
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

 

 
PRACTICAL 

ALGORITHMS FOR 
VISION-BASED HUMAN 

ACTIVITY RECOGNITION 
AND HUMAN ACTION 

EVALUATION 
 
 
   YU XINBO 

   PhD 

 

The Hong Kong Polytechnic University 

 

2020 





 

 

 

The Hong Kong Polytechnic University  

Department of Computing 

 
 
 
 

Practical Algorithms for Vision-Based 
Human Activity Recognition and Human 

Action Evaluation  
 

 
 
 

YU XINBO 
 

A thesis submitted in partial fulfilment of 
the requirements for the degree of 

Doctor of Philosophy 
 
 
 

May 2020 
 





I 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, 

nor material that has been accepted for the award of any other degree or diploma, 

except where due acknowledgement has been made in the text. 

 (Signed) 

   YU XINBO      (Name of Student) 



 

 

II 

 

Abstract 

Human Activity Recognition (HAR) and Human Action Evaluation (HAE) are two 

main tasks of human activity analysis addressed in this thesis, which could be applied 

to many application domains like healthcare and physical rehabilitation, interactive 

entertainment, and video surveillance. These applications could alleviate the 

increasingly serious problem of population aging by bring improvements to the 

people’s quality of life. 

Existing HAR methods use various sensors like vision, wearable, and ambient sensors. 

With a comprehensive understanding of these sensors, this thesis focuses on the vision-

based HAR. To test the effectiveness of existing methods, we collect a small real-

world Activities of Daily Living (ADLs) dataset and implement some representative 

skeleton-based methods. We also propose an HAR framework called HARELCARE 

for developing practical HAR algorithms. Within the proposed HARELCARE 

framework, two effective HAR algorithms are developed and tested on the collected 

ADLs dataset. One of them is based on feature extraction, while the other is based on 

transfer learning. The results show both methods significantly outperform existing 

methods on our real-world ADLs dataset. 

Not only tackling with small datasets, we also propose a Model-based Multimodal 

Network (MMNet) to handle HAR with increasingly larger public datasets. Since most 

of public datasets are collected with Kinect sensors, multiple data modalities like 

skeleton and RGB video are available. However, it remains a lack of effective 

multimodal methods that could further improve the existing methods. Our MMNet 

fuses different data modalities at the feature level. With extensive experiments, the 

proposed MMNet is proved effective and achieves the true state-of-the-art 

performances on three public datasets NTU-RGB+D, PKU-MMD and Northwestern-

UCLA Multiview. The results of our HAR algorithms show great potential of our 

methods to be applied to wide applications. 

Unlike HAR that focuses on activity classification, HAE is concerned with making 

judgements about the abnormality and even the quality of human actions. If performed 
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effectively, HAE based on skeleton data can be used to monitor the outcomes of 

behavioural therapies for Alzheimer disease (AD). To do so, we propose a two-task 

Graph Convolutional Network (2T-GCN) to represent the skeleton data for both HAE 

tasks of abnormality detection and quality evaluation. It is first evaluated on the UI-

PRMD dataset and found to perform well for abnormality detection. While for quality 

evaluation, in addition to the laboratory-collected UI-PRMD, we test it on a set of real 

exercise data collected from AD patients. Experimental results show that the numerical 

scores for some exercises performed by AD patients are consistent with their AD 

severity level assigned by a clinical staff. This shows the potential of our approach for 

monitoring AD and other neurodegenerative diseases.  
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Chapter 1 

Introduction 

Human Activity Recognition (HAR) and Human Action Evaluation (HAE) are two 

core tasks of human activity analysis [1]. HAR is concerned with recognizing different 

human activities from sensor data, while the goal of HAE is to evaluate the quality of 

a single activity performed by human subjects. It is important that these problems are 

well tackled because of the many applications they can have including physical 

rehabilitation, healthcare, video surveillance, and interactive entertainment. With the 

popularity of vision sensors, this thesis is tackling with practical algorithms for HAR 

and HAE from skeleton data and video sequences. 

1.1 Background and Motivation 

According to the latest world population prospection, the proportion of older people is 

predicted to reach nearly 1 billion in 2030, 1.5 billion in 2050 and it could reach nearly 

2.9 billion by 2100. The population aged 80 or over is growing even faster than that of 

aged over 65. There were just 54 million people aged 80 or over worldwide in 1990, 

which is nearly tripled to 143 million in the year of 2019. Globally, the number of 

people aged 80 or above will be nearly tripled again to 426 million in 2050 and to 

further increased to 881 million in 2100 [2]. Aged people will have higher risks of 

suffering from various diseases which will even lead to death. These diseases, 

categorized as Noncommunicable Diseases (NCDs), like heart disease, diabetes, 

cancer, chronic lung disease, stroke, are together responsible for almost 70% of all 
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deaths in the world [3]. With such a background, numerous healthcare applications 

emerged recently, which follows a similar process of HAR and HAE which includes 

steps like sensor selection, algorithm design, and recognition. The development of 

such HAR and HAE based applications could be formalized as a machine learning 

process as illustrated in Figure 1.1. 

 
Figure 1.1 Procedure for HAR and HAE based healthcare applications 

 

The HAR application categories include surveillance environments, entertainment 

environments, and healthcare systems, among which the healthcare system has two 

types namely daily life activity monitoring and rehabilitation applications [4]. 

Surveillance systems mostly aims to automatically detect and track human subjects in 

such a way to support security guards to monitor activities, which results in detecting 

suspicious activities and recognition of criminals. Detailed introduction of the 

surveillance application domain could be found in [4]. Literatures focusing on the 

recognition of entertainment activities such as sports  [5], dance [6] and gaming [7] 

are usually related with the domain of healthcare and rehabilitation. From our 
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observation, healthcare [8] occupies the majority of HAR applications among other 

application domains like manufacture monitoring [9], and security surveillance [10]. 

Hence, in this thesis, we delve deeper into the HAR and HAE applications in the 

healthcare domain. 

Although sensor based human activity analysis has received much attention recently, 

whether existing human activity analysis methods could be applied to real-world 

environments has rarely been investigated as most of existing jobs are tested with data 

collected with controlled setup and informed human subjects in the laboratory 

environment. Due to the fact that most algorithms have been evaluated mainly with 

datasets collected in laboratories, this work is motivated by the lack of algorithms that 

have been shown to be effective practically in any particular application domains. 

Those healthcare applications could be solved well if human activity could be 

intelligently analyzed by machines. Human activity analysis could be categorized to 

subtasks like HAR and HAE. HAR systems could be performed as a lifelog or 

Activities of Daily Living (ADLs) recognition tool in physical environments, by which 

machines could have better ability of human behavior understanding. For ADLs 

recognition, there have been some effort to investigate into the recognition scenarios 

such as cooking [11], bathing [12], medication intake [13].  Whereas HAE could be 

essential for inferring abnormality from the actions or exercises performed by the 

subjects. Research in the past has focused on developing HAE solutions to determine 

abnormality in some specific activities such as walking imbalance [14], falling [15], 

sitting down and standing up [16]. However, since the development of some physical 

and cognitive disfunctions usually takes years to become noticeable, it could be too 

late by the time they are discovered for any effective actions to be taken.  For example, 
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when activities like falling or walking problems are detected or other NCDs in their 

late stages, such solutions might be useful for diagnosis through detecting activities 

but they could not be sufficient for elderly patients’ lifestyle management which is 

essential for maintaining their independence. 

Motivated by alleviating the urgent issues caused by the world wide population aging, 

we developed practical HAR and HAE algorithms and validated them on 

representative benchmarking datasets and also our own datasets collected from two 

real-world environments: home and nursing home. For the home environment, we use 

vision-based HAR to monitor the ADLs of an independent elderly, which could be 

used to infer the independence level of the elderly. The second one is using skeleton- 

based HAE to evaluate the morning exercise performance of the elderly people in a 

nursing home that has Alzheimer subjects, which is of great potential to provide 

evidence support for behavioral diagnosis and physical therapies. 

1.2 Problem Definition 

The above introduced applications can be tackled easily if problems from human 

activity analysis tasks are solved. In the following of this section, we introduce 

problems from the perspectives of the goals of HAR and HAE, their data 

characteristics and the related algorithms. 

HAR is concerned with recognizing movements or actions of a human subject. 

Movements are often typical activities like drinking, sitting, standing, walking, and 

running that are conducted in indoor environments. They may also be more focused 

activities such as activities happened in a car or in a kitchen. The sensor data may be 

recorded remotely, such as radar, video, or other wireless sensors. Alternatively, data 
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may be recorded by using wearable devices that have accelerometers and gyroscopes 

[1]. Currently, vision-based HAR problems could be focusing on different factors like, 

indoor or outdoor, fine-grained activity or general activities, single view or multiple 

view, and single subject or multiple subjects. With a definition of activity complexity, 

and investigation of the requirements in the healthcare domain, we focus on the indoor 

fine-grained HAR. 

HAR algorithms could be focusing on single sensor modality like video [17], 

accelerometers and gyroscopes [18], and RFID [19]. Alternatively, it could also be 

tackled with multiple sensor modalities like video and accelerometers [20], and even 

various vision modalities from depth sensor [21]. Given a single sensor modality like 

an RGB video of particular duration that captures a series of activities, the raw video 

can be considered as a set of two-dimensional tables that contains millions of pixels 

with Green, Blue and Red attributes. It is commonly accepted that tasks like human 

detection, object detection could be performed on a single RGB frame. However, to 

infer the human activity from a video is far more complex than such simple tasks, 

which is still not well tackled recently although some large RGB video activity datasets 

are released. The RGB video might also lack of depth information from its single frame, 

which makes it insufficient to effective learning algorithms. Hence, multimodal 

solutions that could take the complementary advantages of different data modalities 

are a booming area in recent years [22]. However, how to fuse differently data 

modalities has seldom been well tackled. Existing multimodal methods usually fuse 

the results of different data modalities at the final layer of a DL model or at the fully 

connected layer, which could have subtle performance improvement and even 

decrease the overall HAR performance in some occasions, which is apparently not 
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fully utilizing the complementary knowledge from different data modalities. In this 

thesis, we utilize both single modal and multimodal algorithms to improve the 

performance of vision-based HAR. In such a way, our algorithms could be practical 

for realistic application scenarios. 

Another human activity analysis task is HAE that is closely related to the field of 

motion quality assessment, which aims to design evaluation methods to automatically 

assess the quality of a specific human motion. HAE relies on human tracking, human 

motion recognition, action segmentation, and effective methods for assessing the 

action quality [1]. As for HAE, most existing methods are tackled with logistic 

regression algorithms that classify activities into the binary classes as normal and 

abnormal. These algorithms do not give continuous numerical evaluation scores and 

as a result, activities that are performed while a patient is in rehabilitation may not be 

easily determined. Also, the algorithms that have been used are trained based on the 

use of laboratory data collected on young subjects [23] [24].  The performance of these 

algorithms in more realistic environment may not be very accurate. In addition to this 

problem, existing HAE methods are developed based on motion sensors like Kinect or 

other motion capture sensors. The issue of which exercises are good for inferring 

abnormality has not been well tackled. 

1.3 Overview of Solutions 

There are plenty of sensor-based behavior analysis technologies and applications 

emerged in recent years like vision sensors,  ambient sensors [19] [25] [26] and 

wearable sensors [18] [27]. With a thorough investigation of the advantages and 

disadvantages of different sensors in Chapter 3, we found depth motion sensors that 
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remarkably attract the interest of researchers could be capable to tackle with human 

activity analysis tasks. Precisely, we adopted a depth sensor known as Kinect v2 to 

handle both HAR and HAE problems. As shown in Figure 1.2, Kinect v2 has three 

types of sensors namely depth sensor, RGB camera, and audio sensors. Two datasets 

were then collected by using Kinect v2 in two realistic environments, which is 

introduced in Section 3.4.2 and Section 3.4.3. 

 

Figure 1.2 Kinect v2 for windows sensor 
 

To design practical HAR algorithms for logging ADLs, we proposed an HAR 

framework that could accommodate different HAR algorithms and that could work 

with one or more data modalities. Two algorithms for real-world scenarios when large 

training data are not available are proposed from the HAR framework for learning 

patterns from the data collected in such a way that the first algorithm focuses on the 

skeleton modality based on feature extraction. The second algorithm also focuses on 

the skeleton modality but based on transfer learning.  

To better tackle the HAR problem with data driven methods, we proposed an algorithm 

that can handle multimodality by fusing the skeleton and video modalities at the 

feature level. We conduct experiments on some large public datasets to verify the 

effectiveness of our multimodal method and found it achieved state-of-the-art 
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performances, which indicates the great potential of our solutions to be utilized in 

logging ADLs of the independent elderly to provide supportive information for 

healthcare and remote care services. 

The HAE algorithm is based on the skeleton modality for the evaluation of physical 

exercises of patients. To test our HAE algorithm, we conducted several experiments 

on a benchmarking dataset and achieved good performance. To determine which 

activities are good for the prediction of abnormality, we collected a morning physical 

exercise dataset from a nursing home where there are a number of elderly subjects who 

are suffered from Alzheimer’s disease (AD). We conducted abnormality analysis for 

the exercises on the dataset with our algorithm with a continuous numerical score 

assigned to different activities based on how much they deviate from abnormality. The 

experimental results show that our proposed algorithms can have great potential for 

practical applications. 

1.4 Contributions 

The contribution of this thesis comes from practical and algorithmic perspectives. For 

the practical perspective, we first defined different levels of the human activity 

complexity as a standard for evaluating the capability of different sensors and existing 

HAR tasks. Second, we reinvestigated various sensors and made a comprehensive 

understanding of their specific arrangement and feasibility for human activity analysis. 

Third, we filled the gap between the vision-based activity analysis and healthcare 

domain by coming up with two real-world application scenarios, which could be 

further investigated based on our experimental results. Precisely, we collected two 

datasets in two different real-world scenarios. One is an ADLs dataset collected from 
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the bedroom of an independent elderly person. The second one is a morning exercise 

dataset collected from a nursing home that has Alzheimer subjects. We then designed 

a framework named HARELCARE that accommodates various HAR and HAE 

solutions with different components to choose from in each stage of the framework. 

For algorithmic contributions, we proposed four algorithms for human activity 

analysis. Three different HAR algorithms that covers both single modal and 

multimodal HAR methods are proposed for both effectiveness and practical purposes. 

For single modal algorithms, we proposed a traditional feature extraction method that 

is easy to implement and a transfer learning-based method for scenarios when large 

training data is not available. For the multimodal algorithm called Model-based 

Multimodal Network (MMNet), we utilized the skeleton modality and RGB modality 

and proposed to fuse them at feature level. With extensive experiments, the proposed 

MMNet consistently achieves state-of-the-art accuracies on three public datasets 

NTU-RGB+D [21], PKU-MMD [28] and Northwestern-UCLA Multiview [29].  

Besides HAR algorithms, we also proposed an HAE algorithm called two-task Graph 

Convolutional Network (2T-GCN). The results not only outperform existing methods 

with their criteria on a benchmarking dataset called UI-PRMD [24], but also indicate 

that Kinect v2 is more capable than the Vicon motion capture for HAE. It is then 

applied to our nursing home morning exercise dataset. The results show encouraging 

abnormality prediction performance and high consistency with clinical evaluation of 

AD, which indicates the great potential of our HAE algorithm for supporting clinical 

criteria of Alzheimer diagnosis and behavioral therapies with objective evidence. 
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1.5 Organization of Thesis 

In Chapter 2, a comprehensive review of the related literature that sheds light on single 

modal and multimodal HAR algorithms is introduced. We also present a description 

of existing work on HAE. 

In Chapter 3, we describe the sensor selection and arrangement of sensing 

environments for human activity analysis based on a proposed standard definition of 

activity complexity and an investigation of the capabilities of different sensors. 

Besides, we also introduce the data collection methods and the two collected datasets: 

ADLs dataset and nursing home morning exercise dataset in this chapter. 

In Chapter 4, we introduce the proposed HARELCARE framework and two HAR 

algorithms derived from the framework. The experimental results of the two HAR 

algorithms on our ADLs dataset and discussion are presented in the same chapter. 

In Chapter 5, the MMNet model is introduced and tested on benchmark datasets like 

NTU-RGB+D, PKU-MMD and Northwestern-UCLA Multiview. We also compared 

experimental results of this multimodal algorithm with the other two algorithms 

introduced in Chapter 4 on our ADLs dataset. 

In Chapter 6, we introduce the HAE algorithm called 2T-GCN. Experimental results 

of our HAE algorithm on the benchmarking dataset called UI-PRMD and our nursing 

home morning exercise dataset are also presented. 

Finally, in Chapter 7, we summarize the thesis and discuss whether the proposed 

algorithms could be used for human activity analysis. The limitations of our proposed 

algorithms and directions of future job are also concluded.
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Chapter 2 

Related Work 

During recent years, vision-based human activity analysis has a decent number of 

methods emerged. In this chapter, we survey the related literature of existing 

algorithms for vision-based human activity analysis from single modal to multimodal 

methods, and from HAR to HAE tasks with our critical and practical concerns. 

2.1 Single Modal HAR 

Single modal vision-based methods for HAR have two rough groups: representation 

based on local features [30], [31] and the body skeleton [32], [21]. HAR systems that 

base on local features are independent to the choice of sensors as they only use raw 

depth data and more robust to occlusion since depth camera is usually installed on the 

ceiling. Comparing with approaches based local features, with a skeleton or pose 

extraction layer on raw depth data or RGB data, skeleton representation of human body 

significantly alleviates the complexity and computation cost of human activity analysis 

tasks. Most of existing algorithms usually focus on a specific data modality of the 

datasets. In the remaining of this section, we first introduce current algorithms 

proposed to tackle the skeleton modality and then describe the algorithms for the RGB 

video modality. 
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2.1.1 Skeleton-Based HAR 
The skeleton feature could be available from off-the-shelf vision sensors like depth 

cameras, Motion Capture (Mocap) systems, and RGB cameras. Depth motion sensors 

like Kinect and RealSense and even RGB cameras have the ability to detect human 

body skeletons. Since the release of such motion sensors, skeleton-based HAR is a 

booming area in computer vision. A bunch of large datasets like MSRDailyActivity3D 

[32], Multiview RGB-D Event Dataset [33], UWA3D Multiview II [34], NTU 

RGB+D [21], PKU-MMD [28], UESTC RGB-D Varying-view action [35], and NTU 

RGB+D 120 [36] were collected by using Kinect v1 and v2 sensors. Among these 

datasets, the number of activities and subjects involved in the NTU RGB+D [21] 

dataset is the largest. Activities in NTU RGB+D are grouped into three categories: 

daily actions, mutual actions, and medical actions. Meanwhile, UESTC RGB-D 

Varying-view action dataset was designed for human-robot interaction includes 40 

sports related actions and involves 118 subjects. 

As skeleton data of an activity basically has the sequential character, traditional 

algorithms like DTW [37], HMM [38], and SVM [39] are commonly used, which is 

then dominated by DL algorithms [40]. Wang et al. [40] reviewed DL models for HAR 

tasks, which includes Convolutional Neural Network (CNN), Deep neural network 

(DNN), , Stacked autoencoder (SAE), etc. Existing researches of skeleton-based HAR 

mainly focus on three directions for the improvement of activity recognition. The first 

direction focuses on data preprocessing and data cleaning. For example, Liu et al. [41] 

introduced an algorithm to remove the noise of skeleton joint by learning a model that 

reconstructs more accurate skeleton data. Similar jobs have been proposed by Pengfei 

et al. [42]. The second approach improves the HAR benchmarks by proposing novel 

learning or representing models. Liu et al. [43] introduced a context aware LSTM 

http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html?glngdjmophdjmgdb
https://github.com/HRI-UESTC/CFM-HRI-RGB-D-action-database
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model that could learn which part of joints contribute to the HAR. Since the induction 

of ST-GCN [44] some enhanced versions of GCN models have been proposed that 

improve the ST-GCN by considering other physical prior knowledge. For example, Li 

et al. [45] tries to model discriminative features from actional and structural links of 

the skeleton graph. Except GCN, motivated by cooccurrence learning, Chao et al. [46] 

proposed the hierarchical cooccurrence network (HCN) that learns point-level features 

aggregated to cooccurrence features with a hierarchical methodology. The co-

occurrence features refer to the interactions and combinations of some subsets of 

skeleton joints that characterizes an action [47]. Considering both the graph and 

cooccurrence characteristics, Si et al. [48] proposed AGC-LSTM that achieved high 

accuracy on the NTU-RGB-D dataset. Similarly, the (directed graph network (DGN) 

[49] this is a good introduction of an acronym) achieved the better performance than 

the AGC-LSTM on the NTU RGB+D dataset with a smaller margin. Existing DL 

models could successfully capture the spatial and temporal features well on the 

skeleton modality, but to further improve the performance, appearance features from 

the RGB modality might be useful for preventing existing skeleton-based DL models 

from overfitting. Hence, we will further investigate the multimodal algorithms in 

Section 2.3. 

2.1.2 RGB Video Based HAR 
Traditionally, methods that utilized local features based approaches are proposed for 

recognizing simple activities like fall and hand gestures [30]. Another job proposed by 

Elangovan et al. [31] attempted to use a local feature based algorithm to analyze three 

types of interactions between human to object, human to human, and human to vehicle, 

which is at a very rough and casual HAR level and has little generalization ability as 

its features are fixed. Although traditional methods could not provide applicable fine-
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grained HAR solutions, a vision-based approach proposed by Albert et al. [50] for 

monitoring hand hygiene compliance in hospital outperforms the accuracy of three 

people covert observation, which identifies the potential of vision-based sensor for 

human activity analysis tasks. 

