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ABSTRACT 

This dissertation consists of four related studies on the assessment of decentralized 

welfare-maximizing airport congestion policies involving (grandfathered) slot policy 

and pricing policy. Different demand structures and airport networks are considered in 

the presence of origin-destination passengers. These studies capture that local and non-

local origin-destination passengers may have one or two destinations to choose from, 

in which the two destinations may or may not be considered as substitutes. This 

dissertation shows that even a small variation can fundamentally change the analysis 

and the assessment of the congestion policies. 

The first study considers networks with two or three airports. The results show 

that equilibrium policies involve slots when airport profits do not matter and pricing 

policies when airport profits matter. The main results show that in the presence of 

congestion effects, equilibrium slot policies will lead to too high and equilibrium 

pricing policies to too low passenger quantities relative to the first best outcome that 

maximizes the welfare of all airport regions.  

The second study considers a stylized airport network with two airports 

designed to clearly identify the role of local and non-local passengers. The analysis 

shows that the local welfare-maximizing slot quantity can coincide with the first-best 

outcome whereas this is impossible in the case of pricing policy. Whether the outcomes 

coincide in the case of slot policy depends on the shares of inframarginal and marginal 

local and non-local passengers. The results provide clear insights on the reasons why 

slot quantities are found to be excessive in the three-airport network considered in the 

first study. 

The third study is an extension of the analysis of the three-airport network 

considered in the first study. This extension involves a variation of the demand 

structure in the sense that the air services offered at the congested airports are 
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considered as imperfect substitutes whereas they are not considered as substitutes in 

the first study. The analysis shows that the presence of substitute air services is a 

necessary condition for equilibrium slot quantities to reach the first-best outcome. The 

results derived from the second study help understand the reasons why equilibrium 

slot quantities can lead to first-best outcome. Whereas equilibrium pricing levels will 

always be too high relative to the first-best prices independent of the presence or 

absence of substitute air services. 

By contrast with the third study, the fourth study proceeds with the 

consideration of substitute air services for non-local passengers in a three-airport 

network to concentrate on the role of airport competition. The results show that airport 

competition will lead to too low equilibrium slot quantities in the case of slot policies, 

or too low equilibrium prices in the case of pricing policies, to maximize the total 

welfare of the two congested airports. The results further show that slot policies can 

lead to first-best outcome that maximizes the total welfare of three airport regions. 

Whereas pricing policies are too strict with too high equilibrium prices relative to the 

first-best outcome.
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CHAPTER 1 

INTRODUCTION 

In 2018, there were around 4.38 billion aviation passengers carried worldwide. Among 

the heavy air transport traffic, close to 4 billion trips were origin-destination trips. The 

domestic market in China provided the largest incremental increase globally, adding 

just under 50 million trips. Whereas the domestic market in the US continued to be the 

world’s largest single origin-destination market with almost 590 million trips 

undertaken (IATA, 2019b). One reason for the fast growth in origin-destination trips 

is the overall development of air transport market that brings in sufficient demand to 

justify point-to-point flying instead of relying on hub-and-spoke flying. Another 

reason is the development of aircraft technology. The introduction of new aircraft, such 

as Boeing787 and A350, leads to a reduction in maintenance costs and an increase in 

fuel efficiency, allowing more point-to-point flying. 

Origin-destination passengers, along with transfer passengers, will continue 

growing fast in number and will probably outpace the capacity growth in the long term. 

Therefore, increasing airport delays are expected in the future. This highlights that 

airport congestion is a relevant problem in practice, despite of the devastating effects 

of the Coronavirus outbreak and the corresponding international lockdowns in 2020, 

which will slow down the growth of the aviation industry for years (for example, 

Pearce, 2020, and Czerny et al., 2020). 

Cirium (2020)'s record of global departure performance in 2019 indicates that 

the average delay time for the top 20 global airports was 50.7 minutes for around 

364,000 delayed flights. The Federal Aviation Administration (2020b) estimated that 

the airline cost for an hour of delay ranges from about $1,400 to $4,500 and that 

passenger time valuations range from $35 to $63 per hour. These numbers indicate that 
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air transport delays are costly,1  which highlights the importance for airport congestion 

policies. 

Many airports are utilizing “slots” to mitigate delays by imposing an upper 

limit on the number of flight movements per period (for example, 30 minutes). An 

airport slot (or simply “slot”) is “a permission given by a coordinator for a planned 

operation to use the full range of airport infrastructure necessary to arrive or depart at 

a Level 3 airport on a specific date and time” (IATA, 2019c). Airports can control 

delays and congestion effects by ensuring that the scheduled air traffic does not exceed 

the “declared airport capacity”.2 There are around 204 airports using slots worldwide 

serving around 43 percent of the passengers (IATA, 2019b). Interestingly, only three 

airports in the US---John F. Kennedy International Airport (JFK), LaGuardia Airport 

(LGA), and Ronald Reagan Washington National Airport (DCA)---currently make use 

of slots (Federal Aviation Administration, 2020b). Most airports in the US allocate 

their capacity on a first-come-first-serve basis. This includes Hartsfield-Jackson 

Atlanta International Airport (ATL), which was the biggest airport in the world in 

terms of passenger numbers prior to the Coronavirus outbreak. 

Alternatively, airports may increase airport charges to suppress demand and 

reach desirable levels of delay (Daniel, 1995; Brueckner, 2002; Pels and Verhoef, 

2004; Zhang and Zhang, 2006; Basso, 2008; Czerny and Zhang, 2011, 2014a and 

2014b). In contrast to quantity-based policies such as slots, the proposed pricing 

policies can hardly be found in practice (Zhang and Czerny, 2012). This could be a 

consequence of the distributional effects of airport congestion policies. Whereas 

 
1 Ball et al. (2010) estimated the cost of air transportation delay in the US to be $31.2 billion in 2007. 

2 A few factors including the number and layout of runways, meteorological conditions, traffic mix 

characteristics, and the regulatory environment (Gillen, Jacquillat and Odoni, 2016) decide the declared 

airport capacity per time unit. 
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pricing policies will lead to higher payments from the airlines to airports, slot policies 

can avoid such distributional effects by using grandfather rights (for example, Czerny 

and Lang, 2019). 

Another defining feature of air transport industry, besides the importance of 

airport slots and grandfathering, is that airports are operating in a network and typically 

owned and controlled by local governments.3 This suggests that airports presumably 

distinguish between local and non-local passengers, leading to the maximization of the 

local airport’s welfare as opposed to the first-best outcome that maximizes the total 

welfare across all airport regions. Therefore, the local welfare-maximizing policy 

exhibits a feature of decentralized decision making and has an impact not only on the 

non-local passengers who use the local airport but also on other airports that may or 

may not necessarily have direct flights to the local airport. One example for the latter 

case is to consider substitute destinations for non-local passengers. A tightening of 

slots at the local airport will drive non-local passengers to fly to other airports, adding 

to the congestion of other airports. Destination choices are usually highly dependent 

on the prices, that is, passengers may choose to fly to one destination if the trip is cheap 

and convenient relative to trips to other destinations. 

All the features in the air transport market mentioned above motivate the 

 
3 In North America, only one percent of airports involve private sector participation, whereas this share 

reaches between 11 and 75 percent outside North America (Airport Council International, 2017). 

Substitute air 

services 

Type of 

passengers 

Number of airports 

two three 

one congested, one 

uncongested 

two 

uncongested 

two congested, one 

uncongested 

no 
locals 

Chapter 3 Chapter 2 
non-locals 

yes 
locals  Chapter 4 

non-locals  Chapter 5 
Table 1: A summary of different demand structures and airport networks considered in each chapter 

that arises from the four studies. 
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researches on the assessment of decentralized welfare-maximizing airport congestion 

policies involving (grandfathered) slot policy and pricing policy in the presence of 

origin-destination passengers. Different demand structures and airport networks are 

considered in this dissertation in the sense that local and non-local origin-destination 

passengers may have one or two destinations to choose from, in which the two 

destinations may or may not be considered as substitutes. This dissertation shows that 

even a small variation in these demand structures and airport networks can 

fundamentally change the analysis and the assessment of the congestion policies. Table 

1 summarizes the different demand structures and airport networks considered in each 

chapter that arises from the four studies, which will be discussed in detail as follows. 

Chapter 2 arises from Czerny and Lang (2019) and considers networks with 

two or three complementary airports. In each case, two congested airports are present 

and independently choose between slot and pricing policies. The results show that 

equilibrium policies involve slots when airport profits do not matter and pricing 

policies when airport profits matter. This justifies the consideration of slots and pricing 

policies in the whole dissertation. The results further show that the equilibrium slot 

policies reach the first-best passenger quantities when congestion effects are absent. 

Otherwise, equilibrium slot policies will lead to excessive and equilibrium pricing 

policies to too low passenger quantities relative to the first best outcome that 

maximizes the welfare of all airport regions. The analysis formally distinguishes the 

sources for the different outcomes under slot and pricing policies by distinguishing 

between a variable effect and a distribution effect. The variable effect captures that 

decision variables are quantities in the case of slot policies and prices in the case of 

pricing policies. The distribution effect captures that airport slot allocation is based on 

grandfather rules. 

Chapter 3 arises from Lang and Czerny (2020a) and considers a stylized airport 
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network with two airports designed to clearly identify the role of local and non-local 

passengers. The analysis shows that the local welfare-maximizing slot quantity can 

coincide with the first-best outcome that maximizes the welfare of all airport regions 

whereas this is impossible in the case of pricing policy. Whether the outcomes coincide 

in the case of slot policy depends on the shares of inframarginal and marginal local 

and non-local passengers. The intuition is developed based on cost-benefit ratio as 

measured by the marginal external congestion cost divided by the (slot) price. The 

results provide clear insights on the reasons why slot quantities are found to be 

excessive in the three-airport network considered in Chapter 2. 

Chapter 4 arises from Lang and Czerny (2020b). It develops and analyzes an 

extended framework of the three-airport network considered in Chapter 2. This 

extended framework involves a variation of the demand structure in the sense that the 

air services offered at the congested airports are considered as imperfect substitutes 

whereas they are not considered as substitutes in Chapter 2. The analysis shows that 

the presence of substitute air services is a necessary condition for equilibrium slot 

quantities to reach the first-best outcome. The results derived from Chapter 3 help 

understand the reasons why equilibrium slot quantities can lead to first-best outcome. 

Whereas equilibrium pricing levels will always be too high relative to the first-best 

prices independent of the presence or absence of substitute air services. 

By contrast with Chapter 4, Chapter 5 arises from Lang and Czerny (2020c) 

and proceeds with the consideration of substitute air services for non-local passengers 

in a three-airport network to concentrate on the role of airport competition. The results 

show that airport competition will lead to too low equilibrium slot quantities in the 

case of slot policies, or too low equilibrium prices in the case of pricing policies, to 

maximize the total welfare of the two congested airports. The non-local passengers 

benefit from the airport competition compared with the case in which airport 
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competition is absent. The results further show that slot policies can lead to first-best 

outcome. Whereas pricing policies are too strict with too high equilibrium prices 

relative to the first-best outcome. 

These studies contribute to various strands of the literature. They contribute to 

the literature on slots versus pricing policies. Brenck and Czerny (2002), Czerny (2008, 

2010) and De Palma and Lindsey (2018) considered an environment with uncertain 

demand and congestion costs. Based on Weitzman's (1974) seminal study, Czerny 

(2010) found that pricing is beneficial relative to slot policies from the social viewpoint 

when demands take linear forms because (i) demand functions will be steeper than 

marginal external congestion cost functions under these conditions and (ii) uncertainty 

in the congestion costs can lead to a negative correlation between demands and 

marginal external congestion costs. Slots, however, can be beneficial in the case of 

quadratic marginal external congestion costs. Czerny (2010) also considered a three-

airport network and found that the existence of airport networks can improve the 

benefits of pricing policies relative to slots. He considered a centralized airport system 

in the sense that airports were assumed to fully coordinate their congestion policies. 

De Palma and Lindsey (2018) extended this analysis by also capturing scenarios where 

the slot constraint may not be binding amongst other things. Brueckner (2009) 

considered an environment with small and large airlines and showed that slot trading 

or auctions can lead to an efficient outcome that would only be achievable with pricing 

if prices would be differentiated across carriers. Daniel (2014) highlighted the 

challenges of combinatorial auctions if the slots of multiple airports would be 

auctioned simultaneously. Basso and Zhang (2010) found that slot auctions are 

preferred by the airports and lead to higher total traffic relative to pricing when the 

social weight attached to airport profits exceeds the unit weight. Czerny (2007) and 

Basso, Figueroa, and Vásquez (2017) considered price versus quantity controls in the 
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case of monopoly regulation. The main contribution of these studies is to cover the 

possibility of decentralized decisions upon slot and pricing policies. 

These studies further contribute to the strands of the literature on local 

objectives and the tolling of passengers or customers from other legislations. De 

Borger, Proost, and Van Dender (2005) considered tax competition in the presence of 

congestion and rival networks. They showed that transit tolls can lead to large welfare 

gains from the viewpoint of the local economy. De Borger, Dunkerley, and Proost 

(2007) concentrated on complementary transport networks and showed that welfare 

can be increased in the absence of tolling. Mantin (2012) considered endogenous, local 

public and private ownership structures in a complementary airport network. He found 

that countries may be caught in a prisoner's dilemma situation with private airports and 

too high prices from the viewpoint of the aggregate economy because privatization is 

used to exploit non-local passengers. Czerny, Höffler and Mun (2014) considered 

endogenous, local ownership structures in a network with rival seaports. They found 

that countries may be caught in a prisoner's dilemma situation because they keep 

seaports under public ownership in order to protect local customers from excessive 

port prices, while private seaports and higher port prices would be helpful to exploit 

non-local users and increase local welfares. Wan and Zhang (2013) considered port 

competition as part of the rivalry between alternative intermodal transportation chains. 

They focused on quantity-competition model and found that an increase in road 

capacity by an intermodal chain will likely benefit its port while negatively influence 

the rival port. Wan, Basso and Zhang (2016) investigated the strategic investment 

decisions of local governments on regional landside accessibility in the context of 

seaport competition. They found that when ports are public, an increase in accessibility 

investment reduces port regions' welfare but improves inland regions' welfare. When 

ports are private and captive shipper's utility is high enough, an increase in accessibility 
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benefits the rival port region while it harms the inland. Studies typically concentrate 

on local welfare maximization as the only objective of policy makers, while these 

studies extend this view and also capture the possibility that some policy makers may 

attach a unit weight to consumer surplus and a zero weight to infrastructure profits. 

These studies finally contribute to the growing literature on congestion 

management in airport networks. Pels and Verhoef (2004) concentrated on a network 

of two complementary airports and used numerical examples to illustrate that 

equilibrium pricing strategies differ from the first-best solution. Benoot, Brueckner 

and Proost (2012) analyzed the pricing of congested rival airports that serve both 

domestic and intercontinental passengers. They found that the presence of 

intercontinental passengers can distort prices in a way that leads to a welfare loss. Silva, 

Verhoef, and van den Berg (2014) considered congested airports and endogenous 

airline networks. They found that airport pricing policies cannot ensure socially 

efficient airline network formations. Lin (2017) investigated an airport network with 

one congested hub airport, and several spoke airports that belong to different countries. 

He found that discriminatory prices for non-stop and transfer passengers can be used 

to maximize global welfare. Lin and Zhang (2017) considered a hub-and-spoke 

network and found that per-flight prices and discriminatory passenger prices are 

required to achieve the welfare-maximizing quantities of local and transfer passengers. 

The remainder of this dissertation is organized as follows. Chapter 2 considers 

congestion policy games in airport networks with two or three complementary airports. 

Chapter 3 considers a stylized airport network with two airports designed to clearly 

identify the role of local and non-local passengers. Chapter 4 extends the framework 

of three-airport network in Chapter 2 by incorporating substitute air services for local 

passengers into the analysis of equilibrium airport congestion policies. Chapter 5 

proceeds with the consideration of substitute air services for non-local passengers in a 



9 

three-airport network to concentrate on airport competition. Chapter 6 concludes the 

dissertation and discusses avenues for future research. 
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CHAPTER 2 

A PRICING VERSUS SLOTS GAME IN AIRPORT NETWORKS 

In this chapter, a basic model and various model extensions are developed to analyze 

pricing versus slots games in different airport networks. The basic model involves a 

network of two complementary and uncongested airports, where each airport 

independently and simultaneously chooses between slot and pricing policies and their 

respective slot quantity and pricing levels. Two different sets of airport objectives are 

considered to capture that airports are owned by the (local) governments and that local 

governments may wish to limit payments from airlines or passengers to airports and, 

thus, have limited interest in airport profits. First, governments can pursue the 

objective of local consumer surplus maximization, which is equivalent to a situation 

where airport profits do not matter. Second, airports may pursue the objective of local 

welfare maximization, which is equivalent to a situation where airport profits matter. 

The basic model and the model extensions are used to show that slots and 

pricing policies can be weakly dominant strategies depending on whether governments 

attach a zero or a unit weight to airport profits, respectively. Policy makers prefer slot 

policies if airport profits do not matter to them, whereas they prefer pricing policies if 

airport profits matter. This illustrates that equilibrium policy choices in the form of 

slot or pricing policies can be explained by the corresponding distribution effects. 

It is well-known that price and quantity controls are equally effective in 

managing negative externalities in a deterministic environment (for example, 

Weitzman, 1974). The present analysis shows that this result on the equivalence 

between price and quantity controls also depends on the presence of a centralized 

regulator. For instance, the analysis of the two-airport network shows that the unique 

equilibrium in terms of pricing policies does not achieve the set of first-best passenger 

quantities that maximize the total welfare of both airport regions. It further shows that 
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a set of equilibrium constellations exist in the case of slot policies. Furthermore, this 

set of equilibrium constellations contains an equilibrium constellation where first-best 

passenger quantities are reached. 

To concentrate on scenarios where unique equilibria in slot and pricing 

strategies exist, a model extension consisting of three uncongested, complementary 

and asymmetric airports is considered. The three-airport network involves two active 

airports with local populations and one inactive dummy airport without local 

population. This follows a common approach in the literature where the presence of 

such a dummy airport is implicitly assumed (while the present study applies a more 

transparent approach where the presence of a dummy airport is an explicit part of the 

set of modeling assumptions). The presence of the dummy airport allows for the 

consideration of a more realistic airport network where only a subset of the airports 

may be slot controlled, the consideration of unique best responses in slot quantities, 

and the description of a unique equilibrium in slot quantities. 

Two effects that are involved in a move from pricing to slot policies are 

distinguished to transparently identify the causes and intuitions for the differences in 

local welfares implied by equilibrium policies. First, a so-called variable effect, which 

captures that such a policy change leads to a change in variables in the sense that 

quantities, not prices, are the decision variables. Second, a so-called distribution effect, 

which captures that such a policy change involves a change in airport revenues. The 

distribution effect is used to analyze the role of grandfather rules, which make it 

difficult for airports to internalize slot values. The goal is to find out how variable and 

distribution effects affect equilibrium policies relative to the first-best policies that 

maximize the total welfare of all airport regions. 

To separate variable and distribution effects, the concept of the slot price is 

developed. In this context, the slot price represents the airport charge that would have 
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to be (but is not) implemented to ensure that airport passenger demand equals the 

desired slot quantity. This slot price can also have the interpretation of a shadow price. 

This allows for the consideration of three scenarios. First, a scenario where airports 

choose slot quantities directly. This represents a scenario where quantities are the 

decision variables and airport revenues are zero. Second, a scenario where airports 

choose slot prices. This represents a scenario where prices are the decision variables 

and airport revenues are still zero. Third, a scenario where airports choose airport 

charges. This represents a scenario where prices are the decision variables and airport 

revenues can be strictly positive. Scenarios one and two are used to identify the 

variable effect of a move from pricing to slot policies. Scenarios two and three are used 

to identify the distribution effect of a move from pricing to slot policies. 

The analysis of the three-airport network in Subchapter 2.4 abstracts away from 

congestion effects and reveals a variable effect of zero and a strictly positive 

distribution effect. The variable effect is zero because the equilibrium airport behaviors 

are independent of whether slot quantities or slot prices are the decision variables. The 

distribution effect is positive because airport charges are used to exploit non-local 

passengers. This exploitation leads to excessive airport charges and possibly a 

prisoner’s dilemma situation. The incentives to exploit non-local passengers are 

eliminated by slot policies because slots are provided for free by construction to 

capture the notion of grandfather rules for airport slots. As a result, equilibrium slot 

policies lead to the first-best result that maximizes the total welfare of all airport 

regions. This result is conditional on the absence of congestion, however. 

Subchapter 2.5 concentrates on symmetric (active) airports, where symmetry 

is assumed for tractability, and extends the three-airport network scenario by adding 

congestion effects. The presence of congestion does not change the result that 

equilibrium policies involve slot policies when airport profits do not matter and pricing 
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policies when airport profits matter. We show that the equilibrium prices in the case 

of pricing policies can be written as the sum of the equilibrium slot price plus a 

weighted markup depending on the price elasticities of passenger demands, where this 

markup is higher when equilibrium prices are compared with slot quantities as decision 

variables than with slot price as decision variables. In this extended model version, 

neither slot nor pricing policies will ever reach the first-best solution in equilibrium. 

Airport charges will still be excessive in the case of pricing policies because of the 

distortions caused by the distribution effects. Such distribution effects are absent in the 

case of slots; but, slot quantity choices are distorted in a different way because local 

policy makers do not take into account how their slot choices will affect non-local 

passengers, which leads to too loose slot quantities relative to the first-best passenger 

quantities. 

Numerical instances are used to derive an understanding of how time 

valuations affect the relative performance of slot and pricing policies. These instances 

show that there is a critical time valuation where local welfares are independent of 

whether slot or pricing policies are used. They further show that local welfares are 

higher under equilibrium slot policies than under equilibrium pricing policies if time 

valuations are low relative to this critical value, while local welfares are higher under 

equilibrium pricing policies than under equilibrium slot policies if time valuations are 

high relative to this critical value. The numerical instances are further used to illustrate 

that the distribution effect is positive for low and negative for high time valuations, 

while the variable effect is always negative. 

Other extensions are considered in Subchapter 2.6 2.6 These extensions show 

that the consideration of a vertically integrated airport is under certain conditions 

equivalent to a situation with atomistic airlines. More specifically, these conditions 

involve two assumptions. The first is that local airlines exclusively serve local 
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passengers. The second is that airports attach a unit weight to both local consumer 

surplus and the profits of their local airlines. The extensions are further used to show 

that equilibrium policy choices are robust with respect to changes in the timing of 

airport decisions. 

2.1 Basic Model 

Passengers travel between two airports, A  and .B  Airport i ’s passenger quantities are 

denoted as ijq  for those who originate from i  with ,  i A B=  and j i  (if i  and j  

appear together, j i  is assumed to hold true). 4  Passenger quantities are strictly 

positive on both routes, that is, 0ijq  . The benefits of passengers with origin airport 

i  are denoted as ( ).i ijB q  Benefits are strictly concave in the sense that ( ) 0i ijB q   by 

assumption. 

Airports A  and B  can choose between two policy measures, which are slots, 

denoted as S , and pricing, denoted as P . Let 
iQ  with 

i AB BAQ q q= +  denote the total 

traffic at airport i , where the complementarity between airports implies 
A BQ Q= . 

There is an upper limit on the number of passengers at each airport, which is denoted 

as iQ . Together with perfect airport complementarity, this implies  ,i A BQ Q Q . Let 

i  with ,  i S P =  denote the policy variable. The upper limit iQ  is a function of the 

policy strategy, that is, ( )i i iQ Q = . The upper limit ( )i iQ   is finite in the case of slots, 

i S = , whereas it is infinite in the case of pricing,. 
i P = . 

An integrated airport that offers both infrastructure and flight services is 

considered in this basic model to concentrate on airport networks by avoiding the 

 
4 Passengers only travel between i  and j . The notation could therefore be economized by choosing iq  

instead of ijq . The more complex notation is, however, maintained because it will be useful in the 

extended scenarios considered in Subchapter 2.4 where a third airport C  will be involved. 
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presence of airline profits, the need to distinguish between local and non-local airline 

profits, and the need to distinguish the potentially differing weights policy makers 

attach to airline and airport profits.5 The airport charges a non-negative ticket price 
iR  

to its passengers. Despite the assumption that air services are carried out by airports, 

we capture the distributional effects of slot policies based on grandfather rules by 

assuming that 0iR =  in the case of slot policies. Thus, airports cannot earn from 

selling slots (as is the case under the IATA’s Worldwide Scheduling Guidelines) and, 

thus, have zero airport revenues in the case of slot policies.6 The airports’ costs are all 

normalized to zero, which together with the assumption of non-negative ticket prices 

ensures that we can abstract away from problems of airport cost recovery under slot 

and pricing policies.7 

Slots impose an upper limit on an airport’s total traffic and non-negative 

(shadow) prices, denoted as ( )i ir  , are used to indicate slot prices in the case of slot 

policies. Using the shadow prices ( )i ir  , the airport charges can be written as 

( )( ),i i i i iR R r  = . For 
i S = , ( ) 0ir S   is the shadow price of slots, simply called 

slot price hereafter, under efficient rationing where slots are allocated to the passengers 

with the highest willingness to pay. To capture that airport revenues from slot supply 

are zero under grandfather rules, ( )( ), 0i iR r S S =  is considered. For ,i P =  

 
5 We will highlight in the extensions that the present scenario resembles a scenario where airline markets 

are atomistic, local passengers use their local airlines only, slots are efficiently allocated to airlines by 

auctions, and policy makers attach a unit weight to airline profits. 

6 That airport charges can be far from market clearing levels is indicated by the high market prices for 

airport slots. For instance, one pair of take-off and landing slots at London Heathrow was sold for USD 

75 million in 2016. 

7 The consideration of integrated airport services also helps to concentrate on airport cost recovery 

because airport subsidies may be required to implement the first-best outcome when airline markets are 

oligopolistic (for example, Pels and Verhoef, 2004). 
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( )( )( ) , 0i i ir P R r P P=  , which means that airport usage can involve strictly positive 

airport revenues in the case of pricing policies. 

Efficient rationing where passengers with the highest willingness to pay are 

served first can be guaranteed under pricing policies and is assumed to be present also 

in the case of slot policies. However, efficient rationing cannot be guaranteed under 

slots and the IATA rules based on grandfathering. Altogether, this provides a 

conservative assessment of pricing policies relative to slot policies. 

We consider a one-shot game, where airports simultaneously choose between 

slot and pricing policies as well as slot quantities and prices, respectively. Two sets of 

objectives are considered: first, local consumer surplus maximization, where local 

airports attach a zero weight to their airport profits (airport profits do not matter); 

second, local welfare maximization where local airports attach a unit weight to airport 

profits (airport profits matter). The airport objectives are considered as given and equal 

for the two airports, thus, no asymmetries regarding airport objectives are considered. 

2.2 Equilibrium Policies 

It is well known that policy makers are indifferent between price and quantity controls 

if demand and cost functions are deterministic, firms are considered in isolation and 

the objective is welfare maximization (for example, Weitzman, 1974; Stavins, 1996; 

Czerny, 2010; De Palma and Lindsey, 2018). In this subchapter we analyze the role of 

airport networks and airport objectives for the choices of pricing and slot policies. 

Since ticket prices are equal to airport charges, local consumer surplus, denoted 

as 
iCS , can be written as 

( ) ( )( ) ( )( ) ( )( )( ), , , , ( ) , , .i ij A A B B A B i ij ij A A A A B B B BCS q r r B q q R r R r       = −  +  (1) 

The first term on the right-hand side is the benefit of passengers originating at airport 

i  depending on the passenger quantities ijq . The second term is the total payment of 
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passengers with origin i  who travel between A  and B  to both airports. 

If airport profits do not matter, then the airports’ objectives are to maximize 

local consumer surplus. We first show that airport i ’s local consumer surplus under 

slots is higher than under pricing for any given passenger quantities and prices where 

( ) ( )i ir S r P=  and any given instances of j  and ( )j jr  . If ( ) ( )i ir S r P=  and given 

( )( ), 0i iR r S S =  and ( )( ) ( ),i i iR r P P r P= , local consumer surplus under slots can be 

written as 

( ) ( )( ) ( ) ( )( ), , , , , , , , ( ).i ij i j j j i ij i j j j ij iCS q r S r S CS q r P r P q r P   = +   (2) 

The right-hand side is the consumer surplus under pricing plus the airport profit under 

pricing for any ( ) 0ir P  . This shows that local consumer surplus can be increased by 

the use of slots relative to pricing because local passengers save payments ( )ij iq r P  

under slots when ( ) ( )i ir S r P= , where the equality of prices ( )ir S  and ( )ir P  implies 

that passenger quantities would remain the same despite the policy change. Consider 

the case where ( )ir P  is chosen to maximize local consumer surplus. Since slots are 

preferred for any ( ) 0ir P  , slots are also preferred if ( )ir P  is chosen to maximize 

local consumer surplus. Slots are weakly preferred if ( ) 0ir P = , while slots are strictly 

preferred if ( ) 0ir P  . 

Local airport profit, denoted as 
i , can be written as 

( )( ) ( )( ), , , ,i i i i i i i i i iQ r Q R r    =   (3) 

and local welfare, denoted as 
iW , can be written as the sum of local consumer surplus 

and local airport profit: 

( ) ( )( ) ( ) ( )( ) ( )( ), , , , , , , , , , , .i AB BA A A B B A B i ij i j j j i i i i iW q q r r CS q r S r S Q r        = + (4) 

If airport profits matter, the airports’ objectives are to maximize local welfare. 
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We first show that airport i ’s local welfare under pricing is higher than under slots for 

any given passenger quantities and prices where ( ) ( )i ir P r S=  and any given instances 

of j  and ( )j jr  . If ( ) ( )i ir P r S=  and given ( )( ), 0i iR r S S =  and

( )( ) ( ),i i iR r P P r P= , local welfare under pricing can be written as 

( ) ( )( ) ( ) ( )( ), , , , , , , , , , ( )i AB BA i j j j i AB BA i j j j ji iW q q r P r P W q q r S r S q r P   = +   (5) 

where the right-hand side is the welfare under slots plus the airport profit under pricing. 

This shows that local welfare can be increased by the use of pricing relative to slots 

because airport profits are increased by the revenues earned from non-local passengers, 

( )ji iq r P , under pricing. Consider the case where ( )ir S  is chosen to maximize local 

welfare. Since pricing is preferred for any ( ) 0ir S  , pricing is also preferred if ( )ir S  

is chosen to maximize local welfare. Pricing is weakly preferred if ( ) 0ir P = , while 

pricing is strictly preferred if ( ) 0.ir P   

Equilibrium policies in terms of policy variables 
i  can be summarized as: 

Proposition 1 If airport profits do not matter, slot policies 
BA

S = =  form an 

equilibrium in (weakly) dominant strategies, while pricing policies 
BA

P = =  form 

an equilibrium in (weakly) dominant strategies if airport profits matter. Whether the 

equilibrium policy choices are determined by dominant or weakly dominant strategies 

depends on whether ( ) 0ir P   or ( ) 0ir P =  respectively. 

This proposition highlights that equilibrium policies depend on whether airport 

profits matter or do not matter and it can also be used to highlight the role of airport 

networks for equilibrium policies. If airport profits do not matter, slot policies are the 

airports’ preferred choices. Relevant to this study, which concentrates on the role of 

airport networks on policy choices, is that this is independent of whether airports are 

in a network or isolated. This is because the consumer surplus of own passengers is 
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independent of the number of passengers originating from airport j , jiq , in the basic 

model as demonstrated by the consumer surplus expression in (2). Thus, airport 

networks have no effect on policy choices in terms of 
i  when airport profits do not 

matter. The picture changes if airport profits matter. In this case, pricing policies are 

the airports’ preferred choices when they are in a network, while airports are indifferent 

between slot and pricing policies when airports are isolated. This is because the local 

welfares depend on the number of passengers originating from airport j , jiq  , through 

the revenue they generate at the own airport as shown by the welfare expression in (5) 

when airports operate in a network. Thus, airport networks are relevant to policy 

choices in terms of 
i  when airport profits matter. Airport networks therefore 

eliminate the equivalence between quantity- and pricing-based policies that prevails in 

the case of isolated airports and perfect information. 

Proposition 1 demonstrates that slots and pricing schemes can both occur as 

equilibrium solutions in airport networks. This justifies the investigation of both 

policies in the following subchapter. 

