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I 

Abstract 

As power systems evolve, their components with uncertainties keep expanding. For 

example, renewable energy sources (RESs) including wind turbines and solar panels 

are growing to phase fossil fuels out. RESs are usually influenced by weather and 

therefore have unpredictable outputs. Besides, increasing penetration of electric 

vehicles (EVs) bring highly uncertain loads because they are influenced by human 

behaviours and the transportation system. With greater uncertainties, the operation of 

power systems becomes more challenging. As many operation tasks of power systems 

highly depend on optimization, it is crucial to have efficient approaches to solve 

optimization problems involving uncertainties.  

Stochastic optimization (SO) and robust optimization (RO) have been often used to 

solve optimization problems with uncertainties. SO assumes that the uncertainty 

follows a certain probabilistic distribution or uses discrete distributions based on 

selected scenarios to approximate the uncertainty distribution. As information about 

uncertainties is limited, there is ambiguity in the uncertainty distribution. SO ignores 

such ambiguity and thus often has inferior performance. Different from SO, RO 

constrains uncertainties within certain sets and focuses on the worst case in the 

considered sets. As the worst case rarely happens, over-conservative results are often 

obtained when RO is used to evaluate the economic efficiency of system operation. 

Without the drawbacks of SO and RO, a more recently developed approach named 

distributionally robust optimization (DRO) is becoming popular. In this thesis, 

potentials of DRO in economic dispatch are further exploited beyond the state-of-art 

literature and DRO is applied to facilitate balance responsible distribution systems 

(BRDSs) and balance responsible distribution companies (BR-DISCOs) to utilize the 

flexibility of electric vehicle aggregators (EVAs) for the first time. 

In works on economic dispatch using DRO, statistical moments are often adopted 
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by DRO to depict the uncertainty distribution. As statistical moments are derived from 

limited samples of uncertainties, they may deviate from the actual moments. Instead of 

being ignored as in previous works, such deviations are considered by the DRO 

technique adopted here. Besides, because the output of RESs cannot be negative nor 

exceed the installed capacity, the uncertainty in RES outputs is always bounded. In this 

regard, ellipsoidal support sets are used to limit the range of possible uncertainty 

realizations under DRO. Moreover, as the proposed multi-period model is carried out 

as a rolling-plan, modelling of the first period is more important than that of the other 

periods. Therefore, a two-stage framework is employed here to model the first period 

without approximation. While for the other periods, segregated linear decision rule 

approximation is applied. With such structure, a proper trade-off between modelling 

accuracy and computational tractability is achieved by the proposed model. 

Furthermore, within the framework of DRO, RO is integrated to enhance the system 

security. A Constraint Generation algorithm is proposed to solve the proposed model. 

Through case studies, it is shown that the proposed model avoids over-conservative 

solutions and prevents inferior performance under limited uncertainty information 

through adopting more realistic DRO techniques. Also, the proposed model guarantees 

economical and secure long-term operation without causing excessive computational 

burden. 

Nowadays, many components of power systems are required to act as balance 

responsible parties (BRPs). BRPs should contribute to the energy balance of the entire 

system by maintaining their planned energy portfolio and will be penalized if they fail 

to do so, which means that BRPs should mitigate their forecast uncertainties. As BRPs, 

BRDSs with EVAs can utilize the flexibility of EVAs at the expense of disturbing their 

charging. Without influencing driving activities of EVs in the next day, a model is 

established here for BRDSs to delay uncertainties through the flexibility of EVAs and 

thus create opportunities for uncertainties from different times to offset each other. In 

the established model, linear decision rules approximation is used to reduce the 

computational complexity, based on which a scheme of uncertainty transferring is 
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proposed to relieve disturbance to EVAs. DRO is used to evaluate the average 

performance of the operation plans. As the possibility that uncertainties offset each 

other depends on uncertainty correlations, temporal and spatial covariances of 

uncertainties are considered by DRO. Comprehensive case studies are carried out based 

on charging demands of EVAs simulated from real traffic data. The results show that 

the adopted DRO technique effectively avoids unnecessary costs. Also, the established 

model achieves the trade-off between cost savings brought by the flexibility of EVAs 

and the corresponding payments to EVAs. Overall, the operation costs of BRDSs are 

reduced with the established model. 

The model proposed for BRDSs is extended to be applicable for distribution 

companies serving as BRPs. Such distribution companies are here referred as BR-

DISCOs. Different from BRDSs, BR-DISCOs would purchase energy to deliver to their 

customers and hence need to consider energy costs as well. Therefore, apart from 

mitigating uncertainties, the flexibility of EVAs can also be used by BR-DISCOs to 

shift EVA charging demands to hours with lower energy prices. Because using EVAs 

to mitigate uncertainties and shifting EVA charging demands would both disturb the 

charging of EVAs, their interactions need to be properly considered in the extended 

DRO model. Besides, it is assumed here that the disturbance to EVAs incurred from 

uncertainty mitigation needs not be fully recovered at the end of the day as long as the 

capability of EVAs in accepting disturbance is respected. As a result, the involved 

uncertainties appear to be eliminated as they will become deterministic information in 

the next day. Unrecovered disturbance to EVAs would influence their charging 

demands in the next day, but change on the average operation costs in the next day is 

little as the expectation of considered uncertainties is close to zero. Although recovering 

the disturbance to EVAs will cause BR-DISCO to deviate from its decided energy 

portfolio, it may be preferable in the earlier part of the day because otherwise payments 

to EVAs will keep increasing as time goes. Then, as in the previous model proposed 

for BRDSs, involved uncertainties can be regarded as being delayed through EVAs. 

Meanwhile, power losses in the charging and discharging of EVAs are used to reduce 



IV 

 

the scale of uncertainties and thus reduce penalties for energy deviations of BR-DISCO. 

Through case studies, the extended model is verified to be capable to coordinate the 

uses of EVAs in mitigating uncertainties and shifting their charging demands. It is 

found that the two forms of uncertainty mitigation, i.e., eliminating uncertainties and 

delaying uncertainties, could both reduce the operation costs of BR-DISCO and 

cooperatively achieve the minimum cost under the proposed model. 
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Chapter I 

Introduction 

1.1 Background 

Power systems used to highly depend on fossil fuels, including coal, natural gas and 

oil. As fossil fuels are formed gradually in natural processes that last for millions of 

years, their current consumption rate is much faster than their generation rate. With 

limited reserves, they will certainly be exhausted if alternative energy sources are not 

developed. Besides, fossil fuels release considerable amounts of carbon dioxide when 

burned. Because of extensive consumption of fossil fuels, the concentration of carbon 

dioxide in the atmosphere has significantly increased since the beginning of the 

industrialization, which leads to global warming. Moreover, the burning of fossil fuels 

releases pollutants such as sulfur dioxide and heavy metals. Because of these drawbacks 

of fossil fuels, the world has reached a consensus in phasing them out. In 2015, the 

Group of Seven agreed to stop using fossil fuels by 2100 and keep the increase of the 

global average temperature from the level before the industrialization within 2 degrees 

Celsius. Through the Paris Agreement signed in 2016, more countries joined in this 

plan. 

Different from fossil fuels, renewable energy such as solar and wind energy can 

replenish itself through natural processes within human timescales and does not have 

the drawbacks of fossil fuels. Therefore, it is vital in phasing fossil fuels out and is 

developing rapidly. It is estimated that compared with using fossil fuels, using wind 

energy of a kWh avoids the release of 600 grams of carbon dioxide [1]. In 2015, wind 

energy sources with the capacity of 63 GW were installed worldwide. According to the 

statistics of The World Bank, the share of renewable energy in all energy sources of 

electricity generation had risen from 17.4% in 2003 to 22.9% in 2015 [2]. The 
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International Energy Agency predicted in 2014 that the share of solar power could reach 

27% by 2050 [3]. Moreover, as technologies and the industry develop, renewable 

energy is becoming cheaper. The cost of solar energy got lower than grid energy price 

for the first time in Spain in 2013 [4]. In 2017, National Renewable Energy Laboratory 

of America estimated that the cost of wind energy could be halved by 2030 [5]. Under 

such trends, it is certain that the share of renewable energy will keep increasing. 

However, renewable energy is greatly influenced by external factors such as weather 

and thus its output is difficult to predict. Although there are various forecasting 

techniques, the predictability of renewable energy’s output is still low for short-term 

operation [6]. In other words, renewable energy brings uncertainties to the operation of 

power systems. 

Apart from being used in electricity generation, fossil fuels are also vastly 

consumed by traditional vehicles having internal combustion engines. Because of the 

promising future of renewable energy, replacing traditional vehicles with electric 

vehicles (EVs) is a viable way to achieve the phase-out of fossil fuels in transportation. 

Besides, EVs also have other advantages over traditional vehicles, including little noise 

pollution and greater starting torque. Also, compared with internal combustion engines, 

electric motors in EVs are simpler and have higher efficiency in energy conversion. 

Furthermore, EVs can convert the kinetic energy back to electric energy, which is 

particularly useful for driving in cities. With these advantages, EVs are growing rapidly. 

India even plans to sell no traditional vehicles but only EVs by 2030 [7]. J.P. Morgan 

estimated that the share of EVs and hybrid EVs in all vehicle sales would increase to 

30% by 2025 and 60% by 2030 [8]. At the same time, the average price of EVs is 

decreasing [9, 10], which will further stimulate their growth. 

As long as EVs are connected to power systems for a sufficiently long time, their 

charging rates can be adjusted, and it is even possible to produce vehicle-to-grid power 

flows. So, EVs can provide flexibility for the operation of power systems. The 

flexibility of EVs has many potentials such as mitigating uncertainties brought by 

renewable energy sources (RESs). For the scheduling of EVs’ charging, their arrival 
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and departure time, state of charge (SOC) at arrival and target SOC at departure need 

to be taken into consideration. However, such information cannot be forecast accurately 

because of the complexity of the transportation system and the unpredictability of 

human behaviors [11, 12]. So, similar to RESs, EVs bring uncertainties to the operation 

of power systems. 

As sources of uncertainties used to be limited, many operation problems of power 

systems depended on deterministic models [13, 14]. But ignoring the significant 

uncertainties brought by RESs and EVs can now result in severe consequences. For 

example, energy imbalance can be caused, and thus the deviation of system frequency 

will happen and stress the synchronous generators. Also, transmission lines may 

become overloaded. As power systems are very complex, chain reactions can be 

triggered to cause blackouts of a wide area as well. In distribution networks, the node 

voltage may vary significantly and exceed the safe range. To avoid these consequences, 

it is now important to properly take uncertainties into consideration when making 

operation decisions for power systems. 

Optimization is applied in power systems for the first time in 1960s and has become 

one of the most important approaches [15]. It searches for the best element of a certain 

set according to certain criterion. The criterion is usually maximizing or minimizing a 

function. In power system operation, optimization is used to make decisions for various 

problems such as unit commitment and economic dispatch subject to constraints about 

system security, economic efficiency and so on. As uncertainties keep increasing in 

power systems, developing effective approaches to solve optimization problems 

involving uncertainties becomes crucial. 

To alleviate the negative influences on power systems brought by uncertainties, 

various ways can be adopted. In [16, 17], operating reserves from generators are 

prepared. It is also possible to curtail excessive renewable energy [18] or initiate load 

shedding [19]. Besides, the flexibility of EVs may be used as well [20]. With these 

possible approaches, it is important to know how they could cooperate to achieve the 

best outcome. On the other hand, new trends in power systems such as the growth of 
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flexible components and the increase of uncertainties bring new operating mechanisms. 

For example, some system components are now required to act as balance responsible 

parties (BRPs). To contribute to the energy balance of the entire system, BRPs should 

plan their energy portfolio in advance and follow their plans. If they fail to do so, 

corresponding penalties will be applied [21, 22]. With such mechanism, costs of 

maintaining the energy balance can be recovered from BRPs, and BRPs are motivated 

to reduce their energy imbalances. To achieve secure and economical operation under 

the new operating mechanisms, new models need to be developed. 

1.2 Research Motivations 

1.2.1 Approaches for solving optimization problems involving uncertainties 

To deal with optimization problems with uncertainties, several approaches have 

often been used. Among them, stochastic optimization (SO) is a major one. One 

common type of SO is based on scenarios for realizations of uncertainties. For example, 

for a univariate uncertainty 𝜉, SO can be based on scenarios like 𝜉 = −1, 𝜉 = 0 and 

𝜉 = 1. Generally, constraints of the optimization problem are required to be satisfied 

for all the selected scenarios and the weighted objective over all the scenarios is 

optimized under such type of SO, which is equivalent to approximating the probability 

distribution of the uncertainty by discrete distributions based on the selected scenarios.  

In terms of selecting or generating scenarios, various ways have been adopted in 

literature. In [23], uncertainties in wind power and load demands are assumed to follow 

zero-mean normal distributions, and Monte Carlo simulation is conducted to generate 

scenarios, whose weights are set to be equal. [24] assumes that uncertainties in wind 

power and loads follow truncated normal distributions. The possible range of 

uncertainties under the assumed distribution is divided into several intervals. Middle 

points of each interval are chosen as the scenarios. Their weights are set to the 

probabilities that uncertainty realizations fall into their corresponding intervals. In [25], 

given the historical data of wind speed, an inverse normal distribution is generated to 
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fit the distribution of wind speed, based on which an autoregressive model is developed. 

Scenarios are generated using this autoregressive model and their weights are 

determined in a way such that certain statistical information of the discrete distribution 

based on the scenarios matches that of the generated inverse normal distribution as well 

as possible. In contrast with [25], [26] determines the scenarios and their weights by 

directly solving an optimization problem that minimizes the difference between the 

discrete distribution based on the scenarios and the assumed uncertainty distribution in 

terms of certain statistical information. In [27], scenarios for uncertain market prices 

are generated by stochastic models in a tree format. Parameters of the stochastic model 

are fitted according to historical data. In this way, dependency between market prices 

in different hours is reflected.  

Obviously, the uncertainty distribution will be poorly approximated if only a few 

scenarios are generated or selected, which can lead to sub-optimal results [28]. While 

if a large number of scenarios are used to guarantee the approximation accuracy, heavy 

computational burden will be caused [29-33]. So, to achieve the trade-off between 

accuracy and computational efficiency, scenario reduction techniques are often adopted 

in literature to select scenarios that are representative. For example, only one of several 

scenarios that are very close to each other can be kept. Scenario reduction is often 

achieved by using probability distances, which measure the distances between 

probability distributions. In literature, different kinds of probability distances have been 

adopted by different scenario reduction techniques. For example, [34] uses Kantorovich 

distances and [35] uses Fortet–Mourier metrics. Moreover, different scenario reduction 

techniques have different focuses and are suitable for different problems [25]. No 

scenario reduction technique is universally suitable, and choosing a proper one is often 

troublesome. Besides, scenarios can only be generated based on the available 

information about the uncertainties. Because such information is always limited, over-

fitting can easily be incurred, and the uncertainty distribution will be poorly 

approximated. As a result, the quality of the obtained solution will be greatly degraded 

[29, 31, 36]. 
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Another type of SO assumes that the uncertainty follows a certain distribution, and 

transforms the optimization problem involving uncertainties into deterministic forms 

analytically. For example, chance constraints are eliminated through analytical 

transformation in [37] by assuming that the uncertain wind speed follows Weibull 

distributions and in [38] by assuming that the uncertain wind power follows a new type 

of probability distributions named versatile distributions. [39] assumes that the load 

uncertainty follows normal distributions and transforms both chance constraints and 

expectations of uncertainty-affected terms analytically. But this type of SO meets 

mathematical intractability easily and thus has limited applications [28, 40]. Also, it is 

often over-optimistic because of the assumption that the uncertainty follows a specific 

distribution. To improve this type of SO, some literature attempts to take the ambiguity 

of the uncertainty distribution into consideration. For example, [41] assumes that 

uncertainties in renewable power outputs follow normal distributions but allows the 

mean and variance of each univariate uncertainty to vary within symmetric intervals 

instead of setting them to fixed values. Apart from assuming that uncertainties follow 

normal distributions with varying means and variances, [42] incorporates constraints 

on means and variances of different univariate uncertainties. Despite the efforts of [41, 

42] in considering the ambiguity of the uncertainty distribution, assuming that 

uncertainties follow a specific type of distributions such as normal distributions is still 

problematic given the limited information about uncertainties. 

Interval optimization (IO) is another approach to handle optimization problems 

involving uncertainties. Different from SO, IO constrains uncertainties within intervals 

and focuses on the worst realization of uncertainties within the considered intervals [43-

45]. Similar to IO, robust optimization (RO) is also worst-case oriented. But under RO, 

the possible range of uncertainties is constrained by uncertainty sets, which are not 

restricted to intervals. For example, uncertainty sets can be ellipsoids [46], polyhedrons 

[47] and union of discrete points [48]. As done in [49], uncertainty sets can also be 

constructed with cardinality constraints, which limit the number of univariate 

uncertainties that have non-zero realizations. It is also possible for uncertainty sets to 
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be based on general norms [50]. RO has relatively little requirement of information 

about uncertainties compared with SO [51] and has been widely applied [52-54]. 

However, despite its advantages, RO can often be over-conservative [55, 56]. To 

alleviate the conservativeness of RO, some literature attempts to utilize more 

information about uncertainties. In [57], several uncertainty sets are adopted 

simultaneously to model uncertainties more comprehensively and proper weights are 

assigned to them. Uncertainty correlation is used to construct uncertainty sets in [58]. 

In [59], uncertainty sets are segregated into multiple bands and the number of univariate 

uncertainties that fall into each band is constrained, which eliminates extreme cases that 

are unlikely to happen in uncertainty sets. Similarly, multi-band uncertainty sets are 

established in [60]. But different from [59], different weights are assigned to different 

bands and the asymmetry of the uncertainty can be captured in [60]. However, even 

with more information utilized, RO is still over-conservative when it is used to optimize 

the economic efficiency of power system operation because it is worst-case oriented 

and the worst case rarely happens. Instead of optimizing the economic efficiency under 

the worst case, it is more reasonable to optimize the average economic efficiency, which 

is beyond the capability of RO. 

In view of the gaps of the SO, IO and RO, a more recently developed approach 

named distributionally robust optimization (DRO) is adopted in this thesis. DRO 

depicts uncertainties through their probability distributions. As information about 

uncertainties is always limited, it is impossible to acquire the exact uncertainty 

distribution. In other words, there is ambiguity about the uncertainty distribution. 

Instead of ignoring or partly considering such ambiguity as done by SO, DRO fully 

takes it into account. The specific practice of DRO is to consider the family of all 

distributions that match certain information about uncertainties. The set constituted by 

such family of distributions is called the ambiguity set [61, 62]. To avoid being over-

optimistic, DRO focuses on the worst distribution in the ambiguity set, which means 

that DRO is worst-distribution oriented. So, compared with SO, DRO reduces the 

possibility of having unexpected outcomes. Compared with RO which is worst-case 
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oriented, DRO can evaluate the average outcome over all possible uncertainty 

realizations. More detailed introduction about DRO will be given in Chapter II. Because 

of its advantages, DRO has been applied in power system operation. But the potentials 

of DRO and the features of the studied problems have not yet been fully exploited. Also, 

applications of DRO can be further extended to more operation problems of power 

systems. 

1.2.2 Primitive applications of DRO in literature 

The expectation and covariance matrix of uncertainties are often used by DRO to 

depict uncertainties and are assumed to be exactly known [63-65]. However, the fact is 

that only their statistical values can be calculated based on historical samples of 

uncertainties and the statistical values may deviate from the actual values. [63-65] 

ignore such facts and thus may obtain sub-optimal solutions. If the deviations of the 

statistical expectation and covariance matrix from the actual ones can be properly 

considered, DRO will be more robust against the ambiguity of the uncertainty 

distribution. 

Besides, as discussed in Section 1.2.1, RO is worst-case oriented and DRO is worst-

distribution oriented. With their orientations, RO can be used to guarantee the security 

of system operation, and DRO can be used to improve the average economic efficiency 

or average performance in other aspects such as carbon emissions, which are both 

important. Therefore, it is meaningful to study how to simultaneously take advantage 

of DRO and RO. However, in most current works using DRO, there is no such attempt. 

Moreover, single-stage models are often established in literature adopting DRO [66-

69]. However, in modern power system operation, recourse actions are usually needed 

to alleviate the negative effects brought by uncertainties. In this regard, single-stage 

models in [66-69] assume that recourse actions respond affinely to uncertainty 

realizations, which can be rough and inaccurate. In contrast to single-stage formulations, 

two-stage ones model recourse actions without approximation [63]. But, for multi-

period problems such as economic dispatch (ED), their each period has two stages 
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under two-stage formulations and there are quite many stages in total. The temporal 

sequences of the decisions and uncertainty realizations in these stages will incur great 

computational difficulty. To achieve the trade-off between modelling accuracy and 

computational tractability, it is desirable to develop new model formulations based on 

two-stage and single-stage formulations. 

1.2.3 Gap of applying DRO to facilitate the operation of balance responsible 

distribution systems with electric vehicle aggregators 

DRO has been applied in various operation problems of power systems, but its 

applications can still be extended. Nowadays, EVs are becoming increasingly popular 

and bring uncertainties to power system operation. A salient feature of EVs is that their 

connection times to power systems are usually longer than the times needed to fulfill 

their charging requirements. As a result, instead of keeping constant charging rates, 

adjusting their energy consumption patterns is possible. In other words, EVs are able to 

provide flexibility, which can be used in mitigating uncertainties. Another trend in 

power systems is that some distribution systems are required to act as BRPs by 

maintaining their energy portfolio and will be penalized if they fail to do so. For these 

balance responsible distribution systems (BRDSs), proper use of the flexibility of EVs 

is crucial.  

The flexibility of EVs has been widely utilized. For example, a receding horizon 

optimization model is established in [70] to shift charging demands of EVs to off-peak 

hours. In [71], a scheduling scheme is designed to maintain the voltage profile under 

high EV penetration. [72] proposes a charging strategy of EVs to regulate fluctuations 

of wind generation. These works achieve their targets by taking circumstances of 

specific EVs into consideration. However, it will be very difficult for future system 

operators to directly manage a large number of EVs because the computation 

requirement for taking every EV into consideration and the investment requirement for 

collecting all necessary information will be too demanding [73]. Instead, it is more 

reasonable to have EVs controlled by electric vehicle aggregators (EVAs), and the 
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system operator dispatches EVAs rather than EVs. Such hierarchical scheme is used in 

[73] to improve wind power utilization. In [74], EVAs are dispatched as a whole to 

maximize the hosting capacity of distribution systems for their charging demands. But 

the models in [73] and [74] are not designed for BRDSs. 

Different from EVs, EVAs can be regarded as loads that are always connected to 

the system and have time varying charging demands. Because of uncertainties related 

to EVs, there are uncertainties in charging demands of EVAs. Meanwhile, EVAs 

provide flexibility for system operation as they represent aggregated EV flexibilities. 

Apart from EVAs, there are also other flexible components in distribution systems. In 

[75-77], energy storage (ES) is used. Distributed generators (DGs) are resorted to in 

[78, 79]. However, models using ES and DGs cannot be directly applied to distribution 

systems with EVAs because of the following distinct features of EVAs. Firstly, EVAs 

possess uncertainties in their charging demands, while ES and DGs do not. Secondly, 

the primary tasks of EVAs are guaranteeing energy requirements of driving activities 

of EVs, instead of facilitating distribution system operation as ES and DGs. Thirdly, 

costs of EVAs are incurred when their charging is disturbed, while costs of ES and DGs 

result from their operation. Apart from ES and DGs, load curtailment is another option 

and is used in [80-82], which is effective only when demands surpass supplies but not 

vice versa, while EVAs are applicable for both cases. In view of the particularity of 

EVAs, new models need to be established to fully exploit their features. 

Uncertainties in charging demands of EVAs will influence operation costs of 

BRDSs. In terms of properly evaluating uncertainty-affected costs and thus facilitating 

BRDSs to make use of EVA flexibility, DRO is the ideal approach because of its 

advantages discussed in Section 1.1. In order to fully exploit the potentials of DRO in 

improving the economic efficiency of BRDSs, proper models should be established and 

the ambiguity set of DRO should be constructed with appropriate information about 

uncertainties in consideration of the characteristics of the established model.  
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1.2.4 Potentials of DRO for balance responsible distribution companies with 

EVAs 

Different from BRDSs discussed in Section 1.2.3, distribution companies need to 

purchase energy and deliver to their customers within the distribution systems [75, 83]. 

So, when they are required to be BRPs, they need to pay energy costs as well as 

penalties for deviations from their planned energy portfolio. Such distribution 

companies are referred to as balance responsible distribution companies (BR-DISCOs) 

in this thesis and their operation is worth studying. From the perspective of BR-DISCOs, 

the flexibility of EVAs can be used to shift EVA charging demands from times with 

higher energy prices to times with lower energy prices apart from being used to mitigate 

uncertainties. Using EVAs to mitigate uncertainties can reduce the penalty for energy 

deviations of BR-DISCOs, while using EVAs to shift their charging demands can 

reduce energy costs. In other words, both applications of EVAs can bring cost savings 

for BR-DISCOs. Besides, the two applications both disturb the charging of EVAs and 

thus are limited by the capability of EVAs to accept disturbance. If EVAs are used to 

mitigate uncertainties more extensively, they can shift less charging demands and vice 

versa. So, the two applications of EVAs are correlated and need to be properly 

coordinated to achieve the optimal outcome for BR-DISCOs. 

When EVAs are used to shift charging demands, they can discharge in some hours 

to have more charging demands shifted. Because of power losses in the discharging of 

EVAs, the power that the distribution system receives is smaller than that EVAs supply. 

Similarly, the power that the distribution system supplies is greater than that EVAs 

receive as a result of power losses in the charging of EVAs. Such phenomenon 

influences the scale of uncertainties from the perspective of BR-DISCOs. Because of 

these features of BR-DISCOs, their operation is more complicated than that of BRDSs, 

and EVAs can play a more important role for BR-DISCOs than for BRDSs. To facilitate 

BR-DISCOs to fully utilize the flexibility of EVAs, more advanced models need to be 

developed using DRO. 
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1.3 Primary Contributions 

Firstly, based on the state-of-art applications of DRO in ED in literature, potentials 

of DRO in ED are further exploited in the established security-constrained multi-period 

ED model M-SCED. A two-stage framework is adopted to model initial operation plans 

and recourse actions before and after the uncertainty realization of RES power. For 

ensuring superior system economic efficiency, DRO is utilized to evaluate the 

expectations of operation costs affected by RES uncertainties. Practical issues, 

including boundedness of uncertainties and inaccurate statistical values, are considered 

in modeling uncertainties in DRO. RO is used to enhance system security through 

limiting load shedding and is integrated with DRO under the two-stage framework. To 

achieve computational tractability without substantially degrading the model accuracy, 

decision variables after the first period in M-SCED are approximated by segregated 

linear decision rule (SLDR). A Constraint Generation algorithm is proposed to solve 

this problem with comprehensive case studies illustrating the effectiveness of the 

proposed M-SCED. 

