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Abstract 

Boundaries of spatial objects in geographical information systems (GIS) may be 

vague or fuzzy and the classical set theory which is based on crisp boundary. Since 

the crisp set-based description may not match to what in the real world, and lead a 

wrong description in GIS and corresponding spatial analysis. As the fuzzy theory 

gives us another way of representing objects in GIS, we consider fuzzy sets and 

investigate corresponding fuzzy topological relations.  

The objectives of the thesis as follows: 

• To solve the existing problems of 9-intersection model by introducing several 

useful intersection models to describe the relations of point to point, point to 

line, point to region, line to line, line to region and region to region 

respectively. 

• To the handle the vague or fuzzy models by investigating the topological 

relations in the cases of point to point, point to line, point to region, line to line, 

line to region and region to region respectively. 

• To develop models for quantitatively compute uncertainty topological 

relations between spatial objects in GIS. 

• To develop qualitative fuzzy topological relations under several invariant 

properties which including quasi-coincidence, connective and others. 

• To apply the developed fuzzy topology to image processing. 

 

The main focus of this thesis is mainly on modeling topological relations between 

spatial objects in GIS. Several issues on modeling topological relations between 

spatial objects are addressed, which including (a) defining topological relations and 

fuzzy GIS elements; (b) proving that topological relations between spatial objects are 

shape dependent; (c) modeling topological relations between spatial objects by using 

the concepts of quasi-coincidence and quasi-difference in fuzzy topology theory; (d) 

creating the computable fuzzy topology for practically implementing these conceptual 

topological relations in a computer environment. 

 

The first issue is giving a new definition of the topological relations between two 

spatial objects which actually is an extended model for topological relations between 

two spatial objects. For this issue, we have found out that the number of topological 



relations between the two sets is not as simple as finite; actually, it is infinite and can 

be approximated by a sequence of matrices. Moreover, as point, line and region 

(polygon) are the basic elements in GIS, thus we define them based on a fuzzy set.  

 

Topology is normally considered as shape independent of spatial objects. This may 

not necessarily be true in describing relations between spatial objects in GIS. We 

present a proof that the topological relations between spatial objects are dependent on 

the shape of spatial objects. That is, topological relations of non-convex sets cannot 

be deformed to the topological relations of convex sets. The significant theoretical 

value of this finding is that topology of spatial objects are shape dependent. This 

indicates that when we describe topological relations between spatial objects in GIS, 

both topology and the shape of objects need to be considered.  

 

There are two theoretical issues on modeling topological relations between spatial 

objects.  

The first one is using the concepts of quasi-coincidence and quasi-difference to 

distinguish the topological relations between fuzzy objects and to indicate the effect 

of one fuzzy object on another in a fuzzy topology. Secondly, based on the developed 

computational fuzzy topology, methods for computing the fuzzy topological relations 

of spatial objects are proposed in this issue. For modeling the topological relations 

between spatial objects, the concepts of a bound on the intersection of the boundary 

and interior, and the boundary and exterior are defined based on the computational 

fuzzy topology. Furthermore, the qualitative measures for the intersections are 

specified based on the α-cut induced fuzzy topology, which are ( )( ) α−<∂∧α 1xAA  

and ( )( )( ) α−<∂∧α 1xAAc . For computing the topological relations between spatial 

objects, the intersection concept and the integration method are applied. A 

computational 9-intersection model is thus developed. The computational topological 

relations between spatial objects are defined based on the ratio of the area/volume of 

the meet of two fuzzy spatial objects to the join of two fuzzy spatial objects. This is a 

step ahead of the existing topological relations models: from a conceptual definition 

of topological relations to the computable definition of topological relations. As a 

result, the quantitative values of topological relations can be computed. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

Geographic information system (GIS) is widely applied in many different fields including 

map-making, site selection, emergency response planning, simulating environmental 

effects and others. In design and analysis of geographic entities, it is discovered that 

many spatial objects are vague and fuzzy. For example, the boundaries of urban areas, 

boundaries of states (Blakemore, 1984) clouds of gas and habitats of particular plants are 

vague or fuzzy (Cohn and Gotts, 1996). It seems that the original design and development 

of GIS, which is based on the assumption that the measurements on spatial objects (such 

as rivers, roads, trees and buildings) are error free and thus is not suitable for these 

applications. Therefore, there is a need to fundamentally enhance the basis of existing 

GIS by further coping with the vague/fuzzy modeling and the corresponding fuzzy 

topological relations description between spatial objects in GIS. 

 

Topological relations between spatial objects are fundamental information in GIS, along 

with positional and attribute information. Information on topological relations can be 

used for spatial queries (e.g. asking queries for a user), spatial analyses, data quality 

control (e.g., checking for topological consistency), and others. Topological relations can 

be crisp or fuzzy depending on the certainty or uncertainty of spatial objects and the 

nature of their relations. When concerning spatial objects are uncertain, or their relations 

are not certain, the issue of uncertain topological relations emerges. There are many 

uncertain relations that need to be modeled among spatial objects in GIS. For example, 

the land covered by two kinds of vegetation: grasses and forests. Topological relation 

between grass and forest are uncertain. In this type of spatial analysis, it is essential to 

understand the uncertain topological relations between spatial objects.  

                                                                                                                                                                              

Research on topological relations between spatial objects has attracted a great deal of 

attention in the past few decades. Many more studies have examined the topological 

relations between crisp spatial objects. White (1980) introduced the algebraic topological 
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models for spatial objects. Allen (1983) identified 13 topological relations between two 

temporal intervals. 

 

The major research outcomes on topological relations between regions have included, for 

example, 4-intersection models (Egenhofer, 1991; Winter, 2000) and 9-intersection 

models (Egenhofer, 1991; Cohn and Gotts, 1996; Clementini and Di Felice, 1996; Smith, 

1996; Shi and Guo, 1999; Tang and Kainz, 2002; Tang et al, 2003, 2004, 2005).  

 

The models (Egenhofer, 1993; Winter, 2000; Cohn and Gotts, 1996; Clementini and Di 

Felice, 1996; Smith, 1996; Tang and Kainz, 2002; Tang et al, 2003, 2004, 2005) were 

developed under the concepts of interior, boundary, and exterior which makes it 

potentially possible to model uncertainty relations between spatial objects conceptually. 

However, it is still difficult to implement these concepts (such as interior, boundary, and 

exterior) in a computer system, even with a membership function of a fuzzy set (or 

uncertain spatial object). Therefore, at this stage, while the conceptual framework on 

modeling topological relations between spatial objects is well developed (Egenhofer, 

1993; Kainz et al, 1993; Mark and Egenhofer, 1994; Egenhofer and Mark, 1995; Cohn 

and Gotts, 1996; Clementini and Di Felice, 1996; Smith, 1996; Winter, 2000; Tang and 

Kainz, 2002; Tang et al, 2003, 2004, 2005), mechanisms that can be used to implement 

and operate these conceptual models are lacking.   

 

1.2 Application areas of topological relations in GIS 

Topological relations can be used in a GIS in the following three areas: for relation-

related spatial query, for detecting logical inconsistent errors, to facilitate spatial relations 

related analysis. A topology-based GIS can be used to detect topological error, and can 

partially remove topological error. For example, we can make sure whether two lines are 

overshoot or undershoot, polygons are closed and the nodes of a polygon are properly 

labeled. 
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Query and reasoning 

Query is a basic function of GIS, which is 

used to answer simple questions. For 

examples, “how many house are there 

within 100 meters around a particular 

point”, “which city is the closest to Hong 

Kong” or “how far from building A to 

building B along certain path (see Figure 

1.1, 

http://www.centamap.com/cent/index.htm)”

. Those simple questions arise the basic properties of the operation of queries, which 

include measurement of objects, like length, area, or shape and relation between objects. 

Moreover, some queries may involve transformation of spatial object, which may involve 

the operation on geometric and topological relations. Therefore, relations (geometric or 

topological) should be modeled carefully in GIS.  

 

Topological consistency checking 

Topological inconsistency errors may often occur in digitizing. For example, when two 

line segments that are supposed to meet each other at a node, but it doesn’t. This kind of 

topological error is called overshoot or undershoot (Figure 1.2(a)). Another example is 

that a polygon may not be closed (Figure 1.2(b)). As topological errors violate the 

topological relations that has been well packed in the database. Many topological errors 

can be corrected automatically by operating certain programs. Therefore, it is important 

to store useful topological relations between spatial objects for the checking. 

 

 

 

 

 

 

 

Figure 1.1: How far from building 27 to building 6 along 
Black’s Link in Hong Kong 

http://www.centamap.com/cent/index.htm
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Modeling topological relations 

Spatial objects may gradually change their location, orientation, shape and size over time. 

For example, the size of an island may be changing from time to time due to the effect of 

tide. In Hong Kong, Sha Chau is an island located in the west of Tuen Mun, due to the 

effect of tide, it is a single island in low tide and it will become two islands in high tide. 

To predict the topological relations between these two islands is related to the cognition 

of topological relations between two spatial objects (the two islands). In high tide, the 

topological relation between two islands is 

disjoint. In low tide, the topological relation 

between two islands is connected (see 

Figure 1.3, the base map was based on the 

data from the website 

http://www.centamap.com/cent/index.htm). 

Therefore, a set of topological relations 

with respect to spatial objects are important 

to model those changes, which each 

relation should be invariant under 

homeomorphism (rotation, scaling and 

translation are several examples). A useful set of topological relations between spatial 

objects allows us to predict the change of spatial objects.  

 

Figure 1.3: The topological relation between two 
islands is changing from time to time. 

Figure 1.2(a): Digitizing errors: overshoot (1) and 
undershoot (2) respectively 

Figure 1.2(b): Digitizing errors: unclosed polygon 

(1) (2) 

http://www.centamap.com/cent/index.htm
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1.3 Methodology 

The topological relations between two spatial objects are the fundamental properties in 

GIS. The techniques to study the topological relations between two spatial objects in this 

research will include fuzzy topology and probability theory. In the past, research on the 

representing topological relations between regions has concentrated on four streams. The 

first is the extending the 9-intersection model and which mainly focus on formalizing 

two-dimensional topological relations (Egenhofer, 1993; Cohn and Gotts, 1996; Smith, 

1996). The second is the Voronoi-based 9-intersection model (Chen et al, 2001). The 

third is the representing topological relations for higher-dimensional space. The fourth is 

the formulation of topological relations and computable for handling easily.  

 

On the other hand, in practical GIS cases, besides the region to region case, there are 

many other special cases to be modeled, for example the topological relations between 

line and region, regions with holes etc. For a crisp line and region, several existing 

intersection models state that a line segment in two-dimensional (2D) space have non-

empty interior. But actually, a line should have an empty interior in 2D space, while it 

has non-empty interior in one-dimensional (1D) space. Therefore, when talking about the 

intersection relations, we should clearly state the space it belongs to. That means in the 

language of mathematical, the embedding of a line into a two-dimensional space should 

be considered. 

 

1.3.1 Extended model of topological relations between crisp GIS objects 

We first extend the presents models for describing topological relations between crisp in 

GIS (Egenhofer 1993; Cohn and Gotts, 1996; Smith, 1996; Chen et al, 2001). Which we 

first provide a new definition of the topological relations between two spatial objects, 

which is an extension of the traditional definition based on empty and non-empty under 

homeomorphic mapping. Based on this new definition, which includes topology of the 

object itself and several topological properties, we have uncovered a sequence of 

topological relations between two convex sets. 
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There are a number of new findings from this study. Among them, two major findings 

are: (a) the number of topological relations between the two sets is not as simple as finite; 

actually, it is infinite and can be approximated by a sequence of matrices, and (b) the 

topological relations between two sets are dependent on the shape of the sets themselves. 

 

1.3.2 Modeling fuzzy topological relations in GIS 

The boundaries of many objects in GIS can be vague or fuzzy (Leung and Chen, 1967; 

Leung and Yan, 1997, Shi and Guo 1999, Winter 1998, 2000) and the classical set theory 

(Apostol, 1974; Steven 1964), which is based on a crisp boundary, may not be suitable 

for handling these problems. An incorrect interpretation of fuzzy/vague GIS objects may 

cause not only loss of information, but also leading a wrong description of reality in GIS. 

The tide makes it difficult to determine the boundary of a sea and there are many 

problems if we want to determine the boundary of the Pacific Ocean. Due to the effect of 

the tide, some islands in the Ocean may appear and disappear from time to time. We may 

also have problem to describe these islands in a crisp and static GIS. By using a 

traditional GIS to describe objects may lead inaccuracy and even mistake for both single 

objects and relations between these two objects. As a result, problems will arise in GIS 

queries, analyses and the final decisions making. Therefore, the classical set theory 

(Wang, Hall and Subaryono, 1990) may not be a suitable basic tool for describing objects 

in GIS. Alternatively, fuzzy set theory provides a useful solution to the description of 

uncertain objects in GIS. The fuzzy topology can be applied to describe and quantify the 

fuzzy topological relations in GIS. 

 

On modeling fuzzy topological relations between uncertain objects in GIS, the quasi-

coincidence and quasi-difference, which are used to (a) distinguish the topological 

relations between fuzzy objects and (b) indicate the effect of one fuzzy object to the 

others. Geometrically, features in GIS can be classified as point features, linear features 

and polygon or region features. In this dissertation, we first introduce several basic 

concepts in fuzzy topology, which will be used in this study. This is followed by several 

definitions of fuzzy points, fuzzy lines and fuzzy regions for GIS objects. Next, the level 

of one fuzzy object affected the other is modeled based on the sum and difference of the 
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membership functions that are the quasi-coincidence and quasi-difference respectively. 

Finally, an applicable example of using quasi-coincidence and quasi-difference based on 

the new definitions of fuzzy point, line and polygon are given. 

 

1.3.3 Computable fuzzy topological space in GIS 

Many management, analysis and display of spatial information on spatial objects in GIS 

are based on regions. Actually, the boundary of a spatial object may be vague or fuzzy 

(such as the boundary urban region) and the classical set theories that are based on a crisp 

boundary may not be suitable for handling these problems. It can be expected that we will 

be confused if we want to determine the boundary and the interior of the Pacific Ocean. 

As the ordinary topology can only give Boolean answer, it is obvious that it will cause 

the loss of information in making decision. Therefore, the classical set theories (Wang, 

Hall and Subaryono, 1990) may not be a good tool in GIS. As fuzzy theory provides us 

with a lot of useful information in the representation of GIS, we can apply fuzzy sets and 

investigate its topological relations for better modeling objects, especially uncertain 

objects and their relations in GIS.  

 

Even we can successfully find out a membership function of a spatial object based on 

observations, we need to further quantify the topological relations and store them in a 

computer. Based on the 9-intersection models, the models (Egenhofer, 1993; Winter, 

2000; Cohn and Gotts, 1996; Clementini and Di Felice, 1996; Smith, 1996; Tang, 2002) 

mainly have conceptual definitions of interior, boundary and exterior. That means we do 

not have the formulae to compute the value of interior, boundary and exterior. Therefore, 

it is difficult to implement these definitions in a computer. It seems that a particular and 

useful fuzzy topological space need to be developed which can help to compute the value 

of the interior, boundary and exterior of a spatial object once the membership function is 

known. The 9-intersection and other topological models can thus be implemented in the 

computer environment. 

 

In this regards, we propose a computable fuzzy topological space, which is useful in GIS. 

In this aspect, we first definite two new operators, interior and closure operators. Then, 
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these operators will be used to further define a computable fuzzy topological space, 

which will used to compute the interior, boundary and closure for fuzzy spatial objects in 

GIS. 

 

1.3.4 Qualitative and quantitative fuzzy topological relations under several invariant 

properties 

The fuzzy topological relations are elementary relations in the study of topological 

relations between spatial objects in GIS. Many researchers have developed their models 

in this area based on these relations (Egenhofer, 1991; Cohn and Gotts, 1996; Clementini 

and Di Felice, 1996; Smith, 1996; Shi and Guo, 1999; Tang and Kainz, 2002). 

 

The properties of topological spaces that are preserved under homeomorphic mappings 

are called the topological invariants of the spaces. To study the topological relations, we 

need to first investigate the properties of a fuzzy mapping, especially homeomorphic 

mapping. The topological relations are an invariant under homeomorphic mappings. With 

these, we can thus guarantee the properties that will remain unchanged in a GIS 

transformation, such as the maintenance of topological consistency when digitizing a map 

or transferring a map from a system to another. Moreover, among these topological 

relations, we can extract useful topological relations, which commonly exist in GIS. 

 
 

1.4 Structure of the thesis 

The rest of this thesis is organized as follows. Chapter 2 review the point set topology, 

fuzzy topological theory, fuzzy mapping and explain the topological relations in a 

mathematic point of view.  

 

Chapter 3 gives a review and an analysis on the development of uncertainty relations 

between spatial objects in GIS. The review includes several models of topological 

relations in GIS, which are Egenhofer’s 4-intersection model, 9-intersection model, 

Clementini and Di Felice’s 9-intersection model, Cohn and Gotts’s ‘Egg-Yolk’ model, 
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Tang and Kainz’s 9-intersection model and Chen, Li, Li and Gold’s Voronoi-based 9-

intersection model. 

 

Chapter 4 first gives an analysis on the Egenhofer’s 9-intersection model. Then, based on 

a new definition of topological relations between two sets, the extended topological 

relations model between convex sets is descried in detail. Finally, it extends the proposed 

model from convex region to the non-convex region. 

 

Chapter 5 gives a mathematical proof to show that the number of components in the 

intersection of the interior of two convex spatial regions in two-dimensional space is at 

most one, while the number of components can be more than one if they are not convex. 

That is the topological relations between spatial objects are dependent on the shape of 

spatial objects and hence the topological relations of non-convex sets cannot be deformed 

to the topological relations of convex sets. 

 

Chapter 6 first gives several basic definitions (point, line and region) and basic properties 

of fuzzy elements in GIS that will be applied to model topological relations between 

spatial objects in GIS. Secondly several the basic properties of fuzzy topological space 

and mappings are described. Thirdly, quasi-coincidence and quasi-difference, which are 

used (a) to distinguish the topological relations between fuzzy objects and (b) to indicate 

the effect of one fuzzy object on another in a fuzzy topology, are adopted for the 

development. Finally, an applicable example of using quasi-coincidence and quasi-

difference based on the new definitions of fuzzy point, line and polygon are given. 

 

In chapter 7, we present a development of computational fuzzy topological space, which 

is based on the interior operator and closure operator. These operators are further defined 

as a coherent fuzzy topological space -- the complement of the open set is the closed set 

and vice versa; where the open set and closed set are defined by interior and closure 

operators – two level cuts. The elementary components of fuzzy topology for spatial 

objects – interior, boundary and exterior – are thus computed based on the computational 

fuzzy topological space. An example of calculating the interior, boundary, and exterior of 
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Mikania micrantha based on the aerial photographs of the Hong Kong countryside is 

provided in order to demonstrate the application of the theoretical development. 

Practically, the developed computational fuzzy topological space is applicable for 

computing the values of fuzzy topological relations, such as defined concepts by the 9-

intersection model.  

 

In chapter 8, based on the developed computational fuzzy topological space, the methods 

for computing the fuzzy topological relations of spatial objects are proposed. Specifically, 

the following areas are covered:  (a) the homeomorphic invariants of the fuzzy topology 

are proposed; (b) the connectivity based on the newly developed fuzzy topology is 

defined; and (c) the fuzzy topological relations between simple fuzzy regions in GIS are 

modeled. For modeling the topological relations between spatial objects, the concepts of 

a bound on the intersection of the boundary and interior, and the boundary and exterior 

are defined based on the computational fuzzy topological space. Furthermore, the 

qualitative measures for the intersections are specified based on the α-cut induced fuzzy 

topological space, which are ( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc . 

 

For computing the topological relations between spatial objects, the intersection concepts 

and the integration method are applied, and a computational 9-intersection model is thus 

developed in chapter 9. The computational topological relations between spatial objects 

are defined based on the ratio of the area/volume of the meet of two fuzzy spatial objects 

to the join of two fuzzy spatial objects. This is a step further to the existing topological 

relations models: from a conceptual definition of topological relations to computable 

definition of topological relations. As a result, the quantitative values of topological 

relations can be calculated.   

 

Chapter 10 presents conclusions, discussions and further research work, which includes 

how to use the fuzzy topological theory on modeling uncertainty topological relations in 

GIS.  

The research procedure is sketched in Figure 1.4. 
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and quasi-difference 

Gives several basic 
definitions of GIS elements 

(point, line and region) 

Modeling fuzzy topological 
relations using quasi-

coincidence and quasi-
difference 

Created a computational fuzzy 
topology 

Modeling fuzzy topological 
relations between fuzzy point, 
fuzzy line and fuzzy regions 

Developed the related theory 
in GIS for this computation 

fuzzy topology 

Quantitative fuzzy topological 
relations between simple fuzzy 

objects 

Multiple 
integrations 

Figure 1.4: Research procedures 
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CHAPTER TWO  

MATHEMATICAL FOUNDATION 

 

2.1 Point set topological 

The development of a coherent, mathematical theory of spatial relations to handle 

geographic applications is an important job (Egenhofer, 1993). Since mathematical 

theory can give a strong support on the geographic application. Thus, point-set topology 

(Steven, 1964; Apostol, 1974; Bredon, 1993) provides a useful tool to study the 

topological relations between spatial objects in GIS objects. In this chapter, several 

models are based on the theorem of point-set topology. Therefore, let us first review 

several related definitions and theorems of point-set topology. 

 

2.1.1 The definition of topological space 

A topological space is a set X with a collection of subsets of X called “open” sets, such 

that:  

(1) the intersection of the two open sets is open; 

(2) the union of any collection of open sets is open; and 

(3) the empty set φ  and whole space X are open. 

 

Moreover, a subset C of X is called “closed” if its complement X\C is open. 

 

2.1.2 The definitions of interior, closure and boundary 

Definition 2.1: If X is a topological space and XA ⊂ , then the largest open set U 

contained in A is called the “interior” of A in X and denoted by oA  

 

Definition 2.2: If X is a topological space and XA ⊂ , then the smallest closed set F 

containing A is called the “closure” of A in X and denoted by A . 

 

Definition 2.3: If X is a topological space and XA ⊂ , then the set of the elements in X 

but not in A is called the complement of A and denoted by cA . 
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Definition 2.4: If X is a topological space and XA ⊂ , then the boundary of A is defined 

to be cAAA ∩=∂ . 

 

 

 

 

 

 

 

Figure 2.1(a) shows the closure of A in R2, Figure 2.1(b) shows the interior of A in R2, 

and Figure 2.1(c) shows the boundary of A in R2. 

 

2.1.3 Several basic properties of point set topology 

The properties of topological spaces that are preserved under homeomorphism are called 

the topological invariants of the spaces. Connectivity, compactness and first fundamental 

group are several fundamental topological invariants. As these invariants are invariant 

under bi-continuous mappings (homeomorphisms), studying these invariants can help us 

to understand the (topological) relations of spatial objects. Thus, in this chapter, we will 

discuss topological relations based on these invariants. 

 

Definition 2.5: If X and Y are two topological spaces and YX:f →  is a mapping, then f 

is said to be continuous if ( )Uf 1−  is open for each open set YU ⊂ . 

 

Definition 2.6: If X and Y are two topological spaces and YX:f →  is a function, then f 

is said to be a homeomorphism if both f and 1f −  are continuous. 

 

Definition 2.7: The topological properties that are preserved under homeomorphism are 

called homeomorphic invariant. 

 

Ao 

Figure 2.1(b): The interior of A in R2Figure 2.1(a): The closure of A in R2 

A

x x

y y

Figure 2.1(c): The boundary of A in R2 

A∂

A

y
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Definition 2.8: A topological space X is called connected if it is not the disjointed union 

of two nonempty open subsets. 

 

Definition 2.9: A topological space X is called compact if every open covering of X has 

a finite subcover. 

 

Proposition 2.10: Compactness, connectivity and first fundamental group are 

homeomorphic invariant. 

Q.E.D. 

 

2.2 Fuzzy topological theory 

Fuzzy sets are the basic element of fuzzy topology.  Zadeh (1965) introduced the concept 

of the fuzzy set. Fuzzy theory has been developed since 1996, and the theory of fuzzy 

topology (Zadeh, 1965, Chang, 1968; Wong, 1974; Wu and Zheng, 1991; Liu and Luo, 

1997) has been developed based on the fuzzy set. Topological relations are one of the 

concerns in modeling spatial objects, besides their geometric and attribute aspects. 

Uncertain topological relationships need to be modeled due to the existence of the 

indeterminate and uncertain boundaries between spatial objects in GIS. Fuzzy topological 

theory can potentially be applied to the modeling of fuzzy topological relations among 

spatial objects. The followings are several definitions and basic properties of fuzzy sets in 

GIS that will be used later. 

 

Definition 2.11 (fuzzy subset): Let X be a nonempty ordinary set, I be the closed 

interval [0, 1], which actually is a complete lattice. 

 

An I-fuzzy subset on X is a mapping (called the membership function of A) Aμ : X I→ , 

i.e. the family of all the [0, 1]-fuzzy or I-fuzzy subsets on X is just XI  consisting of all 

the mappings form X to I. XI  here is called an I-fuzzy topological space, X is called the 

carrier domain of each I-fuzzy subset on it, and I is called the value domain of each I-

fuzzy subset on X. A XI∈  is called a crisp subset on X, if the image of the mapping is the 

subset of { } I1,0 ⊂ . 
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Definition 2.12 (rules of set relations): Let A and B be two fuzzy sets in X with 

membership functions ( ) ( )xandx BA μμ  respectively. Then 

(i) A = B iff ( ) ( )xx BA μ=μ  for all x in X. 

(ii) A ≤ B iff ( ) ( )xx BA μ≤μ  for all x in X. 

(iii) C = BA ∨  iff ( ) ( ) ( )[ ]x,xmaxx BAC μμ=μ  for all x in X. 

(iv) D = BA ∧  iff ( ) ( ) ( )[ ]x,xminx BAD μμ=μ  for all x in X. 

(v) E = X\A iff ( ) ( )x1x AE μ−=μ  for all x in X. 

 

In the following, we introduce the fuzzy topology, and which will be a base for the 

description of uncertain relations between objects in GIS. Fuzzy topology is an extension 

of ordinary topology that fuses two structures, order structure and topological structure. 

Furthermore, the fuzzy interior, boundary and exterior play an important role in the 

uncertain relations between GIS objects. Therefore, we have to define those items with a 

very clear concept. 

 

Definition 2.13 (fuzzy topological space): Let X be a non-empty ordinary sets, I be a I-

lattice, xI⊂δ . δ  is called a I-fuzzy topology on X, and ( )δ,I x  (or ( )δ,I,X X  for detail; 

or xI  for short) is called an I-fuzzy topological space (I-fts), if δ  satisfies the following 

conditions: 

(i) 0, 1∈ δ ; 

(ii) If A, B∈ δ , then A ∧ B∈ δ ,  

(iii) Let { }Ji:A i ∈ ⊂ δ , where J is an index set, then iJi
A

∈
∨ ∈ δ . 

 

The elements in δ  are called open elements and the elements in the complement of δ  are 

called closed elements. 
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Definition 2.14 (interior and closure): For any fuzzy set A, we defined 

(i) the interior of A as the join of all the open subset contained in A, denoted by 
oA , i.e. { }AB:BA o ≤δ∈∨= . 

(ii) the closure of A as the meet of all the closed subset containing A, denoted by 

A , i.e. { }AB:'BA ≥δ∈∧= . 

 

Definition 2.15 (fuzzy complement): For any fuzzy set A, we defined the complements 

of A by ( ) ( )xA1xA c −= . 

 

Definition 2.16 (fuzzy boundary): The boundary of a fuzzy set A is defined as 
cAAA ∧=∂ . 

 

Theorem 2.17 (properties of interior): Let ( )δ,IX  be an L-fts. Then 

(i) 00o = , 11o = . (The empty and the whole set are open.) 

(ii) AA o ≤ . 

(iii) ooo AA = . 

(iv) BA ≤  ⇒  oo BA ≤ . 

(v) ( ) ooo BABA ∧=∧ . 

 

Proof: (i) and (ii) are by the definition of interior. 

 

(iii): Since ooA  is the largest open contained in oA  and oA  itself is open, hence 
ooo AA = . 

 

(v): by (vi) ( ) oo ABA ≤∧  and oB≤ , therefore ( ) ooo BABA ∧≤∧ . On the other hand 

BABA oo ∧≤∧  which oo BA ∧  is open contained in BA ∧ , hence oo BA ∧  must be 

contained in the largest open set ( )oBA ∧ . Thus ( ) ooo BABA ∧=∧ . 

Q.E.D. 
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Theorem 2.18 (properties of closure): Let ( )δ,IX  be an I-fts. Then 

(i) 00 = , 11 = . (The empty and the whole set are closed.) 

(ii) AA ≤ . 

(iii) AA = . 

(iv) BA ≤  ⇒  BA ≤ . 

(v) BABA ∨=∨ . 

Proof: (i) and (ii) are by the definition of closure. 

 

(iii): Since A  is the smallest closed set containing A  and A  itself is closed, hence 

AA = . 

 

(v): by (iv) BAA ∨≤  and BAB ∨≤ , so BABA ∨≤∨ . On the other hand, since A  

and B  are closed set containing A and B respectively, BA ∨  is a closed set containing 

BA ∨ . As BA ∨  is the smallest closed containing BA ∨ , hence BABA ∨≤∨ . Thus 

BABA ∨=∨ . 

Q.E.D. 

 

Theorem 2.17 and 2.18 allow us make a generalization and introduce the following two 

concepts, which are the new direction of defining the fuzzy topological space. 

 

Definition 2.19 (Closure operator): An operator xx II: →α  is a fuzzy closure operator 

if the following conditions are satisfied: 

(i) ( ) 00 =α , 

(ii) ( )AA α≤ , for all xIA ∈ , 

(iii) ( ) ( ) ( )BABA α∨α=∨α , 

(iv) ( )( ) ( )AA α=αα , for all xIA ∈ . 
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Definition 2.20 (Interior operator): An operator xx II: →α  is a fuzzy interior operator 

if the following conditions are satisfied: 

(i) ( ) 11 =α , 

(ii) ( ) AA ≤α , for all xIA ∈ , 

(iii) ( ) ( ) ( )BABA α∧α=∧α , 

(iv) ( )( ) ( )AA α=αα , for all xIA ∈ . 

 

 

2.3 Fuzzy mapping 

In GIS, we also concern about the change of certain spatial objects. For example what 

would happen to a map from a computer system to another computer system? What 

properties will be unchanged (invariant) under transformation and so on? Hence, the 

about definitions and theories are the fundamental tools to investigate those properties. 

