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ABSTRACT 

Autonomous driving is well believed to be the potential solution for reducing excessive 

accidents and alleviating severe traffic congestions. Localization is the key and 

fundamental part of the robust operation of autonomous vehicles. Moreover, 

centimeter-level globally referenced positioning is required. Global Navigation 

Satellite System (GNSS) is currently an indispensable source that can provide absolute 

positioning information. Satisfactory performance (5~10 meters) can be obtained in 

open space if a decent sky view is available. However, its performance can be suffered 

due to the blockage and reflection from environment features in the super-urbanized 

area, causing the well-known multipath effects and non-line-of-sight (NLOS) 

receptions. In this dissertation, we present several 3D light detection and ranging 

(LiDAR) aided GNSS positioning methods which aims to solve the problems caused 

by GNSS NLOS receptions. Different from the conventional 3D mapping aided GNSS 

(3DMA GNSS), we proposed to leverage the onboard sensing based on 3D LiDAR to 

detect the polluted GNSS NLOS signals. Then the detected NLOS signals are excluded, 

remodeled or even corrected before its application in GNSS positioning or integration 

with other sensors. First, we present a novel GNSS NLOS exclusion method caused by 

dynamic objects using LiDAR perception. The surrounding dynamic objects are 

detected based on 3D point clouds. Then the NLOS signals caused by the blockage 

from dynamic objects are identified based on the detected dynamic objects. The 

proposed method relaxes the drawback of the 3DMA GNSS which can not help to 

detect the NLOS caused by dynamic objects. Second, instead of excluding all the 

detected GNSS NLOS signals, we introduced a novel NLOS correction method with 

the aid of 3D LiDAR and building height information. The proposed method moves 

forward a step and solves the problem of the distortion of satellite geometry distribution 

caused by excessive NLOS exclusion. Thirdly, a more general solution to make use of 

the detected GNSS NLOS is proposed by remodeling the detected GNSS NLOS. In 

addition, the integration of GNSS positioning with NLOS modeling with the LIDAR 

odometry is presented. Fourth, a sliding window map (SWM) is proposed to remodel 

or correct the GNSS NLOS signals. The proposed method alleviates the dependence of 

building height information. In addition, the field of view (FOV) of 3D LiDAR point 

clouds is significantly enhanced with the help of the SWM. Moreover, a general GNSS 
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signal validation and calibration pipeline are employed to ensure the feasibility of 

GNSS measurements before its integration with inertial navigation system using state-

of-the-art factor graph optimization (FGO). All of the four proposed methods are 

validated using real data collected in urban canyons of Hong Kong. The improved 

accuracy shows the effectiveness of the proposed method in GNSS positioning in urban 

canyons. 
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1. INTRODUCTION 

 Background 

At present, autonomous driving poses great attention due to its potential 

application to improve the quality of intelligent transportation systems (ITS). 

Localization for autonomous driving has been extensively studied since the Defence 

Advanced Research Projects Agency (DARPA) urban challenge [1] in 2007. 

Localization is a significant part of the operation of the safety-critical autonomous 

driving [1, 2]. In general, globally referenced centimeter-level positioning is required 

for the robust operation of autonomous vehicles.   

Global navigation satellite system (GNSS) is, in fact, currently an indispensable 

source that can provide absolute positioning relative to the earth. The low-cost GNSS 

receiver with single point positioning (SPP) can obtain absolute positioning with an 

accuracy of 3~5 meters in open space [3]. GNSS solution possesses increased 

popularity because of the availability of multi-constellation global satellite navigation 

systems (GPS, Beidou, GLONASS, Galileo, and QZSS). GNSS positioning can obtain 

decent performance if the GNSS receiver receives enough direct signals transmitted 

from satellites, so-called line-of-sight (LOS) [4]. However, the GNSS signal 

propagation can be reflected, diffracted or blocked by skyscrapers and moving objects 

[5] in urbanized areas, such as Hong Kong, which can cause additional signal 

transmission delay. Thus, it introduces pseudorange errors due to both multipath effects 

and none-light-of-sight (NLOS) receptions [4] (see Figure 1-1), which can present a 

positioning error of even more than 50 meters in deep urban canyons [3, 6]. Figure 1-2 

shows an example performance test of GNSS SPP using a commercial level GNSS 

receiver. According to a recent review paper [7], the NLOS is one of the major problems 

preventing the application of GNSS in urban canyon. Utilizing 3D building models to 

detect the NLOS is straightforward. NLOS satellites can be detected with the aid of 3D 

models of buildings, and can then be excluded from use in GNSS positioning [8, 9]. 

However, NLOS exclusion will distort the geometric distribution of the satellites, 

degrading accuracy [10], and even resulting in too few satellites for further GNSS 

calculation [10]. Moreover, these methods require the availability of 3D building 

models of the environment, and the performance of NLOS detection relies on the 

accuracy of an initial guess of the GNSS receiver’s position. In addition, NLOS 
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reception caused by dynamic objects cannot be detected as well. A well-known method, 

GNSS shadow matching, was developed to match measured satellite visibility with the 

predicted satellite visibility of hypothesized positions [11-13]. However, the 

performance of shadow matching is dependent upon the quality of satellite visibility 

classification and the initial guess as to the position of the GNSS receiver. A likelihood-

based 3DMA GNSS method, which modeled the measurement uncertainty, and used 

this value to mitigate NLOS effects, has been proposed to provide accurate positioning 

in the along-street direction [14]. Due to the complementarity of the shadow matching 

and likelihood-based 3DMA GNSS, approaches to the integration of these approaches 

have recently been studied [15]. Another range-based 3DMA GNSS method is to 

correct the NLOS affected measurements for GNSS positioning [16-19]. These 

methods were proposed to simulate signal transmission routes, using a ray-tracing 

method. However, these ray-tracing-based 3DMA GNSS methods have the drawbacks 

of requiring stringency in 1) the accuracy of 3D mapping databases; 2) the initial guess 

of receiver positions, and 3) the computational power of the processors due to the ray-

tracing process. Recently, a skymask-based NLOS correction method has been 

proposed [20], which effectively reduces the computational load incurred by ray-

tracing-based methods [16-19]. However, these 3D mapping-aided GNSS methods 

have the drawbacks of 1) reliance on the availability of 3D building models; 2) inability 

to mitigate NLOS receptions caused by surrounding dynamic objects.  
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Figure 1-1 Illustration of the GNSS NLOS signals in urban canyon. The red dash line 

denotes the expected signal transmission route for LOS without any blockage or 

reflection. The blue curve denotes the reflected signal transmission route for NLOS. 

 

Figure 1-2 Illustration of the GNSS SPP positioning performance in an urban canyon. 

The 2D mean error can reach 50 meters using a commercial level GNSS receiver. 

 Research Objectives and Thesis Contribution 

The objective of this project is to solve the problem of GNSS NLOS receptions in 

urban canyons. As mentioned in Section 1.1, the popular 3DMA GNSS method has two 

drawbacks of reliance on the availability of the 3D building model and the inability of 

detecting the NLOS caused by dynamic objects. The detection of GNSS NLOS signals 

relies on the environment description. Inspired by the fast development of perception 

capability, which can help to obtain the environmental description in a real-time manner, 

we proposed to make use of the onboard sensing to help the GNSS positioning in urban 

canyon. Different from the conventional 3D mapping aided GNSS (3DMA GNSS), we 

proposed to leverage the environment description derived from 3D LiDAR to detect the 

polluted GNSS NLOS signals. Then the detected NLOS signals are excluded, 

remodeled or even corrected before its application in GNSS positioning or integration 

with other sensors. The contributions of this thesis are as follows: 
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1) We firstly proposed to make use of the 3D point clouds-based object detection to 

detect the GNSS NLOS. Then the detected NLOS receptions are excluded from 

further GNSS positioning. This is currently the first work which proposes to 

mitigates the effects of NLOS caused by dynamic objects. 

2) A GNSS NLOS detection and correction method aided by 3D LiDAR and building 

heights information is proposed. Instead of directly excluding all the detected 

GNSS NLOS receptions, a novel GNSS pseudorange correction model is employed 

to estimate the transmission delay. Therefore, we relaxed the limitation of the 

previous work where the NLOS receptions are excluded and lead to poor satellite 

geometry. The proposed method does not rely on the 3D building information.  

3) We explore the potential of the proposed method in GNSS/LiDAR integration. The 

GNSS NLOS receptions are detected and remodeled before its integration with 

LiDAR odometry. Significantly improved performance is obtained compared with 

the conventional GNSS/LiDAR integration. 

4) A sliding window map (SWM) is proposed to remodel or correct the GNSS NLOS 

signals. The proposed method alleviates the dependence of building height 

information. In addition, the field of view (FOV) of 3D LiDAR point clouds is 

significantly enhanced with the help of the SWM. Moreover, a general GNSS 

signal validation and calibration pipeline are employed to ensure the feasibility of 

GNSS measurements before its integration with inertial navigation system using 

state-of-the-art factor graph optimization (FGO). 
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2. OBJECT DETECTION AIDED GNSS NLOS EXCLUSION  

 Introduction 

To achieve fully autonomous driving in highly urbanized areas, absolute lane-level 

positioning is required. Light detection and ranging (LiDAR), cameras and inertial 

navigation systems (INS) are usually integrated with GNSS positioning [21-23]. 

However, the three positioning sources can only conduct relative positioning. The 

GNSS/INS/LiDAR/ high definition map-based [21] positioning is the potential solution 

to provide robust and constant localization information for autonomous driving. In this 

solution, the searching for the initial position in the existing high definition map is 

essential. GNSS is currently the key source providing the initial absolute positioning 

information. GNSS solution possesses increased popularity because of the availability 

of multi-constellation global navigation satellite systems (GPS, BeiDou, GLONASS, 

Galileo, and QZSS). GNSS positioning can obtain decent performance if the GNSS 

receiver receives enough direct signals transmitted from satellites, so-called line-of-

sight (LOS) [24]. However, the GNSS propagation may be reflected, diffracted or 

blocked by skyscrapers and moving objects in highly urbanized areas, such as Hong 

Kong, which can cause additional signal transmission delay. Thus, it introduces 

pseudorange errors as both multipath effects and non-light-of-sight (NLOS) receptions 

can cause a positioning error of more than 100 meters in deep urban canyons [3, 6]. 

According to a recent paper survey, NLOS is the main challenge for GNSS urban 

localization [7]. In nature, buildings reflect and block the GNSS signal causing NLOS. 

Thus, the use of a 3D building model to aid GNSS positioning is straightforward [25]. 

Based on the 3D building model, the NLOS measurement can be excluded from GNSS 

positioning if the prior knowledge of the user position is available [8, 9, 18]. However, 

excluding all the NLOS measurements will result in a distortion of satellite distribution. 

This large dilution of precision (DOP) will enlarge the GNSS positioning error in a 

lateral direction which is not welcomed for the application of intelligent transportation 

systems [26, 27]. One of the most famous methods is called GNSS shadow matching, 

which is to compare the measured satellite visibilities with that of a group of 

hypothesized positions [12, 28, 29]. This method greatly improves the positioning 

performance in the lateral direction by using the NMEA level of the GNSS message 

[13]. To further improve the positioning accuracy, a ray-tracing simulation is conducted 
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to track the signal transmission paths (both direct and reflect) within the 3D building 

models [17]. By this ray-tracing simulation, the NLOS is not only detected but also 

corrected [30, 31]. GNSS shadow matching and the range-based 3D maps aided 

positioning method are combined to optimize the GNSS positioning result in urban 

canyons [32]. Recently, the researches to waive the 3D building model with different 

levels of prior information of the city is studied [33, 34].  

The 3D laser scanner is also used to construct the point cloud-based 3D geographic 

information of buildings, so-called 3D point cloud map. The 3D point cloud map is 

employed to detect the visibilities of satellites [35]. To better model the reliability of 

GNSS positioning, horizontal dilution of precision (HDOP) is calculated using the 

remaining satellites and signal noise ratio (SNR) is reconsidered to estimate the noise 

covariance of GNSS positioning. Deep coupling of GNSS and LiDAR is also 

researched [36, 37]. Another method to detect the NLOS receptions is the tight coupling 

of the GNSS receiver and omnidirectional camera [38, 39]. Skyline of buildings in the 

urbanized area can be detected to identify the NLOS satellites. However, this method 

cannot get satisfactory improvement in conditions with strong light, as the computer 

vision-based skyline detection is sensitive to light conditions. 

Generally, these 3DMA GNSS can only mitigate multipath effects and NLOS 

receptions caused by buildings modeled in the 3D city maps. However, moving objects 

with a tall height, such as the double-decker bus [40] whose height can reach 4.5 meters, 

can also cause NLOS receptions. In particular, highly urbanized cities such as New 

York, London and Hong Kong possessing numerous double-decker buses in the streets, 

which can introduce considerable errors into the GNSS pseudorange measurements. 

This GNSS positioning error caused by moving objects cannot be mitigated by the 

novel 3DMA GNSS. To obtain better GNSS positioning performance for autonomous 

driving, this is a significant issue that needs to be considered. 

In this section, we propose to exclude the NLOS receptions caused by moving 

objects in heavy traffic urban scenarios using real-time 3D point cloud generated by 

LiDAR. The multiple-channel LiDAR is widely used in autonomous driving vehicles 

[41, 42] and is employed to provide distance information of surrounding environments. 

This paper innovatively takes advantage of LiDAR-based perception to assist the 

performance of GNSS positioning. In general, object detection is consisted of two parts, 

clustering (segmentation) [43-45] and classification [46, 47]. In this Section, the 

Euclidean clustering algorithm is employed to do clustering. The parameters-based 
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method is presented for the double-decker bus classification. In this case, the dimension 

and position of the dynamic object relative to the GNSS receiver are calculated by 

object detection. Based on the boundaries of the detected object, NLOS exclusion can 

be implemented with our proposed exclusion algorithm. Moreover, the initial position 

of the GNSS receiver, which is significant for 3DMA GNSS, is also not required in our 

proposed NLOS exclusion algorithm. Finally, GNSS positioning result is calculated 

based on the surviving satellites. To the best of authors’ knowledge, this paper is the 

first attempt to employ the object detection algorithm to depict the dynamic objects in 

GNSS Skyplot with the aid of 3D LiDAR equipped on the vehicle. In other words, this 

paper proposes an idea to employ LiDAR perception to aid GNSS absolute positioning.  

The remainder of this Section 2 is structured as follows. An overview of the 

proposed method is given in Section 2.2. Section 2.3 discusses the double-decker bus 

detection method using the Euclidean clustering algorithm and parameter-based 

classification method. The coordinate transformation from LiDAR coordinate system 

to the GNSS Skyplot coordinate system is also presented in Section 2.3. In Section 2.4, 

the NLOS exclusion criterion is proposed and satellite exclusion is implemented. Then, 

GNSS WLS positioning is introduced. In Section 2.5, we evaluate the effectiveness of 

the proposed method utilizing both static and dynamic experiments. Finally, 

conclusions are presented. 

 Overview of the Proposed Method 

In this study, we focus on the NLOS reception caused by the double-decker bus, a 

representative moving object in Hong Kong. Figure 2-1 presents direct propagation 

routes and potential NLOS reception of the GNSS signal. The double-decker bus 

(height is 4.5 meters) can block signals transmitted from the satellite. Meanwhile, this 

GNSS signal can be reflected by nearby buildings and finally received by GNSS 

receiver equipped on top of the autonomous vehicle resulting in NLOS reception. This 

magnitude of pseudorange error of this NLOS is subjected to the distance from the 

GNSS receiver to the reflector and the elevation angle of the satellite [3].  

As an essential sensor for positioning and perception of autonomous driving, 3D 

LiDAR is installed on the top as shown in Figure 2-1. In this study, LiDAR is employed 

to detect the surrounding double-decker buses. Then, NLOS exclusion is implemented 

based on detected double-decker boundary parameters which are projected into a 
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Skyplot, which described the distribution of satellites in terms of elevation and azimuth 

angles [48]. Finally, GNSS WLS positioning is conducted using the remaining satellites. 

Figure 2-2 shows the flowchart of the proposed algorithm: improved GNSS positioning 

by NLOS exclusion based on object detection of LiDAR point cloud. The inputs of the 

chart include two parts, raw measurements and satellite information from GNSS and 

3D point cloud by LiDAR. Moreover, the yaw angle from INS is also an input for 

coordinate transformation. The output is the GNSS positioning result. The proposed 

method can be executed as follows: 

 

Figure 2-1 Illustration of NLOS receptions caused by a double-decker bus. The double-

decker bus causes the GNSS signal blockage. Surrounding objects such as the buildings 

are the possible reflectors subsequently. 

Step I: Euclidean clustering is employed to transfer real-time 3D point clouds into 

several clusters, so-called point cloud segmentation. The parameters-based 

classification method is utilized to classify the clusters and identify the double-decker 

bus from multi-clusters. 

Step II: Satellites and the double-decker bus are projected into a Skyplot based on their 

azimuth and elevation angles relative to the GNSS receiver.  

Step III: Considering satellite elevation, azimuth angles, SNR and double-decker bus 

boundary information (elevation and azimuth angles in Skyplot), satellites that blocked 

by double-decker bus are excluded. 

Step IV: Implementing GNSS WLS positioning using the surviving satellites after the 

NLOS exclusion by Step III.  
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The details of the algorithms are introduced in the following sections. 

 

Figure 2-2 Overview of the proposed algorithm of NLOS exclusion and GNSS 

positioning flowchart. Inputs are the 3D point cloud from 3D LiDAR, yaw angle from 

INS and raw measurements from GNSS receiver. The output is the GNSS positioning 

result based on the remaining satellites after NLOS exclusion. 

 Double-decker Bus Detection and Transformation 

Due to the limited field of view (FOV), for example, +10° to -30° vertical FOV 

used this paper, the LiDAR can only scan part of the double-decker bus body as shown 

in Fig. 1. In this section, Euclidean clustering [49] and parameters-based classification 

methods [46] are employed to detect the double-decker bus. Moreover, the height of 

the detected double-decker bus is extended to the true height subsequently. 

2.3.1 Clustering for Double-decker Bus Detection 

From the view of LiDAR, the surrounding environment is represented as 

numerous points at a given time t and the points are considered as a point set 𝑃𝑡 ==

{𝑝1, 𝑝2, … , 𝑝𝑖, … , 𝑝𝑛, 𝑡} where the 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) represents a single point at a given 

time t in the LiDAR coordinate system. To give the points set 𝑃𝑡 a physical meaning, 

Euclidean clustering is implemented to divide the point set into several organized sets. 

The process of the Euclidean clustering algorithm is summarized in Algorithm 2-1.  

The output of Algorithm 1 is organized points sets 𝐶𝑡
𝑐𝑙𝑡 = {𝐶1, 𝐶2, … , 𝐶𝑖, … 𝐶𝑛, 𝑡}. 

To better portrait the clusters, each cluster is represented by a descriptor, the bounding 

box [50]. Based on the principle of the bounding box, each 𝐶𝑖  in 𝐶𝑡
𝑐𝑙𝑡  can be 

3D

LiDAR
Euclidean Clustering

Projection of Bus 

Boundary to Skyplot

Yaw

NLOS Exclusion

GNSS positioning INS

Parameter-based 

Classification

GNSS

Receiver

𝑃𝑡  𝑖

    
  

  𝑡
 𝑙𝑙     

    

 𝑡
 𝑙𝑙   𝑡
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transformed to  𝑖  in  𝑡
𝑐𝑙𝑡 = { 1,  2, … ,  𝑖, … 𝑛, 𝑡}and is specifically determined by 

vector  𝑖 as follows: 

 𝑖 = [𝑥𝑖
𝑐, 𝑦𝑖

𝑐, 𝑧𝑖
𝑐, 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐, 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
 𝑙]    (−) 

where 𝑥𝑖
𝑐 , 𝑦𝑖

𝑐and 𝑧𝑖
𝑐 denote the position of the bounding box in x, y, and z directions 

respectively in the LiDAR coordinate system. 𝑟𝑜𝑙𝑙𝑖
𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖

𝑐  and  𝑦𝑎𝑤𝑖
𝑐  denote the 

orientation of the bounding box. 𝑑𝑖
𝑙𝑒𝑛 is the length, 𝑑𝑖

𝑤𝑖  is the width and 𝑑𝑖
 𝑙  is the 

altitude of the bounding box. The bounding box list  𝑡
𝑐𝑙𝑡 contains both double-decker 

buses and other objects. 

Algorithm 2-1: Euclidean clustering for points set 𝑃𝑡 

Input: points set 𝑃𝑡 = {𝑝1, 𝑝2, … , 𝑝𝑛, 𝑡}, search radius 𝑟 𝑒  𝑐ℎ 

Output: organized points sets 𝐶𝑡
𝑐𝑙𝑡 = {𝐶1, 𝐶2, … , 𝐶𝑖, … 𝐶𝑛, 𝑡} 

1  create a Kd-tree representation for the input points set 𝑃𝑡 

2  set up an empty clusters list 𝐶𝑡
𝑐𝑙𝑡 and an empty list to save organized point 

sets 

3  for all points 𝑝𝑖 in 𝑃𝑡 do 

4    add 𝑝𝑖 to the points set 𝑃𝑡
𝑐ℎ𝑒𝑐  

5    for all 𝑝𝑖 in 𝑃𝑡
𝑐ℎ𝑒𝑐  do  

6      search for the points set 𝑁𝑖 of point neighbor of 𝑝𝑖 in a  

sphere with radius r<𝑟 𝑒  𝑐ℎ 

7       for every point 𝑁𝑖
𝑖 in points set 𝑁𝑖 do 

8         if 𝑁𝑖
𝑖 have not been processed  

9           add 𝑁𝑖
𝑖 to points sets 𝑃𝑡

𝑐ℎ𝑒𝑐  

10       end if 

11     end for the points set 𝑁𝑖 

12   if all the points in 𝑃𝑡
𝑐ℎ𝑒𝑐  have been processed 

13     add 𝑃𝑡
𝑐ℎ𝑒𝑐  to 𝐶𝑡

𝑐𝑙𝑡 

14     reset  𝑃𝑡
𝑐ℎ𝑒𝑐  to empty 

15   end if 

16  end for 𝑃𝑡
𝑐ℎ𝑒𝑐  

17 end for 𝑃𝑡 
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2.3.2 Parameter-based Double-decker Bus Detection 

To determine the double-decker bus clusters in the bounding box list  𝑡
𝑐𝑙𝑡, the 

parameter-based classification method is detailed in Algorithm 2-2. The output of 

Algorithm 2-2 is the bounding box set indicating the double-decker bus. If one cluster 

from 𝐶𝑡
𝑐𝑙𝑡  is identified as a double-decker bus, the height for the corresponding 

bounding box will be extended to the real height 𝑑   
 𝑙 . Dimensions of the bounding box 

and geometry distribution corresponding to the cluster are all considered for 

classification. Cubic structure imposes the points in the cluster corresponding to the 

double-decker bus with specific geometry distribution. Thus, the standard deviation 

𝜎 ,𝑖
𝑐𝑙  𝑡𝑒  of all the points is employed as a classification feature which is calculated as 

follows: 

𝜎 ,𝑖
𝑐𝑙  𝑡𝑒 = √

∑ ( 𝑖− ̅)
2𝑛

𝑖=1

𝑛−1
                           (−) 

𝑝̅ =
∑  𝑖
𝑛
𝑖=1

𝑛
                                     (−) 

where n denotes the total number of points in one cluster. 𝑝̅ represents the geometry 

center of the cluster. (𝑝𝑖 − 𝑝̅)2 means the Euclidean distance between 𝑝𝑖 and 𝑝̅. The 

inputs of Algorithm 2-2 include bounding Box sets  𝑡
𝑐𝑙𝑡, organized point clusters 𝐶𝑡

𝑐𝑙𝑡, 

number of points threshold 𝑛𝑢𝑚𝑡ℎ 𝑒 , etc. The function Num is used to calculate the 

number of points in a cluster. 𝑙𝑒𝑛𝑚𝑖𝑛 , and 𝑙𝑒𝑛𝑚 𝑥 are used to identify the bounding 

box indicating the double-decker bus by the length of the bounding box. The functions 

of thresholds for length and height are the same as that of the length. As the ranging 

distance for LiDAR can go up to about 100 meters, thus both width and length can be 

fully scanned when LiDAR is approaching the double-decker bus.  

 

Algorithm 2-2: Double-decker bus classification 

Input: Bounding Box sets  𝑡
𝑐𝑙𝑡 = { 1,  2, … ,  𝑖, … 𝑛, 𝑡}, Organized point 

clusters 𝐶𝑡
𝑐𝑙𝑡 = {𝐶1, 𝐶2, … , 𝐶𝑖, … 𝐶𝑛, 𝑡} , point number threshold 𝑛𝑢𝑚𝑡ℎ 𝑒 , 

true height 𝑑   
 𝑙 of the double-decker bus, length threshold 𝑙𝑒𝑛𝑚𝑖𝑛, 𝑙𝑒𝑛𝑚 𝑥, 

width threshold 𝑤𝑖𝑑𝑚𝑖𝑛, 𝑤𝑖𝑑𝑚 𝑥 , height threshold 𝑎𝑙𝑚𝑖𝑛, 𝑎𝑙𝑚 𝑥  and 

standard deviation threshold 𝑃 𝑚𝑖𝑛, 𝑃 𝑚 𝑥. 

Output: Bounding Box set represent double-decker bus  𝑡
𝑐𝑙𝑡_   =

{ 1
   ,  2

   , … ,  𝑖
   , … 𝑛

   , 𝑡} 

1  set up an empty clusters list  𝑡
𝑐𝑙𝑡_    to save bounding box 
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2  for all bounding box  𝑖 in  𝑡
𝑐𝑙𝑡 do 

3    if Num(𝐶𝑖) > 𝑛𝑢𝑚𝑡ℎ 𝑒  

4       𝑖 ← [𝑥𝑖
𝑐, 𝑦𝑖

𝑐, 𝑧𝑖
𝑐, 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐, 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
 𝑙]  

5      if 𝑑𝑖
𝑙𝑒𝑛 > 𝑙𝑒𝑛𝑚𝑖𝑛  𝐚𝐧𝐝 𝑑𝑖

𝑙𝑒𝑛 < 𝑙𝑒𝑛𝑚 𝑥 

6        if 𝑑𝑖
𝑤𝑖 > 𝑤𝑖𝑑𝑚𝑖𝑛  𝐚𝐧𝐝 𝑑𝑖

𝑤𝑖 < 𝑤𝑖𝑑𝑚 𝑥 

7          if 𝑑𝑖
 𝑙 > 𝑎𝑙𝑚𝑖𝑛  𝐚𝐧𝐝 𝑑𝑖

 𝑙 < 𝑎𝑙𝑚 𝑥 

8            𝑑𝑖
 𝑙 ← 𝑑   

 𝑙  

9             𝑖
   ←  𝑖 

10         end if 

11       end if 

12     end if 

13   end if 

14 end for  𝑡
𝑐𝑙𝑡 

 

2.3.3 Representation of Double-decker Bus Detection 

As illustrated previously, only part of the double-decker bus can be scanned by 

LiDAR which is represented by rectangle ABCD in Figure 2-3. Meanwhile, as the bus 

surface is partially composed of the glass window, some parts of the bus are vacant from 

the view of LiDAR which can be seen in Figure 2-3. 

Dimension parameters of the bounding box representing the double-decker bus can 

be extended to the real one. The extended box is represented by rectangle AEFB in Figure 

2-3. Then, the boundary parameters for the double-decker bus as shown in Figure 2-2 are 

denoted by the line segment 𝐸𝐹̅̅ ̅̅  denoted as     
  , the matrix of the bus boundary. To 

represent the bus, two points, E and F, are required. The     
   is structured as follows: 

    
  = [

𝑥  𝐸 𝑦  𝐸 𝑧  𝐸
𝑥  𝐹 𝑦  𝐹 𝑧  𝐹

]                                (−) 



13 

 

 

Figure 2-3 Illustration of double-decker bus detection using the Euclidean cluster 

algorithm and parameters-based classification. Blue box ABCD represents the initially 

detected double-decker bus. Blue box ABFE represents the extended detected double-

decker bus. 

 

Figure 2-4 Skyplot of GNSS satellites and detected double-decker bus boundary. Green 

circles and their associated numbers indicate satellites’ PRNs. Line segment 𝐸𝐹̅̅ ̅̅  

indicates the boundary. 

Thus, the double-decker bus boundary is detected. 
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2.3.4 Coordinate Transformation 

To implement the algorithm of NLOS exclusion, satellites’ visibility needs to be 

determined based on the boundary of the double-decker bus. Thus, the relative position 

of the GNSS receiver to satellites and the double-decker bus need to be transformed 

into the same representation, the Skyplot. In each epoch, satellite information, including 

azimuth, elevation angles, and SNR, can be acquired from the GNSS receiver. Satellites 

information can be represented as   𝑡
 𝑙𝑙 = {  1,   2, … ,   𝑖, …   𝑛}.   𝑖 represents the 

information for satellite 𝑖 and   𝑖 = {𝑎𝑧𝑖𝑚𝑖, 𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖}.  

Satellite position can be easily indicated in the Skyplot representation that is 2-

dimension coordinate based on corresponding elevation and azimuth angles. Proper 

transformation matrix should be employed for double-decker bus boundary 

transformation from 3 dimensions coordinate to 2 dimensions coordinate. The 

transformation is conducted as the following formula. 

    
    

=     
  𝐺𝑇                                       (−) 

where     
   denotes the matrix of bus boundary presented in the previous sub-section. 

𝐺𝑇 is a 3x2 transform matrix indicating the yaw angle bias between the heading of 

LiDAR and north of earth, which can be obtained from the INS. The   𝑜 
    

 denotes the 

boundary matrix (2x2) in Skyplot structured as follows: 

    
    

= [
𝑥   𝐸 𝑦   𝐸
𝑥   𝐹 𝑦   𝐹

]                                  (−) 

After the transformation, satellites and the double-decker bus can be presented in 

the same coordinate system, the Skyplot, as shown in Figure 2-4. Line segment 𝐸𝐹̅̅ ̅̅  

represents the double-decker bus boundary corresponding to the line segment 𝐸𝐹̅̅ ̅̅  as 

shown in Figure 2-3. Then, the azimuth and the elevation angles for points E, and F can 

be calculated in the Skyplot respectively. 