2.3 Equilibrium Slot Quantities Versus Equilibrium Prices 

Given efficient rationing under both pricing and slot policies, the passenger demands 

for flights between A  and B , denoted as ( ),ij A BD r r , are determined by the 

equilibrium conditions 

( ) ( ) 0i ij A BB q r r − + =  (6) 

for ,  i S P = , where we concentrate on those cases where passenger demands, 

( ),ij A BD r r , are strictly positive. In equilibrium, the passengers’ marginal benefit of 

flying between A  and B  is equal to the sum of 
Ar  and 

Br  because every passenger 

flies between A  and B , and therefore will be charged twice. The strict concavity of 
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the benefit function, ( )i ijB q , ensures the existence of a unique set of demands 

( ),AB A BD r r  and ( ),BA A BD r r  with / / 1/ ( )ij A ij B i ijD r D r B q  =   = , where the first 

equality appears because it is the sum of the prices that matters to passengers.8 

Denote the equilibrium local welfares under pricing by ( )iW P  and the 

equilibrium local welfares under slots by ( )iW S . A policy change from pricing to slots 

has two effects which we call distribution effect and the decision variable effect, 

simply called variable effect. Recall equation (4) which shows that, for given 

passenger quantities, local welfares under slots are lower because the revenues from 

non-local passengers are zero. Thus, a change from pricing to slots can affect 

equilibrium passenger quantities because it involves zero revenues from non-local 

passengers by construction. Furthermore, a change from pricing to slots means that 

airports choose quantities rather than prices as decision variables. Whether quantities 

or prices are the decision variables makes a difference. This is because a change of the 

own slot quantity may keep the total passenger quantity at the other airport unchanged 

if the own slot quantity is at least as high as the other airport’s slot quantity, while a 

change in the own price will always change the own and the other airport’s passenger 

quantity when both airports adopt pricing policies. 

To formally separate variable and distribution effects, a third policy regime 

indicated by 
i SP =  is introduced. This regime involves the choice of slot prices when 

airport revenues are zero by assumption. The total welfare effect of a move from 

pricing to slot policies is given by the difference ( ) ( )i iW S W P− . Adding and deducting 

welfares when airports use slot prices as the decision variables given by ( )iW SP  leads 

to 

 
8 Here and hereafter it is assumed that passenger demands are smooth functions of airport charges. 
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 variable effect  distribution effect

( ) ( ) ( ) ( ) ( ) ( ) ,i i i i i iW S W P W S W SP W SP W P

= =

− = − + −  (7) 

which shows that the total change in equilibrium welfare can be written as the sum of 

the variable and distribution effects. Variable and distribution effects are defined in 

terms of local welfares, while slots can be equilibrium policies only if the airport 

profits do not matter. This is a consistent approach because local welfares are equal to 

local consumer surpluses in the case of slot policies. 

Since airport costs are normalized to zero, the sum of welfares, 
A BW W+ , is 

given by the sum of benefit functions ( ) ( )A AB B BAB q B q+ . The first-best passenger 

quantities are determined by the first-order conditions ( ) 0i ijB q =  for ,  i A B=  and are 

denoted as *

ijq , while the first-best total passenger quantity is denoted as 
*

iQ  with 

* * *

i AB BAQ q q= + . The equilibrium conditions in (6) imply the first-best prices 

0A Br r= = , which reflects the zero airport costs. Congestion effects are absent in the 

present scenario. Thus, it is intuitive that zero prices maximize local welfares, as well 

as the total welfare. The following derives equilibrium passenger quantities under 

slots, slot prices, and prices as decision variables relative to the first-best passenger 

quantities implied by zero prices. 

Equilibrium slot quantities 

To analyze equilibrium slot quantities, it is useful to understand how changes in total 

passenger quantities, 
iQ , translate into changes in local passenger quantities, ijq (all 

the proofs are relegated to the appendix): 

Lemma 1 The effect of an increase in the total passenger quantities 
AQ  or 

BQ  on 

local passenger quantities ijq  can be written as: 

0.
ij ij j

i j A B

dq dq B

dQ dQ B B


= = 

 +
 (8) 
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The first equality appears because, regardless of airports’ slot strategies, 
iQ  is always 

equal to jQ . The inequality shows that an increase in the total passenger quantities will 

always be associated with both an increase in 
ABq  and an increase in 

BAq . 

To derive the best responses in terms of slot quantities, it is useful to write the 

local passenger quantities as a function of the total passenger quantities, that is, 

( )ij ij iq q Q= . The objective function can then be rewritten as ( )( )i ij iW q Q . Consider 

the cases (i) i iQ Q= , (ii) i jQ Q=  and (iii) ,  .i A BQ Q Q  

Part (i) implies that the total passenger quantity is equal to the own slot 

quantity. Local welfare can then be written as ( )( )i ij iW q Q  and best responses are 

given by the first-order condition ( ) ( ) ( ) ( ) 0i ij ij i i ij ij iW q q Q B q q Q    =  = , which means 

that slots are optimal if the slot price is equal to zero. Part (ii) implies that the total 

passenger quantity is equal to the other airport’s slot quantity. Local welfare can then 

be written as ( )( )i ij jW q Q , which means that an increase in the own slot quantity keeps 

local welfare unchanged. Part (iii) implies that the total passenger quantity is lower 

than the own and the other airport’s slot quantity. Local welfare can then be written as 

( )( )i ij iW q Q , which means that an increase in the own as well as the other airport’s slot 

quantity keeps local welfare unchanged. Altogether, this implies: 

Proposition 2 If there are two airports and airport profits do not matter, the full set 

of equilibrium slot quantities is given by 

( )  * *, , : , , .A B A B A B A BQ Q Q Q Q Q Q Q Q Q =    (9) 

The full set of equilibrium slot quantities given by Proposition 2 implies that 

there are infinitely many sets of equilibrium slot quantities. Therefore, the set of 

equilibrium slot quantities is not uniquely defined. However, the set of equilibrium 



23  

slot quantities where 
*

A BQ Q Q= =  might be considered as a focal point. This 

equilibrium set implies a scenario where both airports happen to choose slot quantities 

that are also the first-best passenger quantities as their best responses in equilibrium. 

Equilibrium slot prices 

In the previous sub subchapter, slot quantity iQ  was the decision variable and airport 

profits were considered to be zero. In this sub subchapter, the price is used as the 

decision variable and, consistently, airport profits are considered to be zero, which 

altogether constitutes the policy regime 
i SP = . Both regimes capture the grandfather 

rights but involve different variables. And this enables the comparison of the outcomes 

under two regimes by identifying the variable effect. 

Zero airport profits mean that local consumer surplus is identical to local 

welfare. Local welfare can be written as 

( )( ) ( )( ) ( )( ), , , .i ij A B i ij A B i ij A BW D r r CS D r r B D r r= =  (10) 

This equation implies that local welfare is identical to the local passengers’ benefit 

from travelling. Assume that the best responses in terms of slot prices are determined 

by the first-order conditions, / 0i iW r  =  and that the map of best responses in terms 

of the slot price is a contraction, which are maintained assumptions here and hereafter.9 

Using equilibrium demand conditions in (6), the first-order conditions for the best 

responses in terms of the slot prices can be written as 

( , )
( ) 0.

ij A B

A B

i

D r r
r r

r


+  =


 (11) 

The left-hand side shows how an increase in own and the other airport’s slot price and 

 
9 Best responses are not uniquely defined if the other airport charges such an extremely high price that 

local passenger quantity is zero. However, we concentrate on strictly positive passenger quantities and 

rule out this case accordingly. 
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the corresponding reduction in slot quantities affects own passengers’ benefits from 

travelling. Because the demand of local passengers is strictly decreasing in the own 

airport charge (that is, ( , ) / 0ij A B iD r r r   ), the optimality of best response requires 

that the sum of slot prices, 
A Br r+ , is equal to zero. Since slot prices are non-negative, 

given any jr , the best response for the own airport is to always choose 0ir = . In other 

words, any positive slot price 
ir  will decrease local welfare relative to the zero price. 

This is because local welfare is increasing in local passenger quantity ijq , and the local 

passenger quantity is decreasing in the sum of slot prices, which is decreasing in the 

own slot price. Together with Proposition 2, this implies that:10 

Proposition 3 If there are two airports and airport profits do not matter, zero slot 

prices establish a unique equilibrium in dominant strategies. 

Since zero slot prices yield the first-best passenger quantities, this further 

implies: 

Proposition 4 If there are two airports and airport profits do not matter, the unique 

pair of equilibrium slot prices yields the first-best passenger quantities.  

Since the set of equilibrium slot quantities is not uniquely defined, this further 

implies: 

Corollary 1 If there are two airports and airport profits do not matter, the variable 

effect is not uniquely defined.  

Consider the focal point where 
*.A BQ Q Q= =  In this special case, both 

airports’ equilibrium slot quantities are exactly equal to the first-best passenger 

quantities, which implies a variable effect equal to zero by Proposition 4. 

 
10 See Vives (1999) for an excellent discussion of the role of the contraction condition for uniqueness 

of equilibrium solutions. 
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Equilibrium prices 

By Proposition 1, pricing policies are relevant strategies if airport profits matter. In 

this case, local welfare can be written as 

( , ) ( , ) ( , ) ( , ).i A B i A B j ij A B i ji A BW r r B r r r D r r r D r r= −  +   (12) 

Best responses in terms of prices are assumed to be determined by the first-

order conditions / 0i iW r  = . Using the equilibrium demand conditions (6), these 

first-order conditions can be written as 

0.i
i ji

i

D
r D

r


 + =


 (13) 

Consider zero prices 0ir = . This instance violates the first-order condition (13) 

because the first term on the left-hand side becomes zero, while the second term, jiD , 

is strictly positive by assumption. The second-order conditions for best responses, 

2/ 0i iW r   , imply that best responses in terms of prices are strictly positive. 

Rearranging the first-order conditions in (13) yields 

.
/

ji i
i

i i i

D D
r

D D r
= 

 
 (14) 

The right-hand side is the inverse semi-price elasticity of own total demand with 

respect to the own price weighted by the share of non-local passengers. It shows that 

equilibrium prices tend to be higher if the share of non-local passengers is relatively 

high and if the own total demand is relatively inelastic. If airport profits matter, the 

equilibrium airport charge is strictly positive because it balances the local welfares of 

isolated airports with the profits from non-local passengers that exist in airport 

networks. 

Given that the contraction condition for best responses in terms of prices is 

satisfied, this altogether leads to: 
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Proposition 5 If there are two airports and airport profits matter, the unique pricing 

equilibrium implies that airport charges strictly exceed first-best prices. 

By Corollary 1, aggregate welfare may or may not be maximized in 

equilibrium when airport profits do not matter although the equilibrium scenario where 

aggregate welfare is maximized could be considered as a focal point. Yet, if airport 

profits matter and they directly pursue local welfare maximization, it is clear that they 

end up with excessive airport charges, fewer total passengers and a reduction in 

aggregate welfare relative to the first-best solution by Proposition 5. 

Airports can even be caught in a prisoner’s dilemma situation in the case of 

pricing. For instance, if airport profits matter and airports are symmetric, they choose 

prices to exploit non-local passengers. But, in equilibrium, both airports choose strictly 

positive prices and therefore the local welfare gain from charging positive prices on 

non-local passengers is exactly equal to the local welfare loss that arises because the 

other airport charges the same on own passengers. In this situation, the gains and losses 

from positive airport prices cancel each other out, while aggregate welfare is reduced 

and, because of symmetry, also local welfares are reduced relative to the case where 

airport profits do not matter and both airports choose slot policies. 

A prisoner’s dilemma situation may or may not occur under the circumstances 

determined by the basic model. For instance, consider the extreme asymmetric case 

where the number of passengers originating from the own airport approaches zero, 

while the number of non-local passengers is relatively large. In this scenario, the own 

airport charges a strictly positive price when airport profits matter, while the other 

airport will charge a price that approaches zero. A prisoners’ dilemma situation will 

not occur because the own airport mostly gains from charging a strictly positive price 

and derives revenue from other passengers. Nevertheless, aggregate welfare is not 

maximized in this scenario either. 
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Strictly positive airport charges mean that there are too few passengers relative 

to the first-best solution, which further implies: 

Corollary 2 If there are two airports and airport profits matter, the distribution effect 

is strictly positive, that is, ( ) ( ) 0i iW SP W P−  . 

Altogether, Corollary 1 and Corollary 2 show that the choice of policy 

variables matters to the outcomes not only because it matters whether quantities or 

prices are the decision variables but also because of the grandfather rules associated 

with slot policies and the resulting positive distribution effect. The latter is positive 

because slots and grandfather rules can help to avoid the incentives to exploit non-

local passengers. 

2.4 Three-airport Network 

The variable effect is not uniquely defined in the above case of a two-airport network. 

To derive more conclusive insights about the variable effect, this subchapter extends 

the airport network by adding a third airport, airport ,C  to the network. Airport C  is 

different from airports A  and B  because local passengers are absent at this airport 

and the airport charge and slot price are normalized to zero, where the latter implies 

that binding slot constraints are absent at airport .C  The present study further 

concentrates on origin-destination passengers by assuming that the number of 

passengers traveling between airports A  and B  via ,C  or between A  and C  via B  

is zero. Figure 1 illustrates the three-airport network. The solid lines depict the two 

airport connections for airport A ’s origin-destination passengers whereas the dashed 

Figure 1: An illustration of the three-airport network. Solid lines: two airport connections for airport 

’s origin-destination passengers; Dashed lines: two airport connections for airport ’s origin-

destination passengers. 
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lines depict the two airport connections for airport B ’s origin-destination passengers. 

This three-airport network unifies two common airport network structures 

considered in the literature. First, if the number of passengers from A  and B  traveling 

to airport C  approaches zero, this framework reduces to the two-airport network 

considered above and, for example, by Pels and Verhoef (2004) and Mantin (2012). 

Second, if the number of passengers traveling between airports A  and B  approaches 

zero, the two-airport network further reduces to the single-airport (or isolated-airport) 

framework (to be more precise, two single-airport cases are considered in this situation 

because airports A  and B  each represent a single-airport scenario) which is 

considered in the vast majority of airport studies (for example, Brueckner, 2002; 

Czerny, 2006; Zhang and Zhang, 2006; Basso and Zhang, 2010). These single-airport 

studies implicitly assume the presence of an airport C  or, perhaps, multiple airports 

of the -C type as travelling destinations, without explicitly mentioning it. In this study, 

the presence of an airport of type C  is made explicit and its important role is analyzed 

in full detail. 

Let 0iCq   denote the quantity of passengers who travel between airports i  

and .C  The total passenger quantity at airports A  and B  is given by 

i AB BA iCQ q q q= + + . The benefits of passengers with origin airport i  are denoted as 

( , )i ij iCB q q . Benefits are strictly concave in the sense that 2 2/  i ijB q  , 
2 2/ 0i iCB q    

and 
2 / 0i ij iCB q q   =  by assumption. The latter, 

2 / 0i ij iCB q q   = , implies that air 

services are neither substitutes nor complements. The case of substitute air services 

will be discussed and analyzed in Chapter 4. 

The characterization of equilibrium policies in Proposition 1 is independent of 

the presence of the third airport. This is because local consumer surplus and local 

welfare under slots or pricing follow the same structures as the ones given by (2) and 
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(5), respectively. There are two differences between a two-airport and three-airport 

network in terms of local consumer surplus. The first difference is that the benefit of 

travelling in the presence of three airports is given by ( , )i ij iCB q q , which is determined 

not only by the own passengers travelling to the other airport but also by the own 

passengers travelling to the third airport. The second difference involves the extra 

payments ( )iC iq r P  of own passengers to the own airport in the case of pricing 

policies. There is only one difference between a two-airport and three-airport network 

in terms of local welfare, which is that the benefit of travelling in the presence of three 

airports is given by ( , )i ij iCB q q  (payments ( )iC iq r P ) are cancelled out in the 

calculation of welfare). Observe that when the other airport’s strategy and local 

passenger quantity are given, local consumer surplus is always decreased if the own 

airport moves from slots to pricing because local passengers will have to pay under 

pricing, while local welfare is always increased if the own airport moves from slots to 

pricing because there is an extra revenue from charging non-local passengers. The 

proof of Proposition 1 and the corresponding results can therefore be extended to the 

case with a three-airport network, which leads to: 

Proposition 6 Equilibrium choices of policy variables 
i  are unaffected by the 

presence of airport .C  

Thus, slots and pricing policies can both be equilibrium solutions depending 

on whether airport profits do not matter or matter, respectively, independent of whether 

a third airport is absent or present. This justifies the consideration of both slot and 

pricing policies in the presence of a three-airport network. 

Demand functions 

The passenger demands for trips between i  and j , denoted as ( , )ij A BD r r , and, i  and 

C , denoted as ( )iC iD r  are determined by the equilibrium conditions 
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( , ) ( , )
( , ) 0 and 0

i ij iC i ij iC

A B i

ij iC

B q q B q q
r r r

q q

 
− = − =

 
 (15) 

for ,  i S P =  because efficient rationing is ensured under both slots and pricing 

policies by assumption. In equilibrium, the passengers’ marginal benefit of travelling 

between A  and B  is equal to the sum of 
Ar  and 

Br , while it is equal to 
ir  for 

passengers travelling between i  and C . The strict concavity of the benefit function, 

( , )i ij iCB q q , ensures the existence of a unique set of demands. Cramer’s rule can be 

applied to derive the relationship between demands and prices: 

Lemma 2 If there are three airports, demands are decreasing in airport prices 
ir  in 

the sense that  

( , ) ( , ) ( )( )
( ) 0  ( ) 0.

ij A B ij A B jC jiC i

i j i i

D r r D r r D rD r
i and ii

r r r r

  
=   =

   
 (16) 

Part (i) shows that passengers who travel between airports A and B  are 

indifferent between an increase in 
Ar  or 

Br  by the same amount in the sense that 

passengers only care about the sum of the prices 
A Br r+ . Part (ii) shows that passengers 

who travel between airports j  and C  are not affected by price changes at airport i . 

The total demand of airport i  is denoted as 

( , ) ( , ) ( , ) ( )i A B AB A B BA A B iC iD r r D r r D r r D r= + +  (17) 

and it is decreasing in 
ir  by Lemma 2. 

Equilibrium slot quantities, equilibrium slot prices and equilibrium prices 

A feature of the two-airport network is that the other airport’s slot quantity imposes an 

upper limit on the own number of passengers. This is a strong assumption, which 

hardly reflects reality. Around 10,000 civil airports exist in the world (IATA, 2018) 

and 204 airports are slot coordinated (2019a). Moreover, not all the 204 slot 

coordinated airports operate at full capacity during all days and operating hours. 
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Altogether, this illustrates that it is useful to capture a scenario where the airports’ 

passenger demands are determined by the airports themselves and not by their 

complementary counterparts. More specifically, with the third airport, a scenario 

where 
iQ  can exceed jQ  can be considered because the number of passengers 

traveling between airports i  and C  is independent of airport j ’s slot restriction. 

In the three-airport network, the slot price ( )ir S  is implicitly determined by 

( ) ( )( ), 0.i i A BQ D r S r S− = 11 (18) 

Applying Cramer’s rule to the system of equations in (18) yields: 

Lemma 3 If there are three airports, (i) there is a unique pair of slot prices matched 

with each pair of slot quantities, and (ii) slot prices are decreasing in own slot 

quantities iQ  and increasing in the other airport’s slot quantities, that is, 

/ ( ) /( ) ( )
0

( , ) ( , )

j j j j ii i

i A B i A B i

D r r S D rr S r S

Q r r Q r r Q

     
=   = − 

    
 (19) 

with ( , ) 0.A B B A
A B

A B A B

D D D D
r r

r r r r

   
 = − 

   
  (20) 

An increase in the own slot quantity means that the passenger demand, 
iD , at 

the own airport is increased, which is only possible if this increase in the own slot 

quantity is associated with a reduction of the own slot price. An increase in the own 

slot quantity increases the passenger throughput at the own airport, to avoid that this 

passenger increase increases the passenger throughput at the other airport, the other 

airport’s slot price must be increased. This increase in the other airport’s slot price is 

smaller in absolute value than the reduction of the own airport’s slot price. This means 

 
11 In the case of congested airports, it is assumed that slot constraints are always binding. Gillen et al. 

(2016) pointed out that meteorological and other stochastic factors may imply that airports may still not 

always operate at full capacity despite the presence of slot controls. 
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that the sum of ticket prices for flights between airports A  and B  is reduced by an 

increase in the own slot quantity. 

By Proposition 6, slots are the relevant strategies if airport profits do not matter. 

Thus, local consumer surplus maximization is the relevant objective in this case, where 

local consumer surplus can be written as ( , ) ( , ) ( , )i A B i A B i A BCS Q Q W Q Q B Q Q= = . 

Assume that best responses in terms of slot quantities are determined by the first-order 

conditions, / 0i iCS Q  =  (given the presence of non-negativity constraints for slot 

prices, this may or may not be guaranteed in general) and that the map of best responses 

in terms of slot quantities is a contraction, which are maintained assumptions here and 

hereafter. Using equilibrium demand conditions in (15), the first-order conditions in 

terms of slot quantities can be written as 

( )
0.

ij iCiji i i
j i

i i i i i

D DDCS r r
r r

r Q r r Q

  +  
 =  +   =
     
 

 (21) 

The left-hand side shows the product of two terms where the second term, /i ir Q  , is 

strictly negative by Lemma 3. The other term is shown in the middle of the equation 

in more detail in parentheses. If ( ) ( ) 0A Br S r S= = , this term is zero for both airports 

(non-negativity is just ensured in this case), which shows that there is a unique 

equilibrium where slot prices are zero when slot quantities are the decision variables. 

Best responses in terms of slot prices are determined by the first-order 

conditions, / 0i iCS r  = , which is also true in the case of slot quantities. Since 

demand functions are independent of whether ( )ir S  or ( )ir SP  is considered, which 

implies that ( ) ( ) ( )( ), ,ij A B ij A BD Q Q D r SP r SP=  for ( ) ( ),i ir S r SP=  equilibrium 

results are independent of whether slot quantities or slot prices are the decision 

variables. Given that the contraction condition is satisfied for both best responses in 
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terms of slot quantities and best responses in terms of slot prices, this altogether leads 

to: 

Proposition 7 If there are three airports, equilibrium slot prices are equal to the first-

best prices independent of whether slot quantities or slot prices are considered as 

decision variables. 

By Proposition 6, pricing policies are the relevant strategies if airport profits 

matter. Assume that best responses in terms of prices are determined by the first-order 

conditions / 0i iW r  = . Using the equilibrium demand conditions in (15), these first-

order conditions lead to a characterization of equilibrium prices that is equal to the one 

obtained by using the two-airport network in (14). This implies that in the presence of 

both two- and three-airport networks, equilibrium prices strictly exceed first-best 

prices. 

Altogether, this implies: 

Corollary 3 If there are three airports and airport profits do not matter, the variable 

effect is zero, that is, ( ) ( ) 0i iW S W SP− = , while the distribution effect is strictly positive 

when profits matter, that is, ( ) ( ) 0i iW SP W P−  . 

This corollary shows that the variable effect is clearly identified and equal to 

zero in the presence of a three-airport network. The difference to a two-airport network 

is that the presence of a third airport allows for an interior solution for the best 

responses in terms of slot quantities, which ultimately and usefully leads to a unique 

equilibrium in slot quantities. 

The discussion in this subchapter firstly shows that a third airport has a 

significant effect on the slot strategy in the sense that (i) the own equilibrium demand 

is determined by the own slot quantity and independent of the other airport’s slot 

quantity in equilibrium, and (ii) the variable effect is uniquely defined and equal to 
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zero. These results show that slots in combination with grandfather rules can serve as 

a tool to overcome excessive airport charges caused by the incentives to exploit non-

local passengers, which exist in the case of pricing policies. 

2.5 Congestion Effects 

This subchapter extends the basic model with a three-airport network in order to 

capture congestion effects. A major factor for the cause of congestion is the ratio of 

traffic quantity to capacity (for example, Zhang and Czerny, 2012; Gillen et al., 2016). 

Traffic may be measured by passenger or flight numbers. Capacity can refer to runway 

capacity, air space capacity, and terminal capacity, where congestion will be positively 

related to flight numbers in the case of runway and air space capacity, and positively 

related to passenger quantities in the case of terminal capacity. Assuming given aircraft 

sizes and fixed load factors, as is common in the literature, the framework can 

represent both capacity limitations related to flights and passenger quantities because, 

in this case, an increase in passenger quantities translates into a fixed increase in flight 

numbers. 12  For tractability reasons, we concentrate on symmetric airports in the 

following subchapter. 

Let ( )i iT Q  with ( ) 0i iT Q   and ( ) 0i iT Q   denote the average delays at airport 

i  and v  denote the passengers’ time valuations. The total congestion costs of local 

passengers, denoted as ( , , , ),i ij iC A BTT q q Q Q  can be written as 

( ) ( )( ) ( )( )( , , , )i ij iC A B ij A A B B iC i iTT q q Q Q v q T Q T Q q T Q=  + +  . Local consumer surplus 

can be rewritten as 

( ) ( )( ), , , , ,i ij iC A A B B A BCS q q r r     

( ) ( )( ) ( )( )( ) ( )( ), , , ,i ij iC ij A A A A B B B B iC i i i i iB q q q R r R r q R r TT     = −  + −  −  (22) 

 
12 See Czerny et al. (2016b) for a modelling framework with endogenous aircraft sizes and load factors. 
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and local welfare can be rewritten as 

( ) ( )( ), , , , , ,i AB BA iC A A B B A BW q q q r r     

( ) ( )( ) ( )( ), , , .i ij iC ji i i i i ij j j j j iB q q q R r q R r TT   = +  −  −  (23) 

The only difference between local consumer surpluses in (1) and (22), and 

welfares in (4) and (23), are the last terms on the right-hand sides of (22) and (23), 

which represent the total congestion costs of local passengers. Observe that congestion 

costs are independent of the policy variables when passenger quantities are given. The 

proof of Proposition 1 and the corresponding results can therefore directly be extended 

to the case with congestion, which leads to: 

Proposition 8 Equilibrium policies in terms of policy variables 
i  are unaffected by 

the presence of airport congestion. 

Thus, slots and pricing policies can both be equilibrium solutions depending 

on whether airport profits do not matter or matter, respectively, independent of whether 

congestion effects are absent or present. 

Passengers consider delays 
iT  as given. With congestion, demands ( , )ij A BD r r  

and ( , )iC A BD r r  are determined by the equilibrium conditions 

( )
( )( )

( )
( )

, ,
0 and 0.

i ij iC i ij iC

A B A B i i

ij iC

B q q B q q
r r v T T r vT

q q

 
− + + + = − + =

 
 (24) 

Passengers will travel as long as their marginal benefit from travelling is at least as 

high as the sum of the corresponding prices and average congestion costs. Applying 

Cramer’s rule to the system of equations in (24) and using symmetry yields: 

Lemma 4 In the presence of congestion and under symmetry, a marginal increase in 

price 
ir  changes demands as follows: 

( ) ( ), ,
0

ji A B ij A B

i i

D r r D r r

r r

 
= 

 
 (25) 
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and 

( ) ( ) ( ),, ,
0 .

jC A BiC A B iC A B

i i i

D r rD r r D r r

r r r

 
  

  
 (26) 

The result described in (25) is similar to the one described in the first part in Lemma 2 

and shows that an increase in one airport’s price changes the demands for trips between 

airports A  and B  by the same amount independent of whether local or non-local 

passengers are considered. This is because generalized prices are composed of the sum 

of airport charges and congestion costs at airports A  and B , and this sum is 

independent of the airport of origin. The results in (26) show how the 

interdependencies caused by congestion affect demand properties. Because an increase 

in airport i ’s charge reduces passenger demands for flights between airports A  and 

,B  and thus, congestion at airport j , this increases the passenger demand for flights 

between airports j  and C . However, the increase in jCD  is smaller than the reduction 

in 
iCD  in absolute values, which means that an increase in the own price 

ir  reduces the 

passenger demand at the own airport, 
iD , and the passenger demand at airports A  and 

,B  
A BD D+ . 

The sum of local welfares, 
A BW W+ , is given by the difference between the 

sum of local benefits, ( , ) ( , )A AB AC B BA BCB q q B q q+ , and the sum of local congestion 

costs, 
A BTT TT+ . The first-best passenger quantities are determined by the first-order 

conditions / ( ) / / ( ) / 0i ij A B ij i iC A B iCB q TT TT q B q TT TT q  −  +  =   − +  =  for 

,  i A B= . This together with the equilibrium conditions in (24) implies the first-best 

prices 
A A Ar D vT = , 

B B Br D vT = . The first-best prices 
i iDvT   represent the marginal 

external congestion costs of passengers traveling from i  to .C  The sum of the first-

best prices, 
A A B BD vT D vT + , represents the marginal external congestion costs of 
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passengers traveling between airports A  and B . 

Equilibrium slot quantities 

The relationships between slot quantities and slot prices described in Lemma 3 is 

extended to the case of networks of congested airports. To see this, note that the results 

in parts (i) and (ii) of Lemma 3 depend on how /i iD r   relates to /j iD r  . 

Furthermore, Lemma 2 and Lemma 4 imply that / /i i j iD r D r      independent of 

whether networks of uncongested or congested and symmetric airports are considered. 

This implies: 

Lemma 5 The existence of a unique pair of slot prices matched with each pair of slot 

quantities, and the effect of changes in slot quantities iQ  on slot prices are unaffected 

by the presence of airport congestion in the sense that Lemma 3 extends to the present 

case of a three-airport network with two symmetric congested airports.  

By Proposition 8, it is still true that slots are relevant strategies if airport profits 

do not matter even though networks of congested airports are considered. Thus, local 

consumer surplus maximization is the relevant objective in this case, where local 

consumer surplus is the difference between the local passengers’ benefits and the local 

passengers’ congestion costs, which can be written as 

( ) ( ) ( ), , , .i A B i A B i A BCS Q Q B Q Q TT Q Q= −  (27) 

Best responses in terms of slot quantities are determined by the first-order 

conditions / = 0i iCS Q  . Using equilibrium demand conditions in (24), these first-

order conditions can be written as 

( )( ) = 0.
ji i i

i ij iC i

i i j i

rD r D
r S D D vT

r Q r Q

   
 + − +      

 (28) 

The first term on the left-hand side is the product of the equilibrium slot price and a 

term in parentheses for which, by Lemma 3, the following is true: 
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Lemma 6 An increase in the own slot quantity iQ  increases the own airport’s 

passenger throughput 
iD  by the same amount, that is, 

= 1.
ji i i

i i j i

rD r D

r Q r Q

  
+

   
 (29) 

Using this lemma, the equilibrium slot price can be written as 

( )( ) = ,i ij iC ir S D D vT +  (30) 

where the right-hand side can be described as the marginal external congestion costs 

of local passengers. However, to reach the first-best solution that maximizes the 

welfare of the aggregate economy, a price equals to 
i iDvT   with 

( )>i i ij iC iD vT D D vT +  would be required at each airport, that is, not only local but 

also non-local passengers should be taken into account. More specifically, from the 

first-best viewpoint, equilibrium slot quantities in (30) are too high, which means that 

the sum of local consumer surplus and welfare could be increased by reducing slot 

quantities relative to the equilibrium solution. 

Given that the contraction condition for best responses in terms of slot 

quantities is satisfied, this leads to: 

Proposition 9 If airport profits do not matter and in the case of a three-airport 

network with two symmetric congested airports, the unique equilibrium in slot 

quantities implies that airports imperfectly internalize the marginal external 

congestion costs, 
i iDvT  , relative to the first-best prices.  

This shows that equilibrium slot quantities are too loose to maximize the total 

welfare of all airport regions when airport profits do not matter, and airports only care 

about local passengers. 

Equilibrium slot prices 

Consider =i SP  and assume that best responses in terms of slot prices are determined 
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by the first-order conditions / = 0i iCS r   for = ,  i A B . Using equilibrium demand 

conditions in (24), these first-order conditions can be written as 

( )
( )( ) ( ) = 0.

ij iC ij ji
i j ij iC i ji j

i i i i

D D D DD
r SP r SP D D vT D vT

r r r r

 +  
  +  − + −

   
 (31) 

The first term and the second term on the left-hand side shows how an increase in slot 

prices and the corresponding reduction in slot quantities affects own passengers’ 

benefits from travelling. The third term shows the reduction in congestion cost for own 

passengers at the own airport, while the fourth term on the left-hand side shows the 

reduction in congestion costs for own passengers at the other airport. 

Using symmetry and solving the first-order conditions in (31) yield the 

equilibrium slot prices, which are strictly positive and can be written as 

( ) /
( ) = .

/

A B i

i ij iC i

i i

D D r
r SP D D vT

D r

 +  
+ 

  
 (32) 

The right-hand side of (32) shows that the congestion externalities imposed on non-

local passengers are only partly taken into account because Lemma 4 implies 

( )( ) ( )/ / / < 2A B i i iD D r D r +    . In this sense, equilibrium slot prices are too low 

relative to the first-best prices for both =i S  and =i SP . 

Given that the contraction condition is satisfied for both best responses in terms 

of slot quantities and best responses in terms of slot prices, this altogether leads to: 

Proposition 10 If airport profits do not matter and in the case of a three-airport 

network with two symmetric congested airports, the unique equilibrium in slot prices 

implies that airports imperfectly internalize the marginal external congestion costs, 

i iDvT  , relative to first-best prices although internalization is stronger than in the case 

where slot quantities are considered as decision variables.  

The intuition is that an increase in the own airport charge does not only improve 
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the situation of local passengers by reducing passenger demand at the own airport but 

also by reducing passenger demand at the other airport because / < 0j iD r  . This, 

therefore, provides stronger incentives to increase slot prices relative to the case where 

slot quantities are considered as decision variables and the other airport’s total demand 

is independent of the own slot quantity. 

