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Abstract

In aerospace, astronautics and industrial process, it is usually di�cult to model

and analyze the dynamics of controlled object exactly due to strong nonlineari-

ties, internal/external disturbances, variation of loads, system uncertainties, etc.

Classical time and frequency domain theories and methods are not applicable to

analyze and control such nonlinear dynamic systems. Thus control and analysis of

such complicated nonlinear systems are becoming more and more challengeable.

Fuzzy control system, due to its capability of approximating any smooth nonlin-

ear systems on a compact set with arbitrary accuracy, provides an appealing and

e�cient approach to facilitate analysis and synthesis of nonlinear systems. Non-

linear Characteristic Output Spectrum (nCOS) function has been well developed

for analysis and design of nonlinear systems in frequency domain. Although there

have been researches on control and analysis of nonlinear dynamic systems based

on fuzzy model and frequency domain nCOS function, there are still some tech-

nical problems to be solved: explore stability analysis conditions of fuzzy system

with lower conservativeness and new frequency domain methods to analyze and

optimize nonlinear dynamic systems, etc. Objective of this thesis is to propose

new control and frequency domain analysis methods to analyze, synthesize and

optimize nonlinear dynamic systems with sampled-data behavior, time delay and

imperfect premise matching based on fuzzy model and nCOS function. Some

of the obtained results are applied to control and analysis of nonlinear vehicle

suspension systems.

First, fuzzy adaptive control for nonlinear active suspension system based on a

bio-inspired reference model is studied. Fuzzy logic systems are used to approxi-

mate unknown nonlinear terms. A general bio-inspired nonlinear structure, which

can present ideal nonlinear quasi-zero-sti�ness for vibration isolation, is adopted

as tracking reference model. Particularly, a nonlinear damping is designed to im-

prove damping characteristics of the bio-inspired reference model. With bene�cial
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nonlinear sti�ness and improved nonlinear damping of the bio-inspired reference

model, the proposed fuzzy adaptive controller can e�ectively suppress vibration

of suspension systems with less actuator force and much improved ride comfort,

thus energy saving performance can be achieved.

Then fuzzy sampled-data control problems for nonlinear dynamic systems un-

der aperiodic sampling are studied. A sampling period dependent Lyapunov-

Krasovskii functional together with a novel e�cient integral inequality, which has

the advantages of reducing conservativeness, is adopted. On the basis of stabil-

ity conditions, a sampled-data controller that cannot only exponentially stabilize

the system but also guarantee the extended−dissipativity performance is then de-

signed. Simulation results of a quarter-vehicle suspension system with considering

payload uncertainties and aperiodic sampling are provided to verify e�ectiveness

and advantages of the designed controller.

The problems of imperfect premise matching fuzzy �ltering design for continuous-

time nonlinear systems with time-varying delays are investigated. Based on the

extended dissipative performance index, a new delay-dependent �lter design ap-

proach in terms of linear matrix inequalities (LMIs) is obtained by employing

Lyapunov-Krasovskii functional method together with a novel e�cient integral

inequality. The designed �lter can guarantee the �ltering error system satisfy

H∞, L2−L∞, passive and dissipative performance by tuning the weighting matri-

ces in the conditions. Moreover, the fuzzy �lter does not need to share the same

membership function with fuzzy model, which can enhance design �exibility and

robust property of the fuzzy �lter system.

An advantageous optimization method developed based on the nCOS function

is introduced to optimize mismatched fuzzy controller membership function pa-

rameters. Compared to traditional search-based optimization approach, which

can only obtain optimal results and parameters, more analytical results can be

obtained with less time consuming via this optimization method. This provides

an in-depth understanding of nonlinear parameters' in�uence on system output



spectrum. Simulation results demonstrate that with the frequency domain op-

timization method, disturbance suppression capability of the fuzzy-model-based

controller over a concerned frequency band is further enhanced.

A novel parametric characteristic function approach for hybrid linear and non-

linear parameters analysis and design of nonlinear systems is proposed based on

the nCOS function. Thus in�uence of linear and nonlinear parameters on system

output spectrum can be simultaneously considered. The results of a speci�c case

demonstrate that the proposed hybrid approach can provide a more comprehen-

sive solution for nonlinear system analysis and design. Then the proposed hybrid

parameter analysis approach, together with an n-th order output spectrum calcu-

lation method is used to identify and locate plant and controller faults of closed-

loop control systems, which provides an in-depth insight of fault characteristics

analysis and identi�cation of closed-loop control systems.
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Chapter 1

Introduction

1.1 Background and motivation

Objective of control on dynamic systems is to provide the principles and methods

used to design engineering systems that maintain desirable performance by auto-

matically adapting to changes in the environment [1]. Practical industrial systems

inherently exhibit nonlinear behaviors and frequently encounter many complex

characteristics, such as, uncertainties, time-delay, internal/external disturbances

and actuator saturation, etc. For most model based control approaches, model

for nonlinear plant dynamics plays a fundamental role in the whole controller

design procedure. However, a comprehensive mathematical model of a nonlinear

industrial plant is generally di�cult to obtain due to the complexity of physical,

chemical or other inexplicit behaviors. Fortunately, there are some well-known

control-oriented modeling approaches for nonlinear dynamics, such as the fuzzy

modelling approach, etc.

Fuzzy control system, especially Takagi-Sugeno (T-S) fuzzy model system, has

received a great deal of attention from both theoretical analysis and industrial

application in recent years [2�10] due to its generalized modeling capability for

nonlinear systems, for example, air-breathing hypersonic vehicles (AHVs), direct

current-direct current (DC-DC) converters and mechanical systems [2,4,9,11�13].

Essentially, T-S fuzzy model combines the known linear system theory with the

�exible fuzzy linguistic theory, which can provide a systematic and powerful way

1



1 Introduction

to handle nonlinear system. Tremendous signi�cant results have been achieved

based on T-S fuzzy model approach (see [5�10,12,14�23]).

The nonlinear characteristic output spectrum (nCOS) function, which is developed

with a parametric characteristic approach based on the generalized frequency re-

sponse function (GFRF) concept [112], has been widely used in nonlinear analysis

and design [24�27], nonlinear system identi�cation, fault detection, fault diagno-

sis [28�30], etc. One signi�cant advantage of nCOS function is that the nonlinear

output spectrum can be expressed in the form of a polynomial function with re-

spect to the nonlinear system model parameters, which provides an explicit and

analytical relationship between the nonlinear output spectrum and the nonlinear

model parameters of interest.

Even though analysis and synthesis of nonlinear dynamic systems have been well

investigated, yet for some more demanding situations, there remain many inter-

esting and challenging issues to be addressed. Following are some issues worth

further studying.

1.1.1 Fuzzy control for nonlinear suspension systems

Suspension systems, which are of great importance in improving vehicle ride com-

fort, maneuverability and passengers' safety, have gained signi�cant attention in

the literatures [31�37]. Generally, suspension systems can be classi�ed as: passive

suspension, semi-active suspension and active suspension [38�43]. Active sus-

pension system, which uses actuator components, can provide desired force for

both adding and dissipating energy. This mechanism can e�ectively reduce road

roughness impact and increase ride comfort. However, to ensure handling capa-

bility and ride comfort, both semi-active and active suspension control systems

cost a great deal of energy, which may be constrained in practical systems. It is

also known that vehicle suspension systems always have some inherent nonlinear-

ities. Sometimes, bene�cial nonlinearities may lead to even better performance in

2



1.1 Background and motivation

practical implementation. As shown in [44�49], nonlinear sti�ness and damping

characteristics can achieve excellent vibration isolation performance. With a sys-

tematic frequency domain approach referred to as the output frequency response

function or nonlinear characteristic output spectrum based method [48�50], it is

theoretically shown that nonlinear damping has very good advantage over linear

damping [51].

Although these results present an e�ective characteristic parametric approach to

the analysis and design of nonlinear systems, most existing results for active sus-

pension control just simply cancel nonlinearities to achieve vibration suppression

performance [52], which leads to consumption of extra energy. Therefore, how to

employ bene�cial nonlinearities in vibration control would be of high relevance

to engineering practice, since nonlinearity always exists. To address this issue,

a more general and systematic bio-inspired dynamics based fuzzy adaptive con-

trol method, which makes proper use of favorable nonlinearities is studied in this

thesis.

It is noticed that biologically inspired methods have wide applications in engineer-

ing, such as mechanical structure design, robot locomotion [53�56]. Recently, a

bio-inspired limb-like nonlinear structure (also called X-shaped structure), which

takes inspiration from limb legs of animals, has been successfully applied to

some practical engineering systems, like the quasi-zero-sti�ness vibration isola-

tor [57�59]. This bio-inspired structure has very bene�cial equivalent nonlinear

sti�ness and damping, which are generated through the specially geometric nonlin-

earities of the limb-like structure. It has been proven that this bio-inspired model

can always provide a very excellent quasi-zero-sti�ness characteristic with high

loading capacity, low natural frequency and broad frequency range of vibration

isolation [57�59]. And therefore is much better than traditional linear vibration

systems. One of the targets in this thesis is to take advantages of the bene�-

cial nonlinear properties of this bio-inspired reference model in active suspension

control.

3



1 Introduction

A general way to suppress resonant peak is to adopt high level damping. In-

creasing damping can e�ectively reduce resonant peak but also degrade vibra-

tion isolation performance of non-resonant frequency region. To overcome this

dilemma, a novel nonlinear damping is deliberately designed and integrated into

the bio-inspired reference model in our study. This dynamic nonlinear damping

is expected to suppress resonant peak without deteriorating vibration transmis-

sibility at high frequencies, which has never been reported before. Note that the

model studied in previous work [60] is only the simplest case without nonlinear

damping and only one layer is considered there, which might lead to higher reso-

nant peak of the suspension system. Since a more general bio-inspired nonlinear

dynamics model of more layers in the bio-inspired structure is adopted in our

study, which can further strengthen the vibration isolation performance with a

much milder nonlinear response. Thus the bio-inspired reference model used in

this thesis is more generic for both nonlinear sti�ness and damping design which

are needed to produce superior vibration isolation performance and better for

practical implementation.

In order to follow the nonlinear dynamic characteristics of the bio-inspired refer-

ence model, fuzzy adaptive controller will be considered for the tracking control

of suspension systems. In suspension systems, the sprung mass varies due to the

change of payload, if the controller is designed without considering the uncer-

tainties of these parameters the vehicle suspension system performance will be

degraded. Therefore, adaptive control would be more preferred in practical appli-

cations [61�64]. In this thesis, an adaptive backstepping controller based on fuzzy

logic system is developed to attenuate the e�ect of parameter uncertainties and

external disturbances.

To the best of our knowledge, no attempt has been made towards solving fuzzy

adaptive tracking problems based on the above mentioned bio-inspired reference

model, which motivates the present study.

4



1.1 Background and motivation

1.1.2 Fuzzy sampled-data control

The past decades have witnessed a boom of high speed digital devices, such as

computers and microelectronics, which drastically lower the cost, improve the re-

liability and �exibility of digital control. Hence, more and more digital computers

and microprocessors are utilized to control the continuous-time systems in very

large number of practical applications [65�67]. Such control systems, in which

both continuous and discrete dynamic behavior coexist, are called sampled-data

systems [68]. Up to now, approaches applied to analysis and synthesis of sampled-

data systems are mainly divided into the following three categories:

(1) Discrete-time model : transforming the sampled-data system into an approx-

imately equivalent discrete-time system (e.g. delta operator) [69].

(2) Impulsive model : representing the sampled-data system as the form of im-

pulsive model [70].

(3) Input delay approach: modelling the sampled-data system as a continuous-

time system with control-input delay induced by sampler and holder [71].

where discrete-time approach is generally applicable for constant sampling inter-

vals, impulsive model still su�ers from several critical limitations (e.g., conserva-

tiveness problem, and the dimension of the impulsive system) when dealing with

sampled-data systems with complex nonlinearities/ uncertainties. Thus, time-

delay approach, where the sampling-and-holding behaviour is transformed as an

input-delay term, gives a �exible and e�ective way to handle nonlinear sampled-

data systems. Also, by resorting to the input-delay approach, conducting perfor-

mance analysis (e.g. disturbance attenuation level, exponential stability analysis)

for original closed-loop system is viable.

Analysis and synthesis problems for T-S fuzzy sampled-data system based input-

delay approach have received more and more research attentions (see [72�83]).
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Among these references, the problem of performance analysis with disturbance at-

tenuation level has been extensively investigated. To mention a few, the problem

of H∞ state-feedback stabilization for fuzzy systems with aperiodic sampled-data

was investigated in [74, 75], and H∞ state and output feedback control prob-

lems for sampled-data fuzzy system and their applications to active suspension

vehicle system were proposed in [77]. In [78, 79], the H∞ tracking problems of

nonlinear networked systems via fuzzy control approach under variable sampling

were investigated. L2−L∞ �ltering for multirate nonlinear sampled-data systems

using T-S fuzzy model approach was proposed in [80]. The robust passive con-

troller design problem for a class of nonlinear networked systems with variable

sampling intervals, network-induced delay, and randomly occurring uncertainties

was investigated through T-S fuzzy modeling method in [82]. Dissipativity-based

sampled-data stabilization problems for T-S fuzzy system and its application to

truck-trailer system were reported in [83].

It is especially worth pointing out that the (Q,S,R)-dissipative sysnthesis problem

covers theH∞ and passivity synthesis problem, except for the L2−L∞ synthesis is-

sue. So, how to handle the L2−L∞ synthesis problem and the (Q,S,R)-dissipative

issue for fuzzy sampled-data system with a uni�ed performance index is an inter-

esting topic worth further studying. In recently published literatures [84, 85] , a

uni�ed performance index, which can guarantee the H∞, L2−L∞, passive and dis-

sipative performance by changing the weighting matrices in extended dissipative

inequalities gives answer to this question. This new uni�ed performance index is

called extended dissipativity. To the best of the authors' knowledge, until present

there has been no attempt to solve the problems of stability and stabilization for

fuzzy sampled-data systems under this uni�ed frame, which motivates the present

study.

From the viewpoint of input-delay model, the sawtooth delay induced by sampling-

and-holding behavior inevitably leads to the inherent loss of information, which

will a�ect the dynamic performance of closed-loop sampled-data system. Espe-

6



1.1 Background and motivation

cially for the asynchronous sampling, this e�ect is fraught with more uncertainties.

In this thesis, in order to obtain expected dynamic performance, exponential sta-

bility is imposed to guarantee that the resulting closed-loop sampled-data system

satis�es the exponential stability with an exponential decay rate for arbitrary

sampling period lying a bounded interval.

Considering the aforementioned observations, the extended dissipative and expo-

nential stabilization problems for T-S fuzzy sampled-data systems will be investi-

gated in this thesis.

1.1.3 Imperfect premise matching fuzzy �ltering of nonlinear

systems with time-varying delay

State variables of industrial systems are usually di�cult to obtain directly. Thus

it is necessary to estimate system states or part of system states via system mea-

surement output. Classical Kalman �lter is a very e�ective and widely used signal

estimator [86,87]. However, when using classical Kalman �lter, statistical proper-

ties of the system's dynamics and noise are required, which cannot always be guar-

anteed in practical industrial systems. In this case, performance of the Kalman

�lter cannot be maintained. H∞ �lter can estimate state for systems with un-

known bounded noises. Time delays commonly occur in many engineering appli-

cations, such as chemical systems, metallurgical processing systems and network

systems [88,89]. Since the existence of delay often degrades system performance,

sometimes even leads to instability, research on T-S fuzzy system with time delay

is of great practical signi�cance. Recently, some important results about nonlinear

�ltering for T-S fuzzy systems with time-delay, which is one of the fundamental

problems in signal processing, communication and control applications, have been

reported, such as H∞ �lter design [7,90�95], L2−L∞ �lter design [96�101], passive

�lter design [102�104], and dissipative �lter design [105�108].

In this thesis, instead of addressing the H∞, L2 − L∞, passive and dissipative
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1 Introduction

�ltering problems in a separate way, we study these �ltering problems for T-S

fuzzy time-delay systems under a uni�ed framework by using the extended dissi-

pativity performance index (see [84,109]), which can guarantee the H∞, L2−L∞,

passive and dissipative performance by tuning the weighting matrices in extended

dissipative inequalities. However, it should be noted that some useful information

about the time-derivative of Lyapunov-Krasovskii functional, such as the term

−
∫ 0

−τ

∫ t
t+θ

ξ̇T (s)R3ξ̇(s)dsdθ was neglected in [84] for convenient design, the �lter

design approach obtained in [84] inevitably su�ers the conservativeness problem.

In addition, to the best of the author's knowledge, so far no attempt has been

made towards solving �ltering problems for T-S fuzzy systems under such a uni�ed

framework, either with or without time-delay. Thus, the problem of extended dis-

sipative �ltering for T-S fuzzy time-delay system is still an open and challenging

issue, which motivates the present study.

Moreover, in order to retain design �exibility and robust property of extended

dissipative �lter, the idea that fuzzy �lter shares di�erent premise variables with

the T-S fuzzy model, which is referred to as imperfect premise matching (see

[110, 111]), is further introduced in this thesis. Under imperfect premise match-

ing, implementation cost of the fuzzy �ltering can be reduced by employing some

relatively simple membership functions di�erent from those complex membership

functions of the fuzzy model. In recent years, the study of fuzzy control with

imperfect premise variables has made some achievements [110�112]. Unfortu-

nately, few research has been pursued on the problem of fuzzy �lter with imper-

fect premise variables, besides [113,114]. [113] investigated the �ltering problem of

Type-II fuzzy system subjected to D stability constraints with imperfect match-

ing premise variables. [114] studied the decentralised H∞ fuzzy �lter problem for

non-linear large-scale systems under imperfect premise matching. However, none

of these research results is applicable to the �ltering problem for fuzzy system

with time-varying delay, which is the second motivation of our current research

work.
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1.1 Background and motivation

Motivated by the observations above, the extended dissipative �ltering problem

for fuzzy system with time-varying delay under imperfect premise matching will

be considered in this thesis.

1.1.4 Analysis and optimization of nonlinear system

parameters with frequency domain method

Under imperfect premise matching, arbitrary slack matrices can be introduced to

alleviate conservativeness. In recent years, the study of fuzzy control with im-

perfect premise variables has made some achievements [111, 112, 115]. To design

mismatched fuzzy controller, the mismatched membership function only needs to

satisfy certain design condition. However, some parameters associated with mis-

matched controller membership functions are determined in an ad hoc or arbitrary

manner in the design process of mismatched fuzzy controller. These subjectively

decided parameters play a role in achieving high quality control performance.

Until present, systematic and comprehensive analysis on how mismatched mem-

bership functions' parameters a�ect the closed-loop system performance has not

yet been considered in the existing design process. It is also worth noting that a

large number of existing research work on fuzzy-model-based control or �ltering

under imperfect premise matching adopt Gaussian shape functions as mismatched

membership functions for its smoothness and concise notation [23, 116�118]. So

research on optimization of the mismatched membership functions' parameters,

especially for Gaussian type membership functions, is of great theoretical and

practical importance.

Conventional method to determine the optimal parameters of mismatched mem-

bership functions is adopting some optimization techniques via direct measure-

ment of the closed-loop system performance, like genetic algorithm (GA) [119�121]

and swarm optimization algorithm [122,123]. However, almost all intelligent opti-

mization methods are based on global searching in the available parameter space,

9



1 Introduction

which means that the larger parameter space, the longer time it takes to �nd

optimal values. For systems with complicated dynamics and higher dimensions,

computational complexity will increase to a very high level, which is not con-

venient for analysis and design. Moreover, intelligent optimization method can

only give �nal optimal values of the concern parameters instead of explicit rela-

tionship between the parameters and system performance. Once the parameter

space changes, the whole optimization process needs to be re-executed, which is

extremely time ine�cient.

To overcome this de�ciency in optimization problem, nCOS function [49,124,125]

is adopted to analyze the parameters' in�uence on system output frequency re-

sponse. The nCOS function developed based on the Volterra series expansion

theory [126] extends the transfer function concept to nonlinear systems, which

provides a powerful insight into the parameters' in�uence on system response.

Some signi�cant results about the applications of nCOS function-based method

have been obtained, including the analysis and design of nonlinear vehicle sus-

pensions and fault diagnosis of bolt loosening in satellite structures [29, 30, 127].

Compared to search-based optimization method, nCOS function-based method

can exactly demonstrate how the membership functions' parameters would a�ect

the closed-loop system performance. This method provides powerful guidance in

choosing parameters of controller membership functions in mismatched control.

Subjectivity and blindness in the process of optimizing membership function pa-

rameters can be e�ectively avoided by using this method. Bene�ted from the

analytical and explicit expression of the relationship between nonlinear output

spectrum and mismatched membership functions' parameters, the time consump-

tion using nCOS function-based optimization method is much less than search-

based intelligent optimization methods, even for larger parameter space.

One of the critical issues in mechanical system is vibration suppression. In prac-

tice, vibration is usually induced at certain frequencies or only performance over

a certain frequency band that we are interested in, for instance, the vehicle sus-
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1.1 Background and motivation

pensions, we focus on the vertical vibration performance at 4 Hz-8 Hz, to which

human body is much sensitive. In this regard, controller designed over a cer-

tain frequency region can achieve better disturbance attenuation performance,

compared with the over-design generated by entire frequency approach. There

have been lots of research on �nite frequency H∞ control and �lter, see refer-

ences [128�133] and therein. However, the problem of fuzzy �nite frequency con-

trol under imperfect premise matching design has not been studied yet, which is

an interesting topic worth further study. Motivated by the afore discussions, H∞

controller over concerned frequency band is �rst designed under imperfect premise

matching. Then the disturbance suppression capability of the fuzzy controller is

further enhanced by combining the �nite frequency H∞ control with the nCOS

function-based frequency domain optimization method.

1.1.5 Hybrid linear and nonlinear parameters analysis for

nonlinear systems

The nonlinear analysis method using recursive algorithm [24�27] for calculations of

GFRFs coe�cients involves the issue of computational e�ciency [49]. For systems

with complicated dynamics, the computational complexity of high-order GFRFs

induced by recursive algorithm will increase to a very high level, which is not

convenient for analysis and design. In addition, the recursive algorithm based

method cannot give an explicit expression about relationship between the output

spectrum and system parameters of interest. To improve computational e�ciency

and analytically reveal the parameters' in�uence on system output, the nCOS

functions has been well developed for nonlinear analysis and design [48, 49, 124,

125]. Explicit structure and expression of output spectrum in terms to system

parameters are presented in a clear and concise manner, which provides an in-

depth insight into the parameters' in�uence on system response.

The nonlinear system output spectrum is jointly determined by system character-
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1 Introduction

istic parameters, such as linear and nonlinear parameters, excitation amplitude

and frequency variables. Most of existing results about nCOS function based

method mainly focus on nonlinear model parameters' in�uence on system output

spectrum. Linear model parameters' in�uence on nonlinear systems output spec-

trum was investigated in [134]. It is worth pointing out that analysis of linear

and nonlinear parameters' in�uence on system output spectrum in a separated

manner is not comprehensive enough for in-depth understanding of the system

characteristics.

Motivated by above observations, a hybrid linear and nonlinear model parame-

ters analysis approach for nonlinear systems based on the nCOS function will be

systematically investigated. Linear and nonlinear model parameters' in�uence on

system output spectrum is simultaneously considered. Relationship between the

system output spectrum and system parameters (both linear and nonlinear) is

explicitly revealed. This result extends the nCOS function based method from

the analysis and design of linear and nonlinear parameters in a separated man-

ner to that of hybrid linear and nonlinear parameters, which provides a more

comprehensive solution to in-depth analysis and design of nonlinear systems.

1.2 Objective of the thesis

Motivated by the above background and discussions, this thesis aims to control

and analyze nonlinear systems based on fuzzy control and frequency domain anal-

ysis method and their applications to mechanical system. Objectives of this thesis

are listed as follows:

• Propose new fuzzy control scheme for nonlinear mechanical systems.

First, construct a new fuzzy adaptive controller, which uses a bio-inspired

limb-like structure with quasi-zero-sti�ness and elaborately designed nonlin-

ear damping as reference model, to suppress vibration of suspension system.
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1.3 Contribution of the thesis

Design a new fuzzy sampled-data controller for nonlinear system is under

a uni�ed framework to achieve better performance for suspension systems

with considering payload changes and disturbances.

• Explore fuzzy �lter problems and membership fucntion parameters opti-

mizations problems under imperfect premise matching.

Design an advantageous fuzzy �lter for nonlinear system with time-delay

under imperfect premise matching.

Optimize mismatched fuzzy membership function parameters via a frequency

domain method.

• Develop a novel parametric characteristic output spectrum function for anal-

ysis and design linear and nonlinear parameters simultaneously in nonlinear

systems.

1.3 Contribution of the thesis

The main contributions of this thesis are summarized as follows:

(1) A more general bio-inspired structure with multilayers is adopted as the ref-

erence model for fuzzy adaptive control of nonlinear suspension system. This

multilayered bio-inspired model can provide better vibration isolation perfor-

mance than existing systems. A bene�cial nonlinear damping is designed and

integrated into bio-inspired nonlinear dynamic reference model. This innova-

tive nonlinear damping is for the �rst time proposed for attenuating resonance

peak and improving vibration isolation performance of nonresonant frequency

region. Compared to standard fuzzy adaptive control, the controller designed

with this generic bio-inspired nonlinear reference model can ensure the same or

even better performance with less energy cost, which provides an alternative

and e�ective way to active control of suspension systems.

13



1 Introduction

(2) New stability conditions consisting of both exponential stability and extended

dissipativity criterion for fuzzy sampled-data system have been established. A

sampled-data controller that not only can exponentially stabilize the system

but also guarantee the prescribed extended-dissipativity performance has been

designed.

(3) A systematic and novel �lter design method for fuzzy systems with time-varying

delay under imperfect premise matching is proposed. Based on extended dis-

sipative performance index, the H∞, L2 − L∞, passive and dissipative �lter

problems have been investigated. New delay-dependent conditions for perfor-

mance analysis and �lter design have been established in terms of LMIs by

employing an e�cient integral inequality.

(4) A novel nCOS function based optimization method, which aims to optimize the

Gaussian membership functions' parameters, has been proposed in this thesis.

Compared to traditional search-based optimization approaches only providing

�nal optimal results, the nCOS function-based frequency domain optimization

approach can provide analytical relationship between system output spectrum

and fuzzy membership function parameters and is time e�cient. This provides

an in-depth understanding of nonlinear parameters' in�uence on system output

spectrum. System performance over a concerned frequency band has been fur-

ther enhanced by combining the �nite frequency H∞ controller with the nCOS

function based frequency domain optimization method.

(5) A novel parametric characteristic output spectrum (pCOS) function is proposed

based on nCOS function, to jointly analyze and design linear and nonlinear pa-

rameters of nonlinear systems. [49, 124, 125] developed a systematic method to

express the nonlinear output spectrum function as an explicit polynomial func-

tion of nonlinear characteristic parameters and the new nCOS function proposed

in [134], only investigated the relationship between nonlinear output spectrum

and system linear parameters. The novel pCOS function proposed in this thesis

is a strong complement to the nCOS function-based method in [49,124,125,134].
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1.4 Outline of the thesis

The proposed method can be applied to design and analyze both linear and non-

linear parameters of suspension system. Then the proposed hybrid parameter

analysis approach, together with an n-th order output spectrum calculation

method can be used to identify and locate plant and controller faults in closed-

loop control systems, which provide an in-depth insight of fault characteristics

analysis and identi�cation of closed-loop nonlinear control systems.

1.4 Outline of the thesis

The organization structure of this thesis is shown in Fig.1.1 is structure. Outline

of thesis is given as follows:

 

Fig. 1.1: Structure of the thesis

Chapter 2 investigates the problem of fuzzy adaptive tracking control for active

suspension systems based on a bio-inspired reference model.

Chapter 3 investigates the exponential stabilization problems of T-S fuzzy aperi-

odic sampled-data system under a uni�ed performance index.
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1 Introduction

The problems of imperfect premise matching fuzzy �lter design for continuous-

time nonlinear systems with time-varying delays based on a uni�ed performance

index−extended dissipative index are addressed in Chapter 4.

Chapter 5 studies the membership function parameters optimization issue for

suspension system with mismatched �nite frequency H∞ controller based on fre-

quency domain method.

A novel parametric characteristic output spectrum function based linear and non-

linear parameters analysis and design method is studied in Chapter 6.

Chapter 7 concludes this thesis.
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Chapter 2

Fuzzy control of suspension sys-

tems based on bio-inspired nonlin-

ear dynamics

This chapter proposes a bio-inspired reference model based fuzzy adaptive tracking

control for active suspension systems. Fuzzy logic systems are used to approximate

unknown nonlinear terms in nonlinear suspension systems. Particularly, a non-

linear damping is designed to improve damping characteristics of the bio-inspired

reference model. With bene�cial nonlinear sti�ness and improved nonlinear damp-

ing of the bio-inspired reference model, the proposed fuzzy adaptive controller can

e�ectively suppress vibration of suspension systems with less actuator force and

much improved ride comfort, thus energy saving performance can be achieved.

Finally, a quarter-vehicle active suspension system with considering payload un-

certainties, general disturbance and actuator saturation is provided for evaluating

the validity and superiority of the bio-inspired nonlinear dynamics based fuzzy

adaptive control approach proposed in this chapter.

The main contributions of this chapter are summarized as follows:

1) A more general bio-inspired structure with multi-layers is adopted as the ref-

erence model for fuzzy adaptive control of nonlinear suspension systems. This

multi-layer bio-inspired model can provide better vibration isolation performance

than existing systems as discussed.
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

2) A bene�cial nonlinear damping is designed and integrated into bio-inspired

nonlinear dynamic reference models. This innovative nonlinear damping is for

the �rst time proposed for attenuating resonance peak and improving vibration

isolation performance of non-resonant frequency region.

3) With this generic bio-inspired nonlinear reference model, and compared to

standard fuzzy adaptive control, the designed controller can ensure the same or

even better performance with less energy cost, which provides an alternative and

useful way to active control of suspension systems.

The rest of this chapter is organized as follows: Nonlinear suspension system is

given in Section 2.1. The bio-inspired reference model and nonlinear damping

design are presented in Section 2.2. Bio-inspired reference model based fuzzy

adaptive controller is designed in Section 2.3. An example of the nonlinear quar-

ter suspension is provided in Section 2.4 to demonstrate the applicability and

e�ectiveness of the proposed method. Conclusion is drawn in Section 2.5.

2.1 System description and problem formulation

Fig.2.1 shows nonlinear quarter vehicle suspension system with bio-inspired ref-

erence model. ms and mu are sprung and unsprung mass, zs, zu and zr are the

sm
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Fig. 2.1: Nonlinear suspension system with bio-inspired reference model
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2.1 System description and problem formulation

vertical displacements of sprung mass, unsprung mass and road input, u is the

control force applied on the suspension system. According to Newton's second

law, nonlinear dynamic equation of the system is built as follows:

msz̈s = −Fs − Fd + u

muz̈u = Fs + Fd − Ft − Fb − u (2.1.1)

where Fs, Fd, Ft are the forces produced by the nonlinear spring, nonlinear damper

and the tire, which are represented as follows

Fs = ks1(zs − zu) + ks2(zs − zu)2 + ks3(zs − zu)3

Fd = cs1(żs − żu) + cs2(żs − żu)2, Ft = kt(zu − zr), Fb = ct(żu − żr)

ks1, ks2 and ks3 are nonlinear sti�ness coe�cients, cs1 and cs2 are damping co-

e�cients, kt and ct are sti�ness and damping coe�cients of the tire. The main

purpose of this chapter is to construct a bio-inspired reference model with excellent

vibration suppression performance (Fig.2.1 right), then a fuzzy adaptive controller

is designed to make suspension state zs − zu track the bio-inspired dynamics of

reference model yr.

Remark 2.1 Due to the change of payload, the vehicle mass cannot remain con-

stant. Thus, the quarter vehicle suspension model is an uncertain system that

contains uncertain parameters ms(t). The uncertain parameter is supposed to

vary in a given range ms(t) ∈ [msmin, msmax].

The following two indexes are commonly used to evaluate suspension system per-

formance: root mean square (RMS) values of body acceleration z̈s and power

consumption of actuator, which are calculated as:

RMSx =

√
1

T

∫ T

0

xT (t)x(t)dt ,RMSP =

√
1

T

∫ T

0

(P+(t))2dt
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

where

P+(t) =

u(t)(żs − żu), Ifu(t)(żs − żu) > 0

0, else

2.2 Nonlinear damping design for the bio-inspired

nonlinear reference model

In this section, a novel nonlinear damping system will be introduced for the bio-

inspired reference model to create bene�cial nonlinear characteristics for the active

control of suspension systems. A brief analysis of the bio-inspired reference model

is given below. Detailed analysis can be referred to [57,60].

2.2.1 Modeling and analysis of bio-inspired system

As shown in Fig.2.2, a multi-layer asymmetrical bio-inspired structure consists

of connecting rods, rotating joints and springs. This structure is inspired by the
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Fig. 2.2: (a) Bird's leg and its structure (b) Mechanical diagrams of the bio-
inspired structure (c) Deformation analysis (layer number n = 2)

limb structure of animals in motion vibration control. The bird's leg shown in

Fig.2.2(a) is a X-shaped structure. With this X-shaped structure, the bird can

maintain super stability when running or landing, even with a very high speed,
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2.2 Nonlinear damping design for the bio-inspired nonlinear reference model

which indicates that this structure has the potential to suppress vibration. In

Fig.2.2(b), M is the mass of the isolated object, L1 and L2 denote the length

of the connection rods. θ1 and θ2 are initial angles with respect to the horizon

line and the geometric relationship L1 sin(θ1) = L2 sin(θ2) holds, kv and kh are

sti�ness of the two linear springs used as passive muscles in vertical and horizontal

direction, respectively. y is the absolute motion of the mass, zu is base excitation.

