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Abstract

As the number of conventional, intelligent, and connected vehicles plying the

roads and streets of major cities around the world increases, the need to pro-

vide comfortable, time-efficient, safe, environment- and energy-friendly travel

becomes apparent. Daily trips of commuters, private, intelligent, and con-

nected vehicles begin by anticipating traffic jams, accidents, road works, and

other event-delaying circumstances to ensure that arriving at their destination

is on time and convenient. To address these concerns and ensure the comfort

of the daily voyage, intelligent and connected vehicles must obtain and share

real-time, relevant, and accurate road information from/to other vehicles or

roadside unit (RSU) infrastructure. However, as more vehicles use the road,

the quantity of data sources increases, as well as the amount of available road

information. In general, there are two categories of vehicular data: (1) control

data and (2) environment data. Control data pertain to the safety applications

for vehicles to abide by for achieving an organized traffic flow, such as the high-

way tollgate scenario. In contrast, environment data relate to non-safety and

broad reports or applications for further processing, e.g., multi-junction city

landscape. This thesis investigates the data dissemination topic for intelligent

connected vehicles in vehicular networks to efficiently and effectively exchange

control and environment data among vehicles and infrastructure in order to

achieve travel objectives. Some of these travel objectives are: minimized queue

time and length, optimal road map download based on vehicular demand under
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heterogeneous transmissions, maximized information sharing between vehicles

and infrastructure, balanced roadside unit loading, and energy efficiency.

We first examine the control data exchange in a tollgate scenario on high-

ways where intelligent connected vehicles enter and exit the freeway for faster

travel at the expense of paying toll fees for this convenience. Choosing and

queueing at a certain tollgate becomes problematic for these intelligent con-

nected vehicles since their current highway traffic and available tollgate service

time knowledge are limited. Single-stage queuing system models the high-

way tollgate section with exponential service time, 𝑐 servers, and 𝐾 capacity,

(𝑀/𝑀/𝑐/𝐾) to address the general problem of minimizing average queue time

and length for all these vehicles entering/exiting the tollgate section. Also, in-

dependent and identical Poisson distributions characterize vehicular arrivals

on highway lanes. A centralized fuzzy logic controller (FLC) is developed by

considering the system’s queue densities (number of vehicles per lane) and

tollgate service times. The FLC facilitates the control data exchange where

intelligent connected vehicles should line up. Extensive simulation results show

approximately 50% improvement in reducing average queue waiting time and

length when the central RSU employing an FLC is in-charge of allocating in-

coming vehicles to its appropriate servicing tollgate. The FLC controller has

considered both the homogeneous and non-homogeneous arrivals of intelligent

connected vehicles on the highway. As an added feature, the FLC allows early

detection of forming high-density queues such that the service time of tollgate

servers can be adjusted accordingly.

We then investigate the general environment data dissemination problem

considering the city-wide case by employing empirical mobility traces and real

road environment LIght Detection And Ranging (LIDAR) data to represent

intelligent vehicular mobility and sensed data, respectively. The framework

follows the fog computing paradigm, where computing nodes are close to the
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vehicles, to immediately process received road information, then satisfy all ve-

hicular demands. To initially reduce the file size of the sensed road segment

data to be uploaded by the vehicles, octree compression, differential coding,

and hashing techniques are implemented at the vehicular level. During the data

dissemination stage, we propose an opportunistic index coding-based transmis-

sion scheme to optimally reduce the number of transmissions, transmitted data

size, and overhead computations according to the vehicular data demand and

availability. This setup considers heterogeneous modes of information down-

load from an RSU fog node or base station to the vehicles. The objective of the

proposed index coding-based transmission scheme applied at each of the RSU

fog nodes is to reduce the reliance of intelligent and connected vehicles from

long-range cellular transmissions and better exploit the short-range broadcast

capacity at RSU fog nodes. Experiments involving mobile robots as intelli-

gent connected vehicles have been tested to provide feasibility results for the

implementation of this technique in the real world. To capture the city-wide

data exchange using the proposed index coding transmission scheme, we em-

ployed empirical taxi mobility traces and evaluated the scheme’s performance

at each target junction. Our extensive simulation and mobile robot testbed

results show a promising application of efficient data dissemination in an urban

scenario utilizing the fog computing paradigm.

Noting that the installation and maintenance of RSUs along public roads

and highways can be quite expensive, RSUs must be strategically and eco-

nomically deployed to support various vehicular fog applications. In the next

two studies, we propose two strategies for maximizing information shared in

a vehicular network. First, we develop an Information Sharing via Roadside

Unit Allocation (ISRA) strategy to maximize information sharing between in-

telligent connected vehicles and RSU fog nodes. ISRA operates under the

constraint that the number of RSU fog nodes is limited and only considers
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intersections as locations for possible RSU deployment. ISRA targets energy-

efficient candidate locations during information exchange while balancing the

load among the selected RSU fog nodes for better resource management. Given

a set of candidate intersection locations, ISRA discriminates optimal locations

from the set of candidate locations by implementing the proposed index coding-

based transmission schemes and considering the vicinity’s space mean speed

and vehicular density. Simulations utilizing empirical mobility traces show

that ISRA, on average, shares 20% more information at the energy efficiency

of 83%, i.e., fewer packet transmissions, when compared to other deployment

schemes.

The second method, Enhanced Information SHAring via RSU Allocation

(EISHA-RSU), also attempts to maximize shared information in a vehicular

network but considers all locations as possible deployment spots. EISHA-

RSU utilizes the Effective Region of Movement (ERM) concept to irregularly

partition an urban setup based on the region’s vehicular capacity and then

discovers effective positions (EPs) within ERMs to deploy RSUs. We com-

pare the performance of EISHA-RSU with three other benchmarks focusing on

the amount of shared information, L-M measure, network starvation, vehicle

count of 1-hop connectivity, and effectiveness. Extensive simulation employing

three empirical urban mobility traces confirmed the efficiency of the proposed

information-sharing scheme.

In summary, this thesis investigated the data dissemination in vehicular

networks for providing travel comfort and convenience to intelligent connected

vehicles. This work has proposed adaptive and efficient data dissemination

techniques to address the information exchange challenges in the data- and

the source-rich vehicular environment. These techniques present methods of

data exchange that are real-time, updated, and easily accessible to both in-

telligent connected vehicles and roadside infrastructure. It is desired that

vi



the thesis’ results will provide practical solutions and approaches to the ever-

growing and information-rich vehicular environment, particularly in promoting

autonomous, connected driving.
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Chapter 1

Introduction

1.1 Background

In 2016, the estimated number of vehicles worldwide was over 1.3 billion, and

will double every 20 years. By 2036, there will be an approximate of 2.8

billion vehicles plying the minor and major roads on the planet [1]. While

technology progresses, vehicles will become more intelligent and connected

because they have more sensing, computational, and communication power,

which will provide better travel performance. However, this will also intro-

duce challenges related to environment and energy demands [2]. At the same

time, infrastructure nodes such as roadside units (RSUs) have also been de-

ployed. These RSUs are static systems that can also transmit and receive

short- and long-range communications to/from vehicles for storage, process-

ing, and information exchange. Collectively, intelligent connected vehicles and

the infrastructures are the fundamental building blocks of a vehicular network.

Due to these advancements and proliferation of vehicles, ubiquitous monitor-

ing of real-time events and providing up-to-date responses have been possible,

even though vehicular networks have a high degree of vehicular mobility and

dynamic network availability, connectivity, and topology [3]. In a vehicular
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network with connectivity and communication among multiple intelligent con-

nected vehicles and infrastructure nodes, various messages can be transmitted.

Sharing the local surrounding information enables the delivery of various ve-

hicular applications and services for improving road safety, travel convenience,

and coordinated traffic flow [4,5].

Safety messages are divided into event-driven and routine status messages.

Event-driven safety messages can be used for traffic and speed control, acci-

dent notification, and traffic updates [6]. These can also be warning messages

from emergency vehicles or vehicles having accident information [7]. Other

applications include lane change warnings, highway merge assistance, and col-

lision avoidance [8]. On the other hand, non-safety pieces of information are

used for convenience and comfort, such as infotainment [5], monitoring loca-

tions, planning trips, and discovering available parking space [9]. Non-safety

information also includes the static and dynamic road map data like buildings,

moving cars, pedestrians, etc.

To reduce traffic congestion and facilitate autonomous driving, appropri-

ate vehicular control instructions, and accurate environment road map data

depicting real-time road events are crucial. These information should be ex-

changed among intelligent connected vehicles and the infrastructure for driving

perception, localization, route planning, and control. Given the density or ve-

locity profile of vehicles as the input, the network performance (e.g., delay,

throughput, transmission ranges, and contention window sizes) can be calcu-

lated as a function of space and time [5]. The vehicles can obtain the optimal

network configurations from RSUs and directly set in advance their transmis-

sion ranges and contention window sizes to the optimal values before moving

into a particular road region [5]. On the other hand, the road map data cap-

ture the static (e.g., buildings, road structures) and dynamic (e.g., presence of

road accidents, traffic conditions) features of the road setup. A particular type
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of data that can accurately describe the road environment is the 3D LIDAR

point cloud data [10]. The point cloud data, as illustrated in Fig. 1.1 [11], is

a set of data points in a 3D coordinate system that represents the surfaces of

physical objects in the 3D space.

Figure 1.1: A single junction with four road segments represented by 3D LIDAR
data.

For control data dissemination to assist road drivers of incoming road dan-

ger and emergencies, the broadcast transmission is best used to quickly provide

drivers and passengers safety-related information by covering multiple vehicles

and infrastructure within the transmission range [12]. On the other hand, the

unicast transmission is suitable when the transmitted messages require an au-

tomatic repeat request (ARQ) because unicast involves a message retransmis-

sion mechanism and a recipient confirmation technique from the origin after a

successful reception [13]. Unicast transmission can also avoid the broadcasting

storm problem [14].

Unlike control data, environment data, such as 3D LIDAR point cloud

data, are usually huge. Commercial LIDAR with 64 laser sensors can generate

up to 2.2M points per second for the 3D representation of its surrounding en-

vironment [15]. Given this, the exchange of 3D map data from one vehicular

node to another is a challenging task. Overcoming the bandwidth limitation in
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highly-dynamic vehicular networks for exchanging 3D point cloud data can en-

able collaborative perception among intelligent connected vehicular nodes for

extending their sights to reach hidden and distant on-road objects or pedes-

trians.

Consider the scenario in Fig. 1.2 where the intelligent connected vehi-

cles will cross the intersection with the guidance of a roadside infrastructure

because they have a blind perception of the current situation. Vehicle-to-

Everything (V2X) communications support the information exchanges (e.g.,

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)), which can be

realized by either a short-range local broadcast or long-range unicast via the

cellular network. For smooth traffic flow, the RSU, upon studying the current

situation, can directly instruct the intelligent connected vehicle on each road

section to proceed to its desired course. For highways and multiple intersec-

tions with high vehicular densities, a more sophisticated control strategy can

be applied to provide a smoother approach to traffic control.

Figure 1.2: A four-way junction with three vehicles and indicated direction of
their travel. The RSU coordinates traffic flow such that vehicles do not need
to slow down as it approaches the intersection. It can also disseminate road
map data upon request.

Highways are a vital transportation infrastructure that usually have more

vehicle lanes than the conventional roads to accommodate a higher vehicle
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volume. Expressways have no traffic light signals, and there are entry/exit

ramps, and tollgates. On a freeway, there are three volume-density-based con-

trol regulations to prevent or eliminate congestion, namely: (1) on-ramp (most

efficient), (2) speed control, and (3) merging control [16]. If the approaches

above fail to maintain stable traffic flow, a large volume of vehicles bunches up

at these exit tollgates. Queues are another source of inconvenience to vehicle

owners and travelers [17].

In a more general intersection and multiple junction scenarios, some intel-

ligent connected vehicles may prefer to update their stored knowledge and rely

on up-to-date environment data before making any turning/travel decisions.

Given this, we can extend the capability of RSUs to become central databases

for all map data, both local and global, i.e., become a Map Data Repository

(MDR) infrastructure. MDR is a type of cloud server that stores the global

view of map data over time, merges multiple map data sources, and extracts

useful information to assist decision-making at individual vehicles.

The traditional broadcasting scheme broadcasts each road map data as a

message, one by one, regardless of whether the incoming intelligent connected

vehicle already has that piece of road map data or not. However, if certain

intelligent connected vehicles already have partial knowledge regarding the en-

vironment of surrounding, then transmitting the encoded pieces of road map

data will reduce the overall number of transmissions on average [18,19]. Gener-

ally, in an 𝑛-way junction, there are a various number of intelligent connected

vehicles, each possibly carrying map data regarding some road segments. Thus,

from the RSU, there are many possible encoded message combinations for

transmission that can provide the least number of transmissions for the lim-

ited bandwidth condition. Given this, an efficient data dissemination scheme

can determine which encoded message should be transmitted based on the

overall data demand and availability in the network [4].
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1.2 Research Motivation and Contribution

There is an abundant amount of information available in vehicular networks,

e.g., traffic density, flow, and state, and static (buildings) and dynamic (pres-

ence/absence of accidents) road map data. Hence, the uploading and down-

loading of data among intelligent connected vehicles and the road infrastruc-

ture are time-consuming and take up a considerable amount of network re-

sources. Besides, many V2X applications are time-critical, and failure in trans-

mission may lead to accidents, casualties, or traffic congestions, and inconve-

niences [20]. Therefore, a pivotal challenge in a heterogeneous V2X network

is how to manage the information exchange among vehicles and the infras-

tructure effectively. An efficient information exchange allows network nodes

to acquire the appropriate control and environment data on time for making

real-time on-road decisions.

In the first part of the thesis, the control data dissemination problem is

studied by considering a highway tollgate scenario for implementation. On-

ramp control is the most efficient method to eliminate congestion, but this

passively controls the entry of vehicles into the highway, resulting in an un-

even distribution of vehicular density at various speeds. Most of the time,

vehicles closely following one another tend to develop ghost traffic jams [21]

because of their various speeds. To address this congestion, for a given num-

ber of highway lanes and tollgates and vehicular capacities, we designed a

centralized fuzzy logic controller (FLC) to appropriately assign an incoming

intelligent connected vehicle to a server queue in real-time. This automatic

queue assignment reduces the overall average waiting time for each intelligent

connected vehicle at the tollgate while ensuring fair server utilizations.

Extensive simulation of the real-time decision-making controller based on a

homogeneous assumption of service times, homogeneous and non-homogeneous
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vehicle arrival rates, and fixed queue capacities has been conducted to verify

the network performance. The proposed integration of an FLC in a highway

tollgate setup addresses the growing vehicle volume while keeping the highway

infrastructures constant.

The main contributions of the first part of the study are summarized as

follows:

1. We develop a discrete-event model of a highway tollgate scenario that

captures the entry/exit behavior of vehicles following the Shortest Queue

(SQ) and the proposed Fuzzy Logic-controlled Queue (FLCQ) policies.

The SQ policy allows approaching intelligent connected vehicles to select

servers currently having the shortest queue. On the other hand, the

FLCQ policy assigns the approaching vehicle to a server upon considering

the server’s lane density and service time.

2. Extensive simulation verified the FLCQ’s performance against the SQ

policy. With varying tollgate service times and regardless of traffic con-

ditions (light or heavy and homogeneous or non-homogeneous vehicular

arrival), a knee separates slow from fast service times. When compared

to the standard SQ policy, the FLCQ method presented a maximum 50%

improvement in the reduction of expected vehicular queuing time, while

having a 20% decrease in average utilization among all servers. Also,

to provide a more real-time reaction to highway traffic conditions, the

FLCQ policy detects early build-ups for each tollgate. For a given queue

density threshold, tollgate servers provide faster service accordingly.

To further exploit the advantages of employing a centralized fuzzy logic

controller in the tollway gate servers, the other sections must also be managed

accordingly. Highway on-ramp entries/exits are junctions allowing continuous

and free flow of traffic. The first part of the study is then extended in Chapter
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5, wherein, once RSUs are deployed on the selected optimal intersections, the

tollway gate servers’ Access Point/RSU also sends out to these RSUs its early

warning signal. The received warning signal lets the highway section RSU

to control the vehicular density and space mean speed appropriately. This

control mechanism will allow density and speed balance such that there is

little to no traffic build-up in the tollgate section, effectively, eliminating ghost

traffic jams, and further reducing the average queue waiting time.

The second part of the thesis considers a vehicular network employing the

fog computing paradigm that implements a scheduled information dissemina-

tion mechanism utilizing index coding, data hashing, and heterogeneous trans-

mission options. We employed the fog computing paradigm [22] to bring the

cloud computing servers closer to the vehicles to reduce latency and to effec-

tively manage the information exchange among vehicles and the infrastructure

in a heterogeneous V2X network. Fog computing has an additional comput-

ing layer covering a local area within the vehicular network that processes

data coming from its local vehicular and infrastructure nodes and immedi-

ately transmits its results to the appropriate vehicular/infrastructure node.

Aside from reducing latency, fog computing offers 1) effective operation even

at the absence of reliable data connection and bandwidth, 2) enhanced privacy

and security because data are not uploaded to remote servers, and 3) reduced

operational expenses such as transmission costs over cloud and edge computing

platforms [23].

Unlike fog computing, the cloud-edge pairing deploys computation- and

storage-enabling technologies closer to end-devices resulting to a localized ap-

plication [24]. Service-sharing happens only in the cloud, therefore, multiple

Internet of Things (IoT) applications are not supported, leading to a high

resource-contention rate at the cloud level [25]. Edge computing focuses on

the edge- or device-level, while fog computing presents an infrastructure level
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solution [26]. In the data dissemination scenario in vehicular networks (which

is illustrated in Fig. 4.1), vehicles individually perceive their surroundings for

objects and obstacles. However, to keep their plan trips updated with im-

portant road information, intelligent connected vehicles need to share their

environment data and access other location’s data in real-time, especially for

time-critical cases such as road accidents and vehicular breakdown. This can

be accomplished when vehicles interact with an RSU fog node and local con-

trollers and databases for data exchange, where local and global road data are

both available in real-time and minimal latency.

Intelligent connected vehicles may serve as mobile fog nodes for implement-

ing localized computational tasks and can directly communicate with nearby

vehicles via Dedicated short-range communications (DSRC) or Cellular V2X

(C-V2X) [27], especially when vehicles are beyond the infrastructure’s cover-

age. On the other hand, infrastructure nodes, such as roadside units (RSUs),

traffic lights, base stations, etc., can act as fog nodes for efficiently com-

municating with intelligent connected vehicles within its transmission range.

These infrastructure nodes can also store massive amount of data and perform

computationally-intensive processing and calculations instead of allowing the

cloud to do it, thereby, providing real-time and reliable vehicular applications,

e.g., autonomous driving in a dynamic environment.

Meanwhile, a local controller facilitates the data exchange among closely

related infrastructure fog nodes in a local region. Local controllers determine

the transmission mode, i.e., either long-range unicast (Long Term Evolution

or LTE) or short-range broadcast via DSRC or C-V2X [27]. They also decide

whether specific road map data are to be forwarded to the map data repository

(cloud) [28] or stored in local databases. The access of road information from

other local regions is administrated by the super software-defined networking

(SDN) controller, which is the network component with global intelligence [29]
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that orchestrates data traffic and manages resources among local controllers

and databases [30]. The SDN controllers also perform scheduling of tasks

among fog nodes. Finally, the map data repository is a cloud node with a

global knowledge of an urban area for monitoring and control at a city-wide

level [31].

Applying index coding in the data dissemination scenario has the follow-

ing advantages. First, the RSU fog nodes, while employing index coding-

based transmission schemes, can disseminate information in a more compact

packet size given the side information at vehicles, thus, increasing through-

put. Second, when binary-coded packets are used, a relatively low-complexity

mechanism dissemination is implemented. Thus, computational complexity is

minimal, despite the added process for encoding road map data. Finally, when

the RSU fog node broadcasts an encoded message, a vehicle cannot decode it

unless it has side information. Therefore, the coded packets are secured during

the broadcast, which is useful in certain scenarios. One mild drawback of index

coding is the generation of overheads in the network. However, since we only

employ binary-coded packets in our scheme, our proposed data dissemination

scheme introduces minimal processing overhead.

The major contributions of the second part of the thesis are summarized

as follows.

1. Under the vehicular fog computing framework, we integrate the index

coding algorithm to optimally disseminate high-definition 3D road map

data among intelligent vehicles and the roadside infrastructure to reduce

the number of required transmissions and data load while satisfying the

vehicular demands.

2. We propose fog-based opportunistic scheduling algorithms based on ve-

hicular trip plans for map data downloading in citywide vehicular net-
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works. These dynamic schedulers determine the mode of transmission

(short-range broadcast or long-range unicast) based on the available re-

sources at fog devices to reduce the overall operating cost of the network.

Also, differential coding and hashing techniques for 3D point cloud data

uploading at the vehicular level is proposed to avoid data redundancy,

and hence reduce the processing and computation load of roadside fog

nodes.

3. Utilizing empirical mobility traces and 3D LIDAR data of city streets,

we rigorously evaluate the performance of the proposed algorithms and

system. We have also implemented our system in a multi-robotic vehicle

testbed for practical evaluation.

Developed dissemination strategies are then deployed in roadside infras-

tructures. The study of deploying RSUs was first proposed in [32] and was

aimed to aid vehicles in information dissemination in a vehicular network. In

Fig. 1.2, the RSU is positioned at the center of the junction. The deployment

is the same on highway tollgates. However, when a citywide scenario of multi-

ple junctions is investigated, RSUs cannot be allocated at all intersections due

to its cost and maintenance. Because of this, optimal RSU locations should be

determined to optimize information dissemination and minimize deployment

costs.

In the third part of the thesis, we explore where to optimally allocate RSU

fog nodes for maximized information sharing, given these constraints:

(a) multiple candidate junctions and

(b) any urban spatial locations in a citywide setup by employing empirical

mobility traces.

For the multiple candidate junction constraint in (a), we propose an Infor-
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mation Sharing via Roadside Unit Allocation (ISRA) strategy for deploying

hotspots at road intersections to support various fog computing applications.

ISRA exploits the traffic and communications statistics derived from these

mobility traces to select the appropriate spot where the intelligent connected

vehicles and the RSU fog nodes can exchange maximum information. In sum-

mary, ISRA has the following significant contributions below.

1. Based on a seven-day taxi Global Positioning System (GPS) dataset

plying on the first and the second rings of Beijing City, the junction’s

daily average V2I download and upload contact densities and space mean

speeds are extracted.

2. In order to determine energy-efficient and information-rich candidate

hotspots, we applied an index-coding based transmission scheme to iden-

tify the candidate locations’ minimum total number of packet transmis-

sions and transmitted data size to satisfy the information demands of

nearby vehicles.

3. Given the empirical findings, ISRA is proposed to identify the optimal

positions for the RSU fog centers such that the information shared among

vehicles and RSU fog nodes are maximized.

Finally, given a general set of urban spatial locations to deploy RSUs, we

develop an Enhanced Information SHAring via RSU Allocation (EISHA-RSU)

algorithm to address the information exchanges, connectivity, and coverage

issues in the network. While most works have already identified intersections as

candidate positions for assigning RSUs (like ISRA), EISHA-RSU extends the

search for candidate locations to the whole considered area. This constraint (b)

may include landmarks, a particular location along a road segment, and other

spots where RSU deployment is possible. EISHA-RSU irregularly partitions an

12
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urban area based on its network characteristic to determine regional priorities.

Then, in each region, the most suitable positions to deploy the RSUs are

determined based on the optimization objectives and constraints. The major

contributions of the EISHA-RSU strategy are summarized below.

1. We propose the novel EISHA-RSU deployment scheme as a vehicular-

mobility-aware scheme that irregularly partitions an urban city according

to its effective regions of movement (ERMs) characterized by vehicular

capacity homogeneity. For each formed ERM, effective positions (EPs)

are located to ensure urban-wide connectivity, wider coverage, and max-

imum shared information. Since ERMs are two-dimensional areas, all

physical locations are considered as possible EPs for RSU allocation.

2. Extensive simulation utilizing three urban empirical mobility traces and

locations is carried to evaluate EISHARSU’s efficiency performance. EISHA-

RSU fairly allocates RSUs at EPs to achieve the problem objectives, par-

ticularly identifying locations with maximized information-rich sources

and data carriers.

3. By comparing EISHA-RSU with three other benchmarks (Uniform, City-

wide, and MaxInfo Deployment) and employing three urban empirical

mobility datasets, our proposed allocation scheme requires on the av-

erage 16%, 21%, and 113% less number of RSUs, respectively, while

satisfying the problem objectives. Also, based on the Effectiveness met-

ric, EISHA-RSU performs the best when concerning coverage area and

the amount of information shared.

1.3 Organization of the Thesis

This thesis is organized as follows.
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Chapter 2 reviews the general control and environment data dissemination

published works and differentiates the contributions of this thesis.

Chapter 3 presents control data dissemination by highway tollgate servers

for optimizing server utilization and minimizing vehicle waiting time. A fuzzy

logic controller implemented in an infrastructure node is proposed to attain

such objectives.

Chapter 4 investigates the availability and demand of environment data in

a citywide scenario. It also proposes an efficient opportunistic data dissemina-

tion scheme based on index coding that can optimally reduce the number of

transmissions (whether cellular or roadside unit downloads), transmitted data

size, and processing overheads. Extensive simulations using empirical taxi mo-

bility traces are employed to verify the efficiency of the proposed algorithm.

A robotic experiment setup is also able to confirm its feasibility.

Chapters 5 and 6 discuss optimal allocation techniques for maximizing

information sharing among intelligent connected vehicles and between roadside

units. Chapter 5 covers only intersections and proposes ISRA to determine

possible RSU candidate locations, while Chapter 6 presents EISHA-RSU to

consider all spatial locations. Using the optimal index coding technique of

Chapter 4, information-rich, and energy-efficient intersections are identified by

ISRA and have an RSU allocated at that spot. ISRA also manages the load

of each deployed RSU equally. On the other hand, EISHA-RSU employs the

Effective Regions of Movement and Effective Positions concepts to determine

RSU allocation places.

