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Abstract
Bus agencies often operate bus lines with high frequency to meet the ever-increasing
demand. Problems that come along with high bus flow and patron demand include
long bus queues and poor service reliability. This thesis develops analytical and
simulation models for estimating capacities and key performance metrics (i.e., bus
delays and headway variations) for congested bus stops and corridors.

At the stop level, built upon the previous analytical models for estimating isolated
stops’ bus-carrying capacities, this thesis develops analytical approximations to
estimate the bus-carrying capacities at near- and far-side stops with one or multiple
curbside berths. The approximations are derived using time-space diagrams of bus
trajectories and probabilistic methods. They correctly account for the effects of key
operating factors that were ignored or incorrectly addressed by previous methods.
These factors include the signal timing and the distance between stop and signal.
Comparison against computer simulation shows that our models furnish much more
accurate estimates for near- and far-side stop capacities than previous methods in
the literature. Numerical case studies are performed to examine how the stop
capacity is affected by various operating factors. New findings and their practical
implications are discussed.

Looking at the corridor level, buses form queues at stops along corridors when the
number of berths in each stop is insufficient to serve its bus flows. Buses might
discharge from these queued stops at headways that are smaller than scheduled.
This tends to induce longer queues at downstream stops and higher variations in the
bus headways entering them. A vicious cycle of growing bus delay thus propagates
along the corridor. Patrons suffer as a result.

A simulation model is therefore developed in-house to jointly examine bus queue-
ing dynamics and headway variability propagations in busy bus corridors shared
by multiple bus lines. The model is used to examine two control strategies aimed
at alleviating the vicious cycle in busy corridors. Both strategies hold buses at a
corridor’s upstream end. The first strategy does so to form bus convoys that are
then released to traverse the corridor in unison. Though previously reported to
be beneficial, present findings indicate that convoying generates greater headway
variations and longer bus queues at stops than what occur under a do-nothing alter-
native. The second holding strategy releases buses into a corridor at fixed headways.
This strategy performed surprisingly well, not only in regularizing headways, but

iv



in reducing bus delays. The strategy was found to be especially beneficial for long
corridors with many queued stops and high patron demands for travel. Practical
implications of the findings are discussed. Discussion includes means of harnessing
emerging technologies to enhance the headway-regularization strategy.
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1Introduction
Section 1.1 introduces the motivation for this thesis. Section 1.2 reviews the relevant
studies. Section 1.3 summarizes the contributions of this thesis. The outline of this
thesis is furnished in Section 1.4.

1.1 Motivation
Public transport is a promising means of mitigating growing traffic congestion in
densely-populated cities, because the same amount of travel demand can be satisfied
by using fewer vehicles that occupy less road space. Among all transit modes, the
fixed-route bus system has been widely used due to its cost efficiency, flexibility,
and short construction period. To meet the growing patron demand, transit agency
often operates bus lines with high frequency. Real-world examples include: the BRS
Presidente Vargas Corridor in Rio de Janeiro, Brazil, where peak-hour bus flow is
600 buses per hour (i.e., one bus per 6 seconds) in each direction; and the bus rapid
transit corridor in Guangzhou, China, which serves 31 bus lines with a peak-hour
demand of 27,000 patrons/h/direction (Global BRT Data, 2019). Problems that
come along with high bus flow and patron demand include long bus queues and
poor service reliability.

At a single stop, bus queues are often formed at the entry of busy stops due to the
limited number of berths and the mutual blockages between buses serving there
(Fang et al., 2012). Moreover, transit management agencies often place bus stops
near signalized intersections to facilitate patrons’ access via protected street cross-
ings (Fitzpatrick et al., 1996). Thus, the stops’ bus-carrying capacities will be fur-
ther curbed by the neighboring traffic signal (Gibson, 1996; Tan and Yang, 2014).
To avoid the ever-expanding bus queues, the transit agency needs to properly de-
termine a stop’s layout (including the number of berths) and location such that the
maximum estimated bus arrival rate will not exceed the stop’s bus-carrying capacity.
To this end, models are needed to unveil the cause-and-effect relationships between
key operating parameters (e.g., service time distribution, number of berths, signal
timing, and distance between stop and signal) and stop capacity. These models
will help practitioners in determining the appropriate stop designs and operating
strategies.

Looking at the corridor level, patrons suffer from not only the long bus queues,
but also irregular and unstable bus headways. This is because: the motions of
delayed buses are further impeded by meeting larger numbers of boarding patrons
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at downstream stops; while buses arriving earlier at a stop will meet fewer patrons
and tend to travel faster (Newell and Potts, 1964). This adds to a patron’s expected
waiting time at her stop. Worse yet, a bus queue at a stop adds to variation in bus
arrival times at stops downstream. Longer queues are therefore prone to form at
downstream stops (Gu et al., 2011), which cause buses to fall further and further
behind schedule as they traverse the corridor. This vicious cycle seems to have gone
unreported in the literature. In light of the above, we need a new model to jointly
examine the bus queueing dynamics and headway variability propagations in busy
bus corridors shared by multiple bus lines. The new model can be used to assess
effective control strategies for mitigating bus queues.

1.2 Literature review
Studies on bus queueing at a single stop are reviewed in Section 1.2.1. Section 1.2.2
describes studies on bus corridor operations.

1.2.1 Bus queueing at a single stop

For isolated bus stops, earlier works have focused on using microscopic simulations
to estimate the stop capacity or bus queueing delay (Papacostas, 1982; Gibson et al.,
1989; Fernández and Planzer, 2002). More recent studies have resorted to analytical
methods, because they are capable of describing the causal relationships between
the key input parameters and output performance metrics. For example, Markovian
methods were often used to develop exact solutions to bus-stop queuing models with
tandemly-deployed berths (Gu et al., 2012, 2015; Gu and Cassidy, 2013; Bian et al.,
2019). Unfortunately, the above analytical methods cannot be extended to account
for the influence of nearby signals, because bus queues formed at a near- or far-side
stop integrate two types of servers: tandemly-deployed berths and the traffic signal,
and the latter is not Markovian (Newell, 1965).

The best-known capacity formula for near- and far-side stops was first presented by
the Highway Capacity Manual (HCM: TRB, 2000), and was later inherited by the
Transit Capacity and Quality of Service Manual (TCQSM: Kittelson & Associates,
Inc., 2013). The latest version of this formula (Equation 6-18 of TCQSM) is:

Bs = Nelftb
3600(G/C)

tc + td(G/C) + Zcvtd

, (1.1)

where Bs denotes the stop capacity (buses/hour); Nel the effective number of berths,
which accounts for the mutual blockage between the buses dwelling in multiple,
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tandemly deployed berths; ftb the traffic blockage adjustment factor to account for
the impacts of competing (right- or left-turning) traffic in the travel lane of buses;
G/C the green ratio of the neighboring traffic signal with G being the green period
(seconds) and C the cycle length (seconds); tc is the clearance time (seconds), which
includes a bus’s movement time in and out of a berth and its “re-entry delay” for
merging back to the general traffic from a bus bay; td a bus’s dwell time (seconds) for
loading and unloading patrons; and Zcvtd the so-called “operating margin” (seconds)
that accounts for the randomness in bus dwell time.

This formula is known to have a number of serious flaws, including the abuse of the
empirical, site-specific values for Nel (see Exhibit 6-63 in TCQSM), and the falla-
cious derivation regarding the operating margin term. First, the Nel (see Exhibit
6-63 in TCQSM) is assumed to be independent of any other key operating factors,
including the distribution of dwell times and the random bus arrival process. The
values are only calibrated by empirical site-specific observation but are applied to
general settings. Second, the derivation regarding the operating margin term is
fallacious. The maximum bus discharging flow from the stop is achieved when the
failure rate (FR) is 1, i.e., when there is always a queue present at the entrance (Gu,
2012). However, this formula unexpectedly estimates that the maximum capacity
occurs at FR = 0.5. In fact, according to the calculation process in TCQSM, the
Z-score corresponding to FR = 1 is negative. This indicates that the larger dwell
time td, the larger stop capacity, which is intuitively wrong.

Moreover, the way for modeling the effect of the neighboring traffic signal in equa-
tion (1.1) is also questionable. First, the equation simply discounts both the nu-
merator and the bus dwell time td in the denominator by the signal’s green ratio.
This oversimplified the effect of signal timing on the stop capacity, and ignored the
effect of signal cycle length on the capacity given a fixed green ratio. (We will see
momentarily in this thesis that cycle length has a significant impact on the stop
capacity even when green ratio is fixed.) Second, the equation presumes that the
effect of multiple berths on the stop capacity, represented by the coefficient Nel,
is multiplicative and independent of the effect of signal. And lastly, the equation
totally overlooked how the stop capacity would be affected by the distance between
the stop and its neighboring signal. A recent modification of (1.1) was reported by
Hisham et al. (2018), which still did not solve any of the above problems.

Critiques of the TCQSM formula described above have been widely reported in the
literature and various models have been proposed to solve these problems. Some
works proposed hypothetical models as replacement of (1.1); these models were
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calibrated by either site-specific or simulation-generated data, and thus they are
only applicable to a narrow range of sites (Alonso et al., 2013; Tan and Yang,
2014; Navarro et al., 2017). Other studies relied on either commercial software
packages, e.g., ARENA and PARAMICS (Cortés et al., 2010a; Reilly and Aros-
Vera, 2013), or self-developed simulation tools, e.g., IRENE and PASSION (Gibson,
1996; Fernández et al., 2007; Fernández, 2010). To their credit, these simulation
models can account for more realistic features of bus stop operations. However,
simulations are “blackboxes” that cannot readily reveal general insights on cause-
and-effect relationship between key operating parameters and stop capacity. Many
simulations are also computationally more demanding, and thus may not be suitable
for investigating a large number of cases under various operating environments. In
addition, practitioners always desire to have a simple formula, or recipe to be used
conveniently. Such a formula or recipe cannot be obtained by regressing empirical
or simulated data to some hypothetical function forms, because the stop capacity
is a complicated function of several key input parameters, including the number of
berths, the distance between stop and signal, the signal timing (cycle length and
green ratio), and the distribution of bus dwell times.

There are also some studies on exploring how different operating strategies can
mitigate bus queue at a single stop. For example, Gibson et al. (1989) and Fernández
et al. (2007) proposed to split a multi-berth stop into multiple neighboring stops
to reduce buses’ mutual interference and improve the stop capacity. Furthermore,
transit management agencies may pre-assign different bus lines into berths, and
patrons will queue up after the specific berth for their target bus lines. Lu et al.
(2010), Wu et al. (2011), and Tan et al. (2014) proposed some heuristic principles
to optimize this line assignment problem, so as to reduce berth idleness and bus
queueing delay.

1.2.2 Bus operations along a corridor

Bus queueing studies reviewed in the previous section have by-and-large focused on
a single stop. In busy bus corridors, buses not only form queues at stops, but also
exhibit poor reliability due to the random disturbances. Newell and Potts (1964)
revealed that bus headway variation will grow as buses precede downstream of the
corridor. An unexpectedly delayed bus will gradually become further delayed since
it will meet more patrons at downstream bus stops; the subsequent bus then has
fewer patrons to load and departs from those stops earlier than scheduled. This
eventually leads to the notorious bunching phenomenon that is commonly observed
by transit users.
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Following this seminal work, various solutions have been proposed to address the
bus bunching problem. These methods includes: allowing delayed buses to skip
stops (Sun and Hickman, 2005; Cortés et al., 2010b), controlling travel speed be-
tween stops (Chandrasekar et al., 2002; Daganzo and Pilachowski, 2011), limiting
boarding patrons (Delgado et al., 2009, 2012), prioritizing delayed buses at sig-
nalized intersections (van Oort et al., 2012; Anderson and Daganzo, 2020), and
holding buses at select stops. Among the above strategies, schedule-based holding
strategy is the most widely studied because they are simple to model and easy
to implement in reality (Newell, 1974; Vandebona and Richardson, 1986; Adamski
and Turnau, 1998; Eberlein et al., 2001; Hickman, 2001). To reduce the slack time
required by the schedule-based method, Daganzo (2009) proposed an adaptive hold-
ing strategy where the holding times at control points are determined using the bus
headways measured in real-time. The work was later extended to a wider range of
headway-based strategies, including Daganzo and Pilachowski (2011); Bartholdi III
and Eisenstein (2012); Andres and Nair (2017). Recently, some efforts were also
made to study the bus bunching problem with multiple lines (Hernández et al.,
2015; Schmöcker et al., 2016; Wu et al., 2017; Laskaris et al., 2018). More realistic
features, such as common-line patrons, bus overtaking, and patron queue swapping
among different lines, are explicitly modeled.

Regrettably, the above works on the strategies for preventing bus bunching seem to
have assumed that no bus queue would ever occur at any stop, which is applicable
to low-frequency bus systems only. Only a handful of studies have modeled bus
corridors considering bus queues at busy stops, including Tirachini and Hensher
(2011) and Tirachini (2014). However, in their works the bus queueing delays were
predicted from a regression model, which was calibrated using simulated data of a
single bus stop. Thus, the interactions between bus queues across consecutive stops
were simply overlooked.

Commercial software packages such as PARAMICS and MISTRANSIT (Cortés
et al., 2005, 2007) can model sufficient real-world operating details. However, they
have a great number of parameters to calibrate, and are thus unsuitable for analyz-
ing how key operating factors affect the bus system performance. In addition, their
computational costs are high, which limit their applications for emulating congested
bus corridors under a wide range of operating conditions.

A number of strategies were also proposed to improve bus commercial speed, in-
cluding dedicated bus lane (Burinskiene et al., 2014) and signal priority strategies
(Baker et al., 2002; Anderson and Daganzo, 2020). However, their overall effects on
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bus queues and delays in a busy corridor were not modeled. Another strategy that
was commonly believed to be able to reduce bus congestion in busy corridors is bus
convoying (Yabe and Nakamura, 2005; Hidalgo et al., 2013). In this strategy, buses
are held at a corridor’s upstream end until a specified batch size is reached. Con-
voys are then released to traverse the corridor (and to enter and dwell in multi-berth
stops) in unison. A field study of this strategy was conducted in Brazil (Szász et al.,
1978; Germani and Szász, 1980; Meirelles, 2000). Convoying reportedly reduced
bus delays and better regularized service. Notably, however, the above-cited field
study observed the effects of convoying in combination with having expanded the
number of bus berths in each stop along a corridor. The effects of these two factors
were not disentangled; i.e., the study was not controlled to measure convoying’s
effects alone and free of confounding influences.

1.3 Overview of major contributions
Our first contribution is the development of analytical approximations for the bus-
carrying capacities at near- and far-side stops with one or multiple curbside berths
(where buses operate in a dedicated bus lane). The models are more accurate and
general than the methods in previous studies and professional handbooks, because
they explicitly account for the effects of key operating factors that were overlooked
in the literature (e.g., the signal cycle length and the distance between stop and
signal) and the characteristics of bus traffic (e.g., the move-up time and reaction
time). The models can be conveniently used by practitioners to determine the
appropriate design and location of a new bus stop for serving a predicted peak-hour
bus flow, or to assess the performance of measures for mitigating bus congestion at
an existing stop.

The second contribution is a set of findings drawn from the numerical analysis using
the approximation models. Important ones include: i) the well-known TCQSM
formula for bus stop capacity has large errors; (ii) ceteris paribus, a near-side stop
produces higher capacity than a far-side one; and (iii) decreasing the signal cycle
length while keeping the green ratio unchanged can increase a near- or far-side
stop’s capacity without reducing the general-purpose traffic’s discharging capacity
by much.

Our third contribution is the development of a new simulation model that describes
multi-line bus operations and queues formed at a series of multi-berth stops in a
corridor. The new model explicitly accounts for the patron boarding process, the
mutual blockages between buses dwelling at stops, and the stop-to-stop headway
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evolution process. Our simulation model is parsimonious, which allows us to effi-
ciently simulate wide ranges of operating scenarios and highlight the effects of key
operating parameters.