The equilibrium slot prices in (32) show that airports charge a markup on slot 

prices in (30) where slot quantities are considered as decision variables so that it brings 

the equilibrium slot prices closer to the first-best prices when slot prices are considered 

as decision variables. This indicates that the variable effect, ( ) ( ),i iW S W SP−  is 

negative in sign. Considering that slot prices can be strategic substitutes, an increase 

in one airport’s slot price could be associated with a reduction of the other airport’s 

slot price. The total effect of a change in regimes from slots to slot prices as decision 

variables is therefore difficult to predict because there can be forces at play that work 

into opposite directions. Example 1 below will present a numerical example based on 

quadratic passenger benefit functions where the variable effect is indeed clear-cut and 

negative in sign. 

Equilibrium prices 

The local welfare function with congestion is given by (23). Using the equilibrium 

demand conditions in (24), the first-order conditions for the best responses in terms of 

the local welfare-maximizing prices, / = 0i iW r  , can be written as 

( )
( )( ) ( )

ij iC ij ji
i j j ij iC i ji j

i i i i

D D D DD
r P r D D vT D vT

r r r r


 +  
  +  − + −

   
 

( )( ), ( ) = 0.
ij ji

j j j j i ji

i i

D D
R r r P D

r r
 

 
−  +  +

 
 (33) 

Using symmetry, which implies ( ( ), ) = ( )j j j j iR r r P  , as well as Lemma 4, the last 

three terms on the left-hand side reduce to jiD . By the second-order conditions, this 
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implies that best price responses, ( )ir P , exceed best responses in terms of slot prices, 

( )ir SP . Solving the first-order condition (33) yields the equilibrium prices, ( )ir P , 

which can be written as the sum of the equilibrium slot prices plus a weighted markup 

depending on the price elasticities of passenger demands: 

( ) = ( ) .
/

ji i
i i

i i i

D D
r P r SP

D D r
+ 

 
 (34) 

Thus, the markup is the product of the semi-price elasticity of demand, 
iD , 

with respect to the own price and the share of other passengers at the own airport. The 

semi-price elasticity, / /i i iD D r  , represents the optimal price in the case of airport 

profit maximization. The notion of profit maximization only applies to other 

passengers when the airport maximizes local welfare, which is why the elasticity 

measure is weighted by the share of other passengers at the own airport. The markup 

also implies that regardless of whether it is a two-airport or three-airport network, or 

whether there are congestion effects or not, airports always have the incentives to 

charge strictly positive prices to exploit non-local passengers if airport profits matter, 

which again highlights the importance of considering the airport network effect. 

While equilibrium slot prices are too low relative to the first-best prices, the 

opposite is true for equilibrium prices in the case of local welfare maximization: 

Proposition 11 If airport profits matter and in the case of a three-airport network with 

two symmetric congested airports, the unique equilibrium in prices overinternalizes 

the marginal external congestion costs, 
i iDvT  , relative to first-best prices.  

This shows that equilibrium prices are used to exploit non-local passengers 

when airport profits matter and this leads to excessive prices in equilibrium also in the 

case of congested airport networks. 

The following example illustrates how time valuations affect the relative 
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performance of slot and pricing policies relative to the first-best solution and the role 

of variable and distribution effects in the presence of congestion. 

Example 1 The benefit of travelling is given by 

( ) ( )2 2

1 2 1 2

1
, =

2
i ij iC i ij iC ij iCB q q q q q q    +  −  +   (35) 

for airports A  and .B  To illustrate the relative performance of slot and pricing 

policies, the following notations are used. Using symmetry, the aggregate welfare is 

denoted as W  with = ( ) = 2 ( )i i iW W W  . Let W 
 denote the aggregate welfare under 

first-best prices = .i i ir D vT   The relative welfare loss of slot policies, denoted as ( ),S  

is given by ( )( ) = ( ) / ,S W W S W  −  while the corresponding value for pricing 

policies, denoted as ( )P , is given by ( )( ) = ( ) /P W W P W  − . 

Figure 2 illustrates the welfare losses of slot and pricing policies depending on 

time valuations in percent for parameters 
1 1= 6 / 5A B  =  (solid lines), 1  (dashed 

lines), 
2 = 3/ 5 , 

1 = 2 , 
2 = 4 , where 

1 = 6 / 5i  represents a scenario with large 

network effects, while 
1 =1i  represents a scenario where network effects are 

relatively less important. The solid lines (
1 = 6 / 5i ) and dashed lines ( 1 =1i ) 

represent the welfare losses when airport profits matter, ( )P , and do not matter, 

Figure 2: Welfare losses under slots, , and pricing, , relative to first-best in percent 

depending on time valuations. Parameters: , , , and  (solid lines) as 

well as  (dashed lines). 
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( )S . 

The figure illustrates that pricing performs particularly badly relative to slots 

when time valuations are low and, thus, congestion effects are of low importance to 

passengers. This is because in this case the distributional distortions and prisoner’s 

dilemma situations occur under pricing. However, as time valuations increase, the too 

loose equilibrium slot policies with excessive levels of congestion become more 

problematic and, eventually, for sufficiently high time valuations, slots perform worse 

than pricing. This indicates that time valuations are crucial for the social evaluation of 

airport systems that rely on slots or pricing policies. 

Figure 3 illustrates how time valuations affect the variable effect, 

( ) ( )i iW S W SP− , and the distribution effect, ( ) ( )i iW SP W P− , in the presence of 

congestion for parameters 
1 = 6 / 5i  (solid lines) and 

1 =1i  (dashed lines). When 

time valuations are zero, the variable effect is strictly equal to zero, while the 

distribution effect is strictly positive as shown in Corollary 3. The variable effect is 

always negative as anticipated, while the distribution effect is positive for sufficiently 

low time valuations and negative for sufficiently high time valuations. This shows that 

for large enough time valuations both the variable and the distribution effects are 

negative and explains the superiority of pricing policies relative to slot policies from 

Figure 3: The variable effect, , and distribution effect, , depending on 

time valuations (values are multiplied by 1,000 for scaling reasons). Parameters: , , 

, and  (solid lines) as well as  (dashed lines). 
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the welfare viewpoint.  

2.6 Other Extensions 

This subchapter considers two extensions of the three-airport network model. The first 

extension captures the presence of atomistic airlines, while the second extension 

involves a two-stage game, where airports decide whether to apply slot or pricing 

policies in the first stage and where they choose the specific slot quantities or airport 

charges, respectively, in the second stage. 

(Atomistic) Airlines 

In the previous subchapters, we considered integrated airports which provide both 

infrastructure and air services. In this sense, we abstracted away from airline 

companies and especially airline profits to avoid complications caused by the 

consideration and especially the evaluation of airline profits. To illustrate the potential 

complications induced by the presence of airline profits, this extension considers the 

presence of atomistic airlines when the airlines’ costs other than the airport charges 

are normalized to zero. 

Consider the case of uncongested airports. Airline ticket prices are equal to the 

sum 
A Br r+ , where 

ir  can represent airport charges or slot prices, for passengers flying 

between airports A  and B . This is true independent of whether passengers use local 

or non-local airlines. Thus, passengers who only care about ticket prices are indifferent 

between the use of local or non-local airlines when they fly between airports A  and 

B . Airline ticket prices are equal to 
ir  for passengers flying between airports i  and 

.C  Demands ijD  and 
iCD  are implicitly determined by the equilibrium conditions in 

(15). But, while demands ijD  are informative with respect to the local passenger 

demands for flights between airports A  and B , they do not define the total passenger 

demands for local airlines, where the latter have a lower limit of zero and an upper 
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limit of 
AB BAD D+ . Let 

AB

iD  denote the total passenger demand for local airlines with 

AB

i AB BAD D D + . In this case, the local airlines’ total profits, denoted as 
i , 

depending on whether slot or pricing policies are used, can be written as 

( ) ( ) ( ) ( )( ) ( ) ( )( )= .AB

i i A A B B A A B B iC i i i iD r r R R D r R       + − − +  −  (36) 

The first term on the right-hand side is the profit from local passengers travelling 

between airports A  and B  (independent of the share of local or non-local passengers 

served). The second term is the profit from local passengers travelling between airports 

i  and C . 

If airport profits matter, = =A B P   and ( ) = ( )i ir P R P  in equilibrium; thus, 

airlines have zero profits (that is, = 0i ). This implies that the presence of atomistic 

airlines leaves the local welfare function unchanged, which leads to: 

Proposition 12 If airport profits matter, equilibrium airport behaviors are 

independent of whether atomistic airlines or a vertically integrated airport is 

considered. 

Consider a scenario where airports auction slots to atomistic airlines so that 
ir  

reflects the auction prices for slots and where auction revenues accrue to airports. This 

reflects a scenario where =i ir R , which shows that Proposition 12 extends to such 

scenarios. 

If airport profits do not matter, = =A B S   and airport charges are equal to 

( ) = 0iR S , while the slot prices can be positive, that is, ( ) 0ir S  . This implies that 

airlines have positive profits if the slot quantities are small enough to ensure positive 

slot prices with ( ) > 0ir S . Local consumer surplus can be written as 

( )= ,i i ij A B iC iCS B D r r D r−  + −   (37) 

where the presence of atomistic airlines implies that passenger payments for flights are 
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positive even when slot policies are considered. More specifically, equation (37) 

implies that regardless of the airports’ slot or pricing strategies, local consumer surplus 

will always be equal to the difference between the benefits and the ticket payments of 

local passengers. Previously, with integrated airports, ticket prices were zero under 

slot strategies and, therefore, local welfare, local consumer surplus were both equal to 

the local passengers’ benefits. The difference between vertically integrated airports 

and airports with atomistic airlines is that airports’ slot strategies now enable atomistic 

airlines to gain positive profits, while the consumer surplus of local passengers is 

reduced. 

Assume that the airport attaches a weight  0,1   to airline profits so that the 

local welfare function under slots takes the form 

.i i iW CS = +  13 (38) 

If the airport attaches a unit weight to the local airline’s profits and the local 

airlines exclusively serve local passengers, the right-hand side is equal to the benefits 

of local passengers, 
iB , as it is in the case of a vertically integrated airport when airport 

profits do not matter. This implies: 

Proposition 13 If airport profits do not matter, airports attach a unit weight to airline 

profits, and airlines exclusively serve local passengers, equilibrium slot strategies are 

independent of whether atomistic airlines or a vertically integrated airport is 

considered.  

This means that the scenario with a vertically integrated airport is equivalent 

to a scenario with atomistic airline markets when the airports attach unit weights to 

consumer surplus and airline profits and, additionally, airlines exclusively serve local 

 
13 Czerny and Forsyth (2008) considered a scenario with airport slots where a unit weight is attached to 

consumer surplus and a weight lower than the unit weight is attached to airport and airline profits. 
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passengers. But it further means that deviations from these conditions could potentially 

change the results derived for the case of a vertically integrated airport, which 

illustrates the complications induced by the presence of atomistic airlines relative to 

the presence of vertically integrated airports. The following discussion and examples 

illustrate how these complications can affect the results derived based on the 

consideration of a vertically integrated airport. 

Consider the first partial derivative of the local welfare functions with respect 

to the local slot quantities, which can be written as 

= .i i i i i i

i i i i i i

W r CS r r

r Q r Q r Q


     
+

     
 (39) 

The first term on the right-hand side is strictly positive because / < 0i iCS r  , while 

the second term is strictly negative when slot prices are equal to zero. If airports attach 

a unit weight to their local airlines’ profits and the local airlines exclusively serve local 

passengers, the right-hand side is exactly equal to zero when evaluated at zero slot 

prices by Proposition 7. If, however, the second term on the right-hand side is smaller 

in absolute values because < 1  or AB

i ijD D , the non-negativity constraints for 

airport charges become strictly binding, and do not change the equilibrium results 

derived for the case with a vertically integrated airport in the sense that equilibrium 

slot policies still imply zero slot prices.14 However, also positive equilibrium slot 

prices can occur when, for example, >AB

i ijD D . 

Consider the interesting alternative scenario where airport profits do not 

 
14 If airport subsidy payments from airports to airlines would be allowed, the first-order conditions 

/ = 0i iW Q   would imply negative slot prices under these conditions. The role of airline subsidies at 

airports with oligopolistic airlines has been highlighted by Pels and Verhoef’s (2004). The present study 

highlights the role of airport subsidies arising from the social weights attached to airline profits and the 

distribution of local and non-local passengers to local and non-local airlines. 
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matter, airports attach a unit weight to their local airlines’ profits, the local airlines 

exclusively serve local passengers, and a fraction of slots are auctioned by airports to 

airlines as proposed by Daniel (2014). In this scenario, airline profits are reduced 

relative to a scenario where all slots are freely allocated to them based on the 

grandfather rule. To emulate such a scenario (which cannot be an equilibrium policy 

scenario when the auctioned fraction of slots is strictly positive and airport profits do 

not matter), let   represent the discount on airline profits rather than the weight 

attached to airline profits where an increase in the fraction of auctioned slots is 

associated with a reduced value of  . This interpretation illustrates that the above 

scenario is rich enough to also cover such cases and that the results derived for a 

vertically integrated airport extend to such cases as well. 

Consider the case of congested airports. Pricing policies lead to zero profits of 

atomistic airlines, which is independent of whether networks of uncongested or 

congested airports are considered. If airline markets are atomistic, the equilibrium 

pricing strategies derived for the case of vertically integrated airports are therefore 

unaffected by the presence of both atomistic airlines and congestion. 

The picture changes again in the case of slot policies. Airline profits are 

positive in this case and the relative weight attached to local consumer surpluses 

increases when the weight,  , attached to airline profits decreases (or local airlines 

serve few passengers relative to the local passengers’ total demand). Since local 

consumer surpluses are decreasing functions of ticket prices, this tends to increase 

equilibrium slot quantities and reduce equilibrium slot prices, thus, equilibrium ticket 

prices. The following example numerically illustrates that the presence of atomistic 

airlines in combination with a less than unit weight attached to their profits loosens 

equilibrium slot strategies relative to the case of vertically integrated airports when 

congestion is involved.  
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Example 2 The benefits of local passengers are given by (35) with parameters 

1 1= = 6 / 5A B  , 
2 = 3/ 5 , 

1 = 2  and 
2 = 4 . Figure 4 displays the relative local 

welfare losses under slots relative to first-best policies depending on the weight   

attached to airline profits when airlines exclusively serve local passengers, where time 

valuations = 1/ 3v  (solid line), = 1v  (dashed line) and = 3v  (dotted line) are 

considered. The weight   starts at 3 / 20  to ensure that passenger quantities are non-

negative in all markets. The figure indicates that the difference between local welfares 

in the case of first-best policies and local welfares in the case of equilibrium slot 

strategies are decreasing in the weight  . The intuition is that if airports attach lower 

than unit weights to airline profits, then they loosen slot quantities in equilibrium to let 

more local passengers travel, which increases welfare loss.  

Two-stage Game 

Until now, the analyses assumed one-shot games where airports simultaneously 

choose policy variables and prices or quantities. This seems a strong assumption 

because it seems plausible that airports can easily change slot quantities or prices, 

while it may be more difficult for them to switch between slot and pricing policies. To 

better capture the timing of airport decisions and test the robustness of the above-

derived results, this sub subchapter considers airports that choose the policy variable, 

Figure 4: Relative local welfare losses under equilibrium slot policies relative to first-best policies 

depending on the weight attached to airline profits when time valuations are  (solid line),  

(dashed line) and  (dotted line). 
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i , in the first stage and slot quantities or prices in the second stage. 

The sequential structure adds the following complication to the analysis. The 

simultaneous game structure involves symmetric policy choices in the sense that both 

airports will either choose slot policies or pricing policies depending on whether 

airport profits do not matter or matter, respectively. The derivation of the subgame-

perfect equilibrium in policy choices requires consideration of policy constellations 

where one airport chooses the pricing policy, while the other chooses the slot policy, 

which is a scenario that could be omitted in the case of a one-shot game. 

Consider uncongested airports. Furthermore, consider the case where airport 

profits do not matter. In this case, all airport prices (that is, prices 
ir  and 

iR ) implied 

by best responses are zero independent of whether slot or pricing policies are 

considered. A switch between policies has no impact on passenger quantities in this 

case. This implies that if there are three airports, airports are uncongested and airport 

profits do not matter, the equilibrium results derived for the one-shot game carry over 

to the two-stage game structure. 

Consider the case where airport profits matter. In this case, all airport prices 

implied by the best responses are zero for the airport that uses slot policies. However, 

equilibrium airport charges are strictly positive for airports that make use of pricing 

policies. Since airports A  and B  are complements, one would expect that airport 

prices are strategic substitutes. Thus, the equilibrium price of the airport that chooses 

pricing policies should be higher if the other airport chooses slot policies relative to a 

scenario where both airports choose slot policies. Furthermore, the sum of equilibrium 

prices should be lower if airports choose different policies relative to the scenario 

where both choose pricing policies. The overall effect of a unilateral move from 

pricing to slot policies on local welfares in the two-stage game can therefore be 

positive or negative. The following example illustrates the likely negative effect of a 
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unilateral move from pricing to slot policies on local welfares when airport profits 

matter. 

Example 3 The benefit of travelling is given by (35) with parameters 
1 = 6 / 5B , 

2 = 3/ 5 , 
1 = 5  and 

2 = 4 . Parameter 
1A  remains undetermined to analyze 

asymmetric market sizes. Airport profits are assumed to matter for airports.  

Figure 5 displays the equilibrium welfare of airport A  under slot policies (solid 

line) and pricing policies (dashed line) depending on the market size measured by the 

maximum reservation price 
1A  and given that airport B  is engaged in pricing 

policies when airport profits matter. Parameter 
1A  ends at 8 / 5  to ensure that 

passenger quantities are non-negative. The figure illustrates that airport A  has no 

reason to deviate from pricing policies in a sequential game structure under these 

conditions. This is true independent of whether it is smaller or larger than airport B .  

Figure 6 displays the local welfare of airport A  under slot policies (solid line) 

and pricing policies (dashed line) depending on the market size measured by the 

maximum reservation price 
1A  and given that airport B  chooses slot policies. 

Parameter 
1A  starts at 2 / 5  to ensure that passenger quantities are non-negative. The 

figure illustrates that airport A  has no reason to deviate from pricing policies in a 

sequential game structure also under these conditions. This is true independent of 

Figure 5: Equilibrium welfare of airport  under slot policies (solid line) and pricing policies (dashed 

line) depending on the maximum reservation price  when airport  chooses pricing policies and 

airport profits matter. Parameters: , ,  and . 
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whether it is smaller or larger than airport B .  

Altogether, this indicates that the equilibrium airport policies derived above for 

the cases of one-shot games are robust against changes in the timing of airport 

decisions. While congestion effects have been abstracted away in this sub subchapter, 

numerical simulations indicated that this robustness is also given in the presence of 

congested airports.  

2.7 Summary 

The present chapter started with a consideration of a two-airport network. The analysis 

showed that the equivalence between price- and quantity-based airport policies that 

exists in the case of a single airport (and deterministic demands) breaks down when 

airports individually maximize their local objective functions. The latter involves 

scenarios where airport profits do not matter or where airport profits matter. One way 

to see this, is to observe the existence of a unique equilibrium in the case of pricing 

policies (which does not achieve the set of first-best passenger quantities), and the 

absence of a unique equilibrium in slot quantities (where the set of equilibrium 

constellations includes the set of first-best passenger quantities). 

To concentrate on scenarios where unique equilibria in slot and pricing 

strategies exist, a three-airport network with two active airports and one inactive 

Figure 6: Equilibrium welfare of airport  under slot policies (solid line) and pricing policies (dashed 

line) depending on the maximum reservation price  when airport  chooses slot policies and 

airport profits matter. Parameters: , ,  and . 
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dummy airport was considered. This follows a common approach in the literature 

where the presence of such a dummy airport is often implicitly assumed (while the 

present study applied a more transparent approach where the presence of a dummy 

airport is an explicit part of the set of modeling assumptions). The presence of the 

dummy airport allowed for the consideration of a more realistic airport network where 

only a subset of the airports may be slot controlled and the consideration of unique 

best responses in slot quantities and the description of a unique equilibrium in slot 

quantities. 

Networks of uncongested and congested airports were considered. The 

comparison between passenger quantities implied by equilibrium pricing policies lead 

to too low passenger quantities relative to the first-best passenger quantities 

independent of whether uncongested or congested airports are considered. This is 

because airports raise airport charges to exploit non-local passengers when airport 

profits matter. By contrast, equilibrium slot quantities reproduce the first-best 

passenger quantities in the case of uncongested airports, while they lead to excessive 

passenger quantities in the case of congested airports. This is because airports ignore 

the delay reductions for non-local passengers in their choices of slot quantities. 

Numerical examples were used to show that slot policies can be beneficial relative to 

pricing policies when time valuations are low enough, while pricing policies can be 

beneficial relative to slots when time valuations are high enough. 

The analysis formally captures that a move from pricing to slot policies can 

involve two effects: first, a so called variable effect that arises from the change in 

variables in the sense that quantities not prices are the decision variables; second, a so 

called distribution effect that arises from the change in airport revenues, which 

captures the notion of grandfather rules that make it difficult for the airports to 

internalize the slot values as measured by their slot prices (shadow prices). To formally 
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separate variable and distribution effects, a third policy regime was introduced that 

involves prices as decision variables and given airport profits of zero. Numerical 

examples were used to illustrate how time valuations affect the variable and 

distribution effects and how an increase in time valuations increases the total welfare 

achieved under equilibrium pricing policies relative to the total welfare achieved under 

equilibrium slot policies. 

Model extensions captured the presence of atomistic airline markets and a 

sequential game structure where airports decide upon slot and pricing policies in the 

first stage and upon the specific slot quantities and prices in the second stage. The 

analysis of these extensions showed that appropriate assumptions can ensure that the 

main results are independent of whether vertically integrated or vertically separated 

airport and (atomistic) airline markets are considered. But they also show that vertical 

separation adds complexity to the analysis. 
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CHAPTER 3 

THE ROLE OF LOCAL AND NON-LOCAL PASSENGERS 

This chapter develops a stylized but rich enough model to analyze the role of the shares 

of local and non-local passengers (simply called locals and non-locals) for the 

assessment of local welfare-maximizing airport congestion policies by comparing the 

local welfare-maximizing solutions with the first-best outcome. To capture the 

presence of non-locals, it is sufficient to consider a network with only two airports. 

Furthermore, to analyze the role of non-locals for congestion policies, it is sufficient 

to assume that only one of the two airports is congested. 

The congested airport can use slot or pricing policies to mitigate the congestion 

problem for locals by choosing the slot quantity or the airport charge, respectively. In 

the case of slot policy, the airport does not earn from selling slots. This captures the 

notion of grandfather rules established by the Worldwide Scheduling Guidelines of the 

IATA. Efficient rationing is assumed to hold in the sense that slots are allocated to 

passengers with the highest willingness to pay. This implies a conservative assessment 

of pricing policies because the efficient allocation of slots among airlines cannot be 

guaranteed in reality (Czerny and Lang, 2019). In the case of pricing policy, the airport 

generates a positive profit from locals and non-locals. However, whereas the positive 

profit derived from non-locals matters to the local welfare-maximizing airport, the 

consumer surplus from non-locals is ignored by the local welfare-maximizing airport. 

The main part of the analysis is based on the consideration of general functional 

forms. The analysis shows that the local welfare-maximizing slot quantity can coincide 

with the first-best outcome whereas this is impossible in the case of pricing policy. 

The main result is to show that whether the outcomes coincide in the case of slot policy 

depends on the relationship between two types of shares of locals and non-locals. The 

first type represents the shares of locals and non-locals relative to the total number of 
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passengers, which we call the shares of inframarginal locals and non-locals, 

respectively. The second type is related to the effect of a marginal increase in the slot 

quantity on the quantities of locals and non-locals, which we call the shares of marginal 

locals and non-locals, respectively. More specifically, the second type of shares is 

equal to the increase in locals and non-locals relative to the increase in the total 

passenger quantity, or equivalently, the increase in the slot quantity. 

Using these concepts, the analysis shows that the first-best outcome coincides 

with the local welfare-maximizing slot policy if the implied shares of inframarginal 

locals and non-locals are equal to the implied shares of marginal locals and non-locals, 

respectively. The intuition is developed with the help of cost-benefit ratios associated 

with a marginal increase in the slot quantity. The cost-benefit ratios are measured by 

the marginal external congestion cost divided by the (slot) price. If the shares of 

inframarginal and marginal locals and non-locals implied by the local welfare 

maximum are equal, then the cost-benefit ratios associated with a marginal increase in 

the slot quantity are equal from the local and the first-best viewpoints. It is shown that 

the intuition based on cost-benefit ratios carries over to the more complicated case with 

multiple congested airports. Linear functional forms are used to further illustrate the 

role of locals and non-locals for the policy comparison and derive analytical solutions. 

The chapter is organized as follows. The model will be presented in Subchapter 

3.1. Subchapter 3.2 analyzes airport policies based on general functional forms. More 

specifically, the role of locals and non-locals and the concepts of the shares of 

inframarginal and marginal locals and non-locals will be discussed in detail in this sub 

chapter. The difference between the exclusive and inclusive airline services is 

discussed in Subchapter 3.3 to shed lights on how the share of passengers served by 

the local airlines affects the assessment of local welfare-maximizing policies. In 

Subchapter 3.4, linear functional forms are used to illustrate the relationship between 
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the cost-benefit ratios of a marginal increase in the slot quantity from the local and the 

first-best viewpoints. Subchapter 3.5 concludes this chapter. 

3.1 The Model 

There are two airports. One airport is congested in the sense that the physical capacity 

is low relative to the passenger or flight volume so that airline delays occur. The other 

airport is uncongested in the sense that the physical airport capacity is large enough to 

serve flights and passengers without any delay. This uncongested airport could 

represent an arbitrary number of uncongested airports (Brueckner, 2002). Locals from 

both airports fly between the two airports and take return flights. The following 

concentrates on policy decisions of the congested airport by referring to this airport as 

“the airport.” The uncongested airport is a passive airport in the sense that it is 

uncongested, and the user costs of this airport are normalized to zero. This uncongested 

airport will be referred to as “the other airport.” 

The passenger quantity of locals is denoted as 
lq  and the quantity of non-locals 

is denoted as 
nlq . Passenger quantities are non-negative, that is, 0iq  for ,i l nl= . 

The strictly concave travelling benefits of airport i ’s passengers are denoted as ( )i iB q  

with ( ) 0i iB q  . The total passenger quantity at the airport is denoted as Q  with 

l nlQ q q= + . 

This study assumes that local and non-local airlines exist, that airline markets 

are perfectly competitive, and that besides airport charges all other airline costs are 

normalized to zero. This basic model version further assumes that airlines offer 

exclusive services in the sense that locals only fly with their local airlines (a relaxed 

model with inclusive air services will be considered in Section 3.4). Airline load 

factors are assumed to be given by 100 percent, and aircraft sizes are fixed and 
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normalized to one unit of passenger.15 The latter implies that the number of flights is 

equal to the number passengers. Let the total passenger quantity Q  determine the 

convex average passenger delay denoted as ( )T Q  with ( ) 0T Q   and ( ) 0T Q  . 

Because flight and passenger quantities are equal, the average delay function can 

represent delays caused by flights due to limited runway capacity and delays caused 

by passengers due to limited terminal capacity. The passengers’ time valuations are 

denoted as v . 

The airport can choose between two policy measures, which are slot policy, 

denoted as S , and pricing policy, denoted as P . Let   with ,S P =  denote the 

policy variable. In the case of slot policy S = , the airport sets an upper limit on the 

number of flights, which is equal to the number of passengers, at the airport. For 

convenience, this study considers the upper limit on the number of passengers denoted 

as Q  and called the slot quantity. In the case of pricing policy P = , the airport 

charges the local and non-local airlines a non-discriminatory per-passenger airport 

charge denoted as R  with ( ) 0R R =  .16 In the case of slot policy and to capture the 

notion of grandfather rights, the airport charge is assumed to be zero, that is, ( ) 0.R S =  

This means the airport cannot earn from selling slots leading to zero airport revenue in 

the case of slot policy. This is an important feature of the present model because it 

captures the IATA’s Worldwide Scheduling Guidelines imposing that airport slot 

allocation is based on historic precedence. The airports’ costs are all normalized to 

zero. Together with the assumption of a non-negative airport charge, this means that 

airport cost recovery is always ensured. 

 
15 Endogenous load factors and aircraft sizes have recently been considered Czerny, van den Berg and 

Verhoef (2016). 

16 Price discrimination violates the rules of the world trade organization (WTO) for free transit. Detailed 

regulations can be found in Article 5 of GATT 1994.  
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The ticket price is denoted as r  with ( ) 0r r =  . In the case of slot policy, 

airlines can generate positive profits because slots are provided for free whereas the 

ticket price is positive, that is, ( ) 0 ( )r S R S = . In the case of pricing policy, airlines 

generate zero profits because they have to pay the airport charge, which is exactly 

equal to the ticket price because of perfect competition, that is, ( ) ( ) 0r P R P=  . In 

this scenario, all the producer surplus is internalized by the airport. 

Efficient rationing ensures that passengers with the highest willingness to pay 

are served first. This can be guaranteed under pricing policy and is assumed to be 

guaranteed in this study also in the case of slot policy. However, the current slot 

allocation practice based on grandfather rights cannot guarantee efficient rationing 

under slots.17  Therefore, this study provides a conservative assessment of pricing 

policy relative to slot policy. 

The model compares the local welfare-maximizing outcomes where airports 

are assumed to attach a unit weight to both local consumer surplus and the profits of 

their local airlines under slot and pricing policies with the first-best outcome. Czerny 

and Lang (2019) demonstrated that the consideration of slot and pricing policies can 

be justified in the sense that slot policy is relevant when airport profits do not matter 

for local governments whereas pricing policy is relevant when airport profits matter. 

3.2 Policy assessment based on general functional forms 

This subchapter starts with a discussion of passenger demands and how they relate to 

the slot quantity and the ticket price. This step provides crucial insights that will be 

used for the assessment of slot and pricing policies. The section continues with a 

discussion of the optimal slot and pricing policies from the local airport’s viewpoint 

 
17 Efficient rationing under slots can be achieved by allowing carriers to trade their slots (Brueckner, 

2009). 
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and compares them with the first-best outcome. Special attention will be given to the 

role of locals and non-locals for the results. 

Demand relationships 

The generalized price of traveling, denoted as  , is given by 

( )r vT Q = + . (40) 

The right-hand is the sum of the ticket price r  and the average congestion costs 

( ).vT Q  Passengers consider the generalized price as given. Demands for locals and 

non-locals depending on r  are denoted as ( )lD r  and ( )nlD r  respectively. They are 

determined by the conditions 

)( ) (l nl n llB q B q  = = . (41) 

Passengers will travel if their marginal benefit from travelling is at least as high as the 

generalized price. Applying Cramer’s rule to the system of equations in (41) yields: 

Lemma 7 The effect of a marginal increase in r  on demands can be characterized as 

( ), ( ) 0l nlD r D r   . (42) 

This lemma shows that both locals and non-locals’ demands are decreasing in 

the price. This implies that the total demand is also decreasing in the ticket price. 

The welfare assessment of slot policy requires an understanding of the 

relationship between the slot quantity Q  and the demands 
lD  and 

nlD . Here and 

hereafter, it is assumed that the slot constraint is always binding.18 Let ( )D r  denote 

the sum of the locals’ and non-locals’ demands depending on r  with 

( ) ( ) ( )l nlD r D r D r= + . By Lemma 7, ( ) 0D r  . The ticket price ( )r S  in the case of 

slot policy is implicitly determined by 

 
18 Airports may not always operate at full capacity. Gillen, Jacquillat and Odoni (2016) pointed out that 

meteorological and other stochastic factors may contradict the current assumption. 
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( ) 0.Q D r− =  (43) 

Let ( )r Q  denote the ticket price depending on the slot quantity. Totally differentiating 

(43) yields: 

Lemma 8 The ticket price is decreasing in the slot quantity, that is, 

( ) 0r Q   (44) 

By Lemma 7, an increase in the slot quantity is associated with a reduction in 

the ticket price to ensure that the passenger demand is equal to the slot quantity. 

Substituting ( )r Q  for r  in demands ( )lD r  and ( )nlD r  yields the demands depending 

on the slot quantity, that is, ( ( )) ( )l lD r Q D Q=  and ( ( )) ( )nl nlD r Q D Q= , leading to 

( ( )) ( )D r Q D Q Q= = . Using Lemma 7 and Lemma 8, the relationships between the 

slot quantity and demands can be described in the following way: 

Lemma 9 The effect of a marginal increase in slot quantity Q  on demands can be 

characterized as 

0 ( ), ( ) ( ) 1.l nlD Q D Q D Q    =  (45) 

This lemma first shows that the demands of locals and non-locals, and thus the 

total demand, are increasing in the slot quantity. It second shows that an increase in 

the slot quantity increases the total demand by an equal amount (a natural result). 

