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Abstract

This thesis focuses on digital communication systems in which the received signal-

to-noise ratio is extremely low. Application examples include space communications

and multiple-user environments using code division multiple access and interleaver

division multiple access. Hence, only channel codes with performance very close

to the ultimate Shannon limit, i.e., bit-energy-to-noise-power-spectral-density ratio

Eb/N0 = −1.59 dB, are considered. In this thesis, we propose digital system designs

of two ultimate-Shannon-limit-approaching codes, namely turbo Hadamard codes and

concatenated zigzag Hadamard codes. Moreover, we propose ways to design punc-

tured turbo Hadamard codes and to lower the error floor of turbo Hadamard codes. We

also figure that efforts are needed to evaluate cycles in the design of a turbo Hadamard

code. To estimate the computation effort required, we generalize the problem and pro-

pose a new method to evaluate the number of closed paths in an all-one base matrix.

Firstly, we propose a pipelined digital design of a turbo Hadamard encoder/decoder

system. To accomplish a high throughput, we make use of a multiple sub-decoder ar-

chitecture to process multiple codes at the same time. Each sub-decoder is processing

the data of one codeword at anytime; and data from the same codeword will be pro-

cessed by different sub-decoders at different times. One iteration is completed when

the data from the same codeword is processed by all the sub-decoders once. Moreover,

tens of iterations are required to complete the decoding. Hence, the design challenges

include control of data flow within a sub-decoder; control of data flow among sub-

decoders; proper data storage to avoid data access conflicts; conversion of data formats
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to facilitate computations; effective interleavers that cause minimum latency. In order

to achieve performance close to the ultimate Shannon limit, code lengths of 216450,

287235 and 358020 are used. Since the code lengths are relatively long, effective use of

data storage is crucial. Also, the transmitter is required to send code bits in a way that

facilitates storing and processing of data at the receiving end. Note that new codeword

data are being received continuously and need to be stored as the decoder is process-

ing the existing codewords. The theoretical throughput of our digital design is derived

based on the given parameters such as hardware operating frequency, code length,

number of iterations, and length of the turbo trellis. Results indicate that at an oper-

ating frequency of 100 MHz, the proposed digital turbo Hadamard encoder/decoder

system achieves throughputs of 1.92 Gbps, 2.56 Gbps and 3.2 Gbps at code lengths of

216450, 287235 and 358020, respectively. The encoder/decoder system also realizes

a bit error rate of 10−5 at Eb/N0 = −0.45 dB, i.e., 1.14 dB from the ultimate Shannon

limit.

Secondly we realize that in the design of the turbo Hadamard encoder/decoder sys-

tem, relatively complex Bahl-Cocke-Jelinek-Raviv (BCJR) decoding is required and it

limits the operating frequency to 100 MHz. Thus we propose a pipelined digital design

of a concatenated zigzag Hadamard encoder/decoder system, in which BCJR decod-

ing is not needed. Again we propose a multiple sub-decoder architecture to process

multiple codes at the same time. However, different from the sub-decoders in the turbo

Hadamard decoder system, each sub-decoder in the concatenated zigzag Hadamard

decoder system processes a set of multiple codes at the same time; and the same set

of multiple codes is processed by different sub-decoders at different times. Such an

arrangement aims to improve the throughput and also the hardware utilization rate.

We overcome challenges similar to those occurring in the design of turbo Hadamard

encoder/decoder systems. The final concatenated zigzag Hadamard encoder/decoder

system is found to work with 50% increase in operating frequency compared with

the turbo Hadamard encoder/decoder system and with similar error performance. The
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drawbacks of the concatenated zigzag Hadamard encoder/decoder system, however,

are higher decoding latency and higher memory requirement.

Thirdly, we propose ways to optimize the turbo Hadamard codes. Punctured Hadamard

codes and punctured turbo Hadamard encoder/decoder systems are first investigated.

By puncturing some of the code bits and not sending those bits through the channel,

the rate of a code is improved and sometimes the bit error rate performance can be

improved too. Here, two methods to select the punctured Hadamard code bits, or

equivalently the puncturing patterns, are proposed. The first scheme aims to maxi-

mize the minimum Hamming distance of the punctured Hadamard codes. The upper-

bound of the minimum Hamming distance of punctured Hadamard codes is derived

and then an algorithm is proposed to find punctured Hadamard codes achieving close

to this bound. The second scheme aims to minimize the cross-correlations among

the punctured Hadamard codes. For punctured code sets having the same minimum

cross-correlation, a new metric has been proposed to identify sets that can further en-

hance the reliability of decoding. For Hadamard codes, the two proposed puncturing

schemes have shown error improvements over the use of random puncturing. More-

over, the scheme that minimizing the cross-correlations outperform that maximizing

the minimum Hamming distance. By applying the more superior scheme to puncture

Hadamard codes in a turbo Hadamard encoder/decoder system, the code rate is im-

proved with little change in error performance. Another way to optimize the turbo

Hadamard codes is to lower its error floor. At the high Eb/N0 region, we observe that

the error rate of the turbo Hadamard code may become flat. To tackle this issue, we

investigate the overall turbo Hadamard code structure by looking into an associated

parity-check matrix. By re-designing the interleavers and hence removing short cycles

in the parity-check matrix, we observe that the error floor can be lowered.

Finally, while studying the cycles of the turbo Hadamard code structure, we come

up with a new method to evaluate the number of cycles for a given parity-check ma-

trix. We further generalize the method and use it to evaluate the number of closed
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paths in an all-one base matrix. Theoretical results up to closed paths of length 10

have been derived and are verified by the exhaustive search method. Based on the the-

oretical work, results for closed paths of length larger than 10 can be further derived.

The results are particularly useful for estimating computational resources required in

designing parity-check matrices of low-density parity-check codes.
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Chapter 1

Introduction

1.1 Background

Digital communication has been embedded in our daily lives. The most common ex-

amples include 3G/4G/5G communications, Wi-Fi, and Internet connections via cables

or optical fibres. What these applications share in common is that information is trans-

mitted or communicated from one point to another. Fig. 1.1 depicts the typical blocks

of a digital communication system.

Firstly, the original information is compressed into sequences of M-ary symbols

by the source encoder. (In this thesis, we only consider the situation of binary trans-

mission, i.e., M = 2.) Then the channel encoder encodes the data by introducing

redundancy to the information sequences which can help recovering data from noise

and interference. The digital modulator modulates the encoded sequences into wave-

forms that are suitable for transmission and sends them to the physical channel [1].

For example, wireless signals will be sent via antennas to the air; while modulated

light signals will be sent along optical fibers. The physical channel, such as air and

optical fibre, introduces attenuation and distortion (e.g., interference, additive noise)

to the waveforms. At the receiving side, the operations are reversed. The demodulator

demodulates the received waveforms and produces channel observations. Based on

1
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Figure 1.1: Block diagram of a typical digital communication system.

the channel observations, the channel decoder decodes the code bits; and based on the

decoded bits, the source decoder decompresses and recovers the source information.

In particular, the role of the channel encoder/decoder pair is to improve the reliability

of the transmission process.

Channel coding techniques mainly consist of two categories: automatic repeat

request (ARQ) schemes and forward error correction (FEC) schemes [2]. In ARQ

schemes, channel codes only detect errors. Once one or more errors are detected, the

receiver will send a request to the transmitter to resend the codes. In FEC schemes,

channel codes add redundancy to the information and allow error correction through

a decoding algorithm at the receiving end. In some situations, more flexible schemes

may be desirable to accommodate different error protection requirements [2] and hy-

brid FEC/ARQ protocols are used [3]. In this thesis, we focus on the FEC codes. Note

that all FEC codes can be used in a hybrid FEC/ARQ scheme where the code is used

for both error correction and detection [4].

Among the FEC codes, turbo code, low-density parity-check (LDPC) code, and po-

lar code are the most widely studied and implemented error-correction codes over the

last two-and-a-half decades because of their capacity-approaching capabilities [5–13].

Turbo code was discovered in 1993 by Berrou and Glavieux [5] and was the first

capacity-approaching channel code ever widely used. LPDC code, though first studied

in 1960’s by Gallager [7], did not receive much attention until Mackey “rediscovered”

it in 1996 [8]. From the hardware design point of view, LDPC code has an advantage
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over the other two codes because it allows parallel processing with reasonable com-

plexity and hence can reduce the decoding latency. Among the aforementioned three

types of codes, only polar codes can theoretically reach the channel capacity, even

though the code length has to become infinitely long. Nonetheless, all of them can

achieve very low error rates with reasonable code lengths as they approach the capac-

ity limit. Moreover, some of the code bits can be punctured and not sent to the receiver.

In [14, 15], both the information bits and the parity-check bits are punctured to get a

good “turbo-like” code. Also, compatible punctured codes can be employed in hybrid

forward-error correction/automatic repeat-request (ARQ) systems [2, 3, 16, 17].

Both turbo code and LDPC code, when used in conjunction with Hadamard code,

have been shown to achieve performance very close to the ultimate Shannon limit, i.e.,

bit-energy-to-noise-power-spectral-density ratio Eb/N0 = −1.59 dB [18, 19]. Another

code with comparable performance is the concatenated zigzag Hadamard code [20].

In [18], it has been simulated that using 50 decoding iterations, a turbo-Hadamard code

can achieve a bit-error rate (BER) of 10−5 at Eb/N0 = −1.20 dB, i.e., within 0.39 dB of

the ultimate Shannon limit. Also, the LDPC-Hadamard/concatenated zigzag Hadamard

code can achieve a bit-error rate (BER) of 10−5 at Eb/N0 = −1.44/−1.15 dB, i.e., within

0.15/0.44 dB of the ultimate Shannon limit [19].

1.2 Motivation

This thesis focuses on digital communication systems in which the received signal-

to-noise ratio is extremely low. Application examples include space communications

and multiple-user environments using code division multiple access and interleaver

division multiple access. Hence, only channel codes with performance very close to

the ultimate Shannon limit are considered.

While turbo code or LDPC code used in conjunction with Hadamard code can

achieve performance very close to the ultimate Shannon limit [18,19], the code lengths
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used are quite long (> 100, 000). Such long lengths pose huge design challenges (such

as control of data flow, proper data storage to avoid data access conflicts, conversion

of data formats to facilitate computations, and effective interleavers) for the decoders,

especially when high throughput and low latency are required. Thus, no such en-

coder/decoder system designs have ever been proposed or realized. In this thesis, we

design and realize turbo Hadamard encoder/decoder system and concatenated zigzag

Hadamard encoder/decoder system. Pipelined digital designs are used to increase the

throughputs.

We have also proposed techniques to improve the code rate and error floor of turbo

Hadamard codes. By puncturing the code bits appropriately and not sending them to

the receiver, the code rate is improved. To lower the error floor of turbo Hadamard

codes, we study the property of a related parity-check matrix. By eliminating short

cycles of the matrix, the error floor is lowered.

Cycles in parity-check matrices affect performance of not only turbo Hadamard

codes, but also other high-performance channel codes such as LDPC codes. Tech-

niques such as density evolution [21] and extrinsic information transfer chart (EXIT

chart) [22, 23] have been used to design LDPC codes by optimizing the degree dis-

tributions. However, LDPC codes with the same degree distributions may have very

different error performance due to the existence of short cycles. Maximizing the girth

(shortest cycle) of LDPC codes is thus important in the design of quasi-cyclic LDPC

(QC-LDPC) code [24], QC-LDPC-convolutional code [25] and protograph LDPC code

[26]. Here, we propose a new method to evaluate the number of cycles in an all-one

base matrix. The technique is useful in estimating the resources required to design

good performing channel codes such as turbo Hadamard codes and LDPC codes.

1.3 Thesis Organization

This thesis is organized as follows.
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Chapter 2 provides a literature review. Key results of Shannon’s theorems are re-

viewed. The structure and decoding of turbo codes, LDPC codes, Hadamard codes and

concatenated Hadamard codes are presented.

Chapter 3 presents the detailed design of a turbo Hadamard encoder/decoder sys-

tem. The decoder consists of multiple sub-decoders which can process multiple codes

at the same time. The theoretical throughput of the digital design is derived based on

the given parameters such as hardware operating frequency, code length, number of it-

erations, and length of the turbo trellis. Results indicate that at an operating frequency

of 100 MHz, the proposed digital turbo Hadamard encoder/decoder system achieves

throughputs of 1.92 Gbps, 2.56 Gbps and 3.2 Gbps at code lengths of 216450, 287235

and 358020, respectively. The encoder/decoder system also realizes a bit error rate of

10−5 at Eb/N0 = −0.45 dB, i.e., 1.14 dB from the ultimate Shannon limit.

Chapter 4 proposes a pipelined digital design of a concatenated zigzag Hadamard

encoder/decoder system. Again a multiple sub-decoder architecture is employed to

process multiple codes at the same time. Different from the sub-decoders in the turbo

Hadamard decoder system, each sub-decoder in the concatenated zigzag Hadamard

decoder systems processes a set of multiple codes at the same time; and the same set

of multiple codes is processed by different sub-decoders at different times. The final

concatenated zigzag Hadamard encoder/decoder system is found to work with 50%

increase in operating frequency compared with the turbo Hadamard encoder/decoder

system and with similar error performance.

Chapter 5 optimizes the turbo Hadamard code from two perspectives — improving

the code rate and lowering the error floor. To improve the code rate, two methods

to select the punctured Hadamard code bits are proposed. The first scheme aims to

maximize the minimum Hamming distance of the punctured Hadamard codes while

the second scheme aims to minimize the cross-correlations among the punctured codes.

Then the more superior scheme is applied to puncture Hadamard codes in a turbo

Hadamard encoder/decoder system, and the error performance of the punctured code
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is simulated. To lower the error floor of a turbo Hadamard code, the parity-check

matrix related to the code is investigated. By re-designing the interleavers and hence

removing short cycles within the parity-check matrix, the error floor can be lowered.

Chapter 6 proposes a new technique for evaluating the number of closed paths in

an all-one base matrix. Theoretical results up to closed paths of length 10 have been

derived and are verified by the exhaustive search method.

Chapter 7 concludes the thesis. Major contributions are summarized and some

potential future works are presented.



Chapter 2

Literature Review

In this chapter, we review the concept of the channel capacity; and the structure and

decoding algorithm of turbo codes, LDPC codes, Hadamard codes and concatenated

Hadamard codes.

2.1 Channel capacity

In 1948, Claude Shannon’s paper “A Mathematical Theory of Communication” defined

information as a measurable quantity [27]. The entropy H of a random variable mea-

sures its average uncertainty. Supposing a random variable x has a discrete probability

distribution p(x) = {p1, p2, ..., pn}, then the entropy of x is defined as

H(x) = −
n∑

i=1

pi log pi. (2.1)

Similarly, for a random variable x with a continuous distribution and probability den-

sity function (PDF) p(x), its entropy is defined as

H(x) = −
∫ ∞

−∞
p(x) log p(x)dx. (2.2)

7
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In a digital communication system, both the input and output of the channel hold infor-

mation. Suppose a discrete memoryless channel has an input X and an output Y . The

joint entropy of the random variables (X,Y) is denoted as H(X,Y); and the conditional

entropy of the random variables (X,Y) is denoted as H(Y |X) or H(X|Y). Moreover, the

following relationship holds [28].

H(X,Y) = H(X) + H(Y |X) = H(Y) + H(X|Y). (2.3)

The mutual information of two random variables measures the amount of informa-

tion that one random variable contains about another. The mutual information of (X,Y)

is defined as [29]

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X). (2.4)

In this example, I(X; Y) measures the uncertainty reduction of the information X when

we received the channel output Y .

The capacity of the channel, denoted by C, is thus defined as the maximum mutual

information of input X and output Y for all distributions of source X, i.e.,

C = max
PX

I(X; Y). (2.5)

A typical example is the Additive-White-Gaussian-Noise (AWGN) channel with 0

means and variance σ2
n, which will be considered as the most common case in this

thesis. Considering the entropy of a one-dimensional Gaussian distribution with vari-

ance σ2, i.e.,

p(x) =
1√
2πσ

ex2/2σ2
, (2.6)

we have

H(x) = −
∫ ∞

−∞
p(x) log p(x)dx =

1
2

log2 2πeσ2. (2.7)
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The entropy of an AWGN noise is then given by

H(n) =
1
2

log2 2πeσ2
n. (2.8)

The maximum mutual information of transmitted signal X and received signal Y occurs

when Y also forms a white Gaussian ensemble since this is the greatest possible entropy

for a limited average power situation [27]. Assuming the input power is σ2
p, then the

capacity of the AWGN channel is

Cawgn = max(H(Y) − H(Y |X))

= maxH(Y) − H(n)

=
1
2

log2 2πe(σ2
p + σ2

n) − 1
2

log2 2πeσ2
n

=
1
2

log2

(
1 +

σ2
p

σ2
n

)
.

(2.9)

For an AWGN channel with power S , bandwidth W and noise power N, the capacity

in (2.9) becomes

Cawgn = 2W × 1
2

log2

(
1 +

S
N

)

= Wlog2

(
1 +

S
N

)
bits per second.

(2.10)

Now let us consider the minimum energy per bit (Eb) required for an AWGN channel.

Denoting the bit rate by R and the noise power spectral density by N0, then S = REb

and N = WN0. Using these expressions, (2.10) can be written as

R < C = W log2

(
1 +

REb

WN0

)

R
W

< log2

(
1 +

R
W

Eb

N0

)

Eb

N0
>

2R/W − 1
R/W

.

(2.11)

When the data rate R is small compared to the bandwidth W, we reach the ultimate
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Shannon limit, i.e.,

Eb

N0
>

2R/W − 1
R/W

> lim
R/W→0

2R/W − 1
R/W

= ln(2) = −1.59 dB. (2.12)

For most other channels, there is no closed-form solution for the channel capacity [30].

For example, the capacity of the general relay channel remains a challenge. Only an

upper bound has been obtained [31]. Besides studying the channel capacity, Shannon

also proved the channel coding theorem [27].

Theorem 1 (Shannon’s Noisy-Channel Coding Theorem): For any discrete mem-

oryless channel with capacity C the following statements hold: For any ε > 0 and rate

R < C, for sufficiently large N, there is a code of length N and rate ≥ R and a decoding

algorithm, such that the probability of block error is ≤ ε.
Shannon’s noisy-channel coding theorem shows the performance limitation of chan-

nel coding given a certain channel. That is to say, it is impossible to find a code that

can achieve infinitely small error probabilities when the signal-to-noise ratio (SNR) of

the communication system is smaller than −1.59 dB over an AWGN channel.

2.2 Turbo Codes

Shannon’s work did not provide the method to construct capacity-approaching channel

codes. This problem motivated intensive research efforts on good codes. However,

until early 90’s the performance of channel codes still were 3 dB or more away from the

theoretical Shannon limit. The discovery of turbo code [5,6] and block turbo code [32,

33] greatly shortened the gap to capacity. The turbo codes were soon put into practical

use such as 3G wireless phones, Digital Video Broadcast (DVB) systems, and Wireless

Metropolitan Area Networks (WMAN). Turbo codes are mainly categorized into two

groups: parallel concatenated convolutional code (PCCC) [34] and serial concatenated

convolutional code (SCCC) [35, 36].
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Input message

Interleaver

Figure 2.1: The encoder of a classical turbo code.

