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Abstract 

Nowadays, with the fast development of multimedia technologies, acoustic and speech signals are 

playing more and more important roles. Acoustic and speech signals can deliver beneficial information 

for applications such as security check, audio authentication, environment analysis, and context-aware 

navigation. Most of the time, the study of acoustic and speech signals is conducted by performing 

classification. For example, verifying the similarity of two acoustic signals can be treated as checking 

whether they belong to the same class or not; detecting the occurrence of an acoustic event can be 

treated as finding out a segment that belongs to a specific class. The work discussed in this thesis focuses 

on the classification of acoustic and speech signals, which is a fundamental problem covering a wide 

range of applications. 

Three key components that form a classification system are 1) feature representations, 2) classifiers, 

and 3) feature transformation techniques. These components are all important to the success of a 

classification system and deserve a comprehensive investigation. 

Good feature representations are crucial for the regular operation of a classification system. In general, 

a good feature representation should carry enough information for well describing the acoustic sample. 

This often implicitly requires the dimensionality of the feature representation to be high. In this thesis, 

we consider two high-dimensional feature representations, viz. the Gaussian supervector (GSV) and the 

identity vector (i-vector). GSV is fast in computation, but its dimensionality is unchangeable. I-vector 

has a changeable dimensionality, but its computation can be time-consuming owing to the requirement 

of estimating additional model parameters. To balance the computational efficiency and the 

dimensional flexibility, we propose feature representations based on the mixture of factor analyzers 

(MFA), such as the MFA latent vector (MFALV). MFALV is comparable to GSV and i-vector in 

effectiveness, and has a similar flexibility in dimensionality but a higher computational efficiency as 

compared to i-vector. 

By analyzing the similarity between different feature representations, we propose the generic 

supervector, which generalizes GSV and MFALV. I-vector can then be obtained by post-processing the 
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generic supervector. It is noticed that the generic supervector can explain the structure of the classic 

convolutional neural network and the residual network. 

The support vector machine (SVM) and the probabilistic linear discriminant analysis (PLDA) model 

are two prevalent classifiers for classifying high-dimensional feature representations, such as GSV and 

i-vector. Although PLDA may outperform SVM for speaker verification, it is inefficient in handling 

many training data, especially when the dimensionality of the feature representation is high. To address 

the inefficiency issue of PLDA, we propose a scalable formulation that enables it to do classification 

efficiently irrespective of the quantity of the training data. 

The sparse representation (SR) and the SR-based classifier (SRC) are also good at classifying high-

dimensional feature representations. Still, the computation of SR is slow because of the L1-norm 

constraint involved in the objective function. The collaborative representation (CR), which replaces the 

L1-norm constraint by the L2-norm constraint, is computationally more efficient than SR. To boost the 

discrimination ability of CR, we propose the discriminative CR (DCR), which incorporates the class 

information and thus better suits the classification tasks. 

Two probabilistic models are also investigated, viz. the Gaussian mixture model (GMM) and the 

restricted Boltzmann machine (RBM). Although both can be used for probability estimation and 

classification, their different model assumptions determine their different applicability. GMM is 

suitable for processing low-dimensional decorrelated feature representations, whereas RBM is suitable 

for processing high-dimensional correlated feature representations. Both yet require a large number of 

training data. Another important use of RBM is to work as the basic building block for constructing a 

deep belief net (DBN). By adding a softmax layer at the end of DBN, a deep neural network (DNN) is 

formed. This DBN-DNN is a discriminative classification model. Our experiments then validate the 

importance of a high dimensionality for DBN-DNN to take effect. 

If the original feature representation does not work well, suitable feature transformation techniques may 

help. Two feature transformation techniques are popular in the area of speech processing, viz. the 

nuisance attribute projection (NAP), and the linear discriminant analysis (LDA). As a generalization, 
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their kernel versions, viz. the kernel NAP (KNAP) and the kernel discriminant analysis (KDA), 

introduce an implicit feature mapping before performing the projection, which may be beneficial in 

some circumstances. The detailed derivations for the kernel-based formulations are given in this thesis, 

and comparative experiments are conducted to investigate the effectiveness of different feature 

transformation techniques. 

To comprehensively investigate the performance of different feature representations, classifiers, and 

feature transformation techniques, we perform experiments on four different datasets, including two 

speech datasets for doing speaker identification tasks and two acoustic datasets for doing acoustic scene 

classification tasks. The experimental results and discussions reveal the characteristics of different 

feature representations, feature transformation techniques, and classifiers. In general, no one type of 

feature representation or classifier always surpasses the others for all conditions, which implies the 

importance of choosing a suitable combination. We hope these analyses may help devise new features 

representations, classifiers, and feature transformations. 
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where a detailed proof for the upper bound is given in Chapter 3.1. Besides, a simple way to 
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proposed. 

2. The analysis related to i-vector and its relationship with GSV (Chapter 3.2). The log-likelihood for 

estimating the model parameters of i-vector is derived in Chapter 3.2, which helps understand the 

characteristics of i-vector. The relationship between i-vector and GSV is analyzed, which shows 

that i-vector can be treated as an affine transformation of GSV. 

3. The feature representations based on mixture of factor analyzers (Chapter 3.3). New feature 

representations are proposed based on the mixture of factor analyzers (MFA), such as the MFA 

latent vector (MFALV). MFALV is also compared to i-vector in terms of formulation and 

computational complexity. The theoretical analysis shows that MFALV can be more efficient in 

computation than i-vector, while maintaining a similar flexibility in dimensionality. 

4. The comprehensive theoretical and experimental comparisons of different feature representations 

(Chapters 3.4 & 4). Theoretical comparisons are made for the characteristics and the computational 

complexity of different feature representations, including GSV, i-vector and MFA-based feature 

representations. Experiments on two speaker identification tasks are performed to evaluate the 

effectiveness and the efficiency of different feature representations. 

5. The generic supervector (Chapter 3.5). The generic supervector is proposed as the generalization 

of GSV and MFA-based feature representations. It can also be used to explain the structure of a 

classic convolutional neural network and the robustness of the residual network. 
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6. The formulation for restricted Boltzmann machine to be used for probability estimation in the case 

of real-valued input feature vector (Chapter 5.2.4). This formulation makes restricted Boltzmann 

machine (RBM) able to be used as a probabilistic model for pattern recognition tasks. 

7. The theoretical and experimental comparisons between Gaussian mixture model and RBM 

(Chapters 5.3 & 6.1). The analysis of Gaussian mixture model (GMM) and RBM reveals their 

different characteristics and applicable scenarios. GMM is good at handling low-dimensional 

decorrelated feature vectors, while RBM is good at handling high-dimensional correlated feature 

vectors. In some sense, GMM and RBM capture complementary information from the feature 

vector. The experimental results on acoustic scene classification also validates the importance of a 

high dimensionality for RBM to take effect. 

8. The scalable version of the probabilistic linear discriminant analysis model (Chapter 5.5.3). The 

scalable probabilistic linear discriminant analysis (PLDA) enables a PLDA model to efficiently use 

many training data to perform classification. 

9. The discriminative collaborative representation (Chapter 5.6.3). The discriminative collaborative 

representation (DCR) is proposed as an alternative to the collaborative representation (CR) and the 

sparse representation (SR). DCR is more discriminative than CR for pattern recognition, and is 

computationally more efficient than SR. This is demonstrated in an acoustic scene classification 

task and a speaker identification task. 

10. The comparisons of different classifiers in two acoustic scene classification tasks and two speaker 

identification tasks (Chapter 6). The comparisons in terms of effectiveness and efficiency 

demonstrate the characteristics of different classifiers. In general, no one classifier always surpasses 

the others in all cases, and different classifiers have their own advantages and disadvantages. 

11. The derivation and the analysis of the linear discriminant analysis and the kernel discriminant 

analysis (Chapter 7.1). Two versions of the linear discriminant analysis (LDA) and the kernel 

discriminant analysis (KDA) are derived in detail. KDA, as the kernel version of LDA, provides an 

implicit feature mapping using the kernel function. The existence of the kernel version is also 

discussed. 
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12. The extension of the nuisance attribute projection to a general projection technique (Chapter 7.2). 

The nuisance attribute projection (NAP) is extended to be a general projection technique like LDA. 

The kernel version of NAP (KNAP) is derived in detail, and the existence of the kernel version is 

discussed. The relationship between NAP and LDA is also analyzed, and the equivalence between 

NAP and LDA under certain conditions is proved. 

13. The experimental comparisons of LDA, KDA, NAP and KNAP as a projection technique (Chapter 

8). The experimental results in a speaker identification task implies that the kernel-based projection 

techniques do not always outperform the linear projection techniques. In addition, the effectiveness 

of the projection techniques also depends on the characteristics of the feature vector. 
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Chapter 1    Introduction 

 

This research focuses on the classification of acoustic and speech signals. For simplicity, we assume 

that each acoustic or speech sample is assigned with only one class label. This means one sample can 

only belong to one class. 

1.1    Problem Definition 

An acoustic or speech sample may convey different kinds of information that meet different 

classification objectives. For example, a speech sample will naturally carry the information about the 

speaker, such as the timbre or speaking style, which can be extracted out and used for verifying the 

identity of the speaker [1]. The speech sample may also carry the information of the recording device, 

as the recorded speech can be treated as the convolution of the raw speech and the frequency response 

of the device [2]. The device information can then be used to validate the authentication of a claimed 

recording device for forensic purposes [3]. If an audio sample is recorded near the power grid, because 

of electromagnetic induction, it will embed the electric network frequency (ENF) signal [3], which can 

then be used for timestamp verification [4]. An acoustic or speech sample may also carry the 

information of the surrounding environment, such as the geometric information of the recording 

location or the acoustic information of the environmental sounds, which may help describe the geometry 

of the environment [5] or recognize the acoustic scenes useful for context-aware navigation [6]. 

In order to recognize the information an acoustic or speech sample carries; for example, which speaker 

contributes the speech, which device is used to record the speech, or in which environment the acoustic 

sample is recorded, we may need to do classification that predicts the class the sample belongs to. 

Usually, the classification process comprises three fundamental steps, which are: 1) feature extraction, 

2) feature transformation, and 3) feature classification. 
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Feature extraction aims at generating feature vectors that can well describe the sample. These feature 

vectors are supposed to embed enough information for doing some specific tasks, such as the 

information of the speaker, the device, or the environment. A suitable feature vector has a significant 

influence on the performance of the designed classifier. 

Feature transformation aims at mapping the original feature vector into another feature space, such that 

the mapped feature vector can better suit some specific purposes. For example, the mapped feature 

vector may be more discriminative, contain less interference information, has a reduced dimensionality, 

or has a more distributed characteristic. Feature transformation techniques are expected to improve the 

quality of the raw feature vector, but its effectiveness may be highly affected by the quality of the 

original feature vector. 

Feature classification aims at constructing a classification model that can predict the feature vectors into 

their true classes. With different characteristics on the probability distribution or the dimensionality of 

the feature vectors, there can be different classification models. A mismatch of the characteristics of the 

feature vectors with the assumptions of the classification models may lead to failure of the classification 

system. 

1.2    A Generic Classification Framework 

Figure 1.1 depicts a generic classification framework for acoustic and speech signal classification tasks. 

There are two modules, one for feature extraction and the other for prediction. Here, the feature 

transformation steps are included as a part of the feature extraction module, as their outputs are still 

feature vectors. Nevertheless, some feature transformation techniques can be quite useful and deserve 

to be comprehensively investigated. 

It is common that the length of an acoustic sample is not fixed; for example, one sample may last for 1s 

while another sample may last for 10s. However, it is usually necessary for the feature vectors to have 

the same dimensionality before they are used for doing classification. Therefore, we may first divide a 

variable-length sample into a sequence of equal-length frames and then extract one fixed-length feature 

vector from each frame, which is called “frame-level feature vector”. Each frame-level feature vector 
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can be transformed into another vector that benefits some specific purposes. For example, several 

consecutive frame-level feature vectors can be concatenated to form a longer feature vector, which 

captures some local characteristics. 

Having obtained a sequence of frame-level feature vectors or transformed frame-level feature vectors, 

they can then be used to form a single vector, which is called “sample-level feature vector”. This 

sample-level feature vector usually has a high dimensionality so that it captures enough information 

about all the frame-level feature vectors. Example sample-level feature vectors include the Gaussian 

supervector (GSV) [7] and the identity vector (i-vector) [8]. They are obtained based on a universal 

background model (UBM), whose details will be explained later. The sample-level feature vector may 

be further processed by some feature transformation techniques to improve its quality for some specific 

purposes, such as the Fisher linear discriminant analysis (LDA) or the nuisance attribute projection 

(NAP) [1]. The sample-level feature vector can then be used to train and test a classification model. 

Referring to Figure 1.1, the frame-level feature vectors can also be directly used for doing classification. 

This means that each sample will be represented by multiple feature vectors. In this case, each frame-

level feature vector will be treated as an independent feature vector and fed to the classification model 

 

Figure 1.1    A generic classification framework for acoustic and speech signals. 
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for training and testing, which leads to multiple predicted labels for each sample. Thus, suitable majority 

voting strategies are needed to combine these labels. Besides, it is crucial to choose a suitable 

classification model when using the majority voting strategies. It is because in this case, each sample is 

represented by multiple feature vectors, causing the number of feature vectors to be far more than the 

case where each sample is represented by only one feature vector. The concept of majority voting also 

generalizes well in the case where there is only one feature vector for each sample, as the weight of the 

feature vector will simply be one. In the following, we present four majority voting strategies. 

Given a classification task, suppose there are totally 𝐾 classes, and a classification model has been well 

trained, whose parameter is denoted by the parameter set 𝜃. For an acoustic or speech sample 𝑠, suppose 

we have already obtained a sequence of frame-level feature vectors or transformed vectors, denoted as 

𝑠 = {𝒙1, 𝒙2 …𝒙𝑇} . For each feature vector 𝒙𝑡 , the classification model may yield a probability 

𝑝(𝒙𝑡|𝑘, 𝜃), which represents the likelihood if 𝒙𝑡 belongs to class 𝑘. In order to make predictions, the 

classification model must be able to produce a posterior probability 𝑝(𝑘|𝒙𝑡 , 𝜃), which represents the 

possibility of predicting 𝒙𝑡  into class 𝑘  among all the 𝐾  classes. The relationship between the 

likelihood and the posterior probability is given by (1.1), where 𝑝(𝑘) is the prior probability of the 𝑘-

th class and is assumed to be 1/𝐾, as all the classes are equally weighted. 

 𝑝(𝑘|𝒙𝑡, 𝜃) =
𝑝(𝒙𝑡  |𝑘, 𝜃)𝑝(𝑘)

∑ 𝑝(𝒙𝑡  |𝑗, 𝜃)𝑝(𝑗)𝐾
𝑗=1

=
1

𝐾
𝑝(𝒙𝑡  |𝑘, 𝜃)

1

𝐾
∑ 𝑝(𝒙𝑡  |𝑗, 𝜃)𝐾

𝑗=1

=
𝑝(𝒙𝑡  |𝑘, 𝜃)

∑ 𝑝(𝒙𝑡 |𝑗, 𝜃)𝐾
𝑗=1

 (1.1) 

Having the posterior probabilities for each class, the predicted class label for sample 𝑠  can be 

determined by the cooperation of all the 𝑇 feature vectors using the following majority voting (MV) 

strategies as given by (1.2) ~ (1.5), where 𝐿𝑎𝑏𝑒𝑙(𝑠) is the predicted label for the sample 𝑠, 𝛿(. , . ) is an 

indicator function given by (1.6), and ℓ(𝒙𝑡) is the predicted label for 𝒙𝑡  as given by (1.7). As the 

majority voting schemes given by (1.3) ~ (1.5) require the existence of the likelihood, only probabilistic 

models or some specific classification models that can produce a probability can apply them. 

 𝐿𝑎𝑏𝑒𝑙(𝑠) = argmax
𝑘

∑ 𝛿(𝑘, ℓ(𝒙𝑡))
𝑇
𝑡=1  (1.2) 
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 𝐿𝑎𝑏𝑒𝑙(𝑠) = argmax
𝑘

∑ 𝑝(𝑘│𝒙𝑡, 𝜃)𝑇
𝑡=1  (1.3) 

 𝐿𝑎𝑏𝑒𝑙(𝑠) = argmax
𝑘

∑ 𝑝(𝑘│𝒙𝑡, 𝜃)𝑇
𝑡=1 ⋅ 𝛿(𝑘, ℓ(𝒙𝑡)) (1.4) 

        𝐿𝑎𝑏𝑒𝑙(𝑠) = argmax
𝑘

∑ ln𝑝(𝒙𝑡|𝑘, 𝜃)𝑇
𝑡=1 = argmax

𝑘
∑ (ln 𝑝(𝑘|𝒙𝑡 , 𝜃) + ln∑ 𝑝(𝒙𝑡|𝑗, 𝜃)𝐾

𝑗=1 )𝑇
𝑡=1  

        = argmax
𝑘

∑ ln 𝑝(𝑘|𝒙𝑡 , 𝜃)𝑇
𝑡=1   (1.5) 

where 

 𝛿(𝑝, 𝑞) = {
1,    𝑖𝑓 𝑝 = 𝑞
0,    𝑖𝑓 𝑝 ≠ 𝑞

 (1.6) 

 ℓ(𝒙𝑡) = argmax
𝑘

𝑝(𝑘|𝒙𝑡 , 𝜃) (1.7) 

The first MV scheme given by (1.2) is a hard-assignment operation, meaning that each feature vector 

can only belong to one class. The second MV scheme given by (1.3) is a soft-assignment operation, 

meaning that each feature vector can belong to all the classes but with different possibilities. The third 

MV scheme given by (1.4) is a compromise between hard-assignment and soft-assignment, meaning 

that although each feature vector can only belong to one class, the possibility of belonging to that class 

is also considered, indicating its relevance. The fourth MV scheme given by (1.5) assumes that the 

feature vectors {𝒙1, 𝒙2 …𝒙𝑇} are independently distributed, and thus their joint probability with respect 

to a class will be the product of their individual likelihoods. This joint probability can then be used for 

the class label prediction as given by (1.8), which leads to the MV scheme given by (1.5). 

 𝐿𝑎𝑏𝑒𝑙(𝑠) = argmax
𝑘

∏ 𝑝(𝒙𝑡|𝑘, 𝜃)𝑇
𝑡=1 = argmax

𝑘
∑ ln𝑝(𝒙𝑡|𝑘, 𝜃)𝑇

𝑡=1  (1.8) 

The fourth MV scheme also conforms to the maximum likelihood estimation (MLE) [9] used in the 

expectation-maximization (EM) algorithm, which assumes that all the training vectors are 

independently distributed. Therefore, the model parameters are estimated to maximize the product of 

individual likelihoods, or equivalently, the sum of the log-likelihoods. Besides, this scheme is also in 
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agreement with the cross-entropy loss [10] used for deep neural networks (DNN), which is also a sum 

of logarithm values. 

1.3    Limitations of Existing Techniques and Proposed Methods 

In this thesis, we focus on three aspects of a classification system, i.e. 1) the sample-level feature 

representation, 2) the classifier, and 3) the feature projection technique. Feature projection techniques 

are specific feature transformation techniques, where the transformation is defined by a projection 

matrix. 

Two widely used sample-level feature representations are the GSV and the i-vector [1]. As popular 

feature representations, GSV and i-vector have their own advantages and disadvantages. GSV is simple 

and fast in computation as it is based on the maximum a posteriori (MAP) adaptation of the UBM. 

However, its dimensionality depends on the UBM, which is unchangeable. As i-vector is based on a 

factor analysis (FA) model, there are additional parameters to be estimated besides the UBM. Therefore, 

the computation of i-vector is inefficient and can be time-consuming. Nonetheless, the dimensionality 

of i-vector depends on the factor-loading matrix, which is then changeable. To balance the 

computational efficiency and the flexibility in dimensionality, we propose feature representations based 

on a mixture of factor analyzers (MFA), such as the MFA latent vector (MFALV). MFALV is 

comparable to GSV and i-vector in terms of effectiveness. On comparing with i-vector, MFALV 

preserves similar flexibility in dimensionality while offering a higher computational efficiency. 

Furthermore, we propose the generic supervector, which generalizes GSV and MFALV. The i-vector 

can also be obtained by post-processing the generic supervector. Interestingly, we find that the generic 

supervector can be used to interpret the feature representation learned by a convolutional neural network 

(CNN) and help intuitively understand the robustness of the residual network (ResNet) [107]. The 

formulation of the generic supervector may help design new feature representations. 

The Gaussian mixture model (GMM) [9] and the restricted Boltzmann machine (RBM) [48] are popular 

generative models that can be used for probability estimation and pattern recognition. Both can be 

applied to acoustic signal classification tasks; however, there lacks a comparison of the characteristics 
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of GMM and RBM. To improve the understanding of GMM and RBM, we perform theoretical analyses 

and experimental comparisons on the characteristics and applicable scenarios of GMM and RBM. We 

also derive the formulation for RBM to estimate the probability of real-valued input feature vectors. In 

this way, RBM can be used as a probability estimator in the same way as GMM. 

The probabilistic linear discriminant analysis (PLDA) model is the state-of-the-art backend for speaker 

verification [55]. However, its original formulation is not efficient when there are many training data, 

especially when the training data have a high dimensionality. This prevents PLDA from being a general-

purpose classifier like support vector machine (SVM). While some scalable formulations have been 

proposed to make the model parameter estimation process efficient [78][79], we propose the scalable 

formulation that makes PLDA able to efficiently predict the class label. 

The sparse representation-based classifier (SRC) has demonstrated improved performance over SVM 

for speaker identification [67]. However, due to the L1-norm constraint included in the formation of the 

sparse representation (SR), the computation of SRC is inefficient. By replacing the L1-norm constraint 

by the L2-norm constraint, the collaborative representation (CR) is proposed in [69], which significantly 

improves the computational efficiency. To further improve the performance of CR, we propose the 

discriminative CR (DCR), which improves the effectiveness of CR while keeping a similar 

computational efficiency. In addition, we also propose the minimum residual-based classifier (MRC), 

which uses SR, CR and DCR to make class label predictions. MRC can be treated as the generalization 

of SRC and CR-based classifier (CRC). 

Two popular feature projection techniques are the nuisance attribute projection (NAP) and the Fisher 

linear discriminant analysis (LDA) [1]. NAP is usually applied to GSV while LDA is usually applied 

to i-vector. These two projection techniques are seldom compared in a fair treatment (viz. with the same 

feature representation and the same backend). In addition, their kernel extensions are not given enough 

attention. There are many variants of LDA. In this thesis, we focus on two fundamental formulations 

and make detailed derivations of their kernel-based versions, and then make a comparison between the 

two formulations. The original concept of NAP does not suit pattern recognition tasks well as its target 

is to remove the unwanted information from the original feature vector instead of increasing the 
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discrimination ability of the original feature vector. Nonetheless, by modifying the meaning of the 

parameters involved in the objective function of NAP, it becomes a general-purpose projection 

technique like LDA. We then derive its kernel version, which is the generalization of NAP. We also 

prove that NAP is equivalent to one formulation of LDA under certain conditions. This builds the 

connection between NAP and LDA. 

Our major contributions are summarized as follows: 

• The detailed analysis on the formulation and rationale of GSV and i-vector, the proposal of MFA-

based feature representations that balance the computational efficiency and dimensional flexibility, 

and the theoretical and experimental comparisons of different feature representations 

• The proposal of the generic supervector, which generalizes GSV and MFALV, and can be used to 

interpret the feature representation learned by a neural network 

• The derivation of the formulation for RBM to estimate probabilities for real-valued input feature 

vectors, and the theoretical and experimental comparisons between GMM and RBM 

• The proposal of the scalable formulation of PLDA that enables it to efficiently make class label 

predictions 

• The proposal of DCR which improves the discriminativeness of CR, and the proposal of MRC 

which generalizes SRC and CRC 

• The detailed analysis on LDA, NAP and their kernel extensions, and the proof of the equivalence 

of NAP and LDA under certain conditions 

1.4    Outline of the Thesis 

This thesis is organized into three parts, where each part is relatively independent and self-contained. 

Part I includes Chapters 3 and 4, covering the analyses and discussions on several vector-based feature 

representations, including GSV, i-vector, and the proposed MFA-based feature representations. 

Specifically, Chapter 3 discusses the formulation and the rationale of GSV and i-vector. Some 

extensions of GSV are also covered. The MFA-based feature representations are then proposed and 

compared to GSV and i-vector. Finally, the generic supervector is proposed, which serves as the 
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generalization of GSV and MFALV. Chapter 4 covers comparative experiments on the effectiveness 

and efficiency of different feature representations. Some work related to Part I has been included in 

journal paper [2] and conference papers [1], [4] of Author’s Publications. 

Part II includes Chapters 5 and 6, covering the analyses and discussions on several classifiers, including 

GMM, RBM, SVM, PLDA, and MRC. Specifically, Chapter 5 discusses the formulation of GMM and 

RBM, and presents theoretical comparisons between GMM and RBM. The original formulation and the 

scalable formulation for PLDA are also analyzed. Binary SVM, multi-class SVM and weighted SVM 

(WSVM) are briefly introduced. The formulations of SR, CR and DCR are given, followed by the 

description of MRC. Chapter 6 covers comparative experiments on the effectiveness and efficiency of 

different classifiers. Some work related to Part II has been included in conference papers [3], [5], [7], 

[10] of Author’s Publications. 

Part III includes Chapters 7 and 8, covering the analyses and discussions on several feature projection 

techniques including LDA, NAP, and their kernel extensions. Specifically, Chapter 7 discusses two 

formulations of LDA and then derives their kernel-based formulations. NAP is extended to be a general-

purpose projection technique, and the corresponding kernel-based formulation is derived. We then 

prove the equivalence of NAP and LDA under certain conditions. Chapter 8 covers comparative 

experiments on the performance of LDA, NAP, and their kernel extensions as feature transformation 

techniques. Some work related to Part III has been included in journal paper [1] and conference papers 

[2], [6], [8], [9] of Author’s Publications. 

Chapter 9 concludes the thesis, summarizing our major findings. 

1.5    Datasets Description 

In this thesis, two acoustic datasets and two speech datasets will be used to evaluate the performance of 

different feature representations, classifiers, and projection techniques. The acoustic datasets are used 

to do acoustic scene classification, while the speech datasets are used to do speaker identification. 

Details about the datasets are given in Table 1.1 and described as follows. 
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Kingline081 [80] is an American English speech corpus comprising continuous speeches with normal 

speeds. In our experiments, only a small portion is used, which consists of 20 native speakers’ speeches. 

The speeches are recorded in 3 different sessions, where speeches in the first two sessions are used for 

training, and those in the third session are used for testing. For each session, there are about 100 samples 

contributed by each speaker. This leads to a training set of 3997 speech samples and a testing set of 

1998 speech samples. The length of the sample varies from 2s to 10s, and the average length is about 

4s. 

Ahumada [81] is a Spanish speech corpus comprising speeches recorded using different devices with 

varying speeds. The contents include specific texts as well as spontaneous speeches. In our experiments, 

only a small portion is used, which comprises 25 speakers’ telephone conversational speeches. The 

speeches are recorded in 4 different sessions, where speeches in two sessions are used for training, and 

those in the other two sessions are used for testing. For each session, there are about 24 samples 

contributed by each speaker. This leads to a training set of 1199 speech samples and a testing set of 

1200 speech samples. The length of the sample varies from 2s to 2min. Most samples have a length of 

about 3s, and the average length is about 13s. 

DCASE2013 [82] contains data from 10 different acoustic scenes. The public dataset consists of 100 

acoustic samples, with each acoustic scene having 10 samples. The private dataset consists of 100 

acoustic samples, with each acoustic scene having 10 samples. Each acoustic sample lasts for 30s. The 

public dataset is used for training, and the private dataset is used for testing. 

Table 1.1    Acoustic and speech datasets description. 

Dataset Task 

Number 

of classes 

Number of samples Length of 

each sample 

Average 

length Training  Testing  

Kingline081 Speaker 

identification 

20 3997 1998 2s ~ 10s 4s 

Ahumada 25 1199 1200 2s ~ 2min 13s 

DCASE2013 Acoustic scene 

classification 

10 100 100 30s 30s 

TUT2016 15 1121 390 30s 30s 
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TUT2016 [83] contains data from 15 different acoustic scenes. The development set consists of 1170 

acoustic samples, with each acoustic scene having 78 samples. After deleting erroneous samples, there 

are 1121 acoustic samples in the development set. The evaluation set consists of 390 acoustic samples, 

with each acoustic scene having 26 samples. Each acoustic sample lasts for 30s. The development set 

is used for training and the evaluation set is used for testing. 
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Chapter 2    Literature Review 

 

2.1    Feature Representations 

The most widely used frame-level feature representation is the Mel-frequency cepstral coefficients 

(MFCC) vector [11]. An MFCC vector is obtained in four steps. First, the Fourier coefficients of a 

frame are calculated using the discrete Fourier transformation (DFT). Second, the DFT coefficients are 

filtered using the Mel-scale filterbanks, which simulates the perception of human ear. Third, the Mel 

coefficients take the logarithm, where convolutive noises are transformed into additive noises, yielding 

the logmel vector. Finally, the discrete cosine transform (DCT) is applied, which decorrelates the 

elements in the logmel vector and compresses the energy into a smaller number of coefficients, 

producing the MFCC vector [12]. The logmel vector itself also works well with DNN [13]. 

In a speech sample, it is believed that the signal intensity at a time instant can be predicted by the 

intensities at previous time instants, which leads to the linear predictive coding. Under this assumption 

and following the similar way of obtaining MFCC, we may have the linear predictive cepstral 

coefficients (LPCC) [11]. However, this assumption may not generalize well to other types of non-

speech acoustic signals. For some specific tasks, MFCC may not be the best choice even if the signal is 

a speech. For example, in [14], it is shown that the energy band gap feature outperforms MFCC for 

speech recording device identification. In [15], it is shown that the constant-Q cepstral coefficients 

(CQCC), which are obtained by replacing DFT with the constant-Q transform (CQT) in the derivation, 

outperform MFCC for speech replay detection. 

It is also viable to apply a DNN to extract frame-level feature representations. For example, in [16], 

feature representations are extracted by a convolutional deep belief net (CDBN), which is trained in an 

unsupervised manner. CDBN-based feature representation has been shown to outperform MFCC in 

speaker recognition when the training data are limited. A sequence of consecutive frame-level feature 
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representations can be concatenated and then processed by a DNN, yielding the bottleneck feature (BNF) 

[17][18], which embeds some temporal information existing in the speech signal. However, the 

temporal characteristics are not evident in the acoustic signals for acoustic scene classification [19]. 

The frame-level feature representation can also be transformed into a probability vector, whose 

elements are the posterior probabilities of a Gaussian mixture model (GMM), yielding the 

posteriorgram [20]. In our experiments, we shall only employ MFCC as the frame-level feature 

representation because of its simplicity and popularity among a wide range of applications, including 

speaker recognition [11], acquisition device recognition [2], acoustic environment identification [5], 

and acoustic scene classification [6]. 

The frame-level feature representations can be aggregated using majority voting strategies [21]. 

However, it is more convenient to describe one sample using one feature representation. This sample-

level feature representation can be a probabilistic model, such as the GMM, which can be used for 

speaker identification [22] and verification [23]. To compare the distance or the similarity of two GMMs, 

we may adopt the Kullback-Leibler (KL) divergence. However, KL divergence is asymmetric, which 

means that the KL divergence between GMM 𝑎 and GMM 𝑏 are different from the KL divergence 

between GMM 𝑏 and GMM 𝑎. This makes it not really a distance metric. In addition, the calculation 

of KL divergence is generally difficult, as it requires integrating over the whole feature space. 

Sometimes, it is even intractable if the probabilistic model is complicated. This difficulty raises the 

interest in vector-based feature representations [7], which are easier to compare and visualize. 

Two widely used vector-based feature representations are GSV and i-vector [1]. GSV is applicable to 

speaker verification [7] and identification [24], acquisition device recognition [25][26], acoustic scene 

classification [27], and speech signal clustering [17]. The applications of i-vector include speaker 

verification [8][18], voice search [28], acoustic scene classification [29], speech replay detection [30], 

and acoustic signal clustering [31]. GSV is obtained by adapting the parameters of a GMM-based UBM 

using the maximum a posteriori (MAP) adaptation. The adaptation process is simple and fast, but the 

dimensionality of GSV depends on the number of mixture components in the UBM, which is 

unchangeable. I-vector is obtained by constructing a factor analysis (FA) model based on the parameters 
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of a GMM-based UBM. The computation can be time-consuming because of the additional parameters 

in the FA model. Nonetheless, the dimensionality of i-vector depends on the size of the factor-loading 

matrix, which is changeable. There are also studies focusing on reducing the computational burden of 

i-vector by simplifying its formulation [32][33]. The e-vector [34] is a variant of i-vector, which adopts 

a different estimation procedure for the factor-loading matrix. Fisher vector (FV), widely used for image 

classification tasks [35][36], is similar to GSV in formulation and applicable to speaker identification 

[24]. Different from the MAP adaption adopted by GSV, FV is based on the gradients of a GMM [37]. 

The UBM can also be a deep belief net (DBN) trained in an unsupervised manner [38], or a DNN used 

for speech recognition trained in a supervised way [39]. The latter works well while the former does 

not, which shows the importance of supervised training. A DNN can be applied to the raw frame-level 

feature representations to produce the DNN-based frame-level feature vectors, which are the activation 

vectors of a hidden layer. The activation vector can be the output of the intermediate hidden layer [18] 

or the last hidden layer [40]. These DNN-based frame-level feature vectors can be used to form an i-

vector [18] or directly averaged to form a sample-level feature representation called the d-vector [40]. 

However, d-vector is not comparable to i-vector. By taking account of both the average and the standard 

deviation, the performance of x-vector is comparable to that of i-vector, or even better after data 

augmentation [41][42]. The hidden layer of a convolutional neural network (CNN) can also be used to 

construct sample-level feature representations that work well [43][44]. Still, it requires the input feature 

vector to have a high dimensionality and the training data to be abundant. 

2.2    Classifiers 

Most classifiers require constructing a classification model based on a set of training data. The 

classification model can then be used to predict the class labels of the testing data. In general, 

classification models can be divided into generative models and discriminative models [11]. Generative 

models aim at modeling the probability distributions of the training data, and making predictions based 

on the probabilities with respect to different classes. An example generative model is the GMM. 

Discriminative models aim at classifying the training data into different classes by finding separating 

hyperplanes or forming decision functions without modeling the underlying probability distribution. 
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Example discriminative models include the support vector machine (SVM) and DNN. There also exist 

model-free classifiers that do not build a model but directly use the training data to make predictions, 

such as the k nearest neighbor (KNN) classifier and the sparse representation-based classifier (SRC). 

Two generative models are widely used in acoustic signal processing. One is GMM, and the other is 

the restricted Boltzmann machine (RBM). GMM is a famous generative model that covers a wide range 

of application areas, such as speaker recognition [1], speech acquisition device identification [45], 

speech replay detection [30], room identification [46], environmental sound classification [47], and 

acoustic scene classification [6]. It is famous for its usage as the UBM to provide posterior probabilities 

for the computation of GSV, i-vector, or other feature representations [11][24]. RBM, essentially a two-

layer neural network, is also a generative model that can be used for probability estimation [48]. In 

addition, it can also be used for doing feature transformation [49]. DBN, which is formed by stacking 

multiple RBMs [50], can be used to initialize a stacked autoencoder (SAE) for dimensionality reduction 

[51], or used to initialize a DNN for speech recognition [52]. As a brief comparison, GMM is good at 

handling low-dimensional decorrelated feature vectors, whereas DNN is good at handling high-

dimensional correlated feature vectors. The combination of GMM and DNN, such as using DNN to 

produce the BNF and then using GMM to produce the posterior probabilities [18], may make the best 

use of their characteristics. 

SVM has a wide range of applications, including classification, regression, and novelty detection [53]. 

It has been widely used for high-dimensional feature classification tasks, such as speaker recognition 

[11], speech acquisition device identification [25][26], acoustic environment identification [5], acoustic 

scene classification [29], and environmental sound classification [54]. SVM has been the state-of-the-

art backend for speaker verification in the earlier days [8], while currently it is the probabilistic linear 

discriminant analysis (PLDA) model [55]. Besides speaker verification, PLDA has also been applied to 

speaker clustering [56] and voice search [28]. CNN is also a good classification model, which can 

outperform SVM and PLDA for speaker identification and verification [57][58]. However, it requires 

a large number of training data. Some sequence classification models are also applicable to acoustic 

signal classification, such as the hidden Markov model (HMM) [54] and the recurrent neural network 
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(RNN) [19]. However, as the acoustic sample is related to only one class label instead of a sequence of 

labels, the sequential information may not be critical. In addition, acoustic signals for acoustic scene 

classification do not possess strong temporal characteristics [19]. 

The sparse representation (SR), which is essentially a feature transformation technique, has been widely 

used in different digital signal processing tasks [59], including face recognition [60], handwritten digit 

recognition [61], music genre classification [62], speech recognition [63], speaker verification [64] and 

recognition [65], and speech recording device verification [66]. The SRC, which is a model-free 

classifier and specially designed for classifying SR [60], has demonstrated improved performance in 

speaker identification over SVM [67] and the cosine distance-based classifier [68]. However, as an L1-

norm constraint is included in the objective function of SR, the computation is very slow. In order to 

improve the computational efficiency, the L1-norm constraint can be replaced by the L2-norm 

constraint, yielding the collaborative representation (CR) [69]. The CR-based classifier (CRC) gives a 

similar performance as that of SRC in face recognition but maintains a much lower computational 

complexity. 

2.3    Sample-level Feature Transformation Techniques 

Feature transformation aims at mapping a feature representation from its original feature space to 

another feature space. The mapping can be done, e.g., by a projection matrix that maps the feature 

representation to a projected space, or a probability function that maps the feature representation to a 

probabilistic space. Although feature transformations can be applied to frame-level feature 

representations, a frame-level feature representation does not carry much information and thus is not 

very exploitable. 

Two projection techniques have been popular in speaker recognition studies [1], viz. the nuisance 

attribute projection (NAP) and the Fisher linear discriminant analysis (LDA). LDA is widely used as a 

dimensionality reduction technique for different applications such as speaker verification [1] and face 

recognition [70]. Its kernel extension (KDA) [71][72], which includes an implicit feature mapping 

before performing projection, can be more powerful [73]. NAP is widely used for removing unwanted 
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information from the original feature vector, which improves the quality of the feature representation 

for speaker verification [74] and face recognition [75]. The kernel extension of NAP (KNAP) is also 

useful [76][77]. There are also some other projection techniques, such as restricted Boltzmann machine 

(RBM) [49], factor analysis (FA), and probabilistic principal component analysis (PPCA) [33]. 
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Chapter 3    Feature Representations: Theoretical 

Analysis 

 

3.1    Gaussian Supervector 

3.1.1    Basic Formulation 

Gaussian supervector (GSV) is obtained by modifying the model parameters of a universal background 

model (UBM), which is usually a GMM. Suppose a GMM-based UBM has already been constructed, 

whose parameter set is denoted as 𝜃 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀}, where 𝑀 is the total number of 

Gaussian mixture components in the UBM; 𝜋𝑚, 𝝁𝑚 and 𝝈𝑚 are the corresponding weight, mean vector, 

and standard deviation vector of the 𝑚-th mixture component respectively (assuming the covariance of 

each Gaussian component is diagonal). 

Given an acoustic or speech sample denoted as 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}, where 𝑇 is the number of frame-

level feature vectors obtained. For each vector 𝒙𝑡, a posterior probability 𝑝(𝑚|𝒙𝑡 , 𝜃) for each mixture 

component as given by (3.1) needs to be calculated, where 𝑝𝑔(𝒙𝑡|𝝁𝑚, 𝝈𝑚) is the Gaussian probability 

density function with parameters {𝝁𝑚, 𝝈𝑚}. 

