
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



TASK PARTITIONING AND OFFLOADING
IN COLLABORATIVE EDGE COMPUTING

ENVIRONMENTS

YUVRAJ SAHNI

PhD

The Hong Kong Polytechnic University

2021



The Hong Kong Polytechnic University
Department of Computing

Task Partitioning and O✏oading in
Collaborative Edge Computing Environments

Yuvraj Sahni

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

August 2020



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

(Signed)

Yuvraj Sahni (Name of student)

ii



Abstract

In the past decade, edge computing has become popular as it pushes the compu-

tation and data storage closer to data sources to address issues with cloud comput-

ing such as privacy, network congestion, latency, etc. Collaborative edge computing

(CEC) is a new paradigm of edge computing, where multiple stakeholders (IoT de-

vices, edge devices, cloud, or end-users) collaborate with each other by sharing

data and computation resources to satisfy individual and/or global goals. One of

the fundamental issues in CEC is partitioning and o✏oading the tasks among het-

erogeneous edge devices. However, they are di�cult problems to solve due to two

unique features of CEC: 1) the data required for a task are from multiple edge de-

vices, and 2) tasks can be o✏oaded to an edge device at a multi-hop distance due to

heterogeneity among edge device resources. The transfer of data to an edge device

at a multi-hop distance leads to contention among network flows. This makes it

di�cult to estimate the communication cost of transmitting data as the network link

could be occupied by another network flow.

This thesis studies the task partitioning and o✏oading problems in CEC consid-

ering di↵erent application models. We mathematically formulate the problems, de-

sign algorithm to solve the problems, and conduct extensive simulation experiments

to evaluate the proposed solutions. This thesis makes four main contributions.

1) Propose a framework named Edge Mesh as an abstraction of CEC for our study.

Edge Mesh distributes decision-making within the network by sharing data and

computation resources among mesh network of edge devices. We describe the func-

tionalities, research framework, and the main principles for designing Edge Mesh

and its functions.

2) Solve the problem of data-aware task allocation in CEC, where we consider both

the placement and transmission of data to make task allocation decision. Compared

iii



to the traditional problem, the input data for each dependent task is distributed at

di↵erent edge devices leading to contended network flows. We jointly formulate

the task allocation (start time and device for each task) and network flow scheduling

(start time of flow) problem. We propose a multi-stage greedy algorithm (MSGA)

that solves the problem by jointly considering the placement of tasks and adjust-

ment of network flows.

3) Solve the problem of multi-hop o✏oading of multiple DAG tasks in CEC. This

problem jointly makes a decision of o✏oading dependent subtasks within each

DAG task and scheduling network flows that are generated to transfer data between

dependent subtasks. We propose a joint dependent task o✏oading and flow schedul-

ing heuristic (JDOFH) that solves the problem by leveraging the knowledge of all

tasks and start time of network flows.

4) Solve the problem of multi-hop multi-task partial o✏oading in CEC. Each inde-

pendent task is partitioned into two parts, i.e. local and remote, where the remote

part can be o✏oaded to an edge device at multi-hop distance. We address the chal-

lenging issue of dependency among di↵erent variables, including partial o✏oading

ratio, the remote device for each task, start time of the task, and start time of flows.

We propose a joint partial o✏oading and flow scheduling heuristic (JPOFH) that

decides partial o✏oading ratio by considering both waiting times at the devices and

start time of input data flows.

In summary, this thesis systematically investigates the requirements and solves

the task partitioning and o✏oading problems in CEC. The proposed solutions ad-

dress the issues resulting from distributed data sources and multi-hop task o✏oad-

ing in CEC. We also outline future directions, including distributed solutions for

dynamic task partitioning and o✏oading, real-world prototype, integration with

blockchain, 5G, etc.

iv



Publications Arising from the Thesis

1. Sahni, Y., Cao, J., Yang, L., & Ji, Y. (2021). Multi-Hop Multi-Task Partial

Computation O✏oading in Collaborative Edge Computing. IEEE Transac-

tions on Parallel and Distributed Systems, 32(5), 1133-1145. ‡

2. Sahni, Y., Cao, J., Yang, L., & Ji, Y. (2020). Multi-Hop O✏oading of Mul-

tiple DAG Tasks in Collaborative Edge Computing. IEEE Internet of Things

Journal‡

3. Sahni, Y., Cao, J., & Yang, L. (2019). Data-aware task allocation for achiev-

ing low latency in collaborative edge computing. IEEE Internet of Things

Journal, 6(2), 3512-3524.‡

4. Sahni, Y., Cao, J., Zhang, S. and Yang, L., (2017). Edge Mesh: A new

paradigm to enable distributed intelligence in Internet of Things. IEEE Ac-

cess, 5, pp.16441-16458.‡

5. Sahni, Y., Cao, J., & Jiang, S. (2019). Middleware for Multi-robot Systems.

In Mission-Oriented Sensor Networks and Systems: Art and Science (pp.

633-673). Springer, Cham.

6. Sahni, Y., Cao, J. and Shen, J., (2018). Challenges and Opportunities in

Designing Smart Spaces. In Internet of Everything (pp. 131-152). Springer,

Singapore.

7. Yang, L., Yang, D., Cao, J., Sahni, Y., & Xu, X. (2020). QoS Guaranteed

Resource Allocation for Live Virtual Machine Migration in Edge Clouds.

IEEE Access, 8, 78441-78451.
‡Presented in this thesis

v



8. Yang, L., Liu, B., Cao, J., Sahni, Y., & Wang, Z. (2019). Joint computa-

tion partitioning and resource allocation for latency sensitive applications in

mobile edge clouds. IEEE Transactions on Services Computing.

9. Yang, L., Liu, B., Cao, J., Sahni, Y., & Wang, Z. (2017, June). Joint Com-

putation Partitioning and Resource Allocation for Latency Sensitive Applica-

tions in Mobile Edge Clouds. In 2017 IEEE 10th International Conference

on Cloud Computing (CLOUD) (pp. 246-253). IEEE.

10. Li, F., Cao, J., Wang, X., Sun, Y., & Sahni, Y. (2017, June). Enabling software

defined networking with qos guarantee for cloud applications. In 2017 IEEE

10th International Conference on Cloud Computing (CLOUD) (pp. 130-137).

IEEE.

vi



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Prof.

Jiannong Cao, for his expertise, insightful comments, and patience. I want to thank

him for providing me with the opportunity and teaching me so much about research

and life in general. I would also like to thank Prof. Yusheng Ji at NII, Japan, for her

comprehensive guidance during my exchange study there. I have learned a lot from

her about the attitude towards research and professional skill of writing academic

papers. I consider myself very fortunate to have the chance to learn from both

professors.

I would also like to give my regards to Dr. Lei Yang for all his help and guid-

ance for my research. I really appreciate the time and suggestions he gave to help

formulate and solve the di↵erent problems in this thesis.

I also owe thanks to my co-authors for their e↵orts and suggestions - Dr. Shi-

geng Zhang, Dr. Jiaxing, Shen, Dr. Fuliang Li, and Mr. Shan Jiang.

I am also thankful to other past and current members working on edge com-

puting in the IMCL lab, directed by Prof. Cao, for their collaboration and support.

They are Dr. Kongyang Chen, Mr. Mingjin Zhang, Mr. Qianyi Chen, Ms. Jia

Wang, Mr. Zhixuan Liang, Mr. Jinlin Chen, and Ms. Dan Wu, .

I have been fortunate to work alongside other members in the IMCL lab includ-

ing Dr. Wengen Li, Dr. Yuqi Wang, Mr. Yu Yang, Ms. Yanni Yang, Mr. Hanqing

Wu, Mr. Dan Li, Mr. Ruosong Yang, Mr. Zhuo Li, Mr. Zhiyuan Wen, and many

others.

Finally, I would like to thank my parents, sister, and other family members for

their continuous encouragement and support.

vii



Table of Contents

Abstract iii

Publications Arising from the Thesis v

Acknowledgements vii

List of Figures xii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Edge Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 14

2.1 Edge Computing Paradigms for IoT . . . . . . . . . . . . . . . . . 14

2.2 Task Partitioning and O✏oading . . . . . . . . . . . . . . . . . . . 16

3 Data-aware Task Allocation 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 27

Data-Aware Task Allocation problem . . . . . . . . . . . . 32

viii



3.4 Multi-Stage Greedy Adjustment Algorithm . . . . . . . . . . . . . 33

3.4.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 39

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . 42

Benchmark Solutions . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 44

E↵ect of changing number of tasks . . . . . . . . . . . . . . 45

E↵ect of changing number of devices . . . . . . . . . . . . 46

E↵ect of changing number of input data sources . . . . . . . 47

E↵ect of changing amount of input data . . . . . . . . . . . 48

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Multi-Hop O✏oading of Multiple DAG Tasks 51

4.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 System Model and Problem Formulation . . . . . . . . . . . . . . . 56

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 61

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Optimization Problem . . . . . . . . . . . . . . . . . . . . 64

4.4 Joint Dependent Task O✏oading and Flow Scheduling Heuristic

(JDOFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Benchmark Solutions . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Simulation Results for Real Application Task Graph . . . . 73

4.5.4 Simulation Results for Randomly Generated Task Graphs . . 76

ix



E↵ect of change in number of task . . . . . . . . . . . . . . 78

E↵ect of change in number of subtasks . . . . . . . . . . . . 79

E↵ect of change in number of devices . . . . . . . . . . . . 80

E↵ect of change in communication to computation ratio

(CCR) . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Multi-Hop Multi-task Partial O✏oading 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 System Model and Problem Formulation . . . . . . . . . . . . . . . 89

5.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 92

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Optimization Problem . . . . . . . . . . . . . . . . . . . . 95

5.4 Joint Partial O✏oading and Flow Scheduling Heuristic (JPOFH) . . 96

5.4.1 JPOFH Algorithm . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Lower Bound Solution . . . . . . . . . . . . . . . . . . . . 99

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Benchmark solutions . . . . . . . . . . . . . . . . . . . . . 104

5.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 105

E↵ect of number of tasks . . . . . . . . . . . . . . . . . . . 107

E↵ect of number of devices . . . . . . . . . . . . . . . . . . 110

E↵ect of number of routing paths . . . . . . . . . . . . . . . 111

E↵ect of amount of input data . . . . . . . . . . . . . . . . 114

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



6 Conclusion and Future Work 118

Bibliography 121

xi



List of Figures

1.1 Edge Mesh Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Layered Edge Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research Framework of Edge Mesh . . . . . . . . . . . . . . . . . 8

1.4 3D classification of works in the thesis . . . . . . . . . . . . . . . . 10

3.1 Task DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Task scheduling without considering network congestion . . . . . . 25

3.4 Task scheduling under congestion using bandwidth sharing . . . . . 25

3.5 Task scheduling under congestion using flow adjustment . . . . . . 25

3.6 Task scheduling under congestion using both flow and destination

adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Example of task graph model . . . . . . . . . . . . . . . . . . . . . 29

3.8 Corresponding dataflow model . . . . . . . . . . . . . . . . . . . . 29

3.9 Set of input data for each task . . . . . . . . . . . . . . . . . . . . . 29

3.10 Flowchart of MSGA . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 E↵ect of number of tasks on completion time . . . . . . . . . . . . 46

3.12 E↵ect of number of tasks on running time . . . . . . . . . . . . . . 46

3.13 E↵ect of number of devices on completion time . . . . . . . . . . . 47

3.14 E↵ect of number of devices on running time . . . . . . . . . . . . . 47

3.15 E↵ect of number of input data sources on completion time . . . . . 48

xii



3.16 E↵ect fo number of input data sources on running time . . . . . . . 48

3.17 E↵ect of amount of input data on completion time . . . . . . . . . . 49

3.18 E↵ect of amount of input data on running time . . . . . . . . . . . . 49

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Example DAG Task . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 CDF plot for FFT DAG . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 E↵ect of changing number of tasks for FFT DAG . . . . . . . . . . 75

4.5 E↵ect of changing number of devices for FFT DAG . . . . . . . . . 75

4.6 E↵ect of changing CCR of task graph for FFT DAG . . . . . . . . . 75

4.7 CDF plot for randomly generated DAG with default parameters setting 77

4.8 E↵ect of changing number of tasks for randomly generated DAG . . 78

4.9 E↵ect of changing number of subtasks for randomly generated DAG 80

4.10 E↵ect of changing number of devices for randomly generated DAG . 81

4.11 E↵ect of changing CCR of task graph for randomly generated DAG 82

5.1 CDF plot for default parameters fixed device setting . . . . . . . . . 106

5.2 CDF plot for default parameters random device setting . . . . . . . 106

5.3 E↵ect of number of tasks on completion time . . . . . . . . . . . . 109

5.4 E↵ect of number of tasks on running time . . . . . . . . . . . . . . 110

5.5 E↵ect of number of devices on completion time . . . . . . . . . . . 111

5.6 E↵ect of number of devices on running time . . . . . . . . . . . . . 112

5.7 E↵ect of number of routing paths on completion time . . . . . . . . 113

5.8 E↵ect of number of routing paths on running time . . . . . . . . . . 113

5.9 E↵ect of amount of input data on completion time . . . . . . . . . . 115

5.10 E↵ect of number of routing paths on running time . . . . . . . . . . 115

xiii



xiv



Chapter 1

Introduction

1.1 Background

In the past decade, many applications of Internet of Things (IoT) such as Smart

Home, Smart Cities, Smart Healthcare etc. have been deployed where the devices

in our surroundings are interconnected to provide better services and comfort to

humans. More recently, we witness the emergence of applications in Industrial IoT,

supply chains and other areas where the scale of the systems, the number of devices

and data being generated continuously increases. However, the cost of sending all

the data to a centralized server, as done in cloud computing, for processing and

decision-making is high due to large bandwidth consumption and high end-to-end

delay. Therefore, the recent trend in IoT is to use edge computing to distribute and

move the computation from centralized cloud to edge devices which are closer to

data sources.

Edge computing has been used in Industry IoT to support real-time processing

[1], anomaly detection and fault monitoring [2] [3], improve operational e�ciency

and management [1], etc. The work in [1] illustrates many scenarios for using edge

1



2 1.1. Background

computing for analytics and decision-making such as to determine whether a worker

is not wearing protective equipment or wearing it incorrectly, optimizing inventory

management by processing data in real-time, etc. Another important application of

edge computing is real-time video analytics [4]. Intelligent transportation systems

and other Smart City applications require a large number of video feed to be pro-

cessed instantaneously. Edge computing helps in reducing the amount of data to

be sent to the cloud by processing the video feeds close of the source. Analytics

at the edge devices can help autonomous vehicles to make decisions, for example,

detect hard-to-see pedestrians, based on the processed video feed from surrounding

cameras [4].

These applications not only require pushing the computation down from the

cloud to edge devices but also collaboration and exchange of data among di↵erent

devices which led to the emergence of collaborative edge computing. Collabora-

tive edge computing (CEC) is referred to as a computing paradigm where multiple

stakeholders (IoT devices, edge devices, or cloud) collaborate with each other by

sharing data and computation resources to satisfy individual and/or global goals.

This definition includes both vertical collaboration, where di↵erent layers such as

device layer, edge computing layer, and cloud layer collaborate with each other,

and horizontal collaboration, where di↵erent edge devices in edge computing layer

collaborate with each other [5].

In this thesis, we aim to answer the research question on how to partition and

o✏oading tasks in a collaborative edge computing environment. We investigate

the requirements and issues of task partitioning and o✏oading in CEC. We con-

sider that each task can require input data from multiple edge devices at di↵erent

locations and the tasks can be o✏oaded to an edge device at a multi-hop distance.

The transfer of data in the multi-hop network leads to contentious network flows.

We mathematically formulate the problems for di↵erent application models, and



1.1. Background 3

propose heuristic algorithms to solve the problems taking into consideration the

distributed data sources and joint task o✏oading and network flow scheduling. We

have done a comprehensive evaluation of the proposed solutions using simulation

experiments. The main contributions of the thesis are:

1) Proposed Edge Mesh [6], an abstraction of CEC for our study, where edge de-

vices collaborate with each other in a mesh network by sharing computation and

data resources. Edge Mesh enables scalable connectivity and distributed decision-

making within the network.

2) Mathematically formulate and solve the data-aware task allocation problem in

CEC. We solve the task allocation problem jointly considering the placement of

input data for each dependent task on di↵erent edge devices and the data transfer,

which leads to conflicting network flows.

3) Solve the multi-hop o✏oading of multiple DAG tasks in CEC. We mathemati-

cally formulate and solve the joint problem of o✏oading dependent subtasks within

multiple DAG tasks and scheduling network flows due to transfer of data between

dependent subtasks.

4) Solve the multi-hop multi-task partial o✏oading in CEC. We formulate and solve

the problem of partitioning and o✏oading independent tasks into local and remote

parts. The problem jointly considers scheduling network flows generated due to

transfer of data for o✏oading of the remote part.

The rest of the chapter is organized as follows. Section 2 gives details about the

proposed Edge Mesh. Section 3 describes the research framework of Edge Mesh.

Section 4 elaborates on the research scope of this thesis.



4 1.2. EdgeMesh

1.2 Edge Mesh

Edge Mesh is an abstraction of CEC that leverages a mesh network architecture of

edge devices to enable scalable connectivity and distributed decision-making within

the network. Edge Mesh enables both horizontal and vertical integration between

devices. Edge Mesh provides many benefits, including distributed processing, low

latency, fault tolerance, better scalability, better security, and privacy, which makes

it suitable for emerging IoT applications such as Industrial IoT, connected health,

etc. Fig 1.1 shows the architecture of Edge Mesh which consists of four types of

devices [6].

1. End Devices: End devices are IoT devices that are responsible for sensing

and actuation. Devices in a smart home such as camera, lights, thermostat,

etc. are some examples of end devices.

2. Edge Devices: Edge devices are system devices with computing or network-

ing resource in between end devices and Cloud. These devices are responsi-

ble for decision-making and enabling interaction between end devices. One

example of an edge device can be a smartphone, which is connected to both

smart home end devices as well as Cloud. Gateway is another example of an

edge device, which helps in connecting End devices that use di↵erent com-

munication protocols and can also be used for various computing tasks such

as processing, storage, load balancing, etc. [7].

3. Routers: Routers are used for relaying data between edge devices. Their

function is just to route the data and are not used for processing or enabling

decision-making like edge devices. Routers and edge devices together form

a mesh network which is used for computation and data sharing among edge

devices.



1.2. EdgeMesh 5

4. Cloud: Cloud provides abundant computing resources including networks,

storage, processing, application, services, etc. Traditional IoT systems use a

centralized Cloud server for enabling decision-making. However, in the case

of Edge Mesh, major decision-making is done by Edge devices instead of

Cloud. Cloud is integrated with other devices to be utilized for very specific

application requirements that cannot be met using Edge devices. An example

of such requirement would be obtaining remote access to devices which can-

not be done by use of local Edge Devices or performing big data analytics on

historical data.

Cloud

Edge 
Devices

End Devices

Routers

Edge Mesh

End Devices

SDN Controller

Figure 1.1 Edge Mesh Architecture

The main objective of Edge Mesh is to enable distributed intelligence and decision-

making within the network using edge devices. Each edge device is individually re-



6 1.2. EdgeMesh

sponsible for collecting data from end devices, performing localized processing to

reduce the amount of data, and collaboration with other edge devices to make deci-

sions. Edge Mesh can also be integrated with software-defined network (SDN) con-

trollers to support software-defined network management. SDN controllers can be

placed alongside some selected edge devices for managing the tra�c flows among

end devices. Edge devices can also act as routers to exchange data among di↵erent

devices. The cooperation between di↵erent edge devices enables di↵erent function-

alities including task management, QoS provisioning, data sharing, and security and

privacy. Edge Mesh has the following four design principles:

1. Decentralized architecture: The intelligence is distributed among edge de-

vices instead of using centralized server. The use of decentralized architec-

ture improves scalability and reliability of the network.

2. Multi-hop connectivity: Since the devices have limited communication range,

it is di�cult to connect geographically distributed devices. Edge devices are

connected using a mesh network which enables communication between far-

away devices.

3. Gateway for interoperability: The devices and communication protocols used

in IoT applications are heterogeneous which makes it di�cult to enable in-

teraction between them. Edge Mesh uses edge devices which act as gateways

to support interoperability.

4. Pushing intelligence from cloud to edge devices: Cloud computing su↵ers

from many issues including latency, security, privacy, and mobility. There-

fore, Edge Mesh moves computation closer to data sources, enables dis-

tributed data storage on edge devices, and allocates tasks among collaborative

edge devices and cloud



1.2. EdgeMesh 7

Physical 
network layer

Data sharing and 
computation

Task scheduling and 
decision making

Task 1 Task n

ĂĂ 

Figure 1.2 Layered Edge Mesh

One of the fundamental problems in Edge Mesh is to schedule tasks among edge

devices, which includes task partitioning and o✏oading. Fig 1.2 shows the layered

Edge Mesh to illustrate the task management process. The lower layer shows the

connection between edge devices in Edge Mesh. The middle overlay layer shows

data sharing and computation performed for application tasks on top of edge de-

vices. Here, we do not show the routers but they are responsible for interconnecting

di↵erent edge devices. The top layer shows the distribution of tasks among di↵er-

ent edge devices. Each task, generated at one of the devices, can be partitioned into

multiple subtasks and o✏oaded to di↵erent edge devices. The decision for task par-

titioning and o✏oading can be done either at a centralized controller or distributed



8 1.3. Scope of Research

among di↵erent devices. The details about the task management in Edge Mesh are

described in the paper [6].

1.3 Scope of Research

Fig 1.3 shows the research framework for developing Edge Mesh and its functional

components. The framework consists of 6 layers. The bottom two layers repre-

sent the di↵erent hardware and software possible for edge devices. A collaborative

edge computing platform can be use di↵erent devices such as Raspberry Pi, Nvdia

Jetson Nano, Edge TPU, or servers in general as edge devices. These devices may

have di↵erent processing architecture (such as x86, armv8, etc.), di↵erent operating

systems, and di↵erent drivers and libraries.

Raspberry PiHardware Edge TPU Jetson NANO SensorsServers

x86Software ARM Drivers & Libraries OS API

Docker ContainerVirtualization

Orchestration 
and Management

Functional 
Components

SDN
Cooperative 

Learning

Sensing & 
Transmission

Data Caching 
and Sharing

Federated 
Learning

Blockchain 

Techniques

SecurityNon- Functional 
Requirements

Reliability Heterogeneity Scalability …Integrity

Industry IoTApplications Healthcare Multi-Robot System …

Task Scheduling Flow 
Scheduling

Chapter 3, 4 
(Full offloading) 

Game Theory

NFV

Chapter 5
(Partial Offloading)

Figure 1.3 Research Framework of Edge Mesh

A virtualization layer is used on top of devices to provide both abstraction from



1.3. Scope of Research 9

heterogeneous devices and enable migration of computation tasks and data between

devices. Docker container is a popular lightweight virtualization technology being

used in many existing edge computing platforms. The core part of the platform

are the functional components and techniques used to enable the functional com-

ponents. There are many di↵erent functional components corresponding to sensing

and transmission, data caching and sharing, task scheduling, flow scheduling, co-

operative learning, and orchestration and management. The di↵erent functional

components can be customized depending on the non-functional requirement of an

application. For example, application such as Industry IoT or healthcare having

high reliability requirement will require the task scheduling solution to consider re-

liability as part of objective. The di↵erent functional requirement of an application

can be satisfied by selecting the appropriate functional component.

This thesis focuses on the task scheduling and flow scheduling functional com-

ponents in the framework. The main focus of this thesis is formulating and propos-

ing solutions for task partitioning and o✏oading problems in CEC environment. A

characteristic feature of CEC is that the data required for each task can be stored

on di↵erent edge devices. Therefore, input data needs to be transferred to execute

a task. Further, in case of dependent tasks, data from predecessor tasks also needs

to be transferred. Another characteristic feature is that tasks can be o✏oaded to an

edge device at multi-hop distance leading to network flows. This implies that task

partition and o✏oading in CEC is a↵ected by other components such as data place-

ment and network flows so, we have to take these into account jointly for e↵ective

task partitioning and o✏oading. Fig 1.4 shows a three-dimensional classification of

di↵erent works in the thesis. The three dimensions are o✏oading decision (partial

or full), task dependency (independent or dependent), and number of tasks (single

or multiple). This classification is done based on the di↵erent application model of

the problem. The di↵erent works have been studied for the same CEC environment,



10 1.3. Scope of Research

i.e. a static mesh network of edge devices, as shown in the Edge Mesh layer in Fig

1.1.