Built upon the simulation model, the fourth contribution comes from examining
the effects of typical bus holding strategies on reducing bus queues and improving
headway regularity in busy corridors. Strategies examined here include bus con-
voying and headway-regularization holding. Numerical analysis unveils a number
of important findings that were not reported before. For example, we find that
both bus queueing delays and headway irregularity at a stop grow as buses move
downstream of a corridor. The conventional wisdom on bus convoying is wrong;
i.e., it can neither reduce bus delay nor improve service reliability. However, the
headway-regularization strategy performs unexpectedly well. It can both mitigate
bus queues and improve service reliability under certain operating conditions.

1.4 Organization of the thesis
The thesis is organized as follows.

Chapter 2 presents the analytical capacity formulas for bus stops near signalized
intersection. We first develop the capacity approximations for a single-berth near-
side stop to illustrate the key idea of constructing the approximation. The single-
berth stop approximation is then built upon to develop the approximation for multi-
berth stops. The approximations for far-side stops are derived in similar ways as
for near-side stops. Validation tests against the simulation are furnished, together
with a comparison to the TCQSM formula. Numerical case studies are performed
and insights stemming from our models are discussed.

Chapter 3 studies the corridor operations considering bus queues at busy stops. We
first present the model setup for the bus corridor and the two holding strategies.
Then we develop a simulation model for assessing the two strategies’s performance
in terms of two performance metrics: bus delay and headway variation. The strate-
gies are then compared head-to-head and against a do-nothing alternative under
various operating conditions. At last, managerial insights derived from the simula-
tion results and their practical implications are discussed.

Chapter 4 concludes the thesis by summarizing our contributions, and discussing
potential extensions of the present work.

1.4 Organization of the thesis 7



2Capacity Approximations for Near-
and Far-side Bus Stops
We consider near- and far-side bus stops like those shown in Figures 2.1a and b; they
are termed according to whether the stop is placed at the near-side (i.e. upstream
side) or far-side (i.e. downstream side) of the intersection. The number of berths

buffer,passenger 

platform

stop line

bus berths buses

d

(a)A near-side stop

passenger 

platform

stop line

intersection length,

buffer, d

D

(b)A far-side stop

Figure 2.1: Curbside bus stops near signalized intersections.

is denoted by c. The land area between the stop and the intersection is termed as
“buffer area”, whose size is denoted by the (integer) number of buses that can reside
within, d, as illustrated in the figures. If the buffer size is not an integer multiple
of berth length, it will be rounded down to the nearest smaller integer since only
an integer number of buses can be stored in the buffer. We further write d as the
sum of an integer multiple of c and a non-negative residual: d = nc + d0, where
n = 0, 1, 2, ..., and 0 ≤ d0 ≤ c − 1. We define a bus’s dwell time, S, as the sum
of: i) the time for loading and unloading patrons in a berth; ii) the time lost due
to bus deceleration and acceleration; and iii) the time lost due to door opening
and closing. We assume that dwell times of different buses are independent and
identically distributed (i.i.d.) with mean µS and coefficient of variation CS.1 The
signal cycle length and effective green period are denoted as C and G, respectively.

1One may also find more complicated bus dwell time models, which account for how patrons are
loaded to and unloaded from a bus in, e.g., Jaiswal et al. (2010) and Fernández et al. (2008).
However, for the simplicity of our modeling work, we adopt the present assumption that the
bus dwell times are i.i.d. The same assumption has also been commonly used in the literature;
see TCQSM (2013) and Gu et al. (2011, 2015).
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Without loss of generality, we normalize all the time variables, unless otherwise
specified, by setting the mean bus dwell time as the unit time, i.e., µS = 1. We also
normalized all the distance variables by setting the berth length (or equivalently,
the bus jam spacing) as the unit distance. These normalizations will largely simplify
the derivation of approximations.

For simplicity, we made the following assumptions:

(i) bus maneuvers are restricted within the curbside travel lane, which is dedi-
cated to bus use only2.

(ii) buses are not allowed to overtake each other at the stop or the intersection,
or in any queue that forms upstream of the stop or intersection3.

(iii) for a near-side stop, buses that are ready to depart the stop but are blocked
by the red signal are all able to discharge during the following green phase.

(iv) for a far-side stop, the empty berths and the buffer space between stop and
signal (see Figure 2.1b) can all be filled up by buses discharging through the
intersection in a green phase, should a bus queue be always present upstream
of the intersection4.

Capacity is defined as the maximum rate that buses can discharge through a facility.
To derive the capacities of near- and far-side stops, we treat the stop and the
intersection as a whole. We specify that a bus queue is always present upstream
of a near-side stop, or upstream of the intersection for the far-side stop case. The
capacity of the near-side stop is the bus discharging rate from the intersection while

2At some busy stops not residing in a bus lane, bus operations may still enjoy a “de facto”
exclusive right-of-way since other traffic often stay away from the neighborhood of those busy
stops to avoid being blocked by the slow-moving and large-sized buses (Gibson et al., 1989;
Fernández and Planzer, 2002). The models to be presented in this chapter can still be applied
to those stops with caution.

3This assumption represents a common type of bus-stop operation rules (St. Jacques and Levin-
son, 1997; Kittelson & Associates, Inc., 2013). The same assumption was also made in other
studies in this realm (Gu et al., 2011, 2015; Bian et al., 2015).

4Assumptions iii) and iv) are practically valid in general as explained below. For near- and
far-side stops in the real world, the distance between the stop and the intersection is usually
less than 100 meters and so can store at most 8 buses (suppose bus jam spacing is 12 meters).
A stop located 100 meters away from the intersection can be regarded as a mid-block stop
(Kittelson & Associates, Inc., 2013), on which the signal has a small impact. Moreover, stops
with more than 4 berths are rare. Even for the extreme case of a 4-berth stop located 100
meters from the nearby intersection, to satisfy assumptions iii) and iv), the green period only
needs to be long enough to discharge 12 buses consecutively. This requires a 42-second green
period given a saturation headway of 3.5 seconds for discharging buses (Nguyen, 2013). A
signal timing plan with more than 42 seconds green time is commonly used, especially at
major intersections where neighboring stops are often congested.
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for the far-side stop it is the bus discharging rate from the stop. With the persistent
bus queues, assumptions iii) and iv) in the previous section mean that the green
period is long enough for at least d + c buses to discharge consecutively into the
intersection, given that they are ready to discharge at the start of the green signal.

The approximation models for near-side stops are developed in Section 2.1. Those
for far-side stops are developed in Section 2.2. Validation tests are furnished in
Section 2.3, together with a comparison against the TCQSM formula. Numerical
examples are discussed in Section 2.4. Insights stemming from our models and
their practical implications are described in Section 2.5. The notations used in this
chapter are summarized in Appendix A.

2.1 Near-side stop models
We first develop the capacity approximations for a single-berth near-side stop (Sec-
tion 2.1.1) since in this simple case our key idea for constructing the approximation
can be presented more clearly. The single-berth stop approximation is then built
upon to develop the approximation for multi-berth stops in Section 2.1.2.

2.1.1 Capacity approximation for a single-berth near-side stop (c = 1 and
d = n)

The downstream signal affects the stop’s capacity only when a queue of buses formed
at the intersection during a red period spills back to the berth, so that the berth
cannot serve new buses. We denote TB as the time during which the berth is blocked
in a cycle. The single-berth near-side stop’s capacity, QS, can then be written as:

QS = 1
1 + τm

(
1− E[TB]

C

)
, (2.1)

where τm is a bus’s movement time in and out of a berth (i.e., the clearance time
tc in equation (1.1) for curbside stops). The 1

1+τm
is the capacity of an isolated

single-berth stop (i.e., a stop without neighboring signals), since the denominator
is the sum of average dwell time (note µS = 1 due to the normalization) and the
average time a bus takes to move forward and fill the berth after the previous bus
has left. The remaining work is on how to approximate E[TB].

To find E[TB], we first define the “extended red period” at the berth’s location,
during which buses can be served, but cannot discharge into the intersection. This
extended red period is illustrated in the time-space diagrams of bus trajectories at
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a single-berth near-side stop; see Figure 2.2 for the case of d = n = 3. Note that
the extended red period is a constant when signal timing plan, buffer size, and bus
traffic characteristics are specified. The solid lines with arrowheads in the figures
represent trajectories of the front of buses, and the thicker, horizontal segments
(labeled as S1, S2, S3 and S4) of these trajectories represent bus dwell times. In the
interest of brevity, these trajectories are plotted as piecewise linear curves; see, e.g.,
Gu et al. (2013, 2014) for studies that also use piece-wise linear vehicle trajectories
for analysis.

extended red period,

space

time

stop line

bus stop

upstream 

bus queue

bus trajectories

reaction time τ

U
′

1
U2 U3 U4

S1
S2 S3 S4

TU TB

vm
d = n = 3

w

red period, C −G

R̄ ≡ C −G+ ntm + (n+ 1)τ

τm

Figure 2.2: Time-space diagram of bus operations at a single-berth near-side stop
(d = n = 3).

As illustrated in Figure 2.2, the extended red period starts n
vm

earlier than a red
period, and ends n+1

w
later than the same red period, where vm is the bus’s move-up

speed when traveling through the queue, the berth and the buffer, and w is the
backward wave speed of bus traffic.5 For simplicity, we assume that vm and w are
the same for all the buses. For the convenience of description, we denote τ = 1

w

(which is termed the “reaction time” in some literature; see for example Menendez,
2006) and tm = 1

vm
. (Note that τm = τ + tm.) Hence, the duration of extended red

period is R̄ ≡ C−G+ntm +(n+1)τ , as shown in Figure 2.2. Note that assumption
iii) ensures that G ≥ (c + d)τm, hence the extended red period will never exceed
the cycle length.

The start time of extended red period is determined such that any bus that finishes
service before this start time will be able to discharge into the intersection immedi-

5The backward wave speed is the speed at which the disturbances (in our case, the change of
bus speed) propagate backwardly across the buses (Newell, 1993; Daganzo, 1994).
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ately. On the other hand, the dwelling bus at this start time and all the following
buses served during this extended red period will have to wait until the next green
period to discharge; see Figure 2.2. The number of these trapped buses is no greater
than the storage capacity of the berth and the buffer, i.e., n + 1 (= 4 in Figure 2.2).
The last trapped bus (regardless of the number of trapped buses) will depart the
berth no earlier than (n + 1)τ after the green start, and this time defines the end
of the extended red period, as illustrated again in Figure 2.2. If n + 1 buses are
served in an extended red period, a blocked duration TB > 0 may exist at the end
of extended red period (see again the case of Figure 2.2); otherwise, the berth is
busy throughout the extended red period and TB = 0.

Figure 2.2 also shows that TB can be calculated by:

TB = max{R̄− TU , 0}, (2.2)

where TU denotes the sum of dwell times of the n+1 consecutive buses served in the
extended red period plus their reaction and move-up times. From the time space
diagram, it can be written as follows:

TU = U
′

1 +
n+1∑
j=2

Uj, (2.3)

where U
′
1 denotes the portion of the first trapped bus’s dwell time that is contained

in the extended red period; and Uj = Sj + τm (j = 2, 3..., n + 1) (see again Figure
2.2). Note that U

′
1 is smaller than other Uj’s because it starts service before the red

period.

Due to the non-negativity of TU , we can derive from equation (2.2) that:

E [TB] =
∫ R̄

t=0
(R̄− t)fTU

(t)dt, (2.4)

where fTU
(t) =

fU
′
1
∗ fU ∗ ... ∗ fU︸ ︷︷ ︸

n times

 (t) is the probability density function (PDF)

of TU ; fU
′
1

and fU are the PDFs of U
′
1 and Uj respectively, and the “∗” is the

convolution operator.

We now approximate TU by a normal random variable with the same mean µT and
variance σ2

T . For large n’s, this normal approximation is quite accurate thanks to the
central limit theorem (CLT). But even for a relatively small n, the approximation
can be fairly good. This is because: i) most of the components in the right hand side
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of (2.3), i.e. the Uj’s (j = 2, 3, ..., n + 1) are i.i.d and usually exhibit a bell-shaped
PDF in the real world; and ii) although U

′
1 has a different distribution from Uj, it is

statistically smaller than Uj and thus has a small share in TU if n is not too small.
On the other hand, this CLT approximation may be less accurate if n = 0 or 1.

Applying the properties of normal distribution, we have:

E [TB] = R̄FTU
(R̄)−

∫ R̄

t=0
tfTU

(t)dt

= R̄FTU
(R̄)−

∫ R̄

t=−∞
tfTU

(t)dt

≈ R̄Φ
(

R̄− µT

σT

)
−
(

µT Φ
(

R̄− µT

σT

)
− σT ϕ

(
R̄− µT

σT

))
= σT (rΦ(r) + ϕ(r)), (2.5)

where FTU
(·) denotes the cumulative distribution function (CDF) of TU ; Φ(·) and

ϕ(·) the CDF and PDF of a standard normal distribution, respectively; and r =
R̄−µT

σT
. The second equality in (2.5) holds because TU is non-negative. The approxi-

mation step in (2.5) is obtained as follows: first approximate fTU
(t) by the PDF of

a normal distribution with mean µT and variance σ2
T (the CLT approximation), and

then apply the mean formula of a truncated normal distribution whose lower and
upper truncated bounds are −∞ and R̄, respectively (see e.g., Greene, 2003).

Combining equations (2.1) and (2.5) furnishes an approximation of the single-berth
stop’s capacity, denoted as QSA:

QSA = 1
1 + τm

(
1− σT (rΦ(r) + ϕ(r))

C

)
. (2.6)
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Finally, when Sj follows a gamma distribution6, the mean µT and variance σ2
T of

TU are approximated as follows:


µT ≈ n(1 + τm) + C2
S + (1 + τm)2

2(1 + τm)
;

σ2
T ≈

5 + 8τm

12(1 + τm)2 C4
S + (1

2
+ n)C2

S + (1 + τm)2

12
.

(2.7)

The derivation of (2.7) is relegated to Appendix B.

Approximation (2.6) exhibits high accuracy when n is large. But moderate errors
may occur when n is rather small. Fortunately, our numerical results manifest that
the error of (2.6) is less than 5% for most cases even when d = 0; see Section 2.3.1
for more details.

Significant errors may also occur when CS is small, since (2.7) is derived using
an assumption that U

′
1 is independent of signal phases (see Appendix B), which

becomes invalid for small CS. An extreme example where CS = 0 (deterministic
bus dwell time) is briefly discussed in Appendix B. More details regarding the
accuracy of (2.6) are furnished in Section 2.3.

2.1.2 Capacity approximation for a multi-berth near-side stop (c ≥ 2 and
d = nc + d0)

Since bus overtaking maneuvers are prohibited, the bus dwelling at the upstream-
most berth of a multi-berth stop can depart only when all the downstream berths
are vacated. Thus, in the absence of the traffic signal, queued buses will enter a
c-berth curbside stop in convoys of size c (Gu et al., 2011), should a sufficiently long
bus queue be present all the time. We denote Up as the general service time of a
c-bus convoy, which is defined as the total time the convoy spends at the c-berth
stop for all of its buses to finish dwelling. Then a c-bus convoy served at a c-berth
stop can be viewed as a hypothetical “bus” that spends a random “dwell time”,
Up, at a “single-berth” stop. The distribution of Up can be developed using the
probability theory. Specifically, we find that the mean and variance of Up can be

6Gamma distribution fits the real-world bus dwell times well (see, e.g., Ge, 2006), and is often
used to model bus dwell times in the literature due to its non-negativity, parsimony and
flexibility (Gu et al., 2011; Gu and Cassidy, 2013). However, our method can still be used if
the bus dwell time is assumed to follow other commonly used distributions, e.g. the log-normal
distribution (Wang et al., 2016, 2018).
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approximated by the following functions (assuming S follows gamma distribution):

E[Up] ≈ h(c, CS) ≡ 0.7931CS log(c) + 0.9911 + cτm;

V ar(Up) ≈ q(c, CS) ≡ 0.6819C3
S arctan(c) + 0.5102C2

S.
(2.8)

The derivation of (2.8) is relegated to Appendix C. The appendix also includes a
test of the accuracy of (2.8).

