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I 

Abstract 

Over the last decade, the world has witnessed a rapid growth in the capacity of 

distributed energy resources (DERs). The rapid expansion of their scales and their green 

contribution to energy conservation and environment protection have resulted them 

playing increasingly important roles in the electricity market. While those DERs can be 

aggregated to increase their own profits via strategically bidding, an effective approach 

to model their market behaviors shall also be developed to investigate their systemwide 

impacts. 

Wind power producers (WPPs) as aggregated large quantities of distributed wind 

turbines have occupied a dominant position in electricity generation of renewable DERs. 

Meanwhile, rapidly growing number of distributed electric vehicles (EVs) could be 

aggregated as a new demand response (DR) resource for providing energy through a 

coordinator called the EV aggregator, which dispatches the charging of EVs and 

exchanges information between the electricity market and individual EV owners. In 

recent years, there also exists a rapid increase in generating electricity by natural gas, 

which is expected to overtake coal by 2030 due to its lower price, less pollution, and 

higher energy conversion efficiency. The proliferation of natural gas generating units 

(NGGs) and the emerging of power-to-gas conversion (P2G) technology have enabled 

the bidirectional energy flows between the electric power and natural gas systems via 

integrated NGG-P2G facilities. However, DERs such as wind energy and EVs are 

easily influenced by the weather or depend on human behaviors, there are uncertainties 

in their outputs which would further influence their profits. The resulted bidding 

problem would therefore be an optimization problem involving uncertainties, and a 

stochastic optimization method is adopted in this thesis to handle this problem. Also, 

large-scaled DERs could be cooperated with or competed against each other to 
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influence electricity prices according to their own interests, this thesis would conduct 

studies and develop bidding strategies for large-scaled DERs in the electricity market. 

For the bidding strategy of same-commodity cooperative arbitrage, this thesis firstly 

proposes a bi-level stochastic optimization model for an aggregated WPP-EV hybrid 

power plant (HPP) as a price-maker in the day-ahead (DA) market with consideration 

of the uncertainties of the wind power capacity and the electricity price in the real-time 

(RT) market. The profit of HPP is maximized in the upper level using the conditional-

value-at-risk (CVaR) to manage the risk of the expected revenue, while the lower level 

is used to maximize the social welfare from the perspective of the grid. The formulated 

bi-level model is first transformed into a single-level mathematical program with 

equilibrium constraints (MPEC) and then further transformed to a mixed-integer linear 

programming (MILP) problem for solution. Simulation results have demonstrated the 

effectiveness of the proposed HPP model with strategically bidding prices to increase 

the profits and reduce its volatility caused by uncertainties through considering the risk-

metric. 

As to cross-commodity cooperative arbitrage, the integrated energy system has 

attracted more and more attention in recent years as it is beneficial to use the synergies 

between electricity and other energies for balancing the fluctuation of renewable DERs. 

In this thesis, a bidding strategy is developed for a coordinated WPP and NGG-P2G 

facility in DA market and RT market as well as providing auxiliary services employed 

in real-time. The WPP and NGG-P2G unit are coordinately operated in a virtual multi-

energy plant (VMP) with the feature of natural gas, heat and electricity integration. A 

bi-level stochastic optimization model is proposed to determine the bidding strategy. 

The profit of the coordinated unit is maximized in the upper level with consideration of 

the uncertainties of WPP output and RT electricity prices, while the lower level is used 

to maximize social welfare from the perspective of the grid. Simulation results have 

demonstrated that uncertainties of the WPP are mitigated with flexible operation of 

NGG-P2G unit and the waste of wind resources is reduced, which is more profitable 

and environmentally friendly. The payoff in the proposed model is mostly provided by 
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the WPP in DA market, where the integrated P2G-G2P unit enhances payoffs further 

by providing auxiliary services. 

Although numerous cooperative models have been demonstrated to bring more 

revenue with strategical bidding based on collaborators’ compensation for peak shaving. 

They depend highly on the centralized control and scheduling of a central aggregator, 

in which the privacy of players cannot be guaranteed, and have little flexibility to cope 

with any self-decisions. Considering the bidding strategy with decentralized control 

which respects personal privacy and autonomy of energy suppliers, a competitive 

model is further formulated for WPPs and EV aggregators in a pool-based day-ahead 

electricity market. A bi-level multi-agent-based model is proposed to study their 

bidding behaviors, with market-clearing completion in the lower level and revenue 

maximization in the upper level. A stochastic framework is developed to incorporate 

the uncertainties in bid prices of other participants and the power production of WPPs 

and EV aggregators. The process of bidding decision is formulated as a stochastic game 

with incomplete information. Their lack of information in this stochastic market 

environment is counterbalanced by a multi-agent reinforcement learning (MARL) 

algorithm named win or learn fast policy hill climbing (WoLF-PHC) with maximizing 

their own profits by self-game. The feasibility and effectiveness of the proposed model 

and the WoLF-PHC solution approach are successfully illustrated using IEEE 6-bus 

and 118-bus systems. Multiple participants could respectively optimize their bids by 

learning with using the WoLF-PHC algorithm in competitive markets. Besides, 

compared with the cooperative model of the WPP and EV aggregator in the previous 

study, the proposed competitive model can adapt to a more flexible market environment 

in which every strategic player has full autonomy in biddings with incomplete 

information to maximize its own profit. 
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Chapter I  

Introduction 

1.1 Background 

Towards low carbon emission and conservation of fossil fuels, the integration of 

various DERs to the grid has been actively researched in the past few decades for 

sustainable electricity [1, 2]. Renewable DERs are able to replenish itself relied on the 

natural process and have been predicted to account for 80% of the total electricity 

production by 2030 and 100% by 2050, of which 37% will be provided by wind energy 

[3, 4]. Wind energy has obvious advantages in carbon emission, production cost and 

developed technology [5]. With significant growth in the installed capacity of wind 

turbines and greatly improved wind generation technologies, distributed wind energy 

resources could be aggregated as WPPs and have played a major role in some electricity 

markets such as in Denmark, in which it could bid strategically to influence the 

electricity price according to its own interest [6-8]. Compared with traditional vehicles, 

EVs have less environmental pollution, lower noise, and greater starting torque. Besides, 

EVs are new DR resources which not only could buy the electricity as consumers in 

G2V (Grid-to-Vehicle) mode but also sell the electricity back to the grid in V2G 

(Vehicle-to-Grid) mode. Thus, with the number of distributed EVs dramatically 

increased, such flexible consumers are expected to be aggregated to supply energy on 

a large scale [9]. In recent years, there also has a rapid increase in the use of natural gas 

for generating electricity by power plants, domestic cooking and heating. The natural 

gas is supposed to overtake coal in energy supply by 2030 due to its lower natural gas 

prices, less pollution and higher energy conversion efficiencies [3]. The green 

contribution of these DERs to energy conservation and environment protection, as well 

as the rapid expansion of their scales, would result in them being oligopolists in the 
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wholesale electricity market [10-12]. 

Researches on electricity market refer to load forecasting [13, 14], price forecasting 

[15, 16], plan and operation of unit commitment [17], bidding strategy [18], asset 

valuation and risk management [19, 20], transmission congestion management and 

pricing [21]. This thesis mainly focuses on the bidding strategy with consideration of 

uncertainties of large-scaled DERs. In a perfectly competitive electricity market, any 

participant can only simply bid marginal cost and act as a price-taker according to the 

microeconomic theory [22]. When a participant bids other than marginal cost for 

increasing its profit, the behavior is called strategic bidding. In fact, emergent market 

structures are more likely to be oligopoly than perfectly competitive markets. In 

oligopoly electricity market, large-scale energy suppliers can improve their profits by 

strategically bidding and have a vital influence on market prices and power production 

[23-25]. The bidding information submitted by electricity producers and consumers 

could be only the bidding price or the bidding curve including the price and power 

generation [26]. The integration of a large amount of DERs into the electricity market 

in recent years has resulted in important research challenges. As a result, it is worthy of 

developing an effective approach to model bidding strategies for these large-scaled 

DERs.  

The bidding in the electricity market involves contract trades and pool trading [27]. 

Bilateral contracts are negotiable agreements on delivery and reception of electricity 

between two market players, which is flexible and not dependent on ISO (Independent 

System Operator). However, it has disadvantages of contracts with high costs and risks 

caused by counterparties with the loss of credits. In the pool-based market, the market 

operator/ISO collects bidding information from electricity producers and consumers, 

completes market clearing, and then obtains the estimated electricity production and 

consumption as well as the market prices [28]. The prices and electricity production 

depend on the electricity trading occurring on different trading stages, which contains 

the day-ahead (DA), real-time (RT), and futures markets [16]. In DA market, the 

clearing is usually done on hourly basis and one day in advance. The RT market usually 
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is used to compensate for the difference between the scheduled electricity and actual 

electricity delivery within a short period of time (e.g., half an hour). The futures market 

refers to medium and long-term transactions. In these three trading stages, the largest 

volume of trading exists in the DA market. In addition, market types include the energy 

market, ancillary service market and transmission market. The DA pool-based energy 

market is where trading of electricity occurs, which has an independent clearing and 

settlement function, is studied in this thesis. The key components in DA energy market 

are the ISO and market participants, which can be separately considered in the lower 

and upper levels.   

  From the perspective of the ISO, there are MinISO and MaxISO models in literatures. 

In the MinISO model, the ISO accepts the bid curve with a price and quantity pair from 

every market participant and determines the market clearing price (MCP) by finding 

the intersection point of supply and demand curves; whereas in the MaxISO model, all 

participants first submit information such as energy bid, start-up cost, ramp rates to the 

ISO and then the ISO maximizes the social welfare by setting the locational marginal 

prices (LMPs) as dual variables of the load balance constraints [27]. In this thesis, the 

bidding problem will be fully modelled as the MaxISO model in the lower level. 

Network constraints only refer to the DC power flow and line losses are not considered. 

Other constraints include the power balance at each node, thermal capacity limits in 

transmission lines, generation and consumption limits for power producers and loads 

separately, and voltage angle limits.    

For the market participant in the upper level, the aim is to maximize its profit by 

strategically bidding. There are two methods including same-commodity arbitrage and 

cross-commodity arbitrage in the electricity market. The same-commodity arbitrage 

aims at electricity trading at different time horizons. While the cross-commodity 

arbitrage refers to different products in a market or different markets. For example, the 

arbitrage can be obtained between power and natural gas resources, electricity and gas 

markets, energy market and ancillary service [27]. In [19], it is pointed out that “An 

energy supplier could get more revenues from the arbitrage cross the energy and 
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ancillary service than only selling electricity as a commodity.” This is because the 

producer could choose to sell more electricity to ancillary services and less to the energy 

market when the price of providing ancillary services is higher than in trading in the 

energy market. Different from the traditional units developing bidding strategy, 

renewable wind energy resources as market participants are easily influenced by the 

external environment such as the weather and thus it is hard to predict their outputs. In 

other words, renewable wind energy resources bring uncertainties to the bidding 

problem of the electricity market. In addition, the integration of EVs brings flexibility 

for the operation of the power system. On one hand, EVs can be aggregated to balance 

the uncertainties caused by the renewable wind energy resource. On the other hand, it 

is hard to forecast information such as the arrival and departure time of EVs accurately 

because of the unpredictability of human decisions and the complexity of traffic 

situations. Thus, EVs also bring uncertainties to the operation of the electricity market. 

The uncertainties brought by the wind energy resources and EVs can cause some 

serious consequences such as power imbalance and overloaded lines, which may further 

result in widespread power outages. For the DERs making bidding decisions, 

uncertainties of them may affect their own incomes [20]. Besides, the uncertainties 

associated with these stochastic resources can introduce risk into the bidding problem. 

In this case, risk measurement is important for uncertainty and can provide guidance to 

DERs decision makers. Risk measuring can be categorized into risk-neutral and risk-

averse according to different design parameters. The risk-neutral approach maximizes 

profits of decision makers and ignores the volatility of profits, while the risk-averse 

method enables us to consider the risk of profit fluctuations associated with the bidding 

strategy.  

Thus, it is essential to research the bi-level bidding model in electricity market with 

consideration of uncertainties of DERs.  
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1.2 Research Motivations  

1.2.1 Current models of bidding strategy in literature 

In general, there are cooperative and competitive models researched for developing 

bidding strategy of DERs to improve their revenues in pool-based DA energy market. 

[29-31]. Previously, DERs could not affect electricity prices as their proportions in the 

market were small and negligible [32]. As installed capacity of WPPs and gas facilities, 

and the number of EVs increased, these DERs could be aggregated to become large-

scale market participants and make bidding strategies as price-takers [33, 34]. [35] 

shows DERs as price-takers achieve profits depending on load and price forecasting. 

Furthermore, market participants acting alone or colluding with their counter-parts, 

may own enough share of the supply or the demand to exercise market power for 

increasing their profits. The market power, which is known as a seller or a group of 

sellers, is able to exert a significant influence (monopoly) on electricity prices and 

output of electricity, which prevents competitors in electricity market. Bidding 

strategies for large-scaled energy suppliers as price-makers in an oligopoly market are 

initially researched for traditional thermal generators [36, 37], which are then extended 

to the hydro-generator combined with the pumped storage plant in [38]. Models of these 

traditional electricity suppliers are usually considered as controllable and deterministic. 

Bidding strategies of renewable WPPs as price-makers improving their own interests 

with consideration of uncertainty of wind energy resources have been researched in 

recent years [39, 40]. Moreover, numerous cooperative models have been proposed to 

develop bidding strategies based on collaborators’ compensation for peak shaving in a 

centralized marketplace.  

 For the same-commodity cooperative arbitrage, the bidding strategy with 

managing wind fluctuations originally refers to WPPs combing with hydro units in [41], 

with bulk energy storage devices in [42] and with compressed air storage devices in 

[43]. As the development of DR resources in recent years, aggregated DR resources 

were suggested to balance the volatility of wind energy production. The influence of 
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DR resources on wind generation is researched in [40] and [44]. DR loads traded in a 

separate intra-day market to increase revenues of WPPs are studied in [45]. [46] 

researches profits of DR sides from the perspective of WPPs, and [47] proposes the 

bidding strategy model of the DR aggregator as a price-maker. In the future smart grid, 

increasing numbers of EVs with flexible charging and discharging characteristics can 

be aggregated as DR programs to deal with the uncertainty of WPPs [48, 49]. Thus, it 

is expected to develop the bidding strategy of cooperative WPPs and EVs.   

For the cross-commodity cooperative arbitrage, recent research on the synergies of 

electricity and other energy in the multi-energy system has attracted a lot of attention 

[50-52]. A bi-level economic dispatch model for integrated natural gas and electricity 

systems considering wind power and the power-to-gas process is proposed in [53]. The 

optimal operation strategy of coupled electricity, heating and natural gas networks is 

proposed in [54]. Considering the marketing perspective of the multi-energy system, 

[55] investigates the strategic behavior of a multi-energy player aggregating demand-

side resources and participating in the wholesale electricity market. [56] focuses on 

developing the coordinated operation strategy of electricity and natural gas networks 

considering DR based virtual power plant (VPP). The optimal operation strategy of an 

integrated NGG-P2G unit in the coupled electricity and gas market is developed in [57]. 

To consider DERs operating cooperatively to eliminate fluctuations of renewable 

resources in the multi-energy electricity market, a complex bidding strategy for an 

energy hub with multi-energy inputs and outputs is modeled in [58] where the 

optimized operation of energy hub is used to handle the uncertainty of renewable 

generation. A growing number of natural gas facilities are promising to manage the 

wind energy fluctuation in a virtual multi-energy plant (VMP). This leads to the 

emphasis on the bidding strategy developed for the natural gas unit coordinating with 

the WPP in multi-energy system.  

As to the competitive market model, there are three common approaches to develop 

the bidding strategy. The first one is forecasting electricity prices in the next trading 

period, which is suitable for DERs as price-taker in the perfectly competitive electricity 
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market. The second one relies on estimating bidding behaviors of the rival participants. 

In [11], bidding behaviors of multi-agent large-scale renewable resources in oligopoly 

electricity markets were formulated as mathematical programming with equilibrium 

constraints (MPEC) with consideration of the uncertainty of market competitors. 

However, the equilibrium solution is often not easy to obtain or does not exist based on 

a set of equations in the equilibrium model, especially in large systems. The complexity 

of these models increases when it is applied to a real market with consideration of 

related assumptions and constraints [59]. Moreover, the penetration of renewable 

resources in the grid results that any slight changes in the power production of them 

would disturb the market equilibrium. In this way, it is necessary to solve this complex 

set of equations again for finding the equilibrium of the market under the new situation 

[60]. The last one is game theory-based bidding strategy. Compared to the equilibrium 

model of forecasting behaviors of the rivals, agent-based model (ABM) is more flexible 

and has been widely adopted to develop game theory-based bidding strategy [61]. All 

market players could be modeled as the artificial autonomous agents, who learn through 

repetitive interactions with a simulated market environment. It is more similar to a real 

electricity market. Existing researches on large-scaled players bidding in the 

competitive environment refer to the WPP and DR in [62], GENCOs and large 

consumers in [18], a DR virtual power plant in [63], and plug-in EV owners in [64]. As 

a description of large numbers of wind energy resources and EVs before, it is expected 

to explore a competitive bidding strategy for WPP and EV aggregator in an agent-based 

market.  

1.2.2 Gap of models and potentials in developing bidding strategy 

Consider the influence of large-scaled DERs on the electricity market and 

uncertainties of DERs, this thesis focuses on developing bidding strategies for the 

cooperative EV and the WPP, the natural gas unit combining with the WPP in multi-

energy VPP, and the EV aggregator competing with the WPP in the agent-based 

electricity market. 
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(1) The flexibility of EVs has been researched to be combined with WPPs, [65] 

proposes the operation strategy of EVs to balance the volatility of wind output; whereas, 

this work considers specific EVs. In this way, it is difficult to manage the increasing 

numbers of EVs in the future electricity market due to the complexity of collecting all 

information from every EV and performing time-consuming calculations. Thus, it is 

more reasonable to have an intermediary EV aggregator, which dispatches aggregated 

EVs and exchanges information between the ISO and individual EV owners. 

Considering cooperative EV aggregators and WPPs, [66] increased profits by using 

unidirectional G2V services (night residential EV charging) to manage energy 

deviations while [67] investigated the coordination of unidirectional V2G units, 

traditional generating units and wind generating units to influence market prices and 

energy outcome. However, little research has been done for the EV aggregator with 

both G2V and V2G services cooperating with WPPs as a price-maker in the electricity 

market to increase their overall profits.  

Therefore, it is the first incentive of this thesis to cooperate WPPs with EV 

aggregators to form an HPP, in which flexible EV charging/discharging characteristics 

enable EV aggregators to manage fluctuations of renewable wind energy resources. The 

HPP is promising to strategically bid to fix electricity prices and increase their overall 

profits. Therefore, a risk-constrained offering strategy for the aggregated HPP 

consisting of WPP and EV aggregator as a price-maker in an oligopoly electricity 

market, with consideration of the uncertainties of the energy production and RT prices, 

is proposed here. 

(2) Recently, natural gas facilities have been researched in electricity market. An 

optimal bidding strategy for WPPs and G2P devices is developed in [43], where G2P 

is used to compensate wind energy fluctuations. [68] focuses on the coordinated 

operation among small owners of DERs in coupled transactive power and gas systems, 

in which the unexpected power fluctuations of renewable sources and demands are 

mitigated. However, market participants in these kinds of literature are usually in a 

small-scale and are treated as price-takers in electricity markets. So far, to the best of 
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knowledge, there is no research considering the NGG-P2G unit coordinating with the 

WPP as a price-maker to increase their overall profits by strategically bidding.  

The proliferation of natural gas generating units (NGGs) and the emerging power-

to-gas conversion (P2G) technology which converts electric energy into natural gas to 

storage or use in recent years, have enabled the bidirectional energy flows between 

electric power and natural gas systems [69]. In the electricity market, WPP and NGG-

P2G are expected to bring more profits as flexible NGG-P2Gs could accommodate 

WPP uncertainties and provide large capacities for ancillary services. Therefore, it is 

the second incentive of this thesis to develop bidding strategy of coordinated WPP and 

NGG-P2G unit with considering uncertainties of wind output capacities and RT prices, 

where the coordinated supplier is considered as a price-maker in DA market and a price-

taker in RT market as well as providing ancillary services employed in real-time 

through the NGG-P2G unit to enhance their common interests. 

In the above cooperative model, the centralized control and scheduling of a central 

aggregator who owns lots of bidding information of participants are highly dependent 

[30, 70, 71]. Thus, the privacy of players cannot be guaranteed and they have little 

flexibility to cope with any self-decisions [72]. In the future electricity market with 

great respect for personal privacy and autonomy of energy suppliers, a bidding strategy 

accustomed to a more flexible market environment without any central agent or 

aggregator would be more attractive [73]. Since energy suppliers would not share any 

personal data with each other for the sake of privacy, they would have the freedom to 

make their own bidding decisions to increase their respective profits in a competitive 

market.  

(3) In the agent-based competitive market, model-based adaption algorithms with 

naive or intuitive learning formulations and genetic algorithms inspired by the 

biological evolution have been applied to find the optimal bidding curves in [74] and 

[75]. However, these algorithms are designed to obtain the bidding strategy of a single 

agent, in which each agent makes the decision without regard to other rivals. Thus, they 

are inappropriate for the competitive oligopoly market with each agent achieving its 
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independent goal by adapting its behavior in the presence of other agents. As a class of 

reinforcement learning methods, various Q-learning algorithms have been widely used 

in the multi-agent electricity market to explore bidding strategies [76]. A decentralized 

multi-agent model of EV owners bidding in electricity market was developed based on 

a Q-learning algorithm without modeling the environment [77]. A deep reinforcement 

learning-based methodology was proposed to address bidding problems for energy 

suppliers, which has significant advantages in contrast with the traditional Q-learning 

algorithm [78]. However, there is no game process between these strategic participants. 