Offloading 
Decision

Task 
Dependency

Number 
of Tasks

Single

Multiple

Independent Dependent

Full

Partial

Chapter  3

Chapter  4

Chapter  5

Figure 1.4 3D classification of works in the thesis

The first work in Chapter 3 addresses the problem of data-aware task allocation

in CEC considering the data placement and transfer. The problem can be infor-

mally defined as allocating di↵erent tasks within a task graph to di↵erent devices

such that the completion time of the application is minimized. However, compared

to existing works, we assume that each task in the task graph requires multiple input

data which can be stored at di↵erent edge devices. The transfer of input data and

data from predecessor tasks leads to network flows that compete with each other

for bandwidth resources. This problem could be solved by separating the task al-

location and network flow scheduling decision; however, we have shown using a

specific example and thorough evaluation that this leads to ine�cient performance.

We have proposed multi-stage greedy adjustment (MSGA) to solve the joint prob-

lem by simultaneously adjusting both the task allocation decision and start time of



1.3. Scope of Research 11

network flow. It is challenging to solve the joint problem as data transmission cost

is dynamic, even for a static environment scenario, and dependent on the task al-

location decision. Furthermore, a change in network flow decision for a flow can

cause congestion for a flow corresponding to predecessor tasks leading to unre-

solved network conflicts. Due to the nature of the application model, there could

also be ”ping-pong e↵ect” where a change in the decision for one network flow

causes conflict for another and vice-versa. We have done simulation experiments to

evaluate the performance of MSGA and shown that it leads to up to 27% improve-

ment in completion time as compared to benchmark solutions.

The solution proposed in Chapter 3 considers just single task graph and there-

fore, cannot address the problem of o✏oading subtasks within multiple directed-

acyclic graph (DAG) tasks in CEC environment. Furthermore, the di↵erent DAG

tasks can be generated at di↵erent devices at di↵erent release time, leading to addi-

tional di�culty. This leads to motivation for our second work in Chapter 4 which

addresses this problem of multi-hop o✏oading of multiple DAG tasks in CEC with

the objective of minimizing the average completion time of all DAG tasks. Simi-

lar to data-aware task allocation in Chapter 3, there are some common challenges

such as conflicting network flows due to data transfer, data transmission cost being

dependent on task o✏oading, and dependency among di↵erent subtasks within a

task graph. However, MSGA is not suitable and ine�cient for solving the o✏oad-

ing problem for multiple DAG tasks as MSGA is developed for a di↵erent scenario

where each task within the DAG requires several input data. Besides, we addition-

ally consider the release time of di↵erent DAG tasks. Therefore, we propose joint

dependent task o✏oading and flow scheduling heuristic (JDOFH), that makes the

o✏oading decision for each subtask within a DAG task while considering the start

time of network flows in a single step. We have done simulation experiments to

evaluate the performance of JDOFH and shown that JDOFH leads to up to 85%



12 1.3. Scope of Research

improvement in average completion time compared to benchmark solutions which

do not make a joint decision.

Compared to the other two works, the third work, described in Chapter 5, in this

thesis, considers the partial o✏oading decision for multiple heterogeneous indepen-

dent tasks in CEC environment. The partial o✏oading problem has been studied in

other existing works; however, due to the characteristic of the CEC environment, we

also need to jointly consider the network flow scheduling in this work. The partial

o✏oading decisions for a task implies to determine the remote device where part of

the task is executed and when, i.e. the start time, the task is executed. The problem

is mathematically formulated as a non-convex mixed-integer nonlinear program-

ming (MINLP) problem and is shown to be NP-hard. We have relaxed the problem

to a linear programming (LP) problem using McCormick envelope; however, we

can only get a loose lower bound solution. It is challenging to jointly solve the

problem as we need to consider the di↵erent variables including partial o✏oading

ratio, remote o✏oading device, start time of the task, waiting time at the devices,

and start time of network flows. We solve this problem by proposing a joint partial

o✏oading and flow scheduling heuristic (JPOFH) that decides partial o✏oading ra-

tio by using the idea from a game-theoretic solution [8] while also considering both

waiting times at the devices and start time of input data flows. Performance com-

parison done using simulation shows that JPOFH leads to up to 32% improvement

in average completion time compared to other benchmark solutions.

The problems studied in this thesis have practical relevance and can be benefi-

cial for applications such as large-scale multi-camera video analytics where video

and image data from multiple cameras is used for generating situational awareness.

Several application scenarios can be modelled using the application models stud-

ied in this thesis. One example scenario is to deploy an application involving the

use of a di↵erent machine learning models with multi-modality input from di↵erent



1.3. Scope of Research 13

sensors. Such scenario also requires other dependent services such as application

web service, messaging service, database service, etc. These di↵erent services can

be modelled using data-aware task allocation problem where each machine learn-

ing model is modelled as a subtask requiring multiple input data and other services

are modelled as dependent subtasks. Another application scenario is multi-camera

person reidentification which involves object detection at each camera. In this case,

object detection can be modelled as a DAG task, as in [9], and solved using the

multi-hop of multiple DAG task o✏oading problem studied in the thesis. Multi-hop

partial computation o✏oading is beneficial for applications such as object character

recognition (OCR) images captured at di↵erent cameras. Many applications such

as OCR images can be arbitrary partitioned as studied for multi-hop partial compu-

tation o✏oading problem.



Chapter 2

Literature Review

This chapter describes the di↵erent computing paradigms related to edge comput-

ing. We also describe di↵erent existing works on task partitioning and o✏oading

and highlight the novelty of problems studied in this thesis. The related works cor-

responding to di↵erent problems studied in this thesis are described in the respective

chapters.

2.1 Edge Computing Paradigms for IoT

IoT is predicted to have 50 billion devices by 2020. Computing paradigms for

IoT must handle the huge scale of devices and application areas. This variability

in application and system requirements leads to di↵erent views about computation

paradigms for IoT. Besides, computing in IoT is not an independent area; it im-

pacts other aspects too such as communication, energy e�ciency, physical design,

software development, analytics, user experience, security etc. [10]. All these as-

pects together contribute towards intelligence in IoT. Cloud computing and Edge

computing and two most popular computing paradigms being used for IoT.

14



2.1. Edge Computing Paradigms for IoT 15

Cloud provides abundant resources to improve communication, computation,

and storage in IoT. However, cloud computing is heavily dependent on Internet

connectivity which leads to high latency in remote areas. Besides, the cloud has

scalability issue as it is very di�cult to send data from a large number of devices due

to limited bandwidth constraint. Another issue with cloud is security and privacy

as data travels along intermediate networks which can be prone to attacks and if the

data is stored at public cloud, then chances of unwanted access and/or compromise

become higher. Since Cloud data centers are usually located in a faraway place,

latency is higher which means Cloud computing paradigm is not e↵ective for an

application that requires mobility support.

Edge computing resolves the issues related Cloud computing by pushing the

computation and services closer to data sources at the edge. In literature, di↵erent

edge computing paradigms have been proposed. Table 2.1 gives the comparison

between di↵erent edge computing paradigms. Edge computing provides four main

benefits: a) reduces network tra�c by reducing relying on a centralized server,

b) enables real-time data analytics by o✏oading computing to edge devices, c) pro-

vides better scalability compared to the cloud by distributing the computation tasks,

and d) enables collaboration between multiple stakeholders with di↵erent require-

ments. Fog computing is one specific paradigm that has been proposed especially

for IoT. Fog Computing provides characteristics such as low latency, real-time in-

teraction, distributed analytics, context awareness, geographical distribution, mo-

bility support, which are not supported by centralized Cloud computing paradigm

[11]. There are many challenging issues that need to be resolved to realize the full

potential of fog computing paradigm. These issues are related to fog networking,

Quality of service, interfacing and programming, computation o✏oading, account-

ing, billing, monitoring, provisioning and resource management, and security and

privacy [12].



16 2.2. Task Partitioning and Offloading

Currently researchers are working to integrate Fog and Cloud computing paradigms

[13] [14]. Osmotic computing paradigm proposed in [13] aims to decompose appli-

cations into microservices and use resources in both edge and cloud to dynamically

satisfy application requirements. IFCIoT is another work that has been proposed

related to integration where intermediary fog layer [14] provides federated cloud

services. Distributed fog nodes collect data from local systems, and updated data is

then sent to federated cloud data center which can further perform big data analytics

to give a globalized view of whole system [14].

Collaborative edge computing is a specific paradigm that focuses on sharing

data and computation resources among edge devices, cloud, and IoT end devices. It

focuses on collaboration among devices that can be owned by di↵erent stakeholders

each having its own objective. Existing works usually focus on vertical collabora-

tion, i.e. between edge devices and cloud, however, horizontal collaboration, i.e.

among edge devices, can also help in maximizing the resource utilization to achieve

application objectives [5]. A main challenge in collaborative edge computing is to

provide incentive for edge devices to share data and computation resources. The

work in [15] studies problems related to computation o✏oading, data caching, in-

terference cancellation in context of collaborative edge computing in 5G networks.

Another work in [16] designed a coalition game to share computation resources in

small-cell networks. The work in [17] developed a social-graph model to utilize the

social relationship among devices.

2.2 Task Partitioning and O✏oading

Task partitioning and o✏oading problem has been widely studied in the literature

for edge computing. Several works have also studied problems such as task alloca-

tion in wireless sensor networks or task scheduling data centers, which are closely



2.2. Task Partitioning and Offloading 17
Ta

bl
e

2.
1

C
om

pa
ris

on
of

Ed
ge

C
om

pu
tin

g
Pa

ra
di

gm
s

Fo
g

C
om

pu
tin

g
[1

1]
M

ob
ile

Ed
ge

C
om

pu
tin

g
[1

8]

C
lo

ud
le

t
C

om
pu

tin
g

[1
9]

C
ol

la
bo

ra
tiv

e
Ed

ge

C
om

pu
tin

g
[5

][
15

]

M
ot

iv
at

io
n

To
su

pp
or

t
m

ob
ili

ty
,

lo
ca

tio
n-

aw
ar

en
es

s,

an
d

lo
w

la
te

nc
y

fo
r

Io
T

ap
pl

ic
at

io
ns

To
in

cr
ea

se
pe

rf
or

-

m
an

ce
,

an
d

pr
ov

id
e

en
ric

he
d

se
rv

ic
es

in

ce
llu

la
rn

et
w

or
ks

To
en

ab
le

fa
st

re
-

sp
on

se
an

d
m

ee
t

pe
ak

ba
nd

w
id

th
de

-

m
an

ds
fo

r
m

ob
ile

ap
pl

ic
at

io
ns

En
ab

le
m

ul
tip

le
st

ak
e-

ho
ld

er
s

to
sh

ar
e

an
d

co
op

er
at

e
da

ta

N
od

e
D

ev
ic

es
R

ou
te

rs
,

Sw
itc

he
s,

A
cc

es
s

Po
in

ts
,

G
at

e-

w
ay

s

Se
rv

er
s

ru
nn

in
g

in

ba
se

st
at

io
ns

D
at

a
ce

nt
er

in
a

bo
x

Se
rv

er
s

ru
nn

in
g

in

ba
se

st
at

io
ns

N
od

e
Lo

ca
tio

n
Va

ry
in

g
be

tw
ee

n
En

d

de
vi

ce
s

an
d

C
lo

ud

B
as

e
st

at
io

n
Lo

ca
l/O

ut
do

or
in

st
al

-

la
tio

n

B
as

e
st

at
io

n

So
ftw

ar
e

A
rc

hi
te

ct
ur

e
Fo

g
A

bs
tra

ct
io

n
la

ye
r

ba
se

d

M
ob

ile
O

rc
he

st
ra

to
r

ba
se

d

C
lo

ud
le

tA
ge

nt
-b

as
ed

M
ob

ile
O

rc
he

st
ra

to
r

ba
se

d

C
on

te
xt

Aw
ar

en
es

s
M

ed
iu

m
H

ig
h

Lo
w

H
ig

h

Pr
ox

im
ity

O
ne

or
M

ul
tip

le
H

op
s

O
ne

H
op

O
ne

H
op

O
ne

H
op

A
cc

es
s

M
ec

ha
ni

sm
B

lu
et

oo
th

,W
i-F

i,
M

o-

bi
le

N
et

w
or

ks

M
ob

ile
N

et
w

or
ks

W
i-F

i
M

ob
ile

N
et

w
or

ks

In
te

rn
od

e
C

om
m

un
i-

ca
tio

n

Su
pp

or
te

d
Pa

rti
al

Pa
rti

al
Su

pp
or

te
d



18 2.2. Task Partitioning and Offloading

related to problems studied in this thesis.

Task allocation problem has been studied in wireless sensor network (WSN) for

both single-hop [20] and multi-hop networks [21], [22]. This thesis also consid-

ers task partitioning and o✏oading in a mesh network of devices where the edge

devices can be connected in a multi-hop network. However, compared to the task

allocation problems in WSN, we also consider the multiple sources of input data for

each dependent task. Previous works such as [22] also consider network resources

to make task allocation decision. However, the problem is solved for a single DAG

in each time slot. In contrast, we have also solved the task partitioning and o✏oad-

ing problem in this thesis for di↵erent application models, including independent

tasks, dependent tasks, and multiple DAG tasks.

Several works have studied task scheduling problem in data centers considering

di↵erent application models such as independent tasks, single DAG task [23], or

multiple DAG tasks [24]. Similar to problems in this thesis, some works have also

considered data placement into consideration for task scheduling [25] [26]. Many

problems in data centers do not consider bandwidth resources as task are scheduled

in a cluster environment [27]. Some works such as [28], [29], etc. have considered

network bandwidth to make a task scheduling decision. However, compared to the

problems in this thesis, they do not jointly consider network flow scheduling, where

we also need to make a decision on the start time of the flow. We have also solved

the partial o✏oading problem for independent tasks while jointly considering net-

work flow scheduling.

Existing works have solved the task partitioning and o✏oading problem in edge

computing considering issues such as dynamic o✏oading [30], multiple devices

[31], hybrid edge-cloud environment [32], etc. Existing works usually solve the task

o✏oading problem considering single-hop connectivity between devices. Some re-



2.2. Task Partitioning and Offloading 19

cent works such as [33], [34], [35], [36], etc. have also addressed the problem for a

multi-hop network. However, these problems do not jointly consider network flow

scheduling. We have solved the task partitioning and o✏oading problem consider-

ing the network flow scheduling. Furthermore, we also consider that each task can

require input data from multiple sources. We have solved the problem for both full

and partial o✏oading of tasks taking into consideration the scheduling of network

flows.



Chapter 3

Data-Aware Task Allocation⇤

sahni2020multi

3.1 Introduction

Unlike cloud computing paradigm where all the data is sent to a server, edge devices

have direct access to only a subset of sensing devices which are connected to it. A

task executed on an edge device can require data from di↵erent sensing devices.

However, the sensing devices which are located at di↵erent geographical places

will be connected to di↵erent edge devices. Therefore, data needs to be shared

among edge devices, which are connected using a multi-hop network, to enable

decision making and execution of tasks. Task allocation decisions must be done by

considering both the placement of input data and the network bandwidth consumed

in transmitting the data.

In this chapter, we study the data-aware task allocation problem to jointly sched-

ule task and network flows in collaborative edge computing with the objective of

⇤Based on work published in [37]

20



3.1. Introduction 21

minimizing the completion time of the application. Scheduling the tasks without

considering network bandwidth consumed by flows leads to network congestion

and long completion times as shown by the motivational example in Section 3.3.

The problem considers the placement of input data and the network bandwidth con-

sumed in transferring data to schedule tasks. The data transfer is both due to the

input data and the data exchanged between dependent tasks in an application. The

problem is to decide when and where each task within an application is allocated

and how network flows are scheduled such that there is no network congestion.

The problem is more challenging than existing works in wireless sensor net-

works (WSN) [20] [21] [22] and IoT [38] [39] as they usually assume that the data

required for tasks is already available on devices and do not consider network con-

gestion while scheduling tasks. There are some existing works in grids and data

centers such as [40], [25], [41], [42], [26], [43],[44], etc. which have incorporated

the transmission cost of input data. However, these works in grids and data cen-

ters do not consider the network congestion which cannot be ignored in case of

collaborative edge computing. The work in [29] solves the problem of placement

of tasks depending on the network scheduling policy. However, unlike data-aware

task allocation, it does not jointly schedule tasks and network flows. The data-aware

task allocation problem requires mathematical modelling of the joint task and net-

work flow scheduling for collaborative edge computing where the edge devices are

connected using a multi-hop path.

The main contributions of this work are:

• We have mathematically formulated a data-aware task allocation problem

considering the distribution of input data for di↵erent tasks and scheduling

of network flows for Edge Mesh. To the best of our knowledge, it the first

work to jointly study task and network flow scheduling for collaborative edge



22 3.1. Introduction

computing, where the input data required for di↵erent tasks are distributed

and the objective is to minimize the completion time of the application.

• We have proposed a multi-stage greedy adjustment (MSGA) algorithm. It

consists of three stages: creating an initial schedule without considering net-

work congestion, detecting the network flow conflicts, and resolving the net-

work flow conflicts by adjusting both the placement of tasks and the band-

width of the flows. MSGA solves the issues associated with adjusting both

the placement of tasks and bandwidth of flows.

• We have conducted simulation experiments to evaluate and compare the per-

formance, in terms of completion time of application and running time, of

MSGA against benchmark solutions. The benchmark solutions schedule flows

based on either first-come-first-serve (FCFS) policy or the earliest finish time

(EFT) priority. We have made performance comparisons by changing di↵er-

ent parameters in the simulation including the number of tasks, number of

devices, number of input data sources, and the amount of the input data. The

performance comparison shows that MSGA leads to up to 27% improvement

in completion time as compared to benchmark solutions.

The rest of the chapter is organized as follows. In Section 2, we describe the

related works, In Section 3, we have given a motivational example to illustrate the

importance of data-aware task allocation problem. In Section 4, we give the system

model and problem formulation. In Section 5, we discuss the proposed solution,

MSGA, for the data- aware task allocation problem. In Section 6, we have done the

performance evaluation. Finally, we give the conclusion in Section 7.



3.2. RelatedWork 23

3.2 Related Work

In this section, we introduce related works in task allocation belong to di↵erent

categories, including, wireless sensor networks and data centers.

Existing works related to tasks allocation in WSN have considered both sin-

gle hop [20] and multi-hop [21], [22] WSN. The work in [22] adjusts the schedule

length to resolve any network conflicts, however, compared to our work, it does not

consider the input data of tasks. Multi-objective task allocation problem has also

been studied in [45]. There are few works that also consider task allocation prob-

lem in IoT such as [38] and [39]. In [38], authors study a task mapping problem

which considers features specific to IoT including embedded system constraints

such as minimising energy consumption and resource constraints, shared sensing,

and continuous processing for large scale mobile networks. Authors in [39] propose

a distributed consensus-based algorithm for task allocation in IoT. These works do

not consider transmission cost for input data to device where task is allocated. The

transmission cost has been considered for task allocation in IoT in our previous

work [6]. However, unlike existing works, this work jointly schedules tasks and

network flows for collaborative edge computing. However, the work in [6] only

considers single hop communication networks and the objective is to minimize only

the total energy consumption. In this work, we minimize completion time of the ap-

plication for collaborative edge computing where the devices are connected jointly

schedule task and network flows which has not been done in other existing works.

There are also some existing works that consider data distribution on task allo-

cation in grids and data centres [40], [25], [26], [41], [42], [43],[44] etc. A related

work has been done for dependent tasks in [46]. Authors in [46] formulate a integer

linear programming problem to jointly solve the heterogeneous data allocation and

task scheduling (HDATS) problem of assigning processors to real-time tasks and



24 3.3. Motivational Example

allocate data. The work in [29] solves the problem of placement of tasks depending

on the network scheduling policy. However, these works in grids and data centers

do not jointly schedule task and network flows as done in this work.

There are some related work which have considered network condition while

scheduling tasks [47] [48].The work in [47] proposes a system named Iridium

which optimizes the placement of both data and tasks while considering WAN

bandwidth. This work avoids network congestion by avoiding sending too much

data over a narrow link. Another related work in SquirrelJoin [48], which is a dis-

tributed join processing technique that uses lazy partitioning to adapt to network

skew conditions. SquirrelJoin specifically considers receiver-side skew where large

amount of data is assigned to faster receivers so that receivers a↵ected by receiver-

side skew have to process less data. These works are di↵erent from the data-aware

task allocation problem. These works consider MapReduce jobs or join queries

whereas, our work considers generic task DAG model. We also consider the place-

ment of the input data of di↵erent tasks in the DAG while making task allocation

decision.

3.3 Motivational Example

The problem is to allocate a set of tasks within an application shown in Fig 3.1

to a set of devices shown in Fig 3.2 such that overall completion time is minimized.

Fig 3.1 shows the task graph of the application where the circle nodes represent the

tasks and triangle nodes represent the input data required by the task. The weight

of circle nodes represents the computation load of the task and the weight of link

connecting circle nodes represents the dependency, i.e. if the two tasks are allocated

at di↵erent devices then an amount of data equal to edge weight need to be trans-



3.3. Motivational Example 25

1 1 1

1

1

1

3 3 3

3
33

1

1

x

z

y
a

b c d

e

11

Figure 3.1 Task DAG

A

B C

1

11

1

1

1

x

y z

Figure 3.2 Network

Topology

a c

b

d e

A

B

C

t

8 units

Figure 3.3 Task schedul-

ing without considering net-

work congestion

a c

b

d e

A

B

C

t

11 units

Figure 3.4 Task schedul-

ing under congestion

using bandwidth sharing

a c

b

d e

A

B

C

t

9 units

Figure 3.5 Task schedul-

ing under congestion

using flow adjustment

a c

b

d

e

A

B

C

t

8 units

Figure 3.6 Task schedul-

ing under congestion

using both flow and destina-

tion adjustment



26 3.3. Motivational Example

ferred. The weight of edges connecting triangle nodes and circle nodes represents

the amount of input data to be transferred to the task. Fig 3.2 shows a network of 3

devices where the weight on the square nodes (or devices) represents the process-

ing power and the weight of the edge connecting di↵erent devices represents the

bandwidth capacity of the link. The Fig 3.2 also includes triangle nodes connected

to devices which represent the location of input data. Assuming that there is no

network congestion and we can use the given bandwidth capacity of each link for

data transfer, we can easily find the schedule shown in Fig 3.3 which minimizes the

completion time. The completion time of the application using this schedule is 8

units.

The schedule shown in Fig 3.3 includes network flows represented by di↵erent

lines. The task schedule is: task a is executed on the device A, task b on the device

B, task c on the device A, task d on the device C, and task e on the device C. The

figure includes a shaded area from time 1 to 2 units where two di↵erent network

flows, a ! b and y ! c are passing through the same link AB which connects

devices A and B. The flow from a to b is the result to transfer of data between

dependent tasks whereas the flow from y to c is the result of transfer of input data

y of task c. The network congestion occurs when the bandwidth of all the flows

passing though a link is greater than the link’s capacity.We can resolve this network

congestion by using bandwidth sharing policy where the overall bandwidth of the

link is shared between di↵erent flows. The new schedule created using bandwidth

sharing policy, shown in Fig 3.4, results in the increased completion time of 9 units.

The task schedule remains unchanged in the new schedule. The adjusted flows are

marked in red in the figure. The bandwidth is shared for time 2 to 3 units for both

the flows in Fig 3.4.

We can create another schedule by changing the start time of each flow instead

of sharing bandwidth as shown in Fig 3.5. The completion time using flow adjust-



3.3. Motivational Example 27

ment is 9 units. The schedule shown in Fig 3.5 only adjusts the start time of flows

without changing the destination. However, we can achieve even better completion

time of 8 units, as shown in Fig 3.6, by using both flow and destination adjustment.

Although in this example the completion time under network congestion is same as

completion time without considering network congestion, it may not be the case in

other situations. Fig 3.4 and Fig 3.5 show the schedules where the network flows

are separately considered from task placement which results in completion time of

9 units, whereas by jointly considering the network flows and tasks, as shown in

Fig 3.6, better results can be achieved. The rest of the chapter will describe how

to model the joint problem and propose the solution where both the placement of

tasks and flow adjustment are considered to resolve network congestion.

