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ABSTRACT 

 

Stemming from rapid urbanization leads to smarter cities that can improve the quality of 

life through advanced micro-electronic technologies. To realize the concept of Internet of 

Things (IoT) for smart cities, different types of sensors and devices (e.g., micro-electro-

mechanical systems (MEMS)) are used to gain data to manage urban services and resources in 

a smart manner. With the continuous development of wireless sensor networks, the need for 

sustainable mobile power supplies is of paramount importance. These wireless sensors and 

devices can be powered by electrochemical batteries that are limited in lifespan and required 

periodic charging. To enable the vast deployment of sensors everywhere, one promising and 

feasible alternative is to directly harness energy from our environment (e.g., omnipresent 

vibration energy from ambient sources) that can allow a better self-autonomy.  

 

From the perspective of mechanics, in MEMS devices and vibration-based energy 

harvesting technologies, nonlinear dynamic oscillations have been a topic to intensive research 

for recent years. In this research, the following four major topics are investigated to offer a 

better understanding of nonlinear dynamical behavior in MEMS resonators and energy 

harvesting systems. They are: (i) the nonlinear free and forced vibration of electrostatically 

actuated MEMS resonators; (ii) the nonlocal dynamic effect of micro-/nano-scale structures; 

(iii) the quantitative and qualitative analysis of a tri-stable nonlinear non-natural system; and 

(iv) the theoretical and experimental studies of a magnetic levitation-based electromagnetic-

triboelectric energy harvesting technique governed by a tri-stable nonlinear mechanism. 

 

In general, fully-clamped microbeams are one of the major structural components in most 

MEMS devices. This work aims to construct accurate and simple lower-order analytical 

approximation solutions for the free and forced vibration of electrostatically actuated MEMS 

resonators, in which geometrical and material nonlinearities are induced by the mid-plane 

stretching, dynamic pull-in characteristics, electrostatic forces and other intrinsic properties. 

First, the free vibration of a doubly-clamped microbeam suspended on an electrode due to a 

suddenly applied DC voltage is considered. Based on the EulerBernoulli beam theory and the 

von Karman type nonlinear kinematics, the dynamic motion of the microbeam is further 

discretized by the Galerkin method to an autonomous system with general nonlinearity, which 

can be solved analytically by using the Newton harmonic balance method. In addition to large-
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amplitude free vibration, the primary resonance response of a doubly-clamped microbeam 

driven by two symmetric electrodes is also investigated, where the microbeam is actuated by 

a bias DC voltage and a harmonic AC voltage. Following the same decomposition approach, 

the governing equation of a harmonically forced beam model can be transformed to a non-

autonomous system with odd nonlinearity only. Then, lower-order analytical approximation 

solutions are derived to analyze the steady-state resonance response of such a problem under 

a combination of various DC and AC voltage effects. Finally, the analytical approximation 

results of both cases are validated and they are in good agreement with those obtained by the 

standard Runge-Kutta method. 

 

Micro-/nano-scale structures are widely used in the design of MEMS/NEMS resonators. 

Nonlocal elasticity theory is one of the most popular theoretical approaches to investigate the 

intrinsic scale effect of micro-/nano-structures, it incorporates long range interactions between 

points in a continuum model. From the point of view of physics, the coupling of an internal 

characteristic length and a material parameter can be regarded as a nonlocal scale parameter. 

The range of this non-dimensional scale parameter is from zero up to different values 

previously. The zero nonlocal scale parameter refers to a situation without any nonlocal effect. 

However, the determination of a peak value for the nonlocal scale parameter is still uncertain. 

In this research, the nano-structural dependence of nonlocal dynamical behavior is investigated 

to present the existence of an upper limit for the nonlocal scale parameter through a dynamical 

analysis of nanorods, nanobeams and nanoplates. It is not only beneficial to the refinement of 

the nonlocal theory of elasticity, and also useful for the exploration of similar theories in nano-

mechanics. 

 

In nonlinear energy harvesting technologies, multi-stable oscillating mechanisms are an 

effective approach to achieve a lower excitation threshold for inter-well motions. The intrinsic 

behavior of triple-well nonlinear oscillators can be illustrated by Duffing-type equations. To 

study such nonlinear problems, the large-amplitude oscillation of a triple-well non-natural 

system is investigated, covering both qualitative and quantitative analysis. By varying the 

governing parameters, the system is changed from a mono-stable behavior to a tri-stable one 

(having three stable states). In terms of qualitative analysis, various classifications for the 

equilibrium points and its trajectories of the system are provided. As exact solutions for this 

problem expressed in terms of an implicit integral form must be solved numerically, an 
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analytical approximation method based on the NHB method is used to construct lower-order 

accurate solutions to the oscillation around the stable equilibrium points of this system.  

 

Making use of the tri-stable nonlinearity, a magnetic levitation-based electromagnetic-

triboelectric energy harvester is designed and investigated. The hybrid generator not only 

enhances the power output through resonant inter-well oscillation behavior, and also offers a 

wide and highly efficient operating bandwidth under low-frequency (<10 Hz) and broadband 

sources. Although many vibration-based energy harvesters are resonant in nature, they have 

difficulty going into high-energy orbits under random low-level excitations to limit their output 

power density. To overcome this deficiency, the integration of a slider-driven electromagnetic 

generator and a sliding-mode triboelectric nanogenerator allows more energy to be harvested 

from a single motion, which can further improve the power density. Besides, the 

implementation of magnetic levitation can reduce the possibility of mechanical contact and 

impact damage to enhance a long-term durability in practical uses. In this study, both 

theoretical and experimental investigations are presented to verify this new design, in which 

only four outer magnets are required on a plane to establish a triple-well nonlinear behavior. 

In the theoretical analysis, the magnetic force of this harvester is calculated by the magnetizing 

current method and the formation mechanism of this tri-stability is verified by a bifurcation 

analysis. While for the experimental work, a battery-shaped prototype is fabricated and tested 

by an electrodynamic shaker to evaluate its working performance.  

 

The research findings are expected to be useful for designing MEMS-driven devices and 

vibration-based energy harvesting systems that can advance the development of current 

cutting-edge IoT technology. 
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Chapter 1  

INTRODUCTION 

 

 Background  

Rising population and accelerating urbanization are leading to the rapid growth of urban 

cities. Although urbanization is not exclusively a modern phenomenon, industrialization and 

modernization have expedited urban development. The level of urbanization is expected to 

reach 66% of the world’s population by 2050 from 54% in 2014 (McNicoll, 2005). Rapid 

population growth introduces high demands and challenges for urban resources and services. 

A viable way to address this problem is the development of “smart cities” that use innovative 

and renewable technologies to reduce the resource consumption of cities and optimize the 

efficiency of operations and services in a smart manner. Nonetheless, the smart city market has 

not yet taken off due to several current technical and financial barriers. 

 

The Internet of Things (IoT) plays a critical role in the implementation of smart cities by 

reshaping working styles to integrate intelligent systems for process optimization and 

empowering users to interact with new technologies (Jawhar et al., 2018; Samih, 2019). IoT 

systems create large intertwined networks between computing devices, mechanical/digital 

machines, and people, and offer the unique ability to transfer data over a network without 

requiring human-to-human or human-to-computer interaction. The IoT paradigm represents 

ongoing technology development in that any object and environment can be connected to the 

Internet or local area networks using embedded devices (e.g., micro-electro-mechanical 

systems (MEMS) or nano-electro-mechanical systems (NEMS)). Such devices, including those 

for sensor reading and actuation tasks, can transform a physical object into an information 

source or receiver with the potential to communicate with all other things in the network. The 

IoT is made increasingly promising by recent advancements in miniaturization and integration 

of devices with higher computational capacity and lower energy consumption. IoT applications 

and services can cover many areas, including industrial automation, traffic management, 

consumer electronics, environmental monitoring, healthcare systems, and energy grids based 

on the advancement of MEMS technologies. IoT systems can also provide a network of 
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connected devices with high autonomy and low manpower expense to improve industrial 

processes, energy efficiency, and the quality of services and life.  

 

MEMS include small devices that combine mechanical and electrical components to 

describe an emerging research field (Pelesko and Bernstein, 2003). The functional working 

elements of MEMS are miniaturized structures, sensors, actuators, and microelectronics. 

MEMS technology focuses on the miniaturization of existing devices and tool development for 

efficient operations in a micro-world. However, some undesirable consequences may result 

from the continuous reduction of device size. For example, MEMS resonators 

(microelectromechanical oscillating structures that define stable frequencies) operate near their 

pull-in voltage and may lead to pull-in instability, thereby deteriorating MEMS components. 

MEMS-driven devices have gained tremendous attention over a wide range of engineering 

applications, such as microphones in portable smartphones, bio-MEMS devices in medical and 

health technologies, signal filtering techniques for data smoothing, chemical and mass sensors, 

and high-precision temperature-compensated resonators in real-time clocks (Li et al., 2003; Ng 

et al., 2008; Choudhary and Iniewski, 2017).  

 

Nevertheless, powering the tremendous amount of embedded devices in the IoT presents 

a grand challenge. In many IoT applications, a wireless power supply is required due to 

mobility requirements and network size. In these situations, traditional electrochemical 

batteries are typically used as power resources. A long device lifetime is of prominent need in 

many IoT applications; for example, devices deployed in high-rise buildings and civil 

infrastructure for monitoring purposes are expected to work for decades and regular battery 

replacement and maintenance are infeasible. Moreover, the exceedingly high number of 

discarded batteries adversely impacts the environment and limits the expansion of IoT 

applications. More than 3 billion batteries are discarded in the USA every year (Jayakumar et 

al., 2014), leading to serious problems of chemical waste disposal and environmental pollution.  

 

Energy harvesting techniques have been extensively explored to address this dilemma as 

a permanent and environmental-friendly alternative for powering IoT systems 

(Shirvanimoghaddam et al., 2019). The rapid development of various energy harvesting 

techniques has therefore become a popular research challenge because the capture of renewable 

energy from the ambient environment offers a promising platform to support the explosive 

growth of a wide range of demands. The principle of energy harvesting techniques is to convert 
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energy in the ambient environment (e.g., thermal, vibration, solar, radio-frequency signal 

energy) into electrical energy. Among these, vibrational energy is highly sustainable in urban 

surroundings (e.g., high-rise buildings, long-span bridges, railway vehicles, industrial 

machines, and human bodies), which are also the main areas for IoT applications. Vibrational 

energy possesses a high power density (up to 100 W/m3). For example, a large number of 

sensors and actuators can be embedded in a long-span bridge to monitor its structural integrity 

under environmental excitation (e.g., wind load, moving vehicles) during its life cycle. In this 

case, wireless sensors and controllers that should ideally be self-powered are used for real-time 

monitoring, prognosis, detection, and signal transmission. In this respect, the pursuit of a 

scalable solution of energy harvesting for power supply is an imperative issue. Innovative 

vibration-based energy harvesting techniques can therefore prolong the lifetime and improve 

the application range of wireless sensors.  

 

Theoretically, all vibrational energy that can be converted into electrical energy is 

renewable and sustainable in the ambient environment, and the intent is mostly aimed to power 

wireless sensors and monitoring systems. Various vibration-based energy harvesting 

techniques are capable of performing vibration-to-electric energy conversion (e.g., 

electromagnetic, electrostatic, piezoelectric and triboelectric transduction mechanisms) (Priya 

and Inman, 2009; Spreemann and Manoli, 2012; Elvin and Erturk, 2013; Wang et al., 2016a). 

Due to the limitations and deficiencies of a single working mechanism under low-amplitude, 

low-frequency, and time-varying vibration sources, a hybrid mechanical design has emerged 

as a new trend to enhance the working performance of vibration-driven energy harvesting. By 

coupling multiple transduction mechanisms, more electrical energy can be converted from 

vibrational motion and the advantages of different transduction mechanisms can be compacted 

into a single hub.  

 

 Problem Statements 

From the perspective of applied mechanics, nonlinear dynamics (Daqaq et al., 2014; Comi 

et al., 2020) in MEMS devices and vibration-based energy harvesting technologies is an 

important and intensive research topic in recent years and some critical topics must be further 

investigated for better understanding nonlinear dynamical behavior in MEMS resonators and 

vibration-driven energy harvesting systems. This work is divided into four major parts to 

summarize the following research problems:  

(i) nonlinear free and forced vibration of electrostatically actuated MEMS resonators; 
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(ii) nonlocalized scaling effects of micro-/nano-scale structures to account for long-range 

forces between atoms and molecules;  

(iii) quantitative and qualitative analysis of a tri-stable nonlinear non-natural system (i.e., the 

kinetic energy of this system is not purely a quadratic function of velocity); and 

(iv) theoretical and experimental analysis of a magnetic levitation-based electromagnetic-

triboelectric energy harvesting technique governed by tri-stable nonlinearity. 

 

Fully clamped microbeams are one of the major structural components in MEMS 

resonating systems. Geometrical and material nonlinearities in electrically driven MEMS 

resonators under dynamical motion are caused by mid-plane stretching, dynamic pull-in 

behavior, electrostatic forces, and material properties. Among these, the electrostatic force is a 

major parameter that is inversely proportional to the square of the distance between the 

microbeam and actuated electrode in a MEMS resonator. Induced by strong excitation levels, 

the electrostatic force can cause large-amplitude microbeam deformation, resulting in axial 

residue stress and a damping effect. Pull-in instability is also a common detrimental effect in 

MEMS devices. To study these effects, approximate analytical solutions are constructed for 

both free and forced vibrations of doubly clamped MEMS resonators under electrostatic forces, 

which can offer an all-encompassing view of the system nature in response to parameter 

changes that concern nonlinearity. Because such dynamic problems are strongly nonlinear, 

exact solutions are scarce and unavailable except under very limited circumstances. Dynamic 

models of such cases can be derived using Kirchhoff’s hypothesis and von Kármán nonlinear 

kinematics (Chia, 1980). Analytically solving the dynamic problems allows a coupling of 

Newton’s method with the harmonic balancing (NHB) approach (Wu et al., 2006; Lai, 2007; 

Wu et al., 2017) to be applied for formulating lower-order approximate analytical solutions, 

which can provide accurate results for the primary resonance responses of systems subjected 

to various bias DC and harmonic AC voltage levels. The pull-in phenomenon of the MEMS 

resonators is also investigated for stability analysis.  

 

Micro-/nano-scale structures are widely used in the design of MEMS/NEMS resonators 

due to the rapid development of nanotechnology and their unique properties, such as high 

strength and low density. Unfortunately, classical continuum theories cannot accurately 

interpret the dynamical behavior of micro-/nano-structures because they do not account for the 

interaction between atoms and molecules. Nonlocal elasticity theory (Eringen and Edelen, 1972; 

Eringen, 1983) is a generalized continuum mechanics theory that can be used to explain long-
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range forces between atoms and molecules. This theory has been extended to various nano-

scale structures (e.g., beams, rods, arches, shells) (Reddy, 2007; Wang et al., 2007a; Reddy, 

2008; Hu et al., 2008; Lim, 2010a; Wang et al., 2012a). It is assumed that the stress at a specific 

point is a function of strain at all points in the continuum. To reflect the contribution of strains 

at other points to the stress at a specific point, nonlocal constitutive relations introduce a 

relevant kernel function that can be used for scaling effects to handle the distance between 

other points and the specific point. Owing to the kernel function and the internal characteristic 

length, nonlocal theory can capture nonlocal scaling effects that are ignored in classical 

continuum theory. Previous studies have shown that nonlocal results are in good agreement 

with those obtained from molecular dynamics simulations and experiments. Nonlocal elasticity 

theory can also be transformed into classical theory following the assumption of a long-

wavelength limit, and to atomic lattice dynamics following the assumption of a short 

wavelength limit (Li et al., 2019). The coupling of an internal characteristic length and material 

parameter can be regarded as a nonlocal scaling parameter. This non-dimensional scaling 

parameter ranges from zero to various values without a rigorous explanation. In this study, the 

nano-structural dependence of nonlocal dynamical behavior is studied to verify the presence of 

a peak nonlocal scale parameter value through the dynamical analysis of nano-scale structures 

(i.e., nanorods, nanobeams, nanoplates). 

 

The application of multi-stable nonlinearity-enhanced mechanisms (Erturk and Inman, 

2011; Daqaq et al., 2014; Wang et al., 2018; Wang et al., 2019a) in nonlinear energy harvesting 

technology plays a crucial role in improving the working performance of vibration-based 

energy harvesters under a low excitation threshold via inter-well motions. The tri-stable 

nonlinear approach is useful for these purposes. The intrinsic behavior of triple-well nonlinear 

oscillators can be illustrated by Duffing-type equations (Nayfeh and Mook, 1995; Kovacic and 

Brennan, 2011). To study such nonlinear problems, the large-amplitude oscillation of a triple-

well non-natural system is selected for investigation. The nonlinear system is governed by a 

quadratic dependence term on the velocity and an odd-parity restoring force with cubic and 

quintic nonlinearities. A variety of mathematical models in mechanical and structural 

engineering applications can give rise to this nonlinear problem. By varying the governing 

parameters, the system changes from a mono-stable state (with a single fixed point) to a tri-

stable state (with three stable points). In terms of qualitative analysis, various classifications 

for the equilibrium points and its motion trajectories of the system are provided. Because exact 

solutions for this problem expressed in the form of an implicit integral must be solved 
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numerically, an analytical approximation method based on the NHB method is used to 

construct accurate lower-order solutions to the oscillation around the stable equilibria of this 

system.  

 

Making use of the tri-stable nonlinearity, a magnetic levitation-based electromagnetic-

triboelectric energy harvester has been designed and investigated. The hybrid generator not 

only enhances power output through resonant inter-well oscillation behavior but also offers a 

wide and highly efficient operating bandwidth under low-frequency (<10 Hz) and broadband 

sources. Many vibration-based energy harvesters are resonant types but high-energy orbits are 

difficult to reach under random low-level excitation levels, which restricts their output power 

density. To resolve this problem, the integration of a slider-driven electromagnetic generator 

and sliding-mode triboelectric nanogenerator can allow more energy to be harnessed from a 

single motion, which further improves the power density. The implementation of magnetic 

levitation can reduce the possibility of mechanical contact and impact damage to enhance long-

term durability in practical use. In this work, both theoretical and experimental investigations 

are presented to test this new energy harvesting design, in which only four outer magnets are 

required on a plane to establish triple-well nonlinear behavior. In the theoretical analysis, the 

magnetic force of this energy harvester is calculated by the magnetizing current method 

(Agashe and Arnold, 2008) and the formation mechanism of the tri-stability is verified through 

bifurcation analysis. In the experimental study, a fabricated prototype is tested by an 

electrodynamic shaker to evaluate its working performance. 

 

 Research Objectives 

The major objectives of this thesis are twofold. The first objective is to investigate 

nonlinear dynamic oscillations in MEMS resonators using the NHB method. An elegant and 

interesting trait of analytical approximation methods is their ability to solve nonlinear 

dynamical systems in many different applications rather than being restricted to a simple 

nonlinear system with a small perturbed parameter and oscillation amplitude (Lai, 2007). This 

goal is achieved by constructing approximate analytical solutions for both free and forced 

vibrations of doubly clamped MEMS resonators under electrostatic forces, which offer an all-

encompassing view of the system nature in response to changes of system parameters that 

concern nonlinearity. Because micro-/nano-scale structures are involved in the design of 

MEMS resonators, the nonlocal dynamic effect of micro-/nano-scale structures is also 

investigated. Specifically, the tasks related to this objective are summarized as follows: 
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 modeling of nonlinear free and forced vibration of electrostatically actuated MEMS 

resonators based on the EulerBernoulli beam theory and von Kármán strain-displacement 

assumptions;  

 construction of approximate analytical solutions for both models by coupling Newton’s 

method with the harmonic balancing approach; and 

 presentation of the existence of an upper limit for the nonlocal scale parameter through 

dynamical analysis of various nano-scale structures. 

 

The second objective is to investigate the tri-stable oscillating mechanisms in vibration-

based energy harvesting technologies. The intrinsic behavior of triple-well nonlinear oscillators 

can be illustrated by Duffing-type equations. To study such nonlinear problems, the large-

amplitude oscillation of a triple-well non-natural system is investigated. To achieve this 

objective, the following tasks are addressed: 

 qualitative and quantitative analysis of the large-amplitude oscillation of a triple-well non-

natural system;  

 development of a magnetic levitation-based electromagnetic-triboelectric energy harvester 

with tri-stable nonlinearity; and 

 verification of the new design by both theoretical and experimental investigations. 

 

This hybrid vibration-based energy generator enhances the power output through resonant 

inter-well oscillations and also offers a wider and highly efficient operating bandwidth under 

low-frequency (<10 Hz) and broadband vibration sources. The proposed energy harvester can 

perform symmetric oscillations in a horizontal position when the restoring force is only caused 

by a magnetic force. Upon placing the device in a vertical orientation, the oscillating system 

becomes asymmetric under the effects of both magnetic forces and gravity. Besides, the 

application of magnetic levitation can increase the durability of this device in practical 

engineering environments because mechanical contact and impact collisions are both reduced. 

 

 Research Methodology 

Both quantitative and qualitative analyses of the nonlinear dynamic oscillations of MEMS 

resonators and large-amplitude oscillation of triple-well nonlinear systems are presented in this 

study. In the quantitative analysis, the NHB approach is used to formulate approximate 

analytical solutions of these nonlinear systems. This method yields an extended scope of 
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applicability and simplicity in applications and is also valid for solving nonlinear dynamical 

problems governed by large governing parameters and oscillation amplitudes compared with 

other conventional asymptotic approaches. Unlike traditional perturbation and classical 

harmonic balance methods, this approach formulates a set of linear algebraic equations 

depending only on initial conditions and does not require numerical integration. In the 

qualitative analysis, the existence of equilibria and their stability analysis are examined and 

classified.  

 

Nonlocal elasticity theory is one of the most popular theoretical approaches to investigate 

the intrinsic scaling effects of micro-/nano-scale structures. The coupling of internal 

characteristic length and a material parameter can be regarded as a nonlocal scale parameter in 

nano-meters. There is no doubt that the zero nonlocal scale parameter corresponds to a situation 

without nonlocal effects (i.e., classical dynamic behavior). Nevertheless, the determination of 

critical value for the scaling parameter is a fundamental problem that remains uncertain. 

Different maximum values have been selected without rigorous verification. In this work, the 

nano-structural dependence of nonlocal dynamical behavior is investigated to verify the 

existence of an upper bound of the nonlocal scale parameter. 

 

In addition, a comprehensive study involving both theoretical and experimental 

investigations is presented for a newly designed electromagnetic-triboelectric energy 

harvesting technique. This work exploits the relative motion between a coil and a magnet 

produced by low-frequency mechanical vibrations to induce an electrical voltage in the coil. 

The magnetizing current method is used to calculate magnetic forces, and bifurcation and 

chaotic analyses are applied to verify the formation mechanism of the tri-stable nonlinearity. 

 

 Thesis Outline 

The thesis is organized into seven chapters. A brief framework of the thesis is given as 

follows. 

 Chapter 1 introduces the present work and states the research objectives and 

methodologies. 

 Chapter 2 reviews the relevant literature on MEMS devices, nonlocal elasticity theory, 

vibration-based energy harvesting techniques, various analytical approximation methods, 

and multi-stable nonlinear oscillating mechanisms. 



 

  9

 Chapter 3 presents derivations of accurate analytical approximation solutions for the 

nonlinear free vibration of an electrostatically actuated MEMS resonator with a one-sided 

electrode and investigates the resonance response of an electrostatically actuated MEMS 

resonator with two-sided electrodes under bias DC voltage and harmonic AC voltage.  

 Chapter 4 discusses the nano-structural dependence of nonlocal dynamical behavior for 

verifying the existence of an upper limit of the nonlocal scale parameter through a 

dynamical analysis of nanorods, nanobeams, and nanoplates. 

 Chapter 5 describes the qualitative and quantitative investigations of large-amplitude 

oscillation of a triple-well non-natural system, which is governed by a quadratic damping 

term and odd-parity restoring force with cubic and quantic nonlinearities. 

 Chapter 6 presents the development of a novel magnetic levitation-based electromagnetic-

triboelectric energy harvester governed by the tri-stable nonlinear mechanism. In terms of 

theoretical analysis, the magnetic force of this energy harvester is calculated by the 

magnetizing current method and the formation mechanism of this tri-stable nonlinearity is 

confirmed by bifurcation analysis. An experimental prototype is also fabricated to examine 

the effectiveness of the present design under low-frequency structural vibration sources. 

 Chapter 7 summarizes all major findings of the research, discusses its advantages and 

limitations, and provides recommendations for the directions of future research. 
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Chapter 2  

LITERATURE REVIEW 

 

Nonlinear dynamic problems occur in many MEMS devices and vibration-based energy 

harvesting techniques. This chapter presents a comprehensive review of the following topics: 

 dynamic behavior and responses of MEMS resonators; 

 nonlocal elasticity theory in continuum mechanics; 

 vibration-based energy harvesting techniques; and  

 multi-stable nonlinearity-enhanced mechanisms. 

  

  Dynamic Behavior and Responses of MEMS Resonators  

With the rapid development of current technologies, miniaturized structures with micro-

scale features can be precisely manufactured and applied in MEMS devices. Elastic beams or 

plates of micro-scale thickness are most popular in these systems. In addition to the load-

bearing capability, they can also be used as sensors and detectors to measure the interaction of 

certain molecules on their surface. Establishing an accurate relationship between dynamic 

behavior and deformation is thus a key issue for analysis. In such systems, MEMS resonators 

are mechanically resonating micro-structures that are electrically brought into resonance 

(Abdolvand et al., 2006). Since first proposed in the 1960s (Nathanson et al., 1967), MEMS 

resonators have been used in a wide range of applications within engineering, including signal 

filtering techniques, chemical and mass sensors, and probe-based microscopy (Younis and 

Alsaleem, 2009; Zhao et al., 2009; Rhoads et al., 2010). It is worth noting that mechanical 

nonlinearities in MEMS resonators can considerably affect the pull-in behavior and dynamic 

characteristics. The following comprehensively reviews the role of nonlinearities in MEMS 

resonators, as well as various analytical approximation approaches that extensively used to 

solve nonlinear problems.  

 

2.1.1 Nonlinearities and Common Phenomena in MEMS Resonators  

Among various actuation methods, electrostatic actuation is the most prevalent mechanism 

due to its associated advantages, such as simple micro-machining processes, small electrode 

size, and low power consumption (Zand, 2012). For electrostatically actuated MEMS 

resonators, force nonlinearity mainly comes from electrostatic and intermolecular forces, 
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which are nonlinearly related to the displacement that softens the device (Jia et al., 2012). The 

electrostatic force results from an electrostatic charge induced by an electrical potential 

difference between the electrodes accompanying the electric load. Intermolecular interactions 

between two electrodes become significant in the design of resonators with the miniaturization 

of such devices (Serry et al., 1998). The geometric nonlinearity is mainly caused by nonlinear 

stretching, which stiffens the device. For a doubly clamped microbeam, mid-plane stretching 

accompanies its transverse vibration.  

 

The fringing field effect should be taken into account when modeling the electric field 

force. Several different formulae for computing fringing fields are presented in the literature; 

most notable are those proposed by Palmer (1937), Chang (1976; 1977), van der Meijs and 

Fokkema (1984), and Batra et al. (2006). Among these fringing field models, Palmer’s formula 

can rapidly compute the capacitance with sufficiently small errors (Leus and Elata, 2004). 

Residual stress results from micro-machining processes and thermal expansion mismatch 

between different elements of MEMS devices (Madou, 1997), for which there is no unified 

measurement method. Some approaches are based on measuring its effect on the 

crystallographic structure of the material (Constable et al., 2004), measuring its effect on the 

micro-test structures subjected to mechanical loads (Ziebart et al., 1998; Denhoff, 2003), 

measuring the voltage and deflection at the pull-in state in electrostatically actuated MEMS 

devices (Osterberg and Senturia, 1997).  

 

Additionally, typical long-range forces in MEMS devices involve van der Waals forces 

and Casimir forces, both of which are mainly due to spectrum alternation of the zero-point 

vacuum electromagnetic field in and around the space occupied by material bodies. Such forces 

can induce nonlinearity in the dynamic motions of a micro-structural element even if the 

deformation is small. Because of this complexity, the study of the elastic responses of structural 

elements coupled with long-range forces remains a challenging topic (e.g., stiction instabilities). 

Most previous studies used either elastic beam theory (De Boer and Michalske, 1999) or simple 

lumped electromechanical models consisting of a linear spring, a mass, and a parallel-plate 

capacitor (Osterberg and Senturia, 1997). 

 

Furthermore, dynamic pull-in instabilities can lead to the deterioration of MEMS 

components, which is undesirable in MEMS resonators. This phenomenon has been 

extensively studied. Nayfeh et al. (2007) investigated the dynamic pull-in instability in a doubly 
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clamped microbeam and addressed the need for its consideration in MEMS design. Krylov 

(2007) studied the influence of various parameters on the dynamic pull-in instability of a 

microbeam based on the Lyapunov exponent criterion. Alsaleem et al. (2009; 2010) 

theoretically and experimentally investigated dynamic pull-in in MEMS resonators. Lakrad 

and Belhaq (2010) studied the effect of a high-frequency AC voltage on the pull-in instability 

of a MEMS device. Seleim et al. (2012) investigated the bifurcation and chaos of a closed-loop 

electrostatic MEMS resonator. Fang and Li (2013) accurately determined the dynamic pull-in 

voltage and pull-in position of microbeams using two analytical approximate models. 

 

2.1.2 Theoritical Analysis for Nonlinear Problems  

Nonlinear dynamic systems are commonly investigated both experimentally and 

theoretically. In theoretical research, both qualitative and quantitative analyses are involved. 

The qualitative analysis mainly refers to the phase plane method, which can represent all 

possible motions of the vibration system on the phase plane so that some properties of the 

system can be studied without specifically determining a solution (e.g., type and stability of 

singularities, existence, and stability of limit cycles). This information contributes to further 

study of the system but does not provide a quantitative solution. Because exact analytical 

solutions for nonlinear systems are rarely obtained owing to the existence of nonlinear terms, 

quantitative analysis mainly includes numerical methods and approximate analytical methods. 

 

Numerical methods are well-developed tools for studying nonlinear dynamical problems. 

By adopting the time integration method to solve differential equations, numerical methods can 

provide accurate displacement, velocity, and acceleration values of the nonlinear dynamical 

system at certain moments. Some approaches, such as the RungeKutta method, are well 

developed with excellent accuracy and can also be used to verify the accuracy of other methods. 

