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I 

Abstract 

The effects of porous walls on supersonic/hypersonic boundary-layer instability 

are investigated using theoretical and numerical approaches. The linear stability theory 

(LST) is utilized to examine the effects of admittance magnitude and phase on the first 

and second modes. Numerical simulations are performed to validate the theoretical 

predictions. Phase analysis is employed to study the mechanisms of the growth of the 

first and second modes. A design strategy of the ultrasonic absorptive coating (UAC) 

is also proposed to stabilize the first and second modes. 

The analyses based on the adiabatic or quasi-adiabatic wall show the stabilization 

and destabilization of the first and second modes depend on the wall admittance phase 

and are facilitated by the increase in the wall admittance magnitude. Moreover, the 

effects of porous walls on the first and second modes are independent of the wave-

propagation angle. 

Both for the first and second modes, the fluctuating internal energy is dominated 

by the advection of perturbed thermal energy by mean flow in the vicinity of the critical 

layer and by the dilatation fluctuation near the wall. The growth rate of the second 

mode is determined by the contribution of the heat transport by the wall-normal 

velocity fluctuation to the fluctuation in the vicinity of the critical layer. While the 

growth rate of the first mode is associated with the energy exchange between the 

dilatation fluctuation and the internal energy fluctuation near the wall. Porous walls 

alter the phase of the wall-normal fluctuating velocity, which recasts the phase of the 

energy transport by the wall-normal velocity fluctuation. 



 

II 

 The design strategy of UAC focusing on the admittance magnitude and phase can 

provide quantitative requirements on the stabilization of the first and second modes. 

The designed UAC remarkably damps the second mode and meanwhile avoids 

aggravating the first mode in a supersonic flat-plate boundary layer. 
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Chapter 1 Introduction 

Boundary layer transition in the supersonic and hypersonic regimes is critical for 

the design of high-speed flight vehicles. In contrast to the laminar flow, heat transfer 

and skin friction drag are remarkably higher in the turbulent flow [1-3]. Therefore, it 

can decrease the weight of thermal protect systems (TPSs) and the payload penalty by 

maintaining laminar flow over vehicle surfaces. These benefits motivate the studies on 

the prediction and control of the laminar-turbulent transition in supersonic and 

hypersonic boundary layers.  

The paths of laminar-turbulent transition are closely associated with the forcing 

environmental disturbances [4]. In low disturbance environments, instability waves 

experience a linear growth governed by eigenmodes at the early stage of development. 

If the initial disturbances are high enough, the eigenmode growth will be bypassed and 

breakdown emerges straightforwardly [5]. In flight environments, free-stream 

disturbances are regularly small [6], therefore, only small perturbations are concerned 

in this study. 

For the supersonic and hypersonic boundary layer on a flat plate or an 

axisymmetric body at zero angle attack, the linear growth stage is dominated by the 

first or second mode [7-9]. Generally, the first mode is dominant at the low Mach 

number, and the ruling by the second mode commences when the Mach number 

increases [9]. For an insulated wall, the second mode becomes dominant when 𝑀𝑎 >

4, and this number is smaller for a cooled wall [10]. 
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The first mode in the supersonic and hypersonic boundary layer is deemed as an 

extension of the Tollmien-Schlichting (T-S) mode, and the most unstable first-mode 

waves are three-dimensional (3D) waves [7]. The second mode is also called as “Mack 

mode” since Mack firstly found this higher mode using compressible linear stability 

theory (LST) [3]. The second mode waves belong to acoustic waves and propagate 

between the wall and the relative sonic line with a phase speed close to the velocity at 

the boundary layer edge [9, 11, 12]. The wavelength of the second mode approximates 

twice the boundary layer thickness, and the frequencies are commonly over 100kHz 

[13-15]. 

Practically, the prediction of the boundary layer transition is arduous due to the 

uncertainty of the environmental fluctuations [16]. Fortunately, the control of the 

boundary layer transition is not restricted by the transition locus. In current work, we 

focus on the transition control by stabilizing the first and second modes and also 

endeavor to understand the mechanisms of the first- and second-mode instabilities.  

1.1 A Review of Previous Work and Motivation 

Since theoretical works conducted by Mack [3, 7] and experimental studies[13-

15, 17-19] show that the second mode dominates the hypersonic boundary layer 

instabilities, the control of hypersonic boundary-layer transition mainly focuses on 

stabilizing the second mode using active or passive techniques, such as suction, 

pressure gradient, wavy wall, localized heating or cooling, ultrasonic absorptive 

coating (UAC), etc. [16, 20-22]. The second-mode disturbances can be induced by 
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external perturbations, therefore, the commonly used wall polishing which can 

diminish the internal disturbances cannot eliminate the second-mode disturbances.  

 Malik [20] theoretically investigated the effect of wall suction and pressure 

gradient on the second-mode instabilities, and the results show that both wall suction 

and pressure gradient can decrease the maximum growth rate of the second mode. 

However, wall suction as an active control technique is challenging to implement in 

hypersonic flights because of the severe flow conditions [23]. The pressure gradient 

which can be achieved by wall shaping (convex surface) may generate crossflow 

instabilities or Görtler vortices.  

Wall cooling can stabilize the first mode but destabilize the second mode [10]. 

Therefore, the delay of the mixed-mode transition using wall cooling depends on the 

dominant mode. Malik’s calculations [20] based on a boundary layer flow over a 5୭ 

half-angle sharp cone with boundary layer edge temperature of 111𝐾 show that the 

predicted transition Reynolds number (based on 𝑁 = 10) increases from 𝑅𝑒௧௥ =

10 × 10଺ of an adiabatic wall to 𝑅𝑒௧௥ = 15 × 10଺ of a cold wall at 𝑀ஶ = 5, but 

decreases in cold wall cases in contrast to the adiabatic wall case at 𝑀ஶ = 6 and 7. 

This suggests the wall cooling may be valid for the moderate supersonic boundary 

layer in which the first mode is dominant.  

Fedorov et al. [22] studied the effect of the localized wall heating or cooling on a 

7୭ half-angle sharp cone at zero angle of attack at Mach 6. The heating/cooling source 

is located near the leading edge. Both the experimental and numerical results indicate 

that the localized wall cooling can decrease disturbance magnitudes and delay 



 

4 

transition while the heating has the opposite effect. Zhao et al. [21] numerically 

investigated the importance of the position of the localized wall heating/cooling on the 

instability propagation in a flat-plate boundary layer at Mach 6. In their simulations, 

small disturbances are generated by a zero-net mass-flux blowing-suction actuator 

with a fixed frequency of 138.74kHz. The results show the relative location between 

the local heating/cooling and synchronization point of slow and fast acoustic mode is 

significant for hypersonic boundary layer instabilities. The localized heating/cooling 

changes the local growth rate of unstable waves, which affects the downstream 

perturbation magnitude. It is recommended to mount the cooling Upstream or the 

heating downstream of the synchronization point to delay the hypersonic boundary 

layer transition.   

Motivated by the stabilization caused by large Mach numbers in free shear layers 

and wakes [24, 25], Fedorov et al. [23] studied the effect of wavy walls, which generate 

small separation bubbles, on the second mode. The experiments carried out in the 

Institute of Theoretical and Applied Mechanics Tranzit-M shock tunnel at a free-

stream Mach number of 6 show that the disturbances associated with the second mode 

are damped by a wavy wall while the disturbances in a low-frequency band are slightly 

amplified at relatively large Reynolds numbers of 𝑅𝑒ଵஶ = 12.67 × 10଺mିଵ  and 

𝑅𝑒ଵஶ = 15.41 × 10଺mିଵ. Their numerical simulations also confirmed the decrease 

in the maximum amplitude of the second-mode fluctuations due to the wavy wall. 

Since the frequency of the second mode is very high (on the order of 100kHz), 

Malmuth et al. [11] speculated that the stabilization of the second mode might be 



 

5 

implemented by absorbing high-frequency disturbances via the porous surface of 

thermal protection systems (TPSs). They analyzed the inviscid instabilities of a 

hypersonic boundary layer at 𝑀 = 6 and 𝑇௪/𝑇௔ௗ ≈ 0.2 using the WKB method and 

found that a small reflective coefficient which corresponds to a strong absorption can 

significantly inhibit the second mode instability.  

Fedorov et al. [26] utilized viscous stability theory to analyze the stabilization 

effect of the porous layer composed of uniformly distributed cylindrical blind micro-

holes. The admittance of the porous layer was formulated using the theory of sound 

wave propagation in cylindrical conduits [27-29]. In their analyses, the stabilization 

effect of the porous layer is consistent with the results of Malmuth et al. [11], and the 

performance of the porous layer is closely associated with the porosity, porous layer 

thickness, and pore radius.  

Rasheed et al. [30] conducted experiments on a 5.06֊ half-angle slender cone 

covered by a porous wall on one half and a smooth wall on another half in the T5 

Hypervelocity Shock Tunnel at 𝑀𝑎� ≈ 5 . Experimental results demonstrate the 

porous wall successfully delays the boundary layer transition, which confirms the 

theoretical prediction [26]. Later, stabilization effects of porous walls composed of 

random microstructure (felt metal) and regular microstructure on the second mode 

instabilities were confirmed by the experiments carried out in the ITAM T-326 

hypersonic blowdown wind tunnel [31, 32]. The ultrasonic absorptive carbon-carbon 

material with small average pore sizes and low porosities also shows the potential to 

delay the hypersonic boundary layer transition [33]. Nevertheless, it was found that 
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the first mode is destabilized using felt metals [32].  

Some numerical simulations were conducted as well to study the stabilization 

effects of porous walls on hypersonic boundary layer instabilities [34-38]. In the 

simulations performed by Sandham and Lüdeke [35], individual pores were meshed 

and resolved rather than modeled. The stabilization effect was found to be closely 

associated with the porosity and pore depth, while the pore shape did not play a 

significant role. Moreover, they found that the growth rate obtained from numerical 

simulations was smaller than the prediction from LST by 10~30%.  

Brès et al. [34, 37] numerically investigated the stabilizing effect of porous 

coatings consisting of a uniform array of slots with different aspect ratios (width/depth) 

and porosities on hypersonic boundary layer instabilities at 𝑀𝑎� = 6. The results 

show porous coatings with deep pores operate in an attenuative regime in which 

acoustic waves are attenuated due to fluid viscosity. Porous coatings with relatively 

shallow pores work in the cancellation or reinforcement regimes depending on the 

reflection of acoustic waves in the pores. Their linear simulations agree well with the 

prediction of LST, excluding one case dominated by resonant interactions. The mode 

linked to the acoustic resonance was found more unstable than the second mode and 

should be circumvented in the UAC design. 

For the design of UAC, Brès et al. [39] emphasized two parameters: cavity depth 

and porosity. They derived a formula to determine the cavity depth, which corresponds 

to minimum reflection for the frequency of the most unstable second mode waves. 

According to their parametric study, high porosity is recommended. Essentially, their 
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guidelines for the UAC design is to minimize the reflection coefficient for acoustic 

waves. However, these guidelines are deficient in the quantitative requirements on the 

reflection coefficient.  

Stephen and Michael [40] investigated the effect of porous walls on the first mode 

of a hypersonic boundary layer. In their theoretical linear stability analyses, porous 

coatings, including regular microstructures and random microstructures employed in 

the experiments of Ref. [31, 32, 41], were found to destabilize the first mode. Wang 

and Zhong [42] found the destabilization of the first mode is associated with the 

admittance phase of porous coatings. Carpenter and Porter [43] found that the first 

mode can be stabilized in the incompressible boundary layer on a flat plate when the 

admittance phase approaches 𝜋/2. 

Essentially, the reflection coefficient of porous walls for incident waves is a 

function of admittance magnitude and phase. Quantitative requirements for the design 

UAC may be resolved based on the admittance magnitude and phase. Moreover, the 

analyses based on the admittance magnitude and phase can give insight into the 

mechanisms of the impact of porous walls on the wall disturbance as the relation of 

the velocity and pressure fluctuations is provided by the admittance straightforwardly.  

Unnikrishnan and Gaitonde [44, 45] utilized momentum potential theory to 

analyze the interactions of the fluid-thermodynamic components. They found that the 

source term generated by the thermal component is significant for the amplification of 

acoustic instabilities. Besides, the Rijke tube indicates that the phase of heat transfer 

is the key to excite acoustic waves. Therefore, it is motivated to perform phase analyses 
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of the disturbance energy equation to study the mechanisms of the amplification of the 

first and second modes.  

1.2 The Scope of Current Work 

This thesis consists of six chapters, including this brief introduction. The 

methodology, including theoretical and numerical methods, is presented in Chapter 2. 

In Chapter 3, theoretical studies on the effects of porous walls on the first and second 

modes are described, and the mechanisms of the amplification of the first and second 

modes with and without porous walls are also discussed based on the phase analysis 

on the disturbance energy equation. In Chapter 4, the theoretical predictions are 

validated using direct numerical simulations (DNS), and the mechanisms of the 

amplification of the second mode with and without porous walls are investigated again 

based on DNS results which provide quantitative comparisons. Chapter 5 describes a 

strategy to design ultrasonic absorptive coating (UAC) to stabilize a supersonic 

boundary layer, in which the first and second mode coexist. Chapter 6 is the conclusion 

of current work. 
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Chapter 2 Methodology 

This chapter describes the theoretical and numerical approaches utilized in this 

thesis. In the theoretical studies, linear stability theory is employed, and mean flow 

quantities are obtained using a self-similar solution. While in the numerical 

investigations, direct numerical simulations (DNS) are performed to validate the 

theoretical prediction and enhance the understanding of the mechanism of the effect 

of porous walls on hypersonic boundary-layer instability.  

2.1 Linear Stability Theory 

The instability problem in a compress viscous hypersonic or supersonic boundary 

layer can be resolved using the linear stability theory (LST) [7, 8, 46-49] or the 

parabolized stability equation (PSE) [50-57]. Fedorov [9], in his review paper, pointed 

out the shortcoming of the PSE method is that it could not get through the branch point 

of the fast and slow mode if the branch point falls in the real axis. In the current work, 

linear stability theory is chosen to analyze the hypersonic or supersonic boundary layer 

instabilities. 

2.1.1 Governing Equations for Small Disturbances 

The Navies-Stocks equations for a compressible viscous flow are 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥ք

(𝜌𝑣ք) = 0 (2.1) 

𝜌 ভ
𝜕𝑣ք

𝜕𝑡
+ 𝑣օ

𝜕𝑣ք

𝜕𝑥օ

ম = −
𝜕𝑝

𝜕𝑥ք

+
𝜕

𝜕𝑥ք

গ𝜆
𝜕𝑣ֆ

𝜕𝑥ֆ

ঘ +
𝜕

𝜕𝑥օ

঳𝜇 ভ
𝜕𝑣ք

𝜕𝑥օ

+
𝜕𝑣օ

𝜕𝑥ք

ম঴ (2.2) 
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𝑐֋ গ
𝜕𝑇

𝜕𝑡
+ 𝑣ք

𝜕𝑇

𝜕𝑥ք

ঘ =
𝜕

𝜕𝑥ք

গ𝑘
𝜕𝑇

𝜕𝑥ք

ঘ +
𝜕𝑝

𝜕𝑡
+ 𝑣ք

𝜕𝑝

𝜕𝑥ք

+𝜆 গ
𝜕𝑣ք

𝜕𝑥ք

ঘ
ϵ

+
𝜇

2
 ভ

𝜕𝑣ք

𝜕𝑥օ

+
𝜕𝑣օ

𝜕𝑥ք

ম
ϵ (2.3) 

where 𝑣ք is the velocity component in 𝑖 direction, 𝑥ք the 𝑖 axis, 𝜌 the density, 𝑝 

the pressure, 𝑇  the temperature, 𝜇 the first coefficient of viscosity, 𝜆 the second 

coefficient of viscosity, 𝑘 the thermal conductivity, and 𝑐֋ the specific heat. In this 

work, Stokes’ hypothesis is adopted, i.e., 𝜆 = − ϵ
ϯ
𝜇. The index summation rule is also 

applied in the above equations.  

The equation of state for ideal gases is given by 

𝑝 = 𝜌𝑅𝑇  (2.4) 

where 𝑅 is the gas constant. In the following chapter, the Reynolds number is also 

denoted by 𝑅 . Indeed, it is easy to distinguish between the gas constant and the 

Reynolds number.  