φ1 and φ2 are rotational motions of the connection rods, horizontal motions are

denoted by x1 and x2, yr = y − zu is relative motion between the isolated object

M and the base. And according to the geometrical relationship presented in

Fig.2.2(b) and (c), the rotational and horizontal motions can be given as

xi = Licosθi −
√
L2
i − (Lisinθi + yr/2n)2 (2.2.1)

φi = acrtan

(
Lisinθi + yr/2n

Licosθi − xi

)
− θi, i = 1, 2.

x = x1 + x2, φ = φ1 + φ2

The kinetic and potential energy of the bio-inspired structure can be given by

T =
1

2
Mẏ2, U =

1

2
khx

2 +
1

2
kv(yr/n)2 (2.2.2)

Then the Lagrangian function is L = T −U . Di�erent from some existing results,

a nonlinear damper achieving better performance on speci�c frequency region will

be designed. Then the non-conservative force can be calculated as

Q = −c1ẏr − c2nxφ̇
∂φ

∂y
− Fn (2.2.3)

where c1 and c2 are air damping and rotation friction coe�cient, φ̇ = dφ
dyr
· dyr
dt
,

nx = 3n+ 1 is the number of joints, Fn is the force produced by desired nonlinear

damper, which will be designed in the next subsection.

Then the Lagrange equation for the bio-inspired structure can be given as fol-
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

lows:
d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= Q (2.2.4)

Substitute L and Q into (2.2.4), we can obtain the nonlinear dynamic equation

of the bio-inspired reference model

Mÿ + khx
dx

dyr
· dyr
dy

+ kvyr/n
2 = −c1ẏr − c2nxφ̇

∂φ

∂y
− Fn (2.2.5)

Substitute yr = y− zu into (2.2.5), the reference dynamic model can be rewritten

as

Mÿr+f1(yr)+kvyr/n
2+c1ẏr+c2nxf2(yr)ẏr+Fn= −Mz̈u (2.2.6)

where f1(yr) = khx
dx
dyr
· dyr
dy
, f2(yr) =

(
dφ
dyr

)2

.

De�ne v(yr) = L1sinθ1 + yr/2n, and according to the rotational and horizontal

motion, f1(yr) and f2(yr) can be further deduced as

f1(yr) =
kh
2n

(
L1cosθ1+L2cosθ2−

√
L2

1 − v2(yr)−
√
L2

2 − v2(yr)

)
×

(
v(yr)√

L2
1 − v2(yr)

+
v(yr)√

L2
2 − v2(yr)

)

f2(yr) =

(
1

2n
√
L2

1 − v2(yr)
+

1

2n
√
L2

2 − v2(yr)

)2

De�ne y1 = yr, y2 = ẏr, the state space equation of the bio-inspired nonlinear

model is 
ẏ1 = y2

ẏ2 = − 1

M
[h1(y1) + h2(y1, y2) + Fn]− z̈u

(2.2.7)

where h1(y1) = f1(y1) + kv
yr
n2 , h2(y1, y2) = c2nxf2(y1)y2 + c1y2. z̈u is the un-

sprung mass acceleration of the suspension system. Until present, the multi-layer

bio-inspired reference model has been established. The following subsection will

present detailed nonlinear damping design procedure.
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2.2 Nonlinear damping design for the bio-inspired nonlinear reference model

2.2.2 Nonlinear damping design

Displacement transmissibility of the bio-inspired reference model under di�erent

linear damping is illustrated in Fig.2.3. The higher the damping, the better per-

formance in the resonant region and the worse transmissibility in non-resonant

frequency region. The ideal damping should be high around resonance frequency

but low at others [45�48]. To this aim, a novel nonlinear damping is proposed in

this study to overcome the inherent trade-o� in the choice of damping.
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Fig. 2.3: Displacement transmissibility under di�erent damping (The bio-inspired
reference model parameters are M = 0.5 kg, L1= 0.1 m, L2=0.2 m,
kh=500 N/m, kv=350 N/m, c2=0.02 N/sm, θ1 = π

6
rad).

A �lter-based nonlinear damping in the following form Fn(s) = C(s)U(s) is con-

sidered, s is Laplace operator, U(s) is the Laplace transform of relative velocity

ẏr, C(s) is a linear dynamic �lter to be designed, the frequency response of which

has a peak around the natural frequency of the bio-inspired reference model and

decays very quickly to a small value in the high frequency region. The key idea

of designing the nonlinear damping is that using high level damping to suppress

the resonant peak and adopting low level damping to improve the isolation perfor-

mance of non-resonant frequency region. This nonlinear damping can be regarded

as a frequency-dependent and/or displacement-dependent damping. The damp-

ing force is adjusted according to the frequency of ẏr. The frequency-dependent
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

nonlinear damping can be designed in the frequency domain. So this linear �lter

can be chosen as the following second-order quasi band-pass �lter. It is worth

pointing out that the �lter in the form of (2.2.8) is not unique.

C(s) = K
s2 + 2 kl ξl wls+ al w

2
l

s2 + 2 ξl wl s+ w2
l

(2.2.8)

Parameter K is the gain of nonlinear damping, 1 < kl, ξl and wl are band-

pass gain, damping ratio, and center frequency of the quasi band-pass �lter, al

determines the �lter gain at low frequency region.

Especially when kl = 1 and al = 1 hold, the nonlinear damping is reduced to linear

damping with coe�cient K. Assume that the band-pass gain kl is far larger than

al. The peak-gain can be approximated as lims→j·wl ‖C(s)‖ ≈ K · kl. The low

frequency gain and the high frequency gain can be respectively approximated as

lims→j·0 ‖C(s)‖ ≈ K · al and lims→j·∞ ‖C(s)‖ ≈ K. For a given system, we can

know the exact damping level. According to the desired damping, the peak-gain,

low frequency gain and high frequency gain can be designed. The damping ratio

ξl will be determined by the bandwidth of high damping. One way to implement

the second order �lter is to adopt analogue circuit.

Through inverse Laplace transform of (2.2.8), the time domain model of the non-

linear damping force is obtained


dF1

dt
= F2

dF2

dt
= −w2

l F1 − 2ξlwlF2 + uF

(2.2.9)

where F1 = Fn, F2 = Ḟn, uF is the input consisting of relative velocity and its

high order derivatives uF = K(alw
2
l y2 + 2klξlwl y3 +y4), y2 = ẏr, y3 = ẏ2, y4 = ẏ3.

By utilizing relative velocity and its high order derivatives, the nonlinear damping

force can also be implemented according to the model (2.2.9). yr is the relative

displacement between unsprung mass and sprung mass which can be measured

by using potentiometer or other linear displacement sensors. Relative velocity
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2.2 Nonlinear damping design for the bio-inspired nonlinear reference model

ẏr can be obtained by di�erentiating yr or integrating acceleration ÿr. ÿr is the

relative acceleration which can be obtained by measuring absolute acceleration of

sprung mass and unsprung mass using two accelerometers. d ÿr
dt

(called jerk) can

be obtained by measuring absolute jerk of sprung mass and unsprung mass using

jerk sensor.

The parameter selection of this �lter requires considerations of both the natural

frequency of the bio-inspired reference model and the speci�c isolation perfor-

mance. Through Taylor series expansion of nonlinear sti�ness term f1(yr) at zero

equilibrium, the natural frequency of the bio-inspired reference model is approxi-

mated as [57]

wn =

√
kh
M

√
γ2

4n2

(
√

1− γ2 +
√
β2 − γ2)2

(1− γ2)(β2 − γ2)
+
α

n2
(2.2.10)

where α= kv/kh, β =L2/L1, γ = sinθ1. For the bio-inspired reference model with

parameters M = 4.0 kg, L1= 0.1 m, L2=0.2 m, kh=500 N/m, kv=350 N/m,

θ1 = π
6
rad, the natural frequency obtained by (2.2.10) is about wn = 5.22 rad/s.

In order to su�ciently suppress the resonant region and simultaneously guarantee

the vibration isolation performance at high frequency, the center frequency of the

quasi band-pass �lter should be close to the natural frequency of reference model.

The parameters of quasi band-pass �lter are chosen as K = 1, kl = 20, ξl = 0.6,

wl = 4.22 rad/s and al = 2.

In addition, (2.2.8) is a stable �lter. Thus Fn can be approximately regarded as

a bounded positive damping.

To demonstrate advantage of the designed nonlinear damping, comparison of vi-

bration isolation performance of bio-inspired reference model between the original

damping and the designed nonlinear damping is conducted. The original damping

and the designed nonlinear damping are respectively selected as c1 = 2, c2 = 0.01,

Fn = 0 and c1 = 0, c2 = 0.01, Fn(s) = C(s)U(s). Assuming that excitation in

the base of the bio-inspired reference model is harmonic in nature represented as
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

zu. y is the motion transmitted to the top. The transmissibility is de�ned as

the ratio of the magnitudes of the displacements Td = | y
zu
|. By resorting to the

harmonic balance method, the displacement transmissibility of the bio-inspired

reference model with di�erent damping is shown in Fig.2.4.
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Fig. 2.4: Displacement transmissibility under di�erent damping

The transmissibility around the resonant peak is signi�cantly reduced as analyzed

before due to the e�ect of peak damping around the natural frequency region. As

the frequency increases, the nonlinear damping decays quickly to a small level

and the transmissibility over the e�ective isolation region is almost una�ected.

Furthermore, the transmissibility of higher frequency region can even be reduced

owing to this small level damping. In Fig.2.4, red line and green line are displace-

ment transmissibility under di�erent damping with same sti�ness. It is noted that

there is slight shift of damped resonance frequency due to changes of damping.

By tuning sti�ness of the structure, the shift can be removed. In Fig.2.4, blue line

is the transmissibility with modi�ed sti�ness.

Then, a random excitation is applied to the base of the bio-inspired reference

model. The acceleration response and its power spectral density (PSD) are given

in Fig.2.5(a) and Fig.2.5(b). From the acceleration response, it can be seen that

the bio-inspired structure with designed nonlinear damping can achieve better

vibration isolation performance than that with original damping since magnitude

of platform acceleration is greatly reduced.
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2.2 Nonlinear damping design for the bio-inspired nonlinear reference model
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Fig. 2.5: Acceleration and power spectral density under original damping and
designed damping

It should be emphasized that the attenuation of resonance peak at low frequency

is not at the expense of isolation performance in higher frequency region, which

can be validated from the PSD of acceleration. All these results indicate that

both the attenuation of resonance peak and vibration isolation performance of

non-resonant frequency region can be simultaneously guaranteed through design-

ing the nonlinear damping force in (2.2.8). Next, a novel reference model with

combination of the bio-inspired vibration structure and this nonlinear damping

will be applied to the active control of vehicle suspension system.

Remark 2.2 Although the nonlinear damping proposed in this chapter is applied

to construct the reference model. Actually, the general active vibration control

systems can also bene�t from this nonlinear damping design method. A feasible

method to implement the vibration isolation system with such nonlinear damping

characteristic is to adopt magneto-rheological damper [38]. The damping force

is adjusted according to the output of �lter (2.2.8). For practical application,

�lter (2.2.8) can be constructed by using analogue circuits. The �lter input is the

velocity ẏr, which can be measured by DC tachogenerator.
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

2.3 Fuzzy adaptive controller synthesis

Based on the bio-inspired reference model and nonlinear damping, the fuzzy

adaptive backstepping controller design is presented in this section. First de-

note z1 = zs − zu and z2 = żs − żu, thus the dynamic equations (2.1.1) can be

rewritten in the following state space form.

ż1 = z2

ż2 = z̈s − z̈u = ΘT
2 ψ + b2u− z̈u

(2.3.1)

Θ2 = [−ks1
ms
,−ks2

ms
,−ks3

ms
,− cs1

ms
,− cs2

ms
]T and b2 = 1

ms
are uncertain parameters and

ψ = [z1, z
2
1 , z

3
1 , z2, z

2
2 ]T is the known nonlinear function vector.

A fuzzy logic system consists of knowledge base, fuzzi�er, fuzzy inference engine

and defuzzi�er. The knowledge is a set of fuzzy IF-THEN rules which takes the

following form:

Rule j : IF z1 is F
j
1 and · · · and zn is F j

n,

THEN y is Bj, j = 1, 2, · · · , N .

Through singleton fuzzi�er, center average defuzzi�cation and product inference,

the output of fuzzy logic system is

y(z) =

∑N
j=1 θj

∏n
i=1 µ

j
i (zi)∑N

j=1

∏n
i=1 µ

j
i (zi)

(2.3.2)

where z = [z1, · · · , zn]T , µji (zi) is membership function, θj = max
y∈R

Bj(y). De�ne

fuzzy basis functions as

ξ(z) =

∏n
i=1 µ

j
i (zi)∑N

j=1

[∏n
i=1 µ

j
i (zi)

] (2.3.3)

Denote ξ(z) = [ξ1(z), ξ2(z), · · · , ξN(z)], θ(z) = [θ1(z), θ2(z), · · · , θN(z)], then

y(z) = θT ξ(z) (2.3.4)
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2.3 Fuzzy adaptive controller synthesis

The following lemma is adopted to set relationship between the unknown nonlinear

function and the fuzzy logic system.

Lemma 2.1 [135] For any given continuous function f(z), which is de�ned on

the compact set Ω, there exists a constant ε > 0 and an optimal parameter vector

θ? such that

sup
z∈Ω
|f(z)− y(z)| ≤ ε (2.3.5)

Then an adaptive fuzzy tracking controller can be designed by making the fol-

lowing change of coordinates e1 = z1 − yr, e2 = z2 − α1, where yr is the relative

displacement of the bio-inspired reference model, which is bounded, so its deriva-

tive ẏr, α1 is virtual control signal. Then the intermediate control signal and

adaptive laws can be designed as follows:

α1 = −λ1e1 + ẏr, λ1 > 0 (2.3.6)

u = −λ2e2 − e1 − ϕ2, λ2 > 0 (2.3.7)

θ̇ = re2ξ(z)− 2kθ, r > 0, k > 0 (2.3.8)

where ϕ2 = ξT (z)θ, λ1, λ2, r and k are parameters to be designed.

Theorem 2.1 For the nonlinear suspension system (2.3.1), the controller (2.3.7)

with the intermediate control signal and parameter law (2.3.6) and (2.3.8) guaran-

tees that all the signals involved are ultimately uniformly bounded, tracking errors

converge to a small neighborhood around zero, the closed-loop system is globally

stable.

Proof: Lyapunov function is chosen as

V (t) =
1

2
e2

1 +
1

2
e2

2 +
1

2r
θ̃T θ̃

where θ̃ = θ? − θ. Derivative of V (t) can be written as:

V̇ (t) = e1ė1 + e2ė2 −
1

r
θ̃T θ̇ = −λ1e

2
1 − λ2e

2
2 + e2[f(z)− ϕ]− 1

r
θ̃T θ̇ − e2z̈u

b2
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

where f(z) = (ΘT
2 ψ − α̇1)/b2, ϕ = ξT (z)θ is the fuzzy logic system used to

approximate f(z). Then V̇ (t) can be rewritten as

V̇ (t) =−λ1e
2
1−λ2e

2
2+e2[f(z)−ξT (z)θ?+ξT (z)θ?−ξT (z)θ]− θ̃

T θ̇

r
− e2z̈u

b2

≤− λ1e
2
1 − λ2e

2
2 + e2ε+ θ̃T (e2ξ(z)− 1

r
θ̇)− e2z̈u

b2

=− λ1e
2
1 − λ2e

2
2 + e2ε+

k

r
(2θ?T θ − 2θT θ)− e2z̈u

b2

Since 2θ?T θ − 2θT θ ≤ θ?T θ? − θT θ. Then V̇ (t) can be formulated as

V̇ (t) ≤ −λ1e
2
1 − λ2e

2
2 + e2ε+

k

r
(θ?T θ? − θT θ)− e2z̈u

b2

=−λ1e
2
1−λ2e

2
2+e2ε+

k

r
(−θT θ−θ?T θ?)+

2k

r
θ?T θ?− e2z̈u

b2

According to the following inequalities e2ε ≤ 1
2
e2

2 + 1
2
ε2, θ̃T θ̃ = (θ?− θ)(θ?− θ)T =

θ?T θ? − 2θ?T θ + θT θ ≤ 2θ?T θ? + 2θT θ, we have −1
2
θ̃T θ̃ ≥ −θ?T θ? − θT θ. De�ne

λ2 = a+ 1
2b22

, since − e22
2b22
− e2z̈u

b2
≤ z̈2u

2
, z̈2

u ≤ a1, a1 is a positive constant. Then one

can have

V̇ (t) ≤ −λ1e
2
1 − (a− 1

2
)e2

2 +
1

2
ε2 − k

2r
θ̃T θ̃ +

2k

r
θ?T θ? +

a1

2

≤ −C(
1

2
e2

1 +
1

2
e2

2 +
1

2r
θ̃T θ̃) +D (2.3.9)

= −CV +D

where C = min{2λ1, 2a− 1, k}, D = 1
2
ε2 + 2k

r
θ?T θ? + a1

2
. From (2.3.9), it is easy

to conclude that

V (t) ≤ V (t0)e−C(t−t0) +D/C (2.3.10)

Therefore, signals z(t), e1(t), e2(t), θ(t) and u(t) are globally uniformly ultimately

bounded and tracking error is bounded e1(t) ≤
√

2V (t0)e−C(t−t0) +
√

2D
C
. If

the parameters C and D are appropriately chosen, then
√

2D
C
can be as small

as possible. As t → ∞, e−C(t−t0)/2 → 0, then there exists T , when t ≥ T ,
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2.3 Fuzzy adaptive controller synthesis

|z1(t)− yr(t)| ≤
√

2D
C
. This completes the proof.

Remark 2.3 For the proposed adaptive tracking controller, satisfactory closed-

loop tracking performance can be achieved by properly adjusting design parame-

ters λ1, λ2, r and k. Larger control gains bring about higher bandwidth of the

closed-loop system, which can achieve fast transient response but also introduce

high-frequency disturbances. The tracking performance may be degraded by the

high-frequency disturbances. Thus, for choosing appropriate controller parame-

ters, minor values are tested until the desired tracking performance is obtained.

According to the adaptive law (2.3.6)�(2.3.8), the computational complexities of

the controller is mainly determined by the number of fuzzy rule, the type of mem-

bership function and the dimension of adaptive law.

Remark 2.4 Generally speaking, the ideal tracking signal yr is always chosen

as zero in fuzzy adaptive tracking control. Instead of setting the tracking trajec-

tory as zero, the dynamics output of the bio-inspired structure yr and ẏr are used

as reference signals, which avoid cancellations of nonlinearities of the suspension

system. In addition, a particularly designed nonlinear damping is applied on the

bio-inspired reference model. Thus better ride comfort can be achieved. Further-

more, with this reference model, less actuator force is required, which means that

the adaptive control method proposed in this chapter is energy e�cient.

Remark 2.5 Actuator saturation, which is due to physical limitation of actua-

tor, may lead to degraded performance, or even instability of the entire system. As

stated in Remark 2.4, the bio-inspired reference model based fuzzy adaptive con-

troller designed in this chapter requires less actuator force. Hence the method in

this chapter can also �nd application in active suspension control system subject

to actuator saturation. Detailed comparison discussion will be given later. For

practical application, this fuzzy adaptive controller can be implemented through

measuring the relative displacement zs−zu and relative velocity żs− żu, which can
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

be easily achieved by installing a linear displacement sensor between the vehicle

body and suspension [39].

2.4 Simulation results and analysis

Here, an example of quarter-vehicle active suspension system, the Hyundai Elantra

suspension model with considering payload changes is considered. This example

is provided to evaluate the validity and superiority of the designed bio-inspired

structure based fuzzy adaptive controller.

Suspension model initial states are zeros. For the fuzzy adaptive controller, we as-

sume that the sprung mass varies in a range of [0.9ms, 1.1ms]. The corresponding

controller parameters are determined as λ1 = 51.5, λ2 = 23.7, k = 1.5andr = 1,

fuzzy membership functions are chosen as

µji (zi) = e−0.5[zi+0.5(5−j)]2 , i = 1, 2, j = 1. · · · , 9.

Parameters of the vehicle system and the bio-inspired reference model are listed

in Table 2.1 and Table 2.2.

Table 2.1: Parameters of quarter vehicle suspension model

Parameter Value Parameter Value
ms 240 kg mu 23.61 kg
ks1 15394 N/m cs1 1385.4 Ns/m
ks2 -73696 N/m2 cs2 524.28 Ns2/m2

ks3 3170400 N/m3 ct 13.8 Ns/m
kt 181818.88 N/m

Then the designed bio-inspired reference model based fuzzy adaptive controller is

implemented on the quarter vehicle model. Comparison results are mainly con-

ducted from the aspects of vibration suppression and energy consumption among
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2.4 Simulation results and analysis

Table 2.2: Parameters of the bio-inspired reference model

Parameter Value Parameter Value
M 80 kg θ1 π/6 rad
L1 0.1 m c1 5 Ns/m
L2 0.2 m c2 0.15 Ns/m
kv 350 N/m kh 500 N/m

the passive suspension system and the following three di�erent active control

methods:

1. Controller1: Active control using standard fuzzy adaptive backstepping con-

troller in [136].

2. Controller2: Active control using fuzzy adaptive backstepping controller

based on the multi-layer bio-inspired reference model in [57].

3. Controller3: Active control using fuzzy adaptive backstepping controller

based on the multi-layer bio-inspired reference model with deliberately de-

signed nonlinear damping proposed in this chapter.

In simulation, �ltered white noise borrowed from [137] with road roughness class

C is adopted. The equation of road excitation is expressed as

q̇(t) = −2πnquq(t) + 2πn0

√
Gq(n0)uw(t) (2.4.1)

where nq = 0.0001m−1 is the lowest frequency, w(t) is standard Gaussian white

noise with 0 mean and unit variance, Gq(n0) = 256 × 10−6m2/m−1(class C), u

is the vehicle forward velocity. In this chapter, three di�erent vehicle forward

velocities V1 = 10 km/h, V2 = 20 km/h and V3 = 35 km/h are used to test the

performance of the proposed control approach.

Comparisons of energy consumption and acceleration of the sprung mass z̈s for

di�erent vehicle forward velocities with di�erent control methods in terms of the

aforementioned RMS values are given in Table 2.3 and 2.4. In this chapter, we
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

use simulation time T = 50s to calculate the RMS values of the sprung mass

acceleration and the consumed energy for di�erent cases.

Table 2.3: RMS of energy consumption for di�erent vehicle forward velocities (W)

V Controller1 Controller2 Controller3

V1=10 km/h 49.2455
20.0761 22.6746

(↓ 58.76%) (↓ 53.43%)

V2=20 km/h 98.8268
40.2628 45.4782

(↓ 58.79%) (↓ 53.46%)

V3=35 km/h 173.9919
70.7589 79.9422

(↓ 58.87%) (↓ 53.53%)

Table 2.4: RMS of suspension acceleration for di�erent vehicle forward velocities
(m/s2)

V Passive Controller1 Controller2 Controller3

V1=10 km/h 0.0822
0.0082 0.0079 0.0070

(↑ 86.74%) (↑ 90.39%) (↑ 91.48%)

V2=20 km/h 0.1162
0.0117 0.0113 0.0099

(↑ 86.75%) (↑ 90.28%) (↑ 91.48%)

V3=35 km/h 0.1538
0.0155 0.01498 0.0132

(↑ 86.67%) (↑ 90.31%) (↑ 91.42%)

From these tables, one can clearly observe that, compared to standard fuzzy adap-

tive Controller1, the bio-inspired reference model based tracking Controller2 and

Controller3 can improve ride comfort for di�erent forward velocities and mean-

while save more than 50% energy.

The time and frequency domain responses of the vehicle body acceleration are

given in Fig.2.6 where V3 = 35 km/h. It is obvious that the active suspension

response outperforms the passive one, since magnitudes of vehicle body acceler-

ations are greatly reduced with active Controller1-3 both in time and frequency

domains. Moreover control forces required by Controller1 and Controller3 are

shown in Fig.2.7(a). The control force of Controller3 is much smaller than that of

standard fuzzy adaptive Controller1. The frequency comparison of control force is

depicted in Fig.2.7(b), from which one can observe that Controller1 contains more
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2.4 Simulation results and analysis

components in high-frequency region and is more likely to occur actuator satura-

tion. It is also well known that high bandwidth controllers are more sensitive to

high frequency noise. Moreover, high bandwidth of actuator requires high speed

sensor and actuator, which will lead to low tolerance of delay and increase cost

of the entire control system. The simulation results show that, compared to stan-

dard fuzzy adaptive Controller1, Controller3 proposed in this chapter requires

less energy and low bandwidth actuator while guarantees similar ride comfort

with Controller1. It can also be veri�ed from Table 2.3 and 2.4 (V3 = 35 km/h),

all active controllers improve ride comfort signi�cantly compared to passive sus-

pension system, since the RMS value of the sprung mass acceleration decreases

about 86.67%(Controller1), 90.39%(Controller2), 91.48%(Controller3 ), while less

energy, 70.7589W (Controller2) and 79.9422W (Controller3) are consumed, which

is much better than the standard fuzzy adaptive controller(about 173.9919W).

0 10 20 30 40 50
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Times(s)

Acceleration

 

 
Passive Controller1 Controller3

(a)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency (Hz)

Acceleration

 

 

Passive Controller1 Controller3

0 5 10 15 20
0

0.01

0.02

0.03

0.04

(b)

Fig. 2.6: Vehicle body acceleration and its frequency component

Additionally, constraint of suspension space and dynamic tyre load are also taken

into account. Suspension de�ection zs − zu is given in Fig.2.8(b). It is clear

that the controlled suspension spaces all fall into the acceptable ranges. Thus,

this physical constraint can be guaranteed. The dynamic tire load is illustrated in

Fig.2.8(b), which demonstrates that the dynamic tire load constraint Ft+Fb
(ms+mu)g

< 1

is satis�ed. In a word, Fig.2.8(a) and 2.8(b) validate that road holding capabil-

ity and suspension de�ection constraint can be guaranteed with improved ride

35



2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics
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Fig. 2.7: Control force and its frequency component

comfort.
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Fig. 2.8: Suspension de�ection and dynamic tyre load of the suspension system
with a bio-inspired reference model

Then, to evaluate the robustness of the designed fuzzy adaptive controller, a gen-

eral disturbance Fd = sin(3πt) + 0.2 sin(30πt) is added to the sprung mass. The

disturbance contains components at 1.5 and 15 Hz, respectively. Comparisons are

conducted when vehicle forward velocity is V3 = 35km/h. Following the same

analysis procedure, Table 2.5 and 2.6 show comparisons of RMS values using dif-

ferent controllers. Table 2.5 shows the energy consumed by di�erent controllers.

Bio-inspired based controllers consume 60% less energy than standard controller,

which validate that the bio-inspired reference model based controllers are more
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2.4 Simulation results and analysis

Table 2.5: RMS of energy consumption for di�erent vehicle forward velocities
when subject to disturbance (W)

V Controller1 Controller2 Controller3

V1=10 km/h 179.1717
54.6823 57.5802

(↓ 69.48%) (↓ 67.86%)

V2=20 km/h 237.7704
75.3530 80.8523

(↓ 68.31%) (↓ 66.00%)

V3=35 km/h 322.5624
105.8484 115.2958
(↓ 67.18%) (↓ 64.26%)

Table 2.6: RMS of suspension acceleration for di�erent vehicle forward velocities
when subject to disturbance (m/s2)

V Passive Controller1 Controller2 Controller3

V1=10 km/h 1.2240
0.0130 0.01243 0.0104

(↑ 98.94%) (↑ 98.98%) (↑ 99.15%)

V2=20 km/h 1.2272
0.0156 0.0148 0.0126

(↑ 98.72%) (↑ 98.79%) (↑ 98.97%)

V3=35 km/h 1.2318
0.0189 0.0178 0.0153

(↑ 98.46%) (↑ 98.55%) (↑ 98.76%)

energy e�cient when subject to disturbance. As for vibration isolation perfor-

mance, from Table 2.6, we can see that the general disturbance has great impact

on passive suspension system, while Controller1-3 reduce the values of vehicle

body acceleration signi�cantly for about 98% compared to passive system. This

again veri�es the results when there is no disturbance. Fig.2.9(a)�(b) are com-

parisons of the vehicle body acceleration in time domain and frequency domain.

From these �gures, compared to passive suspension, we can see that ride comfort

are signi�cantly improved with Controller1 and Controller3. Although the vehi-

cle body accelerations with Controller1 and Controller3 are almost the same, the

control force of Controller1 in Fig.2.10(a) is much larger than that of Controller3

and the control signal bandwidth of Controller1 in Fig.2.10(b) is much higher

than that of Controller3, which means that Controller3 is more energy e�cient

and economic.

Fig.2.11(a) shows comparison of vehicle body acceleration between Controller2

and Controller3 subject to disturbance Fd. To further demonstrate the advantages
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics
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Fig. 2.9: Vehicle body acceleration and its frequency component when subject to
disturbance
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Fig. 2.10: Control force and its frequency component when subject to disturbance

of Controller3, a stronger disturbance with larger amplitude F ′d = sin(3πt) +

sin(30πt) is applied to suspension system. Fig.2.11(b) is comparison of vehicle

body acceleration between Controller2 and Controller3 subject to disturbance

F ′d, from which it can be observed that the improvement of ride comfort over

controller2 is more obvious when disturbance is stronger. The comparison results

between the method proposed in Ref. [60] and Controller3 are also depicted in

Fig.2.12, where the external disturbance and road input are selected as F ′d and C

level, respectively. From Fig.2.12, one can observe that ride comfort at both low-

and high-frequency can be simultaneously improved.
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Fig. 2.11: Vehicle body acceleration under di�erent disturbance
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Fig. 2.12: Vehicle body acceleration and its frequency component

Remark 2.6 The bio-inspired model used in Ref. [60] was only single-layer, a

more general model with multi-layer is adopted in this chapter. Moreover, in

this chapter, a novel nonlinear damping is designed for the bio-inspired reference

model. According to the analysis in Section 2.2, the novel nonlinear damping in the

context of bio-inspired structure dynamics and more layers of bio-inspired structure

can jointly contribute to the less vibration transmissibility. So Controller3 can

achieve better vibration suppression performance which has been veri�ed by the

comparison results in Fig.2.11 and 2.12.

Finally, the ability to address actuator saturation issues for di�erent controllers is
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2 Fuzzy control of suspension systems based on bio-inspired nonlinear dynamics

tested when vehicle forward velocity is V3 = 35 km/h when subject to actuation

saturation umax = 1000 N and 1300 N, respectively. Generally speaking, system

performance will be degraded more or less in presence of actuator saturation.

However, simulation results in Table 2.7, 2.8 and Fig.2.13(a), Fig.2.13(b) demon-

strate that compared to standard Controller1, the bio-inspired reference model

based Controller3 su�ers much smaller performance degradations in terms of ride

comfort and energy consumption. All simulation results verify the e�ectiveness of

the bio-inspired reference model based control method proposed in this chapter.
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Fig. 2.13: Acceleration and control force (saturation is 1300)

Table 2.7: RMS of Energy consumption subject to actuator saturations for V = 35
km/h (W)

Saturation Controller1 Controller2 Controller3
umax = 1000 126.9264 70.8401 80.1407
umax = 1300 172.0001 70.7589 79.9422

Table 2.8: RMS of suspension acceleration subject to actuator saturations for V =
35 km/h (m/s2)

Saturation Passive Controller1 Controller2 Controller3
umax = 1000 0.1538 0.0694 0.0188 0.0167
umax = 1300 0.1538 0.0223 0.0149 0.0132
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2.5 Conclusion

In the chapter, a novel bio-inspired reference model based fuzzy adaptive control

method, which aims to simultaneously achieve vibration suppression and energy-

saving in active suspension systems is presented. A bene�cial nonlinear damping

is deliberately designed to improve the overall vibration suppression performance.

Then by taking full advantage of nonlinear dynamics of the bio-inspired reference

model, vibration suppression and energy e�ciency as well as robustness and actu-

ator saturations issues are guaranteed. It should be emphasized that the generic

bio-inspired nonlinear model with its associated nonlinear sti�ness and nonlinear

damping is for the �rst time fully employed in active tracking control as a reference

model.
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Chapter 3

Fuzzy sampled-data control for non-

linear systems

This chapter investigates the sampled-data control for fuzzy systems. First, ex-

tended dissipative and exponential stabilization problems for T-S fuzzy sampled-

data systems is investigated in this chapter. The most important distinction be-

tween the work being undertaken and the existing literatures is that H∞, L2−L∞,

passive and dissipative control problems for T-S fuzzy sampled-data systems can

be solved successfully under the uni�ed framework of extended dissipative control,

instead of addressing these control problems in a separate way. This can allow

us to choose a suitable control strategy by adjusting the weighting matrices in

the new performance index according to the practical applications or noise lev-

els. What is more, the desired dynamic performance of closed-loop sampled-data

system is guaranteed through setting an exponential decay rate in advance for

arbitrary admissible sampling period.