However, numerical methods have intrinsic limitations. For example, they can only give 

discrete numerical solutions to nonlinear dynamical systems but not an overview of the system 

solutions. Hence, it is impossible to analyze the global properties of nonlinear dynamical 

systems using numerical methods. 

 

Approximate analytical methods provide analytical expressions of solutions, which can be 

used to study the motion law of a nonlinear dynamical system, as well as the relationships 

between the motion characteristics of the system and system parameters, which thereby 
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facilitates parameter control of the system. However, compared with numerical methods, many 

approximate analytical methods involve tedious derivations and extensive computations. Some 

of the common approximate analytical methods are introduced here. 

 

Perturbation-based methods are generally only suitable for problems with weakly 

nonlinear parameters (i.e., a small parameter). In principle, solutions and desired quantities are 

expanded into a power series of this small parameter. Based on the power of the small 

parameter, the governing differential equation of the nonlinear dynamical system can be 

discretized into a set of linear equations, which can be solved. The LindstedtPoincaré (LP) 

method, the averaging method, and the multiple scales method are common perturbation-based 

methods (Nayfeh and Mook, 1995). The LP method is a classical perturbation method initially 

introduced by Lindstedt in the 1880s. The basic idea is to expand the solution and frequency in 

a power series of a small parameter and then substitute them into the original differential 

equation for further calculation. Poincaré (1892) proved that the Lindstedt series is asymptotic 

in nature. Burton (1984) developed a modified version of the LP method, which was later 

modified for strongly nonlinear systems.  

 

The method of averaging, originally developed in the 1930s (Krylov and Bogoliubov, 

1937), can obtain both transient and steady-state responses by using small perturbations of 

corresponding linear oscillators. A detailed treatment of this method shows that it applies not 

only to time-varying periodic differential equations but also to those that do not necessarily 

exhibit time-periodic behavior (Sanders and Verhulst, 1985). In this case, the coefficients of 

the resultant averaged equations are then averaged over an infinitely long time interval. This 

idea was extended to obtain higher-order solutions for quasi-periodic differential equations 

(Perko, 1968) and non-periodic systems (Saenz, 1991). Leung and Zhang (1998) demonstrated 

the link between higher-order averaging and the Poincaré normal form of dynamical systems. 

This method was later used to study fractional oscillators (Li et al., 2001; Pankaj and Anindya, 

2004; Shen et al., 2012a) where an averaging procedure is performed over an infinite time 

interval.  

 

The method of multiple scales is another classical method that is applicable to a vast range 

of problems. The basic idea of this method is to consider the solution and time to be an 

expansion of multiple time scales, and then substitute them into the original differential 
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equation to collect the terms of various scales. These scales are identified by various orders of 

a smaller parameter, which are generally required in perturbation methods. A major advantage 

of this method is that the evolution equations yielded on slow time scales can be used to conduct 

stability analysis of the periodic solutions, which is scarce among perturbation methods and 

makes this method very popular for weakly nonlinear systems. The method of multiple scales 

covers nearly all of the areas accessible by perturbation methods and has been widely used in 

the literature (Nayfeh and Hassan, 1971; Asfar and Nayfeh, 1983; Hanagud et al., 1985; 

Janowicz, 2003; Shivamoggi, 2003; Luongo and Egidio, 2005; Alijani et al., 2011). 

 

The classical harmonic balance method is also applicable to both weakly and strongly 

nonlinear problems. This is a special case of the Galerkin method with a trigonometric series 

as base functions. The periodic solution is expanded into a Fourier series with a certain number 

of harmonic terms depending on the accuracy requirement and then substituted into the 

governing differential equations to obtain a set of nonlinear algebraic equations by setting the 

corresponding harmonic coefficients to zero. Urabe et al. (1965; 1966) provided mathematical 

theories on the existence, convergence, error bound, and stability analysis of solutions of this 

method. Kelley and Mukundan (1993) defined the convergence of this method under more 

restrictive assumptions. However, the nonlinear algebraic equations are usually excessively 

complicated, which makes it particularly difficult to obtain high-order approximate solutions. 

A new approach is therefore required to overcome the shortcomings of the harmonic balance 

method. 

 

The homotopy analysis method (HAM) is a semi-analytical technique for solving 

nonlinear problems. The rationale of the HAM originated from the concept of homotopy from 

topology to generate convergent series solutions for nonlinear systems. It was first proposed 

by Liao (1992; 2003) and further modified to introduce a non-zero auxiliary parameter to 

construct homotopy in a differential system in a general form and has been used to solve various 

nonlinear problems, including fluid flow between vertical porous plates (Abdulaziz et al., 2009), 

limited cycle flutter of airfoils (Chen and Liu, 2008), unsymmetrically laminated composite 

beams on a nonlinear elastic foundation (Talookolaei et al., 2011), flow of a power-law fluid 

film on an unsteady stretching surface (Wang and Pop, 2006), and the strongly nonlinear 

vibration of an elastically restrained beam with a lumped mass (Qian et al., 2011). 
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Many other methods have been developed for solving strong nonlinear systems based on 

perturbation-type and harmonic balancing-based methods. For example, Cheung et al. (1991) 

proposed a modified LP method by introducing a new parameter that remains small regardless 

of the magnitude of the original parameter. This allows a strongly nonlinear system to be 

changed into weakly non-linear using the new parameter and solved by the LP method. 

However, this method requires a non-zero linear part of the restoring force. Lau and Cheung 

(1981) proposed the incremental harmonic balance method, which linearizes the set of 

nonlinear ordinary differential equations along an incremental path to obtain a set of linear 

algebraic equations at a given time. This is a semi-analytical method that can be applied to 

analyze various nonlinear systems but cannot independently provide an initial solution. Leung 

et al. (2010) proposed the residue harmonic balance method to solve strongly nonlinear 

ordinary differential equations with fractional-order derivatives that represent the viscoelastic 

damping (Leung and Guo, 2011a), as well as the limit cycle of nonlinear jerk equations (Leung 

and Guo, 2011b). This method begins with an initial approximation obtained by solving the 

nonlinear algebraic equations resulting from a one-term Fourier series substitution into the 

ordinary differential equations. The residues resulting from the truncation of the Fourier series 

can be iteratively minimized by solving the linear algebraic equations. This approach was later 

used to solve a nonlinear system with inertia and static nonlinearities (Ju and Xue, 2015), a 

Duffing-type equation (Ju, 2015), and a restrained cantilever beam (Qian et al., 2017). 

 

2.1.3 Nonlinear Free Vibration of Electrostatically Actuated MEMS Resonators 

Fully clamped microbeams are one of the major structural forms used in the design and 

analysis of MEMS, due to their simplicity and applicability. In the literature, numerous studies 

have investigated the nonlinear dynamic behavior of various microbeam structures. Initially, 

the dynamic performance of microbeams was studied experimentally (Zook et al., 1992; Ayela 

and Fournier, 1998). In addition, both physical and mathematical models have been formulated 

to describe the dynamic behavior of MEMS resonators. In the theoretical analysis, a single-

degree-of-freedom (SDOF) beam model is typically adopted to study the nonlinear response of 

microbeams (e.g., Tilmans and Legtenberg, 1994; Kuang and Chen, 2004; Mestrom et al., 2008; 

Kacem et al., 2009). Using the SDOF model assumption, the dynamic characteristics of MEMS 

resonators can be described by a nonlinear dynamic system. As exact closed-form solutions for 

complicated nonlinear dynamic systems are often not available, numerical and analytical 

methods are commonly used for theoretical analysis. 
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Making use of numerical-based approaches, Kuang and Chen (2004) examined the 

dynamic characteristics of shaped micro-actuators via the differential quadrature method. 

Wang et al. (2007b) characterized the dynamic responses of fixed micro-switches subjected to 

various voltage levels via a mesh-free method. Alsaleem et al. (2009) considered the nonlinear 

resonance and dynamic pull-in instability of MEMS resonators using the finite-difference 

method. Jia et al. (2010) carried out a numerical analysis for the free vibration of geometrically 

nonlinear micro-switches subjected to both electrostatic and Casimir forces. Ghayesh et al. 

(2013) investigated the nonlinear behavior of electrically actuated MEMS resonators by means 

of a pseudo-arclength continuation technique. On the basis of the classical RungeKutta 

method, Dantas and Gusso (2018) extended an investigation to the chaotic behavior of doubly 

clamped beam MEMS resonators, and Li et al. (2018) also considered the effect of thermal 

fields on the dynamic response of microbeams.  

 

Although numerical methods can accurately predict the dynamic responses of MEMS 

resonators, they are not able to provide an all-encompassing view for analyzing the intrinsic 

nature and characteristics of complicated nonlinear dynamic systems. Hence, the concentration 

of analytical approximations for nonlinear dynamic systems has become more important. Using 

a variety of methods such as the multiple scale, harmonic balance, and perturbation-based 

approaches, many problems have been solved analytically. For example, Younis and Nayfeh 

(2003) formulated analytical expressions for the dynamic response of resonators. Zhang and 

Meng (2007) conducted a nonlinear dynamic analysis of MEMS sensors under parametric 

excitations. Elshurafa et al. (2011) studied the nonlinear dynamic behavior of folded-MEMS 

comb-drive resonators. Rezazadeh et al. (2012) analyzed the parametric oscillation of a 

microbeam. Moreover, Caruntu and Knecht (2011) and Caruntu and Taylor (2014) investigated 

the nonlinear response of micro-resonators under a near-half natural frequency and presented 

steady-state solutions for MEMS cantilever resonators, respectively. Qian et al. (2012) derived 

periodic solutions for a higher-order nonlinear oscillator that often arises in MEMS. Han et al. 

(2015a, 2015b) predicted the existence of chaotic motions in a fully clamped MEMS resonating 

device having two symmetrically actuated electrodes. Li and Zhang (2017) further gained 

deeper insights into the bistable effect of microbeam systems. More recently, Saadatmand and 

Shooshtari (2018) also performed a forced nonlinear vibration analysis of circular micro-plates 

in two-sided MEMS capacitive systems. 
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To analytically study the problem of electrostatically actuated MEMS resonators, the 

Newton harmonic balance (NHB) method is used in this study. This approach combines 

Newton’s method and the classical harmonic balance method. It is conducted by first 

linearizing governing equations through Newton’s method and then imposing the harmonic 

balance method, such that a set of linear algebraic equations can be derived instead of coupled 

and complicated nonlinear algebraic equations. This enables the complexity of the classical 

harmonic balance method to be greatly simplified. Specifically, only Fourier series expansions 

of some known functions are required, and the NHB method can be used to derive accurate 

lower-order analytical approximate solutions for a whole range of oscillation amplitudes. 

Furthermore, the accuracy of this method is unconstrained by the presence of large governing 

parameters.  

 

This method was initially proposed by Wu et al. (2006) to derive accurate approximate 

solutions for large-amplitude oscillations of conservative SDOF systems with odd nonlinearity. 

Subsequently, it was extended to derive analytical approximations for general strongly 

nonlinear conservative oscillators by introducing two new oscillating systems with odd 

nonlinearity (Sun and Wu, 2008; Lai et al., 2009b). This method has been successfully 

generalized to deal with various strongly nonlinear problems in structural and mechanical 

engineering, such as the nonlinear jerk equation (Wu et al., 2006), the double sine-Gordon 

equation (Lim et al., 2007), large post-buckling deformation of elastic rings under a uniform 

hydrostatic pressure (Wu et al., 2007a), a double-well Duffing oscillator (Wu et al., 2007b), a 

mass oscillation system attached to a stretched elastic wire (Sun et al., 2007), a large 

hydrothermal buckling deformation of beams (Yu et al., 2008), a  nonlinear vibration of a 

constant-tension string (Lai et al., 2008), a nonlinear cubic-quintic Duffing oscillator (Lai et 

al., 2009a), a large-amplitude vibration of simply-supported laminated plates (Lai et al., 2009b), 

a nonlinear oscillation of a current-carrying wire in magnetic fields (Sun et al., 2009), and a 

strongly nonlinear damped oscillator (Wu and Sun, 2010).  

 

In the past decade, following the NHB method, Yu et al., (2012; 2013a; 2013b; 2017) 

investigated a post-buckling deformation of MEMS beams, a large-amplitude vibration of 

spring-hinged beams, a post-buckling deformation of sandwich beams, and a large-amplitude 

free vibration of cantilever tapered beams resting on a nonlinear elastic foundation. Sun et al. 

(2015) analyzed the instability behavior of a drill string in a horizontal well. Liu et al. (2017a) 

considered a free vibration problem of electrostatically actuated MEMS resonators. 
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Furthermore, Lai et al. (2017) studied the dynamic behavior of a structural system with a pair 

of irrational nonlinearities. Tang et al. (2017) extended the method to the nonlinear free 

vibration of dielectric elastomer balloons. 

 

In addition, Wu et al. (2017) further modified the NHB method for solving strongly 

nonlinear conservative oscillators by implementing the second-order Newton iteration 

procedure and the harmonic balance method. This modified version not only retains the salient 

features of the original NHB method but also includes information on the second-order 

derivative, thereby resulting in a faster convergence rate. More recently, Liu et al. (2019) 

extended the method to derive analytical approximate solutions for asymmetric conservative 

oscillators. Soon after, Wu et al. (2018b) further extended the NHB method to yield accurate 

approximate solutions to study the resonance responses of harmonically forced nonlinear 

oscillating systems. 

 

2.1.4 Nonlinear Forced Vibration of Electrostatically Actuated MEMS Resonators 

Forced nonlinear oscillation systems have attracted a great deal of research attention 

because they are common in many structural and mechanical components working under 

periodic loadings and cyclic excitations. These systems are much more intricate than free 

oscillation systems, as they exhibit both resonance and nonlinear effects. Different methods are 

available for obtaining analytical approximate solutions of harmonically forced nonlinear 

oscillation problems, each with their own limitations. As mentioned above, various 

perturbation-based methods have been widely used for the analysis of weakly nonlinear 

oscillation systems; these require the presence of small physical parameters in governing 

equations for analytically expanding the solution in a power series of that parameters. Such 

methods are likely to be inefficient for accurately solving strongly forced nonlinear systems, 

which do not have small parameters. Moreover, even when small parameters do exist, the 

analytical representations of perturbation-based methods are generally limited to a small range 

of validity. 

 

A general review of some studies relevant to forced nonlinear oscillation problems in the 

past few decades is given as follows. Burton (1984) proposed a modified version of the LP 

method that is applicable for the steady-state response of strongly nonlinear vibration systems 

under weak harmonic excitations. Burton and Rahman (1986) developed a modified version of 

the multiple-scale method to construct lower-order approximate solutions of strongly nonlinear 
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forced oscillators. They further used this method to investigate the large-amplitude primary- 

and super-harmonic resonances in the Duffing oscillator (Rahman and Burton, 1986). Later, 

Rahman and Burton (1989) compared two different higher-order multi-scale expansion 

methods with the LP method to investigate the steady-state response of forced nonlinear 

vibration systems. In the 1990s, Hassan (1994a, 1994b) applied the higher-order multi-scale 

method with reconstitution to determine the periodic steady-state periodic response of 

harmonically excited nonlinear oscillators. Xu and Cheung (1994) extended the average 

method using a generalized harmonic function to solve strongly forced nonlinear vibration 

problems. This extended method can obtain good results in the primary resonance region, but 

the error in the region remote from the primary resonance tends to become dominant. Chen and 

Cheung (1996) further developed a modified approach of the LP method for a strongly 

nonlinear system with quadratic and cubic nonlinearities. Nayfeh and Lacarbonara (1997) 

identified a first-order modal approximation for the primary and subharmonic resonances of a 

parameter distribution system with even nonlinearity under periodic excitations. The 

approximate results were highly consistent with the numerical results, but the higher-order 

modal approximate solution of this method may not be consistent with the numerical solutions. 

 

Furthermore, Waluya and van Horssen (2003) approximated the first integral for strongly 

nonlinear forced oscillators using a perturbation method based on integrating factors. Azrar et 

al. (2002) studied the nonlinear forced vibration of elastic thin plates under various types of 

harmonic excitations using an asymptotic-numerical method. Sze et al. (2005) extended the 

incremental harmonic balance method to investigate the forced response of axially moving 

beams with the internal resonance between the first two transverse modes. Yang and Chen 

(2006) performed an analysis of the nonlinear forced vibration of axially moving viscoelastic 

beams excited by a supporting foundation. Yao and Zhang (2007) proved the existence of 

Shilnikov-type multi-pulse orbits in the dynamic response of rectangular thin plates under 

parametric excitations. In addition, Avramov (2008) proposed coupling of the Rausher method 

and nonlinear modes to analyze the forced vibration of shallow arch structures. Abdoun et al. 

(2009) also presented an asymptotic analysis for the forced harmonic vibration of viscoelastic 

structures. 

 

In the past decade, Kovacic and Brennan (2011) reviewed various methods for solving 

different types of forced Duffing-type equations. Ghayesh and Amabili (2012) analyzed the 

internal resonance effect on the nonlinear response of axially moving beams. Bekhoucha et al. 
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(2013) dealt with the forced nonlinear vibration problem of rotating anisotropic beams with 

uniform cross-sections. Jiang et al. (2015) made various comparisons of the use of the LP, 

multi-scale, averaging, and harmonic balance methods for solving nonlinear forced oscillators 

under weak and strong external excitations. The results showed that the harmonic balance 

method is superior to other methods for solving the forced harmonic vibration of nonlinear 

oscillators. Tajaddodianfar et al. (2015; 2017) adopted the homotopy analysis method to 

analyze the dynamic responses of doubly clamped micro-structures under combined DC and 

AC actuation. Chakraverty and Mall (2017) generalized an artificial neural network method to 

solve the forced vibration equation of Duffing-type problems. More recently, Liang et al. (2018) 

considered the forced vibration of gyroscopic structures in terms of nonlinear normal modes 

and using an iterative approach. To refine the accuracy of analytical approximations to 

nonlinear forced-type problems, Wu et al. (2018b) devised an improved version of the NHB 

method to establish accurate lower-order approximate solutions for harmonically forced 

nonlinear oscillation systems. 

 

 Nonlocal Scaling Effect in Micro-/Nano-scale Structures 

As mentioned in the previous section, micro-/nano-scale structures are widely used in 

MEMS/NEMS devices. The development trends and perspectives of MEMS/NEMS in various 

engineering applications can be referred to Fig. 2.1 (Zhu et al., 2020). In recent decades, rapid 

advances in nanoscience and nanotechnology further make these devices more compact and 

ingenious. The miniaturization of structures allows more functionality in a given hub. 

MEMS/NEMS resonators are often simplified as beam- or plate-type structures in mechanical 

design, having length scales in the range of 10–104 m and feature sizes on the order of a few 

nanometers (Rhoads et al., 2010). At such micro-/nano-scale structures, the influence of 

material length scales in the study of mechanics of solid structures cannot be ignored. For 

example, a sensor can act as a detector or device that measures a physical quantity and converts 

it into a signal, which can be read by an instrument; an actuator is a motor that operates using 

an energy source for controlling a mechanism or system. Examples of sensors are 

thermocouples and pressure transducers (Goh et al., 2018), whereas examples of actuators are 

micro-/nano-probes and biochemical sensing materials (Yew et al., 2007; Goh et al., 2019). 

The effects of surface stress are not taken into consideration in most practical sensor and 

actuator designs. The omission of surface stress is acceptable for sensors and actuators on the 

large scale, while the neglect of surface stress on the micro- to nano-scale can cause significant 
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response underestimation, resulting in undesirable performance, unwanted behaviors, or even 

design failure.  

 

Experimental studies allow direct observation of micro-/nano-scale structures, but it is 

comparatively restricted to advanced equipment and state-of-the-art facilities for molecular and 

atomic experimentation. In the theoretical analysis, using the classical elasticity theory fails to 

give a surface stress-deformation relation, because it lacks an intrinsic length scale and cannot 

capture the size-dependence of deformation, as observed experimentally from micro-/nano-scale 

structures (Wong et al., 1997; Ramesh, 2009). Hence, a vast number of research studies, using 

different analytical models, have been devoted to investigating the size-dependent structural 

behavior of nanostructures, e.g., vibration, bending, and buckling. Since the large body of 

literature has come into existence in the last two decades, only a general review on recent 

studies relevant to micro-/nano-scale structures based on different theories (e.g., strain gradient, 

modified couple stress, and nonlocal elasticity theories) is presented herein. 

 

 

Fig. 2.1: Development trends and perspectives of MEMS/NEMS in various engineering 

applications (Zhu et al., 2020). 
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Among various nano-based structures, Reddy (2010) analyzed the nonlinear bending of 

nanobeams and nanoplates. Shen et al. (2010b) made use of a nonlocal shear deformable shell 

model to study the thermal post-buckling of axially compressed double-walled nanotubes. 

Xiang et al. (2010) presented an investigation on the dynamic instability of cantilevered 

nanorods subjected to an end follower force. Wang et al. (2012a) developed a generic 

governing equation for the bifurcation buckling of nano-arches. Ke et al. (2015) considered the 

free vibration problem of piezoelectric nanoplates. To characterize the mechanical properties 

of single-layered graphene nanosheets, the dynamic and stability analyses of such problems 

were performed (Zhang et al., 2015a; Zhang et al., 2015b, Zhang et al., 2016a; Zhang et al., 

2016b).  

 

In addition, Wang et al. (2016b) derived new analytical solutions for the elastic buckling 

of nonlocal columns with allowance for self-weight. Ganapathi and Polit (2017) examined the 

dynamic characteristics of curved nanobeams. Aya and Tufekci (2017) attempted to analyze 

the out-of-plane behavior of curved nanobeams. Polit et al. (2018) carried out the elastic 

stability analysis of curved nanobeams. Furthermore, Liu et al. (2018) discussed the nonlinear 

vibration problem of piezoelectric nanoplates. Arefi et al. (2019) extended their study to the 

bending of curved nanobeams reinforced by graphene platelets. More recently, Mao et al. (2020) 

also evaluated the small-scale effect on the linear and nonlinear vibrations of functionally 

graded graphene-reinforced piezoelectric composite microplates. 

 

Employing the strain gradient elasticity theory, Lim et al. (2015) solved the dynamic 

equations of motion for wave propagation in nanobeams. Subsequently, Ebrahimi and Barati 

(2017; 2018) investigated the buckling and vibration of functionally graded curved nanobeams. 

Sahmani and Aghdam. (2017; 2018) analyzed the nonlinear dynamic instability of functionally 

graded multilayer graphene-reinforced nanoshells. They also considered the nonlinear bending 

problem of functionally graded graphene-reinforced porous nanobeams. On the other hand, 

Karami et al. (2019) investigated the dynamics of porous doubly-curved nanoshells. She et al. 

(2019a; 2019b) examined the snap-buckling mechanism and large-amplitude bending 

deformation of functionally graded porous curved nanobeams. Moreover, Sobhy and Abazid 

(2019) presented a study on the dynamic and instability of functionally graded graphene-

reinforced curved nanobeam structures. 
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Generalizing the concept of the modified couple stress theory (Yang et al., 2002), 

Dehrouyeh-Semnani et al. (2017a; 2017b) recently investigated the nonlinear vibration and 

stability of fluid-conveying micropipes. Ghayesh and Farokhi (2017; 2018) conducted a 

parametric analysis for the nonlinear dynamics of doubly curved shallow micro shells. They 

also (Farokhi and Ghayesh 2018a; 2018b) investigated the mechanical behavior of various 

typical micro-structures. Ghayesh et al. (2018; 2019) further studied the nonlinear oscillation 

of functionally graded microplates and the viscoelastic dynamics of axially functionally graded 

microbeams. Taati et al. (2018) analyzed the buckling and post-buckling behavior of 

functionally graded microbeams. Soon after, Karami et al. (2019) also investigated the 

vibration of functionally graded curved microbeams.  

 

Concurrent to the above studies, the widespread use of nonlocal continuum elastic stress 

field theory (Eringen, 1972; 1983) makes it one of the hottest research areas in nanomechanics. 

Eringen (1972; 1983; 2002) and Eringen and Edelen (1972) developed a constitutive relation 

from nonlocal continuum mechanics by specifying the stress state at a given point to be a 

function of the strain states at all points in that body. Nonlocal elasticity theory has been used 

to study dislocation mechanics, fracture mechanics, lattice dispersion of elastic waves, wave 

propagation in composites, and surface tension fluids (Peddieson et al., 2003; Sudak, 2003; 

Wang, 2005; Zhang et al., 2005; Wang and Varadan, 2006; Xu, 2006; Hu et al., 2008; Lim et 

al., 2015; Tong et al., 2018). This theory also accounts for small-length-scale effects considered 

in dynamic problems. Based on nonlocal continuum mechanics, there are two kinds of nonlocal 

elasticity models, i.e., the nonlocal softening model (e.g., Assadi and Farshi, 2011; Civalek and 

Demir, 2011; Rahmani and Pedram, 2014; Ansari et al., 2016; Li et al., 2017a; Liu et al., 2017b; 

Li et al., 2017c; Ebrahimi and Barati, 2018) and the nonlocal hardening model (e.g., Li et al., 

2011c; Huang, 2012; Lim, 2010a; 2010b; Li, 2014a). The first model is derived from the 

nonlocal differential constitutive relations and the classical equilibrium equations. In other 

words, the commonly used governing equations for classical macro-scale materials/structures 

using the classical continuum theory are still valid at nano-scales, but those classical equations 

must be modified based on the connotation of the nonlocal theory. Hence, the use of classical 

elasticity analysis for nanostructures is coupled to the nonlocal softening model. The nonlocal 

differential intension can then be implanted into a classical framework.  

 

On the other hand, the hardening one is formulated by the nonlocal variational principle 

or the long-range interaction among atoms. The nonlocal stresses can be determined directly 



 

  24

from the nonlocal differential constitutive equations or the physically-based nonlocal models. 

Various nonlocal internal forces in a new form can also be calculated. The nonlocal strain 

potential energy, external work, and/or kinetic energy of nanostructures are derived. The 

principle of virtual work or the Hamilton principle can then be employed to obtain the nonlocal 

governing equations. Nevertheless, it is strange to find that some reversed conclusions are 

found from the nonlocal softening and hardening models. There are many research studies to 

examine and validate their correctness. The controversial argument is related to the nano-

structural stiffness predicted by the nonlocal theory, it is reduced or strengthened by comparing 

with those predicted via the classical continuum theory. Generally, it is reduced in the nonlocal 

softening model while strengthened in the hardening model. Hence, the nonlocal deformation 

is higher and the nonlocal natural frequencies (or wave velocities) are lower than that of the 

classical counterparts in the softening model, but opposite results can be obtained in the 

hardening model. Consider this paradox, Li (2014b) and Li et al. (2015) proved that the 

nonlocal softening and hardening models are both correct, the major reason depends on 

different types of surface stress effects, namely the long-range attractive (compressive surface 

stress) or repulsive (tensile surface stress) interactions. 

 

Specifically, the following section presents a review of nonlocal elasticity theory 

according to its applications in three major micro-/nano-scale structures. 

 

2.2.1 Nonlocal Scaling Effect of Nanorods 

Carbon nanotubes (CNTs) are a hotspot in the field of nanotechnology due to their 

extraordinary physical properties such as high stiffness-to-weight and strength-to-weight ratios 

and enormous electrical and thermal conductivities compared with other known materials (Lim 

et al., 2012). Continuum modeling is intensively used as the main approach to analyze 

nanotubes. Because nano-scale effects should be taken into account in nanostructures, classical 

continuum models have been extended by introducing spatial integrals that consider the local 

stress contribution of all other points in the domain. Based on nonlocal continuum elastic stress 

field theory, many CNT studies (e.g., Li and Kardomatas, 2007; Tounsi et al., 2007; Lim, 2009; 

2010a) have directly extended classical models where the nano-scale effect is considered as an 

additional axial force. In these studies, the model is derived as a mixture of classical and 

nonlocal models and is therefore called a partial nonlocal stress model. 
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Based on nonlocal continuum mechanics, Lim (2008) proposed an exact nonlocal model 

where infinite higher-order boundary conditions were derived and classified as soft and hard 

cases (Lim, 2010b) instead of classical boundary conditions. Because higher-order nonlocal 

terms are neglected in the strain energy density of the partial nonlocal stress model, equations 

of equilibrium/motion of this model have no higher-order nonlocal terms, and governing 

differential equations with higher-order nonlocal terms have opposite signs. Hence, the 

equilibrium condition constructed from a partial nonlocal stress model does not describe a 

nonlocal nanostructure in a true state of equilibrium. Based on the exact nonlocal stress model, 

Lim and coworkers subsequently investigated thermal buckling and torsion (Lim et al., 2012; 

Li et al., 2011a) of nanotubes. He also pointed out that the presence of a nonlocal nano-scale 

in the non-local stress model tends to increase nanostructure stiffness (Lim, 2010b). By 

applying Eringen’s nonlocal elasticity theory, Wang et al. (2009) and Xiang et al. (2010) 

investigated the post-buckling behavior of cantilevered nanorods under an end-concentrated 

load and the dynamic instability of nanorods subjected to an end-follower force, respectively.  

 

2.2.2 Nonlocal Scaling Effect of Nanobeams 

Because beam-type elements are widely used in micro-scale systems such as 

MEMS/NEMS, many previous studies have investigated nanobeams based on nonlocal 

elasticity theory. Peddieson et al. (2003) first used the nonlocal elasticity theory to develop an 

EulerBernoulli nanobeam model and illustrated the magnitude of predicted nonlocal effects 

by solving some representative problems. Numerous subsequent investigations of nonlocal 

nanobeams have been reported (e.g., Lu et al., 2006; Xu, 2006; Lu, 2007; Reddy, 2007; 

Maranganti and Sharma, 2007; Wang et al., 2007a; Wang et al., 2008; Liu et al., 2008; 

Challamel and Wang, 2008; Aydogdu, 2009; Wang, 2009; Kiani and Mehri, 2010; Lim et al., 

2010a; Murmu and Adhikari, 2010; Phadikar and Pradhan, 2010; Civalek and Akgöz, 2010; 

Liu and Rajapakse, 2010; Li et al., 2010; Fu et al., 2010). For instance, Lu et al. (2006) 

established a nonlocal EulerBernoulli nanobeam model based on the nonlocal theory with 

several typical boundary conditions and found that the obtained dynamic properties differed 

substantially from those predicted by classical elasticity theory. Reddy (2007) used nonlocal 

theory on EulerBernoulli, Timoshenko, Reddy, and Levinson beams and investigated the 

effect of nonlocal behavior on deflections, buckling loads, and natural frequencies. It is 

noteworthy that the above studies all used the partial nonlocal stress model. 
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Several other investigations (Lim et al., 2009; Niu et al., 2009; Lim et al., 2010; Li et al., 

2011b; Lim and Yang, 2010) have been conducted on nonlocal nanobeams based on the exact 

nonlocal model. The results of this model show that nonlocal nano-scale effects cause an 

increase of structural stiffness, whereas the results of the partial nonlocal stress model show 

that nonlocal nano-scale effects decrease the structural stiffness. 

