

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Effective Automatic Program Repair
Based on State Abstraction

Liushan Chen

PhD

The Hong Kong Polytechnic University

2021

The Hong Kong Polytechnic University

Department of Computing

Effective Automatic Program Repair
Based on State Abstraction

Liushan Chen

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

August 2020

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Liushan CHEN (Name of student)

iii

Abstract

Automatic program repair (APR) aspires to automate the otherwise expensive and

laborious process of patching bugs. Most existing APR techniques use tests to drive

the repair process, where a buggy program with passing and failing tests is used as

the input to generate a number of candidate fixes that can make all the tests pass

as the output. The test driven APR techniques can be categorized into two groups:

synthesis-based techniques and search-based techniques.

While exciting progress has been made in search-based automated program re-

pair and some of such techniques have been successfully applied in industry in the

past few years, several limitations are preventing those techniques from being more

effective and efficient in fixing more bugs: The quality of generated fixes may not

be satisfactory from a programmer’s point of view since test cases are just weak

oracles for program correctness; Existing fault localization techniques deliver only

subpar efficiency that cripples the performance of APR techniques because the lo-

calization process is not tightly integrated with the repair process; The generic in-

formation about fix patterns learned from human-written patches in the past may

not be enough to guarantee an effective and efficient fixing process.

We have developed novel techniques in this thesis that address these limitations

and advance the state-of-the-art in search-based automated repair of Java programs.

Particularly, we devised the Jaid technique that abstracts program states based on

a rich set of predicates derived from regular Java code and mitigates the overfitting

iv

problem by grounding the repair generation and validation processes on the abstrac-

tion; We pioneered the Restore technique that reuses the outcome of failed patch

validation to yield accurate information about fault locations without incurring oner-

ous computational costs; We introduced the Pride technique that enables program

repair to apply valuable knowledge repeatedly learned from both completed and on-

going fixing processes to better navigate the space of candidate fixes. Supporting

tools have also been implemented to enable programmers to use these techniques in

their everyday development to generate high quality fixes to errors in Java programs

in an automated fashion.

To evaluate the effectiveness and efficiency of these techniques, we applied the

tools to automatically repair bugs from benchmarks like Defects4J, IntroClass-

Java, QuixBugs, and Bears. Experimental results show that, compared with

other Java APR tools of the same time, ours can produce correct fixes to more bugs

with a comparable amount of time.

Keywords: Automated program repair; Fault localization; Predicate abstrac-

tion; Mutation analysis; Learning to rank.

v

Publications Arising from the Thesis

Journal Papers

• Liushan Chen, Yu Pei, Carlo A. Furia, Contract-Based Program Repair with-

out The Contracts: An Extended Study. IEEE Transactions on Software En-

gineering (TSE).

• Tongtong Xu, Liushan Chen, Yu Pei, Tian Zhang, Minxue Pan, Carlo A. Fu-

ria, RESTORE: Retrospective Fault Localization Enhancing Automated Pro-

gram Repair. IEEE Transactions on Software Engineering (TSE).

Conference Paper

• Liushan Chen, Yu Pei, Carlo A. Furia, Contract-based Program Repair with-

out the Contracts. In Proceedings of the 32nd IEEE/ACM International Con-

ference on Automated Software Engineering (ASE’17), pp. 637-647, 2017.

Paper Submitted

• Liushan Chen, Yu Pei, Minxue Pan, Tian Zhang, Carlo A. Furia, Qixin Wang,

Program Repair with Repeated Learning.

vi

Acknowledgements

First and foremost, I feel profound gratitude towards my supervisor, Dr. Yu Pei, for

all his meticulous effort through every stage of my study. Learning and working under

Dr. Pei’s supervision is a precious experience of a lifetime. He is always optimistic,

energetic, and inspiring, which profoundly influenced me. I have benefited a lot from

our countless discussions; Dr. Pei is always full of fascinating ideas that can turn a

difficult problem I encountered into our chance, and he always welcomes and respects

different ideas. When I look back, I found that it was one of my best decision to

choose him as my supervisor.

I would like to thank my co-supervisor, Dr. Qixin Wang. His systematic method

and rigorous attitude to research provide me a great scholar model. I also learned

many things from him, including writing skills and research strategy.

I am hugely appreciative of Dr. Carlo A. Furia, who offered much valuable advice

on our work. Without his generous help, it would be much more difficult for us

to achieve what we have achieved. Also, I would like to thank Tongtong Xu, who

provided selfless support during our collaboration.

I also want to thank my family and all my friends, especially my parents, for

supporting me with their love. Special mention goes to my closest friends Zhu Gong,

Suyu Dai, and Fei Yin. All the chicken nights and conversations are releasing; our

friendships are gifts of life, which I cherish. Finally, I want to express my sincerest

gratitude to Zejin Zhang, who always encourages me to breakthrough my limitations

vii

and stay with me in my darkest time in all means.

viii

Table of Contents

Certificate of Originality iii

Abstract iv

Acknowledgements vii

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Main Results . 3

1.2 Terminology . 5

1.3 Structure . 5

2 Related Work 7

2.1 Automated Program Repair . 7

2.1.1 Search-Based Automated Program Repair 9

2.1.2 Synthesis-Based Automated Program Repair 14

2.2 Fault Localization . 15

3 Contract Based Program Repair without the Contracts - Jaid 18

3.1 An Example of Jaid in Action . 20

3.2 How Jaid Works . 22

3.2.1 Overview . 22

3.2.2 Program State Abstraction . 23

ix

3.2.3 Fault Localization . 27

3.2.4 Fix Generation: Fix Actions 28

3.2.5 Fix Generation: Candidate Fixes 31

3.2.6 Fix Validation . 32

3.2.7 Fix Ranking . 33

3.3 Experimental Evaluation . 34

3.3.1 Experimental Design . 36

3.3.2 Experimental Results . 44

3.4 Summary . 68

4 Enhancing Program Repair with Retrospective Fault Localization-
Restore 69

4.1 An Example of Restore in Action 71

4.2 How Restore Works . 72

4.2.1 Overview . 73

4.2.2 Retrospective Fault Localization 75

4.2.3 Initial fix generation . 76

4.2.4 Partial fix validation . 77

4.2.5 Mutation-based fault localization 77

4.2.6 Retrospective loop iteration 80

4.2.7 Final fix generation . 81

4.2.8 (Full) fix validation . 81

4.3 Experimental Evaluation . 82

4.3.1 Experimental Design . 82

4.3.2 Experimental Results . 86

4.4 Summary . 94

x

5 Directing Patch Search with Repeated Learning - Pride 96

5.1 An Example of Pride in Action . 98

5.2 How Pride Works . 100

5.2.1 Overview . 100

5.2.2 Fault Localization . 102

5.2.3 Fix Generation . 102

5.2.4 Static and Dynamic Fix Analysis 103

5.2.5 Fix Ranking . 105

5.2.6 Implementation . 111

5.3 Experimental Evaluation . 112

5.3.1 Experimental Design . 112

5.3.2 Experimental Results . 117

5.4 Summary . 124

6 Conclusion and Future Work 125

6.1 Main Contributions . 125

6.2 Future Work . 126

Bibliography 128

xi

List of Figures

3.1 An overview of how Jaid works . 24

3.2 Schemas used by Jaid to build candidate fixes 32

3.3 Distribution of the top rank of correct fixes of bugs. 50

3.4 Distribution of Jaid’s running time per bug 53

3.5 Distributions of Jaid’s running time per bug 54

3.6 Distribution of Jaid’s running time for the first valid fix 55

3.7 Distribution of Jaid’s running time for the first correct fix 56

3.8 Partitioning of Defects4J bugs according to which tool can fix them 61

3.9 How effectiveness and efficiency of Jaid depend on the number of
snapshots used for fixing . 64

3.10 Violin plots of the top rank of correct fixes for all bugs 65

3.11 Violin plots of the overall running time 66

4.1 An overview of how Restore works 73

4.2 Visual explanation of linear regression lines 86

4.3 Comparison of Jaid and Restore on various measures 89

5.1 Two sharpening fixes generated by Pride (to be inserted before line
3 in Listing 5.1). 100

5.2 Overview of Pride. 101

5.3 Comparison of Pride and Restore on various measures. 120

5.4 Comparison of SimFix˚ and SimFix on T2C. 123

xii

List of Tables

3.1 Defects4J benchmark . 37

3.2 IntroClassJava benchmark . 37

3.3 QuixBugs benchmark . 37

3.4 Automated program repair tools for Java used in the comparison with
Jaid . 42

3.5 Spectrum-based fault localization algorithms used to replace Jaid’s 42

3.6 Effectiveness of Jaid . 45

3.7 Bugs in Defects4J and QuixBugs for which Jaid failed to produce
any valid fix . 46

3.8 Statistics on Jaid’s overall running time per bug 52

3.9 Statistics on Jaid’s running time . 57

3.10 A quantitative comparison of Jaid with 16 other tools 58

3.11 Templates used more commonly by Jaid to produce correct fixes . . 63

3.12 How Jaid’s effectiveness changes using different fault localization tech-
niques . 65

4.1 A quantitative comparison of Restore with 13 other tools 87

4.2 How retrospective fault localization achieves progress 94

4.3 How many times retrospective fault localization iterates 94

5.1 Format of the training data. 110

5.2 Experimental results of Pride and Restore in repairing faults from
the 4 benchmarks. All times are in minutes. 117

xiii

5.3 A quantitative comparison of Pride with 17 other tools in repairing
bugs from the 4 benchmarks. 119

5.4 Usefulness of individual features. 122

xiv

Chapter 1

Introduction

Software programs have been widely integrated into almost every aspect of modern

societies. Even though people are already investing a huge amount of time and effort

on debugging those programs, bugs that escape programmers’ attention and find

their way into the field still cost roughly $60 billion dollars annually in just the USA.

Studies on bugs fixed by programmers in the past show that a significant per-

centage of bugs could be corrected with simple changes, i.e., changes that affect only

a few lines of code. In view of that, considerable research work has been devoted

to automatically generating such corrections, with the hope that reducing the cost

of fixing simple faults could help programmers and companies better allocate their

resources and focus on more challenging faults.

Most existing automated program repair (APR) techniques are test-driven. More

precisely, they require as input a faulty program as well as a list of tests as the oracle

for the correctness of the program: The failing tests reproduce the failures caused by

the fault to fix, while the passing ones represent correct behaviors the program should

preserve after fixing. The goal of automated program repair is then to generate fixes

that, when applied, could make all the input tests pass.

Test-driven APR techniques can be grouped into two categories: synthesis-based

techniques and search-based techniques. Synthesis-based techniques first construct

1

constraints that encode the expected semantics of the program, and then synthe-

size candidate fixes based on solutions to the constraints. Synthesis-based APR

techniques have focused mostly on repairing incorrect expressions in programs so

far. Search-based (a.k.a. generate-and-validate) APR techniques typically produce

fix suggestions in three steps, namely fault localization, fix generation, and fix val-

idation, where fault localization identifies program locations where the fault under

fixing might reside, fix generation produces a list of candidate fixes, while fix valida-

tion checks the validity of the generated fixes.

Exciting progress has been made in search-based automated program repair and

we have seen some initial, but successful, applications of such APR techniques in

industry in the past few years. There, however, are still limitations that prevent

existing search-based APR techniques from being more effective and efficient in fixing

more bugs:

• Since tests are only weak oracles for program correctness, fixes that make all the

tests pass may still be incorrect—this is referred to as the overfitting problem

in APR [73]. Code annotations like contracts have been exploited in APR to

significantly help increase the fraction of correct fixes that can be generated

[61]. Support for contracts, however, is limited or non-existent in most widely-

used programming languages.

• Results produced by fault localization techniques employed in existing APR are

not accurate enough to support efficient program repair. Particularly, existing

spectrum-based fault localization techniques often used by APR tools are not

tightly integrated with the repair process and deliver only subpar efficiency.

• While the generic information about fix patterns that latest approaches leverage

to guide the search for correct fixes is clearly critical for the success of program

repair, it alone may not be enough to guarantee an effective and efficient fixing

2

process. After all, how a bug should be fixed is ultimately determined by the

nature of the bug and the code context where it occurs.

1.1 Main Results

This thesis has developed search-based APR techniques and supporting tools to

(partially) overcome these limitations. The main contributions of this thesis include

the following:

• We introduce the Jaid technique and tool for APR that is based on detailed,

state-based dynamic program analyses - akin those employed by contract-based

techniques such as AutoFix [79], but working on regular Java code (without

any contracts). A key feature of Jaid is that it extracts state abstractions

from regular Java code and utilizes the state abstraction to help construct

high-quality fixes.

We also conduct an experimental evaluation to assess the effectiveness and

efficiency of Jaid, as well as to better understand the trade-offs involved in

APR design and discover possible directions for future work. The evaluation

results show that Jaid perform comparably to or even better than existing

automated Java program repair tools in terms of the number of faults correctly

fixed (as of May 2017). Jaid is the first APR technique that achieves high

levels of precision without relying on additional input other than tests and

the faulty code; in contrast, other high-precision APR techniques of that time

[34], [89] analyze a large number of project repositories to collect additional

information that guides fixing.

• We present retrospective fault localization, a novel fault localization technique

geared to the requirements of automated program repair. Retrospective fault

3

localization leverages mutation-based fault localization [56], [59] to boost local-

ization accuracy. Since mutation-based fault localization is notoriously time-

consuming, the key idea of retrospective fault localization is to perform it as

a derivative of the usual program repair process. Precisely, retrospective fault

localization introduces a feedback loop that reuses the candidate fixes that

fail validation to enhance the precision of fault localization. By reusing the

outcome of failed patch validation to support mutation-based dynamic analy-

sis, retrospective fault localization is able to provide accurate fault localization

information without incurring onerous computational costs.

We implement retrospective fault localization in a tool called Restore on

top of Jaid. Experiments on real-world bugs from the Defects4J curated

benchmark [27] produced results indicating that retrospective fault localization

significantly improves the overall effectiveness and efficiency of program repair.

More specifically, Restore generated correct fixes for 41 faults in Defects-

4J, 8 more than any other automated repair tool for Java (as of May 2019)

and it cut Jaid’s running time by two thirds or more.

• We devise the Pride (Program Repair with repeated learning) technique for

improving the effectiveness and efficiency of automated program repair. The

key novelty of Pride is twofold. First, it defines a rich set of features that not

only characterize the composition of fixes but also relate the components of fixes

to their context code and test executions. Second, it introduces a learning-to-

rank model to enable program repair to repeatedly learn valuable knowledge

from both completed and ongoing fixing processes about the constitution of

high quality fixes. The model is trained on data about candidate fixes from

past fixing processes and updated when data about candidate fixes processed

in new fixing sessions become available.

4

We implement the Pride technique into a tool with the same name and applied

it to repair 983 bugs from 4 popular benchmarks in APR, namely Defects4J,

IntroClassJava, QuixBugs, and Bears. Pride proposed valid fixes to

243 bugs and correct fixes to 137 bugs, significantly outperforming Restore

and the other existing APR techniques for Java programs. To demonstrate

the generality of the Pride technique, we also incorporated it into the SimFix

APR technique and produced SimFix˚. Compared with SimFix, SimFix˚

proposed correct fixes to one more fault in repairing Defects4J bugs and

achieved 3.3 speedup in terms of repair time needed to find the first correct fix.

One common, key feature to enable the three techniques is program state abstrac-

tion based on a rich set of boolean expressions. Such abstraction not only enables us

to understand better where the fault causes might be, but also sheds light on how

the programs should be changed to correct the faults.

1.2 Terminology

In this thesis, we use the nouns “defect”, “bug”, “fault”, and “error” as synonyms to

indicate errors in a program’s source code. We also use the nouns “fix”, “patch”, and

“repair” as synonyms to indicate changes we make to the program’s source code in

the hope of correcting bugs. Fixes that can make all the input test cases pass are

called valid fixes. Valid fixes, however, may break other test cases not included in

the input. Fixes that are semantically equivalent to patches written by programmers

are called correct fixes.

1.3 Structure

The rest of this thesis is organized as follows. Chapter 2 reviews recent works in

automated program repair and related areas. Chapter 3, Chapter 4, and Chapter 5

5

present the Jaid, Restore, and Pride techniques as well as the experiments we

conduct to evaluate them, respectively. Chapter 6 concludes this thesis and discusses

future work.

6

Chapter 2

Related Work

In this chapter, we review related work in areas of automatic program repair and

fault localization. For each area, we first categorize the techniques available in that

area to help position our work, then focus on reviewing the approaches that have

directly influenced our works in this thesis. We also discuss recent APR techniques

that are applicable to Java programs, since they are directly comparable to our

techniques. More detailed reviews are provided in [86] for fault localization and

[55, 18] for automated program repair.

2.1 Automated Program Repair

A program is called defective if its behaviors are inconsistent with its specification.

Automatic program repair could refer to a wide range of techniques that utilize

various program analysis and synthesis methods to produce modifications to make a

buggy program satisfy its corresponding specification.

There are two kinds of systems for correcting program defects automatically under

different scenarios, namely repairing and self-healing systems. Repairing systems look

for patches to correct bugs at the source code level so that further failures caused

by the same faults can be avoided; In contrast, self-healing systems aim to achieve

run-time survival: They detect failures in-the-field and try to make modifications

7

at run-time to prevent systems from crashing. Therefore, fixes generated by self-

healing systems are usually temporary workarounds, while programmers are still

expected to permanently fix the underlying bugs by revising the corresponding source

code afterwards. Under the hood, self-healing systems often use program analysis

techniques similar to those used by repairing systems. ClearView [63], for instance,

dynamically infers state invariants (like Jaid does) on instrumented binaries to detect

and then prevent problems such as buffer overflows. Our work in this thesis focuses

on repairing techniques that generate permanent patches at the source code level.

Most existing automated program repair (APR) techniques are test-driven. More

concretely, they require as input a faulty program as well as a list of tests as the oracle

for the correctness of the program: The failing tests reproduce the failures caused by

the fault to fix, while the passing ones represent correct behaviors the program should

preserve after fixing. The goal of automated program repair is then to generate fixes

that, when applied, could make all the input tests pass.

Test-driven APR techniques can be roughly grouped into two categories: search-

based (a.k.a. generate-and-validate) techniques and synthesis-based (a.k.a. correct-

by-construction) techniques. A process of search-based program repair typically

involves three kinds of activities, namely fault localization, fix generation, and fix

validation. In particular, fault localization identifies program locations where the

fault under fixing might reside; fix generation produces a list of candidate fixes; and

fix validation checks whether the fix makes the program pass all input tests. Fix

validation is necessary for such a process since fix generation in search-based APR is

usually driven by heuristics, and it provides no guarantee for the correctness of the

generated candidate fixes. Our work in this thesis focuses on test-driven techniques

that follow the generate-and-validate paradigm to fix general faults.

Synthesis-based techniques [53, 91, 54, 52] replace suspicious expressions in the

faulty program with symbolic variables, and employ symbolic analysis to construct

8

constraints on those variables that encode the expected input/output semantics of

the program. Then they synthesize candidate fixes based on resolved solutions to

the constraints. Since the constraints already reflect the expected behaviors of the

input tests, candidate fixes derived from the constraints are guaranteed to make all

the input tests pass. Since it is easier to find a formal representation of the repair

problem while considering a specific class of faults than producing formalization for

general faults, synthesis-based approaches are usually designed for a specific class of

faults, such as condition synthesis. It, however, is not clear yet how synthesis-based

APR can be extended to work on the statement level or to handle expressions with

side-effects.

2.1.1 Search-Based Automated Program Repair

Many automated program repair techniques are search-based: Given a faulty pro-

gram and a group of passing and failing tests, such a technique 1) locates the faulty

location usually through spectrum-based fault localization, 2) generates fix candi-

dates by heuristically searching a program space, then 3) applies generated fixes to

the faulty program, and checks the validity of the candidates by rerunning all the

input tests.

GenProg [82] pioneered search-based repair by using genetic programming to mu-

tate a faulty program and generate fix candidates. It implements a genetic algorithm

that mutates a faulty C program by deleting, adding, or replacing the code. Here,

the new code added or used as the replacement is taken from other parts of the file

or project under fixing—following the intuition [51] that ingredients needed to patch

a bug often exist already in the fixing context. GenProg was substantially extended

in [35] to handle code bases of realistic size and it managed to produce valid fixes

for 52% of 105 bugs in an experiment conducted to evaluate the tool.

Encouraged by GenProg’s promising results, various approaches tried to make the

9

mutation of candidate fixes more effective or the exploration of the fix space better

oriented and thus more efficient. For example, MutRepair [13] works in a similar way

to GenProg but only modifies operators appearing in expressions (such as compar-

ison and logical operators), since they tend to be common sources of programming

mistakes.

PAR [30] bases the generation of fixes on ten patterns, which are selected based

on a manual analysis of programmer-written fixes. These fixing patterns are encoded

as sequences of AST rewriting rules. The intuition behind is that patterns learned

from human fixes helps to generate fixes that are more readable, and possibly more

acceptable from the perspective of developers.

A complementary approach [76] uses anti-patterns to characterize fixes that are

likely to be incorrect but still pass validation. Anti-patterns help identify fixes that

are frequently discarded by developers. By excluding potential false-positive candi-

dates, anti-patterns help prune the search space and enable APR to produce fixes

with higher quality.

RSRepair [65] works similarly to GenProg but uses random search instead of ge-

netic programming during fix generation. This approach is based on the assumption

that random search could perform better than evolutionary algorithms since progres-

sive evolution might be hard to encode in APR. Moreover, to improve the efficiency

of the fixing process, RSRepair runs test cases that are more likely to fail earlier

when validating candidate fixes.

AE [81] enumerates variants of the faulty code systematically and uses simple

semantic equivalence checking to reduce the number of fix candidates that have to be

validated. The equivalence checking considers two fix candidates to be equivalent if

they only differ in any of the following elements: 1) duplicated statements or variable

names; 2) dead code; 3) instructions that could be reordered without affecting the

semantic of the program. With the semantic equivalence checking, AE is able to

10

discard a certain amount of candidates despite different syntax, thus saving expensive

evaluation operation time.

Search-based APR tools described above are capable of working on real-world

bugs. However, they tend to overfit the input tests [73]—thus generating many

fixes that pass validation but are not actually correct [67]. Other tools address this

problem by exploiting additional information about the properties or patterns a

correct code should satisfy or follow.

AutoFix [79, 62, 61] relies on contracts (specifications embedded in the program

text) to localize the faulty program states and facilitate the generation process to

produce fixes steering the program away from the faulty state. By exploiting code

contracts that encode partial program specifications, AutoFix was the first general-

purpose APR technique to be able to generate correct fixes to a significant number

of faults. Our work Jaid generalizes AutoFix’s state-based analysis to work on Java

code without contracts and improves the quality of the generated fixes while without

sacrificing applicability.

Another source of additional information that is commonly used to assist pro-

gram repair is developer-written fixes from software repositories. HDA [34] adopts a

stochastic search approach inspired by generic programming to evolve a patch for a

given faulty program. In the approach, fix candidates are generated by applying a

collection of popular mutation operators to the original program, and mutants that

match the heuristics learned from fix history are selected into the next generation.

Genesis [43] learns templates that abstract away program details for code trans-

formations from human patches to capture common change patterns. During the

fixing process, Genesis instantiates learned templates to generate new fixes for un-

seen applications. And it navigates the trade-off of search space coverage and search-

ing efficiency by an integer linear program(ILP). The ILP maximizes the number of

training patches covered by the inferred search space while bounding the number of

11

generated candidate patches.

Elixir [70] specializes in repairing buggy method invocations; it involves various

templates to handle different variants of method invocations. Elixir also trains a

model with developer-written patches to predict the correct probability of a patch

from the relevance between the patch and its context. The machine-learned model

is then used to prioritize the most effective repairs.

ssFix [88] matches contextual information at the fixing location to a database of

developer-written fixes, and uses code chunks structurally similar and conceptually

related to the faulty context to drive fix generation. The assumption behind is that

correct fixes for a fault are contained in the similar chunks of developer-written fixes.

SimFix [25] is similar to ssFix in that they both leverage similar code chunks

for curbing the search space. SimFix looks for similar code chunks from the buggy

program, rather than from a given codebase; it derives needed modifications from

the differences between the buggy code chunk and the found similar code chunk.

SimFix also mines a code base for common fix patterns. It matches the derived

modifications with minded fix patterns to guide the fix generation. The design of

leveraging patterns learned from developer-written fixes together with similar code

chunks from the faulty program helps SimFix achieve higher precision with good

efficiency.

CapGen [83] improves the effectiveness of expression-level fix generation by lever-

aging fault context information together with the learned patterns from open source

projects to prioritize ingredient expressions and fixing operations (a.k.a., patterns in

a finer granularity) respectively. Therefore, fixes more likely to be correct are gener-

ated first. The important assumption behind is that the correct fixes share similar

context with buggy elements.

Hercules [71] proposes fixes to multi-hunk bugs in two steps. First, it identifies

a set of repair locations with similar code that should undergo similar changes ac-

12

cording to their context and the git history of the buggy project. Then, it generates

candidate fixes that introduce changes to all related locations at the same time.

TBar [41] investigates how fix patterns from the literature contribute to the per-

formance of APR tools. It systematically applies most of the existing fix patterns

summarized from the literature to generate fixes during its fixing process.

Existing search-based APR tools are quite effective in generating correct fixes

for real bugs, and several of them achieve so by mining developer fixes as additional

information. Techniques that we develop in this thesis, however, do not need extra

source of information in addition to the project being fixed. The idea of mining

programmer-written code is therefore also applicable to all the three techniques Jaid,

Restore, and Pride, to provide additional information and further mitigate the

risk of overfitting.

Most of these approaches employ off-the-shelf spectrum-based fault localization

techniques to obtain a list of program entities that might contain the fault, each of

which is then used as the target for fix generation in order. Timperley et al. [77]

investigated whether mutation-based fault localization can help search-based APR

achieve better efficiency. No significant improvement, however, was observed in the

experiments conducted on bugs from the BugZoo benchmark1, supposedly because

the single-edit mutations used in the study may be too simple to reveal substantial

differences between programs variants. In our retrospective fault localization, we

integrate mutation-based fault localization into the Restore search-based APR

technique where candidate fixes are treated as “higher-order” program mutants. In

this way, Restore benefits from the additional accuracy of mutation-based fault

localization while without suffering from the extra, high overhead typical of mutation-

based analysis.

Compared with techniques like HDA, SimFix, and CapGen that mine additional

1https://github.com/squaresLab/BugZoo

13

https://github.com/squaresLab/BugZoo

information from manual patches, Pride repeatedly learns valuable knowledge from

both completed and ongoing fixing processes about the constitution of valid and

correct fixes. Pride extracts a rich set of features to not only characterize the

composition of fixes but also relate the components of a fix to its context, to its

impact on test executions, and to the overall desirability of the fix. Then Pride

trains a ranking model on data about candidate fixes from past fixing processes and

update the model with data about candidate fixes produced during a running fixing

session. The ranking model enables Pride to apply and update valuable knowledge

learned from both completed and ongoing fixing processes to assist current repair

task.