We now follow the logic in Section 2.1.1 to develop the approximate capacity; i.e.,
we consider that a c-berth stop’s capacity (c ≥ 2) is equal to the capacity of an
isolated c-berth stop, multiplied by the fraction of time when the stop is not blocked
by the queue arising from the signal. The blockage of the stop is again determined
with the assistance of an extended red period, which is now defined at the location
of the upstream-most berth with a duration of R̄p ≡ C−G+(c+d−1)tm +(c+d)τ ;
see Figure 2.3 for a 2-berth, 2-buffer stop as an example.

space

time

stop line

berth-1

upstream 

bus queue

bus trajectories

berth-2

buffer-2

buffer-1

extended red period,

red period,

reaction time

TU TBTP

τ

U
p,1

U
p

2
U

p
′

1

w

vm

C −G

R̄
p = C −G+ (c+ d− 1)tm + (c+ d)τ

Figure 2.3: Time-space diagram of bus operations at a 2-berth, 2-buffer near-side stop.

For a multi-berth stop, the number of available buffer spaces near the end of an
extended red period may be greater than 0 but less than c. In this case, only part
of the c-bus convoy that is currently under service can proceed to the buffer after
completing the services. The remaining buses in the convoy have to stay at the
downstream berths of the stop. Consequently, the next bus convoy to be served
by the stop would contain fewer than c buses. In the example shown in Figure
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2.3, the last “convoy” served in the extended red period has only one bus. With a
slight abuse of notation, we use the same symbol TU (as in the single-berth case) to
denote the part of extended red period for serving part of the first trapped convoy
and all the full-size convoys. We denote TP as the time for serving the last small
convoy if any, and TB as the time interval when all the berths are occupied by
buses waiting for departure (i.e., when the stop is effectively idle). The TU , TP

and TB are illustrated in Figure 2.3. The stop’s service rate is 0 during TB, and is
discounted by 1−NP

c
during TP , where NP is the number of buses in the small convoy.

For simplicity, we further define the “effective service time of full-size convoys” as
T

′
U = TU + NP

c
TP , and the “effective blockage time” as T

′
B = max{R̄p− T

′
U , 0}. We

then write the approximate stop capacity as:

QMA ≈
(

c

E[Up]

)(
1− E[T ′

B]
C

)
. (2.9)

Note that (2.9) is an analog of (2.1) in the single-berth case. Following a derivation
similar to the CLT approximation in Section 2.1.1, we have the approximate stop
capacity:

QMA =

1−
σT

′
U
(rΦ(r) + ϕ(r))

C

( c

h(c, CS)

)
, (2.10)

where r =
R̄p−µT

′
U

σT
′
U

, µT
′
U

and σT
′
U

are mean and standard deviation of T
′
U .

Finally, µT
′
U

and σ2
T

′
U

are approximated by (again, assuming S follows gamma dis-
tribution):


µT
′
U
≈ (n + 1

2
)h(c, CS) + q(c, CS)

2h(c, CS)
+ c + d0 − E[M ]

c
h(c + d0 − E[M ], CS);

σ2
T

′
U
≈ 1

12
h2(c, CS) + (n + 1

2
)q(c, CS) + 5h(c, CS) + 3τm

12h2(c, CS)(h(c, CS)− cτm)
q2(c, CS)

+
(

c + d0 − E[M ]
c

)2

q(c + d0 − E[M ], CS).

(2.11)

Derivation of (2.11) is relegated to Appendix D.

2.2 Far-side stop models
The approximations for far-side stops are derived in similar ways as for near-side
stops. The major difference lies in the calculation of the idle time period: a far-
side stop becomes idle when the stop is starved by the upstream red signal, which
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cuts off the bus inflow. We again present the approximation for single-berth stops
first (in Section 2.2.1) to smooth the reading experience, and then for the more
complicated multi-berth stops in Section 2.2.2. In both sections, we denote D as
the length of intersection, i.e., the distance between stop line and the start of buffer;
see Figures 2.1b, 2.4a and 2.4b.

2.2.1 Capacity approximation for a single-berth far-side stop (c = 1 and
d = n)

We first define the extended red period, again at the berth’s location, as shown by
the example of a far-side single-berth stop with d = 2 (Figure 2.4a). It starts from
the black dot on the left, which is (n + 1)τ ahead of the red start, and ends at the
grey point on the right, which is (D+n)tm later than the following green start. The
two dots are determined using the following logic. First, a bus whose dwell time
extends from the green period to beyond the black dot is the first bus trapped in
the extended red period. Figure 2.4a reveals that whenever a bus finishes its service
and departs the stop on or before the black dot, another bus queued upstream of
the signal can always cross the intersection and fill up the buffer before the signal
turns red. On the other hand, the first queued bus that can cross the intersection
in the following green period will arrive at the berth no earlier than τm after the
grey dot. If (n + 1) buses finish their services before the grey dot, the berth will be
idle until the end of extended red period.

Hence, the duration of the extended red period for a single-berth far-side stop is
R̄F ≡ (n + 1)τ + C − G + (D + n)tm, where the superscript F denotes the far-
side stop case. Note that this is Dtm longer than the extended red period for a
single-berth near-side stop, and the difference is exactly the time needed for a bus
to travel through the intersection.

Now we denote the period during which the berth is vacant as T F
B , which can be

calculated by:
T F

B = max{R̄F − T F
U , 0}, (2.12)

where T F
U = U

′
1 +∑n+1

j=2 Uj denotes the sum of dwell times, reaction times and move-
up times of n + 1 consecutive buses served in the extended red period; U

′
1 and

Uj(j = 2, 3, ..., n + 1) are defined in similar ways as for near-side stops. The T F
U is

again approximated by a normal random variable with mean and variance given by
equation (2.7). Consequently, the approximation of a single-berth far-side stop’s
capacity is calculated by (2.6) in which r = R̄−µT

σT
is replaced by r = R̄F −µT

σT
.
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Figure 2.4: Time-space diagrams of bus operations at a single-berth far-side stop.

A special case arises when d = n = 0 (i.e., when the stop is placed immediately
downstream of the intersection); see Figure 2.4b. In this case, a queued bus can
discharge into the intersection only after seeing the berth becomes empty. Hence,
the time gap between two consecutive buses’ dwelling activities at the berth is now
τm + Dtm instead of τm in the case of d > 0. As a result, the duration of extended
red period in this special case becomes R̄F,d=0 ≡ C − G + τ , because the first bus
that crosses the intersection in the following green period should arrive at the berth
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no earlier than τm + Dtm after the end of extended red period; see Figure 2.4b for
the illustration. Under this special case, the approximate capacity is:

QF,d=0
SA = 1

1 + τm + Dtm

1−
σF,d=0

T

(
rF,d=0Φ(rF,d=0) + ϕ(rF,d=0)

)
C

 , (2.13)

where rF,d=0 = R̄F,d=0−µF,d=0
T

σF,d=0
T

and


µF,d=0

T ≈ C2
S + (1 + τm + Dtm)2

2(1 + τm + Dtm)
;

(
σF,d=0

T

)2
≈ 5 + 8(τm + Dtm)

12(1 + τm + Dtm)2 C4
S + 1

2
C2

S + (1 + τm + Dtm)2

12
.

(2.14)

The increased time gap τm + Dtm would render the single-berth far-side stop with
d = 0 a very bad design, as we shall see in Section 2.4.2.

2.2.2 Capacity approximation for a multi-berth far-side stop (c ≥ 2 and
d = nc + d0)

Again, we first define the extended red period. As illustrated in Figure 2.5 for
a 2-berth, 3-buffer far-side stop, the extended red period is again defined at the
location of the upstream-most berth (berth-2 in the figure). A black dot is marked
on the timeline of that location at δL

1 ≡ (d + 1)τ + (c − 1)τm earlier than the red
start. If a c-bus convoy completes service by the black dot, another c-bus convoy
will discharge through the intersection to fill up the buffer before the present green
period ends (which is the case shown in the figure). On the other hand, if the c-bus
convoy completes service after δL

2 ≡ (d + 1)τ ahead of the red start (not shown in
the figure), then no additional bus is able to fill up the vacant space in the buffer
before the green end. When the c-bus convoy completes service after δL

1 , but before
δL

2 ahead of the red start, a small convoy of less than c buses will proceed to fill part
of the vacancies in buffer. To simplify the modeling work, however, we ignore the
possibility of having small convoys and define the extended red period’s start time
from an expectation perspective, i.e., at δL ≡ 1

2(δL
1 + δL

2 ) = (d + 1)τ + 1
2(c − 1)τm

before the red start.

The gray dot in Figure 2.5, which is located δR ≡ (D + d)tm after the following
green start, marks the end of extended red period. This is because the gray dot is
τm ahead of the earliest time that a bus from the upstream queue can arrive at the
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Figure 2.5: Time-space diagram of bus operations at a 2-berth, 3-buffer far-side stop.

upstream-most berth in the following green period. Hence, the length of extended
red period is R̄F p ≡ C −G + δL + δR = C −G + (d + c+1

2 )τ + (D + d + c−1
2 )tm.

We denote T F
U as the total time for serving all the convoys but the last smaller

one (if any) in the extended red period; T F
P as the time for serving that last small

convoy, during which the service rate is discounted by c−d0
c

(if this small convoy
does not exist, T F

P = 0); and T F
B as the time when all the berths are vacant. These

three variables are illustrated in Figure 2.6 for a 2-berth, 3-buffer far-side stop. For
simplicity, we define the effective service time of full-size convoys as T F ′

U ≡ T F
U +d0

c
T F

P

and the effective idle time as T F ′
B ≡ max{R̄F p− T F ′

U , 0}. The T F ′
U can be expressed

by:

T F ′

U = Up′

1 +
n+1∑
j=2

Up
j + d0

c
Up,d0 . (2.15)

Similar to the near-side stop case, the mean E[Up] and variance V ar(Up) of Up
j are

given by (2.8). The E[Up′

1 ] and V ar(Up′

1 ) can be found in (D.6) of Appendix D as
functions of E[Up] and V ar(Up). When d0 ̸= 0, the E[Up,d0 ] and V ar(Up,d0) are
obtained by substituting d0 for some c in (2.8):

E[Up,d0 ] ≈ 0.7931CS log(d0) + 0.9911 + cτm;

V ar(Up,d0) ≈ 0.6819C3
S arctan(d0) + 0.5102C2

S.
(2.16)
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Figure 2.6: Time-space diagram of bus operations at a 2-berth, 3-buffer far-side stop
where all the buffered buses are served within the extended red period.

Hence, µT F ′
U

and σ2
T F ′

U

can be determined as follows:


µT F ′

U
≈ E[Up′

1 ] + nE[Up] + d0

c
E[Up,d0 ];

σ2
T F ′

U
≈ V ar(T p′

1 ) + nV ar(Up′) +
(

d0

c

)2

V ar(Up,d0).
(2.17)

The approximation of a multi-berth far-side stop’s capacity is calculated by (2.10)
where σT F ′

U
substitutes for σT

′
U

and r =
R̄F p−µT F ′

U

σT F ′
U

. Note that this approximation only
applies for the case of d ≥ 1.

For the special case of d = 0, the time gap between two consecutive convoys becomes
cτm+Dtm, and the extended red period becomes R̄F p,d=0 ≡ C−G+( c+1

2 )τ +( c−1
2 )tm.

Thus the approximate capacity becomes:

QF,d=0
MA =

1−
σ

F,d=0
T

′
U

(rF,d=0
p Φ(rF,d=0

p ) + ϕ(rF,d=0
p ))

C

( c

h(c, CS) + Dtm

)
, (2.18)
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where rF,d=0
p =

R̄F p,d=0−µF,d=0
T

′
U

σF,d=0
T

′
U

and


µF,d=0

T
′
U

≈ (h(c, CS) + Dtm)2 + V ar(Up)
2(h(c, CS) + Dtm)

;(
σF,d=0

T
′
U

)2
≈ (5h(c, CS) + 8Dtm + 3τm)q2(c, CS)

12(h(c, CS) + Dtm)2(h(c, CS)− cτm)
+ q(c, CS)

2
+ (h(c, CS) + Dtm)2

12
.

(2.19)
The q(c, CS) and h(c, CS) are given by (2.8).

2.3 Model validation via simulation
In this section, we use computer simulation to examine the accuracy of the proposed
approximations for near- and far-side stops. We develop event-based simulation
programs for near- and far-side stops under the assumption that a bus queue is
always present upstream of both the stop and the intersection. The operation logic
in the simulation is the same as the analytical model. This is a common approach
used in queueing theory literature to verify the analytical model. To be true, it
would be better to conduct a field study for validation. But in reality it is generally
hard to find a very busy stop operating very close to the capacity for a sufficiently
long time. We leave it as one of our future works.

The pseudocode is furnished in Appendix E, and the detailed program code can be
downloaded from: https://github.com/Minyu-Shen/Simulation-for-bus-stops-near-
signalized-intersection. We also develop a program to visualize bus motions in the
simulation. This program is used to validate the simulation. The visualization code
is also provided in the above web link.

The parameter values used in the simulation are listed in Table 2.1. Stops with

Table 2.1: Parameter values for simulation validation and numerical analysis.

Category Parameter Physical value Normalized value
Bus stop design c 1∼4 –

d 0∼4 –
Bus operations µS 25 s 1

CS 0.3∼1 –
Bus traffic characteristics sj 12 m 1

w 25 km/h 14.47
vm 20 km/h 11.57

Signalized intersection C 80∼240 s 3.2∼9.6
D 24∼48 m 2∼4

G/C 0.3∼0.7 –
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less-varied dwell times, i.e., those with CS ∈ [0, 0.3), are not examined here since
they are rare in reality. For each instance with specific values for CS, c, d, C, G/C

and D, 300,000 buses are simulated to ensure that the average bus discharge rate
converges to the steady-state capacity. To facilitate the readers’ understanding of
the numerical cases discussed in the following sections, the normalized capacity
values obtained from our models were converted back to the actual physical values
in the unit of “buses per hour”.

Select validation results of the approximations are furnished in Section 2.3.1. Sec-
tion 2.3.2 compares the simulated and approximate capacities against the TCQSM
capacity formula (1.1).

2.3.1 Validation of the approximations

We first plot the approximate capacity and the simulated capacity against C as
dashed and solid curves, respectively, in Figures 2.7a-d. The four figures illustrate
the results for four near-side stops with c ∈ {1, 2} and CS ∈ {0.3, 0.8}, respectively.
We assume G/C = 0.5 in all the figures, and examine three values of d in each
figure: d = 0, 2, and 4. Stops with 3 or more berths exhibit similar results, which
are omitted here in the interest of brevity.

Comparison between approximation and simulation results unveils that the approx-
imation is quite accurate for most of the cases illustrated by the figures. The error
is almost negligible for single-berth stops, and is consistently small for various val-
ues of C and d. It grows as c increases since great error is brought by the various
approximation steps used in the multi-berth model (see Section 2.1.2). Moreover,
for 2-berth near-side stops with large CS (Figure 2.7d), the approximation consis-
tently underestimates the capacity. This is partly due to the overestimation of the
intermediate variable M in Appendix D. Finally, the error is larger for 2-berth stops
with small CS (Figure 2.7c), because the approximation model fails to capture the
high sensitivity of capacity to C when CS is small. A brief explanation of this
large error is that when CS is small, the service time of the first trapped convoy (or
bus) is highly correlated with the signal timing (see the end of Section 2.1.1 and
Appendix B). A more detailed explanation of the high sensitivity of capacity to C

is furnished below by using an extreme example of a 2-berth near-side stop with
no buffer (d = 0), G/C = 0.5, and deterministic dwell time (CS = 0). This stop’s
simulated capacity is plotted as the solid curve in Figure 2.8.