Other than local features based approaches, data driven approaches have also been 

proposed with large RGB video datasets like DeepMind Kinetics-400 and Kinetics-

600 collected from YouTube videos by Google [51] that contain much more activity 

classes with the number of 400 and 600 respectively. Kinetics datasets insist the 

philosophy of accommodating as many activity categories as possible, by which could 

be applied to video search, surveillance and robotics. Other similar large scale complex 

video activity datasets like UCF-10 [17], HMDB-51[52], Sports1M[53], ActivityNet 

[54], Multi-THUMOS [55] have revitalized the domain of HAR and inspired new 

ideas and research directions. 

Carreira proposed I3D [56] that uses pre-trained inflated Inception-V1 mode 

miniKinetics as back bone to improve the performance of UCF-101 and HMDB-51 by 

end-to-end fine-tuning. Two data modalities RGB and optical flow, extracted by the 

TV-L1 algorithm are used, as in their two-stream model. It turns out that the optical 

flow modality performs better for UCF-101 and HMDB-51 dataset but is surpassed by 

RGB modality on miniKinetics. On top of I3D, Xie et al. [57] considers about the 

speed-accuracy trade-offs for video classification, and proposed a S3D model that 

further improves the performance of [58]. It is worth mentioning that the S3D [57] was 

implemented on 56 GPUs with thes batch size set to 6 for each GPU, which reflects 

the huge computational cost of video-based HAR. It is intuitive that fusing the results 

of S3D with skeleton-based methods could boost the recognition accuracy. However, 
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from our observation, the S3D will stick at around 12% for the Top-1 accuracy for 

NTU RGB+D. This might be due to the fact that S3D is designed for datasets like 

UCF-101 and Kinetics that are different with the NTU RGB+D.  Precisely, activities 

in UCF-101 and Kinetics cover broader activity categories of both indoor and outdoor. 

The indoor activities in NTU RGB+D might be more challenging for such video-based 

methods. Another reason might be due to the limitation of computational resources as 

a workstation with 56 GPUs is not common. 

In terms of application domains like healthcare, the level or resolution of those 

activities in the Kinetics dataset might not enough for fitting their application 

requirements. By focusing on a particular scenario, Sigurdsson et al. [59] introduced a 

crowdsourcing approach named Hollywood in Homes to collect a Charades dataset 

that is annotated with free-text descriptions and labeled with 157 action classes 46 

object classes. Sigurdsson et al. [60] further examine whether kinds of information like 

activity labeling, temporal extent will be useful to achieve substantial gains in HAR 

from the perception perspective of human brain. Finally, they suggest that fine-grained 

classification of activities that share similar label of objects and verbs is essential for 

accuracy improvement and better activity understanding, which indicates that RGB 

data alone is faced with great challenge for the indoor human behavior understanding. 

2.2 Multimodal HAR 

It has been generally accepted that multimodal HAR approaches have the potential to 

improve recognition and could be capable of distinguishing difficult activities. The 

multimodal fusion analysis of [61] for the Opportunity dataset indicates that feeding 

more data channels to its proposed DeepConvLSTM would deliver improved 

https://allenai.org/plato/charades/


 

 

16 

 

performance. Similarly. the experimental results of [36] for NTU RGB+D 120 dataset 

also indicate that extra data modalities contribute to classification accuracy. 

Multimodal HAR could be roughly categorized into two classes: vision-based 

multimodal [62], [63], [64] and vision-wearable-based multimodal [65], [66], [61]. 

Algorithms for multimodal HAR share the similar trend that uses DL to extract 

discriminative features. Baltrušaitis et al. [22] summarized five technical challenges 

of multimodal solutions: representation, translation, alignment, fusion, and co-learning. 

The key issue of multimodal methods is to find proper ways of data fusion with the 

co-learning concept in mind. 

The 4DHOI model proposed by Wei et al. [62] attempts to represent both contextual 

objects and 3D human poses in events by using a spatial temporal graph with 

hierarchical structure. The fusion concept of [64] has two approaches namely 

intermediate fusion and late fusion. For the intermediate fusion approach, the skeleton 

and RGB modalities are separately pretrained first, then a shared representation was 

generated with a concatenation of their high-level representations. Whereas the late 

fusion scheme simply combines the results of two modalities. Pan et al. [67] proposed 

a cross-stream selective network (CSN) that leverages the correlation and 

complementarity of different input streams. CSN is designed to find the most 

discriminative temporal frames aligned to spatial frames and globally endows different 

weights to RGB and optical flow groups. Unlike CSN, our method will select which 

body part from the RGB stream will provide extra discriminative information. This 

concept has been attempted by [68], which achieved decent improvement by using an 

attention mechanism that focuses on two hands. However, [68] might neglect some 

activities with human-object interaction that involves lower body like “put on shoes” 
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and take off shoes. Other similar jobs also have been proposed in [69] and [70]. In our 

method, we utilize the effective attention features from the skeleton modality that 

focus on more body areas including the head and feet instead of just two hands as in 

most existing jobs in [68], [69] and [70].  

2.3 Skeleton-based HAE 

Very few jobs have reviewed the benchmarks of HAE. Ahad et al. [71] briefly 

collected some HAE datasets for healthcare, but most of the included datasets are 

focusing on HAR instead of HAE. Meanwhile, as far as we know, there is no job that 

investigates the standard evaluation method of HAE algorithms. Brook et al. [72] 

introduced the performance of the Kinect v1 for measuring movements of people who 

have Parkinson’s disease. It turns out that the Kinect v1 sensor scan accurately capture 

the gross timing and spatial features of body movements that is relevant to some 

clinical criteria. Kinect has also been used for cognitive stimulation for dementia 

individuals in [73]. The KiMentia system proposed by [73] provides an user interface 

with some simple HAR functions and its concept is commonly supported by clinical 

experts. Many researches have been conducted by using the Kinect for measure the 

wellness or accuracy of actions. Hence, we further investigate the evaluation methods 

of some latest benchmarks that use Kinect sensor to collect skeleton data as listed in 

Table 2.1. 

Ortega et al. [23] proposed to use the Kinect v1 to monitor psychomotor exercises like 

“touch the left eye with the right hand”, “Touch the right eye with the right hand.”, 

and “raise the right hand” etc. Although the system of [23] could detect 14 

psychomotor exercises with an accuracy of 96.28%, it did not perform quality 
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evaluation for the exercises. Tao et al. [74] proposed a model for online motion quality 

evaluation and validated on the SPHERE dataset which includes three sub- datasets, 

Staircase2014, Walking2015 and SitStand2015. The SPHERE dataset is originally 

collected for a competition and just provide the body center data instead of the whole 

skeleton. Tao et al. [74] compared various Hidden Markov Model (HMM) models 

which is traditional, and its performance has been beaten in various datasets by DL 

models. Vakanski et al. [24] collected a fitness exercise dataset named UI-PRMD for 

HAE algorithm evaluation. Liao et al. [75] proposed a DL framework to encode the 

skeleton data of the UI-PRMD dataset, which is supervised by a quality score function. 

Since the UI-PRMD dataset did not provide a standard evaluation method, Liao et al. 

[75] proposed its own quality score function, which makes it meaningless to train a 

representation model to fit it as the results could already be inferred by the quality 

score function. Lack of standard evaluation method also makes the dataset hard to be 

compared by a similar job in [76]. Unlike the 10 incorrect exercises in UI-PRMD that 

are simulated by the ones that perform the other correct motion sequences, Antunes et 

al. [77] collected a dataset AHA-3D that is performed by both elderly and young 

people but it is not targeting to any specific disease. Meanwhile, by the date of this job, 

the AHA-3D dataset is not publicly accessible. The evaluation method in [77] is per 

frame but not in terms of the whole action sequence. Elkholy et al. [16] collected a 

dataset that is similar with SPHERE [74] and proposed a similar HMM based method 

that has less computational overhead than the one proposed by [74]. The training 

process of [16] is supervised by the score of abnormality degree (on the scale of 1 to 

5) evaluated by professional specialist. 
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Table 2.1 Benchmark Human Activity Recognition Datasets (NS Stands for Number of 
Subjects, NA Stands for Number of Activities, and NR Stands for Number of repetitions) 
# Dataset Year Sensor Disease NS NA NR 

1 Ortega et al.  
[23] 2014 Kinect v1 

cognitive 
damage and 
deterioration 

15 14 Psychomotor 
exercises 

2 SPHERE [74] 2016 Kinect v2 Stroke, PD 10 3 48/40/109 

3 UI-PRMD [24] 2018 Vicon, 
Kinect v2 Rehabilitation 20 10 1326 

4 AHA-3D [77] 2018 Kinect v2 Not mentioned 23 4 NULL 

5 EJMQA  [16] 2020 Kinect v2 
neuromusculosk
eletal disorders  

 
32 4 NULL 

6 Our Nursing 
Home Dataset 2020 Kinect v2 Alzheimer's 

disease 25 6 869 

 

To measure the abnormality and action quality, exercise or action representation 

models are usually trained on normal action sequences and then tested on new 

observations to infer anomalies according to the similarity of the new observation 

generated by the model. To the beset of our knowledge, there is no application that 

utilizes HAE to support real disease diagnosis and treatment. Some trial projects have 

been developed that base on gaming scenarios like bowling in the Kinect Project [78] 

and cognitive stimulation as in the KiMentia system [73]. According to the above 

analysis of the state-of-the-arts methods, there are some challenges and issues need to 

be tackled for the popularization of HAE based healthcare applications. First, the 

datasets need to be naturally collected instead of simulated by young subjects and 

performed in laboratory environment. Second, there is no standard evaluation methods 

being developed for action assessment although some benchmark datasets have been 

collected. Third, once effective evaluation methods have been developed, it needs to 

be validated in real treatments that follows clinical validation procedures. 
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Chapter 3 

Vision Environments for HAR and 

HAE 

In this chapter, we elaborate the activity complexity definition standard and a 

comparison of the capability of various sensors for HAR and their corresponding 

arrangements in the first three sections. In Section 3.4, we introduce the two datasets 

collected in real-world environments. 

3.1 Definition of Activity Complexity 

From the activity perspective, a clear definition of the human activity complexity is 

crucial for evaluating the HAR capability of different sensors. It is challenging to 

concretely group human activities as they are complex in terms of many structural 

characteristics like different levels of activities in a hierarchical structure, various 

activity durations, different locations, and the numbers of people and objects involved. 

Previous research defined activity complexity by only considering the time span as 

shown in Table 3.1 [79], which might not adequate to represent attributes of human 

activities. Low-level of activity recognition such as human subject tracking and body 

posture analysis was covered by Aggarwal and Cai [80]. Some performance-oriented 

jobs usually verify their models’ accuracy on benchmark datasets with the duration of 

the recognized activities limited to seconds. For ease of explanation, we concentrate 

the case of single subject HAR since multi-subjects activity recognition, to some extent, 
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could be expanded from single subject HAR with human identification. Considering 

three aspects: object, time, and location, we come up with a space (see Figure 3.1) to 

represent activity complexity for single subject human activities, which accommodates 

the activity categories in a hierarchical structure. This activity complexity definition is 

used to evaluate sensor capability in Section 3.3. As far as we know, this might be the 

first study that examines the complexity of human activity and the required level of 

HAR for applications. 

Table 3.1 Activity Levels Concerning Sematic Meaning and Duration 
Activity 

Level 
Semantic 

Complexity Duration Activity Examples 

I Gesture or pose Frames to seconds Hand gesture, human appearance 
II Action Seconds to minutes Sit down, stand up, fall down,  
III Activity Minutes to hours Writing, watching TV, sleeping, cooking 
IV Behavior Hours to Days Daily routine, morning routine 

V Concurrent 
activities Seconds to hours Cooperation, dispersion, planning 

 

 

Figure 3.1 Our HAR categorization scheme 
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3.2 HAR Sensor Arrangements 

Recent work in the development of HAR methods depends on the arrangements of 

different sensors. For ambient sensors, some RFID technologies, such as that reported 

in [19], require that RFID tags be installed on the entire floor of a user’s living 

environment for the purpose of detecting whether or not a person is near the bed. They 

also require that RFID antenna be embedded in the bed cloth. This approach is 

considered as non-intrusive [25]. The main disadvantage of RFID is that, due to the 

mutual interference of RFID signals when two objects are closely positioned, the 

detection accuracy will be affected by the high signal noise level. Another type of 

ambient sensor is state-change sensors that require to be installed in all locations for 

deployment. However, despite the wide adoption of state-change sensors, this 

approach could only do some coarse-grained activity recognition. In wireless 

communications, channel state information (CSI) is known as channel characteristics 

of a communication link. Wi-Fi CSI is a useful approach that can be adopted for HAR 

to reduce the requirement for the number of sensors [81]. It also has the advantage of 

cross wall sensing ability, but such an approach lacks a theoretical foundation that 

elaborates its capability for multi-users activity recognition. Wi-Fi CSI based HAR 

requires strict sensor positioning, which makes it hard to install and adapt to different 

real-world environments. Wi-Fi CSI remains at its early research stage for HAR and 

it has a lack of comparison with other sensors in terms of their measurement accuracy. 

Wearable devices could be an appropriate choice for activity recognition. Since each 

sensor modality has its specific limitations, there has been some effort to fuse vision 

and inertial sensor data to try to improve HAR accuracy [65], [20]. In [82], a review 

of previous work that use both depth camera and inertial sensors to collect multimodal 
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3D data was presented, which provides a summary of the similarities in the features 

that are utilized for such sensor fusion approaches. However, inertial modality does 

not provide any context information for fine-grained (e.g. human-object interaction) 

HAR tasks. Besides, due to intrinsic battery limitation, this approach is considered too 

intrusive as batteries need to be replaced to allow wearable sensor devices to be 

capable for long-term activity monitoring.  

When it comes to wearable devices, it is still unclear whether or not adding extra 

modalities can improve HAR accuracy. Based on an Opportunity dataset, the 

multimodal fusion analysis of [61] reveals that the more data channels are involved for 

its proposed DL model named DeepConvLSTM, the better HAR the recognition 

performance can be. For example, starting from a 𝐹𝐹1 score of 69% that used only the 

accelerometers of the Opportunity dataset, the performance improved on average by 

15% when fused accelerometers and gyroscopes and by 20% when fused 

accelerometers, gyroscopes and magnetic channels.  

However, the use of different combinations of sensor modalities in experiments on the 

dataset named Berkeley Multimodal Human Activity Database (MHAD), the 

improvement on the performance is very limited when adding more data modalities 

(from around 98% to 100%) [20]. It is also concluded that adding extra modality may 

even lower the HAR accuracy, which means the extra modality could not bring more 

discriminative features. Besides, the increased problem complexity and decreased 

practical usability make the multimodal HAR that uses various sensors unpopular 

among end users and other stakeholders. 
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Table 3.2 Benchmark Human Activity Recognition Datasets (NS Stands for Number of 
Subjects, NA Stands for Number of Activities) 

# Dataset Sensor Sensor Type NS NA Activity 

1 MSRDailyActivity3D [32]  Kinect v1 Vision 10 16 Actions 

2 PKU-MMD [28] Kinect v2 Vision 66 51 Actions 
3 NTU RGB+D 120 [36]  Kinect v2 Vision 32 120 Actions 
4 Kasteren Dataset [25] State change Ambient 1 8 Daily activity 
5 Freiburg Dataset [83] Audio Ambient -- 22 Daily activity 
6 Smart Carpet Dataset [19] RFID Ambient 13 2 Fall detection 
7 WiAR Dataset [26] Wi-Fi Ambient 10 16 Gestures, activities 
8 PAMAP2 [18] 3 3-DOF IMUs Wearable 9 18 Daily activities 
9 Opportunity dataset [65]  IMUs, 72 sensors of 

10 modalities 
Multimodal 12 21 Morning activities 

10 Berkeley MHAD [20] Mocap, Kinect v1, 
camera, acc, audio 

Multimodal 12 11 Actions 

 

To compare the capability of different sensors, we collected representative publicly 

available datasets that use various sensor arrangement as listed in Table 3.2. It is note-

worthy that the NTU RGB+D 120 [36] could be the dataset that includes data involving 

relatively more complex activities. This dataset is collected based on vision sensors. 

Based on an analysis of the activities in Table 3.2, it is noticeable that vision sensors 

are relatively more capable for HAR comparing with other ambient and wearable 

sensors that have been adopted when concern the number of subjects involved in their 

datasets, and the number of activity classes that they try to recognize. However, with 

the ambition to simultaneously recognize activities with different levels of activity 

complexities like varied activity resolutions, high- and low-level activities, and 

human-object interactions, the NTU RGB-D 120 [36] that contains a larger number of 

different activities has been made available for testing. So far, this goal has not been 

achieved too well as performance with the dataset suffers from relatively low accuracy. 

The most accurate recognition rate achieved was at around 65% [36]. Also, if ADLs 

recognition for NCDs is to be tackled, the NTU RGB-D 120 does not need to be used 

in all when developing models for the task. Some fine-grained activities in the dataset 

http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html?glngdjmophdjmgdb
http://dare.uva.nl/search?arno.record.id=374890
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like “make ok sign”, “counting money” and activities labelled as “grab other person’s 

stuff”, “put on bag/backpack”, and “put on jacket” might be irrelevant to ADLs or for 

inferring symptoms of NCDs. Besides, with the increased deployment complexity, 

large datasets might not be feasible when developing HAR methods for real-world 

healthcare applications. 

3.3 Sensor Capability Comparison 

Table 3.3 summarizes sensors that are available in each sensor modality for HAR with 

their general advantages and disadvantages. Popular sensors used by researchers has 

been introduced in the last section.  

Table 3.3 Sensors for Human Activity Recognition and Behavior Understanding 
Sensor type Video sensor Ambient sensor Wearable sensor 

Sensor 

Kinect v1/v2 
MoCap  

Intel RealSense 
Stereo cameras 
Single cameras 

 

Pressure/force 
Passive Infrared 

RFID 
Wi-Fi 

Microphone 
Ultrasonic 

Inertial Measurement 
Units (IMUs) 

Biosensors 
GPS 
EEG 
ECG 

Sensor/data 

Depth 
RGB 

Motion/skeleton 
Infrared 

Light 
Sound 
Motion 
Door 

Vibration 
Pressure 

Body temperature 
Heart rate 

Accelerometer  
Gyroscope  
ECG/EEG 

Steps 
Advantage Nonintrusive Nonintrusive Location unlimited 

Disadvantage 

Occlusion/view point 
Light condition 
Pervasiveness 

Computational cost 
Privacy 

Location limited 
Installation complexity 

Maintenance 
 

Intrusive/obtrusive 
Acceptance of subject 

Battery life 
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Figure 3.2 HAR modality hierarchical categories with relevant potential activity categories 
 

 

Based on the reviewed representative benchmark datasets from each category of 

sensor-based HAR and the activity complexity definition as in Figure 3.1, the 

capabilities of different sensors are summarized in Figure 3.2. Based on such analysis, 

we could observe that the vision sensor is the most capable for HAR tasks (from 

activity categories 1 to 10). The activities highlighted in red in each activity category 

on the right side of Figure 3.2 are taking the example of breakfast preparation 

procedure from the job of [11].  

One recent trend of the multimodal HAR is the fusion between inertial sensors and 

vision sensors as described in the multimodal HAR datasets in Section 3.2. However, 

according to various modality combination experiment results on Berkeley MHAD, 

the improvement of the performance by adding more data modalities is very limited 

(from around 98% to 100%) [20]. Sometimes, adding extra modality will even lower 

the HAR accuracy, which renders the extra modality in vain. The increased problem 

complexity and affected usability also make the multimodal HAR hard to be 

popularized among end users as well as other stakeholders.  
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Considering ambient sensors, take the RFID technology used by [19, 84, 85] for 

example, it needs to install RFID tag on the entire floor of a user’s living environment 

for the purpose of detecting if the user is near the bed or not with their claim that the 

cloth with RFID antenna is unobtrusive. RFID noise interference remains an issue if 

two objects are very closely located. Whereas, the use of state change sensors needs to 

install a quite number of sensors to all the related locations, but it could only do some 

coarse-grained activity recognition. Although Wi-Fi CSI emerged as a novel method 

that has the advantage of cross wall sensing ability, it remains lack of theoretical 

foundation and practical methodology for HAR.  

Besides ambient sensors, wearable devices could be an appropriate choice for outdoor 

activity recognition. In a few existing jobs, it has been studied that fusing data of 

inertial and vision sensors could improve the HAR performance. A review by Chen et 

al. [82] summarized previous jobs that using both depth camera and inertial sensors to 

collect multimodal 3D data. Chen et al. gave the common features utilized with their 

fusion approaches. However, the inertial modality does not provide any context 

information for fine-grained HAR tasks like human-object interaction. Besides, due to 

the intrinsic battery limitation, it is intrusive for users as they need to wear sensor 

devices for long-term monitoring. 

Comparing all the public available datasets, it is worth mentioning that NTU RGB+D 

120 is by far the largest benchmark HAR dataset among all mentioned datasets 

concerning perspectives like subjects involved, number of activity classes, and number 

of viewpoints. Many algorithms have been proposed and tested on the on the NTU 

RGB+D dataset. Some of them model activities with spatial and temporal models by 

using CNN and LSTM algorithms [86], [87]. While some of them try to model the 
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most informative joints for HAR with context-aware LSTM algorithm [43] or remove 

the noise of the skeleton data for view invariant recognition [88] [41]. Another 

potential method is using the contextual information to improve the HAR accuracy by 

modeling human-object interaction [62], which has no experimental result on the NTU 

RGB-D dataset. 

