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Abstract

The continuous demand for electronic products is pushing the semiconductor industry to

deliver new and more advanced products at shorter time frames. These rapid developments

have partially been made possible with the continuous shrinking of transistors, also known

as Moore’s law. One of the problems with smaller transistors is that they are also more

susceptible to transient errors. These errors can affect the correct operation of electronic

equipment, and hence, their reliability. Especially, transient errors could turn out to be

fatal in safety-critical applications. Thus, it is natural to expect a higher level of reliability

in such safety-critical systems.

Reliability here refers to the systems’ ability to be available during adverse conditions.

Factors that prevent these systems from being available can be unintentional or intentional.

Unintentional factors that induce a fault include atmospheric radiations, harsh environ-

mental conditions or energized particles. Intentional factors are mainly due to the fact

that many Integrated Circuit (IC) design companies these days are fabless and they rely

on offshore foundries to manufacture their chips. These ICs could be maliciously altered by

rogue elements within the design and manufacturing chain, preventing such systems from

functioning correctly. Moreover, complex System-on-chips (SoCs) now include a wealth of

information that attackers try to extract to profit economically. This ranges from stealing

the Intellectual Property (IP) of the designs to secret encryption keys stored in the SoCs.

Thus, it is important that IC design seamlessly integrates fault tolerance techniques to mit-

igate faults induced due to unintentional factors with hardware security as a new design

parameter.

The main fault tolerance approaches have relied on building N-Modular Redundant sys-

tem (NMR) mainly at the Register Transfer Level (RTL). With the increase in logic density,

modern ICs are now complex System-on-Chips (SoCs). Thus, new design methodologies

have been developed to move up the level of Very Large Scale Integration (VLSI) design

abstraction from the RTL to the behavioural level. Thus, it is crucial to revisit the problem

of fault-tolerant VLSI design for SoCs designed using higher-levels of abstractions.

Moreover, hardware security primarily relies on logic locking techniques including key
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gate insertions at the RT-level or gate level. Modern High-Level Synthesis (HLS) tools allow

to more effectively lock behavioural IPs and make them more robust against several types

of attacks. Thus, revisiting hardware security using HLS could open new paths towards

designing secure ICs.

This thesis deals with these important issues and proposes techniques to make be-

havioural SoCs more robust against soft errors and protect these SoCs from malicious alter-

ations or IP theft through functional locking. The main goal is to address these important

issues by raising the level of VLSI design abstraction from the RT-level to the behavioural

level.
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Chapter 1

Introduction

A product’s success in any market depends on several factors that revolve around

customer expectations, which vary between affordability and dependability. In many

ICs it is often essential to focus on dependability rather than affordability mainly

because of the applications they are used in. The threshold of dependability may

vary based on the industry where the product will be used. In some industries like

avionics and aerospace, the threshold is very high, while in other industries, price is

more important than reliability. Some examples include toys, calculators and watches

where a failure naturally would not lead to catastrophic events. Still, reliability is

one of the deciding factors in many industries and should be addressed in all cases as

it seriously impacts the brand image if not taken into account.

The term reliability in this context refers to a system’s availability during adverse

conditions that could prevent it from functioning normally. A failure in an elec-

tronic system can lead to catastrophic events leading to the loss of human lives and

large economic losses. There exist several factors that prevent a system from being

available. They could be due to unintentional interference such as radiation-induced

faults or harsh environmental conditions, or due to intentional interference caused by

third party actions such as malicious alterations on an IP, IP theft, overproduction or
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unauthorized use. The existing techniques used to mitigate the former and the latter

are fault tolerance and hardware security, respectively. This thesis investigates novel

techniques to mitigate such radiation-induced faults and threats posed by intentional

alterations of IPs when moving to a higher VLSI design abstraction level. Thus, this

work revisits both fault tolerance and hardware security when using HLS.

There are many precursors that could lead to faults in an electronic system. In

this thesis, we mainly deal with single-even upsets (SEUs) due to cosmic particles,

high-energy alpha particles, electromagnetic interference (EMI) or power-supply dis-

turbances [53]. Moreover, with continuous scaling of transistors, ICs have become

more susceptible to SEUs. Therefore, it is imperative to build reliability into these

electronic systems’ design methodology such that catastrophic malfunctioning of elec-

tronic systems never happens.

The main problem is that it is virtually impossible to guarantee that a design or

system is completely reliable. Thus, often they are designed to guarantee a minimum

quality service even in the presence of errors. The ability of a system to work even

in the presence of an error is called fault tolerance [42] [30].

Traditional fault-tolerant systems are based around the concept of replicating the

same module N times, also called the N-modular redundancy (NMR) technique. Out

of all NMR systems, two are the most popular. The first, where two copies of the

same module performing the same function are used along with a comparator that

compares the results and issues a warning signal if the outputs do not match, is called

duplication with comparison (DWC). DWC can capture errors within a module, but

cannot mask the error. Thus, the system needs to be re-initialized from a well-known

valid previous state when an error is detected. The second approach mask errors

by instantiating three modules in parallel, also called triple modular redundancy

(TMR). In TMR, the voter chooses the results based on the majority of outputs

received. This can completely mask an error. The obvious drawback is the area

2



overhead associated with TMR systems, which is over 200% the area of single module

systems (two additional modules and the voter are needed).

One weakness of DWC and TMR systems is that they cannot protect against

Common-Mode Failures (CMFs). A CMF is a result of failure induced in more than

one module simultaneously [40]. A formal definition of a CMF is given below:

“A common-mode failure (CMF) is the result of an event(s) which, because of

dependencies, causes a coincidence of failure states of components in two or more

separate channels of a redundancy system, leading to the defined system failing to

perform its intended function.” [50]

An event that triggers a CMF could be unintentional (EMI, power-supply distur-

bances or radiation effects) or intentional (e.g., Hardware Trojans). Design mistakes

could also be a reason for a CMF as both the modules possess identical design faults.

In an effort to reduce CMFs, the concept of diversity was introduced. For example,

the Boeing 777 has three processor architectures designed by three different compa-

nies Intel, AMD and Motorola for its primary flight computer (PFC) [100]. Another

way to achieve diversity is by involving two separate teams to implement the function

using different resources as done in space applications.

This is extremely costly and only possible for very few domains. Therefore, it is

highly recommended to have automatic ways to create diverse systems. Thus, part

of this thesis deals with the automatic generation of diverse N-modular redundancy

systems such that CMFs can be detected.

Securing hardware is also an important factor because nowadays, most of the

IC design companies are fabless. These companies sometimes contract third party

companies for the IC design back-end and contract foundries offshore to manufacture

their chips. This makes such companies vulnerable to other companies making ma-

licious alterations that would eventually cause system failure when a specific trigger

condition is reached. Such critical alterations if made in safety-critical applications

3



could cause not only catastrophic damages but also irreversible loss of trust in the

company.

Functional locking [73] is one among the commonly used techniques to protect

ICs. The main idea behind is to add extra gates called key gates into an existing

design in order to prevent it from working normally when an incorrect key is applied

to those gates. Some of the drawbacks of the existing techniques that insert these

locks at gate-level or RT-level are timing closure issues and third parties’ ability to

detect the inserted locks and, hence, make them prone to removal attacks. Limiting

factors like these act as a catalyst to try and improve the existing techniques. Thus,

the last part of this thesis introduces a new locking mechanism that minimises these

limitations by inserting the locking mechanism at the behavioural level.

1.1 Contributions of This Thesis

Fig. 1.1 shows a pictorial view of the complete thesis using a heterogeneous SoC as

an example. The three main contributions are highlighted in three different hardware

accelerators, as the techniques developed mainly apply to them. In particular:

1. The first contribution presents a method to exploit the time that hardware ac-

celerators are not used in shared bus SoCs to re-compute their results (redun-

dancy in time). This work uses cycle-accurate simulation models of complete

SoCs to accurately extract each hardware accelerator’s timing slack that in turn

allows understanding the amount of time each hardware accelerator is idle to

recompute its task.

2. The second contribution investigates if the diversity between two RTL descrip-

tions are coherent, with diversity between its corresponding gate netlists to

help accelerate finding functional equivalent design pairs that are most diverse.

This contribution also introduces the use of predictive models to estimate the
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Figure 1.1: Overview of thesis contributions.

diversity between two functionally equivalent RTL implementations to avoid

having to do full stuck-at-fault pair simulation at the gate netlist to find diverse

hardware implementations.

3. The final contribution presents an efficient way to lock hardware accelerators

given as behavioural descriptions for HLS. This method makes use of the way

that HLS synthesizes behavioural descriptions in the form of Finite State Ma-

chine (FSM) + datapath to increase the complexity of finding the correct key

by splitting the key by FSM states. The attacker thus has to try all possible

permutations. Moreover, this task inserts locking primitives in each HLS control

step based on the timing slack reported by the HLS tool, avoiding any timing

closure issues.
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1.2 Thesis Outline

Chapter 2: This chapter briefly explains the background of fault tolerance. This

will help to better appreciate the need for a more reliable and sustainable system.

Chapter 3: This chapter describes how C-based VLSI design methodologies work and

in particular HLS, highlighting its main advantages over traditional RT-Level based

VLSI design methodologies. Chapter 4: This chapter proposes an efficient fault

tolerance strategy for complex MPSoCs by making use of the normally unused slack

times between HWAcc computations. Chapter 5: This chapter focuses on spatial

redundancy and proposes a C-based design technique that helps identify design pairs

with greater diversity to build fault tolerant system against CMFs. The later part

of the chapter introduces a predictive model to estimate the diversity index between

two designs. Chapter 6: This chapter proposes a functional locking technique that

makes use of HLS synthesis capabilities to lock hardware accelerators described at

higher abstraction level, and avoids them from being misused along the supply chain.

Chapter 7: This chapter discusses the conclusion and future directions.
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Chapter 2

Fault Tolerance

This chapter introduces basic concepts around fault tolerance that will help better

appreciate this thesis’ contributions. It will primarily focus on describing the main

steps that might lead to a failure in an electronic system and typical mechanisms

proposed to avoid the same failure.

2.1 Introduction

Shrinking geometries, lower operating voltages, higher operating frequencies and

higher density circuits have led to an increased sensitivity to soft errors. These soft

errors occur when a radiation event causes a disturbance large enough to reverse a

bit in the circuit. When the bit is flipped in a critical control register or configuration

memory, e.g., in a Field-Programmable Gate Array (FPGA), it can cause the circuit

to malfunction. At the same time, current SoCs are getting more complex and

typically include multiple processors, memories and especially a variety of HWAccs.

These HWAccs are extremely important as the breakdown of Dennard’s scaling, and

the continuation of Moore’s law implies that power densities are reaching nuclear

reactor levels. The term dark silicon has been coined to refer to the part of an IC

which has to be kept dark (off) due to this increase in power densities [20]. The
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solution to this problem is to adapt the architecture to the application through

pluralization and customization using HWAccs.

Fault tolerance can be described as the ability of a system to continue working after

the occurrence of a fault. Because of the ubiquitous nature of electronic systems based

around ICs, it is extremely important to seamlessly integrate fault tolerance into the

VLSI design process. In cost-sensitive products, these fault-tolerant systems should

not penalize the cost of an IC, while for safety-critical applications, fault tolerance is

a must, as not having a reliable system could have catastrophic consequences. Most

prior works on VLSI hardware reliability make use of module redundancy, assuming

that each module is exactly the same. Multiple module replicas implementing the

same logic function are executed in different hardware channels. A voting scheme

detects an output mismatch. Another approach makes use of time redundancy by

recomputing the result using the same hardware channel. The advantage of the latter

approach is that virtually no hardware overhead is required compared to the spatial

redundancy case where the system requires 100% to 200% area overheads for the dual

and triple modular redundancy case.

The end goal of a fault tolerant system is to develop a dependable design that

can deliver its intended level of services to its users even at adverse situations such

as module failure.

2.2 Fault to Failure

A fault is an unexpected event that can cause the hardware to behave differently than

expected. Fault can be permanent or transient. In the case of permanent faults, the

symptom is kept over the IC’s lifetime, while transient fault manifests only during a

short period of time. Some examples of permanent faults are wires that break within
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the chip because of causes such as electromigration. A typical example of transient

fault is SEU caused by radiations that result in single bit-flips.

Faults can lead to errors which in turn can lead to the failure of the system, but

are often also masked away. It is therefore important to understand the relationship

between faults, errors and failures.

Fault: An unexpected event that causes the hardware circuit to be different than its

originally intended design.

Error: The effect of a fault occurrence that denies the system from delivering the

correct information.

Failure: The non-performance of a system where it fails to work as expected due to

its underlying errors.

A fault triggers an error that causes a system failure, but not all faults induce a

system failure. This explains that some faults could be dormant for a long time while

some could be identified immediately, i.e. some errors are reflected at the output

while the others are not. Fig. 2.1 shows the transition of a working system from fault

occurrence to failure.

Fault Error

Failure

No Failure

Active

Dormant

Figure 2.1: Fault to failure.

Faults happen due to several reasons such as incorrect specification, implemen-

tation, or fabrication of the design. Apart from these causes there are other critical

external factors such as environmental disruptions or human actions that could be

intentional or unintentional. Thus, the sources of faults could be grouped into four
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types: incorrect specification, incorrect implementation, fabrication defects, and ex-

ternal factors [21].

1: Incorrect specification results from a wrong specification given as an algorithm,

architecture or a customer requirement. These faults may occur due to certain aspects

being left out while designing, such as operating conditions of the IC and so on. A

system with these faults could work flawlessly most of the time while failing at specific

operating conditions. These are called specification faults.

2: Incorrect implementation is when an implementation does not realize the function

given in the specification. These are called design faults that arise from poor com-

ponent selection, logic mistakes, poor synchronization between blocks or poor timing

closure.

3: Fabrication defects are results of manufacturing imperfections, component wear-

outs or device defects. In early days fabrication defects were an important reason

for device failure, thus introducing fault tolerance while now the advancements in

semiconductor technologies have drastically reduced fabrication defects.

4: External Factors are due to particle strikes that flip bits within the electronic

component. These are often called single event upsets.

In this thesis, we extensively focus on mitigating faults triggered by the fourth

category of fault triggers that are the external factors.

2.3 Effect of External Factors on Semiconductors

Radiation-induced soft errors are the biggest threat posed on semiconductors.

Commercial digital electronic components face the major threat of failure due to

radiation-induced soft errors. There are a number of radiations present in the

Earth’s atmosphere that are strong enough to cause data disruptions or even per-

manent failures on digital electronic components [4]. When a bit flips in a system
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it is called data disruption. Some of them do not cause permanent damage which

means that the device will return back to its normal state. These errors are called

“soft-errors”. Certain radiations cause irreversible damage thus making permanent

changes on to the system and hence called “hard-errors” [4]. When the radiation

flips a single bit, it is called SEU. If the radiation is of higher energy, it is capa-

ble of flipping a number of bits. This multiple bit flip is called multi bit upset (MBU).

Devices like FPGAs and DRAMs have control registers which are critical for their

functioning. The effect of radiation can make permanent changes on the control

circuitry. This event occurrence is termed as Single Event Functional Interrupt

(SEFI) as it interrupts the system from functioning properly causing a significant

threat to reliability [41]. Memory errors opposed to these events are of less impact

as some of the errors do not get triggered or do not produce a wrong output.

Air-crafts and space-crafts are applications that are subjected to a significant

amount of radiations. The electronic components here are prone to soft errors due

to cosmic rays, alpha rays and other particles with energy that happen more often

higher in the atmosphere. The magnitude of disturbance that an ion could cause

depends on the Linear Energy Transfer (LET). In a silicon substrate, for every 3.6eV

energy loss, an electron hole pair is produced. The energy lost by an ion depends on

the material it traverses through and on the particle energy. When the particle is of

high energy and traverses through a dense material, it loses more energy.