Next, DRO is applied to facilitate the operation of BRDSs with EVAs for the first 

time. Without influencing driving activities of EVs in the next day, a model is 

established to make use of EVAs, whose contributions are delaying uncertainties 

through their flexibility and thus creating opportunities for uncertainties from different 

hours to offset each other. In this model, a scheme of uncertainty transferring is 

proposed to relieve disturbance to EVAs and DRO is adopted to evaluate the average 

performance of the operation plans with temporal and spatial uncertainty correlations 

considered. Comprehensive case studies are carried out based on charging demands of 

EVAs simulated from real traffic data to verify the effectiveness of the proposed model. 

The model proposed for BRDSs is further developed to facilitate BR-DISCOs to 

utilize the flexibility of EVAs. Case studies are conducted under various settings. With 

the proposed model, BR-DISCO uses EVAs to mitigate uncertainties, which is further 

classified into eliminating uncertainties and delaying uncertainties. Both forms of 
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uncertainty mitigation reduce average penalties for deviations of BR-DISCO from its 

planned energy portfolio. Besides, EVA charging demands are shifted to hours with 

lower energy prices to reduce energy costs of BR-DISCO. Using EVAs to mitigate 

uncertainties and shifting EVA charging demands are properly coordinated through 

DRO to achieve the minimum overall operation costs. Moreover, power losses in EVA 

charging and discharging are utilized to reduce the scale of uncertainties, which 

decreases penalties for energy deviations of BR-DISCO. 

1.4 Thesis Layout 

The rest of this thesis consists of five chapters organized as follows. 

In Chapter II, ambiguity sets of DRO based on statistical distances and moments 

are introduced. Further illustration of moments-based ambiguity sets is given. 

Transformation of worst expectations of uncertainty-affected terms over moments-

based ambiguity sets is finally discussed. 

In Chapter III, the adopted DRO techniques are first detailed. Next, first-stage and 

second-stage problems under the two-stage formulation for ED are presented explicitly 

and are used to construct the multi-period ED model M-SCED. SLDR approximation 

is applied on decision variables after the first period in M-SCED to achieve 

mathematical tractability, and the dual problem of the second-stage problem and Farkas 

Lemma are utilized to transform M-SCED into deterministic forms. A Constraint 

Generation algorithm is proposed to solve the transformed M-SCED. Superiority of M-

SCED is verified through case studies based on the IEEE 118-bus and 30-bus system. 

In Chapter IV, settings on distribution system operation are presented and followed 

by the formulation of the model proposed for BRDSs to use the flexibility of EVAs. 

Linear decision rule (LDR) approximation and the proposed uncertainty transferring 

scheme are discussed before the proposed model is transformed into deterministic 

forms. Charging demands of EVAs are simulated by using real traffic data in Atlanta, 
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based on which case studies are conducted to show the effectiveness of the proposed 

model. 

In Chapter V, background settings for BR-DISCO and EVAs are given. Applications 

of EVA flexibility are next discussed. Afterwards, the proposed model is formulated 

and transformed into deterministic forms. Through comprehensive case studies based 

on the IEEE 33-node system, it is shown that the proposed model is effective in making 

use of EVA flexibility to reduce operation costs of BR-DISCO. 

Lastly, conclusions and discussions about possible future work are given in Chapter 

VI. 

1.5 List of Publications 

1. X. Lu, K. W. Chan, S. Xia, B. Zhou and X. Luo, "Security-Constrained 

Multiperiod Economic Dispatch With Renewable Energy Utilizing 

Distributionally Robust Optimization," in IEEE Transactions on Sustainable 

Energy, vol. 10, no. 2, pp. 768-779, April 2019. DOI: 10.1109/TSTE.2018. 

2847419 

2. X. Lu, K. W. Chan, S. Xia, X. Zhang, G. Wang and F. Li, “A Model to Mitigate 

Forecast Uncertainties in Distribution Systems Using the Temporal Flexibility 

of EVAs,” in IEEE Transactions on Power Systems, Vol.35, No.3, pp. 2212-

2221, May 2020. DOI: 10.1109/TPWRS.2019.2951108 

3. X. Lu, K. W. Chan, S. Xia, M. Shahidehpour, “An Operation Model for 

Distribution Companies Using the Flexibility of Electric Vehicle Aggregators,” 

IEEE Transactions on Smart Grid, TSG-00665-2020, 30 Apr 2020, under 

review. 

4. X. Luo, S. Xia, K. W. Chan and X. Lu, "A Hierarchical Scheme for Utilizing 

Plug-In Electric Vehicle Power to Hedge Against Wind-Induced Unit Ramp 

Cycling Operations," in IEEE Transactions on Power Systems, vol. 33, no. 1, 

pp. 55-69, Jan. 2018. DOI: 10.1109/TPWRS.2017.2696540 



15 

 

5. S. Xia, S. Q. Bu, X. Luo, K. W. Chan and X. Lu, "An Autonomous Real-Time 

Charging Strategy for Plug-In Electric Vehicles to Regulate Frequency of 

Distribution System with Fluctuating Wind Generation," in IEEE Transactions 

on Sustainable Energy, vol. 9, no. 2, pp. 511-524, Apr. 2018. DOI: 10.1109/ 

TSTE.2017.2746097 

6. X. Gao, K. W. Chan, S. Xia, B. Zhou, X. Lu, and D. Xu, "Risk-constrained 

offering strategy for a hybrid power plant consisting of wind power producer 

and electric vehicle aggregator," Energy, vol. 177, pp. 183-191, Jun. 2019. DOI: 

10.1016/j.energy.2019.04.048 

7. S. Xia, S. Bu, C. Wan, X. Lu, K. W. Chan and B. Zhou, "A Fully Distributed 

Hierarchical Control Framework for Coordinated Operation of DERs in Active 

Distribution Power Networks," in IEEE Transactions on Power Systems, vol. 

34, no. 6, pp. 5184-5197, Nov. 2019. DOI: 10.1109/TPWRS.2018.2870153 

8. B. Zhou, K. Zhang, K. W. Chan, C. Li, X. Lu, S. Bu, X. Gao, “Optimal 

Coordination of Electric Vehicles for Virtual Power Plants with Dynamic 

Communication Spectrum Allocation (Early Access)”, IEEE Transactions on 

Industrial Informatics, 13 Apr 2020. DOI: 10.1109/TII.2020.2986883 

 

  



16 

 

Chapter II 

Essentials on DRO 

2.1 Ambiguity Sets 

DRO focuses on the worst distribution within the ambiguity set, which is made up 

of a family of distributions that satisfy certain requirements. Generally, there are two 

types of ambiguity sets. One type is based on statistical distances, while the other is 

based on moments. This thesis adopts the later type, but the former one will also be 

briefly introduced here for completeness. 

Statistical distances measure the distances between probability distributions. With 

historical samples of uncertainties, the discrete empirical uncertainty distribution based 

on them can be obtained. The ambiguity set can be constructed by including all 

distributions that are within certain distances from the empirical distribution. Obviously, 

as the chosen distance grows, the ambiguity set gets bigger and is more likely to include 

the actual uncertainty distribution, but the obtained result tends to be more conservative 

at the same time. So, the proper size of the ambiguity set needs to be decided according 

to the attitude of decision makers towards risks. The most common statistical distances 

adopted to construct ambiguity sets include Wasserstein metric [84-86] and Kullback–

Leibler divergence [87-89]. Wasserstein metric can be regarded as the minimum 

transportation cost of moving from one probability distribution to another, and 

Kullback–Leibler divergence reflects the information lost when one probability 

distribution is used to approximate another [28]. The computational complexity of DRO 

using ambiguity sets based on statistical distances often grows rapidly with the increase 

of utilized historical samples, and further approximations are often needed [85]. 

Moments are measures for the shape of functions and can be used to depict 

probability density functions of uncertainties. The 𝑛th  moment of a continuous 
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function 𝑓(𝑥) about a constant value c is defined as in (2.1), where 𝑛 can be any 

non-negative integer. So, there are infinite number of moments and each would reveal 

different information. When moments are used in statistics, they can be further divided 

into raw and central moments. Raw moments are about zero, while central moments 

are about the first raw moments. The 𝑛th raw and central moment are defined as in 

(2.2) and (2.3), respectively. 𝑓(𝜉) is the probability density function of the random 

variable 𝜉 , and 𝜇1
𝑟  is the first raw moment, i.e., expectation, of 𝜉 . The explicit 

expression of 𝜇1
𝑟 is given in (2.4). The second central moment of 𝜉, i.e., 𝜇2

c, is just its 

variance and is given in (2.5). 𝜇2
c roughly reflects how far 𝜉 spreads out. Furthermore, 

moments for multiple random variables are called mixed moments. A typical mixed 

moment for two random variables is their covariance as shown in (2.6), where 𝜇𝜉1
 and 

𝜇𝜉2
 are the expectation of 𝜉1 and 𝜉2, respectively. Covariances measure the variation 

of two random variables. If the variances of the two random variables are also known, 

the Pearson correlation coefficient can be calculated as in (2.7), where 𝜎𝜉1

2  and 𝜎𝜉2

2  

are the variance of 𝜉1 and 𝜉2, respectively. The Pearson correlation coefficient lies in 

the interval [-1,1]. If it is positive, the two random variables have greater positive linear 

correlation as it gets larger. When it equals to 1, total positive linear correlation holds 

for the two random variables, and the relationship between them can be expressed in 

the form of affine functions as in (2.8), where 𝑎  is positive. Similarly, if Pearson 

correlation coefficient is negative and it gets smaller, the two random variables have 

greater negative linear correlation. When it equals to -1, total negative linear correlation 

holds for the two random variables, and the relationship between them can also be 

expressed in the form of (2.8), but 𝑎 is now negative. While if the Pearson correlation 

coefficient equals to 0, the two random variables have no linear correlation.  

As uncertainties are random variables, their moments reveal information about their 

distributions. With historical samples of uncertainties, the statistical values of their 

moments can be obtained, and moments-based ambiguity sets can be constructed. For 

illustration purposes, an ambiguity set for a multivariate uncertainty 𝝃 is given in (2.9), 

where 𝑓𝝃 is the probability distribution of 𝝃, and N𝝃 is the dimension of 𝝃. The first 
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row of (2.9) limits the range of 𝝃 within U, which can be the entire real space or its 

subsets. The expectation of 𝝃 is constrained through the second and third row of (2.9). 

As the expectation of 𝝃  is just the vector of first raw moments of all univariate 

uncertainties in 𝝃, (2.9) is moment-based. It should be emphasized that ambiguity sets 

are estimates of the uncertainty distribution. The estimating accuracy can be improved 

by incorporating more information about the uncertainties. For example, the covariance 

matrix of 𝝃  can also be constrained in (2.9). But including more information in 

ambiguity sets will generally increase the computational difficulty. So, to construct 

proper ambiguity sets, accuracy and computational tractability need to be balanced in 

consideration of the characteristics of the studied problems. In Chapter 3, two different 

ambiguity sets are adopted for uncertainties in different periods. The ambiguity set for 

uncertainties in the first period limits uncertainty realizations within an ellipsoidal set 

and depicts the uncertainty distribution through the statistical expectation and 

covariance matrix, whose deviations from the actual moments are also considered, 

while the ambiguity set for other uncertainties bounds the mean of segregated 

uncertainties within a tractable conic representable set and limits uncertainty 

realizations within a polyhedral set. In Chapter 4 and 5, another ambiguity set is adopted. 

It sets the uncertainty expectation and covariance matrix to fixed values and has no 

limitation on uncertainty realizations. 

𝜇n = ∫ (𝑥 − c)𝑛𝑓(𝑥) dx
∞

−∞

                                            (2.1) 

𝜇n
r = ∫ 𝜉𝑛𝑓(𝜉) d𝜉

∞

−∞

                                                  (2.2) 

𝜇n
c = ∫  (𝜉 − 𝜇1

𝑟)n𝑓(𝜉) d𝜉
∞

−∞

                                          (2.3) 

𝜇1
r = ∫ 𝜉𝑓(𝜉) d𝜉

∞

−∞

                                              (2.4) 

𝜇2
c = ∫  (𝜉 − 𝜇1

𝑟)2𝑓(𝜉) d𝜉
∞

−∞

                                        (2.5) 



19 

 

cov(𝜉1, 𝜉2) = ∫ ∫ (𝜉1 − 𝜇𝜉1
)(𝜉2 − 𝜇𝜉2

)𝑓(𝜉1)𝑓(𝜉2) d𝜉1d𝜉2

∞

−∞

 
∞

−∞

         (2.6) 

cov(𝜉1, 𝜉2)

√𝜎𝜉1

2 𝜎𝜉2

2

                                                          (2.7) 

𝜉1 = 𝑎𝜉2 + 𝑏                                                         (2.8) 

D = {𝑓𝝃|

Pr(𝝃 ∈ U) = 1 

E[𝝃] ≤ 𝛍1          

E[𝝃] ≥ 𝛍2          

}                                             (2.9) 

2.2 Duality in optimization 

DRO using moments-based ambiguity sets highly depends on the duality theory in 

optimization, which is briefly introduced here before further discussions about DRO. A 

typical optimization problem is shown in (2.10)-(2.12). “min ” in (2.10) stands for 

“minimize”. Similarly, “ max ” in optimization problems means “maximize”. 

Sometimes, “min” is replaced by “inf”, and “max” is replaced by “sup”. “inf” and 

“sup” are short for “infimum” and “supremum”, respectively. Compared with “min” 

and “max”, “inf” and “sup” are also applicable to optimization problems that have no 

minimum or maximum but only the greatest lower or upper bound. In (2.11), “𝑠. 𝑡.” 

stands for “subject to”, and “∀” means “for all”.  

The Lagrangian and Lagrange dual function of the optimization problem (2.10)-

(2.12) are defined in (2.13) and (2.14), respectively. 𝜆𝑖 is the 𝑖th element of the vector 

𝝀. Similarly, 𝜔𝑗 is the 𝑗th element of the vector 𝝎. 𝒜 in (2.14) is the intersection 

of the domain of 𝑔𝑖, ∀𝑖 = 1, … , 𝑚 and ℎ𝑗 , ∀𝑗 = 1, … , 𝑛. With (2.11) and (2.12), (2.15) 

can be obtained obviously. The “≥” in (2.15) is component-wise. To be more specific, 

𝝀 ≥ 𝟎 in (2.15) means that every element in the vector 𝝀 is non-negative. According 

to (2.15), the Lagrange dual function 𝑘(𝝀, 𝝎) is not greater than the optimal value of 

(2.10)-(2.12) when 𝝀 ≥ 𝟎. In other words, the Lagrange dual function provides lower 

bounds for (2.10)-(2.12). But if the Lagrange dual function takes values of minus 
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infinity −∞, the lower bound it provided is useless. Without doubt, the greatest or best 

lower bound is more desirable than −∞ . In pursuit of the best lower bound, the 

Lagrange dual problem is defined as (2.16)-(2.17). In the following parts of the thesis, 

“Lagrange dual problem” will be replaced by “dual problem” for short. The property 

that the optimal value of (2.16)-(2.17) is not greater than that of (2.10)-(2.12) is called 

weak duality. While if the optimal value of (2.16)-(2.17) equals to that of (2.10)-(2.12), 

it is said that strong duality holds. 

min
𝒙

 𝑓(𝒙)                                                                        (2.10) 

𝑠. 𝑡.  𝑔𝑖(𝒙) ≤ 0, ∀𝑖 = 1, … , 𝑚                                      (2.11) 

                  ℎ𝑗(𝒙) = 0, ∀𝑗 = 1, … , 𝑛                                       (2.12) 

𝐿(𝒙, 𝝀, 𝝎) =  𝑓(𝒙) + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝒙) + ∑ 𝜔𝑗

𝑛

𝑗=1

ℎ𝑗(𝒙)                     (2.13) 

𝑘(𝝀, 𝝎) = inf
𝒙∈𝒜

𝐿(𝒙, 𝝀, 𝝎) = inf
𝒙∈𝒜

(𝑓(𝒙) + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝒙) + ∑ 𝜔𝑗

𝑛

𝑗=1

ℎ𝑗(𝒙))    (2.14) 

𝐿(𝒙, 𝝀, 𝝎) ≤  𝑓(𝒙), ∀𝝀 ≥ 𝟎                                       (2.15) 

sup
𝝀,𝝎

 𝑘(𝝀, 𝝎)                                                          (2.16) 

𝑠. 𝑡.  𝝀 ≥ 𝟎                                                            (2.17) 

For clearer illustration of the duality theory in optimization, dual problems in linear 

programing are presented here. Linear programming optimizes a linear objective 

subject to linear constraints. Any linear programs can be put in the form of (2.18)-(2.20), 

where 𝒄′  is the transpose of 𝒄 . To be more specific, inequality constraints can be 

transformed into equality ones by introducing slack variables. Any non-negative 

variable 𝑥1 can be replaced by a non-positive variable 𝑥2 that satisfies 𝑥2 = −𝑥1. 

Any variable 𝑥 that has no sign limitation can be replaced by the difference of two 

non-positive variables, i.e., 𝑥1 − 𝑥2. The Lagrangian of (2.18)-(2.20) is given in (2.21), 
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where 𝐀𝑗 is the 𝑗th row of 𝐀. Obviously, 𝐿(𝒙, 𝝀, 𝝎) will be unbounded if 𝐜 + 𝝀 +

𝐀′𝝎 ≠ 𝟎. So, the Lagrange dual function of (2.18)-(2.20) is in the form of (2.22), and 

the Lagrange dual problem of (2.18)-(2.20) can be given as (2.23)-(2.25), which can be 

further transformed into (2.26)-(2.27). As discussed earlier, the dual problem (2.26)-

(2.27) provides lower bounds for the primal problem (2.18)-(2.20). More particularly, 

strong duality holds for any feasible linear program [90]. So, the optimal value of a 

linear program can be obtained by solving its dual problem. 

min 𝐜′𝒙                                                               (2.18) 

𝑠. 𝑡.  𝐀𝒙 = 𝐛                                                       (2.19) 

 𝒙 ≤ 𝟎                                                          (2.20) 

𝐿(𝒙, 𝝀, 𝝎) =  𝐜′𝒙 + ∑ 𝜆𝑖

𝑚

𝑖=1

𝑥𝑖 + ∑ 𝜔𝑗

𝑛

𝑗=1

(𝐀𝑗𝒙 − b𝑗) = (𝐜 + 𝝀 + 𝐀′𝝎)′𝒙 − 𝐛′𝝎  (2.21) 

𝑘(𝝀, 𝝎) = inf
𝒙

 (𝐜 + 𝝀 + 𝐀′𝝎)′𝒙 − 𝐛′𝝎 = {
−𝐛′𝝎, if 𝐜 + 𝝀 + 𝐀′𝝎 = 𝟎
−∞, if 𝐜 + 𝝀 + 𝐀′𝝎 ≠ 𝟎

       (2.22) 

max
𝝀,𝝎

−𝐛′𝝎                                                              (2.23) 

𝑠. 𝑡.  𝐜 + 𝝀 + 𝐀′𝝎 = 𝟎                                         (2.24) 

 𝝀 ≥ 𝟎                                                              (2.25) 

max
𝝎

−𝐛′𝝎                                                             (2.26) 

𝑠. 𝑡.  𝐜 + 𝐀′𝝎 ≤ 𝟎                                                (2.27) 

2.3 The worst expectation over the ambiguity set 

As discussed in Chapter I, DRO focuses on the worst distribution in the ambiguity 

set. The key of its worst-distribution orientation lies in evaluating the worst expectation 

of uncertainty-affected terms over the ambiguity set, which is usually achieved by using 

the duality theory when moments-based ambiguity sets are adopted. Depending on the 

studied problem, the worst expectation may have the greatest or the lowest value with 
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respect to the ambiguity set. By assuming that it has the greatest value, an illustration 

is given here based on the ambiguity set (2.9). The worst expectation of Ω(𝝃) over 

(2.9) is written explicitly as (2.28)-(2.32). In (2.28), the expectation of Ω(𝝃)  is 

rewritten as the integration of the product of Ω(𝝃) and the probability density function 

𝑓(𝝃). 𝑓(𝝃) should be non-negative, which is guaranteed through (2.29). (2.30)-(2.32) 

are rewritten from (2.9). (2.28)-(2.32) is optimized over 𝑓(𝝃)  for all possible 

realizations of 𝝃 , and there will have infinite number of decision variables if 𝝃  is 

continuous, which would make it difficult to solve. However, by using the duality 

theory [91, 92], the dual problem of (2.28)-(2.32) can be obtained as (2.33)-(2.36), 

which has finite decision variables and infinite constraints. The duality between (2.28)-

(2.32) and (2.33)-(2.36) can be regarded as the generalization of the duality between 

optimization problems with finite constraints and finite variables. According to [93], 

strong duality holds for (2.28)-(2.32) and (2.33)-(2.36). So, instead of solving (2.28)-

(2.32), its optimal value can be obtained by solving (2.33)-(2.36). 

sup
𝑓𝝃∈D

E[Ω(𝝃)] = sup
𝑓𝝃∈D

∫ Ω(𝝃)𝑓(𝝃)d𝝃
U

                                          (2.28) 

𝑠. 𝑡.  𝑓(𝝃) ≥ 0, ∀𝝃 ∈ U                                     (2.29) 

∫ 𝑓(𝝃)𝒅𝝃
U

= 1                                          (2.30) 

∫ 𝝃𝑓(𝝃)𝒅𝝃
U

≤ 𝛍1 ∶ 𝒘1                            (2.31) 

∫ 𝝃𝑓(𝝃)𝒅𝝃
U

≥ 𝛍2 ∶ 𝒘2                            (2.32) 

inf
𝑤0,𝒘1,𝒘2

𝑤0 + 𝒘1
′𝛍1 + 𝒘2

′𝛍2                                              (2.33) 

𝑠. 𝑡.    𝑤0 + 𝒘1
′𝝃 + 𝒘2

′𝝃 ≥ Ω(𝝃), ∀𝝃 ∈ U                    (2.34) 

𝒘1 ≥ 𝟎                                                                       (2.35) 

𝒘2 ≤ 𝟎                                                                       (2.36) 
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2.4 Further transformation 

When the uncertainty is continuous, the dual problem of evaluating the worst 

expectation over the ambiguity set has finite decision variables and infinite constraints. 

The infinite constraints correspond to all possible realizations of uncertainties, which 

impedes the dual problem from being solved directly. Therefore, further transformation 

is needed. Depending on the form of the dual problem, various approaches may be 

adopted. A possible one is RO, and an illustration is given here by assuming that Ω(𝝃) 

in (2.34) is an affine function of 𝝃 as given in (2.37) and U is a polyhedron as given 

in (2.38). Then, (2.34) can be rewritten as (2.39). As (2.40)-(2.42) is the dual problem 

of the optimization problem in the right-hand side of (2.39), (2.34) can be further 

transformed into (2.43). If there is a 𝒚 that is feasible for (2.40)-(2.42) and satisfies 

𝑤0 − b ≥ 𝐝′𝒚, (2.43) is obviously true. So, (2.34) can be finally replaced by (2.44), and 

uncertainties in the dual problem (2.33)-(2.36) are eliminated. In the following chapters, 

more details about DRO will be given when it is used. 

Ω(𝝃) = 𝐚′𝝃 + b                                                    (2.37) 

U = {𝝃|𝐀𝝃 ≤ 𝐝}                                                  (2.38) 

𝑤0 − b ≥ max
𝝃:𝐀𝝃≤𝐝

(𝐚 − 𝒘1 − 𝒘2)′𝝃                                  (2.39) 

min
𝒚

 𝐝′𝒚                                                                        (2.40) 

𝑠. 𝑡.  𝐀′𝒚 = 𝐚 − 𝒘1 − 𝒘2                                          (2.41) 

𝒚 ≥ 𝟎                                                                    (2.42) 

𝑤0 − b ≥ min
𝒚:𝐀′𝒚=𝐚−𝒘1−𝒘2,𝒚≥𝟎 

𝐝′𝒚                                 (2.43) 

{

𝑤0 − b ≥ 𝐝′𝒚

𝐀′𝒚 = 𝐚 − 𝒘1 − 𝒘2

𝒚 ≥ 𝟎
}                                          (2.44) 
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Chapter III 

Security-Constrained Multiperiod Economic Dispatch 

with Renewable Energy Utilizing Distributionally Robust 

Optimization 

3.1 Introduction 

Renewable generation is now taking a larger proportion in power supplies of current 

power systems. Uncertainties in the forecasted RES power should therefore be carefully 

handled by system operators; otherwise, secure and economical system operation will 

be threatened, and power imbalance could be resulted in ED for example. ED is one of 

the fundamental decision problems in power systems and is often formulated as 

optimization problems [94], which are now contaminated by uncertainties because of 

vast allocation of RES. 

To achieve effective co-dispatch of energy and reserve under uncertainties brought 

by RES, a two-stage model was built in [63] using DRO, and is referred as O-DRO 

here. In O-DRO, the first stage determines initial operation plans with respect to 

forecasts of RES power with consideration of the second stage, and the second stage 

determines recourse actions with respect to uncertainty realizations. The second-stage 

problem minimizes the recourse cost, and the worst expectation of its optimal value is 

added into the objective of the first-stage problem through DRO techniques, forming 

the complete two-stage model. With this structure, proper current decisions can be 

made by accurately considering future recourse actions with respect to uncertainty 

realizations. [64] presented a similar two-stage model for co-dispatch of hydro, wind 

and thermal power sources. 

