the ECCE CBR system. A successful ECCE CBR 

model should not only provide accurate estimation results but should also be easily 

and conveniently maintained. Despite the advantage of CBR in ECCE, several 

practical issues need to be considered when using the CBR system to solve the real-

world problem. These issues include the limit of the case-base size, the trade-off 

between long-term and short-term performance, the expected distribution of future 

problems and the availability of sources of cases (Leake & Wilson, 2000). Among 

those, the limit of the case-base received most research attention because it is the most 

common problem when using the CBR system.  

During the long-term operation of the ECCE CBR model, the large storage 

requirement and slow efficiency caused by the continuous increase in the size of the 

case-base should be carefully addressed. When the size of the case-base becomes large, 

the requirement of data storage becomes intensive and the retrieval process gets slow. 

This trend will significantly impair the performance of the ECCE CBR system if not 

being properly handled. This inevitably raises the question of how to select cases for 

avoiding excessive 

performance by reducing error. The success of the CBR system is not only measured 

by the range of problems that can be satisfactorily solved, but also by the storage and 

answer time that is needed to generate solutions for case targets. Thus, this chapter 
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introduces a CBM approach for case-base reduction during the long-term use of the 

ECCE CBR model. 

An original method based on a CBM for case-base editing is introduced in this 

chapter, to cleanse the training dataset and improve the efficiency of the ECCE CBR 

model. CBM is a process of updating and refining the case-base. It is used for revising 

and adjusting the knowledge of the case-base to facilitate the reasoning system to 

improve the performance of the CBR system. Case-based editing methods are 

proposed based on the basic concepts of CBM introduced in Chapter 3. Given a case 

set X= , let x  X be a case whose cost should be estimated. The CBM 

method starts with calculating the coverage contribution weight for any given K, the 

case adaptation value used in the CBR model. Then, for each training case  in 

training set  =  calculating its coverage N ( ) in the 

case-base. The next step is calculating the weighted coverage contribution of each 

training case in the case-base . Later, the weighted coverage contribution is 

ranked and the threshold of weighted coverage contribution is determined. The next 

step is to select a subset D whose weighted coverage contribution is lower than a 

threshold. Finally, the case-base is updated by deleting those in D. Briefly, given one 

training case, the editing rules consider either to delete or keep the case unchanged 

according to their weighted coverage contribution in the case-base. The cases with the 

lowest coverage contribution will be eliminated.  

7.2 RESULTS 

7.2.1 Edting Threshold 

To perform the case-base editing strategy, the first step is to calculate the 

converage contribution weight for any given K. In this study, the K values of 1,3,5 are 

used. The coverge weight is determined consequently by the K value based on 

Equation 3.3.  The second step is to calculate the weighted coverage contribution of 

each of the training cases. Figure 7.1 to Figure 7.3 shows the range of the coverage 

contribution in different models.  In the OLS-CBR model, the range of weighted 

coverage contribution of the case-base is [0,4] when K is one,  the range of weighted 

coverage contribution of the case-base is [0,20] when K is three, the range of weight 

coverage contribution of the casebase is [0,45] when K is five. In the GA-CBR model, 

the range of weighted coverage contribution of the case-base is [0,5] when K is one,  



 

146 Chapter 7: Improving the ECCE CBR Model by using CBM 

the range of weighted coverage contribution of the case-base is [0,19] when K is three, 

the range of weight coverage contribution of the casebase is [0,43] when K is five. In 

the MODAL-CBR model, the range of weighted coverage contribution of the case-

base is [0,5] when K is one,  the range of weighted coverage contribution of the case-

base is [0,17] when K is three, the range of weight coverage contribution of the 

casebase is [0,40] when K is five.  

The range of the coverage contribution differs in different models. It can be seen 

that, with the increase in the K value, the range of the coverage contribution increases. 

The edting threshold should be in the range of the coverage contribution. For example, 

if the coverge contribution range is [0,5], then the editing thredholds can be zero, one, 

two, three, and four.  Note that the editing threshhold should be less than the maximum 

value of the coverage contribution so that the case-base is not empty. Considering the 

coverage range of the case-base, this study selects 3, 15 and 30 as the maximum value 

of the editing threshold when K is 1, 3, 5 seperately.  Therefore, the editing threshhold 

ranges from 1 to 30 when K equals 5; ranges from 1 to 15 when K equals 3; and ranges 

from 1 to 3 when K equals 1. Leave-one cross-validation is used for model validation.  

 

(a) 
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(b) 

(c) 

Figure 7.1 The histogram of coverage contribution of case-base in OLS-CBR model: 

(a) K=1; (b) K=3; (c) K=5; 
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(c) 

Figure 7.2 The histogram of coverage contribution of case-base in GA-CBR model: 

(a) K=1; (b) K=3; (c) K=5; 

(a) 
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(b) 

(c) 

Figure 7.3 The histogram of coverage contribution of case-base in MODAL-CBR 

model: (a) K=1; (b) K=3; (c) K=5; 
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7.2.2 Compression Ratio  

The performance of the ECCE CBR model was compared before and after using 

the proposed CBM approach. After editing the case-base, the attribute weight and the 

case-base both have been updated. Thus, there are three options in parameter setting 

for the CBR ECCE model: new weight and new training dataset (strategy 1); new 

weight and original training case-base (strategy 2); original attribute weight and 

optimized training dataset (strategy 3).  

Table 7.1 The number of cases in the case-base after case-base editing  

The No. of 
cases  

OLS-CBR GA-CBR MODLR-CBR 

Threshold K=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5 

1 369  1315  1405  376  1309  1405  364  1317  1404  

2 68  1242  1387  73  1235  1391  82  1237  1394  

3 13  1079  1367  9  1074  1373  7  1085  1379  

4 - 948  1348  - 944  1346  - 946  1341  

5 - 792  1299  - 790  1295  - 771  1283  

6 - 631  1264  - 622  1258  - 598  1247  

7 - 476  1213  - 471  1213  - 454  1214  

8 - 340  1158  - 340  1159  - 344  1165  

9 - 226  1100  - 229  1100  - 236  1103  

10 - 138  1041  - 142  1031  - 142  1034  

11 - 65  974  - 83  963  - 81  953  

12 - 37  908  - 45  897  - 48  878  

13 - 18  830  - 23  824  - 30  809  

14 - 7  753  - 11  750  - 16  729  

15 - 6  681  - 6  676  - 9  659  

16 - - 603  - - 603  - - 595  

17 - - 540  - - 531  - - 543  

18 - - 469  - - 461  - - 475  

19 - - 399  - - 398  - - 395  

20 - - 334  - - 338  - - 334  

21 - - 280  - - 283  - - 272  

22 - - 224  - - 233  - - 226  

23 - - 180  - - 187  - - 190  

24 - - 145  - - 148  - - 161  

25 - - 110  - - 115  - - 124  

26 - - 81  - - 87  - - 101  

27 - - 65  - - 65  - - 80  

28 - - 41  - - 48  - - 60  

29 - - 31  - - 34  - - 45  

30 - - 20  - - 25  - - 33 

 represents the not applicable 
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Table 7.2 The compression rate based on different thresholds  
Compression 

rate 
OLS-CBR GA-CBR MODLR-CBR 

threshold K=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5 

1 0.25  0.91  0.97  0.26  0.90  0.97  0.25  0.91  0.97  

2 0.05  0.86  0.96  0.05  0.85  0.96  0.06  0.85  0.96  

3 0.01  0.74  0.94  0.01  0.74  0.95  0.01  0.75  0.95  

4 - 0.65  0.93  - 0.65  0.93  - 0.65  0.93  

5 - 0.55  0.90  - 0.55  0.89  - 0.53  0.89  

6 - 0.44  0.87  - 0.43  0.87  - 0.41  0.86  

7 - 0.33  0.84  - 0.33  0.84  - 0.31  0.84  

8 - 0.23  0.80  - 0.23  0.80  - 0.24  0.80  

9 - 0.16  0.76  - 0.16  0.76  - 0.16  0.76  

10 - 0.10  0.72  - 0.10  0.71  - 0.10  0.71  

11 - 0.04  0.67  - 0.06  0.66  - 0.06  0.66  

12 - 0.03  0.63  - 0.03  0.62  - 0.03  0.61  

13 - 0.01  0.57  - 0.02  0.57  - 0.02  0.56  

14 - 0.00  0.52  - 0.01  0.52  - 0.01  0.50  

15 - 0.00  0.47  - 0.00  0.47  - 0.01  0.45  

16 - - 0.42  - - 0.42  - - 0.41  

17 - - 0.37  - - 0.37  - - 0.37  

18 - - 0.32  - - 0.32  - - 0.33  

19 - - 0.28  - - 0.27  - - 0.27  

20 - - 0.23  - - 0.23  - - 0.23  

21 - - 0.19  - - 0.20  - - 0.19  

22 - - 0.15  - - 0.16  - - 0.16  

23 - - 0.12  - - 0.13  - - 0.13  

24 - - 0.10  - - 0.10  - - 0.11  

25 - - 0.08  - - 0.08  - - 0.09  

26 - - 0.06  - - 0.06  - - 0.07  

27 - - 0.04  - - 0.04  - - 0.06  

28 - - 0.03  - - 0.03  - - 0.04  

29 - - 0.02  - - 0.02  - - 0.03  

30 - - 0.01  - - 0.02  - - 0.02  

 represents the not applicable 
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(a)                                  (b) 

 

(c) 

Figure 7.4 Compression rate based on Threshold  

Table 7.1 and Table 7.2 shows the number of cases and the compression rate in 

the case-base after editing. For example, when K and threshold and are set as five and 

one, the number of the cases left in the case-base is 1405 and the compression rate is 

0.97; when K and threshold are set to be five and 10 separately, the number of the 

cases left in the case-base is 1401 and the compression rate is 0.72;  

Figure 7.4 shows how the size of the case-base and the compression rate changes 

based on different thresholds of coverage contribution. The different case adaptation 

values generate different compression processes. When case adaptation is set to five, 

the compression rate can be in the range between 1% to 97%. When case adaptation is 

set to three, the compression rate can be in the range between 1% to 91%. When case 

adaptation is set to one, the compression rate can be in the range between 1% to 25%. 
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When conducting case-base editing, the ideal compression process should 

provide an extensive compression range offering sufficient choices. When the K value 

is small (K=1), the rapid compression process sacrifices the compression range. This 

means the editing of the case-base is very inflexible, and there is not much space for 

choosing the optimal compression ratio. When the K value is larger (K=5), the 

compression step is smaller, which can provide a broader range of compression 

interval, which provides more options.  

7.2.3 Weight Calculation  

After the case-base editing, the attribute weight is updated based on different 

thresholds. Table 7.3 to Table 7.5 presents the average value of weight according to 

different editing thresholds when K is set to five. Table 7.6 to Table 7.8 presents the 

average value of weight according to different editing threshold when K is set to three. 

Table 7.9 to Table 7.11 presents the average value of weight according to different 

editing threshold when K is set to one. 

Table 7.3 The attribute weight of OLS-CBR after case-base editing (K=5)  
 OLS-CBR (K=5) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.6396  0.2066  0.0349  0.0611  0.0491  0.0086  
2 0.6384  0.2089  0.0378  0.0593  0.0486  0.0069  
3 0.6374  0.2092  0.0324  0.0604  0.0488  0.0118  
4 0.6382  0.2101  0.0258  0.0598  0.0486  0.0175  
5 0.6284  0.2076  0.0525  0.0593  0.0478  0.0044  
6 0.6124  0.2162  0.0593  0.0564  0.0459  0.0098  
7 0.6101  0.2202  0.0608  0.0531  0.0457  0.0100  
8 0.6111  0.2284  0.0582  0.0467  0.0484  0.0072  
9 0.6129  0.2471  0.0481  0.0399  0.0493  0.0027  

10 0.5959  0.2340  0.0708  0.0348  0.0471  0.0174  
11 0.6005  0.2235  0.0688  0.0389  0.0497  0.0187  
12 0.6046  0.2204  0.0644  0.0443  0.0497  0.0165  
13 0.5378  0.2015  0.1165  0.0323  0.0458  0.0662  
14 0.5248  0.1820  0.1279  0.0418  0.0434  0.0801  
15 0.5266  0.1723  0.1262  0.0466  0.0456  0.0826  
16 0.5082  0.2296  0.1185  0.0269  0.0438  0.0729  
17 0.5303  0.2311  0.1057  0.0284  0.0477  0.0569  
18 0.5962  0.2592  0.0563  0.0288  0.0572  0.0023  
19 0.5261  0.2176  0.1085  0.0337  0.0510  0.0631  
20 0.5407  0.2544  0.0877  0.0205  0.0540  0.0427  
21 0.5605  0.2667  0.0773  0.0025  0.0594  0.0336  
22 0.5200  0.3137  0.0830  0.0035  0.0595  0.0202  
23 0.4982  0.2628  0.1210  0.0102  0.0457  0.0621  
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24 0.4302  0.3948  0.0680  0.0551  0.0493  0.0026  
25 0.3977  0.4087  0.0537  0.0852  0.0503  0.0044  
26 0.3327  0.4084  0.0174  0.1004  0.0534  0.0878  
27 0.3780  0.2876  0.0880  0.0723  0.0493  0.1249  
28 0.5435  0.1039  0.0862  0.0833  0.0708  0.1122  
29 0.5121  0.0986  0.0499  0.1953  0.1056  0.0385  
30 0.3813  0.3095  0.0942  0.1234  0.0630  0.0285  

 

Table 7.4 The attribute weight of GA-CBR after case-base editing (K=5)  
GA-CBR (K=5) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1  0.6278  0.2772  0.0307  0.0250  0.0165  0.0228  

2  0.6270  0.2771  0.0308  0.0251  0.0166  0.0233  

3  0.6261  0.2782  0.0309  0.0253  0.0162  0.0232  

4  0.6267  0.2793  0.0313  0.0241  0.0160  0.0226  

5  0.6251  0.2823  0.0299  0.0243  0.0168  0.0216  

6  0.6236  0.2836  0.0305  0.0234  0.0173  0.0216  

7  0.6242  0.2832  0.0309  0.0232  0.0177  0.0207  

8  0.6214  0.2851  0.0303  0.0233  0.0185  0.0214  

9  0.6077  0.3051  0.0290  0.0192  0.0184  0.0205  

10  0.6014  0.3129  0.0295  0.0190  0.0173  0.0198  

11  0.6022  0.3114  0.0292  0.0195  0.0176  0.0202  

12  0.6031  0.3117  0.0292  0.0190  0.0173  0.0196  

13  0.6060  0.3083  0.0295  0.0192  0.0180  0.0189  

14  0.6126  0.3021  0.0300  0.0180  0.0181  0.0191  

15  0.6141  0.2998  0.0303  0.0172  0.0177  0.0208  

16  0.6149  0.3013  0.0306  0.0145  0.0185  0.0201  

17  0.6131  0.3057  0.0297  0.0125  0.0194  0.0196  

18  0.6097  0.3106  0.0282  0.0109  0.0201  0.0205  

19  0.6081  0.3120  0.0291  0.0110  0.0209  0.0188  

20  0.6058  0.3143  0.0284  0.0102  0.0225  0.0187  

21  0.6069  0.3143  0.0274  0.0093  0.0242  0.0179  

22  0.6000  0.3223  0.0266  0.0090  0.0238  0.0183  

23  0.5985  0.3234  0.0278  0.0076  0.0246  0.0180  

24  0.6035  0.3132  0.0299  0.0068  0.0269  0.0196  

25  0.6046  0.3093  0.0309  0.0071  0.0262  0.0220  

26  0.6040  0.3088  0.0314  0.0066  0.0256  0.0236  

27  0.5937  0.3152  0.0326  0.0075  0.0264  0.0246  

28  0.5801  0.3285  0.0335  0.0068  0.0268  0.0243  

29  0.5650  0.3360  0.0359  0.0085  0.0292  0.0254  

30  0.5536  0.3429  0.0366  0.0087  0.0317  0.0266  
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Table 7.5 The attribute weight of MODLR-CBR after case-base editing (K=5)  
 MODLR-CBR (K=5) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1  0.4944  0.1863  0.1000  0.0155  0.0240  0.1797  