Fig. 2.2 shows the path taken by an ion. As the ion moves through the substrate

it creates a pool of electron hole pairs with a sub-micron radius with high carrier

concentration (a). Later the ionization track traverses to the depletion region after

which the electric field collects all the carriers resulting in a voltage/current transient
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(a) (b) (c)

Figure 2.2: Charge generation and collection phases in a reverse-biased junction and
the resultant current pulse caused by the passage of a high-energy ion [4].

at that node (b). The size of the funnel is a function of substrate doping. The funnel

distortion increases for decreased substrate doping. This “prompt” collection phase

is completed within a nanosecond and is followed by a phase where diffusion begins

to dominate the collection process (c). The additional charge is collected as electrons

diffuse into the depletion region on a longer time scale (hundreds of nanoseconds)

until all excess carriers have been collected, recombined, or diffused away from the

junction area. The corresponding current pulse resulting from these three phases is

also shown in Fig. 2.2. If the energy lost by an ion is less than the critical charge called

Qcrit, it does not create an SEU. But when Qcoll, which is the collective energy lost,

is greater than Qcrit, SEU or MBU occurs. Several techniques used to overcome these

radiation effects are discussed below. The work carried out clearly explains a new

technique to speed up the process while being able to reduce soft error occurrences [4].
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2.4 Fault Tolerance in Modern SoC

Heterogeneous SoCs have multiple components such as processors, memory blocks,

interfaces and HWAccs. For a fault free computation, it is important that all these

components are fault-tolerant but fault tolerance techniques used by each one of them

varies. This subsection briefly discusses the fault tolerance strategies used in each of

the typical SoC component.

2.4.1 Microprocessor

In distributed systems, checkpointing and rollback recovery techniques were used to

make them fault-tolerant by bringing a system back to a consistent state after a

failure has occurred [9]. Usually consistent states are saved during a system’s fault

free execution so that in case of a failure, a recomputation could start from this

state rather than starting from the first. In [35] the shortcomings of a checkpoint and

rollback recovery were discussed, including inconsistencies due to inter-process depen-

dencies that often forced processes that did not fail to rollback. This phenomenon is

called “domino effect”. Authors in [93] proposed an adaptive independent checkpoint

strategy that prevents such inter-dependencies. The rollback in one process does not

influence the other processes in a distributed system.

The use of multiple processors has revolutionized the way computations were

handled. With the use of multi-cores, software could now become parallel, at the

same time it is important to make sure that the computations are unaffected by

hardware errors. The tasks done in parallel have close similarities in the control-data.

In [90] the authors proposed BLOCKWATCH that utilizes this similarity to check for

any hardware errors during runtime.

Instruction level parallelism in modern processors were leveraged to build SWIFT

[71]. SWIFT aims to duplicate instructions executed during the programs slack time
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reclaiming unused resources for the computations. SWIFT was used to check for the

control flow path’s correctness by inserting checkers at the basic blocks. Extensive

work with respect to fault tolerance in modern CPUs could be found in [59, 70, 96].

2.4.2 Memory Protection

For a system to maintain its integrity, it needs to protect its memory elements or

storage units. Several techniques exist and they vary from module replication to error-

correcting codes. Many error-correcting codes for building fault-tolerant memory

elements have been proposed. Error-correcting code is a process that encodes a data

within a much larger data set through replication so that a small level of error does

not affect the credibility of the retrieved data. Using parity checker is a simple way

to detect errors in memory [26] where a parity bit is added to the data string. Each

time a data is requested to be retrieved from a memory unit the parity of that data

is computed. An error is flagged if a single bit flip has occurred while this cannot

detect multiple bit flips. It can only detect an error but cannot correct it. Hamming

code was introduced in [23] to detect two-bit error or correct single bit errors. This

restriction lets Hamming code to be used only when the error rate is low. A low error

rate is usually observed in computer memories i.e. RAM, where bit error occurrences

are rare, making Hamming code the best choice.

2.4.3 Interface

Data being transferred through peripheral interfaces are equally at the risk of being

affected by transient errors. Synchronous and asynchronous interfaces alike are af-

fected by SEUs. The universal asynchronous receiver transmitter (UART), which is

a common asynchronous interface. It receives data in parallel from the data bus and

transmits it serially. The data transferred via UART has a start bit, a stop bit and

a parity bit before the stop bit to detect a single bit flip. Each data bit was sampled
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once but the inaccuracy led to a technique called enhanced UART (eUART) [24],

eUART samples a data bit 16 times and the voter helps to recover from the fault.

This extensive sampling mainly aims to retrieve a fault free data bit that could lie

outside the lifetime of a transient error.

2.4.4 Hardware Accelerators

Hardware accelerators are the differentiating components of modern-day SoCs. This

thesis focuses on protecting these dedicated design units from being affected by tran-

sient errors. The base of fault tolerance in hardware accelerators is laid on redundancy

where modules are replicated N times to ensure the delivered output’s integrity. This

technique is called Concurrent Error Detection (CED)[49]. Redundancy in fault tol-

erance can be categorized into two types

• Spatial redundancy;

• Temporal redundancy.

The following sections briefly explain the above techniques.

Spatial Redundancy

Since 1960’s, concurrent error detection techniques like duplication with comparison,

triple module redundancy and parity codes have been used. These techniques work

based on the following principle. Assume that the system considered for a specific

application realizes a function F and its corresponding output be F(i) where i is

the input sequence that triggered the output. CED techniques make use of another

module, either the replication of the original system or a module that checks the

integrity of the data [48]. Both combinational and sequential logic designs use this

CED technique. Following are the advantages of using CED: (1) Early detection of an

error, thus preventing data integrity issues; (2) Quickly work on the corrective actions
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to avoid further failures; and (3) To identify the Field Replaceable Unit (FRU) which

is either a chip or a board. In the past, these CED techniques were used in IBM

mainframes. The HP enterprise server, IBM S/360, IBM Enterprise System/9000

Type 9021 processors, IBM S/390 consisting of G4 CMOS processor chip, VAX 8600

and modules from companies like Tandem (Compaq), Hitachi, Sperry/Univac and

many other companies used CED techniques [87].

Commonly used CED methods and their drawbacks are explained below [40]. A

brief description of various fault tolerance techniques, especially different forms of

CED could be found in [49]. Techniques for fault tolerance have improved over the

past years but still a number of cases are yet to be solved. The mundane fault

tolerant techniques are the Duplication With Comparison (DWC) and Triple Module

Redundancy (TMR).
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Figure 2.3: (a) Duplicate With Comparison (DWC). (b) Triple Module Redundancy
(TMR).

Duplication with Comparison technique compares the outputs of two modules

which are exactly the same [50]. If both outputs match, it means the system is error

free and if it differs it indicates the presence of a transient or permanent fault. Fig. 2.3

(a) shows a DWC used for error detection.

According to [51], triple module redundancy is a fault tolerance technique in which

a system is replicated thrice to make it fault tolerant. All the three modules are the

same and perform the same task with the received input. Each of these outputs is
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passed as inputs to a voter which later decides the final output based on majority. If

all the three outputs are the same, it means the system is fault free and the outputs

are safe to use. On the contrary, if an output differs, it indicates the presence of fault

or an error. Fig. 2.3 (b) shows a TMR scheme used in a fault-tolerant system.

Common Mode Failure: TMR systems have the capability to correct/mask errors

unless the system has multiple SEUs at more than one module at the same time. This

is called Common Mode Failure (CMF) [52]. To understand this scenario better, let

us assume output1 and output2 are the same while output3 is different from them.

The voter would choose output1 or output2 as its final output. What if output3 is the

correct output while the other two were faulty outputs which accidentally happened

to be the same? In this case, the system’s data integrity is lost and is dangerous if it

happens in an aircraft or a space-craft. The worst-case scenario in any fault-tolerant

system is that two outputs are identical but wrong. Thus, mechanisms to avoid this

are required.

Diversity and its relation with CED: CED is a fault tolerance technique that

duplicates the system which implements a function. The duplex system in Fig. 2.3

(a) has two identical modules. When design diversity is introduced, both modules

are non-identical but realize the same function [45]. This detection technique also

works based on comparison, but now both the modules have their own differences

which can help avoid one main cause of CMFs, which is design error. Design errors

are errors caused due to wrong designing, defects during fabrication or unnoticed

dormant bugs. The output from both modules are compared. However, in this case,

the possible fault pairs are reduced.

“A CMF is the result of an event(s) which, because of dependencies, causes a

coincidence of failure states of components in two or more separate channels of a

redundancy system, leading to the defined system failing to perform its intended

function” [52].
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Figure 2.4: Redundancy in time.

Several studies are being conducted in an effort to overcome CMFs. The main idea

is to automatically generate diverse redundant systems by perturbing the logic gate

netlist such that two functional equivalent modules are obtained which manifest faults

at their outputs differently [53, 50, 51]. This allows the voter to detect when faults

have happened.

Temporal Redundancy

Spatial redundancy is fast and can fully mask errors (in the TMR case). Unfortu-

nately, the area and power overheads are too large for many applications, and hence,

other approaches have been developed to minimize the cost of fault-tolerant systems.

One such solution is to replicate in time, also called temporal redundancy. Tempo-

ral redundancy recomputes the same computation multiple times on the same hard-

ware channel. It has the benefit that it reduces the area overhead of the circuit as the

same hardware channel is re-used to recompute the output, as shown in Fig. 2.4. Simi-

lar to space redundancy, in temporal/time redundancy the output can be recomputed

once or twice to either detect if an error has happened or to mask it. Time-based

redundancy technique has proven its ability as a low-cost fault tolerance technique to

reduce the effect of SEUs.
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Time-based redundancy techniques exploit the fault’s temporal nature to achieve

fault tolerance as recomputations performed after the lifetime of this fault will be

error free.

Temporal redundancy as a standalone fault tolerance technique is less studied

while there exist several techniques that suggest an interplay of both space and tem-

poral redundancy. In [76], the authors have elaborated the strengths of a transient

fault which could span over multiple cycles in the temporal domain as well as mul-

tiple units in the spatial domain. They address this issue by engaging temporal

redundancy along with spatial redundancy techniques. The authors in [58] proposed

a re-execution strategy that shifts operands for consecutive computations. Most of

the time-based redundancy techniques are used alongside error detection systems so

as to start its recovery process via recomputation of the same task in the event of fault

detection. In [6], the authors proposed using idle processors to compute the same task

being done on an active processor. Later, several studies have shown that this method

has higher performance penalties due to complex communication requirements [79].

A typical time-based redundancy phenomenon these days aims at bringing about a

low-overhead solution for reliable electronics. The core idea is to make use of any

available slack time to recompute if an error has occurred. If a block remains idle,

they use it to recompute; else the system remains unreliable.

The main problem with time-redundant fault-tolerant systems is that they can-

not detect permanent faults as the hardware channel is exactly the same. Thus, a

permanent fault on the hardware channel would manifest itself on every re-execution.

Moreover, time-redundancy can typically not be used in time-sensitive systems re-

quired to meet demanding deadlines.
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2.5 Summary

This chapter has introduced the basic concepts around fault-tolerance in VLSI cir-

cuit design and typical approaches that are being widely used to build fault-tolerant

circuits. The main approach is by adding redundancy in the system by computing

the same operation on different identical hardware channels or by recomputing the

same operation on the same hardware channel multiple times.
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Chapter 3

C-Based VLSI Design

In the year 1965, Gordon E. Moore made an observation according to which the num-

ber of transistors in an IC would double every 18 to 24 months. This observation was

called the Moore’s law which still holds good after 5 decades [55]. The central tech-

nology that has fuelled Moore’s law is transistor scaling. One of the main problems is

that the power density has not remained constant since entering the sub-micron re-

gion. This implied that the benefits from Moore’s law have significantly diminished as

chips could not just achieve higher performance from simply scaling transistors down.

This has led to a paradigm shift in computer architecture. Most complex ICs are now

heterogeneous SoCs composed of multiple embedded processors that offload computa-

tionally intensive applications to dedicated HWAccs. These heterogeneous SoCs have

also increased the complexity of the design methodology. Thus, new methodologies

are required to keep up with consumers’ demand.

Early days of IC design technology relied on a capture-and-simulate design

methodology where block diagrams of the chip architecture were laid out manually

or semi-manually which would later be transformed into its corresponding circuit

schematic. This methodology did not scale well, and newer design methodologies

were required to increase the design productivity. This was achieved through the
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use of hardware description languages (HDLs) like Verilog and VHDL. Complex

circuit designs could be specified using one of these HDLs, and logic synthesis tools

would convert them into efficient gate netlist. This design methodology is still widely

used. But with the further advent of technology, newer design methodologies are

required to further increase the VLSI design productivity. One such methodology is

HLS which takes an untimed behavioural description as input and generates efficient

Verilog or VHDL code for the given function. With HLS an algorithm could be

converted into a digital circuit [17]. HLS is more efficient than HDLs as designers

do not need to specify any low-level details like clocks and resets. They just have to

focus on the actual functionality of the application and leave it up to the HLS tool

to generate the detailed optimized circuit.

This chapter covers the basics of HLS as well as system-level design features that

most commercial HLS tools possess to build complete SoCs at the behavioural level.

This thesis leverages some of the unique features of HLS in the context of fault

tolerance and security. It is therefore vital to understand how HLS works to better

appreciate the contributions made in this work.

3.1 High Level Synthesis

Fig. 3.1 shows an overview of the complete HLS process. HLS takes an untimed

behavioural description (i.e. ANSI-C or C++) and a set of constraints as input,

and generates efficient RTL code in Verilog or VHDL. The main steps include the

parsing of the behavioural description to check for syntactical errors and to generate

the control data flow graph (CDFG). The actual core of HLS processes consists of

the following three steps: (1) allocation, (2) scheduling and (2) binding. These steps

are all interdependent. Finally, the back-end of the flow generates the RTL code.

The next subsections describe these steps in detail.

22



Parse/Compile

Optimization

Resource Allocation

Scheduling

Binding

Library

ANSI C/C++

CDFG

Verilog/VHDL

Generation of 

RTL Design

Target 

Frequency

Figure 3.1: High Level Synthesis Design Flow.

3.1.1 Parsing

The behavioural input is first parsed and checked for syntactical errors. This step

also performs technology independent optimizations, e.g., constant propagation and

dead code elimination. The parser then converts the parsed code into a CDFG over

which the next steps are executed. Fig. 3.2 shows a simple example program, and

Fig. 3.3 shows the generated CDFG after this stage.

3.1.2 Resource Allocation

Allocation, being the first step after parsing, allocates the hardware resources required

to execute the functionality described in the behavioural input. Commercial HLS

tool often allocates the maximum number of functional units (FUs) to maximize

parallelism that can be extracted from the CDFG. The functional unit count is a

variable and can be modified by the user through a resource constraint file. This forces
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Figure 3.2: Behavioural input example.

 

Figure 3.3: Data Flow Graph.

the resultant circuit to re-use some of the FUs mapped to multiple operations. This

optimization is called resource sharing and is often used to trade-off area reduction

with increased circuit latency. The total number of final resources will depend on

the next HLS steps. The scheduling stage schedules different portions of the CDFG

on individual clock cycles based on the delay constraint and the number of available

resources. It should be noted that intuitively fewer FUs means smaller circuit are

generated. But for FPGAs this does not hold good as the cost of the muxes required

to share a FU most of the times out-weights the cost of the FU saved [28].
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3.1.3 Scheduling

Followed by allocation is the scheduling process. This phase maps the operations in

the CDFG onto individual clock steps based on their delay and the specified target

synthesis frequency (ftarget) and the resource available from the previous stage.

Multiple FUs can be chained together in the same clock step if there are enough

resources, and their delay does not exceed 1/ftarget. Multiple clock cycles might

be needed for some operations as they might need more time to complete their

operations or due to clock cycles with small periods. The same is the case when the

FU delay is too large. This is called multi-cycle operations.
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Figure 3.4: ASAP Scheduling with only 1 adder and 1 multiplier.