Thus, properties of topological spaces that are preserved under homeomorphic mappings 

are called topological invariants of the spaces. To study the topological relations, we need 

to study the properties of a fuzzy mapping firstly, especially the homeomorphic mapping. 

The topological relations are invariants under homeomorphic mappings. Thus, we can 

guarantee the unchanged properties in GIS transformation such as maintaining of 

topological consistency when digitizing a map or transferring a map from a system to 

another system. The followings are several basic definitions and theories of fuzzy 

mapping. 

 

Definition 2.21 (fuzzy mapping): Let XI , YI  be I-fuzzy topological spaces, YX:f →  

be an ordinary mapping. Based on YX:f → , define I-fuzzy mapping YX II:f →→  

and its I-fuzzy reverse mapping XY II:f →←  by 

 YX II:f →→ , ( )( ) ( ) ( ){ }yxf,Xx:xAyAf =∈∨=→ , XIA ∈∀ , Yy ∈∀ , 

 XY II:f →← , ( )( ) ( )( )xfBxBf =← , YIB∈∀ , Xx ∈∀ . 
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Proposition 2.22: Let XI , YI  be I-fuzzy topological spaces, YX:f →  be an ordinary 

mapping. A XI∈  and B YI∈ .  

(i) ( ) AAff ≥→←  and ( ) BBff ≥←→ . 

(ii) ( ) ( )'Bf'Bf ←← = . 

(iii) If A(x) = 1, then ( )( ) 1yAf =→ . 

(iv) If B(y) = α , then ( )( ) α=← xBf .  

Proof: (i) By definition ( )Aff →← (x) = ( ) ( )( )xfAf →  ( ) ( ){ } ( )xAyxf,Xx:xA ≥=∈∨= . 

      By definition ( )Bff ←→ (y) ( )( ) ( ){ }yxf,Xx:xBf =∈∨= ←  

( )( ) ( )
( )⎩

⎨
⎧

=
=

=
yxfthatsuchxnoif0

xfyifxfB
.  

 

 (ii) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )x'BfxBf1xfB1xf'Bx'Bf ←←← =−=−== . 

 

(iii) By definition ( )Af → (y) ( )( ) ( ){ } 1yxf,Xx:xA ==∈∨= . 

 

 (iv) By definition ( )( ) ( )( )xfBxBf =← = B(y) = α . 

Q.E.D. 

 

Theorem 2.23: Let XI , YI  be I-fuzzy topological spaces, YX:f → be an ordinary 

mapping. Then for any Ia ∈  and any XIA ∈ , we have ( ) ( )AafaAf →→ = . 

Proof: ( )aAf → (y) ( )( ) ( ){ }yxf,Xx:xaA =∈∨=  

      ( )( ) ( ){ }yxf,Xx:xAa =∈∧∨=  

      ( )( ) ( ){ }yxf,Xx:xAa =∈∨∧=  

      ( )( )( )yAfa →∧=  

      ( )( )yAaf →= . 

 So ( ) ( )AafaAf →→ =  

Q.E.D. 
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Proposition 2.24: Let XI , YI  be I-fuzzy topological spaces, YB,XA ⊂⊂ , 

YX:f →  be an ordinary mapping. Then 

(i) ( ) [ ]AfAf χ=χ→ . 

(ii) ( ) ( )BfB 1f −χ=χ← . 

Proof: (i) ( )( )yf Aχ→  = ( ) ( ){ }yxf,Xx:xA =∈χ∨  

    = 
( )

⎩
⎨
⎧ =

otherwise0
xfyif1

 

    = [ ] ( )yAfχ . 

 

 (ii) ( )( )xf Bχ←  = ( )( )xfBχ . 

    = 
( )

⎩
⎨
⎧ ∈

otherwise0
Bxfif1

 

    = 
( )

⎩
⎨
⎧ ∈ −

otherwise0
Bfxif1 1

 

Q.E.D. 

 

Definition 2.25 (injective mapping): Let ( )δ,IX , ( )μ,IY  be I-fts’s, ( ) ( )μ→δ→ ,I,I:f YX  

is called an I-fuzzy injective mapping. If ( ) ( )BfAf →→ = , then A = B. 

 

Definition 2.26 (surjective mapping): Let ( )δ,IX , ( )μ,IY  be I-fts’s, 

( ) ( )μ→δ→ ,I,I:f YX  is called an I-fuzzy surjective mapping if for all B μ∈ . Then there 

exists A δ∈  such that ( )AfB →= . 

 

Definition 2.27 (bijective mapping): Let ( )δ,IX , ( )μ,IY  be I-fts’s, ( ) ( )μ→δ→ ,I,I:f YX  

is called an I-fuzzy bijective mapping if ( ) ( )μ→δ→ ,I,I:f YX  is both injective and 

surjective. 
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Theorem 2.28: Let XI , YI  be I-fuzzy spaces, YX:f →  be an ordinary mapping. Then 

( ) ( )μ→δ→ ,I,I:f YX  is bijective if and only if YX:f →  is bijective. 

Q.E.D. 

 

Definition 2.29 (fuzzy continuous mapping): Let ( )δ,IX , ( )μ,IY   be I-fts’s, 

( ) ( )μ→δ→ ,I,I:f YX  be an I-fuzzy continuous mapping if ←f maps every open subset in 

( )μ,IY   as an open subset in ( )δ,IX , i.e. for all μ∈U , ( ) δ∈μ←f . 

 

Definition 2.30 (fuzzy homeomorphism): Let ( )δ,IX , ( )μ,IY  be I-fts’s, 

( ) ( )μ→δ→ ,I,I:f YX  is called an I-fuzzy homeomorphism, if it is bijective continuous 

and open. 

 

Definition 2.31 (stratifization): Let ( )δ,IX  be an L-fts, μ  be the I-fuzzy topology on X 

generated by { }Ia:a ∈∪δ , then μ  is called the stratifization of δ , and call ( )μ,IX  the 

stratifization of ( )δ,IX . Where ( )xa = aX(x) = a ∧ X(x). 

 

Proposition 2.32: Stratifization is preserved by I-fuzzy reverse mapping. That is if 

( ) ( )μ→δ→ ,I,I:f YX  is contiuous and ( )μ,IX  is stratified, then ( )δ,IX  is stratified. 

Q.E.D. 

 

Proposition 2.33: Let ( )δ,IX , ( )μ,IX  be I-fts’s, ( ) ( )μ→δ→ ,I,I:f YX  an I-fuzzy 

continuous mapping, oδ  and oμ  be the stratifization of δ  and μ  respectively. Then 

( ) ( )o
Y

o
X ,I,I:f μ→δ→  is continuous. This proposition tells us the continuous between 

certain of topologies can be extended to its stratifization automatically. 

 Q.E.D. 

 

Definition 2.34 (connectness): Let ( )δ,IX  be an I-fts, A, B XI∈ . A and B are called 

separated, if 0BABA =∧=∧ . 
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A is called connected, if there does not exist separated C, D { }0\IX∈  such that 

DCA ∨= . Call ( )δ,IX  is connected, if the largest I-fuzzy subset 1 is connected. 

 

In general topological space X is connected if and only if X itself is the unique non-

empty open-and-closed subset in X (equivalent to the original definition of connected set 

in general topology) (Steven, 1964). This is true because any other non-empty open-and-

closed subset will generate a pair of separated subsets with itself and its complementary 

set and their union is just X. But in I-fuzzy topology, the meet of a subset and its “dual 

form” – pseudo-complementary set need not be 0. So the parallel conclusion does not 

hold in I-fuzzy topology (Liu and Luo, 1997). 

 

 

2.4 Topological relations from a mathematic point of view 

Both the nine-intersection model and the Voronoi-based nine-intersection model are 

actually trying to classify the intersection relations of two objects in the sense of the 

topological relations. Usually a relation consists in associating objects of one kind with 

objects of another kind. The following is the definition of relation in the language of 

mathematics. 

 

Definition 2.35: Let A and B be two sets. A relation, denoted by “~”, from set A to set B 

is an ordered triple (A, B, G), where BAG ×⊂ ; G is called the graph of  “~”; A and B 

are respectively called the set of departure and the set of destination of “~”. 

 

Definition 2.36: Let P be a set and let “~” be a relation on P. 

(1) ~ is called reflexive, if a ~ a for every Pa ∈ . 

(2) ~ is called symmetric, if a ~ b, then b ~ a for every Pb,a ∈ . 

(3) ~ is called transitive, if a ~ b and b ~ c, then a ~ c for every Pc,b,a ∈ . 

 

Definition 2.37: Let P be a set and let “~” be a relation on P. If <P, “~”> has the 

properties of (1), (2) and (3), then <P, “~”> is called an equivalent relation. 
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Actually, the definition 2.37 is just the partition of P.  

 

Example 2.38: let  

   P = ( ){ }0y:y,x\R 2 =  (the real plane except the x-axis) 

and let the relation be two points having the same class if and only if “the y-coordinates 

of these two points have the same sign.” This is an equivalent relation, as 

(1) Point (x, y) itself the y-coordinates must have the same sign as itself. That means 

that the relation is reflexive. 

(2) (x1, y1) have relations with (x2, y2), meaning that the sign  of y1 and y2 must be 

the same. Thus, it equivalent to (x2, y2) having a relation with (x1, y1). That 

means that the relation is symmetric. 

(3) If (x1, y1) have a relation with (x2, y2), and (x2, y2) have a relation with (x3, y3), 

this means that y1, y2 and y3 have the same sign. In particular, y1 and y3 have the 

same sign. Thus, (x1, y1) have a relation with (x3, y3). That means that the 

relation is transitive. 

 

The result of this relation on ( ){ }0y:y,x\2 =ℜ  is simply the partitioning of 

( ){ }0y:y,x\2 =ℜ  into two parts: one part is above the x-axis and the other part is below 

the x-axis (see Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

Upper region 

Lower region 

y 

x 

Figure 2.2: The equivalent class in Example 2.38 divides the plane 
into two parts 
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CHAPTER THREE 

A REVIEW OF UNCERTAINTY RELATIONS BETWEEN SPATIAL OBJECTS 

IN GIS 

 

Topological relations are the fundamental properties for the spatial query and analysis in 

GIS. The topological relations between crisp spatial objects have been developed. Based 

on the 4-intersection and the ordinary point set theory, Egenhofer and Franzosa (1991) 

gave the topological relations between two spatial regions in 2-D. In 1993, Egenhofer 

gave an extension on the 4-intersection model by introducing the 9-intersection model. 

Later, Egenhofer, Clementini and Di Felice (1994) gave an extension of the topological 

relations between spatial objects in 2-D with arbitrary holes.  

 

Based on the 9-intersection, Cohn and Gotts (1996) gave 46 topological relations 

between two regions with indeterminate boundaries. While Clementini and Di Felice 

(1996) gave 44 topological relations between two regions with indeterminate boundaries. 

However how to formalize the topological relations between fuzzy regions it needs more 

investigation. By using the 9-intersection matrix and the fuzzy theory, there are 44 

relations between two simply fuzzy regions were given (Tang and Kainz, 2002). Based 

on the Voronoi diagram, Li et al (1999, 2002) and Chen et al (2001) gave a Voronoi-

based 9-intersection model. In their paper, the problems of the 4- and 9-intersection 

models were discussed and a new 9-intersection model, called Voronoi-based 9-

intersection model we given. 

 

 

3.1 Egenhofer’s 4-intersection model 

Based on point-set topology, a spatial object A can be divided into two parts, interior and 

boundary, denoted by oA  and A∂  respectively. The topological relations between 

objects can be described by the four intersections of interiors and boundaries, denoted by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∩∂∩
∩∂∂∩∂

ooo

o

BABA
BABA

. By considering the invariance property, empty and non-empty of 

each intersection, there are 16 possible relations between objects in 2-dimensional space 
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(Egenhofer, 1991). If just talking about the topological spatial relations between 

polygonal areas in the plane, there are nine relations between two spatial regions and it 

summarizes in the Table 3.1. “0” means empty and “1” means non-empty. The detail 

discussion will be hold on chapter 4. 
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A covers B 
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Table 3.1: Nine topological relations between two spatial regions from Egenhofer. 

A  B A B

A B B  
A 

A  
B 

A 

B 

B 

A 

A  B  
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3.2 Egenhofer’s 9-intersection model 

Based on point-set topology, and embed set A into R2, then the set A can be divided into 

three parts in R2,interior ( oA ), boundary ( A∂ ) and exterior ( cA ). This gives an 

extension from the 4-intersection model to a new intersection model by considering the 

intersection of interior ( oA ), boundary ( A∂ ) and exterior ( cA ) with interior ( oB ), 

boundary ( B∂ ) and exterior ( cB ). Based on intersections of these six parts, nine 

combinations of intersection, 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∩∩∂∩
∂∩∂∩∂∂∩

∩∩∂∩

cccco

co

ocooo

BABABA
BABABA

BABABA
, which  can be used to 

represent the topological relations between spatial objects (Egenhofer, 1993). 

 

By considering the invariance property, empty and non-empty of each component, there 

are 512 possible relations between spatial objects. From the 512 possible cases, 

Egenhofer claims that there are only eight can be realized if the objects are spatial regions 

in R2 (Egenhofer, 1993). They are disjoint, contains, inside, equal, meet, covers, 

coveredBy and overlap respectively. Table 3.2 shows these eight relations between two 

spatial regions and the detail of this model will be discussed in chapter 4. 
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3.3 Algebric Model 

In dealing with indeterminate 

boundaries, based on Egenhofer’s 9-

intersection model 
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Clementini and Di Felice (1996) 

defined a region with a broad boundary, 

by using two simple regions, denoted 
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Figure 3.1: Region A with broad boundary 

Table 3.2: Egenhofer’s 9-intersection model with eight relations between two spatial regions 
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by AΔ . More precisely, the broad boundary is a simple connected subset of R2 with a 

hole. Figure 3.1 shows that the shaded region is a broad boundary of A. Based on the 

empty and non-empty invariance, Clementini and Di Felice’s algebric model, 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∩∩Δ∩
Δ∩Δ∩ΔΔ∩

∩∩Δ∩

cccco

co

ocooo

BABABA
BABABA

BABABA
, gave total 44 relations between two spatial regions 

with broad boundary. 

 

 

3.4 ‘Egg-Yolk’ Model 

When dealing with non-exact spatial objects and the vagueness/fuzziness spatial objects, 

Cohn and Gotts (1996) suggest using two concentric sub-regions, indicating degree of 

“membership” in a vague/fuzzy region, which “yolk” represents the precise part and 

“egg” represents the vague/fuzzy part. Based on the RCC (Region connection calculus) 

theory (Randell 1992), eight base relations can be defined. They are DC (Disconnected), 

EC (Externally Connected), PO (Partially Overlapping), TPP (Tangential Proper Part), 

NTPP (Non-tangential Proper Part), EQ (Equal), NTPPI (Non-tangential Proper Part 

Inverse) and TPPI (Tangential Proper Part Inverse) respectively (see Table 3.3). 

 
 

 
 

PO(A, B) TPP(A, B) NTTP(A, B) EQ(A, B) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

NTPPI(A, B) TPPI(A, B) EC(A, B) DC(A, B) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Table 3.3: RCC relations between two regions 
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The egg-yolk model is an extension of RCC theory into the vague/fuzzy region. 46 

relations can be identified to represent conservatively defined limits on the possible 

“complete crispings” or precise versions of a vague region. 

 

 

3.5 Tang’s 9-intersection model between simple fuzzy regions 

To investigate the topological relations between fuzzy regions, Tang and Kainz (2002) 

decompose a fuzzy set A into several topological parts, they are: 

(i) the core, ⊕A , which is the fuzzy interior part with value equal to one; 

(ii) the c-boundary, Ac∂ , the fuzzy subset of A∂  with ( ) ( )xAxA =∂ . 

(iii) b-closure, ⊥A , the fuzzy subset of A  with ( ) ( )xAxA ∂> . 

(iv) the outer, =A , the fuzzy complement of A with value equal to one.  

 

Then formalize a 9-intesection matrix and a 4*4 intersection matrix, which is based on 

the different topological parts of two fuzzy sets. For the 9-intersection matrix, 
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, the core ( ⊕A ), fringe ( Al ) and outer ( =A ) are 

adopted to formalize, where the fringe is the union of c-boundary and b-closure. There 

are total 44 relations between two simply fuzzy regions. For the 4*4 intersection matrix, 
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, the core ( ⊕A ), c-boundary ( Ac∂ ), b-

closure ( ⊥A ) and outer ( =A ) are adopted to formalize the fuzzy topological relations 

between spatial objects. More relations can be got in this model. 
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3.6 Voronoi-based 9-intersection model 

Let {P1, P2, …, Pn} be a set of n points in R2, then the region 

   V(Pi) { }n...,2,1,ji,j),P dis(x,)P dis(x,:Rx ji
2 =≠≤∈= , 

where dis(x, Pi) is the distance of x and Pi. V(Pi) is called a Voronoi regions of Pi. The set 

{P1, P2, …, Pn} induced a set of Voronoi regions  {V(P1), V(P2), …, V(Pn)}, which form 

a non-overlapping tessellation of R2. Furthermore, all spatial objects, point, line and 

region, in R2 can define a set of Voronoi regions. Based on the Egenhofer’s 9-intersection 

model, a Voronoi-based 9-intersection model  is developed (Chen, Li and Gold, 2001) by 

replacing the complement of an object with its Voronoi regions that is  

⎟
⎟
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⎜
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vvvvo

vo

ovooo

BABABA
BABABA

BABABA
, where vA  denoted by the Voronoi region of A. In 

this model, topological relations between area-area, line-area, area-point, line-line, line-

point and point-point are as follow: (see Table 3.4) 

 

 

Cases Number 

AA (Area-Area) 13 

LL                            (Line-Line) 8 

LA                           (Line-Area) 13 

PP                            (Point-Point) 3 

PL                            (Point-Line) 4 

PA                           (Point-Area) 5 

 

 

3.7 Analysis of these models 

Actually, there are many limitations on the existence models. The models (Egenhofer, 

1991, 1993; Winter, 2000; Cohn and Gotts, 1996; Clementini and Di Felice, 1996; Smith, 

1996; Tang and Kainz, 2002; Tang, Kainz and Yu, 2003; Tang, 2004) only give a 

framework to conceptually describe the topological relations between two regions. 

Table 3.4: Number of topological relations by using  V9I 
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Computation of topological relations is very essential for practically implementing them 

in a GIS. With the aim of computing and implementing the 9-intersection model and 

other topological models for real world GIS software and applications, our research work 

is aimed at firstly defining a computational fuzzy topological space to compute interior, 

boundary and exterior, which is based on the two operators, interior operator and closure 

operator.  Then apply the 9-intersection integration models to give a list of qualitative 

fuzzy topological relations between simple fuzzy regions in GIS. 
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CHAPTER FOUR 

EXTENDED MODEL OF TOPOLOGICAL RELATIONS BETWEEN OBJECTS 

IN GIS 

 

This chapter presents an extended model for describing topological relations between two 

sets (spatial objects) in GIS. First, based on the definition of the topological relations 

between two objects, we uncover a sequence of topological relations between two convex 

sets. Second, an extended model for topological relations between two sets is proposed 

based on the new definition. The topological relations between two convex sets are 

expressed as a sequence of 44×  matrices, which are the topological properties of 
oo BA ∩ , B\A o , A\Bo , BA ∂∩∂ . Moreover, the model is also extended for handling 

the properties of the topological relations between two non-convex sets, where the factor 

of first fundamental group is added to BA ∪  handle these complex relations. There is a 

new finding from this study, which is the number of topological relations between two 

sets is not as simple as finite; actually, it is infinite and can be approximated by a 

sequence of matrices.  

 

 

4.1 An analysis of the nine-intersection model 

Egenhofer and Herring (1991) decomposed any region A into three parts: interior, 

boundary and exterior, denoted by oA , A∂  and cA , respectively. The nine-intersection 

model for the topological relations between two non-empty regions, A and B, was then 

defined as follows: 
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(nine-intersection model for the topological relations) 

Considering the values of empty and non-empty, there are eight topological relations 

between two non-empty regions. In fact, this model contains an insufficiency and we will 

illustrate this as follow. 
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4.1.1 The topologies of a line segment and a region in R2 

The topology of a line segment in R is the collection of all open sets in one-dimensional 

(1D) space. For example, in the Figure 4.1(a) the open interval (0, 1) is an open set in 1D. 

Here, in Figure 4.1(a), the round bracket indicates that the interval does include the points 

0 and 1. The topology of a region in R2 is the collection of all open sets in 2D. For 

example, in Figure 4.1(b), the open disc 

D(0, 1) = {(x, y) 2R∈ : x2 + y2 < 1}  

is an open set in 2D. Here, the dot circle line indicates that the boundary is not included. 

 

 

 

 

 

 

 

4.1.2 Line segment in R2 

In this section, we try to illustrate the topology of a line segment. The line segment in R2 

can be described as an embedding of a connected interval from R to R2, which does not 

have intersection; i.e., 
2]1,0[: ℜ→α , 

where [0, 1] is a closed interval in R and ( ) ( )21 tt α≠α  for all [ ]1,0t,t 21 ∈  (see Figure 

4.2). Thus, the induced topology of a line segment in R2 is the collection of all open 

intervals in R. In other words, references to the interior, boundary and exterior of a line 

segment will be to the topology in R. 

 

 

 

 

 

 

 

0 1 

Figure 4.1(a): Open set in R Figure 4.1(b): Open set in R2 
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( )0α

( )1α  
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Figure 4.2: Line segment in R2  
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4.1.3 Line in R2 has empty interior 

Definition 4.1: Let A be a set in R2 and let Ax ∈ ; x is then called an interior element of 

A if there exists an small open disc D(x, r) in R2, such that D(x, r) ⊂ A.  

In Figure 4.3(a), point P1 is an interior element of A, while points P2 and P3 are not 

interior elements of A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 4.2: The interior of a set A in R2 is defined by the collection of all interior 

elements in A, denoted by Ao. As in Figure 4.3(b), the interior of A is just the region of A 

excluded the boundary. 

 

A line segment in R2 has an empty interior (Michael, 1995). Indeed, we can pick up an 

arbitrary point in that line segment, for whatever a small open disc with this point as the 

center, must contain some points not within this line segment. Thus, by the definition of 

interior, a line segment in R2 has an empty interior. One may see this in Figure 4.3(c). As 

the interior of a line segment in R2 is empty, it might be inappropriate to say that the 

intersection between the interior of a line segment and a region is non-empty, as we did 

Ao 

Figure 4.3(b): The interior of a set A in R2 

Point 

Line segment  

Open disc 

Figure 4.3(c): The interior of line in R2 is empty 

Figure 4.3(a): The illustration of the interior of A in R2 
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y y 

x x 
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in the case of the nine-intersection model. That is the matrix 
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 should have all zero in the first row, where L 

represents a line segment in R2.  
 

 

4.2 The extended model for topological relations between convex objects 

After analyses the 9-intersection models, here we try to propose a model for the 

topological relations between convex objects which actually an extension of the present 

models for GIS. 

 

4.2.1 The subspace topology 

Let X be a topological space and XA ⊂ ; this subset A then inherits a topology from the 

space X in a natural way. 

 

Definition 4.3: Let X be a topological space and XA ⊂ ; the relative topology or the 

subspace topology on A is then the collection of intersections of A itself with open sets of 

X. With this topology, A is called a subspace of X. 

 

 

4.2.2 The definition of topological components of A and B 

Nine-intersection models only mentioned empty and non-empty regions. In fact, the 

topological components of two regions possess many other homeomorphic invariance; 

for example, the compactness, connectivity, first fundamental group, etc. Therefore, the 

scope of the topological relations between two regions can be extended to these 

invariants, connectivity, compactness and first fundamental group, instead of to the 

empty and non-empty properties (invariants) only. 

 

Definition 4.4: Let nB,A ℜ⊂ , with the topology induced by the usual Euclidean metric. 

Then, the set of all finite compositions of the interior operator, closure operator and 
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complementary operator, where empty composition, as a finite one, is defined as the 

identity operator, are called topological parts of A and B. 

 

All of the topological parts of A and B are finite compositions of the interior operator 

and closure operator, and are complementary. Thus, the disjoint topological parts 
oo BA ∩ , BA o ∂∩ , oBA ∩∂ , BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂  and 
cc BA ∩ , plus BA ∪ , can generate all of the other topological parts. 

 

Definition 4.5: Let nRB,A ⊂ , with the topology induced by the usual Euclidean metric. 

The components of the topological part are then called the topological components. 

In Figure 4.4, the topological part of BA ∂∩∂  contains two components: component 1 

and component 2. 

 

 

 

 

 

 

 

 

 

Lemma 4.6: Let XA ⊂  and YX:f →  be a homeomorphism; then, f preserves the 

intersection, union, interior, exterior, closure and boundary. These are stated as: 

(i) ( ) ( ) ( )BfAfBAf ∩=∩ , 

(ii) ( ) ( ) ( )BfAfBAf ∪=∪ , 

(iii) ( ) ( )oo AfAf = , 

(iv) ( ) ( )cc AfAf = , 

(v) ( ) ( )AfAf = , and  

(vi) ( ) ( )AfAf ∂=∂ . 

Figure 4.4. The topological part of BA ∂∩∂  contains two components 

A B 

component 1 

component 2 
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Proof: (i) and (ii) are the general facts for bijective mappings. 

 

(iii): Since AA o ⊂ , ⇒  ( ) ( )AfAf o ⊂  ⇒  ( ) ( )oo AfAf ⊂ .  

On the other hand, since ( ) ( )AfAf o ⊂  ⇒  ( )( ) AAff o1 ⊂−  ⇒  ( )( ) oo1 AAff ⊂−  ⇒  

( ) ( )oo AfAf ⊂ . 

 

(iv): ( )cAfy ∈  ⇒  ( )Afy ∉  ⇒  Ax ∉∃ , such that f(x) = y, and the former is in ( )cAf . 

Hence, ( )cAfy ∈ . Thus, ( ) ( )cc AfAf ⊂ . 

On the other hand, since f is a homeomorphism, we can replace the role of A by f(A) and 

f by 1f − . We can get ( )( ) ( )( ) cc1c1 AAffAff =⊃ −−  ⇒  ( ) ( )cc AfAf ⊃ . 

 

(v): AA ⊂  ⇒ ( ) ( )AfAf ⊂  ⇒  ( ) ( )AfAf ⊂  ⇒  ( ) ( )AfAf ⊂ .  

On the other hand, since ( )Af  is the smallest closed set, it contains closed set ( )Af . 

Thus, ( ) ( )AfAf ⊃  ⇒  ( ) ( ) ( )AfAfAf ⊃⊃  ⇒  ( ) ( )AfAf ⊃ . 

 

(vi): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )AfAfAfAfAfAfAfAAfAf cccc ∂=∩=∩=∩=∩=∂ . 

The first equality is by the definition, the second is the fact of general bijective function, 

the third is by (iii), the forth is by (ii) and the last is by definition again.    

Q.E.D. 

 

Theorem 4.7: Let XB,A ⊂  and YX:f →  be a homeomorphism; the following are 

then true. 

(i) ( ) ( ) ( ) ( ) ( )oooooo BfAfBfAfBAf ∩=∩=∩ , 

(ii) ( ) ( ) ( )BfAfBAf oo ∂∩=∂∩  and ( ) ( ) ( )oo BfAfBAf ∩∂=∩∂ ,  

(iii) ( ) ( ) ( )BfAfBAf ∂∩∂=∂∩∂ , 

(iv) ( ) ( ) ( )Bf\AfB\Af oo =  and ( ) ( ) ( )Af\BfA\Bf oo = ,  

(v) ( ) ( ) ( )Bf\AfB\Af ∂=∂  and ( ) ( ) ( )Af\BfA\Bf ∂=∂ ,  
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(vi) ( ) ( ) ( )cccc BfAfBAf ∩=∩ , 

(vii) ( ) ( ) ( )BfAfBAf ∪=∪ . 

Proof: The above theorem is easily deduced from Lemma 4.6. 

Q.E.D. 

 

Remark 1: The above theorem tells us that the topological parts of oo BA ∩ , BA o ∂∩ , 
oBA ∩∂ , BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪  are 

invariant under homeomorphism. 

 

Definition 4.8: Let nRB,A ⊂ , with the topology induced by the usual Euclidean metric. 

The topological components with homeomorphic invariants are then called the 

homeomorphic invariant topological components. oo BA ∩ , BA o ∂∩ , oBA ∩∂ , 

BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪  are homeomorphic 

invariant topological components. 

 

4.2.3 The definition of the topological relations between two sets 

Definition 4.9: The topological relations between the two sets A and B is the topological 

properties of all of the homeomorphic invariant topological components (or topological 

components for short) of A and B. 

  

The topological properties of each topological component are described by a sequence of 

numbers. This sequence of numbers is a series of topological properties; i.e., (Subspace 

topology, number of components, compactness, the first fundamental group, etc.). 

 

1. Subspace topology: -1 means empty, 0 means just a single point, 1 means the 

usual topology of R, 2 means the usual topology of 2R , etc. 

2. Number of components: 0 means no intersection, 1 means one component, 2 

means 2 components, etc. 

3. Compactness: 0 means not a compact component, 1 means a compact 

component. 
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4. The first fundamental group: 0 means the trivial group, 1 means Z , 2 means 

ZZ× , etc. 

 

Here, we try to explain the meaning of these numbers. In Figure 4.5, if both A and B have 

non-empty interior sets in 2R  and connected with no holes, and contain one component 

only, then the topological properties of oo BA ∩  in the aspects of “Topology, number of 

components, compactness and the first fundamental group” is ( )0,0,1,2 . This means that 

the topology of oo BA ∩  is 2R , the number of components is 1, oo BA ∩  is not compact 

and the first fundamental group is the trivial group. 

 

 

 

 

 

 

 

 

Remark 2: The topologies of A and B may not be same type of features as in GIS. For 

example, if A is a line segment and B is a non-empty region, then the topology of A 

means an open interval in R, denoted by 1. The topology of B means an open disc in R2, 

denoted by 2. 

 

4.2.4 Assumption 

In the application of GIS, we need to make several assumptions either about the 

phenomena of the real world or about the limited nature of the theorem. 

 

(i) In the real world, all spatial objects are closed and bounded. Thus, all objects 

are assumed to be bounded and closed.  

 

(ii) We also assume that non-empty interior regions are regular closed; i.e., 

oAA = . 

A B 

Figure 4.5: There is only one component in oo BA ∩  

oo BA ∩
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(iii) The spatial objects are assumed to be connected. 