2  0.4943  0.1854  0.1000  0.0165  0.0239  0.1798  

3  0.4928  0.1850  0.1001  0.0176  0.0244  0.1800  

4  0.4891  0.1840  0.0978  0.0194  0.0232  0.1865  

5  0.4886  0.1792  0.1033  0.0230  0.0236  0.1824  

6  0.4957  0.1803  0.1014  0.0237  0.0233  0.1756  

7  0.4869  0.1784  0.1063  0.0215  0.0234  0.1836  

8  0.4904  0.1773  0.1068  0.0230  0.0252  0.1773  

9  0.6135  0.2234  0.0844  0.0382  0.0305  0.0101  

10  0.6242  0.2316  0.0516  0.0364  0.0317  0.0246  

11  0.5050  0.1899  0.0903  0.0281  0.0266  0.1602  

12  0.4752  0.1972  0.1022  0.0384  0.0249  0.1621  

13  0.4687  0.2025  0.1034  0.0362  0.0258  0.1634  

14  0.4532  0.2044  0.1066  0.0361  0.0252  0.1745  

15  0.4468  0.2089  0.1097  0.0287  0.0279  0.1780  

16  0.5154  0.0722  0.1401  0.0352  0.0327  0.2043  

17  0.5153  0.0750  0.1355  0.0410  0.0362  0.1970  

18  0.5769  0.0230  0.1367  0.0031  0.0326  0.2277  

19  0.5563  0.0132  0.1488  0.0170  0.0236  0.2410  

20  0.5313  0.0551  0.1359  0.0313  0.0252  0.2212  

21  0.5032  0.1895  0.1144  0.0257  0.0303  0.1369  

22  0.5504  0.0039  0.1973  0.0297  0.0307  0.1880  

23  0.5696  0.0061  0.1900  0.0200  0.0226  0.1917  

24  0.4879  0.1754  0.1455  0.0174  0.0220  0.1517  

25  0.3473  0.1579  0.2462  0.0652  0.0133  0.1701  

26  0.1777  0.1789  0.3135  0.0628  0.0090  0.2580  

27  0.1860  0.4404  0.1653  0.1047  0.0113  0.0922  

28  0.3674  0.0127  0.3271  0.0472  0.0096  0.2361  

29  0.5849  0.0503  0.2064  0.0853  0.0270  0.0460  

30  0.3339  0.0062  0.3021  0.0853  0.0392  0.2333  
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Table 7.6 The attribute weight of OLS-CBR after case-base editing (K=3)  
 OLS-CBR (K=3) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.6313  0.2189  0.0281  0.0600  0.0474  0.0142  

2 0.6233  0.2321  0.0303  0.0507  0.0481  0.0155  

3 0.6359  0.2164  0.0255  0.0513  0.0507  0.0202  

4 0.6383  0.2140  0.0250  0.0517  0.0506  0.0203  

5 0.5920  0.2742  0.0234  0.0323  0.0518  0.0262  

6 0.4647  0.2381  0.1350  0.0297  0.0379  0.0946  

7 0.4739  0.3111  0.1106  0.0112  0.0406  0.0526  

8 0.4708  0.2857  0.1226  0.0203  0.0425  0.0581  

9 0.3868  0.3611  0.1342  0.0112  0.0339  0.0730  

10 0.3803  0.4407  0.0436  0.0645  0.0360  0.0349  

11 0.4424  0.3478  0.0066  0.0584  0.0504  0.0944  

12 0.5045  0.0397  0.2149  0.0074  0.0693  0.1642  

13 0.4868  0.0202  0.1459  0.0805  0.0736  0.1929  

14 0.1686  0.3271  0.0999  0.3229  0.0557  0.0258  

15 0.2169  0.3047  0.0000  0.3080  0.0539  0.1165  

 

Table 7.7 The attribute weight of GA-CBR after case-base editing (K=3)  
GA-CBR (K=3) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.6253  0.2792  0.0315  0.0247  0.0173  0.0221  

2 0.6248  0.2819  0.0304  0.0240  0.0169  0.0220  

3 0.6258  0.2808  0.0293  0.0250  0.0186  0.0205  

4 0.6269  0.2768  0.0304  0.0269  0.0180  0.0210  

5 0.6152  0.2973  0.0296  0.0191  0.0177  0.0209  

6 0.5993  0.3205  0.0293  0.0158  0.0150  0.0201  

7 0.5989  0.3240  0.0294  0.0133  0.0155  0.0189  

8 0.6027  0.3216  0.0286  0.0102  0.0183  0.0186  

9 0.5912  0.3299  0.0300  0.0095  0.0195  0.0199  

10 0.5762  0.3465  0.0308  0.0083  0.0188  0.0194  

11 0.5924  0.3177  0.0321  0.0126  0.0246  0.0207  

12 0.6088  0.2705  0.0382  0.0243  0.0312  0.0270  

13 0.6004  0.2510  0.0444  0.0271  0.0453  0.0318  

14 0.5551  0.2535  0.0549  0.0274  0.0662  0.0428  

15 0.5112  0.2062  0.0721  0.0479  0.1005  0.0620  

16 0.6253  0.2792  0.0315  0.0247  0.0173  0.0221  
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Table 7.8 The attribute weight of MODAL-CBR after case-base editing (K=3)  
MODAL-CBR (K=3) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.4921  0.1816  0.1044  0.0191  0.0241  0.1786  

2 0.4918  0.1799  0.1070  0.0202  0.0241  0.1770  

3 0.4898  0.1742  0.1121  0.0223  0.0251  0.1764  

4 0.4803  0.1748  0.1072  0.0298  0.0237  0.1842  

5 0.5767  0.0500  0.1181  0.0124  0.0290  0.2138  

6 0.5930  0.2508  0.0487  0.0543  0.0333  0.0199  

7 0.3213  0.1302  0.2305  0.0088  0.0223  0.2869  

8 0.4013  0.1757  0.1420  0.0295  0.0233  0.2283  

9 0.5709  0.2512  0.0122  0.0488  0.0215  0.0953  

10 0.5402  0.1217  0.1274  0.0372  0.0109  0.1627  

11 0.2692  0.4087  0.1306  0.0793  0.0025  0.1098  

12 0.3210  0.3161  0.1149  0.0899  0.0194  0.1388  

13 0.2325  0.4075  0.1339  0.0656  0.0212  0.1393  

Table 7.9 The attribute weight of OLS -CBR after case-base editing (K=1) 
OLS-CBR (K=1) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.5236  0.3484  0.0006  0.0128  0.0487  0.0658  

2 0.3254  0.0086  0.3283  0.0285  0.0305  0.2787  

3 0.1640  0.0449  0.3626  0.0569  0.0131  0.3585  

Table 7.10 The attribute weight of GA -CBR after case-base editing (K=1) 
GA-CBR (K=1) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.6158  0.2877  0.0262  0.0251  0.0179  0.0272  

2 0.6053  0.2985  0.0360  0.0205  0.0152  0.0245  

3 0.5827  0.2798  0.0391  0.0228  0.0441  0.0315  

Table 7.11 The attribute weight of MODAL-CBR after case-base editing (K=1) 
MODAL-CBR (K=1) 

Threshold weight1 weight2 weight3 weight4 weight5 weight6 

1 0.3595  0.1690  0.1776  0.0251  0.0243  0.2445  

2 0.5212  0.0062  0.2502  0.0046  0.0124  0.2054  

3 0.0436  0.3728  0.2501  0.1441  0.0125  0.1769  

7.2.4 Error Rate 

Tables 7.12 to 7.14 show results of the MAPE and RMSE of OLS-, GA-, 

MODAL-CBR (K=5) based on the editing threshold ranging from 1 to 30. For example, 

Table 7.12 gives the results of the MAPE and RMSE in the OLS-CBR (K=5) based on 

the editing threshold ranging from 1 to 30. When the case adaptation and threshold are 
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set 5 and 10, the number of cases in the case-base after case-base editing is 1041, the 

compression rate is 0.7187, the MAPE and RMSE of the Strategy 1 are 0.1747 and 

0.2213; the MAPE and RMSE of the Strategy 2 are 0.1809 and 0.2305; the MAPE and 

RMSE of the Strategy 3 are 0.1671 and 0.2305. The remaining results of other 

parameter settings (K=3,K=1) can be seen in the Appendix C-1 to C-6.  

Table 7.12 The error rate of OLS -CBR after case-base editing (K=5) 
 OLS-CBR (K=5) 

Threshold 
No. of 
cases 

CR 
Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1405  0.9698  0.1750  0.2219  0.1764  0.2238  0.1750  0.2238  

2 1387  0.9573  0.1751  0.2217  0.1768  0.2250  0.1744  0.2250  

3 1367  0.9434  0.1730  0.2188  0.1772  0.2252  0.1720  0.2252  

4 1348  0.9305  0.1731  0.2188  0.1772  0.2252  0.1719  0.2252  

5 1299  0.8965  0.1746  0.2204  0.1769  0.2249  0.1724  0.2249  

6 1264  0.8720  0.1743  0.2202  0.1769  0.2253  0.1720  0.2253  

7 1213  0.8373  0.1756  0.2215  0.1781  0.2272  0.1721  0.2272  

8 1158  0.7989  0.1755  0.2219  0.1786  0.2285  0.1719  0.2285  

9 1100  0.7593  0.1757  0.2226  0.1797  0.2288  0.1702  0.2288  

10 1041  0.7187  0.1747  0.2213  0.1809  0.2305  0.1671  0.2305  

11 974  0.6722  0.1774  0.2237  0.1823  0.2312  0.1689  0.2312  

12 908  0.6268  0.1792  0.2248  0.1838  0.2324  0.1680  0.2324  

13 830  0.5730  0.1802  0.2263  0.1882  0.2357  0.1640  0.2357  

14 753  0.5195  0.1810  0.2284  0.1887  0.2366  0.1648  0.2366  

15 681  0.4697  0.1833  0.2329  0.1899  0.2370  0.1652  0.2370  

16 603  0.4164  0.1869  0.2351  0.1912  0.2389  0.1679  0.2389  

17 540  0.3727  0.1891  0.2380  0.1910  0.2389  0.1704  0.2389  

18 469  0.3236  0.1921  0.2390  0.1944  0.2412  0.1763  0.2412  

19 399  0.2755  0.1918  0.2398  0.1946  0.2422  0.1700  0.2422  

20 334  0.2302  0.1950  0.2452  0.1971  0.2451  0.1697  0.2451  

21 280  0.1935  0.1983  0.2493  0.1967  0.2444  0.1669  0.2444  

22 224  0.1546  0.2028  0.2544  0.2014  0.2520  0.1621  0.2520  

23 180  0.1239  0.2089  0.2622  0.2037  0.2567  0.1629  0.2567  

24 145  0.0999  0.2066  0.2651  0.2044  0.2577  0.1676  0.2577  

25 110  0.0758  0.2144  0.2738  0.2074  0.2606  0.1724  0.2606  

26 81  0.0562  0.2230  0.2817  0.2159  0.2677  0.1711  0.2677  

27 65  0.0446  0.2553  0.3139  0.2425  0.2944  0.1734  0.2944  

28 41  0.0284  0.2953  0.3570  0.2824  0.3366  0.1731  0.3366  

29 31  0.0214  0.3072  0.3567  0.2939  0.3454  0.1803  0.3454  

30 20  0.0140  0.4739  0.4724  0.4782  0.4752  0.1775  0.4752  

CR is the compression rate. 
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Table 7.13 The error rate of GA -CBR after case-base editing (K=5) 

GA-CBR (K=5) 

Threshold 
No. of 
cases 

  
CR 

Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1405  0.9698  0.1715  0.2145  0.1728  0.2146  0.1704  0.2136  

2 1387  0.9573  0.1738  0.2178  0.1729  0.2147  0.1728  0.2171  

3 1367  0.9434  0.1731  0.2170  0.1724  0.2142  0.1727  0.2166  

4 1348  0.9305  0.1711  0.2139  0.1730  0.2147  0.1698  0.2133  

5 1299  0.8965  0.1743  0.2184  0.1743  0.2160  0.1717  0.2166  

6 1264  0.8720  0.1747  0.2180  0.1745  0.2164  0.1725  0.2160  

7 1213  0.8373  0.1743  0.2194  0.1744  0.2163  0.1723  0.2174  

8 1158  0.7989  0.1759  0.2184  0.1745  0.2163  0.1723  0.2158  

9 1100  0.7593  0.1751  0.2191  0.1751  0.2181  0.1722  0.2157  

10 1041  0.7187  0.1803  0.2243  0.1769  0.2202  0.1739  0.2167  

11 974  0.6722  0.1802  0.2228  0.1775  0.2210  0.1729  0.2164  

12 908  0.6268  0.1793  0.2236  0.1793  0.2230  0.1714  0.2150  

13 830  0.5730  0.1800  0.2256  0.1802  0.2241  0.1703  0.2150  

14 753  0.5195  0.1879  0.2318  0.1840  0.2285  0.1726  0.2163  

15 681  0.4697  0.1827  0.2287  0.1853  0.2305  0.1701  0.2136  

16 603  0.4164  0.1849  0.2312  0.1862  0.2328  0.1725  0.2153  

17 540  0.3727  0.1865  0.2335  0.1886  0.2358  0.1694  0.2138  

18 469  0.3236  0.1879  0.2365  0.1889  0.2372  0.1711  0.2146  

19 399  0.2755  0.1894  0.2378  0.1897  0.2373  0.1705  0.2152  

20 334  0.2302  0.1931  0.2422  0.1919  0.2396  0.1720  0.2157  

21 280  0.1935  0.1925  0.2418  0.1913  0.2399  0.1709  0.2146  

22 224  0.1546  0.1915  0.2433  0.1919  0.2413  0.1722  0.2176  

23 180  0.1239  0.1993  0.2490  0.1982  0.2458  0.1716  0.2174  

24 145  0.0999  0.2065  0.2567  0.2025  0.2517  0.1714  0.2163  

25 110  0.0758  0.2123  0.2624  0.2094  0.2586  0.1714  0.2162  

26 81  0.0562  0.2215  0.2690  0.2154  0.2636  0.1691  0.2140  

27 65  0.0446  0.2329  0.2830  0.2273  0.2780  0.1699  0.2131  

28 41  0.0284  0.2583  0.3105  0.2453  0.2981  0.1690  0.2129  

29 31  0.0214  0.2795  0.3369  0.2671  0.3228  0.1731  0.2185  

30 20  0.0140  0.3078  0.3659  0.3000  0.3590  0.1697  0.2142  

CR is the compression rate. 
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Table 7.14 The error rate of MODAL-CBR after case-base editing (K=5) 

