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Abstract 

Glasses are in daily use by virtually all humanity and have dramatically expanded 

the frontiers of industry and science as well. Owing to the developments of newest 

technologies, especially for fifth-generation (5G) wireless communication and artificial 

intelligence (AI), the demand for glass-based optical devices and structural components 

has sharply increased. This leads to new challenges to large-scale precision 

manufacturing as the mechanical behaviors of glass are complex during its thermal 

history. In this thesis, I attempt to explore the mechanical relaxation of glass at high 

temperatures, which not only benefits important industrial demands but also helps 

understand essential questions associated with glass transition. This thesis summarizes 

my efforts in performing mechanical experiments and theoretical modeling to promote 

the understanding of glass relaxation and transition. 

(1) Primary (α) relaxation was studied experimentally using the impulse excitation 

technique (IET) in borosilicate and chalcogenide glasses. The glass transition point (Tg) 

determined from temperature-dependent Young’s modulus was found to be close to that 

determined by viscosity in borosilicate glasses. A non-destructive and instantaneous 

measurement method for determining viscosity is proposed for borosilicate glasses that 

have little non-exponentiality. This method can be explained by the implicit features in 

the Burgers model and a physics-based minimal model that considers the solid-like to 

liquid-like behavior transition. For chalcogenide glass, a striking non-exponential 

relaxation was found using the Cole–Davidson (CD) function, and the non-exponential 
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estimate agrees well with previous research. 

(2) A new mechanism for the mechanical secondary (β) relaxation was established 

based on the normal mode analysis of a potential energy landscape and experimentally 

confirmed by the predicted double-peak phenomenon in the Fourier spectrum of a 

fluorosilicate glass beam. This leads to a new method for probing β relaxation. Using 

the proposed model, the β relaxation in the fluorosilicate glass is found to be negatively 

temperature-dependent and can be explained based on the picture of fragmented oxide-

network patches in liquid-like regions, which broadens the understanding of β 

relaxation.  

(3) A long-expected phenomenon of non-zero to zero transition around Tg was 

firstly observed in structural glass, and the Kovacs’ paradox was firstly confirmed in 

inorganic glasses by monitoring the relaxation of Young’s modulus of an As2Se3 glass 

in two-step aging experiments. The effective relaxation time and Young’s modulus at a 

quasi-equilibrium state obtained from long-term aging are both found to be dependent 

on the thermal history. The effect of thermal history is found to be related to the survival 

parts of glass after aging (i.e., the persistent memory). An elasticity-based relaxation 

model is proposed to explain the relationship behaviors, and a Mori–Tanaka (MT) 

analysis is used to determine the volume fraction of the local survival parts. The 

obtained memory persistence from either analysis agrees well with each other. With a 

series of experiments that change the aging temperature, it is found that structural 

memory persists below a critical temperature Tp ~ Tg and becomes zero above Tp. 

 (4) A birth–death model is proposed to reveal the coupling effects between elastic 
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modulus relaxation and local heterogeneity, of which the analytical solution can be 

obtained. A preliminary examination shows that the model can capture the normal and 

anomalous relaxation of different glasses. Based on the birth–death model, a non-

Gaussian distribution of microscopic elastic modulus can be obtained which was found 

in previous molecular dynamic simulations.  

With novel experiments and theoretical inspections, an in-depth understanding of 

glass relaxation and transition is explored. The findings of this thesis could help 

industrial glass communities that need reliable but facile mechanical relaxation models. 

This investigation also provides new ideas on probing the glass transition, which can 

benefit the basic science in the future. 

 

Keywords: Glass relaxation, β relaxation, Kovacs’ paradox, memory effects, birth–

death model, Young’s modulus, impulse excitation technique 
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Chapter 1 Research background 

1.1 Introduction 

With the rapid development of modern technology, especially for fifth-generation 

(5G) wireless communication technologies and artificial intelligence (AI), an 

increasing number of optical products are in demand [1, 2]. This makes traditional 

materials such as glass, which is already used daily by most people, show valuable 

prospects in the future. If glasses were to be stripped from our society, mirrors, 

eyeglasses, televisions, cell phones, and many others all disappear. If we recollect, 

Galileo, Descartes, Newton, Fraunhofer, and many other early scientists devoted 

significant effort in producing glass lenses [3, 4], which then remarkably improved the 

research of modern science as the commonly used devices in research communities, 

including microscopes, telescopes, barometers, thermometers, and vacuum chambers, 

which are all dependent on glass products [1]. In 2014, Mauro and Zanotto [5] 

summarized 15 critical issues of future glass research, including combatting global 

warming, renewable energy, new energy storage methods, water and air pollution 

mitigation, energy consumption reduction, human health, information and 

communication technology, architecture, and other structural applications  

However, unlike the abundance of glass applications and massive future demands, 

our beings’ understanding of glass is immensely insufficient. In 2005, the question of 

‘What is the nature of the glassy state’ was suggested to be one of the greatest scientific 

conundrums for the 125th anniversary of science [6]. The Nobel laureate P. W. 
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Anderson stated ‘The deepest and most interesting unsolved problem in solid state 

theory is probably the theory of the nature of glass and the glass transition’ [7]. At 

present, many remarkable glass-related questions still exist, calling more efforts to untie 

them.  

1.2 History of glass 

Although some types of glass, such as perlite, obsidian, and tektites exist in nature 

[8], most glasses used are artificial. This important material has a long history. The 

estimated date of origin of man-made glass is from 4000 BCE in Mesopotamia [9]. 

Archaeological discoveries suggest that Egyptians could make glass vessels between 

the 14th and 16th century BCE. The technology then spread to Syria, Cyprus, and other 

eastern Mediterranean regions around the 11th century BCE. After 1000 BCE, Syria 

and Palestine began to be the primary source of glass products, and around 400 BCE, 

Macedonia and Greece also emerged as centers of glassmaking. Syria and Palestine 

developed the technique of glass blowing, which renders it much easier to fabricate 

glass products with complex shapes. Also, Greeks developed a new technology called 

the sandwiching technique by which gold layers were trapped between clear glass parts. 

In China, the evidence of glass usage was recovered from graves of 6th century AD [10]. 

Interestingly, further analysis revealed that the discovered glasses containing lead and 

barium were first used in the 2nd and 3rd century BCE. After a long period of human 

effort, glass can now be produced in large-scale industrialization. In the modern glass 

industry, glass is generally produced by using several cooling techniques, including the 
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Fourcault process [11], Colburn process [12], and float process, which is the most used 

method [13]. Another newly developed method is the sol–gel process [14]. 

The early glass was not transparent and, thus, became an alternative to pottery or 

precious stone replicas [15]. The desire for clear and transparent glass comes with the 

growth of blown glass production [3]. Thereafter, it was realized that purification and 

the proportion of raw materials are important in the making of clear glass [16, 17]. With 

increasing efforts, the optical applications for glass have become increasingly popular, 

leading to the current understanding of glass.  

1.3 Large-scale manufacturing based on precision glass molding in 

modern industry 

Two primary approaches have been used to make products from glass materials. 

The first is through material-removal processes, such as grinding, polishing, and 

lapping. This method can be adapted to various products, but it is costly and time-

consuming, especially for hard glass and products with complex shapes [18]. The other 

method is thermoforming, such as glass blowing, cold bend, and precision glass 

molding (PGM). Thermoforming is less costly in both time and materials, but the 

process control may be complicated and the accuracy may not be satisfactory. In 

addition, the thermoformed glass workpiece may require further polishing to become 

transparent. This is the reason that PGM, which can realize efficient manufacturing in 

a single step, was proposed and has become one of the most active research areas [19, 

20]. 

Fig. 1.1 shows a typical process for making a lens through PGM. The chamber of 

the PGM machine is filled with inert gas, such as nitrogen, during all heating and 
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molding processes to protect the sample from oxidation. The molding temperature 

should be above the glass transition temperature (Tg) to ensure glass viscosity is 

maintained in the range from 107 to 108 Pa∙s. The molding process is then conducted 

with precision control. Upon completion of molding, the lens is first slowly cooled until 

the glass temperature has dropped to the strain point of the glass, and then the 

compressive force can be removed. Such a process has a higher production efficiency 

when a fast cooling rate is applied in the demolding process [21]. 

 

 

Fig. 1.1. Typical PGM process. (1) place the sample into the chamber, (2) pump out the air, (3) inject 

the inert gas, (4) heat the sample to the required temperature, (5) compress it with the designed mold, 

and (6) demold after cooling. 

 

However, many technical challenges occur in PGM. Firstly, PGM is generally 

conducted at temperatures higher than Tg, and the product property is significantly 

dependent on the thermal history during cooling through Tg. Besides, the mechanical 

compressive process is related to the visco-elasto-plasticity of the sample, while a 

consensus of the constitutive relations of different glass is still lacking. Finding a 

suitable constitutive model for moldable glass is critical to the final products. However, 
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this process is difficult owing to the insufficient knowledge of glass 

relaxation/transition. A PGM process leads to residual stresses and shapes distortion in 

a molded glass piece, causing unexpected changes in density and refractive index. In 

the worst cases, molding may fail because of material breakage [22]. Conversely, glass 

production is a highly energy-intensive process [23]. The ongoing increase in world 

glass demand implies that this industry’s energy use and CO2 emissions will continue 

to grow without additional measures toward energy efficiency. In the PGM process, 

significant energy is used to maintain the plastic glass state, and multiple attempts are 

generally needed. A good understanding of the materials can help design a heating 

process that requires less energy and is environmentally friendly. 

Traditionally, PGM is used for silica-based glass, while in recent years, the PGM 

of chalcogenide glass has drawn increased attention. Chalcogenide glass is an infrared 

optical product alternative to germanium crystal, which is rare and expensive [24]. The 

massive application of molding for chalcogenide glass makes civilian use possible, for 

example, living body recognition in autonomous vehicles [25]. However, the molding 

of chalcogenide glass has unresolved issues. The logarithmic viscosity of chalcogenide 

glass is linear to temperature [26, 27], which is dissimilar to that of Angell’s predictions 

for most glass [28, 29]. Furthermore, chalcogenide glass breaks more easily during the 

molding process even when the temperature is higher than Tg or may oxidize, gasify or 

adhere to a mold surface when the temperature goes even higher [22].  

1.4 Glass state as a mystery in physics 

Before people realized the structural difference between glass and crystalline 

solids, glass is a commonly used term for describing a transparent or diaphanous 

material. It is well known that the macro properties of materials are determined by their 
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inner microstructures. Glasses are impressive because they share similarities with 

crystalline solids since they are both mechanically rigid at the macro level, while they 

share similarities with liquids by having disordered micro-level structures [30, 31]. 

However, the latter leads to difficulty in achieving an analytical description of the 

former because of a lack of mathematical amenities arising from structural periodicity 

[32]. Hence, the glass research community has more experience than knowledge. In 

1932, Zachariasen stated that ‘It must be frankly admitted that we know practically 

nothing about the atomic arrangement in glasses’ when he started the classic paper [33].  

It is generally believed that glassy formers can avoid crystallization due to the 

sharply increased viscosity near Tg during fast cooling [34]. Below Tg glass is ‘stuck’ 

on the way to its equilibrium state. That is, glass has high free energy and tends to relax. 

However, many glasses relax to the amorphous state of supercooled liquids instead of 

crystallization, although the latter should have the lowest free energy. In 2017, Zanotto 

and Mauro [35] summarized a paradoxical ultimate fate of glass, either supercooled 

liquid or crystallization. Although numerous efforts have been devoted to glass research, 

there are also many unsolved problems associated with glass relaxation, including 

memory effects [36, 37], Kovacs’ paradox [38-41], hierarchical relaxation [42-44], and 

dynamic and static heterogeneity [45-49]. The understanding of these issues will not 

only provide a physical picture of glass relaxation but also have direct benefits to glass 

manufacture. 

1.5 Research scope and objectives 

To help address these fundamental problems of glass, the viscoelastic property of 

glass influenced by thermal history is very interesting to consider. Previously, the glass 

processing community has focused more on phenomenological models, which may be 
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easily applied to glass processing, while the glass physics community focuses more on 

mathematical models that may reflect the nature of amorphous states. The gap between 

essential glass properties and phenomenological viscoelastic behaviors is far from 

being closed, leading to the reality that the models used in the industry may not be very 

reliable, while the physical discussions of glass are far from practical applications. 

Therefore, the traditional phenomenological viscoelastic property of glass will be 

understood in more physical approaches in this thesis, which helps reveal the 

connections between the macro mechanical response and the microphysical mechanism, 

and in turn, helps build more reliable models.  

In this thesis, I attempt to achieve a better understanding of glass relaxation at high 

temperatures where the glass is usually processed. I will first review the literature on 

both phenomenological models and the understanding of glass physics in Chapter 2. 

Next, the experimental designs based on the impulse excitation technique (IET) will be 

introduced in Chapter 3. A revisit of viscoelastic beam vibration is provided, which 

helps us better understand the experimental results. In Chapter 4, the primary (α) 

relaxation of glass is discussed based on IET results. As viscosity is one of the most 

important factors in glass processing, a variety of spring-dashpot systems are examined 

to check if the short-term response in IET can be used to determine viscosity and the 

rationale of choosing a simplified viscoelastic model is provided. In Chapter 5, the 

secondary (β) relaxation of glass will be modeled in two different ways, that is, the 

integral-type viscoelastic model from the bottom of physics and the differential-type 

viscoelastic model based on a traditional phenomenological linear relation, and then the 

two methods are both examined based on the experimental results to determine their 

connections. In Chapter 6, the effort will be devoted to how the phenomenological 

measurable quantity reflects the micro relaxation process in physics. The time-
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dependent relaxation of Young’s modulus under different thermal conditions will be 

measured, and the physics close to the equilibrium state will be discussed in detail. 

Based on the physical findings in the previous chapters, a simple birth‒death model is 

proposed and preliminarily studied in Chapter 7. Finally, the results are summarized, 

and future research topics are proposed in Chapter 8. 
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Chapter 2 Literature review 

2.1 Introduction 

In this chapter, the works associated with glass transition and glass relaxation are 

summarized. In Section 2.2, the basics of glass and glass transition will be introduced. 

The phenomenological models of glass relaxation will be summarized in Section 2.3, 

and the physical modeling will be summarized in Section 2.4. In Section 2.5, the latest 

research on machine learning related to glass will be summarized. 

2.2 Glass, glass transition, and glass relaxation  

Several standard terms are used to describe glass, including supercooled liquid [34, 

50], amorphous state [31], non-crystalline materials [51], and disordered materials [52]. 

With a less strict distinction, these terms have similar meanings, and the difference is 

related to the environments of different research groups or disciplines. Some physical 

differences between these terms will be mentioned later. To show the particularity of 

glass at the micro-level, the state of the atomic configuration of glass, that is, the 

disordered configurations in the long-range distance can be called a glassy state. 

However, it should be noted that someone may argue that glass is only considered as a 

disordered material obtained by cooling liquids. For example, Encyclopædia Britannica 

states that glass is an inorganic solid material made by cooling molten ingredients [53]. 

With an understanding of disordered materials, glass can be made by constituents 

ranging from inorganic minerals and polymers to metals [54], and glass making is not 
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limited to cooling methods [55-57]. In addition, some biological materials have glassy 

states [58-60]. These glasses all correspond to certain disordered atomic or molecular 

structures, thus called structural glass. Several non-structural configurations can also 

be called ‘glass’, for example, spin glass [61], charge-density glass [62], orientational 

glass [63], and vortex glass [64], to describe their disordered state. Either structural or 

non-structural glass shares many similar phenomenological regularities and can be 

collectively called glassy state materials. Therefore, in this thesis, glass is defined as 

the material of (1) macroscopically solid-like property (that is, it can resist shear force 

in the experimental period) and (2) microscopically a lack of long-range order in atomic 

and/or molecular structures. Unless otherwise mentioned, only structural glass is 

considered in this thesis.   

 

 
Fig. 2.1 Schematic representation of phase and glass transition: the specific volume (Vsp) changes 

with temperature. 

 

Glass transition is a unique property of glass that differs from traditional solid and 

liquid materials. With temperature change, materials may change between different 
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phases due to thermodynamics, thus leading to changes in the material properties. 

Fig. 2.1 shows the change in the specific volume Vsp with temperature for a typical 

liquid undergoing a cooling process. When the temperature reaches the melting point 

Tm, the liquid may crystallize. However, since crystallization is a kinetic process that 

rests with several different factors, the liquid may avoid crystallization when the 

temperature is below Tm, leading to supercooled liquid. If the temperature continually 

decreases, the supercooled liquid will soon become a solid-like material, glass, and the 

temperature-dependent property changes. The transition from supercooled liquid to 

glass is the so-called glass transition. Generally, the volume expands linearly with the 

temperature for both the supercooled liquid and glass. Therefore, if we extend the 

temperature dependence curve of supercooled liquid and glass, a cross will be obtained. 

The temperature corresponding to the cross is called ‘glass transition temperature’, Tg, 

as shown in Fig. 2.1. 

Generally, the transition at Tg is considered a result of sharply increased viscosity, 

which prevents the system from achieving an equilibrium state [34]. However, Tg is not 

a well-defined concept as the obtained value of Tg depends on thermal history. For 

example, if the cooling rate is different, Tg is different. As shown in Fig. 2.1, faster 

cooling and slower cooling will lead to Glass 1 and Glass 2, respectively. This is 

because, at a lower cooling rate, the glass system has more time to reach its equilibrium 

state; thus, the temperature dependence of Vsp will continue its tendency as a 

supercooled liquid. A similar transition can also be found in volume [65], enthalpy [66], 

refractive index [67], viscosity [28, 29], elastic modulus [68, 69] or other macroscopic 
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properties [70]. To understand the transition from the microstructures of glass, 

diffraction methods [71] and spectroscopy [72] were used in early studies. Several 

atomic models are used, including Monte Carlo Simulations [73] and molecular 

dynamics simulations [74]. As proposed by Rouxel [75], the structure in glass can be 

separated into four relevant scales: (i) atomic, over 1.5–2.5 Å; (ii) molecular, from 2.5 

to 4.5 Å; (iii) ‘network’, within a few nanometers; and (iv) continuum scales, over a 

hundred nanometers. Scales (i) and (ii) are in the short range, and scale (iii) is in the 

medium range. On these scales, we can obtain some structural messages [76]. 

Meanwhile, on the scale (iv), we still do not know anything except for some empirical 

relaxation theories [33]. Surprisingly, no significant differences exist in the micro 

configurations between the supercooled liquid state and the glassy state. Therefore, 

glass can be treated as supercooled liquids out of equilibrium state due to their high 

viscosity [34].  

The glassy system departing from an equilibrium state is always on a path to 

equilibrium, known as glass relaxation. Such a relaxation process can be found by 

monitoring the macro properties mentioned previously. It is known that the relaxation 

process is not only related to understanding the basics of glass transition but also related 

to industrial applications. Therefore, the relaxation behaviors of glass should be 

investigated. 

Experiments have shown that relaxation occurs in almost all timescales, which can 

roughly be separated into three types when it is close to the Tg [44, 77]. (1) The primary, 

referred to as α-relaxation with a typical timescale of >10-3 s, is associated with 
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structural relaxation and plays the primary role in glass transition. (2) The secondary 

relaxation with a timescale of 10-8–10-3 s, which is often called (slow) β relaxation, is 

related to localized atomic motion through a mechanism that is still vague. (3) The 

relaxation with a timescale of 10-8–10-12 s, usually called fast β relaxation, could be 

related to the rattling motion of caged particles [78].  

2.3 Phenomenological models of α-relaxation  

As an empirical fact, the relaxation process is faster if the current state is further 

from the equilibrium state. Therefore, one can define a relaxation process as  

 
d

d

P PP

t 
  ,  (2.1) 

where P = P(t) is the monitored property, P∞ = P(t→∞) is the property at equilibrium 

state, t is time, and τ is a parameter that shows the relaxation speed. If τ is constant at a 

specified temperature T, the above equation can be solved as 

 .., (2.2) 

where A is a parameter determined by initial conditions. This is an exponential process. 

When the temperature is close to Tg, the strain relaxation of SiO2 glass [79], the 

refraction index relaxation of GeO2 glass [80], and the enthalpy relaxation rate of RbCN 

[81] are exponential functions of time. However, most relaxation behaviors of glass are 

non-exponential [82]. The most frequently used non-exponential functions are the 

stretched exponential and power law functions. The stretched exponential function is 

also called the KWW function after Kohlrausch–Williams–Watts [83] and can be 

written as: 
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   exp

n
t

P t P A




  
    

   
,  (2.3) 

where n is the non-exponential index. Power law functions have more flexible forms; 

for example [84],  

  
 1

n

A
P t P

t 
 


,  (2.4) 

where n is the power index. In Eqs. (2.3) and (2.4), we still consider the parameter τ 

as the relaxation time. However, its physical meaning is different from that in Eq. (2.1).  

τ may be related to the environmental conditions, for example, temperature T. If a 

certain form with a specified index n can well describe the relaxation at different 

temperatures in an investigation, the relaxation function defines a master curve because 

of its uniformity. If we chose a relaxation process at T = Tr as a reference relaxation 

curve, all the relaxation processes will be equal to a reference relaxation by changing 

τ(T) (relaxation time at temperature T) to τ(Tr) (relaxation time at temperature Tr) by 

using the following ratio: 

 
 

 
T

r

T
a

T




 .  (2.5) 

The aT term is generally called ‘shift factor’ because it helps ‘shift’ the relaxation curves 

to that of the reference. Based on the above assumption, aT is related to T instead of Tr, 

that is, aT = aT(T). Thus, one can calculate the relaxation process at any temperature if 

aT(T) and τ(Tr) are known. This is especially important for predicting the properties of 

glass under complex thermal history. With the help of aT(T), the relaxation process at 

any temperature can always be considered as a continuous process at the reference 

temperature. This is the so-called ‘time-temperature superposition principle’. One 
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frequently used expression of aT(T) is the Williams–Landel–Ferry(WLF) equation [85].  

  
 1

2

log
r

T

r

C T T
a T

C T T




 
, (2.6) 

where C1 and C2 are experimentally determined parameters. 

Other forms of aT(T) are frequently presented by an equivalent question: How does 

τ change with T? The simplest relation was suggested by Arrhenius [86]. 

 
0 exp

B

E

k T
 

 
  

 
,  (2.7) 

where ΔE is the energy barrier. However, the Arrhenius law only works for a few glassy 

formers, for example, pure silica (a-Si), silicon oxide (a-SiO2), or phosphor pentoxide 

(a-P2O5) [87] (herein, ‘a’ is short for ‘amorphous’). The relaxations of most glassy 

formers are non-Arrhenius. Walther [88] in 1931 suggested that 

 0 exp
n

C

T
 

 
  

 
,  (2.8) 

where C and n are the fitting parameters. Further, the Vogel–Fulcher–Tammann (VFT) 

law suggests that  

 
0

0

exp
A

T T
 

 
  

 
,  (2.9) 

where A and T0 are the fitting parameters.  