This study focuses on the flat-plate boundary layer and hence Cartesian 

coordinates 𝑥,  𝑦,  𝑧  are utilized, and the coordinate 𝑥  and 𝑧  represent the 

streamwise and spanwise directions, respectively, and 𝑦 is normal to the wall. The 

velocities 𝑢,  𝑣,  𝑤  are the components in 𝑥,  𝑦,  𝑧  directions, respectively. The 

transient quantities are decomposed into mean-flow quantities and small fluctuations, 

as shown below: 

𝑢 = 𝑈̅ + 𝑢஥,    𝑣 = 𝑉̅ + 𝑣஥,   𝑤 = 𝑊࣓࣒࣒࣒࣑ + 𝑤஥

𝑝 = 𝑃̅ + 𝑝஥,   𝑇 = 𝑇̅ + 𝑇 ஥,    𝜌 = 𝜌 ̅+ 𝜌஥

𝜇 = 𝜇̅ + 𝜇஥,   𝜆 = 𝜆̅ + 𝜆஥,    𝑘 = 𝑘̅ + 𝑘஥

(2.5) 

where bars denote the mean-flow quantities and primes denote disturbances. 
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Substituting Equation (2.5) into Equation (2.1) - (2.4) and then subtracting the 

governing equations of the mean flow, we yield the governing equation for small 

perturbations: 

 𝐶֏

𝜕𝜙

𝜕𝑡
+ 𝐶֓

𝜕𝜙

𝜕𝑥
+ 𝐶֔

𝜕𝜙

𝜕𝑦
+ 𝐶֕

𝜕𝜙

𝜕𝑧
+ 𝐶Ј𝜙 = 𝐶֓֓

𝜕ϵ𝜙

𝜕𝑥ϵ
+ 𝐶֓֔

𝜕ϵ𝜙

𝜕𝑥𝜕𝑦

+𝐶֔֔

𝜕ϵ𝜙

𝜕𝑦ϵ
+ 𝐶֓֕

𝜕ϵ𝜙

𝜕𝑥𝜕𝑧
+ 𝐶֔֕

𝜕ϵ𝜙

𝜕𝑦𝜕𝑧
+ 𝐶֕֕

𝜕ϵ𝜙

𝜕𝑧ϵ
+ 𝐹։

 (2.6) 

where 𝜙  denotes the perturbation vector and 𝜙 = [𝑢஥, 𝑣஥, 𝑝஥, 𝑇 ஥, 𝑤஥]յ  (the 

superscript 𝑇  denotes the operator of the transpose), the matrix 𝐶ք (𝑖 stands for the 

subscripts in Equation (2.6) for simplicity) contains 5 × 5 elements and are evaluated 

by the mean-flow quantities, 𝐹։  denotes the nonlinear term. In this study, the 

nonlinear term is neglected, therefore 𝐹௡ = 0. 

 We assume the disturbance vector 𝜙 can be expressed as 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓(𝑦)𝑒ք(ᆿ֓+ᇀ֕−ᇖ֏) (2.7) 

where 𝛼 and 𝛽 stand for the streamwise and spanwise wavenumbers, respectively, 

𝜔 denotes the frequency, 𝜓 is the eigenfunction vector given by  

𝜓 = ज़𝑢̂, 𝑣,̂ 𝑝̂, 𝑇 ̂ , 𝑤̂ड़
յ

(2.8) 

where hats represent the eigenfunction. Substituting Equation (2.7) into Equation (2.6), 

we yield  

𝐶 ̃
Ј𝜓 + 𝐶 ̃

֓

𝜕𝜓

𝜕𝑥
+ 𝐶 ̃

֔

𝜕𝜓

𝜕𝑦
= 𝐶֓֓

𝜕ϵ𝜓

𝜕𝑥ϵ
+ 𝐶֓֔

𝜕ϵ𝜓

𝜕𝑥𝜕𝑦
+ 𝐶֔֔

𝜕ϵ𝜓

𝜕𝑦ϵ
(2.9) 

where the matrix 𝐶 ̃
Ј, 𝐶 ̃

֓ and 𝐶 ̃
֔ are given by 

𝐶 ̃
Ј = −𝑖𝜔𝐶֏ + 𝐶Ј + 𝑖𝛼𝐶֓ + 𝑖𝛽𝐶֕ + 𝛼ϵ𝐶֓֓ + 𝛼𝛽𝐶֓֕ + 𝛽ϵ𝐶֕֕ 

𝐶 ̃
֓ = 𝐶֓ − 2𝑖𝛼𝐶֓֓ − 𝑖𝛽𝐶֓֕ 

𝐶 ̃
֔ = 𝐶֔ − 𝑖𝛼𝐶֓֔ − 𝑖𝛽𝐶֔֕ 
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We assume the local boundary layer is quasi-parallel, which means the derivative in 

the streamwise direction is negligible, then Equation (2.9) reduces to 

𝐶 ̃
Ј + 𝐶 ̃

֔

𝜕𝜓

𝜕𝑦
− 𝐶֔֔

𝜕ϵ𝜓

𝜕𝑦ϵ
= 0 (2.10) 

The explicit form of Equation (2.10) is given in Appendix A, in which the bars 

representing mean quantities are dropped for simplicity. The boundary conditions for 

Equation (2.10) are 

𝑢̂ = 𝑤̂ = 𝑇̂ = 0, 𝑣̂ = 𝐴𝑝̂,     𝑦 = 0

𝑢̂ = 𝑣̂ = 𝑤̂ = 𝑇̂ = 0,     𝑦 → ∞
(2.11) 

where 𝐴 represents the admittance of porous walls. For the smooth solid wall, 𝐴 is 

equal to zero. Then Equation (2.10) and (2.11) constitute the dispersion relation for 

small disturbances propagating in boundary layers. For a temporal problem, the 

wavenumbers 𝛼 and 𝛽 are given and 𝜔 is unknown, while for a spatial problem, 

𝜔 and wave propagation angle arctan (𝛽/𝛼֍) (or 𝛽) are given and 𝛼 is unknown. 

The unknown parameter is a complex number and can be solved using local or global 

methods [46, 58-61]. In this study, we consider the spatial problem. The growth rate 

of an eigenmode is −𝛼ք. If 𝛼ք < 0, the mode is unstable. 

 

2.1.2 Self-similar Solution of Boundary Layer Flow 

For the flat-plate boundary layer, mean-flow variables can be obtained via a self-

similar solution or by computational fluid dynamics (CFD). Here we describe the self-

similar solution.  

The governing equations for a flat-plate boundary layer can be derived using the 
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Mangler-Levy-Lees transformation,  

𝑑𝜉 = 𝜌ր𝜇ր𝑈ր𝑟
ϵօ𝑑𝑥

𝑑𝜂 =
𝑈ր𝑟

օ

√
2𝜉

𝜌𝑑𝑦
(2.12) 

where subscript 𝑒 denotes the boundary layer edge, 𝑟 body radius, 𝑗 = 0 for a two-

dimensional boundary layer, and 𝑗 = 1 for an axisymmetric body. The governing 

equations in the 𝜉 − 𝜂 coordinates can be written as [62]: 

(𝑐𝑓 ஥஥)஥ + 𝑓𝑓 ஥஥ = 0 (2.13) 

(𝑎φ𝑔
஥ + 𝑎ϵ𝑓

஥𝑓 ஥஥)஥ + 𝑓𝑔஥ = 0 (2.14) 

where 

𝑓 ஥(𝜂) =
𝑢

𝑈ր

,   𝑔(𝜂) =
𝐻

𝐻ր

,   𝑐 =
𝜌𝜇

𝜌ր𝜇ր

, 

𝑎φ =
𝑐

𝑃𝑟
,   𝑎ϵ = 𝑐 ঁ1 −

1

𝑃𝑟
ং

(𝛾 − 1)𝑀ր
ϵ

1 + φ
ϵ
(𝛾 − 1)𝑀ր

ϵ
, 

𝜌ր

𝜌
= ঁ1 +

1

2
(𝛾 − 1)𝑀ր

ϵং 𝑔 −
1

2
(𝛾 − 1)𝑀ր

ϵ𝑓 ஥ϵ 

and 𝐻 , 𝑃𝑟, 𝛾, and 𝑀  denote the total enthalpy, Prandtl number, specific heat ratio, 

and Mach number, respectively. The boundary conditions for Equations (2.13) and 

(2.14) are 

𝜂 = 0:   𝑓 = 𝑓 ஥ = 0,   𝑔 = 𝑔֒ (or 𝑔஥ = 0 for adiabatic wall) (2.15) 

𝜂 → ∞:   𝑓 ஥ = 1,   𝑔 = 1   (2.16) 

The Equations (2.13) and (2.14) with the boundary conditions (2.15) and (2.16) can be 

numerically solved using Newton’s iteration and Runge-Kutta methods. 

2.2 Numerical Method 

The governing equations for the numerical simulation are the two-dimensional 

Navier-Stokes equations. In Cartesian coordinates, the governing equations written in 
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a conservative form are given by  

𝜕𝑈

𝜕𝑡
+

𝜕(𝐹 − 𝐹ᇌ)

𝜕𝑥
+

𝜕(𝐺 − 𝐺ᇌ)

𝜕𝑦
= 0 (2.17) 

where 𝑈  is the vectors of flow variables, 𝐹  and 𝐹ᇌ  the vectors of inviscid and 

viscous flux in the streamwise direction, respectively, 𝐺  and 𝐺ᇌ  the vectors of 

inviscid and viscous flux in the wall-normal direction, respectively. The components 

of the above vectors are given by 

𝑈 =

⎝

⎜⎜
⎛

𝜌
𝜌𝑢
𝜌𝑣
𝑒 ⎠

⎟⎟
⎞

,   𝐹 =

⎝

⎜⎜
⎜⎛

𝜌𝑢

𝜌𝑢ϵ + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢⎠

⎟⎟
⎟⎞,   𝐹ᇌ =

⎝

⎜⎜
⎜⎛

0
𝜏֓֓

𝜏֓֔

𝑢𝜏֓֓ + 𝑣𝜏֓֔ − 𝑞֓⎠

⎟⎟
⎟⎞

𝐺 =

⎝

⎜⎜
⎜⎛

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣ϵ + 𝑝

(𝑒 + 𝑝)𝑣⎠

⎟⎟
⎟⎞,   𝐺֑ =

⎝

⎜⎜
⎜⎛

0
𝜏֓֔

𝜏֔֔

𝑢𝜏֓֔ + 𝑣𝜏֔֔ − 𝑞֔⎠

⎟⎟
⎟⎞

(2.18) 

where  

𝑒 = 𝜌 ঁ𝐶֑𝑇 +
1

2
𝑢ϵ +

1

2
𝑣ϵং 

𝜏֓֓ = 2𝜇
𝜕𝑢

𝜕𝑥
−

2

3
𝜇 গ

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
ঘ , 𝜏֓֔ = 𝜏֔֓ = 𝜇 গ

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
ঘ, 

𝜏֔֔ = 2𝜇
𝜕𝑣

𝜕𝑦
−

2

3
𝜇 গ

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
ঘ ,  𝑞֓ = −𝑘

𝜕𝑇

𝜕𝑥
,  𝑞֔ = −𝑘

𝜕𝑇

𝜕𝑦
 

where 𝐶֑ is the specific heat capacity at constant volume and 𝑘 denotes the heat 

conductivity coefficient. The Stokes’ hypothesis is employed in the numerical 

simulations, too. The dynamic viscosity coefficient is calculated using Sutherlands law 

𝜇 = 𝜇֍րց ভ
𝑇

𝑇֍րց

ম

ɘ
ɞ 𝑇֍րց + 𝑆

𝑇 + 𝑆
(2.19) 

where 𝜇֍րց = 1.716 × 10−Θkg(ms)−φ, 𝑇֍րց = 273.15K and 𝑆 = 110.4K. The heat 

conductivity coefficient 𝑘 is obtained via a constant Prandtl number. The governing 

equations are closed by the equation of state of an ideal gas (i.e., Equation (2.4)) 

 Equations (2.17) are numerically solved using high-order finite-difference 
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schemes. The fifth-order upwind scheme is utilized to discretize the inviscid 

convective flux terms, and the fourth-order central difference scheme is applied to the 

discretization of the viscous flux terms. The temporal integration is implemented using 

an explicit third-order Runge-Kutta method. This approach has been successfully 

utilized to compute the stability problem of a hypersonic boundary layer over a blunt 

cone [63, 64]. 

 In the unsteady simulations, disturbances are induced by a blowing-suction 

actuator, which is given by 

𝑞ֈ
஥ (𝑥, 𝑡) =

𝜌֒𝑣֒

𝜌�𝑈�

= 𝜀 sin গ2𝜋
𝑥 − 𝑥φ

𝑥ϵ − 𝑥φ

ঘ sin(𝜔𝑡) ,  𝑥φ ≤ 𝑥 ≤ 𝑥ϵ (2.20) 

where 𝜀 is the disturbance magnitude and 𝜔 is the disturbance circular frequency. 

When a porous wall is employed, the porous wall boundary condition is given by [36]  

𝑣֒(𝑥, 𝑡) = 𝑝֒
஥ (𝑥, 𝑡)Real(𝐴) −

1

𝜔

𝜕𝑝֒
஥ (𝑥, 𝑡)

𝜕𝑡
Imag(𝐴) (2.21) 

where 𝑝֒
஥ (𝑥, 𝑡)  is the pressure perturbation and 𝑝֒

஥ (𝑥, 𝑡) = 𝑝֒(𝑥, 𝑡) − 𝑝֒(𝑥, 0) , 

Real(𝐴) and Imag(𝐴) represent the real part and imaginary part of the admittance 

𝐴 of the porous wall, respectively. In the right-hand side of Equation (2.21), the 

negative sign of the second term is due to the assumption that the time dependence of 

normal incident waves is in the form of exp(−𝑖𝜔𝑡). 

 To compare DNS and LST results, the growth rate and phase speed of fluctuations 

can be determined by 

−𝛼ք =
1

|𝑝֒
஥ |

𝑑|𝑝֒
஥ |

𝑑𝑡
(2.22) 

𝑐 = 𝜔
𝑑𝑥

𝑑𝜑
 (2.23) 

where |𝑝֒
஥ |  is the wall pressure perturbation magnitude and 𝜑  the phase angle, 
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which are obtained using Fast Fourier Transform (FFT). It should be noted that the 

imaginary part of the complex vector obtained from FFT needs to change its sign to 

compare with LST results as the time dependence in FFT is in the form of exp(𝑖𝜔𝑡), 

which is contrary to the form of exp(−𝑖𝜔𝑡) used in LST calculations. 
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Chapter 3 Theoretical Studies on the Effects of Porous 

Wall on Hypersonic Boundary Layer Instabilities 

This chapter describes the effect of porous walls on the stability of a hypersonic 

boundary layer flow. Previous works on the stabilization of hypersonic boundary 

layers mainly focus on the stabilization of the second mode. In this study, both the first 

and second modes are considered. For the first mode, oblique waves are the most 

unstable. Therefore, three-dimensional instabilities are also taken into account in this 

chapter.  

A flat-plate boundary layer is employed in this chapter and the flow parameters 

utilized in computations are: Mach number 𝑀௘ = 6, Reynolds number 𝑅 = 2000, 

Prandtl number 𝑃𝑟 = 0.72, and specific gas ratio 𝛾 = 1.4. The dynamic viscosity 𝜇 

is calculated using a power law 
ఓ

ఓ೐
= ቀ

்

೐்
ቁ

௡

 with 𝑛 = 0.7. The wall is assumed to be 

insulated. In this chapter, all the quantities are non-dimensional. Velocity, density, 

temperature, and other variables are nondimensionalized by their corresponding values 

of the mean flow at the boundary layer edge, pressure by 𝜌௘
∗𝑈௘

∗ଶ, all the lengths by 

𝑙∗ = ඥ𝜇௘
∗𝑥∗/(𝜌௘

∗𝑈௘
∗), and time by 𝑙∗/𝑈௘

∗. The velocity and pressure profiles of the 

basic flow are obtained from a self-similar solution, and the calculated non-

dimensional boundary layer thickness is equal to 16.  

In this study, the terminology of discrete modes proposed by Fedorov and Tumin 

[65] is also adopted. The discrete modes consist of fast and slow modes, which 

originate from the acoustic modes near the leading edge with different propagation 

speeds. Generally, the slow mode is unstable for adiabatic walls while the fast mode 
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is unstable if the wall is very cold [65]. Without specific notation, the unstable modes 

in this chapter belong to the slow mode. 

3.1 Effect of Admittance on the first and second modes 

Previous theoretical studies on the second-mode stabilization and the design of 

UAC particularly emphasize the significance of the reflection coefficient which 

represents the absorptive capacity of a UAC. As aforementioned, this parameter is a 

function of disturbance frequency, admittance, or impedance. In this section, a given 

admittance 𝐴 = |𝐴| exp(𝑖𝜃) is imposed to substitute for a realistic structure of a 

porous wall. The admittance magnitude |𝐴| essentially depends on the porous wall 

conditions and the frequency of incident waves. For instance, the non-dimensional 

admittance magnitude of a configuration analogous to that presented in Ref [32] can 

be as large as 9. The admittance phase treated in this section is in the range of 

[0.5𝜋, 1.5𝜋] which includes all the admittance phases of the UACs reported in Ref. 

[31, 34, 37, 66].  

3.1.1 Admittance Phase 

We first consider the effects of the admittance phase on the first and second modes. 

Here we set |𝐴| = 4. The contour of the growth rate as a function of the admittance 

phase and the non-dimensional angular frequency is illustrated in Figure 3.1. Moreover, 

five typical admittance phases 𝜃 = 0.5𝜋,  0.75𝜋,  𝜋,  1.25𝜋, and 1.5𝜋 are chosen to 

distinctly compare their performance on the first and second modes, as depicted in 

Figure 3.2.  



 

19 

 

Figure 3.1 Contour of growth rate under the admittance with its phase in the range of 

[0.5𝜋, 1.5𝜋] and its magnitude of |𝐴| = 4.  

 

 

Figure 3.2 Growth rate of (a) the first mode and (b) the second mode under different 

admittance phases. The admittance magnitude is |𝐴| = 4 . Baseline denotes the 

smooth-solid-wall case, which is the same for the following figures.  

 

Figure 3.1 shows the admittance phase is significant for the growth rate of the first 

and second modes as well as the non-dimensional angular frequency of the second 

mode. Concerning the first mode, the maximum growth rate of the first mode decreases 

at 𝜃 = 0.5𝜋, which is consistent with the finding by Carpenter and Porter [43], while 

when the admittance phase is close to 𝜋, the first mode is destabilized and according 

to Figure 3.2(a) its maximum growth rate is practically doubled compared with the 
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baseline. By contrast, the second mode is damped remarkably as the admittance phase 

is a little larger than 𝜋, but is destabilized when  𝜃 = 0.5𝜋 and 𝜃 = 1.5𝜋. 