Note the first declining segment on the solid capacity curve for 80 s ≤ C < 134.6 s.
For any C in this range, only 4 buses are served per cycle (one 2-bus convoy in the
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red period and another convoy in the green). This is because G = C
2 < 67.3 s =

(τ + 2τm) + µS + 2τm + µS. The validity of the above inequality can be verified
using the following parameter values: τ = sj/w = 1.73 s, tm = sj/vm = 2.16 s,
τm = τ + tm = 3.89 s, and µS = 25 s (see Table 2.1). The reader can also verify
by drawing a simple time-space diagram that (τ + 2τm) + µS + 2τm + µS is the
minimum time needed for a 5th bus to discharge in a green period. Thus, as
C > 134.6 s, the stop capacity jumps to a higher value. (i.e., now 5 buses are
served per cycle; see the small solid declining segment for 134.6 s ≤ C ≤ 142.4 s
in Figure 2.8.) The 6th bus (which is in the same convoy as the 5th bus when
entering the berths) will still be blocked by the red signal until C > 142.4 s (i.e.,
G = C

2 > 71.2 s = (τ +2τm)+µS+2τm+µS+τm). Hence we observe another capacity
jump at C = 142.4 s, beyond which 6 buses will be served per cycle. Consequently,
the capacity curve exhibits a “sawtooth” shape, which is an intuitive result since
when the bus dwell time is deterministic, the number of buses that can be served
in a green period “jumps” as the green duration exceeds certain thresholds.

The “sawteeth” in the curve would be gradually smoothed as CS increases, as
illustrated by the dotted, dashed, and dash-dot curves in Figure 2.8, which represent
the cases of CS = 0.1, 0.2, and 0.3, respectively. The fluctuations also diminish as
C or d increases, because a larger C (and thus a larger G when G/C is fixed) means
more buses will be served in each green period, and a larger d means more buses
can potentially be served in each red period. In both cases, the “capacity jumps”
created by serving one additional bus per cycle will be diluted. We also see by
comparing Figures 2.7a and c that the capacity fluctuations are larger for a large
c. This is because a larger convoy size c will render the convoy dwell time Up (see
equation (C.1) in Appendix C) less varied; i.e., the coefficient of variation

√
V ar(Up)
E[Up]

will decrease with c.

Finally, the above capacity fluctuations are not captured by our models, which rely
on the CLT approximation. Hence the approximations would be inaccurate when
CS is very small. Fortunately, this issue is of lesser practical concern since in the
real world CS is usually no less than 0.4 (St. Jacques and Levinson, 1997; Levinson
and St. Jacques, 1998; Bian et al., 2015).

The accuracy of our approximation is further examined by box plots of the per-
centage approximation error, |Qappx−Qsim

Qsim
|, where Qappx is the approximate capacity

and Qsim is the simulation result. These box plots are shown in Figures 2.9a-c for
near-side stops with c = 1, 2, 3, respectively; each figure displays the results for
CS ∈ {0.3, 0.55, 0.8} and d ∈ {0, 1, 2, 3, 4}. Each error box represents the distribu-
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Figure 2.7: Validation of the approximations.

tion of the percentage errors for a set of C values ranging from 80 s to 240 s and a
fixed G/C = 0.5. Specifically, each box spans the range from the first quartile to
the third quartile of the error distribution; the band inside each box indicates the
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median; and the whiskers above and below each box indicate the maximum and
minimum errors (save for the outliers if any), respectively.

First note that most errors are less than 1% for single-berth stops (Figure 2.9a), 3%
for 2-berth stops (Figure 2.9b), and 5% for 3-berth stops (Figure 2.9c). The errors
increase with c because: i) the multi-berth model incorporates more approximation
steps than the single-berth model; and ii) for a fixed d and C, a larger c means
fewer convoys will be served in an extended red period, which will render the CLT
approximation less accurate.

For a given c, the largest error always occurs with the smallest CS and d = 0 (see the
outliers on top of the left-most box plot in each figure). This is mainly due to the
uncaptured high sensitivity of capacity to C when CS is small (see the explanation
above).

It is also observed in Figures 2.9b and c that for a fixed CS and c, the error generally
diminishes with d. The reason is simple: a larger d means more convoys can po-
tentially be served in an extended red period, thus rendering a more accurate CLT
approximation. This effect is not observed in Figure 2.9a since for single-berth
stops the error is already very small regardless of the value of d, and other factors
may be dominating as d grows. Nevertheless, in all the cases examined here, the
CLT approximation is quite good even when d = 0, which is a little surprising to
us. This maybe partly due to the bell-shaped distributions used for bus dwell times,
which are similar to the shape of normal PDFs.
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Similar findings are obtained when comparing the approximation against simulation
results for far-side stops; see Figures 2.7e and f for a 2-berth far-side stop with
D = 3 and CS = 0.3 and 0.8, respectively, and Figures 2.10a-c for box plots of
approximation errors for far-side stops with D = 3, CS ∈ {0.3, 0.55, 0.8}, d ∈
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Figure 2.9: Box plots of percentage error between approximations and simulation
results for near-side bus stops.
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{0, 1, 2, 3, 4}, and c = 1, 2, 3, respectively. Comparisons between Figures 2.7c and e
and between Figures 2.9a-c and Figures 2.10a-c unveil that the far-side stop models
have larger errors when CS is small, due to the greater sensitivity of far-side stop
capacity to C. When CS is large and c = 2 and 3, however, the far-side stop models
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Figure 2.10: Box plots of percentage error between approximations and simulation
results for far-side bus stops.
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exhibit smaller errors than the near-side ones. This is mainly due to the larger
error that occurs when estimating M in the multi-berth near-side stop model (see
Appendix D).

Though only the results for c = 1∼3 are shown here, our approximation also per-
forms fairly good for c = 4, where the errors in most cases are far below 10%. For
c = 5 and 6, however, errors between 10% and 20% appear more frequently, mainly
because the convoy dwell time Up has a very small coefficient of variation.

2.3.2 Comparison against the TCQSM capacity formula

We now use the same simulation results to validate the TCQSM formula (1.1), and
compare its accuracy with our approximation. The capacity calculated from (1.1)
is plotted as the dash-dot line in each of Figures 2.7a-f. The parameters in (1.1)
take the following values: the effective berth number Nel is set to 1 and 1.75 for
single and double-berth stops, respectively, according to Exhibit 6-63 in TCQSM
(Kittelson & Associates, Inc., 2013); ftb = 1 since we assume the bus operations
are not affected by other traffic; the clearance time tc is equal to τm since the re-
entry delay is zero for bus stops located in dedicated lanes; the operating margin
coefficient, Z, is set to 0.675 since TCQSM claims that this value would yield the
maximum capacity of the stop; the mean dwell time td = µS; and the coefficient of
variation in dwell time cv = CS. The TCQSM formula is independent of the buffer
size d and the cycle length C (given a fixed green ratio G/C). Hence, only one
horizontal line is plotted in each of Figures 2.7a-f.

Comparison between the dash-dot curve and the solid curves unveils how far the
TCQSM estimate is from the ground truth. Note first how the simulated capacity
varies with C and d, and that these effects are totally ignored by the TCQSM
formula. Even for the case of d = 0 (under which it is believed that the TCQSM
formula is developed), the TCQSM formula’s error is above 10% for most cases, and
can be up to 50% (see Figure 2.7c). This is because the operating margin term in
(1.1), Zcvtd, is too sensitive to cv. Closer examination of the solid curves in these
figures unveils that the ratio between the capacities of a 2-berth stop and a single-
berth stop (given other parameter values are equal), i.e., the “effective number of
berths” for a 2-berth curbside stop, is not a constant. In fact this ratio varies with
all the relevant parameters examined here: C, d and CS. Finally, the TCQSM
formula treats the near- and far-side stops in the same way, while in reality a near-
side stop produces a higher capacity than its far-side counterpart. (The reason of
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this and more comparisons between near- and far-side stops are furnished in Section
2.4.2.)

2.4 Numerical analysis
We now examine broader ranges of numerical instances using the approximation
models, i.e., equations (2.6), (2.10), (2.13) and (2.18), and discuss their practical
implications. Section 2.4.1 examines the discounting effect of the neighboring signal
on the stop’s capacity, and how this effect depends on various operating factors,
especially the buffer size d. Section 2.4.2 discusses which side of the intersection to
better place a stop at, when the objective is to improve the bus-carrying capacity.
We still use the parameter values in Table 2.1 in the following sections.

2.4.1 Capacity discounting effect of the signal

From equations (2.1) and (2.9), we see that the percentage capacity loss caused by
the signal can be simply expressed by E[TB ]

C
for a single-berth stop and E[T ′

B ]
C

for a
multi-berth stop. Figures 2.11a and b plot this percentage capacity loss against the
red period duration for instances with CS = 0.4 and 0.8, respectively. Each figure
contains 12 curves representing 12 scenarios with c ∈ {1, 2, 3} and d ∈ {0, 1, 2, 3}.
We use different line types to mark curves with different c: solid for c = 1, dotted
for c = 2, and dashed for c = 3; and different colors to mark curves with different
d: black for d = 0, red for d = 1, blue for d = 2, and green for d = 3. We choose
red period duration as the horizontal axis because the numerators of percentage
capacity loss, E[TB] and E[T ′

B], are functions of red period duration only, and are
independent of C. The scaling effect of C on the percentage capacity loss can thus
be isolated from other factors, and be simply illustrated by using different vertical
axes, one for each value of C. (Three vertical axes for C = 100 s, 130 s and 160 s,
respectively, are used in the figures.)

In each figure, comparing the curves of the same line type unveils that the capacity
loss drops rapidly as d grows. For example, note how the capacity loss drops from
55% to 3% when d increases from 0 to 3 for a single-berth stop with C = 100 s and
a red period of 70 s, as marked by the four black dots in Figure 2.11a. For a larger
c, the capacity loss drops with the increase of d at a slower speed. This is intuitive
because more buffer spaces are needed to mitigate the signal’s negative impacts on
the capacity of a large stop. Similar results are also observed for far-side stops,
which are omitted here in the interest of brevity.
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Figure 2.11: Percentage capacity loss resulting from the signal for near-side stops.

The above results can be used to determine how far from the intersection a stop
should be placed to achieve a certain percentage, θ, of an isolated stop’s capacity.
This is useful in practice because transit agencies often prefer to place a stop in
the proximity of the intersection to facilitate patrons’ access and transfers, and to
reduce the number of unprotected street crossings (Fitzpatrick et al., 1996). The
buffer size d required to achieve a target percentage θ is a function of c, CS, C, and
G/C, which can be calculated numerically from (2.6) and (2.13) for single-berth
stops, and (2.10) and (2.18) for multi-berth stops. Some tabulated values of the
critical d for near-side stops when θ = 95% are furnished in Appendix F.
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The effect of c on the capacity loss is a little more complicated. When d = 0, the
capacity loss decreases as c grows. This is because only one convoy is served in
an extended red period, and a larger convoy will increase the utilization of the red
period. On the other hand, the capacity loss increases with c for any d > 0, since
in this case the number of convoys that can be served in an extended red period
drops as c grows. Lastly, comparison between Figures 2.11a and b unveils that for
multi-berth stops, the damage done by the signal is smaller for a larger CS. This
is because a larger CS renders a longer convoy service time, and thus more of an
extended red period will be utilized for serving the convoys. However, this is not
true for single-berth stops.

2.4.2 Comparison between near- and far-side stops

There has been a long debate on which side of the intersection is better for the
placement of a bus stop (Terry and Thomas, 1971; Fitzpatrick et al., 1996). Factors
that may affect this decision include safety reasons, potential conflicts between
dwelling buses and turning traffic, patron accessibility, etc. (Fitzpatrick et al.,
1996). There exist a number of studies that quantified and compared the benefits
and costs of near- and far-side stops. But most of them have significant limitations
because they relied on simulation of specific stop layouts or empirical data collected
from specific sites (Zhao et al., 2007; Li et al., 2012; Diab and El-Geneidy, 2015;
Cvitanić, 2017). On the other hand, computationally efficient analytical models
that can be used to examine the general cases are rare. The latter kind of models
include Furth and SanClemente (2006) and Gu et al. (2014). However, these two
works focused on comparing the bus and car delays at near- and far-side stops where
at most one bus would arrive in each signal cycle. Thus they said nothing about
busy bus stops where bus queues are often present.

Using our approximation models, we plot in Figure 2.12a the percentage of difference
in capacity between near- and far-side stops, Qns−Qfs

Qns
, where Qns and Qfs denote the

capacities of near-side and far-side stops, respectively. Four curves are plotted in the
figure for D = 2, 3, 4, 5 (normalized), respectively, and for c = 2, d = 2, G/C = 0.5
and CS = 0.5. All the four curves are above 0, which indicates that a near-side stop
always produces a higher bus-carrying capacity than its far-side counterpart, should
other conditions be the same. This is mainly because a far-side stop’s extended red
period is longer than that of a near-side stop due to the extra term of Dtm; see the
equations of R̄ in Section 2.1.1, R̄p in Section 2.1.2, R̄F in Section 2.2.1, and R̄F p

in Section 2.2.2. The term Dtm is added because at a far-side stop buses queued
upstream have to travel across the intersection to reach the stop. This also explains
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Figure 2.12: Capacity comparison between near- and far-side stops with G/C = 0.5 and
CS = 0.5.

why the capacity difference diminishes as D decreases, as shown in the figure. Hence,
a bus stop should be placed at the near side of an intersection, if the bus-carrying
capacity is the major concern. Interestingly, this is on the contrary to the finding
in Gu et al. (2014), which states that far-side stops are more favorable since they
produce less bus delay than near-side ones. Note again that the above-cited work
applies only to stops with low to medium bus traffic.

We further plot the percentage capacity differences against C for c = 1, 2, 3 in
Figures 2.12b-d, respectively, where D is assumed to be 3. Each figure contains
four curves representing the cases of d = 0, 1, 2, 3, respectively. The figures show
that the advantage of near-side stops by-and-large diminishes as d increases. This is
also intuitive because when d is sufficiently large, the capacities of near- and far-side
stops both approach that of an isolated stop. Figure 2.12b also shows that a single-
berth far-side stop is particularly unproductive when d = 0 (over 15% capacity
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difference for d = 0 versus less than 6% for d = 1). This can also be explained using
our models: note in this case that the time gap between two consecutive buses
increases from τm to τm + Dtm (see Section 2.2.1). In Figures 2.12c and d, however,
the gap between the capacity differences for d = 0 and d = 1 becomes smaller.
This is because, for far-side stops with c > 1, a convoy will discharge through the
intersection together, which dilutes the negative effect of the extra term Dtm.

2.5 Summary
This chapter develops analytical approximations for single- and multi-berth curbside
stops located in dedicated bus lanes and near signalized intersections. The approxi-
mations are derived using time-space diagrams of bus trajectories and probabilistic
methods. The approximations have closed-form formulas, except for the standard
normal CDF (i.e. Φ(r)), which itself has several good closed-form approximations
in the literature (e.g. Vazquez-Leal et al., 2012). The models explicitly account for
the effects of key operating factors that were overlooked in the literature (e.g., the
signal cycle length and the buffer size) and the characteristics of bus traffic (e.g.,
the move-up time and reaction time). Extensive simulation tests manifest that in
most cases the approximation error is within 5%. Larger approximation errors may
arise when CS is small, c is large, and d is small.

Practical implications of this work are discussed in Section 2.5.1. Section 2.5.2
justify the necessity of analytical models. Section 2.5.3 introduces the potential
extensions of this work.