 

(iv) The spatial objects do not contain any holes. 

 

(v) The non-empty interior regions will be assumed to be convex. 

 

Figure 4.6(a) is the case of convex to convex, while Figure 4.6(b) is the case of convex to 

non-convex. 

 

 

 

 

 

 

 

 

(vi) In the case of topological relations between convex to convex, we will consider 

the disjoint topological parts oo BA ∩ , BA o ∂∩ , oBA ∩∂ , BA ∂∩∂ , 

B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪  only. Indeed, the other 

topological parts are composed of these parts.  

 

(vii) All topological components in same topological part will be assumed to have 

the same subspace topology. 

 

(viii) The order of topological components will not be considered. As there are only 

finite entries to represent the topological relations, it is hard to represent the 

order. 

 

 

 

Figure 4.6 (a): Convex to convex case Figure 4.6 (b): Convex to non-convex case 

A 

B 

A B 
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4.2.5 The useful topological parts  

In this section, we first investigate the topological relations between two convex non-

empty interior sets in R2. We will assume that the sets A and B are connected convex 

non-empty interior sets in R2. We try to discover useful topological parts via “Topology, 

number of components, compactness, the first fundamental group,” by using their 

topological properties. 

 

(i) All topological components of A and B, oo BA ∩ , BA o ∂∩ , oBA ∩∂ , BA ∂∩∂ , 

B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪ , belong to the trivial 

group. This means that, in the case of convex to convex, we do not need to 

consider the factor of the first fundamental group. 

Proof: oo BA ∩ , BA o ∂∩ , oBA ∩∂ , BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , 
cc BA ∩  and BA ∪  do not have holes. Therefore, the topological components of A and 

B are part of the trivial group.         

Q.E.D. 

 

(ii) If the topologies of A and B are given (point or line or region), then the 

compactness of the topological components of oo BA ∩ , BA o ∂∩ , oBA ∩∂ , 

BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪  have been 

determined. For example, if A and B are both non-empty interior connected convex 

sets in 2R , B\A o  must be open; hence, it is not compact. This fact tells us that if 

we consider the cases of region to region and region to line separately, we do not 

need to consider the compactness of each topological component. 

 

(iii) As ( ) oooo B,ABA ⊂∩  is open and the topology of oo BA ∩  is either zero or the 

minimum number of the topology of oA  and oB . This fact tells us that if we 

consider the cases of region to region and region to line separately, we do not need 

to consider the topology of each topological component. 
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(iv) All of the numbers of the topological components cc BA ∩  and BA ∪  must be 

one. This means that in the case of convex to convex, the components cc BA ∩  

and BA ∪  are useless. 

Proof: BA ∪  has only one component, is connected and does not contain holes. By the 

Jordan curve theorem, the boundary of BA ∪  divides the R2 into two parts: one is 

( )oBA ∪  which is open and bounded; the other is cc BA ∩  which is open and 

unbounded and has only one component.        

Q.E.D. 

 

(v) In R2, the topology of BA ∂∩∂  is either empty, zero or one. 

Proof: The dimension of BA ∂∩∂  is either empty, zero or one, as is the topology.  

Q.E.D. 

 

(vi) The number of components of oB\A∂  and oAB ∩∂  depend on the number of 

components of B\A o , while oA\B∂  and oBA ∩∂  depend on A\Bo .  

In other words, B\A o = oB\A∂ = oAB ∩∂  and A\Bo = oA\B∂ = oBA ∩∂ . 

This tells us that among the topological parts BA o ∂∩ , oBA ∩∂ , B\A o , A\Bo , 

B\A∂ , A\B∂ , the useful topological parts are only oB\A  and oA\B . 

Proof: Since the boundary of each component of B\A o  contains two components, one 

is oB\A∂ , the other is oAB ∩∂ .         

Q.E.D. 

 

To investigate the case of convex region to convex region, the above facts tell us that the 

only four useful topological components are oo BA ∩ , B\A o , A\Bo  and BA ∂∩∂ . 

We will consider these four and create a new four-intersection model; i.e., 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

BAA\B
B\ABA

o

ooo

, which by (i) to (vi), we only need to consider the connectivity of 

each entry. 
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Remark 3: In general, the subspace topology of A and B may not be same. Thus, the 

notation oA  and oB  may not be same topology. For example, if A is a non-empty region, 

its topology is the collection of all open discs in R2. If B is just a line segment, its 

topology is the collection of all open intervals in R. 

 

4.2.6 The number of components of useful topological parts  

The topological parts oo BA ∩ , B\A o , A\Bo  and BA ∂∩∂  are used in the case of 

convex region to convex region. The following are several useful facts to investigate the 

topological relations between two non-empty convex regions. 

 

(v) The number of components of oo BA ∩  is at most 1. 

Proof: Suppose oo BA ∩  is non-empty. Since both A and B are convex, then oo BA ∩  

also convex and any two points on oo BA ∩  can be joined by a line segment such that 

the whole segment lie on oo BA ∩ . This proves that oo BA ∩  is path-connected and 

hence is connected.           

Q.E.D. 

 

(vi) If A and B are both non-empty interiors, then the number of components of 

( ) ( )BA\BA ∩∪  depends on the number of components of BA ∂∩∂ . In other 

words, if 2BA ≥∂∩∂  and ∞<B\A o , ∞<A\Bo  and ∞<∂∩∂ BA , then 

B\A o + A\Bo = BA ∂∩∂ . 
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Proof: As the fact that ( ) ( )oo ABBA ∩∂∪∩∂ = ( ) ( )BA\BA ∩∪ , and oBA ∩∂ , 

oAB ∩∂  are disjointed open sets, hence ( ) ( )oo ABBA ∩∂+∩∂ = ( ) ( )BA\BA ∩∪ . 

This means that we need to prove BA ∂∩∂ = BA\BA ∩∪ .  

If 2BA ≥∂∩∂ , each component of BA ∂∩∂  corresponds to two components of 

( ) ( )BA\BA ∩∪ . One is on the left-hand side of the outward ray from oo BA ∩  to the 

outside through BA ∂∩∂ , and the other is on the right of the outward ray from oo BA ∩  

to outside through BA ∂∩∂ . Therefore, each component of BA ∂∩∂  corresponds to one 

left component of ( ) ( )BA\BA ∩∪ . This proves that BA ∂∩∂ ≤ ( ) ( )BA\BA ∩∪ .  

On the other hand, each component of ( ) ( )BA\BA ∩∪  corresponds to two components 

of BA ∂∩∂  (see Figure 4.7). One is on the left and the other is on the right. So, each 

component of BA\BA ∩∪ corresponds to one right component of BA ∂∩∂ . This 

proves that BA ∂∩∂ ≥ ( ) ( )BA\BA ∩∪ .        

Q.E.D. 

 

(vii) The number of components of B\A o , A\Bo  and BA ∂∩∂  can be infinity. 

Outward ray from oo BA ∩  to outside through 
BA ∂∩∂  

BA ∂∩∂  

oo BA ∩   

Figure 4.7: Illustrate each component of BA ∂∩∂  corresponds one left component of ( ) ( )BA\BA ∩∪  

A 
 

B 
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Proof: 
⎭
⎬
⎫

⎩
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 3n:

nn
01

S  is a sequence of topological relations.   

Q.E.D. 

 

(viii) Based on the results in sections 4.25 and 4.26, we have the following sequence of 

topological relations, which are all the topological relations between two convex 

sets can be represented by the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

BAA\B
B\ABA

o

ooo

 (see Table 4.1). 
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⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= +Zm,n:
mnn

m1
H

Boundary Crossing 

 

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +Zm:

m0
m1

L  

Internal Tangent 

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +Zn:

nn
01

R  

Internal Tangent 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
00

 

Disjoint 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
00

 

External Tangent 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
11

 

Inside 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 

Equal 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
01

 

Contain 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
01

 

Cover and 

Tangent at one 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
11

 

CoveredBy and 

Tangent at one 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22
01

 

Cover and 

Tangent at two 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
20
21

 

CoveredBy and 

Tangent at two 

 

 

 

 

Table 4.1: Topological relations between two convex sets are represented by the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

BAA\B
B\ABA

o

ooo

. 
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4.3 Several special topological relations 

Geometrically, GIS features can be classified as points, lines and polygons. Thus, the 

topological relations between point-to-point, point-to-line, point-to-polygon, line-to-line, 

line-to-polygon and polygon-to-polygon should be described completely. A detailed 

description is given below. 

 

4.3.1 The topological relations between a line segment to a convex region 

In this sub-section, the regions are assumed to be simply connected, do not contain any 

holes and to be convex. As we mentioned previously, the interior of a line segment is 

empty. Based on the Egenhofer’s nine-intersection model, many of the topological 

relations between the line segment and the region cannot be identified. Thus, we should 

consider another model. Since the topology of a line segment is in R, we try to define a 

line segment in the following way. Let P and Q be the end points of a line segment, and 

define a map 2]1,0[: ℜ→α  by ( ) ( )PQtPt −+=α , where [0, 1] is a closed interval in 

R and ( ) ( )21 tt α≠α  for all [ ]1,0t,t 21 ∈ . 

 

Now, we define ( )( )1,0o α=α , ( ) ( )10 α∪α=α∂  and [ ]( )1,02c α−ℜ=α , where (0, 1) 

and [0, 1] are open and closed intervals in R. On the other hand, we decompose any 

region A into three parts, interior, boundary and exterior; denoted by oA , A∂  and cA , 

respectively. Hence, we also define the topological relations between a line segment and 

a convex non-empty interior region as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α∂∩∂α
αα∩

AA\
\AA

o

ooo

 

(Topological relations between a line and a region) 

 

Based on this model, there are a total of nine topological relations between a line segment 

and a convex non-empty interior region. Indeed, 

  

1. the number of components of ooA α∩  is either zero or one. 

2. the number of components of α\Ao , A\oα  and α∂∩∂A  is at most two. 
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3. α\Ao  and  A\oα  cannot be both 2. 

4. α\Ao   will not be zero. 

 

We will use this fact to determine the total number of topological relations between a line 

segment and a convex region. 

i. If 0A oo =α∩ , then 1\A o =α , A\oα φ≠  and 1A ≤α∂∩∂ . 

ii. If 1A oo =α∩ , then  

I. If 2A =α∂∩∂ , then 2\A o =α , 1A\o =α . 

II. If 1A =α∂∩∂ , then either 2\A o =α  and 1A\o =α  or 

1\A o =α  and A\oα φ= . 

III. If 0A =α∂∩∂ , then either 1\A o =α  and 1A\o =α  or  

1\A o =α  and A\oα φ=  or 2\A o =α  and 2A\o =α . 

The above fact can be illustrated by Table 4.2: 

 

 

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

 
 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
10

 
 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
11

 
 

4. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
21

 
 

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
11

 
 

6. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
21
21

 
 

7. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
11

 
 

8. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
02
21

 
 

9. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
02
10

 
  

 

 

Table 4.2: The total number of topological relations between a line segment to a convex region 
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4.3.2 The topological relations between point, line and polygon 

The cases of the line-to-polygon and polygon-to-polygon are very complicated and are 

described above. Therefore, we will just give the topological relations of the cases point-

to-point, point-to-line, point-to-polygon and line-to-line in this section. The definition of 

a point in R2 is just a coordinate in R2. The definition of a line segment has been defined 

in section 4.3.1, and here we will adopt this definition. Based on this definition, we have 

the following results (see Table 4.3): 

 

 

point-to-point 
1. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
00
00

 
  

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
00

 
   

point-to-line 
1. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
01
00

 
 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
00

 
 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
02
00

 
 

point-to-

polygon 
1. ( )0

01
00

⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 
 

2. ( )0
11
00

⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  
3. ( )1

01
00

⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 
 

line-to-line 
1. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
01
10

 
 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
10

 
 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
02
10

 
 

 
4. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
02
21

 
 

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
20

 
 

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
20
00

 
 

 

 

4.4 Modeling the case of non-convex regions 

To investigate the case of non-convex regions, we will base our examination on the 

properties of the convex case. Based on the only four useful topological parts oo BA ∩ , 

B\A o , A\Bo  and BA ∂∩∂ , the factor of the fundamental group of BA ∪  will be 

considered. It is called the four-intersection- 1π  model; i.e., 

A B A B 

A B A B A B 

A B A B A B 

A B A B A B 

A B A B A B 

Table 4.3: The topological relations between point, line and convex polygon 
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( )BA
BAA\B

B\ABA
1o

ooo

∪π⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

. In this section, we try to discuss some properties of 

the four-intersection- 1π  model. In Figure 4.8, the topological relations of A and B can be 

represented by ( )1
42
22

⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. 

 

 

 

 

 

 

 

The following are several properties of the non-convex case that can be represented by 

this four-intersection- 1π  model. 

 

(i) If the representative number of 1π = 0; i.e., it is a trivial group, then this will reduce 

the case convex to convex. 

Proof: If 1π = 0, then BA ∪  does not contain any holes and we apply similar arguments 

in section 4.2 that we can obtain the desired results.      

Q.E.D. 

 

(ii) If both A and B are non-empty interior sets in R2, then there are two kinds of 

topological components of cc BA ∩ . One and only one component is unbounded, 

denoted by cc BA
U

∩
. The others are bounded, denoted by cc BA

B
∩

. 

 

(iii) The boundary of each bounded component of cc BA ∩  consists of two parts, 

B\A∂  and A\B∂ . Moreover, B\A∂ = A\B∂  and A\B2BA ∂×=∂∩∂ .  

A B 

Figure 4.8: The first fundamental group of BA ∪  is Z and represented by 1 
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Proof: Since each bounded component of cc BA ∩  is bounded by two topological parts, 

one is B\A∂  and one is A\B∂ . In addition, each component of each part corresponds to 

two components of BA ∂∩∂ .         

Q.E.D. 

 

(iv) In 2R , cc BAB
∩

 = the representative number of 1π . This tells us that we don’t need 

to consider the factor of cc BA ∩ . 

Proof: By (ii) we can see that each component of the bounded component of cc BA ∩  is 

a hole of BA ∪ . Each hole distributes one of the representative numbers of 1π . 

           Q.E.D. 

 

(v) Let 1π  = k > 0; then k2BA ≥∂∩∂ . This is the corollary of (iii) and (iv). 

 

(vi) Let { }n321 B......,,B,B,B  be the set of all bounded components of cc BA ∩ . Let 

ip  be the number of components of BA ∂∩∂ . If 2BA ≥∂∩∂  and ∞<B\A o , 

∞<A\Bo , ∞<∂∩∂ BA  and ∞<
∩ cc BAB , then 

    oB\A + oA\B = BA ∂∩∂  – s, 

where cc BAB
∩

≤< s { }×ipmax cc BAB
∩

 (see Figure 4.9). 

 
 
 
 
 
 

 

 

 

 

 

 

A B
Figure 4.9: Shows that B\Ao + A\Bo = 4, BA ∂∩∂ = 7, bounded components of 

cc BA ∩ = 2, max{pi} = 2 and 3s = . 

B1 

B2 
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Proof: Let { }n321 B......,,B,B,B  be the set of all bounded components of cc BA ∩ . Let 

i

n

1i
BC

=
∪= , then the topological relations between CA ∪  and CB ∪  reduces to the case 

of convex regions. Indeed, the first fundamental group of ( ) ( )CBCA ∪∪∪  is a trivial 

group.  

Hence, we have 

  ( ) ( )oCB\CA ∪∪ + ( ) ( )oCA\CB ∪∪ = ( ) ( )CBCA ∪∂∩∪∂ .  

But  

( ) ( )oCB\CA ∪∪ = oB\A ,  

( ) ( )oCA\CB ∪∪ = oA\B   

and  ( ) ( )CBCA ∪∂∩∪∂ ≥ BA ∂∩∂  – { }×ipmax Bounded components of cc BA ∩  

and  

( ) ( )CBCA ∪∂∩∪∂  < BA ∂∩∂  – Bounded components of cc BA ∩ .   

Q.E.D. 

 

(vii) For the four-intersection- 1π  model, ( )BA
BAA\B

B\ABA
1o

ooo

∪π⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

, we can 

obtain the topological relations between two non-empty interior regions, which can 

be represented by the following set of matrices (see Table 4.4): 
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( ) { }
⎭
⎬
⎫

⎩
⎨
⎧

×≤≤∈⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

= + kpmaxskandZk,p,n,m:k
smnm

np
H i  

Boundary Crossing 

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +Zm:

m0
m1

L  

Internal Tangent 

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +Zn:

nn
01

R  

Internal Tangent 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
00

 

Disjoint 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
00

 

External Tangent 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
11

 

Inside 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 

Equal 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
01

 

Contain 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
01

 

Cover and 

Tangent at one 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
11

 

CoveredBy and 

Tangent at one 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22
01

 

Cover and 

Tangent at two 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
20
21

 

CoveredBy and 

Tangent at two 

 

 

 

 

Table 4.4: Topological relations between two non-empty interior regions are represented by 

( )BA
BAA\B

B\ABA
1o

ooo

∪π⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∩∂
∩

. 
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4.5 The significance of the new model 

We have pointed out that the topological relation between two sets is not finite. In fact, it 

is infinite and can be approximated by a sequence of matrices. Here, we want to construct 

a sequence of topological relations. The following is a sequence of different topological 

relations between two convex non-empty regions. We actually try to construct a kind of 

sequence of topological relations, where the topological relations are equivalent to those 

between a circle and a regular polygon, with a regular polygon internally tangent to a 

circle, 
⎭
⎬
⎫

⎩
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 3n:

nn
01

S . Those topological relations can be illustrated by Table 4.5. 

 

 

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
33
01

 
 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
44
01

 
 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
55
01

 
 

4. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
66
01

 
 

:
:
:
 

:
:
:
 

:
:
:
 

:
:
:
 

 

In addition, with this new model, many more relations beyond the topological relations 

can be distinguished. For example, the diagram in Figure 4.10 represents a piece of land 

with two kinds of vegetation: grasses and forests. Topological relation between grass and 

forest can be described by ( )0
33
01

⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 or just ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
33
01

. 

 

 

 

 

 

 

 

grass 

forest 

Figure 4.10: Topological relation between grass and forest 

Table 4.5: Infinite sequence of topological relations between two convex regions 
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4.6 Summary 

Thus far, many articles have discussed the topological relations between crisp spatial 

objects. Based on the four-intersection model and the ordinary point set topology, 

Egenhofer and Franzosa gave the topological relations between two spatial regions in a 

two-dimensional (2D) space. Based on the nine-intersection model, Cohn and Gotts 

(1996) found 46 topological relations between two regions with indeterminate 

boundaries, while Clementini and Di Felice found 44 topological relations between two 

regions with indeterminate boundaries. However, there exists a common insufficiency in 

the existing models. In fact, a line should have an empty interior in 2D space, although it 

is not in one-dimensional (1D) space.  

 

On the other hand, there are many topological properties and it is not sufficient to simply 

consider the empty and non-empty invariants. Actually, many other topological 

properties, such as connectivity, compactness, first fundamental group and subspace 

topology, can help to distinguish the topological relations in the use of GIS. In this 

dissertation, we have considered such invariants and give a model of topological relations 

that actually is an infinite sequence of numbers or matrices.  

 

In this chapter, a framework for describing topological relations between two spatial 

objects has been presented. This is based on the topological properties of the topological 

components. By considering these components (or properties), we can obtain a sequence 

of topological relations, which is infinity. The proposed framework can give a theoretical 

basis for the design and implementation of a GIS. The proposed solution can represent 

the topological relations between any two arbitrary objects without holes and connected 

sets.  

 

The proposed solution has both advantages and disadvantages, and the following is a 

summary of the analysis on the framework. The pros of the solution include: 

• In the case of convex to convex, we need to consider four parts only. They are 
oo BA ∩ , B\A o , A\Bo  and BA ∂∩∂ . 
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• Many topological relations between set A and set B can be well separated by using 

this model. 

• The abstract concepts of topological properties are represented by numbers only, 

so it is easy to systemize. 

• If the topological properties of set A and set B are also considered, they can 

distinguish the relations of complex spatial entities such as spatial objects with 

holes. 

• If we consider all topological properties on each topological component, we can 

distinguish much more topological relations. 

• As the definition of topological relations is abstract, we can extend this definition 

to a higher dimensional space, for example to a three-dimensional space. 

 

On the other hand, there are some disadvantages to this model. For example: 

• The case of disjoint cannot be well separated useless the metric is introduced. 

• The order of the intrinsic properties of the topological relations cannot be 

separated due to the assumption made for the model. 

• Different topological components in the same topological part may be different 

subspace topologies. But this model cannot separate these relations. 

• In this study, we have coped the topological parts oo BA ∩ , BA o ∂∩ , oBA ∩∂ , 

BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩  and BA ∪ . In fact, these 

parts can be further extended by considering other possible cases, and there may 

be a suitable set of topological parts should be chosen. 

• Since the number of topological relations in this chapter is infinite, it still need 

some work on how to implement of a GIS. 

 

In describing objects in GIS, both sets A and B are assumed to be bounded. If the number 

of components of BA ∂∩∂  is large, sets A and B will tend to be approximately equal. 

This means that the tail of 
⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Zn:
nn
01

, 
⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Zm:
m0
m1

 and 
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( )
⎭
⎬
⎫

⎩
⎨
⎧

≤≤∈⊕⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+ k2skandZk,p,n,m:k
smnm

np
 can be neglected. Therefore, the 

number of topological relations between two sets can be approximated by the finite. 

 

The new model is purely about topological properties and does not involve any metric 

properties. Thus, another extension of this work is to introduce metric properties into this 

proposed model. In particular, the cases of disjoint can be well resolved with such an 

extension. This study will serve as a basis for describing topological relations between 

two fuzzy regions.   
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CHAPTER FIVE 

TOPOLOGICAL RELATIONS DEPENDENT ON THE SHAPE OF SPATIAL 

OBJECTS 

 

GIS are mainly composed of four types of information: spatial, temporal, attribute, and 

topological relations. Information on topological relations are fundamental in GIS, and is 

mainly used for (a) spatial queries and analyses; and for (b) data quality checking. Many 

studies have been devoted to the development of topological relations in GIS. 

 

A topological space is a set X with a collection of subsets of X called “open” sets, such 

that: (a) the intersection of the two open sets is open; (b) the union of any collection of 

open sets is open; and (c) the empty set φ  and whole space X are open. Moreover, a 

subset C of X is called “closed” if its complement X\C is open. 

 

The properties of topological spaces that are preserved under homeomorphism are called 

the topological invariants of the spaces. Connectivity, compactness, and the first 

fundamental group are several fundamental topological invariants. As these invariants are 

invariant under bi-continuous mappings (homeomorphisms), studying these invariants 

can help us to understand the topological relations between spatial objects.  

 

From a mathematic point of view, the topological relation is actually an equivalence 

relation (reflexive, symmetric, and transitive), which is simply the partitioning of the 

relation between two spatial objects into different partitions.  

 

Based on the properties of topological relations that are invariant under topological 

transformation, such as translation, scaling, and rotation (Egenhofer, 1989), Egenhofer 

and Franzosa (1994) gave the following definition. Let 1A , 1B X⊂  and 2A , 2B Y⊂ . 

The topological relation between 1A  and 1B  is then equivalent to the topological relation 

between 2A  and 2B  if there exists a homeomorphic map YX:f →  such that 

( ) 21 AAf =  and ( ) 21 BBf = . When examining this definition carefully, we discover that 
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the topological relations are invariant under a homeomorphic map, but that the spatial 

objects themselves are not necessary invariant under the homeomorphic map. This means 

that the shape of the spatial objects themselves will affect the topological relations. In this 

chapter, we will give a mathematical proof to show that topological relations between 

spatial objects actually depend on the shapes of the objects themselves. 

The logic follows of this research in this chapter is shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 The number of components of oo BA ∩  

Topology is a tool to study certain geometric problems, which does not depend on the 

exact shape of the objects, but rather on the way they are connected to each other. In the 

aspect of topological relations between two objects A and B, the topology surely does not 

depend on the exact shape of BA ∪ , but may depend on the shape of A or B 

Two convex sets, A and B, in R2. 

BA ∩  is convex; hence, the 
number of components is at most 
one. 

oo BA ∩  is convex; hence the 
number of components is at most 
one. 

Figure 5.1: The structure of this chapter. 

A or B are two non-convex sets, in 
R2. 

Given an example is that oo BA ∩  
may have more than one component 
and CANNOT be transformed into 
one component by using 
homeomorphic map. 

Thus, the topological relations between two spatial objects 
A and B are shape dependent. 
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individually! In this chapter, we try to explain this fact and point out that the topological 

relation depends on the shape of the individual spatial objects involved.  

In this section, we first illustrate why the topological relations between spatial objects 

depends on the shape of the spatial objects themselves. We will then provide a 

mathematical proof to show the basic difference in topological relations between convex 

sets and non-convex sets. A homeomorphic map YX:f →  preserves the intersection, 

interior, exterior, closure, and boundary, as ( ) ( ) ( )BfAfBAf ∩=∩ , ( ) ( )oo AfAf = , 

( ) ( )cc AfAf = , ( ) ( )AfAf =  and ( ) ( )AfAf ∂=∂ . Thus, the number of components of 

oo BA ∩ , BA o ∂∩ , oBA ∩∂ , BA ∂∩∂ , cc BA ∩ , …, is preserved by 

homeomorphism. By the definition of topological relations between spatial objects 

(Egenhofer and Franzosa, 1994), the number of components of oo BA ∩ , BA o ∂∩ , 
oBA ∩∂ , BA ∂∩∂ , cc BA ∩ , … is an invariant property of a topological relation.  

In this section, unless specified, we will assume that all of the convex sets in nR  have a 

non-empty interior in nR . The structure of the proof is shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two convex sets, A and B, in R2. 

BA ∩  is convex; hence, the 
number of components is at most 
one. 

oo BA ∩  is convex; hence, the 
number of components is at most 
one. 

Figure 5.2: The logic follow of the proof in this section 
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Definition 5.1: A convex non-empty set in Rn is a set nA ℜ⊂  with the property that 

whenever points Aq,p ∈ , the line segment between p and q is contained in A. 

Figure 5.3(a) shows a convex set in R2. As any two points p and q are in A, the line 

segment by joining these two points are still in this set A. Figure 5.3(b) shows a non-

convex set B in R2. There exist two points at some point in the line segment, created by 

joining these two points lying outside set B. 

 

 

 

 

 

 

 

 

 

 

Proposition 5.2: If nA ℜ⊂  is a non-empty interior, a connected convex closed set, then 

any ray from any one interior point intersects A∂  at a maximum of one point. Figure 

5.4(a) shows that a ray from the interior point of A can only have one point intersecting 

with the boundary of A. 

 

 

 

 

 

 

 

 

Proof: Suppose R is a ray from point x and let p, q AR ∩∈ , with neither p ≠ x nor q ≠ x. 

Suppose q is further than p from point x. Now we want to prove p is in Ao. Thus, if q is in 

the boundary of A or if the ray does not meet the boundary of A, 

Figure 5.3(a): A convex set A in R2  Figure 5.3(b): A non-convex set B in R2  

This part lie outside the set B  

p 

q 

q 
 

q 
 

x 
p 

q 

A 

Figure 5.4(b): line segments from 
points in Bn to q 

A 

Figure 5.4(a): A ray from the interior of convex set 
can only have one point intersecting with the 
boundary of A 
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since x lies in the interior of A, there exists a small enough n-ball Bn such that  Bn ⊂  Ao. 

Then, let C be the union of all line segments from points in Bn to q (see Figure 5.4(b)). 

Thus, point q is in the interior of C, and C is contained completely in A, since A is a 

convex set. Hence, p is in Ao.  

Q.E.D. 

 

Proposition 5.3: If nA ℜ⊂  is a non-empty interior, connected convex compact set, then 
1nSA −≅∂ , where { }1x:xS n1n =ℜ∈=−  is called an n-ball and || x || is the usual 

Euclidean norm of x. 

Proof: Pick a point p in Ao, then define 1nSA:f −→∂  by  ( )
px
pxxf

−
−

= , which is a 

well-defined mapping and is continuous and bijective. Hence, f is a homoeomorphism 

and 1nSA −≅∂ . 

Q.E.D. 

 

Remark 1: Any non-empty interior, connected convex compact set is homeomorphic to 

an n-ball. This means that the topological properties of a non-empty interior convex 

compact set are the same as those of an n-ball. But the topological relations between two 

non-empty interior, connected convex compact sets cannot be isomorphic to the 

topological relations between two n-balls.  

 

Remark 2: Proposition 5.3 gives us a good tool to study the topological relations 

between two non-empty interior convex compact sets. 

 

Proposition 5.4: Let A be a non-empty interior, connected convex closed set; Ao is then 

a connected convex set. 

Proof: Let there be p, q in Ao; then there exist two open balls, B1 and B2, in Ao with 

centers p and q, respectively. Let C be the union of all line segments joining these two 

balls (see Figure 5.5). Obviously, the line segment pq is in Co ⊂ A, which implies that 

Co ⊂ Ao.  
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Q.E.D. 

 

Proposition 5.5: Let A and B be two non-empty interior, connected convex compact 

sets; then, BA ∩  is either an empty set or a connected convex set. 

Proof: If BA ∩  is non-empty, A and B are convex compact. For any points p, q 

BA ∩∈ , we have the line segment joining these two points lying on BA ∩ . Hence, 

BA ∩  is a connected convex compact set.  

Q.E.D. 

 

Proposition 5.6: Let A and B be two non-empty interior, connected convex compact 

sets; then, oo BA ∩  is either an empty or a non-empty connected convex set. Hence, the 

number of components of oo BA ∩  is at most one. 

Proof: If oo BA ∩  is non-empty, A and B are convex compact. Then, by proposition 5.5, 

BA ∩  is a connected convex compact set. By proposition 5.4, ( ) ooo BABA ∩=∩  is 

either an empty or non-empty connected convex set. 

Q.E.D. 

 

 

5.2 Examples of shape depending on topological relations 

The following are several examples of topological relations between objects that are 

dependent on the shape of the objects themselves. 

 

p 

q 

Figure 5.5: The union of all segment joining these two balls 

A 
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5.2.1 The topological relation between two discs 

It is not difficult to count the total number of topological relationships between two discs, 

since the boundaries of these two discs can be described by the following formulae: 

    ( ) ( ) 2
1

2
1

2
1 rkyhx =−+−       (i) 

    ( ) ( ) 2
2

2
2

2
2 rkyhx =−+− .     (ii)  

 

We can obtain the following two results by solving equations (i) and (ii). 