The classical turbo code, i.e., PCCC, consists of several parallel concatenated con-

volutional codes, which share the same but interleaved (permuted) messages. A ran-

dom interleaver usually performs better than the familiar block interleaver [37]. The

encoder of such turbo code is illustrated in Fig. 2.1. In the figure, the message D is

passed into two recursive systematic convolutional (RSC) encoders which produce two

sets of parity-check bits P1 and P2. RSC codes are usually preferred in the turbo codes

because the output weight of the RSC codes are approximately uncorrelated to the in-

put weight of the codes, which greatly reduces the generation of low-weight codes that

are harmful to the decoding performance. Generally, the principle of designing turbo

codes is to choose the best component codes by maximizing the effective distance of

the codes [38]. At high SNR regime, it is equivalent to maximizing the minimum-

weight codeword; however at low SNR regime, it is more important to optimize the

weight distribution of the code [39].

Iterative decoding, which adopts “soft-in/soft-out” algorithms instead of dealing
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RSC 

Decoder 1
Interleaver

Interleaver
RSC 

Decoder 2

De-Interleaver

De-Interleaver
Output

Figure 2.2: The decoder of a classical turbo code.

with hard decision algorithms, is used in the decoding of turbo codes. The turbo de-

coder shown in Fig. 2.2 consists of two RSC decoders to decode the two RSC compo-

nent codes, respectively. Both RSC decoders are soft-in soft-out maximum a posteriori

(MAP) decoders.

A unified framework of iterative decoding was first raised in [40]. For general

purpose, assume a code c is transmitted in a channel and a vector y is received. Also

denote u as an information bit of the code c. A “soft-in/soft-out” decoder is shown in

Figure. 2.3. The decoder basically has two inputs and two outputs.

1. Input 1: The log-likelihood-ratio (LLR) of all the received channel bits denoted

as Lcy.

2. Input 2: The log-likelihood-ratio (LLR) of a priori values for all information

bits denoted as L(u).

3. Output 1: The log-likelihood-ratio (LLR) of a posteriori values for all informa-

tion bits denoted as L(û).

4. Output 2: The log-likelihood-ratio (LLR) of extrinsic values for all information

bits denoted as E(û) .

The extrinsic information E(û) represents the soft information that u collects from all

the other coded bits. Moreover, the bit decisions are made based on output 1, which
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Soft-In Soft-Out 

Decoder

a priori LLRs for 

all information bits

channel LLRs for 

all coded bits 

a posteriori LLRs for 

all information bits

extrinsic LLRs for all 

information bits

Figure 2.3: Illustration of a soft-in soft-out decoder.

is defined as the a posteriori log-likelihood-ratio of the transmitted bit being a “0” to

that being a “1”, i.e.,

L(û) = L(u|y) = ln
P(u = “0”|y)
P(u = “1”|y)

. (2.13)

The iterative decoding process is as follows.

1. For uniformly-transmitted information bits, the a priori information L(u) = 0

during the first iteration of the decoding. For subsequent iterations, the extrinsic

information from the previous decoder is used as the a priori information of the

current decoder.

2. The soft-in soft-out decoder calculates the a posteriori information L(û) and the

extrinsic information E(û) based on L(u) and Lcy.

3. The extrinsic information is passed to the next decoder and act as the a priori

information of that decoder.

4. Repeat the above steps until the maximum number of iterations are reached.

Make hard decisions of the codewords based on L(û).

Note that generally the reliability of the decoded bits increases with an increasing

number of iterations.
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2.3 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were first proposed by Gallager in 1962 [7].

Due to the lack of the computational capability in that era, LDPC codes had remained

neglected for over 35 years. In 1996, McKay introduced a new class of block codes and

soon it was recognized that these block codes were in fact a “rediscovery” of the LDPC

codes [8]. Much research had been done to irregular LDPC codes [21, 41–43] which

could easily outperform turbo codes and approach the Shannon limit a lot closer [44].

Because of an increasing computational capability, LDPC codes can be deployed as a

key error correction component in many digital communication systems like WiFi [45],

WiMAX [46], DVB-S2 [47], CCSDS [48], ITU G.hn [49], and 4G/5G.

LDPC codes are linear block codes with sparse parity-check matrices, i.e., the num-

ber of non-zero entries in the parity-check matrices is very small. It is the sparseness

of the parity-check matrix that guarantees a minimum Hamming distance increasing

linearly with the code length, and thus a good error performance of LDPC codes with

long code length. An LDPC code is totally specified by a m × n parity-check matrix

H . We denote the number of non-zero elements in each column of H by wc and the

number of non-zero elements in each row of H by wr. Then the LDPC code is called

(wc,wr)-regular if wc and wr remain invariant for all columns and rows. Otherwise

the code is called irregular. The parity-check matrix of a (2, 3)-regular LDPC code is

shown in (2.14). Note that the matrix cannot be considered as sparse but it is only used

for illustrating the concept of a “regular” code.

H =



1 1 1 0 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 0 1 0 1 1



(2.14)

In [50], Tanner proposed using a graph to visualize the factorization of a code.
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Check nodes

Variable nodes

Figure 2.4: The Tanner graph of H given in (2.14). A cycle of length-6 is drawn as red.

A “Tanner” graph is a bipartite graph associated with a parity-check matrix H . The

graph has n variable nodes corresponding to the components of the codeword (columns

of H), and m check nodes corresponding to the parity-check constraints (rows of H).

An edge will be present between variable node j and check node i if the corresponding

element in the parity-check matrix H , denoted as hi j, is non-zero. Fig. 2.4 draws

the Tanner graph of H given in (2.14). A cycle in a Tanner graph is a sequence of

connected vertices which starts and ends at the same vertex in the graph, and which

contains other vertices no more than once. The length of a cycle is the number of edges

it contains. A cycle of length-6 is illustrated in Fig. 2.4 and drawn as red.

The classical decoding algorithm of LDPC codes is called a message-passing al-

gorithm because the decoding can be explained as the passing of messages along the

edges in the Tanner graph. The message-passing algorithm is also an iterative decod-

ing algorithm. The messages are passed from variable nodes to check nodes and vice

versa iteratively until the decoding is completed. Hard-decision message-passing al-

gorithms are called bit-flipping algorithms [51–53] where the messages being passed

are binary. Soft-decision message-passing algorithms are called belief propagation

(BP) algorithms [43,54] where the messages passed are probabilities that represent the

amount of belief about the codeword bits. In this section, we will briefly review the
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BP algorithm.

As in [55, 56], we denote

• M(n) as the set of check nodes that are connected to variable node n;

• N(m) as the set of variable nodes that are connected to check node m;

• M(n) \ m as the exclusion of m from the setM(n);

• N(m) \ n as the exclusion of n from the set N(m);

• Z(i)
n→m as the LLRs passing from variable node n to check node m at iteration i;

• L(i)
m→n as the LLRs passing from check node m to variable node n at iteration i;

• Z(i)
n as the a posteriori LLR of variable node n at iteration i;

• x = (x0, x1, ..., xN−1) as the codeword transmitted over an additive white Gaus-

sian noise (AWGN) channel;

• y = (y0, y1, ..., yN−1) as the noisy vector received.

We also assume the noise variance is σ2 and binary-phase-shift-keying (BPSK) mod-

ulation is used. The channel LLRs can be calculated as rn =
2yn
σ2 [57]. Then the BP

algorithm can be summarized as follows [55, 56].

1. Initialization: Set the a priori information at iteration 0 as the channel LLRs, i.e.,

Z(0)
n→m = rn.

2. Check-node updating: For each m and for n ∈ N(m), the check-to-variable mes-

sages are updated by

L(i)
m→n = 2tanh−1

( ∏

n′∈N(m)\n
tanh

(Z(i−1)
n′→m

2

))
. (2.15)
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3. Variable-node updating: For each n and for m ∈ M(n), the variable-to-check

messages are updated by

Z(i)
n→m = rn +

∑

m′∈M(n)\m
L(i)

m′→n (2.16)

and the a posteriori information of all variable nodes are calculated as

Z(i)
n = rn +

∑

m′∈M(n)

L(i)
m′→n. (2.17)

4. Decision: Make the decision on x̂ = (x̂0, x̂1, ..., x̂N−1) such that x̂n = 0 if Z(i)
n > 0;

and x̂n = 1 if Z(i)
n < 0. If the decoded codeword is a valid codeword, i.e., x̂HT =

0, or the maximum number of iterations is reached, the decoding process halts;

otherwise repeat Steps 2), 3) and 4) in the next iteration.

The BP algorithm iteratively computes the maximum a posteriori (MAP) of the code-

words. However, the MAPs obtained are only approximations unless the Tanner graph

of the code is cycle-free. It is because the extrinsic information provided to variable

node n becomes dependent on the original a priori LLR rn if the original a priori LLR

is returned to variable node n via a cycle in the Tanner graph [58]. That is to say, the

existence of cycles (especially short cycles) in the Tanner graph of a code reduces the

effectiveness of the iterative decoding process. An LDPC code with large girth (mini-

mum cycle length) is always preferred and short cycles (like cycle-4) should always be

avoided when designing LDPC codes as well as other high-performing channel codes.

2.4 Hybrid Concatenated Hadamard Codes

Both turbo code and LDPC code, when used in conjunction with Hadamard code,

have been shown to achieve performance very close to the ultimate Shannon limit

−1.59 dB [18, 19]. Another code with comparable performance is the concatenated
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zigzag Hadamard code [20]. In [18], it has been shown that using 50 decoding it-

erations, a turbo Hadamard code with an information length of 65534 and a code

length of approximately 3, 500, 000 (code rate ≈ 0.019) can achieve a bit-error rate

(BER) of 10−5 at Eb/N0 = −1.2 dB, i.e., within 0.4 dB of the ultimate Shannon limit.

The concatenated zigzag Hadamard codes with long block lengths achieve 10−5 BER

at Eb/N0 = −1.15 dB, about 0.45 dB from the ultimate Shannon limit. Also, the

LDPC-Hadamard/concatenated zigzag Hadamard code with an information length of

65536/65536 and a code length of approximately 22, 000, 000/3, 500, 000 (code rate

≈ 0.003/0.019) can achieve a bit-error rate (BER) of 10−5 at Eb/N0 = −1.44/−1.15 dB,

i.e., within 0.16/0.45 dB of the ultimate Shannon limit [19,20]. Such codes can be used

in a multi-user environment such as in a code-division multiple-access or an interleave-

division multiple-access (IDMA) [59] system, and for narrow-band interference sup-

pression [60]. They can also be used to carry embedded messages in point-to-point

wireless/wired communications. There are extended Hadamard codes such as concate-

nated twist Hadamard code [61] and parallel concatenated tree Hadamard codes [62]

which have shown good error floor performance when the code length is short.

2.4.1 Hadamard Code

A Hadamard code can be constructed from a Hadamard matrix of the same order. An

order-r Hadamard matrix Hn where n = 2r can be constructed recursively using

Hn =


+Hn/2 +Hn/2

+Hn/2 −Hn/2

 (2.18)
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with H1 = [+1]. For example, a Hadamard matrix of order r = 3 is given by

H8 =



+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1



. (2.19)

Moreover, −H8 is given by

−H8 =



−1 −1 −1 −1 −1 −1 −1 −1

−1 +1 −1 +1 −1 +1 −1 +1

−1 −1 +1 +1 −1 −1 +1 +1

−1 +1 +1 −1 −1 +1 +1 −1

−1 −1 −1 −1 +1 +1 +1 +1

−1 +1 −1 +1 +1 −1 +1 −1

−1 −1 +1 +1 +1 +1 −1 −1

−1 +1 +1 −1 +1 −1 −1 +1



. (2.20)

The codeword set of an order-r Hadamard code is formed by the columns of ±Hn (or

rows of ±Hn because Hn = HT
n where (·)T denotes the transpose operator). Moreover,

the codewords are denoted as {±h j : j = 0, 1, 2, . . . , 2r − 1} where +h j and −h j

represent the j-th columns of +Hn and −Hn, respectively.

The code length of an order-r Hadamard code is 2r. Denoting the code-bit positions

by {0, 1, 2, 4, 8, . . . , 2r−1}, the remaining bit indices are positions for parity-check bits.
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Since the information length is r + 1, the code rate rh is therefore given by

rh =
r + 1

2r (2.21)

With an increase of order r, the code rate of Hadamard code decreases exponentially.

We assume that all Hadamard codewords are transmitted with the same probability

over an additive white Gaussian noise (AWGN) channel having a noise variance σ2.

Let c = {c[i] : i = 0, 1, 2, . . . , 2r − 1} be a Hadamard codeword and x = {x[i] : i =

0, 1, 2, . . . , 2r − 1} be the received noisy observation. The logarithm-likelihood-ratio

(LLR) value of the i-th bit of the codeword is given by [18]

L[i] =ln
Pr(c[i] = +1|x)
Pr(c[i] = −1|x)

=ln
Pr(x|c[i] = +1)Pr(c[i] = +1)/p(x)
Pr(x|c[i] = −1)Pr(c[i] = −1)/p(x)

=ln
Pr(x|c[i] = +1)
Pr(x|c[i] = −1)

=ln

∑
c[i]=+1

Pr(x|c)
∑

c[i]=−1
Pr(x|c)

.

(2.22)

where the summations
∑

c[i]=±1
Pr(x|c) are over all Hadamard codewords with c[i] = +1

or −1. As the code is transmitted in AWGN channel, (2.22) can be further shown equal

to

L[i] =ln

∑
c[i]=+1

exp(− ‖c−x‖22σ2 )

∑
c[i]=−1

exp(− ‖c−x‖22σ2 )

=ln

∑
c[i]=+1

exp( 〈c,x〉
σ2 )

∑
c[i]=−1

exp( 〈c,x〉
σ2 )

(2.23)

where 〈c,x〉 represents the inner product of c and x.
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Figure 2.5: The “butterfly” structure of FHT (Hadamard matrix of order = 2).

As (2.23) shows, it is crucial to calculate the inner product of the received channel

LLRs and Hadamard codewords with c[i] = ±1. The calculation can be easily accom-

plished by a technique called Hadamard transform (HT). The Hadamard transform is

useful in many applications such as image coding [63] and algebraic space-time block

codes [64]. Fast Walsh-Hadamard transform or fast Hadamard transform (FHT) is an

efficient algorithm to compute the Hadamard transform. FHT is similar to fast Fourier

transform as both of their calculations follow a “butterfly” pattern. An example of FHT

with r = 2 is shown in Fig. 2.5. The FHT transforms the a priori LLR of the channel

observations x = x[i] (i = 0, 1, 2, . . . , 2r − 1) into y = y[i] (i = 0, 1, 2, . . . , 2r − 1), i.e.,

y = H2r x. (2.24)

Moreover, (2.23) can be efficiently calculated by using a-posteriori-probability-FHT

(APP-FHT) or dual-FHT (DFHT). An example of DFHT with r = 2 is shown in

Fig. 2.6. The DFHT calculates the numerator and denominator of (2.23) from the

results of FHT and then decodes the Hadamard code bit-wisely. To summarize, the

APP decoding of Hadamard code contains the following two stages.

1. Perform a fast-Hadamard-transform (FHT) on the input a priori information to

obtain y.

2. Perform a-posteriori-probability-FHT (APP-FHT) to update the a posteriori LLR
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Figure 2.6: The “butterfly” structure of DFHT (Hadamard matrix of order = 2).

of the information bits.

2.4.2 Turbo Hadamard Code

A turbo Hadamard code concatenates a turbo code with Hadamard codes. Fig. 2.7

shows the encoder block diagram and code structure of a convolutional Hadamard code

and Fig. 2.8 shows the code structure of a turbo Hadamard code [18]. A convolutional

Hadamard code is a concatenation of a single-parity-check (SPC) code, an S -state

recursive convolutional code (RCE) and a Hadamard code. A turbo Hadamard code is

the combination of a number of convolutional Hadamard codes, say M convolutional

Hadamard codes, carrying the same but interleaved information bits.

We refer to Fig. 2.7(b). In a convolutional Hadamard code, each message D con-

tains L bits and is segmented into K blocks where each block dk (k = 1, 2, . . . ,K)

contains r bits, i.e., L = rK. The parity bit qk
′ of dk is computed and sent through an

S -state rate-1/2 systematic recursive convolutional encoder producing convolutional

codes denoted as (qk
′, qk). Finally (dk, qk) is encoded into an order-r Hadamard code

ck = (dk, qk,pk), where pk represents the parity bits in the Hadamard code. The output

of the convolutional encoder therefore forms part of the input information block to the
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Hadamard encoder.

The code length l of an order-r turbo Hadamard code is given by l = rK+MK(2r−r)

and the information length is rK. The code rate rc is therefore given by

rc =
rK

rK + MK(2r − r)
. (2.25)

The recursive convolutional codes {qk}, k = 1, 2, ...,K and random interleavers reduce

the correlation of input and output weights of each component codes. It is shown

in [18] that the input and output weights of a turbo Hadamard code are (approximately)

uncorrelated for an input weight larger than 1. According to the above assumption,

the parity weight of a turbo Hadamard code approaches Gaussian, which indicates

a close resemblance between a turbo Hadamard code and a random code. Thus a

low-rate turbo Hadamard code approaches the channel capacity when the code length

approaches infinity.

The decoding of a turbo Hadamard code follows a similar principle as other turbo-

like codes. Assume a convolutional Hadamard codeword c = [c1, c2, c3, ..., cK] is

transmitted in an AWGN channel with noise varianceσ2 and a vector x = [x1,x2,x3, ...,xK]

is received. The a-posteriori-probability likelihood ratio of the ith bit in the kth block

is given by [18]

Lk[i] = ln

∑
H[i, j]=±1

γk(±h j)α(sk)β(sk+1)
∑

H[i, j]=∓1
γk(±h j)α(sk)β(sk+1)

(2.26)

where

γk(±h j) = Pr(xk|ck = ±h j) (2.27)

is the a priori information and is calculated based on the channel LLRs

Lk =
2xk

σ2 ; (2.28)

and α(sk) and β(sk+1) are calculated using the forward-backward recursion algorithm
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Figure 2.7: convolutional Hadamard code. (a) Encoder block diagram and (b) code structure. SPC:
single-parity check; RCE: recursive convolutional encoder.

in the Bahl-Cocke-Jelinek-Raviv (BCJR) decoder [65].

Referring to Fig. 2.9, a turbo Hadamard decoder consists of M convolutional Hadamard

(component) decoders (DEC1, DEC2, ..., DECM) and the a posteriori LLR information

of a component code becomes the input of the next component code. Moreover, each

component decoder is composed of three main stages.

1. Perform a fast-Hadamard-transform (FHT) on the input a priori information to

prepare information (γk(±h j)) for the next two stages.

2. Perform Bahl-Cocke-Jelinek-Raviv (BCJR) decoding.

3. Perform a-posteriori-probability-FHT (APP-FHT) to the data obtained from the

first two stages and updating the a posteriori LLR of the information bits.

