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ABSTRACT 

Many problems in the real-world can be formulated as discovering the existence of 

relationship between objects in a set of inter-related objects.  For example, in 

molecular biology, it is known that microRNA and human diseases are related as they 

may interact with each other. While the existence of interaction relationship between 

some of them may be known, the existence of some others may not. One problem is, 

therefore, for the existence of interaction relationship between a microRNA and a 

human disease to be determined based on known relationship between other 

microRNAs and human diseases.  If we represent microRNAs and human diseases as 

nodes in a network, then the links between them can be used to represent their 

interaction relationship, we have a biomolecular network. Given such a network, we 

can then define a link prediction problem as the prediction of missing links in the 

network based on existing links. 

In this thesis, we tackle the link prediction problem of three kinds of biomolecular 

networks that involve mediated microRNA. Specifically, we predict three types of 

interaction relationships between microRNA and three other different objects: (i) 

complex human diseases, (ii) drug resistance and (iii) lncRNA. Based on known 

interaction data obtained from public databases, we construct microRNA-mediated 

biomolecular networks containing nodes and unweighted links. The nodes are of two 

types. One type represents microRNA and the other represents either diseases, drug 

resistance or lncRNA. The links between these different types of nodes represent 
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interaction relationship between the two types of objects. Given the biomolecular 

networks, our problems are to use the known links to predict the missing ones in the 

networks. 

In the datasets we collected, known interaction data are often limited in number. To 

improve the prediction performance, in addition to the known links, we introduce node 

information data that are biologically relevant to the objects that the nodes represent for 

link prediction. These data can be related to the biological or physicochemical 

properties of the objects. They can be concerned with expression profiles, drug 

structural data, RNA sequences, etc., and their data types can be very different. For 

example, when predicting links in microRNA-disease association network, the data we 

use to characterize the node of microRNAs can be another network -- the lncRNA-

microRNA interaction network. When predicting the links in microRNA-drug 

resistance association network, the data we use to characterize the nodes of drugs and 

microRNAs are high-dimensional numerical features. When predicting the links in 

microRNA-lncRNA interaction network, the data we use to characterize the nodes of 

microRNA and lncRNA are network multiple similarity matrixes. The main challenges 

of our research, therefore, lie in finding ways to introduce these different kinds of node 

information during the prediction process. To overcome these difficulties, we propose 

four different algorithms that can each effectively tackle different challenges. 

Specifically, to predict associations between microRNA and diseases, MVMTMDA 

algorithm considers the data incompleteness of lncRNA-microRNA interactions. It 
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formulates the prediction task as a multi-task problem, in which the links of lncRNA-

microRNA interaction and microRNA-disease association are simultaneously predicted, 

and adopts multi-view learning to learn the embedding of microRNA nodes from two 

networks. When predicting the associations between microRNA and drug resistance, 

the nodes have attributes whose dimensions are up to thousands, which is extremely 

high. GCMDR algorithm used a spectral graph convolution technique to solve this 

problem. The deep neural network structure it adopts can be applied to high dimensional 

node numerical features, allowing an end-to-end prediction without any data 

preprocessing process. Different from other prediction tools for microRNA targets that 

are based on sequence matching, EPLMI algorithm for the first time, reformulates the 

lncRNA-microRNA interaction prediction task as a link prediction problem and adopts 

a two-way diffusion method to perform prediction. To improve the prediction 

performance of EPLMI, we further propose LMNLMI algorithm which use a similarity 

network fusion technique to collectively consider multiple types of lncRNA/microRNA 

similarity. The proposed algorithms have been applied on real-world datasets that we 

collected from the public databases. The experimental results illustrate our proposed 

models are accurate, efficient, robust to parameter settings and outperform state-of-the-

art approaches. 
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1. INTRODUCTION  

Relational data among objects can be formulated as networks containing nodes and 

links in between. Predicting new links in the known networks is a fundamental task for 

applications in various domains. With the advent of big data storage solutions, data of 

different kinds are much easier to be obtained than before, which helps provide more 

information for describing the research objects and thus the opportunity to improve the 

prediction performance, however, but also brings new challenges that require new 

algorithms to be developed. Nowadays, the real relational data are often large-scale, 

high-dimension, incomplete and multisource, and thus the conventional link prediction 

algorithms like PageRank are hard to handle [1]. 

In the field of bioinformatics, knowledge from experimental and clinical discovering is 

often a network representation of relationships amongst a group of biomolecules, in 

which nodes represent the universal biological entities and links depict their 

interrelationship. Biomolecules make up cell signaling pathways, which interact with 

one another to form networks in their functional mechanism. As a cornerstone of 

systems biology, modelling signaling networks requires a combination of experimental 

and theoretical approaches including the development and analysis of models. In the 

recent years, along with the research upsurge in the field of noncoding RNA, microRNA 

has been intensively studied as 'star molecule’ [2]. It is a cluster of ~22nt ncRNAs, 

which generally bind to the 3'UTR of the mRNA imperfectly [3]. In most cases, this 

can lead to translational inhibition or degradation of its target mRNA. Given the 
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ubiquitous regulation of microRNA on genes, it is important to decipher their function 

mechanism and the key is to detect the biomolecular networks that they involve [4]. 

The study of microRNA is still on its initial stage, and thus the microRNA-mediated 

biomolecular network is sparse [5]. It is an urgent need to predict the new links inside 

the networks and many attempts have been made to do so. Different types of methods 

and computational tools have been proposed to predict the genes and diseases 

associated with microRNA [6]. However, either their prediction performance or the 

range of their application is still not satisfactory. In addition, some problems in this 

domain haven’t been extensively studied, such as predicting drug resistance induced by 

microRNAs [7]. The main challenges to consider and integrate multiple relevant node 

information data for predicting the links in different types of microRNA-mediated 

biomolecular networks are manifold, including the limited number of training samples, 

the high dimension and incompleteness of node attributes, and etc [8].  

There are problems with the combination of known network structural data and multiple 

node information data for link prediction. In this thesis, three challenging problems for 

the task of link prediction are concerned, which are related to data incompleteness of 

graph-based node information, high dimension of node attributes and data integration 

of node similarity, respectively [9]. We analyze and address them with three application 

related to microRNA-mediated biomolecular networks. Multiple biological data are 

leveraged to solve three relation learning problems regarding the microRNA’s 

regulation mechanism, pharmacotherapy affect, and induced disease. Specifically, the 

link prediction problems in three different microRNA-mediated biomolecular networks, 
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i.e., lncRNA-microRNA interaction, microRNA-drug resistance association, 

microRNA-disease association, are concerned. Hence, we propose different 

computational solutions to different issues posed by the challenges in these problems. 

Generally, we consider these three networks as Attributed Graphs, which contains 

vertices, undirected and unlabeled edges, and node attribute. The data type of node 

attribute in graphs for different prediction problems would be different. For example, it 

can be numerical vectors, binary features, and edges of subgraph [10]. Their type of 

links can also be different. For example, the edges for lncRNA-microRNA interaction 

are weighted while those for microRNA-disease association are unweighted. 

The rest of this section is organized as the following. In Section 1.1, the background 

information about current state of bioinformatic research of microRNA-mediated 

biomolecular networks, which also motivates us to correspondingly propose effective 

computational models, is given. In Section 1.2, the challenges posed by the link 

prediction tasks, are illustrated. Then, we correspondingly explain how to formulate a 

learning problem to address the challenge. In Section 1.3, the algorithms that may 

address the challenges are introduced. In Section 1.4, we give the organization of the 

thesis. 

1.1. Motivation 

With the advent of high through-put techniques, availability of large-scale experimental 

data for cell biology is enabling computational methods to systematically model the 

behavior of biomolecular networks that microRNAs are involves [11]. As a 
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complement to biological tests and clinical trials, which are expensive and time-

consuming, computational approaches have been proved to be able to effectively 

predict new biomolecular relations or the functions and functional clusters of 

microRNAs that are testable [5, 12]. Their prediction performance could be very 

promising especially if the topological relations in networks and the information of 

multiple molecular attributes success to be considered collectively in prediction. 

Multiple types of microRNA data have been being accumulated from large-scale 

experimental technologies, which reflect their physicochemical property (e.g. 

sequencing information) [13], biological characteristics (e.g. expression profiles) [14] 

and the interplay between them and other biomolecules (e.g. microRNA-mRNA 

interactions) [15]. In their most basic abstraction level, microRNA-mediated 

biomolecular networks can be represented as mathematical graphs, using nodes to 

represent biological entities (e.g. microRNA, drug and disease), edges to represent their 

various types of interactions/association, and node attributes to represent different side 

information (e.g. microRNA functional annotation and disease semantical descriptors). 

This representation of biomolecular networks as graphs makes it possible to 

systematically investigate the network topology and functions of biomolecules using 

conventional graph-theoretical concepts and methods. Several relational learning 

problems in this domain have been extensively studied. For example, there have been 

more than 10 kinds of computational approaches proposed for predicting the 

interactions between microRNA and mRNA [4]. Meanwhile, however, some new 

research topics that have been emerging in this domain, e.g., the interaction of 
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microRNA to other kinds of noncoding RNA, remains to be investigated in a 

bioinformatic way [16].  

In this thesis, the first issue that we are interested in the link prediction task is about the 

data incompleteness in multiple graphs. Its corresponding work that we concerned is to 

predict large-scale microRNA-disease associations considering useful side information 

[17]. To date, even though an increasing number of microRNA-disease association have 

been identified by clinical research, its number is still far from enough to describe the 

landscape of the effect of microRNA on disease development [18]. There are a number 

of public databases offer the ground true data of microRNA-disease association that are 

experiment confirmed, which, for example, include MiRCancer [19], MiR2Disease  

[20], HMDD [21], DbDEMC [22], OncomiRDB [23] and OncomiRdbB [24]. This 

offers the information resource for training computational models for prediction, as 

many researchers aim to do. There have been up to 20 kinds of computational methods 

proposed to predict microRNA-disease association [25]. Although the algorithms they 

use are different, their basic assumption is similar, which is that similar microRNA tend 

to be involved in similar disease, such that how to measure the similarities of 

microRNAs and diseases is important for these algorithms [6]. Thus, they generally 

adopt similarity-based algorithms to infer new microRNA-disease association. There 

are also several public databases collecting comprehensive intrinsic information of 

microRNA, such as miRbase [26], miRGator [27], miRGen [28] and IntmiR [29], and 

some ones collecting microRNA-related biological interactions, such as miReg [30], 

miRTarBase [5], miRecords [31], miRWalk [32] and TarBase [3]. However, in most 
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published works in this domain, there are only two kinds of data previously used as side 

information for mearing the functional similarity of microRNAs. One is that calculated 

by Wang et al. in 2010 and the other is the sequential similarity [18]. To improve the 

prediction performance, it is needed to consider another type of side information and 

use a more effective training model to learn the complex nonlinear relation of 

microRNA features. 

The second research problem in this thesis is about how to the high dimensional node 

attributes. We face this problem when predicting the association between microRNA 

and drug resistance. Accumulated evidence shows that, in general, the failure of drug 

treatment is closely associated with the expression of microRNAs [7, 8]. As the gene 

expression of microRNA varies from person to person, the treatment for the patients 

having the same disease could be different [33]. Therefore, it is important for 

personalized treatment to figure out which microRNA can negatively influent the drug 

effect for a specific type of drug [34]. In addition, it can also offer great insights into 

the pharmacology of old drugs, which is important for guiding drug reposition [35]. 

Despite its importance, no computational approach has been proposed to predict drug 

resistance induced by microRNA on a large scale. Recently, the ncDR database has 

been released offering 5864 relationships between drug compounds and ncRNAs [7]. 

This offers an opportunity for researchers to use computational methods based on 

supervised learning to predict unexplored associations between microRNA and drug 

resistance. In addition, the property information of drugs is well documented now in 

public database such like DrugBank [36], which makes it possible to further improve 
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the prediction performance if the side information of microRNA and drug could be 

effectively considered. 

The third concerned problem is learning integrated node feature from multisource 

similarity, which pose a major challenge for predicting the co-regulation relationship 

between microRNA and lncRNA, both of which are major research objectives in the 

field of noncoding RNA research [12, 37, 38]. Many works have been done to annotate 

the biological functions of microRNA and lncRNA, which are, however, isolated from 

each other [39-41]. It is now widely accepted that, as two key biomolecules in ceRNA 

regulation network, lncRNA and microRNA are co-regulated, commonly forming a 

complex mechanism for gene regulation. lncRNA regulates microRNA function by 

acting as endogenous sponges to regulate gene expression meanwhile microRNA binds 

and regulates lncRNA stability [42]. LncRNA-microRNA interaction is gaining 

research importance especially when investigating the regulation mechanisms in 

various types of diseases. The number of known lncRNA-microRNA interactions is still 

limited. Some existing microRNA-target prediction algorithms, e.g., TargetScan [43], 

that are based on sequential matching can make prediction of any kind of RNA target 

for microRNA, including lncRNA. However, they were initially proposed for 

predicting the microRNA-mRNA interaction and the rules they adopted are not 

applicable for lncRNA-microRNA interaction. Therefore, they are not suitable for link 

prediction of lncRNA-microRNA interaction. It is an urgent need to propose more 

effective compactional methods for a more reliable prediction of lncRNA-microRNA 

interaction. 
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1.2. Problem statement for link prediction 

Considering that the challenges of the three concerned prediction tasks are different, we 

correspondingly formulate them as three different link prediction problems. Basically, 

they all are to predict new links in undirected bipartite attributed graphs. However, the 

data types of their node attributes are different.  

To solve the first concerned prediction task (i.e. microRNA-disease association 

prediction), exiting computational approaches do not consider the incompleteness of 

side information [25]. In addition, the co-regulation between lncRNA and microRNA, 

although important, hasn’t been considered in the previous studies [6]. In this thesis, 

we use the lncRNA-microRNA interaction network as side information to consider the 

interrelationship of microRNA in the mechanisms of different diseases. Therefore, the 

main challenge of this task is to deal with the incompleteness of the side information 

graph (i.e. lncRNA-microRNA interaction network) when training a prediction model. 

To address this, we formulate this prediction problem as a multi-task one, in which link 

predictions on two biomolecular networks can be simultaneously implemented.  

The main difficulty that we face in the link prediction task for the second concerned 

biomolecular network (i.e. microRNA-drug resistance association) is associated the 

high dimension of drug structural information data. Using traditional statistical methods 

(e.g. Jaccard index) to deal with the high-dimension drug structural data for drug 

similarity would be ineffective, since too much information would be lost in such a pre-

processing process. To address this issue, we formulate this problem as an end-to-end 
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learning problem, in which the high-dimension side information data can be directly 

used as inputs of the prediction model. 

The third link prediction problem is about lncRNA-microRNA interaction. Different 

from the conventional sequential matching approaches, we consider the 

interrelationship of different types of lncRNA/microRNA. The main challenge of this 

task is to obtain the effective similarity of lncRNA/microRNA regarding to their co-

regulation pattern. We construct several types of lncRNA/microRNA similarity and 

found out that the best one is closely related to the expression profiles. We therefore 

solve this task problem by formulating it as a link prediction on a bipartite graph where 

the similarity for two types of nodes is given. To improve the prediction performance, 

we also investigate how different kinds of similarity can be effectively integrated into 

one in another work. 

1.3. An overview of solutions 

Given the challenges and the problem formulation mentioned, we correspondingly 

propose different algorithms to perform the tasks of link prediction associated with 

microRNA-mediated biomolecular networks.  

First, we propose MVMTMDA, an algorithm which can learn feature embeddings of 

nodes across different graphs. It was applied to learn a novel representation for 

microRNA function and to predict new associations between microRNA and complex 

human diseases. We collected microRNA-lncRNA interaction that are experimentally 
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confirmed to predict new microRNA-disease associations. Both of these two kinds of 

data can be represented as two graphs which microRNA are jointly involved. Though 

they are closely related regarding to their biological meanings, they both are incomplete 

and thus it is unsuitable to directly use one to predict the links of the another. To solve 

this problem, MVMTMDA adopts multi-task learning to calculate the possibility of 

association for each node pair in two graphs. Specifically, it learns feature embeddings 

for microRNA nodes from two graphs using multi-view learning and performs 

prediction via multi-task learning. In addition, its deep-learning model structure enable 

our algorithm applicable to large-scale input graph data with an end-to-end prediction. 

Second, we propose GCMDR[44], which is an algorithm for predicting new kinds of 

drug resistance in which a specific microRNA is involved. Considering the dimension 

of side information of drug/microRNA, e.g. drug second structure fingerprint, could be 

as high as thousands, this algorithm adopts graph convolution operator such that can 

perform prediction without any data pre-processing. Through using an auto-encoder 

deep learning model structure, GCMDR learns embedding features for microRNA and 

drug-disease pairs, which leads to a significant improvement on prediction performance. 

Third, we propose two algorithms for predicting new interaction between lncRNA and 

microRNA, which are EPLMI [12] and LMNLMI [45]. In the work of EPLMI, we 

investigate three types of side information for lncRNA and microRNA in order to depict 

their comprehensive property. We statically analyzed the latent pattern of known 

lncRNA-microRNA interaction network and found that expression profile data is the 
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most effective information for describing microRNA and lncRNA regarding to their 

interaction. EPLMI is based on a two-way diffusion method propagating labels of node 

through the networks. LMNLMI is another kind of algorithm, which improve the 

performance of EPLMI. Different from EPLMI which use just single type of side 

information for prediction, LMNLMI proposes a similarity fusion method to learn a 

integrated similarities for microRNA and lncRNA using all kinds of information. 

The proposed algorithms have been used in different applications associated with 

microRNA-mediated biomolecular networks. According to the different challenges 

posed by different tasks, we concern about how to reformulate the problems and 

correspondingly develop algorithms to address them. All experiments we did are 

conducted based on real data sets collected from public databases. The experimental 

results prove the superior performance of these proposed algorithms than state-of-art 

approaches. 

1.4. Thesis organization 

To illustrate the proposed prediction models and present our works, the rest of this thesis 

is organized as the followings. 

In section 2, we review the previous works that are related to the issues in link 

prediction problems we concern, which include conventional link prediction algorithms 

considering graph topology information, feature embedding techniques and popular 

link prediction methods used in bioinformatic. We categorize them into different classes.  
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In section 3, we give the biological background about the association between disease 

and lncRNA-microRNA co-regulation and also the research status in this field. We 

present the main challenges in solving this problem and drawbacks of the previous 

works, which motivate us to propose a new kind of prediction model. Then, we illustrate 

how the MVMTMDA model the problem and how it is designed. Finally, we present 

the experiments we conducted with the results, which can test the efficiency of the 

proposed model. 

In section 4, we first explain the biological background about the association of 

microRNA’s expression and the drug resistance in disease treatment. Then, we discuss 

about the obstacles in predicting such associations and then show how the proposed 

GCMDR model formulate it. Comparison experiments were conducted to illustrate the 

effectiveness of GCMDR model. We present the experimental setting as well as the 

results at the end. 

In section 5, we introduce the biological background under which we try to propose a 

new method for predicting lncRNA-microRNA interactions. Then, we present the 

research status in this field and illustrate the challenges faced by the previous works. 

We explain why we formulate the prediction task for lncRNA-microRNA as a link 

prediction one in a bipartite attributed graph. We describe and analyze the side 

information that we collected for depicting the biological property of microRNA and 

lncRNA. The computational pipelines for two proposed algorithms, i.e. EPLMI and 

LMNLMI are introduced in detail. To evaluate the prediction performance of the 
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proposed methods, we show the experimental setting and results, which are conducted 

on the same data set. 