The rest of this chapter is organized as follows. Firstly, a simple introduction of

T-S fuzzy sampled-data system and the corresponding parallel distributed com-

pensation (PDC) controller are presented. Then the uni�ed performance index,

which covers H∞, L2−L∞, passive and dissipative performances as special cases is

introduced. Furthermore, under variable sampling, stability conditions consisting

of both exponential stability and extended dissipativity criterion for T-S fuzzy sys-

tem are established through applying the Lyapunov-Krasovskii functional method

together with an e�cient integral inequality. It has been veri�ed in [109] that

this novel integral inequality has the potential capability of reducing conservatism.
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Based on the stability conditions, a sampled-data controller that cannot only expo-

nentially stabilize the system with an exponential decay rate but also guarantee

the prescribed extended−dissipativity performance is then designed. Finally, a

quarter-vehicle active suspension system with considering uncertain payload and

aperiodic sampling is given for evaluating the e�ectiveness and advantages of the

extended dissipative and exponential controller design approach proposed in this

chapter over some ones of the existing literatures.

3.1 Problem formulation and preliminaries

Consider the T-S fuzzy model with r IF-THEN plant rules:

� Plant Rule i: IF θ1(t) is µi1 and θ2(t) is µi2 and · · · and θp(t) is µip, THENẋ(t) = Aix(t) +Biu(t) +Bwiω(t)

z(t) = Cix(t) +Diu(t) +Dwiω(t)
(3.1.1)

where µij is the fuzzy set, x(t) ∈ Rn represents the state vector, z(t) ∈ Rv

denotes the measurement output; and ω(t) ∈ Rq is the disturbance signal; Ai,

Bi, Bwi, Ci, Di, Dwi are known constant matrices with appropriate dimensions;

θ1(t), θ2(t), · · · , θp(t) are premise variables, which are functions of state variables,

and r is the number of fuzzy IF-THEN rules. Denote hi(θ(t))=ϑi(θ(t))/
∑r

i=1ϑi(θ(t)),

ϑi(θ(t)) =
∏r

j=1µij(θj(t)), where µij(θj(t)) represents the grade of membership of

θj(t) in µij. Since ϑi(θ(t)) ≥ 0, i = 1, 2, · · · , r, then hi(θ(t)) ≥ 0,
∑r

i=1hi(θ(t)) =

1. Thus the overall fuzzy system can be obtained as follows:
ẋ(t)=

∑r

i=1
hi(θ(t)) [Aix(t)+Biu(t)+Bwiω(t)]

z(t)=
∑r

i=1
hi(θ(t)) [Cix(t)+Diu(t)+Dwiω(t)]

(3.1.2)

Taking the sampled-data behavior into consideration, the state feedback signal

can be transmitted to the controller only at discrete instants, which satisfy

0 < t1 < · · · < tk < · · · < lim
k→∞

tk =∞ (3.1.3)
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3 Fuzzy sampled-data control for nonlinear systems

In this chapter, we aim to design a parallel distributed compensation (PDC) tech-

nique based sampled-data controller, which takes the following form, to stabilize

system (3.1.2) :

� Controller Rule j: IF θ1(tk) is µj1 and θ2(tk) is µj2 and · · · and θp(tk) is µjp,

THEN

u(t) = Kjx(tk), tk ≤ t ≤ tk+1, (3.1.4)

where Kj is the sub-controller gain, x(tk) is the sampled-data signal of state at

tk. Thus we can rewrite the fuzzy controller as :

u(t) =
∑r

j=1
hj(θ(tk))Kjx(tk) (3.1.5)

Then the closed-loop fuzzy sampled-data system is obtained as:
ẋ(t)=

∑r

i=1

∑r

j=1
hi(θ(t))hj(θ(tk)) [Aix(t)+BiKjx(tk)+Bwi(t)ω(t)]

z(t)=
∑r

i=1

∑r

j=1
hi(θ(t))hj(θ(tk)) [Cix(t)+DiKjx(tk)+Dwi(t)ω(t)]

(3.1.6)

Before ending this section, the following assumption, de�nitions and lemmas,

which will be used to develop the main results in sequel, are introduced.

Lemma 3.1 [109] For any matrixM ∈ Rn×n and R3 ∈ Rn×n satisfying

R3M

? R3

 ≥
0, and given scalars 0 < κ < 1 and 0 ≤ h(t) < h, then

−h
∫ t

t−h
ẋT (s)R3ẋ(s)ds ≤ υT (t)∆υ(t)

where υT (t) =
[
xT (t) xT (t− h(t)) xT (t− h) 1

h

∫ t
t−h x

T (s)ds
]
and ∆ is de�ned as

∆=


∆11 κ(R3−M) ∆13 0.5(1−κ)π2R3

? κ(−2R3+M+MT ) κ(R3−M) 0

? ? −R3−0.25(1−κ)R3π
2 0.5(1−κ)π2R3

? ? ? (κ−1)π2R3

 (3.1.7)

∆11 =−R3−0.25(1−κ)R3π
2, ∆13 = (1−κ)(1−0.25π2)R3+κM.
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3.1 Problem formulation and preliminaries

Lemma 3.2 [138] For any constant matrix R2 = RT
2 , R4 = RT

4 and a scalar

h > 0, then the following inequalities hold:

−
∫ t

t−h
xT (s)R2x(s)ds ≤ −1

h

(∫ t

t−h
xT (s)ds

)
R2

(∫ t

t−h
x(s)ds

)
(3.1.8)

−
∫ 0

−h

∫ t

t+θ

ẋT (s)R4ẋ(s)dsdθ ≤− 2

h2

(∫ 0

−h

∫ t

t+θ

ẋT (s)dsdθ

)
R4

(∫ 0

−h

∫ t

t+θ

ẋ(s)dsdθ

)
= − 2

h2

(
hx(t)−

∫ t

t−h
x(s)ds

)T
R4

(
hx(t)−

∫ t

t−h
x(s)ds

)
(3.1.9)

Assumption 3.1 [84] For given real matrices Φ = ΦT ≥ 0, Ψ1 = ΨT
1 ≤ 0,

Ψ2 and Ψ3 = ΨT
3 , assume that the following conditions are satis�ed, ∀i, j ∈

{1, 2 , · · · , r}:

1) ‖Dwi‖ · ‖Φ‖ = 0;

2) (‖Ψ1‖+ ‖Ψ2‖)‖Φ‖ = 0;

3) DT
wiΨ1Dwi +DT

wiΨ2 + ΨT
2Dwi + Ψ3 > 0.

De�nition 3.1 [84] System (3.1.5) is said to be extended dissipative if (3.1.10)

holds for all w(t) ∈ L2[0, ∞)

∫ tf

0

J(t)dt ≥ zT (t)Φz(t) + ρ, t ∈ [0, tf ] (3.1.10)

where J(t) = zT (t)Ψ1z(t) + 2zT (t)Ψ2w(t) + wT (t)Ψ3w(t), Φ, Ψ1, Ψ2 and Ψ3 are

known matrices satisfying Assumption 3.1, ρ is a scalar.

Remark 3.1 The extended dissipative control performance for fuzzy sampled-data

system in this chapter is more general than other control performance indices, such

as H∞, L2−L∞, passive and dissipative. For instance, when (Φ,Ψ1,Ψ2,Ψ3, ρ) =

(0,−I, 0, γ2I, 0), the control performance index (3.1.10) becomes the H∞ control

performance considered in [43, 74, 77]; when (Φ,Ψ1,Ψ2,Ψ3, ρ) = (I, 0, 0, γ2I, 0),

the control performance index (3.1.10) reduces to L2−L∞ (energy-to-peak) control
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3 Fuzzy sampled-data control for nonlinear systems

performance in [81]; when (Φ,Ψ1,Ψ2,Ψ3, ρ) = (0, 0, I, γI, 0), and z(t), w(t) have

the same dimension, the control performance index (3.1.10) becomes the passivity

performance [82]; when (Φ,Ψ1,Ψ2,Ψ3, ρ) = (0, Q, S,R − αI, 0), the control per-

formance index (3.1.10) reduces to the strict (Q, S, R)-dissipativity [83]; when

(Φ,Ψ1,Ψ2,Ψ3) = (0,−εI, I,−σI), (ε > 0, σ > 0) the control performance index

(3.1.10) reduces to the very-strict passivity performance index. ρ is not necessary

to be zero in sense of the very-strict passivity. [139] shows that ρ should be non-

positive in this case, which can also be checked in Assumption 3.1 and De�nition

3.1. In fact, when w(t) = 0, (3.1.10) becomes

ρ ≤
∫ tf

0

z(t)TΨ1z(t)dt− zT (t)Φz(t), t ∈ [0, tf ]

Then it is easy to get that ρ ≤ 0 since Φ ≥ 0 and Ψ1 ≤ 0 according to Assumption

3.1.

De�nition 3.2 [83] Given two constant scalars λ∗ > 0 and c > 0, if

‖x(t)‖ ≤ ce−λ
∗t sup
−h≤s≤0

{‖x(s)‖, ‖ẋ(s)‖} (3.1.11)

holds. Then the closed-loop fuzzy sampled-data system (3.1.6) is exponentially

stable with a decay rate λ∗ when w(t) = 0.

The problems to be addressed in this chapter are formulated as follows:

1) The closed-loop fuzzy sampled-data system (3.1.6) with w(t) = 0 is expo-

nentially stable;

2) The closed-loop fuzzy sampled-data system (3.1.6) guarantees the new per-

formance index proposed in (3.1.10) for all nonzero w(t) ∈ L2[0, ∞).
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3.2 Main results on fuzzy sampled-data control

In this section, a new exponential stability condition which can guarantee the pre-

scribed extended dissipative performance for sampled-data fuzzy system is pre-

sented. Based on the input delay approach proposed in [71], the sampling instant

tk can be represented in the form of a special time-varying delay as follows:

tk = t− (t− tk) = t− h(t) (3.2.1)

where h(t) = t− tk, which satis�es

0 ≤ h(t) < hk = tk+1 − tk ≤ h, tk ≤ t < tk+1 (3.2.2)

Substitute (3.2.1) into (3.1.6), we can rewrite the closed-loop fuzzy sampled-data
system as:

ẋ(t)=
r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))[Aix(t)+BiKjx(t−h(t))+Bwiω(t)]

z(t)=
r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))[Cix(t)+DiKjx(t−h(t))+Dwiω(t)]

(3.2.3)

The initial condition of x(t) is given as x(t) = ϕ(t) for t ∈ [−h, 0], where ϕ(t) is

a di�erentiable function.

By now, we have transformed the asynchronous sampling fuzzy system (3.1.6)

into a continuous time delay T-S fuzzy system. Thus the exponential stability of

system (3.2.3) can guarantee that system (3.1.6) is exponentially stable.

First we consider the exponential stability criterions for system (3.2.4).

ẋ(t)=
∑r

i=1

∑r

j=1
hi(θ(t))hj(θ(tk))[Aix(t)+BiKjx(t−h(t))] (3.2.4)

Theorem 3.1 Given scalars 0 < ε < 1, 0 < κ < 1, 0 < λ, system (3.2.4)

is exponentially stable with a decay rate λ∗ = λ/2 for any admissible sampling
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period h > 0 if there exist matrices P > 0, Q2 > 0, R1 > 0, R2 > 0, R3 > 0,

R4 > 0, arbitrary matrices Q1, M such that linear matrix inequalities (LMIs)

(3.2.5)−(3.2.7) hold:

 P Q1

? Q2

 > 0 (3.2.5)

 R3 M

? R3

 > 0 (3.2.6)



Ξi
11 Ξij

12 Ξ13 Ξi
14 ATi R̃

? Ξ22 Ξ23 Ξij
24 KT

j B
T
i R̃

? ? Ξ33 Ξ34 0

? ? ? Ξ44 0

? ? ? ? −R̃


< 0 (3.2.7)

where

Ξi
11 = λP+P TAi+A

T
i P+Q1+QT

1 +eλhR1+heλhR2 − 2R4 −R3 − 0.25(1− κ)R3π
2

Ξij
12 = PBiKj + κ(R3 −M),Ξ13 = −Q1 + (1− κ)(1− 0.25π2)R3 + κM

Ξi
14 = hATi Q1+λhQ1+hQ2+2R4+0.5(1−κ)π2R3

Ξ22 =κ(M +MT − 2R3),Ξ23 = κ(R3 −M), R̃ =
heλh − h

λ
R3 +

eλh − hλ− 1

λ2
R4

Ξij
24 =hKT

j B
T
i Q1Ξ33 = −R1 −R3 − 0.25(1− κ)π2R3

Ξ34 =− hQ2 + 0.5(1− κ)π2R3,Ξ44 = λh2Q2 − hR2 − 2R4 − (1− κ)π2R3

Proof: Consider the following Lyapunov-Krasovskii function:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (3.2.8)
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where

V1(t) =eλt

 x(t)∫ t
t−h x(s)ds

T  P Q1

QT
1 Q2

 x(t)∫ t
t−h x(s)ds


V2(t) =

∫ t

t−h
eλ(s+h)xT (s)R1x(s)ds+

∫ 0

−h

∫ t

t+θ

eλ(s+h)xT (s)R2x(s)dsdθ

V3(t) =h

∫ 0

−h

∫ t

t+θ

eλ(s−θ)ẋT (s)R3ẋ(s)dsdθ

V4(t) =

∫ 0

−h

∫ 0

v

∫ t

t+θ

eλ(s−θ)ẋT (s)R4ẋ(s)dsdθdv

P , Q2, R1, R2, R3 and R4 are symmetric positive-de�nite matrices. It is easy to

see that there exists su�ciently small scalar δ > 0 such that

V (t) ≥ δeλt‖x(t)‖2 (3.2.9)

The time derivative of V (t) along the trajectories of system (3.2.4) can be ex-

pressed as:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) (3.2.10)

where

V̇1(t)=λeλt

 x(t)∫ t
t−h x(s)ds

T  P Q1

QT
1 Q2

 x(t)∫ t
t−h x(s)ds


+ 2eλt

 x(t)∫ t
t−h x(s)ds

T  P Q1

QT
1 Q2

 ẋ(t)

x(t)−x(t−h)


V̇2(t)=eλ(t+h)xT (t)R1x(t)− eλtxT (t− h)R1x(t− h)

+ heλ(t+h)xT (t)R2x(t)− eλh
∫ t

t−h
eλsxT (s)R2x(s)ds

V̇3(t)=
heλh−h

λ
eλtẋT (t)R3ẋ(t)−heλt

∫ t

t−h
ẋT (s)R3ẋ(s)ds

V̇4(t)=
eλh−λh−1

λ2
eλtẋT (t)R4ẋ(t)− eλt

∫ 0

−h

∫ t

t+θ

ẋT (s)R4ẋ(s)dsdθ
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Recalling and applying Lemma 3.1 under condition (3.2.6), we have

− heλt
∫ t

t−h
ẋT (s)R3ẋ(s)ds ≤ eλtυT (t)∆υ(t) (3.2.11)

where ∆ is de�ned in (3.1.7).

By Lemma 3.2,we can obtain

− eλh
∫ t

t−h
eλsxT (s)R2x(s)ds ≤ −e

λt

h

(∫ t

t−h
xT (s)ds

)
R2

(∫ t

t−h
x(s)ds

)
(3.2.12)

− eλt
∫ 0

−h

∫ t

t+θ

ẋT (s)R4ẋ(s)ds

≤ −2eλt

h2

(∫ 0

−h

∫ t

t+θ

ẋT (s)ds

)
R4

(∫ 0

−h

∫ t

t+θ

ẋ(s)ds

)
(3.2.13)

= −2eλt

h2

(
hx(t)−

∫ t

t−h
x(s)ds

)T
R4

(
hx(t)−

∫ t

t−h
x(s)ds

)

Considering (3.2.10)-(3.2.13), we can get (3.2.14)

V̇ (t) ≤
r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))e
λtηT (t)Ξijη(t) (3.2.14)

where

ηT (t) =

[
xT (t) xT (t−h(t)) xT (t−h)

1

h

∫ t

t−h
xT (s)ds

]

Ξij =



Ξi
11 Ξij

12 Ξ13 Ξi
14

? Ξij
22 Ξ23 Ξij

24

? ? Ξ33 Ξ34

? ? ? Ξ44


+



ATi

KT
j B

T
i

0

0


R̃



ATi

KT
j B

T
i

0

0



T

Applying Schur Complement to (3.2.7), one can get Ξij < 0, which implies that

V̇ (t) < 0 (3.2.15)
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Then there always exists a su�ciently small scalar c > 0, such that

V̇ (t) ≤ −ceλt‖x(t)‖2 < 0 (3.2.16)

Thus

V (t) < V (0) (3.2.17)

On the other hand, denote Q =

 P Q1

? Q2

 > 0, then

V1(0) ≤ λmax(Q)

 x(0)∫ 0

−h ϕ(s)ds

T  x(0)∫ 0

−h ϕ(s)ds


ϕ(s) is continuous in [−h, 0], then there exists a positive scalar δ1 > 0 such that∫ 0

−h ϕ(s)ds ≤ δ1‖x(0)‖. Then we have V1(0) ≤ (1 + δ2
1)λmax(Q)‖x(0)‖2.

V (0) =
∑4

i=1
Vi(0)

≤(1 + δ2
1)λmax{Q}‖x(0)‖2 + heλhλmax{R1} sup

−h≤s≤0
‖x(s)‖2

+
λheλh+1

λ2
λmax{R2} sup

−h≤s≤0
‖x(s)‖2+

heλh

λ2
λmax{R3} sup

−h≤s≤0
‖ẋ(s)‖2

+
2eλh

λ3
λmax{R4} sup

−h≤s≤0
‖ẋ(s)‖2 (3.2.18)

≤a1 sup
−h≤s≤0

‖x(s)‖2 + a2 sup
−h≤s≤0

‖ẋ(s)‖2

≤(a1 + a2)

(
sup
−h≤s≤0

{‖x(s)‖2, ‖ẋ(s)‖2}
)

where

a1 = (1 + δ2
1)λmax{Q}+ heλhλmax{R1}+

λheλh + 1

λ2
λmax{R2}

a2 =
heλh

λ2
λmax{R3}+

2eλh

λ3
λmax{R4}
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Then based on (3.2.9), (3.2.17) and (3.2.18), the following inequality holds

δeλt‖x(t)‖2 ≤ (a1 + a2)

(
sup
−h≤s≤0

{‖x(s)‖2, ‖ẋ(s)‖2}
)

which indicates that

‖x(t)‖ ≤
√
a1+a2

δ
e−

λt
2

(
sup
−h≤s≤0

{‖x(s)‖, ‖ẋ(s)‖}
)

(3.2.19)

According to De�nition 3.2 and (3.2.19), it is easy to tell that system (3.2.4) is

exponentially stable with decay rate λ∗ = λ/2. This completes the proof. �

Based on Theorem 3.1, we give the following exponential extended dissipative

conditions for system (3.1.6).

Theorem 3.2 Given scalars 0 < ε < 1, 0 < κ < 1, 0 < λ and matrices Φ =

ΦTΦ, Ψ1 = −ΨT
1 Ψ1, Ψ2, Ψ3 satisfying Assumption 1, system (3.2.3) is extended

dissipative and exponentially stable with a decay rate λ∗ = λ/2 for any admissible

sampling period h > 0 if there exist matrices P > 0, Q2 > 0, R1 > 0, R2 > 0,

R3 > 0, R4 > 0, arbitrary matrices Q1, M such that LMIs (3.2.20)−(3.2.22) hold.

 P Q1

? Q2

 > 0 (3.2.20)

 R3 M

? R3

 > 0 (3.2.21)



Ξi
11 Ξij

12 Ξ13 Ξi
14 Ξi

15 ATi R̃ CT
i ΨT

1

? Ξ22 Ξ23 Ξ24 Ξij
25 K

T
j B

T
i R̃ KT

j D
T
i ΨT

1

? ? Ξ33 Ξ34 0 0 0

? ? ? Ξ44 Ξi
45 0 0

? ? ? ? Ξi
55 BT

wiR̃ DT
wiΨ

T
1

? ? ? ? ? −R̃ 0

? ? ? ? ? ? −I



< 0 (3.2.22)
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Gij =

 εP − CT
i ΦCi −CT

i ΦDiKj

? Gij22

 > 0 (3.2.23)

where

Gij22 =(1− ε)e−λhP −KT
j D

T
i ΦDiKj,Ξ

i
15 = PBwi − CT

i Ψ2

Ξij
25 =−KT

j D
T
i Ψ2,Ξ

i
45 = hQT

1Bwi,Ξ
i
55 = −Ψ3 −DT

wiΨ2 −Ψ2Dwi

and scalar ρ in De�nition 3.1 is de�ned as

ρ = −V (0)− eλh‖P‖ sup
−h≤σ≤0

‖ϕ(σ)‖2 (3.2.24)

Other notations are the same as de�ned in Theorem 3.1.

Proof: It is easy to obtain (3.2.7) by pre- and post-multiplying (3.2.22) with

 I4n 0 0 0

0 0 I2n 0


and its transpose. Then according to Theorem 3.1, system (3.1.6) with w(t) = 0

is exponentially stable.

Take the time derivative of V (t) along system (3.1.6), then it follows from (3.2.10)-

(3.2.13) that

V̇ (t)− eλtJ(t) ≤
r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))e
λtηT1 (t)Ξ̌ijη1(t) (3.2.25)

where

J(t) = zT (t)Ψ1z(t) + 2zT (t)Ψ2w(t) + wT (t)Ψ3w(t)

ηT1 (t) =

[
xT (t) xT (t−h(t)) xT (t−h)

1

h

∫ t

t−h
xT (s)ds wT (t)

]

53



3 Fuzzy sampled-data control for nonlinear systems

Ξ̌ij =



Ξi
11 Ξij

12 Ξ13 Ξi
14 Ξi

15

? Ξ22 Ξ23 Ξij
24 Ξij

25

? ? Ξ33 Ξ34 0

? ? ? Ξ44 hQ1Bwi

? ? ? ? Ξi
55


+



ATi

KT
j B

T
i

0

0

BT
wi


R̃



ATi

KT
j B

T
i

0

0

BT
wi



T

(3.2.26)

+



CT
i ΨT

1

KT
j D

T
i ΨT

1

0

0

DT
wiΨ

T
1





CT
i ΨT

1

KT
j D

T
i ΨT

1

0

0

DT
wiΨ

T
1



T

Applying Schur Complement to (3.2.22), one can obtain that Ξ̌ij < 0, which

means that

V̇ (t)− eλtJ(t) < 0 (3.2.27)

According to De�nition 1, we need to prove inequality (3.2.28) holds

∫ tf

0

J(t)dt− zT (t)Φz(t) ≥ ρ (3.2.28)

When ‖Φ‖ = 0, we need to prove∫ tf

0

J(t)dt ≥ ρ (3.2.29)

Integrating both sides of (3.2.27) yields∫ t

0

eλtJ(t)dt ≥ V (t)− V (0) (3.2.30)

From (3.2.8), we can obtain

V (0) +

∫ t

0

eλtJ(t)dt ≥ V (t) ≥ eλtxT (t)Px(t) ≥ 0 (3.2.31)
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If J(t) ≥ 0, then
∫ tf

0
J(t)dt ≥ −V (0) ≥ ρ. And if J(t) < 0, for any t ∈ [0, tf ],

eλt ≥ 1, it is easy to see that
∫ tf

0
J(t)dt ≥

∫ tf
0
eλtJ(t)dt ≥ −V (0) ≥ ρ. Then we

can conclude that (3.2.29) holds.

On the other hand, when ‖Φ‖ > 0, according to Assumption 1, it is required that

‖Ψ1‖+ ‖Ψ2‖ = 0 and ‖Dwi‖ = 0, which implies that Ψ1 = 0, Ψ2 = 0 and Ψ3 > 0.

Thus J(t) = wT (t)Ψ3w(t) ≥ 0. Then according to (3.2.31), inequality (3.2.32)

holds for any t ∈ [0, tf ].

eλtxT (t)Px(t) ≤ V (0) + eλt
∫ t

0

J(t)dt ≤ −eλtρ+ eλt
∫ tf

0

J(t)dt (3.2.32)

When t > h(t), it is clear that 0 < t− h(t) < tf . Then we have

eλ(t−h)xT (t−h(t))Px(t−h(t)) ≤−eλtρ+eλt
∫ t

0

J(t)dt (3.2.33)

When t < h(t), it is obvious that t − h(t) < 0 < tf . In this circumstance, it can

be veri�ed that

eλ(t−h)xT (t−h(t))Px(t−h(t)) ≤ eλ(t−h)‖P‖ sup
−h≤σ≤0

‖ϕ(σ)‖2 (3.2.34)

≤−eλtρ+eλt
∫ tf

0

J(t)dt

This, together with (3.2.32), (3.2.33) implies that for any t ∈ [0, tf ] and scalar

ε ∈ (0, 1), the following condition holds:

eλt
∫ tf

0

J(t)dt−eλtρ ≥ eλt
[
(1−ε)e−hxT (t−h(t))Px(t−h(t))+εxT (t)Px(t)

]
(3.2.35)

Recalling (3.1.6) with Dwi = 0, we have

zT (t)Φz(t) =−
r∑
i=1

r∑
j=1

hihj

 x(t)

x(t−h(t))

T Gij
 x(t)

x(t−h(t))

 (3.2.36)

+e−λh(1−ε)xT (t−h(t))Px(t−h(t))+εxT (t)Px(t)
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We can see that Gij > 0 from (3.2.23). Then

zT (t)Φz(t)≤(1−ε)e−λhxT (t−h(t))Px(t−h(t))+εxT (t)Px(t) (3.2.37)

Then according to (3.2.35), (3.2.37), inequality (3.2.28) holds for any tf ≥ 0. Tak-

ing the aforementioned discussion into consideration, we can draw the conclusion

that system (3.1.6) is extended dissipative.

In conclusion, system (3.1.6) is exponentially stable and can satisfy the prescribed

performance index-extended dissipative. This completes the proof. �

Remark 3.2 Similar to [68] and [83], Theorem 3.2 is applicable to aperiodic

sampled-data systems as long as the length between adjacent sampling instants

does not exceed the admissible sampling period h. Theorem 3.2 provides some suf-

�cient conditions that guarantee system (3.1.6) exponential stability and extended

dissipativity. The conditions in Theorem 3.2 are expressed in the form of LMIs,

which can be solved via standard software easily. By tuning the weighting matrices

Φ, Ψ1, Ψ2, Ψ3 as discussed in Remark 3.1, Theorem 3.2 can be used to check the

H∞ performance, L2 − L∞ performance, passivity and dissipativity, respectively.

Additionally, a newly developed integral inequality in Lemma 3.1, which involves

less decision variables is adopted in this chapter to reduce conservatism.

It is easy to tell that when the sub-controller gains Kj, j = 1, · · · , r are not

given in advance, conditions in Theorem 3.2 are nonconvex, which makes the

performance criteria cannot be directly extended to the controller design. In

what follows, we aim to give a controller design method for system (3.1.2), which

can guarantee system (3.1.6) is exponential extended dissipative. In the following

theorem, su�cient conditions for the existence of an exponential stabilization

fuzzy controller under aperiodic sampling measurements are developed based on

Theorem 3.2.
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Theorem 3.3 Given scalars 0 < ε < 1, 0 < κ < 1, λ > 0 and matrices Φ = ΦTΦ,

Ψ1 = −ΨT
1 Ψ1, Ψ2, Ψ3 satisfying Assumption 1, system (3.1.6) is exponentially

stable with a decay rate λ∗ = λ/2 and guarantees the new performance de�ned

in De�nition 3.1 for any admissible sampled-data period 0 < h, if there exist

symmetric positive matrices P , Q2, R1, R2, R3, R4, X, arbitrary matrices Q1,

M , Yj, such that LMIs (3.2.38)-(3.2.41) hold:

 P Q1

? Q2

 > 0 (3.2.38)

 R3 M

? R3

 > 0 (3.2.39)

Gij =


εP 0 XTCT

i ΦT

? (1− ε)e−λhP YjD
T
i ΦT

? ? I

 > 0 (3.2.40)



Ξi
11 Ξij

12 Ξ13 Ξ14 Ξi
15 Ξi

16 Ξi
17

? Ξ22 Ξ23 0 Ξij
25 Ξij

26 Ξij
27

? ? Ξ33 Ξ34 0 0 0

? ? ? Ξ44 0 hQT
1 0

? ? ? ? Ξi
55 β2B

T
wi DT

wiΨ
T
1

? ? ? ? ? Ξ66 0

? ? ? ? ? ? − I



< 0 (3.2.41)

where

Ξi
11 = λP+β1(AiL+LTATi )+Q1+QT

1 +eλh(R1+hR2)−2R4−R3−0.25(1−κ)R3π
2

Ξij
12 = β1BiYj + κ(R3 −M)l, Ξ13 = (1− κ)(1− 0.25π2)R3 + κM −Q1

Ξ14 = λhQ1 + hQ2 + 2R4 + 0.5(1− κ)π2R3, Ξi
15 = −β1Bwi − LTCT

i Ψ2,

Ξi
16 = P − β1L+ β2L

TATi , Ξi
17 = LTCT

i ΨT
1 , Ξ22 =−2κR3+κM+κMT

Ξ23 =κ(R3 −M), Ξij
25 = −Y T

j D
T
i Ψ2, Ξij

26 = β2Y
T
j B

T
i , Ξij

27 = Y T
j D

T
i ΨT

1
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Ξ33 =−R1 −R3 − 0.25(1− κ)π2R3, Ξ34 = −hQT
2 + 0.5(1− κ)π2R3

Ξ44 =λh2Q2 − hR2 − 2R4 − (1− κ)π2R3, Ξi
55 = −Ψ3 −DT

wiΨ2 −ΨT
2Dwi

Ξ66 =− β2(L+ LT ) +R, R =
heλh − h

λ
R3 +

eλh − hλ− 1

λ2
R4

Moreover, if the above LMIs have feasible solutions, the desired fuzzy sampled-data

controller can be obtained with parameters given by

Kj = YjL
−1 (3.2.42)

Proof: De�ne the following new matrix variables L = X−1, P1 = β1L, P2 =

β2L, P = LTPL,Q1 = LTQ1L,Q2 = LTQ2L,R1 = LTR1L,R2 = LTR2L,R3 =

LTR3L,R4 = LTR4L,M = LTML, Yj = KjL.

Then

 P Q1

? Q2

 = diag{LT LT}

 P Q1

? Q2

 diag{L L} > 0,

 R3 M

? R3

 =

diag{LT LT}

 R3 M

? R3

 diag{L L} > 0 which indicate that (3.2.38), (3.2.39)

hold. Noting that for any appropriate dimension matrices P1 and P2, the following

equation holds

r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))2e
λt
[
xT (t)P T

1 +ẋT (t)P T
2

]
[Aix(t)+BiKjx(t−h(t))+Bwiw(t)−ẋ(t)] = 0 (3.2.43)

Add (3.2.43) to V̇ (t). Then we have

V̇ (t) ≤
r∑
i=1

r∑
j=1

hi(θ(t))hj(θ(tk))η
T
1 (t)Ξ̂ijη1(t) ≤ c1‖η1(t)‖2

for some c1 > 0 if (3.2.44) holds.

Ξ̂ij < 0 (3.2.44)

where ηT1 (t) =
[
ηT1 (t) ẋT (t)

]
,
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Ξ̂ij =



Ξ̂i
11 Ξ̂ij

12 Ξ̂13 Ξ̂14 Ξ̂i
15 Ξ̂i

16

? Ξ̂22 Ξ̂23 0 Ξ̂ij
25 Ξ̂ij

26

? ? Ξ̂33 Ξ̂34 0 0

? ? ? Ξ̂44 0 hQT
1

? ? ? ? Ξ̂i
55 BT

wiP2

? ? ? ? ? Ξ̂66


,

Ξ̂i
11 = λP+[Q1]s+e

λh(R1+hR2)−2R4−R3−0.25(1−κ)R3π
2+P T

1 Ai+A
T
i P1−CT

i Ψ1Ci

Ξ̂ij
12 = P T

1 BiKj+κ(R3−M)−CT
i Ψ1DiKj, Ξ̂13 = −Q1+(1−κ)(1−0.25π2)R3+κM

Ξ̂14 = λhQ1+hQT
2 +2R4+0.5(1−κ)π2R3, Ξ̂22 = κ(M +MT − 2R3)−KT

j D
T
i Ψ1DiKj

Ξ̂23 =κ(R3 −M), Ξ̂33 = −R1 −R3 − 0.25(1− κ)π2R3

Ξ̂34 =− hQT
2 + 0.5(1− κ)π2R3, Ξ̂44 = λh2Q2 − hR2 − 2R4 − (1− κ)π2R3

Ξ̂i
16 =P−P T

1 +ATi P2, Ξ̂i
15 = P T

1 Bwi−CT
i Ψ2 − CT

i Ψ1Dwi

Ξ̂ij
26 =KT

j B
T
i P2, Ξ̂ij

25 = −KT
j D

T
i Ψ2 −−KT

j D
T
i Ψ1Dwi

Ξ̂i
55 =−Ψ3 −DT

wiΨ2 −ΨT
2Dwi −DT

wiΨ1Dwi, Ξ̂66 = R̃− P T
2 −P2

By applying Schur Complement to (3.2.44) under condition Ψ1 = −ΨT
1 Ψ1 and pre-

and post- multiplying the transformed inequation by diag{LT LT LT LT I LT I}

and its transpose respectively, (3.2.41) can be obtained. Perform congruence

transformation to (3.2.23) with diag{LT , LT} and its transpose gives the condition

in (3.2.45).

εP−CT
i ΦCi −CT

i ΦDiKj

? (1−ε)e−λhP−KT
j D

T
i ΦDiKj

 > 0 (3.2.45)

Apply Schur Complement to (3.2.45) with the condition Φ = ΦTΦ one can easily

obtain (3.2.40).

