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ABSTRACT 

Worldwide, the demolition and construction waste generated by 

construction activities has caused a large number of environmental 

pollution problems. Although more and more countries are currently 

adopting laws and regulations to encourage manufacturers to increase the 

recycling rate of demolition and construction waste, it has actually 

achieved little effect for various reasons. Many builders still send mixed 

construction and demolition waste to landfills for disposal. The purpose of 

this study is to develop a robot for sorting and picking up waste for 

construction and demolition, and to evaluate the feasibility of the robot 

prototype in a real environment. In order to achieve these goals, we have 

designed and evaluated the robot patrol system and the pick-up system 

separately, in order to achieve the following objectives: (1) to realize the 

automatic patrol of the robot prototype in complex construction sites; (2) 

to realize the automatic sorting and recycling of heterosexual construction 
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and demolition waste Pick up; (3) confirm the feasibility of the robot 

prototype. 

First of all, due to the less application of robot path planning in the 

construction industry, we built a robot platform suitable for use on 

construction sites. Ensure the accuracy of the robot through technologies 

such as map segmentation and relocation. An advanced path planning 

algorithm is also used to ensure the efficiency of robot patrol tasks in any 

environment. Secondly, in order to automatically collect demolition and 

construction waste scattered on the ground, this study introduced a 

computer vision algorithm. However, there is currently no database for 

demolition and construction waste, so we built and expanded the database 

of target objects based on COCO format. Through experiment and 

optimization, the pixel-level target recognition system is completed. 

Thirdly, we first developed strategies for picking up demolition wastes of 

different shapes. In this study, we realized that the usual picking strategies 

sometimes produce errors when faced with small objects, and the success 
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rate for special-shaped construction waste is even lower. Therefore, we 

have developed a set of picking strategies for elongated objects and curved 

objects, which can pick up water pipes and cables very well. The strategy 

can also be applied to other similar objects. Fourth, considering that the 

testing of robot prototypes in the laboratory does not well evaluate the 

feasibility of the real environment, an evaluation was conducted to 

investigate the accuracy and success rate of robot patrolling, positioning, 

target detection, and object pickup. The research shows that the prototype 

of the manufactured robot can be accurately located in the real environment, 

complete the patrol task and establish a real-time point cloud map, which 

is conducive to the management work on the construction site. In addition, 

in order to improve the accuracy of the computer vision system, different 

CNN backbones and transfer learning sources are compared and verified. 

Overall, this research work provides an innovative method of collecting 

construction and demolition waste to solve the current problems 
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encountered in the recycling of construction and demolition waste and 

increase its recovery rate.   
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CHAPTER 1 INTRODUCTION  

1.1 RESEARCH BACKGROUND 

1.1.1 The situation and influences of construction and demolition 

waste 

Construction and demolition waste (CDW) is defined as the surplus 

and damaged materials produced during construction and demolition 

progress [1,2]. Since construction is an indispensable part of human society, 

CDW has a wide range of influences on a global scale. According to 

government reports, CDW accounts for more than 25 percent of Hong 

Kong’s solid waste in 2016 and 2017 [3]. In China, a large amount of CDW 

is continuously generated because of the economic development [4]. 

Similarly, construction processes in developed countries such as the United 

States have also generated hundreds million tons of CDW [5]. In Australia, 

waste generated from the construction sector constitutes about 44% of the 

total amount of annual waste across all industry sectors [6]. A 2016 report 

in Europe stated that construction waste accounts for 36.4% of all waste 
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generated by economic activities and households [7].  With the population 

growth and the economic development globally, the number of buildings 

will continue to increase and old buildings will be demolished, inevitably 

leading to the generation of CDW [8]. Generally, construction waste is a 

mixture of inert, non-inert, harmless and harmful materials, which means 

that effective sorting is an essential step in the disposal of CDW [9]. 

However, recent studies have shown that construction merchants usually 

transport mixtures directly to landfills without distinction [10]. In this case, 

CDW not only causes serious air, water, and soil pollution, but also puts 

tremendous pressure on limited landfills [11].  

Previous research has shown that the amount of construction waste 

generated is affected by various factors. For example: legislation is 

conducive to reducing the generation of construction waste and has a 

positive effect on the effectiveness of construction waste management; 

however, poor communication, coordination, awareness, and behavior, 

combined with the time and cost of classification are clearly some of the 
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culprits that lead to inefficient and unmotivated construction waste 

management [12]. Governments around the world have formulated 

corresponding policies and regulations to enforce or encourage 

construction merchants to recycle CDW [13]. Unfortunately, the results 

have not been satisfactory. The Hong Kong Government implemented the 

"Construction Waste Disposal Charge Scheme" (CWDCS) in 2005, which 

used economic incentives to encourage CDW producers to reduce waste 

and implement reuse and recycling [14]. However, three years after the 

implementation of this regulation, a survey showed that many people 

believed the reduction amount of CDW in Hong Kong to be less than 5% 

[15]. In Europe, EU and Member States also issued related laws and 

policies in order to reduce the influences of CDW, but recent report shows 

that the recycling work of CDW is still a vast challenge in Spain [16].  

On-site recycling of construction waste, one of the most important 

CDW recycling methods, increases the proportion of reused and recycled 

building materials, which not only reduces land resource consumption and 
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landfill pollution, but also reduces waste transportation and disposal costs 

[17]. Previous research indicated that separating and recycling different 

types of CDW is an important factor in the success of CDW recycling [17]. 

However, limited site space, management work, labor, costs, interference 

with normal site activities, and many other reasons collectively lead to 

builders directly mixing landfill with CDW [18]. Therefore, we believe that 

the efforts to reduce pollution generated by CDW should not only focus on 

issuing new policies, but also on developing new technological solutions 

to reduce the cost of time and money. 

1.1.2 Problems and possible solutions in construction industry 

Comparing with other industries, labor productivity in the construction 

industry has been decreasing since 1990s [19]. Boke believes that the 

characteristics of the investment in the construction industry, the harsh 

working environment, and the consumption of large amounts of raw 

materials are problems that the traditional construction industry cannot 

temporarily solve. At the same time, there are many phenomena which 
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indicate that traditional building technology may have reached its limit, so 

the introduction of new technologies is even more necessary now. In the 

future, the problem of population aging will be very serious [20]. Studies 

have shown that by 2050, nearly one-third of the workforce will be aged 

50 and over [21]. Therefore, according to previous research on factors 

affecting work efficiency, the aging of the population will have a negative 

impact on labor productivity [22]. In addition, as a high-risk industry with 

frequent casualties, in addition to implementing existing regulations, the 

construction industry also needs more technical means to reduce the 

chances of workers facing danger [23].  

Regarding the issue of labor productivity, we believe that the promotion 

of new technologies may be one of the most likely ways to increase 

productivity in construction industry. Chen et al. declare that construction 

automation (CA) can improve the production efficiency of the construction 

industry in different ways, such as automated management systems and 

robots [24]. Experiments have proved that in the wall-building work, the 
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efficiency of existing robots has different performances under different 

conditions compared with humans [25]. In simple wall-building work, 

humans are more efficient. However, when the complexity of the wall 

increases, the efficiency of the robot will gradually exceed that of human 

workers. Moreover, a study of human-machine cooperative glazing robots 

shows that robots can speed up work while reducing the number of 

participants [26].  

At the same time, CA can also reduce the possibility of worker injuries. 

Research in this area usually uses non-contact methods to regulate workers' 

behavior, such as reminding workers to stay away from vehicles and wear 

safety helmets [27,28]. Of course, using robots instead of workers to work 

on the construction site can also greatly reduce risk. 
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1.2 KNOWLEDGE GAP AND RESEARCH OBJECTIVES  

1.2.1 Knowledge gaps 

Due to the rapid development of automation technology in recent 

decades combined with the outstanding performance in other fields, 

people's interest in building automation research is increasing. In the field 

of construction, exploration of automation technology focuses on 

automated worker management systems and automated assembling robots, 

as described in Chapter 2 [29–31]. These studies have either improved the 

efficiency of management and freed up expensive labor costs from real-

time monitoring of the construction site or reduced the number of workers 

required for repetitive and dangerous works. As construction activities 

inevitably generate waste, research on the use of automation technology in 

waste management can greatly promote the efficiency and reduce the cost 

of CDW recycling. However, existing construction waste recycling robots 

only function to classify the collected CDW, without considering how to 

collect it [32]. In fact, although automation technology has been widely 
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used in the construction industry, most on-site CDW collection and sorting 

work is still handled manually, which is inefficient and costly [33].  

A robot with a similar function, the floor cleaning robot, can do a good 

job of cleaning up dust, debris, etc., but it cannot meet the requirements of 

construction sites in terms of path planning, collection methods, and 

classification capabilities. Firstly, the path planning systems of traditional 

cleaning robots are usually based on random coverage path planning 

algorithms. This algorithm can cover any workplace with a high coverage 

rate after a certain period of time. However, the random coverage path 

planning algorithm cannot ensure full coverage of the workplace, because 

the coverage efficiency gradually decreases as the coverage rate increases. 

Therefore, we believe that designing a successful path planning algorithm 

can ensure that the robot efficiently and completely covers the workplace. 

In terms of collection methods, the cleaning robot does not need to 

consider the classification problem since the collection of dust and debris 

is more convenient. Contrastingly, in a construction site, the amount of 
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waste is large, the shape different, and waste would need to be picked up 

by a mechanical gripper. Therefore, a properly designed pickup system 

needs to be developed in order to accurately collect CDW. At the same time, 

the classification task of CDW is also one of the important functions of 

recycling robots. 

In general, there are three main gaps for developing an on-site 

construction waste robot. First, a navigation system is needed to assist the 

robot to successfully search the entire construction site. We are faced with 

challenges such as unknown environments, obstacles and rough roads. 

After solving the navigation problem, this research needs to develop a 

high-precision vision system to recognize the target object. We are facing 

the difficulty of lack of data and need to consider the accuracy, calculation 

speed, computing resource consumption and other issues. For picking up 

CDW of different shapes, an effective picking system is also essential. 
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1.2.2 Research objectives 

Based on the above background and research gaps, this study aims to 

explore the use of path planning algorithms and computer vision 

algorithms to identify and pick up construction waste on construction sites. 

With the help of existing path planning algorithms and visual algorithms, 

this study aims to develop a CDW sorting and recycling robot prototype 

suitable for complex building construction sites, which is a new solution 

for on-site CDW picking and sorting. We believe that the developed 

prototype can promote the development of building automation and 

increase the willingness of builders to recycle CDW. The specific 

objectives established for this research work are as follows: 

1. Construction and demolition waste is common on construction sites, 

but existing systems and methods cannot encourage builders to sort and 

recycle construction waste. In order to provide a new automated on-site 

CDW recycling method, this study aims to develop a robot prototype, 

which can automatically patrol, sort, and recycle construction waste. 
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2. Due to the complex road conditions on the construction site, 

existing path planning algorithms cannot well meet the needs of the 

CDW recycling robot working on the construction site. It is a possible 

solution to improve existing algorithms and introduce other algorithms 

to assist positioning. Therefore, this study aims to develop a new robotic 

patrol system for complex building construction sites based on existing 

algorithms, including automatic navigation and automatic positioning. 

3. After solving the problem of robot patrol, the success rate of 

identifying and picking up CDW determines the efficiency and 

feasibility of the overall robot. Therefore, this study aims to build a 

CDW database and train a computer vision model that meets the needs. 

After using computer vision technology to identify different CDWs, 

design picking schemes for different objects. 