In [79] and [80], the game problem was considered to update multi-agent bidding 

strategies for energy suppliers respectively in a large power system and regionally 

integrated energy system, in which historical bidding decisions of rivals are essential. 

Although this model has some advantages compared to that with perfect information of 

other rivals’ cost functions and market clearing mechanism, it is still not practical as 

the real electricity market is more likely a market with incomplete information, i.e. each 

player knows about only its own cost function and bidding strategy without any 

knowledge of other competitors [81]. A combined multi-agent model-based and 

learning-based approach for generators’ bidding decision problems with incomplete 

information was presented in [82], but the Nash equilibrium point is required which is 

time-consuming and hard to scale up. This is due to the complexity of the equilibrium 

calculation and storage pressure of state-action space. Further research shall therefore 

focus on exploring an optimal multi-agent approach without knowing the equilibrium 

point, suitable for the bidding strategy in a competitive market, which protects personal 

privacy with no bidding information communicated between agents and guarantees 

players could have right to make their own bids. So far, to the best of knowledge, there 

is little research considering the renewable WPPs and EV aggregators as oligopolists 

for developing a competitive multi-agent bidding strategy in a pool-based DA market 

without any information of opponents and calculating any equilibrium point, which 

stimulates the third incentive.  

To satisfy the requirement of the bidding strategy described above, a recently 
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developed multi-agent decentralized Win or Learn Fast Policy Hill Climbing (WoLF-

PHC) [83] learning method, based on an easy average policy instead of the equilibrium 

policy, is chosen to solve the bidding problem. It could not only meet the requirements 

of respecting individual privacy and the autonomy of WPPs and EV aggregators but 

also accommodate their complex bidding behaviors to maximize their respective 

revenues. 

1.3 Primary Contributions 

Firstly, based on the state-of-art bidding strategy of same-commodity cooperative 

arbitrage, potentials of cooperative WPPs and EVs are studied. A bi-level stochastic 

model of the offering strategy for the aggregated HPP consisting of the WPP an EV 

aggregator in the pool-based market is proposed. The model aims to maximize the 

HPP’s revenues and manage expected revenues’ risks with uncertainties of renewable 

energy productions and real market prices. In the proposed model, the aggregated EVs 

and elastic loads, as the price-maker and the price-taker in the market respectively, are 

implemented as flexible DR sources. Case studies are implemented to illustrate the 

large-scale renewable resources WPPs and EV aggregators could be aggregated for 

strategical bidding and setting electricity prices according to their and the grid’s 

interests, in which EV aggregators cooperating with WPPs for satisfying high energy 

offered in V2G mode and using wind energy to meet EVs' charging requirement in G2V 

mode at moments of low energy offered.  

Secondly, according to the cross-commodity cooperative arbitrage, the bidding 

strategy of synergies of electricity and natural gas in the multi-energy system is 

researched. A stochastic bi-level model is proposed to derive the optimal bidding 

strategy for the coordinated WPPs and NGG-P2G suppliers that maximizes VMP 

payoffs. The deviation of scheduled WPP output from its actual value in DA market is 

compensated by the coordinated suppliers participating as price-takers in RT market. 

The optimal bidding strategy of the coordinated WPPs and NGG-P2G suppliers is 
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considered in an integrated electricity and gas networks by strategically exploring 

multiple energy synergies in the electricity market and providing auxiliary services 

through NGG-P2G units, which consume excess wind energy to supply natural gas 

loads or storage natural gas in nature gas pipelines at hours of low offered power, and 

utilizes the energy of natural gas network to support electricity at hours of high offered 

power. 

  Lastly, research focuses on the competitive bidding strategy in the agent-based 

electricity market. A stochastic bi-level model, as compared to strategic participant 

WPPs in [6] and cooperate players including strategic WPPs and EV aggregators as 

previous mentions, for exploring a competitive bidding strategy for WPPs and EV 

aggregators in a pool-based oligopoly DA market based on a multi-agent game system, 

considering the uncertainty of power productions of WPPs and EV aggregators as well 

as bid prices for other participants. Compared with the centralized dispatch in [6, 84], 

WPPs and EV aggregators are neither controlled by an aggregator or central agent nor 

share any personal information with other rivals and make self-determined biddings to 

increase their respective profits in a competitive market. Comprehensively analyzed the 

proposed bidding problem of the market model as a multi-agent stochastic game with 

incomplete information, and applied a multi-agent decentralized WoLF-PHC to 

counterbalance their lack of information in this stochastic market environment for 

WPPs and EV aggregators and make their own bidding decisions by self-game. 

Compared with the existing methods in [79, 80] and [82], no rivals’ information and 

time-consuming equilibrium calculation are needed. Simulation results demonstrate the 

WoLF-PHC method could be successfully applied to solve the multi-supplier bidding 

strategies problem in large systems. 

1.4 Thesis Layout 

The rest of this thesis consists of five Chapters. Chapter II introduces essentials on 

developing bidding strategy of DERs. Chapter III shows the development of a risk-
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constrained offering strategy for a hybrid power plant consisting of the WPP and EV 

aggregator in DA energy market. Chapter IV proposes a bidding strategy for the 

cooperative WPP and NGG-P2G unit in multiple energy systems being a price-maker 

in DA market and price-taker in RT and regulation markets to enhance their common 

interests. Chapter V presents a multi-agent competitive bidding strategy in a pool-based 

electricity market with price-maker participants of WPPs and EV aggregators. Finally, 

the conclusions of the thesis are drawn in Chapter VI with suggestions on future work. 
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Chapter II 

Essentials on Developing Bidding Strategy of DERs 

2.1 Approaches for solving optimization problems involving uncertainties 

of DERs  

Optimization has been the most widely used approach to solve problems in power 

system, which usually explores the best solution for maximizing or minimizing an 

objective function [85]. As the bidding strategy of the electricity market highly depends 

on optimization, it is essential to explore efficient approaches to solve optimization 

problems of aggregated DERs with consideration of uncertainties and distinguished 

features of DERs.   

For solving the optimization problem with uncertainties, stochastic optimization and 

robust optimization are two commonly used methods. The robust optimization takes 

the worst-case of uncertainties into account and there is no high demand for information 

on uncertainties. However, this approach is often over-conservative to handle the 

optimized operation in electricity market [86, 87]. The other one is stochastic 

optimization, which is the most widely used. One type of stochastic optimization is 

transforming the optimization problem with uncertainties into deterministic forms by 

assuming the uncertainty obeys a certain distribution. For example, [11] assumes the 

uncertain wind speed follows Weibull distribution, [46] assumes uncertain electricity 

price follows log-normal distribution, [88] assumes uncertain EV numbers follow the 

normal distribution. However, this type of stochastic optimization is often over-

optimistic and has limited application [89]. Another type of stochastic optimization 

relies on selected scenarios and corresponding discrete probability distributions for 

realizations of uncertainties. In this way, the optimized objective function is represented 

by selected scenarios and relevant weights, and all constraints should satisfy for all 

scenarios.  
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There are several scenario generation strategies in literature [90-92], in which the 

Monte Carlo simulation is widely used. Different scenarios are defined according to the 

probability density function (PDF) of a random variable, whereas each scenario has an 

associated probability of occurrence. Generally, uncertain variables or forecast errors 

of uncertain variables are considered as a certain distribution. In the latter case, the 

forecasted values are derived from historical data. Thus, the value of uncertain variables 

for each scenario is determined by adding the error of each uncertain variable 

determined by the PDF to their forecasted value. Once the PDF of random variable is 

confirmed, the PDF of each random variable can be first discretized into seven different 

intervals using the Monte Carlo simulation. The intervals are centered on the zero mean, 

with a probability and a width equal to the standard deviation. The probability 

associated with each PDF interval is then normalized so that their summation is equal 

to one. A scenario which includes a matrix of binary parameters consisting of 

coefficient interval of each market participant is generated. Next, scenarios of each 

uncertain variable and a random number in the range (0,1) for each scenario are 

generated with the roulette wheel mechanism. The associated binary parameter is set to 

1 when the generated random number is within the interval l. Otherwise, the binary 

parameters of other intervals equal to 0. Lastly, the probability of each generated 

scenario is calculated. With the consideration of correlations, the stochastic models can 

be unified and denoted by the uncertain variables X with the correlations Rx, and the 

Monte Carlo sampling method incorporated with the Cholesky decomposition strategy 

is introduced to generate representative scenarios for correlated uncertain variables via 

the following steps; 1) For the given probabilistic distributions of uncertain variables X 

with the correlations Rx, build a correlation coefficient matrix Ry using Ry=G(Rx)*Rx, 

where G(Rx) is the correlation coefficient shift function associated with the specific 

type of probability distributions, which could be obtained by using Tables 4-8 in [93]; 

2) Apply the Cholesky decomposition to Ry to obtain an orthogonal matrix B, namely 

Ry = B*BT where T denotes the transpose of a matrix; 3) Generate a sample matrix Z 

of independent standard normal variables, for example using the statistical analysis 
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function normrnd () in MATLAB, and afterward obtain the correlated standard normal 

matrix Y=B-1*Z; 4) Apply the transformation S=H-1(φ(Y)) to generate the final 

scenarios S for the original uncertain variables X, where φ is the cumulative distribution 

function (CDF) of the standard normal distribution, and H is the CDF of the input 

variables X.  

The computation burden increases with the number of scenarios, which may result 

in the optimization problems becoming intractable. Thus, there are some techniques to 

decrease the number of scenarios for achieving the balance between accuracy and 

computational efficiency [94]. Scenario reduction methods often rely on probability 

distances which measure distances between probabilities distributions. Different 

probability distances such as Kantorovich distance in [95] and Fortet-Mourier metrics 

in [96] are used in different reduction technologies. Furthermore, no one reduction 

method is universally suitable and different techniques can be suitable for different 

problems, which results that it is essential to choose a proper one according to the 

specific condition. In Chapter IV and V, the forward selection method [95] is used to 

reduce the number of scenarios considered, while minimizing the inevitable dilution of 

stochastic information contained in the original set. By minimizing the Kantorovich 

distance between the initial scenario set and the reduced scenario set, the forward 

selection algorithm recursively adds scenarios from the initial set to the reduced set 

until the total number of constituent members of the reduced set reaches the required 

number. 

2.2 Solutions for solving bi-level optimization problems  

The model of the bi-level optimization problem in Chapters III and IV of this thesis 

can be expressed mathematically as:  

Minimize   

     1 i 1 1
, ..., , ..., , ..., , ..., , , ..., , ...,

L L LU L L L L L L

n i n i n
µ µ µx x x x      
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 1 1 1
, , ..., , ..., , , ..., , ..., , , ..., , ...,

U L L LU L L L L L L

i n i n i n
µ µ µx x xf x                 (2.1a) 

Subject to  

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

L L LU U L L L L L L

i n i n i n
µ µ µx x x xh    ，           (2.1b) 

 

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

U L L LU L L L L L L

i n i n i n
µ µ µx x x xg    ，         (2.1c) 
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Bi-level model (2.1a)-(2.2c) include an upper-level problem (2.1) and a collection of 

lower-level problems (2.2). These lower-level problems constrain the upper-level one. 

In these formulations, symbols with superscript U and L represent the upper-level and 

lower-level problems respectively. In this thesis, the lower-level problem (2.2b) is 

convex as it is continuous and linear. 𝜆  and 𝜆  are dual variables, which are related 

to each equality and inequality constraint separately. 𝑥  of the upper level is assumed 

as a constant value in the lower level, while the primal variables 𝑥  and dual variables 

𝜆 , 𝜆  of the lower level associated with the upper-level variable 𝑥  are considered 

as optimization variables of the upper-level problem (2.1).  

2.2.1 MPEC problem  

The upper and lower layers of the bi-level model need to be solved together. To do 

this, the lower level of the optimization problem representing the DA market clearing 

can be replaced by their optimality constraints. There are two optimality conditions for 

the lower-level convex problem. The first one is its Karush-Kuhn-Tucker (KKT) 

optimality conditions. The other one is its primal constraints, its dual constraints, and 

its strong duality equality. These optimal conditions of the lower-level problem are then 

as constraints added to the upper-level problem for solving the upper-level objective 

function. The bi-level optimization problem is then transformed to a single 

mathematical program with equilibrium constraints (MPEC). 

(1) KKT condition  

The MPEC can be formulated as below, in which the lower-level problems (2.2) are 

replaced by its KKT conditions (2.3g)-(2.3i). Constraint (2.3i) is the complementary 

constraint, which can be replaced by a set of constraints (2.4a)-(2.4c).  

Minimize   

     1 i 1 1
, ..., , ..., , ..., , ..., , , ..., , ...,

L L LU L L L L L L

n i n i n
µ µ µx x x x      

 1 1 1
, , ..., , ..., , , ..., , ..., , , ..., , ...,

U L L LU L L L L L L

i n i n i n
µ µ µx x xf x                 (2.3a) 
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Subject to  

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

L L LU U L L L L L L

i n i n i n
µ µ µx x x xh    ，           (2.3b) 

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

U L L LU L L L L L L

i n i n i n
µ µ µx x x xg    ，           (2.3c) 

 

     1 11 1 1
0

T T LL U U L UL L µx xA D xc                          (2.3d)
 

   1 1 1

U L L UL

x x xbA                                  (2.3e)
 

    11 1 1
00

L U U LL L

x x xe D µ                         (2.3f)
 

 

      0
T T LL U U L U

i ii i i

L L
c A D µx x x                          (2.3g)

 

   U L L UL

i i ix x xbA                                  (2.3h)
 

     00
L U U LL

ii i

L

ixe x xD µ                         (2.3i) 

 
 

      0
T T LL U U L U

n nn n n

L L
c A D µx x x                          (2.3j) 

   U L L UL

n n nx x xbA                               (2.3k) 

     00
L U U LL

nn n

L

nxe x xD µ                       (2.3l)

 

 

     0L U U LL

ii i

L

ix x x idiag e D µ                  (2.4a)

     0
L U U LL

ii i
iDx x xe                              (2.4b)  

0
L

i
iµ                                        (2.4c) 

After the above transformation with the KKT condition, it is obvious that the 

constraint (2.4a) is non-linear, which is difficult to solve. 

(2) Primal-dual formulation  

   The dual formulation of the lower level (1.2) can be written as (2.5). According to 
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the strong duality, the objective function of its primal and dual formulation has the same 

value for solving the optimization problem and can be expressed as (2.6).  
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          (2.5)

 

     T T T LU L U L U

i i i i i i

L L L iµx x xc e xb                  (2.6)
 

  After the transformation with the primal-dual formulation, a MPEC problem with 

replacing the original bi-level optimization problem can be written as (2.7a)-(2.7o). 

Equation (2.7h) is the primary constraint, (2.7i)-(2.8j) are dual constraints, and (2.7k) 

is the strong duality equation of the lower level.   

Minimize   

     1 i 1 1
, ..., , ..., , ..., , ..., , , ..., , ...,

L L LU L L L L L L

n i n i n
µ µ µx x x x      

 1 1 1
, , ..., , ..., , , ..., , ..., , , ..., , ...,

U L L LU L L L L L L

i n i n i n
µ µ µx x xf x                 (2.7a) 

Subject to  

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

L L LU U L L L L L L

i n i n i n
µ µ µx x x xh    ，           (2.7b) 

 1 1 1
, ..., , ..., , , ..., , ..., , , ..., , ... 0,

U L L LU L L L L L L

i n i n i n
µ µ µx x x xg    ，           (2.7c) 

   1 1 1

U L L UL
x x xbA                             (2.7d)

 

     1 11 11

T T LU L U L UL L
cDx xA x                       (2.7e)
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L
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   U L L U

i i i

L
x x xbA                            (2.7h)

 

     T T LU L U L U

i ii ii

L L
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L

i
µ                                    (2.7j)
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L L
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     T T LU L U L U

n nn nn

L L
cDx xA x                      (2.7m)

 

0
L

n
µ                                  (2.7n)

 

     T T LL U L U L U

n n n n n n

L L
x x x xc b e                     (2.7o)

 

The MPECs formula based on the KKT optimality condition is equivalent to the 

primal-dual method. The bi-level model developed in Chapters III and IV includes an 

upper layer problem where the objective function is non-linear and the objective 

function can use some equation-based linearization with the strong duality theorem. 

Because the target function can be linearized by using lower-level strong duality 

equation, which thus cannot be used to reconstruct lower-level problems using primal-

dual methods. As a result, the KKT condition is used in this thesis.  

2.2.2 MILP problem 

The resulting MPEC in Section 2.2.1 is single-level but generally nonlinear, 

especially when it is taken from (2.4a) under KKT optimality conditions. These 

nonlinearities are then usually linearized with precise mixed-integer linear 

equivalencies such as strong duality theorem (SDT) and the Fortuny-Amat 

transformation, and MPEC can ultimately be expressed as a mixed-integer linear 

programming (MILP) problem. The non-linear part of complementarity constraint (2.4a) 

can be represented as 0 𝛼 ⊥ 𝛽 ≫ 0, which is equal to the formulation (2.8a) and 

(2.8b) as below. Both 𝛼 and 𝛽 or either 𝛼 or 𝛽 must be equal to 0. These nonlinear 
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expressions can be transferred by the mixed-integer linear expressions as equivalent 

(2.9a)-(2.9d), in which M is a large enough constant. If 𝛼= 0, then u = 0. Thus, 

constraints (2.9a) and (2.9c) form that 0 ≪ 𝛼 ≪ 0, i.e., 𝛼 = 0; while constraints (2.9b) 

and (2.9c) establish 0 ≪  𝛽 ≪ 𝑀. Otherwise, if 𝛽 = 0, then u = 1. Thus, constraints 

(2.9b) and (2.9c) establish that 0 ≪ 𝛽 ≪ 0, i.e., 𝛽 = 0; while constraints (2.9a) and 

(2.9c) establish 0 ≪  𝛼 ≪ 𝑀.  

0    (2.8a) 

, 0    (2.8b) 

M u    (2.9a) 

(1 )M u     (2.9b) 

, 0    (2.9c) 

{0,1}u   (2.9d) 

Finally, the stochastic complementarity model of DERs bidding is reconstructed into a 

MILP problem, which is effectively solved with branch-and-cut method. 

2.2.3 Computational tool  

After the transformation above, the transformed MILP model throughout this 

dissertation is solved by commercial software such as MOSEK through YALMIP 

interface in MATLAB and run on an Intel Core i5 CPU at 1.6 GHz with 8 GB RAM 

iMac computer. It is worth noting that the solvers work well only if the problem is 

convex. Simulation times are influenced by the number of nodes in the system and the 

number of scenarios. Besides, large numbers of binary variables are needed to linearize 

complementary constraints in the MEPC model, which may result in dramatically 

increasing the running time of the simulation.  

2.3 Risk Modeling 

As described in Section 2.1, the bidding problem of uncertain DERs is modeled as 
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stochastic optimization. However, this approach ignores the variability of profit 

distribution. In such a condition, it is important to introduce a risk metric to measure 

the profit variability, providing guiding information to bidding decision-makers.  

In the existing literature, there are three widely used risk metrics are introduced: 

mean-variance in [97, 98], value at risk (VaR) in [99], and conditional value at risk 

(CVaR) in [100, 101]. The mean-variance risk function derives from the variance as a 

measure of dispersion and can be categorized into risk-averse and risk-seeking 

according to different design parameters. Whereas in the case of asymmetrical 

distribution, mean-variance risk measure cannot meet the second order stochastic 

advantage and monotonicity axiom [102]. Thus, the mean-variance risk approach is not 

a coherent measure of risk. The VaR focuses on the tail risk and is expressed as the 

extreme fractile of the loss distributions to limit projected losses at a given level of 

confidence α. However, VaR is also not a coherent risk measure as it lacks sub-

additively when the underlying loss distribution is not normal [103]. Besides, the VaR 

cannot offer any information on possible losses in the (1 − α) worst cases, thus it is hard 

to calculate the VaR optimization problem. The CVaR is a generalization of VaR and 

CVaR at a given confidence level α is computed as the expected profit of the (1 − α) × 

100% scenarios yielding the lowest profits [100]. The CVaR can overcome the 

drawbacks of VaR and thus is coherent and theoretically preferable. In addition, 

downside risk constraints (DRC) and second-order stochastic dominance constraints 

(SOSDCs) are newly introduced as the risk-evaluation method to control the stochastic 

resources in [104-106].  

The risk metric can be categorized into risk-neutral and risk-averse. In Chapter III, the 

proposed bidding problem is modeled as risk-averse. In general, a risk-neutral energy 

decision-maker has more opportunities to dynamically adapt the bidding strategy to the 

information observed, and thus to increase the expected profit, than for a risk-averse 

decision-maker. This is because the risk-averse bidding strategy is generally more 

conservative [107]. Thus in Chapters IV and V, bidding problems are considered risk-

neutral.   
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Chapter III 

Risk-Constrained Offering Strategy for a Hybrid 

Power Plant Consisting of Wind Power Producer 

and Electric Vehicle Aggregator 

3.1 Introduction 

Renewable wind energy resources involve a lot of uncertainties, which would cause 

fluctuations and lead to economic losses for renewable WPPs. Large-scaled EVs will 

be increasingly important to the power system, and the flexible charging and 

discharging characteristic of EVs motivates EV aggregators to cooperate with WPPs to 

form a hybrid power plant (HPP) [108]. So far little research has been done for the EV 

aggregator with both G2V and V2G services cooperating with WPPs as a price-maker 

in the electricity market to increase their overall profits. Therefore, a risk-constrained 

offering strategy for the aggregated HPP with consideration of WPP and EV aggregator 

in an oligopoly electricity market to be price-makers is proposed here.  