Therefore, according to Theorem 3.2, the designed sampled-data fuzzy controller

can exponentially stabilize system (3.1.6) and guarantee the prescribed extended

59



3 Fuzzy sampled-data control for nonlinear systems

dissipative performance. This completes the proof. �

Remark 3.3 Theorem 3.3 provides an approach to design a sampled-data fuzzy

controller so as to guarantee that system (3.1.6) is exponential extended dissipa-

tive. Besides, we can design the controllers by setting appropriate λ in advance

to achieve better performance. Moreover, the performance scalar γ is included

as a optimization parameter in the MI conditions in Theorem 3.3, which means

that we can optimize the attenuation level γ if the following convex optimization

problem has feasible solution:

Minimize γ subject to (3.2.38)-(3.2.41)

3.3 Application to uncertain suspension system

Here, an example of quarter-vehicle active suspension system with considering un-

certain payload and aperiodic sampling is considered. This example is provided

to evaluate the validity and superiority of the extended dissipative and exponen-

tial controller design approach proposed in this chapter over some ones of the

existing literatures. Comparison results are mainly conducted from the aspects of

disturbance attenuation level and closed-loop system dynamic performance.

Example 1: Consider the two-degree-of-freedom quarter vehicle model which is

shown in Fig.3.1 borrowed from [77]. The dynamic equation of the active suspen-

sion model is built as follows

mu(t)z̈u(t)+cs [żu(t)−żs(t)]+ks [zu(t)−zs(t)]

+kt [zu(t)− zr(t)] + ct [żu(t)− żr(t)] = −u(t) (3.3.1)

ms(t)z̈s(t)+cs [żs(t)−żu(t)]+ks [zs(t)−zu(t)]=u(t)

where

zs : sprung massed displacement;
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Fig. 3.1: Quarter vehicle model

zu : unsprung massed displacement;

zr : road displacement input;

cs : damping coe�cient of the suspension system;

ks : sti�ness coe�cient of the suspension system;

kt : compressibility coe�cient of the pneumatic tire;

ct : damping coe�cient of the pneumatic tire;

ms : sprung mass which represents the car chassis;

mu : unsprung mass of the wheel assembly;

u(t) : active input of the suspension system;

As a result of the payload change, vehicle mass cannot remain constant. Thus, the

quarter vehicle model is an uncertain system that contains uncertain parameters

ms(t) and mu(t). The uncertain parameter is supposed to vary in a given range,

which indicates that ms(t) ∈ [msmin, msmax] and mu(t) ∈ [mumin, mumax].

Consider the following performance constraints:

1. The suspension de�ection is no larger than a maximum value constrained
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by mechanical structure.

‖zs(t)− zu(t)‖ ≤ zmax (3.3.2)

2. The dynamic tire load should not exceed the static tire load to guarantee

that the wheels contact the road uninterruptedly.

kt(zu(t)− zr(t)) < (ms(t) +mu(t))g (3.3.3)

The following controlled outputs are de�ned to achieve the aforementioned per-

formance constraints

z1(t) = z̈s(t),

z2(t) =

[
zs(t)− zu(t)

zmax

kt(zu(t)− zr(t))
(ms(t) +mu(t))g

]T
De�ne x1(t) = zs(t) − zu(t), which represents the suspension de�ection, x2(t) =

zu(t)− zr(t), which denotes the tire de�ection, x3(t) = żs(t), which is the sprung

mass speed, x4(t) = żu(t), which is the unsprung mass speed, and ω(t) = żr(t),

which is the disturbance input. Then system dynamical equation (3.3.1) is rewrit-

ten in the state space form:
ẋ(t) = A(t)x(t) +B(t)u(t) +Bw(t)ω(t)

z1(t) = C1(t)x(t) +D1(t)u(t)

z2(t) = C2(t)x(t)

(3.3.4)

where

A(t) =



0 0 1 − 1

0 0 0 1

− ks
ms(t)

0 − cs
ms(t)

cs
ms(t)

ks
mu(t)

− kt
mu(t)

cs
mu(t)

− cs+ct
mu(t)


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3.3 Application to uncertain suspension system

B(t) =



0

0

1
ms(t)

− 1
mu(t)


, Bw(t) =



0

−1

0

ct
mu(t)


C1(t) =

[
− ks
ms(t)

0 − cs
ms(t)

cs
ms(t)

]
, D1(t) =

1

ms(t)

C2(t) =

 1
zmax

0 0 0

0 kt
(ms(t)+mu(t))g

0 0


Similar to [140] and [77], the T-S fuzzy model of the quarter vehicle system can

be derived as follows: de�ne ξ1(t) = 1
ms(t)

, ξ2(t) = 1
mu(t)

. Since ms(t) and mu(t)

are bounded, then we have

m̂s , max ξ1(t) =
1

msmin

, m̌s , min ξ1(t) =
1

msmax

m̂u , max ξ2(t) =
1

mumin

, m̌u , min ξ2(t) =
1

mumax

By employing the sector nonlinear method, premise variables ξ1(t) and ξ2(t) can

be represented by ξ1(t) = M1(ξ1(t))m̂s + M2(ξ1(t))m̌s, ξ2(t) = N1(ξ2(t))m̂u +

N2(ξ2(t))m̌u where

M1(ξ1(t)) +M2(ξ1(t)) = 1, N1(ξ2(t)) +N2(ξ2(t)) = 1

The membership functions M1(ξ1(t)), M2(ξ1(t)), N1(ξ2(t)), N2(ξ2(t)) can be cal-

culated as follows

M1(ξ1(t)) =

1
ms(t)

− m̌s

m̂s − m̌s

, M2(ξ1(t)) =
m̂s − 1

ms(t)

m̂s − m̌s

N1(ξ2(t)) =

1
mu(t)

− m̌u

m̂u − m̌u

, N2(ξ2(t)) =
m̂u − 1

mu(t)

m̂u − m̌u

These membership functions are named as "Heavy" (M1(ξ1(t))), "Light" (M2(ξ1(t))),

"Heavy" (N1(ξ2(t))) and "Light" (N1(ξ2(t))), respectively. Following the similar
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3 Fuzzy sampled-data control for nonlinear systems

line in [77], we can obtain the T-S fuzzy model of the active suspension system:

Model Rule 1: IF ξ1(t) is Light and ξ2(t) is Light, Then

ẋ(t) = A1x(t) +B1u(t) +Bw1ω(t)

z1(t) = C11x(t) +D11u(t)

z2(t) = C21x(t)

Replace 1
ms(t)

and 1
mu(t)

with m̂s and m̂u in matrices A(t), B(t), Bw(t), C1(t),

D1(t), C2(t), we can obtain matrices A1, B1, Bw1, C11, D11, C21.

Model Rule 2: IF ξ1(t) is Heavy and ξ2(t) is Heavy, Then

ẋ(t) = A2x(t) +B2u(t) +Bw2ω(t)

z1(t) = C12x(t) +D12u(t)

z2(t) = C22x(t)

Replace 1
ms(t)

and 1
mu(t)

with m̌s and m̌u in matrices A(t), B(t), Bw(t), C1(t),

D1(t), C2(t), we can obtain matrices A2, B2, Bw2, C12, D12, C22.

Model Rule 3: IF ξ1(t) is Light and ξ2(t) is Heavy, Then

ẋ(t) = A3x(t) +B3u(t) +Bw3ω(t)

z1(t) = C13x(t) +D13u(t)

z2(t) = C23x(t)

Replace 1
ms(t)

and 1
mu(t)

with m̂s and m̌u in matrices A(t), B(t), Bw(t), C1(t),

D1(t), C2(t), we can obtain matrices A3, B3, Bw3, C13, D13, C23.

Model Rule 4: IF ξ1(t) is Heavy and ξ2(t) is Light, Then

ẋ(t) = A4x(t) +B4u(t) +Bw4ω(t)

z1(t) = C14x(t) +D14u(t)
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3.3 Application to uncertain suspension system

z2(t) = C24x(t)

Replace 1
ms(t)

and 1
mu(t)

with m̌s and m̂u in matrices A(t), B(t), Bw(t), C1(t),

D1(t), C2(t), we can obtain matrices A4, B4, Bw4, C14, D14, C24.

By fuzzy blending, we can obtain the following overall fuzzy model



ẋ(t) =
r∑
i=1

hi(ξ(t)) [Aix(t) +Biu(t) +Bwiω(t)]

z1(t) =
r∑
i=1

hi(ξ(t)) [C1ix(t) +D1iu(t)]

z2(t) =
r∑
i=1

hi(ξ(t))C2ix(t)

(3.3.5)

where ξ(t) = {ξ1(t), ξ2(t)},

h1(ξ(t)) = M1(ξ1(t))×N1(ξ2(t)), h2(ξ(t)) = M2(ξ1(t))×N2(ξ2(t)),

h3(ξ(t)) = M1(ξ1(t))×N2(ξ2(t)), h4(ξ(t)) = M2(ξ1(t))×N1(ξ2(t)),

The membership functions hi(ξ(t)), i = 1, 2, · · · , r, represent the degree of uncer-

tain parameter ms(t) and mu(t) in the fuzzy set {Heavy, Light}, i.e., how heavy

or how light the unsprung and sprung mass are at current moment.

Remark 3.4 In general there are two approaches for constructing fuzzy models:

1). Identi�cation (fuzzy modeling) using input-output data; 2). Derivation from

given nonlinear system equations.

The identi�cation approach to fuzzy modeling is suitable for plants that are unable

or too di�cult to be represented by analytical and/or physical models. On the other

hand, nonlinear dynamic models for mechanical systems can be readily obtained by,

for example, the Lagrange method and the Newton-Euler method. In such cases,

the second approach, which derives a fuzzy model from given nonlinear dynamical

models, is more appropriate. There are two ways to convert a given nonlinear

dynamical system into a fuzzy model: sector nonlinearity and local approximation
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3 Fuzzy sampled-data control for nonlinear systems

in fuzzy partition spaces. The fuzzy model builded by sector nonlinearity method

exactly represents the original nonlinear system in given conditions. However,

the latter is just an approximation fuzzy model, which can reduce the number

of fuzzy model rules. In this chapter, the sector nonlinear method is adopted

to construct the uncertain active suspension system by T-S fuzzy model. More

detailed information on fuzzy modeling can be referenced to [88].

Based on the above T-S fuzzy model of uncertain active suspension system, we

aim at designing a sampled-data PDC fuzzy controller in the form of (3.1.5). By

employing the input delay approach, closed-loop T-S fuzzy sampled-data system

can be easily rewritten as the form of (3.2.3).

To satisfy the performance constraints (3.3.2) and (3.3.3), the following condition

should be taken into consideration [77]:

 −P √
ρP{C2i}Tq

? − I

 < 0, q = 1, 2 (3.3.6)

where {C2i}Tq denotes the qth row vector of CT
2i.

The corresponding quarter-vehicle model parameters are given in Table 3.1.

Table 3.1: Parameters for Quarter-vehicle Model

ks kt cs ct
42720N/m 101115N/m 1095Ns/m 14.6Ns/m

The sprung mass ms(t) ∈ [950kg, 996kg], and the unsprung mass mu(t) ∈

[110kg, 118kg]. The maximum allowable suspension stroke is set as zmax = 0.1m

with ρ = 1. To compare with the recently developed fuzzy H∞ sampled-data

control method, only the H∞ sampled-data controller design is considered in this

chapter. We consider di�erent h to �nd the minimum index γ. In Theorem 3.3,

let λ? = 0.1(i.e.λ = 0.2), ρ1 = 0.9, ρ2 = 0.4, ε = 0.5, κ = 0.99, Φ = 0, Ψ1 = −1,
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3.3 Application to uncertain suspension system

Table 3.2: Comparison of Minimum Disturbance Attenuation Index γ Obtained
by [77] and Theorem 3.3

h 1ms 5ms 10ms 20ms 30ms
[77] 21.65 21.98 22.43 23.40 24.51

Theorem 3.3 10.58 11 11.66 14.25 21.84

Ψ2 = 0, Ψ3 = γ2, for several values of h, the obtained minimum H∞ disturbance

attenuation performance indices γmin are listed in Table 3.2.

It is worth noting that the guaranteed performance index γmin obtained by the

convex optimization problem formulated in Theorem 3.3 has much to do with the

sampling period. The guaranteed performance index γmin under di�erent sampling

periods derived from Theorem 3.3 are listed in Table 3.2, from which we can see

that γmin is larger as the sampling periods increases. Moreover, it can be clearly

seen from Table 3.2 that the minimum H∞ disturbance attenuation levels γmin

obtained by our approach are smaller than those obtained in [77]. Fig.3.2 shows

control inputs with di�erent sampling period h.

（N）

Fig. 3.2: Control inputs under di�erent sampling period h
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3 Fuzzy sampled-data control for nonlinear systems

Remark 3.5 In [77],2 + r matrices variables are involved, and the number of

LMIs is (r2 + r + 4)/2 (where r is the number of fuzzy if-then rules), the largest

dimension of LMIs is 3n+m+v, where m is the dimension of control input and v

is the dimension of measurement output. While Theorem 3 contains 9+r matrices

variables, r2 + r+ 7 LMIs and the largest dimension of LMIs is 5n+m+ v. And

the computational time of our method is 2.6404s(when h = 30ms, λ∗ = 0.1. All

simulations were performed using SeDuMi [141] and YALMIP [142] with MAT-

LAB 2013b on an Athlon (3.20 GHz), 4 GB RAM , running Windows 7.), which

is tolerable and acceptable. On the other hand, in [77]only the H∞ control problem

is investigated for the uncertain suspension system. However, in this chapter, the

H∞, L2−L∞, passive and dissipative control problems for T-S fuzzy sampled-data

systems can be solved successfully under the uni�ed framework of extended dis-

sipative control, instead of addressing these control problems in a separate way,

which is a most important distinction between the work being undertaken and the

existing literatures [74, 75, 77�80, 82, 83]. This can allow us to choose a suitable

control strategy by adjusting the weighting matrices in the new performance index

according to the practical applications or noise levels. What is more, the desired

dynamic performance of closed-loop sampled-data system is guaranteed through

setting an exponential decay rate in advance for arbitrary admissible sampling pe-

riod. In addition,a new integral inequality in 3.1 is adopted instead of Jensen's

inequality in this chapter to derive LMI based conditions, which is conductive to

less conservative results.

To further verify the e�ectiveness of the controller design method proposed in this

chapter, consider the case of an isolated bump on a smooth road surface [43, 77].

Road displacement zr(t) is de�ned as follows

zr(t) =


A
2
(1− cos(2πV

L
t)), 0 ≤ t ≤ L

V

0, t > L
V

(3.3.7)

where the height and length of the bump are A = 50mm and L = 6m and
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3.3 Application to uncertain suspension system

V = 35(km/h). The designed state-feedback fuzzy sampled-data controller in the

form of (3.1.5) is expected to meet the following requirements: 1) minimize the

sprung mass acceleration z1(t); 2) the suspension de�ection is no larger than the

upper bound of suspension stroke zmax = 0.1m, which is equivalent to z2(t)1 < 1;

3 ) the dynamic tire load , i.e., z2(t)2 is less than 1.

State-feedback fuzzy sampled-data controller gains under di�erent decay rates λ∗

are given in Table 3.3.

Table 3.3: Controller feedback gains for h = 10ms and di�erent values of decay
rate λ∗

λ∗ The Controller Gains
K1 = 104 × [1.9594 0.8610 − 0.2692 0.3360]

λ∗ = 0.05 K2 = 104 × [1.9399 1.1792 − 0.2972 0.3577]
K3 = 104 × [1.9402 1.1758 − 0.2961 0.3566]
K4 = 104 × [1.9384 0.8140 − 0.2755 0.3317]
K1 = 104 × [2.0069 1.0657 − 0.2780 0.3228]

λ∗ = 0.25 K2 = 104 × [2.0130 1.4524 − 0.3011 0.3494]
K3 = 104 × [2.0134 1.4481 − 0.3000 0.3484]
K4 = 104 × [2.0070 1.0694 − 0.2790 0.3238]
K1 = 104 × [2.0789 1.2658 − 0.2764 0.2935]

λ∗ = 0.50 K2 = 104 × [2.0915 1.6658 − 0.2991 0.3180]
K3 = 104 × [2.0914 1.6629 − 0.2982 0.3173]
K4 = 104 × [2.0793 1.2694 − 0.2772 0.2943]
K1 = 104 × [2.1256 1.0969 − 0.2434 0.2480]

λ∗ = 0.75 K2 = 104 × [2.1429 1.4748 − 0.2636 0.2690]
K3 = 104 × [2.1419 1.4724 − 0.2630 0.2683]
K4 = 104 × [2.1266 1.0995 − 0.2441 0.2487]

Fig.3.3-Fig.3.5 depict the responses of the open-loop system (u(t) = 0, passive

mode) and the sampled-data closed-loop system, which is composed by the con-

troller we designed in previous section. These �gures show the bump responses of

body accelerations, suspension de�ection, and tire de�ection of the active suspen-

sion system under di�erent decay rates λ∗, when the maximum sampling interval

is chosen as h = 10 ms. From Fig.3.3, one can observe that the body acceleration

of the closed loop system is much less than that of the open loop system, thus

the designed fuzzy sampled-data controller improves the ride comfort. Moreover,
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Fig. 3.3: Body acceleration of the open and closed-loop active suspension systems
with di�erent decay rate λ∗ (h=10 ms)
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ent decay rate λ∗ (h=10 ms)
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Fig. 3.5: Tire de�ection of the open and
closed-loop active suspension
systems with di�erent decay
rate λ∗ (h=10 ms)

it can be seen from Fig.3.4 and Fig.3.5 that the suspension de�ection constraint,

which is equivalent to x1(t)/zmax < 1 and the dynamic tire load constraint i.e.

ktx2(t)/(ms(t) + mu(t))g < 1 are satis�ed, which implies that the designed con-

troller guarantees the road holding capability. In a word, Fig.3.3-Fig.3.5 validate

that better ride comfort, road holding capability can be achieved and constraint

suspension de�ection can be guaranteed for the active suspension system with

the designed sampled-data controller. In addition, one can easily see that better

performance can be achieved when the decay rate λ∗ is su�ciently bigger.

Fig.3.6-Fig.3.8 depict the responses of body accelerations, constrained suspension
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de�ection, and constrained tire de�ection of the active suspension system under

di�erent sampling periods h when decay rate λ∗ = 0.5. We can see that the

smaller sampling period h is, the better body acceleration, suspension de�ection

and tire de�ection performance can be achieved, which in turn veri�es the results

in Table 3.2.
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Fig. 3.6: Body acceleration under di�erent sampling period h
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3.4 Conclusion

This chapter has addressed the exponential stability analysis and stabilization

problems for T-S fuzzy systems under aperiodic sampling. Some classical prob-

lems (such as H∞, L2 − L∞, passive and dissipative stability and stabilization
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problems) have been solved successfully under a uni�ed framework by resorting

to a novel performance index−extended dissipative performance index. Through

adopting a sampling period dependent Lyapunov-Krasovskii function together

with a novel e�cient integral inequality, which has the advantages of reducing

conservativeness, new stability conditions consisting of both exponential stabil-

ity and extended dissipativity criterion have been established. Furthermore, a

sampled-data controller that cannot only exponentially stabilize the system but

also guarantee the prescribed extended-dissipativity performance has been de-

signed. A quarter-vehicle active suspension system with taking into account the

uncertain payload and aperiodic sampling has been provided for evaluating the

validity and superiority (from the aspects of disturbance attenuation level and

closed-loop system dynamic performance) of the extended dissipative control ap-

proach proposed in this thesis over some ones of the existing literatures.
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Chapter 4

Imperfect premise matching fuzzy

�ltering of nonlinear system with

time-varying delays

Fuzzy sampled-data controller designed in the previous chapter shares the same

fuzzy membership functions with fuzzy model. Compared with fuzzy controller or

�lter with matched premise variables, controller and �lter designed under imper-

fect premise matching can enhance design �exibility and robustness. So imperfect

premise matching fuzzy �ltering problem for nonlinear systems with time-varying

delay is considered in this chapter. Firstly, T-S fuzzy time-varying delay model

and fuzzy �lter with imperfect premise variables are established. Then the uni-

�ed performance index, which covers H∞, L2 − L∞, passive and dissipative per-

formance as special cases, is introduced. Furthermore, new extended dissipative

�lter design approach based on the above uni�ed performance for the considered

fuzzy time delay system is developed through employing the Lyapunov stability

theory together with an e�cient integral inequality. As a result, the extended

dissipative �lter can be designed in terms of solutions to a set of convex optimiza-

tion problems. Finally, two examples are provided to verify the e�ectiveness and

advantages of the extended dissipative �lter design approach based on the uni�ed

performance index proposed in this chapter.

The rest of this chapter is organized as follows: the problem to be analyzed and the

uni�ed performance index are presented in Section 4.1. Main results, including
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4 Imperfect premise matching fuzzy �ltering of nonlinear system with time-varying delays

�lter performance criterion and �lter design approach are given in Section 4.2.

Numerical examples are shown in Section 4.3 to demonstrate the e�ectiveness

and advantages of the proposed method. Conclusion is drawn in Section 4.4.

4.1 Problem formulation and preliminaries

Consider the following time-delay T-S fuzzy model with r plant rules:

� Plant Rule i: IF θ1(t) is Mi1 and θ2(t) is Mi2 and · · · and θp(t) is Mip, THEN

ẋ(t) = A1ix(t) + A2ix(t− τ(t)) +D1iω(t)

z(t) = C1ix(t) + C2ix(t− τ(t)) +D2iω(t)

y(t) = E1ix(t) + E2ix(t− τ(t)) +D3iω(t)

x(t) = φ(t), t ∈ [−τ , 0],

(4.1.1)

where θj(t) and Mij (i = 1, · · · , r, j = 1, · · · , p) are the premise variables (which

are measurable) and the fuzzy sets respectively, r is the number of fuzzy IF-

THEN rules, p is a positive integer. x(t) ∈ Rn is the state vector and ω(t) ∈ Rq

is the disturbance input; z(t) ∈ Rv is the signal to be estimated; y(t) ∈ Rm is

the measured output; A1i, A2i, D1i, C1i, C2i, D2i, E1i, E2i and D3i are known

constant matrices of compatible dimensions; τ(t) is time-varying delay, which

satis�es 0 < τ(t) ≤ τ , where τ > 0 is a known constant scalar; φ(t) is a continuous

vector-valued initial function on [−τ , 0].

By fuzzy blending, the overall fuzzy system can be inferred as follows:

ẋ(t)=
r∑
i=1

hi(θ(t)) [A1ix(t)+A2ix(t−τ(t))+D1iω(t)]

z(t)=
r∑
i=1

hi(θ(t)) [C1ix(t)+C2ix(t−τ(t))+D2iω(t)]

y(t)=
r∑
i=1

hi(θ(t)) [E1ix(t)+E2ix(t−τ(t))+D3iω(t)]

x(t)=φ(t), t ∈ [−τ , 0]

(4.1.2)
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where hi(θ(t)) = ωi(θ(t))/
∑r

i=1ωi(θ(t)), ωi(θ(t)) =
∏p

j=1Mij(θj(t)). ωi(θ(t)) ≥ 0,

i = 1, 2, · · · , r hold for all t. Therefore, we have hi(θ(t)) ≥ 0, i = 1, 2, · · · , r,∑r
i=1hi(θ(t)) = 1.

For system (4.1.2), consider a full order fuzzy �lter with r rules taking the following

form:

� Filter Rule j: IF η1(t) is Nj1 and η2(t) is Nj2 and · · · and ηp(t) is Njp, THENẋf (t) = Afjxf (t) +Bfjy(t)

zf (t) = Cfjxf (t)
(4.1.3)

where Njβ, j=1, 2, · · ·, r, β = 1, 2, · · ·, p, denote the fuzzy sets. Afj, Bfj and Cfj,

j=1, 2, · · ·, r, are �lter parameters to be designed. Thus the overall fuzzy �lter

system is represented by the following form:

ẋf (t) =
r∑
j=1

mj(η(t)) [Afjxf (t) +Bfjy(t)]

zf (t) =
r∑
j=1

mj(η(t))Cfjxf (t)

xf (t) = xf (0), t ∈ [−τ , 0]

(4.1.4)

where mj(η(t)) ≥ 0, j = 1, · · ·, r,
∑r

j=1mj(η(t)) = 1. For simple description, we

denote hi(θ(t)) = hi and mj(η(t)) = mj in the rest of this chapter.

De�ne an augmented state vector ξ(t) = [xT (t) xTf (t)]T and a �ltering error vector

e(t) = z(t)− zf (t), one can easily obtain the following �ltering error system:

ξ̇(t)=
r∑
i=1

r∑
j=1

himj[A1ijξ(t)+A2ijξ(t−τ(t))+D1ijω(t)]

e(t)=
r∑
i=1

r∑
j=1

himj[C1ijξ(t)+C2ijξ(t−τ(t))+D2ijω(t)]

ϕ(t)=[φT (t) xTf (0)]T , t ∈ [−τ , 0]

(4.1.5)

where

A1ij =

 A1i 0

BfjE1i Afj

 , A2ij =

 A2i 0

BfjE2i 0

 , D1ij =

 D1i

BfjD3i

 ,
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C1ij =
[

C1i −Cfj
]
, C2ij =

[
C2i 0

]
, D2ij = D2i.

Before ending this section, the following assumption, de�nition and lemma, which

will be useful to develop the main results in sequel, are introduced.

Lemma 4.1 [109] For any matrices Z ∈ Rn×n and R1 ∈ Rn×n satisfying

R1 Z

? R1

 ≥
0, and given scalars 0 < κ < 1 and c ≤ b < a, if there exists a vector function

x : [c, a] → Rn such that the integrations in the following inequality are well

de�ned, then

−(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα ≤ υT (t)∆υ(t)

where υT (t) =
[
xT (a) xT (b) xT (c) 1

a−c

∫ a
c
xT (α)dα

]
,

∆=



∆11 κ(R1−Z) ∆13 0.5(1−κ)π2R1

? ∆22 κ(R1 − Z) 0

? ? −R1−0.25(1−κ)R1π
2 0.5(1−κ)π2R1

? ? ? − (1−κ)π2R1


(4.1.6)

where

∆11 =−R1−0.25(1−κ)R1π
2,

∆13 =(1−κ)(1−0.25π2)R1+κZ,

∆22 =κ(−2R1+Z+ZT ).

Remark 4.1 In fact, Lemma 4.1 is a convex combination of the following two

integral inequalities for any k ∈ [0, 1],

−(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα

=− k(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα− (1− k)(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα (4.1.7)
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Then according to [143,144], we have:

− k(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα

≤


x(a)

x(b)

x(c)


T 
−kR1 k(R1 − Z) kG

? −2kR1 + kZ + kZT k(R1 − Z)

? ? −kR1



x(a)

x(b)

x(c)

 (4.1.8)

− (1− k)(a− c)
∫ a

c

ẋT (α)R1ẋ(α)dα

≤−(1−k)ηT (t)


(0.25π2+1)R1 0 (0.25π2−1)R1 −0.5π2R1

? 0 0 0

? ? (0.25π2+1)R1 −0.5π2R1

? ? ? π2R1

 η(t) (4.1.9)

where c ≤ b ≤ a and ηT (t) = [xT (a) xT (b) xT (c) 1
a−c

∫ a
c
xT (s)ds]T . Then according

to (4.1.7)-(4.1.9), we can get Lemma 2.1. Details of the proof can be referenced

in [109]. Parameter k represents the weights of inequality (4.1.8) and (4.1.9).

A general way to select k is to �nd an optimal k along the decreasing direction

of disturbance attenuation performance level γ for a given initial value (e.g. k =

0.5, inequality (4.1.8) plays the same role as inequality (4.1.9)). Certainly, the

obtained k may be a locally optimal parameter. In order to obtain a globally

optimal parameter, conducting global search is necessary.

Lemma 4.2 [138] For any constant matrix Σ = ΣT and a scalar τ > 0, then the

following inequalities hold:

−
∫ t

t−τ
xT (s)Σx(s)ds ≤ −1

τ

(∫ t

t−τ
xT (s)ds

)
Σ

(∫ t

t−τ
x(s)ds

)
(4.1.10)

−
∫ 0

−τ

∫ t

t+θ

ẋT (s)Σẋ(s)ds ≤ − 2

τ 2

(∫ 0

−τ

∫ t

t+θ

ẋT (s)ds

)
Σ

(∫ 0

−τ

∫ t

t+θ

ẋ(s)ds

)
= − 2

τ 2

[
τx(t)−

∫ t

t−τ
x(s)ds

]T
Σ

[
τx(t)−

∫ t

t−τ
x(s)ds

]
(4.1.11)
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Assumption 4.1 [84] For given real matrices Φ = ΦT ≥ 0, Ψ1 = ΨT
1 ≤ 0, Ψ2

and Ψ3 = ΨT
3 satisfy the following conditions, ∀i, j ∈ {1, 2 , · · · , r}:

1) ‖D2ij‖ · ‖Φ‖ = 0;

2) (‖Ψ1‖+ ‖Ψ2‖)‖Φ‖ = 0;

3) DT
2ijΨ1D2ij +DT

2ijΨ2 + ΨT
2D2ij + Ψ3 > 0.

De�nition 4.1 [84] For given matrices Φ, Ψ1, Ψ2 and Ψ3 satisfying Assumption

1, system (4.1.5) can guarantee the prescribed H∞, L2−L∞, passive and dissipative

performance if there exits a scalar ρ such that the following inequality holds for

any tf ≥ 0 and all w(t) ∈ L2[0, ∞)

∫ tf

0

J(t)dt ≥ eT (t)Φe(t) + ρ, t ∈ [0, tf ] (4.1.12)

where J(t) = eT (t)Ψ1e(t) + 2eT (t)Ψ2w(t) + wT (t)Ψ3w(t).

Remark 4.2 In Assumption 1, Φ = ΦT ,Ψ1 = ΨT
1 ,Ψ3 = ΨT

3 guarantee that the

inequality in De�nition 1 is well de�ned. Φ ≥ 0,Ψ1 ≤ 0 are conducive to deriving

MI-based conditions for the �lter design problem in Theorem 4.2 and Corollary

4.1. Item 3) is a standard condition for the investigation of dissipativity problem.

Assumptions similar to these items have been used in [145,146]. It is well known

that, when considering the L2 − L∞ performance, there should not be disturbance

input in output equation [147], which can be guaranteed by item 1) in Assumption

1. The second term is technically necessary for the development of our analysis

and design method. The only limitation is that when considering the H∞, L2−L∞,

passivity and dissipativity performance, zero initial condition is required, which is

a common assumption in performance analysis problem, see [82,148,149].

Remark 4.3 The left-hand side of inequality (4.1.12) is often regarded as the

energy supply function. The extended dissipative �lter for fuzzy delay system is

more general than other �lter performance indices, such as H∞, L2−L∞, passive

and dissipative performances. For instance,

78



4.1 Problem formulation and preliminaries

1) Let Φ = 0, Ψ1 = −I, Ψ2 = 0, Ψ3 = γ2I and ρ = 0, inequality (4.1.12)

reduces to H∞ performance [93];

2) Let Φ = I, Ψ1 = 0, Ψ2 = 0, Ψ3 = γ2I and ρ = 0, inequality (4.1.12) becomes

L2 − L∞ (energy-to-peak) performance considered in [98]

3) If the dimension of output z(t) is the same as that of disturbance w(t), then

inequality (4.1.12) with Φ = 0, Ψ1 = 0, Ψ2 = I, Ψ3 = γI and ρ = 0 become

the passivity performance index [150];

4) Let Φ = 0, Ψ1 = Q, Ψ2 = S, Ψ3 = R − αI and ρ = 0, inequality (4.1.12)

reduces to the strict (Q,S,R)-dissipativity [151];

5) Let Φ = 0, Ψ1 = −εI, Ψ2 = I, Ψ3 = −σI with ε > 0 and σ > 0, the

inequality (4.1.12) becomes the very-strict passivity performance index.

In the de�nition of very-strict passivity, scalar ρ is not required to be zero. It

was shown in [139] that ρ should be a non-positive scalar. This fact can also be

veri�ed from Assumption 1 and De�nition 1. Indeed, when w(t) = 0, it follows

from (4.1.12) that

ρ ≤
∫ tf

0

eT (t)Ψ1e(t)dt− eT (t)Φe(t), t ∈ [0, tf ]

Note from Assumption 1 that Φ ≥ 0 and Ψ1 ≤ 0. Thus, the above inequality

indicates that ρ ≤ 0.

The problems to be addressed in this chapter are formulated as follows:

1) The �ltering error system (4.1.5) with w(t) = 0 is asymptotically stable;

2) The �ltering error system (4.1.5) guarantees the uni�ed performance index

proposed in (4.1.12) for all nonzero w(t) ∈ L2[0, ∞).
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4.2 Main Results on fuzzy �lter design

In this section, the extended dissipative �lter design issue for time-varying delay

fuzzy systems will be considered. We �rst present a performance criterion for the

�ltering error system (4.1.5) where the �lter matrices in (4.1.4) are assumed to be

given.