Based on Maxwell [89], a relaxation process is associated with viscosity η. In a 

glass, the relation between viscosity and relaxation time is [89, 90] 

 G  ,  (2.10) 

where G  is the instantaneous shear modulus. In most thermal histories, the variation 

in elasticity will not cover more than one order of magnitude. Therefore, Arrhenius and 

non-Arrhenius laws are also applicable to viscosity. Angell et al. [28, 29, 91] found that 
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glass transition generally occurs at ≈ 1012 Pa·s, as shown in Fig. 2.2(a). For Arrhenius 

law, the viscosity change with temperature is ‘steady’ near Tg, while for strong non-

Arrhenius law, it is ‘sharp’. Figuratively speaking, the glassy formers are ‘strong’ to 

keep its viscosity property for Arrhenius law while being ‘fragile’; that is, its viscosity 

property for non-Arrhenius law is difficult to maintain. Angell [92] supposed that the 

structures of strong and fragile glasses are different, which was experimentally proved 

by Mauro [93]. Angell [28] defined ‘fragility’ M to show the property of temperature 

dependence of viscosity by [94] 

 
 
log

g
g

T T

M
T T









, (2.11) 

which is the slope at T = Tg in the Angell plot.  

 

 

Fig. 2.2 The temperature dependence of viscosity: (a) Angell’s plot of the temperature dependence 

of viscosity of various glasses (copied from Angell [28] and (b) sketch of strong and fragile glass 

(fragility). 
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2.4 Activation energy scenario for the Arrhenius and non-Arrhenius 

laws 

Although the VFT model is empirical, many theoretical derivations have reached 

the same form [95-97]. This shows that the phenomenological models may have a 

physical background. To understand the non-Arrhenius behavior in glass, the first 

physical intuition is ΔE, which is not a constant because some physical quantities 

controlling ΔE are related to temperature, that is, ΔE = ΔE(T). Researchers have 

attempted to understand the controlling quantities from different aspects. 

2.4.1 Free-volume models 

This model addresses the situation from the perspective of individual molecules, 

which are assumed to arreange with a certain amount of available volume. The 

‘available volume’ should not be occupied by other molecules thus called ‘free volume’, 

fv  that decreases as the liquid contracts on cooling. It is predicted that [98-100] 

   0exp fC v T  , (2.12) 

where C is the parameter determined by experimentation.  

2.4.2 Entropy models  

When a molecular transport occurs in the glassy system, it is on the route 

determined by the free volume. Conversely, the motion of the molecule in the glass is 

confined by its neighbors. Therefore, molecule must reorient in combination with a 

certain number of its neighbors instead of self reorient, which is the so-called 

‘cooperatively rearranging region’ (CRR). Before and after the local relaxation, the 

configurational states are different. The activation energy for transitions between 

system states ΔE ~ 1/Sconf, where Sconf is the configuration entropy [95, 96]. Therefore, 
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the temperature dependence of the relaxation time is  

 
0

conf

exp
C

TS
 

 
  

 
,  (2.13) 

where C is the parameter determined by experimentation. Although this model has 

some problems [101], the entropy model was very porpular in the field and defined a 

paradigm. 

2.4.3 Energy models 

In addition to volume and entropy, using energy as the controlling variable leads 

to the third class of models of this type. In the simplest version, it supposes a CCR 

should overcome a specific barrier energy E0 before a local relaxation event can occur. 

It is assumed that that such a CCR contains several molecules with the most likely 

energy which is close to its average energy  E T . Then the activation energycan be 

simplified as [102]: 

 0 ( )E E E T   .  (2.14) 

However, the assumption of   E E T  can only be used when the CRR is quite 

small [103], in which the the predicted linear response of these models can match 

experimental results. 

2.4.4 Elastic models 

From the perspective of molecules or atoms, the motion is very fast. However, the 

glass relaxation near Tg can be sensed in macro time. As the activation energy is 

assumed in terms of the short-term system elastic properties, elastic models can reveal 

the connections between the slow and fast system freedom degrees. Generally high-

frequency shear and bulk moduli ( G , K ), and the speed of sound c can be used in 
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the model because the atomic arrangements happen in a very shor time thus the rest of 

the glass formers have no time to relax and look like a rigid bulk.  

Tobolsky et al. [104] in 1943 suggested that the activation energy can be calculated 

by the short-time elastic properties, appearing to be harmonic models. It used the square 

wells which are separated by an average configuration space coordinate distance, and 

the configuration space coordinates are characterized by a Gaussian distribution. With 

those ideas, the relaxation time is derived to be proportional to the inverse of the 

Gaussian probability of finding the system a distance from the mean value: 

  2 2

0 1exp a x   ,  (2.15) 

where x is the reaction coordinate, λ1 is a numerical factor of order one, and 2x  is 

the thermal root mean square (RMS) average distance of the system from an 

equilibrium state. Referring to Eq. (2.7) provides the activation energy 

 

2

1 2
 B

a
E k T

x
  .  (2.16) 

In supercooled liquids, it is exprected that the activation energy increases upon cooling, 

which is consistent with the prediction that the thermal RMS average <x2> usually 

decreases faster upon cooling than the thermal equilibrium result <x2> ~ T. If the 

relevant energy landscape is assumed to be spatial, the activation energy ∆E should be 

related to instantaneous shear deformation, resulting in the energy of the form [104] 

 
3

2E a G   ,  (2.17) 

where λ2 is a number in the order of one, a is a microscopic length scale, and G
 is the 

instantaneous liquid shear modulus. 

During a local relaxation event, thermal fluctuations generate a local expansion 

exceeding a certain critical value, the local motion can break its original structure and 
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a local molecular rearrangement occurs. Mooney [105] estimated the probability of 

these relaxation events interfering with the thermal longitudinal sound waves and found 

that 

 
2

3E mc   , (2.18) 

where λ3 is a unitless parameter of order one, m is the molecular mass, and c∞ is the 

speed of longitudinal sound waves at high frequency. 

The shoving model considers another physical picture that is similar to the local 

expansion model. The dominant activation energy is the energy that expends on 

‘shoving’ aside from the immediate nearest neighbors to rearrangements of amolecule. 

Then the activation energy is again derived to be proportional to the high-frequency 

liquid shear modulus G
 [106]. 

  
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2

2

3

V
E G T

V



   (2.19) 

2.5 Nonlinear relaxation associated with thermal history 

It should be noted that glass may need appreciable time to reach equilibrium when 

the temperature is near or lower than Tg. Therefore, the properties of glass will depend 

on the thermal history because of memory effects. This suggests that the relaxation time 

in Eq. (2.1)is related to thermal history, which makes the relaxation nonlinear. At 

present, the most widely used model to understand this issue is the Tool-

Narayanaswamy–Moynihan (TNM) model [107-109] and the Kovacs–Aklonis–

Hutchinson Ramos (KAHR) model [110]. 

2.5.1 Tool–Narayanaswamy–Moynihan (TNM) model 

The idea was first proposed by Tool [107] that the property of glass at the current 
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temperature corresponds to a fictive temperature Tf at which the equilibrium state has 

the same value as the specified property. If we suppose that the relaxation ‘speed’ is 

directly proportional to the difference between the current and equilibrium properties, 

Tf can be derived as 

 
d

d

f fT T T

t 


 .  (2.20) 

Under Tool’s hypothesis, τ is only related to the temperature, which can be described 

by the Arrhenius equation. However, in many cases, the simple exponential function of 

τ does not work well. Based on thermorheological simplicity, Narayanaswamy [108] 

proposed a new description of τ 
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where 
0  is a constant, H  is the activation energy, R is the ideal gas constant, and 

x is a constant reflecting the influence of temperature and structure. For an arbitrary 

temperature history, the fictive temperature is given by  

    
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d
f

T
T T M d


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
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Here,   is the reduced time given by 
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and   22

1 2 1 2

fT Tp p
M

p p T T



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 
 is the relaxation core, which can be used in the form 

of 

    exp / rM


    
  .  (2.24) 

In these equations, 
r  is the relaxation of a reference temperature and   is constant.  
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2.5.2 Kovacs–Aklonis–Hutchinson Ramos (KAHR) model 

The TNM model is phenomenological, and no specified physical factors are 

considered during the derivation. The frameworks of KAHR and TNM are the same, 

while the KAHR model provides a new aspect from the viewpoint of temperature and 

pressure. In the KAHR model, the volume recovery behavior is defined by a normalised 

parameter δV(t) = (V(t)-V)/V, where V(t) is the instantaneous specified volume and 

V is the equilibrium specified volume. When the temperature and pressure both vary, 

the volume can be written as [111]  

        
0

d d
dV l g l g

T P
t k k M

d d



     
 

 
         

 ,  (2.25) 

where the suffixes l and g indicate the liquid and glassy state, respectively; α is the 

isobaric thermal expansion coefficient; k is the isothermal compressibility; M is the 

kernel relaxation function defined by Eq. (2.24) as well as the same definition of ξ in 

Eq. (2.23). The relaxation time in Eq. (2.23). is written as:  

    
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 
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  
         

,  (2.26) 

where θ is a material constant and x is a partition parameter (0 ≤ x ≤ 1). 

2.6 Understanding glass relaxation from heterogeneity (I): Statistical 

scenarios  

Glass is spatially heterogeneous in both structure and dynamics in microscales. 

Therefore, the global property is a superposition result of every local part, which leads 

to the mean-field theories that help understand the complex behaviors of glass 

relaxations. 
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2.6.1 Mode-coupling theory 

Mode-coupling theory (MCT) [112, 113] is famous for a ‘first principle’ theory of 

glass because it starts from the density states of glass without any empirical assumption. 

The particle density in a glass former can be defined as:  

     ,
N

j

j

t t  r r r ,  (2.27) 

whose Fourier transform is expressed as:  

        , d , exp i exp i j

j

t t t       k r r k r k r ,  (2.28) 

where N is the total number of particles in the liquid above, rj(t) is the position of 

particle j at time t, and k is the wavevector used in the Fourier transform. The time-

dependent correlations between these collective density modes can be probed by the 

intermediate scattering function [114]: 

      
1

0,  t
N

F t   k kk  (2.29) 

For simple liquids, MCT provides a damped harmonic oscillator relation [115]: 

 
2,  ,   ,  ( ) ( ) (  ) ( ( )  0)F t F t F t   k k k k k , (2.30) 

where γ(k) is the damping coefficient and ω(k) is the mode frequency in question, 

which for simple liquids is ω(k) = ck, where c is the adiabatic sound speed.  

Eq.(2.30) can be written in a more generalized form that can decribe more complex 

liquids, including highly viscous supercooled liquids, by replacing ω(k) with a more 

generalized function Ω(k), and ( ) (  ),F t k k  by a convolution of ),(  F tk  that has a 

memory function M(k,t) controlling the effects of the thermal history on the system. 

Then Eq.(2.30) changes to: 
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To obtain Ω(k) and M(k, t) in the model, one can use can the theoretical generation 

meothd or the parameter fitting of empirical functions. In some cases, these functions 

are hardly obtained theoretically, thus some approximations can be made. In the model, 

γ(k)δ(t) provides the usual linear damping term and Ω2(k)m(k, t) can be written in a 

leading order in terms of pair interactions between particles in the liquid.  

MCT provides a remarkable set of accurate predictions, including dynamic glass 

transition Tc, cage effects, and secondary relaxation (β relaxation) of glass formers. 

Furthermore, its predictions on the non-exponential and non-Arrhenius laws are 

completely consistent with experiments and simulations. However, MCT is generally 

available at a temperature much higher than Tg; thus, some modified MCTs have been 

proposed, including extended MCT, generalized MCT, and inhomogeneous MCT [116]. 

2.6.2 Coupling model 

The coupling model (CM) may be confusing with MCT in the name, while they 

are built from completely different perspectives. The derivation of CM still lacks the 

mathematical rigor of MCT [117], while many issues are explained by the model, 

including the non-exponential mechanism, α-β relaxation, and Kovacs’ paradox [39, 

118]. It can be dated back to Ngai [119] which considered the cooperative (or coupling) 

dynamics in the relaxation of a complex system. The relaxation process defined by CM 

can be written as [120]: 
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where τ0 is a constant and τ* = [(1 - n)ω
n 

c τ0]
1/(1-n); 1/ωc is a characteristic time when 
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intermolecular cooperative activities become important and 0 < n < 1.  

2.6.3 Other models 

Other methods used to understand the complex glass relaxations are the energy 

landscape approach [121], random first-order transition theory [122], entropic barrier 

hopping theory [46], and frustration-based models [123].  

2.7 Understanding glass relaxation from heterogeneity (II): Stochastic 

scenarios 

The modeling based on statistics and stochastics cannot be fully separated because 

all the statistical models are started from assumed stochastic processes. However, if the 

stochastic process is too complex, the mean-field solutions are difficult to reach with 

mathematics. To bypass the difficulties, more consideration is placed on the stochastic 

process instead of mean-field mathematics.  

2.7.1 Energy-controlled stochastic process 

The simplest stochastic model considers a two-level system (TLS) where the local 

phase transforms between two distinguishable states [124, 125]. As shown in Fig. 2.3(a), 

the two states have different energy conditions and they can jump between each based 

on the probability controlled by the energy barrier. The TLS model sufficiently 

describes many glass properties at low temperatures [124, 125]. For example, the linear 

temperature dependence of the specific heat and related memory effects [126]. Based 

on the measurements of the internal friction and speed of sound variation on varying 

amorphous materials, Topp et al. [127] suggested that when the temperature is below 5 
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K (Kelvin), showing that the standard tunneling model is universal for disordered 

materials below ~5 K, while internal friction above ~10 K for different materials 

displays a wide range of magnitudes and temperature dependence that no universal 

principles can be concluded. In 1992, an extended tunneling model was developed by 

Tielbürger et al. [128] who provided the possibility of describing the acoustic behavior 

of vitreous silica at higher temperatures in general. Using the developed model, 

Tielbürger et al. [128] described the tendency of Brillouin-scattering experiments on 

vitreous silica to be performed at temperatures between 50 and 300 K and pressures up 

to 3 GPa.  

 

     

     
Fig. 2.3 Sketches of energy controlled stochastic models where the states have different energy 

conditions and they can jump to each other based on the probability controlled by the energy barrier: 

(a) two-level system (TLS,; (b) multi-level system (MLS), (c) energy surface in phase space 

(reproduced from Fig. 3 in Ref. [121]), and (d) hierarchical tree representation of rugged funnel 

energy surface (reproduced based on Fig. 1 in Ref. [37]). 

(c) 
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The key point that makes the TLS model successful is when thermal activation is 

considered. However, the predicted values are not satisfactory when the temperature is 

higher than 100 K. For example, anomalous tunneling phenomena are overserved in 

numerous works [129, 130]. This is because the phase configuration is more complex 

than only two levels. To extend the application of energy barrier hopping, multiple 

energy barrier models are considered, as shown in Fig. 2.3(b). In 1987, a master 

equation approach was developed by Dyre [131] to study glass transition based on the 

energy phase space hopping. A similar idea was then used to investigate energy [132] 

and Kovacs effects [133]. However, these models do not have easily found solutions. 

In 2011, Ruan and Zhang proposed a Monte Carlo method to overcome these challenges 

[134].  

The real potential energy surface is high dimensional; thus, a more complex 

modeling approach was proposed based on the hypersurface of energy, as shown in Fig. 

2.3(c). Relaxation events occur following the hypersurface, and the local minimal and 

saddle points are critical to the relaxation property. These configurations help us solve 

many important issues in glass [121]. Similar ideas were also used in other glass 

systems, for example, spin glasses. Compared with structural glasses, spin glasses have 

a more unique definition of a glass transition point (TC, similar to Tg in structural glass), 

and the relaxation is incomplete after aging [102]. To explain this, the potential energy 

landscape (PEL) was assumed to be very complex with a hierarchical schedule, as 

shown in Fig. 2.3(d). The energy state hopping is hierarchical, and the routes between 

different hierarchies are limited.  
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2.7.2 Volume-controlled stochastic process 

Owing to the success of free volume theory, many studies have been encouraged 

to consider the volume hopping as a feature of local relaxation. In 1984, Richard et al. 

[135] proposed a stochastic model based on free volume to study the aging process of 

glass. In the model, the global volume relaxation is a result of the transition of the local 

specified volume in the phase space. A similar idea was inherited by Medvedev et al. 

[65] in 2012, who proposed a novel stochastic model by adding the effects of macro 

volume to local relaxation time. Only a single relaxation time, instead of a built-in 

relaxation spectrum, was used in Medvedev et al. [65], and the time-shift relaxation 

spectrum is a consequence of the fluctuations in a specific volume. 

2.7.3 Rational thermodynamics 

The above models associated with a ‘material clock’ can predict some features of 

glass relaxation but not all features as they are designed to capture only a portion of the 

overall spectrum. The rational mechanics framework provides a possibility for the 

global understanding of glass relaxation, including enthalpy, volume, and stress–strain 

response. The thermodynamic consistency for nonlinearly viscoelastic materials was 

developed by Coleman and Noll [36, 136]. After the nonlinear relaxation models of 

TNM and KAHR, Lustig et al. [137] extended the rational mechanics framework to a 

thermoviscoelastic model that considers the history-dependent material clock. In 2004, 

[138] introduced a novel shift factor that is similar to the WLF function in the 

framework of Lustig et al. [137]. As the stochastic model [65] in Section 2.7.3 also 

defines a shift factor, Medvedev and Caruthers [139] extended the model to be a full 
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tensorial and thermodynamically consistent constitutive model. 

2.8 Machine-learning approach 

Machine learning is a newly developed method for understanding glass relaxation, 

especially in the last three years. This tendency seems to be related to the so-called 

‘New Industrial Revolution’, which may erupt from artificial intelligence (AI). At 

present, machine learning can be considered as a multivariate statistical question where 

the neural networks provide a function containing the possible relation between input 

and output. This is extremely suitable for glass research where too many things are 

unknown, for example, the relation between ‘random’ local configuration and a 

specified macro property. The earliest research may belong to Brauer et al. [140] who 

modeled the solubility in the system P2O5–CaO–MgO–Na2O–TiO2 using artificial 

neural networks. Subsequently, the machine learning approach was used to predict the 

glass-forming ability [141], glass transition temperature [142, 143], elasticity [144], 

plasticity [145], etc. 

Combining molecular dynamics (MD) simulations and machine learning is 

another trend because the former can provide significant data required by the latter. This 

helps overcome the data deficiency problem in material research. In 2016, Schoenholz 

et al. [146] used the support vector machine method to identify the ‘hard/soft’ points 

by simulating the bi-disperse Kob–Andersen Lennard–Jones glass. In 2019, Ivancic and 

Riggleman [147] identified shear banding in a model polymer. A breakthrough was 

made by Bapst et al. [148] that the static initial structures can be used to predict the 
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long-term dynamics of glass. As commented by Biroli, this indicates that the 

information of the initial structures is not forgotten in the subsequent relaxation process 

[149], bringing a new understanding of glass relaxation. 

2.9 Summary 

In this chapter, I introduced the theoretical understanding of glass transition and 

relaxation. It first provides the kinetic process of glass transition and then summarises 

the present phenomenological and physics-based modeling. Finally, the newly 

developed machine learning approaches are summarized. 
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Chapter 3 Experimental design based on impulse excited 

technique (IET): Theories and applications extended to 

glass at high temperatures 

3.1 Introduction: Impulse excited technique (IET) 

 

  

 

Fig. 3.1 IET experiment: (a) IET setup, (b) typical acoustic signal and its energy spectrum, and (c) 

IET equipment (RFDA-HT1600 from IMCE, Belgium) used in this thesis.  

 

The impulse excited technique (IET) [150] is a widely used method to measure 

the elastic and damping properties of materials. It was first proposed by Förster [151] 

in 1937 and has now been included in the ASTM and ISO standards [152, 153] as an 

accurate approach to determine the elastic moduli of materials after the improvement 

(c) 
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by Pickett [154] and Spinner and Teft [155]. Fig. 3.1 shows the IET experimental 

schematics. All the units shown in Fig. 3.1(a) were installed in a closed furnace to study 

the temperature dependence. To avoid external influence beyond the materials, a beam-

like sample with free–free ends is required in the experiments. Once the impact bar 

strikes the specimen, there will be a damped acoustic signal excited owing to beam 

vibration (the inset of Fig. 3.1(b)), which can be converted by Fourier transform to the 

energy spectrum shown in Fig. 3.1(b). Fig. 3.1(c) shows an image of the IET equipment 

used in the thesis. Based on the Euler–Bernoulli beam theory, two motionless points 

exist at 0.224L and 0.776L (where L is the beam length) in the first-order flexible 

vibration mode of an elastic free–free beam. These two points are named as nodal points 

in Fig. 3.1(a), where the beam is hung with thin metal wires, rendering the approximate 

boundary condition of the free–free beam.  

The signal intensity shown in Fig. 3(b) can be mathematically expressed using the 

formula for a 1-D damped system  

  ( ) exp +i dy t t t   ,  (3.1) 

where i is the imaginary unit, t is time (t ≥ 0), and ωd and β are the vibration frequency 

and decay rate, respectively. The reference frequency is expressed as follows: 

 2 2

0 d    , (3.2) 

which is the natural frequency of an undamped 1-D system. Based on the Euler–

Bernoulli beam theory, the natural frequency of a pure elastic free–free beam is 

expressed as  

 4

0

4

E n zE LI   , (3.3) 
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where E0, Iz, and ρ are Young’s modulus, the second moment of area, and linear density, 

respectively, and λn is the modal parameter satisfying cosλn sinλn = 1 for a free–free 

beam and λn = 4.73 for the first-order flexible vibration mode. For the 1-D system 

described by Eq. (3.1), the energy spectrum of the Fourier transform will peak at the 

frequency ω0 and the decay rate k is approximately the half width at half maximum 

(HWHM) of the peak, as shown in Fig. 3.1(b). In the case where k is much smaller than 

ω0 for a solid, generally assumed as 0d E     in practice. This notion that the 

frequency at the energy spectrum peak is approximately the natural frequency of the 

pure elastic beam is adopted in IET to determine the natural frequency of the beam and 

decay rate, which are converted to Young’s modulus using Eq. (3.3). If the beam is too 

short or too thick, a correction factor based on the Timoshenko beam theory should be 

applied [152].  

If the IET setups are installed inside a controlled furnace, the experiment can be 

conducted at various temperatures and different heating/cooling rate. In 1988, Heritage 

et al. [156] reported temperature-dependent Young’s modulus of pure aluminum in the 

temperature range of 20–300 °C using IET. Currently, IET experiments can be 

conducted at temperatures as high as 1750 °C [157], and suitable for various marco 

materials. If samples are too small or too thin, it would be difficult to obtain strong 

acoustic signals for analysis. Knowledge of the elastic and damping properties as a 

function of temperature provides the basic data for designing high-temperature 

applications [150] and helps probe the internal structure evolution of the materials. For 

example, IET can be used to probe the reversible closure and opening of pre-existing 

micro cracks in silica ceramics [158], phase transformation in zirconia ceramics [159], 

glass transition, crystallization [160, 161] and structural relaxation [68, 162, 163] of 
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glassy materials. 