Unlike the first mode, Figure 3.1 and Figure 3.2(b) clearly show that the spectra 

of the second mode shift remarkably when the admittance phase tends to 0.5𝜋 or 

1.5𝜋. For the case that the admittance phase approaches 0.5𝜋, the frequency of the 

peak growth rate shifts to a lower frequency band compared with the baseline. While 

for the case that the admittance phase tends to 1.5𝜋, the frequency of the peak growth 

rate shifts in an inverse direction.  

Figure 3.2(b) illustrates the peak growth rate of the second mode at 𝜃 = 1.5𝜋 is 

lower than that of the baseline case, however, disturbances in this scenario may still 

be significantly amplified. As the non-dimensional angular frequency is a function of 

frequency 𝑓∗  and position 𝑥∗ , namely 𝜔 = ϵᇎց∗

նՊ
∗ ఊ֓∗

ճր
, for a certain perturbation 

frequency 𝑓∗, the second-mode waves are amplified in a long distance due to large 𝜔. 

The above conclusions indicate that for the stabilization of the first mode, the 

admittance phase should be close to 0.5𝜋, while for the stabilization of the second 

mode, the admittance phase close to 𝜋 is favorable. 

3.1.2 Admittance Magnitude 

The effect of admittance magnitude on the amplification of the first and second 

modes is examined at five typical admittance phases 𝜃 = 0.5𝜋, 0.75𝜋, 𝜋, 1.25𝜋, and 

1.5𝜋. The growth rate varied along with the non-dimensional angular frequency under 

different admittance phases is depicted in Figure 3.3. 
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Figure 3.3 Growth rate of the first and second modes at the admittance phases of (a) 

𝜃 = 0.5𝜋, (b) 𝜃 = 0.75𝜋, (c) 𝜃 = 1.5𝜋, (d) 𝜃 = 1.25𝜋 and (e) 𝜃 = 𝜋.  

 

It can be observed from Figure 3.3 that, for each admittance phase, the increase in 

the admittance magnitude has a monotonic influence on the growth rate of the first and 

second modes and the frequency shift of the second mode. It is evident that the increase 

in the admittance magnitude consolidates the stabilization or destabilization effects on 

the first and second modes caused by porous walls with a fixed admittance phase. 

Figure 3.3 also demonstrates a large admittance magnitude contributes to the mode 
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merging as the admittance phase is about in the range of 0.75𝜋 ≤ 𝜃 ≤ 𝜋, as depicted 

in Figure 3.3 (b) (d) and (e). The merging of the first and second modes results in a 

wide frequency band for unstable disturbances, which is detrimental to the stabilization 

of hypersonic boundary layers. 

Figure 3.3 reveals that for the design of UAC, the admittance magnitude should 

be carefully handled in the case that the mixed mode dominates the linear growth of 

fluctuations. Pervious design guidelines strive to minimize the reflective coefficient, 

which indeed can be achieved by a large admittance magnitude and an admittance 

phase approximating 𝜋. Apparently, this strategy may result in deterioration of the 

laminar flow control. 

3.2 Three-dimensional Instabilities 

It is well acknowledged that the most unstable first-mode wave is the oblique wave 

while in terms of the second mode, the two-dimensional (2D) wave is the most 

amplified wave [7]. Here we investigate the effects of porous walls on the three-

dimensional (3D) disturbances, including the first and second modes. 

Figure 3.4 schematically shows the propagation of an oblique wave. The wave-

propagation angle is defined by the wave propagation direction deviating from the 

streamwise direction, namely arctan(𝛽/𝛼֍). The growth rates of the oblique waves 

on the solid wall are illustrated in Figure 3.5. It can be seen that the first mode becomes 

more unstable when the wave-propagation angle increases, while the second mode is 

inhibited by the increased wave-propagation angle and becomes stable when the wave-
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propagation angle is up to 45π.  

 

 

Figure 3.4 Schematic diagram of the propagation of oblique waves. 

 

 

Figure 3.5 Growth rate of the first and second modes on the smooth solid wall under 

different wave-propagation angles arctan(𝛽/𝛼֍). 

3.2.1 Effect of Admittance Phase 

The effect of the oblique waves is investigated under different admittance phases. 

Here four wave-propagation angles arctan(𝛽/𝛼֍) = 0, 15π , 30π  and (d) 45π  are 

employed. The growth rates of the first and second modes at various admittance phases 

are depicted in Figure 3.6.  
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Figure 3.6 Growth rate of the oblique first- and second-mode waves at the admittance 

magnitude of |𝐴| = 4 and admittance phase in the range of [0.5𝜋,  1.5𝜋]. The wave-

propagation angles are: (a) arctan(𝛽/𝛼֍) = 0 , (b) arctan(𝛽/𝛼֍) = 15π , (c) 

arctan(𝛽/𝛼֍) = 30π  and (d) arctan(𝛽/𝛼֍) = 45π . Baseline denotes the smooth-

solid-wall case. 

 

 Compared with the 2D instabilities illustrated in Figure 3.6(a), Figure 3.6 (b) (c) 

and (d) show the admittance phase causes analogous effects on the 3D fluctuations. 

Moreover, in terms of the growth rate, the elevation of the first and the decline of the 

second mode along with the increase of the wave-propagation angle also emerge with 

porous walls employed, indicating the regularity of the effects of the wave-propagation 

angle on the first and second modes is not changed by porous walls. Figure 3.6(d) also 

shows that in the case of arctan(𝛽/𝛼֍) = 45π, the second mode which is stable in the 

smooth-solid-wall case, is destabilized by the porous wall with the admittance phase 
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of 𝜃 = 0.5𝜋, which suggests the destabilization effect of porous walls is not modified 

by the wave-propagation angle. Consequently, it could be concluded that the effects 

of the wave-propagation angle and the admittance phase of a porous wall are 

independent of each other. 

3.2.2 Effect of Admittance Magnitude 

The previous section shows that for 2D instabilities the increase in the admittance 

magnitude strengthens the impact of porous walls on the first and second mode. For 

the 3D perturbations, the effects on the first and second modes due to the rise of the 

admittance magnitude are examined with a wave-propagation angle of arctan(𝛽/

𝛼֍) = 30π  employed. The comparisons between the 2D instabilities and 3D 

instabilities under two typical admittance phases 𝜃 = 0.5𝜋 and 𝜃 = 𝜋 are depicted 

in Figure 3.7. 

Figure 3.7(b) and 3.7(d) show, of the 3D instabilities, a large admittance 

magnitude facilitates the effects of porous walls on the first and second modes, which 

is analogous to that of the 2D instabilities. By comparing 2D instabilities and 3D 

instabilities under the same admittance phase, it can be seen that the regularities that 

the oblique first-mode waves are more unstable and the oblique second-mode waves 

are more stable are not altered by the increase in the admittance magnitude. Therefore, 

it could be deduced that the effects of the wave-propagation angle and the admittance 

magnitude of porous walls are also independent of each other. 
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Figure 3.7 Growth rate of 2D waves (left-hand plots) and 3D waves (right-hand plots) 

at the admittance phase of (a) (b) 𝜃 = 0.5𝜋, (c) (d) 𝜃 = 𝜋. The wave-propagation 

angle of the 3D waves is arctan५ ᇀ
ᆿ՗

६ = 30π. 

 

Consequently, the effects of porous walls on the first and second modes are 

independent of the wave-propagation angle. When oblique waves are taken into 

account, the stabilization of the oblique first-mode waves requires considerably large 

admittance magnitude.  

 

3.3 Reversal of Unstable Modes 

A porous wall composed by regular or random microstructures for normal incident 

waves commonly has an admittance phase in the range of [0.5𝜋, 1.5𝜋]. Up to now, the 

effect of the admittance phase beyond this range has not been investigated before. Here 
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we consider the admittance phase beyond this range to examine its effects on the 

eigenmode of hypersonic boundary layers. For simplicity, we continue to use “porous 

wall” to denominate such a semi-transparent wall.  

Figure 3.8 illustrates the effects of porous walls with an admittance phase of 𝜃 =

0 on the fast and slow modes. It can be seen from Figure 3.8 (a) that in the track of 

the growth rate, the fast and slow modes are flipped over when the admittance 

magnitude exceeds a threshold. Figure 3.8(b) shows that the phase-speed branches of 

the fast and slow modes are also interchanged across the synchronization point. 

Moreover, the peak growth rate of the unsteady mode keeps growing along with the 

increase of the admittance magnitude. 

 

Figure 3.8 (a) Growth rate and (b) phase speed of the fast (F) and slow (S) modes under 

different admittances with the admittance of 𝜃 = 0. 

 

The reversal of unstable modes due to porous walls with a phase of 𝜃 = 0 also 

emerges in the range of 𝜃 ∈ (−0.5𝜋,  0.5π), where the real part of admittance is 

positive, as shown in Figure 3.9. It indicates that the real part of admittance is 

significant for the eigenmode branch. When it is negative or of a little positive value, 
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the fast mode is stable, and the slow mode is unstable. If it is positive and exceeds a 

threshold, a contrary scenario is manifested.  

 

 

Figure 3.9 Growth rate (left-hand plot) and phase speed (right-hand plot) of the fast 

and slow modes under different admittance phases with admittance magnitude of 

|𝐴| = 4. 

 

3.4 Simplified Linear Stability Equations 

The eigenvector of an eigenmode within supersonic/hypersonic boundary layers 

can provide the shape information of a disturbance component. Substituting the 

eigenvector and eigenvalue obtained from LST calculations to the linear stability 

equation (2.10), we can simplify the linear stability equations.  

Here we employ the mode at 𝜔 = 0.152 with 𝛼 = 0.164 − 0.004𝑖 and 𝛽 = 0, 
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which is the most unstable second mode under the current boundary layer, as an 

instance to simplify Equation (2.10). The components of the eigenvector are depicted 

in Figure 3.10. Each term in Equation (2.10) is evaluated, and then the explicit form 

of Equation (2.10) (see Appendix A) for 2D boundary layer flow (𝑊 = 0) can be 

recasted as followings: 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑢̂ = −

𝑑𝑈

𝑑𝑦

𝑣̂

𝑇
− 𝑖𝛼𝑝̂ +

1

𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑢̂

𝑑𝑦
+

𝑑𝑈

𝑑𝑦

𝑑𝜇

𝑑𝑇
𝑇̂ঘ + 𝑟𝑒𝑠. (3.1) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑣̂ = −

𝑑𝑝̂

𝑑𝑦
+

4

3𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑣̂

𝑑𝑦
ঘ + 𝑟𝑒𝑠. (3.2) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑤̂ = −𝑖𝛽𝑝̂ +

1

𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑤̂

𝑑𝑦
ঘ + 𝑟𝑒𝑠. (3.3) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑇̂ = −

𝑑𝑇

𝑑𝑦

𝑣̂

𝑇
− (𝛾 − 1)গ𝑖𝛼𝑢̂ +

𝑑𝑣̂

𝑑𝑦
+ 𝑖𝛽𝑤̂ঘ

+
𝛾

𝑅𝑃𝑟

𝑑ϵॕ𝜇𝑇̂ॖ

𝑑𝑦ϵ
+ 𝑟𝑒𝑠. (3.4)

 

where 𝑟𝑒𝑠. denotes the residual terms. The first three equations (3.1) – (3.3) are the 

linearized disturbance momentum equations. Equation (3.4) is a rewrite of the 

linearized disturbance energy equation (A.4) based on the internal energy rather than 

enthalpy in order to reveal the internal energy variation straightforwardly.  

 

Figure 3.10 Disturbance Components of the most unstable mode of the smooth-solid-

wall case with 𝜔 = 0.152, 𝛼 = 0.164 − 0.004𝑖, and 𝛽 = 0. All the components are 

normalized by the wall-pressure-disturbance magnitude ੵ𝑝̂
𝑤
ੵ. 
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Essentially, the residual terms in Equations (3.1) – (3.4) are negligible for both the 

first and second modes, including oblique waves. Here we choose two modes from the 

smooth-solid-wall case at 𝜔 = 0.063 and 𝜔 = 0.152 with a propagation phase angle 

of arctan५ ᇀ
ᆿ՗

६ = 30֊, which respectively represents the 3D first- and second-mode 

waves, for validation. The corresponding eigenvalues are 𝛼 = 0.071 − 0.00067𝑖 and 

𝛼 = 0.163 − 0.0017𝑖, respectively. The magnitudes of the terms in Equations (3.1) – 

(3.4) are examined for the first and second modes and their profiles along 𝑦 

coordinate are illustrated in Figure 3.11 and Figure 3.12, respectively. 

 

 

Figure 3.11 Magnitudes of the terms in Equation (3.1)-(3.4) at 𝜔 = 0.063  with 

arctan५ ᇀ
ᆿՎ

६ = 30֊ and eigenvalue of 𝛼 = 0.071 − 0.00067𝑖: (a) Equation (3.1), (b) 

Equation (3.2), (c) Equation (3.3), and (d) Equation (3.4). Here 𝑐  denotes the 

coefficient of each term, 𝑣𝑖𝑠.  the viscous term in the disturbance momentum 

equations, 𝑟𝑒𝑠.  the sum of the absolutes of the residual terms, 𝑑𝑖𝑣.  the term 
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−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६ and 𝑐𝑜𝑛𝑑. the thermal conduction term ᇁ
ճձ֍

տɞॕᇋյ̂ॖ

տ֔ɞ .  

 

 

Figure 3.12 Magnitudes of the terms in Equation (3.1)-(3.4) at 𝜔 = 0.152  with 

arctan५ ᇀ
ᆿՎ

६ = 30֊  and eigenvalue of 𝛼 = 0.164 − 0.0017𝑖,: (a) Equation(3.1), (b) 

Equation(3.2), (c) Equation(3.3) and (d) Equation(3.4). Here the legends are the same 

with those in Figure 3.11.  

 

 Figure 3.11 and 3.12 show, both for the first and second mode, the magnitudes of 

the residual terms of Equation (3.1) – (3.4) are fairly small along 𝑦 coordinate except 

the magnitude of the residual of Equation (3.4) at the wall. But it is negligible in 

contrast to the magnitudes of the terms ᇁ
ճձ֍

տɞॕᇋյ̂ॖ

տ֔ɞ  and −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६ 

at the wall, as shown in Figure 3.12 (d). Therefore, Equations (3.1) – (3.4) can be 

reduced to  
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1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑢̂ = −

𝑑𝑈

𝑑𝑦

𝑣̂

𝑇
− 𝑖𝛼𝑝̂ +

1

𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑢̂

𝑑𝑦
+

𝑑𝑈

𝑑𝑦

𝑑𝜇

𝑑𝑇
𝑇̂ঘ (3.5) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑣̂ = −

𝑑𝑝̂

𝑑𝑦
+

4

3𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑣̂

𝑑𝑦
ঘ (3.6) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑤̂ = −𝑖𝛽𝑝̂ +

1

𝑅

𝑑

𝑑𝑦
গ𝜇

𝑑𝑤̂

𝑑𝑦
ঘ (3.7) 

1

𝑇
(𝑖𝛼𝑈 − 𝑖𝜔)𝑇̂ = −

𝑑𝑇

𝑑𝑦

𝑣̂

𝑇
− (𝛾 − 1)গ𝑖𝛼𝑢̂ +

𝑑𝑣̂

𝑑𝑦
+ 𝑖𝛽𝑤̂ঘ

+
𝛾

𝑅𝑃𝑟

𝑑ϵॕ𝜇𝑇̂ॖ

𝑑𝑦ϵ
(3.8)

 

The continuity equation in Equation (2.10) is retained and rewritten here, as shown 

below 

𝛾𝑀𝑎ր
ϵ(𝑖𝛼𝑈 − 𝑖𝜔)𝑝̂ − (𝑖𝛼𝑈 − 𝑖𝜔)

𝑇̂

𝑇
+ 𝑖𝛼𝑢̂ +

𝜕𝑣̂

𝜕𝑦
+ 𝑖𝛽𝑤̂ −

𝑑𝑇

𝑑𝑦

𝑣̂

𝑇
= 0 (3.9) 

Equations (3.5) - (3.9) are the simplified linear stability equations. In the following 

sections, the disturbance energy equation (3.8) is utilized to analyze the mechanisms 

of the amplification of the first and second modes. Therefore, it is necessary to interpret 

the meaning of each term of Equation (3.8). For convenience, all the energy terms 

henceforth represent those in disturbance flow fields. On the left side of Equation (3.8), 

−𝑖𝜔 յ̂

յ
 denotes the time rate of change of internal energy, and 𝑖𝛼𝑈 յ̂

յ
 is heat transport 

by the mean flow. These two terms are significant for the change of internal energy in 

a finite control volume and their sum φ
յ

(𝑖𝛼𝑈 − 𝑖𝜔)𝑇̂ is the nominal total time rate of 

change of internal energy. On the right side of Equation (3.8), the first term − տյ
տ֔

֑̂
յ

 is 

the heat transport by the wall-normal velocity fluctuation, the second term 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६  represents the energy change due to dilatation 

fluctuations, and the last term φ
ճձ֍

տɞ

տ֔ɞ ॕ𝜇𝑇̂ॖ denotes the thermal conduction.  