At last, in section 6, we summarize the contributions of the thesis and propose future 

works. 

2. OVERVIEW OF THE RELATED WORK 

The proliferation of data that can be represented as graphs have created new 

opportunities for data analytics in various domains including computational biology, 

social network analytics, knowledge graph etc. Unsurprisingly, there have been a 

considerable number of algorithms proposed for link prediction. Though their aims are 

the same, which is to measure pairs of unconnected nodes in graphs with scores 

proportional to the likelihood of the existence of in-between links, the methodologies 

they use could be quite different according to the assumption, input data type considered, 

problem formulation and particular application field. In this section, state-of-the-art 

methods for link prediction are introduced categorically. 

2.1. Graph Topology-based algorithm for link prediction 

As part of the recent surge of research on data mining and machine learning, a 

considerable amount of attention has been devoted to the computational analysis of 

graph data. To predict links that are not yet observed but most likely to exist in graphs, 

there have been an array of methods proposed for link prediction. In general, link 
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prediction algorithms assign a connection weight sore to each pair of nodes, considering 

the information data of input graph and node attributes. By ranking the list of weight 

source in decreasing order, the most potential real links can be predicted among the 

unobserved node pairs. In this section, we categorize and survey state-of-the-art link 

prediction techniques previously proposed. 

2.1.1. Methods based on node neighborhoods  

As a natural intuition regarding to real application, nodes sharing more neighbors tend 

to construct links. For examples, in social networks, authors who have many colleagues 

in common are more likely to contact themselves. Therefore, some link prediction 

algorithms consider the local topological information of nodes in graphs. For a node x, 

we denote the set of its neighbors N(x). Given two nodes x and y in a graph, there are 

a number of approaches proposed to measure their similarity based on their neighbors, 

i.e. N(x) and N(y). For example, Newman [46]verified the correlation between x and y 

by considering their Common Neighbors, |𝑁(𝑥) ∩ 𝑁(𝑦)| . Josipa [47] proposed 

another similarity metric of this kind, Jaccard’s coefficient, which can be formulated as 

|𝑁(𝑥) ∩ 𝑁(𝑦)|/|𝑁(𝑥) ∪ 𝑁(𝑦)|. Some works [48] assume the probability that a new 

link containing node x is proportional to |𝑁(𝑥)| . Some works also extended this 

assumption on the basis of empirical evidence, considering this probability is associated 

with preferential attachment of nodes |𝑁(𝑥)| ∙ |𝑁(𝑦)|. 

2.1.2. Methods based on the Paths 

Different from the methods considering the local topological information of node 
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neighborhoods, a number of methods calculate the measurement of paths to consider 

the more general information of graph topology. The most basic method of this category 

is to calculate the length of shortest path between nodes x and y as their correlation 

score [49]. However, it can cause extremely computational cost when being applied on 

huge graphs. Instead of computing the shortest-path distance, a number of methods 

implicitly consider the ensemble of all paths between a pair of nodes. For example, 

Katz propose a measure which sums over the collection of paths, exponentially damped 

by length to count short paths heavily [50]. The Katz measure can be formulated as 

𝐾𝑎𝑡𝑧(𝑥, 𝑦) ∶= ∑ 𝛽𝑙 ∙ |𝑝𝑎𝑡ℎ𝑠𝑥,𝑦
〈𝑙〉

|∞
𝑙=1 , where 𝑝𝑎𝑡ℎ𝑠𝑥,𝑦

〈𝑙〉
 denote the set of all length-l paths 

from x to y and β<0 is a parameter. One solution for its score matrix is given by (I-βA)-

1-I, where A is the adjacency matrix of the graph. FriendLink [51] metric is another 

path-based method to calculate the similarity between two nodes, x and y. Its definition 

is 𝐹𝐿(𝑥, 𝑦) ∶= ∑
1

𝑖−1
∙

|𝑝𝑎𝑡ℎ𝑠𝑥,𝑦
𝑖 |

∏ (𝑛−𝑗)𝑖
𝑗=1

𝑙
𝑖=1 , assuming that nodes in a graph can use all the paths 

between them to form connection. Other variant algorithms include Local Path [52], 

Relation Strength Similarity [53], Vertex Collocation Profile [54], etc. 

There are also some methods based on the technique of random walk [55]. Two typical 

examples of this type are Hitting Time [56] and PageRank [1]. Random walk is an 

operator that walks on the input graph starting at a node x and iteratively moves to a 

neighbor node at random. The measure of Hitting Time for nodes x and y is the expected 

number of iterations required by a random walk to move from x to y. However, Hitting 

Time is sensitive dependence to the parts of graph far away from x and y, even if x and 

y are connected with short paths. One way to solve this problem is to let random walk 
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restart periodically from x, such that parts of distant paths in graph are not likely to be 

explored by the random walk. On this basis, PageRank algorithm was proposed for Web 

pages. The algorithm of SimRank [57]considers that two nodes are similar to the extent 

that they are connected with similar neighbors. By specifically defining the similarity(x, 

x) =1, the definition of SimRank measure is recursive and can be formulated as 

similarity(x, y)  ∶=  γ ∑ ∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏)𝑏∈𝑁(𝑦)𝑎∈𝑁(𝑥) /|𝑁(𝑥)| ∙ |𝑁(𝑦)|.  

2.2. Graph embedding for link prediction 

The data amount today is becoming extremely huge in field of data analytics, though 

effective regarding prediction accuracy, the above strategies which are proposed to 

directly perform prediction suffer the high computation and space cost. An emerging 

technique called Graph Embedding provides an efficient solution to solve the graph 

analytics problem [58]. Specifically, it converts a graph into a low dimensional space 

where the information of graph topology and node attribute can be maximumly 

preserved. For example, given two nodes connected in a same graph with their attribute, 

graph embedding algorithms can learn their features that close to each other in a low 

dimensional space. The learned embedding features could be a representation for nodes, 

vectors or a whole graph and thus conducive to downstream prediction problem such 

as graph classification, link prediction, node prediction, graph clustering and etc. Graph 

embedding can extract features for each data entity to represent their roles in the 

networks by comprehensively considering the network topology and the node attributes. 

In this section, we categorize and introduce existing algorithms based on embedding 
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techniques for link prediction. 

2.2.1. Graph embedding based on matrix factorization 

By representing a graph in a form of matrix (e.g. adjacent matrix), matrix factorization-

based graph embedding normally factorize this matrix along with other graph property 

information (e.g. node attributes) to obtain embedding features for nodes or vectors. In 

most cases, the inputs of such kind of algorithm are matrixes representing the graph 

topology and high dimensional node attributes and the outputs are the feature matrixes 

for nodes. Therefore, different kinds of matrix factorization techniques have been 

proposed to tackle this problem which can be treated as a structure-preserving 

dimensionality reduction problem. In general, they can be classified into two types. One 

is based on factorization on graph Laplacian eigenmaps and the other is on node 

proximity matrix. The former kind assumes that nodes close in a graph should have 

similar embedding features and thus impose larger penalty if those similar nodes are 

embedded far apart. For example, [59] optimize node embedding y using the objective 

function with Laplacian eigenmaps: 𝑦∗ = arg min ∑ (𝑦𝑖 − 𝑦𝑗
2𝑊𝑖𝑗) =𝑖≠𝑗

arg min 𝑦𝑇𝐿𝑦 , where Wij is defined as the similarity between node i and j in a graph, 

and L is the graph Laplacian of W. To remove an arbitrary scaling factor in L, [60] 

further constrains yTDy to be 1, where D is the diagonal matrix (𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗≠𝑖 ). The 

corresponding objective function is thus reduced to be 𝑦∗ = arg min 𝑦𝑇𝑊𝑦/𝑦𝑇𝐷𝑦. To 

solve the cold start problem, [61] use a linear function y = XTa for embedding so that 

the algorithm can be applied to those new nodes with feature X. It turns to solve the 
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objective function 𝑦∗ = arg min 𝑎𝑇𝑋𝑊𝑋𝑇𝑎/𝑎𝑇𝑋𝐷𝑋𝑇𝑎 . The differences of the 

methods of this kind mainly lie in the way to calculate the node similarity matrix W. 

The choices include Euclidean distance between node features [62], k-Nearest 

Neighbor (KNN) [63], anchor graph technique [64], local regression model [65], local 

spline regression [66], principal component analysis (PCA) [67] and semidefinite 

programming (SDP) [68]. In addition to solving the Laplacian eigenmaps, another 

solution is to factorize node proximity matrix. Methods of the second kind assume that 

it is feasible to approximate node proximity in low-dimensional space using matrix 

factorization. Generally, given the matrix of node proximity W, their objective functions 

are min‖𝑊 − 𝑌𝑌𝑐𝑇‖, where Y is node embedding and Yc is the one for context nodes 

[69]. Solutions to find rank-d approximation of W can be based on singular value 

decomposition (SVD) [70, 71], regularized Gaussian matrix factorization [72], low-

rank matrix factorization [73] etc. 

2.2.2. Graph embedding based on deep learning 

With the advent of deep learning techniques, a considerable number of prediction 

models for graph analytics have been designed with deep neural network structures. 

Most of them are based on graph embedding, which can be categorized into three types 

according to the techniques they used: random walk, Autoencoder and Convolutional 

Neural Network.  

In the first category, the input is paths sampled from a graph, based on which the deep 

learning methods are then applied for embedding. For example, DeepWalk [74] first 
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samples a set of paths from the input graph using truncated random walk [55] and then 

applies a neural language model (SkipGram [75]) on the path set to maximize the 

probability of observing nodes’ neighborhood close in the embedding space. Along this 

direction, different kinds of deep learning techniques have been proposed for graph 

embedding following random walk, which include long-short term memory (LSTM) 

[76], GRU [77], DCNN [78] and etc.  

The second category adopts the autoencoder model aiming to reconstructing the input 

graph by minimizing the reconstruction error of the input and output [79]. In encoder 

and decoder component, the structure contains neural network layers with multiple 

nonlinear functions. The encoder maps the input graph into embedding space in which 

the decoder then maps the embedding features to reconstruction space. In general, the 

embedding space has low dimension such that compacted representation can be 

obtained. This idea is similar to the solutions that factorize the node proximity matrix. 

Examples include SDNE [80], DNGR[81], SAE [82].  

Model structures of the third category are based on convolutional neural network (CNN) 

and its variants. CNN model was originally signed for figure data which is in Euclidean 

domain. Some attempts have been made to reformat the graph input to fit the input of 

original CNN model. For example, [83] adopts graph labelling to learn neighborhood 

representation of nodes as inputs of CNN. On the other hand, some works recently 

attempt to redefine the graph convolution-like operation using spectral graph theory. 

Representative algorithms of this kind include [9, 84-86]. Spectral-based methods have 
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a solid mathematical foundation in graph signal processing. They assume graphs to be 

undirected. The graph convolution operation is proposed based on the normalized graph 

Laplacian matrix, which is a mathematical representation of an undirected graph. On 

the other hand, analogous to the convolutional operation of a conventional CNN on an 

image, spatial-based methods define graph convolutions based on a node’s spatial 

relations. The main differences of these two graph convolutions lies in whether the 

operation is conducted on spatial domain or spectral domain. 

2.3. Link prediction in bioinformatics 

Graph data naturally exist in a wide diversity of biological study, e.g., protein-protein 

interaction, gene-disease association, drug-protein interaction etc. Analyzing these 

graphs can provide insight into making good use of the information pattern hidden the 

graph, and thus attract increasing attention in the field of bioinformatics. Different kinds 

of prediction models have been proposed for graph analytics adjusting to the different 

kinds of biological data, mostly heterogeneous biological networks. In this section, we 

categorize the most popular kinds of prediction model in bioinformatics. In general, as 

the first step in the computational pipeline of these methods, the similarity of the 

research entity is needed to be computed. For example, [87] uses the graphs of MeSH 

to calculate the disease semantic similarity. [88] uses Gaussian interaction profile kernel 

to construct microRNA similarity networks. After obtaining the similarity matrix for 

nodes in graph, as the second part in the computational pipeline, different techniques 

have been proposed to perform prediction, which can be classified into two categories 



21 

 

according to whether local or global graph information is considered. We here take the 

existing studies of microRNA-disease association prediction as examples. The methods 

considering local information generally adopts techniques that enjoy a low computation 

cost, such like cumulative hypergeometric distribution [89], label propagation [90], 

KNN [91] and regularized least squares [92]. On the other hand, a considerable number 

of methods have been used to consider the general information, including random walk 

[93], various types of path-based inference methods [94, 95], restricted Bolzmann 

machine [87], support vector machine [96, 97], matrix completion[98] etc.  

3. MVMTMDA - A MULTI-VIEW MULTI-TASK 

LEARNING ALGORITHM FOR PREDICTING 

MICRORNA-DISEASE ASSOCIATIONS 

3.1. Background 

MicroRNAs and lncRNAs have been found involved in transcriptional and post-

transcriptional processes, forming a gene expression program that all eukaryotic cells 

rely on [16]. MicroRNAs are ~22nt ncRNAs and they generally bind to the 3'UTR of 

the mRNA imperfectly. In most cases, this can lead to translational inhibition or 

degradation of its target mRNA. Although much effort has focused on the functions and 

biogenies of microRNAs, lncRNAs are gaining prominence as they take up the largest 

portion of mammalian non-coding transcriptome. It has recently been found to serve 

the role of critical epigenetic regulators of gene expression [99]. Most diseases are 
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frequently associated with alteration of the transcriptome, and such an altered 

transcription pattern has recently been found to not just be restricted to the protein-

coding RNAs aberrantly expressed but also to dysregulation of the expression of 

microRNAs and lncRNAs. As a result, much effort is currently being made to 

characterize those lncRNAs and microRNAs that interfere with gene expression and 

signaling pathways at various stages of disease development. 

Recently, there has been an increasing body of experimental evidence that shows that, 

through a sophisticated and multi-layered mode of regulation noncoding RNA, 

including lncRNA and microRNA, can influence every aspect of normal tissue 

physiology [16]. Recently, the competitive endogenous RNA (ceRNA) hypothesis [100] 

has gained substantial attention as it unifies all the hypotheses about the general 

mechanism of the intricate interplay among diverse RNA species. Specifically, it 

proposes that lncRNAs that share specific MREs (microRNA response elements) 

communicate with and co-regulate each other by competing for binding to the shared 

microRNAs. Considering that both lncRNA and microRNA are key regulators that 

control cellular processes, and that they interact with each other to fine-tune gene 

expression, knowledge of the mechanisms by which they cooperate is the first step 

towards understanding the functions that they exert in disease processes.  

Unfortunately, in spite of its importance, little is known about the co-regulation between 

lncRNA and microRNA in disease processes. 
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However, with the advent of high-throughput sequencing techniques, more and more 

lncRNAs and microRNAs have been identified to be involved in the development of 

diverse diseases, which include cancers, acting as oncogenes or as tumor suppressors 

[17]. Both lncRNA and microRNAs are now routinely used as biomarkers in disease 

diagnosis and treatment. Much progress has also been made towards their use as 

molecular targets for new drugs. This promising trend depends largely on our 

understanding of the associations between lncRNA or microRNA and a diversity of 

different diseases.   

Recently, with the advances in analytical methods including circulation, genetic, 

epigenetic, microRNA-target and tissue-expression assays, several databases, such as 

HMDD [17] and miR2Disease [20], have been established to allow data related to the 

relationship between lncRNA/microRNA and different diseases to be publicly 

accessible. Unfortunately, as the assays are time consuming and tedious, the data that 

have been collected so far are still relatively, focusing only on a few key noncoding 

RNAs rather than their contextual regulation network. In addition, it can be difficult to 

integrate the data in the databases together to form a complete regulation network due 

to their sparsity in number and their being from different bioassay-based research. 

In recent years, there has been increasing research interest to exploit LMI (lncRNA-

microRNA interaction) in studies related to various complex human diseases [101] such 

as colorectal cancer [38, 102], cervical squamous cell carcinoma (CESC) [37] and heart 

failure , etc. Rather than investigating into the signaling pathways of a few types of 
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noncoding RNAs, these studies consider transcriptome-wide regulation that involves 

both microRNAs and lncRNAs cooperating together. However, it should be noted that, 

as information about lncRNA-microRNA regulation network is not available from 

existing databases, current research in this area is mainly based on sequence-based 

microRNA target-prediction algorithms, such as miRWalk [32], Cytoscape [103] and 

TAM [104]. These algorithms are used to construct a predicted LMI network so that 

they can be used to predict pathogenic lncRNA-microRNA co-regulations. However, 

as pointed out by some studies, most existing microRNA target-prediction algorithms 

predict too many false positives and the LMI networks constructed based on the results 

that these algorithms predict would therefore be unreliable [105]. Although ground-

truth data of LMI may help us understand the important regulation functions of non-

coding RNA (ncRNA) thereby deciphering the complex ncRNA regulation network in 

the pathology of diseases, finding out the relationship between LMIs and the diseases 

that they are associated with is difficult. 

As it is slow and tedious to perform laboratory experiments, relying on computational 

approaches can allow potential candidates for experimental confirmation to be quickly 

identified by better integrating prior information from different relevant studies much 

faster and with much lower costs. Towards this goal, a number of computational tools 

have been developed for computer-aided ncRNA biomarker discovery. As reviewed in 

[6, 106], most existing methods in this domain rely on the basic assumption that 

microRNAs that are similar tend to be involved in diseases that have similar 

pathological characteristics. While this assumption seems to be very reasonable, it 
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should be noted that how microRNA similarity should be defined is a complex and open 

problem. Different metrices for microRNA similarity have been proposed using 

different side information and statistical metrices such as Pearson correlation 

coefficients, cosine similarity and Euclidean distance [6]. However, as the features in 

the feature vectors of the side information may not be linearly dependent, these metrices 

may not be able to capture the complex relationship between two lncRNA/microRNA. 

In addition to this problem, the data of side information, such as the LMIs, are quite 

limited in amount and are incomplete. Due to the missing data, microRNA similarity 

cannot be determined accurately and for this reason, MDAs cannot be predicted 

accurately. Hence, in order to improve prediction accuracy, there is a need to learn an 

effective feature representation for microRNA and lncRNA. 

There has recently been an increasing number of computational tools proposed to 

predict MDA. Many of these tools do not take into consideration the incompleteness of 

information about what raw features of microRNAs can best be used for prediction. 

Also, these tools determine functional similarity for microRNAs based on data sources 

that are not reliable [6, 106]. For example, the functional similarity score matrix 

(http://www.cuilab.cn/files/images/cuilab/misim.zip) released by Wang et al. [18] was 

obtained using a computational model developed with a data set which has not been 

continually updated, and as such, prediction of the association relationships are not 

reliable. One other limitation with existing tools is related to the statistical methods that 

they use to compute the microRNA similarity scores. As explained above, they are too 

simple to capture the complex correlation relationship among microRNAs. For example, 
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the use of Gaussian kernel measure or linear Euclidean distance, which are widely used, 

do not capture dependence of features in microRNA feature vectors [106]. In summary, 

the choice of data sources and the way side information is integrated do not provide 

current computation methods the best tools to predicting MDAs most accurately. 

3.2. MVMTMDA in details 

To develop better methods for this purpose, we take the co-regulation between lncRNA 

and microRNA into account when predicting new microRNA biomarkers. Based on the 

assumption that the patterns of lncRNA-microRNA co-regulation can be implied from 

the network of LMI identified by large-scale CLIP-seq experiments, we developed a 

computational model to predict MDAs on a transcriptome-wide scale by introducing 

known LMIs. 