 
2.2.3 Nonlocal Scaling Effect of Nanoplates 

Nanoplates have also received considerable research interest in the modeling of graphene 

sheets. Duan and Wang (2007) developed exact solutions for axisymmetric bending of 

micro/nano-scale circular plates based on nonlocal theory. Aghababaei and Reddy (2009) 

applied nonlocal third-order shear deformation nanoplate theory to the bending and vibration 

of plates. Pradhan and Phadikar (2009) presented a nonlocal elasticity theory for nanoplate 

vibration. Artan and Lehmann (2009) obtained exact solutions for a rotationally symmetric 

bending problem of elastic annular plates based on nonlocal plate theory using the initial values 

method. Murmu and Pradhan (2009a, 2009b) studied the buckling and vibration behavior of 

biaxially compressed orthotropic nanoplates. Niu et al. (2010) constructed an analytical model 

for bending analysis of unconstrained nonlocal higher-order nanoplates. Jomehzadeh and Saidi 

(2011) decoupled the nonlocal elasticity equations for three-dimensional vibration analysis of 

nanoplates. There have also been some studies involving graphene sheets (Murmu and Pradhan, 

2009d; Pradhan and Murmu, 2009; Pradhan, 2009; Pradhan and Kumar, 2010; Ansari et al., 

2010). However, aside from all of the previous studies mentioned here, further investigation of 

nanoplates and graphene sheets is required, especially for exact nonlocal models of nanoplates.  

 

  Vibration-based Energy Harvesting Techniques 

Vibration-based energy harvesting is the technique of converting kinetic energy to 

electrical energy. This is an attractive and interesting topic, but many energy harvesting 

techniques have still limited to low efficiency and poor environmental adaptability. A viable 

way to improve the holistic performance of such energy harvesters can resort to hybrid energy 

scavenging modes and multi-stable nonlinear mechanisms. The following section presents a 

basic overview of recent research achievements of vibration-based energy harvesting 

technology in terms of different transduction mechanisms and the multi-stable nonlinear 

mechanisms are presented in the next section. 
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The three most commonly used conversion techniques are piezoelectric, electromagnetic, 

and triboelectric approaches. As shown in Table 2.1, these three kinds of transduction 

mechanisms have their own merits and possible practical limitations (Wang, 2017; Park et al., 

2019).  

 

Table 2.1: A comparison of various energy harvesting technologies using EMG, TENG and 

PEG (Wang, 2017; Park et al., 2019). 

Energy 
Harvesting 
Technique 

Electromagnetic 
Generator (EMG) 

Triboelectric 
Nanogenerator (TENG) 

Piezoelectric 
Generator (PEG) 

Working 
Principle 

Electromagnetic 
induction 

Contact electrification 
and electrostatic 
induction 

Piezoelectric effect 
and electrostatic 
induction 

Impedance 
Type 

Resistive Capacitive Capacitve 

Advantages  High output current 
and power 

 High efficiency 
 Easy to scale up 
 High durability 
 Low output 

impedance 

 High output voltage 
 Simple fabrication 

process 
 Low weight 

 Simple structure 
on a small scale 

 Easy to scale 
down to 
nanoscale 

 High coupling 
coefficient 

 Easy to rectify 
the output voltage

Disadvantages  Low output voltage 
 Heavy weight 
 Affected by 

electromagnetic field 
 Difficult to rectify 

the voltage 

 Low output current 
 High device 

impedance 
 Pulsed output 
 Low durability 

 High device 
impedance 

 Pulsed output 
 Low efficiency 
 Brittle 
 Low strain limit 

Potential 
Applications 

 Rotational system 
 Windmill 

 Wearable 
 Healthcare 
 Blue energy 

harvesting 
 Self-powered sensors 

 Flexible  
 Implantable 

 

2.3.1 Piezoelectric Energy Harvesting Techniques 

A piezoelectric generator (PEG) elicits the piezoelectric effect of piezoelectric materials, 

i.e., an electric potential can be induced at the terminals of a piezoelectric material due to the 

polarization of ions in the crystal when strains are produced in the material. In PEGs, strains 

can be induced by environmental excitations and the electric potential can be used to create a 

current through innovative designs, thus accomplishing energy conversion. Piezoelectric 
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energy harvesting technology is considered a promising method for replacing batteries to 

power microsystems due to merits including high energy density, simple structure, and long 

lifetime. A wide range of PEGs with different mechanical structures and functions have been 

developed to achieve this goal.  

 

Antaki et al. (1995) proposed a piezoelectric array within the midsole of a shoe to power 

artificial organs. The device consisted of two longitudinal barrel-house cylindrical 

piezoelectric stacks excited by a passive hydraulic pulse device. Shenck and Paradiso (2001) 

developed a piezoelectric energy harvester to harvest the walking energy of the human body, 

dubbed the extraction piezoelectric insole. PZT (lead zirconate titanate) ceramic and PVDF 

(polyvinylidene fluoride) piezoelectric materials are used in the heel and toe parts of the insole, 

respectively. Kim (2002) proposed a diaphragm-structured piezoelectric energy harvester in 

his doctoral dissertation. Kim et al. (2004) developed a cymbal transducer consisting of a 

piezoelectric ceramic disk sandwiched between two concave-shaped metal end-caps.  

 

In addition to these various mechanical structures, a cantilever structure is also commonly 

used in the design of piezoelectric energy harvesters due to its simplicity, low rigidity, and high 

efficiency under low vibration frequencies, e.g., a typical example is given in Fig. 2.2. There 

are two primary types of cantilever structures: unimorph and bimorph. The unimorph cantilever 

structure mainly consists of a substrate and single piezoelectric sheet, whereas the bimorph 

cantilever structure consists of a substrate sandwiched between two piezoelectric sheets. Cho 

et al. (2005) established a theoretical model of piezoelectric energy harvesting using a 

unimorph structure. A unimorph cantilever PEG using macro fiber composite materials was 

proposed by Yang et al. (2009a). Roundy and co-workers (2003; 2004) developed a bimorph 

cantilever PEG based on PZT ceramic and added a mass at the free end of the beam to reduce 

the resonant frequency of the system. Sodano et al. (2004) developed a bimorph cantilever PEG 

with improved flexibility by embedding PZT ceramic in epoxy resin. All of these cantilever 

PEGs adopted rectangular-shaped cantilevers. The effective strain of the piezoelectric layer in 

the device has been shown to be concentrated near the fixed end of the cantilever beam under 

external vibration. Therefore, to make the strain of the piezoelectric layer evenly distributed in 

the length direction for improving output performance, Baker et al. (2005) used a triangular-

shaped cantilever instead of a rectangle in the PEG. The experimental results showed that the 

output power can be increased by 30%. In addition, to reduce the device stiffness and operating 

frequency and improve its output performance, Berdy et al. (2009) proposed an energy 
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harvester with a piezoelectric cantilever spring structure. Daqaq et al. (2014) discussed the role 

of nonlinearities in piezoelectric-based energy harvesting techniques. Yang et al., (2017) 

conducted a survey to study the energy efficiency of various piezoelectric energy harvesters. 

Recently, Lai et al. (2019) further devised a compact nonlinear multi-stable piezo-magneto-

elastic energy harvester array that can scavenge energy from low-amplitude (< 3 m/s2) and low-

frequency (< 20 Hz) vibration sources. 

 

  

Fig. 2.2: Typical example of a piezoelectric energy harvesting technique (Lai et al., 2019). 

 

In addition to the above macro-scale PEGs, an increasing number of PEGs have been 

proposed and fabricated based on MEMS technology for integration with microdevices for 

micro-scale applications. PEGs are compatible with MEMS processing technology. Jeon et al. 

(2003; 2005) proposed a MEMS generator with a transverse mode thin-film PZT. Renaud et al. 

(2007) proposed a piezoelectric MEMS generator with an integrated mass. Kok et al. (2008) 

fabricated a PEG without a supporting layer. Marinkovic and Koser (2009) developed a MEMS 

energy harvester consisting of a large center clamped at its corner to four tethers. Additional 

piezoelectric MEMS generators have been proposed and fabricated (e.g., Tvedt et al., 2010; 

Nguyen et al., 2010; Miki et al., 2010).  

 

2.3.2 Electromagnetic Energy Harvesting Techniques 

An electromagnetic generator (EMG) generally consists of coils and magnets. Under 

external excitations, the relative motion between the coil and magnet causes a change of the 

rate of the magnetic flux through the coil, thus developing an inductive electromotive force in 

the coil in accordance with Faraday’s law, a fundamental law of electromagnetism. The EMG 
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technique offers a highly efficient way of converting physical vibrational energy into usable 

electrical power and also facilitates low-frequency device operation owing to its simple 

resonator composition. Like PEGs, both micro- and macro-scale EMGs have been developed 

by numerous research groups. A popular electromagnetic coupling architecture of EMGs 

involves a cylindrical magnet oscillating inside a coil. Ching et al. (2002) proposed a multi-

modal resonating power transducer. Serre et al. (2008) reported a silicon micro-machined 

transducer with a discrete magnet. Another silicon micro-scale transducer with a discrete 

magnet was proposed by Lai et al. (2008). Macro-scale EMGs of this architecture have also 

been proposed (Cheng et al., 2007; Cao et al., 2007).  

 

Naumann (2003) developed a modification of the previous coupling architecture in which a 

linear-supported magnet oscillates between two repulsive arranged magnets. This modified 

coupling architecture has also been used by other research groups to design electromagnetic 

transducers on the macro-scale (Saha et al., 2008; Domme, 2008; Hatipoglu and Urey, 2010) 

and micro-scale (Park and Lee, 2002; Wang and Arnold, 2009). Another commonly used 

coupling architecture (often used in micro-scale transducers) is that of a magnet that oscillates 

toward a coil without immersion. Wang et al. (2009b) presented a prototype device of this 

architecture, which has also been applied in a transducer-based on a multi-frequency acrylic 

beam structure (Yang et al., 2009). Further developments using this architecture can be found 

in Williams and Yates (1996) and Hoffmann et al. (2009). The coupling architecture based on 

oppositely polarized cylindrical magnets as oscillating mass was used by Takahara et al. (2004) 

and Zuo et al. (2010). Ruellan et al. (2005) used a similar architecture with ring magnets instead 

of cylindrical magnets and oscillating coils instead of oscillating magnets. In addition, Halim 

et al. (2016) also proposed a battery-like electromagnetic energy harvester that can use two 

flux-guided magnet stacks to harness energy from human motions, see Fig. 2.3.  

 

The oscillation direction in the above-mentioned examples is parallel to the coil symmetry 

axis. However, there are also examples where the oscillation direction is perpendicular to the 

coil symmetry axis, which can be found in Koukharenko et al. (2006), Beeby et al. (2007), 

Soliman et al. (2008), Niu et al. (2008), Zhu et al. (2010), and Hadas et al. (2010). The output 

performances of the presented examples vary significantly from one another, which mainly 

results from the different transducer designs. For example, different electromagnetic coupling 

architectures have different output performance capability, and different component 
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dimensions can influence the output performance. Hence, substantial research is still required 

for proposing proper transducers for different applications.  

 

 

Fig. 2.3: A miniaturized electromagnetic energy harvesting (Halim et al., 2016). 

 

Recently, using the electromagnetic-triboelectric mechanism, Jin et al. (2016) designed a 

double-deck structure to integrate generator units together for energy harvesting. Seol et al. 

(2016) proposed an oscillator-based vibration energy harvester, in which the floating oscillator 

consisted of a core magnet and polymer clothes. Gupta et al. (2017) devised a multi-modal 

energy harvester using polymer springs with nonlinear stiffness. Zhu et al. (2017b) used a 

multi-impact approach to achieve good energy harvesting efficiency under a frequency 

bandwidth of 1045 Hz. In addition, Salauddin et al. (2018) integrated a dual Halbach magnet 

array and a magnetically floated approach to convert human-induced motions to electrical 

energy. Saadatnia et al. (2018) further applied a linear tubular system in conjunction with a 

grating structure to harness the clean energy from water waves. 

 

Embedding the magnetic levitation technique, Zhu and Zu (2012) investigated a 

magnetoelectric harvester and presented the vibration amplitudes and energy output responses 

of the system. Mann and his associates (Mann and Sims, 2009; Mann and Owens, 2010) not 

only provided the theoretical design of a magnetically levitated energy harvester, and also 

presented a bi-stable electromagnetic-induction energy generator via magnetic levitation 

oscillations. Soares dos Santos et al. (2016) introduced a nonlinear model to study the energy 

transduction effect of a magnetic levitation-based electromagnetic energy harvesting technique. 

More recently, Gao et al. (2018) presented an electromagnetic-induction energy harvester by 
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using the magnetic levitation effect. Wang et al. (2019) conducted a parametric analysis of 

using magnetic levitation for energy harvesting. Furthermore, Tan et al. (2019) proposed a 

battery-like hybrid module based on magnetic levitation to harness energy from human motions.  

 

Consider the effect of magnetic levitation, magnetic forces can be calculated using 

different analytical methods. The method of magnetic dipoles (Li et al., 2016; Zhu et al., 2017a; 

Wang et al., 2017a) is commonly used to consider all permanent magnets as point dipoles when 

the size of such magnets is sufficiently small compared to the separation interval of that 

magnets. To consider the geometry and size of magnets, the magnetizing current method was 

used (Agashe and Arnold, 2008) to calculate magnetic forces acting on permanent magnets in 

the presence of external magnetic fields. This method enables us to calculate the magnitude of 

magnetic forces, where the calculation model can be obtained by replacing those magnets with 

a suitable distribution of magnetizing currents. Employing this method, the dynamic behavior 

of piezoelectric cantilever energy harvesting systems with a bistable potential well (Tan et al., 

2015) and a tri-stable potential well (Leng et al., 2017) under magnetic fields can be calculated 

analytically. To compare with the method of magnetic dipoles, this calculation method is more 

applicable for different magnet intervals.  

 

2.3.3 Triboelectric Energy Harvesting Techniques 

A triboelectric nanogenerator (TENG) stems from the triboelectric effect, i.e., that a 

material can become electrically charged through friction. Since the first triboelectric 

nanogenerator (TENG) invented in 2012 (Wang et al., 2012b; 2012c; 2012d), there has been a 

tremendous amount of work in several engineering applications proposed by Wang’s group 

(Wang et al., 2016a; Wang et al., 2017b; Wu et al., 2019; Wang, 2020; and references therein) 

due to the unique merits of high efficiency, low weight, and low fabrication cost. Four 

fundamental modes of the TENG can be used to classify its research achievements.  

 

The first invented operation mode is the vertical contact-separation mode (see Fig. 2.4(a)) 

where the mechanical motion direction is perpendicular to the surface of the two dielectric 

films. This type of mechanical motion has been achieved by structural designs, such as arch-

shaped (Wang et al., 2012b), spring-supported (Zhu et al., 2012), zig-zag (Bai et al., 2013a), 

and cantilever-based (Yang et al., 2013a) designs. This mode can be used to harvest energy 

from finger typing (Zhong et al., 2013a), engine vibration (Chen et al., 2013), human walking 
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(Zhu et al., 2013; Yang et al., 2013b; Hou et al., 2013), and biomedical systems (Zhang et al., 

2013). 

 

The second operation mode is an in-plane sliding mode, see Fig. 2.4(b). Triboelectric 

charges in this mode are generated due to the relative sliding between the two surfaces of two 

dielectric films, which makes generation much more effective than that in contact-separation 

mode. This mode excels in harvesting energy from planar motions (Jing et al., 2014), disk 

rotations (Zhang et al., 2014a), and cylindrical rotations (Bai et al., 2013b).  

 

The third operation mode is a single-electrode mode, see Fig. 2.4(c). With only one 

electrode, TENGs of this mode can harvest energy from arbitrary, free-moving objects because 

one of the triboelectric layers can move freely without restriction. Due to this characteristic, 

this mode has been used in applications to harvest energy from airflow (Yang et al., 2013c), 

rotating tires (Zhang et al., 2014b), raindrops (Liang et al., 2015), and the turning of book pages 

(Zhong et al., 2013b). 

 

The fourth operation mode is a free-standing triboelectric-layer mode, see Fig. 2.4(d). 

TENGs of this mode are also capable of harvesting energy from mechanical motion without an 

attached electrode. TENGs of this type have been proposed for scavenging energy from 

vibration (Wang et al., 2014a), rotation motions (Guo et al., 2015a), computer mouse operation 

(Guo et al., 2015b), airflow (Guo et al. 2014), and a walking human or moving automobile (Xie 

et al., 2014; Wang et al., 2014b). 

 

 

Fig. 2.4: Four fundamental modes of the triboelectric mechanism (Wang et al., 2016a). 
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2.3.4 Hybrid Energy Harvesting Techniques 

At present, many energy harvesters can only function in a restricted range of dynamical 

situations. For example, many energy harvesters can only work under laboratory conditions or 

specified application scenarios. When the scenarios are not in accordance with the expected 

conditions (e.g., a change of gravity direction, a large change of vibration frequency), the 

energy harvesters typically fail. To enhance the performance of energy harvesters and make up 

for the reduced output power caused by the miniaturization and integration of the generator 

structure, many small generators adopt various coupling mechanisms, such as piezoelectric-

electromagnetic (Rawnak and Mehmet, 2017; Javed and Abdelkefi, 2018; Sriramdas and 

Pratap, 2018; Fan et al., 2018; Toyabur et al., 2018), electromagnetic-triboelectric (Gupta et 

al., 2017; Quan et al., 2015; Seol et al., 2016; Zhu et al., 2017b; Salauddin et al., 2017; 

Saadatnia et al., 2018), piezoelectric-triboelectric (Karumuthil et al., 2017; Guo et al., 2018; Li 

et al., 2018), and even triboelelectic-thermoelectric (Kim et al., 2016; Wu et al., 2018a) to 

harness more electrical energy under a single mechanical motion.  

 

By hybridizing two transduction mechanisms, the advantages of different transduction 

mechanisms can be combined in a single hub. He et al. (2017) first proposed a piezoelectric-

electromagnetic-triboelectric hybrid vibration energy harvester with a complex structural 

design. To simplify the hybrid design for working well in real applications under low-

frequency, low-amplitude, and time-varying sources, Wang et al. (2019a) invented a novel tri-

hybrid energy harvester that can enhance the output performance of the frequency up-

conversion via inter-well motions and also offers a wider operating bandwidth at low 

acceleration via the combination of resonant inter-well oscillation behavior and non-resonant 

behavior.  

 

  Multi-stable Nonlinearity-enhanced Mechanisms  

In the field of vibration-based energy harvesting techniques, earlier efforts mainly focused 

on linear dynamic harvesters, which can only work well in a very narrow bandwidth (i.e., when 

an external excitation must be nearly equal to the fundamental frequency of such dynamic 

systems). Under real-world engineering conditions, ambient structural vibration sources are 

often broadband and time-varying in nature. Because external operating frequencies shift away 

from the resonant frequency, the performance of these harvesters rapidly degrades. Moreover, 

structural vibration sources are also low-amplitude (<1 g) and low-frequency (<10 Hz) in 

nature, e.g., power line aeolian vibration, wind turbine dynamics, and train-track interaction. 



 

  35

Hence, conventional linear-type energy harvesters, covering a narrow frequency bandwidth, 

are not capable of working functionally. 

 

To address this problem, nonlinear energy harvesting techniques have been introduced to 

broaden the usable bandwidth of linear counterparts by using external design means so that the 

magnitude and nature of the nonlinearity can be purposefully controlled. The most common 

approach is to use magnetic or mechanical forces to introduce a nonlinear restoring force with 

mono-, bi-, or multi-stability (Daqaq et al., 2014). For example, in a typical piezoelectric 

system, nonlinearity can be formed by introducing magnetic restoring forces to the system. 

Previous studies showed that the exploitation of nonlinear stiffness of a doubly-clamped 

MEMS resonator can achieve more than one order of magnitude improvement in both 

bandwidth and power density, as compared to a typical linear device (Hajati and Kim, 2011). 

A comparison of multi-stable nonlinearity-enhanced mechanisms is presented in Table 2.2 

(Panyam and Daqaq, 2017). 

 

In particular, low-frequency oscillators are still required in multi-stable mechanisms for 

the sake of low-frequency energy scavenging. Most multi-stable energy harvesters can only 

enhance the voltage generation by enlarging the amplitude of oscillation (Harne and Wang, 

2013; Pellegrini et al., 2013; Kim and Seok, 2014; Zhou et al., 2014), it implies that they have 

the same working performance in power density as the conventional low resonant frequency 

counterpart in essence. Unfortunately, low resonant frequency harvesters often suffer from the 

problem of low power density. A major reason is the power generation of a vibration-based 

energy harvester decreases cubically with its vibration frequency (Cook-Chennault et al., 2008). 

Another one lies in the fact that, for a given mass, large mechanical displacements are required 

to permit the increasingly compliant springs resonating at lower frequencies, leading to an extra 

space consumption (Gu and Livermore, 2011). 
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Table 2.2:  A comparison of multi-stable nonlinearity-enhanced mechanisms. 

Mechanism Advantages Disadvantages 
Mono-stable System 

 
 

 Increased bandwidth 
when compared with 
equivalent linear systems 
for harmonic excitations 
 

 Frequency of peak 
response can be shifted 
away from the resonant 
frequency 

 Poor performance under 
random excitation 
 

 Unable to perform well in 
real applications 

 

Bi-stable System 

 
 

 Improved performance 
for random excitations 
 

 Inter-well dynamics 
results in high amplitude 
responses 

 

 Inter-well oscillations 
require high excitation 
levels 
 

 Design requires prior 
knowledge of excitation 
levels 

Tri-stable System 

 
 

 Shallower potential wells 
can be achieved when 
comparing to bistable 
harvesters 
 

 Inter-well dynamics can 
be triggered more easily 

 More complex 
configurations and 
layouts 

 

 

2.4.1 Mono-stable Dynamical Systems 

The effect of inherent nonlinearities on the performance of energy harvesters was 

considered in the early research on monostable energy harvesters. Hu et al. (2006) presented 

the influence of inherent geometric and material nonlinearities due to large deformation on the 

response behavior of PEGs. Quinn et al. (2007) investigated a kinetic energy harvester with 

essential nonlinearities and demonstrated that nonlinearity improves the performance of energy 

harvesting. Beeby et al. (2007) proposed a micro-EMG and observed nonlinear behavior in 

experiments.  
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Burrow and Clare (2007) and Barton et al. (2010) were among the first to intentionally 

introduce nonlinearities to energy harvesting by proposing an electromagnetic cantilever beam-

type generator with a tip magnet attached to the cantilever beam and experimentally test the 

performance. Other mechanisms have been proposed to introduce nonlinearities into 

monostable energy harvesters. For instance, Mann and Sims (2008) proposed a magnetically 

levitated inductive harvester using two outer magnets to levitate a suspending central magnet. 

Stanton et al. (2010a) and Sebald et al. (2011a, 2011b) proposed a piezoelectric cantilever 

beam-type energy harvester with a tip magnet and two fixed external magnets. Masana and 

Daqaq (2011) proposed a clamped-clamped axially loaded piezoelectric beam harvester. For 

micro-scale applications, Marinkovic and Koser (2009) proposed a micro-PEG with geometric 

hardening nonlinearity that can broaden the steady-state bandwidth of the harvester. Tvedt et 

al. (2010) proposed and tested an electrostatic MEMS harvester that also produces a hardening 

influence. Miki et al. (2010) proposed a MEMS electret generator with monostable Duffing-

type behavior. Le Van Quyen et al. (2010) proposed and tested a electrostatic micropower 

generator with softening nonlinearity. From an excitation viewpoint, investigations have been 

conducted on the performance of monostable energy harvesters under different types of 

excitations including harmonic excitations (Nguyen et al., 2010; Masana and Daqaq, 2011; 

Quinn et al., 2011; Sebald et al., 2011a; 2011b), random excitations (Gammaitoni et al., 2009; 

Lee et al., 2010; Nguyen et al., 2010; Daqaq, 2010; Nguyen and Halvorsen, 2011; Daqaq, 2011; 

Green et al., 2012; Halvorsen, 2013; He and Daqaq, 2013), parametric excitations (Daqaq et 

al., 2009; Ma et al., 2010; Daqaq and Bode, 2011; Abdelkefi et al., 2012), and impulsive loads 

(Quinn et al., 2007; Quinn et al., 2011). 

 

2.4.2 Bi-stable Dynamical Systems 

For bi-stable energy harvesting, McInnes et al. (2008) first theoretically investigated bi-

stability in energy harvesters. Cottone et al. (2009) and Erturk et al. (2009) proposed two 

different bi-stable piezoelectric cantilever beam-type energy harvesters with two different 

kinds of magnet arrangements. Gammaitoni et al. (2009) also created a bi-stable restoring force 

using magnets. Away from the use of magnetoelastic potential to create bi-stability, other 

methods have also been proposed to create bi-stability. For instance, Arietta et al. (2010) 

created a bi-stable restoring force without an external force or magnetic field on the condition 

that certain laminations of carbon-fiber-epoxy plates result in buckling due to different thermal 

expansion coefficients at room temperature. Mann and Owens (2010) created bi-stability using 

a smart arrangement of magnets instead of the buckling of elastic structures. Ando et al. (2010) 
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fabricated a MEMS energy harvester using magnetoelastic buckling to demonstrate bi-stability. 

Nguyen et al. (2013) fabricated and tested a MEMS electrostatic energy harvester with curved 

springs to create bi-stability.  

 

A number of theoretical and experimental investigations have also been reported on bi-

stable energy harvesting under stochastic or deterministic excitations (Masana and Daqaq, 

2009; Mann and Owens, 2010; Stanton et al., 2010b; Arietta et al., 2010; Ando et al., 2010; 

Litak et al., 2010; Ferrari et al., 2010; Sneller et al., 2011; Daqaq, 2011; Ferrari et al., 2011; 

Cammarano et al., 2011; Ali et al., 2011; Masana and Daqaq, 2012; Nguyen et al., 2013). Most 

of these efforts reported improved performance of the bi-stable energy harvesters compared 

with their counterparts.  

 

2.4.3 Multi-stable Dynamical Systems 

Compared with bi-stable energy harvesters, multi-stable (e.g. tri-stable, quad-stable) 

energy harvesters provide shallower potential wells and result in a lower excitation threshold 

for inter-well motions. The design of multi-stable energy harvesters is therefore of particular 

interest. Zhou et al. (2014) first proposed a tri-stable energy harvester consisting of a cantilever 

beam with a tip magnet and two external magnets, and its performance was superior to that of 

its bi-stable counterpart. Kim et al. (2015) numerically investigated a tri-stable oscillator 

constructed around a cantilever-based magnetically coupled system. Oumbé et al. (2015) 

proposed a tri-stable energy harvesting system with fractional-order viscoelastic materials. 

Panyam and Daqaq (2017) characterized the effective bandwidth of a tri-stable energy 

harvester. Previous studies on tri-stable systems mainly focused on the effect of potential well 

depth, mechanical impacts to induce inter-well oscillations, and the device’s sensitivity to 

system parameters (Zhou et al., 2015; Zhou et al., 2016).  

 

Kim and Seok (2014) theoretically investigated a bi-morph cantilever harvester that could 

be arranged from monostable to penta-stable. Zhou et al. (2017) presented a broadband quad-

stable energy harvester and verified its advantages over a bi-stable harvester. Wang et al. 

(2017a) proposed a wideband quintuple-well potential piezoelectric-based vibration energy 

harvester using combined nonlinearity (i.e., magnetic nonlinearity and piecewise linearity 

produced by mechanical impact). More recently, Wang et al. (2019a) proposed a septuple-

stable energy harvester that performs better than other recently proposed hybrid energy 

harvesters. 
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 Remarks 

In this work, in order to better understanding nonlinear dynamical behavior in MEMS 

resonators, both free and forced nonlinear vibration of doubly clamped MEMS microbeams are 

investigated. The effects of the mid-plane stretching, axial residual stress, and electrostatic 

force are considered. Specifically, we derive the analytical approximate solutions to the 

nonlinear free vibration of a doubly clamped microbeam with a one-sided electrode resulting 

from the sudden change of DC voltage, based on which we examine the dynamic pull-in voltage 

and natural frequency of the system. The current model is different from the previous work 

(Liu et al., 2017a) as the fringing field effect is also taken into consideration. Building upon 

the EulerBernoulli beam theory and von Kármán-type nonlinear kinematics (Chia, 1980), the 

equation of motion can be further converted to a nonlinear ordinary differential equation by the 

Galerkin method and then solved by the NHB method. In addition, we develop analytical 

approximations of the resonance behavior of a fully clamped MEMS resonator with two-sided 

electrodes actuated by DC voltage and harmonic AC voltage. Following the same 

decomposition principle, the governing equation is also converted to an ordinary differential 

equation with odd nonlinearity. 

 

For nonlocal elasticity theory, although such a nonlocal theory is useful for capturing the 

small-scale effects of micro-/nano-scale structures, there is still an unsolved question about the 

extent of the nonlocal scale effect in such structures, or the existence of an upper bound in the 

nonlocal scale parameter, i.e., its magnitude. This is a critical issue because the nonlocal scale 

parameter can act as a connector between the classical and nonlocal theories, but different 

ranges of the nonlocal scale parameter can be found in the literature without rigorous 

explanation. This question is still puzzled to the selection of the nonlocal scale parameter in 

nanometers. To make this issue clear, the physical nonlocal scale parameter “e0a” was hidden 

by a dimensionless quantity τ = e0a/l in most research studies, where l is an external 

characteristic length scale (e.g., wavelength, crack length), but the dimensionless quantity τ 

was only chosen roughly. Some of the ranges about this dimensionless quantity τ are presented 

in Table 2.3. Given the above descriptions, we aim to determine an upper limit of the nonlocal 

scale parameter through dynamic analysis for various nano-structures including the axial 

vibration of nano-rods, transverse vibration of nano-beams, and free vibration of nano-plates.  
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Table 2.3: Various ranges of the dimensionless quantity (τ) in the literature. 