The theoretical code performance has been evaluated using the extrinsic informa-
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Figure 2.8: Turbo Hadamard code structure.
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Figure 2.9: Decoder structure.

tion transfer (EXIT) algorithm [66], and the best achievable performance of the turbo

Hadamard code is Eb/N0 = −1.3 dB, about 0.29 dB from the ultimate Shannon limit.

2.4.3 Concatenated Zigzag Hadamard Code

A zigzag Hadamard code (ZHC) is graphically described in Fig. 2.10(a) where each

segment represents an order-r Hadamard code [20]. The overall code structure is also

shown in Fig. 2.10(b). Assuming an information block D with length L = rK is

segmented into K sub-blocks. For the kth segment (k = 1, 2, . . . ,K), the informa-

tion bits dk = [dk(1), dk(2), ..., dk(r)] are represented by blank nodes (area) and the

remaining parity-check bits are represented by grey nodes (area). Moreover, the last

parity bit of each segment is copied to the first input of the next segment and is de-

noted as the common bit (black nodes/area in the figures). Note that the first input
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Information bit
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First segment

Third segment
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Figure 2.10: A zigzag Hadamard code. (a) Graphical representation and (b) overall structure. White:
information bits; grey: parity bits; black: common bits.
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bit of the first segment is fixed as 0 and is omitted. We denote the Hadamard code-

word in the kth segment as ck = [ck(0), ..., ck(2r − 1)], where ck(0) = ck−1(2r − 1) and

ck(2 j−1) = dk( j), j = 1, 2, ..., r; and denote the common bit qk = ck(0) = ck−1(2r − 1)

and the parity bits pk = {ck(i), i , 0, i , 2 j−1, j = 1, 2, ..., r}. The kth segment of a ZHC

codeword can then be rewritten as ck = (dk, qk,pk). The encoding process of ZHC is

a Markov process and the correlation between any two consecutive segments depends

only on the common bit.

Note that the order r plays an important role in the error performance. For an even-

order systematic ZHC, the code is said to be “weight-recursive” [20], i.e., any infor-

mation sequence with Hamming distance one will produce a codeword with Hamming

distance weight → ∞ when its length → ∞. For the case of odd-order systematic

ZHC, the aforementioned property does not hold. The weight-recursive property is the

necessary condition for a code to achieve error free performance in an AWGN channel

and it implies the existence of a threshold [34]. (In this thesis, we will only consider

systematic CZHC with an even order.)

To decode the ZHC, a two-way decoding algorithm with two stages can be used

[20, 67].

1. Forward recursion: Starting from the first segment to the (k − 1)th segment,

perform FHT and DFHT on the current segment to obtain the APP LLRs of the

bits based on the aforementioned discussion; then use the APP LLR of the last

bit of the current segment to update the a priori LLR of the first bit of the next

segment.

2. Backward recursion: Starting from the Kth segment to the first segment, perform

FHT and DFHT on the current segment to obtain the APP LLRs of the bits

(including information bits); then use the extrinsic LLR of the first bit of the

current segment to update the a priori LLR of the last bit of the previous segment.

Fig. 2.11 shows the code structure of a CZHC [20] with M component codes. M
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Figure 2.11: Structure of a concatenated zigzag Hadamard code.

copies of same but interleaved information bits are sent to M zigzag Hadamard en-

coders producing M copies of parity bits. The information D together with the parity

bits p(1),p(2), ...,p(M) are sent to the channel. The decoding of CZHC involves the inter-

leaving and passing of LLRs among different zigzag Hadamard codes (or component

codes), which is similar to THC code. The code performance can be evaluated using

the EXIT functions [68].

2.5 Summary

In this chapter, we provide a literature review on some basic concepts of channel

coding. We first review the Shannon’s noisy channel coding theory. The Shannon’s

theory provides an upper-bound of the performance that a code can achieve. Then

we review turbo codes and LDPC codes which adopt iterative decoding mechanisms

and can approach the Shannon limit closely. Finally, we review two of the ultimate-

Shannon-capacity-approaching codes, turbo Hadamard codes and concatenated zigzag

Hadamard codes.



Chapter 3

Design of Turbo Hadamard

Encoder/Decoder System

In Chapter 2, we have reviewed the turbo Hadamard code. In this chapter, we propose a

pipelined digital design of a turbo Hadamard encoder/decoder system. To accomplish a

high throughput, we make use of a multiple sub-decoder architecture to process multi-

ple codes at the same time. Each sub-decoder is processing the data of one codeword at

anytime; and data from the same codeword will be processed by different sub-decoders

at different times. One iteration is completed when the data from the same codeword

is processed by all the sub-decoders once. Moreover, tens of iterations are required

to complete the decoding. Hence, the design challenges include control of data flow

within a sub-decoder; control of data flow among sub-decoders; proper data storage

to avoid data access conflicts; conversion of data formats to facilitate computations;

effective interleavers that cause minimum latency. In order to achieve performance

close to the ultimate Shannon limit, code lengths of 216450, 287235 and 358020 are

used. Since the code lengths are relatively long, effective use of data storage is cru-

cial. Also, the transmitter is required to send code bits in a way that facilitates storing

and processing of data at the receiving end. Note that new codeword data are being

received continuously and need to be stored as the decoder is processing the existing

29
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Figure 3.1: Overall design of the turbo Hadamard encoder/decoder system.

codewords. The theoretical throughput of our digital design is derived based on the

given parameters such as hardware operating frequency, code length, number of iter-

ations, and length of the turbo trellis. Results indicate that at an operating frequency

of 100 MHz, the proposed digital turbo Hadamard encoder/decoder system achieves

throughputs of 1.92 Gbps, 2.56 Gbps and 3.2 Gbps at code lengths of 216450, 287235

and 358020, respectively. The encoder/decoder system also realizes a bit error rate of

10−5 at Eb/N0 = −0.45 dB, i.e., 1.14 dB from the ultimate Shannon limit.

3.1 Hardware Design

The overall design of our turbo Hadamard encoder/decoder system is shown in Fig. 3.1.

The design consists mainly of three parts (besides the pseudo-random number gener-

ator (PRNG) that generates the information bits): (i) turbo Hadamard encoder, (ii)

channel that simulates the quantized signal after channel noise is added, and (iii) turbo

Hadamard decoder. The encoder continuously send turbo Hadamard code bits to the

channel (noise generator), which outputs quantized noisy signals to the decoder. The

decoder is required to estimate the transmitted codeword based on the noisy obser-

vations. Our objective is to embed the encoder/transmitter, the channel and the re-

ceiver/decoder in one FPGA board.

3.1.1 Encoder

The main stages of the encoder include:

1. Generate information bits using a pseudo-random number generator (PRNG)
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Figure 3.2: A PRNG based on linear feedback shift registers.

which is implemented with linear feedback shift registers (LFSRs) [69, 70].

Fig. 3.2 shows the detailed structure of one PRNG used. It contains 102 shift

registers that implements the feedback equation 1 + x35 + x36 + x101 + x102. Sim-

ilar PRNGs are also used in the channel to generate noise.

2. Input the information bits to the first convolutional-Hadamard encoder and pro-

duce the first set of parity bits.

3. Input the original information bits to the interleaver
∏

(1). Send the interleaved

information bits to the second convolutional-Hadamard encoder and produce the

second set of parity bits.

4. Repeat Step 3) with different interleavers for the generation of the third, fourth,

..., M-th sets of parity bits.

5. The information bits and parity bits are stored in two different buffers (see Fig. 3.3)

before sent to the “Channel” block.

The hardware structure of the encoder is shown in Fig. 3.4. The encoder module

follows a pipeline manner and is very simple. Thus the delay in encoder is negligible

compared with that in the receiver/decoder.
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Figure 3.3: The structure of two buffers, each of which stores M turbo Hadamard codewords.

Referring to Fig. 3.3, our encoder design uses two sets of buffers to ensure un-

interrupted data transmission, and each set consists of a RAM block storing the infor-

mation bits and another block storing the parity check bits. To improve the through-

put, our encoder/decoder system is designed to process M turbo Hadamard codes at

the same time. Accordingly, the information RAM in the encoder stores M sets of

information bits and the parity RAM stores M2 sets of parity bits (recall that M sets

of (component) parity bits are generated for each set of information bits). The width

of the information RAM is r and the width of the parity RAM is M(2r − r). Thus K

rows in each of the two RAMs are required to store a complete THC codeword. As a

consequence, the depths of both RAMs are MK. Note that the M THC codewords are

stored and transmitted in such an arrangement so as to facilitate the receiver storing

the channel messages and decoding the codes.

The work flow of the buffers is as follows:

1. The encoder generates information and parities for the first M turbo Hadamard

codes and writes them into the first buffer.
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Figure 3.4: Hardware structure of a turbo Hadamard encoder.

2. The transmitter reads data from the first set of buffers and sends them to the

“channel”. Simultaneously, the encoder generates information and parities for

the next M turbo Hadamard codes and writes them into the second buffer.

3. When the transmission of the M turbo Hadamard codes in the first set of buffers

is completed, the writing to the second set of buffers is also completed. The M

turbo Hadamard codes in the second set of buffers are ready for transmission.

The encoder then generates the next M turbo Hadamard codes and writes into

the first set of buffers.

4. The transmitter alternately transmits codes from the two set of buffers by repeat-

ing step 2) and 3).

The transmitter reads data from the buffers row-by-row. For each row/block, the

total number of bits (information plus parity) is r+M(2r−r). Assume Wt bits are sent in

one clock cycle, and for convenience, Wt divides r+M(2r−1). It then takes MK(r+M(2r−r))
Wt

clock cycles to completely transmit M consecutive turbo Hadamard codes. Note that

the decoders must be capable of decoding the previous M consecutive turbo Hadamard

codes during the transmission. Assume the operating frequency of transmitter is ft.
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Then from the transmitter’s perspective, the throughput of the whole system Tt is

Tt = ftWt bits/s. (3.1)

Note that the throughput of the decoder, denoted by T , should be larger than or equal

to Tt.

3.1.2 Interleaver

The function of the interleavers used in a turbo Hadamard code is slightly different

from those used in turbo codes. The interleavers in a turbo Hadamard code not only

shuffle the order of information bits, but also change subsequent SPCs and Hadamard

codes. The principle used to design interleavers for turbo codes is therefore no longer

adequate, but is still a good reference. Random interleavers help to avoid low-weight

turbo Hadamard codewords [18, 37, 71]. However, the design of large-size random

interleavers increases the latency/complexity of the encoder/decoder significantly. Our

goal is to keep the randomness property of the interleavers, and to perform interleaving

in parallel and thus increase the throughput of the whole system.

The main idea of performing interleaving in parallel is by dividing a size-N in-

terleaver into m windows of size W (i.e., N = mW). During the encoding/decoding

process, contentions may happen if two or more processors try to access the same

memory window. Contention-free interleavers [72] allow the interleaving process to

operate simultaneously in each window. The throughput of the turbo decoder is thus

theoretically increased by m times.

Inter-window shuffle (IWS) interleavers is a class of contention-free interleavers

[72–75]. In [72], two kinds of IWS interleavers have been illustrated: fixed inter-

window shuffle (FIWS) with variable intra-window permutations and variable inter-

window shuffle (VIWS) with a fixed intra-window permutation. Both interleavers

consist of two stages: i) an intra-window permutation and ii) inter-window shuffle
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patterns. The FIWS interleavers fix the inter-window shuffle pattern and m different

sub-interleaver patterns need to be designed for m windows. For the VIWS inter-

leavers, the intra-window permutation, i.e., the sub-interleavers used in every window

are fixed, while the inter-window shuffle patterns that processors access are scrambled.

For a turbo Hadamard code, a FIWS interleaver will shuffle the order of bits in each

column of the information block D, while a VIWS interleaver will shuffle the order of

bits in each row of D. Fig. 3.5 shows the operation of a FIWS interleaver and a VIWS

interleaver.

Usually FIWS interleavers are not suitable for turbo or turbo-like codes. The reason

is that it is equivalent to dividing a big interleaver into m smaller interleavers. The

whole codeword is also divided into m smaller concatenated codewords, leading to an

increase of low-weight codewords. However in a turbo Hadamard code, the situation is

different. Assuming D is a weight-1 information word and interleavers π1, π2, ...πr in

Fig. 3.5 are random, the only non-zero information bit can be in any place of D after

interleaving, thus resulting the output weight of parity P nearly independent of the

input weight 1. Considering that this is a linear code, any codeword can be regarded

as the composition of codewords with weight-1 information. It implies a very low

correlation between the input weight and the output weight in a turbo Hadamard code

using FIWS interleaving. The chance of generating low-weight codewords does not

increase and the performance of the FIWS interleavers should be close to unstructured

random interleavers.

On the contrary, VIWS interleavers should be avoided in turbo Hadamard codes.

VIWS interleaver shuffles the order of bits in windows but the intra-window order re-

mains the same, resulting the same SPCs for all component codes. In Fig. 3.5, changing

the order of bits in every row will not change q
′
. It can be easily seen that low-weight

codewords will remain low-weight after VIWS interleaving.
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Figure 3.5: Operation of a FIWS interleaver (left) and a VIWS interleaver (right) in a turbo Hadamard
code.
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Figure 3.6: Illustration of the FIWS interleaver used in our encoder/decoder system.

For turbo Hadamard code, we have

m = r and W = K. (3.2)

Fig. 3.6 shows the structure of the FIWS interleaver used in our system. To compute

SPCs more efficiently, the bit order in Fig. 3.6 is different from that in [75]. We denote

the index of an information bit by i (i = 0, 1, 2, . . . ,Kr − 1). Then window w (w =

0, 1, 2, ..., r − 1) contains information bits with indices i satisfying w = (i mod r).

Note that for convenience, we map bits in window w to the same window w, and the
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Figure 3.7: Histogram of the channel LLRs when “+1” are used as inputs.

interleaving process in different windows are different. Our simulation results show

that there is no obvious performance degradation between FIWS random interleavers

and traditional random interleavers.

3.1.3 Channel

The channel LLR Lk = 2xk
σ2 act as a soft input to the turbo Hadamard decoder. In a

practical design, fixed-point values are used instead of floating-point values because

of the limitation of the hardware resources. Since the code length of turbo Hadamard

code is usually quite long (216450, 287235 and 358020 in our case), the storage of

channel LLRs is a huge issue. We aim to use as few bits to quantize the channel LLRs

as possible and to maintain a good error performance of the decoder at the same time.

We only consider the performance of turbo Hadamard codes under very low SNRs,

i.e., Eb/N0 < 0 dB. For a given code rate (rc) and Eb/N0, the noise variance is calculated

using σ2 = 1/[(2rc)(Eb/N0)]. We transmit a bit “0” as “+1” and bit “1” as “−1”.

Assuming a “+1” is transmitted to the channel with Eb/N0 = −1 dB, the histogram

of the channel LLRs is shown in Fig. 3.7. The figure shows that most of the LLR

values falls within the range (−0.5, 0.5), and so capping LLRs within (−0.5, 0.5) should

not lead to too much information loss. Computer simulations also show no obvious
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Figure 3.8: The structure of two buffers at the receiver, each of which stores the channel LLR values of
M turbo Hadamard codewords.

degradation in the overall error performance. Suppose a Nch = 6-bit linear quantization

is used. There are 26−1 = 63 quantized values for LLRs and the quantization interval is

1/64. Then the LLRs values are −31/64,−30/64, ...,−1/64, 0, 1/64, ..., 30/64, 31/64.

Depending on the transmitted value being “+1” or “−1”, we calculate the probability

that a noisy signal (received signal) falls within the 2Nch − 1 different intervals. We use

sets of LFSRs to generate a random integer f . Based on the (i) code rate, (ii) Eb/N0 and

(iii) input bit, f is mapped to the corresponding noisy channel output using a specific

lookup table (see Appendix 3). In summary, the channel output (Nch LLR bits) for

every code bit is based on the code rate, Eb/N0 and the input code bit value.
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3.1.4 Decoder

A receiver is responsible for receiving channel observations continuously. Similar to

the transmitter, the receiver uses two sets of buffers to store channel observations.

Referring to Fig. 3.8, the channel observations are stored in RAMs with a similar

arrangement as in the transmitter side. However, instead of code bits, the store values

are Nch-bit LLR values. The decoder decodes M turbo Hadamard codes from one

buffer, while the receiver receives and stores the LLRs of the next M turbo Hadamard

codes into another buffer. Note that the receiver works continuously and the decoder

must finish decoding before the next M to-be-decoded turbo Hadamard codes are fully

received and stored.

In our design, we build M (component) sub-decoders when there are M component

codes. Moreover, the decoding process follows a pipeline nature and hence the M

sub-decoders operate on M different codewords at the same time. For each THC sub-

decoder, the following parameters are used.

• Channel LLRs are represented by Nch bits

• FHT core inputs are represented by NFHT bits

• Values in the BCJR algorithm are represented by NBCJR bits

• Dual FHT (DFHT) processor takes in NDFHT -bit inputs and produces NDFHT -bit

outputs at each stage

• NDFHT -bit LUTs are used in the DFHT computations
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Referring to Fig. 3.9 where an M = 3 THC decoder is shown, the following opera-

tions are performed in each sub-decoder.

1. (i) The output LLRs of the message bits from the previous sub-decoder (after

interleaving), (ii) the extrinsic LLRs of the message bits produced by the current

sub-decoder in the previous iteration, and (iii) channel LLRs of the parity bits

of the current sub-decoder (stored in RAM) are input to the sub-decoder. The

extrinsic LLRs of the current sub-decoder are subtracted from the output LLRs

from the previous sub-decoder. Then together with the channel LLRs of the

parity bits, these signals are input in a pipeline manner to the FHT processor. The

FHT processor contains a number of stages. Let c be the transmitted codeword

and x be the channel observation. Let ck be the kth section of a convolutional-

Hadamard code and xk be the corresponding kth channel observation. Then the

FHT processor calculates γk(±h j) = Pr(xk|ck = ±h j) where ±h j stands for all

valid Hadamard codes with order r (see (2.27)).

2. Sets of outputs are sent to the BCJR processor. The outputs of the FHT block

γk(±h j) are used to calculate the probabilities of a transition between the states

in a convolutional code based on the trellis of the code. The BCJR decoder is

responsible for calculating γk(ch)α(sk)β(sk+1), where α(sk) and β(sk+1) are the

forward and backward recursion of BCJR decoder [65].

3. The computed set of γk(ch)α(sk)β(sk+1) together with outputs from the FHT

block are passed to the DFHT processor to compute the new LLR values of

the message bits.

4. Each set of output LLR values from the DFHT processor will be stored in ap-

propriate RAM locations after block interleaving. The interleaved LLRs are then

passed to the next sub-decoder.
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Figure 3.10: Trellis illustration of THC.

5. At the same time, the extrinsic LLRs of the message bits generated in this itera-

tion are computed and stored.

Note that the BCJR computation in THC decoder is slightly different from that of

the turbo decoder. Consider the state transition pair (S k, S k+1) which involves only one

convolutional code (q
′
k, qk). Each of the convolutional code, however, corresponds to

2r−1 Hadamard codes h(q
′
k, qk). Thus, when calculating the transition probabilities of

(S k, S k+1), all of the involved Hadamard codes h(q
′
k, qk) should be considered. The

trellis of THC is illustrated in Fig. 3.10.