3.2.1. Data collection 

The data we used in this work include experimentally-validated lncRNA-microRNA 

interactions and MDAs. There are several public databases providing such two types of 

data resource. In order to obtain the up-to-date data resource, we collect the datasets 

from lncRNASNP v2.0 [107] and HMDD v3.0 [17], which of both have been recently 

updated within a year. 

lncRNASNPv2.0 database (http://bioinfo.life.hust.edu.cn/lncRNASNP) integrates the 

data from starBase v3.0 [3] database (http://starbase.sysu.edu.cn/) providing 

comprehensive knowledge on lncRNAs. It records 45329 LMIs between 3521 types of 
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lncRNA and 276 types of microRNAs. HMDD v3.0 database 

(http://www.cuilab.cn/hmdd) provides 18732 MDAs between 874 types of diseases and 

1207 types of microRNAs. 

We discard the redundant data and manually match the ids of microRNA in 

lncRNASNP v2.0 datbase and those in HMDD v3.0 database. As a result, the LMI 

dataset we collected has 10465 LMIs between 541 lncRNAs and 268 microRNAs. 

Based on the 268 types of microRNAs whose ids are successfully matched to HMDD 

database, we collect 11253 MDAs covering 799 types of diseases. 

3.2.2. Problem statement 

In this work, we propose MVMTMDA to predict MDAs considering the co-regulation 

of lncRNA and microRNA. As mentioned in the Introduction section, one challenge of 

our work is to solve the problem of incompleteness and sparsity of LMI networks. To 

this end, we introduce what we call multi-task learning when we design our model.  

Based on multi-task learning, LMIs and MDA are simultaneously predicted.  

Considering that both known networks of LMI and MDA are far less than complete and 

that the information contained in these networks are complementary to each other, we 

believe, therefore, that prediction of new links in one network can be made based on 

the other ones. These predictions are also mutually beneficially. An accurate link 

prediction in the LMI network, for example, can provide useful information for MDA 

predictions to be made more accurately and vice versa. 
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Another challenge of our prediction task lies in the development of a similarity measure 

between lncRNA/microRNA in a lncRNA-microRNA-disease network. Due to 

complexity of their synergistic effects, such a measure would be highly complex as well. 

To tackle the problem, we propose to learn embedding features for lncRNA and 

microRNA from the LMI and MDA networks and this can be defined as a multi-view 

learning problem. We consider the functional roles of a given microRNA to have two 

heterogenous representations on LMI and MDA networks, respectively, with each 

network having a different view. The key to tackling the multi-view learning problem 

is to effectively exploit the diversity and consistency of multi-view data of the networks 

of LMI and MDA, which consequently identifies the feature dimensions in which the 

characteristics of the original data could be retained. 

Suppose there are Nm types of microRNAs ℳ = {𝓂1, … , 𝓂𝑁𝑚
}, Nd types of diseases 

𝒟 = {𝒹1, … , 𝒹𝑁𝑑
} and Nl types of lncRNAs ℒ = {ℓ1, … , ℓ𝑁𝑙

}. Let 𝒳 ∈  ℝ𝑁𝑑×𝑁𝑚 and 

𝒮 ∈  ℝ𝑁𝑙×𝑁𝑚  denote the adjacent matrixes of known MDA and LMI network, 

respectively. Based on the datasets we collected, 𝒳 and 𝒮 are constructed as, 

𝒳𝑖𝑗 =  {
1,    𝑖𝑓 𝒹𝑖 𝑎𝑛𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝓂𝑗  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         
     (1) 

𝒮𝑖𝑗 =  {
1,    𝑖𝑓 ℓ𝑖 𝑎𝑛𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝓂𝑗  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         
     (2) 

We formulate prediction task for MDAs as the problem of simultaneously estimating 

the value of each unobserved entry in 𝒳  and 𝒮 . It is assumed that there is an 
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underlying model which can be constructed to generate all interaction possibility for 

each pair of MDA/LMI as follows. 

�̂�𝑖𝑗 = 𝐹𝑥(𝒹𝑖 , 𝓂𝑗 , 𝒮|Θ𝒳)                       (3) 

�̂�𝑖𝑗 = 𝐹𝒮(ℓ𝑖 , 𝓂𝑗 , 𝒳|Θ𝒮)                       (4) 

where �̂�𝑖𝑗  and �̂�𝑖𝑗  denote the predicted score of association 𝒳𝑖𝑗  between disease 

𝒹𝑖 and microRNA 𝓂𝑗 and interaction 𝒮𝑖𝑗 between lncRNA ℓ𝑖 and microRNA 𝓂𝑗, 

respectively; Θ𝒳  and Θ𝒮  denote the model parameters; 𝐹𝑥  and 𝐹𝒮  denote the 

functions that map the model parameters to predicted scores. As the outputs of 𝐹𝑥 and 

𝐹𝒮 are also the inputs for each other, we adopt a co-training optimization method to 

train the models. We introduce latent factor model (LFM) to build functions 𝐹𝑥 and 

𝐹𝒮 applying dot product as, 

�̂�𝑖𝑗 = 𝐹𝑥
𝐿𝐹𝑀(𝒹𝑖 , 𝓂𝑗 , 𝒮|Θ𝒳) = 𝑝𝑖

𝑇𝑞𝑗               (5) 

�̂�𝑖𝑗 = 𝐹𝒮
𝐿𝐹𝑀(ℓ𝑖, 𝓂𝑗 , 𝒮|Θ𝒮) = 𝑞𝑖

𝑇𝑟𝑗                 (6) 

where p, q and r denote the latent features for disease, microRNA and lncRNA, 

respectively. For the purpose of learning the non-linear connection among lncRNA, 

microRNA and disease, in this work, we propose a method to simultaneously learn the 

function 𝐹𝑥 and 𝐹𝒮 with three multi-layer neural networks. 

We present a deep neural network to exploit features of lncRNA, microRNA and disease 

with graph embedding on lncRNA-MDA network. The learned features synthesize the 
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information in the networks of LMI and MDA and thus is anticipated to 

comprehensively describe functional role and correlations of lncRNA and microRNAs. 

3.2.3. Model structure of MVMTMDA 

The proposed model, MVMTLMDA, is designed with a deep structure composed of 

three neural networks. Different from conventional prediction models for MDA which 

separate similarity measurement and value prediction, it provides end-to-end solution 

to handle graph-based raw data to yield the final results without any statistical 

assumption. Specifically, it learns the hidden features for diseases, microRNAs and 

lncRNAs via multi-view learning and yields the prediction via multi-task learning (see 

Figure. 1). 
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Figure 1 Schematic diagram of multi-view multi-task learning for microRNA-disease association 

prediction. 

To the best of our knowledge, this work is the first attempt to consider the co-regulation 

between lncRNA and microRNA to predict MDAs. Apart from the prediction 

improvement from previous models, the contribution of our work lies in some 

outstanding characters of our method which can be outlined as follows: i) MVMTMDA 

is able to integrate data from different types of relevant biological network for 

prediction even if the data is incomplete; ii) it realizes end-to-end training for feature 

representation from multiple biological networks; iii) it provides a solution to combine 

the issues of MDA prediction and lncRNA-disease association prediction. 
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3.2.4. Multiple graph embeddings via multi-view learning 

As mentioned in Section 3.2.2, we form two matrix X and S according to Equation 1 

and 2. With matrix X and S as inputs, we propose an architecture of three deep neural 

network to project each types of disease, microRNA and lncRNA into a latent structured 

space. From the matrix X, each disease di is firstly represented as a i-th row vector Xi·, 

which represents the i-th disease’s relationship across all microRNAs. Each microRNA 

mi is firstly represented as a j-th column vector X · j, which represents the j-th 

microRNA’s relationship across all diseases. As shown in Figure 1, the input feature of 

each type of elements on lncRNA-microRNA-disease network is processed by a single 

neural network. In each layer of both networks, each input vector is mapped into 

another vector of a different dimension in a new space. Denote a given input vector of 

a neural network by x, the output vector by y, the intermediate hidden layers by li, i = 

1,…,N-1, the weight matrix and bias term of li by Wi and bi. We have 

𝑙1 = 𝑊1𝑥

𝑙𝑖 = 𝑓(𝑊𝑖−1𝑙𝑖−1 + 𝑏𝑖),   𝑖 = 2, … , 𝑁 − 1
𝑦 = 𝑓(𝑊𝑁𝑙𝑁−1 + 𝑏𝑁)

                   (7) 

where the activation function f is here chosen as the ReLU function, f(x) = max(0,x). In 

the neural network γ that is built to considering the side information of LMI, the whole 

adjacent matrix S for LMI network is used as the input. With a given training sample 

xij, its aim is to learn the features of all lncRNAs according their known interaction with 

the j-th microRNA. According to Equation 7, the outputs of neural networks α, β, γ can 

be respectively formulated as follows: 
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𝑝𝑖 = 𝑓𝜃𝑁
𝛼(… 𝑓𝜃3

𝛼(𝑊𝛼2𝑓𝜃2
𝛼(𝑋𝑖·

𝑇𝑊𝛼1 + 𝑏𝛼1) + 𝑏𝛼2) + 𝑏𝛼3 … ) + 𝑏𝛼𝑁  (8) 

𝑞𝑗 = 𝑓
𝜃𝑁

𝛽 (… 𝑓
𝜃3

𝛽 (𝑊𝛽2𝑓
𝜃2

𝛽(𝑋·𝑗𝑊𝛽1 + 𝑏𝛽1) + 𝑏𝛽2) + 𝑏𝛽3 … ) + 𝑏𝛽𝑁  (9) 

𝐷′ =  𝑓𝜃𝑁
𝛾 (… 𝑓𝜃3

𝛾 (𝑊𝛾2𝑓𝜃2
𝛾(𝑆𝑊𝛾1 + 𝐵𝛾1) + 𝐵𝛾2) + 𝐵𝛾3 … ) + 𝐵𝛾𝑁 (10) 

Here, Wα1, Wβ1 and Wγ1 are the weight matrix of the first layer in networks α, β, γ, 

respectively and bα1, bβ1, Bγ1 are the corresponding bias terms. Wα2, Wβ2,Wγ2, bα1, bβ1, 

and Bγ1 are for the second layer, and so on. It should be noted that the row dimension 

D’ is Nl, the same as that of input matrix S. 𝐷’ =  [𝑟1
𝑇 , … , r𝑁𝑙

𝑇]𝑇 is a matrix stacking 

the embedding features of all lncRNAs. Based on the embedding features learned from 

neural networks α, β, γ, we formulate the outputs of our models as follows: 

�̂�𝑖𝑗 = 𝐹𝑀𝑉𝑀𝑇𝑀𝐷𝐴(𝑋𝑖·, 𝑋·𝑗|Θα, Θ𝛽) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑝𝑖, 𝑞𝑗) =
𝑝𝑖

𝑇 𝑞𝑗

‖𝑝𝑖‖‖𝑞𝑗‖
    (11) 

�̂�·𝑗 = [�̂�1j, … , �̂�𝑁𝑙j]
𝑇 = 𝐹𝑀𝑉𝑀𝑇𝑀𝐷𝐴(𝑋·𝑗, 𝑆|Θ𝛽 , Θ𝛾) =

  𝑅·𝑞𝑗
𝑇

‖𝑅‖‖𝑞𝑗‖
       (12) 

It should be noted that, because of the operation of dot product in Equation 11 and 12, 

the weight matrixes in the last layers of neural networks should have the same column 

dimension, assuring that the dimensions of pi and qj and the column dimension of R are 

the same. The embedding feature of microRNA qj connects the results of neural 

networks β and γ, and therefore it remains and combines the information of their inputs 

(i.e. known MDAs and LMIs). As qj is used to yield the scores for each pair of MDA 

and LMI, it can effectively represent the biological role of a given microRNA on both 

networks while training the model by recovering X and S. We consider X and S are 
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strongly related data that provide two different view for the function of microRNAs and 

the embedding features yielded from the proposed are basically based on multi-view 

learning. 

3.2.5. Model training via multi-task learning 

Based on the outputs yielded by Equation 11 and 12, we define two objective functions 

for model optimization according to the observed data and unobserved feedback. Each 

of object functions is corresponding to one prediction task. Considering that the 

prediction problem is a semi-supervised learning problem with all the training sample 

that are positive, the objective function is generalized as follow: 

ℒ = ∑ 𝑙(𝑦, �̂�) + 𝜆Ω(Θ)𝑦∈𝑌+∪𝑌−                           (13)  

where l(·) denotes a loss function; Ω(Θ) is the regularizer for model parameters; Y+ is 

the set of positive samples and Y- is that of negative samples which we adopt negative 

sampling on the unlabeled microRNA-disease pairs. To train the neural network α and 

β on the dataset of MDA, the first loss function is and defined with a binary cross-

entropy loss as follow. 

ℒ1 = ∑ 𝜆1𝑋𝑖𝑗𝑙𝑜𝑔�̂�𝑖𝑗 + (1 − 𝜆1)(1 − 𝑋𝑖𝑗) log(1 −(𝑖.𝑗)∈𝑋+∪𝑋−

�̂�𝑖𝑗) + ∑ ‖𝑤‖2𝑤∈𝑊𝛼∪𝑊𝛽
+ ∑ ‖𝑏‖2𝑏∈𝑏𝛼∪𝑏𝛽

             (14) 



35 

 

where w and b denote the parameters in neural network α and β. For training the model 

on known interactions between lncRNA and microRNA, the loss function for the 

second step is defined as follow. 

ℒ2 = ∑ 𝑀𝑆𝐸(𝑆·𝑗 − �̂�·𝑗) +(𝑖.𝑗)∈𝑋+∪𝑋− ∑ ‖𝑤‖2𝑤∈𝑊𝛽∪𝑊𝛾
+ ∑ ‖𝑏‖2𝑏∈𝑏𝛽∪𝑏𝛾

   (15)                

where MSE(·) denotes the function of mean-square error. The optimization for model 

training contains two steps based on L1 and L2 which are executed alternately. 

Optimization on function L1 is basically a point-wise matrix factorization on LMI 

network while that on function L2 is a column-wise matrix factorization on MDA 

network. As the first step of optimization is to predict the scores for the pairs of MDA 

while the second step is to predict the interaction possibility for lncRNA-microRNA 

pairs, the proposed model is basically optimized via multi-task learning. 

3.2.6. Prediction of lncRNA-disease association with MDA and LMI 

Computational tools for predicting disease-associated noncoding RNAs can be mainly 

categories into two types, lncRNA-disease association prediction and MDA prediction. 

Despite their close intrinsic relation with respect to the function mechanism of lncRNA 

and microRNA, little effort has been devoted to combine these two important fields. 

We here consider the lncRNA-microRNA interaction as a useful bridge to connect these 

two prediction problems and propose a statistical method to predict lncRNA-disease 

association based on the results yielded by MVMTMDA. Based on a score matrix of 

MDA �̂�predicted by MVMTMDA and the adjacent matrix of LMI, we calculate the p-
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value for each pair of lncRNA-disease. Given a lncRNA-disease pair (lp-dp), we denote 

Lm the number of microRNAs associated with lp in LMI dataset, Dm the number of 

microRNA associated with dp in MDA dataset, and Mld the number of microRNAs 

which simultaneously associated with lncRNA lp and disease dp. The p-value for the 

association between lp and dp is defined as follow: 

𝑝𝑙𝑝→𝑑𝑝
= 1 − ∑

(
𝐷𝑚

𝑖
)(

𝑁𝑚−𝐷𝑚
𝐿𝑚−𝑖

)

(
𝑁𝑚
𝐿𝑚

)

𝑀𝑙𝑑
𝑖=0                       (16) 

In the datasets that we collected, each type of lncRNA and disease has relation to at 

least one microRNA, such that the p-value for each lncRNA-disease pair can be 

calculated using Equation 16. By setting p-value<0.05, we consequently identify 15945 

lncRNA-disease associations from totally 432259 lncRNA-disease pairs. To further 

control the false positive rate of our prediction, we, in addition, conduct false discovery 

rate (FDR) correction on the computed p-values. The lncRNA-disease pairs with FDR 

less than 0.05 are considered to have strong positive or negative correlation. As a result, 

we identify 25076 potential lncRNA-disease association. 

3.3. Experiment and analysis 

3.3.1. Performance evaluation for MVMTMDA 

To evaluate the prediction performance of the proposed model, we used a real dataset 

involving experimentally-confirmed MDA and LMI and tested accuracy using 2-fold, 

5-fold and 10-fold cross validation. Specifically, in k-fold (k = 2, 5 and 10) cross 
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validation, we randomly separate the samples of MDA into k roughly equal parts. k-1 

of them are in turn used as training samples and the rest one is for testing. To quantify 

the performance in k-fold cross validation, we adopt three kinds of criteria, i.e., AUC, 

HR and NDCG.  

In each fold of prediction, we calculate the ranks of testing samples among the 

unlabeled samples. Those testing samples obtaining a rank higher than the given 

threshold are considered as positive. Setting different thresholds, we computed the 

corresponding true positive rates (TPRs, sensitivity) and false positive rates (FPRs, 1-

specificity) where sensitivity and specificity are the percentages of testing samples 

predicted as positive and negative, respectively. Corresponding receiver operating 

characteristic (ROC) curves are computed by plotting TPR versus FPR and the area 

under the curves (AUC) is computed. AUC = 0.5 implies a purely random guess and 

AUC =1 indicates perfect prediction. In addition, we adopt the metrics of HR and 

NDCG [108]. We used the testing samples and 50 times its number of random unlabeled 

samples to construct the Ground-truth item set (GT) and truncated the ranked list at 10 

for both metrics [108]. As such, the HR intuitively measures the percentage of testing 

samples in the top-10 list while the NDCG measures the ranking quality which assigns 

higher scores to hits at top position ranks. For both metrics, larger values indicate better 

performance. 

To avoid any bias caused by the random sample partitioning in cross validation, we 

repeat the random sampling along with prediction for 20 times. The performance results 
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of average AUC, best HR and best NDCG yielded by MVMTMDA are listed in Table 

1. As larger size of training set would lead to a more accurate prediction, it shows that 

the prediction accuracy yielded by the proposed model yields increases with the 

increased number of folds in k-fold cross validation. The corresponding ROC curves 

are shown in Figure 2(a), 2(b) and 2(c) show the HR and NDCG yielded by the 

proposed model increase rapidly within the first 10 epochs and tend to stabilize after 

the 20th training epoch. 

Table 1 Prediction performance w.r.t. AUC, HG and NDCG using MVMTMDA in k-fold cross 

validation 

 

 

Figure 2 Prediction performance of MVMTMDA: (a)ROC curves yielded by MVMTMDA with 2, 3 

and 4 layers; (b) Hit ratio yielded by MVMTMDA with increasing training epochs; (c) NDCG yielded 

by MVMTMDA with increasing training epochs; (d) the training loss in Equation 

CV method 2-fold CV 5-fold CV 10-fold CV 

Average AUC 0.8410+/-0.018 0.8512+/-0.012 0.8521+/-0.008 

Best HR 0.7196 0.7553 0.7603 

Best NDCG 0.4429 0.4895 0.5030 
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3.3.2. Performance evaluation on LMI prediction using MVMTMDA 

As mentioned, we consider that the prediction of MDA and that of LMI are mutually 

beneficial. Given a type of microRNA, its involvement in different diseases offers 

useful information for predicting its target lncRNA. In this section, we try to use the 

MDA to predict LMI using MVMTMDA, whose prediction performance is concerned. 