4. In order to evaluate the feasibility of the developed robot prototype, 

this study finally carried out actual tests and compared the efficiency of 

robot picking with manual picking. 
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1.3 ORGANIZATION OF THE THESIS 

The rest of the thesis is organized as follows. Chapter 2 reviews the 

relevant literature on building automation and outlines the relevant 

technologies, such as computer vision technology, robot path planning 

algorithms, and positioning technology that support this research. Chapter 

3 illustrates the design of this research. Chapter 4 describes the overall 

design of the robot mobile module, which not only outlines the overall 

hardware configuration of the robot, but also details the positioning and 

path planning algorithms. Based on the robot motion system introduced by 

Chapter 4, Chapter 5 carries out the algorithm design of recognition system 

and grab system. Next, Chapter 6 evaluates the robot prototype developed 

in this study. Chapter 7 summarizes the main findings, discusses the main 

contributions, and outlines the direction of future research. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 INTRODUCTION 

In order to review the literature that laid the foundation for this study, 

this chapter is organized as follows. Section 2.2 outlines the existing 

construction robots and explains the main trends of the research. Since the 

construction and demolition waste sorting and recycling robots are divided 

into mobile systems and pick-up systems, we have reviewed related 

research separately. Section 2.3 specifically reviews the research on path 

planning algorithms. Section 2.4 further studies the problem of robot 

relocation in complex environments. Then, Section 2.5 outlines the 

computer vision technologies that underpin this research. The analysis and 

discussion of existing algorithms are then summarized in Section 2.6. 

2.2 OVERVIEW OF CONSTRUCTION ROBOTICS 

The construction industry faces many problems and challenges. The 

construction industry is dangerous, and a large number of fatal accidents 

occur on construction sites every year [34]. Methods to reduce worker 
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injuries and deaths have been extensively studied. At the same time, several 

reports pointed out that the construction industry is facing a shortage of 

workers[35,36]. As a labor-intensive industry, construction sites rely 

heavily on human capital. However, the problem of an aging population is 

plagued by many countries. The poor construction site environment, low 

salary, and high skill requirements cause this problem to be particularly 

serious. [21]. Compared with other industries, the low labor productivity 

of construction sites further increases the severity of the shortage of 

workers in the construction industry [19]. 

It is within this context that people began to study the application of 

automation in the construction industry to solve these problems. 

Construction robots are expected to increase labor productivity, improve 

the quality of buildings, improve the working environment of workers, and 

reduce the cost in the construction industry [37]. When searching for 

“construction industry” and “robot” on Scopus, the results show that 

research on construction robots has gradually increased in the past decade. 
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This phenomenon indicates that construction robots are receiving more and 

more attention. Therefore, this section selects a representative part of 

research related to construction robots for overview and analysis. 

The first type of construction robot is a robot used to replace humans 

for repetitive labor. The most iconic one is the bricklaying robot. In the 

1990s, in order to meet the challenges caused by the reduction of skilled 

workers in the construction field and the development of the construction 

industry, Pritschow et al. designed a mobile bricklaying robot that can grab 

bricks from the prepared pallets and accurately install them on the 

designated position [38]. The robot developed in this research can build a 

planned wall in an offline environment according to the set procedures. In 

order to solve the problem of versatility, this robot can handle bricks of 

different sizes, and can deal with the tolerance of materials. In order to 

improve the accuracy, the robot needs to calibrate the position of the brick 

according to the Tool Center Point. Therefore, this robot integrates 

calibration, measurement, bonding, as well as other functions, and has 
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proved its feasibility through experiments. This research is not only an 

exploration of the application of robots and automation technology in the 

construction industry, but also serves as a preliminary exploration of object 

grasping methods. However, due to the immature automation technology, 

many tasks need to be done manually, such as the initial setting of the robot, 

real-time supervision, and accurate placement of building materials, which 

all require skilled workers to operate. On this basis, Dörfler et al. proposed 

an automated wall-building robot prototype based on 3D point cloud and 

Robot Operating System (ROS) system[39]. The research used a robot 

called The In situ Fabricator (IF) developed by the Federal Institute of 

Technology in Zurich [40]. Studies have shown that IF is used to 

manufacture complex Mesh Mould Walls, and has higher efficiency than 

traditional manufacturing [25]. In bricklaying tasks, the proposed robot has 

additional functions on top of the basic functions of IF. The robot can first 

use the 3D point cloud to compare and feedback the real size and design 

size, greatly improving the success rate of building walls. After confirming 
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the precise geometry, the robot can automatically design the order, position, 

and orientation of each brick. Finally, the robot can automatically complete 

all the work. The research results show that the time for placing each brick 

in the wall-building work of the robot is about 40 seconds, and the error of 

the brick position is within 7 mm. The robot has reduced human 

intervention as much as possible, proving the feasibility of a completely 

autonomous construction robot with the aid of modern computer 

technology. 

Considering the wide application of 3D printing in aerospace, 

automotive, and medical industries, some researchers have begun to 

explore the feasibility of 3D printing in the field of construction [41]. For 

example, Lim et al. took inspiration from fused deposition modeling 

technology, using cement or gypsum as a material, and built large-scale 

building components according to a given 3D computer-aided design and 

drafting (CAD) model through three steps of material preparation, delivery, 

and printing [42]. The study described the components and principles of 
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the printer in detail and verified the feasibility through several tests. 

Although the research of Lim et al. still has some shortcomings in printing 

scale and accuracy, it fully demonstrates the potential of 3D printing 

technology in the field of architecture. 

Since the traditional 3D printing technology works in a fixed-size space, 

product size is limited by the mechanical size. However, since buildings 

are usually large-scale projects, the cost and structure limit the application 

of 3D printing technology on the construction site. In order to solve this 

problem, Zhang et al. proposed a large-scale 3D printing technology 

combined with mobile robots [43]. In hardware, the proposed system uses 

a robotic arm, stereo camera, pump, and mobile robot platform. In terms of 

algorithm, this study uses simultaneous localization and mapping 

algorithm for map construction, and then uses adaptive Monte Carlo 

localization for positioning. Based on precise positioning, the proposed 

robot system performs motion planning for multiple robots. Multi-robot 

collaborative work greatly increases the efficiency and expandability of 3D 
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printing. At the same time, the use of a 6-degree-of-freedom manipulator 

for printing allows more flexibility for the robot. There is also research 

devoted to solving the problem of insufficient strength regarding 3D 

printed structures. The combination of shotcrete 3D printing technology 

and new concrete materials allows 3D printing technology to be used to 

construct reinforced concrete structures, including columns, walls, and 

ceilings [44]. Compared to the traditional 3D printing method, this 

technology has higher design freedom and saves concrete materials. 

In addition to the aforementioned construction robots, robot technology 

is also used in the field of building tiles, paint coating, material handling, 

automatic inspection, and many other fields.  

2.3 RESEARCHES ON PATH PLANNING OF KNOWN 

AND UNKNOWN ENVIRONMENTS 

Many coverage path planning algorithms have been widely applied to 

the automation control of terrain scanner robots, demining robots, floor 

cleaning robots, painter robots, lawn mowers, automated harvesters, 
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window cleaners, inspection of complex underwater structures, etc. [45–

49]. Since information relating to the entire workspace is given before path 

planning, the algorithms used are multitudinous off-line planning 

algorithms, such as classical exact cellular decomposition methods 

(trapezoidal decomposition [50], boustrophedon decomposition [51,52], 

Morse decomposition [53] and distance transforms algorithms [54]). 

However, there are many uncertain factors on construction sites. Although 

the border of the entire workspace can be accurately represented by 

construction drawings, such drawings cannot authentically reflect the 

details of workspaces due to the continual dismantling, rebuilding, and 

fitting of spaces. Therefore, using complete coverage path planning (CCPP) 

algorithms for uncertain environments could provide a feasible approach 

to assist a floor-tiling robot, for instance. Many methods have been applied 

to path planning in uncertain environments during the last two decades, 

such as disk covering [55], bioinspired neural networks [56], cellular 
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decomposition [57,58], sensor-based coverage approaches [51,59] and 

finite state machines (FSM) [60]. 

Obstacle avoidance by the disk covering algorithm was first proposed 

in 2004, as an early trial of the CCPP algorithm. This solution assumes that 

the working area can be represented by an arbitrary closed curve. Therefore, 

the entire workspace can be encased by a minimum-area rectangle using 

an optimized method proposed in 1945 [61]. They can decompose the 

quadrate workspace into several circular regions using the method 

proposed by Kershner and ensure a minimum number of disks at the same 

time. After the decomposition work, the patrolling robot is expected to go 

through every center of disks from the boundaries of the entire workspace. 

Though the decomposition method of this solution is convincing, we did 

not consider the obstacle avoidance method for the unknown barriers inside 

the workspace as it is still far from practical application. 

The second solution uses neural network technology. The main 

principle of this algorithm is to make the uncleaned area global thus 
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attracting the cleaning robot, while making the barriers local thus rejecting 

the robot. In contrast with other solutions, this CCPP algorithm represents 

the workspace by using the triangular cell decomposition method proposed 

by Joon Seep Oh et al. (2004) to expand potential directions of the robot. 

The neural network algorithm then determines the coverage priority of 

robot. However, the complexity of neural networks allows the 

computational complexity of this algorithm to be higher than other 

methods. A similar approach has been used in underwater vehicles [62], 

which extends the 2D path planning algorithm to 3D underwater 

environments. Similarly, Guo and Balakrishnan proposed a coverage 

solution for nonholonomic mobile robots by integrating neural network 

technology and the circular region decomposition method [63]. 

Boustrophedon decomposition is one of the cellular decomposition 

methods that have been widely used in CCPP research both for certain and 

uncertain environments. Batsaikhan et al. proposed the method to 

decompose the workspace into easily covered rectangles using the detected 
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characteristic bindery of obstacles. This method is able to cover the single 

region with a traditional zig-zag path, which can work well to cover 

uncertain workspaces [51]. Although this method was used in a certain 

workspace by Choi et al. in given environments, there are many differences 

between certain and uncertain environments. More importantly, this 

algorithm may cause dead zones in extreme situations, and the overlap rate 

of coverage path is primary determined by the location of obstacles. 

Recently, there has been another method based on boustrophedon motion, 

which was combined with advanced point-to-point path planning 

algorithms to reduce the distance of the backtracking path [52]. This 

method performs a lower overlap rate when comparing to other CCPP 

algorithms based on boustrophedon motion. However, due to the 

disadvantage of boustrophedon motion, the algorithm needs to find the 

backtracking path multiple times in a complex environment, resulting in a 

wastage of time and computational power.  
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Another CCPP algorithm proposed by Caihong Li et al. claimed that 

the algorithm based on the Finite State Machine (FSM) approach and 

rolling windows approach could cover unknown environments completely 

without causing too much overlap [60]. Their result shows that the 

algorithm will cause an 11.98% overlap rate, which is about 40% of the 

random CCPP approach when supposing the coverage rate is about 98%. 

This online path-planning algorithm is a step-by-step method for coverage 

planning. The robot detects adjacent environmental information and 

updates the rolling window every time it shifts to another area. The size of 

the rolling window is very small and makes the computational complexity 

of this algorithm relatively low. Hence, the robot decides the direction of 

its next motion using the ‘greedy strategy’, meaning that the robot will 

cover only those grids with the highest possibility of being unvisited. This 

algorithm successfully proved that the FSM approach, rolling windows 

approach, and greedy strategy could be effective and efficient in solving 

CCPP problems in uncertain environments. Therefore, it is used with some 
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modifications and improvements to fit the requirements of a floor tiling 

robot. This research provided reliable proof of the effectiveness of the FSM 

approach, rolling windows approach, and the greedy strategy while solving 

path-planning problems in complicated unknown environments. The 

characteristics of this algorithm are in good agreement with such 

requirements of floor tiling works as low repetition rate, orderly work, and 

controllable coverage rate. Therefore, the path-planning algorithm 

described in the present paper learns from this algorithm and improves its 

shortcomings. 