3.3.1 Problem Formulation

The data-aware task allocation problem is to jointly schedule tasks and networks

flows in Edge Mesh such that completion time of application is minimized. There

are two assumptions made in the problem, which are:

• The problem considers the shortest path to transfer the data. Another routing

algorithm can also be selected.

• Each task starts execution after receiving all the data.

This section describes the modeling of application, network, data, and cost func-

tions. The problem is formulated as a mixed-integer nonlinear programming prob-

lem.

Task graph Model: The application is modeled as a directed acyclic graph

(DAG) G = (T, P), where T is the set of tasks, T = {i|1  i  M} and P is the

set of dependencies between the tasks. The number of tasks is M. Each task i has



28 3.3. Motivational Example

a computation load of processing, ci. The weight of each link connecting tasks i

and i’ is Pii’, which represents the amount of data to be transmitted if the tasks are

executed on di↵erent devices. Task i has some predecessor tasks which is given by

a set Ri.

Network Model: The communication network is a mesh network of edge de-

vices communicating with each other using a multi-hop path. The communication

network is modeled as a graph C = (A, E), where A is the set of devices, A =

{ j|1  j  N}, E= {ejj’| j, j0 2 A} represents the link connecting device j and j’. The

weight of each node j is pj which represents the processing power of the device.

The bandwidth of each link e j j0 is Be j j0 . In the problem description, we sometimes

neglect the subscript and denote the link as e and the bandwidth as Be. The number

of devices in the communication network is N.

Data Model: Set of all input data D = {ds|s 2 1, 2, ...S }. Set of data required for

task i is represented by dti which is a subset of D. Each data source ds is located at

device devs. The amount of data, in bits, for each data source ds is sizes.

Dataflow Model: We model the application together with data model using a

data flow graph, H = (V, Z), where V = {u|1  i  K} represents the set of dataflow

tasks, and Z = {(u, v)|u, v 2 V} represents the sets of edges. Set V of dataflow

tasks is equal to T [D, T is the set of tasks in the application model, and D is the

set of input data in the data model. Each node u in set V represents a dataflow

task and the weight of the node u, cdu, which represents the computation load of

the dataflow task u. The nodes corresponding to input data have zero computation

load. The total number of nodes in the dataflow graph is K. Z is the set of all

links which includes links between di↵erent tasks in graph G and the links between

input data and the corresponding task. The weight of the link connecting di↵erent

node u and v in dataflow graph is Du,v, which represents the amount of data to be



3.3. Motivational Example 29

transferred between two dataflow tasks u and v. The weight of links connecting

nodes corresponding to input data and the task is equal to the amount of the input

data required for the task. Fig 3.8 shows an example of task graph model and the

corresponding data flow model. The input data required for di↵erent tasks in Fig

3.7 are shown in Table 3.9.

1

2 3

4

Figure 3.7 Example of

task graph model

1

2 3

4

A B

E

DC

10 20

20

1010

20

20

Figure 3.8 Correspond-

ing dataflow model

Task Input Data

1 A (10),

B(20)

2 C(20),

D(10)

3 B(20), D

(10)

4 E (20)

Figure 3.9 Set of input

data for each task

Cost Model: The completion time of an application is defined as the maximum

time when the task belonging to the application is completed. The completion time

is modeled using the EST (earliest start time) policy discussed in [49]. We need

to calculate the time cost for processing and communicating data for each task to

model the completion time. The computation cost of executing task i at device j is

given by Equation (3.1).

Tcompi, j =
ci

p j
(3.1)

The start and finish time of a task i executed at device j, i.e. T si, j and T fi, j, is

given by Equation (2) and (3) respectively.



30 3.3. Motivational Example

T si, j = max(avail j, max
1rRi

(T fr + Ttaskr,i)) (3.2)

T fi, j = T si, j + Tcompi, j (3.3)

where avail j is the time when device j finishes executing any previously scheduled

task, Ri is the set of the predecessor tasks of task i, Ttaskr,i is the time taken to

transfer data from predecessor task r to current task i. We can calculate the time

cost for communicating data from predecessor task r to task i, both allocated on

di↵erent devices, by dividing the amount of data transferred between tasks, Dr,i,

with the rate of the network flow.

The problem is to determine when and where (on which device) each task

should be executed, and schedule the flow of data transmission on the network

links, such that the completion time of the application is minimized. The term task

referred in problem description here is the dataflow task described above. Let T si

denotes the time that the i-th task starts to execute, xi denotes the device where the

i-th task is executed, where 1  i  K and 1  xi  N. The completion time of

i-th task is T fi, where T fi = T si + Tcompi. Tcompi is the time to compute i-th

task. We check every edge (i, i’) in the dataflow graph, if the two connective tasks

i and i’ are not assigned to the same device, i.e., xi , xi0 , then a flow f li,i0 is to

be scheduled in the network. Each flow is associated with some properties such as

when and where the flow has been generated, destination of the flow, etc. These

properties are defined as follows.

• Source: It is defined as the device from which the flow starts. The source of

flow f li,i0 is xi. If the flow is due to transfer of input data then source is the

device where input data is located.

• Destination: It is defined as the destination device where the flow ends. The



3.3. Motivational Example 31

destination of flow f li,i0 is x0i . x0i represents the device where the task i’ is

executed.

• Path: It is defined as a sequence of links through which the flow passes. We

use a set E f li,i0 of links in the network model to represent the path of flow

f li,i0 . In the following descriptions, we sometimes neglect the subscripts, and

denote it by E f l.

• Release time: The release time of flow f li,i0 is defined as time that the data is

ready by the precedent task i, which is represented by T si + Tcompi.

• Start time: The start time of the flow f li,i0 is defined as the time when the flow

starts from the precedent task i. It is represented by S t f li,i0 . In the following

description, we sometimes neglect the subscript, and denote it by S t f l. The

start time of the flow is greater than or equal to its release time.

• Deadline: It is defined as the latest time that the data transmission should be

completed. The deadline of flow fi,i0 is represented by T si0 , which is the time

when the task i’ needs to start.

• End time: It is defined as the time when the flow f li,i0 reaches its destination.

It is represented by Et f li,i0 . In the following description, we sometimes neglect

the subscript, and denote it by Et f l. The end time of the flow is less than or

equal to its deadline.

• Data amount: The data amount of flow f li,i0 is Di,i0 . Di,i0 has been defined

previously as the weight of the edge (i, i’) in dataflow model.

• Rate: The rate of flow is defined as the data amount transmitted per time slot.

The rate represents the network bandwidth allocated to the flow. The rate

of flow is associated with time, i.e. it can vary with time. The rate of flow



32 3.3. Motivational Example

f li,i0 is represented by R f li,i0 (⌧) for time slot ⌧. We use the short form R f l(⌧)

to denote the rate of flow f li,i0 . The rate of flow will be equal to zero for ⌧

greater than end time of flow or less than start time of flow, i.e. R f l(⌧) = 0

when ⌧ < S t f l or ⌧ > Et f l. The value of the rate of flow will be some non-zero

value between the start and end time of the flow.

Data-Aware Task Allocation problem

The data-aware task allocation problem is formulated as an optimization problem

described as follows.

Objective:

minimize max
i2V
{T fi} (3.4)

Constraints:

8(i, i0) 2 Z, T fi  T si0 (3.5)

8(i, i0) 2 V, |xi � xi0 | ⇤ Q

+ (T si � T fi0) ⇤ (T f i � T si0) � 0
(3.6)

8(i, i0) 2 Z, S t f li,i0 � T fi (3.7)

8(i, i0) 2 Z, Et f li,i0  T si0 (3.8)

8(i, i0) 2 Z,

|xi � xi0 | ⇤ (
Et f lX

⌧=S t f l

R f l(⌧) � Di,i0) = 0
(3.9)

8⌧ 2 [0,T � 1],8e 2 E,
X

f li,i0

[R f l(⌧) ⇤ Y(e, E f l)]  Be
(3.10)



3.4. Multi-Stage Greedy Adjustment Algorithm 33

where Q in Equation (3.6) is a great positive constant which approaches to in-

finity, and Y is an function of e and E f l, which represents whether edge e is part of

set E f l. If e 2 E f l, Y(e, E f l) = 1; otherwise Y(e, E f l) = 0.

Note that Equation (3.4) is the objective function to minimize the total comple-

tion time of the application. Equation (3.5) indicates that the dependent task can

only start after its preceding task is completed. Equation (3.6) shows that one de-

vice can execute only one task at a time. In case, multiple tasks are scheduled to

the same device, the tasks are executed sequentially. Equation (3.7) defines that the

flow can start only after its release time, which is the finish time of preceding task.

Equation (3.8) defines that the flow must finish before its deadline, which is the start

time of the current task. Equation (3.9) represents that the rate of flow should be

such that it is finished in time. Equation (3.10) represents that the amount of band-

width consumed by each link at given time must be less than the given bandwidth

capacity of the link.

The data-aware task allocation problem is NP-hard as it an extension of task

scheduling problem that jointly considers task and network flow scheduling. The

decision problem of the task scheduling has been proven to be NP-complete [49].

3.4 Multi-Stage Greedy Adjustment Algorithm

We have proposed a multi-stage greedy adjustment (MSGA) algorithm for the data-

aware task allocation problem. The flowchart of MSGA is shown in Fig 3.10. The

advantage of MSGA is that we can substitute part of the algorithm to create a dif-

ferent solution. For example, instead of using a greedy algorithm for creating initial

schedule we can utilize evolutionary algorithm such as the genetic algorithm. We

can also use di↵erent policies for resolving the network flow conflicts. The steps in

the MSGA are shown in Algorithm 1. The input for the Algorithm 1 includes the



34 3.4. Multi-Stage Greedy Adjustment Algorithm

task graph of M tasks, the network of N devices, and the set of input data Dti for

each task i in the task graph.

Resolve network flow conflicts Resolve network flow conflicts 

Create initial schedule without 
considering network congestion
Create initial schedule without 

considering network congestion

Detect network 
flow conflicts

End

Yes

No

Resolve network flow conflicts 

Create initial schedule without 
considering network congestion

Detect network 
flow conflicts

End

Yes

No

Resolve network flow conflicts 

Create initial schedule without 
considering network congestion

Detect network 
flow conflicts

End

Yes

No

Figure 3.10 Flowchart of MSGA

The first stage is creating an initial schedule using a greedy method based on list

scheduling without considering the network congestion (Algorithm1, Line 1). The

method is similar to HEFT algorithm proposed in [49] except we need to consider

the time taken to transfer input data additionally. We first create a priority list of

tasks where the priority of the task is calculated based on the node and edge weight

which represent the computation and communication load of the task respectively.

The task with the longest path to the end node of the task graph is given the highest

priority. Starting with the highest priority task, we assign the task to the device

which finishes it at the earliest time. The start and finish time of a task i executed



3.4. Multi-Stage Greedy Adjustment Algorithm 35

at device j, i.e. T si, j and T fi, j, is given by Equation (3.11) and (3.12) respectively.

Unlike the Equations (3.2) and (3.3), we consider the time when input data is avail-

able at the device separately from the time taken to transfer data between dependent

tasks. We use the dataflow model for calculation related to network flows and task

graph model for calculation related to task scheduling. This enables us to consider

the computation tasks separately and makes it easier to create the initial schedule.

T si, j = max(avail j, max
1rRi

(T fr + Ttaskr,i),max(Tdatai)) (3.11)

T fi, j = T si, j + Tcompi, j (3.12)

where avail j is the time when device j finishes executing any previously scheduled

task, Ri is the set of the predecessor tasks of task i, Ttaskr,i is the time taken to

transfer data from predecessor tasks, Tdatai is the time taken to transfer input data,

and Tcompi, j is the computation time to execute task i at device j.

The finish time of a task is dependent on the processing time of the application

on the allocated device, time to transfer the data from preceding tasks, and time to

transfer the input data. There are two types of flows in the network. The first type of

flow corresponds to transfer of data from preceding tasks which can only start after

the completion of preceding task. The second type of flow corresponds to transfer

of input data to the device where task is allocated. Ideally, second flow can start

at time 0, but due to the constant bandwidth available on each link, it usually leads

to network congestion if all flows are started at same time. The time to transfer

data flow fi,i0 is calculated using Equation (3.13). We have ignored any network

congestion, at this stage, so we use the entire bandwidth of the link even if there are

multiple network flows passing through the link at the same time.



36 3.4. Multi-Stage Greedy Adjustment Algorithm

T fi,i0 =
Di,i0

mine2E f l Be
(3.13)

where Di,i0 denotes the amount of data to be transferred in the flow fi,i0 , E f l denotes

the set of the edges in the path of flow f li,i0 , Be is the bandwidth of the edge e.

The initial schedule includes information about network flows, including, start

time, finish time, rate, amount of data, source and destination of flows. This infor-

mation is recorded to be utilized later for detecting and resolving network conflicts

(Algorithm 1, Line 2). We sort the flows in increasing order of their start time and

detect the earliest network conflict (Algorithm 1, Line 3). A conflict is defined

when the bandwidth utilized by all the flows passing through a link at any given

time is more than the given bandwidth of the link. Once the conflict has been de-

tected, we move on to third stage of the algorithm to resolve conflict (Algorithm1,

Line 4 -15). The second and third stage are repeated until their is no more network

conflict.

Resolving network flow conflict: The first step in resolving network conflict

is finding a list of other flows Fcl which are in conflict with the current congested

flow fn (Algorithm1, Line 4). We first find the list of all other flows, Fsl which

share the same time duration as the current flow fn. Then, based on the defini-

tion of the conflict mentioned above, we find flows in the list Fcl. The schedule

before adjustment is recorded as Es. We utilize two di↵erent methods to resolve

network flow conflicts. First is flow adjustment where we change the start time of

the flows and second is destination adjustment where we change the destination of

the flows. We have sometimes used the term bandwidth adjustment instead flow

adjustment in the chapter. Flow adjustment method is based on first-come-first-

serve (FCFS) strategy where the flow that starts first is given priority over other

flow. The congested flow fn and flows in list Fcl are sorted together, combined list



3.4. Multi-Stage Greedy Adjustment Algorithm 37

Fall, in increasing order of start time and the flow with the earliest start time, fe is

selected for adjustment (Algorithm 1, Line 5-6). All the other flows, except fe,

in the combined list Fall are delayed until the flow fe is completed (Algorithm 1,

Line 7). Based on the flow adjustment, we update the schedule to E f by modify-

ing when the tasks are scheduled (Algorithm 1, Line 8). All the devices are still

scheduled at the same device as in the initial schedule Es. The consideration of

input data transfer in the problem requires us to consider the complete task nodes

while updating the schedule, whereas for a traditional task allocation the schedule

could have been updated by only considering the successive task nodes. After up-

dating the schedule, the di↵erence in overall completion time, �t f between the new

updated schedule, E f , and initial schedule, Es, is calculated (Algorithm 1, Line 9).

The second method of destination adjustment is applied on the flow fe selected in

Line 6 of Algorithm 1 (Algorithm 1, Line 10 - 12). The detailed steps involved

in destination adjustment method are specified in Algorithm 2. The method which

leads to a minimum increase in overall completion time is selected as the new exist-

ing schedule (Algorithm 1, Line 13 - 16). This process of detecting and resolving

conflicts continues until there is no network conflict in the final schedule.

Destination Adjustment: The basic idea of destination adjustment method is

to change the destination of flow to another destination which helps in removing the

network conflict. In the destination adjustment method, we first assign the network

bandwidth to the all the other flows in list Fall except fe (Algorithm 2, Line 2). We

then utilize the remaining bandwidth to assign a new destination for the flow which

finishes the destination task of the flow in earliest time (Algorithm 8, Line 3 - 8).

There are two main issues with changing the destination of the flow. These issues

are:

1. The schedule has a ”ping-pong e↵ect” where the destination of the flow

fluctuates between two devices in later iterations.



38 3.4. Multi-Stage Greedy Adjustment Algorithm

2. Changing the destination of a flow can result in new network conflicts in

previous flows which could prevent resolving the current congested flow fe.

These issues take place because, unlike traditional task allocation problem, the

current problem also involves input data transfer. Therefore, when the destination

device is changed for a flow it a↵ects not only successive flows but also preceding

flows as the input data flows can start from time t = 0. The destination adjustment

algorithm solves the issues by using two techniques. The first issue is resolved by

maintaining a list of destination, dest fe , for each flow fe. If after the destination

adjustment the new destination is part of the list dest fe for the flow fe, then we

set the increase in overall completion time after destination adjustment, �td, equal

to infinity (Algorithm 2, 11 - 14). This ensures that destination selected in the

previous iteration is not selected again, thus, preventing ”ping-pong e↵ect”. The

second issue is resolved by checking whether the flow fe is conflicted or not after

destination adjustment. If the flow is still conflicted, we set the increase in overall

completion time after destination adjustment, �td, equal to infinity (Algorithm 2,

11 - 14). This ensures that destination adjustment is only considered if the adjust-

ment resolves network conflict for the flow fe.

The enhancements together prevent the Algorithm 1 to select the destination

adjustment strategy instead of flow adjustment in case of an issue (Algorithm 1,

13 - 16). The algorithm does not consider the current destination of the flow for

adjustment (Algorithm 2, Line 3-4), which helps in removing redundancy as the

algorithm would have rejected the destination as it is part of the list dest fe . Similar

to flow adjustment method, this method also updates the schedule (Algorithm 2,

Line 10). The destination of the flow is changed before updating the schedule, so

we do not need to change the destination while updating schedule, similar to flow

adjustment method. After the adjustment, we add the new destination of the flow,

irrespective of whether the previous conditions are satisfied or not, to the list dest fe



3.5. Evaluation 39

(Algorithm 2, Line 15).

3.4.1 Complexity Analysis

The computation complexity of MSGA is O(|Z|*(N + M)), where N is the number

of devices in the network, |Z| is the number of edges in the dataflow model, and

M is the number of the tasks in the task graph. The computation complexity is

calculated by considering the most complex operation in Algorithm 1 which is the

destination adjustment part shown in Algorithm 2. For each conflict, the destination

adjustment can choose among any of the N devices as the new destination. Once

the new destination is selected, we calculate the modified schedule by considering

all M tasks in the task graph model. This destination adjustment is made for all

conflicts which are equal to the total number of edges in the dataflow model, i.e.

|Z|. Hence, the complexity of the Algorithm 1 is O(|Z|*(N +M)).

3.5 Evaluation

We have done the simulation using MATLAB to evaluate and compare the perfor-

mance of the MSGA with benchmark solutions. The performance evaluation has

been done using two performance metrics: completion time of the application and

running time of the algorithm. The simulation experiments have been conducted

on MacOS with 2.7 GHz Dual-Core Intel Core i5 processor and 8 GB RAM. The

parameters used for the simulation are similar to the one used previously in [22]

and [45].



40 3.5. Evaluation

Algorithm 1: Multi-stage greedy adjustment (MSGA) algorithm
Input: The task graph of M tasks, the network of N edge devices, and the set

of input data Dti for each task i in the task graph

Output: The execution schedule specifying when and where each task is

scheduled, i.e. the start time T si and the device xi for each task i

1 Compute initial schedule using greedy method based on list scheduling;

2 Record the execution time of each task and flow associated with it including

the start time, finish time, data, rate, source, and destination of flow ;

3 while detect a conflict point do

4 Find list of flows Fcl that are in conflict with the current congested flow

fn in the existing schedule Es ;

5 Create a combined list Fall consisting of fn and Fcl;

6 Sort the list in increasing order of start time and select the flow fe with

the earliest start time;

7 Delay transmission of all flows in list fcl until the flow fe is completed;

8 Create a new schedule, E f , considering the flow adjustment;

9 Calculate the delay in overall completion time, �t f , caused by flow

adjustment ;

10 Change the destination of the flow fe in the schedule Es to a new

destination that can finish the dependent task in the earliest time ;

11 Create a new schedule Ed considering the destination adjustment ;

12 Calculate the increase in overall completion time, �td caused by

destination adjustment;

13 if �td � �t f then

14 Es = E f , i.e. Set the new schedule as E f ;

15 else

16 Es = Ed, i.e. Set the new schedule as Es;

17 end

18 return Es;



3.5. Evaluation 41

Algorithm 2: Destination adjustment algorithm
Input: The task graph of M tasks, the network of N edge devices, and the set

of input data Dti for each task ti in the task graph, congested flow fe,

list of flows Fcl congested at same time, list of destination, dest fe , for

flow fe

Output: The updated schedule Ed after adjustment and the increase in

completion time �td

1 Find the destination task, ti for the congested flow fe ;

2 Calculate the remaining bandwidth after scheduling other flows in the list Fcl

using the initial bandwidth for i  N do

3 if i == devi then

4 ti, f = In f ;

5 else

6 Calculate the finish time of task ti considering remaining bandwidth

7 end

8 Select the device which finishes the task ti in earliest time;

9 Update the information of flows directly a↵ected by destination adjustment;

10 Create a new schedule Ed considering the destination adjustment;

11 if fe is no more congested and new destination of fe is not part of dest fe then

12 �td = Newcompletiontime � Oldcompletiontime;

13 else

14 �td = In f ;

15 Add the new destination of fn into the list fe;

16 return Ed,�td;



42 3.5. Evaluation

3.5.1 Simulation Setting

Parameters for Network Model: We generate a network of edge devices where de-

vices are randomly deployed in a 100m x 100m area, and any two devices less than

35m apart are connected to each other. All the devices are connected to each other

using a multi-hop path. The weight of the device represents the processing power,

and weight of the link connecting two devices represents the bandwidth capacity

of the link. The devices are heterogeneous in terms of processing power which

is selected to be [50MCPS ± 10%]. The bandwidth of each link is selected to be

[250Kbps ± 10%].

Parameters for Application Model: We have implemented a random DAG gen-

erator for the task graph using the level by the level method mentioned in [50].

The task graph contains M nodes where each node represents the task and weight

of the node represents the computation load of the task. The nodes are connected

using edges whose weight represents the amount of data to be transferred between

dependent tasks. The number of levels in the task graph is selected to be a normal

distribution in the range [M/4, M/2]. Each level contains at least one node, and the

number of nodes in each level is selected randomly. The computation load of each

task is selected to be [300KCC ± 10%] and data transferred between two dependent

tasks is selected to be [750 bits ± 10%]. The amount of data to be transferred is

calculated based on the communication-to-computation ratio (CCR) of 0.5.

Parameters for Data Model: We generate a set of 20 input data which are se-

lected to be located on random devices. We randomly select a subset of input data

(2 for default case) for each task. The amount of input data is selected to be [3200

bits ± 10%].



3.5. Evaluation 43

Benchmark Solutions

We have compared the performance of MSGA with two benchmark solutions. The

benchmark solutions also follow the three-stage methodology of MSGA. The first

and second stage of the benchmark solutions are same as that of MSGA, however,

in the third stage, we use a di↵erent method for resolving conflicts. The first bench-

mark uses the first-come-first-serve (FCFS) policy to adjust the flows. The flow

which starts at the earliest time is given highest priority while adjusting the flows

in the first benchmark solution. Other congested flows are delayed until the high-

est priority flow is finished. The second benchmark uses another priority method

where the flow which finishes first is given highest priority. In terms of Algorithm

1, sorting is done in increasing order of finish time of flows instead of the start time

in Line 6. This implies that all other conflicted flows are delayed until the flow of

the highest priority (earliest finish time) is finished. Compared to MSGA, both of

these benchmark solutions resolve the network conflict by adjusting the flows only

whereas MSGA also utilizes changing the destination of flows, i.e. changing the

placement of tasks.

We have also implemented a genetic algorithm (GA) where the network conges-

tion is resolved using the FCFS policy. Compared to other benchmarks, the genetic

algorithm improves the solution iteratively by changing the placement of tasks. The

genetic algorithm implemented in this work is similar to the one in [6]. However,

we have changed the encoding of genes, crossover operator, and mutation operator.

We encode each gene as a vector of integers representing the allocated device for

each task. A simple crossover operator has been used where two genes exchange the

second partition of the gene selected randomly. We use power mutation described

in [51]. The parameters used for GA are: number of chromosomes in the initial

population is 10, the number of generations is 100, 80% of the original population



44 3.5. Evaluation

Table 3.1 Default parameters used for simulation

Parameter Value

Number of tasks 30

Number of devices 100

Number of input data sources 2

Amount of input data 3200 bits ± 10%

Computation load of each task 300 KCC ± 10%

Processing power of each device 50 MCPS ± 10%

Data transmission between 750 bits ± 10%

dependent tasks

Bandwidth of each link 250 Kbps ± 10%

is selected for crossover, and mutation ratio is 0.02.