Despite the advantages of the models in [63] and [64], the following three concerns, 

which will be addressed here to establish a more comprehensive ED model, have not 
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yet been fully considered. Firstly, O-DRO is single-period, and thus coupled ramping 

constraints of generators between consecutive time periods cannot be incorporated. As 

a result, operational infeasibility or additional operation costs could be incurred in 

practice. Secondly, statistical moments (mean and covariance) used in O-DRO are 

assumed to be exact while they are in fact derived from historical samples and may 

deviate from actual values, especially when the available data is limited or with inferior 

quality, which could lead to sub-optimal solutions. Thirdly, in O-DRO, unlimited load 

shedding operation is allowed to avoid power imbalance, but could lead to undesirable 

load curtailment and thus degrade system security. To address these issues, a multi-

period security-constrained ED model, M-SCED, is proposed here. 

In M-SCED, a two-stage formulation is adopted to accurately model recourse 

actions with respect to uncertainty realizations. To tackle the excessive computational 

difficulty of multi-period two-stage models, decision variables after the first period are 

approximated through SLDR, which assumes that optimal decisions are of piecewise-

affine functions of earlier realized uncertainty. Such formulation ensures the 

computational tractability of M-SCED while the model accuracy can be mostly 

maintained. Besides, a realistic ambiguity set is applied in M-SCED to model possible 

distributions of the first-period RES uncertainty. In the ambiguity set, uncertainty 

support is incorporated to embody the boundedness of RES uncertainty, and possible 

deviations of statistical moments are considered to guarantee DRO’s performance 

under inaccurate uncertainty information. The explicit expression of the worst 

expectation over the ambiguity set in M-SCED is derived through exploiting the dual 

second-stage problem of the first period and is simplified through a tailor-made 

Constraint Generation algorithm when M-SCED is solved. Moreover, load shedding is 

limited in M-SCED to enhance system security. The solution difficulty caused by such 

limits is overcome with Farkas’ Lemma. The proposed M-SCED is then transformed 

into a deterministic problem using RO and DRO techniques. 
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3.2 Nomenclature 

Indices, decision variables and uncertainty are printed in italics while parameters 

are in non-italics. 

3.2.1 Indices 

𝑖    Index of generators. 

𝑗    Index of RES 

𝑘    Index of loads 

ℎ    Index of transmission lines 

𝑡    Index of operation periods 

3.2.2 Parameters 

a𝑖
g,1

, a𝑖
g,2

   Generation cost coefficients of Generator 𝑖 

a𝑖
r+, a𝑖

r−   Up, down reserve cost coefficient of Generator 𝑖 

b𝑖
p+

, b𝑖
p−

   Up, down regulation cost coefficient of Generator 𝑖 

b𝑘
ls   Load shedding penalty coefficient of Load 𝑘 

b𝑗
w   Regulation cost coefficient of RES 𝑗 

p𝑖
u, p𝑖

l    Maximal, minimal output limit of Generator 𝑖 

Ra𝑖
+, Ra𝑖

−   Up, down ramping limit of Generator 𝑖 

Re𝑖
+, Re𝑖

−   Up, down reserve capacity limit of Generator 𝑖 

λℎ,𝑖, λℎ,𝑗, λℎ,𝑘 Power transfer distribution factor of Line ℎ from Generator 𝑖, RES 

𝑗 and Load 𝑘 

Flℎ   Power flow limit of Line ℎ 

T   Number of periods in the operation horizon 

NG, NW, NL  Number of generators, RES and loads 

w𝑗
f,𝑡

   Power forecast of RES 𝑗 in Period 𝑡 

d𝑘
𝑡    Power demand of Load 𝑘 in Period 𝑡 

d𝑘
lim,𝑡

   Allowed load shedding amount of Load 𝑘 in Period 𝑡 
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3.2.3 First-stage Decision Variables 

𝑝𝑖
𝑡    Scheduled output of Generator 𝑖 in Period 𝑡 

𝑤𝑗
𝑡   Scheduled output of RES 𝑗 in Period 𝑡 

𝑟𝑒𝑖
𝑡,+

, 𝑟𝑒𝑖
𝑡,−

  Up, down reserve capacity offered by Generator 𝑖 in Period 𝑡 

𝒙𝑡   Vector of first-stage decision variables in Period 𝑡 

3.2.4 Second-stage Decision Variables 

𝑝𝑖
r,𝑡

    Regulated output of Generator 𝑖 in Period 𝑡 

𝑑𝑘
ls,𝑡

    Load shedding amount of Load 𝑘 in Period 𝑡 

𝑤𝑗
r,𝑡

    Regulated output of RES 𝑗 in Period 𝑡 

𝒚𝑡    Vector of second-stage decision variables in Period 𝑡 

3.2.5 Uncertainty 

𝝃𝑡, 𝝃 Uncertainty of power forecast of RES in Period 𝑡  and the entire 

operation horizon, 𝝃 = [𝝃1; … ; 𝝃T] 

𝝃seg     Segregated uncertainty of 𝝃 

𝛍0    Statistical mean of 𝝃1 

𝚺0    Statistical covariance of 𝝃1 

S0, S    Support of 𝝃1, 𝝃 

𝑓𝝃1, 𝑓𝝃    Distribution of 𝝃1, 𝝃 

D1, D2    Distributional set for 𝝃1, 𝝃 

3.2.6 Functions 

E( )   Expectation 

Pr( )   Probability of events 

(𝑥)+, (𝑥)− Positive and negative operator,  

(𝑥)+ = max{𝑥, 0}, (𝑥)− = max{−𝑥, 0} 
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3.3 DRO Techniques 

In [63, 64], ambiguity sets are constructed by setting the expectation and covariance 

matrix of uncertainties to certain values as shown in (3.1). The first line in (3.1) sets the 

uncertainty support, limiting the possible range of 𝝃1. The second and third line give 

the expectation and covariance matrix, respectively. The worst expectation over D0 

can be written explicitly as (3.2)-(3.6) with (3.4)-(3.6) transformed from the first to the 

third line in (3.1), respectively. Probability densities 𝑓𝝃1(𝝃1) are decision variables, 

so there are infinite variables and finite constraints in (3.2)-(3.6). According to the 

duality theory, the optimal value of (3.2)-(3.6) is equal to that of its dual problem (3.7)-

(3.8) [63, 64]. The dual problem has finite variables and infinite constraints and is easier 

to solve. 𝑟d, 𝒑d, 𝑸d in (3.7)-(3.8) are dual variables. Tr(𝚺0 ⋅ 𝑸d) in (3.7) stands for 

the trace of the matrix 𝚺0 ⋅ 𝑸d, which is the sum of all elements in the main diagonal 

of 𝚺0 ⋅ 𝑸d. 

D0 = {𝑓𝝃1|

Pr(𝝃1 ∈ S0) = 1                            

E[𝝃1] = 𝛍0                                     

E[(𝝃1 − 𝛍0) ∙ (𝝃1 − 𝛍0)′] = 𝚺0 

}                            (3.1) 

sup
𝑓𝝃1∈D0

E[Ω] = sup
𝑓𝝃1∈D0

∫ Ω ∙ 𝑓𝝃1(𝝃1)d𝝃1

S0

                                                    (3.2) 

s. t.   𝑓𝝃1(𝝃1) ≥ 0  ∀𝝃1 ∈ S0                                             (3.3) 

∫ 𝑓𝝃1(𝝃1)d𝝃1

S0

= 1                                                   (3.4) 

∫ 𝝃1𝑓𝝃1(𝝃1)d𝝃1

S0

= 𝛍0                                            (3.5) 

∫ (𝝃1 − 𝛍0) ∙ (𝝃1 − 𝛍0)′𝑓𝝃1(𝝃1)d𝝃1

S0

= 𝚺0        (3.6) 

Λ1(Ω) = inf  Tr(𝚺0 ⋅ 𝑸d) + 𝛍0
′𝒑d + 𝑟d                                         (3.7) 

𝑠. 𝑡. (𝝃1)′𝑸d𝝃1 + (𝝃1)′𝒑d + 𝑟d ≥ Ω  ∀𝝃1 ∈ S0             (3.8) 

To improve the accuracy of the model proposed in this chapter, an ambiguity set 

that is more realistic than (3.1) is adopted for the uncertainty in the first period as shown 
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in (3.9) [29]. The second and third line in (3.9) describe the possible range of 

uncertainty mean and covariance matrix based on their statistical values 𝛍0 and 𝚺0, 

which can be calculated from the historical samples of uncertainties. The second line 

bounds the mean within an ellipsoid centered at 𝛍0 and the third line sets up a positive 

semidefinite cone for the covariance. r1 and r2 are parameters that limit the possible 

range of uncertainty mean and covariance and decide the size of D1. Values of r1 and 

r2  can be decided by using the analytical methods in [29] or according to the 

experience of the decision maker. The worst expectation over D1 can be written as 

(3.10)-(3.14) with (3.12)-(3.14) rewritten from the first to the third line in (3.9), 

respectively. According to the duality theory, it can be known that the optimal value of 

(3.10)-(3.14) is equal to that of its dual problem (3.15)-(3.18) [29], in which 𝑟d, 𝑠d, 

𝒑d , 𝑷d , 𝑸d  are dual variables. Compared with D0 , D1  describes uncertainty 

moments by proper inequalities rather than equalities and thus attains the important 

condition (3.17), which facilitates the incorporation of uncertainty support information. 

Further discussions will be made in Section 3.5. 

As decision variables after the first period are approximated by SLDR in M-SCED, 

modeling for the multi-period uncertainty 𝝃 needs not to be as accurate as that for 𝝃1. 

Therefore, a simpler distributional set D2 is adopted for 𝝃 as in (3.19), where the 

mean of the segregated uncertainty under SLDR lies in a tractable conic representable 

set Ψ, and the worst expectation over D2 is covered in Section 3.6.1. 

D1 = {𝑓𝝃1|

Pr(𝝃1 ∈ S0) = 1                                            

(E[𝝃1] − 𝛍0)′ ∙ 𝚺0
−1 ∙ (E[𝝃1] − 𝛍0) ≤ r1

E[(𝝃1 − 𝛍0) ∙ (𝝃1 − 𝛍0)′] ≼ r2𝚺0             

}               (3.9) 

sup
𝑓𝝃1∈D1

E[Ω] = sup
𝑓𝝃1∈D1

∫ Ω ∙ 𝑓𝝃1(𝝃1)d𝝃1

S0

                                                      (3.10) 

s. t.  𝑓𝝃1(𝝃1) ≥ 0  ∀𝝃1 ∈ S0                                                (3.11) 

∫ 𝑓𝝃1(𝝃1)d𝝃1

S0

= 1                                                      (3.12) 

∫ [
𝚺0 𝝃1 − 𝛍0

(𝝃1 − 𝛍0)′ r1

] 𝑓𝝃1(𝝃1)d𝝃1

S0

≽ 𝟎          (3.13) 
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∫ (𝝃1 − 𝛍0) ∙ (𝝃1 − 𝛍0)′𝑓𝝃1(𝝃1)d𝝃1

S0

≼ r2𝚺0       (3.14) 

inf r2 ⋅ Tr(𝚺0 ⋅ 𝑸d) − 𝛍0
′𝑸d𝛍0 + 𝑟d + Tr(𝚺0 ⋅ 𝑷d) − 2𝛍0

′𝒑d + r1𝑠d     (3.15) 

𝑠. 𝑡. [
𝑷d 𝒑d

(𝒑d)
′

𝑠d
] ≽ 𝟎                                                                                               (3.16) 

𝑸d ≽ 𝟎                                                                                                                (3.17) 

(𝝃1)′𝑸d𝝃1 + 2(𝝃1)′(−𝒑d − 𝑸d𝛍0) + 𝑟d ≥ Ω  ∀𝝃1 ∈ S0                       (3.18) 

D2 = {𝑓𝝃|
Pr(𝝃 ∈ S) = 1 

E[𝝃seg] ∈ Ψ 
}                                         (3.19) 

3.4 Multi-period Economic Dispatch Model 

In this part, separate models for first-stage and second-stage problems of the two-

stage formulation are presented first. Multi-period modeling and SLDR are discussed 

next. At last, the multi period ED model M-SCED is established. 

3.4.1 Separate Models for First-stage and Second-stage Problems 

As in (3.20)-(3.27), first-stage problems determine initial operation plans with 

respect to forecasts of RES power. The sum of the first and second item in the objective 

(3.20) is the generation cost. The third and fourth item in (3.20) are costs for up and 

down reserve capacities, respectively. (3.21) ensures system power balance. (3.22) 

prevents overloading of transmission lines. (3.23) ensures scheduled RES power not 

exceeded the forecast values. (3.24)-(3.27) are power output and reserve capacity limits 

of generators. Quadratic generation costs in (3.20) can be approximated by piecewise-

linear functions. Then, first-stage problems can be rewritten in compact forms as (3.28)-

(3.29). 

inf  ∑[𝑎𝑖
g,1(𝑝𝑖

𝑡)2 + 𝑎𝑖
g,2

𝑝𝑖
𝑡 + 𝑎𝑖

r+𝑟𝑒𝑖
𝑡,+ + 𝑎𝑖

r−𝑟𝑒𝑖
𝑡,−]

NG

𝑖=1

                         (3.20) 
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s. t. ∑ 𝑝𝑖
𝑡

NG

𝑖=1

+ ∑ 𝑤𝑗
𝑡

NW

𝑗=1

= ∑ d𝑘
𝑡

NL

𝑘=1

                                                                 (3.21) 

−Flℎ ≤ ∑ λℎ,𝑖𝑝𝑖
𝑡

NG

𝑖=1

+ ∑ λℎ,𝑗𝑤𝑗
𝑡

NW

𝑗=1

− ∑ λℎ,𝑘d𝑘
𝑡

NL

𝑘=1

≤ Flℎ, ∀ℎ           (3.22) 

0 ≤ 𝑤𝑗
𝑡 ≤ 𝑤𝑗

f,𝑡, ∀𝑗                                                                              (3.23) 

𝑝𝑖
𝑡 + 𝑟𝑒𝑖

𝑡,+ ≤ p𝑖
u, ∀𝑖                                                                           (3.24) 

p𝑖
l ≤ 𝑝𝑖

𝑡 − 𝑟𝑒𝑖
𝑡,−, ∀𝑖                                                                            (3.25) 

0 ≤ 𝑟𝑒𝑖
𝑡,+ ≤ Re𝑖

+, ∀𝑖                                                                          (3.26) 

0 ≤ 𝑟𝑒𝑖
𝑡,− ≤ Re𝑖

−, ∀𝑖                                                                          (3.27) 

inf  (𝒂𝑡)′ ∙ 𝒙𝑡                                                              (3.28) 

s. t.  𝐀𝑡 ∙ 𝒙𝑡 ≤ 𝐜𝑡                                                        (3.29) 

Second-stage problems determine recourse actions according to actual realizations 

of RES uncertainty. The first and second item in (3.30) are up and down regulation 

costs of generators, respectively. The third item is the regulation cost of RES. The last 

item is the penalty for load shedding. (3.31) and (3.32) avoid real-time power imbalance 

and overloading of transmission lines under recourse actions. (3.33) and (3.34) are 

constraints on availability of RES power and reserve capacity. (3.35) limits load 

shedding amounts, guaranteeing system security. By introducing slack variables and 

adding constraints (3.36)-(3.41), the objective (3.30) can be replaced by (3.42). Then, 

the second-stage problems can be rewritten in compact forms as (3.43)-(3.45). 

inf ∑ b𝑖
p+

(𝑝𝑖
𝑟,𝑡 − 𝑝𝑖

𝑡)
+

NG

𝑖=1

+ ∑ b𝑖
p−

(𝑝𝑖
𝑟,𝑡 − 𝑝𝑖

𝑡)
−

NG

𝑖=1

                                                  

+ ∑ b𝑗
w|𝑤𝑗

𝑟,𝑡 − 𝑤𝑗
𝑡|

NW

𝑗=1

+ ∑ b𝑘
ls𝑑𝑘

ls,𝑡

NL

𝑘=1

         (3.30) 

s. t. ∑(d𝑘
𝑡 − 𝑑𝑘

ls,𝑡)

NL

𝑘=1

= ∑ 𝑤𝑗
𝑟,𝑡

NW

𝑗=1

+ ∑ 𝑝𝑖
𝑟,𝑡

NG

𝑖=1

                                                          (3.31) 
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−Flℎ ≤ ∑ 𝜆ℎ,𝑖𝑝𝑖
𝑟,𝑡

NG

𝑖=1

+ ∑ 𝜆ℎ,𝑗𝑤𝑗
𝑟,𝑡

NW

𝑗=1

− ∑ 𝜆ℎ,𝑘(d𝑘
𝑡 − 𝑑𝑘

ls,𝑡)

NL

𝑘=1

≤ Flℎ, ∀ℎ    (3.32) 

0 ≤ 𝑤𝑗
𝑟,𝑡 ≤ w𝑗

f,𝑡 + 𝜉𝑗
𝑡 , ∀𝑗                                                                                 (3.33) 

𝑝𝑖
𝑡 − 𝑟𝑒𝑖

𝑡,− ≤ 𝑝𝑖
𝑟,𝑡 ≤ 𝑝𝑖

𝑡 + 𝑟𝑒𝑖
𝑡,+, ∀𝑖                                                               (3.34) 

0 ≤ 𝑑𝑘
ls,𝑡 ≤ d𝑘

lim,𝑡, ∀𝑘                                                                                       (3.35) 

v𝑖
1 ≥ b𝑖

p+
(𝑝𝑖

𝑟,𝑡 − 𝑝𝑖
𝑡)                                                (3.36) 

v𝑖
1 ≥ 0                                                             (3.37) 

v𝑖
2 ≥ −b𝑖

p−
(𝑝𝑖

𝑟,𝑡 − 𝑝𝑖
𝑡)                                            (3.38) 

v𝑖
2 ≥ 0                                                            (3.39) 

v𝑗
3 ≥ b𝑗

w(𝑤𝑗
𝑟,𝑡 − 𝑤𝑗

𝑡)                                            (3.40) 

v𝑗
3 ≥ b𝑗

w(𝑤𝑗
𝑡 − 𝑤𝑗

𝑟,𝑡)                                            (3.41) 

inf ∑ v𝑖
1

NG

𝑖=1

+ ∑ v𝑖
2

NG

𝑖=1

+ ∑ v𝑗
3

NW

𝑗=1

+ ∑ b𝑘
ls𝑑𝑘

ls,𝑡

NL

𝑘=1

                       (3.42) 

Ω𝑡 = inf  (𝒃𝑡)′ ∙ 𝒚𝑡                                                                            (3.43) 

s. t.  𝐁𝑡 ∙ 𝒚𝑡 ≤ 𝐠𝑡 − 𝐄𝑡 ∙ 𝒙𝑡 − 𝐅𝑡 ∙ 𝝃𝑡                                   (3.44) 

𝒚𝑡 ≥ 𝟎                                                                               (3.45) 

3.4.2 Multi-period Modeling and Segregated Linear Decision Rules 

The single-period two-stage O-DRO has the formulation as (3.46)-(3.47), in which 

Ω1(𝒙1, 𝝃1)  represents the optimal value of the second-stage problem and implies 

satisfaction of relevant constraints. To solve this problem, the inexplicit term 

Ω1(𝒙1, 𝝃1) is eliminated through exploiting the dual second-stage problem. Although 

such formulation is accurate, it cannot be directly extended to multi-period as it would 

be too difficult to solve [95, 96]. 
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inf  (𝒂1)′ ∙ 𝒙1 + sup
𝑓𝝃1∈D1

E[Ω1(𝒙1, 𝝃1)]                                   (3.46) 

s. t.  𝐀1 ∙ 𝒙1 ≤ 𝐜1                                                                        (3.47) 

In multi-period ED problems, different periods in the operation horizon are not 

independent from each other, but are linked through ramping constraints of generators. 

As a result, for M-SCED, only 𝒙1 in the first period can be decided independently 

from actual realizations of uncertainty, while all later decisions, 𝒙2 ,…,  𝒙T  and 

𝒚1 ,…, 𝒚T , are influenced by relevant early uncertainty realizations. Because of this 

consistency requirement of time sequences, multi-period problems are difficult to solve 

and thus often approximated through LDR in literatures, which is shown to be effective 

and computationally efficient [69, 95-98]. 

The relationship between optimal decisions and realized uncertainty can be very 

complicated. Instead of considering the true relationship, LDR assumes that the optimal 

decision is of affine functions of relevant uncertainty realizations. For example, in the 

case of O-DRO, the second-stage optimal decision of 𝒚1  is influenced by the 

realization of 𝝃1  and is decided by the second-stage optimization problem (3.43)-

(3.45). The relationship between optimal 𝒚1 and 𝝃1 generally cannot be expressed in 

closed forms, but will be assumed as (3.48) if LDR is adopted, where 𝒚̂1 represents 

the approximation of 𝒚1. In fact, two-stage models are equivalent to single-stage ones 

under LDR approximation. In multi-period problems, the relationship between optimal 

decisions in Period 2 to Period T and relevant uncertainty realizations is more 

complicated than that between optimal 𝒚1  and 𝝃1  in O-DRO, and will also be 

assumed to be affine under LDR. 

Generally, either load shedding or curtailing renewable energy should be adopted 

depending on realizations of uncertainties in RES outputs under the proposed M-SCED, 

which however cannot be achieved by using LDR. Therefore, SLDR instead of LDR is 

adopted here. SLDR extends LDR by segregating the primitive uncertainty and 

applying LDR on the segregated uncertainty to achieve better approximation. Under 

SLDR, the primitive uncertainty 𝝃  is segregated into (𝝃)+  and (𝝃)− , and the 
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segregated uncertainty is 𝝃seg = [(𝝃)+; (𝝃)−] , where (𝝃)+  is the vector after 

element-wise operation (𝜉𝑖)
+ = max{𝜉𝑖, 0} to all elements in 𝝃. Original decision 

variables are replaced by affine functions of the segregated uncertainty 𝝃seg, which are 

equivalent to piecewise-affine functions of the primitive uncertainty 𝝃 as shown in 

(3.49). An illustrative figure of LDR and SLDR is given in Fig. 3.1. Coefficients of 

SLDR are optimized when M-SCED is solved. Details on LDR and SLDR can be found 

in [99, 100]. Under LDR or SLDR, time sequences can be regarded as being squeezed 

together. As a result, multi-period problems become mathematically equivalent to 

single-period ones as in [69], which greatly reduces the difficulty of solving them and 

improves their scalability. 

𝒚̂1(𝝃) = 𝜷con + 𝜷 ∙ 𝝃                                               (3.48) 

𝒚̂1(𝝃) = 𝛽con + 𝜷 ∙ 𝝃seg = 𝜷con + 𝜷+ ∙ (𝝃)+ + 𝜷− ∙ (𝝃)−                (3.49) 

 

 

Fig. 3.1 Illustration of LDR and SLDR 
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3.4.3 Multi-period Economic Dispatch Model M-SCED 

In M-SCED, all later decision variables after 𝒙1 can be approximated by SLDR. 

But, to maintain modeling accuracy, 𝒚1 is remained intact and handled as in O-DRO. 

The multi-period model M-SCED is established as (3.50)-(3.56). 

inf { (𝒂1)′ ∙ 𝒙1 + sup
𝑓𝝃1∈D1

E[Ω1(𝒙1, 𝝃1)] + sup
𝑓𝝃∈D2

E [∑[(𝒂𝑡)′ ∙ 𝒙̂𝑡 + (𝒃𝑡)′ ∙ 𝒚̂𝑡]

T

𝑡=2

]}  (3.50) 

≜ inf  (𝒂1)′ ∙ 𝒙1 + Λ1 + Λ2                                                                                            (3.51) 

s. t. 𝐀1 ∙ 𝒙1 ≤ 𝐜1                                                                                                           (3.52) 

𝐀𝑡 ∙ 𝒙̂𝑡 ≤ 𝐜𝑡 , ∀𝝃 𝑓𝑜𝑟 𝑡 = 2, … , T                                                                       (3.53) 

𝐁𝑡 ∙ 𝒚̂𝑡 ≤ 𝐠𝑡 − 𝐄𝑡 ∙ 𝒙𝑡 − 𝐅𝑡 ∙ 𝝃𝑡, ∀𝝃 𝑓𝑜𝑟 𝑡 = 2, … , T                                    (3.54) 

𝒚̂𝑡 ≥ 𝟎, ∀𝝃 𝑓𝑜𝑟 𝑡 = 2, … , T                                                                                (3.55) 

−Ra𝑖
− ≤ 𝑝̂𝑖

𝑟,𝑡 − 𝑝̂𝑖
𝑟,𝑡−1 ≤ Ra𝑖

+, ∀𝝃 ∀𝑖 𝑓𝑜𝑟 𝑡 = 2, … , T                                  (3.56) 

In M-SCED, Ω1(𝒙1, 𝝃1) is the optimal second-stage cost of the first period. The 

second item in (3.50) is the worst expectation of Ω1(𝒙1, 𝝃1) and is represented by Λ1. 

The last item in (3.50) is the worst expectation of the total costs from Period 2 to Period 

T and is represented by Λ2. They are minimized together with the deterministic first-

stage cost of the first period. (3.52) is the deterministic first-stage constraints of the first 

period. (3.53)-(3.55) are constraints from Period 2 to Period T and (3.56) is ramping 

constraints. Constraints in M-SCED are required to be robust to all possible uncertainty 

realizations in uncertainty supports in order to ensure secure system operation, while 

the worst expected operation costs are minimized to pursue superior average economic 

performance with respect to the worst possible uncertainty distribution. 

M-SCED only requires to solve for 𝒙1 and other variables help make the right 

decision for 𝒙1  by taking future circumstances into consideration. In rolling-plan 

operation, second-stage decisions 𝒚𝑡 are solved from (3.43)-(3.45) when they need to 
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be carried out. First-stage decisions of Period 2 to Period T are solved later from 

updated M-SCED. 

With this in mind, it is reasonable to keep 𝒚1 intact and approximate variables after 

𝒚1, because 𝒚1 has the most direct influence on the optimal decision of 𝒙1. Load 

shedding is not modeled from Period 2 to Period T in M-SCED, because it cannot be 

properly approximated by LDR or SLDR. Relevant decision variables of load shedding 

are deleted from second-stage problems of Period 2 to Period T in M-SCED, and 

relevant constraints are accordingly modified. This means that the current decision 𝒙1 

needs to be made to ensure feasible system operation even with no load shedding 

allowed in Period 2 to Period T. However, it should be noted that the current decision 

𝒙1 has more direct influence on load shedding in the first period than in Period 2 to 

Period T, and load shedding in the first period is still modeled in 𝒚1 to help making a 

proper decision for 𝒙1. Load shedding in Period 2 to Period T will be modeled later 

in 𝒚1 when M-SCED is updated in rolling-plan operation. With such formulation, M-

SCED achieves tractable multi-period modeling while ensuring the quality of the 

current decision 𝒙1. A schematic diagram of M-SCED is given in Fig. 3.2. 