Chapter 7 summarizes the thesis’ contributions and tackles the future di-

rection of the research study.
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Chapter 2

Literature Review

In this chapter, related works about the data dissemination in vehicular net-

works will be discussed. The literature review is divided into two sections

discussing accomplishments, issues, and challenges on (1) control and envi-

ronment data dissemination and exchange and (2) deployment of roadside

infrastructures to aid distribution of data in vehicular networks.

2.1 General Data Dissemination Problem

In this work, the data dissemination problem is categorized into two, namely,

(1) control data and (2) environment data. Control data are safety-related ap-

plications and commands for intelligent connected vehicles to follow for orderly

traffic flow. In contrast, environment data are non-safety reports/applications

for further processing by the intelligent connected vehicle.

2.1.1 Highway Control Data Dissemination

Earlier works focused on the optimal allocation and management of highway

tollgates. [33] derived the optimal number of operating tollgates based on the

economic cost per unit time equal to the sum of the toll booth’s operating cost
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and the customer’s waiting cost. The tollgate system was based on an 𝑀/𝐷/1

model, whether in the inbound or outbound direction. Another model used was

the Basic Traffic Unit (BTU) that represented tollgates as nodes where roads

enter and exit [34]. Having a combined limit of 12 operating tollgates for both

inbound and outbound, four and eight tollgates were needed for inbound and

outbound directions, respectively. This allocation assumed that the inbound

and outbound arrival rates were 8.33 and 18.33 cars/min, respectively. Also,

the toll booths were assumed to have the same service times in any direction.

However, if we considered peak-hour traffic of 30 cars/min (1800 cars/hr) per

road lane as in [35], then the total necessary number of operating tollgate will

exceed the set limit of 12 to accommodate a single (inbound/outbound) lane.

In 2011, a 100-km traffic jam, which took 12 days to clear, appeared on an

expressway in Inner Mongolia. This standstill was caused by the reconstruction

and expansion of the Beijing-Tibet Highway [36]. On the other hand, take the

case of the “Carmageddon” that happened in 2015 in China. Thousands of

vehicles were stuck on a 50-lane highway and experienced gridlock on the G4

Beijing-Hong Kong-Macau Expressway on their way home after the holidays.

According to the article, the queuing of motorists at the toll booths triggered

the gridlock [37].

The traffic delays in the tollgates at Port Authority were studied to address

the staffing requirement and its equivalent cost, the traffic condition, and the

grade of service simultaneously. Efficient scheduling of its workforce to reduce

traffic delays and minimize its operational costs was proposed to effectively

handle traffic with the least number of tollgate collectors with consistently

excellent service while not exhausting the tollgate collectors. The study was

done in 14 months and was able to achieve scheduling efficiencies of 95% or

better [38]. In [39], toll booth delays and its elimination were also discussed.

Adding tollgates was the first and straightforward improvement that just re-
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quired additional right-of-way, but has diminishing effects because of weaving

maneuvers and driver confusion.

Other research studies analyzing tollgate scheduling scenarios were seen in

[40,41]. The work in [40] presented a MODSIM III-based simulation tool, called

Tollsim, for evaluating the tollgate scenario in Venezuela and help in the traffic

management decision-making. Electronic Toll Collection (ETC) services were

introduced and evaluated in [41] to hasten tollgate service times. ETC tollgates

were dedicated lanes for automatic vehicle identification that do not provide

toll fee change and have a uniform and constant service times. In this study,

the operational planning and viability for deploying ETC lanes were presented.

ETCs do not allow full vehicle stop when compared to an operational tollgate

[39]. This discussion about optimizing tollgate management has also been

extended into parking systems by including Pay-on-Foot alternative instead of

Pay-At-Exit only [42] and predicting waiting delays at intersections [43].

Due to the ever-increasing number of vehicles, the addition of tollgates

become less economical in terms of cost and benefits, while making optimal

scheduling of tollgate servers not applicable anymore. For instance, in the

Philippines, the ratio of the number of vehicles and tollgates is very high, e.g.,

the average daily vehicle-to-tollgate ratio is 2,814 for the North Luzon Ex-

pressway (with 26 southbound lanes), 5,912 for the South Luzon Expressway

(with 18 southbound lanes), and 11,405 for the Skyway (with 6 southbound

lanes) [44]. In addressing such a dilemma, real-time and robust systems can

be used, such as fuzzy systems. Fuzzy logic control (FLC) systems have been

considered as one of the most critical technologies that can play a significant

role in intelligent transportation systems because they can provide real-time

decision-making systems and are quite easy to design [45–47]. When compared

to other control mechanisms, fuzzy logic has the following advantages [48–50].

Since traffic is normally characterized by subjective descriptions such as light,
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moderate, or heavy, assigning control values and set points become flexible and

intuitive and can easily be adjusted based on the current traffic conditions.

Therefore, simultaneously addressing ambiguity derived from uncertain infor-

mation. FLC, nowadays, has user-friendly interfaces that allow non-technical

decision makers to derive its control strategy that can be based on simple or

complicated membership functions. Finally, fuzzy logic controllers can be in-

corporated with other conventional and modern controllers, e.g., Proportional-

Integral-Derivative (PID), Neural Networks, Sliding Mode Control, and State

Feedback.

Also, deploying roadside infrastructure in critical highway sections will al-

low intelligent connected vehicles to obtain early warning signals. Therefore,

these vehicles will adjust their speeds accordingly.

2.1.2 Environment Data Dissemination

There have been plenty of flourishing developments for intelligent connected

vehicles in the past decade. Intelligent connected vehicles, on their own, can

perceive and model their environment, build a map and localize themselves

in it, independently plan their paths, and make appropriate decisions and

control their motion [51]. They have a communication system capable of short-

range broadcast and cellular communications for information sharing among

intelligent connected vehicles and infrastructure nodes, such as roadside units

(RSUs), base stations, local controllers, databases, and cloud servers.

Most intelligent connected vehicles use 3D LIDAR sensors to perceive the

environment in a 3D view. However, 3D-view data require large memory for

storage and transmission. Sharing such a considerable amount of data with

other intelligent connected vehicles and infrastructure requires large commu-

nication bandwidth. Therefore, data dissemination in vehicular networks be-
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comes a challenging task because of its dynamic network topology and fre-

quently disconnected network [52, 53]. To overcome the bandwidth limitation

of map data dissemination, communications, and cooperation among vehicles

and roadside nodes can extend the sights of vehicles in V2X networks.

The work in [54] analytically studied the horizontal data dissemination in

1D vehicular networks via V2V. A reference car downloaded materials from

the Internet and became the source in distributing the contents to other in-

terested parties in only one direction. This model was similar to the SPAWN-

CarTorrent protocol [55, 56] that relied on a gossip mechanism for data prop-

agation over multiple hops. To cover more vehicles, [57] proposed an oppor-

tunistic publish/subscribe dissemination mechanism to deliver information in

a geographical region. Another work that does not rely on infrastructure for

data dissemination was seen in [58] by developing Acknowledged Broadcast

from Static to highly Mobile (ABSM) protocol [59]. In the ABSM protocol,

the vehicle forwards a received broadcast message if it will not create a broad-

cast redundancy. Periodic beacon transmissions achieved this. TrafficView [60]

also disseminated environment data via V2V mode for driving conveniences.

Subsequent works incorporated the use of roadside infrastructures in data

dissemination. The authors in [61] proposed a crowdsensing framework that

collects available RSU resources to guarantee the level of quality of dissemi-

nated data. The authors in [62] investigated the scheduling of significant file

distribution problems. It assumed that each intersection had an RSU deployed,

and a high-speed backbone interconnected all the RSUs. Scheduled downloads

were done in two ways, either downloading from scratch or resuming download.

Another cooperative V2I data dissemination was presented in [63]. It discussed

a V2I communication model that tackled real-time delay and tolerance for effi-

ciently communicating between RSUs and vehicles. Longer transmission time

was expected for substantial data files, but this was less than the time spent
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by the vehicle in an RSUs range. The same approach of RSU load balancing

was previously investigated in [64], which considered request delay tolerance,

transferee RSUs current load, and heading of moving vehicle.

The VVID architecture [65] combined the V2V, V2I, and delay-tolerant

networks (DTNs) in addressing the timely data dissemination by considering

geographical scalability and sparse vehicular density. V2V allowed the prop-

agation of valuable information through the network, while V2I permitted

information movement in a vast region. When there is node sparsity, the net-

work used DTNs. [66] proposed the Data Pouring (DP) and Buffering (DP-IB)

methods. DP periodically transmitted data on selected roads, while DP-IB re-

broadcasted these data on the intersections. DP-IB increased the data delivery

ratio and maximized dissemination capacity. The work in [67] relied on clus-

ter formation of V2V and V2I groups for continuous emergency signal data

transmission in a one-dimensional road.

Environment data in vehicular networks come in various items and can be

requested by different vehicular nodes [68]. The content distribution in vehic-

ular ad hoc networks (VANETs) [69] can be enhanced by network coding, e.g.,

index coding [70]. For example, [71] discussed how network coding configu-

rations, such as resource constraints affect content distribution performance.

In [72], network coding was used for bandwidth efficiency improvement and

data service enhancement. Network coding techniques cancelled interference

caused by infrastructure transmitting information to designated vehicles [73].

These studies did not optimize the uploading and downloading of the abun-

dant 3D map data for dissemination to intelligent connected vehicles. Also,

data processing leads to massive network resources consumption, thereby in-

troducing unwanted delays, and eventually affecting time-critical vehicular

applications. Therefore, there is a need to exchange information effectively

among intelligent connected vehicles and roadside infrastructures in a vehic-
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ular network that supports different transmissions. A more recent approach

is by incorporating the fog computing paradigm into vehicular networks [74].

Fog computing brings the processing and communication capabilities among

nodes and servers closer to each other.

Fog computing, first coined and introduced by Cisco Systems in 2012, is

a recent paradigm bringing cloud computing closer to the network edges to

reduce the latency in various real-time services [22, 74]. The incorporation

of fog computing into vehicular networks establishes the Internet of Vehicles

(IoV) concept or the vehicular fog computing (VFC) paradigm. Extensive fog

computing surveys [31, 75, 76] have outlined the possible application of such

computing paradigm in vehicular networks. In vehicular fog networks, intel-

ligent connected vehicles act as sensing devices that gather and preprocess

surrounding data before uploading. Some data coding and hashing techniques

can also be done at the network edges to alleviate the traffic load as well.

Intelligent connected vehicles may serve as mobile fog nodes for implement-

ing localized computational tasks and can directly communicate with nearby

vehicles via DSRC/C-V2X, especially when intelligent connected vehicles are

beyond the infrastructure’s coverage.

On the other hand, infrastructure nodes, such as roadside units (RSUs),

traffic lights, and base stations, can act as fog nodes for efficiently communi-

cating with intelligent connected vehicles within its transmission range [77].

These infrastructure nodes can also store huge amounts of data and perform

computationally-intensive processing and calculations instead of allowing the

cloud to do it, thereby, providing real-time and reliable vehicular applications,

e.g., autonomous driving in a dynamic environment. There have already been

several application scenarios employing RSUs as fog nodes [78–80]. The most

common use-case scenario is a traffic management system for improving traffic

flow and collection of environmental data.
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2.2 Deployment of Roadside Infrastructures

The data dissemination problem in VANETs offers limited wireless bandwidth

and intermittent connectivity. One of the strategies to address these issues

was to place roadside units (RSUs) strategically, e.g., broadcasting safety ap-

plication services on highways [81] and information sharing among roadside

units in Intelligent Transportation Systems [82]. As more intelligent connected

vehicles roam the roads, RSUs will serve as the vehicles’ support layer for

real-time or on-demand environment sensing, storage, processing, and dissem-

ination. There is a need to efficiently situate RSUs in a city-wide scenario

such as Beijing City due to deployment cost and maintenance. Placing RSUs

on intersections is the simplest but not the most practical and economical

solution [83–85].

The work in [32] considered using a minimal number of specialized and net-

worked infrastructures, called Stationary Supporting Units (SSUs), to provide

a dramatic improvement in data dissemination. The locations on which to

place these SSUs were based on a heuristic approach. Follow-up work in [86]

employed the use of a genetic algorithm (GA) based on travel time savings to

determine the proper positions of SSUs. GA was also used in [87] to minimize

the deployed number of RSUs while ensuring that a level quality of service was

met. In [88], RSUs were deployed by using Affinity Propagation to determine

the candidate position from formed clusters based on the traffic statistics of

synthetic mobility traces. The performance was evaluated by measuring the

delivery ratio, average delay, and hop count in the network.

The published works in [89–94] addressed the RSU deployment problem by

maximizing RSU coverage for maintaining high connectivity among vehicles

and infrastructures, maximizing throughput, and reducing incident reporting

time while using the least number of deployed RSUs in a given urban setup.
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In [95], the RSU allocation problem was addressed via the maximum coverage

problem by maximizing the number of unique V2I contacts. The maximum

distance between RSUs was studied in [96] by incorporating effective band-

width theory and capacity content. These research works, [96–98], also tackled

message delay dissemination in disconnected RSU deployment.

Information download, security, and privacy can also be used as constraints

to deploy RSUs efficiently. Driving time, extra overhead time, and file down-

loading quality were constraints to the optimization problem [99–101]. How-

ever, simulations were done on a small scale city map. Also, in [101], RSU

allocation was based on the most popular used routes, the most dominant in-

tersection pairs, and the most critical intersection to allow vehicles to update

their certificates before it expires.

In order to reduce RSU deployment cost, other works suggested using

parked cars as temporary RSUs [102, 103]. Such configuration not only of-

fers a short-term solution in providing aid to an intelligent connected vehicle’s

navigation and environment data request but also opens discussions about

privacy issues like access and energy consumption.

Fuzzy logic controller (FLC) Road side unit (RSU) Light detection and ranging (LIDAR) Information sharing via road-
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(V2I) Vehicle-to-Vehicle (V2V) Map data repository (MDR) Shortest queue (SQ) Fuzzy logic-controlled queue (FLCQ) Ded-
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23



2.2. DEPLOYMENT OF ROADSIDE INFRASTRUCTURES

24



Chapter 3

An Intelligent Highway Tollgate

Queue Selector for Improving

Server Utilization and Vehicle

Waiting Time

This chapter studies the centralized dissemination of control data for a highway

tollgate system. On a highway setup, an intelligent connected vehicle will most

probably use a tollgate server that has the shortest queue, thinking that it is

the fastest exit. However, without extensive knowledge of the other service

times and queue lengths, a vehicular build-up is formed. To resolve this,

we develop an intelligent highway tollgate queue selector using a fuzzy logic

controller. It aims to automatically select the most appropriate tollgate server

for an intelligent connected vehicle to ensure the shortest waiting time while

trying to balance the server’s utilization.

The organization of the chapter is as follows: The first section discusses the

development of the highway model for simulation and compares the Shortest

Queue (SQ) and Fuzzy Logic-Controlled Queue (FLCQ) policies. The second
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section provides the simulation results and discussion of the two policies based

on a set of performance metrics. Finally, a summary wraps the work done in

the chapter.

3.1 Development of an Intelligent Highway

Tollgate Queue Selector

We discuss the model development of the highway system in Matlab/Simulink

and the shortest queue and fuzzy logic controlled policies.

3.1.1 Matlab/Simulink Highway System Development

Fig. 3.1 shows a section of a highway having 𝑁 vehicle lanes and 𝑖 exit toll-

gates with corresponding 𝑙𝑖 queue capacities that is considered. Fig. 3.1 also

represents a symmetric queue capacity configuration. An access point (AP) is

placed on the highway system where the vehicle communicates to obtain which

server to queue according to the proposed intelligent highway queue selector.

This is modeled in Matlab/Simulink incorporating modeling blocks from the

SimEvents Library as shown in Fig. 3.2.

The following assumptions are used in the highway model.

1. Each lane 𝐿𝑧=1,...,𝑁 is characterized by an independent, identical Poisson

distribution with its own (non)homogeneous arrival rate of vehicles.

2. All vehicles have the same length. Practical deployment of tollgates

allows only vehicles of the same class to line up on a tollgate to further

hasten entry/exit.

3. Tollgate queue capacities (𝑙𝑥=1,...,𝑖) are fixed and based on the number of

vehicles it can accommodate.
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Figure 3.1: Highway Tollgate System.

4. Tollgate service times (𝑇𝑆𝑦=1,...,𝑖) are characterized by a deterministic

(constant) or exponential distribution.

Fig. 3.2 depicts the Matlab/Simulink model incorporating modeling blocks

from SimEvents Library of a Fuzzy-controlled Tollgate system for the highway

segment shown in Fig. 3.1. The three blocks highlighted by the dashed box

represent the highway tollgate system following the SQ policy.

The three main blocks are: (1) VehicleGeneration, (2) TollgateQueues and

(3) TollGateServers. The VehicleGeneration block generates vehicles following

a (non)homogeneous Poisson distribution. The stochastic traffic model used

came from [35] and assume that there is no car joining or leaving the highway

segment before the tollgate. The highway scenario in this study is modeled as

a single state queueing system with a Poisson arrival distribution, exponential

service time, 𝑐 servers and𝐾 capacity, (𝑀/𝑀/𝑐/𝐾). Though vehicles originate

in more than one highway lane before 𝑥 = 𝑑 (see Fig. 3.1), service will be

dependent on a first come, first served basis (FIFO).

The TollgateQueues block determines which tollgate a vehicle will use to
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Figure 3.2: Matlab/Simulink System Model. Dashed box represents the high-
way tollgate system.

exit the highway. The queue capacities are defined before any simulation run

depending on the tollgate configuration. The TollGateServers block contains

all the available servers. Service time (𝑇𝑆) can be set to be a constant or

exponential distribution.

3.1.2 Shortest Queue and Fuzzy Logic-Controlled Poli-

cies

There are two policies governing how a vehicle queues in a server that are

presented: (1) Shortest Queue (SQ) [40] and (2) the proposed Fuzzy logic-

controlled Queue (FLCQ). The SQ Policy is used at a certain instance by any

approaching vehicle to select which server currently has the shortest queue.

This selection does not consider which server has the quickest service time or
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the highest utilization. On the other hand, the FLCQ Policy determines which

lane the approaching vehicle should queue. The FLCQ takes into consideration

the server’s current lane density and its service time to make the decision.

The SQ Policy pseudocode is shown in Algorithm 1 below. A vehicle ap-

proaching a tollgate server makes its decision based on the current server 𝑖 lane

density (𝑄𝐷𝑖). Vehicles select tollgates with possible minimum 𝑄𝐷 based on

its perception. These selected tollgates are defined as possible queues 𝑃𝑄

where vehicles can line for entry/exit.

Pseudo-codes 1 Shortest Queue Algorithm

1: Get Lane Densities, 𝑄𝐷𝑖

2: Determine ALL Possible Queues (𝑃𝑄) with minimum 𝑄𝐷
3: if 𝑃𝑄 > 1 then
4: Select a queue based on a uniform random number
5: end if
6: Output Queue number

Queue Density (𝑄𝐷𝑖) is the ratio between the number of vehicles in a queue

and the queue capacity. Mathematically, it is expressed as:

𝑄𝐷𝑖 =
𝑛𝑖

𝑙𝑖
(3.1)

where: 𝑛𝑖 = number of cars in queue 𝑖 and 𝑙𝑖 = queue 𝑖 car capacity

Normally for a symmetrical tollgate configuration, if there are servers hav-

ing the same number of vehicles in queue, a vehicle will likely choose any of the

innermost servers because of the traveled distance involved and the concern of

changing of lanes. Therefore, during a light traffic flow, tollgate servers having

queues with the least queue capacities will be highly utilized.

For the FLCQ policy, the crisp inputs chosen to be fuzzified are the lane

density and service time ratio (𝑇𝑆𝑅𝑎𝑡𝑖𝑜). 𝑇𝑆𝑅𝑎𝑡𝑖𝑜 is defined as:
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𝑇𝑆𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑆𝑖

𝑇𝑆𝑚𝑎𝑥

(3.2)

where: 𝑇𝑆𝑖 = service time of server 𝑖 and 𝑇𝑆𝑚𝑎𝑥 = maximum service time from

all servers

The service time ratio allows the fuzzy logic controller to have an idea on

the relative service time of a certain tollgate with respect to the other tollgates.

The defuzzified output is the probability of the tollgate being chosen. Fuzzy

control is then developed using the rule base that is generally implemented by:

𝑄𝑃 = 𝑓𝑢𝑧𝑧𝑦(𝑇𝑆𝑅𝑎𝑡𝑖𝑜, 𝑄𝐷) (3.3)

where the server time ratio and queue density are the preconditions while the

consequent is the queue probability (𝑄𝑃 ). 𝑄𝑃 is dynamically updated once

a new vehicle joins. Creating the fuzzy rules are based on the idea that when

the server time ratio is small (thus, being the fastest), and the lane density is

low (thus, being the shortest), the probability of choosing the server queue is

high. The fuzzy rule base is shown in Table 3.1.

Table 3.1: FLCQ Policy Fuzzy Rule Base.

PPPPPPPPP𝑄𝐷
𝑇𝑆𝑅𝑎𝑡𝑖𝑜 F OK S

SQ 𝐻𝑃 𝐻𝑃 𝐻𝑃

OK 𝐻𝑃 𝑂𝐾 𝑂𝐾

LQ 𝐻𝑃 𝑂𝐾 𝐿𝑃

The 𝐿𝐷 inputs are categorized as: 𝑆𝑄 (short queue), 𝑂𝐾 (nearing half-

filled queue) and 𝐿𝑄 (long queue). On the other hand, the 𝑇𝑆𝑅𝑎𝑡𝑖𝑜 inputs

are characterized by: 𝐹 (fast), 𝑂𝐾 (just right) and 𝑆 (slow). There are two

types of membership functions (MFs) used to represent the inputs, namely,

(1) triangular MFs and (2) trapezoidal MFs. These are shown in Fig. 3.3.
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Figure 3.3: Triangular (left) and Trapezoidal (Right) Membership Functions.

The membership degree of an MF describes the relationships between input

events. [104]

Figure 3.4: Output Membership Function .

The possible outputs for these two approaches in input membership func-

tions are: 𝐻𝑃 (high probability), 𝑂𝐾 (more or less 50% of being selected)

and 𝐿𝑃 (low probability). These are depicted in Fig. 3.4. The linear mem-

bership functions were chosen because of the advantages it holds, i.e., simple

implementation and fast computation.
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To clearly see the input-output relationships of the proposed fuzzy logic

controllers, the surface views of the fuzzy rule base in Table 3.1 along with

the two approaches in Fig. 3.3 are shown in Fig. 3.5 respectively. The surface

views show all possible combinations of inputs and its corresponding probabil-

ity output.

Figure 3.5: Fuzzy surfaces for triangular(left) and trapezoidal(right) MFs.

The implication method of the fuzzy logic controller used the𝑚𝑖𝑛 operator,

while the aggregation of each rule output was done by the 𝑚𝑎𝑥 operator. In

the implication method, the result (a single number) derived from “𝑎𝑛𝑑-ing”

the preconditions is used to reshape the consequent by truncating the output

fuzzy set. This is done for all set of rules. On the other hand, the aggregation

method combines all truncated output fuzzy sets (inputs) from the implication

method into a single fuzzy set by getting the maximum value when comparing

all inputs. Finally, defuzzification is implemented by finding the centroid of

the aggregated output. The fuzzy logic process is done for every instance a

new vehicle joins and chooses a tollgate for its entry/exit.

For example, if the tollgate’s current 𝑄𝐷 = 0.25 and 𝑇𝑆𝑅𝑎𝑡𝑖𝑜 = 0.5, then

its probability of being chosen next when a new car joins is 𝑄𝑃 = 0.667.

The process discussed below is shown in Fig. 3.6 for triangular member input

functions. The values of both 𝑄𝐷 and 𝑇𝑆𝑅𝑎𝑡𝑖𝑜 are drawn vertically into its

corresponding MFs for all the nine rules. The intersection of this vertical line
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with the MFs creates the shaded regions (see columns 1 and 2). We compare

these two regions point by point and get the minimum of the two. This newly

formed region will now be used to reshape the output MFs (see column 3). The

aggregation method combines all truncated output MFs by comparing them

point by point and getting the maximum value among all compared points

(last row and last column text box). Finally, the centroid is determined to

arrive at 𝑄𝑃 = 0.667.

Figure 3.6: Fuzzy Logic Process.

All server-queue pairs have their own probability of being chosen. A Matlab

function then selects the one with the highest probability. If two or more

server-queue pairs are possible, then it chooses randomly following a uniform

distribution.
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3.2 Simulation Results

The tollgate symmetric configuration shown in Fig. 3.1 is used to simulate and

compare the SQ and FLCQ policies. There are four (𝑁 = 4) highway lanes and

seven (𝑖 = 7) tollgate servers/queues. The performance metrics used are: (1)

Average Queue Length (𝑄𝐿𝐴𝑣𝑒), (2) Average Queue Waiting Time (𝑄𝑊𝐴𝑣𝑒)

and (3) Server Utilization (𝑈𝑡𝑖𝑙). The average queue length is defined as the

time average of the number of vehicles. The server utilization is defined as ratio

of time spent servicing a vehicle over the total simulation time. In queueing

theory, it is defined by the expression below.

𝑈𝑖 =
𝜆𝑖

𝜇𝑖

=

𝑛𝑖

𝑇𝑇𝑜𝑡𝑎𝑙

1
𝑇𝑆𝑖

=
𝑛𝑖𝑇𝑆𝑖

𝑇𝑇𝑜𝑡𝑎𝑙

(3.4)

where: 𝜆𝑖 = arrival rate at a tollgate server 𝑖, 𝜇 = tollgate 𝑖 service rate, 𝑛𝑖

= number of cars in queue 𝑖, 𝑇𝑆𝑖
= tollgate server 𝑖 service time and 𝑇𝑇𝑜𝑡𝑎𝑙 =

total simulation time.

The highway lane arrival rate of each lane follows either a homogeneous

or non-homogeneous Poisson distribution. The queue capacities (in number

of vehicles) are set to 𝑙1 = 𝑙7 = 50, 𝑙2 = 𝑙6 = 40, 𝑙3 = 𝑙5 = 30 and 𝑙4 = 20

while the service times are modeled exponentially. Table 3.2 summarizes the

different arrival rates used.

Table 3.2: Simulation Parameters.