3.4 Our Sensor Arrangement 

3.4.1 Vision Sensor Selection 
There are different vision sensors to choose from for tackling with the representation 

based human activity analysis. As Figure 3.3 shows, available vision devices that 

support 2D or 3D skeleton retrieval could have three types: Mocap system, depth 

camera, and RGB camera. 

Mocap system companies like OptiTrack, Qualisys, and VICON provide such system 

for areas like biomechanics, sports, engineering, and entertainment. These Mocap 

systems can provide very accurate skeletal data but suffered from high price and low 

flexibility for commercialization purpose. 

Depth cameras could be based on technologies like structured-light sensor or time-of-

flight sensor. Some off-the-shelf commercial depth cameras like Kinect and Intel 

RealSense can retrieve skeleton data in a significantly affordable way with acceptable 

accuracy for HAR. 

RGB cameras includes monocular camera and multiple cameras. The cheapest RGB 

cameras are also able to retrieve 2D skeleton [89] or 3D skeleton [90], [91], which 

require higher computational cost and might hinder the development of real-time 
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prototype applications. Detecting 2D skeleton from RGB image resembles the COCO 

Keypoint Challenge [92]. 

 

Figure 3.3 Vision devices that allow for 2D/3D skeleton retrieval 
 

With the capability of collecting skeleton joints data, Kinect sensor dominated the 

vision-based HAR. According to the list of public benchmark datasets in the survey of 

Han et al. [93], there were 29 out of 41 datasets were collected by Kinect sensor. 

Mocap ranked as the second most popular approach in Han et al.’s survey. While RGB 

cameras is the least capable yet the most affordable vision sensor that could be used 

for the HAR. 

Due to the popularity of depth cameras, we list all the off-the-shelf depth cameras in 

Figure 3.4 and make a comparison. The market of depth sensors could be classified 

into two groups: Microsoft and Intel group. In Figure 3.4, the Microsoft group has 

sensor a, b, c, and g, among which sensor g is an improved version of a, b, and c. 

Whereas the Intel group has released two sensor groups (based on range type in Table 

3.4): d with advanced model h; e and f with advanced version j as shown in Figure 3.4. 

Xtion Live Pro and Leap Motion (see Figure 3.4) have seldom been used in collecting 

datasets [94]. Kinect v1 and devices that are similar with Kinect v1 (which includes 
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Xtion Live Pro and Primesense Carmine) enables developers to retrieve skeleton joints 

data through Kinect SDK v1.8 [95] or OpenNI SDK v1 [96] libraries, respectively. 

With more advanced capability than sensor a, b, and c as shown in Figure 3.4, Kinect 

v2 is by far the most capable 3D devices for body skeleton joints retrieval through the 

Kinect SDK v2.0 [97]. Despite the popularity of Kinect sensors, Microsoft has 

discontinued the manufacturing of Kinect v2 in 2017 and brought the Kinect 

technology to its augmented reality project Hololens [98] which is similar with google 

Tango project. Fortunately, the shutdown rumor of OpenNI after acquired by Apple in 

2014 was exaggerated, and its second version OpenNI SDK v2 was maintained by 

officially Occipital and available again for multiple platforms (including macOS, 

Windows, Linux, and Android) [99], which might make the HAR into a new era as 

improved accuracy of skeleton retrieval will intuitively improve the final HAR 

performance. The potential of Intel SR300 as shown in Figure 3.4 for hand joints and 

emotion retrieval have not been explored by researchers. With the active market of 

depth sensor, we could imagine that the future of HAR will rely on these technologies. 

All depth camera sensors and their corresponding SDKs are listed in Table 3.4, in 

which the usable range would be roughly divided into two categories as local (below 

1.5 meters) and global (1.5 to 4.5 meters) as grouped on the right side of Figure 3.4. 

From the best of our experience, in terms of skeleton retrieval stability, wellness of 

support, and community activeness, Kinect v2 and RealSense SR300 might be the best 

choices for global and local data collection, respectively. 
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Figure 3.4 Off the shelf RGB-D cameras 
 
 

Table 3.4 Comparison of Skeleton Retrieval SDKs 
SDK Device Year Range Body Part 

Kinect SDK v1 [95] K4W v1 2010 0.8 - 3.5m Body 

Kinect SDK v2 [97] K4W v2 2013 0.5 - 4.5m Body, hand, face 

OpenNI SDK v1 [96]  
and v2 [99] 

K4W v1 
Xtion Live 
Primesense 

2010 
2011 
2013 

0.8 - 3.5m 
0.8 - 3.5m  
0.35 - 3m 

Body, hand 

Leap Motion SDK v2 [100] Leap Motion 2014 Up to 1m Hand 

Intel RealSense SDK v1 
[101] 

Intel F200  
Intel SR300 
Intel R200 

2014 
2015 
2016 

0.2 - 1.2m 
0.2 - 1.5m  

up to 3-4 m 

Hand, face 
Body, hand, face  

Up body, face 

Intel RealSense SDK v2 
[102] 

Intel SR300, 
D400-Series 

2016 
2016 

0.2 - 1.5m, 
0.11 - 10m 

Body, hand, face 
Up body, face 

 

3.4.2 Home Environment 
Amidst various NCDs, it is important that the elderly can maintain the ability to live 

independently and with dignity. To alleviate the healthcare burden, it is important to 

ensure the physical and mental well-being of the elderly people are looked after. To 

do so, clinicians utilize various metrics observed from basic ADLs of the elderlies as 

g) Kinect v2 for Windows Sensor (ToF) 

RGB Camera 

Power Light 

Microphone Array 

Depth Sensor IR Emitters 

d) Intel R200 

e) Leap Motion 

a) Primesense Carmine 
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an important indicator of the level of autonomy they enjoy [103]. For example, if the 

level of ADLs is considered sufficient, it can indicate the slowing down of mental 

illness. If level of ADLs are considered insufficient, this could suggest that elderly 

people increase physical activity as an effective strategy to maintain independence 

[104]. If information about daily routine could be automatically collected, it could 

serve as a crucial reference for the prevention of NCDs and for prescription of 

behavioral therapies. Hence, we install a Kinect v2 sensor on the ceiling of an elderly 

subject to monitor the independent ability of the elderly person who is living 

independently. Meanwhile, an ADLs dataset is collected to test our proposed 

algorithms. 

3.4.2.1 Sensor Installation 

When other benchmarking datasets such as PKU-MMD [28] or NTU RGB+D 120 [36] 

were collected, video sensors were usually mounted in front of the subjects. The 

problem with this is that the subjects could easily be occluded in real environments. 

For our case, the video sensor is mounted on the ceiling so as to cover the whole 

monitoring environment as much as possible. The use of fewer video sensors also has 

the benefit that labeling time can be reduced. With this set-up, we collected a dataset 

that is small yet sufficient for developing skeleton-based HAR models that can be used 

for home healthcare. Figure 3.5 shows two examples of ADLs that we collected data 

for. We provide here 5 sampled RGB frames captured by the Kinect V2 sensor. 

http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html?glngdjmophdjmgdb
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Figure 3.5 Sample activities of “eat with chopsticks” and “sweep the floor” 
 

3.4.2.2 Collecting ADLs 

Publicly available datasets like the NTU RGB-D 120 dataset  [36] is an expanded 

version of the NTU RGB-D dataset [21] by adding more fine-grained activities like 

hand or finger motions and object-related individual actions. It also adds more 

challenging activities that share some similarities like similar body motions, similar 

objects, and similar gestures. These public datasets are usually collected for 

developing new HAR algorithms that can improve over existing algorithms by being 

able to recognize greater number of activities, faster detection speed with higher 

accuracy. However, not all these activities are relevant to ADLs. For the purpose of 

our applications, we examine the characteristics of ADLs of an elderly person living 

independently and collected a dataset from the subject that includes activities that the 

subject will usually perform as in the morning routine (see Table 3.5). The dataset is 

distinctive with existing benchmark datasets in three aspects. First, this dataset is 

collected in a real environment and the activities are performed naturally. Unlike other 

datasets, the subject does not act for the purpose of data collection. Second, it is 

collected for recognizing daily routines that involve ADLs with proper granularity. 



 

 

34 

 

Third, activities are collected over a period creating a dataset of size that is large 

enough for training a recognition model. 

Table 3.5 ADLs Dataset in the Morning Routine 
Activity Retrieved Raw Data File Name ADLs Type Times 

01 lie down 01_liedown_ getup BADLs 9 
02 get up 01_liedown_ getup BADLs 9 

03 comb hair 02_comb_hair BADLs 11 
04 pour water 03_pour_water_drink_water BADLs 9 
05 drink water 03_pour_water_drink_water BADLs 9 

06 eat with chopsticks 04_eat_with_chopsticks BADLs 10 
07 eat with iron spoon 05_eat_with_ironspoon BADLs 10 

08 eat with pottery spoon 06_eat_with_potteryspoon BADLs 12 
09 tidy table 07_tidy_table IADLs 16 
10 wipe table 08_wipe_table IADLs 9 

11 sweep the floor 09_sweep_the_floor IADLs 19 
12 wear shoes 10_wear_shoes BADLs 17 

 

3.4.3 Nursing Home Environment 
Among the NCDs, it is reported that Alzheimer’s Diseases (AD) or other degenerative 

brain diseases among elderly people have been increasing more significantly when 

compare with other NCDs [105]. It is surveyed that the average duration of the Mild 

Cognitive Impairment (MCI) stage is seven years, which is a long-time dysfunction 

process where noticeable symptoms like decreased work performance and increased 

forgetfulness will appear gradually [106]. Early prevention and preparation at the MCI 

stage is essential for mitigate the significant deterioration of Quality of Life (QoL) for 

Alzheimer patients. Researchers are struggling to develop criteria for symptoms of 

Alzheimer at early stages to decelerate and even prevent the memory and cognitive 

decline progress. Existing MCI diagnosis methods could be categorized to core clinical 

criteria and research criteria or biomarkers [107]. Although biomarkers like 

cerebrospinal fluid, molecular neuroimaging with PET, and structural MRI analyses 
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are objective, accurate, and universally useful, definite diagnosis of AD still half relies 

on clinical definitions of MCI. However, research criteria usually require at least six 

months of symptom appearance to make definite diagnosis. There is no empirical 

evidence that cognitive screening could provide effective support for decision making 

[108]. With such a background, we propose a vision-based HAE method in Chapter 6 

that is able to automatically capture some clinical definitions of MCI to ease both the 

diagnosis and behavioral treatment of Alzheimer disease. In this section, we give 

introduction of the morning exercise data collection method and the collected dataset. 

The rational of evaluating physical exercises is further described in Section 6.1. 

3.4.3.1 Exercises and Subjects  

In the nursing home, elderly people will do daily morning exercise that is led by an 

exercise leader. The leader will demonstrate the physical exercise in front of a group 

of elderly people, and the elderly people will follow the demonstration to mimic the 

exercise. We do not define novel exercises for the people in the nursing home as it 

might be intrusive to their daily administration and also difficulty for both the exercise 

leader and the elderly people. To maintain the natural scenario in the nursing home, 

all the actions in this study are the same exercise that they do every day. As Figure 3.6 

shows, there are six activities like wave hands, hands up and down, bend waits etc. 

being collected in our nursing home dataset.  
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Figure 3.6 Examples of the 6 morning exercises in the nursing home 

 

3.4.3.2 Subjects and Repetitions 

The demographic information of 25 subjects who took part in the morning exercise 

data collection is given in Table 3.6. The average age of them is 68.4 years with 

standard deviation of 10.82 years, which is unlike the existing datasets that are 

performed by young subjects. The relatively younger ones like S10, S16, S18, and S20 

are staffs in the nursing home. 10 subjects of the dataset are diagnosed with varied 

severity of Alzheimer as indicated in the “AD” column of Table 3.6. The severity is 

labeled by a range of number from 0 to 10, where 0 represents no AD and 10 represents 

the last stage of AD. Care givers will feed AD medicine to all the Alzheimer subjects 

in the nursing home. Table 3.6 also shows the number of action repetitions retrieved 

from the raw Kinect v2 data. Due to the failure of skeleton detection, some of them 

might have 0 repetition. 
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Table 3.6 Demographic Information and Number of Repetitions of Each Action for the 
Subjects 

Subject 
ID 

Subject demographic Information 
  
  

No. of repetitions 

Age Gender Weight  
(kg) 

Height  
(cm) AD E1 E2 E3 E4 E5 E6 

S01 76 Male 70 168 0 

  

7 5 4 9 2 3 
S02 72 Male 66 180 7 7 5 6 6 3 3 
S03 60 Male 53.5 172 8 6 5 6 8 3 3 
S04 68 Male 60 160 0 6 5 5 6 2 2 
S05 62 Male 70 165 5 0 5 8 6 2 2 
S06 72 Female 51 157 10 7 5 8 7 1 1 
S07 68 Female 54 158 0 7 7 6 1 4 3 
S08 92 Male 55 165 0 8 6 6 3 3 3 
S09 86 Female 55 163 0 11 5 6 4 2 2 
S10 54 Male 60 162 10 8 5 6 7 2 3 
S11 67 Male 85 185 5 9 6 10 9 3 3 
S12 83 Male 65 170 6 9 5 12 9 3 2 
S13 81 Female 48 151 4 9 6 13 0 3 3 
S14 64 Male 65 172 8 7 6 6 5 3 2 
S15 67 Male 70 170 6 8 6 6 6 3 2 
S16 57 Female 69 156 0 8 6 7 6 4 4 
S17 70 Male 94 182 0 8 6 14 3 4 4 
S18 56 Female 63.5 158 0 7 6 12 4 4 3 
S19 84 Male 60.5 175 0 8 5 15 2 4 4 
S20 55 Female 55 160 0 8 6 13 13 4 4 
S21 77 Female 47 161 0 8 7 14 15 3 3 
S22 60 Female 58 163 0 11 7 13 15 3 3 
S23 55 Female 57.5 162 0 9 7 0 12 3 3 
S24 66 Female 65 163 0 11 6 0 15 3 3 
S25 58 Female 66 161 0 11 6 0 15 3 3 
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Chapter 4 

An HARELCARE Framework 

In this chapter, the mathematical notation of the skeleton and RGB video data 

throughout this thesis will be given in Section 4.1. Then a HAR framework 

HARELCARE is introduced for ADLs recognition. This framework is unlike the 

existing ones that considers single sensor modality like video [10], or single algorithm 

group like [40]. It involves the available technologies could be considered in its steps 

for developing practical algorithms. For example, multiple algorithms could be 

attempted in the Step 3 for developing an effective HAR algorithm. Based on the 

HARELCARE framework, two different HAR algorithms are proposed in Section 4.3. 

The experimental results on the ADLs dataset is presented in Section 4.4 with 

discussion. 

 
Figure 4.1 Skeleton joints of Kinect v2 sensor 
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4.1 A Mathematical Formulation of the Skeleton 

Data 

As discussed above, we used the Kinect v2 sensors to collect our dataset. For any one 

particular activity being monitored, using the Kinect v2, we record a sequence of 

skeleton body frames corresponding to the actions performed. Each skeleton body 

frame consists of 25 joints (see Figure 4.1) which can be labelled as HEAD, NECK, …, 

FOOTLEFT, etc. For a set of joints in a body frame that is observed at time t, let us 

represent the set as 𝒋𝒋𝑡𝑡 = (𝒋𝒋1𝑡𝑡 , … , 𝒋𝒋𝑖𝑖𝑡𝑡, … , 𝒋𝒋25𝑡𝑡 ) where 𝒋𝒋𝑖𝑖𝑡𝑡 has 8 attributes corresponding to 

its position and orientation. The position of joint 𝑖𝑖 has 4 attribute features include 3-D 

cartesian coordinates of the position and its height from the floor, so that 𝒋𝒋𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 =

(𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖ℎ𝑡𝑡 )  with 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ,  and 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡  correspond to the value of the x-, y- and z-

coordinates, while 𝑗𝑗𝑖𝑖ℎ𝑡𝑡  indicates the vertical distance from the ground. The orientation 

of joint 𝑖𝑖 is represented by a quaternion that has a set of values 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, and 𝑊𝑊, which 

could be transferred to yaw, roll, and pitch values of the joint. So that 𝒋𝒋𝑖𝑖_𝑝𝑝𝑜𝑜𝑖𝑖𝑡𝑡 =

(𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ) with 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡  𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , and 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡  correspond to the values of X, Y, Z, and W. 

The 𝑖𝑖-th exercise repetition that begins at time 𝑡𝑡 = 1 and ends at time 𝑇𝑇 with body 

frames collected at regular intervals can, therefore, be represented as a time series of 

𝑇𝑇  skeleton frames, 𝑱𝑱(𝑖𝑖) = [𝒋𝒋1, 𝒋𝒋2, … , 𝒋𝒋𝑡𝑡, … , 𝒋𝒋𝑇𝑇] . With a total of 𝑁𝑁  samples from all 

exercise repetitions, the dataset could be represented as𝑱𝑱(𝑖𝑖) = �𝑱𝑱(𝑖𝑖) � 𝑖𝑖 = 1,2, … ,𝑁𝑁}. 

4.2 A Framework for ADLs Recognition 

The raw data that we make use of for HAR are obtained from a Kinect sensor and can 

be represented, as discussed above, as 𝑱𝑱(𝑖𝑖) = �𝑱𝑱(𝑖𝑖) � 𝑖𝑖 = 1,2, … ,𝑁𝑁}. This set of raw data 



 

 

40 

 

is therefore a set of multivariate, spatial-temporal data. Traditionally, algorithms like 

the DTW [37], HMM [38], and SVM [39] have been proposed for developing 

predictive models for HAR based on skeleton data. More recently, DL algorithms [109] 

have been used for this task. The relative merits of these algorithms depend on such 

factors as accuracy, processing speed, and ease-of-deployment and there is always a 

need for us to develop an algorithm that can perform better according to these factors. 

 

Figure 4.2 HARELCARE: ADLs recognition framework 

Towards this goal, we propose a 4 steps framework as shown in Figure 4.2 to better 

tackle the ADLs recognition. Under such a framework, we can develop a combination 

of different component algorithms to best address different problems and sub-

problems. For example, we could make use of traditional feature modelling algorithms 

or more recent DL methods. For DL methods, feature modeling may or may not be 

necessary as DL methods may learn feature representation at the last fully connected 

layer. 
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In deciding what algorithms to develop for HAR, we note that algorithms with high 

processing speed could be easier to deploy but these algorithms usually perform with 

relatively lower accuracy. On the other than, algorithms that are computationally slow 

might be able to deliver better recognition performance. For example, the use of the 

AdaBoost algorithm for the recognition of a single activity recognition could be 

implemented in the proposed framework [97]. Based on the use of the features 

transformed from the raw data, an AdaBoost algorithm could be used effectively for 

single activity recognition with a confidence value ranging from 0 to 1. Using an 

extension of AdaBoost for the recognition of multiple activities could achieve an 

accuracy of 0.63 on the MSRDailyActivity3D dataset [110]. 

For higher accuracy, many DL-based algorithms have been used for skeleton-based 

HAR. Some make use of raw skeleton data as input and fed the data directly to DL 

models using such popular algorithms such as the CNN or LSTM algorithms for 

training [86] [87]. Some propose to use the context-aware LSTM algorithms [43] for 

training with the attempt to make the model focus on active skeleton joints that 

contribute more to the accuracy. There has also been some effort to remove noise in 

the skeleton data for view-invariant recognition using the approaches described in [88] 

[41]. In addition to these attempts, another potentially effective method for HAR is to 

use contextual information to improve HAR accuracy by modeling human-object 

interaction [62]. In addition to all these, there has recently been some effort to use 

multimodal approaches to HAR [111]. Instead of scaling up on the input data, spatial 

and temporal DL models like ST-LSTM [112], ST-GCN [113] have been shown to be 

quite effective in handling sparse skeleton data. 
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Even though these DL approaches are relatively more accurate, they require big 

datasets for training and it should be noted that it may not always be easy for big 

datasets to be collected. To avoid the problem, we propose here a transfer learning 

method [114]  that can be used for post-processing after a ST-GCN algorithm is used. 

Transfer learning could be an option for agile HAR application development, however, 

to further improve the HAR accuracy, novel algorithms should be proposed. Beyond 

the framework, we originally proposed a vision-based multimodal HAR method that 

fuses the skeleton modality and RGB video modality at feature level. 

4.3 HAR Algorithms 

We propose two algorithms for practical HAR concerns when large dataset is not 

available or convenient to collect for training. The first algorithm is based on 

traditional feature extraction while the second one is based on transfer learning. 

4.3.1 ABFE Algorithm 
One first HAR algorithm that we can use for the proposed framework is the AdaBoost 

algorithm [115]. A typical AdaBoost algorithm can be trained to recognize a particular 

activity by developing a binary classifier. In other words, in the case that there are 

multiple activities to be recognized, we develop a binary classifier for each of them 

using the AdaBoost algorithm which we describe as follows. 