For the comparison of the local welfare-maximizing price with the first-best 

price, it is useful to characterize the relationship between the ticket price r  and the 

generalize price  . Using (40) and substituting Q  by ( )D r , the generalized price 

depending on r  can be written as ( ) ( ( ))r r vT D r = + . Taking the derivative of the 

right-hand side with respect to r  and rearranging yield: 

Lemma 10 The effect of a marginal increase in the ticket price r  on the generalized 

price   can be characterized as 
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0 ( ) 1.r   (46) 

This lemma shows that an increase in r  leads to an increase in the generalized 

price that is smaller than the increase in r . This is related to the structure of the 

generalized price. Equation (40) shows that the generalized price is the sum of the 

price r  and the congestion cost ( )vT Q . An increase in the price directly increases the 

generalized price because it is part of the generalized price. However, by Lemma 7, it 

also leads to a reduction in the total passenger quantity, thus reducing the generalized 

price because it reduces congestion and average congestion cost. This explains the 

inequality ( ) 1r  . 

Slots vs pricing policy 

The consumer surpluses of locals and non-locals, denoted as 
iCS  for ,i l nl= , are 

equal to the differences between the benefits and the sum of ticket price payments and 

delays costs, which can be written as 

( ) ( ) .i i i i iCS q B q q = −   (47) 

The first term on the right-hand side is the benefit of passengers. The second term is 

the passengers’ total costs for travelling, including the total payment to their local 

airlines and the total delay costs. 

The welfares of the airport and the other airport are denoted as 
iW  for ,i l nl= . The 

airport’s welfare 
lW  is equal to the sum of the locals’ consumer surplus and the joint 

profit of the local airlines and the airport (that is, ( ) ( )l nlq r q R  +  ), which can be 

simplified and written as 

( , ) ( ) ( ) ( ).l l nl l l nl lW q q B q q R q vT Q= +  −   (48) 

The first term on the right-hand side is the benefit of locals. The second term is the 

airport profit derived from non-locals. The third term represents the total delays costs 

of locals. Comparing the airport’s welfare in (48) with the consumer surplus of locals 
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in (47), the difference is the second term. It captures that in the case of pricing policy 

P = , there will be extra profit from charging non-locals. The extra profit, however, 

would be absent in the case of slot policy S =  because ( ) 0R S =  by assumption. 

The other airport’s welfare can be written as 

( , ) ( ) ( ) ( ).nl l nl nl nl nl nlW q q B q q R q vT Q= −  −    (49) 

The first term on the right-hand side is the benefit of non-locals. The second term is 

the total payment to the airport, which is zero in the case of slot policy because 

( ) 0R S =  by assumption. The third term represents the total delay costs of non-locals. 

3.2.2.1 First-best outcome as a benchmark 

The assessment of the congestion policies is based on a comparison of the local 

welfare-maximizing solutions under slot and pricing policies with the first-best 

outcome. The total welfare generated by the two airports, denoted as W  with 

l nlW W W= + , is given by the difference between the sum of benefits and the sum of 

delays costs, which can be written as 

( , ) ( ) ( ) ( ).l nl l l nl nlW q q B q B q QvT Q= + −  (50) 

Let the first-best solution be indicated by a double asterisk “**”. The first-best 

passenger quantities are determined by the first-order condition, 
**/ 0iW q  = , which 

can be written as 

( )** ** ** **( ) ( ) ( ) 0.i iB q vT Q Q vT Q − +  = 19 (51) 

The first term on the left-hand side is the marginal benefit of either locals or non-locals. 

The sum of the two terms inside the parentheses is equal to the marginal congestion 

cost. The first-best outcome is achieved when the marginal benefits are equal to the 

 
19 The concavity of the benefit functions together with the convexity of the delay function imply that 

the Hessian of ( , )l nlW q q  in (50) is negative definite. Therefore, there exists a unique solution for the 

welfare-maximizing quantities of locals and non-locals. 
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marginal congestion costs.  

Consider a laissez faire situation in which there are no slot controls and the 

airport charge is equal to zero. In this scenario, the generalized price is equal to the 

average congestion cost **( )vT Q , which is equal to first part of the marginal 

congestion costs in the parentheses. The second term, ** **( )Q vT Q , describes the 

congestion cost that passengers impose on others when they travel. This part is not 

included in the generalized price in this scenario and, therefore, external. Passengers 

will make excessive use of the congested airport because of the existence of the 

marginal external congestion costs. Both slot and pricing policies can be used to 

implement the first-best outcome by adjusting the generalized price via the ticket price 

that is associated with the slot quantity or the airport charge. 

In the case of slot policy, S = , the first-best outcome can be achieved by 

setting the slot quantity Q  equal to the first-best passenger quantity **Q . This leads to 

a first-best ticket price, **( )r S , that equals the marginal external congestion costs, that 

is, 

** ** **( ) ( ).r S Q vT Q=   (52) 

In the case of pricing policy, P = , the first-best outcome can be achieved by directly 

setting a first-best airport charge, **( )r P , equal to the marginal external congestion 

costs, that is, 

** ** **( ) ( ) ( ( )).r P D r vT D r=   (53) 

Together with equations (40) and (41), the first-best ticket price in (52) and the first-

best airport charge in (53) imply that the first-best outcome is achieved by these 

policies because they ensure that the marginal benefits of locals and non-locals are 

equal to the marginal congestion costs in these situations. This shows that both policies 

will indeed achieve the first-best outcome. The following analyzes the decentralized 
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decision making of the congested airport and compares the local welfare-maximizing 

solutions with the first-best outcome. 

3.2.2.2 Local welfare-maximizing slot policy 

Consider S = . Plugging the demands of locals and non-locals depending on the slot 

quantity into the welfare function in (48) yields the local welfare depending on the slot 

quantity, that is, ( ) ( ( ), ( )).l l l nlW Q W D Q D Q= Let the local welfare-maximizing 

solution be indicated by a single asterisk “*”. Assume that the local welfare-

maximizing slot quantity, is determined by the first-order condition, *( ) 0lW Q = , 

which can be written as 

( )* * * * *( ( )) ( ) ( ) ( ) ( ) 0.l l l lB D Q vT Q D Q D Q vT Q  −  −  =  (54) 

The first term on the left-hand side is the product of, 
* *( ( )) ( )l lB D Q vT Q − , which is 

equal to the local welfare-maximizing ticket price, *( )r S , by equations (40) and (41), 

and the derivative, 
*( )lD Q . By Lemma 9, 

*( )lD Q  takes a value between 0 and 1 and 

describes a share of locals, in which the share captures the increase in the quantity of 

locals associated with a marginal increase in the slot quantity. The second term 

captures the marginal external congestion cost of locals. Altogether, the local welfare-

maximizing slot quantity ensures that the marginal increase in the benefit of locals as 

measured by the weighted ticket price, 
* *( ) ( )lr S D Q , is equal to the locals’ marginal 

external congestion cost. 

Using the conditions in (41) and 
* * *( ) ( ) ( ) 1,l nlD Q D Q D Q  + = =  the left-hand 

side of (54) can be rewritten as 

( )* * * * * *( ) ( ) ( ) ( ) ( ) ( ) 0.l l l nlr S D Q D Q vT Q D Q D Q    −   + =  (55) 

Solving the first-order condition for the local welfare-maximizing slot quantity by 

dividing 
*( )lD Q  and rearranging (55) yields the local welfare-maximizing ticket price 
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in the case of slot policy, which can be written as 

*
* * * * *

*

( )
( ) ( ) ( ) ( ) ( ).

( )

nl
l l

l

D Q
r S D Q vT Q D Q vT Q

D Q


 =  +  


 (56) 

The first term on the right-hand side is the marginal external congestion cost of locals. 

The second term is a weighted marginal external congestion cost of locals. Lemma 9 

mentions that 
* *( ),  ( ) 0l nlD Q D Q   , which implies that the weight in the second term, 

* *( ) / ( )nl lD Q D Q  , is positive. Therefore, the local welfare-maximizing slot quantity 

leads to an over internalization of the locals’ part of the marginal external congestion 

cost because 
* * *( ) ( ) ( )lr S D Q vT Q  . The intuition can be described as follows. 

In the presence of non-locals, they are taking up the airport’s limited slot 

resources and, thus, benefit from the slot expansion. But they are not contributing to 

the congested airport’s welfare. This reduces the local welfare-maximizing slot 

quantity relative to the case in which non-locals would be absent. 

From the first-best viewpoint both locals and non-locals make excessive use of 

the congested airport capacity in the case of laissez faire. The local airport’s incentives 

to reduce the slot quantity in the presence of non-locals may, therefore, be desirable 

from the first-best viewpoint. The following proposition highlights the main result of 

the paper. It describes the condition under which the local welfare-maximizing slot 

quantity implements the first-best outcome: 

Proposition 14 The consideration of general functional forms implies: 

(i) If in the local welfare-maximum the demand of locals and the total demand satisfies 

the equality 

*
*

*

( )
( )l

l

D Q
D Q

Q
= , (57) 

then the local welfare-maximizing slot quantity equals the first-best slot quantity, that 

is, * **Q Q= ; 
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(ii) if the left-hand side exceeds the right-hand side, then the local welfare-maximizing 

slot quantity is too low relative to the first-best slot quantity, that is, * **Q Q ; and 

(iii) if the left-hand side is smaller than the right-hand side, then the local welfare-

maximizing slot quantity is too high relative to the first-best slot quantity, that is, 

* **Q Q . 

The left-hand side of (57) shows the share of the locals’ passenger quantity 

relative to the total passenger quantity, which we call the share of inframarginal locals. 

The right-hand side shows the increase in locals associated with a marginal increase in 

the slot quantity, which we call the share of marginal locals. If the local welfare-

maximizing solution implies that these two shares are equal, then the local welfare-

maximizing solution leads to the first best outcome. 

For an intuition, expand (57) by multiplying both sides with * *( ) / ( )vT Q r S  

and rearrange, which yields 

* ** *

* * *

( ) ( )( )
.

( ) ( ) ( )

l

l

D Q vT QQ vT Q

r S D Q r S

 
=

 
 (58) 

Both the locals’ and non-locals’ marginal benefits and marginal external congestion 

costs are increasing in the slot quantity. The left-hand side shows the cost-benefit ratio 

of a marginal increase in the slot quantity in terms of the marginal external congestion 

cost and the ticket price from the first-best viewpoint. The right-hand side shows the 

cost-benefit ratio of a marginal increase in the slot quantity in terms of the marginal 

external congestion cost and the ticket price from the airport’s viewpoint (which is 

equal to one in the local-welfare maximum). If these cost-benefit ratios are equal in 

the local welfare-maximum, which is true if the shares of inframarginal and marginal 

locals are equal in the local welfare-maximum as mentioned in (57), then the local 

welfare-maximizing solution coincides with the first-best outcome. 

If a marginal increase in the slot quantity leads to a higher cost-benefit ratio of 
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the airport relative to the first-best viewpoint, then the airport is too reluctant to 

increase slot quantity. In local welfare-maximum, slot policy becomes too strict in the 

sense that slot quantity is too low relative to the first-best outcome. If a marginal 

increase in the slot quantity leads to a lower cost-benefit ratio of the airport relative to 

the first-best viewpoint, then the airport is too inclined to increase slot quantity. In 

local welfare-maximum, slot policy becomes too loose in the sense that slot quantity 

is too high relative to the first-best outcome. 

The shares of inframarginal and marginal locals can be used to inform policy 

makers in real world practice. The share of inframarginal locals can be identified by 

dividing, say, the yearly number of locals by the yearly total number of passengers 

given by the sum of locals and non-locals. The corresponding share of marginal locals 

can be identified by considering the changes in passenger quantities associated with 

an increase in the slot quantity. More specifically, this share can be estimated by 

dividing the increase in the yearly number of locals associated with an increase in the 

slot quantity by the increase in the yearly total number of passengers associated with 

an increase in the slot quantity. The relationship between the two estimates can then 

be used to assess the incentives of a local welfare-maximizing airport from the first-

best viewpoint. For instance, if the estimated share of inframarginal locals is higher 

than the share of marginal locals, then the airport’s incentives to expand the slot 

quantity should be too high from the first-best viewpoint whereas the airport’s 

incentives to increase the slot quantity should be too low from the first-best viewpoint 

in the reverse case. 

3.2.2.3 Local welfare-maximizing pricing policy 

Consider P = . Substituting the demands of locals and non-locals depending on the 

price into the welfare function in (48) yields the local welfare depending on the airport 

charge, that is, ( ) ( ( ), ( )).l l l nlW r W D r D r=  Assume that the local welfare-maximizing 
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ticket price, *( )r P , is determined by the first-order condition, 
*( ) 0lW r = , which can 

be written as 

( )* * * * * * *( ( )) ( ( )) ( ) ( ) ( ( )) ( ) ( ) 0.l l l nlB D r vT D r D r D r vT D r D r D r   −  −   + =  (59) 

The first and the second terms on the left-hand side capture the benefits and marginal 

external congestion cost of locals, respectively. The third term on the left-hand side 

captures the revenue gain from non-locals. Substituting ( )* *( ( )) ( ( ))l lB D r vT D r −  in 

the parentheses by the airport charge *( )r P  in the local welfare-maximum and solving 

for the airport charge yield 

**
* * * *

* *

( )( )
( ) ( ) ( ( )) ( ).

( ) ( )

nlD rD r
r P D r vT D r r

D r D r
 =  +  


 (60) 

The first term on the right-hand side is the marginal external congestion cost of all 

passengers, which is also the first-best price in (53). The second term is a positive 

markup, which is determined by the semi-price elasticity of demand, *( )D r , with 

respect to the airport charge weighted by the share of non-locals and the marginal 

effect of a change in the airport charge on the generalized price. The semi-price 

elasticity, * *( ) / ( )D r D r , represents the optimal charge in the case of profit 

maximization. The notion of profit maximization only applies to non-locals when the 

airport maximizes local welfare, which is why the elasticity measure includes a weight 

that captures the share of (inframarginal) non-locals. However, the non-locals not only 

contribute to the airport’s profit but also to congestion. Therefore, the marginal change 

in the generalized price is added as another weight. Altogether, this implies that 

Proposition 15 The local welfare-maximizing airport charge never reaches the first-

best outcome in the sense that * **( ) ( )r P r P . 

In the absence of non-locals, the markup is zero in (60). Thus, the local welfare-
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maximizing airport charge equals the first-best price. This implies that the airport’s 

incentive to exploit the non-locals by charging a positive markup on the marginal 

external congestion cost of locals eliminates the possibility that pricing policy can 

achieve the first-best outcome. 

3.2.2.4 A congestion game in an airport network 

The present model considers the role of locals and non-locals and evaluates the local 

policies in the context of one (active) congested airport and one (passive) uncongested 

airport. Insights are developed about the role of locals and non-locals, their shares in 

terms of inframarginal and marginal passengers and how they affect cost-benefit ratios. 

This part shows that these insights are robust in the sense that they carry over to cases 

with more complex airport networks in which several local airport authorities choose 

congestion policies in a decentralized fashion, such as the three-airport network in the 

previous chapter. 

Consider the left-hand side of equation (57), which shows the share of 

inframarginal locals. The value of the left-hand side that corresponds to the framework 

of three-airport network in Chapter 2 can be written as ( ) /ij iC iD D D+ . Consider the 

right-hand side of equation (57), which shows the share of marginal locals. In a first 

step, the value of the right-hand side that corresponds to the framework of three-airport 

network in Chapter 2 would be considered to be equal to the share of marginal locals 

/ /ij i iC iD Q D Q  +   . However, remember that it is the cost-benefit ratios that 

ultimately matter. 

A crucial difference between the present framework and the framework of 

three-airport network in Chapter 2 is that locals who travelled between airports A  and 

B  had to pay two generalized prices because both airports were congested. Therefore, 

their marginal benefit of locals who travelled between the congested airports was twice 
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as high as the marginal benefit of locals who travelled between airports i and C  who 

utilized only one congested airport. The locals who travelled between the congested 

airports thus count twice to capture the difference in marginal benefits. The right-hand 

side in (57), therefore, correctly translates into 2 / /ij i iC iD Q D Q  +    in the 

framework of three-airport network in Chapter 2. By Lemma 4, the effect of a marginal 

increase in the local price, or equivalently a marginal reduction in local slot quantity, 

on passengers who travelled between the congested airport was independent of their 

origins in the sense that / /ij i ji iD Q D Q  =   . Using this equality, 

2 / /ij i iC iD Q D Q  +    can be simplified as / 1i iD Q  = . But, this implies that the 

equality (57) can never be satisfied in the framework of three-airport network in 

Chapter 2 because ( ) / 1ij iC iD D D+  . Altogether, the cost-benefit ratio associated 

with a marginal increase in the local slot quantity is always lower from the local 

viewpoint relative to the first-best viewpoint. Therefore, the local welfare-maximizing 

slot quantity will be too high relative to the first-best outcome as was shown in 

Proposition 9. 

The local welfare-maximizing slot quantity can be first-best in the framework 

with one congested airport whereas this is not possible in the framework of three-

airport network in Chapter 2. In this sense, the assessment of slot policies depends on 

the airport networks under consideration. The result that pricing policies lead to 

excessive pricing from the first-best viewpoint is, however, more robust in the sense it 

is true both in the present framework and the framework of three-airport network in 

Chapter 2. This is because local airports have the incentives to exploit the non-locals 

by charging a positive markup on the first-best price independent of the airport 

networks under consideration. 

3.3 Exclusive versus inclusive air service 



72  

The model has been focusing on exclusive air services where local airlines only serve 

their locals. This subsection discusses a relaxed environment with inclusive air 

services in the sense that airlines can serve both locals and non-locals. Consider the 

region of the congested airport. Let 
l  denote the share of locals served by local 

airlines and 
nl  the share of non-locals served by local airlines. Previously, it was 

assumed that 1l =  and 0.nl =  In this section, this assumption is relaxed in the sense 

that the two shares can take any value between 0 and 1, that is, 0 1i   for ,i l nl= . 

With this notation, the number of the local airlines’ passengers is given by ,l l nl nlq q +  

and the airport’s welfare can be written as 

( ) ( )( ) ( ) ( ) .l l l l nl nlW CS R Q r R q q    = +  + −  +  (61) 

The first term on the right-hand side is the locals' consumer surplus. The second term 

is the airport profit. The third term is the local airlines' profit from both locals and non-

locals. 

In the case of pricing policy ,P =  ( ) ( )r P R P= . This implies that the third 

term on the right-hand side of (61), which is the local airlines’ profit, is zero. The 

airport’s welfare is equal to the sum of the locals’ consumer surplus and the airport 

profit, which is identical to the airport’s welfare in (48). Therefore, 

Proposition 16 The local welfare-maximizing pricing policies are independent of 

whether air services are exclusive or inclusive in the sense that the local welfare-

maximizing airport charge is given by *( )r P  in (60) for all  , 0,1 .l nl    

In the case of pricing policy, perfectly competitive airline markets imply zero 

airline profits. Therefore, airlines do not contribute to local welfares and, hence, it is 

of no importance for the local welfare-maximizer whether airlines serve locals or non-

locals. 
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The picture changes in the case of slot policy in which S =  and ( ) 0R S = . In 

this scenario, the second term on the right-hand side of (61) representing the airport’s 

profit is equal to zero whereas the third term representing the local airlines’ profit is 

positive. It is useful to recognize that what matters from the airport’s viewpoint is the 

total number of passengers served by local airlines, not the shares of locals and non-

locals. This is because this allows substituting the total number of flights 
l l nl nlq q +  

by Q  where   represents the market share of local airlines. In the case of exclusive 

air services, the total number of passengers is equal to the total number of locals, that 

is, 
lQ q = . In the case of inclusive air services, the total number of flights may or may 

not be equal to the total number of locals, which is dependent on  . 

Consider the market share of local airlines,  , as exogenously given. 20 

Substituting 
l l nl nlq q +  by Q  and Q  by Q  in (61) yields the airport’s welfare 

depending on the market share of the local airlines   and slot quantity Q , which can 

be written as 

( ) .l lW CS r S Q= +    (62) 

Assume that the local welfare-maximizing slot quantity is determined by the first-order 

condition 
*( ) 0lW Q = , which can be written as 

* * * * *( ) ( ) ( ) ( ) 0.lQ D Q r Q r Q Q   −  +  +  =   (63) 

The first term on the left-hand side captures the consumer surplus gain of locals 

associated with an increase in the slot quantity. This term is (the absolute value of) the 

product of the marginal change in the generalized price associated with an increase in 

the slot quantity and the locals’ demand. Lemma 8 shows that ( ) 0r Q   and Lemma 

 
20 In the case of exclusive air services, the airline market share can be considered as given only if the 

shares of inframarginal and marginal locals are equal. 
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10 shows that 0 ( ) 1r  . Together this implies that *( ) 0Q   because 

( )* *( ) ( )Q r r Q   =  , which means that an increase in the slot quantity increases 

consumer surplus. The second term captures the local airlines’ gain in revenue 

associated with the increase in the slot and passenger quantity. Lemma 8 shows that 

( ) 0r Q  . Therefore, the third term captures the local airlines’ loss in revenue from 

the decrease in the ticket price. Altogether, the local welfare-maximizing slot quantity 

optimally balances consumer surplus and airline profit effects for the local economy. 

Totally differentiating the first-order condition in (63) with respect to Q  and 

  yields: 

Lemma 11 In the case of inclusive air services, for a given market share of the local 

airlines,  , and given that the local welfare-maximizing slot quantity is determined by 

the first-order condition in (63), the local welfare-maximizing slot quantity is 

decreasing in  , that is, 
*

0.
Q







 

If   decreases, then local airlines generate less profit and, therefore, the local 

airlines’ profit becomes less significant relative to the locals’ consumer surplus to the 

airport. The lemma shows that in this scenario, the airport has the incentive to increase 

the slot quantity to allow more locals to travel because the locals’ consumer surplus is 

increasing in the slot quantity as implied by Lemma 9. This relationship exists if the 

local welfare-maximizing slot quantity is determined by the first-order condition in 

(63), which does not always need to be true. 

If   is small enough, the local welfare-maximizing slot quantity is so high that 

the non-negativity constraint associated with the ticket price becomes binding. 

Consider the extreme case in which   is equal to zero. In this case, the local welfare 

is equal to the local consumer surplus which is strictly increasing in the passenger 



75  

quantity implying a binding non-negativity constraint for the ticket price. In the case 

of a binding non-negativity constraint, the local welfare-maximizing slot quantity is 

not unique because any high enough slot quantity can imply a zero ticket price and, 

therefore, be optimal. 

Consider the extreme case in which the local airlines serve all passengers, that 

is, =1.  In this case, the airport’s welfare is independent of the policy choice because 

the airport can earn from all passengers by either the airport charge under pricing 

policy or the local airlines’ ticket price under slot policy. This implies that the local 

welfare-maximizing slot quantity is given by a local welfare-maximizing ticket price 

that is equal to the local welfare-maximizing airport charge in the case of pricing policy, 

that is, * *( ) ( )r S r P=  when 1 =  where *( )r P  is given by (60). Together with 

Lemma 8 and Lemma 11, this implies: 

Proposition 17 In the case of inclusive air services and slot policy, there exists an 

upper bound for the local welfare-maximizing ticket price *( )r S  that is equal to *( )r P  

given by (60). 

3.4 Slot policy: the case of linear functional forms 

This section considers linear functional forms and concentrates on the ambiguous 

relationships between the local welfare-maximizing slot quantity and the first-best 

outcome. The discussion of pricing policy is omitted because it involves complex 

mathematical expressions but provides little insight to justify the mentioning given 

that the consideration of general functional forms demonstrated that it unambiguously 

fails to implement the first-best outcome. 

The benefits of travelling are given by the quadratic function 

21
( )

2
i i i i i iB q q q =  −   (64) 

with , 0i i    and , i l nl= , where 
i  are called the maximum reservation prices. 
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Average delays are given by ( )T Q  with ( )T Q Q= . Demands ( )lD r  and ( )nlD r  are 

determined by the demand equilibrium conditions ( ) ( )i iB q r vT Q = + . Simultaneously 

solving these conditions yields the demands of locals and non-locals depending on the 

price r , which can be written as 

( )
( )

.( )
i j i j j

l nl l

i

l n

D
v

v
r

r    

   

+ −

+
=

− 

+
 (65) 

The right-hand side shows that demands are decreasing in price r . 21  Using the 

demands in (65), the total demand at the airport is given by 

( )

( )
.( )

l nl nl l l nl

l nl l nl

D
r

v
r

     

   

+ − +
=



+ +
 (66) 

Substituting ( )D r  on the left-hand side of (66) with slot quantity Q  and solving yield 

the ticket price, which can be written as 

( )
.( )

l nl l nll nl nl l

l nl l nl

v
r Q Q

      

   

+ ++
=

+
−

+
 (67) 

The right-hand side shows that the ticket price ( )r Q  is decreasing in the slot quantity 

.Q  Substituting price r  on the right-hand side of (65) with the ticket price in (67) 

yields the demands depending on slot quantity, which can be written as 

.( )
i j

l l

i

j

n

Q
D Q

  

 

−

+


=

+
 (68) 

The right-hand side shows that demands are increasing in slot quantity Q . 

Using ( ) 1T Q = , the first-best ticket price in (52) can be rewritten as 

** **( )r S v Q=  . Substituting the left-hand side in (67) by ( )r Q  evaluated at the first-

best slot quantity yields the condition 

 
21 It is a necessary condition that ( )2 /i j i jv    −  to ensure that all demands are positive. 
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( )** **l nl l nll nl nl l

l nl l nl

v
v

Q Q
      

   
− =

+

+


++

+
. (69) 

Solving for the first-best slot quantity **Q  yields 

( )
** .

2

l nl nl l

l nl l nl

Q
v

   

   

+

+
=

+

22 (70) 

The local welfare-maximizing slot quantity in the case of slot policy is 

determined by the first-order condition *( ) 0lW Q =  and can be written as 

( )
( )

( )( )
** *

2

l nl

l nl

nl l nl l nl

v
Q

v
Q

 
 

    

+
− −

+
=

+
 (71) 

The first term on the right-hand side is given by the first-best slot quantity. The second 

term is the product of the difference in maximum reservation prices, ( )l nl −  and a 

positive term, which implies the following relationships between local welfare-

maximizing slot quantities and first-best passenger quantities: 

Proposition 18 The consideration of linear functional forms implies: 

(i) If the maximum reservation prices of locals and non-locals are equal, that is, 

l nl = , then the local welfare-maximizing slot quantity equals the first-best slot 

quantity, that is, ** *Q Q= ; 

(ii) if the maximum reservation price of locals is smaller than the maximum reservation 

price of non-locals, that is, 
l nl  , then the local welfare-maximizing slot quantity 

exceeds the first-best slot quantity, that is, ** *Q Q ; and 

(iii) if the maximum reservation price of locals exceeds the maximum reservation price 

of non-locals, that is, 
l nl  , then the local welfare-maximizing slot quantity is 

smaller than the first-best slot quantity, that is, ** *Q Q . 

 
22 Together with equation (53), the first-best airport charge is given by 

** **.( )r P v Q=   
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Proposition 18 highlights that the maximum reservation prices determine 

whether local welfare-maximizing slot policy can reach first-best outcome. For an 

intuition, first consider the share of marginal locals, which can be written as 

( ) .nl
l

l nl

D Q


 
 =

+
 (72) 

The right-hand side is positive and independent of slot quantity, which means that the 

share of marginal locals is independent of the slot quantity. Second, consider the share 

of inframarginal locals, which can be written as 

( )
( ).

( )

l l nl
l

l nl

D Q
D Q

Q Q

 

 

−
= +

+
 (73) 

The first term on the right-hand side contains the difference in maximum reservation 

prices, ( )l nl − . This difference determines the difference between the demand 

elasticities of locals and non-locals with respect to the generalized price because these 

demand elasticities are given by 

( ) .
( )

i

i i

D
D

 


  
  = −

−
 (74) 

If 
l nl = , then the first term on the right-hand side of (73) is zero and 

independent of slot quantity, implying that the share of inframarginal locals is always 

equal to the share of marginal locals. In this scenario, the local welfare-maximizing 

slot policy reaches the first-best outcome. For an intuition, consider equation (74). The 

locals’ and non-locals’ demands are equally elastic in the generalized price. This 

means that in local welfare-maximum, a reduction in the generalized price that 

corresponds to an increase in slot quantity will lead to an equal proportionally increase 

in the locals and non-locals’ demands which implies that the share of inframarginal 

and marginal locals are equal. These shares are not equal if the maximum reservation 

prices and the corresponding price elasticities of the passenger demands differ. 
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Figure 7 and Figure 8 are used to illustrate why local welfare-maximizing slot 

quantities can or cannot reach the first-best outcome depending on the difference 

between maximum reservation prices, ( )l nl − . Parameters are given by 7 /10l =  

(Figure 8 on the left), 4 / 5  (Figure 7), 9 /10  (Figure 8 on the right), 4 / 5nl = , 

2 / 5l = , 3/ 5nl =  and 1/ 2v = . Slope parameters 
i  are distinct to highlight that 

only the differences in maximum reservation prices determine whether local-welfare 

maximization can implement the first-best outcome.  

In Figure 7, maximum reservation prices of locals and non-locals are equal and 

given by 4 / 5l nl = = . The upward sloping lines depict the marginal external 

congestion costs Q vT   and 
lD vT  from the first-best and the airport’s viewpoints, 

respectively, depending on the slot quantity. The downward sloping lines depict the 

ticket price r  and the weighted ticket price 
lD r  , respectively, depending on the slot 

quantity. The minimum and maximum slot quantities are chosen at 1/ 4Q =  and 

1,Q =  respectively, to ensure that both locals and non-locals’ demands are non-

negative across the figures. 

The intersection point of the two lines on the top determines the first-best slot 

quantity. The intersection point of the two lines on the bottom determine the slot 

Figure 7: Ticket price  and the weighted ticket price , and marginal external congestion costs, 

 and , depending on slot quantity when maximum reservation prices are equal, that is, 

. 
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quantity that maximizes the airport’s welfare. The vertical dashed line depicts the local 

welfare-maximizing slot quantity. The slot quantities determined by the intersection 

points of the two lines on the top and the two lines on the bottom are equal and given 

by 20 / 31Q = . This shows that, in this scenario, local-welfare maximization is 

consistent with the first-best outcome. The reason is that, evaluated at the optimal slot 

quantity, the cost-benefit ratios associated with an increase in the slot quantity are 

equal from the airport’s and first-best viewpoints as required by (58). 

In Figure 8, maximum reservation prices of locals are given by 7 /10l =  (

4 / 5nl = ) on the left and 9 /10l =  ( 4 / 5nl = ) on the right. The figure on the 

left shows that if 
l nl  , then the local welfare-maximizing slot quantity, indicated 

by the dashed vertical line, implies that the marginal external congestion cost Q vT   

exceeds the marginal benefit r  from the first-best viewpoint. This leads to a higher 

cost-benefit ratio associated with an increase in the slot quantity from the first-best 

viewpoint relative to the airport’s viewpoint. Therefore, the local welfare-maximizing 

slot quantity exceeds the first-best slot quantity, that is, ** *Q Q . The figure on the 

right shows that if l nl  , then the local welfare-maximizing slot quantity, indicated 

by the dashed vertical line, implies that the marginal external congestion cost Q vT   

is smaller than the marginal benefit r  from the first-best viewpoint. This leads to a 

Figure 8: Ticket price  and the weighted ticket price , and marginal external congestion costs, 

 and , depending on slot quantity with a smaller (  on the left) and a bigger 

locals’ maximum reservation price (  on the right) respectively. 
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lower cost-benefit ratio associated with an increase in the slot quantity from the first-

best viewpoint relative to the airport’s viewpoint. Therefore, the local welfare-

maximizing slot quantity is smaller than the first-best slot quantity, that is, ** *Q Q . 

3.5 Summary 

This chapter developed a stylized but rich enough model to analyze the role of locals 

and non-locals for the assessment of local welfare-maximizing airport congestion 

policies by comparing the local welfare-maximizing solutions with the first-best 

outcome. To capture the presence of non-locals, it was sufficient to consider a network 

with only two airports. Furthermore, to analyze the role of non-locals for congestion 

policies, it was sufficient to assume that only one of the two airports was congested. 

The congested airport could use slot or pricing policies to mitigate the 

congestion problem for locals by choosing the slot quantity or the airport charge, 

respectively. In the case of slot policy, the airport did not earn from selling slots. This 

captured the notion of grandfather rights established by the Worldwide Scheduling 

Guidelines of the IATA. In the case of pricing policy, the airport generated a positive 

profit from locals and non-locals. However, whereas the positive profit derived from 

non-locals mattered to the local welfare-maximizing airport, the consumer surplus 

from non-locals was ignored by the local welfare-maximizing airport. 