MODAL-CBR (K=5) 

Threshold 
No. of 
cases 

CR 
Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1404  0.9690  0.1535  0.1964  0.1518  0.1946  0.1533  0.1961  

2 1394  0.9623  0.1541  0.1975  0.1522  0.1952  0.1534  0.1965  

3 1379  0.9519  0.1548  0.1982  0.1528  0.1957  0.1545  0.1975  

4 1341  0.9258  0.1559  0.1989  0.1535  0.1967  0.1538  0.1964  

5 1283  0.8855  0.1573  0.2010  0.1560  0.2000  0.1537  0.1968  

6 1247  0.8608  0.1575  0.2007  0.1575  0.2006  0.1526  0.1957  

7 1214  0.8377  0.1598  0.2032  0.1592  0.2023  0.1522  0.1951  

8 1165  0.8039  0.1671  0.2103  0.1610  0.2043  0.1585  0.2017  

9 1103  0.7616  0.1714  0.2160  0.1625  0.2061  0.1609  0.2061  

10 1034  0.7134  0.1736  0.2186  0.1650  0.2098  0.1631  0.2060  

11 953  0.6575  0.1751  0.2205  0.1674  0.2130  0.1625  0.2075  

12 878  0.6060  0.1739  0.2200  0.1709  0.2164  0.1560  0.2014  

13 809  0.5582  0.1753  0.2222  0.1730  0.2183  0.1547  0.1984  

14 729  0.5033  0.1789  0.2268  0.1736  0.2196  0.1572  0.2022  

15 659  0.4547  0.1814  0.2272  0.1751  0.2206  0.1599  0.2047  

16 595  0.4107  0.1852  0.2346  0.1812  0.2295  0.1581  0.2040  

17 543  0.3750  0.1877  0.2356  0.1834  0.2325  0.1600  0.2060  

18 475  0.3276  0.1932  0.2432  0.1874  0.2364  0.1651  0.2122  

19 395  0.2724  0.1925  0.2438  0.1883  0.2395  0.1652  0.2105  

20 334  0.2306  0.1928  0.2460  0.1892  0.2412  0.1574  0.2047  

21 272  0.1878  0.1982  0.2542  0.1915  0.2463  0.1583  0.2038  

22 226  0.1558  0.2008  0.2574  0.1951  0.2479  0.1604  0.2075  

23 190  0.1311  0.1995  0.2561  0.2011  0.2553  0.1599  0.2057  

24 161  0.1113  0.2090  0.2712  0.2078  0.2656  0.1634  0.2109  

25 124  0.0859  0.2164  0.2820  0.2063  0.2630  0.1646  0.2099  

26 101  0.0700  0.2321  0.3002  0.2188  0.2808  0.1681  0.2142  

27 80  0.0551  0.2567  0.3299  0.2332  0.2954  0.1679  0.2144  

28 60  0.0411  0.2653  0.3561  0.2450  0.3232  0.1658  0.2105  

29 45  0.0310  0.2978  0.3844  0.2707  0.3427  0.1705  0.2168  

30 33  0.0228  0.3617  0.4435  0.3228  0.3870  0.1763  0.2234  

CR is the compression rate. 

 
Figure 7.5 to Figure 7.23 provide the comparative results of MAPE and RMSE 

before and after using the proposed CBM approach. There are three options in 

parameter setting for the CBR ECCE model: new weight and new training dataset 

(Strategy 1); original attribute weight and optimized training dataset (Strategy 2); new 

weight and original training case-base (Strategy 3). Among the three strategies, both 

Strategy 1 and Strategy 2 involve the new case training dataset. Strategy 3 shows the 
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performance of the new attribute weight after the case-base editing. The results can be 

seen in Appendix C-1 to Appendix C-9.  

 

 Figure 7.5 The changes in MAPE of OLS-CBR (K=5) 

 

 

Figure 7.6 The changes in RMSE of OLS-CBR (K=5) 

 

Figure 7.7 The changes in MAPE of GA-CBR (K=5) 
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Figure 7.8 The changes in RMSE of GA-CBR (K=5) 

 

Figure 7.9 The changes in MAPE of MODAL-CBR (K=5) 

 

Figure 7.10 The changes in RMSE of MODAL-CBR (K=5) 
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Figure 7.11 The changes in MAPE of OLS-CBR (K=3) 

 

 

Figure 7.12 The changes in RMSE of OLS-CBR (K=3) 

 

Figure 7.13 The changes in MAPE of GA-CBR (K=3) 
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Figure 7.14 The changes in RMSE of GA-CBR (K=3) 

 

Figure 7.15 The changes in MAPE of MODAL-CBR (K=3) 

 

 

 Figure 7.16 The changes in RMSE of MODAL-CBR (K=3) 
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 Figure 7.17 The changes in MAPE of OLS-CBR (K=1) 

 

 

Figure 7.18 The changes in RMSE of LOS-CBR (K=1) 

 
Figure 7.19 The changes in MAPE of GA-CBR (K=1) 
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Figure 7.20 The changes in RMSE of GA-CBR (K=1) 

 

 

Figure 7.21 The changes in MAPE of MODAL-CBR (K=1) 

 

 

Figure 7.22 The changes in RMSE of MODAL-CBR (K=1) 
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Figure 7.5 and Figure 7.6 illustrate how the MAPE and RMSE of the OLS-CBR 

(K=5) model change according to the editing threshold. Before case-base editing, the 

MAPE and RMSE of OLS-CBR (K=5) are 17.67% and 22.06%. In Strategy 1, the 

MAPE slightly decreases when the threshold is low; when the compression rate 

reaches 0.7188, the MAPE of OLS-CBR (K=5) decreases to the lowest point. The 

decrease in the compression rate after 0.7188 produces the slight increase in the 

MAPLE of OLS-CBR (K=5). In Strategy 2, both MAPE and RMSE slightly increase 

with the increasing of the threshold; the greater compression rate, the larger MAPE 

and RMSE. In Strategy 3, the MAPE ranges from 16.21% to 17.75% and the best 

MAPE is 16.21% when the compression rate reaches 0.1546, illustrating the possible 

optimization effects of Strategy 3 on attribute weighting in OLS-CBR model. The 

detailed results can be seen in Appendix C-1. 

Figure 7.7 and Figure 7.8 illustrate how the MAPE and RMSE of the GA-CBR 

(K=5) model change according to the editing threshold. Before case-base editing, the 

MAPE and RMSE of GA-CBR (K=5) are 17.41% and 21.40%. In Strategy 1, the 

MAPE slightly decreases when compression starts; when the compression rate reaches 

0.9305, the MAPE of GA-CBR (K=5) decreases to the lowest point. After reaching 

this lowest point, MAPE of GA-CBR (K=5) begins to grow slightly with the 

continuous increase in threshold. The situation remains the same in Strategy 2. In 

Strategy 2, the MAPE slightly decreases when compression starts; when the 

compression rate reaches 0.9305, the MAPE of GA-CBR (K=5) decreases to the 

lowest point and begins to grow slightly afterwards. In Strategy 3, the MAPE ranges 

from 16.90% to 17.39%, illustrating the possible optimization effects of Strategy 3 on 

the GA-CBR model. The detailed results can be seen in Appendix C-2. 

Figure 7.9 and Figure 7.10 illustrate how the MAPE and RMSE of the MODAL-

CBR (K=5) model change according to the editing threshold. Before case-base editing, 

the MAPE and RMSE of MODAL-CBR (K=5) are 15.13% and 19.40%. In Strategy 1 

and 2, both MAPE and RMSE keep growing with the increasing of the compression 

rate; the greater compression rate, the large MAPE and RMSE of MODAL-CBR 

(K=5). For example, when the compression rate reaches 0.8855, the MAPE and RMSE 

of MODAL-CBR (K=5) are 15.73% and 20.10%; when the compression rate reaches 

to 0.5582, the MAPE and RMSE of MODAL-CBR (K=5) increase to 17.09% and 
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21.64%. In Strategy 3, the MAPE ranges from 15.33% to 17.63%. The detailed results 

can be seen in Appendix C-3. 

Figure 7.11 and Figure 7.12 illustrate how the MAPE and RMSE of the OLS-

CBR (K=3) model change according to the editing threshold. Before case-base editing, 

the MAPE and RMSE of OLS-CBR (K=3) are 18.16% and 23.06%. In Strategy 1, the 

MAPE slightly decreases when compression starts; when the compression rate reaches 

0.6517, the MAPE of OLS-CBR (K=3) decreases to the lowest point ( MAPE = 

17.95% ) and begins to grow slightly. In Strategy 2, both MAPE and RMSE keep 

increasing with the growth of compression starts; the greater compression rate, the 

large MAPE and RMSE. In Strategy 3, the MAPE increases from 17.22% and reaches 

73.94% when the compression rate becomes too small. The detailed results can be seen 

in Appendix C-4. 

Figure 7.13 and Figure 7.14 illustrate how the MAPE and RMSE of the GA-

CBR (K=3) model change according the editing threshold. Before case-base editing, 

the MAPE and RMSE of GA-CBR (K=3) are 17.65% and 22.19%. In Strategy 1 and 

2, both MAPE and RMSE slightly increase when compression starts; the greater the 

degree of compression, the large MAPE and RMSE. In Strategy 3, the MAPE ranges 

from 17.22% to 18.68% and the MAPE remains the same level before case-base 

editing, except when the compression rate becomes too small. The detailed results can 

be seen in Appendix C-5. 

Figure 7.15 and Figure 7.16 illustrate how the MAPE and RMSE of MODAL-

CBR (K=3) model change according to the editing threshold. Before case-base editing, 

the MAPE and RMSE of MODAL-CBR (K=3) are 14.49% and 19.06%. In Strategy 1 

and 2, both MAPE and RMSE of MODAL-CBR (K=3) slightly increase when 

compression starts; when the compression rate reaches 0.5320, the increase in MAPE 

and RMSE start growing fast. In Strategy 3, the MAPE increases from 14.89% to 19.05% 

when the editing threshold decrease from 1 to 15. The detailed results can be seen in 

Appendix C-6. 

Figure 7.17 and Figure 7.18 illustrate how the MAPE and RMSE of OLS-CBR 

(K=1) model change according to the editing threshold. Before case-base editing, the 

MAPE and RMSE of OLS-CBR (K=1) are 19.90% and 26.44%. In Strategy 1 and 2, 

both MAPE and RMSE of OLS-CBR (K=1) keep increasing with the increase in 
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compression rate; Strategy 3 fails to reduce the MAPE and RMSE of OLS-CBR (K=1) 

effectively. The detailed results can be seen in Appendix C-7. 

Figure 7.19 and Figure 7.20 illustrate how the MAPE and RMSE of the GA-

CBR (K=1) model change according to the editing threshold. Before case-base editing, 

the MAPE and RMSE of GA-CBR (K=1) are 19.38% and 25.54%. In Strategy 1 and 

2, both MAPE and RMSE of GA-CBR (K=1) increase with the increase in 

compression rate; Strategy 3 fails to reduce the MAPE and RMSE of GA-CBR (K=1). 

The detailed results can be seen in Appendix C-8. 

Figure 7.21 and Figure 7.23 illustrate how the MAPE and RMSE of the 

MODAL-CBR (K=1) model change according to the editing threshold. Before case-

base editing, the MAPE and RMSE of MODAL-CBR (K=1) are 17.37% and 23.11%. 

In all strategies, both MAPE and RMSE of MODAL-CBR (K=1) increase with the 

increase in the compression rate. The detailed results can be seen in Appendix C-8. 

7.3 DISCUSSION 

The results after case-base editing differ due to the different setting. The weight 

determination method has a significant effect on the performance of the case-base 

editing. For example, Strategy 1 works better in OLS-CBR (K=5), while Strategy 2 

produces better results in MODAL-CBR (K=5). Generally, the significance of weight1 

tends to decrease with the increase of the compression rate. The parameter setting in 

the CBR model has a significant influence on its performance. Except for weight 

determination, the value of case adaptation becomes important when editing case-base. 

From Table 7.1 and Table 7.2, it can be seen that the compression speed is directly 

linked with the value of case adaptation. When case adaptation value is set as 5, the 

compression process is slower and the compression range is bigger compared when 

case adaptation is set to 1. Generally, the bigger value of case adaptation, the slower 

speed of the compression process and the bigger the compression range.  

The three strategies in this study illustrate the effect of case-base editing from 

different perspectives. Strategy 1 uses the new weight and new case-base after case-

base editing; Strategy 2 uses the original weight before case-base editing and new case-

base after case-base editing; Strategy 3 uses the new weight after case-base editing and 

the original case-base before case-base editing. Only Strategies 1 and 2 have a 

compression effect on the CBR model since they use the case-base after the editing. 
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The major difference between Strategy 1 and 2 is the attribute weighting value. 

Strategy 1 and 2 are designed to compress the size of the case-base while Strategy 3 is 

designed to test the potential optimization on attribute weight by case-base editing.  

The performances of Strategy 1, 2 and 3 in ECCE CBR are compared before and 

after using the case-base editing. Generally, compressing the size of the case-base 

inevitably sacrifices the accuracy. Thus Strategy 1 and 2 are designed to minimize this 

trend when compressing the size of case-base. 

slight decrease in the MAPE of OLS-CBR ( K=5) when using the strategy 1 and 

threshold is set low. When the threshold is set to 10, the compression rate of OLS-

CBR ( K=5) is 0.7187; the MAPE and RMSE of OLS-CBR ( K=5) are 17.47% and 

22.13% separately. Compared with the MAPE (17.41% ) and RMSE (21.40% ) 

generated from OLS-CBR ( K=5) model before case-base editing, the results show that 

nce while reducing the size of case-

base by 28.13% when using Strategy 1 in OLS-CBR (K=5). Compared with the 

Strategy 1, OLS-CBR ( K=5) has slightly higher MAPE and RMSE when using 

Strategy 2. The potential reason behind this, is that strategy 1 helps to eliminate the 

noisy data and produce more accurate attribute weight when the editing threshold is 

set low. The result that MAPE and RMSE slightly decrease when the threshold is set 

low using Strategy 3, also confirms the potential effect on the attribute weight 

optimization. For the GA-CBR model, there is no significance between the results in 

Strategy 1 and Strategy 2; With the increase of the compression rate, both MAPE and 

RMSE keep growing. The MAPE and RMSE of GA-CBR (K=5) can be slightly 

decreased to 16.90% and 21.29% when using the Strategy 3. For the MODAL-CBR 

model, Strategy 2 produces better results than Strategy 1, and Strategy 3 has no 

optimization effect.  