 𝑝(𝑚|𝒙𝑡 , 𝜃) =
𝜋𝑚𝑝𝑔(𝒙𝑡|𝝁𝑚,𝝈𝑚)

∑ 𝜋𝑗𝑝𝑔(𝒙𝑡|𝝁𝑗,𝝈𝑗)
𝑀
𝑗=1

 (3.1) 

Having obtained the posterior probability, the sufficient statistics are needed to be calculated based on 

the maximum likelihood estimation (MLE) as given by (3.2) ~ (3.4), where 𝐸𝑚[𝒙0], 𝐸𝑚[𝒙] and 𝐸𝑚[𝒙2] 

represent the zero-order, first-order, and second-order statistics for the 𝑚 -th mixture component 

respectively. These statistics are posterior expectations. The operator ∘ in (3.4) denotes the element-

wise multiplication (also known as the Hadamard product). 
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 𝐸𝑚[𝒙0] =
1

𝑇
∑ 𝑝(𝑚|𝒙𝑡 , 𝜃)𝑇

𝑡=1  (3.2) 

 𝐸𝑚[𝒙] =
∑ 𝑝(𝑚|𝒙𝑡,𝜃)𝒙𝑡

𝑇
𝑡=1

∑ 𝑝(𝑚|𝒙𝑡,𝜃)𝑇
𝑡=1

 (3.3) 

 𝐸𝑚[𝒙2] =
∑ 𝑝(𝑚|𝒙𝑡,𝜃)𝒙𝑡∘𝒙𝑡

𝑇
𝑡=1

∑ 𝑝(𝑚|𝒙𝑡,𝜃)𝑇
𝑡=1

 (3.4) 

The posterior expectations are then combined with the original model parameters of the UBM to form 

the adapted parameters as given by (3.5) ~ (3.7), where �̃�𝑚, �̃�𝑚 and �̃�𝑚 are the adapted weight, adapted 

mean vector and adapted standard deviation vector respectively. This adaptation process is based on the 

maximum a posteriori (MAP) adaptation. The operation (. )∘(.) is the element-wise power operation 

(also known as the Hadamard power). 𝜂  is a scale factor automatically determined during the 

computation to ensure that the adapted weight �̃�𝑚 adds up to one. 𝛼𝑚 is the adaptation coefficient given 

by (3.8), where 𝑟 is the relevance factor [23]. 

 �̃�𝑚 = 𝜂(𝛼𝑚𝐸𝑚[𝒙0] + (1 − 𝛼𝑚)𝜋𝑚) (3.5) 

 �̃�𝑚 = 𝛼𝑚𝐸𝑚[𝒙] + (1 − 𝛼𝑚)𝝁𝑚 (3.6) 

 �̃�𝑚 = (𝛼𝑚𝐸𝑚[𝒙2] + (1 − 𝛼𝑚)(𝝈𝑚
∘2 + 𝝁𝑚

∘2) − �̃�𝑚
∘2)∘

1

2 (3.7) 

where 

 𝛼𝑚 =
𝐸𝑚[𝒙0]

𝐸𝑚[𝒙0]+𝑟/𝑇
 (3.8) 

Having the adapted parameters, the GSV is then obtained by column-wisely concatenating the adapted 

mean vectors �̃�𝑚  for 𝑚 = 1,2…𝑀 as given by (3.9), where the superscript 𝑇 denotes the transpose 

operation [7]. If the dimensionality of a frame-level feature vector 𝒙𝑡 is 𝐷 × 1, the dimensionality of 

GSV is 𝑀𝐷 × 1. An illustration of the computation of GSV is shown in Figure 3.1. 

 𝑿𝐺𝑆𝑉 = [�̃�1
𝑇 �̃�2

𝑇 ⋯ �̃�𝑀
𝑇 ]𝑇 (3.9) 
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3.1.2    Rationale 

The idea of GSV arises from an approximation of the KL divergence between two GMM distributions. 

Before the emergence of vector-based representations, an acoustic or speech sample is represented by 

a probabilistic model, such as an adapted GMM [23]. Given a sample 𝑎 and a sample 𝑏, suppose their 

corresponding adapted GMMs are represented by �̃�(𝑎) = {�̃�𝑚
(𝑎)

, �̃�𝑚
(𝑎)

, �̃�𝑚
(𝑎)

|𝑚 = 1,2…𝑀} and �̃�(𝑏) =

{�̃�𝑚
(𝑏)

, �̃�𝑚
(𝑏)

, �̃�𝑚
(𝑏)

|𝑚 = 1,2…𝑀} respectively. The distance between �̃�(𝑎) and �̃�(𝑏) can be approximated 

by the KL divergence given by (3.10), where 𝑝𝑚
(𝑎)

(𝒙) and 𝑝𝑚
(𝑏)

(𝒙) are the Gaussian probability density 

functions with parameters {�̃�𝑚
(𝑎)

, �̃�𝑚
(𝑎)

} and {�̃�𝑚
(𝑏)

, �̃�𝑚
(𝑏)

} respectively [7]. 

 𝐷𝐾𝐿(�̃�
(𝑎)||�̃�(𝑏)) = ∫ (∑ �̃�𝑚

(𝑎)
𝑝𝑚

(𝑎)
(𝒙)𝑀

𝑚=1 ) ln (
∑ �̃�𝑚

(𝑎)
𝑝𝑚

(𝑎)
(𝒙)𝑀

𝑚=1

∑ �̃�𝑚
(𝑏)

𝑝𝑚
(𝑏)

(𝒙)𝑀
𝑚=1

)𝑑𝒙
+∞

𝑥=−∞
 (3.10) 

It is proved in [84] that the KL divergence between two GMMs is upper bounded by the weighted sum 

of the KL divergence between their individual Gaussian components as given by (3.11). 

 𝐷𝐾𝐿(�̃�
(𝑎)||�̃�(𝑏)) ≤ 𝐷𝐾𝐿 (�̃�𝑚

(𝑎)
||�̃�𝑚

(𝑏)
) + ∑ �̃�𝑚

(𝑎)
𝐷𝐾𝐿 (𝑝𝑚

(𝑎)
(𝒙)‖𝑝𝑚

(𝑏)
(𝒙))𝑀

𝑚=1  (3.11) 

If we assume that �̃�𝑚
(𝑎)

= �̃�𝑚
(𝑏)

= 𝜋𝑚  and �̃�𝑚
(𝑎)

= �̃�𝑚
(𝑏)

= 𝝈𝑚 , namely only the mean parameter is 

adapted, then the upper bound of 𝐷𝐾𝐿(�̃�
(𝑎)||�̃�(𝑏)) can be expanded as in (3.12), where 𝚺𝑚 is a diagonal 

matrix whose elements on the principal diagonal are the elements of 𝝈𝑚
∘2. 

     𝐷𝐾𝐿 (�̃�𝑚
(𝑎)

||�̃�𝑚
(𝑏)

) + ∑ �̃�𝑚
(𝑎)

𝐷𝐾𝐿 (𝑝𝑚
(𝑎)

(𝒙)‖𝑝𝑚
(𝑏)

(𝒙))𝑀
𝑚=1  

     = 𝐷𝐾𝐿(𝜋𝑚||𝜋𝑚) + ∑ 𝜋𝑚𝐷𝐾𝐿 (𝑝𝑚
(𝑎)

(𝒙)‖𝑝𝑚
(𝑏)

(𝒙))𝑀
𝑚=1  

 

Figure 3.1    The computation of GSV. 
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     = 0 + ∑ 𝜋𝑚 ∫ 𝑝𝑚
(𝑎)

(𝒙) ln
𝑝𝑚

(𝑎)
(𝒙)

𝑝𝑚
(𝑏)

(𝒙)
𝑑𝒙

+∞

𝑥=−∞
𝑀
𝑚=1  

     = ∑ 𝜋𝑚 ∫𝑝𝑚
(𝑎)

(𝒙)
1

2
((𝒙 − �̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1 (𝒙 − �̃�𝑚
(𝑏)

) − (𝒙 − �̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1 (𝒙 − �̃�𝑚
(𝑎)

))𝑑𝒙𝑀
𝑚=1  

     =
1

2
∑ 𝜋𝑚 ∫𝑝𝑚

(𝑎)
(𝒙) ((�̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑏)

− (�̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

+ 2(�̃�𝑚
(𝑎)

− �̃�𝑚
(𝑏)

)
𝑇
𝚺𝑚

−1𝑥)𝑑𝒙𝑀
𝑚=1  

     =
1

2
∑ 𝜋𝑚 ∫𝑝𝑚

(𝑎)
(𝒙) ((�̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑏)

− (�̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

)𝑑𝒙𝑀
𝑚=1  

         +
1

2
∑ 𝜋𝑚 ∫𝑝𝑚

(𝑎)
(𝒙) (2 (�̃�𝑚

(𝑎)
− �̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1𝑥)𝑑𝒙𝑀
𝑚=1  

     =
1

2
∑ 𝜋𝑚 ((�̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑏)

− (�̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

)∫𝑝𝑚
(𝑎)

(𝒙)𝑑𝒙𝑀
𝑚=1  

         +
1

2
∑ 𝜋𝑚 (2 (�̃�𝑚

(𝑎)
− �̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1)∫𝑝𝑚
(𝑎)

(𝒙)𝒙𝑑𝒙𝑀
𝑚=1  

     =
1

2
∑ 𝜋𝑚 ((�̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑏)

− (�̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

)𝑀
𝑚=1 +

1

2
∑ 𝜋𝑚 (2 (�̃�𝑚

(𝑎)
− �̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1) �̃�𝑚
(𝑎)𝑀

𝑚=1  

     =
1

2
∑ 𝜋𝑚 ((�̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑏)

+ (�̃�𝑚
(𝑎)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

− 2(�̃�𝑚
(𝑏)

)
𝑇
𝚺𝑚

−1�̃�𝑚
(𝑎)

)𝑀
𝑚=1  

     =
1

2
∑ 𝜋𝑚 (�̃�𝑚

(𝑎)
− �̃�𝑚

(𝑏)
)
𝑇
𝚺𝑚

−1 (�̃�𝑚
(𝑎)

− �̃�𝑚
(𝑏)

)𝑀
𝑚=1  

     = ∑ (√
𝜋𝑚

2
𝚺𝑚

−
1

2�̃�𝑚
(𝑎)

− √
𝜋𝑚

2
𝚺𝑚

−
1

2�̃�𝑚
(𝑏)

)

𝑇

(√
𝜋𝑚

2
𝚺𝑚

−
1

2�̃�𝑚
(𝑎)

− √
𝜋𝑚

2
𝚺𝑚

−
1

2�̃�𝑚
(𝑏)

)𝑀
𝑚=1  (3.12) 

The result in (3.12) can be seen as the Euclidean distance between two supervectors, where each 

supervector has the expression as given by (3.13), which is a normalized version of GSV. We name 

(3.13) as the normalized GSV (nGSV). 

 𝑿𝑛𝐺𝑆𝑉 = [(√
𝜋1

2
𝚺1

−
1

2�̃�1)

𝑇

(√
𝜋2

2
𝚺2

−
1

2�̃�2)

𝑇

⋯ (√
𝜋𝑀

2
𝚺𝑀

−
1

2�̃�𝑀)

𝑇

]

𝑇

 (3.13) 

Hence, by assuming �̃�𝑚
(𝑎)

= �̃�𝑚
(𝑏)

= 𝜋𝑚 and �̃�𝑚
(𝑎)

= �̃�𝑚
(𝑏)

= 𝝈𝑚, the KL divergence between �̃�(𝑎) and 

�̃�(𝑏) are upper bounded by the Euclidean distance between 𝑿𝑛𝐺𝑆𝑉
(𝑎)

 and 𝑿𝑛𝐺𝑆𝑉
(𝑏)

, as given by (3.14). That 
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is to say, the similarity between two acoustic samples can be approximated by the similarity between 

their corresponding nGSVs, which lays the foundation for GSV. 

 𝐷𝐾𝐿(�̃�
(𝑎)||�̃�(𝑏)) ≤ ‖𝑿𝑛𝐺𝑆𝑉

(𝑎)
− 𝑿𝑛𝐺𝑆𝑉

(𝑏)
‖

2
 (3.14) 

3.1.3    Extensions 

GSV is obtained by concatenating the adapted mean vectors of all the mixture components. It is then 

natural to think whether concatenating other adapted parameters may provide some benefits, including 

the adapted weights and the adapted standard deviation vectors. This leads to the weight supervector 

(WSV) as given by (3.15), which is the concatenation of the adapted weight parameters; and the 

variance supervector (VSV) as given by (3.16), which is the concatenation of the adapted standard 

deviation parameters. By concatenating WSV, GSV, and VSV, a supervector with an even higher 

dimensionality can be obtained as given by (3.17), which is named as fully concatenated supervector 

(FSV). The dimensionality of WSV, GSV, VSV, and FSV are 𝑀 × 1, 𝑀𝐷 × 1, 𝑀𝐷 × 1 and (𝑀 +

2𝑀𝐷) × 1 respectively. 

 𝑿𝑊𝑆𝑉 = [�̃�1 �̃�2 ⋯ �̃�𝑀]𝑇 (3.15) 

 𝑿𝑉𝑆𝑉 = [�̃�1
𝑇 �̃�2

𝑇 ⋯ �̃�𝑀
𝑇 ]𝑇 (3.16) 

 𝑿𝐹𝑆𝑉 = [𝑿𝑊𝑆𝑉
𝑇 𝑿𝐺𝑆𝑉

𝑇 𝑿𝑉𝑆𝑉
𝑇 ]𝑇 (3.17) 

3.1.4    Relevance Factor 

The relevance factor 𝑟 involved in the calculation of the supervector is a hyperparameter that needs to 

be determined. Given a speech sample 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇} and a GMM-based UBM with 𝑀 mixture 

components, we propose to determine the value of 𝑟 using (3.18), where 𝛽 is a scaling factor. According 

to (3.2) and (3.18), we have ∑ 𝐸𝑚[𝒙0]𝑀
𝑚=1 = 1  and ∑ 𝑟/𝑇𝑀

𝑚=1 = 𝛽 . So, when 𝛽 = 1 , we have 

∑ 𝑟/𝑇𝑀
𝑚=1 = ∑ 𝐸𝑚[𝒙0]𝑀

𝑚=1 . According to (3.5) ~ (3.7), the adapted parameters depend on both the 

statistics of the sample 𝑠 and the statistics of the UBM. If the sample 𝑠 fits well to some mixture 

component 𝑖 but fits poorly to some mixture component 𝑗, such that 𝐸𝑖[𝒙
0] > 𝑟/𝑇 and 𝐸𝑗[𝒙

0] < 𝑟/𝑇, 
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we have 𝛼𝑖 > 0.5 and 𝛼𝑗 < 0.5. This indicates the adapted parameters of the 𝑖-th mixture component 

will depend more on the statistics of the specific sample 𝑠 instead of the UBM, whereas the adapted 

parameters of the 𝑗-th mixture component will depend more on the statistics of the UBM. When 𝛽 = 1, 

the statistics of the sample 𝑠 and the statistics of the UBM are equally weighted. The larger the zero-

order statistics, the more the adapted parameters will be tuned towards the specific sample 𝑠, and vice 

versa. 𝛽 controls the general dependence of the adapted parameters on the sample or the UBM. The 

smaller the 𝛽, the more the adapted parameters will depend on the sample; the larger the 𝛽, the more 

the adapted parameters will depend on the UBM. 

 𝑟 = 𝛽
𝑇

𝑀
 (3.18) 

Determining the value of 𝑟 using 𝛽 is more convenient than directly determining the value of 𝑟 because 

𝛽 = 1 is the critical point, and the value of 𝛽 can be chosen using 𝛽 = 1 as a reference. In contrast, 

there is no guidance on choosing the value of 𝑟. 

3.2    I-vector 

3.2.1    Basic Formulation 

The identity vector (i-vector) is obtained by estimating a factor analysis (FA) model based on a GMM-

based UBM [8]. Given a GMM-based UBM denoted as 𝜃 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀}, it is assumed 

that a sample 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇} is represented by an unobservable supervector 𝑿𝑠, which is generated 

by a latent vector 𝒛𝑠 as expressed by (3.19), where 𝝁𝑈𝐵𝑀 is the concatenation of the mean vectors of 

the UBM as given by (3.20), 𝑽 is the factor-loading matrix, and 𝜺𝑠 is a noise vector with zero mean and 

diagonal covariance 𝚿. The subscript 𝑠 means that the supervector and the latent vector depend on a 

specific sample 𝑠. 

 𝑿𝑠 = 𝝁𝑈𝐵𝑀 + 𝑽𝒛𝑠 + 𝜺𝑠 (3.19) 

where 

 𝝁𝑈𝐵𝑀 = [𝝁1
𝑇 𝝁2

𝑇 ⋯ 𝝁𝑀
𝑇 ]𝑇 (3.20) 
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If the dimensionality of 𝒙𝑡 is 𝐷 × 1, then the dimensionality of 𝑿𝑠 is 𝑀𝐷 × 1, but the dimensionality 

of 𝒛𝑠 can be smaller than 𝑀𝐷 × 1, depending on the size of 𝑽. To estimate the model parameters {𝑽,𝚿}, 

we first need to compute the zero-order, first-order and second-order centralized Baum-Welch statistics 

for each mixture component in the UBM as given by (3.21) ~ (3.23) respectively, where 𝑝(𝑚|𝒙𝑡 , 𝜃) is 

the GMM posterior probability given by (3.1) [8]. 

 �̂�𝑚[𝒙0] = ∑ 𝑝(𝑚|𝒙𝑡, 𝜃)𝑇
𝑡=1  (3.21) 

 �̂�𝑚[𝒙] = ∑ 𝑝(𝑚|𝒙𝑡 , 𝜃)(𝒙𝑡 − 𝝁𝑚)𝑇
𝑡=1  (3.22) 

 �̂�𝑚[𝒙𝒙𝑇] = ∑ 𝑝(𝑚|𝒙𝑡 , 𝜃)(𝒙𝑡 − 𝝁𝑚)(𝒙𝑡 − 𝝁𝑚)𝑇𝑇
𝑡=1  (3.23) 

The Baum-Welch statistics are frame-level statistics, which are then used to compute the sample-level 

zero-order, first-order, and second-order statistics as given by (3.24) ~ (3.26). The subscript 𝑠 means 

that these statistics depend on a specific sample 𝑠, and 𝑰 is the identity matrix whose size is 𝐷 × 𝐷. 

 𝐸𝑠[𝑿
0] = [

�̂�1[𝒙
0]𝑰

𝟎
⋮
𝟎

𝟎
�̂�2[𝒙

0]𝑰
⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

�̂�𝑀[𝒙0]𝑰

] (3.24) 

 𝐸𝑠[𝑿] = [�̂�1[𝒙]𝑇 �̂�2[𝒙]𝑇 ⋯ �̂�𝑀[𝒙]𝑇]𝑇 (3.25) 

 𝐸𝑠[𝑿𝑿𝑇] = [

�̂�1[𝒙𝒙𝑇]𝑰
𝟎
⋮
𝟎

𝟎
�̂�2[𝒙𝒙𝑇]𝑰

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

�̂�𝑀[𝒙𝒙𝑇]𝑰

] (3.26) 

Having the sample-level statistics, {𝑽,𝚿} are then estimated using the EM algorithm [86]. In the E-step, 

the current estimated {𝑽,𝚿} are fixed while the posterior mean and the posterior covariance of 𝒛𝑠 are 

computed using (3.27) and (3.28) respectively. 

 𝐸[𝒛𝑠] = (𝑰 + 𝑽𝑇𝚿−1𝐸𝑠[𝑿
0]𝑽)−1𝑽𝑇𝚿−1𝐸𝑠[𝑿] (3.27) 

 𝐸[𝒛𝑠𝒛𝑠
𝑇] = (𝑰 + 𝑽𝑇𝚿−1𝐸𝑠[𝑿

0]𝑽)−1 + 𝐸[𝒛𝑠]𝐸[𝒛𝑠]
𝑇 (3.28) 
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In the M-step, the posterior mean and the posterior covariance of 𝒛𝑠 are fixed while {𝑽,𝚿} are re-

estimated by solving (3.29) and (3.30). 𝑆 denotes the number of training samples, and diag{. } is an 

operation that retains all the elements on the principal diagonal but sets all other elements to zero. 

 ∑ 𝐸𝑠[𝑿
0]𝑽𝐸[𝒛𝑠𝒛𝑠

𝑇]𝑆
𝑠=1 = ∑ 𝐸𝑠[𝑿]𝐸[𝒛𝑠]

𝑇𝑆
𝑠=1  (3.29) 

 𝚿 =
1

∑ 𝐸𝑠[𝑿
0]𝑆

𝑠=1
diag{∑ (𝐸𝑠[𝑿𝑿𝑇] − 𝑽𝐸[𝒛𝑠]𝐸𝑠[𝑿]𝑇)𝑆

𝑠=1 } (3.30) 

The EM algorithm for estimating the parameters of i-vector is summarized in Algorithm 3.1, where the 

superscript 𝑖 indicates the number of EM iterations having been performed, and 𝑃 is the total number 

of EM iterations. The initial values of 𝑽 and 𝚿 are matrices with ones on the principal diagonal but 

zeros elsewhere. 

Algorithm 3.1 EM algorithm for i-vector 

1: Initialization: 𝜃(0) = {𝑽(0),𝚿(0)} 

2: For 𝑠 = 1 to 𝑆  

3:  Compute 𝐸𝑠[𝑿
0], 𝐸𝑠[𝑿] and 𝐸𝑠[𝑿𝑿𝑇] using (3.24) ~ (3.26) 

4: End    

5: For 𝑖 = 1 to 𝑃  

6:  Set {𝑽,𝚿} = {𝑽(𝑖−1),𝚿(𝑖−1)} 

7:  For 𝑠 = 1 to 𝑆  

8:   

E-step: 

𝐸[𝒛𝑠] = (𝑰 + 𝑽𝑇𝚿−1𝐸𝑠[𝑿
0]𝑽)−1𝑽𝑇𝚿−1𝐸𝑠[𝑿] 

9:   𝐸[𝒛𝑠𝒛𝑠
𝑇] = (𝑰 + 𝑽𝑇𝚿−1𝐸𝑠[𝑿

0]𝑽)−1 + 𝐸[𝒛𝑠]𝐸[𝒛𝑠]
𝑇 

10:  End   

11:  

M-step: 

Solve ∑ 𝐸𝑠[𝑿
0]𝑽(𝑖)𝐸[𝒛𝑠𝒛𝑠

𝑇]𝑆
𝑠=1 = ∑ 𝐸𝑠[𝑿]𝐸[𝒛𝑠]

𝑇𝑆
𝑠=1  for 𝑽(𝑖) 

12:  𝚿(𝑖) =
1

∑ 𝐸𝑠[𝑿
0]𝑆

𝑠=1

diag {∑ (𝐸𝑠[𝑿𝑿𝑇] − 𝑽(𝑖)𝐸[𝒛𝑠]𝐸𝑠[𝑿]𝑇)
𝑆

𝑠=1
} 

13:  Update 𝜃: 𝜃(𝑖) = {𝑽(𝑖),𝚿(𝑖)} 

14: End    
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Having obtained {𝑽,𝚿}, the i-vector corresponding to the sample 𝑠 is obtained as the posterior mean of 

the latent vector 𝒛𝑠 as given by (3.31) [8]. We call i-vector the FA latent vector (FALV), because it is 

based on an FA model. A corresponding supervector is obtained as the posterior mean of 𝑿𝑠 as given 

by (3.32), and we name it as the FA supervector (FASV). An illustration of the computation of FALV 

(i-vector) is shown in Figure 3.2, where 𝐻 is the dimensionality of 𝒛𝑠. 

 𝑿𝐹𝐴𝐿𝑉 = 𝐸[𝒛𝑠] (3.31) 

 𝑿𝐹𝐴𝑆𝑉 = 𝐸[𝑿𝑠] = 𝝁𝑈𝐵𝑀 + 𝑽𝐸[𝒛𝑠] = 𝝁𝑈𝐵𝑀 + 𝑽𝑿𝐹𝐴𝐿𝑉 (3.32) 

3.2.2    Rationale 

Consider a set of 𝑆 training samples denoted as {𝑎1, 𝑎2 …𝑎𝑆}, where the 𝑠-th sample is represented by 

a sequence of 𝑇𝑠 frame-level feature vectors, denoted as 𝑎𝑠 = {𝒙1
(𝑠), 𝒙2

(𝑠) …𝒙𝑇𝑠

(𝑠)
}. According to [8] and 

[86], the log-likelihood of the sample 𝑠, denoted as ℒ(𝑠), should be expressed as 

     ℒ(𝑠) = ∑ ∑ 𝑝 (𝑚|𝒙𝑡
(𝑠), 𝜃𝐺𝑀𝑀)

𝑇𝑠
𝑡=1 ln

1

(2𝜋)𝐷/2|𝚿𝑚|1/2
𝑀
𝑚=1  

                   −
1

2
∑ ∑ 𝑝 (𝑚|𝒙𝑡

(𝑠), 𝜃𝐺𝑀𝑀) (𝒙𝑡
(𝑠) − (𝝁𝑚 + 𝑽𝑚𝒛𝑠))

𝑇

𝚿𝑚
−1 (𝒙𝑡

(𝑠) − (𝝁𝑚 + 𝑽𝑚𝒛𝑠))
𝑇𝑠
𝑡=1

𝑀
𝑚=1  

  (3.33) 

where 𝑝(𝑚|𝒙𝑡
(𝑠), 𝜃𝐺𝑀𝑀) is the GMM-based posterior probability given by (3.1), 𝝁𝑚 is the mean of the 

𝑚-th Gaussian component in the GMM, 𝑽𝑚 and 𝚿𝑚 are the 𝑚-th sub-matrix of 𝑽 and the 𝑚-th sub-

matrix of 𝚿 respectively as given by (3.34). 

 

Figure 3.2    The computation of FALV (i-vector). 
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 𝑽 = [

𝑽1

𝑽2

⋮
𝑽𝑀

] , Ψ = [

𝚿1

𝟎
⋮
𝟎

𝟎
𝚿2

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝚿𝑀

] (3.34) 

Equation (3.33) can be reformulated to 

         ℒ(𝑠) = ∑ ∑ 𝑝 (𝑚|𝒙𝑡
(𝑠)

, 𝜃𝐺𝑀𝑀) ln
1

(2𝜋)𝐷/2|𝚿𝑚|1/2 𝑒
−

1

2
(𝒙𝑡

(𝑠)
−(𝝁𝑚+𝑽𝑚𝒛𝑠))

𝑇

𝚿𝑚
−1(𝒙𝑡

(𝑠)
−(𝝁𝑚+𝑽𝑚𝒛𝑠))𝑇𝑠

𝑡=1
𝑀
𝑚=1  

         = ∑ ∑ ln(
1

(2𝜋)𝐷/2|𝚿𝑚|1/2 𝑒
−

1

2
(𝒙𝑡

(𝑠)
−(𝝁𝑚+𝑽𝑚𝒛𝑠))

𝑇

𝚿𝑚
−1(𝒙𝑡

(𝑠)
−(𝝁𝑚+𝑽𝑚𝒛𝑠)))

𝑝(𝑚|𝒙𝑡
(𝑠)

, 𝜃𝐺𝑀𝑀)

𝑇𝑠
𝑡=1

𝑀
𝑚=1 (3.35) 

Using (3.35), the model parameters {𝑽,𝚿} of i-vector can then be treated as obtained by maximizing 

the log-likelihood ℒ  given by (3.36), where 𝑝𝑔(𝒙𝑡
(𝑠)|𝝁𝑚 + 𝑽𝑚𝒛𝑠,𝚿𝑚)  is the Gaussian probability 

density function with mean (𝝁𝑚 + 𝑽𝑚𝒛𝑠) and covariance 𝚿𝑚. 

 ℒ = ∑ ℒ(𝑠)𝑆
𝑠=1 = ∑ ∑ ∑ ln 𝑝𝑔 (𝒙𝑡

(𝑠)
|𝝁𝑚 + 𝑽𝑚𝒛𝑠, 𝚿𝑚)

𝑝(𝑚|𝒙𝑡
(𝑠), 𝜃𝐺𝑀𝑀)𝑇𝑠

𝑡=1
𝑀
𝑚=1

𝑆
𝑠=1  (3.36) 

In this way, i-vector can be parameterized by 𝜃𝑖-𝑣𝑒𝑐𝑡𝑜𝑟 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚, 𝑽𝑚,𝚿𝑚|𝑚 = 1,2…𝑀}, where 

{𝜋𝑚, 𝝁𝑚, 𝝈𝑚} are the parameters of the GMM-based UBM, and {𝑽𝑚,𝚿𝑚} are the parameters of the FA 

model. 

3.2.3    Relationship with GSV 

Although (3.19) is an FA model, the parameters cannot be estimated using the standard FA formulation 

because the supervector 𝑿𝑠 is unobservable. In a standard FA model, an observable supervector 𝒀 is 

related to a latent vector 𝒚 by the expression given by (3.37), where 𝝁 is the mean, 𝑾 is the factor-

loading matrix, and 𝜺 is the noise term following a Gaussian distribution with zero mean and diagonal 

covariance 𝚺. Since the supervector 𝒀 is observable, the latent vector 𝒚 can be estimated from 𝒀. 

 𝒀 = 𝝁 + 𝑾𝒚 + 𝜺 (3.37) 
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The model parameters {𝝁,𝑾, 𝚺} can be estimated using the EM algorithm [87]. In the E-step, the 

posterior mean and the posterior covariance are calculated, as given by (3.38) and (3.39) respectively. 

In the M-step, the model parameters are re-estimated using the posterior expectations in the E-step. 

 𝐸[𝒚] = (𝑰 + 𝑾𝑇𝚺−1𝑾)−1𝑾𝑇𝚺−1(𝒀 − 𝝁) (3.38) 

 𝐸[𝒚𝒚𝑇] = (𝑰 + 𝑾𝑇𝚺−1𝑾)−1 + 𝐸[𝒚]𝐸[𝒚]𝑇 (3.39) 

Comparing (3.38) and (3.39) with (3.27) and (3.28), we may substitute 𝒚, 𝑾, 𝚺, 𝒀 and 𝝁 such that 

 

𝒚 = 𝒛𝑠

𝑾 = 𝑽
𝚺 = 𝐸𝑠[𝑿

0]−1𝚿

𝒀 − 𝝁 = 𝐸𝑠[𝑿
0]−1𝐸𝑠[𝑿]

 (3.40) 

The E-step for a standard FA then becomes (3.41) and (3.42), which is the E-step for estimating the 

parameters for i-vector. 

 𝐸[𝒛𝑠] = (𝑰 + 𝑽𝑇(𝐸𝑠[𝑿
0]−1𝚿)−1𝑽)−1𝑽𝑇(𝐸𝑠[𝑿

0]−1𝚿)−1(𝐸𝑠[𝑿
0]−1𝐸𝑠[𝑿]) (3.41) 

 𝐸[𝒛𝑠𝒛𝑠
𝑇] = (𝑰 + 𝑽𝑇(𝐸𝑠[𝑿

0]−1𝚿)−1𝑽)−1 + 𝐸[𝒛𝑠]𝐸[𝒛𝑠]
𝑇 (3.42) 

Through the reformulation, the latent vector 𝒛𝑠 then corresponds to a supervector 𝐸𝑠[𝑿
0]−1𝐸𝑠[𝑿]. This 

supervector is actually the mean-shifted GSV with 𝑟 = 0 as given by (3.43), which indicates that i-

vector can be treated as an affine transformation of GSV. 

 𝐸𝑠[𝑿
0]−1𝐸𝑠[𝑿] =

[
 
 
 
�̂�1[𝒙

0]−1�̂�1[𝒙]

�̂�2[𝒙
0]−1�̂�2[𝒙]

⋮
�̂�𝑀[𝒙0]−1�̂�𝑀[𝒙]]

 
 
 

=

[
 
 
 
 
 
 

∑ 𝑝(1|𝒙𝑡,𝜃)(𝒙𝑡−𝝁1)𝑇
𝑡=1

∑ 𝑝(1|𝒙𝑡,𝜃)𝑇
𝑡=1

∑ 𝑝(2|𝒙𝑡,𝜃)(𝒙𝑡−𝝁2)𝑇
𝑡=1

∑ 𝑝(2|𝒙𝑡,𝜃)𝑇
𝑡=1

⋮
∑ 𝑝(𝑀|𝒙𝑡,𝜃)(𝒙𝑡−𝝁𝑀)𝑇

𝑡=1

∑ 𝑝(𝑀|𝒙𝑡,𝜃)𝑇
𝑡=1 ]

 
 
 
 
 
 

= [

𝐸1[𝒙] − 𝝁1

𝐸2[𝒙] − 𝝁2

⋮
𝐸𝑀[𝒙] − 𝝁𝑀

] = 𝑿𝐺𝑆𝑉 − 𝝁𝑈𝐵𝑀 

  (3.43) 
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3.3    Feature Representations based on Mixture of Factor 

Analyzers 

3.3.1    Basic Formulation 

Albeit i-vector assumes an FA model, the parameter estimation formulation is different from that of a 

standard FA model. Besides, the model parameters are estimated based on a GMM, making it resemble 

a mixture of factor analyzers (MFA). Since i-vector is neither the result of the standard FA nor MFA, 

we consider whether we could form a supervector and a latent vector directly based on an MFA. This 

yields the MFA supervector (MFASV) and the MFA latent vector (MFALV). In the following, we start 

by explaining MFA. 

An MFA consisting of 𝑀  factor analyzers can be represented by 𝜃𝑀𝐹𝐴 = {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�|𝑚 =

1,2…𝑀}, where �̂�𝑚, �̂�𝑚 and �̂�𝑚 are the weight, mean, and factor-loading matrix of the 𝑚-th factor 

analyzer respectively. �̂� is the covariance parameter of the noise [88]. Different from i-vector which 

assumes that an unobservable supervector 𝑿𝑠 follows an FA model given by (3.19), on using MFA, we 

assume that each observable frame-level feature vector 𝒙𝑡 follows an MFA. With this assumption, 𝒙𝑡 

can be expressed as (3.44), where 𝒛𝑡 is the latent vector following a Gaussian distribution with zero 

mean and identity covariance, and 𝜺𝑡 is the noise term following a Gaussian distribution with zero mean 

and diagonal covariance �̂�. It should be noted that, for a sample 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}, in the model 

assumption of MFA, there will be 𝑇 latent vectors corresponding to 𝑠, denoted as {𝒛1, 𝒛2 …𝒛𝑇}. This is 

different from the model assumption of i-vector, where only one latent vector is corresponding to 𝑠, 

which is 𝒛𝑠. 

 𝒙𝑡 = ∑ �̂�𝑚(�̂�𝑚 + �̂�𝑚𝒛𝑡) + 𝜺𝑡
𝑀
𝑚=1  (3.44) 

The probability produced by the 𝑚-th factor analyzer and that produced by the MFA are then the 

Gaussian probabilities as given by (3.45) and (3.46) respectively, where 𝑝𝑔(𝒙𝑡|�̂�𝑚, �̂�𝑚�̂�𝑚
𝑇 + �̂�) is the 

Gaussian probability density function with mean �̂�𝑚 and covariance (�̂�𝑚�̂�𝑚
𝑇 + �̂�). 
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 𝑝(𝒙𝑡|𝑚, 𝜃𝑀𝐹𝐴) = 𝑝𝑔(𝒙𝑡|�̂�𝑚, �̂�𝑚�̂�𝑚
𝑇 + �̂�) (3.45) 

 𝑝(𝒙𝑡|𝜃𝑀𝐹𝐴) = ∑ �̂�𝑚𝑝𝑔(𝒙𝑡|�̂�𝑚, �̂�𝑚�̂�𝑚
𝑇 + �̂�)𝑀

𝑚=1  (3.46) 

The posterior probability with respect to the 𝑚-th factor analyzer is then given by (3.47).  

 𝑝(𝑚|𝒙𝑡 , 𝜃𝑀𝐹𝐴) =
�̂�𝑚𝑝𝑔(𝒙𝑡|�̂�𝑚, �̂�𝑚�̂�𝑚

𝑇 + �̂�)

∑ �̂�𝑗𝑝𝑔(𝒙𝑡|�̂�𝑗, �̂�𝑗�̂�𝑗
𝑇 + �̂�)𝑀

𝑗=1

 (3.47) 

Given a set of 𝑆 training acoustic samples {𝑎1, 𝑎2 …𝑎𝑆} where the 𝑠-th sample consists of 𝑇𝑠 frame-

level feature vectors. Suppose there are totally 𝑁  frame-level feature vectors obtained from these 

training samples, denoted as {𝒙1, 𝒙2 …𝒙𝑁}, where 𝑁 = ∑ 𝑇𝑠
𝑆
𝑠=1 . The corresponding latent vectors are 

denoted as {𝒛1, 𝒛2 …𝒛𝑁}. The model parameters of an MFA can be estimated using the EM algorithm 

[88]. In the E-step, the posterior mean and the posterior covariance of the latent vector are computed 

using (3.48) and (3.49) respectively. 

 𝐸𝑚[𝒛𝑛] = (𝑰 + �̂�𝑚
𝑇 �̂�−1�̂�𝑚)

−1
�̂�𝑚

𝑇 �̂�−1(𝒙𝑛 − �̂�𝑚) (3.48) 

 𝐸𝑚[𝒛𝑛𝒛𝑛
𝑇] = (𝑰 + �̂�𝑚

𝑇 �̂�−1�̂�𝑚)
−1

+ 𝐸𝑚[𝒛𝑛]𝐸𝑚[𝒛𝑛]𝑇 (3.49) 

In the M-step, the model parameters {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�} are re-estimated using the updated posterior 

mean and the updated posterior covariance. In order to re-estimate �̂�𝑚 and �̂� together, we may form 

an augmented factor-loading matrix �̃�𝑚  as given by (3.50). The posterior mean 𝐸𝑚[𝒛𝑛]  and the 

posterior covariance 𝐸𝑚[𝒛𝑛𝒛𝑛
𝑇] also need to be augmented accordingly [88]. 

 �̃�𝑚 = [�̂�𝑚 �̂�𝑚], 𝐸𝑚[�̃�𝑛] = [
𝐸𝑚[𝒛𝑛]

1
] , 𝐸𝑚[�̃�𝑛�̃�𝑛

𝑇] = [
𝐸𝑚[𝒛𝑛𝒛𝑛

𝑇] 𝐸𝑚[𝒛𝑛]

𝐸𝑚[𝒛𝑛]𝑇 1
] (3.50) 

Using the augmented notations, the M-step is then given by (3.51) ~ (3.53). 

 �̂�𝑚 =
1

𝑁
∑ 𝑝(𝑚|𝒙𝑛, 𝜃𝑀𝐹𝐴)𝑁

𝑛=1  (3.51) 

 �̃�𝑚 = (∑ 𝑝(𝑚|𝒙𝑛, 𝜃𝑀𝐹𝐴)𝒙𝑛𝐸𝑚[�̃�𝑛]𝑇𝑁
𝑛=1 )(∑ 𝑝(𝑚|𝒙𝑛, 𝜃𝑀𝐹𝐴)𝐸𝑚[�̃�𝑛�̃�𝑛

𝑇]𝑁
𝑛=1 )−1 (3.52) 

 �̂� =
1

𝑁
diag{∑ ∑ 𝑝(𝑚|𝒙𝑛, 𝜃𝑀𝐹𝐴)(𝒙𝑛 − �̃�𝑚𝐸𝑚[�̃�𝑛])𝒙𝑛

𝑇𝑀
𝑚=1

𝑁
𝑛=1 } (3.53) 
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The EM algorithm for MFA is summarized in Algorithm 3.2, where the superscript 𝑖 indicates the 

number of EM iterations having been performed, and 𝑃 is the total number of EM iterations. The initial 

value of �̂�𝑚 is the value of 𝝁𝑚 of the GMM-based UBM; the initial value of �̂�𝑚 is 1/𝑀, and the initial 

values of �̂�𝑚 and �̂� are matrices with ones on the principal diagonal but zeros elsewhere. 