2.1.2 Synthesis-Based Automated Program Repair

Synthesis-based program repair techniques [53, 54, 58, 91, 33] express the repair prob-

lem as a constraint satisfaction problem, and then use a constraint solver to build fixes

that satisfy those constraints. Relying on static instead of dynamic analysis makes

synthesis-based techniques generally faster than search-based ones, and is particu-

larly effective when looking for fixes with a restricted, simple form. Constraint-based

approaches often target the synthesis of conditions in if-statements or loops, since

changing those conditions often affects the control flow in decisive ways.

SemFix [58] is one of the early examples; it relies on symbolic execution to sum-

marize tests and on location-based fault localization, and it synthesizes expressions

in conditionals and in assignments that try to avoid triggering failures. Direct-

Fix [53] expresses the repair problem as a MaxSMT constraint, and supports gener-

ating multi-line fixes. Both SemFix and DirectFix, however, have limited scalability.

SPR [44] also combines condition synthesis with a dynamic analysis of the value

each abstract conditional expression should take to make all tests pass, which helps

aggressively prune the search space when no plausible repair exists. Angelix [54]

14

addresses this problem by introducing an efficient representation of constraints, and

by combining it with a symbolic execution analysis similar to SemFix’s. Nopol [91]

only targets conditional expressions, and uses a form of angelic debugging [95, 7] to

reconstruct the expected value of a condition in passing vs. failing runs; based on it,

Nopol synthesizes a new conditional expression using an SMT solver.

Prophet [46] implements a probabilistic model, learned by mining human-written

patches, on top of SPR to direct the search towards fixes with a higher chance of

being correct. MintHint [28] also builds a statistical model to generate repair sug-

gestions consisting of expressions that may be useful in a complete fix. ACS [89]

is a recent technique that significantly improves the precision of condition synthesis

based on a combination of data- and control-dependency analysis, and mining API

documentation and Boolean predicates in existing projects. SketchFix [23] expresses

program repair as a sketching problem [75] with “holes” in suspicious statements, and

uses synthesis to fill in the holes with plausible replacements. SearchRepair [29] is one

of few other approaches based on semantic analysis—as opposed to the more com-

monly used syntactic analysis. SearchRepair relies on preprocessing a large dataset of

programmer-written code snippets, and encoding their behavior as input/output re-

lational constraints; it then generates fixes by searching the dataset for snippets that

capture the desired input/output behavior. These techniques learn useful knowledge

about syntactic features of successful fixes in the past and use that knowledge to

improve the quality of fixes proposed by automated program repair.

2.2 Fault Localization

The goal of fault localization (FL) is finding positions in the source code of a faulty

program that are responsible for the fault. The concrete output of a fault localization

technique is a list of statements, branches, or program states ranked according to

15

their likelihood of being implicated with a fault.

As explained earlier, most previous search-based APR approaches employ off-

the-shelf fault localization techniques to obtain a list of program entities that might

contain the fault. The list is then used as the target for fix generation in order.

Hence, the accuracy of the fault localization result is then crucial for the efficiency of

program repair, and the research in fault localization has seen a resurgence as part

of an effort to improve automated repair.

Many different types of fault localization techniques have been proposed over

the years, among which spectrum-based fault localization (SBFL) and mutation-

based fault localization (MBFL) have been extensively researched. The basic idea

of spectrum-based fault localization [57, 3] is to use coverage information from tests

to infer suspiciousness values of program entities (statements, branches, or states).

For example, a statement executed mostly by failing tests is more suspicious than

one executed mostly by passing tests. Many automated program repair techniques

use spectrum-based fault localization algorithms [82, 13, 58, 30, 61, 9]. Generating

a correct fix, however, typically requires more information than the suspiciousness

ranking provided by spectrum-based techniques: An empirical evaluation of 15 popu-

lar spectrum-based fault localization techniques [66] found that the typical evaluation

criteria used in fault-localization research (namely, the suspiciousness ranking) are

not good predictors of whether a technique will perform well in automated program

repair. This observation buttresses our suggestion that fault localization should be

co-designed with automated program repair to perform better—as we did with ret-

rospective fault localization.

Mutation-based fault localization combines delta debugging [93] and mutation

testing [24] and is an effective approach for increasing the accuracy of fault local-

ization. MBFL techniques randomly mutate a faulty program, and assess whether

the mutation changes the behavior on passing or failing tests. Metallaxis [59] and

16

MUSE [56, 22] are two representative mutation-based fault localization techniques.

Experiments with these tools indicate that mutation-based fault localization often

outperforms spectrum-based fault localization in different conditions [56, 59]. In

Restore, we used a variant of the Metallaxis algorithm, because it tends to per-

form better than MUSE with tasks similar to those we need for automated program

repair. A main downside of mutation-based fault localization is that it can be a

performance hog, because it requires to rerun tests on a large amount of mutants.

Thus, a key idea of our retrospective fault localization is to reuse, as much as pos-

sible, validation results (which have to be performed anyway for program repair) to

perform mutation-based analysis.

In retrospective fault localization, a simple fault-localization process bootstraps

a feedback loop that implements a more accurate mutation-based fault localization.

Restore currently uses a spectrum-based technique for the bootstrap phase (see

Section 4.2); however, other fault localization techniques (such as those based on

statistical analysis [38, 8], machine learning [5, 87], or deep learning [19]) could be

used instead. Even techniques that are not designed specifically for fault localization

may be used, as long as they produce a ranked list of suspicious program entities. For

example, MintHint [28] performs a correlation analysis to identify expressions that

should be changed to fix faults. The expressions, or more generally their program

locations, could thus be treated as suspicious entities for the purpose of initiating

fault localization.

17

Chapter 3

Contract Based Program Repair
without the Contracts - Jaid

The work described in this chapter is published in [9] and [10].

Since search-based APR techniques use a finite collection of tests as the specifica-

tion (which is usually incomplete) to guide the fixing process, the generated patches

are prone to overfit the given tests. Indeed, experiments have repeatedly confirmed

[49], [67], [73] that automated program repair techniques are prone to produce a

significant fraction of valid but incorrect repairs. These repairs merely happen to

pass all available tests but are clearly inadequate from a programmer’s perspective.

AutoFix [79], [62], [61]—a contract based technique—has demonstrated an effec-

tive approach to mitigate the over-fitting problem with program state abstractions.

It was the first general-propose APR to substantially increase the number of correct

fixes—for 25% of 204 bugs in [61]. Using contracts, i.e., assertions specifying pre-/

post-conditions and class invariants, as the additional information enabled AutoFix

to improve the precision of repair generation and validation. AutoFix targets the

Eiffel programming language, where contracts are embedded in the program code

and routinely written by programmers. With the programmer-written contracts,

AutoFix can easily rely on the functions (used as predicates) in the contracts to

18

build an abstraction of program state to guide the fixing. Even if the contracts used

by AutoFix are far from being detailed—let alone complete—method specifications,

they significantly help increase the fraction of correct fixes that can be generated.

Unfortunately, even such simple contracts are hardly ever available in most widely-

used programming languages. Therefore, we generalize some of the techniques used

for contract-based program repair to work effectively without user-written contracts

and propose Jaid—a technique and tool for automated program repair of Java pro-

grams. Jaid follows the popular generate-then-validate approach, and it extract

abstractions of program state from regular code with detailed, state-based dynamic

program analyses. State abstractions then drive both the generation and the valida-

tion stages of the repairing process to produce high-quality fixes.

To assess Jaid’s capabilities and explore further directions, we conduct a compre-

hensive study including: 1) an experimental evaluation involving 693 bugs in three

different benchmark suites; 2) a detailed assessment of Jaid’s effectiveness, efficiency

and used heuristics; 3) a quantitative comparison with all available APR tools for

Java; and 4) a study of main trade-offs involved in APR design.

The results of our study indicate that Jaid is a competitive tool, achieving a com-

bination of effectiveness, efficiency, and applicability that often compares favorably

to the state-of-the-art. Jaid is also the first APR technique that achieves high levels

of precision without relying on additional input other than tests and faulty code;

in contrast, other recent high-precision APR techniques [34], [89] analyze a large

number of project repositories to collect additional information that guides fixing.

The experimental results also outline future directions to improve the overall

performance of Jaid’s algorithm. For example, our experimental results suggest that

Jaid’s overall effectiveness does not depend much on the details of its spectrum-based

fault localization algorithm. They also indicate that further substantial progress

would probably require to step up the precision of fault localization in a way that it

19

can incorporate additional information (e.g., by-products of APR process).

In the rest of this chapter, we present an example in Section 3.1 to assist a detailed

illustration of how Jaid work in Section 3.2. The essential algorithm for program

state abstraction and how state abstractions guide the fix generation and valida-

tion are also explained in Section 3.2. And Section 3.3 presents the comprehensive

study that evidences the effectiveness of Jaid and explores further direction. Lastly,

Section 3.4 summarizes this chapter.

3.1 An Example of Jaid in Action

Apache Commons is a widely used Java library that extends Java’s standard API

with a rich collection of utilities. Class WordUtil of package org.apache.commons.

lang includes a method abbreviate to simplify strings with spaces: given a string

str, lower and upper indexes lower and upper, and another string appendToEnd, the

method returns a string obtained by truncating str at the first index between lower

and upper where a space occurs, and replacing (or abbreviating) the truncated suffix

with appendToEnd. For example, abbreviate("Apache Commons library", 9, 18,

"+") returns the string "Apache Commons+".

Listing 3.1 shows the implementation of abbreviate at commit #cfff06bead of

the library, which is also part of Defects4J’s curated collection of defects (bug

Lang-45). The implementation begins by handling a number of special cases but,

unfortunately, it misses the case when lower is greater than str’s length: the index

of the first occurrence of a space from lower will then be -1 (corresponding to a

failing search for such a space in the call at line 15), and upper will be greater than

or equal to lower (possibly after being adjusted at lines 11–12), and thus also greater

than str.length(); in these conditions, the call to method substring at line 18

throws an IndexOutOfBoundsException.

20

1 public static String abbreviate (String str, int lower, int upper, String
appendToEnd) {

2 if (str == null) {
3 return null;
4 }
5 if (str.length() == 0) {
6 return StringUtils.EMPTY;
7 }
8 if (upper == -1 || upper > str.length()) {
9 upper = str.length();

10 }
11 if (upper < lower) {
12 upper = lower;
13 }
14 StringBuffer result = new StringBuffer();
15 int index = StringUtils.indexOf(str, "␣", lower);
16 if (index == -1) {
17 // throws IndexOutOfBoundsException if lower > str.length()
18 result.append(str.substring(0, upper));
19 if (upper != str.length()) {
20 result.append(StringUtils.defaultString(appendToEnd));
21 }
22 } else if (index > upper) {
23 result.append(str.substring(0, upper));
24 result.append(StringUtils.defaultString(appendToEnd));
25 } else {
26 result.append(str.substring(0, index));
27 result.append(StringUtils.defaultString(appendToEnd));
28 }
29 return result.toString();
30 }

Listing 3.1: Faulty method abbreviate from class StringUtils in
package org.apache.commons.lang.

> if (lower > str.length()) { lower = str.length(); }

Listing 3.2: Programmer-written fix to the fault in abbreviate.

> if (lower >= str.length()) { lower = str.length(); }

Listing 3.3: Jaid’s correct fix to the fault in abbreviate.

21

The maintainers of Apache Commons fixed this fault in a later version by reset-

ting lower to str.length() to ensure that the case lower > str.length() never

occurs (as shown in the patch of Listing 3.2) to be inserted right before line 8 in

Listing 3.1. Defects4J includes a test that triggers this fault in abbreviate, to

avoid reintroducing the same mistake in future revisions of the code.

After running for about 70 minutes, Jaid produces a number of fix suggestions

for the fault, including the fix in Listing 3.3; this fix is equivalent (nearly identical)

to the programmer-written fix, and thus completely removes the source of error

by handling the special case correctly. To generate fixes for the buggy method

abbreviate, Jaid only needs the source code of the faulty implementation, as well

as the programmer-written tests that exercise the method. Defects4J actually

includes only one test—the test triggering the fault—for this bug; Jaid can produce

a correct fix even with such limited information. And Section 3.2 illustrates how

Jaid produces the correct fix in detail.

To our knowledge, Jaid is the first APR tool that can correctly repair the fault of

abbreviate (as of 2017 May). No other existing tools even provided so-called test-

suite adequate fixes, which spuriously pass all available tests avoiding the failure,

but do not correctly fix the behavior in the same way that the developers did. Key

to Jaid’s success is its capability of constructing rich state-based abstractions of a

program’s behavior, which improves the accuracy of fault localization and guides the

creation of state-modifying fixes in response to failing conditions.

3.2 How Jaid Works

3.2.1 Overview

Jaid follows the popular “generate-then-validate” approach, which first generates a

number of candidate fixes, and then validates them using the available test cases;

22

Figure 3.1 gives an overview of the overall process. Inputs to Jaid are a Java

program, consisting of a collection of classes, and test cases that exercise the program

and expose some failures. One key feature of Jaid is how it abstracts and monitors

program state (snapshots) in terms of program expressions. All stages of Jaid’s

workflow rely on the (snapshots) abstraction derived as described in Section 3.2.2.

Fault localization (Section 3.2.3) identifies states and locations (snapshots) that are

suspect of being implicated in the failure under repair. Fix generation (Section 3.2.4

and Section 3.2.5) builds code snippets that avoid reaching such suspicious states

and locations by modifying the program state, the control flow, or by other simple

heuristics. Generated fixes are validated against the available tests (Section 3.2.6);

the fixes that pass validation are presented to the user, heuristically ranked according

to how likely they are correct (Section 3.2.7).

Let P be the faulty program under fixing, the buggy method to be fix as m2f,

C2f be the containing class of m2f. And let T “ TËYTé be the set of test cases for

P , where TË and Té are the sets of passing and failing test cases, respectively, and

Té ‰ H. Similar to other program repair techniques like HDA [34], Jaid assumes

that the fault can be corrected by changing a single method m2f from P , and that

the method is known a priori. We view the localization of method m2f within P as

an orthogonal research problem, to tackle which promising progress has been made

in recent years [31, 4, 37, 94].

3.2.2 Program State Abstraction

Jaid bases its program analysis and fix generation processes on a detailed state-based

abstraction of the behavior of the buggy method m2f. For every location ` in m2f,

uniquely identifying a statement in the source code, Jaid records the values of a

set M` of expressions during each test execution: 1) the exact value of expressions

of numeric and Boolean types; 2) the object identifier (or null) of expressions of

23

Java program Test cases

Fault localization

Fix generation

Fix validation

Fix ranking

Ranked valid fixes

Suspicious snapshots

Candidate fixes

Valid fixes

Jaid

Figure 3.1: An overview of how Jaid works. Given a Java program and a set of
test cases, including at least one failing test, Jaid identifies a number of suspicious
snapshots, each indicating a location and an abstraction of the program state at the
location that may be implicated in the failure. Based on the snapshot information,
Jaid generates a number of candidate fixes, which undergo validation against all
available tests for the method under repair. Fixes that pass all available tests are
considered valid. Jaid finally heuristically ranks the valid fixes, and presents the
valid fixes to the user in ranking order.

reference types, so that it can detect when a reference is aliased, or is null. Jaid

selects the expressions in M` as follows.

Expressions. A type is monitorable if it is a reference type or a primitive type

(numeric types such as int, and boolean). E` denotes the set of all basic expressions

of monitorable types at `, namely:

• m2f’s parameters R;

• local variables V declared inside m2f that are visible at `;

• fields of class C2f F that are visible at `;

• all expressions anywhere inside m2f A that can be evaluated at ` (that is,

they only involve items visible at `), and that don’t obviously have side ef-

fects (namely, we exclude assignments used as expressions, self increment and

24

decrement expressions, and creation expressions using new).

X` denotes the set of all extended expressions of monitorable types at `: for each

basic expression of reference type r P E`, X` includes:

• r.f() for every argumentless function f of the class corresponding to r’s type

that returns a monitorable type and is callable at `;

• only if r is this, r.a, for every attribute a of the class corresponding to r’s

type that is readable at `.

For example, the extended expressionsX8 at line 8 in method abbreviate of List-

ing 3.1 include lower (an argument of abbreviate), str.length() (a call of function

length() on abbreviate’s argument str), and upper < lower and str == null

(both appearing in abbreviate).

Purity analysis. One lesson that we can draw from the experience of contract-

based APR [61] is that constructing a rich set of expressions that abstract the pro-

gram state can help support more accurate fault localization and fix generation.

Ultimately, the construction of higher-quality “semantic” fixes are less prone to over-

fitting. However, monitoring a rich set of expressions extracted from the program

text does not work as well in languages such as Java as it does in languages that

support contracts. In the latter, programmers specifically equip classes with public

query methods that are pure, which are functions that return value without changing

the state of their target objects. Pure methods can be used in the contracts to char-

acterize the program state in response to method calls; hence, these methods are thus

easily identifiable and natural candidates to construct state abstractions reliably. In

Java, in contrast, programmers need not follow such a discipline of separating pure

functions from state-changing procedures, and methods that return a value but have

side effects are indeed common. Clearly, a function that is not pure is unsuitable for

abstracting and monitoring an object’s state.

25

To identify which expressions can reliably be used for state monitoring, Jaid per-

forms a dynamic purity analysis on all expressions that include method invocations.

Given an expression r of reference type, the set Wr of r’s watch expressions consists

of:

• all subexpressions Sr of r that do not include method invocations;

• for each subexpression s P Sr, s.a for every attribute a of the class correspond-

ing to s’s type.

Note that watch expressions are constructed so that they are syntactically free from

side effects.

An expression r of reference type is then considered pure if evaluating it does not

alter the value of its watch expressions. Precisely, at every location ` in the method

m2f under repair:

1. first, Jaid records the value σ “ xσ1, . . . , σmy of all watch expressions, where

σk is the value of wk P Wr, for 1 ď k ď m, before evaluating r;

2. then, Jaid evaluates r;

3. finally, Jaid records again the value σ1 “ xσ11, . . . , σ1my of all watch expressions,

where σ1k is the value of wk P Wr, for 1 ď k ď m, after evaluating r.

If σ “ σ1 at every ` in every test exercising m2f, we call r pure.

Jaid collects E` and all extended expressions in X` that are pure according to

pure analysis as expression-to-monitor M`.

State monitoring. This analysis monitors each m in M` with Java Debug

Interface (JDI) during test executions. Jaid primarily uses JDI’s programmatic

API, which supports retrieving object states and evaluating expressions on them

directly without going through a string representation. While for cases that cannot

be easily handled through the programmatic interface, Jaid relied on JDI’s string-

based expression evaluation methods.

26

3.2.3 Fault Localization

The goal of fault localization is to identify suspicious snapshots indicating locations

and states that are likely to be implicated with a fault. A snapshot is a triple x`, e, vy,

where ` is a location in method m2f under repair, e is a Boolean expression, and v is

the value (true or false) of e at `.

Boolean abstractions. The set ES includes all Boolean expressions that may

appear in a snapshot at `; it is constructed by combining the monitored expressions

M` to create Boolean expressions as follows:

• for each pairm1,m2 PM` of expressions of the same type, ES includesm1==m2

and m1 !=m2;

• for each pair k1, k2 P M` of expressions of integer type, ES includes k1 ’ k2,

for ’ P t<, <=, >=, >u;

• for each expression b PM` of Boolean type, ES includes b and !b;

• for each pair b1, b2 P M` of expressions of Boolean type, ES includes b1 && b2

and b1 || b2.

Continuing the example of method abbreviate in Listing 3.1, M8 includes ex-

pressions such as lower >= str.length() and !(str == null).

Snapshot suspiciousness. Jaid computes the suspiciousness of every snapshot

s “ x`, e, vy based on Wong at al.’s fault localization techniques [84]. The basic idea

is that the suspiciousness of s combines two sources of information:

• a syntactic analysis of expression dependence, which gives a higher value ed s

to s the more subexpressions e shares with those used in the statements imme-

diately before and immediately after ` (this estimates how much s is relevant

to capture the state change at `);

• a dynamic analysis, which gives a higher value dys to s the more often b eval-

uates to v at ` in a failing test té; and a lower value to s the more often b

27

evaluates to v at ` in a passing test tË (this collects the evidence that comes

from monitoring the program during passing and failing tests).

The overall suspiciousness 2{ped´1s `dy´1s q is the harmonic mean of these two sources,

but the dynamic analysis has the biggest impact—because ed s is set up to be a value

between zero and one, whereas dys is at least one and grows with the number of

passing tests .

This approach is similar to AutoFix’s [61, Sec. 4.2]—which is also based on [84]—

but conspicuously excludes information about the distance between ` and the location

of failure on the control flow graph of the faulty method. AutoFix identifies failures

as contract violations, which tend to be happen closer to where the program state

becomes corrupted; by contrast, in Jaid’s setting—using tests without contracts in

Java—failures normally happen when evaluating an assert statement inside a test

method, and thus the distance to the location of failure within the faulty method is

immaterial, and hardly a reliable indication of suspiciousness.

In the running example of method abbreviate in Listing 3.1, the snapshot

x8, lower >= str.length(), truey receives a high suspiciousness score because lower

and str.length() appear prominently in the statements around line 8, and, most

important, lower >= str.length() holds in all failing and in no passing tests.

3.2.4 Fix Generation: Fix Actions

A snapshot s “ x`, e, vy with high suspiciousness indicates that the program is prone

to trigger a failure when the program state in some execution is such that e evaluates

to v at `. Correspondingly, Jaid builds a number of candidate fixes that try to

steer away from the suspicious state in the hope of avoiding the failure. To this

effect, Jaid enumerates four kinds of fix actions : i). modify the state directly by

assignment; ii). affect the state that is used in an expression; iii). mutate a statement;

iv). redirect the control flow. Each fix action is a (possibly compound) statement that

28

can replace the statement at `. Actions of kinds i and ii are semantic—they directly

target the program state; actions of kind iii are syntactic—they tinker with existing

code expressions according to simple heuristics; actions of kind iv are the simplest—

they are independent of the snapshot’s information. We outline how Jaid builds

fix actions in the following paragraphs, based on a definition of derived expressions.

Section 3.3 discusses which fix actions were the most effective in the experimental

evaluation.

Derived expression. Given an expression exp, ∆`,exp denotes all derived ex-

pressions built from exp as follows:

• if exp has numeric type, ∆`,exp includes exp;

• if exp has Boolean type, ∆`,exp includes exp and !exp;

• ∆`,exp also includes t and t.f(¨ ¨ ¨), for every t PM` of reference type, where

f is a function of the class t belongs to. The function is possibly called with

actual arguments chosen from the monitored expressions M` of suitable type.

Its top-level subexpressions Sexp are the expressions corresponding to the nodes at

depth 1 in exp’s abstract syntax tree (i.e., the root’s immediate children). For exam-

ple, the top-level subexpressions of (a + b) < c.d() are a + b and c.d(). Then,

∆1
`,exp “

Ť

sPSexp
∆`,exp denotes all expressions derived from exp’s top-level subex-

pressions.

Modifying the state. For every top-level subexpression exp of e, if exp is

assignable to, Jaid generates the fix action exp = δ for each δ P ∆1
`, whose type is

compatible with exp’s.

In the running example of method abbreviate in Listing 3.1, Jaid includes the

assignment lower = str.length() among the fix actions that modify the state at

line 8.

Modifying an expression. For every top-level subexpression exp of e that is

29

not assignable to, but appears in the statement S at `, Jaid generates the fix action

tmp_e = δ; Srexp ÞÑ tmp_es for each δ P ∆1
`,e whose type is compatible with exp’s;

tpm_e is a fresh variable with the same type as exp, and Srexp ÞÑ tmp_es is the

statement at ` with every occurrence of exp replaced by tmp_e—which has just been

assigned a modified value.

Mutating a statement. “Semantic” fix actions, that are based on the informa-

tion captured by the state in suspicious snapshots, are usefully complemented by a

few “syntactic” fix actions, which are based on simple mutation operators that cap-

ture common sources of programming mistakes such as off-by-one errors. Following

an approach adopted by other APR techniques [91, 34], Jaid generates mutations

mainly targeting conditional expressions. Precisely, if the statement S at ` is a con-

ditional or a loop, Jaid generates fix actions for every Boolean subexpression exp of

e that appears in the conditional’s condition or in the loop’s exit condition:

1. if exp is a comparison x1 ’ x2, for ’ P t<, <=, >=, >u, Jaid generates the fix

action Srexp ÞÑ px1 ’
1 x2qs, for every comparison operator ’1 ‰ ’;

2. Jaid also generates the fix actions Srexp ÞÑ trues and Srexp ÞÑ falses, where

exp is replaced by a Boolean constant.

In addition to targeting Boolean expressions, if the statement S at ` includes a

method call t.m(a1, . . . , an), Jaid generates the fix action Srm ÞÑ xs, which calls any

applicable method x on the same target and with the same actual arguments as m in

s.

Modifying the control flow. Even though fix actions may indirectly change

the control flow by modifying the state or a branching condition, a number of bugs

require abruptly redirecting the control flow. To achieve this, Jaid also generates

the following fix actions independent of the snapshot information:

1. if method m2f is a procedure (its return type is void), Jaid generates the fix

30

action return;

2. if method m2f is a function, Jaid generates the fix action return exp, for every

basic expression of suitable type available at `;

3. if ` is a location inside a loop’s body, Jaid generates the fix action continue

and break.

3.2.5 Fix Generation: Candidate Fixes

Each fix action (built by Jaid as described in the previous section) is a statement

that modifies the program behavior at location ` in a way that avoids the state

implicated by some suspicious snapshot s “ x`, e, vy. In most cases, a fix action

should not be injected into the program under repair unconditionally, but only when

state e is actually reached during a computation. A conditional execution would leave

program behavior unchanged in most cases, and only address the failing behavior

when it is about to happen.

To implement such conditional change of behavior, Jaid uses the schemas in

Figure 3.2 to insert fix actions into the method m2f under repair at location `. First,

Jaid instantiates every applicable schema with each fix action action; in addition to

the fix action, schemas include the statement oldStatement at location ` in the faulty

m2f, and the condition suspicious, which is e == v as determined by the snapshot’s

abstract state. Then, Jaid builds fix candidates by replacing the statement at ` in

m2f by each instantiated schema.1

Continuing the running example of method abbreviate in Listing 3.1, one of

the fix candidates consists of the fix action lower = str.length() instantiating

schema B: the action is executed only if lower >= str.length() (from the sus-

picious snapshot), whereas the existing statement at line 8, as well as the rest of

1Since each fix generated by Jaid combines one fix action and one schema, it adds at most 5 new
lines of codes to a patched method.

31

Schema A: action; oldStatement;
Schema B: if (suspicious) { action; } oldStatement;
Schema C: if (suspicious) { oldStatement; }
Schema D: if (suspicious) { action; }

else { oldStatement; }
Schema E: /* oldStatement; */ action;

Figure 3.2: Schemas used by Jaid to build candidate fixes

method m2f, is unchanged by the fix.