However, some outstanding issues associated with IET remain. Firstly, the standard 

measurement methods [152, 153] on elasticity measurement are only available to elastic 

bodies with low internal friction, while glassy materials are viscoelastic, especially at 

high temperatures. Naturally, considering the viscoelastic vibration of beam-like 

samples is necessary. At present, most theoretical works of the viscoelastic beam are 

based on specified viscoelastic models, as summarized by Adhikari [164, 165]. This 

leads to only simple models that can be derived, and the quantitative comparison 

between different viscoelastic models is knotty. Conversely, some issues associated 

with IET have not been clarified theoretically, especially for the effects of support lines 

and the signal acquisition process. For example, the experiments of Roebben [150] in 

1997 showed that support wires can introduce significant damping. However, how the 

process occurred has not been discussed theoretically until today. These issues are 

technical, but their influence on the understanding of obtained datum is significant in 

many cases. To reach the quantitative utilization of IET experiments, a simple but 

practical modeling process of viscoelastic beam vibration is provided in Chapter 3.2, 

and then the effects of the support lines and the signal acquisition process will be 

discussed in Chapters 3.3 and 3.4. The models discussed in this chapter are the basics 

of the following experimental investigations. 

3.2 Vibrations of a viscoelastic beam with free–free end boundary 

conditions 

One can start the analysis from a general solution of the viscoelastic beam vibration 

problem based on the dynamic stress–strain relation, given as an integral type 
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      
 

0 0 0
0

d
d ,

d

t

t E R t E R t
 

   


     (3.4) 

or a differential type 

 P Q  .  (3.5) 

Here,  and  are the time-dependent normal stress and strain along the axial direction 

of the beam; R(t) is the relaxation (or memory) function of time t; 
0

d

d

j

j j
j

p p
t

  and 

0

d

d

j

j j
j

Q q
t

  are the differential operators; and j = 1, 2, 3, … Based on the Euler–

Bernoulli beam theory, the bending moment is 

 d
A

M y A  ,  (3.6) 

where A is the area of the beam cross section and y is the coordinate of a point at the 

cross section from the neutral axis and along the deflection direction (see Fig. 3.1(a)). 

Let w(x, t) be the beam deflection at the axial coordinate x and time t, and the governing 

vibrational equation of the Euler–Bernoulli beam is 

  
2 2

2 2

d
, ,

d

M w
F x t

x t



 


  (3.7) 

where F(x, t) is the external force. Using the relationship ε = y(∂2w/∂x2) based on the 

plane section assumption, Laplace transforms of Eqs. (3.4–3.7) are given as follows: 

 

 

 

 

2

2

2
2

2

ˆˆ

ˆˆ

ˆ
ˆˆ ,

z

H s f

w
M H s I g

x

M
s w h F x s

x

 

 


  



 



  



, (3.8)(3.9)(3.8–3.10) 

where the overhead ‘^’ represents the corresponding variable after the Laplace 

transformation, H(s) is the generalized Young’s modulus in the Laplace domain, s is the 

Laplace variable, 0 0
ˆ( )

t
sE R sf 


  , d

A

g y f A  , and 
0 0t t

h s w w
 

   are all due to 
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the initial beam deflection and deflection velocity. Further,    0
ˆH s sE R s  for the 

integral-type viscoelastic model, and  
0 0

j j

j j

j k

H s q s p s
 

   for the differential-

type viscoelastic model with steady initial conditions. 

Considering the case in which the initial deflection and velocity are both zero and 

the beam is excited by an external impulse force      , 2pF x t I x L t    at the 

middle span, the initial conditions can be expressed as 

 
   

0 0 0
0

ˆ , 2

t t t

p

w w

F x s I x L





  
   


 

.  (3.11) 

Therefore, f = g = h =0 and Eq. (3.12) is recast, after substituting Eq. (3.11) into Eqs. 

(3.8–3.10). 

    
4 2

2

4 2

ˆ ˆ
2z p

w w
H s I s I x L

x x
 

 
  

 
  (3.12) 

Now, let us consider the modal response and assume that 

      
1

ˆ , m m

m

w x s X x s




  ,  (3.13) 

where         ( ) cos ch sin shm m m m m mX x C x L x L p x L x L          is the 

orthogonal modal function of the free–free beam at mode m, 
cosh cos

sin sinh

m m

m m

p
 

 





, Cn 

is the normalization factor when  2

0
d 1

L

nX x x  , and  m s  be the undetermined 

response function. Substituting Eq. (3.13) into Eq. (3.12) leads to 

 
 

 
   

 

 

4 2 4

4
1

2pm

m m m

m z z

I x LX x s L
s X x s

x H s I H s I





  
    

 
 .  (3.14) 

Using the orthogonality and normality of Xm(x), one can multiply Xn(x) to both 

sides of Eq. (3.14) and integrating them with respect to x, resulting in  
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  
 

   
4 2

/ 2

/

p n

n

z n

I X L
s

H s I L s 
 


.  (3.15) 

Note that the denominator of the right-hand side of Eq. (3.15) is the characteristic 

function of the dynamic system. Among the roots of the equation, 

    
4 2/ 0z nH s I L s   ,  (3.16) 

and those with negative real parts expressed as s = -β±ωd, govern the damped vibration, 

as illustrated in Eq. (3.1).  

In using IET to determine Young’s modulus of the material, the standardized 

practice [152] is that the peak of the sound spectrum, denoted by c, is directly 

substituted into Eq. (3.3) with the assumption that c = E. This method is valid for the 

pure elastic scenario. However, when this method is applied to measure Young’s 

modulus of glassy materials at temperatures close to or even higher than Tg, the 

influence of viscosities should be scrutinized. To analytically unveil the influence of 

viscosity on the Young’s modulus measurements, I consider the energy spectrum (ES) 

based on the Laplace domain response function (Eq. (3.15)) under the fundamental 

mode (n = 1). 

    
   

2

2

1 4 2/

p

z n

I
F i

H i I L
 

  


  


,  (3.17) 

where  1 / 2p pI I X L  . Then, the peak center of F(ω) can be calculated from  

 
 

0

c

F

 










.  (3.18) 

For a certain viscoelastic model, its formula of H(s) in the Laplace domain is the 

same regardless of whether it is derived from integral or differential types; therefore, 

the above derivations are available for any linear viscoelastic models that have proper 

Laplace transform H(s). Moreover, the derivations are easy to extend to the beam with 
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other different boundary conditions by replacing Xm(x). Eq. (3.16) has no information 

on boundary conditions except λm; thus, it is available for different boundary conditions 

by replacing the value of λm.  
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Fig. 3.2 Representations of viscoelastic models: (a) Maxwell model, (b) Kelvin model, (c) Zener 

model [166], (d) Jeffery model [167] and (e) Burgers model. 

 

Table 3.1 Comparison of different viscoelastic models. ( , ,
ii i E i K M   ) 

Type H(s) β 0 

Maxwell  1/ 1 ( )ME s    1 2 M  
E  

Kelvin  1 K s E  2 2E K   E  

Zener 11 ( )
K

M

E
sE

s


 



 

21

2

M E K  
  

1 2
1E K M    

Jeffery 
2( )

1 ( )

K M K

M K

E s s

s

  

 



 
 

 

1 2

2 1

M K

K M

  

 

 


  

1 2
1E K M  


  

Burgers 

2

2

( )

1 ( )

M M M K

M K E M K M

E s s

s s

  

     



   
 

1

3 4
M K

K

P

U
E

U
E



 
   

 

† 3

3 4K

UP

U

 
 

 
† 

†NOTE:  
2 23M K K ME E M EP   ,    

3 22 9 2M K K K M MEQ E E M E E    , 4( ) zI

L
M




 . 

 

The schematics of several classical viscoelastic models are drawn with a spring-

dashpot system in Fig. 3.2, for which the constitutive stress–strain relations, derived 

decay rates, and vibration frequencies for free–free beams are listed in Table 3.1. The 
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spring represents the elastic relation σ = Eε, and the dashpot represents the Newtonian 

viscous relation σ = η(dε/dt), where E and η are the elastic and viscous constants, 

respectively. It is well known that the basic viscoelastic models are Kelvin–Voigt (using 

Kelvin only for the sake of simplification in the following) and Maxwell types, as 

shown in Figs. 3.1(a) and (b). The viscosity of the dashpot connected in parallel with a 

spring is denoted as ηK, which represents the Kelvin solid damping effect. Furthermore, 

M denotes the viscosity of the dashpot in series with a spring, which is the flow (or 

Maxwell) viscosity generally referred to in the glass research community. The elasticity 

represented by Young’s modulus has similar denotations. Based on the theory of Fourier 

transform, c is closer to 0 than d for most engineering cases. Therefore, the obtained 

frequency from the energy spectrum is treated as 0 in the following. It can be found 

from Table 3.1 that only in the simplest cases, that is, the Maxwell and Kelvin models, 

the obtained 0 strictly equals to E. 

3.3 Damping effects of support lines 

The above theoretical investigations only consider the ideal case of a free–free 

beam. However, making a beam completely free is impossible. This leads to some 

difficulties in quantitatively understanding the damping behaviors of the sample [150]. 

The two nodes on the beam have no displacement in the first-order vibration, and both 

deviate from the corresponding end with 0.22L. In the experiment, thin metal wires 

were used as two-point support to reduce the extra interactions in the first order. 

Moreover, high-order vibration modes can be effectively mitigated. Therefore, the 

supports exert a damping force on the beam, which can be described as 

  1 1 2 2, ( 2) ( , ) ( ) ( , ) ( )pF x t I x L cw N t x N cw N t x N        , (3.19) 

where c is the damping coefficient of the support wires and N1 and N2 are the support 
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positions. Thus, Eq. (3.12) can be rewritten as 
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Then, the response function is recast as 
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where        1 1 2 2

1 1

m n m n

n nm

c
Q X N X N X N X N



 

 

 
  

 
  . It learns from Eq. (3.21)

that when N1 and N2 are located exactly on the two fixed points,    1 1 2 2 0X N X N  , 

resulting in Q=0, the supporting points have no effect on the first-order vibration as 

needed. However, placing the supporting wires exactly at the two nodes is nearly 

impossible; therefore, the effects of the support wires are involved. Based on the models 

involving the Kelvin part, which has the term sτK in ( )H s , the effect of the supports 

given by sQ will be indistinguishable from the contribution of the term sτKIz(λ/L)4, 

which represents internal Kelvin-type damping. 

3.4 Shoulder peak phenomenon  

     

Fig. 3.3 Vibrations of the detected system. (a) Image of setup and (b) diagram of setup. 

 

Fig. 3.3 shows how a beam specimen is tied using metal wires in our experiment 

Support wire 

Specimen 
w
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(Fig. 3.3(a)) and the schematic of the testing system in a side view (Fig. 3.3(b)), 

respectively. After the beam specimen was excited by a tapper, the supporting wires 

also vibrated, causing the beam to move up and down and changing the distance 

between the beam and the microphone. The sound intensity signal collected by the 

microphone can be expressed as 

 s sS   , (3.22) 

where    exp coss s s sS A t t    represents the vibration of a point in the beam 

sample, s is the sound intensity, and χ is the conversion coefficient from the beam 

displacement to the sound intensity. Considering that, in Eq. (3.22), χ is related to the 

distance L0 between the beam and the microphone, the vibration of wires, 

   w w w wexp cosS A t t   , will slightly change the distance; thus, we write χ as a 

function of (Sw + L0). The parameters S, A, β, and ω used above represent the 

displacement, amplitude, decay rate, and angular frequency of the specified vibration, 

respectively, with subscripts ‘s’ and ‘w’ pertaining to specimen and wire, respectively. 

Since Sw << L0, expressed  w 0S L  by Tayler’s serials at L0, leads to 

    w 0 0 w1S L S      , (3.23) 

where  0 0L  and    0 0L L   . Substituting Eq. (3.23) into Eq. 

(3.22) and neglecting higher-order items, we have  
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, (3.24) 
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where 
*

0s sA A  and *

0

1

2
w s wA A A   are the amplitudes of the sound signal at 

frequencies s and s w, respectively. 

 

 
Fig. 3.4 Fourier spectrum of the specimen at room temperature. In plot (a), fs = 6820.68 Hz and Δ1 

= Δ2 = 320.44 Hz; the Fourier frequency resolution is 7.63 Hz. (b) fs = 3097.50 Hz and Δ1 = Δ2 = 

57.22 Hz; the frequency resolution is 3.815 Hz. 

 

Eq. (3.24) indicates the two accompanying peaks at 1,2 = s ± w located on both 

sides of the main peak at s. Fig. 3.4 exemplifies the Fourier spectra of some glass 

samples at room temperature (~20 C). They are on the ‘shoulder’ of the main peak, 

thus called the shoulder peaks. These glasses were borosilicate (L-BAL42, 40.08 × 7.98 

× 1.97 mm3, 1.9471 g, obtained from OHARA Inc., Japan) and chalcogenide glass 

(IRG206, 40.03 × 8.04 × 2.45 mm3, 3.6396 g, obtained from Hubei New Hua-Guang 

Information Materials Co., Ltd, China). Using the logarithmic scale in the ordinate, the 

shoulder peaks are clearly observed, although they are almost two orders lower than the 

main peak. At high temperature, the strength of shoulder peaks may be comparable with 

the primary peak, as shown in Fig. 3.5, where the shoulder peaks have a similar height 
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to the primary peak for a stainless steel specimen (type 430, 70% cool-rolled, 45.79 × 

9.56 × 1.42 mm3, 4.7819 g, self-prepared). With the effects of noise, the left shoulder 

peak is even higher than that of the primary peak. This causes confusion in the real peak 

contributed by the sample vibration if the shoulder peak phenomenon was not 

understood in advance. 

 

   

Fig. 3.5 Fourier spectrum of the 70% cool-rolled stainless steel specimen at the high temperatures 

of (a) 839 °C and (b) 847 °C. 

 

Table 3.2 Cases of the supports 

 Sampling rate 

 (s-1) 

Duration (s) fs (Hz) βs (s-1) βw (s-1) A* 

s /A* 

w  

Case A: Before Tg 250 000 3 6500 150 100 10  

Case B: After Tg 25 000 1 6200 300 150 1  

 

The frequency of the supporting wire fw = 0.5w/ could be tens or hundreds of 

Hz in practice, which varies with temperature, sample weight, and the wire tension. 

Owing to the symmetry of the shoulder peaks, they do not change s. However, they 

may significantly affect the determination of the obtained decay rate. Corresponding to 
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the HT1600 system and the experiment on L-BAL42, two cases in Table 3.2 are 

investigated, and the effects of the support line are plotted in Fig. 3.6. Case A has a 

relatively higher frequency while lower decay rates, thus corresponds to low 

temperature conditions; Case B has a relatively lower frequency while higher decay 

rates, thus corresponds to high temperature conditions. In Fig. 3.6(a) corresponding to 

Case A, the main peak is much higher than the shoulder peaks. When the wire frequency 

is small (lower than 50 Hz in Case A), the main peak and the shoulder peaks mix and 

cannot be distinguished. With increasing frequency, the shoulder peaks gradually 

separate from the main peak. A similar situation can be found when the temperature is 

high, as shown in Fig. 3.6(b). At high temperatures, the heights of the shoulder peaks 

are comparable to the main peak, which may disturb the measurement. Because the 

shoulder peaks are systematically located beside the main peak, the measured frequency 

from the peak center does not change. However, the decay rate, which is from the 

HWHM, may be overestimated if the line frequency is low. At low temperatures, the 

effects are not significant, while at high temperatures, as shown in Fig. 3.6(b), the 

measured HWHM is almost twice that of the pure main peak when the line frequency 

is 50 Hz. That is, when the frequency of the support line is low, an illusory increase in 

the decay rate can be found with temperature growth, which may lead to some 

disastrous conclusions. Finally, the shoulder peaks may have complex behaviors during 

the experiment because the support lines may not be stable after heating and continuous 

striking. Therefore, very careful consideration should be applied related to this issue. 

However, it should be noted that the height ratio between the main and the shoulder 
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peaks is largely dependent on the fixed system and the sample itself. Therefore, the 

above conclusion is qualitative rather than quantitative for different experimental 

systems and samples. 

 

 
Fig. 3.6 Fourier spectrum affected by different line frequencies for (a) Case 1 and (b) Case 2. 

 

To reduce the effects of shoulder peaks in the measurement, some possible 

methods can be found in Eq. (3.24). Firstly, one can enlarge the line frequency to make 

the shoulder peaks further from the main peak. Secondly, one can reduce the height of 

shoulder peaks by reducing the line amplitude Aw and increasing the line decay rate βw. 

The vibration of the sample-wire system can be simplified as the free vibration of a 

string with a mass point. Thus, the line frequency is proportional to the square root of 

the tension force, which suggests that increasing the tension force is a practical way to 

increase the line frequency. Increasing the tension force also can reduce the amplitude 

of Al because the same displacement requires more energy. Furthermore, because As 

and Aw are all related to the striking power, an elaborate striking power design may be 

useful. 
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3.5 Summary 

In this chapter, a general theory of viscoelastic vibrations of a free–free end beam 

is derived. By applying viscoelastic models, the natural frequency and decay rate of 

free–free beam vibration are provided. Theoretically, the effects of support are 

discussed. The decay rate of support wires can be considered as an enhancement of the 

Kelvin-type viscosity. Moreover, the vibration of the support wires may bring some 

extraneous information to the obtained Fourier spectrum, including additional damping 

and shoulder peaks. 
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Chapter 4 Glass transition and primary (α) relaxations 

revealed by Young’s modulus and decay rate in in situ 

experiments 

4.1 Introduction 

Though numerous theories have been proposed to understand the nature of glass 

[34], the experimental characterization of glass transition is mainly based on the 

remarkable difference between the solid-like and liquid-like behaviors and their 

markedly different temperature dependence. Glass transition has been investigated by 

monitoring the temperature dependences of volume [65], enthalpy [66], refractive index 

[67], viscosity [28, 29], elastic modulus [68, 69] or other macroscopic properties [70]. 

It is not always possible to measure a physical property in situ in a continuous heating 

or cooling process. For example, the measurement of the refractive index, which is       

crucial for optical glasses, can only be carried out at room temperature based on 

quenched specimens [67]; for viscosity measurement, different technologies must be 

employed in varying ranges: the rotation viscometer is used for low-viscosity 

measurement (η < 108 Pa·s), the beam bending, fiber elongation, bar torsion, and 

penetration methods are applied for the high-viscosity range (η>108 Pa·s) [168], and the 

parallel plate method [169] is used for the intermediate viscosity range (104~1010 Pa·s). 

Kostal et al. [27] summarized 11 methods for measuring glass viscosity that are all for 

isothermal measurement; that is, they are unsuitable for capturing the transient viscosity 

change during the heating/cooling process. Mauro et al. [170] modified the beam 

bending method to measure non-equilibrium viscosity which may probe the time 

dependence of viscosity at a constant temperature. Sellier et al. [171] proposed that the 

shear relaxation modulus and structural relaxation function could be measured by in 
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situ monitoring variation of the glass plate thickness, which however has not been 

experimentally validated. In the past, differential scanning calorimetry (DSC) and 

dilatometry have been the most frequently adopted in situ methods for characterizing 

glass transition, and monitor changes in enthalpy and volume, respectively, during a 

continuous heating/cooling process [172]. Recently, the measurement of elastic 

modulus becomes another in situ method, which has been applied in studying different 

kinds of glasses [68, 69, 173]. 

Using the change in elastic modulus with temperature may be advantageous for 

studying glass transition, because: (i) the elastic modulus changes far more significantly 

than enthalpy and volume at a temperature near Tg, and (ii) the elastic modulus can be 

determined almost instantaneously (at very high frequency) using photoacoustic 

techniques [174] or more cost-effectively IET [150]. The elastic modulus obtained from 

an IET experiment is very weakly dependent on the vibration frequency, which can be 

considered as the instantaneous modulus, and therefore has been used to determine the 

glass transition point of various glasses [173]. In 2014, Liu et al. [68] have further used 

IET to characterize the time-temperature dependence of the Young’s modulus and 

parameterize the Tool-Narayanaswamy-Moynihan parameters. 

In addition to the elastic modulus, the exponential decay rate of the flexural 

vibration, hereafter called decay rate for shorthand, can also be determined in IET 

experiments. The decay rate, generally determined after Fourier analysis of the high 

frequency IET data (103 ~ 104 Hz), is equivalent to the logarithmic decrement of 

amplitude determined in the conventional low-frequency torsion pendulum method [84] 

and can also be used to understand the dynamic behavior of materials [175]. The 

temperature dependence of the decay rate may peak at some temperatures, which 

renders some structural information [158] or indicates phase transformation [159]. It 



The Hong Kong Polytechnic University                                     PhD Thesis 

49 

 

was also shown that after glass transition occurs, the decay rate will surge owing to the 

quick reduction of viscosity [69]. However, the quantitative relation between decay rate 

and stress relaxation is still not clear, owing partly to the rather large scattering of decay 

rate data in their work and, more fundamentally, the lack of a proper viscoelastic model. 

In this Chapter, the temperature dependence of Young’s modulus and decay rate 

will be examined experimentally and theoretically based on the various linear 

viscoelastic models, and the physics behind viscoelastic models will be discussed. In 

Section 4.2, the measurement results of glasses of four different types will be reported, 

and the viscosity obtained from the decay rate will be discussed in Sections 4.3 and 4.4. 

All the results will be concluded in Section 4.5. 

4.2 Experimental results of time-dependent Young’s modulus and 

decay rate  

Table 4.1 Dimensions and Tg of used glasses 

Glass 
Size / mm3 

(±0.01mm) 
Mass / g 
(±0.1mg) 

Tg 
(Viscosity) 

Tg 
(Dilatometry) 

Tg  
(Young’s modulus) 

L-BSL7 40.1×10.1×1.52  1.4644 488 C(AP) 498 C 484 C (±1C) 

L-BAL42 40.08×7.98×1.97 1.9471 494 C(AP) 506 C 497 C (±1C) 

IRG202 40.03×8.02×2.44 3.4572 288C[69] 282C 280C (±1C) 

IRG206 40.07×8.02×2.45 3.6610 182C[26] 180C 177C (±1C) 

 

Four types of glasses listed in Table 4.1 are measured. Two are borosilicate glasses, 

L-BSL7 (SiO2(69.13)-B2O3(10.75)-Na2O(10.40)-K2O(6.29), wt.%) [176] and L-

BAL42 (SiO2(40-50)- BaO(20-30)-B2O3(2-10)-Al2O3(2-10)-ZnO(2-10)-Others, wt.%) 

[177] from OHARA Corporation; and the other two are chalcogenide glasses, 

IRG202(Ge22Se58As20, mol%) and IRG206(Se60As40, mol%) from Hubei New Hua-

Guang Information Materials Co., Ltd. In the measurement, nitrogen gas is purged into 

the furnace to protect the sample from oxidation (especially for the chalcogenides). The 
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experimental errors could arise from dimensional (0.01 mm) and weight (0.1mg) 

measurements as well as the temperature measurement ( 0.5 C). Considering these 

effects, the Young’s modulus determined from Eq. (3.3) could deviate from the actual 

magnitude within about  2 %. Besides, the measurement of decay rate is affected by 

the condition of support, which will be discussed later in the last of Section 3.1. 