The results help us understand how MAPE and RMSE change with decreases in 

the number of cases stored in the case-base. By slightly compressing the OLS-CBR 

model, the results show that MAPE and RMSE can be even slightly improved. The 

underlying reason behind that may be the potential effect of the proposed method on 

purifying the training dataset and improving the performance of CBR for ECCE. 

Except for slightly increasing prediction performance in the OLS-CBR (K=5) model, 

the proposed method has the advantage of needing less storage requirements. 
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7.4 CHAPTER SUMMARY  

This chapter introduces an original method based on case-base editing to 

improve the efficiency of the ECCE CBR model. The case-based editing methods are 

proposed based on the basic concepts of CBM and the weight coverage contribution 

introduced in Chapter 3. Given one training case, the editing rules consider either to 

delete or keep the case unchanged according to the evaluation criterion. This rule is 

used in all cases in the case-base, and the weighted coverage contribution is calculated. 

The case with the lowest coverage contribution will be eliminated. The performance 

of the ECCE CBR model was compared before and after using the proposed CBM 

approach. The editing threshold differs according to the value of the K. To better 

illustrate how this method works, the editing threshold ranges from 1 to 30 when K 

equals 5; ranges from 1 to 15 when K equals 3; and ranges from 1 to 3 when K equals 

1. After editing the case-base, the attribute weight and the case-base both have been 

updated. Thus, there are three options in parameter setting for the CBR ECCE model: 

new weight and new training dataset (strategy 1); new weight and original training 

case-base (strategy 2); original attribute weight and optimized training dataset 

(strategy 3). Leave-one cross-validation is used for model validation. Two error 

measures, namely Mean Average Percent Error (MAPE) and the Root Mean Squared 

Error (RMSE) of the log values were used to evaluate the performance of the model.  

The results after case-base editing differ due to the different settings. The weight 

determination method has a significant result on the performance of the case-base 

editing. For example, Strategy 1 works better in OLS-CBR (K=5), while Strategy 2 

produces better results in MODAL-CBR (K=5). The potential reason behind this is the 

changes caused by case-base editing. 

Generally, compressing the size of case-base inevitably results in the loss of 

accuracy. Strategies 1 and 2 are designed to minimize this trend when compressing the 

size of case-base. t decrease in the MAPE of 

OLS-CBR ( K=5) when the threshold is low using the strategy 1. When the threshold 

is set to 10, the compression rate of OLS-CBR ( K=5) is 0.7187; the MAPE and RMSE 

of OLS-CBR ( K=5) are 0.1823 and 0.2312 separately. The results show that the 

ng the size of case-base 

by 28.13% when using Strategy 1 in OLS-CBR (K=5). Compared with the Strategy 1, 

OLS-CBR ( K=5) has slightly higher MAPE and RMSE when using Strategy 2. The 
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potential reason behind this is that strategy 1 helps to eliminate the noisy data and 

produce more accurate attribute weights when the editing threshold is set to be low. 

The result that MAPE and RMSE slightly decrease when using Strategy 3, also 

confirms the potential effect on the attribute optimization. For the GA-CBR model, 

there is no significance between the results in Strategy 1 and Strategy 2; With the 

increase of the compression rate, both MAPE and RMSE keep growing. The MAPE 

and RMSE of GA-CBR (k=5) can be slightly decreased to 16.90% and 21.29% when 

using Strategy 3. For the MODAL-CBR model, Strategy 2 produces better results than 

Strategy 1, and Strategy 3 has no optimization effect.  
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Chapter 8: Conclusion 

8.1 OVERVIEW OF RESEARCH OBJECTIVES 

The main aim of this research was to improve the CBR model in ECCE for long-

term use. The research objectives were developed to achieve the proposed research 

aim. Four research objectives were built upon four research questions, as follows:  

Research Question 1: What limitations exist in the current ECCE CBR 

studies with respect to long-term use? 

 Research Objective 1: To provide a comprehensive literature on the previous 

studies on ECCE CBR mode. 

Research Question 2: What are the main differences caused by different 

parameter settings of ECCE CBR model?  

Research Objective 2: To conduct an empirical study to compare the methods 

for calculating weight and similarity, as well as exploring the influence of 

sample size on ECCE CBR. 

 Research Question 3: How to maintain a stable knowledge structure of the 

CBR model during long-term use?  

Research Objective 3: To improve the robustness of the ECCE CBR model 

by combining the CBR system and robust method. 

Research Question 4: How to improve the efficiency of the ECCE CBR model 

for long-term use?  

Research Objective 4: To develop a method to enhance the efficiency of the 

ECCE CBR model and maintain its performance during long-term use. 

8.2 CONCLUSIONS OF THE RESEARCH OBJECTIVES 

8.2.1 Research Objective 1 

RO1: To provide a comprehensive literature on the previous studies on ECCE 

CBR model. 
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The first research objective answered the question of,  what limitations exist in 

the current ECCE CBR studies with respect to long-term use?  The research question 

was answered by providing a comprehensive literature review in related areas. The 

background of the construction cost estimation, inaccuracy in construction cost 

estimation, and influence factors in construction cost performance were reviewed 

together with the significance and challenges in ECCE. The application of CBR in 

ECCE carefully examined each step of the existing CBR model in ECCE. After briefly 

introducing the CBR and its advantage in ECCE, problem formulation, case retrieval, 

case reuse, case revision, and CBM were reviewed to provide an in-depth 

understanding of the existing research. Section CBM included the definition of CBM, 

the criteria for evaluating case-base, influencing factors in CBM, and classification of 

CBM strategy, case-base reduction strategy, case-base partitioning strategy, and case-

base optimization strategy.  

After literature review, numerous limitations were found in the existing research. 

Firstly, despite some research suggesting the potential superiority of the CBR model 

for long-term use, there was no empirical evidence supporting this assumption. 

Secondly, the existing research lacked a systematic understanding of the parameter 

setting in the CBR model. Various weight determination methods and similarity 

functions were used in the previous CBR model, yet the question of which methods 

are better for calculating weight and similarity remained. A comparative study could 

help to identify the optimal parameters in the CBR model and provide a valuable 

understanding of ECCE CBR.  

 Thirdly, the research attention on improving the CBR -

term use was found currently to be far from enough. The majority of ECCE CBR 

modes focus on case retrieval or case reuse, largely ignoring the CBM. Based on the 

research findings in this chapter, the following research objectives were proposed.  

8.2.2 Research Objective 2  

RO2: To conduct an empirical study to compare the methods for calculating 

weight and similarity, as well as exploring the influence of sample size on ECCE CBR.  

The second objective was set up to respond to the question of, What are the 

main differences caused by different parameter settings of ECCE CBR model? Based 

on this research question, this study conducted a comparative study of the different 
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model settings of CBR based on a collected ECCE database of 1450 completed 

Chinese apartment building projects. Given the sample size range in previous studies 

and the size of the collected database, seven sample sizes of 50, 100, 200, 400, 600, 

800, and 1000 contracts were used in this study, covering the range of sample sizes 

used in previous studies. Three weight determination methods (MRA, GA, FC) and 

two similarity functions were compared by random selections from the database, with 

a 20% project hold-out sample. Two errors, including MAPE and RMSE, were used 

to measure the performance of the ECCE CBR model.  

The results provided a better understanding of the settings in the CBR models. 

GA had more advantages when dealing with smaller sample sizes. After the size of the 

case-base becomes large (>400), there was no significant difference between models 

using MRA and GA. FC had the weakest performance in terms of accuracy, especially 

when combining S1 function. Besides, on average, the S2 function had a better 

performance than S1. Also, adjusting case adaption value could improve the 

performance of the CBR model. For different sample sizes, the best case adaptation 

value might be different. Therefore, multiple case adaptation values should be tried in 

the CBR study to have the best performance. 

Some discussions were made based on the justification of sample size and 

explanation of data-oriented results. Despite the differences in the parameter settings, 

the MAPE of the model based on 1000 cases  largely decreased compared with that of 

50 cases.  For example, in the CBR-W1S1 model, the MAPE was 35.81% when the 

sample size was 50 and decreased to 25.31%  when the sample size  became 1000. The 

results in the study confirmed the previous hypothesis that the performance of CBR 

improved with the increase of the sample size generally (Ji et al., 2010b). This research 

also found that the marginal contribution of the increasing size of case-base decreases. 

For example, the accuracy largely increased when the sample size was raised from 50 

to 400. However, the increase in the accuracy became unapparent when the sample 

size increased from 400 to 1000.  

What is also becoming apparent is that expanding the database to contain more 

cases containing a small number of highly influential predictor variables (six in this 

case) may be a better use of resources in improving the accuracy of the ECCE when 

the size of case-base is extremely small. Therefore, even though ECCE lacks detailed 

target project information at the early stage, increasing the sample size may be 
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sufficient to produce reliable results by objective methods. The long-term use of the 

ECCE CBR system results in continuous growth in the size of the case-base. Although 

this improves the performance of the accuracy of the ECCE CBR system, the 

improvement in accuracy is quite limited when the size of the case-base becomes large. 

Therefore, case-base maintenance during the long-term use of the ECCE CBR system 

was proposed to improve the ECCE CBR model.  

8.2.3 Research Objective 3 

RO3: To improve the robustness of the ECCE CBR model by combining the 

ECCE CBR system and robust method. 

The third objective was initiated to justify the question of, How to maintain a 

stable knowledge structure of the CBR model during long-term use ? Based on this 

research question, a robust method was introduced in the ECCE CBR system for 

improving the long-term use of the ECCE CBR model. The MODLR was used in 

weight determination to increase the -folder cross-validation 

was used for the model validation. Different K values of 10, 20, 40, 80, 160, 320 and 

1450 were used, given their influence on the training sample.  

The results showed that the total above-floor area was the most significant 

attribute in all weight determination methods, followed by the total underground-floor 

area. The significance of remaining attributes differed due to the methods used. The 

third-most significant attribute differed due to the weight determination methods. 

Except for MODAL, duration and the total height of the building were the least 

significant attribute weights for ECCE.  

The model was evaluated from the perspectives of robustness and accuracy. The 

variance of weight attribute of each calculation was used for measuring the weight 

robustness. The measure of the estimation accuracy included the MAPE and RMSE. 

The results were compared with those using the ordinary least squares (OLS) 

regression and GA in weight determination, followed by the discussion on the overall 

robustness of the weight determination. From the robustness perspective, the 

MODAL-CBR model had the least attribute variance compared with those with OLS 

and GA. The results showed the superiority of the MODAL-CBR model in weight 

stability. From the accuracy perspective, the results showed that the MODAL-CBR 

model has the least mean MAPE and mean RMSE, followed by the GA-CBR model 
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and OLS-CBR model. In summary, MODAL-CBR produced stable attribute weights 

during the multiple calculations of the CBR model in long-term use. It better prepares 

construction cost agencies and organisations to tackle the massive growth in the scale 

of the data and help practitioners have a consistent understanding of the knowledge 

stored in the case-base. 

The results showed that the knowledge structure inevitably changes during long-

term use of the CBR model. Therefore, the data quality must be considered in practice. 

Data quality implies that one needs to look beyond traditional concerns with the 

accuracy of the data (Tayi & Ballou, 1998). There are four dimensions in data quality: 

accuracy, completeness, consistency, and timeliness (Ballou & Pazer, 1985). 

Accuracy  is defined as the correctness of the fact recoded completeness  as the 

relevence of the information recorded, consistency  as the uniformity in the 

information recored, timeliness  as the recording of information on time.  Poor 

data quality would result in negative impact on operation of the system (Coetzer & 

Vlok, 2019).  Furthermore, poor data quality cannot fullfil the requirement of the 

system, consequently resulting in fail in achieving the expected results (Karkouch, et 

al., 2016; Laranjeiro, et al., 2015; Taleb, et al., 2016).  

Construction cost estimation usually needs the cost data of the historical projects. 

The historical cost data will be useful for cost estimation only if they are collected and 

organized in a way that is compatible with future applications.  The consistency of the 

construction cost data is critical since it provides a reliable baseline for the new project. 

Therefore, the information must be updated with respect to changes that will inevitably 

occur (Hendrickson, et al., 2008). Without sufficient refining and updating, historical 

cost data be used carelessly. Changes in relative prices may have substantial 

impacts on construction costs that have increased relatively in price. 

Unfortunately, systematic changes over a long period of time for such factors are 

inevitable. In particular, the changed resource costs, construction methods, design 

styles, and economic conditions create the outdated and inconsistent data. Also, the 

size of the case-base can grow quickly with the long-term use of a CBR model (Smiti 

& Elouedi, 2018a). The efficiency of solving a new problem thus becomes increasingly 

slow, resulting in compromised overall performance of the CBR model (Khan, et al., 

2019b; Lupiani, et al., 2014b). Without proper handling, these problems caused by 

long-term use will impair the performance of the CBR model, the typical issues being 
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the unstable knowledge structure and low efficiency because of the continuously 

increasing size of the case-base during long-term use. This inevitably raises the 

problem between the benefits of having more data and the deficiencies of having 

inappropriate data.  

8.2.4 Research Objective 4 

RO4: To develop a CBM strategy for ECCE CBR models to maintain its 

efficiency during long-term use. 

The fourth objective was proposed to answer the question of, How to improve 

the efficiency of the ECCE CBR model for long-term use? This study introduces an 

original method based on case-base editing to improve the efficiency of the ECCE 

CBR model. The case-based editing method is proposed based on the basic concepts 

of CBM and the weight coverage contribution introduced in Chapter 3.  

The performance of the ECCE CBR model is compared before and after using 

the proposed CBM approach. The editing threshold differs according to the value of 

the K. The editing threshold ranges from 1 to 30 when K equals 5, ranges from 1 to 15 

when K equals 3, and the editing threshold ranges from 1 to 3 when K equals 1. After 

editing the case-base, the attribute weight and the case-base both have been updated.  

The results show that the weight determination method has a significant result 

on the performance of the case-base editing. For instance, Strategy 1 works better in 

OLS-CBR (K=5), while Strategy 2 produces better results in MODAL-CBR (K=5). 

Generally, compressing the size of case-base inevitably results in the loss of accuracy. 

The Strategies 1 and 2 are designed to minimize this trend when compressing the size 

of case-base.  a slight decrease in the MAPE of OLS-

CBR ( K=5) when using Strategy 1 to compress the case-base lightly. The results show 

 size of 

case-base by 28.13% when using Strategy 1 in OLS-CBR (K=5). Compared with the 

Strategy 1, OLS-CBR ( K=5) has slightly higher MAPE and RMSE when using 

Strategy 2. The potential reason behind this is that Strategy 1 helps to eliminate the 

noisy data and produce more accurate attribute weight when the editing threshold is 

set low. The result that MAPE and RMSE slightly decrease when using Strategy 3 also 

confirms the potential effect of the proposed CBM on the attribute optimization. For 

the GA-CBR model, there is no significance between the results in Strategy 1 and 
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Strategy 2; with the increase of the compression rate, both MAPE and RMSE keep 

growing. The MAPE and RMSE of GA-CBR (k=5) can be slightly decreased to 16.90%  

and 21.29% when using Strategy 3. For the MODAL-CBR model, Strategy 2 produces 

better results than Strategy 1; Strategy 3 has no optimization effect. Altogether, this 

study could serve as a reliable reference for optimizing the overall performance of the 

CBR ECCE model.  