4.3.1.1  Feature Modeling and Extraction 

Given 𝑇𝑇 skeleton joint frames 𝑱𝑱(𝑖𝑖) = [𝒋𝒋𝟏𝟏, 𝒋𝒋𝟐𝟐, … , 𝒋𝒋𝒕𝒕, … , 𝒋𝒋𝑇𝑇] , for 𝒋𝒋𝑡𝑡 = (𝒋𝒋1𝑡𝑡 , … , 𝒋𝒋𝑖𝑖𝑡𝑡, … , 𝒋𝒋25𝑡𝑡 ) 

and 𝒋𝒋𝒊𝒊𝒕𝒕 = (𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ), it will be transformed to inter joints and intra joint features with 

transformation functions  𝒇𝒇 = (𝑓𝑓1(⋅),𝑓𝑓2(⋅), … ,𝑓𝑓𝑖𝑖(⋅), … ,𝑓𝑓𝐾𝐾(⋅)), where 𝑓𝑓𝑖𝑖(⋅) is one of 𝐾𝐾 
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such functions of 𝑱𝑱(𝑖𝑖) whose results can be considered inter- or intra-joint features 𝒇𝒇� =

(𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑖𝑖, … , 𝑓𝑓𝐾𝐾) . Some representative functions that are used are given in Table 4.1 

below. For example, the joint position distance is one of the inter joints features that 

could be calculated as 

𝑓𝑓𝚤𝚤� = 𝑓𝑓𝑖𝑖(𝒋𝒋𝑘𝑘𝑡𝑡 , 𝒋𝒋𝑙𝑙𝑡𝑡) = �(𝑗𝑗𝑘𝑘𝑖𝑖𝑡𝑡 − 𝑗𝑗𝑙𝑙𝑖𝑖𝑡𝑡 )2 + (𝑗𝑗𝑘𝑘𝑖𝑖𝑡𝑡 − 𝑗𝑗𝑙𝑙𝑖𝑖𝑡𝑡 )2 + (𝑗𝑗𝑘𝑘𝑖𝑖𝑡𝑡 −𝑗𝑗𝑙𝑙𝑖𝑖𝑡𝑡 )2                  (4.1) 

where 𝒋𝒋𝑘𝑘𝑡𝑡  and 𝒋𝒋𝑙𝑙𝑡𝑡 are two joints of the skeleton at time 𝑡𝑡. In the implementation, only 

representative joint pairs that considered as effective feature will be used.  

Table 4.1 Examples of Feature Modeling Methods for AdaBoost 
Inter joints features 

 

Intra joint features 

Joint position distance 
Angles between 3 joints 

Velocity of angles 
Acceleration of angles 

Velocity in 3D space 
Speed 

Acceleration 
Muscle force 

 
In other words, the training data 𝑱𝑱 = {𝑱𝑱(1) , 𝑱𝑱(2) , …, 𝑱𝑱(𝑖𝑖) ,… 𝑱𝑱(𝑁𝑁) } can be described in 

terms of these function as latent features 𝒇𝒇� = (𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑖𝑖 , … ,𝑓𝑓𝐾𝐾). The 𝒇𝒇�  is then used 

to train a binary classifier for each activity by using the AdaBoost algorithm [115]. Each 

feature 𝑓𝑓𝑖𝑖  will be used to build a weak classifier 𝑔𝑔𝑖𝑖�𝑓𝑓𝑖𝑖� . In the scouting step of 

AdaBoost, with 𝐾𝐾 weak classifiers, an expert pool which is represented as a matrix will 

be used to record the misses (with a 1) and hits (with a 0) of each classifier on every 

sample of the training set as shown in Table 4.2. 

Table 4.2 Weak Threshold Classifiers Based on Features 
  𝑔𝑔1 𝑔𝑔2 … 𝑔𝑔𝑘𝑘 

𝑱𝑱(1) 0 1 … 1 
𝑱𝑱(2) 0 0 … 1 

…  …  …   …  
𝑱𝑱(𝑁𝑁) 0 0 … 0 
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Element in the expert pool matrix will be firstly initialized with weights 𝑤𝑤𝑖𝑖 = 1/𝑁𝑁. 

Then all the weights will be optimized by gradient descent. In the n-th iteration of the 

gradient update loop, the weight  𝑤𝑤𝑖𝑖
𝑛𝑛+1  will be updated by 𝛼𝛼𝑚𝑚 = 𝑙𝑙𝑙𝑙 ((1 −

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)/𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛) as 𝑤𝑤𝑖𝑖
(𝑛𝑛)𝑒𝑒±𝛼𝛼𝑛𝑛, where 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 is calculated by Equation (4.2). 

𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 = ∑ 𝑤𝑤𝑖𝑖𝑒𝑒𝛼𝛼𝑛𝑛𝑁𝑁
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1

                                                         (4.2) 

The final strong classifier 𝐺𝐺(𝒇𝒇) in (2) is a sign function of the sum of the top ten 

features selected from the expert pool. 

               𝐺𝐺(𝒇𝒇) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑙𝑙 �� 𝛼𝛼𝑚𝑚 𝑔𝑔𝑚𝑚(𝑓𝑓𝑚𝑚)𝐾𝐾
𝑚𝑚=1 �                                     (4.3) 

With 𝑀𝑀 strong classifiers  𝐺𝐺 = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑀𝑀 for 𝑀𝑀 activities, the body frames  𝑱𝑱(𝑖𝑖) of 

each activity will be fed to the 𝑀𝑀 strong classifiers 𝐺𝐺  to generate a feature matrix 

𝑪𝑪(𝑖𝑖) =  [𝒄𝒄1, 𝒄𝒄2, … , 𝒄𝒄𝑖𝑖 , … , 𝒄𝒄𝑀𝑀]. Figure 4.3 shows visualized views of the feature matrix 

𝑪𝑪(𝑖𝑖)  and the vector 𝒄𝒄𝑖𝑖  retrieved from all classifiers 𝐺𝐺 and one specific classifier 𝐺𝐺𝑗𝑗 , 

respectively.  

 
Figure 4.3. Visualization views of the low dimensional representation of an activity 

𝒄𝒄𝑖𝑖 

𝑪𝑪(𝑖𝑖  
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We name this feature generation method as Adaptive Boosting Feature Extraction 

(ABFE) and summarized it in Algorithm 1, which is a feature-level method that 

reduces the dimension of the skeleton frames. The extracted feature matrix 𝑪𝑪(𝑖𝑖), for 

𝒄𝒄𝑖𝑖 ∈ ℝ𝑇𝑇 could then be fed to different DL models to be trained for inferring its activity. 

Algorithm 1: ABFE Algorithm 
Data: 𝐉𝐉 = � 𝑱𝑱(𝑖𝑖) � 𝑖𝑖 = 1, … ,𝑁𝑁� dataset for training 
Result: 𝑪𝑪 =  � 𝑪𝑪(𝑖𝑖) � 𝑖𝑖 = 1, … ,𝑁𝑁� low dimensional representation of 𝐉𝐉 
1   𝒇𝒇 = (𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑖𝑖, … ,𝑓𝑓𝐾𝐾) = features transformed from 𝑱𝑱(𝑖𝑖) 
2   𝑔𝑔𝑖𝑖�𝑓𝑓𝑖𝑖� = weak classifier in the AdaBoost expert pool 
3   N = number of activities 
4   for n = 1 to M 
5          𝐺𝐺𝑛𝑛(𝒇𝒇) = strong binary classifier formed by the top 10 weak classifiers �𝑔𝑔𝑖𝑖�𝑓𝑓𝑖𝑖��𝑖𝑖 =
1, … , 10}  
6   end 
7   return 𝐺𝐺 = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑀𝑀} 
8   for i = 1 to N do 
9          for j = 1 to M do 
10                𝒄𝒄𝑗𝑗 = feature vector generated by 𝐺𝐺𝑗𝑗 
11        end 
12        𝑪𝑪(𝑖𝑖) = [𝒄𝒄1, 𝒄𝒄2, … , 𝒄𝒄𝑁𝑁] low dimensional representation of  𝑱𝑱(𝑖𝑖) 
13 end 
14 return  𝐂𝐂 =  � 𝑪𝑪(𝑖𝑖) � 𝑖𝑖 = 1, … ,𝑁𝑁� 
 

 

4.3.1.2 Recognition Algorithm 

Given the extracted low dimensional features 𝑪𝑪(𝑖𝑖) =  [𝒄𝒄1, 𝒄𝒄2, … , 𝒄𝒄𝑖𝑖 , … , 𝒄𝒄𝑀𝑀], 𝒄𝒄𝑖𝑖 ∈ ℝ𝑇𝑇 as 

depicted in Figure 4.3, we then use it to infer the activity by using an algorithm to 

represent the multivariate time series features. Specifically, we adopt the Multivariate 

Long Short Term Memory Fully Convolutional Network (MLSTM-FCN) algorithm 

proposed in [116]. The algorithm is built upon the long short-term memory (LSTM) 

RNNs that is capable to learn temporal dependencies. The LSTM modules is depicted 

by Graves [117] as 

𝐠𝐠𝑐𝑐 = σ(𝐖𝐖𝑐𝑐𝐡𝐡𝑡𝑡−1 + 𝐈𝐈𝑐𝑐𝐜𝐜𝑡𝑡) 
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𝐠𝐠𝑝𝑝 = σ(𝐖𝐖𝑝𝑝𝐡𝐡𝑡𝑡−1 + 𝐈𝐈𝑝𝑝𝐜𝐜𝑡𝑡) 

𝐠𝐠𝑓𝑓 = σ(𝐖𝐖𝑓𝑓𝐡𝐡𝑡𝑡−1 + 𝐈𝐈𝑓𝑓𝐜𝐜𝑡𝑡) 

𝐠𝐠𝑢𝑢 = σ(𝐖𝐖𝑢𝑢𝐡𝐡𝑡𝑡−1 + 𝐈𝐈𝑢𝑢𝐜𝐜𝑡𝑡)                                        (4.4)  

𝐦𝐦𝑡𝑡 = 𝐠𝐠𝑓𝑓 ⊙𝐦𝐦𝑡𝑡−1 + 𝐠𝐠𝑢𝑢 ⊙ 𝐠𝐠𝑐𝑐 

𝐡𝐡𝑡𝑡 = tanh(𝐠𝐠𝑝𝑝  ⊙𝐦𝐦𝑡𝑡) 

 

where 𝐠𝐠𝑐𝑐, 𝐠𝐠𝑝𝑝, 𝐠𝐠𝑓𝑓, 𝐠𝐠𝑢𝑢 are the activation vectors of cell state, output, forget and input 

gates, respectively. The recurrent weight matrices are denoted by 𝐖𝐖𝑐𝑐, 𝐖𝐖𝑝𝑝, 𝐖𝐖𝑓𝑓 and 

𝐖𝐖𝑢𝑢. The projection matrices are represented as 𝐈𝐈𝑐𝑐, 𝐈𝐈𝑝𝑝 , 𝐈𝐈𝑓𝑓, 𝐈𝐈𝑢𝑢. While 𝐡𝐡𝑡𝑡 is the hidden 

state vector of the LSTM unit, σ  is the logistic sigmoid function, and ⊙  is the 

elementwise multiplication. On top of the LSTM unites, an attention mechanism that 

is a context vector depending on a sequence of annotations �𝑏𝑏1, … , 𝑏𝑏𝑇𝑇𝑐𝑐�, where 𝑇𝑇𝑐𝑐 is 

the maximum length of the sequence 𝐜𝐜. While the FCN module has a squeeze-and-

excitation block that performs as will lead to the output for a single dimension as 

𝒄𝒄�𝑑𝑑 = F𝑝𝑝𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒(𝐮𝐮𝑑𝑑, 𝐬𝐬𝑑𝑑)                                            (4.5) 

where 𝐂𝐂� = [𝒄𝒄�1, … , 𝒄𝒄�𝑀𝑀], 𝐮𝐮𝑑𝑑 is the squeezed feature map generated by a channel-wise 

global average pooling, 𝐬𝐬𝑑𝑑 is the excitation feature calculated from 𝐮𝐮𝑑𝑑 by a sigmoid 

function followed by a ReLU function,  and F𝑝𝑝𝑐𝑐𝑠𝑠𝑙𝑙𝑒𝑒(𝐮𝐮𝑑𝑑, 𝐬𝐬𝑑𝑑) denotes the channel wise 

multiplication of 𝐮𝐮𝑑𝑑 and 𝐬𝐬𝑑𝑑. 

4.3.2 Transfer Learning 
Collecting less data could ease the deployment of activity recognition, however, DL 

models are usually faced with overfitting when no sufficient data is available. Transfer 
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learning that fine-tunes a pre-trained DL network weights from one task to another 

similar task has been proven helpful, which is a common strategy for transfer learning 

in the context of deep learning. [118] grouped transfer learning for HAR in three 

scenarios: inter-person, inter-device, and inter-ambiance. As the ST-GCN [113] shows 

the potential for representing spatial and temporal feature of skeleton data. We propose 

to use it as the backbone model and tune the trained weights of ST-GCN trained on 

the NTU-RGB+D dataset to our dataset to testify the effectiveness and efficiency of 

transfer learning. Our transfer learning method could be considered as inter-ambiance 

since we use different data collection environment with the NTU-RGB+D. ST-GCN 

is basically a Graph Convolutional Network (GCN) designed to learn a representation 

of both spatial and temporal features from graph data. GCN is efficient to represent 

the sparse skeleton data, which is symbolized as 𝛝𝛝𝑡𝑡 = {𝝊𝝊𝑡𝑡, 𝜺𝜺𝑡𝑡}, where 𝝊𝝊𝑡𝑡 denotes the 

skeleton joints and 𝜺𝜺𝑡𝑡 demotes the skeleton bones time 𝑡𝑡, respectively. The neighbor 

set of a node 𝜐𝜐𝑡𝑡𝑖𝑖  is defined as 𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) = {𝜐𝜐𝑡𝑡𝑗𝑗�𝑑𝑑�𝜐𝜐𝑡𝑡𝑖𝑖, 𝜐𝜐𝑡𝑡𝑗𝑗� ≤ 𝑆𝑆�,  where 𝑆𝑆  is the 

minimum path length of 𝑑𝑑�𝝊𝝊𝑡𝑡𝑖𝑖 ,𝝊𝝊𝑡𝑡𝑗𝑗�. Suppose there are fixed number of 𝐾𝐾 subsets in 

the 𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) , every neighbor set will be labelled numerically with a mapping 

𝑙𝑙𝑡𝑡𝑖𝑖:𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) → {0, … ,𝐾𝐾 − 1}. Then the graph convolution could be computed as: 

              Youtput（𝝊𝝊𝑡𝑡𝑖𝑖） = ∑ 1
𝑖𝑖𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑡𝑡�𝝊𝝊𝑡𝑡𝑡𝑡∈𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) 𝐗𝐗(𝑣𝑣𝑡𝑡𝑗𝑗)W(l(𝑣𝑣𝑡𝑡𝑗𝑗))                     (4.6) 

where 𝐗𝐗(𝑣𝑣𝑡𝑡𝑗𝑗) is the feature of 𝝊𝝊𝑡𝑡𝑗𝑗 that is equal to (𝑗𝑗𝑗𝑗𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑗𝑗𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑗𝑗𝑖𝑖𝑡𝑡 ). While W(𝑙𝑙(𝑣𝑣𝑡𝑡𝑗𝑗)) is a 

weight function W�v𝑡𝑡𝑖𝑖 , v𝑡𝑡𝑗𝑗�:𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) → Rc that could be implemented by indexing a 

tensor of (𝑐𝑐,𝐾𝐾)  dimension. The normalization term 𝑍𝑍𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗� = |{𝑣𝑣𝑡𝑡𝑘𝑘|𝑙𝑙𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑘𝑘) =

𝑙𝑙𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗�|  equals to the cardinality of the corresponding subset. With the specific 
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partitioning strategy determined, the Equation (4.6) could be implemented with 

adjacency matrix A as 

Youtput = ∑ 𝚲𝚲k
−12𝚨𝚨k𝚲𝚲k

−12K
k=1 𝐗𝐗Wk                                  (4.7) 

where 𝚲𝚲𝒌𝒌𝒊𝒊𝒊𝒊 = ∑ 𝐀𝐀𝒌𝒌
𝒊𝒊𝒋𝒋

𝒋𝒋  is a degree matrix. Weiss et al. [114] performed a through survey 

for the transfer learning, which classifies transfer learning according to different 

categories as heterogeneous transfer learning solutions, homogeneous transfer learning 

solutions, and solutions addressing negative transfer that were further grouped to sub-

categories. According to the categorization of [114], our method is homogeneous 

transfer learning as the feature space 𝒳𝒳𝑇𝑇 of the target domain 𝒟𝒟𝑇𝑇 (our dataset) has the 

same data structure with the feature space 𝒳𝒳𝑆𝑆 of source domain 𝒟𝒟𝑆𝑆 (the NTU-RGB+D 

dataset). We use the trained weights 𝑊𝑊𝑆𝑆 from the feature space 𝒳𝒳𝑆𝑆 to tune the weights 

𝑊𝑊𝑇𝑇  for 𝒟𝒟𝑇𝑇 . The transfer learning method is elaborated in Algorithm 2, which 

introduces the fine-tuning process. 

Algorithm 2: Transfer Learning 
Data: 𝒳𝒳𝑇𝑇, the input data 𝐉𝐉 
Weight: 𝑊𝑊𝑝𝑝, the model weight of the source domain;  𝑊𝑊𝑇𝑇 the model weight of the target 

domain. 
    Output: 𝑌𝑌𝑝𝑝𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡, the output of the target domain 
1. Load weights 𝑊𝑊𝑆𝑆 that is trained by using 𝒳𝒳𝑆𝑆 
2. Modify output layers of ST-GCN to adapt the output Youtput of  𝒟𝒟𝑇𝑇 
3. Feed 𝒳𝒳𝑇𝑇 to the modified model 
4. For i = 1 to epoch M do  
5.        For j = 1 to Batch N do 
6.              Update 𝑊𝑊𝑇𝑇  
7.        End 
8. End 
9. Use 𝑊𝑊𝑇𝑇 to infer 𝑌𝑌𝑝𝑝𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡 
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4.4 Results and Discussion 

4.4.1 Evaluation Metric 

To make the validation less biased than simply splitting the data to training set and test 

set, we adopt k-fold cross-validation evaluation method with k being set to 5 that 

follows the tradition and also makes the division of training and testing sets 

representative for measuring the fit of our model on the collected dataset. Cross-

validation is popularly adopted for estimating the skill of a classification model when 

the sample size is limited like our small household dataset [119]. We use Top-1 

accuracy as in Equation (4.8) that means the prediction must be the same as the label 

of the ground truth as the evaluation metric for classification tasks. 

                       𝑃𝑃 = 1
𝑁𝑁
∑ 𝑒𝑒𝑒𝑒𝑠𝑠𝑟𝑟𝑙𝑙𝑡𝑡𝑘𝑘 = {0   𝑝𝑝𝑡𝑡ℎ𝑒𝑒𝑜𝑜𝑤𝑤𝑖𝑖𝑝𝑝𝑒𝑒

1   𝑖𝑖𝑓𝑓 𝑝𝑝𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡𝑘𝑘
𝑡𝑡𝑡𝑡𝑡𝑡−1=𝑙𝑙𝑠𝑠𝑙𝑙𝑒𝑒𝑙𝑙𝑘𝑘𝑁𝑁

𝑘𝑘=1                      (4.8) 

With the accuracy measure set as Top-1, a confusion matrix, which is also known as 

error matrix, could be constructed as shown in Table 4.3. This matrix could be used to 

visualize the performance of a supervised classification algorithm with two or more 

classes [120]. In other words, the accuracy of an HAR prediction model can be gauged 

from the matrix. From the confusion matrix, we can derive the precision and recall 

measure of each class of activity.  For better comparison of classification performance, 

a normalized confusion matrix could also be used.  

In our experiments, for each confusion matrix corresponding to an activity, we 

accumulate 5 folds and normalize the entries in the confusion matrix for further 

comparison of the overall performances of different HAR algorithms. 
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Table 4.3 Confusion Matrix with N Classes 

A
ct

ua
l C

la
ss

 1 𝑙𝑙11 𝑙𝑙12 … 𝑙𝑙1𝑁𝑁 
2 𝑙𝑙21 𝑙𝑙22 … 𝑙𝑙2𝑁𝑁 

…  …  …   …  
N 𝑙𝑙𝑁𝑁1 𝑙𝑙𝑁𝑁2 … 𝑙𝑙𝑁𝑁𝑁𝑁 

  1 2 … N 

  Predicted Class 
 

4.4.2 Results of Feature Extraction Method 

4.4.2.1 Experimental Setting 

We compare other two representative DL models mentioned before to justify the 

effectiveness of our proposed feature extraction step. The first model is ST-GCN [113] 

and the second model is ST-LSTM [112]. For ST-GCN, we keep the original 

implementation of the author and change the number of the output to 12. Since we use 

the Kinect v2, the joints number is set as 25. The number of people is 1 as our dataset 

only involves one subject. The maximum sequential frame length is set to 75 based on 

the statistics of the collected dataset. Hence, for one activity, the input to the ST-GCN 

in our experiment is a tensor with shape (3,25,75,1). Empirically, the initial learning 

rate is set to 0.1 and will decay to 1/10 of the precious learning rate at epochs of 40, 

100, and 150. The predication result will be evaluated with an interval of 10 epochs. 

We train the model by setting the batch size to 64 and terminate the training at epoch 

200 and show the best result throughout the training process. For ST-LSTM, we 

empirically follow the original hyper parameter setting except change the sequence 

length from 6 to 10, set the evaluation interval to 10, and terminate the training at 

epoch 200. The best result from all evaluations is selected to show in the experimental 

results. 
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In our method, the MLSTM-FCN model [116] that comprises of a fully convolutional 

block and a LSTM block that perform as feature extractors and finally concatenated 

together to a SoftMax layer is implemented by following the setting on the Arabic 

Voice dataset which is similar with the characteristic of our extracted features from 

the ABFE. We set the batch size and total epoch the same as the compared two DL 

models and show the best results in the next section. 

By using the cross-validation method, both the skeleton dataset 𝑱𝑱 and its transformed 

form as 𝑪𝑪 are divided into five folds. Once one of the cross-validation folds is selected 

as testing set, the other three folds are used to train the model. There is no sample 

duplicated among the cross-validation folds. All the experiments are implemented on 

a Supermicro GPU Server (model SYS-7048GR-TR) with 4 GTX 1080 Ti GPUs. All 

the GPUs are used in each experiment. 