Specifically, we exchange the matrixes of X and S, with X as the LMI matrix and S as 

the MDA matrix. We set the model parameters the same as the setting in the above 

experiment. As a result, predicting LMIs with 2 hidden layers, MVMTMDA yielded 

average AUC of 0.8747+/-0.018, 0.9014+/-0.012 and 0.9037+/-0.011 in 2-fold, 5-fold 

and 10-fold cross validation (see Table 2). The reliable results demonstrate the 

usefulness of MDA for LMI prediction, and the effectiveness of the proposed model to 

integrate different types of biological networks for prediction. 

Table 2  Prediction performance on LMI dataset using MVMTMDA in k-fold cross validation 

CV method 2-fold CV 5-fold CV 10-fold CV 

Average AUC 0.8747+/-0.018 0.9014+/-0.012 0.9037+/-0.011 

In this subsection, we compare the proposed MVMTMDA with other methods that were 

previously proposed for predicting MDA and LMI. There are an increasing number of 

computational tools proposed for predicting potential microRNAs involved in different 

diseases. We here select four methods for performance comparison, all of which are 

recently published in 2018.  
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Figure 3 Performance yielded MVMTMDA in LMI prediction: (a)ROC curves yielded by MVMTMDA 

with 2, 3 and 4 layers; (b) Hit ratio yielded by MVMTMDA with increasing training epochs; (c) NDCG 

yielded by MVMTMDA with increasing training epochs; (d) the training loss 

In these works, there are two kinds of data used to compute the microRNA similarity. 

One is the microRNA functional similarity yielded by MISIM [18], which hasn’t been 

updated for several years. In addition, Wang’s microRNA similarity was calculated 

based on an MDA dataset collected in 2010 such that it is inappropriate for MDA 

prediction. The other one is microRNA sequence similarity. However, the relation 

between microRNA functional similarity on pathology and microRNA sequence 

similarity is still unknown. To the best of our knowledge, the proposed MVMTMDA is 

the first one to use LMI to predict MDA. For the sake of fairness, we also introduced 

LMI into the compared prediction models. 

Apart from the prediction tools for RNA target that are based on sequence matching, 

existing network-based prediction models for LMI is limited. For the performance 
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comparison about LMI prediction, we compare MVMTMDA with the model of EPLMI 

and three other baseline methods (i.e. Katz measure, basic latent factor model and 

neighbor-based collaborative filtering). 

Different from the MVMTMDA model adopting end-to-end learning, these comparison 

methods need a microRNA similarity matrix as input. To execute the comparison 

methods on our datasets, we first construct a microRNA similarity matrix MS using 

Pearson correlation coefficient (PCC) as follow. 

𝑀𝑆(𝑖, j) =
∑ (𝑆𝑘𝑖−�̅�·𝑖)(𝑆𝑘𝑗−�̅�·𝑗)𝑁

𝑘=1

√∑ (𝑆𝑘𝑖−�̅�·𝑖)2 ∑ (𝑆𝑘𝑗−�̅�·𝑗)2𝑁
𝑖=1

𝑁
𝑘=1

                    (17) 

where S denotes the matrix of side information. That is, it denotes the adjacent matrix 

of LMI when predicting MDAs and, on the other hand, the adjacent matrix of MDA 

when predicting LMIs. As a result, the compared methods yielded AUCs arranging 

from 0.6233 to 0.8192 in MDA prediction and AUCs arranging from 0.7301 to 0.8737 

in LMI prediction, both of which are significantly low than those yielded by 

MVMTMDA (see Table 3). 

The reasons for the superior performance of the proposed model may lie in two aspects. 

One is that MVMTMDA adopts deep neural network structure which can automatically 

learn the complex relation between microRNA from MDA and LMI network in an end-

to-end manner. The other one is that the proposed model considers the incompleteness 

of the side information and adopts multi-task learning to fill the missing values of it. 
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Table 3 Performance comparison on the prediction of MDA and LMI in 5-fold cross validation. 

Prediction task Method Average AUC 

Prediction of 

microRNA-disease 

associations 

IMCMDA [40] 0.6233+/-0.032 

MDHGI [109] 0.6932+/-0.027 

Zeng’s work [110] 0.7883+/-0.012 

MDA-SKF [111] 0.8192+/-0.010 

The proposed method 0.8512+/-0.012 

Prediction of 

lncRNA-microRNA 

interactions 

Neighbor-based CF [112] 0.7301+/-0.026 

LFM CF [113] 0.7692+/-0.025 

EPLMI [12] 0.8126+/-0.012 

Katz [114] 0.8737+/-0.008 

The proposed method  0.9014+/-0.012 

3.3.3. Impact of side information on MVMTMDA 

As mentioned in section 4.1 and 4.2, MVMTMDA predicts MDAs using the network 

of LMI as side information and can also predict LMIs with MDA network as side 

information. In this subsection, we evaluate the usefulness of the introduction of the 

side information. Specifically, for performance comparison, the second step of 

optimization (Equation 15) is discarded, such that the data of side information would 

be ignored when training the model. As shown in Table 4, without using the side 

information, the prediction performance of the proposed model significantly declines 

in the 2-fold and 5-fold cross validation. The comparison results demonstrate the ability 

of MVMTMDA to integrate multiple graph data, and also confirms our assumption that 

the information of LMI and MDA is closely related and mutually beneficial for the 

prediction task of each other. 

Table 4 Results of 2-fold and 5-fold cross validation yielded the proposed model with and without side 

information 

Prediction  Cross validation MVMTMDA with 

side information 

MVMTMDA without 

side information 
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MDA 

prediction 

2-fold CV AUC: 0.8410;  

HR: 0.7196;  

NDCG: 0.4429 

AUC: 0.8306;  

HR: 0.7224;  

NDCG:0.4507 

5-fold CV AUC: 0.8512;  

HR:0.7553;  

NDCG: 0.4895 

AUC: 0.8423;  

HR: 0.7442;  

NDCG: 0.4705 

LMI 

prediction 

2-fold CV AUC: 0.8747  

HR:0.731;  

NDCG: 0.4119 

AUC: 0.8316;  

HR:0.6217; 

NDCG: 0.3445 

5-fold CV AUC: 0.9014;  

HR:0.8506;  

NDCG: 0.5542 

AUC: 0.8697; 

HR:0.8291;  

NDCG: 0.5470 

3.3.4. Sensitivity to Hyper-Parameters 

Depth of layers in networks 

The number of layers in neural networks is critical for the performance of deep 

learning-based models. In this work, we simply set the layer numbers and the layer 

sizes of neural networks α, β and γ the same. We set the number layers as 2, 3 and 4 for 

testing. Table 5 shows the prediction performance yielded by MVMTMDA with 

different layers in 5-fold cross validation. Figure 2 and 3 show the corresponding curves 

for prediction performance and optimization. The results show that the proposed model 

was optimized with layer number set as 2. We therefore use such structure for 

MVMTMDA in the experiments of this paper. 

Table 5 Prediction performance using MVMTMDA with 2, 3 and 4 layers in 5-fold cross validation. 

Prediction task Depth of Layers in Networks 

2 layers 3 layers 4 layers 

MDA prediction 0.8512+/-0.012 0.781+/-0.011 0.8384+/-0.015 

LMI prediction 0.9014+/-0.012 0.8602+/-0.015 0.7647+/-0.022 
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Negative Sampling Ratio 

In this work, the samples from the datasets of MDA and LMI we collected are all 

positive such that the prediction task is a semi-supervised learning problem in which 

unlabeled samples are important to be considered. To training the model, we need to 

sample negative instances from unlabeled data to construct the set of X- in Equation 14 

and 15. In this experiment, we apply different negative sampling ratios (i.e. 1, 3 and 5) 

to observe the performance variance with regards to the prediction on MDA and LMI. 

As shown in Table 6, MVMTMDA yielded the best prediction performance with 

negative sampling ratio set as 1 and 5 in the prediction of MDA and LMI, respectively. 

The prediction performance is generally stable with different negative sampling ratios. 

Table 6 Prediction performance using MVMTMDA with 2, 3 and 4 layers in 5-fold cross validation. 

Prediction task Negative sampling ratio 

1-neg 3-neg 5-neg 

MDA prediction 0.8512+/-0.012 0.8506+/-0.011 0.8437+/-0.015 

LMI prediction 0.9014+/-0.012 0.8922+/-0.015 0.9109+/-0.012 

3.3.5. Functional clustering of microRNAs based on multi-view embedding 

features 

In recent years, the similarity measurement for function of microRNAs has attracting 

increasing attention due to its significance in the domain of noncoding RNA 

research[115, 116]. In this section, we propose a new type of functional similarity 

measure for microRNAs based on MDA and LMI. 

As the connection joint of the networks of MDA and LMI, in this work, microRNA is 

considered to have two views to represent its biological functions. Motivated by this, 
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the proposed MVMTMDA learns graph embedding features for each type of 

microRNA, comprehensively considering their relationship with diseases and target 

lncRNAs. The microRNA features learned from the proposed model can thus imply the 

functional similarity among microRNAs. In this section, we implement K-means 

clustering in the feature space of the microRNA graph embedding learned by the 

MVMTMDA model. 

Specifically, we first use all data in MDA dataset as training set to train the of model of 

MVMTMDA until results converged. Secondly, we applied principal component 

analysis (PCA) on microRNA features. Based on the first three dimensions in PCA, the 

clustering algorithm of k-means was implemented. We set the number of clusters as 6 

and the corresponding scatter diagram is shown in Figure 4. In addition, we calculate 

the PCC of microRNA features as the function similarity score. It is anticipated that the 

microRNA-disease pair with high predicted scores will be confirmed by biological 

experiment in the future. 
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Figure 4  Scatter diagram of functional clustering for 268 types of microRNAs 

3.4. Summary 

The identification of MDAs is of great significance in microRNA therapeutics. Current 

computational methods for predicting MDAs haven’t considered the co-regulation 

between lncRNA and microRNA, which is becoming known to be very important for 

their function mechanisms. In this work, we propose a multi-view multi-task model 

composed of three deep neural networks to fill this gap. Considering the networks of 

MDA and LMI are two different views collaboratively implying the biological function 

of microRNAs, we apply a multi-view learning method to extract embedding features 

for microRNA from two different graphs. In addition, we combine the prediction of 

MDA and LMI, which are closely related as they both belong to parts of aberrant 

ceRNA regulation on diseases. A number of experiments were implemented on the real 

datasets that we collected and extensive analysis is also made on the predicted results. 
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The experimental results demonstrate of the feasibility and effectiveness of the 

proposed model to predict MDA on a large scale. 

The main contribution of our work is fourfold. Firstly, the propose model is the first 

one to consider the interaction between lncRNA and microRNA for large-scale 

prediction of MDA. LMI is ideal data to uncover the association between microRNA 

and disease due to their meaning and data type. Secondly, we consider the 

incompleteness of the side information and use a multi-task learning method to 

synchronously predict MDAs and LMIs. Thirdly, the proposed model enables an end-

to-end prediction for MDA. Any type of graph data associated with microRNA (e.g. 

microRNA-gene interaction and microRNA-protein interaction) can be flexibly and 

directly used as inputs to improve the prediction, which is important because the 

amount of microRNA data is increasing rapidly. Fourthly, different from similarity-

based model, the proposed model can automatically extract features from the raw data, 

providing a new type of data source for measuring microRNA functional similarity. 
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4. GCMDR - A GRAPH CONVOLUTION-BASED 

ALGORITHM FOR PREDICTING ASSOCIATIONS 

BETWEEN MICRORNA AND DRUG RESISTANCE 

4.1. Background 

The field of pharmacogenomics has evolved from the observing of variable drug 

responses to the development of modern molecular medicine [117]. The recent focus 

on finding associations between individual genomic and transcriptomic features and the 

efficacy and toxicity of a drug, and this is useful in facilitating the development of 

personalized treatment strategies. In recent years, the cost of drug development keeps 

going up and the main reason for the relatively poor productivity in R&D in the 

pharmaceutical industry lies in the difficulty in drug-target selection. Among approved 

drugs, more than 80% of them are developed to target only at the proteins of enzymes 

and receptors and greater than 99% of them target at some specific proteins [4]. Thus 

far, although human genome has been found to encode up to 25,000 genes, current 

drugs can only target at about 600 types of disease-modifying proteins [118, 119]. In 

other words, a considerable amount of proteins are “undruggable”.  Hence, the focus 

in target selection has now shifted to other macromolecules including noncoding RNAs 

(ncRNAs). Specially, microRNAs which is a type of ncRNAs are identified as potential 

high-value targets for therapy due to its involvement in gene regulation, and as a result, 

microRNA pharmacogenomics is starting to become the new frontier for personalized 
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medicine [33]. 

Despite considerable advances in targeted-therapy techniques and the knowledge 

accumulated about molecular carcinogenesis of human diseases, there is still a large 

gap between the identification of microRNA interacting pathway and practical 

therapeutic use. The evidence cumulated has demonstrated that the variations in 

microRNA profiling of patients can be a major cause of individual differences in drug 

sensitivity or resistance [2]. Overexpressed microRNAs can downregulate genes with 

protein products necessary for drug efficacy. Conversely, insufficient microRNA 

expression can also upregulate genes with protein products inhibiting drug function 

[120]. As both increased and decreased microRNA expression levels can cause diseases, 

accordingly, the microRNA-targeted therapeutics agents can be divided into microRNA 

mimics and inhibitors, which respectively aim to induce gene silencing and selective 

upregulation of proteins [121]. As mentioned above, not every protein can be targeted 

or modulated by drugs. Therefore, precise manipulation of expression levels of 

microRNAs associated with these “undruggable” proteins harbors great theranostic 

implications [4]. 

The primary challenges faced by the current microRNA-target therapeutics are twofold: 

the successful delivery of therapeutic agent to the target tissues and the safety 

evaluation of potential drug response [122]. The problem of poor cell-permeability and 

pharmacokinetics in the first challenge can be partially solved by following appropriate 

parameters for molecule designing, which can be summarized by Lipinski’s Rule of 
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Five [118]. The second challenge here is the need for thorough understanding about the 

impact of microRNA expression on drug response. However, for most of drugs, little is 

known about their drug resistance in relation to different microRNA profiling. It is a 

multifactorial phenomenon involving several inducements such as decreased uptake of 

water-soluble drugs, increased repair of DNA damage, increased energy-dependent 

efflux of drugs and altered metabolism of drugs [123, 124]. An increasing number of 

studies have investigated differences in microRNA expression levels affecting the drug 

response. Recently, a comprehensive database called ncDR has been built to record 

microRNA-drug resistance associations, providing data resource for further 

computational analysis [7]. 

Although an increasing number of microRNA types have been identified to be 

associated with drug resistance spanning almost all classes of drugs, available 

knowledge on associations between microRNA and drug resistance is still far from 

sufficient to meet the requirement for guiding microRNA-targeted drug development. 

Computational methods could facilitate this discovery process, but little work has been 

done in this important direction. In this paper, we propose a novel computational 

method for inferring drug resistance-associated microRNAs, expecting to boost the 

efficiency and pace of microRNA-targeted drug discovery and development. To the best 

of our knowledge, this is the first of its kind. 

By using data of known microRNA-drug resistance associations and various types of 

intrinsic features of microRNAs and drugs, we develop a deep learning-based 
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prediction model called GCMDR (Graph Convolution for association between 

MicroRNA and Drug Resistance) to predict new drug resistance-associated microRNAs. 

The basis assumption behind the development of the model is that different types of 

microRNAs induce drug resistance by following same latent mechanisms that drug 

structure and microRNA expression level are involved. With an orchestrated 

transcriptional regulation pattern, microRNAs of similar biological functions may 

suppress common expression products (such as membrane transporter proteins 

involving drug efflux and uptake) and can further affect responses to the same multiple 

therapeutic agents. The suppressed expression products may also be associated with 

other mechanisms including decreased drug cytotoxicity by detoxification or 

inactivation, alternations of regulation of cell cycle and checkpoints, resistance to 

apoptosis, enhanced DNA damage repair, which may modify disease response to 

therapeutic agents [8]. 

The concept that one microRNA regulates one gene that affects response to one drug is 

the basis of some experimental models, and this could confine targeted therapeutics to 

the ‘one-drug-one-target’ paradigm making them susceptible to resistance in due course 

[34]. GCMDR enables a more comprehensive drug-resistance analysis by taking the 

full scope of microRNAs into considerations. Specifically, given any drug with their 

structure information, GCMDR can effectively compute the putative level of drug 

resistance associated with all microRNAs, laying out the underlying rationale for the 

use of microRNA-targeted drugs to achieve an orchestrated broad gene silencing.  



52 

 

4.2. GCMDR in details 

4.2.1. Challenges in predicting microRNA-drug resistance association 

In order to predict associations between microRNAs and drug resistance, we need to 

tackle several challenges. First, the number of microRNA-drug resistance associations 

that is discovered and cataloged in the ncDR database is relatively small. In order to 

make use of the domain information related to microRNA-based drug response, we 

introduce various types of in-vivo/in-silico features for GCMDR to better perform its 

tasks. These features include microRNA expression profiles, drug PubChem 

substructure fingerprints, microRNA GO-based and disease-based functional features. 

Second, the dimensions of the intrinsic features are so high that it is hard to be used 

directly for measuring how microRNAs or drugs are similar, and therefore traditional 

neighbor-based methods may not be able to effectively capture meaningful information 

from intrinsic feature inputs. To address this issue, grounded on the spectral graph 

therapy, we propose an end-to-end learning method based on a graph convolution 

operator, which automatically extract features from the raw data of multiple attributes 

of drug/microRNA and the microRNA-drug associations. 

Finally, as microRNAs influence drug efficacy by regulating the expression of genes, 

the microRNA-gene and gene-drug associations are important for predicting the 

microRNA-drug resistance associations. However, these kinds of information are 

unavailable for most known microRNA-drug resistance associations. Considering this 
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structure of associations would be helpful for inferring whether a type of microRNA 

and a type of drug assistance are associated. Accordingly, we combine the techniques 

of auto-encoder and latent factor model, allowing GCMDR able to learn a hidden factor 

layer topologically similar with the real “coding gene layer”. 

4.2.2. Data collection 

The dataset we used in this work was collected from the April 2018 version of the ncDR 

database which is publicly released at http://www.jianglab.cn/ncDR [7]. This dataset 

contains 5,864 relationships between drug compounds and ncRNAs which include 877 

microRNAs and 162 lncRNAs obtained through manual curation from about 900 

literatures. For the purpose of our work, we focus only on association relationships 

involving microRNAs and obtained 3,338 microRNA-drug resistance associations after 

removing 1,859 redundant ones. The resulting dataset obtained contain 754 different 

types of microRNAs and 106 different types of drug compounds. 

In order for us to take into account the structure similarity between drugs so as to 

improve the prediction performance of GCMDR, we obtained the substructure 

fingerprints of the 106 drug compounds from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov) [125] for our work. We transformed the 64base-

encoded PubChem substructure fingerprints into binary features represented in 920 bits. 

To describe the properties of microRNAs for predicting their associated drug response, 

three types of information from various databases were obtained. However, not all 754 
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microRNAs in our collected dataset can be found in these databases. As an unavoidable 

step to build a model using graph convolution, for those microRNAs whose information 

is not available, we estimated the missing values as the average of those others whose 

values are known. To the common problem of data missing, we can choose from a 

number of different methods. We bring up listwise deletion, mean imputation, 

hotdecking, regression imputation, multiple imputation as examples. Of these different 

methods, mean imputation is the most popular method as it is simple and least 

computationally expensive and is widely used when handling large data sets [126]. 

Hence, we chose it to estimate missing values. 