8.3 RESEARCH CONTRIBUTION  

This study aims to improve the practice of long-term use of case-based reasoning 

in early construction cost estimation through parameter setting, by improving the 

robustness of the CBR system and enhancing the efficiency of the CBR system. This 

study makes theoretical contributions to the body of knowledge domain in the early 

construction cost estimation. It provides new insights in optimizing the ECCE CBR 

model during its long-term operation. This study fills the gap in the multi-dimensional 

optimization of ECCE CBR models by addressing its robustness and efficiency 

performance. It provides theoretical insights into the role of the sample size played in 

the ECCE CBR model, and how to maintain the CBR model after the ECCE model 

has been established. The value-added contributions toward theory development are 

discussed in detail as follows.  

Firstly, this study conducted a comprehensive literature review on the existing 

ECCE CBR model. The literature review in this thesis helps reseachers and 

practitioners achieve a better understanding of the history, development, status quo, 

and further trend of ECCE CBR.  By providing a careful examination of each step of 

CBR models in ECCE, the limitations in the previous studies are identified and are 

summarized. Furthermore, the knowledge gaps and the future research directions may 

serve as a motivation for reseachers and practitioners to work on the next generation 

of research to assist the development of ECCE CBR around the world. 

Secondly, this study conducted an empirical study on sample size affecting the 

accuracy of the ECCE CBR model. By analysing the influence of sample size on the 

accuracy of the CBR model, this thesis helps understand the changes in accuracy with 

increase in sample size. This part of the research could provide a justified reason for 

the contradictory results of the previous studies. Also, comparison among different 

weight determination methods and similarity functions helps researchers and 
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practitioners understand which approach works better in the ECCE CBR model.  The 

research findings in this study could reduce the data collection effort for construction 

cost estimation at the early stage. In the construction industry, data collection for small 

companies or agencies remains difficult. The results in this study will assist small 

companies to understand how much effort they need to make in data collection for 

estimating a project.  

Thirdly, this study address the robustness of case-base structure during its long-

term use. It considers the knowledge structure of the case-base in the ECCE CBR 

model from the long-term perspective. This study addresses the problem caused by 

noisy data or the situation where the actual cost data distribution does not satisfy the 

hypothesis. The weight stability of the case-retrieving process has been improved by 

using MODAL, which focuses on the mainstream bulk of cases. Combining the ECCE 

CBR model with robust weighting effectively reduces the changes in the attribute 

weight raised, by continuously updating knowledge in the case-base. It helps maintain 

a stable knowledge structure of the case-base, which can better handle the changes in 

the case-base data. This research enriches the existing studies in the literature by not 

only considering the single-time performance of the model, but also improving the 

stability of long-term use. It provides some new insights for of ECCE CBR 

optimization.   

Finally, this study improves the application of the CBR system in ECCE by 

introducing a case-base maintenance strategy. This study proposed a case-base editing 

method based on a prototype selection to compress the size of the case-base. This study 

solves the efficiency issues raised by the constant increase in the size of the case-base. 

It assists ECCE CBR models in satisfying the efficiency and storage requirements 

during its long-term use. The size of the case-base can be maintained at a stable level 

despite continually adding and updating of the case-base. It can reduce the inconsistent 

data raised by the changed design styles and economic conditions in the case-base. The 

deficiencies of having inappropriate data can be minimized by retaining the most 

useful cases. It prepares the ECCE CBR model with an updating system for handling 

the redundancy in the case-base during its long-term use. 

This study contributes to improving the overall performance of the ECCE CBR 

models by addressing the real-world problems raised during its long-term use. By 

considering the stability in weight determination and efficiency in case retrieval, this 
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study provides valuable insights in optimizing ECCE CBR from multidimensional 

perspectives. Except for the accuracy, the robustness of knowledge structure and the 

case-base maintenance are considered. The proposed ECCE CBR system produces 

more reliable feature weighting and estimation results during the long-term use. With 

the data growth in the construction industry and the popularity of the public and free 

database in times to come, the value of this research will become more apparent in the 

future. 

8.4 RESEARCH LIMITATIONS 

Despite the research significance and contribution, this study has several 

limitations as follows:  

The scope of the study involves only the early stage of construction cost 

estimation of apartment buildings. The model is built exclusively for handing the 

predictors at the early stage. These may result in the potential limitation of this study 

by using only a few predictors. Given the amount of project information available in 

the early stage, this study considers the data availability and the effectiveness of the 

predictors in data collection. Therefore, the same study should be conducted with more 

predictors and different types of buildings. Considering the research scope and 

research aims, this study primarily relied on data-based analysis.  The predictors in 

this study lacked further validation by practitioners. The data selection and 

categorisation is limited as it lacks careful examination. Nevertheless, the results in 

this study make contributions to improving the robustness and efficiency of the model.  

It can also be considered as a reliable source for any cost estimation CBR model at 

other project stages.  

The literature review in this thesis is limited to journal papers because peer-

reviewed journal articles are the most valuable sources of information. Other sources, 

such as the International Construction Measurement Standards (ICMS 1 & 2), which 

defines the cost categories and explores the different ways that costs can be collected 

and used, as well as work done by professional societies in Canada, USA, UK, 

Malaysia, and Sweden on how costs can be captured and manipulated using systems, 

have been excluded as outside the scope of this review. These construction cost 

estimation practices may be different from what is in the literature review of this 

research.   
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This study aims to improve the ECCE CBR model for long-term use. Despite 

that the research hypothesis proposed in this study provides the research direction, this 

thesis is limited because it can not be rigorously tested.  Although the number of cases 

in this study has exceeded the number of samples in previous studies, the sample size 

may not be large enough to show the significance of this research. The data collection 

is limited due to the confidentiality of construction costs in the business industry. 

Despite collecting 1800 building projects in China, this is still far from enough for 

taking full advantage of the methods in data mining. Since the study attempts to 

explore the influence of the case-base on estimation accuracy, the insufficient sample 

size of case-base will make the results less convincing. This study is limited since it 

takes no account of the huge databases that organisations such as highways agencies, 

housing providers, multilateral development banks, and large multi-disciplined 

professional practices keep. With the data growth in the construction industry and the 

popularity of the public and free data set, the value of this research will become more 

apparent in the future.  

Moreover, the majority of the variables used in this study are numerical. 

Therefore, this research may have limitations in ignoring nominal and categorical data. 

The generalisation of this study may also be limited because of the lack of sufficient 

diversity of attributes. This research only uses apartment buildings in China, and 

further research should validate the use of the proposed method with other building 

types for higher generalization. The reliability of the proposed methods needs to be 

tested using various sources of data.  

Also, this research is limited in the reasoning process by only mimicking what 

is conventionally done by experienced estimators.  This research lacks the comparison 

between the algorithm and the experienced estimator and the results in this study lack 

the industry context. This study exploits the classic ECCE CBR model as the 

foundation and compares the results based on three weight determinations, two 

similarity functions, and three case adaptation values. The performance of the CBR 

model based on the combination of other parameter settings remains a question. Future 

research will require comparison studies with more complicated parameter settings, as 

well as different methodologies.  
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8.5 RECOMMENDATION FOR FUTURE RESEARCH  

 This research contributes to providing various perspectives to study the ECCE, 

especially on improving the ECCE CBR model for long-term use in practice. Several 

recommendations are made for further research, as below.  

More literature reviews can be conducted based on the extensive work that has 

been done in the construction sector by companies, organisations, and professional 

institutions on the  techniques of early cost estimating. The International Construction 

Measurement Standards (ICMS 1 & 2) that define the cost categories can be further 

explored. The  work that has been done by professional societies in Canada, USA, UK, 

Malaysia, and Sweden on how costs can be captured and manipulated can be fully 

examined and studied. A detailed understanding of how costs are incurred, captured, 

manipulated and used in the construction sector can be provided in the future. 

This study explores which methods are better for calculating weight and 

similarity based on different sample sizes. Except for sample size, other factors, 

including the case indexing, the settings of case retrieval, and case reuse, also influence 

the performance of the CBR model, making it difficult to understand the ECCE CBR 

model comprehensively. Therefore, to deepen the understanding of the ECCE CBR 

model, greater research attention should be paid to the influence of different CBR 

parameters and the inclusion of more predictor variables of residential building. As 

well, the validation of the prediction selection by experienced practitioners is 

recommended.  More effort can be put into how the data are categorised before 

plugging into the model. Even though various ECCE CBR applications have been 

developed, there is still a big gap between research and cost estimation practice. The 

huge data bases that organisations such as highway agencies, housing providers, 

multilateral development banks, and large multi-disciplined professional practices 

hold, can be considered and explored. The popular trend of focusing on studying 

specific steps such as case retrieval, reuse, and revision has resulted in the other steps 

being ignored, which is hindering the overall development of ECCE CBR models. 

Further work is required to improve various aspects of the CBR model, including 

robustness, stability, accuracy and efficiency. More robust weight determination 

methods are encouraged to be combined with the CBR model, and a comparative study 

among different robust methods should be conducted in the future. Besides, as a 

database prediction system, a more diversified data processing method can be used in 
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the future (i.e., transforming the single factors into normal distributions for performing 

optimization computations).  

Since CBR is a problem-solving process, variously described as addressing a 

current issue by recalling and reusing previous knowledge and experience, the ECCE 

CBR model is a dynamic system that requires continuously renewing and updating. 

The ECCE CBR applications should include not only the initial model development 

but also the maintenance of the case-base, and optimization of the system during long-

term use. The existing research in combining CBM and CBR optimization in ECCE is 

insufficient. Further research is encouraged into the maintenance and operation of the 

ECCE CBR model. Moreover, various CBM strategies, including case-base reduction, 

partitioning, and optimization, should be explored in the ECCE CBR model to enhance 

the overall performance of the system.  

As one of the artificial intelligence methods, the application of CBR can be 

extended to more research areas. Since the construction industry is facing large 

volumes of data throughout the life cycle stages of a project, CBR is encouraged to 

combine with more data mining techniques. Diversified information collection and 

processing should be used in the CBR model. Aside from using the numerical and 

nominal variables, the text should also be encoded as variables in the CBR system. 

Thus, CBR can become an experience mining system for solving problems, when 

combined with data and text mining techniques. In this way, experiences in previous 

construction projects can be turned into valuable resources. The CBR system can be 

further extended as a recommendation system that can accurately provide all the 

information for solving certain problems. Therefore, this study encourages future 

research to develop a more automated and intelligent CBR system with more 

diversified and complex structures for addressing the problems in the construction 

industry. Furthermore, more research work need to be conducted to answer the 

ultimate question,  

The ECCE CBR model should be optimized from multiple perspectives to be 

competent in practice.The comparison of the performance between the  ECCE CBR 

model and the expert is strongly encouraged to be explored. More research effort 

should also be made in the  context  of the industry. 
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Appendices  

APPENDIX A 

 
Conversion of the index from 2006 to 2014 to 2015 

 
 

Year Transfer 
year 

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

2006 2007 1.0410  1.0460  1.0630  1.0380  1.0600  1.0560  

2008 1.1638  1.1726  1.1916  1.1646  1.2052  1.1964  

2009 1.0975  1.1116  1.1273  1.1099  1.1691  1.1857  

2010 1.1414  1.1794  1.1825  1.1576  1.2006  1.2485  

2011 1.2521  1.3044  1.3019  1.2502  1.2943  1.3472  

2012 1.2396  1.2875  1.3202  1.2740  1.3215  1.3930  

2013 1.2061  1.2849  1.3175  1.2982  1.3281  1.4250  

2014 1.1880  1.2887  1.3188  1.3242  1.3334  1.4421  

2015 1.1215  1.2230  1.2727  1.3030  1.3000  1.4190  

2007 2008 1.1180  1.1210  1.1210  1.1220  1.1370  1.1330  

2009 1.0543  1.0627  1.0605  1.0693  1.1029  1.1228  

2010 1.0964  1.1275  1.1124  1.1152  1.1327  1.1823  

2011 1.2028  1.2471  1.2248  1.2045  1.2210  1.2757  

2012 1.1908  1.2308  1.2419  1.2273  1.2467  1.3191  

2013 1.1586  1.2284  1.2394  1.2507  1.2529  1.3494  

2014 1.1412  1.2321  1.2407  1.2757  1.2579  1.3656  

2015 1.0773  1.1692  1.1973  1.2553  1.2265  1.3438  

2008 2009 0.9430  0.9480  0.9460  0.9530  0.9700  0.9910  

2010 0.9807  1.0058  0.9924  0.9940  0.9962  1.0435  

2011 1.0758  1.1124  1.0926  1.0735  1.0739  1.1260  

2012 1.0651  1.0980  1.1079  1.0939  1.0964  1.1642  

2013 1.0363  1.0958  1.1057  1.1147  1.1019  1.1910  

2014 1.0208  1.0991  1.1068  1.1370  1.1063  1.2053  

2015 0.9636  1.0430  1.0680  1.1188  1.0787  1.1860  

2009 2010 1.0400  1.0610  1.0490  1.0430  1.0270  1.0530  

2011 1.1409  1.1735  1.1549  1.1264  1.1071  1.1362  

2012 1.1295  1.1582  1.1711  1.1478  1.1304  1.1748  

2013 1.0990  1.1559  1.1688  1.1697  1.1360  1.2018  

2014 1.0825  1.1594  1.1699  1.1930  1.1406  1.2163  
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2015 1.0219  1.1002  1.1290  1.1740  1.1120  1.1968  

2010 2011 1.0970  1.1060  1.1010  1.0800  1.0780  1.0790  

2012 1.0860  1.0916  1.1164  1.1005  1.1006  1.1157  

2013 1.0567  1.0894  1.1142  1.1214  1.1061  1.1413  

2014 1.0409  1.0927  1.1153  1.1439  1.1106  1.1550  

2015 0.9826  1.0370  1.0763  1.1256  1.0828  1.1366  

2011 2012 0.9900  0.9870  1.0140  1.0190  1.0210  1.0340  

2013 0.9633  0.9850  1.0120  1.0384  1.0261  1.0578  

2014 0.9488  0.9880  1.0130  1.0591  1.0302  1.0705  

2015 0.8957  0.9376  0.9775  1.0422  1.0045  1.0533  

2012 2013 0.9730  0.9980  0.9980  1.0190  1.0050  1.0230  

2014 0.9584  1.0010  0.9990  1.0394  1.0090  1.0353  

2015 0.9047  0.9499  0.9640  1.0227  0.9838  1.0187  

2013 2014 0.9850  1.0030  1.0010  1.0200  1.0040  1.0120  

2015 92.9840  0.9518  0.9660  1.0037  0.9789  0.9958  

2014 2015 0.9440  0.9490  0.9650  0.9840  0.9750  0.9840  
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APPENDIX B 

Table B-1 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (100-size sample and K=5) 

MAPE  

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 35.18% 27.37% 48.77% 28.15% 26.61% 67.02% 