4.4.2.2 Experimental Results 

The experimental results for ST-GCN, LSTM and our method are listed in Table 4.4, 

which indicates the Top-1 accuracy of each cross-validation fold and their average 

accuracy. To investigate the training speed, we recorded the starting time and ending 

time, then calculated the differences of them. Table 4.5 gives the training time of all 

cross-validation folds. Specifically, for ST-GCN and ST-LSTM, the starting time and 

ending time are based on the generation time of the first checkpoint (at the epoch 10) 

and the last checkpoint (both at the epoch 200), respectively. For our method, we 

recorded the starting time and ending time of each training process. 
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Table 4.4. Experimental Results on Various Models (Accuracy in %) 
Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

ST-LSTM 76.67 79.31 75.00 75.86 87.50 78.87 

ST-GCN 66.67 77.41 67.86 55.17 75 68.42 

Our Method 92.86 92.59 96.15 96.15 96.43 94.84 

 

Table 4.5. Training Time of all Experimental Sets (Time in Seconds) 
Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

ST-LSTM 0:24:12 0:25:26 0:28:24 0:24:29 0:30:35 0:26:37 

ST-GCN 0:09:38 0:09:49 0:09:43 0:09:48 0:09:11 0:09:38 

Our Method 0:00:55 0:00:53 0:00:51 0:00:53 0:00:51 0:00:53 

 

Table 4.6 Accumulated and Normalized Confusion Matrix of ST-LSTM 

Tr
ue

 L
ab

el
 

1 0.78 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 
5 0.00 0.00 0.00 0.22 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.11 
6 0.00 0.00 0.00 0.40 0.00 0.10 0.10 0.40 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.50 0.00 0.00 0.20 0.30 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.17 0.00 0.08 0.25 0.50 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.89 0.00 0.00 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.63 0.00 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

  1 2 3 4 5 6 7 8 9 10 11 12 

  Predicted Label 
 

Table 4.7 Accumulated and Normalized Confusion Matrix of ST-GCN 

Tr
ue

 L
ab

el
 

1 0.33 0.33 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.11 
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.78 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.11 0.78 0.00 0.11 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.80 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.58 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

  1 2 3 4 5 6 7 8 9 10 11 12 

  Predicted Label 
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Table 4.8 Accumulated and Normalized Confusion Matrix of Our Method 

Tr
ue

 L
ab

el
 

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.89 0.00 0.11 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.90 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
11 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.82 0.00 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90 

  1 2 3 4 5 6 7 8 9 10 11 12 

  Predicted Label 
 

Except showing the Top-1 accuracy and the training time, to further ease the 

comparison of the implemented methods, we show the accumulated and normalized 

confusion matrices of all three algorithms in Tables 4.6, 4.7, and 4.8. 

4.4.2.3 Effectiveness Evaluation 

According to the experimental results of Table 4.4, the extracted feature matrix from 

our proposed ABFE algorithm achieved the highest Top-1 accuracy in all five cross-

validation folds. The average accuracy with the value of 94.84% is significantly better 

than that of data driven methods. From the results of ST-GCN and ST-LSTM in their 

cross-validation folds, we could observe that data driven methods requires the samples 

in the test set to have at least similar samples in the training sample to achieve the 

recognition or overfitting. It indicates that our feature extraction method successfully 

reduces the data size and maintains and even surpass the discriminative power of the 

skeleton data.  

From the confusion matrix, we could have a closer look at which activities are failed 

and which activities are easy to be recognized by different algorithms. The figures in 
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Tables 4.6 and 4.7 show that activity 6 (eat with chopsticks) and activity 7 (eat with 

iron spoon) are the most confusing ones for the tested data driven models. While the 

discriminative feature of these two relatively fine-grained activities is successfully 

captured by our method as shown in Table 4.8 that indicates zero failure throughout 

the 5 cross-validation folds for both activity 5 and activity 6. The ST-GCN has the 

ability to learn spatial and temporal patterns with big dataset such as in [21] and [28]. 

However, when encountered with some confusing fine-grained challenging activities 

like pour water, drink water, and eat with pottery spoon, both spatial temporal DL 

models failed to learn effective feature in all its cross-validation folds. 

We also observed from the confusion matrices that different models have their 

advantage to recognize specific activities. For example, ST-LSTM is the best in 

recognize activity 2 (get up), ST-GCN and ST-LSTM are both good at recognizing 

activity 12 (wear shoes), while our method is good at more activities like activity 1 (lie 

down), activity 4 (pour water), and activity 6 (eat with chopsticks).  When the number 

of activities increases in this job, we could solve this issue by grouping activities 

according to different locations. In such a way, we could decrease the dimension of 

feature matrices from the feature generation step. 

4.4.2.4 Effectiveness Evaluation 

Our proposed method also achieved the shortest average training time (53 seconds for 

200 epochs) as shown in Table 4.5. The training time is significantly less than that of 

ST-GCN and ST-LSTM that spend around 10 and 25 times more training time than 

our method, respectively. It indicates that the proposed feature extraction algorithm 

successfully reduces the data size to a feature matrix. This could be the reason why it 

has shorter training time than that of the raw skeleton-based methods, which makes 
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the training process more efficient than the others and could be an advantage to speed 

up deployment of real-world solutions. 

4.4.3 Results of Transfer Learning Method 

4.4.3.1 Experimental Setting 

For our experiments, we used k-fold cross-validation with k following the convention 

set to 5 [119]. During the training, all the other settings are the same except that we 

initialized the weights trained on NTU-RGB+D at epoch 80. The training procedure 

of our transfer learning method follows the Algorithm 1, where we replaced the final 

2D convolutional layer (256, 60) of ST-GCN with a linear layer (256, 12). In the 

learning process, the epoch number in all experiments were set to 200. The leaning 

rate decay parameter of ST-GCN were empirically set at 40, and 100. All other hyper 

parameters are the same with the original setting. We set the interval of retrieving 

progressive training information to 10, which means it will record results of training 

mean average loss, testing mean average loss, and Top-1 accuracy with an interval of 

10 epochs. All the training process and evaluation were run on a Supermicro GPU 

Server (model SYS-7048GR-TR) with 4 GTX 1080 Ti GPUs. 

4.4.3.2 Experimental Results 

Table 4.9 provides the Top-1 accuracy of both the ST-GCN model and our transfer 

learning algorithm. From the figures we could observe that transfer learning achieved 

better Top-1 accuracy in every cross-validation fold. The average Top-1 accuracy of 

transfer learning is 91.64%, which is significantly higher than that of the ST-GCN 

(68.42%). It indicates the practical ability of transfer learning method for real-world 

healthcare applications when there is not enough training data.  
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We also observe that some challenging fine-grained activities like eating with 

chopsticks or iron spoon are not exist in the source domain, but the similar activities 

like eating in the NTU-RGB+D should helped the improvement of the target domain 

(i.e.: our ADLs dataset). However, for activities 4 and 10 (i.e.: pour water and wipe 

table), the lack of similar activities in the source domain leads to the low recognition 

accuracy.  

Table 4.9 Top-1 Accuracy on Three DL Models and Transfer Learning (Accuracy in %) 

CV Folds ST-GCN Transfer Learning 
Fold 1 66.67 83.33 
Fold 2 77.41 93.10 
Fold 3 67.86 92.86 
Fold 4 55.17 93.10 
Fold 5 75.00 95.83 

Average 68.42 91.64 
 

Other than showing improvement of the Top-1 accuracy by using transfer learning, the 

confusion matrices of them are visualized to further investigate the improvement as 

indicated in Table 4.10 and Table 4.11, respectively. It is noted that ST-GCN could 

not performed well on some activities like “get up”, “eat with chopsticks”, and “eat 

with iron spoon” (see Table 4.10).  There is still some improvement space when 

tackling with a relatively small dataset that is tend to overfit by DL models. In other 

words, if a dataset is too small, there is a need for local minimum to be avoided and 

for the model to be more effectively optimized. According to the results as presented 

in Table 4.11, the recognition accuracy of the proposed transfer learning algorithm is 

close to optimal and there is little space for further improvement. Closer examination 

of the cases that the model failed to correctly recognize is due mainly to the big bias 

or unexpected noise like failure of skeleton detection by the Kinect v2 sensor. 
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Table 4.10 Accumulated and Normalized Confusion Matrix of ST-GCN 

Tr
ue

 L
ab

el
 

1 0.78 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 
5 0.00 0.00 0.00 0.22 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.11 
6 0.00 0.00 0.00 0.40 0.00 0.10 0.10 0.40 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.50 0.00 0.00 0.20 0.30 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.17 0.00 0.08 0.25 0.50 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.89 0.00 0.00 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.63 0.00 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

  1 2 3 4 5 6 7 8 9 10 11 12 

  Predicted Label 
 
 

Table 4.11 Accumulated and Normalized Confusion Matrix of Transfer Learning 

Tr
ue
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ab

el
 

1 1 0 0 0 0 0 0 0 0 0 0 0 
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.11 0.67 0.11 0.00 0.00 0.11 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.20 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.92 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.67 0.22 0.00 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.95 0.00 
12 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.88 

  1 2 3 4 5 6 7 8 9 10 11 12 

  Predicted Label 
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Chapter 5 

Multimodal HAR Method 

We focus on two sets of features extracted from two data modalities (skeleton and 

RGB signals) as input of our multimodal HAR method. State-of-the-art spatial 

temporal GCNs like ST-GCN [44],  AGC-LSTM [48], and DGN [49] could learn 

effective representation from the skeleton modality that has spatial importance for 

different skeleton joints. Meanwhile, models like I3D [56] and S3D [57] have the 

potential to learn discriminative features directly from video inputs but require huge 

computational resources. On the other hand, DL models like VGG nets [121] and 

ResNet [122] are effective to gain RGB features from images but are usually 

encountered with overfitting for datasets that are not big enough. Consequently, fusing 

the complementary skeleton and RGB features could be beneficial for action 

recognition.  

There are various methods available for feature fusion. The fusion strategy relies on 

the characteristics of the involved data modalities. Most existing fusion is either at the 

decision level or at later layer concatenation, which is a lack of considering the 

borrowing of features from one modality to improve the performance of another 

modality, and eventually improves the performance. Since from the data of the RGB 

modality, it could be easy to make DL models with high representation power to 

overfit to the background noise. We propose a multimodal deep learning model called 

Model-based Multimodal Network (MMNet) (see Figure 5.1) that borrows spatial 

knowledge from the skeleton modality to alleviate this issue. On the other hand, the 
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lack of appearance features from the skeleton modality renders it hard to distinguish 

the activities, especially those with object interactions. Hence, we claim that a proper 

feature representation of RGB modality could contribute back to the skeleton modality 

and boosts the ultimate performance. 

 
Figure 5.1 The architecture of the proposed MMNet. 𝑤𝑤(𝑖𝑖)  represents the spatial attention 
weights derived from the graph representation of the skeleton joints, which guides the focus 
of ST-ROI that is transformed from the RGB video input 𝑉𝑉(𝑖𝑖). After this model-based data 
fusion, the skeleton focused ST-ROI 𝑅𝑅′(𝑖𝑖)  will be fed to the ResNet to generate modality 
specific prediction. The skeleton input will generate two separate predictions from its joints 
and bones, which is aggregated with the prediction of the RGB modality to deliver the 
ensemble recognition result. 
 

5.1 Our MMNet Model 

In this section, we introduce the proposed multimodal DL architecture by first 

describing the subnetworks utilized to learn features from the skeleton and RGB 

modalities and then elaborating feature fusion mechanisms between the two modalities. 

We use the same notation for the skeleton modality with that of Section 4.1. For the 

RGB modality, let us notate 𝑽𝑽 = �𝑽𝑽(𝑖𝑖) � 𝑖𝑖 = 1,2, … ,𝑁𝑁} as the RGB modality that has 

𝑁𝑁 video samples for training. Then an ordered video sequence of an activity in the 
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time interval [1, T] could be represented as 𝑽𝑽(𝑖𝑖) = [𝒇𝒇1
(𝑖𝑖), … ,𝒇𝒇𝑡𝑡

(𝑖𝑖), … ,𝒇𝒇𝑇𝑇
(𝑖𝑖)], where 𝒇𝒇𝑡𝑡

(𝑖𝑖) is 

the frame at time 𝑡𝑡. 

 

5.1.1 Construct ST-ROI from RGB Modality 

Intuitively, video-based models like I3D [56] and S3D [57] could be the first choice 

to learn discriminative features from the RGB modality. However, these models 

require huge computational resources of RAM and GPU memory and will take longer 

to converge. From our observation, even with pre-training, those models could not 

converge well with some datasets. Hence, we propose to build a spatial temporal ROI 

from the RGB modality and use general CNN models to retrieve effective features. 

Unlike the method proposed in [68] [69] [70] that focus on the appearance features of 

two hands, we build the spatial region of interest (ROI) that focuses on body parts 

including head, two hands and two feet in a temporal manner. 

Let us notate 𝑽𝑽 = �𝑽𝑽(𝑖𝑖) � 𝑖𝑖 = 1,2, … ,𝑁𝑁}  as the RGB modality that has 𝑁𝑁  video 

samples for training. Then an ordered video sequence of an activity in the time interval 

[1, T] could be represented as 𝑽𝑽(𝑖𝑖)  = [𝒇𝒇1
(𝑖𝑖), … ,𝒇𝒇𝑡𝑡

(𝑖𝑖), … ,𝒇𝒇𝑇𝑇
(𝑖𝑖)], where 𝒇𝒇𝑡𝑡

(𝑖𝑖) is the frame at 

time 𝑡𝑡. To crop the spatial ROI from an activity video, we use joints of the skeleton 

retrieved with the OpenPose algorithm introduced in [123], which is relatively more 

accurate than the skeleton of the Kinect v2 sensor. Given an RGB frame 𝒇𝒇𝑡𝑡
(𝑖𝑖), it could 

transformed to a spatial ROI with function g(∙) . We define such a spatial 

transformation function as 

𝑅𝑅𝑡𝑡𝑗𝑗
(𝑖𝑖) = g�𝒇𝒇𝑡𝑡

(𝑖𝑖),𝒐𝒐𝑡𝑡𝑗𝑗
(𝑖𝑖)�, 𝑗𝑗 ∈ (1, 2, … ,𝐾𝐾), 𝐾𝐾 ≤ 𝑀𝑀                           (5.1) 
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where 𝑅𝑅𝑡𝑡𝑗𝑗
(𝑖𝑖) and 𝒐𝒐𝑡𝑡𝑗𝑗

(𝑖𝑖) are the jth joint of the spatial ROI and the 𝑗𝑗th joint of the OpenPose 

skeleton at time 𝑡𝑡, respectively. 𝐾𝐾 is the index of the skeleton joints, which is equal or 

smaller than the total number of the skeleton joints 𝑀𝑀 . Given 𝑽𝑽(𝑖𝑖) =

[𝒇𝒇1
(𝑖𝑖), … ,𝒇𝒇𝑡𝑡

(𝑖𝑖), … , 𝒇𝒇𝑇𝑇
(𝑖𝑖)] , we then conduct a temporal sampling that selects 𝐿𝐿 

representative frames at time 𝜏𝜏 = {𝜏𝜏 + 𝑖𝑖𝑙𝑙𝑡𝑡𝑒𝑒𝑒𝑒𝑣𝑣𝑖𝑖𝑙𝑙 × 𝑙𝑙 | 𝑙𝑙 = 1, … , 𝐿𝐿, 𝑖𝑖𝑙𝑙𝑡𝑡𝑒𝑒𝑒𝑒𝑣𝑣𝑖𝑖𝑙𝑙 = 𝑇𝑇/𝐿𝐿}  

and concatenate them into a square ST-ROI as shown in the one subject case of Figure 

5.2. For activities that have two subjects, we crop the ST-ROIs of both subjects as 

shown in the two subjects case of Figure 5.2. The ST-ROI significantly reduces the 

data volume of the RGB video modality and still preserves the object information of 

activities. The sub temporal ROI at time 𝜏𝜏 will have 𝐾𝐾 sub spatial ROIs, which could 

be vertically concatenated and represented as 𝑹𝑹𝜏𝜏
(𝑖𝑖). On the other hand, the sub spatial 

ROI of the 𝑗𝑗 th joint will have 𝐿𝐿  sub temporal ROIs and could be horizontally 

concatenated and represented as 𝑹𝑹𝑗𝑗
(𝑖𝑖). The ST-ROI of 𝑽𝑽(𝑖𝑖) could then be notated as 

𝑹𝑹(𝑖𝑖) that contains 𝐾𝐾 × 𝐿𝐿 sub ST-ROIs 𝑹𝑹𝜏𝜏𝑗𝑗
(𝑖𝑖).  

 
Figure 5.2 Process of constructing the spatial temporal ROI 
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5.1.2 Learn Joint Weights from the Skeleton 

Modality 

For the skeleton modality, given a set of 𝑀𝑀 joints in a skeleton frame observed at time 

t, let us represent it as 𝒋𝒋𝑡𝑡 = (𝒋𝒋𝑡𝑡1, … , 𝒋𝒋𝑡𝑡2, … , 𝒋𝒋𝑡𝑡𝑀𝑀). The 𝑖𝑖-th training sample that starts at 

time 𝑡𝑡 = 1 and ends at time 𝑇𝑇 with skeleton frames collected at regular intervals can, 

therefore, be represented as a sequence of 𝑇𝑇  skeleton frames, 𝑱𝑱(𝑖𝑖) =

[𝒋𝒋1, 𝒋𝒋2, … , 𝒋𝒋𝑡𝑡, … , 𝒋𝒋𝑇𝑇]. With a total of 𝑁𝑁  training samples, the skeleton modality and 

video modality of a dataset could be represented as 𝑱𝑱 = �𝑱𝑱(𝑖𝑖)� 𝑖𝑖 = 1,2, … ,𝑁𝑁}. We adopt 

a spatiotemporal graph to model the spatial and temporal structure of 𝑱𝑱(𝑖𝑖). The structure 

of the Graph Convolutional Network (GCN) follows [44] and [124]. Figure 5.3 

illustrates an example of the constructed spatial temporal graph of a skeleton sequence, 

where the skeleton joints are represented as vertices and the skeleton bones are 

represented as spatial edges (the orange lines in Figure 5.3a). For the temporal 

dimension, the corresponding skeleton joints between two consecutive skeleton frames 

are connected with temporal edges (the black lines in Figure 5.3a). The attribute of a 

vertex is the corresponding 3D coordinate values of each joint. The skeleton graph at 

time 𝑡𝑡 could be symbolized as 𝛝𝛝𝑡𝑡 = {𝝊𝝊𝑡𝑡, 𝜺𝜺𝑡𝑡}, where 𝝊𝝊𝑡𝑡 denotes the skeleton joints and 

𝜺𝜺𝑡𝑡 denotes the skeleton bones, respectively. In this skeleton graph, the node set 𝝊𝝊 =

{𝜐𝜐𝑡𝑡𝑗𝑗|𝜐𝜐𝑡𝑡𝑗𝑗 = 𝒋𝒋𝑡𝑡𝑗𝑗 , 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑗𝑗 = 1, … ,𝑀𝑀}  contains all skeleton joints of a activity 

sequence. While the edge set 𝜺𝜺 = {𝜀𝜀𝑡𝑡|𝜀𝜀𝑡𝑡 = 𝒃𝒃𝑡𝑡 = (𝜐𝜐𝑡𝑡𝑖𝑖 − 𝜐𝜐𝑡𝑡𝑗𝑗), 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑖𝑖, 𝑗𝑗 =

1, … ,𝑀𝑀}  represents skeleton bones of a skeleton activity sequence. With such a 
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transformation, we will have the a sequence of bones from the skeleton modality and 

denote it as 𝑩𝑩(𝑖𝑖) = [𝒃𝒃1,𝒃𝒃2, … ,𝒃𝒃𝑡𝑡, … ,𝒃𝒃𝑇𝑇]. 