2.4 RESEARCHES ON SIMULTANEOUS 

LOCALIZATION AND MAPPING 

Endres et al. proposed the first RGB-D Simultaneous Localization And 

Mapping (SLAM) system that uses dense color and depth images provided 

by RGB-D cameras [64]. Comparing with previous SLAM algorithms, this 

algorithm introduces several extensions to improve accuracy and stability. 

By conducting extensive experiments, they demonstrated that the RGB-D 
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SLAM system could accurately track robot poses over long distance 

trajectories and challenging situations. The algorithm extracted visual key 

points from color images and used depth images to position them in three 

dimensions. Then, they used Random sample consensus (RANSAC) to 

estimate the transition between the relevant key points and used nonlinear 

optimization to optimize the pose map. Finally, the algorithm generated a 

3D environment map that could be used for robot positioning, navigation, 

and path planning. 

The BundleFusion algorithm uses local small block optimization and 

global optimization to solve the drift and loop detection problems of pose 

solving; this solves the problem of reconstructing the scene update after 

pose optimization by means of integration and de-integration [65]. The 

algorithm shows excellent performance in 3D reconstruction. This 

algorithm may be a good choice in 3D scanning of small scenes. However, 

excellent performance also implies having a large computational burden. 
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The algorithm has high hardware requirements and is not suitable for use 

in outdoor environments. 

AJ Glover et al. developed an appearance-based SLAM method and 

tested it in different lighting environments for up to 3 weeks [66]. However, 

the change of the dynamic environment caused the map generated by the 

algorithm to become increasingly larger, thus repeatedly generating the 

existing map and resulting in an unnecessary waste of computing power. 

Many studies have tried to solve this problem, but in a highly dynamic 

environment, their results have been equally unsatisfactory [67,68]. This 

problem has been plaguing people M Labbe et al [69] developed an 

algorithm. 

Labbe's SLAM approach to large-scale, long-term positioning and 

mapping needs may be able to meet the realities of large construction sites. 

However, the evaluation of the algorithm is only tested indoors, and the 

construction site has more complex ground conditions and the surrounding 
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environment. Therefore, whether the algorithm can perform well at the 

construction site is still unknown. 

2.5 RESEARCHES ON TARGET DETECTION  

Many previous studies have focused on the application of computer 

vision technology in the construction industry, proving the feasibility of 

computer vision technology on construction sites: Hamledari et al. 

introduced a computer vision-based algorithm for detecting components of 

internal partitions and inferring their current state[70]. On construction 

sites, computer vision can also be used to assist worker management. Park 

et al. proposed a video frame detection algorithm designed specifically for 

construction workers for automatic initialization of visual trackers [71]. 

Luo et al. developed a system that integrates computer vision technology 

for detection and visualizing dynamic workspaces [72]. This system can 

help managers improve worker productivity and site safety. Computer 

vision technology can also be combined with biomechanics to detect 
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construction workers' fatigue and protect workers' health in real time on 

construction sites [73]. 

In the field of computer vision, convolutional neural networks (CNN) 

were widely used in the 1990s and has since received attention again in 

2012 [74,75]. In this section, we will review the advanced computer vision 

technologies based on CNN and discuss their advantages and 

disadvantages. 

Regions with CNN features (R-CNN) are a milestone in the application 

of the CNN method for object detection, which was proposed by Ross 

Girshick and his team in 2014 [76]. The input image is processed in four 

steps: 

1) Firstly, 1k ~ 2k candidate areas are generated using Selective 

Search method.  

2) Secondly, a CNN feature extraction operation is performed for 

each candidate region to obtain a fixed-dimensional output.  
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3) Thirdly, the SVM classifier is responsible for analysis and 

classification.  

4) Finally, in order to obtain an accurate target position while 

avoiding repeated detection, the algorithm processes the data and 

outputs the final result by using bounding-box regression.  

R-CNN has made a huge contribution to the advancement of target 

detection technology. However, although the algorithm is effective, its 

efficiency is not satisfactory, since analyzing a large number of candidate 

areas is extremely time consuming. 

The fast R-CNN is based on R-CNN, which classifies objects more quickly 

and efficiently [77]. Fast R-CNN is superior to both R-CNN and spatial 

pyramid pooling (SPP) net in training, testing, and mean average precision. 

In short, compared to R-CNN, faster R-CNN speeds up recognition while 

increasing the success rate. Since fast R-CNN does not achieve the desired 

recognition speed, a faster R-CNN was developed. Real-time object 

recognition is possible because faster R-CNN can achieve higher efficiency. 
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The faster R-CNN has been widely used in various fields, and the 

construction industry is of no exception. At the construction site, builders 

use the faster R-CNN to detect and manage personnel safety [78]. Fang et 

al. used the faster R-CNN to identify workers without helmets and workers 

with helmets and evaluated the effectiveness of the system through 

extensive testing. Other methods of building safety management also 

mention this approach. Yang et al. used faster R-CNN to detect the 

bounding box of the object, and proposed an algorithm to convert the 2D 

relationship between the worker and the vehicle on the construction site to 

a 3D result, which has been used to issue a warning when the worker is 

positioned too close to the vehicle [28]. Wang et al. have also introduced 

the faster R-CNN to construction waste recycling filed previously [79]. In 

the previous study, in order to reduce the chance of worker injury, we used 

nails and screws as the target objects for pickup. However, we have not 

considered the common pickup method for all building materials. 

Therefore, when the experiment was applied to other target objects, 
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sometimes we found that the ordinary picking method could not 

successfully pick up the pipe and the bent cable. Faster R-CNN, as an 

excellent target detection algorithm, has high calculation efficiency and 

accuracy, and it also performs very well in the complex environment of 

construction sites. Conclusively, it is a target detection algorithm that is 

very suitable for construction sites. 

MASK R-CNN is an advanced algorithm developed based on faster R-

CNN [80]. The main purpose of this algorithm is to provide precise pixels 

when detecting each distinct target object, which is called instance 

segmentation. This function is achieved by adding a new branch for object 

mask prediction in faster R-CNN, which leads to a high efficiency result in 

inference and training. Experiments show that this algorithm performs well 

in human pose estimation. However, although authors have announced that 

the algorithm can run at 5fps, the computational burden of instance 

segmentation is much higher than boding box detection, and ultimately 

affects fps and hardware costs. Therefore, instance segmentation and 
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bounding box recognition have their own benefits in practical applications. 

Benefiting from the relationship between Faster R-CNN and MASK R-

CNN, only one model is required to use them independently, which will 

significantly reduce the time cost of training process. 

There are also other algorithms, for instance segmentation such as 

DWT, SAIS, DIN, SGN, etc. [81–84]. One of the best performers is the 

Sequential Grouping Networks (SGN) algorithm, which detects horizontal 

and vertical breakpoints, and form some line segments. Next, the boundary 

and class of each block in the picture can be judged by those line segments. 

Finally, the SGN algorithm can combine the non-adjacent blocks of the 

same object to output a reliable instance segmentation result. However, 

after training with the COCO dataset, Mask R-CNN far surpassed these 

algorithms in terms of accuracy in various categories [80]. 

2.6 SUMMARY OF REVIEW 

In general, several main findings can be drawn from the reviews in this 

chapter; the details are as follows. 
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(1) Robot technology has emerged in the construction industry, and 

construction robots have played a huge role in many construction and 

demolition tasks. The problems of high accident rate and shortage of 

skilled workers in the construction industry can be solved by introducing 

corresponding robots. In particular, studies have shown that mobile 

machines can play an irreplaceable role in construction sites with a wide 

working environment. Today, robots have been used in the field of 

construction waste sorting. However, like 3D printed construction robots, 

the introduction of mobile platforms can expand the scope of the robot's 

work, reduce the need for human participation, and make the robot more 

scalable. 

(2) The path planning algorithms for mobile robots have been fully 

studied in the past few decades. The simplest zig-zag path developed into 

a more complex boustrophedon decomposition algorithm, which 

eventually developed into a path planning algorithm that introduces a 

neural network. These algorithms have played a good role in their 
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respective environments. However, the efficiency and feasibility of full-

coverage path planning in different environments require more testing. At 

the same time, for different tasks, the design and optimization of the neural 

network is also essential. 

(3) The survey on the SLAM algorithm found that despite the 

continuous development of the algorithm, the choice of algorithm differs 

in different environments. Due to the lack of testing and development of 

the SLAM algorithm in the construction field, choosing an appropriate 

algorithm is particularly important for the efficiency and success rate of 

robot prototypes. 

(4) In recent years, as the application of computer vision in the field of 

construction has gradually increased, computer vision algorithms have also 

been evolving. Since the CNN algorithm was introduced into the field of 

computer vision, more accurate and efficient algorithms have been 

proposed. In the field of computers, many studies continuously pursue the 

improvement of algorithms and evaluate their pros and cons through the 
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training and testing of several standard data sets. In fact, it is not only the 

algorithm that determines the accuracy of computer vision, but also the 

extremely high requirements for the data set’s accuracy. However, in the 

field of construction, the lack of data sets is often the biggest factor that 

hinders the application of computer vision in the construction industry. The 

COCO data set is marked with dozens of sample labels, but no one has 

collected and marked the CDW data set. At the same time, in different 

environments, the training and recognition parameters of computer vision 

algorithms will greatly affect the quality of the results. Therefore, it will be 

relatively difficult to construct an appropriate data set and optimize the 

entire recognition system to improve the object recognition rate on the 

construction site.  
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CHAPTER 3 RESEARCH DESIGN 

3.1 INTRODUCTION 

The purpose of this article is to develop a CDW recycling robot to 

automatically patrol construction sites in an efficient and effective manner, 

detect and automatically pick up construction waste, so as to increase the 

recycling efficiency and recovery rate of construction waste. In order to 

solve this problem, this research adopts a quantitative analysis method, so 

that the author can measure and count the effectiveness of the robot.  

In order to achieve the established research goals, this research mainly 

carried out the design, development and verification of the robot. This 

chapter is divided into two parts: 1) Research framework 2) Research 

methods. 

3.2 RESEARCH FRAMEWORK 

This research is mainly divided into two parts, the first part is the 

navigation system, and the second part is the picking system. 
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The main purpose of navigation system is to complete the robot moving 

tasks, including the robot's complete coverage path planning and the robot 

real-time positioning system. In the path planning algorithm, in order to 

enable the robot to analyze and judge the work site, this research first 

designs the representation method of the map. After proposing an 

innovative map expression method that meets actual needs, this research 

improves the neural network algorithm for full coverage path planning, so 

that the robot can cover a site with unknown obstacles at the fastest speed. 

Next, in order to assist the robot in avoiding errors in a complex 

environment, this research uses the RGB-D camera to establish a relocation 

system. 

The picking system is an important part of completing the CDW 

collection. This research first collected the image data of the target CDW, 

processed and amplified it, and then identified different types of 

construction waste through a computer vision system. At the same time, in 

order to enable the robot to successfully determine the detailed position 
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and posture of the construction waste, this study uses the instance 

segmentation algorithm to analyze the special-shaped construction waste. 

Finally, based on the above data, this research proposes an innovative 

picking scheme that can successfully pick up CDWs with different poses 

and different shapes. 

In order to verify the feasibility of the robot prototype developed in this 

research, a series of experiments, including laboratory experiments and 

field experiments, were organized. 