The scheduling process is an important step in the transformation of a behavioural

input to an RTL implementation as it directly influences the design latency. This

factor makes it difficult to decide on the best possible scheduling algorithm. The

authors in [16] have proven that scheduling the execution of a design with the given

resource constraints is an NP-hard problem. In an effort to solve this shortcoming
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Figure 3.5: ALAP Scheduling with only 1 adder and 1 multiplier.

multiple heuristics have been proposed while the existing scheduling algorithms could

be classified into two categories:

1. Data-Flow (DF) based scheduling,

2. Control-Flow (CF) based scheduling.

DF-based scheduling: Data-flow-intensive applications make use of DF-based

scheduling. DF-based scheduling can further be classified into timing-constrained

and resource constrained scheduling. Two of the most common scheduling algorithms

due to their simplicity are As Soon As Possible (ASAP) and As Late As Possible

(ALAP). Fig. 3.4 and Fig. 3.5 show the scheduling result of the sample code when

only one adder and one multiplier is allowed. ASAP schedules the operations in such

a way that the computation takes place at the earliest, i.e., when the input data is

ready and when there are sufficient clock cycles available to perform the computation.

In the ALAP case, the method tries to put the operation as late as possible. An

operation is delayed up to the maximum limit for which it can be postponed. As

seen in this case, ALAP scheduling method leads to better results as only six clock

cycles are needed, while the ASAP method requires seven. The latency of the circuit
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could be shorted in this case if the number of FUs is increased to allow two adders

and two multipliers. In this case, the latency would be 3 clock cycles.

Other scheduling algorithms include force-directed scheduling [69], which is time-

constrained scheduling where the primary focus is to balance computations within

the available time step. On the contrary resource-constraint scheduling algorithms

such as list scheduling [62][31] makes a function based priority list of operations that

are ready to be executed with the available resources.

CF-based scheduling: Control-flow-intensive applications make use of CF-based

scheduling algorithms. Path-based scheduling algorithm [12] is one of those algo-

rithms that deal with control-flow-intensive applications by scheduling each path

as fast as possible. Loop-directed scheduling [7] is based upon depth-first search

(DFS). The average-case performance is optimized while keeping an account of the

loop iterations during DFS. Wavesched [39] is a scheduling algorithm that schedules

ready operations in a manner that mimics wave-propagation. By scheduling indepen-

dent loops together as well as unrolling it, the performance is enhanced. Advanced

heuristics these days are capable of identifying hidden details that could be used

to increase parallelism. SPARK introduces a set of code transformations to fit into

high-level synthesis framework [27]. These code transformations are applied dynam-

ically during scheduling using a global list-scheduling-based heuristic. CF-intensive

applications are driven largely by I/O timing constraints due to its dependence on

external circuits. Relative scheduling [37], being one of the earliest scheduling al-

gorithms, manages minimum/maximum timing constraints efficiently. The authors

in [54] have proposed VOTAN which makes use of a retiming-based approach in

rescheduling a timed VHDL by using a behavioural code transformation strategy

while still maintaining the original I/O timings. ILP-based scheduling [10][25], sym-

bolic scheduling [77][89] and constraint-programming based scheduling [38] are exact

scheduling approaches that retain the original I/O timing constraints. The schedul-
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ing efficiencies of the above-mentioned algorithms vary from one case to the other.

For example, DF-based scheduling cannot handle CF-intensive designs efficiently. On

the other hand CF-based scheduling means [12][39][7][77] in its worst case scenario

has an exponential time complexity and is inefficient for large designs. With increas-

ing complexities in SoC designs, there exists designs with a combination of intensive

computations, controls and communications in addition to various time/area/power

constraints. Scheduling algorithms like system of difference constraints (SDC) [16]

convert a set of scheduling constraints into a system of difference constraints. The

constraint equation generated matrix is capable of generating an integral solution

which can be directly translated into a valid scheduling.

3.1.4 Binding

The last step in the HLS process following the scheduling phase is the binding stage,

where every scheduled operation is bound to a FU in the given technology library.

Design variables and operations need to be bound to specific storage units and func-

tional units, respectively. The binding stage depends upon the allocation stage that

decides the number of functional units used for the design. Register binding technique

was proposed in [61] where the life time of a variable was divided into two intervals.

The HAL system [15] proposes a technique where the number of registers used for

binding is decided based on a weighted clique partitioning method. There exist other

binding techniques such as BUD/DAA, EMUCS, HYPER, etc [2][46][15].

3.1.5 RTL Generation

The back-end of the HLS process finally generates the RTL code in VHDL or Verilog.

Fig. 3.6 shows a typical RTL architecture generated after HLS. HLS generated RTL

consists of an FSM and a datapath [57]. The datapath contains all of the FUs, while
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Figure 3.6: RTL Architecture after HLS (FSM+Datapath) from commercial HLS
tools NEC CyberWorkBench [57].

the FSM generates the control signals to synchronize the data through the datapath

correctly.

3.2 Advantages of HLS

This section describes some of the unique advantages of moving up the level of ab-

straction from the RT-level to the behavioural level. These advantages are exploited

in this thesis, and hence, it is important to review them. They are: (1) the ability

to generate micro-architectures from the same behavioural description with unique

area vs performance and power trade-offs and (2) the ability to generate and simulate

complete SoCs. Fig. 3.7 shows an overview of these advantages. The next subsections

describe these two features in detail.

Advantage 1: Faster Design Cycle: RTL design requires to manually specify all

the intricacies of the hardware using low-level HDLs. The HDL is then synthesized

using logic synthesis tools to generate its gate level equivalent. From Fig. 3.7 it could

be seen that a 1-million gate gate-level netlist can be generated by using 300K lines

of RTL code, but the same could be easily generated using a 40K lines of C code.
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This is why using HLS can accelerate the design cycle due to fewer lines of code that

is required to generate the same 1-million gate gate-level netlist.

Advantage 2: Faster Simulation and Verification: HLS tools allow to generate

simulation model at different abstraction levels ranging from transaction to cycle-

accurate, which are multi-fold faster than RTL and gate netlist simulations. In [21],

it has been estimated that behavioural simulation is 1000× faster than logic simula-

tion while a cycle-accurate simulation is 100× faster. Thus, using HLS, the design

verification cycle can be reduced, which in turn shortens the design cycle.

 

Figure 3.7: Advantages of using modern High-Level Synthesis tools [21].

Advantage 3: High-Level Synthesis Design Space Exploration: HLS allows

to generate different micro-architectures from the same untimed behavioural descrip-

tion by simply setting different combinations of synthesis options. These are often

called knobs, and they allow to generate a larger number of designs quickly that is

impossible at the RT-level. This process can be fully automated with an automated

design space explorer that sets these knobs automatically and evaluates their effect on

the final circuit. This area of research has been very prolific and much work has been
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done in this domain. A recent survey published highlights the main contributions

done in this domain [75]. Fig. 3.8 shows a flow diagram of a typical exploration flow

with the three main exploration knobs.

Behavioral 
Application(C/C++

SystemC)

Exploration 
knobs

kattr

kfus

kopts

Area

Latency 
[clk cycles]

High-Level Synthesis

(academic, commercial)

Design Space Explorer

Techlib
(ASIC, FPGA)

kattrX, koptY, kFUZ C,C++,SystemC

Figure 3.8: HLS DSE overview.

The following are the three different knobs.

Knob1 (kattr): Synthesis directives: This first synthesis option is the most powerful

because it allows to synthesize different constructs in the C code based on the user’s

preferences. For example, a loop could be fully unrolled, partially unrolled, not

unrolled or pipelined; an array can be synthesized as a memory or registers. HLS

tools allow to specify how these constructs should be synthesized by using pragmas

inserted directly at the source code. Different mixes of these pragmas lead to unique

designs with unique properties.

Knob2 (kopts): Global synthesis options: These global synthesis options affect the
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entire behavioural description and allow to control factors e.g., the target synthesis

frequency and the FSM encoding scheme. They affect the entire HLS process.

Knob3 (kfus): Functional unit constraints: This last knob controls the number of

FUs that can be used to synthesize the description. This will control the amount of

resource sharing in the final circuit.

An automatic HLS design space explorer’s main goal is to set these knobs automat-

ically such that the Pareto-optimal micro-architectures are found quickly. Because

the search space grows supra-linearly with the number of knob combinations, many

heuristics have been proposed.

Although this work does not directly deal with this topic, it will use HLS DSE to

find a diverse set of micro-architectures to increase the fault-tolerance against CMF.

Advantage 4: Behavioural System-Level Design: The last advantage of raising

the abstraction level is that complete heterogeneous SoCs can now be created using

only untimed behavioural descriptions as input. This is typically done through the

use of synthesizable bus interfaces and bus generation tools. It also allows stitching

of different components through standard buses. One of the main advantages of this

approach is that complete fast simulation models can be created for the entire SoC.

Fig. 3.9 shows the block diagram of a simple SoC composed of two masters and one

slave connected through an on-chip bus. The on-chip bus that connects the different

components could be an AHB, AXI of CoreConnect. Using synthesizable APIs make

switching between buses elementary as only a functional call is required, significantly

helping to experiment between bus types, sizes and arbiters. This approach makes

the process of SoC design much easier when compared to designing at RT-Level.

This feature will be used in our first contribution to generate complete behavioural

SoC. Through accurate cycle-accurate simulations, the time that each of the slaves is

idling is investigated such that this time is used to re-compute its workload without

any extra runtime overhead.
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Figure 3.9: Master-Slave architecture.

3.3 HLS Tool Review

This last section reviews commercial and academic HLS tools currently available and

their most distinct features.

There are multiple commercial and academic HLS tools of different levels of ma-

turity in the market. Some target specifically ASICs (Stratus[11], Catapult[47] and

CWB[57]) although the RTL generated can also be used for FPGAs, while others

target FPGAs (Vivado[92] and HLS Compiler[29]). Table 3.1 summarizes the list of

commercial tools and lists the input languages supported and what kind of exploration

knobs that are allowed.

Table 3.1: Overview of Commercial HLS tools, their supported input languages and
knobs.

Input knob1 knob2 knob3
HLS tool Languages (pragmas) (global) (FCNT)

ASIC
Cadence Stratus [11] C/C++/SystemC x x x
Mentor Catapult [47] C++/SystemC x x x

NEC CyberWorkBench[57] C/BDL/SystemC x x x

FPGA
Vivado HLx [92] C/C++/SystemC x (x)

HLS Compiler [29] C++ x (x)
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There are also multiple academic HLS tools available. Some include LegUP[13],

GAUT[18] and BAMBU[63].

Each of these tools support different input languages like ANSI C, C++ or Sys-

temC. They also have different amount of controllability in terms of the knobs sup-

ported.

3.4 Summary

This chapter has described the need to raise the level of abstraction from low-level

HDLs to C and presented the main steps behind HLS. It has also introduced some of

the most salient aspects of HLS that this thesis will leverage to build fault-tolerant

systems.
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Chapter 4

Fault Tolerant C-based MPSoCs

using Time Based Redundancy

Technique

4.1 Introduction

Fault tolerance can be achieved through different forms: either spatial or temporal.

Spatial redundancy requires the same module to be replicated several times, and voter

decides on the final output. One of the problems with spatial redundancy, aka NMR

redundancy, is the high overhead involved. In the case of DWC 100% and in the

TMR case 200%. In addition, the area of the voter needs to be included.

In certain cost-sensitive application, using spatial redundancy may be prohibitive.

Thus, this chapter focuses on time based redundancy in C-based MPSoCs. The

method presented in this chapter leverages the latest system-level design capabilities

of commercial HLS tools that allow the design, simulation and verification of complete

SoCs at the behavioural level. Our proposed method builds complete MPSoCs at the

behavioural level, which contains a variety of loosely coupled hardware accelerators
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(HWAccs) mapped as slaves onto a memory mapped shared bus. Since a single bus is

shared by a number of HWAccs, each of them accesses the bus in turns based on the

arbitration policy. We call this waiting time slack. The proposed method builds fast

cycle-accurate simulation models of the entire SoC and extracts the slack time in each

HWAcc. This time is in turn used to recompute the operation at the accelerators

twice or thrice to maximize the data integrity. This recomputation methodology can

detect the presence of transient faults or can even mask them completely. Although

the proposed method cannot guarantee complete fault tolerance, experimental results

show that especially for larger MPSoCs it can in most of the cases at least recompute

the output twice and thus detect if a fault has occurred. This work mainly targets

transient faults.

One of the key contributions of the work presented in this chapter is that the pro-

posed system is fully described at the behavioural level. This is important because

it allows for cycle-accurate model generators to precisely measure the slack in each

HWAcc mapped as a slave in the MPSoC and hence get accurate fault tolerance

results prior to the IC fabrication.

4.2 Target Platform and Overall Automated Flow

Fig. 4.1 shows the MPSoC platform, which is the target of this proposed work that

was presented in [3]. It could be seen that the system has M number of masters and

N number of slaves. The slaves are loosely coupled HWAccs that are mapped onto the

MPSoCs. In order to build this type of platform, a fully automated MPSoC generator

is created. The MPSoC generator takes as inputs N BIPs in synthesizable ANSI-C or

SystemC code for HLS and generates automatically different MPSoC configurations

with M number of masters and N slaves interconnected through a standard shared
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Figure 4.1: Target MPSoC platform [3].

bus (e.g. AMBA AHB or AXI). The BIPs are synthesized as slaves in the system,

while the masters emulate processors executing different tasks. The masters then

send data to the slaves continuously repeating the same sequence. The HLS tool

used in this work allows to generate a completely synthesizable C-Based MPSoC

by using a bus interface library. This allows our method to quickly generate new

MPSoC configurations and simulate these to evaluate their fault tolerance using a

cycle-accurate simulation.

The main idea conceived in this work is to make use of the slack time available.

Slack Time and Bus Congestion

A complex system is built to process multiple information at the same time. It consists

of several processors and dedicated hardware accelerators that perform unique tasks.

They are all bound together into a single entity by an on-chip shared bus. Each

of these processors sends out data to any hardware accelerators if they are loosely

coupled and to their respective ones if they are tightly coupled. The limiting factor is

that there is only one bus for all transactions, i.e., for both sending data and receiving

data. The bus access is based on the priority rule set by the user.
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Each hardware accelerator in such a system receives the necessary inputs from the

processor via bus and start computing, after which it waits over several clock cycles

for it to send the output back to the processor via bus again. The time that it waits

is known as its slack time. Fig. 4.2 shows the computation and wait time partitions

for three different hardware accelerators that share the same bus. The computation

and wait times for each accelerator are unique. This data transfer traffic within the

bus is called bus congestion.

 

Figure 4.2: Wait time W and Computation time L of different HWAccs.

C-Based design methodology helps in the easy generation of bus interfaces and

also lets us easily calculate the slack time between different processes using the

cycle-accurate model generator. These features thus make the building process of an

MPSoC far simpler.

4.2.1 Behavioural MPSoC Generation

A completely synthesizable MPSoC can be generated using the bus generator and

cycle-accurate model generator provided by the commercial HLS tool used for this

work (Cybus). Building such an MPSoC itself is one of the unique feature of this

work. Fig. 4.3 shows an overview of the complete automated flow. The flow is

colour coded. The grey parts denote parts developed by us and black parts indicate

third party tools (e.g.HLS). The flow takes as inputs N behavioural IPs with their

test benches which will be mapped as loosely coupled HWAccs on the SoC, thus

S = {BP1, BP2, ..., BPN}, information about the bus structure (e.g. arbiter type,
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Figure 4.3: C-Based MPSoC generation flow [3].

round robin used by default), bus bandwidth (32-bits used by default), type of bus

(AHB or AXI) and the number of masters.

Given below are the steps to be followed before the bus generation process.