 Improved GNSS Positioning by NLOS Exclusion 

In this section, the NLOS exclusion criterion is proposed based on the detected 

double-decker bus boundary, satellite elevation, azimuth angles, and SNR. Then, GNSS 

positioning is conducted by the WLS method.  
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2.4.1 NLOS Exclusion Based on Double-decker Bus Boundary 

To exclude the satellites blocked by the double-decker bus, the relative position 

between each satellite and the detected bus boundary needs to be calculated. As shown 

in Figure 2-4, line segment 𝐸𝐹̅̅ ̅̅  represents the boundary of a double-decker bus. Satellite 

26 (PRN 26) is located at point S. The azimuth and elevation angles are 8° and 54°, 

respectively. The satellite exclusion procedure is summarized in detail as shown in 

Algorithm 2-3. Inputs of Algorithm 2-3 are the satellite information    𝑡
 𝑙𝑙 , bus 

boundary matrix     
    

, the threshold of triangle area  𝑡ℎ 𝑒 ℎ𝑜𝑙 , the threshold of SNR 

 𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙  and threshold of boundary uncertainty 𝜃𝑡ℎ𝑟𝑒𝑠. Outputs of Algorithm 2-3 are 

the survived satellites after NLOS exclusion. Firstly, the angle 𝜃1  and  𝜃2  shown in 

Figure 2-4 are estimated. Then areas of the triangle  ∆𝑆𝐸𝑂,  ∆𝑆𝐹𝑂,  ∆𝑆𝐸𝐹 and  ∆𝐸𝑂𝐹 are 

calculated and ∆S can be estimated subsequently. The ∆S is positive, it means that the 

satellite is outside the triangle ∆𝐸𝑂𝐹 and vice versa. The (𝜃1 + 𝜃2) < 180 is employed 

to check if the satellite and the bus are on the same side with respect to the ego-vehicle. 

If the satellite is outside the triangle ∆𝐸𝑂𝐹 , it means that the satellite is possibly 

blocked by the double-decker bus and vice versa. 

Secondly, GNSS measurement that SNR is larger than  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙  will not be 

excluded. To avoid the faulty exclusion, a heuristically determined threshold  𝑡ℎ 𝑒 ℎ𝑜𝑙  

is set. Satellites whose positions are quite near the extended edge beam (𝜃1 < 𝜃𝑡ℎ 𝑒  or 𝜃2 <

𝜃𝑡ℎ 𝑒 ) also should not be excluded, such as the satellite 100 in Figure 2-4. Satellites 

whose positions are quite near the double-decker bus boundary should not be excluded 

which can be judged by ∆S, such as the satellites 31 and 96 in Figure 2-4.  

Algorithm 2-3: NLOS exclusion based on bus detection 

Input: Satellites information set   𝑡
 𝑙𝑙 = {  1,   2, … ,   𝑖, …   𝑛} , bus 

boundary matrix     
    

, area threshold  𝑡ℎ 𝑒 ℎ𝑜𝑙 , SNR threshold  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 , 

the threshold of boundary uncertainty 𝜃𝑡ℎ 𝑒  

Output: surviving satellites set after NLOS exclusion:   𝑡
    =

{  1,   2, … ,   𝑖, …   𝑚} 

1  for all satellites   𝑖 in   𝑡
 𝑙𝑙do 

2    estimate 𝜃1, 𝜃2 as shown in Fig. 4 

3    Get triangle area  ∆𝑆𝐸𝑂 of triangle SEO from     
    

 

4    Get triangle area  ∆𝑆𝐹𝑂 of triangle SFO from     
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5    Get triangle area  ∆𝑆𝐸𝐹 of triangle SEF from     
    

 

6    Get triangle area  ∆𝐸𝑂𝐹 of triangle EOF from     
    

 

7    ∆S =  ∆𝑆𝐸𝑂 +  ∆𝑆𝐹𝑂+ ∆𝑆𝐸𝐹 −  ∆𝐸𝑂𝐹 

8 if ( 𝑁𝑅𝑖 >  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 )𝑜𝑟 (𝜃1 < 𝜃𝑡ℎ 𝑒 ) 𝑜𝑟 (𝜃2 < 𝜃𝑡ℎ 𝑒 ) 

9        add   𝑖 to satellites set   𝑡
      and break 

10   if ∆S >  𝑡ℎ 𝑒 ℎ𝑜𝑙  and ((𝜃1 + 𝜃2) < 180°) 

11     break 

12   else 

13     add   𝑖 to satellites set   𝑡
     

14   end if 

15 end for satellites set   𝑡
 𝑙𝑙 

Finally, all the satellites in   𝑡
 𝑙𝑙 are indexed and the satellites that should not be 

excluded will be added to   𝑡
    . According to the proposed NLOS exclusion 

algorithm in Algorithm 2-3, satellites 3, 26, 91,94 and 32 are going to be excluded. 

2.4.2 GNSS Positioning Based on Surviving Satellites 

Measurements with low elevation angle and SNR are more likely to be a 

contaminated GNSS signal, such as the multipath or NLOS, due to the reflection, 

blockage, and diffraction. Thus, proper thresholds need to be set to exclude unhealthy 

measurements. For satellite   𝑖, if 𝑒𝑙𝑒𝑖 of 𝑖𝑡ℎ satellite is less than a threshold 𝑒𝑙𝑒𝑡ℎ 𝑒  , 

it should be excluded from GNSS positioning. 

The clock bias between the GNSS receiver and satellites is usually represented by 

the pseudorange measurements. The equation linking the receiver position and satellite 

can be structured as the following formula using least square (LS) method: 

𝑥̂ = (𝑮𝑇𝑮)−1𝑮𝑇                              (2-7) 

where 𝑮  represents the observation matrix and is structured by unit LOS vectors 

between GNSS receivers’ position and satellite position. 𝑥̂  indicates the estimated 

receiver position and   denotes the pseudorange measurements. 

To better represent the reliability of each measurement based on the information 

measured by the receiver, the weightings of each satellite are needed. Function to 
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calculate the weighting by integrating the measurement SNR and satellite elevation is 

expressed as [51]: 

𝑊(𝑖)(𝑒𝑙𝑒𝑖 ,  𝑁𝑅𝑖) =
1

 𝑖𝑛2𝑒𝑙𝑒𝑖
(10−

(𝑆𝑁𝑅𝑖−𝑇)

𝑎 ((
𝐴

10
−
(𝐹−𝑇)
𝑎

− 1)
(𝑆𝑁𝑅𝑖−𝑇)

𝐹−𝑇
+ 1))  (2-8) 

where 𝑊(𝑖)(𝑒𝑙𝑒𝑖 ,  𝑁𝑅𝑖) denotes the weighting for satellite   𝑖 . Parameter a, A and F in 

(8) are experimentally determined. Then, the weighting matrix W is a diagonal matrix 

constituted by the weighting  𝑊( )(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖). Finally, the GNSS receiver position 

can be estimated using the WLS method as: 

𝑥̂ = (𝑮𝑇𝑾𝑮)−1𝑮𝑇𝑾                              (2-9) 

Note that both LS (2-7) and WLS (2-8) positioning methods are compared in the 

experiment section. 

 Experimental Evaluation and Conclusions 

2.5.1 Experiment Setup 

A static experiment is firstly conducted near a bus stop in Hong Kong with a 

double-decker bus around to evaluate the magnitude of NLOS errors caused by the 

double-decker bus. By selecting an obvious landmark in the vicinity of the testing 

environment, we got the actual position of tested static position by referencing the 

landmark position labeled in Google Maps. In our experience, the accuracy is within 

about 1 meter. The dynamic experiment is implemented in urban scenarios of Hong 

Kong to demonstrate the effectiveness of the proposed method. We use the RTK 

GNSS/INS integrated system (NovAtel SPAN-CPT, RTK/INS integrated navigation 

system with fiber optics gyroscopes) to provide high accuracy ground truth. This device 

is commonly used for ground truth of positioning among academic fields and industry 

fields. The u-blox M8T receiver is used to collect raw GPS and BeiDou measurements. 

3D LiDAR sensor, Velodyne 32, is employed to provide the real-time point cloud.  

For the static experiment, both u-blox receiver and 3D LiDAR are installed on a 

fix position near a static double-decker bus during the experiment. The data were 

collected at a frequency of 1 Hz. For the dynamic experiment, both u-blox receiver and 

3D LiDAR are installed on the top of a vehicle running on an urbanized road. 



18 

 

To verify the effectiveness of the proposed method, four methods were compared, 

the “EF” represents the “elevation filter”. This means that the elevation angle threshold 

is applied. 

(1). LS positioning (LS) 

(2). LS positioning + 𝑒𝑙𝑒𝑡ℎ 𝑒  (LS-EF) 

(3). WLS positioning + 𝑒𝑙𝑒𝑡ℎ 𝑒  (WLS-EF) 

(4). WLS positioning + 𝑒𝑙𝑒𝑡ℎ 𝑒  + NLOS exclusion (WLS-EF-NE) 

In this experiment section, the setting of the parameters mentioned above can be found 

in TABLE 2-1. 

TABLE 2-1 PARAMETER VALUES USED IN THIS PAPER 

Parameters  𝑡ℎ 𝑒 ℎ𝑜𝑙   𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙  𝑒𝑙𝑒𝑡ℎ 𝑒  𝜃𝑡ℎ 𝑒  
Value 10 45 dB-Hz 20° 5° 

Parameters a A 𝐹  

Value 30 32 10  

 

2.5.2 Comparison of Different GNSS Positioning Methods Using Static Data 

The static experimental scenario is shown in Figure 2-5. As the double-decker bus 

is near the LiDAR sensor, boundary matrix     
    

 is always available throughout the 

static test. The experiment results of GNSS positioning using four methods are shown 

in TABLE 2-2.  

 

Figure 2-5 An environment that the data were collected at a bus stop. Satellites can be 

blocked by the double-decker bus. 

TABLE 2-2 POSITIONING PERFORMANCE OF THE FOUR METHODS NEAR A BUS STOP (IN 

THE UNIT OF THE METER) 
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All data LS LS-EF WLS-EF 
WLS-EF-

NE 

MAE 70.59m 51.91m 47.16m 22.76m 

Std 26.0m 29.4m 32.34m 18.59m 

RMSE 81.53m 62.34m 57.09m 27.96m 

Percentage 

(MAE<15 meters) 
5.81% 11.35% 14.58% 38.00% 

Percentage 

(MAE<30 meters) 
9.12% 28.11% 34.46% 77.61% 

Percentage 

(MAE>40 meters) 
88.29% 63.24% 50.14% 8.83% 

Mean number of 

excluded satellites 
 3.13 3.13 5.98 

The LS method can achieve only 70.59 meters of mean absolute error (MAE) and 

81.53 meters of root mean square error (RMSE) among the test. Approximately 88.29 % 

of the MAE results have a positioning error of more than 40 meters. With the aid of 

elevation angle filters, the MAE and RMSE of LS-EF are decreased to 51.91 and 62.34 

meters, respectively. About 63.24 % of the results of MAE possess a large error (> 40 

meters). Meanwhile, the percentage of MAE results in less than 20 meters is improved 

from 5.81 % to 11.3 %. This indicates that the elevation filter can enhance the 

positioning by excluding the unhealthy measurements. The reason behind this 

improvement is the exclusion of measurements from satellite 3, 91 and 22, which can 

be seen in Figure 2-6. Those satellites possess low elevation, about 19°, are suffering 

from severe NLOS and/or multipath effects, thus introducing considerable positioning 

errors. The mean number of NLOS satellites is 3.13 throughout the test. A slight 

improvement is obtained using WLS-EF comparing with that of the LS-EF method. 

The MAE is decreased to 47.16 meters. This enhanced result indicates that weighting 

shown in (2-8) can effectively represent the health level for each measurement. 



20 

 

 

Figure 2-6 Skyplot indicating the satellite distribution during the static experiment. The 

green circle represents the healthy satellites, which will be used in GNSS positioning. 

The red circle denotes the excluded satellites. The yellow line indicates the double-

decker bus boundary. 

With the proposed NLOS exclusion method, the positioning results are 

considerably improved. Firstly, the positioning error and standard deviation (Std) of 

WLS-EF-NE are reduced to 22.76 and 18.59 meters, respectively, comparing to that of 

the WLS-EF method. Secondly, almost 38 % of the results have a small positioning 

error (<15 meters). Moreover, only 8.83 % of the results possess an error of more than 

40 meters. The reason for this improvement is the proposed NLOS exclusion as shown 

in Figure 2-6. Satellites 23, 26 and 93 are excluded using the proposed algorithm 3. 

Though the three satellites are blocked by double-decker bus, GNSS signals from them 

are reflected by surrounding buildings in the double-decker bus station, thus causing 

the erroneous NLOS receptions. HDOP, positioning error and the numbers of 

measurement used in the WLS-EF-NE and WLS-EF method are shown in Figure 2-7. 

The total satellites are over 10 all through the test, thus the availability of GNSS 

positioning solution is 100 %. After the NLOS exclusion, the HDOP value shown in 

the second panel is slightly increased, due to the change in the geometry distribution of 

satellites. 



21 

 

 

Figure 2-7 Experimental results of WLS-EF and WLS-EF-NE, which depicted in red 

and blue dots, respectively. The top panel indicates the number of satellites used. 

Middle panels indicate the HDOP values. Botton panel indicates the 3D positioning 

errors. 

2.5.3 Evaluation of WLS-EF Positioning with Manual Exclusion Using Static 

data 

This sub-section presents the results of WLS-EF with a manual exclusion, 

meaning a specific measurement is excluded before using the WLS-EF method. 

TABLE 2-3 shows the results of four separate exclusion tests. Exclusion of satellite 23 

introduces a slight improvement in positioning performance with an MAE of 42.5 

meters, comparing to the MAE of 47.16 meters using the WLS-EF method without 

exclusion. As the GNSS signal received from satellite 23 is NLOS. Similarly, exclusion 

of satellites 26 and 93 also obtain improvements with an MAE of 32.31 meters and 

46.51 meters respectively. The reason for this improvement’s distinction is that satellite 

26 suffered larger NLOS errors comparing to satellites 93 which is subjected to the 

environment’s features. According to [3], the NLOS delay in the pseudorange domain 

is related to the ground distance from the receiver to the surrounding objects that reflect 

the signal, and the satellite elevation angle. The satellite with larger ground distance 

and lower elevation angle is more likely to cause larger NLOS error. Signals from 

satellites 26 and 93 can be reflected by different objects, respectively. However, the 

ground distances, denoted by 𝛼1 and 𝛼2, between the receiver and the two separate 

reflectors can be distinct (𝛼1 for satellite 26, 𝛼2 for satellite 93). 𝛼1 can be considerably 
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larger than 𝛼2 , therefore causing greater positioning error. On the contrary, greater 

improvement will be introduced if satellite 26 is excluded from GNSS positioning 

comparing with satellite 93. 

After the exclusion of satellite 26, 67.72 % of the results possess an MAE less than 

30 meters. However, the exclusion of satellite 100 introduces larger MAE comparing 

to the no exclusion situation. The MAE increases to 55.08 meters and approximately 

59.16 % of the results possess an MAE of more than 40 meters. The reason for this 

worsen performance is that satellite 100 is not blocked by double-decker bus though it 

is quite near the extended edge beam (line segment 𝐸𝐺̅̅ ̅̅  in Figure 2-6). Thus, excluding 

satellites 23, 26 and 93 can all obtain improvements in GNSS positioning due to the 

double-decker bus blockage and subsequent NLOS receptions. 

TABLE 2-3 POSITIONING PERFORMANCE OF WLS-EF WITH SINGLE SATELLITE 

EXCLUSION (IN THE UNIT OF THE METER) 

All data PRN23 PRN26 PRN93 PRN100 

MAE 42.5m 32.31m 46.51m 55.08m 

Std 27.53m 26.67m 30.01m 30.28m 

RMSE 47.65m 39.50m 56.94m 67.75m 

Percentage 

(MAE<15 meters) 
15.33% 18.51% 6.38% 4.12% 

Percentage 

(MAE<30 meters) 
37.71% 67.72% 38.29% 25.13% 

Percentage 

(MAE>40 meters) 
45.90% 23.28% 45.74% 59.16% 

Improvement 

(Mean error) 

4.66m 

(9.8%) 

14.8m 

(31.38%) 

0.65m 

(1.42%) 

-7.92m 

(worsen: -

16.79%) 

2.5.4 Comparison of Different GNSS Positioning Methods Using Dynamic Data 

The dynamic experimental scenario is shown in Figure 2-8 and Figure 2-11, with 

a GNSS receiver and LiDAR sensor installed on a vehicle driven in urban areas.  
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Figure 2-8 The environment that the data were collected in an urban scenario in Hong 

Kong. Satellites can frequently be blocked by the double-decker. 

As the testing vehicle is driven on the road, the boundary matrix     
    

 is 

frequently available throughout the dynamic test. Similar to Figure 2-6, the Skyplot 

representing one epoch in the test can be seen in Figure 2-9. Satellite 6, 30 and 88, with 

elevations of 41°, 23°, and 46° respectively, are excluded, due to the blockage from 

the double-decker bus. 

 

Figure 2-9 Skyplot snapshot indicating the satellite distribution during the dynamic 

experiment. The green circle represents the satellites that are healthy, which will be 

used in GNSS positioning. The red circle denotes the excluded satellites. The yellow 

line indicates the double-decker bus boundary. 
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There are still about 12 satellites including GPS and BeiDou remained which are 

enough for further GNSS positioning. The experiment results of GNSS positioning 

using WLS-EF and WLS-EF-NE are shown in Figure 2-10 and the only discrepancy of 

the two methods is NLOS exclusion proposed in this paper.  

 

Figure 2-10 Experimental results of WLS-EF and WLS-EF-NE in the dynamic 

experiment, which depicted in red and blue dots, respectively. The top panel indicates 

the double-decker bus detection result. The middle panel indicates the numbers of 

satellites used. The bottom panel indicates the 3D positioning errors. 

 

Figure 2-11 Illustration of tested routes in the dynamic experiment (plotted in Google 

Earth). The red curve indicates the ground truth of tested routes provided by NovAtel 

SPAN-CPT. 

The top panel denotes the double-decker bus detection performance through the 

test. Detection accuracy of 90.43 % is obtained with the proposed double-decker bus 

detection method. The failure in double-decker-bus detection usually occurs when the 
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LiDAR is approaching or leaving the double-decker bus. This is because of the limited 

FOV of LiDAR and only a few parts of the bus can be scanned which only provides 

few points. The middle panel indicates the satellite numbers using WLS-EF and WLS-

EF-NE throughout the test. Approximately 2 to 4 satellites are excluded during the test 

when there is a double-decker bus. We can see from Figure 2-10 that there two times 

that the double-decker bus causes NLOS. The bottom panel indicates the GNSS 

positioning accuracy through the dynamic test. The positioning errors can be effectively 

reduced with the NLOS exclusion of those blocked satellites. The positioning errors are 

all reduced to less than 20 meters with the proposed method, compared with the 

conventional method (WLS-EF) whose positioning errors can go up to even 50 meters 

in Figure 2-10. TABLE 2-4 shows the GNSS positioning performance using four 

positioning methods.  

TABLE 2-4 Positioning Performance of the four methods in the dynamic test (in the 
unit of the meter) 

All data LS LS-EF WLS-EF 
WLS-EF-

NE 

MAE 47.59m 44.98m 13.19m 5.04m 

Std 42.07m 40.99m 14.67m 2.87m 

RMSE 58.61m 52.17m 16.58m 6.29m 

Percentage 

(MAE<5 meters) 
29.71% 30.23% 46.51% 53.49% 

Percentage 

(MAE<10 meters) 
37.16% 41.86% 60.47% 95.35% 

Percentage 

(MAE>15 meters) 
60.35% 55.81% 30.23% 0% 

The LS method can achieve only 47.59 meters of MAE and 58.61 meters of RMSE 

among the dynamic test. Approximately 29.71 % of the result possess an error smaller 

than 5 meters and 60.35 % of the results have a positioning error of more than 15 meters. 

With the aid of elevation filters, the MAE and RMSE of LS-EF are decreased to 44.98 

and 52.17 meters, respectively. About 55.81 % of the results are larger than 15 meters, 

which indicates the improvements introduced by the elevation angle filters. 

Considerable improvements are provided by the WLS-EF method with the 𝑊(𝑖)(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖). 

The MAE is decreased to 13.19 meters and about 46.51 % of the results have an MAE 

of less than 5 meters. Moreover, only 30.23 % of the results possess large errors (> 15 

meters) and the standard deviation drops dramatically comparing with the LS-EF 

method. 
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With the proposed method, decent improvements are obtained. Firstly, the 

positioning error declines from 13.19 meters to 5.04 meters in the tested dynamic 

experiment, which obtains about 61.79 % of the improvements, compared with the 

WLS-EF method. The standard deviation drops from 14.67 to 2.87 meters. Interestingly, 

53.49 % of the results have an MAE of less than 5 meters and approximately 95.35 % 

of the results possess errors less than 10 meters. Both GNSS positioning accuracy and 

standard deviation are improved by using the proposed method.  

2.5.5 Conclusions 

With the rise of GNSS, more satellites are available including GPS, BeiDou, 

GLONASS and Galileo. The number of visible satellites is still enough for GNSS 

positioning even after NLOS exclusion. This study firstly employs an object detection 

algorithm to detect a double-decker bus and extend its dimensions to a real one. Then, 

the proper coordinate transformation is utilized to project the double-decker bus 

boundary into GNSS Skyplot. NLOS exclusion criterion integrating elevation angle, 

SNR and bus boundary is proposed. According to the experiment result, the proposed 

method obtains the best performance among the four conventional GNSS positioning 

methods. Positioning error of NLOS receptions caused by a double-decker bus can 

reach 24 meters in the static experiment and 8 meters improvement in the evaluated 

dynamic experiment. The magnitude of the improvement is subjected to environmental 

features. Finally, we conclude that the exclusion of NLOS receptions is necessary for 

obtaining better GNSS positioning accuracy in urbanized cities.  
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3. GNSS NLOS CORRECTION AIDED BY 3D LIDAR AND 

BUILDING HEIGHT  

 Introduction 

Positioning in urban environments is becoming essential due to the increasing 

need for autonomous vehicles. To achieve L4 [52] autonomous driving in all scenarios, 

centimeter-level absolute positioning is required. The 3-dimensional (3D) light 

detection and ranging (LiDAR) is widely used in autonomous driving vehicles [41, 42]. 

LiDAR, camera, and inertial navigation system (INS) only provide relative positioning. 

Thus, these sensors are usually integrated with the global navigation satellite system 

(GNSS) [22, 53-55], because the GNSS is one of the indispensable sources that can 

provide absolute positioning. A GNSS/INS/LiDAR/high definition (HD) map 

integrated system can provide satisfactory localization service in sub-urban [56, 57] 

areas. The suburban areas can be regarded as GNSS-friendly area since the GNSS 

receiver can receive sufficient direct signals transmitted from multi-constellation GNSS 

[24]. In urbanized cities, such as Tokyo, Hong Kong, and New York, the signals from 

satellites can be reflected, blocked, and diffracted by surrounding buildings before they 

are received by the receiver. If the direct light-of-sight (LOS) is blocked and reflected 

signals from the same satellite are received, the notorious non-light-of-sight (NLOS) 

receptions occur. This NLOS is the dominant GNSS positioning error in the cities 

mentioned above [7]. As a result, the positioning error can go up to even 100 meters [3, 

6].  

According to a recent review paper [7], NLOS is currently the major difficulty in 

the use of GNSS in the applications of the intelligent transportation system. Due to 

NLOS, the performance of GNSS positioning becomes highly related to environmental 

features, such as buildings. Utilizing the 3D building model to detect the NLOS is 

straightforward. NLOS can be detected with the aid of a building model and then be 

excluded from GNSS positioning [8, 9]. However, the NLOS exclusion will distort the 

geometric distribution of the satellites. In urban canyons, the distortion results in large 

positioning errors in the across-street direction because only the measurements from 

the satellites located at the along-street direction are not excluded. Moreover, 

identifying NLOS measurements based on the 3D building model relies heavily on the 

initial guess of the GNSS receiver [33].  
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Figure 3-1 shows the numbers of GNSS satellites (GPS and BeiDou) received by 

a commercial GNSS receiver in an urban canyon in Hong Kong. We can see from 

Figure 3-1 that the number of satellites is dramatically decreased after applying NLOS 

exclusion. The horizontal dilution of precision (HDOP) is increased (shown in Figure 

3-1) distinctly. Thus, it is not preferable to exclude all the NLOS measurements in such 

an area (i.e., a narrow urban canyon). A smart approach, GNSS shadow matching, is 

proposed to match the measured satellite visibility (classifying into LOS and NLOS) 

with the predicted satellite visibility of hypothesized positions [58]. This method makes 

use of the NLOS to improve the positioning accuracy in the cross-street direction [59]. 

A likelihood-based 3DMA GNSS method, which models the measurement uncertainty 

to mitigate the NLOS receptions, is also proposed to provide accurate positioning in the 

along-street direction [14]. Due to the complementariness of the shadow matching and 

the likelihood-based 3DMA GNSS, their integration has been studied recently [15]. 

Another stream of range-based 3DMA GNSS methods is to correct the NLOS affected 

measurement for GNSS positioning [16-19]. These methods are proposed to simulate 

the signals’ transmission routes using the ray-tracing method [26]. However, the 

drawbacks of these ray-tracing-based 3DMA GNSS methods are the stringent 

requirements on 1) the accuracy of the 3D mapping database, 2) the initial guess of 

receiver positions, and 3) the computational power of the processors. 

 

Figure 3-1 Demonstration of numbers of satellite (GPS/BeiDou) measurement before 

(red) and after (blue) NLOS exclusion in an urban canyon in Hong Kong. The 

horizontal dilution of precision (HDOP) is also given before (black) and after (green) 

exclusion. 
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Instead of using only the 3D mapping data, other scanning sensors, including 

cameras and LiDAR, can also be employed to sense the surrounding environments of 

the receiver in real-time operation. To detect the visibility of satellites, omnidirectional 

and fisheye cameras [38, 39, 60] are used to detect the skylines of buildings in the 

urbanized area. NLOS receptions can be detected with the detected skylines, and some 

improvements are obtained. However, this method can suffer from strong light or night 

scenarios, as computer vision is employed to detect the skylines. The constructed map 

of the environment using 3D LiDAR is employed to classify the visibility of satellites. 

A study then modeled the GNSS noise covariance by NLOS detection based on a 

LiDAR-constructed map [36]. Research incorporating the LiDAR map and 3D city 

model to exclude NLOS is conducted in the application of unmanned aerial vehicles 

[61]. However, these methods still tend to exclude the NLOS receptions from further 

GNSS positioning, which is not applicable in the deep urban areas.  

In this section, we propose to improve the GNSS single point positioning (SPP) 

by detecting and correcting the NLOS receptions based on the environment features 

perceived by real-time 3D point clouds generated by 3D LiDAR. The perceived 

environment features refer to the surrounding buildings of the receiver in this paper. 

Dimension and pose (including the position and orientation) of the building wall 

relative to the GNSS receiver are calculated by the point cloud-based segmentation. 

Due to the limited field of view (FOV), tall buildings cannot be fully scanned. Thus, 

the height of the detected building wall is extended to the exact height provided by a 

building height list obtained from Google Earth. Then, the satellites and detected TEBs 

are projected into the Skyplot. To implement the projection, the globally referenced 

yaw angle of the vehicle is needed and is provided by an RTK GNSS/INS integrated 

system (SPAN-CPT). Based on the detected TEBs, NLOS measurement can be 

identified. Previously, our team proposed an NLOS error model based on two 

parameters: the distance between the GNSS receiver and NLOS reflector, and the 

elevation and azimuth angle of the satellite [3]. In this method, innovatively, the 

distance between the GNSS receiver and reflectors can be obtained by the LiDAR 

scanner. Thus, the correction of NLOS-affected pseudorange measurements can be 

calculated. Finally, GNSS SPP is calculated using both the corrected NLOS 

measurements and LOS visible measurements.  
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To the best of the authors’ knowledge, this is the first attempt to aid GNSS SPP 

by employing the real-time 3D point clouds to detect and correct the NLOS 

measurements. This is important because GNSS is usually integrated with dead-

reckoning (e.g., INS, odometer, visual odometry, LiDAR odometry, etc.) for various 

applications. Tightly-coupled integration is one of the most popular existing solutions 

for the integrated navigation system. Our proposed GNSS SPP with NLOS correction 

can easily fit into the tightly-coupled integration scheme. In other words, it can be easily 

implemented in many existing navigation systems, especially those used in autonomous 

driving. 

The remainder of this paper is structured as follows. An overview of the proposed 

method is given in Section 3-2. Section 3-3 discusses a method to detect TEBs from 

LiDAR point clouds. The coordinate transformation from LiDAR to GNSS Skyplot 

coordinate system is also presented in this section. In Section 3-4, the criterion of NLOS 

detection is proposed and the NLOS correction model is introduced. In Section 3-5, we 

evaluate the effectiveness of the proposed method by two-vehicle experiments in two 

typical urban canyons in Hong Kong. Finally, conclusions are drawn. 

 Overview of the Proposed Method 

In this study, we focus on the NLOS receptions caused by surrounding buildings. 

Figure 3-2 presents direct propagation routes, multipath and potential NLOS receptions 

of GNSS signals. The buildings, of which height is indicated by 𝐻, can block a signal 

transmitted from a satellite, for example, satellite 1 in Figure 3-2. Meanwhile, this 

GNSS signal is reflected by the other nearby building and finally received by the GNSS 

receiver equipped on top of the autonomous vehicle, which results in NLOS receptions. 

This kind of scenario is a regular case in Hong Kong. In this case, the number of 

satellites visible to the GNSS receiver is related to the height of buildings and the 

distance from the receiver to the building (𝛼𝑖 in Figure 3-2).  

As a significant sensor for positioning and perception of autonomous driving [62], 

3D LiDAR is installed on the top, as shown in Figure 3-2. In this paper, LiDAR is 

employed to detect the surrounding building surfaces and obtain the distance from the 

GNSS receiver to the building surface, and then the TEBs can be identified 

consequently. Then, NLOS detection and correction is implemented based on detected 

TEBs, which are projected into a Skyplot, and the distance from GNSS receiver to 
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buildings. Finally, GNSS positioning is performed using both the corrected and healthy 

pseudorange measurements. Figure 3-3 shows the flowchart of the proposed method. 

The proposed method can be executed as follows: 

 

Figure 3-2 Illustration of GNSS signal transmission routes in the urbanized area in 

Hong Kong. NLOS/multipath can be caused by surrounding buildings. 
 

 
Figure 3-3 Flowchart of the proposed method of GNSS SPP with NLOS correction. 

The inputs are the 3D LiDAR, yaw angle, building height list, and GNSS raw 

measurements.  
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Step I: The Point cloud segmentation method is employed to detect the building surface. 

The pose of TEBs relative to the GNSS receiver is calculated. The distance between 

the GNSS receiver and the buildings can be obtained subsequently. Moreover, building 

height list from Google Earth is employed to extend the detected building height to the 

exact height. 

Step II: The TEBs are projected into a GNSS Skyplot based on their estimated poses 

relative to the GNSS receiver, and yaw angle provided by the SPAN-CPT (RTK 

GNSS/INS integrated navigation system). 