Round2 24.58% 25.07% 39.27% 22.32% 22.28% 34.09% 

Round3 29.54% 29.87% 36.85% 22.56% 20.83% 27.07% 

Round4 38.54% 30.27% 48.77% 25.80% 22.64% 33.68% 

Round5 34.13% 41.29% 36.40% 27.09% 24.30% 43.30% 

Round6 19.55% 18.28% 25.21% 17.99% 15.94% 26.01% 

Round7 25.06% 24.11% 23.19% 26.51% 19.04% 36.72% 

Round8 15.81% 14.68% 31.27% 17.10% 13.10% 38.60% 

Round9 35.77% 34.77% 38.67% 35.22% 30.43% 48.47% 

Round10 22.44% 23.45% 30.15% 18.97% 14.57% 25.65% 

Average 28.06% 26.92% 35.85% 24.17% 20.97% 38.06% 

RMSE 

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 35.22% 29.55% 46.21% 31.20% 29.17% 58.65% 

Round2 27.22% 27.45% 46.99% 26.57% 26.27% 41.30% 

Round3 34.19% 34.20% 44.30% 26.55% 27.16% 30.93% 

Round4 38.13% 34.53% 45.20% 31.86% 27.94% 34.76% 

Round5 34.61% 41.84% 37.08% 31.28% 29.90% 43.48% 

Round6 23.96% 22.08% 32.80% 23.14% 20.97% 32.30% 

Round7 26.56% 25.79% 25.02% 28.94% 22.07% 39.68% 

Round8 19.77% 18.26% 52.74% 25.35% 17.95% 45.97% 

Round9 39.89% 40.44% 45.60% 41.90% 36.97% 52.61% 

Round10 29.07% 30.55% 48.09% 23.74% 19.38% 33.20% 

Average 30.86% 30.47% 42.40% 29.05% 25.78% 41.29% 
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Table B-2 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (200-size sample and K=5) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 21.03% 21.32% 28.93% 18.03% 18.35% 21.73% 

Round2 24.66% 24.13% 34.74% 25.17% 22.10% 32.87% 

Round3 24.62% 21.99% 34.86% 21.91% 20.91% 31.50% 

Round4 22.67% 21.69% 27.56% 19.08% 19.11% 22.95% 

Round5 25.79% 26.86% 29.48% 22.99% 19.58% 27.02% 

Round6 27.33% 27.12% 34.46% 24.44% 22.94% 31.24% 

Round7 21.85% 21.15% 30.35% 19.62% 16.89% 22.80% 

Round8 21.83% 20.35% 29.36% 17.37% 17.91% 22.38% 

Round9 28.08% 26.68% 33.79% 21.00% 22.02% 38.50% 

Round10 25.59% 19.78% 30.39% 22.66% 19.31% 29.81% 

Average 24.34% 23.11% 31.39% 21.23% 19.91% 28.08% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 24.35% 24.53% 40.99% 21.52% 21.91% 25.59% 

Round2 30.14% 29.32% 58.45% 31.81% 28.36% 40.99% 

Round3 27.11% 24.16% 46.38% 26.50% 25.05% 36.85% 

Round4 24.81% 23.65% 32.54% 22.23% 22.18% 27.38% 

Round5 32.36% 28.13% 39.88% 25.61% 22.23% 31.60% 

Round6 30.82% 30.30% 41.05% 29.86% 26.87% 34.43% 

Round7 27.21% 25.43% 41.91% 23.75% 21.18% 28.23% 

Round8 24.45% 24.15% 36.86% 22.75% 23.14% 29.00% 

Round9 30.83% 28.23% 38.63% 25.01% 27.22% 41.94% 

Round10 37.61% 23.48% 48.28% 26.62% 22.43% 34.14% 

Average 28.97% 26.14% 42.50% 25.57% 24.06% 33.02% 
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Table B-3 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (400-size sample and K=5) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 24.33% 22.50% 30.27% 19.98% 19.22% 24.69% 

Round2 25.53% 25.93% 31.23% 23.28% 21.41% 27.51% 

Round3 23.27% 21.85% 30.85% 20.59% 17.94% 20.14% 

Round4 25.29% 25.15% 28.31% 20.88% 20.83% 23.56% 

Round5 23.09% 22.37% 30.52% 18.62% 19.80% 23.19% 

Round6 19.97% 20.60% 27.94% 18.45% 18.27% 24.59% 

Round7 21.21% 21.02% 30.00% 15.69% 16.29% 23.29% 

Round8 19.50% 19.28% 31.64% 17.67% 18.09% 25.41% 

Round9 22.42% 22.00% 27.77% 18.66% 19.47% 24.56% 

Round10 23.39% 22.07% 28.45% 19.25% 18.71% 23.71% 

Average 22.80% 22.28% 29.70% 19.31% 19.00% 24.06% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 25.79% 24.93% 44.17% 23.26% 22.17% 28.55% 

Round2 28.65% 28.43% 36.24% 27.16% 24.67% 31.37% 

Round3 27.06% 25.50% 46.73% 25.56% 22.46% 26.54% 

Round4 27.98% 27.48% 36.67% 26.45% 26.94% 29.37% 

Round5 25.70% 25.30% 40.92% 22.74% 24.21% 27.44% 

Round6 23.44% 24.14% 38.41% 22.85% 21.92% 28.67% 

Round7 24.68% 24.72% 37.59% 19.57% 19.72% 27.11% 

Round8 23.33% 22.96% 47.50% 22.91% 22.50% 33.23% 

Round9 25.41% 24.98% 43.87% 22.08% 23.65% 28.96% 

Round10 25.34% 24.64% 38.81% 22.23% 21.82% 26.76% 

Average 25.74% 25.31% 41.09% 23.48% 23.01% 28.80% 
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Table B-4 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (600-size sample and K=5) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 25.88% 25.45% 34.08% 18.98% 19.63% 22.95% 

Round2 24.13% 23.82% 33.24% 17.92% 18.69% 22.39% 

Round3 25.47% 22.86% 33.47% 17.85% 17.78% 21.63% 

Round4 21.43% 21.91% 30.04% 19.12% 19.58% 22.87% 

Round5 22.76% 22.88% 30.30% 19.53% 19.34% 26.63% 

Round6 23.40% 21.55% 26.90% 18.20% 15.75% 20.92% 

Round7 23.16% 23.81% 30.12% 19.18% 19.49% 25.97% 

Round8 22.25% 21.47% 27.53% 17.63% 18.14% 25.81% 

Round9 22.03% 23.12% 29.25% 19.93% 21.31% 24.49% 

Round10 21.19% 21.09% 27.08% 15.54% 15.57% 18.73% 

Average 23.17% 22.80% 30.20% 18.39% 18.53% 23.24% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 28.25% 27.95% 52.79% 22.79% 23.61% 27.32% 

Round2 26.56% 25.95% 40.58% 22.35% 22.61% 27.65% 

Round3 28.76% 26.05% 45.94% 22.44% 22.27% 26.07% 

Round4 25.20% 25.28% 46.50% 24.17% 24.26% 29.47% 

Round5 26.10% 26.07% 45.13% 25.15% 24.42% 32.98% 

Round6 25.87% 24.31% 38.93% 24.47% 19.92% 28.15% 

Round7 26.56% 26.67% 45.60% 24.15% 24.73% 30.73% 

Round8 25.61% 25.09% 46.76% 22.82% 22.65% 30.99% 

Round9 25.47% 26.45% 39.26% 24.43% 25.40% 29.86% 

Round10 24.12% 24.14% 42.73% 19.99% 19.94% 26.48% 

Average 26.25% 25.80% 44.42% 23.28% 22.98% 28.97% 
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Table B-5 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (800-size sample and K=5) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 23.57% 21.31% 32.46% 18.54% 18.98% 21.95% 

Round2 24.75% 24.56% 29.01% 19.22% 19.85% 20.55% 

Round3 25.24% 24.19% 33.29% 20.75% 18.90% 25.78% 

Round4 22.49% 21.88% 28.63% 17.27% 18.01% 19.80% 

Round5 22.83% 22.21% 28.97% 18.82% 19.24% 23.36% 

Round6 25.58% 25.43% 28.88% 19.03% 19.42% 21.48% 

Round7 22.58% 20.71% 26.73% 16.84% 16.46% 21.39% 

Round8 23.05% 23.53% 29.14% 16.96% 16.77% 19.44% 

Round9 25.59% 24.99% 33.11% 19.99% 20.23% 24.15% 

Round10 24.77% 24.59% 27.95% 18.92% 18.23% 23.08% 

Average 24.04% 23.34% 29.81% 18.63% 18.61% 22.10% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 26.55% 24.20% 45.36% 23.74% 23.24% 27.14% 

Round2 27.37% 27.58% 39.39% 23.29% 23.68% 25.28% 

Round3 28.41% 27.41% 41.45% 26.00% 23.32% 30.94% 

Round4 25.15% 25.14% 38.92% 22.70% 23.16% 26.66% 

Round5 25.42% 25.00% 43.23% 22.71% 23.08% 28.81% 

Round6 27.92% 28.11% 38.36% 23.33% 23.42% 26.14% 

Round7 25.24% 23.57% 39.42% 21.49% 21.05% 26.78% 

Round8 26.07% 26.33% 43.57% 20.92% 21.08% 26.35% 

Round9 28.62% 28.42% 44.55% 23.87% 24.53% 28.11% 

Round10 27.81% 27.57% 41.73% 24.30% 23.05% 28.60% 

Average 26.86% 26.33% 41.60% 23.23% 22.96% 27.48% 
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Table B-6 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (1000-size sample and K=5) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 23.74% 22.96% 26.36% 19.17% 18.42% 23.50% 

Round2 25.90% 24.40% 28.65% 18.49% 18.27% 19.62% 

Round3 23.65% 24.26% 26.20% 19.09% 18.25% 20.67% 

Round4 24.67% 23.73% 30.68% 18.64% 18.31% 23.17% 

Round5 26.07% 25.08% 31.70% 21.56% 20.74% 24.08% 

Round6 24.18% 23.51% 31.13% 18.27% 17.13% 21.51% 

Round7 23.47% 23.82% 27.84% 17.70% 17.53% 20.05% 

Round8 24.97% 24.42% 31.12% 20.04% 20.86% 23.16% 

Round9 23.13% 22.32% 26.65% 18.71% 18.64% 20.73% 

Round10 23.21% 22.79% 28.52% 18.57% 18.49% 20.72% 

Average 24.30% 23.73% 28.88% 19.02% 18.66% 21.72% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 26.51% 25.64% 40.59% 24.77% 23.07% 29.92% 

Round2 28.03% 26.71% 40.68% 22.43% 21.93% 23.50% 

Round3 26.67% 27.10% 36.65% 24.10% 22.93% 26.10% 

Round4 27.79% 26.89% 41.50% 24.13% 23.55% 28.61% 

Round5 28.55% 27.82% 43.89% 26.41% 25.51% 28.98% 

Round6 26.69% 26.19% 43.31% 23.30% 21.46% 27.43% 

Round7 26.09% 26.41% 39.52% 22.19% 22.09% 24.61% 

Round8 27.67% 27.24% 44.00% 24.55% 24.58% 27.59% 

Round9 25.99% 25.62% 38.84% 23.69% 22.98% 25.77% 

Round10 26.30% 25.71% 39.36% 22.73% 22.32% 25.25% 

Average 27.03% 26.53% 40.83% 23.83% 23.04% 26.78% 
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Table B-7 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (50-size sample and K=3) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 30.95% 23.93% 34.29% 38.82% 20.79% 23.06% 

Round2 48.37% 34.58% 56.84% 34.77% 32.35% 69.38% 

Round3 42.07% 42.20% 38.86% 33.62% 28.61% 41.64% 

Round4 52.84% 18.11% 45.89% 32.64% 17.79% 36.41% 

Round5 32.85% 43.90% 38.52% 36.09% 27.47% 51.48% 

Round6 39.21% 27.01% 38.25% 31.58% 14.64% 42.75% 

Round7 28.76% 24.79% 33.88% 23.36% 27.15% 37.57% 

Round8 39.56% 26.40% 46.52% 30.54% 24.37% 34.52% 

Round9 25.65% 24.19% 39.76% 39.39% 30.58% 45.08% 

Round10 17.85% 18.70% 20.09% 24.54% 25.28% 10.10% 

Average 35.81% 28.38% 39.29% 32.53% 24.90% 39.20% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 31.89% 24.89% 32.93% 36.91% 22.75% 27.20% 

Round2 67.75% 38.38% 67.38% 37.96% 34.42% 65.96% 

Round3 42.95% 41.52% 40.89% 33.57% 30.93% 40.28% 

Round4 46.15% 20.67% 41.51% 32.22% 20.11% 45.08% 

Round5 32.37% 42.07% 48.34% 39.32% 28.20% 51.45% 

Round6 41.00% 27.51% 45.54% 40.54% 19.54% 51.88% 

Round7 29.15% 25.69% 34.30% 25.20% 29.02% 37.61% 

Round8 60.90% 35.04% 73.04% 46.81% 30.18% 50.08% 

Round9 31.29% 28.40% 45.18% 43.83% 33.03% 50.02% 

Round10 20.72% 21.29% 21.98% 31.43% 31.38% 12.12% 

Average 40.42% 30.55% 45.11% 36.78% 27.96% 43.17% 
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Table B-8 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (100-size sample and K=3) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 33.36% 29.57% 48.40% 33.20% 24.77% 56.82% 

Round2 23.95% 22.63% 31.22% 19.17% 22.39% 38.39% 

Round3 27.84% 29.57% 36.67% 22.55% 21.89% 26.81% 

Round4 38.63% 29.68% 50.40% 27.69% 18.28% 27.16% 

Round5 31.05% 35.62% 42.94% 25.78% 24.74% 32.72% 

Round6 15.20% 16.86% 20.73% 21.55% 15.14% 25.30% 

Round7 19.75% 15.75% 28.87% 22.64% 19.35% 31.49% 

Round8 15.17% 16.33% 32.39% 16.22% 15.25% 35.22% 

Round9 32.34% 31.10% 38.77% 32.51% 31.16% 52.15% 

Round10 23.35% 14.17% 23.87% 15.75% 13.52% 22.60% 

Average 26.06% 24.13% 35.43% 23.71% 20.65% 34.87% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 34.58% 32.21% 47.15% 36.46% 29.27% 52.88% 

Round2 27.84% 26.05% 42.10% 22.18% 26.82% 43.87% 

Round3 33.16% 34.01% 48.91% 28.59% 29.19% 31.61% 

Round4 39.57% 34.73% 47.22% 32.03% 24.91% 30.14% 

Round5 32.21% 37.18% 41.80% 29.97% 28.59% 34.32% 

Round6 19.13% 19.59% 28.67% 26.55% 21.26% 31.32% 

Round7 22.26% 19.76% 30.51% 27.43% 22.66% 36.28% 

Round8 20.03% 20.82% 56.00% 22.13% 20.09% 43.98% 

Round9 37.67% 37.18% 47.00% 39.77% 39.23% 53.76% 

Round10 29.12% 18.57% 43.48% 21.69% 18.20% 28.20% 

Average 29.56% 28.01% 43.28% 28.68% 26.02% 38.63% 
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Table B-9 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (200-size sample and K=3) 