Dimensionless  
Quantity ( ) 

References 

0  0.02 Lim, 2010a 

0  0.05 Li et al., 2017a 

0  0.06 Wang et al., 2008 

0  0.1 Yu and Lim, 2014; Ansari et al., 2016; Liu et al., 2017b 

0  0.15 Wang et al., 2018 

0  0.2 
Lim, 2010b; Xiang et al., 2010; Li et al., 2012; Lim et al., 2015; 
Xu et al., 2017 

0  0.3 Yang and Lim, 2012 

0  0.4 Wang and Duan, 2008 

0  0.6 Lu, 2007 

0  0.7 Wang et al., 2007 

0  0.8 Murmu and Pradhan, 2009b; Guo and Yang, 2012 

0  1.0 Lu et al., 2006 and 2007; Murmu et al., 2013 

 

For energy harvesting technology, we propose a novel magnetic levitation-based 

electromagnetic-triboelectric energy harvester that can work well under low-frequency and 

low-amplitude sources. This harvester governed by the tri-stable nonlinearity-enhanced 

mechanism is realized by a simple arrangement of using four outer magnets on a plane. The 

tri-stable nonlinearity with resonant inter-well oscillations in a magnetically levitated structure 

can make the hybrid device possess a higher working efficiency and a wider operating 

bandwidth at low frequencies. The magnetizing current method is applied to calculate the 

magnetic forces of this model to reveal the triple-well nonlinear phenomenon. The formation 

mechanism of the tri-stable nonlinear behavior is also investigated by bifurcation analysis. To 

verify the theoretical model, a prototype of the harvester is fabricated for experimental studies. 

Under electrodynamical shaking tests, the output performance of the fabricated prototype is 

studied. 

 

Theoretically, there are no general tools for characterizing the performance of energy 

harvesters with different transduction mechanisms under different excitations. In general, 

lower potential barriers are associated with lower-level excitations required to induce inter-

well oscillations. Multi-stable energy harvesters are mainly used to harvest energy under low-

frequency excitations resulting in low natural frequency of the device. However, when the 

implementation of nonlinearity in dynamical systems yields a triple-well potential function, it 

may induce complex response behavior and require ingenious mechanical designs. For 
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example, the variation of governing parameters may lead to the occurrence of bifurcation and 

chaotic motions. Such complicated behavior can strongly affect the performance of energy 

harvesters. Moreover, inter-well oscillations induce more space consumption, which limits the 

improvement of the device’s power density. Hence, further study is, therefore, necessary on 

the design of energy harvesters. On one hand, behind complex nonlinear behavior, there is 

always a subtle order that governs the complexity way. On the other hand, the steady-state 

frequency response of such nonlinear energy harvesters under harmonic excitation is an 

important performance metric to indicate the transduction capabilities of the energy harvesters. 

Therefore, a global analysis of the fundamental mechanism causing periodic and chaotic 

behavior of tri-stable nonlinear systems subjected to external excitations not only sheds light 

on the selection of an appropriate frequency bandwidth in energy harvesting but also provides 

relevant information on the design of adaptive circuits to modulate power output. 
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Chapter 3  

NONLINEAR FREE AND FORCED VIBRATION OF 

ELECTROSTATICALLY ACTUATED MEMS 

RESONATORS 

  

 Introduction 

This chapter presents investigations on both nonlinear free and forced vibration of doubly 

clamped MEMS microbeams. It is organized as follows. In Section 3.2, a nonlinear dynamic 

model is formulated for the beam-type MEMS resonator with a one-sided electrode. The 

electrostatic force is expressed by a Taylor series around the stable equilibrium position. In 

addition, a general SDOF model that describes the nonlinear dynamics of a beam-based 

resonator with two-sided electrodes is also formulated. In Section 3.3, the NHB method for 

both free and harmonically forced nonlinear dynamic systems is briefly described. In Section 

3.4, the accuracy of the present solutions for both models is verified in contrast to the results 

obtained from the Runge-Kutta method. Finally, conclusions are drawn in the last section. 

 

 Problem Definition and Formulation 

Two schematic diagrams for a doubly clamped microbeam model are shown in Fig. 3.1. 

In these diagrams, one microbeam is suspended on a rigid electrode, whereas the other one is 

sandwiched by two symmetric rigid electrodes. We consider the microbeam of length L, width 

b and thickness h. The initial gap between the microbeam and the electrode is d. The 

coordinates x, y, and z are along the beam length, width and thickness, respectively. We assume 

that the actuation voltage is    cos 2dc acV t V V ft   , where dcV  is the DC voltage, and acV  

and f  are the amplitude and frequency of the excited AC voltage, respectively. From the 

perspective of physics, the bias DC voltage and the excited AC voltage are connected in series. 

This form of excitation can provide a pathway for tuning various effects on MEMS resonators 

(Younis and Alsaleem, 2009). 
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Employing the classical beam theory and the von Kármán nonlinearity (Chia, 1980), the 

transverse deflection of the microbeam with a one-sided electrode or two-sided electrodes can 

be expressed as follows 

22 4 2

2 4 202

L

i e

w w w Ebh w w
bh c EI N dx F

t t x L x x


                   
  (3.1)

where w  is the deflection in the z-direction, c  is the linear damping per unit length,  I  is the 

moment of inertia of the cross-section about the y-axis, E is the effective Young’s modulus of 

the beam (  2/ 1E    with E= Young’s modulus and   = Poisson ratio),   is the beam 

material density, iN  is the initial axial load due to the residual stress on the beam, eF  is the 

electric force per unit length, and t  is time. When the microbeam is suspended on an electrode, 

we consider 

   2
0

2

1
1

2 ( )e

b V t d w
F

d w b




 
    

 (3.2)

In another case, when the microbeam is suspended between two symmetric electrodes, the 

electrostatic force becomes 

2
2

0 2 2

cos(2 )1

2 ( ) ( )

dc dc dc
e

V V ft V
F b

d w d w




         


 (3.3)

where 0  is the permittivity of the gap medium.  

 

In Eq. (3.2),  (=0.65) is a parameter that is used to account for the “fringing field effect” 

due to the finite width of the microbeam. The fringing field effect for a doubly clamped 

microbeam with two-sided electrodes is much smaller than that with a one-sided electrode due 

to the symmetric configuration of the electrodes, leading to the partial cancellation of the effect, 

so we can ignore the fringing field effect in Eq. (3.3). 
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(a) 

 

 

(b) 

Fig. 3.1: (a) Schematic of a doubly-clamped microbeam with a one-sided electrode and (b) 

schematic of a doubly-clamped microbeam with two-sided electrodes. 

 

For a doubly clamped microbeam, the following boundary conditions are imposed as 

(0, ) 0w t  , 
(0, )

0
w t

x





 (3.4)

( , ) 0w L t  ,  
( , )

0
w L t

x





 (3.5)

Before the electrostatic actuation, the initial conditions are  

( ,0) 0w x  , 
( ,0)

0
w x

t





 (3.6)
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For convenience and brevity, the dimensionless quantities are defined as follows 

4

EI
t t

bhL
 , 

w
W

d
 , 

x

L
  , 

2cL
c

EIbh



, 

2
i

i

N L
f

EI
 , 

2

6
d

h
    

 
,

4
2 0

3 3

24 L

Eh d

  , 
d

b
  , 

4bhL
f f

EI


   

(3.7)

where t , W ,  , c  and f  are the dimensionless time, beam deflection, longitudinal 

coordinate, damping parameter, and AC voltage frequency, respectively. By utilizing Eq. (3.7), 

the dimensionless equation of motion for Eq. (3.1) is re-written as 

22 4 2
1

2 4 20i es

W W W W W
c f d F

t t
 

  

      
             

  (3.8)

in which  

2 2

2

( )
[1 (1 )]

4(1 )es

V t
F W

W

   


 (3.9)

for the microbeam with one-sided electrode and  

2 2
2 2 2

2 2 2

2 cos(2 ) cos (2 )1

(1 ) 4 (1 )
dc ac ac

es dc

V V ft V ftW
F V

W W

  
 

     
 (3.10)

for the microbeam with two-sided electrodes. The corresponding dimensionless boundary 

conditions are 

 (0, ) 0W t  , 
(0, )

0
W t







 (3.11)

(1, ) 0W t  , 
(1, )

0
W t







 (3.12)

and the dimensionless initial conditions are 

( ,0) 0W   , 
( ,0)

0
W

t





 (3.13)

 

As we only investigate the first-mode natural frequency and primary resonance of doubly 

clamped microbeams in this work, the deflection function of the microbeam can be 

approximated as a product of two functions with a sustainable error in accordance with the 

Galerkin method. The deflection function is expressed as 

( , ) ( ) ( )W t q t    (3.14)
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where ( )   is the assumed deflection shape function that corresponds to the first-mode shape 

and satisfies the boundary conditions given in Eqs. (3.11) and (3.12). ( )q t  is the mid-point 

deflection of the microbeam. A reasonable deflection shape function for the first-mode shape 

of Eq. (3.8) is (Moghimi and Ahmadian, 2009)  

 1 1
1 1 1 1

1 1

cosh( ) cos( )
( ) cosh( ) cos( ) sinh( ) sin( )

sinh( ) sin( )

      
 


   


 (3.15)

in which 1 = 4.730040745.  

 

Case 1: Asymmetric vibration of a doubly clamped microbeam with a one-sided electrode 

due to a suddenly applied DC voltage 

Consider the MEMS device in Fig. 3.1(a), the electrostatic actuation (i.e., DC voltage) 

makes the microbeam deflect to an equilibrium configuration, and then it vibrates 

asymmetrically around the equilibrium position due to the DC voltage. For free and undamped 

vibration, we first compute the natural frequencies of the microbeam. In this case, the damping 

term and the AC voltage in Eqs. (3.8) and (3.9) can be set to zero. Substituting Eq. (3.15) into 

Eq. (3.8) and applying the Galerkin procedure, the governing partial differential equation can 

be converted to a nonlinear ordinary differential equation as follows    

2 22 13
1 22 20

[1 (1 )] 0
4 (1 )

dcVd q
q q q d

dt q

     


     
  (3.16)

with the following initial conditions 

   0
0 0,     0

dq
q

dt
   (3.17)

where 
4 2

1

1 4 20 i

d d
f d

d d

   
 

 
  

 
  and 

2 2
1 1

2 20 0

d d
d d

d d

     
 

 
   

 
  . It is noted that 

analytical approximate solutions for the free vibration of the nonlinear system (3.16) cannot be 

directly obtained by the NHB method, as the electrostatic force term is not able to be integrated 

analytically. To deal with this issue, instead of approximating it using a Taylor series expansion 

around the initial configuration q = 0, it is performed to expand this term around the equilibrium 

position. This is because the free vibration of the microbeam occurs around its equilibrium 

position (i.e., q = q0) rather than its initial position (i.e., q = 0). The accuracy of the two 

approximation methods can be verified below.  
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Incorporating a Taylor series expansion (Liu et al., 2017a), we expand the integral part in 

Eq. (3.16) up to fourth-order terms around the initial position and the equilibrium position of 

the microbeam in Eqs. (3.18) and (3.19), respectively, we have 

2
43

1 22 0
0n

nn

d q
q q L q

dt
 


     (3.18)

2
43

1 2 02 0
( ) 0n
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d q
q q K q q
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 
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      (3.19)

where 
2 1 1

0
( 1 )

4
n

nL n d
        and 

12 1
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20
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[ 1 (1 )]
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K d
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   






  
 

 . The exact 

value of the equilibrium position can be calculated iteratively according to the principle that 

the restoring force of the microbeam at the equilibrium position in Eq. (3.16) is zero, i.e., 

213
1 0 2 0 020

0

[1 (1 )] 0
4(1 )

q q q d
q

     


    
  (3.20)

As a case study, numerical calculations are performed for the dynamic analysis of a microbeam 

with the geometrical and material parameters given in Table 3.1. Fig. 3.2 shows the values of 

the equilibrium position of the microbeam under various electrostatic actuation levels, i.e., dcV . 

 

Table 3.1: Geometrical and material parameters of the microbeam (Younis and Nayfeh, 

2003). 

Variables Symbol Values 
Beam length L  210 m (for Case 1*) 

310 m (for Case 2*) 
Beam width  b  100 m 
Beam thickness h  1.5 m 
Initial gap width d  1.18 m 
Young’s modulus E  151 GPa 
Poisson ratio   0.3 
Beam material density   2332 kg/m3 
Initial axial load 

iN  0.0009N 

Dielectric constant of the gap medium 
0  8.854×1012 F/m 

Quality factor Q  197 

Notes: *Cases 1 and 2 correspond to a doubly clamped microbeam with one-sided electrode 

and two-sided electrodes, respectively. Only the beam length is different, other parameters are 

the same in both cases. 
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For comparison, we refer the systems (3.16), (3.18), and (3.19) as models 1, 2, and 3, 

respectively. Indeed, the use of a Taylor series expansion around the initial position q = 0 has 

been used for analysis by using the homotopy analysis method (Moghimi and Ahmadian, 2009). 

By only changing the length of the microbeam, values of the dynamic pull-in voltage of the 

microbeam for the three models are calculated in accordance with the principle of energy 

conservation. Note that the dynamic pull-in instability occurs when there is no solution to the 

deflection q in the range of (0, 1) where has the same energy level as the initial conditions.  In 

Table 3.2, it is obvious that the results of model 3 are much closer to that of model 1 than that 

of model 2 under different beam lengths from 210 m to 510 m. Among various cases in 

Table 3.2, the maximum relative error of the dynamic pull-in voltage values between model 1 

and model 3 is only 0.7% for L = 210 m, but it is up to 4.3% between model 1 and model 2. 

Besides, the results for the restoring force of the three models under an input voltage of 25 V 

are depicted in Fig. 3.3. The circle dots represent the exact solution, while the dashed line and 

solid line correspond to the two approximation models, respectively, i.e., Eqs. (3.18) and (3.19). 

It is observed that the results of the three models have an excellent agreement with each other 

when the deflection is small. For q > 0.2, there is a significant discrepancy. Specifically, the 

solid line is much closer to the circle dots than the dashed line, it refers that the integral term 

in Eq. (3.16) approximated by a Taylor series at the equilibrium position has greater accuracy 

than that at the initial position. Hence, the system (3.19) is used for the subsequent analysis. 

 

 

Fig. 3.2: Values of the equilibrium position 0q  for various electrostatic actuation levels dcV . 
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Table 3.2: A comparison between values of dynamic pull-in voltage of different models. 

 
Length of beam (m) 

DC dynamic pull-in voltage (V) 

Model 1 
(Eq. 3.16) 

Model 2 
(Eq. 3.18) 

Model 3 
(Eq. 3.19) 

210 25.84 26.96 26.02 
310 12.94 13.46 13.03 
410 8.18 8.49 8.23 
510 5.87 6.08 5.90 

 

 

Fig. 3.3: Comparison of the restoring forces of three models under an input voltage of 25V. 

 

To address the problem (3.19), a new variable is introduced as follows 

0u q q   (3.21)

Then, we obtain 

 
2

2
0

d u
g u

dt
   

(3.22)

with 

0(0)u q  , (0) 0
du

dt
  (3.23)

The restoring force function of Eq. (3.22) is   2 3 4
1 2 3 4g u u u u u       , in which  

2
1 1 2 0 13 q K     , 2 2 0 23 q K   , 3 2 3K    and 4 4K  . In this system, the 

potential energy is given by 
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2 3 4 5
1 2 3 4

1 1 1 1
( )

2 3 4 5
V u u u u u      

 
(3.24)

The system (3.22) can be solved analytically in accordance with Section 3.3. For brevity and 

convenience, the dimensionless time “ t ” in Eq. (3.22) is simplified to “ t ” in the following 

analysis.  

 

Case 2: Resonance response of a doubly clamped microbeam with two-sided electrodes 

actuated by a bias DC voltage and an AC harmonic voltage 

Consider the MEMS model in Fig. 3.1(b), the initial position is a stable equilibrium 

position for the microbeam. In this case, the DC voltage is acted as a bias one and the 

microbeam is driven by the AC voltage to vibrate symmetrically around its initial position. 

Here, we focus on the investigation of resonance responses when the actuating frequency is 

near the first natural frequency of the microbeam. For a small AC voltage (Vac << Vdc), we can 

neglect the term with 2
acV , Eq. (3.8) can be simplified as 

22 4 2
1 2 2 2 4

2 4 20

2

(1 2 3 )

1
cos(2 )

2

i dc

dc ac

W W W W W
c f d V W W W

t t
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  
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 

      
               




 (3.25)

By means of a Taylor series expansion, the electrostatic force term is generally expanded up to 

the fifth-order term near the initial position 0q   and the higher-order terms are ignored. 

 

Substituting Eq. (3.14) into (3.25) and applying the Galerkin procedure, the nonlinear 

governing equation of motion can be written as  

 
2

02
cos( )

d q dq
f q h F t

dt dt
    

 
  (3.26)

where  

 

  3 5
1 1 2 2 3( ) ( )f q q q q          

     /h p cp p dq dt   

12
0 0

1

2 dc acF V V d     

2 f   

(3.27)
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The main interest of this section is to seek the amplitude-frequency responses of Eq. (3.26) 

using the solution approach described in Section 3.3. For brevity and convenience, the 

dimensionless time “ t ”in Eq. (3.26) is simplified to “t” in the following analysis. We also set 

the mid-point deflection of the microbeam “q” to “u” for easy reference.   

 

 Solution Approaches 

In this section, the solution methodologies of the NHB method and its improved version 

for symmetric nonlinear conservative oscillators (Wu et al., 2006; 2017), the NHB method for 

asymmetric nonlinear conservative oscillators (Wu and Lim, 2004), and the NHB method for 

symmetric nonlinear oscillating systems under an external harmonic force (Wu et al., 2018b) 

are mentioned in the following sections.  

 

3.3.1 NHB Method for Symmetric Nonlinear Conservative Oscillations  

Consider an SDOF nonlinear oscillator governed by 

2

2
( ) 0,   (0) ,   (0) 0

d u du
f u u A

dt dt
     (3.28)

where ( )f u   is an odd function (i.e., ( ) ( )f u f u    ) and satisfies ( ) 0uf u    for 

[ , ],  0u A A u   . It is obvious that 0u   is the equilibrium position and the system oscillates 

between symmetric limits [ , ]A A . The period and corresponding periodic solution depend on 

the oscillation amplitude A.  

 

By introducing a new independent variable t  , Eq. (3.28) can be rewritten as  

( ) 0,   (0) ,   (0) 0u f u u A u       (3.29)

where 2  .   is the corresponding angular frequency of nonlinear oscillations and a prime 

denotes differentiation with respect to  . It is obvious that the solution to Eq. (3.29) is a 

periodic function of   with a period of 2 . Because the restoring force function ( )f u  is an 
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odd function of u , the periodic solution ( )u  can be represented by a Fourier series containing 

only odd multiples of  , i.e., 

1
( ) cos[(2 1) ]ii

u h i 


   (3.30)

 

Following the single-term harmonic balance approximation, we first set  

 1 cosu A   (3.31)

which satisfies the initial conditions in Eq. (3.29). Based on the odd function assumption

( ) ( )f u f u   , the function 1( ( ))f u   can be expanded in a Fourier series as  

1 2 11
( ( )) cos[(2 1) ]ii

f u a i 


   (3.32)

where 

/2

2 1 10

4
( ( )) cos[(2 1) ] ,   1, 2,...ia f u i d i


  

     (3.33)

Substituting Eqs. (3.31) and (3.32) into Eq. (3.29) and setting the coefficient of cos  to zero 

lead to 

1 0a A    (3.34)

which can be solved for   as a function of A as  

1
1( ) ( )

a
A A

A
    (3.35)

Therefore, the first-order approximate period of the nonlinear system (3.28) is  

1
1

( ) 2
A

T A
a

  (3.36)

and the corresponding approximate periodic solution is  

1 1( ) cos ,    ( )u t A A t     (3.37)

 

Next, the combination of Newton’s method and the harmonic balance method is 

formulated to solve Eq. (3.29). First, applying Newton’s procedure, the periodic solution and 

the squared angular frequency of Eq. (3.29) can be expressed as  

1 1u u u   , 1 1   (3.38)

where 1u  and 1  are small increments of the first-order approximations 1u  and 1 , 

respectively. 1u  is a periodic function of   of period 2 . Substituting Eq. (3.38) into Eq. 

(3.29) and linearizing with respect to the correction terms 1u  and 1 , we have 
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       1 1 1 1 1 1 1 1 1 1 10, 0 0, 0 0uu f u u u f u u u u                  (3.39)

where the subscript u in  1uf u  denotes the derivative of 1  with respect to u .  

 

Then, the harmonic balance method can be applied to solve Eq. (3.39) for 1u  and 1 . 

Since ( ) ( )f u f u   , 1( ( ))uf u  can be expanded into the following Fourier series: 

0
1 21

( ( )) cos(2 )
2u ii

b
f u b i 


   (3.40)

where 

/2

2( 1) 10

4
( ( ))cos[2(     1) ] , 1,2,...i ub f u i d i


  

     (3.41)

For the second-order approximate solution, we set 1( )u   in Eq. (3.39) as 

1 1( ) (cos cos3 )u x      (3.42)

Substituting Eqs. (3.31), (3.32), (3.40), and (3.42) into Eq. (3.39), expanding the resulting 

expression in a trigonometric series and setting the coefficients of cos and cos 3  to zero, we 

obtain   

1 1 0 4 1 1 12 2 ( 2 ) 2 0a A b b x A          (3.43)

2 4 0 6 1 1 3( 18 ) 2 0b b b b x a        (3.44)

Solving Eqs. (3.43) and (3.44) yields 

3
1

2 4 0 6 1

2
( )

( ) 18

a A
x A

b b b b A a
 

   
 (3.45)

3 0 4 1
1

2 4 0 6 1

[( ) 2 ]
( )

[( ) 18 ]

a b b A a
A

A b b b b A a

 
  

   
 (3.46)

Therefore, the second-order approximate period and the corresponding approximate periodic 

solution of the nonlinear system (3.28) are  

2 2 1 1

2

2
( ) ,    ( ) ( ) ( )

( )
T A A A A

A


   


 (3.47)

and 

2 1 1 1 2( ) ( ) ( ) ( )cos ( )(cos cos3 ),    ( )u t u u A x A A t              (3.48)

 

As shown above, it is clear how the procedure works for constructing higher-order 

approximate solutions. For example, for the kth-order analytical approximation, we set 
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1

1
1

( ) {cos[(2 1) ] cos[(2 1) ]}
k

k i
i

u x i i  





      (3.49)

 

3.3.2 Improved NHB Method for Symmetric Nonlinear Conservative Oscillations  

To improve the convergence of the NHB method, the one-dimensional nonlinear oscillator 

governed by Eq. (3.28) is reconsidered and the first-order approximate solutions are obtained 

in the same way as presented in Section 3.3.1. For the second-order approximate solutions, 

applying Newton’s procedure, the periodic solution and the squared angular frequency of Eq. 

(3.29) are also expressed as (Wu et al. 2017) 

1 1su u u  , 1 1s    (3.50)

where 1su   and 1s   are small increments of the first-order approximations 1u   and 1  , 

respectively. 1su  is a periodic function of   with a period of 2 , and 1s  is a constant. 

Then, the second-order Taylor expansion by retaining the second-order power term is applied, 

that is, substituting Eq. (3.50) into Eq. (3.29), expanding in a Taylor series about 1u  and 1 , 

and neglecting the third-order and higher-order degree terms in 1su  and 1s , we have 

2
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1
( ) ( ) ( )( ) 0,

2
(0) 0,    (0) 0

s s s s u s uu s

s s

u f u u u u f u u f u u

u u

               

   
 (3.51)

Since Eq. (3.51) is nonlinear in nature, the solving procedures are required to divide into the 

following two steps. First, we linearize Eq. (3.51) with respect to 1su  and 1s , leading to 

a linear equation that can be solved by the harmonic balance method. This linear equation is 

identical to Eq. (3.39), we omit the procedures and use the results of 1  and 1u  derived in 

Section 3.3.1 in the next step. That is, replacing 1s  in 1 1s su   with 1  and one of two 

1su  terms in 2
1 1

1
( )( )

2 uu sf u u  with  1u  in Eq. (3.51), respectively, this can formulate a linear 

equation in terms of 1su  and 1s  as follows 

1 1 1 1 1 1 1 1 1 1 1 1

1 1

1
( ) ( ) ( ) ( ) 0,

2

(0) 0,    (0) 0

s s u uu s

s s

u f u u u f u f u u u

u u

                  
   

 (3.52)

In Eq. (3.52), the function 1( ( ))uuf u   can be expanded by using a Fourier series as follows 

1 2 1
1

( ( )) cos[(2 1) ]uu i
i

f u c i 





   (3.53)
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where 

/2

2 1 10

4
( ( ))cos[(2 1) ] ,     1,2,...i uuc f u i d i


  

     (3.54)

and 1 ( )su   can be expressed as 

1 1 2( ) (cos cos3 ) (cos3 cos5 )s s su x x          (3.55)

 

Inserting Eqs. (3.31), (3.32), (3.40), (3.42), (3.45), (3.46), (3.53) and (3.55) into Eq. (3.52), 

expanding the resulting expression in a trigonometric series and setting the coefficients of 

cos , cos 3  and cos5  to zero, we get 

1 1 1 2 1

2 1 2 2 3

3 1 3 2 5

0

0

0

s s s

s s

s s

M x N x A

M x N x a

M x N x a

   
   
   

 (3.56)

where 

1
1 1 0 4 1 1 3 5 7

81
8 4 4 (3 3 )

8

a
M b b x c c c c

A

           
 

(3.57)

 1 2 6 1 3 5 7 9

1
4 4 (2 2 )

8
N b b x c c c c       

(3.58)

1
2 1 0 2 4 6 1 1 3 5 7 9

721
72 4 4 4 4 ( 3 5 2 )

8

a
M b b b b x c c c c c

A
               

 
(3.59)

1
2 1 0 2 6 8 1 1 3 5 9 11

721
72 4 4 4 4 (2 4 3 2 )

8

a
N b b b b x c c c c c

A
               

 
(3.60)

 3 2 4 6 8 1 1 3 5 7 9 11

1
4 4 4 4 ( 4 2 )

8
M b b b b x c c c c c c            

(3.61)



1
3 1 0 2 8 10

1 1 3 5 7 11 13

2001
200 4 4 4 4

8

( 2 3 2 2 2 )

a
N b b b b

A

x c c c c c c

       
     

 

 

(3.62)

in which 1x  and 1  are given in Eqs. (3.45) and (3.46), respectively. The solutions to Eq. 

(3.56) are 

3 3 2 5
1

2 3 3 2

( )s

N a N a
x A

M N M N

 



 (3.63)

3 3 2 5
2

2 3 3 2

( )s

M a M a
x A

M N M N





 (3.64)
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3 3 1 1 3 5 1 2 2 1
1

2 3 3 2

( ) ( )
( )

( )s

a M N M N a M N M N
A

A M N M N

  
 


 (3.65)

Therefore, the improved second-order analytical approximations of the nonlinear system (3.28) 

are  

2 2 1 1

2

2
( ) ,  ( ) ( ) ( )

( )
s s s

s

T A A A A
A


    


 (3.66)

and 

2 1 1

1 2 2

( ) ( ) ( )

cos ( )(cos cos3 ) ( )(cos3 cos5 ),     ( ) .

s s

s s s

u t u u

A x A x A A t

 

     

 

      
 (3.67)

 

Higher-order analytical approximate solutions can be constructed by using the last 

approximations 2 su  and 2s  in place of 1 su  and 1s , respectively, and implementing similar 

procedures as aforementioned. 

 

3.3.3 NHB Method for Asymmetric Nonlinear Conservative Oscillations  

Consider an SDOF nonlinear oscillator governed by 

2

2
( ) 0,    (0) ,    (0) 0

d u du
g u u A

dt dt
     (3.68)

where ( )g u  is a general function of u , i.e., ( ) ( )g u g u    with odd and even nonlinearities. 

Let ( ) ( )V u g u du   be the potential energy of the system and suppose that it reaches its 

minimum at 0u u , called a center. We assume 0 0u  , the system will thus oscillate between 

the asymmetric bounds [B, A] where both B (B > 0) and A have the same energy level, i.e., 

( ) ( )V B V A   (3.69)

in which B can be analytically expressed as a function of A.  

 

To solve such a non-odd system, two new odd nonlinear systems should be introduced 

(Wu and Lim, 2004), as illustrated below: 

 (3.70)

2

2
( ) 0,    (0) ,    (0) 0

d u du
G u u B

dt dt
     (3.71)

where  

2

2
( ) 0,    (0) ,    (0) 0

d u du
F u u A

dt dt
   
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( ) if 0
( )

( ) if 0

g u u
F u

g u u


   

 (3.72)

( )  if 0
( )

( )  if 0

g u u
G u

g u u

  
  

 (3.73)

In Eqs. (3.70) and (3.71), both of ( )F u  and ( )G u  are odd functions of u. Hence, Eqs. (3.70) 

and (3.71) are two oscillating systems with odd nonlinearity and therefore can be solved 

independently by the NHB method described in Section 3.3.1 or Section 3.3.2. Then, the 

approximate analytical solutions for Eq. (3.68) can be constructed. The first-order approximate 

angular frequency 1 , the first-order approximate period 1T  and the corresponding 

approximate periodic solution 1( )u t  are given by 

  1 1
1

1 1

2 F G

F G

A
 

 



,   1 1

1

( ) ( )
( )

2
F GT A T B

T A


  (3.74)

and  

1
1

1 11 1 1
1 1

1 1 11 1 1
1

( )
( ), for  0

4
( ) ( )( ) ( ) ( )

( ) , for  
4 4 4 4 2

( ) ( ) ( )( ) ( ) ( )
, for  

2 2 4 2 2 2

F
F

G GF F F
G

G G GF F F
F

T A
u t t

T B T BT A T A T A
u t u t t

T B T B T BT A T A T A
u t t


 


         

 
         

 

 (3.75)

where the subscripts “1F” and “1G” of  , T  and u denote the first-order analytical solutions 

for the systems (3.70) and (3.71), respectively. 

 

The second-order approximate frequency 2 , the second-order approximate period 2T  and 

the corresponding approximate periodic solution 2 ( )u t  are 

  2 2
2

2 2

2 F G

F G

A
 

 



,   2 2

2

( ) ( )
( )

2
F GT A T B

T A


  (3.76)

and  

2
2

2 22 2 2
2 2

2 2 22 2 2
2

( )
( ), for   0

4
( ) ( )( ) ( ) ( )

( ) , for   
4 4 4 4 2

( ) ( ) ( )( ) ( ) ( )
, for   

2 2 4 2 2 2

F
F

G GF F F
G

G G GF F F
F

T A
u t t

T B T BT A T A T A
u t u t t

T B T B T BT A T A T A
u t t


 


         

 
         

 

 (3.77)
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where the subscripts “2F” and “2G” of  , T  and u denote the second-order analytical 

solutions for the systems (3.70) and (3.71), respectively. 