 

 

Fig. 4.1 Energy spectrums of the acoustic signal at different temperatures for L-BAL42 

 

Fig. 4.1 displays the energy spectra of the acoustic signal at different temperatures 

from the L-BAL42 measurements, which illustrates that the peak position shifts to the 

left with increasing temperature, indicating that the modulus decreases with increasing 

temperature. The height of the peak reduces with temperature increase, which is owing 

to the increase of the decay rate. In the inset of Fig. 4.1, the spectra are normalized by 

the height and frequency of the respective maxima, indicating that the peak becomes 

more obtuse and the HWHM increases with the temperate rise, thereby further 

demonstrating the increase in decay rate. Using these clear-cut signals, we can obtain 

high-quality modulus and decay rate data for a glass specimen.   
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The variations in the Young’s modulus E and decay rate β of glass L-BSL7 are 

illustrated in Fig. 4.2(a). Along with the Young’s modulus decline with temperature, a 

distinct change in the decreasing rate can be identified at approximately 484C. This 

temperature can be regarded as the glass transition point determined from the modulus 

variation. It should be noted that this temperature is approximately 14C lower than the 

Tg determined by dilatometry (498C), according to data provided by the manufacturer. 

Although the glass transition point Tg can be measured by various methods, it should 

be noted that the consensus on the definition of Tg is based on the particular magnitude 

of viscosity. Angell et al. [28, 29, 91] suggested that the flow viscosity  is 1012 Pa·s at 

Tg, which hereafter is referred as Tg,v. In the glass industry, the Annealing Point (AP) is 

generally measured, at which the viscosity could be slightly larger than 1012 Pa·s 

(typical magnitude is 1012.2 Pa·s). Since AP is very close to Tg,v, it is directly used here 

to compare with other Tg measurement. The AP of L-BSL7 is 488C, only 4 C higher 

than the Tg determined based on modulus variation. This result demonstrates that 

measuring the modulus change is also an effective approach to investigating glass 

transition. Fig. 4.2(b) illustrates the variations in Young’s modulus and decay rate of 

the optical glass L-BAL42. The Tg determined from the modulus variation is 497C, 

which also agrees strongly with the Tg,v of L-BAL42 (494C, AP).  

 

Table 4.2 The parameters of decay rate in Eq. (4.1)  

Eq. (4) p1 / s-1 p2 / C p3 / s-1 p4 /(s C)-1 

L-BSL7 1.0E-25 8.8 18 0.2 

L-BAL42 5.0E-32 7 -13 0.36 

IRG202 7.4E-5 24.05 2.07 0.0484 

IRG206 1.58E-7 10.26 -0.55 0.1194 
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Fig. 4.2 Variations in Young’s modulus and decay rate with temperature for borosilicate glasses: (a) 

L-BSL7 and (b) L-BAL42. The red rhombuses and blue circles indicate Young’s modulus and decay 

rate respectively. The relative error in determining Young’s is ±2.14%. 

 

The decay rate data fluctuate far more significantly than the modulus data. 

Therefore, I fit these with the equation:  

  1 2 3 4expp T p p p T      (4.1) 

where p1~p4 are fitting parameters that are listed in Table 4.2. This equation consists of 

the linear and exponential functions of temperature. It is noted that the low-temperature 

(below Tg) variation of decay rate is essentially linear, as shown in Fig. 4.2. Therefore, 

it is expected that the exponential term in Eq. (4.1) should be caused by the swift 

decrease of flow viscosity when the temperature is higher than Tg. In Fig. 4.2, a sharp 

increase in the decay rate can be observed. Intuitively, it would be expected that such a 

drastic change in decay rate occurs near Tg; however, this is not the case, as indicated 

in Fig. 3(a) and (b) by the vertical dashed line. In Fig. 4.2, the apparent sharp increase 

in decay rate occurs at a temperature that is at least 10C higher than the Tg determined 

from the modulus variation. This deviation can be understood based on the Maxwell 

model provided in Section 3.2. Consider the Maxwell flow viscosity in the range of 
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1010 ~ 1012 Pa·s. The decay rate contributed by it, given by 2 ME  (where 
M  is 

the flow viscosity), is within the range of 0.01 ‒ 1 s-1, which remains very small 

compared to other damping effects (for example, Kelvin damping of the material and 

damping due to suspension wires).  

 

      

Fig. 4.3 Variations of Young’s modulus and decay rate with temperature for chalcogenide glass: a) 

IRG202 and b) IRG206. The red rhombuses and blue circles indicate Young’s modulus and decay 

rate respectively. The relative error in determining Young’s is ±1.46%. 

 

The measured results for chalcogenide glasses are plotted in Fig. 4.3. The 

variations in Young’s modulus of the chalcogenide glass resemble those of borosilicate 

glass, and the glass transition points are determined as 280C and 177C for IRG202 

and IRG206, respectively. As opposed to the borosilicate glass cases, these two 

temperatures are very close to the Tg measured by dilatometry, namely 282C and 

180C for IRG202 and IRG206, respectively. The same experiment on IRG202 was 

conducted by Bourhis et al. [69], who demonstrated that the Tg measured by Young’s 

modulus was between 270~280C, consistently with our measurement. It should be 

noted that Bourhis et al. [69] used silver paint to protect the sample from oxidation 

(whereas we simply purge nitrogen), which may affect the modulus measurement, 
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leading to a slightly different Tg. The glass transition temperatures of the four glasses 

determined from the variations in modulus, viscosity, and volume expansion are 

summarized in Table 4.1. For borosilicate glasses, the Tg determined from the modulus 

variation is consistent with Tg,v. In contrast, the Tg,v of either chalcogenide is higher than 

the Tg measured by IET and dilatometry.  

The decay rate variations of the two chalcogenide glasses also differ from those of 

the two borosilicate glasses. Surprisingly, the fluctuations in the decay rate data of 

chalcogenide glasses are significantly smaller than those of borosilicate glasses, as 

illustrated in both Figs. 4.3(a) and (b), the transition from the slow and linear increase 

to the precipitous decay rate rise is far less abrupt than that of borosilicate glasses, and 

the transition occurs almost exactly at the Tg, as indicated by the vertical dashed lines 

in Figs. 4.3(a) and (b). The decay rate is also fitted by Eq. (4.1) and the parameters are 

listed in Table 4. 2. 

4.3 Discussion (I): The viscoelastic relaxations of phenomenological 

models 

4.3.1 Finding viscosity from the results of IET experiments  

It is well known that the decay rate results from the external and internal 

dissipation mechanisms [69], which can be modeled as a viscous effect. However, the 

conversion from the measured decay rate to the flow viscosity of glassy materials is 

rarely reported in the available literature. A possible reason for this is that the 

fundamental models, namely the Maxwell (Fig. 3.2(a)) and Kelvin (Fig. 3.2(b)) models, 

cannot be directly applied to describe the full range of temperature and time dependence, 

and those complex models are difficult to use owing to some undetermined fitting 



The Hong Kong Polytechnic University                                     PhD Thesis 

55 

 

parameters. Scherer [178] suggested that the simplest viscoelastic model for glass is the 

Burgers model, namely a series combination of a Maxwell and Kelvin unit, as 

illustrated in Fig. 3.2(c). Note that I denote the viscosity of the dashpot parallelly 

connected with a spring as K , which represents the damping effect of the Kelvin solid. 

And M  denotes the viscosity of the dashpot in series with a spring, which is the flow 

(or Maxwell) viscosity usually referred to in the glass research community. For the case 

of beam vibration, the extensional viscosity is used, which can be converted to the shear 

viscosity by dividing three [179] for comparing with other viscosity measurements. 

In studies on the stress relaxation or creep behavior of borosilicate glasses, the 

Burgers model provides an effective description of experimental results [180-182]. 

However, four undetermined parameters exist in the Burgers model, while we have only 

two measured variables, namely frequency and decay rate, in the IET experiment. Thus, 

additional assumptions are necessary so that the glass flow viscosity can be assessed 

from the IET measurements. Fortunately, certain characteristics of the Burgers model 

can aid in determining the flow viscosity 
M  from the decay rate β.  

When the Maxwell viscosity M → ∞ and the Kelvin viscosity 
K → 0, Burgers 

model degenerates to pure elastic cases and the effective modulus is: 

 
M K

B

M K

E E
E

E E



.  (4.2) 

where EM and EK are the modulus of Maxwell and Kelvin units, respectively. When the 

damping or viscous effect is negligible, the modulus measured by IET should be the 

effective modulus EB.  

When the temperature is low, M → ∞ and the effect of Maxwell viscosity 

vanishes. Thus, the decay rate β is only contributed by Kelvin viscosity, i.e., 



The Hong Kong Polytechnic University                                     PhD Thesis 

56 

 

  K M    .  (4.3) 

It is determined that βK is the function of the modulus ratio E M KE E  , but is not 

dependent on the magnitude of either modulus, as exemplified in Fig. 4.4(a). Moreover, 

from Fig. 4.4(b), it can be determined that βK is proportional to the magnitude of 
K  

if E  is fixed.  

 

     
Fig. 4.4 Variations of decay rate on (a) modulus ratio and (b) Kelvin viscosity using specimen L-

BAL42. 

 

In the case of finite 
M , (β − βK) represents the contributions from the Maxwell 

viscosity and the coupled effect of the Maxwell and Kelvin units. The Burgers model 

degenerates to the Maxwell model when K → 0. Therefore, the Maxwell viscosity 

contribution (refer to the decay rate derived from the Maxwell model, as shown in Table 

3.2) can be defined as: 

  0 0.5 /M K B ME        (4.4) 

I then define the variable   /K M      to determine the coupling effect. Fig. 

4.5 illustrates the variation of |α − 1| with M . It is found that the value of α is very 
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close to 1 (error less than 1%) for varied with K  and 
M , and when E is within the 

range of 10-2 and 102 (note: in the fitting of experiments, for example, Refs. [180, 181], 

E is in the range of 0.1 ~ 10). Because of this weak coupling effect, the decay rate can 

be expressed as K M    . Furthermore, the flow viscosity can be determined as 

 0.5 0.5M B M B KE E       if the Kelvin contribution K is known. 

 

Fig. 4.5 1   with varying Kelvin viscosity for L-BAL42 when M  is near 1012 Pa·s. 

 

Then an approach can be conceived to determine the Kelvin viscosity variation 

with temperature. At a low temperature, the atomic system vibrates in the potential well, 

while at a high temperature, the system can jump out of the well to a new configuration 

[178]. The former situation corresponds to the Kelvin model, and the latter should at 

least be modeled by the Maxwell model. I assume that the relation between K  and 

temperature can be extrapolated to a temperature higher than Tg. Furthermore, the 

difference between the actual decay rate and that extrapolated from the Kelvin model 

should lead to the Maxwell viscosity. As the decay rate results can be fitted effectively 

by Eq. (4.1), in which the linear terms pertain to the low-temperature variation and the 

exponential describes the precipitous rise at a high temperature, the exponential term 
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 1 2expp T p  in Eq. (4.1) can be directly used to calculate the Maxwell viscosity M. 

It should be noted that Young’s modulus is involved in the viscosity calculation, for 

which the experimental results are used directly. 

4.3.2 The temperature-dependent viscosity determined from IET  

 

       

Fig. 4.6 Shear viscosities determined using the Burgers model and plotted using the Angell plot[29] 

for glass (a) L-BSL7 and (b) L-BAL42, in which the solid blue lines are calculated from decay rate 

based on the Burgers model. 

 

The calculated shear viscosity is exhibited using the Angell plot, as shown in Fig. 

4.6(a) and (b) for L-BSL7 and L-BAL42 respectively. The strain Point (StP), annealing 

point (AP), softening point (SP), are defined at viscosities of 1013.5, 1012 and 106.65 Pa·s, 

which are measured using viscometer and provided by the manufacturer. The obtained 

viscosity curves are almost linear and well match the low-temperature (AP and StP) 

viscosity data provided. It is noted that the IET data is only available at about 550 C 

(Tg /T ~ 0.93 K/K) for both glasses, at which the viscosity is about 109 Pa·s. When the 

viscosity is lower than this value, the acoustic signal has been too weak to obtain a clear 
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energy spectrum peak. Therefore, I extrapolate the viscosity-temperature curve to a 

higher temperature. If the fitting equation of decay rate is still used, the extrapolation 

leads to a quick reduction of viscosity and a very large deviation from the SP. However, 

consider the well-known fact that borosilicate glass is a strong glass, of which the 

temperature dependence of viscosity flows Arrhenius law, I thus linearly extrapolate 

the viscosity curves. At the SP temperature, the difference between extrapolated 

viscosity and the measured value is well below a decimal order for both glasses. 

Therefore, based on this observation, we claim that the decay rate obtained from IET 

experiments can effectively be used to calculate the flow viscosity of borosilicate glass 

based on the Burgers model. 

 

      

Fig. 4.7 The contribution of shear viscosity on decay rate of chalcogenide glass 

 

The successful application of the Burgers model to the borosilicate glasses inspires 

us to conduct a similar treatment on the decay rate data of chalcogenide glasses. The 

obtained viscosity is plotted in Fig. 4.7, in which the viscosities measured by a 
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viscometer [26, 69] are also displayed. However, the comparison is disappointing 

because the viscosities obtained from the decay rates based on the Burgers model are 

significantly smaller than those from the viscometer, although the difference reduces 

with temperature. There may be two reasons for this disagreement: firstly, the linear 

extrapolation of the relation between the Kelvin viscosity K  and temperature to a 

temperature higher than Tg may be incorrect for chalcogenide glasses; and secondly, the 

Burgers model may be inapplicable for describing chalcogenide glasses. In a recent 

study [183], it was proposed that chalcogenide glass may be non-flowing under small 

stress, even when the temperature is higher than the SP, indicating that the Burgers 

model may be invalid. A study by Bernard et al. [180] in 2007 demonstrated that, 

although the stress relaxation of the Te–As–Se system can be fitted by the Burgers 

model, the obtained parameters fail to describe the strain-recovery process. 

Furthermore, later work [184] illustrated that the Burgers model cannot model the 

relaxation in both short and long periods of Te–As–Se and Ge-Se glasses. These studies 

suggest that the viscoelastic behaviors of chalcogenide glass are fundamentally 

different from those of borosilicate glass, which needs further discussion. 

4.4 Discussions (II): The physics picture under the phenomenological 

models 

4.4.1 Simplified model for transition from solid-like to liquid-like behaviors 

The above analysis raises the more fundamental question of how to select a 

viscoelastic model for describing viscoelastic behavior in the glass transition 
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temperature range, and what the physical picture is if a viscoelastic model is selected. 

Without a clear physical picture, the fundamental difference between the borosilicate 

and the chalcogenide glasses is still vague. To answer these questions, I first establish 

a minimal model to describe the effects of glass transition on the stress-strain relation 

of glassy material in integral forms, expressed as Eq. (3.4). 

It begins with a mosaic picture of glass transition [185], whereby a glass may be 

simplified into many small patches (that is, the atomic subsystem), which can 

spontaneously change their configuration when the temperature is elevated to the glass 

transition range. Under a constant strain, the stress of a viscoelastic reduces with time, 

which could approach a non-zero magnitude (damping or solid-like behavior) or zero 

(decaying or liquid-like behavior). Damping could be attributed to thermal fluctuations, 

which may not be related to structural relaxation. However, decaying (to zero) must 

have a structural origin as rearrangements of atoms (either locally or globally) are 

necessary to accommodate the applied strain. Therefore, stress relaxation and structural 

relaxation should be closely related, even though they could refer to different length 

and time scales. Assume that such a configuration change occurs within the 

infinitesimal time span [, +d] with a probability Jd, where J is the transition rate, 

and that such a transition leads to a total loss of memory and zero stress at the transition 

instant . I then follow the behavior of a single patch, which may or may not change its 

configuration over time [0, t]. The details of these two scenarios are described as 

follows. 



The Hong Kong Polytechnic University                                     PhD Thesis 

62 

 

(1) The patch does not change its configuration during the time [0, t] with a 

probability P(t). As the configuration does not change, I assume that the mechanical 

behavior should be solid-like, represented by the relaxation function R0(t).  

 (2) The patch does not change its configuration during the time [0, ], and then 

changes at the instant . The joint probability is then P()Jd, and the total probability 

of this behavior, when the instant  runs from 0 to t, is  
0

d
t

P J  . It should be noted 

that the patch changes its configuration at  and can change further multiple times, 

during the time span [, t], which depicts structural relaxation and liquid-like behavior 

[90]. Therefore, a new relaxation function, different from the above solid-like function 

R0(t), must be assumed. I assume that this relaxation function is identical to that of the 

entire system R(t), based on the rationale that the response of a single patch over a 

sufficiently lengthy period (time average) should be identical to the average response 

of many patches (ensemble average).  

The summation of the above two scenarios leads to the average stress at time t, 

which reads:  

   

       

0
0

0 0 0
0 0

d
d
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
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 

 

 
    

 



  

,  (4.5) 

The summation rule of probability requires    
0

d 1
t

P t P J   , for which the 

solution is 

    expP t Jt  .  (4.6) 

By substituting Eq. (4.6) into (4.5) and changing the integration order of   and  , 
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we obtain: 

     

    
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0 0 0 0
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,  (4.7) 

which can be further simplified as: 

    0
0 0

d d

d d

t t
Jt JR t e d R t e d 

   
 

     .  (4.8) 

I then apply Laplace transformation to Eq.(4.8), rendering: 

    0
ˆ ˆR s R s J  .  (4.9) 

If the material is purely elastic before glass transition (no viscous effects), one has 

0 ( ) 1R t   leading to 0
ˆ ˆ( ) ( ) 1/ER s R s s  . With a non-zero transition rate J, the 

relaxation function becomes 

 ˆ ˆ( ) ( ) 1 ( )ER s R s J s J    ,  (4.10) 

which represents the Maxwell model. If the material is the Kelvin solid prior to glass 

transition, described by 0
ˆ ˆ( ) ( ) 1/K KR s R s s    , the memory function following 

glass transition is: 

  ˆ ˆ( ) ( ) 1K KR s R s J s J      ,  (4.11) 

which is the Zener model, as illustrated in Fig. 3.2(d). The solution in Table 3.1 

demonstrates that the decay rate derived from the Zener model is the sum of those 

provided by the Kelvin and Maxwell models, which is identical to the above calculation 

derived from the Burgers model. It should be noted that no coupling term of  and 

 exists in the decay rate expression from the Zener model. However, with the 

K

M
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Burgers model, these two viscous units are weakly coupled when the ratio of two elastic 

constants is within the range of [10-2, 102]. Moreover, the Kelvin damping assumed in 

the model, manifested as the non-vanishing decay rate at a low temperature, may not 

arise from the material response alone. The hanging wire causes the same damping 

effect, which cannot be distinguished from the Kelvin damping of the materials, as 

analyzed in section 3.1. However, as the coupling between the Kelvin damping and 

flow viscosity is very weak (or vanishing based on the Zener model), the flow viscosity 

determined from the decay rate data is therefore sensible for borosilicate glasses.   

 Before closing this discussion, a brief discussion on the Jeffery model (Fig. 3.2(e)) 

which is also widely used to study slow relaxation is needed. The Jeffery model is very 

similar to the Zener model, containing three parameters, which can also be derived from 

the Burgers model when 
E  is very large. Based on the decay rate formulae provided 

in Table 3.1, the Jeffery model renders    21 22Jeffery

M K K       , which is smaller 

than that based on the Zener model with the same β and K ,  21 2Zener

M K     . When 

K  is small (in most cases of glass it is), the two types of relaxation time are almost 

the same. 

4.4.2 Effect of non-exponential relaxation 

For the chalcogenide glasses, greater consideration is required, as their relaxation 

behaviors are apparently more complex than those of borosilicate glasses. In the 

Burgers model, the Maxwell unit, which describes an exponential relaxation, maybe 

too simplistic to capture the relaxation behavior in chalcogenide glass, leading to the 

apparent disparity as illustrated in Fig. 4.7. Therefore, the non-exponential relaxation 

should be considered. 
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The most important feature of a non-exponential relaxation is that the loss spectrum 

of the corresponding linear response, expressed as    ˆi 1s sR s   [186, 187], 

becomes broader than that of exponential decay. This is known as the stretching 

phenomenon, which may be fitted by various expressions [187]. The most widely 

adopted time-domain relaxation function is probably the Kohlrausch-Williams-Watts 

(KWW) function    exp KWWB
R t t   

  [83], where  is the relaxation time and 

BKWW is the stretched exponent, which is generally smaller than one. The Laplace 

transform of the KWW function is nontrivial; therefore, other Laplace domain 

expressions of the linear response function χ(is) were proposed, which is more 

convenient for fitting the stretched loss spectrum. These expressions are also more 

convenient for studying the beam vibration in this work, as the response function Eq. 

(3.15) is also expressed in the Laplace domain. In the following, I proceed to use the 

Cole-Davidson (CD) [188] expression:    i 1
CDB

CD s s 


  , where BCD is also a 

stretched exponent. Using the least-squares method, Lindsey and Patterson [189] 

provided the relation between BCD and BKWW: 
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CD

0.970 0.144, 0.2 0.6

0.683 0.316, 0.6 1.0

B

B

B B
B

B B

  
 

  

 , (4.12) 

which can then be used to convert BCD into BKWW. 

The CD expression leads to the relaxation function[187]:  

  
 

1 1ˆ 1
1 CDB

R s
s s

 
  

  

. (4.13) 

The viscosity measurement; for example, using the beam bending method for the 

viscosity range in this work, is conducted in the time domain. This is the process of 
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obtaining the strain rate under constant stress 0, which is expressed as 

 
 

0d

dt t




 .  (4.14) 

The strain rate is usually not a constant in a short time but levels off after a sufficient 

time, and a steady viscosity value is then obtained. Using the Laplace transform of the 

linear viscoelastic constitutive relation:      0
ˆˆ s E sR s s  , this measurement 

process is expressed as: 

 
0 0

0

lim lim
t t

d

dt E
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 
  ℒ−1
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=

ˆ ˆ 0sR s E R s
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 
   

 (4.15) 

where ℒ−1 indicates the inverse Laplace transform. The proof of the final equality is 

based on the identity    
0 0

ˆlim =lim lim
t

t t s
F t dF dt dt sF s

  
 . The viscosity based on the 

CD expression Eq. (4.13)can then be obtained as follows: 

  vis 00
ˆ 0 CDE R s E B   . (4.16) 

Obviously, when BCD = 1, the Maxwell expression 0E   is recovered.  