Step III: Considering the satellite's elevation angle, azimuth angle, SNR, and TEB 

information (elevation and azimuth angles in Skyplot), satellites blocked by buildings 

are detected. Consequently, NLOS correction is implemented with an NLOS error 

model. 

Step IV: Implementing GNSS weighted least squares (WLS) based on the corrected 

pseudorange measurements and healthy pseudorange measurements.  

The details of the algorithms are introduced in the following sections. 

 Building Surface Detection and Transformation 

To detect the surface of the building and obtain the corresponding distances 

between the GNSS receiver and buildings, a point cloud segmentation method is 

employed to implement the building surface detection in this section. 

3.3.1 TEBs Detection and Transformation 

The surrounding environment is expressed as points set 𝑷𝑡 = {𝒑1, 𝒑2, … , 𝒑𝑛, 𝑡} at 

a given time, t, where 𝒑𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)  represents a single point in the LiDAR 

coordinate system. To distinguish the building surface from the unordered points set 

and determine the distance from GNSS receiver to the building surface, three steps are 

needed: 1) Segmentation of point clouds, 2) Identification of buildings from segmented 

objects, and 3) Extension of top edges of buildings (TEBs). 

The point cloud segmentation is summarized in detail in Algorithm 3-1. Inputs of 

Algorithm 3-1 are: points set (3D point clouds) and search radius 𝑟 𝑒  𝑐ℎ, which is the 

variable constraining the searching area in the KD-tree [63]. Outputs include the 

bounding box [50] sets (𝑼𝐭
𝐬𝐞𝐠

) and organized point clusters (𝑶𝐭
𝐨𝐫𝐠

), which indicate 
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different objects, such as buildings and vehicles. The definitions of applied variables 

and functions in Algorithm 3-1 are listed as follows: 

⚫ 𝑷𝐭: input 3D point clouds. 𝑼𝐭
𝐬𝐞𝐠

: segmented bounding box sets. 𝑶𝐭
𝐨𝐫𝐠

: segmented 

point clusters. 

⚫ 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤: a middle variable that contains checked points. 𝑵𝑖: a neighboring points 

set given a searching radius. 𝑟 𝑒  𝑐ℎ : the radius of the neighboring points 

searching area. 

The BoundingBox mentioned in Algorithm 1 is a function to get the bounding box 

that represents the organized point cluster. Bounding box 𝑼𝒊 is specifically determined 

by a vector, 𝑼𝑖, as follows: 

𝑼𝐢 = [𝑥𝑖
𝑐 , 𝑦𝑖

𝑐, 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐, 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
ℎ𝑒𝑖]

𝑇
    (3-1) 

where 𝑥𝑖
𝑐 , 𝑦𝑖

𝑐, and 𝑧𝑖
𝑐  denote the position of the bounding box in x, y, and z directions in 

the LiDAR coordinate system, respectively. 𝑟𝑜𝑙𝑙𝑖
𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖

𝑐, and  𝑦𝑎𝑤𝑖
𝑐  denote the 

orientation of the bounding box in the LiDAR coordinate system. 𝑑𝑖
𝑙𝑒𝑛 is the length, 

𝑑𝑖
𝑤𝑖  is the width, and 𝑑𝑖

hei is the height of the bounding box.  

The principle of Algorithm 3-1 is also shown on the left side of Figure 3-4. The 

colored points represent raw 3D point clouds. After applying the Algorithm 3-1, two 

clusters are detected which are annotated by the two black 2D bounding box (𝑼𝐭
𝐬𝐞𝐠

). 

However, we do not know which belongs to the building class. 

Algorithm 3-1: Segmentation for points set 𝑷𝒕 

Input: points set 𝑷𝐭 = {𝒑1, 𝒑2, … , 𝒑𝑛, 𝑡}, search radius 𝑟 𝑒  𝑐ℎ 

Output: Bounding box sets 𝑼𝐭
𝐬𝐞𝐠

= {𝑼1, 𝑼2, … , 𝑈𝑖 , …𝑼𝑚, 𝑡}, Organized 

point clusters 𝑶𝐭
𝐨𝐫𝐠

= {𝑶1, 𝑶2, … , 𝑶𝑖, …𝑶𝑚, 𝑡} 

1  create a KD-tree representation for the input points set 𝑷𝑡 

2  setup an empty list to save point sets 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 

3  for all points 𝑝𝑖 in 𝑷𝐭 do 

4    add 𝑝𝑖 to the points set 𝑷𝑡
𝑐ℎ𝑒𝑐  

5    for all 𝑝𝑖 in 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 do  

6      search for the points set 𝑵𝑖 of point neighbor of 𝒑𝑖 in a  

sphere with radius r<𝑟 𝑒  𝑐ℎ 

7      for every point 𝑵𝑖
𝑖 in points set 𝑵𝒊 do 

8        if  𝑵𝑖
𝑖 have not been processed  
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9        add 𝑵𝑖
𝑖 to points sets 𝑷𝑡

𝑐ℎ𝑒𝑐  

10      end if 

11     end for the points set 𝑵𝑖 

12   if all the points in 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 have been processed 

13     add 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 to 𝑶𝐭

𝐨𝐫𝐠
 as an organized point set 

14     add BoundingBox(𝑷𝐭
𝐜𝐡𝐞𝐜𝐤) to 𝑼𝐭

𝐬𝐞𝐠
 as a bounding box 

15     reset 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 to empty 

16    end if 

17   end for 𝑷𝐭
𝐜𝐡𝐞𝐜𝐤 

18 end for 𝑷𝐭 
  

To effectively identify the bounding box (𝑼𝐭
𝐬𝐞𝐠

) representing the building surface 

which can result in GNSS signal reflections and subsequent NLOS receptions, a surface 

identification method is needed; this is summarized in detail in Algorithm 3-2. The 

objective of Algorithm 3-2 is to: 1) identify the buildings, shown in the middle side of 

Figure 3-4 and 2) extend its heights to the exact one (right side of Figure 3-4). The 

inputs of this algorithm are 𝑼𝑡
 𝑒𝑔

 and 𝑶𝑡
𝑜 𝑔

 obtained from Algorithm 3-1, and some 

experimentally determined thresholds. 

The definitions of applied variables and functions in Algorithm 3-2 are listed as 

follows: 

⚫ 𝑛𝑢𝑚𝑡ℎ 𝑒 : The number of points that the cluster belongs to the building class 

should contain. 

⚫  𝑙𝑒𝑛𝑡ℎ 𝑒 : minimum length of a 2D bounding box that belongs to the building 

class. 

⚫  ℎ𝑒𝑖𝑡ℎ 𝑒 : minimum height of a 2D bounding box that belongs to the building 

class. 

⚫ building height list, 𝐻  𝑖𝑙 , receiver position 𝑷 
𝑒𝑐𝑒𝑓

, and yaw angle, 𝑌𝑎𝑤 . 

The output is the bounding box set 𝑩𝑡
 𝑒𝑔_  𝑖𝑙

 specifically representing the building 

surface. The function Num mentioned in Algorithm 3-2 is used to calculate the number 

of points in each cluster, 𝑶𝑖 . The function 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡 is used to search the height 

information from a saved building height list, which contains the height information. 

To determine the actual height of the identified building surface, 𝑷 
𝑒𝑐𝑒𝑓

, 𝑼𝑖, and 𝑌𝑎𝑤  

are also needed. 𝑷 
𝑒𝑐𝑒𝑓

 indicates the GNSS position given by the previous-epoch 
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positioning result. The relative position between the GNSS receiver and detected 

building can be obtained from 𝑼𝑖. For each bounding box, 𝑩𝑖, the distance, 𝛼𝑖, from 

the receiver to the detected building surface can be calculated as follows: 

𝛼𝑖 = √((𝑥𝑖
𝑐)2 + (𝑦𝑖

𝑐)2 + (𝑧𝑖
𝑐)2)                         (3-2) 

 

Algorithm 3-2: Building surface identification from bounding box sets 

and height extension of TEBs 

Input: Bounding Box sets 𝑼𝐭
𝐬𝐞𝐠

= {𝑼1, 𝑼2, … , 𝑈𝑖, …𝑼𝑚, 𝑡}, Organized point 

clusters 𝑶𝐭
𝐨𝐫𝐠

= {𝑶1, 𝑶2, … , 𝑶𝑖 , …𝑶𝑚, 𝑡}, point number threshold 𝑛𝑢𝑚𝑡ℎ 𝑒 , 

length threshold 𝑙𝑒𝑛𝑡ℎ 𝑒  and height threshold ℎ𝑒𝑖𝑡ℎ 𝑒 , building height list 

𝑯𝒃𝒖𝒊𝒍𝒅, receiver position 𝑷𝐫
𝐞𝐜𝐞𝐟, yaw angle 𝑌𝑎𝑤  

Output: Bounding Box set represents building surfaces 𝑩𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

=
{𝑩1, 𝑩2, … , 𝑩𝑖, …𝑩𝑚, 𝑡} 

1  setup an empty clusters list 𝑩𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

 to save bounding box 

2  for all bounding box 𝑼𝑖 in 𝑼𝐭
𝐬𝐞𝐠

 do 

3    if Num(𝑶𝑖) > 𝑛𝑢𝑚𝑡ℎ 𝑒  

4      𝑼𝐢 ← [𝑥𝑖
𝑐 , 𝑦𝑖

𝑐, 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐 , 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
ℎ𝑒𝑖]  

5      if 𝑑𝑖
𝑙𝑒𝑛 > 𝑙𝑒𝑛𝑡ℎ 𝑒   𝐚𝐧𝐝 𝑑𝑖

ℎ𝑒𝑖 > ℎ𝑒𝑖𝑡ℎ 𝑒  

6        𝑑𝑖
ℎ𝑒𝑖 ← 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡(𝑯𝐛𝐮𝐢𝐥𝐝, 𝑷𝐫

𝐞𝐜𝐞𝐟, 𝑼𝐢, 𝑌𝑎𝑤 ) 

7        𝑩𝑖 ← 𝑼𝐢 

8      end if 

9    end if 

10 end for 𝑼𝐭
𝐬𝐞𝐠

 
 

Thus, the bounding box with extended height representing the building surface can 

be identified with Algorithm 3-2. The height of the bounding box representing the 

building surface can be extended to the real one. The bounding box is extended from 

rectangle ABCD to rectangle CDEF, as can be seen on the right side of Figure 3-4. 

Then, the parameters of TEBs for the bounding box,  𝑖 , corresponding to building 

surface is denoted by the line segment 𝐸𝐹̅̅ ̅̅ , denoted as 𝑩  𝑖𝑙 
  , the matrix of the building 

boundary [58]. To represent the building boundary, two points, E and F, are required. 

The    𝑖𝑙 
   is structured as follows: 

𝑩𝐛𝐮𝐢𝐥𝐝
𝟑𝐝 = [

𝑥  𝐸 𝑦  𝐸 𝑧  𝐸
𝑥  𝐹 𝑦  𝐹 𝑧  𝐹

]                          (−) 
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Figure 3-4 Illustration of point sets segmentation and TEBs identification, extension. 

Box ABCD represents the initially detected building surface. Box CDEF represents the 

extended building surface. Box CDGH represents the ground. The color points denote 

the point clouds from 3D LiDAR. 

 

Figure 3-5  Skyplot of GNSS satellites and detected TEBs. Green and red circles and 

the numbers indicate satellites and corresponding PRNs. Line segment 𝐸𝐹̅̅ ̅̅  indicates the 

TEBs. 

3.3.2 Coordinate Transformation 

To implement the algorithm of NLOS detection and subsequent correction, 

satellites’ visibility must be determined based on the extended TEBs. Thus, the relative 

poses of the GNSS receiver to satellites and to building surfaces need to be transformed 

into the same representation, the Skyplot. In each epoch, information from satellites, 

including azimuth, elevation angles, and SNR, can be obtained from the GNSS receiver. 

Part of satellite information can be represented as 𝑺𝑽𝐭
𝐚𝐥𝐥 = {𝑺𝑽𝟏, 𝑺𝑽𝟐, … , 𝑺𝑽𝒊, … 𝑺𝑽𝒏}. 

𝑛  represents the number of satellites received. 𝑺𝑽𝒊  represents the information for 

satellite 𝑖, and 𝑺𝑽𝒊 = {𝑎𝑧𝑖, 𝑒𝑙𝑖,  𝑁𝑅𝑖 ,  𝑖}. 𝑎𝑧𝑖  denotes the satellite azimuth angle. 𝑒𝑙𝑖 

represents the satellite elevation angle.  𝑁𝑅𝑖  indicates satellite signal-to-noise ratio 

(SNR) and  𝑖 denote the pseudorange measurement. 

Satellite positions can be easily indicated in the Skyplot which is a 2-dimension 

coordinate based on corresponding elevation and azimuth angles. A transformation 
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matrix should be employed for TEBs transformation from a 3D coordinate to a 2D 

coordinate. The transformation is conducted as per the following formula. 

𝑩build
skyp

= 𝑩  𝑖𝑙 
  𝑮𝑇

  𝑖𝑙                              (−) 

where 𝑩  𝑖𝑙 
   denotes the matrix of the building boundary presented in the previous 

sub-section. 𝑮𝑇
  𝑖𝑙  is a 3x2 transform matrix. 𝑩  𝑖𝑙 

    
 denotes the boundary matrix (2x2) 

in Skyplot structured as follows: 

𝑩build
skyp

= [
𝑥   𝐸 𝑦   𝐸
𝑥   𝐹 𝑦   𝐹

]                             (−) 

After the transformation, satellites and building surface boundaries can be 

presented in the same coordinate frame, the Skyplot, as shown in Figure 3-5. Bounding 

box set 𝑩t
seg_buil

= {𝑩1, 𝑩2, … , 𝑩𝑖 , …𝑩𝑚, 𝑡}  can be transformed into 𝑩𝐭
𝐬𝐤𝐲𝐩

=

{𝑩1
    

, 𝑩2
    

, … , 𝑩𝑖
    

, …𝑩𝑚
    

, 𝑡} , where 𝑩i
skyp

 indicates the 𝑖𝑡ℎ  the boundary in 

the Skyplot. Moreover, the distance list representing the distances from GNSS the 

receiver to the detected surfaces can also be obtained as 𝛂𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

=

{𝛼1, 𝛼2, … , 𝛼𝑖, …𝛼𝑚, 𝑡} , where 𝛼𝑖  is associated with 𝑩𝐢
𝐬𝐤𝐲𝐩

. Line segment 𝐸𝐹̅̅ ̅̅  

represents the building surface boundary corresponding to the line segment 𝐸𝐹̅̅ ̅̅  shown 

in Figure 3-4. Then, the azimuth and the elevation angles for point E and F can be 

calculated in the Skyplot, respectively. 

 Improved GNSS Positioning With NLOS Correction 

In this section, an NLOS error model is presented first. Then, the NLOS detection 

criterion is proposed based on the detected TEBs, satellite elevation angle, azimuth 

angle, and SNR. NLOS error correction is then implemented. Finally, the GNSS 

positioning is conducted by applying the WLS method using the LOS and corrected 

NLOS pseudorange measurements. 

3.4.1 NLOS Correction Based on Detected Building Boundary 

In terms of the measurements from the GNSS receiver, each pseudorange 

measurement,  𝑛, is written as follows [64]. 

 𝑛 = 𝑅𝑛 + 𝑐(𝛿𝑡r − 𝛿𝑡𝑛
sv) + 𝐼𝑛 + 𝑇𝑛 + 𝜀𝑛    (3-6) 

where 𝑅𝑛  is the geometric range between the satellite and the GNSS receiver. 𝛿𝑡𝑛
sv 

denotes the satellite clock bias. 𝛿𝑡r indicates the receiver clock bias. 𝐼𝑛 represents the 
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ionospheric delay distance; 𝑇𝑛 indicates the tropospheric delay distance. 𝜀𝑛 represents 

the errors caused by the multipath effects, NLOS receptions, receiver noise, antenna 

delay. In this paper, we focus on mitigating the NLOS errors caused by surrounding 

buildings. 

The NLOS error model proposed in [3] is expressed in Figure 3-6. The expected 

signal transmission route is expressed as a dashed blue line in Figure 3-6. 𝛼 represents 

the distance from the receiver to the building. 𝜃𝑒𝑙𝑒 represents the elevation angle of the 

GNSS signal. We assume that: 

(1) The building is vertical to the ground. 

(2) GNSS signal reflection satisfies the law of reflection.  

Thus, we can get 𝜃 = 𝜃 . Moreover, the direction of real signal transmission is 

parallel to the direction of expected signal transmission. Finally, we have 𝜃 = 𝜃 =

𝜃0 = 𝜃𝑒𝑙𝑒  .The route distance difference, γ , between the reflected signal and the 

expected signal is indicated as follows: 

γ = 𝛾1 + 𝛾2                                       (−) 

𝛾1 = 𝛼𝑠𝑒𝑐𝜃𝑒𝑙𝑒                                   (−) 

𝛾2 = 𝛾1cos (2𝜃𝑒𝑙𝑒)                               (−) 

Thus, the NLOS error can be calculated based on the azimuth angle, elevation 

angle, and the distance from the receiver to the building causing the reflection. In 

general, two steps are needed to proceed with the NLOS correction: NLOS detection 

and NLOS error calculation. The process of NLOS correction is summarized in detail 

in Algorithm 3-3. 
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Figure 3-6 NLOS correction model. The signal is reflected by the building and 

subsequently received by the receiver [3]. 

Algorithm 3-3: NLOS detection and correction 

Input: Satellites information set𝑺𝑽𝒕
𝒂𝒍𝒍 = {𝑺𝑽𝟏, 𝑺𝑽𝟐, … , 𝑺𝑽𝒊, … 𝑺𝑽𝒏}, building 

boundary matrix 𝑩𝒕
𝒔𝒌𝒚𝒑

= {𝑩𝟏
𝒔𝒌𝒚𝒑

, 𝑩𝟐
𝒔𝒌𝒚𝒑

, … , 𝑩𝒊
𝒔𝒌𝒚𝒑

, …𝑩𝒎
𝒔𝒌𝒚𝒑

, 𝑡} , distance list 

𝜶𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

, area threshold  𝑡ℎ 𝑒 ℎ𝑜𝑙 , SNR threshold  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 , the threshold 

of boundary uncertainty 𝜃𝑡ℎ 𝑒  

Output: corrected satellites information set after NLOS identification: 𝑺𝑽𝒕
𝒄𝒐𝒓 =

{𝑺𝑽𝟏
𝒄𝒐𝒓, 𝑺𝑽𝟐

𝒄𝒐𝒓, … , 𝑺𝑽𝒊
𝒄𝒐𝒓, … 𝑺𝑽𝒋

𝒄𝒐𝒓} . LOS satellite assembles 𝑺𝑽𝒕
𝒍𝒐𝒔 =

{𝑺𝑽1
𝑙𝑜 , 𝑺𝑽2

𝑙𝑜 , … , 𝑺𝑽𝑖
𝑙𝑜 , … 𝑺𝑽 

𝑙𝑜 }. 

1  for all boundary 𝑩𝒊
𝒔𝒌𝒚𝒑

 in 𝑩𝒕
𝒔𝒌𝒚𝒑

do 

2    for all satellites 𝑺𝑽𝒊 in 𝑺𝑽𝒕
𝒂𝒍𝒍do 

3      estimate 𝜃1, 𝜃2 as shown in Fig. 5 

4      Get triangle area  ∆𝑆𝐸𝑂 of triangle SEO from 𝑩𝒊
𝒔𝒌𝒚𝒑

 

5      Get triangle area  ∆𝑆𝐹𝑂 of triangle SFO from 𝑩𝒊
𝒔𝒌𝒚𝒑

 

6      Get triangle area  ∆𝑆𝐸𝐹 of triangle SEF from 𝑩𝒊
𝒔𝒌𝒚𝒑

 

7      Get triangle area  ∆𝐸𝑂𝐹 of triangle EOF from 𝑩𝒊
𝒔𝒌𝒚𝒑

 

8      ∆S =  ∆𝑆𝐸𝑂 +  ∆𝑆𝐹𝑂+ ∆𝑆𝐸𝐹 −  ∆𝐸𝑂𝐹 

9      if ( 𝑁𝑅𝑖 >  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 )𝑜𝑟 (𝜃1 < 𝜃𝑡ℎ 𝑒 ) 𝑜𝑟 (𝜃2 < 𝜃𝑡ℎ 𝑒 ) 

10      break 

11     if ∆S >  𝑡ℎ 𝑒 ℎ𝑜𝑙  and ((𝜃1 + 𝜃2) < ∠EOF < 180° 

12       𝑺𝑽𝑖
𝑙𝑜 ← 𝑺𝑽𝑖 // LOS 

13     else // NLOS 

14       𝑺𝑽𝒊 ← {𝑎𝑧𝑖, 𝑒𝑙𝑖,  𝑁𝑅𝑖 ,  𝑖} 

15       𝑺𝑽𝒊( 𝑖) ← 𝑺𝑽𝒊( 𝑖) − (𝛾1 + 𝛾2) // 𝛼𝑖 from 𝛂𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

 

16       𝑺𝑽𝑖
𝑐𝑜 ← 𝑺𝑽𝒊 

17     end if 

18   end for satellites set 𝑺𝑽𝒕
𝒂𝒍𝒍 

19 end for a boundary set 𝑩𝒕
𝒔𝒌𝒚𝒑

 

 

The inputs of Algorithm 3-3 include satellites information,    𝑡
 𝑙𝑙, building surface 

boundaries information ,  𝑩𝒕
𝒔𝒌𝒚𝒑

, distance list, 𝛂𝐭
𝐬𝐞𝐠_𝐛𝐮𝐢𝐥

 and some experimentally 
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determined thresholds. The definitions of applied variables and functions in Algorithm 

3-2 are listed as follows: 

⚫  𝑡ℎ 𝑒 ℎ𝑜𝑙 : Used to determine whether the satellite is inside the triangle. For 

example, if satellite 88 is inside triangle EOF. 

⚫  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 : if the SNR for a certain satellite is more than this threshold, we 

treat it as LOS. 

⚫ 𝜃𝑡ℎ 𝑒 : threshold of boundary uncertainty. 

The outputs are the corrected satellites information set 𝑺𝑽𝑡
𝑐𝑜  and LOS satellite 

assembles 𝑺𝑽𝑡
𝑙𝑜 . Firstly, geometry angle 𝜃1 (∠EOS) and 𝜃2 (∠FOS) shown in Figure 3-

5 are estimated. Then areas of triangles  ∆𝑆𝐸𝑂,  ∆𝑆𝐹𝑂,  ∆𝑆𝐸𝐹, and  ∆𝐸𝑂𝐹 are calculated 

and ∆  can be estimated subsequently. Secondly, GNSS measurement whose SNR is 

larger than  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙  will not be excluded, as signals with strong SNR is not 

considered to be reflected by buildings.  

Satellites whose positions are quite near the extended edge beam (𝜃1 < 𝜃𝑡ℎ 𝑒  

or 𝜃2 < 𝜃𝑡ℎ 𝑒 ) also should not be excluded, such as satellite 7 in Figure 3-5; thus, the 

angle threshold 𝜃𝑡ℎ 𝑒  is set. To avoid a faulty exclusion, a heuristically determined 

threshold  𝑡ℎ 𝑒 ℎ𝑜𝑙  is set. Satellites whose positions are quite near the TEBs of 

building surface should not be identified as NLOS, which can be determined by 

comparing  ∆S  and   𝑡ℎ 𝑒 ℎ𝑜𝑙 , such as from satellite 7 in Figure 3-5. Finally, the 

pseudorange measurements from NLOS receptions can be corrected using the NLOS 

error model in formula (3-7). 

In this case, these NLOS satellites can be detected, and corresponding pseudorange 

measurements are corrected. 

3.4.2 GNSS Positioning Based on Corrected and Healthy Pseudorange 

Measurements 

Measurements with low elevation angles are more likely to be a contaminated 

GNSS signal in an urban canyon, such as the multipath or NLOS, due to the reflection, 

blockage, and diffraction. Thus, the proper threshold must be set to exclude the 

unhealthy measurements. For satellite   𝑖 , if 𝑒𝑙𝑒𝑖  is less than 𝑒𝑙𝑒𝑡ℎ 𝑒 , it should be 

excluded from GNSS positioning. Pseudorange measurements in 𝑺𝑽𝑡
𝑐𝑜  and 𝑺𝑽𝑡

𝑙𝑜  will 

be employed for GNSS positioning calculation. 
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The clock bias between the GNSS receiver and satellites is usually represented by 

the pseudorange measurements. The equation linking the receiver position and satellite 

can be structured as per the following formula using least squares (LS) method: 

𝒙̂ = (𝑮𝑻𝑮)−𝟏𝑮𝑻𝝆                             (3-10) 

where 𝑮  represents the observation matrix and is structured by unit LOS vectors 

between GNSS receivers’ position and satellite position. 𝒙̂  indicates the estimated 

receiver position and   denotes the pseudorange measurements. 

To better represent the quality of each measurement based on the information 

measured by the receiver, the weightings of each satellite are needed. The weightings 

for each satellite are calculated using the formulation in [65] by integrating the SNR 

and satellite elevation. Finally, the GNSS receiver position can be estimated using the 

WLS method as: 

𝒙̂ = (𝑮𝑻𝑾𝑮)−𝟏𝑮𝑻𝑾𝝆                             (3-11) 

The weighting is given as follows [65]: 

𝑾(𝑖)(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖) =
1

 𝑖𝑛2𝑒𝑙𝑒𝑖
(10−

(𝑆𝑁𝑅𝑖−𝑇)

𝑎 ((
𝐴

10
−
(𝐹−𝑇)
𝑎

− 1)
(𝑆𝑁𝑅𝑖−𝑇)

𝐹−𝑇
+ 1)) (3-12) 

where 𝐖(𝑖)(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖)  denotes the weighting for satellite 𝑺𝑽𝑖 .The parameter T 

indicates the threshold of SNR and is equal to  𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 . Parameter a, A and F in (12) 

are experimentally determined. Then, the weighting matrix 𝑾 is a diagonal matrix 

constituted by the weightings 𝑾( )(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖). 

 Experimental Evaluation and Conclusions 

To evaluate the performance of the proposed method, two experiments conducted 

in two separate scenarios, are presented in this section. Firstly, the experimental setup 

is introduced in subsection 1. Experimental validations in two typical urban canyons 

are presented in subsection 3 and 4, respectively. The relationship between the satellite 

elevation angle and NLOS error is presented in subsection 4 before the discussion is 

given in subsection 5. 
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3.5.1 Experiment Setup 

Experiments are conducted in two typical urban canyons (urban canyon 1 and 

urban canyon 2) of Hong Kong, and the experimental scenes are shown in Figure 3-7. 

The Skymask on the right-hand side demonstrates the degree of urbanization.  

In both experiments, a u-blox M8T receiver is used to collect raw GPS and BeiDou 

measurements. A 3D LiDAR sensor, Velodyne 32, is employed to provide the real-time 

3D point clouds scanned from the surroundings. Both the u-blox M8T receiver and the 

3D LiDAR are installed on the top of an experiment vehicle, which can be seen on the 

left-hand side of Figure 3-7. The data were collected at a frequency of 1 Hz for GNSS 

and 10 Hz for the 3D LiDAR.  

Besides, the NovAtel SPAN-CPT, GNSS RTK/INS (fiber optic gyroscopes) 

integrated navigation system is used to provide the ground truth of positioning. All the 

data are collected and synchronized using the Robot Operation System (ROS) [66]. 

Moreover, the coordinate systems of all the sensors are calibrated before the 

experiments.  

The parameters used in this paper, which are experimentally determined, are 

shown in TABLE 3-1. Three GNSS positioning methods are compared: 

(1) WLS: GNSS positioning with the WLS. 

(2) WLS-NE: WLS with NLOS exclusion. 

(3) WLS-NC: WLS with NLOS correction. 

 

TABLE 3-1 

PARAMETER VALUES USED IN THIS PAPER 

Parameters  𝑡ℎ 𝑒 ℎ𝑜𝑙   𝑁𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙  𝑒𝑙𝑒𝑡ℎ 𝑒  𝜃𝑡ℎ 𝑒  

Value 10 45 dB-Hz 20° 5° 
Parameters a A 𝐹  

Value 30 32 10  
 

3.5.2 Evaluation of the Proposed Method in Urban Canyon 1 

Figures 3-8 and TABLE 3-2 show the positioning results comparison of the 

conventional WLS, WLS-NE and the proposed method.  

As can be seen from Figure 3-8, the total satellite numbers fluctuate between 5 and 

13, with a mean satellite number of 10 during the experiment. With the aid of the 

proposed NLOS correction method, the positioning performance is improved at most 
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of the epochs, which is indicated by the blue curve in the bottom panel of Figure 3-8. 

30.29 meters of mean positioning error and 19.86 meters of standard deviation were 

obtained using the WLS method without any NLOS exclusion or correction. After the 

NLOS exclusion (all the NLOS are excluded), the mean error goes up to 35.25 meters. 

The main reason for this increase is due to the distortion of satellites’ geometric 

distribution. In other words, the HDOP increases accordingly. According to the 

experiment, approximately 2–6 satellites are classified as NLOS due to the blockage 

from surrounding buildings. Therefore, the availability of GNSS positioning is 

decreased to about 92.5% due to the lack of satellites (at least five satellites are needed 

for GPS/BeiDou-based positioning calculation). The positioning error decreases to 

22.86 meters using the proposed NLOS correction method. Moreover, the availability 

of GNSS positioning is also guaranteed. This result shows that the proposed NLOS 

correction model can obtain improved GNSS positioning performance 

 

Figure 3-7. The sensors setup of the vehicle and tested environment: GNSS and LiDAR 

sensors are installed on the top of the vehicle shown in the left side of the figure. The 

two tested urban scenarios are shown in the middle of the figures. The Skyplot of the 

two experiments is shown on the right side of the figure. 
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Figure 3-8.  Positioning error of the GNSS before and after adding the NLOS correction, 

and NLOS exclusion in the urban canyon 1. The top panel indicates the satellite 

numbers. The bottom panel shows the positioning error: the red curve indicates the 

positioning error using WLS, the blue curve denotes the positioning based on proposed 

NLOS correction. The green curve shows the result of using WLS-NE. 

TABLE 3-2 

POSITIONING PERFORMANCE OF THE TWO METHODS IN URBAN 

CANYON 1 (IN THE UNIT OF METER) 

All data WLS WLS-NE WLS-NC 

Mean error 30.29 35.25 22.86 

Std 19.86 57.49 13.17 

Availability 100% 92.5% 100% 

 

3.5.3 Evaluation of the Proposed Method in Urban Canyon 2  

Figure 3-9 and TABLE 3-3 show the positioning results comparison of the 

discussed three methods.  