The first of such information is the microRNA expression profile collected from the 

microRNA.org database. It has 172 dimensions representing the expression levels of a 

single type of microRNAs in 172 different human tissues and cell lines. Each value of 

expression profile represents the number of cloned mature microRNAs that were 

sequenced in 172 small RNA libraries and reported as normalized clone counts. Out of 

the 754 microRNAs in the collected dataset, we managed to find 540  in the 

miroRNA.org database (http://www.microrna.org/microrna/home.do) [11]. 

For performance assessment, we have also collected two other types of microRNA 

features, both of which are functional features obtained by previously proposed 

computational methods. One of them was obtained from the work described in [127] 

which reports on a 2589×2589 microRNA functional similarity matrix computed based 

on the Gene Ontology (GO) terms. From it, we were able to extract the GO-based 
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functional features of 497 of the 754 microRNAs. Each GO-based microRNA feature 

has 2589 dimensions and the similarity scores of a microRNA to other 2588 

microRNAs with respect to their gene regulation functions were obtained. 

Another type of microRNA functional feature considered in this work are the 

microRNA-disease associations. There have been evidence that microRNAs 

corporately function in the mechanism of human diseases[128, 129]. It is for this reason 

that some attempts have been made to elucidate microRNA functional similarity by 

using domain knowledge related to diseases, such as disease ontology (DO). A web-

based bioinformatics toolkit called DincRNA (http://bio-

annotation.cn:18080/DincRNAClient) [116] has recently been proposed to provide 

such kind of microRNA functional similarity calculations. From there we obtained eight 

types of DO-based microRNA features computed using eight different algorithms. We 

found matches of the ID of 332 microRNAs in our dataset of 754 with that in DincRNA. 

Each DO-based microRNA feature has 556 dimensions, representing the similarity 

scores of one microRNA to other 555 microRNAs according to their involvement in 

disease mechanism. 

4.2.3. The concept of graph convolution 

By representing known associations between microRNA and drug resistance as a 

bipartite graph, the prediction problem we consider in this paper can be defined as a 

task related to semi-supervised link prediction on such a graph.  
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Let us assume that we are given a bipartite graph G = (ν, ε) with ν = (νm, vd) representing 

nm microRNA nodes and nd drug nodes, which have numerical node features 𝑋𝑚 =

[𝑥𝑚
1 , 𝑥𝑚

2 , … , 𝑥𝑚
𝑛𝑚]

𝑇
∈  ℝ𝑛𝑚×𝑐𝑚  and 𝑋𝑑 = [𝑥𝑑

1 , 𝑥𝑑
2, … , 𝑥𝑑

𝑛𝑑]
𝑇

∈  ℝ𝑛𝑑×𝑐𝑑  respectively. 

Suppose that the labels of some links, ε in G are given, the goal is to predict if there is 

any potential link between any microRNA-drug pair that have not yet previously been 

established. As the dimensions of feature vectors of microRNA and drug nodes can be 

as high as 2589 and 920 respectively, traditional similarity measure, like the Euclidean 

distance, would not be very ineffective as the contribution of important feature values 

to the similarity measure would be ignored and this is similar to the problem of image 

retrieval in which the data are matrices of pixels. Hence, the problem of how best to 

effectively utilize both graph topology and the attribute information of the nodes need 

to be addressed.  Towards this goal, we propose to use a spectral graph convolution  

Current approaches to designing localized convolutional filters on graphs can be 

classified roughly into two categories: the spatial and the spectral approach. The former 

provides filter localization by using local information of neighboring vertexes such as 

that used in Niepert’s work [83]. The problem with such approach of matching local 

neighbors are pointed out in [9]. As opposed to the spatial approach, the spectral 

approach is mainly designed based on the spectrum of the graph Laplacian. This 

approach provides a well-defined localization operator on graphs using a Kronecker 

delta implemented in the spectral domain. 

There have recently been some attempts to use deep learning techniques to graph-based 
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data analytics. In [85], a graph convolutional neural network (GCNN) has been 

proposed.  Graph convolution is defined on graph as the multiplication of an input 

signal with a filter gθ in the Fourier domain. Given an adjacent matrix A with its 

Laplacian L := D – A, and attributes of each node on graph (say s), spectral graph 

convolution tries to decompose s on the spectral domain and then design and apply a 

spectral filter function gθ  on the spectral components. Suppose that L can be 

decomposed by L = UΛUT, where Λ is the diagonal matrix of eigenvalues and U is 

eigenvector matrix. Here, UTs could be considered as a graph Fourier transform of s. gθ 

can be defined as 𝒈𝜽 ⋆ 𝒔 = 𝑼𝒈𝜽𝑼𝑻𝒔. To circumvent this problem of computationally 

expensive eigendecomposition of L, Defferrard et al. [85] approximate the spectral 

filter by using a truncated expansion in terms of Chebyshev polynomials Tk(s) up to Kth 

order: 

𝑔𝜃 ⋆ 𝑠 ≈ ∑ 𝜃𝑘
′ 𝑇𝑘(𝐿𝑁)𝑠𝐾

𝑘=0                      (18) 

where Tk is the Chebyshev polynomials and θ' is a vector of Chebyshev coefficients. 

Kipf and Welling [86] further simplified this definition by limiting K=1 and 

approximating the largest eigenvalue of L by 2. The convolution operator comes to be: 

𝑔𝜃 ⋆ 𝑠 =  𝜃(𝐼 + 𝐷−
1

2𝐴𝐷−
1

2)𝑠                   (19) 

By introducing the renormalization tricks: 𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2 → �̃�−
1

2�̃��̃�−
1

2  with �̃� =

𝐴 + 𝐼𝑁 and �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 , formula (2) can be simplified as: 
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𝑔𝜃 ⋆ 𝑠 =  𝜃�̃�−
1

2�̃��̃�−
1

2𝑠                    (20) 

We adopted this simplified definition for graph convolution in this work. 

Increasing attempts have recently been made to reveal the intrinsic and advantages of 

spectral graph convolution. For example, Li et al. have discovered that spectral graph 

convolution is a special form of symmetric Laplacian smoothing, which is the key 

reason why it works [130]. Atwood and Towsley claim that graph convolution can 

actually be explained as a graph diffusion kernel [131]. The first attempt to use graph 

convolution to develop bioinformatics tools was made by Duvenaud et al. [132]. They 

used it to learn fingerprint representation of chemical compounds which can be 

represented as graphs. It is anticipated that graph convolution will be extensively used 

in the field of bioinformatics. 

4.2.4. Model structure of GCMDR 

As mentioned above, the prediction of associations between microRNAs and drug 

resistance can be considered as a semi-supervised link prediction problem. Current 

GCNN-based methods have been used mainly to tackle node classification problem on 

homogeneous network and are thus not applicable to our problem involving prediction 

of associations between microRNA and drug resistance.  To make use of GCNN, we 

have to extent the current graph convolution idea to allow it to solve link prediction 

problem defined on heterogeneous, bipartite, attributed networks. Towards this goal, 

we propose an GCMDR algorithm. 
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Given a graph representing known associations between microRNA and drug resistance 

with the corresponding adjacent matrix M of shape nd×nm, the goal of GCMDR is to 

learn embedding features for microRNAs and drugs F by building a graph convolution-

based encoder [Fd, Fm] = fen (ν, ε, Xd, Xm) to predict new links by building a decoder 

M’ = fde (Fd, Fm) where Fd and Fm are the feature matrices for drugs and microRNA 

with shapes of nd×L and nm×L, respectively (see figure 5). GCMDR is the first attempt 

to combine the techniques of graph convolution and auto-encoder. 

 

Figure 5 Flowchart of the proposed GCMDR model 

To build an encoder, we propose to introduce graph convolution into the latent factor 

model in accordance with the nature of “microRNA-coding gene-drug resistance” 

associations. Specifically, an adjacent matrix A and feature matrix X is reconstructed 

based on M, Xd and Xm as follows: 
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𝐴 = [
0 𝑀

𝑀𝑇 0
]                       (21) 

𝑋 = [
𝑋𝑑 0
0 𝑋𝑚

]                       (22) 

GCMDR then normalizes rows of matrix X: X𝑟𝑤: = 𝐷−1𝑋 with 𝐷 = ∑ 𝑋𝑖𝑗𝑗 . Here, 

Xrw represents the matrix of input signal with a shape of (nd+nm)×(cd+cm). According to 

(3), the graph convolution of the Xrw matrix of a graph with adjacent matrix A can be 

defined as: 

𝐹 = X𝑟𝑤 (𝐼 + 𝐷−
1

2𝐴𝐷−
1

2) 𝑊𝑒             (23) 

where the trainable weight matrix We∈(cd+cm)×L is the Fourier coefficient matrix. It 

transforms matrix  X𝑟𝑤 (𝐼 + 𝐷−
1

2𝐴𝐷−
1

2) into a hidden matrix F which describes the 

hidden association between drug or microRNA nodes and the latent factors (coding 

gene layer). The ne denotes the number of latent factors and is set manually. By 

introducing the activation function of ReLU and bias matrix B to the hidden matrix F, 

the embedding feature matrices of drug nodes and microRNA nodes, Fd ∈nd×L and 

Fm∈nm×L could be obtained as follow: 

[
𝐹𝑙

𝐹𝑚
] = ReLU(𝐹 + 𝐵)                (24) 

To reconstruct the adjacency matrix for drug-microRNA associations, a decoder M’ = 

fde (Fd, Fm) is built as follow: 

𝑀′ = 𝐹𝑙𝑊𝑑𝐹𝑚
𝑇                   (25) 
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where Wd∈L×L is a weight matrix describes the similarity between latent factors in 

hidden “coding gene” layer. In this work, we randomly initialize all trainable matrices 

(i.e. We, Wd and B) using the initialization approach described as in [133]. 

In addition, we also implement negative sampling for model training. Specifically, in 

each training epoch, unlabeled drug-microRNA pairs are chosen randomly to be 

negative samples for training. Given these training data, GCMDR attempts to minimize 

the following loss function: 

ℒ = √
∑ (𝑀𝑖𝑗

′−𝑀𝑖𝑗)2
𝑖𝑗;Ω𝑝,𝑖𝑗=1𝑜𝑟Ω𝑛,𝑖𝑗=1

∑ (Ω𝑝,𝑖𝑗+Ω𝑛,𝑖𝑗)𝑖𝑗
+

1

2
‖𝑊𝑒‖2 +

1

2
‖𝑊𝑑‖2 +

1

2
‖𝐵‖2       (26) 

where the matrices Ω𝑝 ∈ {0,1}𝑛𝑑×𝑛𝑚  and Ω𝑛 ∈ {0,1}𝑁𝑙×𝑁𝑚  serve as the masks for 

positive samples and the negative samples from random sampling, respectively. Also, 

the first term in equation (26) aims to minimize prediction errors and the rest of the 

other terms define constraints on the weight matrices in encoder and decoder, 

respectively. As negative sampling was implemented for training, in each epoch the Ωn 

would be randomly generated in which the number of “1” can be fixed to be 10 times 

the number of positive samples. Hence, optimization in GCMDR is performed over the 

positive samples if we set this percentage to be 0 or over the positive samples and partial 

negative samples if we set this percentage to be larger than 0. 

4.3. Experiment and analysis 

To evaluate the performance of GCMDR, k-fold cross validations are used. Specifically, 
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in each round of k-fold cross validation, a fixed number of known associations between 

microRNA and drug resistance take turns to be used as testing samples (association 

relationship assumed to be unknown) so that prediction scores can be used using 

GCMDR. These prediction scores can indicate how possible the prediction of 

relationship is positive. In our performance evaluation, testing samples along with all 

unlabeled microRNA-drug pairs are considered as candidate samples. We consider the 

results as demonstrating good performance if the testing samples are ranked high 

among all candidate samples in terms of their prediction scores.  

To generate training and testing data sets, all known microRNA-drug resistance 

associations are randomly divided into k subsets of roughly the same sizes. Prediction 

experiments were repeated k times using different data sets in which each subset takes 

turn to be used as training samples and the remaining subsets used as testing samples. 

To decide if a testing sample is positive, its prediction score is compared with other 

candidate samples. If it is ranked higher than the given threshold, the existence of 

association relationship would be considered highly possible. 

By setting different thresholds, we computed corresponding true positive (TPRs, 

sensitivity) and false positive rates (FPRs, 1-specificity) where sensitivity and 

specificity denote the percentages of testing samples with respectively higher and lower 

ranks than the given thresholds. The corresponding receiver operating characteristic 

(ROC) curves have been obtained by plotting TPR versus FPR. To measure prediction 

performance with a ROC curve, we computed its AUC with ranges from 0.5 to 1, where 
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0.5 denotes a purely random prediction and 1 denotes perfect performance. In this work, 

2-fold, 5-fold, 10-fold cross validations are implemented. 

4.3.1. Similarity-based methods compared with GCMDR 

Although predicting microRNA-drug resistance is a new problem that has not been 

tackled by researchers in bioinformatics before.  However, one may make use of 

different prediction methods developed for graph-based data e.g. approaches developed 

to find ncRNA-protein interactions [134], microbe-disease association [135] and 

lncRNA-microRNA interactions [136]. However, almost all these methods requires that 

similarity matrices be computed by predefining specific similarity measure, which is 

crucial for the performance. However, the dimensions of drug feature and microRNA 

feature we collected in this work are too huge so that these preprocessing would be 

harmful to the prediction performance. We therefore adopt graph convolution to build 

an end-to-end prediction model to circumvent this problem. 

To further evaluate the prediction performance of GCMDR, we compared its 

performance against six other similarity-based methods. The results obtained with these 

methods were used as baseline results and these methods include three collaborative 

filtering (CF) methods (i.e. drug-based CF, ncRNA-based CF and neighbor-based CF) 

[137], one matrix factorization-based method (i.e. SVD with reserved ranks of 10) [138] 

and two graph diffusion-based methods (i.e. Katz and EPLMI) [135, 136]. As data 

preprocessing, similarity matrices of microRNAs and drugs were constructed by using 

Pearson correlation coefficient (PCC) as follow: 
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𝑆∗(𝑎, 𝑏) =
∑ (𝑓𝑎𝑖−𝑓𝑎̅̅ ̅)(𝑓𝑏𝑖−𝑓𝑏̅̅̅̅ )𝑁

𝑖=1

√∑ (𝑓𝑎𝑖−𝑓𝑎̅̅ ̅)2 ∑ (𝑓𝑏𝑖−𝑓𝑏̅̅̅̅ )2𝑁
𝑖=1

𝑁
𝑖=1

                    (27) 

where fa and fb are two features of two elements (a and b) from a microRNA-microRNA 

or drug-drug pair. Based on the PCC-based similarity matrices for microRNAs and 

drugs (i.e. SmicroRNA and Sdrug), the predicted score matrix yielded by drug-based CF can 

be defined as: 

𝑀𝑑𝑟𝑢𝑔
′ (𝑑𝑖, 𝑚𝑗) =

∑ 𝑆𝑑𝑟𝑢𝑔(𝑑𝑖,𝑑𝑘)∙𝑀𝑘,𝑗
𝑛𝑑
𝑘=1

𝑛𝑑
               (28) 

Similarly, the score matrix predicted by microRNA-based CF can be defined as: 

𝑀𝑚𝑖𝑟𝑛𝑎
′ (𝑑𝑖, 𝑚𝑗) =

∑ 𝑆𝑚𝑖𝑟𝑛𝑎(𝑚𝑗,𝑚𝑘)∙𝑀𝑖,𝑘
𝑛𝑚
𝑘=1

𝑛𝑚
               (29) 

Neighbor-based CF considers both collaborative effects of drugs and microRNAs and 

can be defined as: 

𝑀𝑛𝑒𝑖𝑔ℎ𝑜𝑟
′ =

𝑀𝑑𝑟𝑢𝑔
′ +𝑀𝑚𝑖𝑟𝑛𝑎

′

2
                     (30) 

Katz metric is a classical method which is initially proposed to tackle social network 

problems. It is now extensively used to solve bioinformatics problems such as those 

involving prediction of microbes and ncRNAs associated with diseases [39, 41]. 

EPLMI is a two-way diffusion problem which is proposed to predict new lncRNA-

microRNA interactions. 
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4.3.2. Performance evaluation for GCMDR 

To evaluate the accuracy of the prediction model constructed by GCMDR, we used a 

real dataset involving experimentally-conformed microRNA-drug resistance 

associations.  The prediction accuracy of the model was tested using 2-fold, 5-fold and 

10-fold cross validation. The results presented in this section were obtained when 

GCMDR was used to construct the models using features of microRNA expression 

profile and drug PubChem substructures. As shown in figure6(a) and figure 6(b), for all 

three experiments, the training loss and the prediction error were found to be convergent 

when the training epoch reached about 150. 

To avoid any bias caused by the random generation of training sets in the cross 

validation process, we repeated random sampling along with prediction for 20 times. 

The average values of AUCs using different cross validations were shown in Table 7. 

It is known that prediction accuracy increases with the size of the training data. As the 

training set for 10-fold CV is larger than that for 2-fold and 5-fold CV, the average AUC 

that the 10-fold CV yields is the highest and it is 0.9369±0.0003. 

These results demonstrate that GCMDR is a promising approach for inferring new 

microRNAs based on the resistance of specific drugs that it associates with. 

Considering that a full-scope analysis on microRNA-drug resistance is significant for 

drug development and that there is still little effort made in this important direction. 

They were obtained by GCMDR constructing models based on known microRNA-drug 

resistance associations, microRNA expression profiles and drug PubChem substructure 
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fingerprints as inputs. Candidate associations that are ranked high in the matrix are 

expected to eventually be confirmed to be real associations by laboratory 

experimentation in the near future. 

Table 7 Prediction performance w.r.t. AUC using different kinds of cross validation 

CV methods 2-fold CV 5-fold CV 10-fold CV 

Average AUC 
0.9301+/-

0.0005 

0.9359+/-

0.0006 

0.9369+/-

0.0003 

 

Figure 6 Training process w.r.t. training loss and training error. (a) and (b) show results of the training process 

corresponding to 2-fold; 5-fold and 10-fold cross validations and (c) and (d) show results of the training processes 

corresponding to different settings of negative sampling. 

4.3.3. Comparison with microRNA features based on functional similarity 

MicroRNAs are found to collaboratively deregulate gene expression and are, therefore, 

involved in the mechanism of diseases. Motivated by this, some efforts have started to 

be made to determine the similarity between microRNAs based on prior knowledge of 

gene ontology and disease MeSH ontology. Like the use of expression profiles, such 
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kind of microRNA similarity can be considered as a special feature of a microRNA with 

respect to their biological functions. 

In this section, we explain how six different algorithms can be used to compute 11 

different types of similarity measures between microRNAs. In computing each of these 

measures, drug substructures were also considered as feature inputs by GCMDR. As 

discussed in Section 4.1, 5-fold cross validation was repeated 20 times in our 

experiments so that we can compute an average AUC for performance evaluation. Table 

2 shows the results of performance-comparison among these features. From the results, 

it can be noted that all ten types of DO-based microRNA features yielded similar 

performance with average AUCs slightly higher than 0.930. By introducing GO-based 

microRNA features, we show that this could lead to relatively better performance with 

average AUCs of 0.9353, which is much closer to that obtained with microRNA 

repression profiles. These results indicate that GO terms are more effective for 

describing microRNA properties w.r.t. drug resistance than DO terms. This may be due 

to the fact that coding genes have a more direct relationship with microRNAs than 

disease symptoms and therefore, the GO terms can be used to more effectively describe 

the functional properties of microRNAs. 