3.5.2 Simulation Results

The default parameters used for simulation are shown in Table 3.1. Table 3.2 shows

the comparison between benchmark solutions and MSGA in terms of both com-

pletion time and running time of the algorithms. We have used short form FCFS

(first-come-first serve) to represent first benchmark solution, EFT (earliest finish

time) to represent second benchmark solution, and GA to represent the genetic al-

gorithm. Compared to other algorithms, MSGA can achieve better performance in

terms of completion time. However, the better performance comes at the cost of

higher running time of MSGA compared to the benchmark solutions, FCFS and

EFT. It can be observed that genetic algorithm is also able to achieve similar perfor-

mance as FCFS and EFT in terms of completion time but the running time of GA



3.5. Evaluation 45

Table 3.2 Performance Comparison for default parameters

Metric FCFS EFT GA MSGA

Completion time (sec) 0.2188 0.2456 0.2175 0.1805

Running time (sec) 33.3162 34.9928 27676 93.1934

is very high. It is almost 830 times higher than other benchmark solutions. Due to

such high running time, we have not considered the genetic algorithm for perfor-

mance comparison while changing other parameters. The algorithms are proposed

for o✏ine environment where the task o✏oading decision is determined before the

execution. Therefore, the overhead of the running time does not a↵ect the task

execution schedule. Furthermore, the running time is dependent on the algorithm

implementation and the machine where the simulation experiments are conducted.

The results obtained for performance comparison have been averaged out for 30 it-

erations. Each iteration is di↵erent in terms of both the task graph and the wireless

network generated randomly.

E↵ect of changing number of tasks

We evaluate the e↵ect on the performance of algorithms by changing the number

of tasks from 10 to 50 while keeping other parameters constant. Fig 3.11 shows the

performance comparison in terms of completion time where the completion time

increases on increasing the number of tasks. The performance di↵erence, in terms

of completion time, between MSGA and benchmark solutions ranges from 16% to

22%. The performance di↵erence decreases from 22% to 15.8% as the number of

tasks is increased from 30 to 50 tasks. However, when the number of tasks is 10 or

20, the performance di↵erence is less around 16% because the number of devices



46 3.5. Evaluation

is 100 which is large enough for benchmark solutions to give good results.

We have also compared the running time of MSGA with benchmark solutions

as shown in Fig 3.12. Since MSGA also considers changing the placement of the

tasks, its running time is around 2-3 times more than that of benchmark solutions.

However, compared to the genetic algorithm the running time of MSGA is still very

low, and MSGA also gives better result in terms of completion time. This shows a

trade-o↵ between the two performance metrics, i.e. completion time and running

time.

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

C
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

Number of Tasks

EFT

FCFS

MSGA

Figure 3.11 E↵ect of number of tasks on

completion time

0
50

100
150
200
250
300

10 20 30 40 50R
un

ni
ng

 ti
m

e (
se

co
nd

s)

Number of tasks

EFT
FCFS
MSGA

Figure 3.12 E↵ect of number of tasks on

running time

E↵ect of changing number of devices

Fig 3.13 shows the performance comparison, in terms of completion time, by chang-

ing the number of devices from 50 to 250. Performance comparison indicates that

the completion time decreases as the number of devices are increased because the

number of connections are increased due to increase in density of devices. The

increase in connections leads to less completion time as the transfer time is now

decreased. The performance di↵erence between MSGA and benchmark solution

increases as the number of devices are increased. The reason is that as the number

of devices are increased, MSGA has more chances of changing the destination of



3.5. Evaluation 47

flows. However, this trend continues only up to a certain point. If the number of

devices is too large then the di↵erence between MSGA and benchmark solutions

will start to decrease as the benchmark solutions can give good results for a very

large number of devices. This can be observed in Fig 3.13 where the di↵erence in

performance first increases from 12.4% at 50 devices to 27.2% at 150 devices and

then decreases to 21.3% when the number of devices is 250.

The running time of MSGA will increase more than that of benchmark solutions

as shown in Fig 3.14. This increase happens because MSGA utilizes changing the

destination of flow to other devices which is dependent on the number of devices in

the network.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

50 100 150 200 250

C
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

Number of Devices

EFT

FCFS

MSGA

Figure 3.13 E↵ect of number of devices

on completion time

0

50

100

150

200

50 100 150 200 250R
un

ni
ng

 ti
m

e (
se

co
nd

s)

Number of Devices

EFT
FCFS
MSGA

Figure 3.14 E↵ect of number of devices

on running time

E↵ect of changing number of input data sources

We have evaluated the e↵ect of changing the number of input data sources from 1

to 4 on completion time as shown in Fig 3.15. The results show that as the num-

ber of input data sources is increased the value of completion time increases. This

increase in completion time is due to increase in transfer time as network conges-

tion increases on increasing the number of input data sources. The performance

di↵erence between MSGA and benchmark solutions also decreases from 21% to



48 3.5. Evaluation

around 10% on increasing the number of input data sources. The decrease in per-

formance di↵erence is the result of increased network congestion which makes it

di�cult to change the destination of flow. Since the network congestion cannot be

resolved e�ciency due to increase in number parallel data transmissions, there is

not a significant di↵erence between MSGA and benchmark solutions.

The running time of both MSGA and benchmark solutions increases as the num-

ber of input sources are increased as shown in Fig 3.16. Due to increased network

congestion for large values of input data sources, the increase in running time of

MSGA is more than that of benchmark solutions. The reason is the network con-

gestion increases, and more time is spent by destination adjustment part of MSGA

which leads to a higher increase in running time.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1 2 3 4

C
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

Number of Input data sources

EFT FCFS MSGA

Figure 3.15 E↵ect of number of input

data sources on completion time

0
50

100
150
200
250
300

1 2 3 4R
un

ni
ng

 ti
m

e (
se

co
nd

s)

Number of Input data sources

EFT
FCFS
MSGA

Figure 3.16 E↵ect fo number of input

data sources on running time

E↵ect of changing amount of input data

Fig 3.17 shows the e↵ect of increasing the amount of average input data from 1600

bits to 6400 bits. Fig 3.17 shows that as the amount of average input data is in-

creased the value of completion time increases. The increase in completion time is

due to increase in the amount of transfer time when the input data increases. An

interesting observation is that as the amount of average input data is increased, the



3.6. Conclusion 49

performance di↵erence between MSGA and benchmark solutions also increases

from 7.36% for 1600 bits to 25.75% for 6400 bits. The reason for the observed in-

crease in performance di↵erence is that benchmark solutions delay the flows based

on priority which results in significant increase of completion time when the amount

of input data is large, whereas MSGA changes the destination to resolve network

conflict which does not require delaying other conflicted flows.

The running time remains almost same as the amount of average input data is

increased as shown in Fig 3.18. The reason is that as that there is no significant

di↵erence in network congestion on increasing the amount of input data.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1600 3200 4800 6400

C
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

Amount of input data

EFT
FCFS
MSGA

Figure 3.17 E↵ect of amount of input

data on completion time

0
20
40
60
80

100
120

1600 3200 4800 6400R
un

ni
ng

 ti
m

e (
se

co
nd

s)

Amount of input data

EFT FCFS MSGA

Figure 3.18 E↵ect of amount of input

data on running time

3.6 Conclusion

In this chapter, we study the data-aware task allocation problem where task and

network flows are jointly scheduled with the objective of minimizing the comple-

tion time of application. The problem is solved for a a single DAG application task

graph where each task in the DAG requires input data both from predecessor tasks

and other distributed sources. The problem considers both the placement of data

and network bandwidth consumed in transferring data to schedule tasks. We have



50 3.6. Conclusion

proposed a solution, MSGA, for the data-aware task allocation. The three stages

in MSGA are: creating an initial schedule without considering network congestion,

detecting network flow conflicts, and resolving network flow conflicts. We adjust

both the destination of flow and bandwidth to resolve the network flow conflicts.

The advantage of proposing three-stage algorithm is that we can easily modify the

algorithm, for example instead of using a greedy algorithm based on list scheduling

for creating initial schedule, we can use another algorithm. We have done simu-

lation experiments to evaluate and compare the performance of MSGA with the

benchmark solutions which only consider adjusting the bandwidth of flows to re-

solve network flow conflicts. Performance comparison shows that the proposed so-

lutions can lead to up to 27% improvement in completion time compared to bench-

mark solutions. Although the proposed solution requires more running time than

benchmark solutions as it also considers adjusting destination of flows, the running

time is far less compared to genetic algorithm.

The data-aware task allocation problem can be investigated further by including

other objective functions such as jointly optimizing both energy consumption and

completion time of the task. We also do not consider o✏oading the tasks to cen-

tralized cloud server. Further, the dynamics of network and workload have also not

been considered in this work. We assume static environment where both the task

and network resources are known beforehand and do not change while allocating

sub-tasks.



Chapter 4

Multi-Hop O✏oading of Multiple

DAG Tasks⇤

4.1 introduction

One fundamental problem in CEC is to o✏oad and schedule computation tasks

among edge devices. However, unlike many existing works that o✏oad compu-

tation to a single-hop neighbour, tasks in CEC can be o✏oaded to a device at a

multi-hop distance depending on resource availability. Multi-hop o✏oading has

an advantage over single-hop by enabling the use of underutilized resources in a

mesh network of devices. Furthermore, application scenarios such as unmanned

aerial vehicle (UAV) robot swarms, autonomous vehicles, etc. have few ground

stations or road-side units that can be connected through a multi-hop network with

the other devices. Multi-hop o✏oading is essential in such scenarios as we can uti-

lize computation-intensive edge devices which can be at a multi-hop distance from

many resource-constraint devices. There are some recent works in literature such as

⇤Based on work published in [52]

51



52 4.1. introduction

[34], [33], [35], [36], etc. that have studied multi-hop computation o✏oading prob-

lem. These works, however, focus on independent tasks and usually do not jointly

consider network flow scheduling. Network flow scheduling includes making a de-

cision on the start time of the flows. Task o✏oading without jointly considering

network flow scheduling leads to network congestion and ine�cient performance

as network links have limited bandwidth capacity.

This chapter studies the problem of multi-hop dependent task o✏oading in CEC

with the objective of minimizing the average completive time of all tasks. The

problem considers jointly o✏oading tasks, where each task consists of multiple

dependent subtasks, and scheduling network flows that are generated to transfer

data between dependent subtasks. The task o✏oading problem includes making

a decision on both o✏oading the subtask to a remote device and scheduling start

time of each subtask within the task. The task o✏oading decision is dependent

on the decision of start time of flows made in network flow scheduling problem.

One of the main challenging issues with the problem is that communication cost

associated with transfer of data between dependent subtasks is not constant and

di�cult to estimate as there can be multiple simultaneous network flows due to

di↵erent subtasks within multiple tasks. The decision on the start time of network

flows changes the communication cost of transferring data and hence, the start time

of di↵erent subtasks. The problem also considers di↵erent release time of di↵erent

tasks. This overall dependence among di↵erent decision variables makes it di�cult

to formulate and solve the problem.

Many existing works have studied scheduling and o✏oading of dependent tasks

such as [23], [24], [27], etc. These works, however, make task scheduling deci-

sion without jointly considering network flow scheduling. Some works such as

[28] consider network resources but do not leverage dependency among tasks to

make task o✏oading decision. Other works such as [29] assume the underlying



4.1. introduction 53

network scheduler to make task scheduling decisions. Compared to these works,

our work considers jointly making a decision on o✏oading of multiple DAG tasks

and scheduling network flows. Our proposed solution leverages the knowledge of

both parallelism and dependency among subtasks in a DAG task to make o✏oad-

ing decisions. Our work does not just consider network bandwidth to decide task

o✏oading but also jointly makes decisions on the start time of network flows to

avoid network congestion. We have shown in evaluation that joint decision leads

significantly better performance, in terms of average completion time, compared to

making task o✏oading and network flow scheduling decision separately.

This problem is useful for applications such as large-scale multi-camera video

analytics where video and image data from multiple cameras is used for generating

situational awareness. The idea of collaboration among di↵erent edge devices for

video processing has been discussed in some recent works such as [53], [54], etc.

The work in [53] discusses the conceptual idea of collaborative edge computing

for video processing. The work in [54] developed a real-time Edge video analyt-

ics system named REVAMP2T for multi-camera privacy-aware pedestrian tracking.

The use of collaborative edge computing has also been studied for other application

domains such as vehicular networks [55], small-cell base stations [16], etc. The

work in [56] developed a lightweight virtualization model to support collaboration

among edge devices in smart city and other related applications.

The main contribution made in this work are:

1. We have mathematically formulated the problem of multi-hop o✏oading of

multiple DAG (directed acyclic graph) tasks in CEC with the objective of

minimizing the average completion time of tasks. We consider the tasks to be

heterogeneous in terms of the computation load of subtasks and input data.

The tasks can set to be generated at any device at di↵erent release times. The



54 4.2. RelatedWorks

formulated problem is shown to be NP-hard.

2. We propose a joint dependent task o✏oading and flow scheduling heuristic

(JDOFH) which solves the problem by considering the start time of asso-

ciated network flows to determine the o✏oading device for each subtask.

JDOFH also leverages the global knowledge of all task graphs by consider-

ing each task graph as a set of cosubtask stages. The execution schedule is

determined based on priority of each cosubtask stage.

3. We have conducted simulation experiments to evaluate the performance of

JDOFH and compare it against other benchmark solutions. The performance

comparison is done for both real application task graph of FFT with 4 points

and randomly generated task graphs by varying di↵erent input parameters

including the number of tasks, number of subtasks, number of devices, and

communication-to-computation ratio of task graphs. The performance com-

parison JDOFH leads to up to 25% and 85% improvement in average com-

pletion time compared to joint scheduling solution based on list scheduling

algorithms and other benchmark solutions respectively.

The rest of the chapter is organized as follows. In Section 2, we discuss some

related works. In Section 3, we give the system model and problem formulation.

In Section 4, we describe the proposed solution, JPOFH, for the multi-hop depen-

dent task o✏oading problem. In Section 5, we explain the results obtained during

performance evaluation. Finally, we give the conclusion in Section 6.

4.2 Related Works

Existing works in literature have addressed di↵erent types of computation o✏oad-

ing problem. However, most of these works consider single-hop computation of-



4.2. RelatedWorks 55

floading problem. Some recent works such as [33], [34], [35], [36], etc. have ad-

dressed multi-hop computation o✏oading problem. These works usually consider

o✏oading of independent tasks to a single remote site and routing path selection

in a multi-hop network. Compared to these existing works, this work considers of-

floading of multiple tasks, each consisting of dependent subtasks. Our work also

considers scheduling of network flows arising due to transfer of data between de-

pendent subtasks which has not been much explored in these works.

Scheduling and o✏oading problem of tasks with a directed acyclic graph (DAG)

model has been studied extensively in the literature. The work in [49] proposed

heterogeneous earliest finish time (HEFT) algorithm for placing a DAG task on

heterogeneous processors. Many other works proposed similar list scheduling al-

gorithms based on the work in [49]. Recently some have studied the problem of

scheduling dependent tasks for various scenarios including single DAG task [23],

multiple DAG tasks [24], within a cluster [27], across geo-distributed clusters [28],

etc. The work in [27] proposes a scheduler, Graphene, to place multiple tasks with

dependencies within a cluster by identifying the troublesome subtasks within each

task. The work in [28] proposes Tetrium for scheduling tasks with dependencies

in geo-distributed clusters by considering both computation and network resources.

The work in [23] gave a lower bound solution for scheduling a single DAG task.

Another recent work [57] has proposed a solution to schedule multiple DAG tasks

by proposing a new abstraction branch and considering the urgency of di↵erent

branches within a DAG task. These works, however, either do not jointly consider

network flow scheduling such as in [27], [23], [57], or do not take dependencies

among subtasks to make decisions [28]. Another recent work [58], similar to our

work, also considers di↵erent stages within a DAG task to make scheduling deci-

sions. However, this work [58] does not consider multiple DAG tasks and network

flow scheduling.



56 4.3. SystemModel and Problem Formulation

Some works in literature such as [29], [59], [47], [48], etc. have considered net-

work bandwidth while making task scheduling decisions. The work in [29] assumes

the underlying network scheduler to make task scheduling decisions. Another work

[59] considers joint reducer placement and coflow scheduling problem. However,

compared to our work, these works do not consider multiple DAG tasks and jointly

consider network flow scheduling. There are few other works such as [60] and [61]

which also consider cotask stages similar to our work. Here, the cotask is usually

defined as a set of independent tasks related to each other by a common applica-

tion. The work in [60] considers each DAG job as stages of cotasks and makes task

scheduling decisions. However, it does not consider network flow scheduling. The

work in [61] considered cotask o✏oading problem for independent tasks and did

not consider network flow scheduling.

Our previous work in [37] studied data-aware task allocation problem while

jointly considered network flow scheduling. However, the work in [37] made schedul-

ing decision for a single task DAG and did not consider heterogeneous release time

of tasks. Besides, this work also proposes a new heuristic solution where the task

o✏oading and network flow scheduling decision is made in a single step for each

subtask as opposed to di↵erent steps in [37].

4.3 System Model and Problem Formulation

This section first describes the system model including network and application

model and then the problem formulation.



4.3. SystemModel and Problem Formulation 57

4.3.1 System Model

Fig 1.1 shows the system architecture of Edge Mesh, an abstraction collaborative

edge computing, where the intelligence is distributed and pushed within the net-

work by sharing computation resources and data between mesh network of edge

devices [6]. Edge devices is such an architecture can be heterogenous in computa-

tion capacity and can also serve as routers as shown in Fig 1.1. Due to heterogeneity

of devices, computation tasks can be o✏oaded to an edge device at a multi-hop dis-

tance.

The system architecture includes an SDN controller which is assumed to have

global knowledge by collecting network and task-related information from all the

edge devices and routers. SDN controller is responsible for making the decision

for o✏oading tasks and scheduling flows in the network. It includes di↵erent func-

tional components responsible for collecting information and making scheduling

decisions, as shown in Fig 1.1. There are some previous works such as [62], [63],

etc. which have used the SDN controller to make scheduling decisions in wireless

networks. The work in [64] proposed meSDN to extend the control of SDN to mo-

bile devices. The work in [65] implemented a prototype for the proposed algorithm

in [63].

Although the system model assumes that edge devices are connected using a

wireless network, we have not fully considered all the issues due to dynamics in a

wireless network such as spatial and temporal variation of wireless channel condi-

tions, interference of wireless transmission among neighbouring devices [37]. Nev-

ertheless, these issues in a wireless network should be considered as part of future

work. The problem formulation in this work has been done assuming a static net-

work condition. The problem is solved for an o✏ine setting where we assume the

information for all the tasks and network are already known. In practice, the cost



58 4.3. SystemModel and Problem Formulation

and other information of executing the tasks on the di↵erent devices can be obtained

using an application profiler [66] [67]. Furthermore, the o✏oading problem in this

work is solved for DAG tasks; however, we do not focus on how the application is

modelled as a dependency graph. The work in [68] surveys di↵erent works on ap-

plication profiling and partitioning. Di↵erent algorithms have been proposed in the

literature for graph-based modelling based on the type of graph. The works such

as [69], [70], etc. describe the profiling and partitioning method for graph-based

modelling.

The objective of the problem is to minimize the average completion time of all

the tasks. We have included both communication and computation cost to make task

o✏oading and network flow scheduling decisions. The computation cost includes

both waiting time at the devices and time to execute the task. The communication

cost includes waiting time to start the data transmission, and data transmission cost.

We do not include propagation time in communication cost as it is usually very

small. Further, we also ignore the switching cost for routing between subsequent

links in the multi-hop path. In practice, these costs would influence the total cost;

however, we ignore these costs to simplify the system model. Other works such as

[23], [35], [71] etc. have used similar assumptions to calculate the total cost.

The network and application model used in formulating the problem are:

Network model: The communication network is a mesh network of edge de-

vices, shown to Edge Mesh circle in Fig 1.1, connected to each other using a multi-

hop path. The communication network is modelled as a connected graph G = (V,

E), where V is the set of devices, V = {k|1  k  M}, and E is the set of links

connecting di↵erent devices, E = {ekw|k,w 2 V}. Here, M is the total number of

devices. In the problem description, we sometimes neglect the subscript and denote

the link as e. The weight of each device is PS k which represents the processing



4.3. SystemModel and Problem Formulation 59

Cloud

Edge 
Devices

End Devices

Edge Mesh

End Devices

Cloud

Edge 
Devices

End Devices

Edge Mesh

End Devices

SDN Controller

Resource discovery Traffic rules registry

Task scheduler Flow scheduler

Message broker

Resource discovery Traffic rules registry

Task scheduler Flow scheduler

Message broker

Receive network and
 task information

Send scheduling 
decisions

Figure 4.1 System Architecture

speed of each device k and weight of link ekw represents the bandwidth between

devices k and w. The devices can be heterogeneous in processing speed.

The network is assumed to be connected, i.e. there is at least one routing path

between any two devices in the network. We assume that the shortest routing path

is used to route the data between the two devices. The shortest path can be found

using Djikstra’s algorithm or another shortest path algorithm. A binary parameter

Ykwe (1 for yes, 0 for no) is used to represent if an edge e lies on routing path

between device k to device w. The number of hops and bandwidth of the routing

path between devices k and w is represented by Hkw and Rkw, respectively.

Application model: The application model consists of a set of tasks, A = {i|1 

i  O}, where O is the total number of tasks. Each task i is modelled as a DAG

Bi = (Ti, Pi), where Ti is the set of dependent subtasks in task i, Ti = { j|1  j  Ni},

and Pi is set of dependencies between the subtasks in task i. Here, Ni is the number

of subtasks in task i. We do not make an assumption on the dependency among



60 4.3. SystemModel and Problem Formulation

subtasks in the DAG. Each DAG can have general dependency as shown by an

example DAG task in Fig 4.2. Each task i is assumed to be generated at an edge

device zi|zi 2 V at release time Treli. The amount of input data required for task i

is IDi. Each subtask j in the task i is associated with a computation load CLi j. The

weight of link connecting subtasks j and v of task i is Di jv, which represents the

amount of data to be transmitted if the dependent subtasks j and v are executed on

di↵erent devices. The set of predecessors and successor subtasks for subtask j in

task i is represented by Pdi j and S ci j respectively.

We have assumed each task DAG includes an additional dummy subtask cor-

responding to the input data of the task. This dummy subtask can be inserted at

the start without violating the original task DAG. The total number of subtask can

be changed to N 0

i , where N 0

i = Ni + 1. The dummy subtask is numbered N 0

i and is

connected to subtasks without predecessors in original task DAG. The computation

load of dummy subtask, i.e. CLiN0i
, is set equal to zero and the weight of link con-

necting dummy subtask with a successor subtasks in the task DAG, i.e. DiN0i S c
iN
0

i

, is

set as the amount of input data of the task.

Some of the assumptions made in the problem formulation are:

1. The routing path is assumed to be known.

2. The bandwidth for each flow is assumed to be given and equal to the mini-

mum bandwidth of a link in the routing path.

3. Each device can execute one task at a time, while other tasks wait in the queue

at the device.

4. Preemptive scheduling of tasks is not allowed.

5. No two flows are allowed to pass through a link at the same time to consider

the interference among simultaneous wireless transmissions.



4.3. SystemModel and Problem Formulation 61

cosubtask 
stage

Figure 4.2 Example DAG Task

4.3.2 Problem Formulation

This section describes the constraints and formulates the problem as an optimization

problem.

Constraints

The task o✏oading decision includes making a decision on when and where each

subtask within a task is o✏oaded. The constraints associated with task o✏oading

are described in Equation (1)-(5). Each subtask is o✏oaded to exactly one device

as represented by Equation (4.1).

X

k2V

Xi jk = 1, 8i 2 A, j 2 Ti (4.1)

The problem assumes that processor sharing is not allowed therefore, only one

subtask can be executed at one device at one time as represented by Equation (4.2).



62 4.3. SystemModel and Problem Formulation

|Xi jk � Xpqk| ⇤ L + (T si j � T fpq)) ⇤ (T fi j � T spq) >= 0

8i, p 2 A, j 2 Ti, q 2 Tp, k 2 V
(4.2)

Since each task contains dependent subtasks, a subtask can start only after pre-

ceding subtasks have finished as represented by Equation (4.3).