2.5.1 Practical implications

Our accurate and computationally-efficient approximations can be conveniently
used by practitioners to replace the flawed capacity formulas of curbside bus stops
in the professional handbooks. They can be used, e.g., to determine the appropriate
design and location of a new bus stop for serving a predicted peak-hour bus flow, or
to assess the performance of measures for mitigating bus congestion at an existing
stop. Measures to be considered would include adding berths and increasing the
distance between stop and intersection (recall that our models can furnish critical
distances needed to reduce or eliminate the capacity discounting effect of neigh-
boring signals; see again Appendix F). Strategies that can reduce the mean and
variance of bus dwell times (e.g., using wider bus doors, low-floor buses, and off-
board fare collection) can also be assessed by our models for near- and far-side stops.
In addition, practitioners may also consider to decrease the signal cycle length while

34 Chapter 2 Capacity Approximations for Near- and Far-side Bus Stops



keeping the green ratio unchanged. This would reduce the red period duration and
thus significantly increase a near- or far-side stop’s capacity (see again Figures 2.7
and 2.11) without affecting the general-purpose (GP) traffic’s discharging capacity
at the intersection by much. (Note that this measure would be deemed to have no
effect if the TCQSM formula (1.1) is used.) Finally, a congested far-side stop can
be relocated to the near-side of intersection to gain up to 15% of additional capacity
(see again Figures 2.12a-d), although this capacity gain diminishes as d increases.

2.5.2 Advantages of analytical model

Admittedly, many numerical results presented in this chapter can also be generated
through simulation. Still, our analytical approach is useful due to the following
reasons:

1. Some general insights can be immediately inferred from the capacity formulas
or from our analytical derivation, but would be difficult to obtain directly from
simulation. For example, equations (2.1) and (2.9) show that the percentage
capacity loss due to the signal (E[TB ]

C
or E[T ′

B ]
C

) is inversely proportional to cycle
length; and the formulas for E[TB] and E[T ′

B] (e.g. equation (2.5)) reveal that
this percentage capacity loss is a non-linear function of red period duration.
Hence the effect of signal on bus-stop capacity is not as simple as described
in the TCQSM formula (1.1). Built upon these insights, we further conclude
that stop capacity can be increased by reducing red period duration (or cycle
length) while keeping the green ratio unchanged. These insights also inspire
us to create diagrams similar to Figures 2.11a and b, where the effects of cycle
length and red period duration are clearly illustrated for stops with various
sizes and locations. Note how these diagrams can be used by practitioners in
the design of near- and far-side stops.

As another example, note how the formulas of extended red periods reveal
the significant differences between capacities of near-side and far-side stops,
given that other conditions are equal. Capacity formulas for far-side stops
with no buffer (d = 0) further unveil why this is a very bad design in terms
of stop capacity. Note that it would be difficult to reveal and confirm these
general findings using simulation results, since there are numerous scenarios
to simulate under various operating parameters.

2. The analytical approach can help us better understand the cause-and-effect
relationships behind the key factors affecting bus-stop capacity. Many findings
from the numerical results can thus be explained; please refer to Section 3.2
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for details. Understanding of these findings is very useful for practitioners
to make appropriate design decisions under diverse operating environments.
On the other hand, simulations are “black boxes” that usually cannot furnish
straightforward explanations of those causal relations.

3. Parsimonious analytical models are always desirable for their convenience in
practical use. This is why simple formulas or procedures described in profes-
sional handbooks (e.g. TCQSM and HCM) are still embraced by practitioners
despite their well-known flaws, and despite the fact that commercial simula-
tion tools become more and more powerful today. In addition, simulation
is often much more time-consuming than applying analytical formulas (even
if the latter may require some numerical computation, like in our case). In
practice, an accurate analytical model can be used in the initial stage of a
design project to identify a few promising options, and the more detailed and
realistic simulation can be employed to select from those few design options
and fine-tune the final design.

2.5.3 Potential extensions

To be sure, our approximations are limited in that they apply only to scenarios
where: i) an exclusive bus lane is present; ii) the green period is long enough to
discharge all the queued buses for a near-side stop, or to fill up the vacant buffer
and berths of a far-side stop; and iii) bus overtaking maneuvers are prohibited.
Potential extensions of the present work to address some of the above limitations
are discussed as follows.

In reality, buses discharging from a near-side stop may compete against right-
turning GP traffic for the buffer space. For this case, the distribution of buffer
spaces occupied by right-turning vehicles can be approximated using right-turning
vehicles’ arrival process and the bus discharge rate into the buffer. This distribu-
tion can then be incorporated into our stop capacity approximation to account for
the impact of right-turning traffic. A similar approach can be used to account for
the impact of (through-moving) GP vehicle queues on the capacity of a near-side
bus bay stop, where exiting buses have to merge back to the GP traffic lanes. For
far-side bus bay stops without bus lane, exiting buses may be blocked when they
are waiting for a sufficient gap in the GP traffic to merge back. This effect can be
estimated by incorporating a stochastic merge model into the approximation.

For a near-side stop, if the green period is too short to discharge c + d queued
buses, residual bus queues may exist in the buffer at the end of some green peri-
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ods. This case is difficult to model since bus operations in neighboring cycles are
highly correlated. One potential approach is to model the residual queue lengths
by a Markov chain, but closed-form approximations of stop capacity would not be
available. Fortunately, such a case is rare in reality (see Footnote 4). On the other
hand, a far-side stop with a short green period is equivalent to a far-side stop with
a smaller buffer, for which our present approximations can be directly applied.
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3Simulation Assessments of
Bus-Holding Strategies for Busy
Corridors
This chapter evaluates both, bus convoying and headway regularization for busy cor-
ridors with bus queues at stops. The effectiveness in reducing bus queues is tested for
wide-ranging cases involving homogeneous corridors where each stop has the same
number of berths and patron demand. The strategies are compared head-to-head
and against the do-nothing alternative. Experiments are controlled to eliminate
confounding factors.

In that queueing dynamics in bus corridors render analytical models intractable1,
present evaluations were performed using simulation. Existing simulation models
either: were developed for a single bus stop (Gibson et al., 1989; Fernández, 2010);
fail to account for bus queues at stops (Wu et al., 2017); or require calibration of
numerous parameters (Cortés et al., 2005, 2007). The latter concern can make it
difficult to evaluate wide-ranging conditions, and can obscure factors that contribute
most to a holding strategy’s effectiveness. A parsimonious simulation model of
multi-line bus operations was therefore developed in-house and used for the present
analysis.

Simulation experiments confirm that queues and variability in headways grow as
buses progress along a corridor. Contrary to previous reports, convoying buses was
found to increase bus delay and headway variability. In contrast, the headway-
regularizing strategy reduced these negative outcomes.

Present means of abstracting and simulating corridor operations with and without
the bus-holding strategies are detailed in Section 3.1. Parametric analyses of the
strategies and their comparisons head-to-head and against a do-nothing alternative
are presented in Section 3.2. Practical implications of the findings, particularly
in regard to the deployment of headway regularization are described in Section
3.3. Included there is discussion on how technologies might advance real-world
deployments.

1To appreciate this intractability, note that a corridor with multiple bus stops is a queueing
network (Shortle et al., 2018), and that each node (i.e., each multi-berth stop) is a polling
system that itself is difficult to solve (e.g., Takagi, 1988).
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3.1 The Corridor Model
Our abstractions of the corridor and its bus operations are presented in Section
3.1.1. The two control strategies, including the means of holding and releasing
buses, are discussed in Section 3.1.2. The performance metrics for the strategies
and the do-nothing alternative are presented in Section 3.1.3. Issues concerning
simulation development and experiments are discussed in Section 3.1.4. Notations
are defined when introduced, and are presented again in Appendix A for the reader’s
convenience.

3.1.1 Abstractions

Consider a corridor serving L bus lines. The lines may originate at different loca-
tions upstream, and merge onto the corridor, as in the example shown in Figure
3.1. The lines run through N multiple-berth stops inside the corridor and diverge
downstream. Assume that: each stop has the same number of berths, denoted c;
and each line has the same service frequency, f

L
, where f is the corridor’s bus flow

across all lines combined. The scheduled bus headway on each line, H, is therefore
L
f
. Denote as a0

l,j the arrival time of bus j on line l (l ∈ {1, 2, ..., L}, j ∈ {1, 2, ...}) at
the corridor’s upstream end. Assume a0

l,j is a Gaussian random variable with mean
jH and standard deviation CHH, where CH is a coefficient of specified value.2

bus stop 1 …… bus stop N
sorting point

berths berths

bus lines may diverge 
at the end of corridor

buses of 𝐿 lines merge 
into the corridor

Figure 3.1: Corridor layout (c = 3).

At each stop along the corridor, buses enter and exit berths in first-in-first-out
fashion, meaning that overtaking maneuvers are prohibited, as in Gu et al. (2011,
2015) and Shen et al. (2019). An arriving bus must therefore enter a queue if the
stop’s upstream-most berth is occupied. The delay imposed by this queue at stop
s to bus j on line l is denoted qs

l,j. When a bus finishes loading and unloading its
patrons, it may be blocked by another bus occupying a downstream berth in the

2Our simulation tests found that using other distributions for a0
l,j produces only marginal differ-

ences in outcomes.
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same stop. The ensuing in-berth delay is denoted bs
l,j. A bus’s departure time from

a stop is therefore:

ds
l,j = as

l,j + qs
l,j + Ss

l,j + bs
l,j, l ∈ {1, 2, ..., L}, j ∈ {1, 2, 3, ...}, s ∈ {1, 2, ..., N}, (3.1)

where as
l,j and ds

l,j denote the arrival and departure times, respectively, at stop s

for bus j on line l; and Ss
l,j the bus’s dwell time for loading and unloading patrons.

Assume that the bus queues that form at a stop are not affected by queues from
other nearby bottlenecks, e.g., traffic signals. The two delay terms, qs

l,j and bs
l,j, will

be determined dynamically in the simulation.

Assume that Ss
l,j is dictated by the number of boarding patrons3; i.e.,

Ss
l,j = α + βps

l,j, l ∈ {1, 2, ..., L}, j ∈ {1, 2, 3, ...}, s ∈ {1, 2, ..., N}, (3.2)

where ps
l,j denotes the number of boarding patrons for bus j of line l; α the lost time

due to bus acceleration and deceleration at a stop; and β the boarding time per
patron. Making this assumption allows us to model the propagations of bus queue
and headways along the corridor. If we just assume the dwell time of each bus to
be a random variable following some distributions like in Chapter 2, correlations
between bus queues at neighboring stops would be neglected.

To estimate the ps
l,j, note that a boarding patron may take more than one bus

line if her destination stop is served by multiple lines (Cominetti and Correa, 2001;
Schmöcker et al., 2016; Laskaris et al., 2018). These common-line trips are modeled
by dividing the L bus lines into n line groups, each consisting of L

n
lines4 that

share a certain proportion of common-line patrons, γ (0 ≤ γ ≤ 1). Patrons are
assumed to arrive at a stop at constant rate λ, and are divided into n equally-sized
demand groups. Assume that patrons in each of the n demand groups will take
only buses that belong to a specific line group; i.e., no patron can take two lines
that belong to different groups. Thus, common-line patrons arrive at a line group at
rate γ · λ

n
, and can take any of the L

n
lines in that group. Non-common-line patrons

arrive at the line group at rate (1 − γ)λ
n
. Those patrons are further divided into

L
n

equally-sized subgroups, and patrons in each subgroup can only take a specified
line in that group. The arrival rate of non-common-line patrons for a specific line
is thus (1 − γ) λ

L
. Further assume that the number of berths at each stop matches

3The assumption has previously been used to simplify analysis (e.g., Daganzo, 2009).
4This implies that L is an integer multiple of n. We judge this simplification to be acceptable,

since our aim is to examine how bus operations are affected by a few key factors.
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the number of line groups, i.e., c = n. This assumption simplifies the simulation of
bus convoying, as we shall see momentarily.

To illustrate the above ideas, consider a corridor that serves L = 6 lines that are
divided into n = 3 line groups. Suppose γ = 0.3. Then for each of the 3 line groups,
common-line patrons arrive at rate γ · λ

n
= 0.1λ, and non-common-line patrons

arrive at each bus line at rate (1− γ) λ
L

= 7
60λ.

Three more assumptions are used to describe the patron boarding process:

(i) a bus arriving at a berth will admit all common- and non-common-line patrons
who can take this bus, including those who arrive while the bus is dwelling;

(ii) if two buses belonging to the same line group are dwelling simultaneously at a
stop, their common-line patrons will divide themselves into two equally-sized
batches, with one batch heading for each bus; and

(iii) a bus has sufficient patron-carrying capacity, such that no patron is left be-
hind.5

With the above assumptions, ps
l,j can be simulated for each bus at any stop. Note

that the above abstractions simplify the modeling work and can highlight the effects
of key parameters (i.e., c and γ) on bus queueing.

Finally, a bus’s arrival time at stop s + 1 is determined by:

as+1
l,j = ds

l,j + ts
l,j, l ∈ {1, 2, ..., L}, j ∈ {1, 2, 3, ...}, s ∈ {1, 2, ..., N}, (3.3)

where ts
l,j denotes the inter-stop travel time of bus j of line l from stop s to stop

s + 1. The ts
l,j is assumed to follow a Gaussian distribution6 with mean µT and

variance σ2
T , i.e., ts

l,j ∼ N (µT , σ2
T ). The variance parameter σ2

T indicates the level of
disturbance to bus travel times between stops. For example, a lower σ2

T may occur
where a dedicated bus lane or signal priority schemes are deployed.

5This assumption is made to keep our model parsimonious. It allows us to simulate bus opera-
tions without knowing the full patron OD information. The same assumption was also made
in Osuna and Newell (1972), Daganzo (2009), and Schmöcker et al. (2016). We have also
performed simulation tests where buses have a finite patron-carrying capacity. Results show
that the findings presented in this thesis still hold under the finite capacity constraint.

6We have also performed simulation tests where inter-stop travel times follow other bell-shaped
distributions like log-normal. They produce only marginal differences in outcomes.
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3.1.2 Holding strategies

For the two strategies examined, buses are held, sorted and dispatched at a sorting
point located at the corridor’s upstream end; see again Figure 3.1. The sorting
point contains c dedicated bus lanes, each serving a line group. Arriving buses of
any line group will first queue in the assigned lane. Bus departures from a sorting
point are controlled by signals installed at the downstream end of each lane.

Figure 3.2 illustrates a sorting point for a case of L = 6 and n = c = 3. (Similar
layout structure can be found in the Sao Paulo pilot project (Szász et al., 1978)
when the convoying strategy was first implemented.) Among the three line groups,
line group A consists of lines 1 and 4, line group B lines 2 and 5, and line group C
lines 3 and 6. The two strategies hold and release buses in the following two ways.

buses in sorting queue

line group A

line group B

line group C

line-4line-1line-1

line-2line-5

line-3line-3line-6

Figure 3.2: Layout of a sorting point (L = 6, c = 3).

The scheme presently used to convoy buses is similar to the one in Szász et al.
(1978). Upon consolidating at the sorting point, one bus from each of the c line
groups is released into the corridor as a single convoy. For the example shown in
Figure 3.2, the three downstream-most buses (on lines 4, 2 and 3) are dispatched
together. They arrive and depart all of the corridor’s stops in unison. Convoy size
(three in the present example) equals the number of berths in each stop, and each
bus in a convoy is uniquely assigned to a berth. The distribution of a convoy’s
travel time between stops is dictated by its head bus and is N (µT , σ2

T ).

Under the headway-regularizing strategy, buses are held at the sorting point7 until
a headway between consecutive bus departures from the same line group reaches
c
L

H = c
f
. With Figure 3.2 again as the example, the departure headways between

any two buses in the same line group would be no less than H
2 . A bus arriving to an

7Thus, there is only one control point in our headway-regularizing strategy.
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empty line group at a time greater than c
L

H since the group’s previous departure
is released into the corridor immediately.

Under either strategy, a sorting delay, denoted w0
l,j, is incurred to bus j on line l.

Assume for simplicity that travel time between the sorting point and stop 1 is zero.
Hence, bus j on line l’s arrival time to stop 1 is calculated as:

a1
l,j = a0

l,j + w0
l,j, l ∈ {1, 2, ..., L}, j ∈ {1, 2, 3, ...}. (3.4)

Under a do-nothing scheme, w0
l,j is set to 0 in the above equation.