Step 1: Inclusion of Bus Interface: From the generation flow diagram shown

in Fig. 4.3, it is clear that the bus generation process is separate. The inbuilt APIs

help in interfacing. All the masters in this MPSoC use single write or burst write

APIs, which are function calls to write the test inputs into the bus. The commercial

HLS tool (CWB) used for this work has the ability to generate bus interfaces. Any

modifications made on the bus does not affect the master or slave modules as it is

isolated. This is an advantage of using C-Based VLSI design over the traditional RTL

design methods. AMBA AHB bus interface is used in this design.
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Step 2: Bus Definition and Generation: After all the BIPs are ready, the

next step is to generate the bus and all its corresponding interfaces like the master

interfaces and the slave interfaces. CWB understands the user requirements through

the bus definition file also called the bdef file. This file has individual information

about the masters, the slaves and the memory address to which they are mapped to,

the bit-width information of the bus required, and also the arbiter information (round-

robin or fixed priority). The bus generator with the help of the bdef file generates

master and slave interfaces, the bus and a top module which binds everything together

into a single entity. All the above CWB generated designs are in ANSI-C and are

completely synthesizable.

Step 3: Generation of Cycle-accurate model: Each and every process has to

be synthesized separately after which the whole system is ready for a cycle accurate

simulation. The necessary input sequences are fed in to simulate the top module.

The simulation result clarifies how long each slave works and how long it waits for

the next input or to write back the computed output. The data from the simulation

helps us to understand about the time available for recomputation.

This module is modified to perform recomputation with whatever slack time the

slave has with it. After each computation it recalculates and checks the out-

put’s authenticity instead of waiting for the bus to write back the output. Once the

bus signal goes high, it writes back the final result after re-computing and re-checking.

4.2.2 Proposed Fault Tolerance Architecture Using Available

Slack Time

The MPSoC targeted in this work has multiple loosely coupled HWAccs. The differ-

ence between tightly coupled and loosely coupled HWAcc is that the former archi-

tecture follows one master one slave pattern thus making the slave accessible only to
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its master while the latter one lets any master access any slave. Creating MPSoCs

at the behavioural level has the unique benefit of creating cycle-accurate models of

the entire system and precisely measuring the slack available in the system based on

bus congestion caused by read/write overheads. This in turn allows to understand

the fault tolerance of the system by accurately estimating the number of times a task

could be recomputed.

Fig. 4.4 shows the partitions that help in re-computing without any loss of data.

This partitioning can help the system perform any task execution on the HWAcc.

The HWAcc is split into three parts to keep all the work separate. The three parts

are (1) Read module, (2) Computation module, and (3) Write module. Tasks done by

each of these parts are explained in detail. Fig. 4.4 shows the proposed architecture

with partitioned read, HWAcc, and write modules.

Read Process: The read process is the first part of the slave, which waits for

initiation from the master. The behavioural description of the slave makes use of

synthesizable APIs provided by the HLS tool. Synthesizable APIs are function calls

to read data from the bus. The code keeps polling the bus to check if there is any

request from the bus. Once the request status receives a write request from the bus,

then the read process is all set to receive its new data. Once it has received the data

entirely from the bus, flaginew goes high. Along with it, idata passes the data to the

computation module. The signal flaginew is an output from the read process while

it is an input into the HWAcc. Its main function is to intimate the arrival of a new

input sequence to the HWAcc.

HWAcc: It is a part of the code which computes or performs the function for

which the HWAcc was designed for. Here in this work odata is calculated, which is

later passed on to the store/write module. After the first computation in normal

41



Figure 4.4: Proposed Architecture [3].

cases, the slave keeps polling the bus to check if there is read request from the bus

in order to take back the computed odata onto the master. In our method, the

slave re-computes until the flaginew goes high, which means a new input sequence

has been received, and new computation has to start. To clearly understand, let us

assume that idata was received and the first computation was successful, but it took

a long time thus not writing back the output. Now that there is time for the next

read request to arrive from the bus, our HWAccs have excess time called the slack

time to re-compute and check if the previous computation was free from transient

errors. When the computation is in progress and if flaginew goes high, it completes

the current computation and proceeds to compute for the new input data received.

After each computation, the data is passed to the next module to store, compare and

write. When it writes the output odata of a brand new input sequence, then flagonew
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Table 4.1: Information encoding for master.

Code Fault Description

00 U
No re-execution accomplished.

No guarantee on integrity of the result.

01 N
Computation re-executed twice.
Integrity of the result conserved.

10 Y
Computation re-executed twice but results do not match.

Fault detected.

11 N
Computation re-executed thrice.

Fault detected and corrected using a majority voter.

goes high.

Write Process: The write process is responsible for storing each and every com-

putation odata into different registers based on the iterations. The flagonew signal

indicates if it is a new output or it is a re-computation result. The first computed

output is stored in odata1, the next in odata2 and the third computation in odata3.

After which the voter decides the correct output based on majority. Not all cases are

the same because few slaves do not have enough time to recompute thrice. The next

task to be kept in mind is how to rate the output if it is a safe one or a misinterpreted

output. To answer this, our work has implemented a way with which the output is

verified thus called verified output data (vodata). The output vodata itself explains

its authenticity. This is done by adding two bits at the MSB position, which says

about the data integrity. If the slave did not get sufficient time and could compute

only once, it cannot be safe to use or is not for sure the correct output. Under these

circumstances, “00” is appended to the MSB bits of vodata. If the slack time of

the HWAcc was sufficient to recompute, i.e., if it could compute twice, then it must

be able to detect the presence of any transient error even if it cannot correct it. In

this case, if the outputs are the same, then it is safe. For this case, the output is
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Table 4.2: Complex System Benchmarks.
Bench S1 S2 S3 S4 S5 S6
Ave8

Bsort

FIR

Sobel

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

HWAccs
Masters

2
1

3
1

4
1

4
2

3
2

4
4

appended with “01” which indicates computation happened twice and the results did

match with each other and “10” would be appended to vodata if odata1 and odata2

did not match. When the slave has enough slack time to re-compute thrice, then

the fault can be detected and corrected which means the output is the safest in this

case. “11” is appended to the MSB bits of vodata to indicate that the output was

computed thrice and also matched to produce the majority. In this case, SEU errors

are completely masked.

It should be noted that no FIFO is used at the output registers as it is assumed that

the master will always read the output before sending new data to the same slave.

The regular structure of this architecture makes it fully parameterizable and hence

can be used with any HWAcc with very little area overhead. The main disadvantage

of this method is that it cannot guarantee fault tolerance if performance degradation

is not allowed. In case that some degree of performance degradation is allowed, then

the proposed architecture could lead to fault tolerance by always guaranteeing that

the result will be computed three times. In this case, the masters would have to wait

until the slaves have finished with the triple computations. One other obvious draw-

back of this method is that of the extra power consumption due to the recomputation

of the outputs. It is nevertheless assumed that any fault tolerance system includes

this extra power consumption in their power budgets.
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4.3 Experimental Results

Different computationally intensive application, amenable to HW acceleration, were

selected and grouped together into complex systems in order to test our proposed

method. These designs were taken from the open source Synthesizable SystemC

Benchmark suite (S2CBench) [74]. Table 4.2 shows how these complex benchmarks

were formed. The first column indicates the name of benchmark used from S2C

benchmark suite. Columns 2 to 7 are 6 complex systems S1-S6. The 1’s underneath

each of these columns corresponds to different benchmarks used as HWAcc in that

system. The last two rows report the total number of slaves used in each system

and below that the total number of masters instantiated in each system. The ave8

computes the average of 8 numbers, bsort sorts 8 numbers, fir is a 9-tap FIR filter and

sobel a 3x3 edge detection algorithm. Although these designs are relatively small, they

should help as a proof of concept of our proposed method. The experiments were run

on an Intel dual 2.40GHz Xeon processor machine with 16 GBytes of RAM running

Linux Fedora release 19. The HLS tool used is CyberWorkBench v.5.5 [57]. The

target architecture, as mentioned previously, is a multi-core processor system with as

many masters as BIPs, with a 32-bit AMBA AHB bus using a round robin arbiter.

The target technology is Nangate’s 45nm Opencell technology and the HLS target

frequency for all of the processes in the system is set to 100MHz.

Fig. 4.5 shows the histograms, in percentage of the times that each HWAcc in the

system could only compute the output once (“00”), twice (“01” “10”) and thrice

(“11”). The encoded numbers in the x-axis correspond to the code returned by each

HWAcc after each computation. As mentioned previously, the experiments do not

involve any fault injection, hence the cases “01” (computation was repeated twice and

results match) and “10” (computation was repeated twice but results do not match)

are grouped together.

From the results, it can be observed that the more complex the system becomes,
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Figure 4.5: Fault tolerance level for the different SoC configurations [3].

the larger the percentage of times that the HWAccs could recompute the outputs.

Intuitively this makes sense as the system only has a single shared bus, which means

that the masters and slaves have to wait longer to get access to the bus, thus leaving

more time to the slaves to recompute the results. It can be particularly observed that

for half of the systems (i.e. S3, S4 and S6), the slaves always had enough time to at

least re-compute the results once.

Table 4.3 shows the area overhead introduced by our proposed architecture vs

a typical architecture without any fault tolerance mechanism (no FT) and also the

area savings when compared with a typical DWC and TMR systems, considering

only the slave portions of the system (excluding the area of the masters and buses).

From the results, it can be seen that the area overhead seems considerable. This is

mainly due to the fact that the actual benchmarks are relatively small compared to

the fixed area overhead required to store the recomputation of the result as well as

the voting scheme. For larger HWAccs this overhead will become negligible. This
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Table 4.3: Experimental results: Area overhead and simulation running time.

Bench
Area Overhead

vs.
no FT [%]

Overhead
vs.

DWC [%]

Overhead
vs.

TMR [%]

Running time
[h:m:s]

S1 75 5 30 0:52:43
S2 53 18 30 0:28:26
S3 62 12 34 1:01:25
S4 57 11 33 0:54:32
S5 52 22 30 0:31:15
S6 61 10 32 1:03:26

Avg. 60 13 32 0:48:38

table also shows that the area savings over traditional spatial redundancy methods

is on average 13% and 32%compared to duplicating the same HWAcc (DWC) and

triplicating the HWAcc (TMR) respectively. This overhead difference is expected to

grow with larger HWAccs. Thus, our proposed method is much more scalable that a

traditional spatial replication approach.

In terms of running time, it can be observed that the simulation of the complete

systems can be performed in a reasonable time, being on average 48 minutes. Thus

it is not necessary to prototype these systems onto an FPGA. It should be obviously

noted that the running time increases with the complexity of the system and thus

for systems with larger number of masters and HWAcc with more complicated inter-

connects (e.g. NoCs), it might be necessary to prototype the system onto an FPGA.

Anyway, we believe that this step could be easily automated in our flow, but leave it

for future work.

Scalability of the proposed fault-tolerant architecture: In the proposed

fault-tolerant MPSoC, we assume that a master sends new data to a slave only after

it receives the output computed by the slave for the last sent data. This assumption

was made to ease the process of initial investigation on using slack time efficiently to

re-compute to ensure data integrity. The results have proven that the slack time could

be efficiently used by the slave to recompute and that the MPSoC becomes robust
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against transient errors with increasing complexity. But with increasing complexities,

there is a need to analyze its scalability. The fault-tolerant MPSoC here only makes

use of three storage registers to store results of maximum three computations that

could be repeated for a given input. But in real-time, read and write requests from

the buses could be asynchronous which means a new data could be sent even before

a read request from the bus. This asynchronous behaviour will only increase with

increasing design complexities, and it could also cause loss of data. In order to address

this scalability issue, a FIFO could be introduced onto the write back module to store

the final results computed by the voter. This would help in streamlining the output

data transfer back to the master without loss of data. It should be understood that

this will lead to an extra area overhead, but a relative comparison against a much

complex MPSoC will only lead to a permissible overhead.

4.4 Summary and Conclusion

This chapter presents a fully automated behavioural MPSoC design flow based on a

parameterizable architecture to enable time redundancy of loosely coupled HWAccs

of behavioural MPSoCs. The system concurrently re-computes the output at each

HWAcc while receiving and sending data from and to the master to determine if

any soft errors have happened. Experimental results show that depending on the

complexity of the SoC, each HWAcc has more or less slack to recompute the results

two or three times, achieving in this last case full fault tolerance for SEUs. The main

benefit of this proposed flow is that the area overhead is small compared to traditional

module redundancy systems, but the main drawback is that it cannot guarantee full

fault tolerance if the performance of the system should be preserved.
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Chapter 5

Common Mode Failure Mitigation

Most previous work on VLSI design reliability is based around time or space re-

dundancy where in all cases the underlying hardware channel is exactly the same.

Reliability is tackled very differently in the software domain. In contrast to most

hardware faults, software faults (bugs) exist in every software instance. Therefore,

the same software program cannot just be replicated and executed onto different

hardware channels. In order to address this issue, software developers rely on code

diversity. A classic approach to add diversity is to set up multiple teams working

in parallel and independently on the same design. This is an expensive method but

still the standard approach when extremely reliable systems are required. In order

to make software diversity more efficient, much research has been done to automate

this process. One of the main techniques investigated is diverse compiling. This

chapter investigates if similar techniques could be applied to C-based VLSI design

to find functionally equivalent, but diverse micro-architectures from a single input

behavioural description for HLS.

As introduced in chapter 3, raising the abstraction level has some distinct advan-

tage over the traditional RTL design process. One salient advantage is the ability to

generate micro-architectures with unique characteristics from the same behavioural
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description. The authors in [86] showed that HLS DSE could be used to generate

different types of NMR systems by combining different types of micro-architectures

generated automatically. These NMR systems mainly focus on detecting SEU in in-

dividual modules. One crucial problem is that electronic systems are also prone to

Common-Mode Failures (CMFs). CMF imply that multiple modules in the NMR

system could present a fault at the same time. This can lead to catastrophic failures

if the output of two modules is the same and wrong, as the voter cannot detect the

fault. For example, an aircraft crashed because of a common vibration mode that

affected all three parts of a TMR system [8]. One way to address CMFs is by building

diverse redundant systems. The main goal is to force the output of the two modules

to be wrong but different from one another when an SEU occurs. In this case, the

voter can detect the error and take pro-active measures.

Because HLS allows generating micro-architectures of different characteristics au-

tomatically, it looks tempting to study if HLS can be used to generate a more diverse

set of NMR systems to mitigate the effect of CMFs. Moreover, the main problem

with traditional approaches to estimate the diversity is that all possible stuck-at-fault

pairs between the two netlists need to be fault modelled, which is computationally

too expensive. Thus, this chapter tries to investigate if the diversity computation can

be done at higher levels of abstraction, e.g., at the RT-level or HLS level, and also

study if predictive models could be used to find the more diverse micro-architectures

at the RT-level.1

1This work has been done in collaboration with Farah N. Taher [22]. My specific contributions
have been the study of predictive models at the RTL level as well as investigating if diversity could
be estimated at the RT-level as opposed to the gate netlist level and compare the same with diversity
predictions at the behavioural level.
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5.1 Hardware Diversity

So far, the main way to generate diverse system has been to perturb the logic gate

netlist of the modules to be replicated such that the two netlists are as diverse as

possible [50]. The main problem is how to measure the degree of diversity between two

modules? Two approaches have been proposed up to date, the first called Dmetric

and the second DIMP.

Diversity Metric (Dmetric): In [53], the authors introduced the first metric to measure

the diversity between two functionally equivalent circuit called Dmetric. In this case,

diversity could be defined as the number of stuck-at-fault pairs that lead to the same

wrong output as a fraction of all possible stuck-at-fault combinations. Formally the

diversity can be calculated as follows:

Ki,j =
inputs that jointly detect output flip

total no of inputs
(5.1)

Dij = 1− (Kij) (5.2)

where Ki,j is the percentage of the total number of stuck-at-fault pairs that lead to

the same result from all the different stuck-at-fault pair combinations and Di,j is the

diversity metric. The higher the Di,j, the more diverse the two modules are.