While the consideration of RES uncertainty in the proposed model has just been 

presented, load uncertainty can also be incorporated into the model and handled 

similarly as the RES uncertainty. The incorporation of load uncertainty and its impacts 

will further be discussed in Section 3.6.4. 

 

Fig. 3.2 Schematic diagram of M-SCED 
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3.5 Solution Method 

In M-SCED, uncertainty supports of 𝝃𝟏 and 𝝃, S0 and S, are taken as ellipsoids 

and polytopes respectively due to the computation considerations. Ellipsoidal S0 

makes it possible to derive the deterministic explicit expression of Λ1  through S-

lemma, and polyhedral S keeps the robust counterparts of (3.53)-(3.56) linear. Though 

ellipsoid and polytope may not be the best uncertainty support shapes, both ellipsoidal 

and polyhedral supports are acceptable if they contain the clear majority of possible 

uncertainty realizations with reasonable sizes. In this thesis, S0 and S are set to cover 

all historical samples of uncertainties with the sizes as small as possible. Here, M-SCED 

is transformed into an equivalent deterministic problem first and a Constraint 

Generation algorithm is proposed to solve the problem efficiently. 

3.5.1 Equivalent Deterministic Problem 

Under SLDR, total costs from Period 2 to Period T are of affine functions of the 

segregated uncertainty 𝝃seg. Therefore, Λ2 can be rewritten as (3.57). If the mean of 

𝝃seg is expressed as 𝝃̅seg, Λ2 can be further transformed into (3.58) and thus can be 

replaced by its robust counterpart through standard RO techniques. Constraints (3.53)-

(3.56) can be replaced by their robust counterparts as well. To avoid the over-

conservativeness of RO, uncertainty budgets can be adopted to limit the realizations of 

multiple scaler uncertainties [101], and techniques used in [58-60] can also be 

considered. The explicit expression of Λ1 is (3.15)-(3.18). Then, the only inexplicit 

term in M-SCED is Ω1(𝒙1, 𝝃1) in (3.18). 

Λ2 = sup
𝑓𝝃∈D2

E [𝛽con + (𝜷seg)
′

∙ 𝝃seg]                           (3.57) 

Λ2 = 𝛽con + sup
𝝃̅seg∈Ψ

(𝜷seg)
′

∙ 𝝃̅seg                                (3.58) 

According to the following proposition, Ω1(𝒙1, 𝝃1) in (3.18) can be eliminated. 

Different from O-DRO, load shedding is limited in M-SCED. As a result, under 

improper first-stage decisions 𝒙1, the second-stage problem of the first period could be 
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infeasible because of power imbalance and Ω1(𝒙1, 𝝃1) would become plus infinity. To 

overcome this, Farkas’ Lemma is utilized to guarantee the second-stage feasibility in 

the proposition. 

Proposition: 

In M-SCED, (3.18) is equivalent to the combination of (3.59) and (3.60). 

(𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖𝑟 ≤ 0, ∀𝝃1 ∈ S0, ∀𝑟                   (3.59) 

(𝝃1)′𝑸d𝝃1 + 2(𝝃1)′(−𝒑d − 𝑸d𝛍0) + 𝑟d                           

≥ (𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖𝑒, ∀𝝃1 ∈ S0, ∀𝑒              (3.60) 

where 𝒖𝑟 , 𝑟 = 1, … , NR  and 𝒖𝑒 , 𝑒 = 1, … , NE  are all extreme rays and extreme 

points of the set U = {𝒖|(𝐁1)′ ∙ 𝒖 ≤ 𝐛1, 𝒖 ≤ 𝟎}, which is the dual feasible region of 

the second-stage problem (3.43)-(3.45) of the first period. 

Proof: 

According to Farkas’ Lemma as given in Appendix, the feasibility of the second-

stage problem (3.43)-(3.45) of the first period is equivalent to the infeasibility of (3.61) 

and thus can be further transformed into (3.62). Because Uc is a polyhedral cone, every 

element in it can be expressed as a nonnegative linear combination of its extreme rays, 

which are the same as those of U. As a result, when 𝒙1 is fixed, (3.62) is equivalent 

to (3.59). Under the feasibility guarantee (3.59), the optimal value Ω1(𝒙1, 𝝃1)  is 

attained at one of the extreme points of the dual feasible set U and thus (3.63) holds 

[102, 103]. Therefore, (3.18) is equivalent to (3.60) under (3.59). 

{
𝒖 ∈ Uc = {𝒖|(𝐁1)′ ∙ 𝒖 ≤ 𝟎, 𝒖 ≤ 𝟎}

(𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖 > 0     
}                                 (3.61) 

(𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖 ≤ 0, ∀𝒖 ∈ Uc                            (3.62) 

Ω1(𝒙1, 𝝃1) = max
𝑒∈{1,2,…,NE}

{(𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖𝑒}               (3.63) 

□ 

(3.59) guarantees the feasibility of the second-stage problem of the first period 

within the framework of DRO, and its effect is requiring enough reserve capacity for 
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scheduled RES power. (3.60) ensures the optimality of 𝒙1. (3.59) can be replaced by 

its deterministic robust counterpart through standard RO techniques. (3.60) can be 

rewritten as (3.64). Because S0  is an ellipsoid as shown in (3.65), (3.64) can be 

transformed into (3.66)-(3.67) by using S-lemma. S-lemma and the transformation from 

(3.64) to (3.66)-(3.67) are given in Appendix. At last, M-SCED becomes a deterministic 

semidefinite program, which can be solved by off-the-shelf solvers. 

[(𝝃1)′ 1] [
𝑸d −𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2

(−𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2)
′

𝑟d + (𝐄1 ∙ 𝒙1 − 𝐠1)′𝒖𝑒

] [𝝃1

1
] 

≥ 0, ∀𝝃1 ∈ S0, ∀𝑒 (3.64) 

S0 = {𝝃1|(𝝃1 − 𝛍0)′ ∙ 𝐌 ∙ (𝝃1 − 𝛍0) ≤ 1}                      (3.65) 

[
𝑸d −𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2

(−𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2)
′

𝑟d + (𝐄1 ∙ 𝒙1 − 𝐠1)′𝒖𝑒

] 

≽ −𝜏𝑒 [
𝐌 −𝐌 ∙ 𝛍0

−(𝐌 ∙ 𝛍0)′ (𝛍0)′𝐌𝛍0 − 1
] , ∀𝑒     (3.66) 

𝜏𝑒 ≥ 0, ∀𝑒                                                           (3.67) 

3.5.2 Constraint Generation Algorithm 

Although M-SCED is transformed into a deterministic problem as in Section 3.5.1, 

constraints from (3.59) and (3.60) can be in vast numbers, relating with extreme rays 

and points of U, and only parts of them are active for the optimal solution. To solve the 

problem efficiently, a Constraint Generation algorithm is proposed here based on the 

structure of M-SCED. The core idea is to relax M-SCED by considering only parts of 

constraints from (3.59) and (3.60). Necessary constraints from (3.59) and (3.60) are 

found iteratively by solving the relaxed M-SCED and two sub-problems until the 

optimal solution is reached. The relaxed M-SCED is in the form of (3.68), where Φ𝑒 

and Φ𝑟 are sets of necessary extreme points and rays. Sub-problem 1 and 2 are set as 

(3.69)-(3.70) and (3.71)-(3.73), respectively, where 𝒙1,∗ , 𝒑d,∗ , 𝑸d,∗  and 𝑟d,∗  are 

optimal values solved from the relaxed M-SCED. 
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inf (𝐚1)′ ∙ 𝒙1 + Λ2 + (3.15)                 

s. t. (3.52) − (3.56), (3.16) − (3.17)

(3.59), ∀𝑟 ∈ Φ𝑟                        

(3.60), ∀𝑒 ∈ Φ𝑒                        

                            (3.68) 

inf
𝝃1,𝒖

 (𝝃1)′𝑸d,∗𝝃1 + 2(𝝃1)′(−𝒑d,∗ − 𝑸d,∗𝛍0) + 𝑟d,∗         

−(𝐠1 − 𝐄1 ∙ 𝒙1,∗ − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖        (3.69) 

s. t.  𝝃1 ∈ S0, 𝒖 ∈ U                                                                                (3.70) 

 sup 
𝝃1,𝒖

(𝐠1 − 𝐄1 ∙ 𝒙1,∗ − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖                                         (3.71) 

𝑠. 𝑡.  𝝃1 ∈ S0, 𝒖 ∈ Uc                                                                 (3.72) 

(𝐠1 − 𝐄1 ∙ 𝒙1,∗ − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖 ≤ 1                                (3.73) 

If there is any extreme ray 𝒖𝑟 violating (3.59), Sub-problem 1 will be unbounded 

and the optimal 𝒖 of Sub-problem 2 corresponds to the most violating extreme ray for 

(3.59), which should be added to Φ𝑟. If there is no violating extreme ray for (3.59) but 

are some violating extreme points for (3.60), the optimal value of Sub-problem 1 will 

be a finite negative value and the optimal 𝒖 corresponds to the most violating extreme 

point for (3.60), which should be added to Φ𝑒. The complete algorithm of solving M-

SCED is as follows. 

1) Initialize Φ𝑒 and Φ𝑟 with proper extreme points and rays of U. 

2) Solve the relaxed M-SCED (20) with parts of constraints from (15) and (16) 

corresponding to Φ𝑟 and Φ𝑒, respectively. 

3) Substitute the optimal 𝒙1,∗, 𝒑d,∗, 𝑸d,∗ and 𝑟d,∗ obtained in step 2 into Sub-

problem 1 and 2, and solve Sub-problem 1. 

4) If the optimal value of Sub-problem 1 is not less than zero, the optimal solution 

of M-SCED is attained and the algorithm ends. If the optimal value is less than 

zero but not minus infinity, add the corresponding extreme point into Φ𝑒 . 

Otherwise, solve Sub-problem 2 and add the corresponding extreme ray into 

Φ𝑟. 
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5) Repeat Step 2-4 until the algorithm ends. 

Sub-problem 1 and 2 are both biconvex problems. When u is fixed, they are both 

convex in 𝝃1. When 𝝃1 is fixed, they are both linear in u. Biconvex problems are non-

convex and difficult to solve. To solve the biconvex Sub-problem 1 and 2 efficiently, a 

sequentially alternating approach is adopted here, which solves the problems by fixing 

𝝃1 and 𝒖 as constants alternatively until a local optimum is attained [104]. Though 

this approach cannot guarantee to find the global optimal solutions of Sub-problem 1 

and 2, its solution quality could be improved with the use of multiple initial values [63]. 

Similar heuristic methods have been widely adopted to effectively solve bilinear and 

biconvex problems in literatures adopting two-stage formulations [60, 63, 64, 74, 101], 

and the suggested sequentially alternating approach has also been shown to be effective 

in the case studies. The procedure of the sequentially alternating approach is as follows. 

1) Choose a set of initial vales of 𝝃1. 

2) Set 𝝃1  to an initial value or 𝝃1,∗ , solve the subproblem with respect to 𝒖. 

Record the optimal value of the subproblem as o1 and the solution of 𝒖 as 

𝒖∗. 

3) Set 𝒖 to 𝒖∗, solve the subproblem with respect to 𝝃1. Record the optimal 

value of the subproblem as o2 and the solution of 𝝃1 as 𝝃1,∗. 

4) If the difference between o1 and o2 is within the tolerance, go to Step 5. 

Otherwise, repeat Set 2-3 until the difference between o1 and o2 is within 

the tolerance. 

5) Check whether Step 2-4 have been conducted for all chosen initial values of 

𝝃1. If yes, go to Step 6. Otherwise, go to Step 2 for an initial value of 𝝃1 that 

has not been attempted. 

6) Compare the solutions corresponding to each chosen initial value of 𝝃1 . 

Choose the one that has the best optimal value as the optimal solution of the 

subproblem. 

It should be noted that Sub-problem 1 is convex because of (3.17), which is attained 

in the dual problem for evaluating worst expectations of uncertainty-affected costs. 
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However, if equalities were used instead of inequalities to describe uncertainty 

moments in the distributional set as in D0, condition (3.17) could not be attained in this 

way. In [63], S0 in D0 is set as the entire real space ℝ
N

𝝃1
. N𝝃1 is the dimension of 

𝝃1. As a result, instead of (3.60), there will be constraints in the form of (3.74), which 

can be rewritten as (3.75) and further replaced by (3.76), from which (3.17) can be 

obtained. However, if S0  in D0  is set to ellipsoids as in D1 , there will be only 

constraints in the form of (3.66) but not (3.76). As a result, (3.17) cannot be contained 

and thus the biconvexity of subproblems in the Constraint Generation algorithm cannot 

be guaranteed, which will lead to extra computational difficulty. To conclude, 

compared with D0, D1 incorporates ellipsoidal uncertainty support without increasing 

the computational complexity. 

(𝝃1)′𝑸d𝝃1 + (𝝃1)′𝒑d + 𝑟d ≥ (𝐠1 − 𝐄1 ∙ 𝒙1 − 𝐅1 ∙ 𝝃1)′ ∙ 𝒖𝑒 , ∀𝝃1 ∈ ℝ
N

𝝃1 , ∀𝑒   (3.74) 

[(𝝃1)′ 1] [
𝑸d (𝒑d + (𝐅1)′𝒖𝑒)/2

(𝒑d + (𝐅1)′𝒖𝑒)
′
/2 𝑟d + (𝐄1 ∙ 𝒙1 − 𝐠1)′𝒖𝑒

] [𝝃1

1
] ≥ 0, 

∀𝝃1 ∈ ℝ
N

𝝃1 , ∀𝑒     (3.75) 

[
𝑸d (𝒑d + (𝐅1)′𝒖𝑒)/2

(𝒑d + (𝐅1)′𝒖𝑒)
′
/2 𝑟d + (𝐄1 ∙ 𝒙1 − 𝐠1)′𝒖𝑒

] ≽ 0                (3.76) 

3.6 Results and Discussions 

Effects of DRO in improving the economy of ED operation are firstly demonstrated 

here to show the necessity of utilizing DRO. Superiority of two-stage models over 

single-stage ones is illustrated next. Lastly, M-SCED is benchmarked against O-DRO 

[63] to show its improvements and the effects of incorporating load uncertainty are 

discussed. 

3.6.1 Necessity of Using DRO in Economic Dispatch 

In ED, RO has been commonly used to minimize the objective in the worst possible 

case. However, because the worst case rarely happens, the solution can often be over-
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conservative. In contrast, M-SCED can greatly improve the economic efficiency 

through evaluating the expected second-stage cost by DRO. The traditional RO model 

in [63] is here referred as T-RO. Because both T-RO and O-DRO are single-period, 

only the first-period sub-model of M-SCED is used for comparison here by removing 

components after the first period in M-SCED, and it is referred as S-SCED.  

Case studies in this part are conducted on a modified IEEE 118-bus system from 

[63], where all RES have power forecast of 100 MW. For simplicity, all RES 

uncertainty is assumed to have zero mean, the same variance and no correlation with 

each other. T-RO has a parameter called uncertainty budget Γ, which controls the size 

of uncertainty sets and decides the conservatism level of T-RO. To make a fair 

comparison, ED is solved by S-SCED, O-DRO and T-RO of different Γ under RES 

uncertainty of different variances. Their calculated total costs for two stages are shown 

in Fig. 3.3. Costs of T-RO are much higher than those of S-SCED and O-DRO, which 

overlap each other in the figure. 

To obtain the average performance of different models, for each set of variances, 

3000 simulated uncertainty realizations are generated by normal distributions. Based 

on the first-stage decisions of different models, recourse actions are solved from the 

second-stage problem (3.43)-(3.45) under simulated uncertainty realizations. The 

average total costs are shown in Fig. 3.4, which are the sum of deterministic first-stage 

costs and average second-stage costs with respect to all simulated uncertainty 

realizations. Average costs of T-RO are lower than its calculated costs, but still much 

higher than average costs of S-SCED and O-DRO. This is because T-RO is designed 

for the worst case when actual available RES power is much lower than the forecast 

value. With this anticipation, T-RO schedules only part of forecasted RES power and 

thus plans more outputs from generators than S-SCED and O-DRO in the first stage, 

leading to unnecessary extra costs under most uncertainty realizations. Although T-RO 

will have lower total costs when the worst case does occur [63], the probability is small. 

Therefore, in terms of average economic performance, S-SCED and O-DRO are better 

than T-RO, proving the necessity of utilizing DRO in ED operation. 
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Fig. 3.3 Calculated costs from different models 

Computation times of different models are recorded in Table 3.1 which shows that 

S-SCED is comparable with O-DRO while the computation times of T-RO depend on 

Γ and could vary widely. Here, T-RO is solved by a column-and-constraint algorithm 

as in [63] with the bilinear sub-problem transformed into a MILP. This bilinear sub-

problem can also be solved by the sequentially alternating approach as adopted for S-

SCED with the sacrifice of global optimality by solving a series of linear programs. 

While the method of transforming bilinear optimization problems into MILP is more 

computation demanding, it has been widely adopted in various applications [48, 57, 63, 

105, 106] because of its good solution quality, and hence is adopted here for 

benchmarking. 

Table 3.1 Computation times of different models 

Variance 

(p.u.) 
S-SCED (s) O-DRO (s) 

T-RO (s) 

Γ=0.5 Γ=0.7 Γ=0.9 

0.01 119.50 89.88 149.61 119.59 30.99 

0.014 116.52 107.24 132.86 122.42 29.86 

0.018 114.35 107.66 166.70 121.89 34.42 

0.02 113.51 113.02 150.10 121.86 30.28 

 



45 

 

 

Fig. 3.4 Average costs from different models 

3.6.2 Comparison Between Two-stage and Single-stage Models 

Both S-SCED and O-DRO are two-stage models with recourse actions fully 

modeled in the second stage. In contrast, single-stage models simply assume that 

recourse actions respond affinely to uncertainty realizations. To illustrate the 

superiority of the two-stage S-SCED over single-stage models, comparison is made 

here between S-SCED and its single-stage counterpart, which is referred as S-S-SCED. 

Case studies in this and following parts are conducted on a modified IEEE 30-bus 

system, where two RES are connected to Bus 22 and 25 with forecast power of 60 MW 

each. Variances of RES uncertainty are set to 0.02 p.u. and parameters of generators 

are given in Table 3.2. Up and down reserve cost coefficients of all generators, a𝑖
r+ 

and a𝑖
r−, are set to 1.2 $/MW. 3000 simulated uncertainty realizations are generated by 

normal distributions to test S-SCED and S-S-SCED. 

Under this set of parameter settings, wind curtailment is cheaper than adjusting 

generators’ outputs downwards. Therefore, in this and following case studies, only up 

reserve capacity is scheduled and presented in the results. The results of S-SCED and 

S-S-SCED are recorded in Table 3.3. S-S-SCED schedules much less RES power than 
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S-SCED and thus has much higher first-stage costs, leading to higher total costs than 

S-SCED. The reason is that the affine assumption on recourse actions of S-S-SCED is 

far from the optimal case. Taking load shedding as an example, if the first-stage plan 

of S-S-SCED is fixed to be the same as S-SCED, its decision rule for load shedding 

will be the dashed curve in Fig. 3.5 when no transmission capacity constraint is binding. 

However, the optimal load shedding decision shall be the solid curve instead, as load 

shedding is the most expansive recourse action and should only be carried out when 

generators cannot provide enough regulation power. Besides load shedding, 

nonlinearity can also exist in other recourse actions, such as power regulation of 

generators. When the costs of generators are different, power regulation should be 

provided by lower cost generators first if possible; whereas under affine assumptions 

of single-stage models, regulation power is always provided by all generators. 

Table 3.2 Generator parameters in IEEE 30-bus system 

Bus 

No. 
p𝑖

l  

(MW) 

p𝑖
u 

(MW) 

Re𝑖
+,Re𝑖

− 

(MW) 

a𝑖
g,1

 

($/MW2) 

a𝑖
g,2

 

($/MW) 

b𝑖
p+

, b𝑖
p−

 

($/MW) 

1 50 100 20 3.75e-3 3 5 

2 20 80 16 3.75e-3 3 5 

5 15 50 10 3.75e-3 3 5 

8 10 35 7 3.75e-3 3 5 

11 12 60 10 3.75e-3 3 5 

13 20 80 16 3.75e-3 3 5 

 

Fig. 3.5 Decision rule of S-S-SCED and the optimal decision on load shedding 
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The affine assumption on recourse actions leads to much more conservative 

anticipated costs of recourse actions for S-S-SCED. As a result, here S-S-SCED reduces 

the amount of scheduled RES power to avoid recourse actions as much as possible. The 

decision rule of S-SCED for recourse actions cannot be derived explicitly and thus 

cannot be directly compared with that of S-S-SCED. However, as shown in Table 3.3, 

S-SCED achieves much better results than S-S-SCED, illustrating that it captures the 

nonlinearity of recourse actions better. 

Table 3.3 Results of S-SCED and S-S-SCED 

MODEL S-SCED S-S-SCED 

SCHEDULED GENERATOR OUTPUTS (MW) 226.0 266.1 

SCHEDULED RES OUTPUTS (MW) 120.0 80.0 

SCHEDULED RESERVE CAPACITY (MW) 20.7 0.0 

FIRST-STAGE COSTS ($) 735.5 842.9 

AVERAGE SECOND-STAGE COSTS ($) 29.9 2.0 

AVERAGE TOTAL COSTS ($) 765.4 844.8 

Though the global optimal solutions of the biconvex sub-problems in S-SCED 

cannot be guaranteed as explained in Section 3.5.2, it is verified through case studies 

that the solution quality of S-SCED is better than that of single-stage models and is 

basically satisfactory. 

3.6.3 Further Comparison between S-SCED and O-DRO 

In this part, the advantages of S-SCED over O-DRO will be shown from different 

aspects. Again, 3000 simulated uncertainty realizations are generated by normal 

distributions in each coming experiment and are used to obtain second-stage decisions 

from (3.43)-(3.45). 

1) Effects of strict constraints on load shedding 

Here, O-DRO is compared with S-SCED under different load shedding limits. In 

all considered circumstances, S-SCED schedules all forecasted RES power, and results 

of S-SCED are shown in Table 3.4. Reserve capacity scheduled in the first stage 

increases as the limit becomes stricter. As a result, load shedding is reduced in the 

second stage with corresponding reduced penalty. As the expense of ensuring system 
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security, costs of the first stage are increased under stricter shedding limits because of 

increased reserve capacity, which also leads to higher average total costs of the two 

stages. 

Table 3.4 Results of S-SCED under different load shedding limits 

Allowed total 

load shedding 

amounts (%) 

Scheduled 

reserve 

capacity (MW) 

First-stage 

costs ($) 

Average load 

shedding 

penalty ($) 

Average total 

costs ($) 

100 20.74  735.49  2.556  765.4  

3 29.22  745.67  0.352  774.0  

2.5 30.95  747.75  0.226  776.0  

2 32.68  749.82  0.125  778.0  

1.5 34.41  751.90  0.054  780.1  

1 36.11  753.93  0.021  782.1  

0.5 37.87  756.05  0.004  784.2  

In contrast with S-SCED, O-DRO does not impose any load shedding limit. It 

schedules all forecasted RES power and 18.99 MW of reserve capacity. Because of the 

insufficient reserve capacity scheduled, load shedding limits will be violated in the 

second stage under O-DRO as shown in Table 3.5. In this study, O-DRO has a 

probability up to 3.42% in having extra load shedding beyond the limit, which could be 

unacceptable. Although the load shedding penalty in O-DRO can be increased to reduce 

load shedding operation in the second stage, it is not clear how much the penalty should 

be set such that the load shedding limit will not be violated. Therefore, S-SCED is more 

capable to maintain system security compared with O-DRO. 

Table 3.5 Probability of violating load shedding limits 

Allowed total load 

shedding amounts (%) 
3 2.5 2 1.5 1 0.5 

Probability of 

violation (%) 

S-SCED 0.00 0.00 0.00 0.00 0.00 0.00 

O-DRO 0.58 0.81 1.20 1.78 2.65 3.42 

2) Effects of incorporating uncertainty support 

RES uncertainty is always bounded with finite supports, because the power output 

of RES cannot be negative values nor exceed the installed capacity. As compared to O-
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DRO, S-SCED would incorporate uncertainty support information. Here, both O-DRO 

and S-SCED are used to solve ED problems under different load shedding penalty and 

a summary of their dispatch plans is shown in Table 3.6. Under both models, scheduled 

reserve capacity increases as the shedding penalty grows, because in such 

circumstances, possibility of load shedding operation should be reduced accordingly to 

avoid excessive total costs. However, the reserve capacity gradually stops increasing 

under S-SCED when the penalty is high enough while it continues to increase under O-

DRO. This is because uncertainty support information is absent in O-DRO and the 

solution becomes over-pessimistic in preventing cases that hardly happen. As a result, 

under high shedding penalty (75$-135$), the unnecessary reserve capacity scheduled 

by O-DRO makes its first-stage costs higher than those of S-SCED as shown in Table 

3.7, which also leads to higher average total costs for O-DRO. Therefore, S-SCED can 

prevent over-conservative solutions compared with O-DRO by incorporating 

uncertainty support information. 

Besides, under high shedding penalty (45$-135$), S-SCED schedules only part of 

forecasted RES power while O-DRO schedules all as shown in Table 3.6. This is not 

the major reason causing differences between the total costs of O-DRO and S-SCED. 