As can be seen from Figure 3-9, the total satellite numbers fluctuate between 8 and 

15 with a mean satellite number of 11 during the experiment. With the aid of the 

proposed NLOS correction method, the positioning performance is improved through 

almost all the experiments. 42.15 meters of mean positioning error and 21.29 meters of 

standard deviation are obtained using the WLS method without any NLOS exclusion 

or correction. After the NLOS exclusion (all the NLOS are excluded), the mean error 

goes up to 47.74 meters. According to the experiment, approximately 3–7 satellites are 

classified as NLOS due to the blockage from surrounding buildings. Therefore, the 
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availability of GNSS positioning is decreased to 88.69%. The mean positioning error 

is decreased to 26.7 meters using the proposed NLOS correction method. Moreover, 

the availability of GNSS positioning is also guaranteed.  Interestingly, we can find that 

the variation trends of positioning error using two separate solutions are quite similar 

although the experiment. 

 

Figure 3-9.  Positioning error of the GNSS before and after adding the NLOS correction 

in the urban canyon 2. The top panel indicates the satellite numbers. The bottom panel 

shows the positioning error: the red curve indicates the positioning error using WLS, 

the blue curve denotes the positioning based on proposed NLOS correction. The green 

curve shows the result using WLS-NE 

TABLE 3-3 

POSITIONING PERFORMANCE OF THE TWO METHODS IN URBAN 

CANYON 2 SCENARIO (IN THE UNIT OF METER) 

All data WLS WLS-NE 
WLS-

NC 

Mean error 42.15 47.74 26.70 

Std 21.29 29.34 24.32 

Availability 100% 88.69% 100% 

 

3.5.4 Analysis of Satellite Elevation Angles versus NLOS Errors 

Our previous work in [3] shows that the potential NLOS error is positively 

correlated to the satellite elevation angle. In other words, the NLOS satellite with higher 

elevation can cause a larger GNSS signal transmission delay. To show the relationship 

of GNSS positioning error and satellite elevation angle, we apply the manual correction 

in the collected data. Only satellites whose elevation angles are in a certain elevation 
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angle range are corrected. The objective is to analyze the percentages of NLOS errors 

contributed by each elevation angle range of satellites.  

TABLE 3-4 shows the results of three separate NLOS correction tests of urban 

canyon 1. Three satellite elevation angle ranges are given. If satellites 2, 5 and 24 are 

corrected whose elevation angles are between 20° and 36°, 5.5 meters of improvement 

are obtained with a mean positioning error of 24.79 meters. More than half of the results 

possess errors less than 15 meters. If satellites 29 and 88 are corrected whose elevation 

angles are between 36° and 54°, 1.65 meters of improvement are obtained with a mean 

positioning error of 28.64 meters. Only 17.01% of the results possess errors of less than 

15 meters. There is almost no improvement if only satellite 13 is corrected whose 

elevation angle is between 54° and 72°. 

TABLE 3-5 shows the results of three separate NLOS correction tests of urban 

canyon 2. Firstly, if the satellites 8, 17, 22 and 28, whose elevation angles are between 

18°~36°, are corrected with the proposed method, the mean positioning error is 

decreased from 42.15 meters to 29.93 meters compared with the WLS method. 12.22 

meters of improvement is obtained. Interestingly, the corresponding standard deviation 

also increases slightly. Approximately 79.64% of the positioning results have an error 

which is less than 30 meters. Secondly, only one satellite, satellite 88, possesses an 

elevation angle which is between 36°~54° and is NLOS. A slight improvement is 

introduced after the correction with a mean positioning error of 41.95 meters and a 

standard deviation of 21.80 meters respectively. 0.2 meters of improvement is obtained. 

Moreover, the percentage of positioning results which is more than 40 meters is similar 

to the results from WLS. Thirdly, two satellites, satellites 30 and 99 with an elevation 

which is between 54°~72°. A slight improvement (0.14 meters) is obtained with the 

proposed NLOS corrections. The corresponding percentages are similar to the result of 

the NLOS correction of the elevation range (36°~54°). In summary, the NLOS satellites 

with lower elevation (18°~36°) introduce larger positioning errors, compared with the 

NLOS satellites with higher elevation (36°~72°). 

TABLE 3-4 

POSITIONING PERFORMANCE OF WLSP-NC WITH MANUAL SATELLITE 

CORRECTION (IN THE UNIT OF METER) IN URBAN CANYON 1 

All data 
Elevation 

(20°~36°) 

Elevation 

(36°~54°) 

Elevation 

(54°~72°) 

Mean error 24.79 28.64 30.1 

Std 17.18 15.8 16.24 

Percentage 51.62% 17.01% 16.69% 
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(<15 meters) 

Percentage 

(<30 meters) 
84.66% 43.80% 40.43% 

Percentage 

(>40 meters) 
10.46% 25.70% 29.57% 

Improvement 5.5 1.65 0.19 

NLOS Satellites 

PRN 
2,5,24 29,88 13 

 

TABLE 3-5 

POSITIONING PERFORMANCE OF WLSP-NC WITH MANUAL SATELLITE 

CORRECTION (IN THE UNIT OF METER) IN URBAN CANYON 2 

All data 
Elevation 

(20°~36°) 

Elevation 

(36°~54°) 

Elevation 

(54°~72°) 

Mean error 29.93 41.95 42.01 

Std 24.62 21.80 21.81 

Percentage 

(<15 meters) 
51.32% 7.96% 8.03% 

Percentage 

(<30 meters) 
79.64% 43.36% 39.29% 

Percentage 

(>40 meters) 
15.04% 28.32% 30.36% 

Improvement 12.22 0.2 0.14 

NLOS Satellites 

PRN 
8,17,22,28 88 30,99 

 

3.5.5 Discussion 

1. When comparing the results from the urban canyon 1 and urban canyon, we can 

find that the improvement in urban canyon 2 is more distinct (from 42.15 meters 

to 26.70, 36.7% of improvement in total) than that in urban canyon 1 (from 30.29 

meters to 22.86, 24.5% of improvement in total).  

2. The remaining GNSS positioning errors still 22.86 meters in the middle urban 

and 26.70 meters, respectively. The major reason behind this is that the potential 

GNSS multipath contributes to the remaining error. On the other hand, the 

performance of the NLOS correction relies on the performance of distance 𝛼𝑖 

(from GNSS receiver to the reflector) estimation, as the signal from the NLOS 

satellite, can be reflected by different buildings. As shown in Figure 3-11, the 

NLOS can be caused by both building A and building B (reflector), thus causing 

different 𝛼𝑖. The proposed NLOS correction method can misidentify the reflector 

in some ways. In this case, this misidentification can result in positioning error. 
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Thus, the reflector detection will be studied in future work to improve the 

performance of the proposed NLOS correction method. 

3. According to our previous research [67], the dynamic objects (such as double-

decker bus) on the road can also cause NLOS receptions. The effects from the 

dynamic objects are not modeled which can also contribute to the remaining 

GNSS positioning error. 

4. Performance sensitivity of the proposed method against building heights errors: 

As the proposed method employs the building height list to extend the detected TEBs 

to the exact height. We implement an offline simulation to analyze the performance 

sensitivity of the proposed method against building heights errors. We collect 6 hours 

of satellite ephemeris data and do the LOS/NLOS classification based on 3D building 

models in Hong Kong. The building models are manually added with heights noise 

which is subject to Gaussian distribution (𝜨(μ, 𝛿2)). The offline processing setup is as 

follows: 

(1) Applied satellites: GPS/BeiDou/GLONASS/Galileo. 

(2) Ground truth for LOS/NLOS classification: the LOS/NLOS classification 

based on original 3D building models are treated as ground truth. 

(3) Accuracy of LOS/NLOS classification: detected NLOS satellites number 

denoted by 𝑁𝑁𝐿𝑂𝑆
𝐷𝑒𝑡𝑒𝑐𝑡𝑒 , ground truth number of NLOS satellites denoted by 𝑁𝑁𝐿𝑂𝑆

𝐿  𝑒𝑙. 

Accuracy (𝑃 ) is calculated by 𝑃 = 𝑁𝑁𝐿𝑂𝑆
𝐷𝑒𝑡𝑒𝑐𝑡𝑒 /𝑁𝑁𝐿𝑂𝑆

𝐿  𝑒𝑙 ∗ 100%. 

(4) The position of the assumed GNSS receiver is accurately set. 

The detailed result is shown in Figure 3-10 over the 6 hours of ephemeris. 4 kinds (𝛿 =

2, 4, 6, 8) of building heights noise model (mean μ equals to zero) are applied. The 

percentages are shown in TABLE 3-6. About 99.07 % of the LOS/NLOS classification 

is obtained. With the increased noise standard deviation, the accuracy decreases 

gradually. However, even when the building heights noise standard deviation reaches 

8 meters, accuracy still can reach 95.47%. 
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Figure 3-10 Relationship between the NLOS detection accuracy and simulated 

buildings heights error. The simulated building heights errors are subject to Gaussian 

distribution 𝜨(μ, 𝛿2). The color points denote the accuracy in different epochs. The 

solid lines represent fitted curves based on the result (in 6 hours) under different error 

noise models. 

TABLE 3-6 

PERFORMANCE SENSITIVITY OF PROPOSED METHOD AGAINST 

BUILDING HEIGHTS ERRORS 

Yaw Bias 
Mean NLOS 

Detection Accuracy 
Std 

𝜨(0, (𝟐)𝟐) 99.07% 1.72% 

𝜨(0, (𝟒)𝟐) 97.81% 2.74% 

𝜨(0, (𝟔)𝟐) 96.69% 3.56% 

𝜨(0, (𝟖)𝟐) 95.47% 4.46% 

 

We can conclude from the result that: 1) the building height can error can have a 

slight negative impact against the LOS/NLOS classification, thus can deteriorate the 

performance of the proposed method. 2) the proper way to identify the height of 

buildings can increase the robustness of the proposed method. 

5. Performance sensitivity of the proposed method against yaw (heading) angle 

errors: 

In this method, the yaw angle is derived from the highly accurate RTK GNSS/INS 

integrated navigation system. To analyze the performance sensitivity of the proposed 

method against yaw angle errors, we propose to manually add error noise to the yaw 

angle. The added error noise is subject to Gaussian distribution (𝜨(μ, 𝛿2)). After 
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posing different noise magnitude (𝛿 = 2, 4, 6, 8 ) to the yaw angle, the NLOS 

detection accuracy is decreased accordingly. Be noted that the NLOS detection 

accuracy calculation is the same as that in subsection E-6. 

If the yaw angle with noise error model 𝜨(0, (𝟏°)𝟐) is applied, the performance of 

the proposed method remains the same. However, the mean positioning error 

increased from 26.70 to 29.56 meters after increase the 𝛿 to 𝟐°. The NLOS detection 

accuracy is also reduced to 98.2%. If the 𝛿 is set at 𝟒° and 𝟔°, the NLOS detection 

accuracies are decreased to 95.43% and 93.01%, respectively. Meanwhile, the mean 

positioning errors and standard deviations are slightly increased. We can conclude 

that: the yaw angle error can hurt the performance of the proposed method.  

TABLE 3-7 

PERFORMANCE SENSITIVITY OF PROPOSED METHOD AGAINST YAW 

ERRORS IN URBAN CANYON 2 DATASET 

Yaw Bias 

NLOS 

Detection 

Accuracy 

Mean 

positioning 

error (m) 

Std 

𝜨(0, (𝟏°)𝟐) 100% 26.70 24.32 

𝜨(0, (𝟐°)𝟐) 98.2% 29.56 24.75 

𝜨(0, (𝟒°)𝟐) 95.43% 30.41 24.93 

𝜨(0, (𝟔°)𝟐) 93.01% 31.39 25.51 

𝜨(0, (𝟖°)𝟐) 92% 31.10 27.39 

 

 

Figure 3-11.  Illustration of multiple NLOS signal transmission routes. The direct route 

from the GNSS satellite to the vehicle is blocked by building C. However, the signal 
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can be reflected by building A or building B. As a result, the vehicle can receive the 

GNSS signal as well. 

3.5.6 Conclusions 

In this method, we propose an NLOS correction and an improved GNSS 

positioning method aided by 3D LiDAR. Innovatively, the top boundary of the building 

is detected using the 3D LiDAR-based point cloud segmentation method and NLOS 

satellites are detected based on the detected TEBs. The NLOS is corrected using an 

NLOS error model, instead of direct exclusion. The GNSS positioning is conducted 

based on corrected and healthy LOS satellites. The evaluated results show that the 

proposed method can obtain improved GNSS positioning accuracy compared with the 

standalone WLS.  

The paper proposes to cope with the effects of static buildings on GNSS 

positioning using 3D LiDAR. In the future work, we propose to integrate a sky-pointing 

camera with LiDAR to correct the NLOS receptions, therefore, to improve the GNSS 

positioning. As the camera can capture the sky view in a real-time manner. In this case, 

the camera will play the role to describe Skyplot with obstacles and LiDAR is used to 

provide the distances between the vehicle and the obstacles. Moreover, the yaw angle 

in this paper can be provided by the LiDAR-based positioning [68]. 

 

 

 





 53 

4. OBJECT DETECTION AIDED GNSS AND ITS 

INTEGRATION WITH LIDAR POSITIONING  

 Introduction 

Autonomous vehicles [1, 42] receive increasing attention due to its immense 

potential market. To fully activate autonomous vehicles, the globally referenced and 

meter-level positioning is required in all scenarios. LiDAR is a commonly used sensor 

for autonomous driving which is not only be used for object detection [44, 45] and also 

is employed to provide continuous positioning [69]. In LiDAR-based positioning, the 

SLAM [70, 71] algorithm is usually employed to calculate the transformation between 

the consecutive point clouds provided by LiDAR. However, the localization from the 

SLAM can introduce accumulated error over time, and only relative positioning is 

obtained which cannot satisfy the requirement of the autonomous vehicles. With the 

rise of multi-GNSS, the availability of satellites has been significantly enhanced, which 

makes it possible to receive enough satellites for GNSS positioning even in an urban 

canyon. GNSS is currently a significant source providing continuous global positioning. 

It is usually integrated with the LiDAR-based localization to take advantage of both 

positioning sources [22, 53, 56, 57, 72]. Based on the principle of sensor fusion, the 

sensor integration methods can be divided into two groups, the filtering-based, and the 

smoothing-based integrations. The symbolic filtering based sensor integration method 

is the Bayes filter, including Kalman filter [73, 74], information filter [75-77] and 

particle filter [78-80]. The Bayes filter-based sensor integration estimates the current 

state based on current observation and the previous state estimation, failing to make use 

of all the states before the previous states. This is because of the assumption of the first 

order of the Markov model [81] which is one of the key assumptions of the Bayes filter. 

Conversely, the smoothing approaches [82-85] estimate the pose and map by 

considering the full sets of measurements from the first epoch to the current epoch. The 

most well-known smoothing method is the graph-based SLAM [86]. These 

GNSS/LiDAR integration solutions can obtain decent positioning performance in 

sparse areas as shown in Figure 4-1. However, performance can be severely challenged 

in the super-urbanized area due to poor performance and large uncertainty in GNSS 

positioning. GNSS can achieve 5~10 meters regarding positioning accuracy in an open 

area or sparse scenarios base on the conventional single point positioning (SPP). 
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However, the positioning error can significantly increase to ~50 meters in super-

urbanized areas [3], due to the reflection and blockage from the surrounding buildings. 

The reflection can cause extra travel delay in the pseudorange domain, thus causing the 

well-known multipath effects and NLOS receptions. Moreover, the uncertainty of the 

GNSS positioning is also greatly increased due to the severe NLOS.  

 

Figure 4-1. The top panel shows the performance of GNSS standalone positioning. The 

red circle indicates the GNSS positioning result and the black circle is for the ground 

truth. The bottom panel shows the GNSS/LiDAR integration, where the green points 

represent the point cloud map and the pink circles represent the trajectory generated by 

GNSS/LiDAR integration. 

According to a recent survey [7], the NLOS is the dominant component to blame 

for positioning errors in dense urban areas. Numerous studies [17, 28, 30-32] are 

conducted to identify the NLOS receptions. Because NLOS is caused by the reflection 

from buildings, the 3D city models are employed to identify the NLOS receptions [4, 

9, 18, 87-89]. With the aided of the 3D city models, the possible blockage from the 

buildings can be detected, and the corresponding NLOS is obtained. Then the NLOS 

measurements are excluded from the GNSS positioning subsequently. However, this 

method relies heavily on the availability of the 3D city models which is the main 

problem for its implementation. The range-based 3D map aided GNSS (3DMA GNSS) 

[17, 30-32] is one of the most mature techniques to mitigate the positioning errors from 
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NLOS receptions. It innovatively employs the ray-tracing simulation to simulate the 

possible transmission routes of the GNSS signals. Thus, the travel delay can be 

calculated based on the simulated signal transmission route. The NLOS measurement 

is also corrected and used in the further GNSS positioning calculation. However, this 

method introduces a heavy computational load due to the ray-tracing simulation. 

Moreover, 3D city models are also needed, and those map-aided GNSS positioning 

methods rely heavily on the initial guess of the receiver.  

The other problem in GNSS/LiDAR integration is the large uncertainty of GNSS 

positioning in urbanized areas. The uncertainty is referred to as the noise covariance 

which is essential in the GNSS/LiDAR integration. Satisfactory performance can be 

obtained using the GNSS/LiDAR integration scheme on the condition that each sensor 

noises are well modeled. However, the researches in [53, 56, 57, 72] model the GNSS 

positioning uncertainty as Gaussian distribution. This rough modeling of GNSS 

positioning uncertainty can work in the places where GNSS positioning is robust and 

accurate with few NLOS receptions. However, the GNSS positioning error does not 

subject to Gaussian distribution any more in the urbanized area [3]. The conventional 

constant and Gaussian distribution-based covariance cannot model the actual 

performance of the GNSS positioning. As a result, the GNSS/LiDAR integration result 

can introduce additional positioning errors. A GNSS covariance estimation solution 

based on satellite numbers and signal to noise ratio (SNR) which can obtain 

improvements [90] comparing with the conventional constant covariance solution. 

However, this scheme cannot effectively model the positioning error from NLOS. 

Taking advantage of the 3D LiDAR sensor, the 3D point cloud map is employed to 

identify the NLOS measurement [36]. This method can effectively detect the NLOS 

signals which are similar to the methods in [4, 91] using the 3D city models. Then, the 

NLOS receptions are all excluded from the GNSS positioning. The point cloud map 

plays a similar role in the 3D city maps. However, this implementation of this method 

is subjected to the availability of the fully 3D point cloud map of buildings, which is 

difficult to obtain. Moreover, the GNSS positioning uncertainty is simply estimated 

based on the new horizontal dilution of precision (HDOP), and the actual NLOS errors 

are not effectively modeled. 

This Section 4 innovatively employs the 3D LiDAR to facilitate the GNSS 

positioning and corresponding covariance estimation using the real-time point clouds-

based object detection. Then, the improved GNSS positioning is integrated with LiDAR 
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odometry under a graph-based SLAM framework. The flowchart of the GNSS/LiDAR 

integration solution is shown in Figure 4-2. 

 

Figure 4-2 The flowchart of the proposed GNSS/LiDAR integration method. Three 

parts are included: (a). GNSS positioning and its covariance estimation, (b). LiDAR 

odometry and its covariance estimation and (c). The graph-based optimization. 

Firstly, the building boundary is detected based on the algorithm proposed in the 

previous work [92] of our research team. The point clouds are fixed to the GNSS frame 

based on the orientation obtained from LiDAR odometry (shown in Figure 4-2). The 

satellites and the building boundary are both projected to a GNSS Skyplot [48]. 

Secondly, the NLOS detection is conducted based on a proposed NLOS detection 

algorithm. GNSS measurements suffered from both NLOS, and low elevation angle is 

excluded based on a proposed FDE algorithm. Then, the GNSS positioning is 

conducted based on the survived GNSS measurements. Thirdly, the GNSS positioning 

covariance is calculated by considering the potential positioning errors caused by 

NLOS receptions and line-of-sight (LOS) receptions. Finally, the improved GNSS 

positioning result and corresponding covariance are integrated with the LiDAR 

odometry using a graph-based SLAM framework 

 LIDAR Odometry and Its Covariance Estimation 

4.2.1 LiDAR Odometry 

The principle of LiDAR odometry [93] is to track the transformation between two 
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successive frames of point clouds by matching the two frames (called as a reference 

and an input point cloud in this paper). The matching process is also called point cloud 

registration. The objective of point cloud registration is to obtain the optimal 

transformation matrix to match or align the reference and the input point clouds. The 

most well-known method of point cloud registration is the iterative closest point (ICP) 

[94]. The ICP is a straightforward method to calculate the transformation matrix 

between two consecutive scans by iteratively searching pairs of nearby points in the 

two scans and minimizing the sum of all point-to-point distances. The objective 

function can be expressed as follows [94]: 

𝐶(𝑹̂, 𝑻̂) = argmin∑ ||(𝑹𝒑𝑖 + 𝑻) − 𝒒𝑖||
2𝑁

𝑖=1              (4-1) 

where the N indicates the number of points in one scan p, R and T indicate the rotation 

and translation matrix, respectively, to transform the input point cloud (𝒑) into the 

reference point cloud ( 𝒒 ). Objective function 𝐶(𝑹̂, 𝑻̂)  indicates the error of the 

transformation. The main drawback of this method is that ICP can easily get into the 

local minimum problem. The normal distribution transform [95] (NDT) is a state-of-art 

method to align two consecutive scans with modeling of points based on Gaussian 

distribution. The NDT innovatively divides the point cloud's space into cells. Each cell 

is continuously modeled by a Gaussian distribution. In this case, the discrete point 

clouds are transformed into successive continuous functions. In this paper, the NDT is 

employed as the point cloud registration method for the LiDAR odometry. Assuming 

that the transformation between two consecutive frames of point clouds can be 

expressed as 𝒑𝒐𝒔𝒆6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [𝑡𝑥 𝑡 𝑡𝑧 𝜙𝑥 𝜙 𝜙𝑧]𝑇. The 𝑡𝑖 indicates the translation 

in the x, y, and z-axis, respectively. The 𝜙𝑥 represents the orientation angle of the roll, 

pitch, and yaw, respectively. Steps of calculating the relative pose between the 

reference and the input point clouds are as follows: 

1) Fetch all the points 𝒙𝑖=1…𝑛 contained in a 3D cell [96]. 

Calculate the geometry mean 𝒒 =
1

𝑛
∑ 𝒙𝑖𝑖 . 

Calculate the covariance matrix 

𝜮 =
1

𝑛
∑ (𝒙𝑖 − 𝒒)(𝒙𝑖 − 𝒒)𝑇𝑖                                           (4-2) 

2) The matching score is modeled as: 

𝑓(𝒑) = −score(𝒑) = ∑ exp (−
(𝒙𝑖

′−𝒒𝑖)
𝑇𝜮𝑖

−1
(𝒙𝑖

′−𝒒𝑖)

2
)𝑖        (4-3) 
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where 𝒙𝑖 indicates the points in the current frame of scan p. 𝒙𝑖
′ denotes the point 

in the previous scan mapped from the current frame using the 𝑝𝑜𝑠𝑒6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝒒𝑖 and 𝜮𝑖 

indicate the mean and the covariance of the corresponding normal distribution to 

point 𝒙𝑖
′ in the NDT of the previous scan. 

3) Update the pose using the Quasi-Newton method based on the objective function 

to minimize the score, 𝒇(𝒑). 

With all the points in one frame of point clouds being modeled as cells, the 

objective of the optimization for NDT is to match current cells into the previous cells 

with the highest probability. The optimization function 𝑓(𝒑) can be found in [95]. In 

each cell containing several points, the corresponding covariance matrix can be 

calculated and represented by 𝜮 . The shape (circle, plane or linear) of the cell is 

indicated by the relations between the three eigenvalues of the covariance matrix [95]. 

In this case, comparing with the conventional ICP algorithm, the NDT innovatively 

optimize the transformation by considering the features of points. The loop closure 

detection is conducted based on these shape features [97]. 

4.2.2 Covariance Estimation of LiDAR Odometry 

The LiDAR odometry can provide continuous relative pose estimation, 𝒑𝒐𝒔𝒆6⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

The associated covariance of this pose estimate is essential for the later integration with 

the GNSS positioning. During the NDT process, the covariance of pose estimation is 

related to the uncertainty of the matching between the reference and the input point 

clouds. In the graph-based optimization which will be introduced in Section IV, the 

covariance is indicated as the inverse of the information matrix 𝜴𝑖𝑗. In each matching 

process between a point from the reference point cloud and a point from the input point 

cloud, we model the degree of matching as: 

𝑑𝑚𝑖𝑗 =
1

𝑛
∑ √Δ𝑥 

2 + Δ𝑦 
2 + Δ𝑧 

2𝑛
 =1                           (4-4) 

where the 𝑑𝑚𝑖𝑗 represent the degree of matching between the reference and the input 

point clouds. n represents the number of points in the input point cloud. Δ𝑥  indicates 

the positional difference in the x-axis between input and reference points after the 

convergence of NDT is obtained. Δ𝑦  and Δ𝑧  indicate the positional differences in y 

and z-axis, respectively. Thus, the information matrix 𝜴𝑖𝑗 of the degree of matching 

between reference and input can be expressed as: 
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𝜴𝑖𝑗 = [
𝜴𝑖𝑗
 

0

0 𝜴𝑖𝑗
 ]                              (4-5) 

𝜴𝑖𝑗
 = 𝑰/(C 

2𝑑𝑚𝑖𝑗)                             (4-6) 

𝜴𝑖𝑗
 = 𝑰/(C 

2𝑑𝑚𝑖𝑗)                             (4-7) 

 

where I indicate identity matrix, C 
2 is a coefficient that is heuristically determined. In 

this case, the covariance for LiDAR odometry is correlated with the degree of matching. 

Usually, the LiDAR matching can obtain relatively pose estimates on the lateral 

direction crossing the building. However, the longitudinal pose estimate is not as 

accurate as of the lateral one because the building surface tends to be plain and 

featureless. Thus, the covariance should be adaptively changed according to the degree 

of matching in different scenarios. 

 Object Detection Aided GNSS Positioning And Its Covariance Estimation 

In this section, the detection of the building boundary is presented firstly. The 

NLOS fault detection and exclusion (FDE) method is presented subsequently. Secondly, 

GNSS positioning is implemented based on the NLOS FDE. Finally, the innovative 

covariance estimation of GNSS positioning is introduced. 

4.3.1 Clustering for Double-decker Bus Detection 

To identify which satellite is blocked by the surrounding buildings, the pose of the 

building boundaries relative to the GNSS receiver is needed. As the 3D LiDAR can 

provide sufficient points representing the environments, our previous work in [92] 

presents the detection of double-decker bus and dimensions extension algorithm based 

on LiDAR-based object detection. Building boundary detection is based on a similar 

approach. The process of building boundary detection is listed as follows: 

1) Segment the point clouds into clusters to represent different objects. 

2) Identify the building surface and extend the surface dimensions to the actual 

dimensions using Algorithm 4-1. 

3) Obtain the bounding box indicating the building surface, and the 

corresponding top boundary. 

4) Calculate the pose of the building relative to the GNSS receiver. 
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Figure 4-3 Illustration of point sets segmentation and building surface identification. 

Blue box ABCD represents the initially detected building surface. Blue box CDEF 

represents the extended building surface. 

 

The inputs of Algorithm 4-1 are 𝑼𝑡
 𝑒𝑔

 and 𝑶𝑡
𝑜 𝑔

 obtained from the segmentation 

based on the work in [92], point number threshold 𝑛𝑢𝑚𝑡ℎ 𝑒 , length threshold 𝑙𝑒𝑛𝑡ℎ 𝑒  

and height threshold ℎ𝑒𝑖𝑡ℎ 𝑒 , building height list 𝑯  𝑖𝑙 , receiver position 𝑷𝑡
𝑓  𝑒 

, 

yaw angle 𝑌𝑎𝑤 from GNSS/LiDAR integration. The output is the bounding box set 

𝑩𝑡
 𝑒𝑔_  𝑖𝑙

 specifically represent the building surface. Each bounding box is indicated by 

𝑼𝑖 = [𝑥𝑖
𝑐 , 𝑦𝑖

𝑐, 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐, 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
ℎ𝑒𝑖]. The function Num mentioned in 

Algorithm 1 is used to calculate the points number of each cluster 𝑶𝑖. The function 

𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡 is used to search the height information from a saved building height list 

containing the rough height information. To determine the actual height of the identified 

building surface, 𝑷𝑡
𝑓  𝑒 

, 𝑼𝑖  and 𝑌𝑎𝑤  are also needed. 𝑷𝑡
𝑓  𝑒 

 indicates the GNSS 

position given by previous epoch positioning result from GNSS/LiDAR integration. 