 

Applying the improved NHB method in Section 3.3.2, the second-order approximate 

frequency *
2 , the second-order approximate period *

2T  and the corresponding approximate 

periodic solution *
2 ( )u t  can also be expressed as 

 * 2 2
2

2 2

2 s F s G

s F s G

A
 

 
 

 




,  * 2 2
2

( ) ( )
( )

2
s F s GT A T B

T A  
  (3.78)

and 

*
2

2
2

2 2 2 2 2
2

2 2 2 2 2 2
2

( )

( )
( ), for   0

4

( ) ( ) ( ) ( ) ( )
, for   

4 4 4 4 2

( ) ( ) ( ) ( ) ( ) ( )
, for   

2 2 4 2 2 2

s F
s F

s F s G s F s F s G
s G

s F s G s F s G s F s G
s F

u t

T A
u t t

T A T B T A T A T B
u t t

T A T B T A T B T A T B
u t t




    


     





  

         

 
           

 (3.79)

where the subscripts “2sF” and “2sG” of  , T  and u denote the improved second-order 

analytical approximations (obtained from Eqs. (3.66) and (3.67) in Section 3.3.2) for the 

systems (3.70) and (3.71), respectively. 

 

3.3.4 NHB Method for Symmetric Nonlinear Oscillations under an External Harmonic 

Force 

Consider the following SDOF nonlinear oscillating system governed by (Wu et al., 2018b) 

2

02
( ) cos( )

d u du
f u h F t

dt dt
    

 
  (3.80)

where ( )f u   and ( )( / )h v v du dt   are odd functions of u   and v   (i.e., ( ) ( )f u f u     and 

( ) ( )h v h v   ), respectively. It is noted that this method is to derive steady-state responses that 

can match with the excitation period. Both sub-harmonic and super-harmonic oscillations are 

not considered herein.  

 

First, by introducing a new independent variable t   , Eq. (3.80) can be rewritten as  

2
0( ) ( ) cos( )u f u h u F           (3.81)
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where a prime denotes the differentiation with respect to  . A phase   is added in the force 

excitation so that we can construct a response with phase zero. For the steady-state response of 

Eq. (3.81), the periodic conditions for both displacement and velocity are given by 

(0) (2 )u u A   , (0) (2 ) 0u u     (3.82)

where A  is the amplitude of the steady-state response. 

 

For the first-order approximation to ( )u  , A  and  , following the single-term harmonic 

balance method, we assume 

1 1( ) ( ) cosu u A        (3.83)

Based on the odd function assumption ( ) ( )f u f u    and ( ) ( )h v h v   , 1( ( ))f u   and 

1( ( ))h u    can be expanded in a Fourier series as 

1 2 1
1

( ( )) cos(2 1)i
i

f u a i 





     
(3.84)

1 2 1
1

( ( )) sin(2 1)i
i

h u c i  





       
(3.85)

where 

2

2 1 10

1
( cos ) cos(2 1) ,    ( 1, 2,...)ia f A i d i


  

         
(3.86)

2

2 1 10

1
( sin )sin(2 1) ,    ( 1, 2,...)ic h A i d i


   

          
(3.87)

 

Incorporating Eqs. (3.83)(3.85) into Eq. (3.81) and setting the coefficients of cos  and 

sin  to zero, we have 

 2
2 2 2
1 1 1 1 0A a c F       (3.88)

and 

1
1 2

1 1 1

tan
c

A a







 

 
(3.89)

Then, the first-order approximation to the amplitude, frequency and phase of the resonance 

response is expressed as 

1 1 1,    ,    A A           (3.90)

and the corresponding periodic solution is  
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1 1 1( ) cos ,    u t A t       (3.91)

 

Subsequently, the second-order approximation to ( )u  , A ,   and   is expressed by 

adding increments to the first-order approximation, i.e.,  

2 1 1u u u   , 2 1 1A A A     , 2 1 1      , 2 1 1                      (3.92)

where 1u  is a periodic function of   with a period of 2 . Substituting Eq. (3.92) into Eq. 

(3.81) and linearizing with respect to the correction terms 1u , 1  , 1  and 1A  , we achieve  
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          (3.93)

where the subscripts u and v denote the derivatives of ( )f u  and ( )h v  with respect to u  and v, 

respectively.  

 

Then, the harmonic balance method will be applied to solve Eq. (3.93) for 1u , 1  , 1  

and 1A  . Since ( ) ( )f u f u    and ( ) ( )h v h v   , 1( ( ))uf u   and 1( ( ))vh u    can be 

expanded into the following Fourier series: 

0
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where 

 (3.96)

 (3.97)

 

For the second-order approximate solution, we set  as 
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which satisfies the boundary conditions in Eq. (3.93). Substituting Eqs. (3.84), (3.85), (3.90), 

(3.91), (3.94), (3.95) and (3.98) into Eq. (3.93), expanding the resulting expression in a 
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trigonometric series and setting the coefficients of cos , sin  , cos 3  and sin3  to zero, 

we get  

 (3.99)

where  
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21 22 23 24
1
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where  

, , , 
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, , 31 0K  ,

, , 

, , , 

,  

(3.104)

Eq. (3.99) is an underdetermined system and will be solved in a least-squares sense to ensure 

the rationality of linearization in Eq. (3.93), Solving Eq. (3.99) for  1z  yields 

 (3.105)

Making use of Eq. (3.105) leads to 

 (3.106)

Subsequently, it can be deduced from the expression above that when 

 (3.107)

the norm  will arrive at its minimum. The least-norm solution to Eq. (3.99) is therefore 

given by Eqs. (3.106) and (3.107). Finally, the second-order approximation to the amplitude, 

frequency and phase of the resonance response can be written as 
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and the corresponding periodic solution is  
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1 1
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 (3.109)

 

In a similar manner, higher-order analytical approximations can be constructed by using 

the approximations , ,  and  in place of , ,  and , respectively, and 

repeating the similar procedures as mentioned above. 

 

 Results and Discussion 

Case 1: Asymmetric vibration of a doubly clamped microbeam with one-sided electrode 

due to a suddenly applied DC voltage 

In this section, analytical approximate solutions obtained by the NHB method for the 

proposed system are presented and compared with those results from the RungeKutta method. 

The geometrical and material parameters of the microbeam can be referred to Table 3.1. For 

reference, the exact frequency of the nonlinear system (3.68) is given by 

1 2
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The equilibrium points as well as the first-, second- and improved second-order initial 

frequencies obtained by the NHB method and the exact frequencies under different input 

voltages are listed in Table 3.3. It is observed that the vibration amplitude increases with an 

increase of the input voltage, while the frequency declines. When the input voltage is low, the 

first-order ( 1 ), second-order ( 2 ) and improved second-order ( *
2 ) frequencies all agree well 

with the exact solution ( e ). When the input voltage is near the DC dynamic pull-in voltage, 

the higher-order initial frequencies are still in good agreement with the exact solution.  

 

To further illustrate and verify the accuracy for the NHB method, the time-history 

responses of the microbeam mid-point deflection for the first-, second- and improved second-

order approximate solutions and the RungeKutta results are presented in Figs. 3.4(a) and 

2u 2A 2 2 1u 1A 1 1
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3.5(a), and the corresponding absolute errors between  1q t ,  2q t ,  *
2q t  and  numq t  are 

shown in Figs. 3.4(b) and 3.5(b). When the value of dcV  is close to the DC dynamic pull-in 

voltage, the improved second-order approximation is still in good agreement with the 

RungeKutta results. However, the first-order approximation is not sufficiently good, see Fig. 

3.5(b). 

 

Table 3.3: Equilibrium points and initial frequencies under different input voltage levels. 

V 
Equilibrium 
point 1  2  2   e  

2 0.0006 24.5815 24.5815 24.5815 24.5815 
5 0.0039 24.4768 24.4768 24.4768 24.4768 
8 0.0102 24.2969 24.2969 24.2969 24.2969 
12 0.0237 23.8758 23.8758 23.8758 23.8758 
14 0.0330 23.5950 23.5950 23.5950 23.5950 
16 0.0443 23.3545 23.3545 23.3545 23.3545 
18 0.0580 22.9785 22.9785 22.9785 22.9785 
20 0.0748 22.1461 22.1461 22.1461 22.1461 
22 0.0955 21.2774 21.2770 21.2770 21.2770 
24 0.1222 19.8367 19.8339 19.8430 19.8430 
25 0.1389 18.4935 18.4806 18.4811 18.4810 
25.5 0.1485 13.3114 12.5159 12.4416 12.3925 
26 0.1593 13.2852 12.5064 12.4346 12.3827 
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(a) 

 

 (b) 

Fig. 3.4: (a) Time-history responses for 20dcV  ; (b) Comparison of the absolute errors 

between the approximate and numerical solutions in this case. 
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(a) 

 

 (b) 

Fig. 3.5: (a) Time-history responses for 25.5dcV  ; (b) Comparison of the absolute errors 

between the approximate and numerical solutions in this case. 
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Case 2：Resonance response of a doubly clamped microbeam with two-sided electrodes 

actuated by a bias DC voltage and an AC harmonic voltage 

In this section, a case study of the doubly-clamped microbeam with two-sided electrodes 

actuated by a DC voltage and a harmonic AC voltage is presented. The geometrical and 

material parameters of the microbeam are given in Table 3.1. The frequency-amplitude curves 

derived by the NHB and RungeKutta methods for three different sets of electric loads, i.e., (i) 

Vdc = 8 V and Vac = 0.2 V; (ii) Vdc = 12 V and Vac = 0.07 V; and (iii) Vdc = 16 V and Vac = 0.01 

V, are depicted to show the accuracy of the proposed analytical method and investigate the 

steady-state dynamic behavior of the microbeam. Based on these three examples, we obtain the 

corresponding normalized parameters as follows: 

(i) 0.123511c   , 1 728.474    , 2 561.989   , 1 136.442    , 2 505.355    , 

3 1581.48   , 0 1.41706F  . 

(ii) 0.104213c   , 1 728.474   , 2 561.989   , 1 306.996    , 2 1137.05    , 

3 3558.33   , 0 0.743957F  . 

(iii) 0.0686132c   , 1 728.474   , 2 561.989   , 1 545.77    , 2 2021.42    , 

3 6325.92   , 0 0.141706F  . 

 

Consider the present three cases, a comparison of the first- and second-order approximate 

frequency-amplitude responses 1( )q   and 2 ( )q   and the numerical results ( )numq   given by 

the RungeKutta method is presented in Figs. 3.63.8, respectively. Note that   here is the 

external forcing frequency   as stated in Eq. (3.27). Here, the stable and unstable solutions, 

determined by the Floquet theory (Nayfeh and Mook, 1995), are represented by the solid and 

dashed lines, respectively. The red and blue lines, respectively, denote to the first- and second-

order analytical approximations of the frequency-amplitude responses, while the black circle 

dots represent the RungeKutta results. In Figs 3.63.8, the analytical approximation and 

numerical solutions are mainly consistent in the whole frequency range near the resonant 

frequency. In order to get a closer investigation, Figs. 3.6(c), 3.7(c), and 3.8(c) respectively 

depict the corresponding absolute errors between 1( )q  , 2 ( )q  , and ( )numq   in each case 

between two jumping points. These figures clearly indicate that the second-order analytical 

approximation provides better solutions to the numerical results. The primary resonant 

response of the nonlinear system is examined by varying the frequency of excitation around 

the first linear natural frequency of the system. It is noted that the first natural frequency of the 
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microbeam decreases with increasing the DC voltage. We observe from these figures that the 

first non-dimensional natural frequencies of the microbeam for the three cases are 24.33, 20.53, 

and 13.52, respectively.  

 

In this model, two factors, i.e., electrostatic force and geometrical nonlinearity, are 

considered. The nonlinear electrostatic force tends to yield a softening behavior while the 

geometrical nonlinearity tends to yield a hardening behavior. It can be observed that 

nonlinearity caused by the electrostatic force is dominant in these three cases since the 

nonlinear resonance peaks are all bent to the left-hand side. Besides, the amplitude of the 

microbeam mid-point increases as the excitation frequency decreases from a value larger than 

the corresponding first linear frequency until reaching to point A, i.e., nonlinear resonance. At 

this point, the motion becomes unstable via a limited point bifurcation, thereby causing the 

system to jump to the lower-amplitude stable branch, as indicated by the black arrows. The 

system shows different dynamic responses as the excitation frequency increases from a low 

value. In this case, instability occurs at point B due to a limited point bifurcation. The system 

then jumps to the upper-amplitude stable branch as indicated by the black arrows. 
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(a)                                        (b) 

 

 (c) 

Fig. 3.6: (a) First-order approximate frequency-amplitude response for Vdc = 8 V and Vac = 

0.2 V; (b) Second-order approximate frequency-amplitude response for Vdc = 8 V and Vac = 

0.2 V; and (c) Comparison of the absolute errors between the approximate and numerical 

solutions. (Note that   is the external forcing frequency   as stated in Eq. (3.27).) 
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(a)                                    (b) 

 

 (c) 

Fig. 3.7: (a) First-order approximate frequency-amplitude response for  Vdc = 12 V and Vac = 

0.07 V; (b) Second-order approximate frequency-amplitude response for Vdc = 12 V and Vac = 

0.07 V; and (c) Comparison of the absolute errors between the approximate and numerical 

solutions. (Note that   is the external forcing frequency    as stated in Eq. (3.27).) 
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(a)                                   (b) 

 

 (c) 

Fig. 3.8: (a) First-order approximate frequency-amplitude response for Vdc = 16 V and Vac = 

0.01 V; (b) Second-order approximate frequency-amplitude response for  Vdc = 16 V and Vac 

= 0.01 V ; and (c) Comparison of the absolute errors between the approximate and numerical 

solutions. (Note that   is the external forcing frequency    as stated in Eq. (3.27).) 
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 Concluding Remarks 

In this chapter, the nonlinear free and forced vibration responses of MEMS microbeams 

are studied. We mainly focus on the development of lower-order analytical approximation 

solutions based on the NHB method for such problems, in which simple and accurate analytical 

expressions can be obtained. On the one hand, the asymmetric vibration of a doubly clamped 

microbeam with a one-sided electrode due to a suddenly applied DC voltage is investigated. 

The integral-differential governing equation of this beam model is transformed into a second-

order ordinary differential equation having odd and even nonlinearities through the Galerkin 

method. As the electrostatic force term of this nonlinear system is not able to be integrated 

analytically, such that it is expanded by using a Taylor series around the equilibrium position 

of this system instead of the initial position of the system in regard to accuracy. The resultant 

nonlinear equation can then be solved by the NHB method. The analytical results are in 

excellent agreement with the numerical results obtained by the standard RungeKutta method 

for the whole stable regime, even when Vdc is extramely near the DC dynamic pull-in voltage. 

The accuracy of the second-order NHB method has therefore been verified for the strongly 

nonlinear system. By increasing the input voltage, the results show that the vibration amplitude 

increases as the frequency decreases.  

 

On the other hand, the primary resonance effect of a doubly-clamped microbeam with two-

sided symmetric electrostatic actuation as well as harmonically electrostatic loads on one side 

is also investigated. Accurate frequency-amplitude responses near the first natural frequency 

of the system are derived by means of the analytical approach. Consider various electrostatic 

loads, the relationship between the vibration amplitude and natural frequency of the microbeam 

is established. It is found that a softening effect due to the nonlinear electrostatic force is 

dominant in this case. Based on the present approach, this offers an efficient and reliable avenue 

to further analyze the nonlinear dynamics of complex MEMS resonators subjected to various 

external excitation levels.  
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Chapter 4  

NANO-STRUCTURAL DEPENDENCE OF NONLOCAL 

DYNAMICAL BEHAVIOR 

  

 Introduction 

As mentioned in the previous study, the effect of material length scales in the study of 

structures at micro-/nano-scales cannot be ignored and the nonlocal continuum elastic stress 

field theory is used to capture the small-scale effects of micro-/nano-scale structures. This 

chapter will focus on determining the upper limit of this nonlocal scale parameter through a 

dynamic analysis for various nanostructures. In Section 4.2, the nonlocal elasticity theory is 

briefly reviewed. In Section 4.3, three illustrative cases, the axial vibration of nanorods, 

transverse vibration of nanobeams, and free vibration of nanoplates, are used to determine the 

upper limit of the nonlocal scale parameter. In Section 4.4, the present results are discussed 

and confirmed by the previous studies. Finally, the key findings of this work are drawn in the 

last section. 

 

  Nonlocal Elasticity Theory 

In generalized continuum mechanics, the nonlocal elasticity theory is used to predict the 

mechanical properties of nanomaterials by introducing the size-dependent constitutive 

parameters that can consider the intrinsic scale effect. The fundamental constitutive equation 

of the nonlocal elasticity theory in a differential form is given by (Eringen, 1983) 

 2 2
01 e a     t σ  (4.1)

where t  is the nonlocal stress tensor, σ  is the classical (local) stress tensor determined by the 

classical continuum mechanics theory, 2 is the Laplacian operator, e0  is a material parameter 

and a is an internal characteristic length. The nonlocal differential constitutive relation (4.1) 

can be reduced to the classical one when the parameter e0a tends to zero. Therefore, nonlocal 

stress is identical to the classical one under the condition of e0a = 0. Actually, the classical 

theory is one of the simplified versions in generalized continuum mechanics and it can be 

treated as a special case of the nonlocal elasticity theory. 
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Based on a nonlocal framework, the product of e0a was introduced as the nonlocal scale 

parameter by Eringen (1983), aimed at forming a nonlocal kernel function and measuring the 

contribution of the strains at other points to the stress at a specific point. With increasing the 

distance between other points and the specific point, the influence of the strains at other points 

will be weakened. The nonlocal scale parameter is used to determine a domain where the scale 

effect must be taken into consideration, while it can be neglected outside this parameter regime. 

For classical materials/structures at macro-scales, the nonlocal scale effect can be neglected. 

However, the scale effect should be considered for nanomaterials/structures when the external 

characteristic scale is at the same level as the internal characteristic scale. Under such 

circumstances, the nonlocal scale parameter plays a crucial role to quantify the length scale 

effect.  

 

The differential constitutive equation has been extensively applied to study the size-

dependent effect of nanostructures under various scenarios, including static deformation, 

buckling, vibration, wave propagation, dislocation, and damage mechanics. Indeed, 

nanomaterials can be modeled by different structural forms, such as nanowires, nanorods, 

nanotubes, nanobeams, nanoplates, and nanoshells. The present work is concerned with the 

upper limit of the nonlocal scale parameter. For this purpose, we investigate the scale range in 

dynamical behavior by taking three nanostructures for illustration. The nonlocal dynamics of 

nanostructures may differ from each other, implying the structural dependence of nonlocal 

dynamical behavior. Nevertheless, the effect of dynamic behavior is attributed to the factor of 

different structural characteristics, rather than the nonlocal scale effect. Consider various 

nanostructures made of the same material, the nonlocal scale effect has a commonality. This is 

the motivation of the present study, in which the upper limit of the nonlocal scale parameter 

can be determined according to the nonlocal softening mechanism. 

 

  Dynamic Analysis of Structural Elements 

4.3.1 Axial Vibration of Nanorods 

To show the characteristics of the nonlocal softening model, the formulations of the 

equation of motion for the axial vibration of nanorods based on the nonlocal differential 

constitutive relation and the classical equation of motion are presented herein. For a uniform, 

axially vibrating nanorod with a mass density   and a cross-sectional area A, we consider an 

element dx of the nanorod. The internal forces (i.e. axial force) on both sides of the element are 
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N  and N N x dx   , respectively. Hence, the classical equation of motion in an axial 

direction can be written as 

2

2

u N
Adx N dx N

t x
        

 (4.2)

where u is the axial displacement, x is the axial coordinate and t is time. In fact, Eq. (4.2) can 

be treated as an equilibrium equation with the inertial force 2 2Adx u t   according to the 

dynamic-static method. 

 

Consider the one-dimensional expression of Eq. (4.1) for nanorods, we can multiply A on 

both sides of the one-dimensional nonlocal constitutive equation, and then we obtain 

2
2

0 2
( )

N
N e a EA

x


 


 (4.3)

where N A  and E   are adopted, in which E is the Young’s modulus,   is stress and 

  is strain. The first partial derivative of Eq. (4.3) with respect to x is given by 

3 2
2

0 3 2
( )

N N u
e a EA

x x x
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 
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 (4.4)

in which the classical relation between the strain and the displacement (geometric equation) 

u x    is used. From Eq. (4.2) we obtain 

2

2

N u
A

x t
 


 

 (4.5)

3 4

3 2 2

N u
A

x x t
 


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 (4.6)

Substitution of Eqs. (4.5) and (4.6) into Eq. (4.4) yields the nonlocal softening based governing 

equation of motion for nanorods as 

 
2 4 2

2

02 2 2 2

u u u
e a E

t x t x
   

 
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 (4.7)

It is found that the nonlocal softening model is developed by combining the nonlocal 

constitutive relation with the classical equation of motion (or equilibrium equation). It is noted 

that the same result with Eq. (4.7) was derived by Aydogdu (2009). The solution to Eq. (4.7) 

can be obtained via the method of separation of variables as 

 
   

2 2

1 22 22 2
0 0

, sin cos ni tn n
n n n

n n

u x t C x C x e
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where n  (n=1,2,3,…) are circular frequencies for the axial vibration of nanorods with mode 

numbers n, and C1n and C2n are undetermined coefficients.  

 

If the axial displacement related to the circular frequency of each mode is obtained, the 

general solution for the axial displacement of nanorods can be achieved after the superposition 

of each mode. Consider a fixed boundary constraint at both ends of a nanorod, we have 

0,
0

x L
u


   (4.9)

where L is the length of the nanorod. The circular frequencies can then be determined 

analytically by combining Eq. (4.8) with (4.9), as 

 

2 2
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n

n E

L n e a


  




  (4.10)

This implies that the circular frequencies decrease with an increase in the nonlocal scale 

parameter, and the scale parameter may increase all the time mathematically. By choosing the 

parameters L=10 nm, E=1.06 TPa, ρ=2250 kg/m3, we can plot the effect of the circular 

frequency against the nonlocal scale parameter numerically in Fig. 4.1. It is observed that the 

circular frequencies of an axially vibrating nanorod decrease slowly at the beginning of 

increasing the nonlocal scale parameter. Subsequently, the frequencies decrease rapidly when 

the nonlocal scale parameter reaches a certain value (e.g., e0a > 0.2 nm). Although the 

frequency curves decline all the time, they remain smooth in general. Based on this case, it is 

hard to conclude that there exists an upper limit of the nonlocal scale parameter for the axial 

vibration of nanorods because an infinity value is meaningless from a physical perspective. 

 

The procedures of how to derive the governing equation using the nonlocal softening 

model are given above. It should be mentioned that the classical equilibrium equation or 

equation of motion is also available for the nonlocal hardening model. Therefore, not only the 

softening model but also the hardening model can be derived from the classical equations. The 

major difference is the expressions of relevant physical quantities used in two nonlocal models. 

When we still consider the axial vibration of nanorods, the expressions of the nonlocal stress 

in the softening and hardening models are, respectively (Lim, 2010b) 

 2 2
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m m
xx xx

m

t E e a 




    (4.11)
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 
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    (4.12)

where the superscript 2m  denotes the (2m)th-order derivative with respect to the axial 

coordinate. The classical stress σxx=Eεxx is recovered in case of vanishing the nonlocal scale 

parameter in Eqs. (4.11) and (4.12). 

 
 

Fig. 4.1: Effect of the nonlocal scale parameter on the circular frequencies of a clamped 

nanorod. 

 

Taking another example for the torsion of nanorods, the dimensionless twisting moment 

based on the nonlocal softening model is expressed as (Li, 2014a) 

2 12 2

1

nn

n

T  






   (4.13)

where τ is the non-dimensional nonlocal scale parameter, θ is the torsional angle. In the 

nonlocal hardening model, it should be replaced by (Li, 2014a) 

  2 12
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2 1 nn

n

T n  






     (4.14)

which was derived through the variational principle (Li, 2014a). For both models, the same 

equilibrium equation 1
mT t   can be used, where mt  is a distributed torsional load per unit 

length. Nevertheless, the expression of the twisting moment T  for the nonlocal hardening 

model is different from that of the softening model. 
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4.3.2 Transverse Vibration of Nanobeams 

Based on the nonlocal softening model, we further investigate the transverse vibration of 

nanobeams. First, the classical equation of motion for the transverse vibration of nanobeams is 

given by 

2 2

2 2
0

M w
A

x t
 

 
 

  (4.15)

where M is the bending moment, w is the transverse displacement, A is the rectangular cross-

sectional area of the nanobeam (= breadth (b)  height (h)). To consider the one-dimensional 

expression of Eq. (4.1) for nanobeams, we multiply A on both sides of the one-dimensional 

nonlocal constitutive equation and then obtain 

2 2
2

0 2 2
( )

M w
M e a EI

x x

 
  

 
 (4.16)

where 2

A
I y dA   is the area moment of inertia, xx

A

M yt dA   and 
2

2

w
E Ey

x
  
  


. 

 

From Eqs. (4.15) and (4.16), we get 
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  (4.17)
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 (4.18)
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 (4.19)

Substituting Eqs. (4.17) and (4.18) into (4.19), one derives the following equation of motion of 

a nanobeam as 

 
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w w w
A A e a EI

t x t x
   
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  (4.20)

It is also found that the governing equation (4.20) is constructed by the one-dimensional 

nonlocal differential constitutive relation and classical equations. This accords with the basic 

derivation procedures of the nonlocal softening model. A similar governing equation was 

derived by Lim and his associates (Lim et al., 2010b). In this case, a simply-supported boundary 

condition is applied at both ends of the nanobeam, that is 

2

20,
0,

0; 0
x L

x L

w
w

x



 


 (4.21)
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Consider Eqs. (4.20) and (4.21), the following displacement form is assumed as 

 , sin ni t
n n

n x
w x t W e

L


  (4.22)

where n = 1,2,3,… and it satisfies the boundary conditions above. The general form of the 

transverse displacement can be obtained by superposing all the vibration modes and circular 

frequencies, given by 

 
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, sin ni t
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n

n x
w x t W e

L




  (4.23)

Substituting the trial solution of Eq. (4.22) into Eq. (4.20) yields 
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To demonstrate the relationship between the circular frequency and the nonlocal scale 

parameter for a rectangular nanobeam, the following parameters are selected: E=1.06 TPa, 

ρ=2250 kg/m3, and L=10 nm. The dimensions of the rectangular section are taken as b=1.5 nm, 

h=0.34 nm, A=0.51 nm2, and I=4.913×10-3 nm4. Relevent numerical results are presented in 

Fig. 4.2. 

 

Fig. 4.2: Effect of the nonlocal scale parameter on the circular frequencies of a simply-

supported nanobeam. 

 

The pattern shown in Fig. 4.2 is similar to the axial vibration of nanorods in Fig. 4.1. In 

this case, the circular frequencies decrease with increasing the nonlocal scale parameter for a 



 

  79

simply-supported nanobeam. However, the slope of the frequency curves or the frequency 

decrease rate is different from that of a nanorod. The circular frequencies decrease rapidly at 

an early stage of increasing the nonlocal scale parameter from zero. After that, the frequency 

decrease rate slows down gradually. In Eq. (4.24), it seems that the nonlocal scale parameter 

may increase continuously in theory, similar to that of the axial vibration of nanorods. 

Nevertheless, it is difficult to understand why the nonlocal scale parameter can be chosen 

arbitrarily. What is the physical meaning of an infinite nonlocal scale parameter, and how to 

explain the principle for selection of the nonlocal scale parameter? We believe there is an upper 

bound for the nonlocal scale parameter in the vibration of nanorods and nanobeams but not 

shown in those examples. Therefore, we consider the free vibration of nanoplates in the next 

section, as there is no essential difference in the nonlocal softening dynamics of nanorods, 

nanobeams, and nanoplates.  

 

Although the nonlocal dynamical behavior reveals the nano-structural dependence due to 

different structural properties, the mechanism of the nonlocal scale effect appeared in nanorods 

and nanobeams should coincide with that of nanoplates. This is because different 

nanostructures with the same material can be converted to each other. For example, a carbon 

nanotube and a graphene nano-ribbon can be produced from a graphene sheet as shown in Fig. 

4.3, where the carbon nanotube, graphene nano-ribbon, and graphene sheet can be modeled as 

structures of a nanorod, a nanobeam, and a nanoplate, respectively. The nonlocal scale effect 

of such nanostructures should be qualitatively consistent with that of graphene sheet because 

the nonlocal scale effect is reflected by the nonlocal scale parameter e0a, which completely 

depends on the properties of specific materials.  

 

In fact, we can explain the reason why the upper limit of the nonlocal scale parameter 

disappears in the previous examples. In the abovementioned calculations, it is convenient to 

insert Eq. (4.22) rather than the summation Eq. (4.23) into Eq. (4.20), resulting in a simple 

expression (4.24). If we consider the nonlocal differential constitutive relation (4.1) and 

transform it into the nonlocal differential equation for a bending moment, we can acquire the 

bending moment by solving the nonlocal differential equation. Then, substituting the nonlocal 

bending moment into the classical equation of motion yields 

   
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Fig. 4.3: Conversion between graphene sheet, carbon nanotube, and graphene nano-ribbon. 

 

Equation (4.25) includes higher-order nonlocal terms, this is the exact version of the 

nonlocal governing equation for nanobeams. Some different results can be obtained from Eq. 

(4.25), and the upper limit of the nonlocal scale parameter may arise in the solution procedures. 

Similarly, the modified governing equation for the axial vibration of nanorods can be derived 

as 
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4.3.3 Free Vibration of Nanoplates 

In this section, we further consider the free vibration of nanoplates. As shown in Fig. 4.4, 

La, Lb, and h are length, width, and thickness of a nanoplate, respectively. Consider the nonlocal 

two-dimensional differential constitutive relations, one obtains 
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 (4.27)

where  ,ii i x y   and  , ,ij i j x y   are stresses,  ,ii i x y   and  , ,ij i j x y   are strains, 

and μ is the Poisson’s ratio.  
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Fig. 4.4: Schematic of a simple nanoplate. 