Let us consider two functionally equivalent designs D1 and D2. Let the probability

of fault occurrence in D1 and D2 be fi and fj , respectively. Let us assume (fi,fj) is

a fault pair. The diversity Dij value for the fault pair is the conditional probability

that the two implementations do not produce identical errors, given that the faults

fi and fj have occurred [53]. For any input sequence, the implementations could

produce one of the following outcomes: (1) both the outputs can be correct; (2) one

of the two implementations produce the correct output while the other produces the

wrong output; (3) both implementations produce incorrect and different outputs; or

(4) both outputs can be wrong but identical.
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DIversity Metric based on circuit Path analysis (DIMP): Although very accurate,

one of the main problems with the Dmetric is that it is too computationally intensive

as it requires all possible fault pairs to be simulated. Thus, recently the authors in [1]

presented a DIversity Metric method based on circuit Path analysis (DIMP) that

estimates the diversity between two designs based on the structural analysis of their

gate netlist. Thus, no simulations are required, making the method much faster.

This method’s base lies on the assumption that diversity depends on the gate order

through which input PIi traverses to reach output POj. This assumption means

that micro-architectures are very closely related if the different logic paths from

input to output have the same gates. Thus, DIMP generates a list of all logic paths

between primary inputs PIi and primary outputs POj in both implementations and

compares them. The formal definition of DIMP is given as follows:

DIMP =
∑

weight(p1i,j ,p2i,j).(1− overlap(p1i.j ,p2i.j)) (5.3)

MaxDIMP =
∑

weight(p1i,j ,p2i,j), DV =
DIMP

maxDIMP
(5.4)

In the above equation, weight refers to the maximum gate count of the paths being

compared while overlap refers to the number of gates repeated across paths in the

same order. The diversity of a design pair tends to 0 when both implementations are

identical; and it tends to 1 when they are dissimilar, making them less susceptible to

CMF.

One of the DIMP problems is that the authors do not show that design pairs with

high DIMP also translate into low CMFs as they do not compare their results with

the Dmetric results. Dmetric estimates the actual robustness of the system towards

CMFs as it generates stuck-at-fault pairs.

Based on the limitations exposed here of these two diversity metrics, the question

that we tried to address is to find a fast and accurate model to predict the diversity
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of two functional equivalent modules in order to guide a HLS DSE in finding the two

most diverse micro-architecture pairs automatically.

5.1.1 Raising the level of Abstraction to Increase Diversity

The original work on hardware diversity perturbs a given gate netlist to generate

two functionally equivalent netlists with higher Dmetric [50]. The problem with this

approach is that only a minimal amount of diversity could be extracted. Raising the

level of abstraction from gate netlist to RT-level and then to behavioural level should

increase the amount of diversity obtained, thus, making NMR systems more robust

against CMF.

Fig. 5.1 depicts three cases of the same DWC fault-tolerant system. The first

one instantiates the exact same micro-architecture twice. Thus, the system has no

diversity at all and is very vulnerable to CMFs. The second case shows how diverse

systems could be generated by performing gate-level exploration. In this case, logic

synthesis options are modified like timing constraints, max fanout and logic depths.

This leads to different types of gate netlists with some degree of diversity. Finally,

further raising the level of abstraction to C allows to generate a much larger pool of

candidates by setting different mixes of the synthesis knobs explained in chapter 3.

In particular, the synthesis directives are specified as pragmas.

The main idea behind this work is to extend this explorer to find design pairs

with the highest diversity. For this, a quick diversity estimator is needed to guide the

explorer right after the HLS process instead of performing a full Dmetric calculation

or DIMP evaluation at the gate netlist, which would involve a full logic synthesis and

in the case of Dmetric stuck-at-fault simulation.

To systematically study the accuracy of the proposed flow, we implement an eval-

uation framework that compares the following diversity methods: Dmetric at the

gatenetlist (original method and most accurate), Dmetric at the RT-level, and DIMP
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Figure 5.1: Comparison of expected of diversity, hence, protection against CMF
between: (a) Traditional method based on identical hardware channel, (b) Gate-Level
exploration, and (c) HLS DSE.

at the gate netlist as shown in Fig. 5.2. For the two Dmetric approaches, a full stuck-

at-fault simulation is needed for all the stuck-at-fault pairs. The obvious advantage

of doing this at the RT-level is that it has fewer fault pairs. The main problem is

that the Dmetric value will not translate into finding the most robust system against

CMFs. The last step is to mine this data to generate a predictive diversity model

that can drive the HLS DSE to find the two most diverse micro-architectures with

the result reported by the HLS tool.
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Figure 5.2: Proposed HLS DSE flow to find diverse micro-architectures using: (a)
Dmetric on gate netlist, (b) Dmetric on RTL and (c) DIMP on gate netlist.

5.2 Proposed Diversity Estimation Methodology

This work aims first at automating the design process of building a space redundant

fault-tolerant system that has a better potential to mitigate CMF by utilising the

strengths of HLS DSE. The second objective is to find a quicker way to determine the

diversity of two micro-architectures generated right after HLS, i.e., without having

to perform a full Dmetric or DIMP calculation. In this section, we address the first

topic and investigate how well DIMP approximates Dmetric for diversity and also

compare the results obtained from Dmetric using RTL (Verilog) instead of the gate

netlist. This is important because the alternative methods would tremendously speed

up the diversity computation.
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Fig. 5.2 shows the overall flow. The input consists of an untimed behavioural

description, a library of pragmas for it, and the test vectors required to evaluate the

effect of stuck-at-faults on the design. The output is the design pairs with the highest

diversity. Additionally, constraints like maximum latency or maximum area can be

specified. The proposed flow calculates both DIMP and Dmetric for diversity as

shown in Fig. 5.2. This will help us to understand if DIMP could be used to mitigate

CMFs. The flow consists of three steps as follows:

Step 1: Design Space Exploration: The first phase generates different RTLs

from a given untimed behavioural description. For this, different mixes of pragmas

are given to this untimed behavioural description (BIP). HLS is executed, and the

generated RTL is synthesized. The results of this first step is a gate netlist for one

micro-architecture generated by the HLS explorer.

Step 2: Fault modelling: This step takes as input an RTL code and a gate-level

netlist generated in the first step and performs stuck-at-fault simulations for every

possible stuck-at-fault location. For larger gate-level netlist the number of stuck-at-

faults might be too large. Thus the number of stuck-at-fault locations can be limited

by a user constraint as a percentage of the total points to be evaluated

The number of stuck-at-faults in an RTL code is obviously much smaller than in

a gate netlist. The main objective here is to study if the Dmetric obtained from the

RTL stuck-at-fault comparison is usable when compared against the more accurate

gate netlist method.

Step 3: Dmetric and DIMP Computation: This last step computes the Dmetric

and the DIMP diversity metrics for all the design pairs generated so far. The results

are three different diversity metrics: Dmetricgate, DmetricRTL and DIMPgate

The process of identifying joint detectability for each fault pair is tedious with

excessive iterative searches throughout the generated reports of both designs under
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consideration. In an attempt to reduce the number of iterations, the existing Dmetric

formulation has been slightly modified. The modified equation was derived as follows:

D =
∑

(fi,fj)

p(fi, fj).dij (5.5)

= 1
M

∑
(fi,fj) dij = 1

M
[1− k1

2n
+ 1− k2

2n
+ ...+ 1− kn

2n
]

= 1
2nM

[2n − k1 + 2n − k2 + ...+ 2n − kn] = 1
2nM

[M2n − [k1 + k2 + ...+ kn]]

= M2n

M2n
[1− [

∑
(fi,fj)

kij

M2n
]]

= [1−
∑

(fi,fj) kij

M2n
] (5.6)

This work focuses only on stuck at faults, i.e., stuck at 0 or stuck 1. Thus, every

fault point could be stuck at 1 or 0. For example, let us assume design D1 has F1 fault

points, and D2 has F2 fault points. Each of these fault points could be affected by S-

a-0 or S-a-1. Hence there exist 4 different fault pair combinations for one fault point,

i.e., (D1-S-a-0, D2-S-a-0), (D1-S-a-0, D2-S-a-1), (D1-S-a-1, D2-S-a-0) and (D1-S-a-1,

D2-S-a-1). Thus, the total number of fault pairs M = 4F1F2.

Finally, the complete flow iterates by updating the pragma mix, driving a cost

function that maximises diversity. Every generated design is added to a database of

designs against which the newly generated design is compared. The method returns

the micro-architecture pair that leads to the highest possible diversity for all the three

diversity methods used.

5.2.1 Experimental Result

The experiments to compare all three diversity metrics are carried out using different

designs from the synthesisable SystemC benchmark suite (S2Cbench) with designs

intended to work on different applications [74]. We choose on purpose smaller bench-

marks such that an exhaustive Dmetric calculation could be done. The HLS tool
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used is CyberWorkBench v.6.1 from NEC [57] and for logic synthesis Synopsys Design

Compiler (DC) [83]. Nangate Opensource 45nm technology is the target technology

used. The experiments are conducted on an Intel i7-6700 @3.50GHZ CPU and 16 GB

memory, running CentOS 7. The 8 benchmarks used were explored without area and

latency constraints to fully understand the strengths of raising the abstraction level.

Fig. 5.3 compares the Dmetric obtained for the gatenelitst (Dmetricgln) vs the

RTL description (Dmetricrtl for all of the 8 benchmark cases showing the average

results at the last entry. The results show that the diversity metrics are very close

(diversity range lies between 0.97 and 1.0). Thus, one could conclude that perform-

ing the Dmetric calculation at the RTL leads to similar results as compared to the

gate netlist description. The main problem is the Dmetric values reported are not

equivalent because the stuck-at-faults are not the same. Hence, these results do not

completely show the entire picture of the accuracy of computing the Dmetric at the

RTL vs. gate netlist level.
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Figure 5.3: DRTL vs DGLN.

To better understand the difference between the results, Table 5.1 shows the most

diverse design pairs generated by the two Dmetric cases (Dmetricgln and Dmetricrtl).

Example, for the ADPCM case, the designs D11 and D12 generated by the framework

had the highest diversity whenDmetricgln was used; and design pairs D1 and D5 when
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Table 5.1: Overview of design pairs with highest diversity found by the three different
diversity estimation method (Dmetricgln, Dmetricrtl) and DIMP and comparison of
the position of the most diverse design pairs compared to Dmetricgln

Benchmark
Best Design Pair

(GLN)
Best Design Pair

(RTL)
Best Design Pair

(DIMP)
GLN Ranks of

RTL Design Pair
GLN Ranks of

DIMP Design Pair

ADPCM D11-D12 D1-D5 D1-D10 53 39
Ave8 D4-D9 D3-D8 D3-D12 15 41

Cholesky D2-D10 D1-D2 D10-D3 16 23
FIR D4-D5 D5-D9 D3-D11 6 58

PWM D5-D6 D3-D6 D5-D11 7 26
Qsort D3-D12 D11-D12 D1-D12 19 28

Quantizer D8-D12 D2-D12 D12-D9 4 3
Sobel D1-D5 D10-D11 D6-D1 66 41

Average 23 32

Dmetricrtl was used. When using DIMP design pair, D1-D10 was reported as the

most diverse design pair. This clearly indicates that using different diversity metrics

leads to different design pairs, where the pair reported by Dmetricgln is the actual

best pair as it includes a detailed stuck-at-fault study at the gate netlist.

The last two entries show the position of the most diverse design pair found

by using Dmetricrtl and DIMP when compared with Dmetricgln generated ranking

order. It could be seen that on average, the most diverse design pairs found by

Dmetricrtl and DIMP ranked 23rd and 32nd among the designs found by Dmetricgln.

Hence, the results reveal that Dmetricrtl leads to better results than using DIMP.

However, it is not better than Dmetricgln. Moreover, the results are not as accurate

as the initial data revealed, and thus, Dmetricrtl and DIMP should not be used to find

the most diverse system when extremely robust fault-tolerant systems are required.

These metrics could nevertheless be used to prune the search space quickly and then

perform a more detailed Dmetricgln estimation on the pruned search space.

In terms of runtime, it seems intuitive that the DIMP method has to be faster

as no stuck-at-fault simulations are required. Fig. 5.4 shows the running time for

each of the three diversity estimation methods in minutes. The last entry shows

the geometric mean between all three methods to account for the size difference
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between the different benchmarks. From the results, it can be observed that the

DIMP method is the fastest, followed by Dmetricrtl and Dmetricgln. The differences

between Dmetricrtl and DIMP depend on the number of input vectors and stuck-

at-fault pairs. If these are small, then the runtime is similar as DIMP requires a

full logic synthesis, which Dmetricrtl does not. On average (geomean), DIMP is 8×

faster than Dmetricgln and 4× faster than Dmetricrtl, and Dmetricrtl is on average

4×faster than Dmetricgln.
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Figure 5.4: Simulation time overhead RTL FI vs GLN FI vs DIMP.

As shown the runtime is still significant, especially considering that the bench-

marks used were small. For larger benchmarks, a faster as well as accurate method

is required. Thus, the next section presents a predictive-model-based method to find

diversity between designs right after HLS such that an HLS DSE can use this fast

predictive model to guide it in finding the most diverse design pairs.

5.3 Learning Based Diversity estimation

Raising the abstraction level widens the design search space, which increases the

demand for a quick diversity analysis technique as it is intractable to calculate Dmetric
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at the gate netlist or RT-level for larger designs. Much work has been recently done

in the use of predictive models for EDA, showing very good results. Thus, it seems to

be a promising new path to quickly compute different micro-architectures’ diversity,

especially considering the ultimate goal of building an automated HLS design space

explorer.

The subsequent sections explain in detail the two phases of the proposed method

followed by a modified diversity driven design space explorer that prunes out the

design pair with the highest diversity[85].

 

Figure 5.5: Complete proposed flow overview of the proposed scheme composed of
two phases. Phase 1: Generation of predictive model for diversity estimation. Phase
2: Use of model for HLS design space exploration.
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5.3.1 Methodology Overview

The proposed predictive model comprises of two phases. Fig. 5.5 shows an overview

of the complete flow of the proposed method where phase 1 samples the search space

and computes a full Dmetricgln for these initial designs while phase 2 generates

a predictive model such that once it reaches a specific level of robustness (error),

the explorer continues finding the two most diverse micro-architectures using this

predictive model instead of having to compute Dmetricgln. This process significantly

speeds up the entire search process.

The model uses as predictors (labels) the different results reported after HLS, e.g.,

FSM states, registers, latency, area, muxes, FUs which have to predict the Dmetric

value. Phase 1 takes in an input behavioural description and phase 2 outputs the

design pair with the highest diversity index DVi,j. The proposed method also outputs

a trade-off curve with all the design pairs that possess unique diversity vs area and/or

latency trade-offs that fall within the explorer’s cost function.

Phase 1: Predictive Model Generation

Fig. 5.6 elaborates the work flow carried out in phase 1 of the methodology. Phase 1

can further be split into 4 steps where step 1 to step 3 is stratified random sampling,

Synthesis and Diversity estimation.

This phase tries a library of predictive models called with predictors from the HLS

synthesis report that holds information regarding the area of different logic resources,

number of registers, number of states involved in the design and their corresponding

Dmetric estimates. The end of this stage is the predictive model diversity estimator

(PMDiversity) and a tool generated confidence interval. All the above steps are

repeated until the model generator reports at least 95% confidence in its predictions.

Machine learning algorithm such as ExtraTree, GaussianProcesses, Ibk, Least-

MedSq, LinearRegression, LWL, M5P, M5Rules, RandomTree, RBFNetwork, REP-
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Tree and SMOreg were used. The training phase is repeated for every new behavioural

description as different methods can work better for different designs. The Mean Ab-

solute Error (MAE) and correlation coefficient that indicate the model’s predictability

are also reported for each predictive model, and the model that converges faster is

finally chosen. MAE is defined as the sum of error values over the total number of

samples under consideration. A low value on the MAE estimate means that a better

correlation exists between the predicted and the golden outputs. In eq.( 5.7), n rep-

resents the total number of samples while yc and yo are the predicted output and the

golden output, respectively.