1. The number of components of BA ∂∩∂  is at most two, and the numbers 0, 1, 2 

are possible. 

2. The number of components of B\A o , A\Bo  is  at most one each. 

 
Then, combining these two facts and the previous facts, the total number of topological 

relationships between two circular discs is 8. These relations are all listed in Table 5.1: 

 
Table 5.1. The total number of topological relationships between two circles 

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

 
 

2. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
10

 
 

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
21
11

 
 

4. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
11

 
 

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
11

 
 

6. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
01

 
 

7. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
01

 
 

8. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 
 

 

The total number of topological relations between two circular discs is same as that of the 

Egenhofer’s 9-intersection model. This is because Egenhofer’s 9-intersection model 

actually describes the topological relations between two circular discs.  

 

A B
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5.2.2 The topological relationships between two ellipse-shaped sets 

To count the total number of topological relationships between two ellipse-shaped sets is 

also an easy job, since the boundaries of these two discs can be described by the 

following formulae:  

    
( ) ( )

1
b

ky
a

hx
2

1

2
1

2
1

2
1 =

−
+

−
      (iii) 

    
( ) ( )

1
b

ky
a

hx
2

2

2
2

2
2

2
2 =

−
+

− .      (iv) 

We can obtain the following two results by solving equations (iii) and (iv). 

1. The number of components of BA ∂∩∂  is at most four, and the numbers 0, 1, 2, 3, 

4 are possible. 

2. The number of components of B\A o , A\Bo  is at most two each. 

These two facts are then combined with the previous facts, and we get a total of 13 

topological relationships between two ellipses. These relations are all listed in Table 5.2: 

 
Table 5.2. The total number of topological relationships between two ellipses 

1. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10   2. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
11
10   

3. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
21
11   4. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
00
11   

5. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
11   6. ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
01
01   

7. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
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13. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22
01    

 

The total number of topological relations between two ellipses is 13, which is different 

from the 8 topological relations between two circular discs described above. This is 

because topological relations between spatial objects are shape dependent. 

 

5.3 Summary 

The homeomorphic map YX:f →  preserves the intersection, interior, exterior, closure, 

and boundary as ( ) ( ) ( )BfAfBAf ∩=∩ , ( ) ( )oo AfAf = , ( ) ( )cc AfAf = , ( ) ( )AfAf =  and 

( ) ( )AfAf ∂=∂ . Thus, the number of components of oo BA ∩ , BA o ∂∩ , oBA ∩∂ , 

BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩ , BA ∪ , … is preserved by 

homeomorphism. By the definition of the topological relations between spatial objects 

(Egenhofer and Franzosa; 1994), the number of components of oo BA ∩ , BA o ∂∩ , 
oBA ∩∂ , BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩ , BA ∪ , … is an 

invariant property of the topological relations. 

We have tried to illustrate that the number of components of oo BA ∩  can be more than 

one, but any homeomorphism (topological transformation) cannot reduce its number. The 

topological relations between spatial objects can be thought of as rubber, and the 

topological transformation can be thought as changing its shape by shrinking and 

stretching. But some laws must be obeyed, such as that the number of holes in a spatial 

object cannot be changed, the number of components of oo BA ∩ , BA o ∂∩ , oBA ∩∂ , 

BA ∂∩∂ , B\A o , A\Bo , B\A∂ , A\B∂ , cc BA ∩ , BA ∪ , … cannot be changed, 

and so on. Figure 5.6 illustrates that the topological relation of the diagram cannot be 

modeled by convex sets. Indeed, the number of components of oo BA ∩  in the case of 

between non-convex set can be more than one. (see Figure 5.6(b)) 
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The topological relations between two objects A and B do not depend on the global shape. 

That is, the shape of BA ∪  will not be preserved under a topological transformation, 

such as translation, scaling, and rotation. But the relations will be affected by the shape of 

the spatial objects themselves. That is, in Figure 5.6(b), set B cannot be deformed to a 

convex set while keeping the convexity of set A.  

In this chapter, we have given a mathematical proof to show that the number of 

components in the intersection of the interior of two convex spatial regions in two-

dimensional space is at most two, while the number of components can be more than one 

if they are not convex. Therefore, the topological relations between spatial objects cannot 

be modeled by convex sets only, since the number of components in spatial objects is an 

invariant property of topological relations. This also point out why the model of 

topological relations between convex sets is different from the model of topological 

relations between non-convex sets in Chapter 4. 

 

 

 

Figure 5.6(b): The topological relations between 
non-convex sets, the number of components of 

oo BA ∩  can be more than one 

A B A B 
Figure 5.6(a): The topological relations between 
convex sets, the number of components of 

oo BA ∩  is at most one 
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CHAPTER SIX 

MODELING TOPOLOGICAL RELATIONS BETWEEN UNCERTAIN 

OBJECTS IN GIS 

 

GIS were designed and developed as tools for the management, analysis, and display of 

spatial information. Due to the fact that the spatial objects in GIS contain uncertainties, 

such as random errors in measuring spatial objects, or vagueness/fuzziness in interpreting 

the boundaries of natural objects. Therefore, there is a need to enhance existing GIS by 

further coping with the uncertainties in spatial objects and the topological relations 

between uncertain spatial objects. Thus, the classical set theory (Steven, 1964), which is 

based on a crisp boundary, may not be fully suitable for handling such problems of 

uncertainty (Wang, Hall and Subaryono, 1990). Fuzzy set theory and fuzzy topological 

theory, on the other hand, provides a useful tool to describe the uncertainty of single 

objects in GIS. 

This chapter presents a study on modeling fuzzy topological relations between uncertain 

objects in GIS. Quasi-coincidence and quasi-difference, which are used (a) to distinguish 

the topological relations between fuzzy objects and (b) to indicate the effect of one fuzzy 

object on another in a fuzzy topology, are adopted for the development. Geometrically, 

features in GIS can be classified as point features, linear features and polygon or region 

features. In this chapter, we first introduce several basic concepts in fuzzy topology that 

will be used in this study. This is followed by several definitions of fuzzy points, fuzzy 

lines and fuzzy regions for GIS objects. Next, the level at which one fuzzy object affects 

the other is modeled based on the sum and difference of the membership functions that 

are quasi-coincident and quasi-different, respectively. Finally, an applicable example of 

using quasi-coincidence and quasi-difference based on the new definitions of fuzzy point, 

line and polygon are given. 

 

 

6.1 Fuzzy definition for GIS elements 

Fuzzy sets are the basic element of a fuzzy topology. The followings are several 

definitions and basic properties of fuzzy sets in GIS that will be applied. As we 
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mentioned before, point, line and region (polygon) are the basic elements in GIS. We 

now define them based on a fuzzy set. The definition of a fuzzy point is adopted from 

Fuzzy Topology (Liu and Luo, 1997) and the simple fuzzy line and fuzzy region are 

defined in this study. Actually, the definition of a fuzzy region have been discussed by 

Schneider (1999) and Tang et al (2002). However, the simple fuzzy line and fuzzy region 

in this thesis are defined which is based on the real applications. 

 

Fuzzy point 

Definition 6.1 (fuzzy point): An I-fuzzy point on X is an I-fuzzy subset X
a Ix ∈  defined 

as 

   ( )
⎩
⎨
⎧ =

=
otherwise0

xyifa
yx a . 

 

 

 

 

 

 

 

Simple fuzzy line 

Definition 6.2: The line in X (or R2) can be described as an embedding of a connected 

interval from R to X (or R2), which does not have intersection, i.e. 

X]1,0[: →α  (or R2), 

where [0, 1] is a closed interval in R and ( ) ( )21 tt α≠α  for all 21 tt ≠ , [ ]1,0t,t 21 ∈ . (see 

Figure 6.2) 

 

 

 

 

 

 

a 

1 

0 X 

Height 

Figure 6.1: Fuzzy point 

x 

0 1 ( )0α

( )1α  
α  
 

Figure 6.2: Line in R2 can be thought as a mapping from the interval [0, 1] to R2 

α(x) 

x 
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Remark 1:  

(i) The condition ( ) ( )21 tt α≠α  for all [ ]1,0t,t 21 ∈  makes sure that this line does 

not intersect itself. 

(ii) The line in the above definition can be a poly-line, i.e. it can be several line 

segments joined together one by one. 

 

Definition 6.3 (simple fuzzy line): I-fuzzy subset XI∈l  is called a simple I-fuzzy line if 

supp( l ) is a line in X (or R2). (see Figure 6.3) 

 

 

 

 

 

 

 

 

 

 

Fuzzy region 

Definition 6.4 (fuzzy region in X (or R2)): A fuzzy set A in X (or R2) is called a fuzzy 

region if supp(A) has non-empty interior in the sense of an ordinary topology. (see Figure 

6.4) 

 

Definition 6.5: Let XI  be an I-fuzzy topological space, A XI∈ , a I∈ . Define an I-fuzzy 

subset aA by 

    aA(x) = a ∧ A(x) 

Called a layer of A, or the a-layer of A. (see Figure 6.5) 

 

 

 

 

Figure 6.4 (b): The support of A in R2 

x 

y 

Figure 6.4 (a): A fuzzy set in R2 

Height 

y 

x 

0 

1 
l  

x 

Figure 6.3: A simple fuzzy line 

Height 
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Remark 2: The a-layer of a fuzzy set refers to shrinking down all the membership values 

of a fuzzy set that are greater than a to be value equal to a. In GIS, it is a useful operator 

to see which is less than a particular value within the range of uncertainties. 

 

Definition 6.6 (a-level of fuzzy set): Let XI  be an I-fuzzy space, A XI∈ , a I∈ . Define 

the a-level of A as the ordinary set 

   A[a] = {x∈X : A(x) ≥ a}; 

   A(a) = {x∈X : A(x) > a}; 

   A[a] = {x∈X : A(x) ≤ a}; 

   A(a) = {x∈X : A(x) < a}. 

 

Proposition 6.7: Let A be a I-fuzzy subset on X, then A =
Ia∈

∨ aA[a]. 

Proof: For all x X∈ , [ ] ( )
( ) ( )

( )
[ ]

⎪
⎩

⎪
⎨

⎧

∉
=

∈

=

a

a

a

Axif0
axAifa

AxifxA
xaA , therefore, 

Ia∈
∨ aA[a](x) = A(x).   

Q.E.D. 

 

 

 

 

 

 

 

 

Figure 6.5 (c): The top projection of a-layer of A Figure 6.5 (a): The fuzzy set A Figure 6.5 (b): a-layer of A 

Height Height 

y 

x x x 

y 

y 
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Remark 3: A =
Ia∈

∨ aA[a] can be illustrated in Figure 6.6. 

 

 

 

 

 

 

 

 

 

6.2 Quasi-coincidence 

The concept of quasi-coincidence is a kind of partition of fuzzy sets via the sum of their 

membership functions. As the membership function of a fuzzy set can be abstract, it can 

be used to interpret a very deep meaning, such as the density of SARS diseases or the 

ability of immunity and so on. The sum of the membership values can be used to interpret 

how closeness of their relations is. Therefore, it is very useful in GIS. 

 

The concept of quasi-coincidence provides a stable fundamental neighborhood’s 

structural description to a fuzzy topological relations between objects in GIS. The 

concept of quasi-coincidence is supported by the following definitions. 

 

Definition 6.8 (disjoint): Two fuzzy sets A and B are totally disjoint if 0BA =∧ . 

 

Definition 6.9 (quasi-coincident): Let A and B be two Fuzzy sets in Ix. We say A quasi-

coincident with B (write BAq̂ ) at x if A(x) + B(x) > 1. Denoted by  

A B = {x∈X: A(x) + B(x) > 1}. 

 

The quasi-coincident set is an ordinary set and just the collection of all x in X with the 

properties of A(x) + B(x) > 1. Thus we can definite the quasi-coincident fuzzy sets as 

follows: 

Figure 6.6 (b): The fuzzy set aA[a]  Figure 6.6 (a): The fuzzy set A 

Height Height 

y 

x 

y 

x 

aA[a] 
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   ( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧ >+∧

=∧
otherwise0

1xBxAifxBxA
BAmin   and 

 

    ( )
( ) ( ) ( ) ( )

⎪⎩

⎪
⎨
⎧ >+

+
=∧

otherwise0

1xBxAif
2

xBxA
BAmean . 

 

Example 6.10: Let two fuzzy sets 

   ( ) ( )
⎪⎩

⎪
⎨
⎧ ≤≤

−
++−−−

=
otherwise0

2
15x

2
17if162x2x

13
1

xA  and  

 

  ( ) ( )
⎪⎩

⎪
⎨
⎧ ≤≤

−
+−−−−

=
otherwise0

2
23x

2
9if162x6x

13
1

xB . 

 

Then the crisp set A B is shown in Figure 6.7(a), while the two corresponding fuzzy 

sets ( )BAmin ∧  and ( )BAmean ∧  are shown in the Figure 6.7(b) and Figure 6.7(c) 

respectively. 
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Proposition 6.11: ( ) BABAmin ∧≤∧ . 

 

Proof: If ( ) ( ) 1xBxA >+ , ( ) ( ) ( )xBxABAmin ∧=∧ . If ( ) ( ) 1xBxA ≤+ , 

( ) ( ) ( )xBxA0BAmin ∧≤=∧ . 

Q.E.D. 

 

Proposition 6.12: Let ( )δ,I X  be an I-fts’, XIC,B,A ∈ , { } X
t ITt:A ⊂∈ , 

{ }0\Ia,Xx ∈∈ . Then  

(i) A B = B A. 

(ii) A quasi-coincident with B at x ⇔  B quasi-coincident with A at x ⇔  

∈x A B ⇔  ∈x B A. 

(iii) If BA ≤ , then A C ⊂ B C. 

(iv) A AA TttTt ∈∈ ∪=∨ At.  

 

-8 -6 -4 -2 0 2 4 6 8 10 12

0.5

1

Height 

x

A B

A B

Figure 6.7 (a): The set of A B 

-8 -6 -4 -2 0 2 4 6 8 10 12

0.5

1

Height 

x

( )BAmin ∧

Figure 6.7 (b): The set of ( )BAmin ∧  

-8 -6 -4 -2 0 2 4 6 8 10 12

0.5

1

Height 

x

( )BAmean ∧  

Figure 6.7 (c): The set of ( )BAmean ∧  
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Proof: it is just the direct verification. 

Q.E.D. 

 

Remark 4: Proposition 6.12 (i) to (iv) give several properties of quasi-coincidence. 

 

Proposition 6.13: Let ( )δ,IX  and ( )μ,I Y  be two I-fts’, XIB,A ∈ , YID,C ∈ , YX:f →  

be an ordinary mapping. Then 

(i) ( )CfA q̂
←  ⇔ ( ) CAf q̂

→ . 

(ii) BAq̂  ⇒ ( ) ( )BfAf q̂
→→ . 

(iii) ( ) ( )DfCf q̂
←←  ⇒ DCq̂ . 

 

Proof: (i): If ( )CfA q̂
←  then there exists Xx ∈  such that ( ) ( )( ) 1xCfxA >+ ← . Let f(x) = 

y. we have ( )( ) ( ) ( ) ( )( ) 1xCfxAyCyAf >+≥+ ←→ .  

Conversely, if ( )( ) ( ) 1yCyAf >+→ , then ( ) ( )( ) ( ) ( ) ( )( )y'Afy'AfyAf1yC →→→ ==−>  

⇒  ( ) ( )( ) ( )x'Ay'AffxCf ≥> →←←  ⇒  ( ) ( )x'AxCf >←  ⇒  ( ) ( )xA1xCf −>←  ⇒  

( ) ( ) 1xCfxA >+ ← . 

 

(ii): Let f(x) = y, BAx q̂∈  ⇒  ( )( ) ( )( ) ( ) ( ) 1xBxAyBfyAf >+≥+ →→  ⇒  ( ) ( )BfAf q̂
→→ . 

 

(iii): ( ) ( )DfCfx q̂
←←∈  ⇒  ( )( ) ( )( ) ( )( ) ( )( ) 1xDfxCfxfDxfC >+=+ ←←  ⇒  DCq̂ . 

Q.E.D. 

 

Remark 5: Proposition 6.13 states several invariants of quasi-coincidence under 

mapping. Of course, it is invariant under homeomorphism. Moreover, if f is a 

homeomorphic map, we have the proposition below. 

 

Proposition 6.14: Let ( )δ,I X  and ( )μ,I Y  be two I-fts’, XIB,A ∈ , YID,C ∈ , 

YX:f → be a homeomorphic map. Then 
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(i) ( )CfA q̂
←  ⇔  ( ) CAf q̂

→ . 

(ii) BAq̂  ⇔  ( ) ( )BfAf q̂
→→ . 

(iii) ( ) ( )DfCf q̂
←←  ⇔  DCq̂ . 

Q.E.D. 

 

Definition 6.15: Define the fuzzy set 
2
1A  by ( ) ( ) ( )

⎪⎩

⎪
⎨
⎧ >

=
otherwise0

2
1xAifxA

xA
2
1 . 

 

Proposition 6.16: Let XIA ∈  and ( ) ( )μ→δ→ ,I,I:f YX  be an I-fuzzy homeomorphism, 

then ( )
2
1

2
1 AfAf →→ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
, i.e. the set 

2
1A  is invariant under homeomorphism. 

 

Proof: Since ( ) ( )μ→δ→ ,I,I:f YX  is an I-fuzzy homeomorphism, Yy ∈∀ , there exists 

unique Xx o ∈  such that f(xo) = y. Thus ( )( ) ( ) ( ){ } ( )oxAyxf,Xx:xAyAf ==∈∨=→ . 

  Since ( )yAf
2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛→  = 

( ) ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛→

otherwise0

2
1xAifyAf o

2
1

 

=  
( ) ( )

⎪
⎩

⎪
⎨

⎧ >

otherwise0
2
1xAifxA oo

2
1  

=  
( ) ( )

⎪⎩

⎪
⎨
⎧ >

otherwise0
2
1xAifxA oo .  

On the other hand, ( ) ( )yAf
2
1→  = 

( )( ) ( )( )
⎪⎩

⎪
⎨
⎧ >→→

otherwise0
2
1yAfifyAf
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           = 
( ) ( )

⎪⎩

⎪
⎨
⎧ >

otherwise0
2
1xAifxA oo .   

Therefore, ( ) ( ) ( )yAfyAf
2
1

2
1

→→ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, for all Yy ∈ . Hence ( )

2
1

2
1 AfAf →→ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
. 

Q.E.D. 

 

Proposition 6.17: The quasi-coincident, A B, set is divided into two parts: one is 

A(x)
2
1

>  and B(x)
2
1

>  denoted by ( )( )5.0B&ABAmin >∧  and the other is A(x)
2
1

≤  or 

B(x)
2
1

≤  denoted by ( )( )5.0BorABAmin ≤∧ . 

 

Proof: A B ( ) ( ){ }1xBxA:Xx >+∈= . If A(x)
2
1

>  and B(x)
2
1

> , then A(x) + B(x)
2
1

> . 

If A(x)
2
1

≤  or B(x)
2
1

≤ , then one of A and B must be greater than 0.5. 

Q.E.D. 

 

Remark 6:  

(i) Since the set A B is invariant under homeomorphisms, it is a homeomorphic 

invariant topological component (or topological components for short). Thus, we 

can use this direction to partition the set A B into several homeomorphic 

invariant parts, we can guarantee the unchanged properties in a GIS transformation. 

(ii) In GIS, many reports are tried to study the empty and non-empty of homeomorphic 

components so that it can give fuzzy topological relations between two spatial 

objects in GIS. Thus we can see the homeomorphic invariant is very important. 

Furthermore, we not merely study the empty and non-empty properties, but also 

other potentially useful topological properties of these components.  
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Proposition 6.18: For A(x)
2
1

>  and B(x)
2
1

> , we have A cB ⊂ A B and 

cA B ⊂ A B. This proposition tells us that the fuzzy sets A(x)
2
1

>  and B(x)
2
1

>  can 

be further divided into three parts: A cB , cA B and {x∈X: A(x)
2
1

>  and B(x)
2
1

>  

and ( ) ( )xBxA = }. Denoted by min ( )( )
( )5.0B&A

1BA
cBA >

>+∧ , min ( )( )
( )5.0B&A

1BA
c BA >

>+∧  and {A = B}. 

 

Proof: For A(x)
2
1

>  and B(x)
2
1

> , we have ( )
2
1xBc ≤ . 

Hence if ( ) ( )xBxA > , i.e. A cB , then ( ) ( ) ( )xBxBxA c>> , i.e. A B. Thus we have 

A cB ⊂ A B.  

Similarly, we can prove cA B ⊂ A B. 

Q.E.D. 

 

Proposition 6.19: A cB , cA B and {A = B} are invariant under homeomorphic fuzzy 

mapping. 

 

Proof: By proposition 6.14 (ii). 

Q.E.D. 

 

So far, we have decomposed the fuzzy set BA ∧  into several homeomorphic invariant 

parts, ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BAB'A >

>+∧ , {A = B} and 

min ( )( )
( )5.0B&A

1BA'BA >
>+∧ . Figure 6.8 shows the logic diagram of the decomposition of BA ∧  

while Figure 6.9 illustrates the structure of the decomposition of BA ∧  through example 

6.10.  
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BA ∧

min ( )( )1BABA >+∧

{A = B}min
( )( )

( )5.0B&A
1BA

cBA
>

>+∧  
min
( )( )

( )5.0B&A
1BA

c BA
>

>+∧

( )1BABA ≤+∧  

min ( )( )
( )5.0B&A

1BABA >
>+∧  min ( )( )

( )5.0BorA
1BABA ≤

>+∧  

Figure 6.8: The logic diagram of the decomposition of BA ∧  

-8 -6 -4 -2 0 2 4 6 8 10 12

0.5

1

1BA ≤+  1BA ≤+  BA <
5.0BorA ≤ 5.0BorA ≤

BA >

Figure 6.9: An illustration of the structure of the decomposition of BA ∧  

Height 
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Figure 6.10 illustrates the topological relations with the concept of a quasi-coincidence, 

A B, in R2. The region enclosed by a dash line is the quasi-coincidence in different 

cases. 
 

Empty A B cases:  

 
 
 

 

Non-empty A B cases:  

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.10: Different cases of quasi-coincident fuzzy topological relations between two objects in GIS 
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Figure 6.11 illustrates the topological relations with the concept of quasi-coincidence, 

A cB , in R2. The region enclosed by a dot line is the quasi-coincidence in different 

cases. 
 

Disjoint, then A cB  is equal supp(A):  

 
 
 
 

 

Non-empty A cB cases:  

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.11: Different cases of quasi-coincident fuzzy topological relations between two objects in GIS 
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6.3 Quasi-difference 

The concept of quasi-difference is a kind of partition of fuzzy sets via the difference of 

their membership functions. The difference can be used to compare the fuzzy value of 

two fuzzy sets for analyzing which part is higher than the other and which part is lower 

than the other. 

 

Definition 6.20 (quasi-difference): Let A and B be two Fuzzy sets in I
x
. Define the 

quasi-difference of A and B, denoted by A\\B, as 

  A\\B = ∨ ( ) ( ){ }0xB:AMx =↓∈λ ∨ ∨ ( ) ( ){ }0xBnot:AMx >≥λ↓∈λ . 

 

Where the definitions of A↓  and ( )AM ↓  one can refer to Liu and Luo (1997). 

 

Definition 6.21: Let A and B be two Fuzzy sets in I
x
. We define  

A\\Bo = ( ) ( ){ }0xB:AMx =↓∈∨ λ . (see Figure 6.12) 

 

 

 

 

 

 

 

 

Proposition 6.22: Let XI  be an I-fuzzy space, A, B, C in XI , { } X
t ITt:A ⊂∈ , 

( )X
a IPtx ∈ . Then the following conclusions are held: 

(i) A\\B ≤ A. 

(ii) A\\0 = A. 

(iii) ( ) ⇒∉ IM1L A\\1 = A. 

(iv) ⇒≤ BA A\\C ≤ B\\C. 

(v) ( )tTt
A

∈
∨ \\ C = 

Tt∈
∨ (At\\C). 

Figure 6.12 (a): The part enclosed by a dot line is the quasi-
difference of A and B, A\\B 

A 
B 

Figure 6.12 (b): The part enclosed by a dot line is the 
quasi-difference of A and B, A\\Bo 

A 
B 
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(vi) ∈∀x supp(B), ( ) ( ) ⇒> xAxB A\\B = A. 

(vii) 0BA =∧ ⇒ A\\B = A. 

(viii) xa is not quasi-coincidence with 'A , then A\\xa = A. 

(ix) supp(B) = supp(C), CB ≤ , then A\\B ≤ A\\C. 

Q.E.D. 

 

Remark 7: In the definition of quasi-difference of I-fuzzy sets, if replacing I by {0, 1}, 

then this concept will become our crisp set difference.  

 

Lemma 6.23: Let xIA ∈  and ( ) ( )μ→δ→ ,I,I:f yx  be an I-fuzzy homeomorphism, and 

f(x) = y, then ( )( ) 0yAf =→  if and only if A(x) = 0. 

 

Proof: ( )( ) 0yAf =→  ⇒ ( )( )( ) 0xAff =→←  ⇒  A(x) = 0. 

On the other hand, ( )( ) ( ) ( ){ } ( ) 0xAyxf:xAyAf ===∨=→ . 

Q.E.D. 

 

Proposition 6.24: Let xIA ∈  and ( ) ( )μ→δ→ ,I,I:f yx  be an I-fuzzy homeomorphism, 

then ( ) ( ) ( )oo Bf\\AfB\\Af →→→ = , i.e. the set A\\Bo = ( ) ( ){ }0xB:AMx =↓∈∨ λ  is 

invariant under homeomorphic mappings. 

 

Proof: Since ( ) ( )( ) ( )
⎩
⎨
⎧ =

=
→

→

otherwise0
0xBifyAf

B\\Af o , but 

( ) ( ) ( )( ) ( )( )
⎩
⎨
⎧ =

=
→→

→→

otherwise0
0yBfifyAf

Bf\\Af o . By lemma 6.23, there is one-one 

corresponding value of B(x) = 0 and ( )( ) 0yBf =→ , so ( ) ( ) ( )oo Bf\\AfB\\Af →→→ = . 

Q.E.D. 
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By using the above results, the fuzzy set BA ∨  can be decomposed into several 

homeomorphic invariant parts, A\\Bo, and B\\Ao. On A B, we have (A(x)
2
1

>  and 

B(x)
2
1

> ), and (A(x)
2
1

≤  or B(x)
2
1

≤ ). On A(x)
2
1

>  and B(x)
2
1

> , we have three more 

parts, which are {A = B}, min ( )( )
( )5.0B&A

1BA
cBA >

>+∧  and min ( )( )
( )5.0B&A

1BA
c BA >

>+∧ . 

 

Combining the previous works and the above results, we have decomposed the fuzzy set 

BA ∨  into several homeomorphic invariant parts,  

(1) A\\Bo;  

(2) B\\Ao; 

(3) ( )1BABA ≤+∧ ; 

(4) min ( )( )
( )5.0BorA

1BABA ≤
>+∧ ; 

(5) min ( )( )
( )5.0B&A

1BA
c BA >

>+∧ ; 

(6) {A = B} and 

(7) min ( )( )
( )5.0B&A

1BA
cBA >

>+∧ . 

 

Figure 6.13 shows the logic diagram of the decomposition of BA ∨  while Figure 6.14 

illustrates the structure of the decomposition of BA ∨  through example 6.10. 
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5.0BorA ≤ 5.0BorA ≤

BA >

Figure 6.14: An illustration of the structure of the decomposition of BA ∨  

A\\Bo B\\Ao 

Height

BA ∧ B\\Ao 

min ( )( )1BABA >+∧

{A = B} 
 

min
( )( )

( )5.0B&A
1BA

cBA
>

>+∧

min
( )( )

( )5.0B&A
1BA

c BA
>

>+∧

A\\Bo 

BA ∨  

( )1BABA ≤+∧  

min ( )( )
( )5.0B&A

1BABA >
>+∧ min ( )( )

( )5.0BorA
1BABA ≤

>+∧  

A = 0 &  
B= 0 

Figure 6.13: The logic diagram of the decomposition of BA ∨  
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Figure 6.15 illustrates the topological relations with the concept of quasi-difference, 

A\\B, in R2. The region enclosed by a dot line is the quasi-coincidence in different cases. 
 

Disjoint, then A\\B is equal supp(A):  

 
 
 
 

 

Non-empty A\\B cases:  

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 6.15: Different cases of quasi-different fuzzy topological relations between two objects in GIS 
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6.4 Topological relations between two fuzzy set in R2  

Topological relations are the fundamental properties for the spatial analysis in GIS. 

Based on the 4-intersection and the ordinary point set theory, Egenhofer and Franzosa 

(1991) gave the topological relations between two spatial regions in the two-dimensional 

space (2-D). Later, Egenhofer, Clementini and Di Felice (1994) gave an extension of the 

topological relations between spatial objects in 2-D with arbitrary holes. Shi and Guo 

(1999) described uncertain relations between objects in GIS. 

 

Based on the 9-intersection, Cohn and Gotts (1996) gave 46 topological relations 

between two regions with indeterminate boundaries. While Clementini and Di Felice 

(1996) gave 44 topological relations between two regions with indeterminate boundaries. 

By using the 9-intersection matrix and the fuzzy theory, there are 44 relations between 

two simply fuzzy regions (Tang and Kainz, 2002). The topological relations between 

ordinary sets are not as simple as finite (Liu and Shi, 2003). Therefore, the topological 

relations between fuzzy sets in R2 will not as simple as finite either. A basic solution to 

solve the fuzzy relations between fuzzy sets is to investigate its homeomorphic invariant 

(Wu and Zheng, 1991), and then to classify the relations by using its invariant properties. 

Thus, it is guaranteed that the topological relations will not be changed under series of 

homeomorphic mappings. 

 

Definition 6.25 (topological relations): The topological relations between two fuzzy sets 

A and B are the topological properties of all the homeomorphic invariants topological 

components of A and B. 

 

Here, we classify the topological relations of fuzzy sets A and B by using the results in 

sections 6.2 and 6.3.  The target topological components of A and B will be  

(1) A\\Bo;  

(2) B\\Ao; 

(3) ( )1BABA ≤+∧ ; 

(4) min ( )( )
( )5.0BorA

1BABA ≤
>+∧ ; 
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(5) min ( )( )
( )5.0B&A

1BA
c BA >

>+∧ ; 

(6) {A = B} and 

(7) min ( )( )
( )5.0B&A

1BA
cBA >

>+∧ . 

 

Indeed, those components are homeomorphic invariant topological components that have 

been proved in section 6.2 and 6.3.  