 

Figure 5.3 (a). The structure of a spatiotemporal graph. (b). The spatial mapping strategies. 
Different subsets are denoted with different colors. Green denotes the vertex itself; Yellow 

denotes the farther centrifugal subset; Blue denotes the closer centripetal subset 
 

 
5.1.2.1 Graph Convolutional Operation 

To represent the sampling area of convolutional operations, a neighbor set of a node 

𝜐𝜐𝑡𝑡𝑖𝑖 is defined as N(𝜐𝜐𝑡𝑡𝑖𝑖) = {𝜐𝜐𝑡𝑡𝑗𝑗�𝑑𝑑�𝜐𝜐𝑡𝑡𝑖𝑖, 𝜐𝜐𝑡𝑡𝑗𝑗� ≤ 𝑆𝑆�, where D is the minimum path length 

of 𝑑𝑑�𝜐𝜐𝑡𝑡𝑖𝑖 , 𝜐𝜐𝑡𝑡𝑗𝑗�. The sketch in Figure 5.3b shows such a strategy, where × denotes the 

center of gravity of the skeleton. The sampling area N(𝜐𝜐𝑡𝑡𝑖𝑖) is enclosed by the dot 

circled area. In detail, the strategy empirically uses 3 spatial subsets: the vertex itself 

(the green circle in Figure 5.3b); the centripetal subset that contains the neighboring 

vertices being closer to the center of gravity (the blue circle); and the centrifugal subset 

that contains the neighboring vertices being farther from the gravity center (the yellow 

circle). Suppose there is a fixed number of 𝐾𝐾 subsets in the N(𝜐𝜐𝑡𝑡𝑖𝑖), every neighbor set 

will be labelled numerically with a mapping 𝑙𝑙𝑡𝑡𝑖𝑖: N(𝜐𝜐𝑡𝑡𝑖𝑖) → {0, … ,𝐾𝐾 − 1}. Temporally, 

the neighborhood concept is extended to temporally connected joints as N(𝜐𝜐𝑡𝑡𝑖𝑖) =
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{𝜐𝜐𝑞𝑞𝑗𝑗�𝑑𝑑�𝜐𝜐𝑡𝑡𝑗𝑗 , 𝜐𝜐𝑡𝑡𝑖𝑖� ≤ 𝐾𝐾, |𝑞𝑞 − 𝑡𝑡| ≤ Γ/2�, where Γ is the temporal kernel size that controls 

the temporal range of the neighbor set. Then the graph convolution could be computed 

as 

    Youtput(𝝊𝝊𝑡𝑡𝑖𝑖) = ∑ 1
𝑖𝑖𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑡𝑡�𝝊𝝊𝑡𝑡𝑡𝑡∈𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) 𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡 (𝑣𝑣𝑡𝑡𝑗𝑗)W(𝑙𝑙(𝑣𝑣𝑡𝑡𝑗𝑗))                        (5.2) 

where 𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡 (𝑣𝑣𝑡𝑡𝑗𝑗) is the feature map that gets the attribute vector of 𝝊𝝊𝑡𝑡𝑗𝑗, W(𝑙𝑙(𝑣𝑣𝑡𝑡𝑗𝑗)) is a 

weight function W�v𝑡𝑡𝑖𝑖 , v𝑡𝑡𝑗𝑗�:𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) → Rc that could be implemented by indexing a 

tensor of (𝑐𝑐,𝐾𝐾) dimension. 𝑍𝑍𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗� = �{𝑣𝑣𝑡𝑡𝑘𝑘|𝑙𝑙𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑘𝑘) = 𝑙𝑙𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗�}� is a normalization 

term that equals the cardinality of the corresponding subset. 

5.1.2.2 Joint Weights 

With implementation of graph convolution on the skeleton modality, the output of each 

vertex on the graph could be used to infer the importance of the corresponding skeleton 

joint. The feature map of the skeleton sequence could be represented as a tensor with 

size of (𝐶𝐶,𝑇𝑇,𝑉𝑉), where 𝑉𝑉  denotes the number of vertices, 𝑇𝑇  denotes the temporal 

length and 𝐶𝐶 denotes the number of attributes of the joint vertex. With the specific 

partitioning strategy determined, it could be represented by an adjacent matrix 𝐀𝐀 with 

its elements indicating if a vertex 𝝊𝝊𝑡𝑡𝑗𝑗  belongs to a subset of 𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) . The graph 

convolution is implemented by performing a 1 × Γ  classical 2D convolution and 

multiplies the resulting tensor with the normalized adjacency matrix 𝚲𝚲−
1
2𝐀𝐀𝚲𝚲−

1
2 on the 

second dimension. With 𝐾𝐾 partitioning strategies ∑ 𝚨𝚨kK
k=1 , Equation (5.2) could be 

transformed into 

                     Yfeature = ∑ 𝚲𝚲k
−12𝚨𝚨k𝚲𝚲k

−12K
k=1 𝑓𝑓inWk⨀Mk                                (5.3) 
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where 𝚲𝚲𝑘𝑘𝑖𝑖𝑖𝑖 = ∑ (𝐀𝐀𝑘𝑘
𝑖𝑖𝑗𝑗) + 𝛼𝛼𝒋𝒋  is a diagonal matrix with 𝛼𝛼 set to 0.001 to avoid values in a 

row being zero. Wk  is a weight tensor of the 1 × 1  convolutional operation with 

(𝐶𝐶𝑖𝑖𝑛𝑛,𝐶𝐶𝑝𝑝𝑢𝑢𝑡𝑡, 1, 1) dimensions, which represents the weighting function of Equation (5.2). 

Mk is an attention map with the same size of 𝚨𝚨k, which indicates the importance of 

each vertex. ⨀ denotes the element-wise product between two matrixes. Yfeature is a 

tensor with the size of (𝑐𝑐, 𝑡𝑡, 𝑣𝑣)  with 𝑐𝑐  as the number of output channels, 𝑡𝑡  as the 

temporal length and 𝑣𝑣 as the number of vertices, which could be used to infer the 

activity class and transformed as joint weights to provide knowledge for the RGB 

modality. The joint weights that represent the importance of joints could be interpreted 

as 

Jweight = 1
𝑡𝑡𝑐𝑐
∑ ∑ �Yfeature2𝑐𝑐

1
𝑡𝑡
1                                        (5.4) 

where 𝑡𝑡 and 𝑐𝑐 are the output dimensions of the convolutional graph that represents the 

temporal length and out channel, respectively. Jweight is a vector that contains weights 

for different skeleton joints. 

5.1.3 Feature Fusion 

We propose a spatial weight mechanism for the RGB frames to enable the machine 

being capable to focus on RGB features that will provide discriminative information. 

In an explainable way, this will make the machine more capable as it intuitively mimics 

activity recognition of human ways. Researchers also attempt to learn an attention 

weight from the RGB modality itself. From the result of [125] that has tested four 

variants of attention mechanism on the job of Convolutional LSTM [126], there are 

very few or even no performance improvements, although it decreases the model size. 
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Moreover, the gesture datasets used by [125] have very consistent backgrounds, which 

might make the attention mechanism even less effective for datasets that have varying 

complex backgrounds. Hence, we do not continue to explore the contribution of the 

attention mechanism in this job. Instead, we use the joint weights from the skeleton 

modality and multiply it with the ST-ROI to reduce the noise of the RGB modality. 

The weighted ST-ROI of the 𝑖𝑖th training sample 𝑹𝑹′(𝑖𝑖) could be mapped from 𝑹𝑹(𝑖𝑖). This 

process could be represented as a mapping function ℎ(∙) defined as 

𝑹𝑹′(𝑖𝑖) = ℎ�𝑹𝑹𝑗𝑗
(𝑖𝑖), 𝐽𝐽𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡_𝑗𝑗�, 𝑗𝑗 ∈ (1, 2, … ,𝐾𝐾)                            (5.5) 

where 𝐽𝐽𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡_𝑗𝑗 is the joint weight of the 𝑗𝑗th joint and 𝑹𝑹𝑗𝑗
(𝑖𝑖) is the sub spatial ROI of 

the 𝑗𝑗th joint. Figure 5.4 shows the process of function (5) that denoises the RGB 

modality. 

 
Figure 5.4 Multiply joint weights to the ST-ROI 

 

5.1.4 Objective function 

We build the end-to-end format of the multimodal algorithm with the sum of a 

collective loss items from different data modalities that are supervised by the activity 

label, which are explained below: 

ℒ = ℒ𝐽𝐽�𝑦𝑦�𝐽𝐽,𝑦𝑦� + ℒ𝐵𝐵(𝑦𝑦�𝐵𝐵,𝑦𝑦) + ℒ𝑉𝑉(𝑦𝑦�𝑉𝑉,𝑦𝑦)                                 (5.6) 
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Skeleton joints modality loss -- ℒ𝐽𝐽 

The skeleton joints input is fed into the graph convolution model introduced in Section 

5.1.2. Hence the cross-entropy loss of skeleton joints could be defined as 

ℒ𝐽𝐽�𝑦𝑦�𝐽𝐽(𝑖𝑖) ,𝑦𝑦(𝑖𝑖)� = 𝐺𝐺𝐽𝐽(𝛩𝛩𝐽𝐽, 𝐽𝐽(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖) = −  ∑𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑔𝑔(𝑆𝑆(𝜎𝜎(𝐽𝐽(𝑖𝑖))))              (5.7) 

where 𝐽𝐽(𝑖𝑖) represents the result of graph convolutional operation defined in Equation 

5.3. 𝜎𝜎 denotes a fully connected layer that transforms the shape of 𝐽𝐽(𝑖𝑖) to a one hot 

representation.  𝑆𝑆 is the Softmax function that transfer the recognition results to human 

understandable format. 

RGB video modality loss --  ℒ𝑉𝑉 

Recall that we have proposed the ST-ROI as the transformed form of the RGB video 

input, which will significantly reduce the data volume and maintain the core 

discriminative information for HAR. As the ST-ROI is intrinsically an 2D feature map, 

we adopt the ResNet proposed by He et al. [122]to learn features from it. The cross-

entropy loss is typically adopted to optimize the model, which could be formulated as 

ℒ𝑉𝑉�𝑦𝑦�𝑉𝑉(𝑖𝑖) ,𝑦𝑦� = −∑𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑔𝑔 �𝐺𝐺𝑉𝑉 �𝑅𝑅′
(𝑖𝑖),𝛩𝛩𝑉𝑉� + 𝑅𝑅′(𝑖𝑖)�                   (5.8) 

where 𝐺𝐺𝑉𝑉 �𝑅𝑅′
(𝑖𝑖),𝛩𝛩𝑉𝑉�  represents the residual mapping to be learned, 𝛩𝛩𝑉𝑉 denotes the 

learnable weight that is based on the number of layers of the ResNet [122].  

Skeleton bones modality loss -- ℒ𝐵𝐵 

The skeleton bone modality is essentially a transformation of the skeleton joints 

modality, which  proves more discriminative than the skeleton joints modality as in 

[124]. Hence, we also utilize the advantage of this transformed form of the skeleton 
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joints modality. Recall that in the graph, the edge set is defined as 𝜺𝜺 = {(𝜐𝜐𝑡𝑡𝑖𝑖 −

𝜐𝜐𝑡𝑡𝑗𝑗)|𝜐𝜐𝑡𝑡𝑖𝑖, 𝜐𝜐𝑡𝑡𝑗𝑗 = 𝒋𝒋𝑡𝑡𝑗𝑗 , 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑀𝑀}, which includes all the combination of 

the joint pairs represented in the adjacency matrix 𝐀𝐀.  We follow the transformation 

method in [124] and also base on the actual structure of the skeleton bones of the 

specific dataset. For example, given two joint vectors 𝜐𝜐𝑡𝑡1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) and 𝜐𝜐𝑡𝑡2 =

(𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) , then the bone vector could be calculated as 𝜺𝜺𝑡𝑡1 = 𝜐𝜐𝑡𝑡1 − 𝜐𝜐𝑡𝑡2 = (𝑥𝑥1 −

𝑥𝑥2, 𝑦𝑦1 − 𝑦𝑦2, 𝑧𝑧1 − 𝑧𝑧2). We use the same graph convolutional operation to the skeleton 

bone modality, which could be formulated as 

ℒ𝐵𝐵�𝑦𝑦�𝐵𝐵(𝑖𝑖) ,𝑦𝑦(𝑖𝑖)� = 𝐺𝐺𝐵𝐵(𝛩𝛩𝐵𝐵,𝐵𝐵(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖) = −  ∑𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑔𝑔(𝑆𝑆(𝜎𝜎(𝐵𝐵� (𝑖𝑖))))         (5.9) 

where 𝐵𝐵� (𝑖𝑖) denotes the output of Equation 5.3 fed with the skeleton bones 𝐵𝐵(𝑖𝑖). 𝜎𝜎 and 

𝑆𝑆 are the same functions defined in Equation 5.7. 

5.1.5 Training and optimization 

Given the objective function, there are many deep learning multimodal data fusion 

strategies that could be adopted to pursue high recognition accuracy. For example, in 

[68], both the pose prediction loss that encourages the model reserve of the pose 

repression during training and the pose attraction loss that makes the skeleton attention 

more similar to humans can lead to attempting to improve performance. To ease the 

process of proving the effectiveness of our multimodal method, we avoid using such 

fine-tuning skills and hyperparameter tuning skills and adopt a vanilla training process 

to verify the effectiveness of our model as we have already proposed to fuse different 

data modalities at a feature level. More precisely, the training steps are illustrated in 

Algorithm 3. 
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Algorithm 3: Training of the proposed MMNet 
Input: 𝑽𝑽 = �𝑽𝑽(𝑖𝑖) � 𝑖𝑖 = 1,2, … ,𝑁𝑁}: RGB videos 
            𝑱𝑱 = �𝑱𝑱(𝑖𝑖)� 𝑖𝑖 = 1,2, … ,𝑁𝑁}: skeleton joint coordinates 
 𝐾𝐾: the number of sub spatial ROIs 
            𝐿𝐿: the number of sub temporal ROIs 

1. Train GCN-Joints with skeleton modality of joint coordinates 𝑱𝑱 
2. Construct a 𝐾𝐾 × 𝐿𝐿 ST-ROI 𝑹𝑹(𝑖𝑖) from the RGB video 𝑽𝑽. 
3. Extract joint weights 𝐽𝐽𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡 by feeding 𝑱𝑱 to the trained GCN-joints. 
4. Construct weighted ST-ROI 𝑹𝑹′(𝑖𝑖) from step 2 and 3. 
5. Train ResNet with 𝑹𝑹′(𝑖𝑖). 
6. Transform skeleton joint coordinates 𝑱𝑱  to skeleton bone coordinates 𝑩𝑩 =

�𝑩𝑩(𝑖𝑖)� 𝑖𝑖 = 1,2, … ,𝑁𝑁}. 
7. Train GCN-bones with skeleton bones 𝑩𝑩. 
8. Ensemble results from step 1, 5, and 7 to infer the activity class 

Output: learned MMNet 

 

5.2 Experiments and Results 

In this section, we give an introduction of the benchmarking datasets selected in the 

experimental analysis and the comparison of the performance of our method with state-

of-the-art methods. 

5.2.1 Datasets 

We conducted experiments on the two HAR datasets: NTU RGB+D Dataset [21], 

PKU-MMD [28] and Northwestern-UCLA Multiview dataset [29]. 

5.2.1.1 NTU RGB+D 

NTU RGB+D dataset [21] was collected with by Kinect v2 sensors and contains over 

56K samples of 60 different activities including individual activities, interactions 

between multiple people, and health-related events. The activities were performed by 

40 subjects and recorded from 80 viewpoints. We followed the cross-subject and cross-
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view split protocol from [21]. Since this dataset provides multiple modalities of data 

from the Kinect v2 sensor, this dataset is highly suitable for testing multimodal HAR 

methods. 

5.2.1.2 PKU-MMD 

The PKU-MMD dataset [28] is another HAR dataset collected with Kinect v2. It 

contains 1076 long untrimmed video and skeleton sequences. The dataset is performed 

by 66 subjects in three camera views. With 51 activity categories annotated, we 

retrieved 21,545 valid activity sequences and 6 invalid samples that has no skeleton 

frames. Similar to NTU RGB+D, we adopt the two evaluation protocols (i.e., cross-

subject and cross-view) recommended in [28]. For activity samples that have longer 

than 300 frames, we evenly select 300 frames form the samples. 

5.2.1.3 Northwestern-UCLA Multiview 

The Northwestern-UCLA Multiview dataset was collected by [29], which contains 

more interactions between human subjects and objects. The dataset has 12 action 

categories with each of them performed by 10 actors. It has 1,494 samples in total, 

which includes 518 samples from view 1, another 509 samples from view 2 and 467 

samples from view 3. We follow the evaluation method in [68]. 

5.2.2 Implementation Details 

For the RGB modality, the height and width of sub ST-ROIs of NTU-RGB+D, PKU-

MMD and Northwestern-UCLA are 96, 96 and 48 pixels, respectively. We set both 𝐾𝐾 

and 𝐿𝐿 to 5 to construct the ST-ROI. Therefore, the input size for NTU-RGB+D, PKU-

MMD and Northwestern-UCLA datasets are 480 × 480, 480 × 480 and 240 × 240, 
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respectively. The ST-ROI of the three datasets were resized to 225 × 225  and 

normalized before feeding them into ResNet. As the data volume of Northwestern-

UCLA is relatively small, we perform random selection to the RGB video frames and 

randomly flip them. We adopted ResNet18 that has 18 layers for all the datasets. For 

NTU-RGB+D and PKU-MMD, we evenly selected the frames based on the video 

length for testing. For the skeleton modality, we follow the experimental setting of 

[124] for NTU-RGB+D while using the setting of [44] for PKU-MMD and 

Northwestern-UCLA. The SGD optimizer is utilized for all implementations with the 

initial learning rate set as 0.1 which is divided by 10 at the 10th and  50th epochs. The 

training process is terminated at the 80th epoch. The minibatch size is set to 64. All 

experiments are conducted on a workstation with 4 GTX 1080 Ti GPUs. 

5.2.3 Results 

5.2.3.1 Ablation Study 

Tables 5.1, 5.2 and 5.3 show several experiments with different data modalities and 

their ensembled results. The results show considerable improvements by aggregating 

results of the RGB modality to the results of the skeleton modality with different 

training methods numbered as 4, 5, and 6 on NTU-RGB+D, PKU-MMD and 

Northwestern-UCLA Multiview. By comparing training methods 4 and 5, we could 

observe that the proposed joint weights mechanism is able to effectively improve the 

discriminative power of the ST-ROI features. Contrasting training method 5 with that 

of 6, tuning the weights of GCN together with the ResNet, could be of benefit for the 

RGB modality. However, in terms of the overall performance improvement when 

aggregating the results of the RGB modality and the skeleton modality, fixing the GCN 

weights by set it at evaluation mode will achieve better ensemble results for all three 
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datasets. In Figure 5.5, we illustrated the effectiveness of the weighted ST-ROI method 

that improves the recognition accuracy of every activity of Northwestern-UCLA 

Dataset. It also indicates that even for some activities the accuracy of the RGB 

modality is not as good as the skeleton modality. However, it will still contribute to 

the overall performance. In Figure 5.6, we visualize the skeleton focused and 

normalized ST-ROI during training processes, which indicates that the irrelevant body 

parts from the RGB modality are masked by the learnt joint weights. 

Table 5.1 Ablation Study for NTU RGB+D with Cross-Subject (CS) and Cross-View (CV) 
Protocol. ○ Means in Evaluation Mode. √ Means in Training Mode 

# Methods 𝓛𝓛𝑱𝑱 𝓛𝓛𝑩𝑩 𝓛𝓛𝑹𝑹 CS CV Avg 

1 GCN-Joints √ - - 83.4 90.0 86.7 
2 GCN-Bones - √ - 87.2 93.1 90.2 
3 Ensemble (1+2) ○ ○ - 88.3 94.5 91.4 
4 ResNet18 - - √ 76.4 80.5 78.5 
5 ResNet18+Weights √ - √ 86.8 89.3 88.1 
6 ResNet18+Weights ○ - √ 82.8 87.4 85.1 
7 Ensemble (3+4) ○ ○ ○ 90.1 94.5 92.3 
8 Ensemble (3+5) ○ ○ ○ 90.2 96.8 92.4 
9 Ensemble (3+6) ○ ○ ○ 92.5 97.3 94.9 

 
 

Table 5.2 Ablation study for PKU-MMD with Cross-Subject (CS) and Cross-View (CV) 
protocols. ○ means in evaluation mode. √ means in tuning mode 

# Methods 𝓛𝓛𝑱𝑱 𝓛𝓛𝑩𝑩 𝓛𝓛𝑽𝑽 CS CV Avg 

1 GCN-Joints √ - - 91.5 92.4 91.2 
2 GCN-Bones - √ - 93.4 95.1 94.3 
3 Ensemble (1+2) ○ ○ - 94.6 96.3 95.1 
4 ResNet18 - - √ 81.3 77.4 79.4 
5 ResNet18+Weights √ - √ 81.6 76.2 78.9 
6 ResNet18+Weights ○ - √ 81.1 76.0 78.6 
7 Ensemble (3+4) ○ ○ ○ 95.8 97.1 96.5 
8 Ensemble (3+5) ○ ○ ○ 95.9 97.2 96.5 
9 Ensemble (3+6) ○ ○ ○ 96.2 97.3 96.7 
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Table 5.3 Ablation Study for the Northwestern-UCLA Multiview Action 3D Dataset with 
Cross-View Setting (Accuracy as a Percent). ○ Means in Evaluation Mode 

# Methods 𝓛𝓛𝑱𝑱 𝓛𝓛𝑩𝑩 𝓛𝓛𝑹𝑹 𝑽𝑽𝟏𝟏,𝟐𝟐
𝟑𝟑  

1 GCN-Joints √ - - 82.9 
2 GCN-Bones - √ - 86.0 
3 GCN-2s (1+2) √ √ - 90.1 
4 ResNet18 - - √ 77.1 
5 ResNet18+Weights √ - √ 84.9 
6 ResNet18+Weights ○ - √ 83.2 
7 Ensemble (3+4) ○ ○ ○ 90.5 
8 Ensemble (3+5) ○ ○ ○ 90.3 
9 Ensemble (3+6) ○ ○ ○ 94.2 

 
 
 

 
Figure 5.5 Recognition accuracy improvement in every activity of Northwestern-UCLA 

Dataset 

 

 
Figure 5.6 Visualization of joints weights, ST-ROI and joint weight ST-ROI (shown as in 

left, middle, and right of subplots, respectively) for different activities 
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5.2.3.2 Comparison with the State-of-the-Art 

We show the performance comparison with the other state-of-the-art methods that use 

the skeleton modal, RGB modal and multimodal in Tables 5.4, 5.5 and 5.6 for the 

NTU-RGB+D, PKU-MMD and Northwestern-UCLA datasets, respectively. Our 

skeleton joint-weighted ST-ROI method achieved state-of-the-art performance on both 

datasets with a vanilla implementation by using the basic ResNet model which is 

ResNet18. Whereas, to achieve good performance, existing RGB based methods 

usually utilize much more complex CNN models like ResNet50 in [68]. 