Theorem 4.1 Given scalars 0 < ε < 1, 0 < κ < 1, τ > 0 and matrices Φ, Ψ1,

Ψ2, Ψ3 satisfying Assumption 1, the �ltering error system (4.1.5) is asymptotically

stable and satis�es the performance index in De�nition 4.1 for any admissible

time-varying delay 0 < τ(t) ≤ τ under condition mj − λjhj ≥ 0, (0 < λj < 1), if

there exist matrices P > 0, Q1 > 0, R1 > 0, R2 > 0, R3 > 0, G > 0, arbitrary

matrices Λi, Z and , Li, i = 1, · · · , 5 such that the following conditions hold,

∀i, j ∈ {1, 2 , · · · , r}:
G− P < 0 (4.2.1) R1 Z

? R1

 > 0 (4.2.2)

Gij =

 εG− CT
1ijΦC1ij −CT

1ijΦC2ij

? (1− ε)G− CT
2ijΦC2ij

 > 0 (4.2.3)

Ξij − Λi < 0 (4.2.4)

λiΞii − λiΛi + Λi < 0 (4.2.5)

λjΞij − λiΞji − λjΛi − λiΛj + Λi + Λj < 0, i < j (4.2.6)

where

Ξij =



Ξij
11 Ξij

12 Ξij
13 Ξij

14 Ξij
15 Ξij

16

? Ξij
22 Ξij

23 AT2ijL
T
4 −L2 + AT2ijL

T
5 Ξij

26

? ? Ξ33 Ξ34 −L3 L3D1ij

? ? ? Ξ44 −L4 L4D1ij

? ? ? ? Ξ55 L5D1ij

? ? ? ? ? Ξij
66


(4.2.7)
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Ξij
11 = Q1 + τR2 −R1 − 0.25(1− κ)R1π

2 − 2R3 + L1A1ij + AT1ijL
T
1 − CT

1ijΨ1C1ij

Ξij
12 = κ(R1 − Z) + L1A2ij + AT1ijL

T
2 − CT

1ijΨ1C2ij

Ξij
13 = (1− κ)(1− 0.25π2)R1 + κZ + AT1ijL

T
3

Ξij
14 = 0.5(1− κ)R1π

2 + 2R3 + AT1ijL
T
4 , Ξij

15 = P − L1 + AT1ijL
T
5

Ξij
22 = κ(−2R1 + Z + ZT ) + L2A2ij + AT2ijL

T
2 − CT

2ijΨ1C2ij

Ξij
23 = κ(R1 − Z) + AT2ijL

T
3 , Ξ33 = −Q1 −R1 − 0.25(1− κ)R1π

2

Ξ34 = 0.5(1− κ)R1π
2, Ξ44 = −(1− κ)R1π

2 − τR2 − 2R3

Ξ55 = τ 2R1 +
τ 2

2
R3 − L5 − LT5 , Ξij

16 = L1D1ij − CT
1ijΨ1D2ij − CT

1ijΨ2

Ξij
26 = L2D1ij − CT

2ijΨ1D2ij − CT
2ijΨ2

Ξij
66 = −DT

2ijΨ1D2ij −DT
2ijΨ2 −ΨT

2D2ij −Ψ3

In this case, scalar ρ involved in De�nition 1 can be chosen as

ρ = −V (0)− ‖G‖ sup
−τ≤σ≤0

|ϕ(σ)|2 (4.2.8)

Proof: Consider the following Lyapunov-Krasovskii functional:

V (t, ξ(t)) =V1(t, ξ(t)) + V2(t, ξ(t)) (4.2.9)

where

V1(t, ξ(t)) =ξT (t)Pξ(t) +

∫ t

t−τ
ξT (s)Q1ξ(s)ds

V2(t, ξ(t)) =τ

∫ 0

−τ

∫ t

t+θ

ξ̇T (s)R1ξ̇(s)dsdθ +

∫ 0

−τ

∫ t

t+θ

ξT (s)R2ξ(s)dsdθ

+

∫ 0

−τ

∫ 0

θ

∫ t

t+β

ξ̇T (α)R3ξ̇(α)dαdβdθ

P , Q1, R1, R2 and R3 are symmetric positive de�nite matrices. Then the time

derivative of V (t, ξ(t)) along the trajectories of system (4.1.5) can be expressed
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as:

V̇ (t, ξ(t)) =V̇1(t, ξ(t)) + V̇2(t, ξ(t))

V̇1(t, ξ(t)) =2ξT (t)P
∑r

i=1

∑r

j=1
himj[A1ijξ(t) + A2ijξ(t− τ(t)) +D1ijω(t)]

+ ξT (t)Q1ξ(t)− ξT (t− τ)Q1ξ(t− τ)

V̇2(t, ξ(t)) =τ 2ξ̇T (t)R1ξ̇(t)−τ
∫ t

t−τ
ξ̇T (s)R1ξ̇(s)ds+τξT (t)R2ξ(t) +

τ 2

2
ξ̇T (t)R3ξ̇(t)

−
∫ t

t−τ
ξT (s)R2ξ(s)ds−

∫ 0

−τ

∫ t

t+θ

ξ̇T (s)R3ξ̇(s)dsdθ

Recalling and applying Lemma 4.1 under condition (4.2.2), we have

−τ
∫ t

t−τ
ξ̇T (α)R1ξ̇(α)dα ≤ ζT (t)Γζ(t)

where ζT (t)=
[
ξT (t) ξT (t−τ(t)) ξT (t−τ) 1

τ

∫ t
t−τ ξ

T (s)ds ξ̇T (t) ωT (t)
]
.

Γ=



Γ11 Γ12 Γ13 0.5(1−κ)π2R1 0 0

? Γ22 κ(R1−Z) 0 0 0

? ? −R1−0.25(1−κ)π2R1 0.5(1−κ)π2R1 0 0

? ? ? −(1−κ)π2R1 0 0

? ? ? ? 0 0

? ? ? ? ? 0


(4.2.10)

Γ11 =−R1−0.25(1−κ)R1π
2,Γ12 = κ(R1−Z),

Γ13 =(1−κ)(1−0.25π2)R1 + κZ,Γ22 = κ(−2R1+Z+ZT ).

By Lemma 4.2,

−
∫ t

t−τ
ξT (s)R2ξ(s)ds ≤ −

1

τ

(∫ t

t−τ
ξT (s)ds

)
R2

(∫ t

t−τ
ξ(s)ds

)
−
∫ 0

−τ

∫ t

t+θ

ξ̇T (s)R3ξ̇(s)dsdθ ≤ −
2

τ 2

(∫ 0

−τ

∫ t

t+θ

ξ̇T (s)dsdθ

)
R3

(∫ 0

−τ

∫ t

t+θ

ξ̇(s)dsdθ

)
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= − 2

τ 2

[
τξ(t)−

∫ t

t−τ
ξ(s)ds

]T
R3

[
τξ(t)−

∫ t

t−τ
ξ(s)ds

]

By considering the dynamic constraint of system (4.1.5), we have the following

equation

2βT (t)L

[
r∑
i=1

r∑
j=1

himj

(
A1ijξ(t)+A2ijξ(t−τ(t))+D1ijω(t)

)
− ξ̇(t)

]
= 0 (4.2.11)

where βT (t) =
[
ξT (t) ξT (t− τ(t)) ξT (t− τ) 1

τ

∫ t
t−τ ξ

T (s)ds ξ̇T (t)
]
and LT =[

LT1 LT2 LT3 LT4 LT5
]
. Add (4.2.11) to the right side of V̇ (t, ξ(t)), we can have

V̇ (t, ξ(t))− J(t) ≤ ζT (t)

(
r∑
i=1

r∑
j=1

himjΞij

)
ζ(t) (4.2.12)

where

J(t) = eT (t)Ψ1e(t) + 2eT (t)Ψ2w(t) + wT (t)Ψ3w(t) (4.2.13)

It can be seen from (4.2.12) that if
∑r

i=1

∑r
j=1himjΞij < 0, then V̇ (t, ξ(t))−J(t) <

0. Consider
∑r

i=1

∑r
j=1hi(hj − mjΛi) = 0, where Λi = ΛT

i , i = 1, · · · , r are

arbitrary matrices with appropriate dimensions. Then we have

r∑
i=1

r∑
j=1

himjΞij =
r∑
i=1

r∑
j=1

hi(hj −mj + λjhj − λjhj)Λi +
r∑
i=1

r∑
j=1

himjΞij

=
r∑
i=1

r∑
i=1

h2
i (λiΞii − λiΛi+Λi) +

r−1∑
i=1

r∑
j=i+1

hihj(λjΞij−λjΛi

+Λi+λiΞji−λiΛj+Λj)+
r∑
i=1

r∑
j=1

hi(mj−λjhj)(Ξij−Λi)

Under the condition of mj − λjhj ≥ 0 for all j, it is easy to obtain (4.2.14) from

inequalities (4.2.4)-(4.2.6).

V̇ (t, ξ(t))− J(t) ≤ ζT (t)

(
r∑
i=1

r∑
j=1

himjΞij

)
ζ(t) < 0 (4.2.14)

Then, there always exists a su�ciently small scalar c > 0, such that (4.2.15)
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holds.

V̇ (t, ξ(t))− J(t) ≤ −c | ζ(t) |2≤ −c | ξ(t) |2 (4.2.15)

According to De�nition 1, we need to prove that the following inequality holds

for any matrices Φ, Ψ1, Ψ2, Ψ3 satisfying Assumption 1:

∫ tf

0

J(t)dt− eT (t)Φe(t) ≥ ρ (4.2.16)

where tf is any nonnegative scalar. We consider the following two cases of ‖Φ‖ = 0

and ‖Φ‖ 6= 0, respectively.

First, consider the case of ‖Φ‖ = 0. When ‖Φ‖ = 0, we need to prove

∫ tf

0

J(t)dt ≥ ρ (4.2.17)

It follows from (4.2.15) that J(t)− V̇ (t, ξ(t)) ≥ 0 holds for any t > 0. Integrating

both sides of it yields

∫ t

0

J(tv)dtv ≥ V (t, ξ(t))− V (0) (4.2.18)

From (4.2.9) and (4.2.1), we can obtain

V (t, ξ(t)) ≥ ξT (t)Pξ(t) ≥ ξT (t)Gξ(t) ≥ 0 (4.2.19)

Notice from (4.2.8) that ρ ≤ −V (0). Thus it follows from (4.2.18) and (4.2.19)

that ∫ tf

0

J(tv)dtv ≥ ξT (tf )Gξ(tf ) + ρ (4.2.20)

Thus, it is obvious that (4.2.17) holds.

For another case of ‖Φ‖ 6= 0, under Assumption 1, it is required that ‖Ψ1‖ +

‖Ψ2‖ = 0 and ‖D2ij‖ = 0, which imply Ψ1 = 0, Ψ2 = 0 and Ψ3 > 0. Thus,

J(t) = wT (t)Ψ3w(t) ≥ 0. Then according to (4.2.20), the following inequality
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holds for any t ∈ [0, tf ].∫ tf

0

J(tv)dtv ≥
∫ t

0

J(tv)dtv ≥ ξT (t)Gξ(t) + ρ (4.2.21)

When t > τ(t), it is obvious that 0 < t− τ(t) < tf . Thus it follows from (4.2.21)

that

∫ tf

0

J(tv)dtv≥
∫ t−τ(t)

0

J(tv)dtv≥ξT (t−τ(t))Gξ(t−τ(t))+ρ (4.2.22)

When t < τ(t), it gives that −τ ≤ −τ(t) ≤ t− τ(t) < 0. In this circumstance, it

can be veri�ed that

ρ+ξT (t−τ(t))Gξ(t−τ(t)) ≤ ρ+‖G‖ |ξ(t−τ(t))|2

≤ ρ+‖G‖ sup
−τ≤σ≤0

|φ(σ)|2 (4.2.23)

= −V (0) ≤
∫ tf

0

J(tv)dtv

This, together with (4.2.22), indicates that for any t ∈ [0, tf ] and scalar ε ∈ (0, 1),

(4.2.24) holds:∫ tf

0

J(tv)dtv ≥ (1− ε)ξT (t− τ(t))Gξ(t− τ(t)) + εξT (t)Gξ(t) + ρ (4.2.24)

Recalling (4.1.5) with D2ij = 0, we have

eT (t)Φe(t) =
r∑
i=1

r∑
j=1

himj

{
−

 ξ(t)

ξ(t− τ(t))

T Gij
 ξ(t)

ξ(t− τ(t))


+ (1− ε)ξT (t−τ(t))Gξ(t−τ(t)) + εξT (t)Gξ(t)

}
(4.2.25)

where Gij is de�ned in (4.2.3) and Gij > 0. Then for any t > 0,

eT (t)Φe(t)≤(1−ε)ξT (t−τ(t))Gξ(t−τ(t))+εξT (t)Gξ(t) (4.2.26)
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(4.2.24) and (4.2.26) imply that for any t ∈ [0, tf ] the following inequality holds:∫ tf

0

J(tv)dtv ≥ eT (t)Φe(t) + ρ (4.2.27)

Since (4.2.27) holds for any t ∈ [0, tf ] . Then (4.2.16) holds for any tf ≥ 0. In view

of the two cases of ‖Φ‖ = 0 and ‖Φ‖ 6= 0 discussed above, one can easily obtain

the conclusion that system (4.1.5) is extended dissipative according to De�nition

1. When w(t) ≡ 0, it follows from (4.2.15) that

V̇ (t, ξ(t)) ≤ eT (t)Ψ1e(t)− c|ξ(t)|2 (4.2.28)

Moreover, Ψ1 ≤ 0 under Assumption 1, then we have V̇ (t) ≤ −c|ξ(t)|2, which

indicates that �ltering error system (4.1.5) is asymptotically stable with w(t) ≡ 0.

This completes the proof. �

Remark 4.4 Theorem 4.1 provides a performance criterion for the �ltering error

system (4.1.5) with given �lter matrices. The performance criteria in Theorem 4.1

are expressed in the form of linear matrix inequalities (LMIs), which can be eas-

ily solved via standard software. It is easy to get that ρ = 0 under zero initial

condition from (4.2.8). By tuning the weighting matrices Φ, Ψ1, Ψ2, Ψ3 as dis-

cussed in Remark 4.3, Theorem 4.1 can be used to check the H∞ performance,

L2 − L∞ performance, passivity and dissipativity, respectively. Additionally, the

terms −
∫ t
t−τξ

T (s)R2ξ(s)ds and −
∫ 0

−τ

∫ t
t+θ
ξ̇T (s)R3ξ̇(s)dsdθ in the derivative of the

Lyapunov-Krasovskii functional were ignored in [84], but are made full use of in

condition (4.2.4), (4.2.5) and (4.2.6) of Theorem 4.1. This improvement can

contribute to less conservativeness.

Moreover, it should be pointed out that some existing results [84,93�95] require in-

formation of the derivative of τ(t) to design �lters. In this study, such requirement

is removed since the derivative of delay is usually unknown in practical complex

nonlinear systems.
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4.2 Main Results on fuzzy �lter design

Remark 4.5 Compared with the perfectly matched premise fuzzy �lter design

method in [91, 152, 153], the method proposed in Theorem 4.1 can enhance de-

sign �exibility and lower the implementation cost of the fuzzy �lter to some extent

when simple membership functions are used instead of complicated ones. Free

matrices Λi, i = 1, 2, · · · , r. are introduced in the design of �lter for fuzzy delay

system to alleviate the conservativeness, which we will discuss later in Example

1. The condition mj − λjhj ≥ 0, (0 < λj < 1) presents a simple description of

relationship between system membership function hj and �lter membership func-

tion mj. For convenient of developing the �lter analysis and design method, the

parameter λj is technically limited in 0 < λj < 1. In practice, we can always

�nd simple membership functions satisfying this condition. When parameter λj

approaches near 1, �lter membership function mj is more closely approximated to

the system membership function hj.

It is worth pointing out that if the �lter matrices are not given in advance, con-

ditions in Theorem 4.1 are nonconvex, which makes the performance criteria can

not be directly extended to the �lter design. By employing the convex lineariza-

tion technique, we are in a position to develop extended dissipative �lter design

approach for fuzzy time-delay system (4.1.2) based on the performance criteria of

Theorem 4.1. Recalling Assumption 1 and noticing that Φ ≥ 0 and Ψ1 ≤ 0, there

always exist matrices Φ and Ψ1 such that

Φ = ΦTΦ, Ψ1 = −ΨT
1 Ψ1. (4.2.29)

Under imperfect premise matching, the extended dissipative �lter design approach

for fuzzy time-delay system (4.1.2) is stated as follows.

Theorem 4.2 Given scalars 0 < ε < 1, 0 < κ < 1, τ > 0, li, i = 1, · · · , 5, fuzzy

�lter error system is asymptotically stable and satis�es the extended dissipative

performance for any time-varying delay 0 < τ(t) ≤ τ under condition mj−λjhj ≥

0, (0 < λj < 1), if there exist matrices X > 0, Y > 0, Q1 > 0, R1 > 0, R2 > 0,
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4 Imperfect premise matching fuzzy �ltering of nonlinear system with time-varying delays

R3 > 0, G > 0, L, Λi, Z, Afj, Bfj and Cfj such that the following conditions

hold, ∀i, j ∈ {1, 2 , · · · , r}:
G− P < 0 (4.2.30) R1 Z

? R1

 > 0 (4.2.31)

Gij =


εG 0 Υ4ijΦ

T

? (1− ε)G Υ5ijΦ
T

? ? I

 > 0 (4.2.32)

Ξij − Λi < 0 (4.2.33)

λiΞii − λiΛi + Λi < 0 (4.2.34)

λjΞij−λiΞji−λjΛi−λiΛj+Λi+Λj < 0, i < j (4.2.35)

Ξij =



Ξij11 Ξij12 Ξij13 Ξij14 Ξij15 l1Υ3ij −Υ4ijΨ2 Υ4ijΨ
T
1

? Ξij22 Ξij23 l4ΥT
2ij −l2L+ l5ΥT

2ij l2Υ3ij −Υ5iΨ2 Υ5iΨ
T
1

? ? Ξ33 Ξ34 −l3L l3Υ3ij 0

? ? ? Ξ44 −l4L l4Υ3ij 0

? ? ? ? Ξ55 l5Υ3ij 0

? ? ? ? ? Ξij66 D2ijΨ
T
1

? ? ? ? ? ? −I


(4.2.36)

Ξij
11 = Q1 + τR2 −R1 − 0.25(1− κ)R1π

2 − 2R3 + l1Υ1ij + l1ΥT
1ij

Ξij
12 = κ(R1 − Z) + l1Υ2ij + l2ΥT

1ij,Ξ
ij
13 = (1− κ)(1− 0.25π2)R1 + κZ + l3ΥT

1ij

Ξij
14 = 0.5(1− κ)R1π

2 + 2R3 + l4ΥT
1ij,Ξ

ij
15 = P − l1L+ l5ΥT

1ij

Ξij
22 = κ(−2R1 + Z + ZT ) + l2Υ2ij + l2ΥT

2ij,Ξ
ij
23 = κ(R1 − Z) + l3ΥT

2ij

Ξ33 = −Q1 −R1 − 0.25(1− κ)R1π
2Ξ34 = 0.5(1− κ)R1π

2

Ξ44 = −(1− κ)R1π
2 − τR2 − 2R3,Ξ55 = τ 2R1 +

τ 2

2
R3 − l5L− l5LT

Ξij
66 =−DT

2ijΨ2−ΨT
2D2ij−Ψ3

Υ1ij =

 XA1i +BfjE1i Afj

Y A1i +BfjE1i Afj

 ,Υ2ij =

 XA2i +BfjE2i 0

Y A2i +BfjE2i 0

 ,
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4.2 Main Results on fuzzy �lter design

L =

 X Y

? Y

 ,Υ3ij =

 XD1i +BfjD3i

Y D1i +BfjD3i

 ,Υ4ij =

 CT
1i

CT
fj

 ,Υ5i =

 CT
2i

0


Moreover, if above LMIs have feasible solutions, the desired delay dependent �lter

is obtained with parameters given by
Afj = Y −1Afj

Bfj = Y −1Bfj

Cfj = Cfj.

(4.2.37)

Proof: From inequality (4.2.14), we can obtain that

Ξij < 0 (4.2.38)

Under the condition of Ψ1 = −ΨT
1 Ψ1, applying Schur Complement to (4.2.38)

yields Ξ̃ij < 0, which is de�ned in (4.2.39):

Ξ̃ij =



Ξ̃ij11 Ξ̃ij12 Ξ̃ij13 Ξ̃ij14 Ξ̃ij15 L1D1ij − CT1ijΨ2 CT1ijΨ
T
1

? Ξ̃ij22 Ξ̃ij23 AT2ijL
T
4 −L2+AT2ijL

T
5 L2D1ij − CT2ijΨ2 CT2ijΨ

T
1

? ? Ξ̃33 Ξ̃34 −L3 L3D1ij 0

? ? ? Ξ̃44 −L4 L4D1ij 0

? ? ? ? Ξ̃55 L5D1ij 0

? ? ? ? ? Ξij66 D2ijΨ
T
1

? ? ? ? ? ? −I


(4.2.39)

where

Ξ̃ij
11 = Q1 + τR2 −R1 − 0.25(1− κ)R1π

2 − 2R3 + L1A1ij + AT1ijL
T
1

Ξ̃ij
12 = κ(R1−Z)+L1A2ij+A

T
1ijL

T
2 , Ξ̃

ij
13 = (1− κ)(1− 0.25π2)R1 + κZ + AT1ijL

T
3

Ξ̃ij
14 = 0.5(1− κ)R1π

2 + 2R3 + AT1ijL
T
4 , Ξ̃

ij
15 = P − L1 + AT1ijL

T
5

Ξ̃ij
22 = κ(−2R1 + Z + ZT ) + L2A2ij + AT2ijL

T
2 , Ξ̃

ij
23 = κ(R1 − Z) + AT2ijL

T
3

Ξ̃33 = −Q1 −R1 − 0.25(1− κ)R1π
2, Ξ̃34 = 0.5(1− κ)R1π

2

Ξ̃44 = −(1− κ)R1π
2 − τR2 − 2R3, Ξ̃55 = τ 2R1 +

τ 2

2
R3 − L5 − LT5
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4 Imperfect premise matching fuzzy �ltering of nonlinear system with time-varying delays

Let Li = liL, partition L as L =

X S

ST W

. Then de�ne H =

I 0

0SW−1

 , Y =

SW−1ST , Afj = SAfjW
−1ST , Bfj = SBfj, Cfj = CfjW

−1ST . Replacing Ξij

and Λi with Ξ̃ij and Λ̃i in inequalities (4.2.4)-(4.2.6), where Λ̃i is an arbitrary

matrix with appropriate dimensions, these inequalities still hold. After replacing

Ξij and Λi with Ξ̃ij and Λ̃i, then pre- and post- multiplying these inequalities by

diag{H, H, H, H, H, I, I} and its transpose with change of matrix variables

de�ned by: Λi=diag{H, H, H, H, H, I, I}Λidiag{H, H, H, H, H, I, I}T , G=

HGHT , Q1 =HQ1H
T , R1 =HR1H

T , R2 =HR2H
T , R3 =HR3H

T , Z=HZHT , P =

HPHT . One can easily get (4.2.33)-(4.2.35). By Schur Complement with the con-

dition Φ = ΦTΦ it can be seen from (4.2.3) that

G̃ij =


εG 0 CT

1ijΦ
T

? (1− ε)G CT
2ijΦ

T

? ? I

 > 0 (4.2.40)

Then, perform congruence transformation to (4.2.40) with diag{H, H, I} and

its transpose gives the condition in (4.2.32). Therefore, if inequalities (4.2.30)-

(4.2.35) in Theorem 4.2 hold, the �ltering error system (4.1.5) is asymptotically

stable and extended dissipative with the �lter parameters given as follows:

Afj = S−1AfjS
−TW, Bfj = S−1Bfj, Cfj = CfjS

−TW.

Or equivalently under transformation S−TWx(t), the �lter parameters can be

yielded as:

Afj = S−TW (S−1AfjS
−TW )W−1ST = Y −1Afj,

Bfj = S−TW (S−1Bfj) = Y −1Bfj,

Cfj = (CfjS
−TW )W−1ST = Cfj.

This completes the proof. �
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Remark 4.6 In terms of LMIs, Theorem 4.2 provides su�cient conditions for the

design of a delay-dependent �lter so as to guarantee that the �ltering error system

is extended dissipative. It is worth noting that the conditions in Theorem 4.2 are

LMIs not only over the matrix variables, but also over the matrix Ψ3. In De�nition

4.1, Ψ3 = γ2I for H∞ and L2 − L∞ �ltering problem, Ψ3 = γI, for passivity

�ltering problem, respectively, which imply that the scalar γ, γ2 can be included

as optimization variable to obtain optimal attenuation level γ for H∞, L2 − L∞,

passivity �ltering problems, and can be readily obtained by solving the following

convex optimization problem:

Minimize γ or γ2 subject to (4.2.30)-(4.2.35)

In Theorem 4.2, let Λi = 0, λi = 0, i = 1, 2, · · · , r, we can easily obtain the

following corollary related to �lter design for fuzzy delay systems with matched

membership functions.

Corollary 4.1 Given scalars 0 < ε < 1, 0 < κ < 1, τ > 0, li, i = 1, · · · , 5, and

matrices Φ, Ψ1, Ψ2, Ψ3 satisfying (4.2.29) and Assumption 1, system (4.1.5) is

asymptotically stable and satis�es the uni�ed performance index in De�nition 1

for any time-varying delay 0 < τ(t) ≤ τ , if there exist matrices X > 0, Y > 0,

Q1 > 0, R1 > 0, R2 > 0, R3 > 0, G > 0, L, Z, Afj, Bfj and Cfj such that the

following conditions hold, ∀i, j ∈ {1, 2 , · · · , r}:

G− P < 0 (4.2.41) R1 Z

? R1

 > 0 (4.2.42)

Gij =


εG 0 Υ4ijΦ

T

? (1− ε)G Υ5ijΦ
T

? ? I

 > 0 (4.2.43)

Ξij < 0 (4.2.44)
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Moreover, if above LMIs have feasible solutions, the desired delay dependent �lter

is obtained with parameters given by
Afj = Y −1Afj

Bfj = Y −1Bfj

Cfj = Cfj.

(4.2.45)

Other notations are the same as de�ned in Theorem 4.2.

Remark 4.7 In general, if the premise variable of the original fuzzy model θ(t)

is available, we can use the information of θ(t) to construct simple �lter mem-

bership functions instead of complicated ones. Then, fuzzy �lter with imperfect

premise variables can be implemented based the obtained simple �lter member-

ship functions. For the case of T-S fuzzy system with unmeasurable parameters

or uncertain parameters, a simple and e�ective solution is to construct a model-

independent �lter. Due to the fact that the fuzzy-rule-independent �lter ignores

the fuzzy rule, it has more conservativeness than the fuzzy-rule-dependent one.

Until present, some approaches have been developed well to deal with the fuzzy-

rule-dependent �lter design problems of T-S fuzzy system with unmeasurable pa-

rameters (unmeasurable premise variables) or uncertain parameters, such as un-

certain system approach [154] and switching �ltering approach [155]. On the other

side, implementation of the fuzzy-rule-dependent �lter is more complex than that

of fuzzy-rule-independent �lter. Thus, how to reduce the implementation cost of

the fuzzy-rule-dependent �ltering, and simultaneously obtain low conservativeness

for T-S fuzzy system with unmeasurable parameters or uncertain parameters by

resorting to the imperfect premise matching method are interesting and challeng-

ing issues. Whereas it is not investigated in the present chapter due to the space

limitation.
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4.3 Simulation results

4.3 Simulation results

In this section, two examples are given to verify the e�ectiveness and less conser-

vativeness of the method proposed in this chapter.

Example 1: Consider T-S fuzzy system (4.1.2) with two plant rules(r = 2) bor-

rowed from [93], the parameters are as followings:

 A11 A21 D11

A12 A22 D12

 =


−2.1 0.1 −1.1 0.1 1

1 −2 −0.2 −1.1 −0.2

−1.9 0 −0.9 0 −0.3

−0.2 −1.1 −1.1 −1.2 0.1

 ,
 C11 C21 D21

C12 C22 D22

 =

 1 −0.5 0.1 0 0

0.5 −0.6 −0.2 1 0.1

 ,
 E11 E21 D31

E12 E22 D32

 =

 1 0 −0.8 0.6 0.3

−0.2 0.3 0 0.2 −0.6

 .
Membership functions for Rule 1 and Rule 2 are given as follows:

h1(x1(t)) = 1− 1

1 + e−3(x1(t)+π
2

)

(
1− 1

1 + e−3(x1(t)−π
2

)

)
, h2(x1(t))=1−h1(x1(t)),

m1(x1(t)) = 1− 0.96e
−x1(t)

2

2×1.62 , m2(x1(t))=1−m1(x1(t)).

Remark 4.8 An easy way to choose the membership function for the fuzzy �lter is

to �nd some simple membership functions whose pro�les are similar to the system

membership function. It only requires some simple trial processes to determine the

�lter membership functions that satisfy the unmatched condition mj − λjhj ≥ 0,

(0 < λj < 1) while preserving performance of the �lter.

The fuzzy �lter, designed according to Theorem 4.2, can satisfy the prescribed
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4 Imperfect premise matching fuzzy �ltering of nonlinear system with time-varying delays

H∞, L2 − L∞, passive and dissipative performances. Due to limited space, only

H∞ performance is considered in this example.

To compare with the recently developed fuzzy H∞ �lter, set λ1 = 0.6, λ2 = 0.9,

ε = 0.5, κ = 0.9, Φ = 0, Ψ1 = −1, Ψ2 = 0, Ψ3 = γ2, τ = 0.8 in Theorem 4.2, the

comparison results of minimum γmin are listed in Table 4.1.

Table 4.1: Comparison of Minimum index γ in Example 1

Ref. [94] [93] [106] Th. 4.2 Cor 4.1
γ 0.35 0.22 0.32 0.22 0.23

Number of Variables 11r+5 42r2+8r+11 5r+9 4r+9 3r+9

It can be clearly seen that the minimum disturbance attenuation level γmin ob-

tained by our approach is smaller than those obtained in Ref. [94](δ = 20) and

Ref. [106]. Although Theorem 4.2 in this chapter and Ref. [93] obtain the same

minimum γ, Theorem 4.2 in this chapter involves 4r+ 9 decision variables, which

are signi�cantly fewer than 42r2 +8r+11 decision variables contained in Ref. [93].

The simulation results in Table.4.1 demonstrate that the �lter design approach

proposed in this chapter is less conservativeness or more computational e�ciency

or both than those in Ref. [94], Ref. [106], Ref. [93] and Corollary 4.1. It is

worth pointing out that the minimum attenuation level γ obtained by Theorem

4.2 is smaller than that obtained by Corollary 4.1, which veri�es that imperfect

premise �lter can reduce conservativeness.

When τ = 0.8, we obtain a desired delay-dependent H∞ fuzzy �lter in the form

of (4.1.4) with the following �lter parameters

Af1Bf1

Af2Bf2

 =


−4.3031−5.3024 −2.4623

−0.2069−4.3285 0.1056

−5.3295−1.9101 −1.5309

−1.8154−3.4272 0.0347

 ,
[
Cf1Cf2

]
=
[
−0.259 0.1335 −0.0026−0.8033

]
.
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4.3 Simulation results

Fig. 4.1 depicts the responses of z(t) and zf (t), and Fig. 4.2 shows the error

response of z(t)-zf (t).

0 5 10 15 20
t(s)

0.5

0.0

0.5

1.0

1.5
zf(t)

z(t)

Fig. 4.1: Responses of z(t) and zf (t)
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t(s)

0.5

0.0

0.5
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Fig. 4.2: Response of �ltering error sig-
nal e(t) = z(t)− zf (t)

Example 2: To further illustrate the e�ectiveness of the �lter design method

proposed in this chapter, we apply Theorem 4.2 to the continuous stirred tank

reactor (CSTR) system borrowed from Ref. [156]. The system parameters and

membership functions are given as follows:

A11 =

−1.427 0.076

1.375 −1.635

 , A12 =

−2.051 0.396

−5.343 0.724

 , A13 =

 −4.528 0.317

−20.759 −0.105

 ,
A21 = A22 = A23 =

0.25 0

0 0.25

 , D11 = D12 = D13 =

−0.5

1


C11 = C12 = C13 =

[
5 2

]
, C21 = C22 = C23 =

[
0 0

]
, D21 = D22 = D23 = 0

E11 = E12 = E13 =
[

0 1
]
, E21 = E22 = E23 =

[
0 0

]
, D31 = D32 = D33 = 1

h1(x1(t)) =

1− 1
1+e−4x1(t)+6 , x1(t) ≤ 2.7520

0, x1(t) > 2.7520

h2(x1(t)) =

1− h1(x1(t)), x1(t) ≤ 2.7520

1− h3(x1(t)), x1(t) > 2.7520
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h3(x1(t)) =

0, x1(t) ≤ 2.7520

1
1+e−4x1(t)+8 , x1(t) > 2.7520

m1(x1(t)) =


1, x1(t) ≤ 0.8882

1− x1(t)−0.8882
2.7520−0.8882

, 0.8882 < x1(t) ≤ 2.7520

0, x1(t) > 2.7520

m2(x1(t)) =

1−m1(x1(t)), x1(t) ≤ 2.7520

1−m3(x1(t)), x1(t) > 2.7520

m3(x1(t)) =


0, x1(t) ≤ 2.7520

x1(t)−2.7520
4.7052−2.7520

, 2.7520 < x1(t) ≤ 4.7052

1, x1(t) > 4.7052

Now similar to Example 1, we use the �lter design approach proposed in this

chapter to design a L2 − L∞ �lter for the above fuzzy CSTR system. By using

standard Matlab software, let λ1 = 0.75, λ2 = 0.5, ε = 0.6, κ = 0.9, τ = 0.3,

Φ = 1, Ψ1 = 0, Ψ2 = 0, Ψ3 = γ2, we can see that LMIs (4.2.30)-(4.2.35) in

Theorem 4.2 are feasible. Then we can obtain that γmin = 2.24, and the desired

L2 − L∞ �lter parameters are given as follows:

Af1 Bf1

Cf1

 =


−1.2237 −0.0197 −0.1147

1.6904 −3.0930 −1.6765

−4.8763 −1.9885


Af2 Bf2

Cf2

 =


−1.6641 0.2504 −0.1155

−2.7217 −1.2159 −1.6759

−4.8763 −1.9885


Af3 Bf3

Cf3

 =


−4.2883 0.3143 −0.1180

−20.8035 −0.8783 −1.6734

−4.8763 −1.9885


In simulation, the disturbance input is de�ned as w(t) = 1

2+t
, t ≥ 0. The initial

condition of the system (4.1.2) is x(0) = [−1 0.2]T and the initial condition of
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4.4 Conclusion

the corresponding �lter system is xf (0) = [0 0]T . Fig.4.3 depicts the system state

x(t) and �lter state xf (t). Fig.4.4 shows the response of �ltering error signal e(t),

which shows that the �ltering error �nally reduces to zero. From these simulation

0 20 40 60 80 100
t(s)

1.0

0.5

0.0

0.5
x(t)

xf(t)

Fig. 4.3: Responses of system state x(t)
and �lter state xf (t)

0 20 40 60 80 100
t(s)

0.5

0.5

1.5

2.5
e(t)

Fig. 4.4: Response of �ltering error sig-
nal ~ e(t) = z(t)− zf (t)

results, it can be seen that the �lter design approach proposed in Theorem 4.2

can provide an accurate estimation of the desired signal in presence of external

noise w(t) and the designed L2 − L∞ �lter satis�es the speci�ed requirements.