 

The components ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA >

>+∧ , 

min ( )( )
( )5.0B&A

1BA
c BA >

>+∧  and {A = B} can be used to classify the depth of the relation 

between two fuzzy sets. The components A\\Bo and B\\Ao can be used to indicate the 

depth of independent part of each fuzzy set. Thus the topological relations between the 

fuzzy sets A and B can be described by the topological properties (empty and non-empty, 

subspace properties, connectivity, compactness and etc) of the 7-tuple, 

 

 (A\\Bo, B\\Ao, ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA
>

>+∧ , min ( )( )
( )5.0B&A

1BA
c BA

>
>+∧ , A = B).  

 

Furthermore, by providing formulae of two fuzzy sets, we can calculate their relations 

through the above 7-tupled topological components. 

 

The following propositions are several elementary properties of the above 7-tupled 

topological components. 

 

Proposition 6.26: If A\\Bo is empty, then supp(B) ⊂ supp(A). By symmetry, we also 

have, if B\\Ao, then supp(A) ⊂ supp(B). 

 

Proposition 6.27: ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA >

>+∧ , 

min ( )( )
( )5.0B&A

1BA
c BA >

>+∧  and {A = B} all are empty, if and only if BA ∧  is empty; hence, A 

and B are disjoint. 
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Proposition 6.28: One of ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA >

>+∧ , 

min ( )( )
( )5.0B&A

1BA
c BA >

>+∧  or {A = B} is non-empty, if and only if BA ∧  is non-empty; 

hence, A and B are not disjoint. 

 

 

6.5 An applicable Example 

In order to demonstrate the applicability of the proposed solutions for modeling fuzzy 

topological relations to the real world’s GIS problems, here we use the concept of quasi-

coincident to detect the effect of SARS (Severe Acute Respiratory Syndrome) disease’s 

distribution to people in a community – a spatially analyzed problem for a GIS. The 

objectives of this applicable study are: 

 

 To trace the path of an infected person and investigate the effect of this person to 

the community; 

 To investigate the effect of a certain infected region to its neighboring regions by 

using fuzzy topology; and  

 To detect whether a person within a region is safe or not by using fuzzy 

topology. 

 

6.5.1 Background 

SARS has been one of the most serious diseases, which threatens the lives and health of 

people in many areas of the world, such as Hong Kong, Beijing, Guangdong Province, 

Singapore and Canada etc. This disease affected the daily life seriously and killed nearly 

300 people in Hong Kong within a few months. One of the problems faced to GIS 

professionals is to detect the spatially distributional patterns of the disease within a 

community. 

 

Symptoms SARS 

Experts believe that the SARS virus is stable in faeces (and urine) at room temperature 

for at least one to two days. Virus is more stable (up to 4 days) in stool from diarrhoea 
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patients than in normal stool, in where it could only be found for up to 6 hours. The 

disease spreads from person to person. It often begins with a high fever, headache and 

sore throat. Other possible symptoms include loss of appetite, confusion, rash and 

diarrhea. Not everyone has reacted at the same way. The WHO (The World Health 

Organization) said that doctors are on the lookout for those symptoms with:  

• a fever over 38 C; and 

• cough, shortness of breath, difficulty breathing. 

 

The way of catching SARS  

It is likely that infection takes place through droplets of body fluids - produced by 

sneezing or coughing. An official report into a mass outbreak in Amoy Garden in Hong 

Kong concluded that the virus had spread through a sewage pipe. The WHO is not ruling 

out the possibility that it may also be transmitted when people touch objects such as lift 

buttons. Airlines insist that an infected person cannot spread the virus throughout an 

aircraft. However, the WHO states that people sitting within two rows may be at risk.  

 

6.5.2 Data Collection 

Precise data on SARS cases plays an important role for further analysis and decisions 

making. Basically, we need to collect the following data sets:  

 

(a) The base map of the analyzing target region; 

(b) The number of new infected buildings for the target region each day; 

(c) The number of deaths for the target region each day; 

(d) The number of patients in ICU for the target region each day; 

(e) For each building of the target region, the number of new infected bodies 

or the target region each day; and 

(f) For each building of the target region, the number of infected bodies for 

the target region each day. 

 

The base map was based on the data from the website 

http://www.centamap.com/cent/index.htm. Unfortunately, the detailed information on 

http://www.centamap.com/cent/index.htm
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items from (b) to (f) are still not available for general public at this time. Therefore, we 

simulated these data for this study only.  

 

6.5.3 Fuzzy topology for SARS analysis 

To investigate the effect of a person to a community (Fuzzy line to region) 

Let A(x(t)) be the membership function of the trace of an infected person (Actually, it is 

a fuzzy path and stands for the density of the SARS virus of the trace of an infected 

person.). The value equal to zero means the infected body does not contain any diseases 

and the value equal to one means he/she has very high density of virus. The path of this 

infected body will affect the community for a long time once he/she traces the public 

place. Let B(x(t)) be a community (a region), which represents the condition of certain 

people or the situation of this point x at time t, etc, and can be for example the 

population density function. When B(x(t)) is equal to zero, it means the location is in a 

very good condition or is a very safe place. On the other hand, one means the location is 

in a very bad condition or is very dangerous. Therefore, we can investigate the effect of 

an infected body to the community by using the concept of quasi-coincidence. For a 

person at a particular location x(t), the case A(x(t)) + B(x(t)) > 1 means he/she has a very 

high probability to be infected. Otherwise, the person has a relative low probability to be 

infected. 

 

To investigate the effect of an infected region to its neighbor (R to R) 

Let A(x(t)) be the membership function (The density of this virus which is dependent on 

the time factor.) of certain virus within a certain region. The value, zero, means the 

region does not contain any disease and the value, one, means it has very high density of 

virus. The virus will affect people within the region for a long time once a certain public 

place has such virus. In normal case, the virus will steady in a public place for a long time 

and then disappear. It will disappear very soon after the process of sterilization is under 

taking. Let B(x(t)) be a neighbor region. B(x(t)) represents the condition of certain 

people or the situation of this point etc (It is a fuzzy set and is dependent on the time 

factor), and can be for example the population density function. B(x(t)) is represented as 

a membership value at each point x and at time t. When B(x(t)) is equal to zero, it means 
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the location is in a very good condition or is a very safe place. On the other hand, one 

means the location is in a very bad condition or is very dangerous. Therefore, we can 

investigate the effect of an infected region to its neighbor by using the concept of quasi-

coincidence. For a person at a particular location x(t), the case A(x(t)) + B(x(t)) > 1 

means he/she has a very high probability to be infected. Otherwise, the person has a 

relatively low probability to be infected.  

 

To detect whether a person within a region is safe  

Figure 6.16 presents the residential regions seriously affected by SARS during the period 

include two residential areas: Amoy Garden with serious SARS spread at earlier time and 

Lower Ngau Tau Kok Estate – a neighboring region in danger – potentially to be affected 

very soon. The target of this modeling is to study the effect of SARS spread from Amoy 

Garden to the Lower Ngau Tau Kok Estate. On top of the digital map, there is a grid with 

two values for each of the grids: the upper one (A(x(t))) stands for the density of the 

SARS virus from Amoy Garden, and the lower one (B(x(t))) represents the conditions of 

the Lower Ngau Tau Kok Estate. Both fuzzy sets A(x(t)) and B(x(t)) are dependent on the 

time factor. 

 

From Figure 5.16, we can see that the Block E is the most seriously infected building 

(with very high A(x(t)) value, such 0.9), and this trend is steadily reduced when the 

distance is far from Block E (the A(x(t) value decreased from 0.78 to 0.65, 0.45 etc). On 

the other hand, the membership function (B(x(t))) for Lower Ngau Tau Kok Estate 

decreased the center of the Estate with its boundaries, from 0.50, to 0.45, 0.25 etc.   

 

By applying the concept of quasi-coincidence (some relations of quasi-coincidence are 

illustrated in Figure 6.10 and Figure 6.11), those areas with a high risk to be infected are 

the areas fulfilled the following condition: 

    A(x(t)) + B(x(t)) > 1 

The areas fulfilled this condition is indicated by a closed dash line. This means that the 

people living within this area have a comparatively higher risk to be infected from the 

SARS spread of the Amoy Garden.  
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Figure 6.16: The effect of Amoy Garden to Lower Ngau Tau Kok Estate can be computed by the concept of 
quasi-coincidence  
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6.6 Summary 

Topological relations between objects with indeterminate boundaries have been 

investigated for several years. Based on the 9-intersection, Cohn and Gotts (1996) gave 

46 topological relations between two regions with indeterminate boundaries while 

Clementini and Di Felice (1996) gave 44 topological relations between two regions with 

indeterminate boundaries. The usual technique handling these kinds of problems is based 

on empty and non-empty invariance.  

 

Actually, there are many other useful topological invariants that can be used to study the 

topological relations between fuzzy sets. In this study, we proposed to use the quasi-

coincidence and quasi-difference to indicate fuzzy neighborhood relations between fuzzy 

objects in GIS.  

 

In this chapter, we first give a basic definition of GIS elements based on fuzzy topology -

- fuzzy point, simple fuzzy line and fuzzy region. Then a framework for describing 

topological relations between two fuzzy objects has been presented. This is based on the 

quasi-coincidence and quasi-difference. By applying these two concepts, we can obtain a 

7-tupled topological relation: 

 (A\\Bo, B\\Ao, ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA
>

>+∧ , min ( )( )
( )5.0B&A

1BA
c BA

>
>+∧ , A = B). 

 

This 7-tuple can be immediately used in GIS to (a) describe fuzzy topological relations 

between two spatial objects, and furthermore (b) to quantify the effect of one fuzzy object 

to the other fuzzy objects, which is a step further to the traditional fuzzy topological 

modeling – description only. The proposed solution can describe topological relations 

between any two arbitrary fuzzy objects without any constrains.  

 

With the quantified relations based on the quasi-coincidence and quasi-difference, we can 

describe the interaction between fuzzy objects to enable us to study many real worlds’ 

problems, for instance to calculate the effect of SARS spread from one region to another. 

The example of SARS, has verified several important functions of the 7-tuple, which 

firstly enable us to study the effect of a fuzzy object to the other fuzzy object. Secondly, 



 - 95 - 

the level of topological relations between two fuzzy objects can be quantified by the 

components of the 7-tupled topological relations. 

 

There are several things on what we have achieved. The first is that the information of the 

overlapped part of two uncertain objects is described by five topological invariant 

components, ( )1BABA ≤+∧ , min ( )( )
( )5.0BorA

1BABA ≤
>+∧ , min ( )( )

( )5.0B&A
1BA

cBA >

>+∧ , min ( )( )
( )5.0B&A

1BA
c BA >

>+∧  

and {A = B}. Thus a clear picture is given to the overlapped part of two uncertain 

objects. The second achievement is that the information on one fuzzy object is not 

affected by the other fuzzy object (A\\Bo and B\\Ao). Thirdly, for any two given fuzzy 

objects with memberships function, the 7-tupled topological relations’ components can 

be easily computed. 

 

The pros of the proposed solution include: 

• The concepts of quasi-coincidence and quasi-difference are easy to understand. 

• The quasi-coincidence and quasi-difference can be directly applied to GIS. 

Therefore, the theorems and properties of these two concepts can be directly 

transferred to be a part of the theories for GIS. 

• The level structure between two fuzzy objects can be expressed by the concept of 

quasi-coincidence and quasi-difference. 

• The abstract concepts of fuzzy topological properties are represented by functions 

only, so it is easy to implement. 

• The quasi-coincidence and quasi-difference can help to distinguish the relations of 

arbitrary fuzzy objects without any constrains. 

 

On the other hand, there are also some rooms for further improvement of the research 

presented in this study, such as,  

• Theoretically, this model is quite completed. However, the solution needs to be 

further adjusted for different cases and for complicated cases in the real world. 

• More fuzzy concepts and invariants should be integrated, so that the model 

becomes more practical and completed. 
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CHAPTER SEVEN 

A FUZZY TOPOLOGICAL SPACE FOR COMPUTING THE INTERIOR, 

BOUNDARY, AND EXTERIOR OF SPATIAL OBJECTS QUANTITATIVELY IN 

GIS 

 

In this study, we take the further step of developing a theory for modeling uncertain 

relations between spatial objects. Specifically, we intend to develop a computational 

fuzzy topological space, which can potentially be used for computing uncertain spatial 

relations between spatial objects quantitatively in either GIS, remote sensing, or other 

areas related to spatial objects. 

 

There are two stages for modeling fuzzy topological relations among spatial objects: (a) 

to define and describe spatial relations qualitatively and (b) to compute the fuzzy 

topological relations quantitatively. For the first stage of modeling fuzzy spatial relations, 

a number of models have been developed (Egenhofer, 1993; Winter, 2000; Cohn and 

Gotts, 1996; Clementini and Di Felice, 1996; Smith, 1996; Tang and Kainz, 2002; Tang, 

Kainz and Yu, 2003; Tang, 2004; Tang et al, 2005), which can provide a conceptual 

definition of uncertain topological relations between spatial objects – based on 

descriptions of the interior, boundary, and exterior of spatial objects in GIS. As for the 

second stage of the modeling of uncertain topological relations, we need to further 

develop methods to compute the quantitative values of these topological relations, for 

instance to compute the membership values of the interior, boundary, and exterior of a 

spatial object based on fuzzy membership functions. However, the quantitative 

computation of fuzzy topological values for uncertain relations is still an open issue. 

Therefore, the aim of this research was identified as developing a fuzzy topological 

theory that can be used to compute the quantitative values of topological relations. As a 

result the topological models developed in the previous researches can be practically 

implemented in a GIS.  

 

In order to develop a useful method for computing the topological relations of the 

existing topological models (such as the 9-intersection or other topological relations 
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models) and which can be implemented in real-world GIS software, our research is 

organized into two phases within a comprehensive framework. The aim in the first phase 

is to define a computational fuzzy topological space to compute the interior, boundary 

and exterior of spatial objects, which is based on the two operators, the interior operator 

and closure operator. This part is presented in this chapter. The aim of the second phase is 

to apply the developed fuzzy topological space to topological relations models (such as 

the 9-intersection model) to quantitatively computing the fuzzy topological relations 

between simple fuzzy spatial objects in GIS. 

 

In order to achieve the aim of the first phase of development (which will present in this 

chapter), the following research developments are presented in this chapter: defining two 

new operators – interior and closure, which are based on two kinds of level cuts; further 

defining a computational fuzzy topological space, which will be used to compute the 

interior, boundary, and closure of fuzzy spatial objects in GIS; and providing an example 

to show how to use this computational fuzzy topological space to calculate the interior, 

boundary, and exterior for a real-world data set.  

 

In order to achieve the aim of the second phase of development (which will present in 

chapter 8 and chapter 9), the following research will be conducted and presented in a 

separate chapters: defining the connectivity of the new fuzzy topological space; modeling 

homeomorphic invariants of this new fuzzy topological space – that is, the topological 

relations that will not be changed under homeomorphic mapping; and, finally, giving a 

list of qualitative fuzzy topological relations between simple fuzzy spatial objects in GIS. 

 

Every interior or closure operator can actually define a fuzzy topology (Liu and Luo, 

1997) separately. Based on this understanding, we can define a fuzzy topological space in 

which the interior and closure operators are defined by a suitable level cutting. As a 

result, the interior, boundary, and closure of spatial objects in GIS can be computed by 

using these two kinds of level cuttings (two operators on a fuzzy set). The topological 

relations models, such as the 9-intersection models, can thus be implemented in a GIS 
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environment. Figure 7.1 summarizes the two-phase research development framework. 

Moreover, Figure 7.2 shows the logical flow of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Phase One 
To construct a computable fuzzy 
topological space that can effectively 
implement the interior, boundary, and 
exterior in a computer environment. 

Phase Two 
To apply the developed fuzzy topological space
for topological models, such as the 9-intersection 
model, in order to quantitatively compute 
topological relations in GIS. 

Figure 7.1:  A summary of the two-phase research development plan 
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7.1 Fuzzy topological space induced by interior and closure operators 

Recall the definition of interior operator is that an operator xx II: →α  is a fuzzy interior 

operator if the following conditions are satisfied: (i) ( ) 11 =α ; (ii) ( ) AA ≤α , for all 
xIA ∈ ; (iii) ( ) ( ) ( )BABA α∧α=∧α , for all A, xIB ∈ ; (iv) ( )( ) ( )AA α=αα , for all 
xIA ∈ . The definition of closure operator is that An operator xx II: →α  is a fuzzy 

closure operator if the following conditions are satisfied: (i) ( ) 00 =α ; (ii) ( )AA α≤ , for 

all xIA ∈ ; (iii) ( ) ( ) ( )BABA α∨α=∨α , for all A, xIB ∈ ; (iv) ( )( ) ( )AA α=αα , for all 
xIA ∈ . 

 

Remark 1: With regard to the closure operator, we can consider this operator to be a 

machine that works on fuzzy sets. The condition ( ) 00 =α  means that when the input is 

empty fuzzy set, the output is also an empty fuzzy set (see Figure 7.3). The condition 

( )AA α≤  means that the operator will enlarge the inputted fuzzy set. The condition 

Interior operator on X 
 

Closure operator on X 

To define a coherent fuzzy topological space, ( )',,X δδ , based on 
interior and closure operators 

To define the fuzzy boundary and provide a list of 
intersection theories for this fuzzy topological space  

To provide a GIS example of how to compute the 
interior, boundary, and exterior of spatial objects 

Figure 7.2: The logical flow of this chapter  
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( ) ( ) ( )BABA α∨α=∨α  means that the operator will be not affected by the join relation. 

The last condition ( )( ) ( )AA α=αα  means that operating the fuzzy set two times is equal 

to one time. The interior operator has similar characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we try to via this direction to define two operators, one is interior and the other is 

closure operator. We want these two operators can manipulate with each other so that 

they can further define a same fuzzy topological space, which the open sets are the image 

of the interior operator and the closed sets are the image of the closure operator. On the 

same time, we also want the complement of an open set of interior operator, is exactly the 

closed set of closure operator.  

 

We know that each interior operator corresponds to one fuzzy topological space and each 

closure operator corresponds to one fuzzy topological space (Liu and Luo, 1997) (see 

Figure 7.4). In general, if we define two operators, interior and closure, separately, they 

will define two fuzzy topologies, respectively. These two topologies may not cohere with 

each other. That is, the open set defined by the interior operator may not be the 

complement of the closed set, which is defined by the closure operator. Therefore, we try 

to further define two operators, one is an interior operator and the other is a closure 

operator target, to define a computable fuzzy topological spaces respectively. We want 

Input 

Closure operator 

Output 

xIA ∈  ( ) xIA ∈α  

Figure 7.3: The concept of the closure operator 

(i) ( ) 00 =α , 
(ii) ( )AA α≤ , for all xIA ∈ , 
(iii) ( ) ( ) ( )BABA α∨α=∨α , 
(iv) ( )( ) ( )AA α=αα , for all xIA ∈ . 
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these two operators to be able to cohere with each other so that they can define the same 

fuzzy topological space, in which the open sets are the image of the interior operator and 

the closed sets are the image of the closure operator. At the same time, we want the 

complement of an open set to be a closed set (see Figure 7.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following two definitions are about the interior and closure operators, which are 

coherent with each other in defining a fuzzy topological space. 

Interior operator on X 

Defined open 
sets, δ . 

Defined closed 
sets by taking 
complement, 'δ . 

They defined a coherent fuzzy 
topological space, ( )',,X δδ . 

Figure 7.4(a): Fuzzy topological space defined by the 
interior operator  

Closure operator on X 

Defined closed 
sets, 'τ . 

Defined open sets 
by taking 
complement, τ . 

They defined a coherent fuzzy 
topological space, ( )',,X ττ . 

Figure 7.4(b): Fuzzy topological space defined by the 
closure operator  

Interior operator on X 

Defined open sets, δ . Defined closed sets by 
taking complement, 'δ . 

They defined a coherent fuzzy topological space, ( )',,X δδ . 

Closure operator on X 

Figure 7.5: The interior operator and closure operator are defined by a coherent fuzzy topological space 
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Definition 7.1 (Interior and Closure operator): Let A be a fuzzy set in [ ] xx I1,0 = . For 

any fixed [ ]1,0∈α , define two operators on [ ] xx I1,0 =  as follows: 

   xIAA ∈⎯→⎯ αα    and  

   xIAA ∈⎯→⎯ α
α , 

 

where the fuzzy sets αA  and αA  in X are defined by: 

   ( ) ( )
( ) ( )⎩

⎨
⎧

α<
α≥

=α

xAifxA
xAif1

xA    and 

   ( ) ( ) ( )
( )⎩

⎨
⎧

α≤
α>

=α xAif0
xAifxA

xA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 

Α 

α 

Αα 

Figure 7.6(b): The fuzzy set Aα in R 

α 

Αα 

Height 

R R R 

1 1 1 

0 0 0 

Figure 7.6(a): The fuzzy set A in R Figure 7.6(c): The fuzzy set Aα in R 

Height Height 

Αα 
Α Αα 

Height Height Height 

R2 R2 R2 

Figure 7.7(b): The fuzzy set Aα in R2 Figure 7.7(a): The fuzzy set A in R2 Figure 7.7(c): The fuzzy set Aα in R2 
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Remark 2: The geometric interpretation of the closure operator is that it raises up all 

fuzzy membership values greater than α  to one. The geometric interpretation of the 

interior operator is that it cuts all fuzzy membership values that are less than or equal to 

α  (see Figure 7.6 and Figure 7.7). The following proposition is several important 

properties of these two operators. It will be used later to prove that they further 

define a new fuzzy topological space.  

 

Proposition 7.2: Let A, B, and Ai ( Λ∈i ) be fuzzy sets of Ix. Then the following hold for 

all [ ]1,0∈α ; 

(i) α
α == 000  and α

α == 111 ; 

(ii) α
α ≤≤ AAA ; 

(iii) BA ≤  ⇒  αα ≤ BA  and αα ≤ BA ; 

(iv) ( ) ααα = AA  and ( ) ααα = AA ; 

(v) ( ) ( ) α−
α = 1

cc AA  and ( ) ( ) α−

α =
1cc AA ; 

(vi) β≤α  ⇒  αβ ≤ AA  and ( ) ββα = AA ; 

(vii) β≤α  ⇒  αβ ≤ AA  and ( ) βαβ = AA ; 

(viii) If Λ  is finite, then ( ) ( )α

Λ∈

α

Λ∈
∨=∨ iiii

AA  and ( ) ( )αΛ∈αΛ∈
∧=∧ iiii

AA ; 

(ix) ( ) ( )α

Λ∈

α

Λ∈
∧=∧ iiii

AA  and ( ) ( )αΛ∈αΛ∈
∨=∨ iiii

AA ; 

(x) α−
α ≤≤ 1AAA . 

 

Proof: (i) and (ii) are trivial facts. The geometric interpretation of AA ≤α  is that αA  is 

exactly equal to the cutting of the tail of A. The geometric interpretation of α≤ AA  is 

that A is exactly equal to αA  unless the raising part (see Figure 7.8). 
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(iii): For all Xx ∈ , 

( ) α≥xA  ⇒  ( ) α≥xB . So ( ){ } ( ){ }α≥∈⊆α≥∈ xB:XxxA:Xx . 

( ) α<xA  ⇒  ( ) ( )( )1,xBminxA ≤ .  

Combine these two we have ( )xAα ( )xBα≤  for all Xx ∈ . 

So αα ≤ BA . 

Similarly, we have αα ≤ BA . 

 

(iv): For all Xx ∈ , 

( ) α≥xA  ⇒  ( ) 1xA =α  ⇒  ( ) α≥α xA  ⇒ ( ) ( ) 1xA =
αα . 

( ) α<xA  ⇒  ( ) ( ) α<= α xAxA  ⇒  ( ) ( ) ( ) ( )xAxAxA == ααα . 

So ( ) ααα = AA . 

Similarly, we have ( ) ααα = AA . 

The geometric interpretation of ( ) ααα = AA  is that ( )ααA  cannot have any extra 

raising part after raised (see Figure 7.9(a)). The geometric interpretation of 

( ) ααα = AA  is that ( )ααA  cannot be cutting after cutting (see Figure 7.9(b)). 

 

 

 

 

 

 

 

α 

Α 

α 

Αα 

Figure 7.8: An illustration of α
α ≤≤ AAA  

α 

Αα 

Height 

R R R 

1 1 1 

0 0 0 

Height Height 
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(v): ( ) ( ) ( )( ) ( ) ( )
( ) ( )⎩

⎨
⎧

α<−
α≥

=−=−= ααα

xAifxA1
xAif0

xA1xA1xA c  and  

 ( ) ( )xA 1
c

α−  = 
( ) ( )

( )⎪⎩

⎪
⎨
⎧

α−≤

α−>

1xAif0
1xAifxA

c

cc

 

        = 
( ) ( )

( )⎩
⎨
⎧

α−≤−
α−>−−

1xA1if0
1xA1ifxA1

 

= 
( ) ( )

( )⎩
⎨
⎧

α≥
α<−

xAif0
xAifxA1

. 

 Hence ( ) ( ) α−
α = 1

cc AA . The fact ( ) ( ) α−

α =
1cc AA  is similar. 

The result ( ) ( ) α−
α = 1

cc AA  allows us to define the complement of a closed set is 

open makes sense while ( ) ( ) α−

α =
1cc AA  do the complement of a open set is 

closed makes sense. 

 

(vi): If β≤α , then ( ) ( ) α≥⇒β≥ xAxA . Hence ( ) ( ) 1xA1xA =⇒= αβ . So, if 

( ) α≥xA  then ( ) ( )xAxA αβ ≤ .  

For second statement, if ( ) α<xA , then ( ) β<xA , hence ( ) ( ) ( )xAxAxA == αβ . 

For all x in X, ( ) ( ) ( ) ( ) ( ) ( )xAxAxAxA αααβαα =≤≤ . Thus ( ) ββα = AA . 

 

(vii): Similar to (vi). 

α 

Αα 

R 

1 

0 

Height 

Figure 7.9(a): geometric interpretation of ( ) ααα = AA  

α 

Αα 

R 

1 

0 

Height 

Figure 7.9(b): geometric interpretation of  ( ) ααα = AA  
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α>∨
Λ∈ ii

A  ⇒  ( ) α>xAi  for some Λ∈i  ⇒  ( ) ( ) α>=α xAxA ii  for some Λ∈i  

⇒  ( )( ) ( ) ( ) ( )xAxAxA iiiiii αΛ∈Λ∈αΛ∈
∨=∨=∨ . 

α≤∨
Λ∈ ii

A  ⇒  ( ) α≤xAi  for all Λ∈i  ⇒  ( ) 0xAi =α  for all Λ∈i  ⇒  

( )( ) ( ) ( )xA0xA iiii αΛ∈αΛ∈
∨==∨ . 

 This proved ( ) ( )αΛ∈αΛ∈
∨=∨ iiii

AA . 

The results of (ix) make arbitrary intersection of close sets is closed and arbitrary 

union of open sets is open to be well defined. 

 

(x): For all Xx ∈ , ( ) ( )xAxA ≤α  and ( ) ( )xAxA 1 α−≤ . 

Q.E.D. 

 

Proposition 7.3: The mappings α  and α  are closure and interior operator respectively. 

Proof: For α , we have to check the following definitions: 

(i) ( ) 11 =α , 

(ii) ( ) AA ≤α , for all xIA ∈ , 

(iii) ( ) ( ) ( )BABA α∧α=∧α , for all A, xIB ∈ . 

(iv) ( )( ) ( )AA α=αα , for all xIA ∈ . 

For α , we have to check the definitions: 

(i) ( ) 00 =α , 

(ii) ( )AA α≤ , for all xIA ∈ , 

(iii) ( ) ( ) ( )BABA α∨α=∨α , for all A, xIB ∈ . 

(iv) ( )( ) ( )AA α=αα , for all xIA ∈ . 

Q.E.D. 

 

Remark 3: According to the above proposition, for any fuzzy set xIA ∈ , xIA ∈  is close 

if and only if ( ) AA =α . That is, the fuzzy topological space induced by α  is the 



 - 108 - 

collection of { }XIA:A ∈=τ αα . On the other hand, xIA ∈  is open if and only if 

( ) AA =α . That is, the fuzzy topological space induced by α  is the collection of 

{ }XIA:A ∈=τ αα . According to Liu and Luo (1997), the family of all the fuzzy 

topologies on X is one-one corresponding with the family of all interior and closure 

operators, respectively. But it seems that these two operators only define two fuzzy 

topologies separately, and they do not yet cohere with each other.  

 

Remark 4: The results in proposition 7.2 allow us to define a new fuzzy topological 

space. Indeed, a fuzzy topological space ( )δ,I x  on X satisfies the conditions (a) 0, 1∈ δ ; 

(b) if A, B∈ δ , then A ∧ B∈ δ , (c) let { }Ji:A i ∈ ⊂ δ , where J is an index set, then 

iJi
A

∈
∨ ∈ δ . The elements in δ  are called open elements and the elements in the 

complement of T are called closed elements. The result in proposition 7.2(i) allows (a) to 

be defined, proposition 7.2(viii) allows (b) to be defined, and proposition 7.2(ix) allows 

(c) to be defined. Moreover, 7.2(v) makes the interior and closure operators coherent with 

each other. We will give a process and proof in proposition 7.5 such that these two 

operators actually defined a coherent fuzzy topological space. 

 

Remark 5: Pascali and Ajmal (1997) also defined two similar operators, interior and 

closure operators. In their definitions, these two operators may not further define a 

coherent fuzzy topology, and they give a necessary and sufficient condition for these two 

operators to be coherent with each other. Those are the necessary and sufficient 

conditions for these two operators to define an identical fuzzy topological space. 

 

Remark 6: The α -cut operators are not necessary defining a fuzzy topological spaces 

(Pascali and Ajmal, 1997).  

 

Definition 7.4: For and 01 >α≥ , define { }xIA:A ∈=τ αα  and { }xIA:A ∈=τ αα , 

which the former set is closed while the later set is open. In the previous chapters, we use 

the notations oA  and A  to denote the open set and closed respectively. Here, since the 
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open set and closed are dependent on the α  cutting. Therefore, αA  and αA  are the open 

set and closed which are induced by interior and closure operators respectively. 

 

Proposition 7.5: The triple tuple ( )α−
α ττ 1,,X  is a fts, where ατ  is the open sets and 

α−τ1  is the closed sets which satisfy ( ) ( ) α−

α =
1cc AA , i.e. the complement of ατ  is the 

collection of closed sets. This proposition shows how combine these two α  cutting 

and then from a fuzzy topology. 