It should be noted that − տյ
տ֔

֑̂
յ

 is a source term that draws energy from the mean-

flow field to the disturbance-flow field. In the current boundary layer, 
ௗ்

ௗ௬
≤ 0 (the 
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equality holds at the wall and the upper boundary layer edge), therefore, for a control 

volume in the boundary layer, the flow moving upwards brings high-temperature fluid 

elements into it, while the flow moving downwards brings low-temperature fluid 

elements into it. In this work, the simplified linear stability equations are not used to 

solve the eigenproblem, but to analyze the energy exchange in the boundary layer. All 

the eigenmodes are obtained still by resolving Equations (2.10) and (2.11). 

3.5 Instabilities of the First and Second Modes 

Unnikrishnan and Gaitonede [44] analyzed the energy interactions among the 

acoustic, vortical, and thermal components and found that the thermal component 

plays a great role in the growth of acoustic waves. With respect to the most unstable 

mode in the current boundary layer, the internal energy fluctuations around the critical 

layer (the phase speed of disturbances is equal to local mean-flow speed) and near the 

wall are comparable to the kinetic energy fluctuations sandwiched between the peaks 

of internal energy fluctuations, as shown in Figure 3.13. Therefore, it can be speculated 

that the internal energy fluctuations may influence the local instabilities. 

 

 

Figure 3.13 Comparison of the kinetic (|𝑈𝑢஥|) and internal energy ( |𝑇′ |/[𝛾(𝛾 −
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1)𝑀𝑎௘
ଶ]) fluctuations of the mode at 𝜔 = 0.152 with 𝛼 = 0.164 − 0.004𝑖. Here 𝛿 

denotes the boundary layer thickness, 𝑈 = 𝑐 represents the critical layer and 𝑐 is the 

phase speed, and 𝑈 = 𝑐 − 𝑎 is the sonic line and 𝑎 is the local speed of sound. 

 

It is well known that the Rijke tube can turn heat into sound [67]. According to 

Rayleigh’s criterion, the excitation of acoustic waves by heat addition depends on the 

phase of the vibration at which heat transfer occurs. The statements are given below: 

“If heat be communicated to, and abstracted from, a mass of air vibrating (for 

example) in a cylinder bounded by a piston, the effect produced will depend upon 

the phase of the vibration at which the transfer of heat takes place. If heat be given 

to the air at the moment of greatest condensation, or be taken from it at the moment 

of greatest rarefaction, the vibration is encouraged. On the other hand, if heat be 

given at the moment of greatest rarefaction, or abstracted at the moment of greatest 

condensation, the vibration is discouraged.” [68] 

This motivates us to consider the phase relations of the energy terms in Equation (3.8).  

3.5.1 Second-Mode Instability 

We first investigate the mechanisms of the second mode instabilities in the 

boundary layer over the smooth solid wall. Here we consider 2D instabilities as 2D 

waves are more unstable than 3D waves for the second mode. We choose the modes 

belonging to the second mode family at different frequencies 𝜔 = 0.13, 0.152, and 

0.17 for comparison. Their eigenvalues are 𝛼 = 0.13884 − 0.00048𝑖 , 0.16406 −
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0.00401𝑖, and 0.18543 − 0.0019𝑖, respectively. The corresponding eigenvectors are 

substituted into Equation (3.8). Figure 3.14 demonstrates the magnitude and phase 

profiles of the left-hand side terms of Equation (3.8) and Figure 3.15 illustrates those 

of the right-hand side terms of Equation (3.8). Noted that all the disturbance 

components are normalized by the wall pressure disturbance. 

 

 

Figure 3.14 Magnitude (left-hand plots) and phase (right-hand plots) of −𝑖𝜔 յ̂

յ
 (□), 

𝑖𝛼𝑈 յ̂

յ
 (△) and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) under different 𝜔 : (a)(b) 𝜔 = 0.13 , 𝛼 =

0.13884 − 0.00048𝑖; (c)(d) 𝜔 = 0.152, 𝛼 = 0.16406 − 0.00401𝑖; (e)(f) 𝜔 = 0.17, 
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𝛼 = 0.18543 − 0.0019𝑖. 

 

 

Figure 3.15 Magnitude (left-hand plots) and phase (right-hand plots) profiles of 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ (□), − տյ
տ֔

֑̂
յ

  (△), ᇁ
ճձ֍

տɞ

տ֔ɞ ॕ𝜇𝑇̂ॖ  (◇) and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) 

under different 𝜔: (a) (b) 𝜔 = 0.13, 𝛼 = 0.13884 − 0.00048𝑖; (c) (d) 𝜔 = 0.152, 

𝛼 = 0.16406 − 0.004𝑖; (e) (f) 𝜔 = 0.17, 𝛼 = 0.18543 − 0.0019𝑖.  

 

The magnitudes of −𝑖𝜔 յ̂

յ
 and 𝑖𝛼𝑈 յ̂

յ
 shown in the left plots of Figure 3.14 are 

considerably large in the vicinity of the critical layer (𝑦 ≈ 14 for the current three 
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cases). As their magnitudes are comparable in this region, the magnitude of their sum 

(𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 is fairly small. It indicates the advection energy transport by the mean 

flow is dominant for the internal energy variation in the region around the critical layer. 

Since (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
= 𝑖𝛼֍(𝑈 − 𝑐) յ̂

յ
− 𝛼ք𝑈

յ̂

յ
 and 𝛼֍ ≫ −𝛼ք, the sign alteration of 

𝑈 − 𝑐 accounts for a phase shift of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 across the critical layer, as shown 

in the right plots of Figure 3.14. 

Below the critical layer, on the left side of Equation (3.8), (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 is in 

phase with −𝑖𝜔 յ̂

յ
 and has a new phase shift, as depicted in the right plots of Figure 

3.14. This phase shift corresponds to a valley in the magnitude profile of 

(𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 shown in the left plots of Figure 3.14. Below this valley, the thermal 

convection 𝑖𝛼𝑈 յ̂

յ
 is negligible and hence (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 ~ − 𝑖𝜔 յ̂

յ
. On the right side 

of Equation (3.8), below the phase shift of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
, (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 basically has 

the same magnitude and phase with −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६, excluding the region that 

is very close to the wall. Therefore, the dilatation fluctuation accounts for the variation 

of internal energy near the wall. This conclusion agrees with the experimental findings 

by Zhu et al. [69] that dilatation fluctuations ruled by the second mode generate intense 

aerodynamic heating.  

Against the wall, ᇁ
ճձ֍

տɞ

տ֔ɞ ॕ𝜇𝑇̂ॖ has identical magnitude with −(𝛾 − 1)५𝑖𝛼𝑢̂ +

ᇝ֑̂
ᇝ֔

६. Indeed, the thermal conduction ᇁ
ճձ֍

տɞ

տ֔ɞ ॕ𝜇𝑇̂ॖ is passively induced by the near-

wall thermal fluctuations due to the fluctuating thermal expansion and contraction and 

provides energy to sustain the near-wall dilatation fluctuation.  

 Figure 3.15(d) shows that in the case 𝜔 = 0.152 which has the largest growth 
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rate among these three cases, − տյ
տ֔

֑̂
յ

 is nearly in phase with (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 

throughout the phase shift of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 crossing the critical layer. Moreover, 

Figure 3.15(c) shows − տյ
տ֔

֑̂
յ

 is on the same order of magnitude with (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 

on both the two sides of the critical layer. As −𝛼𝑖 cannot be negligible at the critical 

layer, its value becomes significant for the phase of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in the vicinity of 

the critical layer. The large value of −𝛼𝑖  in this case is associated with a high 

contribution of the convective heat transfer − տյ
տ֔

֑̂
յ

 to the internal energy perturbation.  

By contrast, in the cases 𝜔 = 0.13 and 𝜔 = 0.17 which have lower growth rates 

compared with the case 𝜔 = 0.152, the phase of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 diverges from the 

phase of − տյ
տ֔

֑̂
յ

 manifestly across the critical layer, as demonstrated in Figure 3.15(b) 

and (f). As a result, the heat transport by the wall-normal velocity fluctuation does not 

synchronize with the total time rate of change of internal energy around the critical 

layer, which diminishes the contribution of the energy transport by the wall-normal 

velocity fluctuation to the local internal energy fluctuations.  

Therefore, it could be concluded that the contribution of the heat transfer − տյ
տ֔

֑̂
յ

 

to the internal energy fluctuations accounts for the amplification of the second-mode 

instabilities. Moreover, the relative phase of − տյ
տ֔

֑̂
յ

 to (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in the vicinity 

of the critical layer is associated with the near-wall dilatation fluctuation. When the 

near-wall dilatation fluctuation is intensified, the wall-normal fluctuating velocity will 

be accelerated, which affects the energy transport by the wall-normal velocity 

fluctuation in the vicinity of the critical layer. Meanwhile, the critical-layer fluctuation 

also influences the near-wall fluctuation by changing the wall-normal fluctuating 
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velocity. Consequently, the near-wall fluctuation mutually interacts with the critical-

layer fluctuation, which underpins the growth of second-mode instabilities. 

3.5.2 First-Mode Instability 

 In terms of the first mode, we continue to conduct phase analysis on the simplified 

disturbance energy equation. Likewise, we focus on 2D instabilities in the smooth-

solid-wall case. The 3D instabilities will be analyzed in the following sections. We 

choose three non-dimensional angular frequencies: 𝜔 =0.03, 0.063, and 0.09. and the 

corresponding eigenvalues are 𝛼 = 0.0348 − 0.0002𝑖 , 0.07068 − 0.00039𝑖 , and 

0.09913 − 0.00028𝑖, respectively. These three eigenmodes all belong to the first mode 

family. The magnitude and phase profiles of the left-hand side terms of Equation (3.8) 

are depicted in Figure 3.16 and those of the right-hand side terms of Equation (3.8) are 

depicted in Figure 3.17, respectively. 

Analogous to the second mode, the magnitudes of −𝑖𝜔 յ̂

յ
 and 𝑖𝛼𝑈 յ̂

յ
 are 

remarkably large across the critical layer (𝑦 ≈ 13 for the current three cases), and only 

−𝑖𝜔 յ̂

յ
 is significant near the wall, as shown in the left-hand plots of Figure 3.16. As 

−𝛼ք is fairly small in these three cases, (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 is in phase with 𝑖𝛼𝑈 յ̂

յ
 above 

the critical layer and with −𝑖𝜔 յ̂

յ
 below the critical layer, as shown in the right-hand 

plots of Figure 3.16. Figure 3.17 (b) (d) and (f) demonstrate that across the critical 

layer the phase of − տյ
տ֔

֑̂
յ

 differs from that of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 evidently, which 

indicates the heat transport by the wall-normal velocity fluctuation slightly contributes 

to the internal energy fluctuation in this region.  
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Figure 3.16 Magnitude (left-hand plots) and phase (right-hand plots) profiles of −𝑖𝜔 յ̂

յ
 

(□), 𝑖𝛼𝑈 յ̂

յ
 (△) and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) under different 𝜔: (a) (b) 𝜔 = 0.03, 𝛼 =

0.0348 − 0.0002𝑖; (c) (d) 𝜔 = 0.063, 𝛼 = 0.07068 − 0.00039𝑖; (e) (f) 𝜔 = 0.09, 

𝛼 = 0.09913 − 0.00028𝑖.  
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Figure 3.17 Magnitude (left-hand plots) and phase (right-hand plots) profiles of 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ (□), − տյ
տ֔

֑̂
յ

  (△), ᇁ
ճձ֍

տɞ

տ֔ɞ ॕ𝜇𝑇̂ॖ  (◇) and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) 

under different 𝜔: (a) (b) 𝜔 = 0.03, 𝛼 = 0.0348 − 0.0002𝑖; (c) (d) 𝜔 = 0.063, 𝛼 =

0.07068 − 0.00039𝑖; (e) (f) 𝜔 = 0.09, 𝛼 = 0.09913 − 0.00028𝑖.   

 

A little below the critical layer, the phase of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ superposes on 

that of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in a certain range along 𝑦 coordinate, as shown in the right 

plots of Figure 3.17. Moreover, the width of the phase superposition is roughly 

proportional to the growth rate −𝛼ք . We conjecture this phase superposition is 
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associated with the amplification of the first mode wave. According to Rayleigh’s 

criterion, the excitation of the acoustic wave emerges as the time rate of change of heat 

adding synchronizes with that of the condensation. It is perfectly held by the phase 

overlap of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६  and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 herein. Therefore, the phase 

overlap of (𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in a wide region below the critical 

layer facilitates the local fluctuations.  

Against the wall, the passively induced thermal conduction 
ఊ

ோ௉௥

ௗమ

ௗ௬మ
൫𝜇𝑇෠൯ sustains 

the near-wall dilatation fluctuation, which is the same with the second mode instability.  

 

3.6 Mechanisms of the Effects of Porous Walls on Unstable Modes 

This section is to investigate the mechanism of the effect of porous walls on the 

first and second modes by performing phase analysis on the simplified linear stability 

equations. The mechanisms of the instabilities of the oblique first mode waves are also 

analyzed. 

3.6.1 Stabilization and Destabilization of the Second Mode 

According to the foregoing LST analyses, the stabilization effect of porous walls 

on the second mode is efficient when the admittance phase is close to 𝜋, and the 

destabilization effect of porous wall occurs as the admittance has a positive real part. 

Here the admittance of 𝐴 = −4  and 𝐴 = 4  are utilized to investigate the 

mechanisms of the stabilization and destabilization of the second mode. The non-

dimensional angular frequency 𝜔 = 0.152 is chosen. And the eigenvalues are 𝛼 =
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0.16406 − 0.004𝑖,  𝛼 = 0.1646 − 0.00165𝑖 , and 𝛼 = 0.16251 − 0.01278𝑖  for the 

smooth solid wall 𝐴 = 0, porous wall with 𝐴 = −4, and porous wall with 𝐴 = 4, 

respectively. The profiles of the magnitude and phase angle of the terms 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६, − տյ
տ֔

֑̂
յ

, and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in the porous-wall cases and the 

smooth-solid-wall case are demonstrated in Figure 3.18.  

 

 

Figure 3.18 Magnitude (left-hand plots) and phase (right-hand plots) of −(𝛾 −

1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६(□), − տյ
տ֔

֑̂
յ

  (△), and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) under different walls at 𝜔 =

0.152: (a) (b) smooth solid wall, 𝛼 = 0.16406 − 0.004𝑖; (c) (d) porous wall with 𝐴 =
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−4 , 𝛼 = 0.1646 − 0.00165𝑖 ; (e) (f) porous wall with 𝐴 = 4 , 𝛼 = 0.16251 −

0.01278𝑖.  

  

Firstly, we focus on the phase overlap between − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 

around the critical layer (𝑦 ≈ 14). In the stabilized case (𝐴 = −4), the phase of 

(𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 crossing the critical layer shifts swiftly and it differs from the phase of 

− տյ
տ֔

֑̂
յ

 evidently. By contrast, in the destabilized case ( 𝐴 = 4 ), the phase of 

(𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 shifts moderately across the critical layer and is completely superposed 

on by the phase of − տյ
տ֔

֑̂
յ

. Recalling the growth rates of these three cases, we again 

find the critical-layer phase overlap of − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 is positively 

correlated with the growth rate −𝛼ք, which confirms the amplification of the second 

mode depends upon the contribution of the thermal convection − տյ
տ֔

֑̂
յ

 to the local 

internal energy fluctuations. 

Below the critical layer, the phase relation between − տյ
տ֔

֑̂
յ

 and −(𝛾 −

1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ is significantly affected by the porous walls. In the baseline case, the 

phase of − տյ
տ֔

֑̂
յ

 is counter to that of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ near the wall, as shown 

in Figure 3.18 (b), which means the upward flow and downward flow in the wall-

normal direction correspond to the thermal expansion and contraction, respectively. 

For the disturbance defined by Equation (2.7) (𝜙 = 𝜓(𝑦)𝑒ք(ᆿ֓+ᇀ֕−ᇖ֏)), the change of 

phase with time increasing is from right to left (i.e., from 2𝜋 to 0) in the right plots 

of Figure 3.18. In the stabilized case, the phase of − տյ
տ֔

֑̂
յ

 shifts to the right at the wall, 

which indicates 𝑣 ̂ is delayed by the porous wall. And this delay of 𝑣 ̂ at the wall also 
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causes a delay in the near-wall 𝑣 ̂ due to the flow continuity. Thus − տյ
տ֔

֑̂
յ

 is no longer 

in phase with (𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६  near the wall, which attenuates the dilatation 

fluctuation. While in the destabilized case, the phase of − տյ
տ֔

֑̂
յ

 shifts to the left at the 

wall, which means the phase of 𝑣 ̂ moves forward. It also affects the phase of 𝑣 ̂ in 

the near-wall region. We can see from Figure 3.18 (f) that the − տյ
տ֔

֑̂
յ

 is completely 

in phase with (𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ near the wall, then the interplay between the wall-

normal energy transport and the dilatation fluctuation will reinforce each other. 

As the disturbances around the critical layer interact with the near-wall 

perturbations mutually, the distortion in the near-wall perturbations results in the 

variation in the phase discrepancy between − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) in the vicinity of 

the critical layer in the porous-wall cases.  

 

3.6.2 Frequency Shift of the Second Mode 

The LST results show the frequency band of the second mode instability shifts 

when the employed porous wall has an admittance phase close to 0.5𝜋 or 1.5𝜋. Here 

we utilize the porous walls with the admittances of 𝐴 = 4 exp(0.5𝜋𝑖)  and 𝐴 =

4 exp(1.5𝜋𝑖) to investigate the mechanisms of the frequency shift of the second mode. 