Other than the above, an additional experiment was performed to evaluate the effectives 

of graph convolution in improving the prediction performance. Specifically, we 

replaced every entity in the feature matrix (i.e. F in equation 6) with ‘1’ and kept the 

rest of the other steps the same for prediction. This was done to ensure that the graph 
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convolution operator played no effect in prediction. As expected, without any feature 

input, GCMDR model yielded average AUCs of 0.9257±0.0007, which is significantly 

lower than that obtained with the use of graph convolution with feature inputs (see Table 

7 and figure 5(b)). These results demonstrate the ability of graph convolution to 

incorporate the information of intrinsic feature inputs and the graph topology. 

Table 8 Performance comparison w.r.t. AUC in 5-fold CV among different types of microRNA feature 

input using GCMDR 

Data type of microRNA features Average AUC 

No feature input 0.9257+/-0.0007 

Expression profile 0.9359+/-0.0006 

Gene ontology-based microRNA similarity  

[127] 
0.9353+/-0.0005 

Disease ontology-based 

microRNA similarity 

[116] 

Lin_PAPM [139] 0.9277+/-0.0002 

Resnik_PAPM [140] 0.9307+/-0.0005 

Wang_PAPM [10] 0.9307+/-0.0004 

PSB_PAPM [141] 0.9306+/-0.0006 

SemFunSim_PAPM 

[142] 
0.9305+/-0.0005 

Lin_PBPA [139] 0.9309+/-0.0005 

Resnik_PBPA [140] 0.9310+/-0.0006 

Wang_PBPA [10] 0.9313+/-0.0005 

PSB_PBPA [141] 0.9307+/-0.0006 

SemFunSim_PBPA 

[142] 
0.9307+/-0.0006 

4.3.4. Performance comparison between GCMDR and similarity-based methods 

To evaluate the prediction performance of GCMDR, a series of comparison 

experiments were performed on the same dataset so that some baseline results can be 

obtained. As mentioned above, except for the SVD method which uses only the 

adjacency matrix M, all different methods require that similarity matrices of 

microRNAs and drugs (i.e. SmicroRNA and Sdrug) be computed. The 5-fold CV results for 
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the different methods are shown in Table 3 and figure 2(c). It is noted from these results 

that, among all seven different prediction methods, the models obtained with GCMDR 

yielded the highest prediction accuracy with the highest average AUCs of 

0.9359±0.0006. These results indicate that GCMDR, with the benefit from the end-to-

end computational structure, could be a reliable computational approach for the 

prediction of microRNA-drug resistance associations on a large scale. 

Table 9 Performance comparison among different prediction methods w.r.t. AUC in 5-fold CV 

Method Average AUCs 

GCMDR 0.9359+/-0.0006 

EPLMI[136] 0.8971+/-0.0009 

SVD-based MF 0.6007+/-0.0052 

Katz metric 0.8471+/-0.0005 

Drug-based CF 0.6490+/-0.0014 

ncRNA-based CF 0.8103+/-0.0004 

neighbor-based CF 0.8644+/-0.0009 

4.3.5. Comparison among different numbers of latent factors 

As GCMDR is built based on a latent factor model, the size of the latent layer would 

be crucial for its prediction performance. In this section, we evaluate the influence of 

the number of latent factors L on the prediction performance of GCMDR. Specifically, 

using the dataset described above, we compute the average AUCs based on a set of 5-

fold CV experiments using features obtained from microRNA expression profile and 

drug structure. As Figure. 7 shows, the average AUC forms a unimodal distribution 

when L was set from 5 to 100, and L was at its optimal at 25. This number, 25, may 

reflect the number of functional clusters of genes in real associations between 

microRNA expression and drug resistance. In the rest of the other experiments, we 
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therefore set L = 25. 

 

Figure 7 Prediction performance of GCMDR w.r.t. curves of ROC: (a)ROC curves yielded by GCMDR 

using 2-fold, 5-fold and 10-fold CV; (b) Difference of prediction performance using GCMDR 

with/without feature inputs; (c) Performance comparison of GCMDR with six types of similarity-based 

prediction methods. 

 

Figure. 8. Prediction performance of GCMDR by setting different numbers of latent factor model. 
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4.3.6. Evaluation of negative sampling’s effectiveness 

Previous work reports that leveraging unlabeled data in training can improve prediction 

performance significantly if used properly [143]. As there are only positive samples in 

the collected dataset, we need to find negative samples for semi-supervised training to 

find a prediction model.  To do so, we performed sampling on the unlabeled 

microRNA-drug pairs to generate negative samples for training. The size of the 

negative datasets we used is fixed in each sampling. As part of our experiments, we 

evaluated the influence of the ratio, p, of the size of the negative dataset to that of the 

positive dataset on the prediction performance. As shown in Table 4, we noted that the 

best prediction performance can be obtained if the size of the negative dataset was set 

to be 10 times that of the positive dataset. Specially, when p is set to 0, it means that no 

negative dataset was used and that we performed training based only on the positive 

samples. The huge improvement of the AUC from p=0 to p=10 is a strong evidence that 

the negative datasets are important for the training of the GCMDR. In addition, Figure 

2(c) and 2(d) show that, in the training process, both of training loss and prediction 

error were convergent when the number of training epoch increases to about 150. 

Table 10 Performance comparison w.r.t. AUC in 5-fold CV using different settings of negative 

sampling. 

value of p 10 5 1 0 

Average 

AUC 

0.9359+/-

0.0006 

0.9297+/-

0.0002 

0.9235+/-

0.0002 

0.8083+/-

0.0111 

4.4. Summary 

There are more and more evidence that microRNA expression levels are related to drug 
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resistance. However, there is still very little understanding about how microRNA 

expression levels are associated with drug failure. To date, little effort has been made 

to attempt to predict, on a larger scale, if there exists any association between 

microRNA and drug resistance. In this paper, we propose a deep learning-based 

computational model for this purpose.  

To the best of our knowledge, GCMDR is the first computational tool developed to 

predict the influence of microRNAs on drug resistance. Based on the results obtained, 

the prediction models developed using GCMDR could provide useful insights for drug 

design. They may also help to reevaluate the efficacy and toxicity of drugs for patients 

with different microRNA expression profiles. In an attempt to provide a more 

comprehensive dataset for future research in this field, we have publicly released the 

data of various attributes of microRNAs and drugs that are recorded in ncDR database. 

Other than making such contribution, it should be noted that GCMDR enables an end-

to-end prediction for associations between microRNAs and drug resistance. This 

flexibility makes it possible for GCMDR to have a wide scope of application with any 

numerical type of intrinsic features. Finally, based on knowledge available about 

microRNA-induced drug resistance, it should also be noted that GCMDR is able to 

learn a new type of features for microRNAs and drugs based on graph embedding. The 

embedding features learnt by GCMDR allow a similarity measure to be derived for 

microRNAs with regard to their drug effects, and this is expected to help discover 

microRNA functional clusters using a clustering algorithm.   
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5. EPLMI&LMNLMI - ALGORITHMS FOR 

PREDICTING LNCRNA-MICRORNA INTERACTION 

5.1. Background 

The discovery of the essential role of non-coding RNAs (ncRNAs) in the regulation of 

gene expression leads many to believe that the transcriptional landscape of many 

organisms is far more complex than previously thought [144]. Non-coding RNAs, in 

the vast majority of transcripts expressed in mammals, have lengths ranging from 22 

nucleotides to hundreds of kb. The long non-coding RNA (lncRNA) among the ncRNAs 

is a loosely classified group of RNA transcripts longer than 200 bases with no apparent 

protein-coding function and they can be found in every branch of life [13].  There has 

recently been increasing evidence that lncRNAs can be involved in various cellular 

processes, such as cell differentiation, cell growth and death, etc. They seem to be able 

to exert influences over chromatin modification, transcriptional complex targeting, 

mRNA splicing and protein translation. The past few years have witnessed a surge of 

interest in the development of computational tools for the identification and annotation 

of non-coding RNA [145-148]. However, even though more than 58,000 human 

lncRNA genes have been identified, apart from the few lncRNAs, like XIST and 

HOTAIR, that are well-studied, the role that most lncRNAs can play in different cellular 

processes remain largely unknown due to the complex and dynamic molecular 

mechanisms [149]. 
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LncRNAs have been found to be  able to regulate patterns of expressed proteins via a 

specific mechanism composed of different kinds of biological interactions such as the 

interactions between lncRNA and protein, lncRNA and mRNA, and lncRNA and 

ncRNA [150]. As a result, the construction of maps of putative biological interaction 

network mediated by lncRNAs could be necessary for the understanding of potential 

biological functions and mechanisms of lncRNAs. As a main kind of competing 

endogenous RNAs (ceRNAs), lncRNAs can function as microRNA sponges, leading to 

lower regulatory effect of microRNA on mRNAs, and therefore microRNAs play 

significant roles in the molecular mechanisms of lncRNAs [144]. Previous work on 

function annotation of lncRNAs are mainly based on expression correlation between 

lncRNAs and protein-coding genes across different tissues [151, 152]. Few functional 

annotations were conducted based on the ceRNA network. Given the knowledge 

accumulated over microRNA function for the past decade, if the interaction between 

lncRNA-microRNA can be better understood or even predicted, we can gain great 

insights into the complex functions of lncRNA. 

Recently, there are more and more evidence to show that both microRNA and lncRNA 

are implicated in the pathological processes involved in diverse human diseases. And 

as a result, there has been much effort to investigate into the impacts that microRNA 

can have on lncRNA functions and vice versa [16, 149]. For example, lncRNA-

microRNA regulatory networks in prostate cancer, gastric cancer and vascular diseases 

have been constructed [153-155] have been studied. Such detailed understanding of the 

effects of lncRNA-microRNA interactions can have in pathophysiology could pave the 
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way for new biomarker discovery and therapeutic approaches. Unfortunately, however, 

the interaction between lncRNA-microRNA as identified by biological experiments is 

still too limited for such understanding to make very wide impacts.   

To expedite the process of identifying such microRNA-target interactions, it is common 

practice to perform In silico prediction to refine the candidate list for further validation 

experiments [156]. Existing computational algorithms developed for predicting such 

microRNA-target predictions are designed with several common rules that address the 

four aspects of conservation, seed match, free energy, and site accessibility [149]. 

However, many microRNA-target prediction tools are developed originally for mRNA 

targets, and as a result, predictions are made based on the nature and statistical rules of 

mRNA-microRNA interactions and may contradict with that of lncRNA-microRNA 

interactions. [157]. For example, some existing prediction methods for microRNA-

target interactions perform conservation analysis focusing on the regions in the 3’ UTR 

and the 5’ UTR of mRNA based on the observation that the microRNA seed region of 

mRNA usually has higher conservation than the non-seed regions. However, lncRNA 

is reported to show significantly lower sequence conservation and evolve faster than 

mRNAs [149].  

In addition to this, it is also noted that as the strategy of seed match is based on the 

statistical rules originally obtained for microRNA-mRNA interactions, they would be 

unsuitable for lncRNA-microRNA interaction prediction.  

Besides, a few models proposed for prediction of lncRNA-RNA interaction perform 
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their tasks by simply computing the free energy of the potential binding sites [149]. For 

example, LncTar computes the free energy which is to measure the stability of 

complementarity between lncRNA and target RNA [157]. However, although this kind 

of sequence-based prediction algorithm has a wide application range, they are plagued 

by very high false positive rates [156]. Other than this, some inherent characteristics 

are found to differentiate lncRNAs from mRNAs. For example, comparing with 

mRNAs, lncRNAs are generally found to be shorter with fewer exons.  They are also 

more lowly-expressed, more enriched in the nucleus, and show higher tissue-specificity 

and reduced stability [149]. Most existing microRNA target prediction tools fail to 

incorporate recent advancements in the understanding of lncRNA-microRNA 

interaction and may therefore not effective enough for the prediction of 

lnRNA/microRNA targets for a specific microRNA/lncRNA.  

Recent theoretical and experimental research have shed light on the modeling of the 

crosstalk between different kinds of ceRNAs, including lncRNA and microRNA within 

the cell [158]. It appears that, apart from other well-known factors such as sub-cellular 

localization and microRNA response element (MRE) accessibility associated with 

secondary structures or RNA-binding protein, the expression levels of individual 

lncRNA and microRNA has come to be the key to decipher the rules of ceRNA 

networks [159].  

Previous work on protein-protein interaction predictions [160], small RNA (sRNA) 

regulation [161] and microRNA-target threshold effects [162] reveal that, as the two 
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major components of ceRNA network, lncRNAs and microRNAs interact with each 

other according to a titration mechanism which orchestrates their interaction by 

establishing a threshold level of effect. The basic postulate of this titration mechanism 

is that optimal lncRNA-microRNA cross-regulation occurs at a near-equimolar 

equilibrium because lncRNA would be inactive in the presence of limited number of 

available microRNA and, conversely, be fully repressed when microRNA molecules 

are much more abundant [159]. In other words, RNA dosage is critical for cross-

regulation and the baseline expression levels of microRNA and lncRNA can offer 

important insights into their direct and indirect interaction patterns according to the 

overall network equilibrium.  

Based on such considerations, Ala et al. proposed a kinetic mathematical model to 

predict ceRNA interactions mediated by phosphatase and tensin homolog (PTEN). This 

kinetic model makes use of transcription and degradation rates for microRNA/ceRNAs 

association/dissociation and the degradation rates for microRNA/ceRNA complexes as 

the model’s key parameters [159]. However, all these parameters are hard to be defined 

for most lncRNAs and microRNAs and as a result, the kinetic model cannot be widely 

used for predicting lncRNA-microRNA interactions. The result of Ala’s work 

demonstrates that ceRNA crosstalk has a close relationship with the expression levels 

of relative microRNAs, and the specificity of ceRNA interactions may depends on the 

expression profiles of microRNA. 

5.2. Data collection 
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For the purpose of our investigation, we obtained the February 2017 version of the 

lncRNASNP database which is made available for downloading at 

http://bioinfo.life.hust.edu.cn/lncRNASNP. The database contains information about 

known lncRNA-microRNA interactions confirmed by laboratory studies [163]. They 

were collected from 108 CLIP-Seq datasets and there are 8091 records in total. After 

removing the duplicated entries, we obtained 5348 of them for our experiments. These 

records represent lncRNA-microRNA interactions, involving 780 different types of 

lncRNAs and 275 different types of microRNAs, respectively.   

In addition, for the purpose computing the similarities among microRNAs, we have 

collected three kinds of information from various databases. The first of such 

information is related to the interaction between microRNAs and different target genes 

and is obtained from miRTarBase (release 6.1, http://miRTarBase.mbc.nctu.edu.tw) [5, 

164].  After matching the ids of the 275 types of microRNAs, we managed to obtain 

information on 272 of them.  

The second type of information is obtained from the expression profile data of 

microRNAs. The data were downloaded from the microRNA.org database 

(http://www.microrna.org/microrna/home.do) where the expression profiles of 230 

microRNAs were found [14]. Each record of microRNA expression profile has 172 

dimensions representing the expression levels of a single type of microRNAs in 172 

different human tissues and cell lines.  

The third type of information is obtained from the sequence data of mature microRNAs. 
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The data were obtained from the miRBase database 

(http://www.mirbase.org/index.shtml) [26]. 

To compute the similarity among lncRNAs, we downloaded the putative functional 

annotations of lncRNAs from the NONCODE database (http://www.noncode.org/) 

[165]. After converting the names of lncRNA into the NONCODE IDs, we successfully 

obtained expression profile data for 450 of the lncRNAs and the functional annotations 

of 264 of the lncRNAs. 

The collected expression profiles of lncRNA have 22 properties describing the 

expression level of each type of lncRNAs in 16 different human tissues and 8 cell lines. 

The functional annotations for lncRNA genes we obtained describe the 10 most 

probable biological functions as predicted by lnc-GFP method based on a coding–non-

coding co-expression network. 

Finally, for performance assessment, we have also downloaded the sequence data of 

lncRNAs from LNCipedia database (https://lncipedia.org/) [13]. 

5.3. EPLMI and LMNLMI in details 

5.3.1. Motivation 

There are increasing evidences that certain lncRNAs are presumably co-regulated in 

expression networks, suggesting that multiple lncRNAs may regulate biological 

processes through interacting with specific microRNA clusters in a synergistic manner 
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[166, 167]. It may reasonably be assumed that there is lncRNAs interacting with same 

microRNAs are expressed similarly across different tissues and cell lines. 

Therefore, we investigated into the expression patterns of a large number of lncRNA-

microRNA interactions identified by high-throughput experiments, and have 

discovered that the microRNAs that have been identified to interact with specific 

lncRNA tend to share more similar expression pattern than those are not known to be 

interactive. Conversely, the expression profiles of lncRNAs that have been identified to 

interact with the same microRNA also tend to be more similar than those of the others.  

Motivated by this discovery and the limited knowledge known about MRE binding 

rules, we propose here a computational model to predict large-scale lncRNA-

microRNA interaction network as a whole. To the best of our knowledge, this is the 

first of its kind.  

Without using the sequence data of lncRNAs and microRNAs, we develop a two-way 

diffusion model called EPLMI to predict new lncRNA-microRNA interactions and 

compute the putative interaction strength of known lncRNA-microRNA interactions 

based on known lncRNA-microRNA interaction network. The basic assumption behind 

the development of the model is that lncRNAs of similar expression profiles tend to 

interact with a cluster of microRNAs having similar expression profiles, and vice versa.  

Most existing microRNA target prediction methods cannot be easily adapted to take 

into consideration more and more newly discovered information about microRNA and 
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apply it effectively to predict lncRNA–microRNA interactions.  To further improve 

the performance of EPLMI, we proposed LMNLMI model. EPLMI only uses 

information relating to expression profiles of microRNAs. The other kinds of 

information are not considered by the research team. 

As its related work in other areas has demonstrated successfully the usefulness of 

integrating multi-domain features to accomplish the prediction task, we believe that 

knowledge about multimodal networks can be useful [32-33]. Some recent work has 

started to address multiple network integration by combining the network diffusion 

algorithm with dimensionality reduction scheme [34-37]. They use a subtle fusion 

method to fuse multiple similarity networks for interaction prediction, cancer patient 

clustering and Kidney Renal Cell Carcinoma identification. Despite the performance of 

these approaches being better in drug interaction prediction and cancer patient 

clustering, they are not applicable to multi-network based lncRNA–microRNA 

interactions prediction. 

5.3.2. Construction of diverse lncRNA/microRNA similarity matrixes 

Based on the assumption that lncRNA/microRNA tends to interact with a cluster of 

microRNAs/lncRNAs which share similar features and regulation patterns, we have 

investigated into three different types of lncRNA/microRNA similarity by 

incorporating diverse information resources. The similarity matrix we computed for the 

first type is based on the data of expression profiles. Specifically, we use Pearson 

correlation coefficient for similarity measurement. Given two expression profiles of 
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two RNAs (say ea and eb), the correlation coefficient score is computed as follow: 
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where N denotes the number of properties of the expression profiles and is 172 for 

microRNAs and 22 for lncRNAs. A pair of RNAs with a higher correlation score is 

considered to be more similarly expressed in general.  

The second kind of RNA similarity we used is based on putative biological functions. 

Based on the assumption that microRNAs targeting more of the same genes tend to be 

involved in similar biological functions, the data of microRNA-target gene interactions 

are used to measure how functionally similar each microRNA-microRNA pair is. Given 

two sets of target genes respectively associated with microRNA ma and microRNA mb 

(say Ga and Gb), we compute a functional similarity measure as follow: 
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Similarly, given two sets of putative functional annotations of two lncRNAs(say Fa and 

Fb), their functional similarity can be computed as follow: 
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To compute the sequence similarity of lncRNAs and microRNAs, we implemented the 

Needleman-Wunsch pairwise sequence alignment by using the package of pairwise2 in 

Biopython [168]. Specifically, we set the identification score, gap-open penalty and 
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gap-open extending penalty as 2, -0.5 and -0.1, respectively [168]. 