The relative position between the GNSS receiver and detected building can be obtained 

from 𝑼𝑖. Moreover, the yaw angle can be acquired from GNSS/LiDAR integration. For 

each bounding box 𝑩𝑖, the distance 𝛼𝑖 from the receiver to the detected building surface 

can be calculated as follows: 
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𝛼𝑖 = √(𝑥𝑖
𝑐2 + 𝑦𝑖

𝑐2 + 𝑧𝑖
𝑐2)                           (4-8) 

 

Algorithm 4-1: Building surface identification from Bounding Box sets and 

height extension 

Input: Bounding Box sets 𝑼𝑡
 𝑒𝑔

= {𝑼1, 𝑼2, … , 𝑼𝑖 , …𝑼𝑛, 𝑡}, Organized point clusters 

𝑶𝑡
𝑜 𝑔

= {𝑶1, 𝑶2, … , 𝑶𝑖 , …𝑶𝑛, 𝑡}, point number threshold 𝑛𝑢𝑚𝑡ℎ 𝑒 , length threshold 

𝑙𝑒𝑛𝑡ℎ 𝑒  and height threshold ℎ𝑒𝑖𝑡ℎ 𝑒 , building height list 𝑯  𝑖𝑙 , receiver position 

𝑷𝑡
𝑓  𝑒 

, yaw angle 𝑌𝑎𝑤  

Output: Bounding Box set represent building surfaces 𝑩𝑡
 𝑒𝑔_  𝑖𝑙

=

{𝑩1, 𝑩2, … , 𝑩𝑖, …𝑩𝑛, 𝑡} 

1  set up an empty clusters list 𝑩𝑡
 𝑒𝑔_  𝑖𝑙

 to save bounding box 

2  for all bounding box 𝑼𝑖 in 𝑼𝑡
 𝑒𝑔

 do 

3    if Num(𝑂𝑖) > 𝑛𝑢𝑚𝑡ℎ 𝑒  

4     𝑼𝑖 ← [𝑥𝑖
𝑐 , 𝑦𝑖

𝑐, 𝑧𝑖
𝑐 , 𝑟𝑜𝑙𝑙𝑖

𝑐, 𝑝𝑖𝑡𝑐ℎ𝑖
𝑐 , 𝑦𝑎𝑤𝑖

𝑐, 𝑑𝑖
𝑙𝑒𝑛, 𝑑𝑖

𝑤𝑖 , 𝑑𝑖
ℎ𝑒𝑖]  

5      if 𝑑𝑖
𝑙𝑒𝑛 > 𝑙𝑒𝑛𝑡ℎ 𝑒   𝐚𝐧𝐝 𝑑𝑖

ℎ𝑒𝑖 > ℎ𝑒𝑖𝑡ℎ 𝑒  

6        𝑑𝑖
ℎ𝑒𝑖 ← 𝑔𝑒𝑡𝐻𝑒𝑖𝑔ℎ𝑡(𝑯  𝑖𝑙 , 𝑷𝑡

𝑓  𝑒 
, 𝑼𝑖, 𝑌𝑎𝑤 ) 

7        𝑩𝑖 ← 𝑼𝑖 

8      end if 

9    end if 

10 end for 𝑼𝑡
 𝑒𝑔

 

Thus, the bounding box with extended height representing the building surface can 

be identified using Algorithm 4-1. The bounding box is extended from rectangles 

ABCD to CDEF as can be seen in Figure 4-3. The bounding boxes ABCD and CDEF 

indicate the initially detected dimensions and the extended dimensions of the building, 

respectively. Then, the boundary parameters for the bounding box 𝑩𝑖 corresponding to 

building surface is denoted by the line segment 𝐸𝐹̅̅ ̅̅  denoted as 𝑩  𝑖𝑙 
  , the matrix of bus 
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boundary. To represent the building, two points, E and F, are required. The 𝑩  𝑖𝑙 
  , 

which is relative to the LiDAR coordinate system, is structured as follows: 

𝑩  𝑖𝑙 
  = [

𝑥  𝐸 𝑦  𝐸 𝑧  𝐸
𝑥  𝐹 𝑦  𝐹 𝑧  𝐹

]     (4-9) 

In this case, the top boundary of the building is detected which is used for NLOS 

detection in the following sub-section. The distance between the receiver and the 

building surface is calculated as 𝛼𝑖 which will be used for the covariance estimation of 

GNSS positioning in the following sections. 

4.3.2 NLOS Detection and Exclusion 

The boundary of the building is detected as 𝑩  𝑖𝑙 
  . The satellites and the building 

boundary can be projected into a GNSS Skyplot which is shown in Figure 4-4. The 

circles indicate the satellites and the associated number represents the satellite index. 

The yellow line indicates the building boundary projected into the Skyplot. The NLOS 

is indicated with a red circle in Figure 4-4. Assume that the initial satellites set are 

𝑺𝑽𝑡
 𝑙𝑙 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖, … 𝑺𝑽 } , where 𝑺𝑽𝑖 = {𝑎𝑧𝑖, 𝑒𝑙𝑖,  𝑁𝑅𝑖,  𝑖} . 𝑎𝑧𝑖  and 𝑒𝑙𝑖 

denote the azimuth and elevation angles of a satellite, respectively,  𝑁𝑅𝑖  indicates 

satellite SNR and  𝑖  denotes the pseudorange measurement. The satellite visibility 

classification based on satellite information and boundaries is introduced in the 

previous work [67] of our research team. According to Fig. 5, we can have two satellite 

sets. One is the satellites set 𝑺𝑽𝑡
𝑛𝑙𝑜 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖, … 𝑺𝑽𝑛} containing only the 

NLOS ones. The other one is the LOS satellite set 𝑺𝑽𝑡
𝑙𝑜 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖, … 𝑺𝑽𝑙} 

and 𝑠 = 𝑛 + 𝑙 is satisfied. 
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Figure 4-4 GNSS Skyplot indicates the satellites distribution and building boundary 

We can see from the Skyplot in Figure 4-4, the majority of the satellites are 

blocked (6 blocked out of 12 satellites). Almost only satellites with elevation angle 

more than 72 degrees are not blocked. The exclusion of all the NLOS receptions can 

result in a significant increase in the HDOP which will magnify the pseudorange errors 

in GNSS positioning. In other words, the full exclusion of NLOS receptions will 

conversely deteriorate the GNSS positioning result. In the previous work, we analyze 

NLOS errors in [3]. The pseudorange error is smaller while the higher of elevation 

angle and smaller the distance from GNSS receiver to the reflector (refers to 𝛼𝑖). In 

other words, the NLOS with lower elevation angle can introduce a larger GNSS 

positioning error. The relations between the satellite elevation, 𝛼𝑖  and pseudorange 

error are presented in [3].  

Inspired by this result [98], this paper proposes to exclude the measurement based 

on the satellite elevation angle and the HDOP of satellite distribution. The proposed 

satellite exclusion method is shown in Algorithm 4-2. The inputs of the algorithm 

include the NLOS satellites information sets  𝑺𝑽𝑡
𝑛𝑙𝑜 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖, … 𝑺𝑽𝑛} and 

𝑺𝑽𝑡
𝑙𝑜 . Only the satellites blocked by buildings are contained in the satellite set 𝑺𝑽𝑡

𝑛𝑙𝑜  

(for example, the satellite 8, 17, 28, 22, 30, 39 shown in Figure 4-4). The thresholds for 

elevation angle and HDOP are also the inputs of Algorithm 4-2. The output of 

Algorithm 4-2 is the satellites set survived from this NLOS exclusion process, indicated 

as 𝑺𝑽𝑡
𝑙𝑜 _𝑛𝑙𝑜 = {𝑺𝑽1

 , 𝑺𝑽2
 , … , 𝑺𝑽𝑖

 , … 𝑺𝑽𝑚
 }. 

After the proposed NLOS exclusion, part of the NLOS measurements is excluded 

from low elevation angles. The survived NLOS and LOS measurements are saved into 

the 𝑺𝑽𝑡
𝑙𝑜 _𝑛𝑙𝑜 . This satellite set is used for GNSS positioning using the WLS method 

in the following sub-section. 

Algorithm 4-2: Proposed NLOS Exclusion 

Input: Satellites information set 𝑺𝑽𝑡
𝑛𝑙𝑜 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖 , … 𝑺𝑽𝑛} , 

𝑺𝑽𝑡
𝑙𝑜 = {𝑺𝑽1, 𝑺𝑽2, … , 𝑺𝑽𝑖, … 𝑺𝑽𝑙}  , elevation angle threshold 

𝑒𝑙𝑡ℎ 𝑒 ℎ𝑜𝑙 , the threshold of HDOP 𝐻𝑡ℎ 𝑒  

Output: corrected satellites set after NLOS exclusion: 𝑺𝑽𝑡
𝑙𝑜 _𝑛𝑙𝑜 =

{𝑺𝑽1
 , 𝑺𝑽2

 , … , 𝑺𝑽𝑖
 , … 𝑺𝑽𝑚

 } 
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Step 1: sort the satellites set in 𝑺𝑽𝑡
𝑛𝑙𝑜  based on elevation angle from 

small to large 

Step 2: exclude satellite 𝑺𝑽𝑖 from 𝑺𝑽𝑡
𝑛𝑙𝑜  if: 

• its elevation angle is smaller than 𝑒𝑙𝑡ℎ 𝑒 ℎ𝑜𝑙   

• The HDOP of the remaining satellites (including the 

remaining satellites in 𝑺𝑽𝑡
𝑛𝑙𝑜  and satellites in 𝑺𝑽𝑡

𝑙𝑜 ) is 

smaller than the HDOP threshold 𝐻𝑡ℎ 𝑒 . 

Step 3: Repeat step 2 until all the conditions in step 2 cannot be fully 

satisfied. 

Step 4: save the remaining satellites in 𝑺𝑽𝑡
𝑛𝑙𝑜  and 𝑺𝑽𝑡

𝑙𝑜 to 𝑺𝑽𝑡
𝑙𝑜 _𝑛𝑙𝑜 =

{𝑺𝑽𝑡
𝑛𝑙𝑜 , 𝑺𝑽𝑡

𝑙𝑜 }. 

 

4.3.3 GNSS Positioning Covariance Estimation 

The GNSS positioning result is represented as 𝑷𝑡
𝐸𝑁𝑈 = [𝑥𝐸 𝑦𝑁 𝑧 ] in the ENU 

coordinate system [64]. Conventionally, the GNSS uncertainty is usually modeled by 

considering the SNR, satellite numbers and HDOP if the NLOS satellites are not 

identified [90]. This rough modeling can only work in open-sky environments with 

little NLOS receptions. The team at the University of Illinois [91] proposes to model 

the GNSS positioning uncertainty solely based on the SNR [91] after identifying and 

excluding the NLOS receptions. However, fully NLOS exclusion is not acceptable in 

the super-urbanized area as it can result in a significant increase in HDOP. In this paper, 

we propose to model the covariance matrix of GNSS positioning that consisted of two 

parts, the NLOS and LOS, as following: 

𝑹𝐺 = 𝑹𝐶 + 𝑹𝐸                                 (4-10) 

The 𝑹𝐶 is the covariance matrix indicates the uncertainty of GNSS positioning with the 

assumption that all the satellites used for positioning in 𝑺𝑽𝑡
𝑙𝑜 _𝑛𝑙𝑜  are line-of-sight. The 

𝑹𝐶 is calculated as follows: 

𝑹𝐶 = (
1 0
0 1

)𝐻𝐷𝑂𝑃𝑥 𝜎𝑈𝐸𝑅𝐸
2                             (4-11) 

𝜎𝑈𝐸𝑅𝐸  indicates the user-equivalent range error (UERE) and is experimentally 

determined in this paper. The 𝐻𝐷𝑂𝑃𝑥  is the HDOP of the GNSS positioning.  
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The 𝑹𝐸  is the covariance matrix indicates the extra uncertainty of GNSS 

positioning caused by the NLOS satellite. The 𝑹𝐸 is calculated as follows: 

𝑹𝐸 = (
1 0
0 1

)𝐻𝐷𝑂𝑃𝑥 𝜎𝑁𝐿𝑂𝑆
2                               (4-12) 

σ𝑁𝐿𝑂𝑆 indicates the extra uncertainty caused by the NLOS receptions. According to [3], 

the pseudorange error for each NLOS measurement can roughly be modeled as follows: 

𝛾 = 𝛼(𝑠𝑒𝑐𝜃𝑒𝑙𝑐(1 + 𝑐𝑜𝑠2𝜃𝑒𝑙𝑐) + 𝑠𝑒𝑐𝜃 𝑧𝑚(1 + 𝑐𝑜𝑠2𝜃 𝑧𝑚))  (4-13) 

where 𝛼 represents the distance between the GNSS receiver and the reflector and is 

obtained from the surface detection presented in Section III-A. The 𝜃𝑒𝑙𝑐  and 𝜃 𝑧𝑚 

represents the elevation and azimuth angles, respectively. Thus, we can obtain the total 

uncertainty of pseudorange σ𝑁𝐿𝑂𝑆 for all the satellites (totally k satellites) as following: 

σ𝑁𝐿𝑂𝑆 = ∑ 𝛾𝑖
 
𝑖=1                                  (4-14) 

In this case, the covariance of GNSS positioning is calculated by considering both 

the LOS and the NLOS measurements. The component needed to be estimated in the 

matrix 𝑹𝐺 is the following: 

𝑹̅ = 𝐻𝐷𝑂𝑃𝑥 𝜎𝑁𝐿𝑂𝑆
2 + 𝐻𝐷𝑂𝑃𝑥 𝜎𝑈𝐸𝑅𝐸

2                (4-15) 

Moreover, only the covariance in the horizontal direction is obtained. In the super-

urbanized area, the vertical dilution of precision (VDOP) is significantly larger than the 

HDOP. The positioning error in the vertical direction can be very bad due to the 

distorted vertical distribution of the satellites. Thus, only the horizontal GNSS 

positioning and the corresponding covariance are used in the proposed GNSS/LiDAR 

integration. 

 Graph-Based GNSS/LiDAR Integration 

This section presents the graph-based GNSS/LiDAR integration. Pose graph 

optimization is to construct all the measurements into a graph as constraints and 

calculate the best set of poses by solving a non-linear optimization problem. In this 

paper, the constraints are provided by both the object detection aided GNSS positioning 

and the LiDAR odometry. Two steps are needed to implement the graph-based 

GNSS/LiDAR integration optimization, graph generation, and graph optimization. 
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4.4.1 Graph Generation 

The graph is constituted by edges and vertexes [86]. Edges are provided by the 

observation measurements including the GNSS and the LiDAR as shown in Fig. 6. The 

𝒙𝑖  represents the 6-dimension (6D) pose estimation that included the position and 

orientation. 𝒆𝑖𝑗  indicates the error function evaluating the difference between the 

estimated state and the observation from sensors. 𝒛𝑖𝑗  represents the observation. In 

graph optimization, the 𝒙𝑖  is the state. The observations include three parts, the 

measurements from the GNSS, loop closure, and the LiDAR positioning presented in 

Sections II and III, respectively. The blue circles and red lines represent the nodes and 

the edges respectively, which are provided by the globally referenced GNSS 

positioning. The red circles and blue lines indicate the nodes and the edges respectively, 

provided by LiDAR odometry. The black line indicates the edge provided by loop 

closure. The error function for GNSS observation is expressed as follows: 

𝒆𝑖
𝐺𝑁𝑆𝑆 = ||ℎ𝑖(𝒙𝑖) − 𝒛𝑖

𝐺𝑁𝑆𝑆||𝜴
2                   (4-16) 

where the ℎ𝑖(∗) is the measurement function, relating between the GNSS measurement 

𝒛𝑖
𝐺𝑁𝑆𝑆  to the state 𝒙𝑖 . 𝜴 is the covariance matrix of the corresponding observation 

measurement. 

LiDAR odometry can provide continuous 6D pose estimates and corresponding 

covariance. The error function for LiDAR odometry is expressed as: 

𝒆𝑖
𝐿𝑖𝐷𝐴𝑅 = ||𝒙𝑖 − 𝒙𝑖−1 − 𝒛𝑖

𝐿𝑖𝐷𝐴𝑅||𝜴
2                    (4-17) 

where the 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅  is the measurement from LiDAR odometry. Loop closure can be 

detected when the vehicle passes a similar or neighboring area again. The error function 

for loop closure is expressed as: 

𝒆𝑖,𝑗
𝑙𝑜𝑜 = ||𝒙𝑖 − 𝒙𝑗 − 𝒛𝑖

𝑙𝑜𝑜 ||𝜴
2                     (4-18) 

where the 𝒛𝑖
𝑙𝑜𝑜 

 is the measurement from loop closure. 

Only 2D horizontal positioning and corresponding covariance are provided by 

GNSS positioning in this paper. GNSS positioning error can go up to ~50 meters in a 

super-urbanized area. As the covariance of GNSS positioning is reasonably estimated 

by considering the NLOS and LOS receptions, we propose to add the GNSS results into 

the graph (shown in Figure 4-5) only when the √𝑹̅ of GNSS positioning is smaller than 
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a threshold 𝑹𝑡ℎ 𝑒 ℎ𝑜𝑙 . In this case, only the GNSS measurement with small covariance 

is applied to the graph optimization for providing the globally referenced update. This 

exclusion can prevent the severely biased GNSS positioning result from being applied 

to the graph. The detail of graph generation is shown in Algorithm 4-3. 

Algorithm 4-3: Proposed Graph Generation 

Input: GNSS results 𝒛𝑖
𝐺𝑁𝑆𝑆  and the corresponding covariance 𝑹̅𝑖 . LiDAR 

odometry observation 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅, loop closure 𝒛𝑖

𝑙𝑜𝑜 
 

Output: Graph of nodes and vertexes 

Step 1: Initialize the estimated state using the GNSS results. 

Step 2: Add the observation 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅 from LiDAR odometry into the graph if 

any of the following conditions are satisfied:  

• The translation between the current LiDAR odometry and the 

previous node in the graph overweigh 𝑇𝑟𝑎𝑛𝑡ℎ 𝑒 ℎ𝑜𝑙 . 

• The rotation between the current LiDAR odometry and the 

previous node in the graph overweigh 𝑅𝑜𝑡𝑡ℎ 𝑒 ℎ𝑜𝑙 . 

Step 3: Add the observation of GNSS results in the graph if:  

• The value √𝑹̅𝑖 is smaller than 𝑹𝑡ℎ 𝑒 ℎ𝑜𝑙 . 

Step 4: Add the observation 𝒛𝑖
𝑙𝑜𝑜 

 from loop closure into the graph if loop 

closure is detected.  

Step 5: Repeat Steps 2 and 3 until the end. 

 

Comparing with the conventional graph-based GNSS/LiDAR integration, this 

paper innovatively adds the improved GNSS results and corresponding covariance into 

the graph optimization. The effectiveness of this novelty is subjected to the performance 

of the uncertainty estimation of GNSS positioning which is introduced in Section 4.4.3. 
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Figure 4-5 Demonstration of graph generation based on GNSS and LiDAR positioning. 

4.4.2 Graph Optimization 

The graph optimization [99] is straightforward that took all the constraints into a 

non-linear optimization problem. The optimization form is shown as following: 

𝐹(x) = ∑ ||ℎ𝑖(𝒙𝑖) − 𝒛𝑖
𝐺𝑁𝑆𝑆||𝜴

2 +𝑖,𝑗 ||𝒙𝑖 − 𝒙𝑖−1 − 𝒛𝑖
𝐿𝑖𝐷𝐴𝑅||𝜴

2+||𝒙𝑖 − 𝒙𝑗 − 𝒛𝑖
𝑙𝑜𝑜 ||𝜴

2   (4-

19) 

where 𝐹(𝑥) is the optimization function which is the sum errors of all the edges. 𝜴𝑖𝑗 is 

the information matrix indicating the importance of each constraint in the global graph 

optimization. The information matrix is the inverse of the covariance matrix. The final 

solution to this optimization is the 𝒙∗  (6D pose estimate) satisfying the following 

function: 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹(𝒙)                                      (4-20) 

Thus, the optimization lies in solving the equation above to obtain the optimal 𝒙∗. We 

can see from the optimization form 𝐹(𝒙), the covariance of the GNSS and LiDAR 

odometry positioning results are reflected in 𝜴. If the covariance of each positioning 

result is not properly estimated, the global optimization will be deflected resulting in 

the erroneous final pose sets. 

 Experimental Evaluation and Conclusions 

To evaluate the performance of the proposed GNSS/LiDAR integration method in 

this paper, two experiments are presented in this section. The performance of LiDAR 

stand-alone positioning in diverse urban scenarios is extensively evaluated in previous 



 69 

work [68] of our research team. GNSS positioning results are presented at first. Then, 

the GNSS/LiDAR integration experiment results are analyzed. 

 

Figure 4-6 The sensors setup of the vehicle: GNSS and LiDAR sensors are installed on 

the top of the vehicle. 

4.5.1 Experiment Setup 

Two experiments are conducted in Hong Kong. The first experiment is 

implemented in a narrow street with buildings on both sides which can be seen in Fig. 

7. Both sides of the road are filled with buildings and the distance between the buildings 

is just 7~10 meters (see in Fig. 7). The experiment is conducted with an open-loop route. 

The other experiment is conducted with a closed-loop route, and loop closure is 

available for the GNSS/LiDAR integration. The objective of this closed drive is to 

validate that the proposed GNSS/LiDAR integration solution. is repeatable in diverse 

scenarios and the overall performance can be well enhanced with the aid of loop closure. 

In both of the experiments, the u-blox M8T receiver is used to collect raw GPS 

and BeiDou measurements. 3D LiDAR sensor, Velodyne 32, is employed to provide 

the real-time point clouds scanned from the surroundings. Both u-blox receiver and 3D 

LiDAR are installed on the top of a vehicle during the experiment which can be seen in 

Fig. 7. The data were collected within approximately 5 minutes’ drive at a frequency 

of 1 Hz for GNSS and 10 Hz for 3D LiDAR using Robot Operation System (ROS) [66] 

time to synchronize all the sensor information. The sensor setup and the corresponding 
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coordinate system are shown in Fig. 7 with the x-axis (LiDAR coordinate system) 

pointing back of the vehicle. The GNSS positioning is represented in the ENU reference 

system. The initial position of the experiment is employed as the initial position 

calculation of ENU coordinates. Moreover, LiDAR coordinate is shown in Figure 7 and 

are calibrated [68] with GNSS in ENU [100] coordinate at the beginning of the 

experiment.  

Besides, the NovAtel SPAN-CPT, GNSS/INS (fiber optic gyroscopes) integrated 

navigation system is used to provide the ground truth trajectory with decimeter level 

accuracy. 

TABLE 4-1 

PERFORMANCE OF THE THREE GNSS POSITIONING METHODS (2D POSITIONING) 

All data 
Convent

ional: 

WLS 

WLS-NE-A 

(Excluding all NLOS) 

WLS-NE-P (Partially 

Excluding NLOS) 

Mean Error 29.81 m 30.25 m 27.09 m 

std 21.09 m 22.28 m 19.6 m 

Availability 100% 97.45% 100% 

 

 
Figure 4-7.  Experiment 1: Experimental results of WLS and WLS-NE, which depicted 

in red and blue dots, respectively. The top panel indicates the number of satellites used. 

The bottom panels indicate 3D positioning errors. 

4.5.2 Experimental Evaluation using Data Collected by Open Loop Route 

(1) GNSS Positioning Evaluation 
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GNSS positioning is evaluated by comparing WLS-based GNSS positioning with 

the GNSS positioning aided by NLOS exclusion. The results of the GNSS positioning 

(2 dimensions) using different methods are listed in TABLE 4-1. If all the NLOS 

receptions are excluded from GNSS positioning, the result is shown in the third column. 

The result obtained by the proposed NLOS exclusion method in Algorithm 4-2 (WLS-

NE) is shown in the fourth column. Due to the blockage from the tall buildings, the 

majority of the measurements are NLOS 

The conventional WLS method can obtain 29.81 meters of mean error. The error 

magnitude is much larger than the positioning error in [9] where its experiment is 

conducted in less urbanized areas. The standard deviation is 21.09 and the availability 

is 100% during the test. With the exclusion of all the NLOS measurements, the GNSS 

positioning is even worse. The mean of its positioning error goes up to 30.25 meters 

and the standard deviation also slightly increases. Moreover, the availability of this 

solution decreases to 97.45 %. This result shows that the exclusion of all NLOS 

measurements may not improve the overall performance in highly urbanized areas. This 

is due to the distortion of the satellite’s geometric distribution, namely, larger HDOP 

occurs. 

With the proposed method shown in Algorithm 4-2, the mean positioning error is 

slightly improved from 29.81 to 27.09 meters. Moreover, the availability of the GNSS 

solution is guaranteed (100%). The improvement is not too large because of the 

excessive NLOS receptions in the tested scenario. 

The satellite numbers and the GNSS positioning results are shown in Figure 4-7. 

The green curve represents the number of the satellite when all the NLOS receptions 

are excluded. The blue curve indicates the satellite number based on the proposed 

NLOS exclusion algorithm (Algorithm 4-2). The satellite number can be decreased to 

less than 5 if all the NLOS receptions are excluded which can be seen in the top panel 

of Figure 4-7. Due to the frequent NLOS exclusion based on Algorithm 4-2, the satellite 

number is slightly decreased comparing to the red curve. Only part of the identified 

NLOS is excluded using Algorithm 4-2 can guarantee enough satellites for GNSS 

positioning calculation. As shown in the bottom panel of Figure 4-7, the proposed 

NLOS exclusion can introduce improvements sometimes instead of all the time. This 

is because there are too many NLOS receptions and exclusion can also enlarge the 

HDOP in some ways.  
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The result of covariance estimation based on the proposed method is shown in 

Figure 4-8. The black dots represent the GNSS positioning error using the WLS-NE 

method. This is the value that the estimated covariance expected to approach. The red 

dots represent the conventional GNSS covariance estimation based on the method in 

[36] (𝑹𝐶). This method cannot model the NLOS error caused by signal reflection. We 

can see from the Figure 4-8, this covariance estimation slightly fluctuated due to the 

change in HDOP. However, this covariance is far from the black dots. The blue dots 

represent the proposed GNSS positioning covariance estimation result based on √𝑹̅. 

This covariance is closer to the black dots (refer to the ground truth of covariance) 

comparing with that of the conventional covariance. As shown in Figure 4-8, the 

proposed covariance can effectively model the GNSS positioning error in some epochs, 

especially when then GNSS positioning error is smaller. However, some epochs 

encounter a large difference between the estimated covariance and actual positioning 

error. This is because the proposed method can only identify the NLOS near the vehicle 

which is within the detection range of the 3D LiDAR (commonly 120 meters). The 

NLOS that its reflector too far away from the vehicle is not be modeled by the proposed 

covariance estimation method. Moreover, the multipath effects are also not modeled in 

this covariance estimation method. 

 
Figure 4-8 Experiment 1: Top panel indicates the numbers of satellites used in the 

conventional and proposed GNSS positioning methods. The bottom panel indicates the 

corresponding covariance estimated. The conventional and proposed covariance 

estimation is indicated in red and blue dots, respectively. GNSS positioning error using 

the WLS-NE is represented in black dots (ground truth for covariance). 
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Figure 4-9. Experiment 1: Trajectory of the autonomous vehicle is indicated by the 

green curve. The red circles indicate the GNSS positioning result. 

(2) GNSS/LiDAR Integration Evaluation 

The trajectory of the tested vehicle is shown in Figure 4-9. The red circles 

represent the GNSS positioning results using the proposed WLS-NE method. The green 

curve indicates the ground truth of the tested trajectory. We can see from the figure that 

the majority of the epochs possess large positioning errors. In the GNSS/LiDAR 

integration, GNSS is the only source that can provide absolute positioning information. 

The graph generation in the SLAM is shown in Figure 4-10. Figure 4-10 indicates the 

organized point cloud, nodes, and edges for further graph-based optimization.  

As we can see from Figure 4-7, the WLS-NE based GNSS positioning solution 

can still even reach 54 meters. In this section, three GNSS/LiDAR integration methods 

are compared. 

• Method (a): GNSS/LiDAR integration with conventional GNSS covariance 

estimation [36]. 

• Method (b): GNSS/LiDAR integration with proposed GNSS covariance estimation. 

• Method (c) GNSS/LiDAR integration with proposed GNSS covariance estimation. 

However, GNSS positioning is integrated into graph optimization only when √𝑹̅ is 

smaller than the threshold𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 . 

The GNSS/LiDAR integration results are given in Table 4-2 using the three 

methods. The mean error of the conventional GNSS/LiDAR integration is 24.07 meters 

and is improved comparing with the performance of the GNSS standalone (27.09 

meters). With the aid of proposed GNSS positioning covariance (Method (b)), the error 

of GNSS/LiDAR integration is slightly decreased to 22.67 meters. The standard 
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deviation is also slightly decreased. In the integration method (b), all the GNSS 

positioning results and corresponding covariance are applied in the GNSS/LIDAR 

integration. As the majority of the GNSS positioning is erroneous, it is reasonable to 

use GNSS results when it is accurate. The accurate results can be identified when its 

estimated covariance is less than 𝑅𝑡ℎ 𝑒 ℎ𝑜𝑙 . Dramatic improvement is obtained after 

the constraint of covariance is applied. The mean error and standard deviation are 

decreased to 12.67 and 6.57 meters, respectively. Moreover, the availabilities of all 

three methods are 100%. This improvement shows that the proposed covariance 

estimation can improve the performance of the GNSS/LiDAR integration. The 

GNSS/LiDAR integration results are shown in Figure 4-11. Comparing to the Bayes 

filter-based [73, 74] sensor fusion method, the graph-based GNSS/LiDAR integration 

takes all the constraints into the optimization framework. Thus, the poses of the whole 

organized point clouds, nodes, edges changed over time. We can see from Figure 4-11 

and conclude that:  

(1) The proposed method (c) obtained the most accurate trajectory over the three 

methods. 

(2) The positioning error decreased near the end of the drive, meaning that the 

GNSS/LiDAR integration can mitigate the drift of LiDAR odometry. 

The error of GNSS/LiDAR integration is shown in Figure 4-12. We can see from 

the figure that the method (c) outperforms the other two methods over the majority of 

the epochs. 

The previous research [53, 90] tends to integrate the GNSS and LiDAR in the 

scenario where the GNSS positioning error is less than 5~8 meters using GNSS WLS. 

In this tested scenario, the GNSS results with an enormous error are applied in the 

GNSS/LiDAR integration which is very common in super-urbanized cities such as 

Hong Kong 
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Figure 4-10. Graph generation in the real graph-slam process. 

TABLE 4-2 

EXPERIMENT 1: PERFORMANCE OF THE THREE GNSS/LIDAR INTEGRATION 

METHOD 

All data Method (a) Method (b)  Method (c)  

Mean 

Error 
24.07 m 22.67 m 12.67 m 

STD 14.69 m 14.48 m 6.57 m 

Availability 100% 100% 100% 

 

 
Figure 4-11. Experiment 1: Results of the GNSS/LiDAR integration based on three 

integration methods. The blue curve is constituted by the optimized nodes (refer to the 

red node in Figure 4-5. The black curve indicates the ground truth of the trajectory 

provided by NovAtel SPAN-CPT. The red line represents the edge from GNSS 

positioning: refer to the red line in Figure 4-5). The green points represent the organized 

point clouds. 
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Figure 4-12. Experiment 1: Positioning error of the GNSS/LiDAR integration results 

based on the three methods. Red, green and blue curves indicate the GNSS/LiDAR 

integration methods (a), (b) and (c), respectively. 

 

4.5.3 Experimental Evaluation using Data Collected by Closed Loop Route  

(1) GNSS Positioning Evaluation 

This experiment is conducted in a super-urbanized area with fewer satellites 

visible comparing with that of the first experiment. Moreover, this experiment route is 

closed-loop. The loop closure [97] detection is employed in the GNSS/LiDAR 

integration process in this experiment. The experiment scene is shown in Figure 4-13. 

The height of the building is about 30 meters. The distance between the buildings is 

just about 8 meters. We can see from the figure that the majority of the GNSS 

positioning results lie in the buildings due to the multipath effects and the excessive 

NLOS receptions. Again, the mean error is slightly reduced from 46.62 (conventional 

WLS) meters to 43.12 meters (proposed WLS-NE). 

The covariance estimation result of the proposed method is shown in Figure 4-14. 

Compared with the covariance estimation in the first experiment shown in Figure 4-8, 

the covariance is better estimated in this experiment. The main reason is that the 

majority of the satellites are NLOS due to the tall building which means fewer multipath 

effects. As discussed earlier, the multipath is not modeled in the proposed covariance 

estimation method. In other words, the proposed GNSS positioning covariance 

estimation method can obtain better performance in narrower streets. 
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Figure 4-13. Experiment 2: Trajectory of the vehicle is indicated by the green curve. 