3.1.3 Performance metrics

For both strategies and the do-nothing alternative, the following performance met-
rics are derived from the simulation:

(i) average bus delay at each stop s, given by:

ws = El∈{1,2,...,L},j∈{1,2,...}[ds
l,j − as

l,j − Ss
l,j], s ∈ {1, 2, ..., N}, (3.5)

where El∈{1,2,...,L},j∈{1,2,...}[·] is the mean operator over all the buses from L

lines;

(ii) average cumulative delay per bus upon departure from stop s, given by:

W s = El∈{1,2,...,L},j∈{1,2,...}[w0
l,j] +

s∑
i=1

ws, s ∈ {1, 2, ..., N}; (3.6)

(iii) average coefficient of variation in the buses’ entry headways at stop s for any
bus line. The entry headway is measured between two consecutive buses of
the same line, and is given by:

Cs
E = El∈{1,2,...,L}


√

Vj∈{1,2,...}[as
l,j+1 + qs

l,j+1 − as
l,j − qs

l,j]
Ej∈{1,2,...}[as

l,j+1 + qs
l,j+1 − as

l,j − qs
l,j]

 , (3.7)

where as
l,j+1 + qs

l,j+1 − as
l,j − qs

l,j is the entry headway at stop s between buses
j and j + 1 of line l; El∈{1,2,...,L}[·] is the mean operator over all the L lines;
and Vl∈{1,2,...,L}[·] is the variance operator over all the L lines. (Note that
bus indices will be swapped if overtaking occurs between two buses of the
same line on an interlink between stops.) This third metric is a proxy for bus
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headway regularity at stop s. Entry headway was chosen because it is directly
perceived by patrons waiting at the stop.

3.1.4 Simulation issues

A discrete-time simulation program was developed using C++ to emulate the corri-
dor’s bus operations. The program consists of four modules that describe operations:
(1) at a sorting point; (2) on an inter-stop link; (3) at a bus stop; and (4) under
patron boarding. These modules are executed sequentially at each time step. The
program’s entire logic is illustrated by the flowchart in Figure 3.3. A visualization
tool of bus motion was also developed, which takes simulation outcomes as its inputs.
The tool was used to examine potential programming errors. The program code
can be downloaded from: https://github.com/Minyu-Shen/corrior-simulation.

Each simulation run starts with a 1-hour warm-up period, during which time patron
arrival rate, λ, was set to a low value of 100 patrons/h/stop, and no bus holding
was implemented. This warm-up time mimics an off-peak period when bus queues
might appear occasionally, and only at some stops. This was followed by a 6-hour
simulation period of a corridor’s bus operations at a specified λ. Simulations were
performed on a MacBook Pro 2015 with 2.2 GHz Intel Core i7 processor and 16 GB
1600 MHz DDR3 memory. A simulation run took 0.2 s on average to complete.

For each set of inputs, the simulation was repeated a certain number of times to
ensure that the average performance metrics derived in Section 3.1.3 converged.
The number was selected so that the estimated variances of ws and Cs

E were not
greater than 5× 10−4 min2 and 1× 10−3, respectively. One can refer to Section
11.7 of Ross (2014) for the calculation of this number. For illustration, Figure 3.4
plots the average w10, w11, and w12 for a 12-stop corridor against the number of
repetitive runs under a do-nothing alternative with: f = 100 buses/h, λ = 600
patrons/h/stop, σT = 10 sec, L = c = 3, and CH = 0.4. Note how the average bus
delays converge when the number of runs exceeds 150.

3.2 Parametric Analysis
This section begins by exploring the impacts of the two bus-holding strategies under
a range of patron demand for travel. Comparisons offered in Section 3.2.1 show that
convoying is virtually always inferior to the do-nothing alternative. In contrast, the
headway-regularization strategy is shown to outperform the do-nothing case on high-
demand corridors that are long enough to contain at least 5 or 6 stops. Convoying is
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9Figure 3.3: Flowchart of simulation.
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Figure 3.4: Convergence of average bus delays.

removed from further consideration in light of these findings. Sections 3.2.2-3.2.7 are
instead dedicated to examining headway-regularization and the do-nothing option
in parametric fashion. Comparisons in these latter sections are drawn for ranges of
CH , σT , f and other factors.

3.2.1 Demand effects

Discussion starts with Figures 3.5 and 3.6. Their graphs present curves of average
and cumulative bus delays, ws and W s, respectively, at each of N = 12 stops
along a corridor. Outcomes are collectively displayed for three patron demands:
λ ∈ {300, 600, 800} patrons/h/stop. In all cases, f = 100 buses/h; L = c = 3;
CH = 0.4; σT = 10 s; and µT = 4σT

8. The α = 8 s and β = 4 s/patron, as in
El-Geneidy and Surprenant-Legault (2010).
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Figure 3.5: Comparison of strategies in terms of ws.

8The µT was set to 4σT to ensure non-negative inter-stop trip times, but were excluded from
analysis to focus instead on bus delays.
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Figure 3.6: Comparison of strategies in terms of W s.

Note from the curves how ws and W s always rise with stop number, s. This confirms
that buses accrue more delay as they travel along a corridor.9

By visually comparing the dotted and solid curves in Figures 3.5 and 3.6, we further
see that convoying generates greater bus delays than what occurs by doing nothing,
irrespective of demand. Convoying’s poor performance is at odds with previous
reports; see for example Szász et al. (1978). It occurs because an entire convoy waits
for all its constituent buses to be sorted, and waits again at each stop downstream
for all its buses to complete their boardings and alightings. In light of this outcome,
convoying is removed from further consideration.

Headway regularization is a different story. Turning now to the dashed and solid
curves in Figures 3.5a-c, we see that for s ≥ 1, headway regularization always
produces lower ws than that of doing nothing.

Of course, this second holding strategy creates bus delays at sorting points, and
this is captured in the W s shown in Figures 3.6a-c. One can view the W s-curves
as corridor-wide delays on corridors of specified N . This being the case, com-
parison of the dashed and solid curves shows that headway regularization saves
corridor-wide delay in higher-demand cases with sufficient N . For demand λ = 600
patrons/h/stop, headway regularization is desirable on corridors with N ≥ 8; see
Figure 3.6b. For higher λ = 800 patrons/h/stop, an N ≥ 5 is needed to justify the
headway-regularizing strategy.

9The coefficient of variation in entry headways at s, Cs
E , was also found to increase with s, though

evidence is omitted in the interest of brevity.
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3.2.1.1 Closer look at headway regularization

The following two observations help explain the favorable impacts of headway reg-
ularization.

Observation 1 Regularizing headways at a corridor’s upstream end diminishes
headway variations at stops downstream; and

Observation 2 as a consequence of the first observation, buses encounter less delay
in the queues that form at those stops.

Evidence and further discussion of these observations are furnished in Appendix
G.

In light of its favorable performance, further tests of headway regularization are
presented in the remainder of this section. The tests consist of: varying parameters
one by one relative to the baseline conditions used in Section 3.2.1; and comparing
bus delays against do-nothing alternatives with identical parameter values. Except
where otherwise noted, tests feature λ = 800 patrons/h/stop, since headway regu-
larization has shown itself suitable for corridors with high demands such as this.

3.2.2 Arrival deviations

The curves in Figure 3.7 display the savings in W s achieved by headway regu-
larization relative to the do-nothing alternative. One curve is presented for each
of two values used for the deviation in bus arrival headways at a sorting point:
CH ∈ {0.2, 0.6}. Recall that λ = 800 patrons/h/stop, and that all other parameter
values equal those used in Section 3.2.1.

By diminishing the headway variations that buses would otherwise exhibit as they
begin traversing a corridor, headway regularization can diminish bus delays at stops
downstream. Study of Figure 3.7 confirms that on corridors with sufficient N

(N ≥ 5 in the present cases), the value of headway regularization grows when buses
have greater tendency to deviate from schedules.

3.2.3 Deviations in inter-stop trip times

Variation in trip times between stops naturally creates variation in the headways
that buses exhibit in arriving at those stops. The effectiveness of headway regular-
ization therefore diminishes as σT grows large.
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Figure 3.7: Effect of CH .

This is confirmed via Figure 3.8. Its delay-savings curves were constructed using
rather extreme values of σT ∈ {0, 30} s. Note the smaller savings in W s for the
larger σT .
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Figure 3.8: Effect of σT .

3.2.4 Bus flows

All else equal, larger bus headways (i.e., smaller bus flows, f) increase not only the
average numbers of patrons boarding and alighting at a stop, but also the variances
in these patron counts. This, in turn, increases the variability of bus dwell times at
stops, and thus the variation in headways downstream.

This is unveiled in Figure 3.9, with its distinct curves for f ∈ {100, 200} buses/h.
Note how headway regularization can be especially effective under the lower f .
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Figure 3.9: Effect of f .

3.2.5 Common-line patrons

We set a corridor’s number of lines, L = 6; and its number of line groups, n, and
berths per stop c, both at 3. We examine the effects of common-line patrons by
setting γ ∈ {0.5, 1}. The latter value of γ describes a case in which all patrons
are common-line ones, which is equivalent to a case in which L = c = 3, just as in
Section 3.2.1.

With the larger portion of common-line patrons, a delayed bus will serve greater
numbers of patrons at a stop, which only adds to the bus’s delay. These unstable
conditions can trigger bus bunching; e.g., see Schmöcker et al. (2016). Note from
Figure 3.10 how delay savings are as a result larger for γ = 1.
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Figure 3.10: Effect of γ.

3.2.6 Number of lines

We set L ∈ {6, 9}; c = 3; γ = 0.8; and all other parameters, including f , to the
baseline case. The impacts of headway regularization are only moderately sensitive

50 Chapter 3 Simulation Assessments of Bus-Holding Strategies for Busy Corridors



to f , as shown in Figure 3.11. If f instead increased proportionally with L, such
that f

L
was constant, the regularization strategy would be less effective for reasons

given in Section 3.2.4. If λ increased proportionally with L, the strategy would be
more effective, as seen in Section 3.2.1.
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Figure 3.11: Effect of L.

3.2.7 Number of berths in a stop

We set berth size, c ∈ {3, 5}. To examine c = 3, we set: f = 100 buses/h; λ = 800
patrons/h/stop; and L = 3 so that each line group has only a single bus line. For
c = 5, we set f = 500

3 buses/h and λ = 4000
3 patrons/h/stop, so that line frequency,

f
L

, and demand per line, λ
L

, are kept the same as in the examination of c = 3.10 In
similar fashion, we set L = 5 so that the number of bus lines per line group is kept
the same across both examinations.

Delay savings can be greater with larger c (i.e., c = 5), as evident in Figure 3.12 .
Although c in this case increased proportionally with f and λ, bus delays at queued
stops were larger with larger c, owing to the prohibition on overtaking maneuvers
inside each stop; see Gu et al. (2015). Once again, headway regularization is seen
to be especially effective when congestion grows large.

3.3 Summary
Present tests confirm that buses can encounter worsening conditions as they proceed
through corridors with queued stops. Tests also show that this vicious cycle can
become worse by dispatching buses in convoys. Previous studies that reported

10Holding f and λ fixed instead would have made for a trivial examination, since the larger c
in that case would have obviously reduced bus queueing, and thus the benefit of headway
regularization.
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otherwise were evidently plagued by a confounding factor: the addition of bus
berths to a corridor’s stops. Convoying itself is not an antidote to growing bus
queues and delays.

In certain circumstances, headway regularization was found to be an effective rem-
edy. Past studies have reported that delays inherent in regularizing bus entries into
corridors are not offset by any savings incurred downstream. But those studies
assumed a corridor’s stops are free of bus queues. In the presence of these queues,
we find that the delays at an upstream sorting point can be smaller than the delays
saved downstream, provided that the corridor contains a sufficiently larger number
of stops.

The findings unveil where and how to deploy headway regularization in real settings.
Firstly, our parametric tests show that the strategy’s advantages grow with dimin-
ishing bus flows and growing patron demands for travel. The busiest bus corridors
would therefore seem the best settings. Tests also show how the effectiveness of
headway regularization improves when buses’ inter-stop trip times are less varied.
This speaks to the potential value of deploying dedicated bus lanes (e.g., Burin-
skiene et al., 2014 or signal priority schemes (e.g., Baker et al., 2002) together with
headway regularization. The strategy was also found to be more effective when bus
lines share large proportions of common-line patrons who can reach their destina-
tions via any one of multiple lines. Therefore, bus lines that serve distinct patron
groups might best be assigned to distinct line groups at sorting points.11

11Headway regularization does not require that the number of line groups equal the number of
berths in each stop. This is required only for convoying. The equality was preserved in the
present work so as to draw fair comparisons across the two bus-holding strategies.
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Even with the regularization strategy, headway variations and bus queueing will to
some extent still grow stop-by-stop. On especially long corridors with many stops,
buses might therefore be held (and headways regularized) at multiple, regularly-
spaced sorting points. To minimize resulting delays to patrons on board, efforts
can go to locating these points where onboard occupancies tend to be smallest.

The above findings came via a simulation model developed in-house. Its relatively
simple logic and parsimonious structure can be used for other kinds of corridor
studies; e.g., to determine a suitable number of berths per stop. Moreover, the
model can be readily extended to accommodate a bus’s patron-carrying capacity
constraint, or corridors with inhomogeneous geometry and demand pattern; or to
explore other more sophisticated headway-regularizing schemes, such as Daganzo
and Pilachowski (2011) and Argote-Cabanero et al. (2015).

3.3.1 Implications in the era of connected and autonomous vehicles
(CAVs)

For better or worse, the emergence of CAVs may spark renewed interest in bus
convoying. After all, convoying trucks and other vehicles holds a promise of higher
travel speeds (Liu et al., 2019), improved fuel efficiency (Mersky and Samaras, 2016)
and reductions in other operating costs as well (Dai et al., 2020). Still, the present
findings call into question whether benefits like these might outweigh the downside
of convoying buses in busy corridors.

In contrast, CAV technologies could give a welcomed boost to the headway reg-
ularization of buses. For example, the technology might eliminate need for any
sorting point by enabling bus-to-bus communication to control corridor entries and
departures as well as travel speeds. The technologies might also advance the use of
cooperative bus-control measures such as adaptive holding (Muñoz et al., 2013; He
et al., 2019) and novel signal priority schemes (Estrada et al., 2016; Anderson and
Daganzo, 2020).
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4Conclusions
Section 4.1 summarizes this dissertation’s contributions. Section 4.2 discusses pos-
sible extensions of the current work.

4.1 Contributions
Analytical approximations are developed for estimating the bus-carrying capacities
at near- and far-side stops under various operating conditions. Our approximations
correct the flaws of the TCQSM formula by properly accounting for the effects of
previously-overlooked key operating factors on stop capacity. Validations via self-
developed simulation show that the approximations exhibit quite good accuracy.
A number of managerial insights are also unveiled from extensive numerical case
studies. For example, we find that, all else equal, a congested near-side stop can
produce more capacity (up to 15%) than a far-side one, and a far-side stop with
no buffer is a very bad design in terms of stop capacity. It is because at a far-
side stop buses queued upstream have to travel across the intersection to reach the
stop. Moreover, stop capacity can be increased by reducing red period duration (or
cycle length) while keeping the green ratio unchanged. The fixed green ratio can
ensure that the general-purpose traffic’s discharging capacity will not be reduced
by much.

The approximation models can be conveniently used by practitioners to determine
a near- or far-side stop’s bus-carrying capacity with several key input parameters,
including the number of berths, the distance between stop and signal, the signal
timing (cycle length and green ratio), and the distribution of bus dwell times. In-
versely, practitioners can use the models to determine the number of berths and the
critical distance needed for serving a predicted peak-hour bus flow; e.g., Appendix F
furnishes some tabulated values of the critical distances that eliminate the capacity
discounting effect of neighboring signals. Practitioners can also use these models
to assess the performance of strategies for mitigating bus congestion at an existing
stop. These strategies include means to reduce the mean and variance of bus dwell
times (e.g., using wider bus doors, low-floor buses, and off-board fare collection)
and signal timing plan.