T si j � T fiv 8i 2 A, j 2 Ti, v 2 Pdi j (4.3)

In case the dependent subtasks are executed on di↵erent devices, a subtask can

start after receiving dependent data from the preceding task as represented by Equa-

tion (4.4).

T si j � Fltiv j 8i 2 A, j 2 Ti, v 2 Pdi j (4.4)

The relationship between finish time and start time of a subtask is represented

by Equation (4.5). The finish time of a subtask is equal to sum of start time and

time to execute the subtask at the device.

T fi j = T si j +
CLi j

PS k
⇤ Xi jk 8i 2 A, j 2 Ti, k 2 V (4.5)

There are some additional constraints, Equation (4.6)-(4.8), added to satisfy the

schedule of the inserted dummy subtask. The dummy subtask is executed at the

device the task is generated and started when the task is released.

XiN0i zi
= 1, 8i 2 A (4.6)

T siN0i
= Treli, 8i 2 A (4.7)

T fiN0i
= Treli, 8i 2 A (4.8)



4.3. SystemModel and Problem Formulation 63

Network flow scheduling also involves separate constraints that are dependent

on the task o✏oading decision. In this work, we consider network flow scheduling

as deciding the start time of flows to transfer data between dependent subtasks exe-

cuted on di↵erent devices. The lower bound of the start time of a flow is the release

time of task as represented in Equation (4.9).

S tiv j = Treli 8i 2 A, j 2 Ti, v 2 Pdi j (4.9)

The network flow start only after the preceding subtask has finished as repre-

sented by Equation (4.10).

S tiv j = T fiv 8i 2 A, j 2 Ti, v 2 Pdi j (4.10)

This work assumes that two flows cannot pass through a link at the same time as

represented by Equation (4.11). If any two flows pass through the same link then,

one of the flows can start only after other flow is finished. This constraint also helps

to preserve the bandwidth constraint.

|Ywke ⇤ Xi jk ⇤ Xivw � Ylme ⇤ Xprl ⇤ Xpqm| ⇤ L +

(S tiv j � Fltprq) ⇤ (Fltiv j � S tprq) >= 0

8i, p 2 A, j, v 2 Ti, r, q 2 Tp, k,w, l,m 2 V

(4.11)

The finish time of a flow can be calculated directly once the start time is known.

Equation (4.12) represents the relationship between start time and finish time of a

data flow.

Fltiv j = S tiv j +
Div j ⇤ Hwk

Rwk
⇤ Xi jk ⇤ Xivw

8i 2 A, j 2 Ti, v 2 Pdi j, k,w 2 V
(4.12)



64 4.3. SystemModel and Problem Formulation

The task is considered to be finished when the last subtask within the task has

finished execution. We do not consider the time to send any output data from the

last subtask. This can be included, if required, by adding a dummy subtask as

done in [23]. The completion time of a task, represented by Equation (4.13), is the

di↵erence between the time instance when the last subtask is finished and the time

instance when the task is released.

Fi = max
j=1,...N0i

T fi j � Treli, 8i 2 A (4.13)

The constraint of the range of binary decision variable Xi jk is represented by

Equation (4.14).

Xi jk = {0, 1}, 8i 2 A, j 2 Ti, k 2 V (4.14)

Optimization Problem

The objective function of the problem is to minimize the average completion time

of all tasks. The objective function considers the time instant each task is finished

(T f ti) rather than the time period (Fi) to complete the task. As Treli is a constant

value, it is equivalent to minimizing the time period to complete the task. The

multi-hop dependent task o✏oading problem, P1, can be formatted as:

minimize
Xi jk ,T fi j,T si j,S tiv j,Fltiv j,Fi

PJ
i=1 T f ti

J
, (4.15)

subject to (4.1) - (4.14) 8i 2 A, j, v 2 Ti, k 2 V

This problem can be reduced to shop-scheduling problem [72] for a fully con-

nected network and not considering the o✏oading of subtasks. In the reduced prob-

lem, each DAG task refers to a job, and the devices are referred to as machines. The



4.4. JointDependent TaskOffloading and Flow SchedulingHeuristic (JDOFH) 65

subtasks have a set of precedence order similar to one for operations in the job. The

shop-scheduling problem has been proven to be NP-hard for 3 three jobs in [72].

Hence, the problem in this work is also NP-hard. Since we cannot find an optimal

solution in polynomial time. Therefore, we have proposed a heuristic solution.

4.4 Joint Dependent Task O✏oading and Flow Schedul-

ing Heuristic (JDOFH)

We have proposed a joint dependent task o✏oading and flow scheduling heuristic

(JDOFH) that determines the execution schedule which includes the decision on the

start time of execution, o✏oading device, and the start time of input data flow for

each subtask. JDOFH is developed considering two main principles:

1. Leverage information of both parallelism and dependency with each DAG

task: The parallelism among subtasks is leveraged by considering each task

as a set of cosubtask stages, as shown in Fig 4.2. The dependency infor-

mation is utilized by assigning each cosubtask stage a priority based on the

release time of tasks and maximum computation load of a subtask within a

cosubtask stage. Scheduling decisions are made in the increasing order of

priority metric. Existing methods usually make scheduling decisions based

on the order of task release time or earliest task finish time which requires

other tasks to wait even if a subtask from another task can be scheduled in the

meantime. The use of both parallelism and dependency information using

cosubtask stages helps in creating a better execution schedule. It allows sub-

tasks from multiple tasks to be scheduled while considering both the release

time and finish time of tasks.

2. Make joint task o✏oading and network flow scheduling decision: The of-



664.4. JointDependent TaskOffloading and Flow SchedulingHeuristic (JDOFH)

floading decision for each subtask within a task is made considering the start

time of input data flows. Flows are scheduled based on the priority of corre-

sponding subtasks. A joint task o✏oading and flow scheduling decision leads

to better performance, in terms of completion time.

The algorithm first creates a top-to-bottom rank of each subtask, vali j, within a

task using the Equation (4.17). The rank metric for each cosubtask stage within a

task is calculated as defined in Equation (4.18).

vali j = max
v2Pdi j

(valiv +
Div j

BW
) +

CLi j

PS
, 8i 2 A, j 2 Ti (4.16)

rvali j = vali j + Treli 8i 2 A, j 2 Ti (4.17)

rankis = max
j2Uis

(rvali j) 8i 2 A (4.18)

Cosubtask stages are given priority in the increasing order of rank metric cal-

culated in Equation (4.18). Subtasks within the cosubtask stage with the highest

priority are selected to be scheduled. However, since there can be multiple subtasks

within a cosubtask stage, subtasks are selected in the decreasing order of rval. Exe-

cuting a subtask with higher rval first can help in minimizing the di↵erence between

the completion time of di↵erent subtasks within a cosubtask stage [60].

The schedule for the selected subtask is determined by selecting the device,

which leads to minimum finish time, as shown in Equation (4.22). However, in

order to do that, we need to calculate the start time of the subtask at each device, as

shown in Equation (4.19). Start time is calculated by considering both the available

time at the device and time to receive the input data from preceding subtasks. Here,

the available time implies that the subtask can be scheduled to execute before other

scheduled subtasks at the device if there is enough available time to execute the

current subtask. In case, there is no such available time at the device; the available



4.4. JointDependent TaskOffloading and Flow SchedulingHeuristic (JDOFH) 67

time is equal to the waiting time until other scheduled tasks are executed. The time

to receive data from the preceding task needs to consider other network flows. We

calculate the start time of sending the data from preceding subtask, as shown in

Equation (20), by considering the assumption that no two flows can pass through

a link at the same time. The network flow corresponding to the current subtask is

given higher priority; therefore, we only need to consider the flows corresponding

to previous selected subtasks.

Tasi jk = max{Tavaili jk,max
v2Pdi j

(Tcommi jvk +
Div j ⇤ Hwk

Rwk
)}

8i 2 A, j, v 2 Ti, k 2 V
(4.19)

Tcommiv jk = max{T fiv,max
e2Pwk

(Ywke ⇤ Ylme ⇤ Fltprq)}

8i, p 2 A, j, v 2 Ti, r, q 2 Tp, k,w, l,m 2 V
(4.20)

The finish time of the subtask for di↵erent devices is calculated by adding the

cost to execute the subtask at the device to the start time as shown in Equation

(4.21). The device corresponding to the minimum finish time calculated in Equation

(4.22) is selected for executing the subtask as shown in Equation (4.23).

Ta fi jk = Tasi jk +CTi jk, 8i 2 A, j, v 2 Ti, k 2 V (4.21)

T fi j = min
k2V

Ta fi jk, 8i 2 A, j 2 Ti (4.22)

Xi jk⇤ = 1, 8i 2 A, j 2 Ti (4.23)

The start time of executing the subtask, start time and finish time of input data

flows corresponding to the subtask can be determined accordingly as shown in

Equations (4.24) to (4.26).



684.4. JointDependent TaskOffloading and Flow SchedulingHeuristic (JDOFH)

T si j = Tasi jk⇤ , 8i 2 A, j 2 Ti (4.24)

S tiv j = Tcommi jvk⇤ , 8i 2 A, j 2 Ti, v 2 Pdi j (4.25)

Fltiv j = S tiv j +
Div j ⇤ Hwk⇤

Rwk⇤

8i 2 A, j 2 Ti, v 2 Pdi j

(4.26)

The details of the proposed heuristic solution are given in Algorithm 1. The al-

gorithm uses the three principles and returns the execution schedule of all subtasks

within the tasks, including the start time and finish time of corresponding network

flows. The finish time instance for each task can be determined by taking the max-

imum of the finish time of all subtasks within the task (Line 26-28).

The computation complexity of proposed heuristic is O(|A|2 ⇤N
2
⇤ |V |2 ⇤P). The

computation complexity is calculated by considering the most complex operation in

the proposed heuristic, which is the calculation of Tcommi jvk in line 13. There are

four for loops for calculating Tcommi jvk one loop each corresponding to the number

of stages (S ), number of subtasks in a stage (N in worst case), number of devices

(|V |), and number of preceding tasks (N � 1 in the worst case). The first two for

loops correspond to the total number of subtasks in all tasks which is equivalent to

|A| ⇤ N in the worst case. Besides, the calculation of Tcommi jvk requires maximum

operation over di↵erent values of the finish time of flows corresponding to previous

subtasks, i.e. |A| ⇤ P which is calculated by considering all the edges in all previous

tasks in the worst case, and all the edges in the routing path, i.e. |V |� 1 in the worst

case. Hence the complexity of proposed heuristic isO(|A|2 ⇤ N
2
⇤ |V |2 ⇤ P).



4.4. JointDependent TaskOffloading and Flow SchedulingHeuristic (JDOFH) 69

Algorithm 3: Joint Dependent Task O✏oading and Flow Scheduling Heuris-

tic (JDOFH)
Input: The set of J tasks with task graph model consisting of dependent

subtasks, the network of M edge devices

Output: The execution schedule specifying the selected device, start time

and finish time of executing the subtask, and the start time and

finish time of each input data flow

1 S iv j  Treli, 8i = 1, ...J, j, v = 1, ...Ni;

2 XiN0i zi
 1, 8i = 1, ...J;

3 T siN0i
,T fiN0i

 Treli, 8i = 1, ...J;

4 Create an index I of cosubtask stages in increasing order of rank metric;

5 for t  1 to |S | do

6 s I(t);

7 Create an index L of subtasks in cosubtask stage s in increasing order of

rval metric;

8 for q 1 to |Uis| do

9 j L(q);

10 for k  1 to |V | do

11 for v 1 to |Pdi j| do

12 Calculate Tcommiv jk using Equation (20);

13 end

14 Calculate Tasi jk using Equation (19);

15 Calculate Ta fi jk using Equations (21);

16 end

17 Calculate k⇤,T fi j based on min
k=1,...M

Ta fi jk;

18 Xi jk⇤  1;

19 T si j  Tasi jk⇤;

20 for v 1 to |Pdi j| do

21 Calculate S tiv j, Fltiv j according to Equation (25) and (26);

22 end

23 end

24 end

25 for i 1 to J do

26 T f ti  max
j2V

T fi j

27 end

28 return Xi jk, T si j, T fi j, S tiv j,Fltiv j, T f ti ;



70 4.5. Performance Evaluation

4.5 Performance Evaluation

We have done simulation to evaluate and compare the performance of JDOFH with

other benchmark solutions. The performance evaluation has been done for two

performance metrics: average completion time and running time of the algorithm.

The simulation experiments have been conducted on MacOS with 2.7 GHz Dual-

Core Intel Core i5 processor and 8 GB RAM. The parameters used for simulation

are in a similar range to the one used previously in [23] and [73].

4.5.1 Simulation Parameters

Parameters for Network Model: We generate a network of edge devices where de-

vices are deployed randomly using uniform distribution. The size of the area is

selected to be M⇥M square units, and any two devices less than 2⇤M/5 units apart

are connected to each other. The distance between devices is set to be in a similar

range as done in previous works such as [73] and [37]. However, compared to the

fixed-size area used in these works, a variable area size makes it easier to create

connected mesh network topology even with a low number of devices. Besides,

maintaining a similar network density using variable area size helps in avoiding

network topology with too little or too much network links. All the devices are con-

nected to each other using a multi-hop path to form a connected graph. Each vertex

in the graph represents a device, and its weight represents the processing power of

the device. The weight of the link (edge) connecting two devices (vertices) repre-

sents the bandwidth capacity of the link (edge). The devices are heterogeneous in

terms of processing power which is selected from a normal distribution with mean

50MCPS (Million Cycles Per Second) and variance 20%. The bandwidth of each

link is selected from a normal distribution with mean 20Mbps and variance 20%.

Parameters for Application Model: The J tasks in the application model are gen-



4.5. Performance Evaluation 71

erated at a device selected randomly. We implemented a random DAG generator for

the task graph using the layer-by-layer method mentioned in [74]. The parameters

used for generating the task graph are number of tasks (nodes), the height of task

graph (number of layers), number of tasks in each layer, and the edges between

the tasks in di↵erent layers. The number of nodes in ith task graph is selected to

be a normal distribution in the range [1, Ni]. The number of layers in the ith task

graph is selected to be a normal distribution in the range [1, Ni
2 ]. The value of Ni is

selected to be 50 for the default case. Each layer l is constrained to have at least one

number, and the number of nodes in each level is selected randomly. The number

of edges between two consecutive layers is determined using a uniform distribu-

tion. The weight of the node in the task graph represents the computation load of

subtask, which is selected from a normal distribution with mean 300KCC (Kilo

Clock Cycles) and variance 20%. The amount of input data for each task and data

transferred between two dependent subtasks within a task graph is selected from a

normal distribution with mean 120 kilobits and variance 20%. The amount of data

to be transferred is calculated based on the communication-to-computation ratio

(CCR) of 0.5.

4.5.2 Benchmark Solutions

1. Local Execution (LE): LE solution is obtained by executing the task at the

local device where the task is generated. Compared to JDOFH, LE is easy to

obtain as it does not require consideration of network flow scheduling. The

tasks are scheduled in the order of release time.

2. Remote Execution (RE): RE solution is obtained by considering each task

with multiple subtasks as a single unit. Each task is scheduled, in the order of

release time, by greedy o✏oading to a remote device such that the comple-



72 4.5. Performance Evaluation

tion time of the task is minimized. Similar to LE, RE also does not require

consideration of network flow scheduling for data transfer between subtasks.

However, since each task is associated with input data, there are network

flows while o✏oading the task to a remote device. RE uses the first-come-

first-serve (FCFS) approach to schedule the network flows by pausing other

contending flows. The scheduling order for each flow is determined based on

the scheduling order of corresponding DAG tasks.

3. Separate task o✏oading and network flow scheduling (SOFS): SOFS solution

is obtained by first solving the task o✏oading problem while ignoring the

bandwidth constraint and then solving the network flow scheduling problem.

Task o✏oading problem is solved based on the priority order of the earliest

release time. The o✏oading solution for each subtask is obtained assuming

there is no other network flow at that time. We use a list scheduling algorithm

similar to HEFT [49] for task o✏oading. Network flow scheduling is done

based on the priority order of earliest deadline first (EDF) approach, used in

flow scheduling algorithm PDQ [75], by pausing other contending network

flows. The deadline for each flow is determined based on the scheduling order

of corresponding subtasks determined in the previous step.

4. Joint Scheduling based on task release time (ALT): ALT is an alternative

solution that jointly solves the dependent task o✏oading and network flow

scheduling problem. ALT determines the execution schedule for each task

based on increasing order of task release time. ALT solution is similar to an

online solution where the information of future incoming tasks is not known,

and hence the tasks are scheduled in the order of release time. Compared

to JDOFH where each task is considered as a set of cosubtask stages, ALT

determines the top-down rank for each subtask similar to a list scheduling



4.5. Performance Evaluation 73

Table 4.1 Performance Comparison with default parameters for FFT DAG

Metric LE RE SOFS Alt JDOFH

Completion

time (sec)

0.1143 ±

0.0047

0.0855±

0.0009

00929 ±

0.0061

0.0438±

0.0006

0.0407 ±

0.0005

Running

time (sec)

0.0023 ±

0.0029

1.0151 ±

0.0183

29.155 ±

0.2085

576.18 ±

6.7478

711.80 ±

6.6176

algorithm. ALT schedules the tasks sequentially unlike JDOFH where co-

subtask stages from di↵erent tasks can interleave each other. Network flow

scheduling is done based on the scheduling order of corresponding subtasks,

similar to JDOFH. The network flow scheduling is similar to scheduling in

order of earliest deadline first (EDF) [75] as subtask with earliest start time

will have the earliest deadline for the corresponding network flow.

4.5.3 Simulation Results for Real Application Task Graph

The real application task graph used for performance comparison is FFT DAG with

4 points used in many other works such as [49], [23], etc. The number of nodes, i.e.

N, in FFT DAG is 15. The computation load of each subtask and weight of edges

is the same setting mentioned earlier for the application model. The characteristics

of FFT DAG is that both the weight of all nodes at the same level and the weight

of all edges from nodes at the same level is equal. Table 5.1 gives the performance

comparison of JDOFH against benchmark solutions for default parameters. In the

default case, the number of FFT DAG, i.e. J, is 20; CCR is each FFT DAG is 0.5;

and the number of devices in the network, i.e. M, is 50. The values have been

averaged for 30 iterations, and the error margin is calculated for 95% confidence



74 4.5. Performance Evaluation

interval. The input values for the task graph and network model in each iteration

are di↵erent and generated randomly.

The CDF plot shown Fig 4.3 shows that both joint solutions, JDOFH and ALT

lead to less completion time for tasks compared to other benchmark solutions. JD-

OFH achieves slightly better performance than ALT as it considers that waiting

time and priority of subtasks. Table 5.1 shows JDOFH performs better than the

four benchmark solutions in terms of average completion time. There is a signifi-

cant di↵erence in performance between JDOFH and three benchmark solution (LE,

RE, SOFS) that do not make joint task o✏oading and scheduling decision. JDOFH

is around 64.39% better than LE, 52.39% better than RE, and 56.18% better than

SOFS in terms of completion time for the default parameter setting. Both JDOFH

and ALT, which make joint decision perform better than other benchmark solutions.

JDOFH is around 7% better than ALT in terms of completion time as ALT makes

the scheduling decision sequentially after completion of each task, however, JD-

OFH can interleave cosubtask stages for di↵erent tasks which reduces the average

completion time. Table 5.1 also shows a comparison between JDOFH and other

benchmark solutions in terms of running time of the algorithm. We can see that

JDOFH running time is close to ALT. As expected, the running time of JDOFH is

higher than the other three benchmark solutions, but it is still within range as other

benchmark solutions. There is a trade-o↵ between the two performance metrics;

however, this work focuses on proposing a better solution in terms of completion

time. The algorithms are proposed for o✏ine environment where the task o✏oading

decision is determined before the execution. Therefore, the overhead of the running

time does not a↵ect the task execution schedule. Furthermore, the running time is

dependent on the algorithm implementation and the machine where the simulation

experiments are conducted.

We have also done performance comparison, in terms of completion time, by



4.5. Performance Evaluation 75

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Completion time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LE RE SOFS ALT JDOFH

Figure 4.3 CDF plot for FFT DAG

5 10 20 30 40

Number of tasks

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.4 E↵ect of

changing number of tasks

for FFT DAG

25 50 75 100 125

Number of Devices

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.5 E↵ect of

changing number of

devices for FFT DAG

0.1 0.5 1 1.5 2

Communication-to-computation ratio

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds LE RE SOFS ALT JDOFH

Figure 4.6 E↵ect of

changing CCR of task

graph for FFT DAG

varying di↵erent simulation parameters. Fig 4.4, 4.5, and 4.6 show the performance

comparison by changing the number of tasks, the number of devices, and CCR of

FFT DAG, respectively. We can observe that JDOFH performs better than other

benchmark solutions for all di↵erent range of parameters. Another main observa-

tion is that there is a significant change in performance di↵erence between SOFS

and JDOFH for both a large number of tasks and a low number of devices. The

reason is that SOFS makes a separate decision, so its performance deteriorates sig-

nificantly when network flows have to compete for bandwidth resources such as



76 4.5. Performance Evaluation

during both a large number of tasks and a low number of devices. JDOFH, on

the other hand, performs better, and there is a similar performance di↵erence as

observed for default parameter setting.

4.5.4 Simulation Results for Randomly Generated Task Graphs

Besides using FFT DAG, the performance of JDOFH has also been evaluated by

using randomly generated task graphs. The input parameters and details related to

the task graph are mentioned in Section 4.5.1. Compared to FFT DAG, the number

of subtasks in each randomly generated DAG can be higher and di↵erent. Table

5.2 shows the performance comparison with default parameters for randomly gen-

erated DAG. The default parameters used are: number of task DAG, i.e. J, is 20;

the maximum number of subtasks, i.e. Ni, is 50, CCR of each task DAG is 0.5;

and the number of devices in the network, i.e. M, is 50. The values have been av-

eraged for 30 iterations with an error margin for 95% confidence interval. Similar

to results observed for FFT DAG, JDOFH performs better than other benchmark

solutions. Fig 4.7 shows the CDF plot for completion time comparing the perfor-

mance of di↵erent solutions. There is a significant performance di↵erence between

JDOFH and three benchmark solutions (LE, RE, SOFS) that make task o✏oading

and network flow scheduling decisions separately. JDOFH is around 58.39% better

than LE, 43.33% better than RE, and 74.58% better than SOFS in terms of average

completion time of tasks. Although both JDOFH and ALT jointly solve the prob-

lem, JDOFH is around 17% than ALT in terms of average completion time. These

results show the benefit of making a joint decision and better performance of the

proposed solution JDOFH compared to ALT. We can observe there is significant

error margin as input values for each iteration are generated randomly. Besides, the

number of subtasks in each task graph is selected from a uniform distribution which



4.5. Performance Evaluation 77

Table 4.2 Performance Comparison with default parameters for randomly generated

DAG

Metric LE RE SOFS Alt JDOFH

Completion

time (sec)

0.1872 ±

0.0137

0.1372±

0.0072

0.3065 ±

0.0525

0.0939±

0.0067

0.0779 ±

0.005

Running

time (sec)

0.0019 ±

0.0027

0.9996 ±

0.017

92.410 ±

10.785

3022.4 ±

487.72

3921.6 ±

641.47

leads to a significant di↵erence in results over di↵erent iterations.

The rest of this section gives detailed performance comparison, in terms of aver-

age completion time, by changing di↵erence input parameters including the number

of tasks, number of subtasks, number of devices, and CCR of task graph. The dif-

ferent sub-sections describe the reasons behind change in performance on varying

di↵erent parameters.

0 0.5 1 1.5
Completion time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LE RE SOFS ALT JDOFH

Figure 4.7 CDF plot for randomly generated DAG with default parameters setting



78 4.5. Performance Evaluation

E↵ect of change in number of task

Fig 4.8 shows the e↵ect of changing the number of tasks from 5 to 40 on average

completion time. There is an increase in average completion time for all algorithms

due to both increase in waiting time at the devices to execute the sub-tasks and

increase in total number of network flows.

5 10 20 30 40

Number of tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.8 E↵ect of changing number of tasks for randomly generated DAG

The performance di↵erence between LE and JDOFH decreases from 60.22% at

5 tasks to 48.85% at 40 tasks. This decrease in gap is observed because LE is not

a↵ected by increase in number of network flows with increase of number of tasks.