Having {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�}, for a sample 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}, the 𝑚-th sub-vector of its corresponding 

MFA latent vector (MFALV) is obtained as the weighted average (i.e., �̅�𝑚[𝒛]) of the posterior means 

of the latent vectors as given by (3.54), where 𝐸𝑚[𝒛𝑡]  is given by (3.48), namely 𝐸𝑚[𝒛𝑡] =

(𝑰 + �̂�𝑚
𝑇 �̂�−1�̂�𝑚)

−1
�̂�𝑚

𝑇 �̂�−1(𝒙𝑡 − �̂�𝑚). The MFALV is then the concatenation of its sub-vectors as 

given by (3.55). An illustration of the computation of MFALV is shown in Figure 3.3, where the 

dimensionality of 𝒛𝑡 is 
𝐻

𝑀
× 1 (assuming 𝐻 is an integer multiple of 𝑀) and thus the dimensionality of 

MFALV is 𝐻 × 1. 

 𝑿𝑀𝐹𝐴𝐿𝑉,𝑚 = �̅�𝑚[𝒛] =
∑ 𝑝(𝑚|𝒙𝑡 , 𝜃𝑀𝐹𝐴)𝐸𝑚[𝒛𝑡]

𝑇
𝑡=1

∑ 𝑝(𝑚|𝒙𝑡, 𝜃𝑀𝐹𝐴)𝑇
𝑡=1

 (3.54) 

 𝑿𝑀𝐹𝐴𝐿𝑉 = [𝑿𝑀𝐹𝐴𝐿𝑉,1
𝑇 𝑿𝑀𝐹𝐴𝐿𝑉,2

𝑇 ⋯ 𝑿𝑀𝐹𝐴𝐿𝑉,𝑀
𝑇 ]𝑇 (3.55) 

The 𝑚-th sub-vector of the MFA supervector (MFASV) is obtained in a similar way to FASV as given 

by (3.56). The MFASV is then the concatenation of its sub-vectors as given by (3.57). 

 𝑿𝑀𝐹𝐴𝑆𝑉,𝑚 = �̂�𝑚 + �̂�𝑚𝑿𝑀𝐹𝐴𝐿𝑉,𝑚 (3.56) 

 𝑿𝑀𝐹𝐴𝑆𝑉 = [𝑿𝑀𝐹𝐴𝑆𝑉,1
𝑇 𝑿𝑀𝐹𝐴𝑆𝑉,2

𝑇 ⋯ 𝑿𝑀𝐹𝐴𝑆𝑉,𝑀
𝑇 ]𝑇 (3.57) 

 

Figure 3.3    The computation of MFALV. 



32 

 

 

 

Algorithm 3.2 EM algorithm for MFA 

1: Initialization: 𝜃(0) = {�̂�𝑚
(0)

, �̂�𝑚
(0)

, �̂�𝑚
(0)

, �̂�(0)|𝑚 = 1,2…𝑀} 

2: For 𝑖 = 1 to 𝑃 

3:  Set {𝜋𝑚, 𝝁𝑚, 𝑽𝑚,𝚿|𝑚 = 1,2…𝑀} = {�̂�𝑚
(𝑖−1)

, �̂�𝑚
(𝑖−1)

, �̂�𝑚
(𝑖−1)

, �̂�(𝑖−1)|𝑚 = 1,2…𝑀} 

4:  For 𝑚 = 1 to 𝑀 

5:   For 𝑛 = 1 to 𝑁 

6:     𝑝𝑚(𝒙𝑛) =
𝜋𝑚𝑝𝑔(𝒙𝑛|𝝁𝑚, 𝑽𝑚𝑽𝑚

𝑇 + 𝚿)

∑ 𝜋𝑗𝑝𝑔(𝒙𝑛|𝝁𝑗, 𝑽𝑗𝑽𝑗
𝑇 + 𝚿)𝑀

𝑗=1

 

7:    

E-step: 

𝐸𝑚
(𝑖)[𝒛𝑛] = (𝑰 + 𝑽𝑚

𝑇 𝚿−1𝑽𝑚)−1𝑽𝑚
𝑇 𝚿−1(𝒙𝑛 − 𝝁𝑚) 

8:    𝐸𝑚
(𝑖)[𝒛𝑛𝒛𝑛

𝑇] = (𝑰 + 𝑽𝑚
𝑇 𝚿−1𝑽𝑚)−1 + 𝐸𝑚

(𝑖)[𝒛𝑛]𝐸𝑚
(𝑖)[𝒛𝑛]𝑇 

9:     
Form 𝐸𝑚

(𝑖)[�̃�𝑛] and 𝐸𝑚
(𝑖)[�̃�𝑛�̃�𝑛

𝑇] from 𝐸𝑚
(𝑖)[𝒛𝑛] and 𝐸𝑚

(𝑖)[𝒛𝑛𝒛𝑛
𝑇] 

using (3.50) 

10:   End  

11:   

M-step: 

�̂�𝑚
(𝑖) =

1

𝑁
∑ 𝑝𝑚(𝒙𝑛)

𝑁

𝑛=1
 

12:   �̃�𝑚
(𝑖)

= (∑ 𝑝𝑚(𝒙𝑛)𝒙𝑛𝐸𝑚
(𝑖)[�̃�𝑛]𝑇

𝑁

𝑛=1

)(∑ 𝑝𝑚(𝒙𝑛)𝐸𝑚
(𝑖)[�̃�𝑛�̃�𝑛

𝑇]

𝑁

𝑛=1

)

−1

 

13:   [�̂�𝑚
(𝑖) �̂�𝑚

(𝑖)] = �̃�𝑚
(𝑖)

 

14:  End  

15:  

Estimate noise 

covariance: 
�̂�(𝑖) =

1

𝑁
diag {∑ ∑ 𝑝𝑚(𝒙𝑛) (𝒙𝑛 − �̃�𝑚

(𝑖)𝐸𝑚
(𝑖)[�̃�𝑛]) 𝒙𝑛

𝑇

𝑀

𝑚=1

𝑁

𝑛=1

} 

16:  Update 𝜃: 𝜃(𝑖) = {�̂�𝑚
(𝑖), �̂�𝑚

(𝑖), �̂�𝑚
(𝑖), �̂�(𝑖)|𝑚 = 1,2…𝑀} 

17: End  
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3.3.2    Comparison with I-vector 

Suppose we have 𝑆 training samples denoted as {𝑎1, 𝑎2 …𝑎𝑆}, and the 𝑠-th sample is represented as a 

sequence of 𝑇𝑠 frame-level feature vectors, i.e., 𝑎𝑠 = {𝒙1
(𝑠), 𝒙2

(𝑠) …𝒙𝑇𝑠

(𝑠)
}. Suppose a GMM-based UBM 

has been constructed, which is parameterized by 𝜃𝐺𝑀𝑀 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀} . There are 

several differences between i-vector and MFALV. 

First, the model parameters are different. The model parameters used to compute an i-vector are 

𝜃𝑖-𝑣𝑒𝑐𝑡𝑜𝑟 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚, 𝑽𝑚,𝚿𝑚|𝑚 = 1,2…𝑀}, which is a fusion of the parameters of the GMM-

based UBM and the parameters of an FA model. On the other hand, the model parameters used to 

compute an MFALV are 𝜃𝑀𝐹𝐴 = {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�|𝑚 = 1,2…𝑀}, which only depend on the parameters 

of the MFA instead of the GMM, even though these parameters are initialized to some parameters of 

the GMM. From this perspective, i-vector is based on a GMM-based UBM, whereas MFALV is based 

on an MFA-based UBM. 

Second, the objective function is different. Finding the parameters {𝑽𝑚,𝚿𝑚}  for i-vector can be 

regarded as the optimization problem given by (3.58), where 𝒛𝑠 is the latent vector corresponding to 

{𝒙1
(𝑠), 𝒙2

(𝑠) …𝒙𝑇𝑠

(𝑠)
}. In contrast, finding the parameters {�̂�𝑚, �̂�} for MFALV can be regarded as the 

optimization problem given by (3.59), where {𝒛1
(𝑠), 𝒛2

(𝑠) …𝒛𝑇𝑠

(𝑠)
} are the latent vectors corresponding to 

{𝒙1
(𝑠), 𝒙2

(𝑠) …𝒙𝑇𝑠

(𝑠)
}. For i-vector, the mean and the exponent involved in the Gaussian probability density 

function are dependent on the GMM-based UBM. For MFALV, the mean and the exponent involved 

in the Gaussian probability density function are dependent on the MFA-based UBM. This implies that 

MFALV needs to estimate more parameters than i-vector, which renders MFALV more flexible. 

However, the increased parameter space may cause instability issues. 

 max
𝑽𝑚,𝚿𝑚

ℒ = ∑ ∑ ∑ ln 𝑝𝑔 (𝒙𝑡
(𝑠)

|𝝁𝑚 + 𝑽𝑚𝒛𝑠, 𝚿𝑚)
𝑝(𝑚|𝒙𝑡

(𝑠), 𝜃𝐺𝑀𝑀)𝑇𝑠
𝑡=1

𝑀
𝑚=1

𝑆
𝑠=1  (3.58) 

 max
�̂�𝑚,�̂�

ℒ = ∑ ∑ ∑ ln 𝑝𝑔 (𝒙𝑡
(𝑠)

|�̂�𝑚 + �̂�𝑚𝒛𝑡
(𝑠), �̂�)

�̂�𝑚𝑇𝑠
𝑡=1

𝑀
𝑚=1

𝑆
𝑠=1  (3.59) 
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Third, the model assumption is different. According to the model assumption of i-vector, all the frame-

level feature vectors in a sample share the same latent vector. On the other hand, according to the model 

assumption of MFALV, each frame-level feature vector will have its own latent vector. This latent 

vector sharing mechanism may render i-vector more robust, as it captures the common characteristics 

across different frame-level feature vectors. Nevertheless, MFALV treats each frame-level feature 

vector as an independent individual, which may provide a better depiction if there are large variations 

across different frame-level feature vectors. 

Fourth, the time complexity of the EM algorithm used for model parameter estimation is different. 

Suppose the dimensionality of i-vector and MFALV is 𝐻 × 1, then the E-step for i-vector requires 

computing the inverse of (𝑰 + 𝑽𝑇𝚿−1𝐸𝑠[𝑿
0]𝑽), whose size is 𝐻 × 𝐻. For MFALV, each sub-vector 

will have a dimensionality of 
𝐻

𝑀
× 1 (assuming 𝐻 is an integer multiple of 𝑀), and thus the size of 

(𝑰 + �̂�𝑚
𝑇 �̂�−1�̂�𝑚) involved in the E-step will be 

𝐻

𝑀
×

𝐻

𝑀
. The E-step of i-vector is operated on a sample, 

whereas the E-step of MFALV is operated on all the frame-level feature vectors. Suppose the time 

complexity of inverting an 𝐻 × 𝐻 matrix is 𝑂(𝐻3) (𝑂(. ) is the big-O notation upper bounding the run 

time of an algorithm), according to Algorithm 3.1 and Algorithm 3.2, the time complexity of the E-step 

for i-vector is approximately 𝑂(𝑃𝑆𝐻3), and that for MFALV is approximately 𝑂 (𝑃𝑀𝑁(
𝐻

𝑀
)
3
). If each 

sample consists of 𝑇 frame-level feature vectors, meaning that 𝑁 = 𝑆𝑇, then the time complexity of the 

E-step for MFALV becomes 𝑂 (𝑃𝑀𝑆𝑇 (
𝐻

𝑀
)
3
) =

𝑇

𝑀2 ⋅ 𝑂(𝑃𝑆𝐻3). This implies that the model parameter 

estimation process of MFALV can be more efficient than that of i-vector, especially when 𝑇 is small or 

𝑀  is large. A small value of 𝑇  indicates that the acoustic sample is short. Nevertheless, as the 

dimensionality of i-vector can be any integer value, but the dimensionality of MFALV can only be an 

integer multiple of 𝑀, i-vector can be more flexible in terms of dimensionality. 



35 

 

3.4    Comparison of Different Vector-based Representations 

3.4.1    Characteristics 

GSV is obtained by the MAP adaptation of a GMM-based UBM. The necessary parameters used to 

construct a GSV are simply those of the GMM, denoted as 𝜃𝐺𝑆𝑉 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀}. 

I-vector is obtained by estimating an FA model centered on a GMM-based UBM. The necessary 

parameters used to construct an i-vector are a fusion of the parameters of the GMM and the parameters 

of an FA model, denoted as 𝜃𝑖-𝑣𝑒𝑐𝑡𝑜𝑟 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚, 𝑽𝑚,𝚿𝑚|𝑚 = 1,2…𝑀}. The parameters of i-

vector can also be treated as the parameters of an MFA-based UBM, with the restrictions that, 1) given 

a feature vector 𝒙𝑡, the posterior probability of the 𝑚-th factor analyzer in the MFA equals the posterior 

probability of the 𝑚-th Gaussian component in the GMM, namely 𝑝(𝑚|𝒙𝑡 , 𝜃𝐺𝑀𝑀) = 𝑝(𝑚|𝒙𝑡 , 𝜃𝑀𝐹𝐴), 

2) the mean parameter of the 𝑚-th factor analyzer equals the mean parameter of the 𝑚-th Gaussian 

component, and 3) in the MFA, the noise covariance is different for different factor analyzers. 

MFALV is obtained based on an MFA-based UBM. The necessary parameters used to construct an 

MFALV are those of the MFA, denoted as 𝜃𝑀𝐹𝐴𝐿𝑉 = {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�|𝑚 = 1,2…𝑀}, where the mean 

parameters are initialized from the GMM-based UBM. From this point of view, MFALV is obtained 

by estimating an MFA model initially centered on a GMM-based UBM. 

As GSV only requires the parameters of a GMM, its computation is simple and fast. As i-vector and 

MFALV require further estimating an FA or MFA from a GMM, their computation can be time-

consuming. Nonetheless, the dimensionality of GSV is fixed to be 𝑀𝐷 × 1 , where 𝐷  is the 

dimensionality of a frame-level feature vector, and 𝑀 is the number of mixture components in the UBM. 

In contrast, the dimensionality of i-vector and MFALV is changeable, which depends on the size of the 

factor-loading matrix in the FA and MFA respectively. In general, different feature representations have 

their own advantages and disadvantages. 

Although they are different, GSV, i-vector, and MFALV share a common characteristic, which is the 

adoption of a UBM. The UBM serves two primary purposes. First, it provides some prior information 
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as it is usually trained using a large number of unlabeled data. This prior information includes the 

information from different samples. Second, it provides feature alignment. For example, suppose an 

acoustic sample is a sequence of different events, but where the events occur is unknown. The mixture 

components in the UBM can then be regarded as representing the statistics of different events. For 

example, suppose the 1st mixture component represents event A, the 2nd mixture component represents 

event B, and so forth. In a GSV, the elements 1~𝐷 may then represent the possibility that event A 

occurs in this sample, the elements (𝐷 + 1)~2𝐷 may then represent the possibility that event B occurs 

in this sample, and so forth. Therefore, the same element in different GSVs is representing the same 

attribute. A similar analysis also applies to i-vector and MFALV. 

A summary of the characteristics of different vector-based representations is given in Table 3.1. As the 

model parameters for i-vector can be treated as a special MFA with some restrictions, we categorize i-

vector to be based on an MFA-based UBM. 

Table 3.1    Characteristics of different vector-based representations. 

UBM Name Description Dimensionality 

GMM 

WSV Concatenation of adapted weights 𝑀 

GSV Concatenation of adapted means 𝑀𝐷 

VSV Concatenation of adapted standard deviations 𝑀𝐷 

FSV Concatenation of WSV, GSV and VSV 𝑀 + 2𝑀𝐷 

nGSV Normalization of GSV by weight and covariance 𝑀𝐷 

MFA 

FALV (i-vector) Posterior mean of latent vector 1, 2, …∞ 

FASV Affine transformation of FALV 𝑀𝐷 

MFALV Expectation of posterior means of latent vectors 𝑀, 2𝑀,…∞ 

MFASV Affine transformation of MFALV 𝑀𝐷 
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3.4.2    Computational Complexity 

This section analyzes the space complexity of storing the model parameters used to compute a GSV, an 

i-vector and an MFALV, as well as the time complexity of computing a GSV, an i-vector or an MFALV 

when the model parameters are ready. 

3.4.2.1    Space Complexity 

Suppose a frame-level feature vector has a dimensionality of 𝐷 × 1, and the UBM has 𝑀 mixture 

components. Since the computation of GSV depends only on the parameters of the GMM-based UBM, 

the space complexity of GSV is the memory space required by the GMM parameterized by 𝜃𝐺𝑀𝑀 =

{𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀}. As the size of 𝜋𝑚, 𝝁𝑚  and 𝝈𝑚 is 1 × 1, 𝐷 × 1 and 𝐷 × 1 respectively, 

the space complexity of GSV is given by (3.60), where 𝛾 is the memory space used to store a scalar 

value. 

 𝑠𝑝𝐺𝑆𝑉 = 𝛾(𝑀 + 𝑀𝐷 + 𝑀𝐷) = 𝛾𝑀(1 + 2𝐷) (3.60) 

Suppose the dimensionality of i-vector and MFALV is 𝐻 × 1, where 𝐻 is an integer multiple of 𝑀 such 

that 𝐻 = 𝜆𝑀  with 𝜆  being a positive integer. This assumption is based on the fact that the 

dimensionality of MFALV can only be an integer multiple of 𝑀. Since the computation of i-vector 

depends on both the parameters of the GMM-based UBM and the parameters of an FA model, the space 

complexity of i-vector is the memory space required by the GMM parameterized by 𝜃𝐺𝑀𝑀 =

{𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 = 1,2…𝑀} and the FA model parameterized by 𝜃𝐹𝐴 = {𝑽𝑚,𝚿𝑚|𝑚 = 1,2…𝑀}. As 

the size of 𝑽𝑚 and 𝚿𝑚 is 𝐷 × 𝐻 and 𝐷 × 𝐷 respectively, the space complexity of i-vector is given by 

(3.61). (Notice that 𝚿𝑚 is a diagonal matrix such that only the diagonal elements need to be stored). 

 𝑠𝑝𝑖-𝑣𝑒𝑐𝑡𝑜𝑟 = 𝛾((𝑀 + 𝑀𝐷 + 𝑀𝐷) + (𝑀𝐷𝐻 + 𝑀𝐷)) = 𝛾𝑀(1 + (3 + 𝜆𝑀)𝐷) (3.61) 

Since the computation of MFALV depends only on the parameters of the MFA-based UBM, the space 

complexity of MFALV is the memory space required by the MFA parameterized by 𝜃𝑀𝐹𝐴 =

{�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�|𝑚 = 1,2…𝑀}. As the size of �̂�𝑚, �̂�𝑚, �̂�𝑚 and �̂� is 1 × 1, 𝐷 × 1, 𝐷 ×
𝐻

𝑀
 and 𝐷 × 𝐷 
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respectively, the space complexity of MFALV is given by (3.62). (Notice that �̂� is a diagonal matrix 

such that only the diagonal elements need to be stored). 

 𝑠𝑝𝑀𝐹𝐴𝐿𝑉 = 𝛾 (𝑀 + 𝑀𝐷 + 𝑀𝐷 ×
𝐻

𝑀
+ 𝐷) = 𝛾𝑀 (1 + (1 + 𝜆)𝐷 +

𝐷

𝑀
) (3.62) 

As can be seen from (3.60) ~ (3.62), GSV has the lowest space complexity, i-vector has the highest 

space complexity, and MFALV has the space complexity in between. This implies that i-vector needs 

more memory space than MFALV to store the model parameters used for computation. 

3.4.2.2    Time Complexity 

Given an acoustic sample 𝑠 denoted as 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}, the computation of GSV is based on 𝐸𝑚[𝒙] 

given by (3.3). Thus, most of the computation time will be consumed by computing the posterior 

probability 𝑝(𝑚|𝒙𝑡 , 𝜃). Since there are 𝑇 frame-level feature vectors obtained from the acoustic sample, 

the time complexity of GSV is approximately given by (3.63), where 𝑂(. ) is the big-O notation upper 

bounding the running time of an algorithm. 

 𝑡𝐺𝑆𝑉 = 𝑂(𝑀𝐷𝑇) (3.63) 

The computation of i-vector is based on 𝐸[𝒛𝑠] given by (3.27). The matrices involved in computation, 

i.e., 𝑽, 𝚿, 𝐸𝑠[𝑿
0] and 𝐸𝑠[𝑿], have sizes of 𝑀𝐷 × 𝐻, 𝑀𝐷 × 𝑀𝐷, 𝑀𝐷 × 𝑀𝐷 and 𝑀𝐷 × 1 respectively. 

Suppose the inversion of a matrix with a size of 𝐴 × 𝐴  has a time complexity of 𝑂(𝐴3) , the 

multiplication of matrices with sizes 𝐴 × 𝐵  and 𝐵 × 𝐶  has a time complexity of 𝑂(𝐴𝐵𝐶), and the 

inverse of 𝚿 has been pre-computed. The time complexity of i-vector can then be approximated by 

(3.64), with the assumption that 𝜆 = 𝑂(𝐷), i.e., 𝜆 has at most the same order of magnitude as 𝐷. (Notice 

that only the term with the highest order of magnitude is preserved). 

               𝑡𝑖-𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑂(𝐻 × 𝑀𝐷 × 𝑀𝐷 × 𝑀𝐷 × 𝐻) + 𝑂(𝐻3) + 𝑂(𝐻 × 𝐻 × 𝑀𝐷 × 𝑀𝐷 × 1) 

               = 𝑂(𝐻2𝑀3𝐷3) + 𝑂(𝐻3) + 𝑂(𝐻2𝑀2𝐷2) = 𝑂(𝜆2𝑀5𝐷3) + 𝑂(𝜆3𝑀3) + 𝑂(𝜆2𝑀4𝐷2) 

               = 𝑂(𝜆2𝑀5𝐷3) = 𝑂(𝑀5𝐷5)  (3.64) 
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The computation of MFALV is based on 𝐸𝑚[𝒛𝑡]  used in (3.54), namely 𝐸𝑚[𝒛𝑡] = (𝑰 +

�̂�𝑚
𝑇 �̂�−1�̂�𝑚)

−1
�̂�𝑚

𝑇 �̂�−1(𝒙𝑡 − �̂�𝑚). The matrices involved in computation, i.e., �̂�𝑚 and �̂�, have sizes 

of 𝐷 ×
𝐻

𝑀
 and 𝐷 × 𝐷  respectively. Suppose the inverse of �̂�  has been pre-computed, the time 

complexity of MFALV can then be approximated by (3.65), with the assumption that 𝜆 = 𝑂(𝐷). 

               𝑡𝑀𝐹𝐴𝐿𝑉 = 𝑀𝑇 × (𝑂 (
𝐻

𝑀
× 𝐷 × 𝐷 ×

𝐻

𝑀
) + 𝑂 (

𝐻3

𝑀3) + 𝑂 (
𝐻

𝑀
×

𝐻

𝑀
× 𝐷 × 𝐷 × 1)) 

               = 𝑀𝑇 × (𝑂 (
𝐻2𝐷2

𝑀2 ) + 𝑂 (
𝐻3

𝑀3) + 𝑂 (
𝐻2𝐷2

𝑀2 )) = 𝑀𝑇 × (𝑂(𝜆2𝐷2) + 𝑂(𝜆3) + 𝑂(𝜆2𝐷2)) 

               = 𝑀𝑇 × 𝑂(𝜆2𝐷2) = 𝑂(𝑀𝐷4𝑇)  (3.65) 

As can be seen from (3.63) ~ (3.65), if 𝑇 is relatively small such that 𝑇 ≪ 𝑀4𝐷4, computing GSV will 

be much more efficient than computing i-vector and MFALV. If 𝑇 ≪ 𝑀4𝐷, computing MFALV will 

be much more efficient than computing i-vector. 

A summary of the computational complexity of GSV, i-vector and MFALV is given in Table 3.2. 

3.5    Generic Supervector 

3.5.1    A General Formulation 

According to the analyses and discussions in previous sections, we may illustrate the computation of 

GSV, i-vector and MFALV using Figure 3.4. As can be seen from Figure 3.4, all of them are based on 

a background model, which is a mixture model, such as a GMM or an MFA. The background model 

Table 3.2    Computational complexity of different vector-based representations. 

Name Parameters Space complexity Time complexity 

GSV GMM 𝛾𝑀(1 + 2𝐷) 𝑂(𝑀𝐷𝑇) 

FALV (i-

vector) 

GMM, FA 𝛾𝑀(1 + (3 + 𝜆𝑀)𝐷) 𝑂(𝑀5𝐷5) 

MFALV MFA 𝛾𝑀(1 + (1 + 𝜆)𝐷 + 𝐷/𝑀) 𝑂(𝑀𝐷4𝑇) 
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provides a feature mapping that maps a sequence of input vectors (e.g., 𝒙1, 𝒙2 …𝒙𝑇) to a sequence of 

output vectors (e.g., �̃�1, �̃�2 … �̃�𝑀). The output vectors are then concatenated to form a single feature 

vector, whose dimensionality can be higher (e.g., the dimensionality of GSV) or lower (e.g., the 

dimensionality of MFALV) than the input feature dimensionality 𝐷. We call this single feature vector 

the generic supervector. The number of output vectors, i.e., 𝑀, depends only on the number of mixture 

components in the background model, instead of the number of input vectors. 

Based on these observations, we propose a generic formulation for the generic supervector 𝑿𝑆𝑉(𝑠) as 

given by (3.66), where the 𝑚-th sub-vector 𝑿𝑆𝑉,𝑚(𝑠) is given by (3.67). 

 𝑿𝑆𝑉(𝑠) = [(𝑿𝑆𝑉,1(𝑠))
𝑇

(𝑿𝑆𝑉,2(𝑠))
𝑇

⋯ (𝑿𝑆𝑉,𝑀(𝑠))
𝑇
]
𝑇

 (3.66) 

where 

 𝑿𝑆𝑉,𝑚(𝑠) = 𝑎𝑚𝑓𝑚(𝑠|Θ) + 𝑏𝑚𝑓𝑚(𝑆|Θ) (3.67) 

In (3.67), 𝑠 represents an acoustic sample, denoted as 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}; 𝑆 represents a set of acoustic 

samples; Θ represents the model parameters of the background model, which is a collection of sub-

models, denoted as Θ = {Θ1, Θ2 …Θ𝑀}; 𝑓𝑚 is a feature mapping that maps a sequence of vectors to a 

single vector based on Θ; 𝑎𝑚 and 𝑏𝑚 are weighting coefficients. 𝑓𝑚(𝑠|Θ) and 𝑓𝑚(𝑆|Θ) are called the 

mapped vector and the calibration vector respectively. The mapped vector is based on the statistics of 

the background model and the sample 𝑠 . The calibration vector is based on the statistics of the 

 

Figure 3.4    The computation of GSV, i-vector and MFALV. 
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background model and a set of samples, which may provide some calibration. An illustration of the 

generic supervector is shown in Figure 3.5. 

The formulation of GSV fits well to this generic formulation by comparing (3.67) and (3.6). The generic 

supervector then becomes GSV with the corresponding parameters given by (3.68). I-vector can then 

be obtained by post-processing the generic supervector. 

 

Θ𝑚 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚}

𝑓𝑚(𝑠|Θ) =
1

∑ 𝑝(𝑚|𝒙𝑡,Θ)𝑇
𝑡=1

∑ 𝑝(𝑚|𝒙𝑡 , Θ)𝒙𝑡
𝑇
𝑡=1

𝑓𝑚(𝑆|Θ) = 𝝁𝑚

𝑎𝑚 = 𝛼𝑚

𝑏𝑚 = (1 − 𝛼𝑚)

 (3.68) 

The formulation of MFALV also fits well to the generic formulation by comparing (3.67) and (3.54). 

The generic supervector then becomes MFALV with the corresponding parameters given by (3.69). 

 

Θ𝑚 = {�̂�𝑚, �̂�𝑚, �̂�𝑚, �̂�}

𝑓𝑚(𝑠|Θ) =
1

∑ 𝑝(𝑚|𝒙𝑡 , Θ)𝑇
𝑡=1

∑ 𝑝(𝑚|𝒙𝑡 , Θ)(𝑰 + �̂�𝑚
𝑇 �̂�−1�̂�𝑚)

−1
�̂�𝑚

𝑇 �̂�−1𝒙𝑡
𝑇
𝑡=1

𝑓𝑚(𝑆|Θ) = (𝑰 + �̂�𝑚
𝑇 �̂�−1�̂�𝑚)

−1
�̂�𝑚

𝑇 �̂�−1�̂�𝑚

𝑎𝑚 = 1
𝑏𝑚 = −1

 (3.69) 

 

Figure 3.5    A generic supervector framework. 
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GSV and MFALV are homogeneous supervectors, where the sub-models in the background model are 

of the same type. It is also feasible to construct heterogeneous supervectors where the sub-models are 

of different types. 

3.5.2    Relationship with Neural Networks 

It is interesting that the feature mapping 𝑓𝑚 can be regarded as the activation function of the 𝑚-th 

neuron in a neural network. Therefore, the feature representations learned by the hidden layers of a 

neural network, such as a convolutional neural network (CNN), can be interpreted using the generic 

supervector. 

3.5.2.1    Interpreting Convolutional Neural Network 

In the convolutional layer of a classic CNN, the input vector is convolved with a weight vector, which 

is a rectangular window if the input is an image. The sliding rectangular window will move from one 

position to another on the image. At each position, a scalar value is obtained, which is the inner product 

of the window and the corresponding image patch. The scalar values obtained at different positions 

form a filtered image, which is the result of convolving the input image with the sliding window. The 

sliding window is also called a filter. In a convolutional layer, each filter yields a filtered image, and 

multiple filters yield multiple filtered images. 

On using CNN to process an image sample 𝑠, the image is actually treated as a sequence of image 

patches, denoted as 𝑠 = {𝒙1, 𝒙2 …𝒙𝑇}, where 𝒙𝑡 is the 𝑡-th vectorized image patch. The convolution 

process can then be expressed as (3.70), where 𝒘𝑚  is the 𝑚-th vectorized filter, and ∗ denotes the 

convolution operator. 

 𝒘𝑚 ∗ 𝑠 =

[
 
 
 
𝒘𝑚

𝑇 𝒙1

𝒘𝑚
𝑇 𝒙2

⋮
𝒘𝑚

𝑇 𝒙𝑇]
 
 
 
= [

𝒘𝑚
𝑇

𝟎
⋮
𝟎

𝟎
𝒘𝑚

𝑇

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝒘𝑚
𝑇

] [

𝒙1

𝒙2

⋮
𝒙𝑇

] (3.70) 

If there exist 𝑀 filters, denoted as 𝑊 = {𝒘1, 𝒘2 …𝒘𝑀}, the vectorized output of a convolutional layer 

can then be expressed as (3.71). An illustration of the convolution process is shown in Figure 3.6. 
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 𝑊 ∗ 𝑠 = [(𝒘1 ∗ 𝑠)𝑇 (𝒘2 ∗ 𝑠)𝑇 ⋯ (𝒘𝑀 ∗ 𝑠)𝑇]𝑇 (3.71) 

The feature representation produced by a convolutional layer, viz. 𝑊 ∗ 𝑠, can then be interpreted using 

the formulation of the generic supervector, with the corresponding parameters given by (3.72). 

 

Θ𝑚 = {𝒘𝑚}

𝑓𝑚(𝑠|Θ) = 𝒘𝑚 ∗ 𝑠

𝑓𝑚(𝑆|Θ) = 𝟎
𝑎𝑚 = 1
𝑏𝑚 = 0

 (3.72) 

The feature representation produced by a deep CNN can be interpreted as a multi-level supervector, 

which is a deep supervector. 

3.5.2.2    Interpreting Residual Network 

As shown in [107], when CNN has a deep structure, further increasing the depth may degrade the 

performance. This phenomenon can be intuitively explained using (3.72). Since the calibration vector 

𝑓𝑚(𝑆|Θ) does not occur in the formulation, the output of a convolutional layer highly depends on the 

output of the previous layer, which may lead to instability issues. Fortunately, the degradation of 

performance can be alleviated by adopting a residual network (ResNet) structure [107], where the output 

of a convolutional layer becomes (3.73). In (3.73), 𝒘0 is a feature transformation used to ensure 𝒘𝑚 ∗

𝑠 and 𝒘0 ∗ 𝑠 have the same dimensionality. If 𝒘𝑚 ∗ 𝑠 already has the same dimensionality as the input 

image sample 𝑠, 𝒘0 ∗ 𝑠 is then the same as the input image 𝑠, meaning that 𝒘0 performs an identity 

feature mapping [107]. 

 

Figure 3.6    An illustration of the convolution process in a convolutional layer. 
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 𝒘𝑚 ∗ 𝑠 + 𝒘0 ∗ 𝑠 =

[
 
 
 
𝒘𝑚

𝑇 𝒙1

𝒘𝑚
𝑇 𝒙2

⋮
𝒘𝑚

𝑇 𝒙𝑇]
 
 
 
+

[
 
 
 
𝒘0

𝑇𝒙1

𝒘0
𝑇𝒙2

⋮
𝒘0

𝑇𝒙𝑇]
 
 
 

= ([

𝒘𝑚
𝑇

𝟎
⋮
𝟎

𝟎
𝒘𝑚

𝑇

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝒘𝑚
𝑇

] + [

𝒘0
𝑇

𝟎
⋮
𝟎

𝟎
𝒘0

𝑇

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝒘0
𝑇

]) [

𝒙1

𝒙2

⋮
𝒙𝑇

] 

  (3.73) 

The ResNet structure can be interpreted using the formulation of the generic supervector, with the 

corresponding parameters given by (3.74). 

 

Θ𝑚 = {𝒘𝑚, 𝒘0}

𝑓𝑚(𝑠|Θ) = 𝒘𝑚 ∗ 𝑠

𝑓𝑚(𝑆|Θ) = 𝒘0 ∗ 𝑠
𝑎𝑚 = 1
𝑏𝑚 = 1

 (3.74) 

As can be seen from (3.74), there exist a calibration vector in the formulation of the ResNet structure. 

The existence of this calibration vector may help explain the robustness of ResNet intuitively. 
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Chapter 4    Feature Representations: Experimental 

Comparison 

 

4.1    Experimental Comparison between GSV and Its Extensions 

This section briefly compares the performance of GSV, nGSV, WSV, VSV, and FSV in two speaker 

identification tasks. The two speech corpora are Kingline081 and Ahumada. The frame-level feature 

vector is the 20-dimensional MFCC vector extracted using the Hamming window with 40ms frame 

length and 20ms frame shift. The training data are also used to construct the UBM with 128 mixture 

components. The dimensionality of GSV, nGSV, WSV, VSV and FSV is 2560 × 1 , 2560 × 1 , 

128 × 1, 2560 × 1 and 5248 × 1 respectively. 

The experimental results in the two speaker identification tasks are shown in Figure 4.1, where Figure 

4.1 (a) shows the results on the Kingline081 dataset, and Figure 4.1 (b) shows the results on the 

Ahumada dataset. Some accuracy values are too low to be shown in the figure. The classifier is a linear 

SVM implemented using LIBSVM [85] with default parameters. As shown in the figure, GSV 

outperforms WSV and VSV in general, implying that the adapted mean parameter is the most important 

 

   (a)      (b) 

Figure 4.1    GSV vs. its extensions for speaker identification employing SVM as the classifier. (a) 

Results on Kingline081. (b) Results on Ahumada. 
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among all parameters. WSV gives the worst performance, probably owing to its low dimensionality, 

which makes it unable to carry enough information. Nevertheless, the weight parameter and the standard 

deviation parameter are useful supplements to GSV, as demonstrated by the improved performance 

offered by FSV. The normalization operation may also be useful, as nGSV outperforms GSV and FSV 

for some values of 𝛽. The scaling factor also plays an important role. The smaller the value of 𝛽, the 

more the supervector will depend on the statistics of the specific sample instead of the statistics of the 

UBM. This will make the supervectors less similar to each other because the statistics of different 

samples can be quite different, while the statistics of the UBM are shared among all supervectors. 

4.2    Experimental Comparison of Different Representations 

This section compares different vector-based representations in two speaker identification tasks, in 

terms of their effectiveness and efficiency. The two speech corpora are Kingline081 and Ahumada. The 

frame-level feature vector is the 20-dimensional MFCC vector extracted using the Hamming window 

with 40ms frame length and 20ms frame shift. The GMM-based UBM is obtained using the mixture 

splitting technique [89]. The parameters of the FA model used to construct FALV (i-vector) and FASV 

are estimated using Algorithm 3.1. The parameters of the MFA used to construct MFALV and MFASV 

are estimated using Algorithm 3.2. For each speech corpus, the training data are also used to train the 

GMM-based UBM, the FA model, and the MFA. PLDA is employed as the classifier, which is 

implemented using the scalable formulation [90]. The latent vector in the PLDA model has the same 

dimensionality as the feature representation, and the model parameters are estimated using 2 EM 

iterations. 

4.2.1    Effectiveness and Efficiency of Different Feature Representations 

This sub-section compares the effectiveness and efficiency of different feature representations under 

the condition of the same dimensionality (except for FSV). The UBM has 128 mixture components, 

and all the feature representations have a dimensionality of 2560 × 1 , except for FSV, whose 

dimensionality is 5248 × 1. GSV and its extensions are calculated with different values of the scaling 
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factor. The model parameters of i-vector, MFALV and their extensions are estimated using different 

numbers of EM iterations. 

The identification accuracy results on Kingline081 and Ahumada are shown in Figure 4.2 and Figure 

4.3 respectively. Figure 4.2 (a) and Figure 4.3 (a) show the identification accuracy achieved by GSV 

and its extensions, while Figure 4.2 (b) and Figure 4.3 (b) show the identification accuracy achieved by 

i-vector, MFALV and their extensions. Some accuracy values are too low to be displayed. 

As shown in Figure 4.2 (a) and Figure 4.3 (a), GSV and its extensions are sensitive to the scaling factor. 

As explained before, the scaling factor controls the similarity between different GSVs. The smaller the 

scaling factor, the less similar different GSVs will be. As PLDA itself is an FA model, which assumes 

 

   (a)      (b) 

Figure 4.2    Speaker identification results on Kingline081 employing PLDA as the classifier. (a) 

Results achieved by GSV and its extensions. (b) Results achieved by i-vector, 

MFALV and their extensions. 
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   (a)      (b) 

Figure 4.3    Speaker identification results on Ahumada employing PLDA as the classifier. (a) 

Results achieved by GSV and its extensions. (b) Results achieved by i-vector, 

MFALV and their extensions. 
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that the feature representations should follow a Gaussian distribution, the scaling factor seems also 

controlling how well the PLDA model assumption has been fulfilled. 

As shown in Figure 4.2 (b) and Figure 4.3 (b), i-vector, MFALV and their extensions are sensitive to 

the number of EM iterations used to estimate the model parameters, but more EM iterations do not 

mean better performance. Certainly, the more the EM iterations, the more accurate the model parameters 

will be estimated towards the model assumption. However, if the model assumption is ill-posed, a more 

precise estimation will incur a greater deviation. 

The highest accuracy achieved by GSV is comparable to that achieved by i-vector (Figure 4.2) or even 

better (Figure 4.3). As explained before, i-vector is an affine transformation of GSV. This 

transformation may incur information loss. The highest accuracy achieved by MFALV is comparable 

to that achieved by i-vector (Figure 4.2) or even better (Figure 4.3), which demonstrates the 

effectiveness of the proposed representation. 

It is also noticed that the latent vectors (i.e., FALV and MFALV) tend to outperform their corresponding 

supervectors (i.e., FASV and MFASV). One possible reason is that, FASV and MFASV are the affine 

transformation of FALV and MFALV respectively, so the latent vectors are the original feature 

representation while the supervectors are the transformed feature representation. This transformation 

may bring distortion. From another perspective, the latent vector and the supervector can be regarded 

as the essence and the appearance of a sample respectively. So, the latent vector serves as the cause of 

the supervector, while the supervector serves as the effect of the latent vector. From this angle, the latent 

vector is expected to be purer. 