Sim Trial 𝜆1 𝜆2 𝜆3 𝜆4

1 12 10 8.57 7.5

2 30 20 15 12

3 30, 20 15, 12 10, 8.57 7.5, 6.67

The third simulation trial represents the non-homogeneous arrival rates at

the highway lanes. For Trials 1 and 2, the simulation time was set to 7200
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sec (2 hrs) while for Trial 3, simulation time was set to 14400 sec (4 hrs). For

example, the arrival rate of [𝑥, 𝑦] in Table 3.2 Trial 3 signifies that during the

first hour of simulation, there are 𝑥 cars/min, for the second hour, there are 𝑦

cars/min and then becomes periodic.

Fig. 3.7 shows the combined RMS results of all simulation trials of all

queues/servers. The average queue length, waiting time and server utilizations

of all queue/servers were observed under varying but homogeneous servers’

service times with values from 3 – 15 seconds. Note that the 𝑦-axis is in

semilog scale to highlight the differences between the policies at various traffic

conditions.

Figure 3.7: Simulation Results for Light (left), Heavy (center) and (c) Non-
homogeneous Arrival Rates (right).

Regardless of traffic condition, the service times creates a knee in the perfor-
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mance metrics that separates the interval of fast and slow service times. During

fast service times, the FLCQ policies provide shorter average queue length and

waiting time for a vehicle approaching a tollgate compared to the SQ policy.

It introduced a maximum approximate improvement of 50%. There is also a

decrease in the server utilization that practically translates to the servers not

tiring out quickly. During the interval of slow service times, i.e., after the knee,

the performance metrics are generally the same for all policies. This means

that the vehicular arrival rate is faster than how the tollgate servers provide

service, therefore, creating more build-ups.

The maximum RMS queue capacity of 38.54 vehicles is reached and the

average waiting time is at its maximum and is equivalent to the instantaneous

RMS queue length multiplied by the service time. Finally, the server utilization

can be seen to be fully utilized. (3.4) is used to obtain the numerical value of

the instantaneous server utilization.

Between the two FLCQ policies, the triangular MFs offer a better response

than the trapezoidal MFs just before the response’s knee. From the surface

views of the two FLCQ policies, we note that trapezoidal MFs provide a con-

stant change on the queue/server’s probability to be chosen. This means that

all queues/servers have an equiprobable chance of selection. On the other

hand, examining the triangular MFs surface view reveals that the shorter lane

densities and faster service times are given a higher range of probabilities over

the half-filled and “OK” service time ratios. Also, if the traffic condition is

heavy, a very small chance of being selected is given to a certain queue/server.

In this sense, it can be taken that triangular MFs lead to a more reactive policy

than the trapezoidal MFs if following the 9-rule base defined in Table 3.1.

Fig. 3.8 shows the response of the two FLCQ policies over the instantaneous

RMS queue length performance metric for each queue/server. It can also be

seen in Fig. 3.8 that the queue length has been equalized. It follows here
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Figure 3.8: Comparison between the Triangular and Trapezoidal MFs.

that the average queue waiting time is also the same as well as the server’s

utilization. This is not the case in the Shortest Queue policy.

To further enhance the advantage of the FLCQ over the SQ policy especially

during longer service times, the server is provided an early warning capability

once the lane density is approaching its maximum. In this simulation run, it

is assumed that after the FLCQ signal has been given, the servers reduced its

service time to half. Fig. 3.9 shows there is a decrease in the RMS server

utilization after the addition of this capability. In practice, road side units

(RSUs) can be installed along the highway to monitor the traffic density. The

FLCQ constantly communicates with these RSUs to update the current traffic

density information and decides if there is a need to inform the server to hasten

its service time.
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Figure 3.9: Comparison of FLCQs Average Server Utilization with and without
early warning (EW) capability.

3.3 Summary

It has been successfully shown that the incorporation of a fuzzy logic controller

in a highway tollgate system has effectively decreased a vehicle’s average wait-

ing time and average queue length, and improved the server’s utilization. This

is true for both homogeneous and non-homogeneous vehicular arrivals in the

highway lanes especially with tollgates of fast service time. As an added fea-

ture to the FLCQ selector, an early warning signal is introduced to allow the

server to reduce its service time when the traffic is building up due to relatively

long service times.
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Chapter 4

Efficient 3D Road Map Data

Exchange for Intelligent

Vehicles in Vehicular Fog

Networks

The basic control data dissemination for implementing an efficient and intelli-

gent highway tollgate system has been previously discussed. Control data are

sent to the intelligent connected vehicles by a centralized infrastructure. This

control data dictates where a vehicle will enter/exit a tollgate, thus, effectively

reducing the vehicle’s waiting time and queue length while at the same time

improving the server’s utilization.

In this chapter, we investigate the availability and demand of environment

data to be used in a more useful way to alleviate road accidents, promote

driving convenience, and provide road safety to all users. [4] studied a single

junction scenario, and we extend the work to a citywide setup where there are

multiple intersections involved.

The chapter is organized as follows. The first section describes our pro-
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posed information dissemination system at the fog layer. In the second sec-

tion, we formally define the information dissemination problem and discuss

the downloading and uploading operations of 3D road map data. The third

section presents motivating examples of utilizing index coding for vehicular

data exchange. It derives the optimal index coding scheme for both the sin-

gle road junction and multi-junction scenarios. The fog-based opportunistic

scheduling problem is tackled in the fourth section, while the techniques for

efficient uploading of 3D LIDAR point cloud data from vehicles are covered in

the fifth section. Sections 6 and 7 present experimental and simulation results

obtained based on our multi-robotic vehicle testbed and empirical mobility

traces, respectively. Finally, the last section concludes the chapter.

4.1 Information Exchange of 3D Road Map

Data in V2X Networks

To implement efficient road map data dissemination in a vehicular fog network,

we propose the 3D MAp Dissemination System (3D-MADS). The general oper-

ation of 3D-MADS includes intelligent vehicles, roadside units, local controllers

and databases, which are all within the fog layer in Fig. 4.1. Overall, the sys-

tem distributes map data among the parties promptly, taking into account the

characteristics of long-range unicast and short-range broadcast transmissions.

Short-range local broadcast achieved by Dedicated Short-Range Communica-

tions (DSRC) normally has limited available spectrum resources, short trans-

mission range, and restricted data transmission rate, but at lower transmission

cost. On the other hand, long-range unicast via cellular networks has larger

bandwidth capacity at higher transmission cost. However, it may be inefficient

to share common data among nearby transmitters, such as map data for ve-
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hicles in the vicinity. We aim at optimizing these transmission options while

satisfying the dynamic data demand of respective vehicles. By referring to Fig.

4.1, each component or module in 3D-MADS and its corresponding tasks are

explained as follows.

Figure 4.1: The vehicular fog computing architecture. Most information ex-
change and computation take place in the fog layer.

� Intelligent Vehicles

- Uploading enables sharing of on-board LIDAR data among vehicles via

the vehicular fog network.

- Coding & Hashing encodes and identifies differentiated data and redun-

dant map information.

- Downloading delivers the most updated 3D road map data from lo-

cal databases to intelligent vehicles via either cellular network or local

broadcast at RSU fog nodes.

- Perception utilizes on-board sensors, e.g., LIDAR and GPS, to perceive

the surrounding road environment as 3D point cloud data, from which we
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can detect and recognize objects and obstacles in the environment. The

locally processed 3D point cloud data will be uploaded to RSUs or local

controllers for further integration with the data from other vehicular and

roadside nodes.

- Inference & Decision allows intelligent vehicles to predict their move-

ments for autonomous navigation and control based on the perceived and

downloaded 3D road map data as well as position information.

- Control & Navigation relies on driving feedback and manages the in-

telligent vehicles to move safely and appropriately in the environment.

� Roadside Unit (RSU) Fog Nodes

- Perception provides blind-spot views that cannot be detected by intel-

ligent vehicles via the local sensors.

- Integration combines downloaded 3D road map data from the cloud with

the local LIDAR sensor data before sending them to nearby intelligent

vehicles.

- Index Coding encodes 3D road map data according to the data demand

and availability of nearby vehicles to improve the transmission efficiency.

- Broadcast is the periodic transmission of index-coded data to nearby

vehicles via local short-range broadcast.

� Local Controllers and Databases (LCD)

- Integration coordinates the data exchanged among intelligent vehicles

and RSU by setting the locations and boundaries of each region of map

data. It can also correct and realign the LIDAR data from different

vehicles that may contain drifting inaccuracy.
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- Separation differentiates static and dynamic objects in the integrated

3D road map data via segmentation. Additional annotations can be

generated based on machine learning techniques [105] to label the objects

in the map data. Different coding and transmission schemes can be

applied to data with different characteristics.

- Scheduling organizes the download and upload transmissions based on

the trip plans of vehicles, given the options of using either the cellular

network unicast or the short-range local broadcast transmissions.

With respect to Fig. 4.1, we can see that 3D-MADS is an interdisciplinary

system that requires the joint effort from multiple fields (e.g., communications,

signal processing, computing, navigation and control, transportation engineer-

ing, etc.), which is our long-term goal. In this paper, we focus on investigating

and discussing data exchange related modules (which include index coding,

map download scheduling, and coding and hashing) to kick start the develop-

ment of such system.

4.2 Formulation and Definitions

In this section, we formally define the 3D road map data dissemination problem

for intelligent vehicles. Consider a set of discrete time slots 𝑡 ∈ 𝒯 , where

|𝒯 | = 𝑇 , and a network of roads that is represented by graph 𝒢 = (𝒩 , ℰ),

where each node 𝑣 ∈ 𝒩 represents a junction and each undirected edge 𝑒 ∈ ℰ

represents a road segment. For each edge 𝑒 at time 𝑡, a set of map data is

associated and denoted by 𝑚𝑒(𝑡). 𝑚𝑒(𝑡) consists of both static data set 𝑚s
𝑒

and dynamic data set 𝑚d
𝑒(𝑡), such that 𝑚𝑒(𝑡) = 𝑚s

𝑒 ∪𝑚d
𝑒(𝑡). We consider an

abstract representation, without specifying the elements in 𝑚𝑒(𝑡). That is,

one may consider an element in 𝑚𝑒(𝑡) as a map data file. The dynamic data
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may be generated from roadside sensors, and perception from other vehicles.

For practicality, we consider the dynamic data within a certain time window

𝜏 from the current time 𝑡, namely 𝑚d
𝑒(𝑡
′) where 𝑡′ ∈ [𝑡− 𝜏, 𝑡].

There is a set of vehicles 𝒞 where each vehicle 𝑐 ∈ 𝒞 is associated with a

trip plan P𝑐, which is a path in 𝒢. We represent P𝑐 by a set of edges in ℰ , or

a sequence of nodes in 𝒩 . Let the time of vehicle 𝑐 entering edge (i.e., road

segment) 𝑒 ∈ P𝑐 be t𝑐𝑒, and the time of entering node (i.e., junction) 𝑣 ∈ P𝑐 be

t𝑐𝑣.

4.2.1 Downloading

Each vehicle 𝑐 ∈ 𝒞 downloads both static data 𝑚s
𝑒 before t𝑐𝑒, and dynamic

data 𝑚d
𝑒(𝑡
′), for some 𝑡′ ∈ [t𝑐𝑒 − 𝜏, t𝑐𝑒], at some time between 𝑡′ and t𝑐𝑒. The

options for downloading are either using short-range broadcast transmissions

at RSUs, or unicast transmissions via cellular networks. We assume that

LTE cellular network transmissions have much larger capacity, whereas short-

range broadcast transmissions are limited by local spectrum allocation. On

the other hand, the short-range broadcast transmissions incur no or very low

costs, whereas cellular network transmissions incur higher costs.

We assume that RSU fog nodes are only located at a subset of nodes in

𝒢, denoted by ℛ ⊆ 𝒩 . Denote the set of edges connecting to RSU fog node

𝑟 ∈ ℛ by ℰ𝑟 ⊆ ℰ . A vehicle 𝑐 can receive data from 𝑟, when entering edge

𝑒 ∈ ℰ𝑟. At each RSU fog node 𝑟 ∈ ℛ, there is a download capacity of C↓𝑟 at 𝑟,

whereas there is no capacity limit via cellular networks.

Let the data transmitted by RSU fog node 𝑟 using short-range broadcast

at time 𝑡 be 𝑥𝑟(𝑡). A vehicle 𝑐 can also download data via cellular networks,

which is denoted by 𝑦𝑐(𝑡). At the time 𝑡, let 𝑋𝑐(𝑡) be the union of all data

that 𝑐 has received from the visited RSU fog nodes on its path before time 𝑡,
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namely,

𝑋𝑐(𝑡) ,
⋃︁

𝑒∈P𝑐∧𝑒∈ℰ𝑟∧t𝑐𝑒≤𝑡

{︁
𝑥𝑟(t

𝑐
𝑒)
}︁

(4.1)

Also, let 𝑌 𝑐(𝑡) be the union of data that 𝑐 has received from cellular network

transmissions before time 𝑡, namely,

𝑌 𝑐(𝑡) ,
⋃︁
𝑡′≤𝑡

{︁
𝑦𝑐(𝑡′)

}︁
(4.2)

We denote a decoding function by Dec[·], which decodes all the downloaded

data to a set of map data, 𝑀 𝑐(𝑡) = Dec[𝑋𝑐(𝑡), 𝑌 𝑐(𝑡)].

We aim to minimize the number of cellular network transmissions, subject

to the constraints of timely delivery of static and dynamic data:

min
{𝑥𝑟(𝑡),𝑦𝑐(𝑡)|𝑡∈𝒯 ,𝑐∈𝒞,𝑟∈ℛ}

∑︁
𝑐∈𝒞

⃒⃒
𝑌 𝑐(𝑇 )

⃒⃒
(4.3)

subject to |𝑥𝑟(𝑡)| ≤ C↓𝑟, for all 𝑡 ∈ 𝒯 , 𝑟 ∈ ℛ, (4.4)

𝑚s
𝑒 ∈𝑀 𝑐(t𝑐𝑒), for all 𝑐 ∈ 𝒞, 𝑒 ∈ P𝑐, (4.5)

𝑚d
𝑒(𝑡) ∈𝑀 𝑐(t𝑐𝑒), for all 𝑐 ∈ 𝒞, 𝑒 ∈ P𝑐,

for some 𝑡 ∈ [t𝑐𝑒 − 𝜏, t𝑐𝑒]. (4.6)

In this problem, we assume that the trip plans of all vehicles are given a-

priori. However, the online version is also discussed in Sec. 4.4. Cons. 4.4

represents the capacity constraint of local broadcast, whereas Cons. 4.5 and

Cons. 4.6 represent the download constraint of static data and dynamic data,

respectively.

4.2.2 Uploading

The previous section considers downloading map data from fog units (e.g.,

RSUs and base stations). In practice, intelligent vehicles are equipped with
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various sensors (e.g., LIDAR, RADAR, camera, inertial measurement unit

(IMU), GPS unit, etc.), whose data can be uploaded to LCD via RSUs or base

stations for sharing with other vehicles.

We consider the uploading of processed 3D LIDAR point cloud data in this

paper, in which the operations can be optimized by uploading hash files of the

perception data and differentially coded data to reduce the redundant data

load to the network, as described in Sec. 4.5.

4.3 Index Coding for Local Broadcast at RSU

Fog Nodes

To reduce latency in the presence of numerous intelligent vehicles, the local

broadcast operations at RSU fog nodes can be improved by index coding.

Index coding is a variant of network coding [19, 70] applied to wireless com-

munications. Nearby vehicles will likely receive common information by local

broadcast, which also possess certain prior information (i.e., information re-

ceived from other RSU fog nodes at previously traversed road segments). We

show that smart data dissemination considering prior information can signifi-

cantly reduce the number of broadcast transmissions needed.

This section only considers the dissemination of static data, without capac-

ity constraint. In the next section, we will develop heuristics for the settings

with capacity constraint and dynamic data. It is assumed that the local broad-

cast transmissions incur a very low cost, which is negligible.

4.3.1 Motivating Examples

We first present some motivating examples of index coding. The basic idea of

using index coding to optimize transmissions at RSU fog nodes is by mixing
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the transmitted packets with prior information previously received.

Figure 4.2: An example of index coding for map data dissemination with two
opposite traveling intelligent vehicles.

Example 1: We illustrate a simple example using index coding for map

data dissemination in Fig. 4.2. There are two intelligent vehicles traveling

on opposite directions. Consider the static map data for two road segments,

denoted by 𝑚1 and 𝑚2 in bit string representation. Both vehicles are now

within the transmission range of a common RSU fog node and had obtained

map data 𝑚1 and 𝑚2 correspondingly, before entering their respective road

segments. The common RSU fog node can broadcast a coded packet 𝑚1⊕𝑚2,

where ⊕ is a bitwise XOR operator, thereby, reducing the number of broadcast

transmissions. To obtain the required map data, the vehicles can decode using

the received data as follows: 𝑚1⊕(𝑚1⊕𝑚2) = 𝑚2 and 𝑚2⊕(𝑚1⊕𝑚2) = 𝑚1.

Example 2: We next consider an example of index coding for a four-way

junction in Fig. 1.2. There are three vehicles: 𝑐1 moving from 𝑚1 to 𝑚3, 𝑐2

moving from 𝑚2 to 𝑚1, and 𝑐3 moving from 𝑚3 to 𝑚2. Note that we use 𝑚𝑖 to

denote road segment 𝑖 as well as the map data of road 𝑖 for notation simplicity

here. In this case, the RSU fog node only needs to broadcast two packets:

𝑚1 ⊕ 𝑚3 and 𝑚2 ⊕ 𝑚1. 𝑐1 can obtain 𝑚3 = 𝑚1⊕(𝑚1⊕𝑚3), 𝑐2 can obtain

𝑚1 = 𝑚2⊕(𝑚2⊕𝑚1), and 𝑐3 can obtain 𝑚2 = 𝑚3⊕(𝑚2⊕𝑚1)⊕ (𝑚1⊕𝑚3).
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In the preceding examples, the vehicles are able to decode the required

packets by bitwise XOR operation ⊕. Note that the bitwise XOR operator

is a linear operator over the binary number field. Applying index coding in

these scenarios can improve network throughput and reduce latency. One

mild drawback is that it generates overheads in the network. However, since

only binary-coded packets are employed in our scheme, it can still be solved

within polynomial time. The reader is referred to Section 4.7.4 for the overall

delay analysis based on the processing overheads and transmission delay in the

proposed index coding scheme.

4.3.2 Optimal Index Coding for Single Junction

In this section, we derive the general theories for constructing index coding

schemes for a road network with a-priori trip plans of vehicles. We only con-

sider linear index coding, i.e., the coding/decoding schemes only rely on bitwise

XOR operator. In linear index coding, the encoding/decoding operations can

sometimes be interpreted as unions and complemented intersections on a set

of packets. For example, coding by 𝑚1 ⊕ 𝑚3 can be interpreted as union

𝑚1∪𝑚3, whereas decoding by (𝑚1⊕𝑚3)⊕𝑚1 = 𝑚3 can be can be interpreted

as complemented intersection (𝑚1 ∪𝑚3) ∩ (𝑚1 ∪𝑚3∖𝑚1) = 𝑚3.

In general, a good index coding scheme for multiple junctions is a hard

problem, because it is related to the multi-source network coding problem,

which is an open problem [19, 70]. Instead, we focus on one single junction

first, and then extend the single-junction scheme as a heuristic for multiple

junctions. In fact, under the assumption of ‘single meeting’ as depicted in the

next subsection, this is an optimal solution. Note that we ignore the download

capacity in this section, which will be considered in the general schemes in the

next section.
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To construct a good index coding scheme, we consider a particular RSU

fog node at a single 𝑛-way junction, labeled as 𝑟 ∈ ℛ. We represent the

demands for map data by a directed graph (called demand graph) 𝒟𝑟 with a

set of 𝑛 nodes representing the set of connected road segments to 𝑟. Denote

the map data for the 𝑘-th road segment by 𝑚𝑘, where 𝑘 ∈ {1, ..., 𝑛}. There is

a directed edge (𝑚𝑘1→𝑚𝑘2) in 𝒟𝑟, if there is a vehicle moving from the 𝑘1-th

road segment to the 𝑘2-th road segment, which needs to obtain 𝑚𝑘2 , given 𝑚𝑘1

as prior information. The destination nodes in 𝒟𝑟 (i.e., those with at least one

in-coming directed edge) are called the demanded packets. Two examples of

𝒟𝑟 for a four-way junction are shown in Fig. 4.3.

The uncoded packets {𝑚1, ...,𝑚𝑛} are called source packets. A packet con-

sists of 𝐾 source packets combined by bitwise XOR operator is called a 𝐾-ary

coded packets. For example, 𝑚2⊕𝑚1 is a binary-coded packet. An index cod-

ing scheme, denoted by ℐ, is a set of coded or source packets. For convenience

of analysis, we assume that each packet of map data has a uniform size. If

packets have different sizes, padding will be used.

Given a set of demanded packets, we aim to construct an optimal index

coding scheme using the minimal number of transmitted packets that can be

decoded into the required information (i.e., destination nodes in 𝒟𝑟). Note

that the construction of a decodable index coding scheme is similar to a gen-

eralization of the set cover problem. Each coded packet is a cover, while

the demanded packets are items to be covered by some coded packets. The

decodability of coded packets requires that a combination of complemented in-

tersections (i.e., XOR operations) of the received coded packets can generate

the demanded packets.

Theorem 4.3.1. Given the demand graph 𝒟𝑟, an optimal index coding scheme

ℐ can be constructed using source packets and binary-coded packets. In partic-
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ular, each demand (𝑚𝑘1→𝑚𝑘2) in 𝒟𝑟 can be decoded by one of the following

ways:

1. A source packet (i.e., 𝑚𝑘2 ∈ ℐ).

2. Or a sequence of connected binary coded packets, say {𝑚𝑘1⊕𝑚𝑘𝑟 ,

𝑚𝑘𝑟⊕𝑚𝑘𝑟−1 , ...,𝑚𝑘3⊕𝑚𝑘2} ⊆ ℐ, such that the required packet can be de-

coded by 𝑚𝑘1 and such a sequence of binary-coded packets.

See two examples of optimal index coding schemes in Fig. 4.3, where an

arrow represents a demand, and a dashed enclosure represents a coded or

source packet.

Figure 4.3: Two examples of demand graph 𝒟𝑟 and their optimal index
coding schemes for a four-way junction. (a) Four vehicles with directions:
(𝑚1→𝑚3), (𝑚3→𝑚2),(𝑚2→𝑚1), (𝑚2→𝑚4), and an optimal index coding
scheme is {𝑚1⊕𝑚2,𝑚1⊕𝑚3,𝑚4}. (b) Four vehicles with directions: (𝑚1→𝑚3),
(𝑚3→𝑚1), (𝑚2→𝑚4), (𝑚4→𝑚2), and an optimal index coding scheme is
{𝑚1⊕𝑚3,𝑚2⊕𝑚4}.

By Theorem 4.3.1, it suffices to consider binary-coded packets. We next

present a polynomial-time algorithm 1J-IdxCd to identify the optimal index

coding scheme, which first adds any demand (𝑚𝑘1→𝑚𝑘2) as a coded packet,
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and then removes redundant packets in any cycles of coded packets, while

ensuring the decodability of demanded packets.

Pseudo-codes 2 1J-IdxCd[𝒟𝑟]

1: ℐ ← ∅
2: for (𝑚𝑘1→𝑚𝑘2) ∈ 𝒟𝑟 do
3: ℐ ← ℐ ∪ {𝑚𝑘1⊕𝑚𝑘2} ◁ Flag lock𝑘1,𝑘2 prevents 𝑚𝑘1⊕𝑚𝑘2 to be removed

from ℐ
4: lock(𝑘1, 𝑘2)← False
5: end for
6: while there exists cycle {𝑚𝑘1⊕𝑚𝑘2 ,𝑚𝑘2⊕𝑚𝑘3 ...,𝑚𝑘𝑟⊕𝑚𝑘1} ⊆ ℐ do
7: for 𝑚𝑘𝑡⊕𝑚𝑘𝑡+1 ∈ {𝑚𝑘1⊕𝑚𝑘2 ,𝑚𝑘2⊕𝑚𝑘3 ...,𝑚𝑘𝑟⊕𝑚𝑘1} do
8: if lock(𝑘𝑡, 𝑘𝑡+1) = False then
9: ℐ ← ℐ∖{𝑚𝑘𝑡⊕𝑚𝑘𝑡+1}
10: for (𝑚𝑘′1

→𝑚𝑘′2
) ∈ 𝒟𝑟 do

11: if there exists no path {𝑚𝑘′1
⊕𝑚𝑘′𝑟 , ...,𝑚𝑘′3

⊕𝑚𝑘′2
}

12: ⊆ ℐ∖{𝑚𝑘′1
⊕𝑚𝑘′2

} then
13: lock(𝑘′1, 𝑘

′
2)← True

14: end if
15: end for
16: end if
17: end for
18: end while
19: return ℐ

Theorem 4.3.2. Algorithm 1J-IdxCd produces an optimal index coding scheme

for a single junction.

Let us apply Algorithm 1J-IdxCd to the example in Fig. 4.3(a). The initial

index coding scheme is ℐ ← {(𝑚1⊕𝑚2), (𝑚2⊕𝑚3), (𝑚3⊕𝑚1), (𝑚2⊕𝑚4)} and

their corresponding locks, lock(𝑘1, 𝑘2) are set to False. These are defined by

lines 2–5. Lines 6–18 remove the redundant and unnecessary coded packets.

Coded packet (𝑚2⊕𝑚4) will be the first to be removed since lock(2,4) is False

and there is no cycle that includes it. On the other hand, the combination of

the coded packets {(𝑚1⊕𝑚2), (𝑚2⊕𝑚3), (𝑚3⊕𝑚1)} forms a cycle. Any one

of the three coded packets can be removed since all their corresponding locks

are false. For instance, we remove (𝑚2 ⊕ 𝑚3), then the locks lock(1,2) and
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lock(1,3) become True. Therefore, Algorithm 1J-IdxCd returns the final index

coding scheme as ℐ ← {(𝑚1 ⊕𝑚2), (𝑚3 ⊕𝑚1)}.