The BCJR computation of THC consists of the following stages.

1. Initialization. Calculate the transition probabilities

B(S k, S k+1) =
∑

all γk in the branch

γk (3.3)

for all k.
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2. Forward recursion. For k = 1, 2, ...,K − 1, calculate

α(S k) =
∑

∀S k−1

B(S k−1, S k)α(S k−1). (3.4)

3. Backward recursion. For k = K − 2,K − 1, ..., 0, calculate

β(S k) =
∑

∀S k+1

B(S k, S k+1)α(S k+1). (3.5)

For the initialization stage, 2r−1 γk are added in each of the branches. Thus it costs a

lot of hardware resources and time efforts to perform the initialization stage. However,

we find that in each of the state transition pair (S k, S k+1), the Hadamard codeword with

the largest trellis probability γk contributes the most to that trellis. The contribution of

that single codeword is usually more than 95%. To simplify logics and to lower the

decoding latency without obvious loss of performance, we replace Eq. (3.3) by

B(S k, S k+1) = max
all γk in the branch

γk. (3.6)

Note that the γk in Eq. (3.6) equal to the exponential of the outputs of FHT. For

further simplification, we use

B(S k, S k+1) = max
all FHTout in the branch

FHTout. (3.7)

The pipeline illustration of a sub-decoder is shown in Fig. 3.11. The solid lines

represent valid input/output while the dash lines represent invalid input/output. For the

first K clock cycles, the FHT block performs FHT calculation to the incoming a priori

information. At clock r, the FHT block outputs first valid trellis information to the

BCJR block and the BCJR block starts performing forward recursion and calculating

α(s1), α(s2), ..., α(sK). At clock r + K + 1, the forward recursions for all α(sk), k =

1, 2, ...,K complete and backward recursions for β(sK+1), β(sK), ..., β(s2) begin. The
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Figure 3.11: Pipeline structure within a sub-decoder. Solid line represents valid input/output, dash line
represents invalid input/output.

BCJR block starts outputting γk(ch)α(sk)β(sk+1) for k = K,K − 1, ..., 1 to the DFHT

block. Similar to the FHT block, the latency in the DFHT block is also r. So the total

latency of a sub-decoder is 2r + K + 3 clock cycles. Note that K is usually much larger

than r and the latency can be approximated by K.

The inter-sub-decoder structure is also built in a pipeline manner and is shown in

Fig. 3.12. The FIWS interleaver consists of r depth-K RAMs and r depth-K ROMs. In

the first K clock cycles, the ith sub-decoder (i = 1, ...,M) writes the APP information

into the RAMs in natural order. Once all the APP information is stored in the RAMs,

the RAMs start sending the information to the next sub-decoder in an interleaved order.

The interleaving pattern is stored in the r ROMs. The latency of the interleaver is thus

K clock cycles.

In a turbo Hadamard decoder, we need to quantize three variables: The LLR values

in the FHT block, the trellis probabilities in the BCJR decoder and the probability

values in the APP-FHT block.

• The FHT block requires r stages of modulo-2 additions. To avoid data overflow,

one bit is added to the quantized value after each stage. The input of FHT is

NFHT -bit quantized and thus the output of FHT is (NFHT + r)-bit quantized. Note
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Figure 3.12: Pipeline structure between sub-decoders. Solid line represents valid input/output, dash line
represents invalid input/output.

that all the quantized values have a sign bit.

• The BCJR decoder operates on probabilities, which are approximately equal to

eFHTout . The dynamic range of those values is much higher and a lot of bits

are needed to represent them. To reduce the number of quantization bits, log-

arithmic quantization is used. Moreover, the a priori value generated from the

output of FHT can be transformed to the natural logarithms of trellis probabil-

ities conveniently. After such transformations, multiplications become simple

additions. However the original additions now become non-linear operations,

and they are realized by look-up tables in our design. Since the values in the

BCJR decoder are quantized into NBCJR bits, the size of the look-up table is

2NBCJR × 2NBCJR = 22NBCJR , which is too large for a single BCJR stage even with a

small NBCJR. To reduce the hardware complexity, the Jacobian logarithm [76–78]

is considered. Suppose the two inputs of a look-up table are a, b and output is c.

Then

c = ln(ea + eb) = max(a, b) + ln(1 + e−|b−a|). (3.8)
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Instead of a (2NBCJR)-bit input look-up table, the new table has an input width

of NBCJR + 1, and the new table is only of size 2NBCJR+1 × 1. Also note that the

quantization of the FHT block is different from that of the BCJR block, so a

look-up table is needed for the conversion of data.

• The APP-FHT block is similar to the FHT block except that the data being

processed are supposed to be probabilities instead of LLRs. However, the dy-

namic range of the data being processed in the APP-FHT block is huge (like

1030).Moreover, the inputs of the APP-FHT block are directly connected to the

output of the FHT block and the output of the BCJR block, which appear in

the form of either LLRs or logarithm of trellis probabilities. To reduce the dy-

namic range of the data in the APP-FHT block and to reduce the complexity

of the hardware, we use logarithmic quantization in the APP-FHT block. Thus

the output of the previous blocks can be directly input to this block without data

transformations. Similar to the BCJR block, look-up tables are used to realize

the complex logarithm calculations. In the APP-FHT block, NDFHT bits are used

to quantize the data and the sign of the data is always negative because the data

represent probabilities that should always be in [0, 1].

3.2 Hardware utilization rate

Fig. 3.13 shows the utilization of the components inside a sub-decoder. Denoting the

hardware utilization rate of the FHT, BCJR, DFHT and interleaver as UFHT, UBCJR,

UDFHT and Uπ, respectively, we have

UFHT = UDFHT = Uπ =
K

2K + 2r
=

1
2

1
1 + r

K

≈ 1
2

;

UBCJR =
2K

2K + 2r
=

1
1 + r

K

≈ 1.
(3.9)
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FHT working idle

BCJR Forward Backward

DFHT idle working

Interleaving idle working

time

Figure 3.13: Component utilization of each sub-decoder

The BCJR unit works almost all the time during decoding while the other units operate

approximately half of the time.

3.3 Throughput Calculation

Recall that the turbo Hadamard code has a trellis length of K and the decoder described

in last sub-section incurs a latency of about 2K clock cycles(K clock cycles from the

BCJR decoder and another K cycles from the interleaver). Since the number of com-

ponent codes is M, the decoding latency for one iteration is therefore 2MK. Assuming

the number of iteration is I, we need 2IMK clock cycles to decode one turbo Hadamard

code.

Also assuming the operating frequency of the FPGA decoder is fc, the throughput

T of the decoder which decodes M codewords in parallel is

T = M
l fc

2IMK
=

l
2IK

fc (3.10)

where l is the codeword length. The equation (3.10) shows that the throughput of the

whole system is independent of the number of the component codes M, but is propor-

tional to the code length and FPGA operating frequency; and is inverse proportional to

the number of iterations and the length of the turbo trellis.
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3.4 Implementation results and analysis

We consider a turbo Hadamard encoder/decoder system with the following parameters.

• Number of component codes M = 3, 4, 5

• Each message block D contains L = 4095 message bits

• Order of Hadamard code is r = 7

• Number of sub-blocks per message K = L
r = 585

• Number of convolutional code states S = 2

• Code length l = 216450, 287235 and 358020

• Code rate rc ≈ 0.0189, 0.0143 and 0.0114

• Channel LLRs are quantized into Nch = 6 bits

• Inputs to FHT unit are quantized into NFHT = 10 bits

• Data in BCJR unit are quantized into NBCJR = 7 bits

• Data in DFHT unit are quantized into NDFHT = 10 bits

• 10 iterations are used for decoding each codeword

• FPGA board Xilinx Virtex UltraScale+ VCU118

Based on parameters we used, the maximum operating frequency is found to be fc =

100 MHz. Thus, the throughput T ≈ 1.92 Gbps, 2.56 Gbps and 3.2 Gbps for M = 3, 4

and 5, respectively. Compared with computer simulations, the throughput of our design

on FPGA is about 10, 000 times faster.

Table 3.1 shows the FPGA resources utilization for the turbo Hadamard encoder/decoder

system with M = 3, 4 and 5. The look-up tables (LUT) used increase slightly from

M = 3 to M = 4. For codes M = 5, the LUT usage increases a bit more because
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Code
Length

Look-up
Table

Look-up
Table RAM

Flip-Flop Block
RAM

IO Global
Clock Buffer

M = 3 217,620 413759 2741 146481 720.5 13 7
M = 4 287,820 449648 3271 191756 1146.5 13 8
M = 5 358,020 614993 3827 240610 1459.5 13 9
System limit N/A 1182240 591840 2364480 2160 832 1800

Table 3.1: Resources utilization of THC with M = 3, 4, 5.
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Figure 3.14: BER curves of the THC code with M = 3, 4, 5 component codes on computer simulations.

the design allows the transmission of punctured codes (see Chapter 5.1). The block

RAMs (BRAM) used is almost proportional to the code length. Fig. 3.14 shows the

bit-error-rate (BER) results of M = 3, M = 4 and M = 5 turbo Hadamard code under

floating-point decoder and fixed-point decoder. All of the codes show a performance

loss of no more than 0.15 dB at BER = 10−5. For example, at a BER of 10−5, the

fixed-point implementation of M = 4 THC requires an Eb/N0 value of −0.3 dB, which

is within 0.1 dB that of the floating-point result.

Fig. 3.15 plots BER curves of the THC for M = 3, 4, 5 implemented on the FPGA
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Figure 3.15: BER curves of the THC code with M = 3, 4, 5 component codes on FPGA compared to
computer simulations.

board compared to the computer simulations. The results on two devices are identical

and thus verify the correctness of the implementation. The result shows that THC with

M = 3 achieves a better BER than M = 4, 5 in the low Eb/N0 regime, but suffers from

an error floor at a BER of 10−6.

3.5 Summary

In this chapter, an efficient design of an ultimate-Shannon-limit approaching encoder/decoder

system has been explored using FPGA. The system implemented is based on turbo

Hadamard codes with different lengths and can achieve throughputs up to 3.2 Gbps

(when M = 5 and r = 7). The throughputs are about 10, 000 times faster than com-

puter simulations. The BER results indicate that the FPGA experimental results are

exactly the same as the fixed-point computer simulations, and are within 0.15 dB of
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floating-point results. The operating frequency of our design is limited to 100 MHz. In

the next chapter, we investigate the hardware design of another ultimate-Shannon-limit

approaching code, namely concatenated zigzag Hadamard code. Since the concate-

nated zigzag Hadamard decoder does not require BCJR decoding, the corresponding

decoder is simpler and can potentially operate at a higher frequency.

Appendix 3: Generation of lookup tables for the channel

block

Suppose the input of the channel is “+1”, the code rate is rc, the noise power is σ2, and

the noise is n. Also assuming the generated LLR falls in the interval [a, b], we have

a 6
1 + n
σ2 6 b (3.11)

aσ2 − 1 6 n 6 bσ2 − 1 (3.12)

Note that the noise n follows normal distribution with zero mean and variation σ2. Its

probability density function (pdf) is given by

ρ(x) =
1√
2π

e
−

x2

2σ2 (3.13)

and the probability of the LLR falling within the interval [a, b] is

Pr(a, b) =

∫ bσ2−1

aσ2−1
ρ(x)dx = 0.5

[
erf

(
aσ2 − 1

σ
√

2

)
− erf

(
bσ2 − 1

σ
√

2

)]
(3.14)

where

σ =

√
1

2rcEb/N0
. (3.15)

Based on the above results, the Gaussian noise tables are generated accordingly.
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Chapter 4

Design of Concatenated Zigzag

Hadamard Encoder/Decoder System

In the previous chapter, the hardware design of a turbo Hadamard encoder/decoder

system has been investigated. Since Bahl-Cocke-Jelinek-Raviv (BCJR) decoding is

required, the overall decoder design is relatively complex, limiting the operating fre-

quency to 100 MHz. On the other hand, the concatenated zigzag Hadamard codes

(CZHC) do not require BCJR decoding, potentially making the decoder simpler and

operating at a higher frequency.

In this chapter, we propose a pipelined digital design of a concatenated zigzag

Hadamard encoder/decoder system. Again we propose a multiple sub-decoder archi-

tecture to process multiple codes at the same time. However, different from the sub-

decoders in the turbo Hadamard decoder system, each sub-decoder in the concatenated

zigzag Hadamard decoder systems processes a set of multiple codes at the same time;

and the same set of multiple codes is processed by different sub-decoders at different

times. Such an arrangement aims to improve the throughput and also the hardware

utilization rate. We overcome challenges similar to those occurring in the design of

turbo Hadamard encoder/decoder systems. The final concatenated zigzag Hadamard

encoder/decoder system is found to work with 50% increase in operating frequency

53
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Figure 4.1: Data flow of the CZHC encoder/decoder system.
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Figure 4.2: Structure of a concatenated zigzag Hadamard encoder with M component codes.

compared with the turbo Hadamard encoder/decoder system and with similar error

performance. The drawbacks of the concatenated zigzag Hadamard encoder/decoder

system, however, are higher decoding latency and higher memory requirement.

4.1 Encoder Design

The data flow of our concatenated zigzag Hadamard encoder/decoder system is shown

in Fig. 4.1. The structure of the CZHC encoder is shown in Fig. 4.2 where the M ZHC

components are encoded in parallel. To generate each CZHC codeword, the following

steps are performed.



4.1. ENCODER DESIGN 55

DecoderChannel LLR Decoder output

APP LLR of info bits from 

previous component code

channel LLR of parity bits

Extrinsic information LLR

update

To next component code
Forward recursion

Backward recursion

Recursions

FHT DFHT

Figure 4.3: Overview of CZHC decoder.

1. Generate random information bits of length rK using a pseudo random number

generator (PRNG), which is realized by the use of linear feedback shift registers

(LFSRs). Form the first component code using Step 2) below.

2. Divide the information bits into segments of length r. The r information bits

in each segment together with the common bit are then sent to the Hadamard

encoder, producing Hadamard codewords. Note that the common bit is the feed-

back of the Hadamard encoder from the last segment. For the first segment, the

common bit is set to 0 (see Fig. 2.10).

3. To generate the other M − 1 component codes, send the original information bits

to the corresponding interleaver denoted by
∏

1,
∏

2,...,
∏

M−1, respectively; and

apply Step 2) above.

4. Send the original information bits together with all the parity-check bits gener-

ated from all component encoders to the channel.
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4.2 Decoder Design

The structure of the decoder is illustrated in Fig. 4.3. The decoding process includes:

1. Preparation: (a) The a priori LLRs of the information bits, computed by sub-

tracting the corresponding extrinsic LLRs of the information bits produced by

the current decoder in the previous iteration from the APP LLRs of the informa-

tion bits from the previous component (ZHC) decoder; and (b) channel LLRs of

the parity bits of the current component ZHC code, are input to the decoder.

2. Forward recursion: The a priori LLRs are sent to the decoder to perform forward

recursion. The forward recursion processor consists of an order-r FHT block and

an order-r DFHT block. The a priori LLRs (2r for each segment of ZHC) are

directly input to the FHT block where simple addition/subtraction operations are

performed to produce 2r outputs after r stages. Exponential functions are per-

formed to the 2r outputs and their additive inverse (total 2r+1 data) before sending

them to the DFHT block, which also produces 2r+1 outputs after r stages. Then

divisions are performed to the 2r+1 outputs to generate 2r APP LLRs. Note that

the exponential functions greatly increase the dynamic range of data in DFHT

block and a large number of quantization bits is required to maintain the accu-

racy of decoding in DFHT block. To avoid the implementation of complicated

exponential functions, we use logarithm quantization in the DFHT block. The

benefits of the quantization include:

• turning the exponential functions between two blocks into simple bitwise-

NOT functions;

• reducing the dynamic range of operations in DFHT block and hence the

number of bits used to quantize the LLRs;

• simplifying the decision block from division logics to subtraction logics.
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An illustration of the proposed APP decoder for ZHC with order-2 is shown in

Fig. 4.4.

3. Backward recursion: The backward recursion also consists of an order-r FHT

block and an order-r DFHT block. Thus the APP decoding processors in the

forward recursion can be reused. The backward recursion processor starts out-

putting the APP LLR continuously after 2r clocks delay. The outputs start from

the Kth segment and then all the way to the first segment.

4. The output data from the backward recursion processor are interleaved and passed

to the next sub-decoder.

5. The extrinsic LLRs of the information bits in this iteration are generated and

stored in the RAMs at the same time.

The FHT/DFHT blocks are implemented in the CZHC decoder to fast calculate the

APP LLRs [79]. Each segment in both the forward and backward recursions must wait

for the update from the previous (next) segment before continuing decoding. For each

of the K segments, the FHT and DFHT processors take a total of 2r clocks to complete

the computations.

As shown in Fig. 4.5, only one of the 2r stages is working at any time. To better

utilize the decoder hardware and to improve the throughput, we decode 2r CZHCs at

the same time in our design. These 2r CZHCs are sent into the decoder segment-by-

segment, i.e., first segment of the first code is sent to the decoder, followed by the first

segment of the second code, and so on. After the first segments of all 2r CZHCs are

sent, the second segments of the 2r CZHCs are sent. Note that the time when the DFHT

processor finishes computing the APP LLR of the first segments of the 2r CZHCs, the

a priori (AP) LLR of the second segments are arriving at the decoder. Both LLRs

will then be sent to the FHT/DFHT processors to compute the forward recursion of

the second segment. The operations of the FHT/DFHT processors for 2r CZHCs are
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FHT 

block

DFHT 

block

A priori LLRs

A posteriori LLRs

Figure 4.4: Detailed illustration of ZHC APP decoder with order-2.

illustrated in Fig. 4.6. The utilization rate of the FHT/DFHT processors are therefore

greatly improved. Moreover, the latency (time between the last input code bit entering

the decoder and the last decoded bit coming out of decoder) of each CZHC codeword is

actually the same as that of decoding a single CZHC and the throughput of the decoder

is increased by 2r times.
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Sub-decoder 1 Sub-decoder 2 …… Sub-decoder M
Channel LLR Decoder output

Iterative decode

Figure 4.7: M sub-decoders in one decoding system.

Note that the CZHC is a concatenated code with M component codes. Each CZHC

codeword needs to go through the decoding process in Fig. 4.3 M times to complete

one iteration. To simplify the control logic and to increase the throughput, we con-

struct M CZHC decoders (each called a sub-decoder) in our decoding system. Hence,

M times more CZHC codewords can be decoded simultaneously in a pipeline manner.

The usage of control logic and block RAMs between consecutive component code de-

coders are reduced and the throughput of the decoding system is increased by another

M times, i.e., a total of 2rM times. Fig. 4.7 shows the decoding system that consists

of M sub-decoders. To decode 2rM CZHCs simultaneously, the decoder receives and

stores the 2rM CZHCs in both the information RAMs and the parity RAMs which are

shown in Fig. 4.8.

