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Abstract 
 

This thesis develops three advanced heuristic optimization algorithms (HOAs) for power 

system reactive power planning and dispatch. 

    Firstly, a comprehensive overview of the state-of-the-art HOAs applied for reactive 

power planning (RPP) and optimal reactive power dispatch (ORPD) is presented. It covers 

a number of HOA variants in the research field of RPP and ORPD problems, including 

genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), 

and evolutionary programming (EP), etc.  

A modified quantum-inspired differential evolutional algorithm (MQDE) with a novel 

reset strategy is developed for optimal RPP. The proposed MQDE is based on quantum 

mechanics combining with a competitive DE mutation scheme, i.e. DE/best/1/bin. It 

overcomes a major difficulty of DE techniques in ensuring the search diversity of the 

population when the algorithm is approaching the region of local optimum in the later 

stages of iteration process. 

A novel HOAs-adaptive range composite differential evolution (ARCoDE) algorithm is 

developed for ORPD that is one of the critical components in optimal power flow (OPF) 

study. Due to the nature of power dispatch, the ORPD problems need to be solved in a 

timely manner. This imposes a limitation on number of function evaluations. The proposed 

ARCoDE algorithm utilizes the concept of compositing different types of trial vector 

generation strategies, which makes possible a decent balance between the exploration and 
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exploitation capabilities in the solution. In addition, a novel control parameter range 

adaptation mechanism is proposed to enable a highly efficient adaptive tuning of control 

parameters. These novelties support ARCoDE to deliver satisfactory solutions while 

fulfilling the stringent time requirements.  

Finally, an efficiency ranking-based evolutionary algorithm (EREA) is proposed aiming 

at directly obtaining the most efficient DMUs. A slacks-based measure (SBM) of efficiency 

and its super efficiency pattern are applied to yield a full ranking of relative efficiency of 

DMUs in each evolving generation, based on which the most efficient DMUs can be 

eventually found for the multi-objective formulation of ORPD problem.  
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Chapter 1 Introduction 

1.1 Scope of Research  

1.1.1 Reactive Power Planning in Modern Power System 

Generally, reactive power planning (RPP), also known as VAR planning, can be defined 

as the process to allocate various reactive power sources considering their locations and 

sizes. By solving the RPP problem, the optimal amount and location of shunt reactive 

power compensation devices can be determined [1], [2]. The most common objective of 

RPP is to minimize cost associated with VAR sources’ allocation and operation. Both the 

investment cost and operation cost need to be minimized simultaneously. Aside from 

operation constraints introduced by VAR sources, RPP problems also inherit the 

complexity of power systems, that is mathematically nonlinear and comes with a large 

number of variables and uncertain parameters. Accompanied by these complicated 

objectives and constraints, solving a RPP problem is regarded as one of the most 

challenging tasks in power systems planning and operation.  

Conventionally, placing new reactive power sources is done by utility through either 

simple estimation or direct assumption. With growth of the system and deregulation of the 

power market, the pursuit of the best allocation of VAR devices starts to become 

economically driven by the system operators [3]–[5]. Historically, various optimization 

algorithms have been developed for RPP, such as nonlinear [6], linear [7], or mixed integer 
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programming [8], and decomposition methods [9]–[12]. However, these techniques are 

known to only converge at local optima rather than the global ones. A typical RPP problem 

can have many local minima. 

In recent years, heuristic optimization algorithms (HOAs) [13]–[20] have attracted 

attention for its effectiveness in solving optimization problems. HOAs are powerful 

optimization techniques that mimicking natural selection processes, such as in genetics. 

Theoretically, HOAs are capable of converging to the global optimum solution with 100% 

probability [2]. They are useful especially when traditional optimization algorithms fail to 

deliver optimal solutions. Although often being computational expensive, HOAs can 

benefit from recent advances in distributed computing techniques that could scale down 

execution times dramatically. With HOAs, doing a large amount of computation tasks in 

pursuing global optimum instead of local ones is achievable. 

1.1.2 Optimal Reactive Power Dispatch in Modern Power System 

On the other side, the dispatch of reactive power is also critical as it ensures the security 

and economy of power system operation. Optimal reactive power dispatch (ORPD) 

problem is a complicated mixed-integer non-linear optimization problem involving many 

constraints and discrete/continuous decision variables [21]. Without assumptions such as 

convexity, differentiability and continuity, traditional techniques including linear 

programming, non-linear programming, and interior point method may not handle these 

problems well [9], [22], [23]. In addition, the performance of these methods is highly 

affected by the initial solution guess. In view of the above issues, a variety of HOAs have 
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been proposed to solve OPF and ORPD problems [24], including e.g. genetic algorithm 

(GA) [25], [26], evolutionary programming (EP) [27], particle swarm optimization (PSO) 

[28], [29], DE [30], seeker optimization [31], mean-variance mapping optimization 

(MVMO) [32], QEA [33], etc. In practice, fast ORPD computation is needed for e.g. power 

flow management [34], reactive source control of wind farm [35], and so on. Therefore, it 

is practically valuable to develop highly efficient HOAs to fulfill practical operation needs. 

In addition, the OPF and ORPD formulations are becoming even more complicated due to 

integration of renewable energies [5], [36]–[39], which also motivates applications of 

HOAs. 

1.2 Incentives of Thesis 

The major concerns of applying HOAs to RPP and ORPD problems include convergence 

speed and control parameters selection. The former can be enhanced by introducing 

exploitive recombination strategies, but the robustness of the algorithm may be 

compromised accordingly. That is the method should obtain satisfactory solutions in 

reasonable times while not too sensitive to changes in parameters. The latter, control 

parameters selection, can be handled by different adaptive or self-adaptive mechanisms to 

shorten the tedious trial-and-error procedure for fine tuning control parameters. However, 

these adaptive or self-adaptive strategies can still provide unsatisfactory parameters for 

practical applications, where only limited numbers of function evaluations are allowed due 

to the critical time requirement. For example, reactive power dispatch in power systems 

can be conducted in every 15 minutes, asking for a fast optimization solution. In addition, 
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when dealing with multi-objective RPP/ORPD problems, a quality Pareto-optimal front 

(POF) is essentially a prerequisite for a post processing use e.g.to gauge the most efficient 

solutions. However, the search ability of most multi-objective HOAs severely deteriorates 

when more than three objectives are involved, resulting in a poor POF [39] 

1.3 Aims and Objectives 

The main objective set for this thesis is to apply advanced HOAs into power system RPP 

and ORPD problems. Three HOAs are developed for solving RPP and ORPD problems. 

Test results demonstrate that the proposed HOAs are capable of delivering satisfactory 

solutions while fulfilling critical requirements. 

The specific aims of the thesis are: 

1. Provide a comprehensive overview of advanced HOAs applied in RPP and ORPD 

problem. Wide variety of HOAs are covered, such as including GA, DE, PSO, and 

EP, etc. (Chapter 2); 

2. Propose a modified quantum-inspired differential evolutional algorithm with a novel 

reset strategy for optimal reactive power planning. It overcomes a major difficulty of 

DE techniques in ensuring the search diversity of the population when the algorithm 

is approaching the region of local optimum in the later stages of iteration process.  

(Chapter 3); 
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3. Develop a novel HOAs-adaptive range composite differential evolution algorithm for 

ORPD. It utilizes the concept of compositing different types of trial vector generation 

strategies, which makes possible a decent balance between the exploration and 

exploitation capabilities in the solution. (Chapter 4); 

4. Present an efficiency ranking based evolutionary algorithm for multi-objective ORPD 

problems. This evolutionary algorithm features a data envelopment analysis-based 

fitness assignment strategy to guide the iterations. With the proposed algorithm multi-

objective ORPD can be solved efficiently. (Chapter 5). 

1.4 Publications and Awards from the Thesis 

Journal Publications:  

[1] Ming Niu, Zhao Xu, “Efficiency ranking-based evolutionary algorithm for power 

system planning and operation”, IEEE Transactions on Power Systems, Jul. 2014. 

[2] Ming Niu, Can Wan, Zhao Xu, “A review on applications of heuristic optimization 

algorithms for optimal power flow in modern power systems”, Journal of Modern 

Power Systems and Clean Energy, pp. 289-297, Dec. 2014. 

[3] Can Wan, Ming Niu, Yonghua Song, Zhao Xu, “Pareto optimal prediction intervals 

of electricity Price”, IEEE Transactions on Power Systems, pp. 817-819, Jan. 2016. 

[4] Ning Zhou Xu, Ka Wing Chan, Chi Yung Chung, Ming Niu, “Enhancing adequacy of 

isolated systems with electric vehicle-based emergency strategy”, IEEE Transactions 

on Intelligent Transportation Systems, 2019, Early Access. 
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Award: 

[5] Top Five Best Algorithm Award, “Competition on Application of Modern Heuristic 

Optimization algorithms for Solving Optimal Power Flow Problems”, IEEE PES 

Working Group on Modern Heuristic Optimization Intelligent Systems Subcommittee 

& Power System Analysis, Computing, and Economic Committee, Aug, 2014. 

Conference Publications: 

[6] Songjian Chai, Ming Niu, Zhao Xu, Loi Lei Lai, Kit Po Wong, “Nonparametric 

conditional interval forecasts for PV power generation considering the temporal 

dependence”, in Proceedings of IEEE PES General Meeting, pp.1-5, Jul. 2016. 
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Chapter 2 Literature Review 

2.1 Fundamentals of Optimization Theory 

Optimization principle is of vital importance in modern engineering design and system 

operations across various fields. In recent years, optimization research has been widely 

studied in many engineering fields including the electric power systems. In mathematics, 

an optimization problem is also referred to as a mathematic programming problem. It 

studies the way to seek best solutions from sets of available alternatives.  

Mathematical representation of a generic optimization problem is given in the following 

way. First comes the objective function, i.e. the function needs to be minimized or 

maximized: 

 Minimize/maximize      	𝑓#(𝑥). (2.1) 

A solution 𝑥# is to be found in ℝ( such that, ∀𝑥 ∈ ℝ( 

 𝑓(𝑥#) ≤ 𝑓(𝑥)					for minimization, or	
𝑓(𝑥#) ≥ 𝑓(𝑥)					for maximization   			 (2.2) 

where 𝑓#:	ℝ( → ℝ is the objective function or cost function; 𝑥 = [𝑥1, 𝑥3,⋯ , 𝑥(]  is the 

optimization or control variables of the optimization problem, because we need to select 

their values to achieve the optima of the objective function; and ℝ( to ℝ stands for real 

number set of 𝑛 and single dimensionality. If the inequality conditions in (2.2) only holds 
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within a small neighborhood of the solution 𝑥# , the objective 𝑓 is said to have a local 

minima or maxima, and 𝑥# is the local optimal solution to the problem (2.1); otherwise, 𝑓 

has the global minima or maxima, and 𝑥# is the global optimal solution to the problem 

(2.1).  

Note, often the optimization problem is accompanied with constraints in the forms of 

equality or inequality functions that can limit the actual solution space of 𝑥. A complete of 

representation of the constrained optimization problem is therefore given by, 

 
Minimize/maximize 			𝑓#(𝑥), 𝑥 ∈ ℝ(

subject to 𝑓7(𝑥) ≤ 𝑏7,			𝑖 = 1, 2,⋯ , 𝑝	
𝑔>(𝑥) = 0,			𝑗 = 1, 2,⋯ , 𝑞

	, (2.3) 

where ℎ7:	ℝ( → ℝ, 𝑖 = 1, 2,⋯ , 𝑝 are the inequality constraint functions, and 𝑏1, 𝑏3,⋯ , 𝑏C 

are the boundaries of the constraint functions;  𝑔>:	ℝ( → ℝ , 𝑗 = 1, 2,⋯ , 𝑝   are the 

inequality constraint functions.  

The optimization research comprises of a wide range of different sub-research fields. 

Basic categorization of the subfields depends on the properties of the optimization 

objective function, control variables, constraints, problem formulation, etc.  

Linear programming (LP) deals with optimization problems with linear objective 

functions and constraints. For example, the formulation in (2.3) is a linear programming 

problem, if the objective function (and the constraints must) fulfills the following relation,  

∀𝑥, 𝑦 ∈ ℝ(, 𝛼, 𝛽 ∈ ℝ	 

 𝑓#(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓#(𝑥) + 𝛽𝑓#(𝑦). (2.4) 
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Otherwise, a problem is a non-linear programming (NLP) problem.  

Quadratic programming (QP) solves optimization problems with the objective function 

of quadratic forms. An integer programming problem is defined as optimization problem 

in which control variables are restricted to be integers; while in mixed integer programming 

only some control variables are integers and the others are of non-integer type.  

Due to the inclusion of constraints, constrained optimization usually involves higher 

complexities in solving the problem than unconstrained ones. Deterministic programming 

is in opposition to stochastic programming where the problem formulation is of stochastic 

nature with random numbers embedded in the objective and constraints. Combinatory 

optimization is a method solving problems in which the set of feasible solutions is discrete 

or can be reduced to a discrete one. Dynamic programming tackles decision-making that 

spans several points in time. The optimization strategy is to break down the problem into 

smaller sub problems that are correlated by constraint equations.  

Furthermore, combinations of ‘basic’ categories lead to more ‘advanced’ classification, 

such as mix integer linear programming (MILP) and mixed integer nonlinear programming 

(MINLP).  Table 2.1 summarizes major subfields of mathematical optimization. Readers 

are referred to literatures [40], [41] for further details in optimization theory.  
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2.2 Multi-objective Optimization 

More than often, real-world problems can involve more than one objective function to be 

optimized simultaneously. This multi-criterion decision-making process is termed as multi-

objective optimization.  The generic formulation of a multi-objective minimization 

problem is given below, 

Table 2.1.  Major subfields of mathematical optimization. 