Note that Algorithm 1J-IdxCd produces an index coding scheme with coded

packets only. 1J-IdxCd can be improved by replacing some coded packets by

source packets, because the source packets are immediately decodable. One

can replace any binary-coded packet that is only used to produce just one

demanded packet by the corresponding source packet, although the size of ℐ

will remain the same. For the example in Fig. 4.3(a), we add the source packet

𝑚4 to the index coding scheme ℐ, making the optimal index coding scheme as

ℐ = {𝑚1 ⊕𝑚2,𝑚1 ⊕𝑚3,𝑚4}.

The reader is referred to the Appendix in [106] for the proofs of Theorems

1 and 2.

4.3.3 Extension for Multiple Junctions

We next present an extension for multiple junctions. The basic idea is to

adopt 1J-IdxCd as a basis for multiple junctions. We assume that all trip

plans, {P𝑐}𝑐∈𝒞, are given a-priori. We define a meeting relation graph among

the vehicles by 𝒢meet = (𝒩meet, ℰmeet), where the set of nodes 𝒩meet are subsets

of vehicles (⊆ 𝒞) having intersected trip plans, and the set of directed edges

ℰmeet are the temporal ordering between meetings with a common vehicle.

Namely,

𝒩meet ,
{︁
(𝑐1, ..., 𝑐𝑟) ⊆ 𝒞 | ∃𝑣 ∈

𝑟⋂︁
𝑖=1

P𝑐𝑖 and t𝑐1𝑣 = ... = t𝑐𝑟𝑣

}︁
(4.7)

ℰmeet ,
{︁
(𝑐1, 𝑐2, ..., 𝑐𝑟)→ (𝑐1, 𝑐

′
2, ..., 𝑐

′
𝑠) ∈ 𝒩meet ×𝒩meet

| ∃𝑣1 ∈
𝑟⋂︁

𝑖=1

P𝑐𝑖 and ∃𝑣2 ∈
𝑠⋂︁

𝑖=1

P𝑐′𝑖 and t𝑐1𝑣1 < t𝑐1𝑣2

}︁
(4.8)

If two vehicles meet in their trip plans, then there are two cases: (1) trav-
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eling in different directions (e.g., meeting at a junction), or (2) traveling along

with each other. Case (1) is utilized in index coding to broadcast mixed in-

formation (via bitwise XOR) to vehicles, and then the vehicles decode the

mixed information using different prior information they received previously.

However, there will be no impact by index coding for case (2).

Assumption 1. (Single Meeting) We assume that the trip plans of

every pair of vehicles intersect at most once, namely, if they meet and depart,

then they will never meet again. In practice, if the autonomous vehicles always

follow the shortest paths and employ deterministic tie-breaking for the paths of

equal distance, then the meeting with another autonomous vehicles of different

source or destination is only at most once. Otherwise, this will contradict to

the property of shortest paths. Since they meet at most once, each meeting

event can be uniquely identified as a node in 𝒩meet, and 𝒢meet is also a directed

acyclic graph.

Theorem 4.3.3. If the single meeting assumption (Assumption 1) holds, then

applying Algorithm 1J-IdxCd independently at each junction will produce an

optimal index coding scheme for multiple junctions.

The reader is referred to the Appendix in [106] for the proof of Theorem 3.

Note that even if the vehicles meet more than once, Theorem 4.3.3 still provides

a heuristic to construct a good index coding scheme for multiple junctions with

limited meetings among vehicles.

4.4 Fog-based Opportunistic Scheduling of

Heterogeneous V2X Networks

The previous section considered the basic setting with static map data and the

absence of capacity constraint, under the single meeting assumption. In this
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section, we present scheduling schemes that decide the transmission options

for both static and dynamic map data from the LCD to intelligent vehicles,

considering capacity constraint at RSU fog nodes. The scheduling schemes

heuristically apply Algorithm 1J-IdxCd at each junction.

4.4.1 Downloading

First, denote the starting and ending time of vehicle 𝑐’s trip plan by 𝑡s𝑐 and 𝑡d𝑐

respectively. There are two modes of scheduling:

1. Offline Mode: All the trip plans of intelligent vehicles {P𝑐}𝑐∈𝒞 are

known in advance.

2. Online Mode: Not all trip plans are known. Only the trip plans of

intelligent vehicles started at the current time 𝑡now or before (i.e., {P𝑐 |

𝑡s𝑐 ≤ 𝑡now}𝑐∈𝒞) are known.

As illustrated in Fig. 4.1, the LCD scheduler decides the download opera-

tions of map data to individual vehicles according to their GPS locations and

trip plans. The map data are first downloaded via nearby RSUs (via short-

range broadcast). In case of insufficient capacity at the RSU fog nodes, cellular

network transmissions will be utilized.

Recall that static map data is denoted by 𝑚s
𝑒 and dynamic data by 𝑚d

𝑒(𝑡)

for each road segment 𝑒 ∈ ℰ . 𝑚s
𝑒 should be downloaded to vehicle 𝑐 before or

at time t𝑐𝑒, and 𝑚d
𝑒(𝑡) should be downloaded to 𝑐 at some time between t𝑐𝑒 − 𝜏

and t𝑐𝑒. For each RSU 𝑟 ∈ ℛ, let 𝒞𝑟(𝑡) = {𝑐 ∈ 𝒞 | 𝑡 = t𝑐𝑟} be the set of vehicles

that meet at junction 𝑟 at time 𝑡, and 𝒟𝑟(𝑡) be the demand graph considering

the vehicles in 𝒞𝑟(𝑡).

Let 𝑥d
𝑟(𝑡, 𝑒) and 𝑥s

𝑟(𝑡, 𝑒) be the decisions of the scheduler to broadcast static

and dynamic data respectively at RSU fog node 𝑟, for road segment 𝑒 at time 𝑡.
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Similarly, let 𝑦𝑐d(𝑡, 𝑒) and 𝑦𝑐s(𝑡, 𝑒) be the decisions of the scheduler to download

static and dynamic data via cellular networks to vehicle 𝑐. Let ℐs𝑟(𝑡) and ℐd𝑟 (𝑡)

be the index coding schemes for static and dynamic data respectively at time

𝑡. Also, let us denote the single-junction scheme applied to RSU fog node 𝑟

for static data by 1J-IdxCds[𝒟𝑟(𝑡)]. Similarly, 1J-IdxCdd[𝒟𝑟(𝑡)] for the scheme

applied to dynamic data in [𝑡− 𝜏, 𝑡] for a given time window 𝜏 . We denote the

size of the code by | · | (e.g., |𝑚s
𝑒| and |1J-IdxCds[𝒟𝑟(𝑡)]|).

By the single meeting assumption, myopic scheduling of static data at the

respective junction in an on-demand manner is optimal. For dynamic data,

the latest information is always more useful. Hence, myopic scheduling is

also desirable. However, in the presence of capacity constraint, it may not

be possible to schedule all required transmissions in an on-demand manner.

In this case, we have to greedily pick a subset of vehicles at each junction

to maximize the efficiency of transmissions. Formally, given a demand graph

𝒟𝑟(𝑡) = (𝒩 [𝒟𝑟(𝑡)], ℰ [𝒟𝑟(𝑡)]), we define subgraph ℋ𝑟 = (𝒩 , ℰ), where 𝒩 is

a subset of 𝒩 [𝒟𝑟(𝑡)] and ℰ is the induced subset of edges of ℰ [𝒟𝑟(𝑡)]. Let

𝒩src[𝒟𝑟(𝑡)] be the set of source nodes (i.e., nodes with at least one in-coming

directed edge).

For such a subgraph ℋ𝑟, we define 𝑊 (ℋ𝑟) as the number of vehicles that

can be satisfied by performing index coding on ℋ𝑟. We aim to find the

best subgraph ℋ𝑟 that maximizes 𝑊 (ℋ𝑟) subject to the capacity constraint

1J-IdxCds[ℋ𝑟] ≤ C↓𝑟. Since the number of roads connecting a junction is small,

this process can be performed efficiently. For each demand packet that cannot

be accommodated by local broadcast, the scheduler will download it via the

cellular network.

First, a greedy online opportunistic scheduling scheme is presented in Al-

gorithm ONLSchd, which schedules the local broadcast transmissions at RSU

based on the arrival of vehicles in an online manner. Static map data will be

55



4.4. FOG-BASED OPPORTUNISTIC SCHEDULING OF
HETEROGENEOUS V2X NETWORKS

scheduled before dynamic map data. If there is insufficient capacity at the

RSU fog nodes, then the scheduler will download the remaining map data via

the cellular network.

The greedy offline opportunistic scheduling scheme is presented in Algo-

rithm OFLSchd. At each RSU fog node, optimal single-junction index coding

is employed, considering all autonomous vehicles that approach the junction

at the current time. If there is any spare capacity at RSUs, the scheduler will

download the undelivered static map data in advance at any RSU fog nodes

with spare capacity. Finally, undelivered map data will be downloaded via the

cellular network.

Pseudo-codes 3 ONLSchd[𝒟𝑟(𝑡now)𝑟∈ℛ]

1: for 𝑟 ∈ ℛ do
2: c↓𝑟(𝑡now)← C↓

𝑟

◁ Initialize RSU 𝑟 download capacity
3: ◁ Download static map data via local broadcast by index coding
4: ℋ𝑟 ← argmaxℋ𝑊 (ℋ)

subject to 1J-IdxCds[ℋ] ≤ c↓𝑟(𝑡now) and ℋ is subgraph of 𝒟𝑟(𝑡now)
◁ Get max # of vehicles whose demands can be satisfied

5: ℐs𝑟(𝑡now)← 1J-IdxCds[ℋ𝑟]
◁ Perform Optimal Index Coding on ℋ𝑟

6: c↓𝑟(𝑡now)← c↓𝑟(𝑡now)− |ℐs𝑟(𝑡now)|
◁ Update RSU 𝑟 download capacity

7: for 𝑐 ∈ 𝒞𝑟(𝑡now), 𝑒 ∈ P𝑐 ∩ ℰ𝑟 do
8: if 𝑚s

𝑒 ∈ 𝒩src[ℋ𝑟] then
9: 𝑥s

𝑟(𝑡now, 𝑒)← 1
◁ Download static map data via local broadcast

10: else
11: 𝑦𝑐s (𝑡now, 𝑒)← 1

◁ Download undelivered static map data via cellular networks
12: end if
13: end for

◁ Download dynamic map data via local broadcast by index coding
14: ℋ′

𝑟 ← argmaxℋ′𝑊 (ℋ′)

subject to 1J-IdxCdd[ℋ′] ≤ c↓𝑟(𝑡now) and ℋ′ is subgraph of 𝒟𝑟(𝑡now)
◁ Get max # of vehicles whose demands can be satisfied

15: ℐd𝑟(𝑡now)← 1J-IdxCdd[ℋ′
𝑟]

◁ Perform Optimal Index Coding on ℋ′
𝑟

16: c↓𝑟(𝑡now)← c↓𝑟(𝑡now)− |ℐd𝑟(𝑡now)|
◁ Update RSU 𝑟 download capacity

17: for 𝑐 ∈ 𝒞𝑟(𝑡now), 𝑒 ∈ P𝑐 ∩ ℰ𝑟 do
18: if 𝑚d

𝑒 ∈ 𝒩src[ℋ′
𝑟] then

19: 𝑥d
𝑟(𝑡now, 𝑒)← 1

◁ Download static map data via local broadcast
20: else
21: 𝑦𝑐d(𝑡now, 𝑒)← 1

◁ Download undelivered dynamic map data via cellular networks
22: end if
23: end for
24: end for
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Pseudo-codes 4 OFLSchd[𝒟𝑟(𝑡)𝑡∈𝒯 ,𝑟∈ℛ]

1: for 𝑡 ∈ 𝒯 , 𝑟 ∈ ℛ do

2: c↓𝑟(𝑡)← C↓
𝑟

◁ Initialize RSU 𝑟 download capacity ◁ Download static map data via local broadcast by index
coding

3: ℋ𝑟 ← argmaxℋ𝑊 (ℋ)

subject to 1J-IdxCds[ℋ] ≤ c↓𝑟(𝑡now) and ℋ is subgraph of 𝒟𝑟(𝑡now)
◁ Get max # of vehicles whose demands can be satisfied

4: ℐs𝑟(𝑡)← 1J-IdxCds[ℋ𝑟]
◁ Perform Optimal Index Coding on ℋ𝑟

5: c↓𝑟(𝑡)← c↓𝑟(𝑡)− |ℐs𝑟(𝑡)|
◁ Update RSU 𝑟 download capacity

6: for 𝑐 ∈ 𝒞𝑟(𝑡), 𝑒 ∈ P𝑐 ∩ ℰ𝑟 do
7: if 𝑚s

𝑒 ∈ 𝒩src[ℋ𝑟] then
8: 𝑥s

𝑟(𝑡, 𝑒)← 1
◁ Download static map data via local broadcast

9: end if
10: end for

◁ Download dynamic map data via local broadcast by index coding
11: ℋ′

𝑟 ← argmaxℋ′𝑊 (ℋ′)

subject to 1J-IdxCdd[ℋ′] ≤ c↓𝑟(𝑡now) and ℋ′ is subgraph of 𝒟𝑟(𝑡now)
◁ Get max # of vehicles whose demands can be satisfied

12: ℐd𝑟(𝑡)← 1J-IdxCdd[ℋ′
𝑟]

◁ Perform Optimal Index Coding on ℋ′
𝑟

13: c↓𝑟(𝑡)← c↓𝑟(𝑡)− |ℐd𝑟(𝑡)|
◁ Update RSU 𝑟 download capacity

14: for 𝑐 ∈ 𝒞𝑟(𝑡), 𝑒 ∈ P𝑐 ∩ ℰ𝑟 do
15: if 𝑚d

𝑒 ∈ 𝒩src[ℋ′
𝑟] then

16: 𝑥d
𝑟(𝑡, 𝑒)← 1

◁ Download dynamic map data via local broadcast
17: end if
18: end for
19: end for

◁ Download static map data via local broadcast in advance, if sufficient capacity
20: for 𝑡 ∈ 𝒯 , 𝑐 ∈ 𝒞, 𝑟 ∈ P𝑐 do

21: if ∃𝑒 ∈ P𝑐 and ∃𝑟 ∈ P𝑐 and t𝑐𝑟 < t𝑐𝑒 and
∏︀

𝑡′≤t𝑐𝑒
(1− 𝑥s

𝑟(𝑡
′, 𝑒)) = 0 and c↓𝑟(t𝑐𝑟) ≥ |𝑚s

𝑒| then
22: 𝑥s

𝑟(t
𝑐
𝑟, 𝑒)← 1

◁ Download static map data via local broadcast
23: ℐs𝑟(t𝑐𝑟)← ℐs𝑟(t𝑐𝑟) ∪ {𝑚s

𝑒}
◁ Advanced static map data to be downloaded

24: c↓𝑟(𝑡)← c↓𝑟(𝑡)− |𝑚s
𝑒|

◁ Update RSU 𝑟 download capacity
25: end if
26: end for

◁ Download undelivered map data via cellular networks
27: for 𝑡 ∈ 𝒯 , 𝑟 ∈ ℛ do
28: for 𝑐 ∈ 𝒞𝑟(𝑡), 𝑒 ∈ P𝑐 ∩ ℰ𝑟 do
29: if 𝑥s

𝑟(𝑡, 𝑒) ̸= 1 then
30: 𝑦𝑐s (𝑡, 𝑒)← 1

◁ Download undelivered static map data via cellular networks
31: end if
32: if 𝑥d

𝑟(𝑡, 𝑒) ̸= 1 then
33: 𝑦𝑐d(𝑡, 𝑒)← 1

◁ Download undelivered dynamic map data via cellular networks
34: end if
35: end for
36: end for
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4.5 Uploading 3D LIDAR Point Cloud Data

This section focuses on the discussion of 3D LIDAR point cloud data, and

a common representation called Octree. We present differential coding and

hashing schemes especially for uploading 3D LIDAR point cloud data. Since

vehicles individually upload their sensed data to the RSU fog node, differen-

tiation is done at the vehicular level to reduce bandwidth consumption and

redundant information to be sent.

4.5.1 Octree Representation

3D point cloud depicts objects and surfaces as a set of 3D points in the Carte-

sian coordinate system within a bounded region [107]. A common approach

to encode 3D point cloud is using Octree, by which the 3D space is recursively

partitioned into 8 cells (voxels) and a binary number is used to indicate the

presence of an object in each cell. See an illustration of Octree representation

of 3D point cloud in Fig. 4.4.

Figure 4.4: An illustration of Octree representation of 3D point cloud.

Octree is a tree-based data structure suitable for sparse 3D point data,
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where each node represents a cell or volume element (voxel). From the root,

it is iteratively divided into eight children until a certain depth or level 𝐿 is

achieved [108] or if there is no more 3D point cloud to be partitioned. An oc-

cupied voxel contains a point or a set of points, and is labeled by ‘1’, otherwise

by ‘0’. A node labeled by ‘1’ can be further decomposed into eight more child

nodes, whereas there is no need to expand a node labeled by ‘0’. Accordingly,

the larger the depth (i.e., higher value of 𝐿), the higher the resolution of the

3D object.

Two reference corners for the boundary of region of an Octree are denoted

by (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) (see Fig. 4.4). One can represent an Octree

by a bit string representation that encodes its contents by a fixed traversal

order in the voxels of each layer. We can apply further coding schemes on

the bit string representation. Note that different LIDAR sensors may produce

different sets of 3D LIDAR point cloud data on the same objects in the region

because of different sensing specifications. But the Octree representations can

approximate closely with each other, under a suitable value of 𝐿. Hence, it

is possible to compare different sets of 3D LIDAR point cloud data in Octree

representations.

There are several proposals for point cloud compression [109, 110]. These

techniques can be applied to our system, but note that they are mainly for

storage and are not optimized for communication systems.

4.5.2 Differentiation and Differential Coding

Autonomous vehicles can identify and upload the necessary dynamic map data

to LCD using differentiation. Since dynamic map data is only detectable at the

moment of departing from a road segment, the upload transmissions take place

immediately through the nearby RSU fog node (in short-range broadcast),
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whenever possible. Otherwise, cellular network transmissions are employed.

Differentiation is particularly useful for identifying the dynamic compo-

nents in 3D LIDAR point cloud data. We denote the differentiated data be-

tween observed point cloud 𝑥𝑐(𝑡) and reference point cloud 𝑚𝑒(𝑡− 1) by:

Diff𝑐(𝑡) =
(︁
𝑥𝑐(𝑡)∖𝑚𝑒(𝑡− 1)

)︁
∪
(︁
𝑚𝑒(𝑡− 1)∖𝑥𝑐(𝑡)

)︁
(4.9)

where 𝑡 = t𝑐𝑒 and 𝑒 ∈ 𝑃𝑐.

To encode the differentiated data, we employ differential coding on Octree.

Octree allows efficient identification of the differences by enumerating the vox-

els along the tree. Once the differences are identified, we can employ another

Octree to encode the differentiated parts. However, the meanings of voxels are

now different: ‘0’ means no difference with respect to the reference 3D LIDAR

point cloud data, whereas ‘1’ means the binary content in the respective voxel

should be flipped. See an illustration in Fig. 4.5.

Figure 4.5: An illustration of differential coding on 3D point cloud.
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4.5.3 Hashing 3D LIDAR Data

Comparison through the hash files associated with 3D LIDAR point cloud data

is more efficient than using the whole data set. The hash files should have

certain desirable properties. For example, one can compare two hash files to

identify which point cloud data consists of more contents (e.g., more observed

objects). Second, one can check if the point cloud data contains certain known

objects, without looking at the whole data set. A simple solution is to use a

Bloom filter [111], a compact lossy data structure representing the membership

of a set of elements. The basic operations of a Bloom filter involve adding an

element to the set and querying the membership of an element. It does not

support element removal, therefore, upon query of an element membership, the

Bloom filter output may only result in false positives, which can be minimized

through parameter setting. In our system, each vehicle first communicates

with RSU and LCD using Bloom filters before uploading the whole perception

data.

Recall that 𝑥𝑐(𝑡) = {𝑝1, 𝑝2, ...} is a set of 3D points. Note that each 𝑝𝑖 has a

unique octary representation, such that each digit in the octary representation

represents the order of the respective occupied voxel at each layer in Octree.

We denote index ‘0’ to represent the first voxel. For example, the four 3D

points in the Octree of Fig. 4.4 can be represented in octary representation

as {101, 105, 150, 155}. Next, we map each point in octary representation by

a set of 𝐾 binary hash functions: 𝑓𝑘(𝑝𝑖) ↦→ {0, 1}, where 𝑘 = 1, ..., 𝐾. Let

𝑓𝑘(𝑥𝑐(𝑡)) = 𝑓𝑘(𝑝1) ∨ 𝑓𝑘(𝑝2) ∨ ... be the bitwise disjunction of all the points in

𝑥𝑐(𝑡) = {𝑝1, 𝑝2, ...}. The 𝐾 output bits
(︀
𝑓𝑘(𝑥𝑐(𝑡))

)︀𝐾
𝑘=1

will be a Bloom filter

for 𝑥𝑐(𝑡), denoted by BF(𝑥𝑐(𝑡)). Bloom filters have some desirable properties.

If a 3D point cloud has more contents, then its Bloom filter contains more

1’s. One can check if a 3D point cloud contains a set of known 3D points, by
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checking if its Bloom filter contains the corresponding hash values.

4.6 Robotic Testbed Evaluation

We implemented the single junction scenario and evaluated our proposed sys-

tem in a practical testbed. In this set-up, as depicted in Fig. 4.6, two cases

are studied:

� Scenario 1: Car A on Road A intends to turn into Road B with Car B.

There is no time-sensitive data.

� Scenario 2: Similar to scenario 1, but there is a moving object in front

of Car B on Road B.

The robotic vehicles used in the testbed are shown in Fig. 4.6(a). They

represent the intelligent vehicles equipped with suite of sensors, including a

Kinect camera and LIDAR for capturing its environment’s 3D point cloud data

and proximity sensors for collision detection. The experimental set-up is shown

in Fig. 4.6(b). The cardboard boxes represent buildings (see Fig. 4.6). Typical

Kinect image data file size is approximately 10 MB. The 3D point cloud data

is compressed to a 1 cm3 resolution to achieve at least a 60% compression rate

before being transmitted to the RSU fog node. Such Octree resolution offers

a significant compression rate while maintaining an accurate representation

of the sensed environment. The RSU fog node and robotic vehicles exchange

information by using the IEEE 802.11 standard (WiFi).

In Scenario 1, at every five seconds, both vehicles captured their respective

environment in form of 3D point cloud data, and performed Octree compres-

sion. The data are then transmitted to the RSU fog node along with their

requests of road map data. Upon reception, the RSU fog node performs the en-

coding 𝑚𝐴 ⊕𝑚𝐵, where 𝑚𝑖 is the map data for road segment 𝑖, and broadcasts
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Figure 4.6: (a) Robotic vehicles in (b) a single 4-way road junction scenario.
(c) A moving object is introduced on Road B

Figure 4.7: The 3D point cloud road map data captured by (a) car A, (b) car
B and (c) the XOR-ed result of maps A and B.

the encoded packets. The 3D point cloud data perceived by individual vehicle

and the corresponding encoded 3D point cloud data are shown in Fig. 4.7.

After receiving the encoded packets (𝑚𝐴 ⊕ 𝑚𝐵), car A decodes it via (𝑚𝐴 ⊕

𝑚𝐵) ⊕ 𝑚𝐴 to obtain its desired information regarding road segment B. Car

B does the same to acquire information regarding road segment A. Since both

road segments have no obstacles detected, each vehicle immediately turns to

its desired road without the need of reducing its speed.

In Scenario 2, a small programmable mobile robot is added in front of car B

to introduce a dynamic object to the environment. Such set-up is depicted in

Fig. 4.6(b). In order to detect obstacles that present on the road, we integrated

a map filter for object extraction after the decoding process, and we search for

the blocked information on the ground to determine the location of the object.

Fig. 4.6(c) illustrates the detected dynamic data by car A after map filtering

and object detection. From the gathered information, car A reduces its speed

and waits until the small robot moves past the junction before turning into
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Road B.

In summary, our robotic testbed manages to achieve cooperative autonomous

driving through transmitting road map data between the two robot vehicles.

It also experimentally demonstrates that an efficient 3D road map data dis-

semination based on the proposed index coding scheme is feasible in practice,

especially when dealing with moving dynamic objects on road.

However, the following limitations may be observed from the robotic testbed

and can be considered in future experiments. First, due to the lack of available

mobile robots to represent intelligent connected vehicles, the efficiency of the

index coding-based opportunistic download scheme has not been thoroughly

tested in extensive scenarios, e.g., where there are various vehicles approaching

the junction at varying speeds. This has also limited the testing to a single

junction experiment. The vehicular environment also depicted a less dynamic

testing situation and covered only the simplest situation. Second, since there

were only two intelligent connected vehicles in our setup, the uploading of 3D

LIDAR point cloud data from the vehicles to the RSU is always successful. The

RSU is also unburdened in the collection and storage of the uploaded vehicular

data. Lastly, in determining the performance of the proposed opportunistic

upload and download schemes, throughput, delay, and processing time should

be measured.

4.7 Simulation Studies

In the previous section, we have demonstrated the feasibility of employing in-

dex coding in the dissemination of road segment data to nearby vehicles at

a road junction. In this section, we present further evaluation of our pro-

posed system by simulation studies using real-world 3D point cloud data of

city streets and GPS mobility traces of vehicles. We consider both scenar-
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ios of single and multiple road junctions for analyzing the effectiveness of the

proposed schemes.

4.7.1 Local Broadcast by Index Coding for Single Junc-

tion

First, we consider the single-junction scenario. The simulation set-up is de-

scribed as follows.

Simulation Set-up

Figure 4.8: (a) Partitioned 3D point cloud map data of a real-world junction.
(b) Empirical GPS mobility traces for a particular single junction in Beijing
City. (c) Average mobility patterns of 40 selected junctions in Beijing City.

To study the performance on realistic 3D point cloud data, we consider the
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3D point cloud static map data of a real-world junction depicted in Fig. 4.8 (a),

which is obtained by Ford Research campus in downtown Dearborn, Michigan

[11]. It is partitioned into four separate views as perceived by the vehicles in

each road segment connecting to the junction. In the dissemination process,

the 3D point cloud data is compressed using Octree compression [109]. The

sizes of compressed 3D point cloud data packets of each road segment and

binary-coded packets are shown in Table 4.1.