3.3 RESEARCH METHOD 

3.3.1 data collection method 

This research involves multiple data sources, including data from 

literature, laboratory experiments and field experiments. In order to verify 

the feasibility of the robot system, laboratory experiments and field trials 

are usually organized, and the test data is collected by RGB cameras and 

RGB-D cameras. The details of the literature and experimental data are as 

follows: 
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This research initiates a literature review by searching for relevant 

background knowledge of specific keywords, including construction 

robots, path planning, Simultaneous localization and mapping, and 

computer vision. Most of the data comes from academic journals and books. 

Experiments are the main method for verifying the feasibility of robots 

in this study, and one of the main methods for scientific research. In this 

study, two experiments were implemented, laboratory experiment and field 

experiment. Laboratory experiments are organized in the Intelligent 

Building Laboratory of Hong Kong Polytechnic University. We set the 

scope of the entire laboratory as a working area, arranged obstacles such 

as sofas, tables and chairs, and tested the robot's ability to patrol the 

environment many times. At the same time, we arranged a CDW randomly 

placed on the ground to test the robot's recognition and pickup capabilities. 

Similarly, in field experiments, we test each system separately in an 

outdoor environment. First, we tested that the robot can automatically 

patrol, relocate, and identify construction waste. We also tested the CDW 
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of the robot picking up different posture targets in an outdoor environment. 

Taking into account the impact of different lighting on the visual system, 

we also compared the accuracy of computer vision algorithms under 

different environments and different lighting. 

3.3.2 data analysis method 

Data processing and data analysis accompany the entire experiment 

process. We checked the validity of the data before analyzing the data and 

cleared the data that might affect the results of the experiment before each 

experiment. The data analysis in this study includes not only the evaluation 

of experimental results, but also the comparative evaluation of 

experimental results under different conditions. 

3.4 CHAPTER SUMMARY 

This chapter briefly describes the overall research framework of this 

study, as well as the data collection and analysis methods, which are used 

to empirically examine the framework. In order to have a more 

comprehensive understanding of the existing related technologies, this 
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study conducted a literature review of various aspects. At the same time, 

this research uses a variety of experimental methods to verify the feasibility 

of the robot.
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CHAPTER 4 AN AUTONOMOUS PATROL SYSTEM IN 

COMPLEX CONSTRUCTION SITES 

4.1 INTRODUCTION 

As demonstrated by the robot prototypes proposed in many previous 

studies, robots incorporating mobile units can be well adapted to large 

construction sites [40,43]. Therefore, this study uses self-assembled mobile 

robots for related research. Traditionally, the movement of mobile robots 

in complex environments requires manual operation by workers. In order 

to improve the level of automation and reduce dependence on workers, the 

research of robots has derived the research field of path planning 

algorithms. In order to better complete the CDW recycling task, it is 

necessary to first design an automated patrol system for the construction 

site. As stated in Section 2.3, a variety of path planning algorithms have 

been proposed in previous studies, and they all have their own advantages 

and disadvantages. However, there is no full coverage path planning 

algorithm for construction site design to date. Therefore, in variable and 
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complex construction sites, improving and designing a suitable full-

coverage path planning algorithm based on existing algorithms is very 

valuable for the application of construction robots on construction sites. At 

the same time, due to the complexity of the road surface at the construction 

site, we need an automated relocation method to reduce errors in robot 

movement. The SLAM algorithm has been applied to construction sites as 

a positioning method to assist multi-robot collaborative work, which is 

described in Section 2.2 [43]. 

On the basis of the studies mentioned in Section 2.3 and Section 2.4, 

this section will provide a method for automatic path planning in complex 

and changing construction sites. We first elaborated the software and 

hardware structure of the self-assembled robot, which forms the basis of 

the entire study. Then the floor plan of the construction site is reasonably 

divided into as few areas as possible by circles, which is also called a node. 

SLAM algorithm is used for robot relocation and three-dimensional 

environment information collection on the construction site, aiming to 
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improve the accuracy of robot movement and reduce the generation of 

accumulated errors. Next, we use a neural network-based path planning 

algorithm to perform full-coverage path planning for the robot in an 

unknown and known environment. Then, a laboratory test shows the 

feasibility of the algorithm in a laboratory environment. Section 4.7 

summarizes this chapter. 

4.2 HARDWARE DESIGN 

Different robots adapt to different tasks, so the first task of this study is 

the design of robot hardware. As described in Chapter 2, mobile robots can 

greatly expand the working range of robots, and high-degree-of-freedom 

robotic arms can increase the freedom of design [43]. Although the robot 

hardware structure design is the basic unit of related research, and in most 

cases will affect the algorithm design and final evaluation of the algorithm, 

the robot structure design does not have a perfect answer. 

The approach described in this thesis is tested on a self-made robot 

which runs on a Kinetic version of the Robot Operating System (ROS). 
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The developed robot possesses a shape size of 610mm*520mm*220mm, 

neglecting the sensors installed on it, and is powered by a 24V rechargeable 

lithium battery.  

To maximize its working load, the developed robot is built on a four-

wheel drive mobile platform designed for outdoor applications requiring 

terrain maneuverability. The mobile platform is able to drive at a speed of 

1.0m/s when it is fully loaded. The mobile platform is configured with large 

torque stepper motors and 8-inch pneumatic wheels which ensure a 

carrying capacity of 50kg while running with full speed. In this research, 

its working speed is reduced to 0.6m/s to comply with the controlling 

frequency published by NVIDIA Jetson TX2, a power-efficient embedded 

supercomputer specialized for AI computing and vision-based solutions. 

While Jetson TX2 acts as the electronic brain of the robot, a ZED stereo 

camera by Stereolabs and a RPLIDAR A2 by Slamtec constitute its eyes.  

Mounted on top of the robot through a monopod, the ZED stereo 

camera is used to capture RGB images, as well as depth data covering the 

https://www.slamtec.com/
https://www.slamtec.com/


CHAPTER 4 

47 

 

area straight ahead. It is capable of providing colored point clouds with 

depth perception up to 20 meters in outdoor environment, which is perfect 

as sensor source of the SLAM approach. The RPLiDAR A2 is a 2D laser 

scanner and it provides real-time plane range information up to 8 meters. 

Data provided by ZED stereo camera and RPLiDAR A2 enable the robot 

to make action plans and evade obstacles in the way. Moreover, the ZED 

stereo camera is also exerted to generate visual odometry necessary for 

robot navigation. 

As for recognition system, a high definition RGB camera is mounted 

on the robot arm to find CDW. The real-time video frames are uploaded to 

a host with GTX 1080 for image processing.  

Based on the above hardware, we designed and developed a software 

system for automatic patrol and CDW pickup. The patrol system, the 

picking system, and the computer vision system are independent of each 

other, but the patrol system suspends and continues the patrol work based 

on the signal of the image processing system, whereas the picking system 
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works based on the result of instance segmentation. In order to make the 

entire workflow easier to understand, the flowchart of the software system 

is shown in Fig.1. 

SYSTEM START

Patrol system CV system

Stop signal?Continue patrolling

Hold

Continue signal?

No Target detected? Waiting...Target 
information?

Picking system

Calculating picking 
strategy Picking

No

Yesyes

Picking finished

Yes

No

Stop signal
Target info

Wait until picking 
finished

Continue signal  

Figure 1. Recycling system workflow 

The detection device of the robot is a video camera. The camera is 

placed at the front of the robot at a fixed angle and scans the ground ahead 

of the robot in real time. As Figure 2 shows, the ground being scanned is 

trapezoidal due to the camera function and placement. 
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Figure 2. Video camera working range 

The number of nodes in the neural network algorithm directly affects 

its computational complexity. Therefore, increasing the area of a single 

neuron can reduce the number of neurons in the neural network and thus 

reduce the computational burden. Hence, we designed the robot scanning 

process as two steps. In the first step, the robot shifts from the initial region 

to the next region and the camera sweeps through a rectangular area. Then, 

the robot rotates in place and sweeps the camera across an annular area. As 

shown in Figure 3, the entire circular area can be cleaned by the two steps.  
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Figure 3. Scanning process of a single neuron 

4.3 MAP REPRESENTATION 

According to the initial solution of decomposing a rectangle by circles 

[85], the algorithm encases a limited area by a minimum-area rectangle [61] 

and, as presented by Yi and Qu [55], the map of workspace can be easily 

represented by a minimum number of circles whose area is determined by 

the detection distance of the video camera. 

Firstly, this study encases the given workspace using a minimum 

encasing rectangle (MER) - defined as the rectangle of minimum area that 

can enclose the given area. Although the MER is calculated by various 

methods, the method used here is based on the theorem that the MER must 
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be collinear with a side of the given polygon [61]. Since the common 

boundaries of the construction sites will not be complicated curves, the 

computational complexity will not be too high. A typical example is shown 

in Figure 4.  

 

Figure 4. Encasing the given workspace using a minimum encasing 

rectangle 

Therefore, an irregular polygon workspace can be decomposed into 

circular areas. Due to the theorem proposed by Kershner, the distance 

between adjacent circles is √3R, which determines the position of the 

circles. The result is shown in Figure 5, where R is the detection distance 

mentioned above. 
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√3R

R

 

Figure 5. Pattern of decomposing a rectangle by circles 

Based on the structure of the barrier detection area recognition area, the 

network planning of node i is represented in Figure 6, where each node has 

six adjacent nodes. 

1

i

1

1

11

1

 

Figure 6. Adjacent nodes to node i 

Moreover, as a common standard, we assume that the circular center 

coordinates of the lower left corner are (0.5R,0), which has been proven 

valid in a previous study [55]. The workspace represented by the circular 
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areas is shown in Figure 7. Obviously, over 95% of the workspace will be 

covered if the robot goes through every node inside the workspace. 

 

Figure 7. Workspace represented by circular areas 

4.4 POSITIONING AND COMMUNICATION SYSTEMS 

Similarly with most path planning algorithms, a common robot path 

planning system assumes that the robot's orientation and movement 

distance are known and controllable, which is not always feasible on 

construction sites [50,53–55,58,86,87]. In fact, in complex construction 
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sites, robotic system based on the angle of rotations and the number of turns 

of the wheel is inaccurate. Since the site surface is rarely flat, the real length 

of a path is always longer than its projection on the plan. Fig.8 shows the 

difference of moving distance in different surfaces. Therefore, the re-

localization method is significantly important for robot path planning in 

complex environments. 

 

Figure 8. The moving distance increases when the surface is uneven 

Robot Operating System (ROS) is an open source system for 

manipulating robots on computers. Generally speaking, the control method 

of the ROS system is to establish nodes and operate through mutual 

communication between the nodes. Taking the CDW recycling robot as an 

example, the depth camera is a node that publishes the perceived RGBD 
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information at any time, which allows the positioning system to read the 

RGBD information of the node for processing and publishing the location 

information. 

The developed robot utilizes ROS to organize all the SLAM and 

navigation functions. With all the data from the mounted sensors, the 

running ROS is able to locate the robot, continuously conduct path planner 

to find an optimum route, and generate building models. Fundamental key 

running nodes include zed_wrapper_node, rplidarNode, rtabmap, 

move_base ， patrol_tree, base_core, and model_export_node. The 

relationship between the above-mentioned key nodes is shown in Fig.9. 
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Figure 9. Construction of ROS key nodes 

To enable the robot to conduct complex multi-tasks including periodic 

patrolling, pi_trees, a framework of behavior trees, is introduced to build 

its tasks hierarchy. All the tasks are arranged through pi_trees framework 

to compose a well-organized and efficient workflow.  

The robotic diagram for behavior tree implementation is shown in Fig.10. 