The main part of the analysis was based on the consideration of general 

functional forms. The analysis showed that the local welfare-maximizing slot quantity 

could coincide with the first-best outcome whereas, in our framework, this was 

impossible in the case of pricing policy. The main result was to show that whether the 

outcomes coincided in the case of slot policy depended on the relationship between 

two types of shares of locals. The first type represented the share of locals relative to 

the total number of passengers, which was called the share of inframarginal locals. The 

second type was related to the effect of a marginal increase in the slot quantity on the 
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quantities of locals, which was called the share of marginal locals. More specifically, 

the second type of share was equal to the increase in locals relative to the increase in 

the total passenger quantity, or equivalently, the increase in the slot quantity. 

Using these concepts, the analysis showed that the first-best outcome coincided 

with the local welfare-maximizing slot policy if the implied share of inframarginal 

locals was equal to the implied share of marginal locals. The intuition was developed 

with the help of cost-benefit ratios associated with a marginal increase in the slot 

quantity. The cost-benefit ratios were measured by the marginal external congestion 

cost divided by the ticket price. If the shares of inframarginal and marginal locals 

implied by the local welfare-maximum were equal, then the cost-benefit ratios 

associated with a marginal increase in the slot quantity were equal from the local and 

the first-best viewpoints. It was shown that the intuition based on cost-benefit ratios 

carried over to the more complicated case with multiple congested airports. The 

difference between the exclusive and inclusive airline services were discussed to shed 

lights on how the share of passengers served by the local airlines affects the assessment 

of local welfare-maximizing policies. Linear functional forms were used to further 

illustrate the role of locals and non-locals for the policy comparison and derive 

analytical solutions.
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CHAPTER 4 

SUBSTITUTE AIR SERVICES FOR LOCAL PASSENGERS 

This chapter extends the three-airport network in Czerny and Lang (2019)’s study by 

considering an airport network in which passengers can choose between two 

alternative origin-destination connections as imperfect substitutes. The main insight of 

the analysis is that the presence of substitute air services is a necessary condition for 

equilibrium slot quantities to reach the first-best outcome. This is because in the 

presence of substitute air services, an increase in the local slot quantity leads to a 

stronger increase in the demand of non-locals than the demand of locals who travel 

between the two congested airports. This implies that non-locals are taking up more of 

the additional slot quantities and therefore are the main beneficiaries of the local 

airport’s slot expansion, which reduces the local airport’s incentive to increase the slot 

quantity as they would have in the absence of substitute air services. The presence of 

substitute air services implies that slot policies are stricter relative to the case in which 

substitute air services are absent. Equilibrium slot quantities can thus possibly achieve 

the first-best passenger quantities. The chapter also shows that equilibrium pricing 

levels will be too high relative to the first-best prices independent of the presence or 

absence of substitute air services. This is because if profits matter, the local airport will 

always charge a markup on the first-best price independent of the presence or the 

absence of substitute air services. 

Numerical examples are used to illustrate how the level of substitutability 

affects the total welfare achieved under equilibrium slot and pricing policies relative 

to the first-best welfare. These instances show that the welfare performance of pricing 

policies is better than that of slot policies when the level of substitutability is relatively 

low or high. In the middle range of substitutability, the welfare performance of slot 

policies is better than that of pricing policies and can even implement the first-best 
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outcome. 

The chapter is organized as follows. The model will be presented in Subchapter 

4.1. Subchapter 4.2 4.2 discusses the demand relationships which are crucial for the 

policy assessment in Subchapter 4.3. At the end of Subchapter 4.3, numerical examples 

are used to illustrate how the level of substitutability affects the total welfare achieved 

under equilibrium slot and pricing policies relative to the first-best welfare. Subchapter 

4.4 concludes this chapter. 

4.1 The Model 

This subchapter extends the three airport networks in Chapter 2 by considering 

substitute air services in the airport congestion policies. All the model settings in 

Subchapter 2.4 and 2.5 carry over here. To capture that air services are imperfect 

substitutes, 2 / < 0i ij iCB q q    is assumed to be true with 

2 2 2 2 2/ , / < / < 0i iC i ij i ij iCB q B q B q q       . 

The model considers a one-shot game, where airports independently and 

simultaneously choose between slot and pricing policies as well as respective slot 

quantities and pricing levels. Equilibrium policies depend on whether airport profits 

do not matter (slots are equilibrium policies because then consumer surplus is higher 

with slots than with pricing policies) or do matter (pricing are equilibrium policies 

because then airports can exploit non-locals) as highlighted by Czerny and Lang 

(2019) and this dependency is unaffected by the presence of substitute air services. 

4.2 Demand relationships 

This subchapter analyzes the relationships between (i) airport charges and passenger 

demands and (ii) slot quantities and passenger demands, and how the presence of 

substitute air services affects them. An increase in one airport charge will affect both 

airports’ total traffic whereas an increase in one airport’s slot quantity will keep the 
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other airport’s total air traffic unchanged. This affects equilibrium pricing and slot 

policies and makes their outcomes different. 

The following first considers airport charges and finds that, in the presence of 

substitute air services, demand of locals who travel between airports A  and B  can be 

increasing in the local airport charge. To determine the necessary conditions for such 

an increase, the relationship between generalized prices and demands is discussed in a 

second step. The relationship between slot quantities and slot prices is discussed in a 

third step, which helps analyze the relationship between slot quantities and demands 

of locals and non-locals in the final step. Altogether, this entire subchapter is crucial 

for the understanding of the outcomes of equilibrium congestion policies, which will 

be discussed in the subsequent subchapter. 

The effect of airport charges on local and non-local demands  

Passengers who travel between airports A  and B  experience delays at both airports 

whereas passengers who travel from their local airport to airport C  only experience 

delays once. Let ij  and 
iC  with 

= ( ) and =AB A B A B iC i ir r v T T r vT + + + +  (75) 

denote the generalized prices for passengers travelling between airports A  and ,B  and 

between their local airport and airport C , respectively. Passengers consider 

generalized prices as given. Demands of locals who travel between airports A  and ,B  

and between their local airport and airport C , denoted as ( , )ij A BD r r  and ( , )iC A BD r r , 

respectively, are determined by the equilibrium conditions 

= 0 and = 0.i i
ij iC

ij iC

B B

q q
 

 
− −

 
 (76) 

Passengers will travel as long as their marginal benefits from travelling are at least as 

high as the generalized prices. Applying Cramer’s rule to the system of equations in 
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(76) and using symmetry yield: 

Lemma 12 A marginal increase in airport charge 
ir  implies: 

( )
( ) 0,  ( ) 0 ,  ( ) 0,  ( ) ,

ji ij jC ji ji ijiC

i i i i i i

D D D D D DD
i ii iii iv

r r r r r r

 +    
    
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( ) ( )
( )   ( ) 0.

ij iC ji jC ji

i i i i

D D D D DD
v and vi

r r r r

 +  + 
  

   
 (77) 

This lemma is discussed at length because it will later be used to develop the intuition 

for the main results on equilibrium pricing policies. It is helpful to understand the 

following effects of an increase in the local airport charge: an increase in the local 

airport charge directly affects all locals who travel between airports A  and ,B  and 

between their local airport and airport C ; whereas an increase in the local airport 

charge only directly affects non-locals who travel between airports A  and ,B  and 

indirectly on non-locals who travel between the non-local airport and airport C . 

Part (i) shows that the overall demand for trips between airports A  and B  is 

decreasing in local airport charge. This is because trips between airports A  and B  

become more expensive for both locals and non-locals due to the increase in local 

airport charge and accordingly reduces the overall demand for such trips. 

Part (ii) firstly shows that a marginal increase in the local airport charge reduces 

the locals’ demand for trips between the local airport and airport C . There are two 

sources for this demand reduction. The first source is that some passengers who 

travelled before between the local airport and airport C  stop travelling now due to an 

increase in the local airport charge. This effect exists in both cases of non-substitute 

and substitute air services. The second source only exists in the case of substitute air 

services. This source captures that locals who travelled before between the local airport 

and airport C  now may want to switch to trips between airports A  and B . Whether 

this switch will happen is unclear because the airport charge increases for all locals, 
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including the locals who travel between airports A  and B . 

Part (ii) secondly shows that a marginal increase in the local airport charge 

increases the non-locals’ demand for trips between the non-local airport and airport 

.C  There are also two sources that lead to this demand increase. The first source is 

related to congestion. Part (i) implies that the non-local airport becomes less congested 

because an increase in the local airport charge reduces the overall demand for trips 

between airports A  and B . Some passengers who did not travel between the non-local 

airport and airport C  before, therefore start to travel because of the congestion 

reduction. This effect exists both in the cases of non-substitute and substitute air 

services. The second source only exists in the case of substitute air services. This 

source captures that some non-locals who travelled before between airports A  and B  

switch to trips between the non-local airport and airport C  because traveling between 

airports A  and B  has become more expensive due to the increase in the local airport 

charge. 

Part (iii) shows that a marginal increase in the local airport charge reduces the 

non-locals’ demand for trips between airports A  and B . There are also two sources 

for this demand reduction. The first source is that some passengers who travelled 

before between airports A  and B  stop travelling now due to an increase in the local 

airport charge. This effect exists both in the cases of non-substitute and substitute air 

services. The second source only exists in the case of substitute air services. This 

source captures again that non-locals who travelled before between airports A  and B  

now switch to trips between the non-local airport and airport C . 

Part (iv) shows that a marginal increase in the local airport charge reduces the 

non-locals’ demand by more than the locals’ demand for trips between airports A  and 

B  (the locals’ demand for these trips may actually increase under certain conditions, 

which will be discussed below). This follows naturally from the discussion of parts (ii) 
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and (iii). Some locals and non-locals who travelled before between airports A  and B  

stop travelling between airports A  and B  due to an increase in the local airport 

charge. On the one hand, those locals who travelled before between the local airport 

and airport C  now may want to switch to trips between airports A  and B , which 

would soften the effect of a reduction in the locals’ demand for trips between airports 

A  and B . On the other hand, those non-locals who travelled before between airports 

A  and B  now may want to switch to trips between the non-local airport and airport 

C , which would strengthen the effect of a reduction in the non-locals’ demand for 

trips between airports A  and B . Therefore, an increase in local airport charge leads 

to a relatively weak reduction in the locals’ demand for trips between A  and B  

compared with the reduction in the non-locals’ demand for such trips. 

Part (v) shows that a marginal increase in the local airport charge has a greater 

impact on the total locals’ demand than the total non-locals’ demand. This is because 

non-locals who travelled before between airports A  and B  may switch to trips 

between the non-local airport and airport C  and thus the total demand of non-locals 

are less affected by an increase in the local airport charge. 

Part (vi) shows that a marginal increase in the local airport charge reduces 

traffic at both local and non-local airports, whereas the effect of the local airport charge 

is stronger on local traffic than non-local traffic. This is because an increase in the 

local airport charge affects all locals but only some non-locals. 

The relationship between airport charges and generalized prices 

It seems natural that an increase in the number of passengers traveling between airports 

A  and B  would be associated with a reduction in the corresponding generalized price. 

The following analysis shows that, in the presence of substitute air services, this 

relationship may or may not apply. Consider the effect of airport charges on 

generalized prices. Substituting passenger quantities ijq  and 
iCq  with the demands ijD  
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and 
iCD , respectively, in the generalized prices in (75), taking the derivatives with 

respect to the airport charge 
ir  and using Lemma 12 yield: 

Lemma 13 A marginal increase in airport charge 
ir  implies: 

( ) 0  ( ) 0 1.
jC ij iC

i i i

i and ii
r r r

    
   

  
 (78) 

Part (i) shows that an increase in the local airport charge reduces the generalize 

price for trips between the non-local airport and airport C . This is intuitive because 

the total traffic and thus congestion are reduced at both airports while the non-local 

airport charge remains unchanged. Therefore, the generalize price is reduced. 

Part (ii) shows that an increase in the local airport charge always increases the 

generalized prices for trips between airports A  and ,B  and between the local airport 

and airport C , but by less than 1. The latter is true because an increase in the local 

airport charge reduces the local and non-local total traffic and thus congestion costs as 

highlighted by part (vi) in Lemma 12, which softens the effect of an increase in the 

generalized prices. It further shows that the generalized price for trips between airports 

A  and B  is increasing by less than the generalized price for trips between the local 

airport and airport C . This is because an increase in the local airport charge reduces 

both airports’ total traffic and thus congestion costs as highlighted by part (vi) in 

Lemma 12 and the generalized price for trips between airports A  and B  involves two 

congestion costs reduction whereas the generalized price for trips between the local 

airport and airport C  only involves one congestion costs reduction. 

Part (ii) is inconsistent with the notion that a demand increase must be 

associated with a reduction in the corresponding generalized price. According to 

Lemma 12, the demand of locals traveling between airports A  and B  can be 

increasing in the local airport charge although, according to Lemma 13, the locals’ 
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generalized prices are always increasing in the local airport charge. The presence of 

substitute air services is crucial for this result as shown by the following proposition: 

Proposition 19 (i) The presence of substitute air services with strong enough 

substitutability in the sense that 

2 2

2

1
<

2

i i

ij iC ij

B B

q q q

 

  
 (79) 

and (ii) airport congestion are necessary conditions for the demand of locals who 

travel between airports A  and B  to be increasing in the local airport charge. 

The inequality in (79) can never be satisfied in the absence of substitute air 

services because the left-hand side of (79) equals zero whereas the right-hand side of 

(79) is strictly negative by the concavity of the benefit function. This shows that the 

presence of substitute air services is a necessary condition for the demand of locals 

who travel between airports A  and B  to be increasing in the local airport charge.23 

The intuition is that the generalized price for trips between airports A  and B  is 

increasing by less than the generalized price for trips between the local airport and 

airport C  in the local airport charge as highlighted by Lemma 13. If the substitutability 

is strong enough, there will be many locals who travelled before between the local 

airport and airport C  switching to trips between airports A  and B  in the presence of 

substitute air services. This may lead an overall increase in the local demand for trips 

between airports A  and B . 

The assumption that airports are congested is also crucial for Proposition 19 to 

be true. Consider otherwise that airports are not congested but air services are 

substitutes. An increase in the local airport charge leads to / = / = 1ij i iC ir r     . 

 
23 Following the setup in the analysis using general functional forms, quadratic functional forms can be 

used and show that demand of local passengers who travel between airport A  and B  is indeed 

increasing in local airport charge. 
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This means that the generalized prices for both trips are increasing in local airport 

charge by the same amount, that is, 1. There is no incentive for locals who travelled 

before between the local airport and airport C  to switch to trips between airports A  

and B . Therefore, in the absence of congestion, the demand of locals who travel 

between airports A  and B  will not be increasing in the local airport charge. 

The relationship between slot prices and slot quantities 

Slot prices are the shadow prices under slots that would have to be implemented to 

ensure that airport passenger demands equal the desired slot quantities. It is assumed 

that slot constraints are always binding. The slot price ( )ir S  is implicitly determined 

by 

( )( ), ( ) = 0.i i A BQ D r S r S−  (80) 

Applying the Gale-Nikaido Theorem (Gale and Nikaido, 1965) and Cramer’s rule to 

the system of equations in (80) yields: 

Lemma 14 (i) There is a unique pair of slot prices matched with each pair of slot 

quantities; (ii) local airports’ slot prices are decreasing in local airport’s slot 

quantities; and (iii) non-local airports’ slot prices are increasing in local airport’s 

slot quantities, that is, 

< 0 < < .
ji i

i i i

rr r

Q Q Q

 

  
 (81) 

The unique one-to-one pairing relationship between slot prices and slot 

quantities means that Cramer’s rule can be applied to derive the following 

relationships. The first inequality in (81) shows that local airport’s slot price is 

decreasing in the local airport’s slot quantity. Equation (80) implies that an increase in 

the local slot quantity increases the local airport’s demand by the same amount. This 

is associated with a reduction in the local airport’s slot price to ensure that the 

passenger demand equals the slot quantity by Lemma 12, which shows that demand 
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iD  is decreasing in 
ir . Lemma 12 also implies that the non-local airport’s demand is 

increasing in the local airport’s slot quantities. This is because the reduction in the 

local airport’s slot price increases the demand for the non-local airport. To keep the 

non-local airport’s demand unchanged despite an increase in the local’s slot quantity 

and the corresponding reduction in the local airport’s slot price, the non-local airport’s 

slot price must be increasing in the local airport’s slot quantity. The increase in the 

non-local airport’s slot price is smaller in absolute value than the reduction in the local 

airport’s slot price, which means that the sum of slot prices for flights between airports 

A  and B  is reduced by an increase in the local slot quantity. 

The effect of slot quantities on local and non-local demands 

Airport charges are the decision variables under pricing policies, whereas slot 

quantities are the decision variables under slot policies. Using Lemma 12 and Lemma 

14, the relationships between slot quantities and demands can be described in the 

following way: 

Corollary 4 A marginal increase in slot quantity iQ  implies: 

( )
( ) 0,  ( ) 0 ,  ( ) 0 ,  ( ) .

ij ji jC ji ij jiiC

i i i i i i

D D D D D DD
i ii iii and iv

Q Q Q Q Q Q

 +    
    

     
 (82) 

This corollary is also discussed at length because it will later be used to develop 

the intuition for the main results on equilibrium slot policies. It is helpful to understand 

the following effects of an increase in the local slot quantity: an increase in the local 

slot quantity directly affects all locals who travel between airports A  and ,B  and 

between their local airport and airport C ; whereas an increase in the local slot quantity 

only directly affects non-locals who travel between airports A  and ,B  and indirectly 

on non-locals who travel between the non-local airport and airport C . 

Part (i) shows that the overall demand for trips between airports A  and B  is 
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increasing in local airport’s slot quantity. This is because trips between airports A  and 

B  become more attractive due to the relaxed local slot policy and accordingly 

increases the overall demand for such trips. 

Part (ii) firstly shows that a marginal increase in the local slot quantity reduces 

the non-locals’ demand for trips between the non-local airport and airport C . There 

are two sources for this demand reduction. The first source is related to non-local 

airport’s slot constraint. Part (i) implies that an increase in the local slot quantity 

increases the overall demand for trips between airports A  and B . Whereas the non-

local airport’s slot quantity and thus total demand remains unchanged, some 

passengers who travelled before between the non-local airport and airport C  stop 

travelling now. This effect exists both in the cases of non-substitute and substitute air 

services. The second source only exists in the case of substitute air services. This 

source captures that non-locals who travelled before between the non-local airport and 

airport C  now may want to switch to trips between airports A  and B  because 

traveling between airports A  and B  has become more attractive due to the relaxed 

local slot policy. 

Part (ii) secondly shows that a marginal increase in the local slot quantity 

increases the locals’ demand for trips between airports A  and B . There are also two 

sources for this demand increase. The first source is that passengers who did not travel 

before between the local airport and airport C  start to travel now because of the relaxed 

local slot policy. This effect exists both in the cases of non-substitute and substitute air 

services. The second source only exists in the case of substitute air services. This 

source captures that some passengers who travelled before between airports A  and B  

now may want to switch to trips between the local airport and airport C . Whether this 

switch will happen is unclear because the slot quantity increases for all locals, 

including the locals who travel between airports A  and B . 
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Part (iii) shows that a marginal increase in the local airport’s slot quantity 

increases the non-locals’ demand for trips between airports A  and B . There are also 

two sources for this demand increase. The first source is that some passengers who did 

not travel before between airports A  and B  start to travel now due to the relaxed local 

slot policy. This effect exists both in the cases of non-substitute and substitute air 

services. The second source only exists in the case of substitute air services. This 

source captures again that non-locals who travelled before between the non-local 

airport and airport C  now may want to switch to trips between airports A  and B . 

Part (iv) shows that a marginal increase in the local airport slot quantity 

increases non-locals’ demand by more than locals’ demand for trips between airports 

A  and B . This follows naturally from the discussion of parts (ii) and (iii). Some locals 

and non-locals who did not travel before between airport A  and B  start to travel now 

between airports A  and B  due to the relaxed local slot policy. On the one hand, those 

locals who travelled before between airports A  and B  now may want to switch to 

trips between the local airport and airport C , which would soften the effect of an 

increase in the locals’ demand for trips between airports A  and B . On the other hand, 

those non-locals who travelled before between the non-local airport and airport C  now 

may want to switch to trips between airports A  and, which would strengthen the effect 

of an increase in the non-locals’ demand for trips between airports A  and B . 

Therefore, an increase in local slot quantity leads to a relatively weak increase in the 

locals’ demand for trips between A  and B  compared with the increase in the non-

locals’ demand for such trips. 

4.3 Equilibrium Policies 

The first-best outcome in Subchapter 2.5 carries over here in the sense that the first-

best prices remain unchanged with =A A Ar D vT   and =B B Br D vT  . This is because the 

structure of the current model is almost identical to the one in Subchapter 2.4 and 
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Subchapter 2.5. The only difference is the benefit function where 2 / < 0i ij iCB q q    in 

this chapter to capture that air services are imperfect substitutes as opposed to 

2 / 0i ij iCB q q   =  in Chapter 2. The difference in benefit functions does not change 

the first-best outcomes but change the equilibrium local welfare-maximizing solutions 

drastically in terms of slot policies, which will be shown in detail as follows. 

Equilibrium slot quantities 

Consider = =A B S  . Assume that the best responses in terms of slot quantities are 

determined by the first-order conditions, / = 0i iW Q   and that the map of best 

responses in terms of the slot quantity is a contraction, which are maintained 

assumptions here and hereafter. Using the equilibrium conditions (76) and symmetry 

in the sense that ( ) = ( )A Br S r S  in equilibrium, the first-order conditions for the best 

responses in terms of the slot quantities can be written as 

( )( ) 2 = 0.
ij iC

i ij iC i

i i

D D
r S D D vT

Q Q

 
 + − + 

  
 (83) 

The first term on the left-hand side shows how an increase in local slot quantity and 

the corresponding increase in locals’ demands for trips between airports A  and ,B  

and their local airport and C  affect the locals’ benefits from travelling. The benefits 

for trips between A  and B  are weighted by two because these passengers use two 

airports and passengers therefore have to pay two prices. Correspondingly the marginal 

benefits of traveling are equal to twice of the slot price for these passengers. The 

following result implies that the first term on the left-hand side is positive: 

Lemma 15 The locals’ demands imply 

2 > 0.
ij iC

i i

D D

Q Q

 
+

 
 (84) 

The second term on the left-hand side of (83) shows the locals’ marginal external 
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congestion cost. The best responses in terms of slot quantities ensure that the locals’ 

marginal benefits are equal to the locals’ marginal external congestion cost. 

Solving the first-order condition (83) for the equilibrium slot price yields 

( )( ) = .

2

ji ij

i i
i i i ji i ij iC i

ij iC

i i

D D

Q Q
r S D vT D vT D D vT

D D

Q Q

 
−

 
  − + +

 
+

 

 (85) 

The right-hand side can be used to show that equilibrium slot prices are high in the 

presence of substitute air services relative to the case where substitute air services are 

absent. The first term is the marginal external congestion cost of all passengers at local 

airport, which is also the first-best price. The second term is the marginal external 

congestion cost of the non-locals. The third term is a weighted marginal external 

congestion cost of locals. In the presence of substitute air services, the effect of slot 

quantities is stronger for non-local than for locals in the sense that 

0 < / < /ij i ji iD Q D Q    , whereas in the absence of substitute air services this effect 

is equal for non-local and locals. These two relationships together imply that in the 

presence of substitute air services, in equilibrium, the local airport internalizes more 

than its locals’ part of the marginal external congestion cost in the sense that 

( )( ) > =i i i ji i ij iC ir S D vT D vT D D vT  − +  because the third term is positive. By contrast, 

in the absence of substitute air services, the third term is zero because 

0 < / = /ij i ji iD Q D Q    . Therefore, the airport would, in equilibrium, exactly 

internalize the locals’ part of the marginal external congestion cost as was shown by 

Czerny and Lang (2019). The intuition is that, an increase in the local slot quantity 

stimulates non-locals who travelled before between the non-local airport and airport 

C  to switch to trips between airports A  and B . Consequently, a marginal increase in 

the local slot quantity leads to a relatively strong increase in non-local passenger 
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numbers at the local airport because / < /ij i ji iD Q D Q    , which means that non-

locals are the main beneficiaries of the local slot expansion. The local airport therefore 

ends up internalizing more than its locals’ part of the marginal external congestion 

cost. The following shows that the equilibrium slot quantities can in effect lead to the 

first-best outcome or even too few slots relative to the first-best outcome, whereas 

neither of these two equilibrium outcomes would be possible in the absence of 

substitute air services. 

To evaluate the equilibrium slot policies, consider the first-best slot policy that 

maximizes the total welfares of airports A  and B  by the choice of the local slot 

quantity, which is given by 

= 0.
ji

i i

WW

Q Q


+

 
 (86) 

The first term on the left-hand side captures the impact of the local airport’s response 

in terms of slot quantity on the local airport’s welfare whereas the second term captures 

the corresponding welfare externality on the other airport. Specifically, the best 

responses in equilibrium imply that the first term is equal to zero. Given that the 

contraction condition for best responses in terms of slot quantities is satisfied, this 

leads to: 

Proposition 20 (i) If the unique equilibrium in slot quantities implies zero welfare 

externalities, then this unique equilibrium implements the first-best outcome; 

(ii) if welfare externalities are negative in equilibrium, equilibrium slot quantities are 

too high relative to the first-best slot quantities; and 

(iii) if welfare externalities are positive in equilibrium, equilibrium slot quantities are 

too low relative to the first-best slot quantities.  

This proposition is true independent of the presence or absence of substitute air 

services. However, in the absence of substitute air services, the unique equilibrium in 
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slot quantities always implies negative welfare externalities and equilibrium slot 

quantities are therefore always too high relative to the first-best slot quantities. In the 

presence of substitute air services, the unique equilibrium in slot quantities may, 

however, implies zero welfare-externalities and equilibrium slot quantities can be first-

best if the condition in the following proposition is satisfied: 

Proposition 21 If airport profits do not matter and quantities are the decision 

variables, the presence of substitute air services is a necessary condition for zero 

welfare externalities in the equilibrium. Specifically, (i) if the equilibrium slot 

quantities imply the demand condition 

= 2 ,
ij iC ij iC

i i i

D D D D

D Q Q

+  
+

 
 (87) 

then welfare externalities are zero; (ii) if the left-hand side exceeds the right-hand side 

in equilibrium. the welfare externalities are negative in equilibrium, and (iii) if the left-

hand side is lower than the right-hand side in equilibrium, the welfare externalities 

are positive in equilibrium. 

The concept of the share of inframarginal and marginal locals developed in 

Chapter 3 can be used to derive a better understanding for this proposition. Consider 

the share of inframarginal locals, which corresponds to the left-hand side of equation 

(87). Consider the share of marginal locals, which is equal to / / .ij i iC iD Q D Q  +    

However, remember that it is the cost-benefit ratios that ultimately matter. This is 

important in the sense that locals who travel between airports A  and B  have to pay 

two generalized prices because both airports are congested. Therefore, the marginal 

benefit of locals who travel between the congested airports is twice as high as the 

marginal benefit of locals who travel between airports i  and C  who utilize only one 

congested airport. This means the locals who travel between the congested airports 

count twice to capture the difference in marginal benefits associated with an increase 
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in the local slot quantity. The right-hand side in (87), therefore, correctly translates 

into 2 / /ij i iC iD Q D Q  +   . 

In the absence of substitute air services, the right-hand side would be equal to 

1. This is because an increase in the local slot quantity, or equivalently a reduction in 

the local slot price, increases non-locals’ and locals’ demands for trips between airports 

A  and B  by the same amount by Lemma 4. The cost-benefit ratio associated with a 

marginal increase in the local slot quantity is always lower from the local viewpoint 

relative to the first-best viewpoint. Therefore, the local airports are more inclined to 

increase the local slot quantities. In equilibrium, slot quantity will always be too high 

relative to the first-best outcome, leading to negative welfare externalities. 

In the presence of substitute air services, the right-hand side is less than 1. This 

is because an increase in the local airport’s slot quantity increases the non-locals’ 

demand for trips between airports A  and B  by more than the locals’ demand for such 

trips by Corollary 4. The cost-benefit ratios associated with a marginal increase in the 

local slot quantity can be equal from the local and the first-best viewpoints. Therefore, 

the local airports are more reluctant to increase the local slot quantities as they would 

have in the absence of substitute air services. If the condition in (87) is satisfied in 

equilibrium, local slot quantities are optimal relative to the first-best outcome, leading 

to zero welfare externalities. 

The assessment of equilibrium slot policies changes because the share of 

marginal locals changes in the presence of substitute air services. The intuition is that, 

in the absence of substitute air services, when the local slot quantity increases, non-

locals who travel between the non-local airport and airport C  do not want to switch to 

trips between airports A  and B . Therefore, non-locals and locals who travel between 

airports A  and B  are increasing in local slot quantity by the same amount, leading to 

the share of marginal locals that is equal to 1  and always exceeds the share of 
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inframarginal locals with ( ) ( )2 / 1 / .ij iC i ij iC iD D Q D D Q +  =  + Welfare 

externalities are always negative and equilibrium slot quantities are too always too 

high relative to the first-best outcome. In the presence of substitute air services, when 

the local slot quantity increases, some non-locals who travelled before between the 

non-local airport and airport C  now switch to trips between airports A  and B . 

Therefore, non-locals who travel between airports A  and B  are increasing in local 

slot quantity by more than the locals, leading to the share of marginal locals that is 

smaller than 1  and possibly equals the share of inframarginal locals with 

( ) ( )2 / / 1ij iC i ij iC iD D Q D D Q +  = +  . Welfare externalities can be zero and thus 

equilibrium slot quantities can reach the first-best outcome. 

Equilibrium slot prices 

Consider = =A B SP  . Assume that the best responses in terms of slot prices are 

determined by the first-order conditions / = 0i iW r   and that the map of best 

responses in terms of the slot price is a contraction, which are maintained assumptions 

here and hereafter. Using the equilibrium conditions (76) and symmetry in the sense 

that ( ) = ( )A Br SP r SP , the first-order conditions for the best responses in terms of the 

slot prices can be written as 

( )
( ) 2 = 0.

i jij iC i
i ij i iC i

i i i i

D DD D D
r SP D vT D vT

r r r r

 +  
  + − − 

    
 (88) 

The first term on the left-hand side shows how an increase in local slot price 

and the corresponding reduction in locals’ demand for trips between airports A  and 

,B  and their local airport and C  affect the locals’ benefits from travelling. The 

benefits for trips between A  and B  are weighted by two again because these 

passengers pay the slot prices twice, one at each airport. The following result implies 

that the first term on the left-hand side is negative: 
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Lemma 16 The locals’ demands imply 

2 < 0.
ij iC

i i

D D

r r

 
+

 
 (89) 

The second term on the left-hand of (88) shows how an increase in the local 

slot price and the corresponding reduction in locals’ demand affect the marginal 

external congestion cost for trips between airports A  and B . Compared with the 

second term in the first order condition (83), the difference is that when slot quantities 

are the decision variables, an increase in local slot quantity only affects the local 

airport’s demand and, thus, congestion whereas the other airport’s total traffic and, 

thus, congestion remains unchanged. The picture changes when slot prices are the 

decision variables. In this case, an increase in local slot price reduces traffic and, thus, 

congestion at both congested airports. The third term shows how an increase in local 

slot price and the corresponding reduction in locals’ demand affect the marginal 

external congestion cost for trips between the local airport and airport C . The best 

responses in terms of slot prices ensure that the locals’ marginal benefits are equal to 

the locals’ marginal external congestion cost. 

Solving the first-order condition (88) for the equilibrium slot price yields 

( ) ( )

( )( ) = .

2 2

ij iC ji jC ji ij

i i i i
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The first term on the right-hand side is the marginal external congestion cost of all 

passengers at local airport, which is also the first-best price. The second term is a 

weighted marginal external congestion cost of the non-locals. The third term is a 

weighted marginal external congestion cost of locals. Lemma 12 mentions that 

/ < / < 0i i j iD r D r     and / < /ji i ij iD r D r    , which implies that 
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( ) ( )/ = / < 2 / < 0i i ij ji iC i ij iC iD r D D D r D D r   + +   +  . Lemma 12 also mentions 

that ( ) ( )/ < /ij iC i ji jC iD D r D D r +   +  , which altogether implies that the second 

term is negative, and third term is positive. By contrast, in the absence of substitute air 

services, the second term is negative whereas the third term disappears because 

/ = /ji i ij iD r D r     by Lemma 4. Therefore, the airport would, in equilibrium, never 

internalizes all the passengers’ marginal external congestion cost as was shown by 

Czerny and Lang (2019). In the presence of substitute air services, an increase in the 

local airport’s slot price ( )ir SP  stimulates non-locals who travelled before between 

airports A  and B  to switch to trips between their local airport and airport .C  

Consequently, a marginal increase in local slot price leads to a relatively stronger 

decrease in the demand of non-locals at the local airport because / < /ji i ij iD r D r    . 

This means that locals are the main beneficiaries of the increase in local slot price. The 

local airport therefore ends up internalizing more than its locals’ part of the marginal 

external congestion cost. The following shows that the equilibrium slot prices can in 

effect lead to the first-best outcome or even too high slot prices relative to the first-

best outcome, whereas neither of these two equilibrium outcomes would be possible 

in the absence of substitute air services. 