Two of the five schemas currently used by Jaid to build fix candidates inject the

fix action unconditionally. On the other hand, different fix actions may determine

semantically equivalent fixes when instantiated. Jaid performs a lightweight redun-

dancy elimination, based on simple syntactic rules such as that x == y is equivalent

to !(x != y).

3.2.6 Fix Validation

Even if Jaid builds candidate fixes based on a semantic analysis of the program

state during passing vs. failing tests, the candidate fixes come with no guarantee

of satisfying the tests. To ascertain which candidates are suitable, a fix validation

process, which follows fix generation, runs all tests T that exercise the faulty method

m2f against each generated candidate fix. Candidate fixes that pass all tests T are

classified as valid (also “test-suite adequate” [49]) and retained; other candidates,

which fail some tests, are discarded—as they do not fix the fault, they introduce a

regression, or both.

In the example of method abbreviate in Listing 3.1, the fix candidate

if (lower >= str.length) lower = str.length() passes validation, since it fixes

the fault and introduces no regression error.

Since Jaid commonly generates a large number of candidate fixes for each fault,

validation can take up a very large time spent compiling and executing tests, which

32

// class being repaired
class C2f {
U m2f_(T1 a1, T2 a2, . . .) throws IllegalStateException {
switch (Session.getActiveFixId()) {
case 0: return m2f(a1, a2, . . .); // call faulty method
case 1: return m2f_1(a1, a2, . . .); // call fix candidate 1
...
case n: return m2f_n(a1, a2, . . .); // call fix candidate n
default: throw new IllegalStateException();

}
}

}

Listing 3.4: How multiple fix candidates are woven into a single class.

may ultimately impair the scalability of Jaid’s APR. To curtail the time spent

compiling, Jaid deploys a simple form of dependency injection. All candidate fixes

for a method m2f become members of m2f’s enclosing class C2f: candidate fix number

k becomes a method m2f_k with signature the same as m2f’s. Then, as shown in

Listing 3.4, a method m2f_—also with the same signature—dispatches calls to any of

the candidate fixes based on the value returned by static method getActiveFixId()

of class Session, which supplies the dependency. This scheme only requires one

compilation per method under repair, thus significantly cutting down validation time.

3.2.7 Fix Ranking

Like most APR techniques, Jaid’s process is based on heuristics and driven by a

finite collection of tests, and thus is ultimately best effort : a valid fix may still be

incorrect, passing all available tests only because the tests are incomplete pieces of

specification. Jaid addresses this problem by ranking valid fixes using the same

heuristics that underlies fault localization. Every fix includes one fix action, which

was derived from a snapshot s; the higher the suspiciousness of s, the higher the fix

is ranked; fixes derived from the same snapshot are ranked in order of generation,

which means that “semantic” fixes (modifying state or expressions) appear before

33

“syntactic” fixes (mutating statements or modifying the control flow), and fixes of

the same kind are enumerated starting from the syntactically simpler ones.

When the ranking heuristics works, the user only inspects few top-ranked fixes

to assess their correctness and whether they can be deployed into the codebase.

The experimental evaluation in Section 3.3 comments on the effectiveness of Jaid’s

ranking heuristics.

3.3 Experimental Evaluation

To assess Jaid’s capabilities and explore further directions, we conduct a compre-

hensive study on 693 bugs from three different benchmark suites. These faults come

from Java applications and libraries of different sizes and complexity in disparate

domains; this makes the results of Jaid’s evaluation more likely to be representative

of its general behavior.

In this experiment, we first conduct a detailed assessment of Jaid’s effectiveness

and efficiency from a user’s perspective. Precisely, the effectiveness is evaluated in

terms of the number of faults that Jaid can fix, and the efficiency is measured by the

running time of Jaid on different bugs. To clarify the advantage and short-coming

of our approach among all APR techniques, we also quantitatively compare Jaid

and all automated program repair tools for Java that are available at the time. This

comparison also pinpoints the superiority of different approaches, which may benefit

our further development.

Since templates and heuristics construct the major part of the Jaid’s fixing pro-

cess, we then analyze about how all templates and heuristics impact on Jaid’s ef-

fectiveness. This analysis zoom in on the relative usefulness of various kinds of

templates and heuristics used by Jaid’s APR algorithm.

Moreover, because accurately identifying program locations that are most closely

34

implicated with a fault greatly affects the effectiveness of the repair process, fault

localization is a crucial step of automated program repair. We also study how sensi-

tive is Jaid’s behavior to the choice of spectrum-based fault localization algorithm.

Precisely, we replace Jaid’s custom fault localization algorithm with other widely

used algorithms and monitor how it impacts on Jaid’s overall effectiveness.

The evaluation shows, among other things, that:

• Jaid produced correct fixes for over 15% of the bugs from different benchmark

suites;

• Jaid could correctly fix more bugs than any other APR tool for Java, including

11 bugs that no other tool can fix (as of May 2019);

• Jaid’s heuristics are effective and fairly robust (that is, Jaid’s behavior does

not depend on fine-tuning its parameters);

• Jaid’s effectiveness and efficiency are largely independent of the spectrum-

based fault localization algorithm that is used.

These results indicate that Jaid is a competitive tool, achieving a combination of

effectiveness, efficiency, and applicability that often compares favorably to the state-

of-the-art. They also outline directions to further improve the overall performance

of Jaid’s algorithm: improve the precision of fault localization and fix ranking, and

reduce analysis times. Particularly, our experiments suggest that Jaid’s overall effec-

tiveness does not depend much on the details of its spectrum-based fault localization

algorithm, which indicates that further substantial progress would probably require

to step up the precision of fault localization in a way that it can incorporate such

additional sources of information.

35

3.3.1 Experimental Design

We experimentally evaluated Jaid on 693 faults from three curated collections often

used in automated program repair research. These faults come from Java applica-

tions and libraries of different size and complexity in disparate domains; this makes

the results of Jaid’s evaluation more likely to be representative of its general behav-

ior. At the same time, using faults from standard benchmarks makes it possible to

meaningfully compare Jaid with the other state-of-the-art APR tools for Java.

Research Questions

The experiments address the following research questions:

RQ1: How effective is Jaid? In RQ1, we evaluate the effectiveness of Jaid from a

user’s perspective—in terms of the number of faults that Jaid can fix.

RQ2: How efficient is Jaid? In RQ2, we examine the running time of Jaid on

different bugs.

RQ3: How effective is Jaid in comparison to other APR techniques for Java? In

RQ3, we directly compare Jaid to several other state-of-the-art APR tools for

Java.

RQ4: Do all templates and heuristics have an impact on Jaid’s effectiveness? In

RQ4, we zoom in on the relative usefulness of various kinds of templates and

heuristics used by Jaid’s APR algorithm.

RQ5: How sensitive is Jaid’s behavior to the choice of fault localization algorithm?

In RQ5, we assess whether replacing Jaid’s custom fault localization algorithm

with a different one affects its overall effectiveness.

36

Table 3.1: Defects4J benchmark: how many bugs, tests, and thousands of lines
of code (kloc) Defects4J includes from each project.

project description kloc tests bugs

Chart JFreechart 96 2205 26
Closure Closure Compiler 90 7927 133
Lang Apache Commons-Lang 22 2245 65
Math Apache Commons-Math 85 3602 106
Time Joda-Time 27 4130 27
Mockito Mockito 43 1161 38

total 320 20109 395

Table 3.2: IntroClassJava benchmark: for each program, how many black-box
and whitebox tests exercise it, and how many of its bugs are triggered by the
blackbox and the white-box tests.

tests bugs

program description loc b w b w

checksum checksum of a string 18 6 10 7 11
digits digits of a number 13 6 10 51 60
grade grade from score 22 9 9 89 88
median median of 3 numbers 24 7 6 51 48
smallest min of 4 numbers 24 8 8 47 45
syllables count vowels 17 6 10 13 12

total 118 42 53 258 264
detectable unique bugs in bYw: 297

Table 3.3: QuixBugs benchmark: the min, median, max, and total size of the
faulty methods (in lines of code), and number of tests targeting each method.

min median max total

Size (LOC) 2 17 45 717
Tests 3 6 13 259

37

Subjects

Our evaluation uses 693 faults from three widely used benchmarks of Java bugs:

Defects4J [27], IntroClassJava [16], and QuixBugs [39].

Defects4J (revision #895c4e6) includes 395 bugs from 6 projects: Chart, Clo-

sure, Lang, Math, Time, and Mockito; Table 3.1 displays basic statistics about these

projects in Defects4J. The bugs included in Defects4J are a diverse sample of

real-world bugs, and as such they include both several that admit simple fixes and

others that require changes that span multiple methods or even multiple files. Each

bug in Defects4J has a unique identifier, corresponds to a buggy version and a

programmer-fixed version of the code, and is accompanied by some programmer-

written unit tests that exercise the code. In particular, at least one of the given tests

triggers the failure on the buggy version.

Our experiments used all the 395 bugs in Defects4J as our subjects. Because

using all available bugs in a benchmark provides the most comprehensive data about

Jaid’s performance, and hence makes for a fair comparison with other tools evaluated

on the same benchmark. For example, measures such as average running time should

uniformly include the time to run a tool on all bugs, including those where the tool

will fail to produce any fixes. Including all bugs is also the recommendation of

all large-scale replication studies [49, 15, 40]. A more specific reason for not pre-

selecting bugs is that sometimes there is no sure way to know in advance on which

bugs Jaid will be successful. For example, Section 3.3.2 examines five “hard” bugs

that Jaid unexpectedly managed to fix with fixes that were semantically equivalent

to syntactically much more complex fixes written by developers.

IntroClassJava is a direct Java translation [16] of the IntroClass benchmark [36],

which collects several buggy student-written solutions to six small assignments given

in an introductory, undergraduate programming course. As such, programs in Intro-

38

ClassJava are a meaningful sample of the kinds of mistakes commonly made by

novice programmers writing small programs. Table 3.2 displays basic statistics about

the 297 buggy programs translated to Java in IntroClassJava.

Each program in IntroClassJava comes with two JUnit test suites (also trans-

lated from C): a black-box one written by the instructor based on the program’s

specification, and a white-box one generated using a symbolic execution tool. Fol-

lowing the practice of other studies [36, 32, 83], Jaid had access only to the black-box

tests; the white-box tests feature only in the experimental evaluation, where we used

them to determine which of the fixes outputted by Jaid were correct. Since 39 buggy

programs in IntroClassJava do not cause any black-box tests to fail (that is, only

white-box tests trigger failures), we excluded them from the experiments and used

the remaining 258 program variants as subjects in the experiments.

QuixBugs contains 40 faulty programs taken from the Quixey Challenge [39],

where programmers had one minute to produce a fix given an implementation of a

classic algorithm with a bug on a single line. The algorithms include classic algorithm

such as Dijkstra’s shortest path on a graph, building the minimum spanning tree, and

sorting algorithms; therefore, the buggy programs in QuixBugs are representative of

programming mistakes that are commonly made when implementing algorithms that

are challenging to get right. Table 3.3 displays basic statistics about the programs

in QuixBugs.

Each faulty program in QuixBugs comes with a correct reference implementa-

tion, as well as passing and failing tests; thus, the textual diff between a buggy pro-

gram and the corresponding reference implementation plays the role of the programmer-

written fix for the bug. Our experiments used all the 40 bugs in QuixBugs, together

with all available tests.

39

Other Automated Program Repair Tools for Java

We quantitatively compared Jaid to 16 tools(described in Chapter 2) for APR of

Java programs; we considered all tools working on Java that used at least one of

the three benchmarks (Defects4J, IntroClassJava, and QuixBugs) in their

published experimental evaluation. Table 3.4 lists the 16 tools2; if an experimental

evaluation of tool T on benchmark B is publicly available, the table indicates, at

row T and column B, the source of the experimental results that we used in the

comparison with Jaid.

While most tools use Defects4J as benchmark in their experiments, it is pos-

sible that the experimental evaluations of different tools select different subsets of

bugs in Defects4J. This may happen for two reasons: first, since the Defects4J

benchmark is occasionally extended with new projects, it may happen that an ex-

perimental evaluation on an older version of Defects4J simply did not have access

to some bugs that are available in Defects4J at the time of writing. Second, an

experimental evaluation may deliberately exclude some bugs from the experiments if

the technique being evaluated or its implementation are not easily applicable to those

bugs. For example, [49] excludes project Closure because of difficulties in executing

its tests.

Despite these , our quantitative comparison with other tools is sound:

• Since bugs that are excluded a priori from an evaluation can normally be

considered beyond a tool’s current capabilities, we compute recall relative to

the same largest set of Defects4J bugs, which is a superset of all those used

in any evaluations. In contrast, excluding bugs from an evaluation does not

negatively affect a tool’s precision—in fact, it puts Jaid at a disadvantage

because we insisted on running it on every available bug in Defects4J.

2SketchFixPP is a variant of the SketchFix technique discussed in the same paper [23].

40

• We report absolute numbers of valid and correct fixes, as well as the bugs that

each tool uniquely fixes.

• We ascertain that the version of Defects4J used in our experiments does

not differ substantially, on the same bugs, from those used in the other tools’

experiments.

We did not perform any quantitative comparison of other measures, running time

in particular, as these would require to replicate experiments with other tools with

common settings—which is not always possible or easy, since not all publications

come with a complete replication package. Since improving performance is not a

primary concern in automated program repair research at the moment, and publica-

tions rarely emphasize performance data, the comparison of Jaid with other tools

focuses on metrics that are generally accepted as practically interesting.

Fault-localization techniques

Jaid employs a custom spectrum-based [86] fault localization technique, while most

other APR tools directly reuse standard fault localization approaches. To find

out whether Jaid’s behavior depends significantly on how fault localization works

(and hence to answer RQ5), we ran experiments where Jaid uses other well-known

spectrum-based fault localization techniques instead of its custom algorithm.

Table 3.5 lists the five spectrum-based techniques [60] used to replace Jaid’s. All

of them work by computing a suspiciousness score of each program entity (in the

case of Jaid, snapshots which include a location and part of the state—as described

in Section 3.2.3) based on its coverage by passing and failing tests.

41

Table 3.4: Automated program repair tools for Java used in the comparison with
Jaid. For each benchmark, the table reports the source of a tool’s evaluation results
used for a quantitative comparison with Jaid; no reference means the tool has not
been evaluated on the benchmark.

tool Defects4J IntroClassJava QuixBugs

acs [89]
Astor [50]
CapGen [83] [83]
Elixir [70]
had [34]
JFix [32]
jGenProg [49]
jKali [49]
Nopol [49] [92]
S3 [33]
SimFix [25]
SketchFix [23]
SketchFixPP [23]
ssFix [88]
xPar [34, 89]

Table 3.5: Spectrum-based fault localization algorithms used to replace Jaid’s.
Each algorithm defines a formula to compute the suspiciousness of any state snap-
shot s as a function of Ppsq (the number of passing tests where s is observed) and Fpsq
(the number of failing tests where s is observed), and relative to the total number of
passing (P) and failing (F) tests.

algorithm suspiciousness of snapshot s

Tarantula [26] Fpsq{F
Fpsq{F ` Ppsq{P

Ochiai [2] Fpsq?
F¨pFpsq`Ppsqq

Op2 [57] Fpsq ´ Ppsq
P`1

Barinel [1] 1´ Ppsq
Ppsq ` Fpsq

DStar [85] (with ˚ “ 2) Fpsq˚

Ppsq ` F ´ Fpsq

42

Experimental Setup

All the experiments ran on a cloud infrastructure, with each run of Jaid using

exclusively one virtual machine instance, configured to use one core of an Intel Xeon

Processor E5-2630 v2, 8 GB of RAM, Ubuntu 14.04, and Oracle’s Java JDK 1.8.

Each experiment targets one subject bug k, and runs Jaid with buggy code bugk

and tests Tk as input; the output is a ranked list of valid fixes for the bug. The process

to determine which of Jaid’s fixes are correct follows standard research practices:

• The fix of a bug in Defects4J or QuixBugs is correct if manual inspection

convincingly indicates that it is semantically equivalent to the programmer-

written fix correctk. We allot around 5 minutes per fix to determine semantic

equivalence; if we cannot conclude that the fix is equivalent after 5 minutes, we

classify it as incorrect. This conservative assessment implies that a fix classified

as correct is a fix suggestion that could have been deployed (or is very close to

one that could have been deployed).

• The fix of a bug in IntroClassJava is correct if it passes all available white-

box tests (which Jaid had not access to), in addition to the black-box tests that

Jaid uses directly for validation. Programs and bugs in IntroClassJava are

sufficiently simple that passing all white-box tests provides high confidence in

their correctness.

We did not set a time limit in our experiments: since Jaid ranks all generated

snapshots according to their suspiciousness (see Section 3.2.3), and then depends

on the ranking to guide the following stages, setting an arbitrary cutoff time may

prevent Jaid from generating a complete ranking. Instead, we limited the search

space in our experiments by configuring Jaid so that it uses at most 1500 snapshots in

order of suspiciousness; then, the following stages (Figure 3.1) all run to completion.

43

The number 1500 was chosen heuristically; some of the experiments reported in

Section 3.3.2 indicate that this choice achieves a reasonable trade-off, but also that

Jaid’s overall performance is fairly robust with respect to the choice of how many

snapshot to process.

3.3.2 Experimental Results

This section presents the results of the experimental evaluation of Jaid carried out

according to the design of Section 3.3.1. Averages are measured using the median by

default, with exceptions explicitly pointed out.

RQ1: Effectiveness

Table 3.6 displays the key results of the experimental evaluation of Jaid’s effec-

tiveness. As shown there, Jaid produced valid fixes for 189 bugs in total: 94 bugs

in Defects4J, 84 bugs in IntroClassJava, and 11 bugs in QuixBugs. More

significantly, it produced correct fixes for 113 bugs: 35 in Defects4J, 69 in Intro-

ClassJava, and 9 in QuixBugs. These numbers correspond to an overall:

precision: 59.5% the percentage of bugs with a valid fix for which Jaid outputs

at least a correct fix

recall: 15.4% the percentage of all bugs for which Jaid outputs at least a correct

fix

As we discuss in Section 3.3.2, Jaid’s effectiveness is competitive with the state of

the art; Jaid is capable of producing fixes of high quality in a significant number of

cases on code of various complexity and maturity level.

Precision and recall are much higher with benchmarks IntroClassJava and

QuixBugs than with Defects4J. This difference is likely the result of two aspects.

First, Defects4J programs are often larger and require more complex fixes than

44

Table 3.6: Effectiveness of Jaid: main experimental results for each benchmark De-
fects4J, IntroClassJava, and QuixBugs, as well as overall (bottom row in
each table).

(a) Number of bugs for which Jaid produced valid fixes; number of all valid fixes
produced for all bugs; and median number of valid fixes produced per bug for which at
least a valid fix was produced.

valid fixes

benchmark bugs all median

Defects4J 94 16762 23.5
IntroClassJava 84 4243 28.5
QuixBugs 11 2187 10.0

overall 189 23192 22.0

(b) Number of bugs for which Jaid produced correct fixes in any position, first
position, a top-10 position; median position of the first correct fix in Jaid’s output; and
number of all correct fixes produced for all bugs; and the median number of correct fixes
produced per bug for which at least a correct fix was produced.

correct fixes

benchmark any first top-10 position all median

Defects4J 35 14 25 3 139 2
IntroClassJava 69 30 43 2 829 5
QuixBugs 9 4 9 2 22 2

overall 113 48 77 2 990 3

(c) Precision and recall obtained by Jaid. precision is the ratio 100 ¨any{bugs denoting
the percentage of bugs with a valid fix that is also correct; and recall is the ratio 100 ¨
any{total denoting the percentage of total bugs with a correct fix.

benchmark precision recall

Defects4J 37.2 8.9
IntroClassJava 82.1 26.7
QuixBugs 81.8 22.5

overall 59.5 15.4

45

Table 3.7: Bugs in Defects4J and QuixBugs for which Jaid failed to produce
any valid fix. The total number of such bugs (all) is split according to where
Jaid’s ineffectiveness originates: in an unsuccessful setup, in an ineffective fault
localization, or in a limited fix space. Some bugs are the combined result of
ineffective fault localization and limited fix space, and thus are counted in both
columns.

faults not fixed

all setup fault localization fix space

Defects4J 104 33 41 63
QuixBugs 29 3 8 24

total 133 36 49 87

those in the other two benchmarks. Second, tests in IntroClassJava and Quix-

Bugs are more thorough, and hence provide stronger specifications of the intended

program behavior, and support a more effective test-based validation that prunes

out valid but incorrect fixes.

Still, Jaid can be effective even with weak oracles: it correctly fixed 5 bugs in

Defects4J that include only one failing test (and no passing tests), ranking the

correct fix first in two cases.

Among the 35 bugs from Defects4J that Jaid correctly fixes, 5 are from project

Chart, 13 from project Closure, 6 from project Lang, 9 from project Math, 1 from

project Time, and 1 from project Mockito. In particular, Mockito bugs were not

used to evaluate most other APR tools. A recent study [78] shows that Nopol can

correctly fix 1 bug while SimFix and CapGen cannot propose any valid fix to bugs

in Mockito even if all the buggy locations are analyzed. Compared with that, Jaid

generated valid fixes to 4 Mockito bugs (and correct fixes to 1).

When Jaid is ineffective. To better understand the limitations of Jaid, we

manually analyzed the bugs where Jaid failed to produce any valid fix. In the

analysis, we restrict ourselves to the faults from Defects4J and QuixBugs, since

46

only bugs in these two benchmarks are accompanied by programmer-written fixes.

We also excluded from this manual analysis faults whose programmer-written fixes:

• modify more than one method (108 bugs excluded);

• modify source code outside the only buggy method (e.g., class fields and/or

import statements) (13 bugs excluded); or

• modify more than four lines of code, according to the dissection data of De-

fects4J [74] (99 bugs excluded).

Faults whose fixes have these characteristics are clearly outside the current capa-

bilities of Jaid’s algorithm,3 and hence it is unsurprising that Jaid failed to produce

any fix for them.

Examining the remaining 104 bugs that Jaid could not fix, we identified three

phases from which Jaid’s ineffectiveness commonly originates (see Table 3.7 for a

summary of the number of bugs in each category):

Setup: Jaid uses a simple Python script to automatically extract project configu-

ration information from the Defects4J framework. The script works well on

most Defects4J bugs, but when it fails to properly setup the environment it

prevents Jaid from running at all.

An unsuccessful setup prevented 36 bugs from being fixed; these failures are

the result of practical limitations of the current implementation of Jaid, but

they do not reflect any fundamental limitation of Jaid’s approach.

3We could trivially lift some of these limitations, for example by supporting the generation of fixes
that combine multiple actions. However, such changes would make the fix space much larger,
without also providing a scalable mechanism to explore it efficiently. Thus, effectively lifting these
limitations would require modifications of the approach that go beyond simple extensions of the
search space.

47

Fault localization: Jaid’s repair process uses fault localization as a crucial starting

point: when the fault localization algorithm fails to track the relevant failing

condition in a snapshot expression, or ranks the corresponding snapshot past

the cutoff, the following fix generation step cannot be successful because it does

not have the necessary ingredients.

Ineffective fault localization prevented 49 bugs from being fixed. Even though

Jaid uses only the 1500 most suspicious snapshots for fix generation, the cut-

off is not a significant limitation in practice: if we increase it to allow 3000

snapshots, Jaid correctly fixes 1 more bug (Lang39); if we remove the cutoff

entirely, Jaid correctly fixes 2 more bugs (Closure104 and Lang24). Thus, the

current cutoff value is a reasonable balance between costs and effectiveness; and

improving the effectiveness of fault localization in Jaid is likely to require more

radical changes to the kind of information it uses. We discuss further details

about the effectiveness of fault localization in Jaid in Section 3.3.2.

Fix space: even with perfect fault localization, some fixes may require program

modifications that are inexpressible using Jaid’s fix actions and schemas, and

hence fall outside its fix space.

A limited fix space prevented 87 bugs from being fixed. Examples of features

outside Jaid’s fix space that were used in some human-written fixes include:

new expressions with type casting; calls to methods with arguments; constants

declared in specific classes; adding a case to an existing switch statement;

adding an if with a compound then or else block; adding a compound state-

ment (such as a try/catch block, or a loop).

While extending Jaid so that it generates such complex statements as fix ac-

tions is not technically complex, the expanded fix space would become too large

to effectively search in a reasonable time using Jaid’s heuristics. Extending

48

Jaid’s search space selectively—focusing on fixing only certain categories of

bugs—is an interesting direction for future work; but Jaid’s current focus is

on being “general-purpose”.

Ranking of fixes. When it is successful, Jaid often produces several valid

fixes—122.7 (“ 23192{189) per fixed bug on average in our experiments—and a

much smaller number of correct fixes—8.8 (“ 990{113) per fixed bug on average in

our experiments. When Jaid outputs several valid fixes for the same bug, it ranks

them according to a simple heuristics that tries to put on top those that are more

likely to be correct.

The stacked histogram in Figure 3.3 depicts the distribution of the top ranks of

correct fixes. Among the 113 bugs that Jaid correctly fixed, the median position of

the first correct fix was 2 (from the top); the correct fix appeared at the top position

in 48 bugs; and among the top-10 valid fixes for 77 bugs. For the remaining 36 bugs

that were correctly fixed, the correct fix appears further down in the output list; in

26 of these cases, the correct fix turns out to be a “syntactic” one, but several valid,

incorrect “semantic” fixes are generated and ranked higher.4

These results indicate the importance of ranking to ensure that the correct fixes

are easier to spot among several valid but incorrect ones. Jaid’s ranking heuristics

often do a good job, but there is room for improvement. In particular, ranking may

benefit from mining additional information about common features of programmer-

written fixes, as was done in the other repair tools like acs, hda, SimFix, and

CapGen.

Syntactic complexity of fixes. In Defects4J and QuixBugs, we classify

a fix as correct if it is semantically equivalent to the fix written by programmers

for the same bug. A potential risk is that Jaid generates fixes that are semantically

4Section 3.2.4 explains what syntactic and semantics fix actions are. Section 3.3.2 gives detailed
statistics on the usage of different types of fix actions in generated correct fixes.

49

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0
>20

0

Top rank of correct fixes

0

10

20

30

40

50

60

70

80

#B
ug

s

Defects4J
IntroClassJava
QuixBugs

Figure 3.3: Distribution of the top rank of correct fixes of bugs.

equivalent but syntactically very different—in particular, needlessly complex and less

readable. In practice, this is unlikely to happen because Jaid cannot generate fixes

that are syntactically very complex; for the simpler fixes it can generate, semantic

and syntactic equivalence tend to coincide.

There are a few exceptions to this general observation: the programmer-written

fixes for 5 of the 35 Defects4J bugs that Jaid can correctly fix involve modifications

of multiple lines at one or several locations, or even deletion of a whole method.