CHAPTER 4 

57 

 

 

Figure 10. Program flow chart 

4.5 NAVIGATION STRATEGY 

An improved neural network model was proposed by Luo and Yang 

(2008), in which the dynamics of each neuron is calculated by the shunting 

equation, derived from Hodgkin and Huxley’s membrane equation [43]. In 

contrast with Luo and Yang’s approach, we integrate the spiral filling 
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motion because of its robustness, as proved in previous studies  

[57,58,88,89]. The basic idea of this neural network approach is to make 

the neurons, which are surrounded by more obstacle and cleaned areas, 

more attractive to the robot, while the obstacles are excluded from the robot 

to avoid collision through the dynamic neural network landscape. 

Since we want to encourage robots to scan from the boundary to the 

center, thus reducing the return distance at the completion of all tasks, the 

shunting equation is defined as: 

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑� = −A𝑑𝑑𝑖𝑖 + (𝐵𝐵 − 𝑑𝑑𝑖𝑖) �[𝐼𝐼𝑖𝑖]+ − ∑ 𝜔𝜔𝑖𝑖𝑖𝑖�𝑑𝑑𝑖𝑖�

+𝑖𝑖=𝑘𝑘
𝑖𝑖=1 � − (𝐷𝐷 + 𝑑𝑑𝑖𝑖)[𝐼𝐼𝑖𝑖]−    (1) 

where i and j are the number of neurons; 𝐼𝐼𝑖𝑖 is the external input and 

𝜔𝜔𝑖𝑖𝑖𝑖  is the connection weight between neuron i  and j ; A, B, and D 

represent nonnegative constants describing the passive decay rate and 

upper and lower bounds respectively. Affected by this equation, neural 

activity of the obstacle will be less than zero and neural activity of the area 

near the obstacle and cleaned area will be slightly higher than the area away 

from the obstacle. 
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The value of the external input is determined by whether the neuron is 

occupied or not. In order to avoid collision, the value of 𝐼𝐼𝑖𝑖 is set to −𝐸𝐸 

when the neuron is occupied. In contrast, the value of 𝐼𝐼𝑖𝑖 is set to 𝐸𝐸 when 

the neuron is free. The value of 𝐼𝐼𝑖𝑖 is set to 0 when the neuron is cleaned to 

ensure that the cleaned area neither excludes nor attracts the robot. The 

equation is  

𝐼𝐼𝑖𝑖 = �
−𝐸𝐸   𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸            𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜
0      𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑑𝑑

               (2) 

The connection weight 𝜔𝜔𝑖𝑖𝑖𝑖 is determined by the Manhattan distance 

of two region. In this case, the Manhattan distance of an adjacent neuron is 

set to 1. Therefore, the connection weight can be calculated by equation 

(3), where 𝑑𝑑𝑖𝑖𝑖𝑖 is the Manhattan distance of neuron i and neuron j - the 

value of 𝜔𝜔𝑖𝑖𝑖𝑖 being is inversely proportional to 𝑑𝑑𝑖𝑖𝑖𝑖. In order to decrease 

computational complexity, farther neuron will be ignored. This is 

controlled by variable 𝛼𝛼. 

𝜔𝜔𝑖𝑖𝑖𝑖 = �
𝜇𝜇
𝑑𝑑𝑖𝑖𝑖𝑖�     0 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝛼𝛼

0           𝑑𝑑𝑖𝑖𝑖𝑖 > 𝛼𝛼  
             (3) 
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Similarly, when the robot performs point-to-point motion, the neuron 

activities are calculated by 

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑� = −A𝑋𝑋𝑖𝑖 + (𝐵𝐵 − 𝑑𝑑𝑖𝑖) �[𝐼𝐼𝑖𝑖]+ + ∑ 𝜔𝜔𝑖𝑖𝑖𝑖�𝑑𝑑𝑖𝑖�

+𝑖𝑖=𝑘𝑘
𝑖𝑖=1 + 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝑖𝑖𝑖𝑖� − (𝐷𝐷 + 𝑑𝑑𝑖𝑖)[𝐼𝐼𝑖𝑖]−   (4) 

In contrast with shunting equation (1), this equation adds a 

parameter 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝑖𝑖𝑖𝑖, which guarantees that the robot tends to approach the 

target neuron. 𝜑𝜑 is a positive coefficient and 𝛿𝛿𝑖𝑖𝑖𝑖 is the angle between the 

vector from robot to neuron i and the vector from robot to target neuron t. 

Meanwhile, the parameter ∑ 𝜔𝜔𝑖𝑖𝑖𝑖�𝑑𝑑𝑖𝑖�
+𝑖𝑖=𝑘𝑘

𝑖𝑖=1   ensures that the robot moving 

path will be far away from the obstacles. 

We divide the robot into five states in FSM as shown in Fig.11. S1 is 

the initial state, S2 is the state of existing uncovered free neuron adjacent 

to the robot, S3 is the state of without uncovered free neuron adjacent to 

the robot, S4 is the state the nearest uncovered neuron has been found, and 

S5 is the end of the entire process. S6 is the state that the robot went to the 

appointed place when lacking power or with a full load. The strategies 

marked F1, F2, and F3 are illustrated in Fig.11. F1 is the strategy that the 



CHAPTER 4 

61 

 

robot is searching for the neuron with maximum neural activity, F2 is the 

strategy that the robot is searching for the nearest uncovered free neuron 

using the Dijkstra algorithm. Dijkstra algorithm is an algorithm for 

calculating the shortest path. The robot traverses all neurons from near to 

far, until it scans uncovered neuron. F3 is the strategy that the robot is 

shifting to the target uncovered free neuron. 

 

Figure 11. Structure of the Finite State Machine (FSM) 

In the F1 strategy, the path-planning algorithm decides the next 

working neuron of the robot based on the rolling windows as Fig.12 shows. 

The degree of attraction of the robot's peripheral nerve neurons to the robot 

can be calculated by the previously mentioned shunting equations. In order 

to reduce the energy and time costs of the robot, the coverage pattern is 

generated from the neural network model as well as the previous situation 

of the robot. The following movement direction is firstly determined by the 
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neural activity and secondly determined by the degree of swerving. 

Therefore, the next neuron 𝑵𝑵𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is obtained by 

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖  ←  𝑑𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(𝑑𝑑𝑖𝑖 + 𝛽𝛽 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑗𝑗 = 1,2, … ,𝑘𝑘 )      (5) 

where 𝜷𝜷 is a small positive constant and 𝒌𝒌 is the number of adjacent 

neurons of the current neuron; 𝜽𝜽 ∈ [𝟎𝟎,𝝅𝝅] is defined as the turning angle 

between the current orientation and the next moving direction. 
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Figure 12. Network planning of neuron 𝐢𝐢 

When the neuron in the first layer are either visited or occupied, the 

robot is in the S3 state. In this state, the control system uses the Dijkstra 

algorithm to search for the nearest uncovered free neuron. The neuron 

information record in F1 strategy will be used. With the Dijkstra algorithm, 

the system searches the nearest unvisited neuron in the neural network 
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topology from near to far with regard to the central neural, where the robot 

is located. The robot can subsequently move closer to the nearest unvisited 

point as soon as possible using equation (5).  

Strategy S5 indicates that the robotic package is full and needs to be 

moved to the item collection point. Similarly, the robot uses equation (5) 

to determine its own movement path. When no neuron is detected that has 

not been visited, the system enters the S6 state. In this state, the robot is 

expected to return to its initial position. 

4.6 FEASIBILITY VERIFICATION 

To evaluate the feasibility of the patrol system, we tested the robot 

mobile system in a laboratory environment. The laboratory covers an area 

of about 25 square meters and is equipped with obstacles such as tables and 

chairs, as shown in Fig.13. 
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Figure 13. Experiment environment for SLAM system 

In the laboratory, we set the path and tried to artificially hinder the 

normal route of the robot to evaluate the robustness of the patrol system. 

Experiments show that RTAB-map can accurately determine the obstacle 

while changing the travel path and reaching the next target point. At the 

same time, because the SLAM algorithm used in this paper determines the 

position by comparing the original 3D information and the new 3D 

information, we tried to change the position and appearance of some 

objects to create obstacles. Experiments prove that a small amount of 

change will not affect the judgment, and that the SLAM system will 

automatically update the three-dimensional information. The RGBD image 

and the final 3D point cloud information during the operation are shown in 

FIG. 
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Figure 14. Experiment result of SLAM system 

We also evaluated the path planning algorithm based on neural network. 

This study compares the results and efficiency of the developed path 

planning algorithm and traditional Zig-Zag path in laboratory environment, 

respectively. The results are shown in Fig.15. Obviously, when there is no 

obstacle, the results of the two path planning algorithms are the same, 

which is also the most efficient way. However, after encountering obstacles, 

the two paths diverged. The traditional path planning algorithm continued 

to follow the original plan after encountering obstacles until it entered a 

dead end, and then returned to fill the uncovered places. Therefore, the path 

planning algorithm based on the neural network will avoid the creation of 

uncovered places as much as possible, such that there are no positions to 



CHAPTER 4 

66 

 

be filled in this simple test map; thus we can avoid the duplication of 

patrolling path. 

 

Figure 15. Different path planning results under different algorithms 

This result shows that in a simple environment, the algorithm 

successfully planned the path according to the expected rules, and the 

efficiency is the same as the traditional algorithm. When the complexity of 

the environment rises, the algorithm can well avoid the path overlap 

problem caused by the traditional algorithm, which can improve the 

efficiency of robot patrol. 

Node
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4.7 CHAPTER SUMMARY 

Based on many previous path planning and positioning algorithms, this 

chapter elaborated on the hardware and software components of the 

automated patrol system of the CDW recycling robot. This chapter 

describes the characteristics of the patrol system from the following aspects: 

how to build a suitable hardware system; how to deal with a flat map of the 

working environment; how to reduce the errors caused by the non-ideal 

working environment, such as covering the entire working environment 

with the shortest path. The test results show that the robot system can well 

perform the designated patrol tasks in the laboratory environment. At the 

same time, as a "by-product" of the SLAM system, the system can collect 

the three-dimensional information of the latest environment, which will 

play an auxiliary role in construction management. In the test, we checked 

the accuracy of robot movement by repeating the test many times. Facts 

have proved that the positioning system can reduce the difference between 

the robot movement trajectory and the design trajectory. Since the 
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positioning system repositions the robot's position in every movement, no 

errors have been found after multiple tests. This will greatly aid the 

longevity of the CDW recycling robot on construction sites. Regarding the 

path planning system, experiments show that in the laboratory environment, 

the developed path planning algorithm not only completes the work well, 

but also improves the efficiency compared with the traditional zig-zag path 

planning algorithm. 

Through the research in this chapter, we believe that the robot mobile 

system has good scalability. By changing the parameter value of the neural 

network function, the robot's tendency to move can be adjusted to control 

reasonable route planning. This can be applied not only to CDW recycling 

robots, but also to any objects that need to be moved in complex 

environments, such as the automatic driving of construction vehicles in 

construction sites. However, the neural network algorithm only considers 

the movement planning of a robot; in reality, in order to improve efficiency, 

it usually requires multiple robots to work collaboratively, which greatly 
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increases the complexity of the network. In future research, we will further 

study the multi-robot collaborative path planning algorithm to make the 

robot mobile system more versatile.  
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CHAPTER 5 COMPUTER VISION AND PICKING 

STRATEGIES 

5.1 INTRODUCTION 

The developed CDW recycling robot needs to be able to automatically 

identify and pick up construction waste. Therefore, the application of 

computer vision technology is essential. In previous research, computer 

vision technology has been widely used in the field of construction, mainly 

in worker management, such as determining whether workers wear safety 

helmets. Generally speaking, this type of application does not have high 

requirements for the accuracy of object recognition, and reasonable 

accuracy is sufficient. However, for the CDW recycling robot, the target 

recognition module not only needs to recognize the CDW in the visible 

range, but also needs to improve the recognition accuracy to ensure the 

success of the pickup. In Section 2.5, we reviewed a series of computer 

vision algorithms, in which Faster RCNN has excellent performance in 
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target recognition and Mask RCNN is one of the representative examples 

of instance segmentation. 