At the corridor level, a parsimonious simulation model is developed to emulate multi-
line bus operations in a congested corridor with multi-berth stops. The model ac-
counts for the patron boarding process and mutual blockage between buses dwelling
at curbside stops, and outputs the average bus queueing delays and coefficients of
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variation in bus headways at each stop. The model is used to examine how the
bus delays and headway variations vary along the corridor, and two bus-holding
strategies that aim to mitigate bus queues. Due to its parsimonious nature, the
simulation model is computationally efficient and thus enables us to draw general in-
sights under various operating environments. Important findings include: (i) buses
can encounter worsening conditions as they proceed through corridors with queued
stops; (ii) the convoying strategy, which was believed to be beneficial by conven-
tional wisdom, would actually render greater bus delays and headway variations.
These reported benefit of convoying may actually come from the addition of berths;
and (iii) past studies have reported that delays inherent in regularizing bus entries
into corridors are not offset by any savings incurred downstream. But those studies
assumed a corridor’s stops are free of bus queues. In the presence of these queues,
we find that the delays at an upstream sorting point can be smaller than the delays
saved downstream, provided that the corridor contains a sufficiently larger number
of stops. Key factors affecting the performance of the headway-regularizing strategy
include the inter-stop travel time variations and common-line patron ratios.

The findings have practical implications. For example, when improving a corridor’s
overall capacity, the bus agency may consider building wider stops, and deploy
passing lanes in the corridor’s downstream segment. Moreover, to preserve the
benefit of holding, buses may need to operate in a dedicated bus lane or adopt
bus signal priority scheme. They can not only increase bus travel speed, but also
reduce travel time variations. Under appropriate conditions, buses can also be
held a second time in the middle of a corridor, so that bus delays and headway
variations can be further reduced for downstream stops. Finally, bus lines that are
associated with different demand groups should be assigned to different line groups
for holding.

4.2 Future work
In addition to those potential extensions discussed at the end of Chapters 2 and 3,
we also plan to conduct the following work in the future:

(i) At busy stops, transit agencies may pre-assign different bus lines into berths
so that patrons can queue up after the specific berth for their target lines.
The aim is to avoid chaos and conflict between the waiting queues. The
simulation model in Chapter 3 can be adapted to quantify the impact of
different berth allocation plan on the stop performance. Simulation-based
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heuristic algorithm can then be designed to find the optimal plan that yields
minimum bus queueing delay.

(ii) Develop smarter, adaptive holding strategies that may have better perfor-
mance than the simple one investigated in Chapter 3. We will explore whether
adaptive holding control schemes that are similar to Daganzo (2009) and
Argote-Cabanero et al. (2015) can better improve both the bus travel speed
and the service reliability. Particularly, we expect to identify a strategy that
can efficiently combat large disturbances that may occur in buses’ inter-stop
travel. This strategy can be designed in a cooperative way such that the buses
from different lines can communicate with each other for sharing the real-time
position. This idea is currently being explored.

(iii) Extend the corridor simulation model in Chapter 3 to study the bus route
design optimization, particularly for a BRT corridor shared by multiple lines.
Previous studies on this topic either failed to incorporate the delays caused by
the interaction between buses or used an over-simplified queueing delay model
(e.g., Tirachini and Hensher, 2011). The decision variables include the bus
frequency of each line, the number of berths of each stop, the stop spacings,
and skip-stop schemes. The system performance metrics include queueing
time, patron waiting time and in-vehicle travel time. The efficient simulation
model in this thesis enables us to conduct simulation-based optimization for
a wide range of operating conditions.
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Appendix

A Tables of notation
Table A.1: List of notations used in Chapter 2

Notation Description
Input parameters
c Number of berths
C Cycle length
CS Coefficient of variation in bus dwell time
d Number of buffer spaces
D Length of signalized intersection
G Green period duration
n, d0 Parameters satisfying d = nc + d0 when n = 0, 1, 2, ..., and 0 ≤

d0 < c

sj Jam spacing / berth length
tm Time for a bus to travel forward through one berth
τ Reaction time of a bus
µS Mean of bus dwell time
vm Bus’s move-up speed
w Backward wave speed of bus traffic
Other parameters and variables
δL, δR Start and end time of extended red period, respectively, for a multi-

berth far-side stop
M Number of buses in a multi-berth near-side stop at the start of an

extended red period
R̄, R̄F Extended red periods for single-berth near- and far-side stops,

respectively
R̄p, R̄F p Extended red periods for multi-berth near- and far-side stops,

respectively
R̄F,d=0, R̄F p,d=0 Extended red periods for single- and multi-berth far-side stops with

d = 0, respectively
TB, T F

B Times during which the stop is fully blocked for near-side stops or
vacant for far-side stops, respectively
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T
′
B, T F ′

B Effective blockage time for a near-side stop and effective vacant
time for a far-side stop, respectively

TP , T F
P Times of serving the last small convoy (if any) for multi-berth near-

and far-side stops, respectively
TU , T F

U Total times for serving n + 1 consecutive buses in an extended red
period for single-berth near- and far-side stops, respectively; and
total times for serving all the full-size convoys in an extended red
period for multi-berth near- and far-side stops, respectively.

T
′
U , T F ′

U Effective service time of full-size convoys for near- and far-side
stops, respectively

U
′
1, Up′

1 Portions of times for serving the first trapped bus (for single-berth
stops) and convoy (for multi-berth stops) in the extended red pe-
riod, respectively

Uj Sum of dwell time, reaction time and move-up time of j-th bus.
Up

j Total time for serving the j-th convoy
Up,x Time for serving the last small convoy of size x in the extended red

period
µT , σ2

T Mean and variance of TU , respectively
µT

′
U
, σ2

T
′
U

Mean and variance of T
′
U , respectively

µT F ′
U

, σ2
T F ′

U

Mean and variance of T F ′
U , respectively

Table A.2: List of notations used in Chapter 3

Notation Description
a0

l,j Arrival time of the j-th bus of line l to the corridor’s start point
as

l,j Arrival time of the j-th bus of line l to stop s

α Time lost due to bus deceleration and acceleration, and door open-
ing and closing at a stop

β Boarding time per patron
bs

l,j In-berth delay of the j-th bus of line l at stop s

c Number of berths
CH Coefficient of bus arrival time deviation at the corridor’s start

point.
Cs

A Average coefficient of variation in the buses’ arrival headways at
stop s for any line

Cs
D Average coefficient of variation in the buses’ departure headways

at stop s for any line

58 Chapter 4 Conclusions



Cs
E Average coefficient of variation in the buses’ entry headways at stop

s for any line
ds

l,j Departure time of the j-th bus of line l from stop s.
f Total bus flow
γ Ratio of common-line patrons shared by bus lines in a line group
H Scheduled service headway within any bus line
λ Total patron arrival rate per stop
L Number of bus lines
µT Mean bus travel time between two consecutive stops
n Number of line groups
N Number of stops in the corridor
ps

l,j Number of boarding patrons for the j-th bus of line l at stop s

qs
l,j Queueing delay of the j-th bus of line l at stop s.

σT Standard deviation of bus travel time between two consecutive
stops

Ss
l,j Dwell time of the j-th bus of line l at stop s

ts
l,j Inter-stop travel time of the j-th bus of line l from stop s to stop

s + 1
w0

l,j Sorting delay of the j-th bus of line l at the sorting point
ws Average bus delay at stop s

W s Average cumulative delay per bus from the sorting point to stop s

B Derivation of approximations (2.7)
First, we have E[Uj] = 1 + τm and V ar(Uj) = V ar(Sj) = C2

S. Due to the mutual
independence between U

′
1 and Uj’s, µT and σ2

T can be obtained as follows:

µT = n(1 + τm) + E[U ′

1];

σ2
T = nC2

S + V ar(U ′

1).
(B.1)

The E[U ′
1] and V ar(U ′

1) are derived by assuming that the start of the extended red
period is a random incidence within a renewal process of consecutive bus departures
from the stop. By the definition of random incidence (Larson and Odoni, 1981), the
renewal interval that contains the random incidence, W , has the following PDF:

fW (t) = tfU(t)
E[U ]

= tfS(t− τm)
1 + τm

, τm ≤ t ≤ ∞, (B.2)

where fU is the PDF of Uj = Sj + τm(j = 1, 2, ..., n + 1), and fS is the PDF of Sj.
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Conditioning on W , U
′
1 is uniformly distributed in [0, W ]. Thus, we have:

E[U ′

1] = E
[
E[U ′

1 | W ]
]

= E
[1
2

W
]

= 1
2

∫ ∞

τm

t · tfS(t− τm)
1 + τm

dt

= 1
2(1 + τm)

∫ ∞

0
(u + τm)2 · fS(u)du = E[S2] + 2τm + τ 2

m

2(1 + τm)
.

V ar(U ′

1) = E
[
U

′

1
2
]
− (E[U ′

1])2 = E
[
E[U ′

1
2 | W ]

]
− (E[U ′

1])2 = E
[1
3

W 2
]
− (E[U ′

1])2

= 1
3(1 + τm)

∫ ∞

0
(u + τm)3 · fS(u)du− (E[U ′

1])2

= E[S3] + 3τmE[S2] + 3τ 2
m + τ 3

m

3(1 + τm)
− (E[U ′

1])2.

Since Sj follows a gamma distribution with mean 1, by using its moment generating
function, we can calculate that E[S2] = C2

S + 1 and E[S3] = 2C4
S + 3C2

S + 1. Thus,
we have:

E[U ′

1] = C2
S + (τm + 1)2

2(1 + τm)
; (B.3)

V ar(U ′

1) = 5 + 8τm

12(1 + τm)2 C4
S + 1

2
C2

S + (1 + τm)2

12
. (B.4)

Plugging (B.3) and (B.4) into (B.1), we have:


µT ≈ n(1 + τm) + C2
S + (1 + τm)2

2(1 + τm)
;

σ2
T ≈

5 + 8τm

12(1 + τm)2 C4
S + (1

2
+ n)C2

S + (1 + τm)2

12
.

(2.7)

The above approximations rely on the hypothetical uncorrelation between U
′
1 and

signal timing. Their performance would be poor if CS is small. For example, in the
deterministic case where CS = 0, τm = 0 and C−R̄ = 2.99, we have U

′
1 = 0.01, while

(B.3) gives E[U ′
1] = 0.5. But if C− R̄ increases slightly from 2.99 to 3.01, we would

have U
′
1 = 0.99 while (B.3) still gives E[U ′

1] = 0.5. Hence the distribution of U
′
1 and

the stop capacity can be highly sensitive to signal timing when CS is small. Note
that if CS > 0, the correlation between U

′
1 and signal phases diminishes as green

duration increases, and so does the sensitivity of stop capacity to signal timing.
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C Derivation of approximation (2.8)
Figure C.1 shows the bus trajectories of a 3-bus convoy dwelling at a 3-berth stop.
From the figure, we have:

Up = max{S1, S2, ..., Sc}+ cτm, (C.1)

where Sj(j = 1, 2, ..., c) denotes the dwell time of the j-th bus in the convoy. From

time

space

stop line

berth-1

bus trajectories

berth-2

berth-3

upstream 

bus queue

buffer

green period,

vm

U
p

w

S1

S2

S3

G

Figure C.1: Time-space diagram of bus operations at a 3-berth near-side stop.

(C.1), we can obtain the CDF of Up as follows:

FUp(t) = (FS(t− cτm))c for t ≥ cτm, (C.2)

where FS is the CDF of Sj. Since Sj is a non-negative continuous random variable,
we have:

E[Up] = cτm +
∫ ∞

0
(1− (FS(t))c) dt. (C.3)

Similarly,

V ar(Up) = 2
∫ ∞

0
t (1− (FS(t))c) dt−

(∫ ∞

0
(1− (FS(t))c) dt

)2
. (C.4)

The two integrals in equations (C.3) and (C.4) are the first and second raw moments
of the order statistic max{S1, S2, ..., Sc}; see David and Nagaraja (2004) for the
detailed derivations. Unfortunately, there is neither closed-form expressions nor
good approximations for these moments, save for a few very special cases (David
and Nagaraja, 2004). In light of this, we here fit least squares models to tabulated
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values of these moments when Sj follows a gamma distribution with CS ∈ [0.2, 1]
and 1 ≤ c ≤ 6. (Note that the above parameter ranges have covered most of
the curbside stops in the real world; for example, Levinson and St. Jacques (1998)
concluded from empirical data that CS ∈ [0.4, 0.8], and stops containing more than
6 berths are also rare in the real world.) The tabulated values were furnished by
Gupta (1960) and Prescott (1974). Our best-fitted models selected from numerous
candidates with various mathematical forms are:E[Up] ≈ h(c, CS) ≡ 0.7931CS log(c) + 0.9911 + cτm;

V ar(Up) ≈ q(c, CS) ≡ 0.6819C3
S arctan(c) + 0.5102C2

S.
(2.8)

The goodness-of-fit of (2.8) is illustrated in Figure C.2a for E[Up] and Figure C.2b
for V ar(Up) for the realistic ranges of c and CS, where the dashed curves represent
the fitted models and the solid curves represent the tabulated values furnished
by the literature. The root-mean-square error (RMSE) of the above models are
0.0125 and 0.0131, respectively; and the R-squared values are 0.9984 and 0.9992,
respectively.
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Figure C.2: Goodness-of-fit for (2.8).

D Derivation of approximations (2.11)
The T

′
U depends on TU , NP , and TP , which all depend upon the number of buses

in the stop at the start of the extended red period. We denote this number as M

(1 ≤M ≤ c). (Note that some of these M buses may have completed their services,
but they are blocked by buses residing in the downstream berths.) Depending on
the value of M , the following three cases may arise:
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1. If M < d0, (n + 1) full-size convoys can be served following the first convoy
in the extended red period. The (n + 3)-th convoy would be a small one with
only d0 −M buses. Thus we have:


TU = Up′

1 +
n+2∑
j=2

Up
j ;

NP = d0 −M ;

TP = Up,d0−M ,

(D.1)

where Up′

1 denotes the portion of the first convoy’s service time that is con-
tained in the extended red period; Up

j (j = 2, 3, ..., n + 2) the time for serving
the j-th (full-size) convoy; and Up,d0−M the time for serving the small convoy
of d0 −M buses.

2. If M = d0, we have: 
TU = Up′

1 +
n+2∑
j=2

Up
j ;

NP = 0;

TP = 0.

(D.2)

3. If d0 < M ≤ c, only n full-size convoys can be served following the first one,
and the (n + 2)-th convoy would be a small one with c + d0−M buses. Thus,


TU = Up′

1 +
n+1∑
j=2

Up
j ;

NP = c + d0 −M ;

TP = Up,c+d0−M .

(D.3)

The E[T ′
U ] and V ar(T ′

U) can be derived given the distribution of M , which depends
upon c and the bus dwell time distribution. Unfortunately, the distribution of M

is very difficult to derive analytically, even for special (e.g. gamma) distributions
of bus dwell times. Hence we again seek an approximation to solve this issue.

We find by extensive numerical experiments for bus stops with c ≤ 6 that, if the
start of the extended red period is treated as a random incidence in the first convoy’s
service time (similar to the assumption made in Appendix B for single-berth stops),
and if the bus dwell times follow a gamma distribution with CS ∈ [0.1, 1], then
M ≥ c − 1 ≥ d0 for 85.8% of the time. This is also intuitive: while some buses
of the convoy may have completed their services earlier, they may not be able to
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depart the stop as long as there is one bus still dwelling at a downstream berth. We
henceforth ignore the above case 1 and consider cases 2 and 3 only. Cases 2 and 3
can be further combined into one case described by the following equation:

T
′

U ≈ Up′

1 +
n+1∑
j=2

Up
j + c + d0 −M

c
Up,c+d0−M . (D.4)

We further use the following approximations:



µT
′
U
≡ E[T ′

U ] ≈ E[Up′

1 ] + nE[Up] + E[c + d0 −M

c
Up,c+d0−M ]

≈ E[Up′

1 ] + nE[Up] + c + d0 − E[M ]
c

E[Up,c+d0−E[M ]];

σ2
T

′
U
≡ V ar(T ′

U) ≈ V ar(Up′

1 ) + nV ar(Up) + V ar(c + d0 −M

c
Up,c+d0−M)

≈ V ar(Up′

1 ) + nV ar(Up) +
(

c + d0 − E[M ]
c

)2

V ar(Up,c+d0−E[M ]).