Thus, Jaid’s correct fixes for these bugs were syntactically much simpler than, but

still semantically equivalent to, the programmer-written fixes. On the one hand, this

is encouraging because it proves the flexibility of Jaid’s repair algorithm. On the

other hand, one could argue that the more complex programmer-written fixes are in

some cases preferable because they are refactoring aspects of the program’s design

in order to improve the code beyond the single functionality that is being repaired.

For example, the programmer-written fix of bug Closure 46 involves deleting a 17-

line long method getLeastSupertype from class RecordType. Method getLeast-

Supertype overrides the method with the same name in superclass Prototype-

ObjectType, so the fix replaces, implicitly by inheritance, all invocations to the

overriding method RecordType.getLeastSupertype with calls to the overridden one

50

PrototypeObjectType.getLeastSupertype. Instead of removing method Record-

Type.getLeastSupertype, Jaid fixes the same bug by changing RecordType.get-

LeastSupertype’s body so that it explicitly calls the overridden method Prototype-

ObjectType.getLeastSupertype as super.getLeastSupertype and just returns

the call’s result. In this case, the programmer-written fix has a better design since

it does not leave dead code in the repaired program, but the fix produced by Jaid

is still completely behaviorally correct and hence practically useful.

Jaid produced a correct fix for over 15% of all bugs it analyzed, achieving a
precision of nearly 60%. It ranked most correct fixes high in the output list (in

position 2 on average).

RQ2: Efficiency

We measure the efficiency of Jaid in terms of running time: overall running time,

and running time until the first fix is generated.

Overall running time. Figure 3.4 shows the distribution of Jaid’s overall

running time in every experiment. The distribution is clearly skewed to the left,

indicating that the running time of Jaid on most bugs is limited. For example,

Jaid ran for up to 60 minutes on about 43% of all bugs, and for up to 240 minutes

on about 89% of all bugs.

Jaid’s running time distribution for the IntroClassJava benchmark looks dif-

ferent from the other benchmarks: in the latter, Jaid ran for less than 60 minutes on

the majority of bugs; but in IntroClassJava, the most frequent running times are

between 60 and 120 minutes. This is counterintuitive given that programs in Intro-

ClassJava are generally simpler and smaller than those in the other benchmarks.

We found out this behavior is due to a feature of programs in IntroClassJava,

which all use a Scanner object to read user input from the console. Since the

Scanner class defines many observer methods of the kinds used by Jaid’s heuristics

51

Table 3.8: Statistics on Jaid’s overall running time per bug (in minutes): minimum,
maximum, mean, median, standard deviation, and skewness. Each statistics is
computed over all bugs, bugs with a valid fix, and bugs with a correct fix.

min max mean median stdev skew

all 0.0 3403.6 136.3 76.3 283.8 6.3
valid 0.6 3403.6 194.0 95.3 356.4 5.5
correct 2.1 1777.7 154.5 92.8 252.0 4.7

to construct snapshot expressions and to generate fix actions (see Section 3.2.2 and

Section 3.2.4), Jaid generated more than 10,000 candidate fixes for several bugs in

IntroClassJava, thus leading to a longer cumulative running time.

The overall running times of Jaid are not short in absolute terms, but they are

to be expected in a tool that relies extensively on dynamic analysis, which requires

to repeatedly execute several variants of heavily instrumented programs. Jaid’s

performance is consistent regardless of whether the bugs will eventually be fixed:

if we look at only bugs that Jaid could correctly fix, it ran for up to 100 minutes

on about 55% of them, and for up to 200 minutes on about 88% of them. In all,

these running times are suitable for Jaid’s intended mode of usage as a batch (not

interactive) analysis tool.

Table 3.8 breaks down statistics on the overall running time per bug into all

sessions, those that produced a valid fix, and those that produced a correct fix. Jaid

ran in around 76 minutes per any bug on average; and in around 95 minutes per bugs

on which it is successful (producing a valid or correct fix). Jaid is unsurprisingly

significantly slower than tools based on constraint solving and other static techniques

(see Section 2.1.2); for example, Nopol [91] takes around 22 minutes per bug on

average—on what, we assume, is comparable hardware. Jaid’s running time are,

however, in line with other techniques mainly based on dynamic analysis—such as

jGenProg [49] which takes about one hour per bug.

52

0 60 120180240300360420480540600
>600

Running time

0
30
60
90

120
150
180
210
240

#B
ug

s

NoFix
Valid
Correct

(a) Defects4J bugs.

0 60 120180240300360420480540600
>600

Running time

0
15
30
45
60
75
90

105

#B
ug

s

NoFix
Valid
Correct

(b) IntroClassJava bugs.

0 60 120180240300360420480540600
>600

Running time

0
3
6
9

12
15
18
21
24

#B
ug

s

NoFix
Valid
Correct

(c) QuixBugs bugs.

0 60 120180240300360420480540600
>600

Running time

0
40
80

120
160
200
240
280

#B
ug

s

NoFix
Valid
Correct

(d) All bugs.

Figure 3.4: Distribution of Jaid’s running time per bug. The height of each bar
spanning x coordinates a and b marks the total number of bugs whose overall fixing
time was between a and b minutes. Segments of different hatch partition the number
of bugs into those for which Jaid produced no fixes, only valid fixes, or correct fixes.

There is room for improving Jaid’s performance by fine-tuning its implemen-

tation. To better understand the main performance bottlenecks, Figure 3.5 breaks

down the running time into the different phases of Jaid’s overall process: fault local-

ization, fix generation, and fix validation. By far, Fix validation remains, the most

time consuming phase, taking about 76% of the overall running time on all the bugs.

A straightforward way to practically reduce this is to run validation of candidates in

parallel, which could be implemented in future versions of Jaid.

The other phases of Jaid take proportionally much less time: fault localization

accounts for no more than 20% of the running time for 443 faults, which indicates

Jaid’s fault localization is reasonably efficient on most faults. In a minority of

cases, however, fault localization may become a bottleneck: Jaid’s fault localization

53

0 20 40 60 80 100
%Running time

0

100

200

300

400

#B
ug

s

(a) Fault localization.

0 20 40 60 80 100
%Running time

0

200

400

#B
ug

s

(b) Fix generation.

0 20 40 60 80 100
%Running time

0

100

200

300

400

#B
ug

s

(c) Fix validation.

Figure 3.5: Distributions of Jaid’s running time per bug in each main phase of the
fixing process (fault localization, fix generation, and fix validation). The height of a
bar spanning x coordinates a and b denotes the number of bugs whose running time
in that phase (fault localization, fix generation, and fix validation) was between a%
and b% of the overall running time. The 36 faults whose fixing failed during setup
phase (Section 3.3.2) are excluded from the figure.

took over 60% of overall running time for 48 faults that required many snapshot

expressions, had many tests, or both. One way of improving the efficiency of fault

localization in these cases is therefore to select snapshot expressions and tests (for

example, based on information gathered during fixing). As for the time spent on fix

generation, it never takes more than 15% of the overall running time.

Time to first fix. In its current implementation, Jaid always runs to comple-

tion, stopping only after it has validated all the generated candidate fixes. From a

user’s point of view, however, what matters is the time Jaid takes to generate the

first valid or the first correct fix: as soon as a valid fix is available, the user can start

inspecting it to see if it’s suitable; and as soon as a correct fix is available, the rest

of Jaid’s output becomes redundant.

To assess Jaid’s efficiency from this more practical viewpoint, Figure 3.6 and

Figure 3.7 picture the distributions of running time to a valid fix and to a correct fix.

The x-axis of the figures gives the running time per fix (in minutes) and the y-axis

gives the number of bugs. And Table 3.9 provides related statistics on the running

54

0 20 40 60 80100120140160180200
>200

Running time to first valid fix

0
4
8

12
16
20
24
28
32
36

#B
ug

s

(a) Defects4J bugs.

0 20 40 60 80100120140160180200
>200

Running time to first valid fix

0
5

10
15
20
25
30
35
40
45

#B
ug

s

(b) IntroClassJava bugs.

0 20 40 60 80100120140160180200
>200

Running time to first valid fix

0
1
2
3
4
5
6

#B
ug

s

(c) QuixBugs bugs.

0 20 40 60 80100120140160180200
>200

Running time to first valid fix

0
8

16
24
32
40
48
56
64

#B
ug

s
(d) All bugs.

Figure 3.6: Distribution of Jaid’s running time until it finds a valid fix over all bugs
for which Jaid finds at least a valid fix. The height of a bar spanning x coordinates
a and b marks the number of bugs whose running time until Jaid output a valid fix
was between a and b minutes.

time per fix across all sessions that produced a valid fix and those that produced a

correct fix. The average running time to a valid fix is less than 30 minutes for most

faults, and hence the distributions in Figure 3.6 are strongly skewed to the left. A

similar trend is visible in Figure 3.7 for the time to a correct fix, even though the

skewedness is less pronounced in this case: while the majority of correct fixes can

be produced in less than 90 minutes, there remains a “long tail” of correct fixes that

take considerably more time.

Jaid validates candidate fixes in the same order of suspiciousness value of their

snapshots: the more suspicious a snapshot, the earlier its derived candidate fixes are

validated. In contrast, other automated program repair techniques [25, 34] adjust the

55

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
2
4
6
8

10

#B
ug

s

(a) Defects4J bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
3
6
9

12
15
18
21
24

#B
ug

s

(b) IntroClassJava bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
1
2
3
4
5

#B
ug

s

(c) QuixBugs bugs.

0 20 40 60 80100120140160180200
>200

Running time to first correct fix

0
4
8

12
16
20
24
28
32

#B
ug

s
(d) All bugs.

Figure 3.7: Distribution of Jaid’s running time until it finds a correct fix over all bugs
for which Jaid finds at least a correct fix. The height of a bar spanning x coordinates
a and b marks the number of bugs whose running time until Jaid output a correct
fix was between a and b minutes.

validation order based on information obtained by mining other fixes and the rela-

tions between different fixes. Jaid could add a similar prioritization approach to its

validation phase. Specifically, it could associate a priority order based on the relation

between, on the one hand, fix actions (Section 3.2.4) and fix schemas (Section 3.2.5),

and, on the other hand, the characteristics of the bug being fixed in comparison with

the features of other known bugs. For example, if fixing bugs involving null-pointer

dereferencing usually requires to execute a call only conditionally on its target being

non-null, Jaid’s schema B in Figure 3.2 should be given higher priority.

On an average bug, Jaid ran for around 76 minutes in total, but took only 2
minutes to produce the first valid fix, and 24 minutes to produce the first correct

fix (when it could find one).

56

Table 3.9: Statistics on Jaid’s running time (in minutes) until a valid or a cor-
rect fix is found: minimum, maximum, mean, median, standard deviation, and
skewness. The statistics are computed over bugs with a valid fix (row valid), and
bugs with a correct fix (row correct).

min max mean median stdev skew

valid 0 1777 45.4 2 180.2 7.6
correct 0 1777 78.7 24 221.0 6.4

RQ3: Tool comparison

Table 3.10 quantitatively compares Jaid to 16 other APR tools for Java on bugs

from the three benchmarks.

Jaid can produce valid fixes for several more bugs than any other tools; in De-

fects4J, for example, Jaid produced valid fixes for 56% (“ p94 ´ 60q{60) more

bugs than ssFix, which does so for 60 bugs. This indicates that Jaid explores a

large space of possible fixes—arguably larger than other tools. Jaid outperforms

any other tools also in terms of correct fixes, even though Jaid’s advantage is more

limited here; in Defects4J, for example, Jaid’s recall is 0.3% higher (1 more bug

correctly fixed) than the runners up SimFix and SketchFixPP, and it is 2.3% higher

(9 more bugs correctly fixed) than the next-best tool Elixir.

When it comes to precision, several other tools perform better than Jaid on De-

fects4J bugs, especially if we only consider correct fixes that are ranked high (in

the top-10 or even in first position). Jaid’s precision is better than ssFix’s, Nopol’s,

jKali’s, and jGenProg’s, but it is worse than the other tools for which this measure

is available. All tools that outperform Jaid in terms of precision are specifically

designed to achieve a high precision, and have access to information mined from

existing human-written patches to help identify candidate fixes that are more likely

to be correct. Jaid’s precision may similarly improve if its algorithm also had access

to the same kind of machine-learned information.

57

Table 3.10: A quantitative comparison of Jaid with 16 other tools for automated
program repair, based on their published experimental evaluations (see Table 3.4 for
sources of the comparison data), and partitioned into sections for each benchmark
Defects4J, IntroClassJava, and QuixBugs. For each apr tool, the table
reports the number of bugs that the tool could fix with a valid fix; the number
of bugs that the tool could fix with a correct fix; and the resulting precision
(correct/valid) and recall (correct/tot, where tot is the total number of
bugs from the benchmark that are used in the experiments). For tools whose data
about the position of fixes in the output is available, the table reports number
of bugs with correct fixes, precision, and recall separately for fixes ranked
in any position, in the top-10 positions, and in the first position. The
rightmost column unique lists the number of distinct bugs that only the tool can
fix correctly. Question marks represent data not available for a tool.

apr tool valid
any position top-10 positions first position

unique
correct precision recall correct precision recall correct precision recall

Defects4J

Jaid 94 35 37.2% 8.9% 25 26.6% 6.3% 14 14.9% 3.5% 11
ACS 23 18 78.3% 4.6% 18 78.3% 4.6% 18 78.3% 4.6% 11
CapGen 25 22 88.0% 5.6% 22 88.0% 5.6% 21 84.0% 5.3% 3
Elixir 41 26 63.4% 6.6% 26 63.4% 6.6% 26 63.4% 6.6% ?
HDA ? 23 ? 5.8% 23 ? 5.8% 13 ? 3.3% 3
jGenProg 27 5 18.5% 1.3% 5 18.5% 1.3% 5 18.5% 1.3% 1
jKali 22 1 4.5% 0.3% 1 4.5% 0.3% 1 4.5% 0.3% 0
Nopol 35 5 14.3% 1.3% 5 14.3% 1.3% 5 14.3% 1.3% 2
SimFix 56 34 60.7% 8.6% 34 60.7% 8.6% 34 60.7% 8.6% 12
SketchFix 26 19 73.1% 4.8% ? ? ? 9 34.6% 2.3% 0
SketchFixPP ? 34 ? 8.6% ? ? ? ? ? ? 3
ssFix 60 20 33.3% 5.1% 20 33.3% 5.1% 20 33.3% 5.1% 1
xPar ? 4 ? 1.0% 4 ? 1.0% ? ? ? ?

IntroClassJava

Jaid 84 69 82.1% 26.7% 43 51.2% 16.7% 30 35.7% 11.6% ?
CapGen ? 25 ? 9.7% ? ? ? ? ? ? ?
JFix ? 19 ? 7.4% ? ? ? ? ? ? ?
S3 ? 22 ? 8.5% ? ? ? ? ? ? ?

QuixBugs

Jaid 11 9 81.8% 22.5% 9 81.8% 22.5% 4 36.4% 10.0% ?
Astor 11 6 54.5% 15.0% ? ? ? ? ? ? ?
Nopol 4 1 25.0% 2.5% ? ? ? ? ? ? ?

58

Jaid’s precision is lagging behind other tools only on Defects4J bugs; in con-

trast, it is consistently higher than other tools on IntroClassJava5 and Quix-

Bugs bugs. This difference is probably due to the kinds of tests that accompany

bugs in IntroClassJava and QuixBugs: thorough tests, which serve as strong

oracles. Jaid’s validation is entirely based on dynamic analysis, and hence using

high-quality tests lowers overfitting and increases precision.

Jaid’s effectiveness on IntroClassJava and QuixBugs also suggests that its

repair algorithm may be less prone to overfitting than other tools that are more

focused on achieving a high precision on Defects4J. A recently published large-

scale experiment [15] targeted 11 repair tools for Java (ARJA, two implementa-

tions of GenProg for Java, two implementations of Kali for Java, an implementation

of RSRepair for Java, Cardumen, jMutRepair, Nopol, DynaMoth, and NPEFix)

that were primarily evaluated on Defects4J in their original publications, and ran

them on different benchmarks—including IntroClassJava and QuixBugs. While

these experiments only considered the number of valid fixes (without analyzing cor-

rectness), they clearly showed that the number of bugs with valid fixes for “all 11

tools is significantly higher for bugs from Defects4J compared to the other four

benchmarks”—which include IntroClassJava and QuixBugs. This is in contrast

to Jaid, which built proportionally more valid (and correct) fixes for bugs in other

benchmarks: in [15]’s experiments, none of the 11 tools could build valid fixes for

more than 10% of bugs in IntroClassJava and QuixBugs; in our experiments,

Jaid built valid fixes for 28% of bugs in both IntroClassJava and QuixBugs.

Unique fixes. Tools that have been evaluated on the Defects4J benchmark

often list the identifiers of the bugs they correctly fixed; therefore, we can get a more

nuanced idea of which bugs each tool can fix. Figure 3.8 displays this information

5While precision measures of other tools on IntroClassJava bugs are not available, Jaid’s preci-
sion is quite high in absolute numbers (over 82%), and hence it is likely to be overall competitive.

59

in a readable format; and column unique in Table 3.10 summarizes the number of

bugs that each tool can fix that no other tools can. This data suggests that tools

are often complementary in the specific bugs they are successful on: Jaid fixes 11

bugs that no other tool can fix; SimFix fixes another 12; ACS fixes 11; CapGen,

SketchFixPP, and HDA fixes 3 each; Nopol fixes 2; ssFix and jGenProg fixes 1 each.

The complementarity between Jaid and other tools is not accidental but depends

on different tools focusing on different fix spaces and fix ingredients.

Consider the 23 bugs that only ACS (11 bugs) or SimFix (12 bugs) can fix: 9

require inserting statements that throw appropriate exceptions, which is something

only ACS can do at the moment; 4 require changing the code at two locations

simultaneously, which is something very few tools other than SimFix are capable of;

1 requires inserting a snippet with more than four lines of code, which is beyond

the capabilities of most tools; and the remaining 9 require various other ingredients

currently outside Jaid’s fix space. The complementarity implies that each technique

is successful in its own domain, and suggests that combining techniques based on

mining (such as SimFix, CapGen, hda, and acs) with Jaid’s techniques is likely to

yield further improvements in terms of overall effectiveness.

Other tools. We cannot quantitatively compare APR tools that target other

programming languages since they were evaluated on different benchmarks [36]. Nev-

ertheless, just to give an idea, Angelix [54] and Prophet [46] achieve a precision of

35.7% and 42.9%, and a recall of 9.5% and 17%, on 105 bugs in the C GenProg

benchmark [35]; AutoFix [61] achieves a precision of 59.3% and a recall of 25% on

204 bugs from various Eiffel projects with contracts. GenProg, AE [81], and TrpAu-

toRepair [64] produced [36] valid fixes for 37%, 20%, and 32% of the bugs in the

original IntroClass C benchmark; the experiments [36] do not analyze how many of

these fixes are correct.

60

12

11 11

3 3 3 3 3

2 2 2 2 2

1 1

0

5

10

In
te

rs
ec

tio
n

S
iz

e

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●
●

●

●
●
●
●
●

●

●

●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●
●

●

●
●
●
●
●

●
●

●
●

●

●
●
●

●
●
●

Jaid

SimFix

SketchFixPP

HDA

CapGen

ssFix

SketchFix

ACS

Nopol

jGenProg

jKali

0102030

Number of bugs with a correct fix

Figure 3.8: Partitioning of Defects4J bugs according to which tool can fix them.
Each vertical bar measures the number of bugs that a certain combination of tools
(indicated by connected dots in the lower part of the diagram) can correctly fix
that no other tools can. For example, the leftmost column indicates that SimFix can
correctly fix 12 bugs that no other tool can; the eighth column from the left indicates
that HDA, SketchFixPP, and Jaid can all fix the same 3 bugs that no other tools
can fix. The horizontal bars on the left report how many bugs in total each tool can
fix.

Jaid produced correct fixes for more bugs than any other automated repair tools
for Java—and fixed 11 bugs in Defects4J that no other tools can fix. Jaid is
less precise than some other tools on Defects4J bugs, but it is more precise on

IntroClassJava and QuixBugs bugs.

RQ4: Templates and Heuristics

Templates. As explained in Section 3.2.4, Jaid uses three kinds of fix actions as

templates to build patches: semantic actions, mutation actions, and control-flow

actions.

semantic actions are based on Jaid’s rich state-based abstractions, and build patches

that modify the state (directly or indirectly) using the expressions captured by

snapshots and ranked by dynamic analysis;

61

mutation actions are simple, “syntactic” mutations of an existing statement that

capture common sources of programming mistakes such as off-by-one errors;

control-flow actions modify the program’s control flow by changing a branching

condition or by adding an abrupt termination statement (break or return).

Table 3.11 shows how often each kind of fix action was used to produce correct

fixes. Semantic and mutation actions are the most frequently used fix action kinds,

but control-flow actions are also needed for a significant fraction of correct fixes. This

indicates that the three kinds of actions are often complementary and all contribute

to Jaid’s effectiveness.

Jaid patches a buggy program by injecting fix actions using one of the five differ-

ent fix schemas in Figure 3.2. A fix schema may execute the fix action unconditionally

(schemas A and E) or guarded by an if condition (schemas B, C, and D); and may

execute it instead of an existing statement (schemas D and E) or in addition to it

(schemas A, B, and C). Table 3.11 indicates that schemas B and E are used a bit

more often, but there is no schema that is overwhelmingly more useful, and all are

required to be able to fix a wide choice of bugs.

In total, 168 correct fixes instantiated schemas A, B, D, or E, which all require

a synthesized fix action as a component, indicating the importance of effective fix

action generation to successful program repair. The table also suggests that both

conditional modifications (instantiating schemas B, C, or D) and unconditional mod-

ifications (instantiating schemas A or E) are required to target a wide choice of bugs.

Number of snapshots. Jaid builds a variable number of snapshots to abstract

program state based on its heuristics; in its default settings (Section 3.3.1), it uses up

to 1500 snapshots to drive the rest of the fixing process. It’s clear that the number

and variety of snapshots may affect the effectiveness (more snapshots means more

precise abstractions) and efficiency (more snapshots means longer analysis times) of

62

Table 3.11: Templates used more commonly by Jaid to produce correct fixes. For
bugs in each benchmark, the table lists the numbers of correct fixes produced by
Jaid using a semantic action (s), a mutation action (m), or a control-flow action (c);
and the number of correct fixes that use one of the five schemas A–E in Figure 3.2.
Since Jaid may produce multiple correct fixes for the same bug, the total number
of fix actions or fix schemas listed is greater than the number of bugs correctly fixed
by Jaid.

benchmark
fix action fix schema

s m c A B C D E

Defects4J 14 17 13 5 15 4 6 18
IntroClassJava 71 42 2 13 36 6 24 42
QuixBugs 4 3 2 2 4 1 0 3

overall 89 62 17 20 55 11 30 63

the fixing process. To understand the trade-off in a quantitative way, we ran a series

of experiments where Jaid used a different number of snapshots to fix all 693 bugs in

the three benchmarks Defects4J, IntroClassJava, and QuixBugs. Figure 3.9

plots various measures of Jaid’s performance (number of valid and correct fixes,

overall precision and recall, running time per bug, and running time until a valid

or correct fix is found) as a function of the number of used snapshots—from 100

to 1500 in 100-snapshot increments. Overall, the data confirms the intuition that

more snapshots means longer running times (Figure 3.9c and Figure 3.9d) but also a

greater chance of success (Figure 3.9a) and better precision (Figure 3.9b). However,

while the running time grows uniformly proportionally to the number of snapshots,

there are diminishing returns in adding more snapshots to increase precision and

recall, since as the search space becomes larger it is harder to search it effectively.

Thus, further substantial progress in effectiveness is not only a matter of extending

the search space but requires more structured ways of exploring it.

63

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

#Snapshots

0

50

100

150

#B
ug

s
valid
correct

(a) Number of bugs with valid or cor-
rect fixes.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

#Snapshots

0

20

40

60

%

recall
precision

(b) Precision and recall.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

#Snapshots

50

100

150

200

Ti
m

e

valid
correct

(c) Average running time per bug.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

#Snapshots

0

20

40

Ti
m

e

valid
correct

(d) Average time until a valid or cor-
rect fix is found.

Figure 3.9: How effectiveness and efficiency of Jaid depend on the number of snap-
shots used for fixing. Each figure plots the number of bugs with a valid or correct
fix (Figure 3.9a), overall precision and recall (Figure 3.9b), average running time per
bug (Figure 3.9c), and average time until a valid or a correct fix is built (Figure 3.9d)
as a function of the number of snapshots used for fixing. The data comes from exper-
iments using all 693 bugs in the three benchmarks Defects4J, IntroClassJava,
and QuixBugs.

Jaid’s templates are all needed to be able to effectively fix bugs with different
characteristics. Reducing the number of snapshots used by Jaid improves its

running time but also reduces the number of bugs that can be fixed.

RQ5: Fault Localization

Do Jaid’s effectiveness and efficiency depend on the fault-localization algorithm it

uses? To answer this question, we ran five different variants of Jaid, each using one

of the fault localization algorithms of Table 3.5 instead of Jaid’s default algorithm

64

Table 3.12: How Jaid’s effectiveness changes using different fault localization tech-
niques. For each of the five spectrum-based fault localization algorithms of Ta-
ble 3.5, the table reports the number of fixes in each benchmark that Jaid could
repair with a valid or a correct fix in all benchmarks, and in each benchmark De-
fects4J, IntroClassJava, and QuixBugs individually. The first row refers to
Jaid using its original fault-localization technique (as in the rest of the experimental
evaluation).

all Defects4J IntroClassJava QuixBugs

fl c v c v c v c v

Jaid 113 189 35 94 69 84 9 11
Barinel 111 191 33 96 69 84 9 11
DStar 111 191 33 96 69 84 9 11
Ochiai 111 191 33 96 69 84 9 11
Op2 111 191 33 96 69 84 9 11
Tarantula 111 191 33 96 69 84 9 11

JD1 BA DS OC OP TR JD2
Fault localization algorithm

0

200

400

600

To
p

ra
nk

 o
f c

or
re

ct
 fi

xe
s

Figure 3.10: Violin plots of the top rank of correct fixes for all bugs fixed by Jaid
using different fault localization algorithms: Jaid’s custom algorithm (jd), Barinel
(ba), DStar (ds), Ochiai (oc), Op2 (op), and Tarantula (tr).

(used in the rest of the experiments). Table 3.12 shows the number of faults fixed

(with a correct fix, or just with a valid fix) in each case. The differences between fault-

localization techniques are very small: there are only three bugs in total that Jaid

can or cannot fix depending on the fault localization algorithm it uses. Precisely,

Jaid failed to produce any valid fixes for bug Lang53 in Defects4J when using its

65

JD1 BA DS OC OP TR JD2
Fault localization algorithm

0

1000

2000

3000

Ru
nn

in
g

tim
e

(a) All bugs.

JD1 BA DS OC OP TR JD2
Fault localization algorithm

0

1000

2000

3000

Ru
nn

in
g

tim
e

(b) Bugs with a valid fix.

JD1 BA DS OC OP TR JD2
Fault localization algorithm

0

500

1000

1500

Ru
nn

in
g

tim
e

(c) Bugs with a correct fix.