 

According to the geometric equations of a plane problem in classical, we can derive the 

nonlocal constitutive equations for nanoplates by ignoring the in-plane displacements at the 

neutral plane in x and y directions, as follows 
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 (4.28)

Besides, the correlation between the nonlocal bending moment and the displacement can be 

expressed as (Murmu and Pradhan, 2009b) 
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 (4.29)

where D=Eh3/12(1−μ2) is the bending rigidity defined in classical elasticity mechanics. The 

nonlocal bending moment relations in Eq. (4.29) can be reducible to the classical counterparts 

when the nonlocal scale parameter is set to zero. The components of the nonlocal bending 

moment per unit length can be obtained by solving Eq. (4.29), given by 
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Employing the classical theory of elasticity, the equilibrium equation for a thin-plate in 

terms of the internal force (bending moment) can be expressed as 
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where q is the transverse load per unit area. Substituting Eq. (4.30) into Eq. (4.31) yields the 

nonlocal governing differential equation for the free vibration of nanoplates (Liu et al., 2016) 
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where N=1,2,3,…,∞. Note that inertia forces are contained in the transverse load by considering 

the translation and rotation motions. Besides, only the first few terms of the infinite series in 

Eq. (4.32) are taken into account in most previous studies (e.g., Lim, 2010a; Anjomshoa et al., 

2014), other higher-order terms can be neglected. It is not clear whether the higher-order items 

should be abandoned. Unlike the previous studies, we consider all the higher-order terms of 

Eq. (4.32) in the present work. For simplicity, a simply-supported condition is applied to all 

plate edges as an example, we can write the boundary conditions as 
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 (4.33)

Assume that the displacement of a nanoplate is expressed as 

 , , sin sin mni t
mn

a b

m x n y
w x y t W e

L L
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  (4.34)

where m, n=1,2,3,… are half-wave numbers. It is obvious the assumed displacement function 

can satisfy the boundary conditions in Eq. (4.33). 
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Making use of the Rayleigh-Ritz method (Thorby, 2008), the circular frequencies for the 

free vibration of simply-supported nanoplates can be obtained as 
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We found that there is an upper limit of the nonlocal scale parameter in the free vibration of 

nanoplates. For this purpose, the infinite series in Eq. (4.35) is considered gradually. When 

N=0, the nonlocal circular frequencies become the classical counterparts, and it is independent 

of the nonlocal scale parameter. When N=1, it must satisfy 
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 (4.36)

Hence, one obtains 
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When N=2, we get 
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  (4.38)

The admissibility of Eq. (4.38) is satisfied naturally for selecting the nonlocal scale parameter 

arbitrarily. Furthermore, it is easily proved that the requirement of the nonlocal scale parameter 

in the case of N=2s+1 is identical to the case with N=1, while the case of N=2s is the same as 

N=2, i.e., no upper limit of e0a is required when N=2s in Eq. (4.35). It seems that the required 

condition of the nonlocal scale parameter is only summarized in Eq. (4.37), as Eq. (4.38) makes 

no demand. Under this circumstance, the ratio of the geometrical sequence in the brace of Eq. 

(4.35) is less than 1. Consequently, the circular frequencies can be written as 
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According to Eq. (4.39), the nonlocal scale effect on the free vibration of nanoplates is 

plotted in Fig. 4.5. Note that the upper limit of the nonlocal scale parameter can be calculated 

from Eq. (4.37) with the following parameters: La=Lb=10 nm, h=0.34 nm, E=1.06 TPa, μ=0.25 

and ρ=2250 kg/m3 (Shen et al., 2012b). It shows that the circular frequencies decrease slowly 

at the beginning of increasing the nonlocal scale parameter. When the nonlocal scale parameter 

arrives at a certain value, the decrease rate of the circular frequency curves becomes faster. 

There is a common upper limit for the nonlocal scale parameter in Fig. 4.5 and it is the 

minimum one determined from Eq. (4.37). 

 

In Fig. 4.5, the analysis is not fully correct because the nonlocal scale parameter in Eq. 

(4.38) cannot be chosen freely. The tenability of the inequality (4.38) is always valid with the 

arbitrary parameter e0a mathematically. There is a sudden increase for the circular frequencies 

caused by arbitrarily choosing the nonlocal scale parameter, thereby causing a contradictory to 

the nonlocal softening model. We can explain it as follows. By selecting different terms in the 

infinite series of Eq. (4.35), we show some numerical examples for the effect of the nonlocal 

scale parameter on vibration frequencies, where the parameters (Shen et al., 2012b) are still 

adopted. It is noted that the Galerkin method was used to solve the natural frequencies of 

nanoplates in (Shen et al., 2012b). When different terms of the infinite series are taken (e.g., 

N=1, 2, and 20), the first four order modes are presented in Fig. 4.6, Fig. 4.7 and Table 4.1. As 

mentioned, there are two nonlocal elasticity models. In this study, we use the nonlocal softening 

model, the equivalent stiffness of nanostructures should decrease as compared with the stiffness 

predicted directly by the classical continuum theory. In other words, the vibration frequencies 

based on the nonlocal theory are smaller than that of the classical elasticity theory.  

 

Using Eq. (4.37) and the parameters listed above (Shen et al., 2012b), we can calculate the 

limit values of the nonlocal scale parameter e0a as nm for m=n=1 (ω11), nm for m=1 and n=2, 

or m=2 and n=1 (ω12 or ω21), nm for m=n=2 (ω22), respectively. Hence, the common upper 

limit of the nonlocal scale parameter for the first four order modes with N=1 is nm. Accordingly, 

the effect of the nonlocal scale parameter on the first four order modes is shown in Fig. 4.6 for 

N=1, where the upper limit of the nonlocal scale parameter is utilized for the range of the 

horizontal axis. It is seen that the nonlocal circular frequencies (e0a>0) are smaller than of the 

classical ones (e0a=0). This is consistent with the viewpoint of the nonlocal softening model. 

As aforementioned, the case of odd number terms N=2s+1 is the same as N=1. In the present 
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work, we only consider the first four order modes, which can reflect some fundamental and 

remarkable findings. 

 

 

Fig. 4.5: Effect of the nonlocal scale parameter on the circular frequencies of a simply-

supported nanoplate. 

 

 

 

Fig. 4.6: Variation of circular frequencies with respect to nonlocal scale parameter for N=1. 
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Unlike the cases of N=1 and N=2s+1, the calculation results of N=2 show that the nonlocal 

circular frequencies decrease with increasing the nonlocal scale parameter, and so the nonlocal 

frequencies are smaller than the corresponding classical counterparts involving e0a=0 when the 

nonlocal scale parameter is not too large, as illustrated in Fig. 4.7. When the nonlocal scale 

parameter exceeds a certain critical value, a reversed relationship between the circular 

frequency and the nonlocal scale parameter occurs, i.e., the nonlocal circular frequencies 

increase with an increase in the nonlocal scale parameter, as illustrated in Fig. 4.7(a) where 

only ω11 with a relatively larger range of nonlocal scale parameter is taken as an example. 

Obviously, it opposes the mechanism of the nonlocal softening model adopted in this work. 

Consequently, the upper limit of the nonlocal scale parameter can be determined accordingly, 

that is, the critical value of the nonlocal scale parameter that causes an opposite performance 

of the circular frequencies is the upper limit of that nonlocal scale parameter.  

 

 

  

(a) (b) 

 

(c) 

Fig. 4.7: Variation of circular frequencies with respect to the nonlocal scale parameter 

for N=2.  
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Table 4.1: Variation of circular frequencies with respect to the nonlocal scale parameter  

for N=20. 

e0a (nm) ω11 (×1012 rad/s) ω12 or ω21(×1012 rad/s) ω22 (×1012 rad/s) 

0 0.43389 1.08319 1.73065 

0.2 0.43219 1.07265 1.70395 

0.4 0.42720 1.04280 1.63071 

0.6 0.41925 0.99815 1.52716 

0.8 0.40884 0.94429 1.41057 

1.0 0.39652 0.88635 1.29822 

1.2 0.38288 0.82850 4.70856 

1.4 0.36843 0.94479 106.27974 

1.6 0.35364 8.40973 1611.47657 

1.8 0.33887 92.76365 17616.03573 

2.0 0.32548 792.50489 148927.27052 

2.2 0.36496 5494.30464 1.02349×106 

  

Although the nonlocal scale parameter seems to be chosen freely when N=2 from Eq. 

(4.38), the upper limits of the nonlocal scale parameter in the first four order modes should be 

1.6 nm, 1.0 nm, 0.8 nm, respectively, in Figs. 4.7(a)(c), in order to confirm the physical 

implication of the nonlocal softening phenomenon. Hence the common upper limit of the 

nonlocal scale parameter in these cases is 0.8 nm. In addition, the nonlocal material parameter 

e0 can also be determined by considering the magnitude of the internal characteristic length a. 

For a carbon material (the nanoplate model corresponds to a graphene sheet), a=0.142 nm, and 

hence e0=5.63 is obtained. Because the actual value is unknown, e0 was usually assumed as a 

range of 0~14 (Murmu and Pradhan, 2009c; Liang and Han, 2014) or 0~19 (Duan et al., 2007) 

in numerical examples. The present value e0=5.63 falls within these intervals. 

 

In Table 4.1, the results for N=20 are presented. The first four order modes decrease with 

increasing the nonlocal scale parameter first, but the trend changes and the circular frequencies 

increase dramatically. For example, increasing the nonlocal scale parameter from 1.0 nm to 2.2 

nm, the first four order modes surge from 0.14 THz (ω12 = 0.88635×1012 rad/s) and 0.21 THz 

(ω22 = 1.29822×1012 rad/s) to 874.45 THz (ω12 = 5494.30464×1012 rad/s) and even 1.63×105 

THz (ω22 = 1.02349×1018 rad/s), respectively. There is an enormous change in the order of 

magnitude of circular frequencies inconceivably. On one hand, the nonlocal softening model 

requires the reduction of the frequency or the stiffness. On the other hand, it is difficult to 
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explain the great leap of circular frequencies from a physical perspective. Therefore, the 

common upper limit of the nonlocal scale parameter for the first four order modes is 1.0 nm 

when N=20. A similar conclusion can be achieved for even number terms N=2s. Although 

specific values of the upper limit may be different in even numbers, the change is relatively 

small. That means the upper limit of the scale parameter e0a or the material parameter e0 is 

related to the selected number of terms N and the frequency orders m and n, but such effects 

do not affect the qualitative conclusion in this study. 

 

Having determined the upper limit of the scale parameter, we conclude that the circular 

frequencies would reduce with increasing the scale parameter, which coincides with the point 

of the nonlocal softening model. In addition, the degree of change is not identical for different 

modes. For example, with an increase of e0a from 0 to 0.8 nm in Table 4.1, the decrease 

percentages are 5.77%, 12.82%, and 18.49% for ω11, ω12 (ω21), and ω22, respectively. 

Consequently, the extent of variation becomes dominant for higher modes. In fact, the higher 

circular frequencies correspond to shorter wavelengths, resulting in higher energy. The energy 

loss is more significant for higher energy in vibration due to various physical factors, including 

both nonlocal and classical contributions. Hence, the nonlocal scale parameter makes the 

higher circular frequencies decline more obviously. 

 

We also calculate the natural frequencies with N=0, which are f11=433.89/2π GHz, 

f21=f12=1083.19/2π GHz, and f22=1730.65/2π GHz. These are exactly the classical results for 

the free vibration of simply supported plates without a nonlocal scale effect using the 

parameters listed above. They are in good agreement with the previous studies (Shen et al., 

2012b; Pradhan and Kumar, 2011). However, there are no research studies concerned with the 

upper limit of the nonlocal scale parameter previously, and the similar form of Eq. (4.39) was 

derived and utilized in most studies. As indicated earlier, Eq. (4.39) is actually not correct 

because the upper limit of the nonlocal scale parameter is not considered and involved 

appropriately. Besides, the classical natural frequencies fmn are identical to the results under the 

condition of e0a=0 in Fig. 4.6, Fig. 4.7 and Table 4.1. This confirms the present models and 

calculations.  

 

  Results and Discussion 

In the previous section, an upper bound of the nonlocal scale parameter is obtained. 

Consider various nano-based structures, the nonlocal scale parameter indicates different effects 
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on structural dynamical behavior. Hence, it appears the structure-dependent property of 

nonlocal dynamics. For the axial vibration of nanorods and the transverse vibration of 

nanobeams, the circular frequencies always decrease with increasing the nonlocal scale 

parameter, but the decrease rates are different. While for the free vibration of nanoplates, the 

frequencies decrease first and then increase abruptly with increasing the nonlocal scale 

parameter. The behavior of nonlocal dynamics may be different for different nanostructures, 

but the trend of the nonlocal scale effect must be the same due to the same concept of the 

nonlocal theory. Therefore, there exists an upper bound of the nonlocal scale parameter 

according to the physical implication of the nonlocal softening model. This upper limit should 

be common for various nano-based structures because the nonlocal scale effect in nano-

mechanics is identical. We can take 0~0.8 nm as a range of e0a while studying the nonlocal 

scale effect in the dynamical behavior of nanostructures. The physical meaning of this range is 

that one has to account for the scale effect if the structural external characteristic length scale 

is at the same level as the nonlocal scale parameter, i.e., l ≈ Ne0a ≈ 0.8N where N<10. 

 

The present analysis can be confirmed by the previous studies, Lim (2010b), Li (2014), 

and Liu et al. (2016) derived the nonlocal stress from the nonlocal differential constitutive 

relation in Eq. (4.1) for nanobeams, nanorods, and nanoplates, respectively. The unified form 

of solutions can be written as  2 2
0

0

:
n n

n

e a




 t C ε , where C  is the elastic coefficient tensor 

and ε is the strain tensor. The boundness of the nonlocal scale parameter can also be implied 

from the solution in order to ensure the convergence of the nonlocal stress. Wang et al. (2011) 

concluded that the nonlocal scale effect is related to the surface effect for the vibration of 

nanoplates. The wavelengths in x and y directions are 2x aL m   and 2y bL n  , 

respectively. An equivalent wavelength is defined as 2 1x      where y x   . After 

that, a critical equivalent wavelength  019.12cr e a   for a significant nonlocal scale effect is 

determined. Because the equivalent wavelength cannot be lower than its critical value, i.e. 

cr  , otherwise the scale effect is so weak that one can ignore it. The range of 0e a  is in the 

order of magnitude 0~0.74 nm for the fundamental frequency via cr  . Although the 

nonlocal scale parameter was not involved in the work by Wang et al. (2011), the upper limit 

of the nonlocal scale parameter derived from the work is basically in accordance with the 

results suggested in the present study. 
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On the other hand, Liang and Han (2014) also investigated the nonlocal scale parameter 

for graphene sheets and proposed a formulation (e0a)2 = R2/8 where R is the radius of a nonlocal 

influence domain. Until recently, the area of the nonlocal influence domain is still not clear. 

Because the nonlocal scale effect stems from the long-range interactions between atoms, we 

can consider how long the distance from other points to a specified point (i.e. the center of the 

nonlocal influence circle) is, with significant long-range interactions. Edelen (1976) pointed 

out that the long-range interaction for electrostatic forces between non-adjacent atoms in 

crystal materials can arrive at the order of magnitude of tenfold lattice distance. At a nano-

scale, such an acting distance can be considered to be of a long-range. If the radius of a nonlocal 

influence circle is selected as R=15a, this is no longer valid for the nonlocal long-range 

interaction as the radius exceeds 15a. Hence, we can deduce that the range of e0a is in the order 

of magnitude 0~0.75 nm. This result supports the claim of this study again. 

 

Moreover, Wang et al. (2008) evaluated the nonlocal scale parameter for achiral and chiral 

single-walled carbon nanotubes (SWCNTs). The value of e0a=0.7 nm was recommended for 

the application of the nonlocal theory in the estimation of the stiffness of CNTs. Such a result 

was verified through comparison studies using molecular dynamics (MD). Ansari et al. (2011) 

further investigated the nonlocal scale parameter for double-walled carbon nanotubes 

(DWCNTs) with different aspect ratios and boundary conditions. The solutions of a nonlocal 

shell model are consistent with the results of MD simulations, in terms of predicting the 

vibration behavior of various armchair and zigzag DWCNTs. Specifically, the range of e0a 

(about 0~0.92 nm) was proposed for different types of chirality and boundary conditions. This 

further verify the correctness of the present study.  

 

  Concluding Remarks 

In this study, we discussed the approach to determine the upper bound of the nonlocal scale 

parameter, which is used to account for the influence of material length scales in the study of 

mechanics of solid structures at micro-/nano-scales. The size-dependence of nonlocal dynamic 

behavior is demonstrated. According to the present analysis, we can take 0~0.8 nm as a range 

of e0a for studying the nonlocal scale effect in the dynamical behavior of nanostructures. The 

results are compared with the available solutions to confirm its validity. The puzzling question 

is solved accordingly, and the present work provides a basis for the choice of a nonlocal scale 

range when studying the mechanical properties of nanostructures by using the nonlocal 

elasticity theory. Building upon the nonlocal partial-differential constitutive framework, three 
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nanostructure models are investigated herein, i.e., the axial vibration of nanorods, transverse 

vibration of nanobeams, and free vibration of nanoplates. The physical meaning of the scale 

upper limit is explained through these illustrative cases and it is conducive to the estimation of 

the structural external characteristic scale at which the nonlocal scale effect should be 

considered. Compared with the previous studies, the present work is simple and easy for the 

determination of a size-dependent range in micro-/nano-scale structures. 
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Chapter 5  

LARGE-AMPLITUDE OSCILLATION OF A TRIPLE-

WELL NON-NATURAL SYSTEM 

 

 Introduction 

Making use of the tri-stable mechanism, a new electromagnetic-triboelectric energy 

harvesting technique is proposed in this work. Prior to introducing this new energy harvester, 

we will first consider a triple-well non-natural system that exhibits heteroclinic and homoclinic 

orbits under different equilibrium states in this chapter. Particular emphasis on this problem 

can gain deeper insights into the tri-stable nonlinear behavior. Besides, many mathematical 

models in mechanical and structural engineering applications can give rise to this nonlinear 

problem. In qualitative analysis, the fixed points and their trajectories of the nonlinear system 

in response to changes in the governing parameters are studied. In addition, the NHB method 

(Wu et al., 2006) is also employed to solve the nonlinear problem under symmetric and 

asymmetric oscillations.  The structure of this chapter is organized as follows. Section 5.2 

describes the triple-well non-natural system. The qualitative analysis and qualitative analysis 

are presented in Section 5.3 and section 5.4, respectively.  Section 5.5 shows the accuracy of 

the present solutions for the system in contrast to the results obtained from the Runge-Kutta 

method. Finally, the major findings of the present work are summarized in Section 5.6. 

 

  Triple-well Non-natural System 

Consider the following triple-well nonlinear problem  

     
22

2
0

d x dx
E x F x G x

dt dt
    
 

 (5.1)

with the initial conditions 

(0) , (0) 0
dx

x A
dt

       (5.2)

where   2
11E x x  ,   1F x x  and   3 5

2 3 4G x x x x     . x  and t  are 

dimensionless displacement and time variables, respectively. The governing parameters 1 , 

2 , 3  and 4  in the functions  E x ,  F x  and  G x  are real constants. This system is 
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governed by a quadratic dependence term on the velocity (Pandey et al., 2017) and an odd-

parity restoring force having cubic-quintic nonlinearities.  

 

Integrating Eq. (5.1) yields 

T V E   (5.3)

in which 

 2 2
1

1
1

2
T x y   and 2 4 6

2 3 4

1 1 1

2 4 6
V x x x      (5.4)

where /y dx dt . In Eq. (5.3), the first term on the left-hand side is the kinetic energy and the 

second one is the potential energy. The constant value E is the total energy level that can be 

determined by the initial conditions in Eq. (5.2). Because the kinetic energy of this system is 

not purely a quadratic function of the velocity, it is thus called a “non-natural” system 

(Meirovitch, 1970; Nayfeh and Mook, 1995). 

 

In Eq. (5.1), there is a quadratic dependence term on the velocity, but the nonlinear 

problem is a conservative system. A simple argument to show the existence of periodic motions 

with the presence of a quadratic dependence term on the velocity in dynamic problems is 

provided below (Lai and Chow, 2012). Consider a simple oscillator 

22

1 22
0

d x dx
x

dt dt
     
 

 (5.5)

where 1  and 2  are real parameters. Multiplying Eq. (5.5) by  /y dx dt  and integrating 

from 0 to t yield  

2 2 3
2 10

0

2
t

t
y x y dt        (5.6)

If a periodic mode exists and t is the period, then the left-hand side of Eq. (5.6) is zero. For a 

cubic power on the right-hand side, it is plausible that the integral may vanish to form a close 

trajectory in the phase-space plane (x, y). However, the integral may not vanish for an even 

power of y . This is consistent with the fact that a classical damped harmonic oscillator (e.g., 

 2 2 2
0/ / 0d x dt c dx dt x   ) does not have a periodic motion. 

 

There is always an inherent mechanism to provoke bifurcations and instabilities that can 

induce unpredictable responses in nonlinear dynamics. Generally, a local bifurcation would 

occur when there is a change of governing parameters and initial conditions, leading to the 
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instability of equilibrium states. Hence, various combinations of the governing parameters in 

Eq. (5.1) will generate diverse results. It is found that there exist both heteroclinic and 

homoclinic orbits under various equilibrium states. In a dynamical system, a heteroclinic orbit 

is a trajectory path in phase space where joins two different stable equilibrium points, while a 

homoclinic orbit is a trajectory path in phase space where connects a saddle point to itself, as 

shown in Fig. 5.1. 

 

Fig. 5.1: Trajectories of heteroclinic and homoclinic orbits (Aslanov, 2017). 

 

As aforementioned, various mathematical models in mechanical and structural engineering 

applications can give rise to the system (5.1). One example is the large-amplitude vibration of 

stringer cylindrical shells (Bayat and Pakar, 2013; Bayat et al., 2014; Pakar and Bayat, 2015), 

in which the studied parameters are restricted to all positive values  0,   1 4i i    . Stringer 

cylindrical shells are tubular structures with supporting ribs situated along the length uniformly 

with a constant distance between them. In this case, there is only a single potential well in the 

system.  

 

Other examples in engineering and physical models where the system (5.1) arises are:  

 Absence of quadratic velocity and quintic nonlinearity (i.e., 1 0  , 2 0  , 3 0   and 

4 0  ): this is a simple Duffing equation that can model the nonlinear vibration of beams, 

panels, and fluid-conveying pipes (Rao, 2003; Hui et al., 2011; Tang and Yang, 2018), the 

dynamic buckling problem of a drill string in a horizontal well (Sun et al., 2015) and the 

nonlinear cantilevered piezoelectric energy harvesters (Daqaq et al., 2014; Vakakis et al., 

2009; Harne and Wang, 2013); 
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 Absence of quadratic velocity (i.e., 1 0   , 2 0   , 3 0    and 4 0   ): the problem 

becomes a cubic-quintic Duffing equation that can model the nonlinear dynamics of a 

slender elastica (Lenci et al., 1999), the large-amplitude vibration of a restrained uniform 

beam carrying intermediate lumped mass (Hamdan and Shhabaneh, 1997) and a rotating 

pendulum system as vibration absorbers and fly-ball governors (Lai et al., 2011); 

 Absence of quintic nonlinearity (i.e., 1 0  , 2 0  , 3 0   and 4 0  ): the equation 

can be used to model the nonlinear dynamics of cantilever beams, flexible rotating beams 

and tapered beams (Hamdan and Dado, 1997; Jarrar and Hamdan, 2007; Guo and Zhang, 

2016); and 

 Absence of cubic and quintic nonlinear terms (i.e., 1 0  , 2 0  , 3 0   and 4 0  ): 

the equation can be used to model a physical particle on a rotating parabola (Nayfeh and 

Mook, 1995; Wu et al., 2003) and a non-polynomial oscillator (Mohanasubha and 

Senthilvelan, 2017).  

 

Special cases of Eq. (5.1) have been treated in the literature, but the overall version of Eq. 

(5.1) has not yet been investigated. In Eq. (5.1), the pattern of equilibrium points is not related 

to the value of the parameter 1 , as there are no practical applications for 1 0  . In Eq. (5.1), 

we only consider 1 0  , 2 0  , 3 0   and 4 0  , including negative linear stiffness and 

cubic and quintic nonlinearities.  

 

To establish a firm understanding of the dynamical behavior of the nonlinear system, a 

qualitative analysis is employed to discuss the pattern of equilibrium points in Section 5.3. The 

nature of each equilibrium state is determined due to the influence of the governing parameters. 

In Section 5.4, a quantitative analysis is presented to construct analytical approximate solutions 

for periodic motions around each stable equilibrium point by means of the NHB method. In 

Section 5.5, several cases of Eq. (5.1) with different parameters are presented to illustrate the 

accuracy and effectiveness of the NHB method. Finally, the key findings of this work are 

concluded in the last section. 

 

  Qualitative Analysis 

This section aims to classify the triple-well nonlinear system in terms of their equilibria 

and stabilities and to provide solutions for various classifications of the system. Consider the 

following equation 
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3 5
2 3 4

( )
0i

i i i

dV x
x x x

dx
       (5.7)

and the stability of the equilibrium points can be determined by examining  

2
2 4

2 3 42

( )
3 5i

i i

d V x
x x

dx
      (5.8)

at the equilibrium points. The pattern of the roots of Eq. (5.7) varies with different values of 

the parameters. Table 5.1 lists all the cases according to different values of the parameters. The 

number of equilibrium points and the orbital characteristics around centers are also determined. 

Note that these cases correspond to three patterns of the roots, i.e., 1, 3, or 5 equilibrium points.  

 

For cases that have only one equilibrium point, there are two situations. In cases 1 and 3, 

the system has a minimum potential energy level at where is a center. While in case 8, the 

system reaches a maximum potential energy level at where is a saddle point. The possible 

trajectories for these two cases are shown in Fig. 5.2.  

 

On the other hand, there exist three equilibrium points 1x , 2x  and 3x  in the system and 

there are four situations. In cases 2 and 7, the potential energy levels have a local maximum at 

1x  and two minima at 2x  and 3x . Hence, 1x  is a saddle point while 2x  and 3x  are centers. In 

cases 6 and 11, the potential energy levels have a local minimum at 1x  and two maxima at 2x  

and 3x . Hence, 1x  now becomes a center and 2x  and 3x  are saddle points. In case 4, the 

potential energy level has a local minimum at 1x , and 2x  and 3x  are inflection points. Hence, 

1x  is a center, and 2x  and 3x  are degenerate singular points. In case 9, the potential energy level 

has a local maximum value at 1x , and 2x  and 3x  are inflection points. Hence, 1x  is a saddle 

point, and 2x  and 3x  are degenerate singular points. The possible trajectories are presented in 

Fig. 5.3. 
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Table 5.1: Equilibrium states of the nonlinear system (5.1). 

Case 

number 
Governing parameters 

Number of 

equilibrium 

points 

Equilibrium points and orbital 

characteristics around centers 

1 1 0  , 2 0  , 3 0  , 4 0   1 
1 0x   (center, symmetric orbit) 

2 1 0  , 2 0  , 3 0  , 4 0   3 1 0x   (saddle point) 

2,3 3x R   (center, asymmetric orbit) 

3 
1 0  ,

2 0  , 

3 0  , 

4 0   

2
3 2 44 0     1 

1 0x   (center, symmetric orbit) 

4 2
3 2 44 0     3 1 0x    (center, symmetric orbit) 

2,3 1x R  (degenerate singular  point) 

5 2
3 2 44 0     5 

1 0x   (center, symmetric orbit) 

2,3 2x R   (saddle point) 

4,5 3x R   (center, asymmetric orbit) 

6 1 0  , 2 0  , 3 0  , 4 0   3 1 0x   (center, symmetric orbit) 

2,3 2x R   (saddle point) 

7 1 0  , 2 0  , 3 0  , 4 0   3 1 0x   (saddle point) 

2,3 3x R   (center, asymmetric orbit) 

8 
1 0  , 

2 0  , 

3 0  , 

4 0   

2
3 2 44 0     1 

1 0x   (saddle point)  

9 2
3 2 44 0     3 1 0x    (saddle point) 

2,3 1x R   (degenerate singular point)

10 2
3 2 44 0     5 

1 0x    (saddle point) 

2,3 3x R   (center, asymmetric orbit) 

4,5 2x R   (saddle point) 

11 1 0  , 2 0  , 3 0  , 4 0   3 1 0x   (center, symmetric orbit) 

2,3 2x R   (saddle point) 

 

Note: 3

4

1
2

R




 , 
2

3 3 2 4

4

4
2

2
R

   


  
  and 

2
3 3 2 4

4

4
3

2
R

   


  
 . 
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(a) Case 1 and Case 3 

 

 

 

(b) Case 8 

Fig. 5.2: Phase planes for the nonlinear system with one equilibrium point. 
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(a) Case 2 and Case 7 

 

 

(b) Case 6 and Case 11  

 

 

 

(c) Case 4 

 

 

(d) Case 9 

 

 

Fig. 5.3: Phase planes for the nonlinear system with three equilibrium points. 

 

There are still two cases that possess five equilibrium points. In case 5, the system arrives 

its minimum potential energy levels at 1x , 4x  and 5x , and the maximum potential energy levels 

are at 2x  and 3x . Hence, 1x , 4x , and 5x  are centers, and 2x  and 3x  are saddle points. In case 10, 

the system arrives its minimum potential energy levels at 2x  and 3x , and the maximum 

potential energy levels at 1x , 4x , and 5x . In this case, 2x  and 3x  are centers, and 1x , 4x , and 5x  

become saddle points. The possible trajectories of heteroclinic and homoclinic orbits are 

plotted in Fig. 5.4.  
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(a) Case 5 

 

 

(b) Case 10 

Fig. 5.4: Phase planes for the nonlinear system with five equilibrium points. 

 

In Figs. 5.2–5.4, we clearly observe three different modes, corresponding to the mono-

stable (case 1), bi-stable (case 2), and tri-stable (case 5) cases. Among them, cases 1, 2, and 5 

have one, two, and three “stable” equilibrium points, respectively. To further investigate the 

effect of various parameters ( 1 , 2  and 3 ) on the pattern of the roots in Eq. (5.7), two 

bifurcation diagrams are plotted in Figs. 5.5 and 5.6. Fig. 5.5 presents the relationship between 

the negative linear stiffness ( 2 ) and the cubic nonlinear term ( 3 ), and Fig. 5.6 shows the 

variation of the quadratic velocity term ( 1 ) and the cubic nonlinear term ( 3 ). In these two 

figures, we observe that a bifurcation of the system occurs when 3  tends to become a negative 

value.  
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Fig. 5.5: Bifurcation behavior of the nonlinear system affected by the parameters 2  and 3 . 