Data sets are the foundation of computer vision technology. So far, all 

computer vision algorithms have been designed and tested based on a large 

number of reliable data sets. For example, the Detectron computer vision 

platform uses COCO and IMAGENET datasets [90]. These open source 

data sets have a large number of calibrated data tags, such as people, cars, 

animals, etc. [91]. However, there is no data set of building materials 

suitable for use on construction sites. Therefore, in order to apply computer 

vision technology in the field of construction waste management, a 

complete data set needs to be established first. This study does not plan to 

establish a data set suitable for all building materials in the built 

environment. Instead, this study establishes and improves the data set for 

specific objects in different environments so that the computer vision 

algorithm can be applied to the developed robot. With the support of a 

complete data set, the accuracy of computer vision can reach a value that 
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meets expectations. At the same time, the fine-tuning of parameters will 

also affect the results of target recognition, which will be explained and 

demonstrated in detail in this chapter. 

Based on the existing computer vision algorithm and the robot mobile 

module we introduced in Chapter 3, this section will focus on the 

construction of the computer vision module and the strategy of CDW 

pickup. In Section 5.2, we completed the preliminary target recognition, 

using nails and screws as representatives, and demonstrated the 

preliminary application of target recognition in the field of CDW 

management. Through many experiments, it was found that despite the 

small size of the nails and screws, the ordinary picking method may still 

fail due to the angle of the object. At the same time, target recognition can 

only mark the approximate location of the object. For soft objects such as 

cables, the recognition results are of limited use for picking up. Therefore, 

in the next section, we further introduce the instance segmentation 

algorithm, which is a technology that can identify the target object at the 
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pixel level. Through instance segmentation, we can accurately know the 

posture of the target object on the plane. In this study, we assume that these 

construction wastes are all on the ground, so we can calculate the position 

of the target object in space, and design the corresponding pickup method 

for processing, which is described in Section 5.4. 

5.2 OBJECT RECOGNITION 

Of all kinds of construction waste, nails and screws are common 

objects on construction sites and are hard to find. Injuries from construction 

materials can also result in workers having to take time off, medical costs, 

being maimed, and suffering fractures [10]. Construction workers also face 

the risk of stepping on a nail or screw [11], which may cause such serious 

infection, such as tetanus. Therefore, recycling nails and screws can reduce 

the risks of injury on construction sites, as well as saving money. However, 

workers usually ignore and nails and screws lying around construction sites 

as being too small and insignificant to look for. 
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Faster R-CNN, as the most reliable computer vision object detection 

technology, is used here to detect the location of objects. This section 

illustrates the training, testing, and application process of the model. A 

large amount of diverse training and testing data has been established to 

ensure the reliability and stability of the model. At the same time, three 

common types of nails and screws are used as prototype recycling targets. 

The practical application experiment is completed by a fixed robot to verify 

the reliability of the model. 

5.2.1 Training the model 

We placed the different kinds of nails and screws separately on the 

cement floor, sand, and marble, and collected the required data through 

many cameras. The data covers a variety of possible scenarios and has 

ample dataset size, including various backgrounds and perspectives.  

After collecting the data, we manually annotated the data through the 

graphical image annotation tool Labeling [46]. The preprocessing of the 

prepared data set is shown in Fig.16. Then, we saved the file in VOC2007 
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format in the specified directory and trained the ZF model using faster R-

CNN in CAFFE [47]. To ensure the reliability of the model, we set the first 

and second stage of RPN, as well as the first and second stage of faster R-

CNN to 40,000 and 20,000 iterations respectively. The result shows that 

the model’s mean average precision (AP) for nails and screws is 0.891. 

 

Figure 16. Preprocessing the training dataset 

5.2.2 Model testing 

We tested the model repeatedly with video and images. Some results 

are shown in Fig.17. 
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Figure 17. Object detection testing result 

Using the faster R-CNN technology, the camera can accurately identify 

the target object and provide an accurate relative position. Hence, we can 

convert the relative position into the absolute position of the object and 

control the robot to pick it up. Since the position of the camera is fixed and 

we assume that the prototype is on the same plane as the detected object, 

the coordinates in the video can easily be converted to the difference in 

position between the detected object and the prototype in the working plane. 
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Then, we test the recycling robot model with real nails and screws. As 

shown in Fig.18, the robot can not only successfully pick up screws, but 

also put them in the correct box. 

 

Figure 18. Picking up and sorting process 

Since the experiment is supported by a video camera, some of the video 

frames gathered by the camera is shown in fig 13. With faster R-CNN 

model, the robot can recognize the target object in high probability, which 

is shown in Fig.19. 
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Figure 19. Video frame and detection result in experiments 

 Although the CDW recycling robot based on Faster RCNN performed 

well in this test, it sometimes fails due to the posture of the target object. 

This phenomenon does not often occur when the target objects are nails 

and screws. However, when we tried more target objects, it was found that 

the limited information provided by the target recognition algorithm was 

often unable to assist the CDW recycling robot to successfully complete 

the task, which reduced the universality of the robot. Some special shapes 

of construction materials may cause failure when picking, such as pipes 

and cables. As shown in Fig.20, a gripper with limited size does not 
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guarantee a successful grip in all directions. This situation will also occur 

when picking up other various shapes of CDW. 

 

Figure 20. Failure occurred when only one gripping method is set  

To solve this problem, we introduced the strength segmentation 

algorithm introduced in Section 2.5, and designed and tested picking 

strategies for different types of building materials. 

5.3 INSTANCE SEGMENTATION 

In this research, we applied mask R-CNN, a semantic segmentation 

algorithm based on faster R-CNN algorithm, for construction waste 

detection. Different from target recognition methods, mask R-CNN 

provides a detailed pixel range of the target object instead of a bounding 

box. Therefore, while we assume that the target object is placed on the floor 

where the robot stands, the orientation of target object can be calculated. 
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The basic structure of MASK R-CNN is shown in fig. 7. Firstly, the 

input image will be reshaped to a fixed size and sent to the convolutional 

layers. Then the generated feature maps will be sent to region proposal 

network (RPN) and output the proposals. Finally, after processing by 

region of interest (ROI) align layer, the classification, bounding box 

generation, and instance segmentation will be finished synchronously. The 

total Loss (L) value is the sum of L values of the three branches. 

L_cls

L_box

L_mask

LROI Align

 

Figure 21. Processing flow of mask R-CNN 

The Mask R-CNN has three advantages over other methods used to 

detect construction waste in previous studies. Firstly, Mask R-CNN is an 

algorithm developed on the basis of Faster R-CNN, which means that they 

can perform model training at the same time. This saves time and makes it 

easier for robots to use two different vision algorithms depending on their 

needs. Secondly, Mask R-CNN is an instance segmentation algorithm that 
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provides more information than the Faster R-CNN, used in previous 

studies, to allow the robot to calculate the pose of the object and pick it up. 

Finally, the high precision and high computational efficiency of Mask R-

CNN makes it suitable for practical engineering applications. Therefore, in 

this study we developed a more powerful prototype of a construction waste 

recycling robot using Mask R-CNN. 

We created a data set containing 7000 images, of which 6000 images 

were used as the training set and the rest were used as the test set. Since 

different backgrounds and lighting conditions affect the judgment of 

computer vision, we collect thousands of data in different environments. 

Initially, we collected photos on the ground including tile floor, sand 

bottom, cement floor, stone pavement, land, during daytime and evening. 

Later, in order to expand the robot's ability to recognize objects in 

dynamically blurred pictures, we expanded the data set by adding motion 

blur effects. Simultaneously, we also use Gaussian noise, sharpening, white 

balance adjustment, etc. to further enlarge the data set. Fig.22 shows a 
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small part of the dataset, including target objects with different 

backgrounds and light conditions. 

 

Figure 22. Data examples in training sets 

Then, we process the data using labelme [92], as shown in Fig.23. The 

output calibration file is trained using the DETECTRON2 platform after 

editing and distinguishing according to the COCO dataset format [90]. 
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Figure 23. Data processing examples 

After training, we obtained a file, which is called the model. Generally, 

the quality of a model can be evaluated by several metrics such as pixel 

accuracy (PA), average precision (AP), average recall (AR), and 

intersection over union (IOU). We use AP and AR, one to measure the 

accuracy of predictions, and another to measure the ability of finding all 

the positives pixels, in order to evaluate the quality of the model, as shown 

in equation (6). 

�
𝑃𝑃𝑓𝑓𝑜𝑜𝑜𝑜𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑐𝑐 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 

𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

              (6)  

where True (T) indicates areas that the prediction is correct while False 

(F) indicates other areas. Positive (P) indicates the area is predicted 
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belonging to this category, and Nagative (N) indicates other areas. 

Generally, AP and AR will be affected by the confidence thresholds, 

respectively. Therefore, Fβ Scores were introduced to evaluate which 

confidence value performs best, as shown in equation (7). 

𝐹𝐹𝛽𝛽 = (1 + 𝛽𝛽2) 𝑇𝑇𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛+ 𝑅𝑅𝑛𝑛𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝛽𝛽2 ∗ 𝑇𝑇𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛 + 𝑅𝑅𝑛𝑛𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

          (7)  

Since the wrong prediction result will make the pickup position deviate 

from the real target, and not completely predicting the entire target will not 

cause a very large deviation, we decided to use the F0.5 score to evaluate 

the model. 

5.4 PICKING STRATEGIES 

We have established different picking strategies for pipes and cables. 

Normally, the identified boundary of pipes are convex polygons. For a 

uniform object, picking from the center of gravity will be stable and 

convenient. Therefore, this study uses the following algorithm to convert 

the boundary points provided by MASK R-CNN algorithm to the center 

point of objects. Mask R-CNN will use polygons to mark the pixels where 
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the object is located, as shown in Fig.24 (a). Here we simply mark the 

polygons as A1, A2, A3...A14. To deal with this n-sided object (n=14). 

Next, Associate the adjacent vertices into a group and form a triangle with 

the origin point. The triangle formed by A4 and A5 is shown in Fig.24 (b). 

Therefore, we get 14 triangles with area of {𝐶𝐶1, 𝐶𝐶2 … 𝐶𝐶14} , which is 

calculated by 𝐶𝐶 = (𝑑𝑑1 ∗ 𝑦𝑦2 − 𝑑𝑑1 ∗ 𝑦𝑦3 + 𝑑𝑑2 ∗ 𝑦𝑦3 − 𝑑𝑑2 ∗ 𝑦𝑦1 + 𝑑𝑑3 ∗ 𝑦𝑦1 −

𝑑𝑑2 ∗ 𝑦𝑦2). Since the center point of a triangle is 𝑃𝑃((𝑑𝑑1 + 𝑑𝑑2 + 𝑑𝑑3)/3, (𝑦𝑦1 +

𝑦𝑦2 + 𝑦𝑦3)/3), we can easily get the center point of all triangles, which is 

mark as {𝑃𝑃1,𝑃𝑃2 … 𝑃𝑃14} . At the same time, we introduce the parameter 

{𝐾𝐾1,𝐾𝐾2 … 𝐾𝐾𝑛𝑛}. We suppose that there is a triangle O𝑀𝑀𝑚𝑚𝑀𝑀𝑚𝑚+1. When 𝑀𝑀𝑚𝑚+1 

is to the left of vector 𝐶𝐶𝑀𝑀𝑚𝑚���������⃗ , the parameter 𝐾𝐾𝑚𝑚 = −1, otherwise 𝐾𝐾𝑚𝑚 = 1. 