Proof: From the result in proposition 7.3, we get the three axioms of fuzzy topological 

space. 

(1) α
α− == 0001  and α

α− == 1111  show that 0, 1 are both elements of ατ  and α−τ1 .  

(2) ( ) ( )αΛ∈αΛ∈
∧=∧ iiii

AA , where Λ  is finite, shows that the finite intersection of δ  is 

also in δ . 

(3) Finally, ( ) ( )αΛ∈αΛ∈
∨=∨ iiii

AA  shows that the union of δ  is also in δ . 

Q.E.D. 

 

Proposition 7.6: Let A, B and Ai ( Λ∈i ) be fuzzy sets of Ix. Then the following hold for 

all [ ]1,0∈α ; 

(i) A is open if and only if the ordinary set ( ){ }0xA:xS >≥α=  is empty if 

and only if  either ( ) α>xA  or ( ) 0xA = , for all Xx ∈ . 

(ii) ( ) α≤xA , for all Xx ∈ , if and only if A has empty interior. 

(iii) A is closed if and only if the ordinary set ( ){ }α−≥>= 1xA1:xS  is empty 

iff either ( ) 1xA =  or ( ) α<xA . 

Proof:  

(i): A is open if and only if α= AA  if and only if ( ) ( )xAxA α=  for all Xx ∈  if and 

only if the ordinary set ( ){ }0xA:xS >≥α=  is empty if and only if either 

( ) α>xA  or ( ) 0xA = , for all Xx ∈ . 

(ii): Trivial. 

(iii): By definition. 
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Q.E.D. 

 

So far, we have achieved our first stage, in which we defined two operators, one the 

interior and the other the closure operator. The two operators cohere with each other. The 

first entry of the triple ( )α−
α ττ 1,,X  index is the base set, the second entry index is the 

close set and the third entry index is the open set. By proposition 7.3(v), we get the 

manipulation of the interior and closure operator. 

 

Remark 7: The fuzzy line and fuzzy point may have a non-empty interior. For ordinary 

topological space, as we know that points and lines in two-dimensional space have an 

empty interior, when talking about topological relations, this has caused confusion in the 

past. Therefore, we should treat these cases carefully. For the new fuzzy topological 

space, the following example tells us that we do not need to worry about such cases. The 

main reason for this is that this fuzzy topological space is defined by leveling only. Here, 

we do not consider the neighborhood structure at the same level. We only talk about the 

leveling neighborhood structure. In this case, even with regard to a point or a line 

segment with a membership function, the interior is still non-empty. The following is an 

example.  

 

Example 1: Let 
4
1

=α  and define a fuzzy line [ ]1,0R:L 2 →  by 

   ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<<=−−

≤<=+

=

otherwise0

1y,x
2
1andyxifyx2

2
1y,x0andyxifyx

y,xL . 

Then ( )
⎭
⎬
⎫

⎩
⎨
⎧ <<

8
7y,x

8
1:y,x  is the interior of L (see Figure 7.10). 
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Proposition 7.7: If ( ) ( ) 1xAxA1 <=α− , then ( ) ( ) ( )xAxA cc =α . 

Proof: ( ) ( ) 1xAxA1 <=α−  ⇒  ( ) α−<< 1xA0  ⇒  ( ) α>xAc  ⇒  ( ) ( ) ( )xAxA cc =α . 

Q.E.D. 

 

Proposition 7.8: If ( ) ( ) 0xAxA >=α , then ( ) ( ) ( )xAxA c1c =
α− . 

Proof: ( ) 0xA >α  ⇒  ( ) α>xA  ⇒  ( ) α−<− 1xA1  ⇒  ( ) α−< 1xAc  ⇒  

( ) ( ) ( )xAxA c1c =
α− . 

Q.E.D. 

 

 

7.2 Fuzzy boundary and the intersection theory 

In ordinary topological space, when we define a topological space, the boundary of a set 

A is defined as the intersection of the closure of A with the closure of the complement of 

A. That is, ( )oco AAA ∧=∂ . On the other hand, it has an equivalent definition; that is, 
oAAA −=∂ . Unfortunately, it is no longer true in fuzzy topology (Liu and Lao, 1997; 

Tang and Kainz, 2002; Wu and Zheng, 1991). However, to be consistent with the 

previous studies, we adopt the former as the definition of fuzzy boundary. 

 

R2 

Figure 7.10(a): The fuzzy line L in R2. 

Membership value 

1 

4
1  

L 

R2 

Figure 7.10(b): The fuzzy line in R2 with a non-empty 
interior Lα. 

Membership value 

1 

4
1  

Lα 
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Definition 7.9 (Fuzzy boundary): For 01 >α> , define the boundary of a fuzzy set A as 

( ) α−α− ∧=∂
1c1 AAA . 

 

Proposition 7.10: ( )c1 AAA α
α− ∧=∂ . 

Proof: By proposition 7.2(v).  

Q.E.D. 

 

Proposition 7.11: ( ) 0xA =∂  if and only if ( ) 1xA =  or ( ) 0xA = . Hence φ=∂A  iff A is 

a crisp set. 

Proof: ( ) 0xA =∂  ⇔  if ( ) 0xA1 =α−  or ( ) ( ) 0xA c =α  ⇔  A(x)  = 0 or ( ) 1xA =α  ⇔  

A(x)  = 0  or ( ) 1xA = . 

φ=∂A  ⇔  ( ) 0xA =∂  for all Xx ∈  ⇔  A(x)  = 0  or ( ) 1xA =  for all Xx ∈  ⇔  A is a 

crisp set. 

Q.E.D. 

 

Proposition 7.12: If 
2
1

<α , then ( ) α−<∂ 1xA . 

Proof: As 
2
1

<α  ⇒  α−<α 1 . 

If ( ) α−≥α− 1xA1  ⇒  ( ) α−≥ 1xA  ⇒  ( ) α−<α≤− 1xA1  ⇒  ( ) α−< 1xAc  ⇒  

( ) ( ) ( ) α−<=
α− 1xAxA c1c . 

If ( ) ( ) α−≥
α− 1xA 1c  ⇒  ( ) α−≥ 1xAc  ⇒  ( ) α−≥− 1xA1  ⇒  ( ) α−<α≤ 1xA  ⇒  

( ) α−<α− 1xA1 . 

Q.E.D. 

 

Remark 8: Form proposition 7.12, when α−<α 1  (or 
2
1

<α ), we can see that the fuzzy 

value of the boundary is less than one. Figure 7.11(a) shows that when α−<α 1 , the 
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value of the boundary is less than α . But for α−>α 1 , the fuzzy value of the boundary 

may be one (see Figure 7.11(b)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 7.13: If 
2
11 ≥α> , then the meet of the interior and the interior of the 

complement is empty, i.e. ( ) φ=∧ αα
cAA . 

Proof: ( ) 0xA ≠α  if and only if ( ) α>xA , ⇒  ( ) α−<− 1xA1  ⇒  ( ) α≤α−< 1xAc  ⇒  

( ) ( ) 0xAc =α . 

Q.E.D. 

 

Proposition 7.14: ( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc . 

α 

A∂  

1 − α 1 − α 

A 

α 

Figure 7.11(a): The fuzzy boundary of A for 
2
1

<α  

1 

Height 

0 

1 

Height 

0 

1 − α 

A 

α 

1 − α 

α 

A∂  
1 

Height 

0 

1 

Height 

0 

Figure 7.11(b): The fuzzy boundary of A for 
2
1

>α  
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Proof: If ( ) 0xA ≠α  ⇒  ( ) α>xA  ⇒  ( ) α−<− 1xA1  ⇒  ( ) α−< 1xAc  ⇒  

( ) ( ) α−<
α− 1xA 1c  ⇒  ( )( )( ) α−<∧∧

α−α−
α 1xAAA 1c1  ⇒  ( )( ) α−<∂∧α 1xAA . 

The other statement is similar. 

Q.E.D. 

 

Remark 9: From propositions 7.13 and 7.14, we can see that in fuzzy topological space, 

fuzzy set A XI∈  can be decomposed into three components, interior ( αA ), boundary 

( A∂ ), and exterior ( ( )α
cA ) and that they are not disjointed. Only the interior and exterior 

are disjointed (i.e., ( ) φ=∧ αα
cAA ). The intersections of the interior and boundary, and 

the exterior and boundary are bounded above by α−1 . That is, ( )( ) α−<∂∧α 1xAA  and 

( )( )( ) α−<∂∧α 1xAAc . The former approaches (Cohn and Gotts, 1996; Clementini and 

Di Felice, 1996; Tang and Kainz, 2002) assume that such intersections are empty. This is 

one way in which our result is different from them. Figure 7.12 illustrates the supported 

structure of the relations between the interior, boundary, and exterior. 
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Before giving a real data example, let us first give a simple example to illustrate the 

change in relationships between the interior and boundary with different values of α . In 

this example, we can see that when a small value of α  is chosen, large values of the 

intersection (interior with boundary) will obtain. On the other hand, when a large value of 

α  is chosen, the intersection will have small values (interior with boundary). 

 

Fuzzy set A in a space 

Boundary of A 
Interior of A 

Exterior of A 

Relation between the interior and 
boundary 

Relation between the exterior and 
boundary 

Relation between the interior and 
exterior 

Figure 7.12: Relations between the interior, boundary, and exterior 
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Example 2: Define a fuzzy set [ ]1,0R:A 2 →  by 

( ) ( )
⎪
⎩

⎪
⎨

⎧

≤+≤−−

<+

=
otherwise0

2yx5.0ifyxexp
5.0yxif1

y,xA 2222

22

.  

Then ( ) ( )
⎪
⎩

⎪
⎨

⎧

≤+≤−−−

<+

=
otherwise1

2yx5.0ifyxexp1
5.0yxif0

y,xA 2222

22

c . 

 

For 3.0=α  (see Figure 7.13(a)), 

Interior 

( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

−≤+≤−−

<+

=
otherwise0

3.0lnyx5.0ifyxexp
5.0yxif1

y,xA 2222

22

3.0  

Boundary 
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

⎪
⎩

⎪
⎨

⎧

−<+<−−−−

−≤+≤−−

=∧=∂
otherwise0

3.0lnyx5.0lnifyxexp1
5.0lnyx5.0ifyxexp

y,xAAy,xA 2222

2222

c
3.0

7.0

 

For 6.0=α  (see Figure 7.13(b)), 
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Figure 7.13(a): If a small value is given for α , we get a large value for the intersection 
of the interior and boundary 
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Figure 7.13(b): If a large value is given for α , we get a smaller value for the 
intersection of interior and boundary 

When a large value is chosen 
for α, the intersection of the 
interior and boundary is empty. 
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7.3 Example of the calculation of interior and boundary 

For a general fuzzy topological space, even if we have the membership function of a 

fuzzy set, we only get the abstract definitions of interior, boundary, and closure rather the 

than formula for computing them. With these definitions, we cannot practically use these 

abstract definitions for topological calculations, or for other applications. For the fuzzy 

topological space induced by these two operators, the interior operator and closure 

operator are defined based on formulae. That is, if we have the formula of a fuzzy set, 

then the interior and closure of this fuzzy set can be computed by using the natural 

definitions of these two operators. Hence, the other parts that included the boundary and 

exterior can be computed directly. In this section, we try to demonstrate how to compute 

the interior, closure, and boundary of spatial objects for real GIS data, by using an 

example.  

 

7.3.1 Introduction 

Mikania micrantha (see Figure 7.14) has caused serious problems for plants. It is an 

exotic plant commonly found in the Hong Kong countryside, and its fast-growing 

characteristic poses a serious threat to local plants. With no natural enemies in Hong 

Kong, it grows very quickly, covering the trees and preventing them from absorbing 

sufficient quantities of sunlight, and competing with other plants for water and nutrients. 

This eventually leads to the death of the host trees, which has happened in many areas in 

Hong Kong (Shi, Dai and Liu, 2003). 
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7.3.2 The objectives of this study 

The aim of this study is to determine the level of the effect of each area affected by 

Mikania micrantha, based on infrared photos. Each area affected by Mikania micrantha 

is digitized and the size is recorded. The level of any area affected by Mikania micrantha 

is marked by a percentage level within the interval [0, 1]. Then, for a particular α , we try 

to determine the interior, closure, and boundary of each area affected by Mikania 

micrantha. For the interior, if the value is closer to 1, this means that the effect is high in 

relation to the overall affected area. If the value is closer to zero, this means that the 

effect is low in relation to the overall affected areas. 

The following are the objectives of this study: 

(ii) To detect the areas affected by Mikania micrantha using the aerial photo 

interpretation-based approach. 

(iii) To classify the fuzzy interior, boundary, and exterior of the areas affected 

by Mikania micrantha using the new model. 

 

 

 

 

Figure 7.14: Mikania micrantha in Hong Kong 
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7.3.3 Methodology 

The Mikania micrantha areas shown in an aerial photo are available from the previous 

study. Some of the analytical and statistical results from that study can also be used for 

this study. 

(i) Each aerial photo is viewed as a fuzzy topological space. 

(ii) Each area affected by Mikania micrantha in the aerial photo is viewed as a 

fuzzy set/point in the fuzzy topological space. 

(iii) The size of each area affected by Mikania micrantha is used to calculate the 

fuzzy value of the fuzzy sets.  

(iv) The fuzzy value of each area affected by Mikania micrantha is defined as: 

( )
( )

⎪⎩

⎪
⎨

⎧ >
∗
•

otherwise0

0
log
logif

)areaaffectedofareaTotallog(
)areaaffectedcertainofArealog(

, which is a well-

defined mapping from the interval ),1[ ∞  to the interval  

[0, 1]. 

(v) The fuzzy interior and boundary will be computed for α equal to  

0.3, 0.45, and 0.6, respectively. 

 

7.3.4 Results 

Each Mikania micrantha area has an identity number and its boundary has been digitized 

on the aerial photos. The blue polygons with identity numbers (see Figure 7.15) are the 

areas affected by the Mikania micrantha. Table 7.1 shows the size of each area affected 

by Mikania micrantha on an aerial photo. 
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ID  Area (m2) ID Area (m2) ID Area (m2) 
1 7.97 19 60.5 37 195.46 
2 8.17 20 61.97 38 265.48 
3 8.8 21 63.86 39 293.35 
4 10.23 22 73.64 40 312.6 
5 10.37 23 73.83 41 315.02 
6 15.32 24 76.67 42 343.49 
7 17.09 25 77.1 43 349.76 
8 17.52 26 82.68 44 388.28 
9 24.75 27 85.58 45 401.55 
10 25.12 28 87.16 46 403.61 
11 28 29 93.8 47 498.05 
12 31.69 30 104.38 48 564.57 
13 31.92 31 105.35 49 629.68 
14 36.75 32 135.05 50 774.58 
15 37,83 33 142.95 51 786.1 
16 42.46 34 155.6 52 855.94 
17 53.36 35 184.86 53 1014.44 
18 57.1 36 192.21   
    Total 10713.58 
    Average 202.14 

Figure 7.15: The polygons of the areas affected by Mikania micrantha 

Table 7.1: The size of each area affected by Mikania micrantha 
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       α = 0.3 α = 0.3 α = 0.3 α = 0.45  α = 0.45 α = 0.45 α = 0.6 α = 0.6 α = 0.6 
ID AREA (sq.m) Fuzzy Value exterior interior boundary exterior interior  boundary exterior interior boundary 
1 7.97 0.22 0.78 0.00 0.22 0.78 0.00 0.22 0.78 0.00 0.22 
2 8.17 0.23 0.77 0.00 0.23 0.77 0.00 0.23 0.77 0.00 0.23 
3 8.80 0.23 0.77 0.00 0.23 0.77 0.00 0.23 0.77 0.00 0.23 
4 10.23 0.25 0.75 0.00 0.25 0.75 0.00 0.25 0.75 0.00 0.25 
5 10.37 0.25 0.75 0.00 0.25 0.75 0.00 0.25 0.75 0.00 0.25 
6 15.32 0.29 0.71 0.00 0.29 0.71 0.00 0.29 0.71 0.00 0.29 
7 17.09 0.31 0.69 0.31 0.31 0.69 0.00 0.31 0.69 0.00 0.31 
8 17.52 0.31 0.69 0.31 0.31 0.69 0.00 0.31 0.69 0.00 0.31 
9 24.75 0.35 0.65 0.35 0.35 0.65 0.00 0.35 0.65 0.00 0.35 
10 25.12 0.35 0.65 0.35 0.35 0.65 0.00 0.35 0.65 0.00 0.35 
11 28.00 0.36 0.64 0.36 0.36 0.64 0.00 0.36 0.64 0.00 0.36 
12 31.69 0.37 0.63 0.37 0.37 0.63 0.00 0.37 0.63 0.00 0.37 
13 31.92 0.37 0.63 0.37 0.37 0.63 0.00 0.37 0.63 0.00 0.37 
14 36.75 0.39 0.61 0.39 0.39 0.61 0.00 0.39 0.61 0.00 0.39 
15 37.83 0.39 0.61 0.39 0.39 0.61 0.00 0.39 0.61 0.00 0.39 
16 42.46 0.40 0.60 0.40 0.40 0.60 0.00 0.40 0 0.00 1.00 
17 53.36 0.43 0.57 0.43 0.43 0.57 0.00 0.43 0 0.00 1.00 
18 57.10 0.44 0.56 0.44 0.44 0.56 0.00 0.44 0 0.00 1.00 
19 60.50 0.44 0.56 0.44 0.44 0.56 0.00 0.44 0 0.00 1.00 
20 61.97 0.44 0.56 0.44 0.44 0.56 0.00 0.44 0 0.00 1.00 
21 63.86 0.45 0.55 0.45 0.45 0.55 0.45 0.45 0 0.00 1.00 
22 73.64 0.46 0.54 0.46 0.46 0.54 0.46 0.46 0 0.00 1.00 
23 73.83 0.46 0.54 0.46 0.46 0.54 0.46 0.46 0 0.00 1.00 
24 76.67 0.47 0.53 0.47 0.47 0.53 0.47 0.47 0 0.00 1.00 
25 77.10 0.47 0.53 0.47 0.47 0.53 0.47 0.47 0 0.00 1.00 
26 82.68 0.48 0.52 0.48 0.48 0.52 0.48 0.48 0 0.00 1.00 
27 85.58 0.48 0.52 0.48 0.48 0.52 0.48 0.48 0 0.00 1.00 
28 87.16 0.48 0.52 0.48 0.48 0.52 0.48 0.48 0 0.00 1.00 
29 93.80 0.49 0.51 0.49 0.49 0.51 0.49 0.49 0 0.00 1.00 
30 104.38 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0 0.00 1.00 
31 105.35 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0 0.00 1.00 
32 135.05 0.53 0.47 0.53 0.47 0.47 0.53 0.47 0 0.00 1.00 
33 142.95 0.53 0.47 0.53 0.47 0.47 0.53 0.47 0 0.00 1.00 
34 155.60 0.54 0.46 0.54 0.46 0.46 0.54 0.46 0 0.00 1.00 
35 184.86 0.56 0.44 0.56 0.44 0 0.56 0.44 0 0.00 1.00 
36 192.21 0.57 0.43 0.57 0.43 0 0.57 0.43 0 0.00 1.00 
37 195.46 0.57 0.43 0.57 0.43 0 0.57 0.43 0 0.00 1.00 
38 265.48 0.60 0.40 0.60 0.40 0 0.60 0.40 0 0.00 1.00 
39 293.35 0.61 0.39 0.61 0.39 0 0.61 0.39 0 0.61 0.39 
40 312.60 0.62 0.38 0.62 0.38 0 0.62 0.38 0 0.62 0.38 
41 315.02 0.62 0.38 0.62 0.38 0 0.62 0.38 0 0.62 0.38 
42 343.49 0.63 0.37 0.63 0.37 0 0.63 0.37 0 0.63 0.37 
43 349.76 0.63 0.37 0.63 0.37 0 0.63 0.37 0 0.63 0.37 
44 388.28 0.64 0.36 0.64 0.36 0 0.64 0.36 0 0.64 0.36 
45 401.55 0.65 0.35 0.65 0.35 0 0.65 0.35 0 0.65 0.35 
46 403.61 0.65 0.35 0.65 0.35 0 0.65 0.35 0 0.65 0.35 
47 498.05 0.67 0.33 0.67 0.33 0 0.67 0.33 0 0.67 0.33 
48 564.57 0.68 0.32 0.68 0.32 0 0.68 0.32 0 0.68 0.32 
49 629.68 0.69 0.31 0.69 0.31 0 0.69 0.31 0 0.69 0.31 
50 774.58 0.72 0 0.72 0.28 0 0.72 0.28 0 0.72 0.28 
51 786.10 0.72 0 0.72 0.28 0 0.72 0.28 0 0.72 0.28 
52 855.94 0.73 0 0.73 0.27 0 0.73 0.27 0 0.73 0.27 
53 1014.44 0.75 0 0.75 0.25 0 0.75 0.25 0 0.75 0.25 

Table 7.2: The values of the fuzzy exterior, fuzzy interior, and fuzzy boundary with different values of α  



 - 123 - 

 
 
Table 7.2 shows that for different α , the values of the fuzzy exterior, fuzzy interior, and 

fuzzy boundary are different. From the table, we can see that the larger the value of α , 

the smaller the size of the interior. When 3.0=α , ID numbers greater than 6 have non-

zero values; when 45.0=α , ID numbers greater than 20 have non-zero values; when 

6.0=α , ID numbers greater than 38 have non-zero values. These facts show that the 

relation between α  and the size of the closure are directly proportional, while the relation 

between α  and the size of interior are inversely proportional. Actually, this new model 

can be used to classify the fuzzy interior, boundary, and exterior of fuzzy spatial objects. 

Classifying the fuzzy interior, boundary, and exterior of the areas affected by Mikania 

micrantha in this chapter is a potential application in GIS. 

 

 

7.4 Summary 

Topological relations between indeterminate boundaries have been investigated for 

several years. Based on the 9-intersection, Cohn and Gotts (1996) give 46 topological 

relations between two regions with indeterminate boundaries while Clementini and Di 

Felice give 44 topological relations between two regions with indeterminate boundaries. 

Those models can only give a conceptual definition of topological relations. It is because 

their models are based on a general fuzzy topological space. Even we have the 

membership function of a fuzzy set, we only get the abstract definitions of interior, 

boundary and closure. But the membership functions of interior, boundary and closure 

cannot be implemented in a computer. For the fuzzy topological space induced by these 

two operators, as interior operator and closure operator are defined based on algorithms. 

That is if we have the formula of a fuzzy set, then interior and closure of this fuzzy set 

can be computed by using the natural definitions of these two operators. Hence, the other 

parts that included boundary and exterior can be computed directly.  

 

7.4.1 Discussion on the newly developed fuzzy topological model 

The computational fuzzy topological model introduced in this chapter provides a solution 

to quantitatively compute the topological relations between spatial objects. This is a step 
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ahead of the topological models developed in the past. This model not only provides 

conceptual definitions, but also quantitative descriptions of the topological relations 

between spatial objects.  

 

Based on a general fuzzy topological space, even with the formula of the membership 

function of a fuzzy set, we can only obtain abstract definitions of the interior, boundary, 

and closure. However, the explicit membership functions of the interior, boundary, and 

closure cannot be obtained. On the other hand, the fuzzy topological space induced by 

these two operators (interior operator and closure operator) is defined based on 

algorithms. As a result, if we have the membership function (or formula) of a fuzzy set, 

then the interior and closure of this fuzzy set can be computed by using the natural 

definitions of these two operators. Hence, the boundary and exterior can be computed 

directly.  

 

The structure of a general fuzzy topological space is still very abstract, while the structure 

of the induced fuzzy topological space, ( )α−
α ττ 1,,X , in this chapter is relatively 

straightforward. The simple fuzzy topological space can actually enrich information in 

GIS, which includes classifying fuzzy spatial objects, error control, calculating fuzzy 

topological relations, and so forth. 

 

Geometrically, GIS features can be classified as point, line, and polygon. In ordinary 

topological space, the point and line in two-dimensional space have an empty interior, 

and the 9-intersection model may not fit the case of point and line topological relations 

(Egenhofer and Franzosa, 1991). Therefore, we need to treat their topological relation 

separately. Both the fuzzy point and fuzzy line in fuzzy two-dimensional space may have 

a non-empty interior (see example 1 in Figure 7.10). As a result, the 9-intersection model 

can be directly applied to the cases of fuzzy point and fuzzy line modeling. 

 

When applying fuzzy topology in GIS, it is inappropriate to assume that the membership 

values of the interior is equal to one and the membership values of boundary is between 0 
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and 1 exclusively. Indeed, when 
2
1

>α , the interior value may not be one and the 

boundary value may be one (see Remark 8). 

 

The former approaches (Cohn and Gotts, 1996; Smith, 1996; Tang and Kainz, 2002) have 

introduced the concept of fuzzy topology into GIS. We can thus apply the computational 

fuzzy topological space to calculate the interior, boundary, and exterior of fuzzy spatial 

objects. An example of classifying the fuzzy interior, boundary, and exterior of the areas 

affected by Mikania micrantha is provided in this chapter. Moreover, this topological 

space is a computable fuzzy topological space and the fuzzy theory can be applied 

directly. As a result, the developed theory and the practical operation are linked very 

closely. Therefore, the potential applications of fuzzy topological space, presented in this 

chapter, are very wide. For, example, Liu, et al. (2005) applied fuzzy topological space 

for image segmentation and classification.  

 

GIS is used to model, retrieve, and analyze spatial objects with the inherent structure in 

space. Some of these inherent structures actually can be described by topological 

structures (Egenhofer and Franzosa, 1991). Originally, GIS was designed based on the 

assumption that the measurements on spatial objects in GIS are error free. However, this 

assumption may not always be true due to the vagueness/ fuzziness of spatial objects. For 

example, uncertainty among the boundary region between urban and rural areas is 

difficult to handle by traditional GIS. Fuzzy topological space can potentially be used to 

describe such inherent structures in GIS. 

 

Fuzzy topological space is dependent on the α used in leveling cuts. Different values of α 

generate different fuzzy topologies and may have different topological structures. 

Therefore, we can generate suitable fuzzy topological space by adjusting the value of 

α; the generated fuzzy topological space can thus match the cases of the application 

concerned. Moreover, different values of α  can provide a multi-directional spatial 

analysis in GIS. For example, different values of α  provide different values of interior, 

boundary, and exterior. An optimal value of α  can be obtained by investigating these 
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fuzzy topologies. More information can be generated for spatial queries by applying 

fuzzy topology.  

 

7.4.2 Concluding remarks 

In this chapter, we presented a research outcome – computational fuzzy topological 

space, which is based on the interior operator and closure operator and they are further 

defined as a coherent fuzzy topological space – where the complement of the open set is 

the closed set and vice versa. Here, the open set and closed set are defined by the interior 

and closure operators – two level cuts. The elementary components of fuzzy topological 

space for spatial objects – interior, boundary, and exterior – are thus able to be computed 

based on computational fuzzy topological space. Furthermore, this research outcome 

provides a new dimension in studies of topological relations between spatial objects. 

 

Topological relations between spatial objects with indeterminate boundaries have been 

investigated for several years. The existing models, such as the 9-intersection, can only 

provide conceptual definitions and qualitative description on topological relations. On the 

other hand, the computational fuzzy topological space induced by the interior operator 

and closure operator in this study provides a solution to practically compute the values of 

topological relations, and thus can easily be implemented in a computer environment. 

That is, if we have the formula of the membership function of a fuzzy set, the interior and 

closure of this fuzzy set can be computed by using the natural definitions of these two 

operators. As a result, we not only can obtain information on the fuzzy topological 

relations between two objects (such as the value of the interior, boundary, and exterior), 

but also a quantitative level of these topological relations (such as the total number of 

topological relations between simple fuzzy regions) can also be provided based on the 

computational fuzzy topological space developed in this study. 

 

Fuzzy topological relations between uncertain objects can be used for fuzzy spatial 

queries, fuzzy spatial analyzes, and other questions, just as topological relations between 

spatial objects are used for spatial queries and spatial analyses. The existing topological 

models, such as the 9-intersection model and other models on topological relations, can 
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thus be practically implemented in a GIS and used for computing fuzzy topologies, based 

on the computational fuzzy topological space solution developed in this study.   
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CHAPTER EIGHT 

COMPUTING THE FUZZY TOPOLOGICAL RELATIONS OF SPATIAL 

OBJECTS BASED ON INDUCED FUZZY TOPOLOGICAL SPACE 

 

Topological relations between spatial objects are fundamental information used in GIS, 

along with positional and attribute information. Information on topological relations can 

be used for spatial queries, spatial analyses, data quality control (e.g., checking for 

topological consistency), and others. For modeling the topological relations between 

spatial objects, the concepts of a bound on the intersection of the boundary and interior, 

and the boundary and exterior are defined in this chapter based on the newly developed 

computational fuzzy topological space. Furthermore, the qualitative measures for the 

intersections are specified based on the α-cut induced fuzzy topology, which are 

( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc .  Specifically, the following areas are 

covered:  (a) the homeomorphic invariants of the fuzzy topological space are proposed; 

and (b) the connectivity of the newly developed fuzzy topology is defined. The work of 

providing fuzzy topological relations between simple fuzzy spatial objects will be 

presented in chapter 9. 
 

 

8.1 Preserving properties of computational fuzzy topological space 

The properties of topological spaces that are preserved under homeomorphic mappings 

are called the topological invariants of the spaces. To study the topological relations, we 

need to first investigate the properties of a fuzzy mapping, especially homeomorphic 

mapping. The topological relations are invariants under homeomorphic mappings. With 

these, we can thus guarantee the properties that will remain unchanged in a GIS 

transformation, such as the maintenance of topological consistency when digitizing a map 

or transferring a map from a system to another system.  

 

In the coming two sections, we would like to develop the preserving properties of the 

computational fuzzy topological space and the connectivity of this fuzzy topological 

space in GIS. The main objective of this section is to prove the open and closed sets that 
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are preserved by fuzzy mapping and fuzzy reverse mapping. Furthermore, the 

connectivity of a fuzzy topological space is elementary in any study of the topological 

relations between spatial objects in GIS. Therefore, the properties of connection in the 

new induced fuzzy topological space will be studied in section 8.2. Recall that let ( )δ,IX , 

( )μ,IY be I-fts’s, ( ) ( )μ→δ→ ,I,I:f YX  is called an I-fuzzy homeomorphism, if it is 

bijective, continuous, and open. 