Table 4.1: Sizes of compressed 3D point cloud data for the static map data
shown in Fig. 9 (a).

Map Data Number of Points Data Size (MB)

𝑚1 104,255 5.838

𝑚2 95,537 5.254

𝑚3 69,200 2.763

𝑚4 73,168 3.184

𝑚1⊕𝑚2 63,607 2.126

𝑚1⊕𝑚3 65,920 2.812

𝑚1⊕𝑚4 61,738 2.630

𝑚2⊕𝑚3 67,806 2.631

𝑚2⊕𝑚4 66,072 2.363

𝑚3⊕𝑚4 64,025 2.126

To incorporate realistic vehicle mobility patterns, we consider the dataset

of Beijing taxi GPS mobility traces [112] to simulate the mobility traces of au-

tonomous vehicles at a junction. The Beijing taxi dataset contains seven days

of GPS mobility traces (including longitude and latitude positions), times-

tamps of recorded positions, and vehicle IDs of 28,590 taxis traveling in Bei-

jing City. Beijing City resembles a grid network geographically, consisting of

mostly four-way junctions. In particular, we consider the junction between the

East 3rd Ring Road Middle and Jianguo Road, as shown in Fig. 4.8(b). There

are 8,663 taxis on average traversing it daily. Fig. 4.8(b) depicts the empirical
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GPS mobility traces of 12 taxis. We assume that the RSU fog node is deployed

near the junction center with a transmission range of 200 meters.

Evaluation of Download Operations

To perform the download operations, a RSU fog node 𝑟 first scans the nearby

vehicles in every sampling time 𝑇S. Once the vehicles reach within the prox-

imity of 𝑟, it determines the vehicles’ map data demands and constructs the

demand graph 𝒟𝑟. Next, RSU fog node 𝑟 applies 1J-IdxCd[𝒟𝑟] to perform local

broadcast based on index coding.

To study the performance of 1J-IdxCd[𝒟𝑟], we consider two benchmarks:

1. Random Broadcast (Rand): It broadcasts all source packets in a random

fashion.

2. Index Coding with Prior Information (1J-IdxCd-PI): It explores the sce-

nario that some vehicles may have extra prior knowledge of a certain

road segment. For example, a particular road segment is popular among

all vehicles. The map data is likely to be pre-downloaded to the vehicles

in advance.

The evaluation results are depicted in Fig. 4.9, which shows the daily total

number of transmissions and sizes of transmitted packets for Rand and 1J-IdxCd

for seven days based on GPS mobility traces. The sizes of each transmitted

packets are set according to Table 4.1.

It is observed that 1J-IdxCd can effectively reduce the total number of

transmissions by around 500 transmissions less when compared to the bench-

mark Rand. For downloading static data, the benchmark requires a number of

7.75 transmissions on average to satisfy all vehicles’ demands as compared to

1J-IdxCd that requires only 5.94 transmissions on average. The average daily

67



4.7. SIMULATION STUDIES

0

500

1000

1500

2000

2500

T
o

ta
l 
N

u
m

b
e

r 
o

f

T
ra

n
s
m

is
s
io

n
s

Rand 1J-IdxCd 1J-IdxCd-PI

1 2 3 4 5 6 7

Day

0

5000

10000

S
iz

e
 o

f 
T

ra
n

s
m

it
te

d

D
a

ta
 (

in
 M

B
)

Figure 4.9: Daily total number of transmissions and sizes of transmitted pack-
ets for Rand, 1J-IdxCd, 1J-IdxCd-PI.

sizes of transmitted data for random transmission is 12.18 GB while that for

1J-IdxCd is only 10.24 GB. 1J-IdxCd transmits 6.00 MB on average within a

period of 𝑇S, while Rand transmits 5.46 MB on average. Overall, employing

1J-IdxCd enables higher data rate with the fewest number of transmissions.

Next, we evaluate the effectiveness with extra prior information. 1J-IdxCd-

PI considers extra prior information for road segment 2. In this case, 1J-IdxCd-

PI preforms like 1J-IdxCd, but it assumes every vehicle already has map data of

road segment 2, and performs index coding incorporating such prior informa-

tion. We observe that the availability of extra prior information considerably

reduces the number of transmissions, and thus the required bandwidth, trans-

mitting 5.01 MB on average by 4.49 transmissions.
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Usefulness of Sharing Dynamic Data

In this section, we study the usefulness of sharing dynamic data among vehicles.

Vehicles equipped with perception sensors can capture the dynamic objects

and detect time-varying information in road environments. Hence, sharing

such information can assist the autonomous driving decisions. One way to

characterize the availability of dynamic data is by examining the frequency of

passing-by vehicles. The more frequent are the passing-by vehicles, the more

time-sensitive information can be detected and captured.

On the other hand, the usefulness of dynamic data also depends on the

demands from other vehicles. Consider the example of map data demands at

a junction in Fig. 4.3(a). Road segments 1, 2, and 3 have captured dynamic

data for the vehicles coming to the road segments, because there are vehicles

departing from these road segments. However, there is no captured dynamic

data of road segment 4 from other vehicles . In this example, there are total

number of demands for dynamic data is 4 (for each road segment), while the

number of demands can be met by captured dynamic data from other vehicles

is only 3.

Let TN𝑟 be the total number of demands for dynamic data at a junction 𝑟,

and SN𝑟 be the number of satisfied demands for captured dynamic data from

other vehicles. The ratio SN𝑟

TN𝑟
allows us to characterize the usefulness of sharing

information among vehicles. Hence, for the scenario in Fig. 4.3(a), SN𝑟

TN𝑟
=75% .

For the effective sharing of dynamic data among vehicles, the ratio SN𝑟

TN𝑟
should

be high.

We empirically evaluated the quantities SN𝑟 and TN𝑟 for the junction in

Fig. 4.8(b) from real-world GPS mobility traces over seven days. The results

are plotted in Fig. 4.10. We observe that the aggregate ratio SN𝑟

TN𝑟
for one day is

more than 80%. Hence, sharing dynamic data can benefit individual vehicles
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Figure 4.10: TN𝑟 (the number of demands for dynamic data at the junction
in Fig. 4.8(b)) and corresponding SN𝑟 (the number of satisfied demands for
captured dynamic data from other vehicles).

significantly in real-world mobility patterns.

4.7.2 Applying Index Coding to Multiple Junctions

After evaluating the performance of single-junction index coding, we consider

index coding for multiple junctions.

Simulation Set-up

We selected 40 junctions in Beijing, as depicted in Fig. 4.8(c), and use the cor-

responding GPS mobility traces of taxis traversing these junctions to simulate

the mobility patterns. The simulation parameters are listed in Table 4.2. In

Fig. 4.8(c), we visualize the average mobility patterns of these 40 junctions

by circles of different sizes. The bigger the circle, the more number of taxis

traversed the respective junction.
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Table 4.2: Simulation Parameters for Multiple Junctions in Fig. 4.8(c).

Simulation Attribute/Parameter Value

Total area (in ≈ km2) 50

Number of observed days 7

Number of road segments per junction 4

Number of RSUs 40

RSU transmission range (meters) 200

Total number of taxis 24,845

Daily average number of taxi trips 79,012

Hourly average number of taxis in each junction 466

Total number of recorded time each day (hrs) 24

Sampling time of GPS traces (mins) 2

Evaluation Results

Fig. 4.11 depicts the average number of transmissions and sizes of transmitted

data when 1J-IdxCd is applied independently at the 40 junctions. Note that the

number of visits is not directly proportional to the average number of trans-

missions. In particular, RSU fog nodes 19 and 24 have relatively low volume of

visits, whereas RSU fog nodes 9 and 25 have a relatively high number. How-

ever, RSU fog node 19 has fewer number of transmissions than RSU fog node

24. This is because the vehicles in RSU 19 arrive more regularly than those at

RSU 24, hence more significant performance gain can be found in terms of the

number of transmissions and sizes of transmitted data by 1J-IdxCd. A similar

phenomenon is observed at the high-volume RSU fog node 25.

Fig. 4.12 shows the RSU fog nodes located on West 2nd Ring Road (i.e.,

RSUs 8, 10, 18, 22, 26) and depicts the hourly performance of each RSU. The

average volume of visits through these road sections are similar. The curve

labeled by ‘Avg’ indicates the average value of the 40 RSU fog nodes over a

day. We observe that the information dissemination by the RSU fog nodes

increased starting from 08:00h, because the peak traffic hours occur at 08:00h.
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Figure 4.11: Average total number of transmissions and sizes of transmitted
data for each of the 40 RSU fog nodes situated in Beijing.

From midnight to 06:00h, the traffic is relatively low.

4.7.3 Scheduling over Multiple Junctions

In this section, we evaluate the performance of the proposed scheduling schemes

over the selected 40 junctions. We employ both the online (ONLSchd) and of-

fline (OFLSchd) opportunistic scheduling schemes for disseminating map data

to vehicles.

Applying the Opportunistic Scheduling

We assign each RSU fog node the same download capacity (C↓). The per-

formance of various scheduling schemes are shown in Fig. 4.13, under various

download capacity (C↓) based on the GPS mobility traces of taxis traversing

the 40 junctions in Beijing in Fig. 4.8(c).

We observe that the RSU fog nodes reach the download capacity at a much
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Figure 4.12: Hourly average total number of transmissions and sizes of trans-
mitted data for each RSU fog nodes located on West 2nd Ring Road.
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Figure 4.13: Performance of various scheduling schemes against download ca-
pacity (C↓).

faster rate by Rand, because Rand broadcasts a large amount of data (equal to

the sum of all source packets of map data in a trip per vehicle), as compared

to the opportunistic scheduling schemes per sampling time. This leads to

heavier load on the cellular network when Rand is used in scenarios with low
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download capacity (C↓ ≤ 700 MB). Although ONLSchd reduces the required

cellular transmissions, it is still evident that it exhibits the same effect during

low download capacity, i.e., more cellular transmissions than local broadcast

transmissions. For a given set of map data, increasing the local broadcast

download capacity can reduce the need for cellular network transmissions.

This presents a design trade-off for the network administrator to balance the

loads between local broadcast and cellular unicast.

Among the three schemes, OFLSchd employs considerably less cellular net-

work bandwidth even when the local broadcast download capacity is low. It

relies almost totally on local broadcast transmissions as the download capacity

is over 700 MB. This is because all of the vehicles’ trip plans are known in ad-

vance, thus, enabling the RSU fog nodes to schedule map data dissemination

more efficiently, and less rely on the cellular download of road map data.
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Figure 4.14: Comparing the OFLSchd and Rand methods on the distance of
pre-downloaded remote data to requesting vehicles.

Fig. 4.14 shows the distance (in terms of the number of blocks away) of pre-

downloaded remote data to a requesting vehicle at an RSU fog node. Since

OFLSchd knows the planned trips of the vehicles, it reduces the number of

transmissions required to satisfy all vehicles, while providing pre-downloaded
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remote data up to five blocks away (when the RSU fog node download capacity

is ≥ 900 MB). For example, RSU fog node 14 can transmit road segment

data from remote RSU fog nodes such as 1, 10, 17, 32, etc. Such amount of

advanced data will allow a vehicle to update its planned trip and alter its route

if necessary. On the other hand, Rand can only deliver data up to an average

of 1.66 RSU blocks away from the requesting RSU fog node.

Meeting Frequency of Vehicles

Theorem 4.3.3 shows that applying Algorithm 1J-IdxCd independently at each

junction produces an optimal index coding scheme for multiple junctions, un-

der the single meeting assumption. In this section, we empirically examine the

meeting frequency of vehicles based on GPS mobility traces.

We define that a meeting occurs when the taxis’ routes (according to GPS

traces) are within 200 m of each other. Given an observation window during

the day, these frequencies of meetings are stored in the adjacency matrix TM,

defined below in (4.10):

TM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑥1,2 · · · 𝑥1,𝑛−1 𝑥1,𝑛

𝑥2,1 0 · · · ... 𝑥2,𝑛

...
...

. . .
...

...

𝑥𝑛−1,1 · · · · · · . . . 𝑥𝑛−1,𝑛

𝑥𝑛,1 𝑥𝑛,2 · · · 𝑥𝑛,𝑛−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.10)

where 𝑥𝑖,𝑗 ∈ {0, 1, 2, ...} is the number of times that vehicles 𝑖 and 𝑗 met and

𝑥𝑖,𝑗 = 𝑥𝑗,𝑖. The observation window is equal to 𝑡stop − 𝑡start. In this case,

𝑡stop − 𝑡start = 24 hours, having a 2-min sampling interval.

The results are illustrated in Fig. 4.15. Any two given taxis from the
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mobility traces only met each other once 86% of the time, while the remaining

14% met more than once. From Fig. 4.15, we know that any pair of taxis met at

most once within a moderate time window. This shows limited meetings among

vehicles with different trips in a city in practice. Hence, applying Algorithm

1J-IdxCd independently at each junction still provides a heuristic to construct

a good index coding scheme for a city-wide multiple junction scenario.

Figure 4.15: Meeting frequency between any pair of taxis.

Shown in Table 4.3 are the frequencies of taxi meetings employing other

empirical datasets expressed in percentage.We can notice that any taxis meet-

ing once in a 24-hour window is still very high (≥ 80%), with the exemption of

the Rome dataset with only 61.52%. However, this result for the Rome dataset

is still above 50% and can still be considered that reliance of intelligent con-

nected vehicles for up-to-date road map data is still well-served by the RSU

fog nodes.

Finally, we study the scenarios that the majority of the number of meet-

ings in the adjacency matrix TM is more than one (i.e., 𝑥𝑖,𝑗 ≥ 2). Note
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Table 4.3: Frequency of taxi meetings (in %).

Taxi Mobility Trace Meeting Frequency (in %)

City (Location) Number of Vehicles 1 2 3 ≥ 4

Beijing [112] 28590 85.80 8.62 2.57 3.01

Shanghai [113] 2300 99.65 0.35 0.00 0.00

San Francisco [114] 536 98.35 1.56 0.09 0.00

Shenzhen [115] 350 80.16 18.73 0.93 0.19

Rome [116] 320 61.52 19.98 8.52 9.98

Singapore [117] 28000 76.94 19.64 0.98 2.45

Jakarta [117] 28000 79.56 18.20 1.89 0.35

New York* [118] 23930 91.58 7.55 0.74 0.13

*considering Pick-up and Drop-off points only

that the proposed scheme produces the best performance when 𝑥𝑖,𝑗 = 1. The

simulation results for 3,000 runs are shown in Fig. 4.16. We also compare

the performance with a benchmark scheme, OnDemand [119], which transmits

the source packets of the most demanded road segment first, and then trans-

mits binary-coded packets of the most demanded road segment data until all

demands are satisfied.

We observe that as the number of meetings between any pair of vehicles

increases, the total number of transmissions increases in all scheduling schemes

(see the top figure of Fig. 4.16). We note that both Rand and OnDemand,

having equal number of transmissions, increase at a higher rate than 1J-IdxCd.

However, OnDemand transmits fewer data than Rand to satisfy all requesting

vehicles. Overall, considering both performance metrics, 1J-IdxCd outperforms

the two benchmarks in the multiple junction scenario.

4.7.4 Processing Overhead Analysis

We analyze in this subsection the processing overheads of the proposed in-

dex coding algorithm based on the overall data dissemination delay (including
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Figure 4.16: Comparison of the three schemes in terms of the total number of
transmissions (top) and total sizes of transmitted data (bottom) against the
meeting frequencies between any pair of vehicles.

both the processing/encoding delay and transmission delay) from the RSU to

the nearby vehicles. For the Rand method, the overall delay only contains the

transmission delay, while the 1J-IdxCd scheme includes also the processing de-

lay due to the XOR encoding of relevant road map data, which is proportional

to the number of encoded packets generated. To compute for the transmission

delay, we assume that the packet size is 1024 bytes and the data rate is 6 Mbps.

On the other hand, the encoding processing delay is assumed to be fixed. For

a given RSU fog node, the overall delay is computed every sampling time 𝑇𝑆

= 2 min.

Given an assumed processing delay of 1 ms, Fig. 4.17 illustrates the overall

delay averaged over seven days for RSUs 8, 10, 18, 22, and 26. These five RSU

fog nodes have a daily average of 8,100 taxis passing through, and there are 11–

12 taxis connected to each RSU per 𝑇𝑆 on average. We can observe that even if

there is an additional processing time introduced by the 1J-IdxCd method, its
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daily average overall delay is still less than that of the Rand method by about

34%. This is because the 1J-IdxCd scheme has a much shorter transmission

delay than the Rand method by reducing the total number of required packets

and the number of road segments at each intersection is limited.

Figure 4.17: Average overall delay of each RSU fog node under the two trans-
mission schemes.

4.8 Summary

In this chapter, we have presented an efficient information dissemination sys-

tem of 3D point cloud road map data (3D-MADS) for intelligent vehicles and

roadside infrastructure integrated in a vehicular fog computing architecture.

Our system minimized the amount of cellular network unicast while maximiz-

ing the utility of short-range local broadcast transmissions by implementing

fog-based opportunistic schedulers. We have also optimized the performance

of 3D point cloud data dissemination and update by utilizing techniques such

as index coding at roadside unit fog nodes and hashing of 3D point cloud data

at vehicular nodes. The overall system was validated with empirical mobility

traces, 3D LIDAR data, and an experimental multi-robotic testbed.
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Chapter 5

Roadside Unit Allocation for

Fog-based Information Sharing

in Vehicular Networks

In this chapter, we consider a set of intersections in Beijing City as poten-

tial locations for strategically allocating fog computing hotspots to maximize

the information shared among vehicles and fog nodes. Using empirical find-

ings from mobility traces such as vehicular density, the total daily number of

transmissions, transmitted data size, and space mean speed, we propose the In-

formation Sharing via Roadside unit Allocation (ISRA) strategy to determine

the optimal locations for deploying RSU fog computing nodes. The developed

optimal index coding transmission scheme from Chapter 4 will be used by

ISRA to locate information-rich and energy-efficient intersections. Then, as

an application of ISRA, the problem in Chapter 3 is re-visited and extended

to include highway sections before the tollgate in the discussion. ISRA-based

deployment method has been implemented to manage the density and speed

of vehicles in highway sections before the tollgate section.

The chapter is organized as follows: Section 1 presents the urban city-
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wide scenario and assumptions. Section 2 discusses the proposed Information

Sharing via Roadside Unit Allocation (ISRA) strategy for allocating RSU fog

nodes in any of the city’s intersections. Section 3 shows the various perfor-

mance metrics to evaluate ISRA. Finally, Section 4 concludes this research

study and provides future research undertakings.

5.1 Urban City-Wide Scenario

Fig. 5.1 illustrates a section of a city urban grid where there are six junctions

and vehicles traversing the city roads. Each colored vehicle corresponds to a

specific vehicular density, at a specific sampling time 𝑇𝑆, occupying the road

segments connected to the junction. These vehicles have on-board sensors to

measure their current surroundings. Road intersections (according to [95]) are

the most probable places for situating RSU fog nodes to be used for informa-

tion dissemination/exchange. The instantaneous V2I contact density (number

of transmitting vehicles within the RSU fog node’s transmission range) is de-

scribed in Table 5.1. It is observed that candidate RSU fog node locations

𝑟1 and 𝑟6 have an increasing number of transmitting vehicles, while 𝑟2 and 𝑟5

experience the opposite. 𝑟4 always has nearby transmitting vehicles, and 𝑟3

has time intervals with and without transmitting cars.

Table 5.1: V2I contacts at each candidate RSU fog node location in Fig. 5.1,
sampled at each sampling time.

𝑟𝑗/𝑇𝑆 𝑡0 𝑡1 𝑡2

𝑟1 0 20 30

𝑟2 30 10 0

𝑟3 20 0 40

𝑟4 20 30 40

𝑟5 20 10 0

𝑟6 0 10 30
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Figure 5.1: Section of a city-wide scenario having six junctions with various
V2I and I2V contact densities.

We consider all junctions as candidate locations for allocating RSU fog

nodes, and each junction has four road segments. The deployed RSU fog

nodes are assumed to be identical, located at the junction’s center, and have

a transmission range of 𝑇𝑥. Every RSU fog node (𝑟𝑗) samples its surroundings

within every sampling period 𝑇𝑆 to check if there are nearby vehicles ready for

information exchange. For 𝑟𝑗’s with V2I contacts at each sampling time 𝑇𝑆,

vehicles send their measurements to the RSU fog node following a scheduled

procedure, i.e., according to their arrival. They also send their instantaneous

position, speed, and road segment measurement request to the RSU fog node.

After reception, the RSU fog node does the following:

1. From the instantaneous speed readings, it computes the region’s space
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mean speed to monitor if there are slow moving vehicles staying on the

road for a long time [120].

2. From the vehicular demands, it encodes required road segment measure-

ments for packet transmission.

3. It broadcasts encoded packets to satisfy all vehicular requests.

The measured environment data to be shared, prior to being sent out by

the vehicles to the RSU fog nodes and vice versa, are already compressed, e.g.,

via Octree compression [108].

There are two modes of broadcast transmission employed by the RSU fog

node: 1) Random transmission (RandTrans), and Optimal Index Coding trans-

mission (OptTrans) [106]. RandTrans sends out data from the most to the least

demanded road segment information, or based on a uniform distribution if

there are equal number of requests of a particular road segment. On the other

hand, the OptTrans scheme sends out either the source or encoded packets to

satisfy all vehicular demands. Such transmission mode is also able to reduce

the file size of the information to be sent, and the number of packet transmis-

sions needed.

Consider sampling time 𝑇𝑆 = 𝑡2 and road junction 𝑟3. Assume that there

are 10 vehicles on each of the four road segments (RS) carrying RS maps

𝑚1,𝑚2,𝑚3, and 𝑚4 respectively. The vehicles on RS 1 request information

of RS 2, vehicles on RS 2 require RS 3 information, RS 3 vehicles want mea-

surements of RS 4, and vehicles found on RS 4 demand the information of

RS 1. Based on the RandTrans method, the RSU fog node transmits vehicular

requests randomly based on a uniform distribution. In OptTrans, the RSU fog

node encodes and sends out the following: 𝑚1 ⊕𝑚2,𝑚2 ⊕𝑚3, and 𝑚3 ⊕𝑚4.

The ⊕ symbol is the exclusive OR (XOR) operator. Vehicles on RS 1, upon

receiving 𝑚1 ⊕ 𝑚2, will perform 𝑚1 ⊕ (𝑚1 ⊕ 𝑚2) to recover its desired road
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segment measurement 𝑚2. This is also done by the other vehicles located

on the other road segments to obtain their desired road segment environment

information.

5.2 Information Sharing via Roadside Unit

Allocation

Transmitted compressed road segment measurements from the surrounding

vehicles, such as 𝑚1, . . . ,𝑚4 are called source information, while (𝑚1 ⊕ 𝑚2),

. . . , (𝑚3 ⊕ 𝑚4) are labeled as encoded information. Source information will

be transmitted by both vehicles and RSU fog nodes, but encoded information

will only be transmitted by the RSU fog nodes.

The amount of information shared (𝐼𝑠ℎ) in the vehicular network depends

on the amount of information transmitted by the vehicles (𝐼𝑣) and the RSU

fog nodes (𝐼𝑗). Therefore, 𝐼𝑣 and 𝐼𝑗 indicate the amount of V2I and I2V

information shared, respectively. This is denoted by

𝐼𝑠ℎ =
∑︁
𝑣∈𝑉

𝐼𝑣 +
∑︁
𝑗∈𝐽

𝛼𝑗𝛽𝑗𝐼𝑗 (5.1)

In (5.1), the scheduled uploading of V2I information takes place before

the downloading of I2V information. With this scenario, road information

at the RSU is first updated by the vehicles, and then the RSU updates the

other surrounding vehicles. This information exchange happens within the

designated sampling period 𝑇𝑆.

The information sent by the RSU fog node (𝐼𝑗), depending on the mode of

transmission, is either a source packet or an index-coded packet. A transmitted

packet has a uniform size and contains one road segment measurement (𝛽𝑗 =

1), e.g., 𝑚1, or two road segment measurements (𝛽𝑗 = 2), e.g., 𝑚1 ⊕𝑚2. 𝛼𝑗
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denotes the number of vehicles in contact with the RSU fog node that received

the broadcasted information. We assume all vehicles in contact with the RSU,

at a specific sampling time, will share information. Therefore, the amount

of information shared increases with the number of V2I contacts within a

transmission period.

We propose an Information Sharing via Roadside Unit Allocation (ISRA)

strategy to optimally determine the RSU locations that will maximize the

amount of information shared between vehicles and RSU fog nodes subject to

various constraints. The maximization problem is given by (6.4a) subject to

constraints (6.4b), (5.2c), and (6.4c).

maximize 𝐼𝑠ℎ (5.2a)

subject to
𝐽∑︁

𝑗=1

𝑥𝑗 ≤ 𝑅, 𝑥𝑗 ∈ {0, 1} (5.2b)

𝑣(𝑥𝑗) ≥ 𝜏𝑠, ∀𝑗 s.t. 𝑥𝑗 = 1 (5.2c)

𝑁𝑇𝑗

𝑉 𝐶𝑡𝑜𝑡𝑗

≤ 𝜏𝑝, ∀𝑗 s.t. 𝑥𝑗 = 1 (5.2d)

In constraint (6.4b), 𝑅 is the maximum number of roadside units to be

deployed. If a candidate intersection 𝑟𝑗 is chosen, 𝑥𝑗 = 1, otherwise, 𝑥𝑗 = 0.

In constraint (5.2c), the function 𝑣(𝑥𝑗) computes the RSU 𝑟𝑗 (∀𝑥𝑗 = 1) re-

gion’s space mean speed derived from the surrounding instantaneous vehicular

speeds, 𝑣𝑡. Based on the computed value, the junction that has a space mean

speed equal to or over a threshold speed limit, 𝜏𝑠, is selected. This is important

especially when there are too many cars willing to share information to the

RSU fog node, and the RSU fog node’s memory capacity or computational

power is exceeded. In case a chosen candidate location runs out of compu-

tational power or storage, vehicles in the vicinity will be able to transfer to
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other RSU fog nodes for information dissemination. If the space mean speed

is above the threshold, then, it means that the vehicle is able to reach the next

RSU for information exchange. This constraint, thus, effectively balances the

communication load of each selected RSU.