For example, as shown in Fig.24 (b) and (c), 𝐾𝐾4 = 1  and 𝐾𝐾11 =  −1 . 

Finally, according to the equation 8, we can calculate the position of the 

center of gravity of the polygon. At the same time, area of the polygon can 

be calculated as equation 9. 
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𝑃𝑃 = (𝐾𝐾1 ∗ 𝑃𝑃1 ∗ 𝐶𝐶1 + 𝐾𝐾2 ∗ 𝑃𝑃2 ∗ 𝐶𝐶2 + . . .  𝐾𝐾𝑛𝑛 ∗ 𝑃𝑃𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛)/(𝐶𝐶1 + 𝐶𝐶2 + . . .  𝐶𝐶𝑛𝑛)

                   (8)  

𝐶𝐶 = 𝐾𝐾1 ∗ 𝐶𝐶1 + 𝐾𝐾2 ∗ 𝐶𝐶2 + . . .  𝐾𝐾𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛           (9)  

 

Figure 24. Center point calculation 

Due to the limited size of the robotic gripper, we chose to pick through 

the cross-sectional direction of the center of gravity. Assuming that the 

center of gravity is P(𝑑𝑑𝑝𝑝, 𝑦𝑦𝑝𝑝), there is a set of straight lines that passes 

through the center of gravity: y − 𝑦𝑦𝑝𝑝 = 𝑘𝑘(𝑑𝑑 − 𝑑𝑑𝑝𝑝) ,where k =

tanθ,θϵ[0,90) ∪ (90,180) . When θ = 90° , we have the line x =  𝑑𝑑𝑝𝑝 . 

Therefore, in order to facilitate calculation, we traverse θ  from 0°  to 

180°and each θ can generate a straight line and be cut into a line segment 

by the polygon. We select the θ of shortest line segment as the picking 

direction and 𝑃𝑃 as the pickup point. 
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Since the cables are easy to bend, the boundary identified in most cases 

is a concave polygon. In this case, the calculated center point may be 

outside the polygon. Therefore, we use a different strategy to pick up cables. 

Similarly, we use straight lines and polygons that pass-through point 𝑃𝑃 to 

generate a set of line segments. Each line segment can divide the polygon 

into two polygons. Therefore, we can calculate the area of two polygons 

through equation 4 and find the θ value that can divide the polygon into 

two polygons with the closest area. At this time, the midpoint of the line 

segment is taken as the pickup point. A result is shown in Fig.24 (d). 

5.5 FEASIBILITY VERIFICATION 

In order to initially verify the feasibility of the method described in this 

chapter, we conducted simple tests on visual and laboratory grabbing. First 

of all, we conducted a preliminary training with part of the data. The initial 

learning BASE_LR is set to 0.025, the number of iterations is 1000 times 

and the default values are used for other parameters. After a short training 

period, the output model was tested and found: faster RCNN mAP=70.55, 
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Mask RCNN mAP=45.45. The output of the model under the default 

parameters is shown in the Fig.25. 

 

Figure 25. Results of the test model 

Undoubtedly, there are obvious errors in the identification of the model 

in all environments. The target recognition algorithm can find many target 

objects, but there are a lot of wrong recognition and omissions. Currently, 
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the robot cannot successfully recover most of the target objects and may 

enter an error state. However, the instance segmentation algorithm is not 

ideal in terms of data or results. The recognized contours greatly deviate 

from the actual contours of the object, which may make subsequent pickup 

actions unsuccessful. 

Before further training and augmenting the training set, we also tested 

the success rate of the robotic arm pickup. Because the background is 

simple in the laboratory environment, computer vision can play a good role. 

Therefore, it is optimal to test the picking strategy in the laboratory. 

We tested separately on the test bench and on the ground. After many 

tests, it was found that the robot can pick up the target objects at different 

angles well, basically meeting the experimental requirements, as shown in 

Fig.26. However, the test also found that, due to the accuracy of the 

computer vision, occasionally there appeared to be a wrong gripping 

position. These problems can be solved by further training in computer 

vision, and the specific results will be described in Chapter 6. 
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Figure 26. Pick-up result in laboratory experiments 

5.6 CHAPTER SUMMARY 

The last chapter mainly developed and tested a robot automatic patrol 

system. On this basis, the main content of this chapter is to design and test 

the main working modules of the CDW recycling robot. The goal is to 

discover the target building materials and accurately determine the posture 

of the target object during the patrol, so that the robotic arm can 

successfully grip and classify the object. 

In the past ten years, computer vision technology has been widely used 

in different fields. Whether it is classification, recognition, or segmentation 
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algorithms, it has its own unique features. However, this technology is 

based on machine learning, which means that the application of computer 

vision in the construction field requires a large amount of data to ensure 

the accuracy of the results, and there is no standardized data set in the 

construction field. Therefore, the first problem to be solved in this chapter 

is how to establish an accurate data set for identifying CDW. First of all, 

we completed data collection and data calibration. According to the results, 

we used different data amplification techniques to increase the content of 

the data set. The results also provided a comparison, proving that data 

amplification techniques can improve the accuracy of the model. This 

chapter also makes the robot call more suitable algorithms in different 

working modes according to the actual test situation. Generally speaking, 

different algorithms need different training, but the computer vision 

algorithm based on RCNN selected in this study can use the same model, 

which can greatly reduce the previous work. Based on the above 

information, this chapter developed picking strategies based on the 
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characteristics of different building materials. The research results in this 

chapter are for nails, screws, pipes, and cables. However, this chapter 

clarify the method and process of applying the CDW recycling robot to 

other target objects. Overall, the recycling system has good scalability and 

can adapt to different environments and tasks. At the same time, through 

certain improvements and designs, the system can be applied to the field 

of automated assembly, which can greatly enhance the degree of 

automation in the construction industry. 
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CHAPTER 6 EVALUATION OF THE EFFECTIVENESS 

AND EFFICIENCY OF THE CONSTRUCTION WASTE 

RECYCLING ROBOT 

6.1 INTRODUCTION  

Based on the CDW classification and recycling robot prototypes 

described in chapter 3 and chapter 4, the main goal of this chapter is to 

evaluate the performance of the robot through practical experiments. This 

chapter will evaluate the developed robot from three aspects: first, the 

positioning system. The feasibility of the positioning system has been 

completed in laboratory tests, but the outdoor environment poses more 

complications, and the accuracy of positioning will be more challenged. 

For example, in a scene with many similar objects, the SLAM algorithm 

based on comparison may produce errors, which requires actual 

experiments to be verified. Then, there is the path planning algorithm. The 

performance of the path planning algorithm in a simple environment has 

not been fully demonstrated. We will test it in a more complex environment 
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and then demonstrate the advantages and disadvantages of the algorithm 

by comparison with the traditional algorithm.  

As we explained in chapter 4, there are still many problems that need 

to be improved in computer vision systems. In this chapter, we will test the 

results of target recognition and instance segmentation in different 

parameters and data sets, and select and optimize the parameters through 

experiments to make the accuracy as high as possible. In this process, the 

method used in this chapter can provide a certain reference for computer 

vision technology widely used in the construction industry. 

6.2 POSITIONING SYSTEM 

We evaluated the robustness of robotic mobile systems on flat ground 

and complex ground conditions. When entering the unfamiliar 

environment for the first time, we need to scan the environment of the robot 

patrol. In Fig.27, the first picture shows the real environment information, 

the second picture is the map boundary information stored after scanning, 

and the third picture shows the real-time obstacle information. From the 
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comparison between the first picture and the third picture, it can be found 

that the SLAM algorithm accurately marks the position of the obstacle and 

the position of the car. 

    

Figure 27. Environment and obstacle information in SLAM system 

After that, the robot can successfully patrol the entire workspace when 

there is no change in the environment. Next, we try to partially change the 

environment to test the robot. The results show that the robot successfully 

patrolled the entire site and updated the point cloud information. Fig.28 

shows the depth and RGB information collected by the robot when 

patrolling and the point cloud image generated after patrolling. 

During the patrol process, the robot recorded the three-dimensional 

information of the environment and uploaded it to the server in the form of 

a point cloud. This can be used not only as a basis for the next patrol, but 

also to help managers understand project progress information. 
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Figure 28. Experiment result of SLAM system 

Since obstacles such as workers may appear on the construction site, 

we try to enter the site to hinder the robot's actions. Results showed that 

the robot can successfully avoid obstacles and continue to patrol work. 

6.3 NAVIGATION SYSTEM 

The developed neural network approach is capable of planning a 

complete coverage path for cleaning robots without any human 

intervention. In this section, the model is applied in a circular cell 

decomposition workspace without using any previously known 
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environmental information, although the boundary of the entire workspace 

is known. 

For comparison, the model was applied to a completely unknown 

outdoor environment. The environment of the entire workspace is assumed 

totally unknown except for the boundary of the construction site, which 

can be easily obtained from a drawing and is usually static. The robot can 

only sense a limited range with a sensor named LIDAR Scanner. The neural 

network includes 20x30 discretely and topologically organized neurons, 

where all the neural activities are initialized to zero. The model parameters 

are set as A=50, B=1, and D=1 for the shunting equation; 𝛍𝛍 = 𝟎𝟎.𝟎𝟎𝟎𝟎 and 

𝛂𝛂 = 𝟏𝟏 for the lateral connections; and E=100 for the external inputs. The 

robot is initially set in S (1,11) which is the left bottom of the workspace. 

The boundary of the entire workspace is evidently illustrated by the neural 

activity landscape, where the unknown area is regarded as an uncleaned 

area. 
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(a)                                     (b) 

Figure 29. Top view and activity landscape of the neural network upon 

commencement 

When the robot meets the first deadlock in L (15,3), as shown in Fig.16 

(a), the neural activity of the entire workspace is represented in Fig.16 (b). 

The neural activity of the unknown environment and uncleaned regions is 

high, while the neural activity of the obstacle area is low, and approximate 

to zero for the cleaned area. 
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(a)                                      (b) 

Figure 30. Top view and activity landscape of the neural network when 

meeting the first deadlock 

When the entire task is finished, the neural network turns into a static 

situation, in which the neuron activities of all unoccupied neurons are equal 

to zero, as illustrated in Fig.31. 
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(a)                                 (b) 

Figure 31. Top view and activity landscape of the neural network on 

completion 

Whether it is for deadlock off or return mode, point-to-point path 

planning is essential. We assume that the robot is currently in E (16,24), 

and the coordinate of the target neural is T (1,11). Therefore, the landscape 

of the neural network is generated as shown in Fig.32. The neural activity 

of neurons away from the target neuron is much lower than that close to 

the target neuron. Meanwhile, the neurons near obstacles have a lower 

degree of neural activity. The neural landscape determines that the 
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movement of the robot will be as straight as possible towards the target 

point while avoiding obstacles. 

 

Figure 32. Activity landscape of the neural network for the point-to-point 

case 

The result shows that in this case study, the coverage rate is 100% with 

a 0.88% repetitive rate. In this case, we assume that the radius of a circle 

is 2 meters. Therefore, the robot has passed 1828 meters and turned 17700 

degrees through the entire process.  

In order to demonstrate the advancement of this algorithm, the 

performance of a recent algorithm is used for comparison. Due to the 

different ways in which maps are expressed, we improved the algorithms 
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proposed by Khan Amna et al. [22] and tested them on the same map. The 

result is shown in Fig.33. Although the algorithm reduces the length of the 

backtracking path compared to the traditional boustrophedon motion 

algorithm, it still has more backtracking and has a higher repetitive rate. In 

this case, the coverage is 100% and the repetition rate is over 12%. The 

total turning angle exceeds 8040 degrees and the total distance is more than 

2036 meters by using this algorithm. In this study, the speed of the robot is 

0.5 meter per second, and it takes 4 seconds to rotate one revolution. 