The time used to construct GSV, i-vector, and MFALV using Kingline081 and Ahumada is shown in 

Figure 4.4, where Figure 4.4 (a) shows the construction time using the Kingline081 dataset, and Figure 

4.4 (b) shows the construction time using the Ahumada dataset. The time consumption is estimated by 

running the MATLAB implementations on an iMac desktop computer with 32G memory. For GSV, 

time is consumed for feature computation only, as there is no need to estimate additional model 

parameters. For i-vector and MFALV, time is consumed for both feature computation and model 
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parameter estimation. GSV is constructed with 𝛽 = 0.1, and the model parameters for i-vector and 

MFALV are estimated with 1 EM iteration, just for illustration. UBMs with the number of mixture 

components varying from 2 to 128 are used to construct the feature representations, so the 

dimensionality of the feature representations varies from 40 × 1 to 2560 × 1. 

As shown in Figure 4.4, GSV has the highest computational efficiency among all, as it does not need 

extra parameter estimation procedures. When the dimensionality of the feature representation is high, 

the construction process of MFALV can be more efficient than that of i-vector, as the former crumbles 

the large factor-loading matrix into small matrices such that the matrix inversion computation is faster. 

Albeit GSV is the fastest in computation, its dimensionality is strictly restricted by the number of 

mixture components in the UBM. That is to say, the dimensionality of GSV is fixed for a given UBM. 

In contrast, the dimensionality of i-vector and MFALV is changeable, depending on the size of the 

factor-loading matrix, even if the UBM is fixed. 

4.2.2    Dimensionality Flexibility of I-vector and MFALV 

This sub-section compares the effectiveness and efficiency of i-vector and MFALV when their 

dimensionality varies. The UBM has 128 mixture components, but the size of the factor-loading matrix 

varies, resulting in the dimensionality of i-vector and MFALV varying from 384 × 1 to 1024 × 1. The 

number of EM iterations used to estimate the model parameters of i-vector and MFALV varies. 

 

   (a)      (b) 

Figure 4.4    Time consumption for the construction process of different feature representations. (a) 

Time consumption on Kingline081. (b) Time consumption on Ahumada. 
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The identification accuracy results on Kingline081 and Ahumada are shown in Figure 4.5, where Figure 

4.5 (a) shows the identification accuracy using the Kingline081 dataset, and Figure 4.5 (b) shows the 

identification accuracy using the Ahumada dataset. It can be seen from the figure that the effectiveness 

of i-vector is quite robust to the change of the dimensionality. Even if the dimensionality of i-vector is 

as low as 384 × 1, the performance can still be good. In contrast, the effectiveness of MFALV is highly 

dependent on the dimensionality. The lower the dimensionality, the lower the effectiveness. 

The different characteristics of i-vector and MFALV are caused by the differences in their model 

assumptions. In brief, i-vector captures the common characteristics of all the frame-level feature vectors 

in a sample, whereas MFALV captures the characteristics of individual frame-level feature vectors and 

then takes the weighted average. Suppose the dimensionality of i-vector and MFALV is 𝐻 × 1. From 

the perspective of i-vector, the common characteristics are carried by an 𝐻 × 1  vector. From the 

perspective of MFALV, the individual characteristics are carried by an 
𝐻

𝑀
× 1 vector (𝑀 is the number 

of mixture components in the UBM). If 𝐻 is small and 𝑀 is large, the 
𝐻

𝑀
× 1 vector may not be able to 

capture enough information. 

These observations imply that the dimensionality of i-vector can be chosen to be very low without 

suffering from performance degradation. In contrast, the dimensionality of MFALV should be chosen 

to be relatively high so as to prevent performance degradation. 

 

   (a)      (b) 

Figure 4.5    The effectiveness of i-vector and MFALV with different dimensionalities. (a) Results 

on Kingline081. (b) Results on Ahumada. 
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The time used to construct i-vector and MFALV using Kingline081 and Ahumada is shown in Figure 

4.6, where Figure 4.6 (a) shows the construction time using the Kingline081 dataset, and Figure 4.6 (b) 

shows the construction time using the Ahumada dataset. The time consumption is estimated by running 

the MATLAB implementations on an iMac desktop computer with 32G memory. The model parameters 

for i-vector and MFALV are estimated with 1 EM iteration. The UBM has 128 mixture components. 

It can be seen from the figure that the computational efficiency of MFALV is quite robust to the change 

of the dimensionality. Even if the dimensionality of MFALV is as high as 1024 × 1 , the time 

consumption can still be low. In contrast, the computational efficiency of i-vector is highly dependent 

on the dimensionality. The higher the dimensionality, the lower the computational efficiency. These 

observations imply that the dimensionality of MFALV can be chosen to be very high without suffering 

from computational inefficiency, while the dimensionality of i-vector should be chosen to be relatively 

low in order to lighten the computational burden. 

 

 

 

 

 

 

 

   (a)      (b) 

Figure 4.6    The efficiency of i-vector and MFALV with different dimensionalities. (a) Time 

consumption on Kingline081. (b) Time consumption on Ahumada. 
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Chapter 5    Classifiers: Theoretical Analysis 

 

5.1    Gaussian Mixture Model 

This section starts by describing a general mixture model. It then introduces the basic formulas of the 

Gaussian mixture model (GMM), which is a popular probabilistic model applicable to speech signal 

processing tasks, either used for doing classification [22] or feature extraction [7]. GMM is able to 

smoothly approximate any probability density function [9]. The expectation-maximization (EM) 

algorithm used to estimate the model parameters of GMM is also introduced. The EM algorithm is an 

iterative algorithm that requires some initialized parameters. Rather than a random initialization of the 

parameters, the mixture splitting strategy can be adopted. 

5.1.1    Expectation-Maximization Algorithm for Mixture Models 

A mixture model is a mixture of many single models. Different single models have different parameters 

and describe different probability distributions, so combining these single models to form a mixture 

model may better describe the distribution of a set of data. Suppose a mixture model consists of 𝑀 

mixture components, denoted as 𝜃 = {𝜃1, 𝜃2, … 𝜃𝑀}. Given a vector 𝒙, the probability that the mixture 

model assigns to it is the weighted sum of the probabilities assigned by the mixture components as 

given by (5.1), where the weighting coefficient 𝜋𝑚  adds up to 1 to ensure 𝑝(𝒙|𝜃) is a probability 

distribution. 

 𝑝(𝒙|𝜃) = ∑ 𝜋𝑚𝑝(𝒙|𝜃𝑚)𝑀
𝑚=1  (5.1) 

Given a set of training vectors {𝒙1, 𝒙2, … 𝒙𝑁}, the parameters of the mixture model can be estimated by 

maximizing the log-likelihood given by (5.2). 

 ℒ = ∑ ln 𝑝(𝒙𝑛|𝜃)𝑁
𝑛=1 = ∑ ln∑ 𝜋𝑚𝑝(𝒙𝑛|𝜃𝑚)𝑀

𝑚=1
𝑁
𝑛=1  (5.2) 
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However, as ℒ involves the logarithm of the summation, it may be challenging to optimize (5.2) directly. 

Suppose a training vector 𝒙𝑛 is generated by the probability distribution described by one of the 𝑀 

mixture components. For {𝒙1, 𝒙2, … 𝒙𝑁} , there can be a set of corresponding latent variables 

{𝑧1, 𝑧2, … 𝑧𝑁}, where 𝑧𝑛 ∈ {1,2…𝑀} tells which mixture component generates 𝒙𝑛. With the help of this 

latent variable, we may then apply the expectation-maximization (EM) algorithm to optimize the 

parameters of the mixture model [91]. 

The EM algorithm includes an E-step and an M-step. In the E-step, the posterior probability of the latent 

variable is computed as given by (5.3), which is the probability that the latent variable 𝑧𝑛 equals 𝑚 

given the observation 𝒙𝑛. As 𝑧𝑛 is a latent variable, we will never know its exact value, but only the 

probabilities of being different values. 

 𝑝(𝑧𝑛 = 𝑚|𝒙𝑛, 𝜃) =
𝑝(𝒙𝑛,𝑧𝑛=𝑚|𝜃)

𝑝(𝒙𝑛|𝜃)
=

𝑝(𝒙𝑛|𝑧𝑛=𝑚,𝜃)𝑝(𝑧𝑛=𝑚|𝜃)

𝑝(𝒙𝑛|𝜃)
=

𝜋𝑚𝑝(𝒙𝑛|𝜃𝑚)

∑ 𝜋𝑗𝑝(𝒙𝑛|𝜃𝑗)
𝑀
𝑗=1

 (5.3) 

In the M-step, with the posterior probability given by (5.3) fixed, the model parameters are re-estimated 

using the posterior probability in the E-step, by maximizing 𝑄(𝜃′, 𝜃) defined in (5.4) with respect to 𝜃′. 

𝜃′ is the new estimation of 𝜃. 

 𝑄(𝜃′, 𝜃) = ∑ ∑ 𝑝(𝑧𝑛 = 𝑚|𝒙𝑛, 𝜃) ln 𝑝(𝒙𝑛, 𝑧𝑛 = 𝑚|𝜃′)𝑀
𝑚=1

𝑁
𝑛=1  (5.4) 

The EM algorithm will run for several iterations until convergence or the total number of iterations 

exceeds some threshold. In each iteration, the E-step computes the posterior probability based on the 

model parameters from its previous iteration, and the M-step re-estimates the parameters based on the 

posterior probability obtained in the E-step. 

5.1.2    Fundamentals of GMM 

Gaussian mixture model (GMM), as a famous type of mixture model, is a mixture of many single 

Gaussian models combined in a weighted manner. A GMM with 𝑀 Gaussian components can be 

parameterized by 𝜃 = {𝜋𝑚, 𝝁𝑚, 𝚺𝑚|𝑚 = 1,2…𝑀}, where 𝜋𝑚, 𝝁𝑚 and 𝚺𝑚 represents the weight, the 

mean, and the covariance of the 𝑚-th Gaussian component. 
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Given a set of training vectors {𝒙1, 𝒙2, … 𝒙𝑁} and a set of initialized parameters 𝜃 = {𝜋𝑚, 𝝁𝑚, 𝚺𝑚|𝑚 =

1,2…𝑀}, based on the aforementioned EM algorithm, the E-step computes the posterior probability of 

𝒙𝑛 being generated by the 𝑚-th Gaussian component as given by (5.5), where 𝑝𝑔(𝒙𝑛|𝝁𝑚, 𝚺𝑚) is the 

Gaussian probability density function with mean 𝝁𝑚 and covariance 𝚺𝑚. 

 𝑝(𝑚|𝒙𝑛, 𝜃) =
𝜋𝑚𝑝𝑔(𝒙𝑛|𝝁𝑚,𝚺𝑚)

∑ 𝜋𝑗𝑝𝑔(𝒙𝑛|𝝁𝑗,𝚺𝑗)
𝑀
𝑗=1

 (5.5) 

The M-step then, making use of the posterior probability in (5.5), computes a new set of model 

parameters 𝜃′ = {𝜋𝑚
′ , 𝝁𝑚

′ , 𝚺𝑚
′ |𝑚 = 1,2…𝑀} by maximizing 𝑄(𝜃′, 𝜃) with respect to 𝜃′, yielding (5.6) 

[91]. 

 
𝜕𝑄

𝜕𝜃′ = 𝟎    ⇒     

𝜋𝑚
′ =

1

𝑁
∑ 𝑝(𝑚|𝒙𝑛, 𝜃)𝑁

𝑛=1

𝝁𝑚
′ =

∑ 𝑝(𝑚|𝒙𝑛,𝜃)𝒙𝑛
𝑁
𝑛=1

∑ 𝑝(𝑚|𝒙𝑛,𝜃)𝑁
𝑛=1

𝚺𝑚
′ =

∑ 𝑝(𝑚|𝒙𝑛,𝜃)(𝒙𝑛−𝝁𝑚
′ )(𝒙𝑛−𝝁𝑚

′ )𝑇𝑁
𝑛=1

∑ 𝑝(𝑚|𝒙𝑛,𝜃)𝑁
𝑛=1

 (5.6) 

The parameters of the Gaussian components in a GMM can be initialized randomly or using the K-

means algorithm [91]. After initialization, the parameters can be re-estimated for several EM iterations 

until convergence. The EM algorithm is summarized in Algorithm 5.1, where the superscript 𝑖 indicates 

the number of EM iterations having been performed, and 𝐼 is the total number of EM iterations. 

5.1.3    Mixture Splitting Strategies 

Most of the time, it is safe to assume that the covariance matrix 𝚺𝑚 for each Gaussian component in a 

GMM is diagonal [9]. The parameters of a GMM can then be expressed as 𝜃𝑀 = {𝜋𝑚, 𝝁𝑚, 𝝈𝑚|𝑚 =

1,2…𝑀} , where the 𝑖 -th element of 𝝈𝑚  is the square root of the 𝑖𝑖 -th element of 𝚺𝑚 . With this 

assumption, we may then adopt a mixture splitting strategy to initialize the model parameters in a 

deterministic way instead of randomly [89]. This strategy starts from the model parameters of a single 

Gaussian model (i.e., 1-component GMM), and increases the number of mixture components step by 

step to 𝑀. Two mixture splitting strategies are given in Algorithm 5.2 and Algorithm 5.3. The subscript 

of 𝜃𝑖 and the superscript of {𝜋𝑚
(𝑖), 𝝁𝑚

(𝑖), 𝚺𝑚
(𝑖)} indicate that the number of Gaussian components in the 

GMM 𝜃𝑖  is 𝑖 . The parameters of 𝜃1  are simply those of a single Gaussian model. The operator ∪ 
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realizes the union of two sets. In Algorithm 5.3, the operation ⌊. ⌋ outputs the largest integer that is not 

Algorithm 5.2 GMM mixture splitting strategy I 

1: Initialization: 𝜃1 = {𝜋1
(1)

, 𝝁1
(1)

, 𝝈1
(1)

} = {1, 𝝁1
(1)

, 𝝈1
(1)

} 

2: For 𝑖 = 2 to 𝑀 

3:  Find largest weight: 𝑗 = argmax
𝑚

{𝜋𝑚
(𝑖−1)

|𝑚 = 1,2… 𝑖 − 1} 

4:  

Split mixture 

component: 

𝜃𝑖 = {𝜋𝑚
(𝑖−1)

, 𝝁𝑚
(𝑖−1)

, 𝝈𝑚
(𝑖−1)

|𝑚 = 1… 𝑖 − 1,𝑚 ≠ 𝑗} 

∪ {0.5𝜋𝑗
(𝑖−1)

, 𝝁𝑗
(𝑖−1)

− 0.2𝝈𝑗
(𝑖−1)

, 𝝈𝑗
(𝑖−1)

} 

∪ {0.5𝜋𝑗
(𝑖−1)

, 𝝁𝑗
(𝑖−1)

+ 0.2𝝈𝑗
(𝑖−1)

, 𝝈𝑗
(𝑖−1)

} 

5:  Re-estimate 𝜃𝑖 using Algorithm 5.1 

6: End   

 

Algorithm 5.1 EM algorithm for GMM 

1: Initialization: 𝜃(0) = {𝜋𝑚
(0)

, 𝝁𝑚
(0)

, 𝚺𝑚
(0)

|𝑚 = 1,2…𝑀} 

2: For 𝑖 = 1 to 𝐼 

3:  For 𝑚 = 1 to 𝑀 

4:   E-step: 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1)) =
𝜋𝑚

(𝑖−1)
𝑝𝑔 (𝒙𝑛|𝝁𝑚

(𝑖−1)
, 𝚺𝑚

(𝑖−1)
)

∑ 𝜋𝑗
(𝑖−1)

𝑝𝑔 (𝒙𝑛|𝝁𝑗
(𝑖−1)

, 𝚺𝑗
(𝑖−1)

)𝑀
𝑗=1

 

5:   

M-step: 

𝜋𝑚
(𝑖)

=
1

𝑁
∑ 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1))

𝑁

𝑛=1
 

6:   𝝁𝑚
(𝑖)

=
∑ 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1))𝒙𝑛

𝑁
𝑛=1

∑ 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1))𝑁
𝑛=1

 

7:   𝚺𝑚
(𝑖)

=
∑ 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1)) (𝒙𝑛 − 𝝁𝑚

(𝑖)
) (𝒙𝑛 − 𝝁𝑚

(𝑖)
)
𝑇

𝑁
𝑛=1

∑ 𝑝(𝑚|𝒙𝑛, 𝜃(𝑖−1))𝑁
𝑛=1

 

8:  End   

9:  Update 𝜃: 𝜃(𝑖) = {𝜋𝑚
(𝑖)

, 𝝁𝑚
(𝑖)

, 𝚺𝑚
(𝑖)

|𝑚 = 1,2…𝑀} 

10: End    
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larger than its input real value. 

The first mixture splitting strategy increases the number of Gaussian components one by one, so 𝑀 

Gaussian components will require splitting for 𝑀 − 1 times. The second mixture splitting strategy first 

doubles the number of Gaussian components and then increases the number of Gaussian components 

one by one, so 𝑀 Gaussian components will require splitting for ⌊log2 𝑀⌋ + 𝑀 − 2⌊log2 𝑀⌋ times. It is 

obvious that ⌊log2 𝑀⌋ + 𝑀 − 2⌊log2 𝑀⌋ ≤ 𝑀 − 1 , since ⌊log2 𝑀⌋ ≤ 2⌊log2 𝑀⌋ − 1 , implying that the 

second splitting strategy is more efficient. An illustration of the two mixture splitting strategies is shown 

in Figure 5.1. 

Algorithm 5.3 GMM mixture splitting strategy II (faster version) 

1: Initialization: 𝜃1 = {𝜋1
(1)

, 𝝁1
(1)

, 𝝈1
(1)

} = {1, 𝝁1
(1)

, 𝝈1
(1)

} 

2:  𝐿 = ⌊log2 𝑀⌋ 

3: For 𝑖 = 1 to 𝐿 

4:  

Split mixture 

component: 

𝜃2𝑖 = {0.5𝜋𝑚
(2𝑖−1)

, 𝝁𝑚
(2𝑖−1)

− 0.2𝝈𝑚
(2𝑖−1)

, 𝝈𝑚
(2𝑖−1)

|𝑚 = 1…2𝑖−1} 

∪ {0.5𝜋𝑚
(2𝑖−1)

, 𝝁𝑚
(2𝑖−1)

+ 0.2𝝈𝑚
(2𝑖−1)

, 𝝈𝑚
(2𝑖−1)

|𝑚 = 1…2𝑖−1} 

5:  Re-estimate 𝜃2𝑖 using Algorithm 5.1 

6: End   

7: For 𝑖 = 2𝐿 + 1 to 𝑀  

8:  

Find largest 

weight: 

𝑗 = argmax
𝑚

{𝜋𝑚
(𝑖−1)

|𝑚 = 1,2… 𝑖 − 1} 

9:  

Split mixture 

component: 

𝜃𝑖 = {𝜋𝑚
(𝑖−1)

, 𝝁𝑚
(𝑖−1)

, 𝝈𝑚
(𝑖−1)

|𝑚 = 1… 𝑖 − 1,𝑚 ≠ 𝑗} 

∪ {0.5𝜋𝑗
(𝑖−1)

, 𝝁𝑗
(𝑖−1)

− 0.2𝝈𝑗
(𝑖−1)

, 𝝈𝑗
(𝑖−1)

} 

∪ {0.5𝜋𝑗
(𝑖−1)

, 𝝁𝑗
(𝑖−1)

+ 0.2𝝈𝑗
(𝑖−1)

, 𝝈𝑗
(𝑖−1)

} 

10:  Re-estimate 𝜃𝑖 using Algorithm 5.1 

11: End   
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In the experiments described in this thesis, any GMM will be constructed using Algorithm 5.3, as it is 

faster. Besides, we also assume that the number of Gaussian components in the GMM will be a power 

of 2, which simplifies the construction process and saves the construction time. 

5.1.4    GMM for Classification 

In order to employ GMM for doing classification, we may construct a class-specific GMM for each 

class using only the training data from that class. This results in a total of 𝐾 class-specific GMMs for 

𝐾 different classes, denoted as {𝜃1, 𝜃2, … 𝜃𝐾}. The label ℓ(𝒚) of a testing vector 𝒚 can then be predicted 

by finding the class-specific GMM giving the largest posterior probability as given by (5.7). In the 

experiments described in this thesis, we will first utilize all the training data to train a class-independent 

GMM, and then utilize the parameters of the class-independent GMM as the initialized model 

parameters to train the class-specific GMMs. The class-independent GMM provides a better 

initialization, as the number of training data in a single class will be much smaller than the number of 

all the training data. 

 ℓ(𝒚) = argmax
𝑘

𝑝(𝑘|𝒚) = argmax
𝑘

𝑝(𝒚|𝜃𝑘)

∑ 𝑝(𝒚|𝜃𝑗)
𝐾
𝑗=1

= argmax
𝑘

𝑝(𝒚|𝜃𝑘) (5.7) 

5.2    Restricted Boltzmann Machine 

This section introduces the basic concept and basic formulas for restricted Boltzmann machine (RBM), 

and describes how it can be used for pattern recognition tasks. RBM is a probabilistic model and thus 

can be used for probability estimation. This enables it to be directly used for classification tasks [48]. 

 

Figure 5.1    An illustration of the mixture splitting strategies. 
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Stacking multiple RBMs produces the deep belief net (DBN), which can be used to initialize a deep 

neural network (DNN). The DNN can then be fine-tuned for different purposes, such as dimensionality 

reduction [51] and pattern recognition [50]. 

5.2.1    Fundamentals of RBM 

Restricted Boltzmann machine (RBM) is a two-layer neural network. It consists of a visible layer where 

each neuron is called a visible unit, and a hidden layer where each neuron is called a hidden unit. The 

visible layer is usually used to receive the input, while the hidden layer is usually used to produce the 

output. Both the visible and hidden units follow a Bernoulli distribution and take the value of 0 or 1. 

RBM is an energy-based model, which assumes that a form of energy exists inside the network as given 

by (5.8), where 𝒗 is the visible vector and 𝑣𝑖 is the 𝑖-th visible unit, 𝒉 is the hidden vector and ℎ𝑗 is the 

𝑗-th hidden unit, 𝒃 is the bias term for the visible layer, 𝒄 is the bias term for the hidden layer, and 𝑾 is 

the weight matrix connecting the visible layer and the hidden layer. 𝐸(𝒗, 𝒉) is the energy existing in 

the RBM [48][92]. A depiction of RBM is shown in Figure 5.2. 

 𝐸(𝒗, 𝒉) = −∑ 𝑏𝑖𝑣𝑖𝑖∈𝑣𝑖𝑠𝑖𝑏𝑙𝑒 − ∑ 𝑐𝑗ℎ𝑗𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛 − ∑ ∑ ℎ𝑗𝑊𝑗𝑖𝑣𝑖𝑗𝑖 = −𝒃𝑇𝒗 − 𝒄𝑇𝒉 − 𝒉𝑇𝑾𝒗 (5.8) 

In an RBM, a probability is associated with (𝒗, 𝒉) as given by (5.9), where 𝑍 is the “partition function” 

taking the sum over all possible values of 𝒗 and 𝒉 as given by (5.10), serving as the normalization term 

to make 𝑝(𝒗, 𝒉) a probability distribution [48]. 

 𝑝(𝒗, 𝒉) =
1

𝑍
𝑒−𝐸(𝒗,𝒉) (5.9) 

where 

 

Figure 5.2    A depiction of RBM. 
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 𝑍 = ∑ ∑ 𝑒−𝐸(𝒗,𝒉)
𝒉𝒗  (5.10) 

By marginalizing out 𝒉, we can calculate the probability that the RBM assigns to 𝒗 as given by (5.11), 

where 𝐹(𝒗) is defined as the free energy. 

 𝑝(𝒗) = ∑ 𝑝(𝒗, 𝒉)𝒉 =
1

𝑍
∑ 𝑒−𝐸(𝒗,𝒉)

𝒉 =
1

𝑍
𝑒−𝐹(𝒗) (5.11) 

Given a visible vector 𝒗 , the parameters 𝜃 = {𝑾, 𝒃, 𝒄}  of an RBM are adjusted by raising the 

probability 𝑝(𝒗) or lowering the free energy 𝐹(𝒗). This free energy determines the probability the 

RBM assigns to a visible vector. The lower the free energy, the higher the probability. This assumption 

resembles the behaviors of the molecules in a thermodynamic system, where the higher the energy, the 

more unstable the molecules will be. Therefore, we prefer lower energy in the system. 

The gradient of ln 𝑝(𝒗) with respect to 𝜃 can be computed as given by (5.12) [92]. 

 
𝜕 ln𝑝(𝒗)

𝜕𝜃
= −∑ 𝑝(𝒉|𝒗)

𝜕𝐸(𝒗,𝒉)

𝜕𝜃
+ ∑ ∑ 𝑝(𝒗′, 𝒉)

𝜕𝐸(𝒗′,𝒉)

𝜕𝜃𝒉𝒗′𝒉  (5.12) 

Based on (5.12), we can then have the gradients with respect to 𝑾, 𝒃 and 𝒄 as given by (5.13) [48][92], 

where 〈. 〉𝑝(𝒉|𝒗) is the expectation over the distribution 𝑝(𝒉|𝒗). 

 

𝜕 ln𝑝(𝒗)

𝜕𝑾
= ∑ 𝑝(𝒉|𝒗)𝒉𝒗𝑇 − ∑ ∑ 𝑝(𝒗′, 𝒉)𝒉𝒗′𝑇

𝒉𝒗′𝒉 = 〈𝒉𝒗𝑇〉𝑝(𝒉|𝒗) − 〈𝒉𝒗𝑇〉𝑝(𝒗,𝒉)

𝜕 ln 𝑝(𝒗)

𝜕𝒃
= ∑ 𝑝(𝒉|𝒗)𝒗 − ∑ ∑ 𝑝(𝒗′, 𝒉)𝒗′

𝒉𝒗′𝒉 = 〈𝒗〉𝑝(𝒉|𝒗) − 〈𝒗〉𝑝(𝒗,𝒉)

𝜕 ln𝑝(𝒗)

𝜕𝒄
= ∑ 𝑝(𝒉|𝒗)𝒉 − ∑ ∑ 𝑝(𝒗′, 𝒉)𝒉𝒉𝒗′𝒉 = 〈𝒉〉𝑝(𝒉|𝒗) − 〈𝒉〉𝑝(𝒗,𝒉)

 (5.13) 

Computing the expectation over the distribution 𝑝(𝒗, 𝒉) is difficult, but we can approximate it using 

Gibbs sampling [92]. Given a training vector 𝒙, Gibbs sampling is given by (5.14), where 𝒗(𝑝) and 𝒉(𝑝) 

are the sampled visible vector and hidden vector respectively after performing 𝑝  steps of Gibbs 

sampling, and 𝒉(𝑝) ~ 𝑝(𝒉|𝒗(𝑝))  means sampling a vector 𝒉(𝑝)  from the distribution with the 

probability 𝑝(𝒉|𝒗(𝑝)). 
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𝒗(0) = 𝒙
𝒉(0) ~ 𝑝(𝒉|𝒗(0))

𝒗(1) ~ 𝑝(𝒗|𝒉(0))

𝒉(1) ~ 𝑝(𝒉|𝒗(1))
⋮

𝒗(𝑝+1) ~ 𝑝(𝒗|𝒉(𝑝))

𝒉(𝑝+1) ~ 𝑝(𝒉|𝒗(𝑝+1))

 (5.14) 

Given a training vector, the gradients of its log probability are then approximated using 𝑝 steps of Gibbs 

sampling as given by (5.15), which is known as the contrastive divergence (CD) algorithm [48]. 

 

𝜕 ln𝑝(𝒗)

𝜕𝑾
≈ 𝒉(0)(𝒗(0))

𝑇
− 𝒉(𝑝)(𝒗(𝑝))

𝑇

𝜕 ln𝑝(𝒗)

𝜕𝒃
≈ 𝒗(0) − 𝒗(𝑝)

𝜕 ln𝑝(𝒗)

𝜕𝒄
≈ 𝒉(0) − 𝒉(𝑝)

 (5.15) 

Usually, 1 step of Gibbs sampling is good enough, which is used in our experiments. The complete 

algorithm for estimating the parameters of an RBM can be found in [92]. To prevent the randomness 

caused by sampling, we use the expected value of 𝒉 instead of sampling a value from the distribution 

with the probability 𝑝(𝒉|𝒗(𝑝)). As 𝒉 is a binary vector, its expected value is then equal to 𝑝(𝒉 =

𝟏|𝒗(𝑝)). This results in the gradients of the log probability as given by (5.16), where 𝒉(0), 𝒗(1) and 𝒉(1) 

are vectors whose 𝑖-th elements are given by (5.17). 

 

𝜕 ln𝑝(𝒙)

𝜕𝑾
≈ 𝒉(0)(𝒗(0))

𝑇
− 𝒉(1)(𝒗(1))

𝑇

𝜕 ln𝑝(𝒙)

𝜕𝒃
≈ 𝒗(0) − 𝒗(1)

𝜕 ln𝑝(𝒙)

𝜕𝒄
≈ 𝒉(0) − 𝒉(1)

 (5.16) 

where 

 

𝒗(0) = 𝒙

ℎ𝑖
(0)

= 𝐸𝒉|𝒗(0)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(0))

𝑣𝑖
(1)

= 𝐸𝒗|𝒉(0)[𝑣𝑖] = 𝑝(𝑣𝑖 = 1|𝒉(0))

ℎ𝑖
(1)

= 𝐸𝒉|𝒗(1)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(1))

 (5.17) 

The posterior probability 𝑝(ℎ𝑖 = 1|𝒗) used in (5.17) can be calculated as given by (5.18), where 𝑾𝑖,: 

is the 𝑖-th row of 𝑾, and sigm(. ) is the sigmoid function. 
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     𝑝(ℎ𝑖 = 1|𝒗) =
𝑝(ℎ𝑖=1,𝒗)

𝑝(ℎ𝑖=1,𝒗)+𝑝(ℎ𝑖=0,𝒗)
=

exp{−𝐸(𝒗,ℎ𝑖=1)}

exp{−𝐸(𝒗,ℎ𝑖=1)}+exp{−𝐸(𝒗,ℎ𝑖=0)}
=

exp{𝒃𝑇𝒗+𝑐𝑖+𝑾𝑖,:𝒗}

exp{𝒃𝑇𝒗+𝑐𝑖+𝑾𝑖,:𝒗}+exp{𝒃𝑇𝒗}
 

     =
exp {𝑐𝑖+𝑾𝑖,:𝒗}

exp {𝑐𝑖+𝑾𝑖,:𝒗}+1
= sigm(𝑐𝑖 + 𝑾𝑖,:𝒗)  (5.18) 

The posterior probability 𝑝(𝑣𝑖 = 1|𝒉) is calculated in the same way, as given by (5.19), where 𝑾:,𝑖 is 

the 𝑖-th column of 𝑾. 

 𝑝(𝑣𝑖 = 1|𝒉) = sigm(𝑏𝑖 + 𝒉𝑇𝑾:,𝑖) (5.19) 

Having the gradients, 𝜃 = {𝑾, 𝒃, 𝒄}  can then be estimated using gradient ascent to raise the log-

likelihood ln 𝑝(𝒗). 

5.2.2    Gaussian RBM 

Bernoulli RBM can handle binary input vectors only; however, acoustic or speech feature vectors 

usually have real values. In this case, we may assume that the visible unit follows a Gaussian distribution 

with zero mean and identity covariance, while the hidden unit still follows a Bernoulli distribution [48]. 

This RBM is called Gaussian RBM (GRBM), and the energy function has the form as given by (5.20) 

[52]. 

 𝐸(𝒗, 𝒉) =
1

2
(𝒗 − 𝒃)𝑇(𝒗 − 𝒃) − 𝒄𝑇𝒉 − 𝒉𝑇𝑾𝒗 (5.20) 

In GRBM, the posterior probability of the hidden unit is the same as (5.18), while the posterior 

probability of the visible unit is different from (5.19), which is then given by (5.21). In (5.21), Δ 

contains the terms independent of 𝒗 which are useless in the integration, and 𝐷 is the dimensionality of 

𝒗. 

                   𝑝(𝒗|𝒉) =
𝑝(𝒗,𝒉)

𝑝(𝒉)
=

𝑝(𝒗,𝒉)

∫ 𝑝(𝒗,𝒉)𝑑𝒗
=

exp{−𝐸(𝒗,𝒉)}

∫ exp{−𝐸(𝒗,𝒉)}𝑑𝒗
=

exp{−
1

2
(𝒗−𝒃)𝑇(𝒗−𝒃)+𝒄𝑇𝒉+𝒉𝑇𝑾𝒗}

∫ exp{−
1

2
(𝒗−𝒃)𝑇(𝒗−𝒃)+𝒄𝑇𝒉+𝒉𝑇𝑾𝒗}𝑑𝒗

  

                   =
exp{−

1

2
(𝒗−(𝒃+𝑾𝑇𝒉))

𝑇
(𝒗−(𝒃+𝑾𝑇𝒉))+Δ}

∫ exp{−
1

2
(𝒗−(𝒃+𝑾𝑇𝒉))

𝑇
(𝒗−(𝒃+𝑾𝑇𝒉))+Δ}𝑑𝒗

=
exp{−

1

2
(𝒗−(𝒃+𝑾𝑇𝒉))

𝑇
(𝒗−(𝒃+𝑾𝑇𝒉))}

∫exp{−
1

2
(𝒗−(𝒃+𝑾𝑇𝒉))

𝑇
(𝒗−(𝒃+𝑾𝑇𝒉))}𝑑𝒗
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                   =
exp{−

1

2
(𝒗−(𝒃+𝑾𝑇𝒉))

𝑇
(𝒗−(𝒃+𝑾𝑇𝒉))}

2𝜋𝐷/2 = 𝑝𝑔(𝒗|𝒃 + 𝑾𝑇𝒉, 𝑰) (5.21) 

As can be seen from (5.21), 𝑝(𝒗|𝒉) is actually a Gaussian distribution with mean (𝒃 + 𝑾𝑇𝒉) and 

identity covariance. The gradients for GRBM have the same expression as (5.16), but with the visible 

and hidden vectors given by (5.22). 

 

𝒗(0) = 𝒙

ℎ𝑖
(0)

= 𝐸𝒉|𝒗(0)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(0))

𝒗(1) = 𝐸𝒗|𝒉(0)[𝒗] = 𝒃 + 𝑾𝑇𝒉(0)

ℎ𝑖
(1)

= 𝐸𝒉|𝒗(1)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(1))

 (5.22) 

5.2.3    Deep Belief Net 

Deep Belief Net (DBN) consists of one input layer and many hidden layers, where each pair of adjacent 

layers forms an RBM [50]. Suppose a DBN consists of 𝐿 + 1 layers, then the 1st layer and the 2nd layer 

form the 1st RBM, the 2nd layer and the 3rd layer form the 2nd RBM, and so forth. Totally there are 𝐿 

RBMs. The parameters of these RBMs are adjusted sequentially. That is to say, after adjusting the 

parameters of the 𝑙-th RBM, its parameters are fixed. Then, we start adjusting the parameters of the 

(𝑙 + 1)-th RBM, whose visible units are the hidden units of the 𝑙-th RBM. If the input has real-valued 

data, the 1st RBM should be a GRBM, while the others are Bernoulli RBMs. A depiction of DBN is 

shown in Figure 5.3. 

 

Figure 5.3    A depiction of DBN with 𝐿 + 1 layers. 
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After training the DBN by training a stack of RBMs one by one, a softmax layer can then be added to 

the last layer of DBN to form a DNN classifier. This DBN-DNN can then be fine-tuned using the cross-

entropy loss function [10]. The number of neurons in the softmax layer is equal to the number of classes, 

meaning that the output of each neuron can represent a posterior probability of a class. 

Suppose a vector 𝒙 is the input to a softmax layer, whose elements are the weighted sums of the neurons’ 

activations in the previous hidden layer. Suppose the output vector is denoted as 𝒚 , whose 

dimensionality is 𝐾 × 1, where 𝐾 is the number of classes. Then, the softmax layer can be expressed as 

given by (5.23), where 𝑥𝑘 and 𝑦𝑘 denote the 𝑘-th element of 𝒙 and 𝒚 respectively. 

 𝑦𝑘 =
exp (𝑥𝑘)

∑ exp (𝑥𝑗)
𝐾
𝑗=1

 (5.23) 

Given a set of training vectors used to train the DNN, denoted as {𝒙1, 𝒙2 …𝒙𝑁}, where 𝒙𝑛 is the 𝑛-th 

training vector. Suppose the corresponding output vectors of the softmax layer is {𝒚1, 𝒚2 …𝒚𝑁}, and the 

corresponding labels are {𝒍1, 𝒍2 …𝒍𝑁}, which are one-hot vectors with a dimensionality of 𝐾 × 1. That 

is to say, if 𝒙𝑛 belongs to class 𝑘, only the 𝑘-th element in the label vector 𝒍𝑛 will be 1 and the remaining 

will be 0. Then, the cross-entropy loss is expressed as given by (5.24), where ln(. ) is an element-wise 

operation. As 𝒍𝑛 is a one-hot vector, only one element in 𝒚𝑛 will be involved in the loss function. 

 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ 𝒍𝑛

𝑇 ln(𝒚𝑛)𝑁
𝑛=1  (5.24) 

Given a testing vector, each neuron in the softmax layer of DBN-DNN produces a posterior probability 

as given by (5.23). The class label of the testing vector can then be predicted as the class having the 

largest posterior probability. 

5.2.4    RBM for Classification 

Apart from stacking multiple RBMs to form a discriminative model, such as the DBN-DNN, we may 

also use RBM as a probability estimator. Given a vector 𝒙, an RBM assigns a probability 𝑝(𝒙) to it 

based on the free energy 𝐹(𝒙) as given by (5.25). 

 𝑝(𝒙) =
1

𝑍
∑ 𝑒−𝐸(𝒙,𝒉)

𝒉 =
1

𝑍
𝑒−𝐹(𝒙) (5.25) 
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For a Bernoulli RBM with the energy function given by (5.8), using the factorization trick in [92], the 

free energy can be expressed as (5.26), where ℎ𝑗 is the 𝑗-th hidden unit. 

 𝐹(𝒙) = − ln∑ 𝑒−𝐸(𝒙,𝒉)
𝒉 = −𝒃𝑇𝒙 − ∑ ln∑ exp{ℎ𝑗(𝑐𝑗 + 𝑾𝑗,:𝒙)}ℎ𝑗𝑗  (5.26) 

Noting that ℎ𝑗 can only have a value of 0 or 1, the free energy is further simplified to 

 𝐹(𝒙) = −𝒃𝑇𝒙 − ∑ ln(exp{(𝑐𝑗 + 𝑾𝑗,:𝒙)} + 1)𝑗  (5.27) 

Similarly, for a GRBM with the energy function given by (5.20), the free energy then becomes 

 𝐹(𝒙) =
1

2
(𝒙 − 𝒃)𝑇(𝒙 − 𝒃) − ∑ ln(exp{(𝑐𝑗 + 𝑾𝑗,:𝒙)} + 1)𝑗  (5.28) 

Although the free energy can be computed, the partition function 𝑍 is still intractable and so is the 

probability 𝑝(𝒙). Therefore, we may not be able to train a class-specific RBM for each class and 

compute the relative probability, as different RBMs will have different partition functions. 

To avoid the calculation of the partition function, we may train a joint model [48]. Suppose we have a 

set of training vectors {𝒙1, 𝒙2 …𝒙𝑁}, where 𝒙𝑛 is the 𝑛-th training vector having a dimensionality of 

𝐷 × 1, and a set of corresponding label vectors {𝒍1, 𝒍2 …𝒍𝑁}, where 𝒍𝑛 is a one-hot vector having a 

dimensionality of 𝐾 × 1. The joint model is described as follows. 