The non-dimensional angular frequency 𝜔 = 0.152 is chosen again. The eigenvalues 

for the smooth solid wall, the porous wall with 𝐴 = 4exp(0.5𝜋𝑖) and porous wall 

with 𝐴 = 4 exp(1.5𝜋𝑖) are 𝛼 = 0.16406 − 0.00401𝑖,  𝛼 = 0.16689 − 0.002𝑖, and 

𝛼 = 0.1621 − 0.00008𝑖, respectively. The profiles of the magnitude and phase of the 
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terms −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ , − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 for different walls are 

depicted in Figure 3.19.  

 

 

Figure 3.19 Magnitude (left-hand plots) and phase (right-hand plots) of −(𝛾 −

1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६(□), − տյ
տ֔

֑̂
յ

 (△), and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) of the smooth-solid-wall case 

and porous-wall cases at 𝜔 = 0.152 : (a)(b) smooth solid wall, 𝛼 = 0.16406 −

0.00401𝑖, (c)(d) 𝐴 = 4 exp(0.5𝜋𝑖), 𝛼 = 0.16689 − 0.002𝑖, (e)(f) 𝐴 = 4exp(1.5𝜋𝑖), 

𝛼 = 0.1621 − 0.00008𝑖.  

From the right plots of Figure 3.19, we can see that around the critical layer (𝑦 ≈
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14), that the high phase overlap of − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 corresponds to a large 

growth rate still holds herein. It can also be seen when the admittance phase 𝜃 = 0.5𝜋, 

the phase profiles of the terms −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ , − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 

approach those of the smooth-solid-wall case at large 𝜔 shown in Figure 3.15 (f). On 

the other hand, when 𝜃 = 1.5𝜋, the phase profiles of these three terms are similar to 

that of the smooth-solid-wall case at small 𝜔 shown in Figure 3.15(b). If we perform 

the analogy to a wide frequency spectrum, then the frequency shift is manifested. 

The right-hand plots in Figure 3.19 show that the phase shift of − տյ
տ֔

֑̂
յ

 crossing 

the critical layer in the porous wall cases is plainly distinct from the baseline. 

Apparently, this phase shift accounts for the critical-layer phase discrepancy between 

− տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
. Moveover, the phase shift of − տյ

տ֔
֑̂
յ

 crossing the critical 

layer is closely associated with the variation in the near-wall perturbations induced by 

porous walls.  

Figure 3.20 compares the magnitude and phase profiles of the wall-normal 

fluctuating velocity 𝑣ො among these three cases. Pertaining to the porous wall with the 

admittance of 𝐴 = 4 𝑒𝑥𝑝(0.5𝜋𝑖), the phase of 𝑣ො at the wall is identical to that near 

the wall and meanwhile the magnitude of 𝑣ො is non-zero at the wall, hence the porous 

wall facilitates the magnitude of 𝑣ො near the wall. Apparently, this outcome is also 

valid in a wide frequency band. Then the near-wall dilatation fluctuation which is 

associated with the wall-normal energy transport by 𝑣 ̂ at small 𝜔 will be similar to 

that of the baseline case at large 𝜔. Concomitantly, the spectral distribution of the 

growth rate is changed. While for the case 𝐴 = 4𝑒𝑥𝑝(1.5𝜋𝑖), the disturbance velocity 
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𝑣ො at the wall with non-zero magnitude has a phase contrary to that against the wall, 

which leads to a decrease in the magnitude of 𝑣ො near the wall. Then a converse 

scenario emerges in a wide frequency band compared with the former case. 

 

 

Figure 3.20 Magnitude (left-hand plots) and phase (right-hand plots) profiles of 

disturbance velocity 𝑣 ̂ at 𝜔 = 0.152 under different walls. 

 

3.6.3 Stabilization and Destabilization of the First Mode 

The stabilization and destabilization of the fist mode emerge when porous walls 

have admittance phases tending to 0.5𝜋  and 𝜋 , respectively, according to the 

preceding calculations using LST. Here the porous walls with the admittance of 𝐴 =

4 exp(0.5𝜋𝑖) and 𝐴 = 4 exp(𝜋𝑖) are utilized to investigate the mechanisms of the 

stabilization and destabilization of the 2D first mode instabilities, respectively. The 

non-dimensional frequency 𝜔 = 0.063 is chosen. The eigenvalues for the smooth 

solid wall, porous walls with the admittance of = 4 exp(0.5𝜋𝑖) and admittance of 

𝐴 = 4 exp(𝜋𝑖)  are 𝛼 = 0.07068 − 0.00039𝑖 , 𝛼 = 0.07025 − 0.00027𝑖  and 𝛼 =

0.07062 − 0.00076𝑖 , respectively. The magnitudes and phases of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
, 
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− տյ
տ֔

֑̂
յ

 and −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६ of these three cases are illustrated in Figure 3.21. 

  

 

Figure 3.21 Magnitude (left-hand plots) and phase (right-hand plots) profiles of 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६(□), − տյ
տ֔

֑̂
յ

  (△), and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) in the smooth-solid-

wall case and porous-wall cases at 𝜔 = 0.063: (a) (b) the smooth solid wall, 𝛼 =

0.07068 − 0.00039𝑖(c) (d) the porous wall with 𝐴 = 4exp(0.5𝜋𝑖), 𝛼 = 0.07025 −

0.00027𝑖, (e) (f) the porous wall with 𝐴 = 4 exp(𝜋𝑖), 𝛼 = 0.07062 − 0.00076𝑖.  

 

With respect to the case 𝐴 = 4 exp(0.5𝜋𝑖) , the phase discrepancy between 
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− տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 around the critical layer (𝑦 ≈ 13) is analogous to that of 

the smooth-solid-wall case due to the small growth rate. While below the critical layer, 

the phase superposition of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

६  and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 shrinks in 𝑦 

coordinate compared with the smooth-solid-wall case, as shown in Figure 3.21(b) and 

(d). Identical to Figure 3.17 (b), (d), and (f), the diminution of this phase superposition 

corresponds to a decrease in the growth rate. Therefore, it could be concluded that the 

amplification of the first mode in the current boundary layer depends upon the mutual 

interaction between the local dilatation fluctuations and internal energy fluctuations.  

When the porous wall with the admittance of 𝐴 = 4exp(𝜋𝑖) is employed, the 

phase of − տյ
տ֔

֑̂
յ

 is recast near the wall, as shown in Figure 3.21 (f). It is also 

demonstrated that the phase discrepancy between − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in the 

vicinity of the critical layer is diminished in contrast to the baseline. In other words, 

the contribution of thermal convection − տյ
տ֔

֑̂
յ

 to internal energy fluctuations is 

promoted. Therefore, the increase of the growth rate emerging in the case of the 

admittance phase close to 𝜋  is associated with the energy transport by the wall-

normal velocity fluctuation around the critical layer.  

 

3.6.4 Oblique First-Mode Wave 

The LST results show that the oblique first-mode wave is more unstable than the 

2D first-mode wave, which is not converted by porous walls. Here the non-

dimensional angular frequency 𝜔 = 0.063 is adopted again to compare the oblique-
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wave case with the 2D-wave case in the interplay of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६, 

− տյ
տ֔

֑̂
յ

, and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 to investigate the mechanisms of the growth of the oblique 

first-mode instability. The propagation angle of the oblique wave arctan५ ᇀ
ᆿ՗

६ = 45π 

is chosen herein. The eigenvalues of the oblique wave and 2D wave are 𝛼 =

0.07123 − 0.00103𝑖 and 𝛼 = 0.07068 − 0.00039𝑖, respectively. The magnitude and 

phase profiles of −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६, − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 of the two 

cases are illustrated in Figure 3.22.  

 

 

Figure 3.22 Magnitude (left-hand plots) and phase (right-hand plots) profiles of 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६(□), − տյ
տ֔

֑̂
յ

  (△), and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 (○) in the 2D-wave 

and oblique-wave cases at 𝜔 = 0.063: (a) (b) 2D wave, 𝛼 = 0.07068 − 0.00039𝑖 (c) 

(d) oblique wave with propagation angle of arctan५ ᇀ
ᆿ՗

६ = 45π , 𝛼 = 0.07123 −

0.00103𝑖.  
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It is evident that around the critical layer the peak magnitude of − տյ
տ֔

֑̂
յ

 in the 

oblique-wave case is much larger than that in the 2D-wave case, as shown in Figure 

3.22(a) and (c). By comparing Figure 3.22(b) and (d), it can be observed that in the 

vicinity of the critical layer, the phase discrepancy between − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 

of the oblique-wave case is relatively smaller than that of the 2D-wave case, meaning 

more contribution to the local internal energy fluctuations is provided by the thermal 

convection − տյ
տ֔

֑̂
յ

. On the other hand, the phase superposition of (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 and 

−(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂
ᇝ֔

+ 𝑖𝛽𝑤̂६ below the critical layer is wider in the oblique-wave case 

than the 2D-wave case, as shown in Figure 3.22(b) and (d). It reveals the mutual 

interactions between the internal energy fluctuation and dilatation fluctuation are 

promoted in the oblique-wave case.  

 Consequently, the large growth rate in the oblique-wave case may be associated 

with the phase discrepancy between − տյ
տ֔

֑̂
յ

 and (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 in the vicinity of the 

critical layer and phase overlap between (𝑖𝛼𝑈 − 𝑖𝜔) յ̂

յ
 and −(𝛾 − 1)५𝑖𝛼𝑢̂ + ᇝ֑̂

ᇝ֔
+

𝑖𝛽𝑤̂६ near the wall.  

3.7 Summary 

The effects of porous walls on the first and second modes depend on the 

admittance phase of porous walls and these effects are facilitated by the increase in the 

admittance magnitude. The first mode instability is stabilized when the admittance 

phase tends to 0.5𝜋 and destabilized when the admittance phase is close to 𝜋. On the 

contrary, the second mode is damped as the admittance phase approaches to 𝜋. If the 
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admittance phase tends to 0.5𝜋 or 1.5𝜋, the second mode is destabilized with a shift 

to the low- or high-frequency band, respectively. In terms of the oblique waves, the 

effects of porous walls are independent of the wave propagation angle. 

The mechanisms of the amplification of the second mode are associated with the 

relative phases of the energy transport by the wall-normal velocity fluctuation and the 

total time rate of the fluctuating internal energy around the critical layer. A high phase 

overlap corresponds to a large growth rate. Porous walls generate an impact on the 

wall-normal fluctuating velocity at the wall, which results in a recasting in the phase 

of the wall-normal fluctuating velocity. The frequency shift is associated with the 

change in the magnitude of the wall-normal fluctuating velocity near the wall.  

The amplification of the first mode may be associated with the manual interaction 

between the internal energy fluctuation and the dilatation fluctuation near the wall. In 

the porous-wall case with the admittance phase close to 𝜋 and the oblique wave case, 

the amplification of the first mode is also affected by the diminishment in the phase 

discrepancy between the energy transport by the wall-normal velocity fluctuation and 

the total time rate of the fluctuating internal energy in the vicinity of the critical layer.  
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Chapter 4 Numerical Studies on the Effects of Porous 

Walls on Hypersonic Boundary Layers Instabilities 

In this chapter, direct numerical simulations (DNS) are performed to validate the 

effects of porous walls on the hypersonic boundary-layer instability obtained from 

LST. Based on the DNS computations, the mechanisms of the stabilization, 

destabilization, and the frequency shift of the second mode are further studied. The 

numerical simulations are performed on a 2D boundary-layer flow over a flat plate and 

disturbances are artificially generated by a blowing-suction actuator. The porous walls 

employed in this chapter are characterized using their admittance, which is equivalent 

to real structures [38]. 

4.1 Validation of Numerical Method 

In the DNS computations, the flow conditions are: free stream Mach number 

𝑀� = 6 , unit Reynolds number 𝑅𝑒φ
∗ = 10.5 × 10ϩm−φ , free stream temperature 

𝑇�
∗ = 43.18K , special heat ratio 𝛾 = 1.4 , and Prandtl number 𝑃𝑟 = 0.72 . Here 

asterisks denote dimensional quantities. The viscosity is calculated using Sutherland’s 

law and the reference temperature is 273.15K . The wall is isothermal with a 

temperature of 𝑇֒
∗ = 293K. These parameters are obtained from the experiments 

conducted by Bountin et al. [23].  

The length of the flat plate is 0.2m. The computations are carried out in a grid with 

1607 × 200 nodes, and there are more than 60 nodes within the boundary layer at 

𝑥∗ = 0.1m, where 𝑥∗ denotes the distance from the leading edge in the streamwise 
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direction.  

4.1.1 Steady Flow 

The velocity and temperature profiles obtained from the DNS method at 𝑥∗ =

0.2m are depicted in Figure 4.1 with the corresponding profiles obtained from a self-

similar solution provided for comparison. It can be seen that the DNS results agree 

well with the theoretical results. 

  

 

Figure 4.1 Profiles of (a) velocity and (b) temperature at 𝑥∗ = 0.2m. 

 

4.1.2 Unsteady Flow 

In the unsteady flow computations, disturbances are induced by a blowing-suction 

actuator defined by Equation (2.20) with the parameters of 𝑥φ
∗ = 0.01m , 𝑥ϵ

∗ =

0.015m, 𝜀 = 0.001. The disturbance frequency is 𝑓∗ = 138.74kHz. In the following 

analyses, the non-dimensional velocity, density, temperature, and other variables are 

scaled by their corresponding free-stream values, pressure by 𝜌ஶ𝑈ஶ
ଶ  and all lengths 

by the boundary layer scale 𝑙∗ = ఉ𝑥∗/𝑅𝑒φ. 
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The amplitude distribution of the wall pressure fluctuations is shown in Figure 4.2. 

It has a good agreement with the calculations conducted by Zhao et al. [21] and Hao 

and Wen [70]. The growth rate and phase speed based are also resolved using 

Equations (2.22) and (2.23) based on the wall pressure perturbations. Figure 4.3 shows 

that the growth rate and phase speed obtained from DNS results conform to the slow 

mode in the region roughly from 𝑥∗ = 0.08m  to 𝑥∗ = 0.15m , despite a little 

discrepancy emerges in the phase speed, which will be interpreted in the next section. 

Furthermore, the profiles of the perturbation components in this region also follow the 

predictions of LST. For instance, Figure 4.4 shows the profiles of disturbance 

components obtained from DNS results at 𝑥∗ = 0.11m  have high consistency 

between the DNS results and LST results. Therefore, the evolution of the fluctuations 

in this region is dominated by the slow mode. Hereafter, we call this region a linear 

growth region.  

 

 

Figure 4.2 Comparison of the amplitude of the wall pressure fluctuation calculated 

from DNS results with the calculations conducted by Zhao et al. [21] and Hao & Wen 

[70]. 
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Figure 4.3 Comparison of (a) growth rate and (b) phase speed of perturbations obtained 

from DNS and LST. S and F denote the slow and fast modes, respectively. 

 

 

Figure 4.4 Comparison of the profiles of perturbation components at 𝑥∗ = 0.11m. The 

LST results are scaled by the magnitude of the wall pressure perturbation from DNS.  

 

 In the current boundary-layer flow, the first mode (i.e., the unstable, slow mode 

near the leading edge) has a considerably small growth rate, which marginally 

amplifies instability waves. Meanwhile, the fast mode swiftly damps the upstream 
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perturbations. The contrary effects of the fast and slow modes on the local disturbances 

result in oscillations in the growth rate and phase speed at small 𝑥∗, as shown in Figure 

4.3 (a) and (b). Therefore, we cannot perform the studies of the effects of porous walls 

on the first mode on the current boundary-layer flow. It may be appropriate to 

numerically study the first mode instabilities on a 3D boundary layer flow because 

oblique first-mode waves are more unstable than the 2D first-mode waves. In the 

current simulations, 3D instabilities are not involved.   

4.2 Evolution of the Second-Mode Instabilities 

Proceeding on the above unsteady flow, we analyze the evolution of the second 

mode instabilities within the boundary layer over a smooth solid wall, and this 

investigation is the baseline for the following analyses on the stabilization, 

destabilization, and frequency shift of the second mode with porous walls applied.  

The contours illustrated in Figure 4.5 show that the fluctuations concentrate in two 

regions: one is around the critical layer (𝑈 = 𝑐) and the other is below the sonic line 

(𝑈 = 𝑐 − 𝑎 ). In the former region, the temperature and density fluctuations are 

considerably strong. Moreover, the density fluctuations illustrated in Figure 4.5 (e) 

have a “rope-like” appearance, which is consistent with the schlieren images from 

experimental studies [33, 71-73]. In the latter region, the velocities and pressure 

fluctuations are remarkable, while the perturbations in density are considerably weak, 

as shown in Figure 4.5 (a) (b) and (c).   
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Figure 4.5 Contours of the instantaneous disturbance components in the smooth-solid-

wall case. Boundary layer edge (𝑈 = 0.99𝑈ր) (∙∙∙∙∙∙), critical layer (𝑈 = 𝑐) (- - -) and 

sonic line (𝑈 = 𝑐 − 𝑎) (−∙−∙). 