ARE 

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 22.46% 21.64% 28.48% 18.80% 18.80% 20.81% 

Round2 20.66% 20.69% 34.41% 25.35% 21.19% 34.07% 

Round3 26.99% 27.12% 31.25% 23.83% 20.64% 31.79% 

Round4 23.88% 21.62% 28.79% 18.83% 18.92% 23.92% 

Round5 29.95% 28.17% 29.14% 22.87% 21.54% 28.14% 

Round6 28.88% 29.90% 35.47% 23.33% 21.90% 30.36% 

Round7 23.76% 23.23% 30.39% 18.57% 18.60% 24.68% 

Round8 20.97% 23.15% 29.58% 15.89% 18.20% 23.54% 

Round9 28.18% 26.03% 35.23% 23.76% 23.02% 38.98% 

Round10 24.98% 21.04% 31.52% 22.85% 20.95% 27.78% 

Average 25.07% 24.26% 31.43% 21.41% 20.38% 28.41% 

RMSE 

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 25.54% 24.89% 43.56% 23.47% 24.20% 26.53% 

Round2 25.55% 25.73% 59.04% 33.09% 26.77% 41.70% 

Round3 30.19% 29.29% 44.06% 28.25% 25.93% 37.21% 

Round4 26.29% 23.77% 32.83% 23.61% 23.35% 28.28% 

Round5 36.02% 29.57% 38.75% 26.46% 23.42% 31.50% 

Round6 34.09% 33.99% 41.93% 28.42% 26.72% 35.70% 

Round7 28.87% 27.71% 46.58% 23.33% 23.54% 29.16% 

Round8 24.29% 26.10% 39.67% 20.65% 22.89% 30.44% 

Round9 31.44% 29.36% 39.98% 28.96% 28.37% 42.38% 

Round10 37.32% 24.68% 53.34% 26.08% 23.88% 33.29% 

Average 29.96% 27.51% 43.97% 26.23% 24.91% 33.62% 
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Table B-10 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2 and CBR-W2S2 CBR-W3S2 (400-size sample and K=3) 

ARE 

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 24.72% 24.92% 32.30% 20.01% 19.69% 19.84% 

Round2 25.36% 24.37% 30.86% 21.80% 21.35% 24.89% 

Round3 23.70% 22.40% 32.72% 21.73% 21.36% 19.59% 

Round4 28.13% 28.41% 27.70% 21.19% 22.89% 22.78% 

Round5 23.32% 22.87% 32.72% 19.18% 19.83% 22.32% 

Round6 21.01% 21.71% 29.24% 17.99% 19.73% 24.07% 

Round7 24.17% 24.11% 29.98% 16.79% 15.99% 21.83% 

Round8 21.23% 20.58% 29.27% 19.25% 18.85% 25.27% 

Round9 24.12% 23.25% 28.10% 19.90% 20.42% 22.14% 

Round10 24.41% 21.29% 28.91% 18.49% 17.22% 24.21% 

Average 24.02% 23.39% 30.18% 19.64% 19.73% 22.69% 

RMSE 

 CBR-W1S1 CBR-W2S1 CBR-W3S1 CBR-W1S2 CBR-W2S2 CBR-W3S2 

Round1 27.26% 27.44% 46.70% 23.43% 23.15% 24.08% 

Round2 29.38% 27.99% 36.42% 25.66% 25.48% 28.89% 

Round3 27.13% 26.11% 46.59% 27.59% 25.76% 26.73% 

Round4 30.55% 30.36% 37.14% 26.94% 29.06% 28.91% 

Round5 26.48% 26.27% 42.97% 23.00% 23.41% 26.64% 

Round6 24.58% 25.18% 40.09% 21.73% 23.40% 29.05% 

Round7 27.08% 27.30% 37.18% 21.13% 19.27% 26.42% 

Round8 25.05% 24.36% 47.24% 24.18% 22.82% 32.07% 

Round9 27.99% 26.31% 45.04% 23.50% 24.23% 27.50% 

Round10 26.26% 23.78% 40.58% 22.51% 21.41% 27.78% 

Average 27.18% 26.51% 41.99% 23.97% 23.80% 27.81% 
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Table B-8.11 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (600-size sample and K=3) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 27.21% 27.56% 36.06% 19.55% 20.08% 24.12% 

Round2 26.08% 24.27% 32.34% 18.26% 19.32% 23.04% 

Round3 28.84% 26.51% 35.85% 17.45% 16.89% 21.38% 

Round4 23.37% 22.82% 31.13% 18.97% 19.97% 21.40% 

Round5 24.43% 24.88% 30.05% 19.11% 20.01% 25.66% 

Round6 25.94% 23.95% 27.51% 18.18% 16.79% 19.95% 

Round7 24.24% 24.89% 29.35% 19.13% 19.97% 24.38% 

Round8 24.45% 22.79% 29.73% 16.70% 18.32% 24.35% 

Round9 23.39% 24.41% 28.70% 19.92% 21.13% 23.12% 

Round10 22.24% 21.62% 30.00% 15.20% 15.14% 19.04% 

Average 25.02% 24.37% 31.07% 18.25% 18.76% 22.64% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 
CBR-W3S2 

Round1 29.92% 30.35% 54.12% 23.66% 24.47% 30.16% 

Round2 28.46% 26.37% 41.74% 22.81% 23.73% 28.35% 

Round3 31.43% 29.15% 50.48% 22.03% 21.93% 27.24% 

Round4 27.34% 27.08% 49.56% 24.17% 24.74% 27.84% 

Round5 27.74% 27.68% 45.73% 24.88% 25.09% 32.23% 

Round6 28.03% 27.13% 39.53% 25.24% 22.26% 27.66% 

Round7 27.72% 27.85% 46.49% 24.31% 25.63% 29.92% 

Round8 27.33% 25.77% 49.20% 22.66% 22.86% 30.05% 

Round9 27.33% 28.17% 39.31% 25.34% 25.74% 29.33% 

Round10 25.19% 24.92% 46.56% 19.97% 20.32% 27.36% 

Average 28.05% 27.45% 46.27% 23.51% 23.68% 29.01% 
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Table B-8.22 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (800-size sample and K=3) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 25.31% 22.17% 31.26% 18.09% 20.08% 21.91% 

Round2 25.36% 25.71% 30.09% 19.77% 20.67% 21.58% 

Round3 24.16% 23.81% 33.90% 19.69% 19.74% 23.41% 

Round4 23.58% 23.53% 30.37% 18.39% 19.46% 21.43% 

Round5 24.83% 23.94% 29.37% 17.84% 18.68% 22.13% 

Round6 25.74% 25.78% 29.16% 19.84% 19.36% 22.28% 

Round7 22.31% 22.39% 28.75% 17.15% 15.82% 20.23% 

Round8 23.49% 24.01% 29.17% 16.00% 16.45% 19.49% 

Round9 27.72% 25.85% 34.91% 20.38% 20.52% 23.56% 

Round10 26.00% 25.18% 30.27% 19.46% 18.86% 22.43% 

Average 24.85% 24.24% 30.73% 18.66% 18.96% 21.85% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 28.25% 25.53% 45.84% 23.90% 24.10% 27.73% 

Round2 27.79% 28.29% 40.18% 24.13% 25.12% 26.25% 

Round3 27.88% 27.35% 43.31% 24.65% 23.81% 28.68% 

Round4 27.03% 26.89% 43.08% 24.20% 25.04% 28.43% 

Round5 27.63% 26.95% 44.22% 22.45% 23.70% 28.42% 

Round6 28.18% 28.20% 37.91% 24.26% 24.08% 27.15% 

Round7 25.21% 25.40% 42.70% 21.96% 20.53% 26.27% 

Round8 26.68% 27.07% 44.90% 20.04% 20.59% 25.53% 

Round9 30.50% 28.99% 45.99% 24.99% 25.21% 27.95% 

Round10 28.77% 28.32% 45.08% 25.51% 23.46% 28.40% 

Average 27.79% 27.30% 43.32% 23.61% 23.56% 27.48% 
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Table B-8.33 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (1000-size sample and K=3) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 24.64% 23.66% 28.10% 20.02% 17.89% 22.10% 

Round2 26.47% 26.99% 30.53% 19.49% 18.56% 20.09% 

Round3 24.45% 23.74% 27.52% 19.90% 18.51% 19.91% 

Round4 26.88% 26.62% 32.25% 20.19% 19.72% 23.58% 

Round5 27.64% 26.50% 31.55% 21.38% 21.06% 24.77% 

Round6 26.15% 26.12% 32.12% 18.23% 18.65% 21.17% 

Round7 23.64% 23.55% 29.24% 19.04% 18.18% 19.74% 

Round8 25.16% 24.61% 31.07% 20.26% 20.90% 24.60% 

Round9 24.27% 24.07% 28.02% 19.02% 19.24% 21.13% 

Round10 23.77% 23.37% 30.11% 17.61% 18.18% 20.42% 

Average 25.31% 24.92% 30.05% 19.51% 19.09% 21.75% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 27.73% 26.62% 42.45% 25.86% 23.00% 28.42% 

Round2 28.45% 29.19% 43.54% 23.49% 22.17% 24.78% 

Round3 27.49% 26.92% 40.14% 25.48% 23.21% 25.45% 

Round4 29.25% 29.11% 43.15% 25.66% 25.48% 29.31% 

Round5 30.23% 29.09% 45.03% 26.21% 25.98% 29.70% 

Round6 28.72% 28.86% 44.78% 24.29% 22.88% 27.32% 

Round7 26.53% 26.27% 42.14% 23.15% 22.79% 25.66% 

Round8 28.27% 27.76% 45.70% 25.37% 25.32% 29.81% 

Round9 27.59% 27.42% 40.86% 24.10% 23.98% 26.46% 

Round10 26.94% 26.79% 41.66% 22.05% 22.39% 25.10% 

Average 28.12% 27.80% 42.95% 24.56% 23.72% 27.20% 
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Table B-8.44 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (50-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 33.98% 36.46% 52.02% 29.18% 31.75% 38.54% 

Round2 48.10% 40.00% 49.73% 25.25% 21.10% 51.08% 

Round3 39.67% 44.59% 32.16% 42.23% 36.34% 60.52% 

Round4 57.29% 24.88% 45.06% 39.05% 36.89% 33.67% 

Round5 41.75% 37.70% 42.46% 31.29% 28.44% 37.65% 

Round6 36.70% 34.26% 36.56% 29.82% 35.08% 57.14% 

Round7 22.04% 19.76% 38.39% 15.37% 17.44% 14.08% 

Round8 53.64% 26.67% 53.95% 25.62% 22.33% 28.05% 

Round9 22.44% 24.78% 29.52% 31.98% 26.04% 42.07% 

Round10 28.90% 24.07% 19.76% 27.38% 29.27% 33.79% 

Average 38.45% 31.32% 39.96% 29.72% 28.47% 39.66% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 21.88% 38.44% 47.19% 32.78% 33.82% 40.30% 

Round2 74.88% 109.45% 73.06% 36.97% 28.07% 58.60% 

Round3 28.48% 45.98% 45.05% 42.46% 36.73% 55.51% 

Round4 29.82% 27.28% 45.74% 41.55% 44.42% 41.97% 

Round5 20.33% 38.20% 51.65% 34.94% 31.88% 42.79% 

Round6 19.69% 31.74% 44.20% 39.12% 39.22% 59.86% 

Round7 41.93% 26.50% 39.87% 19.95% 28.06% 25.02% 

Round8 62.32% 42.79% 92.57% 34.15% 32.75% 34.48% 

Round9 38.25% 32.93% 43.81% 35.76% 28.96% 51.90% 

Round10 39.03% 34.05% 26.47% 35.02% 37.33% 45.83% 

Average 37.66% 42.74% 50.96% 35.27% 34.12% 45.63% 
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Table B-8.55 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (100-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 34.45% 30.43% 52.58% 39.17% 35.57% 50.35% 

Round2 21.22% 23.11% 35.43% 18.80% 28.69% 35.43% 

Round3 28.05% 33.21% 33.49% 25.53% 28.89% 31.78% 

Round4 36.07% 36.99% 47.67% 34.30% 29.95% 28.58% 

Round5 27.69% 29.30% 46.98% 24.86% 28.86% 34.96% 

Round6 23.87% 24.17% 21.77% 19.42% 12.93% 28.68% 

Round7 28.65% 29.03% 37.10% 32.73% 21.02% 42.22% 

Round8 22.01% 24.37% 41.43% 24.00% 17.44% 45.29% 

Round9 30.46% 29.08% 30.24% 36.17% 30.69% 34.17% 

Round10 17.65% 22.83% 29.60% 20.64% 17.63% 19.48% 

Average 27.01% 28.25% 37.63% 27.56% 25.17% 35.09% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.00% 34.44% 49.46% 39.94% 35.68% 49.34% 

Round2 23.49% 26.90% 57.64% 19.96% 38.16% 46.70% 

Round3 27.40% 38.21% 51.88% 31.82% 33.23% 35.58% 

Round4 20.51% 38.72% 50.54% 41.34% 44.84% 36.37% 

Round5 28.34% 30.52% 46.79% 30.47% 34.21% 35.20% 

Round6 22.71% 29.05% 33.03% 28.44% 19.15% 40.04% 

Round7 28.56% 32.85% 40.56% 38.28% 25.67% 46.23% 

Round8 32.76% 29.23% 62.64% 33.41% 29.11% 50.54% 

Round9 32.70% 35.34% 35.74% 47.88% 43.01% 44.45% 

Round10 31.27% 29.54% 47.82% 28.08% 24.97% 27.64% 

Average 27.67% 32.48% 47.61% 33.96% 32.80% 41.21% 

 



  

Appendices 233 

Table B-16 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (200-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.43% 29.69% 30.27% 22.84% 22.55% 23.83% 

Round2 25.29% 19.30% 35.35% 25.50% 23.32% 28.96% 

Round3 29.85% 29.45% 30.78% 26.14% 24.39% 38.78% 

Round4 29.28% 25.80% 33.78% 22.57% 19.34% 27.91% 

Round5 32.33% 33.16% 34.47% 20.39% 21.96% 29.91% 

Round6 28.16% 24.28% 33.92% 21.65% 24.16% 28.39% 

Round7 31.42% 32.41% 36.09% 18.84% 18.20% 19.92% 

Round8 25.61% 22.64% 32.08% 18.62% 19.20% 29.14% 

Round9 31.16% 31.18% 35.68% 26.36% 25.92% 28.97% 

Round10 28.66% 24.06% 31.62% 20.06% 23.54% 32.90% 

Average 29.12% 27.20% 33.40% 22.30% 22.26% 28.87% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 22.95% 32.17% 52.84% 32.83% 32.31% 31.37% 