However, to avoid confusion, the reason of this phenomenon is briefly explained as 

follows. For S-SCED, its optimal dispatch plan of scheduling part of forecasted RES 

power can achieve a lower total cost compared with the plan of scheduling all 

forecasted RES power because of reduced reserve costs in the first stage and reduced 

recourse costs in the second stage. However, different from S-SCED, O-DRO has no 

support limitation for uncertainty distribution and thus the worst distribution it 

considers is more dispersed than that considered by S-SCED. As a result, the benefit of 

reducing recourse costs in the second stage for O-DRO by taking S-SCED’s optimal 

plan is less than that for S-SCED and scheduling all forecasted RES power is still the 

optimal plan for O-DRO. 
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Table 3.6 Summary of dispatch plans of S-SCED and O-DRO under different load 

shedding penalties 

Load shedding penalty ($) 15 45 75 105 135 

Scheduled 

generator 

outputs (MW) 

S-SCED 226.0  228.0  228.5  228.8  228.9  

O-DRO 226.0  226.0  226.0  226.0  226.0  

Scheduled 

RES outputs 

(MW) 

S-SCED 120.0  118.0  117.5  117.2  117.1  

O-DRO 120.0  120.0  120.0  120.0  120.0  

Scheduled 

reserve 

capacity (MW) 

S-SCED 20.74  35.46  36.03  36.17  36.24  

O-DRO 18.99  35.40  46.36  55.20  63.93  

Table 3.7 Operation costs of S-SCED and O-DRO under different load shedding 

penalties 

Load shedding penalty ($) 15 45 75 105 135 

First-stage 

costs ($) 

S-SCED 735.5  759.6  762.1  763.0  763.5  

O-DRO 733.4  753.1  766.2  776.8  787.3  

Average 

second-stage 

costs ($) 

S-SCED 29.34  22.58  21.29  20.88  20.70  

O-DRO 30.13  27.56  27.35  27.35  27.35  

Average total 

costs ($) 

S-SCED 764.8  782.1  783.4  783.9  784.1  

O-DRO 763.5  780.7  793.6  804.2  814.7  

3) Effects of considering deviations of uncertainty moments 

Here, S-SCED is set with 𝑟1 = 0.2 and 𝑟2 = 0 to consider possible deviation of 

uncertainty mean. O-DRO and S-SCED are both used to solve ED problems and the 

summary of their dispatch plans is recorded in Table 3.8. O-DRO schedules all 

forecasted RES power, 120.0MW, while S-SCED anticipates possible deviation of 

uncertainty mean and schedules only 116.0MW. Meanwhile, S-SCED schedules more 

power outputs from generators and thus has a higher first-stage cost than O-DRO. 

An indicator, 𝑟1
∗ , is used to measure the actual deviation of uncertainty mean.  

When 𝑟1
∗ = 0, there is no deviation. When 𝑟1

∗ = 𝑟1, uncertainty mean deviates to the 

boundary of D1 and has the lowest sum in D1. Simulated uncertainty realizations are 

generated by normal distributions according to the actual moments under different 𝑟1
∗. 

Operation costs of S-SCED and O-DRO are presented in Table 3.9. S-SCED has lower 

second-stage costs than O-DRO because it schedules less RES power and thus needs 
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less recourse operation in the second stage. When 𝑟1
∗ = 0, S-SCED has slightly higher 

average total cost than O-DRO. While in other cases recorded in Table 3.9, uncertainty 

mean deviates to be smaller than the statistical value, so there will be less available RES 

power on average than anticipated by O-DRO. As a result, O-DRO will have 

unexpected regulation costs on average in the second stage and thus has higher average 

total costs than S-SCED. Compared with O-DRO, cost savings of S-SCED, when 

uncertainty mean deviates to be smaller than the statistical value, are generally higher 

than its extra cost under no mean deviation. Besides, although the advantages of S-

SCED over O-DRO shown here are not that significant, they will be amplified when 

RES penetration level increases or costs of recourse actions become more expansive. 

Therefore, it is more reasonable to adopt S-SCED rather than O-DRO. Besides, 𝑟1, 𝑟2 

of S-SCED can be adjusted based on historical uncertainty samples. 

Table 3.8 Summary of dispatch plans of S-SCED and O-DRO when mean 

deviations considered 

Model 

Scheduled 

generator 

outputs (MW) 

Scheduled 

RES outputs 

(MW) 

Scheduled 

reserve 

capacity (MW) 

First-stage 

costs ($) 

S-SCED 230.0 116.0 17.46 744.6 

O-DRO 226.0 120.0 18.99 733.4 

Table 3.9 Operation costs of S-SCED and O-DRO under different mean deviations 

𝑟1
∗ 0 0.02 0.04 0.12 0.20 

Deviation of average 

available RES power (MW) 
0.00 -1.70 -2.40 -4.16 -5.37 

Average 

second-stage 

costs ($) 

S-SCED 19.75 23.50 25.97 30.70 35.77 

O-DRO 30.06 36.05 39.21 44.99 51.52 

Average total 

costs ($) 

S-SCED 764.3 768.1 770.5 775.3 780.3 

O-DRO 763.5 769.4 772.6 778.4 784.9 
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3.6.4 Incorporation of Load Uncertainty 

As mentioned in Section 3.4.3, load uncertainty can also be incorporated into the 

model exactly like RES uncertainty. Here, the effects of incorporating load uncertainty 

are discussed. Loads at Bus 2, 5, 7, 8, 21 and 30 contribute to 70% of the total load and 

they are assumed to be with uncertainty in this study. Results of comparison between 

models with and without load uncertainty are presented in Table 3.10. Load uncertainty 

makes the ED problem more unpredictable, thus more reserve capacity is scheduled, 

and the operation costs increase as well. 

Table 3.10 Effects of incorporating load uncertainties 

With load 

uncertainty 

Scheduled 

reserve 

capacity (MW) 

First-stage 

costs ($) 

Average 

second-stage 

costs ($) 

Average total 

costs ($) 

No 20.74 735.5 30.32 765.8 

Yes 25.35 741.0 41.46 782.5 

Correlation between uncertainty can be considered by the model through the 

covariance matrix. Effects of load uncertainty’s correlation are also studied here. Load 

at Bus 5 is the largest and makes up of 31.5% of the total load. To simulate 

circumstances of different uncertainty correlation, a covariance matrix Δ is generated 

by assuming that uncertainties of loads at Bus 2, 7, 8, 21 and 30 are of 0.2, 0.2, 0.25, 

0.15, and 0.2 times of the uncertainty of the load at Bus 5 respectively, and Δ𝛼 with 

different 𝛼  are generated by multiplying the covariance terms in Δ  between 

uncertainty of the load at Bus 5 and other load uncertainties by 𝛼. Δ𝛼 is adopted as 

the covariance matrix of load uncertainty in the ED problem. Under positive and 

negative 𝛼 , uncertainty of load at Bus 5 has positive and negative correlation 

respectively with other load uncertainties. The correlation is stronger with larger 

absolute value of α. Results of ED problems under Δ𝛼 with different α are shown in 

Fig. 3.6. Under stronger negative correlation, load uncertainties tend to offset each other 

better, thus less reserve capacity is scheduled and the operation cost decreases. 
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Fig. 3.6 Effects of the correlation between load uncertainties 

3.6.5 Necessity of Multi-period Modeling 

Here, M-SCED is compared with O-DRO to illustrate the necessity of multi-period 

modeling for ED problems. M-SCED can incorporate any reasonable number of time 

periods. Here, for simplicity, T is set to three. Duration of each period is set to one 

hour. Generator 5 is set to be more expansive than Generator 1-4, and Generator 6 is 

set to be more expansive than Generator 5. Cost difference between Generator 6 and 

Generator 5 is more significant than that between Generator 5 and Generator 1-4. Up 

and down ramping limits of all generators, Ra𝑖
+ and Ra𝑖

−, are set to two times of their 

up and down reserve capacity limits, respectively. Power forecasts of all RES in all 

periods are set as 30 MW. Total loads in the system are set as 318.4, 380.4, 380.4 MW 

from Period 1 to 3. In rolling-plan operation, with ramping constraints coupled with the 

previous period, M-SCED is updated in each period and O-DRO is adopted repeatedly 

for each period respectively to obtain ED operation plans. 1000 simulated uncertainty 

realizations are generated by normal distributions to evaluate the performance of M-

SCED and O-DRO in multi-period ED operation. 
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Because Generator 6 is the most expensive, power generation should be 

preferentially scheduled to other generators if possible. As shown in Fig. 3.7, without 

anticipating future circumstances, O-DRO schedules Generator 5 and 6 at their 

minimum generation in Period 1. In Period 2 and 3, to meet the increased load, 

Generator 1-4 increase their power outputs to their maximum capacities, Generator 5 

increases its power output and reserve capacity by reaching its up ramping limit, and 

the most expensive Generator 6 needs to increase its power output as well. In contrast, 

under M-SCED, because the load increase is anticipated, Generator 5 is scheduled with 

higher generation in Period 1 and thus it can provide enough power in Period 2 and 3, 

avoiding power output increase from expensive Generator 6. 

 
Fig. 3.7 Power outputs of Generator 5 and 6 under different models 

As shown in Table 3.11, M-SCED has higher cost in Period 1 but lower costs in 

following periods than O-DRO, matching the results in Fig. 3.7. The total cost of M-

SCED is lower as well. This is because M-SCED has an overall consideration over the 

entire operation horizon and sacrifices short-term benefit to pursue long-term profit. In 

contrast, O-DRO is shortsighted in considering only the current period. In more severe 

situations such as when the total load in Period 2 is 410 MW, O-DRO will even meet 

infeasible operation situations, leading to more serious consequences, while M-SCED 
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will not. Besides, as stated earlier, O-DRO cannot be directly extended to be multi-

period because of the complicated consistency requirement of time sequences. While 

according to Table 3.11, M-SCED achieves effective multi-period modeling without 

causing excessive computational burden. 

Table 3.11 Computation times of M-SCED and O-DRO and their operation costs of 

multi-period ED 

 
Computation 

times (s) 

Average costs 

in Period 1 ($) 

Average costs 

in Period 2 ($) 

Average costs 

in Period 3 ($) 

Average total 

costs ($) 

M-SCED 36.71 977.8 1204.9 1203.1 3385.8 

O-DRO 18.72 967.9 1242.3 1208.7 3418.9 

3.7 Summary 

In this chapter, a multi-period economic dispatch model M-SCED is established to 

accommodate uncertainty from renewable energy, in which a two-stage formulation is 

adopted to effectively model recourse actions with respect to uncertainty realizations. 

Compared with traditional robust optimization based economic dispatch, M-SCED 

greatly reduces average operation costs through application of DRO. Compared with 

the previous work based on DRO, M-SCED avoids over-conservative solutions and 

prevents inferior performance under inaccurate uncertainty information through more 

realistic modeling of uncertainty as well as enhances system security by limiting load 

shedding in recourse actions. In addition, the efficient multi-period modeling 

guarantees economical and secure long-term economic dispatch operation without 

causing excessive computational burden. 
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Chapter IV 

A Model to Mitigate Forecast Uncertainties in Balance 

Responsible Distribution Systems Using the Flexibility of 

EVAs 

4.1 Introduction 

In power systems, energy supplies and demands need to be balanced all the time. 

To maintain the balance under forecast uncertainties, reserve needs to be prepared, 

which is traditionally achieved by using generators and hydropower stations [63, 64]. 

As EVs become common, they can also participate in energy balancing through 

regulation markets in some deregulated power systems [107, 108]. While for power 

systems without regulation markets, other mechanisms to make use of EVs need to be 

designed. As EVs are connected to distribution systems, one possible alternative is to 

let each distribution system mitigate its forecast uncertainties [78, 109]. Then, each 

distribution system becomes a BRDS and can be penalized if its actual energy 

consumption fails to match the plan [22]. With each BRDS mitigating its own 

uncertainties, the transmission system operator needs to prepare less reserve.  

If BRDS directly dispatches each EV, the arrival times, departure times, SOC at 

arrival and target SOC at departure of all EVs need to be taken into consideration. 

However, considering these uncertain parameters will be very cumbersome when a 

large number of EVs are involved. Instead, it is more reasonable for system operators 

to dispatch EVAs and let EVAs control EVs. [110, 111] adopt such schemes, but their 

models are not designed for BRDS and do not use EVAs to mitigate uncertainties.  

By making use of the flexibility of EVs, EVAs possess flexibilities in accepting 

disturbance to their charging. The disturbance to EVAs is called over-charging if they 

receive more energy than their needs and is called charging deficiency if they receive 
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less energy than their needs. Besides, EVAs also have forecast uncertainties in their 

charging demands as a result of unpredictable behaviors of EVs. Because of the large 

volume of charging demands of EVAs in the future, their potential deviations from 

forecast can be considerable although they have relatively predictable patterns. But by 

using the flexibility of EVAs, their charging rates can be kept as scheduled at the cost 

of their over-charging or charging deficiency depending on the signs of their 

uncertainty realizations, which means that their uncertainties can be eliminated by 

themselves.  

In consideration of the features of EVAs, a tailored model is established to use the 

flexibility of EVAs to mitigate forecast uncertainties in BRDSs. Charging demands of 

EVAs are required to be fulfilled at the end of the day in order to guarantee driving 

activities of EVs in the next day. As a result, over-charging and charging deficiency of 

EVAs incurred from mitigating uncertainties should be recovered later in the day. So, 

contributions of EVAs in mitigating uncertainties are actually delaying uncertainties, 

and thus the deviation of the energy consumption of BRDS from the plan in an hour 

depends on uncertainties from different hours, which may offset each other. In the 

established model, DRO is adopted to optimize the average performance of the 

operation plans. Because movements of EVs possess distinct spatial-temporal features 

[112], uncertainties in charging demands of EVAs may have prominent temporal and 

spatial correlations. Therefore, the ambiguity set under DRO is constructed with the 

statistical expectation and covariance matrix of uncertainties. 

Components of distribution systems can have intertemporal constraints, such as 

those on ramping rates of DGs, SOC of ES and accumulated disturbance to the charging 

of EVAs. With these constraints, earlier decisions influence later operation. Therefore, 

it is necessary to properly take real-time recourse operation into consideration when 

making day-ahead operation decisions. Otherwise, inferior results could be incurred. 

For example, reserve capacities are scheduled from DGs and ES to tackle uncertainties 

in energy supplies without considering the real-time operation in [78]. As a 

consequence, DGs and ES are poorly coordinated. Different from [78], [80] considers 
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real-time operation in advance through a two-stage framework. But the second stage of 

the framework assumes that real-time decisions at all times are made simultaneously 

knowing realizations of uncertainties at all times, which neglects the fact that earlier 

decisions are made without knowing realizations of later uncertainties. As a result, 

operational infeasibility may be encountered. To consider real-time operation without 

violating temporal sequences of uncertainty realizations, LDR is adopted here, which 

assumes that real-time decisions are affine functions of realizations of earlier 

uncertainties. Details about LDR will be given in Section 4.4.2. 

Charging rates of EVAs can be kept as scheduled by using their flexibility, which 

is equivalent to having each EVA mitigate its own uncertainties. Then, charging of 

different EVAs is disturbed independently. Without any influence on the total energy 

consumption of BRDS, a scheme of uncertainty transferring is proposed based on LDR. 

Under this scheme, EVAs can transfer their uncertainties to each other. In other words, 

an EVA can mitigate uncertainties of other EVAs. As a result, disturbance to the 

charging of an EVA depends on uncertainties of different EVAs and may be relieved 

because uncertainties of different EVAs may offset each other. This scheme also has 

other potential benefits, which will be further discussed in Section 4.4.2. 

4.2 Nomenclature 

Sets, decision variables and uncertainties are printed in italics while others are in 

non-italics. Decision variables depending on uncertainty realizations are marked with 

tildes. 

4.2.1 Sets 

𝒩 Set of all nodes in BRDS 

𝒩AVR Set of nodes that automatic voltage regulators (AVRs) are connected to 

𝒩EVA Set of nodes that EVAs are connected to 

𝑎(𝑖) Parent node of node 𝑖 
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ℬ(𝑖)   Set of child nodes of node 𝑖 

4.2.2 Parameters 

∆t  An hour 

T  Number of hours in a day 

c𝑖
r,over

, c𝑖
r,def

  Price of reserve capacity for over-charging, charging deficiency of the 

EVA at node 𝑖 

c𝑖
in,over

, c𝑖
in,def

 Regular compensation rate to the EVA at node 𝑖 for over-charging, 

charging deficiency 

c𝑖
out,over

,c𝑖
out,def

 Punitive compensation rate to the EVA at node 𝑖 for over-charging, 

charging deficiency 

cpen,+, cpen,− Penalty coefficient for positive, negative deviations of BRDS’ energy 

consumptions 

v0   Base voltage 

R𝑖,𝑗, X𝑖,𝑗  Resistance, reactance of the feeder between node 𝑖 and 𝑗 

p𝑡,𝑖
d , q𝑡,𝑖

d   Active, reactive load at node 𝑖 in hour 𝑡 

e𝑡,𝑖
EVA,p

   Planned charging demand of the EVA at node 𝑖 in hour 𝑡 

β𝑖  Power factor of the EVA at node 𝑖 

e𝑡,𝑖
cap,over

,e𝑡,𝑖
cap,def

 Dispatchable range for over-charging, charging deficiency of the EVA 

at node 𝑖 in hour 𝑡 

q𝑖
AVR,cap

  Capacity of the AVR at node 𝑖 

4.2.3 Uncertainties 

𝜉𝑡,𝑖 Uncertain deviation of the charging demand of the EVA at node 𝑖 in 

hour 𝑡 from the plan 

𝝃    Vector of 𝜉𝑡,𝑖 for all EVAs and all hours 

N𝝃   Dimension of 𝝃 

𝛍     Statistical mean of 𝝃 

𝚺     Statistical covariance matrix of 𝝃 
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𝑓𝝃    Distribution of 𝝃 

D  Family of distributions that satisfy the statistical mean and covariance 

matrix of 𝝃 

4.2.4 Decision Variables 

𝑒𝑡
p Planned energy consumption of BRDS in hour 𝑡 

𝑟𝑡,𝑖
over, 𝑟𝑡,𝑖

def Reserve purchased from the EVA at node 𝑖  for over-charging, 

charging deficiency in hour 𝑡 

𝑝𝑡,𝑖
EVA, 𝑞̃𝑡,𝑖

EVA  Active and reactive charging power of the EVA at node 𝑖 in hour 𝑡 

𝑒̃𝑡,𝑖
EVA,dis

  Accumulated disturbance to the charging of the EVA at node 𝑖  in 

hour 𝑡 

𝑞̃𝑡,𝑖
AVR   Reactive power output of the AVR at node 𝑖 in hour 𝑡 

𝑝𝑡,𝑖,𝑗
fl , 𝑞̃𝑡,𝑖,𝑗

fl     Active, reactive power flow from node 𝑖 to node 𝑗 in hour 𝑡 

𝑝𝑡
in, 𝑞̃𝑡

in   Active, reactive power input from the main grid in hour 𝑡 

𝑣̃𝑡,𝑖    Voltage of node 𝑖 in hour 𝑡 

𝛼𝑡̂,𝑗
𝑡,𝑖

 Proportion of the uncertainty of the EVA at node 𝑖  in hour 𝑡 

allocated to the EVA at node 𝑗 in hour 𝑡̂ 

4.3 Settings on BRDS Operation 

It is assumed that energy consumptions of BRDS at different hours in a day should 

be planned in advance. Similar to [75, 113], penalties are assumed to be applied on 

deviations of BRDS’ energy consumptions from the plan. In terms of dispatching EVAs, 

BRDS is assumed to purchase reserves from EVAs ahead of time. During the operation, 

the disturbance to the charging of EVAs within the purchased reserves is compensated 

by BRDS at regular rates and the other beyond the purchased reserves is compensated 

at punitive rates, which are higher than regular rates. 

The interaction mechanism between BRDS and EVAs is as follows. First, EVAs 

plan their charging demands by collecting information from EV owners. Based on 
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energy requirements of EVs, revenue from BRDS and potential compensations to EVs, 

EVAs decide their dispatchable ranges for BRDS. Planned charging demands and 

dispatchable ranges of EVAs are reported to BRDS. After that, BRDS decides its 

energy consumption plans and its dispatching plans for EVAs and purchases reserves 

from EVAs. Knowing the reserves purchased by BRDS, EVAs can make plans on 

controlling EVs. At last, as uncertainties realize in real-time operation, BRDS gives 

dispatch to EVAs within their dispatchable ranges, and EVAs control EVs to follow the 

dispatch of BRDS. It should be noted that the dispatch of BRDS on EVAs should 

respect the dispatchable ranges reported by EVAs and constraints of the distribution 

system. 

The EVAs studied here can be operators of EV parking lots or providers of smart-

charging service to EVs at home. They can also be affiliated departments of BRDS. In 

the latter case, it is equivalent to simplifying BRDS operation by adopting hierarchical 

dispatching schemes. This chapter focuses on BRDS operation under the above 

interaction mechanism between BRDS and EVAs. Operation models of EVAs and the 

interaction mechanism between EVAs and EVs are beyond the scope of the study here. 

4.4 Model Formulation and Transformation 

In this section, the formulation of the proposed model will be given first. LDR and 

the uncertainty transferring scheme are then discussed. At last, the proposed model is 

transformed into a deterministic second-order conic program. 

4.4.1 Formulation of The Proposed Model 

The proposed model optimizes BRDS operation by balancing costs of dispatching 

EVAs and penalties for deviations of BRDS’ energy consumptions from the plan while 

guaranteeing the system security. Its formulation is given in (4.1)-(4.19). The first item 

in the objective (4.1) is the cost of purchasing reserves from EVAs. The second term is 

the worst expected sum of compensations to EVAs and penalties for energy deviations 
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of BRDS over all considered uncertainty distributions. (4.2) and (4.3) are penalties 

when deviations of the energy consumptions of BRDS from planned values are positive 

and negative, respectively. (4.4) and (4.5) are compensations to EVAs when charging 

deficiency of EVAs is within and beyond purchased reserves, respectively. (4.6) and 

(4.7) are compensations to EVAs when the over-charging of EVAs is within and 

beyond purchased reserves, respectively. (4.8) and (4.9) indicate the active and reactive 

power imported from the transmission system, respectively. The node connecting the 

transmission system is numbered as 0. (4.10) and (4.11) ensure active and reactive 

power balance, respectively. AVRs are installed at certain nodes to supply reactive 

power in order to maintain voltage profiles. (4.12) describes the relationship between 

the voltage of adjacent nodes. (4.13) prevents voltage profiles from exceeding the lower 

and upper bound. (4.14) limits the output of AVRs. (4.15) ensures the charging power 

of EVAs to be non-negative. (4.16) is the relationship between the active and reactive 

charging power of EVAs. (4.17) describes the disturbance to the charging of EVAs. 

Positive values indicate charging deficiency and negative values indicate over-charging. 

(4.18) avoids the dispatchable ranges of EVAs from being violated. (4.19) requires that 

charging demands of EVAs are fulfilled at the end of the day to guarantee driving 

activities of EVs in the next day. 

inf ∑ ∑ (c𝑖
r,def ∙ 𝑟𝑡,𝑖

def + c𝑖
r,over ∙ 𝑟𝑡,𝑖

over)

𝑖∈𝒩EVA𝑡=1,…,T

                                                                

+ sup
𝑓𝝃∈D

E [ ∑ max
𝑘=1,2

𝑓𝑘(𝑝𝑡
in)

𝑡=1,…,T

+ ∑ ∑ max
𝑘=1,2,3,4

𝑔𝑘(𝑒̃𝑡,𝑖
EVA,dis)

𝑖∈𝒩EVA𝑡=1,…,T

]     (4.1) 

s. t.  𝑓1(𝑝̃𝑡
in) = cpen,+ ∙ (𝑝𝑡

in ∙ ∆t − 𝑒𝑡
p

)                                                                       (4.2) 

𝑓2(𝑝𝑡
in) = cpen,− ∙ (𝑒𝑡

p
− 𝑝𝑡

in ∙ ∆t)                                                                       (4.3) 

𝑔1(𝑒̃𝑡,𝑖
EVA,dis) = c𝑖

in,def ∙ 𝑒̃𝑡,𝑖
EVA,dis                                                                           (4.4) 

𝑔2(𝑒̃𝑡,𝑖
EVA,dis) = c𝑖

out,def ∙ (𝑒̃𝑡,𝑖
EVA,dis − 𝑟𝑡,𝑖

def) + c𝑖
in,def ∙ 𝑟𝑡,𝑖

def                             (4.5) 

𝑔3(𝑒̃𝑡,𝑖
EVA,dis) = −c𝑖

in,over ∙ 𝑒̃𝑡,𝑖
EVA,dis                                                                      (4.6) 



63 

 

𝑔4(𝑒̃𝑡,𝑖
EVA,dis) = c𝑖

out,over ∙ (−𝑒̃𝑡,𝑖
EVA,dis − 𝑟𝑡,𝑖

over) + c𝑖
in,over ∙ 𝑟𝑡,𝑖

over                 (4.7) 

𝑝𝑡
in = ∑ 𝑝𝑡,0,𝑖

fl

𝑖∈ℬ(0)

, ∀𝝃, ∀𝑡                                                                                       (4.8) 

𝑞̃𝑡
in = ∑ 𝑞̃𝑡,0,𝑖

fl

𝑖∈ℬ(0)

, ∀𝝃, ∀𝑡                                                                                       (4.9) 

𝑝𝑡,𝑎(𝑖),𝑖
fl = p𝑡,𝑖

d + 𝑝𝑡,𝑖
EVA + ∑ 𝑝𝑡,𝑖,𝑗

fl

𝑗∈ℬ(𝑖)

, ∀𝝃, ∀𝑖 ∈ 𝒩 {0}⁄ , ∀𝑡                           (4.10) 

𝑞̃𝑡,𝑎(𝑖),𝑖
fl = q𝑡,𝑖

d + 𝑞̃𝑡,𝑖
EVA − 𝑞̃𝑡,𝑖

AVR + ∑ 𝑞̃𝑡,𝑖,𝑗
fl

𝑗∈ℬ(𝑖)

, ∀𝝃, ∀𝑖 ∈ 𝒩 {0}⁄ , ∀𝑡            (4.11) 

𝑣̃𝑡,𝑎(𝑖) − (R𝑎(𝑖),𝑖 ∙ 𝑝𝑡,𝑎(𝑖),𝑖
fl + X𝑎(𝑖),𝑖 ∙ 𝑞̃𝑡,𝑎(𝑖),𝑖

fl ) v0⁄ = 𝑣̃𝑡,𝑖,                             

∀𝝃, ∀𝑖 ∈ 𝒩 {0}⁄ , ∀𝑡     (4.12) 

0.95 ∙ v0 ≤ 𝑣̃𝑡,𝑖 ≤ 1.05 ∙ v0  ∀𝝃, ∀𝑖 ∈ 𝒩, ∀𝑡                                                  (4.13) 

0 ≤ 𝑞̃𝑡,𝑖
AVR ≤ q𝑖

AVR,cap
  ∀𝝃, ∀𝑖 ∈ 𝒩AVR, ∀𝑡                                                       (4.14) 

𝑝𝑡,𝑖
EVA ≥ 0  ∀𝝃, ∀𝑖 ∈ 𝒩EVA, ∀𝑡                                                                            (4.15) 

β𝑖 ∙ 𝑞̃𝑡,𝑖
EVA = √1 − β𝑖

2 ∙ 𝑝𝑡,𝑖
EVA, ∀𝝃, ∀𝑖 ∈ 𝒩EVA, ∀𝑡                                          (4.16) 

𝑒̃𝑡,𝑖
EVA,dis = ∑ (e𝑡̂,𝑖

EVA,p
+ 𝜉𝑡̂,𝑖)

𝑡̂=1,…,𝑡

− ∑ ∆t ∙ 𝑝𝑡̂,𝑖
EVA

𝑡̂=1,…,𝑡

, ∀𝝃, ∀𝑖 ∈ 𝒩EVA, ∀𝑡(4.17) 

−e𝑡,𝑖
cap,over

≤ 𝑒̃𝑡,𝑖
EVA,dis ≤ e𝑡,𝑖

cap,def
  ∀𝝃, ∀𝑖 ∈ 𝒩EVA, ∀𝑡                                  (4.18) 

∑ 𝑝𝑡,𝑖
EVA ∙ ∆t

𝑡=1,…,T

= ∑ (e𝑡,𝑖
EVA,p

+ 𝜉𝑡,𝑖)

𝑡=1,…,T

 ∀𝝃, ∀𝑖 ∈ 𝒩EVA                          (4.19) 

4.4.2 LDR Approximation and The Uncertainty Transferring Scheme 

In (4.1)-(4.19), optimal values of variables with tildes are influenced by realizations 

of uncertainties. As uncertainty realizations cannot be foreseen, uncertainty-affected 

variables are decided only with information about earlier realized uncertainties but not 

future ones. Because there are many time periods in (4.1)-(4.19) and the relationship 

between the optimal values of variables and realizations of earlier uncertainties can be 

very complicated [95, 96], problem (4.1)-(4.19) is difficult to solve, and thus proper 

approximations are needed. In this respect, LDR is widely used to approximate multi-
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period problems with uncertainties [95-98]. With LDR, instead of considering the 

actual relationship between the optimal values of variables and realizations of earlier 

uncertainties, affine relationships are assumed to hold in order to reduce the complexity. 