Figure 3.11: Violin plots of the overall running time of Jaid using different fault
localization algorithms: Jaid’s custom algorithm (jd), Barinel (ba), DStar (ds),
Ochiai (oc), Op2 (op), and Tarantula (tr).

default fault localization algorithm, since the one snapshot from which valid fixes

could be derived was not ranked among the top 1500 most suspicious; in contrast,

66

Jaid could only correctly fix bugs Closure33 and Chart9 in Defects4J using its

default fault localization algorithm, since the other five algorithms ranked the “useful”

snapshots too low to be used.

Figure 3.10 looks at how the top rank of a correct fix varies with the choice of

fault localization algorithm. Here too differences between Jaid’s default algorithm

and any other algorithm are quite limited—with Jaid’s default algorithm leading to

a greater variance in the rank but no noticeable differences on average.

Finally, Figure 3.11 plots Jaid’s running time using different fault localization

algorithms. Once again, there are no marked differences between Jaid’s default al-

gorithm and any other algorithm. The overall differences among different techniques

on the bugs are only marginal. We also applied the non-parametric Mann-Whitney

U-test to check for the statistical difference among the fixing time of Jaid. None

of the p-value produced by the test was smaller than 0.02, therefore we conclude

the differences are not statistically significant. Comparisons of the fault localiza-

tion techniques based on bugs from benchmarks IntroClassJava and QuixBugs

produce similar results.

In summary, Jaid’s overall technique is remarkably robust with respect to the

choice of fault localization algorithm. Note, however, that all fault localization al-

gorithms are spectrum-based, and hence process the same information (the spec-

trum over the available executions) using slightly different heuristic formulas (see

Table 3.5). Using radically different fault localization approaches [86] may still have

a significant impact on the performance of automated program repair.

Jaid’s effectiveness and efficiency are largely independent of the spectrum-based
fault localization algorithm that is used.

67

3.4 Summary

We presented Jaid, a new technique and tool for the automated repair of Java

programs. Jaid automatically builds rich state-based abstractions of faulty object-

oriented programs, which buttress effective fault localization, and fix generation and

ranking processes. Our comprehensive experimental evaluation of Jaid involves 693

bugs from the Defects4J, IntroClassJava, and QuixBugs benchmark suites.

Jaid produced correct fixes for 113 bugs with a precision of nearly 60%.

Major progress in the precision and applicability of automated program repair

typically requires tapping into additional sources of information about program be-

havior: Jaid relies on a rich state-based dynamic analysis; other approaches mine

repositories of code and fixes [34, 89]. Moreover, our experiments suggest that Jaid’s

overall effectiveness does not depend much on the details of its spectrum-based fault

localization algorithm; they also indicate that further substantial progress would

probably require to step up the precision of fault localization in a way that it can

incorporate such additional sources of information.

68

Chapter 4

Enhancing Program Repair with
Retrospective Fault Localization-
Restore

The work described in this chapter is published in [90].

Automated program repair has the potential to transform programming practice:

by automatically building fixes for bugs in real-world programs, it can help curb

the large amount of resources (in time and effort) that programmers devote to de-

bugging. A crucial ingredient of most repair techniques—especially of search-based

approaches like Jaid—is fault localization. Imitating the debugging process followed

by human programmers, fault localization aims to identify program locations that

are implicated with a fault and where a patch should be applied. Fault localization

in program repair has to satisfy two apparently conflicting requirements: it should

be accurate (leading to few locations highly suspicious of error), but also efficient

(not taking too much running time).

In this chapter, we introduce a novel fault localization approach—called retro-

spective fault localization—that improves accuracy while simultaneously boosting

efficiency by integrating closely within standard automated program repair tech-

69

niques. By providing a more effective fault localization process, retrospective fault

localization expands the space of possible fixes that can be searched practically.

Retrospective fault localization leverages mutation-based fault localization [59, 59]

to boost localization accuracy. Since mutation-based fault localization is notoriously

time consuming, a key idea is to perform it as a derivative of the usual program

repair process. Precisely, retrospective fault localization introduces a feedback loop

that reuses (instead of just discarding) the candidate fixes that fail validation to

enhance the precision of fault localization. Candidate fixes that pass some tests that

the original (buggy) program failed are probably closer to being correct, and hence

they are used to refine fault localization so that other similar candidate fixes are

more likely to be generated.

We implemented retrospective fault localization in a tool called Restore, built

on top of Jaid [9] (described in Chapter 3). We also conducted experiments with

real-world bugs from the Defects4J benchmark [27] to evaluate Restore. The

results indicate that retrospective fault localization significantly improves the overall

effectiveness of program repair in terms of correct fixes (for 41 faults in Defects4J,

8 more than any other automated repair tool for Java as of May 2019) and boosts

its efficiency (cutting Jaid’s running time to a third or less). Other measures of

performance suggest that retrospective fault localization improves the efficiency of

automated program repair by supporting accurate fault localization with compara-

tively moderate resources.

In the rest of this chapter, we present an example (in Section 4.1) to explain

how Restore works (in Section 4.2), and demonstrate its consistent performance

improvements on standard benchmarks of real-world bugs (in Section 4.3). Lastly,

Section 4.4 summarizes this chapter.

70

1 private void processRequireCall(NodeTraversal t, Node n, Node parent) {
2 ProvidedName provided = providedNames.get(...);
3 ...
4 if (provided != null) {
5 parent.detachFromParent();
6 compiler.reportCodeChange();
7 }
8 }

Listing 4.1: Faulty method processRequireCall from class ProcessClosure-
Primitives in project Closure Compiler.

if (provided != null || requiresLevel.isOn()) {

Listing 4.2: Fix written by tool developers (replacing line 4 in Listing 4.1), and also
produced by Restore.

4.1 An Example of Restore in Action

The Closure Compiler is an open source tool that optimizes JavaScript pro-

grams to achieve faster download and execution times. One of the refactorings it

offers—renaming classes so that namespaces are no longer needed—is based on class

Process- ClosurePrimitives whose methods modify calls to common namespace

manipulation APIs. In particular, method processRequireCall processes calls to

the goog.require API and determines if they can be removed without changing

program behavior.

Listing 4.1 shows part of the method’s implementation, which is defective:1 ac-

cording to the tool documentation, a call to goog.require should be removed (lines 5

and 6) if: (i) the required namespace can be resolved successfully (provided != null),

or (ii) the tool is configured to remove all the calls to goog.require unconditionally

(requiresLevel.isOn()). But the code in Listing 4.1 only checks condition (i) on

line 4, and hence does not remove unresolvable calls even when condition (ii) holds.

Using some of the tests that come with Closure Compiler ’s source code, the

Restore produces the fix shown in Listing 4.2, which is identical to the one written

1Fault Closure113 in Defects4J [27].

71

by Closure Compiler ’s tool developers—and completely fixes the bug. At the time

of writing, Restore is the only automated program repair tool capable of correctly

fixing this bug2.

The features of method processRequireCall and its enclosing class Process-

ClosurePrimitives contribute to making the bug challenging for generate-and-

validate automated repair tools. First, class and method are relatively large (Class

ProcessClosurePrimitives has 1233 lines and method processRequireCall has

40 lines), which is a challenge in and of itself for precise fault localization. Second, at-

tribute requiresLevel is never referenced in the faulty version of processRequireCall

and is used only once after initialization in the whole class; thus, expression requires-

Level.isOn()—which is needed for the fix—is unlikely to be selected by techniques

that look for fixing “ingredients” mainly in a fault’s context.

Restore’s retrospective fault localization is crucial to ensure that the necessary

fixing expression is found in reasonable time: Restore takes around 32 minutes to

produce the fix in Listing 4.2) and to rank it first in the output. This indicates that

Restore’s search for fixes is not only efficient but also effective. Lastly, Section 4.4

summaries this chapter.

4.2 How Restore Works

Retrospective fault localization is applicable in principle to any generate-and-validate

automated program repair technique to improve its efficiency. To make the presen-

tation more concrete, we focus on how retrospective fault localization is applicable

on top of our automated program repair tool—Jaid [9] (described in Section 3.2).

We call the resulting technique, and its supporting tool, Restore.

2Nopol was able to produce a valid, but incorrect, fix to the fault [14].

72

Java
program

Test
cases

Fault localization Fix generation Fix validation

Mutation-based
fault localization

Partial
fix validation

Ranked
valid
fixes

Suspicious
snapshots

Candidate
fixes

Validation
results Restore

Figure 4.1: An overview of how Restore works. Restore can improve the performance of any
generate-and-validate automated program repair tool. Such a tool inputs a faulty program and
some test cases exercising the program. The first, crucial, step of fixing is fault localization, which
determines a list of snapshots: program states that are indicative of error; for each suspicious
snapshot, fix generation builds a number of candidate fixes of the input program by exploring a
limited number of program mutations that may avoid the suspicious states; fix validation reruns
the available tests on each candidate built by fix generation; only candidates that pass all tests are
valid fixes, which are the tool’s output to the user.
Restore kicks in during the first run of such a program repair tool, by introducing a feedback
loop (in grey) that improves the effectiveness of fault localization. Restore performs a partial fix
validation, whose goal is quickly identifying candidate fixes that fail validation—which are treated
as mutants of the input program; information about how mutants’ behaviors differ from the input
program supports a mutation-based fault localization step that sharpens the identification of suspi-
cious snapshots. As we demonstrate in Section 4.3, Restore’s feedback loop significantly improves
effectiveness and efficiency of automated program repair.

4.2.1 Overview

Figure 4.1 illustrates how Restore works at a high level, and how it enhances a

traditional automated program repair technique by retrospective fault localization

(boxes in grey in Figure 4.1).

Input. Restore inputs a Java program P (a collection of classes), with a faulty

method m2f, and a set T of test cases exercising P . Since each run of Restore

actually only uses tests that exercise m2f, we assume, without loss of generality, that

T only includes such tests.

Fault localization identifies program locations and states (called snapshots)

that are indicative of faulty behavior. According to heuristics based on dynamic and

static measures, each snapshot receives a suspiciousness score—the higher, the more

suspicious; snapshots ranked according to their suspiciousness score are input to the

next step: fix generation.

Fix generation builds several modifications of input program P for each snap-

73

shot in order of suspiciousness. The modifications try to mutate P ’s behavior in a

way that avoids reaching the suspicious snapshot’s state. Fix generation’s output is

a sequence of candidate fixes that needs to be validated.

(Full) fix validation tests each candidate fix to determine whether it actually

fixes the fault exposed by Té. In traditional automated program repair, fix validation

runs all available tests T against each fix candidate, and only outputs candidates that

pass all tests—ranked according to the suspiciousness of the snapshots they were de-

rived from. Hence, fix validation is often the most time-consuming step of traditional

automated program repair. Since it is done downstream from fix generation—as the

last step of the whole fixing process—validation requires a large number of fix can-

didates to maximize the chance of finding some valid, possibly correct, fixes, which

exacerbates the performance problem.

Partial fix validation is the lightweight form of validation of candidate fixes

used by Restore to support retrospective fault localization. By only running a

subset of the available tests T , partial fix validation aims to quickly detect behavioral

changes in some of the candidates with respect to the program P under fix.

Mutation-based fault localization improves the precision and effectiveness of

fault localization by using retrospective information coming from partial validation.

Based on this information, the suspiciousness score of snapshots is revised to become

more discriminatory.

Exploring a larger fix space. With retrospective fault localization, the top-

ranked snapshots have a higher chance of leading to valid fixes when used in the

following phases of the repair technique—and thus to correct fixes ranked high in

the overall output. Conversely, a higher-precision fault localization technique means

that fewer candidates need to be generated and (fully) validated, leading to an overall

faster process. In turn, Restore’s more efficient search of the fix space allows it

to explore a larger space in comparable—often shorter—time, ultimately leading to

74

discovering fixes that are outside Jaid’s fix space.

4.2.2 Retrospective Fault Localization

The ultimate goal of automated program repair is finding fixes that are not only

valid—pass all available tests—but correct—equivalent to those a competent pro-

grammer, knowledgeable of the program P under repair, would write. The tradi-

tional automated program repair process presented in Chapter 3 can be quite effective

at producing correct fixes but is limited in practice by two related requirements:

1. since the accuracy of fault localization greatly affects the chances of success of

the whole repair process, we would like to have a fault localization technique

that incorporates as much information as possible;

2. since the process is open loop (no feedback), we have to generate as many

candidate fixes as possible to maximize the chance of finding a correct one.

Improving accuracy and generating many candidate fixes both exacerbate the already

significant problem of long validation times (for example, validation takes up 92.8%

of Jaid’s overall running time [9]). More crucially, they require to bound the search

space of possible fixes to a size that can be feasibly explored. But, by definition,

shrinking the fix space makes some bugs impossible to fix.

Retrospective fault localization, as implemented in Restore, addresses these

two requirements with complementary solutions:

1. it performs a preliminary partial fix validation, which runs much faster than

full validation and whose primary goal is to supply more dynamic information

to fault localization;

2. using the information from partial validation, it complements Jaid’s fault lo-

calization with precise mutation-based fault localization.

75

Such a feedback-driven mutation-based fault localization drives more efficient further

iterations of fix generation, producing a much smaller, often higher-quality, number

of candidate fixes that can undergo full validation taking a reasonable amount of

time. The greater efficiency is then traded off against fix space size: Restore can

afford to explore a larger space of candidate fixes, thus ultimately fixing bugs that

are out of Jaid’s (and other repair tools’) capabilities.

4.2.3 Initial fix generation

The initial iteration of fix generation in Restore works similarly to basic automated

program repair: fault localization (Section 3.2.3) assigns a basic suspiciousness score

suBpsq to every snapshot s (using spectrum-based fault localization as in Jaid); and

fix generation (Section 3.2.4 and Section 3.2.5) builds fix candidates for the most

suspicious snapshots.

As we have already remarked, Jaid’s spectrum-based fault localization often

takes a major part of the total fixing time, as it involves monitoring the values of

many snapshot expressions in every test execution; for example, it takes 51%–99%

of Jaid’s total time on 16 hard faults [9]. To cut down on this major time cost,

Restore selects a subset TB of all tests T to be used in basic fault localization

using nearest neighbor queries [68]. The selected tests TB include all failing tests Té

as well as the passing tests with the smallest distance to those failing. The distance

between two tests t1, t2 is calculated as the Ulam distance3 Upφpt1q, φpt2qq, where

φptq is a sequence with all basic blocks of m2f’s control-flow graph sorted according

to how many times each block is executed when running t. This way, passing tests

that are behaviorally similar to failing tests are selected as “more useful” for fault

localization since they are more likely to be sensitive to fixes of the fault. Take,

3The Ulam distance [12] of two sequences is the minimum number of delete, shift, and insert
operations to go from one sequence to another. For example, the Ulam distance Ups1, s2q of
s1 “ a b c t u and s2 “ a b t c u is 2 (delete c from s1 and insert it back after t).

76

for example, the conditional at lines 4–6 in Listing 4.2; two tests t1 and t2 such

that provided != null at line 4 both execute the conditional block, and hence will

have a shorter Ulam distance than t1 and another test t3 that skips the conditional

block (such that provided == null at line 4). Subset TB is used only to bootstrap

Restore’s initial fix generation without dominating the overall running times.

During initial fix generation, Restore builds fix candidates for the N1 “ NS ¨NP

most suspicious snapshots (whereas Jaid builds candidates for the NS most suspi-

cious snapshots). Parameter NP is 10% (i.e., NP “ 0.1) by default; this works

because retrospective fault localization can be as effective as Jaid’s basic fault lo-

calization with a fraction of the snapshots.

4.2.4 Partial fix validation

Partial fix validation aims at quickly extracting dynamic information about the many

candidate fixes built by the initial iteration of fix generation. To strike a good balance

between costs (time spent on running tests) and benefits (information gathered to

guide mutation-based fault localization), partial fix validation follows the simple

strategy of running only the tests Té that were failing on the input program P . This

is efficient—because |Té| is often much smaller than |TË|—and still has a good chance

of providing valuable information for fault localization, since it detects whether the

failing behavior has changed in some of the fix candidates.

If a candidate fix happens to pass all tests Té, it immediately undergoes full

validation (Section 4.2.8) for better responsiveness of the fixing process (outputting

valid fixes as soon as possible).

4.2.5 Mutation-based fault localization

In mutation-based fault localization [59, 56], we compare the dynamic behavior of

many different mutants of a program.

77

A mutant is a program variant produced by changing the program’s code in some

ways—for example, by changing a comparison operator. A mutant M of a program

P is killed by a test t when M behaves differently from P on t; that is, either P

passes t while M fails it, or P fails t while M passes it. A killed mutant M indicates

that the locations where M syntactically differs from P are likely (if M fails) or

unlikely (if M passes) to be implicated with the failure triggered by t.

Restore’s retrospective fault localization treats candidate fixes as higher-order

mutants—that is, mutants of the input program P that may include multiple ele-

mentary mutations—and interprets partial fix validation results of those higher-order

mutants in a similar way to help locate faults more accurately. In particular, adapt-

ing [59]’s heuristics to our context, we assign a suspiciousness score suMpCq to each

candidate fix C:

suMpCq “
|Té X killedpCq|
a

|Té| ¨ |killedpCq|
, (4.1)

where killedpCq Ď Té is the set of all tests that kill C—and thus Té X killedpCq are

the tests that fail on input program P and pass on C. Formula (4.1) assigns a higher

suspiciousness to a candidate fix the more failing tests it manages to pass, indicating

that C might be closer to correctness than P .

In order to combine the output of mutation-based and basic fault localization, we

assign a suspiciousness score suMpsq to each snapshot s based on the suspiciousness

(4.1) of candidates. Each candidate fix D is generated from some snapshot σpDq; let

SU pDq be the largest suspiciousness score of all candidate fixes E generated from

the same snapshot σpDq as D:

SU pDq “ max
E

suMpEq | σpEq “ σpDq
(

.

Then, the mutation-based suspiciousness score suMpsq of a snapshot s “ x`, e, vy is

the average of SU pDq across all candidate fixes D generated from a snapshot with

78

the same location ` as s (and any expression and value):

suMpx`, e, vyq “ mean
D

SU pDq | σpDq “ x`, ˚, ˚y
(

. (4.2)

The maximum selects, for each snapshot, the candidate fix generated from it that

is more “successful” at making failing tests pass. Then, all snapshots with the same

location get the same “average” suspiciousness score. Intuitively, the average pools

the information from different fixes that target different locations and pass partial

validation.

Finally, we combine the basic suspiciousness score suB and the mutation-based

suspiciousness score suM into an overall total ordering of snapshots according to their

suspiciousness:

s1 ĺ s2 fi

`

`1 ‰ `2 ^ suMps1q ě suMps2q
˘

_
`

`1 “ `2 ^ suBps1q ě suBps2q
˘ ,

where s1 “ x`1, e1, v1y and s2 “ x`2, e2, v2y. That is, snapshots referring to differ-

ent locations are compared according to their mutation-based suspiciousness, and

snapshots referring to the same location are compared according to their basic

suspiciousness—because they have the same mutation-based suspiciousness score.

Restore assigns a basic suspiciousness score to each snapshot as fault localization

discussed in Section 3.2.3; whereas the mutation-based suspiciousness score (4.2) is

the same, by definition, for all snapshots with the same location.

An example of how MBFL works. To get a more intuitive idea of how

mutation-based fault localization can help find suitable fix locations in Restore,

let’s consider again fault Closure113 in Defects4J—shown in Figure 4.1 and dis-

cussed in Section 4.1. A single failing test case Té “ ttéu triggers the fault by

reaching line 4 with provided == null: execution skips the then branch (lines 5

and 6), which eventually leads to a failure.

79

During the initial round of fix generation, Restore does not produce any valid

fix, because a key fix ingredient (expression requiresLevel.isOn()) is further out in

the fix search space. However, it generates 16 candidate fixes that happen to pass the

originally failing té because they all force execution through lines 5 and 6 by changing

condition provided != null on line 4. For example, one such fixes replaces it with

provided != null || provided == null. None of these 16 candidates is valid

(because they all fail other, previously passing, tests) but, instead of simply being

discarded, they all are reused as evidence—to increase the suspiciousness score of

line 4:

1. suMpCq “ 1 for each of these 16 candidates, because |Té| “ 1 and killedpCq “

Té;

2. SU pCq “ suMpCq for the same candidates, because they all have the same

(maximum) value of suspiciousness;

3. suMpx` “ 4, ˚, ˚yq “ 1 for all snapshots that target line 4.

Since no other candidates generated in this round change the suspiciousness of other

locations, the net result is that the following iterations of fix generation will prefer-

entially target fixes at line 4. This biases the search for fixes so that Restore goes

deeper in this direction of the fix search space, which eventually leads to generat-

ing the correct fix shown in Listing 4.2—which indeed targets line 4 with a suitable

condition.

4.2.6 Retrospective loop iteration

Equipped with the refined fault localization information coming from mutation-based

fault localization, Restore decides whether to iterate the retrospective fault local-

ization loop—entering a new round of initial fix generation (Section 4.2.3)—or to just

use the latest fault localization information to perform a final fix generation (Sec-

80

tion 4.2.7). While the retrospective feedback loop could be repeated several times

(until all snapshots are used to build candidates), we found that there are diminishing

returns in performing many iterations. Thus, the default setting is to stop iterating

as soon as mutation-based fault localization assigns a positive suspiciousness score

suMpsq to some snapshot s; if no snapshot gets a positive score, we repeat initial fix

generation.

4.2.7 Final fix generation

Snapshots ranked according to the ĺ relation drive the final generation of fixes.

Final fix generation runs when retrospective fault localization has successfully refined

the suspiciousness ranking of snapshots (Section 4.2.6)—hopefully identifying few

promising snapshots. Thus, final fix generation generates fixes only for snapshots

corresponding to the NL most suspicious locations—with NL “ 5 by default.

During final fix generation, Restore can even afford to trade off some of the

greater precision brought by retrospective fault localization for a larger fix space to

be explored: whereas Jaid builds fix candidates based only on expressions found

in method m2f (the method being fixed), Restore may also consider expressions

found anywhere in m2f’s enclosing class C2f. Restore can efficiently search such a

larger fix space, thus significantly expanding its overall fixing effectiveness.

4.2.8 (Full) fix validation

The final validation is, as in basic automated program repair, full—that is, uses all

available tests T and validates candidate fixes that pass all of them. This validation

has a higher chance of being significantly faster than in basic automated program

repair: first, it often has to consider fewer candidate fixes (Section 4.2.7) selected

according to their mutation-based suspiciousness; second, several candidate fixes

have already undergone partial validation against failing tests Té (Section 4.2.4),

81

and thus only need to be validated against the originally passing tests TË.

Fixes that pass validation are output to the user in the same order of suspicious-

ness ĺ as the snapshots used to generate them. Thus, Restore’s overall output is

a list of valid fixes ranked according to suspiciousness.

4.3 Experimental Evaluation

We implemented the Restore technique in a tool, also called Restore, based

on the Jaid program repair system. Our experimental evaluation assesses to what

extent Restore is an effective automated program repair tool by comparing:

• Restore’s results on high-level metrics, such as bugs correctly fixed, to other

program repair tools for Java;

• Restore’s results on fine-grained metrics, such as the effectiveness of fault

localization, to Jaid—a state-of-the-art repair tool for Java which Restore

directly extends;

Overall, the evaluation indicates that Restore is a substantial advance in general-

purpose automated program repair for Java. Different parts of the evaluation have

different levels of granularity, so that the we can also track which ingredients used

by Restore are effective and which metrics they impact.

4.3.1 Experimental Design

The setup of experiment is consistent with the setup description in Section 3.3.1 if

not specify explicitly.

Research Questions

The experiments address the following research questions:

82

RQ1: What is Restore’s effectiveness in fixing bugs?

In RQ1, we consider Restore from a user’s perspective: how many valid and

correct fixes it can generate.

RQ2: What is Restore’s performance in fixing bugs?

In RQ2, we consider Restore’s efficiency: how quickly it runs versus how

large a fix space it explores.

RQ3: How well does retrospective fault localization (RFL) work in Restore?

In RQ3, we zoom in on Restore’s fault localization technique to assess how

efficiently it drives the search for a valid fix.

Subjects. Experiments use real-world faults in version #a910322b4 of the De-

fects4J curated collection [27] (described in Section 3.3.1), which includes 357 faults

in 5 projects.

Comparison to other tools. We compare Restore’s results on high-level

metrics to the 13 state-of-the-art automated program repair systems for Java listed

in Table 4.1. To our knowledge these 13 tools include all recent Java repair tools

evaluated on Defects4J and published, at the time of writing, in major software

engineering conferences in the last couple of years.

Statistics

For each measure m taken during the experiments (e.g., time t), let Jm,k and Rm,k

denote the value of m in Jaid’s and in Restore’s run on fault k. We compare

Restore to Jaid using these metrics (illustrated and justified below) [21]:

ř

Restore
ř

Jaid : the ratio
ř

k Jm,k{
ř

k Rm,k expressing the relative cost of Restore over

Jaid for measure m.
4This is an early version of Defects4J, which do not contain the Mockito repository.

83

meanpJaid´Restoreq: the mean difference (using arithmetic mean) meankpJm,k

´Rm,kq expressing the average additional cost of Jaid over Restore for mea-

sure m.

bl,pb, bh: the estimate pb and the 95% probability interval pbl, bhq of the slope b of the

linear regression Rm,k “ a ` b ¨ Jm,k expressing Restore’s measure m as a

linear function of Jaid’s.

pχ, χh: for the same linear regression, the estimate pχ and the 95% probability upper

bound χh of the crossing ratio (where the regression line crosses the “no effect”

line).

Each summary statistics compares Restore to Jaid on faults on which the statistics

is defined for both tools; for example, the mean difference of measure c (rank of first

correct fix) is over the 23 faults that both Restore and Jaid can correctly fix.

Interpretation of linear regression. A linear regression y “ a` b ¨x estimates

coefficients a (intercept) and b (slope) in a way that best captures the relation be-

tween x and y. A linear regression algorithm outputs estimates pa and pb and standard

errors εa and εb for both coefficients: the “true” value of a coefficient c lies in interval

pcl, chq, where cl “ pc´ 2 εc ď pc ď pc` 2 εc “ ch, with 95% probability.

In our experiments, values of x measure Jaid’s performance and values of y mea-

sure Restore’s; thus, the linear regression line expresses Restore’s performance

as a linear function of Jaid’s. The line y “ x (that is, a “ 0 and b “ 1) corresponds

to no effect : the two tool’s performances are identical. In contrast, lines that lie

below the “no effect” line indicate that Restore measures consistently lower than

Jaid; since for all our measures “lower is better”, this means that Restore performs

better than Jaid. Plots such as those in Figure 4.3 display the estimated regression

line with a shaded area corresponding to the 95% probability error interval; thus we

can visually inspect whether the difference with respect to the dashed “no effect” line

84

is significant with 95% probability by checking whether the shaded area lies under

the dashed line.