MeanAbsoluteError(MAE) =
1

n

n∑
i=0

|yci − yoi| (5.7)
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Figure 5.6: Training of machine learning for cost function generation.
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Table 5.2: Comparison of Mean Absolute Error (MAE) and Correlation Coefficient
of different algorithms on two benchmarks FIR and Quantizer.

Algorithms
FIR Quantizer

Mean Error Rate Correlation Coefficient Mean Error Rate Correlation Coefficient

Extra Tree 2.679 0.703 4.368 0.860
Gaussian Processes 2.661 0.765 5.744 0.863

Least Med Sq 2.554 0.734 4.084 0.883
Linear Regression 2.143 0.854 4.304 0.889

M5P 2.036 0.804 2.864 0.940
M5Rules 1.857 0.862 2.704 0.965

Random Tree 2.429 0.610 3.408 0.933
RBF Network 3.357 0.470 6.288 0.619

REP Tree 3.107 0.439 3.536 0.917
SMO reg 2.268 0.835 3.376 0.933

IBK 2.982 0.668 3.344 0.940
LWL 2.786 0.742 3.632 0.933

The predictive power for certain problem domains might be higher in spite of an

unsatisfactory MAE value. Thus, it is appropriate to use MAE along with correlation

coefficient measures. The correlation coefficient value tends to 1 if the predicted value

correlates with the actual value, while it tends to 0 for predictions that deviate from

the expected value.

Table 5.2 shows the MAE and correlation coefficients of two different benchmarks

(FIR and Quantizer) for all the predictive methods used. It can be observed from

the data that in most cases, M5Rules generates the best predictive model for these

benchmarks. M5Rules is a supervised learning algorithm that uses a separate-and-

conquer strategy wherein every iteration builds a model tree and sets a rule out of its

best leaf. These are regression tree-based predictors where the predictions are derived

from if-then-else conditions by segregating the data set into small groups with a simple

regression model for each of them. The newly generated PMDiversity is used to drive

the automated HLS design space exploration to find two micro-architectures that are

highly diverse from one another.
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5.3.2 Phase 2: Multi-objective HLS Design Space Explo-

ration

Phase 2 of the proposed model uses samples from phase 1 to add diversity as another

objective to area and latency. Fig. 5.7 shows an overview of the proposed diversity-

aware HLS DSE. For exploration in this case, we make use of Genetic Algorithm (GA)

as it has shown to lead to excellent results in multi-objective optimisation problems

like this one. In an effort to minimise the cost between exploration runs, the cost

function is set to maximising diversity, i.e., Cdi,dj = 1
DVi,j

, where DVi,j is the diversity

estimate between two design Di and Dj.
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Figure 5.7: Overview of proposed Genetic Algorithm HLS Design Space Explorer for
testing ML model.

The best design pair is said to satisfy area, latency and diversity constraints
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thus for the above exploration, the cost function is set to minimise area and delay

while maximising diversity, i.e C = αA + βL − γDV . The resulting design pairs

are Pareto optimal design combinations that fall into this three-dimensional search

space. The best design pair could then be easily chosen based on the requirements of

its application. This phase is split into 3 steps as follows.

Step 1: Extraction of Explorable Operations: An input behavioural code has several

operations that could be explored to generate unique micro-architectures. It is for this

purpose that we parse a given behavioural C code to extract explorable operations.

Synthesis directives used here control operations such as array, loops and functions

implementation.

Step 2: Parent generation: The second step of phase 2 is identification of parents

by randomly assigning each parent with a unique list of pragmas. Each assigned

attribute is assumed to be a gene that could be inherited by their offspring. The

pragmas in this work include arrays= register, expand, logic, RAM, ROM, loop=

no, partial, all, fold and func= goto, inline. Meanwhile, the design points generated

during phase 1 of the flow could also be used to pick parents from the pool.

Step 3: Genetic Algorithm based DSE: Two parents are randomly selected from the

pool of parents. Let us assume Pi and Pj are the chosen parents. The list of attributes

that corresponds to these parents are combined with a random cut-off point. The

newly generated attribute list also possesses mutated genes that are attributes which

are not acquired from their parents. They are selected from the attribute library.

The rate at which this mutation occurs could be chosen and, in our case, is set to

mr = 0.1. From the new attribute list, a mutated offspring (Oij) is generated and

synthesized using the HLS tool leading to a micro-architecture with unique features.

The new design pair combinations are DPairPi,Oij
and DPairPj ,Oij

. The diversity of

these design pairs is measured using the PMDiversity. An offspring substitutes one of

its parents when the newly generated design pair has a lower cost function compared
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to the parent combination. Each of the offsprings generated is synthesized using

maximum functional units in order to parallelise the micro-architecture to a possible

extent with the available pragma list. At the same time, it is also synthesized with

minimum function unit implementation with maximum resources being shared. The

algorithm continually tries to reduce the cost function until N number of offsprings

fail to improve any of their parents. In this work, N had been set to 10.

5.4 Experimental Setup and Results

This section presents the experimental setup used to reproduce results for all the three

methods being compared followed by an experimental results section that showcases

the results retrieved from the comparison.

5.4.1 Experimental Setup

The efficiency of the proposed method is verified using 8 different benchmarks from the

open source synthesizable S2C benchmark suite [74]. The benchmarks used are Ave8,

ADPCM, Cholesky, FIR, PWM, Qsort, Quantizer and Sobel. The above-mentioned

benchmarks are all small to allow finding the optimal solution exhaustively and hence

be able to fully characterize our proposed approach.

The HLS tool used in this work is CyberWorkBench v.6.1 from NEC and logic

synthesis is done using Synopsys Design Compiler (DC). Nangate Opensource 45nm

technology is the targeted technology library. An Intel i7-6700@3.50GHZ CPU and 16

GB memory, running CentOS 7 were used to conduct the experiment. The gate-level

netlist of all 8 benchmarks were injected with stuck-at-0 and stuck-at-1 faults and

simulated using ModelSim. For implementing the machine learning phase, WEKA

has been used.

To better characterize the strength of the proposed method (PMDiversity), we
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compare it against the three other methods introduced previously (Dmetricrtl,Dmetricgln

and DIMP). All the methods being discussed are diversity estimation techniques

used to calculate the degree of diversity between the design pairs generated by the

proposed GA-based HLS DSE. In order to decrease the randomness induced by the

GA based explorer, each exploration is repeated 5 times and the average results are

reported.

All the above metrics guide our exploration process to generate the design pair

with the highest diversity. To better understand the influence of diversity measure-

ment technique on the design pair chosen, we generate 65 micro-architecture pairs for

each benchmark and measure the runtime required by each method to generate the

result.

5.4.2 Experimental Results

Fig. 5.8 shows the experimental results in terms of the diversity values reported by

each of the four methods for the design pair with the highest diversity. As indicated

previously, this value by itself does not mean anything as the design pairs can be very

different to the design pair reported by Dmetricgln, which is by definition the most

accurate, but also slowest of all the methods.

Table 5.3 shows the distance between the design pair reported by Dmetricgln and

the other three methods. It can be observed that our proposed PMDiversity method

on average is only 1.5 design pairs away from the optimal design pair, while the other

two methods are 20 and 32.4 design pairs away for Dmetricrlt and DIMP respectively.

This indicates that our proposed method works very well.

Finally, Table 5.4 also highlights one of the big advantages of our proposed ML-

based diversity estimation method. It is on an average 10.5× faster than using

Dmetricgln, 4× faster than Dmetricgln and 8.77× faster than using DIMP.

In summary, we have shown that our predictive machine learning based diversity
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Figure 5.8: Diversity result comparison among all four diversity estimation methods:
Dmetricgln(Dgln), Dmetricrtl(Drtl), DIMP and PMDiversity.

Table 5.3: Best design choice selection ranks for three diversity estimation methods
compared to baseline (Dmetricgln).

Benchmark
Ranking

Dmetricrtl DIMP PMDiversity

ADPCM 15 39 3
Ave8 51 41 1

Cholesky 7 23 2
FIR 6 58 1

PWM 7 26 2
Qsort 19 28 1

Quantizer 4 3 1
Sobel 51 41 1

Average 20 32.4 1.5

estimator outperforms the Dmetric estimation at the RT-level and DIMP, while being

much faster in finding the design pair with the highest diversity estimate.

5.5 Summary and Conclusion

In this chapter, we have proposed methods that help mitigate CMFs when com-

pared to the existing methodologies by leveraging the strengths of High-Level Syn-

thesis. In particular we have proposed an automatic method based on HLS Design
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Table 5.4: Runtime comparison between all methods compared to baseline
(Dmetricgln).

Benchmark
Speedup

Dmetricrtl DIMP PMDiversity

ADPCM 2.46 3.69 12.58
Ave8 2.27 16.89 12.24

Cholesky 5.83 5.94 11.37
FIR 1.95 2.06 7.52

PWM 1.95 2.06 7.26
Qsort 5.35 2.44 10.54

Quantizer 8.38 13.92 10.67
Sobel 4.37 23.15 11.76

Average 4.00 8.77 10.5

Space Exploration to tactically prune out best design pairs to be used for fault toler-

ance applications. We have analysed two main diversity indicators used in literature

(Dmetric and DIMP) and have evaluated a new version of Dmetric based on RTL

stuck-at-fault simulations. We proceed by analysing the accuracy of DIMP copmared

to Dmetric. Finally, we introduce a fast predictive model based diversity estimator

that considerably accelerates the process of finding design pairs with high diversity.
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Chapter 6

Functional Locking of Behavioural

IPs

The previous chapters addressed the issue of fault-tolerance in heterogeneous MP-

SoC’s against random SEU and CMFs. This chapter deals with protecting a ded-

icated hardware circuit from being illegally copied, reverse engineered or from any

malicious alterations.

The protection of Intellectual Property (IP) has emerged as one of the most se-

rious areas of concerns in the semiconductor industry. Logic locking has led to good

results, with little overhead against IC over-production and IP piracy by untrusted

end-users or foundries. Fig. 6.1 shows the complete IC design flow, including the

insertion of a locking mechanism. Unfortunately, new attack techniques appear each

time a new locking mechanism is presented to exploit its weakness. Some include

path sensitisation attacks and more recently SAT-based attacks. This work proposes

a functional locking mechanism for BIPs that exploits the internal structure of be-

havioural descriptions when synthesised using HLS, in particular the generation of

a Finite State Machine (FSM) and a datapath. Our proposed locking mechanism

breaks the key into multiple pieces, and each applied at a unique FSM state. Ap-
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plying the incorrect key at any of the states leads to an invalid result. Breaking our

proposed locking mechanism is much harder than previous work as the attacker would

need to try all possible permutations of keys to find the correct key, thus making this

virtually unbreakable. Moreover, we insert the key at the BIP itself, which implies

that the locking logic is shared with the BIP logic, making it more robust against

removal attacks. Experimental results show that the proposed locking mechanism

works very well with minimal area and delay overheads for different key sizes.

IC Activation

System 

Specification 3IP

SoC Design and 

Integration

Design Netlist

Logic Locking

Locked Netlist

Physical Design*

Layout

Fabrication*

Wafer

Packaging*

Locked IC

IP Owner
Unlocked IC

IC Shipment*

End User with 

Functional IC
Final Product

Figure 6.1: IC design flow that incorporates logic locking to protect an IC from supply
chain vulnerabilities represented in *.

In addition, to reduce the complexity of designing these heterogeneous systems

and these accelerators, companies have started to embrace HLS, also called C-based

VLSI design. Finally, most IC design companies are now fabless, which implies that

they have to expose the complete chip to a potentially untrusted foundry thousands of
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miles away. These offshore foundries are located far away from the design companies

that make it easy for attackers to insert malicious circuits into the original design.

Thus, it is important to protect these IPs created by these companies and in par-

ticular, the BIPs that lead to unique differentiating products in the form of hardware

accelerators. Functional Locking is a promising technique to thwart supply chain at-

tacks. The main idea behind logic locking is to add additional key enabled circuitry to

the original circuit to be protected, thus preventing the correct functional execution

of an IC if the correct key is not applied. The key is typically stored in a tamper-

proof memory and cannot be retrieved, even when acquiring the IC lawfully from

the market. This approach has shown to offer a certain level of protection against

bruteforce attacks, yet has also been shown vulnerable to intelligent attacks, such as

the clever use of Boolean Satisfiability (SAT) solvers [81]. This work proposes a new

functional locking mechanism that exploits the fact that any circuit synthesised using

HLS is built around a controller (FSM) and datapath to address the shortcomings of

the existing techniques.

The following sections elaborate some of the existing logic locking techniques and

attack strategies used by attackers to unlock any secure IP.

6.1 Logic Locking Overview

VLSI design companies often focus on developing these dedicated accelerators, ded-

icating a significant number of resources to optimise them fully. Therefore, it is

extremely important for them to protect their Intellectual Property (IP) from being

copied or illegally distributed. Because of the importance of this topic, a plethora

of approaches have been proposed ranging from functional locking [73, 14] to split

manufacturing [67] and diverse design obfuscation techniques [101]. Out of all the

techniques, functional locking seems the most promising. In functional locking, a de-
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Figure 6.2: Overview of main functional locking mechanisms. (a) Traditional locking
through additional gates and (b) locking through omission by mapping portions of
the design onto an eFPGA.

sign is modified such that it does not comply with the original specification if a valid

key is not applied to the design. The result of applying an incorrect key can range

from the functional incorrectness of the output to the reduction of the performance.

The main idea in functional locking is to make it harder for an attacker to find the

correct key to unlock the correct functionality of the circuit. Fig. 6.2(a) shows a

simple example where an XOR and an AND gate are added to the circuit. In this

particular case, the logic key for these two gates needs to be set to 0 for the XOR

gate and 1 for the AND gate to guarantee the correct behaviour of the circuit.

One relatively new approach to functional locking is, locking through omission.

In this case, a portion of the design is mapped onto an embedded FPGA (eFPGA) as

shown in Fig. 6.2(b). In this case, the key of the circuit is the actual bitstream that

correctly configures the eFPGA [80]. This technique is more potent than traditional

locking because a part of the circuit is entirely removed from the design as opposed

to traditional techniques where the locking mechanism is still embedded in the circuit

when sent to the fab. The main problem is the extremely large overheads associated

with it in terms of area, power and timing degradation. Thus, traditional methods

that are robust enough and lead to small overheads are necessary.

The design house, in this case, is assumed to be trusted while the offshore foundry,

testing facilities and the end-users are considered to be stages where an IC is prone
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to be misused. The secret key access is restricted to the IP owner alone. This makes

the attack on an IC complicated as the correct functionality is restored only when the

correct key is applied. For an attacker to identify a secret key, he/she has to critically

analyse the structure of a locked netlist to single out a suitable heuristic to determine

the hidden key. The time taken by an attacker to retrieve a key determines the

strength of the locking mechanism. The IP owner activates the IC before it reaches

the end-user.

6.2 Logic locking to Defend against Hardware At-

tacks

This section briefly describes the capabilities of logic locking in thwarting hardware

attacks.

IP theft, Counterfeiting and reverse engineering: Foundries these days are

individual entities that focus only on IC fabrication for several semiconductor com-

panies, giving them access to sensitive layout data. It has thus become mandatory to

protect an IC using logic locking. In cases such as IP theft or functionality identifica-

tion by reverse engineering, the attacker is left with an altered design. Counterfeiting

strongly depends on the attackers reverse engineering capability. However, the gates

used for locking either replace a functional buffer or inverter or they are additionally

added, thus making the attack process strenuous as the structure would not reveal

much data regarding the lock implemented. One must find an effective method to

identify the key in a short period of time, which itself is a tough task [88]. Thus,

IP theft and counterfeiting post reverse engineering needs more probing to single out

the secret key.