Finally, constraint (6.4c) discriminates selected intersections based on a

junction’s transmission density threshold 𝜏𝑝. Transmission density is defined

as the total number of transmissions needed by RSU 𝑟𝑗 (𝑁𝑇𝑗
) to satisfy a set

of demands by a given number of V2I contacts (𝑉 𝐶𝑡𝑜𝑡𝑗) per sampling period.

This constraint restricts the energy consumption for delivering information to

the vehicles.

A higher(lower) threshold value for constraint (5.2c)((6.4c)) dramatically

reduces the number of possible locations where the hotspots can be allocated.

5.3 Simulation Studies and Discussion

In this section, we present how useful information from empirical taxi mobility

traces are extracted and used by ISRA to allocate hotspots for maximum

information sharing between vehicles and RSU fog nodes. We use realistic 3D

point cloud data found in [121] to represent the static information of all road

segments of a junction shared by the vehicles and RSU fog nodes.

5.3.1 Empirical Findings from Mobility Traces

We investigated a seven-day dataset of mobility traces of 28,590 taxis plying

the City of Beijing. The dataset contains the taxi’s ID number, location’s GPS

coordinates, and its timestamp [112].

We studied 40 junctions from the first two inner rings of Beijing City and

these are shown in Fig. 5.2. The separation between two adjacent road in-

tersections is at least 400 m. The light and small colored circles (colors ap-
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Figure 5.2: The 40 candidate RSU fog node allocations. The color and size of
the circle highlights the average V2I contact density at each junction.

proaching blue) depict a low volume of V2I contacts, while large dark colored

circles represent the opposite. The V2I contacts of each RSU 𝑟𝑗, 𝑉 𝐶𝑗, are

sampled every 𝑇𝑆 = 2 min with the transmission range 𝑇𝑥 set to be 200 m.

𝑗 = 1, 2, . . . , 40. The numerical values of the V2I contacts of each junction are

seen in the top portion of Fig. 5.3.

To compute for the junction’s space mean speed, we first calculated the

instantaneous speed, 𝑣𝑡 by:

𝑣𝑡 =
𝐺𝑃𝑆𝑡 −𝐺𝑃𝑆𝑡−1

𝑡𝑠
(5.3)

where 𝐺𝑃𝑆𝑡 and 𝐺𝑃𝑆𝑡−1 are the vehicle’s current and previous GPS locations,

respectively, converted to distance using the Haversine formula [122]. Each

GPS update is taken every 𝑡𝑠 = 10 s. The space mean speed for each junction,

using 𝑣𝑡, is computed according to [120] and are shown in the bottom part
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of Fig. 5.3. It is noticeable that the daily space mean speed value for each

considered junction is below the normal speed limits for most urban roads.

This observation highlights that there is mostly traffic congestion throughout

the day, even if there are fewer vehicles on the road, e.g., junction 23.

Figure 5.3: Empirical findings for the chosen 40 possible roadside unit locations
around the first and second rings of Beijing City averaged over the 7-day period.

To obtain the candidate RSU fog nodes 𝑟𝑗’s total number of transmitted

packets (𝑁𝑇𝑗), the OptTrans scheme is employed [106] and compared to the

RandTrans. The transmitted packet size is 1024 bytes, where 1000 bytes cor-

respond to the payload and the remaining 24 bytes are for the overhead. The

benefit of using OptTrans over RandTrans is illustrated in Fig. 5.4. It is evi-

dent that the optimal index coding transmission scheme guarantees that the

total number of packet transmissions and transmitted data size are minimized

while satisfying the demands of all nearby vehicles. Given these, the number of

packet transmissions employing the OptTrans scheme will be used in constraint
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(6.4c).

Figure 5.4: Total number of transmitted packets (top part) and transmitted
data size (bottom part) for the chosen 40 possible roadside unit locations
around the first and second rings of Beijing City employing the RandTrans and
OptTrans schemes.

5.3.2 Performance Evaluation

During the simulations, the following threshold values are set. 𝑅 is set to 10

to limit the number of deployed RSU fog nodes around the two rings of Beijing

City to 25%. 𝜏𝑠 is set to 10 kph, which is approximately half the maximum

space mean speed allowed by any candidate location. Finally, we make 𝜏𝑝

equal to 1, such that on average, the RSU fog node satisfies one vehicle per

transmission.

We first compare how the mode of transmission affects the amount of I2V

information shared, since the number of packet transmissions required by the

OptTrans scheme to satisfy the vehicular demands is approximately equal to
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two thirds of that required by the RandTransmethod according to Fig. 5.4. Fig.

5.5 shows that OptTrans allows more sharing of information when compared

to RandTrans, even if there is less packet transmission and fewer transmitted

data size. This is due to the fact that OptTrans often sends encoded packets

with doubled amount of information. Given the results presented in Figs. 5.4

and 5.5, we decide to employ OptTrans with the proposed ISRA strategy in

the following.

Figure 5.5: Comparing the amount of I2V information shared when using two
modes of transmission.

The ISRA strategy is then compared to three other deployment methods

described as follows:

1. Downtown-based Deployment (DRSU) [123]: More RSUs are deployed in

low-density areas and less in high-density places. 60% of the total number

of RSUs to be deployed should be located in low-density areas.
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2. Critical Intersections Deployment (CritInt) [124]: This uses a cross-road

rank algorithm to determine critical intersections in Beijing City. It

ranks the candidate junctions based on the eigenvector centrality mea-

sure that factors the effects and relationships of the origin-destination

pairs, irreplaceable paths and the junctions involved. The RSU fog nodes,

according to their findings, are deployed at junctions 2, 4, 8, 10, 18, 21,

26, 27, 33, and 34.

3. Distinct Vehicles Deployment (DistVeh) [95]: Candidate locations are cho-

sen based on the number of unique taxi IDs in contact with an RSU, i.e.,

the 10 RSUs with the most number of unique taxi IDs are selected as the

candidate locations. The RSUs are deployed to maximize the number of

distinct vehicles having at least a single V2I contact based on vehicular

trajectories. This is done for collection and dissemination of unique traf-

fic announcements. In this study, these are found at candidate locations

10, 17, 18, 21, 22, 31, 32, 33, 34, and 36.

The top figure of Fig. 5.6 illustrates that ISRA outperforms the other three

allocation schemes to maximize the amount of shared information between ve-

hicles and infrastructure nodes. Notice that all allocation methods have the

same monotonically increasing trend as the number of RSUs increases. ISRA

captures both the characteristics of CritInt and DistVeh, i.e., (1) identifying

most of the critical junctions even by only considering the space mean speed

and transmission density, and (2) locating junctions that maximizes the num-

ber of V2I contacts coming from distinct vehicles. ISRA also avoids the dis-

advantage provided by DRSU in terms of sharing information in the vehicular

network by allocating a fixed amount of RSU fog nodes in certain areas.

We also compare in terms of the percentage change of information shared

when ISRA is applied in the simulated city-wide scenario. This is shown in the
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Figure 5.6: The amount of information shared (𝐼𝑠ℎ) using four deployment
methods (top figure) and the percentage change of information shared (𝐼𝑠ℎ)
provided by ISRA against the other three deployment methods (bottom figure).

bottom figure of Fig. 5.6. On average, ISRA has approximately 6%, 10%, and

47% more shared information than DistVeh, CritInt, and DRSU, respectively.

As more RSU fog nodes are being deployed, the behaviors of CritInt and DistVeh

approach that of the ISRA strategy.

The energy efficiency (𝐸𝐸) of each of the deployment methods are also

evaluated. We define 𝐸𝐸 in (5.4).

𝐸𝐸 =

[︃
1− 𝛾

(︂∑︀𝐽
𝑗=1𝑁𝑇𝑗

𝐼𝑠ℎ

)︂]︃
* 100%,∀𝑥𝑗 = 1. (5.4)

where 𝛾 = Byte
# of packets

is a unit correction factor.

A deployment method is energy-efficient if the chosen RSU fog node loca-

tions are able to share the most information using the least number of packet

93



5.3. SIMULATION STUDIES AND DISCUSSION

Figure 5.7: The energy efficiency of the four deployment methods.

transmissions. The energy efficiency for each deployment method is shown in

Fig. 5.7. Generally, ISRA has a higher energy efficiency (average of 83%) com-

pared to the other three deployment methods. For DRSU, the decrease of its

energy efficiency is affected by the deployment of RSU fog nodes at low-density

junctions.

Finally, Fig. 5.8 shows how much information is shared by each selected

RSU fog node in each deployment scheme. It is evident that ISRA balances

the information sharing between the deployed RSUs. ISRA, by considering

the region’s space mean speed, allows the offloading of vehicles to nearby RSU

fog nodes such that the system’s computational power and memory capacity

will not be exceeded. Such capability allows ISRA to virtually interconnect

all deployed RSU fog nodes and maintain RSU fog nodes in the vicinity to

operate at roughly the same rate.
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Figure 5.8: ISRA balances the information shared between the deployed RSU
fog nodes. (For ISRA, deployed RSU fog nodes 1-5 and 6-10 are groups of
adjacent RSU locations.)

Therefore, supported by Figs. 5.6 - 5.8, ISRA outperforms the other three

deployment methods by being able to allocate RSU fog nodes in energy-efficient

and information-rich junctions, while at the same time, able to balance the load

(shared information processing/storage) among all deployed RSU fog nodes.

5.3.3 ISRA-based Highway Control Application

The highway tollgate section in Fig. 3.1 road is extended to include 𝑖 sections

of the highway to consider the flow of intelligent connected vehicles before they

approach the tollgate servers as shown in Fig. 5.9. We model each highway

section by studying its vehicular density (5.5), traffic flow (5.6), the empirical

relationship between speed and density (5.7), and space mean speed (5.8) [125].

𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇

𝐿𝑖

[︂
𝑞𝑖−1(𝑘)− 𝑞𝑖(𝑘)

]︂
(5.5)

𝑞𝑖(𝑘) = 𝜌𝑖(𝑘)𝑣𝑖(𝑘) (5.6)

𝑉 [𝜌𝑖(𝑘)] = 𝑣𝑓

(︂
1−

[︂
𝜌𝑖(𝑘)

𝜌𝑐𝑟

]︂𝑙)︂𝑚

(5.7)
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Figure 5.9: Highway section and its traffic parameters.

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) +
𝑇

𝜏

[︂
𝑉 𝜌𝑖(𝑘)− 𝑣𝑖(𝑘)

]︂
+

𝑇𝑣𝑖(𝑘)

𝐿𝑖

[︂
𝑣𝑖−1(𝑘)− 𝑣𝑖(𝑘)

]︂
− 𝑎𝑇

𝜏𝐿𝑖

[︂
𝜌𝑖+1(𝑘)− 𝜌𝑖(𝑘)

𝜌𝑖(𝑘) + 𝜅

]︂ (5.8)

where 𝑇 is the sampling interval expressed in hours and 𝑖 is the highway

section from 1, 2, ..., 𝑁 with length 𝐿𝑖 in km. 𝑣𝑓 is the maximum allowable

highway section space mean speed expressed in kph and 𝜌𝑐𝑟 is the maximum

vehicular density (in veh/km). The constants 𝜏, 𝑣, 𝜅, 𝑙,𝑚 are parameters char-

acterizing the highway. We adopt these parameter values from [126].

𝜌𝑖(𝑘), 𝑣𝑖(𝑘), and 𝑞𝑖(𝑘) are the highway section 𝑖 average vehicular density

(in veh/km), space mean speed (in kph), and average traffic flow (in veh/hr)

at sampling time 𝑘, respectively. 𝜌𝑖(𝑘) = 𝐸[𝑃𝑖(𝑘)] and 𝑞𝑖(𝑘) = 𝐸[𝑄𝑖(𝑘)], where

𝑃𝑖(𝑘) and 𝑄𝑖(𝑘) are the remaining and passing intelligent connected vehicles

in highway section 𝑖, respectively. 𝐸[·] is the expectation operator.

The boundary conditions at the start (𝑖 = 1) and end (𝑖 = 𝑁) of the

highway are given in (5.9)–(5.12).

𝑣0(𝑘) = 𝑣1(𝑘) (5.9)

𝜌0(𝑘) =
𝑞0(𝑘)

𝑣𝑖(𝑘)
(5.10)
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𝑣𝑁+1(𝑘) = 𝑣𝑁(𝑘) (5.11)

𝜌𝑁+1(𝑘) = 𝜌𝑁(𝑘) ∀𝑘 (5.12)

The number of cars remaining, 𝑃𝑖(𝑘) and passing 𝑄𝑖(𝑘) in section 𝑖 fol-

lows a Poisson distribution with means 𝐸[𝑃𝑖(𝑘)] =
∑︀𝑘

𝜎(𝑘) 𝛼(𝑘) and 𝐸[𝑄𝑖(𝑘)] =∑︀𝜎(𝑘)
−∞ 𝛼(𝑘), respectively, where 𝛼(𝑘) is equal to the arriving vehicle that re-

mains at section 𝑖 at time 𝑘. Additionally, the numbers of vehicles, 𝑃𝑖 and

𝑃𝑖+1, for two non-overlapping sections 𝑖 and 𝑖+ 1 are also Poisson-distributed

and independent. [127].

We assume that the highway section lengths are 𝐿1 = 𝐿2 = 𝐿4 = 500

meters [126,128]. 𝐿3 = 1000 meters. The simulation parameters for controlling

the highway section vehicular densities and speeds are given in Table 5.2.

Table 5.2: Simulation Parameters for Highway Section Vehicular Density and
Speed Control

Parameter Value Parameter Value

𝜌𝑐𝑟 3000 veh
km

𝑙 1.8

𝑇 10 sec 𝑚 1.7

𝑣𝑓 80 kph 𝑣𝑖0(0) 15 kph

𝜏 0.01 hr 𝜌𝑖0(0) 50 veh
km

𝑣 35 km2

hr
𝑁 4

𝜅 13 veh
km

𝐾𝑝 1

Fig. 5.10 illustrates the space mean speed and average vehicular density

profiles of each section when the central Access Point (AP) is not communi-

cating with the RSUs installed on the highway sections, therefore, AP control

is within section 1 only. At steady state, the Tollgate region (Section 1) al-

lows the most vehicular density and the slowest space mean speed since these

vehicles are now exiting the highway. This coincides with the findings in Fig.

3.7 in Chapter 3 for a given homogeneous heavy traffic flow. All the other
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Figure 5.10: Traffic space mean speed and density responses along the highway
divided into four sections. The centralized AP is not communicating to any
deployed RSUs.

sections’ vehicular densities will populate accordingly, i.e., the section nearer

to tollgate region (Section 1), the more intelligent connected vehicles are seen

with slower space mean speed.

In Chapter 3, the developed centralized fuzzy logic controller can provide

early warning signal to the tollgate servers to hasten their service. This early

warning signal is now also transmitted to the other RSUs on the highway to

inform vehicles of their corresponding speed, so that they will not have to wait

longer when they reach the tollgate section. We implement an error controller

for controlling a section’s average vehicular density and space mean speed, as

illustrated in Fig. 5.11. The response is depicted in Fig. 5.12.

For example, as the central AP recognizes the current low(high) vehicular

density in its region, it allows the other RSUs to inform its intelligent con-

nected vehicles to speed up(down), accordingly. Notice that all sections’ speed
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Figure 5.11: Proportional controller for improving the highway section’s aver-
age vehicular density and space mean speed.

and density profiles are maintained to be approximately be the same, while

not allowing each vehicle to approach full stop (𝑣𝑖(𝑘) ̸= 0). With the combi-

nation of faster tollgate service times and coordinated traffic flow, intelligent

connected vehicles experience more travel comfort and convenience. This will

also allow better fuel efficiency [129].

Figure 5.12: Highway sections’ space mean speed and average vehicular density
profiles when the early warning signal from the central AP is also transmitted
to deployed RSUs at Sections 2 and 4.
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5.4 Summary

In this study, we have proposed an Information Sharing via Roadside Unit

Allocation (ISRA) strategy for deploying RSU fog nodes in a city-wide con-

text to maximize the amount of information being shared among vehicles and

RSU fog computing hotspots. To do this, empirical findings from taxi mobil-

ity traces plying the City of Beijing are used. ISRA allocates RSU fog nodes

to city intersections that are information-rich and energy-efficient. Given a

constraint of deploying 10 RSU fog nodes in Beijing City, ISRA enjoys a 6%

increase in the amount of information being shared compared with the best

conventional scheme, which is equivalent to about 4 GB more of shared infor-

mation. Also, ISRA achieves an 83% energy efficiency that translates to fewer

packet transmissions needed for sharing more information to the surrounding

vehicles. ISRA is able to balance the information sharing among deployed

RSU fog nodes, such that in practice, all deployed RSU fog nodes can operate

at similar computational power and memory consumption. Finally, a control

data dissemination application has verified the effectiveness of deploying RSUs

at optimal locations by using ISRA. By this method, the space mean speed

and vehicular density of each of the highway sections have been equalized and

responsive to the central AP’s early warning signal.
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Chapter 6

Enhanced Information Sharing

via Roadside Unit Allocation

Scheme

In the previous chapter, ISRA chose locations from a set of intersections to de-

ploy RSUs that will maximize the amount of shared information. In this work,

we develop an Enhanced Information SHAring via RSU Allocation (EISHA-

RSU) algorithm that will consider all spatial locations as possible candidate

RSU locations. Unlike ISRA, EISHA-RSU irregularly partitions an urban area

to discriminate regions according to vehicular capacity. This irregular parti-

tioning prioritizes locations where to allocate RSUs for obtaining maximum

V2I and I2V information while addressing the issues of coverage and connec-

tivity among vehicles and infrastructure.

The chapter is outlined as follows. Section 1 discusses the definitions,

assumptions, and setup considered to solve the allocation problem. Section 2

presents the novel EISHA-RSU algorithm that utilizes the concepts of Effective

Regions of Movement and Effective Position. Section 3 discusses the results

derived from extensive simulation employing three urban empirical mobility
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traces. The summary and conclusion are stated in Section 4.

6.1 Effective Regions of Movement

In this section, we discuss the irregular partitioning of an urban map according

to its vehicular distribution, thus, automatically removing unnecessary city de-

tails and optimally form homogeneous effective regions of movement (ERMs).

6.1.1 Spatiotemporal Stable Network Characteristics

Figure 6.1: Uniform partitioning of an urban map revealing various 𝑔𝑝,𝑞 and
its corresponding utility of network parameters (e.g., dynamic and static data,
and the number of intelligent connected vehicles) at sampling time 𝑡 = 𝑖𝑇𝑆.

Consider the uniform partitioning of an urban area under study in Fig. 6.1

into 𝑁 ×𝑁 map grids, 𝑔𝑝,𝑞. Each map grid, 𝑔𝑝,𝑞, is characterized by its utility

function, 𝜁𝑝,𝑞, at time 𝑡 and depends on the map grid’s longitude and latitude

location. The indexes 𝑝 and 𝑞 ∈ {1, . . . 𝑁}. We define 𝜁𝑝,𝑞 as:
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𝜁𝑝,𝑞 = E
[︀
𝜂𝑝,𝑞

]︀
where E

[︀
∙
]︀
is the expectation of

[︀
∙
]︀
. 𝜂𝑝,𝑞 describes the map grid’s current

spatial network characteristic, such as the grid’s dynamic data, 𝛿𝑝,𝑞, static data,

𝛾𝑝,𝑞, vehicular capacity, 𝑐𝑝,𝑞, vehicular density, connectivity, accident rate, etc.

Each network characteristic is assumed to be independent from each other and

the utility function can be a combination of any of these 𝜂𝑝,𝑞’s. In this work,

𝜂𝑝,𝑞 = 𝑐𝑝,𝑞.

If vehicular movements and other dynamic network characteristics are dis-

regarded, the map grid’s current spatial network characteristic is constant, i.e.,

𝜁𝑝,𝑞 = 𝐾. However, when dynamic map data, sources, and movement of vehi-

cles are considered, 𝜁𝑝,𝑞’s vary in both space and time. Therefore, to implement

a consistent and reliable grid partitioning, the map grid’s spatiotemporal sta-

ble 𝜁𝑝,𝑞, must be determined from available sampling times. A map grid 𝑔𝑝,𝑞’s

spatiotemporal stable network characteristic, 𝜁𝑝,𝑞,𝑆𝑇𝑆, is established according

to (6.1).

𝜁𝑝,𝑞,𝑆𝑇𝑆 =
𝐼∑︁

𝑖=0

𝛼(𝑖𝑇𝑆)𝜔(𝑖𝑇𝑆) (6.1)

where

𝛼(𝑖𝑇𝑆) =
𝜁(𝑖𝑇𝑆)−min

[︀
𝜁(𝑖𝑇𝑆)

]︀
max

[︀
𝜁(𝑖𝑇𝑆)

]︀
−min

[︀
𝜁(𝑖𝑇𝑆)

]︀
𝜔(𝑖𝑇𝑆) =

𝜁(𝑖𝑇𝑆)

max

[︂
𝜁(𝑖 = 0, . . . , 𝐼𝑇𝑆)

]︂

𝛼(𝑖𝑇𝑆) is the feature scaling parameter at time 𝑡 = 𝑖𝑇𝑆, while 𝜔(𝑖𝑇𝑆) is the
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weight correlating all the 𝜁𝑝,𝑞’s, respectively. Fig. 6.2 illustrates an example of

how the spatiotemporal stable network characteristics 𝜁𝑝,𝑞,𝑆𝑇𝑆’s are generated

as defined in (6.1). 𝜁𝑝,𝑞 is characterized by the map grid’s vehicular capacity,

𝑐𝑝,𝑞.

Figure 6.2: An example of how 𝜁𝑝,𝑞,𝑆𝑇𝑆 of each map grid 𝑔𝑝,𝑞 is formed. Each
𝜁(𝑡 = 𝑖𝑇𝑆) is characterized by its current vehicular capacity, 𝑐𝑝,𝑞. Darker map
grids have lower vehicular capacities (LoCap) over lighter grids (HiCap).

6.1.2 Forming Effective Regions of Movement

To divide a geographical area into various sections and determine the possi-

ble candidate locations for deploying roadside units, we introduce the concept

of the Effective Regions of Movement (ERMs). An ERM is a grouping of

edge-adjacent map grids with its spatiotemporal stable network characteris-

tic, 𝜁𝑝,𝑞,𝑆𝑇𝑆, that possess a unifying characteristic, such as vehicular capacity,

density, etc. The merging [130] of spatiotemporal map grids form an ERM,
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𝐸𝑅𝑀𝑒, is governed by (6.2a) below.

𝐸𝑅𝑀𝑒 ≡ 𝑔𝑝,𝑞 ∪ 𝑔𝑝+Δ𝑝,𝑞+Δ𝑞 (6.2a)

subject to |{𝑐𝑔𝑝,𝑞} ∪ {𝑐𝑔𝑝+Δ𝑝,𝑞+Δ𝑞
}| ≤ 𝜏𝑐 (6.2b)

min(𝜌𝑔𝑝,𝑞 , 𝜌𝑔𝑝+Δ𝑝,𝑞+Δ𝑞
) ≥ 𝜌0 (6.2c)

where Δ𝑝,Δ𝑞 ∈ {−1, 0, 1}. 𝑐𝑔𝑝,𝑞 is the expected vehicular capacity found in

𝑔𝑝,𝑞, while 𝜏𝑐 is the vehicular capacity threshold of each formed 𝐸𝑅𝑀𝑒. Note

that only edge-adjacent grids are considered during the merging. 𝜌𝑔𝑝,𝑞 and

𝜌𝑔𝑝+Δ𝑝,𝑞+Δ𝑞
denote the outbound and inbound vehicular flow from and to 𝑔𝑝,𝑞,

respectively. If the minimum vehicular flow between two map grids is ≥ 𝜌0,

then merging proceeds; otherwise, 𝑔𝑝+Δ𝑝,𝑞+Δ𝑞 is dropped.

The algorithm to determine various ERMs of an area under study is illus-

trated in Algorithm 5. Fig. 6.3 shows an illustration of formed ERMs derived

from Fig. 6.2 containing single- and multiple-grid ERMs.
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Pseudo-codes 5 Determining Effective Regions of Movement (ERMs)
INPUT:
𝑔𝑝,𝑞’s – List of spatiotemporal stable geographical grids
𝑐𝑝,𝑞 – vehicular capacity of 𝑔𝑝,𝑞
𝜏𝑐 – vehicular quantity threshold,
𝑁2 - number of grids
OUTPUT: 𝐸𝑅𝑀 , List containing ERMs.

1: Δ𝑝 = [-1,0,1,0]; and Δ𝑞 = [0,1,0,-1];
2: 𝐸𝑅𝑀 = 0𝑁×𝑁 ;
3: region = 1; ◁ Initialize first ERM region to 1.
4: 𝐿𝑐 = sort(𝑐𝑝,𝑞) in descending order;
5: for 𝑖 = 1 to length of 𝐿𝜏 do
6: [𝑝, 𝑞] = ind2sub(index(𝐿𝜏 (𝑖)));
7: ◁ Convert linear indices to subscripts
8: 𝐸𝑅𝑀(𝑝, 𝑞) = region;
9: 𝐿𝑐 = 𝐿𝑐 ∖ 𝐿𝑐(𝑔𝑝,𝑞);

10: while 𝐿𝑐 ̸= ∅ do
11: for 𝑘 = 1 to 4 do ◁ Get edge-adjacent map grids.
12: if Constraints (6.2b) AND (6.2b) == TRUE then
13: if 𝑔𝑝+Δ𝑝(𝑘),𝑞+Δ𝑞(𝑘) is not yet visited then
14: 𝐸𝑅𝑀(𝑝+Δ𝑝(𝑘), 𝑞 +Δ𝑞(𝑘)) = region;
15: ◁ Assign 𝑔𝑝+Δ𝑝(𝑘),𝑞+Δ𝑞(𝑘) to ERM region
16: 𝐿𝑐 = 𝐿𝑐 ∖ 𝐿𝑐(𝑔𝑝+Δ𝑝(𝑘),𝑞+Δ𝑞(𝑘));
17: end if
18: end if
19: end for
20: end while
21: region = region + 1; ◁ Move to next ERM
22: end for
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Figure 6.3: An example of various ERMs formed by following Algorithm 5.
Dark and light colors depict low and high ERM priorities, respectively. In
the formation of ERMs, single-grid (bold circle) and multi-grid (dotted circle)
ERMs are created.