The above results indicate again that the delay-dependent �lter design method

proposed in this chapter is e�ective.

4.4 Conclusion

This chapter focuses on extended dissipative �lter design problem for fuzzy sys-

tems with time-varying delay under imperfect premise matching. Based on ex-

tended dissipative performance index, the H∞, L2 − L∞, passive and dissipative

�lter problems have been investigated. New delay-dependent conditions for per-

formance analysis and �lter design have been established in terms of LMIs by em-

ploying an e�cient integral inequality. Finally, some numerical simulation results

speci�c to H∞ and L2−L∞ �ltering problems have been provided to demonstrate

the advantages of the method proposed in this chapter over some recent ones in

the literature.
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Chapter 5

Analysis and optimization of fuzzy

membership functions with a fre-

quency domain method

Although fuzzy control with imperfect premise matching can enhance design �exi-

bility and reduce conservativeness, it also brings di�culty to parameters selection

of membership functions. NCOS function based mismatched fuzzy membership

function parameter optimization problems are studied in this chapter. In this

chapter, �nite frequency H∞ controller design method for T-S fuzzy-model-based

control system under imperfect premise matching is �rst given. Then to fur-

ther improve the disturbance attenuation performance of the concerned frequency

band, parameter optimization method of mismatched controller membership func-

tion based on the nCOS function is presented. GA is also given to verify the

validity of the nCOS function based optimization method.

The novelty and contribution of this study lie in several aspects. (a) It is the �rst

time that a frequency domain method is used for the analysis and optimization of

Gaussian membership functions under imperfect premise matching control and to

this aim a novel systematic frequency domain method for calculating the nCOS

function of such a fuzzy system with nonlinear Gaussian membership function

is developed; (b) The new nCOS function can greatly facilitate optimization of

the mismatched membership parameters and gives an in-depth understanding

of nonlinear in�uence on system performance due to membership function; (c)
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5.1 System description and problem formulation

Comparison results indicate that the disturbance suppression capability of the

fuzzy controller is further enhanced by combining the �nite frequency H∞ control

with the nCOS function based frequency domain optimization method.

The rest of the chapter is organized as follows: system description and problem

formulation are given in section 5.1. Fuzzy controller design with mismatched

membership function is given in section 5.2. nCOS function based optimization

algorithm and GA optimization method are also presented in section 5.2. Appli-

cations of the method proposed in this chapter to nonlinear systems are given in

Section 5.3. Conclusions are drawn in Section 5.4.

5.1 System description and problem formulation

In this section, T-S fuzzy model of nonlinear system and fuzzy controller with

mismatched membership functions will be established.

Consider the following nonlinear system

ẋ(t) = F1(x(t), u(t), ω(t))

z(t) = F2(x(t), u(t), ω(t))
(5.1.1)

where F1(x(t), u(t), ω(t)) and F2(x(t), u(t), ω(t)) are nonlinear functions, x(t) ∈

Rn is the system state vector, ω(t) ∈ Rω is the disturbance input, u(t) ∈ Rm is

the control input, and z(t) ∈ Rz is the controlled output. It is well known that

any smooth nonlinear systems can be approximated by a T-S fuzzy model [88],

then nonlinear system (5.1.1) can be expressed in the following form

Plant Rule i: IF θ1(t) is µi1 and θ2(t) is µi2 and · · · and θp(t) is µip, THENẋ(t) = Aix(t) +Biu(t) +Bωiω(t)

z(t) = Cix(t) +Diu(t)
(5.1.2)

where µi1, µi2, · · · , µip are fuzzy sets, Ai, Bi, Bωi , Ci and Di are constant matrices
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

with compatible dimensions, θ(t) = [θ1(t), θ2(t), · · ·, θp(t)] is the premise variable

vector, and r is the number of fuzzy IF-THEN rules, i = 1, 2, · · · , r. Throughout

this thesis, it is assumed that the premise variables only depend on the system

state x(t). So the overall fuzzy system is inferred as follows


ẋ(t)=

r∑
i=1

hi(θ(t)) [Aix(t)+Biu(t)+Bωiω(t)]

z(t)=
r∑
i=1

hi(θ(t)) [Cix(t) +Diu(t)]

(5.1.3)

where hi(θ(t)) ≥ 0,
∑r

i=1hi(θ(t)) = 1.

In this section, we consider a fuzzy controller that shares di�erent premise vari-

ables with the fuzzy system, which is in the following structure:

Controller Rule j: IF η1(t) isNj1 and η2(t) isNj2 and · · · and ηp(t) isNjp, THEN

u(t) = Kjx(t), (5.1.4)

where j = 1, 2, · · · , r. The output of the mismatched fuzzy controller can be

represented by the following form:

u(t) =
r∑
j=1

mj(η(t))Kjx(t) (5.1.5)

η(t) = [η1(t), η2(t), · · · , ηp(t)] is the imperfect premise variable vector. Then the

closed-loop fuzzy system can be represented as

ẋ(t) = A(h,m)x(t)+B(h,m)ω(t)

z(t) = C(h,m)x(t)
(5.1.6)

where

A(h,m) =
r∑
i=1

r∑
j=1

hi(θ(t))mj(η(t)) [Ai +BiKj] , B(h) =
r∑
i=1

hi(θ(t))Bωi,

C(h,m) =
r∑
i=1

r∑
j=1

hi(θ(t))mj(η(t)) [Ci +DiKj] .
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5.2 H∞ controller design and membership function parameters optimization

mj(η(t)) ≥ 0,
r∑
j=1

mj(η(t)) = 1. For simple description, we denote hi(θ(t)) =

hi, mj(η(t)) = mj, A(h,m) = A, B(h) = B, C(h,m) = C. For T-S fuzzy

control with mismatched premise variables, various membership functions can be

employed to enhance the design �exibility and/or lower the structural complexity

of the fuzzy controller as long as the following conditions [110] are satis�ed:

mi − λihi ≥ 0, 1 > λi > 0, i = 1, · · · , r. (5.1.7)

Remark 5.1 Condition (5.1.7) only presents boundary constraint on the mis-

matched membership function. It is worth noting that except for this design con-

dition, there are still some subjectively decided parameters in the mismatched con-

troller membership function, which will also in�uence system performance. For

example, Gaussian membership function, which is smooth and nonzero at all points

has been extensively adopted as imperfect membership functions in some existing

research work [23, 110, 116�118, 157]. But none of these works have systemati-

cally investigated the parameter selection of Gaussian membership function. Thus

it is of great importance to explore how the parameters of mismatched controller

membership function a�ect the closed-loop system performance.

5.2 H∞ controller design and membership function

parameters optimization

5.2.1 Finite frequency H∞ controller design

The �nite frequency H∞ control problem is to design a fuzzy controller such that

the following inequality holds for all nonzero ω(t) ∈ L2[0, ∞) over a speci�ed

frequency band [w1 w2], where w1 and w2 correspondingly represent the lower and

upper boundaries of the concerned frequency band.

∫
w1<w<w2

ZT (w)Z(w)dw−γ2

∫
w1<w<w2

W T (w)W (w)dw ≤ 0, w ∈ [w1, w2] (5.2.1)
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

In addition, the following actuator saturation constraint is also considered

|u(t)| ≤ umax (5.2.2)

where umax is the upper bound of the actuator force amplitude. The following

lemma, which will be used to develop the main results in sequel, are introduced

here.

Lemma 5.1 (Projection Lemma) [158]: Given Γ, Λ, Θ, there exists a matrix F

satisfying ΓFΛ + (ΓFΛ)T + Θ < 0 if and only if the following inequalities hold

Γ⊥ΘΓ⊥T < 0, ΛT⊥ΘΛT⊥T < 0

Finite frequency H∞ controller design for the T-S fuzzy system under imperfect

premise mismatching is presented in the following theorem.

Theorem 5.1 For given scalars η, δ, the T-S fuzzy system (5.1.3) with controller

(5.1.4) under condition mj − λjhj ≥ 0, (0 < λj < 1) is asymptotically stable with

disturbance input ω(t) = 0 and satis�es H∞ disturbance attenuation performance

γ over a given frequency band [w1 w2] under energy-bounded disturbance ωmax =

(η − V (0))/δ, if there exist symmetric matrices P , Λi, P1 > 0, Q > 0, ∀i, j ∈

{1, 2 , · · · , r}, such that the following matrix inequalities hold

 [P1A]s P1B

? −ηI

 < 0 (5.2.3)

AB
I 0

T  −Q P + jwcQ

P − jwcQ −w1w2Q

AB
I 0

+

CTC 0

0 −γ2I

 < 0 (5.2.4)

−I √δKj

? −u2
max

P1

 < 0 (5.2.5)

where wc = (w1 + w2)/2.

Proof: First, we prove that the closed-loop system is asymptotically stable when

ω(t) = 0. Consider the following quadratic Lyapunov function
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5.2 H∞ controller design and membership function parameters optimization

V (t) = xT (t)P1x(t) (5.2.6)

P1 is a positive de�nite matrix. Time derivative of V (t) can be expressed as

V̇ (t) =ẋT (t)P1x(t) + xT (t)P1ẋ(t)

=
r∑
i=1

r∑
j=1

himjx
T (t)

[
ĀTijP1 + P1Āij

]
x(t) (5.2.7)

≤
r∑
i=1

r∑
j=1

himjx
T (t)

[
ĀTijP1 + P1Āij +

1

η
P1B̄ijB̄

T
ijP1

]
x(t)

By using Schur complement, inequality (5.2.3) can be rewritten as

[P1A]s +
1

η
P1BB

TP1 < 0

Then we can obtain

V̇ (t) ≤ 0 (5.2.8)

Thus we come to the conclusion that the closed-loop system is asymptotically

stable with disturbance ω(t) = 0.

For any constant η > 0, the following inequality holds

2xT (t)P1Bω(t) ≤ 1

η
xT (t)P1BB

TP1x(t)+ηωT (t)ω(t) (5.2.9)

According to (5.2.7), (5.2.8) and (5.2.9), for ∀ ω(t) 6= 0, we can obtain

V̇ (t) ≤xT (t)

[
AP1+P1A+

1

η
P1BB

TP1

]
x(t)+ηωT (t)ω(t)

≤ηωT (t)ω(t) (5.2.10)

Integrate both sides of inequality (5.2.10) from 0 to t, the following inequality can

be obtained

V (t)− V (0) ≤ η

∫ t

0

ωT (t)ω(t)dt ≤ η‖ω(t)‖ = ηωmax
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

which indicates that

xT (t)P1x(t) ≤ V (0) + ηωmax , δ (5.2.11)

Consider control input, we have

max
t≥0
|u(t)|2 ≤ max

t≥0

∥∥∥∥∥
r∑
j=1

mj[x
T (t)KT

j Kjx(t)]

∥∥∥∥∥
2

(5.2.12)

= max
t≥0

∥∥∥∥∥
r∑
j=1

mj[x
T (t)P

1
2

1 P
− 1

2
1 KT

j KjP
− 1

2
1 P

1
2

1 x(t)]

∥∥∥∥∥
2

≤ δλmax

{
r∑
j=1

mj[P
− 1

2
1 KT

j KjP
− 1

2
1 ]

}

Then one can obtain that constraints on control input are satis�ed if the following

inequality holds

δP
− 1

2
1 KT

j KjP
− 1

2
1 < u2

maxI (5.2.13)

Apply Schur complement to inequality (5.2.5), (5.2.13) can be obtained.

Next we prove that the frequency performance constraints hold. For inequality

(5.2.4), multiply [xT (t) ωT (t)] and its conjugate transpose on the left and right

side of inequality (5.2.4), we can obtain

2ẋT (t)Px(t)−ẋT (t)Pẋ(t)+jwcx
T (t)Qẋ(t)+zT (t)z(t)−γ2ωT (t)ω(t) ≤ 0 (5.2.14)

Note that for any vectors ζ and ϕ, equation ζTQϕ = tr
(
ϕζTQ

)
always holds.

Thus inequality (5.2.14) can be rewritten as

dxT (t)Px(t)

dt
+zT (t)z(t)−γ2ωT (t)ω(t)

≤tr
[
He
(
(w1x(t)+jẋ(t))(w2x(t)+jẋ(t))T

)
Q
]

(5.2.15)

where He(A) = A+AT

2
. Integrating both sides of (5.2.15) from 0 to t yields∫ t

0

xT (t)Px(t)dt+

∫ t

0

zT (t)z(t)dt−
∫ ∞

0

γ2ωT (t)ω(t)dt≤tr [He(S)Q] (5.2.16)
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5.2 H∞ controller design and membership function parameters optimization

where S =
∫∞

0
(w1x(t)+jẋ(t))(w2x(t)+jẋ(t))Tdt.

∫ t
0
xT (t)Px(t)dt ≥ 0 holds when

P > 0, then the following inequality can be obtained∫ t

0

zT (t)z(t)dt−
∫ ∞

0

γ2ωT (t)ω(t)dt ≤ tr [He(S)Q] (5.2.17)

Then according to the Parseval's theorem [159], we have

S =
1

2π

∫ ∞
−∞

(w1 − w)(w2 − w)XT (w)X(w)dw∫ ∞
0

xT (t)x(t)dt =
1

2π

∫ ∞
−∞

XT (w)X(w)dw∫ ∞
0

ωT (t)ω(t) =
1

2π

∫ ∞
−∞

W T (w)W (w)dw

where X(w), W (w) are continuous Fourier transform of x(t) and ω(t).

tr [He(S)Q] < 0, w ∈ [w1, w2] holds when (w1 − w)(w2 − w) < 0, then inequal-

ity (5.2.1) holds, which indicates that the closed-loop system satis�es the �nite

frequency H∞ performance. This completes the proof. �

Since conditions (5.2.3)-(5.2.5) are not strictly linear matric inequalities, hence, it

cannot be handled directly by MATLAB LMI optimization tools. In order to solve

the nonlinear problem, the following theorem is obtained through linearization.

Theorem 5.2 For given scalars η, δ, the closed-loop fuzzy system under condi-

tion mj − λjhj ≥ 0, (0 < λj < 1), is asymptotically stable with disturbance input

ω(t) = 0 and satis�es H∞ disturbance attenuation performance γ over given fre-

quency band [w1 w2], if there exist symmetric matrices P̄ , Λ̄i, and positive de�nite

symmetric matrices F > 0, Q̄ > 0, ∀i, j ∈ {1, 2 , · · · , r}, such that the following

matrix inequalities hold

Θ̄ii − Λ̄i < 0 (5.2.18)

Θ̄ii − λiΛ̄i + Λ̄i < 0 (5.2.19)

Θ̄ij − λjΛ̄i − λiΛ̄j + Λ̄i + Λ̄j < 0, i < j (5.2.20)
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method


−Q̄ P̄+jwcQ̄−F 0 0

? Ω̄ij Bωi F TCT
i +K̄T

j D
T
i

? ? −γ2I 0

? ? ? −I

 < 0 (5.2.21)

−I √δK̄j

? −u2
max

F

 < 0 (5.2.22)

where

wc = (w1 + w2)/2, Ω̄ij =−w1w2Q̄+[AiF+BiK̄j]s

Θ̄ij =

 [AiF+BiKj]s Bωi

? −ηI


Then the fuzzy controller gain can be obtained as

Kj = K̄j F
−1 (5.2.23)

Proof : It's easy to verify that (5.2.4) and the following inequality are equivalent


AB

I 0

0 I


T

Φ


AB

I 0

0 I

 < 0 (5.2.24)

where

Φ =


−Q P + jwcQ 0

P − jwcQw1w2Q+CTC 0

0 0 −γ2I

 (5.2.25)

We also know that the following equation always holds


I 0

0 0

I I


T

Φ


I 0

0 0

I I

 =

−Q 0

0 −γ2I

 < 0 (5.2.26)
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According to Lemma 5.1 with

Γ⊥ =

A I 0

B 0 I

 , Π⊥ =

I 0 0

0 0 I


the following inequality is su�cient condition for (5.2.4)

Φ +


−I

AT

bT

P1

[
0 I 0

]
+
[

0 I 0
]T
P1


−I

AT

BT


T

< 0 (5.2.27)

Then substituteA =
∑r

i=1

∑r
j=1 himj [Ai +BiKj],C =

∑r
i=1

∑r
j=1 himj [Ci +DiKj],

B =
∑r

i=1 hiBωi into inequality (5.2.27), the following inequality can be ob-

tained

r∑
i=1

r∑
j=1

himjΞij < 0 (5.2.28)

where

Ξij =


−Q−P1 + P + jwcQ 0

? Ωij P1Bωi

? ? −γ2I


Ωij = [AiP1 +BiKjP1]s + w1w2Q+ [Ci +DiKj]

T [Ci +DiKj]

Since hi,mj > 0, thus we have Ξij < 0. According to Schur Complement Ξij < 0

can be equivalently transformed into
−Q −P1 + P + jwcQ 0 0

? [AiP1 +BiKjP1]s + w1w2QP1BωiCi +DiKj

? ? −γ2I 0

? ? ? −I

 < 0 (5.2.29)

De�ne following new matrix variables Q̄ = F−TQF−1, P̄ = F−TPF−1, P̄1 =
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

F−1, K̄j = KjF
−1, Υ1 = diag{F−1, F−1, I, I}, then perform congruence transfor-

mation to (5.2.29) by pre- and post-multiplying ΥT
1 and its conjugate transpose,

(5.2.21) can be obtained.

Substitute A =
∑r

i=1

∑r
j=1 himj [Ai +BiKj], C =

∑r
i=1

∑r
j=1 himj [Ci +DiKj],

B =
∑r

i=1 hiBωi into inequality (5.2.3), the following inequality can be obtained

r∑
i=1

r∑
j=1

himjΘij < 0 (5.2.30)

where

Θij =

 [P1Ai+BiKj]s P1Bωi

? −ηI


Taking property of fuzzy membership function into consideration, we have

r∑
i=1

r∑
j=1

hi(hj −mj)Λi = 0 (5.2.31)

where Λi = ΛT
i is arbitrary matrix with appropriate dimension, add 5.2.31)to

inequality (5.2.30), the following results can be obtained

r∑
i=1

r∑
j=1

himjΘij =
r∑
i=1

r∑
j=1

hi(hj −mj + λjhj − λjhj)Λi +
r∑
i=1

r∑
j=1

himjΘij

=
r∑
i=1

r∑
i=1

h2
i (λiΘii − λiΛi + Λi) +

r−1∑
i=1

r∑
j=i+1

hihj(λjΘij − λjΛi

+ Λi + λiΘji − λiΛj + Λj) +
r∑
i=1

r∑
j=1

hi(mj − λjhj)(Θij − Λi)

Then if (5.2.32)-(5.2.34) hold

Θij − Λi < 0 (5.2.32)

λiΘii − λiΛi + Λi < 0 (5.2.33)

λjΘij+λiΘji−λjΛi−λiΛj+Λi+Λj < 0, i < j (5.2.34)

then (5.2.30) also holds. De�ne Υ2 = diag{F−1, I}, pre- and post-multiply
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5.2 H∞ controller design and membership function parameters optimization

(5.2.32)-(5.2.34) by ΥT
2 and its transpose, inequality (5.2.18)-(5.2.20) can be ob-

tained. This completes the proof. �

5.2.2 Optimization of mismatched membership functions'

parameters based on nCOS function

In this part, nCOS function based optimization method is applied to obtain the

optimal parameters of the mismatched controller membership functions. Some

basic de�nitions are �rst introduced.

Nonlinear output spectrum for single-input multiple-output system

Nonlinear systems can usually be identi�ed or modeled into parametric model such

as nonlinear di�erential equation (NDE), nonlinear autoregressive with exogenous

input (NARX) and nonlinear block oriented (NBO) in practice. Nonlinear output

spectrum of those nonlinear systems is not only a function of frequency variables

but also functions of model parameters and input magnitude. Volterra model of

a single-input multiple-output (SIMO) nonlinear di�erential equation system is

given as follows [26]:
yi(t) =

∑N

n=1
yni (t)

yni (t)=y0
i (t)+

∫ ∞
−∞
· · ·
∫ ∞
−∞

hni (τ1, · · · , τn)
n∏
k=1

u(t−τk)dτk
(5.2.35)

where yi(t) and u(t) are the ith subsystem output and input of the system, re-

spectively, N is the maximum order of the system nonlinearity, hni (τ1, · · · , τn) is

the nth order Volterra kernel, y0
i is zero or the DC constant. Then the nth order

GFRF can be de�ned by the multi-dimensional Fourier transform as [126]

Hn
i (jw1, · · · , jwn) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hni (τ1, · · · , τn)e−j(w1τ1+···+wnτn)dτ1 · · · dτn (5.2.36)

Then (5.2.35) can also be rewritten as [160]
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

yi(t) =
N∑
n=1

yni (t) (5.2.37)

= H0
i +

1

2π

∫ ∞
−∞

 1

(2π)n−1

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

n−1

Ξn
i dw1 · · · dwn−1

 ejwtdw

where

Ξn
i =Hn

i (jw1, · · · , jwn−1, j(w − w1 − · · · − wn−1))× Un(jw1, · · · , jwn−1)

Un(jw1, · · · , jwn−1) = U(jw1) · · ·U(jwn−1)U(j(w − w1 − · · · − wn−1)), wn = w −

w1−· · ·−wn−1, U(jw) is the input spectrum, H0
i is associated with the 0th order

output y0
i , which is independent of input. The output yni in the frequency domain

is written as

Y n
i (jw) =

1

(2π)n−1

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

n−1

Ξn
i dw1 · · · dwn−1 (5.2.38)

Yi(jw) =
∑N

n=1
Y n
i (jw). (5.2.39)

5.2.3 Computation of the nonlinear output spectrum

The nonlinear output spectrum of a SIMO system from the �rst order to the

nth order can be analytically computed based on numerical or experimental data

using least square method [49,124,125]. Considering the truncation error σ[N ](jw)

and input ρU(jw) with magnitude ρ, the nonlinear output spectrum in (5.2.39)

is presented as

Yi(jw)ρ =
∑∞

n=1
ρnY n

i (jw)

= ρY 1
i (jw) + ρ2Y 2

i (jw) + ρ3Y 3
i (jw) + · · · (5.2.40)

=
∑N

i=1
ρnY n

i (jw) + σ[N ](jw)
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5.2 H∞ controller design and membership function parameters optimization

where σ[N ](jw) is the truncation error, which includes all the remaining higher

order output spectrum components in Volterra series expansion, ρ represents dif-

ferent magnitudes of input. To determine Yi(jw)ρ, the system can be excited by

the same input U(jw) with di�erent magnitudes ρ1, ρ2, · · · , ρN and there will be a

series of output denoted by Yi(jw)ρ1 , Yi(jw)ρ2 , · · · , Yi(jw)ρN . Then the nth order

output spectrum Y n
i (jw), n ∈ {1, 2, · · · , N} is calculated as


Y 1
i (jw)

Y 2
i (jw)
...

Y N
i (jw)

=


ρ1 ρ

2
1 · · · ρN1

ρ2 ρ
2
2 · · · ρN2

...
...
. . .

...

ρN ρ
2
N · · · ρNN



−1 
Yi(jw)ρ1

Yi(jw)ρ2
...

Yi(jw)ρN

 (5.2.41)

The square matrix is nonsingular if ρ1 6= ρ2 6= · · · 6= ρN . An important issue of

applying the above method for estimation of the output spectrum is how to select

appropriate excitation magnitude ρ with consistent accuracy. To �nd the best

excitation parameter ρ, a ρ-selection method in [49] can be adopted. Generally, ρ

can start with a small number and increases regularly by δ until a larger number.

For each ρ, run the method above to estimate �rst-, second- and third-order

output spectrum, and eventually generate the |Y n
i (jw)| v ρ curve; the best value

of ρ corresponds to the bottom of the resulting U-shaped curve which results in a

smaller estimation error for |Y n
i (jw)|.

5.2.4 Optimization of fuzzy membership function parameters

by nCOS function

The controller gains Kj are obtained according to the �nite frequency H∞ con-

troller design method in Theorem 5.2. For the mismatched fuzzy controller adopt-

ing the Gaussian shape membership function, the closed-loop T-S fuzzy system can

be reformulated as the following general exponential-type nonlinear system [161]

by substituting the fuzzy controller (5.1.5) into the original nonlinear plant

f1(x̂, ω̂) + f2(x̂, ω̂) eg(x̂,ω̂) =
L∑
l=0

dlω

dtl
(5.2.42)

111



5 Analysis and optimization of fuzzy membership functions with a frequency domain method

where x̂ =

{
x,
d1x

dt
,
d2x

dt2
, · · · , d

Lx

dtL

}
, ω̂ =

{
ω,
d1ω

dt
,
d2ω

dt2
, · · · , d

Lω

dtL

}

and f1(x̂, ω̂), f2(x̂, ω̂) and g(x̂, ω̂) are polynomial functions of system state x and

input ω, l is the di�erential order with maximum order L.

According to equation (5.2.41), the nonlinear characteristic output spectrum can

be analytically computed based on experimental data and least square method,

which will be very useful for the analysis and optimization of membership func-

tion parameters. The optimization process for mismatched fuzzy controller with

Gaussian shape membership function is summarized in Algorithm 1.

Algorithm 1: Optimization of fuzzy membership function parameters

(1) De�ne new state variables y1 = x and y2 = eg(x̂,ω̂), then by taking derivative

of y2 with respect to time, the following equation can be obtained:

dy2

dt
= eg(x̂,ω̂)d g(x̂, ω̂)

dt
= y2

d g(ŷ1, ω̂)

dt
(5.2.43)

Then the closed-loop system (5.2.42) can be equivalently transformed into

the following single input multiple output polynomial nonlinear system with

the same initial conditions of (5.2.42) and y2(0) = eg(x̂(0),ω̂(0)):
f1(ŷ1, ω̂) + f2(ŷ1, ω̂)y2 =

L∑
l=0

dlω

dtl

dy2

dt
= y2

d g(ŷ1, ω̂)

dt

(5.2.44)

(2) Based on the probing method [26], assume the input is ω(t) = ej(w1+···+wn)t,

system state of (5.2.44) is expressed as

yi = H0
i +

∑
all combinations

of wi1 in w

H1
i (wi1)ejwi1t + · · · (5.2.45)
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5.2 H∞ controller design and membership function parameters optimization

+
∑

all permutations

of (wi1, · · · , win)

∑
all combinationsof wi1 in w

Hn
i (wi1, · · · , win)ej(wi1+···+win)t

where w = (w1, · · · , wn). Substitute (5.2.45) into (5.2.44) and equate the co-

e�cients of ej(w1+···+wn)t to zero, the explicit formula of the nth order GFRFs

can be obtained. Substitute GFRFs into (5.2.38) with some manipulation,

the output spectrum can be obtained.

(3) With the estimated Yi(jw)ρ from (5.2.40), the unknown frequency coe�-

cients regarding to w in nCOS function are determined by using the least

square method. Then the relationship between the nonlinear parameters

that we are interested in and the output spectrum of (5.2.42) can thus be

obtained, which can clearly demonstrate how the parameters of interest af-

fect system frequency response. The optimal parameters of membership

function for the mismatched controller can be obtained where the output

spectrum is minimized.

Remark 5.2 The nCOS function based optimization method in Algorithm 1 can

be applied to analysis and design of the control systems with exponential type non-

linearities. Parameters optimization for the mismatched fuzzy controller adopting

Gaussian shape membership function is one of the applications of nCOS function

based frequency domain method. If the mismatched membership function is poly-

nomial type, the methods in [27, 48, 49, 160] can easily obtain the nCOS function

for polynomial type nonlinear system and thus determine the optimal parameters.

5.2.5 GA-based optimization of mismatched membership

functions' parameters

Another solution to the aforementioned parameters optimization problem of the T-

S fuzzy system adopting Gaussian shape mismatched membership function is using
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

search-based optimization method. In this chapter, GA is adopted to verify the

validity and e�ectiveness of the nCOS function based frequency domain method.

The objective is to seek optimal parameters in fuzzy membership functions to

minimize the output frequency response |Y (jw)|. GA has great potential in global

optimization, is appropriate to deal with the optimization problem in this chapter.

In the following, standard GA is applied to search the parameter space to seek

for the optimal fuzzy membership function. The process of GA optimization is

summarized in Algorithm 2.

Algorithm 2: Optimization of fuzzy membership function parameters using GA

(1) Specify bounds of the parameters in Gaussian membership function.

(2) Encode the parameters to a binary string and generate an initial population

of N chromosomes randomly.

(3) Decode the initial population into practical values of system's parameters.

(4) For each set of parameters, calculate the output frequency response |Y (jw)|

of the closed-loop fuzzy system.

(5) Cross over with a probability pc and mutate with a probability pm.

(6) Retain the best chromosomes in the population.

(7) Check if the maximum number of iterations is reached or the convergent

conditions are satis�ed. If so, stop and output the result. If not, repeat

Step 4-7.
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5.3 Applications to nonlinear mechanical systems

5.3 Applications to nonlinear mechanical systems

In this section, two nonlinear systems are considered: one is a simple numerical

nonlinear system and another is a nonlinear quarter suspension systems. These

examples are provided to evaluate the validity and superiority of the frequency

domain based optimization approach proposed in this chapter.

5.3.1 Numerical example

First we consider a simple nonlinear system in [162]

ξ̈(t) = −0.02ξ(t)− 0.67ξ(t)3 + u(t) + ω(t) (5.3.1)

Assume ξ(t) ∈ [−d, d], d ≥ 0. Denote x1(t) = ξ(t) and x2(t) = ξ̇(t), according to

sector nonlinearity method, the nonlinear system can be exactly represented on

[−d, d] by the following overall fuzzy system


ẋ(t)=

2∑
i=1

hi(x(t)) [Aix(t)+Biu(t)+Bωiω(t)]

z(t)=
2∑
i=1

hi(x(t))Cix(t)

(5.3.2)

where x(t) = [xT1 (t) xT2 (t)]T .

h1(x(t)) =1− x1(t)2/d2, h2(x(t)) = x1(t)2/d2 (5.3.3)

A1 =

 0 1

−0.02 0

 , A2 =

 0 1

−0.02− 0.67d2 0

 , B1 = B2 =

0

1

 , Bw1 = Bw2 =

0

1

 ,
C1 = [0 0.5], C2 = [0 0.5]
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

Controller membership functions are chosen as

m1(x(t)) = 1− a e−
(x1−b)

2

2×c2 , m2(x(t)) = a e
− (x1−b)

2

2×c2 (5.3.4)

where d = 2, a = 0.95, b ∈ [−6, 6], c ∈ [0.84, 6], w1 = 0.01, w2 = 1 with

permissible parameters λ1 = 0.05 and λ2 = 0.0011. Controller gains obtained

from Theorem 5.2 can be written as K1 = [k11 k12], K2 = [k21 k22], so the overall

controller is

u(t) =
2∑
i=1

mi(ξ(t))Kix(t) (5.3.5)

=k11ξ(t)+k12ξ̇(t)+
[
(k21−k11)ξ(t)+(k22−k12)ξ̇(t)

]
ae−

(ξ−b)2

2c2

According to Theorem 5.2, assume initial condition x(0) = 0, ẋ(0) = 0, µ = 500,

the fuzzy controller is calculated as

K1 = [−223.4033 − 46.2517], K2 = [−255.4280 − 56.0321]

By substituting (6.3.9) into (5.3.1), the closed-loop system can be written as

ξ̈(t) =n1ξ(t)+n2ξ̇(t)+n3ξ(t)e
−(ξ(t)−b)2

2c2 +n4ξ̇(t)e
−(ξ(t)−b)2

2c2 +n5ξ(t)
3+ω(t) (5.3.6)

where n1 = k11−0.02, n2 = k12, n3 = a(k21−k11), n4 = a(k22−k12), n5 = −0.67.