Between consecutive sub-decoders, interleavers (omitted in Fig. 4.7 for simplicity)

are needed to shuffle the outputs of the current sub-decoder before inputting them to

the next sub-decoder. We use fixed inter-window shuffle (FIWS) interleavers to enable

parallel interleaving [72, 80, 81]. The size of the interleaver is N = 2r × L = 2Kr2

because we need to perform interleaving on the information bits of 2r CZHC codes at

the same time. The interleaver is divided into r sub-interleavers (also called windows)

each with a window size of 2rK. The windows are designed in such a way that memory

contention is avoided when performing parallel interleaving. In other words, the first

information bits of all K segments in all 2r CZHCs are interleaved/deinterleaved in

Window No. 1; the second information bits of all K segments in all 2r CZHCs are

interleaved/deinterleaved in Window No. 2; etc.
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Figure 4.8: Storage order of channel LLRs.
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The FIWS interleaver is realized by (i) r RAMs each of width-(r×NFHT ) and depth-

2rK, and (ii) a depth-K ROM. The operations are described below and illustrated in

Fig. 4.9.

1. Store the output APP LLRs from the ith sub-decoder (i = 1, 2, ...,M) to the

RAMs in the order that is shown in Fig. 4.9, i.e., the jth bit of all the K segments

of all the 2r codes are stored in the jth RAM ( j = 1, 2, ..., r).

2. Read the interleaver patterns of the CZHC code from the ROM. Extract the in-

terleaving information and evaluate the interleaver pattern for all the 2r CZHC

codes in the r RAMs correspondingly.

3. Read the interleaved APP LLRs from the r different RAMs. Regroup the APP

LLRs and send them to the next sub-decoder as the a priori LLRs.

4.3 Results and analysis

For an order-r CZHC, the code length is l = rK + MK(2r − r) and the code rate is

rc = rK
rK+MK(2r−r) = r

r+M(2r−r) . A concatenated zigzag Hadamard encoder/decoder system

with the following parameters is implemented.

• Number of component codes M = 3

• Each information block D contains L = 3510 message bits

• Hadamard order is r = 6 (Note that the order used here is different from that

used in THC in the previous chapter. The reason is that r needs to be even in

order to perform systematic encoding in CZHC.)

• Number of segments per CZHC K = L
r = 585

• Number of CZHC codewords decoded in a sub-decoder n = 2r = 12
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FHT Forward recursion Backward recursion

DFHT Forward recursion Backward recursion

Interleaver idle working

time

Figure 4.10: Component utilization of each sub-decoder.

• Code length of one CZHC l = 105300

• Code rate rc = 0.0333

• Channel LLRs are quantized by Nch = 6 bits

• Inputs to FHT unit are quantized by NFHT = 10 bits

• Data in DFHT unit are quantized by NDFHT = 11 bits

• I = 10 iterations used for decoding each codeword

• FPGA board Xilinx Virtex UltraScale+ VCU118

Based on the above parameters, the maximum operating frequency is found to be fc =

150MHz. Note that a higher frequency will incur timing problem when routing.

Fig. 4.10 shows the hardware utilization of each unit inside the sub-decoder. The

FHT and DFHT units are both utilized in forward and backward recursions. We denote

the hardware utilization rate of the FHT, DFHT and interleaver as UFHT, UDFHT and Uπ,

respectively. When 1
K → 0, we have

UFHT = UDFHT =
2rK − r + 2rK + r

4rK + 2r
=

1
1 + 1

2K

≈ 1;

Uπ =
2rK

4rK + 2r
=

1
2

1
1 + 1

2K

≈ 1
2
.

(4.1)

The FHT/DFHT units work almost all the time during decoding while the interleavers

operate approximately half of the time.

Referring to Fig. 4.10, it takes 4rK + 2r = 2r(1 + 2K) clocks to process one com-

ponent code in each sub-decoder. Assuming the total number of iterations is I and the
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Code type FHT/DFHT Interleaver uti-
lization rate

BCJR unit uti-
lization rate

Throughput Approximate
latency/sub-
decoder

CZHC 1 0.5 N.A. 1.44 Gbps 9.76µs
THC 0.5 0.5 1 0.96 Gbps 1.22µs

Table 4.1: Hardware utilization rate, throughput and latency of CZHC system and THC system.

number of component codes for each CZHC code is M, it takes 2rIM(1+2K) clocks to

decode the 2r CZHC. Also assuming the operating frequency of the sub-decoder is fc

and the CZHC code length is l, the sub-decoder can decode 2rl fc
2rIM(1+2K) bits in one sec-

ond. Moreover, the decoder consists of M sub-decoders and can decodes 2rM CZHC

in parallel. The throughput of the whole decoding system is approximated by

T =
M × 2rl fc

2rIM(1 + 2K)
=

[rK + MK(2r − r)] fc

I(1 + 2K)

=
[(1 − M)r + 2r M] fc

I(2 + 1
K )

≈ 2r−1M fc

I
(4.2)

where the approximation is made because 1/K � 1 and (M − 1)r � 2r M.

The decoding path in the THC decoder involves going through the FHT block,

the BCJR block and then the DFHT block with a latency of approximately 2K. The

decoding path of the CZHC decoder includes the FHT/DFHT block of the forward

recursion and then the FHT/DFHT block of the backward recursion with a latency

of approximately 4rK. The latency of CZHC decoder is 2r times higher because the

forward/backward recursions in CZHC decoder which cannot be performed in pipeline

for one single code. However, it is possible to perform pipeline decoding of multiple

codes, which is realized in our design.

In Table 4.1 and Table 4.2, we compare the FPGA implementation results of the

encoder/decoder systems using CZHC and turbo Hadamard code (THC) under the

same code rate and code length. Table 4.1 indicates that BCJR processor is not required

in the CZHC decoder. The throughput of the CZHC system is 50% higher than that

of the THC system. Table 4.2 shows that with the same code length, code rate and
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the same number of channel quantization bits, the look-up tables (LUT), look-up table

RAMs and flip-flops used in the CZHC system are, respectively, 73%, 41% and 85%

of those in the THC system. The block RAM usage in CZHC system, however, is

higher than that in the THC system. For the CZHC system with 4 bits channel LLRs

quantization, the block RAMs usage is about 2
3 of that with 6 bits quantization system.

The other resources utilized are slightly less than the 6 bits quantization system.
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Fig. 4.11 shows the bit-error-rate (BER) results of CZHC and THC. Compared with

floating-point CZHC decoder, fixed-point decoder shows a performance loss of about

0.1 dB at BER= 2 × 10−5 when 5-bit or 6-bit quantized channel LLRs are used. For

even smaller number of quantization bits, the BER performance is further degraded.

Fig. 4.11 also shows that the BER performances of CZHC and THC are very close.

Both codes can achieve BER= 1.5 × 10−5 at Eb/N0 = −0.2 dB.

Fig. 4.12 shows the fixed-point BER results under different number of decoding

iterations. We observe that THC outperforms CZHC in low Eb/N0 region, and per-

forms similar in high Eb/N0 region. Both codes show an error floor at a BER of

10−5. Fig. 4.13 shows the floating results over both AWGN channel and Rayleigh fad-

ing channel [82] for both THC and CZHC. A maximum iteration of 50 is performed.

Again, the results show that the performance of THC and CZHC are very close, over

both AWGN channel and Rayleigh fading channel.

4.4 Summary

In this chapter, we have designed and implemented a hardware structure for a con-

catenated zigzag Hadamard encoder/decoder system using FPGA. The system can

achieve a throughput of 1.44 Gbps at a code rate of 0.0333 and BER= 1.5 × 10−5

at Eb/N0 = −0.2 dB. Compared to the turbo Hadamard system, the CZHC system

achieves 1.5 times larger throughput with less complex hardware architecture but more

block RAM usage. Another drawback of the CZHC system is a higher decoding la-

tency. The BER performance of the CZHC is also outperformed by THC. In the next

chapter, we continue our investigation on THC. In particular, we study punctured THC

and also propose a way to lower the error floor of THC.
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Figure 4.11: BER results of CZHC and THC under different quantization bits.
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Figure 4.12: BER results of CZHC and THC under different number of iterations.
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Figure 4.13: BER results of CZHC and THC over different channels.



Chapter 5

Optimization of Turbo Hadamard

Codes

In the previous chapter, we have shown that a concatenated zigzag Hadamard en-

coder/decoder system can achieve a higher operating frequency and a higher through-

put compared with a turbo Hadamard encoder/decoder system. The main drawbacks

of the concatenated zigzag Hadamard encoder/decoder system are that it requires more

memory storage, has a higher decoding latency, and a worse error performance. In this

chapter, we continue our investigation on turbo Hadamard codes (THCs).

We propose ways to optimize the turbo Hadamard codes. Punctured Hadamard

codes and punctured turbo Hadamard encoder/decoder systems are first investigated.

By puncturing some of the code bits and not sending those bits through the channel,

the rate of a code is improved and sometimes the bit error rate performance can be

improved too. Here, two methods to select the punctured Hadamard code bits, or

equivalently the puncturing patterns, are proposed. The first scheme aims to maxi-

mize the minimum Hamming distance of the punctured Hadamard codes. The upper-

bound of the minimum Hamming distance of punctured Hadamard codes is proved

and then an algorithm is proposed to find punctured Hadamard codes achieving close

to this bound. The second scheme aims to minimize the cross-correlations among

73
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the punctured Hadamard codes. For punctured code sets having the same minimum

cross-correlation, a new metric has been proposed to identify sets that can further en-

hance the reliability of decoding. For Hadamard codes, the two proposed puncturing

schemes have shown error improvements over the use of random puncturing. More-

over, the scheme that minimizing the cross-correlations outperform that maximizing

the minimum Hamming distance. By applying the more superior scheme to puncture

Hadamard codes in a turbo Hadamard encoder/decoder system, the code rate is im-

proved with little change in error performance. Another way to optimize the turbo

Hadamard codes is to lower its error floor. At the high Eb/N0 region, we observe that

the error rate of the turbo Hadamard code may become flat. To tackle this issue, we

investigate the overall turbo Hadamard code structure by looking into its parity-check

matrix. By re-designing the interleavers and hence removing short cycles within the

code, we observe that the error floor can be lowered.

5.1 Punctured Hadamard Codes/Turbo Hadamard Codes

Under the same signal-to-noise condition, punctured codes do not perform as well as

the un-punctured ones due to the degradations of the minimum Hamming distance

and cross-correlation functions. However, the degradation can be reduced by carefully

designing the puncturing patterns. With appropriately designs, punctured Hadamard

codes are expected to perform very closely to the un-punctured ones under the same

bit-energy-to-noise-power-spectral-density ratio (Eb/N0) in terms of BER. After find-

ing good punctured Hadamard codes, we can apply them to puncture turbo Hadamard

codes.
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5.1.1 Punctured Hadamard Codes

Recall that an order-r Hadamard matrix Hn, where n = 2r, can be constructed recur-

sively using

Hn =


+Hn/2 +Hn/2

+Hn/2 −Hn/2

 (5.1)

with H1 = [+1]. For example, a Hadamard matrix of order r = 3 is given by

H8 =



+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1



. (5.2)

and −H8 is given by

−H8 =



−1 −1 −1 −1 −1 −1 −1 −1

−1 +1 −1 +1 −1 +1 −1 +1

−1 −1 +1 +1 −1 −1 +1 +1

−1 +1 +1 −1 −1 +1 +1 −1

−1 −1 −1 −1 +1 +1 +1 +1

−1 +1 −1 +1 +1 −1 +1 −1

−1 −1 +1 +1 +1 +1 −1 −1

−1 +1 +1 −1 +1 −1 −1 +1



. (5.3)

Moreover, each column in the matrix ±Hn represents a Hadamard codeword.

The Hamming distance between an order-r Hadamard codeword c and another
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order-r codeword c
′
(i.e., number of locations with different entries), denoted as d(c, c

′
),

is given by

d(c, c
′
) =



0 c
′
= c

2r c
′
= −c

2r−1 c
′
, c

. (5.4)

From (5.4), it can be easily seen that the minimum Hamming distance of an order-r

Hadamard code is 2r−1.

Denoting 〈c, c′〉 as the inner product between c and c
′

, and ψ(c, c
′
) as the correla-

tion between c and c
′
; we have

ψ(c, c
′
) =
〈c, c′〉

2r =



1 c
′
= c

−1 c
′
= −c

0 c
′
, c

. (5.5)

Note that the auto-correlation of each codeword is always 1 and the cross-correlation

between codewords is either −1 or 0. The results are obvious because the codewords

are either orthogonal or bi-orthogonal. Recall in (2.23) that the log-likelihood-ratio

(LLR) of the ith bit in the Hadamard code is given by L[i] = ln
∑

c[i]=+1
exp

(
〈c,x〉
σ2

)

∑
c[i]=−1

exp
(
〈c,x〉
σ2

) . Since

〈c,x〉 is proportional to the correlation between the codeword c and the received ob-

servation x, (2.23) shows that the correlations between the received observation x

and all Hadamard codewords are involved in determining the value of the i-th bit. If

the noise variance σ is very small, the received observation x becomes very close to

the transmitted codeword, say c∗. According to (5.5) and (2.23), the correct code-

word contributes exp
( 〈c∗,x〉

σ2

)
≈ exp

(
2r

σ2

)
→ ∞ to one of the two summations (e.g. the

one in numerator) while the inverse codeword −c∗ contributes exp(− 2r

σ2 ) → 0 to the

other summation (e.g. the one in denominator). The other uncorrelated codewords c

(c , ±c∗) only contribute exp( 〈c,x〉
σ2 ) = exp( 0

σ2 ) = 1 to both summations. In this case,
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the final LLR value can be used to estimate the transmitted bit correctly with a very

high probability.

Suppose we puncture p bits of an order-r Hadamard code and denote the punctured

codewords by cp. The equations (5.4) and (5.5) no longer hold and are modified to

d(cp, c
′
p) =



0 c
′
= c

2r − p c
′
= −c

∈ {1, 2, . . . , 2r−1} c
′
, c

(5.6)

and

ψp(cp, c
′
p) =

〈cp, c′p〉
2r − p



1 c
′
p = cp

−1 c
′
p = −cp

∈ (−1, 1) c
′
p , ±cp

, (5.7)

respectively. Both the minimum Hamming distance (MHD) and correlation of punc-

tured Hadamard codes have a great impact on the performance of the codes [83]. De-

pending on the way how the codes are punctured, the cross-correlation values ψp (when

c
′
p , ±cp) vary and so do their effect (exp( 〈cp,xp〉

σ2 )) on the bit decision expression in

(2.22). To minimize the effect of such undesirable cross-correlations, the punctured

Hadamard codes should be designed with care. In the next two sections, two algo-

rithms are proposed for designing the puncturing patterns of the original Hadamard

codes. Note that for a Hadamard code of order-r, the code rate after puncturing p bits,

denoted as r
′
HC is given by

r
′
HC =

r + 1
2r − p

. (5.8)

5.1.2 Maximizing minimum Hamming distance

The minimum Hamming distance (MHD) is commonly used as a metric to compare

the error-correction capability of linear codes. A code with a larger MHD normally
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provides a better BER than another with a smaller MHD. For punctured Hadamard

codes, we provide its theoretical upper bound in Theorem 1.

Theorem 1. Supposing we puncture p bits from an order-r Hadamard code, the MHD

of the punctured Hadamard code is upper-bounded by d ≤
⌈

2r−p
2

⌉
where dye denotes

the smallest integer larger than or equal to y.

Proof. For simplicity, we replace “−1” with “0” in both the Hadamard codes and

Hadamard matrices. Assume that the MHD after puncturing equals dp >
⌈

2r−p
2

⌉
.

Denote the weight (i.e., number of 1’s) of the i-th punctured codeword by wi (i =

0, 1, 2, 3, . . . , 2r+1 − 1). Let w0 be the weight of the all-zero codeword and w1 be

the weight of the all-one codeword. Then w0 = 0 and w1 = 2r − p. Since the

MHD of each codeword is assumed to be larger than
⌈

2r−p
2

⌉
, we have wi >

⌈
2r−p

2

⌉

(i = 2, 3, 4, . . . , 2r+1 − 1). Therefore, the sum of the weights of all the codewords is

given by

2r+1−1∑

i=0

wi = w0 + w1 +

2r+1−1∑

i=2

wi

> 2r − p +

⌈
2r − p

2

⌉
(2r+1 − 2)

> 2r(2r − p).

(5.9)

On the other hand, the original Hadamard codes have a total weight of 2r×2r×2/2 = 22r

before puncturing (equivalent to the number of 1’s in ±Hn). Puncturing p bits per

codeword is equivalent to puncturing p rows in the Hadamard matrices ±Hn. Sub-

sequently, the number of 1’s in the matrices and hence the total weight of the punc-

tured codewords is reduced by 2r p. Thus, the total weight after puncturing equals

22r − 2r p = 2r(2r − p) which is contradictory to (5.9). That completes the proof. �

Having derived the upper bound of the MHD, we propose the following method to

find good punctured Hadamard codes. Again, we replace “−1” with “0” in both the

Hadamard codes and Hadamard matrices.
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1. Randomly generate 1,000,000 puncturing patterns, select the puncturing patterns

with the largest minimum weight.

2. If there are more than one such pattern, select the patterns with the least number

of minimum weights.

3. Run BER simulations of selected punctured codes, find the code with the best

performance.

5.1.3 Minimizing correlation

From (2.23) and (5.7), we know that the cross-correlations (or inner product) of the

punctured codewords should be minimized. For an order-r Hadamard code with p bits

punctured, we calculate all
(

2r

2

)
cross-correlations. This step is repeated for different

punctured codes. Then we look into the correlation values for each punctured code.

We first determine the maximum cross-correlation (MaxCC) value in each punctured

code set and only keep code sets with the minimum MaxCC (MinMaxCC) values.

The reason is that the MinMaxCC values affect APP decoding most, as observed in

(2.23). After this step, we will have a number of punctured code sets having the same

MinMaxCC. However, the error performances of these punctured codes can be quite

different.

Next, we consider the i-th bit of a candidate punctured Hadamard code set found

above. We let M(i) be the number of codeword pairs having the MaxCC within the

code set and with the i-th bit being distinct. Such codeword pairs are harmful to the

APP decoding and should be minimized. We also let N(i) be the number of codeword

pairs having the MaxCC within the code set and with the ith bit being identical. Such

codeword pairs can enhance the reliability of decoding. For example, for a punctured

Hadamard codes with r = 5 and p = 10, let MaxCC=10. (Note that from now on, we

multiply the correlation value by the code length 2r − p such that MaxCC becomes an

integer.) We record M(i),N(i) and the error rate of all information bits at Eb/N0 = 6 dB
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in Table 5.1. Our simulation uses APP decoding defined in (2.23), i.e.,

L[i] =ln

∑
cp[i]=+1

exp(− ‖cp−xp‖2
2σ2 )

∑
cp[i]=−1

exp(− ‖cp−xp‖2
2σ2 )

=ln

∑
cp[i]=+1

exp( 〈cp,xp〉
σ2 )

∑
cp[i]=−1

exp( 〈cp,xp〉
σ2 )

(5.10)

where the subscript p indicates that p bits have been punctured from the codeword.