6.2 Enhanced Information Sharing RSU Allo-

cation (EISHA-RSU) Scheme

In this section, we discuss the novel Enhanced Information SHAring RSU

(EISHA-RSU) allocation technique. EISHA-RSU maximizes information shar-

ing and vehicular connectivity in ERMs by allowing relevant and on-time in-

formation exchange among the largest number of vehicles and infrastructure.

In essence, by considering the proper spacing between deployed RSUs, EISHA-

RSU, can maximize the urban coverage area and achieve its goals by utilizing

the effective position (EP) concept for locating ideal RSU deployment posi-

tion. We define an EP as a physical urban location where we can deploy an

RSU for environment information collection, such as an intersection, certain

location along a road segment, a combination of both, or any landmark.

107



6.2. ENHANCED INFORMATION SHARING RSU ALLOCATION
(EISHA-RSU) SCHEME

6.2.1 Problem Formulation

The main goal of EISHA-RSU is to locate RSUs in spots where maximized

information is shared between the infrastructures and vehicles. These road

and environment data can be either static (landmarks and roads) or dynamic

(pedestrian, road accidents, events, etc.) in nature. Given a constraint in the

number of RSUs to be deployed, EISHA-RSU prioritizes each effective region

of movement to ensure that even the least prioritized map grids still has a

chance to obtain relevant and on-time information from high-priority ERMs.

EISHA-RSU also assures on-time delivery and storage of dynamic environment

data collected from the surrounding vehicles.

In each ERM, the amount of information shared, 𝐼𝑆ℎ𝑎, is given in (6.3).

𝐼𝑆ℎ𝑎 = 𝑈𝛾 + 𝛽𝑈𝛿 (6.3)

=
𝑁∑︁
𝑝=1

𝑁∑︁
𝑞=1

𝛾𝑔𝑝,𝑞 + 𝛽
𝑁∑︁
𝑝=1

𝑁∑︁
𝑞=1

𝛿𝑔𝑝,𝑞(𝑡)

where 𝛾𝑔𝑝,𝑞 and 𝛿𝑔𝑝,𝑞(𝑡) represent the amount of static and dynamic environment

road map data, respectively. We note again that each 𝑔𝑝,𝑞 is dependent on its

corresponding longitude (𝑥) and latitude (𝑦) coordinates. 𝛽 is an importance

factor we assign to dynamic road data to signify the repetitive occurrence of

instantaneous events, such as accident-prone areas in a 𝑔𝑝,𝑞, where 1 ≤ 𝛽 ≤ 1
𝜉
. 𝜉

denotes the proportionality constant between static and dynamic environment

data such that 𝛿𝑔𝑝,𝑞 = 𝜉𝛾𝑔𝑝,𝑞 , where 0 < 𝜉 ≤ 1, i.e., dynamic environment data

are much less than static environment data. When 𝛽 = 1
𝜉
, it implies that the

dynamic environment data 𝛿𝑔𝑝,𝑞 have high importance and are treated equally

as static environment data.

EISHA-RSU addresses the maximization problem given by (6.4a) subject to
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constraints (6.4b) and (6.4c).

maximize 𝐼𝑆ℎ𝑎 (6.4a)

subject to
𝑁2∑︁
𝑙=1

𝐸𝑃𝑙 ≤ Ω𝑅, 𝐸𝑃𝑙 ∈ {0, 1} (6.4b)

𝑑(𝐸𝑃𝑙, 𝐸𝑃𝑚)

𝑣(𝐸𝑃𝑙, 𝐸𝑃𝑚)
≤ 𝑊 ∀𝐸𝑃𝑙, 𝐸𝑃𝑚 = 1 (6.4c)

Constraint (6.4b) assures that there is only the at most Ω𝑅 RSUs to be

deployed in each ERM or the urban map under study, located at effective posi-

tions, 𝐸𝑃𝑙. 𝐸𝑃𝑙 = 1 means an RSU can be deployed there; otherwise, 𝐸𝑃𝑙 = 0.

Constraint (6.4c) denotes the network’s allowable on-time delivery delay, 𝑊 .

It considers space mean speed, 𝑣(𝐸𝑃𝑙, 𝐸𝑃𝑚), and separation, 𝑑(𝐸𝑃𝑙, 𝐸𝑃𝑚),

between EPs such that vehicular data outside RSU coverage can still be valid

once it is within RSU range. We note that 𝑑(𝐸𝑃𝑙, 𝐸𝑃𝑚) does not automat-

ically equal to the shortest distance between 𝐸𝑃𝑙 and 𝐸𝑃𝑚. It is the travel

distance with respect to the road network. In Fig. 6.4, 𝑑1 = 𝑑(𝐸𝑃𝑙, 𝐸𝑃𝑚) = 4

and 𝑑2 = 𝑑(𝐸𝑃𝑙, 𝐸𝑃𝑘) = 3.

6.2.2 Delay Analysis between two Effective Positions

To achieve on-time and up-to-date delivery of environment data, the distance

between two EPs must be minimized, according to the delivery delay 𝑊 . The

calculated separation between EPs will allow vehicles outside an RSU’s trans-

mission range to travel and carry valid and relevant road information from one

grid to another without any RSU.

The general expression for the total average delivery delay, 𝑊 , to locate

two EPs, 𝐸𝑃𝑙 and 𝐸𝑃𝑚 found in 𝐸𝑅𝑀𝑒, is given in (6.5).
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Figure 6.4: Determining the effective positions in an ERM given the allowable
network data delivery delay and road parameters of the urban city.

𝑊 = 𝑊𝑔 +𝑊𝑎 (6.5)

where 𝑊𝑔 is the average time required for a vehicle to deliver its stored data

before becoming invalid to an RSU at an effective position while traversing

road distance 𝑑 on 𝑔 grids along the path. 𝑊𝑎 is the average additional stop

time the vehicle encounters during its trip, e.g., passing an intersection or

encountering accidents. For simplicity, we assume that 𝑊𝑎 is constant. (6.5)

can be re-written to the expression given in (6.6) to determine how much time

a vehicle takes to traverse grids 𝑔 along a given path found in 𝐸𝑅𝑀𝑒.

𝑊𝑔 = 𝑊 −𝑊𝑎 (6.6)
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We adopt the delay analysis in [98,131], and apply it to the 2D scenario in

Fig. 6.4 to determine how far an effective position should be situated from an

initial EP, 𝐸𝑃𝑙. The following are assumed to determine the effective positions

where RSUs can be allocated.

1. When outside of an RSU transmission range, intelligent connected vehi-

cles can still sense environment data. These collected vehicular data can

only be shared and forwarded to an RSU found at an effective position

in the path ahead (V2I operations only). V2V communications are not

considered here to model the worst case scenario, i.e., a vehicle must

bring its information directly to the RSU.

2. The transmission ranges of a deployed RSU at an effective position and

a vehicle are 𝑅𝑟 and 𝑅𝑣, respectively.

Upon leaving an RSU at 𝐸𝑃𝑙, the average time for the red vehicle as de-

picted in Fig. 4 to deliver its newly collected data to a nearby effective position

found in another grid, while still being valid, is (6.7), given that the conditional

probability of 𝑠 (the location of the vehicle with information) in [0, 𝑑] is 𝑓(𝑠).

𝑊𝑔 =

∫︁ 𝑑

0

𝑊𝑇𝑔𝑓(𝑠)𝑑𝑠 (6.7)

Given the assumptions above, the time needed for the red vehicle (source

vehicle) in Fig. 6.4 to deliver its valid data along a road of length 𝑑, 𝑊𝑇𝑔, is

given by (6.8).

𝑊𝑇𝑔 = 𝑝𝑇 (6.8)

𝑝 = 1− (1− 𝑒−𝜆𝑅𝑣)𝜅
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𝑇 =
𝑑− 𝑠−𝑅𝑟 +𝑅𝑣 − 𝐸𝑥

𝑣

where

𝜅 =
2(𝑑− 𝑠−𝑅𝑟 +𝑅𝑣)

E[𝑑𝑉 ]

𝐸𝑥 =
E[𝑑𝑉 ]

[︀
1− (𝜅+ 1)(1− 𝑒−𝜆𝑅𝑣)𝜅 + 𝜅(1− 𝑒−𝜆𝑅𝑣)𝜅+1

]︀
2[1− (1− 𝑒−𝜆𝑅𝑣)𝜅]𝑒−𝜆𝑅𝑣

𝑝 is the probability that the RSU at 𝐸𝑃𝑚 is beyond the range of the source

vehicle with transmission range 𝑅𝑣. 𝑇 is the delivery delay from position 𝑠 to

𝑑−𝑅𝑟, i.e., out of RSU’s communication range at 𝐸𝑃𝑚.

𝜆 is the departing rate of vehicles from an effective position that can over-

take the source vehicle and can become a forwarding node. 𝑣 is the space mean

speed of the road segment 𝑑. E[𝑑𝑉 ] is the average distance of vehicles found

between the two effective positions, 𝑑 is the maximum separation between two

effective positions and is not necessarily the shortest distance but the distance

defined by the road topology. 𝑠 is the location (distance traveled from 𝐸𝑃𝑙) of

a source vehicle having new environment data to be shared.

The worst-case scenario happens when a vehicle has real-time environment

data and has no immediate RSU to offload its contents. This scenario also

occurs when it has no leading vehicle(s) within its transmission range, 𝑅𝑣, to

which it can forward its information. As such, the worst case scenario happens

where 𝑠 = 𝑅𝑟 +𝑅𝑣, 𝜆 = 0, and E[𝑑𝑉 ] = 𝑑− 𝑠−𝑅𝑟.

Given the values of 𝑊 and 𝑊𝑎, the maximum allowable separation, 𝑑,

between two effective positions is given in (6.9). Note here that the conditional

probability of 𝑠 in [0, 𝑑] follows a uniform distribution.

𝑑 = 2𝑊𝑔𝑣 +𝑅𝑟 (6.9)
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6.2.3 EISHA-RSU Algorithm

The EISHA-RSU scheme allocates RSUs to effective positions found in each

ERM by satisfying the maximization problem in (6.4). Its detailed operation

is illustrated in the pseudo-code in Algorithm 6.

ERMs can be categorized into two configurations, namely: (1) single-grid

and (2) multiple-grid. We discuss for each configuration how the EPs are

identified.

Single-Grid ERMs

For single-grid ERMs, an example is shown in Fig. 6.5, where its static en-

vironment data, 𝛾𝑔𝑝,𝑞 , is represented by the blue shade. The grid is further

sub-divided into 𝑘 = 1, 2, . . . , 𝐾 sub-grids to introduce additional dynamic

data, 𝛿𝑔𝑝,𝑞 =
𝐾∑︁
𝑘=1

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞 , where 𝜇𝑘 ∈ {0, 1} and is used to reduce the com-

putation cost for dynamic data. A sub-grid 𝑘 contributes dynamic data when

𝜇𝑘 = 1, else zero.

(6.4a) reduces to an optimization problem requiring only one RSU to be

deployed, since this is the least deployable number of RSUs. The effective

position where the RSU is located is at the point where maximum static and

dynamic data are shared, as defined in (6.10). We set 𝛽 = 1.

𝐼𝑆ℎ𝑎 =

∫︁ 𝑥1+Δ𝑥+𝑅𝑟

𝑥1

∫︁ 𝑦1+Δ𝑦+𝑅𝑟

𝑦1

𝛾𝑔𝑝,𝑞(𝑥, 𝑦)𝑑𝑥𝑑𝑦

+
𝐾∑︁
𝑘=1

∫︁ Δ𝑥2,𝑘

Δ𝑥1,𝑘

∫︁ Δ𝑦2,𝑘

Δ𝑦1,𝑘

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞(𝑥, 𝑦)𝑑𝑥𝑑𝑦

(6.10)

The center of an RSU with transmission range 𝑅𝑟 is moved from the corner

point 𝑥1, 𝑦1 by Δ𝑥,Δ𝑦 until maximum static data are covered. By doing this,

the maximum static data are shared when Δ𝑥 = 𝑥2−𝑥1

2
and Δ𝑦 = 𝑦2−𝑦1

2
, i.e.,
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Pseudo-codes 6 EISHA-RSU Algorithm
INPUT:
𝐸𝑅𝑀 ’s – Formed ERMs with its priority
Ω𝑅 – maximum number of RSU’s to be deployed
𝑊𝑔 – Waiting time for data to be considered valid
𝑅𝑟 and 𝑅𝑣 – transmission ranges of RSU’s and vehicles, respectively
𝐾 – number of sub-grids

OUTPUT: 𝐸𝑃𝐿𝑖𝑠𝑡, List containing EPs of each ERM.

1: Determine ERM ascending priority list, 𝐸𝑅𝑀𝐿𝑖𝑠𝑡;
2: Divide each grid of 𝐸𝑅𝑀𝑒 into 𝐾 sub-grids.
3: Ω𝑅𝐸𝑃

= ceil(Ω𝑅/𝐸𝑅𝑀𝐿𝑖𝑠𝑡); ◁ # of EPs for high-priority ERMs
4: 𝐸𝑃𝐿𝑖𝑠𝑡 = ∅.
5: Ω𝑅𝑐𝑡𝑟 = Ω𝑅;
6: for 𝑒 = 1 : max(𝐸𝑅𝑀𝐿𝑖𝑠𝑡) do
7: if 𝐸𝑅𝑀𝑒 is single-grid ERM then
8: if Ω𝑅𝑐𝑡𝑟 > 0 then
9: 𝐸𝑃𝑡𝑒𝑚𝑝 = [𝑥*, 𝑦*];

10: 𝐸𝑃𝐿𝑖𝑠𝑡 = 𝐸𝑃𝐿𝑖𝑠𝑡 ∪ 𝐸𝑃𝑡𝑒𝑚𝑝;
11: Ω𝑅𝑐𝑡𝑟 = Ω𝑅𝑐𝑡𝑟 − 1;
12: end if
13: else
14: Determine how many Ω𝑅𝐸𝑃

for 𝐸𝑅𝑀𝑒.
15: if Ω𝑅𝐸𝑃

> 0 then
16: M = Convolve 𝐸𝑅𝑀𝑒 with 1√𝐾×

√
𝐾

17: MList = nchoosek(M,Ω𝑅𝐸𝑃
);

18: 𝑐𝑡𝑟 = 1;
19: while size(𝐸𝑃𝐿𝑖𝑠𝑡) ̸= Ω𝑅𝐸𝑃

do
20: Compute distances in MList(𝑐𝑡𝑟).
21: 𝐸𝑃𝑡𝑒𝑚𝑝 = center locations of MList(𝑐𝑡𝑟).
22: if (6.9) is satisfied then
23: 𝐸𝑃𝐿𝑖𝑠𝑡 = 𝐸𝑃𝐿𝑖𝑠𝑡 ∪ 𝐸𝑃𝑡𝑒𝑚𝑝;
24: end if
25: 𝑐𝑡𝑟 = 𝑐𝑡𝑟 + 1;
26: end while
27: end if
28: Ω𝑅𝑐𝑡𝑟 = Ω𝑅𝑐𝑡𝑟 − Ω𝑅𝐸𝑃

;
29: end if
30: end for
31: Output 𝐸𝑃𝐿𝑖𝑠𝑡.
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the center of the grid. Thus, the location of the effective position EP to cover

static data in a single grid is:

𝑥𝛾 = 𝑥1 +Δ𝑥 and 𝑦𝛾 = 𝑦1 +Δ𝑦 (6.11)

Likewise, for covering all 𝐾 sub-grids of an ERM containing dynamic data,

the location is at:

𝑥𝛿 =
𝐾∑︁
𝑘=1

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞(𝑥, 𝑦)
𝐾∑︁
𝑘=1

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞(𝑥, 𝑦)

𝜀𝑘 (6.12)

𝑦𝛿 =
𝐾∑︁
𝑘=1

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞(𝑥, 𝑦)
𝐾∑︁
𝑘=1

𝜇𝑘𝛿𝑘,𝑔𝑝,𝑞(𝑥, 𝑦)

𝜁𝑘 (6.13)

𝜀𝑘 and 𝜁𝑘 are the centroid coordinates of sub-grid 𝑘 with available dynamic

data, where 𝜀𝑘 =
Δ𝑥2,𝑘−Δ𝑥1,𝑘

2
and 𝜁𝑘 =

Δ𝑦2,𝑘−Δ𝑦1,𝑘
2

.

𝑥1 ≤ 𝑥𝛾, 𝑥𝛿 ≤ 𝑥2 and 𝑦1 ≤ 𝑦𝛾, 𝑦𝛿 ≤ 𝑦2. Given these two possible EP

locations, the maximum static and dynamic information shared is achieved

when the RSU is situated at an EP having coordinates in (6.14), i.e., at the

center of the single-grid ERM.

𝑥* = 𝑥𝛾 and 𝑦* = 𝑦𝛾 (6.14)

under the constraint that 𝑥2 − 𝑥1 = 𝑦2 − 𝑦1 ≤
√
2𝑅𝑟.

Multiple-Grid ERMs

There are two cases for multiple-grid ERMs, 1) the number of map grids is

equal to Ω𝑅, and 2) the number of map grids is greater than Ω𝑅. For case 1),
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Figure 6.5: Determining the effective position in a single-grid ERM, given the
grid’s static and dynamic data.

locating EPs follows the single-grid ERM deployment, where each map grid of

the ERM has an effective position at the center. However, if the number of

grids is higher than the desired number of deployable RSUs, then the EPs are

heuristically searched.

Given Ω𝑅 RSUs to be deployed in an urban setup, EISHA-RSU allocates

an RSU to all ERMs by following a round-robin procedure. If Ω𝑅 is higher

than the lowest priority ERM, then all ERMs are guaranteed to have at least

one effective position where an RSU can be deployed. Another round robin

deployment ensues and ends until the target number Ω𝑅 has been reached.

After calculating the number of RSUs needed to be deployed in each ERM,

Ω𝑅𝐸𝑃
, then EISHA-RSU follows a greedy heuristic method for finding these
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Ω𝑅𝐸𝑃
EPs. When Ω𝑅 is not exactly divisible by the number of ERMs, higher

priority ERMs will have Ω𝑅𝐸𝑃
EPs, while lower priority ERMs will have

(Ω𝑅𝐸𝑃
− 1) EPs. A map grid is further divided into 𝐾 sub-grids to accommo-

date the presence of dynamic data, if any. 𝐾 = 9 sub-grids is considered for

the results in this paper. The ERM is then convolved with a 1√
𝐾×

√
𝐾 filter

to determine how much information can be shared when one vehicle travels

from one sub-grid to another in the ERM. With respect to Algorithm 2, the

convolution results are stored in M. From MList, EISHA-RSU selects the first

Ω𝑅𝐸𝑃
locations with maximum shared information. Their distances should be

equal to (6.9) to avoid overlapping between RSU coverage and prevent invalid

data delivery. If their separations do not satisfy (6.9), then the next maximum

information location combination is considered until the optimization problem

in (6.4a) is satisfied. The discussion of this is seen in lines 13–25 of Algorithm

6.

Figure 6.6: Spatiotemporal stable ERMs with 𝑁 = 20 sampled at 𝑇𝑆 = 10
min for (a) Beijing, (b) Jakarta, and (c) Singapore. Dark color ERMs have
lower priorities over lighter ERMs.

6.3 Simulation Results and Discussion

In this section, we present extensive simulation results employing empirical

mobility traces and city locations to evaluate the performance of the proposed

EISHA-RSU allocation scheme.

117



6.3. SIMULATION RESULTS AND DISCUSSION

6.3.1 Simulation Setup

We utilize three public transport mobility trace datasets, namely, (1) Beijing

(BJS) [112], (2) Singapore (SIN) [117], and (3) Jakarta (JKT) [117]. The

statistics of these three mobility traces, as well as the simulation parameters,

are summarized in Table 6.1.

Table 6.1: Empirical Mobility Traces Attributes and Simulation Parameters

Urban City Parameter BJS JKT SIN

Total Area (in ≈ km2) 51 51 51

Grid Area (in ≈ m2) 125,000 125,000 125,000

Total number of vehicles 24,845 28,000 16,174

𝑅𝑣 = 𝑅𝑟 (in m) 250 250 250

𝜏𝑐 (#of vehicles) 248 280 161

Sampling Time 𝑇𝑆 (in min) 10 10 10

𝜌0 0.25 0.25 0.25

𝑊 𝑔 (in min) 2.8070 2.8070 2.8070

𝑣 (in m/s) 5.5556 5.5556 5.5556

By implementing Algorithm 6 in the three empirical mobility traces, the

ERMs formed per city is shown in Fig. 6.6. By appropriately selecting the

values of 𝜏𝑐 and 𝜌0, there are approximately 50 spatiotemporal ERMs found in

each urban map, both having single- and multiple-grid ERMs. If these values

(𝜏𝑐 and 𝜌0) are too small, more single-grid ERMs are present. Increasing these

values will form larger ERMs allowing less distinctions in the given urban map.

The generation of the static environment data (in MB) for each 𝑔𝑝,𝑞 is

governed by:

𝛾𝑔𝑝,𝑞 = 5000
(︀
sin(150𝑦 + 15) cos(150𝑥+ 20) + 1

)︀
(6.15)

where 𝑥 and 𝑦 are the corresponding longitude and latitude coordinates of each

𝑔𝑝,𝑞, respectively. On the other hand, we generate dynamic data by further
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subdividing a map grid into nine smaller grids. We then perform uniform

selection across all sub-grids to randomly select locations where ‘accidents’

happen, since we do not have enough accident data of BJS, JKT, or SIN.

Thus, the generation of additional dynamic environment data is governed by:

𝛿𝑔𝑝,𝑞 = 𝜉𝛾𝑔𝑝,𝑞 (6.16)

To represent the dynamic environment data available in each 𝑔𝑝,𝑞, we let 𝜉 =

0.01, thus, the importance factor 1 ≤ 𝛽 ≤ 100.

6.3.2 Stationarity of ERMs

Figure 6.7: Determining stationarity of ERMs by varying the sampling time
where each 𝑔𝑝,𝑞,𝑆𝑇𝑆 is determined. 𝑇𝑆𝑟𝑒𝑓

= 60 min is the reference to test
stationarity.

Determining the appropriate sampling time in establishing the ERMs is the

first step. Faster sampling time yields a higher number of mobility traces and

can depict the movement within the area under study, at the expense of high
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computational cost. On the other hand, slower sampling time reduces the

mobility traces under study and may reduce vehicular network information

necessary to provide valid results. To measure ERM stationarity, the root-

mean-squared-error (RMSE) (6.17) of a formed ERM at sampling time 𝑇𝑆 is

compared to the ERM formed at a reference sampling time, 𝑇𝑆𝑟𝑒𝑓
= 60 min.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎸⎸⎷
𝑁∑︁
𝑝=1

𝑁∑︁
𝑞=1

[︀
𝐸𝑅𝑀𝑝,𝑞(𝑇𝑆𝑟𝑒𝑓

)− 𝐸𝑅𝑀𝑝,𝑞(𝑇𝑆)
]︀2

𝑁2
(6.17)

Fig. 6.7 illustrates the effect of varying the sampling time from 2 to 30

min. Notice that as we decrease the value of the sampling time, there is an

approximate flat response. If the ERMs are dynamic, the RMSE value should

approach 400 (i.e., 𝑁 ×𝑁 , 𝑁 = 20), signifying that the vehicular trajectories

change hastily. However, from Fig. 6.7, the average RMSE value is only six.

The small average RMSE value implies that formed ERMs with sampling times

𝑇𝑆 = 5, 10, 15, 20, and 30 min have minimal differences with 𝑇𝑆𝑟𝑒𝑓
= 60 min

and can be regarded as stationary. With this finding, we can use any of these

sampling times, and still be able to form approximately the same ERMs. We

note that 𝑇𝑆 = 5, 10, 15, 20, and 30 min are practical sampling times to sense

the environment data.

Figure 6.8: The amount of information shared in (a) Beijing, (b) Jakarta,
and (c) Singapore by utilizing UnifDep, CityWide, MaxInfo, and EISHA-RSU
deployment schemes.
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6.3.3 Deployment Performance Evaluation

We compare the performance of the EISHA-RSU allocation scheme with the

following benchmarks, as described below.

1. Uniform Deployment (UnifDep) [123]: The allocation of Ω𝑅 effective po-

sitions follows the uniform distribution, where each of the 𝑁 × 𝑁 map

grids has an equal probability of being selected. For this deployment

strategy, simulations are run for 1000 times to capture uniformity.

2. Citywide Deployment (CityWide) [132]: The chosen Ω𝑅 effective positions

ensure maximum urban area coverage. The urban area is divided by Ω𝑅,

and the effective positions are placed in linearly-spaced locations.

3. Maximum Information Deployment (MaxInfo) [133]: Effective positions

are placed at Ω𝑅 map grids where there is maximum information.

The amount of information shared by the four allocation schemes is illus-

trated in Fig. 6.8. This covers information within the RSU coverage area and

those carried by vehicles beyond the RSU transmission range but within the

allowable distance dictated by (6.9). For all deployment schemes, it is notice-

able that as more effective positions are selected, more information is gathered

and exchanged in the vehicular network. EISHA-RSU also performs the best

by correctly placing effective positions in the urban area, therefore, enhancing

the amount of information shared.

One may argue that the MaxInfo strategy should collect the most data, as

its name implies. However, we note that once we placed the RSUs at loca-

tions where there is maximum information shared, we observed that the RSUs’

transmission ranges are overlapping or at least adjacent to one another, thus,

there is redundancy in shared information among RSUs in MaxInfo. This type

of deployment allows EPs to be very close to each other, e.g., several meters,
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leading to the reduced coverage area and vehicular connectivity. Therefore,

there will be less or no information-carrying vehicles found within a distance

≤ 𝑑 that will arrive at an EP to deliver additional contents. On the other

hand, the other three allocation schemes, especially EISHA-RSU, are able to

accurately discriminate grid locations as possible effective positions to sense

more environment data.