The red circles indicate the object detection aided GNSS positioning results.  

(2) GNSS/LiDAR Integration Evaluation 

GNSS/LiDAR integration performance is shown in TABLE III. The loop closure 

detection is applied in this experiment as the driving route is a closed-loop shown in 

Figure 4-13. 

The conventional solution obtains a mean positioning error of 25.68 meters with 

a standard deviation of 28.09 meters. With the assistant of the proposed covariance 

estimation, the mean positioning error drastically decreased to 8.14 meters. The mean 

positioning error is reduced to 7.49 meters with the covariance magnitude constraint 

being applied. Moreover, the standard deviation is also decreased to 5.43 meters.  

The final optimized nodes and organized point clouds are shown in Figure 4-15. 

The positioning error during the test is shown in Figure 4-16. We can see from Figure 

4-15, the edges of GNSS are dramatically decreased with the constraint of covariance.  

Interestingly, the positioning error of all methods decreased after epochs 120. The 

reason is the detection of the loop closure, which is a strong constraint for further 

graph-based optimization. Regarding the performance of conventional GNSS/LiDAR 

integration with no loop closure in the first experiment, the positioning error can still 

reach about 40 meters at the end of the test. 
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Figure 4-14.  Experiment 2: Top panel indicates the numbers of satellites used in the 

conventional and proposed GNSS positioning methods. The bottom panel indicates the 

corresponding covariance estimated. The conventional and proposed covariance 

estimation is indicated in red and blue dots, respectively. GNSS positioning error using 

the WLS-NE is represented in black dots (ground truth for covariance). 

TABLE 4-3 

EXPERIMENT 2: PERFORMANCE OF THE THREE GNSS/LIDAR INTEGRATION METHODS 

All data 

Method (a) 

Conventional 

GNSS/LiDAR 

Integration 

Method (b)  

Proposed GNSS/LiDAR 

Integration  

Method (c)  

Proposed GNSS/LiDAR 

Integration  

Mean Error 25.68 m 8.14 m 7.49 m 

STD 28.09 m 6.73 m 5.43 m 

Availability 100% 100% 100% 

 
Figure 4-15. Experiment 2: Results of the GNSS/LiDAR integration based on three 

integration methods. The blue curve is constituted by the optimized nodes (refer to the 

red node in Fig. 6. The black curve indicates the ground truth of the trajectory provided 

by NovAtel SPAN-CPT. The red line represents the edge from GNSS positioning: refer 

to the red line in Fig. 6). The green points represent the organized point clouds. 
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Figure 4-16. Experiment 2: Positioning error of the GNSS/LiDAR integration results 

based on the three methods. Red, green and blue curves indicate the GNSS/LiDAR 

integration methods (a), (b) and (c), respectively. 

The proposed GNSS/LiDAR integration method obtained improved performance 

with the aid of the NLOS exclusion (empowered by LiDAR-based object detection) 

and the proposed covariance estimation. The proposed NLOS exclusion can obtain 

improvements when more satellites are available. Though the positioning performance 

of GNSS is very unsatisfactory during both of the experiments. GNSS is still 

indispensable for providing the globally referenced positioning.  

The proposed covariance estimation can capture the majority of GNSS positioning 

errors. However, the GNSS positioning error caused by the multipath effect cannot be 

modeled using the proposed covariance model. In the first experiment, the mean GNSS 

positioning error is less than 30 meters which is better than the second experiment. This 

is because the buildings in the second experiment are even taller which introduces more 

NLOS receptions consequently. As presented in Algorithm 2, only the NLOS is 

modeled in the covariance. Thus, the second experiment obtains better performance 

regarding the GNSS covariance estimation which can be seen by comparing the Figs. 

9 and 15. As the multipath effects are random and difficult to model. Thus, effectively 

modeling of multipath is a promising work to yield. 

The proposed constraint of covariance applied to the GNSS/LiDAR integration 

can improve performance. This novel constraint guarantees that only the accurate 

GNSS positioning will be applied to the integration. In other words, the effectively 

estimated covariance can identify the erroneous GNSS results. 
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Overall, the proposed GNSS covariance estimation can improve the 

GNSS/LiDAR integration performance. The globally referenced positioning is 

obtained. This result proves that the covariance estimation is significant for the 

GNSS/LiDAR integration. However, the integrated positioning result is still large with 

the best performance of even 7.49 meters of mean error in the second experiment. 

To realize autonomous vehicles, this kind of scenario is still a challenge for GNSS 

positioning. Even the real-time kinematic (RTK) GNSS can suffer from severe NLOS 

and multipath effects. Direct NLOS exclusion will result in the big distortion of the 

satellite distribution, namely the HDOP. Thus, effectively modeling the covariance of 

GNSS positioning is a potential solution to improve the robustness of the 

GNSS/LiDAR integration in super-urbanized areas. 

4.5.4 Conclusions 

With the fast development of the autonomous vehicles, GNSS and LiDAR became 

the indispensable sensors to provide sensing and localization functions. The 

environment feature can be used to improve GNSS positioning performance in 

urbanized areas with excessive tall buildings. To the best of the author’s knowledge, 

this paper is the first attempt to employ the LiDAR-based object detection to improve 

the GNSS. 

This paper innovatively employs the LiDAR perception to detect building surface 

to facilitate the covariance modeling of GNSS positioning for the GNSS/LiDAR 

integration. This study firstly employs the LiDAR to provide the LiDAR odometry 

based on the state-of-art NDT and the corresponding covariance is estimated. Then, the 

building surfaced is detected and identified using the object detection followed by the 

NLOS detection and novel NLOS exclusion. Thirdly, the GNSS positioning is 

implemented using the surviving range measurements. The GNSS positioning 

covariance is proposed based on an NLOS model. Fourthly, the LiDAR odometry and 

the GNSS positioning is integrated by a graph-based SLAM framework. Finally, the 

experiment is conducted to validate the propose GNSS/LiDAR integration framework. 

The results show that the proposed method of GNSS positioning covariance estimation 

can model the majority of the positioning error caused by NLOS reception. The 

performance of the proposed GNSS/LiDAR integration with adaptive covariance 

outperforms the conventional GNSS/LiDAR integration with the constant covariance. 

Furthermore, the remaining GNSS positioning error caused by the multipath 
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effects will be studied and modeled to improve the performance of GNSS positioning 

covariance estimation. Moreover, the real-time kinematic (RTK) GNSS will be applied 

to integrate with LiDAR to verify how much the proposed method can help the RTK 

GNSS/LiDAR integration. 
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5. SLIDING WINDOW MAP AIDED GNSS AND ITS 

INTEGRATION WITH INS  

 Introduction 

Positioning in urban environments is becoming essential due to the increasing 

demand for autonomous driving vehicles (ADV) [101]. To achieve Level 4 [52] 

autonomous driving capability in all scenarios, centimeter-level absolute positioning is 

required. The global navigation satellite system (GNSS) [100] is currently one of the 

principal means of providing globally-referenced positioning for autonomous driving 

vehicle localization. With the increased availability of multiple satellite constellations, 

GNSS can provide satisfactory performance in open-sky areas, with a positioning error 

of around five meters [3]. However, positioning error can be up to 50 meters in highly-

urbanized cities such as Hong Kong [3], due to signal reflection caused by static 

buildings and dynamic objects [67] such as double-decker buses. If the direct light-of-

sight (LOS) is blocked, and reflected signals from the same satellite are received, the 

notorious non-light-of-sight (NLOS) receptions occur. According to a recent review 

paper [7], NLOS is currently the major difficulty in the use of GNSS in intelligent 

transportation systems. Because of NLOS receptions, the performance of GNSS 

positioning is highly influenced by real-time surrounding environmental features, such 

as buildings and dynamic objects. Effectively sensing and understanding surrounding 

environments is the key to improving GNSS positioning in urban areas, as GNSS 

positioning relies heavily on sky view visibility. Research into mitigating the effects of 

NLOS receptions in urban canyons can be divided into four areas: (1) 3D mapping-

aided GNSS; (2) robust model-aided GNSS positioning; (3) camera-aided GNSS 

positioning; and (4) 3D LiDAR-aided GNSS positioning. 

3D mapping-aided (3DMA) GNSS: Utilizing 3D building models to detect 

NLOS is straightforward. NLOS satellites can be detected with the aid of 3D models of 

buildings, and can then be excluded from use in GNSS positioning [8, 9]. However, 

NLOS exclusion will distort the perceived geometric distribution of the satellites, 

degrading accuracy [10], and even resulting in too few satellites for further GNSS 

calculation [10]. Moreover, these methods require the availability of 3D building 

models of the environment, and the performance of NLOS detection relies on the 

accuracy of an initial guess of the GNSS receiver’s position. Besides, NLOS reception 
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caused by dynamic objects cannot be detected as well. A well-known method, GNSS 

shadow matching, was developed to match measured satellite visibility with the 

predicted satellite visibility of hypothesized positions [11-13]. However, the 

performance of shadow matching is dependent upon the quality of satellite visibility 

classification and the initial guess as to the position of the GNSS receiver. A likelihood-

based 3DMA GNSS method, which modeled the measurement uncertainty, and used 

this value to mitigate NLOS effects, has been proposed to provide accurate positioning 

in the along-street direction [14]. Due to the complementarity of the shadow matching 

and likelihood-based 3DMA GNSS, approaches to the integration of these approaches 

have recently been studied [15]. Another range-based 3DMA GNSS method is to 

correct the NLOS affected measurements for GNSS positioning [16-19]. These 

methods were proposed to simulate signal transmission routes, using a ray-tracing 

method. However, these ray-tracing-based 3DMA GNSS methods have the drawbacks 

of requiring stringency in 1) the accuracy of 3D mapping databases; 2) the initial guess 

of receiver positions, and 3) the computational power of the processors due to the ray-

tracing process. Recently, a skymask-based NLOS correction method has been 

proposed [20], which effectively reduces the computational load incurred by ray-

tracing-based methods [16-19]. However, these 3D mapping-aided GNSS have the 

drawbacks of 1) reliance on the availability of 3D building models; 2) inability to 

mitigate NLOS receptions caused by surrounding dynamic objects. 

Robust model-aided GNSS positioning: Instead of using additional information 

from 3D building models, a team from the Chemnitz University of Technology 

employed a robust model [102-104] to mitigate the effects of NLOS signals in GNSS 

single point positioning (SPP). In their earliest work, as reported in [105], a state-of-

the-art factor graph [106], which makes use of all of the available historical GNSS 

measurements to estimate the state set of the GNSS receiver, was applied to GNSS 

positioning. The improved performance was obtained compared with the conventional 

weighted least squares (WLS) approach. This improvement was primarily because the 

factor graph also explores the correlation between consecutive epochs of GNSS 

measurements. Interestingly, the work described in [107] included a switchable 

constraint in the factor graph to model the probability of one satellite being an unhealthy 

measurement, either multipath or NLOS receptions. According to [107], the switchable 

constraint can effectively mitigate the effects caused by NLOS and multipath, so-called 
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outliers in [107]. However, a major drawback is that the switchable constraint relies 

heavily on the initial guess of the prior factor [107], which requires a large number of 

hyperparameters, making it difficult to tune. Inspired by a covariance estimation 

technique used in the field of robotics [108], dynamic covariance estimation (DCE) 

[104] has been studied as a means by which to adaptively model the uncertainty of 

GNSS measurements. In this research, the covariance of GNSS measurements is treated 

as an unknown variable to be estimated in the factor graph optimization (FGO). In other 

words, the position of the GNSS receiver and the uncertainty in the measurement of 

GNSS are estimated simultaneously. Finally, the NLOS satellites are de-weighted from 

the FGO. Significantly improved results were obtained when the number of healthy 

measurements was more than the number of unhealthy measurements, such as NLOS 

receptions. However, it is difficult to satisfy this assumption in dense urban areas, and 

the DCE requires numerous parameterization as well. To get rid of the excessive 

parameterization, a Gaussian mixture model (GMM) [102, 103] has been proposed for 

modelling the uncertainty of GNSS pseudorange measurements. According to the 

evaluation reported in [103], the noise model of GNSS measurements is not subject to 

the Gaussian assumption due to the long tail of the distribution, which is caused by 

NLOS receptions [103]. Therefore, a GMM was employed to model the noise of the 

GNSS measurements, and an expectation-maximization (EM) algorithm was applied to 

estimate the parameters of the GNSS noise model. Then, the GMM was applied to the 

FGO. This is the first work to date to make use of GMM to model the uncertainty of 

GNSS measurements in factor graph optimization. Better and more robust performance 

can be obtained using this approach than can be achieved by methods using Gaussian 

noise, switchable constraints, or DCE. However, a major drawback of the GMM-based 

method is that the estimation of the parameter values of the GMM relies heavily on the 

accuracy of the initial guess of the position of the GNSS receiver, which is in fact 

similar to range-based 3DMA GNSS [16-19]. The sensitivity of the parameter 

estimation of GMM with respect to the initial position guess is still an open question. 

A team from West Virginia University (WVU) carried out similar research [109-111], 

applying robust models to GNSS precise point positioning (PPP) and obtained 

improved results. 

Camera-aided GNSS positioning: Another research approach makes use of a 

camera to capture the environment surrounding the GNSS receiver. This approach is 
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called camera-aided GNSS positioning [60, 112]. The camera was used to capture a sky 

view and establish satellite visibility. To detect the visibility of satellites, the 

researchers applied omnidirectional or fisheye cameras [38, 39, 60]. NLOS receptions 

could be detected in conjunction with the captured sky views, and improvements 

obtained after excluding all of the NLOS receptions detected from GNSS positioning. 

A major advantage of this approach is that camera-based NLOS detection relaxes the 

requirement of the initial guess of the position of the GNSS receiver, compared with 

the 3D building models-based method [8, 9]. NLOS receptions caused by dynamic 

objects can also be detected. Similar research [113, 114] has been conducted recently, 

in which improved GNSS positioning was integrated with visual simultaneous 

localization and mapping (VSLAM) [115]. Unfortunately, these methods still tend to 

exclude NLOS receptions from GNSS positioning, and so are not applicable in dense 

urban areas, such as Hong Kong, Tokyo, and New York. Instead of excluding all NLOS 

satellites from the GNSS positioning, our recent research, as reported in [116], showed 

the feasibility of remodeling the NLOS satellites after detecting NLOS receptions using 

a fisheye camera. However, the camera is sensitive to the conditions of illumination. 

Moreover, the classification of satellite visibility relies heavily on the quality of the sky 

view, and on non-sky view area segmentation [116]. The installation of sky-pointing 

cameras for autonomous driving vehicles is not always possible. 

3D LiDAR aided (3DLA) GNSS positioning: Recently, 3D LiDAR sensors, the 

so-called “eyes” of ADV, the typical indispensable onboard sensor for autonomous 

driving vehicles, have been used to detect NLOS caused by dynamic objects [67]. The 

typical dynamic object, the Hong Kong double-decker bus, was detected based on real-

time 3D point clouds to identify NLOS signals blocked by the bus, but reflected by 

surrounding buildings. A static experiment was first performed to demonstrate the 

phenomenon of NLOS receptions caused by a double-decker bus. The dynamic 

experiment was conducted to investigate performance improvements produced by 

detecting and excluding NLOS receptions caused by dynamic objects from use in 

further GNSS positioning. According to the experiments, more than five meters of 

positioning error can be introduced by the detected NLOS. In short, the NLOS 

receptions can be caused by dynamic objects which should also be solved. However, 

the method proposed in [67] relies heavily on the accuracy of object detection. Due to 

the limited field of view (FOV: −30°~+10°) of 3D LiDAR, only part of a double-
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decker bus can be scanned. However, to the best of our knowledge, this is the first work 

that employed object detection to help GNSS positioning. Instead of detecting only 

dynamic objects, we also explored the detection of surrounding static buildings using 

3D LiDAR point clouds [10]. Due to the limited field of view of 3D LiDAR, only part 

of the buildings can be scanned. Therefore, information about building height is 

required [10]. Given this information, NLOS receptions caused by the buildings can be 

detected. Instead of excluding the detected NLOS receptions, we explored ways in 

which to correct NLOS pseudorange measurements with the help of LiDAR, which can 

measure the distance from the GNSS receiver to the surface of a building which may 

have reflected the GNSS signal. Then the corrected and the healthy GNSS 

measurements can both be used in further GNSS positioning. The improved 

performance was obtained after correcting the detected NLOS satellites. Unlike 3DMA 

GNSS, the method proposed in [10] reduces the importance of the initial guess of the 

position of the GNSS receiver. Unfortunately, the performance of this approach [10] 

relies on the accuracy of the detection of buildings and reflectors. Both building 

detection and reflector detection can fail when a building surface is irregular. The 

limited FOV of LiDAR remains a drawback in the detection of both dynamic objects 

and buildings. Overall, the work reported in [67] and [10] shows the feasibility of 

detecting GNSS NLOS using real-time onboard sensing: the real-time point clouds. To 

overcome the drawback of the limited FOV of 3D LiDAR, we explored the use of both 

fish-eye cameras and 3D LiDAR to detect and correct NLOS signals [117]. The fish-

eye camera was applied to detect NLOS signals and the 3D LiDAR was employed to 

measure the distance between the GNSS receiver and a potential reflector causing 

NLOS signals. However, this approach shares the problems with the work described in 

[60, 112]. 

In short, state-of-the-art 3DMA GNSS relies on an initial guess of the position of 

the GNSS receiver, and the availability of 3D building models. The GMM-based 

method obtains the best performance of all the robust model-based solutions discussed. 

However, it relies heavily on an initial guess of the position of the receiver. The camera 

aided GNSS positioning has effectively relaxed the requirement for the initial guess. 

However, problems caused by the sensitivity of the camera to the illumination level are 

still an unsolved problem. 3D LiDAR aided GNSS positioning is an innovative solution 

for mitigating the effects of NLOS receptions and has several advantages: (1) both 

dynamic and static objects can be considered during NLOS detection; (2) NLOS 
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detection does not rely on an initial guess of the position of the GNSS receiver; (3) the 

approach does not require the use of 3D building models, and 3D LiDAR is robust 

against illumination conditions. However, there are still three major drawbacks: (1) the 

limited FOV of 3D LiDAR causes limited environment sensing capability; (2) the 

performance of NLOS detection relies heavily on the accuracy of object detection, such 

as double-decker bus detection in [67] and building detection in [10]; and (3) the 

reflector detection method described in [67] [10] [117] can only work when a building 

surface is detected and is sufficiently regular.  

In Section 5, we relaxed the three above-listed drawbacks of the previous 3D 

LiDAR aided (3DLA) GNSS positioning. First, a novel sliding window map (SWM) 

was generated based on real-time 3D point clouds from 3D LiDAR. Only the 3D point 

clouds inside a sliding window were employed to generate the SWM, as the point 

clouds far away from the GNSS receiver are not needed for NLOS detection. The 

environment description capability of SWM is significantly better than that of 3D real-

time point clouds. Therefore, the FOV of LiDAR sensing is effectively enhanced (relax 

the drawback 1). Moreover, the magnitude of the drift of the SWM is bounded to a 

small value. As the generated SWM is in the body frame, which is located at the center 

of the 3D LiDAR, the orientation is directly adopted from an attitude and heading 

reference system (AHRS) to transform the SWM from the body frame to a local (ENU) 

frame [100]. Then, NLOS receptions are directly detected based on real-time SWM, 

which does not require object detection, using a fast searching method (relax the 

drawback 2). More importantly, the proposed NLOS detection method does not rely on 

the initial guess of the GNSS receiver. Instead of directly excluding detected NLOS 

satellites from use in further positioning estimation, this work proposes an approach to 

rectify the pseudorange measurement model by (1) correcting the pseudorange 

measurements if the reflecting point of the NLOS signals is detected based on a 

constrained searching method (relax the drawback 3) inside the dense SWM; and (2) 

re-modeling the uncertainty of NLOS pseudorange measurement using a novel 

weighting scheme if the reflector is not detected. Finally, both the corrected and healthy 

pseudorange measurements are tightly coupled with an inertial navigation system (INS) 

using factor graph optimization to see the potential of the proposed 3D LiDAR aided 

GNSS in sensor integration. The main contributions of this paper are as follows:  

(1) This method is the continuous work in [10, 67, 117, 118], and the three listed 

drawbacks of the previous 3D LiDAR aided GNSS are relaxed in this paper.  
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(2) This approach effectively makes use of all the historical measurements to 

integrate with the onboard INS, using a state-of-the-art factor graph to obtain more 

robust positioning performance.  

The remainder of Section 5 is organized as follows. An overview of the proposed 

method is given in Section 5.2. The generation of the sliding window map is elaborated 

in Section 5.3. In Section 5.4, the proposed NLOS detection, NLOS correction, and 

remodeling approaches are presented. Section 5.5 presents GNSS/INS integration using 

FGO based on the rectified and the healthy GNSS measurements. Two experiments 

were performed to evaluate the effectiveness of the proposed method in GNSS 

standalone positioning and GNSS/INS integration. Finally, conclusions are drawn, and 

further work is presented in Section 5.7. 

 Overview of the Proposed Method 

An overview of the method proposed in this paper is shown in Figure 5-1. The system 

consists of two parts: the 3D LiDAR aided GNSS part, and the GNSS/INS integration 

part. The inputs of the system include (1) raw data (𝐀𝑡) from the accelerometer and 

orientation from AHRS (𝐑𝑡) at a given epoch t; (2) 3D real-time point clouds (𝐒𝑡) from 

a 3D LiDAR sensor; and (3) raw GNSS pseudorange measurements (𝐒𝐕𝑡
 𝑙𝑙) from a 

GNSS receiver. The output of the system is the state of the GNSS receiver. First, the 

3D point clouds within a sliding window are employed to generate the SWM (𝐌𝑡), 

which is described in Section 5-3. As the LiDAR point cloud is originally fixed at the 

body frame, the center of the 3D LiDAR, the orientation data from the AHRS are used 

to transform the point clouds to the local (ENU) frame [100]. NLOS detection is next 

performed based on the raw GNSS measurements, 𝐒𝐕𝑡
 𝑙𝑙, and the SWM, using the fast 

searching method described in Section 5-4. The output of the NLOS detection step is 

an estimation of satellite visibility (𝐕𝐢𝐬𝑡). Reflecting point detection is next conducted 

to find the potential point which reflects the NLOS signal. The NLOS pseudorange 

(𝐒𝐕𝑡
𝐶) is corrected based on an NLOS error model. If the reflecting point is not found 

inside the SWM, a novel remodeling scheme is applied to de-weight the NLOS 

measurements (𝐒𝐕𝑡
𝑀) in further GNSS positioning and its integration with INS. Finally, 

both the healthy (𝐒𝐕𝑡
𝐻) and rectified GNSS pseudorange (𝐒𝐕𝑡

𝐶, 𝐒𝐕𝑡
𝑀) measurements are 

tightly integrated with the INS using a probabilistic factor graph optimization, as 

described in Section 5-5. 
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Figure 5-1 Overview of the proposed method. The inputs are the raw measurements 

from INS, 3D LiDAR and GNSS receiver. The output is the position state of the GNSS 

receiver 

 Sliding Window Map Generation 

This section describes in detail the methodology of generating an SWM for further 

NLOS detection. In our previous work, described in [10, 67, 117, 118], only real-time 

3D point clouds were applied in object detection to further detect the NLOS satellites 

caused by buildings and dynamic objects. Due to the limited FOV of 3D LiDAR, 

building height information is required to extend the detected building to its exact 

height, as described in [10]. To solve this problem, we registered real-time 3D point 

clouds into a map that can effectively enhance the FOV of 3D LiDAR sensing. Figure 

5-2 shows the difference between the real-time 3D LiDAR point clouds and the SWM. 

The white points in this Figure represent the real-time point clouds from the 3D LiDAR. 

The colored points denote the map points of the SWM. Note that the ground points 

were removed from the SWM for efficient NLOS detection. 

It is clear from the Figure that only the low-lying parts of buildings or double-

decker buses are scanned by the 3D LiDAR (we used Velodyne 32 [119] for the work 

described in this paper). The visibility of satellites with high elevation angles cannot be 

effectively classified simply based on real-time 3D point clouds. Real-time 3D point 

clouds are also sparse, due to the physical scanning angle distribution of 3D LiDAR. 

However, the SWM proposed in this paper can effectively ameliorate this problem. We 

can see from Figure 5-2 that the elevation mask angle can reach 76° with the help of 
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SWM, so the visibility of a satellite with an elevation angle of less than 76° can be 

classified in this case. The point clouds in SWM are significantly denser than raw real-

time 3D point clouds, a factor that can contribute significantly to the accuracy of NLOS 

detection. A snapshot of the complete SWM map is shown at the top right of Figure 5-

2. Both the buildings and the dynamic objects, such as double-decker buses, and even 

the trees are involved in the SWM, which is not included in the 3D building model 

[120]. 

 

Figure 5-2. Demonstration of a generated sliding window map (SWM) and the real-

time 3D point clouds. The white points represent the real-time 3D point clouds. The 

colored points come from the SWM, and the color is determined by the height. 

To generate a point cloud map based on real-time 3D point clouds, simultaneous 

localization, and mapping (SLAM) [121] methods have been extensively studied over 

the past decades. Satisfactory accuracy can be obtained in a short period with low drift 

[122]. However, the error can accumulate over time, causing large errors after long-

term traveling. Usually, only the objects inside a circle with a radius of 250 meters can 

cause GNSS NLOS receptions, and buildings far away can be ignored. We, therefore, 

employed only the last 𝑁 𝑤 frames of the 3D point clouds to generate a sliding window 

map. In the conventional SLAM problem [122], the map is generated by accumulating 

the point clouds from the first epoch, 1, to the current epoch, t, as shown in the top panel 

of Figure 3. The pose of the point clouds is estimated by tracking the motion between 

consecutive frames of point clouds. However, error accumulates from the first epoch to 
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the current epoch. As shown in Figure 5-3, 𝑥𝑡 represents the pose of the keyframe [122] 

at epoch t. The proposed sliding window-based map generation is shown in the bottom 

panel of the figure, in which we consider only the keyframes inside a sliding window 

between epochs i and t. The drift error between epochs i and t for map generation is 

therefore bounded at a small value. The accuracy of an SWM relies heavily on the 

accuracy of motion estimation between consecutive frames of point clouds. In this work, 

we used the LiDAR odometry and mapping (LOAM) algorithm presented in [122] to 

generate the SWM. LOAM [122] is a state-of-the-art method that retains the top one 

accuracy in the KITTI dataset [123] for four years. Based on LOAM, as proposed in 

[122], three steps are included: feature extraction, point cloud registration, and local 

mapping. The rest of this section describes these three steps. 

 

Figure 5-3. Comparison of (a) the conventional full SLAM and (b) the proposed sliding 

window map 

 

Feature Extraction from 3D Point Clouds: As shown in Figure 5-1, the inputs 

into the map generation algorithm are  raw 3D point clouds (𝐒𝑡 ) generated using 

3DLiDAR. As described in Section 5.2, the orientation (𝐑𝑡) is used to transfer the 𝐒𝑡 

to a local frame as 𝐏𝑡. The first step is feature extraction, which is carried out based on 

the work reported in [122]. The input into the feature extraction algorithm is the 

𝐏𝑡{𝑃𝑡,1, 𝑃𝑡,2, … , 𝑃𝑡,𝑖, 𝑃𝑡,𝑁} at a frequency of 10 Hz. N denotes the number of points inside 

the frame of a point cloud. The points are classified as planar points or edge points, 

depending upon the roughness of the points. The roughness of a point is determined as 

follows [122]: 

𝑐 =
1

|𝐒|∙|| 𝑡,𝑖||
|| ∑ (𝑃𝑡,𝑗 − 𝑃𝑡,𝑖)𝑗∈𝐒,𝑗≠𝑖 || ,   (5-1) 

𝑥1 𝑥2 𝑥 𝑥 𝑥 𝑥𝑖 𝑥𝑖 1 𝑥𝑡

Keyframe Keyframe Keyframe Keyframe Keyframe Keyframe Keyframe Keyframe

𝑥1 𝑥2 𝑥 𝑥 𝑥 𝑥𝑖 𝑥𝑖 1 𝑥𝑡
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(b)
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where c represents the roughness of a point, S denotes a small local region near the 

point 𝑃𝑡,𝑖 , and 𝑃𝑡,𝑗  indicates a point near 𝑃𝑡,𝑖  inside the small local region. If the 

calculated roughness is larger than a pre-determined threshold [122], the point is 

classified as an edge point. Points with roughness lower than the threshold are classified 

as planar points. The output of the feature extraction process is the feature set 

𝐅𝑡{𝐹𝑡
 , 𝐹𝑡

𝐸}, in which 𝐹𝑡
 
 and 𝐹𝑡

𝐸 are feature sets containing all planar and edge points, 

respectively. 

Point cloud registration: Point cloud registration is a process that estimates the 

relative motion between two consecutive frames of point clouds. The relative motion is 

calculated using point-to-edge and point-to-plane scan matching. The objective of this 

process is to find corresponding features for points in 𝐅𝑡{𝐹𝑡
 , 𝐹𝑡

𝐸} from the feature points 

set 𝐅𝑡−1{𝐹𝑡−1
 , 𝐹𝑡−1

𝐸 } . The detailed steps can be found in [122]. The point cloud 

registration process is as follows: 

𝐦𝑡−1, 𝑅
𝑡, 𝑅 = PCR(𝐅𝑡{𝐹𝑡

 , 𝐹𝑡
𝐸}, 𝐅𝑡−1{𝐹 −1

 , 𝐹𝑡−1
𝐸 }),    (5-2) 

where PCR denotes the point cloud registration function. The output of the point cloud 

registration process is the approximate relative motion, 𝐦𝑡−1, 𝑅
𝑡, 𝑅

, at a frequency of 10 

Hz.  

Local mapping: To refine the relative motion estimation, the local mapping 

process based on [122] is applied to refine the motion estimation, 𝐦𝑡−1, 𝑅
𝑡, 𝑅

. A detailed 

description can be found in [122]. The principle of the mapping process is that the 

extracted 𝐅𝑡{𝐹𝑡
 , 𝐹𝑡

𝐸} is mapped into the incrementally-built map to refine the motion 

estimate, 𝐦𝑡−1, 𝑅
𝑡, 𝑅

. The output of local mapping is refined motion estimation, 𝐦𝑡−1,𝐿𝑀
𝑡,𝐿𝑀

. 

All motion transformations between the keyframes in epochs i to k can be estimated, 

and the SWM obtained as 𝐌𝑡. Note that 𝐌𝑡 is in the local ENU frame, which is the 

same frame as the satellite elevation and azimuth angles. Then, 𝐌𝑡  can be used in 

satellite visibility classification, as shown in the next section. 