 Objective 
function Constraints 

Control 
(decision) 
variables 

Comments 

Linear programming Linear Linear Real  

Nonlinear programming Nonlinear/linear Nonlinear/linear Real 

Some of 
objectives or 
constraints 
nonlinear 

Quadratic programming Quadratic Linear Real  
Integer programming Linear Linear Integer /binary  

Mixed Integer Programming Linear Linear Integer /binary  

Mix Integer Linear 
Programming Linear Linear Real/integer 

/binary 

Some of 
objectives or 
constraints 
nonlinear 

Mix Integer Nonlinear 
Programming Nonlinear/linear Nonlinear/linear Real/integer 

/binary  

Constrained optimization - Yes -  
Unconstrained optimization - No -  

Deterministic Programming Deterministic 
formulation 

Deterministic 
formulation -  

Stochastic programming with 
uncertainties 

with 
uncertainties -  

Combinatory Optimization - - - 
Discreet 
feasible 

solution space 

Dynamic Programming - - - 
Decision 

making over 
time 
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Minimize 𝐹(𝑥) = 	[𝑓1(𝑥), 𝑓3(𝑥),⋯ , 𝑓I(𝑥)]J,			𝑥 ∈ ℝ(

subject to ℎ7(𝑥) ≤ 𝑏7,			𝑖 = 1, 2,⋯ , 𝑝	
𝑔>(𝑥) = 0,			𝑗 = 1, 2,⋯ , 𝑞

	, (2.5) 

where, if 𝑁 = 1 the multi-objective problem is then reduced to a single objective problem. 

For single objective optimization, a global optimal solution always exists, though 

sometimes difficult to find. However, this is generally not the case for multi-objective 

problems. It is common that optimal decisions need to be taken in the presence of trade-

offs between two or more conflicting objectives, for instance, minimizing cost whilst 

maximizing quality when buying goods and services.  Rather there can be a set of candidate 

solutions that are Pareto optimal, meaning that these solutions cannot be further improved 

for one objective without sacrificing one or more other objectives. The concept of Pareto 

optimality is first introduced by Francis Ysidro. Later Vilfredo Pareto generalized it [42]. 

The set of the Pareto optimal solutions is called Pareto set. The corresponding objective 

vectors formulate a Pareto front in the feasible objective space [43]. Figure 2.1 illustrates 

the concept of Pareto front for a two-objective minimization problem.  
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Pareto optimal solutions represent different trade-offs between different objectives, 

reflecting the decision makers’ preferences or attitudes towards different objectives in 

consideration. The approach of solving the multi-objective problem is usually through 

aggregating all involved objectives into one single formulation by using methods such as, 

§ Sum weighted method: This method simply assigns different weights and then sums 

up all objectives into one expression. The resultant ‘single’ objective is designed 

by the decision maker to reflect its preference. A popular formulation is a linear 

combination of all objectives, as in (2.6), 

Minimize 𝑀(𝑥) = M𝑤O𝑓O(𝑥)
I

OP1

,	with	𝑤O ≥ 0	and	M𝑤O = 1
I

OP1

											(2.6) 

where the weights (𝑤O) represent degree of importance for each objective, specified 

by the decision maker a priori. Here constraints in (2.5) also apply.  

 

Figure 2.1.  Illustration of Pareto front for a two-objective minimization problem. 
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§ Goal programming method: It minimizes deviation from pre-set goals. Typical 

formulation is given by (2.7) 

Minimize 𝑀(𝑥) = M𝑤O|𝑓O(𝑥) − 𝑇O|
I

OP1

,	with	𝑤O ≥ 0	and	M𝑤O = 1
I

OP1

						(2.7) 

where 𝑤O are weights assigned and 𝑇O is objective 𝑘’s goal, both specified by the 

decision maker a priori. Constraints in (2.5) also apply. This method needs a priori 

information of priorities and goals in the original optimization problem. To find out 

the goals, separated optimization procedures for individual objectives need to be 

performed. Alternatively, estimation of these objectives is acceptable.   

§ Epsilon constrained method: This method seeks Pareto optimal solutions via 

optimization of one objective, subject to the rest objectives as constraints bounded 

by allowable range 𝜀O. The entire Pareto set can be generated by repetitively solving 

the problem for different values of 𝜀O. The formulation of the epsilon constrained 

method usually takes,  

Minimize
Subject to

𝑓7(𝑥)
𝑓O(𝑥) ≤ 𝜀O, 𝑘 = 1, 2,⋯ ,𝑁; 𝑖 ≠ 𝑘 																															(2.8) 

and other constraints in (2.5) also apply. The Pareto set is achievable by repeatedly 

solving above equations for different epsilons. This method is relatively simple, but 

computationally intensive.  
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2.3 Modern Heuristic Optimization Algorithms 

The modern HOAs represent a group of intelligent algorithms that either make analog of 

the natural evolution process based on Darwinian principles or mimic a certain natural 

phenomenon in searching for an optimal solution. They have been successfully applied to 

a wide range of power system optimization problems where non-differentiable regions 

exist, and the global solution are extremely difficult to be gauged. The most popularly used 

HOAs in solving RPP and ORPD problem are compactly introduced as the follows: 

2.3.1 Genetic Algorithm  

GA is one of the most popular and famous approaches in evolutionary computation. 

Founded on the mechanism of natural genetics and Darwinian principles of evolution and 

natural selection, this novel algorithm is developed by J.H. Holland in 1965, and showed 

strong capabilities and advantages for solving a wide range of problems introduced in his 

pioneering book [44]. GA can be considered as a population-based approach, the search 

process of which is conducted by means of transforming a set of points (individuals) to 

another set of points in the search space. In original GA, each individual is represented via 

a fixed-length binary string. This method maps the points in the search space into the 

instances of artificial chromosome. Desired precision can be simply approximated through 

tuning the length of binary string. The strong preference to the binary representation of GA 

probably derives from Schema Theorem [13] which tries to investigate the mathematical 

foundation of GA. 



15 

2.3.2 Particle Swarm Optimization 

PSO, which is introduced by Kennedy and Eberhart in 1995 [45], [46], is one of the most 

important swarm intelligence paradigms. PSO uses a simple mechanism that mimics 

swarm behavior in birds flocking and fish schooling to guide the particles to search for 

globally optimal solution. As PSO is easy to implement, it has rapidly progressed in recent 

years and with many successful applications in solving real-world optimization problems. 

2.3.3 Differential Evolution 

The Differential evolution (DE) approach is firstly proposed in a technical report by Storn 

and Price [47]. It is a population-based method and is generally considered a parallel 

stochastic direct search optimizer that is simple yet powerful. DE is a stochastic population-

based optimization algorithm with real parameters and real-valued functions. The core idea 

behind DE is a scheme for generating trial parameter vectors. DE generates new parameter 

vectors by weighing the difference vector between two population members and then 

adding that to a third member. If the resulting vector yields a lower objective function value 

than a previously determined population member, the newly generated vector replaces the 

vector to which it was compared. In comparisons to most other HOAs, DE algorithm is 

much simpler and more straightforward to implement. The main body of the algorithm 

takes four or five lines of code in any programming language. Despite its simplicity, the 

gross performance of DE in terms of accuracy, convergence rate and robustness makes it 

attractive for applications to various real-world optimization problems [48]–[50], where 

finding an approximate solution in a reasonable amount of computational time is of 
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considerable importance. The spatial complexity of DE is lower than that of some highly 

competitive real parameter optimizers. This feature helps in extending DE to handle 

expensive and large-scale optimization problems. 

2.3.4 Evolutionary Programming 

EP is first introduced by L. J. Fogel and Burgin in the research of artificial intelligence [51]. 

In order to achieve intelligent behavior, the authors come up with the idea of defining the 

environment as a sequence of symbols (in a finite alphabet) and evolving an algorithm to 

predict the next symbol to appear based on the former observed sequence of symbols. Finite 

state machine (FSM) is chosen to be the form of individuals, as it provides a meaningful 

representation for the required behaviors in the environment. While the original form of 

EP was applied in discrete problems due to the FSM representation, Back, Fogel, and 

Michalewicz extend EP into the real-valued continuous optimization problem [52]. Both 

the mutation mode and the number of mutations per offspring FSM are with respect to a 

probability distribution, which means some individual may mutates more than once in one 

generation. 

2.4 A Review of HOAs for Power System Reactive Power 
Planning and Dispatch 

2.4.1 GA-based Approaches  

An improved genetic algorithm (IGA) with the dynamical hierarchy of the coding system 
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is developed to solve the ORPD problem [53]. IGA demonstrates ability to code a large 

number of control variables in a practical system. It is tested on IEEE 30-bus system with 

both normal and contingent operation states. ORPD problem for a multi-node auction 

market is studied by means of GA in [54] to maximize the total participants’ benefit at all 

nodes in the power system. In [26], a self-adaptive real coded genetic algorithm (SARGA) 

is developed to solve OPF problem, where the self-adaptation in real coded genetic 

algorithm is reached through simulated binary crossover operator. A novel evolutionary 

algorithm (EA) is developed combing a new decoupled quadratic load flow (DQLF) 

solution with enhanced genetic algorithm (EGA) to solve the multi-objective OPF problem 

[55]. A strength Pareto evolutionary algorithm (SPEA)-based approach is employed to 

obtain the Pareto-optimal set. The proposed multi-objective evolutionary algorithm 

demonstrates superiority in comparisons to PSO–Fuzzy approach. An adaptive genetic 

algorithm (AGA) is developed to solve ORPD problems and voltage control [56], where 

the probabilities of crossover and mutation are adjusted in terms of the fitness values of the 

solutions and the normalized fitness distances between the solutions in the evolution 

process. In [57], a refined genetic algorithm (RGA) is developed for solving OPF problem. 

This GA can code a large number of control variables and has less sensitivity to starting 

points. GA is also used to deal with power system security enhancement based ORPD in 

[58] considering the actions to possible overloads in the network due to contingencies. An 

EGA with advanced and problem-specific operators is introduced for solving OPF with 

both continuous and discrete control variables [25]. An efficient real-coded mixed-integer 

genetic algorithm (MIGA) is presented in [59] to solve non-convex ORPD problems with 

security constraints. According to the numerical studies on IEEE 26-bus and 57-bus 
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systems, MIGA performs better than EP. A novel hybrid method integrating a GA with a 

nonlinear interior point method (IPM) is proposed for OPF problem [60]. In this hybrid 

approach, GA is responsible for solving the discrete optimization with the continuous 

variables, and the IPM is responsible for solving the continuous optimization with the 

discrete variables. Numerical simulations are implemented on IEEE 30-bus, 118-bus and 

realistic Chongqing 161-bus test systems, respectively. Wankhade and Vaidya discuss the 

effects of various combination of control variables on the convergence of simple genetic 

algorithm [61]. Statistical parameter-based study is conducted to visualize the effects of 

the selection of control variables on ORPD convergence in terms of the computation time 

and the accuracy improvement. The experiment results prove that the set of control 

variables with the voltage of slack bus, the active/reactive power outputs of generators, and 

the reactive power outputs of controllable buses can be the most effective in obtaining the 

global solution under normal and contingent conditions. In [62], it is claimed that the main 

disadvantages of GAs is the high CPU execution time and the qualities of the solution 

deteriorate with practical large-scale OPF problems. An efficient parallel GA is developed 

for the solution of large-scale OPF problem with the consideration of practical generators 

constraints. The length of the original chromosome is reduced on basis of the 

decomposition level and adapted with the topology of the new partition. Partial 

decomposed active power demand is added as a new variable and searched within the active 

power generation variables of the new decomposed chromosome. The strategy of the 

ORPD problem is decomposed into two sub-problems, of which the first sub-problem is 

related to active power planning to minimize the fuel cost function and the second sub-

problem is designed to make corrections to the voltage deviation and reactive power 



19 

violation in an efficient reactive power planning of multi Static VAR Compensator (SVC). 

Numerical results on three test systems—IEEE 30-bus, 118-bus and 15 generation units—

with prohibited zones are presented and compared extensively with results obtained using 

stochastic search algorithms, enhanced GA, ant colony optimization (ACO), and GA-fuzzy 

system approaches. GA is successfully used for optimal reactive power planning in [20] to 

search for a global optimal solution. It has been verified on practical 51-bus and 224-bus 

systems to indicate its feasibility and capability. GA based optimization technique is 

applied for the proper allocation of VAR sources and model analysis method shows better 

solution than L-index approach of detection not only in the aspect of RPP (active power 

loss) but also in terms of voltage stability [63]. In [64], a hybrid approach of GA, SA 

(simulated annealing) and TS (tabu search), which improve the GA by adopting the 

acceptance probability of SA avoiding being trapped by a local optimal solution, has been 

tested (37-bus practical area power system with 79 control variables) to show the 

effectiveness of the planning method in Shandong province of China. 

2.4.2 PSO-based Techniques 

As an efficient and reliable evolutionary-based approach,  PSO algorithm is applied for 

optimal settings of ORPD problem control variables [65]. A novel particle swarm 

optimization approach based on multi-agent systems (MAPSO) is presented [29] to solve 

OPF problems. Each agent, representing a particle to PSO, in MAPSO competes and 

cooperates with its neighbors. Experiment results prove that the proposed MAPSO 

approach can reach better solutions much faster than the mature approaches. A multi-
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objective PSO technique is developed to deal with the highly nonlinear and non-convex 

multi-objective OPF problems [66]. In addition to conventional objective generation cost, 

another conflicting objective environmental pollution is formulated and minimized 

simultaneously. A fuzzy based hybrid PSO approach for solving ORPD problem 

considering the forecasting uncertainties of wind speed and load demand in power systems 

is proposed in [67]. A comprehensive learning PSO (CLPSO) is developed for reactive 

power dispatch to reduce grid congestions [68]. A fuzzy decision-based mechanism is 

employed to determine the best compromise solution from the derived Pareto set. A new 

multi-objective PSO (MOPSO) technique for solving OPF problem is proposed in [69]. 

The MOPSO methodology is formulated via the redefinition of global best and local best 

individuals in multi-objective optimization domain. Reference [28] presents a hybrid 

particle swarm optimization algorithm (HPSO) to solve the discrete ORPD problem. 

Newton-Raphson algorithm for the minimization of the mismatch of the power flow 

equations is integrated to the proposed HPSO algorithm. PSO technique is applied for a 

transient-stability constrained OPF (TSCOPF) problem modeled as an extended OPF with 

additional rotor angle inequality constraints [70]. Onate Yumbla et al. proposed a PSO 

algorithm with reconstruction operators to solve the ORPD problem with embedded 

security constraints (OPF-SC), represented by a mixture of continuous and discrete control 

variables [71]. The major objective is to minimize the total operating cost, taking into 

account both operating security constraints and system capacity requirements. The 

reconstruction operators guarantee searching the optimal solution within the feasible space, 

reducing the computation time and improving the quality of the solution. An improved 

PSO algorithm is developed in [72] for multi-objective OPF problem. The improved PSO 
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that profits from chaos queues and self-adaptive concepts is used to improve the quality of 

the solution, particularly to avoid being trapped in local optima. In addition, a new mutation 

strategy combining different mutant rules is proposed to increase the search ability of the 

proposed algorithm. The proposed multi-objective OPF considers the fuel cost, loss, 

voltage stability and emission impacts involved in the objective functions. A fuzzy 

decision-based mechanism is used to select the best compromise solution of Pareto set 

obtained by the proposed PSO. In [73], PSO and group search optimizer (GSO) are used 

to solve the OPF problem with distributed generator failures in power networks. An OPF 

problem considering controllable and uncontrollable distributed generators is formulated, 

and cases with single and multiple generator failures are addressed. PSO has been proved 

powerful solution and outperform the other heuristic tools and successful application in 

RPP is reported [64], [74]. Modified PSO with dynamic inertia parameter with optimal off-

nominal tap ratios of Online Tap Changers (OLTC), reactive power generations of 

alternators, and Shunt Capacitor (ShC) admittances has been applied for RPP and results 

in improved and lower transmission losses as well as reduction of annual operational cost 

[75]. 