The simulation stops after 10, 000 frame errors have occurred. The results in Table 5.1

show that the error rate of information bits with M(i)
N(i) = 2 are almost 10 times worse

than unpunctured codes. For information bits with M(i)
N(i) = 0.5, the error rate only shows

a slight degradation. Our second criterion when selecting punctured Hadamard code is

therefore to minimize

Ω =
∑

i∈{0,1,2,4,...,2r−1}
exp

(
M(i)
N(i)

)
. (5.11)

Note that we use an exponential function to enlarge the effect of M(i)
N(i) because the error

rate rises rapidly when M(i)
N(i) becomes large.

Based on our findings, an algorithm to search for good punctured Hadamard codes

is proposed and described below.

1. Arbitrarily puncture p bits among the parity-check bits of the Hadamard code.

2. Measure the cross-correlation of all codewords pairs. The total number of cross-

correlations is
(

2r

2

)
. Find the MaxCC for the punctured code.

3. Repeat the above two steps a sufficient number of times, e.g. 100 times, until

codes with small MaxCC are found.

4. Select the punctured codes with the minimum MaxCC (MinMaxCC) values.

5. For each selected code set, calculate the metric Ω given by (5.11).
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Table 5.1: Bit error rate of the information bits i before and after puncturing. Order of Hadamard code
r = 5. Number of punctured bits p = 10. Eb/N0 = 6 dB.

i M(i) N(i) M(i)
N(i) Error rate

error rate of
unpunctured

codes
0 32 16 2 1.67 × 10−4 1.45 × 10−5

1 16 32 0.5 2.59 × 10−5 1.52 × 10−5

2 32 16 2 1.67 × 10−4 1.46 × 10−5

4 32 16 2 1.71 × 10−4 1.42 × 10−5

8 16 32 0.5 2.61 × 10−5 1.45 × 10−5

16 16 32 0.5 2.49 × 10−5 1.49 × 10−5

6. Pick the punctured code set with the smallest Ω.

5.1.4 Simulation results

We use an order-5 Hadamard code, and attempt to find good punctured codes by (i)

maximizing minimum Hamming distance and (ii) minimizing correlation, separately.

A total of p = 15 bits are punctured. Our results show that the MaxCC values for

different punctured codes vary from 5 to 13. For punctured codes with MaxCC= 5,

which is the MinMaxCC, we further evaluate the metric Ω given by (5.11).

We simulate the codes in an AWGN channel and we use APP decoding defined

by (2.23) to decode the code bits. In Figure 5.1, we plot the BER performance of the

following punctured Hadamard codes.

• Unpunctured code (shown as “Unpunctured code” in figure)

• Randomly punctured (shown as “Random puncture” in figure)

• Punctured while maximizing minimum Hamming distance (“MHD optimized”)

• Punctured code with MaxCC = 13 (“MCC=13”)

• Punctured code with MaxCC = 5, Ω = 26.46 (“MCC=5, Ω = 26.46”)
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Figure 5.1: BER performance of different punctured Hadamard codes when APP decoding is used.

• Punctured code with MaxCC = 5, Ω = 7.978 (“MCC=5, Ω = 7.978”)

It can be observed that the punctured Hadamard code with MinMaxCC and smallest

Ω (MaxCC = 5, Ω = 7.978) gives the lowest error rate. At a BER of 10−5, it (i)

outperforms the randomly punctured code by 0.35 dB, (ii) outperforms the one with

the same MinMaxCC but a larger Ω (MaxCC = 5, Ω = 24.64) by 0.15 dB, and (iii)

outperforms significantly the code with a large MaxCC (MaxCC = 13). The MHD

optimized punctured Hadamard code slightly outperforms the one with the MaxCC =5

and Ω = 26.46. Finally, the punctured code with a large MaxCC performs the worst

and should never be used.

We also perform hard decoding for the MHD optimized punctured Hadamard codes.

In Figure 5.2, we plot the BER performance of unpunctured code, MHD optimized
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Figure 5.2: BER performance of different punctured Hadamard codes when hard decoding is used.

code and random punctured code. The results also show that the MHD optimized code

outperforms the random punctured code in hard decoding.

5.1.5 Punctured Turbo Hadamard Codes

We further consider puncturing THC. Since only parity bits can be punctured, the punc-

turing of turbo Hadamard code is basically the puncturing of Hadamard code. Again

the puncturing patterns can be designed by (i) maximizing the minimum Hamming

distance or (ii) minimizing the correlations of all codewords. We use the latter method

as it has shown better performance. We optimize the puncturing patterns for an M = 5

(l = 358020) turbo Hadamard code and generate codes with l = 287820 and 217620,

respectively. The puncturing parameters are shown in Table 5.2 and the puncturing

patterns are listed in Table 5.3. The punctured THC with M = 5 is also implemented

on FPGA board (see Table 3.1). The BER results in Fig. 5.3 shows that the THCs af-
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Index Code Rate rc Message Length N Code Length Punctured bits
0 0.0114 4,095 358,020 0 bit
1 0.0142 4,095 287,820 24 bits
2 0.0188 4,095 217,620 48 bits

Table 5.2: Number of punctured bits per Hadamard code.

Index Code Rate rc Puncturing patterns (Numbers range from 0 to 127)
0 0.0114 NA

1 0.0142
19 32 33 40 42 43 47 48
51 62 65 68 70 77 79 84
89 95 97 99 117 118 122 125

2 0.0188

5 8 9 10 12 13 14 19 20 22 23 25 32
37 40 44 45 46 47 49 51 53 54 56 58 61
62 66 68 75 78 82 84 86 88 90 93 94 104
107 111 114 118 120 122 123 124 125

Table 5.3: Punctured bits in a Hadamard code.

ter puncturing have very close performance compared with the original THC. In other

words, the code rate of THC can be improved by puncturing and no error performance

degradation is observed. Note that the channel noise power σ2 = 1/(2R(Eb/N0)).

After puncturing, the code rate R is increased. When (Eb/N0) is fixed, the noise power

is decreased, making the decoders work in a less noisy environment. At the same

time, the orthogonal property of Hadamard matrix is broken, which may lead to BER

performance degradation. It is the combined effect of the two factors that makes the

performance of punctured THC close to the unpunctured THC.
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Figure 5.3: BER curves of the punctured and un-puctured THC codes with M = 5 component codes.
The results are obtained by FPGA simulations.
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5.2 Lowering the Error Floor

In Chapter 3, we have observed that an error floor occurs when there are M = 3

component codes in the THC. The existence of error floors is very common in turbo

codes. An error floor occurs because of the relatively low free distance of the code

[84, 85]. The problem is partially solved by the concatenation of the single-parity-

check code and the recursive convolutional code [86].

Both turbo codes and low-density-parity-check (LDPC) codes are decoded itera-

tively. In [87], MacKay first related turbo codes to LDPC codes and showed that turbo

codes can be treated as block codes. Subsequently, a unified factor graph representa-

tion was developed for these two iterative decoding codes [88] and the parity-check

matrix of turbo codes was studied [89]. Similar to turbo codes, turbo Hadamard codes

can be treated as block codes. In this section, we view THC as a block code and study

its parity-check matrix. We optimize the parity-check matrix with an aim to lowering

the error floor of the code.

5.2.1 Parity-check matrix

Referring to Fig. 5.4, the parity-check matrix relating the message bits D and the

recursive convolutional encoder output q is given by

H0 = [HD0 |Hq]

=



1 1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 1 0 0 · · · 0 0 0

0 0 0 1 1 1 0 0 0 · · · 0 0 0 0 0 0 1 1 0 · · · 0 0 0

0 0 0 0 0 0 1 1 1 · · · 0 0 0 0 0 0 0 1 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 0 0 · · · 1 1 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0 0 · · · 0 1 1


(5.12)
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Figure 5.4: Convolutional-Hadamard code. (a) Encoder block diagram and (b) code structure. SPC:
single-parity check; RCE: recursive convolutional encoder.

where

• HD0 has a size of K × rK and each column represents the variable node of a

message bit; and

• Hq has a size of K×K and the k-th column represents the recursive convolutional

encoder (with generator polynomial 1/(1 + x)) output qk.

In the example shown in (5.12), we assume r = 3. Considering the k-th row in HD0 ,

the variable nodes (columns) corresponding to entries with 1’s form dk. Then dk and

qk will be input to the Hadamard encoder to generate the Hadamard parity-check bits.

Since the LLR information of the Hadamard parity-check bits is directly derived from

the channel and will not be updated in the iterative decoding process, we do not need

to consider the parity-check matrix of the Hadamard code here for simplicity.
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Assume the number of component codes in the turbo Hadamard code is M. Denote

the parity-check matrix relating the message bits D and the recursive convolutional

encoder output q of the mth component code as Hm (m = 0, 1, 2, ...,M − 1). Similar

to H0, we have Hm =
[
HDm |Hq

]
. Note that HDm is no longer in natural order as

HD0 because the message bits have been interleaved. Meanwhile the row weight and

column weight of HDm remain the same as HD0 . The overall parity-check matrix H

relating the message bits D and all M recursive convolutional encoder outputs q is

thus the concatenation of H0,H1, ...,HM−1, i.e.,

H =



HD0 Hq 0 · · · 0

HD1 0 Hq · · · 0

...
...

...
. . .

...

HDM−1 0 0 · · · Hq



≡ [HD |HQ]. (5.13)

5.2.2 Maximizing the girth

A cycle can visualized as a path moving horizontally and vertically in an alternate

manner along the “1”s in a parity-check matrix. Moreover, the path must be closed,

that is to say, it starts and ends at the same “1” in the matrix. Obviously the length

of a cycle must be an even number because the horizontal and vertical moves always

appear in pairs. It is also easy to see that the minimum cycle length is 4. Fig. 5.5 and

Fig. 5.6 illustrate cycles with length 4 and 6, respectively, in a parity-check matrix.

The girth of a parity-check matrix is defined as the shortest cycle length found in the

matrix.

Parity-check matrices with large girths is always preferred in the iterative decoding

[90]. Moreover, cycle-4 must be avoided in all circumstances because such short cycles

will significantly degrade the code performance. Based on (5.12) and (5.13), we can

arrive at the following observations.

• Hq and HQ are fixed and contain no cycle.
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1 1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 · · · 0 0 0 0 0 0
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...

0 0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1

1 0 1 0 0 1 0 0 0 · · · 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 · · · 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 · · · 0 0 0 0 0 1
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...

0 0 0 0 0 0 0 0 1 · · · 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 · · · 1 0 0 0 0 0
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Figure 5.5: Example of a cycle-4 between two HDm (m = 0, 1, 2, ...,M − 1).

• Each of HDm (m = 0, 1, 2, ...,M − 1) contains no cycle.

• Each of [HDm |Hq] (m = 0, 1, 2, ...,M − 1) contains no cycle.

• All cycles must involve two or more HDm (m = 0, 1, 2, ...,M − 1) and may also

involve Hq.

We denote HDm[i, j] as the (i, j) entry of HDm; and Hq[i, j] as the (i, j) entry of

Hq. Then we can obtain the following results.

Cycle-4: Cycle-4’s only exist between HDm1
and HDm2

where m1,m2 ∈ {0, 1, 2, ...,M−
1 : m1 , m2}. A cycle-4 exists if and only if HDm1

[i1, j1] = HDm1
[i1, j2] =

HDm2
[i2, j2] = HDm2

[i1, j2] = 1. An example of cycle-4 is given in Fig. 5.5.

Cycle-6: A cycle-6 exists if HDm1
[i1, j1] = HDm1

[i1+1, j2] = HDm2
[i2, j2] = HDm2

[i1, j2] =

1, where m1,m2 ∈ {0, 1, 2, ...,M − 1 : m1 , m2} and j1 , j2. Two such examples

of cycle-6 are given in Fig. 5.6 and Fig. 5.7.
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Cycle-6: A cycle-6 exists if HDm1
[i1, j1] = HDm1

[i1, j2] = HDm2
[i2, j2] = HDm2

[i2, j3] =

HDm3
[i3, j3] = HDm3

[i1, j3] = 1, where m1,m2,m3 ∈ {0, 1, 2, ...,M − 1 : m1 ,

m2 , m3} and j1 , j2 , j3.

Cycle-2l: A cycle-2l (l ≥ 4) exists if HDm1
[i1, j1] = HDm1

[i1+l−2, j2] = HDm2
[i2, j2] =

HDm2
[i1, j2] = 1, where m1,m2 ∈ {0, 1, 2, ...,M − 1 : m1 , m2} and j1 , j2.

Note that there are other possibilities for obtaining cycle-8 or above, but they are not

listed here. In our study, we focus on avoiding cycle-4 and cycle-6.

The algorithm of eliminating cycle-4 and cycle-6 in the parity-check matrix include

the following steps:

1. Randomly generate M-1 interleavers. Note that the first interleaver is in natural

order and is fixed.

2. Starting from the second interleaver, check if there is any cycle-4 or cycle-6

associated with the entries of the interleaver. If a short cycle is found, randomly

swap the associated entry with another entry of the interleaver.

3. Repeat Step 2 until there are no cycle-4 and cycle-6 existing in the parity-check

matrix.

5.2.3 Performance evaluation

We simulate a THC with M = 3 and a length of 105300. We also design interleaving

patterns for HD1 and HD2 such that there is no cycle-4 or cycle-6 in H . The bit-

error-rate (BER) performance of the optimized THC is shown in Figure. 5.8. We also

plot the BER curve of the same code with randomized interleavers for every new set

of message bits. The curve therefore represents the average BER over all types of

interleavers. Compared with a THC with random interleavers, our optimized THC

produces very similar error performance in the waterfall region (from −1 to −0.4 dB)
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

1 1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 1 0 0 · · · 0 0 0

0 0 0 1 1 1 0 0 0 · · · 0 0 0 0 0 0 1 1 0 · · · 0 0 0

0 0 0 0 0 0 1 1 1 · · · 0 0 0 0 0 0 0 1 1 · · · 0 0 0
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
...
...
...
. . .

...
...
...

0 0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 0 0 · · · 1 1 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0 0 · · · 0 1 1

1 0 0 1 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
...
...
...
. . .

...
...
...

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0
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(3.14)

Figure 5.6: An example of cycle 6 involving two HDm (m = 0, 1, 2, ...,M − 1) and one Hq.

but much better error performance in the error floor region (beyond −0.4 dB). It shows

that our criteria for designing interleavers can significantly lower the error floor of

THCs.

5.3 Summary

In this chapter, we try to optimize turbo Hadamard codes from two aspects — improve

the code rate and lower the error floor. Firstly, we try to increase the code rate of the

turbo Hadamard codes by puncturing the parity-check bits. We have proposed two ef-

fective methods to find good punctured Hadamard codes. The first method is based on

maximizing minimum Hamming distance while the second one is based on minimiz-

ing cross-correlation values. A second metric Ω is further used to differentiate codes

achieving the same minimum cross-correlation values. Simulation results show that

the punctured Hadamard code based on correlation optimization achieves the best BER



92 CHAPTER 5. OPTIMIZATION OF TURBO HADAMARD CODES
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1 1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 1 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0

0 0 0 1 1 1 0 0 0 · · · 0 0 0 0 0 0 1 1 0 · · · 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 1 1 1 · · · 0 0 0 0 0 0 0 1 1 · · · 0 0 0 0 0 0 · · · 0 0 0
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
. . .

...
...
...

0 0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 0 0 · · · 1 1 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0 0 · · · 0 1 1 0 0 0 · · · 0 0 0

1 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 0 0 · · · 0 0 0

0 0 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 1 1 · · · 0 0 0
...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
...
...
...
. . .

...
...
...
...
...
...
. . .

...
...
...

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0
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(3.14)

Figure 5.7: Another example of cycle 6 involving two HDm (m = 0, 1, 2, ...,M − 1) and one Hq.

performance in APP decoding, outperforming the one optimized by maximizing MHD

by about 0.15 dB at a BER of 10−5. The punctured Hadamard encoder/decoder sys-

tem is also realized onto an FPGA. Secondly, we view turbo Hadamard codes as block

codes and consider the related parity-check matrices. We optimize the interleavers of

the turbo Hadamard code in order to maximize the girth of the related parity-check

matrix. The results show that the code using optimized interleavers can lower the error

floor compared with that using randomized interleavers. Note that the two proposed

optimization techniques can also be used in other hybrid concatenated Hadamard codes

like zigzag Hadamard codes.

Evaluating the cycles in the parity-check matrix in this chapter can require quite

substantial computational resources, especially when the matrix is large and a large

number of cycles are involved. Finding the number of possible cycles (or closed path)

for a given matrix can help estimating the amount of computational effort required. In

the next chapter, we will propose a method for evaluating the number of closed paths

in a matrix.
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length = 105300.



94 CHAPTER 5. OPTIMIZATION OF TURBO HADAMARD CODES



Chapter 6

Evaluating the Number of Closed

Paths in an All-One Base Matrix

In the previous chapter, cycle-4 and cycle-6 have been eliminated in the parity-check

matrix to improve the error floor of turbo Hadamard codes. Short cycles degrade er-

ror performance of not only turbo Hadamard codes, but also low-density parity-check

(LDPC) codes. Thus the study of cycles is important in designing high-performing

channel codes. In fact, much research has been conducted to construct high perfor-

mance LDPC codes [11, 91–95] where the girth — minimum cycle length — plays an

important role.

A cycle is a closed path in the Tanner graph which starts and ends in the same

node. The path alternates between check and variable nodes [93,94,96]. The cycle can

also be easily analyzed in the corresponding parity-check matrix because each check

node in the Tanner graph corresponds to a row in the parity-check matrix, and each

variable node corresponds to a column. If a variable node is connected to a check

node, the corresponding element in the parity-check matrix will be “1”. Similarly, a

“0” in the matrix means the corresponding nodes are not connected. A cycle can thus

be visualized as a path moving horizontally and vertically in an alternate manner along

the “1”s in the matrix. Moreover, the path must be closed, that is to say, it starts and

95
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ends at the same “1” in the matrix.

One way to form an LDPC code is to construct a parity-check matrix of a particular

size by assigning “1”s randomly with a certain probability. Such a construction method

is not so desirable because the code is unstructured, making the encoding and decoding

processes rather complicated to implement in terms of hardware. Another approach is

to form a small-size base matrix first and then to replace each non-zero element in

the base matrix with a circulant permutation matrix (CPM) or a random permutation

matrix (RPM) or a sum/mix of both types of matrices [97, 98].

In this chapter, we consider an all-one base matrix B of size M × N. Moreover, we

denote the “1” in the (i, j)-th position of the base matrix by Pi, j (1 ≤ i ≤ M, 1 ≤ j ≤ N),

i.e.,

B =



P1,1 P1,2 P1,3 . . . P1,N

P2,1 P2,2 P2,3 . . . P2,N

...
...

...
. . .

...

PM,1 PM,2 PM,3 . . . PM,N



. (6.1)

A closed path of length 2l can therefore be described as Pi1, j1 → Pi2, j1 → Pi2, j2 →
Pi3, j2 → · · · → Pil, jl → Pi1, jl → Pi1, j1 where i1 , i2 , i3 , · · · , il−1 , il , i1 and

j1 , j2 , j3 , · · · , jl−1 , jl , j1. In other words, the closed path starts from the

element Pi1, j1 , then moves vertically to Pi2, j1 , then moves horizontally to Pi2, j2 , . . ., and

finally goes back to the original element Pi1, j1 . Note that each of such closed paths

may give rise to one or more cycles in the corresponding LDPC code when each “1” in

the base matrix is replaced with a circulant permutation matrix (CPM) 1 or a random

permutation matrix (RPM). 2 However in practice, with careful selection of the CPMs

or RPMs by code designers, many of such cycles in the LDPC code can be avoided.