RE also shows a similar performance trend as LE where the performance di↵er-

ence decreases from 49.08% at 5 tasks to 27% at 40 tasks. Compared to LE, RE

can o✏oad the complete task which can help in comparatively reducing the waiting

time at the devices. However, since both LE and RE are not a↵ected by increase

in network flows there is decrease in performance gap. JDOFH shows increase in

performance di↵erence with SOFS from 24.59% at 5 tasks to 86.22% at 40 tasks.

This significant increase in performance di↵erence is similar to the one observed

for FFT DAG. Compared to JDOFH, SOFS performance deteriorates rapidly with



4.5. Performance Evaluation 79

increase in number of tasks as SOFS separates the network flow scheduling deci-

sion. The di↵erence in average completion time between JDOFH and ALT also

increases from 1.54% at 5 tasks to 24.98% at 40 tasks. In case of low number of

tasks, there is less contention among resources so both JDOFH and ALT perform

almost equivalently. However, as the number of tasks are increased, JDOFH per-

form better as it leverages cosubtasks stages to determine execution schedule. ALT,

on the other hand, requires large waiting time at the devices to finish each task

sequentially based on the order of release time.

E↵ect of change in number of subtasks

We have evaluated the e↵ect of changing the number of subtasks within each ran-

domly generated task DAG as shown in Fig 5.3. As mentioned earlier, the number

of subtasks is selected from a uniform distribution in the range [1, Ni]. We observe

the performance trend by changing the value of NI , i.e. maximum subtasks in a task

DAG, from 10 to 100. All algorithms show increase in average completion time

as there is increase of subtasks in each task DAG which leads to both increase in

number of network flows and waiting time at the devices.

The di↵erence in average completion time between LE and JDOFH increases

from 46.06% at 10 maximum subtasks to 57.25% at 100 maximum subtasks. Com-

pared to JDOFH, LE executes the task locally at the devices it is generated, which

leads to larger waiting time as the number of subtasks are increased. The per-

formance di↵erence between JDOFH and RE increases slightly from 37.6% at 10

maximum subtasks to 39.24% at 100 maximum subtasks. Compared to LE, RE can

o✏oad the complete task to a remote device to reduce the waiting time. The average

completion time for both JDOFH and RE increases at an approximately similar rate

with an increase in the number of subtasks. As observed earlier, there is a signifi-



80 4.5. Performance Evaluation

10 25 50 75 100

Number of maximum subtasks in task DAG

0

0.2

0.4

0.6

0.8

1

1.2

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.9 E↵ect of changing number of subtasks for randomly generated DAG

cant increase in performance di↵erence between JDOFH and SOFS from 7.98% at

10 maximum subtasks to 84.77% at 100 maximum subtasks. Compared to JDOFH,

SOFS does not perform well when the number of network flows increases and have

to compete for the bandwidth resources. The performance di↵erence between JD-

OFH and ALT also increases from 1.35% at 10 maximum subtasks to 24.28% at

100 maximum subtasks. As the number of subtasks increases, the completion time

of each task is increases as well which leads to worse performance for ALT as tasks

are scheduled sequentially. On the other hand, JDOFH is able to utilize the knowl-

edge of all tasks and interleave cosubtasks stages to decrease average completion

time.

E↵ect of change in number of devices

Fig 5.5 shows the e↵ect of changing the number of devices from 25 to 125 on the

average completion time of tasks. It is expected that an increase in the number of

devices decreases the average completion time due to availability of more resources.

However, there is a marginal decrease in completion time after a certain number of



4.5. Performance Evaluation 81

devices.

25 50 75 100 125

Number of devices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.10 E↵ect of changing number of devices for randomly generated DAG

There is an increase in performance di↵erence between JDOFH and LE from

38.56% at 25 devices to 63.38% at 125 devices. LE is not able to leverage the

increase in the availability of resources as each task is executed locally on the de-

vices. RE shows a similar performance trend as LE where the di↵erence in the

average completion time of JPOFH increases from 14.68% at 25 devices to 50.47%

at 125 devices. The benefit of an increase in the number of devices is more for JD-

OFH as each subtask within each task can be o✏oaded compared to o✏oading of

a complete task in RE. The di↵erence in average completion time between JDOFH

and SOFS decreases from 84.53% at 25 devices to 21.68% at 125 devices. The

availability of more resources with an increase in the number of devices leads to

less contention among network flows for bandwidth. However, the benefit of joint

task o✏oading and network flow scheduling decision is still apparent as JDOFH

outperforms SOFS even with an increase in the number of devices. ALT shows a

decrease in average completion time between JDOFH from 18.25% at 25 devices

to 2.06% at 125 devices. An increase in the number of devices reduces the wait-



82 4.5. Performance Evaluation

ing time to execute the subtasks at the devices. Therefore, both ALT and JDOFH

perform similarly when abundant resources are available.

E↵ect of change in communication to computation ratio (CCR)

Fig 4.11 shows the performance comparison done for di↵erent types of tasks rang-

ing from computation-intensive tasks (CCR value equal to 0.1) to communication-

intensive tasks (CCR value equal to 2). It is expected that average completion time

of tasks increases as communication cost will increase on increasing the CCR of

each task DAG. However, solutions such as LE and RE do not show much increase

as they do not consider o✏oading of subtasks.

Communication-to-computation ratio (CCR)
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LE RE SOFS ALT JDOFH

Figure 4.11 E↵ect of changing CCR of task graph for randomly generated DAG

The di↵erence in completion time between JDOFH and LE decreases from

67.52% at 0.1 CCR to 29.11% at 2 CCR. Since LE executed the tasks at the devices

locally, it is not a↵ected by increasing the CCR leading to a decrease in the perfor-

mance di↵erence. RE also shows a similar performance trend where the di↵erence

in average completion time between JDOFH decreases from 54.86% at 0.1 CCR to

6.15% at 2 CCR. Similar to LE, RE executes the task as a whole and o✏oads them



4.6. Conclusion 83

to a remote device leading to a further decrease in the average completion time of

tasks. This decrease in performance trend for both LE and RE is to be expected as

when communication cost becomes significantly higher than computation cost, the

benefit of o✏oading each subtask is not useful. Therefore, after a certain threshold

of CCR, both LE and RE would perform better than algorithms which do o✏oading

of fine-grained subtasks. In such a case, an if-else condition could be used to uti-

lize RE solution beyond the CCR threshold. It is to be noted that RE solution also

utilizes the joint network flow scheduling for the flows corresponding to the input

data of the tasks. Therefore, there is a benefit to joint task o✏oading and network

flow scheduling as proposed in this work.

The performance di↵erence between JDOFH and SOFS remains similar around

70% on changing the CCR from 0.1 to 2. The performance di↵erence between

JDOFH and ALT decreases slightly from 15.56% at 0.1 CCR to 11.65% at 2 CCR.

In both cases, the e↵ect of an increase in CCR does not significantly change the

performance di↵erence as the three solutions, i.e. SOFS, ALT, and JDOFH, rely on

o✏oading of subtasks.

4.6 Conclusion

In this chapter, we study the multi-hop dependent task o✏oading and network flow

scheduling problem in CEC with the objective of minimizing the average comple-

tion time of tasks. The problem includes making a decision on when and where each

subtask within a task is executed and the start time of each flow corresponding to

data transfer between dependent subtasks. The problem is formulated as an MINLP

optimization problem which is proven to be NP-hard. We have proposed a JDOFH

algorithm that leverages the knowledge of each task graph and start time of flow

to make task o✏oading decisions. The performance of JDOFH has been compre-



84 4.6. Conclusion

hensively evaluated using simulation by considering both the real application task

graph of FFT and randomly generated task graphs. The performance comparison

has been done by varying di↵erent simulation parameters, including the number of

tasks, number of subtasks, number of devices, and CCR of task graphs. We have

compared the performance of JDOFH against di↵erent benchmark solutions consid-

ering local execution, remote execution, separate task o✏oading and network flow

scheduling, and joint solution based on list scheduling. Performance comparison

shows that JDOFH leads to up to 25% and 85% improvement in average comple-

tion time compared to a joint solution based on list scheduling algorithm and other

benchmark solutions respectively.

We have solved this problem making some assumptions including static network

and no explicit modelling of wireless interference. We can extend this problem by

considering the dynamics of network and device resources. Another direction for

extending this work is considering the scheduling of di↵erent subtasks, i.e, the order

of execution, o✏oaded on a same device. The problem formulation considers the

start time of the each subtask, however, the proposed solution makes scheduling

decision for each subtask based on a defined priority metric.



Chapter 5

Multi-Hop Multi-task Partial

O✏oading⇤

5.1 Introduction

This chapter studies the problem of multi-hop multi-task partial o✏oading in col-

laborative edge computing with the objective of minimizing the average completion

of all tasks. The problem jointly considers partial o✏oading of independent tasks

generated at di↵erent edge devices to any other edge device at a multi-hop distance

and network flow scheduling. The partial o✏oading of a task implies that a task is

partitioned into two components where one component is locally executed and other

is o✏oaded to a remote device. Network flow scheduling includes not only making

a decision on routing path but also start time of input data flows. The decision of

partial o✏oading is interdependent on network flow scheduling.

There are some works in literature such as [34], [33], [35], [36], etc. that have

studied multi-hop computation o✏oading problem. Partial o✏oading problem has

⇤Based on work published in [76]

85



86 5.1. Introduction

also been studied in previous works such as [77] and [78]. However, these works do

not consider both partial o✏oading in a network with multiple remote edge devices

and network flow scheduling which leads to an increase in the number of decision

variables and makes the problem more challenging. Another main challenging issue

is that data transmission cost is no longer constant and di�cult to estimate as it

depends on the partial o✏oading decision. The partial o✏oading decision can a↵ect

the start time of input data flows which is included in data transmission cost. This

problem is useful for applications such as large-scale multi-camera video analytics

where video and image data from multiple cameras is used for generating situational

awareness. Another application scenario is optical character recognition (OCR)

images which can be arbitrarily divided as assumed in this work [79].

The main contribution made in this work are:

1. We have mathematically formulated the joint multi-hop multi-task partial

computation o✏oading and network flow scheduling problem in collabora-

tive edge computing with the objective of minimizing the average comple-

tion time of independent tasks. We consider the heterogeneity in independent

tasks where each task has di↵erent computation load, input data, and release

time. We also consider heterogeneity in device processing speed and link

bandwidth.

2. We show the problem is NP-hard and therefore, propose a joint partial of-

floading and flow scheduling heuristic (JPOFH) which creates a priority of

tasks considering release time and computation load and calculates the par-

tial o✏oading ratio considering the waiting time at the devices and start time

of input data flows. We also relaxed the formulated MINLP problem to an LP

problem using McCormick envelope and solve it using Mosek solver in CVX

to give a lower bound solution.



5.2. RelatedWorks 87

3. We have conducted simulation experiments to evaluate and compare the per-

formance, in terms of average completion time of tasks and running time, of

JPOFH against benchmark solutions. The benchmark solutions consider dif-

ferent possibilities, including local execution, remote execution, and separate

partial o✏oading and flow scheduling solution. We make a comprehensive

performance comparison by changing the values of di↵erent input parame-

ters, including the number of tasks, number of devices, number of routing

paths, and amount of input data. The performance comparison shows that

JPOFH leads to up to 32% improvement in completion time compared to

benchmark solutions.

The rest of the chapter organized is as follows. In Section 2, we discuss some

related works. In Section 3, we give the system model and problem formulation. In

Section 4, we discuss relaxation of formulated problem and the proposed solution,

JPOFH, for the multi-hop multi-task partial computation o✏oading problem. In

Section 5, we have done the performance evaluation. Finally, we give the conclu-

sion in Section 6.

5.2 Related Works

Computation o✏oading problem in edge computing has been well-studied. Some

works such as [80] have also given performance guaranteed solution for computa-

tion o✏oading using an optimization framework. Most existing works study the

computation o✏oading problem for single-hop. However, there are few recent

works such as [34], [33], [35], [36], etc. that have studied multi-hop computa-

tion o✏oading problem. The work in [34] gave a distributed solution to make full

task o✏oading decision to minimize the energy consumption. The work in [33]



88 5.2. RelatedWorks

proposes an iterative algorithm for task assignment to devices in a multi-hop coop-

erative network. However, the work in [33] makes many assumptions in deriving

the routing cost and does not consider partial o✏oading. The work in [35] jointly

formulates the computation o✏oading and routing decision problem and solves us-

ing a game-theoretic approach by showing the existence of Nash equilibrium. The

problem in [35] is solved for both unsliceable and sliceable tasks. The work in

[36] also proposes a game-theoretic solution for multi-hop computation o✏oading

problem; however, it considers local, edge, and cloud computing for the execution

of tasks. Compared to these existing works which usually assume o✏oading of

tasks to a single remote edge or cloud device, our work considers partial o✏oad-

ing to all available edge devices. Our work also considers network flow scheduling

where we make decisions not only on the routing path but also start time of input

data flows.

There are some works such as [21] and [81] which have also considered task

allocation problem for multi-hop wireless sensor networks (WSN). However, these

works do not consider partial o✏oading and network flow scheduling done in our

work. The partial o✏oading problem has been addressed for single-hop in many

works such as [77] and [78]. The work in [77] studied multi-user partial computa-

tion o✏oading problem considering both edge and cloud. They also iterative design

heuristic algorithm to make the o✏oading decision dynamically. The work in [78]

studied the partial computation o✏oading problem where mobile devices can par-

tially o✏oad the tasks to both single or multiple cloud servers with the objective of

optimizing the energy consumption and latency of the application. There are some

works such as [82], which also solve the computation peer o✏oading problem be-

tween small-cell base stations. Some works such as [29], [59], [47], [48], etc. have

considered network condition while scheduling tasks. The work in [29] proposes a

task scheduling framework that utilizes the underlying network scheduler to make



5.3. SystemModel and Problem Formulation 89

task placement decisions. Another work [59] solves the joint reducer placement

and coflow bandwidth scheduling problem. Both works in [47] and [48] considered

network bandwidth to make the task scheduling decision.

The di↵erent related works in literature solve some combination of partial com-

putation o✏oading, peer o✏oading, multi-server o✏oading, or network flow schedul-

ing problem. To the best of our knowledge, there is no related work which has

addressed all the concerns. This work jointly formulates the partial computation

o✏oading and network flow scheduling problem for multi-hop collaborative edge

computing. Our previous work also studied data-aware task allocation problem in

collaborative edge computing [37] where dependent tasks with input data at di↵er-

ent devices are placed in a multi-hop mesh network. The data-aware task allocation

problem can be mapped to a multi-hop full computation o✏oading for dependent

tasks. However, compared to this work, data-aware task allocation did not consider

partial o✏oading of tasks, the release time of tasks, and decision on the routing

path. We also consider additional constraints for network flow scheduling, includ-

ing no flows can pass through a link at the same time, whereas the work in [37] just

considered the limited link bandwidth constraint.

The formulation methodology used in this work is similar to that in [23], where

the authors study the problem of o✏oading dependent task and give a lower bound

solution. However, compared to the work in [23], we study the multi-hop multi-task

partial o✏oading computation for independent tasks.

5.3 System Model and Problem Formulation

This section first describes the system model including network and application

model and then the problem formulation.



90 5.3. SystemModel and Problem Formulation

5.3.1 System Model

The system model used for this problem is same as the one used for multi-hop of-

floading for multiple DAG tasks. Fig 1.1 shows the system architecture of Edge

Mesh, a collaborative edge computing paradigm which pushes the decision-making

within the network by sharing computation resources and data between mesh net-

work of edge devices [6]. Some of the devices in the Edge Mesh may not have

enough computation capacity and can act as routers, as shown in Fig 1.1. The com-

putation tasks are generated at di↵erent edge devices and can be o✏oaded to other

edge devices, even at a multi-hop distance. The decision to o✏oad and schedule

tasks is made at a centralized SDN controller which collects the network informa-

tion from both edge devices and routers. Although the system model assumes that

edge devices are connected using a wireless network, we have not fully considered

all the issues due to wireless network such as spatial and temporal variation of wire-

less channel conditions, interference of wireless transmission among neighbouring

devices [37]. The problem formulation in this work has been done assuming a static

network condition.

The network and application model used in formulating the problem is:

Network model: The communication network is a mesh network of edge de-

vices, shown to Edge Mesh circle in Fig 1.1, connected to each other using a multi-

hop path. The communication network is modelled as a connected graph G = (V,

E), where V is the set of devices, V = { j|1  j  M}, and E is the set of links con-

necting di↵erent devices, E = {ejv| j, v 2 V}. Here, M is the total number of devices.

In the problem description, we sometimes neglect the subscript and denote the link

as e. The weight of each device is PS j, which represents the processing speed of

each device j. The devices can be heterogeneous in processing speed. Each device

is assumed to have a queue with positions equal to the number of tasks, i.e. N.



5.3. SystemModel and Problem Formulation 91

Any two devices are assumed to have maximum K available routing paths be-

tween them. A binary parameter Wjvk (1 for yes, 0 for no) is used to represents

whether there is a kth routing path between devices j and v. Another binary parame-

ter Yke jv (1 for yes, 0 for no) is used to represent if an edge e lies on kth routing path

between device j to device v. The number of hops and bandwidth of the kthrouting

path between devices j and v is represented by Hjvk and Rjvk respectively.

Application model: An application is composed of a set of independent tasks,

A = {i|1  i  N}, where N is the total number of tasks. Each task i is associated

with a computation load of CLi and an amount of input data equal to Di. Each task

i is assumed to be generated at an edge device zi|zi 2 V at release time Treli. When

a task i is partially o✏oaded to a device j, the input data corresponding to task i is

also sent to device j. This transfer of input data is referred to as an input data flow.

Some of the assumptions made in the problem formulation are:

Some of the assumptions made in the problem formulation are:

1. The local and o✏oaded component of a task can be executed independently.

2. The bandwidth for each flow is assumed to be given and equal to the mini-

mum bandwidth of a link in the routing path.

3. The problem is solved for a static condition where the values of di↵erent

parameters are known beforehand.

4. Each device can execute one task at a time, while other tasks wait in the queue

at the device.

5. Preemptive scheduling of tasks is not allowed.

6. No two flows are allowed to pass through a link at the same time to consider

the interference among simultaneous wireless transmissions.



92 5.3. SystemModel and Problem Formulation

5.3.2 Problem Formulation

This section describes the constraints and formulates the problem as an optimization

problem.

Constraints

There are several constraints in the problem related to task o✏oading and flow

scheduling decision. Equation (5.1)-(5.4) represent constraints corresponding to

task o✏oading decision. The problem considers that each task is o✏oaded only to

a single remote device as represented by Equation (5.1).

NX

r=1

Xi jr ⇤

NX

s=1

Xivs = 0, 8i 2 A, j 2 V\{zi}, v 2 V\{zi, j} (5.1)

Each task consisting of local and o✏oaded component is placed only once as

represented by Equation (5.2).

MX

j=1

NX

r=1

Xi jr = 1, 8i 2 A (5.2)

Since the number of positions at the queue on each device is equal to the number

of tasks, each task can occupy only one position on each device. This is represented

by Equation (5.3).

Xi jr ⇤ Xi js = 0, 8i 2 A, j 2 V, r = 1, ...N, s = 1, ...r � 1, r + 1, ...N (5.3)

Furthermore, each position on each device can be occupied by only one task as

represented by Equation (5.4).



5.3. SystemModel and Problem Formulation 93

Xi jr ⇤ Xu jr = 0, 8i 2 A, u 2 A\{i}, j 2 V, r = 1, ...N (5.4)

The constraints corresponding to flow scheduling decision are represented by

Equation (5.5)-(5.8). There is an input data flow corresponding to o✏oading the

task to a remote device as represented by Equation (5.5).

NX

r=1

Xi jr ⇤ (
KX

k=1

Fi jk � 1) = 0, 8i 2 A j 2 V (5.5)

The input data flow can start only after the task has been released as represented

by Equation (5.6).

S i jk � Treli, 8i 2 A, j 2 V, k = 1, ...K (5.6)

The problem assumes that a single routing path is used to transmit each input

data flow as represented by Equation (5.7).

KX

k=1

Fi jk  1, 8i 2 A, j 2 V (5.7)

As mentioned earlier, it is assumed that no two flows are allowed to pass through

a link at the same time. Therefore, if there are two flows passing through a link,

one of the flows is delayed until the other one is finished as represented by Equation

(5.8).



94 5.3. SystemModel and Problem Formulation

|Ykezi j ⇤ Fi jk � Ywezuv ⇤ Fuvw| ⇤ L + (S i jk � S uvw � (Hzuvw ⇤
Du

Rzuvw
⇤

NX

s=1

Xuvs ⇤ Fuvw))⇤

(S i jk + (Hzi jk ⇤
Di

Rzi jk
⇤

NX

r=1

Xi jr ⇤ Fi jk) � S uvw) >= 0

8i, u 2 A, j, v 2 V, k,w = 1, ...K, e 2 E, r = 1, ...N

(5.8)

where, L represents a large number.

There are also some constraints on the finish time of the task. Equation (5.9)

represents that finish time of component of task i executed on device j at position

r is greater than the start time of input data flow of task i component o✏oaded to

device j through kth routing path by the sum of computation time of component task

i executed at device j and time to send the input data to execute tasks i component

at device j.

Fti jr � S i jk � Xi jr ⇤CTi j +Wzi jk ⇤ Hzi jk ⇤
Di

Rzi jk
⇤

NX

r=1

Xi jr ⇤ Fi jk

8i 2 A, j 2 V, k = 1, ...K, r = 1, ...N

(5.9)

The finish time of a successive task executed on a device is at least equal to the

sum of the finish time of preceding task executed on that device at a previous po-

sition and computation time of the task. This constraint is represented by Equation

(5.10).

Fti jr >= Ftu j(r�1) + Xi jr ⇤CTi j, 8i, u 2 A, j 2 V, r = 1, ...N (5.10)



5.3. SystemModel and Problem Formulation 95

The total finish time of task is greater than the finish time of any component of

a task as represented by Equation (5.11).

T f ti >= Fti jr, 8i 2 A, j 2 V, r = 1, ...N (5.11)

Equation (5.12) - (5.16) represent the range of each decision variable.

0  Xi jr  1, 8i 2 A, j 2 V, r = 1, ...N (5.12)

Fi jk = {0, 1}, 8i 2 A, j 2 V, k = 1, ...K (5.13)

S i jk � 0, 8i 2 A, j 2 V, k = 1, ...K (5.14)

Fti jr � 0, 8i 2 A, j 2 V, r = 1, ...N (5.15)

T f ti � 0, 8i 2 A (5.16)

Optimization Problem

The objective function of the problem is to minimize the average completion time

of all tasks. The objective function considers the time instant each task is finished

(T f ti) rather than the time period (T f ti � Treli) to complete the task. As Treli

is a constant value, it is equivalent to minimizing the time period to complete the

task. The multi-hop multi-task partial computation o✏oading problem, P1, can be

formatted as:

minimize
Xi jr ,Fi jk ,S i jk ,Fti jr ,T f ti

PN
i=1 T f ti

N
, (5.17)

subject to (5.1) - (5.16)

8i 2 A, j 2 V, k = 1, ...K, r = 1, ...N



96 5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH)

This problem is NP-hard since it includes the Generalized Assignment Problem

(GAP) as a special case (for a fully connected network). Since we cannot find

an optimal solution in polynomial time. Therefore, we have proposed a heuristic

solution JPOFH (joint partial o✏oading and flow scheduling heuristic).

5.4 Joint Partial O✏oading and Flow Scheduling Heuris-

tic (JPOFH)

This section first gives detail about the proposed JPOFH algorithm and then gives a

lower bound solution by relaxing the formulated problem.

5.4.1 JPOFH Algorithm

JPOFH determines the execution schedule specifying the selected device, finish

time, the partial o✏oading ratio for each task, and the start time and selected path

of each input data flow. JPOFH is developed considering three principles:

1. Using a priority list of task to determine the execution schedule.

2. Scheduling each task for execution only after the previous task in the priority

list is executed.

3. Determining the partial o✏oading ratio considering both the waiting time at

the device and start time of the input data flow.

Each task in JPOFH is scheduled with the objective of minimizing the finish

time, which is defined in Equation (5.18). The terms Ti jkloc and Ti jko f f represent the

local execution time and o✏oaded execution time for task i partially o✏oaded to

device j using kth routing path. Ti jkloc is defined in Equation (5.19) as the sum of



5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH) 97

computation time at the local device and waiting time to execute the task at the

local device. The waiting time at the local device is represented by Tbusyzi where zi

stands for the local device for task i. Ti jko f f is defined in Equation (20) as the sum of

computation time at the o✏oaded device and maximum time to send the input data

to the o✏oaded device, and waiting time to execute the task at o✏oaded device.