5.3.3. Model structure of EPLMI 

In recent years, the data of known lncRNA-microRNA interactions are being 

accumulated along with the development of high-throughput biotechnology, such as 

CLIP-seq. However, known lncRNA-microRNA interaction network is far from being 

completed due to the dynamic nature of the regulatory mechanism of microRNAs. Here, 

we propose a graph-based prediction method to infer the most potential lncRNA-

microRNA interactions based on known lncRNA-microRNA interaction network, 

lncRNA-lncRNA similarity and microRNA-microRNA similarity. Specifically, the 

interaction data are represented by a bipartite graph between lncRNA and microRNA 

nodes, with identified interactions represented by links. The absence of a link would be 

considered as a potential interaction between a lncRNA and a microRNA that have not 

yet been experimentally confirmed. The task of lncRNA-microRNA interaction 

prediction can thus be mapped to predicting links in the bipartite graph of known 

lncRNA-microRNA interactions, labeled with prediction scores. 
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Figure 8 The flowchart of prediction process of EPLMI 

In the prediction process of EPLMI, message flow forward and backward from one side 

of bipartite graph to another based on a two-way diffusion method (see Figure 1). 

Specifically, EPLMI performs its tasks in three main steps. In the first step, two kinds 

of weighted lncRNA-microRNA interaction networks are generated in order to 

introduce lncRNA/microRNA similarity into the known lncRNA-microRNA 

interaction network. Given the corresponding adjacency matrix A∈ℝnl×nm of the known 

lncRNA-microRNA interaction network, the lncRNA similarity matrix LS∈ℝnl×nl and 

the microRNA similarity matrix MS∈ℝnm×nm, two adjacency matrixes for two weighted 

networks is computed as follow: 

lA LS A=                             (34) 

mA A MS=                            (35) 

where nl and nm respectively denote the numbers of lncRNAs and microRNAs in the 

dataset. The entity Al(i,j) in Al denotes the total  sum of the similarity between the i-th 
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lncRNA and those lncRNAs interacting with the j-th microRNA. Similarly, Am(i,j) in 

Am denotes the total sum of similarity between the j-th microRNA with those 

microRNAs interacting with the i-th lncRNA. Based on the weighted lncRNA-

microRNA interaction networks, the resource vectors for both lncRNA and microRNA 

are further computed as follow: 
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Here, Aw denotes the weighted adjacency matrixes which could be either Al or Am. We 

further encode the correlation be-tween one type of microRNA/lncRNA and all types 

of lncRNA/microRNA as a resource vector. Specifically, the resource vectors for 

lncRNAs, i.e. RlncRNA, are actually nm-dimension row vectors and microRNA resource 

vectors, i.e. RmicroRNA, are nl-dimension column vectors, which describe the correlation 

scores during forward propagation. We further set the resource vectors for step 2, i.e. 

SlncRNA and SmicroRNA, as the average of those computed based on two weighted networks. 

In the second step, the message flow backward to the side it starts in step 1. To obtain 

the correlation scores during backward propagation, the resource vectors for lncRNA 

and microRNA are computed based on SlncRNA and SmicroRNA as follows: 
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Two types of resource vectors are further combined as the re-source vectors for the third 

step, i.e. S’lncRNA and S’microRNA, by simply taking the average. In the third step, the 

resource vectors of lncRNA and microRNA are respectively concatenated as two nl×nm 

matrixes, SSlncRNA and SSmicroRNA, which are correspond to two fully connect networks 

(see Step 3 in Figure 8): 

 2
[ ' , ' ,..., ' ]T T T

1 nl

T
lncRNA lncRNA lncRNA lncRNASS S S S=

          (40) 

    2
[ ' , ' ,..., ' ]

1 nm
miRNA miRNA miRNA miRNASS S S S=

            (41) 

 As a result, the final predict network could be computed with the average of SSlncRNA 

and SSmicroRNA as its adjacency matrix SS: 

      2

lncRNA miRNASS SS
SS

+
=

                     (42) 

5.3.4. Model structure of LMNLMI 

Proper integration of different types of side information is crucial for effective 

prediction of a computational model [35, 169-173]. Above the similarity network from 

multiple sources are inherently correlated, and sometimes provide complementary 

information to each other. As a result, network fusion has been paid much attention to, 

which mainly aims to generate most similar representation between entities under the 

existing domains. Following the criteria defined for the desirable lncRNA and 
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microRNA similarity networks, we now formulate a fusion problem by combining 

several networks. This procedure is inspired by the network learning work developed 

for the genome-wide data analysis [174]. In order to construct a fused network from 

multimodal networks, we use a normalized weight matrix 𝑃 = 𝐷−1𝑊 as the full kernel 

on the vertex set V. 𝐷  is a diagonal matrix that entries  𝐷(𝑖, 𝑖) = ∑ 𝑊(𝑖, 𝑗)𝑗  , and 

∑ 𝑃(𝑖, 𝑗)𝑗 = 1. For a better normalization, our approach looks at make this free of the 

self-similarities on the diagonal entries of W, and keep ∑ 𝑃(𝑖, 𝑗)𝑗 = 1: 

𝐾(𝑖, 𝑗) =
𝐿(𝑖,𝑗)

2 ∑ 𝐿(𝑖,𝑘)𝑘≠𝑖
                       (43) 

subject to the constraints: 𝑖 ≠ 𝑗 ,otherwise 𝐾(𝑖, 𝑗) =
1

2
. 

Let 𝑁𝑖 represent a set of 𝑣𝑖’s neighbors including 𝑣𝑖 in G. We then measure local 

affinity by using K nearest neighbors as follows: 

𝑄(𝑖, 𝑗) =
𝐿(𝑖,𝑗)

∑ 𝐿(𝑖,𝑘)𝑘∈𝑁𝑖

                      (44) 

subject to the constraints: 𝑗 ∈ 𝑁𝑖, otherwise 𝑄(𝑖, 𝑗) = 0 

Let 𝐾𝑡=0
(𝑣)

  represent the initial  𝑣  status matrix at beginning, anthe the d 𝑄𝑡=0
(𝑣)

 

represent the kernel matrix. The fusion step is iteratively updating similarity matrix 

corresponding to each of the data types: 

𝐾(𝑣) = 𝑄(𝑣) × (
∑ 𝐾(𝑘)

𝑘≠𝑣

𝑚−1
) × (𝑄(𝑣))𝑇 , 𝑣 = 1,2,3, … , 𝑚       (45) 

This procedure updates the status matrices each time to generate 𝑣  parallel 
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interchanging diffusion processes. After t steps, we generate the final status matrix as 

follows: 

𝐾(𝑣) =
∑ 𝐾𝑣𝑚

𝑣=1

𝑚
                        (46) 

Formally, let 𝑋 =  [𝑥1, … , 𝑥𝑁𝑑
 ]

𝑇
,  𝑥𝑖 ∈ 𝑅𝑓𝑑  , 𝑖 = 1, … , 𝑁𝑑  represent a fused network 

of the lncRNAs, where each row i represents the corresponding feature vector of 

lncRNA and 𝑁𝑑 stand for the numbers of lncRNAs. That is to say, we can use 𝑌 =

[𝑦1, … , 𝑦𝑁𝑡
 ]

𝑇
,  𝑦𝑖 ∈ 𝑅𝑓𝑡 , 𝑖 = 1, … , 𝑁𝑡   to denote the corresponding feature vector of 

microRNA and 𝑁𝑡 stand for the numbers of microRNAs. In particular, 𝑋 ∈ 𝑅𝑁𝑑×𝑓𝑑  

and 𝑌 ∈ 𝑅𝑁𝑡×𝑓𝑡 are generated from final status matrix of the network fusion section. 

Let A be a lncRNA–microRNA interaction matrix, where each entry A ij = 1 if lncRNA 

i is known to interact with microRNA j, and A ij = 0 otherwise. To infer unknown 

lncRNA–microRNA interactions in A, we deploy a bilinear function to learn the 

projection matrix P between lncRNA space and microRNA space. Generally, the 

bilinear function can be defined as: 

𝑋𝑃𝑌𝑇 ≈ 𝐴                       (47) 

where 𝐴 ∈ 𝑅𝑁𝑑×𝑁𝑡 denoted as the known lncRNA–microRNA interaction matrix and 

P∈ 𝑅𝑓𝑑×𝑓𝑡, Rfd_ft is the projection matrix that we need to learn. 

We then measure the possibility of binding each pair of lncRNA–microRNA to 

determine whether lncRNA i more probably interacts with microRNA j: 
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score(𝑖, 𝑗)  =  x𝑖𝑃y𝑗
𝑇                    (48) 

Obviously, the higher score means a greater chance of lncRNA–microRNA will interact 

with each other. 

 

Figure 9 The flowchart of the LMNLMI pipeline. LMNLMI first integrates a variety of RNA-related 

information sources to construct a heterogeneous network. LMNLMI then finds the best projection from 

lncRNA space onto microRNA space, such that the projected feature vectors of lncRNA are geomet-

rically close to the feature vectors of their known interacting microRNA. After that, LMNLMI infers new 

interactions for a lncRNA by sorting its target candidates based on their geometric proximity to the 

projected feature vector of this lncRNA in the projected space. 

Although the projection matrix P is of dimension 𝑓𝑑 × 𝑓𝑡 , there typically exist 

significant correlations between those feature vectors of lncRNAs or microRNAs that 

are geometrically close in space, which can thus greatly reduce the number of effective 

parameters required in P to model lncRNA–microRNA interactions. To take into 

account this issue, we impose a low-rank constraint on P to learn only a small number 
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of latent factors, by considering a low-rank decomposition of the form: 

𝑃 =  𝑊𝐻𝑇                        (49) 

where 𝑊 ∈ 𝑅𝑓𝑑×𝑓𝑡 and 𝐻 ∈ 𝑅𝑓𝑡×𝑓𝑡 . This low-rank constraint not only alleviates the 

overfitting problem but also computationally benefits the optimization process [40]. 

The optimization problem with such a low-rank constraint on the original projection 

matrix P is NP-hard to solve. A standard relaxation of the low-rank constraint is to 

minimize the trace norm of the matrix (10), which is equivalent to minimize: 

1

2
(‖𝑊‖𝐹

2 − ‖𝐻‖𝐹
2) . Therefore, factoring P into W and H can be accomplished by 

solving the following optimization problem by alternating minimization: 

min
𝑊,𝐻

∑ ‖𝐴𝑖𝑗 − 𝑥𝑖𝑊𝐻𝑇𝑦𝑗
𝑇‖

2

2
+

𝜆

2
(‖𝑊‖𝐹

2 − ‖𝐻‖𝐹
2)(𝑖,𝑗)      (50) 

5.4. Experiment and analysis 

5.4.1. Comparison of expression profiles between identified and unidentified 

lncRNA-microRNA interactions 

For the purpose of assessing the effectiveness of EPLMI, we have investigated into the 

differences in the correlation of the expression profiles between identified and 

unidentified lncRNA-microRNA interactions. Based on known lncRNA-microRNA 

interaction network, we compared the differences in the expression profiles of two 

groups of microRNA/lncRNA pairs: (i) connected and (ii) unconnected 

microRNAs/lncRNAs for each single lncRNA/microRNA. 
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For each microRNA node that has more than two links, we divide the lncRNAs into 

two groups which we refer to as the identified microRNA group and the unidentified 

microRNA group, according to whether it is identified to interact with the microRNA 

or not. For each of the two groups, we computed the average Pearson correlation 

coefficients (PCC) of the expression profiles in the group.  

For the purpose of comparison, we used the average PCC of the unidentified group as 

the baseline score for each lncRNA. We noted as a result that approximately 83.50% of 

the lncRNAs (435/521) tend to cooperate with a cluster of microRNAs sharing more 

similar expression profiles than the baseline (see Figure 10). For the 521 types of 

lncRNAs, the average PCC value of their identified microRNA groups reaches 0.4947, 

which is significantly higher than the average baseline value of 0.4551. In addition, if 

we are to highlight the samples having significantly higher or lower PCC than the 

baseline by using a difference threshold of 0.5 times standard deviation of PCC of 

identified microRNA groups (i.e., 0.058), we can see that 80.16% (202/252) of marked 

samples higher than the baseline (see Figure 10). 

Considering that a number of lncRNAs expression profiles are unavailable and that the 

microRNAs in our dataset are found to have interaction with an average of 

approximately 19 types of lncRNA, we therefore focus only on those 206 well-studied 

microRNAs that have more than 5 links in order to obtain more reliable conclusions.  
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Figure 10 Correlation of microRNA clusters interacting with single lncRNAs 

By similar analysis with both the identified lncRNA group and the unidentified lncRNA 

group for each single microRNA, we found that approximately 59.22% (122/206) of 

the microRNAs tend to interact with a cluster of lncRNAs that have more strongly 

correlated expression profiles than the baseline (see Figure 11).  

 

Figure 11 Correlation of lncRNA clusters interacting with single microRNAs 

The average PCC of the identified lncRNA groups of 206 samples is 0.5476, which is 

higher than that of the baseline of 0.5378. The outstanding samples which have a 

different standard deviation of PCC of the identified lncRNA groups (i.e., 0.0368) from 
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the baseline can be highlighted and shown in Figure 10. Approximately 82.26% (51/62) 

highlighted samples were found to be consistent with our assumption that the target 

lncRNAs of a specific microRNA tend to have similar expression level patterns among 

different tissues and cell lines. 

These results confirm the influence of expression profiles of both lncRNAs and 

microRNAs on their pairwise interactions. Specifically, lncRNA molecules tend to 

interact with a cluster of microRNAs that have similar expression profiles.  In addition, 

we also found that most of the microRNAs are targeted by lncRNA clusters which have 

similar expression profiles when setting a difference threshold. However, it is note-

worthy that, without setting a different threshold, only less than 60% microRNA 

samples are consistent with the conclusion we made. The reason of this relatively small 

percentage may lie in the recent finding that lncRNA displays high natural expression 

variation among different individuals and therefore the expression profile data we 

obtained may be unrepresentative [175]. Besides, due the general lncRNA feature of 

high tissue-specific expression, 22 dimensions of the explored lncRNA expression 

profile data may not be enough for comprehensively describing the expression patterns 

of a single lncRNA. 

To further evaluate the correlation patterns of lncRNA and microRNA with respect to 

other kinds of lncRNA/microRNA similarity patterns, an analogous analysis was also 

carried out with the functional and sequential similarities. We regard those samples 

obtaining higher correlation scores than the baseline as positive samples that are 
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consistent with the basic assumption of EPLMI.  As a result, 33.33% microRNA 

samples and 56.13% lncRNA samples are positive in the functional similarity-based 

experiment while 51.78% microRNA samples and 89.36% lncRNA samples are 

positive in the sequence similarity-based experiment. 

5.4.2. Performance evaluation for EPLMI 

5.4.2.1. Cross validation experiments 

To evaluate the accuracy of the prediction models built by EPLMI, we used a real 

dataset involving confirmed lncRNA-microRNA interactions and tested accuracy using 

the two methods of LOOCV and 5-fold cross validation. 

Specifically, according to LOOCV, each known lncRNA-microRNA interaction was 

left out, in turn, for testing and the rest of the known lncRNA-microRNA interactions 

were used as training samples to construct a prediction model. To avoid the 

denominators in formula (36), (37), (38), (39) becoming zeros, we replace all zeros in 

Aw with a tiny value of 10-11. For the purpose of deciding if the testing sample is positive, 

we try to compare it with the other lncRNA-microRNA pairs in the dataset whose 

interactions are un-confirmed. To do so, we sorted these pair samples and determined 

the rank of the testing sample among all the 209152 unidentified samples. If it obtains 

a higher rank than a given threshold, the testing sample would be considered positive. 

For each different threshold set in the experiments, we obtained corresponding true 

positive rates (TPR, sensitivity) and false positive rates (FPR, 1-specificity) where the 
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sensitivity and specificity denote the percentage of testing samples with respectively 

higher and lower ranks than the given thresholds. In addition, we also obtained the 

ROCs (Receiver Operating Curves) by plotting TPR versus FPR at different thresholds 

and computed the values of the AUCs. The AUC values lie between 0.5 to 1 where 0.5 

denotes a purely random prediction and 1 denotes a perfect performance. The best 

prediction model built by EPLMI achieved a reliable prediction performance with AUC 

of 0.8522. 

Using the 5-fold cross validation, all known lncRNA-microRNA interaction data were 

randomly divided into 5 subsets of roughly the same size and in each of a series of 

experiments, 4 would be used as training samples and the remaining data subset was 

used as testing samples. As was the case with LOOCV, we obtained the ROC curve for 

each round of 5-fold cross validation and computed the average value of the AUC. To 

avoid any bias caused by random partitioning of data subsets, we repeated the random 

sampling of data 50 times. As a result, we found that the best prediction model obtained 

by EPLMI achieved an average AUC of 0.8447±0.0017. We anticipate that those 

candidates with higher ranks would be confirmed by the experimental observation in 

the future. And we assume that those lncRNA-microRNA pairs that share a tight 

relationship in their regulation network tend to be more stable and are, therefore, more 

competitive in nature. 

5.4.2.2. Comparison among different kinds of RNA-similarity 

Apart from the expression profiles, there are other kinds of information, such as target 
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genes of microRNAs, putative biological functions and nucleotide sequence data, 

which help to describe the features of lncRNA and microRNA. In this section, we 

further explore two types of such information which are related to RNA-similarity: (i) 

RNA functional similarity and (ii) RNA sequence similarity. With EPLMI, they can be 

used to predict lncRNA-microRNA interactions.  

To evaluate their usefulness for such purpose, LOOCV and 5-fold cross validation were 

implemented in this comparison experiments and the results are analyzed and discussed 

here (see Figure 12 and Table 11).  

With regard to (i), recent efforts have been made to predict the biofunctional roles of 

ncRNAs but the results remain to be categorically proven. To avoid any bias in the 

prediction of microRNA functions, we used the data of microRNA-target gene 

associations to measure how functionally similar two microRNAs are. As with the 

functional similarity of lncRNAs, we simply followed the function annotations of 

lncRNA based on predictions made by previous work [176].  

Table 11 Performance comparison among three kinds of RNA similarity by using EPLMI in the 

framework of 5-fold cross validation. 

Expression profile-

based similarity 

Biological function-

based similarity 

RNA sequence-based 

similarity 

0.8447±0.0017 0.7608±0.0011 0.7890±0.0014 
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Figure 12 Performance comparison among three kinds of RNA similarity, i.e. expression profile-based, 

biological function-based and sequence-based similarities, by using the method of EPLMI 

From the results, the prediction models built by EPLMI using RNA functional similarity 

and RNA sequence similarity yielded, respectively, AUCs of 0.7968 and 0.7638 in 

LOOCV experiments. For the 5-fold cross validation experiments, we obtained average 

AUCs of 0.7608±0.0011 and 0.7890±0.0014 by using RNA functional similarity and 

sequence similarity, respectively. 

The results of both leave-one-out and 5-fold cross validation demonstrate that the uses 

of functional similarity and sequence similarity of RNAs are less effective than the use 

of similarity based on expression profiles. The reason may lie in the fact that the 
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biological roles played by lncRNAs can be so diverse and many lncRNAs may not have 

appreciable functions which can be described by the known annotations. Hence, the 

putative lncRNA functional similarity based on coding–non-coding co-expression 

network may not be accurate and comprehensive enough for this measurement. 