 

 

Fig. 4.8 The effect of stretching exponent on the calculated viscosity for (a) IRG202 and (b) IRG206 
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and (c) the correlation between the fragility versus stretching exponent. The data points of some 

chalcogenide glasses (including this work) are outside the BNAP region [82]. 

 

Eq. (4.16) represents the viscosity measured by a viscometer of a non-exponential 

relaxation glass. A comparison between the IET and viscometer measurement can 

finally be established based on Eqs. (4.13) and (4.16). We firstly substitute Eq. (4.13) 

into Eq. (3.15) to obtain the response function induced by the non-exponential 

relaxation. For any given BCD within the range of [0, 1], E0 and  are adjusted to match 

the peak center and HWHM with the experimental results. After E0 and  are 

determined, vis is calculated using Eq. (4.16). If the calculated vis is the same as the 

value from the viscometer experiment, the corresponding BCD is selected. Then, using 

Eq. (4.12), BCD is converted into BKWW. 

Fig. 4.8(a) and (b) illustrate the calculated viscosity variation with varying BCD for 

IRG202 and IRG206, respectively. The calculated viscosity decreases monotonously 

with an increase in BCD. Therefore, the viscosity measured by the viscometer will only 

correspond to one BCD at a specific temperature. It is finally determined that the 

stretched exponent BKWW at Tg,v is ~0.42 for IRG202 and ~0.43 for IRG206, both being 

markedly smaller than one. It is noted that the fragility m is 28 for IRG202 and 41 for 

IRG206, based on the viscosity-temperature curves (measured by viscometer) shown 

in Fig. 4.7. With such a small magnitude of m, BKWW is markedly smaller than that 

expected from the correlation map between the fragility and stretched exponent 

proposed by Böhmer et al. [82], which is labeled as “BNAP region” in Fig. 4.8(c). This 

deviation may be attributed to the short-time (much less than one second) dynamics 
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probed by IET, which may not be captured by a stress relaxation experiment based on 

tensile tests [190], or to the specific chemical structures of these two chalcogenide 

glasses. Furthermore, we note that other studies have reported similar small BKWW 

values for certain chalcogenide glasses, as plotted in Fig. 4.8(c). For example, Gueguen 

et al. [184] conducted stress relaxation experiments on serval chalcogenide glasses 

GexSe1-x, and found that BKWW is within the range of [0.22, 0.26], while the fragilities 

range from 32 to 37 [191]. Li et al. [192] found that Ge22Se78 has a fragility of 27 and 

also a very small BKWW = 0.43, which is identical to our result. They suggested that the 

cause of small BKWW could be the mixing effect of basic structural motifs. 

 

 

Fig. 4.9 Loss spectrum of L-BAL42 at the temperature of 490, 495, 500, and 510 C. DMA data are 

normalized using E0 = 82, 81, 80, 78 GPa and  =130, 60, 20 and 10.4 s, for the four temperatures 

respectively. 

 

For borosilicate glasses, it is expected that non-exponential relaxation is 

insignificant, which is the reason for the agreement of viscosities calculated from decay 

rate and measured by viscometer as shown in Fig. 4.6. To verify this point, DMA 
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experiments are conducted (using DMA1 from Mettler Toledo, Switzerland) to obtain 

the loss spectrum of the dynamic modulus which can be fitted with the expression of 

loss modulus E derived from the CD expression, as: 

    
CD /2

2

CD

0

1 sin arctan
BE

B
E

 


      
,  (4.17) 

where ω is the stimulated frequency. Fig.4.9 shows DMA results of EE0 against , 

in which E0 and  are obtained based on the IET results (i.e., from Figs. 3(b) and 8(b) 

respectively). The data points collapse onto the narrow region bounded by the curves 

of Eq. (4.17) with BCD = 0.7 and 1. It is noted that the curve of Eq. (4.17) with BCD = 

0.7 (i.e., BKWW=0.8) well fits the loss spectrum at the temperatures near Tg (490~500C) 

and that the loss spectrum at the higher temperature of 510C becomes almost 

unstretched (BCD = 1). These results corroborate the large (close to unity) stretching 

exponent of the examined borosilicate glass and also indicate the consistency of IET 

and DMA measurements. 

4.5 Summary 

This work examines the validity of applying the IET to studying structural 

relaxation in the glass. It is demonstrated that the temperature dependence of Young’s 

modulus can be utilized to study the glass transition phenomenon for both borosilicate 

and chalcogenide glass. Furthermore, the flow viscosity of borosilicate glass can be 

determined from the decay rate data, based on the Burgers or Zener model; however, a 

more elaborate model is required for chalcogenide glass. Based on the theoretical and 

experimental investigations, the following remarks are made: 

(1) The glass transition point determined from the modulus variation with temperature 
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is very close to Tg,v for the examined borosilicate glasses. However, this is not the case 

for the chalcogenide glasses.  

(2) The flow viscosity of borosilicate glass determined from the decay rate data agrees 

well with the measurements using a viscometer, indicating that the Burgers or Zener 

model can be used and that our approach of linear extrapolation of the Kelvin damping 

contribution is sensible. However, the same approach does not work for chalcogenide 

glasses. 

(3) A minimal model describing the transition from solid-like to liquid-like behavior 

is proposed, which can aid in choosing a viscoelastic model. For the borosilicate glasses, 

the low-temperature behavior may be purely elastic or Kelvin-Voigt, leading to a single 

structural relaxation time following glass transition. This is the fundamental reason that 

the viscosity determined from the decay rate data can match that measured by the 

viscometer.  

(4) For chalcogenide glass, the large discrepancy in viscosities, as estimated from the 

decay rate of the IET tests and measured by the viscometer, is resulted from the Burgers 

model. This indicates a striking non-exponential relaxation, which cannot be described 

by the single Maxwell unit in the Burgers model. The CD expression is then used to 

evaluate the effect of non-exponentiality and to estimate the stretched exponent in a 

KWW expression. The stretching exponent at Tg,v is about 0.4 for both chalcogenide 

glasses, which is consistent with some investigations.  
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Chapter 5 The secondary (β) mechanical relaxation in 

glass and its performance in IET experiments 

5.1.  Introduction    

After the pioneering finding of Johari and Goldstein [193, 194] in 1970, the 

secondary relaxation, or β relaxation, of glass has drawn lots of attention [43, 44, 109, 

195-200] because it not only helps to disclose the nature of glass transition [43] but also 

helps on practical applications, for example, adjust the properties of metallic glass [42, 

161, 201]. To reveal β relaxation, many experimental methods [44, 109, 195-198] have 

been applied. Among others, dielectric spectroscopy (DS) is the most effective because 

of the wide frequency range [196, 197] that a DS can swap. Successively, β relaxation 

has been found in the dielectric spectra of polymers [202] and other molecular glass 

[203]. Based on the measurements of DS, β relaxation could further be categorized into 

two types [204]: a separated secondary relaxation peak or an excess wing of the α-

relaxation peak. The temperature scaling law of the two manifestations of β relaxation 

seems disparate below Tg, that is the average relaxation time of a separated β peak 

strictly follows an Arrhenius behavior [204], whereas that of an excess wing follows a 

super-Arrhenius law (for example, a Vogel–Fulcher–Tammann (VFT) law) that is 

strongly coupled to the corresponding α-relaxation. When the temperature is close to or 

higher than Tg, the characteristic time of β relaxation of some glass formers increases 

with temperature, which disagrees with the intuition that higher temperature leads to 

shorter relaxation time [196, 205-207]. This counterintuitive relation has also been 
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found in a water-absorbed porous glass [200], suggesting an intricate mechanism [205] 

that is still unclear.  

The mechanical response of glass has also been employed to study  relaxation in 

it, especially in the cases that DS is unsuitable, for example, metallic glasses [43]. 

Moreover, mechanical measurements could reveal more internal dynamics than DS 

because the stress relaxation of a glassy material is related to all diffusion modes, 

whereas the dielectric response was only related to the reorientation of dipoles [198]. 

For example, the rotational diffusion about the C2v axis in poly(methyl methacrylate) 

(PMMA) does not induce the change of dielectric properties; therefore, the only 

mechanical approach can reveal the corresponding relaxation process [198]. For 

metallic glasses, the internal friction associated with β relaxation can only be observed 

through mechanical means [199] because there is no re-orientation of atomic dipoles. 

Johari [208] suggested that a mechanical β relaxation is essentially due to the 

translational motion of atoms in metallic and other glasses, which is consistent with the 

conception of “islands of mobility” proposed by Johari and Goldstein [193].  

However, the mechanical approach is much less used to detect the characteristic 

frequency of β relaxation because of the difficulties to achieve a measurement with a 

wide frequency range. When the test frequency is lower than 103 Hz, some forced 

vibration methods, for example, dynamic thermomechanical analysis (DMA), can be 

employed. When the test frequency is larger than 109 Hz, some scatting methods, for 

example, inelastic light scatting, can be adopted [209]. But for the frequency between 

these two regimes, there is no standard approaches or commercialized facilities. To 
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expand the frequency range in mechanical tests, Hecksher et al. [174] fused seven 

different methods with their self-developed facilities. In these frequency dependent 

tests, β relaxation generally corresponds to a secondary hump lower than Tg in the loss 

spectrum of temperature scan. In addition, the decayed free vibration based on the 

impulse excitation technique (IET) [150] can also be used to study the relaxation 

behaviors of glassy materials [68, 161, 163]. It should be noted that IET is based on the 

free vibration of samples, whereas DMA and the approach adopted by Hecksher et al. 

[174] are based on forced vibration. Comparing with forced-vibration approaches, IET 

cannot achieve a frequency scan because the natural frequencies of a sample are a series 

of discrete values. However, the simple and standardized [152, 153] setup of IET, the 

extended frequency into the ultrasound range (103  106 Hz), and the applicability at a 

temperature as high as 1750 °C [157] makes it a useful alternative to study relaxation 

behavior of glasses at the frequency outside the assessable range of DMA. Recently, 

Liu and Zhang [210] found two adjacent peaks in the acoustic spectrum of a PMMA 

beam excited by IET, which was ascribed to β relaxation. Their experimental results 

indicate that the Fourier spectrum of an excited beam also contains the information of 

β relaxation. 

The dynamic response of a structure subjected to an impulse may reflect the 

relaxation kinetics inside the material. However, this relation is implicit, which requires 

a constitutive model to bridge them. Therefore, in the following, I firstly used a 

phenomenological model with the differential form to examine the possibility of 

modeling. Then I describe a physical model of β relaxation based on the conceptual 
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picture of the potential energy landscape (PEL) and then establish a simplified 

viscoelastic model based on it. Experimentally, we obtained the double-peaked acoustic 

spectra of a fluorosilicate glass that validates the β relaxation phenomenon predicted by 

the theoretical model.  

5.2. Phenomenological modeling in the differential form 

5.2.1 Mathematical derivations  

Without much insight into the cause, let us suppose that it is incurred by the 

nontrivial viscoelastic property, which may be described by a generalized differential 

viscoelastic (GDVE) model: 

 P Q    (4.18) 

where 
0

d
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k k
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P p
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  are the differential operator; k=1, 2, 3,…, σ 

and ε are the uniaxial stress and strain, respectively, and t is time. To minimize the 

number of parameters yet keep a sufficient complexity for arriving at a double-peak 

spectrum, we keep the first three order differentials: 
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The dynamic modulus in the Laplacian domain is then expressed as: 

  
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,  (4.20) 

where s is the Laplace variable and the overhead “^” represents the corresponding 

variable after Laplace transformation. Later one will see, the double-peak phenomenon 
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found in my samples occurs at the temperatures higher than Tg, where the stresses in 

the material can be fully relaxed and the viscosity can be measured. Therefore, the 

viscosity η must be finite: 

 
 

1
0

lim
s

H s
q

s



  ,  (4.21) 

with q0 = 0. On the other hand, the instantaneous Young’s modulus E is obtained at 

s→: 

   3 3lim
s

E H s q p


    (4.22) 

Noted that the Young’s moduli determined from IET based on the ASTM [152] or ISO 

[153] standard should be regarded as the instantaneous Young’s modulus. Therefore, 

we shall determine the condition for the occurrence of double peaks based on the 

constitutive relation of Eq. (4.19) and how to retrieve the instantaneous modulus E if 

the double-peak phenomenon occurs. 

Recall the response function of a free-free beam used in IET experiment based on 

the Euler-Bernoulli beam theory: 

  
   

4 2/
n

z n

A
s

H s I L s 
 


  (4.23) 

where A is a variable scale with the impulse, Iz is the second moment of inertia of the 

beam’s cross section, λn is the modal constant for the nth flexural vibration mode, L is 

the length of the beam, and ρ is the linear density. Eq. (4.23) can be recast in the form 

of Laurent series: 

  
1

m
j

n

j j

A
s

s s

 


   (4.24) 
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where Aj is partition constants, sj is the pole of Eq. (4.23), and can be solved from the 

equation: 

    
4 2/ 0z nH s I L s   ,  (4.25) 

and m is the number of poles. 
1

js s
 corresponds to  exp js t  in the time domain. 

Therefore, if sj is a complex number with a negative real part, it corresponds to a 

damped vibration. Besides, the Fourier spectrum of a beam vibration described by Eq. 

(4.23) can be formulated as: 

    

2

2

i
1

i

N
j

n s
j j s

A
F s

s s









  


   (4.26) 

where |.| gives the modulus of a complex number. In general, multivariate regression is 

needed for determining pi and qi that brings about the best fit of experimental results 

with Eq. (4.26), which could be costly due to the complexity and strong nonlinearity 

of Eq. (4.26) and the unbounded orders of magnitude of the parameters. We herein 

propose an approximate but sufficiently-accurate approach which can lead to a very 

good estimate of the instantaneous Young’s modulus in comparison with multivariate 

regression. 

Substituting Eq. (4.20) into Eq. (4.25) leads to  

 4 3 2 2 2 22 1 2 1
0 0 0

3 3 3 3 3

1
0

p p q q
s s s s

p p q p q
  
   
   
   

         (4.27) 

where  

 
4

0 4

z nE I

L





   (4.28) 

is the natural frequency of the nth mode. To achieve double peaks, Eq. (4.27) must 
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have two sets of the conjugated roots, given as: 

 
1,2 1 d1

3,4 2 d2

s

s

 

 

  


  
, (4.29) 

which leads the following parametric equations after substituting Eq. (4.29) into Eq. 

(4.27): 
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  (4.30) 

where 2 2

1 d1 1k    and 2 2

2 d2 2k   . Therefore, Eq. (4.30) builds the relation 

between double-peak phenomenon and the viscoelastic parameters of glass. 

5.2.2 Primary experimental examination   

The IET setup was employed to examine a fluoride-borosilicate glass S-FSL5 

(SiO2(60-70)-B2O3(10-20)-F2(2-10)-Al2O3(0-2)-Sb2O3(0-2), wt.%) procured from 

OHARA Inc., Japan. The sample exhibited double peaks has the dimensions of 

40.08×7.95×1.98 mm3 with a mass of 1.5477 g, with the measurement errors <0.01mm 

and <0.0001g, respectively. S-FSL5 glass has the room-temperature Young’s modulus 

of 62.3 GPa and Tg of 500 C based on dilatometry measurement. The sample was 

heated from room temperature to Tg+50C with the prescribed heating rate of 2 C/min.  

In Fig. 5.1(a) and (b), I show the comparison of the fitting results based on the 

multivariant regression for the cases of S-FSL5 at 531 C and 549 C, respectively. 
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Note that shoulder peaks are associated with the main peak with a constant offset 

frequency due to the vibration of wires. Accompanying the double peaks, there could 

be shoulder peaks as indicated by arrows “A” and “B” The determined parameters pi 

and qi for these two temperatures are listed in Table 5.1.  

 

 

Fig. 5.1 The Fourier spectrum of S-FSL5 and the fit by the obtained viscoelastic parameters. The 

positions of shoulder peaks are labeled by A and B.  

 

Table 5.1 The parameters of the proposed model of Eq. (4.19) 

Temperature p1 

(s) 

p2 

(10-7 s2) 

p3 

(10-10 s3) 

q1(η) 

(Pa·s) 

q2 

(104Pa·s2) 

q3 

(Pa·s3) 

531 C 0.657026 9.076644 4.340310 1010.59 5.2517578 25.4982823 

549 C 0.167860 3.581489 1.136309 109.98 2.0331319 6.55984500 

 

5.2.3 Beta relaxation revealed by the model 

After modeling the double-peak phenomenon by the proposed viscoelastic model 

phenomenologically, I examine the mechanical relaxation processes. The loss 
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spectrums expressed as    Im
s i

E H s





      are plotted in Fig. 5.2(a), and the 

stress relaxation functions    1R t H s s     are plotted in Fig. 5.2(b), based on 

the obtained viscoelastic parameters given in Table 5.1. Herein Im[z] gives the 

imaginary part of the complex number z, and  1 F s     denotes the inverse Laplace 

transform of F(s). 

 

       

Fig. 5.2 β relaxation revealed by IET experiments of S-FSL5 at 531C and 549C: (a) the mechanical 

loss spectrum and (b) the stress relaxation process. In the two insets of Fig. 5.2(a), the axes are both 

logarithmic. 

 

Following the usual notation of the two peaks found in a loss spectrum, the two 

peaks shown in Fig. 5.2(a) correspond to a slow “α process” with a low frequency f 

and a faster “β process” with a high frequency fβ [187]. It can be found that the α process 

is nothing more than an exponential decay due to the shape of an isosceles triangle, 

therefore 
12 f     with  being the relaxation time, which reduces from 4.2s to 

1.1s when the temperature increases from 531 C to 549 C. However, the α process 

cannot lead to the double peaks in the IET experiment, which can be easily determined 
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from the analytical solution of the free-free beam of a Maxwell material [163]. The 

double peak is indeed associated with the β process with fβ  6.1 kHz. The stress 

relaxations in Fig. 5.2(b) seems merely an exponential decay corresponding the α 

process. However, at the very beginning, as shown in the inset of Fig. 5.2(b), multiple 

relaxation steps are vanishing very quickly within 10-3 s. Subtracting the exponential 

decay correspond to the slow  process results in oscillations with a quickly 

diminishing amplitude. The frequencies of these oscillations are consistent with the 

corresponding  relaxation peak frequency determined in Fig. 5.2(a).  

5.3. Modeling mechanical β relaxation using PEL 

Motivated by the frequency consistency between the  relaxation peak and the 

stress oscillations, normal mode analysis(NMA) is one potential approach because α-β 

relaxations studied by NMA have shown similar oscillation processes [121], though the 

similar comparison between the two frequencies has never been conducted previously. 

In NMA, α process is caused by the spontaneous hoping among local minima, also 

called inherent structures (ISs), of the potential energy landscape of glassy material, 

and β process originates from the interaction of atomic oscillations in the basins 

associated with different ISs. To simplify the analysis, harmonic oscillation is assumed, 

which can be treated as a combination of the instantaneous normal modes (INM). Both 

processes lead to the relaxation of physical quantities. For example, Keyes [211] has 

applied NMA to model the α-β relaxation of polarizability dynamics in CS2 and 

achieved a good fit for his atomic simulation. In the present work, we extend the model 
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to describe mechanical α-β relaxation. 

Formally, let us recall the constitutive relation of a linear viscoelastic material 

which can be written in the form of hereditary integral: 

      
 

0
0

d
d ,

d

t

t E C t E C t
 

   


 
     (5.1) 

where σ(t) and ε(t) are the stress and strain at time t; C(t) is the relaxation function; ε0 

is the instantaneous strain at t = 0. This constitutive relation describes a microscale 

representative volume element (RVE), which can be divided into many atomic 

subsystems that can be treated as isolated atomic groups with different ISs. Based on 

the Green-Kubo relation, the relaxation function is proportional to the stress 

autocorrelation function (SAF):  

      0C t t  ,  (5.2) 

where  t  is the instantaneous stress of a subsystem, and “< >” means the average 

of all atomic subsystems. Following the NMA [211], the fluctuation within a PEL basin 

is assumed to be harmonic and the stress variation associated with a basin is given as: 

    IS i

i i IS

t q t
q


 

 
   

 
 ,  (5.3) 

where IS  is the stress contributed by an IS, qi is the mass-weighted normal 

coordinate of the ith vibration mode. The SAF can then be expressed as the average of 

different ISs [211]: 

    
 

 2

2
0 cos d

IS

IS Bt k T t
 

    


   ,  (5.4) 

On the right-hand side of Eq. (5.4), the first term is the average contribution of ISs, and 
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the second term is the contribution of the average harmonic fluctuations in different ISs. 

Note that      
2

IS i iIS
i

q         
   and   

22
2

0

i

i B iq t dt k T
 

  

have been employed [211, 212]. 

In Eq. (5.4), the effect of hopping among ISs is not considered; therefore, 2

IS  

is not a function of time [211] and represents a pure elastic effect. The involvement of 

structural relaxation brings about memory loss of previous stresses, which can be 

described by a relaxation function [163, 213]. For simplification, we assume the barrier 

crossing is an Arrhenius process with a constant barrier height, then an exponential 

decay can be obtained [36]. Therefore, 2

IS  should be multiplied by exp(t/τα) with 

τα being the structural relaxation time. This is also because the stress relaxation induced 

by α relaxation in silicate glass is nearly exponential at the temperature higher than Tg 

[163]. The second term on the right-hand side of Eq. (5.4) represents the relaxation 

induced by harmonic fluctuations, i.e., the relaxation owing to the dephasing induced 

by the broad distribution of INM frequencies [211]. Though the harmonic term in Eq. 

(5.4) is affected by barrier crossing, Cho et al. [214] suggested that the additional effect 

of barrier crossing is not necessary because the dephasing suffices to lead to a 

reasonable decaying time correlation function. Therefore, the modified SAF involving 

basin hoping is expressed as: 

          2

0
0 exp cos dISt t G t      



      (5.5) 

where    2= B ISG k T     is a weighted density of states (WDOS). In principle, 

G() can be determined from the eigenvalues of the Hessian matrix of a well-defined 
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atomic model. For example, in the study of the polarity fluctuation of CS2 [211], 

    was found to possess several peaks and G()   2

    should enhance 

the contribution of lower-frequency peaks. Following Moore and Space [215], one may 

assume that G() describes a bell-shaped distribution, approximated by a Gaussian or 

Lorentzian function, at a certain frequency range of concern. Assuming that G(ω) is a 

Lorentzian function: 

  
 

2 2

a
G 

  


 
,  (5.6) 

and submitting it into Eq. (5.5), the relaxation function is recast as: 

          1 exp exp cosC t x t x t t         (5.7) 

where μ is the central angular frequency of the Lorentzian distribution, γ is the half-

width at half maximum (HWHM) of a peak corresponding the structural heterogeneity,

 2
ISa ax     , and a is a constant. Naturally, x can be considered as the 

proportion of the relaxation contributed by β process. It is noted that if  = 0, Eq. (5.5) 

reduces to the scenario of two-step exponential relaxation. In addition, it can be further 

modified to involve a distribution of relaxation time so that the non-exponential 

relaxations can also be involved. It is noted that the two-step relaxation function has 

been used to fit the experimental results of mechanical - relaxation [216, 217]. 