Malicious altercations: Intentional design changes made by attackers within the

company act as hidden front doors that could potentially leak secret internal data.
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Logic locking helps in mitigating the insertions of Trojan by altering the signal tran-

sition probabilities, making it difficult for an attacker to identify cloaked insertion

points.

Overproduction: Offshore foundries or rogue employees in the foundry can fab-

ricate more ICs than the client’s requirement. These extra ICs, when sold in the

black market, fetches the attackers an enormous amount of profit, disrupting the

mainstream sales. By locking a design using logic locking techniques, the attacker

fabricates a design with gate modifications embedded within. Thus, the manufactured

IC is functional only after activation.

6.3 Lock Insertion Techniques

Logic locking techniques could either be combinational if XOR/XNOR gates,

AND/OR gates or multiplexers are inserted [64, 66, 68, 73, 19]; or sequential if

lookup tables (LUT) or finite state machines (FSM) are used [5, 33, 14, 36]. The

wrath of a lock depends on the key gate insertion techniques. The three commonly

used methods are (i) random logic locking (RLL), (ii) fault analysis-based logic

locking (FLL), and (iii) strong interference-based logic locking.

RLL is an insertion technique where the key gates are inserted at random locations

throughout the netlist. The key gates inserted may or may not be placed at critical

positions. This ambiguity arises due to the randomness in the insertion point. Thus,

the output corruption probability is reduced where the correct outputs are reflected

for several wrong keys [73].

FLL was introduced to overcome the shortcomings of RLL. Fault injection-based

analysis of a netlist helps identify pivotal insertion points that can increase the prob-

ability of output corruption. The corruption ability is measured by estimating the

Hamming distance between the golden output and the corrupted output. A larger
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Hamming distance indicates a higher degree of error. FLL does not survive the sensi-

tization attack. Sensitization attack is an attack means by which an attacker applies

a selected input that lets one or more bits of the secret key surpass the gates in its

path and reach the primary output bits, thus revealing a bit of the secret key [68].

SLL was introduced to withstand sensitization attack. The key gate insertion

is performed in such a way that two or more gates interfere with each other, thus

not letting the attacker sensitize a path without assuming values for these keys bits

at a time. This interference causes an inter-dependency between these key gates,

thus making it difficult for an attacker to identify the secret key without exhaustively

trying all permutation combinations (brute-force) [66].

Sensitization attacks can be thwarted by SLL but stronger attack like the Boolean

satisfiability attack or SAT attacks can easily break all the above-mentioned locks and

its improvised variants [82]. Attack methodologies that are being used these days are

explained in detail in the next section.

6.4 Existing Attack Strategies

Attack strategies that exist in today’s hardware security environment have increased

the need to develop stronger locks to protect IC from being misused. Some of the

strong attacks that exist are algorithmic, approximate, structural/removal and side-

channel attacks.

Algorithmic Attacks: The vulnerability of a locked design depends on its algo-

rithmic weakness. Extraction of the secret key by any means will help an adversary

retrieve a complete design without any hindrance. The retrieved design will be an

exact replication of a working IC, i.e., if key k and input i are applied to a locked

circuit then L(k,i) = F(i), ∀i ∈ I. Sensitization attack [66], SAT attack [82] and

circuit partitioning attack [43] are examples of algorithmic attack.
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Approximate Attack: Approximate attacks aim at compound logic locking tech-

niques where a low-corruptibility technique such as Anti-SAT is coupled with a high-

corruptibility technique like SLL or FLL. Approximate attacks are capable of iden-

tifying the functionality of the locked circuit to an extent where only a few of the

output cases fail. These retrieved designs are approximately equal to the original de-

sign with some missing bits that produces output variation for certain set of inputs.

Examples of these attacks are AppSAT [32] and Double-DIP [78].

Structural/Removal Attack: An attacker who has easy access to a reverse en-

gineered netlist can identify a locking unit or an error injection block by carefully

examining its structure. One could bypass/remove this block that intends to protect

the design. The result of such isolation can be represented as follows R:L(i, k)→ H(I)

such that H(i) = F(i), ∀i ∈ I. The recovered netlist produces the same outputs for

every given input. Bypass attack is an example of structural attack [94].

Side-Channel Attacks: Side-channel attacks make use of a circuit’s physical prop-

erties such as power and timing characteristics [97]. The timing graphs or power

details reveal a great amount of information, giving way to an attacker’s curiosity.

Differential power analysis and desynthesis attacks are good examples of side-channel

attack [34].

The ability of SAT attack makes it a strong attack strategy capable of breaking

every known lock that existed before its release. Thus, in this work, we aim at thwart-

ing all previously known attack while keeping SAT and removal attacks primarily in

mind.

SAT Attack

Boolean satisfiability attack or SAT attacks when introduced were capable of breaking

all the logic locks that then existed. The idea behind a satisfiability attack is to reduce

the key search space iteratively using a SAT solver [82]. SAT attack holds good for
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combinational locks. Given that an attacker has a reverse engineered netlist and a

functional IC, an oracle-guided keyspace pruning retrieves the secret key within a

short time span.

Locked Gate 

Level Netlist              

CNF of a Miter 

Circuit

SAT Solver

DIP
DIP 

Exists? Functional IC

I/O pair
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Figure 6.3: SAT attack flow.

A threat model assumed for SAT attack includes a reverse-engineered gate-level

netlist of a locked IC, functional IC obtained lawfully from the market and a strong

SAT solver like Lingeling [44] or Minisat [84]. Fig. 6.3 elaborates the flow of SAT

attack that prunes out incorrect keys to unravel the hidden secret key. The unfolding

of SAT attack could be explained step by step as follows.

Step1: Using the gate-level netlist of a locked IC, an adversary builds a miter circuit

as shown in Fig. 6.4. Two copies of a gate-level netlist O1 and O2 are XORed, and

all the XOR outputs are ORed to output a high. KA and KB correspond to the

keys applied to modules O1 and O2 while the primary input is common to both the

modules.

Step 2: SAT solvers take in inputs in the CNF format. CNF or Conjunctive Normal
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Form means the entire functionality of a miter is expressed as a conjunction (AND)

of clauses where each clause is a disjunction (OR) of literals.

Step 3: The given CNF is satisfiable (SAT) when output of the XOR gate shown

in Fig. 6.4 evaluates to 1. Every iteration identifies a differentiating input pattern

(DIP). A DIP is a primary input that when applied to O1 and O2 with two different

keys KA and KB produce different outputs. This identifies that only one of the two

keys could possibly be a secret key. With the help of a functional IC, the output

corresponding to the identified DIP is retrieved to eliminate the wrong key.

Step 4: The key search space initially consists of 2n keys for an n-bit key. The SAT

solver iterates if the CNF formula holds good.

Step 5: For each IO pair identified, the CNF formula is updated with a new clause to

help identify other DIPs to eliminate furthermore keys. When the SAT solver reaches

a point where the CNF formula fails to satisfy, the secret key could be recovered.

6.5 SAT attack resistant logic locking techniques

SARLock

SARLock was proposed to secure a locked logic from being attacked by SAT solvers.

This lock makes use of additional circuitry such as a comparator, masking unit and

 

Figure 6.4: Miter circuit used to identify DIPs.
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an XOR gate. Fig. 6.5 shows the structure of a SARLock. It could be understood

that the strong point of a SAT attack is its ability to rule out keys that are not

coinciding with the output of an oracle. Table 6.1 clearly indicates that the SAT

attack has a best-case as well as a worst-case scenario. The distinguishing input

keys in a best-case scenario will eliminate all the incorrect keys, or a number of

incorrect keys in one go making it easier for the attacker to identify the correct key.

A worst-case scenario is when the applied input pattern eliminates only one key or

does not distinguish a wrong key. SARlock aims at increasing the complexity of

identifying the correct key by letting the attacker eliminate only one key at a time.

[98].

Unmodified 

Logic Cone

=? Mask

IN

K

Y

Figure 6.5: SARLock.

The comparator compares the input IN with the secret key from the memory.

The masking unit produces a flip for every input-key combination except for the

combination where the key and the input are the same. Table 6.1 shows the working

of this lock where K2 and input 3 combination does not flip delivering the correct

output. The masking unit maintains the functionality intact while letting an attacker

identify only one wrong key at a time. This means that for each applied input pattern,

only one wrong key could be ruled out. Thus, for a K bit key 2K − 1 DIPs are required.
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Table 6.1: Input and output combinations of a SARlock for different keys [60]. The
black entries represent a flip generated when the comparator shows a mismatch. The
grey entries represent an input-key combination that produces the correct output
value for the given circuit.

Input Output Output Y for different keys
No.

abc Y K0 K1 K2 K3 K4 K5 K6 K7
1 000 0 1 0 0 0 0 0 0 0
2 001 0 0 1 0 0 0 0 0 0
3 010 0 0 0 0 0 0 0 0 0
4 011 1 1 1 1 0 1 1 1 1
5 100 0 0 0 0 0 1 0 0 0
6 101 1 1 1 1 1 1 0 1 1
7 011 1 1 1 1 1 1 1 0 1
8 111 1 1 1 1 1 1 1 1 0

Modified 

Logic Cone

=?

IN

K

Y

Figure 6.6: TTLock.

Vulnerabilities of SARLock This SAT resistant lock succumbs to a structural

attack called the removal attack. The structural analysis of a reverse-engineered

netlist would reveal the functionality of the original circuit as the logic cone imple-

mentation is unmodified. The comparator, mask and the XOR gates are all externally

added to secure the circuit but do not protect the original unmodified circuit from

being identified by an attacker.

82



Table 6.2: Input output combinations generated by a TTLock for different keys. The
black entries represent a wrong value while the grey entries represent a input-key
combination that generates the correct output. The grey entry is called the protected
input pattern[99].

Input Output Output Y for different keys
No.

abc Y K0 K1 K2 K3 K4 K5 K6 K7
1 000 0 1 1 1 1 1 1 1 1
2 001 0 0 1 0 0 0 0 0 0
3 010 0 0 0 1 0 0 0 0 0
4 011 1 1 1 1 0 1 1 1 1
5 100 0 0 0 0 0 1 0 0 0
6 101 1 1 1 1 1 1 0 1 1
7 011 1 1 1 1 1 1 1 0 1
8 111 1 1 1 1 1 1 1 1 0

TTLock

TTLock is a modified SARLock that aims at overcoming the shortcoming of SARLock.

In a TTLock, the comparator is disguised as a restoration unit which works to restore

a wrong output bit. Fig. 6.6 represents the structure of a TTLock. Here an input

pattern is protected, i.e., for a given key K and an input IN the output bit generated

by the circuitry needs a restoration facility to withhold the correct functionality. The

logic cone in a TTLock is by itself protected by minimal modification. Table 6.2

shows that for an input 000 and K0, the output generated is correct; while for the

same input but the other keys, the output generated vary by two bits. The first bit

flip generated as an effort to restore the output when 000 is applied while the other

flip generated as an effort to mask the original logic cone.

Anti-SAT

The Anti-SAT logic locking technique mitigates SAT attack and suggests means by

which one could overcome removal attack. The structure of this SAT mitigating

logic locking technique is shown in Fig. 6.7 [91]. The functions implemented by logic
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blocks G and G are complimentary. The inputs to these logic blocks are intermediate

outputs from selected gates in the original circuitry and corresponding secret key.

The AND gate at the end of the structure outputs 0 at all times given that the key

applied is same the as the secret key. Integrating this block onto the original circuit

via an XOR gate as shown in figure makes the block act as a buffer when the key is

correct; while it acts as an inverter when the key is wrong, i.e., the blocks G and G

are complimentary only for the correct key and for the other cases it may or may not

preserve its functionality.

Locked Circuit

G(X,K1)

G(X,K2)

Primary Inputs

X

Primary Outputs

K1

K2

Anti-SAT 

Block

Anti-SAT 

Error Injection 

Gate

Figure 6.7: Anti-SAT Lock.

Effectiveness of Anti-SAT: Let us assume that for an input vector with n bits

p of the inputs cause a type-0 Anti-SAT block to produce 1, making it flip a correct

output. Thus, there are 2n − p input vectors that still keep G and G complimentary.

The sustainability of an Anti-SAT block depends on the p value, i.e., if p is close to 1

or 2n − 1 then the SAT iterations required to identify the correct key is higher. The

lower bound for a successful SAT attack to decipher a 2n-key bit can be written as

follows λl = 22n−2n

p(2n−p)
where pε{1→ 2n − 1}. If p=1 , λl = 2n. The strength of the

system depends upon p but the exponential increase in the number of SAT iterations
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based on the key bit size makes it resilient against SAT attack. It is also resilient

against removal attack by functional and structural obfuscation [91].

SFLL-HD

The structure of SFLL-HD shown in Fig. 6.8 is being used [56] to better understand

the state-of-the-art logic locking technique. The stripped functionality logic locking

technique strips the original circuitry in such a way that the introduction of a restora-

tion unit restores the original functionality. This retrieval procedure applies only to

a set of protected inputs which are at a Hamming distance h from a secret key K

stored in a tamper-proof memory. For given a h and k,
(
k
h

)
number of protected input

patterns exist. Let us assume an n-bit input and k-bit key. Stripped functionality

logic locking structure shown in Fig. 6.8 has two restore units. The original circuit

is modified by hardcoding selected keys that flip the output at Y. These hardcoded

keys are the only keys that need a restoration in the latter half of the circuit, con-

verting Yfs back to Y. For these protected input cubes, Yfs is wrong, i.e., even if the

restoration logic is identified by structural analysis of the circuit the attacker still

cannot recover the original circuit by removing the restoration units as it will leave

them with a wrong output Y for all the protected input cubes. SFLL-HD are of three

types SFLL−HD0, SFLL−HDh and SFLL−HDcxk. In this technique, when an

input pattern applied to the circuit is at a certain predefined Hamming distance away

from the secret key, then the unit acts to restore a probable wrong output coming

into the final XOR gate. From Fig. 6.8 it could be noted that the logic cone output

coming out of FSC is modified for a set of hardcoded key values. As long as the key is

correct, the output at Yfs is correct; but for a wrong key, extra errors pop at Y, i.e.,

when the key is wrong but the Hamming distance is h, then the unit tries to restore

an output that does not need rectification. Every input pattern generating a wrong
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output belongs to the protected input cube set P, but for every input cube there are

2n−k input patterns. Thus, to identify a key, P ∗ 2n−k iterations are required.

Original 

Circuit

Restoration Unit 

Hardcoded Keys

FSC

H(K,IN)=h

IN

Tamper Proof 

Memory

K

Y
Yfs

Y

Restored 

Output

Figure 6.8: SFLL−HDh logic locking technique[56].

When the Hamming distance h=0, SFLL−HD0 is the same as TTLock. The

other versions of stripped functionality logic locking have a number of protected

input cubes, making the set P a larger number. The SAT iterations depend on the

P value and the Hamming distance h. Increasing the h value increases the number

of protected input cubes. The SFLL−HDcxf version of this methodology could

be used to protect sensitive parts of a circuitry or to protect an IP. This is flexible

as the designer can protect c input cubes by specifying a k-bit key. In [56], it has

been proven that the above method thwarts SAT attack, removal attack, sensitisation

attack and all other derived attacks; but in [95], it has been proven that structural

analysis of a re-synthesized netlist that was generated using design compiler leaves

away traces of the changes made to the original circuit, letting the attacker track the

protected patterns thus retrieving the original design.
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6.6 Efficient Logic Locking for Behavioural IPs

To address the weaknesses of previous locking techniques, in this chapter we propose

a new functional locking mechanism that exploits the fact that any circuit synthesized

using HLS is built around a controller (FSM) and datapath. We thus split the logic

key into fragments, each applied at a unique FSM state. This increases the robustness

of the circuit to intelligent attacks. In summary, the contributions of this work are:

• Introduces a locking mechanism that increases the security to logic unlocking

attacks and removal attacks.