In the training stage, a pair of training vector and training label {𝒙𝑛, 𝒍𝑛} are concatenated to form an 

augmented training vector �̃�𝑛 whose dimensionality is (𝐷 + 𝐾) × 1. The augmented training vectors 

{�̃�1, �̃�2 … �̃�𝑁} are then used to adjust the parameters of the joint RBM. A depiction of the joint RBM is 

shown in Figure 5.4. 

 

Figure 5.4    A depiction of the joint RBM. 
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If the training vectors have binary values, the energy function has the form given by (5.29), where �̃� is 

the augmented vector, 𝒙 is the original vector, 𝒍 is its corresponding label vector, 𝑾(𝑥) is the weight 

matrix connecting 𝒙 and 𝒉 with 𝒃(𝑥) being the bias, 𝑾(𝑙) is the weight matrix connecting 𝒍 and 𝒉 with 

𝒃(𝑙)  being the bias, 𝒄  is the bias for 𝒉 , �̃�  is the concatenation of 𝑾(𝑥)  and 𝑾(𝑙) , and �̃�  is the 

concatenation of 𝒃(𝑥) and 𝒃(𝑙). The training procedure is then the same as training a Bernoulli RBM 

with parameters {�̃�, �̃�, 𝒄}. 

        𝐸(�̃�, 𝒉) = −(𝒃(𝑥))
𝑇
𝒙 − 𝒉𝑇𝑾(𝑥)𝒙 − (𝒃(𝑙))

𝑇
𝒍 − 𝒉𝑇𝑾(𝑙)𝒍 − 𝒄𝑇𝒉 = −�̃�𝑇�̃� − 𝒄𝑇𝒉 − 𝒉𝑇�̃��̃� (5.29) 

where 

 �̃� = [
𝒙
𝒍
] , �̃� = [𝑾(𝑥) 𝑾(𝑙)], �̃� = [𝒃

(𝑥)

𝒃(𝑙)
] (5.30) 

If the training vectors have real values, the energy function should have the form as given by (5.31), 

which is the fusion of a Gaussian RBM and a Bernoulli RBM. 

                     𝐸(�̃�, 𝒉) =
1

2
(𝒙 − 𝒃(𝑥))

𝑇
(𝒙 − 𝒃(𝑥)) − 𝒉𝑇𝑾(𝑥)𝒙 − (𝒃(𝑙))

𝑇
𝒍 − 𝒉𝑇𝑾(𝑙)𝒍 − 𝒄𝑇𝒉 

                     =
1

2
(𝒙 − 𝒃(𝑥))

𝑇
(𝒙 − 𝒃(𝑥)) − (𝒃(𝑙))

𝑇
𝒍 − 𝒄𝑇𝒉 − 𝒉𝑇�̃��̃� (5.31) 

The gradients for training this heterogeneous RBM have the same expression as (5.16), but with the 

visible and hidden vectors given by 

 

𝒗(0) = �̃� = [𝒙
(0)

𝒍(0)
] = [

𝒙
𝒍
]

ℎ𝑖
(0)

= 𝐸𝒉|𝒗(0)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(0)) = sigm(𝑐𝑖 + �̃�𝑖,:𝒗
(0))

𝒗(1) = [𝒙
(1)

𝒍(1)
] = [

𝐸𝒙|𝒉(0)[𝒙]

𝐸𝒍|𝒉(0)[𝒍]
] = [

𝒃(𝑥) + (𝑾(𝑥))
𝑇
𝒉(0)

𝑝(𝒍 = 𝟏|𝒉(0))
] =

[
 
 
 
 𝒃

(𝑥) + (𝑾(𝑥))
𝑇
𝒉(0)

𝑝(𝑙1 = 1|𝒉(0))
⋮

𝑝(𝑙𝐾 = 1|𝒉(0)) ]
 
 
 
 

ℎ𝑖
(1)

= 𝐸𝒉|𝒗(1)[ℎ𝑖] = 𝑝(ℎ𝑖 = 1|𝒗(1)) = sigm(𝑐𝑖 + �̃�𝑖,:𝒗
(1))

 (5.32) 

where 

 𝑝(𝑙𝑘 = 1|𝒉) = sigm(𝑏𝑘
(𝑙) + 𝒉𝑇𝑾:,𝑘

(𝑙)
) (5.33) 
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In the testing stage, a testing vector 𝒚 is concatenated with trial label vectors {𝓵1, 𝓵2 …𝓵𝐾}, where 𝓵𝑘 

has a dimensionality of 𝐾 × 1, and the 𝑘-th element is 1 while other elements are 0. Denote the 

concatenated testing vectors as {�̃�1, �̃�2 … �̃�𝐾} , whose dimensionality is (𝐷 + 𝐾) × 1 . Using the 

factorization trick in [92], the free energy of �̃�𝑘 is then given by (5.34), where Δ(𝒚) is a term only 

related to 𝒚 but not 𝓵𝑘 and 𝒉. 

 𝐹(�̃�𝑘) = − ln∑ 𝑒−𝐸(�̃�𝑘,𝒉)
𝒉 = Δ(𝒚) − (𝒃(𝑙))

𝑇
𝓵𝑘 − ∑ ln(exp{(𝑐𝑗 + �̃�𝑗,:�̃�𝑘)} + 1)𝑗  (5.34) 

We can then predict the label of 𝒚 by finding the largest posterior probability or the lowest free energy 

among {�̃�1, �̃�2 … �̃�𝐾} as given by (5.35). 

             ℓ(𝒚) = argmax
𝑘

𝑝(𝑘|𝒚) = argmax
𝑘

𝑝(�̃�𝑘)

∑ 𝑝(�̃�𝑗)
𝐾
𝑗=1

= argmax
𝑘

1

𝑍
𝑒−𝐹(�̃�𝑘)

∑
1

𝑍
𝑒

−𝐹(�̃�𝑗)𝐾
𝑗=1

= argmax
𝑘

𝑒−𝐹(�̃�𝑘) 

             = argmin
𝑘

𝐹(�̃�𝑘) = argmin
𝑘

{−(𝒃(𝑙))
𝑇
𝓵𝑘 − ∑ ln(exp{(𝑐𝑗 + �̃�𝑗,:�̃�𝑘)} + 1)𝑗 } (5.35) 

5.3    Comparison between GMM and RBM 

To effectively employ GMM as a classifier, the feature vectors are supposed to be independent of each 

other and follow the Gaussian distribution. To estimate a Gaussian distribution from a set of training 

vectors, the dimensionality of the vectors should be considerably smaller than the number of vectors; 

otherwise, the covariance will not be accurately estimated. Most of the time, it is assumed that the 

covariance of each Gaussian component in a GMM is diagonal, which implicitly assumes that the 

elements inside a feature vector should be independent of each other, i.e., the elements should be 

decorrelated. In addition, as can be seen from the EM algorithm given in Algorithm 5.1, the model 

parameters of a GMM capture the inter-feature relationship (i.e., the relationship between the elements 

in the same dimension of different feature vectors), instead of the intra-feature relationship (i.e., the 

relationship between the elements in different dimensions of a feature vector). Therefore, GMM can 

capture the global characteristics across different feature vectors. 

To effectively employ RBM as a classifier, the feature vectors are expected to have a high 

dimensionality such that enough information is stored in a feature vector. As can be seen from the 
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energy function of RBM given by (5.8), the model assumes that the variables in the visible layer are 

related by a weight matrix, meaning that the elements inside a feature vector should be correlated. This 

is contrary to the implicit assumption of GMM that the elements inside a feature vector should be 

decorrelated. From this perspective, RBM actually captures the intra-feature relationship instead of the 

inter-feature relationship. For acoustic or speech signals, the input to RBM can be a sequence of 

consecutive feature vectors. In this way, RBM may capture the local characteristics of the signal. By 

increasing the length of the sequence, it may capture more characteristics, but they are still local 

characteristics as it cannot capture the characteristics across different samples. Similar analyses also 

apply to DBN-DNN, as DBN is trained by stacking multiple RBMs. 

In summary, GMM can handle low-dimensional decorrelated features, whereas RBM can handle high-

dimensional correlated features. GMM can capture global characteristics, whereas RBM can capture 

local characteristics. From this perspective, GMM and RBM seem complementary to each other, and 

the ways of combing them, such as using RBM to extract features so that the local characteristics are 

embedded in the features, and using GMM for classification purposes so that the global characteristics 

are taken into consideration, may produce some interesting results. 

5.4    Support Vector Machine 

This section starts by briefly introducing the basic formulation of support vector machine (SVM), which 

is a mature classification model having a wide range of applications [53]. Originally SVM is designed 

for doing binary classification, but it can be easily extended to handle multi-class cases by forming 

multiple binary SVMs. By introducing a weight parameter, SVM can be extended to weighted SVM 

(WSVM), where different training data can be unequally weighted to emphasize their importance or 

relevance to the model. 

5.4.1    Binary SVM 

A two-class SVM classifier is a maximum margin classifier [53]. Given a training set consisting of data 

belonging to two classes, denoted as the positive class and the negative class, SVM aims at finding a 

separating hyperplane that separates the positive data and the negative data into different sides of the 
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hyperplane. The hyperplane is obtained by maximizing the margin, which is defined as the smallest 

distance between the data and the hyperplane [53]. 

Given a set of training vectors {𝒙1, 𝒙2 …𝒙𝑁}, and the corresponding training labels {𝑙1, 𝑙2 … 𝑙𝑁} where 

𝑙𝑛 ∈ {−1,+1} indicates whether the training vector 𝒙𝑛 belongs to the positive class or the negative 

class. Then the optimization problem of SVM can be formulated as given by (5.36), where {𝒘, 𝑏} are 

the parameters of the hyperplane represented by 𝒘𝑇𝒙𝑛 + 𝑏 = 0. A depiction of SVM is shown in Figure 

5.5. 

 

min
𝒘,𝑏

1

2
‖𝒘‖2

𝑠. 𝑡.
𝒘𝑇𝒙𝑛 + 𝑏 ≥ +1    𝑓𝑜𝑟  𝑙𝑛 = +1

𝒘𝑇𝒙𝑛 + 𝑏 ≤ −1    𝑓𝑜𝑟  𝑙𝑛 = −1

 (5.36) 

With the fact that 𝑙𝑛  can only take the value of +1 or −1, the optimization problem in (5.36) is 

simplified to 

 

min
𝒘,𝑏

1

2
‖𝒘‖2

𝑠. 𝑡.
𝑙𝑛(𝒘𝑇𝒙𝑛 + 𝑏) − 1 ≥ 0    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

 (5.37) 

After training an SVM, for a testing vector 𝒚, the class label can be predicted according to the sign of 

(𝒘𝑇𝒚 + 𝑏). If 𝒘𝑇𝒚 + 𝑏 > 0, 𝒚 belongs to the positive class; if 𝒘𝑇𝒚 + 𝑏 < 0, 𝒚 belongs to the negative 

class. 

  

Figure 5.5    A depiction of SVM with 2-dimensional data. 



69 

 

The optimization problem given by (5.37) can also be reformulated using the Lagrangian function 

𝐿(𝒘, 𝑏, 𝜆) as given by (5.38), where {𝜆1, 𝜆2 …𝜆𝑁} are Lagrange multipliers and should satisfy the 

nonnegativity constraints, i.e., 𝜆𝑛 ≥ 0 for 𝑛 = 1,2…𝑁. 

 𝐿(𝒘, 𝑏, 𝜆) =
1

2
‖𝒘‖2 − ∑ 𝜆𝑛(𝑙𝑛(𝒘𝑇𝒙𝑛 + 𝑏) − 1)𝑁

𝑛=1  (5.38) 

The solution to the optimization problem in (5.37) can then be obtained by minimizing the Lagrangian 

function in (5.38) with respect to {𝒘, 𝑏}  subject to the nonnegativity constraints of 𝜆𝑛 . As the 

optimization problem defined by (5.38) and the corresponding constraints form a convex quadratic 

programming problem, its solution is equivalent to that obtained by maximizing the dual formulation 

�̃�(𝜆) with respect to 𝜆𝑛 as given by (5.39). 

 

max
𝜆

�̃�(𝜆) = ∑ 𝜆𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝜆𝑛𝜆𝑚𝑙𝑛𝑙𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1

𝑠. 𝑡.
𝜆𝑛 ≥ 0    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

∑ 𝜆𝑛
𝑁
𝑛=1 𝑙𝑛 = 0

 (5.39) 

In the case where the training data are inseparable by the hyperplane, the inequality constraints in (5.37) 

can be relaxed by adding a slack variable 𝜉𝑛 for each 𝒙𝑛. Then, the optimization problem becomes 

(5.40), where 𝐶 is a pre-defined constant parameter. When 𝐶 → ∞, the optimization process will force 

𝜉𝑛 → 0, (5.40) is then equivalent to (5.37). 

 

min
𝒘,𝑏,𝜉

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1

𝑠. 𝑡.
𝜉𝑛 ≥ 0    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

𝑙𝑛(𝒘𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

 (5.40) 

The optimization problem for the dual formulation then becomes 

 

max
𝜆

�̃�(𝜆) = ∑ 𝜆𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝜆𝑛𝜆𝑚𝑙𝑛𝑙𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1

𝑠. 𝑡.
0 ≤ 𝜆𝑛 ≤ 𝐶    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

∑ 𝜆𝑛
𝑁
𝑛=1 𝑙𝑛 = 0

 (5.41) 

Solving (5.41) yields the expression of 𝒘 as given by (5.42). 

 𝒘 = ∑ 𝜆𝑛𝑙𝑛𝒙𝑛
𝑁
𝑛=1  (5.42) 
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Substituting 𝒘 in the decision boundary 𝒘𝑇𝒚 + 𝑏 = 0 gives 

 ∑ 𝜆𝑛𝑙𝑛𝒙𝑛
𝑇𝒚𝑁

𝑛=1 + 𝑏 = 0 (5.43) 

The advantage of using the dual formulation is that the objective function given by (5.39) or (5.41) only 

involves the inner product of the training vectors, and the decision boundary 𝒘𝑇𝒚 + 𝑏 = 0  only 

involves the inner product of the training vector and the testing vector. This makes it possible to apply 

the kernel trick. 

5.4.2    Multi-class SVM 

The original SVM is a binary classifier serving two-class classification tasks. It is viable to extend SVM 

to tackle multi-class classification tasks by constructing several binary SVMs. There are two common 

ways to construct a set of binary SVMs for multi-class purposes: one being the one-versus-one strategy, 

and the other being the one-versus-rest strategy [53][95]. 

Given a set of training vectors {𝒙1, 𝒙2 …𝒙𝑁} belonging to 𝐾 different classes with the corresponding 

training labels {𝑙1, 𝑙2 … 𝑙𝑁}, where 𝑙𝑛 ∈ {1,2…𝐾}. On using the one-versus-one strategy, totally 𝐾(𝐾 −

1)/2 binary SVMs are constructed, where the 𝑖𝑗-th SVM aims at finding the hyperplane separating the 

training data of class 𝑖 from those of class 𝑗 by solving the optimization problem given by (5.44). The 

superscript 𝑖𝑗 indicates that {𝒘(𝑖𝑗), 𝑏(𝑖𝑗)} are the parameters of the hyperplane that separates class 𝑖 

from class 𝑗 [95]. 

 

min
𝒘(𝑖𝑗),𝑏(𝑖𝑗),𝜉(𝑖𝑗)

  
1

2
‖𝒘(𝑖𝑗)‖

2
+ 𝐶 ∑ 𝜉𝑛

(𝑖𝑗)
𝑛,𝑙𝑛=𝑖 𝑜𝑟 𝑗

𝑠. 𝑡.

𝜉𝑛
(𝑖𝑗)

≥ 0

(𝒘(𝑖𝑗))
𝑇
𝒙𝑛 + 𝑏(𝑖𝑗) ≥ 1 − 𝜉𝑛

(𝑖𝑗)
    𝑓𝑜𝑟  𝑙𝑛 = 𝑖

(𝒘(𝑖𝑗))
𝑇
𝒙𝑛 + 𝑏(𝑖𝑗) ≤ −1 + 𝜉𝑛

(𝑖𝑗)
    𝑓𝑜𝑟  𝑙𝑛 = 𝑗

 (5.44) 

On using the one-versus-rest strategy, totally 𝐾 binary SVMs are constructed, where the 𝑘-th SVM 

aims at finding the hyperplane separating the training data of class 𝑘 from those of the remaining (𝐾 −

1) classes. By this means, the 𝑘-th SVM solves the optimization problem as given by (5.45) [95]. 
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min
𝒘(𝑘),𝑏(𝑘),𝜉(𝑘)

  
1

2
‖𝒘(𝑘)‖

2
+ 𝐶 ∑ 𝜉𝑛

(𝑘)𝑁
𝑛=1

𝑠. 𝑡.

𝜉𝑛
(𝑘)

≥ 0

(𝒘(𝑘))
𝑇
𝒙𝑛 + 𝑏(𝑘) ≥ 1 − 𝜉𝑛

(𝑘)
    𝑓𝑜𝑟  𝑙𝑛 = 𝑘

(𝒘(𝑘))
𝑇
𝒙𝑛 + 𝑏(𝑘) ≤ −1 + 𝜉𝑛

(𝑘)
    𝑓𝑜𝑟  𝑙𝑛 ≠ 𝑘

 (5.45) 

On using the sequential minimal optimization (SMO) algorithm to find the solution of SVM, the 

computation time is approximately proportional to the number of training data [53]. Suppose the 

number of training data in each class is 𝑁/𝐾, then the time complexity of the one-versus-one strategy 

is approximately given by (5.46), where 𝛾 is the proportional factor, 
2𝑁

𝐾
 is the number of training data 

used to train each binary SVM, 
𝐾(𝐾−1)

2
 is the total number of binary SVMs, and 𝑂(. ) is the big-O 

notation upper bounding the running time of an algorithm. 

 𝑡𝑜𝑛𝑒−𝑜𝑛𝑒 = 𝛾 ×
2𝑁

𝐾
×

𝐾(𝐾−1)

2
= 𝛾𝑁(𝐾 − 1) = 𝑂(𝑁𝐾) (5.46) 

The time complexity of the one-versus-rest strategy can be approximated in a similar way as given by 

(5.47). Each binary SVM will be trained with all the training data, and there will be totally 𝐾 binary 

SVMs to be trained. 

 𝑡𝑜𝑛𝑒−𝑟𝑒𝑠𝑡 = 𝛾 × 𝑁 × 𝐾 = 𝑂(𝑁𝐾) (5.47) 

Using the aforementioned approximation, the two strategies seem to have similar time complexities. 

Nevertheless, the comprehensive experimental results in [95] show that the former one always 

consumes less computation time while keeping the performance to be almost the same. 

5.4.3    Weighted SVM 

During the modeling process, it is viable to introduce a weighting coefficient for each training datum 

to indicate its importance or relevance to the model. The resulting model is called the weighted support 

vector machine (WSVM) [96]. For a binary WSVM, the optimization problem becomes (5.48), where 

𝑊𝑛 is the weighting coefficient for the 𝑛-th training datum. 
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min
𝒘,𝑏,𝜉

1

2
‖𝒘‖2 + 𝐶 ∑ 𝑊𝑛𝜉𝑛

𝑁
𝑛=1

𝑠. 𝑡.
𝜉𝑛 ≥ 0    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

𝑙𝑛(𝒘𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛    𝑓𝑜𝑟  𝑛 = 1,2…𝑁

 (5.48) 

It has been shown in [96] that WSVM performs significantly better than SVM when there exist outliers 

in the training set. However, in general, it may be challenging to determine the weighting coefficients. 

5.5    Probabilistic Linear Discriminant Analysis 

This section discusses the basic formulation of the probabilistic linear discriminant analysis (PLDA), 

including the formulation for model parameter estimation and the formulation for class label prediction. 

PLDA has been the state-of-the-art backend for speaker verification studies; however, the original 

formulas are inefficient in handling a large number of training data. To address this scalability issue, 

scalable formulas for model parameter estimation have been proposed in [78][79]. In this section, we 

propose the scalable formulas for class label prediction, which completes the scalable PLDA that can 

deal with a large number of training data. 

5.5.1    Fundamentals of PLDA 

Suppose we have a set of training data belonging to 𝐾 different classes, and in each class, there are 𝐽 

training vectors. Totally there are 𝐾𝐽 training vectors. This set of training data can be denoted as 

{𝒙11, 𝒙12 …𝒙1𝐽, 𝒙21, 𝒙22 …𝒙2𝐽 ……𝒙𝐾1, 𝒙𝐾2 …𝒙𝐾𝐽}, where 𝒙𝑘𝑗  represents the 𝑗-th training vector in 

the 𝑘-th class. In a PLDA model, we assume that a vector 𝒙𝑘𝑗 is generated by two latent vectors as 

given by (5.49), where 𝝁 is the mean vector, 𝒉𝑘 is the between-class latent vector, 𝒘𝑘𝑗 is the within-

class latent vector, 𝜺𝑘𝑗 is the noise term, 𝑭 and 𝑮 are factor-loading matrices corresponding to 𝒉𝑘 and 

𝒘𝑘𝑗  respectively [97]. The between-class latent vector 𝒉𝑘  reflects the class information, while the 

within-class latent vector 𝒘𝑘𝑗 reflects the variation of the vector 𝒙𝑘𝑗 among all the vectors in class 𝑘. 

Therefore, the between-class latent vectors are supposed to be the same for all the training vectors in 

the same class, while the within-class latent vectors can be different even if the training vectors are in 

the same class. 
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 𝒙𝑘𝑗 = 𝝁 + 𝑭𝒉𝑘 + 𝑮𝒘𝑘𝑗 + 𝜺𝑘𝑗 (5.49) 

A PLDA model also follows the assumption of a standard FA model, namely, both 𝒉𝑘 and 𝒘𝑘𝑗 should 

follow a Gaussian distribution with zero mean and identity covariance, and the noise vector 𝜺𝑘𝑗 should 

follow a Gaussian distribution with zero mean and diagonal covariance 𝚺, as given by (5.50). 

 

𝒉𝑘  ~ 𝑝𝑔(𝒉𝑘|𝟎, 𝑰)

𝒘𝑘𝑗 ~ 𝑝𝑔(𝒘𝑘𝑗|𝟎, 𝑰)

𝜺𝑘𝑗 ~ 𝑝𝑔(𝜺𝑘𝑗|𝟎, 𝚺)

 (5.50) 

With the above model assumptions, 𝒙𝑘𝑗 should also follow a Gaussian distribution with mean 𝝁 and 

covariance (𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺) as given by the probability density function in (5.51). So, a PLDA model 

can be parameterized by 𝜃 = {𝝁, 𝑭,𝑮, 𝚺}. 

 𝑝(𝒙𝑘𝑗) = 𝑝𝑔(𝒙𝑘𝑗|𝝁, 𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺) (5.51) 

As all the training vectors in class 𝑘 should have the same between-class latent vector 𝒉𝑘, in order to 

estimate the factor-loading matrix 𝑭, all the training vectors {𝒙𝑘1, 𝒙𝑘2 …𝒙𝑘𝐽} need to be considered as 

a whole [97]. The expression in (5.49) then becomes 

 [

𝒙𝑘1
𝒙𝑘2

⋮
𝒙𝑘𝐽

] = [

𝝁
𝝁
⋮
𝝁

] + [

𝑭
𝑭
⋮
𝑭

𝑮 𝟎
𝟎 𝑮

⋯ 𝟎
⋯ 𝟎

⋮ ⋮
𝟎 𝟎

⋱ ⋮
⋯ 𝑮

]

[
 
 
 
 
𝒉𝑘

𝒘𝑘1
𝒘𝑘2

⋮
𝒘𝑘𝐽]

 
 
 
 

+ [

𝜺𝑘1
𝜺𝑘2

⋮
𝜺𝑘𝐽

] (5.52) 

Equation (5.52) can be simplified to (5.53) by using the simplified notations given by (5.54). 

 𝑿𝑘 = 𝑼 + 𝑹𝒀𝑘 + 𝝃𝑘 (5.53) 

where 

 𝑿𝑘 = [

𝒙𝑘1
𝒙𝑘2

⋮
𝒙𝑘𝐽

] , 𝑼 = [

𝝁
𝝁
⋮
𝝁

] , 𝑹 = [

𝑭
𝑭
⋮
𝑭

𝑮 𝟎
𝟎 𝑮

⋯ 𝟎
⋯ 𝟎

⋮ ⋮
𝟎 𝟎

⋱ ⋮
⋯ 𝑮

] , 𝒀𝑘 =

[
 
 
 
 
𝒉𝑘

𝒘𝑘1
𝒘𝑘2

⋮
𝒘𝑘𝐽]

 
 
 
 

, 𝝃𝑘 = [

𝜺𝑘1
𝜺𝑘2

⋮
𝜺𝑘𝐽

] (5.54) 
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As the noise vectors are independent of each other, 𝝃𝑘 will follow a Gaussian distribution with zero 

mean and diagonal covariance 𝚿, where 𝚿 is given by (5.55). 

 𝚿 = [

𝚺 𝟎
𝟎 𝚺

⋯ 𝟎
⋯ 𝟎

⋮ ⋮
𝟎 𝟎

⋱ ⋮
⋯ 𝚺

] (5.55) 

As 𝒀𝑘  and 𝝃𝑘  are assumed to be independent of each other, 𝑿𝑘  should also follow a Gaussian 

distribution with mean 𝑼 and covariance (𝑹𝑹𝑇 + 𝚿) as given by (5.56), which is the joint distribution 

of {𝒙𝑘1, 𝒙𝑘2 …𝒙𝑘𝐽} [97][98]. 

 𝑝(𝑿𝑘) = 𝑝(𝒙𝑘1, 𝒙𝑘2 …𝒙𝑘𝐽) = 𝑝𝑔(𝑿𝑘|𝑼,𝑹𝑹𝑇 + 𝚿) (5.56) 

According to (5.56), a PLDA model can also be parameterized by 𝜃 = {𝑼,𝑹,𝚿} , which is the 

parameters of a standard FA model. As a matter of fact, PLDA has a close relationship with FA and 

Fisher linear discriminant analysis (LDA). If 𝒉𝑘 in (5.49) disappears, it then becomes an FA model, 

which is an unsupervised model carrying no class information. From this perspective, PLDA is the 

generalization of FA. On the other hand, the between-class factor-loading matrix 𝑭 plays a similar role 

to the between-class scatter matrix of LDA, and the within-class factor-loading matrix 𝑮 plays a similar 

role to the within-class scatter matrix of LDA [97]. From this perspective, PLDA resembles LDA. 

5.5.2    Original Formulation 

5.5.2.1    Parameter Estimation 

As the expression of a PLDA model can be formulated into the form of a standard FA, the model 

parameters 𝜃 = {𝑼,𝑹,𝚿} can be estimated in the same way as that of FA by using the EM algorithm 

[97][87]. In the E-step, the model parameters are kept unchanged, and the posterior expectations are 

calculated using the current parameters. The posterior expected mean and the posterior expected 

covariance of 𝒀𝑘 are given by (5.57) and (5.58), respectively. 

 𝐸[𝒀𝑘] = (𝑰 + 𝑹𝑇𝚿−1𝑹)−1𝑹𝑇𝚿−1(𝑿𝑘 − 𝑼) (5.57) 
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 𝐸[𝒀𝑘𝒀𝑘
𝑇] = (𝑰 + 𝑹𝑇𝚿−1𝑹)−1 + 𝐸[𝒀𝑘]𝐸[𝒀𝑘]𝑇 (5.58) 

In the M-step, the posterior expectations are kept unchanged, and the model parameters are re-estimated 

using the posterior expectations. To ease the computation, we may first reformulate (5.49) into (5.59), 

which consists of a concatenated matrix 𝑽 and a concatenated latent vector 𝒛𝑘𝑗. 

 𝒙𝑘𝑗 = 𝝁 + 𝑽𝒛𝑘𝑗 + 𝜺𝑘𝑗 (5.59) 

where 

 𝑽 = [𝑭 𝑮], 𝒛𝑘𝑗 = [
𝒉𝑘

𝒘𝑘𝑗
] (5.60) 

We then re-estimate the parameters {𝝁, 𝑽, 𝚺} using (5.61) ~ (5.63), where diag{. } sets all the non-

diagonal elements in a matrix to zero [97]. The posterior expectations 𝐸[𝒛𝑘𝑗] and 𝐸[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ] can be 

obtained from the posterior expectations 𝐸[𝒀𝑘] and 𝐸[𝒀𝑘𝒀𝑘
𝑇] by comparing the expressions of 𝒛𝑘𝑗 and 

𝒀𝑘 given by (5.60) and (5.54) respectively. We can see that 𝐸[𝒛𝑘𝑗] is just a sub-vector of 𝐸[𝒀𝑘], and 

𝐸[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ]  is a sub-matrix of 𝐸[𝒀𝑘𝒀𝑘

𝑇] . The parameters {𝝁, 𝑽, 𝚺}  can then be used to reconstruct 

{𝑼,𝑹,𝚿} for the E-step. 

 𝝁 =
1

𝐾𝐽
∑ ∑ 𝒙𝑘𝑗

𝐽
𝑗=1

𝐾
𝑘=1  (5.61) 

 𝑽 = (∑ ∑ (𝒙𝑘𝑗 − 𝝁)𝐸[𝒛𝑘𝑗]
𝑇𝐽

𝑗=1
𝐾
𝑘=1 )(∑ ∑ 𝐸[𝒛𝑘𝑗𝒛𝑘𝑗

𝑇 ]𝐽
𝑗=1

𝐾
𝑘=1 )

−1
 (5.62) 

 𝚺 =
1

𝐾𝐽
∑ ∑ diag {(𝒙𝑘𝑗 − 𝝁)(𝒙𝑘𝑗 − 𝝁)

𝑇
− 𝑽𝐸[𝒛𝑘𝑗](𝒙𝑘𝑗 − 𝝁)

𝑇
}

𝐽
𝑗=1

𝐾
𝑘=1  (5.63) 

The EM algorithm for the original formulation is summarized in Algorithm 5.4, where 𝑁 is the total 

number of EM iterations, and the superscript 𝑛 indicates the number of EM iterations having been 

performed. The mean parameter 𝝁 is the mean of all the training vectors and needs to be computed for 

only once. The factor-loading matrices 𝑭 and 𝑮, and the noise covariance 𝚺, are initialized to have all 

ones on the principal diagonal and all zeros on other positions. 



76 

 

5.5.2.2    Class Label Prediction 

Given a set of training vectors denoted as {𝒙11, 𝒙12 …𝒙1𝐽, 𝒙21, 𝒙22 …𝒙2𝐽 ……𝒙𝐾1, 𝒙𝐾2 …𝒙𝐾𝐽}, and a 

testing vector 𝒚 . If 𝒚  indeed belongs to class 𝑘 , then 𝒚  and {𝒙𝑘1, 𝒙𝑘2 …𝒙𝑘𝐽}  should be jointly 

distributed, while 𝒚 and the other training vectors should be independently distributed [98][99]. This 

yields the expression of the joint probability of 𝒚 and all the training vectors as given by (5.64), where 

𝑿𝑘 represents all the training vectors in class 𝑘. 

 𝑝(𝒚, 𝑿1, …𝑿𝑘−1, 𝑿𝑘, 𝑿𝑘+1, …𝑿𝐾) = 𝑝(𝒚, 𝑿𝑘)∏ 𝑝(𝑿𝑖)
𝐾
𝑖=1,𝑖≠𝑘 = 𝑝(𝒚|𝑿𝑘)∏ 𝑝(𝑿𝑖)

𝐾
𝑖=1  (5.64) 

Algorithm 5.4 EM algorithm for the original formulation of PLDA 

1: Initialization: 𝜃(0) = {𝝁, 𝑭(0), 𝑮(0), 𝚺(0)} 

2: Compute mean: 𝝁 =
1

𝐾𝐽
∑ ∑ 𝒙𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1
 

3: For 𝑛 = 1 to 𝑁 

4:  

E-step: 

Form {𝑼,𝑹,𝚿} from {𝝁, 𝑭(𝑛−1), 𝑮(𝑛−1), 𝚺(𝑛−1)} 

5:  𝐸(𝑛)[𝒀𝑘] = (𝑰 + 𝑹𝑇𝚿−1𝑹)−1𝑹𝑇𝚿−1(𝑿𝑘 − 𝑼) 

6:  𝐸(𝑛)[𝒀𝑘𝒀𝑘
𝑇] = (𝑰 + 𝑹𝑇𝚿−1𝑹)−1 + 𝐸(𝑛)[𝒀𝑘]𝐸(𝑛)[𝒀𝑘]𝑇 

7:  Obtain 𝐸(𝑛)[𝒛𝑘𝑗] and 𝐸(𝑛)[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ] from 𝐸(𝑛)[𝒀𝑘] and 𝐸(𝑛)[𝒀𝑘𝒀𝑘

𝑇] 

8:  

M-step: 

𝑽(𝑛) = (∑ ∑(𝒙𝑘𝑗 − 𝝁)𝐸(𝑛)[𝒛𝑘𝑗]
𝑇

𝐽

𝑗=1

𝐾

𝑘=1

)(∑ ∑𝐸(𝑛)[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ]

𝐽

𝑗=1

𝐾

𝑘=1

)

−1

 

9:  

𝚺(𝑛) = 

1

𝐾𝐽
∑ ∑diag {(𝒙𝑘𝑗 − 𝝁)(𝒙𝑘𝑗 − 𝝁)

𝑇
− 𝑽(𝑛)𝐸(𝑛)[𝒛𝑘𝑗](𝒙𝑘𝑗 − 𝝁)

𝑇
}

𝐽

𝑗=1

𝐾

𝑘=1

 

10:  [𝑭(𝑛) 𝑮(𝑛)] = 𝑽(𝑛) 

11:  Update 𝜃: 𝜃(𝑛) = {𝝁, 𝑭(𝑛), 𝑮(𝑛), 𝚺(𝑛)} 

12: End 
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The class label of 𝒚  can then be determined by finding the class that provides the highest joint 

probability given by (5.64), which is equivalent to finding the conditional probability 𝑝(𝒚|𝑿𝑘) 

concerning all the training vectors in class 𝑘. The prediction criterion is then given by (5.65), where 

ℓ(𝒚) represents the predicted label and ℓ(𝒚) ∈ {1,2…𝐾}. 

 ℓ(𝒚) = argmax
𝑘

𝑝(𝒚|𝑿𝑘)∏ 𝑝(𝑿𝑖)
𝐾
𝑖=1 = argmax

𝑘
𝑝(𝒚|𝑿𝑘) (5.65) 

The conditional probability 𝑝(𝒚|𝑿𝑘) can be derived from the joint probability 𝑝(𝒚, 𝑿𝑘), since both 𝒚 

and 𝑿𝑘 follow the Gaussian distribution. The joint probability of 𝒚 and 𝑿𝑘 can be obtained in a similar 

way to (5.56), which is a Gaussian distribution as given by (5.66), where �̃�, �̃� and �̃� are augmented 

matrices as given by (5.67). 

 𝑝(𝒚, 𝒙𝑘1, 𝒙𝑘2 …𝒙𝑘𝐽) = 𝑝(𝒚, 𝑿𝑘) = 𝑝(𝑿𝑘, 𝒚) = 𝑝𝑔 ([
𝑿𝑘

𝒚
]| �̃�, �̃��̃�𝑇 + �̃�) (5.66) 

where 

 �̃� = [
𝑼
𝝁
] , �̃� = [

[ 𝑹 ]
𝟎
⋮
𝟎

𝑭 𝟎 ⋯ 𝟎 𝑮

] , �̃� = [
𝚿 𝟎
𝟎 𝚺

] (5.67) 

To ease the processing, we may partition the joint mean �̃�  and the joint covariance (�̃��̃�𝑇 + �̃�) 

according to (5.68), where 𝚿𝑦𝑦, 𝚿𝑦𝑋, 𝚿𝑋𝑦 and 𝚿𝑋𝑋 are matrix blocks given by (5.69). 

 �̃� = [
𝝁
𝑼

] , �̃��̃�𝑇 + �̃� = [
𝚿𝑦𝑦 𝚿𝑦𝑋

𝚿𝑋𝑦 𝚿𝑋𝑋
] (5.68) 

where 

 

𝚿𝑦𝑦 = 𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺

𝚿𝑦𝑋 = [𝑭𝑭𝑇 𝑭𝑭𝑇 ⋯ 𝑭𝑭𝑇]

𝚿𝑋𝑦 = [𝑭𝑭𝑇 𝑭𝑭𝑇 ⋯ 𝑭𝑭𝑇]𝑇

𝚿𝑋𝑋 =

[
 
 
 
 
𝚿𝑦𝑦 𝑭𝑭𝑇 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇 𝚿𝑦𝑦 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇

⋮
𝑭𝑭𝑇

⋮

𝚿𝑦𝑦 ⋯

⋮ ⋱ ]
 
 
 
 

 (5.69) 
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Using the partitioned matrices given by (5.68), the conditional probability 𝑝(𝒚|𝑿𝑘) can be expressed 

as (5.70), which is a Gaussian distribution with mean 𝝁𝑦|𝑘 and covariance 𝚿𝑦|𝑘 given by (5.71) and 

(5.72) respectively [100]. 

 𝑝(𝒚|𝑿𝑘) = 𝑝𝑔(𝒚|𝝁𝑦|𝑘 ,𝚿𝑦|𝑘) (5.70) 

where 

  𝝁𝑦|𝑘 = 𝝁 + 𝚿𝑦𝑋𝚿𝑋𝑋
−1(𝑿𝑘 − 𝑼) (5.71) 

 𝚿𝑦|𝑘 = 𝚿𝑦𝑦 − 𝚿𝑦𝑋𝚿𝑋𝑋
−1𝚿𝑋𝑦 (5.72) 

Having the conditional probability for each class, the class label of 𝒚 can then be determined by finding 

the largest conditional probability as given by (5.73). 

 ℓ(𝒚) = argmax
𝑘

𝑝(𝒚|𝑿𝑘) = argmax
𝑘

𝑝𝑔(𝒚|𝝁𝑦|𝑘 ,𝚿𝑦|𝑘) (5.73) 

5.5.3    Scalable Formulation 

5.5.3.1    Parameter Estimation 

As can be seen from (5.57) and (5.58), the E-step requires computing the inverse of (𝑰 + 𝑹𝑇𝚿−1𝑹). 

Suppose the sizes of factor-loading matrices 𝑭 and 𝑮 are both 𝐷 × 𝐻 , and the number of training 

vectors in each class is 𝐽, then the size of (𝑰 + 𝑹𝑇𝚿−1𝑹) will be (𝐽 + 1)𝐻 × (𝐽 + 1)𝐻. This means that 

the size of (𝑰 + 𝑹𝑇𝚿−1𝑹) is proportional to the number of training vectors. When the number of 

training vectors in each class is too large, the computation of the E-step is inefficient, or even infeasible 

if memory is not enough. 