The waiting time at the o✏oaded device is represented by Tbusy j where j stands

for device j where task i is o✏oaded.

T f ti = min
j2V,k=1,...K

max{Ti jkloc ,Ti jko f f }, 8i 2 A (5.18)

Ti jkloc = (1 � xi jk) ⇤CTizi +max{Tbusyzi ,Treli},

8i 2 A, j 2 V, k = 1, ...K
(5.19)

Ti jko f f = xi jk ⇤CTi j +max{Tbusy j,Treli, S i jk + xi jk ⇤ Hzi jk ⇤
Di

Rzi jk
}

8i 2 A, j 2 V, k = 1, ...K
(5.20)

The Equation (5.22) determines the partial o✏oading ratio, xi jk, for task i to

be o✏oaded at device j using kth routing path. The value of xi jk is determined

by setting local execution time equal to the upper bound of o✏oaded execution

time defined in Equations (5.19) and (5.21) respectively. The work in [8] used a

similar idea to derive the optimal solution for computation o✏oading using Nash

equilibrium. However, [8] did not consider network flow scheduling required for

multi-hop partial o✏oading.

Ti jko f f  xi jk ⇤CTi j + xi jk ⇤ Hzi jk ⇤
Di

Rzi jk
+max{Tbusy j,Treli, S i jk}

8i 2 A, j 2 V, k = 1, ...K
(5.21)



98 5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH)

xi jk =
CTizi +max{Tbusyzi ,Treli} �max{Tbusy j, S i jk,Treli}

CTizi +CTi j + Hzi jk ⇤
Di

Rzi jk

8i 2 A, j 2 V, k = 1, ...K

(5.22)

Both o✏oaded execution time and partial o✏oading ratio require the value of

S i jk. We calculate S i jk using Equation (5.23) which is based on the assumption that

no two flows can pass through the same link at the same time. Equation (5.23)

represents that if the input data flow for task i passes through the same link in the

routing path of any other input data, then it can start only after previous tasks have

finished their flow.

S i jk = max
u=1,...i,p2Pi jk

(Treli,Ykpzi j ⇤ Ywpzuv ⇤ (S uvw + xuvw ⇤ Hzuvw ⇤
Di

Rzuvw
))

8i 2 A\{1}, j 2 V, k = 1, ...K
(5.23)

where, Pi jk denotes the edges in the kth routing path for an input data flow of task i

o✏oaded to device j and v, w are the o✏oaded device and routing path selected for

task u.

The details of JPOFH are given in Algorithm 1. Before starting the algorithm,

JPOFH initializes the value of S i jk to be equal to Treli (line 2). JPOFH starts by

creating a priority list of tasks based on increasing order of rank metric defined in

Equation (5.24). The rank metric considers both the release time and computation

load of a task.

ranki = Treli +
CLi

PS
, 8i 2 A, j 2 V, k = 1, ...K (5.24)

where, PS is the average value of PS .



5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH) 99

Starting with the first task in the priority list, JPOFH calculates the value of S i jk

(line 9). Then, JPOFH calculates the value of xi jk, Ti jkloc , and Ti jko f f (line 10 -11).

The selected device for o✏oading, j⇤i , and routing path, k⇤i , each task i is determined

based on the min j2M,k2K{Ti jkloc} value (line 18), which is also equal to finish time of

the task i (line 19). The algorithm returns the selected device j⇤i , finish time T f ti,

partial o✏oading ratio xi j⇤i k⇤i , start time of input data flow S i j⇤i k⇤i , and selected routing

path k⇤i for each task i (line 23).

The computation complexity of JPOFH is O(N2
⇤ M2

⇤ K). The computation

complexity is calculated by considering the most complex operation in JPOFH al-

gorithm, which is the calculation of S i jk in line 9. There are three for loops for

calculating S i jk one loop each corresponding to the number of tasks (N), number of

devices (M), and number of routing paths (K). The calculation of S i jk in Equation

(23) also requires maximum operation over di↵erent values of previous tasks in the

priority list, i.e. N � 1 in the worst case, and all the edges in the routing path, i.e.

M � 1 in the worst case. Hence, the complexity of JPOFH is O(N3
⇤ M ⇤ K).

5.4.2 Lower Bound Solution

We have also proposed a lower bound solution by relaxing the formulated MINLP

problem. The problem is non-convex due to the following three issues:

1. Bilinear terms such as Fi jk. ⇤
PN

r=1 Xi jr, Xi jr ⇤ Xu jr,
PN

r=1 Xi jr ⇤
PN

s=1 Xivs, and

Xi jr ⇤ Xi js, which make the problem non-convex.

2. Equation (8) is non-convex as it is of the form quadratic expression� constant

3. Binary decision variable, Fi jk

The three issues in P1 can be addressed by relaxing the problem in three stages.



100 5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH)

Algorithm 4: Joint Partial O✏oading and Flow Scheduling Heuristic

(JPOFH)
Input: The set of N tasks, the network of M edge devices, and k routing

paths between all device pairs

Output: The execution schedule specifying the selected device, finish time,

o✏oading ratio for each task, and the start time and selected routing

path of each input data flow

1 S i jk  Treli,8i 2 A, j 2 V, k = 1, ...K;

2 Create an index I of tasks in increasing order of rank metric;

3 for t  1 to N do

4 i I(t);

5 for j 1 to M do

6 for k  1 to K do

7 if Wi jk , 0 then

8 if t � 2 then

9 Calculate S i jk using Equation (23);

10 Calculate xi jk using Equation (22);

11 Calculate Ti jkloc and Ti jko f f using Equations (19) and (20)

respectively;

12 else

13 xi jk  0;

14 Ti jkloc  CTizi +max{Tbusyzi ,Treli};

15 Ti jko f f  In f ;

16 end

17 end

18 Find j⇤i and k⇤i based on min j2M,k2K{Ti jkloc} ;

19 T f ti  min j2M,k2K{Ti jkloc} ;

20 Tbusyi  T f ti ;

21 Tbusy j⇤i  T f ti ;

22 return j⇤i , T f ti, xi j⇤i k⇤i , S i j⇤i k⇤i , k⇤i ;

23 end



5.4. Joint Partial Offloading and Flow Scheduling Heuristic (JPOFH) 101

In first stage, we can relax bilinear terms in P1 into linear terms. The bilinear

term Fi jk. ⇤
PN

r=1 Xi jr can be relaxed by using McCormick envelope. The bilinear

term is replaced by a new decision variable Zi jk,8i 2 A, j 2 V, k = 1, ...K and by

adding four additional constraints. The Equations (5.5) and (5.9) can be changed to

Equations (5.25), and (5.26) respectively:

KX

k=1

Zi jk =

NX

r=1

Xi jr, 8i 2 A, j 2 V (5.25)

Fti jr � S i jk � Xi jr ⇤CTi j +Wzi jk ⇤ Hzi jk ⇤
Di

Rzi jk
⇤ Zi jk

8i 2 A, j 2 V, k = 1, ...K, r = 1, ...N
(5.26)

The four additional constraints to replace bilinear term Fi jk. ⇤
PN

r=1 Xi jr are:

Zi jk � 0,8i 2 A, j 2 V, k = 1, ...K (5.27)

Zi jk � Fi jk +

NX

r=1

Xi jr � 1, 8i 2 A, j 2 V, k = 1, ...K (5.28)

Zi jk  Fi jk, 8i 2 A, j 2 V, k = 1, ...K (5.29)

Zi jk 

NX

r=1

Xi jr, 8i 2 A, j 2 V (5.30)

Same relaxation method can be applied to other bilinear terms.

In the second stage, we can relax the non-convex constraint in Equation (5.8).

We first expand and change the Equation (5.13) to Equation (5.31) by consider-

ing the relaxation done previously. The absolute function in Equation (5.8) is also

relaxed to a bilinear term in Equation (5.31).



102 5.5. Evaluation

(Ykezi j ⇤ Fi jk ⇤ Ywezuv ⇤ Fuvw) ⇤ L + S i jk ⇤ S i jk + Hzi jk ⇤
Di

Rzi jk
⇤ Zi jk ⇤ S i jk�

2 ⇤ S i jk ⇤ S uvw � Hzi jk ⇤
Di

Rzi jk
⇤ Zi jk ⇤ S uvw + S uvw ⇤ S uvw � (Hzuvw⇤

Du

Rzuvw
⇤ Zuvw ⇤ S i jk) � (Hzuvw ⇤

Du

Rzuvw
⇤ Zuvw ⇤ Hzi jk⇤

Di

Rzi jk
⇤ Zi jk) + Hzuvw ⇤

Du

Rzuvw
⇤ Zuvw ⇤ S uvw >= 0

8i, u 2 A, j, v 2 V, k,w = 1, ...K, e 2 E, r, s = 1, ...N

(5.31)

Equation (5.31) has many bilinear terms that can be relaxed to linear decision

variables by using McCormick envelope.

In the third stage, we relax the binary decision variable, Fi jk, to a continuous

variable. The range of continuous decision variable Fi jk can be set as:

0  Fi jk  1, 8i 2 A, j 2 V, k = 1, ...K (5.32)

The new relaxed problem, P2, can be defined with the same objective function

and replacing the constraints having bilinear terms with relaxed constraints. The

relaxed problem, P2, is a convex linear programming (LP) problem that has been

solved using CVX [83] to give a lower bound solution. However, this lower bound

solution is not feasible as many constraints are violated. The lower bound solution

can still serve as a benchmark solution for performance evaluation.

5.5 Evaluation

We have done simulation to evaluate and compare the performance of JPOFH with

other benchmark solutions. The performance evaluation has been done for two

performance metrics: average completion time and running time of the algorithm.



5.5. Evaluation 103

The simulation experiments have been conducted on MacOS with 2.7 GHz Dual-

Core Intel Core i5 processor and 8 GB RAM. The parameters used for simulation

are in similar range to the one used previously in [23] and [73].

5.5.1 Simulation Setting

Parameters for Network Model: We generate a network of edge devices where de-

vices are deployed randomly using a uniform distribution. The size of the area is

selected to be M⇥M square units, and any two devices less than 2⇤M/5 units apart

are connected to each other. The distance between devices is set to be in a similar

range as done in previous works such as [73] and [37]. However, compared to the

fixed-size area used in these works, a variable area size makes it easier to create

connected mesh network topology even with a low number of devices. Besides,

maintaining a similar network density using variable area size helps in avoiding

network topology with too little or too much network links. All the devices are con-

nected to each other using a multi-hop path to form a connected graph. Each vertex

in the graph represents a device and its weight represents the processing power of

the device. The weight of the link (edge) connecting two devices (vertices) repre-

sents the bandwidth capacity of the link (edge). The devices are heterogeneous in

terms of processing power which is selected from a normal distribution with mean

50MCPS (Million Cycles Per Second) and variance 30%. The bandwidth of each

link is selected from a normal distribution with mean 20Mbps and variance 30%.

Parameters for Application Model: The N tasks in the application model are gen-

erated at a device selected randomly. The computation load of each task is selected

from a normal distribution with mean 300KCC (Kilo Clock Cycles) and variance

30% and the input data for each task transferred is selected from a normal distribu-

tion with mean 50 Kb and variance 30%. The release time of each task is selected



104 5.5. Evaluation

from a normal distribution with mean 6 ms and variance 30%. The value of mean

release time is calculated as the ratio of mean computation load of tasks to mean

processing speed of devices.

5.5.2 Benchmark solutions

We have compared the performance the JPOFH algorithm with four benchmark

solutions.

1. Lower Bound (LB): LB is the solution described in section 5.4 for the re-

laxed problem. Compared to JPOFH, LB is obtained after relaxing many

constraints including o✏oading each task to only one remote device, execut-

ing no more than one task at each device, and not allowing any two flows to

pass through a link at the same time. Due to these relaxations, LB gives an

infeasible solution; however, it provides a loose lower bound for performance

comparison.

2. Local execution (LE): LE is obtained by executing all the tasks at the local de-

vices where the tasks are generated. LE is easy to obtain as it does not require

consideration of flow scheduling. The finish time and waiting time for local

execution are defined according to Equation (5.33) and (5.34) respectively.

T f ti = CTizi +max{Tbusyzi ,Treli} (5.33)

Tbusyzi = T f ti, 8i 2 A, j 2 V, k = 1, ...K (5.34)

3. Remote execution (RE): RE is obtained by executing the tasks at a remote de-

vice. Compared to JPOFH, RE only considers full o✏oading of tasks where

the o✏oading is done using a greedy heuristic based on the priority list used

in JPOFH. The flow scheduling is done in RE in a similar way as JPOFH

algorithm.



5.5. Evaluation 105

4. Separate o✏oading and flow scheduling (SOFS): SOFS is obtained by sep-

arating the partial task o✏oading and flow scheduling problem. Compared

to JPOFH, where the tasks are executed on devices based on priority order,

SOFS follows the first-come-first-serve in executing the tasks. Besides, the

partial o✏oading ratio for SOFS, shown in Equation (5.35), does not consider

the start time of input data flows and waiting time at the devices. The flow

scheduling is done in SOFS in a similar way as JPOFH algorithm. However,

flow scheduling in SOFS only requires calculation for the selected device and

routing path for o✏oading the task.

xi jk =
CTizi

CTizi +CTi j + Hzi jk ⇤
Di

Rzi jk

, 8i 2 A, j 2 V, k = 1, ...K (5.35)

5.5.3 Simulation Results

The default parameters used for the performance comparison are number of tasks as

5, number of devices as 10, number of routing paths between any source-destination

pair as 3, and the amount of input data selected from a normal distribution with

mean 50 Kb and variance 30%. The evaluation has been done under two di↵erent

settings of selecting the device where each task is generated: fixed device and ran-

dom device. In the fixed device setting, each task is generated on a separate device.

In the simulation, we assume task i is generated on device j, where i = j. On the

other hand, in the random device setting, the tasks can be generated randomly at any

device. This implies that each device may have more than one task being generated

in the random device setting. Table 5.1 and 5.2 show the performance comparison

between JPOFH and benchmark solutions for fixed device and random device set-

ting respectively. The results in both tables have been averaged for 30 iterations

and the error margin is calculated for 95% confidence interval. The input values



106 5.5. Evaluation

Table 5.1 Performance Comparison for default parameters (fixed device)

Metric LB LE RE SOFS JPOFH

Completion

time (sec)

0.0079 ±

0.0003

0.0138 ±

0.0008

0.0128 ±

0.0005

0.0115 ±

0.0008

0.0103 ±

0.0003

Running

time (sec)

9479.8 ±

199.13

8.70E-05 ±

6.80E-05

0.0087 ±

0.0018

0.0021±

0.0018

0.0101 ±

0.0024

for the application and network model in each iteration are di↵erent and generated

randomly.

0 0.01 0.02 0.03 0.04 0.05 0.06
Completion time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LE RE SOFS JPOFH

Figure 5.1 CDF plot for default parame-

ters fixed device setting

0 0.01 0.02 0.03 0.04 0.05 0.06
Completion time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LE RE SOFS JPOFH

Figure 5.2 CDF plot for default parame-

ters random device setting

We have captured the distribution of completion time of tasks and compared the

performance of di↵erent solutions as shown in Fig 5.1 and 5.2. CDF plots for both

fixed and random device setting shows that JPOFH leads to less completion time

compared to other benchmark solutions. The details about the di↵erence in average

completion time can be observed from Table 5.1 and 5.2 that show JPOFH performs

better than the three benchmark solutions (LE, RE, and SOFS) in terms of average



5.5. Evaluation 107

completion time. JPOFH is around 8% to 26% better in terms of average completion

time depending on benchmark solution for both fixed and random device setting.

The error margin for completion is less than 5% for 95% confidence interval. The

running time of JPOFH is higher than the three benchmark solutions; however, it

is still within the same range as other solutions.The algorithms are proposed for

o✏ine environment where the task o✏oading decision is determined before the

execution. Therefore, the overhead of the running time does not a↵ect the task

execution schedule. Furthermore, the value of running time changes depending on

the system being used for simulation and the algorithm implementation. However,

we can make some observations based on the trend in the values. The value of

running time also shows large variation as we consider values from all iterations,

even including outlier values. It should be noted that we have shown LB in the table

for comparison; however, as mentioned previously, LB gives an infeasible solution

due to relaxations of various constraints. We used Mosek solver in CVX to find the

LB solution.

The rest of this section gives a detailed performance comparison by changing

the values of the number of tasks, the number of devices, the number of routing

paths, and the amount of input data. In order to provide better insight, we have used

the fixed device setting for further evaluation unless specified otherwise. By fixing

the device where each task is generated, we can study the trend in the values of

average completion time and running time for a specific parameter.

E↵ect of number of tasks

We evaluate the e↵ect of the number of tasks by changing the tasks from 2 to 20 as

shown in Fig 5.3. We use the fixed device setting when the number of tasks is less

than 10 and the random device setting after the tenth task. The average completion



108 5.5. Evaluation

Table 5.2 Performance Comparison for default parameters (random device)

Metric LB LE RE SOFS JPOFH

Completion

time (sec)

0.0076 ±

0.0002

0.0139 ±

0.0008

0.0124 ±

0.0004

0.0109 ±

0.0006

0.0100 ±

0.0004

Running

time (sec)

9907.8 ±

162.22

1.51E-04

± 0.0001

0.0099

±0.0023

0.0025 ±

0.0023

0.011

±0.0027

time increases with the number of tasks as both the waiting time at the devices

and start time of network flows are increased. The di↵erence in completion time

between JPOFH and LE decreases with an increase in the number of tasks from

27.9% at 2 tasks to 16.6% at 20 tasks. This decrease in the gap can be explained

as LE does not require to include waiting time at the devices and the start time

of network flows which are both considered in JPOFH. However, as we increase

the number of tasks to be more than the number of devices, there is some waiting

time involved which slightly increases the performance di↵erence between LE and

JPOFH. RE shows a similar performance trend as LE, where the di↵erence in the

average completion time of JPOFH decreases from 20.7% at 2 tasks to 4% at 20

tasks. RE fully o✏oads the tasks while considering the waiting time at devices and

start time of flows which leads to better performance than LE for a high number of

tasks. JPOFH shows a continuous increase in performance di↵erence with SOFS

from 2% at 2 tasks to 25.5% at 20 tasks. This is because the cost of waiting time at

devices and start time of network flows, which are considered separately in SOFS, is

not significant when the number of devices is large compared to the number of tasks.

However, as the number of tasks starts to become more than the number of devices,

SOFS performs worse than JPOFH. This shows that joint decision making of partial



5.5. Evaluation 109

o✏oading and flow scheduling, as done in JPOFH, leads to better performance in

terms of average completion time compared to di↵erent benchmark solutions.

2 5 10 15 20

Number of tasks

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds
LB LE RE SOFS JPOFH

Figure 5.3 E↵ect of number of tasks on completion time

The e↵ect of the number of tasks on running time of the algorithm is shown in

Fig 5.4. We have shown the comparison in running time on Log10 scale as there

is a huge di↵erence in values of running between LE and LB. The running time of

JPOFH is more than LE, RE, and SOFS. The running time of both RE and JPOFH

increases with the number of tasks as they are similar in implementation except

for the calculation of partial o✏oading ratio in JPOFH. LE does not show much

variation in running time on increasing the number of tasks as there is no significant

calculation involved. The increase in running time of SOFS is less compared to

JPOFH as SOFS requires to calculate the start time of input data flow only for the

selected device and routing path which decreases the running time cost significantly.

The running time of LB is significantly higher than other algorithms as it includes

not only the time of solving the convex optimization problem but also specifying

all the possible constraint Equations. Although this time can be decreased by using

a di↵erent solver or implementation approach, we can still observe the increase in



110 5.5. Evaluation

running time of LB with an increase in the number of tasks.

2 5 10 15 20

Number of tasks
10-6

10-4

10-2

100

102

104

106

108

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

 (l
og

10
 s

ca
le

)

LB
LE
RE
SOFS
JPOFH

Figure 5.4 E↵ect of number of tasks on running time

E↵ect of number of devices

Fig 5.5 shows the performance comparison, in terms of average completion time,

on changing the number of devices from 3 to 25. The comparison covers the full

range from when the number of devices is less than the number of tasks to when

the number of devices is 5 times the number of tasks. The average completion

time of tasks decreases an increase in the number of devices as waiting time at the

devices is reduced. The performance di↵erence between JPOFH and LE increases

from 12.2% at 3 devices to 26.6% at 25 devices. JPOFH performs even better

when the number of devices is more than the number of tasks as there are more

options of partially o✏oading the tasks leading to a decrease in waiting time. In

contrast, LE does not leverage the resources available on other devices. JPOFH also

shows an increase in performance di↵erence between RE from 9.1% at 3 devices

to 19.7% at 25 devices. Although RE can leverage resources on other devices,

partially o✏oading the tasks in JPOFH leads to better performance as the di↵erent



5.5. Evaluation 111

components of the tasks can be executed simultaneously. There is a decrease in

performance di↵erence between JPOFH and SOFS from 15% at 3 devices to 6% at

25 devices. As explained earlier, the cost of waiting time at the devices and start

time of network flows is very low when the number of devices is significantly high

compared to the number of tasks. However, JPOFH still performs better than SOFS,

even for a large number of devices.

3 5 10 15 20 25

Number of devices

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LB LE RE SOFS JPOFH

Figure 5.5 E↵ect of number of devices on completion time

The performance comparison, in terms of running time of the algorithm, is

shown in Fig 5.6. The running time of all the algorithms, expect LE, increases

with an increase in the number of devices. SOFS also does not show significant

variance in running time as it does not have to calculate start time of input data flow

for all devices and routing paths which is the most computation-intensive part of

JPOFH algorithm.

E↵ect of number of routing paths

Fig 5.7 shows the performance comparison, in terms of average completion time, on

changing the number of routing paths between any source-destination pair from 1



112 5.5. Evaluation

3 5 10 15 20 25

Number of devices
10-6

10-4

10-2

100

102

104

106

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

 (l
og

10
 s

ca
le

)

LB
LE
RE
SOFS
JPOFH

Figure 5.6 E↵ect of number of devices on running time

to 5. We find K shortest paths for all source-destination pairs using Yen’s algorithm

[84]. JPOFH uses one of the routing paths between source and destination device to

send the input data for a task. Although we initially expected to have an improve-

ment in completion time for an increased number of routing paths, however, we find

that there is no significant change in the value of average completion time for a dif-

ferent number of routing paths available between any two devices. This is because

we use predetermined routing paths with increasing value of communication delay

for random network topology. Besides, we measure the performance for a specific

case of the number of tasks and number of devices. In order to observe the e↵ect

of the number of routing path, we need to see the performance for specific network

topology with increased network tra�c. However, our aim in this work is to study

the performance of the proposed solution for random network topologies and not

for a specific network topology usually considered for data centers. The evaluation

for specific network topologies in data center networks can be considered in future

work.

The performance comparison, in terms of running time of algorithm, is shown



5.5. Evaluation 113

1 2 3 4 5

Number of routing paths

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LB LE RE SOFS JPOFH

Figure 5.7 E↵ect of number of routing paths on completion time

in Fig Fig 5.8. We observe an increase in the running time of all algorithms, except

LE for reasons explained previously, on increasing the number of routing paths.

SOFS does not show significant variance in running time as it considers a selected

device and routing path to calculate the start time of input data flow.

1 2 3 4 5

Number of routing paths
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

 (l
og

10
 s

ca
le

)

LB
LE
RE
SOFS
JPOFH

Figure 5.8 E↵ect of number of routing paths on running time



114 5.5. Evaluation

E↵ect of amount of input data

Fig 5.9 shows the performance comparison, in terms of average completion time,

on changing the mean of normal distribution used to select the amount of input data

from 5 Kb to 200 Kb. The change in the amount of input data reflects the change

in the ratio of communication to computation cost. The comparison covers the

full range from computation-intensive tasks (5 Kb input data) to communication-

intensive tasks (200 Kb input data). We observe an increase in average completion

time on increasing the amount of input data as communication cost is increased.