An example is given in Fig. 6.1, where a 2 × 3 all-one base matrix is shown. The

base matrix has a closed path of length-4. By replacing the 1’s in the base matrix with

1A circulant permutation matrix is an identity matrix or a cyclic-right-shift of the identity matrix.
2A random permutation matrix is a square matrix with exactly one 1 in each row and in each column.
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Figure 6.1: Illustration of closed path and cycle

different CPMs, the formed LDPC code may have cycle-4’s or have no cycle-4.

One simple way to determine the number of closed paths in the all-one based matrix

is to use the “tree method” [96]. The main idea of the tree method is to construct trees

whose roots are variable nodes. The tree is extended based on the Tanner graph of the

codes. We start from one certain variable node (i.e., column), and put the check nodes

(i.e., rows) that connect to the root variable node (column) in the next layer. After

that, we add one more variable-node layer where all variable nodes are connected to

the check nodes in the previous layer. The procedure of adding a layer is actually a

move in the Tanner graph. Once the tree is expanded further enough, closed cycles

of different lengths that start and end at the same root node can be found. The main

drawback of the tree method is that the trees are always too large to manipulate. It

works well for short closed paths and small base matrices. However, it takes a huge

amount of space to store the tree and it costs a lot of time to perform the exhaustive

searching for when the base matrix becomes large. The searching results also contain

duplicates, which can only be eliminated by exhaustive comparisons.

In this chapter, we propose a novel method to evaluate the total number of closed

paths of different lengths in an all-one base matrix. Since LPDC codes with short

cycles are known to give unsatisfactory error correction capability, the results in this

chapter can be used to estimate the amount of effort required to evaluate the number
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of potential cycles of an LDPC code or to optimize the code [99, 100]. The results are

also verified by those found by the tree method.

6.1 Two preliminary functions

Theorem 2. Suppose we have to assign v different digits to u consecutive slots where

u ≥ v and u, v ∈ Z+. Moreover, consecutive slots must contain different digits and all v

digits should be used. Then the total number of combinations equals

G(u, v) = v!
∑

Ω

v∏

j=2

( j − 1)α j (6.2)

where

Ω = {{α j ∈ N : j = 2, 3, . . . , v} :
v∑

j=2

α j = u − v}. (6.3)

Proof. Suppose we fill the slots one-by-one. Considering the first slot, i.e, slot i = 1,

we arbitrarily pick one digit out of the v digits. As consecutive slots must contain

different digits, we can only pick another digit out of the v − 1 “unused” digits for the

second slot, i.e, slot i = 2. (We call a digit unused if the digit never appears in previous

slots.) For each of the remaining slots, i.e, slot i = 3, 4, . . . , u, we always have two

strategies: pick a digit we have used before or pick an unused digit. The only point we

need to consider is to make sure that by the last slot, i.e, slot i = u, all v digits are used

at least once. For i = 1, 2, 3, ..., u,

• let ηi represent the strategy used to select a digit for slot i: ηi = 0 means a used

digit is selected and ηi = 1 indicates an unused digit is selected;

• yi denote the number of possible digits to pick for slot i given ηi;

• xi denote the number of distinct digits used up to and including slot i.
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Table 6.1: Two different digit selection sequences for u = 5 and v = 4.

(a) Digit selection se-
quence #1

i ηi yi xi

1 1 4 1

2 1 3 2

3 0 1 2

4 1 2 3

5 1 1 4

(b) Digit selection se-
quence #2

i ηi yi xi

1 1 4 1

2 1 3 2

3 1 2 3

4 1 1 4

5 0 3 4

Note that
u∑

i=1

ηi = v (6.4)

because all the v digits must be used/selected at least once in the u slots.

Using the above notations, xi−1 distinct digits have been used up to slot i − 1.

• Supposing ηi = 0 which means a used digit is to be picked for slot i, the number

of possible digits to pick equals yi = xi−1 − 1 because the digit must be different

from the digit in slot i − 1. Moreover, the number of distinct digits used remains

the same and hence xi = xi−1.

• Supposing ηi = 1 which means an unused digit is to be picked for slot i, the

number of possible digits to pick equals yi = v − xi−1 and the number of distinct

digits used is increased by one, i.e., xi = xi−1 + 1.

In both cases described above, we have xi = xi−1 + ηi. The digit picking procedures are

described with a tree shown in Fig. 6.2. Further, two different digit selection sequences

for u = 5 and v = 4 are shown in Table 6.1. The difference between the two selection

sequences is the slot number that a used digit is selected. In sequences #1 and #2, a

used digit is selected in slot 3 and slot 5, respectively.

Supposing ηi = 0, then yi = xi−1 − 1 = xi − 1 = j − 1 for some j ∈ {2, . . . , v}.
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First slot

Second slot

Third slot

+ =2

+ =3 + =2

slot

+

Figure 6.2: Illustration of the digit picking procedures.

Moreover, there are u slots and v digits and hence reused digits must be selected u − v

times, i.e., ηi = 0 must occur u − v times. Denote α j ( j = 2, . . . , v) as the number

of occurrences of the event {ηi = 0, xi = j}, i.e., ηi = 0 and xi = j, among all i =

1, 2, . . . , u. Combining the above, we have

v∑

j=2

α j = u − v. (6.5)

Note that the solution set {α j : j = 2, . . . , v} for (6.5) is usually not unique. In the digit

selection sequence #1 shown in Table 6.1, ηi = 0 only when i = 3. Hence, x3 = 2 and

subsequently α2 = 1, α3 = α4 = 0. In sequence #2, ηi = 0 only when i = 5. Hence,

x5 = 4 and subsequently α4 = 1, α2 = α3 = 0. In both cases, we have
v∑

j=2
α j = u−v = 1.

For a given set Θ = {α j : j = 2, . . . , v} that satisfies (6.5), it can be readily shown

that the total number of possible digit-sequence selections for the u − v slots where
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used digits are selected equals

∏

{i∈{1,2,...,u}:ηi=0}
yi =

v∏

j=2

( j − 1)α j . (6.6)

For the remaining v slots where unused digits are selected (ηi = 1), the number of

choices is decreased by one every time and hence the total number of possible digit-

sequence selections equals

∏

{i∈{1,2,...,u}:ηi=1}
yi = v(v − 1)(v − 2)... × 2 × 1 = v!. (6.7)

Combining all the above results, the total number of combinations is hence given by

G(u, v) =
∑

Θ∈Ω

u∏

i=1

yi

=
∑

Θ∈Ω




∏

{i∈{1,2,...,u}:ηi=1}
yi




∏

{i∈{1,2,...,u}:ηi=0}
yi





= v!
∑

Θ∈Ω

v∏

j=2

( j − 1)α j (6.8)

where Ω = {{α j ∈ N : j = 2, 3, v} :
v∑

j=2
α j = u−v}} denotes the solution sets of {α j}. �

Theorem 3. If we impose an additional condition on Theorem 2 that the last slot must

contain a different digit from the first one, the total number of combinations becomes

G′(u, v) = v!
∑

Ω

(v − 1)αv+1 + (−1)αv

v

v−1∏

j=2

( j − 1)α j (6.9)

where

Ω = {{α j ∈ N : j = 2, 3, v} :
v∑

j=2

α j = u − v}}. (6.10)

Proof. We use the same notations as in the previous proof. Most of the proof of The-

orem 2 is similar to that of Theorem 1 except when dealing with the last slot, in which

the digit must now be different from the digit in the first slot.
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Among the u slots, there are v slots where ηi = 1 because all the v distinct digits

must be used at least once. Let γ denote the position of the last slot where ηi = 1.

Then, ηγ = 1 and for all subsequent slots, i.e., slots i = γ + 1, γ + 2, . . . , u (altogether

u − γ slots), we always have ηi = 0 and xi = v. Recall that α j ( j = 2, . . . , v) denotes

the number of occurrences of the event {ηi = 0, xi = j}. Thus, in the case of j = v, we

have αv = u − γ. Also, the last αv slots all contain used digits.

Denote f (αv) as the total number of choices for the last αv consecutive slots. Thus

f (αv) =
∏

{i∈{γ+1,...,u}:ηi=0}
yi =

∏

i∈{γ+1,...,u}
yi. (6.11)

(Note that in Theorem 1, f (αv) = (v − 1)αv and equals 1 when αv = 0.)

• If αv = 1, the (u − 1)-th slot contains an unused digit and the last (i.e., u-th) slot

contains a used digit. Since the (u − 1)th slot contains an unused digit, this digit

is different from the digit in the first (i.e., i = 1) slot. As the digit in the last slot

must be different from that in the (u − 1)th slot and first slot, it has v − 2 choices

and hence

f (αv = 1) = v − 2. (6.12)

• If αv = 2, the (u − 2)-th slot contains an unused digit and the last two slots (i.e.,

(u−1)-th and u-th slots) contain used digits. We use similar arguments as above.

Since the (u − 2)th slot contains an unused digit, this digit is different from the

digit in the first (i.e., i = 1) slot. We then consider the (u−1)-th slot. If it contains

the same digit as the one in the first slot (only one choice), the u-th slot has v− 1

choices; otherwise the digit in the (u − 1)-th slot must be different from that in

the first slot and the u-th slot (v − 2 choices), and then the u-th slot will have

v − 2 choices. The total number of choices for the last αv = 2 consecutive slots
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therefore equals

f (αv = 2) = 1 × (v − 1) + (v − 2) × (v − 2) = v2 − 3v + 3. (6.13)

• We consider the general case where αv ≥ 3. The γ-th (i.e, (u − αv)-th) is the last

slot where an unused digit is selected.

1. If the (γ+1)-th slot is the same as the first slot (1 choice), the (γ+2)-th slot

must be different from the first slot (v − 1 choices) and from the (γ + 3)-th

to u-th slots, the number of choices is given by f (αv − 2).

2. If the (γ+1)-th slot is different from the first slot (v−2 choices), the number

of choices from the (γ + 2)-th to u-th slots is given by f (αv − 1).

The total number of choices thus equals

f (αv) = 1 × (v − 1) × f (αv − 2) + (v − 2) × f (αv − 1)

= (v − 1) × f (αv − 2) + (v − 2) × f (αv − 1).

(6.14)

Using (6.12), (6.13) and (6.14), it can be readily shown that

f (αv) =
(v − 1)αv+1 + (−1)αv

v
∀ αv = 1, 2, . . . (6.15)

and hence (6.11) can be written as

∏

{i∈{γ+1,...,u}:ηi=0}
yi =

(v − 1)αv+1 + (−1)αv

v
∀ αv = 1, 2, . . . (6.16)

where γ = u − αv.

For a given set Θ = {α j : j = 2, . . . , v} that satisfies (6.5) and the given conditions

(particularly that the last slot must contain a different digit from the first one), the total
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number of possible digit-sequence selections for the u − v slots where used digits are

selected equals

∏

{i∈{1,2,...,u}:ηi=0}
yi

=


∏

{i∈{1,2,...,γ}:ηi=0}
yi

 ×


∏

{i∈{γ+1,...,u}:ηi=0}
yi



=


v−1∏

j=2

( j − 1)α j

 ×
(
(v − 1)αv+1 + (−1)αv

v

)
. (6.17)

Combining the above results with (6.7), the total number of combinations is hence

given by

G′(u, v) =
∑

Θ∈Ω

u∏

i=1

yi

= v!
∑

Ω


(v − 1)αv+1 + (−1)αv

v

v−1∏

j=2

( j − 1)α j

 .

(6.18)

(Note also that (6.18) still holds even when αv = 0. It is because according to (6.15),

f (αv) = 1 when αv = 0.) �

Remark: Using the inclusion-exclusion principle, it can also be proved that

G(u, v) =

v−2∑

i=0

(−1)i


v

i

 (v − i)(v − i − 1)u−1, v ≤ u; (6.19)

and

G′(u, v) = G(u, v) −G′(u − 1, v) (6.20)

with G′(v, v) = G(v, v).

Table 6.2 and 6.3 show the values of G(u, v) and G′(u, v), respectively, for 2 ≤ v ≤
u ≤ l = 7. These values are sufficient when considering cycles with length no longer



6.2. CONFIGURATIONS OF CLOSED PATHS 105

Table 6.2: G(u, v) function

G v = 2 3 4 5 6 7

u = 2 2

3 2 6

4 2 18 24

5 2 42 144 120

6 2 90 600 1,200 720

7 2 186 2,160 7,800 10,800 5,040

Table 6.3: G′ function

G′ v = 2 3 4 5 6 7

u = 2 2

3 0 6

4 2 12 24

5 0 30 120 120

6 2 60 480 1,080 720

7 0 126 1,680 6,720 10,080 5,040

than 14. Note also that a quasi-cyclic LDPC code constructed from an all-one base

matrix has a girth bounded by 12. For a fixed v ≥ 3, we can see that both G(u, v) and

G′(u, v) increase exponentially with u.

6.2 Configurations of Closed Paths

Referring to Fig. 6.3, we extract an m×n sub-matrix from the M×N all-one base matrix

and represent the (i, j)-th element in the sub-matrix by Qi, j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

We define a closed path (CP) as an (m, n)-CP if it passes m distinct rows and n distinct

columns of an all-one matrix. Denoting an (m, n)-CP by Qi1, j1 → Qi2, j1 → Qi2, j2 →
Qi3, j2 → · · · → Qil, jl → Qi1, jl → Qi1, j1 where i1 , i2 , i3 , · · · , il−1 , il , i1



106 CHAPTER 6. CLOSED PATHS IN AN ALL-ONE BASE MATRIX

Arbitrarily extract 

rows and columns 

Change notation

rows

columns

Figure 6.3: Extracting an m × n sub-matrix from an all-one M × N base matrix.

and j1 , j2 , j3 , · · · , jl−1 , jl , j1, we represent the l-tuple row-index vector

and column-index vector of the (m, n)-CP by, respectively, I = (i1, i2, . . . , il−1, il) and

J = ( j1, j2, . . . , jl−1, jl). Since an (m, n)-CP passes m rows and n columns, there are

exactly m distinct values in the row-index vector I and n distinct values in the column-

index vector J.

For a given M × N all-one base matrix and a given cycle length 2l, the values of m
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and n are constrained by

2 ≤ m ≤ min(M, l) (6.21)

2 ≤ n ≤ min(N, l). (6.22)

For every (m, n) satisfying (6.21) and (6.22), the numbers of row-index and column-

index combinations can be calculated by using the G′ function in (6.9). Denoting

R(l,m) as the number of row-index combinations and C(l, n) as the number of column-

index combinations for an (m, n)-CP configuration with length 2l, we have

R(l,m) = G′(l,m) (6.23)

C(l, n) = G′(l, n). (6.24)

The total number of (m, n)-CP configurations with length 2l therefore equals R(l,m)C(l, n) =

G′(l,m)G′(l, n) when duplicated CPs such as those shown in Fig. 6.4 are not eliminated.

6.3 Duplicated Closed Paths

Given two different row-index/column-index vector pairs (I, J) and (I′, J′), they may

represent the same CP. Fig. 6.4 shows an example where the same CP of length 6

is formed with different starting element and hence different row-index/column-index

vector pairs. In the following, we will remove such duplicates in our computation of

the number of CPs.

6.3.1 Eliminate CPs that do not start from the first row

First, we eliminate CPs that do not start from the first row (e.g., eliminate CPs that

start with elements Q2,2,Q3,3,Q3,2 or Q2,1 in Fig. 6.4). We therefore add a constraint

that every CP must start from the first row of the m × n sub-matrix. That is to say, we
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(a) (b)

Figure 6.4: Illustration of duplicated closed-paths of length 6. CPs starting from Q2,2,Q3,3,Q1,3,Q3,2
and Q2,1 are duplicates of that starting from Q1,1.

require i1 = 1 for every CP configuration.

Denote R′(l,m, t) as the number of row-index combinations with the new constraint

where t represents the number of paths along the first row of the CP configuration. In

fact, t also represents the number of “1”s in the row-index vector I. Since consecutive

elements in I must differ, there are at most
⌊

l
2

⌋
“1”s in I and thus 1 ≤ t ≤

⌊
l
2

⌋
. Moreover,

t is restricted by t ≤ l − m + 1. To summarize, we have

t ≤ min
(⌊

l
2

⌋
, l − m + 1

)
. (6.25)

Figs. 6.4 and 6.5 illustrate, respectively, the cases where t = 1 and t = 2. In this

chapter we only consider CPs with length 2l ranging from 4 to 10. Thus 2 ≤ l ≤ 5

and 1 ≤ t ≤ 2. For larger values of l and t, the guiding principles are the same and the

results can be derived in a similar manner.

Since i1 = 1, we only need to assign values to i2, i3, . . . , il.

1. When t = 1, we assign all m − 1 digits to the l − 1 slots: i2, i3, . . . , il and make

sure i2 , i3 , i4 , · · · , il. According to Theorem 2, we have

R′(l,m, 1) = G(l − 1,m − 1). (6.26)
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Figure 6.5: Two different CP configurations each of length 8. (a) No transform-exact pair exists, and (b)
transform-exact pairs exist.

2. When t = 2, one and only one element of i3, . . . , il−1 equals 1. Assuming iξ = 1,

the row-index vector becomes I = (1, i2, i3, . . . , iξ−1, 1, iξ+1, . . . , il).

• If iξ−1 , iξ+1, it is equivalent to assigning m−1 different digits to i2, i3, . . . , iξ−1, iξ+1, iξ+2, . . . , il

with different consecutive elements. According to Theorem 2, there are

G(l − 2,m − 1) combinations.

• If iξ−1 = iξ+1 then it is equivalent to assign m−1 different digits to i2, i3, . . . , iξ−1, iξ+2, iξ+3, . . . , il

with different consecutive elements. According to Theorem 2, there are

G(l − 3,m − 1) combinations. In such a situation, m < l − 1.

Combining the above two scenarios, we have

R′(l,m, 2)

=



0 if m > l − 1

G(l − 2,m − 1) if m = l − 1

G(l − 2,m − 1) + G(l − 3,m − 1) if m < l − 1

.

(6.27)

6.3.2 Eliminate duplicated CPs that start from the first row

After the new constraint in the previous section has been applied, most of the dupli-

cated CPs are eliminated. Some duplicates still remain due to the fact that more than
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one elements in the first row can act as the starting element. For example in Fig.

6.4(b), the CP Q1,3 → Q3,3 → Q3,2 → Q2,2 → Q2,1 → Q1,1 is a duplicated version of

Q1,1 → Q2,1 → Q2,2 → Q3,2 → Q3,3 → Q1,3 while both start from the first row.

Assume that we have an (I, J) pair denoted by



I = (i1, i2, . . . , il−1, il)

J = ( j1, j2, . . . , jl−1, jl)
. (6.28)

Then the “reversed” version of the (I, J) pair will always correspond to the same CP

because it is equivalent to indexing the same CP from the last element to the first one.