To evaluate the equilibrium slot policies, consider the first-best slot policy that 

maximizes the total welfares of airports A  and B  by the choice of the local slot price, 

which is given by 

= 0.
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i i
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The first term on the left-hand side captures the impact of the local airport’s response 

in terms of slot price on the local airport’s welfare whereas the second term captures 

the corresponding welfare externality on the other airport. Specifically, the best 
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responses in equilibrium imply that the first term is equal to zero. Given that the 

contraction condition for best responses in terms of slot prices is satisfied, this leads 

to: 

Proposition 22 (i) If the unique equilibrium in slot prices implies zero welfare 

externalities, then this unique equilibrium implements the first-best outcome; 

(ii) if welfare externalities are negative in equilibrium, equilibrium slot prices are too 

high relative to the first-best slot prices; and 

(iii) if welfare externalities are positive in equilibrium, equilibrium slot prices are too 

low relative to the first-best slot prices. 

This proposition is true independent of the presence or absence of substitute air 

services. However, in the absence of substitute air services, the unique equilibrium in 

slot prices always implies positive welfare externalities and equilibrium slot prices are 

therefore always too low relative to the first-best slot prices. In the presence of 

substitute air services, the unique equilibrium in slot prices may, however, implies zero 

welfare externalities and equilibrium slot prices can be first-best if the condition in the 

following proposition is satisfied: 

Proposition 23 If airport profits do not matter and prices are the decision variables, 

the presence of substitute air services is a necessary condition for zero welfare 

externalities in the equilibrium. Specifically, (i) if the equilibrium in slot prices 

satisfies the demand condition 

( )

= 2 ,
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+
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then welfare externalities are zero; (ii) if the left-hand side exceeds the right-hand side 

in equilibrium, the welfare externalities are positive in equilibrium, and (iii) if the left-

hand side is lower than the right-hand side in equilibrium, the welfare externalities 
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are negative in equilibrium.  

The demand condition in (92) also relates the welfare externalities to the share 

of inframarginal and marginal locals. Again, remember that it is the cost-benefit ratios 

that ultimately matter. This is important in the sense that locals who travel between 

airports A  and B  are using two congested and have to pay two generalized prices. 

Therefore, their marginal external congestion cost as well as marginal benefit are 

counted at both airports. By contrast, the locals who travel between airports i  and C  

are using only one congested airport and have to pay one generalized price. Therefore, 

their marginal external congestion cost as well as marginal benefit are counted at the 

local airport only. The share of inframarginal locals correctly translate to the left-hand 

side of (92) whereas the share of marginal locals correctly translate to the right-hand 

side of (92). The intuition is related to cost-benefit ratios and similar to the case in 

which quantities are used as decision variables in the previous sub subchapter. Thus, 

the discussion is omitted. 

Proposition 21 and Proposition 23 together show that if airport profits do not 

matter, using quantities and prices as decision variables can both lead to first-best 

outcome. Lemma 14 mentions that there is a unique pair of slot prices matched with 

each pair of slot quantities, this implies that: 

Proposition 24 If airport profits do not matter, regardless of the choices of quantities 

or prices as decision variables, the demand condition for welfare externalities to be 

zero is unique.  

To clearly identify the variable effect, consider the following lemma: 

Lemma 17 (i) If equilibrium slot prices are too low relative to the first-best prices, 

then > ( ) > ( )i i i iDvT r SP r S ; (ii) if equilibrium slot prices are too high relative to the 

first-best prices, then < ( ) < ( )i i i iDvT r SP r S ; and (iii) if slot prices are first best, then 
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= ( ) = ( )i i i iDvT r SP r S .  

This lemma shows that in equilibrium, slot prices ( )ir SP  and ( )ir S  are always 

lying on the same side to the first-best price but ( )ir SP  is always closer to the first-

best price than ( )ir S . Only when slots are first-best, equilibrium ( )ir SP , ( )ir S  and 

first-best price coincide, which is highlighted by Proposition 24. Given that the 

contraction conditions are satisfied for both best responses in terms of slot quantities 

and best responses in terms of slot prices, this altogether leads to: 

Proposition 25 If airport profits do not matter, then the variable effect is negative, 

that is, ( ) ( ) 0i iW S W SP−  . Specifically, the variable effect is zero, that is, 

( ) ( ) = 0i iW S W SP−  if equilibrium slot policies are first best.  

This proposition first shows that a change of policy from slots to pricing indeed 

brings a negative variable effect. It second shows that if equilibrium slot policies are 

first best, the choices of the different variables do not matter. This resembles a scenario 

where a central regulator is present under perfect information and first-best results can 

be achieved by either the choice of price or quantity. 

Equilibrium prices 

Consider = =A B P  . Assume that the best responses in terms of prices are 

determined by the first-order conditions, / = 0i iW r   and that the map of best 

responses in terms of the price is a contraction, which are maintained assumptions here 

and hereafter. Using the equilibrium conditions (76) and symmetry in the sense that 

( ) = ( )A Br P r P , the first-order conditions for the best responses in terms of the prices 

can be written as 

( )
( ) = 0.

i ji i
i ij i iC i ji

i i i

D DD D
r P D vT D vT D

r r r

 + 
  − − +

  
 (93) 

The first term on the left-hand side shows how an increase in local price and the 
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corresponding reduction in local airports’ total traffic affect the local airport’s profit. 

Compared with the first term in the first order condition (88), the difference is that 

local airports now care about the airport profits rather than locals’ benefits. The second 

term shows how an increase in local price and the corresponding reduction in locals’ 

demand affect the marginal external congestion cost for trips between airports A  and 

B . The third term shows how an increase in local price and the corresponding 

reduction in locals’ demand affect the marginal external congestion cost for trips 

between their local airport and airport C . The fourth term is the non-locals’ demand 

for trips between airports A  and B . Compared with the first order condition (88), the 

fourth term is present because airport profits do matter and non-locals who travel to 

local airport can bring extra profits. The first and fourth terms together show that if 

prices are the same decision variables, a change of policies from slots to pricing indeed 

distorts the airports’ behaviors in terms of best responses because of the distribution 

effect, which will be discussed in detail. In equilibrium, the local airport’s marginal 

profits are equal to the locals’ marginal external congestion cost plus the non-locals’ 

demand for trips between airports A  and B . 

Solving the first-order condition (93) for the equilibrium price yields 

( )
/

( ) = .
/ /

j i jii
i ij iC i ji i

i i i i i

D r DD
r P D D vT D vT

D r D r D

 
 + + + 

   
 (94) 

The first term on the right-hand side is the marginal external congestion cost of locals. 

The second term is a weighted marginal external congestion cost of non-locals. Lemma 

12 mentions that / < / < 0.i i j iD r D r    Therefore, / / / < 1i i j iD r D r    , which 

implies that local airport only internalizes partially the marginal external congestion 

cost of non-locals who travel between airports A  and B  if profits matter. The third 

term is a positive markup, which is the product of the semi-price elasticity of demand, 

iD , with respect to the local price and the share of other passengers at the local airport. 
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The semi-price elasticity, / /i i iD D r  , represents the optimal price in the case of 

airport profit maximization. The notion of profit maximization only applies to non-

locals when the airport maximizes local welfare, which is why the elasticity measure 

is weighted by the share of non-locals at the local airport. By contrast, in the absence 

of non-locals, the equilibrium price is equal to the first term, which is also the first-

best price. In the presence of non-locals, if profits matter, local airport will still charge 

a price that internalize entirely the marginal external congestion cost of locals. 

Meanwhile, local airport also has the incentive to exploit the non-locals by charging a 

markup which is weighted by the share of non-locals at the local airport. In order to 

obtain the profits from this part of non-locals, the local airport also has to internalize 

the marginal external congestion cost of these non-locals, but only partially as shown 

in the second term. This leads to: 

Proposition 26 If airport profits do matter, equilibrium prices are too high relative to 

the first-best prices, leading to negative welfare externalities.  

The notion of welfare externality and Proposition 22 under = =A B SP   carry 

over here because under both policies prices are the same decision variables and the 

sum of welfares are the same because profits are cancelled out in the calculation of 

total welfare under both = = ,  A B SP P  . This proposition shows that equilibrium 

prices are always too high relative to the first-best prices independent of the airport 

networks as long as the non-locals are present. This is because local airports always 

have the incentives to exploit non-locals if airport profits do matter. 

Although prices are the same decision variables under = =A B SP   and P , a 

change of polices from slots to pricing involves airport profits and thus brings in the 

distribution effect. Given that the contraction condition is satisfied for both best 

responses in terms of slot prices and best responses in terms of prices, the distribution 
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effect is not clear-cut. This is because equilibrium price ( )ir P  is always greater than 

the first-best price by Proposition 26 whereas equilibrium slot price ( )ir SP  may be 

smaller, equal to or greater than the first-best price by Lemma 17. Therefore, it is 

impossible to compare equilibrium ( )ir P  with equilibrium ( )ir SP  because the two 

prices are not lying on the same side to the first-best price. 

The following example illustrates how the presence of imperfect substitute air 

services affects the relative performance of slot and pricing policies relative to the first-

best outcome and the role of variable and distribution effect. 

Example 4 The benefit of travelling is given by 

( )2 2

1 2 1 2

1
( , ) =

2
i ij iC ij iC ij iC ij iCB q q q q q q q q     +  −  +  −    (95) 

for airports A  and .B  Specifically, 
2 2

1 = /i ijB q −  , 
2 2

2 = /i iCB q −   and 

2= /i ij iCB q q −   . Parameter   is used to capture the level of substitutability of the 

air services. To illustrate the relative performance of slot and pricing policies, the 

following notations are used. Using symmetry, the aggregate welfare is denoted as W  

with = ( ) = 2 ( )i i iW W W  . Let W 
 denote the aggregate welfare under first-best 

prices =i i ir D vT  . The relative welfare loss of slot policies, denoted as ( )S , is given 

Figure 9: Welfare losses under slots,  (dashed line), and pricing,  (solid line), relative to first-

best in percent depending on substitution parameter . Parameters: , , ,  

and . 
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by ( )( ) = ( ) /S W W S W  − , whereas the relative welfare loss of pricing policies, 

denoted as ( )P , is given by ( )( ) = ( ) /P W W P W  − . 

Figure 9 illustrates the welfare losses of slot and pricing policies depending on 

substitution parameter   in percent for parameters 
1 =1 , 

2 = 3/ 5 , 
1 = 2 , 

2 = 4  

and = 9 / 4v . The solid line and dashed line represent the welfare losses when airport 

profits matter, ( )P , and do not matter, ( )S , respectively. The figure illustrates that 

given a time valuation, as substitution parameter   increases, slots are becoming less 

and less loose. When the substitution parameter 0.7  , slots become first best with 

( ) = 0S , and then becoming more and more excessive. Furthermore, ( )P  is always 

positive, which suggests that there is always a welfare loss relative to the first-best 

welfare under pricing. The figure also provides a policy implication that pricing 

performs better than slots when the level of substitutability is relatively low or high. 

In the middle range of substitutability, slots performs better than pricing and can even 

implement the first-best outcome. 

Figure 10 illustrates how substitution parameter   affects the variable effect, 

( ) ( )i iW S W SP−  (dashed line), and the distribution effect, ( ) ( )i iW SP W P−  (solid line). 

Given a time valuation, the variable effect is always non-positive. Only when the 

Figure 10: The variable effect,  (dashed line), and distribution effect,  

(solid line), depending on substitution parameter  (welfare values are multiplied by  for scaling 

reasons). Parameters: , , ,  and . 
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substitution parameter 0.7  , the variable effect is zero and slots become first best. 

This means the choices of different decision variables do not matter. By contrast, the 

distribution effect is first positive and then negative as substitution parameter   

increases. This shows that distribution effect is indeed not clear-cut.  

4.4 Summary 

The present chapter analyzed an airport network in which passengers chose between 

two alternative origin-destination connections which they considered as imperfect 

substitutes. The network involved two symmetric congested airports with locals and 

one uncongested airport without locals, thus, a three-airport network. Locals travelled 

to either the other congested airport or alternatively to the uncongested airport. The 

two congested airports independently and simultaneously chose between slot and 

pricing policies and their respective slot quantities and pricing levels to mitigate the 

congestion problem for the locals. This captured that most airports are under localized 

rather than centralized government controls. In the case of slot policies, airports did 

not earn from selling slots. This captured the notion of grandfather rules. By contrast, 

in the case of pricing policies, airports earned positive profits. 

The present study found that the presence of substitute air services was a 

necessary condition for equilibrium slot quantities to reach the first-best passenger 

quantities. This was because an increase in the local slot quantity led to a stronger 

increase in the demand of non-locals than the demand of locals who travelled between 

the two congested airports. This implied that non-locals were taking up more of the 

additional slot quantities and were the main beneficiaries of the local airport’s slot 

expansion, which reduced the local airport’s incentive to increase the slot quantity as 

they would have in the absence of substitute air services. Slot policies thus became 

stricter in the presence of substitute air services than in the absence of substitute air 

services. This could possibly lead to first-best passenger quantities in equilibrium. 
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Specifically, if equilibrium slot quantities were first best, it implies that the welfare 

externalities of slot-quantity choices were zero. This explained why the variable effect 

was equal to zero in this case. Equilibrium pricing levels would be too high relative to 

the first-best prices independent of the presence or the absence of substitute air 

services. This was because if profits matter, the local airport would always charge a 

markup on the first-best price independent of the presence or the absence of substitute 

air services. 

Numerical examples were used to illustrate how the level of substitutability 

between the alternative connections affected the total welfare achieved under 

equilibrium slot and pricing policies relative to the first-best outcome. These instances 

showed that the welfare performance of pricing policies was better than slot policies 

when the level of substitutability was relatively low or high. In the middle range of 

substitutability, the welfare performance of slot policies was better than pricing 

policies and could even implement the first-best outcome. 
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CHAPTER 5 

AIRPORT COMPETITION FOR NON-LOCAL PASSENGERS 

This chapter considers airport competition in the presence of substitute air services for 

non-local origin-destination passengers. One more symmetric congested airport with 

locals is added to the model in Chapter 3, thus forming a three-airport network. All 

passengers are origin-destination passengers and take return flights. Locals from the 

two congested airports only fly between their local airports and the uncongested 

airport. There is no connection between the two congested airports. Non-locals from 

the uncongested airports consider the two congested airports as alternatives and fly 

between the uncongested airport and the congested airport. The two congested airports 

independently and simultaneously choose between slot and pricing policies and their 

respective slot quantity and pricing levels to mitigate congestion problem. 

By contrast with the model in Chapter 3, the presence of one more congested 

airport leads to airport competition. More specifically, two congested airports are 

competing via the non-locals who consider these two congested airports as substitute 

destinations. Consider the case in which airport profits do not matter. Slots control 

becomes more effective in the sense that a reduction in local slot quantity can drive 

more non-locals to use the other congested airport. Therefore, local airports are more 

inclined to reduce local slot quantities. Consider the case in which airport profits do 

matter. Local airports are more inclined to reduce the price to attract more non-locals 

to use local airports because non-locals generate extra profits. This however hurts the 

other congested airport’s profit. 

The analysis shows that equilibrium slot quantities are too low to maximize the 

total welfare of the two congested airports and possibility lead to first-best outcome 

because of airport competition. The former is true because the local airport has the 

incentives to drive more non-locals to use the other congested airport by reducing local 



113  

slot quantity. The latter is true because non-locals are atomistic and, thus, would make 

excessive use of congested airports in the case of laissez faire. A tightening in the slots 

can be optimal from the first-best viewpoint. Furthermore, non-locals benefit from 

airport competition in the sense that the share of inframarginal non-locals at the local 

airport implied by the first-best slot policies is higher relative to the case in which 

airport competition is absent. 

The analysis also shows that the equilibrium prices in the case of pricing 

policies are too low to maximize the total welfare of the two airports and too high 

relative to the first-best prices. The former is true because the local airport has the 

incentive to attract more non-locals to use local airport by reducing the local airport 

charge. The latter is true because local airports exploit the non-locals by charging a 

positive markup on the first-best prices. 

Numerical examples are used to illustrate how the presence of airport 

competition affects the outcomes of slot and pricing policies. It shows that when the 

level of substitutability is relatively small, slot policies performs better than pricing 

policies and can even reach the first-best outcome. It has been shown that there may 

also exist a coordination problem between the two airports. 

This chapter is organized as follows. Subchapter 5.1 presents the model. 

Subchapter 5.2 discusses the demand relationships which are crucial for the policy 

assessment in Subchapter 5.3. At the end of Subchapter 5.3, numerical examples are 

used to illustrate how the presence of airport competition affects the outcomes of slot 

and pricing policies. Subchapter 5.4 concludes this chapter. 

5.1 The Model 

The model in this chapter extends the two-airport network in Chapter 3 to a three-

airport network to focus on how the presence of airport competition affects the 

equilibrium slot and pricing policies. One more congested airport is added, thus 
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forming a three-airport network. 

Airports i  and j  are congested with { , } { , }i j A B  and i j . Whereas airport 

C  is uncongested. Locals are origin-destination passengers. They only fly between 

airport i  and ,C  and take return flights. There is no connection between two 

congested airports in the sense there is no direct flight between airports A  and B  or 

transfer flight via C . Passengers originating from airport C  consider airports A  and 

B  as substitute destinations. Figure 11 illustrates the three-airport network. The solid 

lines depict the two direct connections for airport i ’s origin-destination passengers 

whereas the dashed lines depict the two alternative direct connections for airport C ’s 

origin-destination passengers. 

Passenger quantities of locals and non-locals at airport i  are denoted as 
iCq  

and 
Ciq  respectively. Passenger quantities are strictly positive on all routes, that is, 

,  > 0iC Ciq q . The benefits of locals and non-locals are denoted as ( )i iCB q  and 

( , ),C CA CBB q q  respectively. Benefits are strictly concave in the sense that 

2 2/ < 0i iCB q   and 
2 2 2/ < / < 0C Ci C CA CBB q B q q      by assumption. The latter 

assumption 
2 / < 0C CA CBB q q    is used to capture that air services are imperfect 

substitutes for non-locals. 

This chapter continues to compare equilibrium slot with pricing policies. 

Czerny and Lang (2019) demonstrated that the consideration of both policies can be 

justified in the sense that slot policies constitute (subgame perfect) equilibrium policies 

when airport profits do not matter for local governments whereas pricing policies 

constitute (subgame perfect) equilibrium policies when airport profits matter. 

Figure 11: An illustration of the three-airport network. Solid lines: two direct connections for airports 

 and ’s origin-destination passengers; Dashed lines: two alternative direct connections for airport 

’s origin-destination passengers. 
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However, before the comparison can be conducted, the rather complicated demand 

relationships will be analyzed in the next subchapter. 

5.2 Demand relationships 

This subchapter analyzes the relationships between (i) airport charges and passenger 

demands and (ii) slot quantities and passenger demands. The following first considers 

airport charges. The relationship between generalized prices and demands is discussed 

in a second step for the comparison of the equilibrium prices and first-best prices. The 

relationship between slot quantities and slot prices are discussed in a third step, which 

helps analyze the relationship between slot quantities and local and non-local demands 

in the final step. Altogether, this entire subchapter is crucial for the understanding of 

the outcomes of equilibrium congestion policies, which will be discussed in the 

subsequent subchapter. 

The effect of airport charges on local and non-local demands  

Passengers who travel only use one congested airport. Let 
i  with  

=i i ir vT +  (96) 

denote the generalized prices for passengers who use airport i . Passengers consider 

generalized prices as given. Demands for trips between airports i  and C , denoted as 

( , )iC A BD r r  and ( , )Ci A BD r r , respectively, depend on both price 
Ar  and 

Br  which 

represent the slot prices in the case of slot policy and the airport charges in the case of 

pricing policy. The total traffic at local airports is denoted as 
iD  with 

( , ) = ( , ) ( , )i A B iC A B Ci A BD r r D r r D r r+ . Demands are determined by the equilibrium 

conditions 

= = .i C
i

iC Ci

B B

q q


 

 
 (97) 

Applying Cramer’s rule to the equilibrium conditions’ system of equations (97) yields: 
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Lemma 18 The effect of a marginal increase in 
ir  on demands can be characterized 

as 

( )
( ) ,  0 ,  ( ) 0

jC Cj CA CBiC Ci

i i i i i

D D D DD D
i ii

r r r r r

   + 
   

    
 

 (iii) < 0 < < .
ji i

i i i

DD D
and

r r r

 

  
 (98) 

Part (i) first shows that demands of both locals and non-locals at local airport 

are decreasing in the local airport charge. It second shows that demand of the congested 

airport’s passengers is also decreasing in the local airport charge but by less. It third 

shows that demand of non-locals who travel between airport C  and the other 

congested airport is increasing in the local airport charge. This is because of the 

presence of airport competition. Some non-locals who originally used the local airport 

now switch to the other congested airport when local airport increases the airport 

charge. It also explains why the demand of the other congested airport’s passengers is 

decreasing in the local airport charge. This is because more non-locals are using the 

other congested airport when the local airport charge increases, which makes the other 

congested airport more congested and thus increases the congestion cost. Part (ii) 

shows that the total demand of non-locals is decreasing in the local airport charge. Part 

(iii) shows that the overall traffic at local airport is decreasing whereas the overall 

traffic at the other congested airport is increasing in the local airport charge. It also 

shows that the local airport charge has a greater impact on the overall traffic at local 

airport relative to the other congested airport. 

The relationship between airport charges and generalized prices 

Consider the effect of airport charges on generalized prices. Substituting passenger 

quantities 
iCq  and 

Ciq  with the demands 
iCD  and 

CiD  respectively in the generalized 

prices and taking the derivatives with respect to the airport charge 
ir  yield: 
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Lemma 19 A marginal increase in airport charge 
ir  implies: 

0 < < < 1.
j i

i ir r

  

 
 (99) 

This lemma first shows that the generalized price for the passengers using the 

other congested airport is increasing but by less than the generalized price for the 

passengers using the local airport in the local airport charge. It second shows that the 

generalized price for the passengers using the local airport is increasing in the local 

airport charge by less than 1. The generalized price for the passengers using the local 

airport is the sum of the airport charge and the congestion cost. Whereas the local 

airport charge is increasing by 1, the local airport’s congestion cost is decreasing in 

the local airport charge. Altogether, the generalized price for the passengers using the 

local airport is increasing in the local airport charge by less than 1. Whereas the other 

congested airport charge is independent of local airport charge, but the other congested 

airport’s congestion cost is increasing in the local airport charge. Altogether, the 

generalized price for the passengers using the other congested airport is increasing in 

the local airport charge but by less than the generalized price for the passengers using 

the local airport. 

The results seem natural expect that the generalized price for the passengers 

using the other congested airport is actually increasing in the local airport charge. 

Lemma 18 mentions that the other congested airport’s total traffic is increasing in the 

local airport charge as well, which implies that the other congested airport’s total 

traffic is increasing in the generalized price for the passengers using the other 

congested airport. This is only possible in the presence of airport competition because 

a reduction in the number of non-locals at the local airport increases the marginal 

benefit of non-locals at the other congested airport. Although the generalized price for 

the passengers using the other congested airport is increasing in local airport charge, 
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the increase in the marginal benefit exceeds the increase in generalized price, which 

altogether leads to an increase in the number of non-locals at the other congested 

airport and thus an overall increase in the total traffic at the other congested airport. 

The relationship between slot prices and slot quantities 

Slot prices are the shadow prices under slots that would have to be implemented to 

ensure that airport passenger demands equal the desired slot quantities. The slot price 

( )ir S  is implicitly determined by  

( )( ), ( ) = 0.i i A BQ D r S r S−  (100) 

Applying the Gale-Nikaido Theorem (Gale and Nikaido, 1965) and Cramer’s rule to 

the system of equations (100) yields: 

Lemma 20 (i) There is a unique pair of slot prices matched with each pair of slot 

quantities and (ii) both local and the other congested airports’ slot prices are 

decreasing in local airport’s slot quantities; and (iii) non-local airports’ slot prices 

are increasing by less than local airport’s slot prices in local airport’s slot quantities 

in absolute value, that is,  

< < 0.
ji

i i

rr

Q Q



 
 (101) 

The unique one-to-one pairing relationship between slot prices and slot 

quantities means that Cramer’s rule can be applied to derive the following 

relationships. The first inequality in (101) shows that local airports’ slot prices are 

decreasing in the local airports’ slot quantities. Local airport’s total traffic is increasing 

in slot quantities, which is associated with a reduction in the local airport’s slot price 

to ensure that the passenger demand equals the slot quantity by Lemma 18. Lemma 18 

also implies that the other congested airport’s demand is decreasing in the local 

airport’s slot quantity. This is because the reduction in the local airport’s slot price 

decreases the other congested airport’s demand. To keep the other congested airport’s 
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demand unchanged despite the increase in the local airport’s slot quantity and the 

corresponding reduction in the local airport’s slot price, the other congested airport’s 

slot price must be decreasing in the local airport’s slot quantity. The reduction in the 

other congested airport’s slot price is smaller in absolute value than the reduction in 

the local airport’s slot price. 

The effect of slot quantities on local and non-local demands 

Airport charges are the decision variables under pricing policies, whereas slot 

quantities are the decision variables under slot policies. Using Lemma 18 and Lemma 

20, the relationships between slot quantities and demands can be described in the 

following way: 

Lemma 21 A marginal increase of slot quantity iQ  implies: 

( )
( ) 0 , 1  ( ) 0 .

Cj jC CA CBiC Ci

i i i i i

D D D DD D
i and ii

Q Q Q Q Q

   + 
    

    
 (102) 

Part (i) first shows that demand of non-locals at the other congested airport is 

decreasing in the local airport’s slot quantity. This is because of the presence of airport 

competition. Some non-locals who originally used the other congested airport now 

switch to the local airport when local airport increases the slot quantity. It also explains 

why the demand of the other congested airport’s passengers is increasing in the local 

airport’s slot quantity, as second shown in part (i). This is because fewer non-locals 

are using the other congested airport when the local airport slot quantity increases, 

which allows more passengers originating from the other congested airport to travel. 

Part (i) third shows that the demands for both locals and non-locals are increasing in 

the local airport’s slot quantity by more than the demand of passengers originating 

from the other congested airport but by less than 1.  Part (ii) shows that the total 

demand of non-locals are increasing in the local airport’s slot quantity. 

5.3 Equilibrium Policies 



120  

Consumer surplus of locals originating from airport i , denoted as 
iCS , is equal to the 

differences between the benefits and the sum of airport payment and delays costs, 

which can be written as 

( ) ( ) ( ) ( ).i i i i i i i i iCS q B q q R q vT Q= −  −   (103) 

The welfare of airport i , denoted as 
iW , is equal to the sum of the locals’ consumer 

surplus and the airport’s profit (that is, 
i iQ R ), which can be simplified and written as 

( , ) ( ) ( ) ( ).i iC Ci i i Ci i iC i iW q q B q q R q vT Q= +  −   (104) 

Airport C ’s welfare is equal to consumer surplus. This is because airport C  is 

uncongested and charges a zero price. Therefore, airport C ’s welfare, denoted as ,CW  

and non-locals’ consumer surplus, denoted as 
CCS , can be written as  

= = ( , ) ( ) ( ) ,C C C CA CB CA A A CB B B CA A CB BW CS B q q q R q R q vT q vT −  −  −  −   (105) 

in which the right-hand side of the second equality are equal to the difference between 

the total benefits and the sum of total airport payment and delays costs. 

The aggregate welfare of the three populated airports, 
A B CW W W+ + , is given 

by the difference between the sum of benefits, ( )( ) ( ) ,A AC B BC C CA CBB q B q B q q+ + , and 

the sum of local congestion costs, 
A A B BQ vT Q vT+ . The first-best passenger quantities 

are determined by the first-order conditions 

/ ( ) / = / ( ) / = 0.i iC A A B B iC C Ci A A B B CiB q Q vT Q vT q B q Q vT Q vT q  −  +     −  +    

This together with the equilibrium conditions for demands in (97) implies the first-best 

prices =A A Ar D vT  , =B B Br D vT  . The first-best prices 
i iDvT   represent the marginal 

external congestion costs for passengers who use airport i . 

Assume that the best responses in terms of slot quantities and prices are 

determined by the first-order conditions, / = 0i iW Q   and / = 0i iW r  . Using the 

equilibrium conditions for demands in (97), the first-order conditions for the best 
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responses and thus the equilibrium slot quantities and prices in airport competition are 

analogue to the first-order conditions and welfare-maximizing slot quantities and 

prices in Chapter 3 in structure. Therefore, the results and proofs of Proposition 14 and 

Proposition 15 carry over here in the sense that 

Proposition 27 Assessments of equilibrium slot policies and pricing policies are 

unaffected by the presence of airport competition. 

The only difference between the current model and the model in Chapter 3 is 

the presence of airport competition, which implies that one congested airport’s 

congestion policy will produce externality on the other congested airport. This has 

been reflected by the demand relationships in the previous subchapter and will be 

discussed in detail as follows. 

Welfare externality under equilibrium slot policies 

Consider = =A B S  . To capture the externality of local airport’s congestion policy, 

especially the welfare externality of the local airport’s slot policy on the other 

congested airport, /j iW Q   is used when quantities are the decision variables. Using 

the equilibrium conditions for demands in (97), in equilibrium, the welfare externality 

/j iW Q   is given by 

= ( ) ,
j jC

i

i i

W D
r S

Q Q

 

 
 (106) 

in which the right-hand side is strictly positive if ( ) > 0ir S  because Lemma 21 

mentions that / > 0jC iD Q  . The slot quantity iQ  is assumed to be finite, which 

implies that ( )ir S  is indeed positive. This means that local airports’ slot policies 

always lead to positive welfare externalities. The best responses in equilibrium imply 

that / = 0i iW Q  . Given that the contraction condition for best responses in terms of 

slot quantities is satisfied, it implies that 
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Proposition 28 The welfare externalities are positive and equilibrium slot quantities 

are too low to maximize the total welfare of the two congested airports, that is, 

( )
> 0.

A B

i

W W

Q

 +


 (107) 

This proposition is true because of the presence of non-locals and the airport 

competition. Consider the case in which non-locals are present but airport competition 

is absent. This case is equivalent to the model in Chapter 3, which shows that non-

locals are taking up the local slot resources but not contributing to the local welfare. 

Therefore, local airport has the incentive to reduce local slot quantity relative to the 

case in which non-locals would be absent. Given symmetry, this means both airports 

would have tightened slot quantities in the absence of airport competition. Consider 

the case in which non-locals and airport competition are both present. In this case, non-

locals will not stop traveling in response to a tightening of local slot quantity. Instead, 

some non-locals can switch to travelling to the other congested airport, making slot 

controls more effective tools for controlling local congestion. In equilibrium, slot 

quantities are too low to maximize the total welfare of two congested airports.  

Non-locals are atomistic and, thus, make excessive use of congested airports in 

the case of laissez faire. The equilibrium slot quantities that are too low to maximize 

the total welfare of two congested airports can, therefore, lead to the first-best outcome. 

Proposition 14 carries over here in the sense that it is still the share of inframarginal 

and marginal locals that matter in the assessment of slot policies. The only difference 

is that, in airport competition, local airport’s slot policy has an impact on the other 

congested airport, which is captured by welfare externalities. 

Interestingly, when slot policies are first-best, the share of inframarginal non-

locals at the local airport is higher. To see this, consider the share of inframarginal and 

marginal non-locals implied by the first-best slot policies, which are equal by 
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Proposition 27 and can be written as 

= .
jCi Ci i Ci

i i i j i

rD D r D

D r Q r Q

  
+

   
 (108) 

The left-hand side captures the share of inframarginal non-locals. The right-hand side 

captures the share of marginal non-locals. The first-best slot policies in equilibrium 

implies that the two shares are equal. Specifically, the first term on the right-hand side 

is present both in absence of airport competition as shown in Chapter 3 and in the 

presence of airport competition. It captures how an increase in the local airport’s slot 

quantity reduces local airport’s slot price and the corresponding increase in the demand 

of non-locals. The second term is only present in the presence of airport competition, 

which captures how an increase in the local airport’s slot quantity reduces the other 

airport’s slot price and the corresponding increase in the demand of non-locals. Lemma 

18 mentions that / > 0Ci jD r   and Lemma 20 mentions that / < 0i jQ r  , which 

altogether implies that the second term is positive. This leads to: 

Proposition 29 The share of inframarginal non-locals implied by the first-best slot 

policies in the presence of airport competition is higher relative to the case in which 

airport competition is absent. 

This is because, in the presence of airport competition, non-locals do not stop 

travelling in response to a tightening of local airport’s slot policy. Some non-locals can 

switch to travelling to the other congested airport. Therefore, the share of non-locals 

is higher in airport competition relative to the case in which airport competition is 

absent. 