 

In Chapter 3, phase analysis was employed on the simplified disturbance energy 

equation. Here the same execution is implemented to analyze the energy exchange in 

the evolution of the second mode waves. Unlike the waveform defined by Equation 

(2.7), here the disturbance vector is in the form of 𝑞஥(𝑥, 𝑦, 𝑡) = 𝑞(̂𝑥, 𝑦)𝑒−քᇖ֏, which 

takes the nonparallel effect into account. As only the 2D waves are concerned in this 
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chapter, the simplified linear stability equations provided in Chapter 3 can be rewritten 

as:  

1

𝑇
গ−𝑖𝜔𝑢̂ + 𝑈

𝜕𝑢̂

𝜕𝑥
ঘ = −

𝑑𝑈

𝑑𝑦

𝑣̂

𝑇
−

𝜕𝑝̂

𝜕𝑥
+

1

𝑅

𝑑

𝑑𝑦
গ𝜇

𝜕𝑢̂

𝜕𝑦
+

𝑑𝑈

𝑑𝑦

𝑑𝜇

𝑑𝑇
𝑇̂ঘ (4.1) 

1

𝑇
গ−𝑖𝜔𝑣̂ + 𝑈

𝜕𝑣̂

𝜕𝑥
ঘ = −

𝜕𝑝̂

𝜕𝑦
+

4

3𝑅

𝜕

𝜕𝑦
গ𝜇

𝜕𝑣̂

𝜕𝑦
ঘ (4.2) 

1

𝑇
ভ−𝑖𝜔𝑇̂ + 𝑈

𝜕𝑇̂

𝜕𝑥
ম = −

𝑑𝑇

𝑑𝑦

𝑣̂

𝑇
− (𝛾 − 1) গ

𝜕𝑢̂

𝜕𝑥
+

𝜕𝑣̂

𝜕𝑦
ঘ +

𝛾

𝑅𝑃𝑟

𝜕ϵ

𝜕𝑦ϵ
ॕ𝜇𝑇̂ॖ (4.3) 

Here we apply the perturbation quantities obtained from DNS computations into 

the disturbance energy equation (4.3) to investigate the interactions among 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ ,− տյ

տ֔
֑̂
յ

 and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६  during the wave propagation. 

The magnitudes of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६, − տյ

տ֔
֑̂
յ

 and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६ in the linear 

growth region are illustrated in Figure 4.6 and the phase angles of the corresponding 

terms are provided in Figure 4.7. The non-dimensional boundary layer thickness is 

about 21, and the critical layer and sonic line obtained from LST are at 𝑦 ≈ 17 and 

𝑦 ≈ 10, respectively. In the linear growth region, the phase speed of the second-mode 

waves obtained from LST varies mildly, as illustrated in Figure 4.3 (b), which leads to 

basically constant locations of the critical layer and the sonic line in the dimensionless 

view. 

Figure 4.6 shows that φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ is nearly stagnant at 𝑦 ≈ 17 and 𝑦 ≈

7, where a phase shift emerges as shown in Figure 4.7, in the evolution of instability 

waves. We know the former stagnant point corresponds to the critical layer at which 

the time rate of change of internal energy −𝑖𝜔 յ̂

յ
 is accounted for by the mean flow 

advection of perturbed thermal energy ն
յ

ᇝյ̂

ᇝ֓
. The latter stagnant point is due to the 

counteraction between the wall-normal energy transport − տյ
տ֔

֑̂
յ

 and energy change 
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caused by dilatation fluctuations −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६. In the vicinity of the critical 

layer, the term − տյ
տ֔

֑̂
յ

 is comparable to φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६  in magnitude. While 

below the near-wall stagnant point, the magnitude of −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६  grows 

greatly compared with the term − տյ
տ֔

֑̂
յ

.  

 

 

Figure 4.6 Profiles of the magnitudes of 
ଵ

்
ቀ−𝑖𝜔𝑇෠ + 𝑈

డ ෠்

డ௫
ቁ (∙∙∙∙∙∙), −

ௗ்

ௗ௬

௩ො

்
 (- - -), and  

−(𝛾 − 1) ቀ
డ௨ෝ

డ௫
+

డ௩ො

డ௬
ቁ (──) at different locations. 

 

 

Figure 4.7 Profiles of the phase angles of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६(○), − տյ

տ֔
֑̂
յ

 (△) and 
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−(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६ (□) at different locations.  

 Figure 4.7 demonstrates that in the vicinity of the critical layer the phases of 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६  and − տյ

տ֔
֑̂
յ

 gradually overlap with each other along with the 

increase of 𝑥∗ and then diverge as 𝑥∗ continuously increases. Combined with Figure 

4.3(a), it is clear that the high phase overlap is in accord with the large growth rate, 

which is identical to the conclusion obtained in Chapter 3.  

 The phase overlap of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६  and − տյ

տ֔
֑̂
յ

 is associated with their 

phase variations across the critical layer. Figure 4.8 illustrates the distributions of the 

maximum phase differences of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६  and − տյ

տ֔
֑̂
յ

 across the critical 

layer, respectively denoted by Δ𝜃ֈռ֓ ঁφ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ং and Δ𝜃ֈռ֓५− տյ

տ֔
֑̂
յ
६, in 

comparison with the distribution of the growth rate. It can be seen that 

Δ𝜃ֈռ֓ ঁφ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ং  decreases swiftly at small 𝑥∗  and then maintains at 

about 0.5𝜋, while Δ𝜃ֈռ֓५− տյ
տ֔

֑̂
յ
६ shrinks continuously as 𝑥∗ increases. When the 

maximum phase variations of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and − տյ

տ֔
֑̂
յ

 are nearly identical, 

the growth rate reaches its peaks.  

 

 

Figure 4.8 Distributions of maximum phase variation (left 𝑦  axis) of − տյ
տ֔

֑̂
յ

 and 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ crossing the critical layer and growth rate (right 𝑦 axis). 
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The distribution of Δ𝜃ֈռ֓५− տյ
տ֔

֑̂
յ
६  indicates the wave propagation speed is 

different on the two sides of the critical layer. Recalling Figure 4.3 (b), the phase speed 

of wall-pressure perturbations is about 0.9 in the linear growth region. According to 

the development of the phase of − տյ
տ֔

֑̂
յ

 at the boundary edge depicted in Figure 4.7, 

the phase speed of the disturbance propagation around the critical layer is about 0.92, 

which is equal to the prediction of LST shown in Figure 4.3 (b). Therefore, the 

propagation speed near the wall is slower than that in the region away from the wall, 

which results in a diminishing of Δ𝜃ֈռ֓५− տյ
տ֔

֑̂
յ
६.  

The evolution of Δ𝜃ֈռ֓ ঁφ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ং  is inevitably affected by the 

phase variation of − տյ
տ֔

֑̂
յ

. Meanwhile, the thermal conduction ᇁ
ճձ֍

ᇝɞ

ᇝ֔ɞ ॕ𝜇𝑇̂ॖ also 

plays a role in the evolution of Δ𝜃ֈռ֓ ঁφ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ং. At the beginning of the 

evolution of internal energy perturbations, the effects of − տյ
տ֔

֑̂
յ

 and ᇁ
ճձ֍

ᇝɞ

ᇝ֔ɞ ॕ𝜇𝑇̂ॖ 

are negligible and the phase shift of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ is mainly due to the mean-

flow convection. Then the thermal convection − տյ
տ֔

֑̂
յ

 becomes important during 

wave development. The contour of the temperature fluctuations illustrated in Figure 

4.5 (d) shows the intensity of the temperature fluctuations at the critical layer increases 

continually as 𝑥∗ increases, which results in a constant increase in the magnitude of 

ᇁ
ճձ֍

ᇝɞ

ᇝ֔ɞ ॕ𝜇𝑇̂ॖ. Ultimately, the increased ᇁ
ճձ֍

ᇝɞ

ᇝ֔ɞ ॕ𝜇𝑇̂ॖ sustains the equilibrium of the 

phase shift of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ crossing the critical layer.           

 



 

64 

4.3 Stabilization on the Second Mode 

Theoretical analyses based on LST indicate that porous walls with an admittance 

phase approaching 𝜋  have an efficient stabilization effect on the second mode 

instabilities. Here a porous wall listed in Table 4.1 is employed to validate the 

stabilization effect. The parameters of the disturbances are also provided in Table 4.1.  

 

Table 4.1 Parameters of the actuator and porous wall 

Disturbances Porous wall 

Frequency (𝑓∗) Amplitude (𝜀) 
Admittance 

magnitude (|𝐴|) 
Admittance 

phase (𝜃) 
Location 

138.74kHz 0.001 2 𝜋 0.08m~0.16m 

 

Figure 4.9 illustrates the growth rate and phase speed, obtained both from DNS 

and LST, of perturbations in the porous-wall case. Notably, in the LST computations, 

the porous wall is originated from near the leading-edge region in order to differentiate 

the fast and slow modes. It can be seen that both the growth rate and phase speed from 

DNS align with those of the slow mode in the region where the growth rate of the slow 

mode approaches its peak. Figure 4.10(a) compares the pressure disturbance amplitude 

between the porous-wall case and the smooth-solid-wall case (baseline). It is evident 

that the disturbance pressure magnitude in the porous-wall case rises more slowly than 

that in the baseline case due to the smaller growth rate depicted in Figure 4.10(b).  
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Figure 4.9 (a) growth rate and (b) phase speed of perturbations in the porous-wall case 

with the admittance of 𝐴 = 2 exp(𝜋𝑖). In the LST computations, the porous wall is 

originated from near the leading-edge region. 

 

 

Figure 4.10 Comparison in the distributions of (a) wall-pressure-fluctuation amplitude 

and (b) growth rate between the porous-wall case and smooth-solid-wall case 

(baseline).  

 

Figure 4.11 compares the contours of the disturbance components between the 

porous-wall case and baseline case in the region where the growth rate is high. It is 

distinct that fluctuations are damped when the porous wall is applied, particularly the 

near-wall fluctuations. Moreover, the spatial structure of disturbances in the porous-

wall case is basically reserved compared with the baseline case. 
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Figure 4.11 Comparison of instantaneous disturbance components between the smooth 

solid wall (left-hand plots) and the porous wall (right-hand plots) with the admittance 

of 𝐴 = 2exp(𝜋𝑖) at the same timestamp.  

 

In Chapter 3, it is found that the stabilization of the second mode is accompanied 

by the disruption of the in-phase relation between the total time rate of change of 

fluctuating internal energy and the energy transport by the wall-normal velocity 

fluctuation. Here we continue to investigate the mechanisms of stabilization on the 

second mode caused by porous walls based on the DNS computations. Likewise, the 
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terms φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ , − տյ

տ֔
֑̂
յ

 and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६  are examined in their 

magnitude and phase. Figure 4.12 compares the profiles of magnitude and phase of 

these terms at 𝑥∗ = 0.11m between the smooth-solid-wall case and porous-wall case.  

 

 

Figure 4.12 Comparison in magnitude (left-hand plots) the phase (right-hand plots) of 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६(○), − տյ

տ֔
֑̂
յ

 (△) and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६ (□) between the smooth-

solid-wall (top) and porous-wall (bottom) cases at 𝑥∗ = 0.11m.  

 

 By comparing the magnitude plots, presented in Figure 4.12 (a) and (c), it can be 

seen that in contrast to the smooth-solid-wall case, the intensity of the fluctuations 

around the critical layer (𝑦 ≈ 17) is little diminished, but the fluctuations near the wall 

are inhibited evidently. It indicates the near-wall fluctuations are more sensitive to the 

growth rate than those around the critical layer. Indeed, the internal energy fluctuations 

in the vicinity are mainly sustained by the mean-flow advection of perturbed thermal 
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energy while the energy transport by the wall-normal velocity fluctuation is of small 

account. By contrast, near the wall, the energy transport by the wall-normal velocity 

fluctuation is significant for the dilatation fluctuation, though its magnitude is much 

less than that of the energy change due to dilatation fluctuations. Consequently, a 

trifling change in the energy transport by the wall-normal velocity fluctuation results 

in a distinct impact on the dilatation fluctuation. 

The comparison between Figure 4.12 (b) and (d), shows the phase discrepancy of 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and − տյ

տ֔
֑̂
յ

 around the critical layer in the porous-wall case is 

more evident than that in the smooth-solid-wall case, as shown in Figure 4.12(b) and 

(d). This phenomenon is consistent with the comparison in the growth rate between 

these two cases, as shown in Figure 4.10(b). It confirms again that the amplification 

of the second mode is associated with the phase overlap of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and 

− տյ
տ֔

֑̂
յ

 around the critical layer.  

Figure 4.12 (d) demonstrates that below the critical layer, the phase of − տյ
տ֔

֑̂
յ

 is 

distinctly affected, which influences the phase discrepancy of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and 

− տյ
տ֔

֑̂
յ

 around the critical layer. Here we focus on the disturbance components to 

investigate the way that the porous wall reconstructs the phase relation of 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६  and − տյ

տ֔
֑̂
յ

. The magnitude and phase of the disturbance 

components 𝑝̂,  𝑣ො and 𝑇෠  are depicted in Figure 4.13.  
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Figure 4.13 Comparison in the magnitude (left-hand plots) and phase (right-hand plots) 

profiles of perturbations of pressure, wall-normal velocity and temperature at 𝑥∗ =

0.11m between the smooth-solid wall case (baseline) and porous-wall case.  

 

Considering a normal incident wave with the velocity of 𝑣஥(𝑥, 𝑦, 𝑡) =

𝑣(̂𝑥, 𝑦)𝑒−քᇖ֏ (phase varies from 2𝜋 to 0 in a circle along with the time increasing), 

the porous wall with the admittance phase of 𝜋 delays its reflection (i.e. a rightward 

phase shift), as shown in Figure 4.13 (d). Moreover, this delay affects the phase of the 

wall-normal velocity fluctuation in the far field. According to Figure 4.13 (f), the phase 
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of 𝑇̂  in the regions above the critical layer (𝑦 ≈ 17) and near the wall (𝑦 < 7) is 

slightly adjusted. However, the phase of 𝑇̂ at moderate 𝑦, namely 7 < 𝑦 < 17, is 

remarkably delayed. It is noted that phase delay represents the change in the interplay 

between the critical-layer fluctuation and near-wall fluctuation. Consequently, the 

phase delay in the wall-normal velocity fluctuation and the phase delay of the 

temperature fluctuation at moderate 𝑦 account for the trimming in the phase overlap 

of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and − տյ

տ֔
֑̂
յ

 in the vicinity of the critical layer in the porous-

wall case.  

 

4.4 Destabilization on the Second Mode 

The second mode associated with either the slow mode or the fast mode depends 

on the wall condition. Commonly, the slow mode is unstable when the ratio of the wall 

temperature and mean-flow temperature is relatively high [65]. In Chapter 3, it is found 

that porous walls can overturn the eigenmode branch if the real part of the admittance 

of porous walls is positive and exceeds a threshold. In practice, a positive real part of 

admittance is rare for the porous walls composed of random or regular microstructures. 

This section is aimed to investigate the scenario that the fast mode is destabilized. The 

parameters of disturbances and the porous wall are listed in Table 4.2.  

 

Table 4.2 Parameters of disturbances and porous wall 

Disturbances Porous wall 
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Frequency (𝑓∗) Amplitude (𝜀) 
Admittance 

magnitude (|𝐴|) 
Admittance 

phase (𝜃) 
Location 

138.74kHz 0.001 2 0 0.08m~0.16m 

 

Figure 4.14 compares the growth rate and phase speed of disturbances between 

DNS and LST computations. The growth rate of the unstable wave obtained from DNS 

agrees well with the fast mode in the region of a high growth rate, as shown in Figure 

4.14(a). Whereas the phase speed obtained from DNS is lower than the fast mode and 

closer to the slow mode, as shown in Figure 4.14 (b). Indeed, the wave propagation 

speed near the wall is slowed down by the fluid viscosity, which is analogous to the 

smooth-solid-wall case. Therefore, the growth of perturbations in the current porous-

wall case is dominated by the fast mode.  

Figure 4.15(a) shows the porous wall remarkably destabilizes the pressure 

fluctuation due to the large growth rate depicted in Figure 4.15(b). This destabilization 

effect is consistent with the LST predication conducted in Chapter 3.  

 

 

Figure 4.14 Comparison in (a) growth rate and (b) phase speed of perturbations 

between DNS and LST with the admittance of 𝐴 = 2.  
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Figure 4.15 Comparison in the distribution of (a) wall-pressure-fluctuation magnitude 

and (b) growth rate between the porous-wall case (𝐴 = 2) and the smooth-solid-wall 

case (baseline). 

 

Figure 4.16 compares the contours of the instantaneous disturbance components 

between the porous-wall case and the smooth-porous-wall case. The spatial structure 

of wave packets governed by the fast mode is evidently distinct from that governed by 

the slow mode in the smooth-solid-wall case. In the porous-wall case, the pressure 

fluctuations, wall-normal velocity disturbances, and density fluctuations even extend 

beyond the boundary layer, while the temperature fluctuations, streamwise velocity 

disturbances are consistently constrained within the boundary layer.  
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Figure 4.16 Comparison of instantaneous disturbance components between the smooth 

solid wall (left-hand plots) and the porous wall with the admittance of 𝐴 = 2 (right-

hand plots) at the same timestamp. 

 

Figure 4.17 compares the terms φ
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५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६, − տյ

տ֔
֑̂
յ

 and −(𝛾 − 1)५ᇝࣨ֐
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ᇝ֑̂
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६ in their magnitude and phase between the porous-wall case and the smooth-solid-

wall case. It is remarkable that in the porous-wall case the phase of φ
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is superposed on that of − տյ
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 not only in the vicinity of the critical layer but also at 

moderate 𝑦. Therefore, the energy transport by the wall-normal velocity fluctuation 
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has a great contribution to the internal energy fluctuations in the porous-wall case. In 

return, the wall-normal energy transport is also promoted by the augmentation in the 

internal energy fluctuations, particularly in the region below the critical layer.  

 

 

Figure 4.17 Comparison in magnitude (left-hand plots) the phase (right-hand plots) of 

φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂
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 (△) and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६ (□) between the smooth-

solid-wall (top) and porous-wall (bottom) cases at 𝑥∗ = 0.11m.  