• Extends this locking mechanism to reduce timing issues by making use of ad-

vanced HLS tool options.

6.7 Motivational Example

High-Level Synthesis is a process which takes as input an untimed behavioural de-

scription (e.g. ANSI-C, C++ or SystemC) and generates efficient RTL code (Verilog

or VHDL) that can execute it. It performs three main steps: (1) resource allocation,

(2) scheduling, and (3) binding. By default, the synthesizer extract as much paral-

lelism as possible from the behavioural description by, for example, fully unrolling

all loops. The main idea of creating custom hardware accelerators is to run these

more efficiently than in software by processing as much data as possible in parallel at

lower frequencies. This might not be the micro-architecture that the designer needs

in terms of area, performance and power. Thus, HLS vendors make extensive use of

synthesis directives in the form of pragmas to allow designers to guide the synthesis

tool in order to generate the desired micro-architecture. Vendors also use dedicated

hardware extensions to control the resultant micro-architecture. This work makes use

of these type of extensions to check for a valid key during each unique FSM state.
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Fig. 6.9 shows a motivational example for a code snippet that computes the aver-

age of 8 numbers. Depending on the target synthesis frequency and the delay of the

adders, one possible schedule for this program is shown next to it. In this case, the

loop that adds the 8 numbers is fully unrolled. The result is a circuit with latency

equal to 3 clock cycles composed of a datapath with 4 adders (the adders in cycles

2 and 3 are re-used/shared) and an FSM that generates the control signals for the

muxes that control the resource sharing of the 4 adders.

Fig. 6.10 shows our proposed work. It automatically updates the behavioural

description based on the time report of the HLS tool that identifies which lines in the

given code are scheduled in which clock cycle. This feature is key in our proposed

method as it allows to insert a new locking checkpoint in each clock cycle, which in

this case is the function ‘key check()’. This is automatically done by instrumenting

the source code. There are two major advantages of inserting the locking mechanism

at the behavioural source code instead of previous works where it was done at the

RTL or gate-level. First, logic locking circuitry is shared and mixed with the rest of

the logic, making the circuit resilient to removal attacks. Second, knowing the timing

slack available in each clock cycle allows to insert logic locking primitives that do not

lead to any timing violations. Hence, the generated circuit will meet the given timing

constraint.

Checking a key every clock cycle requires the partition of the original N -bit size

key into N/S, where S is the number of FSM states. One other option to further

increase the security is to make the key N × S and apply an N -bit size key to the

circuit every clock cycle, making it even harder to break. This makes it much harder

to break the key as the attacker needs to find all the permutations of the keys applied

each clock cycle. Based on this, the problem that we address in this work could be

formulated as:

Problem Formulation: Given a BIP in any behavioural description language
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int data[8]; 
for(x=0;x<8;x++)

sum += data[x];
sum =sum/8;
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Figure 6.9: Behavioural code snippet (computes average of 8 numbers) and HLS
scheduling result.

sum = data[0];
sum += data[1];
sum += data[2];
sum=key_check(key,1) ;
sum += data[3];
sum += data[4];
//-------- Clock1
sum += data[5];
sum += data[6];
sum=key_check(key,2);
//------- Clock 2
sum += data[7];
sum =sum/8;
sum=key_check(key,3);
//-------- Clock 3

High-Level Synthesisftarget,
techlib

// average of 8 computation
int data[8]; 
for(x=0;x<8;x++)

sum += data[x];
sum =sum/8;

Datapath

Source to Source 
Compilation

FSM

Figure 6.10: Modified C code with locking mechanism and new scheduling result for
the newly enhanced C code.

(e.g. ANSI-C or SystemC), automatically insert a locking mechanism that prevents

obtaining the correct result at the primary outputs, by checking at every state of the

FSM the new key, with minimum area and timing overhead.
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Tamper-proof memory

Figure 6.11: Flow overview of proposed method.

6.8 Threat Model

This work considers the same threat model used in most previous functional locking

works and assumes that any party involved in the design and fabrication of the circuit

is a threat and in particular the fab that can reverse engineer any traditional circuit

given as GDSII netlist. We assume that the attacker has access to the layout and

significant resources and technical knowledge in reverse engineering. The main goal

of the attacker is to reverse engineer the IC to sell it as a pirate copy or to acquire

the IP of the IC for its own profit. The attacker also has access to an oracle, a fully

functional IC obtained legally from the market. The attacker can also apply input

patterns to the locked IC and observe its response.

6.9 Proposed Method Overview

Fig. 6.11 depicts graphically the overall flow of the proposed method. The framework

takes as input the untimed behavioural description to be locked and a set of locking

primitives (xor, xnor, if-else clauses) and outputs the RTL code of the synthesized

90



description with the locking mechanism. The method is composed of three main steps

described in detail below.

Step 1 Parameter Extraction: This first step performs HLS on the original be-

havioural description without any locking mechanism. Our method extracts the FSM

states and the maximum delay of each of the states after the scheduling phase. This

phase also reports the total area, which we will use to report the overhead introduced

by inserting the locking mechanism.

Step 2 Source-to-Source Compilation: This second step takes as input the result

from step 1, the behavioural description and the locking primitives. Based on the ca-

pabilities of the HLS tool used, this step either transforms the behavioural description

into a manually scheduled description with the same clock cycles as the latency re-

ported in step 1, or make use of the allstate construct mentioned in the motivational

example. This second approach is much easier and hence, favoured in this work.

Irrespective of the approach, our method has to identify one variable which is being

written in each of the states so that the values of these variables can be obfuscated

in case that the incorrect key is applied. This is done by parsing a signal access table

generated by the HLS tool in step 1. By default, this step randomly chooses one

of the signals from the signal table for each state and randomly chooses one of the

locking primitives from the database. One of the problems with this approach is that

it might lead to timing problems if the delay introduced by the locking mechanism

in a particular scheduling step now exceeds the maximum frequency delay specified

as input to the HLS process. Thus, to avoid this, our method can skip the states

with little timing slack. In this case, any key passed to the circuit at that state is

accepted as a correct one. This impacts the security, but guarantees that timing is

maintained. Finally, it writes out the new behavioural description with the locking

mechanism and adds the key port as primary input (Cobf ).
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Step 3 High-Level Synthesis: This last step synthesizes the new behavioural

description (Cobf ) and generates the new locked circuit as shown in Fig. 6.11. This

circuit will only work if the correct key is applied in each of the states. It should

be noted that this method only works if the controller generates the same sequence

continuously, which is the typical case in many data-intensive applications targeted

when using HLS, i.e., DSP, image processing applications. In the case that the

application has complex control dependencies, this approach would not work as the

key sequence would only be known at runtime. A simple way to deal with this is to

add a primary output to the BIP which outputs the current state. The correct key

is then applied based on the current state.

6.10 Security Analysis

The proposed locking mechanism leads to a more robust functional locking in two

main ways: firstly through the increase in the search space, thus making SAT attacks

virtually impossible; and secondly through resource sharing of the locking logic, thus

making removal attacks not possible.

Protection against SAT Attack: The proposed lock uses fewer IO pins to retrieve the

secret key from a tamper-proof memory compared to the existing techniques. This

lets the lock scale better while using much larger keys. The lock introduced here

is tough to break using brute force attack while SAT attack would take less time

than brute force. It has to be understood that SAT attacks capability will vary

based on the obfuscation points. In this proposed technique, we have made random

obfuscations, and hence the SAT iterations vary from one benchmark to the other.

But in conclusion, it could be understood that when a design is obfuscated using

variables with low corruptibility, the SAT iterations will increase and vice versa.
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Thus, SAT attack mitigation strength could be enhanced by fault analysis based

design obfuscation.

Protection against Removal Attack: In addition, most of the previous locking mecha-

nisms are subject to removal attacks. These attacks identify the circuitry responsible

for the logic locking and remove it at the foundry. In our case, because this logic is

fully shared with the rest of the circuitry, it is impossible to remove. The nature of

the HLS process leads to maximum resource sharing. In resource sharing, a single

functional unit is shared among different operations in the source code by inserted

multiplexers at its inputs and outputs [65]. The Finite State Machine (FSM) created

by the HLS synchronizes all the multiplexers’ control signals in order to steer the

data through the datapath containing the shared FUs. Thus, the RTL code gener-

ated through HLS typically shared most of its resources when possible. This makes

our approach extremely robust against removal attacks.

6.11 Experimental Results

Six computationally intensive applications from the open source S2Cbench SystemC

benchmarks suite [74], were used to test our proposed flow. These benchmarks com-

ply with the latest Accelera’s Synthesizable SystemC subset and hence, could be

synthesized with any commercial HLS tools [11, 47, 57] as these all support SystemC.

Interp is a 3-stage interpolation filter, decim a 5-stage decimation filter, cholesky is

the cholesky decomposition, jpeg a bmp-to-jpeg encoder and aes a block cipher. Ta-

ble 6.3 shows the number of states of each of the benchmarks when synthesized in

default mode, which in our work is equivalent to the total number of keys as there is

one unique key per state (in the jpeg case the keys are inserted in the RLE module

as it is composed of multiple blocks).

In this work, we use NEC’s CyberWorkBench [57], which supports both manual
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Table 6.3: Benchmark characteristics
Benchmarks

interp aes decim jpeg cholesky

keys/FSM states 8 13 20 37 71

scheduling and C-extensions including allstates. This last mechanism is used in this

work to check for the correct key in each cycle. The target synthesis frequency is set in

all cases to 200MHz (clock period of 5ns), and Nangate’s 45nm opencell technology

library is targeted. All the experiments were executed in default mode, where a

unique key is checked every FSM state. Synopsys Design compiler (DC) is used to

measure the area and delay overheads of the locked circuit vs. the original unlocked

one. Based on the suggestion by [72] which compares different SAT solvers to attack

k-obfuscation problems like the one in this work, we use Lingeling solver [44], which

has shown to lead to a good balance in terms of execution time and memory usage.

We restricted the running time to 2 days.

Figs. 6.12 and 6.13 show the area and delay overheads introduced by our method

Figure 6.12: Area overhead results introduced by our proposed locking mechanism
for keys of different bit sizes (8,16 and 32 bits).
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Figure 6.13: Delay overhead introduced by our proposed locking mechanism for keys
of different bit sizes (8,16 and 32 bits).

for each of the benchmarks for different key sizes. As our method relies on randomly

choosing the locking mechanisms at each state from a library of key primitives, the

experiments are run five times, and the average values are reported. It could be

observed that the overheads are very low and that they grow with the key size and

the number of FSM states, as a new key is used for each state. On average the area

overhead is 0.11%, 0.21% and 0.53% for the 8, 16 and 32-bit key cases, respectively.

Regarding the delay overhead introduced by our method, it is on average 2.71%,

4.01% and 5.27% for the 8, 16 and 32-bit key cases, respectively, and up to 14.84% in

the jpeg case. Although this maximum delay increase might seem large, in all cases

the target maximum delay of 5ns was met, which means that all the locked circuits

could still work at 200MHz. Thus, this delay increase does not affect the final circuit.

It can also be observed that the area overhead grows linearly with the state count, as

a new key primitive is inserted for each new state. Thus, further demonstrating the

scalability of our approach.

With regard to the running time to break the lock, a brute force approach could
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not break any of the benchmarks after allowing a maximum of 3 days to run, showing

the strength of the proposed method.

6.12 Summary and Conclusion

In this chapter, we have proposed an automatic method to functionally lock be-

havioural IPs for HLS. The additional robustness compared to previous works comes

from the fact that the circuit checks for a valid unique key at every state of FSM con-

troller. In addition, the logic resources used for the locking mechanisms are shared

with other operations, making a removal attack virtually impossible. Experimental

results confirm that our proposed method is very effective.
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Chapter 7

Conclusion

This chapter concludes the work done in this thesis as well as discusses future work

and directions.

7.1 Conclusion

The primary focus of this work was to revisit both fault tolerance and hardware

security using behavioural circuit design to reinstate reliability of integrated circuits.

Reliability is a key factor that has to be kept in mind while designing an IC that

is expected to be used in any safety-critical application. In this work here, we have

viewed factors affecting system reliability to be multidimensional, which varies from

radiation-induced faults to manual insertion of malicious circuits intending to cause

system failure. We have proposed techniques that help mitigate such fault-induced

system failures by leveraging some of the most salient advantages of using HLS.

In the first half of the thesis, we proposed techniques to reduce system failures

due to transient errors followed by techniques to mitigate CMFs. The first proposed

technique used SoC design capabilities of modern HLS tools to build a fault-tolerant

MPSoC capable of recomputing during its slack time, induced due to bus congestion,

making them robust against transient errors and thus preventing system failures. The
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second contribution involved identifying techniques to mitigate CMFs. We proved

the efficiency of using behavioural circuit design by using Design Space Exploration

feature of HLS tools to generate a pool of micro-architectures, among which the best

design pair with the highest diversity was chosen to mitigate CMFs. Time inefficiency

of the existing technique in estimating diversity then paved way for an evaluation

framework where we investigated if fault injection at the RT-level could accelerate

the process of diversity estimation and replace the state of the art techniques. Since

the results proved that they are not efficient enough to replace diversity estimation at

the gate-level, we then introduced a predictive model called the PMDiversity capable

of predicting the diversity between design pairs. Thus, in the first half of the thesis,

we have been able to prove that revisiting fault tolerance using HLS could enhance the

reliability of the existing systems by mitigating unintentional faults. The remainder

of this thesis proposed a novel functional locking technique to protect behavioural

IPs from being maliciously altered or from being stolen.

In this thesis, we have successfully bridged the gap between fault tolerance and

hardware security by addressing their strengths together in enhancing the reliability of

an IC. From this work, it could be concluded that in today’s world of electronics, safety

and security need to go hand in hand. At the same time, using HLS could improve

modern day SoC design possibilities as well as pave the way for much advancements

in future.

7.2 Future Work

The future directions of this work are multi-folds as we aim at bridging both miti-

gation of intentional and unintentional fault triggering factors. First, the two fault-

tolerant techniques could be integrated to provide an even more robust system. Thus,

it would be interesting to observe how robust such a system that exploits redundancy
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in time and space against SEU and CMFs. Temporal redundancy could do more

towards fault-tolerant systems. We will study the performance penalties introduced

in a time redundant system when it is fully fault-tolerant, as opposed to the proposed

method that re-computed only during available slack times and thus without any

timing penalties. If the performance penalty lies within the permissible upper bound,

we also aim at using this extra time to try and mitigate CMFs. Not all HWAccs

need to extra cycles. But if one of the three outputs varies, it means that a fault has

occurred. In case of a mismatch or lesser re-computation space, the slave could use

extra cycles based on the upper bound to re-evaluate or do sufficient re-computations,

respectively. Since from the proposed system it could be understood that bus con-

gestion increases with the increase in complexity of the system, we aim at studying

its effect on complex MPSoCs. Working in this direction will help develop a trade-off

between timing overhead vs level of fault tolerance achieved.

Moreover, towards mitigating intentional alterations, we aim at strengthening the

proposed system. The investigative study here tries to make use of behavioural circuit

design to secure IPs, but it still needs more attention to be completely protected

against SAT attacks. In the proposed method, brute force attack has been used for

security evaluation because the variable to be obfuscated and the obfuscated bits are

chosen at random. Using SAT attack on such obfuscation will have variations as

the point of insertion is of great importance. Currently, due to its randomness, its

ability to withstand SAT attack varies. Some benchmarks might take longer as the

obfuscation point has low corruptibility; while some could be broken within seconds

as a large number of keys get eliminated using a single DIP. With this in mind, we

aim at performing a fault analysis based obfuscation to identify points that have the

lowest output corruptibility. This could strengthen the lock from being broken by

SAT attack.

With regards to protecting the BIP, future work would include developing a
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stronger locking mechanism that makes use of circuits on-chip variations to try and

protect an IP from being misused, while further reducing the area and delay overheads

associated with them.
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