Therefore, the algorithm developed in this study reduces the coverage time 

by nearly 7.4%. Meanwhile, the efficiency of the algorithm will be more 

significant in a larger working environment. 
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Figure 33. The performance of path planning using two-way proximity 

search 

6.4 DETECTION AND PICKING-UP SYSTEM: 

LABORATORY EVALUATION AND OUTDOOR 

EVALUATION 

As described in Section 5.5, we first need to optimize the accuracy of 

the computer vision system. First, we optimized the data set. On the basis 

of thousands of calibration data, in order for computer vision to cope with 

complex and changing environment, we first needed to expand the data set. 

The factors that usually have a greater impact on computer vision are noise, 
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blur, and brightness. We carried out routine operations such as adding 

Gaussian noise, motion blur, whitening, and sharpening to the photo, as 

shown in the Fig.34. 

 

Figure 34. Data augmentation result 

Transfer learning can greatly reduce the difficulty of model training, 

but transfer from different weights will lead to different accuracy of results 

[93]. Moreover, different CNN Backbone will also affect the accuracy of 

the computer vision system. Therefore, in order to improve the accuracy as 

much as possible, we needed to choose the most suitable one from different 

backbones and transfer learning. After 40,000 iterations, the results of 

different backbones and transfer learning weights are shown in Fig.35. 
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After comparison, we decided to use the ResNeXt-101-32x8d as the 

backbone and the result training by COCO dataset as the transfer learning 

source. 

 

Figure 35. Comparison of different backbones and transfer learning 

source 

The evaluation results of the final model under different threshold 

values are shown in Fig.36; evidently 0.95 is the best choice. Therefore, 

the model's evaluation accuracy of different construction wastes is shown 

in Fig.37. 
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Figure 36. Training result in different thresholds 

  

Figure 37. AP and AR results when thresholds = 0.95 

From the theoretical and experimental results, the recognition speed of 

the instance segmentation algorithm is proven to be much slower than that 

of the target detection algorithm. Therefore, when the object is not 

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

F0.5 Scores

90.61% 91.26% 95.45% 91.37%

99.71%
93.68%

84.50% 81.19% 93.42% 85.62%
99.85%

88.92%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Resualt evaluation

Precision Recall



CHAPTER 6 

107 

 

recognized, in order to improve the recognition efficiency and increase the 

fps, we only used the faster R-CNN to detect the object. When an object is 

detected, we used MASK R-CNN to perform an instance segmentation on 

the object. In this step, we used the items in different backgrounds to 

evaluate the reliability of the model. As shown in Fig.38, the trained model 

exhibited a high degree of precision when detecting the boundaries of the 

target object in the video frame. 

 

Figure 38. Instance segmentation result of pipe, cable, screw and nails 

Based on the accurate instance segmentation results, we try to use the 

robotic arm to grab the object. This experiment was completed in the 

laboratory with water pipes and cables as the goal. First place the robot in 

the starting position to test whether the robot can complete the picking of 
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garbage at random angles while traveling. As shown in fig.39, for target 

objects in different poses, the robot can change the angle of the gripper and 

grip target object in the correct direction. At the same time, the robot arm 

can place the target object in different place according to the classification 

of the item. In this case the robot set pipes on the right and cables on the 

left, which is shown in Fig.40. 

 

Figure 39. Gripping the object in the correct direction 

The construction site is usually open in an outdoor environment. 

Changes in weather and lighting may reduce the accuracy of computer 

vision recognition and affect the reliability of robot picking. Therefore, we 
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tested the robot's robustness to these influencing factors through 

experiments in an outdoor environment and evaluated whether the robot 

pick-up success rate and efficiency will be significantly reduced in harsh 

environments. The classification information of each category is shown in 

Table 1. 

Table 1. Varied experimental environments 

The robustness test results of the robot under different working 

conditions show that they have little effect on the detection performance. 

Although the robot can recognize the target object more accurately in the 

laboratory environment, the robot arm can tolerate certain errors in 

Ground conditions No. Lighting conditions 

Laboratory 1 Normal lighting conditions 

2 One table lamp 

Outdoor 3 Noon 

4 Night (with streetlight) 
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complex environments; therefore, the final Picking results are not affected. 

A successful recycling in outdoor experiment is shown in Fig.40.  

 

 

Figure 40. Outdoor experiment result 

As a simple evaluation, we tested one hundred random object picking 

experiments in the laboratory and repeated 5 experiments with 20 

randomly placed objects during the field test, for a total of 200 picking 

tasks. Although more than 98% of the pick-up experiments were successful, 

we still needed to evaluate the different success rate between the laboratory 

environment and the actual environment, as well as between different 

lighting conditions. Therefore, we judged the picking accuracy through the 

evaluation method of computer vision. As we mentioned in section 5.3, we 

used F0.5 scores to evaluate the performance of this model and the result is 

shown in table 2. 
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Table 2. Result in different environments 

6.5 CHAPTER SUMMARY 

 This chapter briefly describes the evaluation method of the developed 

robot system and the evaluation results of each project. In order to more 

fully understand the feasibility of each module of the robot, this study 

separately tested the positioning, path planning, computer vision, and 

pickup modules. The results show that, as expected, the developed CDW 

sorting and recycling robot can complete the picking task with high success 

rate in different environments. At the same time, this study also developed 

a complete set of methods for applying computer vision technology to the 

Conditions F0.5 Scores 

Laboratory: Normal lighting 

conditions 

0.9336 

Laboratory:  One table lamp 0.9507 

Outdoor: Noon 0.9232 

Outdoor: Night (with streetlight) 0.9183 
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construction site, including data collection, data processing, data 

augmentation, training methods, result evaluation, and optimization. This 

will be very helpful for the application of on-site robots in the future. 
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORKS 

7.1 CONCLUSIONS 

The construction industry faces problems such as worker safety, labor 

productivity, and labor shortage [19,22,23]. This requires the development 

of building automation technology to improve the future construction 

industry. Although there are already automated robots used for different 

jobs in the construction industry, the recycling of construction and 

demolition waste is still handled manually, which is inefficient and costly 

[33]. Therefore, this research work explored the method of using robots 

equipped with neural networks and computer vision technology to 

automatically patrol, classify, and pick up CDWs. The specific work of this 

research is to first review the existing construction robots and related 

technologies. Secondly, based on the conclusion of review, the robot 

automatic patrol system is designed. The system not only designs a path 

planning system based on neural networks for complex construction sites, 
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which improves the efficiency of patrols, but also solves the problem of 

robot accuracy in complex environments on the construction site by using 

the SLAM algorithm. Third, after establishing a specific CDW image 

library and performing image processing, this study uses target recognition 

and instance segmentation techniques according to the requirements of 

different tasks, and designs different picking strategies based on computer 

vision results. Finally, the feasibility of the robot is evaluated through 

practical experiments. 

The major contributions of this research project are summarized as 

follows: 

1. First of all, as an exploration of the application of robots in the 

development of automation in the conservative construction industry, this 

study has attempted automation in new areas. Many construction robots are 

used in the fields of prefabricated components and building construction. 

but automation in the field of construction waste management has received 

less attention. This study verified the applicability of automation and 
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robotic technology in the field of construction waste management by 

developing an advanced waste recycling robot. The research not only 

provides innovative methods for related fields, but also contributes to the 

progress of automated management. 

2. This study investigated various construction robots in the 

construction industry. Designed on the basis of mobile robots and high-

degree-of-freedom manipulators, a new robot prototype is developed, 

which can automatically patrol, classify, and pick up CDWs. It provides a 

new method for builders to recycle construction waste and improve the 

willingness and efficiency of CDW recycling. 

3. This project carried out the research of path planning algorithm. 

Based on the self-made robot mobile module and ROS system, this study 

introduces SLAM technology and neural network technology. First, on the 

basis of the working mode of the robot, the optimal area division method 

is designed. Based on this method, this study designed and improved the 

calculation equations of neurons, such that the robot can work well in both 
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known and unknown environments. Compared with traditional algorithms, 

the path planning algorithm can automatically avoid obstacles while 

reducing the repetition rate of the path, thus improving the working 

efficiency of the robot. At the same time, considering the complex 

pavement environment of the construction site, we introduced SLAM 

technology to reduce the errors caused by the robot's long-term work 

through relocation.  

4. From the perspective of the overall building automation field, 

automated patrols and point cloud generation systems can play an 

important role in many ways. For example, in the field of scan to BIM, the 

system can assist the implementation of BIM through the application of 

point clouds in the BIM model; In terms of on-site supervision, automated 

patrol robots can assist managers to get real-time progress and work status 

on the remote construction site. 

5. This study firstly established a COCO format data set for CDW and 

conducted preliminary tests. In order to improve the accuracy of instance 
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segmentation, a number of data augmentation techniques are used in this 

study, and the optimal options are determined by comparing different CNN 

backbones and transfer learning sources. After completing the training, the 

optimal threshold is selected, and the accuracy of the model is evaluated 

through actual tests. At the same time, the current construction industry 

does not have a complete image database. The dataset provided by this 

research is the first step to establish special dataset for the construction 

industry, which can be extended to all construction-related researches and 

works. 

5. For different building materials, this study designed special picking 

methods for pipes and cables, taking into account the posture and position 

of target objects. This picking strategy improved the picking success rate. 

6. A systematic experimental study was conducted to evaluate the 

feasibility of CDW recycling robots in outdoor environments. By testing 

and improving each module separately, the robot can adapt to the real 

environment. Specifically, we first evaluated the accuracy of the 



CHAPTER 7 

118 

 

positioning module in different environments. Whether in outdoor or 

indoor environments, the positioning system can accurately determine the 

position of the robot and generate a three-dimensional point cloud map of 

the working environment. Then is the test of the path planning algorithm 

of the patrol system. A path planning system that combines a new area 

division method and a neural network algorithm can shorten the working 

path as much as possible, whether in a complex or simple environment. 

Finally, a picking system that uses computer vision technology was 

developed. After a series of improvements and fine-tuning, the robot could 

accurately identify the specified CDW and successfully pick up the target 

object with the help of the designed picking strategy. 

7.2 LIMITATIONS AND FUTURE RESEARCH 

 Overall, the research project successfully developed a robot prototype 

for CDW sorting and recycling, which can improve the current status of 

CDW recycling in the construction industry. Although the evaluation and 
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experiments prove that the robot is effective in the real environment, there 

is still room for improvement, as follows: 

1. Limited by the function of RGB camera, this study assumes that the 

target objects are all on the ground. This limits the versatility of the robot. 

In future research, we consider using multiple cameras to assist in 

analyzing the spatial position of the target object, so that the robot can be 

used to grip the target object at any position. 

2. The Omnidirectional Multi-Camera System, for instance, which can 

detect surroundings without robot rotation, may be a better choice for a 

recycling robot, as the efficiency of cleaning one region could be increased. 

However, this requires higher accuracy of Omnidirectional Multi- Camera 

System and higher computation complexity in object detection. 

3. Setting up a larger computer vision dataset will make also it possible 

to identify more types of construction waste in different circumstances. 

4. The limited hardware equipment makes the robot prototype 

developed in this research still far from practical. Therefore, in the future 
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work, we will improve the prototype of the robot and discuss the improved 

work efficiency of the robot through comparative experiments. 

5. In view of the fact that the robot has hardware equipment suitable 

for most tasks, in future work, we will explore the possibility of using the 

robot for other tasks in the construction sites to increase the versatility of 

the robot. At the same time, the fully automated robot system can greatly 

improve the construction efficiency of construction projects and reduce 

costs. 
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