 

Figure 4.17(c) shows the near-wall dilatation fluctuations are also greatly elevated 

in the porous-wall case. Apparently, this elevation is closely associated with the 

increase in the energy transport by the wall-normal velocity fluctuation. As the porous 

wall firstly affects the near-wall perturbations, the change in the near-wall dilatation 

fluctuations results in the broad phase overlap between φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂
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६  and 
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 in the region away from the wall. To crystallize the phase variation caused by 
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the porous wall, we examine the disturbance components in their magnitude and phase, 

as shown in Figure 4.18. 

Figure 4.18 compares the disturbance components 𝑝̂ , 𝑣̂ and 𝑇̂  between the 

porous-wall case and the smooth-solid-wall case at 𝑥∗ = 0.11m. It is evident that the 

phase of 𝑣 ̂ shift leftwards entirely in the porous-wall case compared with the smooth-

solid-wall case in Figure 4.18 (d). From Figure 4.18(f), we can see that a phase advance 

of 𝑇̂ emerges at moderate 𝑦. As a result, the phase shifts in 𝑣ො and 𝑇̂ lead to the 

high phase overlap of φ
յ

५−𝑖𝜔𝑇̂ + 𝑈 ᇝյ̂

ᇝ֓
६ and − տյ

տ֔
֑̂
յ

. In the following we analyze the 

reason of the phase shifts in 𝑣 ̂ and 𝑇̂. 

Considering a normal incident wave in a form of 𝑣஥(𝑥, 𝑦, 𝑡) = 𝑣(̂𝑥, 𝑦)𝑒−քᇖ֏ 

propagating towards the wall, it is compelled to reflect forward by the porous wall 

when the near-wall fluid elements are in the contraction stage (i.e. 𝑝஥ > 0) as 𝑣஥ =

2𝑝′ at the wall. While in the thermal expansion stage, the near-wall fluid elements are 

accelerated to move towards the wall. Therefore, the phase of 𝑣 ̂ is brought forward. 

Moreover, this early reflection facilitates the thermal contraction and the acceleration 

of fluid elements to the wall strengthens the thermal expansion, which both aggravate 

the near-wall dilatation fluctuation. In return, the augmentation in the dilatation 

fluctuation accelerates the wall-normal fluctuating velocity at moderate 𝑦 , which 

escalates the wall-normal energy transport. Figure 4.17(c) shows that the total time 

rate of change of fluctuating internal energy is accounted for by the wall-normal 

energy transport at moderate 𝑦. Therefore, the phase of 𝑇̂ is concomitantly advanced.  
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Figure 4.18 comparison in the magnitude (left-hand plots) and phase (right-hands plot) 

of perturbations of pressure, wall-normal velocity and temperature at 𝑥∗ = 0.11m 

between the smooth-solid-wall case (baseline) and porous-wall case.  

 

4.5 Frequency Shift  

According to the theoretical analyses based on LST, the non-dimensional angular 

frequency 𝜔 has a shift when a porous wall with admittance phase tending to 0.5𝜋 

or 1.5𝜋 is applied. If 𝜃 = 0.5𝜋, it shifts to the low-frequency band, while if 𝜃 =
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1.5𝜋 , a shift to the high-frequency band emerges. In the DNS computations, 

disturbances have a fixed frequency, therefore the frequency shift is converted to a 

spatial shifting of disturbances as 𝜔 = ϵᇎց∗

ն�
∗ ఊᇌ∗֓∗

ն�
∗ . Here we analyze this spatial 

shifting based on DNS computations. The parameters of the disturbances and porous 

walls are shown in Table 4.3.  

 

Table 4.3 Parameters of disturbances and porous wall 

Disturbances Porous wall 

Frequency (𝑓∗) Amplitude (𝜀) 
Admittance 

magnitude (|𝐴|) 
Admittance 

phase (𝜃) 
Location 

138.74kHz 0.001 
2 0.5𝜋 0.08m~0.16m 

2 1.5𝜋 0.08m~0.16m 

 

The growth rate and phase speed based on the wall disturbance pressure for the 

porous-wall cases are depicted in Figure 4.19. The LST results are provided for 

comparison. It can be seen that the DNS solutions have an excellent agreement with 

the slow mode obtained from LST in the linear growth region, which indicates the 

evolutions of the instability waves in these two porous-wall cases are dominated by 

the slow mode.  

Figure 4.20(a) compares the wall pressure fluctuation amplitude of the two 

porous-wall cases with the baseline. It clearly demonstrates the pressure perturbations 

are amplified in advance when 𝜃 = 0.5𝜋  and delayed to rise when 𝜃 = 1.5𝜋  in 

contrast to the baseline case. The growth rate illustrated in Figure 4.20(b) also exhibits 



 

78 

that the peak growth rate moves upstream when 𝜃 = 0.5𝜋, and downstream when 𝜃 =

1.5𝜋. This is consistent with the non-dimensional frequency shift predicted by LST.  

 

 

Figure 4.19 Comparison in growth rate (left-hand plots) and phase speed (right-hand 

plots) of perturbations obtained from DNS and LST at different admittances: (a) (b) 

𝐴 = 2 exp(0.5𝜋𝑖), (c) (d) 𝐴 = 2 exp(1.5𝜋𝑖).  

 

 

Figure 4.20 Comparisons in the distribution of (a) the wall pressure fluctuation 

amplitude and (b) growth rate among different walls.  
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Figure 4.21 compares the contours of the instantaneous pressure fluctuations of 

the porous-wall cases with the smooth-solid-wall case. We can observe that the spatial 

cell structures of pressure fluctuations on the porous walls move upstream or 

downstream depending on the admittance phases. Moreover, the movement of the cell 

structures is in an integrated manner and there is no crystal distortion appearing in such 

structures, which suggests that the porous walls do not change the mechanisms of the 

amplification of the second mode waves, but result in phase variations in the 

fluctuating energy terms. 

 

 

Figure 4.21 Contours of instantaneous pressure fluctuations in (a) the smooth-solid-

wall case and the porous-wall cases with admittances of (b) 𝐴 = 2 exp(0.5𝜋𝑖) and (c) 

𝐴 = 2 exp(1.5𝜋𝑖). 

 

Figure 4.22 compares the magnitude and phase of the terms φ
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տ֔
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յ

 and −(𝛾 − 1)५ᇝࣨ֐
ᇝ֓

+ ᇝ֑̂
ᇝ֔

६ among different wall conditions at 𝑥∗ = 0.1m. By 

comparing Figure 4.22 (b) (d) and (f), it is observed that the phase overlap between 

the terms φ
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 around the critical layer ( 𝑦 ≈ 17 ) is 

changed in porous-wall cases in contrast to the baseline case. The variation in this 

phase overlap is consistent with the change in the growth rate. Therefore, the 

premature or delayed amplification is due to the transform of the phases of 

φ
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 around the critical layer. 

 

 

Figure 4.22 Comparison in magnitude (left-hand plots) the phase (right-hand plots) of 
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φ
յ
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 (△) and −(𝛾 − 1)५ᇝࣨ֐
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+ ᇝ֑̂
ᇝ֔

६ (□) among the smooth-

solid-wall (top) and porous-wall cases with 𝐴 = 2exp(0.5𝜋𝑖) (middle) and 𝐴 =

2 exp(1.5𝜋𝑖) (bottom) at 𝑥∗ = 0.1m.  

 

Figure 4.23 compares the wall-normal velocity, pressure, and temperature 

perturbations among these three cases. Concerning disturbances with time dependence 

of 𝑒𝑥𝑝(−𝑖𝜔𝑡), the wall-normal velocity 𝑣 ̂ has a phase advance of 0.5𝜋 compared 

with 𝑝̂ near the wall in the baseline case. For the case with the admittance of 𝐴 =

2 exp(0.5𝜋𝑖), the wall-normal velocity is 𝑣̂ = 2𝑝̂ 𝑒𝑥𝑝(0.5𝜋𝑖) at the wall, which is 

identical to the phase relation of 𝑣ො and 𝑝̂ of the baseline case. As 𝑣ො is nonzero at 

the wall in this porous-wall case, the perturbation near the wall is exacerbated. By 

contrast, for the case with the admittance of 𝐴 = 2𝑒𝑥𝑝(1.5𝜋𝑖) , the wall-normal 

fluctuating velocity is 𝑣̂ = 2𝑝̂ exp(1.5𝜋𝑖) = 2𝑝̂ exp(−0.5𝜋𝑖). The phase of 𝑣 ̂ at the 

wall is reversed forcibly, which results in a decrease in the magnitude of 𝑣 ̂ against 

the wall. These analyses are in accord with the near-wall performance of the 

perturbation components shown in Figure 4.23(a) (c) and (e). 

From Figure 4.23 (b), (d), and (f), it is notable that below the critical layer, the 

strong perturbations correspond to a rightward shift in phase, while the weak 

perturbations correspond to a leftward shift in phase. In other words, strong 

perturbations propagate slower than weak perturbations. Considering the intensity of 

perturbations, we conjecture the near-wall phase shift may be accounted for by the 

fluid viscosity. In addition, the phases of the disturbance components 𝑝̂, 𝑣 ̂ and 𝑇̂ 
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remain constant in the far field, which is because the mean-flow advection is in charge 

of the wave propagation in the far field. Therefore, the phase shift of the disturbance 

components below the critical layer results in the spatial shift of disturbances.   

 

 

Figure 4.23 Comparison in magnitude (left-hand plots) and phase (right-hand plots) of 

the pressure, wall-normal velocity and temperature perturbations at 𝑥∗ = 0.1m 

among the smooth-solid-wall case (baseline) and porous-wall cases. 

 

 In conclusion, the porous wall strengths or mitigates the near-wall perturbations 
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according to the phase relation of 𝑣′ and 𝑝′, and the variation in the disturbance 

intensity alters the fluid viscosity, leading to the phase shifts of disturbance 

components. The phase shifts of the wall-normal fluctuating velocity and disturbance 

temperature result in the premature or delayed amplification of the second mode 

instability. 

 

4.6 Summary 

The numerical simulations have confirmed the effects of porous walls on the 

second-mode instabilities obtained by LST analysis. Meanwhile, the phase analyses 

on the disturbance energy equation with the DNS results employed provide further 

insight into the mechanisms of the stabilization, destabilization, and frequency shift of 

the second mode caused by porous walls.  

In the propagation of the second-mode waves, the variation of the critical-layer 

phase overlap between φ
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, which is due to the 

inconsistency of the phase shifts of φ
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 across the critical 

layer, is consistent with the distribution of the growth rate. Porous walls alter the 

magnitude and phase of the wall-normal fluctuating velocity at the wall, which results 

in a change in the near-wall dilatation fluctuation. In the stabilized or destabilized case, 

the phase of the wall-normal fluctuating velocity is delayed or advanced entirely, 

respectively. Meanwhile, the phase of the temperature fluctuation at moderate 𝑦 is 

adjusted to adapt the change in the near-wall dilatation fluctuation. The frequency shift 
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of the second mode is associated with phase shifts of disturbance components below 

the critical layer, which are evoked by the intensity change of the near-wall dilation 

fluctuation.  
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Chapter 5 Design of Ultrasonic Absorptive Coatings for 

the Stabilization of a Supersonic Boundary Layer 

This chapter describes a reverse design strategy for the ultrasonic absorptive 

coating (UAC) design to stabilize the first and second modes. Unlike the foregoing 

analyses which are based on boundary layers with free-stream Mach number of 6, this 

chapter focuses on a flat-plate boundary layer with free-stream Mach number of 4, in 

which the first and second mode coexist and both are significant for the boundary layer 

transition.  

5.1 Effect of Porous Walls on the First and Second Modes  

In this Chapter, the flow conditions listed in Table 5.1 are used and these 

conditions can be implemented in the Ludwieg tube built in The Hong Kong 

Polytechnic University. The gas is assumed to be calorically perfect. The Prandtl 

number is 𝑃𝑟 = 0.72 and the specific heat rate is 𝛾 = 1.4. The viscosity is calculated 

using Sutherland’s law. The boundary-layer-edge Mach number is assumed to be 

identical to the free-stream Mach number 𝑀� as the shock waves at the leading edge 

of the flat plate are rather weak. 

 

Table 5.1 Parameters of flow conditions 

𝑃Ј(kPa) 𝑇Ј(K) 𝑀� 𝑅𝑒φ(m
−φ) 𝑇֒(K) 

300 295 4 13.9 × 10ϩ 295 
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For the calculations of boundary layer instabilities, LST is employed and the mean 

flow quantities are obtained from the self-similar solution. The contour of the growth 

rate of the first and second modes in the boundary layer on a smooth solid wall is 

depicted in Figure 5.1. It can be seen that the non-dimensional angular frequencies 𝜔 

corresponding to the largest growth rate of the first and second modes basically 

maintain constant as the Reynolds number increases. And they are about 0.07 and 0.25 

for the first and second modes, respectively. Due to the coexistence of the first and 

second modes, it should take the first- and second-mode instabilities into account 

simultaneously to stabilize the current boundary layer flow. 

 

 

Figure 5.1 Contour of the growth rate of the first and second modes which correspond 

to the low-frequency and high-frequency bands, respectively, for the smooth solid wall. 

The Reynold number 𝑅 is based on the boundary layer thickness scale. 

 

  To stabilize the first and second modes using porous walls, the influences of 

admittance magnitude |𝐴| and phase 𝜃 on the growth rate of the first and second 
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modes are examined under different admittance magnitudes with the admittance phase 

in a range of [0.5𝜋,  1.5𝜋], as shown in Figure 5.2.  

Figure 5.2 shows in contrast to the smooth-solid-wall case (i.e. 𝐴 = 0 ), the 

second mode instabilities are efficiently damped as 𝜃 is a little larger than 𝜋 but 

further amplified as 𝜃 tends to 0.5𝜋. When 𝜃 approaches 1.5𝜋, the second mode is 

still unstable if |𝐴| is not too large. Moreover, when the admittance phase inclines to 

0.5𝜋  or 1.5𝜋 , a shift in the non-dimensional angular frequency 𝜔 of the second 

mode emerges. Regarding the first mode, the growth rate increases as 𝜃 in the vicinity 

of 𝜃 = 𝜋 and slightly decreases as 𝜃 tends to 0.5𝜋. Basically, the frequency band of 

the first mode is relatively broadened as 𝜃 ≈ 𝜋.  

By comparing Figure 5.2 (b) (c) and (d), it can be seen that the aforementioned 

effects of porous walls on the first and second modes are facilitated by the increase in 

the admittance magnitude |𝐴|. When |𝐴| = 4, the frequency bands of the first and 

second modes merge as 𝜃 is roughly in the vicinity of 𝜃 = 0.75𝜋, which results in a 

wide frequency band of perturbations, which is adverse to delay the boundary layer 

transition.  

In the current analyses, the wall temperature is close to the adiabatic wall 

temperature. Recalling the studies of the effects of porous walls on the hypersonic 

boundary instabilities carried out on the adiabatic wall in Chapter 3, we can conclude 

that under the adiabatic or quasi-adiabatic wall condition, the regularities of the effects 

of the porous walls with the admittance phase in the range of [0.5𝜋,  1.5𝜋] on the first 

and second modes are similar between the supersonic and hypersonic boundary layers. 
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Figure 5.2 Growth rates of the first and second modes varied along with the non-

dimensional angular frequency and admittance phase under different admittance 

magnitudes: (a) 𝐴 = 0 denotes the smooth solid wall case (b) |𝐴| = 0.5, (c) |𝐴| =

2 and (d) |𝐴| = 4. The calculations are conducted at 𝑅 = 2358 (𝑥∗ = 0.4m). 

 

5.2 Design Strategy 

Previously proposed methodologies of UAC design focus on the reflective 

coefficient of a UAC for normal-incident waves as it represents the absorption 

capability of the UAC for high-frequency disturbances. In practice, a large reflective 

coefficient can also be performed by improving the porosity of a UAC, even the 

admittance phase differs from 𝜋 greatly, which is unfavorable for the stabilization of 

the second mode. By contrast, if the admittance magnitude and phase of a UAC are 

provided, the growth rates of the first and second modes are easy to determine. 

Therefore, UAC can be designed based on the required admittance magnitude and 

phase.  

As shown in Figure 5.1, the ranges of the non-dimensional angular frequency of 

the first and second modes are changed moderately as the Reynolds number increases. 
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Indeed, it indicates the first- or second-mode waves with different frequencies will be 

amplified at different locations. As we know, the disturbance frequencies are 

commonly indeterminate in flight environments. To stabilize the first- and second-

mode instabilities in broadband, here we utilize a non-dimensional angular frequency 

to substitute for the dimensional frequency.  

Unlike the common UAC design strategy, which straightforwardly optimizes the 

parameters of a structure based on the reflective coefficient, here we propose a reverse 

design strategy: firstly determine the admittance magnitude and phase to stabilize the 

first and second modes; then find a feasible UAC structure which meets the required 

admittance magnitude and phase. In the following, we detail this design strategy based 

on the current flat-plate boundary layer. 

 

5.2.1 Determination of Admittance 

Although the required admittances to stabilize the first and second modes are 

indeed conflicted with each other, it is compatible to stabilize the first and second 

modes simultaneously using an identical structure due to the difference in the 

frequencies of the first and second modes, and that a certain structure has different 

admittances for different frequencies. From Figure 5.2, we can see the admittance 

phase should be close to 0.5𝜋 and a little larger than 𝜋 to stabilize the first and 

second mode, respectively. However, the strick constraints on the admittance phase 

make the determination of the UAC structure strenuous. Figure 5.2 also reveals the 
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constraint on the admittance phase to stabilize the second mode can be relaxed to 𝜃 ≥

0.75𝜋 . Here we choose 𝜃 = 0.55𝜋  and 𝜃 = 0.75𝜋  to damp the first and second 

mode instabilities, respectively.  