This Chapter proposes a bi-level stochastic optimization model of offering strategy 

for an aggregated WPP-EV HPP as a price-maker in the day-ahead (DA) market while 

considering the uncertainties of the energy production and spot price in the real-time 

(RT) market. While the HPP’s profits are maximized in the upper level of the proposed 

model with the use of conditional-value-at-risk (CVaR) to manage the risk of expected 

revenues, the social welfare from the perspective of the grid is maximized in the lower 

level. The formulated bi-level model is first transformed into a single-level 

mathematical program with equilibrium constraints (MPEC) and then further 

transformed into a mixed-integer linear programming (MILP) problem for solution. 
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Simulation results have demonstrated the effectiveness of the proposed HPP model 

with strategically bidding prices to increase profits and reduce the volatility of profits 

by considering the risk-metric. 

The nomenclature of symbols used in this Chapter is given as follows. 

Indices: 

l Loads 

g Traditional generation units 

e    EV aggregator units 

𝜔 WPP units  

h HPP units 

n Nodes 

α Real-time market scenarios 

β Scenarios of WPPs’/ EV aggregators’ energy productions 

Sets:  

𝛺  Loads at node n 

𝛺  Traditional generation units at node n  

𝛺  EV aggregator units at node n  

𝛺  WPP units at node n  

𝛺  HPP units at node n 

𝛺  All nodes connected to the node n 

𝑇 Number of time periods 

𝑁  

𝑁  

Number of scenarios for RT market price 

Number of scenarios for WPPs’/ EV aggregators’ energy 

productions 

Parameters： 

𝜏  Weight of RT market prices 

𝜏  Weight of WPPs’/ EV aggregators’ energy productions  
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𝜑  RT market price based on scenario 𝛼 

𝑃 , ,
,  EV capacity for the eth EV aggregator at time t based on scenario 

𝛽, in MW 

𝑃 ,
,  Wind capacity for the 𝜔th WPP based on scenario 𝛽, in MW 

𝑃 , ,  Maximum energy bought or sold for the eth EV aggregator in the 

RT market, in MW 

𝑃 , ,  Maximum energy bought or sold for the 𝜔th WPP in the RT 

market, in MW 

𝑆𝑂𝐶  Minimize state of charge for EVs, in % 

𝑆𝑂𝐶  Maximum state of charge for EVs, in % 

𝐸  Maximum total charging energy of the aggregator e at time t, in 

MWh 

𝛾  Charging efficiency, in % 

𝛾  Discharging efficiency, in % 

𝛾  Maximum charging/discharging rate at time t, in % 

𝜆  Offer price for the gth traditional generation unit located at node n 

in the DA market 

𝜆  Bid price for the lth load unit located at node n in the DA market 

𝜆 /  Charging/discharging price between EV aggregators and EV 

owners at time t 

𝐵    Susceptance of the transmission line between nodes a and b 

𝑓  Maximum capacity of the transmission line between nodes a and b 

𝑃  Maximum energy production for the gth traditional generation unit  

𝑃  Maximum consuming for the lth load unit 

𝐷  Demand factor 

𝑇  Battery lifetime 

𝐶  Capital cost for battery  

ξ Parameter to weigh the expected revenue and CVaR   
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𝛼  Confidence level 

Variables： 

𝜑 ,          Clearing LMP price at node n and time t 

𝑃 ,
,     eth EV aggregator’ energy production for the DA market at time t, 

in MW  

𝑃 ,
,  𝜔th WPP’ energy production for the DA market at time t, in MW 

𝑃 ,
,  ℎth HPP’ energy production for the DA market at time t, in MW 

𝑃 , ,
,  eth EV aggregator’ energy bought or sold for the RT market in 

scenario 𝛽 at time t, in MW  

𝑃 , ,
,  𝜔th WPP’ bought or sold for the RT market in scenario 𝛽 at time 

t, in MW 

𝑃 , ,
,  ℎth HPP’ energy bought or sold for the RT market in scenario 𝛽 at 

time t, in MW  

𝑃 , ,    eth EV aggregator’ energy production in scenario 𝛽 at time t, in 

MW  

𝑃 , ,  𝜔th WPP’ energy production in scenario 𝛽 at time t, in MW 

𝑃 , ,  ℎth HPP’ energy production in scenario 𝛽 at time t, in MW 

𝑆𝑂𝐶 ,  State of charge for EVs connected to the aggregator e at time t, in 

% 

𝑃 ,
,  eth EV aggregator’ energy from EVs to the grid for the DA market 

at time t, in MW 

𝑃 ,
,    eth EV aggregator’ energy from the grid to EVs for the DA market 

at time t, in MW 

𝜆 ,
,  Offer price for the ℎth HPP in the DA market at time t 

𝑃 ,
,  Energy scheduled to be produced in the DA market for traditional 

generation units located at node g and time t, in MW 
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𝑃 ,
,  Energy scheduled to be consumed in the DA market for fixed and 

reduced loads located at node l and time t, in MW 

𝜃 ,    Voltage angle at node n and time t in the DA market  

𝑃 ,
,  Energy scheduled to be offered in the DA market for the ℎth HPP 

at time t, in MW 

𝜎  Value-at-risk in the DA market  

𝜌 ,  Auxiliary variable to calculate the CVaR in the DA market  

 Expected revenue of the HPP unit 

3.2 Problem Description 

 

Fig. 3.1 Schematic representation of proposed HPP model 

The electricity market consists of the offering stage and clearing stage in both DA 

and RT markets. Most of the energy trading is completed in the DA market, while the 

energy deviations are compensated in the RT market. In a pool-based electricity market 

shown as Fig. 3.1, all participants provide optimal offer prices and energy to the ISO in 
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the offering stage. Then ISO uses the collected data for market clearing to obtain 

locational marginal prices (LMP) paid to energy providers in the clearing stage [109]. 

This Chapter focuses on developing a stochastic offering strategy for the proposed HPP 

considering uncertainties of renewable energy in the offering stage of the DA market. 

In a pool-based DA market, all participants have to submit their sales or purchases 

offer to the ISO for each hour of the next day and several hours in advance. Participants 

could be categorized into two different groups, which are energy sellers such as 

traditional generators and multiple renewable energy providers, and energy buyers such 

as various consumers. In a fully competitive market environment, all participants could 

participate in setting prices. However, the actual market is closer to an oligopoly market. 

It means energy providers with large-scale capacities are easier to alter electricity prices 

according to their interests, while other small-scale participants are just price-takers. 

The increasing installed capacities of WPPs and growing numbers of EVs connected to 

the grid results in these two distributed renewable resources to be aggregated to 

strategically affect the market prices [110]. It could be beneficial to cost and price 

reduction for EV aggregators and WPPs bidding separately in the electrical market. 

These EV aggregators may not be able to compete with WPPs for bidding prices as the 

battery capacity of aggregated EVs is much less than WPPs. As a result, the aggregated 

EVs are expected to cooperate with WPP to offer in the DA market. Meanwhile, 

interests of the gird should not be ignored with price-maker participants strategically 

offering to bring their economic benefits. Consequently, this Chapter focuses on the 

coordination of WPPs and EV resources as a HPP to develop the optimal offering 

strategy for improving their own interests. This would be solved by peak shaving as 

flexible charging or discharging characteristics of EVs. To be specific, EV owners may 

provide energy by V2G in due time to compensate the WPP for satisfying the high 

energy offered, then use the wind energy to meet charging demand for EV owners when 

the energy offered is relatively low. In this way, EV owners could help the WPP to sell 

more electricity and earn more money at the high energy offered time while the wind 

energy would not be wasted during periods of the low energy offered, which is 
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beneficial to both the HPP and the grid. 

Therefore, capacities of cooperative EV aggregators and WPPs are assumed large 

enough. Thus, EV aggregators and WPPs can be collaborated as a price-maker HPP 

here. This central planner makes decisions based on collecting necessary information 

from WPPs and EV aggregators, and then uniformly schedules their individual energy. 

Other participants including traditional generators and DR loads are set as small-scale 

participants and just act as price-takers. They would offer productions at their marginal 

costs, and offer prices are known for strategic energy providers [3]. In this study, the 

transmission network is represented by a DC model without losses, and uncertainties 

of actual energy productions and real-time market prices are modeled by corresponding 

scenarios based on the stochastic approach [111]. As the approaches presented in 

Section 2.1 for solving optimization problems involving uncertainties of DERs, 

scenarios of actual energy productions for the WPP and EV aggregator are respectively 

represented by the maximum output energy derived from historical wind speeds and 

historical data for the number of EVs connected to the aggregator with 𝜏  and 𝜏  

respectively represented their probabilities. The expected profit is finally characterized 

by corresponding probability distribution for these uncertainties. As uncertainties will 

take high volatility for energy providers’ revenues, the risk management measure CVaR 

introduced in Section 2.3 is added to problem formulation to evaluate the expected 

profits according to offering decisions [112]. 

3.3 Mathematical Formulation 

Aiming at the market described above, a stochastic optimization model of risk-

constrained offering strategy for the aggregated HPP including the WPP and EV 

aggregator in the DA market is proposed. It is further developed as a bi-level model as 

shown in equations (3.1)-(3.2.8), in which the upper level is used to maximize profits 

of the strategical HPP while the lower level aims to maximize the social welfare from 

the perspective of ISO in the grid. 
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3.3.1 HPP Model 

In this model, the HPP in the upper level first provides energy offered 𝑃 ,
,  

and offer price 𝜆 ,
,  to the ISO in the lower level. Then ISO clears market 

combining this information with offers and bids from non-strategical traditional 

generators and DR loads separately by using the optimal power flow (OPF). After that, 

scheduled energy production in the DA market 𝑃 ,
,  and LMP 𝜑 ,  are provided 

to the HPP in the upper level to maximize profits. Lastly, optimized offer results 

𝑃 ,
,  and 𝜆 ,

,  for the WPP, 𝑃 ,
,  and 𝜆 ,

, for the EV 

aggregator could be obtained and provided to the DA market. These optimized price-

energy production curves are the offering strategies in this research. 

1) Upper level 

By combining the WPP and EV aggregator to be a HPP, the offering strategy model 

corresponding to the expected profit function can be expressed as follows: 

cos= revenue tHPP HPP   (3.1) 

Maximum  

,
, , ,, /

, 2 ,
,, ,

,
, ,

(  

( ) (

( )

1
(

1

/ )

N H
n n

HPP DA EV
n t e th t ch disch

t T t T Nn h

BAL EV BAL V G DA
e te t battery battery

t T N N t T

BAL Wind BAL
t

t T N N

DA

CVaR

P P

P C T P

P







 


  
 

   
 

  

  

  

 


   

   

  

   

    

   

  






    

   

  

, )DA

N N 

  
 

  
 

  

 

 

 

(3.1.1) 

 

Subject to  

, , ,
, ,,

HPP DA Wind DA EV DA
t e th tP P P t  ，  (3.1.2) 
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(3.1.16) 

0, ,DA
    ，  (3.1.17) 

The optimization variables of the UL problem are the variables in the set 
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∆ ={𝜑 , ,𝑃 ,
, ,𝑃 , , ,𝑃 , ,

, ,𝑃 ,
, ,𝑃 , ,

, , 𝑃 ,
, , 𝑃 ,

, ,𝑃 , ,
, , 

𝑆𝑂𝐶 , , 𝑃 ,
, , 𝑃 , }.  

The objective function in the upper level is to maximize the HPP’s profit. It should 

be noticed that an EV aggregator is unable to produce energy by itself. It takes part in 

the electricity market as an agent for buying electricity from individual EV owners and 

selling electricity to the grid. The payoff function (3.1.1) consists of six terms. The first 

term is the revenues of selling electricity in the DA market 𝜑 , ∙ 𝑃 ,
, . The second 

term is EV aggregator’s cost of energy production in DA and RT market 𝜏 ∙  𝜆 / ∙

𝑃 , , , which is followed by EV aggregator’s incomes or expenses from selling or 

buying electricity in the RT market 𝜏 ∙ 𝜏 ∙ 𝜑 ∙ 𝑃 , ,
, . The next two terms are 

compensation cost for battery degradation ∑ 𝐶 /𝑇 ∙∈ 𝑃 ,
,  and 

wind’s incomes or expenses from selling or buying electricity in the RT market 

𝜏 ∙ 𝜏 ∙ 𝜑 ∙ 𝑃 , ,
, .  𝜑 ,  is the LMP calculated from the lower level as a dual 

variable in constraint (3.2.2) for energy balance, which is used to pay for the EV 

aggregator and the WPP. There are two kinds of uncertainties considered in this model, 

which are spot price in the RT market 𝜑  and actual energy production capacities 

𝑃 ,
, 𝑃 , ,

, . As actual energy productions 𝑃 , ,  may be more or less than 

energy scheduled in the DA market 𝑃 ,
, , HPP needs to buy deficit or sell surplus 

energy 𝑃 , ,
,  in the RT market to compensate the energy deviation in the DA 

market, and hence, 𝑃 , ,
, could be positive or negative. The last term is CVaR. Here, 

the weight parameter 𝜉  is used to weigh expected profit and CVaR, and to show 

different offering strategy. If 𝜉 is 0, the proposed model will consider the maximum 

profit and neglect the risk. As 𝜉 becomes larger, the HPP considers not only its profit 

but also its risk. When 𝜉 is close to 1, a risk-averse offering model is considered, in 

which a minimum revenue should be maintained for a confidence level 𝛼  [113]. 

 (3.1.2)-(3.1.3) constrain the upper level objective function (3.1). Constraint (3.1.2) 

states the relationship between scheduled energy productions in the DA market by the 

WPP, the EV aggregator, and the HPP. Constraint (3.1.3) imposes the relationship 

between actual energy generated by the WPP, the EV aggregator, and the HPP. 
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Constraint (3.1.4) imposes the limit of available energy for the HPP according to each 

scenario. Then (3.1.5) gives the relationship between scheduled energy productions in 

the RT market by the WPP, the EV aggregator, and the HPP. (3.1.6) limits energy 

bought or sold for the HPP in the RT market. (3.1.7) and (3.1.8) state the relationship 

between scheduled energy productions in the DA market, RT market, and total energy 

productions for the EV aggregator and WPP separately. Constraint (3.1.9) is used to 

maintain EVs to avoid overcharging and over-discharging. Equation (3.1.10) gives state 

changes of charging/discharging for EVs connected to the EV aggregator. The charging 

/ discharging rate in each hour is limited in (3.1.11). Equation (3.1.12) shows the eth 

EV aggregator’s scheduled energy in the DA market, which is equal to the energy 

provided in V2G minus the energy consumed in G2V. Besides, 𝑈 ,  and 𝑉 ,  are 

binary variables as (3.1.15). So inequalities (3.1.13) and (3.1.14) are used to constrain 

𝑃 ,
,  and 𝑃 ,

,  not to exist at the same time. Additionally, the lower limit for 

𝑃 ,
,  and 𝑃 ,

,  is a nonzero value 𝑃 ,
, . It means that the EV aggregator 

may provide energy by V2G in due time with WPP to satisfy the high energy offered, 

and use wind energy to meet charging demand for EV owners when offered energy is 

relatively low. Finally, (3.1.16) and (3.1.17) are used to compute the CVaR [113].  

2) Lower Level 

In the pool-based electricity market, ISO collects all producers’ offer prices and 

consumers’ bid prices and finishes market clearing. Finally, ISO provides price signals 

and the scheduled energy to all participants in the upper level. This process is finished 

in the lower level model. As demands are considered as elastic, the objective function 

(3.2) in the lower level is to maximize social welfare from the perspective of the grid. 

Besides, traditional OPF is used to clear the market transaction. 

Maximize  
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(3.2.8) 

The optimization variables of the LL problem are the variables in the set 

∆ ={𝑃 ,
, , 𝑃 ,

, , 𝜆 ,
, , 𝑃 ,

, , 𝜆 ,
, , 𝜃 , , 𝑃 ,

, .   

The first constraint (3.2.1) defines the offer price of HPP in the DA market which 

should be nonnegative. (3.2.2) enforces the energy balance between supply and demand, 

which is associated with a dual variable 𝜑 ,  to donate the LMP used in the upper-

level. Inequality (3.2.3) limits the energy flow in each transmission line. Maximum and 

minimum productions of scheduled energy for traditional generation units, load 

consumptions and the HPP in the DA market are shown in (3.2.4), (3.2.5) and (3.2.6) 

individually. It shall be noted that load consumptions, including fixed load requirement 

represented by minimum load values and curtailed load as DR, are considered as 

variables in the model. Equation (3.2.7) sets the voltage angle at the reference node as 

zero and inequality (3.2.8) constrains voltage angles at nodes except the reference node. 
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Additionally,  𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , 𝜇 ,

, , 𝜇 , , 𝜇 ,
, , 𝜇 ,

,   

are the corresponding dual variables for constraints from (3.2.2) to (3.2.8). 

3.3.2 Solution methodology 

To obtain the optimal value, the proposed bi-level model is first transformed into a 

single-level model by replacing the lower level model with KKT (Karush-Kuhn-Tucker) 

constraints, as (2.3a)-(2.4c) in Section 2.2.1 [6]. Then, transformed constraints are 

added to constraints in the upper level to limit the upper objective function. In this way, 

the original bi-level model could become a single-level MPEC problem. The MPEC 

model contains two terms of nonlinearities. Replacing these two non-linear terms using 

strong duality theorem (SDT) and the Fortuny-Amat transformation respectively as 

(2.8a)-(2.9d) in Section 2.2.2, this MPEC model could be further transformed into a 

MILP model [114]. Lastly, the transformed MILP model is well solved by the 

computational tool represented in Section 2.2.3. 

3.4 Case Studies 

   The proposed model is tested in the IEEE six-bus and thirty-bus systems for a day 

divided into 24 hours.  

   While the traditional generation unit capacities are assumed constant throughout the 

day, the capacities of loads would change over time with the demand factor shown in 

Fig. 3.2 [6]. The uncertainties of the RT market price 𝜑  are represented by the same 

10 scenarios in 24 hours with corresponding probabilities selected from [6]. Fig. 3.3 

and Fig. 3.4 show respectively the uncertainties of maximized productions for the WPP 

and the number of EVs that can be aggregated by the EV aggregator over time [11, 

115]. For the sake of simplicity, probabilities of all scenarios for energy productions 

are considered as (0.1). Additionally, the charging / discharging cost for the EV 

aggregator and the rated power for every EV are set to 20$/MWh and 10kW, 

respectively. Other parameters for the EV aggregator are listed in Table 3.1. 
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Fig. 3.2 Demand factors over time 

 

Fig. 3.3 Scenarios data for actual maximize output of the wind energy 
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Fig. 3.4 Scenarios data for the number of aggregated EVs 
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Table 3.1 Data for the EV aggregator  

EV 
Aggregator 

𝑆𝑂𝐶  
(pu) 

𝑆𝑂𝐶  
(pu) 

𝛾  𝛾  𝛾  
𝐸  

(MWh) 

Value 0.9 0.3 0.9 0.85 0.2 600 

3.4.1 Six-Bus System  

The IEEE six-bus system consists of 3 generators, 3 demands, and 11 transmission 

lines. A WPP and an EV aggregator are located at node 4 and node 5, respectively. 

Table 3.2 lists capacities, offer prices and bid prices for traditional generation units and 

load units [6].  
Table 3.2 Offer and bid data for generators and loads 

 Traditional generators Loads 

Bus 1 2 3 4 5 6 

Offer price($/MWh) 49 50 44 0 0 0 

Bid price ($/MWh) 0 0 0 59 50 40 

1) Offering curve of the HPP model 

With system settings described above, Fig.3.5 presents optimized offering results 

of the aggregated HPP. The blue curve and the green curve refer to energy offered and 

offer prices, respectively, in 24 hours for the DA market. As uncertainties of actual 

energy productions and RT market prices, the energy offered would vary throughout 

the day. Besides, the curve of offer prices would change with the curve of the energy 

offered. The energy offered in Fig. 3.5 is relatively high in the first few hours 9-15 and 

last three hours while corresponding prices are comparatively low. This is because it 

will take an economic risk for the HPP with offer prices being relatively high at these 

moments. Specifically, if the actual energy production is lower than the energy offered, 

the HPP will have to buy the energy at a high price in the RT market for meeting the 

energy offered in the DA market. As a result, the HPP offers relatively low prices at 

moments of comparatively high energy offered, in which it could sell the surplus to the 
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Fig. 3.5 Offer results for aggregated HPP in six-bus system 

RT market with the actual production exceeding the energy offered. Similarly, the HPP 

offers a relatively high price when the energy offered is comparatively low. In this way, 

the HPP may only need to buy a small amount of deficiency at a high price in the RT 

market once the actual production is lower than the energy offered. Conversely, the 

HPP could sell the surplus at a high price when the actual production exceeds the energy 

offered, which makes sense for the HPP’s profits. In general, the HPP adjusts the offer 

price and set the electricity price according to the energy offered. After the clearing 

process in the DA market, the LMP is equal to the offer price at the same node. Then 

energy providers at each node will be paid at the corresponding LMP in the RT market. 

Besides, all clearing LMPs are equal at all nodes in a six-bus system with no congestion 

occur. To sum up, the influence of energy quantities offered on cleared market prices 

shows how large-scale renewable resources strategically affect electricity prices in the 

electricity market. 