Round2 40.45% 24.60% 58.42% 34.21% 31.32% 42.12% 

Round3 27.59% 31.99% 48.55% 31.78% 29.29% 43.04% 

Round4 31.91% 27.79% 41.85% 27.33% 24.16% 33.33% 

Round5 34.24% 52.71% 53.27% 25.70% 25.13% 38.88% 

Round6 26.90% 29.74% 41.65% 28.89% 31.63% 39.39% 

Round7 43.69% 37.28% 54.13% 25.46% 25.59% 28.24% 

Round8 26.56% 27.69% 46.84% 27.36% 26.90% 38.22% 

Round9 35.69% 33.99% 46.31% 30.60% 29.50% 34.44% 

Round10 28.23% 25.32% 55.77% 24.31% 27.37% 40.52% 

Average 31.82% 32.33% 49.96% 28.85% 28.32% 36.95% 
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Table B-17 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (400-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 26.60% 27.83% 35.01% 19.10% 20.89% 23.34% 

Round2 31.03% 27.86% 31.98% 25.32% 24.83% 25.36% 

Round3 29.18% 26.74% 38.08% 21.99% 22.56% 26.47% 

Round4 34.51% 35.66% 30.71% 29.72% 25.80% 30.37% 

Round5 27.80% 26.67% 38.44% 24.53% 24.45% 28.66% 

Round6 25.51% 27.09% 33.24% 20.59% 22.33% 25.14% 

Round7 27.60% 28.13% 29.12% 20.88% 20.17% 25.60% 

Round8 26.22% 25.82% 29.31% 24.13% 20.70% 27.82% 

Round9 30.71% 34.12% 29.70% 21.50% 22.54% 19.74% 

Round10 26.28% 24.12% 34.86% 18.07% 21.38% 24.15% 

Average 28.54% 28.40% 33.04% 22.58% 22.56% 25.66% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 30.09% 31.93% 53.44% 24.34% 27.98% 30.50% 

Round2 28.14% 31.70% 38.44% 31.51% 30.62% 31.06% 

Round3 31.52% 30.80% 56.55% 30.49% 30.15% 33.49% 

Round4 27.33% 38.58% 41.03% 35.60% 32.37% 37.67% 

Round5 24.79% 30.59% 47.19% 31.35% 31.29% 34.04% 

Round6 29.73% 31.59% 44.81% 27.59% 30.39% 31.07% 

Round7 25.51% 33.07% 40.17% 26.12% 25.22% 32.87% 

Round8 27.49% 29.82% 46.98% 31.32% 25.73% 37.74% 

Round9 25.09% 37.62% 47.47% 27.73% 29.09% 26.10% 

Round10 32.05% 28.56% 52.59% 24.37% 27.37% 31.54% 

Average 28.18% 32.42% 46.87% 29.04% 29.02% 32.61% 
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Table B-8.68 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (600-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.35% 29.34% 34.48% 22.86% 23.23% 27.25% 

Round2 26.69% 27.63% 33.86% 22.17% 22.96% 26.80% 

Round3 34.09% 31.09% 39.73% 19.02% 19.17% 22.16% 

Round4 26.85% 27.36% 34.25% 23.81% 22.66% 23.15% 

Round5 28.87% 28.66% 33.15% 23.57% 25.02% 31.95% 

Round6 31.74% 30.49% 32.39% 19.73% 19.60% 21.00% 

Round7 24.97% 25.43% 32.23% 19.27% 20.61% 22.80% 

Round8 27.65% 26.27% 38.21% 19.70% 21.31% 23.95% 

Round9 26.23% 29.74% 33.88% 22.10% 22.75% 27.54% 

Round10 26.95% 26.45% 31.59% 16.91% 16.43% 21.25% 

Average 28.34% 28.24% 34.38% 20.91% 21.37% 24.78% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 25.17% 31.92% 63.29% 28.78% 29.12% 35.10% 

Round2 29.56% 30.91% 45.01% 26.75% 27.94% 32.28% 

Round3 26.54% 33.78% 60.38% 25.93% 24.72% 30.23% 

Round4 27.81% 32.83% 55.71% 30.44% 29.33% 30.25% 

Round5 27.57% 32.28% 50.07% 29.24% 30.66% 38.40% 

Round6 28.43% 34.34% 46.29% 29.85% 29.69% 31.95% 

Round7 28.12% 30.64% 52.54% 27.96% 28.26% 31.64% 

Round8 27.05% 30.38% 58.01% 25.16% 27.63% 30.22% 

Round9 28.00% 34.48% 44.72% 27.81% 28.67% 34.42% 

Round10 26.83% 30.23% 51.84% 23.41% 23.16% 32.44% 

Average 27.51% 32.18% 52.79% 27.53% 27.92% 32.69% 
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Table B-198.7 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (800-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.92% 28.05% 36.93% 19.86% 22.18% 22.42% 

Round2 30.56% 30.25% 36.69% 21.93% 25.19% 25.21% 

Round3 28.56% 27.09% 36.87% 21.82% 23.26% 22.81% 

Round4 25.54% 24.96% 31.91% 20.10% 22.26% 25.01% 

Round5 27.94% 30.34% 36.87% 19.77% 19.75% 21.98% 

Round6 28.93% 27.45% 31.99% 24.06% 22.30% 25.90% 

Round7 26.70% 25.15% 30.43% 20.48% 21.43% 22.93% 

Round8 25.15% 25.95% 33.55% 20.76% 18.95% 22.71% 

Round9 30.66% 29.96% 40.77% 22.85% 21.63% 24.39% 

Round10 28.25% 26.88% 33.49% 23.45% 22.61% 24.24% 

Average 28.22% 27.61% 34.95% 21.51% 21.96% 23.76% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.90% 33.50% 55.20% 26.47% 28.53% 30.06% 

Round2 26.50% 33.65% 49.83% 28.78% 30.87% 34.81% 

Round3 24.23% 31.76% 49.21% 29.04% 30.49% 29.62% 

Round4 29.36% 29.44% 47.01% 27.68% 29.22% 36.37% 

Round5 30.11% 34.25% 53.29% 25.85% 25.68% 28.48% 

Round6 30.76% 30.92% 41.02% 29.67% 27.92% 31.93% 

Round7 27.85% 29.95% 49.22% 27.22% 27.76% 30.43% 

Round8 28.34% 30.27% 49.95% 26.95% 25.39% 30.35% 

Round9 27.77% 33.84% 53.33% 28.99% 27.60% 30.69%

Round10 28.87% 31.04% 49.85% 31.02% 28.67% 31.27% 

Average 28.37% 31.86% 49.79% 28.17% 28.21% 31.40% 
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Table B-8.80 Comparative results of CBR-W1S1, CBR-W2S1, CBR-W3S1, CBR-
W1S2, and CBR-W2S2 CBR-W3S2 (1000-size sample and K=1) 

ARE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 29.12% 27.47% 29.59% 21.23% 19.25% 24.47% 

Round2 30.88% 30.42% 37.55% 19.51% 20.32% 21.91% 

Round3 25.79% 25.07% 32.19% 23.05% 21.19% 22.51% 

Round4 30.55% 29.26% 38.97% 23.65% 21.94% 27.14% 

Round5 33.64% 33.91% 34.84% 23.59% 22.95% 26.14% 

Round6 28.24% 28.16% 34.13% 20.39% 18.33% 22.47% 

Round7 26.84% 27.21% 30.73% 21.54% 22.70% 23.40% 

Round8 26.75% 27.68% 35.91% 22.55% 22.22% 26.23% 

Round9 26.69% 26.48% 34.06% 21.57% 21.93% 24.29% 

Round10 25.72% 26.74% 31.87% 19.69% 21.20% 21.61% 

Average 28.42% 28.24% 33.99% 21.68% 21.20% 24.02% 

RMSE 

 
CBR-

W1S1 

CBR-

W2S1 

CBR-

W3S1 

CBR-

W1S2 

CBR-

W2S2 

CBR-

W3S2 

Round1 30.20% 31.81% 45.22% 27.41% 25.68% 33.54% 

Round2 26.71% 33.87% 55.14% 25.05% 25.53% 32.07% 

Round3 28.55% 29.19% 47.66% 30.70% 28.35% 30.11% 

Round4 28.68% 33.35% 53.19% 31.09% 29.10% 34.50% 

Round5 26.28% 35.91% 47.85% 28.86% 28.28% 33.01% 

Round6 27.64% 32.68% 48.26% 26.58% 24.92% 30.41% 

Round7 28.20% 30.66% 45.49% 27.75% 28.68% 29.80% 

Round8 29.08% 31.79% 54.18% 29.99% 28.53% 34.27% 

Round9 26.49% 30.64% 50.14% 27.76% 28.46% 33.02% 

Round10 27.27% 30.70% 49.85% 25.35% 26.52% 27.59% 

Average 27.91% 32.06% 49.70% 28.05% 27.40% 31.83% 
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APPENDIX C 

Table C-1 The error rate of OLS-CBR after case-base editing (K=3) 
OLS-CBR (K=3) 

Threshold 
No. of 
cases 

CR 
Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1315 0.9074 0.1789 0.2287 0.1832 0.2332 0.1764 0.2253 

2 1242 0.8571 0.1771 0.2246 0.1835 0.2329 0.1733 0.2203 

3 1079 0.7443 0.1814 0.2326 0.1837 0.2345 0.1768 0.2263 

4 948 0.6545 0.1819 0.2323 0.1854 0.2363 0.1758 0.2250 

5 792 0.5467 0.1857 0.2343 0.1896 0.2397 0.1730 0.2219 

6 631 0.4353 0.1819 0.2343 0.1925 0.2441 0.1628 0.2088 

7 476 0.3288 0.1889 0.2396 0.1962 0.2475 0.1645 0.2110 

8 340 0.2346 0.1967 0.2513 0.2001 0.2552 0.1710 0.2186 

9 226 0.1563 0.2098 0.2667 0.2087 0.2634 0.1706 0.2181 

10 138 0.0954 0.2220 0.2763 0.2169 0.2707 0.1709 0.2199 

11 65 0.0446 0.2264 0.2903 0.2247 0.2854 0.1676 0.2176 

12 37 0.0253 0.2748 0.3408 0.2551 0.3080 0.1584 0.2073 

13 18 0.0124 0.3556 0.4214 0.3363 0.3905 0.1778 0.2296 

14 7 0.0047 0.6828 0.7063 0.6078 0.6454 0.1943 0.2556 

15 6 0.0041 1.3851 0.9831 1.3202 0.9431 0.1947 0.2473 

CR is the compression rate. 
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Table C-2 The error rate of GA -CBR after case-base editing (K=3) 
GA-CBR (K=3) 

Threshold No. of 
cases 

CR Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1309.3655 0.9036 0.1779 0.2260 0.1812 0.2292 0.1773 0.2248 

2 1234.8497 0.8522 0.1811 0.2283 0.1817 0.2290 0.1771 0.2240 

3 1073.6007 0.7409 0.1811 0.2267 0.1818 0.2282 0.1773 0.2237 

4 944.2545 0.6517 0.1798 0.2272 0.1829 0.2288 0.1760 0.2214 

5 789.8828 0.5451 0.1830 0.2315 0.1851 0.2323 0.1753 0.2228 

6 621.8269 0.4291 0.1876 0.2364 0.1897 0.2384 0.1777 0.2239 

7 471.0441 0.3251 0.1883 0.2350 0.1907 0.2383 0.1735 0.2189 

8 339.9876 0.2346 0.1930 0.2396 0.1933 0.2435 0.1722 0.2185 

9 229.2993 0.1582 0.1978 0.2488 0.1981 0.2486 0.1754 0.2235 

10 142.0386 0.0980 0.2021 0.2554 0.2043 0.2573 0.1746 0.2219 

11 82.7655 0.0571 0.2150 0.2679 0.2133 0.2658 0.1745 0.2241 

12 44.9952 0.0311 0.2479 0.3025 0.2436 0.2998 0.1767 0.2261 

13 22.6372 0.0156 0.3243 0.3756 0.3171 0.3698 0.1751 0.2244 

14 10.7738 0.0074 0.6819 0.5980 0.6613 0.5874 0.1757 0.2239 

15 5.5152 0.0038 1.7221 0.9669 1.7136 0.9642 0.1868 0.2405 

CR is the compression rate. 
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Table C-3 The error rate of MODAL-CBR after case-base editing (K=3) 
MODAL-CBR (K=3) 

Threshold No. of 
cases 

CR Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 1317 0.9086 0.1523 0.1986 0.1478 0.1944 0.1489 0.1940 

2 1237 0.8537 0.1532 0.1979 0.1493 0.1945 0.1479 0.1934 

3 1085 0.7487 0.1590 0.2067 0.1558 0.2036 0.1467 0.1920 

4 946 0.6527 0.1664 0.2185 0.1632 0.2127 0.1472 0.1946 

5 771 0.5320 0.1738 0.2256 0.1710 0.2213 0.1489 0.1969 

6 598 0.4129 0.1819 0.2338 0.1788 0.2294 0.1499 0.1974 

7 454 0.3133 0.1933 0.2453 0.1874 0.2395 0.1569 0.2034 

8 344 0.2376 0.1987 0.2501 0.1936 0.2468 0.1666 0.2148 

9 236 0.1631 0.2059 0.2588 0.1976 0.2475 0.1662 0.2157 

10 142 0.0980 0.2122 0.2678 0.2117 0.2671 0.1654 0.2101 

11 81 0.0559 0.2237 0.2782 0.2281 0.2826 0.1672 0.2140 

12 48 0.0334 0.2878 0.3480 0.2651 0.3215 0.1653 0.2130 

13 30 0.0210 0.3418 0.4103 0.3048 0.3600 0.1698 0.2172 

14 16 0.0107 0.3733 0.4786 0.3456 0.4304 0.1758 0.2238 

15 9 0.0062 0.4273 0.5122 0.3931 0.4542 0.1905 0.2469 

CR is the compression rate. 
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Table  C-4 The error rate of OLS-CBR after case-base editing (K=1) 

OLS-CBR (K=1) 

Threshold 
No. of 
cases 

  
CR 

Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 369  0.2546  0.2260  0.2977  0.2294  0.3004  0.1921  0.2563  

2 68  0.0472  0.3150  0.3811  0.2870  0.3526  0.1874  0.2524  

3 13  0.0089  0.4532  0.5615  0.3292  0.4086  0.2148  0.2865  

CR is the compression rate. 
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Table C-5 The error rate of GA -CBR after case-base editing (K=1) 

GA-CBR (K=1) 

Threshold 
No. of 
cases 

CR 
Strategy 1 Strategy 2 Strategy 3 

MAPE RMSE MAPE RMSE MAPE RMSE 

1 376  0.2595  0.2264  0.2837  0.2202  0.2820  0.1958  0.2620  

2 73  0.0500  0.2577  0.3195  0.2577  0.3175  0.1940  0.2565  

3 9  0.0064  0.4591  0.5006  0.4467  0.4928  0.2016  0.2661  

CR is the compression rate. 
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Table C-6 The error rate of MODAL-CBR after case-base editing (K=1) 

MODAL-CBR (K=1) 

Threshold 
No. of 
cases 

  Strategy 1 Strategy 2 Strategy 3 

CR MAPE RMSE MAPE RMSE MAPE RMSE 

1 364  0.2513  0.2120  0.2780  0.2040  0.2677  0.1808  0.2423  

2 82  0.0565  0.2723  0.3273  0.2600  0.3185  0.1925  0.2553  

3 7  0.0051  0.4674  0.6801  0.4019  0.5566  0.2157  0.2943  

CR is the compression rate. 

 

 

 