Facing this scalability issue, a scalable formulation for the E-step is proposed in [78], which partitions 

the large matrix (𝑰 + 𝑹𝑇𝚿−1𝑹) into matrix blocks. Then, the technique of block matrix inversion [100] 

is applied. The E-step then becomes (5.74) and (5.75), while the M-step is kept unchanged. The EM 

algorithm for this scalable formulation is summarized in Algorithm 5.5. 
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 𝐸[𝒛𝑘𝑗] = [
𝐸[𝒉𝑘]
𝐸[𝒘𝑘𝑗]

] = [
𝑴(𝑭𝑇 − 𝚲𝑇𝑮𝑇)𝚺−1 ∑ (𝒙𝑘𝑗 − 𝝁)𝐽

𝑗=1

𝑳−1𝑮𝑇𝚺−1(𝒙𝑘𝑗 − 𝝁) − 𝚲𝐸[𝒉𝑘]
] (5.74) 

 𝐸[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ] = [ 𝑴 −𝑴𝚲𝑇

−𝚲𝑴 𝑳−1 + 𝚲𝑴𝚲𝑇] + 𝐸[𝒛𝑘𝑗]𝐸[𝒛𝑘𝑗]
𝑇
 (5.75) 

where 

Algorithm 5.5 EM algorithm for the scalable formulation of PLDA 

1: Initialization: 𝜃(0) = {𝝁, 𝑭(0), 𝑮(0), 𝚺(0)} 

2: Compute mean: 𝝁 =
1

𝐾𝐽
∑ ∑ 𝒙𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1
 

3: For 𝑛 = 1 to 𝑁 

4:  

E-step: 

Set {𝑭,𝑮, 𝚺} = {𝑭(𝑛−1), 𝑮(𝑛−1), 𝚺(𝑛−1)} 

5:  Compute {𝑳, 𝚲,𝑴} using {𝑭,𝑮, 𝚺} 

6:  𝐸(𝑛)[𝒉𝑘] = 𝑴(𝑭𝑇 − 𝚲𝑇𝑮𝑇)𝚺−1 ∑ (𝒙𝑘𝑗 − 𝝁)
𝐽

𝑗=1
 

7:  𝐸(𝑛)[𝒘𝑘𝑗] = 𝑳−1𝑮𝑇𝚺−1(𝒙𝑘𝑗 − 𝝁) − 𝚲𝐸(𝑛)[𝒉𝑘] 

8:  𝐸(𝑛)[𝒛𝑘𝑗] = [
𝐸(𝑛)[𝒉𝑘]

𝐸(𝑛)[𝒘𝑘𝑗]
] 

9:  𝐸(𝑛)[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ] = [ 𝑴 −𝑴𝚲𝑇

−𝚲𝑴 𝑳−1 + 𝚲𝑴𝚲𝑇] + 𝐸(𝑛)[𝒛𝑘𝑗]𝐸
(𝑛)[𝒛𝑘𝑗]

𝑇
 

10:  

M-step: 

𝑽(𝑛) = (∑ ∑(𝒙𝑘𝑗 − 𝝁)𝐸(𝑛)[𝒛𝑘𝑗]
𝑇

𝐽

𝑗=1

𝐾

𝑘=1

)(∑ ∑𝐸(𝑛)[𝒛𝑘𝑗𝒛𝑘𝑗
𝑇 ]

𝐽

𝑗=1

𝐾

𝑘=1

)

−1

 

11:  

𝚺(𝑛) = 

1

𝐾𝐽
∑ ∑diag {(𝒙𝑘𝑗 − 𝝁)(𝒙𝑘𝑗 − 𝝁)

𝑇
− 𝑽(𝑛)𝐸(𝑛)[𝒛𝑘𝑗](𝒙𝑘𝑗 − 𝝁)

𝑇
}

𝐽

𝑗=1

𝐾

𝑘=1

 

12:  [𝑭(𝑛) 𝑮(𝑛)] = 𝑽(𝑛) 

13:  Update 𝜃: 𝜃(𝑛) = {𝝁, 𝑭(𝑛), 𝑮(𝑛), 𝚺(𝑛)} 

14: End 
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𝑳 = 𝑰 + 𝑮𝑇𝚺−1𝑮
𝚲 = 𝑳−1𝑮𝑇𝚺−1𝑭

𝑴 = (𝑰 + 𝐽𝑭𝑇𝚺−1(𝑭 − 𝑮𝚲))−1
 (5.76) 

5.5.3.2    Class Label Prediction 

As can be seen from (5.71) and (5.72), the mean and the covariance of the conditional probability 

require computing the inverse of 𝚿𝑋𝑋. Suppose the sizes of 𝑭 and 𝑮 are both 𝐷 × 𝐻, and the number 

of training vectors in each class is 𝐽, then the size of 𝚿𝑋𝑋 will be 𝐽𝐷 × 𝐽𝐷. This means that the size of 

𝚿𝑋𝑋 is proportional to the number of training vectors, and the computation is inefficient if the number 

of training vectors in each class is too large. 

Fortunately, according to (5.69), 𝚿𝑋𝑋 possesses a symmetric structure, implying that its inverse should 

also possess a similar structure as given by (5.77), where 𝑷(𝐽)  and 𝑸(𝐽)  are matrix blocks, and the 

superscript 𝐽 indicates the number of training vectors in class 𝑘. 

 𝚿𝑋𝑋
−1 =

[
 
 
 
 
𝚿𝑦𝑦 𝑭𝑭𝑇 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇 𝚿𝑦𝑦 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇

⋮
𝑭𝑭𝑇

⋮

𝚿𝑦𝑦 ⋯

⋮ ⋱ ]
 
 
 
 
−1

=

[
 
 
 
𝑷(𝐽) 𝑸(𝐽) 𝑸(𝐽) ⋯

𝑸(𝐽) 𝑷(𝐽) 𝑸(𝐽) ⋯

𝑸(𝐽)

⋮
𝑸(𝐽)

⋮
𝑷(𝐽) ⋯
⋮ ⋱ ]

 
 
 

 (5.77) 

It can be seen that 𝑷(𝐽) and 𝑸(𝐽) should satisfy the equation given by (5.78). 

 

[
 
 
 
 
𝚿𝑦𝑦 𝑭𝑭𝑇 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇 𝚿𝑦𝑦 𝑭𝑭𝑇 ⋯

𝑭𝑭𝑇

⋮
𝑭𝑭𝑇

⋮

𝚿𝑦𝑦 ⋯

⋮ ⋱ ]
 
 
 
 

[
 
 
 
𝑷(𝐽) 𝑸(𝐽) 𝑸(𝐽) ⋯

𝑸(𝐽) 𝑷(𝐽) 𝑸(𝐽) ⋯

𝑸(𝐽)

⋮
𝑸(𝐽)

⋮
𝑷(𝐽) ⋯
⋮ ⋱ ]

 
 
 

= [

𝑰 𝟎 𝟎 ⋯
𝟎 𝑰 𝟎 ⋯
𝟎
⋮

𝟎
⋮

𝑰 ⋯
⋮ ⋱

] (5.78) 

By equating the results on both sides of (5.78), we obtain the linear equations 

 
𝚿𝑦𝑦𝑷(𝐽) + (𝐽 − 1)𝑭𝑭𝑇𝑸(𝐽) = 𝑰

𝚿𝑦𝑦𝑸(𝐽) + 𝑭𝑭𝑇𝑷(𝐽) + (𝐽 − 2)𝑭𝑭𝑇𝑸(𝐽) = 𝟎
 (5.79) 

By substituting 𝚿𝑦𝑦 with (𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺), (5.79) becomes 

 
(𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺)𝑷(𝐽) + (𝐽 − 1)𝑭𝑭𝑇𝑸(𝐽) = 𝑰

(𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺)𝑸(𝐽) + 𝑭𝑭𝑇𝑷(𝐽) + (𝐽 − 2)𝑭𝑭𝑇𝑸(𝐽) = 𝟎
 (5.80) 



81 

 

Solving (5.80) yields 

 
𝑷(𝐽) = {𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺 − (𝐽 − 1)𝑭𝑭𝑇(𝑮𝑮𝑇 + 𝚺 + (𝐽 − 1)𝑭𝑭𝑇)−1𝑭𝑭𝑇}−1

𝑸(𝐽) = −{𝑮𝑮𝑇 + 𝚺 + (𝐽 − 1)𝑭𝑭𝑇}−1𝑭𝑭𝑇𝑷(𝐽)
 (5.81) 

Having obtained the expressions of 𝑷(𝐽) and 𝑸(𝐽), the inverse of 𝚿𝑋𝑋 can then be expressed in terms of 

𝑷(𝐽) and 𝑸(𝐽). Consequently, the mean 𝝁𝑦|𝑘 and the covariance 𝚿𝑦|𝑘 used in the conditional probability 

given by (5.70) can be expressed in terms of 𝑷(𝐽) and 𝑸(𝐽) as given by (5.82) and (5.83) respectively. 

The conditional probability 𝑝(𝒚|𝑿𝑘) can then be calculated efficiently. 

  𝝁𝑦|𝑘 = 𝝁 + 𝚿𝑦𝑋𝚿𝑋𝑋
−1(𝑿𝑘 − 𝑼) = 𝝁 + (𝑭𝑭𝑇𝑷(𝐽) + (𝐽 − 1)𝑭𝑭𝑇𝑸(𝐽))∑ (𝒙𝑘𝑗 − 𝝁)𝐽

𝑗=1  (5.82) 

 𝚿𝑦|𝑘 = 𝚿𝑦𝑦 − 𝚿𝑦𝑋𝚿𝑋𝑋
−1𝚿𝑋𝑦 = (𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺) − 𝐽(𝑭𝑭𝑇𝑷(𝐽) + (𝐽 − 1)𝑭𝑭𝑇𝑸(𝐽))𝑭𝑭𝑇 

  (5.83) 

5.5.4    Computational Complexity 

5.5.4.1    Parameter Estimation 

On using the EM algorithm for parameter estimation, most of the computation time will be consumed 

by the E-step. We also assume that the time consumption of the E-step can be approximated by the time 

consumption of calculating the posterior expected mean of the latent vector, as the computation of the 

posterior expected mean requires more matrix operations than the computation of the posterior expected 

covariance. Suppose the inversion of a matrix with a size of 𝐴 × 𝐴 has a time complexity of 𝑂(𝐴3), the 

multiplication of matrices with sizes 𝐴 × 𝐵 and 𝐵 × 𝐶 has a time complexity of 𝑂(𝐴𝐵𝐶). Suppose the 

sizes of factor-loading matrices 𝑭 and 𝑮 are both 𝐷 × 𝐻, and the number of training vectors in each 

class is 𝐽. Let 𝐻 = 𝛾𝐷, where 𝛾 is a positive number. 

In the original formulation, as given by (5.57), the matrices involved in computing 𝐸[𝒀𝑘] , i.e., 

(𝑰 + 𝑹𝑇𝚿−1𝑹), 𝑹, 𝚿 and (𝑿𝑘 − 𝑼), have sizes of (𝐽 + 1)𝐻 × (𝐽 + 1)𝐻 , 𝐽𝐷 × (𝐽 + 1)𝐻 , 𝐽𝐷 × 𝐽𝐷 

and 𝐽𝐷 × 1  respectively. Suppose (𝑰 + 𝑹𝑇𝚿−1𝑹)  and 𝚿−1  have been pre-computed, the time 
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complexity of the model parameter estimation process can then be approximated by (5.84), where we 

neglect lower-order terms and assume 𝐽 > 1 and 𝛾 < 𝐷. 

 𝑡𝑚𝑜𝑑𝑒𝑙 ≈ 𝐾 × (𝑂 (((𝐽 + 1)𝐻)
3
) + 𝑂((𝐽 + 1)𝐻 × (𝐽 + 1)𝐻 × 𝐽𝐷 × 𝐽𝐷 × 1)) 

 = 𝐾 × (𝑂((𝐽 + 1)3𝐻3) + 𝑂((𝐽 + 1)2𝐽2𝐻2𝐷2)) = 𝐾 × (𝑂((𝐽 + 1)3𝛾3𝐷3) + 𝑂((𝐽 + 1)2𝐽2𝛾2𝐷4)) 

 = 𝑂(𝐾𝐽4𝛾2𝐷4)  (5.84) 

In the scalable formulation, as given by (5.74), the matrices involved in computing 𝐸[𝒛𝑘𝑗], i.e., 𝑭, 𝑮, 

𝚺, 𝑳, 𝚲, 𝑴, (𝒙𝑘𝑗 − 𝝁) and 𝐸[𝒉𝑘], have sizes of 𝐷 × 𝐻, 𝐷 × 𝐻, 𝐷 × 𝐷, 𝐻 × 𝐻, 𝐻 × 𝐻, 𝐻 × 𝐻, 𝐷 × 1 

and 𝐻 × 1 respectively. Suppose 𝚺−1 has been pre-computed, and the computational complexity of 

𝐸[𝒛𝑘𝑗] can be approximated by that of 𝐸[𝒘𝑘𝑗] (because the computational complexity of 𝐸[𝒘𝑘𝑗] and 

𝐸[𝒉𝑘]  is similar). The time complexity of the model parameter estimation process can then be 

approximated by (5.85), where we neglect lower-order terms and assume 𝛾 < 𝐷. 

               𝑡𝑚𝑜𝑑𝑒𝑙
′ ≈ 𝐾𝐽 × (𝑂(𝐻3) + 𝑂(𝐻 × 𝐻 × 𝐷 × 𝐷 × 1) + 𝑂(𝐻 × 𝐻 × 1)) 

               = 𝐾𝐽 × (𝑂(𝐻3) + 𝑂(𝐻2𝐷2) + 𝑂(𝐻2)) = 𝐾𝐽 × (𝑂(𝛾3𝐷3) + 𝑂(𝛾2𝐷4) + 𝑂(𝛾2𝐷2)) 

               = 𝑂(𝐾𝐽𝛾2𝐷4)  (5.85) 

By comparing (5.84) and (5.85), it can be seen that if 𝐽 is very large, namely, the number of training 

data is large, using the scalable formulation will be much more efficient than using the original 

formulation to estimate the model parameters. 

5.5.4.2    Class Label Prediction 

When using the conditional probability to predict class labels, as given by (5.70), most of the 

computation time is spent in computing the conditional mean 𝝁𝑦|𝑘 and the conditional covariance 𝚿𝑦|𝑘. 

Since the computational complexity of 𝝁𝑦|𝑘 and 𝚿𝑦|𝑘 is similar, the time complexity of the class label 

prediction process can be approximated by the time complexity of computing 𝚿𝑦|𝑘. 
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In the original formulation, as given by (5.72), the matrices involved in computation, i.e., 𝚿𝑦𝑦, 𝚿𝑦𝑋, 

𝚿𝑋𝑋  and 𝚿𝑋𝑦 , have sizes of 𝐷 × 𝐷, 𝐷 × 𝐽𝐷, 𝐽𝐷 × 𝐽𝐷 and 𝐽𝐷 × 𝐷 respectively. Suppose 𝑭𝑭𝑇 , 𝑮𝑮𝑇 , 

(𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺) and 𝚿XX
−1 have been pre-computed, the time complexity of the prediction process can 

then be approximated by (5.86). 

 𝑡𝑝𝑟𝑒𝑑 ≈ 𝑂(𝐷 × 𝐽𝐷 × 𝐽𝐷 × 𝐷) = 𝑂(𝐽2𝐷4) (5.86) 

In the scalable formulation, as given by (5.83), the matrices involved in computation, i.e., 𝑭, 𝑮, 𝚺, 𝑷(𝐽) 

and 𝑸(𝐽), have sizes of 𝐷 × 𝐻, 𝐷 × 𝐻, 𝐷 × 𝐷, 𝐷 × 𝐷 and 𝐷 × 𝐷 respectively. Suppose 𝑭𝑭𝑇, 𝑮𝑮𝑇 and 

(𝑭𝑭𝑇 + 𝑮𝑮𝑇 + 𝚺) have been pre-computed, the time complexity of the prediction process can then be 

approximated by (5.87). 

 𝑡𝑝𝑟𝑒𝑑
′ ≈ 𝑂(𝐷 × 𝐷 × 𝐷 × 𝐷) = 𝑂(𝐷4) (5.87) 

By comparing (5.86) and (5.87), it can be seen that the time complexity of the prediction process when 

using the scalable formulation is independent of the number of training data. This characteristic makes 

the scalable formulation able to handle a large number of data. 

5.6    Dictionary-based Representations and Classifiers 

This section introduces two dictionary-based representations, i.e., the sparse representation (SR) and 

the collaborative representation (CR). The two representations have similar objective functions and 

similar performance in face recognition, but CR is computationally more efficient than SR [69]. In order 

to further improve the discrimination ability of CR for doing classification tasks, we propose a 

discriminative CR (DCR) which carries the class information. The minimum residual-based classifier 

(MRC) is also described, which is used for classifying dictionary-based representations. 

5.6.1    Sparse Representation 

Suppose we have a dictionary denoted as 𝑩, which is a matrix consisting of a set of basis vectors as 

given by (5.88), where 𝒃𝑛 is the 𝑛-th basis vector. If the dimensionality of a basis vector is 𝐷 × 1, the 

size of the dictionary 𝑩 will then be 𝐷 × 𝑁. 
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 𝑩 = [𝒃1 𝒃2 ⋯ 𝒃𝑁] (5.88) 

From the perspective of the sparse representation (SR), a feature vector 𝒙 is approximated as a linear 

combination of the basis vectors in the dictionary with some constraints. Specifically, given a feature 

vector 𝒙, its corresponding SR, denoted as 𝑿𝑆𝑅, is given by (5.89), where 𝒚 is the coefficient vector 

aiming to reconstruct 𝒙 [60]. 

 𝑿𝑆𝑅 = argmin
𝒚

‖𝒚‖0     𝑠. 𝑡.   𝒙 = 𝑩𝒚 (5.89) 

Since the optimization problem given by (5.89) involves the L0-norm constraint, which is difficult to 

solve, researchers approximate the solution by solving an alternative problem with the L1-norm 

constraint, as given by (5.90). It can be shown that, under the condition that the solution is sparse enough, 

the solution to (5.89) is equal to the solution to (5.90) [60]. 

 𝑿𝑆𝑅 = argmin
𝒚

‖𝒚‖1     𝑠. 𝑡.   𝒙 = 𝑩𝒚 (5.90) 

When the feature vector or the basis vectors are noisy, it may not be suitable to exactly reconstruct the 

feature vector using the basis vectors. In this case, a relaxed version can be adopted to compute the SR 

as given by (5.91), where 𝜆 is a pre-defined regularization parameter. Equation (5.91) is referred to as 

the unconstrained basis pursuit denoising (BPDN) problem [101]. 

 𝑿𝑆𝑅 = argmin
𝒚

1

2
‖𝒙 − 𝑩𝒚‖2

2 + 𝜆‖𝒚‖1 (5.91) 

5.6.2    Collaborative Representation 

Since the L1-norm constraint is involved in the formulation of SR, no analytical solution for finding 

𝑿𝑆𝑅 exists. Nevertheless, there are many algorithms that can solve it efficiently, such as the matching 

pursuit algorithm and the basis pursuit algorithm [61], and some fast algorithms such as the Homotopy 

method and the augmented Lagrangian method [101]. However, as shown in [109], the sparseness may 

not be the key to the success of SR, as increasing the sparseness does not yield performance 

improvement for image classification tasks. In addition, using the L2-norm constraint can even be more 

robust than using the L1-norm constraint, although the latter yields a sparser representation [110]. 



85 

 

Therefore, in [69], the L1-norm constraint is replaced by the L2-norm constraint, yielding the 

collaborative representation (CR). Given a feature vector 𝒙, its corresponding CR, denoted as 𝑿𝐶𝑅, is 

computed as 

 𝑿𝐶𝑅 = argmin
𝒚

‖𝒙 − 𝑩𝒚‖2
2 + 𝜆‖𝒚‖2

2 (5.92) 

As shown in [69], for face recognition tasks, CR gives similar performance to SR, but is more efficient 

in computation as an analytical solution exists, which is given by 

 𝑿𝐶𝑅 = (𝑩𝑇𝑩 + 𝜆𝑰)−1𝑩𝑇𝒙 (5.93) 

5.6.3    Discriminative Collaborative Representation 

Essentially, SR and CR are unsupervised representations, as the dictionary usually carries no class 

information. However, when used for doing pattern recognition tasks, the dictionary is usually 

composed of the training data, which then carries the class information. The dictionary 𝑩 can then be 

expressed as (5.94), where 𝐾  denotes the total number of classes, and 𝑩(𝑘)  denotes the 𝑘 -th sub 

dictionary. Suppose the basis vectors in the dictionary are just the training vectors, if the dimensionality 

of a training vector is 𝐷 × 1 and there are 𝑁𝑘  training vectors for class 𝑘, then the size of 𝑩(𝑘)  is 

𝐷 × 𝑁𝑘. 

 𝑩 = [𝑩(1) 𝑩(2) ⋯ 𝑩(𝐾)] (5.94) 

Obviously, we have the relationships as given by (5.95), where 𝒚(𝑘) denotes the 𝑘-th sub coefficient 

vector that corresponds to the 𝑘-th sub dictionary, and 𝑁 is the total number of training vectors. The 

dimensionality of 𝒚 and 𝒚(𝑘) is 𝑁 × 1 and 𝑁𝑘 × 1 respectively. 

 
𝑁 = ∑ 𝑁𝑘

𝐾
𝑘=1

𝑩𝒚 = ∑ 𝑩(𝑘)𝒚(𝑘)𝐾
𝑘=1

 (5.95) 

In the formulation of 𝑿𝐶𝑅, the class information is embedded through the L2-norm constraint. This 

sparsity constraint tries to minimize the norm of the coefficient vector 𝒚, expecting that the coefficients 

corresponding to the target class will be more dominant than those corresponding to the non-target class. 
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In order to explicitly embed the class information into CR, as inspired by [102], we adopt the objective 

function 𝑄(𝒚) as given by (5.96), where we introduce an extra regularization term into the original 

objective function of CR, with 𝜂 being the corresponding regularization parameter. 𝜆 tends to regularize 

the coefficient vector to be sparse, whereas 𝜂 tends to regularize the coefficient vector to be dense. 

These two regularization terms are actually confronting each other, but finding a balance between them 

may improve the quality of the representation. 

 𝑄(𝒚) = ‖𝒙 − 𝑩𝒚‖2
2 + 𝜆‖𝒚‖2

2 + 𝜂 ∑ ‖𝑩(𝑘)𝒚(𝑘) −
1

𝐾
∑ 𝑩(𝑖)𝒚(𝑖)𝐾

𝑖=1 ‖
2

2
𝐾
𝑘=1  (5.96) 

The discriminative collaborative representation (DCR) is then given by 

 𝑿𝐷𝐶𝑅 = argmin
𝒚

𝑄(𝒚) (5.97) 

Similar to CR, an analytical solution also exists for DCR, which can be obtained by setting the derivative 

of 𝑄(𝒚)  to zero. To compute the derivative of 𝑄(𝒚)  with respect to 𝒚 , we first reformulate the 

expression of 𝑄(𝒚) as 

           𝑄(𝒚) = (𝒙 − 𝑩𝒚)𝑇(𝒙 − 𝑩𝒚) + 𝜆𝒚𝑇𝒚 + 𝜂 ∑ (𝑩(𝑘)𝒚(𝑘) −
1

𝐾
𝑩𝒚)

𝑇
(𝑩(𝑘)𝒚(𝑘) −

1

𝐾
𝑩𝒚)𝐾

𝑘=1   

           = 𝒙𝑇𝒙 + 𝒚𝑇𝑩𝑇𝑩𝒚 − 2𝒙𝑇𝑩𝒚 + 𝜆𝒚𝑇𝒚 + 𝜂 ∑ 𝒚(𝑘)𝑇𝑩(𝑘)𝑇𝑩(𝑘)𝒚(𝑘)𝐾
𝑘=1 + 𝜂 ∑

1

𝐾2 𝒚𝑇𝑩𝑇𝑩𝒚𝐾
𝑘=1   

               −2𝜂 ∑
1

𝐾
𝒚𝑇𝑩𝑇𝑩(𝑘)𝒚(𝑘)𝐾

𝑘=1  

           = 𝒙𝑇𝒙 − 2𝒙𝑇𝑩𝒚 + 𝜆𝒚𝑇𝒚 + (1 −
𝜂

𝐾
)𝒚𝑇𝑩𝑇𝑩𝒚 + 𝜂 ∑ 𝒚(𝑘)𝑇𝑩(𝑘)𝑇𝑩(𝑘)𝒚(𝑘)𝐾

𝑘=1  (5.98) 

Define a diagonal block matrix 𝑳 as 

 𝑳 = [

𝑩(1)𝑇𝑩(1)

𝟎
⋮
𝟎

𝟎

𝑩(2)𝑇𝑩(2)

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝑩(𝐾)𝑇𝑩(𝐾)

] (5.99) 

Then we have 

 𝑄(𝒚) = 𝒙𝑇𝒙 − 2𝒙𝑇𝑩𝒚 + 𝜆𝒚𝑇𝒚 + (1 −
𝜂

𝐾
)𝒚𝑇𝑩𝑇𝑩𝒚 + 𝜂𝒚𝑇𝑳𝒚 (5.100) 
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The derivative of 𝑄(𝒚) with respect to 𝒚 is 

 
𝜕𝑄(𝒚)

𝜕𝒚
= −2𝑩𝑇𝒙 + 2𝜆𝒚 + (2 −

2𝜂

𝐾
)𝑩𝑇𝑩𝒚 + 2𝜂𝑳𝒚 (5.101) 

Setting the derivative to zero yields the optimal value of 𝒚, which is 𝑿𝐷𝐶𝑅 as given by (5.102). We can 

see that DCR is the generalization of CR, and the former becomes the latter when 𝜂 = 0. 

 𝑿𝐷𝐶𝑅 = (𝜆𝑰 +
𝐾−𝜂

𝐾
𝑩𝑇𝑩 + 𝜂𝑳)−1𝑩𝑇𝒙 (5.102) 

5.6.4    Minimum Residual-based Classifier 

After obtaining the SR, CR or DCR corresponding to the feature vector 𝒙, the next step is to perform 

classification. Both the SR-based classifier (SRC) [60] and the CR-based classifier (CRC) [69] can be 

treated as a minimum residual-based classifier (MRC), which carries out classification based on the 

reconstruction errors when using different sub dictionaries to approximate the original feature vector. 

The residual with respect to the 𝑘-th sub dictionary, denoted as 𝑟𝑘 , is given by (5.103), where 𝑿𝑅 

represents SR, CR or DCR, and 𝑿𝑅
(𝑘)

 is the sub coefficient vector in 𝑿𝑅 that corresponds to the basis 

vectors of the 𝑘-th sub dictionary. 

 𝑟𝑘 = ‖𝒙 − 𝑩(𝑘)𝑿𝑅
(𝑘)

‖
2

2
 (5.103) 

The predicted label ℓ(𝒙) is then the index of the class with the minimum residual as given by 

 ℓ(𝒙) = argmin
𝑘

𝑟𝑘 (5.104) 

5.7    Comparison of SVM, PLDA and MRC 

SVM is a discriminative classification model, which draws hyperplanes in the feature space to separate 

feature vectors into different classes. This means that it requires the feature vectors to be spatially 

separable. If there are overlaps between feature vectors belonging to different classes, SVM will 

probably fail. The separability of the feature vectors also implicitly assumes a high dimensionality of 

the feature vectors, as high-dimensional feature vectors have a higher chance to be separable. 
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PLDA is a probabilistic model, which describes the distribution of the feature vectors using a latent 

variable model. It assumes that the feature vectors are generated by latent variables following a standard 

Gaussian distribution, and thus should be able to be decomposed into low-dimensional latent vectors. 

The latent variable model also requires the feature vectors to be highly structured, such that the 

decomposition is plausible. Nevertheless, feature vectors belonging to different classes can be 

overlapped, as PLDA does classification based on the probabilities of belonging to different classes, 

instead of the spatial locations. 

MRC is a dictionary-based classifier, which assumes that the feature vector can be decomposed as a 

linear combination of the basis vectors in the dictionary. This assumption requires a set of high-quality 

basis vectors. It also implicitly assumes a high dimensionality of the feature vectors, so as to 

successfully perform the decomposition. Similar to PLDA, MRC does not require the feature vectors to 

be separable. 
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Chapter 6    Classifiers: Experimental Comparison 

 

6.1    GMM vs. RBM 

This section compares the performance of GMM and RBM in an acoustic scene classification task using 

the DCASE2013 dataset. Each acoustic sample is transformed into a sequence of 20-dimensional 

MFCC vectors or 40-dimensional logmel vectors (logmel is simply MFCC without DCT) using the 

Hamming window with 40ms frame length and 20ms frame shift. As each acoustic sample is 

corresponding to a sequence of feature vectors (i.e., MFCC vectors or logmel vectors), the classifier 

will produce a sequence of predicted labels correspondingly. We then adopt the first majority voting 

(MV) strategy as given by (1.2), which is the simplest strategy generally applicable, and the fourth MV 

strategy as given by (1.5), which applies to probabilistic models such as GMM and RBM. Regarding 

RBM, the dimensionality of the feature vector should be high, which is not satisfied by the low-

dimensional MFCC vector or logmel vector. Therefore, we adopt the neighboring feature concatenation 

strategy as illustrated in (6.1), where {𝒙1, 𝒙2, 𝒙3 …} is the sequence of MFCC vectors or logmel vectors 

obtained from an acoustic sample 𝑠, {𝒛1, 𝒛2, 𝒛3 …} is the sequence of concatenated MFCC vectors or 

concatenated logmel vectors that are used to represent the sample 𝑠 for training and testing the classifier, 

𝐿 is the concatenation length, and 𝐻 is the concatenation shift. To reduce the computational burden 

induced by the higher dimensionality and the similarity of consecutive concatenated vectors, we adopt 

𝐻 = 𝐿/2. If the dimensionality of an MFCC vector or a logmel vector is 𝐷 × 1, the dimensionality of 

a concatenated vector will be 𝐷𝐿 × 1. 

 {𝒙1, 𝒙2, 𝒙3 …}     ⟹    {𝒛1, 𝒛2, 𝒛3 …} = {[

𝒙1

𝒙2

⋮
𝒙𝐿

] , [

𝒙1+𝐻

𝒙2+𝐻

⋮
𝒙𝐿+𝐻

] , [

𝒙1+2𝐻

𝒙2+2𝐻

⋮
𝒙𝐿+2𝐻

]…} (6.1) 
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6.1.1    RBM as A Probabilistic Model 

This sub-section evaluates the performance of the heterogenous RBM, which is trained based on 

maximizing the log-likelihood, similar to the training process of GMM. The ability of GMM and RBM 

as a probability estimator can then be compared by observing their classification results. 

The experimental results are shown in Figure 6.1, where Figure 6.1 (a) and (b) illustrate the results of 

using MFCC as the frame-level feature vector, and Figure 6.1 (c) and (d) illustrate the results of using 

logmel as the frame-level feature vector. The horizontal axis indicates the number of Gaussian 

components if the classifier is GMM, or the number of hidden units if the classifier is RBM. As the 

feature vectors have real values, we use GRBM and normalize the feature vectors to have a zero mean 

and unit covariance using the training data. The GRBM is trained for 500 epochs with a learning rate 

of 0.01 and a momentum of 0.9, implemented using the DeepLearnToolbox [93]. The GMM is trained 

 

   (a)      (b) 

 

   (c)      (d) 

Figure 6.1    GMM vs. GRBM for acoustic scene classification. (a) MFCC with the first MV 

strategy. (b) MFCC with the fourth MV strategy. (c) Logmel with the first MV 

strategy. (d) Logmel with the fourth MV strategy. 
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using the EM algorithm together with the mixture splitting strategy II, implemented using Voicebox 

[94]. 

As shown in Figure 6.1, GRBM gives a rather worse performance than GMM, implying that GRBM is 

not good at working as a probabilistic model for acoustic signals. There are three possible reasons that 

may explain the poor performance of using RBM as a probability estimator. First, the energy-based 

model nature of RBM may not well describe the characteristics of acoustic features. Second, in order 

to apply RBM for probability estimation, a concatenated feature vector (e.g., a concatenated MFCC 

vector or a concatenated logmel vector) and its corresponding label vector (which is a one-hot vector) 

are jointly trained as a heterogeneous RBM. Since the feature vector has real values but the label vector 

has binary values, the relationship between different data types may not be well learned by the 

heterogenous RBM. In addition, the relationship between the feature vector and the label vector may 

not be well modeled by the linear transformation as given by (5.31) (the energy function assumes that 

the feature vector and the label vector are linearly related by the weight matrix and the hidden units). 

Third, GMM estimates the probability in an unsupervised manner, while RBM estimates the probability 

in a supervised manner (because the feature vector and the label vector are concatenated as the input of 

RBM). It seems unsupervised probability estimation is better than supervised probability estimation. 

The two MV strategies give very similar performances. Nevertheless, the first MV strategy seems 

slightly better, even though the fourth MV strategy is specially designed for probabilistic models. In 

addition, a higher dimensionality of the feature vector is vital to GRBM, as 𝐿 = 1 gives the worst 

performance when MFCC is used as the frame-level feature vector (Figure 6.1 (a) and (b)) (The larger 

the 𝐿, the higher the dimensionality). On the other hand, the dimensionality of the feature vector should 

not be too high, as 𝐿 = 32 gives the worst performance when logmel is used as the frame-level feature 

vector (Figure 6.1 (c) and (d)). GRBM assumes that the elements in a feature vector are correlated. By 

concatenating neighboring frame-level feature vectors (i.e., increasing 𝐿 ), GRBM learns the 

relationship between adjacent frame-level feature vectors, and thus may provide a better performance. 

By comparing the top two plots with the bottom two plots in Figure 6.1, MFCC seems outperforming 

logmel, no matter employing GMM or GRBM as the classifier. Since the elements in an MFCC vector 
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are decorrelated due to the DCT operation, MFCC fits well to the model assumption of GMM. Since 

the elements in a logmel vector may be correlated, the logmel vector may not follow a multivariate 

Gaussian distribution. This violates not only the model assumption of GMM, but also the Gaussian 

assumption of the visible units in GRBM. 

6.1.2    Discriminative Model based on RBM 

Besides being directly used for probability estimation, RBM can also be used as the building block of 

a DBN, which can then be fine-tuned in a supervised manner. 

This sub-section compares two discriminative models based on DBN. The first model, named as DBN-

softmax, is built by first training a DBN and then training the last softmax layer with the parameters of 

the DBN fixed. Hence, the DBN is used to produce feature representations, while the softmax layer is 

used for doing classification. The second model, named as DBN-DNN, is built by further fine-tuning 

the parameters of the DBN-softmax using backpropagation. The DBN is trained as a series of RBMs 

 

   (a)      (b) 

 

   (c)      (d) 

Figure 6.2    DBN-softmax vs. DBN-DNN for acoustic scene classification. (a) MFCC with the 

first MV strategy. (b) MFCC with the fourth MV strategy. (c) Logmel with the first 

MV strategy. (d) Logmel with the fourth MV strategy. 
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where each RBM is trained for 500 epochs with a learning rate of 0.01 and a momentum of 0.9. The 

softmax layer is trained for 100 epochs with a learning rate of 0.1 and a momentum of 0.9. The DBN-

DNN is fine-tuned for 500 epochs with a learning rate of 0.1 and a momentum of 0.9. The number of 

neurons in each hidden layer of DBN-softmax and DBN-DNN is 256. The experimental results using 

MFCC and logmel as the frame-level feature vector are shown in Figure 6.2, where DBN-softmax and 

DBN-DNN are investigated with different numbers of hidden layers. 

It can be seen that DBN-DNN significantly outperforms DBN-softmax. This indicates that DBN trained 

in an unsupervised manner does not produce an expressive feature representation. Increasing the 

number of hidden layers even further degrades the quality of the feature representation, but the 

degradation with increasing layers may be mitigated by increasing the dimensionality of the feature 

vector (i.e., increasing the value of 𝐿 ). This observation validates the importance of feature 

dimensionality to DBN-softmax and DBN-DNN, especially when they have a very deep structure. In 

other words, if the feature vector has a low dimensionality, it may not provide enough information to 

the DNN, and consequently, the deeper layers cannot learn useful representations. 

6.2    PLDA vs. SVM 

6.2.1    Scalable PLDA vs. Original PLDA 

This sub-section validates the computational speedup achieved by the scalable formulation of PLDA in 

an acoustic scene classification task using the DCASE2013 dataset. The feature representation is GSV. 

UBMs with the number of mixture components varying from 2 to 64 are used to construct the GSV, so 

the dimensionality of the GSV varies from 40 × 1 to 1280 × 1. The scaling factor 𝛽 used to compute 

the GSV is set to 0.1. The dimensionality of the latent vectors in the PLDA model is the same as that 

of the GSV, and the number of EM iterations for model parameter estimation is 1. 

The computation time for model parameter estimation and class label prediction is measured by running 

the MATLAB codes on a Windows 10 laptop with 8G memory. The time consumption of the original 

and scalable formulations is illustrated in Figure 6.3. As can be seen from the figure, the computational 

efficiency of the scalable formulation is much higher than that of the original formulation, especially 
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when the dimensionality of the feature representation is high. Since the original formulation requires 

inverting large matrices whose sizes are proportional to the quantity of the training data and the 

dimensionality of the feature representation, either a large quantity or a high dimensionality will make 

the computation inefficient, or even infeasible if exceeding the memory space. 

6.2.2    PLDA vs. SVM Using MFCC as the Feature 

This sub-section compares the performance of PLDA and SVM in an acoustic scene classification task 

using the DCASE2013 dataset, with MFCC being the feature representation. Each acoustic sample is 

transformed into a sequence of 20-dimensional MFCC vectors, and thus the classifier will produce a 

sequence of predicted labels for each acoustic sample. Only the first MV strategy is adopted to handle 

multiple predicted labels, because PLDA or SVM does not produce a probability associated with a 

predicted label. We also adopt the neighboring feature concatenation strategy as given by (6.1), which 

may increase the amount of information a feature vector carries. 

The dimensionality of the latent vectors in a PLDA model is the same as that of the feature vector, and 

the number of EM iterations for model parameter estimation is varied from 1 to 5. SVM is implemented 

using LIBSVM [85] with default parameters. In particular, we consider both the linear version and the 

kernel version. The kernel SVM uses a Gaussian kernel as given by (6.2), where ker (. , . ) is a kernel 

function, 𝒙𝑖  and 𝒙𝑗  represent two feature vectors in the original feature space, 𝜙(𝒙𝑖)  and 𝜙(𝒙𝑗) 

represent the two mapped feature vectors in the kernel space, and 𝑑  is the kernel parameter. The 

 

Figure 6.3    Time consumption of original and scalable PLDA. 

0

10

20

30

40

50

60

70

80

90

40 80 160 320 640 1280

Ti
m

e 
(s

ec
o

n
d

)

Dimensionality of GSV

Scalable PLDA vs. original PLDA (DCASE2013)

scalable PLDA
(modeling)

scalable PLDA
(prediction)

original PLDA
(modeling)

original PLDA
(prediction)



95 

 

advantage of using a kernel is that the original feature vector can be mapped to a higher-dimensional 

space by exploiting the relationship between the elements in a feature vector (i.e., the dimensionality of 

𝜙(𝒙𝑖) will be higher than that of 𝒙𝑖). A high dimensionality may benefit SVM, as high-dimensional 

feature vectors will have a higher chance to be linearly separable. In particular, when using the Gaussian 

kernel, 𝜙(𝒙𝑖) will have infinite dimensions [106]. 

 ker(𝒙𝑖, 𝒙𝑗) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗) = exp {−

‖𝒙𝑖−𝒙𝑗‖
2

𝑑
} (6.2) 

The experimental results are shown in Figure 6.4. As can be seen from Figure 6.4 (a), both PLDA and 

the linear SVM give a poor performance when MFCC vectors are directly used for classification. PLDA 

gives a rather worse performance, probably owing to the violation of the model assumption. The linear 

SVM gives a relatively better performance, probably owing to the simplicity of the model assumption. 

As can be seen from Figure 6.4 (b), the kernel SVM has significantly better performance than the linear 

SVM, as the original feature vector is mapped to a higher-dimensional space in the kernel SVM. 

It is also noticed that increasing the dimensionality of the concatenated MFCC vector (i.e., increasing 

𝐿) may improve the performance of both PLDA and SVM, but a larger value of 𝐿 may not be better. 

The value of 𝐿 seems to have a higher influence on the performance of the kernel SVM than that of the 

linear SVM. Since the kernel SVM exploits the intra-feature characteristics (i.e., the relationship 

between different elements in a feature vector), increasing 𝐿 will include more neighboring feature 

vectors into a single concatenated feature vector, which then enables the kernel SVM to exploit the 

 

   (a)      (b) 

Figure 6.4    PLDA vs. SVM using MFCC as the feature representation. (a) Performance of PLDA 

and the linear SVM. (b) Performance of the kernel SVM. 
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inter-feature characteristics too (because multiple feature vectors are combined into a single feature 

vector). 