2) Optimal offering energy quantity of the HPP model 

Optimal quantities of energy offered for the HPP model in the six-bus system is 

shown in Fig.3.6. Offering quantities of the aggregated HPP increase at hours 9-15 and 

20-24. At these moments, the cooperated EV aggregator calls for EV owners to 

discharge and provides energy to the WPP for the energy offered in Fig. 3.6. Besides, 

the EV aggregator may use redundant wind energy to satisfy the charging demand for 

EV owners when the energy offered is relatively low. 
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Fig. 3.6 Energy quantity of HPP for the DA market in six-bus system 

3) Comparison and Discussion 

Here, the proposed HPP model is compared to three other models. The first one has 

only a WPP strategically offering price to be price-makers and the clearing process 

consists of the WPP, traditional units and loads. The second model is similar to the first 

one but has only an EV aggregator strategically offering price instead. The third is the 

sum model in which a HPP and an EV aggregator offer price together but without 

cooperating. In the proposed model, EVs are required to compensate the WPP to 

provide energy to satisfy the high energy offered and the WPP is used to meet charging 

demand for EV owners when the offered energy is relatively low. 

Fig. 3.7 shows the comparison of revenues from these three models with the 

proposed one. According to revenue graphs in 24 hours, the HPP model takes more 

profits. This is due to the EV aggregator mitigates uncertainties of the WPP and the 

change of demand sides by controlling V2G and G2V flexibility, which further 

improves the profits by selling energy during high energy offered time and increasing 

EV owners’ consumption for storing more energy at moments of low energy offered. 

4) Impact of Incorporating Risk on the HPP model 

Table 3.3 compares the expected revenues and the CVaR for different weighting 

parameter 𝜉 in the sum model and the HPP model. The confidential level 𝛼  is 

set to 0.95. As the parameter 𝜉 increases from 0.01 to 1, the expected profit decreases  
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Fig. 3.7 Comparison of revenues with other three models 

Table 3.3 Comparison of revenues and CVaR for different weighting parameter 𝜉   

𝜉 
Sum HPP 

Revenue ($) CVaR ($) Revenue ($) CVaR ($) 

0.01 137955.70 72.29 179632.29 76.30 

0.1 137933.30 681.22 179622.87 749.25 

0.2 137730.75 1115.71 179585.16 1451.05 

0.5 137165.48 1906.29 179294.70 3160.38 

0.8 136497.45 2278.35 178877.82 3673.69 

1 136430.83 2771.84 178487.78 4514.93 

∆ 𝐶𝑉𝑎𝑅 
∆ ꭓ

 1.77 3.88 

 

while the CVaR increases. Specifically, the revenue decreases by 1.1% and 0.64% for 

the sum model and the combined HPP model respectively, while the CVaR increases 

by 2.7% and 1.7% respectively. Therefore, just a small decrease in revenues could 

diminish the risk. Besides, ∆ 𝐶𝑉𝑎𝑅 /∆ ꭓ  means the changing rate of CVaR relating 

to the change of revenue. The higher ∆ 𝐶𝑉𝑎𝑅 /∆ ꭓ  implies less decrease in revenue 

and more increase in CVaR, which also means the profit volatility is better controlled. 

Table 3.3 shows this ratio is higher for the HPP model. Meanwhile, offering curves 

would change with different risk weighing parameters. The HPP reduces its profit’s 

volatility caused by uncertainties with introducing the CVaR to offer strategically. 
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3.4.2 Thirty-Bus System 

The IEEE thirty-bus system consists of 6 generators, 20 demands, and 41 

transmission lines. A strategic WPP and an EV aggregator are located at node 17 and 

node 26, respectively. 

Offer results for the HPP model are plotted in Fig. 3.8. Due to the uncertainties of 

actual energy productions and RT market prices, the energy scheduled to offer would 

vary throughout the day. Besides, the curve of offer prices would change as the curve 

of the energy offered. In Fig. 3.8, the energy scheduled to offer are relatively high in 

the first few hours 13-19 and last two hours. During these periods, corresponding prices 

are comparatively low. The analysis for this case is similar to the IEEE six-bus system. 

Optimal energy quantities of the HPP model offered in this case system is shown in Fig. 

3.9, in which offering quantities increase at hours 13-14 and 23-24. At these moments, 

the cooperated EV aggregator calls for EV owners to discharge for the energy offered 

in Fig. 3.8. Then the EV aggregator could use the wind energy to satisfy the charging 

demands from EV owners during periods of low energy offered such as hours 11-12 

and 21-22. Fig. 3.10 shows the comparison of combined HPP revenues with the sum 

model, in which the EV aggregator and the WPP participates in the electricity market 

offer separately. It can be seen the HPP model takes more profits. 

 

Fig. 3.8 Offer results for aggregated HPP in thirty-bus system 

Remark: The proposed model is developed from the perspective of the aggregated 

large scale DERs, thus they affect electricity prices by strategically bidding. It is critical 
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to avoid market power from the market designer's point of view. In general, there are 

two approaches. One is reducing the percentage of each participant, the other one is 

setting price cap of the bidding. This can be done as a future work.  

 
Fig. 3.9 Energy quantity of HPP for the DA market in thirty-bus system 

 

Fig. 3.10 Comparison of revenues from other models 

3.5 Summary 

A stochastic optimization model is proposed in this Chapter to derive the offering 

strategy for the aggregated HPP to be a price-maker in the DA pool-based market. The 

model consists of two levels, with offering decisions to make to maximize the HPP’s 

profits in the upper level and market clearing to complete to maximize revenues of the  

grid in the lower level. This bi-level problem is then transformed into a MPEC problem 

by KKT conditions and further solved as a MILP problem with Strong Duality theory 
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and the Fortuny-Amat transformation. By combining WPPs and EVs, several promising 

results have demonstrated the validity of the proposed HPP model: 1) Large-scale 

renewable resources could be aggregated for strategical bidding and setting electricity 

prices according to their and the grid’s interests. 2) The proposed model shows 

cooperative energy provided by the WPP and the EV aggregator during different time 

slots. In this way, the total cost of energy consumptions and the waste of wind resources 

are reduced, which is cost-effective and more environmentally friendly. 3) The 

proposed HPP model has been demonstrated that it could take more profits by 

comparing with three other models. 4) With the consideration of risk in the HPP model, 

the profit volatility caused by uncertainties could be coped with more effective. 
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Chapter IV 

Bidding Strategy for the Coordinated Operation of 

Wind Power Plants and NGG-P2G Units in 

Electricity Market 

4.1 Introduction 

Extending virtual power plant (VPP) to a virtual multi-energy plant (VMP) and 

exploring multiple energy synergies could help balance fluctuations of renewable DERs 

[116, 117]. The proliferation of NGGs and the emerging P2G technology have enabled 

bidirectional energy flows between electric power network and natural gas systems. As 

a result, the integrated NGG-P2G with high operation flexibility is promising to 

coordinate with the WPP. The coordinated model is expected to bring more profits as 

NGG-P2Gs could counterbalance wind energy fluctuations and provide large capacities 

for ancillary services in a VMP. So far, to the best of knowledge, there are few studies 

considering the coordinated NGG-P2G unit and WPPs as a price-maker in electricity 

market to increase their overall profits. Therefore, considering uncertainties of wind 

output capacities and RT prices, a bidding strategy model of coordinated suppliers 

consisting of WPP and NGG-P2G unit is proposed here, where the coordinated supplier 

is considered as a price-maker in DA market and a price-taker in RT market as well as 

providing ancillary services employed in real-time through the NGG-P2G unit to 

enhance their common interests. 

In this Chapter, a bi-level stochastic optimization model is proposed for a 

coordinated WPP and NGG- P2G supplier participating in DA market and RT market 

as well as providing auxiliary services in real-time. The coordinated supplier’s profit is 

maximized in the upper level with consideration of the uncertainties of WPP’s output 
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capacities and RT electricity prices, while the social welfare of the grid is maximized 

in the lower level. Simulation results have demonstrated the effectiveness of the 

proposed bidding model of the coordinated WPP and NGG-P2G unit by examining its 

bidding behaviors and benefits with comparisons of four other bidding models. 

The nomenclature of symbols used in this Chapter is given as follows. 

Indices: 

le/lg/let/lgt Index of interruptible electricity loads (IELs) /natural gas loads 

(NGLs)/electric thermal loads (ETLs)/ gas thermal loads (GTLs) 

s/b/ω Index of PV units/battery energy storage systems (BESSs)/ wind 

power plants (WPPs) 

i Index of integrated natural gas generating (NGG) and power-to-gas 

(P2G) units 

c Index of coordinated WPPs and NGG-P2G suppliers 

g Index of natural gas wells 

n/q Index of nodes in electricity/natural gas network 

𝛼/𝛽 Index of scenarios of real-time (RT) market prices/WPP output 

Sets:  

𝛺 /𝛺  

/𝛺 /𝛺  

Set of nodes with IELs / ETLs /PV units/BESSs in electricity 

network 

𝛺  Set of nodes with GTLs in natural gas network 

𝛺 /𝛺  Set of nodes connected to node n/q in electricity/natural gas 

network  

𝛺  Set of natural gas pipelines 

𝑇 Total time periods 

𝑁 /𝑁  Set of scenarios for RT market prices/WPP output 
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Parameters： 

𝜏 /𝜏  Probability of scenario 𝛼  of RT market prices/ scenario 𝛽  of 

WPP output 

𝜑  RT market price in scenario 𝛼, in $/MW 

𝜆  Natural gas price for NGG units, in $/MW 

𝑃 ,  Maximum traded power of coordinated suppliers in RT market 

𝑃 , ,
,  WPP capacity in scenario 𝛽 at time 𝑡 , in MW 

𝑃 ,  Integrated NGG-P2G capacity, in MW 

𝑃 ,

/𝑃 ,  

Maximum operation power of NGG/P2G facility, in MW 

𝜆 , ,
, /𝜆 , ,

,  Up/down regulation price of NGG-P2G unit, in $/MW 

𝜆 , /𝜆 ,

/𝜆 , /𝜆 ,   

Offer price of IEL/ETL/PV/BESS at node n in DA market, in 

$/MW 

𝑓  Capacity of power line nm, in MW 

𝐵   Susceptance of power line nm 

𝛾 /𝛾  Power-to-gas/Gas-to-power conversion efficiency, in % 

𝑆 ,

/𝑆 ,  
Minimum/maximum gas storage in natural gas network, in MW 

𝑃 ,  Minimum thermal consumption of all GTLs, in MW  

𝑃  Thermal consumption of all ETLs and GTLs, in MW  

𝑃 , / 

𝑃 ,  

Capacity of natural gas well g/ gas pipeline pq, in MW 

𝑃 /𝑃  Maximum power output of PV/BESS in MW  

𝑃 ,  Maximum power consumption of IEL le, in MW 

𝑃 ,  Power consumption of NGL lg at time t, in MW 

𝜎  Gas pipeline constant  
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Variables: 

𝜑 ,  Locational marginal price (LMP) at node n and time t, in $/MW 

𝑃 ,
,  Scheduled power output of coordinated supplier in DA market at 

time t, in MW 

𝑃 ,
,  Offered power of coordinated supplier in DA market at time t, in 

MW 

𝑃 , , ,
,  Traded power in RT market for coordinated supplier in scenario 𝛼 

and 𝛽 at time t, in MW  

𝑃 , , ,
, /𝑃 , , ,

,  Up/down regulation power of integrated NGG-P2G unit in scenario 

𝛼 and 𝛽 at time t, in MW 

𝑃 ,
,  

/𝑃 ,
,  

Scheduled power output of WPP/ NGG-P2G unit in DA market at 

time t, in MW 

𝑃 , , ,
,  

/𝑃 , , ,
,  

Traded power in RT market by WPP/ NGG-P2G unit in scenarios 

𝛼 and 𝛽 at time t, in MW 

𝑃 ,
,

/𝑃 ,
,  

Scheduled power output of NGG/ P2G unit in DA market at time t, 

in MW 

𝑃 , , , /𝑃 , , ,  P2G output/ NGG consumption in scenario 𝛼 and 𝛽 at time t in 

DA and RT market, in MW 

𝑃 , , ,
,

/𝑃 , , ,
,  

Up regulation power provided by NGG/P2G unit in scenario 𝛼 

and 𝛽 at time t, in MW 

𝑃 , , ,
,

/𝑃 , , ,
,  

Down regulation power provided by NGG/ P2G unit in scenario 𝛼 

and 𝛽 at time t, in MW 

𝑃 ,
,  

/𝑃 ,
,  

Scheduled power consumption of IEL/ ETL at time t in DA market, 

in MW 

𝑃 ,
,  

/𝑃 ,
,  

Scheduled power output of PV unit/BESS in DA market at time t, 

in MW 

𝜆 ,
,  Offer price of coordinated supplier in DA market at time t, in $/MW 

𝜃 ,    Voltage angle at node n and time t in DA market  
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𝑃 , , , /𝑃 , , ,
,  Electricity/Gas output of NGG-P2G unit in scenario 𝛼 and 𝛽 at 

time t, in MW 

𝑆 , ,  Gas storage in gas pipelines in scenario 𝛼 and 𝛽 at time t, in MW 

𝑃 ,  Gas supplied by gas well g at time t, in MW 

𝜋 , /𝜋 ,  Gas pressure of node q/p at time t 

𝑃 ,  Gas flow in pipeline qp at time t, in MW, positive for gas flow from 

node q to p, otherwise negative 

𝛤  Compressor pressure ratio between pipeline nodes q and p 

𝑃 ,  Gas consumed by GTL lgt at time t, in MW  

4.2 Problem Description 

For a VMP as shown in Fig. 4.1, the electricity network includes WPPs, NGG-P2G 

and PV units, BESS, and IELs, and the natural gas network comprises gas wells and 

compressors, and NGLs. The thermal load can be jointly supplied by electricity and 

natural gas resources. 

Upper level :
WPP NGG-P2G

PVsIELs BESSs

Gaswell

Gas
Compressor 

Natural gas flow 
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Fig. 4.1 Coordinated WPPs and NGG-P2G units 
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A stochastic bi-level model is proposed, as illustrated in Fig. 4.1, to obtain the 

optimal bidding strategy of coordinated WPPs and NGG-P2G suppliers. At the lower 

level (LL), the ISO in DA market completes market clearing with offers collected from 

all participants to maximize the social welfare. The large-scale WPPs and NGG-P2G 

suppliers are coordinated as price-makers to provide offers to ISO while the small-scale 

PV units, BESSs and DR loads are non-strategic participants with given offer prices 

and provide their supply limits to ISO [6]. The ISO in LL provides Locational Marginal 

Prices (LMPs) and scheduled power output to participants at the upper level (UL). At 

UL, a two-stage complementarity model is presented to maximize the payoff of 

coordinated WPPs and NGG-P2G suppliers. At the first stage, they decide the offer 

price and quantity strategically as well as the synergies between WPPs and NGG-P2G 

units in DA market. At the second stage, WPPs and NGG-P2G units would optimize 

electricity trading and provide auxiliary services in RT market. Note that the 

coordinated supplier behaves as a price maker only in DA market, while it buys/sells 

its production deviations as a price taker in RT market. This assumption relies on the 

fact that the highest volume of energy trading generally occurs in DA market. 

Nevertheless, it is feasible to consider the coordinated supplier as a price-maker in RT 

market.  

In the proposed stochastic bi-level model, uncertainties of RT electricity prices and 

WPP outputs are considered by scenarios. As described in Section 2.1, scenarios are 

derived from a scenario generation process by the roulette wheel mechanism and an 

efficient scenario-reduction algorithm based on the fast-forward selection method. The 

electricity transmission network is represented by a DC model, and the components in 

the natural gas network including linepacks, gas flows and gas compressors are 

linearized in steady-state operating conditions [118]. 

4.3 Mathematical Formulation 

In this Section, a stochastic bi-level bidding strategy model is proposed. The 
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coordinated WPP and NGG-P2G supplier model is introduced at the upper level, while 

the lower level represents the integrated electricity and gas system. 

4.3.1 Upper-level model  

In DA market, coordinated WPPs and NGG-P2G suppliers in UL first provides the 

offer power 𝑃 ,
,  and price 𝜆 ,

,  to ISO at LL, then the scheduled power output 

𝑃 ,
,  and LMP 𝜑 ,  in LL are feedbacked to the coordinated WPPs and NGG-P2G 

suppliers to maximize their payoffs in UL in (4.1). 

Maximum 

𝜑 , ⋅ 𝑃 ,
,

∈

𝜏 ⋅ 𝜏 ⋅ 𝜑 ⋅ 𝑃 , , ,
, 𝜆 ⋅ 𝑃 , , ,

∈∈

𝜆 , ,
, ⋅ 𝑃 , , ,

, 𝜆 , ,
, ⋅ 𝑃 , , ,

,  

 

(4.1) 

The first term 𝜑 , ⋅ 𝑃 ,
,  in (4.1) is the revenues for selling power in DA market, 

followed by incomes of selling or expenses of buying power in RT market 𝜑 ⋅ 𝑃 , , ,
,  

and power production cost 𝜆 ⋅ 𝑃 , , ,  of natural gas by NGG-P2G units in DA and 

RT markets. Because the actual power 𝑃 , , ,  is usually deviated from the scheduled 

power output 𝑃 ,
,  in DA market, the coordinated WPPs and NGG-P2G supplier 

needs to buy deficit or sell surplus power 𝑃 , , ,
,   in RT market to compensate the 

power deviation in DA market, and hence 𝑃 , , ,
,  could be positive or negative. The 

third term (𝜆 , ,
, ⋅ 𝑃 , ,

, 𝜆 , ,
, ⋅ 𝑃 , ,

,  ) is the revenue of NGG-P2G units for 

providing auxiliary services in RT market. The model uncertainties pertain to 𝜑  in 

(4.1) and 𝑃 , ,
,  in (4.1.4), in which 𝛼 and 𝛽 are indexes of scenarios for RT 

market prices and WPP output separately. The upper-level constraints include (4.1.1)- 

(4.1.20) as listed below. 

(1) Generation constraints for the coordinated WPPs and NGG-P2G units 

𝑃 ,
, 𝑃 ,

, 𝑃 ,
, ，∀𝑡 (4.1.1) 

𝑃 , , ,
, 𝑃 , , ,

, 𝑃 , , ,
, ，∀𝛼,𝛽, 𝑡 (4.1.2) 
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𝑃 , 𝑃 , , ,
, 𝑃 , ,∀𝑐, 𝑡 (4.1.3) 

Constraints (4.1.1)-(4.1.2) state the power relationship among coordinated WPPs, 

NGG-P2G suppliers in DA and RT markets, respectively. Constraint (4.1.3) constrains 

coordinated supplier trading in RT market. 

(2) WPP constraints 

𝑃 ,
, 𝑃 , , ,

, 𝑃 , ,
, ,∀𝛼,𝛽,𝜔, 𝑡 (4.1.4) 

𝑃 ,
, 0，∀𝜔, 𝑡 (4.1.5) 

Constraint (4.1.4) limits the sum of the scheduled WPP output in DA market and 

the power output in RT market. (4.1.5) defines the nonnegativity of the scheduled WPP 

output in DA market. 

(3) Constraints of the integrated NGG-P2G unit 

𝑃 ,
, 𝑃 , , ,

, 𝑃 , , , ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.6  

𝑃 , , , 𝑃 , ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.7  

𝑃 ,
, 𝑃 ,

, 𝑃 ,
, ,∀𝑖, 𝑡 4.1.8  

𝑈 , 𝑉 , 1,∀𝑖, 𝑡 4.1.9  

𝑉 , ⋅ 𝑃
, 𝑃 ,

, 𝑉 , ⋅ 𝑃
, ,∀𝑖, 𝑡 4.1.10  

𝑈 , ⋅ 𝑃
, 𝑃 ,

, 𝑈 , ⋅ 𝑃
, ,∀𝑖, 𝑡 4.1.11  

𝑃 , , ,
, 𝑃 , , ,

, 𝑃 , , ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.12  

𝑃 , , ,
, 𝑃 , , ,

, 𝑃 , , ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.13  

𝑃 , , ,
, 𝑃 , , ,

, 𝑃 , , ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.14  

𝑃 , , , 𝑃 ,
, 𝑃 , , ,

, 𝑃 , , ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.15  

𝑃 , , , 𝑃 ,
, 𝑃 , , ,

, 𝑃 , , ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.16  

0 𝑃 , , ,
, 𝑉 , ⋅ 𝑃

, 𝑃 ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.17  

0 𝑃 , , ,
, 𝑃 ,

, 𝑉 , ⋅ 𝑃
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.18  
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0 𝑃 , , ,
, 𝑈 , ⋅ 𝑃

, 𝑃 ,
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.19  

0 𝑃 , , ,
, 𝑃 ,

, 𝑈 , ⋅ 𝑃
, ,∀𝛼,𝛽, 𝑖, 𝑡 4.1.20  

Constraints (4.1.6)-(4.1.7) state bounds of total power output of the integrated NGG-

P2G in DA and RT markets. Equation (4.1.8) shows the NGG-P2G scheduled power 

output in DA market is equal to the power provided by NGG minus power consumed 

by P2G. Besides, 𝑈 ,  and 𝑉 ,  are binary variables as in (4.1.9) and inequalities 

(4.1.10)-(4.1.11) are used to constrain 𝑃 ,
, , 𝑃 ,

,   respectively. Note that the 

lower limits of 𝑃 ,
,  and 𝑃 ,

,  are nonzero. This is because the integrated 

NGG-P2G facility is coordinated with WPP to provide power in due time, while using 

surplus wind energy to supply NGLs or be stored as storage natural gas when power 

offer is relatively low. Equation (4.1.12) shows the relationship between power 

production or consumption in RT market and the up and down auxiliary power of the 

integrated NGG-P2G. Constraints (4.1.13) and (4.1.14) calculate the power up and 

down auxiliary services of the integrated NGG-P2G, respectively. The total NGG and 

P2G power generation in DA and RT markets is calculated in (4.1.15) and (4.1.16), 

respectively, which are used in the LL to constrain natural gas network. The limits for 

the auxiliary power of NGG-P2G are shown in (4.1.17)-(4.1.20). The optimization 

variables of the UL problem are the variables in the set ∆ ={ 𝜑 , ,

𝑃 ,
, ,  𝑃 ,

, ,  𝑃 ,
, , 𝑃 , , ,

, , 𝑃 , , ,
, , 𝑃 , , ,

, , 𝑃 , , , ,  𝑃 , ,
, ,

𝑃 , ,
, ,  𝑃 ,

, ,𝑃 ,
, ,𝑃 , , ,

, , 𝑃 , , ,
, ,𝑃 , , ,

, ,  𝑃 , , ,
, .    