However, in the following, I shall focus on the case that  is nonzero. This makes the 

relaxation process more complex than a two-step scenario and is indeed necessary to 

explain our experimental results. 

To exemplify the -β processes revealed by Eq. (5.7), I plot the relaxation 
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function in Fig. 5.3 (a) with x = 0.0002, μτα=38000, and amplify the relaxation in initial 

0.001 in the insets of Fig. 5.3(a) with different . With the timescale of τα, the 

relaxation function is seemingly a straightforward exponential decay. However, at the 

very beginning, the stress relaxation could exhibit a plateau if the distribution G(ω) is 

very broad (τα = 15000) or oscillate if G(ω) is sharp (τα = 200~6000). It is noted that 

the initial oscillations are captured in molecular dynamics simulations. For example, 

based on a bead-spring polymer model, Vladkov and Barrat [218] showed that the short 

time SAF oscillated and could be fitted with a function identical to the form of Eq. 

(5.7). Agrawal et al. [219] conducted full-atom molecular dynamics simulations of a 

polyurea system and clearly showed the transition from initial fast decayed oscillation 

to long-time decay. 

 

    

Fig. 5.3 Examples of stress relaxation (a) and loss spectrum (b) calculated from NMA with Cauchy 

distribution of G(ω). 

 

In Fig. 5.3(b), I covert the stress relaxation into the normalized loss modulus 

spectrum    Im i iE E C  
     , where  C s  is the Laplace transform of C(t) 
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with s being the Laplace variable. It is noted that  peaks appear right at the frequency 

2 2       with the width determined by ~2. In the scenario of two-step 

relaxation(μ=0), the frequency of  relaxation peaks at  [216, 217]. This is the same as 

what we have found by the phenomenological model. 

After substituting the constitutive equations of Eqs. (5.1) into (4.23) with the 

consideration of (5.7), the Fourier spectrum of the beam vibration can be obtained as: 

  
 
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N s
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   (5.8) 

with 

     1 i is s sN s         , and  

        
22 2 2 2

0 0 0

2 1 1s sM s s s x s xs s              



 ,  

where  
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   (5.9) 

is the natural frequency. M(s) is a quartic function with four roots. If these roots are all 

complex, i.e.,  
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s

s

 

 

  


  
, (5.10) 

the Fourier spectrum F() have double peaks near ωj with 2 2

dj j j    (j=1, 2). To 

demonstrate, Fig. 5.4 shows the theoretical double-peaked spectra based on the material 

parameters used in Fig. 5.3 and the natural frequency 0 in the range of 0.98μ to 1.02μ. 

When 0 is very close to μ, double peaks are observed and both peak maxima deviate 

from 0. For example, for the cases of 0 =0.998μ, μ and 1.002μ. It is interesting to 
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note that μ corresponds to the minimum point between the two peaks. This observation 

can be confirmed based on poles of the reciprocal response function Γ
-1 

n (s)=M(s)/N(s) 

at γ±iμ, which indicates that one of the minima of F(ω) should be found at 2 2   

if double peaks are found. Therefore, the frequency at the minimum point between 

double peaks can be considered as the frequency of β process when   . When 0 

is not so close to μ, as exhibited by the cases of 0=0.98μ and 1.02μ, only one peak can 

be discerned. It should be noted that even for a single peak case, the frequency at the 

maximum of the peak could still departure from the natural frequency 0 because of 

the influence of  relaxation. This deviation is demonstrated to be about 2% for the 

cases of 0=0.98μ and 1.02μ. When 0 is further deviated from μ, e.g., by changing the 

dimensions of a sample, the determination of 0 using the peak maximum becomes 

more accurate.  

 

 

Fig. 5.4 Examples of double peaks predicted by the viscoelastic model from NMA.  

 

The results shown in Fig. 5.4 indicate that the excited vibration of a free-standing 
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glassy beam can amplify the  process even though it is very subtle in a stress relaxation 

curve or a loss spectrum, as shown in Fig. 5.3. However, to capture the double-peaked 

Fourier spectrum, 0 must be very close to μ. This condition is difficult to meet if μ is 

not known a prior to a glassy material. In the following, we present a series of clear 

double-peaked spectra obtained in examining a fluorosilicate glass. 

5.4. Experimental results of double peaks  
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Fig. 5.5 The double-peak phenomena in Fourier spectra of the free vibration signal of S-FSL5 at different 

temperatures. In the insets of (a) and (b), the solid lines are used to connect the experimental points, 

while the dashed curves are used to show the tendency of the left peak without humps. In the main plot 

of all figures, the circles are experimental data, and the solid curves are theoretical predictions. R2 is the 

adjusted determination coefficient representing fitting quality. 

 

Fig. 5.5 shows some typical Fourier spectra from 511 C to 550C, together with 

the prediction curve based on NMA with the parameters from the best fit. In the tests, 

only one peak was found when the temperature was lower than Tg+10 C. But after that, 

a small bump associated with the peak gradually grew to a remarkable secondary peak 

with the temperature increased, leading the double-peak phenomenon. Figs. 5.3(a) and 

(b) show the cases with a small hump at 511C and 526C, respectively, which can be 

observed after zooming in, as shown in the insets. With the temperature increase, two 

clear peaks are observed at 531 C, as shown in Fig. 5.3(c), whereas only an excess 

wing associated with the main peak can be found at 540 C, as shown in Fig. 5.3(d). In 

the experiment, these two manifestations appear alternately after 530 C, which are 

further exhibited in 5.3(e) and 5.3(f) for T = 549 C to 550 C, respectively. It is noted 
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that the difference between the spectra at 549 C and 550 C is substantial, although the 

temperature difference is only one degree. This could be attributed to the long aging 

time between the two temperatures, because the actual heating rate after 547 C 

decreased automatically due to the limited controllability of the heating system, i.e., the 

temperature controller must slowly approach the target temperature for high accuracy 

and small fluctuations. Consequently, from 549 C to 550 C it took 7.5 minutes instead 

of the predefined 0.5 minute. The experimental results shown in Fig. 5.5 has all been 

well fitted by Eq. (5.8) using Levenberg-Marquardt arithmetic (The fitting parameters 

will be discussed later). The adjusted determine coefficients (R2) are also shown in the 

plots. One may notice that there are still some small humps at both sides of the double 

peaks as shown in Fig. 5.3. They are the so-called “shoulder peaks” mentioned in 

Section 3.4. 

 

 

Fig. 5.6 The temperature dependence of higher/lower frequency from the spectrum, and the calculated 

natural frequency and relaxation frequency. The lines are artificial trendlines.   

 

In Fig. 5.6, the two frequencies pertaining to the two peak maxima are collected. 
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The lower frequency corresponds to the left peak maximum and the higher one 

corresponds to the right one. All the spectra have been fitted using Eq. (5.8), which 

leads to the determination of the natural frequency 0 which is also shown in the figure. 

The actual natural frequency ω0, determined from the instantaneous Young’s modulus 

and dimensions of the beam (Eq. (5.9)), differs from two apparent frequencies obtained 

from the two peak maxima. It is noted that the natural frequency is close to the lower 

frequency, suggesting that 0 < . When the temperature is higher than 530C, the 

natural frequency has a weaker temperature dependence and departure more from the 

lower frequency. This slop change of natural frequency around 530 C suggests there 

may be some complex structural change in the glass, which needs more investigations.  

 

5.5. Physical understanding of the temperature dependence of the 

mechanical β relaxation in the fluorosilicate glass  

Based on the proposed model, the temperature dependence of β relaxation in the 

fluorosilicate glass is exhibited in Fig. 5.7. The central frequency μ and the HWHM γ 

are plotted in Fig. 5.7(a) and (b), respectively, and the proportion x is plotted in Fig. 

5.7(c). Owing to the experimental noise and also because the proposed model could be 

still simplistic to describe real physics, all the obtained parameters fluctuate with 

temperature. However, the general trends of these parameters are clear. It is noted that 

the frequency associated with the  relaxation decreases with temperature, as shown in 

Fig. 5.7(a), and that γ is weakly dependent on (or slightly decreases with) temperature 
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when T < 540C and then increase with temperature when T > 540 C, as shown in Fig. 

5.7(b). This indicates the distribution of INM frequencies becomes broader after 540 

C, which could be ascribed to the increase of the disorderliness of the atomic system. 

The fraction of β relaxation x is smaller than 0.0025, which agrees with previous 

investigations on the strength of β relaxations [193, 194, 220]. In addition, x increases 

with temperature, especially when the temperature is larger than 530 C, as shown in 

Fig. 5.7(c).   

 

 

Fig. 5.7 The temperature dependence of central frequency μ, the HWHM γ, and proportion x. The 

points are from the theoretical calculation based on experimental data, and the curves are artificial 

trendlines. 

 

The frequency μ does not follow Arrhenius or super-Arrhenius law. Such a result 

is seemingly consistent with the recent experimental work of Hecksher et. al [217] who 

used their self-developed device to reveal that the mechanical β peak frequency may 

also decrease with temperature in squalane. The positive temperature dependence of β 

frequency may be comprehensible [204] if the reciprocal of β frequency is considered 
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to be a relaxation time, but the negative temperature dependence of  frequency is 

anomalous. However, the latter is not unusual and also found in DS measurements of 

various glass formers [196, 200, 205-207]. The existing explanation is 

phenomenological based on a minimal model (MM) of asymmetric double-well 

potential [196] or a nonmonotonic relaxation kinetic model (NRKM) [200]. In MM, the 

two energy wells have different temperature dependence, thus the relaxation time may 

show anomalous temperature dependence. In NRKM, a rather counterintuitive physical 

picture is proposed. That is, with temperature increase the total volume of the system 

changes at a rate smaller than the rate of defect increase. Therefore, the average free 

volume associated with every defect becomes smaller and then reduces the space of β 

relaxation, leading to the negative temperature dependence of  relaxation frequency.  

 

 

Fig. 5.8 The sketch of the solid-like and liquid-like region of glass near the glass transition. The 

grey regions are solid-like and the while regions are liquid-like. 

 

Based on the NMA used in the present work, another view may be provided for 

comprehending the negative temperature dependence of the β frequency. Based on our 
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model, the oscillation frequency of β process is because the WDOS G() has a peak at 

the corresponding frequency range. This requires very weak interactions and large 

atomic clusters. It is presumed that only in weakly bonded regions β relaxation could 

take place [221], thus the negative temperature dependence of β relaxation is owing 

naturally to the weaker interactions when temperature increases and volume expands. 

In S-FSL5, the atoms are bonded by ionic-covalent interaction in structural polyhedron 

and connected by the long-range interactions (for example, Coulombic interactions 

[222]) between polyhedrons. Moreover, the introduction of the network modifier 

fluorine increases the possibility of isolated polyhedrons. The β relaxation is found in 

the experiment at the temperature higher than Tg but much lower than the melting point. 

In this temperature regime, the materials experience a transition from a solid-like to 

liquid-like state, which can be described by the picture of Orowan [223], as illustrated 

in Fig. 5.8. When the temperature is low, the material must have local mobile regions 

surrounded by a rigid matrix that did not permit viscous flow. With temperature 

increase, the sizes and numbers of such regions grow until they are connected, and 

viscous flow becomes possible. These liquid-like regions are reminiscent of Johari and 

Goldstein’s picture of “islands of mobility” (or “loosely packed isolated regions”) [193, 

208] which has also been employed by Nemilov [222] to explain  relaxation in silicate-

based glasses. When the temperature is lower than Tg, they provide room for β 

relaxation of some small atomic clusters. When the temperature is higher than Tg, the 

mobility and size of liquid-like regions increase significantly, and some bigger atomic 

clusters (mainly oxide-network patches in S-FSL5) fall off from the matrix and take 
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part in the activities of β relaxation. Besides, the long-range interactions become also 

weaker with temperature increase. Therefore, the β relaxation can be found at a 

relatively low frequency which decreases with temperature, as shown in Fig. 5.7(a). In 

addition, the fraction of  relaxation, namely x, should increase with temperature, which 

is also corroborated by Fig. 5.7(c). 

5.6. Conclusions   

I established a viscoelastic model based on the normal mode analysis of the 

potential energy landscape to describe mechanical  and β relaxations in a glassy 

material. Based on the model, it is predicted that an apparent double-peak phenomenon 

in the Fourier spectrum of a free beam vibration can be generated by a very weak β 

process when the frequency of β relaxation peak is close to the natural frequency of the 

specimen. This result has been validated by the acoustic spectrum of a fluorosilicate 

glass (S-FSL5) beam excited by a mid-span impulse. By analyzing the experimental 

results with the proposed model, it is found that there is a negative temperature-

dependence of the β frequency in the fluorosilicate glass, which can be explained based 

on the picture of fragmented oxide-network patches in liquid-like regions.  
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Chapter 6 Ergodicity breaking of an inorganic glass in 

aging near Tg probed by elasticity relaxation 

6.1 Introduction 

When a glass is aged at a temperature for which the decay of a physical variable 

is measurable, one intuitively expects that the dependence on the initial state, or the 

memory, should decay to zero based on the ansatz that the equilibrium state of 

supercooled liquid is approachable and unique [35]. That is, a glassy system is still 

ergodic over sufficiently long times even below the glass transition point, Tg, as the 

latter is merely an inflection point of a continuous cooling/heating curve, which does 

not indicate any critical feature of symmetry breaking. The ultimate fate of being 

ergodic is the cornerstone of the constitutive theories of glass [40], e.g., the Tool-

Narayanaswamy-Moynihan (TNM) [107-109] and the Kovacs-Aklonis-Hutchinson-

Ramos (KAHR) models [110], where a fictive temperature evolving towards the bath 

temperature is hypothesized to account for the fading memory. However, this ansatz 

was challenged by Kovacs’ experimental study on the volume relaxation of a polymeric 

glass below Tg in 1964 [38], showing that the effective relaxation time (τeff) after long-

time aging was still affected by the initial state especially in the experiments of 

temperature up-jump. Because of the presumed uniqueness of an equilibrium (ergodic) 

state (note that the equilibrated volume was not provided by Kovacs [38]), the observed 

divergence of τeff was termed as “expansion-gap paradox” or “τeff paradox” [40, 224], 

questioning how a quasi-equilibrated system can exhibit disparate dynamics. Owing to 
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the fundamentality in understanding glass relaxation, Kovacs’ experiment was later re-

examined by McKenna et al. [40] and repeated by Koll and Simon [224], which 

confirmed the gap in the quasi-equilibrium τeff.  

In other glassy systems such as a charge-density glass [62] and more extensively 

studied spin glasses [225], aging experiments also revealed a non-vanishing 

dependence on historic disturbance especially when the latter was applied with a long 

waiting time. This was manifested by not only the varied spectrum of relaxation time 

[225], corresponding to Kovacs’ finding, but also the non-converged physical quantity 

in an experimentally accessible duration [226]. Such observations together with the 

similar results of numerical simulations [61, 102] have led to the concept of ergodicity 

breaking (EB) described by a phenomenological model based on a rugged free-energy 

surface [102], or more analytically, replica symmetry breaking (RSB), revealed in the 

mean-field solutions of spin systems [227, 228]. Therefrom, to our understanding, a 

spin-glass transition, occurring at a critical temperature TC, can be precisely defined 

(i.e., weakly dependent on cooling rate [102]), as it manifests EB. In aging, it signifies 

a phenomenon that the long-term memory of historical disturbance persists below TC, 

and vice versa vanishes when T > TC [102, 225]. While it is generally believed that the 

results of spin-glass models can be extended to structural glasses, it is still arguable on 

the possibility of finding any EB phenomenon in the latter, considering that the built-in 

randomness of spin-spin interactions differs fundamentally from the self-generated 

position randomness of structural glasses. 

Kovacs’ finding of the expansion gap seemingly hints at this possibility. However, 
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his results were criticized especially by the inorganic glass community [229-231] as the 

dilatometry experiments with inorganic glasses [232, 233] after Kovacs did not render 

a convincing trend of persistent history dependence near Tg. For example, Goldstein 

and Nakonecznyj [232] speculated that τeff paradox might not be found in inorganic 

glasses because they had a narrower relaxation-time spectrum than a polymeric glass 

did. Struik [41] criticized that the τeff paradox might merely be a manifestation of the 

divergence of τeff when a stretched exponential process approached equilibrium. These 

criticisms might have discouraged the effort following the route of Kovacs to unveil an 

EB phenomenon or the nature of glass transition in structural glasses through 

monitoring volume (V) change.     

In this work, the attention is switched to the variation of Young’s modulus of a 

structural glass because it is a two-time quantity (i.e., the autocorrelation function of 

stress or strain [234, 235]) that can be analogous to the magnetic susceptibility of a spin 

glass and must be more sensitive to the heterogeneous dynamics in a glass [236]. Also, 

in experiments with structural glasses, E changes much more significantly in the 

temperature range of glass transition. Roughly speaking, -lg(dE/dT/E) is 2 – 3 [68, 163] 

and -lg(dV/dT/V) is 5 – 6 [68] for an inorganic glass, i.e., the variation in Young’s 

modulus is at least two orders of magnitude more significant than that in volume at 

temperatures near Tg. Hence, it is more plausible to probe an EB phenomenon, if any, 

based on E(t) than that based on V(t). On the other hand, the relaxation of elasticity is 

essential to the practical applications, and almost all the manufactory processes of glass 

devices are related to the elasticity. For example, during precision molding simulations, 
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real-time Young’s moduli are needed [237]. 

Therefore, a series of aging experiments will be conducted in this Chapter to 

investigate the temperature-time dependencies of Young’s modulus. The experimental 

results are reported in Section 6.2, the results are analyzed in Section 6.3. In Section 

6.4, a novel understanding of the relaxation of elasticity is proposed. All the results are 

summarized in Section 6.5. 

6.2 Temperature jump experiments 

The instantaneous Young’s modulus was measured. In the experiment, the sample 

was first heated to and annealed at an initial temperature T1 for a sufficiently long time 

to reach a quasi-equilibrium state (no apparent trend of modulus change) and then 

quickly (about 0.5 C/s) heated or cooled to the final temperature T2. I chose1 the 

commercial chalcogenide glass As2Se3 (Hubei New Hua-Guang Information Materials 

Co., Ltd, China) with the dilatometry Tg = 180 C, at which the viscosity is 

approximately 1012 Pa·s [26]. As2Se3 glass is a representative of chalcogenide glasses 

which has been widely used in infrared imaging [22] and optical switches [238]. It has 

excellent thermal stability against crystallization [28] with the lowest crystallization 

temperature of 200 C, as extrapolated in the plot of isothermal crystallization rate [239]. 

The results presented in this letter were obtained from a sample of 40.0258.0352.45 

mm3 and 3.6396 g, measured using an IET station HT1600 (IMCE, Belgium). During 

                                                        
1 Several oxide glasses were attempted. But the results were much more contaminated by experimental fluctuations, causing 

ambiguity to make any judgement. A plausible cause could be the noise in high-temperature measurements because of the higher 

Tg (~ 500 C). The IET system we employed is to record the sound generated by sample vibration. At a higher temperature, the 

environmental noise more deteriorates the weak acoustic signal. 
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heating, argon gas was purged to protect the sample from oxidation and Young’s moduli 

were measured and recorded every 20 seconds. Fig. 6.1 shows the results of aging at T2 

= 175 C after the temperature jumps from T1 = T2 ± ∆T with ∆T = 5, 10, and 15 C. An 

example temperature profile of the two-step aging is shown in the above-left inset, 

which illustrates the temperature overshoot and slow variations in a jump from T1 

=160C to T2=175C. Though this transition took hundreds of seconds, it is regarded to 

be a short transient process in comparison with the long aging time at T1 and T2 (~ 104 

s). Also, the relaxation at T2 starting from t = 0 as defined in this inset is clear-cut, which 

warrants the determinations of quasi-equilibrium relaxation time and Young’s modulus. 

 

 

Fig. 6.1 Two-step aging results of As2Se3 glass with T2 = 175 C and T1 = T2 ± 5, 10, and 15 C. 

Main plot: relaxation and quasi-equilibrated Young’s modulus at T2, showing that the divergence of 

Young’s modulus relaxation time process, illustrating a T1-dependence. The above-left inset: a 

temperature profile from 160 to 175 C; the above-right inset: plot of quasi-equilibrium Young’s 

modulus E against T1, 

 

As shown in the main plot of Fig. 6.1, when ∆T = 5 C, the relaxation processes 
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after up and down jumps are almost symmetric and the Young’s modulus after a long 

relaxation seemingly merges. With the increase in ∆T, the relaxations after up and down 

jumps become asymmetric, and more surprisingly, the quasi-equilibrium Young’s 

moduli are also different. I averaged the final leveled segment of the Young’s modulus 

data, containing over 400 data points collected in hours, to quantify the quasi-

equilibrium magnitude of Young’s modulus E, as plotted in the above-right inset of 

Fig. 6.1 against T1. Though the difference of E is small (< 1.5%), it is noteworthy that 

the divergence of E at T2 is systematic, i.e., E decreases with T1 and up-jump 

experiments render more deviation than down-jump ones when ∆T is the same.  

 

 

Fig. 6.2 (a) Plots of the relative change of Young’s modulus δE(t) with fitting results using Eq. (6.1), 

and plots of (b) relaxation time τ and (c) exponent β against T1, indicating exponential relaxations 

 

Using Kovacs’s definition [38], we study the normalized modulus change δE(t) = 

(E(t)-E)/E, as shown in Fig. 6.2(a) with the fitting curves using a 

stretched/compressed exponential function: 

    0 expE tt


    
 

,  (6.1) 



The Hong Kong Polytechnic University                                     PhD Thesis 

101 

 

where τ is the relaxation time, β the stretching/compressing exponent, and δ0 a scaling 

constant. As shown in Fig. 6.2(a), all the relaxation curves are well fitted, and the fitting 

parameters of τ and β are plotted in Figs. 6.2(b) and (c) against the initial temperature 

T1. We notice that β is almost unity with a maximum deviation of 0.07. Therefore, it is 

safe for us to claim that the relaxation E(t) in the chalcogenide glass As2Se3 is 

exponential with negligible stretching and that Kovacs’ finding of the non-converged 

relaxation time has been explicitly shown in Fig. 6.2(b); more specifically, τ decreases 

with the increase of T1. 