Analytically, Restore is significantly better than Jaid at the 95% probability

level if the 95% probability upper bound bh on the regression slope’s estimate satisfies

bh ă 1: the slope is different from (in fact, less than) the “no difference” value 1 with

95% probability.

Since this notion of significant difference does not consider the intercept, it only

indicates that Restore’s is better asymptotically ; to ensure that the difference

is significant in the range of values that were actually measured, we consider the

crossing ratio pχ “ px ´minpJaidqq{pmaxpJaidq ´minpJaidqq, which expresses the

coordinate x “ x where the regression line y “ pa ` pbx crosses the “no effect” line

y “ x relative to Jaid’s range of measured values (the crossing ratio upper bound

χh is computed similarly but using the upper bounds ah and bh of a’s and b’s 95%

probability intervals). A large crossing ratio means that Restore is better than

Jaid only on “hard” faults, whereas a small crossing ratio means that Restore is

consistently better across the experimented range, as illustrated in the example of

Figure 4.2.

Summarizing data with linear regression. Using linear regression to model

data that doesn’t “look” linear may seem unsound. However, it is not a problem

in our case given how we use linear regression: not to predict the performance of

Restore on yet to be seen inputs, but simply to summarize the experimental data

in a way that accounts for some measurement errors (and hence is more robust

than just summarizing the raw data). After all, the essence of linear regression is

a mechanism to “learn about the mean and variance of some measurement, using

an additive combination of other measurements” [69], which is all we use it for in

analyzing our experimental data.

85

0 100 200 300 400
0

100

200

300

400

y0

y1

260

260

y2

60

60

x̄1x̄2
Figure 4.2: Visual explanation of linear regression lines. The two regression lines
y1 “ 130 ` 0.5x and y2 “ 30 ` 0.5 y have the same slope but different intercepts.
Therefore, y2 crosses the “no effect” line y0 “ x at x̄2 “ 60, much earlier than y1 that
crosses it at x̄1 “ 260. The crossing ratio scales the crossing coordinates x̄1 and x̄2
over the range of values on the x axis. If the range is the whole x axis from 0 to 400,
the crossing ratios are simply χ1 “ x̄1{400 “ 0.15 and χ2 “ x̄2{400 “ 0.65, which
indicate that y1 is above y0 for only 15% of the data, and y2 for 65% of the data.

4.3.2 Experimental Results

RQ1: Effectiveness

RQ1 assesses the effectiveness of Restore in terms of the valid and correct fixes it

can generate.

Since most automated program repair tools for Java have been evaluated on the

same Defects4J bugs as Restore, we can compare precision and recall of the

various tools in Table 4.1.5 Restore and Jaid 6 can output multiple, ranked valid

fixes for the same bugs; in contrast, other tools often stop after producing one valid

fix. We keep this discrepancy into account in Table 4.1 by reporting different values

of precision and recall according to whether we consider all valid fixes, only those in

5Since these experimental all refer to the same set of bugs (without cross-validation), precision
and recall have a narrower scope as effectiveness metrics here than they have in the context of
information retrieval.

6Restore is built on top of Jaid with the version published on [9], therefore we refer to the
same version of Jaid’s experiment data in this chapter, rather than the newest result resented in
Section 3.3 and [10].

86

Table 4.1: A quantitative comparison of Restore with 13 other tools for auto-
mated program repair on Defects4J bugs, based on their published experimental
evaluations (see Table 3.4 for sources of the comparison data). For each program
repair tool, the table references the source of its experimental evaluation data re-
ported here: the number of bugs that the tool could fix with a valid fix; the number
of bugs that the tool could fix with a correct fix; and the resulting precision
(correct{valid) and recall (correct{357, where 357 is the total number of
Defects4J faults used in the experiments). For tools whose data about the po-
sition of fixes in the output ranking is available, the table breaks down the data
separately for fixes ranked in any position, in the first positions, and in the
top-10 position. (These measures do not change for tools that output at most
one fix per fault.) The rightmost column unique lists the number of distinct bugs
that only the tool can correctly fix. Question marks represent data not available for
a tool.

tool valid
any position first position top-10 position

unique
correct precision recall correct precision recall correct precision recall

Restore 98 41 42% 11% 19 20% 5% 29 30% 8% 8
ACS 23 18 78% 5% 18 78% 5% 18 78% 5% 12
CapGen 25 22 88% 6% 21 84% 6% 22 88% 6% 3
Elixir 41 26 63% 7% 26 63% 7% 26 63% 7% 0
HDA ? 23 ? 6% 13 ? 4% 23 ? 6% 3
Jaid 31 25 81% 7% 9 29% 3% 15 48% 4% 1
jGenProg 27 5 19% 1% 5 19% 1% 5 19% 1% 1
jKali 22 1 5% 0% 1 5% 0% 1 5% 0% 0
Nopol 35 5 14% 1% 5 14% 1% 5 14% 1% 2
SimFix 56 34 61% 10% 34 61% 10% 34 61% 10% 12
SketchFix 26 19 73% 5% 9 35% 3% ? ? ? 0
SketchFixPP ? 34 ? 10% ? ? ? ? ? ? 2
ssFix 60 20 33% 6% 20 33% 6% 20 33% 6% 1
xPar ? 4 ? 1% ? ? ? 4 ? 1% 0

the top-10 positions, or only those produced in the top position (the first produced).

Valid fixes. Restore produced at least one valid fix for 97 faults in Defects-

4J. As shown in Table 4.1, that is more than any other automated repair tools for

Java.

On the 36 faults that Jaid can also handle, Restore often produces fewer valid

fixes than Jaid: overall, Restore produces 56% (1 ´ 0.44) fewer valid fixes than

Jaid; and produces more valid fixes for only 13 faults. As we’ll see later, Restore

also produces more correct fixes than Jaid; thus, fewer valid fixes per bug can be

87

read as an advantage in these circumstances.

Correct fixes. Restore produced at least one correct fix for 41 faults in De-

fects4J—when considering all fixes for the same bug. As shown in Table 4.1, that

is more than any of the other automated repair tools for Java, and constitutes a

21% increase (7 faults) over the runners-up SimFix and SketchFix according to this

metric. Restore correctly fixed 8 faults that no other tool can currently fix, in

addition to the 6 faults that only Restore and Jaid can fix. This indicates that

Restore’s fix space is somewhat complementary to other repair tools for Java.

The output list of valid fixes should ideally rank correct fixes as high as possible—

so that a user combing through the list would only have to peruse a limited number

of fix suggestions. For the 23 faults that both Restore and Jaid correctly fix,

the two tools behave similarly on the majority of bugs: Restore ranks the first

correct fix 1 position higher than Jaid on average; and ranks it lower in 11 faults.

Even thought this difference between the two tools is limited, Restore still fixes 18

more bugs than Jaid, and ranks first 8 of them. In addition, Figure 4.3b suggests

that Restore’s advantage over Jaid emerges with “harder” faults with many valid

fixes—where a reliable ranking is more important for practical usability.

Precision. While it can correctly fix more bugs, Restore has a precision that

is lower than other repair tools. In designing Restore we primarily aimed at ex-

tending the fix space that can be explored effectively by leveraging retrospective fault

localization; since there is a trade off between explorable fix space and precision, the

latter is not as high as in other tools that targeted it as a primary goal.

Extended fix space. Restore explores a larger fix space than Jaid, since it

can also use expressions outside method m2f in the same class to build fixes (Sec-

tion 4.2.7). In all experiments when Restore could produce valid fixes, 68,344

candidate fixes produced during final fix generation belong to the extended fix space

(and hence cannot be produced by Jaid). Among them, 2,049 candidates are valid

88

0

500

1000

1500

0 1000 2000 3000 4000
Jaid

R
es

to
re

(a) #v: number of valid

0

250

500

750

1000

0 500 1000
Jaid

R
es

to
re

(b) c: rank of correct

0

200

400

600

0 500 1000 1500 2000
Jaid

R
es

to
re

(c) t: total time

0

50

100

150

200

0 300 600 900
Jaid

R
es

to
re

(d) t2v: time to valid

0

100

200

0 300 600 900 1200
Jaid

R
es

to
re

(e) t2c: time to correct

0

2000

4000

6000

8000

0 5000 100001500020000
Jaid

R
es

to
re

(f) c2v: checked to valid

0

1000

2000

3000

4000

5000

0 2500 5000 7500
Jaid

R
es

to
re

(g) c2c: checked to correct

Figure 4.3: Comparison of Jaid and Restore on various measures. For each measure m, a point
with coordinates x “ Jm,k, y “ Rm,k indicates that Jaid costed Jm,k ofm on fault k while Restore
costed Rm,k of m on fault k. The dashed line is y “ x; the solid line is the linear regression with y
dependent on x.

(corresponding to 52 faults); and 9 are correct (one for each of 9 faults). In all, the

extended fix space enabled Restore to generate valid fixes for 17 more bugs than

89

Jaid, correct fixes for 9 more bugs than Jaid; and correct fixes for 5 of the 8 bugs

that only Restore can correctly fix among all tools (Table 4.1).

Multi-line fixes. Four of the bugs correctly fixed by Restore (Closure40,

Closure46, Closure115, and Closure128) have programmer-written fixes in Defects-

4J that change multiple lines. For example, project developers fixed the buggy

method of bug Closure128 :
1 static boolean isSimpleNumber(String s) {
2 int len = s.length();
3 for (int index = 0; index < len; index++) {
4 char c = s.charAt(index);
5 if (c < ’0’ || c > ’9’) return false;
6 }
7 return len > 0 && s.charAt(0) != ’0’;
8 }

by adding if (len == 0) return false; before line 3 and changing line 7 to return

len == 1 || s.charAt(0) != ’0’;. Restore, instead, just changed line 7 to
if (len == 1) return true;
else return len > 0 && s.charAt(0) != ’0’;

Restore’s conditional return is equivalent to the program-mer-written fix even

though it only modifies one location. Such complex fixes demonstrate how Re-

store manages to combine bug-fixing effectiveness and competitive performance:

this fix was the first valid fix in the output, generated in less than 10 minutes.

Restore can correctly fix 41 faults in Defects4J when allowing multiple fixes
for the same bug; 19 of these faults are fixed by the first fix output by Restore.
Restore trades off a lower precision for a larger fix space, which includes correct

fixes for 8 faults that no other tools can fix.

RQ2: Performance

RQ2 assesses the performance of Restore in terms of its running time.

Total time. Restore’s wall-clock total running time per fault ranged between

1.5 minutes and 21 hours, with a median of 53 minutes. This means that Restore

90

achieves a speedup of 3.1 (1{0.32) over Jaid; Figure 4.3c indicates that the major

difference in favor of Restore is particularly marked for the harder faults—which

generally require long running times.

Comparing with other tools in terms of running time would require to replicate

their evaluations using uniform experimental settings—something we did not do in

this experimental evaluation. Nevertheless, it is plausible other tools have an overall

significant running time too: HDA, ACS, ssFix, Elixir, CapGen, and SimFix are all

based on mining external code to learn common features of correct fixes; this process

is likely time consuming—even though it would be amortized over a consequent long

run of the tools—but is not present in Restore (or Jaid). This indicates that

Restore’s performance is likely to remain competitive overall, and that retrospec-

tive fault localization can bring a performance boon. Performing more fine-grained

experimental comparisons belongs to future work.

Time to valid/correct. Especially important for a repair tool’s practical us-

ability is the time elapsing until a fix appears in the output. All else being equal,

shorter times mean that users can start inspecting fix suggestions earlier—possibly

supporting a more interactive usage—so that the whole repair process can be sped

up. On average, Restore outputs the first valid fix 83 minutes before Jaid—a 3.4

speedup (1{0.29) according to the linear regression line; and the first correct fix 64

minutes before Jaid—a 2.3 speedup (1{0.43). While Figure 4.3d and Figure 4.3e

suggest that these averages summarize a behavior that varies significantly with some

faults, it is clear that Restore’s is substantially faster in many cases—especially

with the “harder” faults that require long absolute running times. Cutting the run-

ning times in less than half on average in these cases results in speedups that often

span one order of magnitude, and sometimes even two orders of magnitudes.

Restore’s performance is the combined result of exploring a larger fix space

than Jaid (which takes more time) and using retrospective fault localization (which

91

speeds up fault localization). That Restore finds many more correct fixes while

simultaneously often drastically decreasing the running times indicates that its fault

localization techniques bring a decidedly positive impact with no major downsides.

Restore is usually much faster than Jaid even though it explores a larger fix
space: 3.1 speedup in total running time; 3.4 speedup in time to the first valid fix;

2.3 speedup in time to the first correct fix.

RQ3: Fault Localization

Retrospective fault localization is Restore’s key contribution: a novel fault localiza-

tion technique that naturally integrates into generate-and-validate program repair

algorithms. RQ1 and RQ2 ascertained that retrospective fault localization indirectly

improves program repair by supporting searching a larger fix space while simultane-

ously improving performance. In RQ3 we look into how retrospective fault localiza-

tion is directly more efficient.

Checked to valid/correct. To this end, we follow [66]’s survey of fault localiza-

tion in automated program repair and compare the number of fixes that are checked

(generated and validated) until the first valid (c2v, called NFC in [66]) and the first

correct (c2c) fix is generated. The smaller these measures the more efficiently fault

localization drives the search for a valid or correct fix.

Restore needs to check 57% fewer (1 ´ 0.43) fixes than Jaid until it finds the

first valid fix. Restore significantly improves measure c2c too: it needs to check

36% (1´ 0.64) fewer fixes than Jaid until it finds the first correct fix. Even though

Jaid is more efficient on some faults, Figure 4.3f and Figure 4.3g show that Restore

prevails in the clear majority of cases, as well as in the harder cases that require to

check many more candidate fixes (exploring a larger search space); the difference is

clearly statistically significant (slope under 0.4 with 95% confidence, and the overlap

of regression line and “no effect” line is only for small absolute values of c2v and

92

c2c, as also reflected by the crossing ratio). These results are direct evidence of

retrospective fault localization’s greater precision in searching for fault causes.

Candidate fixes as mutations. Retrospective fault localization treats candi-

date fixes as mutants. As described in Section 4.2.5, a candidate that passes at least

one previously failing test (during partial validation) increases the suspiciousness

ranking of all snapshots associated with the candidate’s location. Such candidate

fixes sharpen fault localization, and hence we call them sharpening candidates. If a

sharpening candidate is furthermore associated with a location where a correct fix

can be built (according to the correct fixes actually produced in the experiments or

in Defects4J) we call it plausible.

Table 4.2 measures sharpening and plausible candidates in different categories.

Only 2% of all candidates are sharpening; however, the percentage grows to 9% for

faults Restore can build a valid fix for; and to 12% for faults Restore can build a

correct fix for. These cases are those where retrospective fault localization achieved

progress; in some cases (plausible candidates) it even led to finding program locations

where a correct fix can be built. Table 4.2 also shows that sharpening and plausible

candidates are 9% for faults with a single failing test case in Defects4J. These can

be considered “hard” faults because of the limited information about faulty behavior;

retrospective fault localization can perform well even in these conditions.

Table 4.3 looks at Restore’s fault localization feedback loop, which is repeated

until retrospective fault localization has successfully refined the suspiciousness rank-

ing. While some faults require as many as ten iterations, in most cases only one

iteration is needed to achieve progress. This suggests that candidate fixes are often

“good mutants” to perform fault localization—and they provide information that is

complementary to that available with simpler spectrum-based techniques.

93

Table 4.2: How retrospective fault localization achieves progress. Each row focuses
on faults in one category: those that Restore can repair with a correct fix; with
a valid fix; all faults in Defects4J; and those with a single failing test. In
each category, the table reports how many faults are in total (#); for how many
Restore’s fault localization can find a location suitable to build a correct fix
(localized, either because Restore actually built a correct fix or because the
Defects4J reference fix modifies that location); the number of candidates used
as mutants in retrospective fault localization; how many of these candidates are
sharpening and plausible.

localized candidates sharpening plausible

correct 41 41 23,529 2,582 511
valid 98 75 84,989 7,348 2,762
all 357 107 495,359 9,854 3,377
single 74 57 61,530 5,307 2,108

Table 4.3: How many times retrospective fault localization iterates. Among all faults
in Defects4J that Restore could repair with a valid or a correct fix, how many
iterations Restore’s feedback loop went through to sharpen fault localization.

iterations

1 2 3 4 5 6 7 8 9 10

valid 86 3 0 0 3 1 2 0 1 2
correct 35 2 0 0 1 1 1 0 1 0

Restore’s retrospective fault localization improves the efficiency of the search for
correct fixes: on average, 57% fewer fixes need to be generated and checked until a
valid one is found. The candidate fixes generated by Restore are effective as

mutants to perform fault localization.

4.4 Summary

We presented retrospective fault localization: a novel fault localization technique

that integrates into the standard generate-and-validate process followed by numer-

ous automated program repair techniques. By executing a form of mutation-based

testing using byproducts of automated repair, retrospective fault localization deliv-

94

ers accurate fault localization information while curtailing the otherwise demanding

costs of running mutation-based testing. Our experiments compared Restore—

implementing retrospective fault localization — with 13 other state-of-the-art Java

program repair tools—including Jaid, upon which Restore’s implementation is

built. They showed that Restore is a state-of-the-art program repair tool that can

search a large fix space—correctly fixing 41 faults from the Defects4J benchmark,

8 that no other tool can fix—with drastically improved performance (speedup over

3, and candidates that have to be checked cut in half).

95

Chapter 5

Directing Patch Search with
Repeated Learning - Pride

Both Jaid and Restore are search-based APR: They first generate candidate fixes

from a large search space and then validate them using the given test cases. As

revealed by Long et al. [45] and our previous experimental evaluation, correct fixes

are sparse in the huge search space of search-based techniques. Therefore, although

larger fix spaces typically contain more correct fixes for more faults, the effectiveness

and efficiency of a repair tool may even drop dramatically if an increase to its fix

space is not accompanied by corresponding enhancements to its search algorithm.

This scenario leads to an inevitable problem when improving the capability of APR:

how to direct the search so that it can efficiently find fixes most likely to be correct.

Almost all search-based APR techniques rely on some form of patterns, either

automatically learned or manually identified, from programmer-written fixes in the

past in constructing candidate fixes. Some also utilize the frequency information

about those patterns to generate and/or validate candidate fixes in particular orders

so that fixes that are more likely to be correct are processed earlier. While such

generic information about fix patterns is clearly critical for the success of program

repair, it alone may not be enough to guarantee an effective and efficient fixing

process. After all, how a bug should be fixed is ultimately determined by the nature

96

of the bug and the code context where it occurs, and the generic patterns can be

instantiated using many different program entities and in many different ways.

One way to factor the bug-specific information into the repair process is by in-

corporating a feedback loop between fix validation and fix generation. For example,

GenProg [82, 80] and HDA [34] evolves candidate fixes to pass all the tests in it-

erations, where fixes that can pass more tests are more likely used as the basis to

derive new fixes. While these techniques enable the overall fixing process to benefit

from intermediate fixing results and have helped program repair produce exciting

results, they suffer from two major limitations. First, although a candidate fix that

can make more tests pass may be closer to being correct, always reusing the fix as a

whole can be too coarse-grained and counter-productive, since most likely those fixes

also contain parts that correct fixes should not have. Second, it is not clear how the

successful fixing experience with such a technique on one fault may help increase the

chance of success on other faults.

To overcome the limitations, we present in this chapter the Pride (Program

Repair with repeated learning) technique for improving the effectiveness and effi-

ciency of automated program repair. The key novelty of Pride is twofold. First, it

defines a rich set of features that not only characterize the composition of fixes but

also relate the components of fixes to their context code and test executions. Second,

it introduces a learning-to-rank model to enable program repair to repeatedly learn

valuable knowledge from both completed and ongoing fixing processes about the con-

stitution of high quality fixes. The model is trained on data about candidate fixes

from past fixing processes and updated when data about candidate fixes processed

in new fixing sessions become available.

We have implemented the Pride technique into a tool with the same name based

on the Restore search-based APR tool. Pride takes as the input a faulty Java

program, a set of test cases where at least one fails due to the bug under fixing, and

97

a fix ranking model that incorporates the knowledge learned from previous fixing

processes, and it outputs a list of fixes to the program that can make all the tests

pass and an updated fix ranking model that can be used as input to drive future

program repair with Pride.

To evaluate the effectiveness and efficiency of Pride, we applied it to repair 983

bugs from 4 popular benchmarks in APR, namely Defects4J, IntroClassJava,

QuixBugs, and Bears. Pride proposed valid fixes to 243 bugs and correct fixes

to 137 bugs, significantly outperforming Restore and the other existing APR tech-

niques for Java programs. To demonstrate the generality of the Pride technique, we

also incorporated it into the SimFix APR technique and produced SimFix˚. Com-

pared with SimFix, SimFix˚ proposed correct fixes to one more fault in repairing

Defects4J bugs and achieved 3.3 speedup in terms of repair time needed to find

the first correct fix.

The rest of this chapter is organized as the following. Section 5.1 illustrates

how Pride automatically suggests high quality fixes to real-world bugs from users’

perspective. Section 5.2 describes in detail the steps Pride goes through when fixing

bugs and how the steps are connected. Section 5.3 discusses the experiments we

conducted to evaluate Pride and the results. Section 5.4 summarizes this chapter.

5.1 An Example of Pride in Action

Apache Commons Math is a lightweight, self-contained Java library that provides

mathematics and statistics components to address the most common problems in the

Java programming language. Class Complex in the library was designed to model

complex numbers, i.e., numbers with real and imaginary parts. Method add of the

class takes another complex number rhs as the parameter and should return the sum

of this complex number and rhs.

98

1 public Complex add(Complex rhs) throws NullArgumentException {
2 MathUtils.checkNotNull(rhs);
3 return createComplex(real + rhs.getReal(), imaginary + rhs.getImaginary());
4 }

Listing 5.1: Faulty method add from class Complex in project Commons-Math.

if(isNaN || rhs.isNaN){
return NaN;

}

Listing 5.2: Fix written by developers (to be inserted before line 3 in Listing 5.1).

if(rhs.isNaN() || this.isNaN()){
return NaN;

}

Listing 5.3: Correct fix generated by Pride (to be inserted before line 3 in Listing 5.1).

Listing 4.1 shows the complete implementation of the method. The method first

checks if the parameter is a null reference. If yes, a NullArgumentException is

thrown. Otherwise, the real and imaginary parts of the two complex numbers this

and rhs are added together and the result values are used to create a new complex

number as the return object. This simple implementation, however, is defective1: A

Complex object is not a number, or NaN, if its field NaN is set to true, and the class

header comment says that all mathematical operations should return NaN if either of

the operand complexes is NaN, but the implementation of method add missed such

condition.

To correct the bug, programmers inserted an if statement, as shown in List 5.2,

to method add. Pride managed to produce a correct fix for the bug, shown in

Listing 5.3, in just around 5 minutes. The generated fix is in a different form than

the human-written one but has equivalent semantics.

Quite a few existing APR tools can produce a correct fix to this fault, and they

achieve that by exploiting knowledge learned before fixing to guide fix generation [25,

1Fault Math53 in Defects4J [27]

99

if(!this.isNaN()){
return NaN;

}

a)

if(rhs.isNaN()){
return NaN;

}

b)

Figure 5.1: Two sharpening fixes generated by Pride (to be inserted before line 3 in Listing 5.1).

34, 83]. Unlike those APR tools, Pride also utilizes information gathered from the

current fixing process to make the search for correct fixes more effective and efficient.

Particularly, Pride goes through several iterations of fix generation and validation

in fixing this fault. In the first iteration, Pride identified two sharpening fixes a)

and b) shown in Figure 5.1. Although neither of the two fixes is correct, they hinted

at both the location and the component expressions of the correct fix. Based on

that information, Pride was able to rank the fix shown in Listing 5.3 on the top

of candidate fixes to be validated in the second iteration. The fix turned out to be

valid, since it made all the input tests pass, and manual inspection of the fix reveals

later that it is also correct.

5.2 How Pride Works

5.2.1 Overview

Figure 5.2 gives an overview of program repair with Pride. Given a faulty Java

program to repair, the other inputs required to run Pride include a set of test cases

for the program, where at least one is failing and reveals the fault under fixing, and a

fix ranking model encoding knowledge learned from previous fixing processes about

fixes. Outputs from a successful execution of Pride include a (possibly empty) list

of valid fixes that can make all the test cases pass and an updated fix ranking model

incorporating knowledge learned from the current fixing process. The updated model

can be used as part of the input to future runs of Pride.

During fixing, Pride first applies fault localization to identify a list of program

100

Figure 5.2: Overview of Pride.

entities that may be the cause of the fault under repairing, and then enters an

iterative process, where candidate fixes are generated and analyzed, and information

gathered from intermediate fixing results is utilized to update the fix ranking model

and to steer the fixing process. Particularly, in each iteration, Pride generates a

small number of candidate fixes, statically analyzes those fixes, sorts the fixes using

the fix ranking model, and then dynamically analyzes the fixes in the ranking order.

If candidate fixes that may help sharpen our understanding about how correct fixes

should be like are discovered during dynamic analysis, Pride updates the fix ranking

model to incorporate the knowledge and enters the next iteration. By repeatedly

learning from the past and on-going fixing processes, Pride tunes its search for

correct fixes to become more effective and efficient.

In the rest of this section, we describe the individual steps in program repair with

101

Pride and explain how they are connected to produce high quality fixes efficiently.

Note that, Pride has been designed to loosely couple with specific fault localiza-

tion and/or fix generation strategies, so that fault localization and fix generation in

most existing G&V APR techniques can be easily integrated with Pride. In such

cases, the other techniques are referred to as the base APR techniques. This design

enables Pride to help make a wide range of G&V APR techniques become more

effective and efficient in navigating their fix spaces.

5.2.2 Fault Localization

A common initial step in most existing G&V APR techniques is fault localization,

which serves to identify a list of program entities, i.e., statements, expressions, etc.,

that may be the cause of the fault under repairing. Similarly, Pride first invokes the

fault localization process of its base APR technique to produce a list L of P ’s entities

sorted in decreasing order of their likelihood of being faulty. The fault localization

result provides initial clues about which fixes should be considered in repairing and

in which order.

5.2.3 Fix Generation

To make it easy for Pride to adopt existing fix generation techniques, we use a

general model to abstract the candidate fixes that Pride handles. More concretely,

Pride models a candidate fix f as a triple xl, so, sny, where l is the location at which

the fix should be applied, so is a sequence of faulty statements at location l of P ,

while sn is the sequence of statements with which so should be replaced when the fix

is applied. That is, a fix f “ xl, so, sny will replace so at l with sn. Specially, the fix

inserts sn at location l when so is an empty sequence, and it deletes so at l when sn

is empty. We use F to denote the set of all candidate fixes a base APR technique is

able to generate in fixing faulty program P .

102

Note that, although such modelling enables Pride to handle fixes most existing

G&V APR techniques can generate, it does prevent Pride from being able to pro-

cess larger fixes, e.g., the multi-hunk fixes proposed by Hercules [71]. We leave the

generalization of Pride to handle fixes affecting multiple methods for future work.