 

4.3.2. Lower-Level model 

At the lower level, the ISO collects offers from all market participants and then 

completes market clearing with the traditional optimal power flow to maximize the 

overall social welfare. As a result, the objective in the lower level could be described 

by the revenues of selling power to loads 𝜆 , ⋅ 𝑃 ,
, 𝜆 , ⋅ 𝑃 ,

,  minus 

costs of buying power from suppliers 𝜆 , ⋅ 𝑃 ,
, , 𝜆 , ⋅ 𝑃 ,

,  and 𝜆 ,
, ⋅
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𝑃 ,
, , and the constraints include (4.2.1)-(4.2.20). 

Maximize  

∑ ∈ ∑ 𝜆 , ⋅ 𝑃 ,
, ∑ 𝜆 , ⋅ 𝑃 ,

,
∈∈

∑ 𝜆 , ⋅ 𝑃 ,
, ∑ 𝜆 , ⋅ 𝑃 ,

,
∈∈ ∑ 𝜆 ,

, ⋅ 𝑃 ,
,

∈ ) 

(4.2) 

(1) Generation constraints for the coordinated WPPs and NGG-P2G supplier, PV, 

BESS and loads 

𝜆 ,
, 0,∀𝑐, 𝑡 4.2.1  

0 𝑃 ,
, 𝑃 ,

, : 𝜇 , , 𝜇 , ,∀𝑐, 𝑡 4.2.2  

0 𝑃 ,
, 𝑃 : 𝜇 ,

, , 𝜇 ,
, ,∀𝑠, 𝑡  4.2.3  

0 𝑃 ,
, 𝑃 :𝜇 ,

, , 𝜇 ,
, ,∀𝑏, 𝑡  4.2.4  

0 𝑃 ,
, 𝑃 , : 𝜇 ,

, , , 𝜇 ,
, , ,∀𝑙𝑒, 𝑡 4.2.5  

The first constraint (4.2.1) defines the offer price of the coordinated supplier in DA 

market is nonnegative. Maximum and minimum production constraints of the 

coordinated WPPs and NGG-P2G supplier, PV unit, BESS unit, and the IEL are shown 

in (4.2.2)-( 4.2.5) individually. 

(2) Electricity network constraints 

𝑃 ,
, 𝑃 ,

, 𝑃 ,
, 𝐵 ⋅

∈

𝜃 , 𝜃 ,

𝑃 ,
, 𝑃 ,

, :𝜑 , ,∀𝑛, 𝑡 

 

4.2.6  

𝑓 𝐵 ⋅ 𝜃 , 𝜃 ,  

𝑓 :𝜇 ,
, , 𝜇 ,

, ,∀𝑚,𝑛 ∈ 𝛺 , 𝑡 

4.2.7  

 𝜃 , 0: 𝜇 , ,𝑛: 𝑟𝑒𝑓,∀𝑡 4.2.8  

𝜋 𝜃 , 𝜋: 𝜇 ,
, , 𝜇 ,

, ,∀𝑛\𝑛: 𝑟𝑒𝑓,∀𝑡 4.2.9  

Equation (4.2.6) enforces the power balance between nodal supply and demand, 
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which is associated with a dual variable 𝜑 ,  to donate the LMP used in the upper-

level. Inequality (4.2.7) limits the power flow in each transmission line. Equation 

(4.2.8) sets the voltage angle at the reference bus and inequality (4.2.9) is voltage angle 

limit. Additionally, 𝜇 , ,𝜇 , , 𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , , 𝜇 ,

, , ,𝜑 , , 𝜇 ,
, , 

𝜇 ,
, , 𝜇 , , 𝜇 ,

, , 𝜇 ,
,  are dual variables for (4.2.2) to (4.2.9). 

(3) Natural gas network constraints 

𝑆 , , 𝑆 , , 1 𝑃 ,

∈

，∀𝛼,𝛽, 𝑡 4.2.10  

𝑆 , 𝑆 , , 𝑆 , ，∀𝛼,𝛽, 𝑡 4.2.11  

𝑃 , , ,
, 𝑃 , 𝑃 ,

∈

𝑃 , 𝑃 , ，∀𝑞, 𝑡 4.2.12  

𝑃 , , ,
, 𝑃 , , ,

2 ⋅ 𝛾 2 𝑃 , , , /𝛾 ,∀𝛼,𝛽, 𝑖, 𝑡 4.2.13  

0 𝑃 ,
well 𝑃 , ,∀𝑔, 𝑡 4.2.14  

𝑃 , 𝑠𝑔𝑛 𝜋 , ,𝜋 ,  ⋅ 𝜎 ⋅ 𝜋 , 𝜋 , ,∀𝑝, 𝑞 ∈ 𝛺 , 𝑡 4.2.15  

𝑠𝑔𝑛 𝜋 , ,𝜋 ,
1; 𝑖𝑓𝜋 , ≫  𝜋 ,

1; 𝑖𝑓𝜋 ,  𝜋 ,  
,∀𝑝 ∈ 𝛺 , 𝑡 

4.2.16  

𝑃 , 𝑃 , ,∀𝑞𝑝 ∈ 𝛺 ,𝑑𝑡 4.2.17  

𝜋 ,  Γ ∗ 𝜋 , ,    Γ 1 4.2.18  

𝑃 ,  

∈

𝑃 ,
,  

∈

𝑃 ℎ ,∀𝑡 4.2.19  

𝑃 ,  

∈

𝑃 ℎ , ,∀𝑙𝑔𝑡, 𝑡 4.2.20  

Equation (4.2.10) defines the pressurized gas stored in natural gas pipelines which 

is constrained in (4.2.11). Equation (4.2.12) is the gas balance between supply and 

demand in the natural gas network for node q. Equation (4.2.13) shows that the 

integrated NGG-P2G scheduled natural gas output is equal to the energy provided by 
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P2G minus the energy consumed in NGG. Inequality (4.2.14) limits the gas well 

quantity. The steady state gas flow is modeled by the Weymouth’s formula and 

represented as (4.2.15)-(4.2.16), in which the gas flow direction 

𝑠𝑔𝑛 𝜋 , ,𝜋 ,  depends on nodal pressure differences [119]. It is noted that these 

nonlinear constraints (4.2.15)-(4.2.16) are linearized by the first-order Taylor series 

approximation [120] to make the proposed model computationally tractable. Inequality 

(4.2.17) represents the pipeline flow limit in natural gas network. The natural gas 

compressor is modeled as (4.2.18) [119]. Equation (4.2.19) shows thermal loads 

supplied by electricity or natural gas. Constraint (4.2.20) is the gas quantity limit for 

the gas thermal unit. The optimization variables of the LL problem are the variables in 

the set ∆ = { 𝑃 ,
, , 𝑃 ,

, , 𝑃 ,
, , 𝑃 ,

, , 𝑃 ,
, , 𝜆 ,

, , 𝜃 , , 𝑆 , , ,

𝑃 , ,𝑃 , ,𝑃 , ,𝑃 , , , ,𝑃 , , , ,𝑃 ,
well .  The optimal bidding strategy can be 

obtained through solving the proposed bi-level model with the approaches (2.1a)-(2.9d) 

in Section 2.2, which is the same as the solution methodology in Chapter Ⅲ. The 

specific formula transformations from a bi-level problem to a single-level MILP are 

listed in the Appendix.   

4.4 Case Studies 

 Experiment Setting 

The proposed model is tested on an IEEE 6-bus electric system with a 7-node natural 

gas network and an IEEE 30-bus electric system with a 14-node natural gas network 

for 24 hours with a 1 hour resolution. 1000 scenarios are first generated [121] 

respectively for RT market electricity prices and WPP outputs, which are separately 

derived from the price data in [94] and wind data in [115]. The scenarios are then 

reduced to 10 through the scenario-reduction algorithm as in Figs. 4.2 and 4.3, with 

scenario probabilities listed in Table 4.1. The gas price is 8.37$/MWh for 24 hours. 

Parameters of the integrated NGG-P2G unit are listed in Table 4.2. The rated power of 

PV unit and BESS is 100MW and 140MW respectively, while NGLs, maximum IELs, 
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and maximum thermal loads would change over time as shown in Tables 4.3 to 4.5. 

Offer prices for non-strategic participants including the PV unit, BESS, IEL and ETL, 

and prices of up/down power regulations are presented in Fig. 4.4. 

 

Fig. 4.2 Scenarios for WPP output  

 
Fig. 4.3 Scenarios for RT electricity prices 

 

Fig. 4.4 Bid prices of non-strategic participants of DA market and prices of up and 
down regulation 
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Table 4.1 Probabilities for scenarios of the WPP output and RT market prices 

Sce 1 2 3 4 5 6 7 8 9 10 

𝜏  0.167 0.153 0.121 0.068 0.105 0.082 0.080 0.072 0.062 0.089 

𝜏  0.122 0.132 0.096 0.105 0.109 0.082 0.094 0.077 0.119 0.064 

Table 4.2 Parameters of the integrated NGG-P2G unit 

𝜆  
($/MWh) 

𝛾 /𝛾  
𝑃 ,  

(MW) 

𝑃 ,  

(MW) 

𝑃 ,  

(MW) 

𝑃 ,  

(MW) 

8.37 0.8/0.5 100 100 100 100 

𝑃 ,  

(MW) 

𝑆 ,  

(MWh) 

𝑆 ,  

(MWh) 

𝑆 ,  

(MWh) 

𝑃 ,  

(MW) 

𝑃 ,  

(MW) 

100 25 0 100 150 10 

Table 4.3 Maximum power consumption of each IEL in 24 hours  

Hour 
load 

(MW) 
Hour 

load 
(MW) 

Hour 
load 

(MW) 
Hour 

load 
(MW) 

1 87.60 7 86.70 13 121.09 19 122.99 

2 82.58 8 95.20 14 121.80 20 118.68 

3 79.34 9 102.78 15 124.43 21 118.66 

4 77.37 10 108.60 16 127.90 22 113.57 

5 77.53 11 114.31 17 128.00 23 100.53 

6 80.24 12 118.05 18 123.37 24 98.38 

Table 4.4 Power consumption of each NGL in 24 hours 

Hour 
Load 
(MW) 

Hour 
Load 
(MW) 

Hour 
Load 
(MW) 

Hour 
Load 
(MW) 

1 73.92 7 79.02 13 84.96 19 92.61 

2 69.67 8 85.81 14 80.71 20 96.00 

3 66.27 9 87.51 15 81.56 21 94.31 

4 67.12 10 89.78 16 83.26 22 92.61 

5 58.06 11 86.66 17 85.81 23 85.81 

6 79.85 12 86.66 18 88.36 24 78.17 
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Table 4.5 Hourly total thermal consumption of EILs and GTLs 

Hour 
 

Load 
(MW) 

Hour 
 

Load 
(MW) 

Hour 
 

Load 
(MW) 

Hour 
 

Load 
(MW) 

1 24.90 7 21.81 13 27.60 19 22.35 

2 23.10 8 24.90 14 27.00 20 22.41 

3 22.20 9 26.70 15 24.00 21 30.00 

4 21.90 10 27.30 16 22.50 22 29.40 

5 21.60 11 28.20 17 22.20 23 27.60 

6 21.75 12 28.35 18 21.90 24 27.30 

 

4.4.1 Six-Bus System 

The proposed model is first tested on an IEEE 6-bus electric power system coupled 

with a 7-node natural gas network by the integrated NGG-P2G unit as shown in Fig. 

4.5. In the electric power network, PV unit and BESS are located at buses 1 and 6, 

respectively, while two IELs are connected at buses 3-4 and an ETL is connected at bus 

5. The coordinated WPP and NGG-P2G supplier as strategic partners are deployed at 

bus 5. In the natural gas network, the connections include an integrated NGG-P2G at 

node 1, a gas well at node 7, a compressor between nodes 2 and 4, and a NGL and a 

GTL at nodes 3 and 5, respectively. 

 
Fig. 4.5 The 6-bus power system with a 7-node gas network 
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Fig. 4.6 shows scheduled power of all market participants in VMP. The scheduled 

power output of the coordinated WPP and NGG-P2G supplier 𝑃 ,
,  is equal to its 

offered power 𝑃 ,
,  during 24 hours. In addition, the offered power of the 

coordinated WPP and NGG-P2G supplier can cover all loads including IELs and ETL  

in the first 16 hours and last three hours. While the offered power of the coordinated 

WPP and NGG-P2G supplier is significantly smaller than the total load during the 

remaining hours 17-21, where the deficient power is supplied by non-strategic BESS 

and PV unit. The schedule is optimized to avoid buying power at a high price in RT 

market for supplementing the coordinated WPP and NGG-P2G supplier. In this case, 

the WPP output which accounts for a large proportion in the total capacity of the 

coordinated WPP and NGG-P2G supplier is dramatically low while RT electricity price 

is relatively high during hours 17 and 21 as depicted in Figs. 4.2 and 4.3, respectively. 

 

Fig. 4.6 Scheduled power of market participants in 6-bus system 

The proposed schedule satisfies the coordinated WPP and NGG-P2G supplier 

constraints. In addition, the offered power of the coordinated WPP and NGG-P2G 

supplier 𝑃 ,
,  is less than the scheduled WPP output 𝑃 ,

,  and the total 

generating capacity 𝑃 , ,
, 𝑃 ,  (indicated by scenarios 1 to 10) at hours  

1-15 and 24 in Fig. 4.7. During this period, offered power can satisfy load requirements 

as shown in Fig. 4.6. Thus, the surplus wind energy between 𝑃 ,
,  and 𝑃 ,

,  

would be used by the P2G facility for storage in the natural gas network to avoid wind 
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energy curtailments. From hours 16-23, the offered power of the coordinated WPP and 

NGG-P2G supplier is approximately equal to the total power generating capacity, 

which is slightly larger than the scheduled WPP output as shown in Fig. 4.7. Here, NGG 

unit is coordinated with WPP and utilizes the energy in the natural gas network to 

satisfy the offered power of the coordinated WPP and NGG-P2G supplier 𝑃 ,
, . 

Based on these distinguished behaviors of P2G and NGG during hours 16-23 and the 

rest hours, it is noted that P2G and NGG are coordinated with WPP to well explore the 

synergy between WPP and NGG-P2G unit. 

 

Fig. 4.7 Total power output scenarios, offered power of the coordinated WPP and 

NGG-P2G supplier, scheduled output of WPP and NGG-P2G unit in 6-bus system 

Additionally, the clearing LMP is kept lower than the RT electricity price 

throughout the 24 hours in Fig. 4.8. As the total power generating capacity of the 

coordinated supplier is larger than its offered power before hours 16 and 23-24 in Fig. 

4.7, the coordinated supplier can sell its surplus in RT market at higher prices for 

making payoff. The offered power by the coordinated supplier is approximately equal 

to the total power generating capacity during hours 16 and 22 as depicted in Fig. 4.7. 

Hence, the coordinated supplier would only buy a small amount of deficiency at a 
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LMPs in DA market, in which the NGG is coordinated with WPP to provide more 

electricity by consuming natural gas at hours with high offered power, while the P2G 

unit is coordinated with WPP to store surplus wind energy in the natural gas network 

at hours with low offered power. Table 4.6 shows payoffs of the coordinated supplier,  
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Fig. 4.8 LMPs and RT electricity price scenarios in 6-bus system 

WPP, and NGG-P2G unit obtained in DA market, RT market and auxiliary services. 

Most of the payoff is provided by the WPP in DA market, which is due to the strategic 

bidding of the coordinated supplier in DA market. The WPP accounts for a large 

proportion in the total capacity of the coordinated WPP and NGG-P2G supplier. The 

payoff is also obtained in RT market because a small difference between scheduled and 

actual power output of the coordinated WPP and NGG-P2G supplier is traded in this 

market. In addition, the energy arbitrage for the provision of auxiliary services is 

attributed to the integrated NGG-P2G unit. 

Table 4.6 Payoff ($) of the coordinated WPP and NGG-P2G supplier in 6-bus system 

Market WPP NGG-P2G 
Coordinated WPP and NGG-

P2G supplier 

DA 2.01×105 -2.10×104 1.80×105 

RT -2.84×103 3.64×103 0.8×103 

Auxiliary 0 8.77×104 8.77e×104 

Total 1.99×105 7.03×104 2.69×105 

Comparison: The proposed model is compared to other models with strategic 
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suppliers represented by WPP, coordinated WPP-NGG unit, coordinated WPP-P2G 

unit, and coordinated WPP-EV aggregator in Chapter III [84]. In Table 4.7, the payoff 

of the proposed model is higher than those of WPP, coordinated WPP-NGG unit, or 

coordinated WPP-P2G unit. The proposed model offers a higher payoff because the 

NGG-P2G unit mitigates WPP variations using a flexible energy flow between power 

and gas systems. The proposed solution stores natural gas with P2G at low bid hours, 

generates electricity by the stored gas via NGG during high bid hours, and provides 

energy arbitrage for auxiliary services of NGG-P2G. Compared to the coordinated 

WPP-EV aggregator presented in Chapter III, which considered the power generation 

cost of EV aggregator and battery degradation cost, the proposed model also earns more 

payoffs as the generation per unit cost of natural gas is lower than that of EV aggregator, 

and the former is not involved with the battery degradation cost either. 

Table 4.7 Payoff ($) of the proposed model and four other models in 6-bus system 

Market 
Proposed 

model 
WPP WPP-P2G WPP-NGG WPP-EV 

DA 1.80e×105 1.79e×105 1.64×105 1.69×105 1.69×105 

RT 799.00 -537.47 -2.69×103 3.42×103 3.94×104 

Auxiliary 8.77×104 0 8.89×104 5.35×104 0 

Total 2.69×105 1.78×105 2.51×105 2.26×105 2.08×105 

4.4.2 Thirty-Bus System 

The merits of the proposed model are further demonstrated by a modified IEEE 30-

bus power system with 14-node gas network as shown in Fig. 4.9.  

The electric power network includes a coordinated WPPs and NGG-P2G supplier 

located at bus 21, 41 branches, 5 PV units, 5 BESSs, 10 IELs and 3 ETLs. The natural 

gas network includes 2 gas wells, 2 compressors, 14 pipelines, 5 NGLs and 3 GTLs. 

The capacities of PV unit, BESS, IEL and NGL are 1/5 of those in Case 1, while the 

total thermal load is the same as in Case 1.  
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Fig. 4.9 The 30-bus power system with a 14-node gas network 

Fig. 4.10 shows the offered power of the coordinated WPP and NGG-P2G supplier 

(i.e., strategic participants), total load and total power generation of non-strategic 

participants. The coordinated WPP and NGG-P2G supplier can fully supply the total 

load during hours 1-16 and 22-24, whereas partial load is supplied during hours 17-21. 

The WPP output is very low and RT prices are relatively high during hours 17-21 as 

shown in Figs. 4.2 and 4.3. Accordingly, if the coordinated WPP and NGG-P2G 

supplier tries to support all loads during hours 17- 21, it would have to buy power at 
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high prices in RT market which would lower its payoff. As a result, the offered power 

of the coordinated supplier is relatively low during hours 17-21. 

 

Fig. 4.10 Scheduled power of market participants in 30-bus system  

The scheduled output of WPP and NGG-P2G, offered power of the coordinated 

WPP and NGG-P2G supplier in DA market, and 10 scenarios of total power generating 

capacity of WPP and NGG-P2G are represented in Fig. 4.11. The integrated NGG-P2G 

unit is coordinated with WPP to provide power when the offered power of the 

coordinated WPP and NGG-P2G supplier is high. The coordination consumes the 

surplus WPP energy to supply NGLs when offered power of the coordinated supplier 

is low. 

 

Fig. 4.11 Total power output capacity scenarios, offered power of the coordinated 

supplier, scheduled output of WPP and NGG-P2G unit in 30-bus system 
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Fig. 4.12 represents LMPs and the scenarios of RT electricity prices. During the 

hours 1-15 and 24, the total power generation of WPP and NGG-P2G unit is large 

enough to satisfy the offered power of the coordinated WPP and NGG-P2G supplier as 

depicted in Fig. 4.11. Here, LMPs are lower than RT electricity prices in Fig. 4.12, in 

which the coordinated WPP and NGG-P2G supplier could sell its surplus power at a 

higher price in RT market for earning higher payoffs. In addition, the NGG-P2G unit 

increases the offered power of the coordinated WPP and NGG-P2G supplier, which is 

approximately equal to the total power generation and increases payoffs during the 

hours 16-23 as shown in Fig. 4.11. In this case, a small amount of power is purchased 

at higher RT prices (see Fig. 4.12) once the actual power production of the coordinated 

supplier is less than its offered power. The effect of bidding behavior of the coordinated 

WPP and NGG-P2G supplier on LMPs shows that the large-scale WPP can be 

coordinated with the integrated NGG-P2G unit to be a price-maker in DA market. 