 

Proposition 8.1: Let YX IB,IA ∈∈ , let ( )δ,IX , ( )μ,IY  be I-fts’s induced by the 

interior operator and closure operator, ( ) ( )μ→δ→ ,I,I:f YX  and ( ) ( )δ→μ← ,I,I:f XY . 

The following then holds: 

(i) ( ) ( )[ ] α
→

α
→ = AfAf  

(ii) ( ) ( )[ ] α−→α−→ =
11 AfAf  

(iii) ( ) ( )[ ] α
←

α
← = BfBf  

(iv) ( ) ( )[ ] α−←α−← =
11 BfBf  

Proof: 

(i) For all Yy ∈ , if ( ){ } φ=− yf 1 , the result is obvious as both sides are zero. 

Suppose ( ){ } φ≠− yf 1 . 

If there exists ( ){ }yfx 1
o

−∈  such that ( ) α>oxA , then ( )( )
( ){ } ( )xAyAf
yfx 1−∈

α
→ ∨= α>  

and ( )[ ] ( )
( ){ } ( )xAyAf
yfx 1−∈

α
→ ∨= α> . 

If for all ( ){ }yfx 1−∈  such that ( ) α≤xA , then ( )( ) 0yAf =α
→  and  

( )( )
( ){ } ( )xAyAf
yfx 1−∈

→ ∨= α≤ , i.e. ( )[ ] ( ) 0yAf =α
→ . 

Thus, we have ( )( ) ( )[ ] ( )yAfyAf α
→

α
→ =  for all Yy ∈ .  

Hence, ( ) ( )[ ] α
→

α
→ = AfAf . 

   

(ii) For all Yy ∈ , if ( ){ } φ=− yf 1 , the result is obvious as both sides are zero. 

Suppose ( ){ } φ≠− yf 1 . 
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If there exists ( ){ }yfx 1
o

−∈  such that ( ) α−≥ 1xA o , then 

  ( )( )
( ){ } ( )xAyAf 1

yfx

1
1

α−

∈

α−→
−

∨= = 1 and  ( )[ ] ( )
( ){ } ( )xAyAf
yfx

1

1−∈

α−→ ∨= = 1. 

If for all ( ){ }yfx 1−∈  such that ( ) α−< 1xA , then 

  ( )( )yAf 1 α−→  
( ){ } ( )xA1

yfx 1

α−

∈ −
∨=  

     
( ){ } ( )xA
yfx 1−∈

∨=  

    
( )

( ){ } ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

α−=∨∨

α−<∨
=

−∈
1xAifxA

1xAif1

yfx 1

 

( )( )yAf →  
( ){ } ( )xA
yfx 1−∈

∨=  

    
( )

( ){ } ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

α−=∨∨

α−<∨
=

−∈
1xAifxA

1xAif1

yfx 1

. 

Hence, ( )[ ] ( )yAf 1 α−→

( )

( ){ } ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

α−=∨∨

α−<∨
=

−∈
1xAifxA

1xAif1

yfx 1

. 

 

(iii) ( )( )xBf α
←  ( )( )xfBα=

( )( ) ( )( )
( )( )⎩

⎨
⎧

α≤
α>

=
xfBif0
xfBifxfB

. 

 ( )[ ] ( )xBf α
←  

( )( ) ( )( )
( )( )⎪⎩

⎪
⎨
⎧

α≤

α>
=

←

←←

xBfif0
xBfifxBf

 

   
( )( ) ( )( )

( )( )⎩
⎨
⎧

α≤
α>

=
xfBif0
xfBifxfB

 

 

(iv) ( )( )xBf 1 α−←  ( )( )xfB1 α−=
( )( )

( )( ) ( )( )⎩
⎨
⎧

α−<
α−≥

=
1xfBifxfB
1xfBif1
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 ( )[ ] ( )xBf 1 α−←  
( )( )

( )( ) ( )( )⎪⎩

⎪
⎨
⎧

α−<

α−≥
=

←←

←

1xBfifxBf
1xBfif1

 

   
( )( )

( )( ) ( )( )⎩
⎨
⎧

α−<
α−≥

=
1xfBifxfB
1xfBif1

 

Q.E.D. 

 

Remark 1: This proposition can be interpreted as both →f  and ←f  presevering open and 

closed sets. It means that ( ) ( )μ→δ→ ,I,I:f YX  is bi-continuous. 

 

Example 1: This example verifies that ( ) ( )[ ] α
→

α
→ = AfAf  by a simple mapping. 

Define { } { }43214321 b,b,b,bYa,a,a,aX:f =→=  by ( ) 11 baf = , ( ) 12 baf = , 

( ) 33 baf = , ( ) 44 baf = . Suppose XIA ∈  such that ( )
4
3aA 1 = , ( )

4
1aA 2 = , ( )

2
1aA 3 = , 

( ) 1aA 4 = . Let 7.0=α .  

By definition, ( )( ) ( ) ( )
4
3aAaAbAf 211 =∨=→ , ( )( ) 0bAf 2 =→ , ( )( )

2
1bAf 3 =→  and 

( )( ) 1bAf 4 =→ . Hence, ( )[ ] ( )
4
3bAf 17.0 =→ , ( )[ ] ( ) 0bAf 27.0 =→ , ( )[ ] ( ) 0bAf 37.0 =→  and 

( )[ ] ( ) 1bAf 47.0 =→ . 

On the other hand, ( )
4
3aA 17.0 = , ( ) 0aA 27.0 = , ( ) 0aA 37.0 = , ( ) 1aA 47.0 = . Hence, 

( )( ) ( ) ( )
4
3aAaAbAf 27.017.017.0 =∨=→ , ( )( ) 0bAf 27.0 =→ , ( )( ) 0bAf 37.0 =→  and 

( )( ) 1bAf 47.0 =→ . 

Thus, we have ( )( ) ( )[ ] ( )yAfyAf α
→

α
→ =  for all Yy ∈ ; hence, ( ) ( )[ ] α

→
α

→ = AfAf . 

 

Theorem 8.2: Let YX IB,IA ∈∈ , let ( )δ,IX , ( )μ,IY  be I-fts’s induced by an interior 

operator and closure operator. Then,  ( ) ( )μ→δ→ ,I,I:f YX  is an I-fuzzy homeomorphism 

if and only if YX:f →  is a bijective mapping. 
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8.2 Connectivity of spatial objects in GIS based on fuzzy topological space 

Fuzzy topology can be applied to describe and analyze the structure of neighborhood and 

leveling of spaces. Connectivity is a preserving property of fuzzy topolgy. The usual 

definition of the connection of fuzzy subset, A, in fuzzy topological space is that A 

cannot be separated by two non-zero open or closed fuzzy sets, called open connected 

and closed connected, respectively. As the natural character of fuzzy topological space, 

this kind of connection also contains two types of structures – neighborhood and leveling, 

respectively. In GIS, the connectivity of spatial objects depends on the neighbourhood 

structure of the objects themselves, rather than on the leveling structure. Thus, the 

ordinary definition of the connection of fuzzy topological space may not be very suitable 

for describing relations between spatial objects in GIS. In RI , Figure 8.1 shows two 

spatial fuzzy objects in GIS that are considered to be connected. Figure 8.2 shows two 

spatial fuzzy objects in GIS that are considered to be disconnected. 
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Figure 8.1: Two examples of connected fuzzy spatial objects in R 
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Figure 8.2: Two examples of disconnected fuzzy spatial objects in R 
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As a result, it is necessary to develop a new definition of connectivity due to the fact that 

the existing definition of connectivity in fuzzy topological space is not applicable to GIS. 

The concept of connectivity in GIS is that whether the spatial object is connected to the 

other spatial object only in the sense of background space simply involves the concept of 

neighborhood rather than the concept leveling. Based on this understanding, among the 

two fuzzy spatial objects in Figure 8.1, one is fuzzy connected (the example of Figure 

8.1(a)) while the other is not fuzzy connected (the example 1 of Figure 8.1(b)). On the 

other hand, in GIS we often consider the connectivity based on its support sets. 

According to this, both examples of fuzzy spatial objects in Figure 8.1 are considered as 

connected in GIS. Based on this fact, the concept of connectivity in GIS should be 

defined based on the background topological space. 

 

The background set X also has its topology, therefore, we may let β  be a topology of X 

and ( )β,X  be this background topological space. Thus, we have two kinds of notations: 

(a) the fuzzy topological space ( )δ,I,X X ; and (b) its background topological space 

( )β,X . These two topologies may not be related. But under certain assumptions, there are 

many nice results about their relations (Martin, 1980; Liu and Luo, 1997; Luo, 1988).  

We denoted this topological space by ( )βδ,,I,X X . 

 

Definition 8.3 (support of A): Support(A) or Supp(A) is equal to the set 

( ){ }0xA:Xx >∈ . The closure of Supp(A) in background topological space is denoted 

by ( )ASupp . 

 

Definition 8.4 (supported connected fuzzy set): Let ( )δ,I,X X  be an I-fts and ( )β,X  be 

its background topological space, A, B XI∈ . A and B are called supported separated, if  

  ( ) ( ) ( ) ( ) φ=∩=∩ BSuppASuppBSuppASupp . 

A is called supported connected in ( )βδ,,I,X X , if there does not exist supported 

separated C, D { }0\IX∈  such that DCA ∨=  and ( ) ( ) ( )DSuppCSuppASupp ∪= .  
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Definition 8.5 (Supported connected component): Let ( )δ,I,X X  be an I-fts and ( )β,X  

be its background topological space, A XI∈ . A is called a supported connected 

component of ( )βδ,,I,X X , if A is a maximal supported connected subset in 

( )βδ,,I,X X ; i.e., if B XI∈  is a supported connected component and AB ≥ , then B = A. 

 

Proposition 8.6: Let ( )δ,I,X X  be an I-fts and ( )β,X  be its background topological 

space, A XI∈ . Every fuzzy point in A belongs to one and only one supported component 

of A. 

 

Proposition 8.7: Let ( )δ,I,X X  be an I-fts and ( )β,X  be its background topological 

space. Then, different supported components of ( )βδ,,I,X X  are separated. 

 

Theorem 8.8: Let ( )βδ,,I,X X  and ( )γμ,,I,Y Y  be two I-fuzzy topological spaces, 

YX:f →  an ordinary continuous mapping. If XIA ∈  is a supported connected fuzzy 

set, then ( )Af →  is also a supported connected fuzzy set. 

Proof: Suppose XIA ∈  is a supported connected fuzzy set. Since YX:f →  is 

continuous, f(Supp(A)) is connected. The next step is to prove that f(Supp(A)) = 

Supp( ( )Af → ). If this is true, we can conclude that ( )Af →  is a supported connected fuzzy 

set. But by definition, f(Supp(A)) = ( ) ( ){ }0xA:xf >  and 

( )( ) ( ){ } ( )
⎩
⎨
⎧ ∈∨

=
−

→

otherwise0
yfxifxA

yAf
1

. Thus, Supp( ( )Af → ) = ( ) ( ){ }0xA:xfy >∨=  

= ( ) ( ){ }0xA:xfy >= . 

Q.E.D. 

 

Remark 2: From Theorem 8.8, we can see that the supported connectivity of a fuzzy 

topological space ( )βδ,,I,X X  does not depend on the topology ( )δ,I,X X , but only on its 
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background topology ( )β,X . This makes it easy to model fuzzy topological relations in 

spatial querying and analysis.  

 

 

8.3 Modeling simple fuzzy objects in GIS 

We need to first model simple object in GIS before we can model the fuzzy topological 

relations between the objects. The basic simple objects in GIS may include simple points, 

simple line segments, and simple regions. In the crisp case, simple points, lines, and 

regions have been discussed widely (Egenhofer and Franzosa, 1991; Clementini and Di 

Felice, 1996). In the fuzzy case, Tang and Kainz (2002) have given a definition of a 

simple fuzzy region.  

 

In order to give a generic framework on the number of topological relations between 

these simple spatial objects; simple fuzzy points, simple fuzzy line segments, and simple 

fuzzy regions are defined as follows.  

 

Definition 8.9 (fuzzy point): An I-fuzzy point on X is an I-fuzzy subset X
a Ix ∈ , defined 

as: ( )
⎩
⎨
⎧ =

=
otherwise0

xyifa
yxa . 

 

Definition 8.10 (Crisp line segment in X): Let P and Q be two points in X. The line 

segment joining PQ is defined as the image of a map X]1,0[: →α  by 

( ) ( )PQtPt −+=α , where [0, 1] is a closed interval in R.  

 

Definition 8.11 (Crisp line in X): The line in X (or R2) can be described as an 

embedding of a connected interval from R to X (or R2), which does not have an 

intersection, i.e.: 
2R]1,0[: →α  (or X), 

where [0, 1] is a closed interval in R and ( ) ( )21 tt α≠α  for all 21 tt ≠ , [ ]1,0t,t 21 ∈ . 
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Definition 8.12 (Simple fuzzy line segment): The simple fuzzy line segment (L) is a 

fuzzy subset in X with  

(i) for any ( )1,0∈α , the fuzzy line αL  (the interior of fuzzy line segment L) is a 

supported connected line segment (i.e., a crisp line segment in the background 

topological space) in the background topological space and 

(ii) ( )α−
α ∧=∂ 1LLL  has at most two supported connected components. 

 

Definition 8.13 (Simple fuzzy line): A fuzzy subset in X is called a simple fuzzy line (L) 

if L is a supported connected line in the background topological space (i.e., a crisp line in 

the background topological space).  

 

Remark 3: Geometrically, GIS features can be classified as points, lines, and polygons. 

Actually, a simple fuzzy line segment is the basic element of a fuzzy line. Indeed, any 

fuzzy line can be represented by a composition of simple fuzzy line segments in GIS. 

Moreover, simple fuzzy points, simple fuzzy line segments, and simple fuzzy regions are 

defined and serve to model topological relations between spatial objects. Figure 8.3 

shows a simple fuzzy line segment while Figure 8.4 shows a non-simple fuzzy line 

segment. 
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Definition 8.14 (Fuzzy region in X): A fuzzy set A in X is called a fuzzy region if 

supp(A) has a non-empty interior in the background topological space. 

 

Definition 8.15 (Simple fuzzy region): A simple fuzzy region is a fuzzy region in X 

with  

(i) for any ( )1,0∈α , the fuzzy set αA  and ( )α−
α ∧=∂ 1AAA  are two supported 

connected regular bounded open sets in the background topological space. 

(ii) in the background topological space, any outward normal from Supp( αA ) 

must meet Supp( A∂ ) and have only one component.  

 

Remark 4: Figure 8.5 shows a simple fuzzy region, since for any ( )1,0∈α , the fuzzy set 

αA  and ( )α−
α ∧=∂ 1AAA  are two supported connected, regular bounded open sets in the 

background topological space. Any outward normal from Supp( αA ) must meet 

Supp( A∂ ) and have only one component. 

Figure 8.6 shows a non-simple fuzzy region, since for some ( )1,00 ∈α , the fuzzy set αA  

is not a supported connected set (which has two components). 

 

 

 

Figure 8.4: A non-simple fuzzy line segment 
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Proposition 8.16: A simple fuzzy set (region or line) is supported by a connected fuzzy 

set. 

Proof: If not, Supp(A) has two supported connected components. Let ∈1x Supp(A1) and 

∈2x Supp(A2) be these two supported connected components. 

Take ( ) ( ){ }21o xA,xAmin
2
1

=α ; then, ( )
o

ASupp α  has two supported connected 

components.            

Q.E.D. 

 

Proposition 8.17: Let ( )βδ,,I,X X  and ( )γμ,,I,Y Y  be two I-fuzzy spaces, YX:f →  

an ordinary continuous mapping. If XIA ∈  is simple fuzzy set, then ( )Af →  is also 

simple fuzzy set.          

Q.E.D. 

 

Α 

Height 

R2 
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8.4 Summary 

Fuzzy topological relations are elementary relations in studying the topological relations 

between spatial objects in GIS, especially for uncertain spatial objects in GIS. In this 

chapter, we presented a study on developing method for computing the fuzzy topological 

relations of spatial objects, based on the recently developed computational fuzzy 

topological space. Our contributions include the following: (a) proposing the 

homeomorphic invariants of the fuzzy topological space; (b) defining the connectivity 

based on the newly fuzzy topological space; and (c) modeling the simple fuzzy objects in 

GIS.  

 

The preserving properties and the connectivity of the newly developed fuzzy topological 

space, based on which the topological relations are invariants under homeomorphic 

mappings, were studied. With such a development, we can guarantee the unchanged 

properties in a GIS transformation, such as the maintenance of topological consistency in 

transferring a map from one system to another. 

 

Besides the above theoretical developments, we can start to study the number of 

topological relations between spatial objects. That is based on this work and we will 

focus on investigating the quantitatively topological relations in next chapter, i.e. 

topological relations among simple fuzzy region to simple fuzzy region; simple fuzzy 

regions to simple line segments, simple fuzzy regions to fuzzy points, simple fuzzy line 

segments to simple fuzzy line segments, and simple fuzzy line segments to fuzzy points. 
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CHAPTER NINE 

QUANTITATIVE FUZZY TOPOLOGICAL RELATIONS BETWEEN SIMPLE 

FUZZY OBJECTS 

 

In the practical application of GIS, except the region to region case, there are many other 

special cases, for example the topological relations between line and region. Moreover, as 

we mentioned before, point, line and region (polygon) are the basic elements in GIS. 

Therefore, modeling the topological relations between fuzzy region to fuzzy line, fuzzy 

region to fuzzy point, fuzzy line to fuzzy line, fuzzy line to fuzzy point are important. 

Therefore, the result of topological relations between (1) simple fuzzy regions; (2) simple 

fuzzy region to simple fuzzy line segment; (3) simple fuzzy region to simple fuzzy point; 

(4) simple fuzzy line segment to simple fuzzy line segment; (5) simple fuzzy line 

segment to simple fuzzy points; and (6) simple fuzzy point to simple fuzzy point in R2 

are presented in this chapter. Moreover, in this chapter, we have discovered that (a) the 

topological relations between simple fuzzy regions are 44; (b) the topological relations 

between simple fuzzy region to line segment are 16; (c) the topological relations between 

simple fuzzy line segments are 46; (d) 3 topological relations between simple fuzzy 

region to fuzzy point and simple fuzzy line segment to fuzzy point. These will form the 

basis of the full set topological relations between spatial objects. 

 

 

9.1 Quantitative fuzzy topological relations between simple fuzzy regions 

In this section, we now provide a method for determining fuzzy topological relations 

between spatial objects. The framework for quantify the spatial relations in the method 

for computing the quantitative fuzzy topological relations between spatial objects has 

been newly developed in this study of the nine-intersection model. The framework of the 

fuzzy topological relations between two objects A and B is defined as follows:  

( )
( )

( ) ( ) ( ) ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∧∧∂∧

∂∧∂∧∂∂∧

∧∧∂∧

ααααα

αα

ααααα

∫∫∫
∫∫∫
∫∫∫

dVBAdVBAdVBA

dVBAdVBAdVBA

dVBAdVBAdVBA

cc

X

c

X

c

X

c

XXX

c

XXX

. 
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First, we should explain the meaning of the notations dVBA
X αα ∧∫ and  

dVBA
X

∂∧∂∫  etc., which define the quantitative relations between spatial objects. 

Definition 9.1: For any two fuzzy spatial objects (fuzzy sets) A, B XI∈  , defined 

dVBA
X

∧∫ = 
( )

( )∫
∫

∨

∧

X

X

dxxBA

dxxBA
. 

The geometric meaning of dVBA
X

∧∫  is illustrated in Figure 9.1, which is the ratio of 

the area (or volume) of the meet of two fuzzy spatial objects to the join of two fuzzy 

spatial objects. In previously studying the topological relations between spatial objects, 

researchers (Egenhofer, 1991; Cohn and Gotts, 1996; Clementini and Di Felice, 1996; 

Smith, 1996; Shi and Guo, 1999; Tang and Kainz, 2002) used the intersection of sets to 

give quantitative relations. Here, we use volume ratio (the volume of the intersection to 

the volume of the meet of two fuzzy spatial objects (see Figure 9.1). Obviously, the 

former models can only give a local quantitative value (or Boolean value) at different 

points, while the method in this model can provide a global quantitative value to each 

spatial object.  
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Since for any spatial object A XI∈ , the three components, interior ( αA ), boundary ( A∂ ), 

and exterior ( ( )α
cA ) are not disjointed (see Figure 9.1), there is double counting of the 

integration. For example, dVBA
X αα ∧∫  and dVBA

X
∂∧∂∫  will be double counted 

on the part α∧∂ BA  and α∧∂ AB . But we have the bound of the overlapping part; that 

is, for any α , ( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc ; and for
2
1

≥α , 

( ) φ=∧ αα
cAA , respectively. This means that we can control the size of the overlapping 

between the interior to the boundary and the exterior to the boundary by choosing a large 

value for α . We can see that if the value of α  is very close to zero, the uncertainty is 

very large, while if the value of α  is very close to one, the uncertainty is very small. 

Figure 9.2 shows how the sizes of ( )AASupp ∂∧α  and ( )( )AASupp c ∂∧α  change. That 

is, when a larger α  is chosen, smaller values of AA ∂∧α  and ( ) AAc ∂∧α  are obtained; 

when a smaller α  is chosen, larger values of AA ∂∧α  and ( ) AAc ∂∧α  are obtained. 

Object A: 
Object B: 

A B 

Figure 9.1: The geometric meaning of integrations 

x 
Legend: 
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Moreover, if the topology is discrete, for a suitable α , the uncertainty of spatial objects 

can be controlled to zero. Indeed, an α  is chosen such that 0AA =∂∧α  and 

( ) 0AA c =∂∧α . Therefore, in modeling topological relations between simple spatial 

regions, we may neglect the effect of AA ∂∧α  and ( ) AAc ∂∧α . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identification by a 33×  integration matrix  

 

By directly using the value of zero and non-zero, the 33×  integration matrix 

( )
( )

( ) ( ) ( ) ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∧∧∂∧

∂∧∂∧∂∂∧

∧∧∂∧

ααααα

αα

ααααα

∫∫∫
∫∫∫
∫∫∫

dVBAdVBAdVBA

dVBAdVBAdVBA

dVBAdVBAdVBA

cc

X

c

X

c

X

c

XXX

c

XXX

  gives a total of 

51229 =  different cases of topological relations between two simple fuzzy regions. 

However, for a simple fuzzy region in R2, it is not possible for all of these topological 

relations to occur. 

A∂  Aα 

( )α
cA  

AA ∂∧α  

( ) AAc ∂∧α

A∂  Aβ 

( )β
cA  

AA ∂∧β  

( ) AAc ∂∧β

Figure 9.2: When a smaller α is chosen, larger AA ∂∧α  and ( ) AAc ∂∧α  are obtained, as indicated in figure 9.2 

(a); when a larger α is chosen, smaller AA ∂∧α  and ( ) AAc ∂∧α  are obtained, as indicated in figure 9.2 (b). 
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(i) Let A and B be two simple fuzzy regions in R2. The 33×  integration matrix 

will then satisfy the following conditions. Due to the fact that simple fuzzy 

region are bounded, ( ) ( ) dVBA cc

X αα ∧∫  is non-zero for all cases. 

(ii) Each part of A ( αA , A∂  and ( )α
cA ) must intersect with at least one part of 

B ( αB , B∂  and ( )α
cB ), and vice versa. 

(iii) If dVBA
X αα ∧∫  and ( ) dVBA c

X αα ∧∫  are non-zero, then 

dVBA
X

∂∧α∫  must be non-zero, and vice versa. 

(iv) If dVBA
X

∂∧∂∫  is zero, then either ( ) dVBAc

X
∂∧α∫  or 

( ) dVBA c

X α∧∂∫  is non-zero. 

(v) If both dVBA
X

∂∧α∫  and dVBA
X α∧∂∫  are non-zero, then 

dVBA
X

∂∧∂∫  must be non-zero. 

(vi) If ( ) dVBA c

X αα ∧∫  is non-zero, then ( ) dVBA c

X α∧∂∫  must be non-zero, 

and vice versa. 

(vii) If dVBA
X αα ∧∫  is zero and dVBA

X α∧∂∫  is non-zero, then 

dVBA
X

∂∧∂∫  must be non-zero, and vice versa. 

(viii) If dVBA
X αα ∧∫  and dVBA

X
∂∧α∫  are non-zero, then dVBA

X α∧∂∫  

and dVBA
X

∂∧∂∫  are non-zero, and vice versa. 

(ix) If dVBA
X αα ∧∫  and dVBA

X
∂∧α∫  are zero, then ( ) dVBA c

X αα ∧∫  

and ( ) dVBA c

X α∧∂∫  are non-zero, and vice versa. 

(x) If dVBA
X α∧∂∫  and ( ) dVBA c

X α∧∂∫  are non-zero, then 

dVBA
X

∂∧∂∫  must be non-zero, and vice versa. 
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(xi) If dVBA
X αα ∧∫  and dVBA

X α∧∂∫  are non-zero, then 

( ) dVBAc

X αα ∧∫  is non-zero, and vice versa. 

 

Based on the above conditions, 44 relations between simple fuzzy regions in R2 have 

been identified by using the 33×  integration matrix. This result is similar to the two 

results from previous studies (Clementini and Di Felice, 1996) and (Tang and Kainz, 

2002). However the method used here is totally different. In fact, the method proposed in 

this study is a generalization of the previous models. This will be discussed in detail in 

the coming section. The 44 relations between two simple fuzzy regions are listed in Table 

9.1, which include the value of the matrix, the support view, and membership vale of the 

fuzzy topological relations between two simple fuzzy regions.  

The topological relations among simple fuzzy regions to simple line segments, simple 

fuzzy regions to fuzzy points, simple fuzzy line segments to simple fuzzy line segments 

and simple fuzzy line segments to fuzzy points will be also investigated and reported in 

this chapter.  

 

Table 9.1: The 44 relations between two simple fuzzy regions in R2 
 
 
 
 
 
 
 
 
 
Matrix Illustration Support view  Illustration in Membership value  
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⎟
⎟
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9.2 Multiple integrations 

In fuzzy topology, because the memberships functions in R2 are involving two variables. 

In computing their integration ratios, we need to consider whether it is volume integration 

or line integration.  In this section, we will review the concept of volume integration and 

line integration.  

 

9.2.1 Surface Integrals in R3  

Let Aμ  : [ ]1,0R 2 →  be a fuzzy membership function of fuzzy set A. In GIS, point, line, 

region are three elementary elements. We first let ( )y,xAμ  be a fuzzy region in R2, then 

fuzzy set A with membership function ( )y,xAμ  can be thought as a graph of the surface 

S giving by graphing ( )y,xAμ  in R3 (see Figure 9.3). 

 
Figure 9.3: The concept of surface integration 

 

To calculate the volume of a fuzzy set in R2, we actually need to calculate the volume of 

the region under S (and above the xy-plane). 

R

d
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The double integral of a function of two variables over a rectangular region R is defined 

as: 

  ( ) ( )∑∑∫∫
= =∞→

Δμ=μ
n

i

m

j
jiAm,n

R
A Ay,xlimdAy,x

1 1
, 

where ( )jiA y,xμ  is the membership height of each rectangular region. 

 

9.2.2 Line Integrals 

Let ( )y,xLμ  be a fuzzy line in R2, then fuzzy set L  with membership function ( )y,xLμ  

can be thought as a graph of a smooth curve C  giving by graphing ( )y,xLμ  in R3 (see 

Figure 9.4). 

Then the line integral of  ( )y,xLμ  along a smooth curve C is denoted by, ( )∫μ
C

L dsy,x , 

where ds is the line integral of Lμ  with respect to arc length. Let the parametric equation 

of the smooth curve C  be ( ) ( )( )ty,txLμ , then the line integral of  ( )y,xLμ  along a 

smooth curve C can be written as ( ) ( )( )∫ ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛μ

b

a
L dt

dt
dy

dt
dxty,tx

22

 or 

( ) ( )( ) ( )∫ γμ
b

a
L dtt'ty,tx , where ( ) ( )( )ay,axP =  and ( ) ( )( )by,bxQ =  are the two end 

point of a smooth curve C  and ( )t'γ  is the magnitude or norm of ( )t'γ  (see Figure 9.4). 

An basic property of line integrals is that ( ) ( )∫∫
−

μ=μ
C

L
C

L dsy,xdsy,x , which means we 

can change the direction of a line integral with respect to arc length and will not change 

the value of the integral. 

 

 

 

 

 

 x 

 

Q 

P 

Figure 9.4: A smooth curve C  

y 
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A piecewise smooth curve ( )y,xLμ  is a curve that can be written as the union of a finite 

number of smooth curves, 1C , …, nC  where the end point of iC  is the starting point of 

1+iC . Figure 9.5 is an illustration of a piecewise smooth curve. 

 

 

 

 

 

 

 

 

 

The line integral over a piecewise smooth curves can be evaluated by the formula 

( ) ( ) ( ) ( )∫∫∫∫ μ++μ+μ=μ
nC

L
C

L
C

L
C

L dsy,x...dsy,xdsy,xdsy,x
21

. 

 

 

9.3 Quantitative fuzzy topological relations between other simple fuzzy objects 

Based on the definitions of simple fuzzy line segment in the previous section, and a 

further definition of quantitative method in this study, we now provide a method for 

determining fuzzy topological relations between simple fuzzy region to simple fuzzy 

region, simple fuzzy region to simple fuzzy line segment, simple fuzzy region to simple 

fuzzy point, simple fuzzy line segment to simple fuzzy line segment, simple fuzzy line 

segment to simple fuzzy points and simple fuzzy point to simple fuzzy point respectively. 

The case of simple fuzzy region to simple fuzzy region has been studied previously. Here 

we concentrate on the others and actually there are several technique problems need to 

overcome due to the problem of intersection integrals. The 33×  integration model 

( )
( )

( ) ( ) ( ) ( ) ⎟
⎟
⎟
⎟
⎟
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⎞

⎜
⎜
⎜
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between spatial fuzzy 

x 

y 
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Figure 9.5: A piecewise smooth curve C  
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objects is designed for fuzzy region to region. Where for any two fuzzy spatial objects 

(fuzzy sets) A, B XI∈  , dVBA
X

∧∫ = 
( )( )

( )( )∫
∫

∨

∧

X

X

dxxBA

dxxBA
. 

But in the case of fuzzy region to fuzzy line, the integration format should be changed.  