 GNSS Pseudorange Measurements Rectification Based on SWM 

From the measurements obtained from the GNSS receiver, each pseudorange 

measurement,  𝑛, can be described as follows [64]: 

 

 𝑛 = 𝑅𝑛 + 𝑐(𝛿𝑡 − 𝛿𝑡𝑛
  ) + 𝐼𝑛 + 𝑇𝑛 + 𝑒𝑛 ,   (5-3) 
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where 𝑅𝑛  is the geometric range between the satellite and the GNSS receiver, 𝛿𝑡𝑛
   

denotes the satellite clock bias, 𝛿𝑡r is the receiver clock bias, 𝐼𝑛is the ionospheric delay 

distance, 𝑇𝑛 is the tropospheric delay distance, and 𝑒𝑛represents the errors caused by 

factors such as multipath effects, NLOS receptions, receiver noise, and antenna delay. 

In a sparse area, 𝑒𝑛 is small, and a small value can effectively bound the error caused 

by multipath and NLOS receptions. However, 𝑒𝑛  can change dramatically in dense 

urban areas, and a fixed value cannot bound the error caused by GNSS signal reflections 

from the surroundings.  

Recently, the work in [124] described a state-of-the-art general online sensor 

model validation and estimation framework. The framework consists of three parts: 

model validation, model calibration, and model repair. The authors propose that sensor 

measurements should be validated, calibrated or repaired before its integration with 

data from other sensors. The main reason behind this is that sensor measurements can 

be affected or polluted by environmental conditions, causing violations of the 

assumptions of the original sensor model. Many sensor measurements can violate the 

assumptions of the standard sensor model in challenging environments, such as urban 

canyons. For example, LiDAR-based positioning can be severely degraded in an urban 

canyon with numerous dynamic objects [125]. Therefore, a fixed sensor model cannot 

bound the potential error of LiDAR-based positioning. Therefore, the ability to 

effectively validate, calibrate and repair the sensor model as required is valuable for 

sensor fusion in such areas. Following the framework proposed by Jurado and Raquet 

[124], we applied the three phases to the GNSS pseudorange measurements (Figure5-

4). First, model validation (Model 1 in Figure 5-4) was performed based on satellite 

visibility classification using SWM. Second, if one satellite is classified as NLOS, we 

proceed to the model calibration phase, which re-estimates the GNSS measurement by 

correcting the NLOS pseudorange measurements. However, if one satellite is classified 

as NLOS, but its reflecting point is not found inside the SWM, which means NLOS 

correction is not available, we proceed to the model repair phase (Model 3 in Figure 5-

4) by de-weighting the NLOS measurements for use in further positioning. The 

remainder of this section describes these three phases. 
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Figure 5-4. Application of the framework proposed by Jurado and Raquet [124] to 

GNSS measurements before their use in the integration system. Three phases are 

included: model validation, model calibration, and model repair 

5.4.1 Model Validation: NLOS Detection Based on SWM 

In this section, we describe the details of NLOS detection based on the SWM 

generated as discussed in Section 5.3. Unlike the 3D building models, which consist of 

consistent surfaces from buildings [120], the SWM only provides unorganized discrete 

points. To effectively classify satellite visibility based on the SWM, we developed a 

fast searching method (Algorithm 5-1). The inputs of the algorithm include the SWM 

𝐌𝑡, elevation angle 𝜀𝑡,𝑖of satellite 𝑖, the azimuth angle 𝛼𝑡,𝑖 of satellite 𝑖 at epoch t, the 

maximum searching distance, 𝐷𝑡ℎ 𝑒  , and a constant incremental value, Δdpix . The 

output is the satellite visibility, 𝐕𝐢𝐬𝑡,𝑖, of satellite i. In Step 1, a search point is initialized 

at (𝑥𝐿,𝑡
𝑐 , 𝑦𝐿,𝑡

𝑐 , 𝑧𝐿,𝑡
𝑐 ), the center of the 3D LiDAR. A search direction connecting the GNSS 

receiver and the satellite is determined based on the elevation and azimuth angle of 

satellite i. The SWM is transformed into a kdTree structure [63], 𝐌𝑡,𝑡 𝑒𝑒, for finding 

neighboring points. The kdTree is a special structure for point cloud processing which 

can perform efficiently when searching neighboring points. In Step 2, given a fixed 

incremental value, Δdpix, the search point is moved to the next point (𝑥𝐿,𝑡, 
 , 𝑦𝐿,𝑡, 

 , 𝑧𝐿,𝑡, 
 ) 

calculated using (5-4)-(5-6), based on the search direction shown on the left-hand side 

of Figure 5. The number (𝑁 ) of neighboring points near the search point is counted 

using the kdTree structure [63]. If 𝑁  exceeds a certain threshold, there are some map 

points from buildings or dynamic objects near the search point (𝑥𝐿,𝑡, 
 , 𝑦𝐿,𝑡, 

 , 𝑧𝐿,𝑡, 
 ), and 

we consider that the line-of-sight connecting the GNSS receiver and satellite is blocked. 

Therefore, satellite i is classified as an NLOS satellite. Otherwise, repeat Steps 2 and 3. 

GNSS 
measurement Model 1: Model 

Validation
Classify the satellite 
visibility based on SWM

Model 2: Model 
Calibration

Re-estimate the 
pseudorange measurement 
via NLOS correction

Model 3: Model 
Repair

Repair the pseudorange 
measurement model via 
de-weighting NLOS
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If 𝑘Δdpix >  𝐷𝑡ℎ 𝑒  , it means that the direction between the GNSS receiver and the 

satellite is line-of-sight. In this work, 𝐷𝑡ℎ 𝑒  was set to 250 meters, so points within 250 

meters were considered for NLOS detection. Only the direction connecting the GNSS 

receiver and the satellite needs to be considered, instead of traversing the whole SWM, 

an approach that contributes to the efficiency of NLOS detection. A satellite visibility 

classification result is shown on the right-hand side of Figure 5-5. The red and blue 

circles represent the NLOS and LOS satellites, respectively. The length of the white 

line connecting the center of 3D LiDAR and the satellite is 𝐷𝑡ℎ 𝑒 . Therefore, satellite 

visibility can be classified using Algorithm 5-1. In our implementation, less than 10 ms 

was spent on classifying the visibility of each satellite. 

 

Figure 5-5. Illustration of NLOS detection based on SWM. A detailed video can be 

found here 

Algorithm 5-1: NLOS Detection based on SWM 

Inputs: Point clouds 𝐌𝑡, 𝜀𝑡,𝑖, 𝛼𝑡,𝑖. 

Outputs: Satellite visibility 𝐕𝐢𝐬𝑡,𝑖 

Step 1: Initialize the searching point at (𝑥𝐿,𝑡
𝑐 , 𝑦𝐿,𝑡

𝑐 , 𝑧𝐿,𝑡
𝑐 ), the searching direction 

denoted by ε𝑡,𝑖 and 𝛼𝑡,𝑖, transfer the 𝐌𝑡 into kdTree and get 𝐌𝑡,𝑡 𝑒𝑒 

Step 2: Given a constant incremental value Δdpix , the searching point is 

updated as follows: 

𝑥𝐿,𝑡, 
 = 𝑥𝐿,𝑡, −1

 + Δdpixsin(𝛼𝑡,𝑖)cos(𝜀𝑡,𝑖)               (5-4) 

𝑦𝐿,𝑡, 
 = 𝑦𝐿,𝑡, −1

 + Δdpixcos(𝛼𝑡,𝑖)cos(𝜀𝑡,𝑖)               (5-5) 

𝑧𝐿,𝑡, 
 = 𝑧𝐿,𝑡, −1

 + Δdpixsin(𝜀𝑡,𝑖)                         (5-6) 

Step 3: if 𝑘Δdpix < 𝐷𝑡ℎ 𝑒 , find the nearest neighbor points (NNPs) of a given 

point (𝑥𝐿,𝑡, 
 , 𝑦𝐿,𝑡, 

 , 𝑦𝐿,𝑡, 
 )  and get 𝑁  NNPs. 

Step 4: Repeat Step 2~3, until 𝑁 > 𝑁𝑡ℎ 𝑒 . Then the satellite is NLOS 

(𝐕𝐢𝐬𝑡,𝑖=0), else LOS (𝐕𝐢𝐬𝑡,𝑖=1) 

 

(𝑥𝐿,𝑡
𝑐 ,𝑦𝐿,𝑡

𝑐 , 𝑧𝐿,𝑡
𝑐 ) 𝜀𝑡,𝑖
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The numbers inside the circles on the right-hand side of Figure 5-5 denote the 

elevation angle of the corresponding satellite. We can see that the NLOS satellite with 

an elevation angle of 54 degrees was detected. As shown in Figure 5-2, the maximum 

mask elevation angle can reach 76 degrees. In practice, the maximum mask elevation 

angle based on SWM was significantly correlated with the width of the street. The 

narrower the street was, the higher the mask elevation angle is achieved. Although the 

proposed SWM has effectively enhanced the FOV of LiDAR sensing compared with 

our previous work described in [10, 67, 117, 118], the SWM still could not fully 

reconstruct scenarios with very tall buildings. However, according to recent research 

described in [10], NLOS satellites with low elevation angles produce the majority of 

GNSS positioning error. 

5.4.2 Model Calibration: NLOS Correction Based on SWM 

This section presents the details of NLOS correction (model calibration) based on 

an SWM (Figure 5-4). The typical NLOS error model proposed in [3] is shown in 

Figure 5-6. The expected signal transmission route is expressed as a dashed blue line in 

Figure 5-6. The distance from the receiver to the building is represented by 𝜏. The 

elevation angle of the GNSS signal is represented by 𝜃𝑒𝑙𝑒. We assume that: 

(1) The surrounding buildings and dynamic objects which can cause potential NLOS 

receptions are vertical. 

(2) GNSS signal reflections satisfy the law of reflection.  

(3) The NLOS signals are reflected only once.  

Thus, we can get 𝜃 = 𝜃 . Moreover, the direction of real signal transmission is parallel 

to the direction of expected signal transmission. Finally, we have 𝜃 = 𝜃 = 𝜃0 =

𝜃𝑒𝑙𝑒 .The route distance difference, γ, between the reflected signal and the expected 

signal is as follows:  

𝛾 = 𝛾1 + 𝛾2       (5-7) 

  𝛾1 = 𝜏 𝑠𝑒𝑐𝜃𝑒𝑙𝑒    (5-8) 

𝛾2 = 𝛾1cos (2𝜃𝑒𝑙𝑒)     (5-9) 

Thus, NLOS error can be calculated based on the azimuth angle, elevation angle, and 

the distance from the receiver to the building causing the reflection. In general, two 

steps are needed to proceed with NLOS correction: NLOS detection (presented in 

Section 4.1) and NLOS error calculation based on the detected reflector. When 
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correcting for NLOS satellites, the major difficulties lie in finding the reflectors which 

reflect the GNSS signals, to further estimate the distance between the GNSS receiver 

and the reflector. 

 

Figure 5-6. Illustration of the NLOS error model and NLOS signal transmission route. 

The signal is reflected by the building and subsequently received by the receiver [3] 

A ray-tracing [126] technique is commonly used to simulate NLOS signal 

transmission routes for finding the NLOS reflectors in range-based 3DMA GNSS [16-

19]. This approach can incur a high computational load. However, unlike the 3D 

building models, the SWM described in this paper does not produce continuous 

building surfaces and clear building boundaries. The SWM only provides large amounts 

of dense, discrete, unorganized point clouds; there are about 10 million points inside an 

SWM. Instead of applying the ray-tracing technique to find the reflectors inside the 

SWM, we directly search for the reflectors from the SWM, using an efficient kdTree 

structure.  

The details of the reflector detection algorithm are presented in Algorithm 5-2. 

The inputs of the algorithm include the point clouds 𝐌𝑡, the elevation angle at epoch t 

for NLOS satellite i (𝜀𝑡,𝑖), the azimuth angle at epoch t for NLOS satellite i (𝛼𝑡,𝑖), and 

the azimuth resolution, 𝛼 𝑒 , as in Algorithm 5-1. The output is the closest reflecting 

point, 𝑝 
 , which is the most probable reflector for NLOS satellite i.  

 

Step1. A search point is initialized at the center of the 3D LiDAR. The search 

direction is determined based on the satellite elevation, 𝜀𝑡,𝑖 , and 𝛼  . The SWM is 

transformed into a kdTree structure for use in the neighbor search, as in Algorithm 5-1.  

Step2. Based on the assumption that 𝜃 = 𝜃𝑒𝑙𝑒 [20], the reflected signal should 

have the same elevation angle as the expected directed signal (Figure 5-6). Therefore, 

we traverse all the azimuths from 0 to 360 degrees, with an azimuth resolution of 𝛼 𝑒  
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and elevation angle of 𝜀𝑡,𝑖, to find all the possible routes of NLOS transmissions. For 

example, for a given direction specified by 𝜀𝑡,𝑖 and 𝛼 , the line-of-sight between the 

GNSS receiver and satellite is identified based on Algorithm 5-1.  

Step3. If the line-of-sight is blocked by a point, 𝑝𝑗, (Step 2 in Algorithm 5-2) and 

the line-of-sight connecting the point 𝑝𝑗 and the satellite i is not blocked (Step 3 in 

Algorithm 5-2), point 𝑝𝑗 is considered as a possible reflector and is saved to 𝐐𝑡.  

Step 4. The 𝛼  proceed to the next azimuth based on Step 4. By repeating steps 2 

and 3, all possible reflectors are identified, based on the assumption that 𝜃 = 𝜃𝑒𝑙𝑒. 

Figure 5-7 (a)- (d) shows the result of possible reflector detection for 1-2 NLOS 

satellites. We observe that multiple possible reflectors are found using Steps 1 to 4. The 

red circles in Figure 5-7 denote the NLOS satellite, and the red lines denote possible 

NLOS reflection and transmission routes. According to [3], the reflector with the 

shortest distance is usually the best candidate.  

Step 5. A unique reflector can be detected based on the shortest distance 

assumption (Step 5), as shown in Figure 5-7 (e). Therefore, the reflecting point for a 

given satellite i is detected as 𝑝 
 , and the distance (𝜏) needed in formula (5-8) can be 

calculated accordingly. 

 

Algorithm 5-2: Reflecting Point Detection (RPD) based on SWM 

Inputs: Point clouds 𝐌𝑡, 𝜀𝑡,𝑖, 𝛼𝑡,𝑖 and azimuth resolution as 𝛼 𝑒 . 

Outputs: Reflecting point 𝑝 
 . 

Step 1: Initialize the searching point at (𝑥𝐿,𝑡
𝑐 , 𝑦𝐿,𝑡

𝑐 , 𝑧𝐿,𝑡
𝑐 ), the searching direction 

denoted by ε𝑡,𝑖 and 𝛼𝑡,𝑖, transfer the 𝐌𝑡 into kdTree and get 𝐌𝑡,𝑡 𝑒𝑒. Initialize 

reflecting points array 𝐐𝑡. 𝛼 = 0. 

Step 2: Get the first point 𝑝𝑗 inside the map blocking the searching direction 

denoted by 𝜀𝑡,𝑖 and 𝛼 using Algorithm 1. if 𝑝𝑗 is found, go to Step 3, otherwise 

go to Step 4. 

Step 3: If the direction connecting the point and satellite is visible, save 𝑝𝑗 to 

𝐐𝑡 

Step 4: 𝛼 = 𝛼  + 𝛼 𝑒 , repeat Step 1 to 2 until 𝛼 >360
°. 

Step 5: find the most likely reflector 𝑝𝑗  from 𝐐𝑡  with the shortest distance 

between the GNSS receiver and the reflector. Save 𝑝𝑗 to 𝑝 
 . 
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The proposed NLOS reflector detection method does not rely on the accuracy of 

the detection of building surfaces. The short distance assumption applied in Step 5 of 

Algorithm 5-2 can effectively prevent overcorrection, as only the closest reflector is 

identified as the unique reflector. Due to the sparsity of the SWM, although it is still 

denser than the 3D real-time point clouds, there are still some satellites whose reflectors 

cannot be found using the SWM. Therefore, we remodel NLOS satellites whose 

reflectors are not found, using the approach described in the next section, based on the 

framework shown in Figure 5-4. 

 

Figure 5-7. Demonstration of the NLOS signal reflector detection. Red and blue circles 

represent NLOS and LOS satellites, respectively. White lines denote LOS transmission 

routes. Red lines represent NLOS transmission routes. Multiple possible NLOS 

transmission routes are shown in (a)-(d). The most probably NLOS transmission route 

is shown in (e), based on the shortest route assumption adopted in Algorithm 5-2 

5.4.3 Model Repair: NLOS Remodeling 

If the reflector for an NLOS satellite is not detected, we remodel it as described in 

this section, instead of simply excluding it (Figure 5-4). According to [3], satellites with 

lower elevation angles and smaller signal to noise ratios (SNR) have a higher possibility 

of contamination by NLOS errors [3]. Pseudorange uncertainty modeling based on the 

satellite elevation angle and SNR was reported in [65, 127]. The weighting scheme in 

[65] produces satisfactory performance in open areas. However, the scheme may not 

work in dense urban areas, as the NLOS can have high elevation angles and SNR, as 

can be seen in our previous work [117]. This weighting scheme treats the LOS and 
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NLOS in the same manner, which is not preferable when the NLOS has already been 

detected. The weighting scheme in [127] employs a scaling factor to assign the LOS 

and NLOS different weightings. Inspired by this approach, we modeled the uncertainty 

of LOS and NLOS using the weighting scheme described in [65]. A scaling factor was 

added onto the scheme to treat the LOS and NLOS differently. Assume that 𝐒𝐕𝑖 

represents the information from satellite 𝑖 and 𝐒𝐕𝑖 = {𝜀𝑖, 𝛼𝑖,  𝑁𝑅𝑖 ,  𝑖},  𝛼𝑖 denotes the 

satellite azimuth angle, 𝜀𝑖 represents the satellite elevation angle,  𝑁𝑅𝑖  indicates the 

satellite SNR, and  𝑖  denotes the pseudorange measurement. The weighting scheme 

presented in [65] is as follows: 

𝑊𝐿𝑂𝑆
(𝑖) (𝜀𝑖,  𝑁𝑅𝑖) =

1

 𝑖𝑛2𝜀𝑖
(10−

(𝑆𝑁𝑅𝑖−𝑇)

𝑎 ((
𝐴

10
−
(𝐹−𝑇)
𝑎

− 1)
(𝑆𝑁𝑅𝑖−𝑇)

𝐹−𝑇
+ 1))  (5-10) 

the parameter T indicates the SNR threshold. Parameters a, A and F are experimentally 

determined. The weighting matrix 𝑊 is a diagonal matrix constructed by the weighting 

 𝑊(𝑖)(𝑒𝑙𝑒𝑖,  𝑁𝑅𝑖) . The weighting scheme treats LOS and NLOS using the same 

formula. We added a scaling factor, K, to adapt the weighting scheme to treat LOS and 

NLOS differently, as follows: 

𝑊𝑁𝐿𝑂𝑆
(𝑖) (𝑒𝑙𝑖,  𝑁𝑅𝑖) = 𝐾 ∙ 𝑊𝐿𝑂𝑆

(𝑖) (𝑒𝑙𝑖,  𝑁𝑅𝑖)   (5-11) 

when the received signal is LOS, K is equal to 1. When the signal is NLOS, K changes, 

and is experimentally determined. In this work, the variance , 𝜎 , of a pseudorange 

measurement is computed as 𝜎 = 1/𝑊(𝑖)(𝑒𝑙𝑖,  𝑁𝑅𝑖). In this case, satellite visibility is 

classified, and the corresponding uncertainty is modeled.  

 GNSS/INS Integration Using Factor Graph Optimization 

In general, the goal of the multi-sensor integration is to find the optimal posterior 

state given measurements from sensors. Therefore, the sensor integration problem can 

be formulated as a typical maximum a posteriori (MAP) problem [108]. The 

measurements include two parts, the GNSS and INS measurements. Assuming that the 

GNSS and INS measurements are independent, we can formulate the GNSS/INS 

integration problem as:  

X̂ = argmax ∏ 𝑃(𝒛𝑡,𝑖|𝒙𝑡)∏ 𝑃(𝒙𝑡|𝒙𝑡−1, 𝒖𝑡)𝑡𝑡,𝑖   (5-12) 
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where 𝒛𝑡,𝑖 represents the GNSS raw measurements at epoch t, and 𝒙  represents the 

system state at epoch t. The index of measurements at a given epoch t is denoted as i, 

so one epoch can have multiple pseudorange measurements. The control input (INS 

measurements) is denoted by 𝒖𝑡 , and  the optimal system state set is 𝐗̂  [108]. A 

conventional Bayes filter-based method finds the best estimation of the current state 

considering only the previous state and the control input and observation measurements 

at the current epoch. This approach fails to take full advantage of historical information. 

Conversely, FGO-based sensor integration [128] has been used to transfer the MAP 

problem into a non-linear optimization problem.  

In FGO-based integration, all sensor measurements are treated as factors [128] 

associated with specific states [128]. According to [129], the MAP problem can be 

expressed as: 

𝐗̂ = arg max
𝐗

(∏ 𝜁𝑗(𝒙𝑗)𝑗 )    (5-13) 

with 𝜁𝑗(𝒙𝑗) ∝ exp(−||ℎ𝑗(𝒙𝑗) − 𝒛𝑗||𝚺𝑗
2 ), 

where 𝜁𝑗(𝒙𝑗) is a factor associated with the measurements 𝒛𝑗 , which can be derived 

from both GNSS and INS measurements. The 𝚺𝑗  denotes the uncertainty associated 

with the given measurement 𝒛𝑗.The state 𝑥𝑗 is associated with the measurements 𝒛𝑗. An 

observation function, ℎ𝑗(∗) , is associated with 𝒛𝑗 . The state set that needs to be 

estimated is denoted 𝐗 = {𝒙1, 𝒙2, 𝒙 , … , 𝒙 , … }. Assuming that all sensor noise has a 

Gaussian distribution, the negative logarithm of 𝜁𝑗(𝒙𝑗)  is proportional to the error 

function [129] associated with the measurements. Therefore, Equation (5-13) can be 

transformed as follows: 

𝐗̂ = arg min
𝐗

(∏ ||ℎ𝑗(𝒙𝑗) − 𝒛𝑗||𝚺𝑗
2

𝑗 )     (5-14) 

The FGO transforms the (5-13) into a standard non-linear least squares problem, 

as shown in (5-14), and is used to obtain the optimal state set, 𝐗, by minimizing the 

derived error function (5-14). 

The graph structure of the GNSS/INS integration is shown in Figure 5-8. The state-

space of the system is represented as: 

𝒙𝑡 = (𝐗𝑡, 
𝑒𝑐𝑒𝑓

, 𝐕𝑡, 
𝑒𝑐𝑒𝑓

,  𝑡, 
 𝑜  

, 𝜹𝑡, 
𝑐𝑙𝑜𝑐 )𝑇 ,    (5-15) 
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where 𝒙𝑡 denotes the system state. Note that the 𝒙𝑡 here is different from that in Figure 

5-3. The position of the GNSS receiver in the ECEF coordinate [100] (denoted by the 

subscript, r) at given epoch t is represented by 𝐗𝑡, 
𝑒𝑐𝑒𝑓

= (𝑥𝑡, 
𝑒𝑐𝑒𝑓

, 𝑦𝑡, 
𝑒𝑐𝑒𝑓

, 𝑧𝑡, 
𝑒𝑐𝑒𝑓

) . The 

velocities of the GNSS receiver in ECEF coordinate are denoted by 𝐕𝑡, 
𝑒𝑐𝑒𝑓

=

(𝑣𝑥𝑡, 
𝑒𝑐𝑒𝑓

, 𝑣𝑦𝑡, 
𝑒𝑐𝑒𝑓

, 𝑣𝑧𝑡, 
𝑒𝑐𝑒𝑓

), respectively. The bias of the accelerometer in the body (INS) 

frame is denoted by  𝑡,𝑖𝑛 
 𝑜  

= (𝑎𝑡,𝑥
 𝑜  

, 𝑎𝑡, 
 𝑜  

, 𝑎𝑡,𝑧
 𝑜  

). The GNSS receiver clock bias is 

𝛅𝑡, 
𝑐𝑙𝑜𝑐 . In Figure 5-8, the black-shaded rectangle represents the INS factor. The green- 

and red-shaded rectangles denote the LOS and NLOS satellite factors, respectively. The 

blue-shaded box represents the state transition factor.  

 

Figure 5-8. Graph structure of tightly-coupled GNSS/INS integration using FGO 

5.5.1 Motion Model Factor 

We used a constant velocity model [130] to constrain the two consecutive states. 

Based on the constant velocity model, the motion model can be expressed as: 

𝒙𝑡 = ℎ𝑀𝑀(𝒙𝑡−1) + 𝛮(0, 𝚺𝑡
𝑀𝑀),   (5-16) 

where ℎ𝑀𝑀(∗) represents the motion model function. Based on the constant velocity 

motion model, the motion model function can be expressed as follows: 

ℎ𝑀𝑀(𝒙 −1) =

[
 
 
 
 
 
 𝑥𝑡−1, 

𝑒𝑐𝑒𝑓
+ 𝑣𝑥𝑡−1, 

𝑒𝑐𝑒𝑓
∙ ∆𝑡

𝑦𝑡−1, 
𝑒𝑐𝑒𝑓

+ 𝑣𝑦𝑡−1, 
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑧𝑡−1, 
𝑒𝑐𝑒𝑓

+ 𝑣𝑧𝑡−1, 
𝑒𝑐𝑒𝑓

∙ ∆𝑡

 𝑡−1,𝑖𝑛 
 𝑜  𝑇

𝜹𝑡−1, 
𝑐𝑙𝑜𝑐 ]

 
 
 
 
 
 

,   (5-17) 
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where ∆𝑡  is the time difference between the two states. The covariance matrix 

associated with the motion model is 𝚺𝑡
𝑀𝑀. Therefore, the error function (𝐞𝑡

𝑀𝑀) of the 

motion model factor can be expressed as: 

||𝐞𝑡
𝑀𝑀||

𝚺𝑡
𝑀𝑀
2 = ||𝒙𝑡 − ℎ𝑀𝑀(𝒙𝑡−1)||𝚺𝑡𝑀𝑀

2     (5-18) 

5.5.2 INS Factor 

We make use of only the raw linear acceleration (𝐀𝑡
  𝑤) and the attitude (𝐑𝐿𝐵,𝑡) 

from the AHRS. Therefore, the measurement from the accelerometer is expressed as 

follows: 

𝐀𝑡
  𝑤 = (𝑎𝑥𝑡

 𝑜  
, 𝑎𝑦𝑡

 𝑜  
𝑎𝑧𝑡

 𝑜  
)𝑇 ,    (5-19) 

where 𝑎𝑥𝑡
 𝑜  

, 𝑎𝑦𝑡
 𝑜  

, and 𝑎𝑧𝑡
 𝑜  

 represent the acceleration measurements in the 

body frame. As the estimated state, 𝒙𝑡, is in the global frame (ECEF), we need to 

transform the acceleration measurements from the body frame to the global frame based 

on the orientation and its position in the last epoch. The transformed acceleration 

measurements 𝐀𝑡
𝑒𝑐𝑒𝑓

= (𝑎𝑥𝑡
𝑒𝑐𝑒𝑓

, 𝑎𝑦𝑡
𝑒𝑐𝑒𝑓

, 𝑎𝑧𝑡
𝑒𝑐𝑒𝑓

)𝑇 are as follows [100]: 

𝐀𝑡
𝑒𝑐𝑒𝑓

= 𝐑𝐺𝐿,𝑡𝐑𝐿𝐵,𝑡(𝐀𝑡
  𝑤 −  𝑡,𝑖𝑛 

 𝑜  
) ,   (5-20) 

 where 𝐑𝐿𝐵,𝑡  is the transformation matrix used to transform the acceleration 

measurements from the body to the local frames, and can be expressed as follows: 

𝐑𝐿𝐵,𝑡 = 𝐑𝐿𝐵
𝑧 (𝛼)𝐑𝐿𝐵

 
(𝛽)𝐑𝐿𝐵

𝑥 (𝛾)     (5-21) 

with 𝐑𝐿𝐵
𝑧 (𝛼) = [

cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0
0 0 1

] 

𝐑𝐿𝐵
 (𝛽) = [

cos(𝛽) 0 sin (𝛽)
0 1 0

−sin (𝛽) 0 cos (𝛽)
] 

𝐑𝐿𝐵
𝑥 (𝛾) = [

1 0 0
0 cos(𝛾) −sin (𝛾)
0 sin (𝛾) cos (𝛾)

] 

 

where 𝛼 , 𝛽, and 𝛾 denote the yaw, pitch and roll angles, respectively. The rotation 

matrices corresponding to the yaw, pitch, and roll angles are denoted  𝐑𝐿𝐵
𝑧 (𝛼), 𝐑𝐿𝐵

 
(𝛽) 

and 𝐑𝐿𝐵
𝑥 (𝛾), respectively. The transformation matrix used to transform the acceleration 
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measurements from the local frame to the global frame based on the 𝒙  is denoted 𝐑𝐺𝐿,𝑡 

and can be expressed as follows: 

𝐑𝐺𝐿 = [

−sin (∅𝑙𝑜𝑛) −sin (∅𝑙 𝑡)cos (∅𝑙𝑜𝑛) cos (∅𝑙 𝑡)cos (∅𝑙𝑜𝑛)
cos (∅𝑙𝑜𝑛) −sin (∅𝑙 𝑡)sin (∅𝑙𝑜𝑛) cos (∅𝑙 𝑡)sin (∅𝑙𝑜𝑛)

0 cos (∅𝑙 𝑡) sin (∅𝑙 𝑡)
] (5-22) 

where ∅𝒍𝒐𝒏 and ∅𝒍𝒂𝒕 represent the longitude and latitude based on the WGS84 geodetic 

system [100], which can be derived from 𝒙 . The measurement model for the linear 

acceleration is as follows: 

𝒙𝑡 = ℎ 𝑁𝑆(𝒙𝑡−1, 𝐀𝑡
𝑒𝑐𝑒𝑓

) + 𝛮(0, 𝚺𝑡
 𝑁𝑆),   (5-23) 

with the measurement function ℎ 𝑁𝑆(𝒙𝑡−1, 𝐀𝑡
𝑒𝑐𝑒𝑓

) as follows: 

ℎ 𝑁𝑆(𝒙𝑡−1, 𝐀𝑡
𝑒𝑐𝑒𝑓

) =

[
 
 
 𝑣𝑥𝑡−1, 

𝑒𝑐𝑒𝑓
+ 𝑎𝑥𝑡

𝑒𝑐𝑒𝑓
∙ ∆𝑡

𝑣𝑦𝑡−1, 
𝑒𝑐𝑒𝑓

+ 𝑎𝑦𝑡
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑣𝑧 −1, 
𝑒𝑐𝑒𝑓

+ 𝑎𝑧 
𝑒𝑐𝑒𝑓

∙ ∆𝑡]
 
 
 

 ,  (5-24) 

where the covariance matrix for the INS factor is 𝚺 
 𝑁𝑆. We can formulate the error 

function for INS acceleration measurements as follows: 

||𝐞𝑡
 𝑁𝑆||

𝚺𝑡
𝐼𝑁𝑆
2 = ||𝒙𝑡 − ℎ 𝑁𝑆(𝒙𝑡−1, 𝐀𝑡

𝑒𝑐𝑒𝑓
)||

𝚺𝑡
𝐼𝑁𝑆
2 ,  (5-25) 

where 𝚺𝑡
 𝑁𝑆 is constant, and is based on the specification of INS. 