Denoting the reversed pair as (I′, J′), we have



I′ = (i1, il, il−1, . . . , i3, i2)

J′ = ( jl, jl−1, . . . , j2, j1)
. (6.29)

Moreover, an (m, n)-CP of length 2l can start from any of the 2l elements. If I and J

are cyclically shifted with same number of positions, the CP that the new pair repre-

sents will be identical to the original one. In the following, we define an operator that

performs transformation on the (I, J) pair.

Definition 1. For any (I, J) pair with the form of (6.28), we define F(I, J, k) as the

transformation of the (I, J) pair such as all elements in I and J are cyclically shifted to

the left by k positions (k = 1, 2, . . . , l − 1). Let (Ik, Jk) = F(I, J, k). Then



Ik = (ik+1, ik+2, . . . , il, i1, i2, . . . , ik)

Jk = ( jk+1, jk+2, . . . , jl, j1, j2, . . . , jk)
. (6.30)

It can be easily shown that all the transformed pairs represent the same CP as the

original one. Similarly, we have (I′k, J
′
k) = F(I′, J′, k) for k = 1, 2, . . . , l − 1. All these

l pairs also represent the same CP as the (I, J) pair. In summary, for a given (I, J) pair,
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there are another 2l − 1 (I′′, J′′) transformed pairs that give rise to the same CP.

In the previous section, we have already eliminated duplicates that do not start from

the first row. So we only need to consider transformed pairs whose CPs start from the

first row. To analyze such cases, we make use of the following theorem.

Theorem 4. For an (I, J) pair with t “1”s in I, there are 2t−1 transformed pairs whose

CPs start from the first row.

Proof. Obviously (I′, J′) is a transformed pair that starts from the first row. Assume

that the t “1”s are located at the 1st, n2-th, n3-th, . . ., nt-th positions in I. Then

(Ink−1, Jnk−1) and (I′l−nk+1, J
′
l−nk+1) for k = 2, 3, . . . , t are all transformed pairs that starts

from the first row. So altogether there are 2t − 1 such transformed pairs. �

When all the transformed pairs are different from the original pair, we call the

original pair (I, J) “transform-equivalent”. According to Theorem 4, there are exact

2t − 1 duplicates for each transform-equivalent pair. In some occasions, some of the

2t − 1 transformed pairs are exactly the same as the original (I, J) pair. In such cases,

we call the original (I, J) “transform-exact”. To find out the duplicates, we have to

consider each transform-exact pair separately. Fig. 6.5 illustrates the CP configurations

with and without transform-exact pair.

Considering the CP configuration shown in Fig. 6.5(a), we denote



I = (1, 2, 1, 2)

J = (1, 3, 1, 2)
. (6.31)

Hence, the 3 transformed pairs are given by



I′ = (1, 2, 1, 2)

J′ = (2, 1, 3, 1)



I2 = (1, 2, 1, 2)

J2 = (1, 2, 1, 3)



I′2 = (1, 2, 1, 2)

J′2 = (3, 1, 2, 1)
. (6.32)
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Since all 4 column-index vectors J, J′, J2, J′2 are different, (I, J) is a transform-equivalent

pair and has 3 duplicates.

For the CP configuration shown in Fig. 6.5(b), we denote



I = (1, 2, 1, 2)

J = (1, 2, 1, 2)
. (6.33)

The 3 transformed pairs are therefore given by



I′ = (1, 2, 1, 2)

J′ = (2, 1, 2, 1)



I2 = (1, 2, 1, 2)

J2 = (1, 2, 1, 2)



I′2 = (1, 2, 1, 2)

J′2 = (2, 1, 2, 1)
. (6.34)

Since (I, J) = (I2, J2) and (I′, J′) = (I′2, J
′
2), (I, J) is a transform-exact pair and has only

1 duplicate.

We denote Dex(l,m, n, t) and Deq(l,m, n, t), respectively, as the number of transform-

exact and transform-equivalent pairs for an (m, n)-CP with length 2l. We also denote

Dsum(l,m, n, t) as the total number of distinct (i.e., no duplicates) (m, n)-CP with length

2l and t “1”s in I. Then for t = 1 and 2, we have the following.

t=1

We denote the index vectors as



I = (1, i2, . . . , il−1, il)

J = ( j1, j2, . . . , jl−1, jl)
. (6.35)
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According to Theorem 4, there is 1 (= 2t− 1) transformed pair that may be duplicated.

Obviously, the transformed pair is given by



I′ = (1, il, il−1, . . . , i3, i2)

J′ = ( jl, jl−1, jl−2 . . . , j2, j1)
. (6.36)

If l ≡ 0 (mod 2), then

J = ( j1, j2, . . . , jl/2, j(l/2)+1, . . . , jl−1, jl) (6.37)

J′ = ( jl, jl−1, . . . , j(l/2)+1, jl/2, . . . , j2, j1). (6.38)

The (l/2)-th elements of J and J′ are jl/2 and j(l/2)+1 respectively. Since jl/2 , j(l/2)+1,

J , J′ and (I, J) , (I′, J′). If l ≡ 1 (mod 2), it can proved in a similar way that I , I′

and (I, J) , (I′, J′).

To sum up, when t = 1, all (I, J) pairs are transform-equivalent and there is 1

(= 2t − 1) duplicate for each (I, J) pair. As a result,

Deq(l,m, n, 1) = R′(l,m, 1)C(l, n) (6.39)

Dex(l,m, n, 1) = 0 (6.40)

Dsum(l,m, n, 1) =
Deq(l,m, n, 1)

2
. (6.41)

t=2

Besides the first element in I, another element among i3, . . . , il−1 equals 1. Assuming

iξ = 1, we denote the index vectors by



I = (1, i2, i3, . . . , iξ−1, 1, iξ+1, . . . , il)

J = ( j1, j2, . . . , jl)
. (6.42)
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According to Theorem 4, there are 3 (= 2t − 1) transformed pairs that may be

duplicated. These pairs are given by



I′ = (1, il, il−1, . . . , iξ+1, 1, iξ−1, . . . , i3, i2)

J′ = ( jl, jl−1, . . . , j2, j1)

(6.43)

Iξ−1 = (1, iξ+1, . . . , il, 1, i2, i3, . . . , iξ−1)

Jξ−1 = ( jξ, jξ+1, . . . , jl, j1, j2, j3 . . . , jξ−1)

(6.44)

I′ξ−1 = (1, iξ−1, iξ−2, . . . , i3, i2, 1, il, il−1, . . . , iξ+2, iξ+1)

J′ξ−1 = ( jξ−1, jξ−2, . . . , j2, j1, jl, jl−1, . . . , jξ+1, jξ)
.

(6.45)

1. Using a similar proof as in the case t = 1, it can be shown that (I, J) , (I′, J′).

2. Next we consider (I, J) and (I′ξ−1, J
′
ξ−1). If we assume I = I′ξ−1, then (i2, i3, . . . , iξ−2, iξ−1) =

(iξ−1, iξ−2, . . . , i3, i2). Since consecutive elements in the index vectors must be

different, the number of elements in (i2, i3, . . . , iξ−2, iξ−1) must be odd. Thus

ξ − 2 is an odd number and so is ξ. If we further assume J = J′ξ−1, then

( j1, j2, . . . , jξ−2, jξ−1) = ( jξ−1, jξ−2, . . . , j2, j1). As a result, ξ − 1 should be an

odd number and ξ should be even. This contradicts with the above requirement

that ξ should be odd. Therefore, I = I′ξ−1 and J = J′ξ−1 cannot be true simultane-

ously and (I, J) , (I′ξ−1, J
′
ξ−1).

3. Finally we consider the pairs (I, J) and (Iξ−1, Jξ−1). If (I, J) = (Iξ−1, Jξ−1), it can

be easily seen that (I′, J′) = (I′ξ−1, J
′
ξ−1). Under this circumstance, there can only

be one duplicate.

In the following, we evaluate the exact numbers of CP-configurations that belong to

the transform-exact category and transform-equivalent category, respectively.

Transform-exact category: Suppose I = Iξ−1, we have i2 = iξ+1, i3 = iξ+2,· · · ,
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and iξ−1 = il. Obviously ξ − 1 − 2 = l − (ξ + 1) and hence ξ = l+2
2 , which means the

positions of “1”s in the row-index vector I are fixed. Since there are m distinct digits in

I, there are m − 1 distinct digits in the vector (i2, i3, . . . , iξ−1). The number of elements

in the vector equals ξ − 2 = l−2
2 . According to Theorem 2, we have G( l−2

2 ,m − 1) such

row-index vectors. If J = Jξ−1, we further have j1 = jξ, j2 = jξ+1, · · · , jξ−1 = jl , j1.

We need to assign n distinct digits to the column-index vector ( j1, j2, . . . , jξ−1) which

has ξ − 1 = l
2 elements. We also need to make sure j1 , jξ−1. According to Theorem

3, we have G′( l
2 , n) such column-index vectors. Hence,

Dex(l,m, n, 2) = G
(
l − 2

2
,m − 1

)
G′

(
l
2
, n

)
. (6.46)

For the transform-exact pairs with the above row-index vectors and column-index vec-

tors, each pair has only one duplicate. Therefore, the number of CPs without duplicates

equals Dex(l,m,n,2)
2 .

Transform-equivalent category: Since the total number of transform-exact pairs

and transform-equivalent pairs equals R′(l,m, 2)C(l, n), the number of transform-equivalent

pairs equals

Deq(l,m, n, 2) = R′(l,m, 2)C(l, n) − Dex(l,m, n, 2). (6.47)

For the transform-equivalent pairs with the above row-index vectors and column-index

vectors, each pair has 3 duplicates. Therefore, the number of such CPs without dupli-

cates equals Deq(l,m,n,2)
4 .

To summarize, when t = 2, the total number of distinct CPs equals

Dsum(l,m, n, 2) =
Deq(l,m, n, 2)

4
+

Dex(l,m, n, 2)
2

. (6.48)



116 CHAPTER 6. CLOSED PATHS IN AN ALL-ONE BASE MATRIX

6.3.3 Overall Results

When t = 1, 2, the total number of distinct (m, n)-CP with length 2l is given by

Dsum(l,m, n, t) =
Deq(l,m, n, t)

2t
+

Dex(l,m, n, t)
t

=
R′(l,m, t)C(l, n) + Dex(l,m, n, t)

2t

(6.49)

where

Dex(l,m, n, 1) = 0 (6.50)

Dex(l,m, n, 2)

=



0 if l ≡ 1 (mod 2)

G( l−2
2 ,m − 1)G′( l

2 , n) if l ≡ 0 (mod 2)
(6.51)

and other expressions are defined in (6.2), (6.9), (6.24), (6.26) and (6.27).

6.4 Number of Closed Cycles with Different Lengths

In this section, we will evaluate the number of CPs with length ranging from 4 to 10.

For an M × N all-one base matrix, we denote S dup(l,M,N) as the number of length-2l

CPs with duplicates and S (l,M,N) as the number of distinct length-2l CPs. Then we
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have

S dup(l,M,N) =

min(M,l)∑

m=2

min(N,l)∑

n=2

C(l, n)R(l,m)Cm
MCn

N

(6.52)

S (l,M,N)

=

min(M,l)∑

m=2

min(N,l)∑

n=2

min(b l
2 c,l−m+1)∑

t=1

Dsum(l,m, n, t)Cm
MCn

N

(6.53)

where Ck
K = K!

(K−k)!k! .

6.4.1 Length-4 CPs

For CPs with length 4, we have l = 2, m = n = 2, and t = 1. Thus for N ≥ M ≥ 2,

S dup(2,M,N) = 4C2
MC2

N (6.54)

S (2,M,N) = C2
MC2

N . (6.55)

6.4.2 Length-6 CPs

For CPs with length 6, we have l = 3, 2 ≤ m, n ≤ 3, and t = 1. Thus for N ≥ M ≥ 3,

S dup(3,M,N) = 36C3
MC3

N (6.56)

S (3,M,N) = 6C3
MC3

N . (6.57)
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6.4.3 Length-8 CPs

For CPs with length 8, we have l = 4, 2 ≤ m, n ≤ 4, t = 1, 2. Thus for N ≥ M ≥ 4,

S dup(4,M,N) = C2
M(4C2

N + 24C3
N + 48C4

N)

+ C3
M(24C2

N + 144C3
N + 288C4

N)

+ C4
M(48C2

N + 288C3
N + 576C4

N)

(6.58)

S (4,M,N) = C2
M(C2

N + 3C3
N + 6C4

N)

+ C3
M(3C2

N + 18C3
N + 36C4

N)

+ C4
M(6C2

N + 36C3
N + 72C4

N). (6.59)

6.4.4 Length-10 CPs

For CPs with length 10, we have l = 5, 2 ≤ m, n ≤ 5, t = 1, 2. Thus for N ≥ M ≥ 5,

S dup(5,M,N) = C3
M(900C3

N + 3600C4
N + 3600C5

N)

+ C4
M(3600C3

N + 14400C4
N + 14400C5

N)

+ C5
M(3600C3

N + 14400C4
N + 14400C5

N)

(6.60)

S (5,M,N) = C3
M(90C3

N + 360C4
N + 360C5

N)

+ C4
M(360C3

N + 1440C4
N + 1440C5

N)

+ C5
M(360C3

N + 1440C4
N + 1440C5

N).

(6.61)

In the above equations, we set Ck
K = 0 for k > K which occurs when the base matrix

is not large enough to generate the CPs. The above equations also provide the number

of different CP configurations of a given length under a specific sub-matrix size. For
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example in (6.61), the term 360C4
MC3

N implies that for a sub-matrix with size 4×3, there

are 360 different CP configurations with length 10. Similarly, the term 1440C5
MC4

N

indicates that for a sub-matrix with size 5×4, there are 1440 different CP configurations

with length 10.

Table 6.4: Number of CPs of different lengths under different base-matrix sizes.

CP length Base matrix size (M × N)
No. of CPs obtained by the proposed method

with (without) duplicates removed
No. of CPs obtained by the “Tree Method”

4 2 × 3 3 (12) 3

6 3 × 4 24 (144) 24

8 4 × 5 2,760 (21,840) 2,760

10 5 × 5 104,040 (1,040,400) 104,040

10 4 × 24 154,471,680 (1,544,716,800) NA

10 5 × 20 252,560,160 (2,525,601,600) NA

Table 6.4 shows the number of CPs evaluated based on our proposed method for

different path lengths under different base-matrix sizes. For example, with a base ma-

trix of size 5 × 5, the number of CPs of length 10 calculated using our method equals

104, 040 (= S (5, 5, 5) in (6.61)). The results are compared with those obtained by the

tree method. It can be seen that our method produces the exact numbers of CPs as the

tree method.

6.5 Conclusion

In this chapter, we present a new method of evaluating the number of closed paths

in a base matrix. Although we only give results up to length 10, results for longer

paths can be readily derived and computed using similar principles. Compared with

the traditional “tree method” which uses exhaustive searching, our method reveals the

principle of closed paths and their duplicates and derives expressions for computing

the number of closed paths. The results are useful when estimating the time resources

required in optimizing and constructing high-performing channel codes such as LDPC

codes.
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Chapter 7

Conclusions and Suggestions for

Future Work

In this chapter, we re-iterate the main contributions of the thesis and discuss some

potential topics for future research.

7.1 Main Contributions of the Thesis

As the number of wireless IoT devices keeps increasing, more and more devices need

to access the base station and get connected to the Internet. As a result, the multiple

access environment may become harsher. In other words, the same frequency spec-

trum needs to be shared among more devices and the receivers need to operate with a

lower signal-to-noise ratio (or Eb/N0). Another application where the receiver needs

to operate at a very low SNR is space communications. In this thesis, we investi-

gate two ultimate-Shannon-limit-approaching channel codes, namely turbo Hadamard

codes and concatenated zigzag Hadamard codes. We also propose a method for eval-

uating the number of cycles in an all-one base matrix. The main contributions of the

thesis are summarized as follows.

1. We have designed a turbo Hadamard encoding/decoding system and have im-

121
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plemented it onto an FPGA. We have proposed a modified fixed inter-window

shuffle interleaver to avoid contentions in interleaving process, and have made

use of a multiple sub-decoder system design to enhance the throughput. More-

over, each component of the encoding/decoding system is fully optimized to

achieve high hardware-utilization rate. Throughputs up to 3.2 Gbps have been

achieved.

2. We have designed a concatenated zigzag Hadamard encoding/decoding system

and have implemented it onto an FPGA. Again a multiple sub-decoder system

design is used to improve the throughput, which shows a 50% improvement

compared with turbo Hadamard encoding/decoding system. The drawbacks are

that the decoding latency is larger and more memories are required.

3. We have proposed two effective methods to find good punctured Hadamard

codes. The first one aims at maximizing the minimum Hamming distance of

the punctured code; and the second aims at minimizing the cross-correlations of

the punctured code. The punctured code found by latter method slightly outper-

forms that found by the former one; while codes found by both methods have

shown good error performance. We have applied the puncturing patterns to turbo

Hadamard codes and have shown that the code rate can be improved without er-

ror performance loss.

4. We have investigated the cycles of the parity-check matrix related to the turbo

Hadamard codes. By designing interleavers that avoid both cycle-4 and cycle-6

in the matrix, we have shown that the error floor of the code is lower compared

with using random interleavers.

5. We have proposed a new method of evaluating the number of closed paths in

an all-one base matrix. Results for cycles up to 10 have been shown. Compared

with the traditional “tree method” which uses exhaustive searching; our proposed
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method reveals the principle of closed paths and their duplicates, and derives ex-

pressions for computing the number of closed paths. The evaluations are useful

when estimating the time resources required in optimizing and constructing high

performing channel codes such as LDPC codes.

7.2 Suggestions for Future Work

7.2.1 Enhancing concatenated zigzag Hadamard code

1. In Chapter 5, we have proposed two methods to design punctured Hadamard

codes. These punctured Hadamard codes have been applied to turbo Hadamard

codes. They can further be applied to concatenated zigzag Hadamard codes.

2. In Chapter 5, we have eliminated cycle-4 and cycle-6 in the parity-check matrix

related to turbo Hadamard codes and have designed a code with a lower error

floor. Since error floors are also observed for concatenated zigzag Hadamard

codes, a similar technique can be applied with an aim to lowering the error floors.

The major task is to find the parity-check matrix related to the concatenated

zigzag Hadamard code.

3. The latency of a concatenated zigzag Hadamard decoder is relatively high. A

potential solution to reduce the latency is to break the Markov chain of the de-

coding process into several segments, and to perform parallel decoding on these

segments. The forward/backward decoding of consecutive segments should be

overlapped in order to minimize the performance degradation.
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7.2.2 Design of low-density-parity-check Hadamard encoder/decoder

system

The design of turbo/concatenated zigzag Hadamard code can be further extended to

the design of low-density-parity-check (LDPC) Hadamard code. The FHT/APP-FHT

processors can be readily used. Yet, the parallel structure of LDPC Hadamard decoder

may require a lot of FHT/APP-FHT processors to work simultaneously. New hardware

architecture should be proposed to reduce the hardware complexity.
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