(D.5)

The mean and variance of Up′

1 are obtained by the following approximations in
which the start of the extended red period is treated as a random incidence:


E[Up′

1 ] ≈ E2[Up] + V ar(Up)
2E[Up]

;

V ar(Up′

1 ) ≈ 5E[Up] + 3τm

12E2[Up](E[Up]− cτm)
V ar2(Up) + V ar(Up)

2
+ E2[Up]

12
.

(D.6)

Section D.1 presents the derivation of (D.6).

We also have E[Up,c+d0−E[M ]] ≈ h(c + d0 − E[M ], CS) and V ar(Up,c+d0−E[M ]) ≈
q(c + d0 − E[M ], CS); see equations (2.8). Finally, the value of E[M ] is again
approximated by a fitted least-square model as follows (with RMSE = 0.061 and
R2 = 0.9974):

E[M ] ≈ 0.9617c− 0.1899 · c · CS. (D.7)

Plugging (2.8), (D.6) and (D.7) into (D.5) and simplifying, we have (2.11).

D.1 Derivation of (D.6)

We again use the random incidence assumption adopted in Appendix B. In ad-
dition, we approximate Sp ≡ max{S1, S2, ..., Sc} as a gamma-distributed random
variable with the same mean E[Sp] and variance V ar(Sp). Using the moment gener-
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ating function of gamma distribution, we find that E[Sp2] = E2[Sp] + V ar(Sp) and
E[Sp3] = E3[Sp] + 3E[Sp]V ar(Sp) + 2V ar2(Sp)

E[Sp] . The renewal interval that contains
the random incidence, W , has the following PDF:

fW (t) = tfUp(t)
E[Up]

= tfSp(t− cτm)
E[Sp] + cτm

, cτm ≤ t ≤ ∞. (D.8)

Conditioning on W , Up′

1 is uniformly distributed in [0, W ]. So,

E[Up′

1 ] = E
[1
2

W
]

= 1
2(E[Sp] + cτm)

∫ ∞

0
(u + cτm)2 · fSp(u)du

= (E[Sp] + cτm)2 + V ar(Sp)
2(E[Sp] + cτm)

= E[Up]
2

+ V ar(Up)
2E[Up]

. (D.9)

V ar(Up′

1 ) = E
[1
3

W 2
]
− (E[Up′

1 ])2

= 1
3(E[Sp] + cτm)

∫ ∞

0
(u + cτm)3 · fS(u)du− (E[Up′

1 ])2

= E[Sp3] + 3cτmE[Sp2] + 3(cτm)2E[Sp] + (cτm)3)
3(E[Sp] + cτm)

− (E[Up′

1 ])2

= 5E[Up] + 3cτm

12E2[Up](E[Up]− cτm)
V ar2(Up) + V ar(Up)

2
+ E2[Up]

12
. (D.10)

E Simulation algorithms in Chapter 2
The following notation is used in this simulation:
Bi — The number of berth in which the i-th bus dwells, counting from the downstream-
most berth, which is numbered berth 1;
Fi — The number of buffer space at which the i-th bus waits, counting from the
downstream-most buffer space, which is numbered buffer 1; Fi = 0 means that the
bus is not in any buffer; Fi > d means that the bus is blocked immediately after
service;
LQi — Time when the i-th bus leaves the upstream queue;
ESi — Time when the i-th bus finishes service;
WBi — The i-th bus’s waiting time in the berth after service;
LBi — The i-th bus’s departure time from the berth;
WF i — The i-th bus’s waiting time in the buffer due to the red signal (for near-side
stops only);
FT i — The number of moves that the i-th bus makes in the buffer area before
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entering a berth (for far-side stops only);
LFN i — The time when the i-th bus leaves the buffer and discharges into the
intersection (for near-side stops only).
LFF i,j — The time when the i-th bus makes the j-th move in the buffer area (for
far-side stops only; j ∈ [1, 2, ..., FT i]).

Algorithm 1: Simulation of bus operations at a near-side bus stop.
1 Generate the service times according to a given distribution with µS and CS ;
2 Set states of the first bus: LQ1 ← 0, B1 ← 1, ES1 ← LQ1 + ctm + S1, LB1 ← ES1;
3 if mod(LB1 + dtm, C) ≤ G then
4 F1 ← 0, WF 1 ← 0;
5 else
6 F1 ← 1, WF 1 ← C −mod(LB1 + dtm, C) + τ , LFN1 ←WF 1 + LB1 + dtm;
7 foreach simulated bus i ≥ 2 do
8 if Bi−1 < c then
9 LQi ← LQi−1 + τm, Bi ← Bi−1 + 1;

10 else
11 if Fi−1 < d + c then
12 if Fi−1 < d then
13 Bi ← 1;
14 else
15 Bi ← Fi−1 − d + 1;
16 LQi = LQi−1 + (c−Bi−1 + 1)tm + Si−1 + WBi−1 + τ ;
17 else
18 Bi ← 1, LQi = LFNi−1 + τ ;

19 ESi ← LQi + (c−Bi + 1)tm + Si;
20 WBi ← max(0, LBi−1 + τ − ESi), LBi ← ESi + WBi;
21 if Fi−1 = 0 or Fi−1 = d + c then
22 if RMi ← mod(LBi + (Bi + d− 1)tm, C) ≤ G then
23 Fi ← 0, WF i ← 0, LFN i ← LBi;
24 else
25 Fi ← 1, WF i ← C −RM i + τ , LFN i ← LBi + (Bi + d− 1)tm + WF i;

26 else
27 if LFN i−1 + τ ≤ LBi + (Bi + d− Fi−1 − 1)tm then
28 if RMi ← mod(LBi + (Bi + d− 1)tm, C) ≤ G then
29 Fi ← 0, WF i ← 0, LFN i ← LBi;
30 else
31 Fi ← 1, WF i ← C −RM i + τ , LFN i ← LBi + (Bi + d− 1)tm + WF i;

32 else
33 Fi ← Fi−1 + 1, WF i ← LFN i−1 + τ − LBi − (Bi + d− Fi)tm,

LFN i = LFN i−1 + τ ;
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Algorithm 2: Simulation of bus operations at a far-side bus stop.
1 Generate the service times according to a given distribution with µS and CS ;
2 Set states of the first bus: LQ1 ← 0, F1 ← 0, FT 1 ← 0, B1 ← 1,

ES1 ← LQ1 + (c + d + D)tm + S1, WB1 ← 0, LB1 ← ES1;
3 foreach simulated bus i ≥ 2 do
4 if Fi−1 = 0 then
5 if Bi−1 = c then
6 if d = 0 then
7 Bi ← 1, Fi ← 0; if temp← mod(LBi−1 + τ, C) ≤ G, then

LQi ← LBi−1 + τ , else, LQi ← C − temp + LBi + τ ; endif
LBi = ESi ← LQi + (c + d + D)tm + Si;

8 else
9 if mod(LQi−1 + τm, C) ≤ G then

10 LQi ← LQi−1 + τm, Fi = Bi = FT i ← 1, LFF i,1 ← LBi−1 + τ ,
LBi = ESi ← LFF i,1 + ctm + Si;

11 else if temp← C −mod(LQi−1, C) + LQi−1 + τ < LBi−1 + τ then
12 Fi = Bi = FT i ← 1, LFF i,1 ← LBi−1 + τ ,

LBi = ESi ← LFF i,1 + ctm + Si;
13 else
14 LQi = temp, FT i = Fi ← 0, Bi ← 1,

LBi = ESi ← LQi + (c + d + D)tm + Si;

15 else
16 Fi ← 0; if mod(LQi−1 + τm, C) ≤ G then
17 LQi ← LQi−1 + τm, Bi ← Bi−1 + 1,

ESi ← LQi + (c + d−Bi + 1 + D)tm + Si,
LBi ← ESi + max(0, LBi−1 + τ − ESi);

18 else if temp← C −mod(LQi−1 + τm, C) + LQi−1 + τm + τ < LBi−1 + τ
then

19 LQi ← LBi−1 + τ , Bi ← Bi−1 + 1,
LBi = ESi ← LQi + (d + c−Bi + 1 + D)tm + Si;

20 else
21 LQi ← temp, Bi ← 1, LBi = ESi ← LQi + (c + d + D)tm + Si;

22 else if Fi−1 < d then
23 if mod(LQi−1 + τm, C) ≤ G then
24 LQi ← LQi−1 + τm, Fi ← Fi−1 + 1, Bi ← Berth(Fi);
25 else
26 LQi ← LQi−1 + C −mod(LQi−1, C) + τ , Which-buffer-berth();
27 When-leave-buffer-berth();
28 else
29 if mod(LFF i−1,1 + τ, C) ≤ G then
30 LQi ← LFF i−1,1 + τ , Which-buffer-berth();
31 else
32 LQi ← LFF i−1,1 + τ + C −mod(LFF i−1,1 + τ, C) + τ , Which-buffer-berth();
33 When-leave-buffer-berth();
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34
35 Function Berth(x):
36 if mod(x, c) = 0 then
37 return c;
38 else
39 return mod(x, c);

40 Function Which-buffer-berth():
41 flag ← 0;
42 for k = 1 : 1 : FT i−1 do
43 if LQi + (d− Fi−1 + (k − 1)c + 1 + D)tm < LFF i−1,k + τ then
44 if Fi−1 < d then
45 Fi = Fi−1 − (k − 1)c + 1;
46 else
47 if k = 1, then, Fi ← d− c + 1, else, Fi ← Fi−1 − (k− 1)c + 1, endif ;
48 Bi ← Berth(Fi), flag ← 1, break;

49 if flag = 0 then
50 if LQi + (d + c−Bi−1 + D)tm < LBi−1 + τ then
51 if Bi−1 = c, then, Bi = Fi ← 1, else, Fi ← 0, Bi ← Bi−1 + 1, endif ;
52 else
53 Fi ← 0, Bi ← 1;

54 Function When-leave-buffer-berth():
55 FT i ← ceil(Fi/c);
56 if FT i = 0 then
57 ESi ← LQi + (c + d−Bi + 1 + D)tm + Si,

LBi ← max(0, LBi−1 + τ − ESi) + ESi;
58 else if FT i = FT i−1 then
59 if (mod(Fi, c) = 1 and c ̸= 1) or c = 1 then
60 For k = 1 : 1 : FT i − 1, do LFFi,k ← LFFi−1,k+1 + τ , endfor;
61 LFFi,F T i ← LBi−1 + τ ;
62 else
63 For k = 1 : 1 : FT i, do LFFi,k ← LFFi−1,k + τ , endfor;

64 else if FT i > FT i−1 then
65 For k = 1 : 1 : FT i−1, do LFFi,k ← LFFi−1,k + τ ,endfor;
66 LFF i,F T i ← LBi−1 + τ ;
67 else
68 if (mod(Fi, c) = 1 and c ̸= 1) or c = 1 then
69 LFFi,F T i ← LBi−1 + τ ;
70 For k = FT i−1 : −1 : 1, do LFFi,k ← LFFi−1,F Ti−1−F Ti+k

+ τ , endfor;
71 LFFi,F T i ← LBi−1 + τ ;
72 else
73 For k = FT i : −1 : 1, do LFFi,k ← LFFi−1,F Ti−1−F Ti+k

+ τ , endfor;

74 ESi ← LFFi,F T i + ctm + Si, LBi ← max(0, LBi−1 + τ − ESi) + ESi;
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F Tables of critical d to eliminate the negative effect of the
signal on a near-side stop’s capacity
Tables F.1a-d furnish the values of the critical d for various c, G/C, CS and C and
θ = 95%. Note that the values of C are normalized as multiples of µS. The practi-
tioners can use interpolation between neighboring tabulated values to calculate the
critical d if the relevant parameter values cannot be directly found in the tables.

Table F.1: Critical d to ensure a near-side stop’s capacity is no less than 95% of the
capacity of a corresponding isolated stop.

(a)c = 1

C
G/C CS 3 4 5 6 7
0.35 0.4 2 3 3 4 5

0.6 2 3 4 4 5
0.8 3 4 4 5 5

0.5 0.4 2 2 3 3 3
0.6 2 2 3 3 4
0.8 2 3 3 4 4

0.65 0.4 1 1 2 2 2
0.6 1 2 2 2 2
0.8 2 2 2 2 3

(b)c = 2

C
G/C CS 3 4 5 6 7
0.35 0.4 3 4 5 6 7

0.6 3 4 5 6 7
0.8 3 4 5 6 7

0.5 0.4 2 3 4 4 5
0.6 2 3 3 4 5
0.8 3 3 4 4 5

0.65 0.4 1 2 2 3 3
0.6 1 2 2 3 3
0.8 1 2 2 3 3

(c)c = 3

C
G/C CS 3 4 5 6 7
0.35 0.4 4 5 7 8 9

0.6 4 5 6 7 8
0.8 4 5 6 7 8

0.5 0.4 3 4 5 6 7
0.6 3 4 4 5 6
0.8 3 4 4 5 6

0.65 0.4 2 2 3 4 4
0.6 2 2 3 3 4
0.8 2 2 2 3 4

(d)c = 4

C
G/C CS 3 4 5 6 7
0.35 0.4 5 7 8 10 11

0.6 5 6 7 9 10
0.8 5 6 7 8 9

0.5 0.4 4 5 6 7 8
0.6 3 4 5 6 7
0.8 3 4 5 6 7

0.65 0.4 2 3 4 4 5
0.6 2 3 3 4 5
0.8 2 2 3 3 4

F Tables of critical d to eliminate the negative effect of the signal on a near-side stop’s
capacity 69



G Evidence and discussions of Observations 1 and 2
To see why Observation 1 is true, define Cs

A and Cs
D as the coefficients of variation

in bus arrival and departure headways at stop s ∈ {1, 2, . . . , N}, respectively. The
Cs

A and Cs
D are formulated as:

Cs
A = El∈{1,2,...,L}


√

Vj∈{1,2,...}[as
l,j+1 − as

l,j]
Ej∈{1,2,...}[as

l,j+1 − as
l,j]

 , (G.1)

Cs
D = El∈{1,2,...,L}


√

Vj∈{1,2,...}[ds
l,j+1 − ds

l,j]
Ej∈{1,2,...}[ds

l,j+1 − ds
l,j]

 . (G.2)

Note first that the headway regularization reduces C1
A to nearly 0. This renders

a lower C1
E as compared to the do-nothing alternative, because Cs

E is positively
correlated with Cs

A for any s. Thanks to the smaller C1
E, the numbers of boarding

patrons and the bus dwell times (which are dictated by the boarding numbers) at
stop 1 are less varied too. This further engenders a smaller C1

D under headway
regularization. Finally, C2

A also becomes smaller due to its positive correlation with
C1

D. The above reasoning will also show that Cs
A, Cs

E and Cs
D diminish for all stops

in the corridor as a result of headway regularization.

The above is illustrated for the case of λ = 600 patrons/h/stop in Figure G.1. All
other parameters take the values in Section 3.2.1. The dark curves display Cs

A,
Cs

E, and Cs
D under headway regularization for s ∈ {1, 2, . . . , 12}. The same metrics

under the do-nothing alternative are shown via the grey curves. Note how the dark
curves are significantly and consistently lower than the grey ones.
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s D

Cs
A, do-nothing
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E, do-nothing

Cs
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E, headway-regularizing
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D, headway-regularizing

Cs
A, headway-regularizing

Cs
E, headway-regularizing

Cs
D, headway-regularizing

Figure G.1: Effects of headway regularization on Cs
A, Cs

E , and Cs
D.
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Observation 2 is true since the average bus delay due to queueing at any stop s

diminishes when the variation in bus headway, Cs
A, decreases (Gu et al., 2011).

Moreover, a smaller Cs
E produces bus dwell times that are less varied, which further

reduces the average bus delay (Gu et al., 2011, 2015).
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