This is equivalent to allocating uncertainties to different hours in advance through 

determining the uncertainty coefficients of LDR. Under LDR, the charging power of 

EVAs will be as (4.20) if each EVA mitigates its own uncertainties. It should be noted 

that uncertainties can only be allocated to later hours but not earlier ones as uncertainty 

realizations cannot be foreseen. Besides, uncertainties in an hour can be allocated to 

more than one later hour. 

𝑝𝑡,𝑖
EVA = 𝑝𝑡,𝑖

EVA,con + ∑ 𝛼𝑡,𝑖
𝑡̂,𝑖 ∙ 𝜉𝑡̂,𝑖

𝑡̂=1,…,𝑡

, ∀𝑖 ∈ 𝒩EVA, ∀𝑡                  (4.20) 

As discussed in Section 4.1, without influencing total energy consumptions of 

BRDS, EVAs can transfer their uncertainties to each other. Then, the charging power 

of EVAs will be as (4.21) and disturbance to the charging of an EVA depends on 

uncertainties of different EVAs. Because uncertainties of different EVAs may offset 

each other, disturbance to the charging of EVAs may be relieved. Apart from this, the 

uncertainty transferring scheme has other potential benefits as well. First, uncertainties 

of EVAs that are more expensive to dispatch can be transferred to cheaper EVAs, which 

is equivalent to having uncertainties of expensive EVAs mitigated by cheaper EVAs. 

So, BRDS needs to pay less to EVAs in total. Furthermore, it is possible that when one 

EVA reaches its dispatchable ranges, the others do not. With the proposed uncertainty 

transferring scheme, uncertainties of this EVA can be transferred to other EVAs to 

better utilize their spare dispatchable capacities and thus potential deviations of BRDS’ 

energy consumptions from the plan may further decrease. 

𝑝𝑡,𝑖
EVA = 𝑝𝑡,𝑖

EVA,con + ∑ ∑ 𝛼𝑡,𝑖
𝑡̂,𝑗

∙ 𝜉𝑡̂,𝑗

𝑡̂=1,…,𝑡𝑗∈𝒩EVA

, ∀𝑖 ∈ 𝒩EVA, ∀𝑡            (4.21) 

To further illustrate the idea of allocating uncertainties to different hours and 

different EVAs in advance, the implication of (4.19) on the uncertainty coefficients of 

LDR for the charging power of EVAs is discussed here. According to (4.19), the total 
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energy that any EVA is charged with at the end of the day should be the sum of its 

uncertainties and planned demands. Therefore, for any uncertainty of any EVA, its 

allocation (LDR) coefficients to its EVA at all hours should sum to one, leading to 

(4.22). Also, (4.19) implies that the energy that any EVA is charged with at the end of 

the day should not be influenced by uncertainties of other EVAs. So, for any uncertainty 

of any EVA, its allocation (LDR) coefficients to any other EVA at all hours should sum 

to zero, which results in (4.23). 

∑ 𝛼𝑡̂,𝑖
𝑡,𝑖

𝑡̂=𝑡,…,T

= 1, ∀𝑖 ∈ 𝒩EVA, ∀𝑡                                     (4.22) 

∑ 𝛼𝑡̂,𝑗
𝑡,𝑖

𝑡̂=𝑡,…,T

= 0, ∀𝑗 ∈ 𝒩EVA {𝑖}⁄ , ∀𝑖 ∈ 𝒩EVA, ∀𝑡                     (4.23) 

Similar to the charging power of EVAs, all other uncertainty-affected variables are 

also assumed to be affine functions of earlier uncertainty realizations under LDR. Then, 

different time periods in (4.1)-(4.19) can be regarded as being squeezed together and 

(4.1)-(4.19) becomes a mathematically single-period problem, which is easier to handle. 

Coefficients of these affine functions are determined at the beginning of the day. When 

uncertainties realize, real-time decisions can be made according to these affine 

functions. Instead of making adjustments when new information is available as done in 

online models for multi-period problems, the coefficients of the affine functions are 

fixed during the day under the proposed model because the reserves that BRDS 

purchased from EVAs have been fixed at the beginning of the day. 

4.4.3 Deterministic Transformation of The Proposed Model 

To solve problem (4.1)-(4.19), it still needs to be transformed into deterministic 

forms. (4.13)-(4.15) and (4.18) are linear inequality constraints involving uncertainties,  

and can be replaced by their deterministic counterparts through robust optimization 

because uncertainty realizations are assumed here to lie in proper polyhedral sets [54, 

114]. Linear equality constraints involving uncertainties in (4.1)-(4.19) can be written 

in compact forms as (4.24), where 𝒉′ is the transpose of 𝒉. To ensure these constraints 
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are satisfied with respect to all considered uncertainty realizations, the additive 

coefficient for each uncertainty in each constraint needs to be zero, meaning that 𝒉 =

𝟎 needs to hold. After removing the uncertainty-related terms, the original equality 

constraints in (4.1)-(4.19) become 𝑔 = 0, which is deterministic. 

𝒉′𝝃 +  𝑔 = 0                                                      (4.24) 

To handle uncertainties in the objective, DRO is adopted. DRO’s ambiguity set for 

uncertainty distribution can be constructed with different information. For example, 

uncertainty expectations and variances are used in [62], and [61] uses expectations, 

mean absolute deviations and standard deviations. As discussed in Section 4.1, 

uncertainties from different hours may offset each other when EVAs are used to 

mitigate uncertainties, whose possibility depends on uncertainty correlation. Therefore, 

the ambiguity set is constructed based on uncertainty expectations and covariance 

matrix as shown in (4.25) and represented as D. The worst expectation of a specific 

family of piecewise-linear utility functions over all possible distributions in D can be 

transformed into deterministic forms as (4.26)-(4.29), where 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are 

slack variables [115]. However, there are summations of piecewise-linear functions 

within the expectation operator in the objective (4.1), impeding the direct application 

of (4.26)-(4.29). To overcome this difficulty, the objective (4.1) is approximated by 

(4.30), where the original worst expectation is replaced by its upper bound. The 

conservatism of such approximation is shown to be acceptable in [116]. After 

substituting worst expectations in the approximated objective (4.30) by (4.26)-(4.29), 

the proposed model becomes a deterministic second-order conic program and can be 

solved by off-the-shelf solvers. 

At the same time of depicting uncertainty distributions by the statistical expectation 

and covariance matrix, DRO can also bound the range of uncertainty realizations by 

ellipsoidal sets as in [64]. With such DRO technique, the conservatism level of the 

proposed model can be adjusted by varying the sizes of the ellipsoidal sets, but also, 

semidefinite programs will be resulted, which are challenging and time-consuming to 
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solve. To avoid heavy computational burden, the DRO technique from [115] rather than 

that from [64] is adopted. 

D = {𝑓𝝃|

Pr(𝝃 ∈ ℝN𝝃) = 1               

E[𝝃] = 𝛍                              

E[(𝝃 − 𝛍) ∙ (𝝃 − 𝛍)′] = 𝚺

}                            (4.25) 

sup
𝑓𝝃∈D

E [ max
𝑘=1,…,K

{𝑚𝑘(𝑦0 + 𝒚′𝝃) + 𝑛𝑘}]                                                      

= inf   𝑤4 − 𝑤3                                                                                                 (4.26) 

s. t.  𝑤3 ≤ −𝑚𝑘(𝑦0 + 𝒚′𝛍) − 𝑛𝑘 − 𝑚𝑘
2𝑤1 − 𝑚𝑘𝑤2, ∀𝑘                    (4.27) 

𝑤1 + 𝑤4 ≥ √𝒚′𝚺𝐲 + 𝑤2
2 + (𝑤1 − 𝑤4)2                                        (4.28) 

𝑤1 ≥ 0                                                                                                    (4.29) 

∑ ∑ (c𝑖
r,def ∙ 𝑟𝑡,𝑖

def + c𝑖
r,over ∙ 𝑟𝑡,𝑖

over)

𝑖∈𝒩EVA𝑡=1,…,T

+ ∑ sup
𝑓𝝃∈D

E [max
𝑘=1,2

𝑓𝑘(𝑝𝑡
in)]

𝑡=1,…,T

 

+ ∑ ∑ sup
𝑓𝝃∈D

E [ max
𝑘=1,2,3,4

𝑔𝑘(𝑒̃𝑡,𝑖
EVA,dis)]

𝑖∈𝒩EVA𝑡=1,…,T

                      (4.30) 

4.5 Simulation of the Charging Demands of EVAs 

As charging demands of EVAs are greatly influenced by the travel of EVs, a travel 

survey in Atlanta [117] with 119480 trip records is used to simulate the daily operation 

of EVs, which is used to simulate charging demands of EVAs. Instead of accurate and 

complex analysis, simple settings are adopted because the charging demands simulated 

here are only used to validate the effectiveness of the proposed model. In real operation, 

real data will be used. 

The simulation here focuses on charging at home by assuming that the simulated 

EVAs are in residential areas. From the 119480 trip records of the survey, 26617 home-

to-home (h2h) trips are sorted out, each of which may be made up of itself or several 

connected non-h2h trips. The 26617 h2h trips further constitute 18553 records of daily 

operation, forming the database. Each simulated EV is assigned with a random daily 
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operation record from the database. The energy consumption rate of EVs is assumed to 

be 0.22 kWh per mile. Charging demands of EVAs are calculated by assuming that EVs 

are charged at the maximum rate once they arrive home until they are fully charged. 

The charging efficiency is assumed to be 90%. The maximum charging rate is assumed 

to be 6 kW. Charging demands of EVAs at each hour are measured in kWh. As there is 

a relatively large number of EVs under each EVA, different energy consumption rates, 

charging efficiencies and maximum charging rates are not considered. 10000 sets of 

simulated daily charging demand of an EVA with 450 EVs are presented in Fig. 4.1 

and used in Section 4.6.1 to Section 4.6.3. 

 

Fig. 4.1 10000 sets of simulated daily charging demand of an EVA with 450 EVs 

Traffic congestion is further considered in simulation to reflect spatial correlations 

of the charging demands of EVAs. Again, as the simulated data is just used for 

validating the proposed model, only the influence of traffic congestion on travel speeds 

of EVs is considered with simple settings. The congestion period is assumed to be the 

18th to 20th hour in the day. As the travel routes of EVs from the same distribution 

system are generally near to each other, a random variable 𝛾𝑡 is generated to reflect 

the overall congestion level of this area in hour 𝑡. For every single EV, another random 
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variable 𝜆𝑡,𝑖 is generated to reflect the specific influence of traffic congestion on its 

travel speed. A simple assumed relationship between congestion levels and travel 

speeds of EVs is adopted as (4.31), where 𝑠𝑡,𝑖 and 𝑠̂𝑡,𝑖 are the original speed and the 

speed under congestion of EV 𝑖  in hour 𝑡 , respectively. The smaller 𝛾𝑡  and 𝜆𝑡,𝑖 

become, the slower EVs travel. 10000 sets of simulated daily charging demand of an 

EVA with 450 EVs considering traffic congestion are presented in Fig. 4.2 and used in 

Section 4.6.4. 

𝑠̂𝑡,𝑖 = 𝛾𝑡 ∙ 𝜆𝑡,𝑖 ∙ 𝑠𝑡,𝑖                                                (4.31) 

 

Fig. 4.2 10000 sets of simulated daily charging demand of an EVA with 450 EVs 

when traffic congestion is considered 

4.6 Case Studies 

Four sets of case studies are presented in this section. General performance of the 

proposed model is shown first. Next, the second set discusses the effects of the 

flexibility of EVAs in mitigating forecast uncertainties in BRDSs. After that, benefits 

of the uncertainty transferring scheme are illustrated. At last, temporal and spatial 

correlations of the charging demands of EVAs are qualitatively shown and the 

effectiveness of the proposed model in considering them is verified. 
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The IEEE 33-bus distribution system from [118] is adopted for case studies with 

the following base case settings. Three EVAs are assumed to be connected to Bus 16, 

22 and 32 with 450, 450 and 600 EVs, respectively. Dispatchable ranges for over-

charging and charging deficiency of the EVA at Bus 16, 22 and 32 at all hours are set 

to 450, 450 and 600 kWh, respectively. Power factors of all EVAs are set to 0.8. AVRs 

are assumed to be installed at Bus 6, 9, 15, 20, 23, 27 and 31. Each has a capacity of 

500 kVar. Prices of reserves of all EVAs for over-charging and charging deficiency at 

all hours are set to 0.2¢ per kWh. Regular compensation rates to all EVAs for over-

charging and charging deficiency at all hours are set to 1¢ per kWh. Punitive 

compensation rates to all EVAs for over-charging and charging deficiency at all hours 

are set to 5¢ per kWh. Penalty rates for positive and negative deviations of energy 

consumptions of BRDS from planned values at all hours are set to 15¢ per kWh. For 

all case studies, 10000 sets of charging demands are simulated to calculate the statistical 

mean and covariance matrix of uncertainties in charging demands of EVAs, based on 

which the operation decisions of BRDS are solved by the proposed model. After that, 

another 10000 sets of data are simulated independently to test the performance of the 

obtained solution. 

4.6.1 General Performance of the Proposed Model 

Case studies here are conducted by varying penalty rates. Relevant results are 

recorded in Table 4.1. Costs recorded in all subsequent tables are incurred from BRDS 

operation in the considered day. Average costs are computed based on actual outcomes 

under simulated charging demands of EVAs. With the increase of penalty rates, using 

EVAs to mitigate uncertainties becomes relatively cheaper and thus EVAs are resorted 

to more extensively. As a result, costs of reserves from EVAs and average 

compensations to EVAs increase. Besides, average penalties grow with the rise of 

penalty rates. But the increased percentage of average penalties is less than that of 

penalty rates, which is also because EVAs are used more extensively. To conclude, the 
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proposed model can successfully give proper operation decisions under a wide range of 

penalty rates. 

Table 4.1 General performance of the proposed model 

Penalty rates (¢/kWh) 5 10 15* 20 

Reserve costs ($/day) 2.64 4.36 4.80 5.16 

Average compensations to EVAs 

($/day) 
3.95 6.55 7.21 7.74 

Average penalties ($/day) 22.03 38.09 55.89 73.60 

Average total costs ($/day) 28.61 49.00 67.91 86.50 

* base case 

4.6.2 Effects of EVAs in Mitigating Uncertainties 

In this section, case studies are first conducted by using EVAs to mitigate 

uncertainties or not. The average penalty at each hour under both cases are presented in 

Fig. 4.3. When EVAs are not used, the curve of average penalties reflects the level of 

uncertainties in each hour and basically matches the trend of the charging demands of 

EVAs. When EVAs are used, average penalties at some hours are close to zero because 

uncertainties in these hours are mainly mitigated by EVAs. In some other hours, over-

charging and charging deficiency of EVAs incurred from mitigating uncertainties are 

recovered, and thus the average penalty is high. Therefore, the dashed curve in Fig. 4.3 

fluctuates more severely than the solid curve. With the flexibility of EVAs, 

uncertainties from different hours can be delayed to the same hour and thus may offset 

each other. As a result, the average penalty in most hours is lower when EVAs are used 

to mitigate uncertainties. 

Case studies are also conducted by increasing cost coefficients of EVAs to 2 to 4 

times of the base setting and relevant results are recorded in Table 4.2. When EVAs are 

used to mitigate uncertainties, there are corresponding reserve costs and compensations 

to EVAs. But at the same time, average penalties decrease compared with the case that 

EVAs are not used, resulting in lower average total costs. When cost coefficients of 

EVAs increase, EVAs are used less extensively because using them becomes less 

economical. As a result, average penalties and average total costs increase and get 
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closer to the values when EVAs are not used. Reserve costs and average compensations 

to EVAs increase first because of higher cost coefficients but then decrease as EVAs 

are rarely used. When cost coefficients are high enough, the result will be the same as 

when EVAs are not used to mitigate uncertainties. 

 

 

Fig. 4.3 Average penalty at each hour when EVAs are used to mitigate uncertainties 

and not 

Table 4.2 Case studies on different cost coefficients of EVAs 

Using EVAs to mitigate 

uncertainties 
Yes No 

Cost coefficients of EVAs 

(times of the base setting) 
1* 2 3 4 - 

Reserve costs ($/day) 4.80 7.72 7.91 5.43 0 

Average compensations to 

EVAs ($/day) 
7.21 11.59 11.81 8.10 0 

Average penalties ($/day) 55.89 59.11 66.09 76.10 90.65 

Average total costs ($/day) 67.91 78.42 85.84 89.65 90.65 

* base case 
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4.6.3 Benefits of the Uncertainty Transferring Scheme 

Three potential benefits of the uncertainty transferring scheme are discussed in 

Section 4.4.2 and will be further illustrated here. Case studies are conducted with and 

without the uncertainty transferring scheme. As shown in Table 4.3, with uncertainty 

transferring, savings in reserve costs and average compensations to EVAs are about 50% 

because now disturbance to the charging of an EVA depends on uncertainties of several 

EVAs, which may offset each other. The other two benefits of the uncertainty 

transferring scheme are not significant under current parameters. To illustrate them 

more clearly, the above case studies are repeated with specific parameters modified. 

The original setting is represented as Setting 1, based on which Setting 2 and Setting 3 

are created. In Setting 2, cost coefficients of the EVA at Bus 32 are set to half of their 

original values. In Setting 3, dispatchable ranges of the EVA at Bus 16 at all hours are 

set to 0, which implies that the EVA at Bus 16 is non-dispatchable.  

Results under Setting 2 are summarized in Table 4.4. Apart from relieving 

disturbance to the charging of EVAs, the uncertainty transferring scheme can make use 

of the low cost coefficients of the EVA at Bus 32 by transferring uncertainties of other 

EVAs to it. As a result, savings in reserve costs and average compensations to EVAs 

brought by the uncertainty transferring scheme are about 76% and are higher than those 

under Setting 1.  

Results under Setting 3 are given in Table 4.5. Without the uncertainty transferring 

scheme, uncertainties of the EVA at Bus 16 cannot be mitigated as it is now non-

dispatchable. In contrast, its uncertainties can be transferred to other EVAs to utilize 

their spare dispatchable capacities under the uncertainty transferring scheme and thus 

can be mitigated. Therefore, when the uncertainty transferring scheme is applied, 

reserve costs and average compensations to EVAs are higher but average penalties are 

much lower. The saving in average penalties increases from 3.02% under Setting 1 to 

26.77% under Setting 3. 
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Table 4.3 Benefits of the uncertainty transferring scheme in relieving disturbance 

to the charging of EVAs 

With uncertainty transferring No Yes* 

Savings brought by 

uncertainty 

transferring (%) 

Reserve costs ($/day) 7.20 4.80 49.77 

Average compensations to EVAs ($/day) 10.85 7.21 50.47 

Average penalties ($/day) 57.58 55.89 3.02 

Average total costs ($/day) 75.62 67.91 11.36 

* base case 

Table 4.4 Benefits of the uncertainty transferring scheme in making use of EVAs 

with lower cost coefficients 

With uncertainty transferring No Yes 

Savings brought by 

uncertainty 

transferring (%) 

Reserve costs ($/day) 6.21 3.51 76.88 

Average compensations to EVAs ($/day) 9.34 5.30 76.49 

Average penalties ($/day) 56.43 55.46 1.76 

Average total costs ($/day) 71.98 64.26 12.02 

Table 4.5 Benefits of the uncertainty transferring scheme in relieving limitation 

from the dispatchable ranges of EVAs 

With uncertainty transferring No Yes 

Savings brought by 

uncertainty 

transferring (%) 

Reserve costs ($/day) 4.02 4.54 -11.5 

Average compensations to EVAs ($/day) 6.05 6.82 -11.3 

Average penalties ($/day) 72.78 57.41 26.77 

Average total costs ($/day) 82.85 68.78 20.46 

4.6.4 Temporal and Spatial Correlations of Charging Demands of EVAs and 

Effectiveness of the Proposed Model in Considering Them 

Simulated charging demands of EVAs with traffic congestion considered are 

adopted here. Instead of proving correlations between the charging demands of EVAs, 

simulation here is used only to illustrate possible correlations. For space-saving 

purposes, temporal and spatial correlations of the charging demands of EVAs are 
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illustrated through sub-matrices of the complete statistical covariance matrix. The 

statistical covariance matrix of charging demands of the EVA at Bus 16 from the 18th 

to 20th hour is represented as 𝚺1 and shown in (4.32). Significant positive temporal 

correlations between charging demands in adjacent hours can be observed, which is 

because the charging of EVs may not finish in the hour when EVs arrive home and may 

last to the following hour. The statistical covariance matrix of charging demands of all 

EVAs in the 19th hour is represented as 𝚺2 and shown in (4.33). There are significant 

positive spatial correlations between charging demands of different EVAs because 

traffic conditions pose similar influences on the travel of EVs from different EVAs and 

thus on charging demands of different EVAs as well. 

𝚺1 = [
1031.7 𝟓𝟓𝟓. 𝟑 46.7
𝟓𝟓𝟓. 𝟑 1520.1 𝟓𝟏𝟑. 𝟗

46.7 𝟓𝟏𝟑. 𝟗 1150.3
]                              (4.32) 

𝚺2 = [
1520.1 𝟓𝟓𝟓. 𝟎 𝟕𝟑𝟓. 𝟕
𝟓𝟓𝟓. 𝟎 1554.6 𝟕𝟐𝟖. 𝟎
𝟕𝟑𝟓. 𝟕 𝟕𝟐𝟖. 𝟎 2313.4

]                              (4.33) 

Because temporal and spatial correlations of the charging demands of EVAs can be 

significant, it is crucial to consider them when making operation decisions of BRDS. 

Otherwise, sub-optimal solutions may be obtained. Case studies are conducted here to 

show the necessity of considering the correlations of charging demands of EVAs and 

the effectiveness of the proposed model in this aspect. A modified covariance matrix is 

generated by setting all covariance terms in the original statistical covariance matrix to 

zero. The proposed model is solved to obtain operation decisions with the original and 

the modified covariance matrix. The average performance of obtained operation 

decisions is recorded in Table 4.6. Under positive correlations, it is easier for 

disturbance to the charging of EVAs to be greater than a fixed amount of purchased 

reserves as the possibility that uncertainties offset each other decreases. Therefore, 

reserves should be properly purchased from EVAs to avoid excessive compensations 

to them. In this regard the proposed model is effective. Overall, the average total cost 

is lower when uncertainty correlations are properly considered by the proposed model. 
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Table 4.6 Case studies with uncertainty correlations considered and not 

Considering uncertainty correlations Yes No 

Reserve costs ($/day) 5.76 5.52 

Average compensations to EVAs ($/day) 8.48 14.17 

Average penalties ($/day) 58.66 60.38 

Average total costs ($/day) 72.90 80.07 

4.7 Further Discussions 

By setting the dispatchable ranges of EVAs to zero as shown in Section 4.6.3, the 

proposed model could consider EVAs to choose to not follow the dispatch of BRDS or 

have no flexibility. Other loads with uncertainties can also be considered by the 

proposed model as they are the same as non-dispatchable EVAs from the perspective 

of BRDS. Besides, the proposed model can incorporate renewable energy sources as 

well. Uncertainties of these system components can be mitigated by dispatchable EVAs 

through the proposed uncertainty transferring scheme. The methodology adopted to 

solve the proposed model remains valid with respect to such modifications. 

Linearized power flow equations for distribution networks from [80] are adopted 

here, which neglects non-linear terms of power losses. As power losses are much 

smaller than power flows in distribution networks [80], neglecting them has little 

influences on the result but can greatly reduce the computational complexity. To further 

improve the accuracy of the proposed model, the linearized equations from [74] can be 

employed to approximates the non-linear power losses by piecewise-linear functions. 

4.8 Summary 

In this chapter, a comprehensive model is established to mitigate forecast 

uncertainties in BRDSs by using EVAs. With their flexibility, uncertainties from 

different hours can be delayed to the same hour and thus may offset each other. The 

established model obtains the operation decisions by balancing costs of dispatching 
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EVAs and penalties for deviations of BRDS’ energy consumptions from planned values. 