Table 5.4 Results for NTU RGB+D with CS and CV evaluation settings 

Methods Pose RGB CS CV Avg 
Lie Group [127] √ - 50.1 52.8 51.5 

Dynamic Skeletons [128] √ - 60.2 65.2 62.7 
Part-aware LSTM [21] √ - 62.9 70.3 66.6 

GCA-LSTM [129] √ - 74.4 82.8 78.6 
View-invariant [41] √ - 80.0 87.2 83.6 

ST-GCN [44] √ - 81.5 88.3 84.9 
DPRL+GCNN [130] √ - 83.5 89.8 86.7 

2S-AGCN [124] √ - 88.5 95.1 91.8 
AGC-LSTM [48] √ - 89.2 95.0 92.1 

DGNN [49] √ - 89.9 96.1 93.0 
C3D [131] - √ 63.5 70.3 66.9 

Glimpse Clouds [68] - √ 86.6 93.2 89.9 
DSSCA - SSLM [63] √ √ 74.9 - - 

STA-Hands  [69] √ √ 82.5 88.6 85.6 
Hands Attention [70] √ √ 84.8 90.6 87.7 

Our MMNet √ √ 92.5 97.3 94.9 
 

Table 5.5 Results for PKU-MMD with CS and CV evaluation settings 
Methods Skeleton RGB CS CV Avg 

JCRRNN [132] √ - 32.5 53.3 42.90 
Skeleton boxes [133] √ - 54.8 94.2 74.50 

CNN-based [134] √ - 90.4 93.7 92.05 
STA-LSTM [135] √ - 86.9 92.6 89.75 

HCN [46] √ - 92.6 94.2 93.40 
SRNet [136]  √ - 93.1 97.0 95.05 
Our MMNet √ √ 96.2 97.3 96.75 
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Table 5.6 Results for the Northwestern-UCLA Multiview Action 3D dataset with Cross-
View Setting 

Methods Pose RGB 𝑽𝑽𝟏𝟏,𝟐𝟐
𝟑𝟑  

Lie Group [127] √ - 74.2 
HBRNN-L [137] √ - 78.5 

View-invariant [41] √ - 86.1 
Ensemble TS-LSTM  [138] √ - 89.2 

Hankelets [139] - √ 45.2 
nCTE [140] - √ 68.6 

NKTM [141] - √ 75.8 
Glimpse Clouds [68] - √ 90.1 

Our MMNet  √ √ 94.9 
 

5.2.3.3 Results on our ADLs Dataset 

Table 5.7 Ablation Study and Comparison with Previous Methods on Our ADLs Dataset 
Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 
ST-LSTM 76.67 79.31 75.00 75.86 87.50 78.87 
ST-GCN 66.67 77.41 67.86 55.17 75 68.42 
Feature Extraction 92.86 92.59 96.15 96.15 96.43 94.84 
Transfer Learning (Joint) 83.33 83.10 92.86 93.10 95.83 89.64 
ST-GCN Bone (Bone) 60.00 75.86 74.13 68.97 83.33 72.46 
ST-ROI 30.00 24.14 42.86 46.88 58.33 40.44 
ST-ROI + Joint 73.33 86.21 85.71 96.65 91.67 86.71 
ST-ROI + Joint + bone (MMNet) 80.00 93.10 92.86 96.65 95.83 91.69 

 

Table 5.7 shows the results of the multimodal method on our ADLs dataset with 

ablation study and comparison with four previous methods. We could obverse that the 

ST-ROI feature could not converge on the ADLs dataset, but it still not affects the 

performance of the skeleton modality when ensemble them together. In some Cross-

Validation folds like fold 2 and fold 4, the performance of the multimodal method is 

even better than the feature extraction method. The low accuracy of the RGB modality 

is due to the insufficiency of training data in the ADLs dataset as it is collected for 

practical concerns and such a data-driven DL method is competitive but the traditional 

feature extraction is more effective in such a practical case. 
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5.3 Discussion 

Multimodal HAR methods need to not only tackle with fusion of heterogeneous data 

modalities, but also handle the optimization problem. Unlike existing multimodal 

methods that usually focus on homogeneous data modalities like the skeleton joint and 

bone modalities, or RGB and optical flow modalities, our MMNet model focuses on 

heterogeneous data modalities. The novelty of our fusion scheme is fusing at the 

feature level, which is unlike existing methods that simple concatenate the feature at 

the representation level or decision level. Hence, we call it model-based fusion 

multimodal fusion based on the multimodal learning categorization in [22] and [142]. 

For optimization, we find there is a controversial decision between modality specific 

accuracy and ensemble accuracy as shown in the results of ablation study in Section 

5.2.3.1. A model could pursuit either high modality specific accuracy or good 

ensemble accuracy. This is due to the tuning of the whole model will make the loss 

propagate back to the modality specific models and renders the representation share 

the features of various data modalities, which will decrease the contribution of 

modality specific features. To improve the ensemble accuracy, modality specific 

models should maintain their independent features to make use of the advantage of 

mutual complementary information between different data modalities. 

The proposed MMNet relies on the RGB modality, hence, the RGB modality could 

not contribute the accuracy during dark light condition. But the skeleton modality of 

the solution could still work under poor light condition. Proper adapting mechanisms 

need to be developed to handle the change of light condition. Meanwhile, for real-time 

monitoring, online monitoring algorithms also need to be developed. 
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Chapter 6 

Morning Exercise Evaluation for the 

Elderly in a Nursing Home 

In this chapter, the rationale behind morning exercise evaluation for Alzheimer 

subjects in a nursing home is first provided. Then, an HAE method that is extended 

from the HAR framework is introduced. 

6.1 Why Physical Exercise Evaluation? 

It is surveyed that the average duration of the MCI stage is around seven years, which 

is a long-time deterioration process [106]. Early prevention and preparation at this 

stage is essential for alleviate significant decline of Quality of Life (QoL) for 

Alzheimer patients. Researchers are struggling to develop criteria for symptoms of 

Alzheimer’s disease at early stages to decelerate and even prevent the memory and 

cognitive decline progress. Existing MCI diagnosis methods could be categorized to 

core clinical criteria and research criteria or biomarkers [107].  

Clinical criteria refer to symptom-based methods or cognitive testing like Mini Mental 

State Examination (MMSE), Modified Mini-Mental State Examination (3MS) and 

Abbreviated Mental Test Score (AMTS), which is traditionally accepted as of reliable 

AD detection. However, it requires at least six months of symptom appearance to make 

definite diagnosis. There is few empirical results that verify the cognitive screening 

could improve decision making [108]. Human observation could also be performed by 
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an informant to fill a questionnaire based on the daily cognitive functioning of a patient. 

Besides, more detailed description could be assessed by numeric scales like Clinical 

Dementia Rating (CDR), Global Deterioration Scale for Assessment of Primary 

Degenerative Dementia (GDS or Reisberg Scale), and Functional Assessment Staging 

Test (FAST) [143]. Since the emerging of numerous biomarkers, these clinical criteria 

or definitions for MCI are incorporated with research criteria to make probabilistic 

diagnosis of AD [144]. 

Research criteria includes biomarkers like molecular neuroimaging with PET, 

structural MRI, and cerebrospinal fluid analyses, which are used in the revised version 

of criteria named the National Institute of Neurological Disorders and Stroke–

Alzheimer Disease and Related Disorders (NINCDS–ADRDA) [145]. Although 

biomarkers are objective, accurate, and universally useful, definite diagnosis of AD 

still half relies on clinical definitions of MCI. In the diagnostic criteria for AD 

proposed by [145], core diagnostic criteria include episodic memory impairment and 

cognitive changes. The progressive episodic memory impairment can be reported by 

patients or informants over more than 6 months, or objectively verified by memory 

testing. Most cases of cognitive changes are associated with the episodic memory 

disorder, which involve the domains like executive functions (EFs), language, praxis, 

complex visual processing and gnosis. The EFs could be impaired due to lack of sleep, 

stress, lack of exercise or loneliness. Excellent results have been achieved by much 

work on improving EFs in the elderly by conducting systematic physical training [146]. 

Research is accumulating to suggest that systematic exercise training increase strength, 

balance, and flexibility, and improve cardiovascular function, and in the meantime 

prevent cognitive dysfunction. For example, 11 patients with AD patients are benefited 
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from a exercise program in a uncontrolled study in a hospital [147]. For elderly people 

without AD, randomized controlled trials have also indicated that physical exercise 

can reduce depression [148]. Linda et al. [148] investigated the seldom known 

deleterious effects of AD on body functional condition and proved that systematic 

exercise training can significant improve physical and affective measurements for 

patients with AD. Human and animal studies indicate that exercise targets many parts 

of brain function, and it has broad benefits to elderly populations on their overall brain 

health, brain plasticity and function, and improves resistance to neurodegenerative 

diseases [149]. The importance of aerobic exercise for maintaining neurocognitive 

performance is also verified by a meta-analytic review of randomized controlled trials 

[150]. Another meta-analysis also suggest that exercise can provide additional benefits 

for patients with AD [151]. A meta-analysis is a statistical analysis that investigates 

the results from multiple scientific studies like systematic review, and several clinical 

trials as shown in Figure 6.1, which aims to obtain a better knowledge of how well a 

treatment could work [152]. 

    
Figure 6.1 Hierarchy of evidence 
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In this thesis, we focus on the praxis domain of cognitive change and explore a vision-

based method that is able to automatically capture some clinical definitions of MCI to 

ease both the diagnosis and behavioral treatment of AD. Praxis impairment could be 

impaired imitation, production, or recognition of gesture. Given the validated 

importance and effectiveness of systematic exercise training for preventing AD, we 

use a vision sensor to monitor the regular morning exercise in a nursing home. The 

motion data of the elderly’s morning exercise is then collected and analyzed to infer 

their praxis health condition, which could potentially be used for supporting Alzheimer 

diagnosis and exercise-based therapy.  

Hence, we propose a method called Two-Task Graph Convolutional Network (2T-

GCN) to tackle the tasks. For supporting diagnosis, the proposed 2T-GCN will classify 

if the exercise has AD symptoms or not. While for supporting exercise-based therapy, 

our 2T-GCN could generate a numerical exercise quality evaluation score that reflects 

the praxis condition. Both two tasks are theoretically supported by the effectiveness 

and benefits of systematic exercise training. Meanwhile, we also explore machine 

learning methods that deliver consistent results with clinically verified evaluation 

results, which will be introduced in Section 6.3.4.2. 

6.2 Our 2T-GCN Model 

As we use the same Kinect v2 sensor to collect the exercise motion of the elderly in 

the nursing as introduced in Section 3.4.3, the raw skeleton data in one frame is always 

streamed as an ordered sequence of vectors. Each vector represents the position and 

orientation attributes of the corresponding human joint. A complete exercise repetition 

contains multiple frames with varied lengths for different repetitions. We adopt a 
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spatiotemporal graph convolutional network to represent the structured information 

among these joints along both the spatial and temporal dimensions. 

6.2.1 Graph Convolutional Network 

6.2.1.1 Graph Construction 

The construction of the skeleton graph follows the structure of ST-GCN [113]. Figure 

6.2 illustrates an example of the structure of the spatial temporal skeleton graph, where 

the vertexes represents the skeleton joints and the spatial edges represents the skeleton 

bones which is natural connections of skeleton joints (the orange lines in Figure 6.2a). 

For the temporal dimension, the corresponding joints between two consecutives 

frames are represented by the connections of temporal edges (the black lines in Figure 

6.2a). The position and orientation features of each joint as introduce in Section 4.1 

are set as the attribute of the corresponding vertex. The skeleton graph at time 𝑡𝑡 could 

be symbolized as 𝛝𝛝𝑡𝑡 = {𝝊𝝊𝑡𝑡, 𝜺𝜺𝑡𝑡}, where 𝝊𝝊𝑡𝑡 denotes the skeleton joints and 𝜺𝜺𝑡𝑡 demotes 

the skeleton bones, respectively. In this graph, the node set 𝝊𝝊𝑡𝑡 = {𝜐𝜐𝑡𝑡𝑖𝑖|𝜐𝜐𝑡𝑡𝑖𝑖 = 𝒋𝒋𝑖𝑖𝑡𝑡, 𝑡𝑡 =

1, … ,𝑇𝑇, 𝑖𝑖 = 1, … ,25} contains all joints in the skeleton sequence. 

 
Figure 6.2 (a). Illustration of the spatiotemporal graph used in ST-GCN. (b). Illustration of 

the spatial mapping strategy. Different colors denote different subsets. × represents the 
center of gravity of the skeleton. 
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6.2.1.2 Graph Convolutional Operation 

To represent the sampling area of convolutional operations, a neighbor set of a node 

𝜐𝜐𝑡𝑡𝑖𝑖 is defined as N(𝜐𝜐𝑡𝑡𝑖𝑖) = {𝜐𝜐𝑡𝑡𝑗𝑗�𝑑𝑑�𝜐𝜐𝑡𝑡𝑖𝑖, 𝜐𝜐𝑡𝑡𝑗𝑗� ≤ 𝑆𝑆�, where D is the minimum path length 

of 𝑑𝑑�𝜐𝜐𝑡𝑡𝑖𝑖 , 𝜐𝜐𝑡𝑡𝑗𝑗�. Figure 6.2b shows this strategy, where × represents the center of gravity 

of the skeleton. The sampling area N(𝜐𝜐𝑡𝑡𝑖𝑖) is enclosed by the curve. In detail, the 

strategy empirically uses 3 spatial subsets: the vertex itself (the green circle in Figure 

6.2b); the centrifugal subset that contains the neighboring vertexes being farther from 

the gravity center (the yellow circle); the centripetal subset that contains the 

neighboring vertexes being closer to the center of gravity (the blue circle). Suppose 

there are fixed number of 𝐾𝐾 subsets in the N(𝜐𝜐𝑡𝑡𝑖𝑖), every neighbor set will be labelled 

numerically with a mapping 𝑙𝑙𝑡𝑡𝑖𝑖: N(𝜐𝜐𝑡𝑡𝑖𝑖) → {0, … ,𝐾𝐾 − 1}.  Temporally, the 

neighborhood concept is extended to temporally connected joints as N(𝜐𝜐𝑡𝑡𝑖𝑖) =

{𝜐𝜐𝑞𝑞𝑗𝑗�𝑑𝑑�𝜐𝜐𝑡𝑡𝑗𝑗 , 𝜐𝜐𝑡𝑡𝑖𝑖� ≤ 𝐾𝐾, |𝑞𝑞 − 𝑡𝑡| ≤ Γ/2�, where Γ is the temporal kernel size that controls 

the temporal range of the neighbor set. Then the graph convolution could be computed 

as 

                     𝑓𝑓out（𝜐𝜐𝑡𝑡𝑗𝑗） = ∑ 1
𝑖𝑖𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑡𝑡�𝝊𝝊𝑡𝑡𝑡𝑡∈𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) 𝑓𝑓in(𝑣𝑣𝑡𝑡𝑗𝑗)W(𝑙𝑙(𝑣𝑣𝑡𝑡𝑗𝑗))                    (6.1) 

where 𝑓𝑓in(𝑣𝑣𝑡𝑡𝑗𝑗) is the feature map that get the attribute vector of 𝜐𝜐𝑡𝑡𝑗𝑗, W(𝑙𝑙(𝑣𝑣𝑡𝑡𝑗𝑗)) is a 

weight function W�v𝑡𝑡𝑖𝑖 , v𝑡𝑡𝑗𝑗�:𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖) → Rc that could be implemented by indexing a 

tensor of (𝑐𝑐,𝐾𝐾) dimension. 𝑍𝑍𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗� = �{𝑣𝑣𝑡𝑡𝑘𝑘|𝑙𝑙𝑡𝑡𝑖𝑖(𝑣𝑣𝑡𝑡𝑘𝑘) = 𝑙𝑙𝑡𝑡𝑖𝑖�𝑣𝑣𝑡𝑡𝑗𝑗�}� is a normalization 

term that equals to the cardinality of the corresponding subset. 

6.2.1.3 Implementation 
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The implementation of graph-based convolution is not as straightforward as 2D or 3D 

convolution. The feature map of the network could be represented by a tensor of 

(𝐶𝐶,𝑇𝑇,𝑉𝑉) dimensions, where 𝑉𝑉 denotes the number of vertexes, 𝑇𝑇 denotes the temporal 

length and 𝐶𝐶 denotes the number of attributes of the joint vertex. With the specific 

partitioning strategy determined, it could be represented by an adjacency matrix 𝐀𝐀 

with its elements indicating if a vertex 𝝊𝝊𝑡𝑡𝑗𝑗 belongs to a subset of 𝚴𝚴(𝜐𝜐𝑡𝑡𝑖𝑖). The graph 

convolution is implemented by performing a 1 × Γ  classical 2D convolution and 

multiplies the resulting tensor with the normalized adjacency matrix 𝚲𝚲−
1
2𝐀𝐀𝚲𝚲−

1
2 on the 

second dimension. With 𝐾𝐾 partitioning strategies ∑ 𝚨𝚨kK
k=1 , Equation (6.1) could be 

transformed into 

                           𝑓𝑓out( 𝝊𝝊𝑡𝑡) = ∑ 𝚲𝚲k
−12𝚨𝚨k𝚲𝚲k

−12K
k=1 𝑓𝑓inWk⨀Mk                                (6.2) 

where 𝚲𝚲𝑘𝑘𝑖𝑖𝑖𝑖 = ∑ (𝐀𝐀𝑘𝑘
𝑖𝑖𝑗𝑗) + 𝛼𝛼𝒋𝒋  is a diagonal matrix with 𝛼𝛼 set to 0.001 to avoid empty rows. 

Wk  is a weight tensor of the 1 × 1  convolutional operation with (𝐶𝐶𝑖𝑖𝑛𝑛,𝐶𝐶𝑝𝑝𝑢𝑢𝑡𝑡, 1, 1) 

dimensions, which represents the weighting function of Equation 6.1. Mk  is an 

attention map with the same size of 𝚨𝚨k, which indicates the importance of each vertex. 

⨀ denotes the element-wise product between two matrixes. 

6.2.2 Architecture of 2T-GCN 

The convolution for the temporal dimension follows the structure of ST-GCN, i.e., 

performing the 1 × Γ convolution on the C×T×N feature maps. Both the spatial GCN 

and temporal GCN are followed by a batch normalization (BN) layer and a ReLU layer. 

As Figure 6.3 shows, one basic ST-GCN block is a stacked combination of one spatial 

GCN (Convs), one temporal GCN (Convt) and a dropout layer with a drop rate set of 
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0.5 to prevent overfitting. To stabilize the training progress, a residual connection is 

added at the end of each block. 

 

Figure 6.3 Structure of the ST-GCN block. Convs is the spatial GCN, and Convt is the 
temporal GCN, both of which are stacked with a BN layer and a ReLU layer. A residual 

connection is added at the end of block. 
  

 
As Figure 6.3 shows, a basic GCN block is stacked with a spatial GCN (Convs) layer, 

a temporal GCN (Convt) layer and an additional dropout layer with the drop rate set 

to 0.5 to prevent overfitting. The convolution for the temporal dimension ensembles 

the implementation in [113], i.e., performing a 1 × Γ convolution on the skeleton 

inputs. Both Convs and Convt are followed with a batch normalization (BN) layer and 

a ReLU layer. To stabilize the training, a residual connection is added for the GCN 

block. The proposed 2T-GCN model is constructed by a stack of these basic blocks. 

There are 9 such GCN blocks in total as shown in the middle part of Figure 7. The first 

three blocks, the middle three blocks, and the last three blocks have 64, 128 and 256 

output channels, respectively. for. The temporal kernel size of these GCN blocks are 

set to 9. The strides of the 4-th and the 7-th GCN blocks are set to 2. To normalize the 

input data, a batch normalization layer is added at the beginning. As common practise 

in DL, we add a global average pooling layer at the end of the GCN blocks to transform 

the data to a vector with 256 dimensions. As the data are binarily labelled as normal 

or abnormal, we use a 2D convolutional layer to transform the 256-dimensional feature 
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vector to a 2-dimensional vector. Finally, we feed the 2-dimensional vector to a 

SoftMax classifier to infer the abnormality of an exercise. 

 

Figure 6.4 Illustration of the 2T-GCN model. There are 9 GCN blocks (B1-B9). The three 
numbers of each layer indicate the numbers of input and output channels, and the stride. 

GAP is a global average pooling layer. 
 

To infer the exercise quality with a numerical evaluation score, we retrieve the 

probability distribution before the SoftMax layer of the model and transfer it to a range 

of [0,1] with a sigmoid function as 

𝑓𝑓score(𝑆𝑆(𝑖𝑖)) = 1

1 + 𝑒𝑒−𝑓𝑓𝑡𝑡𝑜𝑜𝑡𝑡(𝑆𝑆(𝑖𝑖))
                                        (6.3) 

The numerical score could indicate the exercise quality without the supervision of 

subjective human evaluation or arbitrary scores calculated by an function as in [153].  

 

6.2.3 Optimization 

To learn the weights Θ of the GCN model 𝐺𝐺, we defined the objective supervised by 

the binary clinical label 𝑦𝑦 with the cross-entropy loss as 

arg max
Θ

∑ −  ∑𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑔𝑔(𝜎𝜎(𝐺𝐺(Θ, 𝑆𝑆(𝑖𝑖))))𝑁𝑁
𝑖𝑖=1                           (6.4) 
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where 𝐺𝐺(Θ, 𝑆𝑆(𝑖𝑖))  is the defined graph convolutional operation that is defined in 

Equation 6.2. 𝜎𝜎  represents the SoftMax function which transfers the probability 

distribution results to the abnormality result. 

6.3 Results for HAE 

In this section, we introduce the detailed implementation of our HAE algorithm on two 

datasets in terms of both abnormality detection and exercise quality evaluation. 