2.4.3 DE-based Techniques 

A multi-agent based differential evolution (MADE) based on multi-agent systems is 

developed for dealing with OPF problem with non-smooth and non-convex generator fuel 

cost curves in [76]. A novel robust differential evolution algorithm (RDEA) with new 

recombination operator is introduced to solve multi-objective OPF problem including two 
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objective functions of generation cost and voltage stability margin [77]. Similarly, DE is 

used  to solve ORPD problem with multiple and competing objectives [30]. The OPF 

problem is divided into two sub-problems, i.e., active power dispatch and reactive power 

dispatch are considered. A DE-based approach to solve OPF is developed by Abou El Ela, 

Abido, and Spea [65]. In their formulation, different objective functions that reflect fuel 

cost minimization, voltage profile improvement, and voltage stability enhancement are 

examined are examined. Non-smooth pricewise quadratic cost function is also been 

considered. Sayah and Zehar propose a similar formulation of OPF with non-smooth and 

non-convex generator fuel cost curves [78]. They employ a modified DE with a more 

exploitative mutation strategy and a random mutant factor. For testing purpose, the authors 

adopt a six-bus and the IEEE 30 bus test systems with three different types of generator 

cost curves. Comparisons are made among EP, PSO, typical DE. Results are in favor of 

the proposed modified DE. In [79], DE is comprehensively studied in terms of concept, 

mechanism, and parameter setting for solving OPF problems. The effectiveness of parallel 

computing technology for speeding up the computation is also analyzed. It has been 

concluded that DE requires relatively large populations to avoid premature convergence 

for medium-size test systems. In order to overcome this disadvantage, a decomposition and 

coordination method is proposed by the same authors based on the cooperative co-

evolutionary architecture and the voltage-var sensitivity-based power system 

decomposition technique and incorporated with DE in [80]. The framework is implemented 

with a three-level parallel computing topology. Basu has used DE to minimize the 

generator fuel cost in OPF with flexible ac transmission systems (FACTS) devices 

including thyristor-controlled series capacitor (TCSC) and thyristor-controlled phase 
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shifter (TCPS) [81]. Comparisons among DE, EP, and GA are conducted, indicating that 

the DE approach can obtain better solution and less computational complexities. 

Considering transient stability constraints into OPF, Cai et al. used DE to find the optimal 

setting for power system operation [82]. To deal with the large-scale system and speed up 

the computation, DE is parallelized and implemented on a Beowulf PC-cluster. 

Sivasubramani and Swarup propose a hybrid algorithm combining sequential quadratic 

programming (SQP) and DE for solving ORPD [83]. In this hybrid method, SQP is used 

to generate an individual, which is a member of an initial population, for DE algorithm. 

This manipulation makes DE more effectively to reach the optimal solution. In [84], an 

application of Fast Voltage Stability Index (FVSI) to RPP is proposed using Artificial 

Intelligence Technique based DE tool has been applied in the IEEE 30-bus system and 

results show striking lower system losses and improvement of voltage stability. A new 

variant of the DE algorithm (DE/best/1) is employed with the Pareto concept the RPP and 

the simulation results show the potential and outperformance to solve multi-objective RPP 

formulation compared with other approaches (GA, PSO) [84]. 

2.4.4 EP Techniques 

In [27] and [85], an efficient and reliable EP algorithm is developed to solve OPF problem 

using the gradient information. The proposed algorithm has been successfully tested on 

IEEE 30-bus system with different highly non-linear curves of generator performance. An 

improved EP and its hybrid version combined with the nonlinear interior point technique 

are proposed in [86] to solve ORPD problems, indicating the superiority of computational 
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efficiency and optimality. The common practices in regulating reactive power are 

integrated in modifying the mutation direction of control variables of EP to improve its 

speed. The interior point method is applied to reach a fast-initial solution which assisted 

the initial population of the improved EP method. An improved EP with multiple 

subpopulations and parallel search for solving ORPD with non-smooth and non-convex 

generator fuel cost curves is proposed in [87]. Gaussian and Cauchy mutation operators 

have been included in different subpopulations to improve the search diversity and avoid 

the local optimum. In [88], EP is applied for solving security constrained optimal power 

flow (SCOPF) problem, where contingency-case security constraints are involved in the 

optimization of the defined objective function. EP based ORPD in deregulated electric 

market environment is used and validated in [89]. EP algorithm is proposed to solve the 

OPF problem of generator units with ramp rate limits and non-smooth fuel functions such 

as quadratic, piece-wise, valve point loading and combined cycle cogeneration plants [90]. 

In [91], an application of fast voltage stability index (FVSI) to RPP using EP is proposes 

and has been used in the IEEE 30-bus system. Results observe improvement of voltage 

stability, considerable reduction in system losses and more savings on real power with the 

use of FVSI for the RPP problem as well as avoiding voltage collapse in the system. The 

effectiveness of EP and differential evolution to solve RPP problem incorporating FACTS 

Controllers like SVC is compared in [92]. Results show that the losses are reduced when 

using unified power flow controller (UPFC) than using TCSC and SVC. By the DE method 

with FVSI approach, more savings on the installment costs and energy are achieved. 

Results demonstrate that annual cost saving is increased using UPFC than TCSC and SVC 

devices.   
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2.4.5 Other Techniques  

Artificial neural networks (ANNs) have been employed to model stability and security 

constraints in ORPD to formulate the system security boundary (SB) [93]. The key 

novelties of the proposed algorithm include that a neural network (NN) is trained to derive 

the SB model and a differentiable mapping function obtained from the NN is used as a 

constraint in the formulation of ORPD problem. This approach ensures that the operating 

points resulting from the ORPD solution process are within a feasible and secure region, 

comparing with typical security constrained ORPD models. A new ANN memory model–

based algorithm is proposed to online implement the unified ORPD [94]. The ANN 

memory model is used to store the load patterns and their related optimal schedules. The 

proposed algorithm maximizes voltage stability margin while minimizing two other 

objectives generation cost and transmission loss. The computation efficiency is 

dramatically improved comparing with typical approaches.  

Different ACO algorithms are proposed to handle optimal reactive power dispatch 

problem in [95], including ant system (AS), elitist ant system (EAS), rank-based ant system 

(ASrank) and max-min ant system (MMAS). The problem is modeled as a combinatorial 

optimization problem involving nonlinear objective function with multiple local minima. 

The proposed ACO algorithms have been compared to conventional mathematical methods, 

genetic algorithm, evolutionary programming, and particle swarm optimization to 

demonstrate the effectiveness and efficiency. This paper presents the ant colony system 

(ACS) method for constrained load flow problem formulated as a network-constrained 

optimization problem [96]. The proposed ACS is a distributed algorithm consisting of a set 
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of cooperating ants to collaboratively search an optimum solution of the constrained load 

flow problem. In addition, the ACS algorithm is also applied to the reactive power control 

problem with network operating constraints to minimize real power losses. 

Simulated annealing (SA) technique is proposed for solving OPF in [97]. It has been 

demonstrated that SA is able to solve the OPF problem as well as the load flow and the 

economic dispatch problem simultaneously. In Reference [98], a novel HOA algorithm, 

called biogeography-based optimization (BBO) is employed to solve constrained OPF 

problems in power systems with the consideration of valve point nonlinearities of 

generators. The simulation results of the proposed approach have been compared with EP, 

GA, PSO, mixed-integer particle swarm optimization (MIPSO) and sequential quadratic 

programming (SQP) to indicate its effectiveness for the global optimization of multi-

constraint OPF problems. A QEA-based on quantum computation is developed for bid-

based active and reactive OPF problems [33]. In [99], an artificial bee colony (ABC) 

algorithm based on the intelligent foraging behavior of honeybee swarm is proposed for 

ORPF problem. 

2.4.6 Hybrid Techniques 

A hybrid tabu search and simulated annealing (TS/SA) approach is proposed in [100] to 

deal with ORPD control with FACTS devices including two types TCSC and TCPS. Test 

results on IEEE 30-bus system demonstrate that the proposed hybrid TS/SA approach can 

perform better than GA, SA, or TS alone. A hybrid approach integrating fuzzy systems 

with GA and PSO algorithm is proposed for the application for OPF problem [101]. A 
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hybrid algorithm of DE and EP (DEEP) is proposed for solving ORPF problem [102]. The 

proposed DEEP algorithm reduces the required population size by using the advantages of 

DE and EP. In order to overcome the limits of DE and ABC, a hybrid DE and ABC 

technique (DE-ABC) is developed for solving the ORPD problem [103]. Numerical tests 

indicate the robustness of the DE-ABC approach. A hybrid evolving ant direction 

differential evolution (EADDE) algorithm is developed to deal with the OPF problem with 

non-smooth and non-convex generator fuel cost characteristics in [104]. 

2.5 Discussion 

HOAs are typically very versatile with respect to RPP/ORPD problem format. In addition, 

most HOAs are able to escape local optima which is critical for solving optimization 

problems. 

However, all the HOAs discussed tend to be computationally intensive, yielding 

impractically long execution times for RPP/ORPD problems involving large scale systems. 

To overcome this, parallel processing was executed by most of the reviewed population 

based HOAs therefore the computational time can be significantly reduced. 

Furthermore, the reviewed HOAs possess several parameters which must be tuned to 

ensure good performance. Consideration of the tuning of pre-determined parameters of 

HOAs will make these algorithms less robust. Hence, one of the most challenging aspects 

for HOAs lies in how to consistently converge to a feasible solution that provides an 

acceptable objective value within limited function evaluations. 
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In the reviewed literatures, on the premise of a proper pre-defined parameter choices, 

almost every HOA method is claimed as being more robust or can converge to a better 

solution compared with other HOAs. However, comparisons between different HOAs are 

difficult, as the selection of pre-defined parameters for each HOAs dominates the results. 

Moreover, according to the no-free-lunch (NFL) theorem, there cannot exist any algorithm 

for solving all problems that is generally superior to its peers. Therefore, the rest of this 

thesis focuses on HOAs design with respect to solving a specific aspect or formulation of 

RPP/ORPD problem. 
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Chapter 3 A Modified Quantum-inspired 
Differential Evolutional Algorithm 
for Optimal Reactive Power 
Planning 

DE algorithm emerged as a competitive form of evolutionary computing more than a 

decade ago. The first written account of DE appears in a technical report by Storn and Price 

[47]. It is a population-based method and is generally considered a parallel stochastic direct 

search optimizer that is simple yet powerful. In DE research community, individual trial 

solutions (which constitute a population) are called parameter vectors. DE algorithm 

operates through the same computational steps as a standard evolutionary algorithm. 

However, unlike traditional EAs, DE algorithm employs difference in the parameter 

vectors to explore the objective function. Here, we point out some of the reasons that 

researchers have been attracted to DE as an optimization tool: 

1. Compared with most other EAs, DE algorithm is much simpler and more 

straightforward to implement. The main body of the algorithm takes four or five lines 

of code in any programming language. 

2. Despite its simplicity, the gross performance of DE in terms of accuracy, convergence 

rate, and robustness makes it attractive for applications to various real-world 

optimization problems [48]–[50], where finding an approximate solution in a 

reasonable amount of computational time is of considerable importance. 
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3. Number of control parameters in DE are limited (𝐶Z, 𝐹, and 𝑁𝑃 in classical DE). The 

effects of these parameters on algorithm performance have been well studied [105]–

[107]. 

4. The spatial complexity of DE is lower than that of some highly competitive real 

parameter optimizers. This feature helps in extending DE to handle expensive and 

large-scale optimization problems. 

Although DE has been used to solve various optimization problems, it has a major 

difficulty in ensuring the search diversity of the population when the algorithm is 

approaching the region of local and global optimum [108]. Search efficiency will be 

impaired by the inefficient mutation operator during a searching process with rapidly 

descending population diversity.  

Another research field called quantum computing has appeared and has generated 

intensive research over the last decade. Quantum computing is a novel model that utilizes 

the quantum states and quantum entanglement from quantum mechanics to achieve more 

effective computing than classical computer technology affords [109]. Narayanan [110] 

proposed the quantum-inspired genetic algorithm, which utilizes the interference as a 

crossover operator. Han and Kim [111] proposed a quantum-inspired evolutionary (QEA) 

algorithm based on the concepts of qubits and state superposition. QEA adapts qubit 

chromosomes to represent linear solutions and uses a quantum gate as a variation operator 

to update the qubit chromosomes. By investigating the various QEAs existing at that 

moment, qubit individuals are updated by applying a rotation gate. However, the magnitude 
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and direction of rotation angle of quantum rotation gate must be determined in optimization 

process. At present, direction of the rotation angle is usually determined by a query lookup 

table that inefficiently deals with numerous conditional judgments.  

For the above problem, Meng et al. [112] propose a quantum-inspired particle swarm 

optimization (QPSO) with a novel updating mechanism based on the idea of classical PSO, 

which involves the exchange of information among the velocity, global-best, local-best, 

and current particles. Moreover, QPSO is extended with a combination of self-adaptive 

probability selection and chaotic sequences mutation to solve an economic load dispatch 

problem after undergoing some standard benchmark function tests. Recently, a quantum-

inspired DE algorithm (QDE) with a novel updating strategy for qubit individuals is 

proposed on the basis of the DE algorithm [113]. The mutation operator and crossover 

operator of DE are implemented in order to generate new qubit representations. This 

strategy successfully avoids the problems involving the rotation angle and improves the 

diversity of the qubit individuals. QDEs have been successfully implemented to solve 

permutative scheduling problems [114], N queens problem [115], and 0–1 knapsack 

problem [116] as well as for classification rule discovery [117]. However, previous work 

neither explored the ability of QDEs to solve functional optimization in a continuous real-

valued search space nor emphasized the advantage of applying qubit representation to 

prevent a deficiency of population diversity in the later stages of the DE iteration process. 