Indeed, for example, if L is a fuzzy line, B is a fuzzy region. Then BL ∨  is a fuzzy 

region, therefore, the integration in R2 should be surface integral. On the other hand, 

BL ∧  is a fuzzy line, therefore, the integration should be line integral. In this case, the 

integration ration should be 
( )( )

( )( )∫
∫

∨

∧

X

X

dVxBL

dsxBL
, where ds  is the line integral of ( )xBL ∧  

with respect to arc length and dV  is the surface integral of  ( )xBL ∨  with respect to the 

surface. With no confusion, we still use the same notation to denote the model, that is 

( )
( )

( ) ( ) ( ) ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∧∧∂∧

∂∧∂∧∂∂∧

∧∧∂∧

ααααα

αα

ααααα

∫∫∫
∫∫∫
∫∫∫

dVBAdVBAdVBA

dVBAdVBAdVBA

dVBAdVBAdVBA

cc

X

c

X

c

X

c

XXX

c

XXX

.   

By using the 33×  integration model, topological relations between simple fuzzy region 

to simple fuzzy line segment, simple fuzzy region to simple fuzzy point, simple fuzzy 

line segment to simple fuzzy line segment, simple fuzzy line segment to simple fuzzy 

points and simple fuzzy point to simple fuzzy point in R2 are identified (see Table 9.2, 

Table 9.3 and Table 9.4). 
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Table 9.2: The 16 relations between simple fuzzy region and simple fuzzy line segment in R2 

 
 
 
 
 
 
  Fuzzy region     Fuzzy line segment  

Interior Interior 
Boundary Boundary 

Legend: 
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Table 9.3: The 46 topological relations between two simple fuzzy line segments. 

 
 
 
 
 
     Fuzzy line segment  

Interior 
Boundary 

Legend: 
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Table 9.2 shows that there are 16 relations between simple fuzzy region and simple fuzzy 

line segment in R2. Table 9.3 shows that there are 46 topological relations between two 

simple fuzzy line segments and Table 9.4 shows that there are 3 relations between simple 

fuzzy region to fuzzy point in R2 and 3 relations between simple fuzzy line segment to 

fuzzy point in R2. 

 

 

9.4 A comparison with the existing models 

In dealing with fuzzy spatial objects, Cohn and Gotts (1996) proposed the egg-yolk 

model and suggested using two concentric sub-regions, indicating the degree of 

“membership” in a vague / fuzzy region, where “yolk” represents the precise part and 

“egg” represents the vague/ fuzzy part of the region. Based on the Region Connection 

Table 9.4: 3 relations between simple fuzzy region to fuzzy point in R2  
and 3 relations between simple fuzzy line segment to fuzzy point in R2. 

 
 
 
 
 
     Fuzzy line segment   Fuzzy point 

Interior 
Boundar

Legend: 
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Calculus (RCC) theory (Randell, 1992), eight basic relations can be defined. They are: 

DC (Disconnected), EC (Externally Connected), PO (Partially Overlapping), TPP 

(Tangential Proper Part), NTPP (Non-tangential Proper Part), EQ (Equal), PPI (Proper 

Part Inverse), and TPPI (Tangential Proper Part Inverse), respectively (see Table 9.5). 
 
 

 
PO(A, B) 

 

 
TPP(A, B) 

 

 
NTTP(A, B) 

 
EQ(A, B) 

    

 
NTPPI(A, B) 

 

 
TPPI(A, B) 

 
EC(A, B) 

 
DC(A, B) 

    

 
 

The egg-yolk model is an extension of the RCC theory into the vague / fuzzy region. A 

total of 46 relations can be identified (Cohn and Gotts, 1996). 

 

In dealing with spatial objects with 

indeterminate boundaries, based on 

Egenhofer’s nine-intersection model 

⎟
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⎟
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∩∩∂∩
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cccco

co

ocooo

BABABA
BABABA

BABABA
, 

Clementini and Di Felice (1996) 

defined a region with a broad boundary, 

by using two simple regions. This broad 

boundary is denoted by AΔ . More precisely, the broad boundary is a simple connected 

subset of 2R  with a hole. The shaded region in Figure 9.6 is region A with a broad 

boundary. Based on the empty and non-empty invariance, Clementini and Di Felice’s 

AΔ  

oA  

Figure 9.6: Region A with a broad boundary 

Table 9.5: RCC relations between two regions 

 

A B 
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Algebraic model, 
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, gave a total of 44 relations 

between two spatial regions with a broad boundary. 

 

To investigate the topological relations between fuzzy regions, Tang et al (2002, 2003a 

and 2003b) decomposed a fuzzy set A into several topological parts, as follows: 

(i) the core, ⊕A , which is the subset of the closure fuzzy set A with 

( )( ) 0xAA c =∧ −− , for all Xx ∈ ; 

(ii) the fringe, Al , which is the subset of the closure fuzzy set A with 

( )( ) 0xAA c >∧ −− , for all Xx ∈ ; 

(iii) the outer, =A , the complement of the support of the closure of fuzzy set A.  

By using the nine-intersection matrix, 
⎟
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llll
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, there are a 

total 44 relations between two simply fuzzy regions.  

 

Different from the general topology, when decomposing a fuzzy set into interior, 

boundary, and exterior, the intersecting of two (interior and boundary or boundary and 

exterior or interior and exterior) may not be empty. Actually, Tang 

(http://www.itc.nl/library/Papers_2004/phd/xinming.pdf) considered this by introducing 

more topological invariants. Here, we created a computational fuzzy topological space 

and calculate this intersecting values and obtain a bounded which are 

( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc . The existing models did not take this 

fact into consideration, which may lead to unexpected effects in modeling topological 

relations between spatial objects. In our research, we not only considered this factor, but 

also gave a significant bound on the overlapping parts that actually can be controlled by 

varying the level cutting.  

 

http://www.itc.nl/library/Papers_2004/phd/xinming.pdf
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Furthermore, the relations between objects have been quantified based on the ratio 

between integrations, which varies between 0 and 1. The advantage of this method not 

only provides the existence of the intersection between two parts of objects, but also 

provides a quantitative value for this intersection. This is a step further to the existing 

methods, which can only provide topological relations by giving a value of 1 (with 

intersection) or 0 (without intersection).  

 

With a different method and based on the 33×  integration matrix, there are 44 relations 

between the simple fuzzy regions in R2. This result agrees with two previous results 

(Clementini and Di Felice, 1996) and (Tang et al, 2002, 2003a and 2003b).  

Other new findings are on the number of topological relations, there are 16 relations 

between simple fuzzy region and simple fuzzy line segment in R2; 46 topological 

relations between two simple fuzzy line segments; three relations between simple fuzzy 

region to fuzzy point in R2 and three relations between simple fuzzy line segment to 

fuzzy point in R2. 

The following table is the summary number of relations identified based on the existing 

models and our newly developed models in this study 

 

Table 2: A comparison of number of topological relations based on several models 
 

Authors Region-Region Region-Line Region-Point Line-Line Line-Point 

Our Model 44 16 3 46 3 

Tang and Kainz’s 

Model 

44 30 3 97 3 

Cohn and Gotts’s 

Model 

46 Nil Nil Nil Nil 

Clementini and Di 

Felice’ Model 

44 Nil Nil Nil Nil 
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From the above table, we can see the number of topological relations between simple 

fuzzy regions from this study is similar to the results from previous studies (Clementini 

and Di Felice, 1996) and (Tang and Kainz, 2002). However, the method used in this 

study is different from the early studies. Furthermore, the findings on regions to line and 

line to line relations are different from Tang’s model. This is due to the different 

definition on fuzzy line. 

 

 

9.5 Summary 

In this chapter, we presented a research outcome on modeling topological relations 

between simple fuzzy regions, simple fuzzy region to simple fuzzy line segment, simple 

fuzzy region to simple fuzzy point, simple fuzzy line segment to simple fuzzy line 

segment, simple fuzzy line segment to simple fuzzy points and simple fuzzy point to 

simple fuzzy point in R2, which the intersection concepts and the integration method are 

applied. 

 

Since the intersection of the interior and boundary or boundary and exterior or interior 

and exterior may not be empty, there is double counting of the integration. In this chapter, 

we have carefully studied the relations among the interior, boundary and exterior and 

hence have achieved an approximation of these overlapping parts. That is, for any α  the 

values of the intersection of the interior and boundary or boundary and exterior are 

always bounded by α−1 , where α  is the value of the level cutting. Based on a previous 

finding that the intersection of interior and exterior is empty when the value of the level 

cutting is greater than 0.5, we can control the uncertainty (the size of the overlap) 

between the interior and exterior to the boundary by controlling the value of α . This is a 

new finding, and never has been mentioned in previous studies on topological relations. 

Moreover, the value of α  provides an accurate control of the modeling of topological 

relations between spatial objects in GIS. 

 

For computing the topological relations between spatial objects, the intersection concepts 

and the integration method are applied, and a computational nine-intersection model is 
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thus developed. The computational topological relations between spatial objects are 

defined based on the ratio of the area/ volume of the meet to the join of two fuzzy spatial 

objects. This is a step ahead of the existing topological relation models: from the 

conceptual definition of topological relations to the computable definition of topological 

relations. As a result, the quantitative value of topological relations can be calculated. 

With a different method and based on the 33×  integration matrix, there area 44 relations 

between the simple fuzzy regions in R2. This result agrees with two previous results 

(Clementini and Di Felice, 1996) and (Tang and Kainz, 2002).  

Another new findings are on the number of topological relations, there are 16 relations 

between simple fuzzy region and simple fuzzy line segment in R2; 46 topological 

relations between two simple fuzzy line segments; 3 relations between simple fuzzy 

region to fuzzy point in R2 and 3 relations between simple fuzzy line segment to fuzzy 

point in R2. 
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CHAPTER TEN 

CONCLUSIONS AND DISCUSSIONS 

 

10.1 Summary 

Boundaries of certain objects may be vague or fuzzy and the classical set theory is based 

on a crisp boundary. Therefore, it may lead to information loss and inaccuracy in GIS 

analysis by using the classical set theory. Fuzzy theory provided an alternative solution 

and gives us many information in fuzzy related representation in GIS. 

 

The main topic of this thesis is concentrated on modeling topological relations between 

spatial objects in GIS. Several issues of theory in modeling topological relations between 

spatial objects are discussed which including (a) given the definition of topological 

relations and the definition of fuzzy GIS elements; (b) proved that topological relations 

between spatial objects are shape dependent; (c) modeled topological relations between 

spatial objects by using the concepts of quasi-coincidence and quasi-difference in fuzzy 

topological theory; (d) created computable fuzzy topological space in order to practically 

implement these conceptual topological relations in a computer environment. 

 

The first issue is on giving a new definition of the topological relations between two 

spatial objects which actually is an extended model for topological relations between two 

spatial objects. For this, we have found that the number of topological relations between 

the two sets is not as simple as finite; actually, it is infinite and can be approximated by a 

sequence of matrices. Moreover, as point, line and region (polygon) are the basic 

elements in GIS, we define them based on a fuzzy set.  

 

Topology is normally considered as independent of shape of spatial objects. This may not 

necessarily be true in describing relations between spatial objects in GIS. In relating to 

this, we presented a proof that the topological relations between spatial objects are 

dependent on the shape of spatial objects. That is, that the topological relations of non-

convex sets cannot be deformed to the topological relations of convex sets. The 

significant theoretical value of this finding that topology of spatial objects are shape 
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dependent. This indicates that when we want to describe topological relations between 

spatial objects in GIS, both topology and the shape of objects need to be considered.  

 

There are two theoretical issues on modeling topological relations between spatial objects.  

The first one is using the concepts of quasi-coincidence and quasi-difference to 

distinguish the topological relations between fuzzy objects and to indicate the effect of 

one fuzzy object on another in a fuzzy topological space. Secondly, based on the 

developed computational fuzzy topological space, methods for computing the fuzzy 

topological relations of spatial objects are proposed in this issue. For modeling the 

topological relations between spatial objects, the concepts of a bound on the intersection 

of the boundary and interior, and the boundary and exterior are defined based on the 

computational fuzzy topological space. Furthermore, the qualitative measures for the 

intersections are specified based on the α-cut induced fuzzy topological space, which are 

( )( ) α−<∂∧α 1xAA  and ( )( )( ) α−<∂∧α 1xAAc . For computing the topological 

relations between spatial objects, the intersection concept and the integration method are 

applied, and a computational 9-intersection model is thus developed. The computational 

topological relations between spatial objects are defined based on the ratio of the 

area/volume of the meet of two fuzzy spatial objects to the join of two fuzzy spatial 

objects. This is a step ahead of the existing topological relations models: from a 

conceptual definition of topological relations to the computable definition of topological 

relations. As a result, the quantitative values of topological relations can be calculated.   

 

 

10.2 Conclusions and Discussions 

The following are the general conclusions and discussions of this research: 

 

(1) Many researches have discussed the topological relations between crisp spatial 

objects. However, there exist two common insufficiencies in the existing models. 

Firstly, most of the existing intersection models mention that a line segment in 

two-dimensional (2D) space have non-empty interior. But actually, a line should 

have an empty interior in 2D space, while it has non-empty interior in one-
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dimensional (1D) space. Therefore, when talking about the intersection relations, 

we should consider what space it belongs to. Secondly, there are many topological 

properties and it is insufficient to simply consider the empty and non-empty 

invariants.  

(2) We have given a mathematical proof to show that the number of components in 

the intersection of the interior of two convex spatial regions in two-dimensional 

space is at most two, while the number of components can be more than one if 

they are not convex. Therefore, the topological relations between spatial objects 

cannot be modeled by convex sets only, since the number of components in 

spatial objects is an invariant property of topological relations. 

(3) A framework for describing the topological relations between two fuzzy objects 

was then presented. This framework was based on quasi-coincidence and quasi-

difference. By applying these two concepts, we can obtain a seven-tupled 

topological relation and this seven-tupled relation can be immediately used in GIS 

to (a) describe fuzzy topological relations between two objects and, (b) to 

quantify the effect of one fuzzy object to the other fuzzy objects, which is a step 

further from the traditional fuzzy topological models, which only provide 

descriptions. The proposed solution can describe the topological relations between 

any two fuzzy objects without any constraints. 

(4) The computational fuzzy topological model introduced which provides a solution 

to quantitatively compute the topological relations between spatial objects. This is 

a step ahead of the topological models developed in the past. This model not only 

provides conceptual definitions, but also quantitative descriptions of the 

topological relations between spatial objects.  

(5) The former approaches (Cohn and Gotts, 1996; Smith, 1996; Tang and Kainz, 

2002) have introduced the concept of fuzzy topology into GIS. Moreover, Tang 

(http://www.itc.nl/library/Papers_2004/phd/xinming.pdf) has contributed on 

modeling the topological relations between fuzzy objects. We can thus apply the 

computational fuzzy topological space to calculate the interior, boundary, and 

exterior of fuzzy spatial objects. An example of classifying the fuzzy interior, 

boundary, and exterior of the areas affected by Mikania micrantha is provided. 

http://www.itc.nl/library/Papers_2004/phd/xinming.pdf
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Moreover, this topology is a computable fuzzy topology and the fuzzy theory can 

be applied directly. As a result, the developed theory and the practical operation 

are linked closely. Therefore, the potential applications of fuzzy topology, 

presented in this chapter, are very wide.  

(6) Fuzzy topology is dependant on the α used in leveling cuts. Different values of α 

generate different fuzzy topologies and may have different topological structures. 

Therefore, we can generate a suitable fuzzy topological space by adjusting the 

value of α; the generated fuzzy topological space can thus match the cases of the 

application concerned. Moreover, different values of α  can provide a multi-

directional spatial analysis in GIS. For example, different values of α  provide 

different values of interior, boundary, and exterior. An optimal value of α  can be 

obtained by investigating these fuzzy topologies. Thus, more information can be 

generated for spatial queries by applying fuzzy topology.  

(7) As points, lines and polygons are fundamental elements for spatial objects in GIS, 

we have developed a method for computing fuzzy topological relations between 

simple fuzzy regions, between simple fuzzy regions and simple fuzzy line, and so 

forth, by applying the computational fuzzy topology that has been developed here. 

Thus, we have discovered that (a) the topological relations between simple fuzzy 

regions is 44, (b) the topological relations between simple fuzzy region to line 

segment are 16, (c) the topological relations between simple fuzzy line segments 

are 46, and (d) 3 topological relations between simple fuzzy region to fuzzy point 

and simple fuzzy line segment to fuzzy point. 

(8) Object in an image can be firstly treated as a fuzzy set in a fuzzy space. The fuzzy 

set (object) is then decomposed into three parts, the interior, boundary and 

exterior, which is based on the optimal threshold value and the distribution of the 

object. The interior represents the core of objects, the boundary represents the 

overlapping part of object and its background, the exterior represents the 

unwanted part. Finally, the parts boundary and interior of the object is combined 

by using the property of spatial connectivity which is developed in this thesis. 
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10.3 Contributions 

The main contributions of the thesis are follows: 

 

(1) Actually, many other topological properties, such as connectivity, compactness, 

first fundamental group and subspace topology, can help to distinguish the 

topological relations in the use of GIS. In this aspect, we have extended the 

topological relations between GIS objects by considering more topological 

properties that included connectivity and first fundamental group. Moreover, by 

considered such invariants we have obtained a model that the topological relations 

can be described by a sequence of matrices and this is an infinite sequence of 

matrices. The proposed model can be immediately applied on the design and 

implementation of a GIS, the forest-grass topological relations is an example. The 

proposed solution is able to represent the topological relations between any two 

arbitrary objects without holes and connected sets. 

(2) We present a proof that the topological relations between spatial objects depends 

on the shape of spatial objects. The significant theoretical value of this issue is on 

its findings that topology of spatial objects are shaped dependent. This indicates 

that when we want to describe topological relations between spatial objects in GIS, 

both topology and the shape of objects need to be considered. As a result, spatial 

data modeling, query and analysis based on the existing understanding of 

topology of spatial objects may need re-assessed. 

(3) In modeling topological relations between spatial object with concept of quasi-

coincidence and quasi-difference, (a) we have described the information on the 

overlapped part of two uncertain objects, (b) we have shown that the information 

on one fuzzy object is not affected by another fuzzy object by the concept of 

quasi-difference. 

(4) When applying fuzzy topology in GIS, it is inappropriate to assume that the 

membership values of the interior is equal to one and the membership values of 

boundary is between 0 and 1 exclusively. Indeed, when 
2
1

>α , the interior value 

may not be one and the boundary value may be one. 



 - 169 - 

(5) For modeling the topological relations between spatial objects, the concepts of a 

bound on the intersection of the boundary and interior, and the boundary and 

exterior are defined in this paper based on the computational fuzzy topology. 

Furthermore, the qualitative measures for the intersections are specified based on 

the α-cut induced fuzzy topological space, which are ( )( ) α−<∂∧α 1xAA  and 

( )( )( ) α−<∂∧α 1xAAc . Actually, Tang has considered these intersecting bounded 

by introducing more topological invariants 

(http://www.itc.nl/library/Papers_2004/phd/xinming.pdf). 

(6) Fuzzy topological relations between uncertain objects can be used for fuzzy 

spatial queries, fuzzy spatial analyses, and other questions. The existing 

topological models, such as the 9-intersection model and other models on 

topological relations, can thus be practically implemented in a GIS and used for 

computing fuzzy topologies, based on the computational fuzzy topology solution 

developed in this study. 

 

 

10.4 Further Research Work 

This thesis has contributed a theoretic framework for modeling fuzzy spatial objects by 

using fuzzy topological theory. There are several aspects that have been identified for 

future development.  

 

(1) In the aspect of GIS theory, we actually can do more. We may ask the question 

that how much of this preserved properties can be used in GIS? How can we 

apply these  theories in GIS? Moreover, what is the relations between the 

topological relations between spatial objects and the preserved properties? The 

fuzzy topology is a useful tool to develop theories in GIS.  

 

(2) In order to demonstrate the applicability of the proposed solutions for modeling 

fuzzy topological relations to practical GIS problems. The following are two 

practical examples, for which the developed theory can be applied. 

(i) Define town center of Hong Kong geographically 

http://www.itc.nl/library/Papers_2004/phd/xinming.pdf
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A GIS is used to model each of the key factors for a particular town's 

urban area, based on the collecting (population, number of retail, road 

network density and etc) data in each grid and each grid was assigned a 

fuzzy value. These values are then used to generate a surface that 

represented the fuzzy space of the study area. The modules were then 

overlaid to produce a so called “Town center” for the study area. This new 

urban classification will be developed based on the new developed fuzzy 

theory.  

(ii) Environmental modeling by using fuzzy topology 

In practice, since we cannot easily obtain the exact distribution of 

uncertainties of sensor observations, the uncertainty representation using 

fuzzy values is more flexible and intuitive in the light of the engineer's 

senses for many application areas. In the example, we try to first represent 

the uncertainties of geometric objects (trees, grasses, lake, the movement 

of birds and etc), then study the fuzzy relation among them so that we can 

understand the effect and relation of their activities.  

 

 

 

 

 

 



 - 171 - 

References 

1. Allen J.F., 1983, Maintaining knowledge about temporal intervals. 

Communications of the ACM 26(11): 832-843. 

2. Apostol, T. M., 1974: Mathematical Analysis. Addison-Wesley Publishing 

Company, Inc, Menlo Park, p492. 

3. Blakemore, M., 1984, Generalisation and error in spatial data bases. 

Cartographica, 21: pp. 131-139. 

4. Bredon, Glen E., 1993, Topology and Geometry. Springer, Berlin, 557p. 

5. Chang C.L. 1968, Fuzzy Topological Spaces. Journal of mathematical analysis 

and applications 24, pp. 182-190 (1968). 

6. Chen J., Li, C., Li, Z. and Gold, C. 2001, A Voronoi-based 9-intersection model 

for spatial relations. International Journal of Geographical Information Systems, 

Vol. 15, No.3, pp. 201-220. 

7. Clemmentini, E., and Di Felice, D.P., 1996, An algebraic model for spatial objects 

with indeterminate boundaries. Geographic Objects with Indeterminate 

Boundaries, Edited by Peter A. Burrough and Andrew U. Frank, Taylor & Francis, 

1996: pp. 155-169. 

8. Cohn, A.G. and Gotts, N. M., 1996, The ‘egg-yolk’ representation of regions with 

indeterminate boundaries. Geographic Objects with Indeterminate Boundaries, 

Edited by Peter A Burrough and Andrew U Frank, Taylor & Francis, 1996: pp. 

171-187. 

9. Egenhofer, M., 1989, A Formal Definition of Binary Topological Relations. 

Lecture Notes in Computer Science, Vol. 367, pp. 457-472, June 1989. 

10. Egenhofer, M., and Franzosa, R., 1991, Point-set topological spatial relations. 

International Journal of Geographical Information Systems, Vol. 5, No.2, pp. 

161-174. 

11. Kainz, W., Egenhofer, M. and I. Greasley, 1993, Modeling Spatial Relations and 

Operations with Partially Ordered Sets. International Journal of Geographical 

Information Systems Vol.7, No.3, pp. 215-229. 

12. Egenhofer, M., 1993, A Model for Detailed Binary Topological Relationships. 

Geomatica Vol. 47 No. 3&4, pp. 261-273. 



 - 172 - 

13. Egenhofer, M., Clemmentini, E., and Di Felice, D.P., 1994, Topological Relations 

between Regions with Holes. International Journal of Geographical Information 

Systems Vol. 8, No. 2, pp. 129-144. 

14. Egenhofer, M., and Mark, D., 1995, Modeling Conceptual Neighborhoods of 

Topological Line-Region Relations. International Journal of Geographical 

Information Systems Vol. 9, No. 5, pp 555-565. 

15. Leung K.T. and Chen L.C. Doris, Elementary set Theory, Hong Kong University 

Press 1967. 

16. Leung Y., Yan J., 1997, Point-in-Polygon Analysis Under Certainty and 

Uncertainty. GeoInformatica 1, pp. 93-114 (1997). 

17. Li, C., et al., 1999: Raster-based method or the generation of Voronoi diagrams 

for spatial entities. International Journal of Geographical Information Systems, 

1999, 13(3): 209. 

18. Li, Z., Zhao, R. and Chen, 2002, A Vornori-based spatial algebra for spatial 

relations. Progress In Natural Science, Vol. 12, No. 7, pp 528-536. 

19. Liu K.F. and Shi, W.Z., 2003: Analysis of topological relations between two sets. 

Proceedings of The 2nd International Symposium on Spatial Data Quality ‘03, pp. 

61-71. 

20. Liu K.F., Shi, W.Z. and Huang, C., 2004: Fuzzy Image processing method in GIS. 

Proceedings of the Greater China GIS Conference 2004, 9th-11th December 

2004, Hong Kong. 

21. Liu, K.F., and Shi, W.Z., 2005, A fuzzy topology for computing the interior, 

boundary, and exterior of spatial objects quantitatively in GIS, (submitted). 

22. Liu, K.F., and Shi, W.Z., 2005, Quantitative fuzzy topological relations of spatial 

objects based on induced fuzzy topology, Proceedings of the 4th International 

Symposium on Spatial Data Quality ‘05, pp. 37-49. 

23. Liu Y.M. and Luo M.K., 1997, Fuzzy Topology. World Scientific. 

24. Liu Y.M. and Luo M.K., 1998, Fuzzy Topology I: neighborhood structure of a 

fuzzy point and Moor-Smith convergence. Journal of Mathematical Analysis and 

Application, 76: 581-599. 



 - 173 - 

25. Luo, Mao-Kang, Paracompactness in fuzzy topological spaces, J. Math. Anal. 

Appl., 130 (1988), 1: 55-77. 

26. Martin, H.W., Weakly induced fuzzy topological spaces, J. Math. Anal. Appl., 78 

(1980), 634-639. 

27. Mark, D. and Egenhofer, M., 1994. Modeling Spatial Relations Between Lines 

and Regions: Combining Formal Mathematical Models and Human Subjects 

Testing.  

Cartography and Geographical Information Systems Vol. 21, No. 3, pp. 195-212. 

28. Michael F. Worboys, 1995, GIS: A computing perspective, pp. 97-144. Taylor 

and Francis. 

29. Noel A.C. Cressie, 1993: Statistics for spatial data. Wiley Inter-science. 

30. Pascali, E., Ajmal, N., 1997, Fuzzy topologies and a type of their decomposition. 

Rendiconti di Matematica, Serie VII, Vol. 17, Roma (1997), 305-328. 

31. Randell D.A., Cui Z., Cohn A.G. (1992), A spatial logic based on regions and 

connection. In: Kaufmann M., San Mateo (des) Proceedings 3rd international 

conference on knowledge representation and reasoning pp 165-176. 

32. Schneider M., 1999. Uncertainty management for spatial data in databases: fuzzy 

spatial data ty0pes. The 6th International Symposium on Advances in Spatial 

Databases (SDD), LNCS 1651, Springer Verlag, pp. 330-351. 

33. Shi, W.Z., and Guo, W., 1999, Topological relations between uncertainty spatial 

objects in three-dimensional space. Proceedings of International Symposium on 

Spatial Data Quality, July 1999, Hong Kong. pp. 487-495. 

34. Shi, W.Z., Dai E. and Liu C., 2003, Characteristics of Mikania micrantha on 

infrared air photo. 

35. Shi, W.Z. and K.F. Liu, 2004, Modeling fuzzy topological relations  

between uncertain objects in GIS, Photogrammetric Engineering and Remote 

Sensing (PE&RS), Vol. 70, No. 8, pp.921-930. 

36. Shi, W.Z. and K.F. Liu, 2005, Are topological relations dependent on the shape of 

spatial objects. Progress in Nature Science, Vol. 15, No. 11, November 2005. 

37. Shi, W.Z. and K.F. Liu, 2005, Computing the fuzzy topological relations of 

spatial objects based on induced fuzzy topology, (submitted). 



 - 174 - 

38. Smith, B., 1996, Mereotopology: A theory of parts and boundaries. Data & 

Knowledge Engineering, Vol. 20, pp. 287-303. 

39. Steven A. Gaal, Point set Topology. 1964, Academic Press, New York. 

40. Tang, X.M., and Kainz, W., 2002, Analysis of topological relations between 

fuzzy Regions in a general fuzzy topological space. Proceedings of the joint 

program of Spatial Data Handling (SDH)’ 02 and Canadian geometics 

conference, Ottawa, Canada. 

41. Tang, X.M. and Kainz W., 2003: Generation of fuzzy land cover objects. Edited 

Book of ’03 ISPRS Symposium, Hong Kong. 

42. Tang, X.M., Yu, F. and Kainz, W., 2003a: Topological relations between fuzzy 

regions in a special fuzzy topological spaces. Geography and Geoinformation 

Science (in Chinese), 19(2): pp 1-10. 

43. Tang, X.M., Kainz, W. and Yu, F., 2003b: Modelling of Fuzzy Spatial Objects 

and Topological Relations. Proceedings of The 2nd International Symposium on 

Spatial Data Quality ‘03, pp. 61-71. 

44. Tang, X.M., 2004: Modeling Fuzzy Spatial objects in Fuzzy Topological Spaces 

with Application to Land Cover Changes. PHD Dissertation, ITC publications, 

The Netherlands, 218pp. 

45. Tang, X.M., Kainz W, Fang Y., 2005. Reasoning about changes of land covers 

with fuzzy settings. International Journal of Remote Sensing 26 (14): 3025-3046. 

46. Wang F., Hall G.B. and Subaryono. Fuzzy information representation and 

processing in conventional GIS software: database design and application. 

International Journal of Geographical Information Systems, 1990, Vol.4, No.3, 

pp. 261-283. 

47. White, M.S., 1980, A survey of the mathematics of maps. In: Proceedings of Auto 

Carto IV 1: 82-96 

48. Winter, S., 1998, Distances for Uncertain Topological relations. In Craglia, Max 

(Ed.), Geographic information research: Trans- Atlantic Perspectives, pp. 449-

459. 



 - 175 - 

49. Winter, S., Uncertain topological relations between imprecise regions. 

International Journal of Geographical Information Science. 2000, vol., 14, No. 5, 

pp 411-430. 

50. Wong C. K., 1974, Fuzzy Points and Local Properties of Fuzzy Topology. 

Journal of mathematical analysis and applications 46, pp. 316-328 (1974). 

51. Wu G., Zheng C., 1991, Fuzzy boundary and characteristic properties of order-

homomorphisms. Fuzzy Sets and Systems 39 (1991), pp 329-337. 

52. Zadeh L.A., 1965, Fuzzy Sets. Information and Control 8, pp 338-353 (1965). 

53. http://www.centamap.com/cent/index.htm 

54. http://www.itc.nl/library/Papers_2004/phd/xinming.pdf. 

 

 

 

 

http://www.centamap.com/cent/index.htm
http://www.itc.nl/library/Papers_2004/phd/xinming.pdf

	theses_copyright_undertaking
	b19579573