Welfare externality under equilibrium pricing policies 

Consider = =A B P  . To capture the externality of local airport’s congestion policy, 

especially the welfare externality of the local airport’s pricing policy on the other 
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congested airport, /j iW r   is used when prices are the decision variables. Using the 

equilibrium conditions for demands in (97), in equilibrium, the welfare externality 

/j iW r   is given by 

= .
j

Cj

i

W
D

r




 (109) 

The right-hand side is strictly positive. This means that local pricing policies always 

lead to positive welfare externalities. The best responses in equilibrium imply that 

/ = 0i iW r  . Given that the contraction condition for best responses in terms of prices 

is satisfied, it implies that 

Proposition 30 The welfare externalities are positive and equilibrium prices are too 

low to maximize the total welfare of the two congested airports, that is, 

( )
> 0.

A B

i

W W

r

 +


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The intuition is that, if airport profits do matter, two congested airports are 

competing for non-locals in the sense that both congested airports have the incentives 

to lower the airport charges to attract more non-locals to use local airports by Lemma 

18. Therefore, equilibrium prices are relatively lower in the presence of non-locals and 

airport competition. 

Equilibrium airport charges are analogue in structure to the welfare-

maximizing airport charge in Chapter 3, which are equal to the sum of first-best price 

and a positive markup. However, the markup in the presence of airport competition is 

smaller. Consider the model in Chapter 3 in the absence of airport competition. The 

local airport represents a monopoly. Non-locals who want to fly do not have 

alternatives but to use the only congested airport. This implies that the price elasticity 

of demand of non-locals is low in the absence of airport competition, which allows the 

congested airport to charge a high markup. The presence of airport competition forms 
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a Bertrand competition between the two congested airports in a duopoly. Non-locals 

who want to fly have alternatives to choose from. Both congested airports care about 

profits and thus compete for non-local passengers. This implies that the price elasticity 

of demand of non-locals is relatively higher in the presence of airport competition in 

absolute value, which only allows the two congested airports to charge a lower markup. 

Therefore, 

Proposition 31 In the presence of airport competition, equilibrium prices are too high 

relative to first-best prices but lower relative to the case in which airport competition 

is absent. 

The following example illustrates how the presence of non-locals and airport 

competition affect the relative performance of slot and pricing policies from the two 

congested airports’ and first-best viewpoints. 

Example 5 The benefits of travelling are given by 

21
( ) =

2
i iC iC iCB q q q  −   (111) 

and 

( )2 2

1 2 1 2

1
( , ) =

2
C CA CB CA CB CA CB CA CBB q q q q q q q q     +  −  +  −    (112) 

for airports i  and C , respectively. Parameters 
2 2= /i iCB q −  , 

2 2

1 = /C CAB q −  , 

2 2

2 = /C CBB q −   and 
2= /C CA CBB q q −    are used and given by = 4 / 5,  

= 3 / 2 , 
1 2= =1  , 

1 2= = 2  , and = 3 / 5v . Parameter   is used to capture the 

level of substitutability of the air services for the non-locals. To illustrate the relative 

performance of slot and pricing policies under different scenarios, symmetry and the 

following notations are used: (i) the total welfare of the two congested airports given 

the slot quantities or prices that maximize the total welfare of the two congested 

airports is denoted as 2 ( )iW 
, (ii) the first-best welfare is denoted as 3W 

 and (iii) the 
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equilibrium local welfares are denoted as ( )i iW   and ( )C iW   for airports i  and C , 

respectively. 

Figure 12 illustrates the relative welfare losses of slot (dashed line) and pricing 

policies (solid line) depending on substitution parameter   in percent from the two 

congested airports’ viewpoint relative to the absence of airport competition. 

Specifically, the relative welfare losses are captured by ( )2 2( ) 2 ( ) / ( )i i i iW W W   − . 

The dashed and solid lines show that the relative welfare loss of slot policies and 

pricing policies are positive except when = 0 . This means that in the presence of 

airport competition, equilibrium congestion policies can never maximize the total 

welfare of the two congested airports. When = 0  which means that two congested 

airports are operating in isolation, both policies lead to zero welfare loss from the two 

congested airports’ viewpoint. The figure also shows that the relative welfare loss of 

pricing policies is lower than slot policies. This is at the cost of non-locals who pay to 

local airports under pricing policies. 

Figure 13 illustrates the relative welfare losses of slot (dashed line) and pricing 

policies (solid line) depending on substitution parameter   in percent from the first-

best viewpoint. Specifically, the relative welfare losses are captured by 

Figure 12: Relative welfare loss in percent in the presence of airport competition under slots (dashed 

line) and pricing (solid line) from the two airports’ viewpoint depending on substitution parameter  

relative to the absence of airport competition. 
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( )3 32 ( ) ( ) /i i C iW W W W  − − . The dashed line shows that the relative welfare loss of 

slot policies is positive. When ( )= 3661 35 / 29 −  ( 0.88 ), the relative welfare 

loss of slot policies is zero, leading to first-best outcome. The solid line shows that the 

relative welfare loss of pricing policies is always positive. This figure also shows that 

there is a critical point at 1.69   where relative welfare losses of slot and pricing 

policies are the same. Any other value of   implies that there might be a coordination 

problem between the two congested airports in the sense that: (i) if profits matter and 

  is on the left-hand side of the critical point, the two congested airports will choose 

pricing polices although they should have chosen slot policies. This is because slot 

policies perform better than pricing policies and can even reach first-best outcome; (ii) 

if profits do not matter and   is on the right-hand side of the critical point, the two 

congested airports will choose slot polices although they should have chosen pricing 

policies. This is because pricing policies perform better than slot policies.  

5.4 Summary 

This chapter considered airport competition in the presence of substitute air services 

for non-local origin-destination passengers. One more symmetric congested airport 

with locals was added introduced to the model in Chapter 3, thus forming a three-

Figure 13: Relative welfare loss in percent under slots (dashed line) and pricing (solid line) from the  

first-best viewpoint depending on substitution parameter . 
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airport network. All passengers were origin-destination passengers and took return 

flights. Locals from the two congested airports only flew between their local airports 

and the uncongested airport. There was no connection between the two congested 

airports. Non-locals from the uncongested airports considered the two congested 

airports as alternatives and fly between the uncongested airport and the congested 

airport. The two congested airports independently and simultaneously chose between 

slot and pricing policies and their respective slot quantity and pricing levels to mitigate 

congestion problem. 

By contrast with the model in Chapter 3, the presence of one more congested 

airport led to airport competition. More specifically, two congested airports were 

competing via the non-locals who considered these two congested airports as substitute 

destinations. The results showed that equilibrium slot quantities were too low to 

maximize the total welfare of the two congested airports and possibility led to first-

best outcome because of airport competition. The former was true because the local 

airport had the incentives to drive more non-locals to use the other congested airport 

by reducing local slot quantity. The latter was true because non-locals were atomistic 

and, thus, would make excessive use of congested airports in the case of laissez faire. 

A tightening in the slots could be optimal from the first-best viewpoint. Furthermore, 

non-locals benefited from airport competition in the sense that the share of 

inframarginal non-locals at the local airport implied by the first-best slot policies was 

higher relative to the case in which airport competition was absent. 

The results also showed that the equilibrium prices in the case of pricing 

policies were too low to maximize the total welfare of the two airports and too high 

relative to the first-best prices. The former was true because the local airport had the 

incentive to attract more non-locals to use local airport by reducing the local airport 

charge. The latter was true because local airports exploited the non-locals by charging 
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a positive markup on the first-best prices. 

Numerical examples were used to illustrate how the presence of airport 

competition affected the outcomes of slot and pricing policies. It showed that when the 

level of substitutability was relatively small, slot policies performed better than pricing 

policies and could even reach the first-best outcome. It has been shown that there might 

also exist a coordination problem between the two airports. 
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CHAPTER 6 

CONCLUSIONS 

This dissertation consisted of four studies on the assessment of decentralized welfare-

maximizing airport congestion policies involving slot policy and pricing policy. The 

studies concentrated on origin-destination passengers who could be locals or non-

locals. Passengers could choose from one or two destinations, which might or might 

not be considered as substitutes. It has been shown that even a small variation in these 

dimensions could fundamentally change the analysis and the assessment of the 

congestion policies. 

Chapter 2 arose from Czerny and Lang (2019) and considered networks with 

two or three complementary airports. In each case, two congested airports were present 

and independently chose between slot and pricing policies. The results showed that 

equilibrium policies involved slots when airport profits did not matter and pricing 

policies when airport profits did matter. This justified the consideration of slots and 

pricing policies in the whole dissertation. The results further showed that the 

equilibrium slot policies reached the first-best passenger quantities when congestion 

effects were absent. Otherwise, equilibrium slot policies would lead to excessive and 

equilibrium pricing policies to too low passenger quantities relative to the first best 

outcome. The analysis formally distinguished the sources for the different outcomes 

under slot and pricing policies by distinguishing between a variable effect and a 

distribution effect. The variable effect captured that decision variables were quantities 

in the case of slot policies and prices in the case of pricing policies. The distribution 

effect captured that airport slot allocation was based on grandfather rules. 

Chapter 3 arose from Lang and Czerny (2020a) and considered a stylized 

airport network with two airports designed to clearly identify the role of local and non-

local passengers. The results showed that the local welfare-maximizing slot quantity 
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could coincide with the first-best outcome whereas this was impossible in the case of 

pricing policy. Whether the outcomes coincided in the case of slot policy depended on 

the shares of inframarginal and marginal local and non-local passengers. The intuition 

was developed based on cost-benefit ratio as measured by the marginal external 

congestion cost divided by the ticket price. The results provided clear insights on the 

reasons why slot quantities were found to be excessive in the three-airport network 

considered in Chapter 2. 

Chapter 4 arose from Lang and Czerny (2020b). It developed and analyzed an 

extended framework of the three-airport network considered in Chapter 2. This 

extended framework involved a variation of the demand structure in the sense that the 

air services offered at the congested airports were considered as imperfect substitutes 

whereas they were not considered as substitutes in Chapter 2. The results showed that 

the presence of substitute air services was a necessary condition for equilibrium slot 

quantities to reach the first-best outcome. The results derived from Chapter 3 helped 

understand the reasons why equilibrium slot quantities could lead to first-best outcome. 

Whereas equilibrium pricing levels would always be too high relative to the first-best 

prices independent of the presence or absence of substitute air services. 

By contrast with Chapter 4, Chapter 5 arose from Lang and Czerny (2020c) 

and proceeded with the consideration of substitute air services for non-local passengers 

in a three-airport network to concentrate on the role of airport competition. The results 

showed that airport competition would lead to too low equilibrium slot quantities in 

the case of slot policies, or too low equilibrium prices in the case of pricing policies, 

to maximize the total welfare of the two congested airports. The non-local passengers 

benefited from the airport competition compared with the case in which airport 

competition was absent. The results further showed that slot policies could lead to first-

best outcome. Whereas pricing policies were too strict with too high equilibrium prices 
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relative to the first-best outcome. 

This dissertation has been considering perfectly competitive airline markets. 

There are many situations in which airline markets are oligopolistic and airlines 

internalize the congestion. One avenue for future research could be looking into the 

role of airline market power for the welfare implications of slot and pricing policies. 

Another avenue for future research would be to investigate airport networks with (non-

local) transfer passengers. Capturing transfer passengers requires a different set of 

assumptions because they use the congested airport twice as often as origin-destination 

passengers, and airports typically discriminate between origin-destination and transfer 

passengers in terms of airport charges (for example, Lin and Zhang, 2016). Airport 

physical capacity investment is abstracted away from this dissertation, which, 

however, could be incorporated into the future study. There are many airports such as 

London Heathrow Airport (LHR) and Hong Kong International Airport (HKIA) are 

constructing new runways, aiming to mitigate the congestion problems in the long run.  

This suggests that airport profits are important and thus pricing policy becomes more 

relevant. In this dissertation, non-aeronautical revenue has been abstracted away. The 

presence of non-aeronautical revenues in many airports in practice deserve attention 

in the future study. Because this may change the assessment of congestion policies in 

the sense that local airport has the incentive to attract the non-locals to boost the non-

aeronautical revenues and therefore must balance among the congestion costs, 

aeronautical revenues and non-aeronautical revenues arising from the non-locals. 

Finally, it would be useful to empirically estimate the shares of inframarginal and 

marginal locals of congested airports to derive a better understanding of their 

incentives to implement slot policies.
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APPENDIX 

 Proof of Lemma 1 

Let x  and y  represent the equilibrium conditions: 

= = 0,i ij jix Q q q− −  (a.1) 

= = 0.i jy B B −  (a.2) 

Totally differentiating leads to 

= = 0,i ij jidx dQ dq dq− −  (a.3) 

= = 0.i ij j jidy B dq B dq  −   (a.4) 

After rearranging, this system of equations can be written in matrix form as 

1 1 1
= .

0

ij

i

i j ji

dq
dQ

B B dq

− − −    
     −    

 (a.5) 

Cramer’s Rule can be applied to derive how local passenger quantities change in total 

passenger quantities: 

= = > 0.
ij ij j

i j A B

dq dq B

dQ dQ B B



 +
 (a.6) 

Substituting passenger quantities with demands completes the proof. 

 Proof of Proposition 2 

The (Nash) equilibrium slot quantities are defined by the airports’ best responses 

where airports have no incentive to either increase or decrease slot quantities when 

their objectives are to maximize local consumer surplus. First, consider = < .A BQ Q Q
 

In this case, airports have no incentive to individually increase slot quantities because 

the own total passenger quantity would be limited and determined by the other airport’s 

slot quantity and, thus, remains unchanged. Airports also have no incentive to decrease 

slot quantities because this would further reduce their already too low local passenger 

quantities. Therefore, a scenario where both airports choose the same slot quantities 

and these slot quantities imply total passenger quantities that are smaller than the first-
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best total passenger quantity, constitutes an equilibrium solution. Second, consider 

,A BQ Q Q . In this case, the first-best passenger quantities are implemented, and slot 

prices are equal to zero. This means that an increase in slot quantities cannot further 

reduce slot prices and, thus, leaves local welfares unchanged. Airports also have no 

incentive to decrease slot quantities beyond the first-best passenger quantity because 

this would reduce local welfares. This shows that both cases A BQ Q Q=   and 

,A BQ Q Q  constitute equilibrium constellations. 

To show that these constellations determine the full set of equilibrium cases, 

consider < <i jQ Q Q . In this case, airport i  could increase slot quantity all the way 

to jQ , which would increase local welfare because <jQ Q . Thus, this is not an 

equilibrium constellation. Finally, consider <i jQ Q Q  . In this case, airport i  could 

increase its slot quantity all the way to first-best passenger quantity Q , or even 

beyond first-best total passenger quantity, to increase and maximize local welfare. 

Thus, this cannot be an equilibrium constellation, which completes the proof. 

 Proof of Lemma 2 

Let 
ABx , 

ACx , 
BAx , and 

BCx  represent the equilibrium conditions: 

( )= = 0,A
AB A B

AB

B
x r r

q


− +


 (a.7) 

= = 0,A
AC A

AC

B
x r

q


−


 (a.8) 

( )= = 0,B
BA A B

BA

B
x r r

q


− +


 (a.9) 

= = 0.B
BC B

BC

B
x r

q


−


 (a.10) 

Totally differentiating leads to 

= = 0,AB AB AB AB AB
AB AB AC BA BC A

AB AC BA BC A

x x x x x
dx dq dq dq dq dr

q q q q r

    
+ + + +

    
 (a.11) 
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= = 0,AC AC AC AC AC
AC AB AC BA BC A

AB AC BA BC A

x x x x x
dx dq dq dq dq dr

q q q q r

    
+ + + +

    
 (a.12) 

= = 0,BA BA BA BA BA
BA AB AC BA BC A

AB AC BA BC A

x x x x x
dx dq dq dq dq dr

q q q q r

    
+ + + +

    
 (a.13) 

= = 0.BC BC BC BC BC
BC AB AC BA BC A

AB AC BA BC A

x x x x x
dx dq dq dq dq dr

q q q q r

    
+ + + +

    
 (a.14) 

After rearranging, this system of equations can be written in matrix form as 

=

AB AB AB AB AB

AB AC BA BC A

ABAC AC AC AC AC

AB AC BA BC AAC

A

BABA BA BA BA

AB AC BA BC BC

BC BC BC BC

AB AC BA BC

x x x x x

q q q q r

dqx x x x x

q q q q rdq
dr

dqx x x x

q q q q dq

x x x x

q q q q

     
−     

 
      

−  
    

  
     
  
      

    
 
    

1

1
= .

1

0

A

BA

A

BC

A

dr
x

r

x

r

 
 
 
   
   
   
   
−   
   

 
− 
 

 (a.15) 

Let   denote the determinant of the Jacobian on the left-hand side of first equality, 

which can be written as 

2

2

2

2

2

2

0 0 0

0 0 0

= det = det

0 0 0

0 0 0

AAB AB AB AB

ABAB AC BA BC

AC AC AC AC A

AB AC BA BC AC

BA BA BA BA B

AB AC BA BC BA

BC BC BC BC

AB AC BA BC

Bx x x x

qq q q q

x x x x B

q q q q q

x x x x B

q q q q q

x x x x

q q q q

    
     
 
     
 
    

 
     
 
     

    
 
    

2

2

B

BC

B

q

 
 
 
 
 
 
 
 
 
 

 
  

 

2 2 2 2

2 2 2 2
= > 0.A A B B

AB AC BA BC

B B B B

q q q q

   

   
 (a.16) 

To derive how demands change in airport price 
Ar , Cramer’s Rule can be applied: 
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2

2

2

2

1 0 0 0

1 0 0

1 1
= det = det

1 0 0

0

AB AB AB AB

A AC BA BC

A

AC AC AC AC
AC

A AC BA BCAB

B
BA BA BA BAA

BA
A AC BA BC

BC BC BC BC

A AC BA BC

x x x x

r q q q
B

x x x x
q

r q q qdq
B

x x x xdr
q

r q q q

x x x x

r q q q

    
−    
  
    
−  
   

  
     
−  
    

    
− 
    

2

2
0 0 B

BC

B

q

 
 
 
 
 
 
 
 
 
 

 

 

2 2 2 2

2 2 2 2

1
= = 1/ < 0.A B B A

AC BA BC AB

B B B B

q q q q

   

    
 (a.17) 

Similarly,  

2

2
= 1/ < 0,AC A

A AC

dq B

dr q




 (a.18) 

2

2
= 1/ < 0,BA B

A BA

dq B

dr q




 (a.19) 

= 0.BC

A

dq

dr
 (a.20) 

Substituting passenger quantities with demands completes the proof. Analogous 

results hold for how demands change in 
Br . 

 Proof of Lemma 3 

Totally differentiating (18) yields 

( )
( ) ( ) ( )

=
A A A A A A

A A A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.21) 

= = 0,A A
A B A

A B

D D
dr dr dQ

r r

 
− − +
 

 (a.22) 

( )
( ) ( ) ( )

=
B B B B B B

B B A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.23) 

= = 0.B B
A B

A B

D D
dr dr

r r

 
− −
 

 (a.24) 

In matrix form, this can be rewritten as 

1
= .

0

A A

A B A

A

BB B

A B

D D

r r dr
dQ

drD D

r r

  
− −        −   
     − − 

  

 (a.25) 
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The 2 2  matrix on the left-hand side is positive definite, which ensures that each pair 

of slots is mapped with a unique pair of slot prices by the Gale-Nikaido Theorem (Gale 

and Nikaido, 1965). This proves part (i). 

Applying Cramer’s rule shows that an increase in the own airport’s slot 

quantity reduces the own slot price and increases the other airport’s slot price:  

= < 0 and = > 0,

j j

j ji i

A B B A A B B Ai i

A B A B A B A B

D D

r drdr r

D D D D D D D DdQ dQ

r r r r r r r r

 
−

 

       
− −

       

 (a.26) 

where the right-hand of the first equation is greater than the right-hand side of the 

second equation in absolute values by Lemma 2. 

 Proof of Lemma 4 

Let 
ABy , 

ACy , 
BAy , and 

BCy  represent the equilibrium conditions:  

( )( )= = 0,A
AB A B A B

AB

B
y r r v T T

q


− + + +


 (a.27) 

( )= = 0,A
AC A A

AC

B
y r vT

q


− +


 (a.28) 

( )( )= = 0,B
BA A B A B

BA

B
y r r v T T

q


− + + +


 (a.29) 

( )= = 0.B
BC B B

BC

B
y r vT

q


− +


 (a.30) 

Totally differentiating, and after rearranging, this leads to a system of equations in 

matrix form as 

=

AB AB AB AB AB

AB AC BA BC A

ABAC AC AC AC AC

AB AC BA BC AAC

A

BABA BA BA BA

AB AC BA BC BC

BC BC BC BC

AB AC BA BC

y y y y y

q q q q r

dqy y y y y

q q q q rdq
dr

dqy y y y

q q q q dq

y y y y

q q q q

     
−     

 
      

−  
    

  
     
  
      

    
 
    

1

1
= .

1

0

A

BA

A

BC

A

dr
y

r

y

r

 
 
 
   
   
   
   
−   
   

 
− 
 

 (a.31) 

Using symmetry, the Jacobian on the left-hand side of first equality can be rewritten 
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as 

AB AB AB AB

AB AC BA BC

AC AC AC AC

AB AC BA BC

BA BA BA BA

AB AC BA BC

BC BC BC BC

AB AC BA BC

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

    
    
 
    
 
   

 
    
 
    

    
 
    

 

2

2

2

2

2

2

2

2

2 2

0

= .

2 2

0

A
A A A A

AB

A
A A A

AC

A
A A A A

AB

A
A A A

AC

B
vT vT vT vT

q

B
vT vT vT

q

B
vT vT vT vT

q

B
vT vT vT

q

 
   − − − − 

 
 

  − − − 
 

 


    − − − −
 

 
   − − −  

 (a.32) 

The determinant of the Jacobian can be written as 

det

AB AB AB AB

AB AC BA BC

AC AC AC AC

AB AC BA BC

BA BA BA BA

AB AC BA BC

BC BC BC BC

AB AC BA BC

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

    
    
 
    
 
   

 
    
 
    

    
 
    

 

2 2 2 2 2 2

2 2 2 2 2 2
= 4A A A A A A

A A

AC AB AC AB AC AB

B B B B B B
vT vT

q q q q q q

         
 − + −              

 (a.33) 

where the right-hand side is strictly positive. Applying Cramer’s rule yields: 

2 2 2

2 2 2

1
= = < 0,

/ 4

AB BA

A A A A A
A A

AB AC AB

dq dq

dr dr B B B
vT vT

q q q

−
   
 + − 
   

 (a.34) 

2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2

2

= < 0,

4

A A A A
A

AB AC AB ACAC

A A A A A A
A A

AC AB AC AB AC

B B B B
vT

q q q qdq

dr B B B B B
vT vT

q q q q q

    
+ − 

    −
        

 − + −    
        

 (a.35) 
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2 2 2 2

2 2 2 2

2
= > 0.

/ 4

BC A

A A A A A
A A A

AC AB AC AB

dq vT

dr B B B B
vT vT vT

q q q q



       
  − + −    

       

 (a.36) 

Substituting passenger quantities with demands completes the proof. 

 Proof of Proposition 11 

Consider the equilibrium prices in (34) and the first-best prices =i i ir D vT   for 

= ,  .i A B  These prices can be used to show that in the presence of congestion and 

symmetry, and if airports pursue local welfare objectives, the equilibrium prices 

exceed the first-best price if 

( )
/ / > .

A B i i
ij iC i ji i i

i i i

D D D D
D D vT D D vT

r r r

 +  
 + − 

   
 (a.37) 

This condition is equivalent to the condition 

< 1.
jC iC

i

i i

D D
vT

r r

 
− 

  
  (a.38) 

Using (a.35) and (a.36), it can be shown that 

2

2

= ,
jC iC i

i

ii i
i

iC

dD dD vT
vT

Bdr dr
vT

D

  
− 

  −


  (a.39) 

where the right-hand side is indeed strictly smaller than 1. 

 Proof of Lemma 7 

Let 
lx  and 

nlx  represent the conditions: 

( ) 0,l l lx B q = − =   (a.40) 

( ) 0.nl nl nlx B q = − =   (a.41) 

Totally differentiating, and after rearranging, this leads to a system of equations in 

matrix form as 
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1
.

1

l l l

l nl l

nl nl nl nl

l nl

x x x

q q dq r
dr dr

x x dq x

q q r

    
−          = =    

        −  
    

  (a.42) 

Using symmetry, the Jacobian on the left-hand side can be rewritten as 

( )
.

( )

l l

l nl l l

nl nlnl nl

l nl

x x

q q B q vT vT

vT B q vTx x

q q

  
      − −   =      − −   
 
  

  (a.43) 

The determinant of the Jacobian, denoted as  , can be written as 

( ) ( ) ( ( ) ( ))l l nl nl l l nl nlB q B q vT B q B q     =  − +   (a.44) 

in which the right-hand side is positive. Applying Cramer’s rule yields: 

( )
( ) ,nl nl

l

B q
q r


 =


  (a.45) 

( )
( ) .l l

nl

B q
q r


 =


  (a.46) 

Both right-hand sides are negative. Substituting passenger quantities with demands 

completes the proof. 

 Proof of Lemma 8 

Totally differentiating (43) yields 

( ( )) ( ( ))
( ( )) ( ) 0.

Q D r Q D r
d Q D r dr dQ D r dr dQ

r Q

 −  −
− = + = −  + =

 
 (a.47) 

An increase in slot quantity changes ticket price in the following way: 

1
( ) .

( )
r Q

D r
 =


  (a.48) 

Lemma 7 mentions that ( ), ( ) 0l nlD r D r   , which implies that 

( ) ( )+ ( ) 0l nlD r D r D r  =  . Therefore, the right-hand side of (a.48) is negative, which 

completes the proof. 

 Proof of Lemma 9 
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To show that the demands of both locals and non-locals are increasing in the slot 

quantity by less than 1, use Lemma 7 and Lemma 8, which yields 

(
( )

( ) ( )
( ) ( ) ) nl nl

l l

l

nl nl

l

B q

B q B
D r Q

q
Q D r



 +
 =  = ,  (a.49) 

)
( )

.
( )

)
(

(
)

( ( ) l l

l l nl l

n l

n

l nD Q D
B

r
B q

q B
Q

q
r




 
 = =

 +



  (a.50) 

Both right-hand sides of second equality are positive and less than 1. 

To show that the total traffic is increasing in the slot quantity by 1, use (a.49) 

and (a.50), which yields 

( ) ( ) ( ) 1.l nlD Q D Q D Q  = + =   (a.51) 

 Proof of Lemma 10 

To show that the generalized price is increasing in price r , substitute quantities with 

demands and use (a.45) and (a.46), which yields 

( ( )) ( ( ))
( ) 1 ( ( )) ( ) l l nl nlB D r B D r
r vT D r D r

 
  = +  =


 (a.52) 

where the right-hand side of second equality is positive. 

To show that the generalized price is increasing in the price r  by less than 1, 

consider ( ) 1 ( ( )) ( ).r vT D r D r  = +   Lemma 7 mentions that 

( ) ( ) ( ) 0.l nlD r D r D r  = +   Therefore, ( ( )) ( ) 0vT D r D r    and 

1 ( ( )) ( ) 1vT D r D r +    because ( ( )) 0vT D r   by assumption. 

 Proof of Proposition 14 

Consider equation (56). Replace the local welfare-maximizing ticket price *( )r S  on 

the left-hand side by the marginal external congestion cost evaluated at the local 

welfare maximizing slot quantity, which yields 

*
* * * * * *

*

( )
( ) ( ) ( ) ( ) ( ).

( )

nl
l l

l

D Q
Q vT Q D Q vT Q D Q vT Q

D Q


   =  +  


 (a.53) 

Dividing *( )vT Q  at both sides, replacing *Q  by 
* *( ) ( )l nlD Q D Q+ , simplifying and 
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rearranging yield 

* *

* *

( ) ( )
.

( ) ( )

l l

nl nl

D Q D Q

D Q D Q


=


  (a.54) 

Adding one to both sides, substituting 
* *( ) ( )l nlD Q D Q+  with *Q  and rearranging 

yield (57), which completes the proof. Too high and too low welfare-maximizing slot 

quantity relative to the first-best slot quantity can be proved similarly by using greater-

than and less-than signs in (a.53) respectively. 

 Proof of Lemma 11 

Totall differentiating the first-order condition in (63) yields 

* 2 * 2 *
*

2

( ) ( ) ( )
0.l l lW Q W Q W Q

d dQ d
Q Q Q




  
= + =

   
  (a.55) 

Rearranging (a.55) and subsitituting * /dQ d  by * /Q    yields 

2 **

2 * 2

( ) /
.

( ) /

l

l

W Q QQ

W Q Q





  
= −

  
  (a.56) 

By assumption, the airport’s welfare is concave in slot quantity, implying that 

2 * 2( ) / 0.lW Q Q    To prove that the local welfare-maximizing slot quantity is 

decreasing in  , it is equivalent to proving that 
2 *( ) / 0.lW Q Q      Consider 

2 *( ) / ,lW Q Q     which can be written as 

2 *
* * *( )

( ) ( ) .lW Q
r Q r Q Q

Q 


= + 

 
  (a.57) 

The right-hand side is negative. To see this, consider Lemma 8 which shows that 

( ) 0r Q   and Lemma 10 which shows that 0 ( ) 1r  . Together this implies that 

*( ) 0Q   because ( )* * *( ) ( ) ( )Q r Q r Q   =  . The first term on the left-hand side of 

(63) is positive, implying that the sum of the second and third term, 

( )* * *( ) ( ) ,r Q r Q Q  +   is negative. This implies that * * *( ) ( ) 0r Q r Q Q+    because 
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0.   This completes the proof. 

 Proof of Lemma 12 

Let 
ABy , 

ACy , 
BAy , and 

BCy  represent the equilibrium conditions: 

( )( )= = 0,A
AB A B A B

AB

B
y r r v T T

q


− + + +


 (a.58) 

( )= = 0,A
AC A A

AC

B
y r vT

q


− +


 (a.59) 

( )( )= = 0,B
BA A B A B

BA

B
y r r v T T

q


− + + +


 (a.60) 

( )= = 0.B
BC B B

BC

B
y r vT

q


− +


 (a.61) 

Totally differentiating, and after rearranging, this leads to a system of equations in 

matrix form as 

=

AB AB AB AB AB

AB AC BA BC A

ABAC AC AC AC AC

AB AC BA BC AAC

A

BABA BA BA BA

AB AC BA BC BC

BC BC BC BC

AB AC BA BC

y y y y y

q q q q r

dqy y y y y

q q q q rdq
dr

dqy y y y

q q q q dq

y y y y

q q q q

     
−     

 
      

−  
    

  
     
  
      

    
 
    

1

1
= .

1

0

A

BA

A

BC

A

dr
y

r

y

r

 
 
 
   
   
   
   
−   
   

 
− 
 

 (a.62) 

Using symmetry, the Jacobian on the left-hand side of first equality can be rewritten 

as 

AB AB AB AB

AB AC BA BC

AC AC AC AC

AB AC BA BC

BA BA BA BA

AB AC BA BC

BC BC BC BC

AB AC BA BC

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

    
    
 
    
 
   

 
    
 
    

    
 
    
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2 2

2

2 2

2

2 2

2

2 2

2

2 2

0

= .

2 2

0

A A
A A A A

AB AB AC

A A
A A A

AB AC AC

A A
A A A A

AB AB AC

A A
A A A

AB AC AC

B B
vT vT vT vT

q q q

B B
vT vT vT

q q q

B B
vT vT vT vT

q q q

B B
vT vT vT

q q q

  
   − − − − 

   
  

  − − − 
   

 
 

    − − − −
   

 
    − − −    

 (a.63) 

The determinant of the Jacobian, denoted as  , can be written as   

= det

AB AB AB AB

AB AC BA BC

AC AC AC AC

AB AC BA BC

BA BA BA BA

AB AC BA BC

BC BC BC BC

AB AC BA BC

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

    
    
 
    
 
   

 
    
 
    

    
 
    

 

22 2 2 2

2 2 2
= A A A A

A

AB AC AB AC AB

B B B B
vT

q q q q q

    
− − 

      

 

22 2 2 2 2 2

2 2 2 2
4 .A A A A A A

A A

AC AB AC AB AC AB AC AB

B B B B B B
vT vT

q q q q q q q q

       
 − − − −              

 (a.64) 

in which the right-hand side is positive. Applying Cramer’s rule yields 

2 2

2

1
=AB A A

A AB AC AC

dq B B

dr q q q

  
− 

    
 

22 2 2 2 2

2 2 2
2A A A A A

A

AB AB AC AB AC AB AC

B B B B B
vT

q q q q q q q

       
 − − −                

 (a.65) 

in which the right-hand side is undetermined in sign; 

2 2 2 2 2

2 2 2

1
= 2AC A A A A A

A

A AB AC AB AC AB AB AC

dq B B B B B
vT

dr q q q q q q q

         
− − + −                  

 

22 2 2 2 2

2 2 2

A A A A A

AB AB AC AB AC AB AC

B B B B B

q q q q q q q

      
+ − −             

 (a.66) 

in which the right-hand side is negative; 
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2 2 2 2 2

2 2 2

1
= 2BA A A A A A

A

A AB AC AC AB AC AB AC

dq B B B B B
vT

dr q q q q q q q

       
− − +              

 

22 2 2 2

2 2 2

A A A A

AC AB AC AB AC

B B B B

q q q q q

    
+ −  

       

 (a.67) 

in which the right-hand side is negative; and 

22 2 2 2

2 2

1
=BC A A A A

A AB AC AB AC AB AC

dq B B B B

dr q q q q q q

     
− −  

         

 

2 2 2 2

2 2 2

A A A A
A

AB AB AC AB AC

B B B B
vT

q q q q q

    
− − −  
     

 (a.68) 

in which the right-hand side is positive. 