While various models have been proposed to reconcile the conflict between 

equilibrium dynamics and the history dependence indicated by Kovacs’ τeff paradox, 

such as the rational thermodynamics [240], stochastics relaxation model [241], or 

coupling model [242], a loophole in the paradox is indeed the experimental inability to 

probe the slowest relaxation in a non-exponential process [41, 224]. In our experiments, 

however, the relaxations are exponential, the loophole vanishes, and the history 

dependence of the relaxation time stands. Furthermore, we have supplemented the 

observation that the long-term relaxation may not bring the system to equilibrium 

because E does not converge, i.e., the ergodicity is broken and the glassy system can 

only explore a T1-dependent subregion of the configurational space. This finding echoes 

the extensive computational and experimental findings that the aging of a spin glass 

system, at temperatures below Tg, does not bring the system asymptotically to an 

equilibrium state [61, 102, 226]. Note that we cannot exclude the possibility that an 

ultra-long relaxation may bring the system to equilibrium because of the constraint of 
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the experimental system (in our case it is due to the limit of inert gas supply). However, 

because all the E t curves clearly leveled off as shown in Fig. 6.1 with durations of the 

flat segments over 10, it is reasonable to claim that the further relaxation, if exists, 

needs a timescale well beyond experimentally accessible range. 

6.3 The relation between relaxation time and elasticity 

6.3.1 Global elastic model  

 

 

Fig. 6.3 Analysis of T1 dependence of (a) relaxation time  based on the elastic model 

 

We anticipate further a correlation between the dynamics, manifested by , and the 

statics, manifested by E, because the temperature dependences of them display similar 

features. Based on the elastic model proposed by Mooney [105] which was derived 

based on Eyring’s picture of local molecular movements [243], a relaxation comes 

about when thermal fluctuations generate a local expansion exceeding a certain critical 

value. Mooney [105] estimated the probability of these relaxation events interfered by 
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the thermal longitudinal sound waves and proposed that:  

 
0 exp

B

Q

k T
 

 
  

 
,  (6.2) 

where τ0 is a pre-factor, kB is the Boltzmann constant, Q c
2 

∞  E is the activation 

energy, and c∞ is the speed of longitudinal sound waves. Note that the temperature T in 

Eq. (6.2) is a phonon temperature which does not account for the effect of the non-

equilibrium dynamics associated with an unrelaxed atomic configuration [244]. We 

follow Tools [107] and other researchers [45, 245] to involve the effect of structural 

temperature by introducing an equivalent temperature Te[T1, T2] to replace T in Eq. 

(6.2), because the glass is sufficiently equilibrated at T1 and then aged at T2. For 

simplicity, letting Te =μT1+(1-μ)T2 with μ = μ(t) [0, 1] being time-dependent, Eq. (6.2) 

is then recast as 

 0ln ln
e

E
h

T
   ,  (6.3) 

where h =Q/(kBE). At a quasi-equilibrium state, E and μ = μ(t→∞) are constant. 

Replacing E with E in Eq. (6.3), and fitting the results of , it is obtained that μ= 

0.080, as shown in Fig. 6.3, wherein the data points collapse to a straight line given by 

Eq. (6.3). The obtained slope h = 1877.3 K/GPa, together with E = 16.2 ± 0.1GPa (see 

the above-right inset of Fig. 6.1), leads to the activation energy of Q= hEkB = 60.4 ± 

0.4 kcal/mol, agreeing reasonably well with the activation energy of 68 kcal/mol of 

As2Se3 near Tg [246] determined based on the temperature dependence of shear 

viscosity.  
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6.3.2 Mori-Tanaka (MT) analysis of glass after aging  

The small value of μ∞ indicates the non-vanishing structural memory in an aged 

glass, corresponding to the unmerged E as shown in the right-above inset of Fig. 6.1. 

I now draw a simplified picture for the aged glass to be a composite, wherein the matrix 

is a fully equilibrated (no memory) system at T2 and inclusions are the persistent 

structure of T1, as sketched in the inset of Fig. 6.4. Denoted by Ei and Em the Young’s 

moduli of the initial state and the fully relaxed state, respectively, the ratio y=E∞/Ei can 

be expressed as a function of x = Ei/Em, i.e., y=f (x). Due to small μ∞, it is imaginable 

that the inclusions have tiny fractions, thus (1) the interactions between inclusions can 

be neglected, and (2) every inclusion can be considered in an infinite element. Therefore, 

the above composite question can be considered with the assumption of spherical 

inclusion, and the effective shear and bulk modulus can be derived based on the Mori-

Tanaka (MT) method [247]: 
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  (6.4) 

where  

G∞: effective shear modulus; 

Gi: shear modulus of initial structures; 

Gm: shear modulus of relaxed structures; 

K∞: effective bulk modulus; 

Ki: bulk modulus of initial structures; 
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Km: bulk modulus of relaxed structures. 

and 
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Considering the relation 
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where Eϑ, and νϑ are Young’s modulus and Poison’s ratio, respectively; ϑ= i and m. Then 

the effective Young’s modulus can be written as 

  
 , ,

9
,

3 i m f
i m V

K G
E g E E
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
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 


  (6.7) 

That is, E∞ can be considered as a function of Ei and Em with parameters of (νi, νm, Vf). 

Normalizing Eq. (6.7) with Ei leads to  

  
 

 
 , , , ,

1,/ /
i r f i r f

i r i V V
E E Ef y xE

      .  (6.8) 

Interestingly, f(y) is found to be very weakly dependent on νi and νr, which leads to 

possibility of calculation of Vf . Let Er be the average of E∞ when T = 5 C and Ei 

the Young’s modulus of the relaxed structure of T1 when it is kept at T2 (i.e., corrected 

by the Debye-Grüneisen coefficient). Plotted in Fig. 6.4 is the experimental results of 

f(y) together with the theoretical curve passing through experimental points when νi = 

νr = 0.3 and Vf = 0.08095 (if i and vr vary between [0.1 , 0.4], Vf varies between 
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[0.08094, 0.08101]). It is intriguing that Vf is identical to μ∞ though they are determined 

in completely different ways, a demonstration that the quasi-equilibrium dynamics and 

atomic arrangement are closely related.  

 

 
Fig. 6.4 Analysis of the microstructures of aged glass based on the Mori‒Tanaka approach; the inset 

illustrates the simplification of the T2-aged glass to be a composite.  

 

Noting that [df (x)/dx
 1,

]
i mx v 

 +1=Vf, i.e., the slope in the plot of Fig. 6.4 near x 

= 1 can be used to estimate Vf. The aging experiments are repeated with T2=170, 173, 

177, and 180C, and T1 = T2  10C to obtain the relation between Vf and T2, i.e., the 

temperature dependence of memory persistence. The results are plotted in Fig. 6.5. To 

exemplify, the relaxation curves of T2 =170C and 180C are shown in the insets of Fig. 

6.5. We notice that at 180 C the two curves merge after a long-time aging and the 

exponential relaxation times after up and down jumps are almost identical (~ 300 s). 

Therefore, Vf = 0 at 180C. Noteworthily, when T2 = 177C, Vf is 0.005 determined from 

the separate values of E after up and down jumps. Besides,  = 394.0s and 320.2s 

based on exponential fits for up and down jumps at this temperature, respectively, with 
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the expected difference that the up-jump case relaxed slower. Fig. 6.5 suggests there is 

a critical temperature Tp  (177C, 180C) that can be analogous to TC of a spin glass. 

Below Tp, the structural memory persists, i.e., ergodicity is broken; above it, the 

memory can fade completely, i.e., the system restores ergodicity. For As2Se3, Tg is not 

a uniquely determined temperature but varies in the range of 175 – 180 C [248] due to 

the variety of characterization techniques. It is hence argued that the critical temperature 

Tp is within the empirical range of Tg, at least for As2Se3, signifying that structural glass 

transition is not just a slowing-down process. Also, we emphasize that our work has 

paved the way to uniquely determine Tp through measuring E after two-step aging 

with T ~ 10C. The measurement of the exact Tp for As2Se3 would only depend on the 

accuracy and resolution of temperature control and modulus measurement.  

 

 

Fig. 6.5 Plot of the measure of memory persistence Vf against the aging temperature T2, indicating a clear 

transition at a critical temperature TC  (177 C, 180 C) with bottom-left and upright insets showing the 

aging curves E(t) at T2 = 170 and 180 C, respectively, after equilibrated at T1 = T2  10C. 
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6.4 Ergodicity breaking origin to dynamic heterogeneity 

Phenomenologically, the persistent memory can be explained based on a rugged 

free energy landscape [102], namely, a glassy system may be trapped in deep energy 

basins during aging at T1, constraining the exploration of the full energy landscape at 

T2 within an experimentally accessible time that is already much longer than the 

relaxation time estimated from viscosity. This picture is also reminiscent of the “mosaic” 

transition delineated by the random first-order transition theory [122], that is, a glassy 

system transforms into a patchwork consisting of distinguishable atomic arrangements 

below Tg. In the two-step aging experiments, some patches at T1 persists at T2 during 

the long aging.  

However, the mean-field picture based on a free-energy landscape does not explain 

how a persistent memory forms from the random variations of atomic configurations, 

especially when Tp ~Tg > TK (TK, the Kauzmann temperature). Therefore, a real-space 

picture is needed. Trying to establish it, at least with a clue, we note several recent 

attempts in establishing the connection between static structures and long-time 

dynamics based on molecular dynamics (MD) simulations. In a very recent 

investigation of structural-property relation in a binary Lennard–Jones glass, a machine 

learning algorithm [148] was established, which, after training, can predict long-time 

dynamics based on the static initial structures. This result is a triumph in decoding the 

nature of glass state, as it unveils that the information of initial structures is not 

“forgotten” in the subsequent relaxation process [149], similar to our results on the 

initial-state dependence of relaxation time. More transparently, Wang et al. [249] 
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conducted MD simulations of Cu50Zr50 and found that the activation energy had a strong 

correlation with the vibrational mean squared displacement (VMSD) instead of the 

short-range structural indices. As VMSD describes the long-range elastic interactions, 

Wang et al. [249] argued that the effect of elastic constraint could be the rate-limiting 

mechanism of structural relaxation in a glass, which is also the reason we employed the 

elastic model to analyze relaxation time.  

Interestingly, Wang et al. [249] found that the glass could be more heterogeneous 

during relaxation because the soft spots, those substructures with higher flexibility 

(higher free energy), tended to flock together, leading the heterogeneity in both 

structure and dynamics. Parallelly, Zhang and Lam [250] established a distinguishable-

particle lattice model (DPLM), which can be regarded as an abstraction of soft-spot 

dynamics. It simplifies position randomness in a structural glass to be a random force 

field between site particles and introduces voids to mimic the motion of soft spots. Such 

a setup leads to spatially constrained dynamics (SCD), i.e., only agminated voids bring 

about significant relaxation events while isolated voids are trapped. The DPLM 

simulations successfully reproduced the separation of quasi-equilibrium eff [251] even 

though the void concentration and thus the equilibrium state were predefined. 

Encouraged by the DPLM result and MD simulations, I anticipate that a simplified real-

space glass model revealing SCD may involve additionally the generation and depletion 

of soft spots (or voids) that is dependent on the bath as well as structural temperatures, 

local stress state, and global energy penalty, following the free-volume picture [252]. 

Thus, the initial-state dependence, in terms of both relaxation time and quasi-
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equilibrium state, may be revealed as a consequence of SCD and the associated 

evolution of the distribution of soft spots.  

6.5 Conclusions 

In conclusion, I performed two-step aging experiments with an inorganic glass 

As2Se3 and revealed for the first time the clear phenomena of ergodicity breaking based 

on the measurements of instantaneous Young’s modulus. Both the dynamics and the 

quasi-equilibrium structures are found to be dependent on the thermal history. A critical 

ergodicity-breaking temperature was identified in As2Se3 in terms of the volume 

fraction of the persistent memory, which was within the empirical glass transition range. 
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Chapter 7 Birth–death model of glass relaxation related to 

local elastic heterogeneity 

7.1 Introduction 

Since 1933, Tammann [253] suggested that glass is not formed homogeneously. 

With the accumulation of experiments [47, 254-256] and MD simulations [199, 257-

259], local structural heterogeneity can be stated more explicitly. Due to thermal 

fluctuation and structural heterogeneity, some regions in the glass act as a ‘solid-like 

site’, which is rigid, while other regions act as ‘flow unit’ [48] or ‘liquid-like site’ [260] 

which is very soft. In 2010, Dmowski et al. [47] experimentally found that the volume 

fraction of soft regions that can flow at a constant temperature in Vit-105 metallic 

glasses (Zr52.5Cu17.9Ni14.6Al10Ti5) is as high as 25%. Using atomic force acoustic 

microscopy, Wagner et al. [261] and Liu et al. [254] detected elastic heterogeneity at 

the nanoscale. More institutive and intellectual pictures were found in the MD 

simulations. Yoshimoto et al. [257] conducted MD simulations of polymer glass and 

found that the distribution of shear modulus on a scale is Gaussian. A similar work was 

proposed by Tsamados et al. [262] who studied a model Lennard–Jones (LJ) glass 

(molecular glass) and found that both bulk and shear moduli exhibit Gaussian 

distributions.  

As long-range structures are not found in glass, the structural heterogeneity is 

inescapably caused by the slowed relaxation of cooling liquids. Alternatively, 

heterogeneity has a significant influence on glass relaxation, as mentioned in the 
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previous chapters. That is, the relaxation and local heterogeneity are coupled in the 

glass. To explain the relaxation affected by the heterogeneity, many theories have been 

proposed, including the coupling model [119, 120] and stochastic models controlled by 

energy [121, 124, 125, 131] or volume [65, 135, 137, 138]. In addition, the spatial 

heterogeneity resulting from relaxation was studied by Lam et al. [250, 251] using an 

energy-based lattice gas model.  

Except for energy and local volume heterogeneity, the most intuitive 

understanding, elastic property, has not been well understood theoretically. An attempt 

was proposed by Sun et al. [259] who used an empirical relation to describe the local 

elastic relaxation. However, this is far from a comprehensive understanding of coupled 

relaxation. Conversely, the demands for the principles of elastic relaxation from 

industrial communities are very strong. For example, in PGM, the real-time Young’s 

modulus affected by thermal history is needed for technology simulations [237].  

These critical issues inspired me to consider the modeling of elastic relaxation 

influenced by local heterogeneity. Based on the MD simulations of Refs. [257, 262], 

the elastic modulus distribution seems a continuous Gaussian function, thus an 

institutive reaction is to consider the transitions between different elastic ‘phase’. This 

idea is similar to that of Medvedev et al. [65] on a specified volume. However, the 

mathematical processes of Medvedev et al. [65] are very complex and may not be 

preferred (especially by the industry). In this chapter, a birth–death (BD) model, which 

is relatively simple but practical, is proposed to consider the coupled relation between 

local elastic heterogeneity and macro relaxation. In the model, the global system is 
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controlled by two different states that can jump to each other. Later, I will show that 

such a simplification is available to describe the elastic relaxation and that the Gaussian 

distribution found in MD simulations [257, 262] is misleading to some degree. 

In this chapter, mathematical modeling is proposed in Section 7.2. The time–

temperature-dependent survival ratio will be derived in rigid mathematics. Then, the 

expression of Young’s modulus and its variance related to scale will be discussed based 

on the model. In Section 7.3, I will conduct a real statistical simulation to confirm the 

formulas derived in Section 7.2. In 7.4, applications of the BD model and some 

associated issues are discussed. All results are summarized in Section 7.5.  

7.2 Mathematical modeling  

7.2.1  Birth–death process at a constant temperature 

 

Fig. 7.1 Sketch of a birth–death process. The states can jump to each other with a specified jump 

rate.  

 

As shown in Fig. 7.1, the representative volume element has been separated into 

N small patches, which may occur in two different states S1 and S2 that can jump to each 
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other:  

 1

2
1 2

J

J
S S ,  (7.1) 

where J1 is the jump rate from S1 to S2, J2 is the jump rate from S2 to S1, and J1Δt and 

J2Δt are the corresponding jump probabilities in a short time interval Δt, respectively. 

Let n1 be the number of S1, while n2 = N – n1 is the number of S2. Without loss of 

generality, one can choose state S1 as the observed target whose probability is P(n, t), 

where n is the number of S1 patches and t is the time. Then, the master equation of the 

birth–death processes is given by 

 
       

   

1 2

1 2

,
1 1, 1 1,
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
      



    

.  (7.2) 

When n varies from 1 to N, one can obtain a set of equations with N equations and N 

unknown P(n, t). With the boundary condition P(N + 1, t) = 0 and initial state P(n, t = 

0), the equation set can be solved numerically or analytically, and can be solved through 

the moment-generating function, which is defined as 

    , ,n

n

G s t s P n t




  .  (7.3) 

It is noted that [0, ]n N ; thus, P(n, t)=0 for [0, ]n N  to make the above equation 

useful. Summing both sides of Eq. (7.2) for n from –∞ to +∞ after timing sn, one has  

 
 

   
 

 1 2 2

, ,
1 ,

G s t G s t
s J J s J NG s t

t s

  
    

  
.  (7.4) 

Eqs. (7.2) and (7.4) are equal. That is, the multidimensional equations have been 

transformed into a one-dimensional equation. Eq. (7.4) can be solved by the method 

of characteristics.  
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Firstly, I rewrite the equation as 

    
 

  
 
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, ,
1 , 1

G s t G s t
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. (7.5) 

Using the substitution         , ,G s t G s x t x G x  , we have the following 

deferential chain:  

 
dG G ds G dt

dx s dx t dx

 
 
 

.  (7.6) 

The consistency of Eqs. (7.5) and (7.6) provides 

 1
dt

dx
 , (7.7) 

   1 21
ds

s J J s
dx

   , (7.8) 

   21
dG

s J NG
dx

  . (7.9) 

Eq. (7.7) implies x = t (It sets t0 = 0 without loss of generality); therefore, the solution 

of Eq. (7.8) is 
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Eq. (7.9) can be rewritten as 

   2

ln 1
1

d G dG
s J N

dt G dt
   ,  (7.11) 

whose integration is 
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,  (7.12) 

where G0(s) is an arbitrary function of s. 

It can be derived from Eq. (7.10) that 

 
   1 2

1

1 2

e 1
J J t

s
C

J J s

 


 


.  (7.13) 

Therefore, Eq. (7.12) can be written as a function of s by substituting Eq. (7.13): 



The Hong Kong Polytechnic University                                     PhD Thesis 

116 

 

 

 
   

    

1 2

1

0

2

1

2
20

2

2

e 1

1 1 1 e

J J t

Jt

N

N

J J s J s

J
G G s

G s

J

J
s J

J

 



   
 

  

 
   

 



,  (7.14) 

where J = J1 + J2. Therefore, G0(s) = G(s, t = 0). 

Now, I attempt to derive P(n, t) from Eq. (7.14). Let us consider Case A where 

there is no target state in the system at the initial state (t = 0), one has P(n, t = 0) = δn,0 

and G0(s) = 1. Therefore,  
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Based on Newton’s binomial theorem, the above equation can be expanded as 
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,  (7.16) 

where 
 

!

! !

n

N

n
C

n N n



 is the binomial coefficient and ‘!’ is the factorial symbol. 

Comparing Eqs. (7.3) and(7.16), one has a binomial distribution 

      , 1
N nnn

N A AP n t C p t p t


    , (7.17) 

where 

    2 1 Jt

A

J
p t e

J

  , (7.18) 

is the possibility of finding the target state in Case (A). 

Based on the moment-generating function, it is easy to find the expectation  
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where < > represents the average among all possibilities at time t. Therefore, the number 

of target states in the global system is expected as  
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Now let us consider the opposite situation, that is, Case B, where the target state 

fulfils the system in the initial state (t = 0); one has P(n; t = 0) = δn,N and G0(s) = sN, and 
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This leads to a binomial distribution of  
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where 
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is the possibility of finding the target state in Case B) Therefore, the number of target 

states in the global system is expected as 
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Generally, when the system starts from an arbitrary state < n(0) >, the evolution of 

the average number of target states is  
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Moreover, the variance can be derived from G(s, t) 
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After some derivations, the variance of n(t) can be obtained as 

           2 2 2 1 2 2

2 12
0 1 0

Jt Jt Jt JtJ J J
n t n e e n e N J e J

J J
 

   
    

 
  

.  (7.27) 

When t→∞, the equilibrium state reaches  
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When N is very large in a macro system, providing a predefined value of N is 

unnecessary, and the above equation can be normalized by  
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  , (7.29) 

where λ(t) is the expected survival ratio of S1. Then, 
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can be obtained, where λ0 = λ(t = 0) and  
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Eq. (7.31) suggests that the equilibrium state is determined by the jump rates of both 

sides. 

7.2.2  Variation in survival ratio at varying temperatures 

Practically, the jump rate is not constant due to the varying environment, for 

example, temperature. Therefore, the variation in the survival ratio should be extended 
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at various temperatures. Let us consider a time-dependent jumping ratio affected by 

temperature. In a very small time interval from t to t + dt (dt→0), the jump rate change 

can be neglected. Then Eq. (7.30) changes to  
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Considering the equivalent infinitesimal relation exp(ε)~1 + ε, where ε is an 

infinitesimal, the above equation changes to  
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i.e.,  
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Considering λ(0) = λ0, the solution of Eq. (7.34) is found by the method of parameter 

variation 
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For a complex temperature history, the integration of Eq. (7.35)cannot be 

calculated directly. Then, one should use the difference method by changing Eq. (7.32)

as 
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where k is the step number and ∆t is the time step. The above explicit scheme is 

available for any complex case. If a relatively larger Δt is used, the implicit difference 

scheme is recommended. 
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  (7.37) 

If the small Δt used in the explicit scheme leads   1kJ t t , Eq. (7.36) can be 

simplified as 

        1 21k kk kt J t t J tt t         ,  (7.38) 

and the corresponding implicit difference scheme is  
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.  (7.39) 

For the mean-field theory, the derivations in this section decouple the jump rate, 

which may interact with each other. As Eq. (7.35) is derived with dt→0, that is, the 

higher-order effects of the time dependence of the jump rate are neglected, it is always 

available if the interaction between different paths can be written into the expression 
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jump rate. If the integration is difficult to find, the difference methods with the same 

idea can be used. 

7.3 Numeric validation with stochastic simulation  

 

Table 7.1 Jump rate parameters in Eq. (7.40) 

f1  f2 
 N  Q1/kB Q2/kB time ∆t 

1 0.8 1E4 3800 4000 10000 1 

 

To verify the above derivations, a series of stochastic simulations were performed. 

For simplicity, the jump rate is defined in the Arrhenius form.  
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,  (7.40) 

where Qi is the energy barrier; fi = ν0 gi, where ν0 is the attempt frequency and gi is 

the degeneracy (where i= 1 and 2). Then, the jumping possibility is defined by 

 1

2

1

2

P t

JP

J

t

 


 
, (7.41) 

where 0 < JiΔt <1 (i = 1, 2). To start the simulation, a system with N patches was 

considered. The patches are occupied by ‘1’ or ‘0’. A vector r(N)  [0, 1] is generated 

with an N random value. If r is smaller than the jumping possibility, the jumping event 

occurs; otherwise, the subsystem retains its current state. By repeating the above 

process step by step, the relaxation process can be simulated. The simulation process is 
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summarized in Fig. 7.2. To simplify the simulation, dimensionless parameters are used 

except T, which has a nominal unit of Kelvin. The parameters used are listed in Table 

7.1. During the simulation, the jumping judgment was conducted on all the N patches 

in every time step.  