More importantly, the qubit individuals cannot obtain efficient guidance about the updating 

direction from traditional parent-child selection operator of DE. It is because the binary 
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encoding process realized by measuring state of qubits on a chromosome is a probabilistic 

operation with great randomicity. 

To surmount all of the above problems, this chapter proposes a newly modified QDE 

(MQDE) algorithm. The improvement is mainly achieved through the concepts of quantum 

computing (such as a qubit and a random superposition of quantum states) and through a 

novel update/reset strategy that incorporates the DE mutation scheme DE/best/1/bin. 

3.1 Basics of DE Algorithm 

The DE algorithm is an evolutionary theory based multi-objective optimization algorithm 

to find the global optimum solution of multidimensional space. The key of DE is an 

approach to generate trial solution vectors by weighing the difference vector between two 

population members and adding it to a third population member. If the generated vector 

produces a smaller objective value than its target vector, it will be prioritized in the 

evolutionary optimization process. The DE algorithm consists of four steps: initialization, 

mutation, crossover, and selection. 

Initialization: DE starts with a stochastic population composed of NP D-dimensional real-

valued vectors. 𝑋7  represents the 𝑖 th population vector of generation G, 

shown as 

 𝑋7 = [𝑥7,1, 𝑥7,3,⋯ , 𝑥7,]] (3.1) 

Since each variable has a certain range, the 𝑗th element of the 𝑖th vector can 
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be generated as 

 𝑥7,> = 𝑥>min + rand7,>[0, 1] ⋅ (𝑥>max − 𝑥>min) (3.2) 

Mutation:  The mutation of DE maintains the population diversity and provides 

necessary information to steer the optimization. One of the simplest DE 

mutation operators generates a mutated vector for every target vector 𝑋7 of 

generation G, given as 

 𝑉7 = 𝑋Zf + 𝐹 ⋅ (𝑋Zg − 𝑋Zh), (3.3) 

where 𝑟1, 𝑟3, and 𝑟j which differ from 𝑖 are integers randomly selected from 

[1, 𝑁𝑃] , 𝐹  is the mutation constant controlling the amplification of the 

differential variation. 

Crossover:  To enhance population diversity, the mutated vector is mixed with a 

predetermined target vector to form the trial vector, which is also known as 

crossover. Specifically, the trial vector can be expressed as 

 𝑈7 = [𝑢7,1, 𝑢7,3,⋯ , 𝑢7,]], (3.4) 

where, 

 𝑢7,> = m
𝑣7,>
𝑥7,>

if	rand7,>[0, 1] ≤ 𝐶o	or		𝑗 = 𝑗rand	
otherwise

 (3.5) 

and 𝑗rand is an integer randomly selected from [1, 2,⋯ , 𝐷] to ensure that 𝑢7,> 

obtains at least one element from 𝑣7,>. In addition, the crossover constant 𝐶o 
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controls the population diversity. 

Selection:  This step is adopted to determine the survival of the target or trial vector:  

 𝑋7qr1 = s
𝑈7q

𝑋7q
if	𝑓(𝑈7q) ≤ 𝑓(𝑋7q)	

otherwise
, (3.6) 

where 𝑓(. ) is the objective to be minimized. Equation (3.6) ensures the 

fitness of the population does not deteriorate. 

Based on the fact that the performance of DE depends on the acquisition strategies of 

trial vector and control parameter settings, many DE variants are developed by academia. 

With respect to the acquisition strategies of trial vector, a trigonometric mutation operator 

is proposed by Fan and Lampinen [118] to improve the convergence performance of DE. 

As the trial vector moves to the best of three individuals chosen for mutation, the local 

search is enhanced by their mutation operator. Mezura-Montes et al. [119] proposes a novel 

mutation operator named “current-to-best/1”, which generate a novel trial vector by 

integrating the optimal solution in the current population to that of the current parent. 

Feoktistov and Janaqi [120] classify mutation operators into four types based on the method 

they utilize the values of objective function. Obviously, the performance of “current-to-

best/1” strategy with respect to explore the search space is poor when applied to solve the 

multimodal problems. To meet this challenge, many efforts have been implemented to 

ameliorate the application of this strategy. With the aid of establishing a local 

neighborhood model, the “current-to-best/1” strategy is ameliorated by Das et al. [121] 

The proposed model utilizes the optimal individual solution obtained in its small 
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neighborhood to mutate each vector. A “current-to-pbest/1” strategy is presented by Zhang 

and Sanderson [107]. Their strategy not only uses the optimal individuals from “current-

to-best /1" strategy, but also utilizes information from other good solutions. However, the 

inferior solutions obtained lately are also combined in this strategy. Yong et al.  [35] study 

the performance of DE in terms of integrating several available generation strategies of 

trial vector to several superior control parameter settings. Meanwhile, a composite DE 

(CoDE) is also proposed to randomly integrate three selected recombination strategies with 

three control parameters settings to acquire trial vectors.  

The convergence performance of DE and the robustness of solutions are improved by 

tuning the control parameters including 𝑁𝑃, 𝐹, and 𝐶Z. Storn and Price [47] argue that the 

settings of three parameters are not difficult and suggest that 𝑁𝑃 ∈ [5𝐷, 10𝐷], 𝐹 can be 

chosen as 0.5, 𝐶Z  can be treated as 0.1 or 0.9. On the contrary , it is proved that the 

performance of DE is very sensitive to control parameters [122]. To prevent premature 

convergence, it is demonstrated that the value of 𝐹  should be larger than a problem-

dependent threshold. If 𝐹 > 1.0, the convergence performance can be improved. Although 

there are many different suggestions for control parameters, consensus has been reached 

that 𝐹 ∈ [0.4, 1.0], and 𝐶Z should be close to 1.0 or 0.0.  

Some smart adaptive strategies are developed to tune the control parameters during DE 

evolution process. Two schemes are introduced to adapt 𝐹. One scheme randomly changes 

𝐹 and the other scheme linearly reduces 𝐹 from a predefined maximum value [121]. A self-

adaptive DE (jDE) is proposed in [105], in which both 𝐹 and 𝐶Z are randomly adjusted on 
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the basis of certain probabilities. An adaptive differential evolution with optional external 

archive (JADE) is developed by Zhang and Sanderson [107], which utilizes normal and 

Cauchy distributions to produce 𝐹 and 𝐶Z for each target vector. In addition, recent 𝐹 and 

𝐶Z are adopted by JADE to generate new values. Different from the above methods, self-

adaptive differential evolution (SaDE) is proposed in [106], which the trial vector 

generation strategies and control parameters are adjusted simultaneously by learning from 

the previous search. 

3.2 Reactive Power Planning Formulation 

Optimal allocation of volt-ampere reactive (VAR) sources including capacitor banks, static 

VAR compensators (SVCs), and static compensators (STATCOMs) are critical tasks in 

RPP or VAR planning [2].  Generally, locations for new VAR sources are either directly 

assumed or estimated. Recent research has presented some rigorous optimization-based 

methods for RPP. However, RPP problem is non-linear, non-convex, or even discrete in 

nature, traditional Newton-type optimization methods encounter difficulties in obtaining 

the global optimum. Indeed, because of the complicated objective functions, constraints 

and solution algorithms, RPP is treated as one of the most challenging problems for power 

systems. On the contrary, evolutionary computation methods have been developed for this 

purpose [1], [15], [123]. In this work, the proposed MQDE is adopted as the optimization 

tool to solve the planning problem with its rapid convergence and global optimization 

capability. 
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The reactive power planning problem requires the optimal determination of the locations, 

types, and sizes of equipment to be installed in a transmission system. The majority of RPP 

objectives are intended to provide new reactive power supplies at the least cost. Many 

variants of this objective include the cost of real power losses or the fuel cost. In addition, 

some technical indices such as the deviation from a given voltage schedule or the voltage 

stability margin can be used as objectives for optimization [124], [125]. The objective 

function can be formulated as 

  Minimize   𝐹 = 𝐶1𝑃loss + 𝐶3𝑄c + 𝐶j𝑉}~ + 𝐶�𝑓(𝑉, 𝑄), (3.7) 

where 𝑃loss denotes the real power losses, 𝑄c denotes the newly installed VAR source, 𝑉}~ 

is the voltage stability index (VSI) of the system [126], 𝑓(𝑉, 𝑄) is a composite of inequality 

constraints, and each 𝐶 can be treated as constant coefficient. 

The VSI is given by 

  𝑉SI =
�

�r�⋅�RQV
, (3.8) 

where 𝑎, 𝑏, and 𝑐 are predetermined constants and 𝜆RQV is the smallest eigenvalue of the 

reduced Jacobian matrix 𝐽����(𝑉, Θ). 

The function 𝑓(𝑉, 𝑄) is proposed to penalize infringement of voltage limits and reactive 

power generation. These constraints cannot be treated as equality constraints in normal 

power flow equations and are formulated as  

  𝑓(𝑉, 𝑄) = �𝑉 − �limit
�max

− 𝑉min�
3
+ �𝑄 − �limit

�max
− 𝑄min�

3
, (3.9) 
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where 𝑉 and 𝑄 denote the violation values of bus voltage magnitudes and reactive power 

outputs, respectively. The value of 𝑓(𝑉, 𝑄) equals to zero if 𝑉 and 𝑄 are both within their 

range. 

The coefficients 𝐶1 , 𝐶3 , and 𝐶j  are adjusted by operators according to realistic 

requirements. The constant 𝐶� is a very large value adopted to increase the penalty for 

operation violation. 

3.3 Proposed MQDE Algorithms 

The classical DE algorithm is capable of solving various challenging optimization 

problems. However, it suffers from reduced population diversity at later stage of iterations 

leading to local optimum solution due to the greedy selection involved in DE. A 

countermeasure to effectively ensure the population diversity is to introduce the qubit 

concept, i.e. QDE algorithm [113]. Nevertheless, if traditional parent-child selection 

operator of classical DE remains for qubit individual update, the global searching capability 

of QDE algorithm will be impaired. Details of this will be discussed later on.  

In view of deficiencies of classical and existing QDE algorithms, a newly modified QDE 

method, termed as MQDE, is proposed. MQDE has greater searching ability because it not 

only implements a combination of qubits, DE mutation and crossover operator but also 

introduces a novel reset strategy based on a more competitive DE mutation scheme 

DE/best/1/bin. The representation and the MQDE algorithm are presented below. 



39 

Representation: The smallest unit of information stored in a two-state quantum computer 

is called a qubit, which can be the state of 0, the state of 1, or in any 

superposition of the two states. The qubit is defined as follows: 

 �
𝛼>,7
𝛽>,7� , m𝑗 = 1, 2,⋯ ,𝑚

𝑖 = 1, 2,⋯ , 𝑛  (3.10) 

and the state of a qubit can be expressed as 

 |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (3.11) 

where 𝛼  and 𝛽  are complicated numbers that specify the probability 

amplitudes of the corresponding states. The probability of the qubit will 

be found in the 0 state and is given by |𝛼|3, and the probability of the qubit 

will be found in the 1 state and is given by |𝛽|3 . 𝑗 and 𝑖 represent the 

dimension of qubit individuals and the population size, respectively. 

Normalization of the states to unity guarantees that 

 |𝛼|3 + |𝛽|3 = 1 (3.12) 

QEA uses [𝛼, 𝛽]J as the representation of qubits. However, the MQDE 

algorithm only uses a single variable θ in the application of the DE 

mutation and the crossover operator. Since (3.12) is the equation of a unit 

circle, each point can be represented by a single variable 𝜃 corresponding 

to the Cartesian co-ordinates given by cos 𝜃 and sin 𝜃, where 𝜃 is defined 

in [0, 𝜋/2]. It is noticed that the range of 𝜃 is confined within one quarter 
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of a unit circle in our approach. This will help to reduce the computational 

effort while maintaining full coverage of all possible states. Hence, a qubit 

individual is a string of 𝑚 qubits which is defined as 

 𝜃����⃗ = [𝜃1,7, 𝜃3,7, ⋯ , 𝜃>,7, ⋯ , 𝜃7,�] (3.13) 

Due to its probabilistic nature, a qubit is able to represent a linear 

superposition of all possible solutions. As a result, a total of 2� 

individuals can be represented by combinations of different qubit states. 

This qubit representation has better characteristics than other 

representations for generating diversity in the population. For instance, if 

there exists a three-qubit individual with two pairs of amplitudes, such as 

 [ 
�
,  
j
,  
¡
] (3.14) 

then the states of the individual can be represented as 

 
√¡
£
|000⟩ + √3

£
|001⟩ + j√3

£
|010⟩ + √¡

£
|011⟩												

																								√¡
£
|100⟩ + √3

£
|101⟩ + j√3

£
|110⟩ + √¡

£
|111⟩

 (3.15) 

The above result means that the probabilities of the states |000⟩, |001⟩, 

|010⟩, |011⟩, |100⟩, |101⟩, |110⟩, and |111⟩ are 3/32, 1/32, 9/32, 3/

32, 3/32, 1/32, 9/32, and 3/32, respectively. Hence, the three-qubit 

system contains the information of eight states. 
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Initialization:  In MQDE algorithm, all the qubits (𝜃 ) of all the individuals in the 

population are initialized uniformly at random in [0, 𝜋/2]. The binary 

solution is derived by observing the states of  𝜃����⃗  as follows: 

 𝑃>,7 = m10
if	rand7,>[0, 1] ≤ sin3(𝜃>,7)

otherwise
 (3.16) 

Mutation:  In QEA, the following rotation gate is utilized as a mutation operator to 

update a qubit of an individual [111]: 

 ¦
𝛼>,7§

𝛽>,7§
¨ = ¦

cos(Δ𝜃>,7) − sin(Δ𝜃>,7)
sin(Δ𝜃>,7) cos(Δ𝜃>,7)

¨ ⋅ �
𝛼>,7
𝛽>,7� (3.17) 

where Δ𝜃>,7, 𝑗 = 1, 2,⋯ ,𝑚, 𝑖 = 1, 2,⋯ , 𝑛, denotes rotation angle of each 

qubit toward either the 0 state or the 1 state. However, the magnitude and 

direction of rotation angle, which have an effect on the rate of convergence, 

must be determined in the process of optimization. At present, the 

direction of the rotation angle is usually determined by a query lookup 

table that inefficiently deals with numerous conditional judgments. For the 

above problem, a typical QDE uses one of the simplest forms of DE 

mutation operator, DE/rand/1/bin, to update qubit individuals. In this 

work, MQDE uses a different but more competitive DE mutation scheme, 

DE/best/1/bin, to cooperate with a novel update/reset strategy. The 

mutation operator in MQDE is similar to that of a classical DE, but it is 

applied to the qubit (𝜃) defined by (3.13) instead of operating directly on 
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the individual. The mutant qubits of the 𝑖th individual in generation 𝑡 are 

determined as follows: 

 𝜃7�« = �⃗�best« + 𝐹 ⋅ (𝜃Zf
« − 𝜃Zg

« )  (3.18) 

where 𝑟1, 𝑟3, and 𝑖 are distinct, 𝐹 is the mutation constant that controls the 

amplification of the differential variation, and  𝜃best«  is the qubit individual 

corresponding to the binary solution with the best fitness value of the 

current generation. 