 

Fig. 4.12 Clearing LMPs and RT electricity price scenarios in 30-bus system 
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providing auxiliary services. Table 4.9 lists the payoff of the proposed coordinated 
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Table 4.8 Payoff ($) of the coordinated WPP and NGG-P2G supplier in 30-bus System 

Market WPP P2G-G2P Coordinated supplier 

DA 1.72×105 -3.88×103 1.68×105 

RT -541.72 2.42×103 1.88×103 

Auxiliary 0 8.49×104 8.49×104 

Total 1.72×105 8.34×104 2.55×105 

Table 4.9 Payoff ($) of the proposed model and four other models in 30-bus System 

Market 
Proposed 

model 
WPP WPP-P2G WPP-NGG WPP-EV 

DA 1.68×105 1.98×105 1.63×105 1.58×105 1.98×105 

RT 916.65 -2.53×103 -2.28×103 4.71×103 3.63×104 

Auxiliary 8.49 ×104 0 8.97×104 8.69×104 0 

Total 2.55×105 1.95×105 2.50×105 2.49×105 2.35×105 

4.5 Summary 

A bi-level stochastic optimization model is proposed for the coordinated operation 

of WPPs and NGG-P2G suppliers, which are modeled as price-makers in DA market 

and price-takers in RT market. At the upper level, the payoff of coordinated WPP and 

NGG-P2G suppliers is maximized with the consideration of uncertainties of WPP 

power output and RT electricity price, while the social welfare of the overall system is 

maximized at the lower level. The promising results of the proposed model are 

validated in the following respects: 1) The large-scale WPP can cooperate with the 

integrated NGG-P2G unit in VMP for strategically bidding in DA market. 2) The 

proposed model provides an effective and coordinated operation of WPP and the NGG-

P2G unit for earning higher payoffs. The uncertainties of WPP output are mitigated and 

wind power curtailments are reduced with flexible operations of NGG-P2G unit. 3) The 

payoff in the proposed model is mostly provided by the WPP in DA market, where the 
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integrated P2G-G2P unit enhances payoffs further by providing auxiliary services. 4) 

The proposed model provides higher payoffs compared with the other four models 

because of the flexible operation and auxiliary services offered by the NGG-P2G unit. 
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Chapter V 

A Multi-agent Competitive Bidding Strategy in a 

Pool-Based Electricity Market with Price-Maker 

Participants of WPPs and EV Aggregators 

5.1 Introduction 

Although the cooperated model in Chapter III has improved the common interests 

of EVs and WPPs on account of their energy coordination during different time slots, 

it depends highly on the centralized control and scheduling of a central aggregator who 

owns lots of bidding information of EVs and WPPs. The communication requirement 

between the central agent with EVs and WPPs is high, the privacy of EVs and WPPs 

cannot be guaranteed, and WPPs and EV aggregators have little flexibility to cope with 

any self-decisions. So far, to the best of knowledge, there is little research considering 

the renewable WPPs and EV aggregators as oligopolists for developing a competitive 

multi-agent bidding strategy in a pool-based DA market without any information of 

opponents. Therefore, a new competitive DA market model for oligopoly players WPPs 

and EV aggregators making their own bidding decisions to increase their respective 

profits without sharing any personal data with each other is first proposed in this 

Chapter.  

A bi-level multi-agent based model is proposed to study their bidding behaviors, 

with market clearing completion in the lower level and revenue maximization in the 

upper level. A stochastic framework is developed to incorporate the uncertainties in 

power production of WPPs and EV aggregators and bid prices of other participants. 

The process of bidding decision is formulated as a stochastic game with incomplete 
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information, in which electricity suppliers including WPPs and EV aggregators are 

considered as players of the game, their lack of information in this stochastic market 

environment is counterbalanced by a multi-agent reinforcement learning (MARL) 

algorithm named win or learn fast policy hill climbing (WoLF-PHC) with their own 

profits maximized by self-game. The feasibility and effectiveness of the proposed 

model and the WoLF-PHC solution approach are successfully illustrated using a 

modified IEEE 6-bus system and a modified 118-bus system with different numbers of 

market players. 

The nomenclature of symbols used in this Chapter is given as follows. 

Indices:  

l Index of loads 

g Index of traditional generators 

e   Index of EV aggregators 

𝜔 Index of WPPs 

n Index of nodes 

ӑ Index of scenarios 

k Index of iterations 

Sets:  

𝛺  Set of all nodes with loads  

𝛺  Set of all nodes with traditional generators   

𝛺  Set of all nodes with EV aggregators  

𝛺  Set of all nodes with WPPs   

𝑁ӑ Set of all scenarios for stochastic optimization (including bid prices 

of traditional generators and loads as well as power production 

capacities of WPPs and EV aggregators) 

Parameters: 

𝑃  Max power output of traditional generator g, in MW  

𝑃 ,ӑ,
,  Max power production of WPP 𝜔 at time t in scenario ӑ , in MW 

𝑃 ,ӑ
,  Max power production of EV aggregator e in scenario ӑ, in MW 
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𝑃 ,  Max power consumption for load l at time t, in MW   

𝐸  Max energy capacity of EV aggregator e, in MWh  

𝑆𝑂𝐶 ,ӑ,  Desired SOC of EV aggregator e in scenario ӑ , in % 

𝑆𝑂𝐶  Upper limit of SOC for EV aggregators, in % 

𝑆𝑂𝐶  Lower limit of SOC for EV aggregators, in %   

𝜆 ,ӑ,  Bid price of traditional generator g at node n and time t in scenario 

ӑ, in $/MW 

𝜆 ,ӑ,  Bid price of load l at node n and time t in scenario ӑ, in $/MW 

c /dis Charging/discharging efficiency, in % 

𝐵    Susceptance of the line connecting nodes n and m, in Siemens 

𝑓  Thermal capacity of the line connecting nodes n and m, in MW 

𝜆  Price for EV aggregators traded with EV owners, in $/MW  

𝜏ӑ Weighting factor (probability) of scenario ӑ, and the sum of 

probabilities for all scenarios is equal to 1, e.g., ∑ 𝜏ӑӑ ӑ
1. 

𝐿  Battery lifetime, in MWh 

𝐶  Battery capital cost, in $  

μ Learning rate of WoLF-PHC 

η Discount factor of WoLF-PHC  

𝛿  Win learning parameters for updating the policy of the algorithm 

𝛿  Lose learning parameters for updating the policy of the algorithm 

Variables： 

𝜑 ,ӑ,         Locational Marginal Pricing (LMP) at node n and time t in scenario 

ӑ, in $/MW 

𝑃 ,ӑ,
,     Power dispatched for EV aggregator e at time t in scenario ӑ, in 

MW  

𝑃 ,ӑ,
,  Power dispatched for WPP 𝜔 at time t in scenario ӑ, in MW  

𝑃 ,ӑ,
,  Power dispatched for traditional generator g at time t in scenario ӑ, 

in MW 

𝑃 ,ӑ,
,  Power dispatched for load l at time t in scenario ӑ, in MW 
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𝑆𝑂𝐶 ,ӑ,  State of charge for EV aggregator e at time t in scenario ӑ, in % 

𝜆 ,  Bid price of WPP 𝜔 at node n and time t, in $/MW  

𝜆 ,  Bid price of EV aggregator 𝑒 at node n and time t, in $/MW 

𝜃 ,ӑ,    Voltage angle at node n and time t in scenario ӑ 

5.2 Multi-agent Electricity Market Model 
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Fig. 5.1 Schematic representation of the proposed market model 

In a pool-based DA market, all market participants are required to provide their sale 

or purchase offers to the ISO in each hour day-ahead [122]. Here, the market is modeled 

as a bi-level structure as shown in Fig 5.1. WPPs and EV aggregators are considered as 

two strategic oligopolies aimed to improve their respective revenues by solving bidding 

problems in the upper level. In the lower level, ISO collects bids from traditional 

generators, loads, and strategic WPPs and EV aggregators, and completes market 

clearing with maximizing the social welfare. Then ISO returns signals of Locational 

Marginal Pricing (LMP) and scheduled power to all participants. All the industrial, 

small residential and commercial loads are considered as a whole participant, i.e. a load 

aggregator. Loads dispatched by the load aggregator consist of fixed and curtailed parts. 

The latter is considered as the elastic load and satisfied with the requirement of DR. In 
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this model, traditional generators and loads are assumed as non-strategic participants. 

Their bid prices are their marginal cost prices and open to strategic suppliers [6]. 

Besides, the transmission network is represented by a DC model without losses. Three 

sources of uncertainties including the maximal power productions of WPPs and EV 

aggregators, and bid prices for non-strategic participants are considered. Besides, the 

correlations of uncertain variables are also taken into consideration in this Chapter. 

1) Stochastic model of WPP maximal power production 

Weibull distribution is popularly used for modeling the probabilistic wind speed 

𝜈  as (5.1). 
( )1( , , ) ( )

kv
kvkf v k e
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where λ and k are the shape and scale parameters. As wind power at nearby locations 

may have related patterns due to the similar meteorological conditions, wind speed 

correlations of multiple wind farms should be generally considered for a stochastic 

optimization problem. The correlation coefficient denoted as CWPP with the range (-

1, 1) is introduced to quantify how well wind speeds at two sites follow each other. 

With the probabilistic wind speed model in (5.1), the maximal power production of a 

WPP is determined from the speed-power curve by (5.2) [122]. 
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where 𝑃  is the rated power; νci, νrd and νct are the cut-in, rated and cut-out wind 

speed, respectively. 

2) Stochastic model of EV maximal power production 

The maximal charging/discharging power of an aggregator is calculated by 

multiplying the number of EVs with the EV average rated power. According to [88, 

123], the number of EVs connected at an aggregator could be described by Gaussian 

distribution, and therefore the stochastic maximal power production of an EV 

aggregator could be modeled as (5.3). 
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where μp and σp are the mean and standard deviation of Gaussian distribution. In a 

general form, the maximal power production correlations of multiple EV aggregators 

are also represented by the correlation coefficients. 

3) Stochastic model of bid prices for non-strategic participants 

The bid price of non-strategic participants at each hour is characterized by the log-

normal distribution as (5.4) [124]. 
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              (5.4) 

where μq and σq are the mean and standard deviation of log-normal distribution, 

respectively. λ  is the bid price of the non-strategic participant .  Similarly, the 

correlation coefficients is used to represent the correlated bid price of multiple non-

strategic participants. 

Scenario generation and reduction strategies with the consideration of correlation 

introduced in Section 2.1 is used in this Chapter. The stochastic features of the maximal 

power production of WPPs and EV aggregators, and the bid prices of non-strategic 

participants modeled in (5.1)-(5.2) would be represented by a proper set of scenarios. 

In specific, the maximal power production of the WPP and EV aggregator, the bid price 

of the traditional generator and load are respectively denoted by 𝑃 ,ӑ,
, , 𝑃 ,ӑ

, , 

𝜆 ,ӑ,  and 𝜆 ,ӑ, . And the expected profits of WPPs and EV aggregators and the social 

welfare from the perspective of ISO can also be expressed by these scenarios and their 

probabilities. The analysis results are dependent on these assumptions, which have been 

generally accepted for such uncertainties. If historical data is used to model the 

uncertainties instead, the result will be similar.  

5.2.1 Clearing model (Lower level) 

In the lower level, the ISO first collects bids from all market participants and then 

completes market clearing. The ISO aims to ensure the efficiency of electricity market, 
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which is characterized by maximized social welfare. As a result, the objective function 

in the lower level should be maximizing social welfare. With the help of traditional 

optimal power flow (OPF) method to clear the market, the dispatched power production 

𝑃 ,ӑ,
,  and 𝑃 ,ӑ,

,  for WPPs and EV aggregators respectively and LMP 𝜑 ,ӑ,  will be 

returned to the upper level for maximizing the revenues of strategic WPPs and EV 

aggregators. The bid prices 𝜆 ,  and 𝜆 ,  are bidding strategy for the WPP ω and 

the EV aggregator e at node n and time t respectively. 

Maximize 
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where ⌈𝑎⌉ is the round-up calculation of a. The optimization variables of the LL 

problem are the variables in the set ∆ = {𝑃
,ӑ,
, , 𝑃 ,ӑ,

, , 𝜆 , , , 𝑃
,ӑ,
, ,𝑃

,ӑ,
, , 𝜃 ,ӑ, ,

𝑆𝑂𝐶 ,ӑ, . 

The objective function (5.5) is to maximize social welfare. The first term is the 

revenues of selling electricity to load demands, while the other three terms represent 

the costs of purchasing electricity from traditional generators, WPPs and EV 

aggregators. The constraint (5.5.1) is the power production and consumption balance 

for node n with a dual variable 𝜑 ,ӑ,  donating the LMP that would be provided to the 

upper-level. Inequality (5.5.2) limits the thermal capacity of the transmission line. 

Maximum and minimum energy dispatched for traditional units, load demand and 

WPPs are constrained in (5.5.3), (5.5.4) and (5.5.5) respectively. It is noted that a load 

demand consists of the fixed and curtailed parts represented by the minimum load 𝑃 ,  

and variable load 𝑃 ,ӑ,
,  respectively in (5.5.4). Equation (5.5.6) calculates the 

threshold hour of fully charging EV aggregator by the maximum charging power. 

Constraint (5.5.7a) applies when the EV aggregator is not in urgent charging period and 

could participate in the power market, while constraint (5.5.7b) applies when the EV 

aggregator is in urgent charging period so that EV aggregator is charged at the 

maximum power to satisfy the daily driving utilization. Equation (5.5.8) and inequality 

(5.5.9) set voltage angle limits at the slack bus and other buses respectively. Equation 

(5.5.10) represents the SOC range of an EV aggregator at the present hour, while 

constraints (5.5.11a) and (5.5.11b) indicate time-series SOC formulation of an EV 

aggregator at present and the previous hours. 

5.2.2 The suppliers’ bidding problem (Upper level) 

The proposed strategic bidding problem considers the output capacity uncertainties 

of WPPs and EV aggregators as a set of scenarios. Strategic oligopolists’ revenues for 
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the 𝜔 th WPP and the eth EV aggregator are expressed by these scenarios with 

corresponding probabilities and represented in the upper level by (5.6) and (5.7) 

respectively, where LMP 𝜑 ,ӑ, , scheduled WPP power 𝑃 ,ӑ,
,  and EV aggregator 

output  𝑃 ,ӑ,
,  are obtained from the market clearing in the lower level. While the 

revenue of WPP is presented in (5.6), the revenue of an EV aggregator as presented in 

(5.7) includes the income of selling electricity to power market in the first term, the cost 

of buying electricity from EV owners in the second term and the battery degradation 

cost in the third term. Absolute-value function in (5.7) could be handled by a linear 

programming simplex method in [125].  
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The optimization variables of the UL problem are the variables in the set ∆ = 

{𝑃
,ӑ,
, , 𝑃

,ӑ,
, }. The game problem 𝛹 among strategic suppliers including WPPs and 

EV aggregators is defined here by a set of nodes with strategic players, bid prices and 

revenues as (5.8).  
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It is obvious that the revenues of other rivals are influenced by every strategic 

supplier’s bid price through the clearing process as (5.5)-(5.5.11b). As there is no 

information on other strategic suppliers’ profit functions and historical bidding 

decisions, the decision process of bidding strategies is a game problem rather than an 

optimization. As a result, these strategic players are required to learn for their optimal 

bids by repeated interaction with the market. In next Section, strategic bidding 

behaviors of WPPs and EV aggregators in a competitive market with incomplete 

information are modeled as stochastic games, where the market environment is 
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stochastic and determined by both bid prices and characteristics of all players. 

Electricity suppliers including WPPs and EV aggregators are considered as players of 

the game. Then the bidding strategy is explored using a multi-agent reinforcement 

learning (MARL) algorithm WoLF-PHC as a decision support tool. 

5.3 Methodology  

A brief summary of the RL theory and MARL is first introduced here, and then 

followed by a stochastic game framework for a DA electricity market. Afterward, a 

MARL method WoFL-PHC and the utilization of WoLF-PHC for multi-agent bidding 

strategies are described in detail. 

5.3.1 Description of RL theory and the MARL  

RL is an area of machine learning developed to analyze animal and artificial 

behavioral systems [126]. The agent updates its decision relying on instant feedbacks 

and gradual learning through repetitive interaction with the external environment, 

which is quite similar to the relationship between strategic energy suppliers and the 

market. Firstly, the agent perceives a state and a reward based on its past action from 

the environment. Then, its learning is reinforced by comparing the returned scalar 

reward signal every time with the one in the last round for evaluating the quality of its 

environment-based behavior. Specifically, the probability of this potential action will 

be increased if the compared result is better and decreased if conversely. Lastly, the 

highest probability action would be chosen through learning by itself. 

There are three main classes of methods making use of RL principles, namely 

dynamic programming methods, Monte Carlo techniques and temporal difference 

learning methods [127]. The premise of using dynamic programming is the complete 

availability of system information. Although Monte Carlo techniques could cope with 

the unknown environment, the solution process is very time consuming and a long time 

would be needed to wait for the final outcome of learning. Temporal difference learning 

methods used to learn from an unknown environment after every step without the final 
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result is more suitable for the problem presented here, and Q-learning is one of such 

most frequently used RL approaches. 

MARL is developed based on the single-agent RL to decide the optimal action of 

every agent in multi-agent domains. It combines the single-agent RL, game theory and 

policy research techniques, and hence is more suitable for solving bidding problems of 

multi-supplier in electricity market. However, due to the alterability and 

unpredictability of multi-agent dynamic environments, it would be more difficult and 

challenging for each agent to learn with other agents as moving targets. Next, a 

stochastic game framework is introduced to describe this complicated problem of multi-

agent bidding decisions in electricity market.    

5.3.2 The stochastic game framework of the proposed DA electricity market  

 The stochastic game framework is an extension and combination of the Markov 

Decision processes [79] and the Matrix games [128], presenting a single-agent multiple 

state framework and a multiple agent single state framework respectively, which 

includes multiple decision makers and multiple states. A multi-agent stochastic game 

could be described as a tuple (M, X, A, T, R) where M = {1, 2, … , m} denotes a set of 

agents, X is a set of game states {𝑥 }, A={𝑎 , … ,𝑎 , … , 𝑎 }, in which 𝑎 ={𝑎𝑎 , …,  

𝑎𝑎 } represents the sects of actions available to any player 𝑎 , T is the transition 

function represented by 𝑋 𝐴 𝑋 → 0,1 , and R={𝑅 ,…, 𝑅  …, 𝑅 } shows the 

set of reward functions for all agents in which 𝑅 : (𝑥 , 𝑎 ) → ℛ is the reward function 

of the jth agent in the state 𝑥  with executing the action 𝑎 . At each step, all agents 

observe the state 𝑥 ∈ 𝑋 and choose to perform the action 𝑎  according to an optimal 

action selection policy of learning algorithm, then go to the next state 𝑥 ∈ 𝑋.  

The proposed multi-agent market model is expressed as a stochastic game 

framework. There exist two types of agents, which are the WPP 𝜔 ∈ 𝛺  and the EV 

aggregator 𝑒 ∈ 𝛺 . M ={𝜔 ∈ 𝛺 ，𝑒 ∈ 𝛺 } in the proposed model. States of the 

stochastic game consider different levels of WPP and EV aggregator suppliers’ 

capacities represented as two sets {𝑥 ∈  and 𝑥 ∈  respectively. The market 
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clearing process, representing the interactive environment, would provide the signal of 

scheduled power production 𝑃 ,ӑ
,  and 𝑃 ,ӑ

,  to every agent for WPPs and EV 

aggregators respectively. In this way, a state would be chosen for each agent after every 

market clearing. Next, admissible actions A= 𝑎  are defined for agents of WPPs and 

EV aggregators to update bid prices 𝜆 ∈  and 𝜆 ∈  respectively. As 

to the returned reward functions in (5.6) and (5.7), they could be expressed by 

𝑅 ∈  and 𝑅 ∈  where 𝑅 : (𝑥 , 𝑎 ) → ℛ is the payoff of the ωth 

agent after clearing the market with bidding 𝜆  in the WPP’ capacity level 𝑥 , and 

𝑅 : (𝑥 , 𝑎 ) → ℛ is the eth agent’ profit after providing bid price 𝜆  in the EV 

aggregators’ capacity level 𝑥  to the clearing market. The decision process involves 

the choice of bidding actions for each player can be defined as B = 𝜆 ∈ ,

𝜆 ∈ . Then their own perception of states would be reinforced through 

executing corresponding bidding decisions in the stochastic market, in which the set of 

states is described as X = 𝑥 ∈ , 𝑥 ∈ . Consider the property of stochastic 

game and the decision vectors B of players are in a competitive environment, the 

combined process given by B and M is a competitive stochastic game with incomplete 

information.  

In order to determine an action to update the bid price for every player in the market 

environment, a policy, p: 𝑋 𝐴 → 0,1 , is introduced, which states the probability of 

the algorithm choosing an available action 𝑎 , based on the game is in the state 𝑥 . As 

a result, the target in this multi-agent stochastic game framework is to find a suitable 

algorithm that every agent could learn a policy along with others learning 

simultaneously. Here, the WoLF-PHC would be introduced to model the learning 

process in stochastic games. 