6.3.1 Datasets 

6.3.1.1 UI-PRMD Dataset 

The UI-PRMD dataset [24] consists of skeletal data collected from 10 healthy subjects 

with every subject performing 10 repetitions of 10 rehabilitation exercises like deep 

squat, hurdle step, and sit to stand. The subjects performed every exercise both in a 

correct manner and in an incorrect manner, i.e., simulating performance by patients 

with musculoskeletal constraints. The data were acquired with two types of sensors 

namely Kinect v2 and Vicon optical tracking system that both provide position (3-D 

cartesian coordinates) and orientation (angular data) features of skeleton joints. As the 

dataset has inconsistent data caused by measurement errors and subjects performing 

the exercise with incorrect limbs, the dataset was then transferred to a consistent 

version by [75]. We use the consistent data from Kinect and Vicon sensors that both 

have 1326 repetitions. The purpose of using this dataset, on one hand, is to compare 

the HAE ability of our model with the one proposed by [75]. On the other hand, we 

investigate the effect of using different sensors to validate the properness of the Kinect 

v2 sensor used in this job. 
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6.3.1.2 Nursing Home Dataset 

As described in the Section 3.4.3, our nursing home dataset has totally 869 repetitions 

that are performed by 25 elderly people. One task on the nursing home dataset is to 

further investigate which sensor features will mostly contribute to the abnormality 

detection. We use 8 features as described in Section 4.1 with their varied combinations 

to explore which of them will be the best for evaluating which exercise. Another goal 

is to examine whether our HAE method is consistent with the clinical evaluation. 

6.3.2 Implementation Details 

For training the proposed 2T-GCN mode, we adopt the same experimental setting for 

both UI-PRMD and EHE datasets. Precisely, we use the stochastic gradient descent to 

optimize our 2T-GCN model by setting the initial learning rate to 0.1. At the epochs 

of 10, 50 and 100, we decay the learning rate by multiplying it by 0.1. The training 

process will be terminated once the model achieves 100% accuracy, or it will stop at 

the epoch 200. The batch is set to 16. All experiments in are performed on a 

workstation with 2 GTX 1080 Ti GPUs. 

6.3.3 Evaluation Criterion 

To test the representation power of the model, we adopt the concept of separation 

degree (SD) that is proposed in [75]. For a pair of positive numbers 𝑥𝑥 and 𝑦𝑦, their SD 

could be defined as 𝑆𝑆𝐷𝐷(𝑥𝑥,𝑦𝑦) =  𝑖𝑖−𝑖𝑖
𝑖𝑖+𝑖𝑖

 ∈ [−1,1]. Then the separation degree between 

two positive sequences 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚)  and 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑚𝑚)  could be 

defined by  
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                  𝑆𝑆𝐷𝐷(𝒙𝒙,𝒚𝒚) = 1
𝑚𝑚𝑛𝑛

∑ ∑ 𝑆𝑆𝐷𝐷(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗)𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1                                   (6.5) 

Meanwhile, we also use the distance metric defined in [154], which quantifies the 

difference between the correct and incorrect evaluation results. Given two positive 

sequences 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁) and 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑁𝑁), the distance metric could be 

calculated as 

                  𝑆𝑆𝑛𝑛(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) = |𝑖𝑖𝑛𝑛−𝑖𝑖𝑛𝑛|

�1
𝑁𝑁
∑ (𝑖𝑖𝑛𝑛−𝑖𝑖𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

                                        (6.6) 

For HAE, we also examine the activity evaluation ability by investigating whether the 

evaluation results are consistent with the clinic diagnostic results. To do so, we 

calculate the Euclidean Distance (ED) and correlation (CORREL) between the HAE 

results with the clinical labels. For an n-dimensional space, the distance of two vectors 

𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) and 𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛) is 

𝐸𝐸𝐷𝐷(𝒙𝒙,𝒚𝒚) = 1
𝑛𝑛�∑ (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1                                       (6.7)   

The correlation between 𝒙𝒙 and 𝒚𝒚 is defined as 

𝐶𝐶𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝒙𝒙,𝒚𝒚) = ∑ (𝑖𝑖−�̅�𝑖)(𝑖𝑖−𝑖𝑖�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑖𝑖𝑖𝑖−�̅�𝑖)2 ∑ (𝑖𝑖𝑖𝑖−𝑖𝑖�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

                              (6.8) 

where �̅�𝑥 and 𝑦𝑦� are the average value of 𝒙𝒙 and 𝒚𝒚, respectively. Smaller 𝐸𝐸𝐷𝐷(𝒙𝒙,𝒚𝒚) and 

larger 𝐶𝐶𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙(𝒙𝒙,𝒚𝒚)  indicates the evaluation result is more consistent with the 

observation of human expert and vice versa. 

6.3.4 Results and Analysis 

6.3.4.1 UI-PRMD Dataset 
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We calculate the SD of each exercise by using different features of two sensors as 

shown in Table 6.1. The average SD of [153] for the inter-subjects case is 0.515, while 

our method achieved a separation degree of 0.673 by using the same angular features 

of the Vicon optical tracking system. From the SD results, we could see that our 

method achieves a significant improvement over the best model named Log-likelihood 

GMM in [153]. By using the angular features of Kinect v2 sensor, our method achieves 

an even higher separation degree of 0.782. This indicates Kinect v2 could be a more 

capable sensor for HAE as it is better than the Vicon optical tracking system in terms 

of both its 3D position and angular features. 

Table 6.1 Separation Degree of Every Exercise of UI-PRMD 

Exercise 
ID 

Separation Degree (Std. Deviation) 
Kinect   Vicon 

3D Position Angular   3D Position Angular 
E1 0.795 (0.083) 0.806 (0.159)  0.405 (0.101) 0.913 (0.086) 
E2 0.763 (0.102) 0.96 (0.065)  0.719 (0.127) 0.897 (0.022) 
E3 0.504 (0.221) 0.922 (0.05)  0.536 (0.106) 0.678 (0.124) 
E4 0.317 (0.198) 0.581 (0.165)  0.019 (0.023) 0.253 (0.258) 
E5 0.268 (0.205) 0.796 (0.074)  0.31 (0.127) 0.753 (0.197) 
E6 0.746 (0.177) 0.649 (0.224)  0.425 (0.211) 0.473 (0.112) 
E7 0.847 (0.035) 0.803 (0.117)  0.727 (0.203) 0.821 (0.071) 
E8 0.677 (0.189) 0.729 (0.118)  0.58 (0.299) 0.359 (0.358) 
E9 0.783 (0.081) 0.799 (0.108)  0.404 (0.085) 0.665 (0.17) 

E10 0.232 (0.03) 0.864 (0.034)  0.269 (0.104) 0.928 (0.058) 
Average 0.594 (0.134) 0.782 (0.117)   0.426 (0.138) 0.673 (0.148) 

 

To further validate the proposed method, we calculate the distance metric of all 

exercises. For each exercise in UI-PRMD, the mean and standard deviation of the 

distance metric are illustrated in Table 6.2. Exercises E1 and E7 (i.e., “deep squat” and 

“standing shoulder abduction”) are evaluated by using an autoencoder neural network 

proposed in [154]. With our method, the distance metric results of E1 and E7 (0.929 

and 0.882, respectively) are higher than that of the autoencoder neural network (0.872 
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and 0.870, respectively). Meanwhile, our evaluation results are also more stable as the 

standard deviations of the distance metric of our method (0.146 and 0.158 for E1 and 

E7, respectively) is smaller than that of the autoencoder neural network (0.433 and 

0.425 for E1 and E7, respectively). Besides, the evaluation results of distance metric 

also consistently indicate that the Kinect v2 sensor is more capable than the Vicon 

optical tracking system. 

Table 6.2 Distance Metric of Every Exercise of UI-PRMD 

Exercise 
ID 

Distance Metric (Std. Deviation) 
Kinect   Vicon 

3D Position Angular   3D Position Angular 
E1 0.758 (0.262) 0.899 (0.153)  0.373 (0.388) 0.929 (0.146) 
E2 0.809 (0.246) 0.964 (0.118)  0.75 (0.321) 0.646 (0.388) 
E3 0.66 (0.303) 0.883 (0.277)  0.461 (0.384) 0.812 (0.167) 
E4 0.585 (0.274) 0.743 (0.19)  0.007 (0.016) 0.591 (0.249) 
E5 0.546 (0.247) 0.840 (0.204)  0.37 (0.375) 0.848 (0.192) 
E6 0.869 (0.163) 0.777 (0.265)  0.599 (0.293) 0.9 (0.159) 
E7 0.755 (0.32) 0.726 (0.295)  0.7 (0.288) 0.882 (0.158) 
E8 0.75 (0.331) 0.71 (0.253)  0.55 (0.445) 0.682 (0.333) 
E9 0.671 (0.03) 0.822 (0.258)  0.317 (0.514) 0.748 (0.24) 

E10 0.22 (0.369) 0.831 (0.216)  0.299 (0.277) 0.912 (0.205) 
Average 0.669 (0.252) 0.819 (0.220)   0.434 (0.329) 0.802 (0.218) 

 

Figures 6.5 and 6.6 show a visualized view of the exercise quality evaluation values 

of “deep squat” and “standing shoulder abduction” in UI-PRMD by using the 3D 

position features of Kinect v2. It is noticeable that the correct and incorrect repetitions 

are clearly classified by using the exercise quality evaluation score transferred from 

the probability distribution before the SoftMax layer with Equation 6.3. According to 

the results in [153], the correct and incorrect pairs could not be clearly separated by 

their DL method as most of the incorrect repetitions get evaluation scores around 0.9 

(given that 1 is the fully correct score). With our method, we could see that the scores 
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of incorrect repetitions are below 0.5, whereas the correct repetitions have scores that 

are over 0.5. 

 
Figure 6.5 Quality evaluation scores of the “deep squat” (𝑆𝑆𝐷𝐷 = 0.795) 

 
 

 
Figure 6.6 Quality evaluation scores of the “standing shoulder abduction” (𝑆𝑆𝐷𝐷 = 0.847) 

 
 

6.3.4.2 Nursing Home Dataset 

Since the Kinect v2 provides both the position and orientation attributes for the 

skeleton joints, we investigate the capability of different attributes with varied 

combinations of them. As Table 6.3 shows, experiments on 5 different features 

combinations are conducted by comparing their training accuracy on different 

exercises. In table 6.3, xyz refers to the 3D position attributes (𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ), xyzh refers 

to (𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖ℎ𝑡𝑡 ), angular refers to (𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ), angw refers to (𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑗𝑗𝑖𝑖𝑖𝑖𝑡𝑡 ), and 

xyzhangw represents using all the attributes. The results indicate that some features 
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could be good for the evaluation of some specific exercises. For example, xyz is good 

for the top 4 exercises but not good for exercises 5 (E5). The average accuracy of all 

attribute combinations is over 90%, which verifies the representation power of our 

HAE method. Since the model is a deep learning method, we feed all the attributes to 

the model to explore if it could automatically learn the discriminative feature from the 

data. It turns out the model have achieved promising results by using all the attributes 

of skeleton joints with 100% training accuracies on all exercises. 

Table 6.3 Training Accuracy on UI-PRMD Dataset  

Exercise ID Training Accuracy (%) 
angular angw xyz xyzh xyzhangw 

E1 100.00 100.00 100.00  100.00  100.00  
E2 99.31 100.00 100.00  100.00  100.00  
E3 100.00 100.00 100.00  100.00  100.00  
E4 100.00 100.00 100.00  95.70  100.00  
E5 86.49 89.19 56.76 66.22  100.00  
E6 100.00 100.00 98.59  85.92  100.00  

Average 97.63 98.20 99.72  91.31  100.00  
 

We also perform prediction experiments to evaluate if our method could be used to 

predict action abnormality that could reflect the severity of the AD. To make the 

experiments less biased than simply splitting the data to training set and test set, we 

adopt 𝑘𝑘-fold cross-validation evaluation method, which is popularly used to estimate 

the skill of a machine learning model when the sample size is relatively not large [119]. 

We set 𝑘𝑘  to 5 for Cross-Validation (CV) by splitting the data of each exercise 

repetitions to 5 folds based on two types of evaluation criteria: cross-subjects and 

random-division. The of CV folds of two evaluation criteria are detailed in Table 6.4. 

For random-division evaluation, the remainder repetitions of the whole repetitions 

divided by 5 are also evenly put to each CV fold based on the fold order. 
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Table 6.4 Cross-validation folds of two evaluation types 

CV Fold Subject ID 
Cross-Subjects Random Division 

Fold 1 2,3,1,4,7 
Evenly divide the 

exercise repetitions 
of every subjects to 5 

folds. 

Fold 2 5,6,8,9,16 
Fold 3 10,11,17,18,23 
Fold 4 12,13,20,21,24 
Fold 5 14,15,19,22,25 

 

According to the comparison of different attribute combinations in Table 6.3, we use 

all attributes of the skeleton joints for the abnormality prediction. We report the 

abnormality prediction accuracy in percentage. Table 6.5 and Table 6.6 show the 

experimental results of the evaluation criteria of cross-subjects and random-division, 

respectively. The results consistently indicate that exercises like “wave hands” and 

“bend waist to right” could effectively reflect the Alzheimer severity, which is slightly 

better than the performance of exercises like “hands up and down” and “bend waist 

to right”. However, walking related exercises could not perform well for Alzheimer 

related abnormality prediction. 

Table 6.5 Abnormality Prediction for Cross-Subjects Evaluation 
CV Fold Exercise Abnormality Prediction (%) 

E1 E2 E3 E4 E5 E6 
Fold 1 100.00 88.89 81.48 90.00 57.14 57.14 
Fold 2 97.06 74.07 82.86 92.31 75.00 75.00 
Fold 3 97.56 86.67 76.19 91.43 75.00 62.50 
Fold 4 86.67 80.00 73.08 96.15 62.50 80.00 
Fold 5 95.56 83.33 85.00 83.72 62.50 71.43 
Avg 95.37 82.59 79.72 90.72 66.43 69.21 

 

Table 6.6 Abnormality Prediction for Random-Division Evaluation 
CV Fold Exercise Abnormality Prediction (%) 

E1 E2 E3 E4 E5 E6 
Fold 1 98.08 82.50 82.00 91.49 60.00 60.00 
Fold 2 97.83 89.66 88.10 95.12 62.50 70.83 
Fold 3 95.00 88.00 87.18 97.30 63.16 72.22 
Fold 4 90.62 84.00 88.24 96.97 - - 
Fold 5 96.43 84.00 87.10 96.43 - - 
Avg 95.59 85.63 86.52 95.46 61.89 67.68 
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To have a better intuition for the effectiveness of the proposed method, we visualize 

the average prediction scores of all exercises for 25 subjects in Figures 6.7 and 6.8 

(different shaped markers) corresponding to the two evaluation protocols (i.e., cross-

subjects division and random division, respectively). From the lines in Figures 6.7 and 

6.8, we could observe that the prediction results of non-walking related exercises are 

consistent with clinical severity evaluations of AD under both two evaluation protocols. 

Our method also indicates there might be no discriminative features from walking 

related exercises like “walking forward” and “walking backward”. This result could 

provide a guidance for designing exercises in the rehabilitation therapies as it is 

understandable that following basic actions like “walking forward” and “walking 

backward” rely less on the praxis condition. Given that our data is naturally collected 

instead of like UI-PRMD [24] which is collected with young subjects mimicking the 

abnormal exercises, our job reflects the real situation of Alzheimer Patients. On one 

hand, the results could imply that the Alzheimer patients usually have unnoticeable 

abnormal symptoms from the regular walking exercises. On the other hand, the 

proposed method is potential to capture severity levels of AD from exercises that 

require good praxis conditions like imitation, production, or recognition of gesture.  

 
Figure 6.7 Average evaluation score of exercise 1 for all subjects by using different attribute 

combinations 
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Figure 6.8 Average evaluation score of different exercises for all subjects by using all 

attributes of skeleton joints 
 
 
To quantify the performance of our evaluation method, we use two association 

parameters defined as ED and CORREL in Equation 6.7 and Equation 6.8, respectively. 

We focus on investigating which exercises with which skeleton data attributes could 

achieve the best exercise evaluation performance by comparing their association with 

the clinical severity labels of AD. By considering both normal and Alzheimer subjects, 

we could see from Figure 6.9 that E1 (i.e., wave hands) could be the best exercise for 

inferring the abnormality as its evaluation scores has the lowest ED and highest 

correlation with clinical evaluation. In terms of evaluating the Alzheimer severity, 

according the correlation and normalized ED in Figure 6.10, it remains challenging to 

model the exercise evaluation score that is highly associated with the clinical 

observation. It is worthwhile to mention that the results of E1 could be at least 

consistent and positively associated with the clinical evaluation of the Alzheimer 

severity, which validates the motivation of this study. 
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Figure 6.9 Comparison of HAE ability of different exercises considering all subjects 

(numbers are colored) 

 
Figure 6.10  Comparison of HAE ability of different exercises considering Alzheimer 

subjects (numbers are colored) 

6.4 Discussion 

The proposed 2T-GCN solves the skeleton-based HAE from a novel perspective by 

modelling the problem as a binary classification problem. While existing methods 

usually model the skeleton-based HAE as a regression problem that are supervised 

either by arbitrarily predefined function scores or subjective human label. The 

validated 2T-GCN shows the potential to be applied to wide application domains like 

behavioral therapy and physical rehabilitations based on the condition that the skeleton 

data of actions could be well segmented. Hence, to apply it to real applications, the 

segmentation problem also needs to be tackled. 
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Chapter 7 

Conclusion 

7.1 Summary 

This thesis introduced practical methods for human activity analysis tasks with 

competitive HAR and HAE algorithms proposed. The research is based on a 

comprehensive understanding of various sensors and domain requirements in the 

healthcare. Precisely, we investigated the related works of HAR in terms of sensors 

and datasets for the development of real-world ADLs recognition methods. An activity 

complexity definition method is provided and applied to evaluate the capability of 

various sensors for human activity analysis tasks. With such a comprehensive 

understanding, we utilized the Kinect v2 sensor and adopted various algorithms onto 

the collected morning routine dataset. The activities in our dataset is based on the 

concern of NCDs prevention with a need to automatically collect ADLs. According to 

the experimental results, even small dataset could achieve great accuracy with out 

proposed models. Our ABFE algorithm significantly improves the Top-1 accuracy 

comparing with other DL models. While our transfer learning method also improves 

the accuracy with enhanced efficiency and robustness. It is also worth mentioning that 

our MMNet achieved state-of-the-art performances on three public datasets. With such 

promising results, our proposed HAR algorithms are of great potential to be applied to 

real-world healthcare application scenarios like habit perception, intervention 

performance evaluation, disease prediction, and adaptive (automatic) smart home. 
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Except HAR, this thesis also provided a real-world field study that explores the 

potential of our proposed 2T-GCN for both diagnosis and therapy of Alzheimer’s 

disease. For diagnosis, 2T-GCN could perform abnormality detection. Meanwhile, for 

exercise evaluation, the result of the abnormality detection could be transformed to a 

continuous score that indicates the elderly people’s wellness of praxis condition. The 

proposed exercise evaluation model was first validated on the benchmark dataset 

named UI-PRMD, which significantly improves the results of [75] in terms of the 

separation degree and [154] in terms of distance metrics. Meanwhile, the results 

indicate that the Kinect v2 sensor is more capable for HAE tasks than the motion 

capture sensor called Vicon optical capture system. In addition to the laboratory-

collected dataset, we also collected a real-world morning exercise dataset with real 

Alzheimer subjects in a nursing home. The experimental results on the real-world 

dataset that we collected in the nursing home show that our 2T-GCN is capable of 

discriminating abnormality in exercises, which could be used for supporting the 

diagnosis of AD. Meanwhile, the continuous evaluation score is also well associated 

with the Alzheimer severity of clinical observation, which indicates that our method 

could be used to monitoring the progress of exercise-based interventions. 

7.2 Future Work 

Although we achieved high accuracy on the morning routine dataset with three 

proposed algorithms, more research is required to investigate advanced HAR methods 

that provides more detailed information for the wide applications of HAR. Besides, 

other sensors like RealSense could be used to get more fine-grained features like 

emotion, eye gaze, and facial expression, which will benefit real world scenarios like 

nursing homes and independent elderlies. Although medical datasets for various 
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diseases are widely available, the lack of behavior datasets remains an issue for 

preventing elderly suffering from NCDs. As far as we know, there are very few field 

studies last for a long period and conduct a long-term HAR based disease evaluation. 

Given the high accuracy of our HAR methods on the ADLs dataset collected in the 

real world environment, one of our future work is to collect and accumulate daily 

behavioral data by applying our method to homes of independent elderly people, and 

then analyze the behavioral data to infer symptoms of NCDs. 

In terms of designing even more practical algorithms that make machine recognize 

actions like human, algorithms in the regimes of reinforcement learning [155], lifelong 

learning [156], self-training or active learning [157] could be utilized to handle 

problems like catastrophic forgetting, incremental actions, changing transition 

dynamics, changing rewards functions, etc. Meanwhile, new evaluation criteria with 

consideration of the improved QoL perception of users should also be proposed to 

target higher goals of HAR applications. For example, feedback from users could be 

surveyed when the proposed algorithms are used in the wide applications. 

On the other hand, our 2T-GCN model shows the potential for detecting the severity 

of the Alzheimer’s disease with a numerical evaluation score, it might be lack of the 

involvement of domain knowledge as it could not be well explained. In the future, we 

will focus on this issue to build an explainable model and expand the experiments to a 

larger dataset. To do so, we will develop future HAE methods with inter-rater 

validation by comparing the evaluation results with other clinical scales and 

biomarkers.  
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