Furthermore, the size of lncRNA sequences can be very different and the length of the 

lncRNAs used in this work range from 73 to 59462. For this reason, simply 

implementing pairwise sequence global alignment by using a dynamic programming 

algorithm may not be effective in the measuring of how biologically similar two 

lncRNAs are or how similar the regulation patterns of two lncRNAs would be. This is 

because microRNAs are usually sequestered by small binding sites in lncRNA. 

Besides, there are increasing evidence that the expression of lncRNAs is tightly 

regulated and their expression profiles are important markers for the developmental 

stage and the disease state. Considering this noteworthy feature of lncRNA, the 

information of lncRNA expression profiles is considered useful for effectively 

depicting the correlation of lncRNAs in their microRNA-mediated regulation patterns. 

5.4.2.3. Comparison with different prediction methods 

To further evaluate the performance of EPLMI, we compared it with some classical 

prediction methods by using the same expression profile-based similarity. As the 

models built by EPLMI uses a network-based method through two-way diffusion, we 

here explore another kind of network-based method, the Katz measure, which is 

initially proposed for link prediction problem in social network and extensively used in 
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a diversity of bioinformatics problems. 

Further, as the prediction task in this work can be solved as a matrix-completion 

problem, two main kinds of recommendation algorithms were further investigated. 

Specifically, two kinds of memory-based collaborative filtering (i.e., lncRNA-based CF 

and microRNA-based CF) and two kinds of model-based methods (i.e., singular value 

decomposition and latent factor model) were implemented for the prediction of 

lncRNA-microRNA interactions.  

Table 12 Performance comparison among different methods by using RNA expression profile-based 

similarity in the framework of 5-fold cross validation. 

Method 5-fold cross validation 

lncRNA-based CF 0.6359±0.0024 

microRNA-based CF 0.8235±0.0015 

SVD-based method 0.4967±0.0340 

Katz-based method 0.7439±0.0017 

Basic latent factor model 0.8253±0.0024 

EPLMI 0.8447±0.0017 

From the experimental results, it is noted that EPLMI model yielded the best 

performance among six different algorithms we adopted for comparison using the 

LOOCV and 5-fold cross validation methods. Specifically, lncRNA-based CF, 

microRNA-based CF, singular value decomposition (SVD), latent factor model (LFM) 

and Katz method respectively yielded AUCs of 0.6452, 0.8307, 0.5009, 0.8271 and 

0.8073 in LOOCV, and average AUCs of 0.6359±0.0024, 0.8235±0.0015, 

0.4967±0.0340, 0.8253±0.0024 and 0.7439±0.0017 in 5-fold cross validation (see 

Figure 13 and Table 12). Compared with the other algorithms, the outstanding 

performance of EPLMI demonstrates that it has reliable prediction performance for 



100 

 

large-scale lncRNA-microRNA interactions by well incorporating the information 

resources of expression profiles. 

 

Figure 13 Performance comparison of EPLMI with 5 different kinds of classical methods by using the 

same RNA expression profile-based similarity. 

5.4.3. Performance evaluation for LMNLMI 

5.4.3.1. Cross validation experiments 

Regarding prediction performance evaluation involving imbalanced data, it is 

suggested that ranking measures such as AUROC (area under the ROC curve) can be 

used so that the prediction performance can be evaluated unbiased[177]. We infer 

interactions and compare against the held-out interactions, measuring performance 

using the AUC for our evaluations. ROC curves are created by plotting the true positive 

rate versus the false positive rate at various thresholds. The results are shown as a ROC 
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curve where TPR is plotted against FPR, calculated as follows:  𝑇𝑃𝑅 = 𝑇𝑃/𝑇𝑃 +

𝐹𝑁 ,   𝐹𝑃𝑅 = 𝐹𝑃/𝐹𝑃 + 𝑇𝑁 , where TP (true-positives) is the number of correctly 

predicted drug-target interactions while the FP (false-positives) is the number of not 

correctly predicted lncRNA–microRNA interactions. TN (true negative) is the number 

of lncRNA–microRNA interactions predicted not to be in a class that are not observed 

in that class; and FN (false negative) is the number of lncRNA–microRNA interactions 

predicted not to be in a class that are observed in that class. To further evaluate the 

performance of the proposed method, we also use the AUPRC (area under the PR curve) 

to evaluate its performance under different similarity network combinations. Precision 

is the number of correctly predicted interactions divided by the number of all returned 

results. Recall is the number of correctly predicted interactions divided by the number 

of results that should have been returned. Precision and recall are then defined 

as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃  ,  𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 . Due to our interactions 

dataset is the high-class imbalance, we used 5-fold cross validation, where each fold 

leaves out 20% of the positive and negative samples for testing. Since the discovered 

positive samples are too small, this may lead to imbalanced bias if the dataset is 

randomly divided. We randomly sampled known interactions and negative pairs and 

divide both into each fold equally. In 5-fold cross-validation, all the known lncRNA–

microRNA interactions were randomly divided into five equal parts without any 

overlap between any two of them. Each part was selected in turn as the test samples and 

the remaining four as training samples. Similarly, all lncRNA–microRNA pairs without 

known interactions were considered as the candidate samples. Then, the scores of test 
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samples and the candidate samples were computed. We compared the score of each test 

sample with the scores of candidate samples in turn. The prediction was considered to 

be successful only when the rank of test sample exceeded the given threshold value. 

5.4.3.2. Performance Comparisons 

To evaluate the performance of LMNLMI, we also made use of some classical 

approaches which include the Katz measure  [54], memory-based collaborative 

filtering (CF) [16] and latent factor model (LFM) to predict lncRNA–microRNA 

interactions based on the use of the similarity networks constructed. We compared the 

performance of CF with LFM because our prediction step adopted the matrix 

completion method and this is why we compared performance of LMNLMI with the 

two recommendation algorithms. 

To the best of our knowledge, LMNLMI is the only network fusion method developed 

to predict lncRNA–microRNA interactions. To further evaluate the performance of 

LMNLMI, we also compared it with the EPLMI which is so far the only approach 

proposed to predict lncRNA–microRNA interactions. Katz measure as a special 

algorithm to solve the problem of network link prediction, here is also used to carry out 

the contrast test.  

Table 13 reports the scores of different algorithms on the same dataset. The resulting 

Auroc for LMNLMI, EPLMI, lncRNA-based CF, microRNA-based CF, KATZ and 

LFM on original dataset are 0.8929, 0.8402, 0.6382, 0.8215, 0.7435 and 0.8257, 
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respectively. ILLMI is has a 6% improvement on ROC score compared with the second 

best. 

 

Figure 14  Comparison of the ROC curves of LMNLMI with five different kinds of methods on 

collected lncRNA–microRNA interactions dataset. Performance comparison of EPLMI with five 

different kinds of classical methods 

We further compared the performance of each method by the ROC curve. Figure 14 

shows the ROC curves of the six algorithms compared against the standard. As ex-

pected, among all approaches, LMNLMI achieves the highest score. This result show 

that LMNLMI extracted more meaningful representations to lncRNA and microRNA 

from fused network and this approach is shown here to have the potential to improve 

prediction performance. 

Table 13 Performance comparison among seven kinds of RNA similarity by using LMNLMI in the 

framework of 5-fold cross validation. 

Networks AUROC AUPR 
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Expression+Biological function+ RNA sequence 0.8926 0.9223 

Expression+Biological function 0.8606 0.8980 

Expression+RNA sequence 0.8670 0.9047 

Biological function+RNA sequence 0.8669 0.9042 

Expression-based 0.5905 0.6266 

Biological function-based 0.6071 0.5930 

RNA sequence-based 0.7149 0.8162 

Table 14 Performance comparison among different methods by using similarity network in the 

framework of 5-fold cross validation. 

Method AUROC 

LMNLMI 0.8926 

EPLMI 0.8402 

lncRNA-based CF 0.6382 

microRNA-based CF 0.8215 

KATZ 0.7435 

LFM 0.8257 

5.4.3.3. Cross-Test for Dataset Setting 

To show the difference between the original similarity networks and fused network, the 

matrix representations of the similarity network that is constructed based on RNA 

functional information, the similarity network that is constructed based on RNA 

sequence information and the fused network are shown in Figure 15. In this subsection, 

we also conduct a series of network cross-test on three kinds of similarity networks to 

evaluate the impact of network fusion in LMNLMI. We tested the combination of 

similarity network that include the following lists: (Expression+Biological 

function+RNA sequence, Expression+Biological function, Expression+RNA sequence, 

Biological function + RNA sequence} 
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Figure 15 Performance comparison was assessed by both the area under AUROC and AUPRC among 

seven kinds of similarity combination, i.e. Expression+Biological function+ RNA sequence, 

Expression+Biological function, Expression+RNA sequence, Biological function+RNA sequence, 

Expression-based, Biological function-based, RNA sequence-based, by using the method of LMNLMI 

Each single network is also tested with the same evaluation criterion. Performance of 

LMNLMI on each network combination was assessed by both the AUROC and the area 

under precision-recall curve (AUPRC). All results are summarized in Table 13, from 

which the prediction models built by LMNLMI using Expression+Bological 

function+RNA sequence network, Expression+Biological function network, 

Expression+RNA sequence network, Biological function + RNA sequence network 

yielded, respectively, AUCs of 0.8926, 0.8606, 0.8670 and 0.8669 in 5-fold 

experiments. We obtained average AUCs of 0.5905, 0.6071 and 0.7149 by using RNA 

Expression-based similarity Biological function-based similarity and RNA sequence-
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based similarity, respectively.  The results that we have obtained, as shown in the 

above tables, show that LMNLMI can be a promising approach for predicting lncRNA 

and microRNA interactions.  

After evaluating the effectiveness and robustness of LMNLMI, we calculate the 

predicted score of interaction for lncRNA with the lowest number of known interactions 

in the dataset. In the real world, this kind of interaction is the most difficult to find, due 

to the lack of known samples. To further evaluate the ability of LMNLMI to predict the 

rare lncRNA-microRNA interactions, we analyzed the top 10 with the highest ranking 

of such lncRNA in the test set. As a result, shown in Table 15, four interacted lncRNA-

microRNA pairs are finally confirmed. This result suggests that even for some ncRNAs 

that have not been studied thoroughly, our approach can be used to predict potential 

interactions. 

Table 15 The top 10 predicted interactions for rare lncRNA 

lncRNA microRNA Evidence Score 

lnc-COX10-3:1 hsa-miR-4458 lncRNASNP 0.404 

lnc-COX10-3:1 hsa-miR-4500 lncRNASNP 0.403 

lnc-MEP1B-1:1 hsa-miR-208a-3p unconfirmed 0.120 

lnc-IDS-1:6 hsa-miR-195-5p unconfirmed 0.080 

lnc-AEBP1-1:1 hsa-miR-520b unconfirmed 0.075 

lnc-FAM186B-1:1 hsa-miR-520b unconfirmed 0.074 

lnc-FRG2C-1:2 hsa-miR-103a-3p lncRNASNP 0.074 

lnc-C6orf164-1:1 hsa-miR-103a-3p lncRNASNP 0.074 

lnc-KLRF1-1:1 hsa-miR-4306 unconfirmed 0.072 

lnc-IGSF21-2:1 hsa-miR-3619-5p unconfirmed 0.071 
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(c) 

 

(d) 

Figure 16 (a) LncRNAs Expression profile-based similarity network; (b) Biological function-based 

similarity network; (c) RNA sequence-based similarity network; (d) Fused similarity network based on 

above networks. 

5.5. Summary 

Even though lncRNA-microRNA interactions is becoming known to be very important 

for dissecting various bio-mechanisms, current knowledge and data on lncRNA-

microRNA interaction that have been identified is still limited. Apart from a few 

sequence-based microRNA target prediction tools that mainly follow the prediction of 

target genes/mRNA, little effort has been made to predict lncRNA-microRNA 

interactions on a large scale. Based on accumulating experimental observations, the 

close relationship between the interaction patterns of ceRNAs and their relative 

expression levels has been highlighted. In this work, motivated by recent advances in 

the synergistic actions of lncRNAs, we analyzed statistically the patterns of large scale 
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lncRNA-microRNA interaction network in the perspective of expression profiles. 

Consequently, we discovered that lncRNAs/microRNAs interacting with the same 

single microRNAs/lncRNA tend to have similar expression profiles. Based on this 

finding, we propose the first computational technique, EPLMI, to build models for 

predicting large-scale lncRNA-microRNA interaction network based on a novel graph-

based diffusion algorithm. The basic assumption made by EPLMI is that lncRNAs with 

similar expression profiles tend to collaboratively interact with microRNAs with 

similar expression profiles, and vice versa. By using the latest dataset of lncRNA-

microRNA interactions, the experimental results obtained with EPLMI, along with a 

series of comparison results, demonstrate that it can be a very reliable method. 

We believe that EPLMI can yield important insights into future research on ceRNA 

regulation networks. Unlike traditional prediction tools for microRNA-mRNA 

interactions, EPLMI do not focus on binding sites of microRNA in target RNAs 

considering that the number of binding rules of MREs are still very limited due to 

naturally imperfect pairing and that purely computing free-energy could yield a high 

rate of false positives. Instead, EPLMI predicts lncRNA-microRNA interactions by 

making use of the collaborative effects of both lncRNAs and microRNAs and the 

similarities of lncRNAs and microRNAs. By using the expression profiles of lncRNAs 

and microRNAs, EPLMI can yield the interaction possibility for each lncRNA-

microRNA pair in one-shot and it can, therefore, have a wide-range of applications.  

In addition to the above, EPLMI can offer preliminary knowledge for two other 
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prediction problems that we propose for future work. The first one is to predict the 

indirect lncRNA-lncRNA interactions. It is reported that indirect interactions occur 

frequently in ceRNA network where two ceRNAs can crosstalk via a third transcript. 

As EPLMI focuses on the common pattern of lncRNAs interacting with the same single 

microRNAs, the lncRNAs predicted to interact the same microRNAs with high scores 

may tend to have an indirect interaction. 

The second one is to measure how competitive the lncRNAs are to sequester a specific 

kind of microRNA. Target lncRNAs may coexist as competing ceRNAs and the 

effectiveness and number of their MREs are not always equal, leading to different 

competitive status. By implementing EPLMI, those links of known lncRNA-microRNA 

interactions that have bigger weights could be considered as more common and 

biologically important than the others and therefore the lncRNAs in these interactions 

may have higher priority to interact with the microRNAs in order to remain biologically 

stable. In other words, for the known lncRNA-microRNA interactions, the lncRNAs 

obtaining higher scores predicted by EPLMI may be more competitive in their 

interaction with microRNAs. 

Despite the effectiveness of EPLMI as discussed above, it should be noted that EPLMI 

has some limitations. As EPLMI makes prediction mainly based on datasets with 

known lncRNA-microRNA interaction, it may suffer from possible prediction-bias 

caused by imbalanced learning samples. lncRNA/microRNA that are well-studied tend 

to obtain a higher prediction scores since they have more links in known lncRNA-
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microRNA interaction network. In addition, it should also be noted that EPLMI is not 

applicable to new types of lncRNA/microRNA that are without expression profiles as 

they do not have any links in known lncRNA-microRNA interaction network. 

LMNLMI that can be used for network fusion for prediction of lncRNA–microRNA 

interactions is proposed. LMNLMI addresses several key challenges in biological 

network incompletion and multiple biological network fusion. First, it can be used to 

fuse diverse heterogeneous information embedded in network data. Second, it reduces 

the incompleteness resulting from the vertex features in the heterogeneous network data 

not being fully discovered. LMNLMI introduces various similarity measurements, 

which are used to characterize valuable information of each individual network. It then 

applies an SNF algorithm to the multiple networks. In addition, LMNLMI use inductive 

matrix completion for predicting lncRNA–microRNA interactions based on the fused 

network. We have demonstrated that LMNLMI has excellent ability in network 

integration for accurate lncRNA–microRNA interactions, inferring and achieving 

substantial improvement over the advanced approach. Experimental results on the real-

world dataset demonstrate that LMNLMI is able to achieves a good performance.  

LMNLMI is a hard-fusion method. It does not consider the weights of different 

networks within the fusion procedure. For future work, we plan to explore how the 

influence of each network can be learned directly from the data. We intend to investigate 

into the impacts that the degree of membership of each similarity matrix may have on 

the performance of predicting. In addition. Although the focus of this work is about 
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lncRNA and microRNA network learning, the proposed LMNLMI is flexibly connected 

to other biological networks, e.g. microRNA-disease associations. We will make use of 

LMNLMI to perform different learning tasks in different applications. 
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6. CONCLUSION 

6.1. Summary 

In this thesis, the topic we concern about is the link prediction problem in graph 

analytics. We propose to use machine learning techniques to solve the challenges 

existing in the state-of-the-art link prediction algorithms on heterogeneous attributed 

networks. Specifically, we concentrate on the application on one import research 

domain of bioinformatics, that is about link prediction for microRNA-mediated 

biomolecular networks. Like many other relational data in real world, the data in this 

domain can be formed as graphs which are often large-scale, complex and incomplete. 

To accelerate the research of microRNA, we develop four prediction tools for three 

different important research issues, each of which faces different challenge. To predict 

association between microRNA and human complex diseases, we aim to address the 

data incompleteness problem existing in the microRNA-lncRNA co-regulation network. 

The proposed computational model, MVMTMDA to solve this problem is based on 

multi-view multi-task learning and adopt a deep learning model. The second issue is to 

predict the kind of drug resistance associated with aberrant expression of microRNAs. 

To tackle the problem derived by the high dimensional attributes of nodes (drug 

structural fingerprint), we introduce the spectral graph convolution operator into the 

model of deep autoencoder model. The third prediction task in this thesis is to predict 

lncRNA-microRNA interactions. Different from the conventional algorithms for 

microRNA target prediction which are based on sequence matching, we reformulate 
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this problem as link prediction on graphs. We propose two methods to solve this 

problem. One is EPLMI which uses the information of expression profile and adopts a 

two-way diffusion method for prediction. The other one is LMNLMI which adopts the 

similarity network fusion technique and thus can effectively consider multiple type of 

information. 

To show the effectiveness and efficiency of these proposed algorithms, we have 

collected real datasets from public databases and apply proposed methods to perform 

prediction for performance evaluation. In addition, we also compare some state-of-the-

art approaches with he proposed models for further evolution. We test the robustness of 

proposed models in different performance with different sizes of training, parameter 

setting as well as different model structures. Case study was also conducted to illustrate 

the efficiency of the proposed model in real application scenario. The experimental 

results show that our proposed can be served as a useful tool for different domains of 

microRNA research. 

6.2. Future work 

In future, we attempt to improve the prediction performance of our models from two 

main aspects. The first direction is to consider more complex information data. When 

collecting the datasets, we actually found some data that are biologically relevant but 

unable to be utilized as input data for model prediction due to their complex data types. 

In the model of MVMTMDA, we have adopted multi-view multi-task learning to 

handle graph data. However, there are other kind of nonnumerical data in biological 
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research including, for example, DNA sequence that are characters of unequal length. 

In the field of bioinformatics, the available data are very valuable but often limited in 

amount. Introducing more relevant data into prediction models have much potential to 

improve the prediction performance. To achieve this, we will try to adopt the advanced 

deep learning techniques, e.g., LSTM, to handle the nonnumerical data, and to propose 

new feature extraction method to use prior knowledge to transform them into numerical 

one. The second direction of our future work is to lower the effect from data noise. The 

dataset we collected is from the discovery of numerical biological experiments and thus 

inevitably has high noise. To solve this problem, we will introduce effective dimension 

reduction techniques into our model. In addition, we will also investigate how to 

collectively use data from different domain to train a model such that the noise in one 

kind of data can be counteracted when fused with other kinds. 
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