To show that the total demand of passengers who travel between airports A  

and B  is decreasing in local airport charge in part (i), use (a.65) and (a.67), which 

yields 

22 2 2 2 2 2

2 2 2 2

1
= 2AB BA A A A A A A

A

A A AC AB AC AB AC AB AC AB

dq dq B B B B B B
vT

dr dr q q q q q q q q

       
+ − − − +             

 (a.69) 

in which the right-hand side is negative. 

To show that a marginal increase in the local airport charge reduces the locals’ 

demand for trips between the local airport and airport C  whereas increases the non-

locals’ demand for trips between the non-local airport and airport C  in part (ii), 

consider (a.66) and (a.68). 

To show that a marginal increase in the local airport charge reduces the non-

locals’ demand for trips between airports A  and B  in part (iii), consider (a.67). 

To show that a marginal increase in the local airport charge reduces the non-

locals’ demand by more than the locals’ demand for trips between airports A  and B  

in part (iv), use (a.65) and (a.67), which yields 

22 2 2 2

2 2

1
=AB BA A A A A

A A AB AC AB AC AB AC

dq dq B B B B

dr dr q q q q q q

    
− − 

        

 (a.70) 
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2 2 2

2 2
4 4A A A

A

AB AC AB AC

B B B
vT

q q q q

   
− − −  

    
 (a.71) 

in which the right-hand side is positive. 

To show that a marginal increase in the local airport charge has a greater impact 

on the total locals’ demand than the total non-locals’ demand in part (v), use (a.65), 

(a.66), (a.67) and (a.68), which yields 

22 2 2 2 2

2 2 2

1
=AC BCAB BA A A A A A

A A A A AB AB AC AB AC AB AC

dq dqdq dq B B B B B

dr dr dr dr q q q q q q q

     
+ − − − − − 

         

 

2 2 2

2 2
4 4A A A

A

AB AC AB AC

B B B
vT

q q q q

   
− − −  

    
 (a.72) 

in which the right-hand side is negative. 

To show that a marginal increase in the local airport charge reduces total traffic 

at the local airport in part (vi), use (a.66) and (a.69), which yields 

= ACA AB BA

A A A A

dqdQ dq dq

dr dr dr dr
+ +   (a.73) 

in which the right-hand side is negative. 

To show that a marginal increase in the local airport charge reduces total traffic 

at non-local airport in part (vi), use (a.68) and (a.69), which yields 

= BCB AB BA

A A A A

dqdQ dq dq

dr dr dr dr
+ +  (a.74) 

22 2 2 2 2

2 2 2

2
= A A A A A

AB AC AB AC AB AC AC

B B B B B

q q q q q q q

      
− −            

 (a.75) 

in which the right-hand side of (a.75) is negative. 

To show that a marginal increase in the local airport charge reduce the local 

airport’s traffic by more than the non-local airport’s traffic in part (vi), use (a.66) and 

(a.68), which yields 

= AC BCA B AB BA AB BA

A A A A A A A A

dq dqdQ dQ dq dq dq dq

dr dr dr dr dr dr dr dr

   
− + + − + +   

   
 (a.76) 
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= AC BC

A A

dq dq

dr dr
−   (a.77) 

in which the right-hand side of (a.77) is negative. 

Substituting quantities above with demands completes the proof. 

 Proof of Lemma 13 

To show that the generalized price for trips between the non-local airport and airport 

C  is decreasing in local airport charge in part (i), use the generalized price in (75), 

which yields 

( )
=

B BBC

A A

r vT

r r

  +

 
 (a.78) 

= B
B

A

D
vT

r





  (a.79) 

in which the right-hand side of (a.79) is negative because 
BvT   is positive by 

assumption and /B AD r   is negative by Lemma 12. 

To show that the generalized price for trips between airports A  and B  is 

increasing in local airport charge in part (ii), use the generalized price in (75), which 

yields 

=AB BA

A Ar r

  

 
  (a.80) 

( )
=

A B A B

A

r r vT vT

r

 + + +


 (a.81) 

= 1.A B
A

A A

D D
vT

r r

  
 + + 

  
 (a.82) 

Using (a.65), (a.66), (a.67) and (a.68), the right-hand side of (a.82) can be rewritten as 

1A B
A

A A

D D
vT

r r

  
 + + 

  
 

22 2 2

2 2

22 2 2 2 2 2

2 2 2 2

=

4 4

A A A

AB AC AB AC

A A A A A A
A

AB AC AB AC AB AC AB AC

B B B

q q q q

B B B B B B
vT

q q q q q q q q

  
−

   

      
− + + − 

        

 (a.83) 
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in which the right-hand side is positive. 

To show that the generalized price for trips between the local airport and airport 

C  is increasing in local airport charge by more than the generalized price for trips 

between airports A  and B  in part (ii), use the generalized price in (75), which yields 

=AC BCAB

A A Ar r r

  
−

  
  (a.84) 

in which the right-hand side is larger than /AB Ar   because / < 0BC Ar   as proved 

by (a.79). 

To show that the generalized price for passengers travelling between the local 

airport and airport C  is increasing in local airport charge by less than 1 , use the 

generalized price in (75), which yields 

( )
=

A AAC

A A

r vT

r r

  +

 
 (a.85) 

=1 A
A

A

D
vT

r


+


  (a.86) 

in which the right-hand side of (a.86) is smaller than 1 because the second term is 

negative by Lemma 12. 

 Proof of Proposition 19 

Substitute 
ABq  with 

ABD  and use (a.65), which yields 

2 2 2 2

2 2

1
= 2AB A A A A

A

A AB AC AC AB AB AC

D B B B B
vT

r q q q q q q

       
− −   

          
  

22 2 2

2 2
.A A A

AB AC AB AC

B B B

q q q q

   
− −  
      

 (a.87) 

When demand 
ABD  is increasing in airport charge 

Ar , it requires that the third term in 

parentheses 

22 2 2 2 2

2 2 2
2A A A A A

A

AB AB AC AB AC AB AC

B B B B B
vT

q q q q q q q

      
 − − −             

 (a.88) 
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to be positive because > 0  and 
2 2 2/ / > 0A AB AC A ACB q q B q   −   . Consider the 

second term in parentheses in (a.88), ( )
2

2 2 2 2 2/ / / ,A AB A AC A AB ACB q B q B q q    −     

which is positive, and 
AT  , which is also positive by assumption. If time valuations v  

are zero, which means that there is no congestion, then demand 
ABD  can never be 

increasing in airport charge 
Ar  because it violates the condition that (a.88) must be 

positive. Therefore, congestion is a necessary condition for / > 0AB AD r  . When time 

valuations v  are positive which means that airports are congested, 

2 2 2/ 2 / > 0A AB A AB ACB q B q q  −     is a necessary condition for / > 0AB AD r  . This 

means that 
2 /A AB ACB q q    has to be not only negative but also lower than half of 

2 2/A ABB q  , which implies a strong level of substitutability. Therefore, strong enough 

substitutability is a necessary condition for / > 0AB AD r  . 

 Proof of Lemma 14 

Totally differentiating (80) yields   

( )
( ) ( ) ( )

=
A A A A A A

A A A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.89) 

= = 0A A
A B A

A B

D D
dr dr dQ

r r

 
− − +
 

, (a.90) 

( )
( ) ( ) ( )

=
B B B B B B

B B A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.91) 

= = 0.B B
A B

A B

D D
dr dr

r r

 
− −
 

 (a.92) 

In matrix form, this can be rewritten as 

1
= .

0

A A

A B A

A

BB B

A B

D D

r r dr
dQ

drD D

r r

  
− −        −   
     − − 

  

  (a.93) 

The 2 2  matrix on the left-hand side is positive definite, which ensures that each pair 
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of slots is mapped with a unique pair of slot prices by the Gale-Nikaido Theorem (Gale 

and Nikaido, 1965). Given that 

= =
ji i i i

i i i ij

dQdr r r r

dQ Q dQ QQ

  
+

 
  (a.94) 

and 

= = ,
j j j j j

i i j i i

dr r r dQ r

dQ Q Q dQ Q

  
+

  
  (a.95) 

applying Cramer’s rule, an increase in the local airport’s slot quantity changes the local 

slot price and the other airport’s slot price in the sense that  

=

i

i i

A B B Ai

A B A B

D

r r

D D D DQ

r r r r



 

   
−

   

  (a.96) 

and 

= .

j

j i

A B B Ai

A B A B

D

r r

D D D DQ

r r r r


−

 

   
−

   

  (a.97) 

Lemma 12 mentions that / < / < 0,i i j iD r D r     therefore 

/ / / / > 0A A B B B A A BD r D r D r D r    −    . This implies that the right-hand side of 

(a.96) is negative whereas the right-hand side of (a.97) is positive. 

To show that the increase in the non-local airport’s slot price in local slot 

quantity is smaller in absolute value than the reduction in the local airport’s slot price 

in local slot quantity, it is equivalent to showing that / / < 0i i j ir Q r Q  +   . Use 

(a.96) and (a.97), which yields 

= .

ji

ji i i

A B B Ai i

A B A B

DD

rr r r

D D D DQ Q

r r r r


−

  
+

    
−

   

  (a.98) 
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Using symmetry in the sense that / = /A A B BD r D r     and / = /B A A BD r D r    , and 

substituting /A AD r   and /B AD r   with /i iD r   and /j iD r   respectively, the 

right-hand side of (a.98) can be written as   

=

j ji i

i i i i

A B B A j ji i

A B A B i i i i

D DD D

r r r r

D D D D D DD D

r r r r r r r r

  
− −

   

        − + −           

 (a.99) 

1
=

ji

i i

DD

r r


+

 

  (a.100) 

in which the right-hand side of (a.100) is negative by Lemma 12 and thus completes 

the proof. 

 Proof of Corollary 4 

To show that the overall demand for trips between airports A  and B  is increasing in 

local airport’s slot quantity in part (i), using symmetry in the sense that 

( ) ( )/ = /ij ji i ij ji jD D r D D r +   +   yields 

( ) ( ) ( )
=

ij ji ij ji ij ji ji

i i i j i

D D D D D D rr

Q r Q r Q

 +  +  + 
+

    
 (a.101) 

( )
=

ij ji ji

i i i

D D rr

r Q Q

 +  
+ 

   
 (a.102) 

in which the right-hand side of (a.102) is positive by Lemma 12 and Lemma 14. 

To show that demand for trips between the non-local airports j  and C  is 

decreasing in local slot quantity in part (ii), using symmetry in the sense that 

/ = /jC j iC iD r D r     yields 

=
jC jC jC ji

i i i j i

D D D rr

Q r Q r Q

   
+

    
 (a.103) 

=
jC ji iC

i i i i

D rr D

r Q r Q

  
+

   
 (a.104) 

in which the right-hand side (a.104) is negative by Lemma 12 and Lemma 14. 
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To show that demand for trips between the local airport and airport C  is 

increasing in local slot quantity in part (ii), using symmetry in the sense that 

/ = /iC j jC iD r D r     yields 

=
jiC iC i iC

i i i j i

rD D r D

Q r Q r Q

   
+

    
 (a.105) 

=
jC jiC i

i i i i

D rD r

r Q r Q

  
+

   
 (a.106) 

in which the right-hand side (a.106) is positive by Lemma 12 and Lemma 14. 

To show that the non-local’s demand for trips between airports A  and B  is 

increasing in local slot quantity in part (iii), using symmetry in the sense that 

/ = /ji j ij iD r D r     yields 

=
ji ji ji ji

i i i j i

D D D rr

Q r Q r Q

   
+

    
 (a.107) 

=
ji ij ji

i i i i

D D rr

r Q r Q

  
+

   
 (a.108) 

>
ji j ij j

i i i i

D r D r

r Q r Q

   
− +
   

 (a.109) 

=
ij ji j

i i i

D D r

r r Q

   
− 

   
 (a.110) 

in which the right-hand side of (a.110) is positive by Lemma 12 and Lemma 14. 

To show that a marginal increase in the local airport slot quantity increases 

non-locals’ demands by more than the locals’ demands for trips between airports A  

and B  in part (iv), using symmetry in the sense that / = /ji j ij iD r D r     and 

/ = /ij j ji iD r D r     yields 

=
ji ij ji ji j ij ij ji i

i i i i j i i i j i

D D D D r D D rr r

Q Q r Q r Q r Q r Q

         
− + − +            

 (a.111) 

=
ij ji j i

i i i i

D D r r

r r Q Q

    
− −  

     
 (a.112) 

in which the right-hand side of (a.112) is positive by Lemma 12 and Lemma 14. 
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 Proof of Lemma 15 

Using (a.112), 2 / /ij i iC iD Q D Q  +    can be rewritten as 

2 =
ij ij ji ji ijiC iC

i i i i i i i

D D D D DD D

Q Q Q Q Q Q Q

        
+ + + − −   

         
 (a.113) 

=1 .
ij ji j i

i i i i

D D r r

r r Q Q

     
− − −  

     
 (a.114) 

Using (a.96) and (a.97), and symmetry in the sense that / = /A A B BD r D r     and 

/ = /B A A BD r D r    , and substituting /A AD r   and /B AD r   with /i iD r   and 

/j iD r   respectively yield 

1 = 1

ij ji ji

ij ji j i i i ii

A B B Ai i i i

A B A B

D D DD

D D r r r r rr

D D D Dr r Q Q

r r r r

    
− +  

            − − − +            −
   

 (a.115) 

= 1

ij ji ji

i i i i

j ji i

i i i i

D D DD

r r r r

D DD D

r r r r

    
− +  

     +
    

+ −  
     

 (a.116) 

= 1

ij ji

i i

ji

i i

D D

r r

DD

r r

 
−

 
+


−

 

 (a.117) 

= .

ij ji jCiC

i i i i

ji

i i

D D DD

r r r r

DD

r r

     
+ − +   

      


−
 

 (a.118) 

Lemma 12 mentions that ( ) ( )/ < /ij iC i ji jC iD D r D D r +   +   and 

/ < / .i i j iD r D r     Therefore, the right-hand side of (a.118) is positive, which 

completes the proof. 

 Proof of Proposition 21 

Consider equation (85). Replace the equilibrium slot price ( )ir S  on the left-hand side 
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by the marginal external congestion cost evaluated at the first-best price, which yields  

( )= .

2

ji ij

i i
i i i i ji i ij iC i

ij iC

i i

D D

Q Q
D vT D vT D vT D D vT

D D

Q Q

 
−

 
   − + +

 
+

 

 (a.119) 

Dividing 
ivT   at both sides and rearranging yield 

( )2 = .
ij ji ijiC

ji ij iC i

i i i i

D D DD
D D D vT

Q Q Q Q

     
+ − +   

      
 (a.120) 

Replacing jiD  with ( )i ij iCD D D− +  on the right-hand side and rearranging completes 

the proof. Negative and positive welfare externalities can be proved similarly by using 

greater-than and less-than signs in (a.119) respectively. 

 Proof of Lemma 16 

Using Lemma 12, 2 / /ij i iC iD r D r  +    can be rewritten as 

2 =
ij ij ijiC iC

i i i i i

D D DD D

r r r r r

   
+ + +

    
 (a.121) 

<
ji jC ij

i i i

D D D

r r r

  
+ +

  
 (a.122) 

=
j

i

D

r




  (a.123) 

in which the right-hand side of (a.123) is negative by Lemma 12. 

 Proof of Proposition 23 

Consider equation (90). Replace the equilibrium slot price ( )ir SP  on the left-hand side 

by the marginal external congestion cost evaluated at the first-best price, which yields 

( ) ( )

( )= .

2 2

ij iC ji jC ji ij

i i i i
i i i i ji i iC ij i

ij ijiC iC

i i i i

D D D D D D

r r r r
D vT D vT D vT D D vT

D DD D

r r r r

 +  +  
− −

   
   − + +

  
+ +

   

  (a.124) 

Dividing 
ivT   at both sides and rearranging yield 
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( ) ( )
( )=

ij iC ji jC ji ij

ji iC ij

i i i i

D D D D D D
D D D

r r r r

  +  +   
 − − + 
      

 (a.125) 

Replacing jiD  with ( )i ij iCD D D− +  on the right-hand side and rearranging completes 

the proof. Negative and positive welfare externalities can be proved similarly by using 

less-than and greater-than signs in (a.124) respectively. 

 Proof of Lemma 17 

Use the equilibrium slot prices in (85) and (90), which yields 

( ) ( )i ir SP r S−  

( ) ( )
1 1

= .

2 2

ji
ij iC ji i ij iC i

ij ijiC iCi i

i i i i

DD
D D D vT D D vT

D DD Dr r

r r Q Q

 
 + + − +     + +

   

 (a.126) 

Using (a.118) in the sense that 

( ) ( )

( )
2 = ,

ij iC ji jC

ij iC i i

i i i j

i

D D D D

D D r r

Q Q D D

r

 +  +
−

   
+

   −



  (a.127) 

the right-hand side of (a.126) can be rewritten as   

( )
1

( ) ( ) =

2

ji
i i ij iC ji i

ij iC i i

i i

DD
r SP r S D D D vT

D D r r

r r

 
− + +     +

 

 

( )

( ) ( )
( )

i j

i
ij iC i

ij iC ji jC

i i

D D

r
D D vT

D D D D

r r

 −


− +

 +  +
−

 

 (a.128) 

( )

= 2

i j i
ij iC

iji i iC
i i

i i i

D D D
D D

Dr r D
D vT

D r r


  + 
 +

      − +     
 
 

 (a.129) 

where 
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( )

( ) ( )
= .

2

i jj

i i

ij iC ji jC ij iC

i i i i

D DD

r r

D D D D D D

r r r r



 −

 

  +  +  
 − +       

 (a.130) 

and > 0  by Lemma 12 and Lemma 16. 

Proposition 23 mentions that if equilibrium slot prices are too low, that is, 

> ( ),  ( )i i i iDvT r SP r S , then it is true that 

( )

2 .

i j i
ij iC

iji i iC

i i i

D D D
D D

Dr r D

D r r

 + 
+

  
 +

 
  (a.131) 

Therefore, the right-hand side of (a.129) is positive and completes the proof of part (i). 

Part (ii) and (iii) can be proved similarly by considering less-than and equal sign in 

(a.131). 

 Proof of Lemma 18 

Let 
CAy , 

CBy , 
ACy , and 

BCy  represent the equilibrium conditions:  

( )= = 0,C
CA A A

CA

B
y r vT

q


− +


 (a.132) 

( )= = 0,C
CB B B

CB

B
y r vT

q


− +


 (a.133) 

( )= = 0,A
AC A A

AC

B
y r vT

q


− +


 (a.134) 

( )= = 0,B
BC B B

BC

B
y r vT

q


− +


 (a.135) 

Totally differentiating and rearranging, this leads to a system of equations in matrix 

form as 
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=

CA CA CA CA CA

CA CB AC BC A

CACB CB CB CB CB

CA CB AC BC ACB

A

ACAC AC AC AC

CA CB AC BC BC

BC BC BC BC

CA CB AC BC

y y y y y

q q q q r

dqy y y y y

q q q q rdq
dr

dqy y y y

q q q q dq

y y y y

q q q q

     
−     

 
      

−  
      

     
  
      

    
 
    

1

0
= .

1

0

A

AC

A

BC

A

dr
y

r

y

r

 
 
 
   
   
   
   
−   
   

 
− 
 

 (a.136) 

Using symmetry, the Jacobian on the left-hand side of first equality can be rewritten 

as 

CA CA CA CA

CA CB AC BC

CB CB CB CB

CA CB AC BC

AC AC AC AC

CA CB AC BC

BC BC BC BC

CA CB AC BC

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

y y y y

q q q q

    
    
 
    
 
   

 
    
 
    

    
 
    

 

2 2

2

2 2

2

2

2

2

2

0

0

= .

0 0

0 0

C C
A A

CA CA CB

C C
A A

CA CB CA

A
A A

AC

A
A A

AC

B B
vT vT

q q q

B B
vT vT

q q q

B
vT vT

q

B
vT vT

q

  
 − − 

   
  

 − − 
   

 


  − −
 

 
  − −  

 (a.137) 

The determinant of the Jacobian, denoted as  , can be written as  

2 22 2

2 2 2
= C CA A

A A

AC CA CA CB AC

B BB B
vT vT

q q q q q

     
  − + +            

 

2 22 2

2 2 2

C CA A
A A

AC CA CA CB AC

B BB B
vT vT

q q q q q

     
 − − +             

 (a.138) 

in which the right-hand side is positive. Applying Cramer’s rule yields: 

2 22 2 2

2 2 2 2 2

1
=CA C CA A A

A

A AC AC CA AC CA

dq B BB B B
vT

dr q q q q q

     
− +          

 (a.139) 
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in which the right-hand side is negative; 

22 2

2 2

1
=CB CA A

A

A AC CA CB AC

dq BB B
vT

dr q q q q

  
 − 

     
  (a.140) 

in which the right-hand side is positive; 

2 22 2 22 2

2 2 2 2

1
=AC C C CA A

A A

A AC CA CA CB AC CA

dq B B BB B
vT vT

dr q q q q q q

       
  − − −             

 (a.141) 

in which the right-hand side is negative; 

22

2

1
=BC CA

A

A AC CA CB

dq BB
vT

dr q q q


−

   
  (a.142) 

in which the right-hand side is negative. 

To show that demands for both locals and non-locals who travel at local airport 

are decreasing in the local airport charge in part (i), consider (a.139) and (a.141). 

To show that demand of the passengers from the other congested airport is 

decreasing in the local airport charge but by less than passengers using the local airport 

in part (i), use (a.139), (a.141) and (a.142), which yields 

2 2 2 22 2

2 2 2 2

1
=BC AC C C C CA A

A A

A A AC CA CA CB AC CA CA CB

dq dq B B B BB B
vT vT

dr dr q q q q q q q q

         
 − − + + −                   

  (a.143) 

and 

2 2 22 2 2

2 2 2 2 2

1
=BC CA C C CA A A

A

A A AC AC CA CA CA CB AC

dq dq B B BB B B
vT

dr dr q q q q q q q

      
− − −  − +            

 (a.144) 

in which both right-hand sides are positive. 

To show that demand of non-locals who use the other congested airport is 

increasing in the local airport charge in part (i), consider (a.140). 

To show that the total demand of non-locals from airport C  is decreasing in 

the local airport charge in part (ii), use (a.139) and (a.140), which yields 
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2 22 2 2

2 2 2 2

1
=CA CB C CA A A

A A

A A AC AC CA CA CB AC

dq dq B BB B B
vT vT

dr dr q q q q q q

      
 + − − − +             

 (a.145) 

in which the right-hand side is negative. 

To show that the total traffic at local airport is decreasing in the local airport 

charge in part (iii), use (a.139) and (a.141), which yields 

= CA ACA

A A A

dq dqdQ

dr dr dr
+   (a.146) 

in which the right-hand side is negative. 

To show that the total traffic at the other congested airport is increasing in the 

local airport charge in part (iii), use (a.140) and (a.142), which yields   

= CB BCB

A A A

dq dqdQ

dr dr dr
+  (a.147) 

2 22

2

1
= CA

AC CA CB

BB

q q q


−
   

 (a.148) 

in which the right-hand side of (a.148) is positive. 

To show that the a marginal change in local airport charge has a greater impact 

on the total traffic at local airport relative to the other congested airport in part (iii), 

use (a.139), (a.140), (a.141) and (a.142), which yields 

= CA AC CB BCA B

A A A A A A

dq dq dq dqdQ dQ

dr dr dr dr dr dr

   
+ + + +   

   
 (a.149) 

2 2 2 22 2 2

2 2 2 2 2

1
= C C C CA A A

A A

AC CA CA CB AC CA CA CB AC

B B B BB B B
vT vT

q q q q q q q q q

           
 − + + − − +                       

  (a.150) 

in which the right-hand side of (a.150) is negative. Together with 

/ < 0 < /A A B AdQ dr dQ dr , this implies that /A AdQ dr  is bigger in absolute value. 

Substituting quantities above with demands completes the proof. 

 Proof of Lemma 19 

To show that the generalized price for the passengers using the other congested airport 
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is increasing in the local airport charge, use the generalized price in (96), which yields 

( )
=

j jj

i i

r vT

r r

  +

 
 (a.151) 

=
j

j

i

D
vT

r





  (a.152) 

in which the right-hand side of (a.152) is positive because jvT   is positive by 

assumption and /j iD r   is positive by Lemma 18. 

To show that the generalized price for the passengers using the local airport is 

increasing by more than the generalized price for the passengers using the other 

congested airport in the local airport charge, use symmetry in the sense that =i jT T   

and (a.139), (a.140), (a.141) and (a.142), which yields 

= 1
j ji i

i j

i i i i

DD
vT vT

r r r r

    
 − + − 

    
 (a.153) 

2 2 2

2 2

2 22 2

2 2 2

=

C C A

CA CB CA AC

C CA A
A A

AC CA CB CA AC

B B B

q q q q

B BB B
vT vT

q q q q q

   
− 

    

    
 − − +  

      

 (a.154) 

in which the right-hand side of (a.154) is positive. 

To show that the generalized price for the passengers using the local airport is 

increasing in the local airport charge by less than 1, use the generalized price in (96), 

which yields 

( )
=

i ii

i i

r vT

r r

  +

 
 (a.155) 

= 1 .i
i

i

D
vT

r


+


  (a.156) 

Lemma 18 mentions that / < 0i iD r   and 
ivT   is positive by assumption, which 

implies that the right-hand side of (a.156) is less than 1 and thus completes the proof. 

 Proof of Lemma 20 
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Totally differentiating (100) yields 

( )
( ) ( ) ( )

=
A A A A A A

A A A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.157) 

= = 0A A
A B A

A B

D D
dr dr dQ

r r

 
− − +
 

, (a.158) 

( )
( ) ( ) ( )

=
B B B B B B

B B A B A

A B A

Q D Q D Q D
d Q D dr dr dQ

r r Q

 −  −  −
− + +

  
 (a.159) 

= = 0.B B
A B

A B

D D
dr dr

r r

 
− −
 

 (a.160) 

In matrix form, this can be rewritten as 

1
= .

0

A A

A B A

A

BB B

A B

D D

r r dr
dQ

drD D

r r

  
− −        −   
     − − 

  

  (a.161) 

The 2 2  matrix on the left-hand side is positive definite, which ensures that each pair 

of slots is mapped with a unique pair of slot prices by the Gale-Nikaido Theorem (Gale 

and Nikaido, 1965). Given that 

= =
ji i i i

i i j i i

dQdr r r r

dQ Q Q dQ Q

  
+

  
  (a.162) 

and 

= = ,
j j j j j

i i j i i

dr r r dQ r

dQ Q Q dQ Q

  
+

  
  (a.163) 

applying Cramer’s rule, an increase in the local airport’s slot quantity changes the local 

slot price and the other airport’s slot price in the sense that  

=

i

i i

A B B Ai

A B A B

D

r r

D D D DQ

r r r r



 

   
−

   

  (a.164) 

and 
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= .

j

j i

A B B Ai

A B A B

D

r r

D D D DQ

r r r r


−

 

   
−

   

  (a.165) 

Lemma 13 mentions that / < 0 < / < / ,i i j i i iD r D r D r       therefore 

/ / / / > 0A A B B B A A BD r D r D r D r    −    . This implies that both right-hand sides 

of (a.164) and (a.165) are negative. 

To show that the reduction in the non-local airport’s slot price is smaller than 

the reduction in the local airport’s slot price in local slot quantity, use (a.164) and 

(a.165), which yields 

= .

ji

ji i i

A B B Ai i

A B A B

DD

rr r r

D D D DQ Q

r r r r


+

  
−

    
−

   

  (a.166) 

Using symmetry in the sense that / = /A A B BD r D r     and / = /B A A BD r D r    , and 

substituting /A AD r   and /B AD r   with /i iD r   and /j iD r   respectively, the 

right-hand side of (a.166) can be rewritten as 

1
=

ji

i ii i

i i

rr

D DQ Q

r r


−

  
−

 

  (a.167) 

in which the right-hand size is negative and thus completes the proof. 

 Proof of Lemma 21 

To show that demand of non-locals who use the other congested airport is decreasing 

in the local airport’s slot quantity in part (i), use (a.164) and (a.165), which yields 

=
Cj Cj Cj ji

i i i j i

D D D rr

Q r Q r Q

   
+

    
 (a.168) 

= .

Cj jCiC Ci

i i i i

A B B A

A B A B

D DD D

r r r r

D D D D

r r r r

  
−

   

   
−

   

 (a.169) 
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Lemma 18 mentions that / < 0 < / < / ,i i j i i iD r D r D r       therefore 

/ / / / > 0A A B B B A A BD r D r D r D r    −    . Lemma 18 also mentions that 

/ 0iC iD r    and / < / < 0 < / ,Ci i jC i Cj iD r D r D r       therefore 

/ / / / < 0.Cj i iC i Ci i jC iD r D r D r D r    −      Altogether, the right-hand side of 

(a.169) is negative. 

To show that the demand of the other congested airport’s passengers is 

increasing in the local airport’s slot quantity in part (i), using symmetry in the sense 

that / = /jC i iC jD r D r     yields 

=
jC jC jC ji

i i i j i

D D D rr

Q r Q r Q

   
+

    
 (a.170) 

= .
jC ji iC

i i i i

D rr D

r Q r Q

  
+

   
 (a.171) 

Lemma 18 mentions that / < / < 0iC i jC iD r D r     whereas Lemma 20 mentions that 

/ < / < 0i i j ir Q r Q    , which altogether implies that the right-hand side of (a.171) is 

positive. 

To show that the demand of locals is increasing in the local airport’s slot 

quantity by more than the demand of passengers originating from the other congested 

airport in the local airport’s slot quantity in part (i), using symmetry in the sense that 

/ = /iC i jC jD r D r     and / = /jC i iC jD r D r     yields 

=
jC j jC jC jiC iC i iC i

i i i i j i i i j i

D r D D rD D r D r

Q Q r Q r Q r Q r Q

           
− + − +                  

 (a.172) 

= .
jC jiC i

i i i i

D rD r

r r Q Q

    
− −  

     
 (a.173) 

Lemma 18 mentions that / < /iC i jC iD r D r     whereas Lemma 20 mentions that 

/ < / < 0i i j ir Q r Q    , which altogether implies that the right-hand side of (a.173) is 
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positive. 

To show that the demand of non-locals who use the local airport is increasing 

in the local airport’s slot quantity by more than the demand of passengers originating 

from the other congested airport in the local airport’s slot quantity in part (i), using 

symmetry in the sense that / = /Cj i Ci jD r D r     and / = /jC i iC jD r D r     yields   

=
jC j jC jC jCi Ci i Ci i

i i i i j i i i j i

D r D D rD D r D r

Q Q r Q r Q r Q r Q

           
− + − +                  

 (a.174) 

= .
jC Cj jCi i iC

i i i i i i

D D rD r D

r r Q r r Q

       
− + −   

        
 (a.175) 

Using (a.164) and (a.165), the right-hand side of (a.175) can be rewritten as 

1
= .

jC j CjCi i Ci

A B B Ai i i i i i

A B A B

D D DD D D

D D D DQ Q r r r r

r r r r

      
− − +            −

   

 (a.176) 

Lemma 18 mentions that / < 0 < / < /i i j i i iD r D r D r      , therefore 

/ / / / > 0A A B B B A A BD r D r D r D r    −    . Lemma 18 also mentions that 

( ) / < 0CA CB iD D r +  , which altogether implies that the right-hand side of (a.176) is 

positive. 

To show that the demands for both locals and non-locals who use local airport 

are increasing in the local airport’s slot quantity by less than 1 in part (i), consider the 

local airport’s total traffic which is the sum of the two demands and is increasing in 

the local airport’s slot quantity by 1. Since the two demands have been proved to be 

increasing in the local airport’s slot quantity, each of the two demands is increasing in 

the local airport’s slot quantity by less than 1. 

To show that the total demand of non-locals from airport C  is increasing in the 

local airport’s slot quantity in part (ii), using symmetry in the sense that 

( ) ( )/ = /CA CB i CA CB jD D r D D r +   +   yields 
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( ) ( ) ( )
=

jCA CB CA CB CA CBi

i i i j i

rD D D D D Dr

Q r Q r Q

 +  +  +
+

    
 (a.177) 

( )
= .

jCA CB i

i i i

rD D r

r Q Q

 +  
+ 

   
 (a.178) 

Lemma 18 mentions that ( ) / < 0CA CB iD D r +   whereas Lemma 20 mentions that 

/ < / < 0i i j ir Q r Q    , which altogether implies that the right-hand side of (a.178) is 

positive. 