5.2.4 Static and Dynamic Fix Analysis

In fix analysis, Pride gathers static and dynamic information about the gener-

ated fixes as well as their relationships with the corresponding contexts and the other

fixes.

Given a fix f “ xl, so, sny, the actual changes introduced by f could be much

smaller than so or sn. For example, if a fix just negates the condition of an if

statement, so and sn would need to include the original and modified if statement,

which contain many program elements that are not part of the actual change. In

view of that, Pride first employs the gumtree-spoon-ast-diff (GSAD) tool [17] to

gain a finer-grained understanding of the differences between so and sn, and then

extracts the features of f based on the differences.

Given two abstract syntax trees (ASTs) T1 and T2 as the input, GSAD constructs

an edit script which, when applied, can transform T1 into T2. GSAD considers four

types of edit actions to AST nodes when transforming T1, namely to add a node,

to delete a node, to update the value of a node, and to move a node to a new

location, and each action in the edit script is associated with an AST node on T1

and an action type. Since any change to a child AST node also constitutes a change

to the parent AST node, actions in an edit script can be organized into a tree-like

structure.

To get a finer-grained understanding of the differences between so and sn, Pride

first turns so and sn into two block statements by putting each of them into a pair

103

of curly braces, and then feeds the ASTs To and Tn for the two block statements into

GSAD to produce the edit script needed to transform the former to the latter. Next,

Pride performs a depth-first traversal on the edit action tree to gather add and

update actions to statement nodes and top-level expression nodes. Here, top-level

expressions are expressions whose parent nodes are not expressions. For example,

the condition expression of an if statement is a top-level expression, since its parent

is the containing if statement. Pride ignores delete and move actions during the

traversal because, according to our experience, they rarely occur in correct fixes, and

it ignores all edit actions on subexpressions mainly because we believe all components

of an expression are closely related and should be treated as a whole. For each add or

update action on a top-level expression, Pride obtains a pair xe, e1y of expressions,

where e is the original expression before the change (in the case of an add action,

e is null) and e1 is the result expression after the change; We refer to e as the

source, and e1 as the destination, expression of the edit action, respectively. For

each add or update action on a statement, Pride generates a descriptor in the

form “actType-nodType” for the action, where “actType” is the type of the edit

action and “nodType” is the type of the statement.

To model how variables (i.e., local variables, parameters, and class fields) are typ-

ically utilized together in l’s containing method m, Pride builds the correlated rela-

tion between variables whose scopes overlap with m via intraprocedural, lightweight

static analysis. More concretely, Pride regards two variables v1 and v2 as being

correlated, denoted as v1 „ v2, if and only if 1) there is a data-dependency relation

between them in m or 2) they have been used together in a simple statement or a

branching condition inside m.

To help better understand the potential influence of f on m, Pride also gathers

the set ξ of statements in m that may affect or be affected by changes to so. More

concretely, Pride uses each statement in so as the criterion to conduct intraproce-

104

dural forward and backward slicing, as was done in [83], to collect the corresponding

forward and backward slices, and ξ is calculated as the union of all the slices produced

for all statements in so.

In summary, Pride gathers the following information about fix f via static analy-

sis. Set E “ txei, e
1
iyu contains all pairs of source and destination expressions derived

from f ’s edit actions on top-level expressions; Set D contains all descriptors for f ’s

edit actions on statements; Set Es “ tx|Dy : xx, yy P Eu contains all source expres-

sions from E; Set Ed “ tx|Dy : xy, xy P Eu contains all destination expressions from

E; Set ξ contains all context statements that may affect or be affected by changes

to so.

During dynamic fix analysis, Pride validates the generated candidate fixes. To

validate a candidate fix f , Pride first applies f to the faulty program P to produce

its fixed version Pf and then runs all the tests in Té on Pf . If fix f can make an

originally passing (or failing) test t fail (or pass), that fix f is said to be killed by

test t. In particular, if fix f can make at least one failing test from Té pass, we say

the fix is sharpening, as it may help sharpen our understanding about the fault and

how it should be fixed. In case f can make all tests in Té pass, Pride also runs

Pf against the tests from TË until any of them fails or all have passed. After the

validation of f is completed, if f is valid, i.e., it can make all tests in T pass, it will

be reported to users directly.

5.2.5 Fix Ranking

It is a common task in G&V APR to rank fixes so that candidate fixes that are

more likely to be correct can be generated and validated earlier during fixing. In the

case of Pride, it builds a learning-to-rank model to capture the knowledge about

candidate fixes from past fixing processes and applies the model to rank the fixes

generated in repairing new bugs.

105

Static and Dynamic Features

Pride employs a rich set of features to characterize candidate fixes generated by its

base APR technique, and the features can be classified into two broad categories,

namely the static and dynamic features, based on whether they are derived from

static or dynamic information about the fixes. In this section, we explain in detail

the 17 features Pride extracts from each candidate fix and we will use the following

notations when describing how Pride calculates the features.

Given a collection Ψ of program elements, i.e., statements or expressions, we

define three functions V , W , and O such that V pΨq, W pΨq, and OpΨq will return

the set of variables accessed, the set of AST node types occurring, and the set of

operators and methods invoked, in those elements, respectively. Given a character-

ization function φ that maps each fix f P F to a set of characteristics that f has,

we refer to all characteristics that φ could possibly return as φ-characteristics. Note

that any characterization function φ can be naturally extended so that it also maps

a collection of fixes to the union of those fixes’ φ-characteristics. Given a fix f ,

a fix characterization function φ, and a set Fs (Fs ĎĎĎ F) of sharpening candidate

fixes (see Section 5.2.4), the extent to which f and fixes in Fs share common φ-

characteristics, denoted as ∆Fs,φpfq, is calculated as ΣzPφpfqQpzq{ΣzPφpFsqQpzq, where

Qpzq “ |tx : x P Fs ^ z P φpxqu| counts the number of sharpening fixes with charac-

teristic z.

Static Features Pride extracts in total eight static features for each candidate

fix. Among those features, three are context-independent since they reflect basic in-

formation about individual candidate fixes, while the other five are context-dependent

since they relate individual candidate fixes to their contexts.

Context-independent static features include sComp, sVarCorr1, and sVar-

106

Corr2, with feature IDs f1, f2, and f3, respectively. Particularly, given fix

f “ xl, so, sny, feature sComp characterizes f ’s complexity, and it is simply cal-

culated as |OpEdq|; Feature sVarCorr1 characterizes the correlation between vari-

ables accessed in f ’s source and destination expressions, and it is calculated as

|txv1, v2y : xv1, v2y P N ^ v1 „ v2u|{|N |, where N “ V pEsq ˆ V pEdq; Feature sVar-

Corr2 characterizes to what extent variables used in the source and destina-

tion expressions of individual edit actions are correlated, and it is calculated as

|txv1, v2y : xv1, v2y P N 1^ v1 „ v2u|{|N
1|, where N 1 “ txv1, v2y : vi P V pteuq^

vj P V pte
1uq ^ xe, e1y P Eu.

Context-dependent static features include sVarOccu, sAstOccu, sOpOccu,

sTokenSim, and sMISim, with feature IDs f4 through f8. Particularly, given fix

f “ xl, so, sny, feature sVarOccu captures the percentage of variables used in Ed

that are also used in f ’s context statements in X, and it is calculated as |V pXq X

V pEdq|{|V pEdq|; Feature sAstOccu captures the percentage of AST node types oc-

curring inEd that also occur inX, and it is calculated as |W pXqXW pEdq|{|W pEdq|;

Feature sOpOccu captures the percentage of operators and methods invoked in Ed

that are also invoked in X, and it is calculated as |OpXqXOpEdq|{|OpEdq|; Feature

sTokenSim captures to what extent sn is similar to other code fragments in the

current project under fixing, and it is calculated as the maximum similarity value

between sn and any code snippet in the project; Pride follows the approach in [88]

to determine the similarity value of two code snippets. Feature sMISim captures

to what extend method invocations in Ed are similar to other method invocations

in the current project under fixing, and it is calculated as the maximum similarity

value between method invocations in Ed and those in other parts of the project. The

similarity between two method invocations is determined in the same way as how the

similarity between code snippets is determined in calculating feature sTokenSim.

107

Dynamic Features Pride derives in total 9 features for each candidate fix from

the dynamic analysis of the fixes, including dLoc1, dLoc2, dVarOccu, dEx-

prOccu, dDescOccu, dExprDescOccu, dReplacing, dReplaced, and dMI-

Occu, with feature IDs f9 through f17.

Two dynamic features concern how likely a fix location is actually faulty. Given fix

f “ xl, so, sny, feature dLoc1 characterizes the likelihood of l being faulty, and it has

as its value l’s suspiciousness score produced by fault localization (see Section 5.2.2),

while feature dLoc2 reflects how likely location l is faulty based on fix validation

results. Previous research on Restore [90] has shown that fix validation results can

be used in APR to improve the accuracy of fault localization. In this work, Pride

adopts the approach of Restore to improving the accuracy of fault localization

in G&V APR. Restore treats each fix as a higher order mutation to the faulty

program and interprets fix validation results in a similar way as in mutation-based

fault localization [59, 56]. In particular, Restore calculates the suspiciousness score

of fix f as |Té X killedpfq|{
a

|Té| ¨ |killedpfq| [90], where killedpfq Ď Té is the set of

all tests that kill f , and thus Té X killedpfq are the tests that fail on input program

P but pass on Pf . Feature dLoc2 has the suspiciousness score produced in this way

as its value.

The other six dynamic features reflect to what extent each candidate fix shares

common characteristics with sharpening fixes, and the calculation of all these features

is based on characterization functions and the ∆ notation, which are introduced at

the beginning of Section 5.2.5.

Given fix f “ xl, so, sny, feature dVarOccu concerns the variables accessed by

f ’s destination expressions, and it is calculated as ∆Fs,αpfq, where αpfq returns

the set V pEdq of variables accessed in f ’s destination expressions; Feature dEx-

prOccu concerns the subexpressions of f ’s destination expressions and is calcu-

lated as ∆setFs,βpfq, where βpfq returns the set of subexpressions involved in Ed;

108

Feature dDescOccu concerns descriptors of f ’s edit actions and is calculated as

∆setFs,γpfq, where γpfq returns the set of action descriptors from f ’s edit script;

Feature dExprDescOccu concerns descriptors of f ’s edit actions at the expression

level and is calculated as ∆setFs,ρpfq, where ρpfq returns the set of expression-level

action descriptors from f ’s edit script; Feature dReplaced concerns source expres-

sions involved in fix f and is calculated as ∆setFs,δpfq, where δpfq returns the set Es

of source expressions associated with f ; Feature dReplacing concerns destination

expressions involved in fix f and is calculated as ∆setFs,εpfq, where εpfq returns the

set Ed of destination expressions associated with f ; Feature dMIOccu concerns

method invocations introduced by a fix and is calculated as ∆Fs,ζpfq, where ζpfq

returns the set of method invocations contained in the destination expressions Ed of

f .

How the dynamic features, except dLoc1 and dLoc2, are calculated implies

that, after new sharpening candidate fixes are discovered during validation, Pride

needs to gather the related information and update the dynamic features of all the

generated candidate fixes. To support the efficient (re)calculation of these features,

Pride keeps track of the number of times each characteristic occurs in all sharpening

fixes.

Learning-to-Rank

Pride applies learning-to-rank techniques to rank fixes. Learning-to-rank (LTR) is

a supervised machine learning technique for solving ranking problems in the field of

information retrieval [42]. There are two phases in Pride’s application of LTR to

ranking candidate fixes: a learning phase and a ranking phase. In the learning phase,

Pride extracts features from a group of bugs and candidate fixes with desirability

labels as the training data, and builds an optimal ranking model that predicts de-

sirability levels for fixes, w.r.t. the bugs and a given loss function. In the ranking

109

Table 5.1: Format of the training data.

prj bug static features dynamic features label

feature1 ... feature8 feature9 ... feature17

P1 b1 v1,11 ... v1,18 v1,19 ... v1,117 y1,1

P1 b2 v1,21 ... v1,28 v1,29 ... v1,217 y1,2

P2 b1 v2,11 ... v2,18 v2,19 ... v2,117 y2,1

P2 b2 v2,21 ... v2,28 v2,29 ... v2,217 y2,2

...

phase, new bugs and candidate fixes are fed to the learned ranking model to produce

a ranked list of the fixes in decreasing order of their desirability.

LTR approaches can be categorized into three groups: pointwise approaches,

pairwise approaches, and listwise approaches [42]. In [4, 37], pairwise LTR were

applied to software fault localization with a loss function that calculates the number

of times that valid fixes get ranked before invalid ones while sorting candidate fixes

for fix validation. In program repair, since users usually would stop looking at the

remaining valid fixes once he/she has found the first correct one, it is more useful

to have correct fixes ranked as close to the top as possible. Pride therefore adopts

listwise learning to rank fixes and uses the normalized discounted cumulative gain

(NDCG) as the metric. The NDCG is a measure of ranking quality, where relevance

values, or gains, of search results are discounted at lower rank positions and the

discounted cumulative gain at a position is normalized w.r.t. the maximum possible

DCG at that position. Intuitively, the NDCG prefers to have highly relevant items

appearing earlier in the result list, which aligns well with the expectations we have

for program repair results.

Table 5.1 gives the format of the input data for training the fix ranking model.

Each input entry corresponds to one candidate fix generated for a particular bug,

110

identified by the corresponding project id and bug id: The entry contains the values

for the 17 features as defined in Section 5.2.5 and is assigned an integer value as

the label to indicate the usefulness of the candidate fix in correcting the associated

bug. There are in total four different labels: value 10 indicates a correct fix, value

5 indicates a valid but incorrect fix, value 3 indicates an invalid but sharpening fix,

while value 0 indicates a fix that is not killed by any failing test. When no sharpening

fix has been found in fixing a bug, all the dynamic features of the bug’s candidate

fixes have value nan.

5.2.6 Implementation

We have implemented the Pride technique into a tool with the same name, using

the Restore APR tool [90] as a base. Restore is a state-of-the-art G&V APR

tool for Java, and here we decide to use Restore as a base APR tool for Pride

because it is among the most effective APR tools in repairing Defects4J bugs and

its implementation is publicly available2.

To automatically repair a faulty program, Restore first applies spectrum-based

fault localization to rank the program states observed during test executions in de-

creasing order of their likelihood of being faulty, and then generates and validates

candidate fixes in an iterative way. In each iteration, Restore first generates and

validates a small batch of new candidate fixes, then uses the information about

sharpening fixes discovered during fix validation to fine-tune fault localization, and

reorders the remaining candidate fixes based on the refined fault localization results

so that fixes that are more likely to be correct are validated earlier in the future.

Similar to Restore, when repairing a faulty program, Pride also starts with

fault localization and then it generates and validates candidate fixes in an iterative

fashion. A key difference between the two is that, only the location information of

2http://tiny.cc/9xff3y

111

http://tiny.cc/9xff3y

sharpening fixes is exploited to reorder fixes in Restore, while Pride employs the

input fix ranking model to prioritize candidate fixes for validation. Particularly, in

each iteration, Pride first generates 10% more candidate fixes, applies the model to

rank the fixes, validates fixes within the top 30% of the ranked list, and updates the

ranking model if any sharpening fix is detected during fix validation.

The Pride tool employs the WALA3 libraries to analyze the definitions and uses

of variables in Java programs, and it utilizes XGBoost [11]—a widely-used gradient

boosting tree implementation—to train the models and rank the candidate fixes,

with NDCG being the objective function. XGBoost implements the LambdaMart [6]

algorithm to perform listwise learning to rank. Model update in Pride is based on

the training continuation feature of XGBoost.

5.3 Experimental Evaluation

We experimentally evaluate the effectiveness and efficiency of the Pride tool using

Java bugs from 4 popular benchmarks.

5.3.1 Experimental Design

Research Questions

The experiments address the following research questions:

RQ1: How effective and efficient is Pride in repairing faulty Java programs?

RQ2: How does Pride compare with existing APR tools in repairing faulty Java

programs?

RQ3: How useful are the individual features in the learning-to-rank model?

RQ4: Is Pride generally applicable to G&V APR techniques?

3T.J. Watson Libraries for Analysis. http://wala.sf.net.

112

http://wala.sf.net

In RQ1, we examine from a user’s perspective the usefulness of Pride as a G&V

APR tool. In RQ2, we directly compare Pride to several other state-of-the-art APR

tools for Java. Since Pride ranks fixes based on a total of 17 static and dynamic

features of those fixes, we investigate to what extent these features are useful in RQ3.

In RQ4, we look for evidence that Pride is applicable also to other APR techniques.

Subjects

Our experiments targeted a total of 983 faults collected from four widely used bench-

marks of Java bugs: Defects4J [27], IntroClassJava [16], QuixBugs [39], and

Bears [48]. Defects4J [27] (revision #895c4e6) includes 395 bugs from 6 open

source Java projects, namely Chart, Closure, Lang, Math, Time, and Mockito, and

these bugs have been routinely used in evaluating various G&V APR techniques in

the past. Faulty programs in Defects4J contain 129,592 lines of code on average.

IntroClassJava [16] is a direct Java translation of the IntroClass benchmark [36],

which contains 297 buggy student-written solutions to 6 small assignments given in

an introductory, undergraduate programming course. Faulty programs in Intro-

ClassJava have on average 230 lines of code. QuixBugs [39] contains 40 faulty

programs taken from the Quixey Challenge [39], where programmers had one minute

to produce a fix given an implementation of a classic algorithm with a bug on a single

line. Faulty programs in QuixBugs contain on average 190 lines of code. Bears [48]

contains 251 bugs mined from the repositories of 72 different GitHub projects based

on commit building state from Travis Continuous Integration. Faulty programs in

Bears contain on average 62,597 lines of code. The diversity in the nature and

complexity of the subject faults ensures that the experiments are representative of

Pride’s behavior in different conditions.

113

Setup

To answer RQ1, we apply Pride to repair all the subject faults and compare the

repair results produced by Pride with those produced by Restore. To prepare the

input fix ranking model, we revise Pride so that it always validates candidate fixes

in their generation order until all candidate fixes are validated or the time limitation

set for repairing is exhausted. We refer to this version of Pride as Pride-. Pride-

requires no existing fix ranking model as the input. We then apply Pride- to repair

all the subject faults in Defects4J, manually examine the output valid fixes, label

valid fixes that are semantically equivalent to programmer-written fixes provided in

the Defects4J benchmark as correct, and gather the features of all the fixes, be it

invalid, valid, or correct, from the fixing processes. The time limitation for running

Pride- was set to be 15 hours.

Pride relies on fix ranking models to decide which fixes are more likely to be

correct. It is therefore important to include data about a good number of correct

fixes when training the ranking model. Since the total number of faults that Pride-

was able to correctly fix is not large, we perform leave-one-out [20], instead of the

standard 10-fold, cross validation across the subject faults. That is, for each fault

f in Defects4J, we use the data collected from running Pride- on all the other

Defects4J faults for training a fix ranking model and use the model as the input

to Pride for repairing f . In this way, we will have more training data about correct

fixes for each repair task. While the training of the input fix ranking model for each

repair task in the experiments are done separately and take some time, the cost is

not necessary when applying Pride in practice: Each run of Pride, except for the

very first one, can simply take the output fix ranking model from the previous run

as the input. For time reasons, we do not repeat the same process to gather features

from fixing the faults in other benchmarks. Instead, we use all the data collected

114

from running Pride- on Defects4J faults for training another fix ranking model

and always use this model as the input to Pride for repairing all faults in the other

3 benchmarks.

To answer RQ3, we revise Pride to produce 17 distinct variants. Compared

with Pride, each variant uses a fix ranking model with one of the features excluded.

Given a fix ranking model that does not include feature with id fid, we refer to the

variant of Pride using that model as Pride-fid. For example, feature sLoc is not

used in the model of variant Pride-f1. We apply all the variants of Pride to repair

the Defects4J bugs and compare the results produced.

To support our claim that Pride is applicable to program repair techniques

other than Restore and address RQ4, we implemented the Pride technique atop

the SimFix [25] automated program repair system. SimFix is another effective G&V

APR techniques for Java in fixing Defects4J bugs, and its source code and repli-

cation package are also publicly available. To repair a faulty program, SimFix first

applies spectrum-based fault-localization to rank statements according to their sus-

piciousness. For each statement above a certain suspiciousness rank, SimFix searches

for “donor code" (code snippets in the same project that are similar to those close

to the suspicious statement), extracts modification patterns from the donors, and

builds candidate fixes by matching these patterns to the suspicious statement. As

soon this process determines one fix that is valid (i.e., passes all available tests),

SimFix stops.

We refer to the modified version of SimFix by adding Pride as SimFix˚. Com-

pared with SimFix, SimFix˚ shares the same fault localization process, but it does

not generate and validate candidate fixes strictly in decreasing order of their loca-

tions’ suspiciousness values. As expected, SimFix˚ generates and validates candidate

fixes in an iterative fashion. In each iteration, SimFix˚ generates candidate fixes on 5

more faulty locations, applies the input model to rank the fixes, validates fixes among

115

the top 30% of the ranked list, and updates the ranking model if any sharpening fix

is detected during fix validation. In view that SimFix puts much more emphasis on

the first valid fix—it terminates once a valid fix is found, we disable fix ranking in

SimFix˚ before the first batch of candidate fixes is validated, so that the tool has a

chance to bootstrap the learning process. To better understand the impact of Pride

on SimFix, we ony terminate SimFix when it has produced 5 valid fixes or used up

all the given time, i.e., 5 hours, as in [25], in fixing a bug. We evaluate SimFix˚

on just Defects4J faults and leave a more comprehensive experimental evaluation

of SimFix˚ for future work, because SimFix relies on Defects4J commands to

compile fixes and run tests, and it is non-trivial to apply the tool to repair faults in

other benchmarks.

Each experiment aims at fixing one subject fault, where Pride takes as the input

the buggy program, the tests, and a fix ranking model, and outputs a sorted list of

valid fixes for the bug and an updated fix ranking model. We set a time out of 6

hours, as was done in [47]. When fixing is over, we manually examine the reported

valid fixes in order until the list has been exhausted or a correct fix is found. We

consider a fix as correct if it is semantically equivalent with the programmer-written

fix to the bug, which is consistent with how correct fixes are identified in other

experiments on program repair tools.

We record the following metrics from each experiment: the number of valid fixes

in the result; the rank of the first correct fix in the result; the overall wall-clock fixing

time; the fixing time until the first valid fix is found; and the fixing time until the

first correct fix is found.

All the experiments ran on the author’s institution’s cloud infrastructure. Each

experiment used exclusively one virtual machine instance, running Ubuntu 14.04 and

Oracle’s Java JDK 1.8 on one core of an Intel Xeon Processor E5-2630 v2 with 8 GB

of RAM.

116

Table 5.2: Experimental results of Pride and Restore in repairing faults from the
4 benchmarks. All times are in minutes.

benchmark #bug #loc Pride Restore

#v #c #c@f #c@10 t2vmed t2cmed #v #c #c@f #c@10 t2vmed t2cmed

Defects4J 395 129,592 110 53 28 42 13.5 14.1 98 41 19 29 11.6 21.3
IntroClassJ 297 230 95 71 47 57 9.3 10.4 82 68 31 43 4.3 9.7
QuixBugs 40 190 14 10 8 9 5.5 5.5 11 9 4 8 8.9 15.1
Bears 251 62,597 24 3 0 3 71.3 1.6 10 1 0 0 3.2 13.8

Overall 983 – 243 137 83 111 9.9 10.4 201 119 54 80 6.5 14.8

5.3.2 Experimental Results

In this section, we report the experimental results and answer the research questions.

RQ1: Effectiveness and Efficiency

Table 5.2 summarizes the experimental results with Pride. For each benchmark,

the table gives the numbers of faults from the benchmark for which Pride proposed

valid (#v) fixes, the numbers of bugs that Pride could fix with a correct fix when

fixes at any (#c), only the first (#c@f), or the top-10 (#c@10) positions are

considered, and the median time Pride spent to produce the first valid (t2v) and

correct (t2c) fixes. Given that Pride uses Restore as its base APR technique,

the table also lists the same measures achieved by Restore on the same faults.

Within the given time limit, Pride produced valid and correct fixes to 243 and

137 faults, respectively, significantly outperforming Restore, which produced valid

and correct fixes to 201 and 119 faults, respectively. A closer look at the faults

that were repaired with valid and/or correct fixes reveals that the two tools actually

explored different areas of their fix spaces. Particularly, Pride failed to produce any

valid fixes to 26 faults where Restore proposed valid fixes, while Restore failed

to produce any valid fixes to 58 faults where Pride proposed valid fixes. Similarly,

Pride failed to produce any correct fixes to 19 faults where Restore proposed

correct fixes, while Restore failed to produce any correct fixes to 37 faults where

117

Pride proposed correct fixes. On the one hand, such result clearly shows that Pride

is more effective than Restore in proposing high quality fixes overall. On the other

hand, it also indicates that there is plenty of space to further improve the fix ranking

mechanism implemented in Pride. Pride not only proposed valid and correct fixes

to more faults than Restore, it also produced more correct fixes at the top of the

result lists of valid fixes. In particular, Pride can correctly fix 29 and 21 faults than

Restore, if we only consider fixes at the first or the top-10 positions, respectively.

The median time elapsed until Pride produced a valid and correct fix is 9.9 and

10.4 minutes, respectively, which is comparable with that of Restore’s. Pride’s

performance is the combined result of exploring a larger fix space than Restore

and using a model to rank candidate fixes. The fact that Pride found many more

correct fixes while without spending much more time suggests the fix ranking model

brings a positive impact with no major downsides.

Histograms in Figure 5.3 shows how the measures achieved by Pride and Re-

store compare on the same faults. For each measure m, a bar of height h at an

x-coordinate range r indicates that the ratio between m’s values produced by Pride

and Restore was within range r on h bugs. We can observe from the figures that,

on faults where both Pride and Restore can propose valid/correct fixes, Pride

tends to generate more valid fixes and produce correct fixes not only with better

ranks but also in shorter times.

Pride proposed valid and correct fixes to 243 and 137 bugs, respectively,
significantly outperforming Restore. For 83 and 111 bugs, the correct fixes

proposed by Pride were at the first and within the top-10 positions, respectively.
The median repairing time with Pride was comparable with that of Restore’s.