For all allocation methods, there is an assumption that RSUs are not con-

nected. However, if all RSUs have a wireless or wired connection, then, EISHA-

RSU will still be the scheme with the highest amount of shared information

in the network. This is attributed to fact that the RSU allocation done by

EISHA-RSU is well-positioned in the urban area to collect more base informa-

tion, when compared to the other three benchmarks.

In addition, the fairness of the network’s starvation is measured. To mea-

sure how fairly the installed RSUs collect information over the urban map, we

relate the proportional fairness [135] to the average throughput, 𝑆𝑖, for each

RSU assuming equal data upload and download rate. According to [135], pro-

portional fairness happens when the deployed RSUs receive an equal amount

of environment information. We then calculate the Jain’s Network Starvation

Fairness Index (6.18) to evaluate the performance of the deployment scheme as

the number of deployed RSUs increases [136]. Ω𝑅 is equal to the total number

of deployed RSUs.

𝐽(𝑆𝑖) =

(︂ Ω𝑅∑︁
𝑖=1

𝑆𝑖

)︂2

Ω𝑅

Ω𝑅∑︁
𝑖=1

𝑆2
𝑖

(6.18)

A higher value of the Jain’s starvation fairness index implies that there

is almost an equal average amount of information collected by the RSUs al-

122



CHAPTER 6. ENHANCED INFORMATION SHARING VIA ROADSIDE
UNIT ALLOCATION SCHEME

Figure 6.9: The Jain’s network starvation fairness index indicates how much
equal the average throughput there is per deployed RSU by each deployment
scheme for (a) Beijing, (b) Jakarta, and (c) Singapore.

located on EPs across the urban map under study. Interpreting this index

reveals that EISHA-RSU fairly allocates effective positions to allow RSUs to

capture approximately equal amount of environment information, as shown in

Fig. 6.9. As the number of deployed RSUs (> 40 deployed RSUs) increases,

it is noticeable that the other three deployment schemes have a fast rate of

decreasing Jain’s starvation fairness index when compared to EISHA-RSU. This

decline in index value highlights that there is a huge discrepancy in the col-

lected data among deployed RSUs. Though EISHA-RSU also experiences the

index decline, the deployment method still achieves a higher value compared

to the three, signifying a more balanced data collection.

We compare the performance of the deployment schemes according to its

Effectiveness [137]. Let 𝐼(𝐷𝑖) and 𝐶(𝐷𝑖) denote the amount of information

shared and coverage area of a deployment scheme 𝑖 for a given number of

deployed RSUs, respectively. The effectiveness of a deployment scheme 𝑖 is

defined by 𝐸(𝐷𝑖) =
[︀
𝐼(𝐷𝑖), 𝐶(𝐷𝑖)

]︀
. If 𝐸(𝐷1) ≻ 𝐸(𝐷2), then we say that any

of these three conditions is true: 1)
[︀
𝐼(𝐷1) > 𝐼(𝐷2) and 𝐶(𝐷1) > 𝐶(𝐷2)

]︀
, 2)[︀

𝐼(𝐷1) > 𝐼(𝐷2) and 𝐶(𝐷1) = 𝐶(𝐷2)
]︀
, or 3)

[︀
𝐼(𝐷1) = 𝐼(𝐷2) and 𝐶(𝐷1) >

𝐶(𝐷2)
]︀
.

Fig. 6.10 shows the Effectiveness plot against the amount of information

shared and coverage area of all the deployment strategies for a given RSU de-
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ployment density. From Fig. 6.10, MaxInfo is the least effective in terms of the

amount of information shared and coverage area. Given any RSU deployment

density, i.e., 20, 40, or 60 deployed RSUs, it is evident that EISHA-RSU is the

most effective since it captures the most amount of information with the widest

coverage urban area. Hence, 𝐼(EISHA-RSU)> 𝐼(UnifDep) and 𝐶(EISHA-RSU)>

𝐶(UnifDep), 𝐼(EISHA-RSU)> 𝐼(CityWide) and 𝐶(EISHA-RSU)> 𝐶(CityWide),

and 𝐼(EISHA-RSU)> 𝐼(MaxInfo) and 𝐶(EISHA-RSU)> 𝐶(MaxInfo). This re-

sult implies that EISHA-RSU properly allocates RSUs in effective positions that

will both capture directly-sensed (either by RSU or vehicle) and single-hop en-

vironment data. In some cases, a lower deployment density while employing

EISHA-RSU has more shared information than other deployment schemes at a

higher deployment density, e.g., RSU20 vs RSU40 in the Jakarta and Singapore

datasets.

However, the CityWide and UnifDep allocation methods provide contrasting

results between each other. As noticed, CityWide offers higher amount of in-

formation shared but at a less coverage area than UnifDep. Though, it can be

said that these small changes may denote that these two allocation techniques

are interchangeable.

Figure 6.10: Performance comparison of each deployment scheme on the cities
of (a) Beijing, (b) Jakarta, and (3) Singapore based on Effectiveness.

Assume that we want to have a coverage area of 2500 sub-grids for BJS

(≈ 35km2), 2000 sub-grids for JKT (≈ 28km2), and 800 sub-grids for SIN
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(≈ 12km2), then the number of RSUs needed to be allocated in each urban

map is listed in Table 6.2. For each urban map, EISHA-RSU, on the average,

saves up to 16%, 21%, and 113% of RSUs when compared to UnifDep, CityWide,

and MaxInfo, respectively.

Table 6.2: Required number of RSUs to be installed by each Allocation Scheme
given a desired coverage area and amount of shared information.

RSU Allocation

Scheme
BJS % Diff JKT % Diff SIN % Diff

UnifDep 50 24.72 60 8.70 59 14.55

CityWide 50 24.72 70 24.00 58 12.84

MaxInfo 222 140.23 202 114.40 125 84.09

EISHA-RSU 39 55 51

To evaluate network connectivity, we only consider how many vehicles are

within the single-hop transmission range of its nearest EP, without the con-

sideration of V2V communication. Fig. 6.11 displays the number of one-hop

vehicles for each Ω𝑅 deployment constraint. Because EISHA-RSU considers

the appropriate spacing between EPs, the results show that EISHA-RSU cap-

tures more single-hop vehicles in the network, when compared to the other

deployment schemes for all cities. We emphasize that this spacing between

EPs covers the worst-case scenario when there are no leading vehicles. Hence,

if V2V is allowed in areas without RSU coverage, data delivery time will be

further reduced and would provide fresher and more up-to-date environment

data.

In summary and supported by Figs. 6.8–6.11, our extensive simulation in-

volving three empirical mobility traces have demonstrated that the proposed

EISHA-RSU has enhanced information sharing by accurately selecting effective

positions that can provide broader and fairer coverage, stable network connec-

tivity, and maximum shared information. It is also evident that EISHA-RSU
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Figure 6.11: The amount of vehicles within single hop from an effective position
in (a) Beijing, (b) Jakarta, and (c) Singapore that are still capable of delivering
valid and up-to-date environment information.

has outperformed the three presented benchmarks.
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6.4 Summary

In this work, we have presented an Enhanced Information SHAring RSU

(EISHA-RSU) allocation scheme that targets maximal area coverage and ve-

hicular connectivity, resulting to an enhanced amount of information shared

between RSUs and vehicles in a vehicular network. To achieve these objectives,

an urban map is partitioned according to its Effective Regions of Movement

(ERMs) based on its vehicular capacity. EISHA-RSU then locates the effective

positions (EPs) that are separated by an optimal distance where RSUs should

be deployed to allow maximum information sharing and delivery of vehicu-

lar data. The performance of the proposed RSU allocation scheme has been

validated by employing three urban empirical mobility traces. Simulation re-

sults have verified the fairness, effectiveness, and efficiency of EISHA-RSU when

compared to three other benchmarks. In summary, EISHA-RSU allocates fewer

RSUs to maximize information sharing, provides wider coverage, and improves

connectivity in urban vehicular networks.
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Chapter 7

Conclusion and Future Work

This chapter concludes the work done in this thesis. The main contributions

are summarized and then tackles future directions of the work done.

7.1 Conclusion

This thesis investigated the issues and problems to achieve efficient data dis-

semination for intelligent connected vehicles. Real-time, efficient, and optimal

methods for acquiring/broadcasting control and environment data have been

proposed to achieve travel convenience and comfort, such as the reduced wait-

ing time when exiting highway tollgates, up-to-date 3D road map data down-

load, and maximized information exchange in vehicular networks. Extensive

simulation employing both synthetic and empirical mobility traces suggested

the efficiency of our proposed schemes.

The thesis’s main contributions are enumerated as follows:

1. In Chapter 3, the practical problem of exiting highway tollgates and the

amount of server utilization were tackled. The proposed solution pre-

sented a centralized control data dissemination implemented by fuzzy

logic. The fuzzy logic controller coordinated movements of the intelli-
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gent connected vehicles when selecting their exit tollgates to reduce the

total average vehicle waiting time and average tollgate server utilization.

These benefits have been achieved while maintaining the highway toll-

gate infrastructure constant and considering the ever-growing number

of vehicles plying the highway. Extensive simulation has verified a 50%

improvement in terms of waiting time and a 20% decrease in server uti-

lization while considering both the homogeneous and non-homogeneous

vehicular arrival. When the current traffic density exceeds a certain

threshold, the centralized controller sent an early warning signal to all

tollgate servers to ensure that their current service time is hastened to

reduce build-up.

2. In Chapter 4, an optimal index coding transmission scheme was pre-

sented to disseminate environment data to numerous vehicles in a sin-

gle and multi-junction setup by relying heavily on roadside infrastruc-

ture instead of unicast cellular communication. Based on data demand

and availability, the bandwidth was conserved as more environment data

(both static and dynamic) were transmitted with a fewer number of

short-range broadcast transmissions due to hashing, octree compression,

and index coding. While conserving the bandwidth, the proposed data

dissemination scheme has been able to satisfy 100% and 80% of all ve-

hicular static and dynamic data requests, respectively. By proving that

most of the vehicles would meet only once in their trips, the proposed

opportunistic download scheduling for multi-junction was also proven to

be optimal. The processing overhead of the proposed index coding trans-

mission scheme was also found to be on the average 34% below that of

the traditional broadcasting technique. Robotic experiments and exten-

sive simulation employing empirical taxi mobility traces have supported
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the feasibility of the proposed data dissemination schemes.

3. In Chapter 5, maximum information sharing between intelligent con-

nected vehicles and roadside fog-based infrastructures in a vehicular net-

work was achieved by optimally deploying RSU fog nodes on information-

rich and energy-efficient intersections. The proposed ISRA deployment

scheme maximized the amount of V2I and I2V information exchanges

while considering the infrastructure deployment capacity, the region’s

space mean speed, and transmission and traffic densities. The transmis-

sion density was calculated by employing the index-coding transmission

scheme proposed in Chapter 4. Extensive simulations using empirical

mobility traces were run to verify ISRA’s performance. ISRA achieved

an 83% energy efficiency while sharing on the average 20% more infor-

mation when compared to three other deployment methods. Unique to

ISRA was its ability to manage the computational load (processing and

transmission) of the chosen optimal locations by considering the region’s

space mean speed.

The optimal placement results of RSUs, as computed by ISRA has also

been applied to the problem presented in Chapter 3. The deployment of

RSUs on some highway sections before approaching the tollgate allows

vehicles to run at uniform speed while also maintaining a uniform vehic-

ular density. Without this early warning signal from the tollgate RSU,

vehicles in each section run at different speeds, while the majority of the

vehicles are jampacked at the tollgate section.

4. In Chapter 6, the RSU deployment problem was approached differently

since the urban setup considered a broader set of locations. The EISHA-

RSU allocation scheme exploited the concepts of effective regions of

movement and effective positions to determine priority and positions

131



7.2. FUTURE WORK

where RSUs can be allocated, respectively. Simulation results from em-

ploying three empirical mobility traces indicated that he proposed de-

ployment strategy provided a fairer and effective means of achieving max-

imum information sharing between vehicles and infrastructure. EISHA-

RSU also permitted nearby vehicles to act as sensing nodes to capture

their surroundings and still be able to offload its environment data to

the nearest RSU.

7.2 Future work

The thesis’s results have presented efficient control and environment data dis-

semination schemes for intelligent connected vehicles. This study can be used

as a groundwork for future research ideas, as stated below.

1. The concept of developing intelligent highway tollgates in Chapter 3 can

be further extended by including (1) practical modeling of the manual

service time and its operation, (2) economic analysis on the installation

of manual and electronic tollgate collection booths, and (3) driver ma-

neuver attitude. The modeling of manual service time should provide a

range of tollgate service operations, particularly during peak time, while

the economic analysis will push vehicles to incorporate electronic readers

for toll fee collection and reloading. Also, the economic analysis will dic-

tate how many electronic readers and manual collection toll booths must

be installed. The driver maneuver attitude encompasses swerving and

acceleration/deceleration behaviors. When considered in the simulation,

vehicles found on the right/left/center side of the highway should be

given topmost queuing priority in the right/left/center tollgates, respec-

tively. The stopping of vehicles entering manual tollgates surely adds to

the delay and effectively reduces the server utilization because of wasted
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time. Lastly, the results of this thesis can be used and extended for em-

pirical tollgate analysis, e.g., Philippine expressways. Finally, machine

and deep learning can be employed to derive the accurate model of these

transportation systems. In particular, the control of highway sections can

be done by incorporating reinforcement learning in the feedback loop.

2. The simulation work done in Chapter 4 employs 3D LIDAR data for

representing both static and dynamic environments. However, there is

less work done in the evaluation of dynamic data, particularly with the

presence of pedestrians and other vehicles, and in understanding the

dynamic data parameters such as delivery delay, dynamic content anno-

tations, etc. Other data types can also be explored for various use-case

scenarios, such as 2D representations for capturing pedestrians crossing

the intersection or quick road environment modeling, and sensor mea-

surement for obstacle avoidance or identification. Also, schedule-based

or more sophisticated uploading schemes can be utilized to reduce in-

formation flooding in the roadside infrastructure during the transfer of

vehicular information. An example of such schedule-based data upload-

ing is cluster formation and leader selection. Finally, there is a need to

investigate how Bloom filters and other data structures can effectively

lower the amount of repeated and redundant uploads and lessen false

upload positives.

3. The works in Chapters 5 and 6 can be extended by studying pre-defined

public spaces such as bus stops, taxi stands, and old phone booth sites

as possible RSU deployment locations. Economically, bus stops, taxi

stands, and phone booth sites will already identify which locations have

more vehicles and people traffic. This characteristic can then be exploited

since people, aside from vehicles, can also have surrounding information
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because of their mobile phones. Deployed RSUs are now operating both

for people and vehicle convenience. However, security and privacy issues

must be thoroughly addressed not to compromise the users. At the same

time, schemes that give incentives to vehicles and people for offloading

appropriate and up-to-date environment data must also be created to

have a comprehensive set of data sources.
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Appendix A

Extracting Mobility Traces

The taxi mobility trace datasets contain GPS locations of taxis plying an urban

city. Each GPS location is sampled every 𝑇𝑆 sec from 00:00 to 24:00 daily. The

mobility traces dataset follows the format given in Table A.

Table A.1: Data format of the taxi mobility trace datasets

Longitude Latitude Time stamp Taxi ID

Shown in Code Listing A.1 is the Matlab source code to extract information

from a Taxi Mobility Traces dataset on a given day Day. It extracts taxi GPS

traces given the coordinates of the region’s bounding box under study. The

description of each code part is discussed below.

1. Part 1 loads the two-part daily dataset of the mobility traces and stores

it in a single variable DayData. (Note: Except for the Beijing mobility

traces dataset, the other datasets have only one file to be loaded.)

2. Part 2 ensures that all mobility traces are sampled starting at 00:00 and

terminating at 24:00.

3. Part 3 pre-processes the raw data by converting it to its natural form,

e.g., longitude and latitude are given in integer format.
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4. Part 4 locates the GPS traces, time stamp, and Taxi ID inside the region’s

bounding box.
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Listing A.1: Source code for extracting mobility traces information from the

Beijing dataset.

function ExtractedDay = ExtractTaxiTraces ( Lat1 ,

Lat2 , Long1 , Long2 ,Day)

% −−−−−−−−− Part 1 −−−−−−−−− %

load ( [ ’ TaxiDay0 ’ num2str(Day) ’ Part01 .mat ’ ] ) ;

load ( [ ’ TaxiDay0 ’ num2str(Day) ’ Part02 .mat ’ ] ) ;

DayData = ve r t ca t (TaxiDayData1 , TaxiDayData2 ) ;

clear TaxiDayData1

clear TaxiDayData2

% −−−−−−−−− Part 2 −−−−−−−−− %

day = Day ;

i f day > 2

f a c t o r = (day−1)*86400;

else

f a c t o r = 0 ;

end

Time = DayData ( : ,3)− f a c t o r * ones ( length (DayData ( : , 3 ) ) , 1 ) ;

% −−−−−−−−− Part 3 −−−−−−−−− %

Long = DayData ( : , 1 ) / 10 e4 ;

Lat = DayData ( : , 2 ) / 10 e4 ;

TaxiID = DayData ( : , 4 ) ;

% −−−−−−−−− Part 4 −−−−−−−−− %

boundary = [ Long1 Long1 Long2 Long2 Long1 ; Lat1 Lat2

Lat2 Lat1 Lat1 ] ;

[ i x ] = find (Long>Long1 & Long<Long2 ) ;

[ i y ] = find ( Lat ( i x )>Lat1 & Lat ( ix )<Lat2 ) ;

xLong1 = Long ( ix ( i y ) ) ;
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yLat1 = Lat ( ix ( i y ) ) ;

Time1 = Time( ix ( iy ) ) ;

TaxiID1 = TaxiID ( ix ( i y ) ) ;

ExtractedDay = [ xLong1 yLat1 Time1 TaxiID1 ] ;

end

140



Bibliography

[1] A. Chesterton, “How many cars are there in the world?” URL

https://www.carsguide.com.au/car-advice/how-many-cars-are-there-in-

the-world-70629, 2018.

[2] A. Eskandarian, Handbook of intelligent vehicles, 2012.

[3] C. Sommer and F. Dressler, “Information dissemination in vehicular net-

works,” Vehicular Communications and Networks, pp. 75–93, 2015.

[4] K. F. Chu, E. R. Magsino, I. W.-H. Ho, and C.-K. Chau, “Index coding of

point cloud-based road map data for autonomous driving,” Proceedings

of the 85th IEEE Vehicular Technology Conference (VTC Spring), pp.

1–7, 2017.

[5] Y. Xie, I. W.-H. Ho, and E. R. Magsino, “The modeling and cross-layer

optimization of 802.11 p vanet unicast,” IEEE access, vol. 6, pp. 171–186,

2017.

[6] A. J. Ghandour, M. Di Felice, H. Artail, and L. Bononi, “Dissemination

of safety messages in ieee 802.11 p/wave vehicular network: Analyti-

cal study and protocol enhancements,” Pervasive and mobile computing,

vol. 11, pp. 3–18, 2014.

[7] C.-F. Chiasserini, R. Gaeta, M. Garetto, M. Gribaudo, and M. Sereno,

“Efficient broadcasting of safety messages in multihop vehicular net-

141



BIBLIOGRAPHY

works,” Proceedings 20th IEEE International Parallel & Distributed Pro-

cessing Symposium, pp. 8–pp, 2006.

[8] H. A. Omar, N. Lu, and W. Zhuang, “Wireless access technologies for

vehicular network safety applications,” IEEE Network, vol. 30, no. 4, pp.

22–26, 2016.

[9] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized discovery of

free parking places,” Proceedings of the 3rd international workshop on

Vehicular ad hoc networks, pp. 30–39, 2006.

[10] E. Kim and G. Medioni, “Urban scene understanding from aerial and

ground lidar data,” Machine Vision and Applications, vol. 22, no. 4, pp.

691–703, 2011.

[11] “Ford Campus Vision and LIDAR Data Set,” URL

http://robots.engin.umich.edu/SoftwareData/Ford, 2016.

[12] A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, “A survey and com-

parative study of qos aware broadcasting techniques in vanet,” Telecom-

munication Systems, vol. 66, no. 2, pp. 253–281, 2017.

[13] I. W.-H. Ho and E. R. Magsino, “Performance evaluation of the 802.11p

vanet protocol based on realistic vehicular traffic flow,” Vehicular Net-

works: Applications, Performance Analysis and Challenges, pp. 1–30,

2019.

[14] O. Chakroun, S. Cherkaoui, and J. Rezgui, “Mudds: Multi-metric uni-

cast data dissemination scheme for 802.11 p vanets,” Proceedings of the

8th International Wireless Communications and Mobile Computing Con-

ference (IWCMC), pp. 1074–1079, 2012.

142



BIBLIOGRAPHY

[15] “Velodyne LIDAR HDL-64E,” URL http://velodynelidar.com/hdl-

64e.html, 2016.

[16] Y. Wang, W. Bin, and Z. Hui, “The national freeway control system-

further development with yy logic theory,” Proceedings of IEEE Interna-

tional Conference on Industrial Technology-ICIT’94, pp. 729–733, 1994.

[17] E. R. Magsino and I. W. Ho, “An intelligent highway tollgate queue

selector for improving server utilization and vehicle waiting time,” Pro-

ceedings of the IEEE Region 10 Symposium (TENSYMP), pp. 271–276,

2016.

[18] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding

problem and its relation to network coding and matroid theory,” IEEE

Transactions on Information Theory, vol. 56, no. 7, pp. 3187–3195, 2010.

[19] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side

information,” IEEE Transactions on Information Theory, vol. 57, no. 3,

pp. 1479–1494, 2011.

[20] A. SINGHVI and K. RUSSELL, “Inside

the Self-Driving Tesla Fatal Accident,” URL

https://www.nytimes.com/interactive/2016/07/01/business/inside-

tesla-accident.html, 2019.

[21] F. E. Sancar, B. Fidan, J. P. Huissoon, and S. L. Waslander, “Mpc based

collaborative adaptive cruise control with rear end collision avoidance,”

Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 516–521,

2014.

[22] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,

survey and future directions,” Internet of everything, pp. 103–130, 2018.

143



BIBLIOGRAPHY

[23] D. C. Klonoff, “Fog computing and edge computing architectures for

processing data from diabetes devices connected to the medical internet

of things,” 2017.

[24] N. Chen, Y. Yang, T. Zhang, M.-T. Zhou, X. Luo, and J. K. Zao, “Fog as

a service technology,” IEEE Communications Magazine, vol. 56, no. 11,

pp. 95–101, 2018.

[25] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:

architecture, key technologies, applications and open issues,” Journal of

network and computer applications, vol. 98, pp. 27–42, 2017.

[26] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-

lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog comput-

ing and related edge computing paradigms: A complete survey,” Journal

of Systems Architecture, vol. 98, pp. 289–330, 2019.

[27] G. A. Association, “The Case for Cellular V2X for

Safety and Cooperative Driving,” URL https://5gaa.org/wp-

content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf, 2020.

[28] K. Liang, L. Zhao, X. Chu, and H.-H. Chen, “An integrated architec-

ture for software defined and virtualized radio access networks with fog

computing,” IEEE Network, vol. 31, no. 1, pp. 80–87, 2017.

[29] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog

orchestration for iot services: issues, challenges and directions,” IEEE

Internet Computing, vol. 21, no. 2, pp. 16–24, 2017.

[30] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic, “Software-

defined fog network architecture for iot,” Wireless Personal Communi-

cations, vol. 92, no. 1, pp. 181–196, 2017.

144



BIBLIOGRAPHY

[31] C. Huang, R. Lu, and K.-K. R. Choo, “Vehicular fog computing: archi-

tecture, use case, and security and forensic challenges,” IEEE Commu-

nications Magazine, vol. 55, no. 11, pp. 105–111, 2017.

[32] C. Lochert, B. Scheuermann, M. Caliskan, and M. Mauve, “The feasibil-

ity of information dissemination in vehicular ad-hoc networks,” Proceed-

ings of the Fourth Annual Conference on Wireless on Demand Network

Systems and Services, pp. 92–99, 2007.

[33] L. He, Q. Gao, S. Li, and Z. Peng, “Optimal allocation of operating toll

booths at highway toll station,” Proceedings of the Sixth International

Conference on Business Intelligence and Financial Engineering, pp. 468–

471, 2013.

[34] K. A. Majid, Z. Yusoff, and A. A. Jemain, “A new mathematical model

for traffic systems: the basic traffic unit,” Creative Practices in Language

Learning and Teaching (CPLT) Special Issue: Generating New Knowl-

edge through Best Practices in Computing and Mathematical Sciences,

vol. 7, no. 1, pp. 34–41, 2019.

[35] I. W.-H. Ho, K. K. Leung, and J. W. Polak, “Stochastic model and con-

nectivity dynamics for vanets in signalized road systems,” IEEE/ACM

Transactions on Networking (TON), vol. 19, no. 1, pp. 195–208, 2011.

[36] “100-km traffic jam reappears on N. China highway,” URL

http://www.china.org.cn/china/2011-07/20/content 23030293.html,

2011.

[37] “’Carmageddon’: 50-lane traffic jam in China causes chaos,”

URL https://www.smh.com.au/world/carmageddon-50lane-traffic-jam-

in-china-causes-chaos-20151009-gk4tq9.html, 2015.

145



BIBLIOGRAPHY

[38] L. C. Edie, “Traffic delays at toll booths,” Journal of the operations

research society of America, vol. 2, no. 2, pp. 107–138, 1954.

[39] D. Gazis and R. Gomory, “Delays at toll booths–why wait in line?”

Transportation Quarterly, vol. 48, no. 2, 1994.

[40] E. Correa, C. Metzner, and N. Niño, “Tollsim: Simulation and eval-

uation of toll stations,” International Transactions in Operational Re-

search, vol. 11, no. 2, pp. 121–138, 2004.

[41] J. Danko and V. Gulewicz, “Operational planning for electronic toll col-

lection: a unique approach to computer modeling/analysis,” Institute of

Electrical and Electronics Engineers (IEEE), Tech. Rep., 1991.

[42] Y. Du, S. Yu, and Y. Ji, “Allocation of pay-on-foot and pay-at-exit toll-

booths based on 3 simulation of queuing at parking exit 4,” Proceedings

of the 95th Annual Meeting of the Transportation Research 32 Board and

publication in the Transportation Research Record, pp. 1–13, 2015.
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