 

 

Fig. 5.6: Bifurcation behavior of the nonlinear system affected by the parameters 1  and 3 . 
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According to the qualitative analysis for Eq. (5.1), the periodic motion of the non-natural 

system only occurs around centers, which depends on the parameter values and the initial 

amplitudes. In cases 1 and 3, the system oscillates periodically between a symmetric bound 

 ,A A   and 0 A   . In cases 2 and 7, a periodic oscillation occurs around the stable 

equilibrium points 2x (or 3x ) and it is asymmetric about the equilibrium points. The oscillation 

amplitude A is subject to the region  0 0A K K A     , where K is calculated by 

 2
3 2 43

4 4

3 3 163

4 4
K

  
 


    

 

(5.9)

 

In cases 6 and 11, the presence of periodic motions will occur around the stable equilibrium 

point 1x  only, which is symmetric about this point and the oscillation amplitude should satisfy 

10 A x  . In case 4, the system oscillates periodically around center 1x  between a symmetric 

bound  ,A A  and 20 A x  . In case 5, the oscillation of the system may occur around the 

stable equilibrium point 1x  and it is symmetric about this point. The oscillation amplitude A is 

bounded by  20 A x  . Besides, the oscillation may also occur around the equilibrium point 

4x (or 5x ) and it is asymmetric in nature. The oscillation amplitude should satisfy 2x A L    

(or 3L A x   ), where L is given by 

 
2

3 2 4 2 2 3 2 23
3 4 2 4 4 3 2 42

4 4 4

4 1
8 32 ( 4 )

2 4 4
L

          
  


        (5.10)

 

In case 10, the oscillation occurs around the stable equilibrium point 2x (or 3x ), and it is 

asymmetric in nature. If 1 4( ) ( )V x V x , the oscillation amplitude should satisfy 

 0 0A K K A     . While for 1 4( ) ( )V x V x , the oscillation amplitude should satisfy 

4M A x   (or 5x A M   ), in which M is defined as 

 
2

3 2 4 2 2 3 2 23
3 4 2 4 4 3 2 42

4 4 4

4 1
8 32 ( 4 )

2 4 4
M

          
  


        (5.11)
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  Quantitative Analysis 

In this section, the NHB method (Wu et al., 2006) is employed to construct analytical 

approximate solutions to the system (5.1). As indicated in Section 5.3, there are two types of 

periodic motions, i.e., a symmetric oscillation with the stable equilibrium point 1x , and an 

asymmetric oscillation with the stable equilibrium points 2x ( 3x ) or 4x ( 5x ). 

 

5.4.1 Analytical Approximations for Symmetric Oscillations 

Following Section 3.3.1, the system (5.1) with odd nonlinearity can be analytically solved 

by the NHB method. By defining a new independent variable  t  , Eq. (5.1) can be 

expressed as  

     2 0E x x F x x G x        (5.12)

and the initial conditions are 

(0) , (0) 0x A x    (5.13)

where 2   and a dot of x denotes differentiation with respect to  . 

 

Applying the Newton’s procedure, the displacement  x   and the square of frequency   

are written as  

     1 1a ax x x      (5.14)

1 1a a      (6.15)

in which  1ax   and 1a  are small increments of  1ax  and 1a , respectively. 

Substituting Eqs. (5.14) and (5.15) into Eq. (5.12), we have 

   
 

2
1 1 1 1 1 1 1 1 1 1

1 1

( ) ( ) ( )

0

a a a a a a a a a a

a a

E x x x x F x x x x

G x x

            
   

   
 (5.16)

Further linearizing Eq. (5.16) with respect to the correction terms  1ax   and 1a  leads to 

 

 
 

2
1 1 1 1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 1 1 1 1 1

1 1

( ) ( ) ( )( )

(2 ) ( ) ( )

0

a a a a a a a a a a a

a a a a a a a x a a x a a a

x a a

E x x F x x G x E x x x

F x x x x E x x F x x x

G x x

         
         

 

   

      (5.17)

where the subscript x denote differentiation with respect to x. Making use of the Fourier series 

expansions gives  
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 2
1 1 1 1 2 1

0

( ) ( ) cos (2 1)a a a a i
i

E x x F x x a i 





     (5.18)

 1 2 1
0

( ) cos (2 1)a i
i

G x b i 





   (5.19)

1 2
0

( ) cos(2 )a i
i

E x c i




  (5.20)

 1 1 2( 1)
0

( ) sin 2( 1)a a i
i

F x x d i 





   (5.21)

2
1 1 1 1 2

0

( ) ( ) cos(2 )x a a x a a i
i

E x x F x x e i




    (5.22)

1 2
0

( ) cos(2 )x a i
i

G x f i




  (5.23)

where ia , ib , ic , id , ie  and if  are Fourier series coefficients that can be determined by 

 
2 2

2 1 1 1 1 10

4
( ) ( ) cos (2 1) , 0,1, 2....i a a a aa E x x F x x i d i


 

              (5.24)

 
2

2 1 10

4
( ) cos (2 1) , 0,1, 2....i ab G x i d i


 

         (5.25)

2

2 10

4
( ) cos(2 ) , 0,1, 2....i ac E x i d i


 


       (5.26)

 
2

2( 1) 1 10

8
( ) sin 2( 1) , 0,1, 2....i a ad F x x i d i


 

          (5.27)

2 2
2 1 1 1 10

4
( ) ( ) cos(2 ) , 0,1, 2....i x a a x a ae E x x F x x i d i


 


            (5.28)

2

2 10

4
( ) cos(2 ) , 0,1, 2....i x af G x i d i


 


       (5.29)

 

For the first-order analytical approximation, we set  

 1 0ax   ,   1 0a   (5.30)

and 

 1 cosax A   (5.31)

The above equation satisfies the initial conditions given in Eq. (5.13). Substituting Eqs. 

(5.18)(5.23), (5.30) and (5.31) into Eq. (5.17), expanding the resulting expression into a 

trigonometric series and setting the coefficient of cos  to zero, we obtain 
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  1
1

1
a

b
A

a
    (5.32)

Hence, the first-order frequency  1a A  and corresponding approximate periodic solution 

 1ax t are  

   1 1a aA A   ,   1( ) cosax t A  ,   1( )a A t   (5.33)

 

For the second-order analytical approximation, we set 

   1 1 cos cos3ax z      (5.34)

Inserting Eqs. (5.18)(5.23), (5.31) and (5.34) into Eq. (5.17), expanding the resulting 

expression in a trigonometric series and setting the coefficients of cos  and cos 3  to zero, 

we obtain  

1
1

2 2 1

2
( )

a

C
z A

A B
 

 
 (5.35)

  1 1 1 1
1

1 2 2 1

2 ( )

( )
a

a
a

C B A
A

a B A

 
  

 
 (5.36)

where 

 1 0 2 4 2 4 0 4

1
8 9 2 3

2
A c c c d d e e         (5.37)

 1 0 4

1

2
B f f   (5.38)

2 1 0 3 0 1 2 1 4 3 4 1 6A a f a f a f a f a f a f        (5.39)

2 1 0 3 0 1 2 3 2 1 4 3 4 1 6 1 2 3 2

1 4 3 4 1 6 1 0 3 0 1 2 1 4 3 4 1 6

9 8 9 9 2

3 3

B a c a c a c a c a c a c a c a d a d

a d a d a d a e a e a e a e a e a e

         

               
 (5.40)

1 3 1 1 3C a b a b   (5.41)

Therefore, the second-order frequency  2a A  and corresponding approximate periodic 

solution  2 ( )ax t  are 

2 2( ) ( )a aA A     

2 1 1 1 1 2( ) ( ) ( ) ( ) cos cos3 ,    ( )a a a ax t x x A z z A t             
(5.42)

where 
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 
 

2 1 1

1 1 1 1 11

1 1 2 2 1 1

( ) ( ) ( )
2 ( / )

( / )

a a aA A A
C B A b ab

a a B A b a

    
 

  
 

 (5.43)

Based on the above equations, the analytical approximate solutions for the symmetric 

oscillation of the nonlinear system (5.1) around the stable equilibrium point 1x  can be derived. 

 

5.4.2 Analytical Approximations for Asymmetric Oscillations 

In addition, there exist heteroclinic orbits (Yao and Zhang, 2007; Algaba et al., 2013) 

where the nonlinear system (5.1) has more than one equilibrium point. Under this condition, 

the system can also oscillate around other stable equilibrium points with the asymmetric limits 

 ,A A  where A  and A  have the same energy level in accordance with the principle of 

conservation of energy (Wu and Lim, 2004) 

   V A V A  (5.44)

in which A  can be expressed as a function of A . 

 

When the system oscillates asymmetrically, a new variable is introduced as follows:  

u x    (5.45)

Eq. (5.1) can be derived as 

     
22

2
0

d u du
E u F u G u

dt dt
    
 

   (5.46)

with the following initial conditions 

(0)u B A    , 
(0)

0
du

dt
  (5.47)

in which 

  2 2
1 1 11 2E u u u         (5.48)

  1 1F u u     (5.49)

2 3 4 5
1 2 3 4 5( )G u u u u u u          (5.50)

where 2 4
1 2 3 43 5        , 3

2 2 43 10      , 2
3 3 410     , 4 45    and 

5 4  . Note that   is the coordinate value of the corresponding equilibrium point. 
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In Eq. (5.46), it is noted that    E u E u    ,    F u F u    ,    G u G u    , and the 

system oscillates within asymmetric bound    ,B B B A      around the stable equilibrium 

point 0u  . To solve such a mixed-parity nonlinear system, two newly odd nonlinear systems 

is introduced as follows (see Section 3.3.3, Wu and Lim, 2004): 

22

2
( ) ( ) ( ) 0

d u du
H u I u J u

dt dt
    
 

, (0)u B , 
(0)

0
du

dt
  (5.51)

and 

22

2
( ) ( ) ( ) 0

d u du
K u L u M u

dt dt
    
 

, (0) ( 0)u B B    , 
(0)

0
du

dt
  (5.52)

where 

( ),   0
( )

( ),   0

E u u
H u

E u u

 
 

 


 ,   ( ),   0

( ),   0

F u u
I u

F u u

 
 

  


 , 

( ),   0
( )

( ),   0

G u u
J u

G u u

 
 

  


  

(5.53)

and 

( ),   0
( )

( ),   0

E u u
K u

E u u

  
 




 , 

( ),   0
( )

( ),   0

F u u
L u

F u u

  
 




 , 

( ),   0
( )

( ),   0

G u u
M u

G u u

  
 




   

(5.54)

Equations (5.51) and (5.52) can be solved independently by the NHB method as mentioned in 

Section 5.3.1. To consider the asymmetric oscillation of the system (5.1), the analytical 

approximations are mathematically formulated by combining the piecewise approximate 

solutions obtained from Eqs. (5.51) and (5.52). 

 

According to Eqs. (5.51) and (5.52), the first-order approximate periodic solution ( 1( )ax t ) 

for the asymmetric oscillation of the nonlinear system (5.1) is 

   

11
11

11 1111 12 12
1 12

11 12 11 12 11 12
11

( )
( ) , 0

4

( ) ( ) ( )
( ) ,

4 4 4 4 2

( ) ( ) ( ) ( ) ( ) ( )
,

2 2 4 2 2

a

T B
u t t

T B T BT B T B T B
x t u t t

T B T B T B T B T B T B
u t t








  


           

 
         

 

                                      

       

       






 (5.55)
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and the first-order approximate period ( 1aT ) and frequency ( 1( )a A ) are  

11 12
1

( ) ( )
( )

2a

T B T B
T A


  and  1

1

2
( )a

a

A
T A

   (5.56)

where the subscripts “11” and “12” of T  and u  denote the first-order approximate periods 

and the corresponding periodic solutions for the systems (5.51) and (5.52), respectively. 

 

Besides, the second-order approximate periodic solution ( 2 ( )ax t ) for the asymmetric 

oscillation of the nonlinear system (5.1) is  

21
21

21 22 21 21 22
2 22

21 22 21 22 21 22
21

( )
( ) , 0

4
( ) ( ) ( ) ( ) ( )

( ) ,
4 4 4 4 2

( ) ( ) ( ) ( ) ( ) (
,

2 2 4 2

a

T B
u t t

T B T B T B T B T B
x t u t t

T B T B T B T B T B T
u t t







  

         
 

         
 

                                        

         

        
)

2

B







 



 (5.57)

and the second-order approximate period ( 2aT ) and frequency ( 2 ( )a A ) are  

21 22
2

( ) ( )
( )

2a

T B T B
T A


  and  2

2

2
( )a

a

A
T A

   (5.58)

where the subscripts “21” and “22” of T  and u  denote the second-order approximate periods 

and the corresponding periodic solutions for the systems (5.51) and (5.52), respectively. 

 

  Results and Discussion 

In this section, the approximate solutions for various parameters 1 , 2 , 3 , and 4  are 

presented to verify the accuracy of the NHB method with respect to the RungeKutta method 

and other methods, e.g., the homotopy perturbation method (HPM) (Pakar and Bayat, 2015; 

Neamaty et al., 2015). For symmetric oscillation, the exact frequency of the nonlinear problem 

(5.1) in terms of an implicit form is given by 

 
2

12

0

1 ( cos )
( ) / ( cos )

2 ( ) ( cos )e

A
A A d

V A V A

     



 

  (5.59)

where ( )V   is the potential energy of the system (5.1). For an asymmetric oscillation, the exact 

frequency of the nonlinear system (5.1) can be constructed by 

1 2

1 2

2 ( ) ( )
( )

( ) ( )
e e

e
e e

B B
A

B B

 
 





 (5.60)
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where 1( )e B  and 2 ( )e B   are the exact frequencies of the corresponding systems (5.51) and 

(5.52), respectively.   

 

Consider cases 1 and 3, the first-order and second-order approximate frequencies (i.e., 1a  

and 2a ) of the NHB method are compared with the exact solution ( e ) and the HPM solution 

( HPM ) in Tables 5.25.5. The first-order approximate frequencies derived from the NHB 

method are the same as those results of the HPM (Pakar and Bayat, 2015). They have good 

agreement with the corresponding exact solutions when the initial amplitude is small. When 

the initial amplitude A larger than 5, these two analytical approximations are not acceptable. 

However, the second-order approximate frequencies have good agreement with the exact 

results for small as well as large initial amplitudes. Figures 5.7 and 5.8 show the results of the 

first-order and second-order approximate periodic solutions (i.e., 1( )ax t  and 2 ( )ax t ) obtained 

from the NHB method and the corresponding numerical solution ( ( )ex t ) obtained from the 

RungeKutta method. We clearly observe that the accuracy of the second-order approximate 

periodic solution is higher than the first-order approximate periodic solution. 

 

On the other hand, the results of the other two examples for case 5 are given in Tables 5.6 

and 5.7 for the asymmetric and symmetric oscillations around three stable equilibrium points, 

respectively. Both the first-order and second-order approximate frequencies are highly 

consistent with the exact solution due to a small initial deviation to the corresponding 

equilibrium points. The time history responses of the analytical approximate periodic solutions 

(i.e., 1( )ax t  and 2 ( )ax t ) and numerical solution ( ( )ex t ) are depicted in Figs. 5.95.11. The 

absolute errors in Figs. 5.95.11 show that the accuracy of the second-order approximate 

periodic solution is still better than the first-order approximate periodic solution when 

compared with the numerical one.  
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Table 5.2: Comparison of approximate and exact frequencies for 1 0.5  , 2 2  , 3 2  , 

and 4 1.3  . 

A HPM  

(Pakar and Bayat, 2015) 

1a  

Eq. (5.33) 
2a  

Eq. (5.42) 
e  

Eq. (5.59) 
0.2 1.42860 1.42860 1.42860 1.42860 
0.5 1.51099 1.51099 1.51091 1.51090 
1.2 2.07308 2.07308 2.07268 2.07151 
2 3.24037 3.24037 3.28111 3.27386 
5 8.68858 8.68858 9.45407 9.39663 
10 17.8432 17.8432 20.1124 20.0870 
20 35.9595 35.9595 41.0192 41.2150 
100 180.258 180.258 206.475 208.430 
 

Table 5.3: Comparison of approximate and exact frequencies for 1 0.5  , 2 2  , 3 2   , 

and 4 1.3   

A HPM  

(Pakar and Bayat, 2015) 

1a  

Eq. (5.33) 
2a  

Eq. (5.42) 
e  

Eq. (5.59) 
0.2 1.40554 1.40554 1.40555 1.40555 
0.5 1.37654 1.37654 1.37689 1.37689 
1.2 1.59706 1.59706 1.60129 1.59977 
2 2.68328 2.68328 2.70640 2.69843 
5 8.35474 8.35474 9.07751 9.02539 
10 17.6635 17.6635 19.9041 19.8821 
20 35.8686 35.8686 40.9120 41.1093 
100 180.240 180.240 206.454 208.409 
 

Table 5.4: Comparison of approximate and exact frequencies for 1 0.1  , 2 1  ,  

3 0.5  , and 4 0.27  . 

A HPM  

(Pakar and Bayat, 2015) 

1a  

Eq. (5.33) 
2a   

Eq. (5.42) 
e  

Eq. (5.59) 
0.2 1.00660 1.00660 1.00660 1.00660 
0.5 1.04435 1.04435 1.04420 1.04419 
1.2 1.32777 1.32777 1.32138 1.32091 
2 2.08167 2.08167 2.04997 2.04623 
5 7.17538 7.17538 7.25945 7.23658 
10 16.9607 16.9607 18.2688 18.1618 
20 35.9570 35.9570 40.3727 40.2831 
100 183.549 183.549 210.094 211.840 
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Table 5.5: Comparison of approximate and exact frequencies for 1 0.1  , 2 1  , 3 0.5   , 

and 4 1.3  . 

A HPM  

(Pakar and Bayat, 2015) 
1a  

Eq. (5.33) 
2a  

Eq. (5.42) 
e  

 Eq. (5.59) 
0.2 0.99162 0.99162 0.99161 0.99161 
0.5 0.95157 0.95157 0.95139 0.95140 
1.2 0.86921 0.86921 0.86940 0.86936 
2 1.35401 1.35401 1.32931 1.32155 
5 6.56908 6.56908 6.61769 6.59292 
10 16.5881 16.5881 17.8510 17.7492 
20 35.7578 35.7578 40.1412 40.0554 
100 183.508 183.508 210.046 211.792 

 

Table 5.6: Comparison of approximate and exact frequencies for 1 0.5  , 2 2  , 

3 5.7   , and 4 1.3  . 

A Equilibrium point at 
1a , Eq. (5.33) 2a , Eq. (5.42) e , Eq. (5.59) 

0.1 x1=0 1.39730 1.39728 1.39728 

A Equilibrium point at 
1a , Eq. (5.56) 2a , Eq. (5.58) e , Eq. (5.60) 

2.1 x4 = 2 3.51270 3.51244 3.51264 

1.9 x5 = 2 3.51882 3.51862 3.51877 

Note: The system oscillates symmetrically around 1x , but asymmetrically around 4x  or 5x . 

 

Table 5.7: Comparison of approximate and exact frequencies for 1 0.1  , 2 1  , 3 1.5   , 

and 4 0.27  . 

A Equilibrium point at 
1a , Eq. (5.33) 2a , Eq. (5.42) e , Eq. (5.59) 

0.1 x1=0 0.99412 0.99412 0.99412 

A Equilibrium point at 
1a , Eq. (5.56) 2a , Eq. (5.58) e , Eq. (5.60) 

2.2865 x4 = 2.1865 2.62193 2.62042 2.62161 

2.0865 x5 = 2.1865 2.62691 2.62562 2.62665 

Note: The system oscillates symmetrically around 1x , but asymmetrically around 4x  or 5x . 
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Fig. 5.7: Comparison of analytical approximate periodic solutions with numerical solution for 

1 0.5  , 2 2  , 3 0.2   , 4 1.3  , and 10A  . 

 

 

Fig. 5.8: Comparison of analytical approximate periodic solutions with numerical 

solution for 1 0.1  , 2 1  , 3 1.5   , 4 0.27  , and 100A  . 
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(a) 

 

(b) 

Fig. 5.9: (a) Comparison of analytical approximate periodic solutions with numerical 

solution for 1 0.1  , 2 1  , 3 1.5   , 4 0.27  , and 0.1A  ; (b) Comparison of the 

absolute errors between the approximate and numerical solutions. 
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(a) 

 

 (b) 

Fig. 5.10: (a) Comparison of analytical approximate periodic solutions with numerical 

solution for 1 0.1  , 2 1  , 3 1.5   , 4 0.27  , and 2.2865A  ; (b) Comparison of the 

absolute errors between the approximate and numerical solutions. 
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(a) 

 

 (b) 

Fig. 5.11: (a) Comparison of analytical approximate periodic solutions with numerical 

solution for 1 0.1  , 2 1  , 3 1.5   , 4 0.27  , and 2.2865A   ; (b) Comparison of the 

absolute errors between the approximate and numerical solutions. 
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 Concluding Remarks 

Presented herein is a global analysis to investigate a triple-well non-natural system, which 

is governed by a quadratic velocity term and an odd-parity nonlinearity. The equilibrium points 

and its trajectories of the nonlinear system due to the influence of various governing parameters 

are classified, including the effect of negative linear stiffness. All possible motions under 

different initial amplitudes and governing parameters are also depicted. Based on the 

qualitative analysis, it is found that there exist three different types of equilibrium points, i.e., 

a center, a saddle point, and a degenerate singular point. Intrinsic behavior of the non-natural 

system, from a mono-stable mode to a tri-stable state, can be controlled by the governing 

parameters. We also observe the interchange of heteroclinic and homoclinic orbits under 

different equilibrium states. In addition, the NHB method is applied to construct accurate 

lower-order analytical approximations for the nonlinear system. The analytical approximation 

results that are valid for large amplitudes of oscillation and governing parameters can achieve 

a sufficiently good agreement with the exact solution. Both symmetric and asymmetric 

oscillations around different equilibrium points are presented as well.  
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Chapter 6  

A TRI-STABLE HYBRID ENERGY HARVESTER 

BASED ON MAGNETIC LEVITATION  

 

6.1 Introduction 

In this chapter, we propose a novel magnetic levitation-based electromagnetic-triboelectric 

energy harvester that can work well under low-frequency and low-amplitude sources. The 

structure of this chapter is organized as follows. Section 6.2 describes the design configuration, 

working principle, formation mechanism, and theoretical analysis of the proposed system. In 

Section 6.3, experimental results are presented to evaluate the working performance of this 

hybrid energy harvester. Finally, the major findings of the present work are summarized in 

Section 6.4.  

 

 System Design of a Tri-stable Hybrid Generator 

6.2.1 Design Configuration  

To design a tri-stable hybrid energy harvester, a slider-driven electromagnetic generator 

(EMG) and a sliding-mode triboelectric nanogenerator (TENG) were optimally integrated into 

a suspended structure via a magnetically levitated approach, as illustrated in Fig. 6.1. Two 

parallel stainless steel rods as the framework of this hybrid generator were fixed by three sets 

of fasteners made up of aluminum alloy.  

 

In the present design, a cylindrical PVC tube (with a length of 37 mm) was attached to the 

middle fastener. Four cuboid neodymium magnets (NdFeB, 5 3 2mm mm mm  , N35 grade) 

were fixed to an outer sleeve around the PVC tube. The other two fasteners, each of them 

consisted of a micrometer and one NdFeB cylindrical magnet ( 10 4mm mm  , N35 grade), 

were symmetrically placed at both sides of the PVC tube and separated by an adjustable 

distance from the tube. The micrometers can be used to fine-tune the design based on the 

theoretical analysis of this work to achieve a tri-stable nonlinear system. The EMG unit 

consisted of a series of copper coils and one NdFeB cylindrical magnet (moving magnet) 

( 12 18mm mm  , N35 grade) placed in the cylindrical PVC tube to restrain its motion in a 

single direction. The other two cylindrical magnets with their magnetic poles were oriented to 
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repel the moving magnet, thereby rendering the suspension of the moving magnet inside the 

tube.  

 

 

(a) 

(b) 

Fig. 6.1: (a) Schematic of a novel hybrid energy harvester; and (b) a fabricated prototype.
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In addition, the resultant magnetic force, combined with the interaction between the 

moving magnet and the four outer magnets, can create a tri-stable potential well in the system. 

Eight ring-shaped coils (with a total number of 1900 turns) were connected in series and 

wrapped over the PVC tube. For the TENG unit, a 50-μm-thick aluminum (Al) film covered 

the curved surface of the moving magnet as a freestanding tribo-material. Two 50-μm-thick 

copper (Cu) films were attached on the inner surface of the PVC tube with a 0.1-mm gap 

between them, which can serve as back electrodes. A 50-μm-thick polytetrafluoroethylene 

(PTFE) film was aligned onto the surfaces of the back electrodes as another tribo-material.  

 

6.2.2 Working Principle of the Hybrid Generator 

When an external force is exerted on the hybridized system along the PVC tube, the 

moving magnet (as a proof mass) covered by an Al film can act as a slider to oscillate inside 

the tube. The sliding behavior can induce the coupling effect of the EMG and TENG units, as 

shown in Fig. 6.2. The EMG unit works on Faraday’s law: the change of the rate of the 

magnetic flux through the coils develops an inductive electromotive force in the coils, as well 

as Lenz’s law: the direction of the induced voltage in the coils opposes the change of magnetic 

fields produced by it (Spreemann and Manoli, 2012).  

 

The electromagnetic output can be extracted directly from the coils. For the TENG unit, 

the Al electrode can generate friction during vibration modes. The internal surface of the tube 

was attached to a PTFE film with two Cu electrodes, which can be used to collect the power 

output. According to the triboelectric effect (Fan et al., 2012; Wang, 2013), PTFE has a higher 

electron affinity than Al, this results in negative triboelectric charges on the PTFE film surface 

and positive triboelectric charges on the Al surface during the direct contact of both surfaces.  

 

Figure 6.3 shows a schematic diagram of the power generation process over a half cycle 

that can be divided into four stages. At the neutral position (stage (i)), the slider is at the center 

of the tube with equal negative charges on the two Cu electrodes. Once the slider moves to the 

right side of the tube (stage (ii)), the magnetic flux across the coils increases on the right side 

and decreases on the left. The current flow induced in the two coils by the electromagnetic 

induction is in opposite directions according to Lenz’s law. Meanwhile, increasing the relative 

displacement between the slider and the PTFE film causes a different inductive potential 

between the two Cu electrodes, which drives inductive electrons to flow from the left electrode 

to the right one, forming a triboelectric current to the left. The electromagnetic and triboelectric 
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currents last until the slider reaches its maximum relative displacement (stage (iii)). The slider 

is then pushed back with decreasing the relative displacement by the restoring force of the 

system (stage (iv)). 

 

 

 

 

 

Fig. 6.2: Three stable equilibrium positions of the slider in a symmetric tri-stable state. 
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(a) 

 

(b) 
Fig. 6.3: Power generation process of (a) the EMG unit and (b) the TENG unit over a half 

cycle. 

 

As the magnetic flux keeps changing across the coils, it can generate an EMG current 

opposite that of stage ii. Meanwhile, the potential difference between the two Cu electrodes 

decreases and the induced electrons flow back from the right electrode to the left one, 

generating a triboelectric current to the right. The slider then returns to the initial state and 

repeats the process on the other side. In this way, the electromagnetic and triboelectric currents 

can be constantly generated by the proposed system. 
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6.2.3 Formation of Tri-stable Nonlinear Behavior 

A tri-stable nonlinear characteristic is designed in the proposed hybrid generator. This 

characteristic can be realized by magnetic interaction. Figure 6.4 shows the configuration and 

its associated geometric parameters of the magnets. Both rectangular and cylindrical coordinate 

systems are set and the origins of them are located at the center of the moving magnet A. Two 

static cylindrical magnets (i.e., C1 and C2) are placed on the z-axis. Four outer magnets, namely 

B1, B2, B3 and B4, are placed in the x-y plane. The magnetizing current method (Agashe and 

Arnold, 2008) is employed in the current magnet model. In this model, we concern the magnetic 

forces on the moving magnet (A) in the z-direction due to the magnetic fields produced by the 

four outer magnets (B1, B2, B3, and B4) and two static cylindrical magnets (C1 and C2). For 

simplicity and brevity, they are denoted by B zF   and C zF  , respectively.  

 

According to the magnetizing current method, these two force components can be written 

as: 

B z m ext B

S

F K B dS  
  

 (6.1)

C z m ext C

S

F K B dS  
  

 (6.2)

where mK


  is the surface current density of the magnet A; ext BB 


  and ext CB 


  are the external 

magnetic flux densities of the outer magnets (B1, B2, B3, B4) and cylindrical magnets (C1, 

C2), respectively; S  is the surface area of the magnet A; and mK


 is given by 

m AK m n 
  

 (6.3)

where Am


 is the magnetization of the magnet A and n


 is a unit vector in the outward direction 

of the surface. The magnetization of the magnet A is in the z-direction, so the magnetizing 

current densities mK


 on the left and right surfaces of the magnet A are zero. On the curved 

surface of the magnet A, the direction of mK


 is tangent to the cross-section of the magnet A. 

For simplicity, the magnetic forces can be calculated using the cylindrical coordinate system 

with an origin at the point O as shown in Fig. 6.4.  

 

The magnetic flus density of an isotropic medium can be expressed by 

B H
 

 (6.4)
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where   is the magnetic permeability and H


 is the magnetic field strength. According to Eqs. 

(6.1) and (6.2), it is not difficult to understand that only the magnetic field strength along the 

r


  direction needs to be considered in order to calculate the magnetic forces B zF   and C zF   

in the z-direction. 

 

For a cuboidal magnet (length (l) × width (w) × height (h)) with a uniform magnetization 

0M  in the z-direction at the origin of the rectangular coordinate system, the x- and y-

components of the magnetic field strength at a point  0 0 0, ,x y z  are given by (Agashe and 

Arnold, 2008): 

0
0 0 0

2 2 22

0 0 0 0
, , 1

( , , )
4

( 1) ln ( 1) ( 1) ( 1) ( 1)
2 2 2 2

B x

k m n n k m n

k m n

M
H x y z

l w l h
y x y z



 



 

                               


 (6.5)

0
0 0 0

2 2 22

0 0 0 0
, , 1

( , , )
4

( 1) ln ( 1) ( 1) ( 1) ( 1)
2 2 2 2

B y

k m n n k m n

k m n

M
H x y z

w w l h
x x y z



 



 

                               


 (6.6)

 

For a cylindrical magnet (with a diameter of “2a” and a height of “2t”) with a uniform 

magnetization 0M  in the z-direction at the origin, the r-component of the magnetic field 

strength at a point  0 0 0, , z   in the cylindrical coordinate system, using the Gaussian 

hypergeometric expression, is given by (Akoun and Yonnet, 1984): 

   

   

0 0 0
3 2 2

0 0 0
2 22 2 2 2

0 0 0 0 0

3 2 2

0 0
2 22 2 2 2

0 0 0 0

( , , )

2 25 3
, ;2;

8 2 4 41.5 1.5

2 25 3
, ;2;

4 40.5 0.5

C rH z

M a aa
F

z t a z t a

a a
F

z t a z t a

 

 
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 
 

 
                            

                            

 

(6.7)

where F is the Gaussian hypergeometric function.  