5.5.3 GNSS Pseudorange Factor 

The GNSS pseudorange measurements, 𝐒𝐕𝑡 , include the healthy pseudorange, 

𝐒𝐕𝑡
𝐶, the re-modeled pseudorange, 𝐒𝐕𝑡

𝑀, and the corrected pseudorange, 𝐒𝐕𝑡
𝐶 at epoch t 

can be expressed as follows: 

𝐒𝐕𝑡 = {𝐒𝐕𝑡,1, 𝐒𝐕𝑡,2, … , 𝐒𝐕𝑡,𝑖, … 𝐒𝐕𝑡,𝑁}   (5-26) 

The position of the GNSS receiver is 𝐗𝑡, 
𝑒𝑐𝑒𝑓

= (𝑥𝑡, 
𝑒𝑐𝑒𝑓

, 𝑦𝑡, 
𝑒𝑐𝑒𝑓

, 𝑧𝑡, 
𝑒𝑐𝑒𝑓

). The position of a 

satellite 𝐒𝐕𝑡,𝑖 is represented by 𝒙𝑆𝑉,𝑖
𝑥 𝑧

= (𝑥𝑆𝑉
𝑒𝑐𝑒𝑓

, 𝑦𝑆𝑉
𝑒𝑐𝑒𝑓

, 𝑧𝑆𝑉
𝑒𝑐𝑒𝑓

)𝑇. Therefore, we can obtain 

the predicted GNSS pseudorange measurement for satellite 𝐒𝐕𝑡,𝑖 as: 

ℎ (𝐒𝐕𝑡,𝑖, 𝐗𝑡, 
𝑒𝑐𝑒𝑓

, 𝜹𝑡, 
𝑐𝑙𝑜𝑐 ) = ||𝒙𝑆𝑉,𝑖

𝑥 𝑧
− 𝐗𝑡, 

𝑒𝑐𝑒𝑓
|| + 𝛅𝑡, 

𝑐𝑙𝑜𝑐 ,  (5-27) 

where ℎ (∗) is the measurement function of the pseudorange. In this work, the earth 

rotation and atmospheric delay were calculated in advance using the model detailed in 
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[65]. The measured pseudorange from the GNSS receiver is expressed as  𝑆𝑉,𝑖 and is 

given by ℎ (𝐒𝐕𝑡,𝑖, 𝐗𝑡, 
𝑒𝑐𝑒𝑓

, 𝜹𝑡, 
𝑐𝑙𝑜𝑐 )  with additional Gaussian noise. We have the 

following formulation: 

 𝑆𝑉,𝑖 = ℎ (𝐒𝐕𝑡,𝑖, 𝐗𝑡, 
𝑒𝑐𝑒𝑓

, 𝜹𝑡, 
𝑐𝑙𝑜𝑐 ) + 𝛮(0, 𝚺𝑡,𝑖

𝑆𝑉),   (5-28) 

where 𝚺𝑡,𝑖
𝑆𝑉 is the uncertainty of the satellite measurement  𝑆𝑉,𝑖. We can calculate the 

error function for a given satellite measurement,  𝑆𝑉,𝑖, as follows: 

||𝐞𝑡,𝑖
 ||𝜎𝑝2

2 = || 𝑆𝑉,𝑖 − ℎ (𝐒𝐕𝑡,𝑖, 𝐗𝑡, 
𝑒𝑐𝑒𝑓

, 𝜹𝑡, 
𝑐𝑙𝑜𝑐 )||

𝚺𝑡,𝑖
𝑆𝑉
2    (5-29) 

5.5.4 Efficient Incremental Optimization  

In this section, we formulate three kinds of factors including the motion model 

factor, the INS (accelerometer) factor, and the GNSS pseudorange factor. The optimal 

state set 𝐗 can be solved as follows: 

𝐗∗ = arg min
𝐗

∑ ||𝐞𝑡,𝑖
 ||

𝚺𝑡,𝑖
𝑆𝑉
2

𝑖, + ||𝐞𝑡
𝑀𝑀||

𝚺𝒕
𝑀𝑀
2 + ||𝐞𝑡

 𝑁𝑆||
𝚺𝑡
𝐼𝑁𝑆
2    (5-30) 

To solve the optimization problem, we used ISAM2 [129] in GTSAM [131]. 

 Experimental Results 

5.6.1 Experimental Setup 

Two experiments were conducted in typical urban canyons in Hong Kong on 12 

October 2019 (Figure 5-9). The figure on the left shows the test vehicle with all the 

sensors installed in a compact sensor kit. The middle and right figures show the urban 

canyons used. Both of the urban scenarios contain static buildings, trees and dynamic 

objects, such as double-decker buses and cars. We are aware of the limitation of the 

method described of the proposed method, that the sliding window map cannot sense 

the roof of buildings above 40 meters high in dense urban environments. We first 

carried out the experiment in a typical urban canyon in Hong Kong (Urban Canyon 1 

in Figure 5-9). Then we performed another experiment in a highly urbanized area in 

Hong Kong (Urban Canyon 2 in Figure 5-9), in which the buildings are significantly 

higher, and which is one of the densest areas in Hong Kong, to study the limitations of 

the proposed method. Some NLOS satellites reflected by buildings taller than 40 meters 

may not be detected using SWM. In both experiments, a u-blox M8T GNSS receiver 
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was used to collect raw GPS/BeiDou measurements at a frequency of 1 Hz. A 3D 

LiDAR sensor (Velodyne 32) was employed to collect raw 3D point clouds at a 

frequency of 10 Hz. The Xsens Ti-10 IMU was employed to collect data at a frequency 

of 100 Hz. Besides, the NovAtel SPAN-CPT, a GNSS (GPS, GLONASS, and Beidou) 

RTK/INS (fiber-optic gyroscopes, FOG) integrated navigation system was used to 

provide ground truth of positioning. The gyro bias in-run stability of the FOG is 1 

degree per hour, and its random walk is 0.067 degrees per hour. The baseline between 

the rover and the GNSS base station is about 7 km. All the data were collected and 

synchronized using a robot operation system (ROS) [66]. The coordinate systems 

between all the sensors were calibrated before the experiments. The experimentally 

determined parameters used in this paper are shown in Table 5-1. 

Table 5-1. Parameter values used 

Parameters 𝑁 𝑤 Δdpix 𝛼 𝑒  𝑁𝑡ℎ 𝑒  

Values 50 2 1° 10 

Parameters 𝐾 a A 𝐹 

Values 1.65 30 32 10 

 

Figure 5-9. Experimental vehicle and tested scenarios of Urban Canyons 1 and 2 

We first analyzed the performance of GNSS standalone positioning by comparing 

five single point positioning (SPP) methods, as shown below. The objective of this 

analysis was to validate the effectiveness of the proposed method in improving the 

GNSS standalone positioning. 

(a) u-blox: the GNSS positioning solution from the u-blox M8T receiver. 

(b) WLS: weighted least squares (WLS) method [65].  

(c) WLS-NE: weighted least squares (WLS) method [65] with all NLOS satellites 

Reference: 

SPAN-CPT(1Hz)

GNSS: Ublox 

M8T (1Hz)

IMU: Xsens 

MTi 30 (100Hz)

3D LiDAR: 

Velodyne 32 (10Hz)
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3D LiDAR

GNSS antenna: 
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GNSS antenna: 

SPAN-CPT

Urban canyon 1

Street width: 22.0 m

Building height: 35 m

Xsens IMU
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Street width: 12.1 m

Building height: 65 m

Double-decker bus

tree



108 

 

excluded.  

(d) R-WLS: WLS method with the aid of the re-weighting scheme in equation 

(11); all NLOS satellites were re-weighted.  

(e) CR-WLS (proposed SPP): WLS method with the aid of (1) the NLOS 

correction proposed in Section 4.2 if the reflector was detected, and (2) the re-weighting 

scheme in equation (11) if the reflector was not detected.  

Three GNSS/INS integrated positioning methods were also compared:  

(1) EKF: Standard EKF-based tightly coupled GNSS/INS integration based on 

[132]. 

(2) FG: Factor graph-based tightly-coupled GNSS/INS integration[118]. 

(3) FG-3DLA (proposed integration): Factor graph-based tightly coupled 

GNSS/INS integration with the help of 3D LiDAR aided GNSS, as described in this 

paper.  

5.6.2 Evaluation of Urban Canyon 1 Experiment  

(1) GNSS Standalone Positioning 

The results of the GNSS standalone positioning experiments using the five 

methods are shown in Table 5-2. The first column shows the 2D positioning error of 

the u-blox receiver. The positioning result is based on standard NMEA [100] messages 

from the u-blox receiver. A mean error of 31.02 meters was obtained, with a standard 

deviation of 37.69 meters. The maximum error reached 177.59 meters due to excessive 

reflections from surrounding buildings. The GNSS solution was available throughout 

the experiment. The second column shows the positioning result using the raw 

pseudorange measurements from the u-blox receiver and positioning based on WLS. 

The weighting scheme was taken from [65] and is based on the satellite elevation angle 

and the signal to noise ratio (SNR). The positioning error decreased to 9.57 meters with 

a standard deviation of 7.32 meters. The maximum error also decreased to less than 50 

meters. Based on the NLOS detection results shown in Section 5.4.1, the positioning 

error increased to 11.63 meters after excluding all detected NLOS satellites, a result 

that is even worse than that of the WLS. This situation arose because excessive NLOS 

exclusion can significantly distort the perceived geometric distribution of the satellites. 

Our previous results, described in [10, 117], showed a similar phenomenon. The 

standard deviation also increased compared with that of the WLS. Availability 

decreased slightly from 100% (WLS) to 96.01%. Complete NLOS exclusion is 
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therefore not preferable in urban canyons. The fourth column of the table presents the 

results of R-WLS where all the NLOS satellites were remodeled based on the weighting 

scheme described in Section 5.4.3, instead of excluding the NLOS satellites detected. 

The 2D mean error was reduced from 9.57 meters (WLS) to 9.01 meters. Both the 

standard deviation and maximum errors decreased slightly. The last column shows the 

2D positioning error of CR-WLS. The 2D positioning error decreased to 7.92 meters, 

with a standard deviation of 5.27 meters. Availability is also guaranteed using the 

proposed method (CR-WLS). The improved GNSS standalone positioning results 

demonstrate the effectiveness of the proposed method in mitigating the effects of NLOS 

signals.  

Table 5-3 depicts the accuracy of NLOS satellite detection. As mentioned in 

Section 5.4.1, the proposed SWM cannot fully construct all environments, so some 

NLOS satellites with high elevation angles cannot be detected. Therefore, we evaluated 

the NLOS detection performance at three elevation angle ranges. The second row in 

Table 5-3 shows the percentage of NLOS satellites that belonged to a certain elevation 

angle range. The NLOS satellites with elevation angles between 0° and 30° made up 

43.8% of all NLOS satellites. Of these NLOS satellites, 92% were detected using the 

method described in Section 5.4.1. The NLOS detection accuracy for NLOS satellites 

(28.9%) with elevation angles between 30° and 60° was 35%. Similar NLOS detection 

accuracy (27.35%)  was obtained for NLOS satellites with elevation angles between 60° 

and 90°. Although the NLOS satellites with high elevation angles were not detected 

effectively, the proposed method is a new and general solution for NLOS detection. 

Due to the decreased cost of 3D LiDARs, multiple 3D LiDARs [133] is a common 

sensor setup for safety-critical ADV, to guarantee robustness. The use of multiple 3D 

LiDARs can significantly enhance the FOV of the proposed SWM. Therefore, NLOS 

satellites with high elevation angles can be detected by autonomous driving vehicles 

using multiple 3D LiDARs [133].  

Table 5-2. Positioning performance of GNSS SPP in Urban Canyon 1 

GNSS 

Positioning 
u-blox WLS 

WLS-

NE 
R-WLS CR-WLS 

Mean error 31.02 m 9.57 m 11.63 m 9.01 m 7.92 m 

Std 37.69 m 7.32 m 13.05 m 6.90 m 5.27 m 

Maximum error 
177.59 

m 
46.29 m 52.93 m 43.59 m 41.75 m 

Availability 100 % 100% 96.01 % 100% 100% 
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Table 5-3. Performance of NLOS classification between different elevation ranges in 

Urban Canyon 1  

All data 
Elevation (0°–

30°) 

Elevation (30°–

60°) 

Elevation (60°–

90°) 

Percentage of NLOS 

Satellites 
43.8 % 28.9% 27.35 % 

Accuracy of NLOS 

Detection at Different 

Elevation Angles  

92 % 35 % 21% 

 

Tables 5-4 and 5-5 show the values of NLOS correction using the proposed 

method in two selected epochs. In Table 5-4, NLOS satellite 8, with an elevation angle 

of 23.49° and C/N0 of 15 dB-Hz, was detected and the NLOS correction was 10.08 

meters. The fourth column shows the exact NLOS delay, labeled using a ray-tracing 

technique [16] based on ground truth positioning provided by the reference system 

SPAN-CPT. We can see that the exact NLOS delay (15.55 meters) was slightly larger 

than the NLOS delay estimated using the proposed method. The major reason for the 

difference is that the proposed method finds the reflectors based on the shortest distance 

assumption. Therefore, the reflector may not be perfectly detected. In general, we find 

that NLOS satellites with lower elevation angles usually cause larger NLOS delay, as 

shown in column four of Table 5-4. The other epoch data shown in Table 5-5 show a 

slightly different trend. Satellite 30, with an elevation angle of 56.22 degrees, caused 

the largest NLOS delay, of 48.52 meters. According to (5-7) and Figure 5-6, NLOS 

delay is determined by the elevation angle and the distance between the GNSS receiver 

and the reflector. The main reason for the large NLOS delay caused by satellite 30 is 

the long distance between the GNSS receiver and the reflector. The majority of NLOS 

satellites were detected and corrected using the proposed method. Figure 5-10 shows a 

case in which the NLOS satellites were blocked by a traffic signal pole instead of 3D 

buildings. Conventionally, the 3DMA GNSS only considers static buildings. However, 

infrastructure such as traffic signal pole and even guard bars can also cause NLOS 

receptions. Satellites 7, 99 and 112 were all blocked by the signal pole. With increased 

complexity and density of infrastructure [134], which is not included in conventional 

3D building models, NLOS receptions caused by such structures should also be 

considered. We believe that this is a significant contribution of the proposed method. 
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Table 5-4. NLOS pseudorange correction in Urban Canyon 1 (Epoch 33661) 

Satellite 
PRN 

Elevation 
Angle 

(degree) 

C/N0 
(dB-
Hz) 

Actual 
Pseudorange 
Correction 

(ground truth) 

Estimated 
Pseudorange 
Correction 

8 23.49 15 15.55 m 10.08 m 
17 23.13 18 13.73 m 8.14 m 
11 62.45 24 3.87 m 7.59 m 

 

Table 5-5. NLOS pseudorange correction in Urban Canyon 1 (Epoch 33730) 

Satellite 
PRN 

Elevation 
Angle 

(degree) 

C/N0 
(dB-
Hz) 

Actual 
Pseudorange 
Correction 

(ground truth) 

Estimated 
Pseudorange 
Correction 

22 26.91 19 12.02 m 10.17 m 
28 28.60 18 16.41 m 9.47 m 
30 56.22 30 48.52 m 27.31 m 

 

 

Figure 5-10. Illustration of NLOS receptions blocked by an overhead traffic signal pole 

instead of 3D buildings. The blue and red circles denote the LOS and NLOS satellites, 

respectively. The numbers inside the circles denote the satellite PRN 

 

In short, the best performance of GNSS standalone positioning was obtained using 

CR-WLS. These improved results show that the proposed method can mitigate the 

effects of NLOS receptions by remodeling and correcting NLOS signals. Due to the 

complementarity of GNSS and INS, the remodeling and correction of GNSS 

measurements can contribute to the GNSS/INS integration.  

 

Number of NLOS caused by buildings: 1
Number of NLOS caused by signal pole: 3

Traffic Signal Pole

NLOS caused by traffic 

signpost: Prn 7, 99, 112
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(2) GNSS/INS Integrated Positioning 

In this section, we present the results of GNSS/INS integration. Table 5-6 shows 

the 2D positioning errors identified using the three kinds of GNSS/INS integration 

listed. A 2D mean error of 8.03 meters was obtained using EKF, with a maximum error 

of 44.55 meters. Significantly improved positioning accuracy was obtained after the 

application of the state-of-the-art FGO, with the mean error decreasing from 8.03 to 

3.64 meters. Both the standard deviation and the maximum error decreased. Our recent 

research, described in [118], extensively evaluated the performance of GNSS/INS 

integration using EKF and factor graphs. The improvement caused by the factor graph 

is due to the iteration and re-linearization employed during factor graph optimization 

[118]. Unlike conventional EKF based GNSS/INS integration, the FGO makes use of 

historical measurements during optimization, which exploits the connectivity between 

historical states and measurements. Unfortunately, the improvements from the FGO are 

still limited if the GNSS measurements w not well modeled. The maximum error still 

reached 23.56 meters. The positioning error still fluctuates dramatically between 

epochs 190 and 205 (left-hand side of Figure 5-11). The main reason for this variability 

is the high number of unmodeled NLOS measurements. With the use of the proposed 

method, the 2D mean error decreased from 3.64 meters (FG) to 2.8 (FG-3DLA) meters. 

The standard deviation was also reduced to 1.62 meters. The maximum 2D error was 

reduced from 23.56 meters (FG) to 9.71 meters. These improved results show the 

effectiveness of the proposed method. Although GNSS standalone positioning using 

the proposed CR-WLS still reaches 7.92 meters, GNSS/INS integration using FGO can 

effectively make the best use of the pseudorange correction (model calibration in 

Section 5.4.2) and uncertainty modeling (model repair in Section 5.4.3). After applying 

the 3D LiDAR aided GNSS positioning, the performance of GNSS/INS integration 

using the state-of-the-art factor graph was pushed significantly higher.  

 

Table 5-6 Positioning performance of GNSS/INS integration in Urban Canyon 1 

GNSS/INS EKF FG FG-3DLA 

Mean error 8.03 m 3.64 m 2.80 m 

Std. dev. 7.60 m 3.19 m 1.62 m 

Maximum error 44.55 23.56 m 9.71m 
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Fig. 11. 2D positioning error and trajectories of the GNSS/INS integrations in Urban 

Canyon 1 

5.6.3 Evaluation of Urban Canyon 2 Experiment  

To investigate the performance of the proposed method, another experiment was 

conducted in a denser urban canyon. (Figure 5-9). As with Experiment 1, NLOS 

satellites with high elevation angles cannot be fully detected using the SWM. We also 

wanted to explore what would happen in a denser urban canyon, using the proposed 

method. 

(1) GNSS Standalone Positioning 

As with Experiment 1, the results of the GNSS standalone positioning experiment 

are presented to show the effectiveness of the proposed method in GNSS positioning. 

A positioning error of 30.68 meters was obtained using the u-blox receiver with a 

maximum error of 92.32 meters. A GNSS positioning error of 23.79 meters was 

obtained using WLS based on the raw pseudorange measurements from the u-blox 

receiver. The maximum error increased slightly to 104.83 meters, compared with the 

GNSS positioning using data directly from the u-blox receiver. After excluding all 

detected NLOS satellites from the GNSS positioning (WLS-NE), both the mean and 

standard deviation increased to 25.14 and 23.73 meters, respectively. The availability 

of GNSS positioning data decreased to 95.52%, due to the lack of satellites for GNSS 

positioning, which again shows that complete NLOS exclusion is not optimal in urban 

canyons. With the help of NLOS remodeling (Section 4.3), the 2D error decreased to 

19.61 meters by R-WLS. One hundred percent availability is guaranteed. The GNSS 

positioning error was further decreased to 17.09 meters using the CR-WLS method. 

The improvement in the results shows the effectiveness of the proposed method for 
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GNSS standalone positioning. The maximum error still reached 71.28 meters, because 

not all NLOS satellites can be detected and mitigated.  

 

To further investigate these results, we also examined the percentage of NLOS 

satellites within certain elevation angle ranges. The percentage trend is almost opposite 

the trend in Experiment 1. The majority (44%) of the NLOS satellites belonged to the 

60°–90° group in Experiment 2. However, the majority of NLOS satellites belonged to 

the 0°–30° group in Experiment 1. In Experiment 2 the buildings were higher, and the 

streets narrower, than in Experiment 1 (Figure 5-9). Apart from undetected NLOS 

satellites, the error caused by multipath effects was not mitigated. Even so, improved 

GNSS standalone positioning results were obtained, with the 2D error decreasing from 

23.79 meters (WLS) to 17.09 (CR-WLS) meters. The NLOS detection accuracy for the 

satellites in the low elevation angle group (0°–30°) was still more than 90%, similar to 

Experiment 1. The NLOS detection accuracy for the satellites of the high elevation 

angle group (60°–90°) was limited (12%). However, the proposed method can easily 

be adapted to ADV with multiple 3D LiDARs to further detect NLOS satellites with 

high elevation angles. Since the proposed NLOS detection method relies on the 

orientation from the AHRS, we also present the effect of orientation error on NLOS 

detection accuracy. The last row of Table 8 shows the accuracy of NLOS detection at 

different angle ranges, using the ground truth orientation provided by the SPAN-CPT.  

 

Table 5-7. Positioning performance of GNSS SPP in Urban Canyon 2 

GNSS 

Positioning 
u-blox WLS 

WLS-

NE 
R-WLS CR-WLS 

Mean error 30.68 m 23.79 m 25.14 m 19.61 m 17.09 m 

Std. dev. 26.53 m 18.22 m 23.73 m 19.80 m 20.95 m 

Maximum error 92.32 
104.83 

m 
109.30 86.14 m 71.28 m 

Availability 100% 100% 95.52% 100% 100% 

 

Table 5-8. Performance of NLOS classification between different elevation ranges in 

Urban Canyon 2  

All data 
Elevation (0°–

30°) 

Elevation (30°–

60°) 

Elevation (60°–

90°) 

Percentage of NLOS 

Satellites 
17.7 % 38.3% 44.0 % 
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Accuracy of NLOS 

Detection at Different 

Angle 

90.7 % 46.0% 12.0% 

Accuracy of NLOS 

Detection at Different 

Angle (SPAN-CPT) 

91.3 % 47.1% 12.5% 

 

(2) GNSS/INS Integrated Positioning 

In this section, we present the results of GNSS/INS integration. Table 5-9 shows 

the 2D positioning errors using the three kinds of GNSS/INS integration, similar to 

Experiment 1. A 2D mean error of 20.89 meters was obtained using EKF, with a 

maximum error of 90.27 meters. Slightly improved positioning accuracy was obtained 

after applying the state-of-the-art factor graph, with the mean error decreasing from 

20.89 to 18.54 meters. Both the standard deviation and the maximum error decreased. 

The improvement caused by the state-of-the-art factor graph was not as large as that in 

Experiment 1, because the percentage of polluted GNSS signals (multipath effects and 

NLOS receptions) is significantly larger in Urban Canyon 2, which has taller buildings 

and narrower streets. The improvements from the use of FGO were still limited since 

the GNSS measurements are not well modeled.  

With the use of the proposed method, the 2D mean error decreased from 18.54 

meters (FG) to 13.32 (FG-3DLA) meters. The standard deviation was also reduced to 

10.11 meters. The maximum 2D error was reduced from 77.10 meters (FG) to 43.82 

meters. The improved results show the effectiveness of the proposed method. Figure 5-

13 shows the positioning errors and trajectories generated in Experiment 2. Positioning 

was improved almost throughout the experiment. From epoch 350 to epoch 450 the 

positioning error decreased. Interestingly, the positioning error from FG-3DLA near 

epoch 300 was even larger than the one from FG which is mainly caused due to the 

misclassification of satellite visibility. Although the GNSS standalone positioning 

using the proposed CR-WLS still reached 17.09 meters, the GNSS/INS integration 

using FGO could make the best use of the pseudorange correction (model calibration 

in Section 5.4.2) and uncertainty modeling (model repair in Section 5.4.3) with the 

positioning error decreasing to 13.32 meters. 
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Table 5-9. Positioning performance of GNSS/INS integration in Urban Canyon 1 

GNSS/INS EKF FG FG-3DLA 

Mean error 20.89 m 18.54 m 13.32 m 

Std. dev 23.44 m 19.18 m 10.11 m 

Maximum error 90.27 m 77.10 m 43.82 m 

 

 

Figure 5-13. 2D positioning error and trajectories of the GNSS/INS integrations in 

Urban Canyon 1 

Although the mean positioning error was significantly improved compared with 

the 30.68 meters obtained using u-blox, it still reached 13.32 meters. The remaining 

error arises from two major sources: 1) undetected NLOS satellites; and 2) unexpected 

multipath effects. Table 5-10 shows the pseudorange errors caused by the multipath 

effects and NLOS. Satellite 15 introduced the maximum pseudorange error of 37.92 

meters among the six satellites. Multipath effects can also cause errors of with similar 

magnitude; for example, satellite 21 had a pseudorange error of 34.88 meters. Therefore, 

unmodeled multipath is a major factor causing the remaining 13.32 meters of 

positioning error. Fortunately, the multipath can be further mitigated using a higher 

level GNSS antenna, which is acceptable for autonomous driving vehicles.  

Table 5-10. Pseudorange errors in Urban Canyon 2 (Epoch 401793) 

Satellite 
PRN 

Elevation 
Angle 

(degree) 

C/N0 
(dB-
Hz) 

Type Pseudorange Error 

15 51.6 31 NLOS 37.29 m 
21 48.70 26 Multipath 34.88 m 
89 63.1 27 NLOS 5.71 m 
92 61.63 33 Multipath 5.49 m 
94 62.32 32 Multipath 5.14 m 
102 60.98 34 Multipath 7.77 m 
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6. CONCLUSIONS AND FUTURE WORK 

 Conclusions 

GNSS positioning is currently still the major source of globally referenced 

positioning for intelligent transportation systems (ITS). However, accurate GNSS 

positioning in urban canyons is still a challenging problem. NLOS receptions currently 

remain the major problems for GNSS positioning in urban canyons. Therefore, 

effectively identifying and mitigating the effects of NLOS receptions is a significant 

step in achieving and popularizing accurate GNSS positioning solutions, such as SPP, 

real-time kinematic (RTK), and precise point positioning, in urban canyons. Since the 

performance of GNSS positioning relies heavily on environmental conditions, the state-

of-the-art range-based 3DMA method proposes to effectively mitigate NLOS effects, 

based on offline environment descriptions known as 3D building models. However, 

with the increasing complexity and dynamics of city infrastructures, 3D building 

models cannot fully describe the real-time environment. Reconstructing the real-time 

environment based on onboard sensing is a promising method for identifying 

potentially polluted GNSS signals. Unlike the state-of-the-art 3DMA GNSS method, 

this thesis explores to proposes to improving the GNSS positioning with the assistant 

of onboard sensing. First, an object detection aided NLOS exclusion algorithm based 

on 3D LiDAR is proposed to mitigate the impacts of NLOS signals caused by 

surrounding dynamic objects. This is so far the first work that considers the NLOS 

caused by the dynamic objects. Secondly, instead of directly excluding the NLOS 

signals which have a drawback of distorting the geometry distribution of satellites, an 

NLOS correction method is proposed based on a 3D LiDAR sensor. The method does 

not require the 3D building models and the initial guess of the position of the GNSS 

receiver. The potential of the proposed method in GNSS/LiDAR integration is studied 

subsequently and the results show the effectiveness of the proposed method. As both 

of the two methods share the drawback of (1) the limited FOV of 3D LiDAR causes 

limited environment sensing capability; (2) the performance of NLOS detection relies 

heavily on the accuracy of object detection, such as double-decker bus detection in [67] 

and building detection in [10]; and (3) the reflector detection method described in [67] 

[10] [117] can only work when a building surface is detected and is sufficiently regular. 
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The work presented in Section 5 effectively relaxes these three drawbacks where a 

novel 3D LiDAR aided the GNSS positioning method which makes use of an onboard 

3D LiDAR sensor to reconstruct the surrounding environment. Potential NLOS 

receptions caused by static buildings, dynamic objects, and even semi-static 

infrastructure (traffic signpost in Figure 5-10) can be detected, remodeled, and even 

corrected. This proposed method is a continuation of the previous work described in 

[67] [10] [117]. Overall, this thesis continuously focuses on solving the problem of 

GNSS NLOS in urban canyons by proposing a 3D LiDAR aided GNSS positioning 

method. A general solution is proposed to mitigate the effects of NLOS receptions and 

the proposed method can be easily adapted to the systems with multiple 3D LiDARs, 

and NLOS satellites with high elevation angles can be detected accordingly. We believe 

that the proposed method in this thesis can have a positive impact on both the academic 

and industrial fields.  

 Future Work 

Using a low-cost sensor setup to obtain high accuracy is an important factor that 

could lead to the population of autonomous driving vehicles. This thesis has effectively 

improved the performance of the GNSS positioning in highly urbanized areas. However, 

the positioning error could still reach more than 10 meters in the evaluated areas. The 

future works will focus on two parts: 

(1) More onboard sensors, such as cameras, vehicular odometers, will be 

integrated with the GNSS solution with the help of the proposed method. 

Multi-sensor fusion is the most promising solution for achieving centimeter-

level positioning for autonomous driving vehicles. 

(2) The proposed method can only mitigate the impacts of the GNSS NLOS 

receptions. The performance degradation caused by the multipath effects is not 

mitigated based on the proposed 3D LiDAR aided GNSS positioning method. 

In future work, we will combine the robust model studied in [102-104] to 

model the multipath effects. Moreover, the Doppler and carrier-phase 

measurements will be integrated with the pseudorange measurements using the 

proposed 3D LiDAR aided GNSS method. 

(3) With the fast development of the communication technique, the vehicle to 

everything (V2X) technique enables collaborative positioning based on 
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information from multiple agents. In the future, we will also explore the 

potential of V2X in improving the GNSS positioning and even the overall 

positioning accuracy. 
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