Figure 5.3 (a) and (b) depict the maximum growth rate and the corresponding 

angular frequency of the first mode, respectively, under different admittance 

magnitudes |𝐴| and 𝜃 = 0.55𝜋 with the increase of Reynolds number taken into 

account. Figure 5.3 (a) shows the growth rate of the first mode decrease as the 

admittance magnitude increases. However, the performance of a UAC with a large 

admittance magnitude is not prominent. Therefore, the object of UAC to damp the first 

mode should be degraded to avoid aggravating the first-mode instability. Figure 5.3(b) 

shows the variation of the non-dimensional angular frequency of the maximum growth 

rate of the first mode is not manifest when the admittance magnitude increases and the 

non-dimensional angular frequency is about 0.064 at a relatively large Reynolds 

number. Therefore, to stabilize the first mode, the frequency 𝜔 = 0.064 should be 

focused on and the admittance phase for this freuqncy should be close to 0.55𝜋. 

Concerning the second mode, the maximum growth rates and the corresponding 

angular frequencies of the second mode are shown in Figure 5.4 (a) and (b), 

respectively. Apparently, when the admittance magnitude is small, the increase in the 

admittance magnitude is favorable for the stabilization of the second mode. But when 

the admittance magnitude is large, a further increase in the admittance magnitude 

becomes inefficient. Therefore, the criterion for the largest admittance magnitude to 

stabilize the second mode can be set to 2. From Figure 5.4 (b), we can see the non-
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dimensional angular frequency of the maximum growth rate is basically in the range 

of 0.2 ≤ 𝜔 < 0.25 as the admittance magnitude varies from zero to 2. 

 

 

Figure 5.3 (a) maximum growth rate and (b) the corresponding angular frequency for 

the first mode vs. 𝑅 under different |𝐴| with 𝜃 = 0.55𝜋. The arrow denotes the 

increasing direction of |𝐴| which increases from 0 to 2 with a step of 0.2. 

 

 

Figure 5.4 (a) maximum growth rate and (b) the corresponding angular frequency for 

the second mode vs. 𝑅  under different |𝐴| with 𝜃 = 0.75𝜋 . Arrows denote the 

increasing direction of |𝐴| which increases from 0 to 2 with a step of 0.2. 

In summary, the admittance phase for 𝜔 = 0.064 should be close to 0.55𝜋 to 

elude destabilizing the first mode, while to stabilize the second mode instabilities, a 

UAC should have an admittance phase larger than or equal to 0.75𝜋 and admittance 
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magnitude of 2 for the non-dimensional angular frequency in the range of  0.2 ≤ 𝜔 <

0.25.  

 

5.2.2 UAC Design 

For the 2D instability problem, we consider a 2D UAC structure consisting of slots 

with width 2𝑏, spacing 𝑠, and depth 𝐻 , shown in Figure 5.5, to damp the instability 

waves. This 2D UAC structure is an equivalent structure of 3D UAC composed of 

regular microstructures. Its admittance for normal-incident waves is given by [74, 75]   

𝐴 = 𝑛𝑀րఌ𝑇֒ গ1 −
tan(𝑘֑𝑏)
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(5.1) 

where 𝑛 is the porosity of a UAC and 𝑛 = ϵս
֎

, the subscript 𝑤 represents the value 

at the wall, and 𝑘֑ and 𝑘֏ are the viscous wave number and thermal wave number, 

defined by 𝑘֑ = ఊ քᇖճ
յ՜ᇋ՜

 and 𝑘֏ =
√

𝑃𝑟𝑘֑ [66], respectively. All quantities are non-

dimensionalized in the same way with LST calculations, so that the calculated 

admittance can be applied to the LST calculations straightforwardly.  

   

 

Figure 5.5 Schematic diagram of 2D UAC structure. 
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Equation (5.1) can also be rewritten as a function of 𝐴 = 𝑛𝐹(𝜔𝐻, 𝜔𝑏ϵ𝑅), where 

𝐹  is a function with two variables 𝜔𝐻  and 𝜔𝑏ϵ𝑅. The contours of the admittance 

phase and magnitude varied along with 𝜔𝐻  and 𝜔𝑏ϵ𝑅 are depicted in Figure 5.6 

and Figure 5.7, respectively. Notably, the admittance magnitude is proportional to the 

porosity 𝑛, and the porosity 𝑛 = 0.1 is chosen in Figure 5.7. Based on Figure 5.6 

and Figure 5.7, the UAC parameters 𝐻 , 𝑏 , and 𝑠  could be found to match the 

admittance requirements. 

 

 

Figure 5.6 Contour of admittance phase 𝜃 as a function of 𝜔𝐻  and 𝜔𝑏ϵ𝑅.  

 

 

Figure 5.7 Contour of admittance magnitude |𝐴| as a function of 𝜔𝐻  and 𝜔𝑏ϵ𝑅 

with the porosity of 𝑛 = 0.1. 
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Here we illustrate an example of determining the parameters 𝐻 , 𝑏, and 𝑠. For 

convenience, 𝑏ϵ𝑅 is set as a constant. Assuming 𝑏ϵ𝑅 = 400, the dimensional slot 

half width 𝑏∗ = 20(𝑥∗)
ȯ
ȃ(𝑅𝑒φ)

−ɘ
ȃ . At 𝑥∗ = 0.1m, 𝑏∗ = 0.049mm, which is on the 

same order of the hole size of UAC employed in the experiments conducted by 

Fedorov et al. [31], indicating this size is applicable. For the second mode at 𝜔 = 0.2, 

𝜔𝑏ϵ𝑅 = 80, it is obtained that 𝜔𝐻  should satisfy 𝜔𝐻 ≥ 0.52 to ensure 𝜃 ≥ 0.75𝜋 

according to Figure 5.6. Then we yield 𝐻 = ЈӳΘϵ
Јӳϵ

= 2.6. Moreover, the requirements 

𝜃 ≥ 0.75𝜋 is satisfied at 𝑏ϵ𝑅 = 400 and 𝐻 = 2.6 for the second-mode waves with 

0.2 ≤ 𝜔 < 0.25. Pertaining to the first mode of 𝜔 = 0.064, 𝜔𝐻 ≈ 0.166 as 𝐻 =

2.6. From Figure 5.6, we identify 𝜃 = 0.56𝜋 as 𝜔𝑏ϵ𝑅 = 25.6 and 𝜔𝐻 = 0.166. 

This admittance phase approaches the requirement for the first-mode stabilization. 

Then the parameter 𝑏 and 𝐻  are determined. 

With respect to the parameter 𝑠, it can be resolved according to the requirement 

on the admittance magnitude for the second mode. At 𝜔𝑏ϵ𝑅 = 80 and 𝜔𝐻 = 0.52, 

|𝐴| = 1.5 , therefore, the porosity 𝑛  should be 𝑛 = ϵ
φӳΘ

× 0.1 = 0.133  to attain 

|𝐴| = 2, which leads to 𝑠 = ϵս
։

= 15𝑏. Thus all the parameters 𝑏, 𝐻 , and 𝑠 are 

determined. Furthermore, their dimensional quantities are 𝑏∗ = 20(𝑥∗)
ȯ
ȃ(𝑅𝑒φ)

−ɘ
ȃ , 

𝐻∗ = 2.6(𝑥∗)
ȯ
ɞ(𝑅𝑒φ)

−ȯ
ɞ  and 𝑠∗ = 300(𝑥∗)

ȯ
ȃ(𝑅𝑒φ)

−ɘ
ȃ . We exert these dimensions in 

the region from 𝑥∗ = 0.08m to 𝑥∗ = 0.4m. The slot size distribution of the designed 

UAC can be seen in Figure 5.8. There are at least three slots in a wavelength of the 

second mode waves which is about 2𝛿∗.  
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.  

Figure 5.8 Slot size distribution of the designed UAC 

 

Figure 5.9 illustrates the contour of the admittance magnitude and phase of the 

designed UAC. It can be seen from Figure 5.9 (a) that when the non-dimensional 

angular frequency is in the range 0.2 ≤ 𝜔 < 0.25, the admittance phase is not less 

than 0.75𝜋, and pertaining to 𝜔 = 0.064, the admittance phase approaches 0.55𝜋. 

Therefore, the requirements on the admittance phase are satisfied.  

In terms of the admittance magnitude, Figure 5.9 (b) shows for the non-

dimensional angular frequency in the range 0.2 ≤ 𝜔 < 0.25 , the admittance 

magnitude is equal or larger than 2 depending on 𝜔. When 𝜔 = 0.2, |𝐴| = 2, and for 

a larger 𝜔, the admittance magnitude increases. Indeed, the second-mode waves with 

a large non-dimensional angular frequency are stabilized by a large admittance 

magnitude according to Figure 5.2. Consequently, the admittance of the UAC matches 

the requirements on the stabilization of the first and second modes.  
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Figure 5.9 Contours of (a) admittance phase and (b) magnitude of the designed UAC 

for normal incident waves. 

 

5.3 UAC Performance 

To validate the performance of this UAC, we utilize LST to examine the growth 

rate of unstable waves in a wide frequency band with regarding the first and second 

modes simultaneously, as shown in Figure 5.10. In terms of the first mode, the 

maximum growth rate of each disturbance frequency is slightly attenuated by the UAC, 

as depicted in Figure 5.10 (a). Of the stabilization effect of the designed UAC on the 

second mode, Figure 5.10 (b) demonstrates the maximum growth rate is remarkably 

damped in a wide frequency band. Therefore, the designed UAC can efficiently 

stabilize the second mode instabilities and meanwhile do not aggravate the first mode 

instabilities. 

In addition, this UAC structure is resolved based on the current flow conditions, 

for a different combination of the free-stream Mach number 𝑀�, wall temperature 

ratio 𝑇֒/𝑇�  and Reynolds number 𝑅, the non-dimensional angular frequency 𝜔 

of the first and second modes should be redetermined, as well as the requirements on 
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the admittance. 

 

 

Figure 5.10 Comparison in the growth rate of (a) the first and (b) second modes 

between the smooth solid wall (solid lines) and the designed UAC (dashed line). 
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Chapter 6 Conclusions 

In the present research, the effects of porous walls on the first and second modes 

in supersonic/hypersonic boundary layers are investigated using LST or DNS method, 

and the mechanisms of the first and second mode instabilities in hypersonic boundary 

layers with and without porous walls are also studied using phase analysis on the 

simplified disturbance energy equation. Moreover, a design strategy for UAC to 

stabilize the first and second mode simultaneously is proposed based on a supersonic 

boundary layer.  

 For an adiabatic or quasi-adiabatic wall, the regularities of the effects of porous 

walls on the first and second mode instabilities are identical between the hypersonic 

and supersonic boundary layers. When the admittance phase is close to 𝜋, the second 

mode is effectively stabilized while the first mode is destabilized. On the contrary, 

when the admittance phase is close to 0.5𝜋, the second mode is destabilized with a 

shift to the low-frequency band accompanied, whereas the first mode is comparatively 

stabilized. If the admittance phase approaches to 1.5𝜋, the frequency of the second 

mode shifts to a high-frequency band. These effects are facilitated by the increase in 

the admittance magnitude. Moreover, the regularities of the effects of porous walls on 

the 2D waves are also applicable to oblique waves. 

 The phase analyses on the simplified disturbance energy equation show both for 

the first and second modes, the time rate of change of the fluctuating internal energy 

is dominated by the mean-flow advection of perturbed thermal energy in the vicinity 

of the critical layer and by the dilatation fluctuation near the wall. The growth rate of 
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the second mode waves depends on the contribution of the energy transport by the 

wall-normal velocity fluctuation. When the energy transport by the wall-normal 

velocity fluctuation is in phase with the total time rate of change of fluctuating internal 

energy in the vicinity of the critical layer, the contribution of the energy transport by 

the wall-normal velocity fluctuation is great, which leads to a large growth rate. 

Pertaining to the amplification of the first mode waves, involving the oblique wave, it 

is found that the phase overlap between the time rate of change of fluctuating internal 

energy and the energy change due to dilatation fluctuations below the critical layer is 

proportional to the growth rate. Particularly, for the oblique first-mode wave, the 

growth rate is also involved with the contribution of energy transport by the wall-

normal velocity fluctuation around the critical layer. 

If a porous wall is applied, the amplitude and phase of the wall-normal fluctuating 

velocity are altered at the wall, which exerts impacts on the near-wall dilatation 

fluctuation. For the second mode, the phase of the wall-normal fluctuating velocity is 

delayed when the admittance phase tends to 𝜋 and advanced when the admittance 

phase tends to 0, and the intensity change in the near-wall dilatation fluctuation alter 

the phase of the temperature perturbation at moderate 𝑦, then such phase shifts result 

in the alteration in the critical-layer phase overlap between the energy transport by the 

wall-normal velocity fluctuation and the total time rate of change of fluctuating 

internal energy. The frequency shift of the second mode is associated with the 

augmentation or reduction of the amplitude of the wall-normal fluctuating velocity 

near the wall. Whereas for the first mode, the stabilization is related to the shrinking 
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in the phase superposition between the time rate of change of fluctuating internal 

energy and the energy change due to dilatation fluctuations, while the destabilization 

is due to the diminishing in the critical-layer phase discrepancy of the energy transport 

by the wall-normal velocity fluctuation and the total time rate of change of fluctuating 

internal energy. 

   

  



 

101 

Appendix A 

The explicit form of Equation (2.10) is shown below: 

𝑖

𝑇
(𝛼𝑈 + 𝛽𝑊 − 𝜔) 𝑢̂ +

1

𝑇

𝑑𝑈

𝑑𝑦
𝑣̂ = −𝑖𝛼𝑝̂

+
𝜇

𝑅
ঝ−

4

3
𝛼ϵ𝑢̂ +

1

3
গ𝑖𝛼

𝑑𝑣̂

𝑑𝑦
− 𝛼𝛽𝑤̂ঘ +

𝑑ϵ𝑢̂

𝑑𝑦ϵ
− 𝛽ϵ𝑢̂ঞ

+
1

𝑅
঳
𝑑𝜇

𝑑𝑦
গ
𝑑𝑢̂

𝑑𝑦
+ 𝑖𝛼𝑣ঘ̂ +

𝑑𝜇

𝑑𝑇
ভ

𝑑ϵ𝑈

𝑑𝑦ϵ
𝑇̂ +

𝑑𝑈

𝑑𝑦

𝑑𝑇̂

𝑑𝑦
ম঴

+
1

𝑅

𝑑ϵ𝜇

𝑑𝑇 ϵ

𝑑𝑇

𝑑𝑦

𝑑𝑈

𝑑𝑦
𝑇̂ 

(𝐴. 1) 

𝑖

𝑇
(𝛼𝑈 + 𝛽𝑊 − 𝜔)𝑣̂ = −

𝑑𝑝̂

𝑑𝑦

+
𝜇

𝑅
ঝ−𝛼ϵ𝑣̂ +

1

3
গ𝑖𝛼

𝑑𝑢̂

𝑑𝑦
+ 𝑖𝛽

𝑑𝑤̂

𝑑𝑦
ঘ +

4

3

𝑑ϵ𝑣

𝑑𝑦ϵ
− 𝛽ϵ𝑣ঞ̂

+
1

𝑅
ঝ
𝑑𝜇

𝑑𝑇
গ𝑖𝛼

𝑑𝑈

𝑑𝑦
+ 𝑖𝛽

𝑑𝑊

𝑑𝑦
ঘ𝑇̂ −

2

3

𝑑𝜇

𝑑𝑦
গ𝑖𝛼𝑢̂ + 𝑖𝛽𝑤̂ − 2

𝑑𝑣̂

𝑑𝑦
ঘঞ

(𝐴. 2) 

𝑖

𝑇
(𝛼𝑈 + 𝛽𝑊 − 𝜔)𝑤̂ +

1

𝑇

𝑑𝑊

𝑑𝑦
𝑣̂ = −𝑖𝛽𝑝̂

+
𝜇

𝑅
ঝ−𝛼ϵ𝑤̂ +

1

3
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𝑑𝑦
ঘ +
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−

4

3
𝛽ϵ𝑤̂ঞ

+
1

𝑅
঳
𝑑𝜇

𝑑𝑦
গ𝑖𝛽𝑣̂ +

𝑑𝑤̂

𝑑𝑦
ঘ +

𝑑𝜇

𝑑𝑇
ভ

𝑑ϵ𝑊
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𝑑𝑊

𝑑𝑦
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1

𝑅
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𝑑𝑇 ϵ

𝑑𝑇

𝑑𝑦

𝑑𝑊

𝑑𝑦
𝑇̂

(𝐴. 3) 

1

𝑇
(𝛼𝑈 + 𝛽𝑊 − 𝜔)𝑇̂ = 𝑖(𝛾 − 1)𝑀ϵ(𝛼𝑈 + 𝛽𝑊 − 𝜔)𝑝̂
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𝜇

𝑅𝜎
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(𝐴. 4) 

𝛾𝑀𝑎ր
ϵ(𝑖𝛼𝑈 − 𝑖𝜔)𝑝̂ − (𝑖𝛼𝑈 − 𝑖𝜔)

𝑇̂

𝑇
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𝜕𝑣̂

𝜕𝑦
−

𝑑𝑇
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𝑇
+ 𝑖𝛽𝑤̂ = 0 (𝐴. 5) 
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