 

 



 

  124

 

(a) 

 

 (b) 

Fig. 6.4: (a) Geometric diagram of the magnet model; and (b) cross-sectional views of the 

magnet model. 
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Substituting Eqs. (6.4)(6.7) into Eqs. (6.1) and (6.2) with the cylindrical coordinate 

system given in Fig. 6.4 yields, 

2

2

2

2

2

0

2

0

( ) 4 [ ( cos , sin , ) cos

( cos , sin , ) sin ]

hA

hA

hA

hA

s

B z m B x A B A As

s

m B y A B A As

F s K H R R R z R d dz

K H R R R z R d dz





    

   



  


 

    

   

 
 

 

   (6.8)

 2

2

2

0
( ) ( , , 2 ) ( , , 2 )

hA

hA

s

C z m C r A C r A As
F s K H R d z H R d z R d dz


   



   
      

  
 (6.9)

where s is the relative displacement between the slider and the tube. We observe that the 

proposed energy harvester performs symmetric oscillations in a horizontal position due to the 

magnetic forces. While the proposed energy harvester is placed in a vertical position, under the 

magnetic interaction and the effect of gravity, the oscillating system becomes asymmetric. 

These two conditions are given below: 

(a) Symmetric system 

In this condition, the restoring force ( rF ) is written as   

     r B z C zF s F s F s    (6.10)

(b) Asymmetric system 

In this case, the restoring force ( rF ) becomes 

     r B z C z gF s F s F s F     (6.11)

where B zF   and C zF   are given in Eqs. (6.8) and (6.9), and gF  is the force of gravity. 

 

In the theoretical analysis, a bifurcation study around the equilibrium states of the 

nonlinear system is performed to examine the existence of a triple-well behavior based on the 

restoring forces given in Eqs. (6.10) and (6.11). Relevant parameters and values of the hybrid 

energy harvester are listed in Tables 6.1 and 6.2. Figure 6.5 depicts the bifurcation behavior 

for the equilibrium states of the symmetric system with various distance values RB = 10 mm, 

11.5 mm, and 16 mm, where RB is the distance between the centers of the four outer magnets 

(B1, B2, B3, and B4) and the coordinate origin. In the figure, d is the distance between the 

centers of both cylindrical magnets (C1 and C2). The solid and dashed lines denote the stable 

and unstable equilibria, respectively. When RB is relatively small (RB = 10 mm and 11.5 mm), 

the oscillator exhibits a mono-stable system with one stable trivial equilibrium only when d < 

dA (distance at point A). Increasing the value of d, a pair of saddle-node bifurcation points (at 

point A) occur to form a tri-stable oscillator with two unstable non-trivial equilibria and three 
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(non-)trivial stable equilibria. Further increasing the value of d leads the system to a bi-stable 

oscillator when it passes through the pitchfork bifurcation point B where the trivial stable 

equilibria become unstable. When RB reaches to 16 mm, as depicted in Fig. 6.5(c), a pair of 

pitchfork bifurcation points disappear and the tri-stable region vanishes as well. 

 

Table 6.1: Material properties of magnets. 

Item Material Remanence 
Br (T) 

Normal 
coercivity 
Hcb (kA/m) 

Intrinsic 
coercivity 
Hcj (kA/m) 

Mass energy 
product BH 
(kJ/m3) 

Magnets NdFeB N35 1.17 868 955 279 
 

Table 6.2: Material parameters and geometry of the hybrid energy harvester. 

Parameters Values 
Radius ( AR ) and height ( Ah ) of the moving magnet A 6 mm, 18 mm 

Length ( Bl ), width ( Bw ) and height ( Bh ) of the four outer magnets (B1, 

B2, B3 and B4) 
5 mm, 3 mm, 2 mm 

Radius ( CR ) and height ( Ch ) of the cylindrical magnets (C1 and C2) 5 mm, 4mm 

Distance ( BR ) between the center of the four outer magnets (B1, B2, 

B3 and B4) and the coordinate origin 
11.5 mm 

Proof mass (mp) 0.0146 kg 
Gravitational constant (g) 9.81 m/s2 
Magnetic permeability ( 0 ) 4×107 H/m 

 

Potential energy diagrams under different values of d are presented for RB = 10 mm, 11.5 

mm, and 16 mm in Fig. 6.6. As d increases, the oscillator, with RB = 10 mm or 11.5 mm, 

changes from a mono-stable state to a tri-stable state, and further to a bi-stable state. In the tri-

stable state, the depth of the outmost two symmetric potential wells decreases as d increases, 

which makes the large-amplitude inter-well motion harder to achieve since it is more difficult 

to escape from the outmost wells. At RB = 16 mm, when d increases, the oscillator changes 

from a mono-stable state to a bi-stable state and the depth of the two symmetric potential wells 

goes deeper in the bi-stable state. Especially, when d = 53.2 mm in Fig. 6.5(a) and d = 58.5 

mm in Fig. 6.5(b), the potential depth is more uniform with a lower potential barrier when 

comparing to other cases. Such potential shapes make the system achieve a large-amplitude 

inter-well motion more easily. A comparison of a tri-stable system and a mono-stable state 

(without the magnets B1, B2, B3, and B4) is given in Fig. 6.7. It is obvious that the potential 

with RB = 11.5 mm and d = 58.5 mm requires less kinetic energy to excite a large displacement 
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motion. In the experimental test (horizontal orientation), this configuration of the system is 

employed for the proposed energy harvester to harness energy under low-level excitations. 

 

(a) (b) 

 

(c) 

Fig. 6.5: Bifurcation diagrams of the equilibrium solutions for RB = (a) 10 mm; (b) 11.5 

mm; and (c) 16 mm. 
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(a) (b) 

 

(c) 

Fig. 6.6: Variation of potential energy of the symmetric tri-stable system for RB = (a) 10 

mm; (b) 11.5 mm; and (c) 16 mm. 

 

 



 

  129

 

Fig. 6.7: Potential energy of the tri-stable and mono-stable configurations. 

 

In Fig. 6.8(a), the bifurcation behavior for the equilibrium states of the asymmetric system 

for RB = 10 mm is plotted. The solid and dashed lines denote the stable and unstable equilibria, 

respectively. The oscillator exhibits a mono-stable system with one stable equilibrium when d 

< dA. Increasing the value of d, a saddle-node bifurcation point (at point A) occurs to form a 

bistable oscillator with one unstable equilibrium and two stable equilibria. Further increasing 

the value of d leads the system to a tri-stable oscillator when a saddle-node bifurcation point B 

occurs. The generator finally becomes a bistable system at a saddle-node bifurcation point C. 

 

In Fig. 6.8(b), the potential energy diagram under different values of d for RB = 10 mm is 

presented. As d increases, the oscillator changes in the sequence of: a mono-stable state  a 

bi-stable state  a tri-stable state. In the tri-stable state (when d = 52.5 mm), it is quite difficult 

for the system to escape from the middle well to the left well due to a higher potential barrier. 

The twofold-well potential (when d = 50.5 mm) has a uniform depth and a lower potential 

barrier, resulting in a much lower excitation threshold for inter-well motions. Therefore, in the 

following experimental test (vertical alignment), this bi-stable configuration of the system is 

employed for the proposed energy harvester to harness energy under low-level excitations. 
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(a) 

 

 (b) 

Fig. 6.8 (a) Bifurcation diagram of the equilibrium solutions for RB = 10 mm; and (b) 

variation of potential energy of the asymmetric tri-stable system for RB = 10 mm. 
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6.2.4 Theoretical Modeling of the Proposed System 

A lumped parameter mechanical model of the hybrid energy harvester under a base 

excitation along the axial direction is shown in Fig. 6.9(a). The governing equation of the 

system is expressed by  

( )r d bmx cx F x f mz        (6.12)

where m  is the proof mass, c  is the total damping coefficient (including mechanical and 

electrical damping), df  is the dry friction between the Al and PTFE films, bz  is the input base 

acceleration, x  is the relative displacement of the moving magnet, and  rF x  is the nonlinear 

restoring force of the proposed energy harvester that can be calculated by either Eq. (6.10) or 

Eq. (6.11). A schematic electronic circuit for power management is presented in Fig. 6.9(b).  

 

 

 

 

(a) (b) 

Fig. 6.9: (a) A lumped parameter model of the hybrid energy harvester; and (b) a schematic 

circuit of the hybrid energy harvester. 

 

For the EMG unit, according to Faraday’s Law, the open-circuit voltage oc EMGV   and the 

short-circuit current sc EMGI   are expressed as 

/oc EMGV Nd dt    (6.13)

/sc EMG oc lI V R   (6.14)

where N ,   and lR  are the number of coil turns, the magnetic flux through the area enclosed 

by the coils, and the total internal coil resistance of the coils, respectively. 

 

For the TENG unit, the open-circuit voltage oc TENGV   and the short-circuit current sc TENGI   

are given by 

oc TENG scV Q C S C      (6.15)
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sc TENG scI dQ dt   (6.16)

where scQ , C  and   are the short-circuit transferred charge, the capacitance between two 

electrodes, and the surface charge density on the slider, respectively. Because the transferred 

charge is induced by the triboelectric charge on the slider, the potential difference between the 

two electrodes is proportional to the change of the contact area, S . 

 

The EMG and TENG units naturally differ in internal resistance. When their outputs after 

rectifications are connected together to a load, the hybrid output is lower than the algebraic 

sum of the generators’ outputs due to the impedance mismatch. To circumvent the problem of 

internal power consumption, full-wave rectifier bridges are cascaded to each of the generators 

to rectify the output voltage from AC to DC. This can avoid the output voltages in opposite 

phases that can distort the overall performance. The DC outputs will be connected in parallel 

to a capacitor. Although output impedance and voltage matching will affect the efficiency of 

energy storage in this case, phase delay may not. A standard charging circuit of the hybrid 

energy harvester is presented in Fig. 6.9(b). The EMG unit has low internal impedance and 

high current output, whereas the TENG unit has high internal impedance and it can generate 

much larger voltage than the EMG unit. Two full-wave bridge rectifiers are separately 

connected to the generators (EMG and TENG) to rectify the voltage outputs from AC to DC. 

The resultant DC outputs are then connected to a capacitor/load in parallel. Additional power 

management circuits can be utilized to match the output impedance of different working 

mechanisms and to achieve a better power output performance (Cao et al., 2007). 

 

 Experimental Studies 

6.3.1 Shaker Test Setup 

An experimental setup for the vibration test of the hybrid energy harvester is shown in Fig. 

6.10. A waveform generator (KEYSIGHT 33500B) was used to generate signals to a power 

amplifier (APS 125) that can activate a long stroke vibration shaker (APS 113). Various 

excitation levels were measured by an accelerometer (DPO4104B) mounted on the shaking 

plate. All sampling signals were recorded and displayed on a digital oscilloscope (KEYSIGHT 

DSOX3014T). The hybrid energy harvester was mounted onto the shaking plate and the 

oscillation study was conducted in both horizontal and vertical directions, this can either 

eliminate or incorporate the effect of gravity. 
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(a) 

 

(b) 

Fig. 6.10: Experimental platforms for vibration tests in (a) horizontal direction; and (b) 

vertical position. 
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6.3.2 Results and Discussion 

(a) Experimental Results in a Horizontal Direction 

To characterize the output performance of the fabricated prototype, we measured the open-

circuit peak-to-peak voltage of each unit (EMG and TENG) in the frequency range of 320 Hz 

under various excitation levels (0.3g, 0.6g and 1g), as shown in Fig. 6.11. At 0.3g, both 

generators can produce a large peak-to-peak open-circuit voltage at low frequencies around 4 

Hz due to the resonant inter-well oscillations. Increasing the excitation frequency, the output 

voltage would drop at around 5 Hz and the generators exhibit a non-resonant behavior. When 

the excitation amplitude increases to 0.6g, the effect of frictional damping results in a small 

decrease in the voltage response at low frequencies. The generators can cover a continuous 

bandwidth of 37 Hz. When the excitation amplitude further is tuned to 1g, the frequency range 

of the resonant inter-well oscillations can work under 38 Hz. 

 

On the other hand, the measured open-circuit peak-to-peak voltage of the mono-stable 

counterpart without the magnets (B1, B2, B3 and B4) is shown in Fig. 6.12. The peak-to-peak 

open-circuit voltage can reach the highest values at about 12 Hz due to the effect of resonant 

oscillations, but the voltage would sharply drop at both sides of the resonant frequency. Hence, 

the tri-stable system can provide a wider operating bandwidth under low frequencies. In Fig. 

6.13, the open-circuit voltage values of the EMG and TENG units under two excitation levels 

(7 Hz at 0.6g and 8 Hz at 1g) are presented. The results show that the peak-to-peak open-circuit 

voltage values of the EMG unit were 4.02 and 4.5 V, respectively. While for the TENG unit, 

the peak-to-peak open-circuit voltage values are 32.6 V and 35.4 V, respectively. In addition, 

to investigating the open-circuit voltage for electro-mechanical characterization, we also 

measured the maximum output power values of the EMG and TENG units across different 

external loads at 8 Hz under 1g acceleration. As depicted in Fig. 6.14, for the EMG unit, 

maximum power of 6.9 mW can be obtained under an optimum load resistance of 42 Ω. By 

contrary, the TENG unit can produce a much higher open-circuit voltage and a lower output 

power than those of the EMG unit due to a high internal impedance. The corresponding 

maximum power is 2.27 µW under a matching load resistance of 15 MΩ. 
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(a) 

 

 (b) 

Fig. 6.11: Measured open-circuit voltages of the tri-stable system under various acceleration 

levels (0.3g, 0.6g, and 1g): (a) EMG and (b) TENG. 
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(a) 

 

 (b) 

Fig. 6.12: Measured open-circuit voltages of the mono-stable system under various 

acceleration levels (0.3g, 0.6g, and 1g): (a) EMG and (b) TENG. 
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(a) (b) 

  

(c) (d) 

Fig. 6.13: Measured peak-to-peak open-circuit voltage curves of the tri-stable system: (a) 

EMG under 7 Hz at 0.6g; (b) TENG under 7 Hz at 0.6g; (c) EMG under 8 Hz at 1g; and (d) 

TENG under 8 Hz at 1g 

. 
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(a) 

 

 (b) 

Fig. 6.14: Dependence of the open circuit voltage and peak output power on the external load 

resistance in the tri-stable system: (a) EMG and (b) TENG. 
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(b) Experimental Results in a Vertical Position 

To study the effect of gravity on the prototype, the measured peak-to-peak open-circuit 

voltages of each unit in the frequency range of 320 Hz under various acceleration levels (0.3g, 

0.6g, and 1g) are shown in Fig. 6.15. At 0.3g, the generators can produce a large peak-to-peak 

open-circuit voltage at low frequencies around 4 Hz, this is mainly caused by the resonant inter-

well oscillations. With the increase of excitation frequency, the output voltage would drop at 

around 5 Hz due to the effect of frictional damping and the occurrence of chaotic behavior at 

around 9 Hz. When the excitation amplitude increases to 0.6g and 1g, the effect of frictional 

damping only results in a decrease of the voltage responses at around 7 Hz. In these two cases, 

careful observations found that the occurrence of chaotic behavior is at 1015 Hz. The device 

can cover the frequency range of 36 Hz. Figure 6.15 also shows the existence of chaotic 

regions (i.e., the vertical dots in red, blue, and green colors) under various excitation levels.  

 

In Fig. 6.16, the results show that the peak-to-peak open-circuit voltages of the EMG and 

TENG units are about 3.82 V and 24.1 V, respectively, under 8 Hz and 1g. In this bi-stable 

system, the maximum output power values of the EMG and TENG units across different 

external load resistance at 8 Hz under 1g are shown in Fig. 6.17. The open-circuit voltage is 

proportional to the load resistance. For the EMG unit, maximum power of 6.44 mW can be 

obtained under a matching load resistance of 41 Ω. For the TENG unit, the maximum power is 

1.14 µW under a matching load resistance of 15 MΩ. 

 

Coupling the tri-stable nonlinear behavior to the system not only can provide a wider 

operating bandwidth under low-frequency excitation levels, and also increase the output 

performance via resonant inter-well oscillations. The focus of this research mainly undertakes 

the dynamic characterization of the proposed system to show the existence of tri-stable 

potential wells, which can broaden the operating bandwidth of the hybrid energy harvester 

under low frequencies. The power output of this design can be enhanced by optimizing the 

governing parameters. To further improve the energy conversion efficiency of harvesters, a 

dedicated circuit design may be required to extract more power from the generators and 

improve the impedance match. 
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(a) 

 

 (b) 

Fig. 6.15: Measured open-circuit voltages of the bi-stable system under various acceleration 

levels (0.3g, 0.6g, and 1g): (a) EMG and (b) TENG. 
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(a) 

 

 (b) 

Fig. 6.16: Measured peak-to-peak open-circuit voltages of the bi-stable system under 8 Hz at 

1g: (a) EMG and (b) TENG. 
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(a) 

 

 (b) 

Fig. 6.17: Dependence of the open circuit voltage and peak output power on the external load 

resistance in the bi-stable system: (a) EMG and (b) TENG. 
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(c) Performance Comparison 

A performance comparison between the present energy harvester and the recently 

proposed electromagnetic-triboelectric energy harvesters (Jin et al, 2016; Seol et al., 2016; 

Gupta et al., 2017; Zhu et al., 2017b; Salauddin et al., 2018; Saadatnia et al., 2018) is presented 

in Table 6.3. The comparison shows that the proposed hybrid energy harvester exhibits good 

performance in terms of the operating bandwidth and power density. In Fig. 6.18, simple 

demonstrations were also carried out to show that the present device can power three portable 

electronic humidity/temperature meters simultaneously in both horizontal and vertical 

orientations under 8 Hz and 1g.  

 

Table 6.3: Performance comparison of various electromagnetic-triboelectric energy 

harvesters. 

Approach Acceleration 
Excited 

frequency 
Bandwidth 

Peak 
power 

Power 
density 

Double-deck sandwiched 
structure for 4 TENG and 
2 EMG units  
(Jin et al, 2016) 

/ 22 Hz / 19.8 mW 167.22 W/m3

Floating oscillator-
embedded structure  
(Seol et al., 2016) 

1.7g 7.5 Hz 812 Hz / 

130W/kg m3 
(TENG) 

128W/kg m3 
(EMG) 

Multimodal + 
Nonlinear stiffening  
(Gupta et al., 2017) 

2g 80 Hz 46114 Hz 50.2 W 0.8 W/m3 

Cantilever structure  
(Zhu et al., 2017b) 

2g 20 Hz 1045 Hz 

53 W 
(EMG) 

30 W/ m2 

(TENG) 

/ 

Magnetically floated type 
(Salauddin et al., 2018) 
 

0.6g 4.5 Hz 35 Hz 10.07 mW 344 W/m3 

Linear tubular EMG unit 
in conjunction with 
grating structured 
freestanding mode TENG  
(Saadatnia et al., 2018) 

2.5g 5 Hz 16 Hz / 120 W/m3 

Present work 
(Magnetic levitation + 
Tri-stable nonlinearity) 

1g 8 Hz 38 Hz 
6.9 mW 

(Horizontal 
orientation) 

132 W/m3 
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(a) 

 
 (b) 

Fig. 6.18: Demonstration of the hybrid energy harvester for powering three electronic 

meters simultaneously in (a) horizontal and (b) vertical positions under 8 Hz and 1g. 
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 Concluding Remarks 

In this chapter, we designed a novel magnetic levitation-based hybrid energy harvester that 

can perform well under low-intensity and low-frequency sources. To facilitate the energy 

transfer, a tri-stable nonlinearity-enhanced mechanism was implemented. The tri-stable 

nonlinear behavior can be realized by using four outer static magnets on the same plane. 

Besides, a bifurcation analysis was conducted to identify the stable regime of the present 

system. The magnetizing current method is useful to analytically calculate the magnetic forces 

of this model to reveal the triple-well nonlinear phenomenon. To examine the working 

performance of the proposed design, experiments were carried out to demonstrate that the 

fabricated prototype can work well under a broadband range at 38 Hz. In the horizontal setup 

(without the effect of gravity), under 8 Hz and 1g, the EMG unit can deliver a peak output 

power of 6.9 mW across a loading resistance of 42 Ω, while the TENG unit can produce an 

output power of 2.27 µW across a loading resistance of 15 MΩ. In the vertical situation (under 

the effect of gravity), the fabricated prototype can produce a total power output of 6.44 mW 

under 8 Hz and 1g. Under low excitation levels, simple demonstrations were also carried out 

to demonstrate that the prototype can power up parallel-connected electronic devices.  
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Chapter 7  

CONCLUSIONS AND RECOMMENDATIONS  

 

 Conclusions 

This project has been devoted to investigating the nonlinear dynamics of MEMS 

resonators and vibration-based energy harvesting techniques, both of them play a critical role 

in the increasing demand for IoT systems. In the analysis of MEMS resonators, the NHB 

method has been used to construct lower-order analytical approximate solutions for both free 

and forced vibrations of doubly clamped MEMS resonators under electrostatic forces. The 

beauty of the NHB method helps understand the nature of systems in response to changes in 

geometrical and material parameters that affect the nonlinearity. Since micro-/nano-scale 

structures are involved in the design of MEMS/NEMS resonators, the nonlocal dynamic effect 

of micro-/nano-scale structures is also investigated in the present work. The new findings of 

this research are summarized as follows: 

 An accurate dynamic model for the nonlinear free vibration of a doubly clamped 

microbeam with a one-sided electrode subjected to a suddenly applied DC voltage is 

derived by considering the effects of mid-plane stretching, axial residual stress, electric 

actuation, linear damping, and fringing field. The resultant nonlinear equation can then be 

solved by the NHB method. The analytical solutions are in good agreement with the 

numerical results obtained by the standard RungeKutta method for the whole stable 

regime. The results show that the vibration amplitude increases as the frequency decreases. 

 An engineering model for the nonlinear forced vibration of a doubly clamped microbeam 

with a two-sided symmetric electrostatic actuation is established. Accurate frequency-

amplitude responses near the first natural frequency of the system are derived by a 

modified NHB approach. The relationship between the vibration amplitude and natural 

freqeuncy of the microbeam is established and it is found that a softening effect due to the 

nonlinear electrostatic force is dominant in this case.  

 A simple and easy approach for the determination of a size-dependent range in micro-

/nano-scale structures is proposed. Three nanostructure models are investigated herein, i.e., 

the axial vibration of nanorods, transverse vibration of nanobeams, and free vibration of 

nanoplates, in accordance with the nonlocal partial-differential constitutive framework. 

According to this approach, the range of “e0a” for studying the nonlocal scale effect in the 
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dynamical behavior of nanostructures can be taken as 0~0.8 nm. The results are compared 

with the available solutions to confirm its validity.  

 

Unlike many vibration energy harvesters that can only operate over a narrow frequency 

bandwidth, a new electromagnetic-triboelectric tri-stable energy harvester is developed to work 

well under low-amplitude and low-frequency sources. A tri-stable nonlinear mechanism is 

adopted to enhance the working performance. The use of this device enables us to realize a 

self-autonomous and wireless power system. To gain deeper insights into the tri-stable 

nonlinear behavior, a triple-well non-natural system that exhibits both heteroclinic and 

homoclinic orbits under different equilibrium states has been investigated. The new findings 

of this work are as follows: 

 A global analysis to investigate a triple-well non-natural system is presented. In qualitative 

analysis, the equilibrium points and its trajectories of the nonlinear system due to the 

influence of various governing parameters are classified, including the effect of negative 

linear stiffness. The intrinsic behavior of such a system, from a mono-stable mode to a tri-

stable state, can be controlled by the governing parameters. The interchange of heteroclinic 

and homoclinic orbits under different equilibrium states are also presented. In addition, the 

NHB method is applied to construct accurate lower-order analytical approximations for 

symmetric and asymmetric oscillations around different equilibrium points of the 

nonlinear system. The analytical approximation results that are valid for large amplitudes 

of oscillation and governing parameters show good agreement with the exact solution. 

 A novel magnetic levitation-based hybrid energy harvester with a tri-stable nonlinearity-

enhanced mechanism is proposed. A bifurcation analysis is conducted to identify the stable 

regime of the present system. Besides, a prototype is also fabricated and tested to examine 

the performance of the proposed design. In the horizontal setup (without the effect of 

gravity), under 8 Hz and 1g, the EMG unit can deliver a peak output power of 6.9 mW 

across a loading resistance of 42 Ω, while the TENG unit can produce an output power of 

2.27 µW across a loading resistance of 15 MΩ. Under the effect of gravity (i.e., in the 

vertical setup), the fabricated prototype can produce a total power output of 6.44 mW under 

8 Hz and 1g. Using the present technique, sufficient power can be generated to support 

portable and wearable electronic devices.   

 This research is of importance in terms of both theoretical analysis and practical 

implication. The implementation of a magnetic levitation approach in the present technique 
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can reduce the possibility of mechanical contact and impact damage, thereby ensuring 

long-term durability for practical use. The compact design of this battery-shaped device 

will foster many spin-off engineering applications and realize self-powered structural 

monitoring systems, because it can scavenge energy from low-frequency as well as low 

acceleration vibration sources, e.g., automobile transportation, railway vehicles, highway 

bridges, and building motions. Moreover, a series of packs (Tan et al., 2019), similar to a 

battery pack with an identical number of batteries, can be used to support various power 

levels of self-sustained low-energy electronics for structural monitoring. 

 

 Limitations and Recommendations for Future Work 

In this project, we intend to provide an in-depth understanding of the complex dynamical 

behavior of MEMS resonators and vibration-based energy harvesters. Although relevant 

research studies have been well completed, there is still ample room to conduct further 

investigations among these problems. The following issues should be considered in future 

research work. 

 

In this research, we only considered the symmetric oscillation of a doubly clamped MEMS 

resonator under an external harmonic force. In the case of asymmetric oscillations, a doubly 

clamped microbeam, subjected to a one-sided electrostatic actuation and a harmonic 

electrostatic load, is not investigated herein. This problem needs to be further addressed by 

using the recently proposed HB method (Zhou et al., 2020). In addition, further analysis of the 

nonlinear dynamics of complex MEMS resonators subjected to various mixed boundary 

supports and external excitation levels (e.g., random and constant excitations) is yet to be 

studied analytically. In fact, there is always an inherent mechanism to provoke bifurcations and 

instabilities of nonlinear dynamical systems. Instabilities and bifurcations may induce 

unpredictable dynamical responses, thereby causing the malfunction of MEMS devices. 

Furthermore, the effect of Casimir forces is significant at sub-micron scales in MEMS and 

NEMS, where attractive Casimir forces can cause the movable components (e.g., beams or 

plates) to stick together (Batra et al., 2008; Farrokhabadi et al., 2014; Stange et al., 2019). Not 

only the attractive interaction but the investigation of repulsive Casimir forces on such devices 

is also the main content of research (Munday et al., 2009), because many fundamental problems 

in switchable micro-/nano-scale devices remain to be resolved. 
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On the other hand, although this study has investigated the dynamic behavior of micro-

/nano-scale structures by means of the nonlocal elasticity theory, the work only focused on the 

linear vibration analysis of homogeneous structures, i.e., nanorods, nanobeams, and nanoplates. 

Under the large deformation of such structures, the relationship of nonlinear behavior and 

surface stress becomes more pronounced and complicated in nature. Moreover, 

inhomogeneous materials, e.g., functionally gradient and carbon nanotube reinforced materials, 

have shown great potential in various engineering fields. The nonlinear oscillation of 

inhomogeneous nanostructures under different external forces is thus an emerging area for 

further research. With the advancement of equipment facilities and computing abilities, 

experiments at the nanoscale can also be used to verify the available theoretical results. 

 

In the analysis of the vibration-based energy harvesting technique, the present design 

combines a slider-driven electromagnetic generator and a sliding-mode triboelectric 

nanogenerator into a single hub. To improve the current design, piezoelectric generators or 

other generator types can be combined in a smart way to harness more energy from vibration 

motions, resulting in a higher power density. Using the concept of multi-stable nonlinear 

behavior, shallower potential wells (e.g., quintuple-well potential) can be created by adjusting 

the arrangement of outer magnets to further improve the working performance under a low 

excitation threshold. Moreover, the mechanism of the inter-well jumping phenomenon under 

different external excitations and parameter turning strategies are still required to be 

investigated and refined. Although the prime concern of this project is on the exploration of 

nonlinearities in energy harvesting, the electromechanical coupling between mechanical 

transducers and adaptive electronic circuits for maximizing power output and minimizing 

energy loss during the power management is another key topic in future work. 

 

To further enhance the energy conversion efficiency, the design of a dedicated circuit can 

extract more power from the hybrid generator. In contrast to the standard electronic circuit with 

rectifiers and filter capacitors, the synchronous switching circuit is viewed as an effective 

solution for achieving higher performance and providing better adaptability under the variation 

of loads. The synchronous switching harvesting on inductor (SSHI) (Guyomar et al., 2005) was 

first introduced to utilize the voltage inversion process to avoid the energy return phenomenon 

in a standard circuit. Subsequently, several improved circuits based on SSHI have been 

proposed, such as SSHI with magnetic rectifiers (Garbuio et al., 2009), double synchronized 

switch harvesting (Lallart et al., 2008), and enhanced synchronized switch harvesting (Shen et 
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al., 2010a). In addition, the synchronous electric charge extraction (SECE) technique (Lefeuvre 

et al., 2005) was raised to solve the impedance matching problem. Furthermore, an optimized 

SECE approach was applied to improve the working performance of SECE while keeping a 

low-load dependence (Wu et al., 2012). Nevertheless, all these circuit techniques are generally 

used for linear energy harvesters. How to optimize the design of synchronous switching circuits 

for wideband vibration-based energy harvesters is still a crucial problem to harness energy 

from ambient sources.  
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