Crossover:  The crossover operation is performed on the original qubits and the 

respective mutant qubits shown as: 

 𝜃>,7�« = s
𝜃>,7�«

𝜃>,7«
if	rand7,>[0, 1] ≤ 𝐶o	or		𝑗 = 𝑗rand

otherwise
 (3.19) 

where the index 𝑗rand is randomly chosen from [1, 2,⋯ ,𝑚] which ensures 

that at least one qubit in each individual is different from the original. The 

crossover constant 𝐶Z  controls the diversity of the population. 

Selection:  The diversity of the population decreases towards the later stages of the 

iteration process in the DE algorithm. The effectiveness of the mutation 

operator will be reduced by this kind of situation. If the iteration process 

is attracted by a local optimum and no continuous transitional local 

optimum exists between this local optimum and the global optimum, then 

the DE algorithm can hardly escape from the current local optimum. Once 
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the concept of quantum computing has been introduced and the 

differential operator has been applied to the qubits, a typical QDE 

algorithm has the ability to obtain a better fitness value than the local 

optimum when the iteration process becomes trapped. This is due to the 

characteristic of the superposition of states and the randomness in 

measuring the state of qubits on a chromosome. A typical QDE uses the 

traditional greedy updating principle. By using (3.16) to observe the state 

of the newly obtained qubits (𝜃), a trial binary solution is obtained that 

replaces the corresponding binary solution in the population if the fitness 

values are higher. If so, the corresponding trial qubit individual replaces 

the current one. The replacement is made using the following equations: 

 𝑃7«r1 = s
𝑃7�«

𝑃7«
if			𝑓(𝑃7�«) ≤ 𝑓(𝑃7«)

otherwise
 (3.20a) 

and 

 𝜃7«r1 = s
�⃗�7�«

�⃗�7«
if			𝑓(𝑃7�«) ≤ 𝑓(𝑃7«)

otherwise
 (3.20b) 

where 𝑃7�«  is the 𝑖 th binary solution found by observing the 𝑖 th qubit 

individual after the crossover operation and 𝑓(𝑃7) is the fitness value of 

the corresponding individual. 

This updating mechanism for qubit individuals in a typical QDE has the following two 

disadvantages: 
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1. The process of measuring the state of qubits with (3.16) is based on a probabilistic 

comparison mechanism. There is no absolute one-to-one correspondence between 

the observed binary solution and the qubit individual in terms of quality. Hence, there 

is a lack of evolutionary guidance for a qubit individual in that the updating of a qubit 

individual is judged only according to the size of the fitness value by evaluating the 

two binary solutions as in (3.20). 

2. As mentioned above, the purpose of introducing the qubit representation is to 

surmount the difficulty of escaping from a local optimum in the later stages of the DE 

iteration process. A typical QDE has the ability to obtain a better fitness value than 

the current local optimum. However, the selection operator of QDE interrupts the 

continuity of escaping from a local optimum. Due to the intrinsic differential property, 

when a typical QDE is trapped by a local optimum in the later stages of the iteration 

process, 𝜃 is far more likely to approach a high value (or low value) in the range 

[0, 𝜋/2]. At such a moment, if a binary solution with a better fitness value appeared 

under a low-probability case, this binary solution would have no effect on guiding the 

update direction of a qubit individual, owing to the selection strategy of QDE in (3.20). 

The winner of (3.20b) would remain in a high-value region (or low-value region), 

which would lead the typical QDE to lose the continuity in escaping from the local 

optimum. 

To overcome the above problems, MQDE exploits a novel reset index. After the greedy 

selection for the current generation as in (3.20), MQDE selects the best binary solution 
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𝑃>,best	and the corresponding qubit individual 𝜃>,best	to perform the following detection and 

reset: 

 if     𝜃>,best ≥
 
�
  & 𝑃>,best = 0,  

  𝜃>,best =
 
£
;  

 else if  𝜃>,best <
 
�
  & 𝑃>,best = 1, (3.21) 

  𝜃>,best =
j 
£

;  

 end  

This new best qubit individual for the current iteration obtained by the reset index is then 

incorporate by the mutation operator (DE/best/1/bin) as in (3.18). This combination 

provides an explicit guidance about qubits update direction. Consequently, the two 

disadvantages mentioned above will be successfully overcome. 

It is worth noting that the reset values for 𝜃>,best	are selected as 𝜋/8 and 3𝜋/8. These 

values are experimentally found to give a better solution. A reasonable explanation is the 

following: if the reset values are selected as 0 and 𝜋/2, the diversity of a qubit individual 

would be destroyed; conversely, if the reset value are uniformly selected as 𝜋/4, the 

guidance for the update direction of a qubit individual would be impaired. The pseudo-

code of MQDE is provided in Table 3.1. 
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Table 3.1.  Pseudo code of MQDE 

Procedure MQDE 
Begin 

𝑡 ← 0 
initialize 𝑄(𝑡) 
make 𝑃(𝑡) from 𝑄(𝑡) by (3.17) 
evaluate 𝑃(𝑡) by function evaluation 
𝑃best ← best solution among 𝑃(𝑡) 
𝜃best ← qubit chromosome corresponding to 𝑃best 
while  𝑡 < 𝑇		do 

𝑡	← 𝑡 + 1 
generate mutant qubits by (3.18) 
do crossover by (3.19) 
make 𝑃(𝑡) from 𝑄(𝑡) by (3.17) 
evaluate 𝑃(𝑡) 
update 𝑄(𝑡 + 1), 𝑃(𝑡 + 1) by (3.20) 
update 𝑃best  accordingly 
update 𝜃best by (3.21) 

end while 
end 
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3.4 Case Studies 

3.4.1 Validation with Benchmark Functions 

To verify the performance of MQDE, benchmarks from IEEE CEC 2006 [127] are 

introduced. These test functions involve various kinds (linear, nonlinear, polynomial, 

quadratic, and cubic) of objective functions with different numbers of decision variables 

and different kinds of constraints. For the purpose of comparison , DE, real-coded genetic 

algorithm (RGA) [45] and PSO [128] are also adopted in the case study. The parameters 

in MQDE are chosen as 𝐹 = 0.01, 𝐶Z = 0.8. Gray coding is used to convert from binary 

Table 3.2.  Performance comparisons of MQDE, DE, RGA and PSO 

Prob. Method Best Mean Worst Std Dev 

g01 

MQDE -15.000 -15.000 -15.000 2.142E-13 
DE -15.000 -15.164 -15.371 1.263E-01 

RGA -15.000 -15.000 -15.000 1.571E-07 
PSO -15.000 -15.000 -15.000 2.379E-08 

g05 

MQDE 5130.659 5130.659 5130.659 5.826E-17 
DE 5172.852 5403.971 6474.813 8.936E+01 

RGA 5287.270 5301.125 5446.711 1.852E+01 
PSO 5129.834 5130.589 5134.856 2.398E-01 

g09 

MQDE 694.526 695.147 697.882 3.515E+00 
DE 680.630 680.630 680.633 2.721E-03 

RGA 706.531 760.381 857.545 5.614E+01 
PSO 680.630 680.630 680.630 6.957E-11 

g10 

MQDE 7049.378 7049.378 7049.378 4.437E-12 
DE 7131.163 7221.182 7507.863 5.321E+01 

RGA 7371.652 7742.331 8213.455 8.261E+01 
PSO 7049.248 7091.336 7156.653 1.121E+01 

g13 

MQDE 0.054 0.054 0.054 1.383E-11 
DE 0.054 0.054 0.054 6.524E-07 

RGA 1.715 2.389 2.713 9.365E-01 
PSO 0.054 2.136 3.861 1.143E+00 
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string to real value. For DE, RGA and PSO, the parameters are set as recommended in the 

corresponding references and can be found in [45], [47], [128]. The constraint-handling 

technique based on preference of feasible solutions over infeasible solutions [129] is 

implemented to all the methods. For each test function, all methods run 25 times 

independently and are stopped when a maximum of 5×103 fitness evaluations is reached. 

All the experiments are executed on a 2.50 GHz, Intel Core i5, with 4G RAM PC. Table 

3.2 shows the best, mean, worse and standard deviation of the objective function value of 

the resulting solutions over 25 independent runs. 

In the cases of g05, g09 and g10, results indicate that the performance of PSO is better 

than MQDE in terms of the accuracy of best optimum. A reasonable explanation is: After 

introducing the qubit concept to DE, the dimension of the population increases dramatically. 

In the later stages of the iteration process while the current fitness value lays in the adjacent 

region of the global optimum, those bits of the current best binary solution whose values 

mainly determine the accuracy of the fitness value may have the opportunity to evolve to 

the best corresponding to the global optimal binary solution. However, at such a moment 

this scenario occurs, the algorithm cannot guarantee that other bits still remain at the best 

value. Further, the smaller the difference between the current fitness value and the global 

optimum, the harder it is to achieve the simultaneously occurrence of the above two cases. 

Hence, the selection operator as well as the proposed reset index can hardly keep the best 

value for those bits which mainly determine the accuracy of the fitness value. Consequently, 

in some cases, MQDE cannot beat PSO in terms of accuracy of the best optimum.  
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Summarizing the performance of all the four algorithms, the promising results of MQDE 

illustrate that the algorithm not only successfully surmounts the disadvantages of DE as 

mentioned above, but also can be used as a powerful and robust tool for mathematical 

optimizations.  

3.4.2 MQDE for Power System RPP 

The advantages of the proposed MQDE algorithm in solving mathematical optimization 

problems have been demonstrated. Then, it is employed to effectively solve the planning 

problem of power system. Subsequently, a capacitor configuration task on IEEE 30 bus 

system is utilized to verify the proposed MQDE algorithm. The system consists of 5 

generators, 41 branches and 21 load buses and the detailed system data can be obtained in 

[9]. Bus#19, 23, 26 and 29 are selected as the candidate compensation buses based on the 

sensitivity analysis [130]. Newton-Raphson method is employed to calculate the power 

flow and is realize by Matpower [131]. The population size is fixed as 20 and the maximum 

iteration is set as 1000. Based on the data obtained from 100 trials, the comparisons 

between the two methods are illustrated in Table 3.3 and Figure 3.1, which shows that the 

MQDE also succeeded in finding satisfactory solution for the tested problem and MQDE 

has shown the superiority to the typical DE in terms of robustness. 
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Table 3.3.  Comparison with different approaches before and after compensation for RPP 

 
Shunt Compensation (MVar) 𝑃loss 

(MW) 𝑉SI 𝑓(𝑉, 𝑄) 
Bus#19 Bus#23 Bus#26 Bus#29 Bus#19 

Original 0 0 0 0 0 49.457 1.000 0.170 
DE optimal 4.371 5.691 5.877 9.131 4.371 46.363 0.892 0 

MQDE 
optimal 4.360 5.660 5.870 9.120 4.360 46.371 0.903 0 

 
Figure 3.1.  Distribution of fitness values of the two approaches 
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Chapter 4 Adaptive Range Composite 
Differential Evolution for Fast 
Optimal Reactive Power Dispatch 

This chapter proposes a novel adaptive range composite differential evolution (ARCoDE) 

algorithm targeting at practical applications such as the fast ORPD. The proposed 

ARCoDE utilizes the concept of compositing different types of trial vector generation 

strategies [35], which is able to provide a decent balance for the algorithm between the 

exploration and exploitation capabilities. In addition, a novel control parameter range 

adaptation mechanism is proposed to enable a highly efficient adaptive tuning of control 

parameters. These novel properties effectively support ARCoDE to conquer the difficulties 

introduced by the limited numbers of function evaluations due to the critical time 

requirements in many practical applications including ORPD problem. 

4.1 ORPD Problem Formulation 

The classical ORPD problem can be formulated as a complicated mixed integer nonlinear 

optimization model, which consists of many nonlinear constraints and discrete/continuous 

decision variables. In general, the application of HOAs to solve the ORPD problems may 

suffer from the relatively long computational time. In addition, the fine-tuning of control 

parameters needs numerous amounts of trial and error tests. Moreover, due to the 

uncertainties introduced by load and the increased penetration of renewable energy 
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generation such as wind and solar power [20], [39], [132], [133], the solutions provided by 

HOAs are less likely robust.  

Typically, the ORPD problem aims at minimizing the total power losses involved in 

every transmission line, expressed as,  

Minimize:		𝑓� = M 𝑃loss,O =
O∈(7,>)

MM°𝑔7>±|𝑉7|3 + |𝑉>|3 − 2|𝑉7| |𝑉>|cos±𝛿7 − 𝛿>³³´
µ

>P1

µ

7P1

		(4.1) 

where 𝑓� is the sum of power losses to be minimized; 𝑃loss,O is the active power loss for the 

transmission line 𝑘; 𝐿 is the number of bus nodes; |𝑉7| and 𝛿7 are the voltage magnitude 

and phase angle at the 𝑖-th bus node; 𝑔7> is the conductance between the node 𝑖 and 𝑗.  