5.3.3 The MARL method WoLF-PHC 

An adaptive Q-learning algorithm for short term electricity market [129] and 

Minmax-Q learning in [130] have been used for analyzing bidding strategies in 

electricity market, but some restrictive assumptions are required to ensure their 
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convergence [131]. Policy Hill Climbing (PHC) is a simple extension of Q-learning, 

the policy of which is evolved by increasing the probability of selecting the action with 

the highest value with a learning rate 𝛿 ∈(0,1] and performs hill-climbing in the space 

of mixed policies. However, its convergence is unclear [83]. PHC is then further 

developed to have a variable learning rate, consisting of two learning parameters 

𝛿  and 𝛿  standing for the win and lose, respectively. The variable learning rate 

introduced aids in the convergence, with leaving more time for rivals to adjust when 

the player is gainful or compelling the player to adapt more quickly to rivals’ strategy 

changes once its interest is damaged [83]. The unknown equilibrium policy can further 

be replaced by a more general average strategy to asymptotically approximate to the 

equilibrium, such that the agent could determine its win or lose by comparing the 

expected and average payoff. Specifically, 𝛿  should be greater than 𝛿 . The larger 

learning rate 𝛿  means agents could learn quickly to adjust their strategies after losing, 

while the smaller learning rate  𝛿  is used to remain caution if it wins. This is called 

the win or learn fast (WoLF) principle. The final algorithm is named as WoLF-PHC and 

described as follows. The transition from the last state to the current state comes as a 

result of the market clearance. For a given agent i, Q-function after the kth market 

clearance based on an exploration action 𝑎  under the past state 𝑥  and the 

current state 𝑥  with a reward function 𝑅  is updated as (5.9). 
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 The corresponding policy 𝑝  is updated as (5.10)-(5.13). 𝛿  is kept within (0,1] 

in (5.12), policy for the last state is updated in (5.10)-(5.11) by increasing the 

probability of the action with the maximum Q-value or decrease probabilities of other 

actions in the last state. The maximized Q-value is used to determine the probability 

distribution of actions for the last state, which is prepared for the next visit in this state. 

𝛿  refers to the variable learning rate for the agent i at the kth iteration, in which 𝛿  

is chosen and the agent is winning if the past expected Q-value is larger than the 
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expected Q-value with the average policy 𝑝 , otherwise 𝛿  is selected.  
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where 𝑝  in (5.13) is the average policy updated as in (5.14)-(5.15), 𝑐 𝑥  is the total 

number of the state 𝑥  from the initial state to the current state, and the Q-value, policy 

and average policy are required to be updated based on the previous state.  
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5.3.4 Implementation of WoLF-PHC for Suppliers’ Bidding Strategies 

In the proposed model, WPPs and EV aggregators would not share any private 

information with other rivals and make self-determined biddings to increase their 

respective profits. The proposed model thereby is a multi-agent stochastic game 

problem with incomplete information. Considering that WoLF-PHC is a decentralized 

self-game algorithm which could well counterbalance the lack of information, a multi-

agent decentralized WoLF-PHC is therefore applied in this stochastic market 

environment for WPPs and EV aggregators to make bidding decisions. The specific 

learning procedures for the ωth WPP and eth EV aggregator strategically bidding 

through WoLF-PHC could be described as follows. Each agent would repeat steps in 

(2) until the count is met. 
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(1) Set learning rate 𝜇 ∈(0,1], discount factor η ∈(0,1] and learning parameters 

used to update the policy 𝛿 𝛿 ∈(0,1]. Initialize Q-value 𝑄  and 𝑄 , policy 𝑝  

and 𝑝 , and the count of states  𝑐 𝑥  and 𝑐 𝑥  as (5.16) and (5.17).  

1
( , ) 0 ( , ) ( ) 0Q x a p x a c x

A
    ， ，

 

 

(5.16) 

1
( , ) 0 ( , ) ( ) 0e e eQ x a p x a c x

A
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(5.17) 

(2) Repeat, in the kth episode,  

(a) According to policy  𝑝 𝑥 ,𝑎  and 𝑝 𝑥 ,𝑎 , choose 

corresponding actions 𝑎  and 𝑎  respectively. 

(b) The ωth WPP and eth EV aggregator’ bid prices 𝜆  and 𝜆  are updated in 

terms of actions 𝑎  and 𝑎  selected in step (a).  

(c) Bid prices 𝜆  and 𝜆  updated in step (b) are sent to the ISO in the lower 

level of the proposed market model, with LMPs and scheduled WPP’s and EV 

aggregator’s productions are obtained from the clearing process (5.5)-(5.5.11b) 

and are provided to the upper level. Then reward functions  𝑅  and 𝑅  

are calculated based on (5.6) and (5.7).   

(d) Q-functions 𝑄 𝑥 ,𝑎 , 𝑄 𝑥 ,𝑎  are updated by observing 

scalar rewards 𝑅 , 𝑅  in step (c), and the current state 𝑥 , 𝑥  as (5.9).  

(e) Observe every action 𝑎  and 𝑎  for states 𝑥  and 𝑥  

respectively, 𝑄 and 𝑄 related to each pair 𝑥 ,𝑎  and 

𝑥 ,𝑎 . 

(f) Update average polices �̅� 𝑥 ,𝑎  and �̅� 𝑥 ,𝑎  as (5.14) 

and (5.15).  

(g) Update the variable learning rate 𝛿 and 𝛿 relied on 

𝑄 𝑥 ,𝑎 and𝑄 𝑥 ,𝑎  in step (e) and �̅� 𝑥 ,𝑎  and 

�̅� 𝑥 ,𝑎  in step (f) as (5.13). Then policies 𝑝 𝑥 ,𝑎 , 

𝑝 𝑥 ,𝑎  are updated according to as (5.10)-(5.12).   

(h) Set k=k+1, return to step (a).  
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The above learning process for a WPP and an EV aggregator developing respective 

bidding strategies through their interactions with the market is shown in Fig. 5.2, and it 

could be extended and scaled to have more strategic players. The WoLF-PHC to solve 

the proposed bidding problem for the agent i is represented as Fig.5.3. 

 

Fig. 5.2 The specific learning process for a WPP and an EV aggregator strategically 

bidding through WoLF-PHC 

Remarks:  

The proposed model is for a single hour of the DA market and can be considered as 

an offline approach. Since the model involves a large number of scenarios, the 

calculation process could be time-consuming. The WoLF-PHC pre-learning process 

[132] could therefore be firstly introduced to boost the computation efficiency, which 

uses the optimized Q-value and bid price in the previous hour as the initial point of the 

current WoLF-PHC computation such that the convergence rate can be accelerated. In 

addition, there are numerous scenarios in solving the DA market clearing, scenario-

parallel computing could further be used to reduce the computation time. 
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k>number of intervals?

Optimal bidding strategy for each agent 

k=k+1

The i th agent updates the bid price

Update the lower - level clearing problem as (5.5) -(5.5.11b)  

Choose the initial bid price for the  i th agent, learning rate 
μ , discount factor η,   and learning parameter  δ  . Initialize 

Q -value, policy and the count of states as (5.16) and (5.17).

No

Update Q value of the agent  i  as (5.9) 

k=1

Update policy p for the agent i as (5.10)-(5.12)

Yes

Update the upper-level reward function R for the agent i as (5.7)/(5.8)

Update average policy    for the agent i as (5.14)-(5.15)

Update the variable learning rate    for the agent i  as (5.13)

p



Start

End  

Fig. 5.3 Algorithm to solve the proposed bidding problem  

5.4 Case Studies 

Parameters of the three sources of uncertainties are configured as below. The shape 

and scale parameters of wind speed are set as λ=2 and k=12 with correlations of 0.3, 

while the cut-in, cut-out and rated wind speed are 𝜈 =3m/s, 𝜈 =25m/s and 𝜈 =12 

m/s, respectively [133]. The parameters for the normal distribution of the EV 

aggregator are set as μp=120MW and σp =0.1μp with correlations of 0.1. The parameters 

of the log-normal distribution for the stochastic bid prices of non-strategic participants 

are set as μq=40$/MW and σq=0.1μq with correlations of 0.2. Besides, the cost price for 

the EV aggregator buying electricity from EV owners is set as 20$/MW [11]. The lower 

limit of bid price is the cost price of each energy supplier. Other EV aggregator 
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parameters are shown in Table 5.1 and parameters for the WoLF-PHC are listed in 

Table 5.2. 

Table 5.1 EV aggregator parameters 

EV 
aggregator 

𝑆𝑂𝐶  (pu) 𝑆𝑂𝐶  (pu) c dis 𝐸  (MWh) 

Value 0.9 0.1 0.9 0.85 1000 

Table 5.2 Data for the WOLF-PHC  

Parameter μ η  𝛿   𝛿  

Value 0.1 0.5 0.01 0.02 

Four different cases are studied. Case 1 would first simulate the model proposed in 

Section 5.2, in which a WPP and an EV aggregator represent two strategic players, and 

then the proposed model is compared with the cooperated model in Chapter III [84]. In 

Case 2, the number of strategic players increases to three to allow a traditional generator 

to strategically bid and compete with the WPP and EV aggregator. Loads are changed 

to inelastic. Bidding results would be analyzed according to the relationship between 

generation supply and load demand. In Case 3, strategic players of the proposed model 

are expanded to cover loads as well. Four strategic players including a load, a traditional 

generator, a WPP and an EV aggregator are simulated in the model. In Case 4, the four 

players model in Case 3 is applied to a modified IEEE 118-bus system with the number 

of strategic players tripled to twelve, and their bidding results will be fully studied and 

analyzed. While Case 1 would provide the solutions for both a single hour 20:00 and 

the successive 24-hour operations to show the time-series performance of the proposed 

model, Cases 2-4 would only present the results of a single hour 20 for illustrating the 

convergence of bi-level model. All the cases are modeled and simulated in MATLAB 

running on a 1.6 GHz Intel Core i5 -5250U computer for Case 1-3 and a 3.2 GHz Intel 

Core i7-8700 computer for Case 4 with 8 GB of RAM. 

5.4.1 Case 1 

The proposed model is first tested on the IEEE 6-bus system. There are three 
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traditional generators locating in buses 1-3 and three loads connecting to buses 4-6. A 

WPP and an EV aggregator representing two strategic participants are set in bus 4 and 

bus 5, respectively. In order to generate the appropriate number of scenarios for the 

stochastic maximized power outputs of WPPs/EV aggregators and bid prices of non-

strategic participants, the convergence theory in [133, 134] is used to determine the 

number of scenarios by formulas (5.18)-(5.20). 

* *100 [%](| |) /MC      (5.18) 

* *100 [%](| |) /MC      (5.19) 

* *100 [%](| |) /MC      (5.20) 

where 𝜇 ,𝜎  and 𝜆  are the mean value, standard deviation and skewness 

calculated based on the generated scenarios; 𝜇∗,𝜎∗ and 𝜆∗are the mean value, standard 

deviation and skewness derived theoretically from the proposed model in Section 5.2; 

𝜀 , 𝜀  and 𝜀  are the preset accuracy threshold. The number of generated scenarios is 

increased from 100 by a step of 100, and the number of scenarios with 𝜀 , 𝜀  and 𝜀  

just smaller than the settled accuracy 1% is deemed as the finally determined numbers. 

By using this strategy, the uncertainties of the maximized power outputs of WPPs/EV 

aggregators, and bid prices of non-strategic participants are respectively represented by 

1000, 1000, and 500 scenarios. 

In order to reduce the computational burden, the aforementioned forward selection 

method is used to curtail the number of scenarios and thus a set of the reduced number 

of scenarios is obtained. In the following, for investigating the impacts of the number 

of reduced scenarios on the accuracy of the scenario-based market model, comparative 

studies with different numbers of reduced scenarios are performed. Table 5.3 shows the 

profits of the WPP/EV aggregator, social welfare and the solution time for different 

numbers of reduced scenarios at hour 20. It can be found that, with the number of 

reduced scenarios increasing from 125 to 500, profits of the WPP and the EV aggregator 

as well as the social welfare would be slightly enhanced; whereas as the number of 

reduced scenarios further increasing beyond 500, there will be very little further 
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improvement. Regarding to the solution time, it would monotonically increase with the 

growing number of reduced scenarios. Consequently, to make a trade-off between the 

profits of the WPP/EV aggregator, social welfare and time consumption, 500 reduced 

scenarios are adopted as an appropriate choice for the following case study. 

Table 5.3 Profits of the WPP/EV aggregator/social welfare and solution time under 

different numbers of reduced scenarios at hour 20 

Number of 
reduced scenarios 

Profit ($) 
Social 

welfare ($) 
Solution 
time(s) WPP 

EV 
aggregator 

125 7630.9 2934.1 7352.5 105.68 

250 7651.3 2949.6 7529.3 196.87 

500 7688.1 2961.2 7830.7 365.72 

1000 7686.7 2962.7 7832.9 1165.59 

2000 7688.5 2961.5 7830.9 2508.94 

 

Based on the parameter set above, the optimized revenues of EV aggregator and 

WPP in all scenarios are used to display the randomness of the stochastic model. Fig. 

5.4 shows the relationship of revenues of the EV aggregator or WPP, as formulated in 

(5.6) and (5.7) respectively, LMPs and power output of the EV aggregator or WPP. The 

relationship of social welfare as represented in (5.5) and the EV aggregator/WPP power 

output is illustrated in Fig. 5.5. The revenues of WPP or EV aggregator and the social 

welfare are calculated based on a set of typical scenarios with probabilities derived by 

the scenario-generation and scenario-reduction algorithm. 

In the model, WPP and EV aggregator develop respective bidding strategies through 

the learning process of WoLF-PHC and interact with the market, while their revenues 

and the social welfare are influenced by constraints of the market clearing model, i.e. 

the power output limits of WPP and EV aggregator in (5.5.5)-(5.5.7a) and the SOC 

limit of EV aggregator in (5.5.10)-(5.5.11b). As shown in Fig.5.6, bidding results 

converge nicely to equilibrium after 50 iterations. The computation time is 365.72s. 
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Fig. 5.4 Revenues of EV aggregator and WPP for all scenarios 

 

 

Fig. 5.5 Social welfare for all scenarios 

 

 

Fig. 5.6 Market clearing results for the WPP and EV aggregator 

In this process, there is no complex KKT transformation nor complex calculations for 
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exploring the Nash equilibrium point, which demonstrates that flexible and concise 

WoLF-PHC could be used in the oligopoly electricity market to respectively optimize 

bid prices for the competitive WPP and the EV aggregator. Besides, each agent makes 

self-decision on bidding for maximizing its own interest only through the bidding 

information obtained from the ISO in the market without the cost functions or bidding 

data from the competitor. In this way, the privacy of personal data is protected. 

Comparison with the cooperative model in Chapter III :  

In the cooperative model in Chapter III [84], the WPP and the EV aggregator as a 

strategic Hybrid Power Plant (HPP) and the objective is to maximize the overall benefit 

of the HPP model. In order to improve the WPP and EV aggregator’s common interests, 

the HPP owns their bidding information and cost function to strategically bid and 

dispatch their power as a central market player. The WPP and EV aggregator are fully 

controlled by the HPP and do not have any self-determination on bidding. Besides, the 

cooperative model would break if the WPP and EV aggregator do not provide their 

personal data to the HPP. Whereas, the proposed competitive model could adapt to a 

more flexible market environment and allows for self-bidding to increase individual 

revenue of the WPP and EV aggregator separately, which ensures better privacy of 

strategic players.  

Table 5.4 shows comparative results of the cooperative and competitive models for 

the two strategic participants in hour 20. Compared with the cooperative model, both 

revenues of the EV aggregator and social welfare are increased while the profit of the 

WPP is slightly declined. This is due to the WPP’s profits are increased by the EV 

aggregator with the help of the HPP’s centralized dispatching in the cooperative model. 

In the competitive market, the EV aggregator could make self-decision on bidding and 

reduce its bid price to lower than the WPP to sell more and earn more in return. As a 

result, the EV aggregator’s profit has an increase and the WPP’ interest is reduced. 

Meanwhile, social revenue is improved as competition brings the reduction of bid 

prices. 
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 In addition, the bidding strategy of the proposed model is also simulated for 24 

hours. Scenarios of maximum power production of the WPP and bid prices of non-

strategic participants are generated on an hourly basis as in [6, 54]. While the number 

of EVs connected to the EV aggregator is a normal distribution for 24 hours, and the 

initial and desired SOC are set as 0.6 and 0.8, respectively [135]. Comparative results 

of the cooperative and competitive models for 24 hours are provided in Table 5.5. The 

revenues of the WPP and EV aggregator in the proposed model outperformance those 

of the cooperative model, while the social welfare is also higher.  

Table 5.4 Revenues comparison of cooperative and competitive models at hour 20 

Market Type 
WPP Revenues 

($) 
EV Aggregator 
Revenues ($) 

Social  

Welfare ($) 

Cooperate Model  7724.9 2489.8 4157.6 

Competitive Model 7688.1 2961.2 7830.7 

Table 5.5 Revenues Comparison of Cooperative and Competitive Models for 24 hours  

Market Type 
WPP Revenues 

($) 
EV Aggregator 
Revenues ($) 

Social Welfare 
($) 

Cooperate Model  131943.8 44519.2 79943.1 

Competitive Model 133720.3 45664.8 133674.2 

Among the 500 reduced scenarios, Fig. 5.6 shows the SOC curve and scheduled 

output of the EV aggregator for 24 hours for scenario 1 as an example. As shown in 

Fig. 5.7, the EV aggregator is not in urgent charging period before 23:00 and its power 

output could be scheduled in the power market (refer to the constraint (5.5.7a)); whereas 

for the last several hours, the EV aggregator is fixed at the maximum charging power 

for preparing the daytime driving utilization (refer to the constraint (5.5.7b)). In this 

way, the EV aggregator strategically participates in the pool-based electricity market as 

well as satisfy the traffic energy demand. 
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Fig. 5.7 SOC and scheduled output of the EV aggregator for scenario 1  

during 24 hours 

 

5.4.2 Case 2 

In this case, the number of strategic players increases to three suppliers, with a 

traditional generation unit, a WPP and an EV aggregator located at bus 1, bus 4 and bus 

6, respectively. The total generation capacity is 497.1MW consisting of 174.6MW, 

122.5MW and 200MW for the traditional generator, WPP and EV aggregator 

respectively. The cost price of the traditional unit is set as 40$/MW. Loads are inelastic 

and set by the following four levels with bidding results analyzed as below. 

(1) The total load demand is set equal to the total capacity of three suppliers. Fig.5.8 

shows the market clearing bid prices, revenues of the three suppliers and the overall 

social welfare. The computation time is 250.87s. It is observed that the game for these 

three strategic players converges to its equilibrium, in which their bid prices are much 

higher than their cost prices. This is because there is no competitive relationship among 

players in this case, they have no incentive to decrease the bid prices and every supplier 

raises its bid price to gain more profits. 

(2) The total load demand is reduced and set to 420 MW, and in this condition the 

total power supply is higher than the total load demand. Hence, the relationship between 

these three suppliers becomes competitive. Fig. 5.9 shows curves of bid prices and 

revenues as well as the social welfare obtained in 100 iterations of WoLF-PHC with the 
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computation time of 238.08s. The curves converge towards the equilibrium with ever 

decreasing amplitude. It is obvious that three players’ bid prices are reduced compared 

to those in Fig. 5.8, which shows the competition forces every player to cut down its 

prices for selling more product. 

 

Fig. 5.8 Market clearing results of 3 players for total demand equal to total generation 

capacity in 6-bus system 

 

Fig. 5.9 Market clearing results of 3 players for total demand less than total generation 

capacity in 6-bus system 

 (3) The total load demand is further reduced to 322.5MW, which is equal to the 

total capacity of the WPP and the EV aggregator. The converged bid prices and 

revenues of these three players as well as the social welfare are shown in Fig. 5.10. In 

this way, the total load demand can be covered just by two generation units with lower 

cost prices. The traditional supplier with the relatively higher cost price has little 
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chances to sell products and earn profits. It is obvious in Fig. 5.10 that none has the 

interest to buy from the traditional supplier although its bid price has been reduced to 

its cost price. Meanwhile, WPP and EV aggregator have raised their prices to earn more 

with the WPP being the first to run out due to its lower bid prices. Afterward, if the bid 

price of the EV aggregator exceeds the traditional generator, the market becomes 

competitive. As a result, the EV aggregator would ensure its bid price slightly lower 

than that of the traditional supplier, which is consistent with curves in Fig. 5.10. The 

computation time is 255.78s.  
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Fig. 5.10 Market clearing results of 3 players for total demand equal to the total 

generation capacity of WPP and EV aggregator in 6-bus system 

(4) The total load demand is further reduced to below total capacity of the WPP and 

EV aggregator to form a competitive relationship between these two suppliers. Bid 

prices combined with social welfare are shown in Fig. 5.11 and the computation time 

is 251.38s. Similar to the previous case shown in Fig. 5.10, the traditional generator 

bids according to its cost price and has no revenue. The competition drives the EV 

aggregator and the WPP to lower its bid price than that in Fig. 5.10. 

5.4.3 Case 3 

Loads are reset as elastic with curtailed parts and considered as a load aggregator. 

In order to expand the model for more participants, four strategic players consisting of 

an elastic load, a traditional generator, a WPP and an EV aggregator are investigated in 
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this case. Fig. 5.12 shows the bid prices and revenues of these four strategic players as 

well as the social welfare. The computation time is 265.23s and the convergence 

performance is good. These imply that the proposed model is suitable for traditional 

units to participate in strategically bidding and works well for different typical strategic 

players participated in the market. 