RQ2: Efficiency

Table 5.3 compares the fixing results of Pride with 17 recent APR tools for Java on

bugs from the four benchmarks. For each program repair tool (tool), the table lists

118

Table 5.3: A quantitative comparison of Pride with 17 other tools in repairing bugs
from the 4 benchmarks.
tool #v any first top-10

#c p r #c p r #c p r

Defects4J

Pride 110 53 48% 13% 28 25% 7% 42 38% 11%
ACS [89] 23 18 78% 5% 18 78% 5% 18 78% 5%
CapGen [83] 25 22 88% 6% 21 84% 6% 22 88% 6%
CoCoNuT [47] 85 44 52% 11% 44 52% 11% 44 52% 11%
Elixir [70] 41 26 63% 7% 26 63% 7% 26 63% 7%
HDA [34] ? 23 ? 6% 13 ? 4% 23 ? 6%
HERCULES [71] 63 46 73% 12% 46 73% 12% 46 73% 12%
Jaid [10] 94 35 37% 9% 14 15% 4% 25 27% 6%
Restore [90] 98 41 42% 11% 19 20% 5% 29 30% 8%
SimFix [25] 56 34 61% 10% 34 61% 10% 34 61% 10%
SketchFix [23] 26 19 73% 5% 9 35% 3% ? ? ?
SketchFixPP [23] ? 34 ? 10% ? ? ? ? ? ?
ssFix [88] 60 20 33% 6% 20 33% 6% 20 33% 6%
TBar [72] 81 42 50% 11% 42 50% 11% 42 50% 11%

IntroClassJava

Pride 95 71 75% 24% 47 49% 16% 57 60% 19%
Jaid 84 69 82% 27% 30 36% 12% 43 51% 17%
CapGen ? 25 ? 10% ? ? ? ? ? ?
JFix [32] ? 19 ? 7% ? ? ? ? ? ?
Restore 82 68 83% 23% 31 38% 10% 43 52% 14%
S3 [33] ? 22 ? 9% ? ? ? ? ? ?

QuixBugs

Pride 14 10 71% 25% 8 57% 20% 9 64% 23%
CoCoNuT 20 13 65% 30% 13 65% 30% 13 65% 30%
Jaid 11 9 82% 23% 4 36% 10% 9 82% 23%
Astor [50] 11 6 55% 15% ? ? ? ? ? ?
Nopol [49, 92] 4 1 25% 3% ? ? ? ? ? ?
Restore 11 9 82% 23% 4 36% 10% 8 73% 20%

Bears

Pride 24 3 13% 1% 0 0 0 3 13% 1%
Restore 10 1 10% 0% 0 0% 0% 0 0% 0%

119

0

5

10

15

20

25

30

35

[0, 0.5) [0.5, 1) 1 [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 100)

#
B

u
g

#VPRIDE / #VRESTORE

(a) #v

0

5

10

15

20

25

30

35

40

45

[0, 0.5) [0.5, 1) 1 [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 100)

#
B

u
g

CPRIDE / CRESTORE

(b) c

0

5

10

15

20

25

30

35

40

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 100)

#
B

u
g

T2VPRIDE / T2VRESTORE

(c) t2v

0

5

10

15

20

25

30

35

[0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 100)

#
B

u
g

T2CPRIDE / T2CRESTORE

(d) t2c

Figure 5.3: Comparison of Pride and Restore on various measures.

the number of bugs that the tool could fix with a valid fix (#v), and the number of

bugs that the tool could fix with a correct fix (#c) as well as the precision (#c{#v)

and recall (#c{#bug) of the result list (p and r) when fixes at any (any), only the

first (first), or the top-10 (top-10) positions are considered. Here, #bug denotes

the total number of bugs considered when evaluating an APR tool. Question marks

in the table denote data that are unavailable for a tool.

A recent study [15] evaluated 11 repair tools for Java on different benchmarks—

including IntroClassJava, QuixBugs, and Bears. Since we compare the effec-

tiveness of repair tools mainly based on their capability to propose correct fixes,

120

while the study only considered the number of valid fixes, we refrain from including

the repair tools evaluated in that study in Table 5.3.

Pride produced valid fixes to more bugs than any other tool, which suggests

that Pride explores a larger fix space than other tools do—effective ranking of

candidate fixes is therefore more critical for fixing with Pride to be successful. On

Defects4J bugs, when fixes in all rank positions are considered, Pride’s recall

is 1.8% higher than the first runner-up Hercules (i.e., 7 more bugs correctly fixed)

and 2.3% higher than the second runner-up CoCoNuT (i.e., 9 more bugs correctly

fixed). When only fixes in the top-10 positions are considered, Pride’s recall drops

to the third place among the tools, following Hercules and CoCoNuT. Note that 15

of the bugs correctly fixed by Hercules are multi-hunk bugs, while CoCoNuT needs

the perfect line information about bugs as the input. Given that the fixes Pride

generates are simple and inspecting 10 valid fixes may be acceptable for users, we

believe the overall recall of Pride is comparable with state-of-the-art APR tools.

No matter how many fixes in various positions are considered, the precision Pride

achieved, however, is relatively low when compared with most other tools listed in

the table. One thing that the tools with high precision do, while Pride does not do,

is applying knowledge learned from human-written fixes in code repositories to rank

generated fixes. To enhance the precision of the repair results, we will investigate

how knowledge learned from previous fixes and from various fixing processes could

be incorporated and applied to drive more effective program repair.

Pride achieved even higher recall and precision on benchmarks IntroClass-

Java and QuixBugs than on Defects4J, but it only managed to propose valid

and correct fixes to 24 and 3 bugs from Bears. We leave the understanding of

Bears bugs’ unique characteristics and the development of new APR techniques to

effectively repair Bears bugs for future work.

121

Pride produced correct fixes for more bugs than any other APR tools for Java.
Pride is less precise than some other tools on Defects4J bugs.

RQ3: Feature Usefulness

Table 5.4 lists, for each feature (fid), the numbers of Defects4J bugs that the tool

Pride-fid could fix with a correct fix (#c) when fixes at any (any), only the first

(first), or the top-10 (top-10) positions are considered.

Table 5.4: Usefulness of individual features.
#c fid

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

any 53 51 52 51 50 52 53 49 52 51 52 52 50 50 51 51 52
first 24 20 30 21 26 27 27 26 26 24 30 27 22 24 29 27 30
top-10 43 37 41 40 39 37 40 37 39 39 44 39 37 39 40 39 43

On the one hand, it is clear from the table that excluding any individual feature

from the fix ranking model will cause the effectiveness of Pride to drop, which

emphasizes the usefulness of the features. On the other hand, the differences caused

by the removal of any individual feature in the measure values were not big, which

suggests none of the features is dominant in ranking fixes, and therefore the learning-

to-rank model is able to provide relatively stable ranking power even when one feature

is excluded.

All features in Pride are useful for achieving the maximum effectiveness, while
no feature is dominant in ranking fixes.

RQ4: Generality

In our experiments, SimFix produced correct fixes to 33 Defects4J bugs; SimFix˚

produced correct fixes to 34 bugs, including the 33 bugs SimFix correctly fixed

and an extra one, but with the correct fixes ranked between positions 2 and 4 for

three bugs. The scatter chart in Figure 5.4 shows how the repair time until the

122

y = 0.3091x + 23.625

0

50

100

150

200

250

0 50 100 150 200 250

T
2

C
S

IM
F

IX

T2CSIMFIX*

Figure 5.4: Comparison of SimFix˚ and SimFix on T2C.

first correct fix is found compares between Pride and Restore on the 33 faults

they both correctly fixed. We build a simple linear regression equation to model the

relation between the times with the two tools. The slope and the intercept of the

regression line being around 0.3 and 23 suggests that SimFix˚ achieves a speedup of

3.3 (1/0.3) in finding a correct fix and that the amount of time SimFix˚ needs for

finding a correct fix is often small.

Such result aligns well with our observation in Section 5.3.2. That is, although

Pride can help program repair become more effective and efficient most of the time,

it is essentially driven by heuristics and does not always produce the best results.

Next, we will first conduct a larger-scale experiment to more thoroughly evaluate

the strengths and weaknesses of Pride, and then try to devise new techniques to

enable Pride to work in synergy with existing strategies, rather than to use Pride

to simply replace existing strategies.

SimFix˚ correctly fixed one more bug than SimFix. The correct fixes proposed by
SimFix˚ were not ranked at the first positions on 3 faults, but SimFix˚ achieved

3.3 speedup in producing correct fixes.

123

5.4 Summary

We presented the Pride technique for effective program repair. Compared with

existing techniques, Pride is able to learn not only from what has happened in past

fixing processes but also from what is happening in the current fixing session, which,

we believe, makes Pride more effective and adaptive. Such capability stems from

the rich set of static and dynamic features that Pride utilizes to characterize fixes

and the ranking model that incorporate rich knowledge about fixes. Pride was able

to propose correct fixes to 137 bugs from 4 popular benchmarks.

124

Chapter 6

Conclusion and Future Work

This chapter summarizes our contributions to automatic program repair as presented

in this thesis and outlines potential directions for future research. Section 6.1 reca-

pitulates the major contributions, and Section 6.2 describes future work.

6.1 Main Contributions

In this thesis, we presented three techniques, namely Jaid, Restore, and Pride,

to advance the state-of-the-art in search-based automated repair of Java programs.

Jaid builds rich state-based abstractions of faulty programs automatically from

plain Java code, and the state abstractions buttress effective fault localization and fix

generation and ranking processes. Grounding the repair process on state abstractions

mitigates the overfitting problem and improves the patch quality. In our evaluation

study involving 693 bugs from the Defects4J, IntroClassJava, and QuixBugs

benchmark suites, Jaid produced correct fixes for 113 bugs with a precision of nearly

60%. Jaid is the first APR technique that achieves high levels of precision without

relying on additional input other than tests and faulty code.

To enhance the precision of fault localization in APR, we then devise retrospec-

tive fault localization and implement Restore that integrates the fault localization

into the standard generate-and-validate process based on Jaid. By executing a form

125

of mutation-based testing using byproducts of automated repair, retrospective fault

localization delivers accurate fault localization information while curtailing the oth-

erwise demanding costs of running mutation-based testing. Our experiments showed

that Restore is a state-of-the-art program repair tool that can search a large fix

space with correctly fixing 41 faults from the 359 bugs of Defects4J benchmark,

8 that no other tool can fix. At the meanwhile, it drastically improved performance

that speedup over 3 times, and cut in half candidates that have to be checked.

To further streamline the processes in automated program repair, we propose

the Pride technique to learn from not only past fixing processes but also the cur-

rent fixing session. With the rich set of static and dynamic features characterizing

fixes and ranking models incorporating fix related knowledge, the learning capability

makes Pride more effective and adaptive. In our evaluation experiment, Pride was

able to propose correct fixes to 137 bugs from 4 popular benchmarks, significantly

outperforming Restore and the other existing APR techniques for Java programs.

The experimental results suggest that the learned knowledge about candidate fixes

helps to improve the effectiveness and efficiency of program repair.

6.2 Future Work

Our work on Jaid, Restore, and Pride demonstrates the power of state abstrac-

tion in facilitating search-based automatic program repair. In the future, we plan to

investigate how state abstraction can be utilized to help further reduce the costs for

applying APR in practice. For instance, by categorizing equivalent fix ingredients

w.r.t. the corresponding Boolean expressions, we should be able to easily identify

groups of candidate fixes with the same semantics and then reduce the fixing time

by validating just one representative from each group of those candidate fixes.

As discussed in previous chapters, the effectiveness and efficiency of search-based

126

automated program repair can benefit from integrating additional information about

plausible repairs. Mining knowledge from software repositories and developer written

fixes has already been successfully used in other tools [34, 89] but not yet in ours.

Hence, one interesting thing that we plan to do in near future is to investigate how

to extract useful information from other sources and factor those information into

our approaches in an effective way.

Besides, in view that reference code snippets implementing the same or similar

functionalities as the buggy code can provide great guidance as to how the buggy code

should be rectified to remove the bug, we will also investigate how natural language

processing techniques may be applied to automatically summarize the functionalities

of code snippets and how reference code snippets can be effectively identified based

on those summaries.

Moreover, our state based APR techniques could naturally combine with dynamic

symbolic execution to further increase the efficiency of exploring search space. For

example, we could regard the negation of suspicious snapshot as a constrain and use

a constrain solver to obtain the concrete value of variables satisfying the constrain.

The new variable would cause new states, then maybe we can further explore how

to use old program states to help us obtain the correct new states.

127

Bibliography

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based
multiple fault localization. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’09, pages 88–99,
Washington, DC, USA, 2009. IEEE Computer Society.

[2] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A
practical evaluation of spectrum-based fault localization. Journal of Systems
and Software, 82(11):1780–1792, November 2009.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy
of spectrum-based fault localization. In Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION,
TAICPART-MUTATION ’07, pages 89–98, Washington, DC, USA, 2007. IEEE
Computer Society.

[4] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, pages
177–188, New York, NY, USA, 2016.

[5] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to
support debugging with tarantula. In Proceedings of the The 18th IEEE Inter-
national Symposium on Software Reliability, ISSRE ’07, pages 137–146, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[6] Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART:
An overview. Technical report, Microsoft Research, 2010.

[7] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodík. Angelic
debugging. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE), pages 121–130. ACM, 2011.

[8] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S. P. Midkiff. Statistical de-
bugging: A hypothesis testing-based approach. IEEE Transactions on Software
Engineering, 32(10):831–848, Oct 2006.

128

[9] Liushan Chen, Yu Pei, and Carlo A Furia. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 637–647. IEEE, 2017.

[10] Liushan Chen, Yu Pei, and Carlo Alberto Furia. Contract-based program repair
without the contracts: An extended study. IEEE Transactions on Software
Engineering, 2020.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA,
2016. Association for Computing Machinery.

[12] D.E. Critchlow. Metric Methods for Analyzing Partially Ranked Data. 3Island
Press, 1986.

[13] Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest
fixes for faulty programs. In Proceedings of the 2010 Third International Con-
ference on Software Testing, Verification and Validation, ICST ’10, pages 65–74,
Washington, DC, USA, 2010. IEEE Computer Society.

[14] Thomas Durieux, Benjamin Danglot, Zhongxing Yu, Matias Martinez, Simon
Urli, and Martin Monperrus. The patches of the nopol automatic repair system
on the bugs of defects4j version 1.1. 0. 2017.

[15] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. Em-
pirical review of java program repair tools: a large-scale experiment on 2,141
bugs and 23,551 repair attempts. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 302–313, 2019.

[16] Thomas Durieux and Martin Monperrus. Introclassjava: A benchmark of 297
small and buggy java programs. 2016.

[17] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. Fine-grained and accurate source code differencing. In Proceed-
ings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, page 313–324, New York, NY, USA, 2014. Association
for Computing Machinery.

[18] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software
repair: A survey. IEEE Trans. Software Eng., 45(1):34–67, 2019.

[19] Rahul Gupta, Aditya Kanade, and Shirish Shevade. Deep learning for bug-
localization in student programs, 2019.

129

[20] Jiawei Han and Micheline Kamber. Data mining : concepts and techniques.
Kaufmann, San Francisco [u.a.], 2005.

[21] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel comput-
ing systems: twelve ways to tell the masses when reporting performance results.
In Proceedings of the international conference for high performance computing,
networking, storage and analysis, pages 1–12, 2015.

[22] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. Mutation-based fault localization for real-world mul-
tilingual programs. In Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’15, pages 464–475, Wash-
ington, DC, USA, 2015. IEEE Computer Society.

[23] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Towards
practical program repair with on-demand candidate generation. In Proceed-
ings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pages 12–23, 2018.

[24] Yue Jia and Mark Harman. An analysis and survey of the development of muta-
tion testing. IEEE Transaction Software Engineering, 37(5):649–678, September
2011.

[25] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
Shaping program repair space with existing patches and similar code. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 298–309, 2018.

[26] James A. Jones and Mary Jean Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05, pages
273–282, New York, NY, USA, 2005. ACM.

[27] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of exist-
ing faults to enable controlled testing studies for java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, pages
437–440, 2014.

[28] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso.
Minthint: Automated synthesis of repair hints. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 266–276, New
York, NY, USA, 2014. ACM.

[29] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing pro-
grams with semantic code search. In 30th IEEE/ACM International Conference
on Automated Software Engineering, (ASE), pages 295–306. IEEE, 2015.

130

[30] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 802–
811, Piscataway, NJ, USA, 2013. IEEE Press.

[31] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information retrieval and
spectrum based bug localization: Better together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 579–590,
New York, NY, USA, 2015.

[32] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, andWillem Visser.
JFIX: semantics-based repair of java programs via symbolic pathfinder. In Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pages 376–379,
2017.

[33] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, andWillem Visser.
S3: syntax- and semantic-guided repair synthesis via programming by examples.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages
593–604, 2017.

[34] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven program repair.
In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 213–224. IEEE, 2016.

[35] Claire Le Goues, Michael Dewey Vogt, Stephanie Forrest, and Westley Weimer.
A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering
(ICSE), pages 3–13. IEEE, 2012.

[36] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. The manybugs and introclass
benchmarks for automated repair of c programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, 2015.

[37] Xia Li and Lingming Zhang. Transforming programs and tests in tandem
for fault localization. Proceedings of the ACM on Programming Languages,
1(OOPSLA):92:1–92:30, October 2017.

[38] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’05,
pages 15–26, New York, NY, USA, 2005. ACM.

131

[39] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.
Quixbugs: A multi-lingual program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software
for Humanity, pages 55–56, 2017.

[40] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. You cannot fix what you cannot find! an investigation of
fault localization bias in benchmarking automated program repair systems. In
2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST), pages 102–113. IEEE, 2019.

[41] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. Tbar:
Revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, pages 31–42, New York, NY, USA, 2019. ACM.

[42] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf.
Retr., 3(3):225–331, March 2009.

[43] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, pages 727–739, New
York, NY, USA, 2017. ACM.

[44] Fan Long and Martin Rinard. Staged Program Repair with Condition Synthe-
sis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 166–178, New York, NY, USA, 2015.

[45] Fan Long and Martin Rinard. An analysis of the search spaces for generate
and validate patch generation systems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 702–713. IEEE, 2016.

[46] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 298–312, 2016.

[47] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei,
and Lin Tan. Coconut: Combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2020, page
101–114, New York, NY, USA, 2020. Association for Computing Machinery.

[48] F. Madeiral, S. Urli, M. Maia, and M. Monperrus. Bears: An extensible java bug
benchmark for automatic program repair studies. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 468–478, Feb 2019.

132

[49] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Mar-
tin Monperrus. Automatic repair of real bugs in java: A large-scale experiment
on the defects4j dataset. Empirical Software Engineering, 22(4):1936–1964,
2017.

[50] Matias Martinez and Martin Monperrus. Astor: A program repair library for
java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 441–444, 2016.

[51] Matias Martinez, Westley Weimer, and Martin Monperrus. Do the fix ingre-
dients already exist? An empirical inquiry into the redundancy assumptions
of program repair approaches. In 36th International Conference on Software
Engineering (ICSE), pages 492–495. ACM, 2014.

[52] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik
Roychoudhury. Semantic program repair using a reference implementation. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
’18, pages 129–139, New York, NY, USA, 2018. ACM.

[53] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. DirectFix: Looking
for Simple Program Repairs. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, pages 448–458.

[54] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering, pages 691–701, 2016.

[55] Martin Monperrus. Automatic Software Repair: a Bibliography. ACM Com-
puting Surveys, 51:1–24, 2017.

[56] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the mutants:
Mutating faulty programs for fault localization. In Proceedings of the 2014
IEEE International Conference on Software Testing, Verification, and Valida-
tion, ICST ’14, pages 153–162, Washington, DC, USA, 2014. IEEE Computer
Society.

[57] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-
based software diagnosis. ACM Transactions on Software Engineering and
Methodology, 20(3):11:1–11:32, August 2011.

[58] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. SemFix: Program Repair via Semantic Analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 772–781,
Piscataway, NJ, USA, 2013.

[59] Mike Papadakis and Yves Le Traon. Metallaxis-fl: mutation-based fault local-
ization. Software Testing, Verification and Reliability, 25(5-7):605–628, 2015.

133

[60] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,
Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and improv-
ing fault localization. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 609–620. IEEE, 2017.

[61] Yu Pei, Carlo A Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas
Zeller. Automated fixing of programs with contracts. Ieee transactions on soft-
ware engineering, 40(5):427–449, 2014.

[62] Yu Pei, Yi Wei, Carlo A Furia, Martin Nordio, and Bertrand Meyer. Code-based
automated program fixing. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pages 392–395. IEEE, 2011.

[63] Jeff H. Perkins, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
Martin Rinard, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, and Stelios
Sidiroglou. Automatically patching errors in deployed software. In Proceed-
ings of the ACM SIGOPS Symposium on Operating Systems Principles, pages
87–102, 2009.

[64] Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program repair
through fault-recorded testing prioritization. In 2013 IEEE International Con-
ference on Software Maintenance, pages 180–189. IEEE, 2013.

[65] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
Strength of Random Search on Automated Program Repair. In Proceedings of
the 36th International Conference on Software Engineering, pages 254–265, New
York, NY, USA, 2014.

[66] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated
program repair for evaluating the effectiveness of fault localization techniques.
In Proceedings of the 2013 International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 191–201, New York, NY, USA, 2013. ACM.

[67] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In Proceedings of the 2015 International Symposium on Software Testing and
Analysis, ISSTA 2015, pages 24–36, New York, NY, USA, 2015. ACM.

[68] Manos Renieres and Steven P Reiss. Fault localization with nearest neighbor
queries. In 18th IEEE International Conference on Automated Software Engi-
neering, 2003. Proceedings., pages 30–39. IEEE, 2003.

[69] Christian Robert. Statistical rethinking, 2015.

134

[70] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. ELIXIR:
effective object oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Ur-
bana, IL, USA, October 30 - November 03, 2017, pages 648–659, 2017.

[71] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. Harnessing evolution for
multi-hunk program repair. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, pages 13–24, Piscataway, NJ, USA, 2019.
IEEE Press.

[72] SerVal-DTF. Serval-dtf/tbar. https://github.com/SerVal-DTF/TBar/tree/
master/Results.

[73] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the cure
worse than the disease? overfitting in automated program repair. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 532–543, New York, NY, USA, 2015. ACM.

[74] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo de Almeida Maia. Dissection of a bug dataset: Anatomy of 395 patches
from defects4j. In 2018 IEEE 25th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages 130–140. IEEE, 2018.

[75] Armando Solar-Lezama. Program sketching. Software Tools for Technology
Transfer, 15(5-6):475–495, 2013.

[76] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
Anti-patterns in search-based program repair. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(FSE), pages 727–738. ACM, 2016.

[77] Christopher Steven Timperley, Susan Stepney, and Claire Le Goues. An Inves-
tigation into the Use of Mutation Analysis for Automated Program Repair. In
International Symposium on Search Based Software Engineering, pages 99–114,
Paderborn, August 2017. York.

[78] Shangwen Wang, Ming Wen, Xiaoguang Mao, and Deheng Yang. Attention
please: Consider mockito when evaluating newly proposed automated program
repair techniques. In Proceedings of the Evaluation and Assessment on Software
Engineering, pages 260–266. 2019.

[79] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. Automated fixing of programs with contracts. In Proceedings
of the 19th international symposium on Software testing and analysis, pages 61–
72, 2010.

135

https://github.com/SerVal-DTF/TBar/tree/master/Results
https://github.com/SerVal-DTF/TBar/tree/master/Results

[80] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen.
Automatic program repair with evolutionary computation. Communications of
the ACM, 53(5):109–116, 2010.

[81] Westley Weimer, Zachary P Fry, and Stephanie Forrest. Leveraging program
equivalence for adaptive program repair: Models and first results. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 356–366. IEEE, 2013.

[82] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering, pages 364–374. IEEE, 2009.

[83] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
Context-aware patch generation for better automated program repair. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pages 1–11. IEEE, 2018.

[84] W Eric Wong, Vidroha Debroy, and Byoungju Choi. A family of code coverage-
based heuristics for effective fault localization. Journal of Systems and Software,
83(2):188–208, 2010.

[85] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The dstar method
for effective software fault localization. IEEE Transactions on Reliability,
63(1):290–308, 2014.

[86] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey
on software fault localization. IEEE Trans. Software Eng., 42(8):707–740, 2016.

[87] W. Eric Wong and Yu Qi. Bp neural network-based effective fault localiza-
tion. International Journal of Software Engineering and Knowledge Engineer-
ing, 19(4):573–597, 2009.

[88] Qi Xin and Steven P. Reiss. Leveraging syntax-related code for automated pro-
gram repair. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30
- November 03, 2017, pages 660–670, 2017.

[89] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,
and Lu Zhang. Precise condition synthesis for program repair. In Proceedings
of the 39th International Conference on Software Engineering (ICSE). ACM,
August 2017.

[90] Tongtong Xu, Liushan Chen, Yu Pei, Tian Zhang, Minxue Pan, and Carlo Al-
berto Furia. Restore: Retrospective fault localization enhancing automated
program repair. IEEE Transactions on Software Engineering, 2020.

136

[91] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monper-
rus. Nopol: Automatic repair of conditional statement bugs in java programs.
IEEE Transactions on Software Engineering, 43(1):34–55, 2016.

[92] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. A compre-
hensive study of automatic program repair on the quixbugs benchmark. In 2019
IEEE 1st International Workshop on Intelligent Bug Fixing (IBF), pages 1–10.
IEEE, 2019.

[93] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[94] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. Boosting
spectrum-based fault localization using pagerank. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 261–272, New York, NY, USA, 2017.

[95] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through auto-
mated predicate switching. In Proceedings of the 28th International Conference
on Software Engineering (ICSE), pages 272–281. ACM, 2006.

137

	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Results
	1.2 Terminology
	1.3 Structure

	2 Related Work
	2.1 Automated Program Repair
	2.1.1 Search-Based Automated Program Repair
	2.1.2 Synthesis-Based Automated Program Repair

	2.2 Fault Localization

	3 Contract Based Program Repair without the Contracts - Jaid
	3.1 An Example of Jaid in Action
	3.2 How Jaid Works
	3.2.1 Overview
	3.2.2 Program State Abstraction
	3.2.3 Fault Localization
	3.2.4 Fix Generation: Fix Actions
	3.2.5 Fix Generation: Candidate Fixes
	3.2.6 Fix Validation
	3.2.7 Fix Ranking

	3.3 Experimental Evaluation
	3.3.1 Experimental Design
	3.3.2 Experimental Results

	3.4 Summary

	4 Enhancing Program Repair with Retrospective Fault Localization- Restore
	4.1 An Example of Restore in Action
	4.2 How Restore Works
	4.2.1 Overview
	4.2.2 Retrospective Fault Localization
	4.2.3 Initial fix generation
	4.2.4 Partial fix validation
	4.2.5 Mutation-based fault localization
	4.2.6 Retrospective loop iteration
	4.2.7 Final fix generation
	4.2.8 (Full) fix validation

	4.3 Experimental Evaluation
	4.3.1 Experimental Design
	4.3.2 Experimental Results

	4.4 Summary

	5 Directing Patch Search with Repeated Learning - Pride
	5.1 An Example of Pride in Action
	5.2 How Pride Works
	5.2.1 Overview
	5.2.2 Fault Localization
	5.2.3 Fix Generation
	5.2.4 Static and Dynamic Fix Analysis
	5.2.5 Fix Ranking
	5.2.6 Implementation

	5.3 Experimental Evaluation
	5.3.1 Experimental Design
	5.3.2 Experimental Results

	5.4 Summary

	6 Conclusion and Future Work
	6.1 Main Contributions
	6.2 Future Work

	Bibliography