Therefore, as dispatching EVAs becomes cheaper, they will be used more extensively. 

Various benefits of the proposed uncertainty transferring scheme for the established 

model are verified through case studies. Furthermore, the adopted DRO technique is 

shown to be effective in avoiding unnecessary costs by taking temporal and spatial 

correlations of the charging demands of EVAs into consideration. 
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Chapter V 

An Operation Model for Balance Responsible Distribution 

Companies Using the Flexibility of EVAs 

5.1 Introduction 

Based on the model proposed for BRDS in Chapter 4, operation of BR-DISCO is 

studied with better utilized EVA flexibility through more flexible settings in this 

chapter. Different from BRDS, BR-DISCO needs to purchase energy that it plans to 

import from the transmission system. So, apart from being used to mitigate 

uncertainties as done in Chapter 4, EVA flexibility can be used by BR-DISCO to shift 

EVA charging demands to hours with lower energy prices. Using EVAs to mitigate 

uncertainties can reduce penalties for energy deviations, and shifting EVA charging 

demands can decrease energy costs. Besides, both the EVA applications are constrained 

by EVA capacity for charging disturbance, which will be further illustrated in Section 

5.3. If EVAs are used to mitigate uncertainties more extensively, they can shift less 

charging demands and vice versa. So, the two EVA applications are correlated. The 

model proposed for BR-DISCO here obtains the optimal solution by coordinating the 

two EVA applications. 

In Chapter 4, it is assumed that the disturbance to EVA charging should be fully 

recovered by the end of the day. While, to further utilize EVA flexibility, it is assumed 

here that the disturbance to EVAs needs not be fully recovered by the end of the day 

given EVA capacity for charging disturbance being respected. Depending on whether 

recovering the corresponding disturbance to EVAs in the current day, using EVAs to 

mitigate uncertainties is classified into delaying uncertainties and eliminating 

uncertainties here. Further discussions will be made in Section 5.4.2. 
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In Chapter 4, EVAs can only charge. In contrast, they are also allowed here to 

discharge and thus may provide greater flexibility. To avoid their simultaneous 

charging and discharging, corresponding binary variables are introduced for them. 

Power losses incurred by their charging and discharging can be evaluated through their 

average charging and discharging efficiencies, respectively. Because of power losses 

in EVA charging, the power supplied by the distribution system is greater than that 

received by EVAs. Similarly, the power received by the distribution system is smaller 

than that supplied by EVAs when EVAs discharge. Such phenomenon is utilized by the 

proposed model to reduce the scale of uncertainties from the perspective of BR-DISCO. 

Relevant illustration is given in Section 5.7.3. 

5.2 Nomenclature 

5.2.1 Parameters 

𝑎e
𝑡   Energy price in Hour 𝑡 

𝑎r,def
𝑡,𝑖

, 𝑎r,over
𝑡,𝑖

 Price of reserves for EVA charging deficiency, over-charging at 

Node 𝑖 in Hour 𝑡 

𝑏r,def
𝑡,𝑖

, 𝑏r,over
𝑡,𝑖

 Regular compensation rate for EVA charging deficiency, over-

charging at Node 𝑖 in Hour 𝑡 

𝑏p,def
𝑡,𝑖

, 𝑏p,over
𝑡,𝑖

 Punitive compensation rate for EVA charging deficiency, over-

charging at Node 𝑖 in Hour 𝑡 

𝑏p,pos
𝑡 , 𝑏p,neg

𝑡  Penalty coefficient for positive, negative deviations of BR-DISCO 

from its energy purchase in Hour 𝑡 

𝑏d
𝑖  Compensation rate for EVA battery degradation at Node 𝑖 

𝑣b Base voltage 

𝑥𝑖,𝑗, 𝑟𝑖,𝑗 Line reactance, resistance between Node 𝑖 and 𝑗 

𝑝l
𝑡,𝑖

, 𝑞l
𝑡,𝑖

 Active, reactive load at Node 𝑖 in Hour 𝑡 

𝑝RES,f
𝑡,𝑖

 RES power forecast at Node 𝑖 in Hour 𝑡 

𝑝EVA,p
𝑡,𝑖

 EVA planned charging demand at Node 𝑖 in Hour 𝑡 
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𝜆𝑖 EVA power factor at Node 𝑖 

𝜂ch
𝑖 , 𝜂dis

𝑖  Average EVA charging, discharging efficiency at Node 𝑖 

𝑝ch,max
𝑖 , 𝑝dis,max

𝑖  Maximum EVA charging, discharging rate at Node 𝑖 

𝑒def,max
𝑡,𝑖

 Acceptable EVA charging deficiency at Node 𝑖 in Hour 𝑡 

𝑒over,max
𝑡,𝑖

  Acceptable EVA over-charging at Node 𝑖 in Hour 𝑡 

𝑇 Number of hours in the time horizon 

Δ𝑡 An hour 

𝑁sys Set of nodes in the distribution system 

𝑁p(𝑖) Parent node of Node 𝑖 

𝑁c(𝑖) Set of children nodes of Node 𝑖 

𝑁EVA Set of nodes with EVAs 

𝑁RES  Set of nodes with RESs 

5.2.2 Uncertainties 

𝜉EVA
𝑡,𝑖

 Deviation of EVA actual charging demand from EVA planned 

charging demand at Node 𝑖 in Hour 𝑡 

𝜉RES
𝑡,𝑖

  Error of RES power forecast at Node 𝑖 in Hour 𝑡 

𝝃  Vector of EVA and RES uncertainties in all hours 

𝑑𝝃  Dimension of 𝝃 

𝑓𝝃  Probability distribution of 𝝃 

𝐴(𝝃)  Ambiguity set for 𝝃 

𝝁  Statistical expectation of 𝝃 

𝚺  Statistical covariance matrix of 𝝃 

5.2.3 Variables 

𝑟def
𝑡,𝑖

, 𝑟over
𝑡,𝑖

 Purchased reserves for EVA charging deficiency, over-charging at 

Node 𝑖 in Hour 𝑡 

𝑒pur
𝑡   Purchased energy for Hour 𝑡 

𝜎𝑡,𝑖  EVA status at Node 𝑖 in Hour 𝑡 
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𝑝sys,EVA
𝑡,𝑖

 EVA active power supplied by the distribution system at Node 𝑖 in 

Hour 𝑡 

𝑝ch
𝑡,𝑖

, 𝑝dis
𝑡,𝑖

 EVA active charging, discharging power at Node 𝑖 in Hour 𝑡 

𝑒dist
𝑡,𝑖

 Cumulative disturbance to EVA at Node 𝑖 between Hour 1 and 𝑡 

𝑓𝑙p
𝑡,𝑖,𝑗

, 𝑓𝑙q
𝑡,𝑖,𝑗

  Active, reactive power flow between Node 𝑖 and 𝑗 in Hour 𝑡 

𝑝in
𝑡   Active power imported from the transmission system 

𝑣𝑡,𝑖  Voltage of Node 𝑖 in Hour 𝑡 

5.3 Background Settings 

The proposed model considers two stages, i.e., day-ahead and real-time stage. 

Actual EVA charging demands and RES outputs are known only in the real-time stage, 

which means that there are EVA and RES uncertainties in the day-ahead stage. In 

consideration of real-time operation under possible realizations of EVA and RES 

uncertainties, the proposed model makes day-ahead decisions and real-time operation 

plans for BR-DISCO with the aim of minimizing total operation costs of BR-DISCO in 

the two stages. Real-time operation plans are functions of uncertainties and will give 

real-time decisions when uncertainties realize. Further discussions about real-time 

operation plans will be made in Section 5.4 and 5.5.2. The schematic diagram of the 

proposed model is given in Fig. 5.1, where TSO stands for transmission system operator. 

Similar as in Chapter 4, interactions between EVAs and EVs are beyond the scope of 

the study here.  

In the day-ahead stage, BR-DISCO purchases energy that it plans to import from 

the transmission system. Because of uncertainties in EVA charging demands and RES 

outputs, the actual energy import of BR-DISCO in the real-time stage may deviate from 

its energy purchase. BR-DISCO needs to pay penalties for the deviation no matter it is 

positive or negative.  

In the day-ahead stage, EVAs are required to report their planned charging demands 

to BR-DISCO. The actual EVA charging demands in the real-time stage will be the 
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sum of planned charging demands and EVA uncertainties 𝜉EVA
𝑡,𝑖

. Disturbance to EVAs 

is defined in (5.1). When EVAs receive more energy than their needs, 𝑒dist
𝑡,𝑖

 is negative 

and EVA over-charging happens. When EVAs receive less energy than their needs, 

𝑒dist
𝑡,𝑖

 is positive and EVA charging deficiency happens. In the day-ahead stage, EVAs 

report their acceptable amounts for over-charging and charging deficiency to BR-

DISCO.  

𝑒dist
𝑡,𝑖 = ∑ ((𝑝EVA,p

𝑡̅,𝑖 + 𝜉EVA
𝑡̅,𝑖 − 𝑝ch

𝑡̅,𝑖 + 𝑝dis
𝑡̅,𝑖 ) ∙ Δ𝑡)

𝑡̅=1,…,𝑡

                     (5.1) 

BR-DISCO pays EVAs for disturbance to them in two steps. First, in the day-ahead 

stage, BR-DISCO reserves certain amounts for EVA over-charging and charging 

deficiency and pays EVAs for the reserves. As uncertainties realize, disturbance to 

EVAs is known in the real-time stage. Regular compensations are given to EVAs by 

BR-DISCO for the disturbance within the reserves purchased by BR-DISCO, and 

punitive compensations that are of higher rates are given for the disturbance beyond the 

reserves. Besides, BR-DISCO compensates EVA battery degradation.  

Uncertainty,

Flexibility

EVAs

RESs

Distribution system

Uncertainty

BR-DISCO

Reserve 

purchase

Energy 

purchase

TSO

Real-time 

operation plan

······

······
 

Fig. 5.1 Schematic diagram of the proposed model 
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5.4 Applications of EVA Flexibility 

The key of the proposed model lies in applications of EVA flexibility, which are 

further elaborated in this section. 

5.4.1 BR-DISCO’s Real-time Operation Plans for EVA Charging and 

Discharging Power 

BR-DISCO’s real-time operation plan for EVA charging power is given in (5.2). If 

BR-DISCO does not disturb EVAs, EVA charging power will be the sum of EVA 

planned charging demands and EVA uncertainties, which means 𝛼ch
𝑡,𝑖 = 𝑝EVA,p

𝑡,𝑖
 and 

𝑓ch
𝑡,𝑖(𝝃) = 𝜉EVA

𝑡,𝑖
. By choosing proper 𝑓ch

𝑡,𝑖(𝝃), BR-DISCO can use EVAs to mitigate 

uncertainties. For example, if 𝑓ch
𝑡,𝑖(𝝃) = 0 , EVA 𝑖  mitigates its own uncertainty 

because its charging power is now constant. If 𝑓ch
𝑡,𝑖(𝝃) = 𝜉EVA

𝑡,𝑖 − 𝜉EVA
𝑡,𝑗

, EVA 𝑖 

mitigates the uncertainty of EVA 𝑗. Similarly, EVAs can mitigate RES uncertainties. 

Besides, by setting 𝛼ch
𝑡,𝑖

 to proper values, BR-DISCO can shift EVA charging demands 

to hours with lower energy prices. If EVAs discharge in some hours, more EVA 

charging demands can be shifted compared with the case when EVAs never discharge. 

BR-DISCO’s operation plan for EVA discharging power is given in (5.3). Similar as 

choosing proper 𝛼ch
𝑡,𝑖

 and 𝑓ch
𝑡,𝑖(𝝃), choosing proper 𝛼dis

𝑡,𝑖
 and 𝑓dis

𝑡,𝑖 (𝝃) can have EVAs 

shift their charging demands and mitigate uncertainties, respectively. 

𝛼ch
𝑡,𝑖

, 𝛼dis
𝑡,𝑖

, 𝑓ch
𝑡,𝑖(𝝃) and 𝑓dis

𝑡,𝑖 (𝝃) all influence power flows between the distribution 

system and EVAs. But the influence of 𝑓ch
𝑡,𝑖(𝝃)  and 𝑓dis

𝑡,𝑖 (𝝃)  is known only after 

uncertainties realize. In the following parts of the paper, “shifting EVA charging 

demands” refers to “choosing proper 𝛼ch
𝑡,𝑖

 and 𝛼dis
𝑡,𝑖

”, and “mitigating uncertainties” 

refers to “choosing proper 𝑓ch
𝑡,𝑖(𝝃)  and 𝑓dis

𝑡,𝑖 (𝝃) ”. The schematic diagram of the 

proposed model’s methodology is given in Fig. 5.2.  

𝑝ch
𝑡,𝑖 = 𝛼ch

𝑡,𝑖 + 𝑓ch
𝑡,𝑖(𝝃)                                                  (5.2) 

𝑝dis
𝑡,𝑖 = 𝛼dis

𝑡,𝑖 + 𝑓dis
𝑡,𝑖 (𝝃)                                                (5.3) 
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Fig. 5.2 Schematic diagram of the proposed model’s methodology 

5.4.2 Delaying Uncertainties and Eliminating Uncertainties 

Using EVAs to mitigate uncertainties is further classified into delaying 

uncertainties and eliminating uncertainties. Delaying uncertainties is illustrated as 

follows. If 𝑝ch
1,𝑖 = 𝑝EVA,p

1,𝑖
, EVA 𝑖 mitigates its own uncertainty in the first hour and 

𝑒dist
1,𝑖 = 𝜉EVA

1,𝑖
. If disturbance to EVA 𝑖 is recovered in the second hour, there is 𝑒dist

2,𝑖 =

0, which requires 𝑝ch
2,𝑖 = 𝑝EVA,p

2,𝑖 + 𝜉EVA
1,𝑖 + 𝜉EVA

2,𝑖
. So, 𝜉EVA

1,𝑖
 causes the variation of EVA 

charging power in the second hour rather than in the first hour, which means that 𝜉EVA
1,𝑖

 

is delayed. 𝜉EVA
1,𝑖

 and 𝜉EVA
2,𝑖

 now offset each other if they are of different signs. To 

conclude, delaying uncertainties happens when disturbance to EVAs incurred from 

mitigating uncertainties is recovered within the day. 

Eliminating uncertainties occurs when the disturbance to EVAs incurred from 

mitigating uncertainties is not fully recovered by the end of the day. The unrecovered 

disturbance will be merged into EVA planned charging demands when BR-DISCO 

makes decisions again at the beginning of the next day. In other words, the involved 

uncertainties will become deterministic information in the next day and will not cause 

energy deviations of BR-DISCO anymore, which is like the involved uncertainties 

being eliminated. Operation costs of BR-DISCO in the next day will be influenced by 

the unrecovered disturbance to EVAs incurred from mitigating uncertainties. But the 
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average influence is tiny because expectations of considered uncertainties are close to 

zero. 

5.5 Proposed Model for BR-DISCO 

Compensations to EVAs and penalties for energy deviations of BR-DISCO are 

influenced by uncertainty realizations. Obviously, BR-DISCO desires to achieve the 

minimum average costs. As relevant information is limited, the uncertainty distribution 

is hard to be acquired. But it is included in the family of all distributions satisfying 

known information. The set constituted by such family of distributions is just the 

ambiguity set under DRO. To utilize available uncertainty information and avoid being 

over-optimistic, the worst, i.e., largest, expected costs with respect to the ambiguity set 

are evaluated through DRO in the proposed model. Further discussions will be made in 

Section 5.6.2. 

5.5.1 Formulation of the Proposed Model 

The formulation of the proposed model is given in (5.4)-(5.22). In the objective 

(5.4), the first and second item are energy costs and reserve costs, respectively. The 

third item is the worst expectation of uncertainty-affected costs with respect to the 

ambiguity set. The first item within the worst expectation in (5.4) is the compensation 

for disturbance to EVAs and its explicit expressions are given in (5.5)-(5.8). (5.5)-(5.6) 

and (5.7)-(5.8) correspond to the cases when disturbance to EVAs is within and beyond 

purchased reserves, respectively. The second item within the worst expectation in (5.4) 

is the penalty for BR-DISCO’s energy deviations and its explicit expressions are given 

in (5.9) and (5.10), which correspond to positive and negative energy deviations, 

respectively. The last item within the worst expectation in (5.4) is the compensation for 

EVA battery degradation. To avoid excessive degradation of EVA battery and reduce 

operational challenges, the status of EVAs, i.e., charging or discharging, in an hour is 

required to be fixed whatever uncertainty realizations are, which is achieved through 
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(5.12)-(5.14). Also, EVA charging and discharging power are limited in (5.13) and 

(5.14), respectively. (5.15) reflects power losses in EVA charging and discharging. 

Disturbance to EVAs is constrained within their acceptable ranges in (5.16). (5.17) 

implies that disturbance to EVAs incurred from shifting charging demands should be 

fully recovered in the end of the day. Power balances are ensured through (5.18)-(5.20). 

Node voltage is given in (5.21) and constrained in (5.22). 

inf               ∑ 𝑎e
𝑡 ∙ 𝑒pur

𝑡

𝑡=1,…,𝑇

+ ∑ ∑ (𝑎r,def
𝑡,𝑖 ∙ 𝑟def

𝑡,𝑖 + 𝑎r,over
𝑡,𝑖 ∙ 𝑟over

𝑡,𝑖 )                          

𝑖∈𝑁EVA𝑡=1,…,𝑇

 

+ sup
𝑓𝝃∈𝐴(𝝃)

( ∑ ∑ max
𝑘=1,…,4

𝑓𝑘(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 )

𝑖∈𝑁EVA𝑡=1,…,𝑇

+ ∑ max
𝑘=1,2

𝑔𝑘(𝑝in
𝑡 , 𝑒pur

𝑡 )

𝑡=1,…,𝑇

    

+ ∑ ∑ 𝑏d
𝑖 ∙ 𝑝dis

𝑡,𝑖

𝑖∈𝑁EVA𝑡=1,…,𝑇

∙ Δ𝑡)                         (5.4) 

s. t.  𝑓1(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 ) = 𝑏r,def

𝑡,𝑖 ∙ 𝑒dist
𝑡,𝑖                                                                             (5.5) 

𝑓2(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 ) = −𝑏r,over

𝑡,𝑖 ∙ 𝑒dist
𝑡,𝑖                                                                        (5.6) 

𝑓3(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 ) = 𝑏p,def

𝑡,𝑖 ∙ (𝑒dist
𝑡,𝑖 − 𝑟def

𝑡,𝑖 ) + 𝑏r,def
𝑡,𝑖 ∙ 𝑟def

𝑡,𝑖                                    (5.7) 

𝑓4(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 ) = 𝑏p,over

𝑡,𝑖 ∙ (−𝑒dist
𝑡,𝑖 − 𝑟over

𝑡,𝑖 ) + 𝑏r,over
𝑡,𝑖 ∙ 𝑟over

𝑡,𝑖                         (5.8) 

𝑔1(𝑝in
𝑡 , 𝑒pur

𝑡 ) = 𝑏p,pos
𝑡 ∙ (𝑝in

𝑡 ∙ Δ𝑡 − 𝑒pur
𝑡 )                                                                (5.9) 

𝑔2(𝑝in
𝑡 , 𝑒pur

𝑡 ) = 𝑏p,neg
𝑡 ∙ (𝑒pur

𝑡 − 𝑝in
𝑡 ∙ Δ𝑡)                                                             (5.10) 

𝑒dist
𝑡,𝑖 = ∑ ((𝑝EVA,p

𝑡̅,𝑖 + 𝜉EVA
𝑡̅,𝑖 − 𝑝ch

𝑡̅,𝑖 + 𝑝dis
𝑡̅,𝑖 ) ∙ Δ𝑡)

𝑡̅=1,…,𝑡

, ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁EVA        (5.11) 

𝜎𝑡,𝑖 ∈ {0,1} , ∀𝑡 , ∀𝑖 ∈ 𝑁EVA                                                                                     (5.12) 

0 ≤ 𝑝ch
𝑡,𝑖 ≤ 𝜎𝑡,𝑖 ∙ 𝑝ch,max

𝑖  , ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁EVA                                                         (5.13) 

0 ≤ 𝑝dis
𝑡,𝑖 ≤ (1 − 𝜎𝑡,𝑖) ∙ 𝑝dis,max

𝑖  , ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁EVA                                           (5.14) 

𝑝sys,EVA
𝑡,𝑖 = 𝑝ch

𝑡,𝑖 𝜂ch
𝑖⁄ − 𝑝dis

𝑡,𝑖 ∙ 𝜂dis
𝑖 , ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁EVA                                          (5.15) 

−𝑒over,max
𝑡,𝑖 ≤ 𝑒dist

𝑡,𝑖 ≤ 𝑒def,max
𝑡,𝑖  , ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁EVA                                             (5.16) 
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∑ (𝑝EVA,p
𝑡,𝑖 − 𝑝ch

𝑡,𝑖 + 𝑝dis
𝑡,𝑖 )

𝑡=1,…,𝑇

= 0 if 𝝃 = 𝟎 , ∀𝑖 ∈ 𝑁EVA                                      (5.17) 

𝑓𝑙p

𝑡,𝑁p(𝑖),𝑖
= 𝑝l

𝑡,𝑖 + 𝑝sys,EVA
𝑡,𝑖 − 𝑝RES,f

𝑡,𝑖 − 𝜉RES
𝑡,𝑖 + ∑ 𝑓𝑙p

𝑡,𝑖,𝑗

𝑗∈𝑁c(𝑖)

 ,                             

∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁sys/{1}    (5.18) 

𝑓𝑙q

𝑡,𝑁p(𝑖),𝑖
= 𝑞l

𝑡,𝑖 + 𝑝sys,EVA
𝑡,𝑖 ∙ √1 − 𝜆𝑖

2 𝜆𝑖⁄ + ∑ 𝑓𝑙q
𝑡,𝑖,𝑗

𝑗∈𝑁c(𝑖)

 ,                               

∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁sys/{1}    (5.19) 

𝑝in
𝑡 = 𝑓𝑙p

𝑡,1,2                                                                                                               (5.20) 

𝑣𝑡,𝑖 + ( 𝑟𝑁p(𝑖),𝑖 ∙ 𝑓𝑙p

𝑡,𝑁p(𝑖),𝑖
+ 𝑥𝑁p(𝑖),𝑖 ∙ 𝑓𝑙q

𝑡,𝑁p(𝑖),𝑖
) 𝑣b⁄ = 𝑣𝑡,𝑁p(𝑖) ,                     

∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁sys/{1}    (5.21) 

0.95 ∙ 𝑣b ≤ 𝑣𝑡,𝑖 ≤ 1.05 ∙ 𝑣b , ∀𝝃, ∀𝑡, ∀𝑖 ∈ 𝑁sys                                                 (5.22) 

5.5.2 Linear Decision Rules Approximation 

To reduce computational complexity, LDR approximation is adopted by assuming 

that BR-DISCO’s real-time operation plans are affine functions of uncertainty 

realizations in earlier hours. Then, (5.2) can be rewritten as (5.23), where 𝛽𝑡,𝑖
𝑡̅,𝑗

 and 𝛾𝑡,𝑖
𝑡̅,𝑗

 

are uncertainty coefficients. Under LDR, using EVAs to mitigate uncertainties is 

equivalent to allocating uncertainties to EVAs in advance through uncertainty 

coefficients of 𝑝ch
𝑡,𝑖

 and 𝑝dis
𝑡,𝑖

.  

𝑝ch
𝑡,𝑖 = 𝛼ch

𝑡,𝑖 + ∑ ( ∑ 𝛽𝑡,𝑖
𝑡̅,𝑗

∙ 𝜉EVA
𝑡̅,𝑗

𝑗∈𝑁EVA

+ ∑ 𝛾𝑡,𝑖
𝑡̅,𝑗

∙ 𝜉RES
𝑡̅,𝑗

𝑗∈𝑁RES

)

𝑡̅=1,…,𝑡

                  (5.23) 

5.6 Transformation of the Proposed Model 

The proposed model contains robust equality and inequality constraints, which are 

both linear under LDR. With the same techniques as used in Section 4.4.3, they can be 

transformed into deterministic forms, and an upper bound (5.24) can be used to 

approximate the original worst expectation in (5.4). As the compensation for EVA 
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battery degradation depends linearly on uncertainties under LDR, its expectation can 

be calculated directly from uncertainty expectations. By using the same DRO technique 

as in Section 4.4.3, the first two terms in (5.24) can be transformed into deterministic 

forms. At last, the proposed model becomes a deterministic mixed-integer second-order 

conic program and can be solved by off-the-shelf solvers. 

∑ ∑ sup
𝑓𝝃∈𝐴(𝝃)

( max
𝑘=1,…,4

𝑓𝑘(𝑒dist
𝑡,𝑖 , 𝑟def

𝑡,𝑖 , 𝑟over
𝑡,𝑖 ))

𝑖∈𝑁EVA𝑡=1,…,𝑇

 

+ ∑ sup
𝑓𝝃∈𝐴(𝝃)

(max
𝑘=1,2

𝑔𝑘(𝑝in
𝑡 , 𝑒pur

𝑡 ))

𝑡=1,…,𝑇

+ ∑ ∑ E[𝑏d
𝑖 ∙ 𝑝dis

𝑡,𝑖 ∙ Δ𝑡]

𝑖∈𝑁EVA𝑡=1,…,𝑇

   (5.24) 

5.7 Case Studies and Discussions 

Case studies are conducted based on a modified IEEE 33-node system, in which 

Node 16 and 22 each has an EVA, and Node 13 and 30 each has an RES. Average 

charging and discharging efficiencies of both EVAs are set to 0.9. To evaluate the 

performance of obtained decisions, uncertainty realizations are generated according to 

normal distributions. In Section 5.7.1 to 5.7.4, the time horizon is assumed to contain 

only 2 hours to demonstrate the proposed model more clearly. In Section 5.7.5, the time 

horizon is assumed to contain 24 hours.  

In Section 5.7.1 to 5.7.4, disturbance to EVAs is assumed to be completely 

recovered at the end of the time horizon, which means that EVAs are used to only delay 

but not eliminate uncertainties according to the definitions in Section 5.4.2. Prices of 

reserves for over-charging and charging deficiency of both EVAs are set to 0.2¢/kWh. 