The decision variables can be categorized as the control variables 𝑥  and dependent 

variables 𝑢. Specifically, the control variables 𝑥 include voltages at generation buses 𝑉G, 

reactive power compensation of the shunt capacitors and inductors 𝑄C, and transformer tap 

settings 𝑇,  

 𝑥J = [𝑉G, 𝑄C, 𝑇], (4.2) 

The dependent variables 𝑢 consist of the voltage of load buses 𝑉¹�, reactive power outputs 

of generators 𝑄G and power flow of transmission lines 𝑆L, defined as, 

 𝑢J = [𝑉L, 𝑄G, 𝑆L]. (4.3) 
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Both equality and inequality constraints are involved in the ORPD problem. The equality 

constraints are mainly related to the alternating current power balance equations, defined 

as, 

 𝑃G¼ − 𝑃D¼ − 𝑃7,loss
B = 0,   𝑄G¼ − 𝑄D¼ − 𝑄7,loss

B = 0,   𝑖 ∈ 𝑁B (4.4) 

where 𝑃G¼ and 𝑄G¼ are the active and reactive power injection to the bus node 𝑖 respectively, 

𝑃D¼  and 𝑄D¼  represent the active and reactive load at bus 𝑖 respectively, 𝑃7,lossB  and 𝑄7,lossB  

denote the active and reactive power losses at bus 𝑖 respectively, and 𝑁B is the number of 

bus nodes. The boxed inequality constraints include, 

 𝑉7min ≤ 𝑉7 ≤ 𝑉7max,  𝑖 ∈ 𝑁B, (4.5) 

 𝑄G¼
min ≤ 𝑄G¼ ≤ 𝑄G¼

max,  𝑖 ∈ 𝑁G, (4.6) 

 𝑄C¼
min ≤ 𝑄C¼ ≤ 𝑄C¼

max,  𝑖 ∈ 𝑁C, (4.7) 

 𝑇7min ≤ 𝑇7 ≤ 𝑇7max,  𝑖 ∈ 𝑁T, (4.8) 

 𝑆L¼ ≤ 𝑆L¼
max,  𝑖 ∈ 𝑁B, (4.9) 

where constraints (4.5)—(4.9) define the limits for bus voltage 𝑉7 , reactive power 

generation 𝑄G¼, reactive power compensation 𝑄C¼, transformer tap position 𝑇7 and branch 

power flow 𝑆L¼, respectively; 𝑁G, 𝑁C, and 𝑁T denote the total number of generator buses, 

buses with shunt elements, and transformer tap positions respectively. 
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Traditionally, the ORPD problem can be solved by deterministic optimization algorithms 

such as interior point method or approximately transformed into a convex optimization 

problem. However, the global optimality of the converged solution can hardly be 

guaranteed due to the inherent nonconvexity involved in the original ORPD problem. 

Besides, convex approximations and inaccurate simplifications of the ORPD might result 

in infeasible solutions for practical application. In contrast, HOAs can be directly applied 

to solve the original formulations without simplifications. In addition, HOAs are the one 

of the most prevalent methods to cope with the global optimality search for the non-

differentiable and non-convex mixed integer optimization problems. However, the 

concerns about solution robustness and computational time hinder their practical 

applicability, which are particularly attended in the proposed ARCoDE algorithm. 

4.2 Adaptive Range Composite DE for ORPD 

In Chapter 3, different generation strategies for trial vector and the control parameter tuning 

have been extensively investigated. However, there are significant restrictions of those 

methods when dealing with the practical ORPD problem that demands fast computation 

speed as well as solution robustness. It is mainly because that the ORPD problems in 

practice are solved in short time intervals. Only a moderate number of function evaluations 

for those strategies are allowed to well adapt the candidate vector and control parameters. 

Regarding the aforementioned practical requirement and bottleneck, this work proposes a 

novel ARCoDE method aiming at efficiently solving the ORPD problem. One of the most 

critical procedures lies in the incorporation of two candidate vector generation mechanisms 
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with two adaptive ranges of control parameters in each iteration for creating offspring 

candidate vectors. 

Different from the original CoDE, the new algorithm is characterized by the faster 

convergence while preserves consistent population diversity during evolutions. To achieve 

fast convergence with limited function evaluations, two trial vector generation strategies 

including DE/best/2/bin and DE/rand/2/bin [47] are employed in the proposed ARCoDE 

algorithm. Instead of setting specific values for control parameters 𝐹 and 𝐶Z, explorative 

and exploitative parameter ranges are innovatively introduced in the proposed algorithm. 

During the evolution process, the algorithm gradually adjusts the chosen probabilities and 

the sizes of these ranges. At each generation, each candidate vector generation mechanism 

from the pool is utilized to create an offspring candidate. According to the feedback 

probability, the algorithm control parameters are determined within their ranges 𝐹 and 𝐶Z. 

Accordingly, two candidate vectors of their corresponding targets are generated. Then the 

superior candidate would be employed for the next iteration on condition that the candidate 

surpasses its target. Table 4.1 presents the pseudo-code of ARCoDE, details of which are 

illustrated below. 

4.2.1 Candidate Vector Generation Strategies 

To allow fast convergence, the greedy combination strategies by eliciting the winner 

information during the evolution process are adopted. Consequently, the DE/best/2/bin is 

selected as one of the candidate recombination strategies in the pool. However, such 

strategy may easily lead the evolutionary of the population to local optimums. To prevent 
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the premature convergence resulted from such a greedy strategy, the DE/rand/2/bin 

strategy is also included to further enhance the explorative capability of the proposed 

algorithm. It employs the addition of two difference vectors to the base vector, giving rise 

to more diverse perturbation in comparison with the DE/rand/1/bin using merely a single 

difference vector. 

4.2.2 Control Parameter Adaptation 

As discussed above, solving ORPD problems in practice may need limited function 

evaluations for fast convergence. The existing adaptive strategies including jDE, JADE, 

and SaDE can hardly guarantee to gauge suitable values for 𝐹  and 𝐶Z  in such a small 

number of function evaluations. Instead, it is promising to evolve suitable ranges for these 

control parameters during the iteration process. Generally, larger values of parameter 𝐹 

result in more dispersive distribution of the mutant vectors over the searching region and 

helps to improve individual diversity. On the contrary, small 𝐹 values make the explored 

candidates concentrating on the current ones, thus accelerating the convergence. Moreover, 

a large 𝐶Z makes the candidate vector severely deviated from the target, and the offspring 

could inherit little information from their ancestors. Consequently, sufficient diversity of 

the offspring candidates is maintained. Small 𝐶Z values are promising to fit the separable 

problems fairly well, in this case, the difference between the candidate and the target might 

reside in one component.  
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Motivated by the observations above, explorative and exploitative ranges for 𝐹 and 𝐶Z, 

respectively are defined based on the characteristic of these control parameters, defined as 

follows, 

 Explorative range of 𝐹:  𝐹ÀZ = [0.7, 0.9], (4.10) 

 Exploitative range of 𝐹:  𝐹À« = [0.5, 0.7], (4.11) 

 Explorative range of 𝐶Z:  𝐶ZÀZ = [0.8, 0.9], and (4.12) 

 Exploitative range of 𝐶Z:  𝐶ZÀ« = [0, 0.2]. (4.13) 

The initial probabilities of applying different range to each individual are set to 0.5, i.e. 

𝑃Â/ÃÄ
ÀZ/À« = 0.5. Consequently, each range owns the same probability to be applied by the 

candidates in the beginning of iterations. Roulette Wheel selection based on the probability 

is utilized to determine the range for each candidate in the current population. Thereafter, 

a 𝐹/𝐶Z value will be randomly selected within this range and assigned to the corresponding 

individual. After evaluating all the latest candidates, the number of candidates pertaining 

to different ranges and entering the next generation is recorded by 𝑁𝑆Â/ÃÄ
ÀZ/À«, and the number 

of the discarded candidates is recorded by 𝑁𝐹Â/ÃÄ
ÀZ/À«. The counters 𝑁𝑆Â/ÃÄ

ÀZ/À« and 𝑁𝐹Â/ÃÄ
ÀZ/À« are 

cumulated after a certain number of generations, which is called learning period. 

Subsequently, the probability can be calculated according to: 

 𝑃Â/ÃÄ
ÀZ/À« =

IÅÆ/ÇÄ
ÈÄ/ÈÉ

IÅÆ/ÇÄ
ÈÄ/ÈÉrIÂÆ/ÇÄ

ÈÄ/ÈÉ , (4.14) 
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which is actually the ratio of the evolved anew winners among the all the newly generated 

candidates by each range during the learning period. Consequently, the probabilities of 

applying each range should be refreshed every generation after the learning period. When 

the evolutionary process reaches a pre-defined point, the range with lower percentage of 

success rate is discarded，and the range with higher percentage of success rate will be split 

in half, and then the aforementioned procedures are repeated with this new range. This 

adaptation procedure is capable of gradually evolving suitable ranges for parameters 𝐹 and 

𝐶Z, which requires a relatively small number of function evaluations. 

4.2.3 Constraint Handling Strategy 

This work adopts the constraint handling method proposed by Deb and based on the 

superiority of feasible solutions [128]. There is no parameter to be tuned for Deb’s selection 

criterion, consistent with one of the main motivations of this study. The constraint handling 

rules are incorporated with the optimum searching below: 

In the procedure of candidate selection, the candidate A is compared to the candidate B 

taking both the objective value and constraint violations into account. The candidate A will 

take the place of B and be added in the subsequent evolution once any of the following 

conditions is satisfied. 

1. Candidate A is feasible and candidate B is infeasible. 

2. Both candidates are feasible, but candidate A reaches better objective value. 
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3. Both candidates are infeasible, but candidate A has a smaller overall constraint 

violation. 

 

4.3 Case Studies 

A 41-bus offshore wind power plant (WPP) ORPD test case in the 2014 IEEE Competition 

on “Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power 

Table 4.1.  Pseudo-code of ARCoDE 

Input: NP: the number of candidates for each generation. 
Max_FES: maximum number of function evaluations. 
The strategy candidate pool: “DE/best/2/bin” and “DE/rand/2/bin. 
Initial ranges of the control parameters: 𝐹ÀZ = [0.7, 0.9]; 𝐹À« = [0.5, 0.7]; 𝐶ZÀZ =
	[0.8, 1]; 𝐶ZÀ« = [0, 0.2]. 
Initial probabilities of each range: 𝑃Â/ÃZÀZ = 𝑃Â/ÃZÀ« = 0.5. 

(1) 𝐺 = 0; Initialize the candidate population 𝑃# = Ë�⃗�1,#,⋯ , �⃗�I¹,#Ì by uniformly sampling 
within the feasible region; 

(2) Calculate the objective values for all the candidates 𝑓±�⃗�1,#³,⋯ , 𝑓±�⃗�I¹,#³; 
Evaluate the constraint violation	𝑔±�⃗�1,#³,⋯ , 𝑔±�⃗�I¹,#³;  

(3) 𝐹𝐸𝑆 = 𝑁𝑃; 
(4) while 𝐹𝐸𝑆 < 𝑀𝑎𝑥_𝐹𝐸𝑆 do 
(5)   𝑃qr1 = 	𝜙; 
(6)   for 𝑖	 = 1:𝑁𝑃 do 
(7)      Calculate parameter range probabilities 𝑃Â/ÃZ

ÀZ/À« using equation (4.14) and update the 
success and fail memory. Then apply Roulette Wheel selection to select the ranges; 

(8)      Generate two candidate vectors 𝑢�⃗ 7_1,q and 𝑢�⃗ 7_3,q for the target �⃗�1,q based on the two 
candidate vector generation mechanisms with control parameters determined according to 
the ranges obtained by Step (7); 

(9)      Calculate the objective values and the constraint violation values of the two candidates 
𝑢�⃗ 7_1,q and 𝑢�⃗ 7_3,q; 

(10)    Choose the best trial vector from the two trial vectors 𝑢�⃗ 7_1,q and 𝑢�⃗ 7_3,q, and the target 
vector�⃗�1,q according to Deb’s selection criterion; 

(11)    𝐹𝐸𝑆	 = 	𝐹𝐸𝑆	 + 2; 
(12)  end for 
(13)  𝐺	 = 	𝐺	 + 	1; 
(14) end while 
Output: the candidate with the best objective function value or the smallest constraint violation 
value in the population  
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Flow Problem” is used to validate the effectiveness of the proposed ARCoDE. It is known 

to all that the inclusion of wind power introduces much uncertainty to the system operation 

[39], [134]–[136]. This test case consists of 18 continuous variables including the reactive 

power set-points of wind power generators and one additional continuous variable defining 

the adjustment of reactor. The tap positions of the adjustable on-load transformers are 

modelled by 2 integer variables. The switchable shunt capacitor is described by 1 discrete 

variable. In the fast ORPD problem, the reactive power requirements with respect to the 

actual operating condition are determined by the stepwise variations of reactive power 

requirements (𝑞ref) throughout 24 hours. Considering 15-min intervals, the case results in 

96 scenarios, some of which turn out to be hard-to-solve optimization tasks. According to 

(4.1)—(4.9), the target of the problem is to minimize the active power losses subject to the 

power system operational constraints, given limited number of function evaluations. The 

WPP ORPD problem contains 96 scenarios, among which the 13 most challenging 

scenarios are selected for the test purpose. These 13 scenarios are particularly selected 

since their feasible solutions can hardly be found by those award-winning algorithms in 

the competition. The topology of the offshore WPP system is shown in Figure. 4.1, and a 

detailed description of test cases and the competition results can be found in [137]. 
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Figure 4.1.  41 bus offshore WPP ORPD test case [32], [137]. 

4.3.1 Numerical Results of ARCoDE on the Test Cases 

The test environment is a DELL Desktop Workstation with Intel (R) Xeon (R) CPU E5-

2650 v2 @2.60GHz RAM 64GB. Table 4.2 shows the numerical results (including the best 

solutions, objective values, the sum of constraint violations, and the average computation 

time through 31 trials) obtained by the proposed ARCoDE algorithm, where WGi_Q with 

i=1, 2,..,18 represent the reactive power set-points of wind generators; OLTC_Tj with j=1, 

2 represent the tap position of stepwise adjustable on-load transformers; C1 represents the 

stepwise adjustment of capacitor; Xsh1 represents the adjustment of reactor; obj_best 

represents the best objective value (power loss) according to (4.1) obtained by ARCoDE, 

and gvar_best means the smallest sum of different constraint violations. It can be observed 
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that the computation time of each scenario is about 60s, which reflects the satisfactory 

efficiency for practical application. 