It is obvious that the closed-loop system is a nonlinear system with exponen-

tial type nonlinearity: e(ξ−b)2/2c2 . Then following the steps in Algorithm 1,

the relationship between system nCOS function and parameters b and c can be

analytically calculated as follows:

First de�ne new variables y1(t) = ξ(t) and y2(t) = e−
(ξ(t)−b)2

2c2 , the closed-loop

system can be equivalently transformed into the polynomial nonlinear system
ÿ1(t) =n1(t)y1(t)+n2ẏ1(t)+n3y1(t)y2(t)+n4ẏ1(t)y2(t)+n5y1(t)3+ω(t)

ẏ2(t) =− 1

c2
y1(t)ẏ1(t)y2(t) +

b

c2
ẏ1(t)y2(t)

(5.3.7)
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5.3 Applications to nonlinear mechanical systems

Following Step 2 of Algorithm 1, each order GFRF Hn
i (jw) can be easily ob-

tained:

H0
1 = 0, H0

2 = e−
b2

2c2

H1
1 (jw1) =

1

H0
2 (−m4jw1−m3)−(m2jw1+w2

1 +m1)
, H1

2 (jw1) = H0
2H

1
1 (jw1)

H2
1 (jw1, jw2) =

(m4jw1+m3)H1
1 (jw1)H1

2 (jw2)/H0
2

[−m4j(w1+w2)−m3]−[m2j(w1+w2)+(w1+w2)2+m1]

H2
2 (jw1, jw2) = −H

0
2

c2

jw1H
1
1 (jw1)H1

1 (jw2)

j(w1 + w2)
+

b

c2

jw1

j(w1 + w2)
H1

1 (jw1)H1
2 (jw2)

+
bH0

2

c2
H2

1 (jw1, jw2)

H3
1 (jw1, jw2, jw3) =

{
H0

2

[
(m4jw1+m3)H1

1 (jw1)H2
2 (jw2, jw3)

+m4j(w1+w2)H2
1 (jw1, jw2)H1

2 (jw3)
]
−m5H

1
1 (jw1)H1

1 (jw2)H1
1 (jw3)/H0

2

}
/ [−m4j(w1+w2+w3)−m3]−

[
m2j(w1+w2+w3)+(w1+w2+w3)2+m1

]
Choose y(t) = ξ̈(t) as the output. Input is ω(t) = ρsin(wt) and denote f = − 1

c2
,

g = b
c2
. Substitute Hn

i (jw) into (5.2.38) with some manipulation, the output

spectrum can be calculated as:

Y1(jw) = ρY 1
1 (jw1) + ρ2Y 2

1 (jw1, jw2) + ρ3Y 3
1 (jw1, jw2, jw3) + · · ·

where

Y 1
1 (jw1) =

1

ϕ1
1(jw1)H0

2 + ϕ0
1(jw1)

(5.3.8)

Y 2
1 (jw1, jw2) =

H0
2∑3

i=0 ϕ
i
2(jw1, jw2)(H0

2 )i
(5.3.9)

Y 3
1 (jw1, jw2, jw3) =

1∑6
i=0 ϕ

i
3(w1, w2, w3)(H0

2 )i
+ (5.3.10)∑3

i=1

[
ϕi3f (w1, w2, w3)f+ϕi3g(w1, w2, w3)g+ϕi3c(w1, w2, w3)

]
(H0

2 )i∑6
i=0 ϕ

i
3(w1, w2, w3)(H0

2 )i

The coe�cients ϕ(·) which are given in the following tables, are independent of

those parameters of interest, i.e., f and g and can be determined by using least

square method.
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

According to the ρ−selection method aforementioned, curves of |Y 2
1 (jw)| v ρ

and |Y 3
1 (jw)| v ρ are given in Fig.5.1, from which it can be seen that the best

excitation magnitude should be 0.6.
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Fig. 5.1: Estimation of Y 2
1 (jw) and Y 3

1 (jw) under di�erent excitation

Then choose input as ω(t) = 0.6sin(π · t), the coe�cients of the output spectrum

can be obtained via least square method, which are shown in Table 5.3.1 as follows:

Coe�cient Value Coe�cient Value
ϕ1

1(jw1) 0.7394+0.1926i ϕ0
1(jw1) 3.6805 + 0.4148i

ϕ0
2(jw1, jw2) -7.2e09 - 4.2e09i ϕ1

2(jw1, jw2) 1.1e10 + 6.4e09i
ϕ2

2(jw1, jw2) -4.3e09-2.5e09i ϕ3
2(jw1, jw2) 5.3e08+3.2e08i

ϕ0
3(jw1, jw2, jw3) -2.5e07 + 2.1e07i ϕ1

3(jw1, jw2, jw3) 2.8e08 - 2.2e08i
ϕ2

3(jw1, jw2, jw3) -1.2e09 + 9.4e+08i ϕ3
3(jw1, jw2, jw3) 2.6e09 - 2.0e09i

ϕ4
3(jw1, jw2, jw3) -3.1e09 + 2.3e09i ϕ5

3(jw1, jw2, jw3) 1.8e08 - 1.4e09i
ϕ6

3(jw1, jw2, jw3) -4.6e08 + 3.5e08i ϕ1
3f (jw1, jw2, jw3) -56.279 - 2.1556i

ϕ2
3f (jw1, jw2, jw3) -166.06 - 10.417i ϕ3

3f (jw1, jw2, jw3) -41.369 - 1.7803i
ϕ1

3g(jw1, jw2, jw3) 40.147 + 1.6309i ϕ2
3g(jw1, jw2, jw3) 119.33 + 7.2823i

ϕ3
3g(jw1, jw2, jw3) 29.447 + 1.3701i ϕ1

3c(jw1, jw2, jw3) 29.658 + 1.7477i
ϕ2

3c(jw1, jw2, jw3) -19.469 - 1.1247i ϕ3
3c(jw1, jw2, jw3) -34.687 - 1.9019i

To verify the output prediction, output spectrum in terms of di�erent parameters

b and c are calculated via simulation, which are shown in Fig.5.2.
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Fig. 5.2: Amplitude of Y (jw) with di�erent b (c = 1) and c (b = 1)

From these two results, it can be seen that the output spectrum calculated by the

nCOS function based method has a good agreement with the numerical simulation

results.

Output spectrum in terms of di�erent parameters of b and c, can then be easily

calculated, which is shown in Fig.5.3. It can be seen from Fig.5.3 that parame-

Fig. 5.3: Amplitude of |Y (jw)| with di�erent b and c

ters b and c in the controller membership functions have a signi�cant impact on
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

system output, which has not been studied in existing research works yet. The

output spectrum can provide insight guidance in choosing parameters of controller

membership functions in imperfect premise variables fuzzy control. For example,

when b = 2, c = 0.955,|Y (jw)| = 0.1561. b = −0.285, c = 5.595, |Y (jw)| = 0.1346.

The amplitude of output is reduced about 13.77%.

Then GA optimization method is applied to verify the results obtained by the

nCOS function based optimization method, choose the initial population as N =

120, the crossover rate as pc = 0.6, the mutation rate as pm = 0.05 and the pa-

rameters space of b and c are [−6, 6] and [0.84, 6] respectively. The GA-based
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Fig. 5.4: GA-based optimization process

optimization process is shown in Fig.5.4. It is obtained that the �nal optimal out-

put is |Y (jw)| = 0.13448, and the corresponding optimal parameters are approxi-

mately b = 0 and c = 3.5, which is almost identical to the result |Y (jw)| = 0.1345

calculated by the frequency response based method. This again veri�es the ef-

fectiveness of frequency response based optimization method. It is also worth

pointing out that the GA approach can only obtain optimal value of |Y (jw)| and

the corresponding parameters b and c. Moreover, the time consumption increases

tremendously with larger parameter space. On the other hand, the nCOS function
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5.3 Applications to nonlinear mechanical systems

based method, can provide analytical relationship between the parameters b, c and

the desired performance. As shown in Fig.5.3, the output response of the closed-

loop system in the concerned parameter space can be calculated analytically. And

the computing burden does not increase with parameters' range.

5.3.2 Nonlinear vehicle suspension system

A more complicated 2-DOF nonlinear vehicle suspension system is given in this

part. According to Newton's second law, nonlinear dynamic equation of the sys-

tem is built as follows:

msz̈s = −Fs − Fd + u

muz̈u = Fs + Fd − Ft − Fb − u (5.3.11)

where ms and mu are sprung and unsprung mass, zs, zu and zr are the vertical

displacements of sprung mass, unsprung mass and road input, u is the control

force applied on the suspension system. Fs, Fd, Ft are the forces produced by the

nonlinear spring, nonlinear damper and the tire, which are represented as:Fs =

ks1(zs− zu) +ks3(zs− zu)3, Fb = ct(żu− żr), Fd = cs1(żs− żu) + cs2(żs− żu)2, Ft =

kt(zu − zr), where ks1 and ks3 are nonlinear sti�ness coe�cients, cs1 and cs2 are

damping coe�cients, kt and ct are sti�ness and damping coe�cients of the tire.

De�ne x1(t) = zs(t) − zu(t), which represents the suspension de�ection, x2(t) =

żs(t), which is the sprung mass speed, x3(t) = zu(t)−zr(t), which denotes the tire

de�ection, x4(t) = żu(t), which is the unsprung mass speed, and ω(t) = żr(t) is

the disturbance input. Then system dynamical equation (5.3.11) is rewritten in

the following form:

ẋ1 = x2 − x4,

ẋ2 = −ks1
ms

x1 −
ks3
ms

x3
1 −

cs1
ms

(x2 − x4)− cs2
ms

ẋ2
1 +

u

ms

,

ẋ3 = x4 − ω,

ẋ4 =
ks1x1

mu

+
ks3x

3
1

mu

+
cs1(x2−x4)

mu

+
cs2ẋ

2
1

mu

− ktx3

mu

− ctx4

mu

+
ctω

mu
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method

In suspension control, the following performance constraints should also be taken

into consideration:

1. The suspension de�ection is no larger than a maximum value constrained

by mechanical structure, i.e., ‖zs(t)− zu(t)‖ ≤ zmax

2. The dynamic tire load should not exceed the static tire load to guarantee

that the wheels contact the road uninterruptedly, i.e., kt(zu(t) − zr(t)) <

(ms +mu)g

The following controlled outputs are de�ned to achieve the aforementioned per-

formance constraints

z1(t) = z̈s(t),

z2(t) =

[
zs(t)− zu(t)

zmax

kt(zu(t)− zr(t))
(ms +mu)g

]T
Assume x1(t) ∈ [−d1, d1], ẋ1(t) ∈ [−d2, d2], d1, d2 ≥ 0. Then according to the

fuzzy modeling method in [88], the following fuzzy model can exactly represent

the nonlinear suspension system in region [−d1, d1]× [−d2, d2]
ẋ(t) =

∑4

i=1
hi(ξ(t))[Aix(t) +Biu(t) +Bwiω(t)]

z1(t) =
∑4

i=1
hi(ξ(t))[C1ix(t) +Diu(t)]

z2(t) =
∑4

i=1
hi(ξ(t))C2ix(t)

where ξ(t) = {x1(t), ẋ1(t)},M1(x1(t)) = 1− x1(t)2

d21
, M2(x1(t)) = x1(t)2

d21
, N1(ẋ1(t)) =

1
2
(1− ẋ1(t)

d2
), N2(ẋ1(t)) = 1

2
(1 + ẋ1(t)

d2
),

h1(ξ(t))=M1(x1(t)) ·N1(ẋ1(t)), h2(ξ(t))=M1(x1(t)) ·N2(ẋ1(t)),

h3(ξ(t))=M2(x1(t)) ·N1(ẋ1(t)), h4(ξ(t))=M2(x1(t)) ·N2(ẋ1(t)),

Ai =


0 1 0 − 1

ai21 ai22 0 ai24

0 0 0 1

ai41 ai42 − kt
mu

ai44

 , Bi =


0

1
ms

0

− 1
mu

 , Bωi =


0

0

−1

ct
mu

 ,
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5.3 Applications to nonlinear mechanical systems

a1
21 = a2

21 = −ks1
ms

, a3
21 = a4

21 = −ks1 + ks3d
2
1

ms

, a1
41 = a2

41 =
ks1
mu

,

a3
41 = a4

41 =
ks1 + ks3d

2
1

mu

, a1
22 = a3

22 =
cs2d2 − cs1

ms

, a1
24 = a3

24 =
cs1 − cs2d2

ms

,

a1
42 = a3

42 =
cs1 − d2cs2

mu

, a1
44 = a3

44 =
d2cs2 − cs1 − ct

mu

, a2
22 = a4

22 =
−cs2d2 − cs1

ms

,

a2
24 = a4

24 =
cs1 + cs2d2

ms

, a2
42 = a4

42 =
cs1 + d2cs2

mu

, a2
44 = a4

44 =
−d2cs2 − cs1 − ct

mu

,

C11 =
[
−ks1
ms

cs2d2−cs1
ms

0 cs1−cs2d2
ms

]
, C12 =

[
−ks1
ms

−cs2d2−cs1
ms

0 cs1+cs2d2
ms

]
,

C13 =
[
−ks1+ks3d2

ms
cs2d2−cs1

ms
0 cs1−cs2d2

ms

]
, C14 =

[
−ks1+ks3d2

ms
−cs2d2−cs1

ms
0 cs1+cs2d2

ms

]
,

C2i =

 1
zmax

0 0 0

0 0 kt
(ms+mu)g

0

 , Di =
1

ms

.

To satisfy the performance constraints, the following condition should be taken

into consideration: −P̄1

√
δP̄1{C2i}Tq

? − I

 < 0, q = 1, 2 (5.3.12)

where {C2i}Tq denotes the qth row vector of CT
2i.

Parameters of this nonlinear quarter vehicle suspension system are listed in Table

5.1.

Table 5.1: Parameters of Quarter vehicle Suspension Model

Parameter Value Parameter Value
ms 900 kg mu 50 kg
ks1 20000 N/m ks3 3170400N/m3

cs1 1500 Ns/m cs2 54.28 Ns2/m2

kt 200000 N/m ct 170 Ns/m

The mismatched controller membership functions are chosen as

m1(ξ(t)) =(1− 0.5e−
(x1(t)−b)

2

2c2 )(
1

2
− ẋ1(t)

2d2

),m2(ξ(t)) = (1− 0.5e−
(x1(t)−b)

2

2c2 )(
1

2
+
ẋ1(t)

2d2

)

m3(ξ(t)) =0.5e−
(x1(t)−b)

2

2c2 (
1

2
− ẋ1(t)

2d2

),m4(ξ(t)) = 0.5e−
(x1(t)−b)

2

2c2 (
1

2
+
ẋ1(t)

2d2

)

123



5 Analysis and optimization of fuzzy membership functions with a frequency domain method

where d1 = 0.1, d2 = 1, b ∈ [−6, 6], c ∈ [1.5, 6] with permitted λ1 = 0.00014,

λ2 = 0.00014, λ3 = 0.00014, λ4 = 0.00016, w1 = 4, w2 = 8. Then according to

Theorem 5.2, assume initial conditions are 0 , µ = 3000, γ and fuzzy controller

gains are calculated as γ = 4,

K1 = 104 × [−1.8874 − 1.2846 − 0.7848 − 0.0107],

K2 = 104 × [−1.8750 − 1.2824 − 0.7726 − 0.0114],

K3 = 104 × [1.0075 − 0.7257 2.7113 − 0.0103],

K4 = 104 × [1.0048 − 0.7199 2.8760 − 0.0143]

Choose z̈s as the output, then following the same procedure as in Example.1,

given input ω(t) = 0.02sin(12πt), the output spectrum can be easily calculated

with di�erent parameters of b and c. Fig.5.5 show the e�ectiveness of the out-

put spectrum calculation method. Then the curve |Y (jw)| v b&c can be easily

obtained, which is shown in Fig.5.6.
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Fig. 5.5: Amplitude of Y (jw) with di�erent b (c = 1) and c (b = 1)

According to the GA optimization method, the optimal value of |Y (jw)| and

optimal b and c are |Y (jw)|min = 1.2525, b = 0.7005, c = 6, which are easy to
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5.3 Applications to nonlinear mechanical systems

Fig. 5.6: Amplitude of Y (jw) with di�erent b and c

obtain via the nCOS function based optimization method. In addition to optimal

value, from the curve we can easily come to the conclusion that parameters in the

dark blue area are all eligible candidate for the mismatched controller, whereas

parameters that fall in red area should be avoided. Also, from Fig.5.6, we can tell

that parameter b in the controller membership functions has more in�uence on

system performance than parameter c. None of these can be observed via GA or

other existing optimization methods.

For comparison, we choose parameters b = 0.01, c = 1.5 from the dark blue area

as optimized parameters and b = 5, c = 1.6, from the red area as randomly chosen

parameters in the curve |Y (jw)| v b&c. To test performance of the suspension

system, �ltered white noise borrowed from [163] with road roughness class E is

adopted in the simulation. The equation of road excitation can be expressed as

q̇(t) = −2πnquq(t) + 2πn0

√
Gq(n0)uG(t), where nq = 0.0001m−1 is the lowest

frequency, G(t) is standard Gaussian white noise with 0 mean and unit variance,

Gq(n0) = 4096× 10−6m2/m−1(class E), u is the vehicle forward velocity. Vehicle

forward velocities V = 30 m/s is used to test performance of the proposed control

approach. Fig.5.7 presents the body acceleration response and FFT of the accel-

eration signal, from which we can see active suspension outperforms passive one,

and the controller with optimized b, c can achieve better performance than the

one with randomly chosen parameters between 4Hz-8Hz.
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5 Analysis and optimization of fuzzy membership functions with a frequency domain method
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Fig. 5.7: Acceleration response and FFT of acceleration

Suspension de�ection zs − zu is given in Fig.5.8, from which one can observe

that the controlled suspension spaces all fall into acceptable ranges. Thus, these

physical constraints are guaranteed. The dynamic tire load is illustrated in Fig.5.8,

which demonstrates that the dynamic tire load constraint Ft+Fb
(ms+mu)g

< 1 is satis�ed.

In a word, Fig.5.8 validates that road holding capability and constraint suspension

de�ection can be guaranteed with improved ride comfort.
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Fig. 5.8: Suspension de�ection and dynamic tyre load
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5.3 Applications to nonlinear mechanical systems

Then to evaluate robustness of the designed fuzzy controller, a general disturbance

Fd = 0.2sin1.5πt+ sin12πt is added to the sprung mass. The disturbance contains

disturbance components at 6Hz, which falls in 4Hz-8Hz. Following the same

analysis procedure, Fig.5.9 shows acceleration of the suspension system both in

time and frequency domain, from which we can see that the controller designed

based on optimal parameters outperforms the one designed based on randomly

chosen parameters over the frequency range 4Hz-8Hz.
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Fig. 5.9: Acceleration response and FFT subject to disturbance
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Fig. 5.10: Suspension de�ection and dynamic tyre load

127



5 Analysis and optimization of fuzzy membership functions with a frequency domain method

Fig.5.10 are the suspension de�ection and dynamic tyre load, which demonstrates

that the physical constraints of the suspension system are all satis�ed when subject

to general disturbance.

It can be seen from the results above that the proposed nCOS function based

method provides a unique frequency domain insight into the nonlinear in�uence in-

curred by exponential-type nonlinearity (i.e., the Gaussian membership functions

of the controller) on system output response, and therefore o�ers an alternative

solution to parameters optimization problem in fuzzy control with mismatched

controllers. This has never been explored in existing research work but can be

done readily with the proposed frequency based method.

5.4 Conclusion

A novel �nite frequency H∞ controller with mismatched premise variables has

been designed. A novel nCOS function based optimization method, which aims

to optimize the Gaussian membership functions' parameters has been proposed

in this chapter. Compared to GA optimization method, the nCOS function based

frequency domain optimization approach can provide analytical relationship be-

tween system output spectrum and fuzzy membership function parameters and

is time e�cient. Simulation results of nonlinear suspension system demonstrate

that suspension performance over a concerned frequency band has been further

enhanced by combining the �nite frequency H∞ control with the nCOS function

based frequency domain optimization method.
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Chapter 6

A novel parametric characteristic

output spectrum function for non-

linear systems

In general, nonlinear system output spectrum is jointly determined by linear pa-

rameters, nonlinear parameters, excitation amplitude and frequency variables [49].

Frequency domain method used in Chapter 5 and most of the existing results

about nCOS function based method mainly focus on nonlinear model parameters'

in�uence on system output spectrum [27, 49, 124, 160, 164]. Linear model pa-

rameters' in�uence on systems output nonlinear spectrum has been systemically

investigated in [134]. It is worth pointing out that analysis of linear and nonlinear

parameters' in�uence on system output spectrum in a separated manner is not

comprehensive enough for in-depth understanding of the system characteristics.

To solve this problem, a novel parametric characteristic output spectrum (pCOS)

function simultaneously including linear and nonlinear model parameters will be

developed in this chapter. Based on the proposed novel pCOS function, nonlin-

ear output spectrum can be determined as a polynomial of system parameters

(both linear and nonlinear). This result will be a strong complement to existing

nCOS function based methods, which can provide a more comprehensive solution

to in-depth analysis and design of nonlinear systems. Moreover, coe�cients of the

novel parametric characteristic output spectrum are independent of linear and

nonlinear model parameters of interest. Only measured output data are required

to calculate these coe�cients, which is very convenient for nondestructive evalua-
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6 A novel parametric characteristic output spectrum function for nonlinear systems

tions of practical systems. Detailed procedures to determine these coe�cients are

presented in this chapter. To verify e�ectiveness of the proposed method, an ex-

ample of designing linear and nonlinear parameters for a mechanical system is �rst

given. Then together with a nonlinear output spectrum calculation method [49],

the approach proposed in this chapter is applied to fault detection of closed-loop

control systems with plant and controller faults. The fault characteristics can

be decoupled by using the nth-order output spectrum. Therefore, identi�cation

and location of multi-faults can be determined according to the nth-order output

spectrum.

6.1 Volterra series in the frequency domain and

nonlinear output spectrum

A considerably large class of nonlinear systems, for example, mechanical systems

[29,30,165�167], circuit systems [134,168], can be modeled or identi�ed as general

Nonlinear Di�erential Equation (NDE) model as follows:

M∑
m=1

m∑
p=0

K∑
k1, · · · , kp+q =0

cp,q(k1, · · · , kp+q)
p∏
i=1

dkiy(t)

dtki

p+q∏
i=p+1

dkiu(t)

dtki
=0 (6.1.1)

where dku(t)
dtk
|k=0 = u(t), p + q = m,

∑K
k1,··· ,kp+q=0 =

∑K
k1=0(·) · · ·

∑K
kp+q=0(·), M

is the maximum degree of nonlinearity in terms of y(t) and u(t), and K is the

maximum order of the derivative. In this model, the parameters such as c0,1(·)

and c1,0(·) are linear parameters corresponding to the linear terms in the model,

i.e., dky(t)
dtk

and dku(t)
dtk

for k = 0, 1, · · · , L, and cp,q(·) for p + q > 1 are referred

to as nonlinear parameters corresponding to nonlinear terms in the model of the

form
∏p

i=1
dkiy(t)

dtki

∏p+q
i=p+1

dkiu(t)

dtki
, i.e., yp(t)uq(t). p+ q is referred to as the nonlinear

degree of parameter cp,q(·).

The input-output relationship for a considerably large class of nonlinear sys-
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6.1 Volterra series in the frequency domain and nonlinear output spectrum

tems described by the NDE model (6.1.1) can be approximately represented by a

Volterra series of order N as [48,160,169]

y(t) =
∑N

n=1
yn(t) (6.1.2)

yn(t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, · · · , τn)
n∏
i=1

u(t− τi)dτi (6.1.3)

where u(t) is input of system, y(t) is output of system, N is maximum nonlinearity

order of system, hn(τ1, · · · , τn) is the nth-order Volterra kernel. The nth-order

GFRF is de�ned as [24]

Hn(jω1, · · · , jωn) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, · · · , τn)e−j(ω1τ1+···+ωnτn)dτ1 · · · dτn (6.1.4)

Then in the frequency domain, (6.1.2) and (6.1.3) can be written as

Y (jω) =
∑N

n=1
Yn(jω) (6.1.5)

Yn(jω) =
1√

n(2π)n−1

∫
ω1+···+ωn=ω

Hn(jω1, · · · , jωn)
n∏
i=1

U(jωi)dσω (6.1.6)

where
∫

ω1+···+ωn=ω
(·)dσω is integration on the super plane ω1 + · · ·+ ωn = ω. Y (jω)

is output spectrum, Yn(jω) is referred to as the nth-order output spectrum.

According to [124, 164], GFRFs for the NDE model (6.1.1) in terms of model

parameters can be recursively calculated as:

Ln(jω1, · · · , ωn) ·Hn(jω1, · · · , jωn)

=
K∑

k1,··· ,kn=1

c0,n(k1, · · · , kn)(jω1)k1 · · · (jωn)kn (6.1.7)

+
n−1∑
q=1

n−q∑
p=1

K∑
k1,··· ,kp+q=0

cp,q(k1, · · · , kp+q)

(
q∏
i=1

(jωn−q+i)
kp+i

)

×Hn−q,p(jω1, · · · , jωn−q)
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6 A novel parametric characteristic output spectrum function for nonlinear systems

+
n∑
p=2

K∑
k1,··· ,kp=0

cp,0(k1, · · · , kp)Hn,p(jω1, · · · , jωn)

where

Hn,p(·) =

n−p+1∑
i=1

Hi(jω1, · · · , jωn)Hn−i,p−1(jωi+1, · · · , jωn)(jω1 + · · ·+ jωi)
kp

Hn,1(jω1, · · · , jωn) = Hn(jω1, · · · , jωn)(jω1 + · · ·+ jωn)k1

Ln(jω1, · · · , jωn) = −
K∑

k1=0

c1,0(k1)(jω1 + · · ·+ jωn)k1

Moreover, Hn,p(jω1, · · · , jωn) can also be written as

Hn,p(jω1, · · · , jωn) =

n−p+1∑
r1 · · · rp = 1∑

ri=n

p∏
i=1

Hri(jωX+1, · · · , jωX+ri)(jωX+1, · · · , jωX+ri)
ki

where X =
∑i−1

x=1 rx. Then (6.1.7) can be written in a more concise form as

Hn(jω1, · · · , jωn) =
1

Ln

(
j

n∑
i=1

ωi

) n∑
q=0

n−q∑
p=0

K∑
k1,kp=0

cp,q(k1, · · · , kp)

×

(
q∏
i=1

(jωn−q+1)kp+i

)
Hn−q,p(jω1, · · · , jωn−q) (6.1.8)

Higher order GFRFs can be recursively calculated from lower-order GFRFs. The

�rst order GFRF is given as

H1(jω1) = −
∑K

k1=0 c0,1(k1)(jω1)k

L1(jω1)
(6.1.9)
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6.2 A novel parametric characteristic output

spectrum function for nonlinear systems

Nonlinear output spectrum is not only function of frequency variables but also

function of input magnitude and model parameters of interest. Based on the

parametric characteristic analysis results in [124], the nth-order GFRF can be

expressed as

Hn(jω1, · · · , jωn) = CE(Hn(jω1, · · · , jωn)) · fn(jω1, · · · , jωn) (6.2.1)

where fn(jω1, · · · , jωn) is a complex valued function vector with appropriate di-

mension, which is referred to as the correlative function of the parametric char-

acteristic CE(Hn(jω1, · · · , jωn)).

Equation (6.2.1) explicitly demonstrates the analytical relationship between sys-

tem GFRFs and system time domain nonlinear model parameters. Based on the

parametric characteristic analysis, system nonlinear characteristics can be studied

in the frequency domain from a novel perspective such as frequency characteristics

of system output frequency response, parametric sensitivity analysis and so on.

Substitute (6.2.1) into (6.1.6)

Y (jω)=
N∑
n=1

CE(Hn(jω1, · · · , jωn))
1√

n(2π)n−1

∫
ω1+···+ωn=ω

fn(jω1, · · · , jωn)
n∏
n=1

U(jωi)dσω

=
N∑
n=1

CE(Hn(jω1, · · · , jωn)) · Fn(jω1, · · · , jωn) (6.2.2)

Obviously, nonlinear parametric characteristic can be obtained as

CE(Y (jω)) =
N
⊕
i=1
CE(Hn(jω1, · · · , jωn)) (6.2.3)

Operation ⊕ is reduced vectorized sum which has the same de�nition as in [124].
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6 A novel parametric characteristic output spectrum function for nonlinear systems

(6.2.1) and (6.2.2) are nonlinear parameter characteristics of GFRF and system

output frequency response function, which clearly demonstrate analytical relation-

ship between nonlinear system model parameters and system GFRF, frequency

response functions. Nonlinear parameter characteristic analysis, such as in�uence

of certain nonlinear parameters on output frequency response, sensitivity anal-

ysis of nonlinear parameters, detailed results can be referenced to [27, 164, 170].

In [125], correlative function fn(jω1, · · · , jωn) are determined as functions of �rst

order GFRF and system nonlinear parameters, which has greatly enriched the

nonlinear parametric characteristics analysis theory. In this chapter, we take this

result one step further, correlative function fn(jω1, · · · , jωn) are explicitly deter-

mined as polynomials of system linear and nonlinear parameters.

In the following section, based on parametric characteristic vector CE(Hn(·)), al-

gorithms are provided to explicitly and rigorously determine the correlative func-

tion fn(jω1, · · · , jωn) and Fn(jω1, · · · , jωn) directly in terms of system linear pa-

rameters, in a more analytical form. Then system's GFRF and output frequency

spectrum can be easily expressed as a clear structure in terms of linear and nonlin-

ear parameters. The proposed algorithms enable simultaneous analysis of linear

and nonlinear parameters' e�ect on system GFRF and output frequency response

functions.

6.2.1 GFRFs with respect to system parameters

For convenience, linear parameters in Ln(·) are separated into the following two

parts:

cp,q = ĉp,q(k1) + c̃p,q(k1), p+ q = 1, k1 = 0, 1, · · · , K

where ĉp,q(k1) denotes linear components of no interest and c̃p,q(k1) are linear

parameters to be analyzed and designed. Moreover, de�ne ε = [ε0, ε1, · · · , εK ],

εk1 ∈ N+, k1 = 0, · · · , K. c̃ε =
∏K

k1=0 c̃
εk1
1,0 , which only involves linear parameters

of interest.
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6.2 A novel parametric characteristic output spectrum function for nonlinear systems

Proposition 6.1 [134]: If |L̂−1
n (ωn)L̃n(ωn)| < 1, then the following equation

holds:

L−1
n (ωn) = φ0

n(ωn) +
∞∑

ε0+ε1+···+εK=1

φεn(ωn)c̃ε (6.2.4)

where

φεn(ωn) = (−1)

K∑
k1=0

εk1
[L̂−1

n (ωn)]

K∑
k1=0

εk1+1

(jω1+· · ·+jωn)

K∑
k1=0

k1×εk1
(6.2.5)

L̃n(ωn) =
K∑

k1=0

c̃1,0(k1)(jω1 + · · ·+ jωn)k1

φ0
n(ωn) = L̂n(ωn) =

1∑K
k1=0 ĉ1,0(k1)(jω1 + · · ·+ jωn)k1

(6.2.4) can also be written in the following concise form:

L−1
n (ωn) = χLy · ϕyn(ωn) (6.2.6)

where χLy = [1, c̃ε], which only involves the output linear parameters of interest.

ϕyn(ωn) = [φ0
n(ωn),

∑∞
ε0+ε1+···+εK=1 φ

ε
n(ωn)]T , which only involves output linear pa-

rameters of no interest and frequency variables ωn.

Proposition 6.2 The �rst order GFRF of the nonlinear system can be given as

product of two polynomials consisted of system linear parameters

H1(jω1) = χLy ⊗ χLu · Φ1(ĉp,q(k1); jω1) (6.2.7)

where p+q = 1, χLu = [1, c̃0,1(k1)], k1 = 0, · · · , K, χLy = [1, c̃ε]. Φ1(ĉp,q(k1); jω1), k1 =

0, · · · , K is a complex valued function vector with appropriate dimension, which

involves only linear parameters of no interest and frequency variables. Operation

⊗ is reduced Kronecker product, which has same de�nition as in [124].

Proof : The �rst order GFRF (6.1.9) can be rewritten as:
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6 A novel parametric characteristic output spectrum function for nonlinear systems

H1(jω1) =−
∑K

k1=0 ĉ0,1(k1)(jω1)k1 +
∑K

k1=0 c̃0,1(k1)(jω1)k1

L1(jω1)

=
[1, c̃0,1(k1)][ĉ0,1(k1)(jω1)k1 (jω1)k1 ]T

L1(jω1)
(6.2.8)

Then substitute (6.2.6) into (6.2.8), the following equation can be obtained

H1(jω1) = χLu · ϕu1(ω1) · χLy · ϕy1(ω1) (6.2.9)

where ϕu1(ω1) = [ĉ0,1(k1)(jωk1)
k1 , (jω1)k1 ]T . In (6.2.9), ϕu1(ω1), ϕy1(ω1) are func-

tions of linear parameters of no interest, which are independent of system linear

parameter to be analyzed in χLu and χLy. So the �rst order GFRF can be written

as a polynomial of linear parameters in χLu⊗χLy. Thus (6.2.9) can be written in

a more concise form as

H1(jω1) = χLy ⊗ χLu · Φ1(ĉp,q(k1); jω1), p+ q = 1.

This completes the proof.