In addition, the effectiveness of increasing 𝐿 also highly depends on the choice of the kernel parameter 

when the kernel SVM is used. The best choice of 𝐿 is seemingly proportional to the choice of the kernel 

parameter 𝑑. 

6.2.3    PLDA vs. SVM Using GSV and I-vector as the Feature 

This sub-section compares the performance of PLDA and SVM in a speaker identification task using 

the Kingline081 dataset and an acoustic scene classification task using the TUT2016 dataset, with GSV 

and i-vector being the feature representation. The 1280-dimensional GSV is obtained based on a 64-

mixture UBM, with the scaling factor 𝛽 varying from 0 to 5. The 1280-dimensional i-vector is obtained 

based on a 64-mixture UBM, with the number of EM iterations varying from 1 to 5. The dimensionality 

of the latent vectors in the PLDA model is 1280 × 1, and the number of EM iterations for model 

parameter estimation varies from 1 to 2. The SVM is a linear SVM implemented using LIBSVM [85] 

with default parameters. 

The experimental results are illustrated in Figure 6.5. As shown in Figure 6.5 (a), PLDA significantly 

outperforms the linear SVM for speaker identification no matter the feature representation is GSV or i-

vector. However, as shown in Figure 6.5 (b), PLDA may not outperform the linear SVM for acoustic 

scene classification, and the linear SVM even significantly outperforms PLDA when the feature 

 

   (a)      (b) 

Figure 6.5    PLDA vs. SVM using GSV and i-vector as the feature representation. (a) Results on 

Kingline081. (b) Results on TUT2016. 
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representation is i-vector. The different behaviors of PLDA on different tasks are probably caused by 

the different feature distributions of different datasets. 

First, the MFCC vectors obtained from speech signals carry rich information and are probably following 

the Gaussian distribution, and therefore the GSV and the i-vector are probably of good quality, since 

they are constructed from a GMM-based UBM. The MFCC vectors obtained from non-speech acoustic 

signals may not carry as rich information as those obtained from human speeches, and thus the GSV 

and the i-vector may not carry enough information. 

Second, the GSV and the i-vector obtained from non-speech acoustic signals may violate the 

assumption of the PLDA model. A PLDA model assumes that the feature representation is generated 

by two latent vectors. This implicitly assumes that the feature representation should be highly structured 

and carry rich information, such that it can be well described by a latent variable model. 

6.2.4    Linear SVM vs. Kernel SVM Using GSV and I-vector as the Feature 

This sub-section compares the performance of the linear SVM and the kernel SVM in a speaker 

identification task using the Kingline081 dataset, with GSV and i-vector being the feature representation. 

The kernel SVM uses a Gaussian kernel as given by (6.2). The GSV has a dimensionality of 1280 × 1, 

computed with 𝛽 = 0.1 based on a 64-mixture UBM. The i-vector has a dimensionality of 1280 × 1, 

computed with 5 EM iterations based on a 64-mixture UBM. For both the linear SVM and the kernel 

SVM, the parameter 𝐶 varies from 0.01 to 1000. For the kernel SVM, the kernel parameter 𝑑 varies 

from 100 to 5000. 

The identification results using GSV and i-vector are shown in Figure 6.6 and Figure 6.7 respectively. 

The performance of the linear SVM and the kernel SVM is compared by varying the model parameters, 

and the number of support vectors under different model parameters are also recorded. As shown in 

Figure 6.6 and Figure 6.7, the highest identification accuracy achieved by the linear SVM and the kernel 

SVM is quite similar. Although the kernel SVM can map the original feature representations to a higher 

dimensional space where the mapped high-dimensional feature representations have a higher chance to 
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be linearly separable, the mapping may be unnecessary in this case, as the original feature representation 

(i.e., the GSV or the i-vector) already has a high dimensionality. 

It can be seen that the performance of the linear SVM is insensitive to the value of the parameter 𝐶, 

whereas the performance of the kernel SVM is sensitive to the value of the parameter 𝐶. For the kernel 

SVM, the experimental results show that the larger the value of 𝐶, the better the performance. This 

observation can be explained as follows. On using the kernel SVM, the original feature representation 

is mapped to a higher dimensional space. In the case of Gaussian kernel, the space has infinite 

dimensions. In that extremely high dimensional space, the mapped feature representations can be easily 

separated by a hyperplane. Thus, the value of 𝐶 should be large enough to ensure that most mapped 

training data are lying on the correct side of the separating hyperplane. 

 

   (a)      (b) 

Figure 6.6    Linear SVM vs. kernel SVM using GSV as the feature representation. (a) The 

identification accuracy under different parameters. (b) The number of support vectors 

under different parameters. 
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   (a)      (b) 

Figure 6.7    Linear SVM vs. kernel SVM using i-vector as the feature representation. (a) The 

identification accuracy under different parameters. (b) The number of support vectors 

under different parameters. 
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We also notice that the performance of the kernel SVM is strongly related to the number of support 

vectors. It seems that the fewer the support vectors, the better is the performance. This is probably 

because that the more the support vectors, the higher is the chance that SVM overfits the training data. 

6.3    SR vs. DCR 

This section briefly compares the performance of SR, CR, and DCR in an acoustic scene classification 

task using the TUT2016 dataset, and a speaker identification task using the Ahumada dataset. The 

feature representation is the 1280-dimensional i-vector based on a 64-mixture UBM. The model 

parameters used to compute the i-vector is estimated with 5 EM iterations. The SR is obtained using 

SparseLab [103], while the CR and the DCR are implemented using MATLAB. The classifier is MRC, 

and the training and testing feature representations are normalized to have a unit length. 

The classification performance of SR, CR, and DCR is illustrated in Figure 6.8. It should be noted that 

CR is DCR with 𝜂 = 0 . The time consumption of computing the SR with 𝜆 = 1  and the time 

 

   (a)      (b) 

Figure 6.8    SR vs. DCR for acoustic and speech signal classification. (a) Results on TUT2016. (b) 

Results on Ahumada. 
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 TUT2016 Ahumada 

SR+MRC (𝜆 = 1) 908s 2868s 

DCR+MRC (𝜆 = 1, 𝜂 = 1) 9s 16s 
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consumption of computing the DCR with 𝜆 = 1 and 𝜂 = 1 are given in Table 6.1, which is obtained by 

running the MATLAB codes on a Windows 10 laptop with 8G memory. 

As shown in Figure 6.8, SR slightly outperforms CR for acoustic scene classification (Figure 6.8 (a)), 

whereas CR slightly outperforms SR for speaker identification (Figure 6.8 (b)). With a suitably chosen 

value of 𝜂, DCR outperforms both SR and CR for both tasks. This validates the usefulness of the 

additional regularization term involved in the objective function of DCR. More importantly, the 

computation of DCR is much more efficient than that of SR, as shown in Table 6.1, since DCR has an 

analytic solution while SR does not. 

6.4    Experimental Comparison of SVM, PLDA and MRC 

This section compares the performance of the linear SVM, PLDA, and MRC in two acoustic scene 

classification tasks using the DCASE2013 and TUT2016 datasets, and two speaker identification tasks 

using the Ahumada and Kingline081 datasets. The feature representation is the 1280-dimensional i-

vector based on a 64-mixture UBM. The model parameters used to compute the i-vector is estimated 

with 5 EM iterations. On using MRC, the feature representation is normalized to have a unit length, and 

the DRC is computed with different values of 𝜆 and 𝜂. SVM is implemented using LIBSVM [85] with 

𝐶 = 1, as varying the value of 𝐶 does not make any significant difference. PLDA is implemented using 

the scalable formulation, and the latent vectors in the PLDA model have the same dimensionality as the 

feature representation. The model parameters are estimated by 1 and 2 EM iterations, as more EM 

iterations do not help. 

The classification accuracies of using different classifiers are illustrated in Figure 6.9. The time 

consumption, including that for model parameter estimation and class label prediction, is illustrated in 

Figure 6.10, where DCR is computed with 𝜆 = 1 and 𝜂 = 1, and the parameters of the PLDA model 

are estimated with 1 EM iteration. The time is estimated by running the MATLAB codes on a Windows 

10 laptop with 8G memory. 

As shown in Figure 6.9, SVM achieves the highest accuracy on TUT2016, PLDA achieves the highest 

accuracy on Kingline081, and DCR+MRC achieves the highest accuracy on DCASE2013 and 
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Ahumada. Therefore, in general, there is no one classifier always outperforming the others. It is then 

important to choose a suitable classifier for a specific pattern recognition task or a specific dataset. 

PLDA seems to work well on speech signals, as it gives the best performance on the Kingline081 speech 

dataset and approaches the best performance on the Ahumada speech dataset, but work poorly on non-

 

   (a)      (b) 

 

(c)      (d) 

Figure 6.9    Classification accuracy of DCR+MRC, SVM and PLDA on different datasets. (a) 

Results on DCASE2013. (b) Results on TUT2016. (c) Results on Ahumada. (d) 

Results on Kingline081. 
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Figure 6.10    Time consumption of DCR+MRC, SVM and PLDA. 
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speech acoustic signals. PLDA assumes the feature representations to follow a Gaussian distribution 

and conform to a factor analysis model, which may not be satisfied by non-speech acoustic signals. 

Although PLDA is suitable for speech signals, its time consumption is high even if there is only 1 EM 

iteration as shown in Figure 6.10. More EM iterations will then consume more time. 

DCR+MRC generally works well on different datasets. It gives the best performance on DCASE2013 

and Ahumada, and approaches the best performance on TUT2016 and Kingline081. Unlike SVM and 

PLDA which require estimating the model parameters, after having the DCR for each feature 

representation, MRC directly makes predictions using DCR instead of building any classification model. 

This results in high computational efficiency. As the MATLAB codes for DCR are not optimized, the 

computation takes more time than SVM, but is still more efficient than PLDA. 

SVM is generally applicable to different tasks such as speaker identification and acoustic scene 

classification, and is very fast in computation when using open source tools, such as LIBSVM. It 

assumes the data are separable either in the original feature space or in the kernel space, but this 

assumption is difficult to fulfill in real scenarios. It may not work very well, but will not work very 

badly either. 
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Chapter 7    Feature Projection Techniques: 

Theoretical Analysis 

 

7.1    Fisher Discriminant Analysis 

This section discusses Fisher discriminant analysis (FDA) and its variants, including the linear 

discriminant analysis (LDA) and the kernel discriminant analysis (KDA). Specifically, two versions of 

LDA will be explained, and their corresponding kernel-based formulations are derived. A brief 

comparison between the two versions is also presented. 

7.1.1    Linear Discriminant Analysis 

Given a set of training vectors denoted as {𝒙1, 𝒙2, … 𝒙𝑁}, where 𝑁 is the number of training data, and 

the dimensionality of a training vector is 𝐷 × 1. Suppose these training vectors belong to 𝐾 different 

classes, and there are 𝑁𝑘 training vectors belonging to class 𝑘, denoted as 𝑐𝑘. The objective of LDA is 

to find a projection matrix 𝑽 with a size of 𝐷 × 𝑃 such that the projected vectors in the same class are 

closer to their center, while the centers of different classes are farther from each other. Denoting the 

corresponding projected vectors as {𝒙1
′ , 𝒙2

′ , … 𝒙𝑁
′ }, the objective of LDA can then be achieved by 

reducing the within-class covariance 𝑪𝑊 and increasing the between-class covariance 𝑪𝐵 as defined in 

(7.1), where 𝝁 is the mean of all the projected vectors, and 𝝁𝑘 is the mean of the projected vectors 

belonging to class 𝑘 [104]. 

 

𝝁𝑘 =
1

𝑁𝑘
∑ 𝒙𝑛

′
𝒙𝑛∈𝑐𝑘

𝝁 =
1

𝑁
∑ 𝒙𝑛

′𝑁
𝑛=1

𝑪𝑊 = ∑ ∑ (𝒙𝑛
′ − 𝝁𝑘)(𝒙𝑛

′ − 𝝁𝑘)𝑇
𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1

𝑪𝐵 = ∑ 𝑁𝑘(𝝁𝑘 − 𝝁)(𝝁𝑘 − 𝝁)𝑇𝐾
𝑘=1

 (7.1) 
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Considering that 𝒙𝑛
′ = 𝑽𝑇𝒙𝑛, 𝑪𝑊 and 𝑪𝐵 can be expressed in terms of 𝑽 as given by (7.2), where 𝑺𝑊 

is the within-class scatter matrix and 𝑺𝐵 is the between-class scatter matrix [104]. 

 
𝑪𝑊 = 𝑽𝑇𝑺𝑊𝑽

𝑪𝐵 = 𝑽𝑇𝑺𝐵𝑽
 (7.2) 

where 

 

𝒎𝑘 =
1

𝑁𝑘
∑ 𝒙𝑛𝒙𝑛∈𝑐𝑘

𝒎 =
1

𝑁
∑ 𝒙𝑛

𝑁
𝑛=1

𝑺𝑊 = ∑ ∑ (𝒙𝑛 − 𝒎𝑘)(𝒙𝑛 − 𝒎𝑘)𝑇
𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1

𝑺𝐵 = ∑ 𝑁𝑘(𝒎𝑘 − 𝒎)(𝒎𝑘 − 𝒎)𝑇𝐾
𝑘=1

 (7.3) 

7.1.1.1    LDA Version 1 

The objective of LDA can be realized by maximizing the objective function 𝑄(𝑽) given by (7.4), where 

tr{. } computes the trace of the matrix. 

 𝑄(𝑽) = tr{(𝑽𝑇𝑺𝑊𝑽)−1(𝑽𝑇𝑺𝐵𝑽)} (7.4) 

Maximizing 𝑄(𝑽) defined in (7.4) is equivalent to the optimization problem given by (7.5) [104][105], 

where 𝒗𝑝 is the 𝑝-th column vector of 𝑽, which is a projection direction. 

 

max tr{𝑽𝑇𝑺𝐵𝑽}
𝑠. 𝑡.

𝑽𝑇𝑺𝑊𝑽 = 𝑰
    ⟺    

max∑ 𝒗𝑝
𝑇𝑺𝐵𝒗𝑝

𝑃
𝑝=1

𝑠. 𝑡.
𝒗𝑝

𝑇𝑺𝑊𝒗𝑝 = 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃
 (7.5) 

The constrained optimization problem in (7.5) can be reformulated using a Lagrangian function 𝐿(𝑽, 𝜆) 

as given by (7.6), where {𝜆1, 𝜆2 …𝜆𝑃} are Lagrange multipliers. 

 𝐿(𝑽, 𝜆) = ∑ 𝒗𝑝
𝑇𝑺𝐵𝒗𝑝

𝑃
𝑝=1 − ∑ 𝜆𝑝(𝒗𝑝

𝑇𝑺𝑊𝒗𝑝 − 1)𝑃
𝑝=1  (7.6) 

Setting the derivative of 𝐿(𝑽, 𝜆) to zero gives (7.7), which means 𝒗𝑝 is an eigenvector of 𝑺𝑊
−1𝑺𝐵. 

 
𝜕𝐿(𝑽,𝜆)

𝜕𝒗𝑝
= 2𝑺𝐵𝒗𝑝 − 2𝜆𝑝𝑺𝑊𝒗𝑝 = 𝟎    ⟹    𝑺𝐵𝒗𝑝 = 𝜆𝑝𝑺𝑊𝒗𝑝     ⟹    𝑺𝑊

−1𝑺𝐵𝒗𝑝 = 𝜆𝑝𝒗𝑝 (7.7) 
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7.1.1.2    LDA Version 2 

Besides the objective function defined in (7.4), another expression of the objective function can be 

adopted to realize the target that the within-class covariance of the projected vectors is reduced and the 

between-class covariance is increased. The new objective function is defined in (7.8), where 𝛼 is a non-

negative weighting coefficient balancing the importance of the within-class covariance and the 

between-class covariance. 

 𝑄(𝑽) = tr{𝑽𝑇𝑺𝐵𝑽} − tr{𝛼𝑽𝑇𝑺𝑊𝑽} (7.8) 

In order to prevent the solution from being infinity, it is necessary to apply the unit-length constraint. 

The optimization problem then becomes (7.9). 

 
max tr{𝑽𝑇𝑺𝐵𝑽} − tr{𝛼𝑽𝑇𝑺𝑊𝑽}

𝑠. 𝑡.
𝑽𝑇𝑽 = 𝑰

    ⟺    
max∑ 𝒗𝑝

𝑇(𝑺𝐵 − 𝛼𝑺𝑊)𝒗𝑝
𝑃
𝑝=1

𝑠. 𝑡.
𝒗𝑝

𝑇𝒗𝑝 = 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃
 (7.9) 

The corresponding Lagrangian function 𝐿(𝑽, 𝜆)  is then given by (7.10), where {𝜆1, 𝜆2 …𝜆𝑃}  are 

Lagrange multipliers. 

 𝐿(𝑽, 𝜆) = ∑ 𝒗𝑝
𝑇(𝑺𝐵 − 𝛼𝑺𝑊)𝒗𝑝

𝑃
𝑝=1 − ∑ 𝜆𝑝(𝒗𝑝

𝑇𝒗𝑝 − 1)𝑃
𝑝=1  (7.10) 

Setting the derivative of 𝐿(𝑽, 𝜆) to zero yields (7.11), meaning that 𝒗𝑝 is an eigenvector of (𝑺𝐵 − 𝛼𝑺𝑊). 

 
𝜕𝐿(𝑽,𝜆)

𝜕𝒗𝑝
= 2(𝑺𝐵 − 𝛼𝑺𝑊)𝒗𝑝 − 2𝜆𝑝𝒗𝑝 = 𝟎    ⟹    (𝑺𝐵 − 𝛼𝑺𝑊)𝒗𝑝 = 𝜆𝑝𝒗𝑝 (7.11) 

7.1.1.3    Brief Comparison between the Two Versions of LDA 

In the following, LDA (v1) refers to LDA version 1, and LDA (v2) refers to LDA version 2. We can 

see that LDA (v1) requires finding the eigenvectors of 𝑺𝑊
−1𝑺𝐵, whereas LDA (v2) requires finding the 

eigenvectors of (𝑺𝐵 − 𝛼𝑺𝑊). The number of independent eigenvectors (viz. the number of orthogonal 

projection directions) of LDA (v1) is limited by min{rank(𝑺𝐵), rank(𝑺𝑊)}, whereas that of LDA (v2) 

is limited by (rank(𝑺𝐵) + rank(𝑺𝑊)). From this perspective, LDA (v2) may find out more orthogonal 

projection directions than LDA (v1). 
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Besides, LDA (v1) requires inverting the within-class scatter matrix 𝑺𝑊 , which may cause the 

singularity problem if 𝑺𝑊 is not full-rank, whereas LDA (v2) does not have this difficulty. From this 

perspective, LDA (v2) tends to be more stable in terms of numerical computation. Nonetheless, we may 

slightly modify the objective of LDA (v1) to finding the eigenvectors of (𝑺𝑊 + 𝛼𝑰)−1𝑺𝐵 where 𝛼 is a 

nonnegative regularization parameter. The inclusion of this regularization term helps prevent the 

singularity problem. 

7.1.2    Kernel Discriminant Analysis 

The kernel discriminant analysis (KDA) is a generalization of LDA. Assume we would like to first map 

the original feature vector into another dimensional space, using a mapping function 𝜙: 𝒙 ⟼ 𝜙(𝒙), and 

then find the projection matrix 𝑽(𝜙) in the mapped space, where 𝒗𝑝
(𝜙)

 is the 𝑝-th column vector of 𝑽(𝜙) 

and the superscript 𝜙 denotes the mapped space. The within-class and between-class scatter matrices in 

the mapped space will then have the form as given by (7.12). The relationship between the original 

feature vector 𝒙 and the projected vector 𝒙′ is 𝒙′ = (𝑽(𝜙))
𝑇
𝜙(𝒙𝑛). 

 

𝜙(𝒎𝑘) =
1

𝑁𝑘
∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

𝜙(𝒎) =
1

𝑁
∑ 𝜙(𝒙𝑛)𝑁

𝑛=1

𝑺𝑊
(𝜙)

= ∑ ∑ (𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))(𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))
𝑇

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1

𝑺𝐵
(𝜙)

= ∑ 𝑁𝑘(𝜙(𝒎𝑘) − 𝜙(𝒎))(𝜙(𝒎𝑘) − 𝜙(𝒎))
𝑇𝐾

𝑘=1

 (7.12) 

Analogous to LDA, KDA should end up solving an eigenvalue problem similar to (7.7) and (7.11), 

which involve the computation of 𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

 and 𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

. Before we proceed, we should do some 

derivations on these two terms. In the derivations, we will make use of the facts given by (7.13). 

 

∑ 𝑁𝑘
𝐾
𝑘=1 = 𝑁

𝑁𝑘𝜙(𝒎𝑘) = ∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

∑ 𝑁𝑘𝜙(𝒎𝑘)𝐾
𝑘=1 = 𝑁𝜙(𝒎)

 (7.13) 

𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

 can be expanded as 

                           𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

= ∑ 𝑁𝑘(𝜙(𝒎𝑘) − 𝜙(𝒎))(𝜙(𝒎𝑘) − 𝜙(𝒎))
𝑇
𝒗𝑝

(𝜙)𝐾
𝑘=1  
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                           = ∑ 𝑁𝑘𝜙(𝒎𝑘)𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1 − ∑ 𝑁𝑘𝜙(𝒎𝑘)𝜙(𝒎)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1  

                               −∑ 𝑁𝑘𝜙(𝒎)𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1 + ∑ 𝑁𝑘𝜙(𝒎)𝜙(𝒎)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1  

                           = ∑ ∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘
𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)𝐾
𝑘=1 − ∑ ∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

𝜙(𝒎)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1  

                               −𝑁𝜙(𝒎)𝜙(𝒎)𝑇𝒗𝑝
(𝜙)

+ 𝑁𝜙(𝒎)𝜙(𝒎)𝑇𝒗𝑝
(𝜙)

 

                           = ∑ ∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘
𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)𝐾
𝑘=1 − ∑ ∑ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

𝜙(𝒎)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1  

                           = ∑ ∑ (𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)

− 𝜙(𝒎)𝑇𝒗𝑝
(𝜙)

) ⋅ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  (7.14) 

By introducing a new coefficient variable 𝜂𝑛
(𝐵)

 such that 

 𝜂𝑛
(𝐵)

= ∑ 𝜂𝑛𝑘
(𝐵)𝐾

𝑘=1     where    𝜂𝑛𝑘
(𝐵)

= {
𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)
− 𝜙(𝒎)𝑇𝒗𝑝

(𝜙)
,    𝑖𝑓 𝒙𝑛 ∈ 𝑐𝑘

0                                                ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.15) 

𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

 can then be expressed as a linear combination of 𝜙(𝒙𝑛)  as given by (7.16), where the 

coefficients are 𝜂𝑛
(𝐵)

. 

 𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

= ∑ 𝜂𝑛
(𝐵)

⋅ 𝜙(𝒙𝑛)𝑁
𝑛=1  (7.16) 

Similarly, 𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

 can be expanded as 

                     𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

= ∑ ∑ (𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))(𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))
𝑇
𝒗𝑝

(𝜙)
𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  

                     = ∑ ∑ 𝜙(𝒙𝑛)𝜙(𝒙𝑛)𝑇𝒗𝑝
(𝜙)

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1 − ∑ ∑ 𝜙(𝒙𝑛)𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)
𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  

                         −∑ ∑ 𝜙(𝒎𝑘)𝜙(𝒙𝑛)𝑇𝒗𝑝
(𝜙)

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1 + ∑ ∑ 𝜙(𝒎𝑘)𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)
𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  

                     = ∑ 𝜙(𝒙𝑛)𝜙(𝒙𝑛)𝑇𝒗𝑝
(𝜙)𝑁

𝑛=1 − ∑ ∑ 𝜙(𝒙𝑛)𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  

                         −∑ 𝜙(𝒎𝑘)𝑁𝑘𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1 + ∑ 𝑁𝑘𝜙(𝒎𝑘)𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)𝐾

𝑘=1  

                     = ∑ 𝜙(𝒙𝑛)𝜙(𝒙𝑛)𝑇𝒗𝑝
(𝜙)𝑁

𝑛=1 − ∑ ∑ 𝜙(𝒙𝑛)𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  
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                     = ∑ ∑ (𝜙(𝒙𝑛)𝑇𝒗𝑝
(𝜙)

− 𝜙(𝒎𝑘)𝑇𝒗𝑝
(𝜙)

) ⋅ 𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1   (7.17) 

By introducing a new coefficient variable 𝜂𝑛
(𝑊)

 such that 

 𝜂𝑛
(𝑊)

= ∑ 𝜂𝑛𝑘
(𝑊)𝐾

𝑘=1     where    𝜂𝑛𝑘
(𝑊)

= {
𝜙(𝒙𝑛)𝑇𝒗𝑝

(𝜙)
− 𝜙(𝒎𝑘)𝑇𝒗𝑝

(𝜙)
,    𝑖𝑓 𝒙𝑛 ∈ 𝑐𝑘

0                                                ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.18) 

𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

 can then be expressed as a linear combination of 𝜙(𝒙𝑛)  as given by (7.19), with the 

coefficients given by 𝜂𝑛
(𝑊)

. 

 𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

= ∑ 𝜂𝑛
(𝑊)

⋅ 𝜙(𝒙𝑛)𝑁
𝑛=1  (7.19) 

The facts that 𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

 and 𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

 are the linear combination of the mapped training vectors as given 

by (7.16) and (7.19) respectively will be useful for understanding KDA. 

7.1.2.1    KDA Version 1 

Analogous to LDA (v1), KDA (v1) aims at solving the optimization problem defined in (7.20). 

 

max∑ (𝒗𝑝
(𝜙)

)
𝑇
𝑺𝐵

(𝜙)
𝒗𝑝

(𝜙)𝑃
𝑝=1

𝑠. 𝑡.

(𝒗𝑝
(𝜙)

)
𝑇
𝑺𝑊

(𝜙)
𝒗𝑝

(𝜙)
= 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.20) 

Consequently, KDA (v1) is simplified to the eigenvalue problem given by (7.21), and the solution is 

then given by the eigenvectors of (𝑺𝑊
(𝜙)

)
−1

𝑺𝐵
(𝜙)

. 

 𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

= 𝜆𝑝𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

 (7.21) 

Reformulating (7.21) using the expanded expressions of 𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

 or 𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

 given by (7.16) or (7.19) 

respectively, we obtain 

 {
𝒗𝑝

(𝜙)
= 𝜆𝑝 (𝑺𝐵

(𝜙)
)
−1

𝑺𝑊
(𝜙)

𝒗𝑝
(𝜙)

= ∑ (𝜂𝑛
(𝑊)

𝜆𝑝 (𝑺𝐵
(𝜙)

)
−1

)𝜙(𝒙𝑛)𝑁
𝑛=1

𝒗𝑝
(𝜙)

= (𝜆𝑝𝑺𝑊
(𝜙)

)
−1

𝑺𝐵
(𝜙)

𝒗𝑝
(𝜙)

= ∑ (𝜂𝑛
(𝐵)

𝜆𝑝
−1 (𝑺𝑊

(𝜙)
)
−1

)𝜙(𝒙𝑛)𝑁
𝑛=1

 (7.22) 
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It is claimed in [71] that 𝒗𝑝
(𝜙)

 can be a linear combination of all the mapped training vectors as given 

by (7.23), where 𝒖𝑝
(𝜙)

 is the coefficient vector in the mapped space, (𝑢𝑝
(𝜙)

)
𝑛

 is the 𝑛-th element of 𝒖𝑝
(𝜙)

, 

and 𝜙(𝑿) = [𝜙(𝒙1)  𝜙(𝒙2) …   𝜙(𝒙𝑁)] is the data matrix containing all the mapped training vectors. 

 𝒗𝑝
(𝜙)

= ∑ (𝑢𝑝
(𝜙)

)
𝑛
𝜙(𝒙𝑛)𝑁

𝑛=1 = 𝜙(𝑿)𝒖𝑝
(𝜙)

 (7.23) 

However, as can be seen from (7.22), 𝒗𝑝
(𝜙)

 will be a linear transformation of the linear combination of 

all the mapped training vectors, instead of a direct linear combination. Therefore, (7.23) may not always 

hold unless 𝜙(𝑿) spans the whole mapped space, viz. the covariance of 𝜙(𝑿) is full-rank. Nevertheless, 

even if (7.23) does not hold in some circumstances, the only risk is that we may not be able to find all 

possible 𝒗𝑝
(𝜙)

, but any solution 𝒖𝑝
(𝜙)

 will correspond to a solution 𝒗𝑝
(𝜙)

. 

Using the relationship given by (7.23), the optimization problem of KDA (v1) becomes 

 

max∑ (𝜙(𝑿)𝒖𝑝
(𝜙)

)
𝑇
𝑺𝐵

(𝜙)
𝜙(𝑿)𝒖𝑝

(𝜙)𝑃
𝑝=1

𝑠. 𝑡.

(𝜙(𝑿)𝒖𝑝
(𝜙)

)
𝑇
𝑺𝑊

(𝜙)
𝜙(𝑿)𝒖𝑝

(𝜙)
= 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.24) 

It is noted that 𝜙(𝑿)𝑇𝑺𝐵
(𝜙)

𝜙(𝑿) and 𝜙(𝑿)𝑇𝑺𝑊
(𝜙)

𝜙(𝑿) can be reformulated as given by (7.25) and (7.26) 

respectively, where the inner products of mapped vectors are expressed in terms of a kernel function 

ker (. , . ) as given by (7.27). In (7.27), the dimensionality of 𝚽𝑚𝑘, 𝚽𝑚 and 𝚽𝑛 is 𝑁 × 1 where 𝑁 is the 

number of training vectors, and the subscript 𝑖 represents the 𝑖-th element. 

                𝜙(𝑿)𝑇𝑺𝐵
(𝜙)

𝜙(𝑿)  = 𝜙(𝑿)𝑇 (∑ 𝑁𝑘(𝜙(𝒎𝑘) − 𝜙(𝒎))(𝜙(𝒎𝑘) − 𝜙(𝒎))
𝑇𝐾

𝑘=1 )𝜙(𝑿) 

                = ∑ 𝑁𝑘(𝜙(𝑿)𝑇𝜙(𝒎𝑘) − 𝜙(𝑿)𝑇𝜙(𝒎))(𝜙(𝑿)𝑇𝜙(𝒎𝑘) − 𝜙(𝑿)𝑇𝜙(𝒎))
𝑇𝐾

𝑘=1  

                = ∑ 𝑁𝑘(𝚽𝑚𝑘 − 𝚽𝑚)(𝚽𝑚𝑘 − 𝚽𝑚)𝑇𝐾
𝑘=1   (7.25) 

          𝜙(𝑿)𝑇𝑺𝑊
(𝜙)

𝜙(𝑿)  = 𝜙(𝑿)𝑇 (∑ ∑ (𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))(𝜙(𝒙𝑛) − 𝜙(𝒎𝑘))
𝑇

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1 )𝜙(𝑿) 

          = ∑ ∑ (𝜙(𝑿)𝑇𝜙(𝒙𝑛) − 𝜙(𝑿)𝑇𝜙(𝒎𝑘))(𝜙(𝑿)𝑇𝜙(𝒙𝑛) − 𝜙(𝑿)𝑇𝜙(𝒎𝑘))
𝑇

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1  
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          = ∑ ∑ (𝚽𝑛 − 𝚽𝑚𝑘)(𝚽𝑛 − 𝚽𝑚𝑘)
𝑇

𝒙𝑛∈𝑐𝑘

𝐾
𝑘=1   (7.26) 

where 

 

(Φ𝑚𝑘)𝑖 = 𝜙(𝒙𝑖)
𝑇𝜙(𝒎𝑘) =

1

𝑁𝑘
∑ 𝜙(𝒙𝑖)

𝑇𝜙(𝒙𝑛)𝒙𝑛∈𝑐𝑘
=

1

𝑁𝑘
∑ ker (𝒙𝑖, 𝒙𝑛)𝒙𝑛∈𝑐𝑘

(Φ𝑚)𝑖 = 𝜙(𝒙𝑖)
𝑇𝜙(𝒎) =

1

𝑁
∑ 𝜙(𝒙𝑖)

𝑇𝜙(𝒙𝑛)𝑁
𝑛=1 =

1

𝑁
∑ ker (𝒙𝑖 , 𝒙𝑛)𝑁

𝑛=1

(Φ𝑛)𝑖 = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑛) = ker (𝒙𝑖 , 𝒙𝑛)

 (7.27) 

If we further define 𝑹𝐵
(𝜙)

= 𝜙(𝑿)𝑇𝑺𝐵
(𝜙)

𝜙(𝑿) and 𝑹𝑊
(𝜙)

= 𝜙(𝑿)𝑇𝑺𝑊
(𝜙)

𝜙(𝑿), the optimization problem 

of KDA (v1) is simplified to (7.28), whose solution is then the eigenvectors of (𝑹𝑊
(𝜙)

)
−1

𝑹𝐵
(𝜙)

. 

 

max∑ (𝒖𝑝
(𝜙)

)
𝑇
𝑹𝐵

(𝜙)
𝒖𝑝

(𝜙)𝑃
𝑝=1

𝑠. 𝑡.

(𝒖𝑝
(𝜙)

)
𝑇
𝑹𝑊

(𝜙)
𝒖𝑝

(𝜙)
= 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.28) 

Having found all the coefficient vector 𝒖𝑝
(𝜙)

 for 𝑝 = 1,2…𝑃, for a testing vector 𝒚, its corresponding 

projected vector, denoted as 𝒚′, can be computed using (7.29), where 𝑦𝑝
′  denotes the 𝑝-th element of 𝒚′, 

(𝑢𝑝
(𝜙)

)
𝑖
 is the 𝑖-th element of 𝒖𝑝

(𝜙)
, and 𝑁 is the number of training vectors. The dimensionality of 𝒚′ 

will be 𝑃 × 1. 

 𝑦𝑝
′ = (𝒗𝑝

(𝜙)
)
𝑇
𝜙(𝒚) = (𝜙(𝑿)𝒖𝑝

(𝜙)
)
𝑇
𝜙(𝒚) = (𝒖𝑝

(𝜙)
)
𝑇
𝜙(𝑿)𝑇𝜙(𝒚) = ∑ (𝑢𝑝

(𝜙)
)
𝑖
ker (𝒙𝑖, 𝒚)𝑁

𝑖=1  

  (7.29) 

7.1.2.2    KDA Version 2 

Analogous to LDA (v2), KDA (v2) aims at solving the optimization problem defined in (7.30). 

 

max∑ (𝒗𝑝
(𝜙)

)
𝑇
(𝑺𝐵

(𝜙)
− 𝛼𝑺𝑊

(𝜙)
)𝒗𝑝

(𝜙)𝑃
𝑝=1

𝑠. 𝑡.

(𝒗𝑝
(𝜙)

)
𝑇
𝒗𝑝

(𝜙)
= 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.30) 

It is then simplified to the eigenvalue problem in (7.31), whose solution is given by the eigenvectors of 

(𝑺𝐵
(𝜙)

− 𝛼𝑺𝑊
(𝜙)

). 
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 (𝑺𝐵
(𝜙)

− 𝛼𝑺𝑊
(𝜙)

)𝒗𝑝
(𝜙)

= 𝜆𝑝𝒗𝑝
(𝜙)

 (7.31) 

Using the equations given by (7.16) and (7.19), (7.31) becomes 

 ∑ 𝜂𝑛
(𝐵)

⋅ 𝜙(𝒙𝑛)𝑁
𝑛=1 − 𝛼 ∑ 𝜂𝑛

(𝑊)
⋅ 𝜙(𝒙𝑛)𝑁

𝑛=1 = 𝜆𝑝𝒗𝑝
(𝜙)

 (7.32) 

Rearranging (7.32) gives (7.33), which implies that as long as 𝒗𝑝
(𝜙)

 is a solution to (7.30), 𝒗𝑝
(𝜙)

 should 

be a linear combination of all the mapped training vectors. 

 𝒗𝑝
(𝜙)

=
1

𝜆𝑝
∑ (𝜂𝑛

(𝐵)
− 𝛼𝜂𝑛

(𝑊)
) ⋅ 𝜙(𝒙𝑛)𝑁

𝑛=1  (7.33) 

This enables us to express 𝒗𝑝
(𝜙)

 as (7.34), where 𝒖𝑝
(𝜙)

 is the coefficient vector, and 𝜙(𝑿) is the data 

matrix comprising all the mapped training vectors, the same as that used in KDA (v1). 

 𝒗𝑝
(𝜙)

= 𝜙(𝑿)𝒖𝑝
(𝜙)

 (7.34) 

Using (7.34), KDA (v2) can be reformulated as (7.35), where 𝑹𝐵
(𝜙)

 and 𝑹𝑊
(𝜙)

 are the same as those used 

in KDA (v1). In order to obtain a unique solution, the unit-length constraint is applied to 𝒖𝑝
(𝜙)

. The unit-

length constraint of 𝒗𝑝
(𝜙)

 can be satisfied by normalizing the projected vector. 

 

max∑ (𝒖𝑝
(𝜙)

)
𝑇
(𝑹𝐵

(𝜙)
− 𝛼𝑹𝑊

(𝜙)
)𝒖𝑝

(𝜙)𝑃
𝑝=1

𝑠. 𝑡.

(𝒖𝑝
(𝜙)

)
𝑇
𝒖𝑝

(𝜙)
= 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.35) 

Similar to LDA (v2), solving (7.35) gives (7.36), whose solution is the eigenvectors of (𝑹𝐵
(𝜙)

− 𝛼𝑹𝑊
(𝜙)

). 

 (𝑹𝐵
(𝜙)

− 𝛼𝑹𝑊
(𝜙)

)𝒖𝑝
(𝜙)

= 𝜆𝑝𝒖𝑝
(𝜙)

 (7.36) 

Having found all the coefficient vector 𝒖𝑝
(𝜙)

 for 𝑝 = 1,2…𝑃, for a testing vector 𝒚, its corresponding 

projected vector, denoted as 𝒚′, can be computed using (7.29). Having obtained the projected vector, 

we may implicitly normalize the projection vector 𝒗𝑝
(𝜙)

 through normalizing 𝑦𝑝
′  as given by (7.37), 
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where 𝑦𝑝
′  denotes the 𝑝-th element of 𝒚′, (𝑢𝑝

(𝜙)
)
𝑖
 is the 𝑖-th element of 𝒖𝑝

(𝜙)
, and 𝑁 is the number of 

training vectors. 

                 
𝑦𝑝

′

‖𝒗𝑝
(𝜙)

‖
2

=
(𝒗𝑝

(𝜙)
)
𝑇
𝜙(𝒚)

√(𝒗𝑝
(𝜙)

)
𝑇
𝒗𝑝

(𝜙)
=

(𝒖𝑝
(𝜙)

)
𝑇
𝜙(𝑿)𝑇𝜙(𝒚)

√(𝒖𝑝
(𝜙)

)
𝑇
𝜙(𝑿)𝑇𝜙(𝑿)𝒖𝑝

(𝜙)
=

∑ (𝑢𝑝
(𝜙)

)
𝑖
ker(𝒙𝑖,𝒚)𝑁

𝑖=1

√∑ ∑ (𝑢𝑝
(𝜙)

)
𝑖
𝜙(𝒙𝑖)

𝑇𝜙(𝒙𝑗)(𝑢𝑝
(𝜙)

)
𝑗

𝑁
𝑗=1

𝑁
𝑖=1

 

                 =
∑ (𝑢𝑝

(𝜙)
)
𝑖
ker (𝒙𝑖,𝒚)𝑁

𝑖=1

√∑ ∑ (𝑢𝑝
(𝜙)

)
𝑖
ker (𝒙𝑖,𝒙𝑗)(𝑢𝑝

(𝜙)
)
𝑗

𝑁
𝑗=1

𝑁
𝑖=1

  (7.37) 

7.1.2.3    Brief Comparison between the Two Versions of KDA 

KDA (v1) requires finding the eigenvectors of (𝑹𝑊
(𝜙)

)
−1

𝑹𝐵
(𝜙)

, while KDA (v2) requires finding the 

eigenvectors of (𝑹𝐵
(𝜙)

− 𝛼𝑹𝑊
(𝜙)

). When compared to KDA (v2), KDA (v1) may have the singularity 

problem if 𝑹𝑊
(𝜙)

 is not full-rank. Nevertheless, this problem can be avoided by introducing a 

regularization parameter 𝛼 such that KDA (v1) aims at finding the eigenvectors of (𝑹𝑊
(𝜙)

+ 𝛼𝑰)
−1

𝑹𝐵
(𝜙)

. 