The performance di↵erence between JPOFH and LE decreases from 31.2% at aver-

age input data of 5 Kb to 16.7% at average input data of 200 Kb. This is because the

increase in input data leads to an increase in communication cost only for JPOFH as

tasks are executed on local devices in LE. JPOFH also shows a decrease in perfor-

mance di↵erence between RE from 18.1% at average input data of 5 Kb to 14.2%

at average input data of 200 Kb. This is because the benefit of executing the parti-

tioned components of tasks simultaneously in JPOFH, compared to RE, is limited

by high communication cost in case of high average input data. There is also a de-

crease in performance di↵erence between JPOFH and SOFS from 20.8% at average

input data of 5 Kb to 4.2% at average input data of 200 Kb. Compared to SOFS,

JPOFH considers the order of tasks for execution at the devices based on their pri-

ority which leads to better performance when average input data is low. However,

the e↵ect is ordering the tasks is limited by high communication cost in case of high

average input data leading to a decrease in performance di↵erence between JPOFH

and SOFS.

The performance comparison, in terms of running time of algorithm, is shown

in Fig Fig 5.10. There is no significant di↵erence in running time of algorithms on

changing the amount of input data as computation complexity of both JPOFH and



5.5. Evaluation 115

5 50 100 150 200

Amount of average input data in Kb

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Av
er

ag
e 

co
m

pl
et

io
n 

tim
e 

in
 s

ec
on

ds

LB LE RE SOFS JPOFH

Figure 5.9 E↵ect of amount of input data on completion time

benchmark solutions is independent of the amount of input data.

5 50 100 150 200

Amount of average input data in Kb
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

 (l
og

10
 s

ca
le

)

LB
LE
RE
SOFS
JPOFH

Figure 5.10 E↵ect of number of routing paths on running time



116 5.6. Conclusion

5.6 Conclusion

In this chapter, we study the multi-hop multi-task partial o✏oading problem in

collaborative edge computing where heterogeneous independent tasks generated at

di↵erent heterogeneous devices at di↵erent release time are partially o✏oaded to a

remote device with the objective of minimizing the average completion time of all

tasks. We need to make a decision considering both partial o✏oading and network

flow scheduling as tasks can be o✏oaded to a device which is multi-hop away. We

formulate the problem as an MINLP optimization problem which is proven to be

NP-hard. Therefore, we propose a JPOFH algorithm which jointly solves the partial

o✏oading and network flow scheduling problem. The MINLP problem is also re-

laxed to an LP problem using McCormick envelope and the solution to the relaxed

problem acts as lower bound for performance comparison. We have done simu-

lation experiments to evaluate the e�cacy of the JPOFH by comparing it against

benchmark solutions, including local execution, remote execution, and separate of-

floading and flow scheduling. We have done a comprehensive performance com-

parison of JPOFH with benchmark solutions by varying di↵erent input parameters,

including the number of tasks, number of devices, number of routing paths, and the

amount of input data. Performance comparison shows that JPOFH leads to up to

32% improvement in average completion time compared to benchmark solutions.

We have solved this problem assuming a static environment. The problem can

be extended further considering the dynamics in network bandwidth and device re-

sources. Further, we consider the wireless interference in the problem by assuming

that any two network flows cannot pass through a network link at the same time.

The wireless interference can be more explicitly modelled in the problem. We have

given a loose lower bound solution by relaxing the original problem but due since

the problem is NP-hard, we could not provide more theoretical insight. Another



5.6. Conclusion 117

direction for this problem is to mathematically formulate the problem with some

assumptions such that more theoretical analysis could be provided.



Chapter 6

Conclusion and Future Work

In this thesis, we propose Edge Mesh, an abstraction of CEC, that leverages a mesh

network architecture of edge devices to enable scalable connectivity and distributed

decision-making within the network. We investigate and address the issues in solv-

ing the problem of task partitioning and o✏oading in collaborative edge computing

environments. The first issue is the task to be executed on an edge device can re-

quire data stored at other edge devices. This requires task o✏oading decisions to be

aware of data placement. The second issue is the transfer of input data and the data

from dependent tasks leads to multiple network flows contending for the bandwidth

resources. Task o✏oading without considering network flow scheduling could lead

to network congestion and ine�cient performance in terms of completion time.

The third issue is dependency among tasks and network flows which makes the

problem di�cult to mathematically formulate and solve. Furthermore, the di↵erent

application models have a di↵erence in terms of dependency, number of tasks, and

release time, requiring di↵erence in the problem formulation. The proposed so-

lution for task partitioning and o✏oading in collaborative edge computing should

jointly consider the data placement and transfer to achieve better performance.

118



119

The di↵erent works studied in Chapter 3, 5, and 4 are centered around ad-

dressing the above three issues. The data-aware task allocation problem studied

in Chapter 3 considers the input data placement for each task and the network flow

scheduling jointly to make task allocation decisions. This work is solved for a single

application task graph where we have dependent tasks and each task may require

input data from multiple di↵erent sources. The work in Chapter 4 solved the prob-

lem of joint task o✏oading and network flow scheduling for multiple DAG tasks.

Another example is work in Chapter 5 which solved the partial o✏oading problem

for independent tasks while also considering network flow scheduling due to the

transfer of input data corresponding to the task. The three works share a common

network model where we have a static mesh network of edge devices and a central-

ized controller that makes the partitioning and o✏oading decisions. There are also

some common challenges in solving the problems studied in three problems. One

major challenge in solving the di↵erent problems is that data transmission cost is

not static as it is dependent on task allocation decision.

The three works studied in this thesis, however, di↵er in the problem formu-

lation and solution due to the di↵erence in the application model. We solve the

data-aware task allocation problem in Chapter 3 by proposing a heuristic solution

MSGA, where we first provide an initial solution without considering network con-

gestion and then make an adjustment on task allocation and start time of network

flows to avoid network flow conflicts. However, we cannot use the same approach

for multiple DAG tasks o✏oading in Chapter 4 as there would be many more net-

work flows which belong to di↵erent task graphs and we also consider the di↵er-

ence in release time for each task graph. Therefore, instead of solving the problem

in stages as in MSGA, we propose JDOFH where we solve both the o✏oading and

network flow scheduling for each subtask within a task at the same step. Com-

pared to the other two works, the work in Chapter 5 considers partial o✏oading



120

of independent heterogeneous tasks. We propose JPOFH that calculates the partial

o✏oading ratio of each task by considering the waiting time at the device and start

time of input data flows.

We have made some assumptions in solving the di↵erent problems and there are

many issues that can be considered for future work. The dynamics of wireless net-

work and change in workload on the devices leads to change in available network

and device resources. The problems have been solved assuming a static network

and not explicitly considering the e↵ect of wireless interference. We only consider

the o✏oading among edge devices while not considering available cloud resources

and the change in incoming data from end devices. The problems can also be ex-

tended by considering other application models too such as multiple DAG with

tasks with multiple input data sources. We have also not considered network and

device failures while solving the task o✏oading problem. Another future direction

is to jointly consider application adaption with the task o✏oading decision. For

example, changing the quality of video based on the network condition or com-

press or change the parameters of the deep learning model. We have proposed the

solutions assuming a centralized controller that has overall global knowledge. We

should also look into proposing distributed solutions for task partitioning and of-

floading in collaborative edge computing environments. Another important issue is

that the evaluation of the proposed solutions is done using simulation experiments.

A real-world prototype should be used to illustrate the e�cacy of the proposed so-

lutions. We also need to consider the integration of collaborative edge computing

with blockchain, 5G, and other emerging technologies.

We are currently working on some of these issues. We have done some prelim-

inary work on developing the prototype for CEC to illustrate the sharing of com-

putation and data resources among edge devices and the proposed task partitioning

and o✏oading solutions. We have developed a demo prototype using the docker



121

container platform. We develop a multi-node cluster using edge devices such as

Raspberry Pi 3 Model B+ and Nvidia Jetson TX2. The docker container platform

enables scalable connectivity in the developed prototype. The devices and applica-

tion services used in the prototype can be scaled up/down depending on network

condition and resource consumption of devices. We have done work in illustrat-

ing sharing of computation resources and data among edge devices. We illustrate

the sharing of computation resources using a model partitioning example, where

part of the model for object detection is executed on Nvidia TX2 and rest on the

PC, which acts as a server. We also develop a demo for showing the data sharing

among edge devices using multi-camera multi-person re-identification example. In

this demo, the output features from detecting a person are shared with other devices

to detect the person on another camera in real-time. We have tried tools such as

Apache Airflow and Argo to deploy example applications with dependent tasks in

a multi-node cluster using the default scheduler in Kubernetes. We are currently

working on modifying the default scheduler in Kubernetes to show the e�cacy of

our proposed solutions.

Another ongoing work is on integrating edge computing with blockchain. In

particular, we are working on a problem of modelling relationship between users

submitting the transactions, miners responsible for packing the transactions in the

block, and edge service providers providing the computation resources for min-

ers. Compared to the existing works, this problem also considers the e↵ect of the

number of transactions and transaction cost on mining o✏oading decision.



Bibliography

[1] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan,

“Internet of things and edge cloud computing roadmap for manufacturing,”

IEEE Cloud Computing, vol. 3, no. 4, pp. 66–73, 2016.

[2] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized

iot service placement in the fog,” Service Oriented Computing and Applica-

tions, vol. 11, no. 4, pp. 427–443, 2017.

[3] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A sur-

vey on network methodologies for real-time analytics of massive iot data and

open research issues,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 3, pp. 1457–1477, 2017.

[4] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,

L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer app

for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[5] L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T. N. Dang, and C. S. Hong,

“Edge computing enabled smart cities: A comprehensive survey,” IEEE Inter-

net of Things Journal, 2020.

[6] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge mesh: A new paradigm to

enable distributed intelligence in internet of things,” IEEE access, vol. 5, pp.

16 441–16 458, 2017.

122



BIBLIOGRAPHY 123

[7] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,

no. 5, pp. 78–81, 2016.

[8] D. Nowak, T. Mahn, H. Al-Shatri, A. Schwartz, and A. Klein, “A generalized

nash game for mobile edge computation o✏oading,” in 2018 6th IEEE Inter-

national Conference on Mobile Cloud Computing, Services, and Engineering

(MobileCloud). IEEE, 2018, pp. 95–102.

[9] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for

partitioning and execution of data stream applications in mobile cloud com-

puting,” ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 4,

pp. 23–32, 2013.

[10] S. Ray, Y. Jin, and A. Raychowdhury, “The changing computing paradigm

with internet of things: A tutorial introduction,” IEEE Design & Test, vol. 33,

no. 2, pp. 76–96, 2016.

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proceedings of the first edition of the MCC workshop

on Mobile cloud computing. ACM, 2012, pp. 13–16.

[12] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications

and issues,” in Proceedings of the 2015 Workshop on Mobile Big Data. ACM,

2015, pp. 37–42.

[13] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic comput-

ing: A new paradigm for edge/cloud integration,” IEEE Cloud Computing,

vol. 3, no. 6, pp. 76–83, 2016.

[14] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated fog cloud iot: A

novel architectural paradigm for the future internet of things.” IEEE Consumer

Electronics Magazine, vol. 6, no. 3, pp. 74–82, 2017.

[15] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative mobile



124 BIBLIOGRAPHY

edge computing in 5g networks: New paradigms, scenarios, and challenges,”

IEEE Communications Magazine, vol. 55, no. 4, pp. 54–61, 2017.

[16] L. Chen and J. Xu, “Socially trusted collaborative edge computing in ultra

dense networks,” in Proceedings of the Second ACM/IEEE Symposium on

Edge Computing. ACM, 2017, p. 9.

[17] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, “Socially-motivated coop-

erative mobile edge computing,” IEEE Network, vol. 32, no. 6, pp. 177–183,

2018.

[18] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge

computing-a key technology towards 5g,” ETSI white paper, vol. 11, no. 11,

pp. 1–16, 2015.

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-

based cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8,

no. 4, pp. 14–23, 2009.

[20] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for collaborative

processing in wireless sensor networks,” Mobile Networks and Applications,

vol. 10, no. 1-2, pp. 115–131, 2005.

[21] Y. Tian and E. Ekici, “Cross-layer collaborative in-network processing in mul-

tihop wireless sensor networks,” IEEE transactions on mobile computing,

vol. 6, no. 3, pp. 297–310, 2007.

[22] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An intelligent

task allocation scheme for multihop wireless networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no. 3, pp. 444–451, 2012.

[23] S. Sundar and B. Liang, “O✏oading dependent tasks with communication

delay and deadline constraint,” in IEEE INFOCOM 2018-IEEE Conference

on Computer Communications. IEEE, 2018, pp. 37–45.



BIBLIOGRAPHY 125

[24] Y. Fan, L. Zhai, and H. Wang, “Cost-e�cient dependent task o✏oading for

multiusers,” IEEE Access, vol. 7, pp. 115 843–115 856, 2019.

[25] J. Taheri, A. Y. Zomaya, and S. U. Khan, “Genetic algorithm in finding pareto

frontier of optimizing data transfer versus job execution in grids,” Concur-

rency and Computation: Practice and Experience, vol. 28, no. 6, pp. 1715–

1736, 2016.

[26] R. McClatchey, A. Anjum, H. Stockinger, A. Ali, I. Willers, and M. Thomas,

“Data intensive and network aware (diana) grid scheduling,” Journal of Grid

computing, vol. 5, no. 1, pp. 43–64, 2007.

[27] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “{GRAPHENE}:

Packing and dependency-aware scheduling for data-parallel clusters,” in 12th

{USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 16), 2016, pp. 81–97.

[28] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,

“Wide-area analytics with multiple resources,” in Proceedings of the Thir-

teenth EuroSys Conference, 2018, pp. 1–16.

[29] A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network schedul-

ing aware task placement in datacenters,” in Proceedings of the 12th Interna-

tional on Conference on emerging Networking EXperiments and Technologies.

ACM, 2016, pp. 221–235.

[30] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation o✏oading for

mobile-edge computing with energy harvesting devices,” IEEE Journal on

Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.

[31] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation o✏oading for

service workflow in mobile cloud computing,” IEEE transactions on parallel

and distributed systems, vol. 26, no. 12, pp. 3317–3329, 2014.



126 BIBLIOGRAPHY

[32] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation o✏oading and resource

allocation in mixed fog/cloud computing systems with min-max fairness guar-

antee,” IEEE Transactions on Communications, vol. 66, no. 4, pp. 1594–1608,

2018.

[33] C. F. Funai, C. Tapparello, and W. Heinzelman, “Computational o✏oading for

energy constrained devices in multi-hop cooperative networks,” IEEE Trans-

actions on Mobile Computing, 2019.

[34] H. Al-Shatri, S. Müller, and A. Klein, “Distributed algorithm for energy e�-

cient multi-hop computation o✏oading,” in 2016 IEEE International Confer-

ence on Communications (ICC). IEEE, 2016, pp. 1–6.

[35] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware cooperative

computation o✏oading for robot swarms in cloud robotics,” IEEE Transac-

tions on Vehicular Technology, vol. 68, no. 4, pp. 4027–4041, 2019.

[36] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coopera-

tive computation o✏oading for industrial iot-edge-cloud computing environ-

ments,” IEEE Transactions on Parallel and Distributed Systems, 2019.

[37] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low

latency in collaborative edge computing,” IEEE Internet of Things Journal,

vol. 6, no. 2, pp. 3512–3524, 2018.

[38] B. Billet and V. Issarny, “From task graphs to concrete actions: a new task

mapping algorithm for the future internet of things,” in Mobile Ad Hoc and

Sensor Systems (MASS), 2014 IEEE 11th International Conference on. IEEE,

2014, pp. 470–478.

[39] G. Colistra, V. Pilloni, and L. Atzori, “The problem of task allocation in the

internet of things and the consensus-based approach,” Computer Networks,

vol. 73, pp. 98–111, 2014.



BIBLIOGRAPHY 127

[40] K. Ranganathan and I. Foster, “Decoupling computation and data scheduling

in distributed data-intensive applications,” in High Performance Distributed

Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International

Symposium on. IEEE, 2002, pp. 352–358.

[41] S. Kumar and N. Kumar, “Network and data location aware job scheduling in

grid: improvement to gridway meta scheduler,” International Journal of Grid

and Distributed Computing, vol. 5, no. 1, pp. 87–100, 2012.

[42] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware task

scheduling on multi-accelerator based platforms,” in Parallel and Distributed

Systems (ICPADS), 2010 IEEE 16th International Conference on. IEEE,

2010, pp. 291–298.

[43] P. Zhang, Y. Gao, and M. Qiu, “A data-oriented method for scheduling depen-

dent tasks on high-density multi-gpu systems,” in High Performance Comput-

ing and Communications (HPCC), 2015 IEEE 7th International Symposium

on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Con-

feren on Embedded Software and Systems (ICESS), 2015 IEEE 17th Interna-

tional Conference on. IEEE, 2015, pp. 694–699.

[44] M. Szmajduch and J. Kolodziej, “Data-aware scheduling in massive heteroge-

neous systems.” in ECMS, 2015, pp. 601–607.

[45] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation for wire-

less sensor network using modified binary particle swarm optimization,” IEEE

Sensors Journal, vol. 14, no. 3, pp. 882–892, 2014.

[46] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware data allocation

and task scheduling on heterogeneous multiprocessor systems with time con-

straints,” IEEE transactions on emerging topics in computing, vol. 2, no. 2,

pp. 134–148, 2014.



128 BIBLIOGRAPHY

[47] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,

and I. Stoica, “Low latency geo-distributed data analytics,” ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp. 421–434, 2015.

[48] L. Rupprecht, W. Culhane, and P. Pietzuch, “Squirreljoin: network-aware dis-

tributed join processing with lazy partitioning,” Proceedings of the VLDB En-

dowment, vol. 10, no. 11, pp. 1250–1261, 2017.

[49] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-e↵ective and low-

complexity task scheduling for heterogeneous computing,” IEEE transactions

on parallel and distributed systems, vol. 13, no. 3, pp. 260–274, 2002.

[50] A. Olteanu and A. Marin, “Generation and evaluation of scheduling dags:

How to provide similar evaluation conditions,” Computer Science Master Re-

search, vol. 1, no. 1, pp. 57–66, 2011.

[51] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic algo-

rithm for solving integer and mixed integer optimization problems,” Applied

Mathematics and Computation, vol. 212, no. 2, pp. 505–518, 2009.

[52] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop o✏oading of multiple dag

tasks in collaborative edge computing,” IEEE Internet of Things Journal,

2020.

[53] S. Gazzaz and F. Nawab, “Collaborative edge-cloud and edge-edge video an-

alytics,” in Proceedings of the ACM Symposium on Cloud Computing, 2019,

pp. 484–484.

[54] C. Ne↵, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and H. Tabkhi,

“Revamp2t: Real-time edge video analytics for multi-camera privacy-aware

pedestrian tracking,” IEEE Internet of Things Journal, 2019.

[55] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative edge com-

puting for software defined vehicular networks,” IEEE Network, vol. 32, no. 5,



BIBLIOGRAPHY 129

pp. 112–117, 2018.

[56] M. P. Alves, F. C. Delicato, I. L. Santos, and P. F. Pires, “Lw-coedge: a

lightweight virtualization model and collaboration process for edge comput-

ing,” World Wide Web, pp. 1–49, 2019.

[57] Z. Hu, D. Li, Y. Zhang, D. Guo, and Z. Li, “Branch scheduling: dag-aware

scheduling for speeding up data-parallel jobs,” in Proceedings of the Interna-

tional Symposium on Quality of Service, 2019, pp. 1–10.

[58] W. Shao, F. Xu, L. Chen, H. Zheng, and F. Liu, “Stage delay scheduling:

Speeding up dag-style data analytics jobs with resource interleaving,” in Pro-

ceedings of the 48th International Conference on Parallel Processing, 2019,

pp. 1–11.

[59] Y. Zhao, C. Tian, J. Fan, T. Guan, and C. Qiao, “Rpc: Joint online reducer

placement and coflow bandwidth scheduling for clusters,” in 2018 IEEE 26th

International Conference on Network Protocols (ICNP). IEEE, 2018, pp.

187–197.

[60] Y. Zhao, S. Luo, Y. Wang, and S. Wang, “Cotask scheduling in cloud com-

puting,” in 2017 IEEE 25th International Conference on Network Protocols

(ICNP). IEEE, 2017, pp. 1–6.

[61] Y.-H. Chiang, T. Zhang, and Y. Ji, “Joint cotask-aware o✏oading and schedul-

ing in mobile edge computing systems,” IEEE Access, vol. 7, pp. 105 008–

105 018, 2019.

[62] C.-F. Liu, S. Samarakoon, M. Bennis, and H. V. Poor, “Fronthaul-aware

software-defined wireless networks: Resource allocation and user schedul-

ing,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 533–

547, 2017.

[63] T. De Schepper, S. Latré, and J. Famaey, “A transparent load balancing algo-



130 BIBLIOGRAPHY

rithm for heterogeneous local area networks,” in 2017 IFIP/IEEE Symposium

on Integrated Network and Service Management (IM). IEEE, 2017, pp. 160–

168.

[64] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H. Kim,

and T. Nadeem, “mesdn: Mobile extension of sdn,” in Proceedings of the fifth

international workshop on Mobile cloud computing & services, 2014, pp. 7–

14.

[65] T. De Schepper, P. Bosch, E. Zeljkovic, K. De Schepper, C. Hawinkel,

S. Latré, and J. Famaey, “Sdn-based transparent flow scheduling for hetero-

geneous wireless lans,” in 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM). IEEE, 2017, pp. 901–902.

[66] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chan-

dra, and P. Bahl, “Maui: making smartphones last longer with code o✏oad,”

in Proceedings of the 8th international conference on Mobile systems, appli-

cations, and services, 2010, pp. 49–62.

[67] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code of-

floading,” in 2012 Proceedings IEEE Infocom. IEEE, 2012, pp. 945–953.

[68] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, “Application

partitioning algorithms in mobile cloud computing: Taxonomy, review and

future directions,” Journal of Network and Computer Applications, vol. 48,

pp. 99–117, 2015.

[69] M. Smit, M. Shtern, B. Simmons, and M. Litoiu, “Partitioning applications

for hybrid and federated clouds.” in CASCON, vol. 12. Citeseer, 2012, pp.

27–41.

[70] J. Niu, W. Song, and M. Atiquzzaman, “Bandwidth-adaptive partitioning for



BIBLIOGRAPHY 131

distributed execution optimization of mobile applications,” Journal of Net-

work and Computer Applications, vol. 37, pp. 334–347, 2014.

[71] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and F. Yang, “Dependency-

aware task scheduling in vehicular edge computing,” IEEE Internet of Things

Journal, 2020.

[72] Y. N. Sotskov and N. V. Shakhlevich, “Np-hardness of shop-scheduling prob-

lems with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3, pp. 237–

266, 1995.

[73] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation for wire-

less sensor network using modified binary particle swarm optimization,” IEEE

Sensors Journal, vol. 14, no. 3, pp. 882–892, 2013.

[74] L.-C. Canon, M. El Sayah, and P.-C. Héam, “A comparison of random task

graph generation methods for scheduling problems,” in European Conference

on Parallel Processing. Springer, 2019, pp. 61–73.

[75] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with

preemptive scheduling,” ACM SIGCOMM Computer Communication Review,

vol. 42, no. 4, pp. 127–138, 2012.

[76] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial computation

o✏oading in collaborative edge computing,” IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 5, pp. 1133–1145, 2020.

[77] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial computation of-

floading scheme for mobile edge computing enabled internet of things,” IEEE

Internet of Things Journal, 2018.

[78] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing:

Partial computation o✏oading using dynamic voltage scaling,” IEEE Trans-

actions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.



132 BIBLIOGRAPHY

[79] B. Li, M. He, W. Wu, A. Sangaiah, and G. Jeon, “Computation o✏oading

algorithm for arbitrarily divisible applications in mobile edge computing en-

vironments: An ocr case,” Sustainability, vol. 10, no. 5, p. 1611, 2018.

[80] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed compu-

tation o✏oading for mobile-edge cloud computing,” IEEE Wireless Commu-

nications Letters, vol. 6, no. 6, pp. 774–777, 2017.

[81] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An intelligent

task allocation scheme for multihop wireless networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no. 3, pp. 444–451, 2011.

[82] L. Chen, S. Zhou, and J. Xu, “Computation peer o✏oading for energy-

constrained mobile edge computing in small-cell networks,” IEEE/ACM

Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[83] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined convex

programming,” 2008.

[84] J. Y. Yen, “Finding the k shortest loopless paths in a network,” management

Science, vol. 17, no. 11, pp. 712–716, 1971.