Based on the results in Proposition 6.2, the nth order GFRF of system (6.1.1) can

be rewritten as a polynomial function with respect to system linear and nonlinear

parameters as follows:

Proposition 6.3 Let sxιn = cp0,q0(·)cp1,q1(·) · · · cpk,qk(·) (ι = 1, · · · ,L), which is

the ι-th nonlinear parametric monomial in CE(Hn(·)). n(sxιn ) is the order of the

GFRF, in which the monomial sxιn is generated, n(sxιn ) =
∑xι

i=1(pi+qi)−xι+1, xι

is the number of parameters in sxιn ,
∑xι

i=1(pi + qi) is summation of the subscript of

all the parameters in sxιn , if xι < 1,
∑xι

i=1(·) = 0, n(1) = 1. The n-th order GFRF

for system (6.1.1) can be formulated as

Hn(·) =
L∑
ι=1

sxιn Fn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) (6.2.10)

Fn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) = ϕn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sx))[χ

Ly]ρ+x[χLu]ρ (6.2.11)
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6.2 A novel parametric characteristic output spectrum function for nonlinear systems

where ϕn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sx)) represents function of frequencies ωl1 · · ·ωln and

output linear parameters of no interest, and ρ = n−
∑k

i=0 qi, li for i = 1, · · · , n(sxιn )

is a positive integer representing the index of the frequency variables. [χLy]ρ+x =[
χLy ⊗ · · · ⊗ χLy

]︸ ︷︷ ︸
ρ+x

, [χLu]ρ =
[
χLu ⊗ · · · ⊗ χLu

]︸ ︷︷ ︸
ρ

.

Proof: Let ΓCE(n) be a set composed of all the elements in CE(Hn(·), and Γf (n)

be a set of complex valued functions fn(·). Based on results in [125], the nth-order

GFRF can be expressed as

Hn(·) = CE(Hn(·)) ·Ψn(CE(Hn(·)))

where Ψn is a mapping

Ψn : ΓCE(n)→ Γf (n)

Then for any nonlinear parameter monomial sxιn in CE(Hn(·)), there exists a

complex valued correlative function Fn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

), which indicates that

the nth order GFRF Hn(·) can be written as (6.2.10).

Based on results in [125], the correlative function can be written as a function of

�rst order GFRF and Li(·)

Fn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) =
ϕn(sxιn ;ωl1 · · ·ωln(sxιn )

)[
L(ωl1 · · ·ωln(sxιn )

)
]x ρ∏

i=1

H1(jωl̄i) (6.2.12)

where r1, · · · , rρ are ρ integers taken from [1, 2, · · · , n(sxιn )] without repetitions, l̄ =

[r1, · · · , rρ] is a set of integer representing the index of the frequency variables.

Substitute (6.2.6) and (6.2.7) into (6.2.12), (6.2.11) can be obtained. This com-

plete the proof.

Remark 6.1 In Proposition 6.3, the GFRFs are given in an explicit and straight-

forward structure in terms of system nonlinear parameters, the �rst order GFRF
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6 A novel parametric characteristic output spectrum function for nonlinear systems

H1(·) and L−1
i (.), thus in�uence of system linear and nonlinear parameters on

system GFRFs can be simultaneously investigated based on results in Proposition

6.3.

6.2.2 Novel pCOS function with respect to both linear and

nonlinear parameters

The analytic relationship between GFRFs and system linear and nonlinear param-

eters has been shown in Proposition 6.3. Nonlinear output spectrum is determined

by GFRFs and input spectrum, thus how system linear and nonlinear parameters

a�ect nonlinear output spectrum can be directly obtained based on results in

Proposition 6.3.

Proposition 6.4 A novel parametric characteristic output spectrum of system

(6.1.2) in terms of system linear and nonlinear parameters can be given as

Y (jω) =
N∑
n=1

Yn(jω) (6.2.13)

Yn(jω) =
L∑
ι=1

sxιn [χLy]ρ+x[χLu]ρψn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) (6.2.14)

where ψn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) is function of frequency variables, input magnitude

and irrelevant linear parameters.

Proof : According to (6.1.5) and (6.1.6), nonlinear output spectrum can be written

as:

Y (jω) =
N∑
n=1

1

(2π)n−1

∫
· · ·
∫
ω1+···+ωn=ω

Hn(jω1, · · · , jωn)
n∏
i=1

U(ωi)dωi

Since sxιn , [χLyn ]ρ+x and [χLun ]ρ are all system parameters, substitute (6.2.10) into

the above equation, (6.2.14) can be obtained. This completes the proof.
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6.2 A novel parametric characteristic output spectrum function for nonlinear systems

Procedure for calculation of the novel pCOS is given as follows:

Procedure 1: Calculation of the novel pCOS function

(1) Determine the polynomial representation of Li(·) and H1(·) based on meth-

ods in Proposition 6.1 and Proposition 6.2

(2) Determine structure of the novel pCOS function based on method proposed

in Proposition 6.4.

(3) Calculate coe�cients ψn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

).

Remark 6.2 ψn(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) can be determined based on simulation or

experimental data by Least Square method in terms of concerned linear and non-

linear characteristic parameter over given parameter's range.

Remark 6.3 It is noticed that the novel parametric characteristic output spec-

trum is a polynomial function with respect to system linear and nonlinear pa-

rameters. This relationship between the nonlinear output spectrum and system

linear and nonlinear parameters in (6.2.14) is referred to as the novel parametric

characteristic output spectrum function, which is not only function of frequency

variables, but also functions of system's linear and nonlinear parameters (to be

designed and analyzed). The novel pCOS function proposed in this chapter is a

strong complement to the nCOS function-based method proposed in [49,124,125],

which developed a systematic method to express the nonlinear output spectrum

function as an explicit polynomial function of nonlinear characteristic parame-

ters and the new nCOS function proposed in [134], which only investigated the

relationship between nonlinear output spectrum and system linear parameters.
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6 A novel parametric characteristic output spectrum function for nonlinear systems

6.3 A case study

The NDE model (6.1.1) has been widely used in mechanical system modelling.

For example, NDE model of a single degree-of-freedom suspension system with

cubic nonlinear damping is given by

s
m

s
z

u
z

s
F

d
F

Fig. 6.1: 1-DOF suspension system

ms z̈s(t) + k (zs(t)− zu(t)) + c1 (żs(t)− żu(t)) + c3 (żs(t)− żu(t))3 = 0 (6.3.1)

Denote z(t) = zs(t)− zu(t), equation (6.3.1) can be rewritten as

ms z̈(t) + k z(t) + c1 ż(t) + c3 ż(t)3 = Fω(t) (6.3.2)

where Fω(t) = −ms z̈u(t). Equation (6.3.2) is a speci�c case of (6.1.1) with

c0,1(2) = ms, c1,0(2) = ms, c1,0(0) = k,

c1,0(1) = c1, c3,0(1, 1, 1) = c3, else cp,q(·) = 0.

6.3.1 Analysis and design of nonlinear system

The main objective of this section is to study the e�ect of system damping pa-

rameters c1 and c3 on system output responses over the concern ranges. The

output frequency response of the 1-DOF suspension system up to 5th order can

be calculated as follows:

140



6.3 A case study

(1) Determine the polynomial representation of Ln(·) and H1(·) in terms of system

damping coe�cients c1 and c3 based on methods in Proposition 6.1 and 6.2. In

this case, only parameter c1,0(1) is the linear parameter of interest, so ε = [ε1],

where ε1 represents the nonlinear order of linear parameters c1,0(1) in χLy.

L−1
n

(
j
∑n

i=1
ωi

)
= χLy · ϕyn(ωn) = [1 c1 · · · cε11 ]ϕyn(ωn)

H1(jω) = χLy ⊗ χLu · Φ1(ĉp,q(k1); jω1)

= [1 c1 · · · cε11 ]Φ1(ĉp,q(k1); jω1), p+ q = 1.

(2) Determine structure of system output spectrum. Nonlinear characteristic pa-

rameters of the system are obtained as

CE(H1(·)) = [1], CE(H3(·)) = [c3], CE(H5(·)) = [c2
3].

According to Proposition 6.3, GFRFs up to �fth order can be obtained as fol-

lowing:

For �rst order GFRF: x = 0, s0 = 1, ρ = 1.

H1(jω) = 1 · F1(1;ω) = χLy · ϕ1(1;ω)

For third order GFRF: x = 1, s1 = c3,0(1, 1, 1), ρ = 3.

H3(jω) = c3,0(1, 1, 1) · F3(c3,0(1, 1, 1);ω) = c3,0(1, 1, 1) · [χLy]3+1 ·ϕ3(c3,0(1, 1, 1);ω)

For �fth order GFRF: x = 2, s2 = c2
3,0(1, 1, 1), ρ = 5

H5(jω) = c2
3,0(1, 1, 1) · F5(c2

3,0(1, 1, 1);ω) = c2
3,0(1, 1, 1) · [χLy]5+2 · ϕ5(c2

3,0(1, 1, 1);ω)

(3) Determine output spectrum.

Y1(jω) = χLy · ψ1(1;ω)
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6 A novel parametric characteristic output spectrum function for nonlinear systems

Y3(jω) = c3,0(1, 1, 1) · [χLy]3+1 · ψ3(c3,0(1, 1, 1);ω)

Y5(jω) = c2
3,0(1, 1, 1) · [χLy]5+2 · ψ5(c2

3,0(1, 1, 1);ω)

where ψi(·), i = 1, 3, 5 are coe�cients to be calculated. Then system output

spectrum up to �fth order can be obtained as:

Y (jω) =
∑5

n=1
Yn(jω)

Parameters for the single-DOF suspension system are given as: ms = 240, and k =

15394. System output frequency response at resonant frequency is always of great

importance. So resonant frequency ωr is �rst chosen as input frequency. Although

high linear damping can e�ectively suppress the resonant peak, it will also degrade

system isolation performance at higher frequency domain. Thus, system response

out of resonant frequency domain should also be taken into consideration. The

excitation input are chosen as z̈u(t) = 4.2 sin(ωrt) and z̈u(t) = 4.2 sin(6ωrt), where

ωr =
√
k/ms is the resonant frequency of the suspension system. Then coe�cients

can be calculated from system characteristic output spectrum responses subject

to given input when damping parameters c1 and c3 are over the following concern

ranges c1 ∈ [500, 1300], c3 ∈ [800, 2800].

To verify validity of the proposed approach, comparisons of output frequency re-

sponse that obtained via simulation and the method proposed are given in Fig.6.2,

from which it can be seen that larger truncation order ε1 for linear parameters c1

results in better match between simulation results and estimated output spectrum.

This veri�es the e�ectiveness the approach proposed in this chapter.

Then output frequency response in terms of linear damping c1 and nonlinear

damping c3 at resonant frequency ωr and high frequency 6ωr are given in Fig.6.3

and Fig.6.4, respectively.

From Fig.6.3, it can be seen that both high linear damping and high nonlinear

damping are helpful to suppress the resonant peak. But the performance improved
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Fig. 6.2: Amplitude of Y (jω) under z̈u(t) = 4.2 sin(ωrt) (a) c3 = 1000 and (b)
c1 = 500.

Fig. 6.3: Amplitude of Y (jω) with c1 and c3 under input z̈u(t) = 4.2 sin(ωrt)

Fig. 6.4: Amplitude of Y (jω) with c1 and c3 under input z̈u(t) = 4.2 sin(6ωrt)
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6 A novel parametric characteristic output spectrum function for nonlinear systems

by increasing the linear damping is more obvious. From Fig.6.4, it is observed that

high frequency performance is sharply degraded by linear damping, but almost

not a�ected by the nonlinear damping. Then we can come to the conclusion that

suspension system with proper small linear damping and large nonlinear damping

can achieve better performance at both resonant and high frequency domains.

To further test vibration isolation performance of the suspension system with the

above damping design strategy, random input including low and high frequency

disturbances are respectively applied to the system. The disturbances are cor-

respondingly chosen as z̈u(t) = 0.2 sin(ωrt) and z̈u(t) = 2.0sin(6ωrt), ωr is the

resonant frequency. Suspension acceleration response in time domain with di�er-

ent damping are given in Fig.6.5.
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Fig. 6.5: Acceleration response under di�erent damping. (a) linear damping (c1 =
500, c3 = 0) and nonlinear damping (c1 = 800, c3 = 2800), (b) linear
damping (c1 = 1300, c3 = 0) and nonlinear damping (c1 = 800, c3 =
2800).

Fig.6.5(a) shows acceleration under linear damping and nonlinear damping, from

which it is observed that nonlinear damping outperforms linear damping. Fig.6.5(b)

are comparison results of acceleration response with high linear damping and high

nonlinear damping, from which we can see that large linear damping degrades high

frequency performance. The linear and nonlinear parameters analysis method

proposed in this chapter can be seen as a powerful tool in passive suspension, or
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6.3 A case study

passive vibration isolation system design. With this method, both linear and non-

linear parameters can be designed to guarantee better performance. This method

can also be applied to parameter analysis and design of multi-degree-of-freedom

system. In that case, more frequencies should be included.

6.3.2 Application to fault identi�cation of closed-loop

nonlinear control system

In this part, the parameter analysis approach is applied to identify controller

and plant faults of the closed-loop system. Generally, in practical systems, only

measured output data can be obtained for nondestructive evaluation. Hence, the

hybrid parameters analysis method proposed in this chapter, together with an n-th

order nonlinear output spectrum calculation method via measured output [49] can

provide an in-depth insight of fault characteristics analysis and identi�cation.

Computation of the nth-order output spectrum

The output spectrum of a single input single output system up to nth-order can be

analytically computed based on simulation or experimental data and least square

method [49, 124, 125]. Considering excitation input βpU(jω) with magnitude βp,

the nonlinear output spectrum in (6.1.5) is presented as

Y (jω)βp =
∞∑
n=1

βnp Ŷn(jω) =
N∑
n=1

βnp Ŷn(jω) + σ[N ](jω) (6.3.3)

where σ[N ](jω) represents the truncation error. To calculate nth-order output

spectrum Ŷn(jω), the system is excited by input βpU(jω) with the same frequency

but di�erent amplitude, where p = {1, 2, · · · , N}. Correspondingly, system output

Y (jω)β1 , Y (jω)β2 , · · ·, Y (jω)βN can be obtained. Then the nth-order output
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6 A novel parametric characteristic output spectrum function for nonlinear systems

spectrum Yn(jω), n ∈ {1, 2, · · · , N} is calculated by least square method


Ŷ1(jω)

Ŷ2(jω)
...

ŶN(jω)

 =


β1 β2

1 · · · βN1

β2 β2
2 · · · βN2

...
...

. . .
...

βN β2
N · · · βNN



−1 
Y (jω)β1

Y (jω)β2
...

Y (jω)βN

 (6.3.4)

The square matrix is nonsingular if β1 6= β2 6= · · · 6= βN . An excitation magnitude

β selection method in [49] can be adopted. U-shaped |Ŷn(jω)| v βp curve can

be obtained with a series of βp, which starts from a small value. The optimal βp

should locate around the bottom of the curve which corresponds to the minimum

estimation error for |Ŷn(jω)|.

Then according to (6.2.14), we can obtain:

Yn(jω) = βnŶn(jω)

= βn

[
L∑
ι

sxιn [χLy]ρ+x[χLu]ρψ̂n(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

)

]
(6.3.5)

where ψ̂n(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) is a function of frequency variables and linear

parameters of no interest.

Fault identi�cation of closed-loop system

For practical systems modeled as the NDE model (6.1.1), consider a state feedback

controller u(t) = K(x(t)) x(t), then the closed-loop system is still a NDE model.

Then output spectrum of the closed-loop system can be explicitly formulated as

(6.2.13) and (6.2.14). The output spectrum value can also be directly estimated

via the aforementioned decomposition method in (6.3.4). Thus parameters in-

cluding actuator parameters and plant parameters in the output spectrum can

be determined. Finally, compare the estimated parameters with known systems'

information, the fault can be easily detected and located. The fault detection
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method can be summarized as follows:

Procedure 2: Fault detection of closed-loop control system

(1) Determine the optimal β with the excitation magnitude selection method.

(2) Determine structure of Yn(jω) according to method proposed in Proposi-

tion 6.4. Then output spectrum Ŷn(jω) can be calculated as

Ŷn(jω)=
L∑
ι

sxιn [χLy]ρ+x[χLu]ρψ̂n(sxιn )(s
xι
n ;ωl1 · · ·ωln(sxιn )

) (6.3.6)

(3) Calculate the nth order output frequency response Ŷn(jω) using the decom-

position method with excitation input βU(jω). Coe�cients ψ̂n(sxιn )(s
xι
n ;ωl1 · · ·

ωln(sxιn )
) can be calculated over given parameters' ranges (cp0,q0 , · · ·, cpk,qk ).

(4) Then cp0,q0(·), · · · , cpk,qk(·) can accordingly be calculated. Compare them to

known system parameters, fault can be identi�ed and located.

Case study

In this part, we still consider the example in Section 6.3. To achieve better vibra-

tion isolation performance, active control method based on T-S fuzzy nonlinear

controller will be used in this system. De�ne x1(t) = z(t) and x2(t) = ż(t),

denote x(t) = [x1(t) x2(t)]T , then the nonlinear system can be represented on

x2(t) ∈ [−d, d] by the following T-S fuzzy system

ẋ(t) =
∑2

i=1
hi(x(t)) [Ai x(t) +Bi u(t) +Bωi Fω(t)] (6.3.7)

147



6 A novel parametric characteristic output spectrum function for nonlinear systems

where membership functions are h1(x(t)) = 1−x2(t)2/d2, and h2(x(t)) = x2(t)2/d2.

System matrices are given as follows:

A1 =

 0 1

− k
ms
− c1
ms

 , A2 =

 0 1

− k
ms
− c1
ms
− c3d2

ms


B1 = B2 =

[
0 1
]T
, Bω1 = Bω2 =

[
0 1

ms

]T
For the aforementioned fuzzy system, a fuzzy controller will be designed to achieve

better vibration isolation performance. Controller gains are expressed as:

K1 = [k11 k12], K2 = [k21 k22] (6.3.8)

The overall controller can be represented as:

u(t) =
∑2

i=1
hi(x(t))Kix(t) (6.3.9)

= k11x1(t) + k12x2(t) +
k21 − k11

d2
x1(t)x2

2(t) +
k22 − k12

d2
x3

2(t)

By substituting (6.3.9) into (6.3.2), the closed-loop system is obtained as:

ms z̈(t)+a1 z(t)+a2 ż(t)+a3 ż
3(t)+a4 z(t)ż2(t)=Fω(t) (6.3.10)

where a1 = (k − k11), a2 = (c1 − k12), a3 = (c3 − k22−k12
d2

), and a4 = −k21−k11
d2

.

Obviously, the sti�ness and damping coe�cients of the closed-loop system (6.3.10)

are recon�gured by the controller to achieve better performance. The system

output y(t) is chosen as y(t) = z̈s(t). For given system parameters ms = 240,

k = 15394, c1 = 385.4, c3 = 100, and d = 5, a fuzzy controller is designed based

on the method in [171] and the controller gains are given as follows

K1 =[7661.5089, −4785.8861], K2 =[7664.1038 − 4685.0831].

As shown in Fig.6.6, we mainly consider multiplicative faults caused by the non-
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Fig. 6.6: Damper and controller faults in the closed-loop control system

linear damper and controller. A typical fault of nonlinear damper is the damper

force drift caused by oil leakage, physical deformation and other factors. Nonlin-

ear damping coe�cient c3 varying in the range of c3 ∈ [10 200] is used to mimic

the damper fault. The normal value of c3 is 100. For convenient analysis, the

controller fault distribution matrix Ri is de�ned as

R1 =

1 0

0 rc

 , R2 =

1 0

0 rc

 . (6.3.11)

where controller fault rate rc ∈ [0 1] is used to describe the fault extent. rc = 1

means no fault occurs in the controller. The controller fault is mimicked by

adopting controller rate varying in the range of rc ∈ [0.40 0.95]. The faults are

assumed to be slow time-varying, then the parameters at the moment of estimation

will remain constant.

The closed-loop system (6.3.10) can be viewed as a speci�c case of (6.1.1) with

the following parameters

c1,0(2) = ms, c1,0(0) = a1, c1,0(1) = a2,

c3,0(1, 1, 1) = a3, c3,0(0, 1, 1) = a4, else cp,q(·) = 0.

Since parameters c3, k12, and k22 are closely related to system faults, a2 and a3
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6 A novel parametric characteristic output spectrum function for nonlinear systems

are the concerned parameters in the closed-loop control system (6.3.10). Thus,

parameter c1,0(1) is the linear parameters of interest, ε = [ε1], where ε1 represents

the nonlinear order of linear parameters c1,0(1) in χLy. Consequently, the poly-

nomial representation of L−1
n (·) and H1(·) in terms of system linear parameters

c1,0(1) can be determined as:

L−1
n

(
j
∑n

i=1
ωi

)
=χLy · ϕyn(ωn) = [1 a2 · · · aε12 ]ϕyn(ω)

H1(jω) =χLy ⊗ χLu · Φ1(ĉ0,1(l); jω)

=[1 a2 · · · aε12 ]Φ1(ĉ0,1(l); jω)

Further, nonlinear characteristic parameter of the system can be obtained as

CE(H1(·)) = [1],CE(H3(·)) = [a3, a4]. Then output spectrum up to third or-

der can be written as:

Y (jω) = Y1(jω) + a3F3(a3;ω) + a4F3(a4;ω)︸ ︷︷ ︸
Y3(jω)

(6.3.12)

Based on output spectrum estimation (6.3.3), (6.3.12) can be reformed as:

Y (jω) =βŶ1(jω) + β3 [a3F̂3(a3;ω) + a4F̂3(a4;ω)]︸ ︷︷ ︸
Ŷ3(jω)

(6.3.13)

According to Proposition 6.4, F̂3(a3;ω) and F̂3(a4;ω) can be calculated as:

F̂3(a3;ω) = [χLy]3+1 · ψ̂3(a3;ω), F̂3(a4;ω) = [χLy]3+1 · ψ̂3(a4;ω)

Then it is easy to obtain

Ŷ1(jω) =[1 a2 · · · aε12 ]ψ̂1(1;ω) (6.3.14)

Ŷ3(jω) =a3[1 a2 · · · aε12 ]4 ψ̂3(a3;ω)a4[1 a2 · · · aε12 ]4 ψ̂3(a4;ω) (6.3.15)

where ψ̂i(·), i = 1, 2, 3 are column vectors, which are independent of a2, a3, a4 and
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6.3 A case study

can be determined based on simulation or experimental data.

The linear parameters truncation order ε1 = 2, excitation magnitude is selected

as β = 0.02 based on the excitation magnitude selection method, then coe�cients

ψ̂1(1;ω), ψ̂3(a3;ω), and ψ̂3(a4;ω) are obtained as shown in Table 6.1 and 6.2.

Table 6.1: Coe�cients of �rst-order output spectrum

Coe�cient Value

ψ̂1(1;ω)(1, 1) 0.9103 - 0.0811i

ψ̂1(1;ω)(2, 1) -1.4505e-04 - 1.2784e-04i

ψ̂1(1;ω)(3, 1) 1.2201e-08 + 1.1116e-08i

Table 6.2: Coe�cients of third-order output spectrum

Coe�cient Value Coe�cient Value

ψ̂3(a3;ω)(1, 1) -7.64e-05 - 9.34e-05i ψ̂3(a4;ω)(1, 1) 3.88e-05 + 6.40e-05i

ψ̂3(a3;ω)(2, 1) 1.24e-07 + 1.56e-07i ψ̂3(a4;ω)(2, 1) -8.56e-08 - 1.34e-07i

ψ̂3(a3;ω)(3, 1) -8.82e-11 - 1.13e-10i ψ̂3(a4;ω)(3, 1) 7.72e-11 + 1.17e-10i

ψ̂3(a3;ω)(4, 1) 3.54e-14 + 4.57e-14i ψ̂3(a4;ω)(4, 1) -3.75e-14 - 5.58e-14i

ψ̂3(a3;ω)(5, 1) -8.71e-18 - 1.14e-17i ψ̂3(a4;ω)(5, 1) 1.08e-17 + 1.58e-17i

ψ̂3(a3;ω)(6, 1) 1.34e-21 + 1.77e-21i ψ̂3(a4;ω)(6, 1) -1.90e-21 - 2.75e-21i

ψ̂3(a3;ω)(7, 1) -1.27e-25 - 1.68e-25i ψ̂3(a4;ω)(7, 1) 2.00e-25 + 2.88e-25i

ψ̂3(a3;ω)(8, 1) 6.69e-30 + 8.89e-30i ψ̂3(a4;ω)(8, 1) -1.16e-29 - 1.66e-29i

ψ̂3(a3;ω)(9, 1) -1.51e-34 - 2.02e-34i ψ̂3(a4;ω)(9, 1) 2.85e-34 + 4.04e-34i

To identify the fault, excitation input with di�erent amplitude is imposed to the

system and the values of output spectrum Y1(jω) and Y3(jω) are obtained by

measuring the input and the corresponding output based on the equation (6.3.4).

According to the explicit relationships in (6.3.14) and (6.3.15), the concerned

parameters a2 and a3 can be obtained. For the real values of c3 and rc selected

from c3 ∈ [20 200] and rc ∈ [0.40 95], the estimation results of controller and

damper faults are demonstrated in Table 6.3.

Since the �rst-order output spectrum Y1(ω) is only dependent on the parameter

a2, the estimation results of control fault rate rc remain constant for di�erent

damping coe�cient c3. The detailed estimation errors of controller and nonlinear
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6 A novel parametric characteristic output spectrum function for nonlinear systems

Table 6.3: Estimation results of controller and nonlinear damper faults

rc = 0.40 rc = 0.45 rc = 0.50 rc = 0.55 rc = 0.60 rc = 0.65

c3 = 10
0.3974 0.4586 0.5144 0.5659 0.6141 0.6597
9.9858 10.7255 10.7577 10.4922 10.2348 10.1106

c3 = 50
0.3974 0.4586 0.5144 0.5659 0.6141 0.6597
49.9714 54.1588 54.3237 52.7272 51.1501 50.3968

c3 = 100
0.3974 0.4586 0.5144 0.5659 0.6141 0.6597
99.9535 108.4473 108.7815 105.5199 102.2946 100.7545

c3 = 150
0.3974 0.4586 0.5144 0.5659 0.6141 0.6597

149.9356 162.7364 163.2392 158.3139 158.4384 151.1112

c3 = 200
0.3974 0.4586 0.5144 0.5659 0.6141 0.6597

199.9177 217.0255 217.6971 211.1071 204.5823 201.4683
rc = 0.70 rc = 0.75 rc = 0.80 rc = 0.85 rc = 0.90 rc = 0.95

c3 = 10
0.7034 0.7460 0.7878 0.8299 0.8729 0.9184
10.1344 10.2569 10.3796 10.3625 10.0775 9.5177

c3 = 50
0.7034 0.7460 0.7878 0.8299 0.8729 0.9184
50.6233 51.5919 52.6894 52.9502 51.3555 47.6075

c3 = 100
0.7034 0.7460 0.7878 0.8299 0.8729 0.9184

101.2351 103.2590 105.5777 106.1875 102.9577 95.2199

c3 = 150
0.7034 0.7460 0.7878 0.8299 0.8729 0.9184

151.8470 154.9245 158.4658 159.4253 154.5580 142.8336

c3 = 200
0.7034 0.7460 0.7878 0.8299 0.8729 0.9184

202.4587 206.5917 211.3527 212.6602 206.1589 190.4450

damper faults are summarized in the Fig.6.7. The estimation error of controller

fault rate rc is less than 4%. The estimation error of nonlinear damper fault

is less than 8%. The estimation error is mainly introduced by the least-squares

method. Since the damper fault estimation is based on the estimation result of

controller fault rate rc, thus the estimation error on damper fault estimation is

further enlarged. Overall, the estimation errors are in an acceptable level.

Remark 6.4 For closed-loop control systems including multiple faults from plant

and controller, the proposed fault detection method uses only one single output as a

reference of evaluation. By resorting to a nonlinear decomposition method, multi-

ple fault characteristics can be independently extracted from the single output data

with relatively high accuracy. Compared with other methods using multiple output

data, the proposed fault detection method signi�cantly improves the e�ciency and
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Fig. 6.7: Estimation errors of controller and nonlinear damper faults

convenience of detection procedures especially in nondestructive evaluation cases

with high dimension. Moreover, higher order unmodeled dynamics or disturbances

do not a�ect the identi�cation results. Taking the case in this chapter for exam-

ple, only �rst- and third-order output spectrum are used to identify faults, thus

unmodeled dynamics or disturbances higher than third order in the system have

no in�uence on the identi�cation results, which further con�rms the robustness of

the proposed method.

6.4 Conclusion

A novel parametric characteristic function is proposed for analysis and design of

nonlinear systems in this chapter. The relationship between system parameters

and output spectrum is explicitly revealed and e�ects of both linear and nonlinear

parameters of interest on system output spectrum are simultaneously considered

and analyzed. This proposed approach serves as a strong complement to existing

nCOS function based method, which can only analyze and design system param-

eters in a separated manner, either linear or nonlinear and can provide a more

comprehensive and powerful solution for nonlinear system analysis and design.

Then together with a nonlinear decomposition method, the approach proposed in

153



6 A novel parametric characteristic output spectrum function for nonlinear systems

this paper are applied to fault detection of closed-loop control systems with plant

and controller faults.
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Chapter 7

Conclusions

This thesis has presented some novel control and analysis methods that can

improve nonlinear dynamic systems performance with disturbance, uncertainty,

time-delay, etc. The results obtained in this thesis foster the �exibility of fuzzy

model based control, enrich research on frequency domain method based on nCOS

function and o�er solutions to some existing technical problems. More speci�cally,

the conclusions have been summarized as follows:

Chapter 2 studies the fuzzy adaptive control for nonlinear suspension systems

based on a bio-inspired reference model. A general bio-inspired nonlinear struc-

ture, which can present ideal nonlinear quasi-zero sti�ness for vibration isolation,

is adopted as tracking reference model. Fuzzy logic systems are used to approx-

imate unknown nonlinear terms in nonlinear suspension systems. Particularly,

a nonlinear damping is designed to improve damping characteristics of the bio-

inspired reference model. With bene�cial nonlinear sti�ness and improved non-

linear damping of the bio-inspired reference model, the proposed fuzzy adaptive

controller can e�ectively suppress vibration of suspension systems with less actu-

ator force and much improved ride comfort, thus energy saving performance can

be achieved. Finally, a quarter-vehicle active suspension system with considering

payload uncertainties, general disturbance and actuator saturation is provided

for evaluating the validity and superiority of the bio-inspired nonlinear dynamics

based fuzzy adaptive control approach proposed in this chapter.

Chapter 3 deals with the fuzzy sampled-data control for nonlinear systems. First,

exponential stability analysis and stabilization problems for T-S fuzzy systems
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7 Conclusions

under aperiodic sampling have been investigated. Some classical problems (such

as H∞, L2 − L∞, passive and dissipative stability and stabilization problems)

have been solved successfully under a uni�ed framework by resorting to a novel

performance index−extended dissipative performance index. Through adopting a

sampling period dependent Lyapunov-Krasovskii function together with a novel

e�cient integral inequality, which has the advantages of reducing conservativeness,

new stability conditions consisting of both exponential stability and extended dis-

sipativity criterion have been established. Furthermore, a sampled-data controller

that can not only exponentially stabilize the system but also guarantee the pre-

scribed extended-dissipativity performance has been designed. A quarter-vehicle

active suspension system with taking into account the uncertain payload and ape-

riodic sampling has been provided for evaluating the validity and superiority (from

the aspects of disturbance attenuation level and closed-loop system dynamic per-

formance) of the extended dissipative control approach proposed in this thesis

over some ones of the existing literatures.

Chapter 4 focuses on imperfect premise matching fuzzy �lter design problem for

nonlinear systems with time-varying delay. Based on extended dissipative perfor-

mance index, the H∞, L2−L∞, passive and dissipative �lter problems have been

investigated. New delay-dependent conditions for performance analysis of �lter-

ing error system have been established in terms of LMIs by employing an e�cient

integral inequality. Finally, some numerical simulation results speci�c to H∞ and

L2−L∞ �lter problems have been provided to demonstrate the advantages of the

method proposed in this chapter over some recent ones in the literature.

In Chapter 5, optimization problems of mismatched fuzzy membership function

parameters based on frequency domain method is investigated. Finite frequency

fuzzy H∞ control for nonlinear mechanical system with mismatched premise vari-

ables is �rst studied. Then the H∞ index from disturbance to controlled output

has been minimized by designing a �nite frequency fuzzy controller over the con-

cerned frequency band. A novel nCOS function based optimization method, which
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aims to optimize the Gaussian membership functions' parameters, has been pro-

posed in this thesis. Compared to GA optimization method, the nCOS function

based frequency domain optimization approach can provide a more analytical rela-

tionship between system output spectrum and fuzzy membership function param-

eters and is time e�cient. Then the controller design and optimization methods

are applied to a nonlinear quarter suspension system. Simulation results demon-

strate that suspension performance over a concerned frequency band has been

further enhanced by combining the �nite frequency H∞ control with the nCOS

function based frequency domain optimization method.

On the basis of nCOS function, a novel pCOS function for the analysis and design

of nonlinear systems is proposed in Chapter 6. The relationship between system

parameters and output spectrum is explicitly revealed through the novel pCOS

function, and e�ects of both linear and nonlinear parameters of interest on system

output spectrum are considered and analyzed. This parameter analysis approach

is used to analyze and design linear damping and nonlinear damping of passive

suspension system. Then together with a nonlinear decomposition method, the

approach proposed in this paper are applied to fault detection of closed-loop con-

trol systems with plant and controller faults.

7.1 Future work

Following are the future research that will further verify and enhance the concepts

presented in this thesis:

1. The novel pCOS function proposed in Chapter 6 of this thesis aims at analysis

and design of SISO systems. The problem of pCOS function of MIMO systems is

worth further study.

2. Experimental validation: The control methods presented in this thesis are all

theoretical research. Thus, experimental test platform such as quarter suspension

setup can be designed to experimentally validate control approaches.
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