Table 4.2.  Best results obtained by ARCoDE under 13 scenarios 

Scenario 50 51 52 53 75 76 77 78 79 80 
WG1_Q 1.644 1.633 1.650 1.650 -1.546 -1.650 -1.650 -1.650 -1.650 -1.650 
WG2_Q 1.647 1.647 1.650 1.649 -1.604 -1.650 -1.650 -1.650 -1.650 -1.650 
WG3_Q 1.519 1.648 1.650 1.650 -0.891 -1.650 -1.650 -1.650 -1.650 -1.650 
WG4_Q 1.616 1.601 1.650 1.650 -0.816 -1.650 -1.650 -1.650 -1.650 -1.650 
WG5_Q 1.594 1.643 1.650 1.650 -0.601 -1.650 -1.650 -1.650 -1.650 -1.650 
WG6_Q 1.643 1.571 1.650 1.650 -0.394 -1.650 -1.650 -1.650 -1.650 -1.650 
WG7_Q 1.616 1.650 1.650 1.650 -1.636 -1.650 -1.650 -1.650 -1.650 -1.650 
WG8_Q 1.645 1.650 1.650 1.650 -1.222 -1.650 -1.650 -1.650 -1.650 -1.650 
WG9_Q 1.630 1.618 1.650 1.650 -1.543 -1.650 -1.650 -1.650 -1.650 -1.650 
WG10_Q 1.626 1.649 1.650 1.650 -1.353 -1.650 -1.650 -1.650 -1.650 -1.650 
WG11_Q 1.612 1.639 1.650 1.650 -1.141 -1.650 -1.650 -1.650 -1.650 -1.650 
WG12_Q 1.628 1.633 1.650 1.650 -1.100 -1.650 -1.650 -1.650 -1.650 -1.650 
WG13_Q 1.615 1.645 1.650 1.650 -0.907 -1.650 -1.650 -1.650 -1.650 -1.650 
WG14_Q 1.604 1.646 1.650 1.650 -1.541 -1.650 -1.650 -1.650 -1.650 -1.650 
WG15_Q 1.594 1.638 1.650 1.650 -1.507 -1.650 -1.650 -1.650 -1.650 -1.650 
WG16_Q 1.575 1.610 1.650 1.650 -1.378 -1.650 -1.650 -1.650 -1.650 -1.650 
WG17_Q 1.625 1.627 1.650 1.650 0.759 -1.650 -1.650 -1.650 -1.650 -1.650 
WG18_Q 1.606 1.643 1.650 1.650 -0.854 -1.650 -1.650 -1.650 -1.650 -1.650 
OLTC_T1 1.0993 1.0993 1.0993 1.0993 0.9669 0.9669 0.9669 0.9669 0.9669 0.9669 
OLTC_T2 0.8700 0.8700 0.8700 0.8700 1.1083 1.1300 1.1300 1.1300 1.1300 1.1300 

C1 -12.100 -12.100 -12.100 -12.100 -4.033 -4.033 -4.033 -4.033 -4.033 -4.033 
Xsh1 0 0 0 0 9.8965 9.8965 9.8965 9.8965 9.8965 9.8965 

obj_best 
(MW) 1.433 1.379 1.280 1.216 2.011 2.637 2.637 2.637 2.637 2.637 

gvar_best 0 0 0 0 0 0 0 0 0 0 
Computation 

time* (s) 64.128 63.910 64.522 64.085 55.990 66.266 65.469 63.703 63.221 66.484 

*: The average value through 31 running trials 
Units are MVar if not specified. 
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4.3.2 Comparison with the Award-Winning Algorithms in the Competition 

The mean and standard deviation of fitness values (evaluated by the benchmark program 

provided by [137]) from ARCoDE are compared with those from the top 3 ranking 

algorithms in the IEEE Competition on “Application of Modern Heuristic Optimization 

Algorithms for Solving Optimal Power Flow Problem”, i.e. improved (μ+λ)-constrained 

differential evolution (ICDE) [138], differential evolution particle swarm optimization 

(DEEPSO) [139] and MVMO. The function evaluation numbers in all these methods are 

assigned to be 10000 according to the competition rules. Such a short function evaluations 

makes it extremely difficult to find feasible solutions of the complicated ORPD problem 

for conventional HOAs. 

Table 4.3.  Experimental results of ICDE, DEEPSO, MVMO and ARCoDE  
over 31independent trials 

Scenario ICDE 
Mean (Std) 

DEEPSO 
Mean (Std) 

MVMO 
Mean (Std) 

ARCoDE 
Mean (Std) 

50 2.428E+04(4.567E+04) 1.422E+00(0.004E+00) 1.430E+00(0.016E+00) 1.437E+00(0.003E+00) 
51 9.079E+04(1.096E+05) 1.373E+00(6.384E-04) 1.380E+00(0.010E+00) 1.382E+00(0.003E+00) 
52 3.760E+05(2.803E+05) 1.280E+00(3.920E-05) 1.280E+00(5.043E-05) 1.280E+00(7.112E-06) 
53 4.482E+05(2.999E+05) 1.216E+00(5.257E-05) 1.216E+00(7.427E-05) 1.216E+00(8.466E-06) 
54 3.770E+05(2.412E+05) 1.258E+00(2.251E-05) 1.258E+00(2.719E-05) 1.258E+00(3.225E-06) 
55 2.944E+05(1.089E+05) 1.261E+00(4.576E-05) 1.261E+00(4.534E-05) 1.261E+00(5.289E-06) 
56 9.737E+03(2.293E+04) 1.428E+00(0.003E+00) 1.435E+00(0.016E+00) 1.445E+00(0.002E+00) 
75 2.968E+01(1.471E+02) 7.550E+01(4.092E+02) 2.022E+00(0.003E+00) 2.011E+00(5.296E-04) 
76 3.895E+05(2.278E+05) 1.270E+06(5.761E+06) 2.637E+00(3.740E-08) 4.444E+05(2.328E+06) 
77 3.281E+05(1.986E+05) 9.233E+05(5.118E+06) 2.637E+00(2.497E-08) 2.637E+00(1.796E-08) 
78 3.186E+05(1.941E+05) 6.464E+05(3.600E+06) 7.086E+03(3.944E+04) 7.016E+04(3.841E+05) 
79 2.937E+05(1.696E+05) 2.008E+04(1.118E+05) 2.637E+00(3.005E-08) 5.776E+05(3.002E+06) 
80 3.341E+05(1.841E+05) 2.637E+00(7.478E-08) 2.637E+00(3.005E-08) 2.637E+00(1.356E-05) 
- 0 3 3 N.A. 
+ 13 2 1 N.A. 
~ 0 8 9 N.A. 

 “Mean” and “Std” indicate the average and standard deviation of the function fitness values obtained in 31 runs, respectively.  
“-”, “+”, and “~” denote that the performance of the corresponding algorithm is better than, worsen than, and similar to that of ARCoDE, respectively. 
Units are MVar if not specified. 
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Table 4.3 illustrates the means and standard deviations achieved by different algorithms 

with 31 independent trials. Their performance under different scenarios is outlined in the 

last three rows of Table 4.3. On these 13 test scenarios, the proposed ARCoDE performs 

significantly better than the ICDE. The performances of ARCoDE and DEEPSO are quite 

similar. For test scenarios 76 and 79, MVMO shows a better performance in terms of 

optimality and robustness than the other 3 competitors. However, it should be noted that 

the proposed ARCoDE does not need to fine-tune the pre-defined control parameter setting, 

which indicates a significant advantage over the other three algorithms. In Table 4.3, 

symbols for minus, plus, and tilde represent that the performance of the corresponding 

algorithm is better than, worse than, and similar to that of ARCoDE. For example, the 

MVMO wins the ARCoDE in 3 scenarios, but loses in 1 scenario. They perform similarly 

in the rest 9 scenarios out of the total 13. Notably, the ARCoDE needs no local search 

operator that increases computational complexities and exists in the DEEPSO and MVMO. 

In terms of the constraint handling, ARCoDE is much simpler than ICDE, which utilizes 

the concept of multi-objective optimization. The preference of feasible solutions makes the 

constraint handling part of ARCoDE less computationally complex. 

In summary, the proposed ARCoDE algorithm outperforms the three benchmarks. The 

mean fitness value evolution process of the ICDE, DEEPSO, MVMO, and ARCoDE with 

respect to the number of function evaluations under four typical scenarios are displayed in 

Figure. 4.2—Figure. 4.5. 
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Figure 4.2.  Mean fitness value evolution process of the modified ICDE, DEEPSO, 

MVMO, and ARCoDE with respect to the number of function evaluations on Scenario 51 

 

 
Figure 4.3.  Mean fitness value evolution process of the modified ICDE, DEEPSO, 

MVMO, and ARCoDE with respect to the number of function evaluations on Scenario 75 
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Figure 4.4.  Mean fitness value evolution process of the modified ICDE, DEEPSO, 

MVMO, and ARCoDE with respect to the number of function evaluations on Scenario 77 

 

 
Figure 4.5.  Mean fitness value evolution process of the modified ICDE, DEEPSO, 

MVMO, and ARCoDE with respect to the number of function evaluations on Scenario 78 
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4.3.3 Comparison among Various DE Algorithms 

To demonstrate the advantages of the proposed adaptive range of control parameter settings, 

ARCoDE is also compared with three adaptive DEs including jDE, JADE, and SaDE. In 

jDE, JADE, and SaDE. In this experiment, the control parameters F and Cr are self-adapted 

for the ARCoDE algorithm, while the parameter setting for these three benchmarks is 

referred to the original papers. For all these four DEs, the function evaluation number is 

set to 10000, and each method is executed 31 times on each test cases. Table 4.4 

summarizes the experimental results. 

Table 4.4.  Experimental results of jDE, JADE, SaDE and ARCoDE  
over 31independent trials 

Scenario jDE 
Mean (Std) 

JADE 
Mean (Std) 

SaDE 
Mean (Std) 

ARCoDE 
Mean (Std) 

50 3.579E+09(9.754E+08) 1.450E+03(1.987E+03) 9.291E+02(1.747E+03) 1.437E+00(0.003E+00) 

51 4.299E+09(1.083E+09) 6.951E+05(1.200E+06) 2.044E+06(3.206E+06) 1.382E+00(0.003E+00) 

52 4.777E+09(1.056E+09) 4.755E+06(90.96E+06) 9.533E+06(9.080E+06) 1.280E+00(7.112E-06) 

53 4.761E+09(1.222E+09) 3.338E+06(7.740E+06) 6.235E+06(7.514E+06) 1.216E+00(8.466E-06) 

54 5.103E+09(9.391E+08) 6.839E+06(1.012E+07) 1.011E+07(1.111E+07) 1.258E+00(3.225E-06) 

55 4.665E+09(9.477E+08) 5.051E+06(9.511E+06) 5.490E+06(5.254E+06) 1.261E+00(5.289E-06) 

56 3.725E+09(1.258E+09) 1.273E+03(1.743E+03) 1.039E+05(5.726E+05) 1.445E+00(0.002E+00) 

75 1.174E+07(7.458E+06) 2.012E+00(3.834E-04) 2.012E+00(2.719E-04) 2.0116E+00(5.296E+04) 

76 4.436E+07(5.195E+07) 2.402E+07(2.580E+07) 1.772E+07(1.498E+07) 4.444E+05(2.328E+06) 

77 3.846E+07(1.541E+07) 1.595E+07(2.488E+07) 2.150E+07(2.570E+07) 2.637E+00(1.796E-08) 

78 4.109E+07(2.084E+07) 1.981E+07(2.163E+07) 1.975E+07(2.334E+07) 7.016E+04(3.841E+05) 

79 3.891E+07(2.575E+07) 2.005E+07(2.579E+07) 2.262E+07(3.546E+07) 5.776E+05(3.002E+06) 

80 3.533E+07(1.624E+07) 1.809E+07(2.496E+07) 2.185E+07(2.537E+07) 2.637E+00(1.356E-05) 

- 0 0 0 N.A. 

+ 13 12 12 N.A. 

~ 0 1 1 N.A. 
“Mean” and “Std” indicate the average and standard deviation of the function fitness values obtained in 31 runs, respectively.  
“-”,”+”, and “~” denote that the performance of the corresponding algorithm is better than, worsen than, and similar to that of ARCoDE, respectively. 
Units are MVar if not specified. 
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Overall, the ARCoDE significantly outperforms the jDE, JADE, and SaDE in terms of 

the optimality and robustness of solutions. As the assumption described in Chapter 3, when 

dealing with practical ORPD kind of problems, these adaptive strategies may not guarantee 

to a satisfied control parameter setting within limited numbers of function evaluations. 

However, by relaxing the search criterion of control parameters from a specific value to a 

range, the ARCoDE presents a promising application for fast ORPD problems. The 

evolution of the mean fitness values achieved by the modified jDE, JADE, SaDE, and 

ARCoDE with respect to the number of function evaluations under four typical scenarios 

are depicted in Figure. 4.6-Figure. 4.9. 

 

 
Figure 4.6.  Mean fitness value evolution process of the jDE, JADE, SADE, and 

ARCoDE with respect to the number of function evaluations on Scenario 51. 
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Figure 4.7.  Mean fitness value evolution process of the jDE, JADE, SADE, and 

ARCoDE with respect to the number of function evaluations on Scenario 75. 

 

 

Figure 4.8.  Mean fitness value evolution process of the jDE, JADE, SADE, and 

ARCoDE with respect to the number of function evaluations on Scenario 77. 
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Figure 4.9.  Mean fitness value evolution process of the jDE, JADE, SADE, and 

ARCoDE with respect to the number of function evaluations on Scenario 78. 

4.3.4 Solution Feasibility Comparison in Terms of Feasible Rate 

The ORPD problem contains a lot of equality and inequality constraints. Therefore, it is 

crucial for HOAs to provide stable feasible solutions, i.e., candidate solutions satisfying all 

the constraints of the ORPD problem. In terms of rate of feasible solutions, the ARCoDE 

is compared against 6 methods as shown in Table 4.5. For all the test scenarios, the feasible 

rates are obtained through 31 trials. It can be seen from Table 4.5 that the ARCoDE 

achieves 100% feasible rate for 10 of the 13 test scenarios. The feasible rate performance 

of the ARCoDE is remarkably higher than the other methods for most of the scenarios. It 

should be pointed out that the ARCoDE does not need a fine-tuned control parameter 

setting for trial vector generations. In addition, the constraint handling part of the ARCoDE 
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is free of pre-defined parameter settings, which indeed enable the ease of its application in 

many practical problems. 

In summary, the overall performance of the ARCoDE is highly competitive with the six 

rival methods. It is therefore convinced that the proposed ARCoDE can provide superior 

optimization performance for the ORPD problems. 