Regular compensation rates for over-charging and charging deficiency to both EVAs 

are set to 2¢/kWh. Punitive compensation rates for over-charging and charging 

deficiency to both EVAs are set to 6¢/kWh. Compensation rates for battery degradation 

to both EVAs are set to 0.05¢/kWh. 
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5.7.1 Using EVAs to Delay Uncertainties 

In this part, energy prices in both hours are set to 4¢/kWh. Penalty coefficients for 

positive and negative energy deviations of BR-DISCO are set to 10¢/kWh. As discussed 

in Section 5.5.2, using EVAs to mitigate uncertainties under LDR is equivalent to 

allocating uncertainties to EVAs in advance, which is illustrated here. 

According to the solution of the proposed model, the active power that the 

distribution system supplies for EVA 1 in the first hour is 𝑝sys,EVA
1,1 = 222.222 +

1.111𝜉EVA
1,1

 when EVA flexibility is not used. So, the coefficient of 𝑝sys,EVA
1,1

 for 𝜉EVA
1,1

 

is 1.111 and the coefficients of 𝑝sys,EVA
1,1

 for other uncertainties are 0. For clearer 

illustration, uncertainty coefficients of certain decision variables when EVA flexibility 

is used and not are given in Table 5.2 and 5.1, respectively. As shown in Table 5.1, 

coefficients for EVA uncertainties are greater than 1 because of power losses in EVA 

charging. As EVA flexibility is not used, each variable in Table 5.1 depends and only 

depends on uncertainties in its hour. In contrast, when EVA flexibility is used, the active 

power imported from the transmission system in the first hour, i.e., 𝑝in
1 , is not 

influenced by uncertainties as shown in Table 5.2. In the second hour, because 

disturbance to EVAs incurred from uncertainty mitigation is recovered, variables 

depend on uncertainties from both hours. So, uncertainties in the first hour are delayed 

to the second hour.  

Uncertainty-affected costs when EVA flexibility is used and not are recorded in 

Table 5.3, where the total uncertainty-affected costs are the sum of reserve costs, 

compensations to EVAs and penalties for energy deviations minus the reduction in 

energy costs. As uncertainties from different hours can offset each other, average 

penalties for energy deviations of BR-DISCO decrease when EVA flexibility is used. 

Meanwhile, corresponding reserve costs and compensations to EVAs are incurred. 

Overall, the average total uncertainty-affected costs are reduced because of EVA 

flexibility. 
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Table 5.1 Uncertainty coefficients when EVA flexibility is not used 

Uncertainty 
Variables in the first hour Variables in the second hour 

𝑝sys,EVA
1,1

 𝑝sys,EVA
1,2

 𝑝in
1  𝑝sys,EVA

2,1
 𝑝sys,EVA

2,2
 𝑝in

2  

𝜉EVA
1,1

 1.111 0 1.111 0 0 0 

𝜉EVA
1,2

 0 1.111 1.111 0 0 0 

𝜉RES
1,1

 0 0 -1 0 0 0 

𝜉RES
1,2

 0 0 -1 0 0 0 

𝜉EVA
2,1

 0 0 0 1.111 0 1.111 

𝜉EVA
2,2

 0 0 0 0 1.111 1.111 

𝜉RES
2,1

 0 0 0 0 0 -1 

𝜉RES
2,2

 0 0 0 0 0 -1 

Table 5.2 Uncertainty coefficients when EVA flexibility is used 

Uncertainty 
Variables in the first hour Variables in the second hour 

𝑝sys,EVA
1,1

 𝑝sys,EVA
1,2

 𝑝in
1  𝑝sys,EVA

2,1
 𝑝sys,EVA

2,2
 𝑝in

2  

𝜉EVA
1,1

 0.600  -0.600  0 0.512  0.600  1.111  

𝜉EVA
1,2

 -0.512  0.512  0 0.512  0.600  1.111  

𝜉RES
1,1

 0.460  0.540  0 -0.460  -0.540  -1  

𝜉RES
1,2

 0.460  0.540  0 -0.460  -0.540  -1 

𝜉EVA
2,1

 0 0 0 1.111  0  1.111  

𝜉EVA
2,2

 0 0 0 0 1.111  1.111  

𝜉RES
2,1

 0 0 0 0 0 -1 

𝜉RES
2,2

 0 0 0 0 0 -1 

Table 5.3 Uncertainty-affected costs when EVA flexibility is used and not 

Using EVA flexibility No Yes 

Reduction in energy costs brought by EVA flexibility (¢) 0.0 0.0 

Reserve costs (¢) 0.0 8.6 

Average compensations for disturbance to EVAs (¢) 0.0 26.8 

Average compensations for EVA battery degradation (¢) 0.0 0.0 

Average penalties for energy deviations (¢) 258.5 182.5 

Average total uncertainty-affected costs (¢) 258.5 217.9 
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5.7.2 Trade-off between Cost Savings Brought by Using EVA Flexibility and 

Corresponding Payments to EVAs 

In Section 5.7.1, each uncertainty in the first hour is completely delayed to the 

second hour, which however is not always the case. In this part, case studies are 

conducted under varying penalty coefficients for energy deviations of BR-DISCO. 

Energy prices are set to be the same as in Section 5.7.1. Under all considered penalty 

coefficients, each uncertainty in the first hour has the same percentage delayed to the 

second hour. Relevant results are recorded in Table 5.4. When penalty coefficients 

decrease, using EVAs to mitigate uncertainties becomes less attractive. As a result, 

EVA flexibility is used less extensively, and thus lower percentage of each uncertainty 

is delayed to the second hour, resulting in fewer reserve costs and average 

compensations for disturbance to EVAs.  

Table 5.4 Results under different penalty coefficients 

𝑏p,pos
1 , 𝑏p,neg

1 , 𝑏p,pos
2 , 𝑏p,neg

2  (¢/kWh) 10 9 8 7 6 

Percentage of each uncertainty delayed to 

the second hour (%) 
100 100 97.5 86.7 74.5 

Reserve costs (¢) 8.6 8.6 8.4 7.5 6.4 

Average compensations for disturbance to 

EVAs (¢) 
26.8 26.8 26.2 23.3 20.0 

5.7.3 Effects of Power Losses in EVA Charging and Discharging on Uncertainties 

Case studies are conducted in this part under three settings for energy prices as 

shown in Table 5.5. Penalty coefficients are set to be the same as in Section 5.7.1. Under 

all three settings in Table 5.5, each uncertainty in the first hour is completely delayed 

to the second hour. Uncertainty coefficients of 𝑝in
2  are shown in Fig. 5.3. Average 

penalties for energy deviations of BR-DISCO are given in Table 5.6. 

Table 5.5 Settings for energy prices 

Setting C-I C-II C-III 

𝑎e
1 (¢/kWh) 4 7 4 

𝑎e
2 (¢/kWh) 4 4 7 
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Fig. 5.3 Uncertainty coefficients of 𝑝in
2  

Table 5.6 Average penalties for BR-DISCO’s energy deviations under different 

settings 

Setting C-I C-II C-III 

Average penalties for energy deviations (¢) 182.5 183.5 148.8 

As average charging and discharging efficiencies of both EVAs have been set to 

0.9, they are all represented by 𝜂 in the following illustration. Uncertainty coefficients 

of 𝑝in
2  under Setting C-I are the same with those in Table 5.2 and can be regarded as 

the reference for Setting C-II and C-III. Under Setting C-II, because of the significant 

difference in energy prices in the two hours, EVAs discharge in the first hour and charge 

in the second hour. To offset RES uncertainties, the total power that the distribution 

system receives from EVAs in the first hour, i.e., −𝑝sys,EVA
1,1 − 𝑝sys,EVA

1,2
, contains 

−(𝜉RES
1,1 + 𝜉RES

1,2 ) . Because of power losses in EVA discharging, the total EVA 

discharging power, i.e., 𝑝dis
1,1 + 𝑝dis

1,2
, contains −(𝜉RES

1,1 + 𝜉RES
1,2 )/𝜂. In the second hour, 

disturbance to EVAs is recovered. As a result, the total EVA charging power, i.e., 

𝑝ch
2,1 + 𝑝ch

2,2
, contains −(𝜉RES

1,1 + 𝜉RES
1,2 )/𝜂. Because of power losses in EVA charging, 

𝑝sys,EVA
2,1 + 𝑝sys,EVA

2,2
 and 𝑝in

2  contains −(𝜉RES
1,1 + 𝜉RES

1,2 )/(𝜂2). As shown in Fig. 5.3, 

coefficients for 𝜉RES
1,1

 and 𝜉RES
1,2

 have greater absolute values under Setting C-II than 
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under Setting C-I. So, under Setting C-II, these uncertainties are magnified from the 

perspective of BR-DISCO, and average penalty for energy deviations is higher than 

that under Setting C-I as shown in Table 5.6. Under Setting C-III, EVAs charge in the 

first hour and discharge in the second hour. With similar analysis as for Setting C-II, it 

can be told that 𝑝in
2  contains −(𝜉RES

1,1 + 𝜉RES
1,2 )𝜂2  and (𝜉EVA

1,1 + 𝜉EVA
1,2 + 𝜉EVA

2,1 +

𝜉EVA
2,2 )𝜂  under Setting C-III, which matches the results in Fig. 5.3. So, these 

uncertainties are minified from the perspective of BR-DISCO, and average penalty for 

energy deviations is now lower than under Setting C-I.  

5.7.4 Interactions between Mitigating Uncertainties and Shifting Charging Demands 

In this part, energy price in the first hour is set to 4¢/kWh and energy price in the 

second hour, i.e., 𝑎e
2, is set to varying values. Penalty coefficients are set to be the same 

as in Section 5.7.1. Constant components of the total EVA active power supplied by 

the distribution system are recorded in Fig. 5.4. Average penalties for energy deviations 

of BR-DISCO are shown in Fig. 5.5. 

 

Fig. 5.4 Constant components of the total EVA active power supplied by the 

distribution system under varying energy price in the second hour 
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Fig. 5.5 Average penalties for energy deviations of BR-DISCO under varying energy 

price in the second hour 

When 𝑎e
2  is 4¢/kWh, there is no shifted EVA charging demand, and each 

uncertainty in the first hour is completely delayed to the second hour. Therefore, there 

is no penalty for energy deviations in the first hour as shown in Fig. 5.5. When 𝑎e
2 rises 

to 5¢/kWh, savings in energy costs brought by shifting EVA charging demands are 

fewer than corresponding payments to EVAs. But shifting EVA charging demands may 

alleviate the disturbance to EVAs incurred from uncertainty mitigation. For the sake of 

minimizing overall costs, there is a slight amount of EVA charging demands shifted 

from the second hour to the first hour as shown in Fig. 5.4. When 𝑎e
2 equals to 6¢/kWh, 

the difference in energy prices in the two hours becomes large enough and shifted EVA 

charging demands greatly increase compared with earlier cases. As 𝑎e
2 increases to 

6.5¢/kWh, shifted EVA charging demands grow further. To guarantee that EVA status 

is fixed in the second hour, each uncertainty in the first hour is only partially delayed 

to the second hour. So, the average penalty in the first hour is now positive and the 

average total penalty in the two hours is higher than those under earlier cases as shown 

in Fig. 5.5. 
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When 𝑎e
2 is 6.7¢/kWh, EVA discharging is uneconomical in terms of the sum of 

energy costs and payments to EVAs. However, EVAs still discharge in the second hour 

because uncertainties will thus be minified as illustrated in Section 5.7.3 and thus lower 

overall costs will be achieved. To avoid EVA status swinging between discharging and 

charging in the second hour, each uncertainty in the first hour is only partially delayed 

to the second hour, which leads to positive average penalty in the first hour as shown 

in Fig. 5.5. When 𝑎e
2 grows to 7¢/kWh, EVAs further discharge in the second hour 

and each uncertainty in the first hour is completely delayed to the second hour. 

Compared with the cases when EVAs charge in the second hour, the average total 

penalty is now lower because uncertainties are minified. When 𝑎e
2  increases to 

7.5¢/kWh, EVA discharging power in the second hour significantly increases and is 

bounded by EVAs’ acceptable amounts for over-charging in the first hour. As 𝑎e
2 

keeps increasing to 8 and 8.5¢/kWh, each uncertainty in the first hour is only partially 

delayed to the second hour to have more EVA charging demands shifted from the 

second hour to the first hour, which causes growth in penalties but achieves optimal 

overall costs because of savings in energy costs. 

5.7.5 Effects of Delaying Uncertainties and Eliminating Uncertainties 

In this part, the time horizon contains 24 hours. Prices of reserves for EVA over-

charging and charging deficiency are set to 0.1 time of energy prices. Regular 

compensation rates for EVA over-charging and charging deficiency are set to be equal 

to energy prices. Punitive compensations rates for EVA over-charging and charging 

deficiency are set to 3 times of energy prices. Compensation rates for EVA battery 

degradation are set to 0.05 time of energy prices. Penalty coefficients for energy 

deviations of BR-DISCO are set to 3 times of energy prices. As compensations to EVAs 

will keep increasing as time goes if disturbance to EVAs is not recovered, it is assumed 

here that disturbance to EVAs incurred from uncertainty mitigation needs to be 

recovered in 5 hours unless the time horizon ends. Such restriction has tiny influence 

on the results but can greatly reduce the computational complexity. Case studies are 



96 

 

conducted under three settings as given in Table 5.7. Average penalties for energy 

deviations of BR-DISCO are shown in Fig. 5.6. 

Table 5.7 Three settings for uncertainty mitigation 

Setting E-I E-II E-III 

Using EVAs to delay uncertainties No Yes Yes 

Using EVAs to eliminate uncertainties No No Yes 

 

Fig. 5.6 Average penalties for energy deviations of BR-DISCO under different settings 

The curve of Setting E-I reflects the scale of uncertainties in each hour as EVAs are 

not used to mitigate uncertainties. Under Setting E-II, average penalties are generally 

lower than those under Setting E-I, which is because uncertainties are delayed through 

EVAs and thus can offset uncertainties in later hours. Under Setting E-III, EVAs 

eliminate or partially eliminate uncertainties in the last several hours. As a result, 

average penalties in these hours are lower than those under Setting E-II. Uncertainty-

affected costs under Setting E-I to E-III are recorded in Table 5.8. As shown by the 

results under Setting E-I and E-II, using EVAs to delay uncertainties brings significant 

reduction in average penalties and thus achieves lower average total uncertainty-
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affected costs, which are consistent with the results in Section 5.7.1. By comparing the 

results under Setting E-II and E-III, it can be further noticed that having EVAs eliminate 

uncertainties creates extra savings based on those achieved by using EVAs to delay 

uncertainties. 

Table 5.8 Uncertainty-affected costs under different settings 

Setting E-I E-II E-III 

Reduction in energy costs brought by EVA flexibility (¢) 0.0 5.4 6.7 

Reserve costs (¢) 0.0 562.1 642.6 

Average compensations for disturbance to EVAs (¢) 0.0 1369.6 1629.3 

Average compensations for EVA battery degradation (¢) 0.0 0.0 0.0 

Average penalties for energy deviations (¢) 6265.6 3356.8 2853.2 

Average total uncertainty-affected costs (¢) 6265.6 5283.2 5118.4 

5.8 Summary 

With the proposed model, flexibility of EVAs is explored by BR-DISCO to shift 

EVA charging demands to hours with lower energy prices and mitigate uncertainties in 

EVA charging demands and renewable power outputs. If the corresponding disturbance 

to EVAs is recovered within the time horizon, using EVAs to mitigate uncertainties is 

equivalent to delaying uncertainties; otherwise, it is equivalent to eliminating 

uncertainties. With comprehensive case studies, it is found that (1) the proposed model 

is successful in simultaneously utilizing both forms of uncertainty mitigation to reduce 

average penalties for deviations of BR-DISCO from its planned energy portfolio, (2) 

the proposed model is effective in coordinating EVA applications in mitigating 

uncertainties and shifting charging demands to achieve optimal overall costs, and (3) 

power losses in EVA charging and discharging are used in the proposed model to 

reduce the scale of uncertainties under certain circumstances. 

  



98 

 

Chapter VI 

Conclusions and Future Work 

6.1 Conclusions 

The increasing RESs and EVs bring considerable uncertainties to the operation of 

power systems. Uncertainties can result in overloading of system equipment or make 

bus voltage exceed the allowable operation range. They can also cause the energy 

imbalance of the system, which will lead to the deviation of system frequency. In the 

worst case, blackout of vast areas will be caused. Therefore, decisions for the operation 

of power systems need to be carefully made to alleviate the negative effects brought by 

uncertainties. As many operation tasks in power systems are optimization problems, it 

is important to have approaches that can solve optimization problems with uncertainties 

effectively and efficiently. In this regard, DRO is a fast-developing approach and has 

been shown to be competent. However, the potentials of DRO in power system 

operation have not been fully explored yet. In this thesis, applications of DRO in ED 

are improved based on the state-of-art applications in literature. Besides, DRO is 

applied in managing EVAs in BRDSs for the first time. The model proposed for BRDSs 

is also extended for BR-DISCOs that have EVAs in their distribution systems. 

Specifically, primary conclusions of this thesis are concluded as follows: 

i) A comprehensive multi-period ED model is proposed using DRO techniques 

with more realistic modeling of uncertainty to accommodate uncertainties from 

RESs and is solved through a tailor-made Constraint Generation algorithm. 

The proposed model adopts two-stage frameworks to effectively model recourse 

actions with respect to uncertainty realizations and greatly reduces average operation 

costs through applying DRO. As the statistical moments of uncertainties are derived 

from limited historical samples, they may deviate from the actual moments. In 

consideration of such deviations, the adopted DRO technique prevents inferior 
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performance of the proposed model. Besides, the boundness of uncertainties in outputs 

of RESs are considered in DRO, which avoids over-conservative solutions. Moreover, 

RO is integrated into the framework of DRO to guarantee the system security through 

limiting load shedding. Furthermore, rolling-plan operation is adopted. So, only the 

decisions for the first period in the proposed multi-period model are carried out, and 

then the proposed model rolls forward and is solved again to get the decisions for the 

next period, which means that decisions for the first period are more important. 

Therefore, faced with the computational difficulty brought by temporal sequences of 

uncertainties and decisions in different periods, decision variables for the first period 

are kept intact, but those for later periods are approximated through SLDR to guarantee 

the tractability of the proposed model. With such formulation, the proposed model does 

not cause excessive computational burden when solved through the tailor-made 

Constraint Generation algorithm and successfully guarantees economical and secure 

long-term ED operation at the same time. 

ii) A model to use the flexibility of EVAs in mitigating forecast uncertainties in 

BRDSs is proposed with the temporal and spatial uncertainty correlations 

considered through DRO. 

Under the proposed model, disturbance to the charging of EVAs will be caused 

when EVAs are used to mitigate uncertainties and is required to be recovered by the 

end of the day to guarantee driving activities of EVs in the next day. As deviations of 

BRDS from its planned energy portfolio will still be caused when the corresponding 

disturbance to EVAs is recovered, using EVAs to mitigate uncertainties is equivalent 

to delaying uncertainties under the proposed model. Delayed uncertainties may offset 

uncertainties in later hours, whose probability depends on uncertainty correlations. As 

a result, average penalties for energy deviations of BRDS are reduced. By incorporating 

the statistical covariance matrix of uncertainties into the ambiguity set of DRO, the 

proposed model captures the correlation information of uncertainties and is effective in 

evaluating operation costs that are affected by uncertainties. Besides, payments are 

given to EVAs by BRDS to compensate for the disturbance to their charging. Trade-off 
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between costs of dispatching EVAs and corresponding savings in penalties for energy 

deviations of BRDS is achieved to obtain the optimal overall costs under the proposed 

model. Therefore, as dispatching EVAs becomes cheaper, they are more extensively 

used. Moreover, LDR is used to reduce the computational complexity. Based on LDR, 

a scheme of uncertainty transferring is proposed so that any EVA can mitigate 

uncertainties of other EVAs. As a result, the disturbance to EVAs is relieved on average 

as it now depends on uncertainties of different EVAs, which may offset each other. 

Also, EVAs that are cheaper to dispatch or have greater capacity for charging 

disturbance are better utilized under the scheme of uncertainty transferring. 

iii) The model proposed for BRDSs is further developed to facilitate BR-DISCOs 

to utilize the flexibility of EVAs to achieve optimal overall costs. 

Apart from paying penalties for its energy deviations, BR-DISCO needs to purchase 

energy that it plans to import from the transmission system. Therefore, for BR-DISCO, 

the flexibility of EVAs can be used to shift their charging demands to hours with lower 

energy prices to save energy costs at the same time of being used to mitigate 

uncertainties. As using EVAs to mitigate uncertainties and shifting EVA charging 

demands both disturb the charging of EVAs, these two applications of EVAs are 

correlated. By coordinating them, the proposed model obtains the optimal operation 

decisions for BR-DISCO. Moreover, EVAs can discharge in some hours to have more 

charging demands shifted. Power losses in the charging and discharging of EVAs 

influence the interaction between using EVAs to mitigate uncertainties and shifting 

EVA charging demands and are used to reduce the scale of uncertainties from the 

perspective of BR-DISCO under certain circumstances. Besides, disturbance to the 

charging of EVAs incurred from uncertainty mitigation is not required to be fully 

recovered by the end of the day as long as the limits of EVAs in accepting disturbance 

are not violated. If the corresponding disturbance to EVAs is recovered in the day, using 

EVAs to mitigate uncertainties is equivalent to having EVAs delay uncertainties. 

Otherwise, it is equivalent to using EVAs to eliminate uncertainties, which would have 

little influence on average operation costs of BR-DISCO in the next day as the 
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expectations of considered uncertainties are around zero. Both forms of uncertainty 

mitigation reduce the average penalties for energy deviations of BR-DISCO. 

6.2 Future Work 

i) More accurate DRO modeling. 

Uncertainties usually follow unimodal distributions such as normal distributions. In 

other words, their distributions usually have a single peak. In this thesis, the ambiguity 

sets of the adopted DRO techniques are based on the expectation and covariance matrix 

of the uncertainty and do not exclude multimodal distributions. As a result, the decision 

made may be based on a multimodal distribution in the ambiguity set and thus may be 

over-conservative. Besides, the expectation and covariance matrix are made up of first 

and second-order moments of the uncertainty. There are also third-order and even 

higher-order moments, which all reveal different information. For example, third-order 

moments can disclose the dissymmetry of the uncertainty distribution, while first and 

second-order moments cannot. If the unimodality information and higher-order 

moments can be properly incorporated into ambiguity sets, the modeling accuracy of 

DRO and the quality of the obtained decision will be improved. 

ii) More applications of the methodology developed in this thesis. 

In Chapter 3, a methodology is developed based on two-stage frameworks to 

improve the economic efficiency of power system operation through DRO while 

guaranteeing system security through RO. Apart from being used for ED as in Chapter 

3, this methodology can be applied to more problems. For example, in [74], a model is 

proposed to maximize the hosting capacity of distribution systems for EVs by using 

two-stage frameworks. However, only the system security is properly guaranteed, and 

the economic efficiency is roughly evaluated through approximating the uncertainty 

distribution by piecewise-linear functions. With the methodology developed in Chapter 

3, solutions better than those in [74] can be obtained. 
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Appendix 

A. Farkas’ Lemma [90] 

Assume that 𝐀  and 𝐛  are known. Then, exactly one of (A. 1 ) and (A. 2 ) has 

solutions. 

𝐀𝒙 = 𝐛, 𝒙 ≥ 𝟎                                                    (A. 1) 

𝐀′𝒚 ≤ 𝟎, 𝐛′𝒚 > 0                                                 (A. 2) 

B. S-lemma [119] 

Assume that there is a 𝒙 that satisfies 𝒙′𝑸1𝒙 + (𝒑1)′𝒙 + 𝑟1 > 0. Then, if for all 

𝒙, 𝒙′𝑸2𝒙 + (𝒑2)′𝒙 + 𝑟2 ≥ 0 holds given 𝒙′𝑸1𝒙 + (𝒑1)′𝒙 + 𝑟1 ≥ 0, there will be a 

non-negative 𝜏 that satisfies 𝒙′𝑸2𝒙 + (𝒑2)′𝒙 + 𝑟2 ≥ 𝜏(𝒙′𝑸1𝒙 + (𝒑1)′𝒙 + 𝑟1), ∀𝒙. 

C. Transformation from (3.64) to (3.66)-(3.67) 

The ellipsoidal support S0 given in (3.65) can be rewritten as (C.1) because 𝐌 is 

symmetric. Obviously, for any proper S0 , there will be a 𝝃1  that satisfies (C.2) or 

equivalently (C.3). Then, by using S-lemma, (3.64) can be replaced by (C.4)-(C.5). 

According to the definition of positive semidefinite matrices, (C.4) is equivalent to 

(3.66). (C.5) is just (3.67). 

S0 = {𝝃1|(𝝃1 − 𝛍0)′ ∙ 𝐌 ∙ (𝝃1 − 𝛍0) ≤ 1}                                                

= {𝝃1|(𝝃1)′ (−𝐌)𝝃1 + (𝛍0)′𝐌𝝃1 + (𝝃1)′𝐌𝛍0 − (𝛍0)′𝐌𝛍0 + 1 ≥ 0}        

= {𝝃1|[(𝝃1)′ 1] [
−𝐌 𝐌 ∙ 𝛍0

(𝐌 ∙ 𝛍0)′ −(𝛍0)′𝐌𝛍0 + 1
] [𝝃1

1
] ≥ 0}                 (C. 1) 

(𝝃1 − 𝛍0)′ ∙ 𝐌 ∙ (𝝃1 − 𝛍0) < 1                                        (C. 2) 

[(𝝃1)′ 1] [
−𝐌 𝐌 ∙ 𝛍0

(𝐌 ∙ 𝛍0)′ −(𝛍0)′𝐌𝛍0 + 1
] [𝝃1

1
] > 0                      (C. 3) 
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[𝝃1 1] [
𝑸d −𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2

(−𝒑d − 𝑸d𝛍0 + (𝐅1)′𝒖𝑒/2)
′

𝑟d + (𝐄1 ∙ 𝒙1 − 𝐠1)′𝒖𝑒

] [𝝃1

1
] 

≥ 𝜏𝑒 ∙ [(𝝃1)′ 1] [
−𝐌 𝐌 ∙ 𝛍0

(𝐌 ∙ 𝛍0)′ −(𝛍0)′𝐌𝛍0 + 1
] [𝝃1

1
] , ∀𝑒    (C. 4) 

𝜏𝑒 ≥ 0, ∀𝑒                                                        (C. 5) 

 