 

Fig. 5.11 Market clearing results of 3 players for total demand less than the total 
generation capacity of WPP and EV aggregator in 6-bus system 

 

Fig. 5.12 Market clearing results for 4 players in 6-bus system 

Next, three energy suppliers remain the same as before, and the load demand is split 

into three agents with the capacity equal to1/3 of total capacity of the original load. The 

computation time is 289.72s. Bidding results of these six players and the social welfare 

are plotted in Fig. 5.13. The resulted bid prices are much lower compared with the ones 

with four players in Fig. 5.12. This implies that players would adopt a relatively 

conservative behavior in a more competitive environment. Also noted is that WPP and 
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traditional generator with higher bid prices will have little chance to sell their power 

generation and the load demand can be preferentially supported by the EV aggregator 

with lower price. 
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Fig. 5.13 Market clearing results for 6 players in 6-bus system 

5.4.4 Case 4 

The model of four strategic players in Case 3 is applied to a modified IEEE 118-

bus system, in which the WPP, EV aggregator and traditional generator are located at 

nodes 32, 49 and 94, respectively, and loads are considered as a load aggregator. Both 

the bid prices and the social welfare are nicely converged as shown in Fig. 5.14. It 

shows that WoLF-PHC could successfully obtain the optimal bid price for every 

strategic player in a larger fully competitive electricity market. 

 

Fig. 5.14 The market clearing results for 4 players in 118-bus system 
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Each of these four strategic players is then duplicated to become three identical 

players at the same location while loads are equally assigned to three load aggregators, 

and thereby there are twelve strategic players in total. The game of these twelve 

strategic players in the modified IEEE 118-bus system converges to its equilibrium with 

bid prices and the social welfare plotted in Fig. 5.15. It confirms that the model with 

WoLF-PHC could be successfully used for more players to strategically bid in a large 

scale market. In addition, the overall bid prices of twelve strategic makers are kept at 

lower level than the case with four strategic players, which is consistent with Case 3 

that bid prices would be reduced in a more competitive environment. With the use of 

the afore mentioned WoLF-PHC pre-learning process and 6 parallel computation 

threads running on a 6-core 3.2 GHz Intel Core i7-8700 computer, the computation 

times for market clearing with four and twelve strategic players are reduced to 735.09s 

and 946.72s respectively, and would satisfactorily meet the offline market clearing 

requirement for the proposed DA market model. 

The objective of the proposed model is to maximize the social welfare as the priority, 

while with the LMP 𝜑 , ,  interacted by the market-clearing in the lower level, the 

WPP and EV aggregator participants in the upper level make strategic biddings for 

increasing their respective revenues. As can be observed from Fig 5.6-5.15, the social 

welfare is increased on different levels, while the revenues of WPP and EV aggregator 

participants in some case studies would increase during the iteration process while 

others would reduce. Furthermore, the revenue of a particular market player would go 

up or down depending on the position of the final solution relative to the initial point 

of the WoLF-PHC algorithm. And the revenues of a group of market players, such as 

WPPs, EV aggregators, generators and loads, are not necessary always going up or 

down together, as demonstrated in Fig.5.15(b) of Case 4 where the revenue of Load 1 

is reduced while those of Load 2 and 3 are increased. 

   Although the WoLF-PHC cannot be mathematically proved to be convergent, many 

examples have represented that the WoLF-PHC could converge to best-response 

policies for two multi-state stochastic games, one is a general-sum grid world domain 
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used by Hu and Wellman and the other is a zero-sum soccer game introduced by 

Littman [136]. In addition, the WoLF-PHC is also used in the engineering field for 

smart generation control of interconnected complex power grids and results show the 

algorithm is convergent [137]. From case studies of Chapter Ⅴ, it is clear to see bidding 

prices are convergent with using the WoLF-PHC.  
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Fig. 5.15 Market clearing results for 12 players in 118-bus system 

5.5 Summary 

A new competitive bidding market model with incomplete information for 

considering the uncertainties in bid prices of non-strategic participants and available 

power productions of WPPs and EV aggregators is presented in this Chapter. A recently 

developed MARL algorithm named WoLF-PHC is adopted to successfully solve the 

proposed model for strategic players to optimize their bidding in an oligopoly electricity 

market with personal privacy protection and respecting the autonomy of strategic 

suppliers. The market is simulated as a multi-agent based system, with three test cases 

built on a modified IEEE 6-bus system and a larger case study based on a modified 

IEEE 118-bus system, the bid result in four cases is nicely converged to the equilibrium. 

Promising conclusions drawn from these case studies include 1) multiple participants 

could respectively optimize their bids by learning using the WoLF-PHC algorithm in 
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competitive electricity markets; 2) compared with the cooperated model of the WPP 

and EV aggregator in Chapter III, the proposed competitive model is able to adapt to a 

more flexible market environment in which every strategic player has full autonomy in 

biddings with incomplete information to maximize its own profit; 3) bid prices of 

market players would be reduced with more competition brought from either the 

decreased demand or the increased number of strategic participants. 
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Chapter VI 

Conclusions and Future Work 

6.1 Conclusions 

With the rapid growth in the capacity of DERs, it is worthy of developing an 

effective approach to model bidding strategies for these large-scaled DERs. Bidding 

strategies of a large number of DERs bring both challenges and opportunities to the 

electricity market. On one hand, the power output of these aggregated DERs is 

uncertain and thereby may affect their own incomes. On the other hand, these DERs 

can be cooperated or competed to improve their interests. This thesis covers the 

development of bidding strategies on cooperative WPPs and EV aggregators, 

cooperative WPPs and NGG-P2G units, and competitive WPPs and EV aggregators. 

The primary conclusions and contributions of this research are summarized as follows: 

i) Risk-Constrained Offering Strategy for a Hybrid Power Plant (HPP) Consisting 

of Wind Power Producer and Electric Vehicle Aggregator 

This scheme schedules a stochastic optimization model to derive the offering 

strategy for the aggregated HPP consisting of the WPP and EV aggregator to be a price-

maker in the DA pool-based market. The effectiveness and adaptability of the proposed 

model are evaluated. Firstly, large-scale renewable WPPs could be cooperated with EV 

aggregators for strategical bidding and setting electricity prices according to their and 

the grid’s interests. The aggregated HPP has improved the common interests of EVs 

and WPPs on account of their energy coordination during different time slots. In 

addition, the profit volatility caused by uncertainties could be coped more effectively 

with the consideration of risk in the proposed model. 
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ii) Bidding Strategy for the Coordinated Operation of Wind Power Plants and NGG-

P2G Units in Electricity Market  

In the multi-energy system, a bidding strategy of the cooperative WPP and NGG-

P2G unit is proposed. The cooperative unit participates in DA market and RT market 

as well as providing auxiliary services employed in real-time. Simulation results have 

demonstrated that large-scaled WPP can cooperate with the integrated NGG-P2G unit 

in a VMP for strategically bidding to improve their interests in DA electricity market, 

in which uncertainties of the WPP are mitigated with flexible control of NGG-P2G unit 

and the waste of wind resources is also reduced. Besides, most revenues of the proposed 

model are from the WPP in DA market, and the integrated P2G-G2P unit helps to gain 

common profits mainly through providing auxiliary services.  

 

iii) A Multi-agent Competitive Bidding Strategy in a Pool-Based Electricity Market 

with Price-Maker Participants of WPPs and EV Aggregators 

A new competitive bidding strategy is formulated for WPPs and EV aggregators. 

Different from the previous cooperative HPP model depending highly on the 

centralized control and scheduling of a central aggregator who owns lots of bidding 

information of EVs and WPPs, a recently developed MARL algorithm named WoLF-

PHC is adopted to successfully solve the bidding problem with incomplete information 

for strategic players increasing their respective profits with great respect for personal 

privacy and their autonomy. Simulation results have shown that multiple participants 

could respectively optimize their bids by learning using the WoLF-PHC algorithm in 

competitive electricity markets. Besides, bid prices of market players would be reduced 

with more competition brought from either the decreased demand or the increased 

number of strategic participants. 
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6.2 Future Work 

This thesis has proposed the cooperative and competitive model for large-scaled 

DERs in the transmission grid, such as WPPs, EV aggregators and NGG-P2G units, 

strategically bidding in the electricity market. To enrich the current work, the following 

topics should be investigated in the future. 

(1) With the rapid growth of the distributed renewable generation, micro grids have 

attracted more attention. Micro grids can not only call on prosumers to take part in 

electricity market, but also offer more flexible choices for customers to island from the 

main grid. Micro grid users can choose the reliability services they prefer on the basis 

of the availability and price of DERs. Thus, the energy transaction mechanism of 

customers in distribution markets behaving strategically deserves to be studied as it 

becomes important with the deployment of smart grids. 

(2) The potential bi-directional energy trading imposes the stronger physical and 

economic dependence relationship between gas and power systems, which inspires the 

research on the synchronized gas-electricity markets. Compared with the current 

research in Chapter IV, in which DERs in the integrated gas and electricity network 

behave strategically only in electricity market. Strategically bidding of DERs can be 

extended to both gas and electricity markets. Therefore, it is worth to study the 

equilibrium of the coupled gas and electricity markets.  
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Appendix 

Solution Methodology 

1) MPEC Formulation 

To obtain the optimal value, the proposed bi-level model can be transformed to a 

single-level model by transforming the lower level model using KKT (Karush-Kuhn-

Tucker) constraints. After transformation, the objective function in the lower level can 

be replaced by corresponding constraints. Therefore, all deformed constraints in lower 

level are added to constraints in upper level to limit the upper objective function. And 

the original bi-level model has become a single-level MPEC problem described as 

follows. 

Maximize              

∑ 𝜑 , ⋅ 𝑃 ,
,

∈ ∑ ∑ 𝜏 ⋅ 𝜏 ⋅ 𝜑 ⋅ 𝑃 , , ,
,

∈∈

𝜆 ⋅ 𝑃 , , , 𝜆 , ,
, ⋅ 𝑃 , , ,

, 𝜆 , ,
, ⋅ 𝑃 , , ,

, ) 

 
 (7.1) 

Subject to  

Constrains (4.1.1)-(4.1.20), (4.2.1)-(4.2.20) (7.1.1) 

𝜆 , 𝜑 ,  𝜇 ,
, 𝜇 ,

, 0,∀𝑠, 𝑡 
(7.1.2) 

𝜆 , 𝜑 ,  𝜇 ,
, 𝜇 ,

, 0,∀𝑏, 𝑡 
(7.1.3) 

𝜆 ,
, 𝜑 ,  𝜇 , 𝜇 , , 0,∀𝑐, 𝑡 

(7.1.4) 

𝜆 , 𝜑 , 𝜇 ,
, , 𝜇 ,

, , 0,∀𝑙𝑒, 𝑡 
(7.1.5) 

𝜆 , 𝜑 ,  𝜇 ,
, , 𝜇 ,

, , 0,∀𝑙𝑒𝑡, 𝑡 
(7.1.6) 

𝐵 ∙ 𝜑 , 𝜑 ,

∈

𝐵 ∙ 𝜇 ,
, 𝜇 ,

,

∈

 
 
 

(7.1.7) 
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𝐵 ∙ 𝜇 ,
, 𝜇 ,

,

∈

  𝜇 , 0,𝑛: 𝑟𝑒𝑓,∀𝑡 

𝐵 ∙ 𝜑 , 𝜑 ,

∈

𝐵 ∙ 𝜇 ,
, 𝜇 ,

,

∈

 

𝐵 ∙ 𝜇 ,
, 𝜇 ,

,

∈

𝜇 ,
,  𝜇 ,

,  

0,∀𝑛\𝑟𝑒𝑓,∀𝑡 

 
(7.1.8) 

0 𝑓 𝐵 ∙ 𝜃 , 𝜃 , ⊥ 𝜇 ,
, 0,∀𝑚,𝑛 ∈ 𝛺 , 𝑡 

(7.1.9) 

0 𝑓 𝐵 ∙ 𝜃 , 𝜃 , ⊥ 𝜇 ,
, 0,∀𝑚,𝑛 ∈ 𝛺 , 𝑡 

(7.1.10) 

0 𝑃 𝑃 ,
, ⊥ 𝜇 ,

, 0,   ∀𝑠 , 𝑡 
(7.1.11) 

0 𝑃 ,
, ⊥ 𝜇 ,

, 0,∀𝑠 , 𝑡 
(7.1.12) 

0 𝑃 𝑃 ,
, ⊥ 𝜇 ,

, 0,   ∀𝑏 , 𝑡 
(7.1.13) 

0 𝑃 ,
, ⊥ 𝜇 ,

, 0,∀𝑏 , 𝑡 
(7.1.14) 

0 𝑃 , 𝑃 ,
,  ⊥ 𝜇 ,

, , 0,∀𝑙𝑒, 𝑡 
(7.1.15) 

0 𝑃 ,
, ⊥ 𝜇 ,

, , 0,∀𝑙𝑒, 𝑡 
(7.1.16) 

0 𝑃 𝑃 , 𝑃 ,
,  ⊥ 𝜇 ,

, , 0,∀𝑙𝑒𝑡, 𝑡 
(7.1.17) 

0 𝑃 ,
, ⊥ 𝜇 ,

, , 0,∀𝑙𝑒𝑡, 𝑡 
(7.1.18) 

0 𝑃 ,
, 𝑃 ,

,  ⊥ 𝜇 , 0,   ∀𝑐, 𝑡 
(7.1.19) 

0 𝑃 ,
, ⊥ 𝜇 , 0,∀𝑘, 𝑡 

(7.1.20) 

0 𝜇 ,
, ⊥ 𝜋 𝜃 , 0,   ∀𝑛 \𝑛: 𝑟𝑒𝑓,∀𝑡 

(7.1.21) 

0  𝜇 ,
, ⊥ 𝜋 𝜃 , 0,   ∀𝑛 \𝑛: 𝑟𝑒𝑓,∀𝑡 

(7.1.22) 

The MPEC model described above contains two terms of nonlinearities. The first 

part is 𝜑 , ⋅ 𝑃 ,
,  in objective function (7.1), the second part is complementary 

constraints (7.1.9) - (7.1.22). By replacing these two non-linear terms using strong 

duality theorem (SDT) and the Fortuny-Amat transformation [31], the MPEC model is 
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easily transformed to a MILP model. 

 

 2) MILP Formulation 

Firstly, the objective function is transformed into a linear function. According to 

SDT, there exists the same optimized solution for the primal and dual objective 

problem. As a result, the objective function in lower level can also be written as 

equation (7.2). 

Minimize 

From constraints (7.1.4), the offer price for the coordinated supplier can be written 

as (7.3). 

𝜆 ,
, 𝜑 ,  𝜇 , 𝜇 , ,∀𝑐, 𝑡 

(7.3) 

Therefore,  

𝜆 ,
, ⋅ 𝑃 ,

, 𝜑 ,  𝜇 , 𝜇 , ∙ 𝑃 ,
, ,∀𝑐, 𝑡 

(7.4) 

 
From (7.1.19) to (7.1.20),   

𝑃 ,
, ∙ 𝜇 , 𝑃 ,

, ∙ 𝜇 , ,   ∀𝑐, 𝑡 
(7.5) 

∈
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∈∈
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,    
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∈∈

 

𝑓 ∙  𝜇 ,
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,

∈

𝑃 ∙ 𝜇 ,
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𝑃 ∙ 𝜇 ,
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𝑏∈𝛺𝑛
𝐵
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∈

𝑃 𝑃 , ∙ 𝜇 ,
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, , ∀

 ∈ \ :
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𝑃 ,
, ∙ 𝜇 , 0,∀𝑐, 𝑡 

(7.6) 

   

Using (7.5) and (7.6) to simplify (7.4), then (7.7) can be obtained. 

𝜆 ,
, ⋅ 𝑃 ,

, 𝜑 , ∙ 𝑃 ,
, 𝜇 , ∙ 𝑃 ,

, ,∀𝑐,∀𝑡 
(7.7) 

 

   Substitute 𝜆 ,
, ⋅ 𝑃 ,

,  in (7.2), then (7.8) can be obtained. 

 As a result, the proposed model can be transformed to a MILP problem, which 

includes the objective function (7.9) and constraints (7.9.1)-(7.9.29). 

∑ ∑ 𝜆 , ⋅ 𝑃 ,
, ∑ 𝜆 , ⋅ 𝑃 ,

,
∈∈∈
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, ∑ 𝜆 , ⋅ 𝑃 ,

,
∈∈ ∑ 𝑓 ∙∈

 𝜇 ,
, 𝜇 ,

, ∑ 𝑃 ∙ 𝜇 ,
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𝑆 ∑ 𝑃 ∙𝑏∈𝛺𝑛
𝐵
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,  ∑ 𝑃 , ∙ 𝜇 ,
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∈ ∑ 𝑃∈

𝑃 , ∙ 𝜇 ,
, , ∑ 𝜋 ∙ 𝜇 ,
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(7.9) 
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∈
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∑ ∑ 𝜏 ⋅ 𝜏 ⋅ 𝜑 ⋅ 𝑃 , , ,
, 𝜆 ⋅ 𝑃 , , ,∈∈ 𝜆 , ,

, ⋅

𝑃 , , ,
, 𝜆 , ,

, ⋅ 𝑃 , , ,
, ) 

Subject to  
Constraints(7.1.1)-(7.1.8) (7.9.1) 

0 𝜇 ,
, 𝑄 ∙ 𝜎 ,  ,∀𝑚 ∈ 𝛺 , 𝑡 

(7.9.2) 

0 𝜇 ,
, 𝑄 ∙ 𝜎 , ,  ,∀𝑚 ∈ 𝛺 , 𝑡 

(7.9.3) 

0 𝜇 ,
, 𝑄 ∙ 𝜎 ,  ,∀𝑏 ∈ 𝛺 , 𝑡 

(7.9.4) 

0  𝜇 ,
, 𝑄 ∙ 𝜎 ,   ,∀𝑏 ∈ 𝛺 , 𝑡 

(7.9.5) 

0 𝜇 ,
, 𝑄 ∙ 𝜎 ,  ,∀𝑠 ∈ 𝛺 , 𝑡 

(7.9.6) 

0  𝜇 ,
, 𝑄 ∙ 𝜎 ,   ,∀𝑠 ∈ 𝛺 , 𝑡 

(7.9.7) 

0 𝜇 ,
, , 𝑄 ∙ 𝜎 ,    ,∀𝑙𝑒 ∈ 𝛺 , 𝑡 

(7.9.8) 

0  𝜇 ,
, , 𝑄 ∙ 𝜎 ,  ,∀𝑙𝑒 ∈ 𝛺 , 𝑡 

(7.9.9) 

0 𝜇 , 𝑄 ∙ 𝜎 ,  ,∀𝑐 ∈ 𝛺 , 𝑡 (7.9.10) 

0 𝜇 , 𝑄 ∙ 𝜎 ,   ,∀𝑐 ∈ 𝛺 , 𝑡 
(7.9.11) 

0 𝜇 ,
, , 𝑄 ∙ 𝜎 ,   ,∀𝑙𝑒𝑡 ∈ 𝛺 , 𝑡 

(7.9.12) 

0  𝜇 ,
, , 𝑄 ∙ 𝜎 ,   ,∀𝑙𝑒𝑡 ∈ 𝛺 , 𝑡 

(7.9.13) 

0 𝜇 ,
, 𝑄 ∙ 𝜎 ,   ,∀𝑛 \𝑛: 𝑟𝑒𝑓, 𝑡 

(7.9.14) 

0  𝜇 ,
, 𝑄 ∙ 𝜎 ,  ,∀𝑛 \𝑛: 𝑟𝑒𝑓, 𝑡 

(7.9.15) 

0 𝑓 𝐵 ∙ 𝜃 , 𝜃 , 𝑄 ∙ 1 𝜎 , , ,∀𝑚
∈ 𝛺 , 𝑡 

(7.9.16) 

0 𝑓 𝐵 ∙ 𝜃 , 𝜃 , 𝑄 ∙ 1 𝜎 , , ,∀𝑚

∈ 𝛺 , 𝑡 

(7.9.17) 

0 𝑃 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑏 ∈ 𝛺 , 𝑡 

(7.9.18) 

0 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑏 ∈ 𝛺 , 𝑡 

(7.9.19) 
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0 𝑃 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑠 ∈ 𝛺 , 𝑡 

(7.9.20) 

0 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑠 ∈ 𝛺 , 𝑡 

(7.9.21) 

0 𝑃 , 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑙𝑒 ∈ 𝛺 , 𝑡 

(7.9.22) 

0 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑙𝑒 ∈ 𝛺 , 𝑡 

(7.9.23) 

0 𝑃 𝑃 , 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,

∀𝑙𝑒𝑡 ∈ 𝛺 , 𝑡 

(7.9.24) 

0 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,   ∀𝑙𝑒𝑡 ∈ 𝛺 , 𝑡 

(7.9.25) 

0 𝑃 ,
,  𝑃 ,

, 𝑄 ∙ 1 𝜎 , ,∀𝑐 ∈ 𝛺 , 𝑡 
(7.9.26) 

0 𝑃 ,
, 𝑄 ∙ 1 𝜎 , ,∀𝑐 ∈ 𝛺 , 𝑡 

(7.9.27) 

0 𝜋 𝜃 , 𝑄 ∙ 1 𝜎 , ,   ∀𝑛 \𝑛: 𝑟𝑒𝑓, 𝑡 (7.9.28) 

0  𝜋 𝜃 , 𝑄 ∙ 1 𝜎 , ,   ∀𝑛 \𝑛: 𝑟𝑒𝑓, 𝑡 
(7.9.29) 

In constraints (7.9.1)-(7.9.29), 𝑄  and 𝑄  are large enough constants. 

Besides, 𝜇 , , 𝜇 , ,  𝜇 ,
, ,  𝜇 ,

, , 𝜇 ,
, , 𝜇 ,

, , 𝜇 ,
, , , 𝜇 ,

, , , 𝜇 ,
, , , 𝜇 ,

, , ,

𝜑 , ,  𝜇 ,
, ,  𝜇 ,

, ,  𝜇 , , 𝜇 ,
, , 𝜇 ,

,  are auxiliary binary variables. ” 
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