 
Fig. 7.2 Flow chart for simulating the birth–death process. 

 

 
Fig. 7.3 Comparison between stochastic simulation and analytical solution at a constant temperature: 

(a) starting from λ0 = 0.8, and (b) starting from λ0 = 0.1. The bold line is the simulation result, and 

the thin line is the analytical result of Eq. (7.30).  

 

In Fig. 7.3, the relaxation processes at constant temperature are plotted. I consider 

two cases of (a) λ0 = 0.8 and (b) λ0 = 0.1, which are larger and smaller than the 

equilibrium states. The prediction of Eq. (7.30) agrees well with the simulation results. 
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At a constant temperature, the relaxation processes are exponential, as mentioned by 

Eq. (2.2). Furthermore, the equilibrium state is also different from the aging 

temperature, which is due to the difference in the ratio between the jump rates. In Fig. 

7.4, similar cases of λ0 = 0.8 and λ0 = 0.1 are considered, but the temperature changes 

between 400 K and 500 K with a linear heating and/or cooling process. The prediction 

of Eq. (7.35) and the simulation are completely consistent, even for cases with complex 

and non-monotonic relaxation processes (Figs. 7.4(b) and (c)).  

 

 

 
Fig. 7.4 Comparison between stochastic simulation and analytical solutions at various temperatures. 

The bold line is the simulation result, and the thin line is the analytical result of Eq. (7.35). The 

temperature varies between 400 K and 500 K with a heating and/or cooling rate of 2 10-5 K every 

time unit. 
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7.4 Applications of the BD model and discussions  

Though the derivations following rigid mathematics are complex, the final 

equations of survival ratio are elegant, as shown by Eq. (7.30) and (7.35). In this 

Section, several cases will be addressed to show that this elegant model has powerful 

potentials on many aspects of glass relaxation. 

7.4.1 Prediction on the temperature-dependent Young’s modulus 

As mentioned above, the variation of Young’s modulus during temperature change 

is critical to the manufacture of glass products [237]. Because glass relaxation is 

appreciable when the temperature is near Tg, the relaxation of Young’s modulus will 

have memory effects in practical experiments, making it complex to predict the Young’s 

modulus in real-time. The BD model provides a possible approach if the variation of 

survival ratio of S1 is known. However, there still needs two conditions, that is, (1) the 

mixing rule from survival ratio to the macro property, and (2) the two jump rates 

controlling the relaxation process.  

Let us consider the two states in a glass with different Young’s moduli E1 (S1) and 

E2 (S2). With temperature change, their structures maintain their values only changed 

with Debye–Grüneisen (DG) relation; that is,  

 
 

 

1 1 1

2 2 2

E T a bT

E T a b T

 


 

, (7.42) 

where a1, b1, a2, and b2 are the coefficients. When the two states combined, it is very 

complex in the mesomechanics to find effective elasticity and has been investigated by 

many researchers. Based on Hill [263], the arithmetic means of modulus, corresponding 

Voigt’s estimation [264], is the upper bound of the effective modulus, and the harmonic 

means, corresponding to Reuss’ estimation [265], is the lower bound. This is because, 
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in the direction of applied stress, the arrangement of a composite has two extreme 

situations, i.e., serial and parallel connections. In cases of calculating the effective bulk 

modulus, arithmetic means based on Voigt’s estimation [264] always works. However, 

when calculating the effective Young’s modulus or shear modulus, the fraction of serial 

or parallel connections is difficult to determine. For simplification, one can assume that 

their contributions are almost equal, such as that of Hill’s suggestion [263] that an 

effective modulus is the average of the Voigt and Reuss estimations, which is thus called 

Voigt–Reuss–Hill (VRH) approximation. Young’s modulus is written as follows: 

  
1

2
V HE E E  ,  (7.43) 

where 
1 1 2 2VE E E    and 

1 2

1 2 2 1

R

E E
E

E E 



, λi is the composition fraction, and I = 

1, 2 labels the state. In recent years, some mesomechanic-based methods have been 

proposed. For example, Sun et al. [259] in 2016 derived the effective modulus of glass 

modeled by a composite of hard/soft patches based on Eshelby’s method. 

The volume fraction of a single state may vary significantly in a glass. For example, 

the ratio of liquid-like regions starts from 1 to 1/4 in Vit-105 metallic glass during the 

manufacturing process [47]; these theoretical predictions should be examined carefully 

before application. I conduct simulations using the finite element method (FEM) on a 

2D composite with 5 5 soft inclusions in a hard matrix. Fig. 7.5 provides a comparison 

between the predictions of Eshelby’s theory, the VRH approximation, and the FEM 

results. It was found that the VRH approximation provides a very good description of 

Young’s modulus in a broad volume fraction of inclusions. The prediction of Eshelby’s 

theory gradually departs from the FEM results with an increase in the inclusion fraction. 

This is because the interaction between different inclusions is not considered by 

Eshelby’s theory, but it becomes important when the inclusion fraction is not very small. 
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During glass transition, the sample changes from solid-like state to liquid-like state, 

which corresponds to a significant change in the volume fraction of ‘inclusion’. 

Therefore, the VRH approximation is preferred if one wants to calculate the effective 

modulus. 

 

    

Fig. 7.5 Effective modulus as a function of the fraction of inclusion. The Young’s modulus ratio 

between the inclusion and matrix is (a) 0.2 and (b) 0.8. 

 

As shown in Fig. 7.1, one may consider that the two states have different potential 

energy states; then, the jump rate between the two states can be defined by the energy 

barrier, as the definition of the Arrhenius relation of Eq. (7.40). As examples, the 

temperature dependence of two glasses during heating was examined. The first sample 

is L-BAL42, which has already been reported in Chapter 4. The second sample was S-

FSL5. Different from the sample used in Chapter 5, a new sample (40.05 7.9 2.02 

mm3, 1.571 g) was used, and the natural frequencies during the entire experimental 

period were far from the frequency of its β relaxation. This can reduce the effects of β 

relaxation on the modulus measurements. All the procedures are the same as in Chapter 

(a) (b) 
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4, except that the heating rate of S-FSL5 is 5 C/min.  

To predict the experimental results, nine parameters, that is, {a1, b1, a2, b2, f1, Q1, 

f2, Q2, and λ0}, are needed. Herein, λ0 is the initial proportion of S1. To obtain them, the 

predictions of Young’s modulus based on the BD model were fitted to the experimental 

results. The errors between the predictions and experiments are minimized by the 

adaptive simulated annealing (ASA) algorithm. Technically, the implicit difference 

scheme in Eq. (7.37) was used. Since most relaxation events occur at high temperatures, 

the time interval used in the BD model is not uniform but decreases with increasing 

temperature. The time interval at the highest temperature is 1% of that at the lowest 

temperature in the experiments. A total of 104 points are used for differences in the 

prediction of the BD model.  

 

 
Fig. 7.6 Comparison of temperature-dependent Young’s modulus between the experiments and 

predictions of the BD model.  

 

The comparison between the experiments and the BD model predictions are 

plotted in Fig. 7.6, and Young’s moduli of both L-BAL42 and S-FSL5 were successfully 
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predicted. For the L-BAL42 glass, the modulus monotonically decreases with 

temperature and has a sharp transition near Tg. However, for S-FSL5, the temperature 

dependence of Young’s modulus is anomalous as it increases with temperature before 

Tg. Such a feature may be related to the amorphous silicon oxide (a-SiO2), whose 

Young’s modulus also has an anomalous temperature dependence [266]. Fig. 7.6 

suggests that the BD model can simulate both the normal and anomalous temperature 

dependence of Young’s modulus.  

7.4.2 Relationship between relaxation time and mixing rules 

 As stressed by Medvedev et al.[65], mixing rules have influences on the 

predicted relaxation in a mean-field model. Now let us consider two basic cases. 

(a) If the macro property (e.g. energy and volume) of glass equals the weighted 

average of the two state properties, that is, the arithmetic mean mixing rule, then  

    1 2 1P aP t bP t      ,  (7.44) 

where a and b are the weight parameters and P1 and P2 are the properties of the two 

states. The fundamental ‘clock’ of a BD model is controlled by the relaxation time, not 

by atomic vibration. Recall the hypothesis that the property relaxation depends on the 

departure of the equilibrium state, 

 
 d

d

eqP P tP

t 


 .  (7.45) 

At a constant temperature, I substituted Eqs. (7.30) and (7.44) into Eq. (7.45) and 

obtained  

 1J  .  (7.46) 
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Recall Eqs. (4.6) and (4.10) in Chapter 4; I showed that when the jump rate from 

one state to another satisfies 1

MJ   . This consistency also indicates the validation of 

the BD model. 

(b) If the macro property (e.g. density and electricity) follows the harmonic mean 

mixing rule, then  

 
1 1 1

1 1 2 2P aP n bP n    . (7.47) 

Similar conductions lead to  

 
  1

eq

P t
J

P
  . (7.48) 

If the system state is not very far from the equilibrium, P(t)/Peq ≈ 1, Eqs. (7.46)

and (7.48) were almost equivalent. This corresponds to the cases that was experimental 

found in Chapter 6 because Young’s modulus changes a little during the aging period. 

However, if the system state is far from the equilibrium, it is expected that the effective 

relaxation time is time-dependent. This indicates that the mixing rule is essential for the 

relaxation process. In a mean-field theory with numerous different states, the jumping 

ratio can be pre-defined. Eq. (7.48) implies that even in the simplest case of two 

distinguishable states, the relaxation may drop into the non-exponential process. For 

the macro property, which intuitively follows the arithmetic mean mixing rule, for 

example, volume, practical mixing is not purely arithmetic due to the interactions 

affected by the stress contributed by the mismatch. This leads to the contributions of 

the harmonic mean. In the stochastic model of Robertson et al. [135] and Medvedev et 

al. [65], the local relaxation is assumed to be related to the macro volume due to the 
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interactions between different sub-regions. However, the question is as follows: Is the 

local relaxation affected by neighboring regions or the global system? Eq. (7.48) 

suggests that the global system is indeed participating in local relaxation if the sub-

regions interact. 

7.4.3 Distributions of the local elasticity heterogeneity due to VRH approximation 

Recall the works of Yoshimoto et al. [257] and Mizuno et al. [255] who conducted 

MD simulations and calculated the bulk modulus K and shear modulus G at different 

scales. The probabilities of the elastic modulus at different scales were studied in both 

works and were found to have a Gaussian distribution. From the view of the 

combination of two different states of glass, the observed patches of the two states are 

possibly different at different scales, which leads to elasticity uncertainty in 

observations. To exhibit the relation in the BD model, I discuss the variance of Young’s 

modulus as an example at the equilibrium state. 

For Voigt’s case, the following is derived 

      
22 2 1 2

1 1 2 2 1 2 2

1
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J J
E E E E E

N J
       . (7.49) 

For Reuss’ case,  
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,  (7.50) 

where φ = n – NE1/(E1 – E2). Based on Eq. (7.17), <n> ~ B[N, J2/J], which is a binomial 

distribution at the equilibrium state. Thus, φ ~ B[N, pφ] with pφ = J2/J + E1/(E2 – E1). 

Therefore,  
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where LFM({a1, a2, …aL}; {b1, b2, …bM}; φ) is the generalized hypergeometric function 

of φ. 

In addition, N is relatively large in a practical measurement; therefore, <n> ~ B[N, 

J2/J] can be approximated to <n> ~ G[NJ2/J, NJ1J2/J
2] is a Gaussian distribution with 

a mean of (NJ2/J) and variance of (NJ1J2/J
2). The mean of 1/φ can be found with 

Lecomte’s method [267]. 
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where      2 2
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exp exp d
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D z tF z t    is the Dawson function [268]. The second-

order moment of 1/φ is [267]. 
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Using Eqs. (7.52) and (7.53), one has  
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Substituting Eq. (7.51) or Eq. (7.54) into Eq.(7.50), σ2[ER] is obtained, and the 

variance determined by the VRH approximation is  

       2 2 21

4
V RE E E    . (7.55) 

Based on the BD model, a local state follows a binomial distribution, as discussed 

in Section 7.3.3. With the increase in N, the binomial distribution gradually becomes a 

Gaussian distribution. Therefore, for the bulk modulus that follows the arithmetic mean, 

it is expected to obtain a Gaussian distribution. Nonetheless, Young’s modulus or shear 

modulus contains harmonic mean effects that distort the distribution, Gaussian 

distribution should not yet be valid. 

 

 

Fig. 7.7 The scale dependence of the distribution of elastic modulus. (a) shear modulus of the 

polymer glass by Mizuno et. al [255], and (b-c) shear and bulk moduli of the LJ glass by Yoshimoto 

et. al [257] 

 

To clarify the difference between the prediction of BD model, and the previous 

upstanding, I collect the distribution of shear modulus of the polymer glass simulated 

by Mizuno et. al [255], and the distributions of shear and bulk moduli of the LJ glass 
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simulated by Yoshimoto et. al [257], and plot them in Fig. 7.7. In the plot, three different 

scales of L are considered with L being the side length of the investigated patch. The 

distribution is bell-shaped and becomes sharp with the increase of L. This seems 

consistent with Gaussian distribution. I collected the height (H) and the full width at 

the half maximum (W) from the reported data [255, 257]. Assuming that the average 

length of the studied patches in the BD model is L0, the number found in a patch is 

(L/L0)
3. Based on the modulus variance of Eq.(7.49) that can result in a Gaussian 

distribution, the following relation is obtained:  

 1.58ln 2 1W N L     . (7.56) 

Besides, the peak height of the distribution H = 1/( 2 σ). Therefore,  

 1
8ln 32

2
2 0.9W H


    . (7.57) 

   
Fig. 7.8 Examination of Gaussian distribution of elastic modulus: (a) relaxation between ln(W) and 

ln(L) and (b) relation between W H and L. 

 

If the modulus distribution is Gaussian, Eq. (7.56) predicts a power index b = 

Δln(W)/Δln(L) = 1.5, and Eq. (7.57) predicts a constant value of 0.932. Now, let us 

examine the predictions. In Fig. 7.8(a), ln(W) is plotted versus ln(L), and in Fig. 7.8(b), 
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W H is plotted versus L. In Fig. 7.8(a), the slope of the bulk modulus of LJ glass is 

1.59, which is close to the prediction. For the cases of shear modulus, the slopes of 

polymer glass and LJ glass are 1.31 and 1.35, respectively, which deviate 

significantly from the prediction. For the cases of W H in Fig. 7.8(b), the value of the 

bulk modulus of LJ glass is very close to the prediction of 0.932, while the shear 

modulus for both glasses fluctuates significantly. That is, the mixing rules distort the 

distribution and change the scaling law, which simply follows the understanding of the 

BD model. 

7.5 Conclusions 

In summary, a birth–death model is derived based on rigid mathematics. The 

analytical prediction of the birth–death model completely agrees with the real stochastic 

processes under different thermal histories. In addition, the model can be applied to real 

experiments of Young’s modulus measurements. Using the model, I discussed the 

effects of the mixing rules on the effective relaxation time, and the distribution of elastic 

modulus at small scales.  
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Chapter 8 Conclusions and future works   

In this thesis, glass relaxation was systematically and comprehensively 

investigated using experimental and theoretical inspections. Using the non-destructive 

IET, new phenomena of glass relaxation were found and then understood with both 

phenomenological and physical ideas. In this chapter, the main conclusions of the thesis 

are summarized, and the deliberate consideration of future works are discussed. 

8.1 Conclusions  

(1) The primary (α) relaxations of borosilicate and chalcogenide glasses were 

revealed using IET experiments. In the temperature-dependent measurements, the glass 

transition point (Tg) determined from Young’s modulus was found to be close to that 

determined by the viscosity of borosilicate glasses. A non-destructive and instantaneous 

viscosity measurement method for borosilicate glasses was proposed for glasses with 

little non-exponentiality, which can be explained by the implicit features of the Burgers 

model as well as a newly proposed minimal model considering the solid-like to liquid-

like behavior transition. A striking non-exponential relaxation was found in 

chalcogenide glass with the help of the Cole–Davidson (CD) function. This suggests a 

new method of determining the non-exponentiality in the glass. 

(2) To describe the mechanical  and β relaxation in glassy materials, a 

viscoelastic model is established based on the normal mode analysis of the potential 

energy landscape, and the prediction of an apparent double-peak phenomenon in the 

Fourier spectrum has been validated by a ma-fluorosilicate glass beam. This suggests a 

new mechanism of secondary (β) mechanical relaxation and a new method of probing 
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β relaxation. The β relaxation in S-FSL5 was systematically investigated, and a negative 

temperature-dependent relaxation frequency was found, which can be explained based 

on the picture of fragmented oxide-network patches in liquid-like regions.  

(3) The long-debated Kovacs’ paradox associated with the nature of glass 

transition was investigated by monitoring the relaxation of Young’s modulus of 

chalcogenide glass (As2Se3) in two-step aging experiments. The effective relaxation 

time at the quasi-equilibrium state is found to be dependent on the thermal history, 

which confirms the paradox in inorganic glass for the first time. An elasticity-based 

relaxation model was proposed to explain the relationship behavior, and the effects of 

thermal history were found to be related to the local survival parts of glass. Based on 

the MT analysis, the volume fraction of survival parts are found to experience a non-

zero to zero transition around Tg.  

(4) Finally, a birth–death model was proposed to reveal the coupling effects 

between elastic modulus relaxation and local heterogeneity. An analytical solution at 

arbitrary thermal histories was obtained. This model is available to capture the normal 

and anomalous relaxation of different glasses. After analysis of the scaling law of elastic 

modulus at small scales, the bulk modulus is found to be Gaussian, while the shear and 

Young’s moduli are non-Gaussian owing to the difference in the mixing rules. 

Overall, this thesis provides new phenomena and understanding of glass transition 

and relaxation. The methods used and the new findings should not only benefit 

industrial communities but also promote the understanding of glassy states.  
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8.2 Future works 

8.2.1 Probing elasticity relaxation of glass by the birth–death model  

Understanding the nature of structural glass transition has been a long journey for 

the glass research community. The relaxation of elasticity could be a new paradigm to 

this problem as the former is more sensitive to structural and dynamical heterogeneities 

in glass because of the nature of two-time autocorrelation [234, 235]. It is expected that 

either α or β relaxation can benefit from monitoring Young’s modulus. In the loss 

modulus plot of a DMA spectrum at temperature scan, α relaxation generally 

corresponds to the main relaxation peak near Tg, relating to the main structural 

relaxation; β relaxation corresponds to the peak lower than Tg, relating to the local 

structural relaxations in a cage. Local α relaxations are generally found in amorphous 

materials with multiphase whose DMA spectrum contains serval α relaxations [269]. 

However, these frequency peaks are dependent on the used frequency for scanning and 

bring uncertainty to some degree. While the instantaneous elasticity obtained from IET 

is hardly affected by the frequency of samples, thus can be considered as a more unique 

index of glass relaxations.  

Elasticity relaxation also directly benefits the demands of the glass manufactory 

industry where the viscoelastic behavior of glass is needed in PGM. Therefore, a 

possible direction for future investigations is continually probing glass transition and 

relaxation through monitoring elastic modulus. 

In Chapter 6, it was found that elasticity relaxation can probe the ergodicity 

breaking of glass after aging. This suggests a question of whether the glass transition is 

a critical phenomenon. It is thus necessary to interrogate whether the memory 

persistence below a glass transition point is universal by examining the elasticity 
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relaxation of other structural glasses. In Chapter 7, a simple birth–death model was 

established and proved to be adaptable to predict the relaxation behavior of elasticity 

and the microscopic distribution of elastic modulus. With more efforts, the birth–death 

model can be transformed into a random-walk model to reveal the weak ergodicity 

breaking as suggested in previous works [270]. 

The proposed birth–death model in Chapter 7 is mean-field, while the cooperative 

interactions between different parts of glass cannot be ignored in some situations. In 

previous studies, some additional parameters were introduced into mean-field theories, 

for example, the cooperative frequency in the coupling model [120], or the partition 

parameter x in Narayanaswamy’s relaxation function [108]. It will be noteworthy if the 

spatial interactions between different glass sub-systems can be directly investigated. 

Motivated by the distinguishable-particle lattice model [250], one possible 

development is to conduct simulations on a 2D or 3D configuration where every 

subsystem may transform among different states while they are affected by each other. 

This model will be similar to MD simulations but at a larger scale, rendering it possible 

to predict the long-time behavior of the elasticity relaxation. It would help to unveil 

how spatial constraints can lead to the observed memory effect and glass transition. 

8.2.2 Mechanisms and applications of the rate-dependent viscosity of chalcogenide 

glasses 

Chalcogenide glasses have very broad applications in infrared optics (e.g., thermal 

imaging, optical switches, etc. [22, 238, 271-273]). The chalcogenide products larger 

than 500 μm can be manufactured by PGM. In recent years, the chalcogenide products 



The Hong Kong Polytechnic University                                     PhD Thesis 

139 

 

having micro/nano scale surface features are increasing demanded [274]. These 

micro/nano scale surface features can be made by the direct imprint technique (DIT) 

[275]. Both PGM and DIT meet the ambivalent effects of temperature during molding. 

When the temperature is high, the chalcogenide glass is unstable and may oxidize, 

gasify or adhere to a mold surface; while when the temperature is low, the material has 

a high viscosity that may lead to insufficient deformations, excessive residual stresses, 

or fracture.   

A possible approach to solve the dilemma is making use of the non-Newtonian 

performance of chalcogenide glasses. For example, experiments have shown that the 

viscosity of AsxSe1-x dramatically decreases when the shear rate is higher than 103 s–1 

[274]. Similar non-Newtonian viscosity can also be found in other chalcogenide glass 

systems such as GexSe1-x [276] and Ge3As52S45 [277]. Therefore, the application of rate-

dependent viscosity could reduce the molding temperature and main a required fluidity. 

However, the non-Newtonian behavior in chalcogenide glasses can only be found 

in a few works of literature; the mechanisms and the approaches of exploitation need 

more explorations. A new technology of ‘impact print-type hot embossing process’ [278] 

may help to generate the high shear rate, while it has not been applied to chalcogenide 

glasses. Another approach to generate sustained high shear rate in a molding process is 

to make use of ultrasonic vibration. Traditional molding techniques generally used the 

additional heat flux of ultrasonic vibration [279]; the rate-dependent behavior of 

chalcogenide glasses in an ultrasound-assisted molding has not been investigated. Due 

to the significant and foreseeable applications of chalcogenide glasses, it is worth a 
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further investigation of the mechanism and the theoretical description of the rate-

dependent behavior in them to develop a specific precision molding technology with a 

high yield. 
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