 

Table 4.5.  Comparison of ARCoDE with respect to ICDE, DEEPSO, MVMO,jDE, JADE, 
and SaDE in terms of feasible rate 

Scenario 
Feasible rate (%) 

ICDE DEEPSO MVMO jDE JADE SADE ARCODE 
50 25.8 100 100 0 64.5 77.4 100 
51 6.5 100 100 0 74.2 58.1 100 
52 0 100 100 0 77.4 0 100 
53 0 100 100 0 83.9 0 100 
54 0 100 100 0 67.7 0 100 
55 0 100 100 0 77.4 0 100 
56 32.3 100 100 0 64.5 67.7 100 
75 93.5 96.8 100 100 100 100 100 
76 0 87.1 100 0 29.0 0 93.5 
77 0 93.5 100 0 54.8 0 100 
78 0 96.8 96.8 0 38.7 0 90.3 
79 0 96.8 100 0 35.5 0 87.1 
80 0 100 100 0 35.5 0 100 
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Chapter 5 Efficiency Ranking-Based 
Evolutionary Algorithm for Multi-
objective Reactive Power Dispatch 

To properly trade-off between multiple inputs (e.g. operation cost of adjustments of 

generator voltage, transformer tap ratio and shunt capacitor) and multiple outputs (e.g. 

power loss and voltage deviation) in multi-objective ORPD, recently, multi-objective 

evolutionary algorithm (MOEA) was applied to produce a set of Pareto-optimal solutions 

[140]. In order to gauge the most efficient solutions (less in inputs and more in outputs) 

among the Pareto-optimal set, a post-processing using e.g. DEA is needed to select the 

optimal result in terms of efficiency, of which a quality Pareto-optimal front is essentially 

a prerequisite. However, the search ability of most MOEAs severely deteriorates when 

more than three objectives are involved, resulting in a poor POF [141].  

In this chapter, an efficiency ranking-based evolutionary algorithm is proposed aiming 

at directly obtaining the most efficient decision-making units (DMUs). A DMU generically 

is regarded as the entity responsible for converting inputs into outputs and whose 

performances are to be evaluated. A slacks-based measure (SBM) of efficiency and its 

super efficiency pattern [142] are firstly applied to yield a full ranking of relative efficiency 

of DMUs in each EA generation, based on which the most efficient DMUs can be 

eventually found. 
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5.1 Basic Concept of Data Envelopment Analysis 

Data envelopment analysis (DEA) is a linear programming procedure to measure the 

efficiency of DMUs by a scalar measure. Specifically, the Chames, Cooper and Rhodes 

(CCR) model handles the ratio of multiple inputs and outputs in an attempt to gauge the 

relative efficiency of the DMU concerned among all the observed ones. Let the DMUj 

under evaluation be designated as DMUo, the envelopment form of CCR is expressed with 

a real variable 𝜃 and a nonnegative vector 𝝀	 = 	 (𝜆1, … , 𝜆>, … , 𝜆() of variables as follows: 

 
Minimize 𝜃
subject to 𝜃𝒙𝒐 ≥ 𝑿𝝀,			𝒚𝒐 ≤ 𝒀𝝀	

𝜆 ≥ 0
	, (5.1) 

where the matrices 𝑿	 = 	 (𝒙𝒋) and 𝒀	 = 	 (𝒚𝒋) are the input and output vectors, respectively. 

The input excesses 𝒔Ú ∈ ℝ� and the output shortfalls 𝒔r ∈ ℝÛ, identified as slack vectors, 

are defined as: 

 	𝑠Ú = 𝜃𝒙𝒐 − 𝑿𝝀,  𝑠r = 𝒀𝝀 − 𝒚𝒐 (5.2) 

A DMU with the full ratio efficiency 𝜃∗ = 1 and with no slacks (𝒔Ú∗ = 0, 𝒔r∗ = 0) is 

called CCR-efficient; otherwise, the DMU is CCR-inefficient. For 𝜃∗ < 1 , the score 

actually reflects the depth of inefficiency of that DMU. 

5.2 DEA Model Selection 

The following properties of CCR model indicate its inadequacies to evaluate DMUs in 
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power system planning and operation: 

1) The CCR mode is built on the assumption of constant returns to scale. In other 

words, if (𝑥, 𝑦) is a feasible point, then (𝑡𝑥, 𝑡𝑦) for any positive 𝑡 is also feasible. 

2) In discussing total efficiency, it is integrant to observe both the ratio efficiency and 

the slacks. 

3) The CCR model assumes that all the inputs are subject to change proportionally. 

To surmount the above issues, a SBM of efficiency considering variable returns to scale 

of activities is firstly introduced as a fitness evaluation tool in EA to assign efficiency 

scores for power system DMUs, formulated as: 

 
Minimize 𝜌 = �1 − 1

�
∑ 𝑠7Ú 𝑥7à⁄�
7P1 � �1 + 1

Û
∑ 𝑠ZÚ 𝑦Zà⁄Û
ZP1 �â

subject to 𝒙𝒐 = 𝑿𝝀 + 𝒔Ú,			𝒚𝒐 = 𝒀𝝀 − 𝒔r,			 ∑ 𝜆> = 1(
>P1 	

𝜆 ≥ 0,			𝒔Ú ≥ 0,			𝒔r ≥ 0

	, (5.3) 

SBM is a non-radial type of efficiency measure, it is also invariant with respect to the 

unit of each input and output item. Furthermore, it gauges one unique indicator as the total 

efficiency for the observed DMUs, which would be convenient to guide the EAs’ search 

process. The access of variable returns to scale assumption is provided by the adjunction 

of the condition	∑ 𝜆>(
>P1 = 1. 

The standard SBM does not differentiate the efficient DMUs and thus, cannot create a 

full ranking of efficiency. As such, we additionally introduce a slacks-based measure of 

super efficiency (SESBM) as follows:  
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Minimize 𝜌 = �1 + 1
�
∑ 𝜙7�
7P1 � �1 − 1

Û
∑ 𝑠ZÚ 𝜓Z⁄Û
ZP1 �â

subject to 	∑ 𝑥7>𝜆> ≤ 𝑥7à(1 + 𝜙7),			(𝑖 = 1,2,⋯ ,𝑚)(
>P1,ãà

∑ 𝑦Z>𝜆> ≤ 𝑦Zà(1 − 𝜓Z),					(𝑟 = 1,2,⋯ , 𝑠)(
>P1,ãà

∑ 𝜆> = 1,(
>P1 			𝜙7 ≥ 0,			𝜓Z ≥ 0,			𝜆> ≥ 0

	. (5.4) 

The basic idea is to compare the unit under evaluation with a linear combination of all 

other units in the sample. It is conceivable that an efficient DMU may increase its input 

vector while remaining efficient; in that case, the unit obtains an efficiency score above 

one [142]. 

5.3 Efficiency Ranking-Based Evolutionary Algorithm 

DE algorithm is selected as the EA method in our study. Its step size and orientation of 

difference vectors (mutation operator) are automatically adaptive to the objective function 

landscape. It means that DE starts with a global search and changes automatically into a 

local search, which leads to a good balance between exploration and exploitation [140]. 

The proposed efficiency ranking-based evolutionary algorithm (EREA) is the integration 

of the efficiency-oriented competition mechanism and DE’s reproduction and selection 

operators. In each generation the parent population and its corresponding offspring are 

combined together to construct a DMUs’ input pool (size 2𝑁). The output part would be 

simulated planning or operation consequence accordingly. As the 2𝑁 DMUs are obtained, 

standard SBM is run first to classify efficient and inefficient DMUs and SESBM is then 

used to rank efficient DMUs. Higher efficiency scores indicate higher possibility of 

survival to the next generation. It should be highlighted that our approach directly evaluates 
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the relative efficiency of DMUs through a two-stage linear programming (SBM/SESBM) 

instead of the two integrant but time-consuming procedures of most MOEAs 

(nondominated sorting and distance estimation) [141]. Therefore, the total computational 

complexity of EREA can be significantly reduced. 

5.4 Case Studies 

The proposed EREA algorithm is preliminarily tested in the IEEE 30-bus system to solve 

a three-objective ORPD problem. The detailed system topology, data, ORPD mathematical 

formulation and its constraints are given in [140]. As the proposed framework directly 

deals with the efficiency index, our objective is to minimize power loss and voltage 

deviation as well as control adjustments given current system operating point (QC10 = 0, 

QC24 = 0). In this case, a specific DMU is formulated as: 

 𝑿 = [Δ𝑉G, Δ𝑇, Δ𝑄C],  𝒀 = [Δ𝑃L, Δ𝑉D], (5.5) 

where Δ𝑉G, Δ𝑇 and Δ𝑄C represent the adjustments of generator voltages, transformer tap 

ratios and shunt capacitors, respectively, and Δ𝑃L and Δ𝑉D represent reduced power loss 

and voltage deviation due to control actions in 𝑿, respectively. For demonstration, super-

efficient DMUs consist of one input (Δ𝑄C) and two outputs (Δ𝑃L, Δ𝑉D) are generated by 

applying the proposed EREA directly (black squares in Figure. 5.1), and by conducting 

post-assessment (SESBM) of the POF (red circles in Figure. 5.1) respectively. The 

mentioned POF (the blue diamond line in Figure. 5.1)  is built as close to the genuine one 

as possible by firstly obtaining Pareto optimal solutions using SPEA2 and NSGA-II [141], 
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respectively, and then performing nondominated sorting and crowding distance estimation 

to the combined solution set. Notably, none of the DMUs with the input (Δ𝑄C) higher than 

5MW is found to be super-efficient by both approaches employed, since the voltage 

deviation objective deteriorates with the increasing reactive power input as seen in Figure. 

5.1. Those DMUs would never be super-efficient as we treat two output objectives without 

prejudices. The results also indicate that most Pareto calculations (Δ𝑄C > 5	MW) are 

computationally heavy but unnecessary from practical decision-making perspective. The 

top 2 super-efficient decision makings of ORPD considering all inputs and outputs 

obtained by the EREA are also listed in Table 5.1. 

Table 5.1.  Test Results of The First and Second Decision Makings  
for ORPD Gauged by EREA 

 𝑉q1 𝑉q3 𝑉qæ 𝑉q£ 𝑉q11 𝑉q1j 
Rank 1st 1.050 1.041 1.027 1.023 1.061 1.059 
Rank 2nd 1.050 1.021 1.020 1.003 1.046 1.044 

 𝑇¡Úç 𝑇¡Ú1# 𝑇�Ú13 𝑇3èÚ3£ 𝑄C1# (MW) 𝑄C24 
(MW) 

Rank 1st 1.074 0.922 1.014 0.965 0.117 4.276 
Rank 2nd 1.071 0.931 0.986 0.965 1.433 4.300 
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Figure 5.1.  Comparison of the super-efficient DMUs for ORPD gauged by the post-

assessment approach and EREA  
(The number denotes the efficiency ranking generated by the post-assessment approach. The black squares are 
the super-efficient DMUs obtained by EREA through 100 independent trials, among which 47 of them find the 
super-efficient DMU in the adjacent domain of Rank 1st DMU while 36 trials converge to the adjacent domain 
of Rank 2nd DMU.) 
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Chapter 6 Conclusion 

6.1 Summary of Thesis 

Due the nonlinear and nonconvex nature involved in power system reactive power planning 

and dispatch problems, HOAs have been widely utilized to solve the related problems. In 

this thesis, an overview relevant research work applying HOAs for solving RPP and ORPD 

problem is systematically presented. It highlights the difficulties of deterministic methods 

facing i.e. non-continuity and non-differentiability of the objective functions. The reviewed 

articles are organized according to different categories of HOAs. A brief discussion of the 

limitations and trends of HOA applications with respect to RPP and ORPD problem is 

presented in addition to the corresponding literature reviews.  

A novel MQDE algorithm is proposed for optimal reactive power planning. It explores 

the ability of MQDE to solve the constraint optimization in a continuous real-valued search 

space and emphasizes the advantages of applying the qubit representation to prevent a 

deficiency of population diversity in the later stages of the DE iteration process. In addition, 

the proposed reset index provides a more effective guidance about the qubits updating 

directions than the traditional parent-child selection operator of QDE. The power and 

usefulness of the proposed approach have been demonstrated by the successful 

optimization performance on various constraint optimization benchmark functions. In 

order to further demonstrate the performance of MQDE, it is implemented on a power 
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system reactive power planning problem. Results also show an excellent performance of 

MQDE over typical DE in terms of satisfactory accuracy and significantly enhanced 

robustness. 

A novel ARCoDE algorithm is proposed for optimal reactive power dispatch. It employs 

two trail vector generation strategies and a novel control parameter range adaptation 

strategy. The structure of ARCoDE is simpler and easier to implement.  The experimental 

studies are carried out on the benchmark test cases of IEEE Competition on “Application 

of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems”. 

The proposed ARCoDE is compared with the three award winning algorithms and three 

state-of-the-art adaptive DE algorithms. The experimental results demonstrate the overall 

performance of ARCoDE is better, or at least no worse than the other award-winning 

algorithms. In addition, the effectiveness of the combination of the selected trial vector 

generation strategies and the novel proposed adaptive range of control parameters are 

experimentally studied. The experimental results show that the fast convergence rate and 

the robustness of ARCoDE, which makes the proposed algorithm promising for solving 

fast ORPD problems. The developed algorithm also contributes to winning “Top Five Best 

Algorithm Award” in “Competition on Application of Modern Heuristic Optimization 

algorithms for Solving Optimal Power Flow Problems” organized by IEEE PES Working 

Group on Modern Heuristic Optimization Intelligent Systems Subcommittee & Power 

System Analysis, Computing, and Economic Committee in 2014. 

Finally, EREA is proposed aiming at directly obtaining the most efficient DMUs for the 

multi-objective formulation of ORPD problem. A slacks-based measure (SBM) of 
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efficiency and its super efficiency pattern are applied to yield a full ranking of relative 

efficiency of DMUs in each EA generation, based on which the most efficient DMUs can 

be eventually found. 

6.2 Future Research Direction 

The thesis proposes three advanced HOAs (i.e. MQDE, ARCoDE, and EREA) for solving 

optimal RPP and ORPD problems. Several aspects are provided worthy of further research 

in the future, including: 

1) Even though MQDE has been successfully applied on cases such as the IEEE 30 bus 

system, comparison experiments need to be conducted with other system reactive 

power planning problems in future work. 

2) In aspects of convergence speed and feasible rate, ARCoDE still can be enhanced. We 

will investigate the impacts of applying different candidate vector generation strategies. 

3) In the future, we plan to combine the ARCoDE search engine and the efficiency ranking 

operator to solve more challenge power system planning and operation problems, i.e. 

co-planning of EV system and distribution system, micro-grid operation integrating PV 

power and energy storage resources.  
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