Besides, the kernel-based formulations for KDA (v1) given by (7.20) and (7.28) do not have a one-to-

one correspondence. One 𝒖𝑝
(𝜙)

 solved from (7.28) always corresponds to one 𝒗𝑝
(𝜙)

 solved from (7.20), 

but not vice versa. In contrast, the kernel-based formulations for KDA (v2) given by (7.30) and (7.35) 

have a one-to-one correspondence. 

7.2    Nuisance Attribute Projection 

This section deals with the technique originating from the nuisance attribute projection (NAP), which 

is widely used in speaker verification [74]. The role of NAP is to remove the unwanted information 

(i.e., the nuisance attribute) from the extracted feature vector; for example, the channel information 

embedded in a GSV. Nevertheless, the technique of NAP can be extended to a more general case, 

making it a general projection technique. The relationship between NAP and LDA will also be discussed. 
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7.2.1    Basic Formulation 

Suppose there is a training set of speech samples denoted as {𝒙1, 𝒙2, … 𝒙𝑁}, where 𝑁 is the number of 

training samples, and 𝒙𝑛  is a 𝐷 × 1 vector (such as GSV or i-vector) representing the 𝑛-th speech 

sample. Assume that these speech samples come from different channels, such as different recording 

microphones or different telephone channels. Then, the channel information embedded in the training 

vectors will be a type of noise that will degrade the quality of the training vectors. 

The objective of NAP is to find a projection matrix 𝑽 with a size of 𝐷 × 𝑃, such that after performing 

this projection, most channel information can be removed from the original vector. This objective can 

be achieved by minimizing the objective function 𝑄(𝑽) given by (7.38), where 𝑊𝑖𝑗 is the 𝑖𝑗-th element 

of 𝑾 , which is an 𝑁 × 𝑁  symmetric weight matrix. Thus, in the projected space, the channel 

information is more concentrated. The projected vector 𝒙𝑛
′  corresponding to the vector 𝒙𝑛 is given by 

𝒙𝑛
′ = (𝑰 − 𝑽𝑽𝑇)𝒙𝑛, where the channel information is expected to be projected out [76]. 

 𝑄(𝑽) = ∑ ∑ 𝑊𝑖𝑗‖𝑽𝑇𝒙𝑖 − 𝑽𝑇𝒙𝑗‖2

2𝑁
𝑗=1

𝑁
𝑖=1  (7.38) 

where 

 𝑊𝑖𝑗 = {
1,    𝑖𝑓 𝒙𝑖 𝑎𝑛𝑑 𝒙𝑗 𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.39) 

NAP works well as a channel compensation technique for speaker verification. However, the original 

idea may not be directly applicable to general pattern recognition tasks, as the feature vectors for 

different tasks may not contain the so-called channel information. Fortunately, by simply modifying the 

meaning of the weight matrix given by (7.39) to that given by (7.40), a general projection technique is 

obtained, which can be used to improve the discrimination ability of the original feature vector. In (7.40), 

𝛾 is a nonnegative regularization parameter explained later. The projected vector is then given as 𝒙𝑛
′ =

𝑽𝑇𝒙𝑛. 

 𝑊𝑖𝑗 = {
1,    𝑖𝑓 𝒙𝑖 𝑎𝑛𝑑 𝒙𝑗 𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠

−𝛾, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.40) 
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Using the weight matrix as given by (7.40), 𝑄(𝑽) can also be written as (7.41), where 𝐾 is the number 

of classes and 𝑐𝑘 denotes the 𝑘-th class. 

 𝑄(𝑽) = ∑ ∑ ∑ ‖𝑽𝑇𝒙𝑖 − 𝑽𝑇𝒙𝑗‖2

2
𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − 𝛾 ∑ ∑ ∑ ‖𝑽𝑇𝒙𝑖 − 𝑽𝑇𝒙𝑗‖2

2
𝒙𝑗∉𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  (7.41) 

The expression of the objective function in (7.41) shows that one goal is reducing the pairwise distance 

if the projected vectors come from the same class, and another goal is increasing the pairwise distance 

if the projected vectors come from different classes. This makes the projected vectors closer to each 

other if they belong to the same class, and farther from each other if they belong to different classes. 

The regularization parameter 𝛾 controls the tradeoff between the two goals. We keep referring to this 

projection technique as NAP, even though the original meaning has been changed. 

It is reasonable to restrict the projection directions to have a unit length, i.e., the column vectors in 𝑽 

should have a unit length. The projection matrix can then be obtained by solving the constrained 

optimization problem defined in (7.42), where 𝒗𝑝 is the 𝑝-th column vector in 𝑽, and 𝑃 is the number 

of columns in 𝑽. 

 

min𝑄(𝑽)
𝑠. 𝑡.

𝒗𝑝
𝑇𝒗𝑝 = 1  𝑓𝑜𝑟  𝑝 = 1,2…𝑃

 (7.42) 

The objective function 𝑄(𝑽) can be expanded as 

                     𝑄(𝑽) = ∑ ∑ 𝑊𝑖𝑗(𝒙𝑖 − 𝒙𝑗)
𝑇
𝑽𝑽𝑇(𝒙𝑖 − 𝒙𝑗)

𝑁
𝑗=1

𝑁
𝑖=1  

                     = ∑ ∑ 𝑊𝑖𝑗(𝒙𝑖 − 𝒙𝑗)
𝑇(∑ 𝒗𝑝𝒗𝑝

𝑇𝑃
𝑝=1 )(𝒙𝑖 − 𝒙𝑗)

𝑁
𝑗=1

𝑁
𝑖=1  

                     = ∑ ∑ ∑ 𝑊𝑖𝑗(𝒙𝑖 − 𝒙𝑗)
𝑇𝒗𝑝𝒗𝑝

𝑇(𝒙𝑖 − 𝒙𝑗)
𝑁
𝑗=1

𝑁
𝑖=1

𝑃
𝑝=1  

                     = ∑ 𝒗𝑝
𝑇(∑ ∑ 𝑊𝑖𝑗(𝒙𝑖 − 𝒙𝑗)(𝒙𝑖 − 𝒙𝑗)

𝑇𝑁
𝑗=1

𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1  

                     = ∑ 𝒗𝑝
𝑇(∑ ∑ 𝑊𝑖𝑗(𝒙𝑖𝒙𝑖

𝑇 + 𝒙𝑗𝒙𝑗
𝑇 − 𝒙𝑖𝒙𝑗

𝑇 − 𝒙𝑗𝒙𝑖
𝑇)𝑁

𝑗=1
𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1  

                     = ∑ 𝒗𝑝
𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑖𝒙𝑖

𝑇𝑁
𝑗=1

𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1 + ∑ 𝒗𝑝

𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑗𝒙𝑗
𝑇𝑁

𝑗=1
𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1  
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                         −∑ 𝒗𝑝
𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑖𝒙𝑗

𝑇𝑁
𝑗=1

𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1 − ∑ 𝒗𝑝

𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑗𝒙𝑖
𝑇𝑁

𝑗=1
𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1   

                     = 2∑ 𝒗𝑝
𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑖𝒙𝑖

𝑇𝑁
𝑗=1

𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1 − 2∑ 𝒗𝑝

𝑇(∑ ∑ 𝑊𝑖𝑗𝒙𝑖𝒙𝑗
𝑇𝑁

𝑗=1
𝑁
𝑖=1 )𝒗𝑝

𝑃
𝑝=1  (7.43) 

For simplicity, we may use a data matrix 𝑿  to represent all the training vectors, namely 𝑿 =

[𝒙1  𝒙2  …  𝒙𝑁], which is a 𝐷 × 𝑁 matrix. We may also define a matrix 𝒁𝑊 as given by (7.44), where 

𝒆 is an 𝑁 × 1 vector with all elements being one, and diag{. } is an operation that puts the input vector 

on the principal diagonal of the output diagonal matrix [76]. 

 𝒁𝑊 = diag{𝑾𝒆} − 𝑾 (7.44) 

Using the notations 𝑿 and 𝒁𝑊, 𝑄(𝑽) can be simplified to 

 𝑄(𝑽) = 2∑ 𝒗𝑝
𝑇𝑿𝒁𝑊𝑿𝑇𝒗𝑝

𝑃
𝑝=1  (7.45) 

The constrained optimization problem in (7.42) can be reformulated using a Lagrangian function 

𝐿(𝑽, 𝜆) as given by (7.46), where the constant factor 2 in (7.45) is dropped, and {𝜆1, 𝜆2 …𝜆𝑃} are 

Lagrange multipliers. 

 𝐿(𝑽, 𝜆) = ∑ 𝒗𝑝
𝑇𝑿𝒁𝑊𝑿𝑇𝒗𝑝

𝑃
𝑝=1 − ∑ 𝜆𝑝(𝒗𝑝

𝑇𝒗𝑝 − 1)𝑃
𝑝=1  (7.46) 

Setting the derivative of 𝐿(𝑽, 𝜆) with respect to 𝒗𝑝 to zero yields (7.47), meaning that 𝒗𝑝 is the 𝑝-th 

eigenvector of 𝑿𝒁𝑊𝑿𝑇. The unit-length constraint of 𝒗𝑝 can then be satisfied by normalization. The 

number of projection directions, i.e., 𝑃, is then determined by the number of eigenvectors of 𝑿𝒁𝑊𝑿𝑇. 

 
𝜕𝐿(𝑽,𝜆)

𝜕𝒗𝑝
= 2𝑿𝒁𝑊𝑿𝑇𝒗𝑝 − 2𝜆𝑝𝒗𝑝 = 𝟎    ⟹     𝑿𝒁𝑊𝑿𝑇𝒗𝑝 = 𝜆𝑝𝒗𝑝 (7.47) 

7.2.2    Kernel Extension 

From (7.47), it is noticed that if 𝒗𝑝 is a solution to the eigenvalue problem, it should have the expression 

as given by (7.48), which implies that 𝒗𝑝  is a linear combination of all the training vectors. For 

simplicity, a coefficient vector 𝒖𝑝 is defined, whose dimensionality is 𝑁 × 1. 

 𝒗𝑝 = 𝑿
𝒁𝑊𝑿𝑇𝒗𝑝

𝜆𝑝
= 𝑿𝒖𝑝 (7.48) 
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Substituting 𝒗𝑝 in (7.47) by 𝑿𝒖𝑝 gives 

 𝑿𝒁𝑊𝑿𝑇𝑿𝒖𝑝 = 𝜆𝑝𝑿𝒖𝑝 (7.49) 

Multiplying both sides of (7.49) by 𝑿𝑇 then yields 

 𝑿𝑇𝑿𝒁𝑊𝑿𝑇𝑿𝒖𝑝 = 𝜆𝑝𝑿𝑇𝑿𝒖𝑝 (7.50) 

Since only the inner products of the training vectors are involved in computation, the kernel trick is 

applicable. Suppose we would like to map the original vector 𝒙 to another dimensional space using a 

mapping function 𝜙: 𝒙 ⟼ 𝜙(𝒙), (7.50) becomes (7.51), where 𝜙(𝑿) = [𝜙(𝒙1)  𝜙(𝒙2) …   𝜙(𝒙𝑁)], 

and 𝒖𝑝
(𝜙)

 is the coefficient vector in the mapped space 𝜙. 

 𝜙(𝑿)𝑇𝜙(𝑿)𝒁𝑊𝜙(𝑿)𝑇𝜙(𝑿)𝒖𝑝
(𝜙)

= 𝜆𝑝𝜙(𝑿)𝑇𝜙(𝑿)𝒖𝑝
(𝜙)

 (7.51) 

Define a kernel matrix 𝚽, whose 𝑖𝑗-th element is the inner product of 𝜙(𝒙𝑖) and 𝜙(𝒙𝑗), and is expressed 

using a kernel function ker (𝒙𝑖, 𝒙𝑗) as given by (7.52), 

 Φ𝑖𝑗 = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗) = ker (𝒙𝑖 , 𝒙𝑗) (7.52) 

Then (7.51) can be simplified to (7.53), which is the kernel-based NAP (KNAP). 

 𝚽𝒁𝑊𝚽𝒖𝑝
(𝜙)

= 𝜆𝑝𝚽𝒖𝑝
(𝜙)

 (7.53) 

When the mapping function is the simple identity mapping, namely 𝜙(𝒙) = 𝒙, (7.53) then becomes 

(7.50). Specifying a mapping 𝜙  or a kernel function ker (. , . ), the coefficient vector 𝒖𝑝
(𝜙)

 can be 

obtained by solving the generalized eigenvalue problem in (7.53). The number of projection directions, 

namely, 𝑃, is then the number of eigenvectors. In the mapped space 𝜙, the relationship between the 

projection direction 𝒗𝑝
(𝜙)

 and the coefficient vector 𝒖𝑝
(𝜙)

 is given by (7.54). 

 𝒗𝑝
(𝜙)

= 𝜙(𝑿)𝒖𝑝
(𝜙)

 (7.54) 
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Having found 𝒖𝑝
(𝜙)

 for 𝑝 = 1,2…𝑃, for a testing vector 𝒚, its corresponding projected vector, denoted 

as 𝒚′ , can be computed using (7.55), where 𝑦𝑝
′  denotes the 𝑝-th element of 𝒚′ , (𝑢𝑝

(𝜙)
)
𝑖
 is the 𝑖-th 

element of 𝒖𝑝
(𝜙)

, and 𝑁 is the number of training vectors. The dimensionality of 𝒚′ will be 𝑃 × 1. 

 𝑦𝑝
′ = (𝒗𝑝

(𝜙)
)
𝑇
𝜙(𝒚) = (𝜙(𝑿)𝒖𝑝

(𝜙)
)
𝑇
𝜙(𝒚) = (𝒖𝑝

(𝜙)
)
𝑇
𝜙(𝑿)𝑇𝜙(𝒚) = ∑ (𝑢𝑝

(𝜙)
)
𝑖
ker (𝒙𝑖, 𝒚)𝑁

𝑖=1  

  (7.55) 

In order to fulfill the unit-length constraint of the projection directions, although it may be difficult to 

normalize the projection vector 𝒗𝑝
(𝜙)

 in the mapped space 𝜙, it is feasible to implicitly normalize 𝒗𝑝
(𝜙)

 

through normalizing 𝑦𝑝
′  as given by (7.56), which requires 𝒖𝑝

(𝜙)
 instead of 𝒗𝑝

(𝜙)
. 

 
𝑦𝑝

′

‖𝒗𝑝
(𝜙)

‖
2

=
(𝒗𝑝

(𝜙)
)
𝑇
𝜙(𝒚)

√(𝒗𝑝
(𝜙)

)
𝑇
𝒗𝑝

(𝜙)
=

(𝒖𝑝
(𝜙)

)
𝑇
𝜙(𝑿)𝑇𝜙(𝒚)

√(𝒖𝑝
(𝜙)

)
𝑇
𝜙(𝑿)𝑇𝜙(𝑿)𝒖𝑝

(𝜙)
=

∑ (𝑢𝑝
(𝜙)

)
𝑖
ker (𝒙𝑖,𝒚)𝑁

𝑖=1

√(𝒖𝑝
(𝜙)

)
𝑇
𝚽𝒖𝑝

(𝜙)
 (7.56) 

7.2.3    Relationship with LDA 

The objective function of NAP is based on the pairwise Euclidean distance, which is the distance 

between two vectors. In contrast, the objective function of LDA is based on the cluster-center distance, 

which is the distance between two clusters of vectors. Although NAP and LDA seem uncorrelated, there 

does exist some relationship between them. 

Given a set of training vectors {𝒙1, 𝒙2, … 𝒙𝑁} belonging to 𝐾 classes, where the 𝑘-th class, denoted as 

𝑐𝑘, comprises 𝑁𝑘 training vectors. Denote 𝒙𝑛
′  as the projected version of 𝒙𝑛, 𝝁 as the mean of all the 

projected vectors, and 𝝁𝑘 as the mean of the projected vectors belonging to class 𝑘, we have 

 

𝒙𝑛
′ = 𝑽𝑇𝒙𝑛

𝝁 =
1

𝑁
∑ 𝒙𝑛

′𝑁
𝑛=1

𝝁𝑘 =
1

𝑁𝑘
∑ 𝒙𝑛

′
𝒙𝑛∈𝑐𝑘

 (7.57) 

The objective function of NAP can then be expressed as (7.58), which comprises two parts denoted as 

Δ1 and Δ2. 
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 𝑄𝑁𝐴𝑃(𝑽) = ∑ ∑ ∑ ‖𝒙𝑖
′ − 𝒙𝑗

′‖
2

2
𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − 𝛾 ∑ ∑ ∑ ‖𝒙𝑖

′ − 𝒙𝑗
′‖

2

2
𝒙𝑗∉𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 = Δ1 − 𝛾Δ2 

  (7.58) 

In the following, we show how to relate NAP to LDA through reformulating Δ1 and Δ2. Δ1 can be 

reformulated in terms of 𝝁𝑘 as given by (7.59). 

              Δ1 = ∑ ∑ ∑ ‖𝒙𝑖
′ − 𝒙𝑗

′‖
2

2
𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 = ∑ ∑ ∑ ‖(𝒙𝑖

′ − 𝝁𝑘) − (𝒙𝑗
′ − 𝝁𝑘)‖

2

2
𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

              = ∑ ∑ ∑ (‖𝒙𝑖
′ − 𝝁𝑘‖2

2 + ‖𝒙𝑗
′ − 𝝁𝑘‖

2

2
− 2(𝒙𝑖

′ − 𝝁𝑘)𝑇(𝒙𝑗
′ − 𝝁𝑘))𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

              = ∑ 𝑁𝑘 ∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + ∑ 𝑁𝑘 ∑ ‖𝒙𝑗

′ − 𝝁𝑘‖
2

2
𝒙𝑗∈𝑐𝑘

𝐾
𝑘=1  

                  −2∑ ∑ ∑ (𝒙𝑖
′ − 𝝁𝑘)𝑇(𝒙𝑗

′ − 𝝁𝑘)𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

              = 2∑ 𝑁𝑘 ∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − 2∑ ∑ (𝒙𝑖

′ − 𝝁𝑘)𝑇 ∑ (𝒙𝑗
′ − 𝝁𝑘)𝒙𝑗∈𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

              = 2∑ 𝑁𝑘 ∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1   (7.59) 

Similarly, Δ2 can be reformulated in terms of 𝝁𝑘 and 𝝁 as given by (7.60). 

     Δ2 = ∑ ∑ ∑ ‖𝒙𝑖
′ − 𝒙𝑗

′‖
2

2
𝒙𝑗∉𝑐𝑘𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 = ∑ ∑ ‖𝒙𝑖

′ − 𝒙𝑗
′‖

2

2𝑁
𝑗=1

𝑁
𝑖=1 − Δ1 

     = ∑ ∑ ‖(𝒙𝑖
′ − 𝝁) − (𝒙𝑗

′ − 𝝁)‖
2

2𝑁
𝑗=1

𝑁
𝑖=1 − Δ1 

     = ∑ ∑ ‖𝒙𝑖
′ − 𝝁‖2

2𝑁
𝑗=1

𝑁
𝑖=1 + ∑ ∑ ‖𝒙𝑗

′ − 𝝁‖
2

2𝑁
𝑗=1

𝑁
𝑖=1 − 2∑ ∑ (𝒙𝑖

′ − 𝝁)𝑇(𝒙𝑗
′ − 𝝁)𝑁

𝑗=1
𝑁
𝑖=1 − Δ1 

     = 2𝑁 ∑ ‖𝒙𝑖
′ − 𝝁‖2

2𝑁
𝑖=1 − 2∑ (𝒙𝑖

′ − 𝝁)𝑇 ∑ (𝒙𝑗
′ − 𝝁)𝑁

𝑗=1
𝑁
𝑖=1 − Δ1 

     = 2𝑁 ∑ ‖𝒙𝑖
′ − 𝝁‖2

2𝑁
𝑖=1 − Δ1 

     = 2𝑁 ∑ ∑ ‖(𝒙𝑖
′ − 𝝁𝑘) + (𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − Δ1 

     = 2𝑁 ∑ ∑ ‖(𝒙𝑖
′ − 𝝁𝑘)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ ∑ ‖(𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

         +4𝑁 ∑ ∑ (𝒙𝑖
′ − 𝝁𝑘)𝑇(𝝁𝑘 − 𝝁)𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − Δ1 
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     = 2𝑁 ∑ ∑ ‖(𝒙𝑖
′ − 𝝁𝑘)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ ∑ ‖(𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

         +4𝑁 ∑ (∑ (𝒙𝑖
′ − 𝝁𝑘)𝑇

𝒙𝑖∈𝑐𝑘
)(𝝁𝑘 − 𝝁)𝐾

𝑘=1 − Δ1 

     = 2𝑁 ∑ ∑ ‖(𝒙𝑖
′ − 𝝁𝑘)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ ∑ ‖(𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − Δ1 

     = 2𝑁 ∑ ∑ ‖(𝒙𝑖
′ − 𝝁𝑘)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ ∑ ‖(𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − 2∑ 𝑁𝑘 ∑ ‖𝒙𝑖

′ − 𝝁𝑘‖2
2

𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

     = 2∑ (𝑁 − 𝑁𝑘)∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ ∑ ‖(𝝁𝑘 − 𝝁)‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

     = 2∑ (𝑁 − 𝑁𝑘)∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ 𝑁𝑘‖(𝝁𝑘 − 𝝁)‖2

2𝐾
𝑘=1  (7.60) 

Using the reformulations of Δ1 and Δ2, 𝑄𝑁𝐴𝑃(𝑽) can be expressed as 

                     𝑄𝑁𝐴𝑃(𝑽) = Δ1 − 𝛾Δ2 

                     = 2∑ 𝑁𝑘 ∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  

                         −𝛾(2∑ (𝑁 − 𝑁𝑘)∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 + 2𝑁 ∑ 𝑁𝑘‖(𝝁𝑘 − 𝝁)‖2

2𝐾
𝑘=1 ) 

                     = ∑ (2𝑁𝑘 − 2𝛾(𝑁 − 𝑁𝑘))∑ ‖𝒙𝑖
′ − 𝝁𝑘‖2

2
𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 − ∑ 2𝛾𝑁𝑁𝑘‖(𝝁𝑘 − 𝝁)‖2

2𝐾
𝑘=1  (7.61) 

Recalling that the objective function of LDA (v2) is given by 

                     𝑄𝐿𝐷𝐴(𝑽) = tr{𝑪𝐵} − tr{𝛼𝑪𝑊} 

                     = tr{∑ 𝑁𝑘(𝝁𝑘 − 𝝁)(𝝁𝑘 − 𝝁)𝑇𝐾
𝑘=1 } − tr{𝛼 ∑ ∑ (𝒙𝑖

′ − 𝝁𝑘)(𝒙𝑖
′ − 𝝁𝑘)𝑇

𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 } 

                     = tr{∑ 𝑁𝑘(𝝁𝑘 − 𝝁)𝑇(𝝁𝑘 − 𝝁)𝐾
𝑘=1 } − tr{𝛼 ∑ ∑ (𝒙𝑖

′ − 𝝁𝑘)𝑇(𝒙𝑖
′ − 𝝁𝑘)𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1 } 

                     = ∑ 𝑁𝑘(𝝁𝑘 − 𝝁)𝑇(𝝁𝑘 − 𝝁)𝐾
𝑘=1 − 𝛼 ∑ ∑ (𝒙𝑖

′ − 𝝁𝑘)𝑇(𝒙𝑖
′ − 𝝁𝑘)𝒙𝑖∈𝑐𝑘

𝐾
𝑘=1  (7.62) 

Considering that NAP aims at minimizing 𝑄𝑁𝐴𝑃(𝑽) whereas LDA (v2) aims at maximizing 𝑄𝐿𝐷𝐴(𝑽), 

NAP and LDA (v2) are equivalent under the condition given by (7.63), which demonstrates the 

relationship between the two projection techniques. 

 
2𝑁𝑘−2𝛾(𝑁−𝑁𝑘)

2𝛾𝑁𝑁𝑘
=

𝛼

𝑁𝑘
    ⟹     𝛾 =

𝑁𝑘

(1+𝛼)𝑁−𝑁𝑘
 (7.63) 



120 

 

According to (7.63), when the value of 𝛼 varies within [0,∞), in order to maintain the equivalence, 𝛾 

will vary within [
𝑁𝑘

𝑁−𝑁𝑘
, 0). 

7.3    Brief Comparison between LDA and NAP 

Both LDA and NAP aim at finding a projection matrix that realizes two targets. The first target is to 

shorten the within-class distances (i.e., shorten the distances between the projected vectors belonging 

to the same class), and the second target is to increase the between-class distances (i.e., increase the 

distances between the projected vectors belonging to different classes). Specifically, LDA realizes the 

first target by shortening the distances between the projected vectors and their class centers, whereas 

NAP realizes the first target by shortening the distances between pairs of projected vectors belonging 

to the same class. LDA realizes the second target by increasing the distances between different class 

centers, whereas NAP realizes the second target by increasing the distances between pairs of projected 

vectors belonging to different classes. 

As the objective function of NAP is based on pairwise distances, a good way of determining the weight 

of each pairwise distance may lead to a good performance. From this perspective, the design of the 

objective function of NAP is more flexible than that of LDA. Nonetheless, the weight parameter can 

also be included in the expression of the scatter matrices in LDA, which makes the design of LDA 

flexible, too. 

 

 

 

 

 

 

 



121 

 

 

Chapter 8    Feature Projection Techniques: 

Experimental Comparison 

 

This chapter evaluates the effectiveness of NAP, KNAP, LDA, and KDA as a projection technique for 

improving the discrimination ability of the raw feature representation. A speaker identification task is 

done using the Ahumada dataset. The raw feature representations are 1280-dimensional GSV with 𝛽 =

0 and 1280-dimensional i-vector estimated with 5 EM iterations, based on a 64-mixture UBM. The 

kernel-based projection (i.e., KNAP and KDA) adopts a Gaussian kernel defined by (8.1), where 𝑑 is 

the kernel parameter being varied in the experiments. The property of the Gaussian kernel is that it 

implicitly maps the raw feature representation from its original feature space to an infinite-dimensional 

space (i.e., 𝜙(𝒙𝑖) has a dimensionality of infinity) [106]. 

 ker(𝒙𝑖, 𝒙𝑗) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗) = exp {−

‖𝒙𝑖−𝒙𝑗‖
2

𝑑
} (8.1) 

Since the projection technique ends up solving an eigenvalue problem, the total number of possible 

projection directions are the total number of eigenvectors. In our experiments, all the projection 

directions are used instead of choosing several most significant ones (e.g., choosing the eigenvectors 

with large eigenvalues), as we believe the more the projection directions, the more the class information 

the projected vectors will carry. This results in a dimensionality of 1280 × 1 (i.e., the dimensionality 

of the raw feature representation) for NAP and LDA, and a dimensionality of 1199 × 1 (i.e., the 

number of training data) for KNAP and KDA. 

The experimental results using GSV as the raw feature representation are shown in Figures 8.1 ~ 8.3. 

Figure 8.1 compares the linear SVM and the kernel SVM. Different values of the parameter 𝐶 and the 

kernel parameter 𝑑 are tried. Figure 8.2 shows the effectiveness of applying NAP and KNAP to GSV. 
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Different values of the regularization parameter 𝛾 and the kernel parameter 𝑑 are tried. Figure 8.3 

shows the effectiveness of applying LDA and KDA to GSV. Both versions of LDA and KDA are 

investigated, and the corresponding regularization parameter 𝛼 and the kernel parameter 𝑑 vary. After 

applying the projection techniques, a linear SVM with 𝐶 = 1 is employed as the classifier. 

As shown in Figure 8.1, linear SVM is insensitive to different values of 𝐶, so it is safe to set 𝐶 = 1 in 

general. However, this is not true for SVM with the Gaussian kernel. Gaussian kernel maps GSV to an 

infinite-dimensional space. In that extremely high dimensional space, the mapped feature vectors should 

be linearly separable. Therefore, a large value of 𝐶 should be chosen to ensure a small value of 𝜉𝑛, so 

that there are few training data lying on the wrong side of the separating hyperplanes in the infinite-

dimensional space. 

As shown in Figure 8.2, NAP does not take effect at all, and KNAP gives even worse performance. 

Albeit NAP resembles LDA in some sense, the way it finds out the projection directions is ineffective. 

Although both NAP and LDA find the projection directions by finding the eigenvectors, the choices of 

the eigenvectors are not unique. Thus, the way of constructing the objective function does matter. In 

addition, the choice of the value of the regularization parameter 𝛾  does not exert any influence. 

Nevertheless, when compared to LDA, NAP is more flexible in that the weight coefficient 𝑊𝑖𝑗 can be 

dependent on each pair of training data (𝒙𝑖 , 𝒙𝑗), such that different pairs of data are weighted differently. 

 

Figure 8.1    Linear SVM vs. kernel SVM using GSV as the raw feature representation. 
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As shown in Figure 8.3, both versions of LDA can significantly improve the performance of GSV (more 

than 10% in accuracy). LDA (v1) seems to be more favorable than LDA (v2), but is more sensitive to 

the choice of the regularization parameter. KDA is worse than LDA, which is similar to the observation 

on NAP and KNAP, indicating that an implicit feature mapping before the projection seems 

unnecessary, as GSV already has a high dimensionality. 

The large variation of the performance for different values of 𝛼  indicates the importance of the 

regularization parameter. Actually, 𝛼  has different meanings for LDA (v1) and LDA (v2). Both 

formulations include 1) the scatter matrix 𝑺𝑊  representing the within-class aggregation, and 2) the 

scatter matrix 𝑺𝐵 representing the between-class separation. Specifically, LDA (v1) aims at finding the 

eigenvectors of (𝑺𝑊 + 𝛼𝑰)−1𝑺𝐵, where the larger the value of 𝛼, the weaker the influence of 𝑺𝑊, and 

the stronger the influence of 𝑺𝐵. So, for LDA (v1), the larger the value of 𝛼, the more it focuses on the 

 

   (a)      (b) 

Figure 8.3    LDA vs. KDA using GSV as the raw feature representation. (a) LDA v1 and KDA v1. 

(b) LDA v2 and KDA v2. 
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Figure 8.2    NAP vs. kernel NAP using GSV as the raw feature representation. 
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separation of different classes in the projected space. In contrast, LDA (v2) aims at finding the 

eigenvectors of (𝑺𝐵 − 𝛼𝑺𝑊), where the larger the value of 𝛼, the stronger the influence of 𝑺𝑊. So, for 

LDA (v2), the larger the value of 𝛼, the more it focuses on the aggregation of the projected vectors 

within the same class. 

The experimental results using i-vector as the raw feature representation are shown in Figure 8.4 and 

Figure 8.5. Figure 8.4 compares the linear SVM and the kernel SVM, while Figure 8.5 shows the 

effectiveness of applying LDA and KDA to i-vector. On using i-vector, the kernel SVM may offer small 

improvements over the linear SVM with suitably chosen values of 𝐶 and 𝑑 as shown in Figure 8.4. 

Actually, the combination of i-vector and SVM is better than the combination of GSV and SVM by 

comparing Figure 8.1 and Figure 8.4. Still, i-vector leaves less room for LDA to further improve its 

performance (about 3% improvement in accuracy) as shown in Figure 8.5, when compared with GSV 

 

   (a)      (b) 

Figure 8.5    LDA vs. KDA using i-vector as the raw feature representation. (a) LDA v1 and KDA 

v1. (b) LDA v2 and KDA v2. 
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Figure 8.4    Linear SVM vs. kernel SVM using i-vector as the raw feature representation. 
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(more than 10% improvement in accuracy) as shown in Figure 8.3. The model assumption of i-vector 

states that the latent vector follows a Gaussian distribution, which implies the elements in different 

dimensions of an i-vector are supposed to be independent of each other. However, the projection 

technique finds the projected space by exploiting the relationship between different elements in the raw 

feature representation, and thus may fail when i-vector is used, whose elements are in principle 

decorrelated. This phenomenon reveals that the projection techniques highly depend on the 

characteristics of the raw feature representation. 
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Chapter 9    Conclusion 

 

9.1    Major Findings 

In this thesis, we focus on acoustic and speech signal classification. Three fundamental parts composing 

a classification system are investigated, which are 1) feature representations, 2) feature transformation 

techniques, and 3) classifiers. All these parts are important and influencing one another. 

The feature representation captures the characteristics of an acoustic sample. The information it carries 

should be abundant, which requires its dimensionality to be high. Example high-dimensional feature 

representations include GSV and i-vector. GSV is obtained by MAP adapting the GMM-based UBM, 

so its computation is quite efficient. However, its dimensionality is determined by the number of 

mixture components in the GMM, which is unchangeable when the GMM is fixed. I-vector is obtained 

by estimating an FA model from the GMM, which requires estimating extra model parameters. As the 

size of the factor-loading matrix in the FA can be large, the computation can be inefficient. Nonetheless, 

the dimensionality of i-vector depends on the dimensionality of the latent vector in the FA, which is 

independent of the number of mixture components in the GMM, and thus is changeable. 

To make a compromise between the efficiency in computation and the flexibility in dimensionality, we 

propose the MFALV, which is obtained by estimating an MFA from the GMM. Estimating the model 

parameters of the MFA is more efficient than that of the FA, as the size of the factor-loading matrix in 

the MFA is small. Nonetheless, the dimensionality of MFALV is proportional to the number of mixture 

components, so it is changeable but not as flexible as that of i-vector. The experimental results on two 

speaker identification tasks show that the performance of MFALV is comparable to or even better than 

that of i-vector. In brief, GSV has the highest computation efficiency, i-vector has the best flexibility in 

dimensionality, while MFALV lies in between. Different feature representations have their own 

strengths and weaknesses. 
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Observing that GSV, i-vector and MFALV are all based on a GMM-based universal background model, 

we propose the generic supervector, which is the generalization of GSV and MFALV. I-vector can then 

be obtained by post-processing the generic supervector. The formulation of the generic supervector 

provides a general design framework, which helps design new types of feature representations. Since 

the generic supervector is the weighted sum of a mapped vector and a calibration vector, it can be used 

to interpret the feature representation produced by a convolutional layer in a classic CNN. The inclusion 

of the calibration vector also helps intuitively explain the robustness of the residual network. 

SVM and PLDA are two widely used classification models for acoustic and speech signal classification 

tasks. While SVM has been a mature classification model, PLDA has a scalability issue that hinders it 

from efficiently handling large numbers of training data, especially when the data have high 

dimensionality. Facing this issue, we propose a scalable formulation such that PLDA can efficiently 

make predictions even if the number of training data is large. Despite its superior performance for doing 

speaker identification tasks, PLDA does a bad job on acoustic scene classification tasks, probably owing 

to the violation of the model assumption. Besides, building a PLDA model consumes much more time 

than building an SVM. 

The dictionary-based classifier, such as the SR-based classifier and the CR-based classifier, is a model-

free classifier. When compared to SR, CR is more computationally efficient. In order to further boost 

the discrimination ability of CR, we propose the DCR, which provides improvements over CR in both 

speaker identification and acoustic scene classification tasks. The time consumption of DCR is much 

lower than that of PLDA and slightly higher than that of SVM. Four datasets have been used to evaluate 

the performance of different classifiers. The experimental results demonstrate that, in general, no one 

classifier always surpasses the others in all tasks. 

We have also investigated two probabilistic models, viz. GMM and RBM. The model assumption 

determines that GMM is good at handling low-dimensional decorrelated feature vectors, whereas RBM 

is good at handling high-dimensional correlated feature vectors. As a probability estimator, GMM is 

better than RBM, which is demonstrated by our experiments on acoustic scene classification. 

Nevertheless, the most important use of RBM is working as the building block for a DBN. By adding 
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a softmax layer at the end of a DBN, the DBN-DNN is formed, which can then be fine-tuned for doing 

classification tasks. It is noteworthy that tuning the softmax layer only cannot offer a good performance. 

The improvement is observed only by tuning all the layers of the DBN-DNN. This observation indicates 

that the DBN trained in an unsupervised manner does not produce an expressive feature representation. 

In addition, high dimensionality of the input feature vector is very important for RBM and DBN-DNN 

to effectively learn the relationship between the elements inside the input feature vector. If the 

dimensionality of the input feature vector is low, increasing the depth of DBN-DNN may even degrade 

its performance. 

The discriminative classification model, such as SVM, assumes the data to be separable. So, if the data 

are inseparable, SVM may fail. The generative classification models, such as GMM, do not require the 

data to be separable. The model is constructed based on the characteristics of all the training data in a 

class, so the decision of whether a vector should belong to a class, is made by the joint distribution of 

the vector and all the training data in that class. In this case, the boundaries of different classes can be 

overlapped. 

Two widely used projection techniques, viz. LDA and NAP, are analyzed in this thesis. As the 

generalization of LDA and NAP, the kernel-based formulations for LDA and NAP, viz. KDA and 

KNAP respectively, are derived in detail. We then analyze the relationship between LDA and NAP, 

proving that NAP is equivalent to a formulation of LDA under some condition. It is also found that 

using a non-linear kernel may not improve the effectiveness of the projection technique, as sometimes 

the implicit feature mapping provided by the kernel is unnecessary. Nevertheless, the kernel-based 

formulation generalizes the original formulation and provides the possibility of trying different kernel 

functions for implicit feature mappings. 

As a projection technique, both LDA and KDA can significantly improve the performance of GSV for 

speaker identification tasks, but NAP and KNAP do not take any effect at all. Although the objective 

function of NAP is equivalent to that of LDA under some condition, the way NAP finds the projection 

directions is not as effective as LDA. However, both LDA and KDA fail on i-vector, as the elements in 

an i-vector are approximately independent of each other, which probably hinders the projection 
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techniques to exploit the relationship between different elements. This phenomenon reveals that the 

effectiveness of the projection techniques highly depends on the structure of the feature representation. 

Some feature representations work well but leave little space for the projection technique to offer 

improvements, while some feature representations work poorly but make room for the projection 

technique to take effect. 

In summary, different feature representations have different characteristics in terms of effectiveness and 

efficiency. It is indeed difficult for a feature representation to hold the highest effectiveness and the 

highest efficiency at the same time. All have their own strengths and weaknesses. The effectiveness of 

the feature transformation techniques also highly depends on the characteristics of the feature 

representation. Similarly, no one classifier can always surpass the others in all cases. Different 

classifiers make different model assumptions on the feature representation, so the most important thing 

is to choose the most suitable combination of the feature representation and the classifier, such that the 

assumptions of both are matched. 

9.2    Future Directions 

The formulation of the generic supervector provides a general design framework. Using different 

background models or choosing different feature mapping functions may yield different types of feature 

representations. For instance, the background model can be a GMM, an MFA, a DBN, a DNN or the 

combination of them. Future research can then be focused on the design of heterogenous supervectors, 

where the background model is composed of different types of models. The generic supervector may 

also have multiple levels, similar to the structure of a DNN. However, the major difference between a 

deep supervector and a DNN is that different levels in a deep supervector can be based on different 

types of background models and different construction mechanisms. 

Including a kernel in SVM has been shown to be effective for long. The kernel trick can also be 

combined with other existing techniques, as long as the objective function only involves the inner 

products of the feature vectors, such as the sparse representation and the collaborative representation. 

It is also feasible to apply the kernel trick to a neural network, as a neural network performs matrix 
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multiplications layer by layer. We may also apply the kernel trick to a multivariate GMM if different 

variables share the same variance [108], which enables GMM to model feature distributions in the 

kernel space instead of the original feature space. If using the Gaussian kernel, the GSV, which is based 

on a GMM, will have infinite dimensions. 
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